
Obfuscation and Security for Digital Integrated Circuits

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Joseph Sweeney

B.S. Engineering Physics, Fordham University
B.S. Electrical Engineering, Columbia University

M.S. Electrical and Computer Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

January 2021

© Joseph Sweeney, 2021
All rights reserved.

iii

Acknowledgements

Thanks to my advisor, Larry Pileggi, who has guided me in my research, given me

countless opportunities, and from whom I’ve learned a lot.

To my committee members, Shawn Blanton, Yiorgos Makris, Marijn Heule, and Rob

Rutenbar, thank you for mentorship and direction in developing this thesis.

To my collaborators and coworkers Ken Mai, Mohammad Zackriya, Samuel Pagliarini,

Oguz Atli, Ruben Purdy, Danielle Duvalsaint, Xiang Lin and Deepali Garg, thanks for

enabling so much of this work.

I am grateful for the funding support from the Defense Advanced Research Projects

Agency under contract FA8750-17-1-0059 “Obfuscated Manufacturing for GPS (OMG)”

and Honeywell Federal Manufacturing & Technologies, LLC under contract A023646.

To my friends Amrit Pandey, Onur Kibar, Prashanth Mohan, Mimi Sweeney, Antonis

Manousis, Dimitrios Stamoulis and Meric Isgenc, you have truly made Pittsburgh home.

Thanks to Natalia, who supports me more than I deserve.

Finally, thanks to my family to whom I owe everything.

iv

Abstract

Globalization of IC manufacturing has led to increased security concerns, notably IP

theft. A promising countermeasure is logic locking that adds programmable elements

to a design, obfuscating the true functionality during manufacturing. Generally, logic

locking techniques aim to provide IP security while avoiding large overheads. Towards

this end, this dissertation makes several contributions.

First, a security analysis of existing locking techniques is presented, exposing sev-

eral vulnerabilities. One class of techniques is analyzed using sensitivity, a property of

Boolean functions. The analysis reveals the modified portions of a circuit with high

probability, leading to deobfuscation. Another class of locking methods is used to

demonstrate two modeling techniques, relaxed models and symmetry breaking, that

can dramatically reduce attack times.

These vulnerabilities inform the development of latch-based logic locking, a novel

obfuscation method that resists known attacks while maintaining low overheads. This

balance is achieved by locking a design’s clock tree, manipulating the functionality while

avoiding timing-critical logic. To validate the technique, a set of common industrial de-

signs has been locked and brought through the full manufacturing process. To demon-

strate resistance to deobfuscation, the locking scheme is evaluated against existing and

newly developed attack methods.

Finally, two metrics are established to better quantify the security of a given lock-

ing technique under common attack scenarios. These metrics are efficiently estimated

using approximate model counting techniques. Importantly, they provide a means of

analyzing the overhead-security trade-off of locking techniques, an essential aspect of

integrating locking schemes into real systems.

Contents

Contents v

List of Figures viii

List of Tables xii

1 Introduction 1

1.1 Logic Locking for Protection of Intellectual Property 1

1.2 Thesis Contributions . 2

2 Background 4

2.1 Digital Integrated Circuits . 4

2.1.1 Structure, Operation, and Testing . 4

2.1.2 Manufacturing Process Vulnerabilities 6

2.2 Logic Locking . 7

2.2.1 Attack Models . 8

2.2.2 Brief Taxonomy . 10

2.2.3 Related Techniques . 12

2.3 Attacks on Logic Locking . 13

2.3.1 Netlist-Based Attacks . 13

2.3.2 Brute Force and Sensitization Attacks 14

2.3.3 Miter-Based Attacks . 15

v

CONTENTS vi

3 Security of Existing Locking Schemes 20

3.1 Sensitivity Analysis of Strip-Functionality Locks 20

3.1.1 Strip-Functionality Locking . 21

3.1.2 Boolean Sensitivity Attack . 23

3.1.3 Resistant Locking Scheme . 28

3.1.4 Attack Results . 29

3.2 Modeling Techniques for Locked Circuits . 32

3.2.1 Full-Lock . 33

3.2.2 Relaxed Models . 35

3.2.3 Symmetry Breaking . 40

3.2.4 Resistant Locking Scheme . 42

3.3 Discussion . 46

3.3.1 Attack Insights . 46

3.3.2 Shortcomings of Proposed Fixes . 47

4 Keyed Sequential Elements for Low-Overhead Locking 49

4.0.1 Latch-Based Design and Retiming . 50

4.1 Latch-Based Logic Locking . 50

4.1.1 Programmable Path Delay . 51

4.1.2 Programmable Logic . 53

4.1.3 Insertion Flow . 54

4.1.4 Design for Testability . 57

4.2 Attacking Latch-Based Logic Locking . 58

4.2.1 Netlist-Based Attacks . 59

4.2.2 Oracle-Based Attacks . 62

4.3 Overhead Analysis . 74

4.3.1 Power, Performance, Area Overhead 75

4.3.2 Testing Overhead . 78

CONTENTS vii

4.3.3 Tapeout . 78

4.4 Discussion . 81

5 Quantifying the Efficacy of Locking Methods 84

5.1 Locking Metrics . 84

5.1.1 Existing Security Metrics . 84

5.1.2 Key Corruption . 86

5.1.3 Minimum Corruption . 86

5.1.4 Estimating Metrics . 87

5.2 Application of Metrics . 88

5.2.1 Minimum Corruption under Netlist Attack Model 89

5.2.2 Incremental Key Corruption of Oracle Attack Model 91

5.2.3 Overhead-Security Trade-Offs . 93

5.3 Discussion . 95

6 Conclusion and Future Work 97

6.1 Improving and Impeding Oracle-Based Attacks 97

6.2 Security-Aware Logic Synthesis . 98

6.3 Conclusion . 102

Bibliography 104

A Supporting Algorithms 113

A.1 Acyclic Key Constraints . 113

A.2 Logic-Enhanced Banyan Locking Insertion 114

List of Figures

2.1 Typical digital IC structure . 5

2.2 High-level view of IC manufacturing process . 6

2.3 XOR logic locking example . 7

2.4 Miter-based attack steps: (a) Miter circuit construction, (b) Unlocked (oracle)

circuit produces correct IO functionality (c) Addition of learned IO constraint

to miter circuit . 16

2.5 Miter-based model checker attack steps: (a) Miter circuit unrolling, (b) Differ-

entiating sequence constraint. 19

3.1 Underlying structure of strip-functionality locking 21

3.2 Truth table of circuit locked with TTLock . 22

3.3 Circuit that determines sensitivity where s(f , x) is the sensitivity of f at a

given input x and xflip(i) represents x with the ith bit flipped 24

3.4 Average sensitivity, s̄(f), versus input width of benchmark circuits from 50

samples . 25

3.5 Sensitivity, s(f), versus input width of benchmark circuits 26

3.6 Full-Lock diagram. Each LUT replaces a gate from the original circuit; the

switch boxes permute and invert their input signals. 34

3.7 Relaxed models for Banyan network . 37

3.8 (a) MUX-based and (b) edge-based encoding schemes for the all-to-all model . 37

viii

LIST OF FIGURES ix

3.9 Comparison of encoding schemes for standalone Banyan network, n=10, time-

out=4 hours . 39

3.10 Example of propagation of ordering constraints for a 2-input LUT. 42

3.11 Comparison of attack time at network input width of 32 between encodings

with and without LUT symmetry breaking, n=10 43

3.12 Diagram of circuit mapped to logic-enhanced Banyan network. The original

circuit is shown top-left, the locked version bottom-right. The correct switch

box function is highlighted in black, the decoy logic in gray. 44

3.13 miter-based attack time for ISCAS 85 circuits locked with Full-Lock and logic-

enhanced Banyan locking schemes . 45

4.1 Diagram and functional waveforms of logic locked with programmable path

delay via latch phase modulation. 51

4.2 Conceptual view of latch-based logic locking. A set of interconnected flip-

flops is converted to programmable latches with added decoy latches and

logic. Each latch can operate on either clock phase, hold clear, or output

constant logic 0. 52

4.3 Diagram and truth table of latch clock and reset control signals. Control

circuitry that determines the latch function is connected to the clock and reset

pins. The truth table’s row colors correspond to the associated latch type. . . . 54

4.4 Flip-flop to latch conversion and decoy addition. A flip-flop is duplicated,

retimed, and converted to latches. Two types of decoy latches can be added

to the paths in the fan-in and fan-out cones of the latches. This example shows

a single flip-flop, however in practice an interconnected group is converted. . . 55

4.5 Preliminary DFT infrastructure. CC represents clock and reset control cir-

cuitry from Table 4.1.2. 57

4.6 Enumeration of keys that satisfy timing constraints, n = 1000 59

LIST OF FIGURES x

4.7 Histograms, separated by latch type, for structural metrics. Plots are gener-

ated from 60 locked circuits with varying amounts of LBLL bits. 61

4.8 Cross-validation scores on classifiers trained on the structural metric dataset. 62

4.9 (a) Miter circuit used in our modified model checker-based attack. The free

variables of the system are the two key inputs, the initial state of all sequential

elements, and the inputs at every unrolled cycle. The circuit is unrolled by

connecting the input of each state element from a cycle to the output of the

same state element of the next cycle. (b) Addition of a learned IO constraint

to the miter circuit. This limits the possible key and initial state pairs. 64

4.10 Conversion of latch-based circuit to flip-flop counterpart, enabling use in

generic model checkers. 67

4.11 (a) Cyclic circuit with cut feedback paths. (b) Acyclic, unrolled version of the

circuit. (c) Visualization of longest possible path through unrolled circuit’s

feedback. 69

4.12 Model checker attack results; timeout of 24 hours indicated by red line. 70

4.13 Model checker attack versus circuit size. 71

4.14 Comparison of attack time with various ratios of original flip-flops converted

versus decoys add. Added decoys are evenly split between delay and logic

types. 72

4.15 Comparison of attack time with various ratios of logic versus delay decoys. . . 73

4.16 Latch-based logic locking delay, power, and area overheads vs. number of

key bits normalized to the original design. 75

4.17 Latch-based logic locking delay, power, and area overheads vs. decoy ratio

normalized to the original design, nbits=256. 77

4.18 Normalized SSL test coverage for circuits locked with latch-based logic locking 78

4.19 GDS of test IC and PCB with IC mounted. 79

4.20 Power and area overheads for the taped-out circuits. 80

LIST OF FIGURES xi

4.21 Schmoo plots for AES (top left), AES with 64 bits LBLL (top right), IIR (bottom

left), IIR with 256 bits LBLL (bottom right). 81

5.1 Miter truth tables and corresponding locking metrics for two locked circuits. . 85

5.2 Approximate pmc of benchmark versus #(keysamples). 89

5.3 Approximate pmc of benchmark circuits locked with selected techniques. w ≈

128 and #(keysamples) = 1000 . 90

5.4 Approximate pmc of c3540 locked with XOR-locking, sweeping key width w

and P[ki = ki
c] with #(keysamples) = 1000. 91

5.5 Key corruption for incremental keys returned from miter-based attack, w ≈

448. The attacks are run with a timeout of 1 hour, indicated by the dashed

red line. The zero value of key corruption is mapped to 10−14 92

5.6 Overhead vs. pmc Pareto fronts for selected locking techniques. 94

5.7 Overhead vs. key corruption Pareto fronts for selected locking techniques.

The zero value of key corruption is mapped to 10−19 95

6.1 Space of possible logic lockings. 99

6.2 Example programmable fabric construction. 100

6.3 Initial optimization results. 101

List of Tables

3.1 Sensitivity attack results for author-provided circuits using Cadence JasperGold 30

3.2 Sensitivity attack results for generated circuits using Cadence JasperGold. For

SFLL-HD, HD=Nbits/8 and for SFLL-Flex, Npatterns=Nbits/8. 31

3.3 Sensitivity attack results for generated circuits using the SAT solver CaDiCaL.

For SFLL-HD, HD = Nbits/8 and for SFLL-Flex, Npatterns = Nbits/8. 31

3.4 2-Input LUT symmetries under permuted inputs. 41

4.1 Characteristics of each considered benchmark circuit 75

xii

List of Algorithms

1 Miter-Based Attack . 18

2 Sensitivity-Based Attack . 27

3 Sensitivity Attack Resistant TTLock . 29

4 Logic decoy latch insertion . 56

5 Delay decoy latch insertion . 56

6 Model Checker-Based Attack with Non-Deterministic Reset 66

xiii

Chapter 1

Introduction

1.1 Logic Locking for Protection of Intellectual Property

The downscaling of integrated circuits (ICs) has enabled computing that underlies many

essential technologies. However, due to prohibitively high research and development

costs, only a few foundries are manufacturing ICs in most scaled technologies. Conse-

quently, many IC companies tend to operate fabless, relying on third-party foundries to

manufacture their designs. Once a circuit is sent for fabrication, the foundry gains full

visibility of the design with minimal effort, allowing theft of intellectual property (IP).

This threat undermines the significant cost associated with developing digital circuits

and is a growing concern in the IC industry.

To combat IP theft, a variety of logic locking techniques have been developed. Gen-

erally, these techniques add programmable elements to the logic of an IC. When pro-

grammed incorrectly, the elements disrupt the circuit functionality. The key, which cor-

rectly programs the elements, is set post-manufacture, so the correct design is never

revealed to the untrusted entity. These techniques seek to provide maximal security

while maintaining low overhead in the circuit’s area, power, delay, and testability.

Unfortunately, logic locking is far from realizing this goal. Corresponding with logic

locking schemes, attacks have been developed that can reveal the circuit’s correct key

1

CHAPTER 1. INTRODUCTION 2

under various attack conditions. To resist such attacks, lock designers have sacrificed

greater overheads. In doing so, many schemes push the cost of locking a circuit to un-

tenable levels. Furthermore, this cost increase is justified with notions of security that are

tightly coupled to the execution time of specific attacks. In many cases, straightforward

modifications to attacks lead to deobfuscation.

1.2 Thesis Contributions

This thesis addresses several of the preceding issues in logic locking. First, a security

analysis of existing logic locking techniques is presented, exposing several weaknesses.

Specifically, a new analysis method reveals locked portions of the design allowing for

removal of locking circuitry and lock modeling techniques allow for significant speedups

in attack time. The underlying causes of these vulnerabilities are identified, and fixes

are proposed for each broken lock method. Although the security is improved, these

fixed locking schemes still do not provide a satisfying security-overhead tradeoff.

This analysis informs the development of a new locking scheme, latch-based logic

locking. This technique aims to provide low overhead security by exploring a new di-

mension in which to obfuscate a circuit. Whereas previous locks typically just manipu-

late a design’s combinational logic, latch-based logic locking additionally keys a design’s

clock tree. This enables large amounts of interdependent keys to be inserted without the

overheads associated with other techniques. The technique’s low overhead is validated

by manufacturing locked versions of several industry-standard circuits. Additionally,

the security is comprehensively analyzed against existing as well as newly developed

attack methods.

Finally, to enable better quantification of the security of given locking techniques,

two metrics are proposed. These metrics, key corruption and minimum corruption,

correspond to common attack models rather than specific attacks, enabling a designer to

better discern the efficacy of various lock types. A flow for approximating these metrics

CHAPTER 1. INTRODUCTION 3

on generic locked circuits is developed and evaluated several on locking techniques.

We conclude with a discussion how the development of these and other metrics allows

for automated logic locking schemes, reducing reliance on circuit designers for lock

insertion and potentially providing substantially improved security-overhead trade-offs.

The remainder of the thesis is organized as follows:

• Chapter 2 elaborates on logic locking, providing an overview of relevant back-

ground knowledge, existing locking schemes, and attack methods.

• Chapter 3 describes new attack methods that deobfuscate locks from two classes

locking methods.

• Chapter 4 introduces latch-based logic locking, a novel approach to adding pro-

grammable logic that maintains low overhead while resisting existing attacks.

• Chapter 5 proposes two new metrics that more accurately capture the security of

locking techniques.

• Chapter 6 concludes with a discussion of the insights produced in this work and a

promising new direction for logic locking research.

Chapter 2

Background

2.1 Digital Integrated Circuits

2.1.1 Structure, Operation, and Testing

Due to their low cost, noise tolerance, and high speed, digital integrated circuits are

used in the majority of computing platforms. These circuits perform computations on

Boolean-valued signals, {0, 1}. Generally, the circuits consist of sequential logic made

from interconnected logic gates and state elements. Individually, the logic gates imple-

ment simple functions that are composed into more complex functions. These functions

are referred to as a circuit’s combinational logic. The state elements, also referred to as

sequential elements, function as memory, storing values while the combinational logic

is evaluated. Fig. 2.1 shows an example circuit with the state elements and logic gates

colored blue and white, respectively.

To conduct the desired computation, the circuit moves through a set of state values

based on the logic gate structure and inputs to the system, producing the desired se-

quence on its outputs. The evaluation of the circuit is dictated by a periodic clock signal.

Each clock period, the logic gates compute the circuit’s current output values and the

next values of the state elements based on the current state and input values.

4

CHAPTER 2. BACKGROUND 5

Figure 2.1: Typical digital IC structure

More formally, the functionality of the digital circuit can be specified as a finite state

machine (FSM) using the Mealy model [1]. The model consists of a set of variables, func-

tions, and initial states that describe how the circuit operates. We respectively denote the

input, output, state and next-state variables as i ∈ {1, 0}n, o ∈ {1, 0}m, s ∈ {1, 0}l, and

s′ ∈ {1, 0}l. These variables are labeled in Fig. 2.1, where sn is the nth bit of s. The output

and next-state values are determined by an output function, λ, and state-transition func-

tion, δ. Every clock period, the variables are updated as s := s′, subsequently s′ := δ(s, i)

and o := λ(s, i). We denote the circuit’s initial states as S0 ⊆ {1, 0}l.

To aid in testing, digital circuits typically use a scan-chain, colored gray in Fig. 2.1.

The scan-chain is formed by a serial connection between the circuit’s state elements, the

output of each sequential element feeds into the scan-in port, si, of the next. During

test mode, the scan-chain is enabled (se = 1) causing the sequential elements take in

data from their si port, rather than the d port used in normal operation. This enables

arbitrary reading and writing of a digital circuit’s state, significantly reducing the cost of

exercising the circuit’s logic during testing. Scan-chains allow the combinational logic of

the circuit to be considered separately from the state elements, significantly improving

the performance of automatic test pattern generation (ATPG) tools. For convenience,

we refer to the combinational logic as C, where variables y = (s′, o) and x = (s, i) are

updated as y := C(x). Note that in Fig. 2.1 x = (s1, s0, i0) and y = (s′1, s′0, o0).

CHAPTER 2. BACKGROUND 6

Figure 2.2: High-level view of IC manufacturing process

2.1.2 Manufacturing Process Vulnerabilities

The significant cost of developing modern IC manufacturing processes has shifted the

industry towards a fabless production model. A high-level diagram of the model is

depicted in Fig. 2.2. First, a design team encodes the functionality of a design in a

hardware description language (HDL). This description is passed to a logic synthesis

tool that implements the functionality as a sequential circuit. The logic gates, sequential

elements, and their interconnections are defined in a netlist. The netlist is passed to a

place-and-route tool that maps the circuit to a 2-D grid, ultimately producing a GDS

file containing a geometric description of the various transistor and metal layers to be

printed. This GDS file is taped-out, i.e., sent to the foundry to manufacture the IC. The

foundry produces bare IC dies that are then packaged and tested.

A critical security vulnerability results from third-party access to the design data. As

a GDS file contains all necessary information for production, it is trivial for the foundry

to overproduce the design. Furthermore, it is straightforward to reverse-engineer a design’s

functionality, extracting the netlist from the GDS. Other supply chain entities, such as

the packaging company, can obtain the netlist through other means such as delayering

the ICs [2]. The adversarial entity may then leak design information to other parties.

Additionally, the foundry can modify the design, inserting hardware Trojans that disrupt

functionality. These threats are a concern for both commercial IC design companies that

invest large amounts of money in IC designs as well as government entities that produce

CHAPTER 2. BACKGROUND 7

Figure 2.3: XOR logic locking example

ICs for security critical applications [3, 4, 5].

2.2 Logic Locking

Logic locking is a strategy for addressing these manufacturing security vulnerabilities.

The designers add a set of key inputs to the circuit’s netlist. The inputs are incorpo-

rated into the design such that under different values of the key inputs, the circuit’s

functionality changes. The foundry does not know what the proper key value is, thus

any overproduced ICs or leaked design information will be incomplete. An adversary

must select a functionally correct key out of the exponentially large space. After manu-

facturing, the correct key is applied to the circuit. A typical assumption is that the key

is stored in a tamper-proof non-volatile memory.

A simple example is XOR logic locking in which parity gates (XOR/XNOR) invert

signals depending on a key input [6]. The parity gates, termed key gates, are spliced into

locations either selected randomly or with various heuristics maximizing corruption or

interdependence [7, 8]. After insertion, the netlist is resynthesized, mixing the parity

gates with the existing logic. A diagram is shown in Fig. 2.3 wherein two parity gates,

highlighted in red, have been inserted into the circuit from 2.1. Note that the k0 parity

gate has replaced an inverter from the original netlist. These manipulations create a large

CHAPTER 2. BACKGROUND 8

amount of corruption within the circuit as the parity gate’s entire upstream function is

inverted.

Formally, a logic locking technique, L : C(x) → Clock(x, k), is a transform that takes

a circuit, C(x), and produces a locked version, Clock(x, k). Under the correct key, kc, the

locked circuit produces the same behavior as the original circuit, however the exact

notion of equivalence may depend on the locking technique. If the transform only

modifies the combinational logic, it is sufficient to show equivalence proving that the

next state logic and output logic cones are equivalent, ∀x Clock(x, kc) = C(x). If the

state elements are not preserved, sequential equivalence definitions must be used. While

several different notions of sequential equivalence exist, in this work we use three-valued

safe equivalence [9]. Here, each circuit node takes on a value from {0, 1, X}, where X

represents unknown values. A locked circuit is equivalent to the original if after the

application of a reset input sequence R, no input sequence exists that would produce

a different output sequence between the original and locked circuits. Specifically, for

all reachable states after reset, the original and locked output functions are equivalent,

(λ, λl) ∈ {(0, 0), (1, 1), (X, X)}. Generally, proving sequential equivalence is significantly

harder than combinational equivalence due to the sheer size of the state spaces that

might be encoded differently [10].

2.2.1 Attack Models

In the characterization of the security of a logic locking technique, an attack model is

used to specify assumptions regarding the adversary. Within the logic locking research

community, a variety of attack models have been considered differing in regard to the

artifacts, abilities, and success criteria of the adversary. As a result, understanding the

targeted attack model is of utmost importance for any party implementing these locking

techniques.

There are generally two artifacts to consider in defining the attack model: the locked

CHAPTER 2. BACKGROUND 9

circuit’s design data and a functioning version of the unlocked circuit. Adversarial access

to the design data is a basic assumption of logic locking. However, depending on where

the adversary is in the supply chain, the design data may vary. A foundry will have

access to a GDS file, and thus can extract a netlist. Along, with the netlist, a foundry

will have intimate knowledge of transistor and interconnect models, allowing detailed

physical simulation and analysis. This would allow an adversarial foundry to obtain

design features such as clock frequency. Other supply chain entities will likely have

some subset of this access.

A more powerful attack model assumes access to a functioning version of the un-

locked design. The unlocked circuit, referred to as an oracle, has the correct key set

in its tamper-proof memory, affording the attacker black-box access. Obtaining an un-

locked circuit may be trivial if the IC is available on the open market or may be the

result of comprised physical security. Variations of this attack model have been consid-

ered in which the adversary does or does not have full access to the unlocked circuit’s

scan-chains. While scan-chains are essential in testing a design, they are also a powerful

attack vector for an adversary.

Other considerations include the amount of processing power available to the ad-

versary as well as the potential for side-channel analysis such as probing signal lines.

Access to high-performance machines is cheap and foundries commonly use probing

techniques to aid development of manufacturing processes and circuit failure analysis.

Key values have been probed in nodes as small as 28nm [11]. However, as feature sizes

continue to scale, this probing becomes more difficult, limited by spatial resolution [12].

Most work in logic locking has not directly considered this threat, relying on the validity

of the tamper-proof memory assumption.

The definition of a successful attack can also vary. The most rigorous definition is

finding a functionally equivalent key. In the combinational context, wherein the attacker

has scan-chain access, the problem solved by the attacker is one of finding an exact

key, ke, for which the locked circuit produces the same function as the original, ke :

CHAPTER 2. BACKGROUND 10

∀x Clock(x, ke) = Clock(x, kc). A relaxed version of the exact recovery success criteria is

approximate recovery. In this case, the attacker finds an approximate key, ka, under

which functionality of the locked circuit differs from the correct functionality with at

most some probability ε, ka : Px∈X[Clock(x, ka) 6= Clock(x, kc)] < ε. Both definitions can

be extended to sequential settings using the previous sections’s definition of sequential

equivalence.

2.2.2 Brief Taxonomy

As in the example from Fig. 2.3, the earliest logic locking techniques inserted keyed par-

ity gates into the original circuit’s structure. Similar locks utilize multiplexors (MUXs)

and Lookup Tables (LUTs) in lieu of parity gates [8, 13]. We refer to this class of tech-

niques that generally maintain the original structure as insertion locks. Insertion locks can

exhibit low overhead if the added gates avoid the design’s critical timing paths. How-

ever, some insertion heuristics that increase security via greater key inter-dependency

tend to create paths with many key gates, significantly impacting the delay. Unfortu-

nately, under oracle attack models, these insertion locking schemes have been largely

broken using a variety of methods, the most successful of which are miter-based attacks

that use either satisfiability (SAT) solvers or ATPG tools to iteratively form constraints

that the correct key must respect. [14]. More detail on these attacks is provided in section

2.3.

Researchers have attempted to increase the difficulty of mounting a miter-based at-

tack by inserting attack-resilient logic blocks into the locked circuit [15, 16]. These tech-

niques, collectively referred to as iteration locks, reduce the number of keys ruled out per

attack iteration, significantly increasing the overall execution time. However, the logic

blocks are susceptible to removal attacks since the circuitry is typically traceable through

properties such as signal probability [17]. Fixes to these vulnerabilities have been pro-

posed with the strip-functionality class of locking techniques that provide a better mixing

CHAPTER 2. BACKGROUND 11

scheme, but as to be detailed in section 3.1, have limited effectiveness.

Other schemes rely on circuit properties that the miter-based attack does not model.

For instance, a cyclic obfuscation scheme assumes SAT solvers can only handle acyclic

circuits [18]. It creates loops in the circuit’s combinational logic to corrupt the miter-

based attack. Another technique, delay-locking, adds tunable delay key gates to the

design. Incorrect keys lead to setup and hold timing violations that the attack does not

model by default. This comes at the cost of large delay overheads as the security scales,

with reported average delay overheads of 60% [19]. While the security of these defenses

initially seems promising, when their properties are correctly formulated within SAT,

they can be easily broken [20, 21]. Moreover, commercial ATPG tools have built-in

timing and loop breaking algorithms to automatically handle many of these situations

[22].

Yet another class of locking mechanisms replaces portions of the design with highly

configurable logic [23, 24, 25, 26]. The densely interdependent keys of these locks over-

whelm SAT and ATPG solvers. A prototypical example is replacing gates with LUTs

and adding configurable routing. The resulting locks resemble a field-programmable

gate array (FPGA) embedded into the circuit. The existing incarnations of these locks

vary in insertion methods, density, and mixing with original logic. These methods re-

quire careful integration into the system to avoid large overheads, in some cases delay

overheads north of 200% have been reported. However, generally the class has been

shown to be highly resistant to the typical miter-based attacks. In section 3.2, we will

investigate methods of reducing these attack times.

Finally, while the preceding techniques just modify the combinational part of the de-

sign, sequential logic locking also manipulates the state elements. One such technique

modifies the circuit’s FSM to require a specific input sequence to transition from the

reset state to the functionally correct set of states [27]. If an incorrect sequence is given,

the circuit remains in a portion of the state space with incorrect behavior. This partic-

ular scheme is susceptible to a targeted removal attack [22, 28]. In general, sequential

CHAPTER 2. BACKGROUND 12

logic locking relies on limited scan-chain access to a design. However, recent work has

extended the miter-based attack, originally developed for combinational circuits, into a

model checker-based attack that assumes no scan-chain access [29, 30].

As clear from the preceding examples, there have been many directions explored

for locking circuits. Unfortunately, none of these solutions balances security with low

overhead, motivating further research in the area.

2.2.3 Related Techniques

Other proposed strategies for IP security in manufacturing include fully programmable

logic, split-fabrication schemes, camouflaged logic, and metering schemes.

Fully programmable logic solutions, such as FPGAs, are conceptually similar to

logic locking wherein the device’s configuration bits are analogous to the key. These

commercially available devices enable the design functionality to be programmed post-

manufacture, bypassing the IP security issues faced in circuit manufacturing. An adver-

sary in this case has virtually no information, just the generic structure. Unfortunately,

application requirements may prohibit the use of fully-programmable devices as the

power, area, and delay overheads can be an order of magnitude higher compared to

application specific circuits [31]. However, some applications may see significantly less

overhead if they can utilize the hard-coded versions of common sub-circuits incorpo-

rated into most FPGAs.

Split-fabrication relies on two foundries producing portions of the design. Thus, bar-

ring collusion, neither foundry has full access to the design. Split-Manufacturing divides

a design into front and back-end-of line partitions [32]. One partition contains the low-

level metal and transistor layers, the other contains the remaining portion of the metal

stack. Each partition is manufactured in a separate foundry and combined by a trusted

entity. This is a potent solution but requires navigating complicated logistics between

foundries. Split-Chip design utilizes two ICs to implement a system, a untrusted modern-

CHAPTER 2. BACKGROUND 13

node IC and a trusted legacy-node IC, providing combined security and performance

[33, 34]. The trusted IC contains the security-critical control logic, and the untrusted IC

contains the performance-critical components. This is a powerful solution to IP security,

but requires a suitable system topology and the cost of a second IC.

Camouflage gates are logic elements that rely on subtle changes in structure to con-

fuse delayering and imaging netlist extraction techniques. Examples of this include

modifications to threshold voltages [35], dummy fill logic [36], and dummy via connec-

tions between metal layers [37]. While the foundry, which has access to the GDS, will

detect these modifications, adversaries relying on netlist extraction techniques may re-

verse engineer an incorrect functionality. If the locations of the camouflaged gates can

be identified, the possible functionalities can be modeled in a similar manner as logic

locking, enabling oracle-based and potentially some netlist-based attacks.

Hardware metering consists of methods that enable tracking and controlling of ICs

post-manufacturing. It is divided into passive and active categories [38]. Passive me-

tering uniquely identifies each manufactured IC. This allows the designers to identify

unlicensed copies of the design. There are several different schemes of encoding this

unique identification including physically unclonable functions (PUFs), one-time pro-

grammable memories, and focused ion beam (FIB) modifications. Active metering pro-

vides a mechanism to enable or disable the IC. This can be done remotely via public-key

cryptography systems [39] or locally on the IC in which case it is functionally similar to

logic locking.

2.3 Attacks on Logic Locking

2.3.1 Netlist-Based Attacks

The most critical attack model to consider is clearly the netlist-based attack. If a locked

circuit can be deobfuscated in this context, there is no point to locking the circuit. Exam-

CHAPTER 2. BACKGROUND 14

ples of these attacks have already been mentioned, specifically the removal attacks for

iteration-based and sequential locks. In both cases, the lock adds some isolated struc-

ture to the circuit that is easily discernible from the original circuitry. Foiling the locking

scheme is just a matter of tracing and removing the outgoing connections from the lock

portion of the circuit. Section 3.1 will develop another such example, using sensitivity, a

property of Boolean circuits.

Other netlist-based attacks utilize machine-learning algorithms to predict key values

as seen in an attack on XOR locking [40]. The authors demonstrate that, even after

synthesis, the changes to a netlist locked with parity gates are generally restricted to

the immediate neighbors of a key input. Using this local structure as data, they train a

classification algorithm and demonstrate prediction accuracy as high as 95%.

2.3.2 Brute Force and Sensitization Attacks

Given the more powerful oracle attack model, a brute force attack establishes a baseline

for the necessary key width of the circuit. This attack entails searching through the

space of keys and inputs, ruling out a key if a mismatching input-output (IO) pair is

found. Each key-input combination is applied to the circuit’s netlist, simulating the

output result. The output value is compared to the unlocked circuit’s output under the

same input, ruling out keys when a difference is observed. The rate at which keys can

be ruled out depends on what portion of the input space is incorrect under each key and

the expected number of keys to check depends on the portion of the input space that is

equivalent to the functionally correct key. Assuming a typical scan-chain frequency of

100MHz and a state size of 1000 bits, a query to the oracle can occur at a rate of 100kHz.

With access to 1 unlocked circuit and 1 month of attack time, an attacker can apply 238

key-input vectors.

One step beyond brute force is the use of sensitization methods to propagate a key

value to an output node [41, 22]. Sensitization is essential to ATPG tools and conse-

CHAPTER 2. BACKGROUND 15

quently is highly optimized. Sensitizing a node consists of finding an input pattern

that when applied to the circuit will propagate the value (or inverse) of the node to an

output. Under such an input pattern, toggling the node would toggle some output. Us-

ing sensitization as an attack is done by iterating over the key bits, applying unknown

(X) values for all other key inputs. Then attempting to sensitize the current key to an

output. If successful, the key value will be known and can be set to the appropriate

value in subsequent iterations, simplifying the problem. This process is repeated until

fixed-point where no additional key inputs can be sensitized.

2.3.3 Miter-Based Attacks

Beyond brute-force and sensitization attacks, the oracle attack model enables the mount-

ing of a more targeted, miter-based attack. This attack uses the netlist and unlocked

circuit to iteratively produce input-output (IO) relationships [14]. These relationships

are used to rule out all keys that do not produce the same behavior, narrowing the

space of possible circuit functionalities. As previously mentioned, these attacks can be

implemented using SAT solvers or ATPG tools as the underlying kernel. We focus on

SAT-based version, which is used throughout this work.

Propositional Satisfiability

A common approach to deal with hard combinatorial problems, such as finding the

key of locked circuits, is to encode them into propositional logic and solve the resulting

propositional formulas with a satisfiability (SAT) solver. The performance of SAT solvers

improved significantly in the last two decades and they are used for many applications in

hardware and software verification [42, 43]. In recent years, SAT solvers have also been

successfully applied to various attacks, such as hash collisions [44] and mathematical

challenges [45].

The most successful class of SAT solvers are based on the conflict-driven clause learn-

CHAPTER 2. BACKGROUND 16

Figure 2.4: Miter-based attack steps: (a) Miter circuit construction, (b) Unlocked (oracle)
circuit produces correct IO functionality (c) Addition of learned IO constraint to miter
circuit

ing (CDCL) algorithm [46, 47]. Briefly, CDCL solvers work by repeatedly selecting a

variable through heuristics and assigning a value. Implications from the assignments

are determined using a highly optimized process called unit propagation. If a conflict is

found, a clause is added to the formula that rules out assignments causing the conflict.

Then the solver non-chronologically backtracks based on the conflict and continues, re-

peating this process until a solution is found or the problem is found to be unsatisfiable.

The typical encoding of the SAT problem is in the conjunctive normal form (CNF).

This form consists of a set of clauses that must all be satisfied. Each clause is a dis-

junction of literals. A circuit can be encoded into propositional logic via the Tseitin

transformation [48]. This transformation can take a circuit netlist and produce a set of

clauses that, when collectively satisfied, will correspond to the original circuit’s behavior.

Combinational Attack

If the adversary has access to the design’s scan chain, the miter-based attack can be exe-

cuted considering just the circuit’s combinational logic. In this case, the IO relationships

CHAPTER 2. BACKGROUND 17

are efficiently learned through a three-step procedure: I. First, a miter circuit, M, is used

to determine an input that is guaranteed to rule out at least a single key. A miter circuit

consists of two copies of the original circuit with the inputs tied together, the key inputs

kept separate, and the outputs connected to comparators. A diagram of the connections

is shown in Fig. 2.4(a). Additional key constraints, such as timing and loop breaking,

can be conjuncted with the miter output. A SAT solver is used to find a setting of the

shared input (x) and key inputs (k0, k1) such that the output of the miter circuit is logic

1. By construction, the solution to the SAT problem will have two different keys that,

at that input value, disagree on the output value. The shared input value found by the

solver is termed a differentiating input. II. Next, as depicted in Fig. 2.4(b), the differen-

tiating input, xi, is applied to the oracle circuit to determine the differentiating output,

yi, forming an input-output pair that the correct key must respect; any key that does not

conform to this IO pair is incorrect. III. Finally, as shown in Fig. 2.4(c), the IO pair is

added as a constraint to the miter circuit for the next iteration. Now, any keys that satisfy

the miter circuit will also satisfy the learned IO relationship. While each relationship is

guaranteed to rule out at least one key, in practice, a larger portion of the key space is

ruled out due to overlapping key functionalities at a given input. These steps repeat,

adding more constraints until the miter circuit is unsatisfiable. At this point, any key

that respects all learned IO relationships will be a functionally correct key. We outline

the pseudo-code for this attack in algorithm 1.

Sequential Attack

The sequential version of the miter-based attack uses the same oracle and miter circuit

but extends the concept of a differentiating input to a differentiating input sequence.

To handle the state elements in the design, this attack substitutes the SAT solver for a

model checker. The model checker is able to automatically unroll the circuit in time,

connecting the state input of one cycle to the state output of the next. Every input

sequence is assumed to start from a potentially unknown, but fixed reset state, s0. In the

CHAPTER 2. BACKGROUND 18

Algorithm 1: Miter-Based Attack
Input: Clock, Coracle
Output: kattack

1 M := Clock(x, k0) 6= Clock(x, k1);
2 D := ∅;
3 i := 0;
4 while SAT[M ∧ D] do
5 xi := SAT_ASSIGNMENTx[M ∧ D];
6 yi := Coracle(xi);
7 D := D ∧ Clock(xi, k0) = yi ∧ Clock(xi, k1) = yi;
8 i := i + 1;
9 end

10 return SAT_ASSIGNMENTk0 [D]

same fashion as the SAT-based attack, a miter circuit is used to find input sequences that

produce different output sequences for different keys. The miter circuit is unrolled as in

Fig. 2.5(a). These input sequences are applied to the oracle and the produced outputs

form IO relationships that are again encoded into the miter circuit as unrolled constraints

as depicted in Fig. 2.5(b). Aside from the reduced controllability and observability

from the state elements, the most significant difference between the combinational and

sequential attacks is in the termination conditions.

While a SAT solver can be used to exhaustively prove that no input can satisfy a

combinational miter circuit, when state is considered, the task is a much harder. This

is mainly due to the state space explosion associated with allowing the model checker

to unroll the circuit indefinitely [49]. Thus, in previous work, the model checker attack

relies on secondary termination conditions: a check that only one key remains and a

logical equivalence check for the combinational logic fan-in into each flip-flop. Without

these equivalence conditions the termination relies on unbounded model checking algo-

rithms [50, 51]. For a more complete description of the model checker-based attack, we

direct the reader to [29, 30].

CHAPTER 2. BACKGROUND 19

Figure 2.5: Miter-based model checker attack steps: (a) Miter circuit unrolling, (b) Dif-
ferentiating sequence constraint.

Constraint Aided Attacks

The miter-based attack has become the standard attack paradigm as it is able to quickly

deobfuscate many existing techniques. As mentioned in section 2.2.2, logic mechanisms

have been developed that utilize non-standard design practices to prevent a miter-based

attack from converging. Introducing combinational loops into circuits can cause a SAT

solver to non-deterministically resolve the circuit state, corrupting the attack by breaking

the correspondence between the real oracle circuit and logical miter circuit. This corre-

spondence can also be broken by introducing key elements that modulate timing in the

circuit. Without knowledge of the circuit’s timing, a key produced from the miter-based

attack will likely have incorrect functionality via timing violations. Despite their initial

promise of miter-based attack resistance, when properly modeled, these techniques are

easily broken. For each technique, critical information is withheld from the SAT solver

causing it to incorrectly terminate. Reintroducing this information through additional

key constraints avoids corruption. In these examples adding key constraints that rule out

keys with oscillating loops and modifying the netlist to encode the change functionality

with changed timing characteristics allows the attack to terminate correctly.

Chapter 3

Security of Existing Locking Schemes

In this chapter, we develop deobfuscating attacks for two families of logic locking tech-

niques. The first attack takes advantage of traces left by the locking procedure, enabling

the modified portion of the circuit’s input space to be isolated and corrected. The second

utilizes improved attack modeling to dramatically reduce attack times. For each broken

lock scheme, we develop improvements that resist our attacks. We then use these at-

tacks and corresponding fixes to inform the development of our own locking technique

in chapter 4.

3.1 Sensitivity Analysis of Strip-Functionality Locks

Our first attack applies to the strip-functionality class of locking techniques, mentioned

in section 2.2.2. This class was developed in response to the miter-based attack and

represents a sizeable thread of logic locking research. In this section, we explore the

use of Boolean sensitivity in analyzing this class of locks. Sensitivity is shown to be a

powerful signal that can reveal the key of the locked circuits. We propose an improved

insertion technique that mitigates this attack, but only for certain circuits.

20

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 21

Figure 3.1: Underlying structure of strip-functionality locking

3.1.1 Strip-Functionality Locking

Strip-functionality locking refers to a class of techniques that share a similar mechanism

for directly defending against the miter-based attack. The locks resist the attack by

reducing the number of keys ruled out per iteration, significantly increasing the overall

execution time. This class of techniques currently includes TTLock [52], TTLock* [53],

SFLL-HD [54], and SFLL-Flex [54].

Under this class of locking schemes, functionality is stripped from the circuit by in-

verting the output response under certain inputs. This set of inputs is referred to as the

protected inputs. The inverted functionality is re-established using restoration circuitry

paired with the correct key. The restoration part of the locking circuitry can be isolated

and removed by tracing key inputs, however, the resulting circuit still exhibits incorrect

behavior at the protected inputs.

The generic structure of these techniques is shown in Fig. 3.1. For simplicity, we just

show a single output cone of the locked circuit, which we denote as f . The locked circuit

consists of two layers, flip and restore. Both layers make use of a function, P(x, k), that

checks if an input, x, is part of the protected set determined by the key, k. Different

values of k will produce different protected sets.

The flip layer contains the original function, f , and a instance of P with the key input

hard coded at the correct value, kc. The outputs of both functions are XOR’d together,

inverting the original function for the protected inputs. We refer to the flip layer function

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 22

Figure 3.2: Truth table of circuit locked with TTLock

as fflipped; it is equivalent to f except at the protected inputs. The restore layer contains

another instance of P, XOR’d with the output of the flip layer. When the key input, k,

matches kc, the correct functionality of the original function is restored, each protected

input value’s output being flipped twice. We refer to the whole function with the restore

layer as flocked. The whole circuit is synthesized together, mixing and reducing the logic

from both layers along with kc. It is likely that the restore layer’s P function remains

intact as synthesis is unable to reduce the logic. However, the flip layer’s P function

and kc are usually combined with the logic of f such that they are not recognizable via

inspection.

These techniques resist the miter-based attack because the overlap between the flipped

input patterns for different keys is kept low. Thus, when an IO constraint is formed in

the miter-based attack, only a small number of keys are ruled out at once. An example

of this is shown in the truth table of Fig. 3.2 where the highlighted differentiating input

only rules out a single key. Also note that input 5 is the protected input. If this input

is found, the technique is broken as only a single key agrees with the correct output.

While the exact scaling of the attack resistance depends on the specific technique, the

class as a whole shows greatest miter-based attack resistance when the number of pro-

tected inputs is minimal. Thus, there is an inherent trade-off between attack resistance

and corruption of the circuit.

The specific techniques within the class are largely similar but each can be briefly

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 23

described as following. TTLock is the original technique in this class; the method flips

a single input pattern that is equal to the key. Thus, in this incarnation, P is a equality

function. TTLock* is a version of TTLock that tries to mitigate any netlist-based attacks

by converting the locked circuit to a reduced order Boolean decision diagram and resyn-

thesizing. Effectively, this technique does a better job of mixing the f with the flip layer’s

hard coded kc and P function. SFLL-HD is a generalization of TTLock in which every in-

put pattern a fixed Hamming distance from the key is flipped. In SFLL-HD, P computes

the Hamming distance between the key and input, then compares this to a fixed value

to determine if the input is protected. Finally, SFLL-Flex stores a set of user-specified

protected input patterns in a lookup table (LUT). In this case, P is a function that is logic

0 for all inputs except the selected input values.

3.1.2 Boolean Sensitivity Attack

Sensitivity is a simple complexity measure of a Boolean function [55]. Defined at a

particular value in the input space, it is the number of inputs Hamming distance 1 from

a particular input, for which the function produces a different value. Defined over the

function, it is the maximum sensitivity of all inputs. We can specify each case more

formally given a Boolean function, f : {0, 1}n → {0, 1} and an input value, x. If xflip(i)

represents the input value with the ith bit inverted, the sensitivity of f at x, s(f , x), is

the following:

s(f , x) =
∑n

i=1 f (x)⊕ f (xflip(i))

n
(3.1)

Thus, the sensitivity of f , s(f), is:

s(f) = max
x

s(f , x) (3.2)

Finally, we define the average sensitivity of f , s̄(f) as:

s̄(f) =
∑x∈{0,1}n s(f , x)

2n (3.3)

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 24

Figure 3.3: Circuit that determines sensitivity where s(f , x) is the sensitivity of f at a
given input x and xflip(i) represents x with the ith bit flipped

Sensitivity is interesting in analyzing strip-functionality circuits because it is an easily

computed metric and its value is inverted for protected inputs. Consider an input value,

xprotected, chosen at random to become a protected input. In the original circuit, if the

input has a low sensitivity, most inputs Hamming distance 1 away will agree. As we

know, the locking procedure will invert the output value for this input value using the

flip layer’s P function. This means that most of neighboring inputs now disagree with

the protected input. Specifically, where f is the original circuit and fflipped is the locked

circuit without the restoration circuitry (ie. just the flip layer), the new sensitivity is:

s(fflipped, xprotected) = 1− s(f , xprotected) (3.4)

Thus, the protected input is moved to the opposite end of the sensitivity distribution.

This sensitivity inversion is potentially a usable signal to find the protected inputs.

This raises the question, what does the sensitivity distribution look like for typical

circuits? To understand the behavior of sensitivity, we consider a set of benchmark cir-

cuits [56], which are commonly used in the logic locking and circuit testing communities.

Each circuit contains several Boolean functions. For each function, f , we estimate the

average sensitivity across all inputs, s̄(f), and find the sensitivity of the function, s(f).

The average sensitivities are determined by sampling a set of randomly selected val-

ues in the input space of each function. The sensitivity, s(f , x), is evaluated at each input

value by calculating the output value of the input value and all neighbors Hamming dis-

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 25

0 25 50 75 100 125 150 175 200
input_len

0.0

0.2

0.4

0.6

0.8

1.0

av
g_

se
n

circuit
c17
c880a
c1908
c7552
c3540
c5315a
c1908a
c3540a
c1355
c2670
c499
c2670a
c432
c6288
c5315

Figure 3.4: Average sensitivity, s̄(f), versus input width of benchmark circuits from 50
samples

tance 1 away, summing the number of disagreements. This random input selection is

the same method used to pick keys in the strip-functionality techniques, giving us an

idea of the likely sensitivity of the protected inputs.

To find the sensitivity of each function, s(f), we build a circuit that quantifies the

sensitivity at a given input. This circuit, shown in Fig. 3.3, is made up of n + 1 copies

of the function, where n is the width of the function’s input. The inputs of the first

copy of the function are tied to the n additional copies such that a different bit is flipped

for each. The outputs are fed to comparators and subsequently a population count that

determines the sensitivity at the input. The circuit is loaded into a SAT solver and the

output sensitivity value is constrained to value, s. Starting from n, s is decremented until

a satisfying assignment can be found for the circuit. The first input found will have a

sensitivity value, s/n, the highest of any input. This defines the sensitivity value of the

overall function.

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 26

0 25 50 75 100 125 150 175 200
input_len

0.0

0.2

0.4

0.6

0.8

1.0

m
ax

_s
en

circuit
c17
c880a
c1908
c7552
c3540
c5315a
c1908a
c3540a
c1355
c2670
c499
c2670a
c432
c6288
c5315

Figure 3.5: Sensitivity, s(f), versus input width of benchmark circuits

The results of this analysis are shown in Fig. 3.4 and 3.5, where s̄(f) and s(f) versus

input width are respectively plotted. We see that most circuit output functions exhibit

low average sensitivity, furthermore a substantial portion have maximum input sensitiv-

ities of less than 0.5. Another clear trend is that the average and maximum sensitivity

is inversely proportional to the input width. From a designer’s perspective, this makes

intuitive sense since specifying a complex function of many inputs is difficult. A notable

outlier is c6288, a multiplier circuit, that maintains a high average local sensitivity for

larger inputs. This trend implies that at a sufficiently large input width, if an input is

randomly selected as a protected pattern, the new sensitivity of this input will go from

an average low to an outlying high value. Selecting inputs with large input width is moti-

vated by increased brute force and miter-based attack resistance. As the selection for the

strip-functionality techniques does not consider the sensitivity of the protected pattern,

it is likely that the protected input pattern will have a final input sensitivity that is an

outlier in the high end of the distribution.

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 27

Algorithm 2: Sensitivity-Based Attack
Input: n, f , fflipped
Output: xprotected

1 sen := n;
2 block := ∅;
3 while sen > 0 do
4 CNF := (s(fflipped, x) = sen) ∧ block;
5 if SAT[CNF] then
6 xprotected := SAT_ASSIGNMENTx[CNF];
7 if f (xprotected) 6= fflipped(xprotected) then
8 return xprotected
9 end

10 block := block ∧ (xprotected 6= x);
11 else
12 sen := sen− 1;
13 end
14 end

Using the same sensitivity quantifying circuit from Fig. 3.3, we can build an attack

algorithm that will detect inputs with high sensitivity. While the resulting key can

only be definitively verified with access to an unlocked IC, finding the likely keys only

requires access to the netlist. The first step in building such an attack is preprocessing

the locked circuit netlist. We find a function, flocked, in the circuit that has the restoration

unit in its fan-in. This can be done by tracing the key inputs through the circuitry. The

restoration unit is removed from the netlist, creating a circuit functionally equivalent to

fflipped. In TTLock, TTLock*, and SFLL-Flex this entails adding constraints such that the

input is not equal to the key. In SFLL-HD, the Hamming distance between the input and

key must not be at the fixed value.

After obtaining fflipped, we build the sensitivity quantifying circuit. We add a con-

straint setting the unnormalized sensitivity to the maximum value, n (the input width

of the function). This instance is put into a SAT solver searching for an input with this

sensitivity level. The sensitivity is decremented until a satisfying input is found. The

satisfying input is then applied to the oracle, f . If the output is the same as the simu-

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 28

lated result from fflipped, a constraint ruling out this input is added to a set of blocking

clauses, block, and the process continues, searching for the next highest sensitivity input.

If the output is different, it is a protected pattern. For TTLock and TTLock* this pattern

is the key. For SFLL-Flex, this process must be repeated until all protected inputs in the

LUT are found. Finally, for SFLL-HD, a total of three patterns with a mutual Hamming

distance of twice the fixed value are found. The value of each key bit is then determined

by the taking majority of the discovered protected inputs. The pseudo-code of the attack

is listed in Algorithm 2.

3.1.3 Resistant Locking Scheme

For certain circuits, TTLock can be adapted such that the sensitivity-based attack is no

longer effective. We demonstrate this process to show the limits of our attack method,

however, we do not see this fixed TTLock as a viable locking method as the amount of

output corruption is too small to be meaningful.

Resisting the sensitivity-based attack can be achieved by selecting an input that, after

flipping its output value, is not a sensitivity outlier. This means locking an input that

will subsequently be moved to a dense part of the sensitivity distribution. Here, we

implement an algorithm that targets the average sensitivity as the final value. Resistance

to the sensitivity-based attack must be balanced with brute force and miter-based attack

resistance in which the function’s input width determines the expected number of itera-

tions. This entails locking an output function that has at least a given number of inputs.

Thus, from all output functions in the circuit with input width greater than the required

value, we want to find the function, f , and input value, x, such that:

arg min
x, f
|s̄(f)− (1− s(f , x))| (3.5)

To find the optimal input, we first rule out all functions that do not meet the desired

brute force and miter-based attack resistance. For each function in the list of remaining

functions, f ∈ F, we compute a mapping of input widths, N : f → n, and of estimates

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 29

Algorithm 3: Sensitivity Attack Resistant TTLock
Input: set of functions F, set of input widths N, set of average sensitivities A
Output: optimal protected input xprotected, function f

1 b := 0;
2 while b < max(N) do
3 for f ∈ F do
4 n := N[f];
5 a := A[f];
6 CNF := |a− (1− s(f , x))| ≤ b/n;
7 if SAT[CNF] then
8 xprotected := SAT_ASSIGNMENTx[CNF];
9 return xprotected, f

10 end
11 end
12 b := b + 1;
13 end

of the average sensitivities, A : f → s̄(f), using the same method from Section 3.1.2.

We then search for the function and input pair that has a flipped sensitivity closest to

the average value for the function. This is done by iteratively relaxing a bound, b, until

a function is found that has an input with flipped sensitivity less than b/n from the

function’s average sensitivity. After finding the optimal input, it is flipped following the

original TTLock method. The pseudo-code of the algorithm to find the optimal protected

input is shown in Algorithm 3.

Like TTLock, a sensitivity attack resistant version of SFLL-Flex can be easily created

by repeating this process multiple times. However, SFLL-HD is harder to make resistant

to the sensitivity-based attack. To avoid easy detection, all flipped inputs must have

low sensitivity. Finding a set of inputs with this property and are all a fixed Hamming

distance from a common value is unlikely.

3.1.4 Attack Results

To assess the strength of our sensitivity-based attack against strip-functionality locking

as well as our modified version of TTLock, we ran three experiments. First using a com-

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 30

Table 3.1: Sensitivity attack results for author-provided circuits using Cadence Jasper-
Gold

Technique Circuit Nbits Time(s) Niter

TTLock c5315 32 3 1
TTLock c7552 32 3 1

SFLL-HD DFX 256 (HD=32) 584 3

mercially available tool, Cadence JasperGold, we demonstrate the attack’s applicability

on a set of locked benchmarks provided by the authors of the respective techniques from

the strip-functionality class. To further validate these results, we then extend this anal-

ysis to an additional set of generated locked circuits. Finally, we implement the attack

using open-source tools and repeat the analysis on the generated circuits.

All attacks are run using a 64GB, 24-core, 2.2GHz machine. JasperGold, the commer-

cial tool, is a formal verification suite that uses a parallel execution strategy attempting

to find a solution employing several different solvers at once. In this case, our attack

algorithm is implemented in TCL, a widely adopted scripting language used in digital

IC design tools. Our open-source flow, uses the CaDiCaL SAT solver [57] and Python to

implement the attack algorithm. For all experiments, we limit each run to a timeout of

4 hours. The implementation of this flow can be found in our repository1.

In Table 3.1, we present the results of our attack on the circuits provided by the

authors. For each circuit we show the number of bits used to lock it, the overall time to

execute the attack, and the number of iterations (the number of inputs checked in the

oracle). As seen, all circuits are broken, most in seconds, the largest in minutes. This is

significantly faster than the expected miter-based attack time, which scales exponentially

in the width of the key. As sensitivity is not considered in these locking schemes, in all

cases the protected inputs are the highest sensitivity inputs keeping the required number

of iterations small.

For the next experiments, we implement the strip-functionality locking techniques
1https://github.com/jpsety/sensitivity_attack

https://github.com/jpsety/sensitivity_attack

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 31

Table 3.2: Sensitivity attack results for generated circuits using Cadence JasperGold. For
SFLL-HD, HD=Nbits/8 and for SFLL-Flex, Npatterns=Nbits/8.

TTLock TTLock* SFLL-HD SFLL-Flex TTLock-Sen
Circuit Nbits Time(s) Niter Time(s) Niter Time(s) Niter Time(s) Niter Time(s) Niter

c499 32 1 2 70 6 2 3 8 25 timeout 3106
c880 32 1 1 4 4 2 4 3 8 timeout 3480

c1355 32 1 3 3849 181 2 3 5 14 timeout 3492
c1908 32 1 1 18 2 3 4 3 6 timeout 3339
c2670 32 1 1 6 1 2 3 2 4 68 62
c2670 64 1 1 5 1 4 3 7 8 70 62
c3540 32 2 2 24 1 2 3 2 6 timeout 2096
c5315 32 2 3 1 1 2 3 2 5 timeout 3028
c5315 64 4 9 3 1 4 3 10 14 24 26
c7552 32 1 1 4 1 3 3 69 16 timeout 2700
c7552 64 2 1 19 1 3 3 4 4 timeout 2568
c7552 128 4 1 16 1 14 3 9 8 timeout 1670

Table 3.3: Sensitivity attack results for generated circuits using the SAT solver CaDiCaL.
For SFLL-HD, HD = Nbits/8 and for SFLL-Flex, Npatterns = Nbits/8.

TTLock TTLock* SFLL-HD SFLL-Flex TTLock-Sen
Circuit Nbits Time(s) Niter Time(s) Niter Time(s) Niter Time(s) Niter Time(s) Niter

c432 32 0.20 1 0.15 1 0.67 3 0.63 4 timeout 11018
c499 32 0.06 2 26.64 1 0.36 3 57.14 918 timeout 12243
c880 32 0.07 1 0.14 1 0.67 3 0.37 4 timeout 13159

c1355 32 65.21 989 1271.27 377 0.59 3 425.36 2982 timeout 11938
c1908 32 0.13 1 0.67 1 1.08 3 0.46 4 timeout 17602
c2670 32 0.05 1 0.05 1 0.43 3 0.19 4 1.03 1
c2670 64 0.06 1 0.10 1 1.27 3 0.49 8 4.49 1
c3540 32 0.34 2 9.55 1 0.69 3 0.27 4 timeout 3442
c5315 32 0.19 3 0.04 1 1.58 3 0.31 4 timeout 13670
c5315 64 0.12 1 0.07 1 2.82 3 0.99 8 2.81 1
c7552 32 0.05 1 0.10 1 0.38 3 0.16 4 timeout 10079
c7552 64 0.07 1 0.72 1 2.11 3 0.53 8 timeout 12286
c7552 128 0.08 1 0.08 1 5.78 3 2.06 16 timeout 7667

and lock a commonly used set of benchmark circuits [56]. We generate locked circuits

starting at 32 key bits, doubling the count until the circuit no longer has a function

with at least that input width. We set both the Hamming distance used in SFLL-HD

and the number of patterns used in SFLL-Flex to Nbits/8. Since the protected inputs

are chosen randomly and thus will likely have high sensitivity after being flipped, the

impact of these parameter choices will likely have negligible effect on the attack result.

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 32

Immediately clear from the locking procedure is that the smaller circuits don’t contain

a Boolean function with input width large enough to provide adequate security against

a brute force attack; only three of the tested circuits can scale to 64 bits. However, since

the functions with lower input width are likely to have higher average sensitivities and

thus a lower chance of a protected input being an outlier, these circuits should be the

most resistant to our attack.

The commercial tool attack results for the generated locked circuits shown in Table

3.2. We are able to deobfuscate all circuits locked with previous strip-functionality meth-

ods. With the exception of a few outliers, all protected inputs are found in the several

attack iterations and in seconds of run time. The results for the sensitivity attack resis-

tant version are mixed depending on the circuit and the number of bits. Two notable

examples are c2670 and c5315. The first circuit, c2670, has very few high-sensitivity

inputs; thus, when it is locked with our flow, the protected input is still in the highest

portion of the sensitivity distribution. The second circuit, c5315, has a suitable protected

input for the 32-bit locking, but not for the 64-bit. Therefore, in this circuit there is a

distinct tradeoff between sensitivity attack and miter-based attack resistance. In general,

it is clear that the resistance of this locking technique is highly circuit dependent.

Finally, in Table 3.3, we show the open-source flow results for the generated circuits.

The results are similar to the commercial flow; however the execution times are lower.

All previous strip-functionality circuits are again deobfuscated and the sensitivity attack

resistant TTLock circuits have matching results. The open-source flow is able to explore

a greater portion of the input space in the allotted time.

3.2 Modeling Techniques for Locked Circuits

The previous section developed an attack that identified the manipulated portions of a

design, enabling their removal. Another approach we explore is to improve the modeling

techniques used in the miter-based attack. In this section, we explore the use of two

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 33

modeling techniques, relaxed encoding and symmetry breaking, that can dramatically

reduce attack run time. We demonstrate their impact attacking a state-of-the-art scheme,

Full-Lock. We then develop Logic-enhanced Banyan locking, an improved version of

Full-Lock, not susceptible to these new modeling techniques.

3.2.1 Full-Lock

Full-Lock is specifically developed to be resistant to the miter-based attack [24] via in-

creasing the execution time of each iteration. This is done by integrating SAT-hard logic

into the circuit using a combination of routing obfuscation and look-up tables (LUT).

The added logic is highly symmetric with many keys mapping to the same function-

ality. Symmetry is known to be difficult for SAT solvers, trapping the algorithm by

spending time exploring solutions that are isomorphic [58]. Furthermore, unit propaga-

tion of the solver is hindered as each configuration depends on many keys: in order to

determine any output of the Full-Lock circuitry, most keys must be assigned. Finally,

the obfuscation is parameterized such that locking scheme’s clauses to variables ratio

is close to 4.26, the phase-transition density for uniform random 3-SAT (SAT instances

with exactly 3 variables per clause) [59]. Intuitively, instances with a higher ratio are

over-constrained making contradictions easier to find and those with a lower ratio are

under-constrained with potentially many satisfying solutions. While the instances pro-

duced by Full-Lock are not uniform random 3-SAT, and therefore likely have a different

optimal ratio, the locking still produces hard SAT instances.

Full-Lock utilizes configurable routing and LUTs to obfuscate a set of gates and their

corresponding input connections. The configurable routing is implemented with Banyan

networks, a class of logarithmic networks, that permutes connections based on a key [24].

The network is made up of a series of 2-input switch boxes that connect the inputs to

the outputs, either directly passing through or switched. Additionally, Full-Lock adds

the ability to invert the polarity of the signals in each switch box. Diagrams of the

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 34

Figure 3.6: Full-Lock diagram. Each LUT replaces a gate from the original circuit; the
switch boxes permute and invert their input signals.

switch boxes and overall network are shown in Fig. 3.6. The specific Banyan network

configuration used has 2 ∗ log2(N) − 2 stages where N is the network’s input width

(equal to the number of permuted lines). The Banyan network is almost non-blocking,

meaning that almost all input to output connection permutations are possible.

The locking procedure is as follows. A set of gates with the desired number of total

inputs is randomly selected from the circuit. These gates are then replaced with LUTs

of the appropriate size. The LUT inputs are fed through a Banyan network that can

permute and invert each connection. The key to the circuit is thus the concatenation of

the LUT and network configuration bits. Under the correct key, each LUT will receive

its original inputs with proper polarity.

The random selection of gates opens the possibility for combinational loops to be

formed in the circuit. This has no impact on the circuit when the correct key is applied as

all feedback paths will be broken. However, if not ruled out, these loops will corrupt the

miter-based attack. Several methods of building loop-breaking key constraints have been

developed to re-enable the attack [21, 60]. These loop-breaking algorithms rule out key

combinations in which nodes depend on themselves determined via taint-propagation.

We detail the specific algorithm used in section A.1.

As is, this locking method appears resistant to the miter-based attack. The authors

of the original work ran the attack for 15 days without termination on instances with 32

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 35

circuit lines permuted. Additionally, the authors considered a removal attack. Even after

synthesis, the added circuitry is easily identifiable due to the key lines and regular struc-

ture. Despite this, Full-Lock is also resistant to a simple removal attack as the selected

gates have been replaced with LUTs and the correct interconnections and polarities of

their inputs are unknown.

3.2.2 Relaxed Models

Each iteration of the miter-based attack satisfies the miter circuit while respecting the

system model. Typically, the model is just formed from the locked circuit’s netlist. The

system model captures the potential behaviors of the locked circuit under different keys

and is encoded into propositional logic allowing the SAT solver to generate meaningful

inputs. However, the exact system model can be difficult to specify (e.g., delay-locking)

or too complex for SAT solvers to efficiently handle (e.g., Full-Lock). Often, a close

analog to the original behavior can be captured with a much simpler encoding. Substi-

tuting the system model can allow significant decreases in attack time, sacrificing exact

functional fidelity for reduced complexity.

Several factors must be considered when building a relaxed model for a locked cir-

cuit. First, the model’s variables do not all need to directly map to system’s logic. In

fact, the only requirement on the variable mapping is that the inputs and outputs remain

directly mapped between the encoding and original system model so that the produced

differentiating inputs can be run on the oracle and the resulting IO pair can be added

to the miter. Next, the relaxed model must be able to produce a super-set of the IO

relationships under all key values. Perhaps counter intuitively, specifying a super-set of

behaviors can be easier than the exact set. Finally, while the key variables do not need

to be directly encoded, there must be a mapping from the relaxed model back to a valid

key configuration of the original system.

An example of relaxed modeling is seen in TimingSAT [61], an attack methodol-

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 36

ogy for TimingCamouflage [62]. TimingCamouflage substitutes flip-flops with combi-

national logic delays. This disrupts a naive attack strategy because a reverse engineered

netlist will be missing flip-flops that correspond to the correct functionality. It is as-

sumed that to obtain the system functionality, an attacker must meticulously time the

circuit and check all possible paths for potential combination logic delays replacing a

flip-flop. However, TimingSAT simply substitutes a relaxed model, overestimating the

possible locations where a combinational delay may be used as a flip-flop. In each po-

tential flip-flop location, a MUX is inserted selecting between a flip-flop or wire. The

functionality is then determined using the standard miter-based attack, solving for the

proper MUX settings.

A relaxed encoding can also be used to remove key interdependence. Often the

functionality of a locked circuit will depend on a large portion of the keys. To determine

the output for a given input, the SAT solver must branch on many of the key variables.

However, in some cases the functionality can be separated from the key variables. This

allows the functionality to be selected without assigning all keys. An analogous example

is encoding integers. The typical circuit for handling integers is representing them with

binary numbers, however, to select an integer value all variables representing the binary

number’s bits must be assigned. For SAT solvers, an often more efficient strategy is one-

hot encoding. Here, a value can be directly assigned by setting a single variable true

(and unit propagating the others to false). In a similar sense a circuit functionality can

be decoupled from the key bits, directly selecting the functionality rather than assigning

all key bits.

Using this relaxed encoding strategy, we consider our example technique, Full-Lock.

As previously established, the Banyan network is a SAT-hard circuit due to its large

amounts of symmetry, key interdependence, and poor unit propagation behavior. De-

spite its complexity, the functionality is very simple: the outputs of the network are a

permutation of the inputs. Due to the structure of the network, some permutations are

prohibited, and others can be selected by multiple key settings. If we relax the encoding

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 37

Figure 3.7: Relaxed models for Banyan network

Figure 3.8: (a) MUX-based and (b) edge-based encoding schemes for the all-to-all model

of the network, allowing the prohibited permutations in our model, we can significantly

reduce the complexity.

We consider two relaxed models in place of the Banyan network: all-to-all, wherein

every input can be routed to every output, and all-to-all exclusive, which additionally

restricts an input to be routed to only a single output. A diagram of these functionalities

is shown in Fig. 3.7. The correct key is in the set of functionalities that the Banyan

network allows, which is a subset of the all-to-all exclusive model functionalities, and in

turn, the all-to-all model functionalities.

From a circuit designer’s perspective, the natural way to encode all-to-all functional-

ity uses an N-to-1 MUX for each output, similar to the structure depicted in Fig. 3.8(a).

This can be easily specified in a high-level language such as verilog, then synthesized

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 38

to a gate-level representation. The Banyan network in Full-Lock can then be substituted

for these gates. Just as in the typical miter-based attack, the circuit can then be encoded

into SAT via the Tseitin transformation. The all-to-all exclusive encoding can be formed

in the same fashion, adding circuitry to ensure that the select bits of each MUX are

different.

We also consider an edge-based strategy in which a key variable, kio, is created for

each possible input to output connection. A diagram of this encoding is depicted in

3.8(b). The CNF of the encoding is shown below where xj is a variable representing a

net j, I is the set of nets fanning into the Banyan network, and O is the set of nets in its

fanout. ∧
i∈I,o∈O

kio → (xi ↔ xo) (3.6)

To ensure proper functional behavior we must also enforce that each network output is

only connected to one input. This can be done using a cardinality encoding over the

same variables as below: ∧
o∈O

ExactlyOne({kio : i ∈ I}) (3.7)

The edge-based all-to-all exclusive encoding is created with the additional clauses under

which each input can only connect to a single output:∧
i∈I

ExactlyOne({kio : o ∈ O}) (3.8)

Running the miter-based attack on these encodings will produce the correct mapping

from the network inputs to outputs. Obtaining the corresponding key for the original

system model can be done by finding a key that propagates the same paths in the Banyan

network. Our models allow a greater function space, but with an encoding much more

amenable to SAT solvers as we will see below.

To demonstrate the effectiveness of our relaxed models we run a series of attacks

on the lock structure, comparing to the original model across several dimensions. All

attacks are run using a Python implementation of the miter-based attack. The imple-

mentation uses PySAT’s wrapper for the CDCL-based SAT solver CaDiCaL [63, 57]. As

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 39

100

102

104
At
ta
ck
 T
im
e

0

20000

40000

60000

Ke
y
Va
ria

bl
es

50 100 150 200 250
Input Width

0

100000

200000

300000

400000

To
ta
l V
ar
ia
bl
es

50 100 150 200 250
Input Width

0.0

0.5

1.0

1.5

To
ta
l C

la
us
es

1e7
Model Type
banyan
mux+all2all
mux+all2all+excl
edge+all2all
edge+all2all+excl

Figure 3.9: Comparison of encoding schemes for standalone Banyan network, n=10,
timeout=4 hours

proposed in [64], the implementation takes advantage of the incremental interface of-

fered by CaDiCaL adding IO constraints without restarting the solver. Each attack has a

timeout 4 of hours, an iteration count of 10, and is executed on a machine with 756GB

RAM and 16 2.1GHz cores. The attacks are conducted in parallel while ensuring min-

imal contention for resources by allotting memory greater than the maximum usage of

the largest instances to each run.

We assess the impact of the model and encoding on attack run time for the standalone

Banyan network; the data is shown in Fig. 3.9. We compare the five model-encoding

schemes as above, namely the original Banyan network model and encoding, and all

combinations of MUX-based and edge-based encodings with the all-to-all and all-to-all

exclusive models. Sweeping the Banyan network size, we report several dimensions:

overall attack time, number of key variables, number of total variables, and number of

clauses.

Immediately obvious is the grouping of attack times. The original Banyan network

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 40

times out at an input width of 64. The attack time of all proposed model-encoding pairs

is significantly less, highlighting the impact of the improved models. We can clearly

discern that the edge-based all-to-all encoding performs the best, quickly terminating

even with an input width of 256. Considering the key variable counts, this scenario

would require the original Banyan network over 5,000 keys to implement (two thirds of

which are dedicated to inversions as per Fig. 3.6). While the edge-based encodings have

significantly more key variables and generally the relaxed model-encoding pairs all have

higher clause and variable counts, they are significantly easier to solve.

3.2.3 Symmetry Breaking

Another modeling technique that is not entirely exclusive from relaxed encodings, but

can be applied on its own, is symmetry breaking. In the context of SAT, a symmetry

is defined as a permutation of variable assignments that maps one solution onto an-

other [65]. In the miter-based attack, symmetry results from classes of keys producing

the same circuit functionality. All equivalent keys will be equisatisfiable with respect to

the miter circuit inputs. If symmetry exists in the locked circuit, the attack may waste

time exploring isomorphic parts of the search space.

Symmetry breaking in the miter-based attack context entails ruling out all but one

key from each equivalence class. Ideally, this is done with minimal additional clauses

being added to the problem, otherwise the additional problem complexity may outweigh

any benefit. While not specifically labeled as symmetry breaking, this strategy has been

utilized in the key-sensitization attack on Strong Logic Locking [66], wherein back-to-

back key XOR gates are converted into a single XOR.

Several examples of symmetry are seen in Full-Lock. In the Banyan network, multiple

keys produce the same permutations of the inputs on the outputs. Additionally, the keys

that optionally invert the switch box outputs are highly symmetric: all configurations

of these keys can be reduced to a single bit for each output specifying whether it is

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 41

Table 3.4: 2-Input LUT symmetries under permuted inputs.

K0 (I1, I0 = 0, 0) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
K1 (I1, I0 = 0, 1) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
K2 (I1, I0 = 1, 0) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
K3 (I1, I0 = 1, 1) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

inverted. Our relaxed models of the network already remove these two symmetries.

However, there remains a significant amount of symmetry in Full-Lock’s LUTs.

By themselves, LUTs have no symmetric assignments, but when coupled with ex-

ternal circuitry, they can become highly symmetric. This property is good for Field

Programmable Gate Arrays (FPGAs) wherein flexible configurations can help meet tim-

ing, power, and area constraints, however, this flexibility hinders the miter-based attack

as the same logical functionality can be specified many ways.

Full-Lock allows the LUT-inputs to be permuted, which creates LUT configuration-

input permutation pairs that are symmetric. In Table 3.4, we show all the symmetric con-

figurations of a 2-Input LUT with the inputs permuted. Each group with more than one

equivalence is highlighted in a different shade of blue. Within the highlighted groups,

permuting the inputs allows a single LUT configuration to function equivalently to the

others. Thus, only one LUT configuration per group is needed. In the 2-input LUT case,

only 4 out of 16 configurations are eliminated, however, as the input width increases

the number of symmetric configurations grows significantly. For a 4-input LUT, there is

over an order of magnitude reduction in the number of remaining configurations.

Full-Lock’s input permutation symmetry can be broken by enforcing an ordering on

the inputs connected to each LUT. This ensures that for every combination of inputs

routed to a LUT, only a single permutation is allowed, ruling out all unnecessary con-

figurations. To create this ordering, we add a unary-encoded number to each Banyan

network output, representing the index of the connected input. This encoding uses a set

of variables {uio|i ∈ I, o ∈ O}. When a kio is set, a series of implications rules out other

keys that would break the ordering. We provide an example of these propagations in

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 42

Figure 3.10: Example of propagation of ordering constraints for a 2-input LUT.

Fig. 3.10. Here, we show the unary numbers of the first two network outputs and the

corresponding key variables. k21 is set to true, which in turn sets output 1’s unary en-

coded number to 2. Additionally, it enforces that output 0’ unary encoded number must

be less than 2, ruling out k30. These constraints are enforced for each LUT by adding the

clauses in Eq. 3.9 to our solver. Here OL is the set of network outputs that connect the

LUT. ∧
i∈I,o∈OL

(kio → (uio ∧ ¬ui+1o)) ∧ (kio → ¬uio−1) ∧ (ui+1o → uio) (3.9)

We demonstrate the impact of the LUT symmetry breaking on attack time repeat-

ing the experiments from the previous section, using the best performing model and

encoding. Since the amount of symmetry scales with LUT input size, we sweep this

parameter and hold the network width fixed at 32. The resulting attack times with and

without symmetry are shown in Fig. 3.11. As the LUT width increases, the advantage

of symmetry breaking grows exponentially. At a LUT input width of 5, the difference in

attack time about an order of magnitude.

3.2.4 Resistant Locking Scheme

Based on our attack data and the results from the original Full-Lock work, it is clear the

Banyan network structure (without the modeling techniques) creates an instance that is

difficult for the miter-based attack. The strengths of the network are the large number of

cycles it can potentially create, the interdependence of keys, and the lack of intermediate

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 43

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
LUT Width

100

101

102
Ti

m
e

Model Type
edge+excl
edge+excl+sym

Figure 3.11: Comparison of attack time at network input width of 32 between encodings
with and without LUT symmetry breaking, n=10

outputs. However, with the proposed modeling techniques, we have exposed holes in

the original formulation. Here, we describe a remedy based on breaking the assumptions

of the modeling techniques through the addition of logic internal to the network.

Our improved locking technique, logic-enhanced Banyan locking, uses the same

Banyan structure as Full-Lock, however, the functionality is extended beyond the simple

invert and permute. This is achieved by moving logic from the locked circuit into the

switch boxes of the Banyan network. In the original Full-Lock switch box, two key bits

are used to optionally invert the lines passing through. Now, we use these two key bits

to select one of four possible functions for each switch box output. One configuration

produces the correct function, the others are randomly generated decoy functions of the

switch box inputs.

A diagram of the new technique is depicted in Fig. 3.12. In this small example, a

4-input Banyan network is inserted. Using the switchbox outputs as reference points,

gates from the original circuit are mapped to the Banyan network. Switch box outputs

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 44

Figure 3.12: Diagram of circuit mapped to logic-enhanced Banyan network. The orig-
inal circuit is shown top-left, the locked version bottom-right. The correct switch box
function is highlighted in black, the decoy logic in gray.

s0, s1, and s2 respectively map to gates g0, g2, and g3. We show the internal logic of two

of the switch boxes; the logic corresponding to the original circuit highlighted in black

whereas the decoy logic is in gray. Input, i4 feeds through the top-left switch box and

gate g4 is mapped to the upper output of the bottom-right switch box. The network’s

un-mapped inputs and outputs are connected to the surrounding circuitry, ensuring no

logical effect under the correct key.

As the network size is increased, it incorporates a larger portion of the design. Since

there is already a significant amount of reconfiguration, we forgo the use of LUTs. The

intra-network logic prohibits the use of a simplified model for the network. The correct

functionality is no longer just a permutation of the inputs to the network, but rather one

of a very large space of functionalities dependent on nearly all the key bits. Additionally,

the large amount of symmetry has been removed; while some corner case symmetry may

remain, it will be highly complex to find and probably of little value to rule out.

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 45

0

50

100

Input Width = 8,
 Keys ≈ 64

Input Width = 16,
 Keys ≈ 176

Input Width = 32,
 Keys ≈ 448

Input Width = 64,
 Keys ≈ 1088

0

50

100

0 5000 10000 15000
Time

0

50

100

0 5000 10000 15000
Time

0 5000 10000 15000
Time

0 5000 10000 15000
Time

Model Type
Full-Loc +CycSAT
edge+excl+CycSAT
logic_enhanced+CycSAT

Figure 3.13: miter-based attack time for ISCAS 85 circuits locked with Full-Lock and
logic-enhanced Banyan locking schemes

The insertion algorithm for logic-enhanced Banyan locking is naturally more complex

than the original Full-Lock. To bring logic inside the Banyan network, we need to map

the structure of the original circuit to the network. This problem can be efficiently solved

using SAT, encoding the structural constraints of the Banyan network and original circuit

over a set of variables that represent a mapping of a gate from the original circuit to the

output of a Banyan network switchbox. We provide the full details of the algorithm in

section A.2. The implementation of the insertion can be found in our repository2.

We demonstrate the resistance of our proposed technique to the miter-based attack

alongside the original Full-Lock, and the best encoding-model combination from the pre-

vious results: an edge-based, all-to-all exclusive with symmetry breaking. As described

in section A.1, all attacks utilize the CycSAT acyclic constraints [21]. The techniques are

run on the ISCAS85 benchmark circuits, sweeping the network input width from 8 to

64. The corresponding key widths range is around 64 to 1088. The results are shown in

Fig. 3.13.

The Full-Lock run times show a trend that largely agrees with the original paper’s

results with the exception that some circuits at 32-input width are deobfuscated. These
2https://github.com/jpsety/logic_enhanced_banyan_locking

https://github.com/jpsety/logic_enhanced_banyan_locking

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 46

improved results are likely due to the use of a different SAT solver. Our relaxed model

shows run times several orders of lower than originally reported. Most circuits at 32-

input width (around 448 key bits) are deobfuscated in seconds, with some outliers taking

minutes, clearly demonstrating the effectiveness of these techniques. As the input width

scales to 64, many circuits are still deobfuscated, but the majority take longer than our

4-hour timeout.

Even without considering the modeling techniques, the logic-enhanced Banyan scheme

provides a significantly better ratio of key bits to attack time than the Full-lock predeces-

sor. At an input width of 16, the attack times out for all circuits. While this is good, we

do not suggest that such small input widths are viable locking techniques as simple enu-

meration attack schemes may easily deobfuscate them. However, these results overall

suggest that such entangled locks may provide a direction for resisting the miter-based

attacks.

3.3 Discussion

3.3.1 Attack Insights

In this chapter we have developed two attacks that take differing strategies in deobfus-

cation. The first uses analysis of Boolean sensitivity to isolate the modified portions of

a circuit locked with strip-functionality techniques. In essence, this is simply a removal

attack. The key insight is the identification of a metric under which the locked circuit’s

modified portions, the protected inputs, have a strong signal. Under the right lens, what

may seem to be an undetectable change becomes obvious. Notably, the signal that this

attack identifies depends on both the locking technique and the circuit being locked,

suggesting that designers should be careful when applying techniques to new circuits.

Other metrics such as signal probability have also enabled removal attacks. In gen-

eral, the effectiveness of removal attacks has been driven by locking schemes that rely

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 47

on a single point of failure. Ideally, if workable metric is identified, the locking schemes

would exhibit graceful degradation wherein the metric would have to deobfuscate many

sub-instances correctly rather than a single point in the circuit.

Our second attack utilizes two modeling techniques, relaxed modeling and symme-

try breaking, to decrease SAT-based attack run times. In the case of Full-Lock, our

experiments show that these modeling techniques are highly effective, reducing run

times by many orders of magnitude. Locking schemes that have easily relaxed function-

ality or have comprehensible symmetries are potentially vulnerable to these modeling

techniques. A potential target for applying these modeling techniques are FPGA-based

locking strategies. Finally, important to the success of our strategy was trying different

models and encodings of the system, which produced significant differences in attack

performance.

3.3.2 Shortcomings of Proposed Fixes

For both attacks, we provide resistant locking schemes. While these improvements fix

the vulnerabilities, neither scheme offers a good balance between overhead and security.

For strip-functionality locks, we show that if the locking procedure considers sensitivity

during insertion, a designer may be able to avoid selecting inputs that will become out-

liers when flipped. However, the locked circuits must have inputs that move into denser

areas of the sensitivity distribution when inverted, making the security of the technique

highly circuit dependent. As we demonstrated, many circuits do not have output cones

that have an input width large enough to resist the miter-based attack and the needed

distribution of input value sensitivities. Thus, this class of techniques has a tradeoff

between miter-based attack resistance and sensitivity attack resistance. The result is a

narrowed set of situations under which strip-functionality locking is applicable. Notable

examples that have the proper distributions are cryptographic circuits and algebraic cir-

cuits. While both classes of circuits will likely have many inputs that can be hidden from

CHAPTER 3. SECURITY OF EXISTING LOCKING SCHEMES 48

the sensitivity attack, it should be noted that these classes are highly regular structures

that may be subject to different types of analysis.

Furthermore, if our version of TTLock or a similar construction is used, it would

be prudent to more accurately characterize the sensitivity distribution before selecting

inputs to lock. This could be done using approximate model counting techniques [67] on

the sensitivity circuit. Additionally, it should be noted that the sensitivity attack speed

can likely be substantially improved via parallelism and utilization of AllSAT solvers.

A final note regarding the improved version of TTLock, as the authors of the strip-

functionality techniques have noted, the small number of protected inputs decreases the

amount of corruption in the circuit under an incorrect key. The trade-off is unsatisfying:

the attacker has a harder time searching for the incorrect inputs, but the probability of

those incorrect inputs being encountered reduces just as much.

We have also described logic-enhanced Banyan locking, an extension to the Full-

Lock method, that appears to be resistant to the proposed modeling techniques. We

demonstrated promising initial attack results, showing that structure of the Banyan net-

work combined with randomly selected decoy logic is not only a mechanism of resisting

convergence in the miter-based attack, but also harder to deobfuscate than the original

Full-Lock for the particular CDCL-based SAT solver used. Of course, this resistance may

change with some additional insight or varied attack strategies. One potential example

is timing constraints, wherein every valid key must produce a circuit with a critical path

less than the period. Just like the acyclic constraints that are necessary for the attack to

complete, timing constraints could rule out significant portions of the key space.

While the adverse effects of such improvements are unexplored, one known issue is

the overhead associated with this technique. Delay overheads as high as 70% have been

observed with a 32-input width logic-enhanced Banyan locking scheme. This cost of se-

curity motivates the exploration of new locking methods that utilize similar principles of

irregular, densely interconnected logic, but without exacerbation of the design’s critical

paths.

Chapter 4

Keyed Sequential Elements for

Low-Overhead Locking

In this chapter, we propose a novel logic locking mechanism, latch-based logic locking,

that adds programmable phase latches within the design. This technique enables highly

interdependent key structures similar to those proposed in the preceding chapter, but

without significant overhead. The latches enable the obfuscation of functionality on

multiple levels: manipulating the size and location of the circuit’s state, corrupting of

the circuit’s timing behavior, and adding decoy logic.

To validate this technique, we have developed a design flow that leverages existing

commercial synthesis tools. We use this flow to provide evidence of the small design

overhead on a set of industrial cores and benchmark circuits from synthesis runs as well

as taped-out place-and-route runs. We assess the security of the technique by developing

attacks under both the netlist and oracle attack models. Our analysis shows that latch-

based logic locking is SAT/model checker-based attack resistant and requires minimal

overhead, enabling the insertion of many keyed latches.

49

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 50

4.0.1 Latch-Based Design and Retiming

Latches are level-sensitive sequential elements that are transparent when the clock input

is logic 1 and hold a sampled value when the clock is logic 0. A typical master-slave

flip-flop contains two latches: a master latch with an inverted clock phase followed by a

slave latch with nominal clock phase. When the clock is high, a sampled value from the

last clock cycle is held by the master latch and loaded into the slave. When the clock is

low, the slave latch maintains this sampled value, while the master loads a new sample.

Together, the latches create an edge-triggered flip-flop, propagating the input data to the

output on the rising edge of the clock.

Flip-flops can be separated into individual latches and then, through a set of trans-

formations known as retiming, moved through the fixed logic of a circuit [68, 69]. A

functionally correct retiming will maintain the cycle delay of every path through the

latches. Cycle delay is defined as the number of required clock cycles for data to propa-

gate along a path. Thus, all paths through the original flip-flop maintain a cycle delay of

1, passing through an inverted phase latch, then a nominal phase latch. Latch retiming

is used to reduce the critical path of a design, shifting the amount path delay between

the positive and negative phase of the clock, as well as reduce area by merging latches.

The level sensitivity of latches enables cycle sharing between the positive and negative

phases of the clock cycle allowing more flexible signal arrival times. This property is

often exploited in designs with tight timing constraints [70, 71]. In this work, we use the

flexible arrival time to increase the modeling difficulty of an obfuscated circuit.

4.1 Latch-Based Logic Locking

In developing a locking system, we consider maintaining circuit frequency a topmost

priority. Toward this goal, we utilize latches to lock a circuit via two mechanisms:

programmable path delay and programmable logic. This creates a locking system in

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 51

clk

FF0.Q

(0,0) FF1.D

(0,1) FF1.D

(1,0) FF1.D

(1,1) FF1.D

Figure 4.1: Diagram and functional waveforms of logic locked with programmable path
delay via latch phase modulation.

which the critical path logic can be obfuscated while remaining largely unmodified.

Both mechanisms employ decoy latch elements to cheaply create uncertainty as to the

circuit’s correct function.

4.1.1 Programmable Path Delay

Flip-flops from the original design can be replaced by their constituent latches and re-

timed. As shown in Fig. 4.1, phase-programmable latches can be created using a key to

selectively feed a latch a nominal or inverted phase clock. This not only obfuscates the

design, but also potentially decreases the minimum clock period due to cycle sharing.

Depending on the key setting, these phase-programmable latches can manipulate both

the cycle delay and propagation delay along a path, thereby changing the functionality

of the design via two mechanisms. Propagation delay is defined as the amount of time

necessary for a signal to travel from its launching point to capturing point. An incorrect

cycle delay will change the logical behavior of the design whereas an incorrect propaga-

tion delay will cause timing violations and undetermined behavior. The pair of latches

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 52

Figure 4.2: Conceptual view of latch-based logic locking. A set of interconnected flip-
flops is converted to programmable latches with added decoy latches and logic. Each
latch can operate on either clock phase, hold clear, or output constant logic 0.

in Fig. 4.1 can be set to four unique functionalities as both types of delay are modulated.

To add uncertainty as to a given latch’s function, path delay decoy latches can be

added to the circuit. These decoys allow for modulating both types of delay, forcing the

adversary to solve a problem across multiple domains. The path delay decoys can be

held open by setting the clock input to logic 1. In this case, the decoy latches behave as

a buffer, adding only a slight propagation delay to the path. As shown in Fig. 4.2, path

delay decoy latches (orange) can be inserted along paths in the original combinational

logic of a circuit.

Along with their low delay impact, latches are well suited for obfuscating a cir-

cuit’s path delays due to their increased complexity in modeling as compared to edge-

triggered elements. The reasons that enable latches to decrease cycle times are the same

that allow us to utilize them as a source of obfuscation. Both the cycle and propagation

delay added by each latch are a function of the phase of the upstream latches along a

given path, thus increasing the computation required to characterize a given key setting.

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 53

Additionally, because signals can be launched from the latch at any point within its clear

phase, checking whether all signals are legally timed under a given key becomes more

challenging.

4.1.2 Programmable Logic

In conjunction with the manipulation of delays in the circuit, we can add decoy logic

within the design to create uncertainty in the functions being computed. Keying the

reset pin of the phase-programmable latches, creates a simple method of adding decoy

logic. Additional latches are inserted in the design, each along with a fan-in cone of

decoy logic. The latch output is combined with existing logic such that the functionality

is not changed if the latch output is logic 0. When the correct key is applied to the

circuit, the reset pin is forced to logic 1 (or logic 0 depending on the reset polarity), thus

maintaining the intended function. Example logic decoys and corresponding logic are

shown in Fig. 4.2, highlighted in red.

The added programmable logic allows flexible insertion of latch-based logic lock-

ing. Circuits with sparse interconnection can be augmented to increase the number of

paths through the locked portion. Structures known to be harder to resolve, such as

reconvergent fan-out and sequential feedback paths, can be selectively added within

this additional logic. Furthermore, we can emulate the highly entangled structures of

the previous chapter. Importantly, these modifications can be added while leaving the

critical path of the design largely unchanged.

Adding this key state results in a total of four latch configurations and thus two

key bits per latch. This forces the adversary to determine for each latch whether it is

a positive phase latch, negative phase latch, delay decoy, or logic decoy We show the

control logic and corresponding truth table in Fig. 4.3.

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 54

k0 k1 LAT.R LAT.CLK
0 0 1 1
0 1 0 1
1 0 0 !clk
1 1 0 clk

Figure 4.3: Diagram and truth table of latch clock and reset control signals. Control
circuitry that determines the latch function is connected to the clock and reset pins. The
truth table’s row colors correspond to the associated latch type.

4.1.3 Insertion Flow

I. The first step of the insertion flow is the selection of a set of interconnected flip-flops

within the original netlist. Increased interconnection forces the locked portion of the de-

sign to be considered as a whole due to the dependence of a latch’s functionality on the

rest of the group. In conjunction, minimizing the controllability and observability into

the group makes each scenario harder to rule out. This task can be naturally modeled as

community finding in graphs. We adopt a flow-based community finding algorithm to

produce appropriately sized groups [72] of flip-flops from the original design. From a

sample of these groups, the group with the lowest cumulative delay is selected, allowing

low overhead for decoy insertion.

II. The selected group of flip-flops is subsequently converted into latches and re-

timed. Standard synthesis tools do not support latch retiming, however their ability to

retime flip-flops can be leveraged with a previously established procedure [68, 73]. First,

each latch of the original flip-flop is replaced by a flip-flop, depicted in Fig. 4.4a-b. Then,

the flip-flops representing the positive phase latches are held fixed, while the flip-flops

representing negative phase latches are retimed. This is then repeated, fixing the nega-

tive phase latches and retiming the positive, shown in Fig. 4.4b-c. These flip-flops are

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 55

Figure 4.4: Flip-flop to latch conversion and decoy addition. A flip-flop is duplicated,
retimed, and converted to latches. Two types of decoy latches can be added to the paths
in the fan-in and fan-out cones of the latches. This example shows a single flip-flop,
however in practice an interconnected group is converted.

then replaced by their respective latch counterparts, depicted in Fig. 4.4c-d.

III. Next, as shown in Fig. 4.4d, the two types of decoy latches are inserted, starting

with the logic decoys. These decoy latches and corresponding logic are inserted to again

maximize the interdependence of the existing latches in the design without creating ad-

ditional control and observation points. For each decoy added, a set of fanout and fanin

latches with minimum interconnection are greedily selected. This selection is elaborated

in Algorithm 4. The algorithm uses the subroutines startpoints and endpoints that return

the sequential elements and ports in the fanin/out cones of a set of gates. The latches

with the least number of connections to the rest of the group are selected.

After the selection, a random logic cone is constructed with the fanin latches as

inputs, connecting it to the input of a new decoy latch. The output of the latch is then

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 56

Algorithm 4: Logic decoy latch insertion
Input: C, nlogic, max_ f io

1 for i ∈ [1..nlogic] do
2 nfanin := randint(1, max_ f io);
3 nfanout := randint(1, max_ f io);

4 potential_ f anin := C.latches|startpoints(C.latches);
5 potential_ f anout := C.latches|endpoints(C.latches);

6 f i_sort_ f unc := lambda g : |endpoints(g) & potential_ f anout|;
7 selected_ f anin := sorted(potential_ f anin, f i_sort_ f unc)[0 : nfanin];

8 f o_sort_ f unc := lambda g : |startpoints(g) & potential_ f anin|;
9 selected_ f anout := sorted(potential_ f anouts, f o_sort_ f unc)[0 : nfanout];

10 insert_logic_decoy_latch(selected_ f anin, selected_ f anout);
11 end

Algorithm 5: Delay decoy latch insertion
Input: C, ndelay, max_ f io

1 allowed_startpoints := C.latches| f anin(C.latches);
2 allowed_endpoints := C.latches| f anout(C.latches);
3 allowed_gates := {g ∈ C | (startpoints(g)− allowed_startpoints) = ∅ &

(endpoints(g)− allowed_endpoints) = ∅};
4 for i ∈ [1..ndelay] do
5 g := sample(allowed_gates);
6 insert_delay_decoy_latch(g);
7 end

connected to nets in the fanin of the selected fanout latches. This output logic is created

such that if the latch is controlled to constant logic 0 through the reset pin, there will be

no effect on the downstream original logic.

IV. Delay decoys are subsequently inserted in locations within the collective fanout

and fanin cones of the existing latches. Using Algorithm 5, the locations are selected

such that they do not have control and observation points other than those of the existing

latches. Additional filters can be used to select locations where the slack is greater than

the delay through a clear latch, but in general we found these cells had little impact on

the overall minimum period.

V. Finally, as depicted in Fig. 4.3, the logic to control the clocking and reset of all

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 57

Figure 4.5: Preliminary DFT infrastructure. CC represents clock and reset control cir-
cuitry from Table 4.1.2.

the latches is added. Each latch is controlled with two key bits. The four resulting

states correspond to a clear buffer, a positive phase latch, a negative phase latch, and a

constant logic 0. During timing optimization and analysis, this logic is constrained to the

correct key setting so the tool can target proper function. To verify the locking process

did not corrupt the functionality, the correct key is fixed and a sequential equivalence

check between the modified and original design is run. Additionally, timing-annotated

functional simulations provide further assurance that the timing constraints have been

properly specified.

4.1.4 Design for Testability

A primary concern when developing an IC is testability. As discussed in section 2.1.1,

Design flows typically employ scan-based flops to serially load test vectors into the

circuit; however, this design for testability (DFT) mechanism is not directly compatible

with a latch-based design. An additional concern for logic locking is the storage of key

bits; inherently latch-based logic locking requires two bits of storage per latch. We tackle

both problems with a dual purpose scan architecture depicted in Fig. 4.5.

In order to maintain test coverage of our locked circuits, we connect the input and

output of each latch to a flip-flop. During normal operation, the same flip-flops store

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 58

the latch’s key bits. These scannable test points are inserted such that the latch path

delay is only minimally increased, adding a single MUX delay and a small capacitance.

During test mode, the structure allows the output of each latch to be observed and

controlled to an arbitrary value, emulating a full scan methodology. In addition to the

combinational logic, faults in the added clock tree logic can be covered. We implement

this initial version of the test infrastructure to demonstrate that the latch-based logic

locking does not significantly impact testability; the results are shown later in Section

4.3.2. This DFT strategy as outlined maintains low delay impact but sacrifices area for

ease of implementation. This strategy can likely be improved using known techniques

explicitly designed for latches, namely level-sensitive scan design (LSSD).

There exists an inherent tradeoff between testability and security. The additional scan

infrastructure significantly increases the controllability and observability of a design, a

valuable attack vector for adversaries who have oracle access. To account for this threat,

latch-based logic locking must be coupled with mechanisms to limit adversarial access

to the scan chain. One viable solution is fusing external scan access with a fuse. The

implementation of fuses has been previously demonstrated and widely used in practice

[74, 75].

4.2 Attacking Latch-Based Logic Locking

The most critical aspect of evaluating latch-based logic locking is its attack resistance.

In this section, we demonstrate the technique’s resistance to several existing as well as

newly developed attack methods. The methods are grouped by attack model.

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 59

10 15 20 25 30 35 40 45 50
nbits

0

20

40

60

80

%
 m

et
 ti

m
in

g

circuit
or1200
s9234
s13207
fir

10 20 30 40 50
nbits

103

105

107

109

1011

1013

1015

1017

va
lid

 k
ey

s circuit
or1200
s9234
s13207
fir

Figure 4.6: Enumeration of keys that satisfy timing constraints, n = 1000

4.2.1 Netlist-Based Attacks

Timing Analysis

Under the netlist attacker model, the adversary has access to the locked netlist. Further-

more, a foundry likely can infer timing information such as the clock period. The clock

period can be estimated via analysis of unkeyed paths or directly obtained through anal-

ysis of the clock generation circuitry. Assuming every path in the correct circuit meets

timing and that the clock period is known within some bound, this adversary can rule

out key combinations that violate timing.

To understand the effect of such an attack, we run an experiment to determine what

portion of the key space meets timing. Taking several circuits and sweeping the amount

of locking applied, we sample key values. For each value, we apply the correspond-

ing timing constraints to the circuit and run static timing checks at the correct design

frequency. From this set of samples, we approximate the portion of the key space that

meets timing. Applying this value to the key space as whole, we determine an estimate

of how many keys are valid.

The results are shown in Fig. 4.6, where on the left we plot the percentage of com-

binations that meet timing and on the right the estimate of total valid configurations.

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 60

For some of the circuits, the portion of valid configurations decreases as the number of

bits increases. However, this reduction is nullified by the exponential growth of the size

of the key space. Thus, the estimated number of valid keys grows exponentially in all

cases.

This exponential trend is helped in part by the timing of the latches, which makes

them significantly more flexible than flip-flops. In checking timing constraints, each latch

is initially allocated half the clock period to resolve the upstream combinational logic

and capture the value. Because latches are clear for half a cycle, paths that have timing

slack can share it with the upstream or downstream neighbors. Excluding internal latch

delays, the maximum amount of cycle sharing limits the propagation delay through

any contiguous set of latches on the same phase to at most the clock period, tperiod.

Additionally, the propagation delay through any contiguous set of latches with only 1

transition in phase is limited to 1.5× tperiod.

While here we have just checked the timing of sampled keys, developing constraints

that map keys to a valid timing could be useful in oracle-based attacks such as the

miter-based attack. This is a challenging problem as the timing of a given latch depends

on more than just its immediate neighbors. Moreover, logic decoys have the ability to

create physical connections that are not sensitizable under certain keys. These non-

sensitizable paths are false paths that must be first detected and then removed from

timing consideration. While this is straightforward for a single key, general constraints

are much more difficult to specify, potentially necessitating an interface with an SMT

solver [76].

Structural Analysis

While the previous timing analysis determined if a fully specified key value was invalid,

we can use local structural analysis to predict a single latch function. This is similar

to the local analysis discussed in 2.3.1. Here, we specify a set of metrics attempting to

capture the domains in which some informative signal could be produced that would

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 61

0

1
lo

gi
c

0

1

de
la

y

0

1

po
s

0 20
fanin

 depth

0

1

ne
g

0 25
fanout
 depth

0 25
fanin

 flip flops

0 50
fanout

 flip flops

0 20
fanin

 latches

0 10
fanout

 latches

0 10
fanin

 inputs

0 10
fanin

 outputs

0.0 0.5
signal

 probability

Figure 4.7: Histograms, separated by latch type, for structural metrics. Plots are gener-
ated from 60 locked circuits with varying amounts of LBLL bits.

help classify a latch into one of the four possible configurations. The metrics we select

are fanin and fanout logic depth; latch, input, output, and flip-flop counts in the fanin

and fanout cones; and signal probability. Collectively, these metrics give a notion of how

the latch is interconnected with the rest of the circuit.

We run these metrics on a set of circuits locked with varying amounts of latches. In

Fig. 4.7, we show the distributions of the individual metrics. Immediately evident is

that there is no single dimension that definitively predicts a latch’s function, a good first

positive result. However, there are some dimensions, such as fanout latch count, that

have noticeably different distributions, suggesting some predictive information exists.

While the individual metric histograms reveal very little about the value of a given

latch, a classification algorithm may be able to make a prediction when all dimensions

are considered. To assess our locking scheme’s resistance to such an attack, we run the

metric data on a set of classification algorithms. We select ten common classification

algorithms with open-source implementations [77]. For each algorithm, we run a cross

validation on our data with ten folds of the data. The training set consists of 1506 latch

data points. In Fig. 4.8, we plot the prediction accuracy distributions across the folds.

Interestingly, we see that despite the similarity among the individual distributions, the

classifiers can consistently do better than chance (i.e., 25% accuracy). The best perform-

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 62

Nearest
 Neighbors

Linear
 SVM

RBF SVM Gaussian
 Process

Decision
 Tree

Random
 Forest

Neural
 Net

AdaBoost Naive
 Bayes

QDA

type

0.3

0.4

0.5

0.6

0.7

sc
or
e

Figure 4.8: Cross-validation scores on classifiers trained on the structural metric dataset.

ing classifier is a neural network that on average can predict the functionality with 63%

accuracy.

These predictions are significantly better than chance, and additional metrics may

provide more information further increasing the accuracy. However, these predictions

alone are unlikely to give an adversary enough information to reverse engineer a locked

circuit using only the netlist. As we will discuss in chapter 5, even in scenarios where the

accuracy is significantly higher, finding a circuit with minimal functional corruption is

unlikely, especially when the amount of locking is scaled. A more tenable route may be

the use of these predictions to increase the speed of an oracle-based attack. Nevertheless,

the high prediction accuracy suggests that more should be done to reduce signal on these

domains.

4.2.2 Oracle-Based Attacks

If the attacker has access to an oracle circuit, the key can be deduced via a model checker-

based attack. As discussed in section 10, the model checker attack algorithms use a

miter circuit to find IO sequences that produce varying behavior for different keys. The

IO sequences are applied to the oracle circuit and the learned correct behavior is re-

encoded into the problem as key constraints. While these algorithms are complete,

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 63

meaning they will eventually terminate with a correct key, their performance is limited

by the sheer size of the key, input, and state spaces. Moreover, existing attacks [29, 30]

have incompatibilities that must be addressed before they can be applied to latch-based

logic locking.

Incompatible Assumptions of Previous Attacks

The first issue stems from the assumption that a circuit’s state is able to be reset to

a potentially unknown, but fixed value. In many circuits this assumption is untrue.

IC designers frequently include flip-flops with no reset in their designs to save both

area and power. Often, only a core portion of sequential elements are set to a fixed

state during reset, leaving other sequential elements in their previous, unknown states.

The sequential elements that are uninitialized will eventually be set to a known state

during the circuit’s operation. Examples of this behavior include the register file of

many processors or the datapath registers of AES.

Previous attacks use this fixed reset assumption to repeatedly find differentiating

input sequences starting from the reset state. Even if the fixed reset value is unknown,

these methods are still viable by treating the start state as an unknown value similar to a

key input. If the fixed reset assumption is violated, assumed stable values will actually

be changing over time and the learned IO relationships that depend on these variables

will be corrupted. Since many circuits violate this assumption and latch-based logic

locking adds state that potentially has an unfixed reset, we must generalize the attack to

account for this behavior.

The second issue is that previous attacks utilize a combinational equivalence check

as a termination condition to run on every iteration. These checks are incompatible with

latch-based logic locking, resulting in wasted attack time. The termination condition

verifies the logic faning into each output and state element is functionally equivalent

under all remaining keys.

The added state elements and decoy logic of latch-based logic locking potentially

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 64

Figure 4.9: (a) Miter circuit used in our modified model checker-based attack. The free
variables of the system are the two key inputs, the initial state of all sequential elements,
and the inputs at every unrolled cycle. The circuit is unrolled by connecting the input of
each state element from a cycle to the output of the same state element of the next cycle.
(b) Addition of a learned IO constraint to the miter circuit. This limits the possible key
and initial state pairs.

creating retimings of the original circuit. This means that, although all keys may be

functionally equivalent, under different keys active state elements may be moved to dif-

ferent locations in the logic. This changes the state encoding of the system, resulting

in the combinational equivalence check always failing, even when the attack has termi-

nated.

Model Checker-Based Attack with Non-Deterministic Reset

The generalized model checker-based attack is a straightforward modification to the pre-

vious algorithms. In short, it changes the way constraints are constructed, maintaining

a sequence of inputs throughout the attack as opposed to restarting from a fixed reset

state each iteration. We will go through a description of the attack below.

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 65

The attack utilizes a miter circuit formed from two copies of the locked circuit. The

miter circuit is specified with an FSM as introduced in section 2.1.1. The FSM’s input

variables are i ∈ {0, 1}m, the same as the locked circuit’s inputs. The output is a single

variable, d ∈ {0, 1}. The output bit indicates that a difference between the circuit copies

has been found. The state variables, (s0, s1, k0, k1), are the state of the locked circuit

copies and the key inputs. The key inputs are modeled as state with an identity next-

state function to enforce their constant value. Correspondingly, the overall miter’s next-

state function is δmiter = (δlock(i, s0, k0), δlock(i, s1, k1), k0, k1), where δlock is the locked

circuit’s next state function. Notice how the keys are simply set to the same value every

cycle. The miter’s output function is λmiter = λlock(i, s0, k0)⊕ λlock(i, s1, k1), where λlock,

is the output function of the locked circuit. On the first attack iteration all states are

allowed as initial states, thus where k is the key length and l is the width of the locked

circuit’s state, the miter’s initial state is S0
miter = {0, 1}(l+l+k+k).

The FSM is given to a model checker along with the target property d = 1. While

the exact unrolling process differs depending on the model checker and algorithm used,

roughly speaking, the model checker unrolls the circuit as depicted in Fig. 4.9(a), check-

ing for the property at each cycle. The circuit’s free variables are the separate key inputs,

separate initial states, and shared inputs for each unrolled cycle. The first cycle input is

constrained such that reset is active; in subsequent cycles, the tool is free to control reset.

The model checker is given the task of finding an input sequence, I , that satisfies the

miter circuit, thereby producing a difference on the outputs. This output discrepancy

can be produced by a difference in the keys or initial states applied to the circuit copies.

The tool searches for such a sequence using unbounded model checking algorithms,

unrolling the circuit as needed.

Once a valid input sequence is found, the oracle is used to find the corresponding

outputs. The input sequence is run on the oracle, capturing the correct output and

holding the clock steady on the last cycle, maintaining the state within. The produced

IO relationship is then encoded as a constraint on the miter circuit’s initial states, ruling

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 66

Algorithm 6: Model Checker-Based Attack with Non-Deterministic Reset
1 δmiter, λmiter := build_miter();
2 S0

constraints := ∅;
3 Ptarget := (d = 1);
4 while M := unbounded_model_check(δmiter, λmiter, S0

constraints, Ptarget) do
5 In := get_assignment(M, i);
6 On := oracle_output(In);
7 S0

constraints := update_constraint(S0
constraints, In,On);

8 end
9 return S0

constraints

out keys and initial states of the locked circuit. The updated allowed miter initial states

are specified by equation 5.5. In essence, the allowed initial states of the model checker,

must agree with the IO sequence thus far, (i0, o0), ..., (in, on).

{(s0, s1, k0, k1) ∈{0, 1}(l+l+k+k)|∃ŝ0,ŝ1

δlock(in, ...δlock(i0, ŝ0, k0)..., k0) = s0 ∧

δlock(in, ...δlock(i0, ŝ1, k1)..., k1) = s1 ∧

λlock(in, ...δlock(i0, ŝ0, k0)..., k0) = on ∧

λlock(in, ...δlock(i0, ŝ1, k1)..., k1) = on}

(4.1)

A visualization of these constraints from two iterations and their connections to the miter

circuit are depicted in Fig. 4.9(b). Now, satisfying the miter circuit entails finding two

keys and an initial state that agree with the learned IO sequence as well as extending the

input sequence to rule out additional keys. Since the state of the system is maintained

between sequences, one contiguous IO relationship is formed. This avoids the issues

with previous attacks by continuously modeling the unknown variables within the cir-

cuit. This process is repeated until the model checker is unable to find an input sequence

that satisfies the miter and learned constraints, at which point the attack terminates. The

pseudo-code for the attack algorithm is shown in algorithm 6.

Ultimately, the attack produces a set of constraints that rule out keys with incorrect

functionality. At termination, there is no input sequence that will produce different

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 67

Figure 4.10: Conversion of latch-based circuit to flip-flop counterpart, enabling use in
generic model checkers.

output behavior for any two remaining initial-state and key pairs. All remaining pairs

are equivalent in this sense. Among these pairs is the actual pair internal to the oracle.

The pair should be considered together; applying just a matching key to the oracle

may still result in spurious behavior, i.e., not meeting three-valued safe equivalence as

defined in 2.2. Thus, depending on the system, a homing or synchronizing sequence

[78] may be needed to set the system to the corresponding initial state. It should also be

noted that these keys will only produce the correct behavior under a delay-free model

of the system. The keys still need to be filtered such that they meet timing constraints of

the system, i.e., operating correctly at the correct clock period.

Handling Latches and Cyclic Circuits

Due to their level-sensitivity, the latches inserted by latch-based logic locking are not

immediately compatible with many existing model checker implementations. To enable

the use of these model checkers in attacking this technique, we adapt the circuit models

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 68

to utilize only flip-flop state elements. This modeling can be achieved with two copies of

the locked circuit’s combinational logic as illustrated in Fig. 4.10. Here, DF and DL refer

to the nets connected to the flip-flop and latch inputs of the locked circuit. Likewise, QF

and QL refer to the nets connected to their outputs.

The copies compute the circuit’s values during the two phases of the clock period.

The clock inputs of each copy are hardcoded with the respective phase values. The

copies share inputs and the circuit’s outputs are driven by the second copy. The locked

circuit’s flip-flops are still modeled by a single flip-flop but connecting its output to the

QF nets of both combinational logic copies and its input to the DF net of the second copy.

The latches are modeled by a flip-flop and two MUXs that, depending on the CLKL, will

either connect QL to the flip-flop value or feed-through the DL net. Gates with no load

are removed through a logic synthesis pass.

Further unrolling is used to remove combinational feedback loops from the latch-

based logic locking insertion flow. Potential combinational loops are created either

when converting an original flip-flop to keyed latches or when inserting programmable

logic decoys. Combinational loops are avoided in real designs as the feedback may cre-

ate nodes in the circuit that are independent from the current state and input values.

Such nodes are uncontrollable, therefore any key that produces a combinational loop is

likely incorrect. If the loops are not ruled out, their uncontrollable value will corrupt

miter-based attacks. Our latch model does not directly handle these loops so additional

modeling is required.

As introduced in section 2.2.2 and utilized in section 3.2.4, acyclic constraint func-

tions can rule out keys creating combinational feedback cycles. However, the algorithms

used thus far are incompatible with latch-based logic locking. The inserted decoy logic

breaks assumptions about the circuit structure that the algorithms rely on. This creates

scenarios in which the constraints under-approximate the set of valid keys, or conversely,

rule out potentially correct keys combinations. However, a similar process can be used

to produce a model of the circuit that captures the space of IO relations without uncon-

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 69

Figure 4.11: (a) Cyclic circuit with cut feedback paths. (b) Acyclic, unrolled version of
the circuit. (c) Visualization of longest possible path through unrolled circuit’s feedback.

trollable nodes or the potential of ruling out valid keys.

The authors in [60] describe a method of handling cyclic combinational logic, con-

verting the cyclic logic into an acyclic model through an unrolling process adopted from

[79]. The acyclic model is compatible with the miter-based oracle attacks. The conver-

sion process finds a feedback-arc set, f ∈ F, a set of nets that when disconnected render

the circuit’s logic acyclic. As depicted in Fig. 4.11(a), the nets are broken, adding a new

input, f ′, in place of the feedback. The logic is then unrolled, connecting fn of one copy

to the f ′n of the next. As in Fig. 4.11(b), the inputs of all copies are tied together and

the outputs are driven by the last copy. The logic is unrolled |F| times to ensure that

all simple paths (i.e., a path through the logic that does not contain duplicate gates) are

modeled. Borrowed from [79], Fig. 4.11(c) gives a visual intuition as to how unrolling

allows the evaluation of the longest path through the logic, the path that traverses all

possible feedback nets.

This acyclic model captures the combinational behavior of the logic, i.e., it produces

correct output values when they are uniquely dependent on the inputs. This corre-

sponds to the keys that do not produce sensitizable feedback. The model’s behavior

under sequential inputs, i.e., key with sensitizable feedback, will depend on the added

inputs, f ′ ∈ F′, and will not necessarily correspond to the behavior of the real circuit.

However, it is assumed that the correct key does not exhibit this sequential behavior in

its logic. Namely, sequential behavior is restricted to the sequential elements, flip-flops

and latches. Thus these sequential behaviors that the model captures will eventually be

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 70

102

103

104

105
nu

xm
v_

tim
e

circuit = s298 circuit = s344 circuit = s349

20 30 40
nbits

102

103

104

105

nu
xm

v_
tim

e

circuit = s510

20 30 40
nbits

circuit = s5378

20 30 40
nbits

circuit = s713

type
mean
max
min

Figure 4.12: Model checker attack results; timeout of 24 hours indicated by red line.

ruled out.

Many feedback-arc sets exist, selecting smaller sets will decrease the resulting model

size. We use a heuristic algorithm to identify such a set [80]. The algorithm is run on the

sequential subgraph of latches as this is the only portion of the circuits with potential

cyclic behavior. Once the feedback set is determined, the circuit is unrolled and then

synthesized to remove the superfluous logic.

Oracle-Based Attack Results

We implement the oracle-based attack using the nuXmv [81] model checker, specifically

using its IC3 [50] model checker routine. As in previous attacks, we use a Python

wrapper around the tool to handle problem construction and as before the vast majority

of the attack time is spent within the nuXmv solver, thus further optimization here is

likely of little value. All attacks are run in parallel on a server with 750 GB RAM and

48 2.1GHz cores, limiting the number of processes such that the total memory is well

below the total available.

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 71

101 102 103 104

nseq

0

500

1000

1500

2000

2500

3000

3500

at
ta

ck
 ti

m
e

103 104 105

ngates

circuit
fir
iir
aes128
des3
or1200
dft
s344
s510
s349
s444
s298
s5378
s713

Figure 4.13: Model checker attack versus circuit size.

The first experiment we run to assess the attack time of our latch-based locking

technique is a sweep of the number of key bits across a set of circuits from the ISCAS89

benchmark suite. We fix the ratio of key bits to be roughly 50% latches converted from

original flip-flops, 25% path delay decoys, and 25% logic delay decoys. Starting from 8

bits, we sweep the amount to 48 bits and observe the attack times. Each run is limited

to an attack time of 24 hours and each circuit, bit-count configuration is run 5 times. In

Fig. 4.12, we plot the maximum, minimum, and mean attack times versus bit-count. The

results show some fluctuations, but generally show an exponential increase in attack

time. It should be noted that timeout trims many of the higher bit-count runs. These

runs verify that as we scale the number of bits, the resulting attack termination time

trends exponentially higher, an important property in ensuring the security of the locked

circuits.

Our next experiment demonstrates the scaling of the attack time with circuit size.

Over five iterations, we lock a set of circuits from the ISCAS89 and Common Evaluation

Platform [82] benchmark sets using 20 key bits and run the attack with a timeout of an

hour. In Fig. 4.13, we plot the attack times versus the number of sequential elements,

gates, inputs, and the ratio of outputs to inputs. While there exist smaller circuits that

timeout, generally as the circuit size grows the attack time increases. This suggests as

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 72

4.
0

8.
0

12
.0

16
.0

nd
ec

oy

325 705 1555 3265

636 3620 8695
**

10560

7425
*

3458 10770

10891
*

12175

13303

14108

12327
**

s344
1359 2647 5929 12585

4647 4105 11549
**

12707

9492

3763 9974
**

13364
*

9142
**

11953

10943
**

9111
**

s510

1.0 2.0 3.0 4.0
nflops

4.
0

8.
0

12
.0

16
.0

nd
ec

oy

347 2520 3821
*

5850

2546 4353 6365
*

7848
*

7844
**

12318

10558
**

11810
**

13291

11696

13525
**

12166
**

s349

1.0 2.0 3.0 4.0
nflops

1157 1445 5750 3901

3741
*

7372
*

10819
**

9091
*

6545
*

12406

11995
**

11242
*

10013

5787 12221

12533

s298

Figure 4.14: Comparison of attack time with various ratios of original flip-flops con-
verted versus decoys add. Added decoys are evenly split between delay and logic types.

latch-based logic locking is integrated into larger systems, proving attack convergence

will become more challenging. It’s likely that new modeling strategies will be needed to

implement a successful attack for large circuits.

We then analyze the effect of varying our locking parameters. We first consider, the

number of added decoys ndecoy, and the number of flip-flops selected for latch conver-

sion, n f lops. For several circuits, we sweep the number of original flops selected and the

number of decoys added versus attack time. Each flop selected is limited to creating

a maximum of 4 latches and the ndecoys parameter is incremented in steps of 4. This

maintains roughly equal steps in the latch types, subject to the variations in latch re-

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 73

1.
0

4.
0

7.
0

10
.0

nd
el
ay

419 2204 3597
*

10763
*

537 2905 7730
**

10884

1246 6171 10578

12612

1850 6026
*

12625

11237

s510
96 814 10114

14400

408 1974 14400

11921

237 6490
**

12459

11928

3380
*

3168 11762

12908

s344

1.0 4.0 7.0 10.0
nlogic

1.
0

4.
0

7.
0

10
.0

nd
el
ay

108 536 4329 12411

236 5677
*

5180 13150

312 4496
*

9408

12312

803 6898
**

10779
**

14400

s349

1.0 4.0 7.0 10.0
nlogic

552 2206 3595
*

7559
**

2562 6882
**

3117 11995

1440 4609
*

10695
**

14400

1330 9817
**

8328
**

14400

s298

Figure 4.15: Comparison of attack time with various ratios of logic versus delay decoys.

timing. The heatmap in Fig. 4.14 shows the trends in attack time. The heatmap values

correspond to the average of 5 runs with a timeout of 4 hours. The asterisks below the

values represent the number of runs that reached the timeout limit. Considering the

skew between the attack times for steps in the different dimensions, we see that the

ndecoys parameter has a slightly greater impact. This disparity suggests that these decoys

add more resistance, but of course this may depend on the specific circuit. Interestingly,

as we will see in the following section, the overheads do not vary significantly with the

ratio of decoy latches to latches from flip-flops.

Finally, we analyze the impact of the ratio between the types of latches inserted,

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 74

determined by the parameters, ndelay and nlogic. For the same benchmark circuits and

timeout, we fix the number of original flops selected to 1, then sweep the number and

type of added decoys. The heatmap in Fig. 4.15 shows the trends in attack time. A

significant skew exists between the types of decoys in which the logic decoys appear to

have a larger impact on attack time. This is likely due in part to the added feedback

paths that must be unrolled to maintain an acyclic circuit and the generally increased

interdependence between the key bits that comes from the logic decoys.

It is important to emphasize, under the returned keys, timing violations are likely to

remain from incorrect propagation delays. After running the model checker-based at-

tack, the adversary must still find a key that passes timing. If modifying the design is an

option for the adversary, this can be done though recombining the latches into flip-flops

and retiming. Otherwise finding a key that meets timing requires more complicated

processing mapping the known cycle delays to a key that meets timing in a circuit that

likely uses cycle-stealing between latches.

As a whole, the performance against this oracle-based attack bodes well for the se-

curity of this latch-based locking technique; existing attack schemes are unable to deter-

mine the locked circuit’s key. Of course as discussed in chapter 3, this may change with

new insights into attack modeling or the discovery of more powerful structural metrics

that more reliably determine key bits.

4.3 Overhead Analysis

We demonstrate the design overheads associated with latch-based logic locking using

block designs from the Common Evaluation Platform. All circuits were synthesized us-

ing a modern commercial standard cell library in a 22nm FinFET process. The character-

istics of each design are displayed in Table 4.1. For modifying the netlists and synthesis,

we used Cadence Genus. For place-and-route runs, we used Cadence Innovus. All syn-

thesis and place-and-route runs target the maximum obtainable frequency. For assessing

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 75

Circuit FFs Gates Frequency(GHz)
IIR 646 5100 1.31
FIR 566 5221 1.33

DES3 134 3595 2.14
AES 530 15533 2.77

OR1200 1939 14366 1.46
DFT 38163 83457 2.15

Table 4.1: Characteristics of each considered benchmark circuit

0

1

2

3

4

de
la

y
ov

er
he

ad
 (%

) fir iir aes128 des3 or1200 dft

stage
syn
pnr

0

10

20

30

po
we

r o
ve

rh
ea

d
(%

)

stage
syn
pnr

64 128 192 256
nbits

0

20

40

ar
ea

 o
ve

rh
ea

d
(%

)

64 128 192 256
nbits

64 128 192 256
nbits

64 128 192 256
nbits

64 128 192 256
nbits

64 128 192 256
nbits

stage
syn
pnr

0

1

2

3

4

de
la

y
ov

er
he

ad
 (%

) fir iir aes128 des3 or1200 dft

stage
syn
pnr

Figure 4.16: Latch-based logic locking delay, power, and area overheads vs. number of
key bits normalized to the original design.

ATPG overheads, we use Mentor Fastscan.

4.3.1 Power, Performance, Area Overhead

We obtain power, performance, and area overheads as follows. First, the maximum

frequency of the design is found via a synthesis run targeting an unattainably high

frequency. The synthesis tool produces a critical path that determines the maximum

frequency, but with excessive buffering. The synthesis process is then rerun from scratch

targeting this maximum frequency. This result serves as the baseline implementation to

which various amounts of locking are applied and to which the results are normalized.

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 76

For DFT, the baseline circuits have all flip-flops converted to their scan-able versions.

The locked circuits implement our preliminary DFT structure outlined in section 4.1.4.

For our first experiment, each circuit’s baseline is keyed with 64, 128, 192, and 256 bits

of latch-based logic locking, targeting the design’s maximum frequency. As the latch-

based logic locking insertion has an element of randomness depending on the inserted

decoy logic, all experiments are run with 5 samples per circuit, bit-count pair. We target

a 50% decoy latch to real latch ratio; however the actual value depends on the circuit due

to the variability of the retiming process. The resulting synthesis and place-and-route

overheads are displayed in Fig. 4.16, respectively in blue and orange.

As expected, the observed overheads are low. Considering delay, we see that the

synthesis results have some fluctuation in overhead, reaching roughly 5% overhead in

the worst case. However, these delays do not impact the final place-and-route result,

wherein the overhead is negligible. This difference is likely the result of logic synthesis

not building the full clock tree. Place-and-route tools construct the tree and are able to

balance clock edge arrival times to take advantage of a latch’s level sensitivity. These

results confirm we have met our primary overhead goal of maintaining performance

while locking the design. The power overheads are generally low, scaling slightly with

the number of latches added. Naturally, the smallest tested design, DES3, shows the

largest overhead, still under 30%. The remaining blocks show overheads under 10%,

even with up to 256 bits of locking inserted. In several cases, we see an increase of

power overhead going from synthesis to place-and-route. This again is likely due to

the addition of the full clock tree. Finally, we see that the area overheads scale with

the amount of locking added and also depends on the size of the design being locked.

As previously noted, this area overhead can be significantly reduced when using LSSD

techniques as opposed to the current area-expensive test points.

Next, we sweep the decoy ratio, comparing the overheads from different amounts of

latches converted from original flip-flops and those added as decoys. The number of

key bits is fixed at 256. The results of these experiments are shown in Fig. 4.17. Delay

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 77

0

2

4

6
de

la
y

ov
er

he
ad

 (%
) fir iir aes128 des3 or1200 dft

stage
syn
pnr

0

10

20

30

40

po
we

r o
ve

rh
ea

d
(%

)

stage
syn
pnr

20 40 60 80
decoy ratio (%)

0

20

40

60

ar
ea

 o
ve

rh
ea

d
(%

)

20 40 60 80
decoy ratio (%)

20 40 60 80
decoy ratio (%)

20 40 60 80
decoy ratio (%)

20 40 60 80
decoy ratio (%)

20 40 60 80
decoy ratio (%)

stage
syn
pnr

0

1

2

3

4

de
la

y
ov

er
he

ad
 (%

) fir iir aes128 des3 or1200 dft

stage
syn
pnr

Figure 4.17: Latch-based logic locking delay, power, and area overheads vs. decoy ratio
normalized to the original design, nbits=256.

overheads remain negligible, power overheads fluctuate depending on the circuit and

intuitively, area slightly increases with the % of decoys. Importantly, we only see small

variations when sweeping the decoy ratio. This enables an arbitrary ratio to be selected

during insertion, reducing bias as to the total number of actual state elements in the

locked portion of the design.

In general, there exists a good balance between the benefits of cycle sharing from

replacing original flip-flops with latches, and the added delays from inserting decoys.

When we increase the decoy ratio, more decoy logic is created that provides new inser-

tion points for other decoy latches without impacting the delay. Overall, these results

show that the amount of locking can be greatly increased before significant overhead

costs are observed.

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 78

64 128 192 256
nbits

99.0
99.2
99.4
99.6
99.8

100.0
no

rm
al

ize
d

te
st

co
ve

ra
ge

 (%
)

fir

64 128 192 256
nbits

iir

64 128 192 256
nbits

aes128

64 128 192 256
nbits

des3

64 128 192 256
nbits

or1200

64 128 192 256
nbits

dft

20 40 60 80
decoy ratio (%)

99.0
99.2
99.4
99.6
99.8

100.0

no
rm

al
ize

d
te

st
co

ve
ra

ge
 (%

)

fir

20 40 60 80
decoy ratio (%)

iir

20 40 60 80
decoy ratio (%)

aes128

20 40 60 80
decoy ratio (%)

des3

20 40 60 80
decoy ratio (%)

or1200

20 40 60 80
decoy ratio (%)

dft

Figure 4.18: Normalized SSL test coverage for circuits locked with latch-based logic
locking

4.3.2 Testing Overhead

For each of the previous runs, we generate the test coverage overheads. We use ATPG

to detect all possible single stuck line (SSL) faults. SSL faults assume that a single logic

gate pin is fixed at either logic 1 or 0. The ATPG tool generates a pattern that can

propagate the effect of such a defect to an output. The resulting coverages, normalized

to the original circuit with full scan, are displayed in Fig. 4.18. At 256 bits of locking, we

see an average test coverage of 99.98% of the original value and a minimum of 99.71%.

Furthermore, inspecting the outstanding faults reveals a significant portion of are located

along the modified clock path to the latches. Thus, higher coverages are likely obtainable

using the same DFT techniques used in clock gating. Assuming that design security is a

top priority, these coverage overheads are likely acceptable.

4.3.3 Tapeout

To validate these results and demonstrate feasibility, we have taken five of these designs

through the full tape-out flow. The taped-out version of the locking scheme is an older

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 79

Figure 4.19: GDS of test IC and PCB with IC mounted.

iteration of the insertion flow. It lacks the DFT structures and utilizes a different decoy

insertion algorithm that leads to larger overheads than the current version. Nevertheless,

the essential elements of the locking scheme are present and have been verified through

this manufactured design.

Five copies of each circuit are taped-out, the original baseline along with four locked

versions with increasing amount of locking. Each design is wrapped in a testbench cir-

cuit that generates random inputs at-speed using linear feedback shift registers (LFSRs).

The system is driven with an internally generated clock signal. The clock has gating

signals that are used to selectively enable a single design. In Fig. 4.19, we show the GDS

layout of the designs along with an image of the final IC mounted to our test printed

circuit board (PCB).

Power values are recorded setting the voltage to the nominal value (0.85V) and setting

the frequency to targeted value from place-and-route. The LFSRs are set to continuously

run and the current is averaged over a 1s interval. This provides the total power value.

As the circuits share power domains, there is a shared static power that is removed,

producing just the dynamic power values. We report dynamic power values of the

locked designs normalized to the original. These results, along with the values reported

from place-and-route, are displayed in Fig. 4.20. As we can see, in all cases the power

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 80

32 64 128 256
nbits

0

20

40

60

po
we

r o
ve

rh
ea

d
%

circuit = aes

32 64 128 256
nbits

circuit = des3

32 64 128 256
nbits

circuit = iir

32 64 128 256
nbits

circuit = fir

32 64 128 256
nbits

circuit = or1200

stage
pnr
ic

aes des3 iir fir or1200
circuit

0

10

20

30

40

50

ar
ea

 o
ve

rh
ea

d
%

nbits
32
64
128
256

Figure 4.20: Power and area overheads for the taped-out circuits.

trends follow the predicted patterns. However, the accuracy of the predicted power

varies. The predicted and measured values for AES track very closely, whereas other

under or overshoot the measured value. This is most likely due to differences in the

vectors being run in the actual system as produced by the LFSRs and the predicted

signal activities during power analysis.

To verify functionality and determine the maximum frequencies, we run the system

for a given number of cycles, then scan out the system state. Comparing these values

to the simulation enables us to see if the circuits are behaving as expected. We sweep

the voltage and frequency applied to each design reporting if functionality matches the

simulations. The results are compiled as schmoo plots that allow us to visualize where

the frontier where the design starts to fail. Schmoo plots for four of the circuits are

depicted in Fig. 4.21. Comparing the original schmoo plots to the locked versions, we

see that the performances are nearly identical, verifying the minimal delay overheads.

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 81

0.6 0.7 0.8 0.9 1.0
voltage (V)

1646
1732
1847
1945
2068
2174
2359
2514
2723
2953
3272
3612

fre
qu

en
cy
 (M

Hz
)

Pass Pass Pass Pass Pass
Pass Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Fail Pass Pass Pass
Fail Fail Pass Pass Pass
Fail Fail Pass Pass Pass
Fail Fail Fail Pass Pass
Fail Fail Fail Fail Pass
Fail Fail Fail Fail Fail

0.6 0.7 0.8 0.9 1.0
voltage (V)

fre
qu

en
cy
 (M

Hz
)

Pass Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Fail Pass Pass Pass
Fail Fail Pass Pass Pass
Fail Fail Pass Pass Pass
Fail Fail Fail Pass Pass
Fail Fail Fail Fail Pass
Fail Fail Fail Fail Pass
Fail Fail Fail Fail Fail

0.6 0.7 0.8 0.9 1.0
voltage (V)

970
1089
1257
1474
1646
1802
1945
2174
2514

fre
qu

en
cy
 (M

Hz
)

Pass Pass Pass Pass Pass
Pass Pass Pass Pass Pass
Pass Pass Pass Pass Pass
Pass Pass Pass Pass Pass
Pass Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Fail Pass Pass Pass
Fail Fail Pass Pass Pass
Fail Fail Pass Pass Pass
Fail Fail Fail Pass Pass
Fail Fail Fail Pass Pass
Fail Fail Fail Pass Pass
Fail Fail Fail Fail Pass
Fail Fail Fail Fail Fail
Fail Fail Fail Fail Fail

0.6 0.7 0.8 0.9 1.0
voltage (V)

fre
qu

en
cy
 (M

Hz
)

Pass Pass Pass Pass Pass
Pass Pass Pass Pass Pass
Pass Pass Pass Pass Pass
Pass Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Pass Pass Pass Pass
Fail Fail Pass Pass Pass
Fail Fail Pass Pass Pass
Fail Fail Pass Pass Pass
Fail Fail Pass Pass Pass
Fail Fail Pass Pass Pass
Fail Fail Fail Pass Pass
Fail Fail Fail Fail Pass
Fail Fail Fail Fail Pass
Fail Fail Fail Fail Fail

Figure 4.21: Schmoo plots for AES (top left), AES with 64 bits LBLL (top right), IIR
(bottom left), IIR with 256 bits LBLL (bottom right).

4.4 Discussion

As we have demonstrated, latch-based logic locking is resistant to current attack strate-

gies and the low overhead allows the amount of obfuscation to be increased significantly

without performance loss. We believe there are several key factors that enable this strat-

egy’s attack resistance.

First, there exists large amounts of state unavailable to the attacker. Under existing

attack strategies, this state must be modeled and unrolled in order to compute and

reason about the functionality of the circuit. This sequential modeling is known to be

expensive as our experiments here reinforce.

Second, the densely-entangled decoy logic makes propagating information out of the

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 82

circuit difficult. In chapter 3, we saw a similarly entangled structure, logic-enhanced

Banyan locking, also provided strong attack resistance. However, our latch-based tech-

nique adds entanglement in a low overhead manner. The added delays are spread

among many timing paths as opposed to stacked on a single path as in logic-enhanced

Banyan locking and other combinational techniques.

Third, the formation of combinational cycles creates a circuit that is expensive to

model. As mentioned in section 2.2.2, the addition of such potential cycles has been

explored using MUXs. When enough MUXs are added, the constraints to produce

an acyclic model grow substantially, slowing down attacks. Our latch-based locking

technique exhibits similar behavior, creating potential cycles with programmable phase

latches and the added decoy logic. In order to effectively attack these techniques new

less-expensive acyclic models must be developed.

Forth and finally, the technique does not have a single point of failure. In some

previous locking techniques, identification and removal of the locked circuitry enabled

an easy bypass in the netlist-based attack model. In our technique, the adversary must

individually characterize each latch in the design to ensure proper functionality. Even if

a high percentage of the latches are known, an adversary will not have a working system

under the netlist-based attack model.

While these factors all contribute to the attack resistance, as seen in previous locking

techniques, improved attack modeling can significantly reduce the difficulty of deob-

fuscation. We have modeled our technique with significant detail, despite this, better

equivalence models and constraints may exist. But just as attacks may improve, there

are many other directions to add to the problem complexity.

Straightforward improvements could be updating the latch insertion. The best struc-

ture and insertion technique for decoy latches has yet to be determined. Our current

method, randomly forming logic cones from existing signals, leaves signal that can give

an attacker some bias in guessing keys. Ideally, the patterns being detected could be

ironed out, maintaining low traceability. These improvements could be coupled with

CHAPTER 4. KEYED SEQUENTIAL ELEMENTS FOR LOW-OVERHEAD LOCKING 83

logic structures with increased SAT-hardness, resisting both netlist- and oracle-based

attacks.

Another simple method of increasing complexity is combining latch-based logic lock-

ing with other locking schemes, forcing the attacker to understand and model multiple

interacting circuit transformations. As previously mentioned, embedded FPGAs have

shown extremely high attack resistance. Augmenting this scheme with latch-based logic

locking could provide a way to maintain performance in the timing critical paths of the

design while maximizing security elsewhere.

Finally, this project has explored just one potential dimension for atypical logic lock-

ing strategies. Unconventional latch-timing or clocking schemes, closely related to this

technique, could significantly increase the complexity of attack modeling. Typical de-

sign strategies make use of abstractions to reduce complexity. While these abstractions

make design cheaper, perhaps breaking some may enable a new generation of locking

schemes. One such example is in the static timing of combinational logic. Industry stan-

dard tools only consider worst-case scenarios when timing a design. However, under

different input transitions, signal arrival time exhibit different delays. Capturing these

differences could be utilized in a locking scheme that, like latch-based logic locking,

modulates the launch and capture points of timing paths. Perhaps such a scheme would

exacerbate the modeling complexity, forcing the attacker to rely on less efficient attack

methods.

Ultimately, latch-based logic locking represents a new dimension in which to lock

a circuit. Since we have demonstrated promising initial results, we believe this and

strategies like it are a path forward to providing low overhead security during the IC

manufacturing process.

Chapter 5

Quantifying the Efficacy of Locking

Methods

5.1 Locking Metrics

A pervasive problem in the logic locking community is the lack of metrics that ade-

quately capture the intended notions of security. Additionally, the metrics that do exist

are only evaluated on trivially small circuits or rely on closed-form equations that corre-

spond to simple structured locking schemes. In this chapter, we describe the limitations

of existing metrics. We then define two metrics that capture intuitive definitions of secu-

rity for the netlist and oracle attack models and subsequently relate the metric evaluation

problem to the well-established field of model counting. Finally, we demonstrate three

applications of these metrics, revealing critical information about existing lock schemes.

5.1.1 Existing Security Metrics

The run-time of the miter-based attack has been a ubiquitous metric since the attack’s

debut. The typical demonstration sweeps the number of key bits and produces a (hope-

fully) exponentially scaling attack time. While resistance to this attack is essential if the

84

CHAPTER 5. QUANTIFYING THE EFFICACY OF LOCKING METHODS 85

Figure 5.1: Miter truth tables and corresponding locking metrics for two locked circuits.

oracle attack model is considered, this run-time may give an over-optimistic notion of

security. Importantly, while running the attack to completion may be infeasible, the intermedi-

ate results may produce keys that are functionally close to the original design. In this case, the

adversary need not complete the attack, but rather run until the keys produced exhibit

low enough error rates.

Another previously proposed metric for assessing a lock quality in terms of error

rates is corruptibility [83], defined as

Cor(C, Cl) ≡ Px∈X,k∈K[C(x) 6= Cl(x, k)] (5.1)

This metric captures the likelihood across all keys and inputs that a locked circuit is

incorrect, essentially the total amount of inaccuracy in a locked circuit. However, it gives

no notion of the distribution of incorrect values. An example of why this is important

is depicted in Fig. 5.1. Here, a circuit is locked with two different schemes that produce

locked circuits CL0 and CL1. The resulting miter truth tables, C 6= CL0 and C 6= CL1

are shown. Both locked circuits exhibit the same corruptibility, however, the quality of

the locking schemes is clearly different. For half of the possible keys, CL0 is completely

correct whereas CL1 has incorrect values for every key other than the correct one. This

motivates the development of a metric that can capture this disparity.

CHAPTER 5. QUANTIFYING THE EFFICACY OF LOCKING METHODS 86

5.1.2 Key Corruption

Our first proposed metric, key corruption, is meant to capture a more precise notion of

resistance to oracle-based attacks beyond run-time. Key corruption is the portion of the

input space that is mapped to incorrect outputs for a given key. Specifically, it is defined

as

KeyCor(C, Cl, k) ≡ Px∈X[C(x) 6= Cl(x, k)] (5.2)

This metric directly corresponds to the approximate key recovery outlined in section

2.2.1. This is useful to the designer in assessing the accuracy of intermediate keys pro-

duced by an attack and also as a kernel in computing more complex metrics.

To evaluate the key corruption, we build a miter circuit, M ≡ C(x) 6= Cl(x, kattack).

Counting the number of input values that satisfy this miter and normalizing by the size

of the circuit’s input space will determine the key corruption. Typical circuits can have

input widths upwards of 64 bits, thus it is necessary to utilize approximation techniques

as outlined in section 5.1.4. The error of the estimated count of satisfying solutions can

be tied to the bounds of the approximation method.

Depending on the circuit’s application, the targeted key corruption definition can be

adapted. The above definition counts an input value as incorrect if it has at least one

output bit incorrect. Some applications may require several output bits to be incorrect. In

this case, key corruption could be defined as Px∈X[(∑m
i=1 C(x)i ⊕ Cl(x, k)i) ≥ t], where t

is the required number of incorrect bits and C(x)i is the ith bit of C(x). Other definitions

could weight certain bits more heavily, potentially useful in ensuring significant error in

arithmetic operations.

5.1.3 Minimum Corruption

While key corruption can assess the progress of oracle-based attacks, under a netlist

attack model, a more useful metric to a designer is the probability that a sampled key

meets a certain corruption threshold, ε ∈ [0, 1]. This threshold can be determined by the

CHAPTER 5. QUANTIFYING THE EFFICACY OF LOCKING METHODS 87

application. For example, disabling a cryptographic function may only require a small

portion of the inputs to be corrupted whereas a neural network accelerator may need

significantly more. We capture this notion using minimum corruption, defined as

MinCor(C, Cl, k, ε) ≡ KeyCor(k) ≥ ε (5.3)

We then can define a probability of selecting a key that meets this minimum corruption

value, pmc.

pmc(C, Cl, ε) ≡ Pk∈K[MinCor(C, Cl, k, ε)] (5.4)

For a given key, minimum corruption discounts the corruption beyond the threshold.

Again considering Fig. 5.1, we see that pmc captures the difference between the two

locking scenarios. The designer can determine a suitable threshold, then can scale the

amount of locking until the probability of meeting the corruption threshold is acceptable.

Again, the techniques discussed in section 5.1.4 can be used to efficiently approximate

this metric. To obtain a pmc estimate, we take a set of uniform random samples from the

key space. For each of these sampled keys, we estimate the key corruption and compare

it to the threshold to determine if it meets the minimum corruption. The fraction of key

samples for which key corruption is greater than the threshold computes pmc.

5.1.4 Estimating Metrics

In general, the metrics we propose will be used to evaluate the amount of discrepancy

between the original and locked circuits under various scenarios. Calculation of these

metrics directly maps to model counting (#SAT). The evaluation of metrics can be en-

coded as a Boolean formula wherein the number of satisfying solutions over the total

space gives the value. Due to the high dimensionality of the problem, exact solutions

can only be obtained for a limited key and input width. To understand how locks scale,

we resort to approximation methods. Luckily, approximate model counting is a widely

studied area with many efficient, open-source solvers.

CHAPTER 5. QUANTIFYING THE EFFICACY OF LOCKING METHODS 88

We use the solver ApproxMC [84, 85] as a kernel in estimating our proposed metrics.

This solver uses hash functions to split a circuit’s input space into small, countable

partitions of roughly equal size. By counting a single partition and multiplying by

the number of partitions, the tool can give an estimation of the number of solutions

to a formula. Repeating this process allows increased confidence in the estimation.

Conveniently, ApproxMC has a rigorous formulation of probably approximately correct

(PAC) bounds. The relation between the real count, N, and the estimated count, Nest, is

parameterized by δ ∈ (0, 1] and εa > 0. Specifically, the relationship is P[N/(1 + εa) ≤

Nest ≤ N(1 + εa)] ≥ 1− δ.

5.2 Application of Metrics

The metrics proposed in the previous section can be used to evaluate the efficacy of lock-

ing techniques under the netlist and oracle attack models. We demonstrate this process

using representative locks from the classes described in section 2.2.2. We implement

the locks using our open-source python library circuitgraph [86], which allows for easy

manipulation of netlists. To allow for reproducibility, we share our lock and metric im-

plementations in our repository1. From the insertion-based lock types, we implement

XOR, LUT, and MUX locking [6, 8, 13]. From the point-function based locks, we im-

plement SFLL-Flex [54]. Finally, from the densely-interconnected locks, we implement

Full-Lock [24] and reuse logic enhanced Banyan locking from section 3.2.4. We also run

the relaxed model version of Full-Lock that uses MUXs. Our miter-based attack imple-

mentation uses the SAT solver CaDiCaL [57]. For the locking techniques that produce

cyclic circuits, we use CycSAT [21] to form acyclic key conditions so that the attack ter-

minates correctly. Each of these techniques is used to lock circuits from the ISCAS 85

combinational benchmark set [56].
1https://github.com/circuitgraph/logic_locking

https://github.com/circuitgraph/logic_locking

CHAPTER 5. QUANTIFYING THE EFFICACY OF LOCKING METHODS 89

0 1000 2000 3000 4000 5000
sample size

0.4

0.6

0.8

1.0

p m
c(0

.2
5)

Circuit = c432

Lock Type
lut
full
xor
mux
lebl

Figure 5.2: Approximate pmc of benchmark versus #(keysamples).

5.2.1 Minimum Corruption under Netlist Attack Model

As discussed in section 5.1.3, the probability of meeting minimum corruption provides

the designer with a good understanding of how likely it is for an adversary to select a

key that functions close to the correct design. In Fig. 5.2, we show an experimental run

to determine an appropriate number of key samples to use for the estimation. As seen

from the trend for our set of locked circuits, the value tends to converge around 1000

samples. We use this value for the remainder of our pmc estimates.

Assuming that the adversary has no a priori knowledge of the key bits, we evaluate

pmc for the selected locking techniques. We lock four circuits from our benchmark set

with roughly 128 bits of locking. (The widths are not exact as the densely-interconnected

techniques scale in unequal increments.) Using our estimation process, we uniformly

sample keys and evaluate pmc, showing the results in Fig. 5.3. Several interesting con-

clusions can be drawn from this data. First, we see that XOR-locking shows the highest

pmc value. At this key width, all keys sampled are corrupted for all inputs on at least

one output. This shows the significant amount of corruption obtained from the inver-

sion of random nets in the circuit. Considering the other techniques, we see that they

all, except SFLL-Flex, have a high probability of meeting a 0.2 ε value. Generally, these

probabilities decrease with ε at rates depending on the circuit and lock type.

We can also integrate more complex attacks into this analysis. For example, as dis-

CHAPTER 5. QUANTIFYING THE EFFICACY OF LOCKING METHODS 90

0.0

0.2

0.4

0.6

0.8

1.0

p m
c(ε

)

Circuit = c2670 Circuit = c3540

xor mux lut full lebl sfll
Lock Type

0.0

0.2

0.4

0.6

0.8

1.0

p m
c(ε

)

Circuit = c5315

xor mux lut full lebl sfll
Lock Type

Circuit = c7552

ε
0.2
0.4
0.6
0.8
1.0

Figure 5.3: Approximate pmc of benchmark circuits locked with selected techniques. w ≈
128 and #(keysamples) = 1000

cussed in [40], an adversary can analyze the local structure of a circuit locked with

XOR-locking and determine a likely key with reported accuracy up to 95%. The effect

of this bias in the key space can be assessed with our minimum corruption metric. We

assume that the designer requires at least 10% of the input space to be corrupted. As the

analysis of each locked gate is local, we assume that each key bit is independently drawn

from a Bernoulli distribution with the probability parameter, p, set to the accuracy of

the model, P[ki = ki
c] ∼ Bernoulli(p). We sweep p from 0.5 (i.e., no information) to 0.95,

the highest reported accuracy of the models. For each accuracy level, we determine the

minimum corruption for a set of circuits with varying amounts of XOR-locking. As seen

from the results in Fig. 5.4, even at p = 0.95 and 96 bits of locking, the value of pmc is

very high. This shows that, while the local-structure analysis for likely key can signifi-

cantly narrow the distribution of the correct keys, it does not necessarily translate into

a circuit that is functionally close to the original, largely due to the high corruption of

CHAPTER 5. QUANTIFYING THE EFFICACY OF LOCKING METHODS 91

32 64 96 128
Key Width

0.0

0.2

0.4

0.6

0.8

1.0

p m
c(0

.1
) P[k i = k ic]

0.5
0.75
0.9
0.95

Figure 5.4: Approximate pmc of c3540 locked with XOR-locking, sweeping key width w
and P[ki = ki

c] with #(keysamples) = 1000.

parity gates. If the attacker’s goal is to produce a functionally correct or approximately

correct circuit with the netlist alone, this attack scheme alone is unlikely to succeed.

5.2.2 Incremental Key Corruption of Oracle Attack Model

The de facto metric evaluated for oracle-based attacks is attack termination time. In this

dimension, both the point function-based and densely-interconnected techniques exhibit

very strong attack resistance. However, these attack times mean little if unaccompanied

by a notion of corruption for the remaining keys. Typically, when executing oracle-

based attacks, a plausible key is produced in each iteration. Solving for additional keys

is costly, likely motivating the attacker to simply use this incremental key. Evaluating

the key corruption of the key from the attack can be used to indicate the progress of the

attack.

In Fig. 5.5 we demonstrate the use of key corruption to augment the miter-based

attack for our selected locking techniques. We lock the circuits with roughly 448 key bits

and run the attack with a timeout of 1 hour, evaluating the corruption at each iteration.

The data is shown on a log plot where key corruption values of zero are mapped to

10−15. The results show several critical insights. First, we see that in most cases XOR and

CHAPTER 5. QUANTIFYING THE EFFICACY OF LOCKING METHODS 92

10−12

10−9

10−6

10−3

100

Ke
yC

or

Circuit = c2670 Circuit = c3540

101 102 103
SAT Time (s)

10−12

10−9

10−6

10−3

100

Ke
yC

or

Circuit = c5315

101 102 103
SAT Time (s)

Circuit = c7552

Lock Ty e
full-mux
full
sfll
xor
mux
lut
lebl
Termination
False
True

Figure 5.5: Key corruption for incremental keys returned from miter-based attack, w ≈
448. The attacks are run with a timeout of 1 hour, indicated by the dashed red line. The
zero value of key corruption is mapped to 10−14

LUT-locking terminate in under 100 seconds. At such large key widths, it is clear that

these techniques do not hold up under this attack model. MUX-locking takes about an

order of magnitude longer to terminate. Unexpectedly, we see termination in one of the

SFLL runs (c7552), likely due to the structure of the locking mechanism biasing the SAT

solver to pick the corrupted inputs, thus immediately breaking the lock. However, even

when SFLL isn’t broken, the key corruption remains too low to likely have a significant

effect.

The densely-interconnected techniques Full-Lock and logic-enchanced Banyan lock-

ing (LEBL) generally show the best results, with the highest corruption levels at the

timeout, but with some concerning caveats. We do see one run terminating under an

hour for Full-lock. Furthermore, the trends in the key corruption for the relaxed model,

Full-Lock MUX, and LEBL reveal an interesting pattern undetectable by just consider-

CHAPTER 5. QUANTIFYING THE EFFICACY OF LOCKING METHODS 93

ing the attack termination time. There exist intermediate results that are functionally

correct keys. Full-Lock MUX produces many such keys whereas logic-enhanced Banyan

locking produces only a few functionally correct keys out of ∼ 100 intermediate results.

In both cases, this represents a major security vulnerability. An astute attacker could

thoroughly test the intermediate key results and confirm that these keys have arbitrarily

low corruption with the oracle. Under the oracle attack model, even at these extremely high

key widths, none of the tested combinational locking techniques provides a secure solution for all

circuits.

5.2.3 Overhead-Security Trade-Offs

Overhead in the typical VLSI metrics, delay, area, and power is a critical concern of logic

locking. The application of the IC may enforce limitations on the acceptable overhead.

Even if this is not the case, too much overhead may motivate the use of commercial

solutions such as FPGAs or microprocessors, rather than design a locked ASIC. We

analyze our selected locking techniques across these metrics to show their scaling with

the number of key bits.

Using Cadence Genus along with a commercial standard cell library in a 28nm pro-

cess, we obtain overheads as follows. The maximum frequency of the design is found

via iterative logic synthesis runs. This result serves as the baseline implementation to

which various amounts of locking are applied and to which the results are normalized.

Each design is locked with the different techniques, varying key widths such that they

produce roughly the same overhead range. We combine power, area, and delay into a

single overhead value using:

Overhead ≡[(powerlocked/powerorig)×

(delaylocked/delayorig)×

(arealocked/areaorig)]− 1
(5.5)

CHAPTER 5. QUANTIFYING THE EFFICACY OF LOCKING METHODS 94

0.00.20.40.60.81.0
pmc(0.5)

0.0

0.2

0.4

0.6

0.8

1.0

Ov
er

he
ad

Circuit = c5315

Lock Type
full
sfll
xor
mux
lut
lebl

Figure 5.6: Overhead vs. pmc Pareto fronts for selected locking techniques.

Coupling this data with an attack model and corresponding security metric, we can

visualize the overhead-corruption trade-off.

Fig. 5.6 displays the trade-off under the netlist attack model. We use pmc at ε = 0.5

plotted against the overhead. For each locking scheme, we draw the Pareto front. By

a significant margin, the best performing locking scheme under these criteria is XOR-

locking. With overhead less than 20%, it shows a pmc(0.5) ≈ 1.

The oracle attack model results are plotted in Fig. 5.7. To handle the oscillations,

we use the average KeyCor of the keys produced in the last 100 seconds of the attack.

Full-Lock shows the best result, closely followed by MUX-locking and LEBL. The other

techniques appear as vertical lines since they terminated for all runs. Even though in

Fig. 5.5, MUX-Locking has a lower per-bit key corruption, its low overhead makes it

comparable to Full-Lock and LEBL.

CHAPTER 5. QUANTIFYING THE EFFICACY OF LOCKING METHODS 95

0.00.20.40.60.81.0
KeyCor

0.5

1.0

1.5

2.0

2.5

3.0
Ov

er
he
ad

Circuit = c5315

Lock Type
full
sfll
xor
mux
lut
lebl

Figure 5.7: Overhead vs. key corruption Pareto fronts for selected locking techniques.
The zero value of key corruption is mapped to 10−19

5.3 Discussion

The proposed metrics capture a more nuanced picture of a locking scheme than pre-

vious evaluation methods. By tailoring our metrics to specific scenarios, we can better

understand what the adversary will be able to achieve along with the overhead costs.

Our metrics provide a framework that can allow more detailed attack comparisons, as

demonstrated with our analysis of XOR-locking under a structural analysis attack.

Notably, our results capture the disparity between the netlist and oracle attack mod-

els. Under the netlist attacks, it is reasonable to expect the sampled keys will exhibit

significant corruption. However, once an oracle is available, the corruption values drop

by many orders of magnitude, even when substantially scaling the allowed overheads.

This suggests that finding ways to prevent oracle access should be a topmost priority for the

logic locking community.

Several interesting directions exist for future work. We have shown key corruption

to be a useful metric. Its counterpart, input corruption, may also provide important

information to a lock designer. For example, if most keys produce the correct answer

CHAPTER 5. QUANTIFYING THE EFFICACY OF LOCKING METHODS 96

for an input, a simple voting scheme between randomly selected keys could produce a

circuit that closely emulates the correct functionality. Input corruption, along with other

metrics, will likely give a more complete notion of security, especially when considering

the diverse array of possible attack methods.

Utilizing model counting techniques, as we have done here, may provide a means to

estimate other metrics in a scalable fashion that also provides bounds useful for assess-

ing risk. We have also shown that our proposed metrics can be evaluated for circuits

with several thousands of gates, within the range of the logic cone sizes of many indus-

trial circuits. Understanding the limits of these approximation techniques, specifically

their applicability to other metrics and scaling with circuit size, is a promising research

direction.

Finally, because the vast majority of locking techniques simply modify the next state

logic, we have evaluated these metrics in a combinational setting. As more sequential

locking techniques are developed, such as our latch-based logic locking presented in the

previous chapter, extending the metrics to capture the sequential setting will be valuable.

This can be achieved by unrolling the circuits as is done for sequential ATPG methods.

Chapter 6

Conclusion and Future Work

Logic locking techniques seek to provide maximal security while maintaining low over-

head in the circuit area, power, delay, and testability. This thesis has taken several

important steps towards realizing this goal, but there remain many open avenues for

improvement. Examples include parallelized attack algorithms that integrate different

types of analysis, structural attacks that match locked circuits or portions of them to

known circuits, further exploration of circuit properties that are typically abstracted

away for use in security, and many others. In the following sections, we describe two

such lines of research that we believe are critical to the field and promising directions

for improvements. Finally, we conclude with a summary of the thesis contributions.

6.1 Improving and Impeding Oracle-Based Attacks

Naturally on both sides of logic locking, designer and adversary, there is much outstand-

ing work. A common thread throughout this thesis has been the power of the oracle-

based attack model. As we discuss in chapter 3, an unlocked circuit is a powerful tool to

decipher the keys of a circuit. And while our latch-based logic locking technique shows

exponential resistance to the termination of known oracle-based attacks, as we saw in

chapter 5, this may not imply that the technique is secure. For latch-based logic locking

97

CHAPTER 6. CONCLUSION AND FUTURE WORK 98

but also locking techniques in general, more analysis must be conducted to verify the

intermediate keys produced by the attack are sufficiently incorrect. In conjunction, fur-

ther exploration of which specific logic structures are most resistant to the miter-based

attacks while maintaining low overhead and high corruption is needed. Towards that

end, a parameter exploration of known hard structures may produce an answer.

Furthermore, we have demonstrated key bit predictions greater than chance when

applying classifiers to our latch-based technique. While on its own, this bias is not

great enough to produce a working circuit, a potential use is in an oracle-based attack.

Predictions about the correct portion of the key space may be useful in selecting inputs

to test, potentially ruling out incorrect keys more quickly. Beyond the incorporation

of these predictions, oracle-based attacks can likely be sped up using parallelization

techniques and other algorithms beyond formal methods such as probabilistic methods.

A promising approach to thwart this oracle-attack model is the development of meth-

ods to prohibit access to the circuit. In certain contexts, this can be solved with physical

security measures, such as ensuring the IC is monitored at all times. In other scenar-

ios, like cloud computing, strict regulation of the IC interfaces may impede an adversary.

However, in some commercial applications this may be impractical. Here, removing con-

sumer access to test infrastructure and perhaps even online monitoring methods may be

required. Design-for-security strategies, similar to the notion of design-for-testability,

may provide system level strategies to restricting oracle-based attacks.

6.2 Security-Aware Logic Synthesis

In general, existing locking solutions have several issues. Described in our work here and

that of other authors, many locking schemes rely on the functionality of specific logic

structures. In such cases, it is often straightforward to find and remove the modifications

[87, 88]. Additionally, many techniques do not significantly modify the structure of the

original circuit, which can trivialize the process of identifying the circuit (e.g., arithmetic

CHAPTER 6. CONCLUSION AND FUTURE WORK 99

Figure 6.1: Space of possible logic lockings.

circuits). Furthermore, attacks exist that can analyze local structure and predict keys [40].

These issues extend to deployment as well. Locking schemes are not tailored to a given

circuit, resulting in large variations in attack resistance and overhead. In applying the

locks, existing techniques implicitly rely on a circuit designer to insert the locking. For

critical applications, evaluating the security vs. overhead tradeoffs requires a security

expert or an automated process that has been proven across a wide variety of circuits.

One promising locking mechanism is the use of embedded field-programmable ar-

rays (eFPGAs) and similar structures [26, 23, 87]. These methods of redacting a portion

of the design and replacing it with an eFPGA fabric or logical equivalent have shown

resistance to existing attacks, but often at a significant overhead cost. The eFPGAs pro-

vide densely interconnected programmable bits that enable the implementation of many

diverse functionalities within a locked circuit. This leaves the adversary with a massive

space of designs to decipher. Unfortunately, this security comes at a cost, since embed-

ding an FPGA into a circuit will tend to increase area, power and worsen critical paths.

Steps have been taken to reduce the overheads by hard-coding portions of the eFPGA

[26]. While these methods along with an astute designer can mitigate this overhead cost,

the eFPGA insertion relies on cumbersome human intervention to do it effectively.

We seek a locking method that provides security comparable to the eFPGA based

methods but without the prohibitively high overheads. Moreover, this method should

CHAPTER 6. CONCLUSION AND FUTURE WORK 100

Figure 6.2: Example programmable fabric construction.

allow for straightforward deployment, circuit-independent security, and global manipu-

lation of the circuit. Towards this end, we are proposing a novel strategy for the develop-

ment of a locking technique. Consider Fig. 6.1, which depicts how the eFPGA method

corresponds to a relatively small subset of the overall space of all possible lockings of

a circuit. The structure of the method limits what portion of the locking space can be

explored by the designer. Adding the ability to hardcode portions of the eFPGA allows

a larger space of lockings to be considered, thereby incorporating solutions with poten-

tially better security-overhead tradeoffs and even other locking types. Unfortunately, the

size of this space limits the effectiveness of a human-driven exploration. Our strategy is

to enable algorithmic exploration of this extended space.

We propose a locking flow that begins with a fully programmable fabric – an ex-

ample is depicted in Fig. 6.2. Conceptually similar to an eFPGA, the fabric is able to

implement any circuit within a certain size and resistant to deobfuscation. Unlike an

eFPGA, we choose a fabric that has no feedback loops since they are problematic for

logic synthesis, and our starting point does not strongly impact the quality of the final

mapped circuits. The circuit to be locked is programmed on the programmable circuit

using a set of configuration bits, analogous to the configuration bits in an FPGA, but

also to the key bits for locking techniques in general. Using this fabric structure and

the configuration bits, we optimize the circuit, hardcoding portions of the configuration

bits. The hardcoded bits allow logic synthesis to be applied to reduce overheads and

CHAPTER 6. CONCLUSION AND FUTURE WORK 101

0 20 40 60 80 100
Iteration

0

20

40

60

80

100

co
st

 fu
nc

tio
n

Figure 6.3: Initial optimization results.

superfluous gates.

The optimization is driven by newly developed security metrics, such as those de-

veloped in chapter 5 or available attacks that characterize a locked circuit’s resistance to

a given attack model. We start with the fabric and no hardcoded bits, therefore just as

secure as an unprogrammed FPGA. Then, using a security metric, we perform optimiza-

tion to select which logic values can be hardcoded, and apply logic synthesis to map the

partially hardcoded fabric to a logic cell-based circuit that maintains sufficient security

but provides far superior performance, power and area.

Incorporating these measures into the synthesis flow will allow optimization meth-

ods to build effective locking schemes. A security-based logic synthesis flow can explore

the vast space of possible lockings for a specific circuit. Whereas previous solutions

have been limited by human-scale manipulations, we envision an extensible synthesis

framework in which cloud-based scaling could run thousands of security-constrained

optimizations in parallel and utilize machine learning based search for the best designs.

We have created a small proof of concept example to demonstrate the efficacy of this

approach that begins with selection of a structure for the programmable fabric (Fig. 6.2).

For this demonstration example we utilize a genetic algorithm to select the hardcoded

configuration bits based on a cost function that captures the overhead of the design

CHAPTER 6. CONCLUSION AND FUTURE WORK 102

compared to the original circuit. The optimization is constrained by our minimum cor-

ruption security metric that ensures a very low probability of randomly selecting a key

that has low corruption. Specifically, we set pmc(0.1) = 0.95. The algorithm minimizes

the overhead while respecting this metric. Fig. 3 demonstrates its progress on a small

logic circuit example. As the iteration count increases, portions of the design are hard-

coded that lead to improved overheads, along with maintained security.

This is a promising direction forward for logic locking and there are many outstand-

ing problems to tackle, including the following:

• Development of a cloud-based parallelizable logic synthesis

• Creation of additional security metrics that more diverse attack schemes

• Exploration of optimization techniques, pulling from the wide range of machine

learning algorithms

• Analysis of relationships between number of key bits, positioning of key bits to

determine security and overhead impact

• Interfacing with black-hat adversaries to analyze attack resistance versus optimiza-

tion time and compute power

6.3 Conclusion

Previously proposed locking schemes do not provide adequate security while maintain-

ing low overheads. With each new lock, new attacks have been developed that can reveal

the circuit’s correct key under various attack conditions. To resist such attacks, lock de-

signers have sacrificed greater overheads. In doing so, many schemes push the cost of

locking a circuit to impractical levels for some applications.

In the preceding chapters, we have described novel attacks on existing families of

locking techniques as well as corresponding fixes. While these patched locking tech-

CHAPTER 6. CONCLUSION AND FUTURE WORK 103

niques solve the immediate threats, they are not satisfying locking solutions, continuing

the existing trend in the field of ad hoc security mechanisms, developed in response to

specific attacks.

To break this trend and produce a low-overhead locking solution, we have developed

latch-based logic locking that introduces a new paradigm in manipulating circuits. Key-

ing portions of the design that are not in the timing critical paths, specifically the clock

tree, enables large amounts of interdependent key bits and decoy logic to be inserted

without the large delays associated with other techniques. Moreover, latch-based lock-

ing has been shown to be resistant to existing attack schemes as well as newly developed

approaches.

Beyond the development of this technique, we have taken steps towards better quan-

tization of existing attack models. For the two prevalent attack models, we have devel-

oped metrics that capture notions of how effective a given technique is. This analysis

has revealed interesting results under both attack models, suggesting the effectiveness of

the early XOR-based techniques under the netlist attack model, and the need to analyze

intermediate solutions in the SAT-based attacks.

Overall, this thesis strives to mitigate the threat of IP theft in manufacturing. We

have explored several new directions in this domain, demonstrating existing weaknesses,

showing promising results with a new locking scheme, and building a framework for

better quantification of security. While many important challenges remain open, the

work here is a step forward, that in turn will enable additional advancement towards

this ultimate goal.

Bibliography

[1] George H Mealy. A method for synthesizing sequential circuits. The Bell System
Technical Journal, 34(5):1045–1079, 1955. 5

[2] D. Cheng, Y. Shi, B. Gwee, K. Toh, and T. Lin. A hierarchical multiclassifier system
for automated analysis of delayered ic images. IEEE Intelligent Systems, 34(2):36–43,
2019. 6

[3] Ujjwal Guin, Ziqi Zhou, and Adit Singh. A novel design-for-security (DFS) archi-
tecture to prevent unauthorized IC overproduction. In Proceedings of the IEEE VLSI
Test Symposium, 2017. 7

[4] Farinaz Koushanfar, Gang Qu, and Miodrag Potkonjak. Intellectual property me-
tering. In International Workshop on Information Hiding, pages 81–95. Springer, 2001.
7

[5] M. Rostami, F. Koushanfar, and R. Karri. A primer on hardware security: Models,
methods, and metrics. Proceedings of the IEEE, 102(8):1283–1295, 2014. 7

[6] F. Koushanfar J. A. Roy and I. L. Markov. EPIC: Ending Piracy of Integrated Circuits.
2008 Design, Automation and Test in Europe, 2008. 7, 88

[7] Kyle Juretus and Ioannis Savidis. Increasing the sat attack resiliency of in-cone logic
locking. In 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pages
1–5. IEEE, 2019. 7

[8] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S. Rose, Youngok Pino,
Ozgur Sinanoglu, and Ramesh Karri. Fault Analysis-Based Logic Encryption. IEEE
Transactions on Computers, 64(2):410–424, 2015. 7, 10, 88

[9] M. N. Mneimneh and K. A. Sakallah. Principles of sequential-equivalence verifica-
tion. IEEE Design Test of Computers, 22(3):248–257, 2005. 8

104

BIBLIOGRAPHY 105

[10] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. Model
Checking and the State Explosion Problem, pages 1–30. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012. 8

[11] M. T. Rahman, S. Tajik, M. S. Rahman, M. Tehranipoor, and N. Asadizan-
jani. The key is left under the mat: On the inappropriate security assump-
tion of logic locking schemes. Cryptology ePrint Archive, Report 2019/719, 2019,
https://eprint.iacr.org/2019/719, to appear at HOST 2020. 9

[12] Benjamin Tan, Ramesh Karri, Nimisha Limaye, Abhrajit Sengupta, Ozgur
Sinanoglu, Md Moshiur Rahman, Swarup Bhunia, Danielle Duvalsaint, R. D., Blan-
ton, Amin Rezaei, Yuanqi Shen, Hai Zhou, Leon Li, Alex Orailoglu, Zhaokun
Han, Austin Benedetti, Luciano Brignone, Muhammad Yasin, Jeyavijayan Rajen-
dran, Michael Zuzak, Ankur Srivastava, Ujjwal Guin, Chandan Karfa, Kanad Basu,
Vivek V. Menon, Matthew French, Peilin Song, Franco Stellari, Gi-Joon Nam, Peter
Gadfort, Alric Althoff, Joseph Tostenrude, Saverio Fazzari, Eric Breckenfeld, and
Kenneth Plaks. Benchmarking at the frontier of hardware security: Lessons from
logic locking, 2020. 9

[13] H. Mardani Kamali, K. Zamiri Azar, K. Gaj, H. Homayoun, and A. Sasan. Lut-lock:
A novel lut-based logic obfuscation for fpga-bitstream and asic-hardware protec-
tion. In 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages
405–410, 2018. 10, 88

[14] Pramod Subramanyan, Sayak Ray, and Sharad Malik. Evaluating the security of
logic encryption algorithms. Proceedings of the 2015 IEEE International Symposium on
Hardware-Oriented Security and Trust, HOST 2015, pages 137–143, 2015. 10, 15

[15] Yang Xie and Ankur Srivastava. Anti-SAT: Mitigating SAT Attack on Logic Lock-
ing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
38(2):199–207, 2 2019. 10

[16] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan J V Rajendran, and Ozgur
Sinanoglu. SARLock: SAT attack resistant logic locking. Proceedings of the 2016 IEEE
International Symposium on Hardware Oriented Security and Trust, HOST 2016, pages
236–241, 2016. 10

[17] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan Ra-
jendran. Security Analysis of Anti-SAT. In Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2017. 10

BIBLIOGRAPHY 106

[18] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier Jin.
Cyclic Obfuscation for Creating SAT-Unresolvable Circuits. Proceedings of the on
Great Lakes Symposium on VLSI, pages 173–178, 2017. 11

[19] Yang Xie and Ankur Srivastava. Delay Locking: Security Enhancement of Logic
Locking against IC Counterfeiting and Overproduction. Design Automation Confer-
ence (DAC), 2017. 11

[20] Abhishek Chakraborty, Yuntao Liu, and Ankur Srivastava. TimingSAT. In Proceed-
ings of the International Conference on Computer-Aided Design, 2018. 11

[21] Hai Zhou, Ruifeng Jiang, and Shuyu Kong. CycSAT: SAT-based attack on cyclic
logic encryptions. In IEEE/ACM International Conference on Computer-Aided Design,
Digest of Technical Papers, ICCAD, 2017. 11, 34, 45, 88, 113

[22] Danielle Duvalsaint, Zeye Liu, Ananya Ravikumar, and Ronald D. Blanton. Char-
acterization of Locked Sequential Circuits via ATPG. In 2019 IEEE International Test
Conference in Asia (ITC-Asia), pages 97–102. IEEE, 9 2019. 11, 14

[23] M. M. Shihab, J. Tian, G. R. Reddy, B. Hu, W. Swartz, B. Carrion Schaefer, C. Sechen,
and Y. Makris. Design obfuscation through selective post-fabrication transistor-
level programming. In 2019 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 528–533, 2019. 11, 99

[24] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, and Avesta Sasan.
Full-Lock. pages 1–6. Association for Computing Machinery (ACM), 2019. 11, 33,
88

[25] Kaveh Shamsi, Meng Li, David Z Pan, and Yier Jin. Cross-Lock: Dense Layout-Level
Interconnect Locking using Cross-bar Architectures. 2018. 11

[26] Prashanth Mohan, Oguz Atli, Joseph Sweeney, Onur Kibar, Lawrence Pileggi, and
Ken Mai. Hardware redaction via designer-directed fine-grained soft efpga inser-
tion. In Design, Automation and Test in Europe (DATE-21). IEEE, 2021. 11, 99

[27] Rajat Subhra Chakraborty and Swarup Bhunia. HARPOON: An obfuscation-based
SoC design methodology for hardware protection. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 28(10):1493–1502, 2009. 11

[28] Travis Meade, Zheng Zhao, Shaojie Zhang, David Pan, and Yier Jin. Revisit Sequen-
tial Logic Obfuscation : Attacks and Defenses. In IEEE International Symposium on
Circuits and Systems (ISCAS), 2017. 11

BIBLIOGRAPHY 107

[29] Mohamed El Massad, Siddharth Garg, and Mahesh Tripunitara. Reverse engineer-
ing camouflaged sequential circuits without scan access. In IEEE/ACM International
Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD, 2017. 12, 18,
63

[30] Kaveh Shamsi, Meng Li, David Z. Pan, and Yier Jin. KC2: Key-Condition Crunching
for Fast Sequential Circuit Deobfuscation. In Proceedings of the 2019 Design, Automa-
tion and Test in Europe Conference and Exhibition, DATE 2019, pages 534–539. Institute
of Electrical and Electronics Engineers Inc., 5 2019. 12, 18, 63

[31] I. Kuon and J. Rose. Measuring the gap between fpgas and asics. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 26(2):203–215, 2007. 12

[32] Kaushik Vaidyanathan, Bishnu P Das, Ekin Sumbul, Renzhi Liu, and Larry Pileggi.
Building trusted ics using split fabrication. In 2014 IEEE international symposium on
hardware-oriented security and trust (HOST), pages 1–6. IEEE, 2014. 12

[33] S. Pagliarini, J. Sweeney, K. Mai, S. Blanton, S. Mitra, and L. Pileggi. Split-chip
design to prevent ip reverse engineering. IEEE Design Test, pages 1–1, 2020. 13

[34] Joseph Sweeney, Samuel Pagliarini, and Lawrence Pileggi. Securing digital systems
via split-chip obfuscation. GOMACTech Technical Program, 2019. 13

[35] B. Erbagci, C. Erbagci, N. E. C. Akkaya, and K. Mai. A secure camouflaged thresh-
old voltage defined logic family. In 2016 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 229–235, 2016. 13

[36] R. P. Cocchi, J. P. Baukus, L. W. Chow, and B. J. Wang. Circuit camouflage integra-
tion for hardware ip protection. In 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–5, 2014. 13

[37] A. Vijayakumar, V. C. Patil, D. E. Holcomb, C. Paar, and S. Kundu. Physical design
obfuscation of hardware: A comprehensive investigation of device and logic-level
techniques. IEEE Transactions on Information Forensics and Security, 12(1):64–77, 2017.
13

[38] Farinaz Koushanfar. Hardware Metering: A Survey, pages 103–122. Springer New
York, New York, NY, 2012. 13

[39] Ioannis Karageorgos, Mehmet M Isgenc, Samuel Pagliarini, and Larry Pileggi.
Chip-to-chip authentication method based on sram puf and public key cryptog-
raphy. Journal of Hardware and Systems Security, 3(4):382–396, 2019. 13

BIBLIOGRAPHY 108

[40] P. Chakraborty, J. Cruz, and S. Bhunia. Sail: Machine learning guided structural
analysis attack on hardware obfuscation. In 2018 Asian Hardware Oriented Security
and Trust Symposium (AsianHOST), pages 56–61, 2018. 14, 90, 99

[41] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. Security analysis of logic obfus-
cation. In DAC Design Automation Conference 2012, pages 83–89, 2012. 14

[42] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In TACAS ’99: Proceedings of the 5th International
Conference on Tools and Algorithms for Construction and Analysis of Systems, pages
193–207, London, UK, 1999. Springer-Verlag. 15

[43] Franjo Ivančić, Zijiang Yang, Malay K. Ganai, Aarti Gupta, and Pranav Ashar. Effi-
cient sat-based bounded model checking for software verification. Theoretical Com-
puter Science, 404(3):256 – 274, 2008. International Symposium on Leveraging Ap-
plications of Formal Methods (ISoLA 2004). 15

[44] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.
The first collision for full sha-1. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology – CRYPTO 2017, pages 570–596, Cham, 2017. Springer Inter-
national Publishing. 15

[45] Boris Konev and Alexei Lisitsa. A sat attack on the erdős discrepancy conjecture.
In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing
– SAT 2014, pages 219–226, Cham, 2014. Springer International Publishing. 15

[46] Roberto J Bayardo Jr and Robert Schrag. Using csp look-back techniques to solve
real-world sat instances. In Aaai/iaai, pages 203–208. Providence, RI, 1997. 16

[47] João P Marques-Silva and Karem A Sakallah. Grasp: A search algorithm for propo-
sitional satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999. 16

[48] Grigori S Tseitin. On the complexity of derivation in propositional calculus. In
Automation of reasoning, pages 466–483. Springer, 1983. 16

[49] Edmund M Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. Model
checking and the state explosion problem. In LASER Summer School on Software
Engineering, pages 1–30. Springer, 2011. 18

[50] Aaron R Bradley. Sat-based model checking without unrolling. In International
Workshop on Verification, Model Checking, and Abstract Interpretation, pages 70–87.
Springer, 2011. 18, 70

BIBLIOGRAPHY 109

[51] Kenneth L McMillan. Interpolation and sat-based model checking. In International
Conference on Computer Aided Verification, pages 1–13. Springer, 2003. 18

[52] Muhammad Yasin, Abhrajit Sengupta, Benjamin Carrion Schafer, Yiorgos Makris,
Ozgur Sinanoglu, and Jeyavijayan Rajendran. What to Lock? Functional and Para-
metric Locking. 21

[53] Mohamed El Massad. On the Foundations of Integrated Circuit Intellectual Property.
PhD thesis, New York University, 2019. 21

[54] Muhammad Yasin, Abhrajit Sengupta, Mohammed dari Nabeel, Mohammed
Ashraf, Jeyavijayan Rajendran, and Ozgur Sinanoglu. Provably-Secure Logic Lock-
ing: From Theory To Practice. Technical report. 21, 88

[55] Nadia Creignou and HervÃ© Daudé. Sensitivity of Boolean formulas. European
Journal of Combinatorics, 34(5):793–805, 7 2013. 23

[56] Franc Brglez and Hideo Fujiwara. A neutral netlist of 10 combinational benchmark
circuits and a targeted translator in fortran. Special session on ATPG and fault simu-
lation, Proc. IEEE International Symposium on Circuits and Systems, pages 663–698, 06
1985. 24, 31, 88

[57] Armin Biere. Cadical, lingeling, plingeling, treengeling and yalsat entering the sat
competition 2018. In Proceedings of SAT Competition 2018, pages 13–14, 2018. 30, 38,
88

[58] James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. KR, 96:148–159, 1996. 33

[59] Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large
k. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 59–68, 2015. 33

[60] Kaveh Shamsi, David Z Pan, and Yier Jin. Icysat: Improved sat-based attacks on
cyclic locked circuits. In 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 1–7. IEEE, 2019. 34, 69, 113, 114

[61] Meng Li, Kaveh Shamsi, Yier Jin, and David Z. Pan. TimingSAT: Decamouflag-
ing Timing-based Logic Obfuscation. In Proceedings - International Test Conference,
volume 2018-October. Institute of Electrical and Electronics Engineers Inc., 1 2019.
35

BIBLIOGRAPHY 110

[62] G. L. Zhang, B. Li, B. Yu, D. Z. Pan, and U. Schlichtmann. Timingcamouflage:
Improving circuit security against counterfeiting by unconventional timing. In 2018
Design, Automation Test in Europe Conference Exhibition (DATE), pages 91–96, 2018.
36

[63] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python
toolkit for prototyping with SAT oracles. In SAT, pages 428–437, 2018. 38

[64] Cunxi Yu, Xiangyu Zhang, Duo Liu, Maciej Ciesielski, and Daniel Holcomb. In-
cremental sat-based reverse engineering of camouflaged logic circuits. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 36(10):1647–1659,
2017. 39

[65] Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. Shatter: Efficient symmetry-
breaking for boolean satisfiability. In Proceedings of the 40th Annual Design Automa-
tion Conference, DAC ’03, page 836–839, New York, NY, USA, 2003. Association for
Computing Machinery. 40

[66] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri. On improving the security of
logic locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 35(9):1411–1424, 2016. 40

[67] Mate Soos and Kuldeep S Meel. Bird: Engineering an efficient cnf-xor sat solver
and its applications to approximate model counting. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 1592–1599, 2019. 48

[68] K. Yoshikawa, K. Kanamaru, S. Inui, Y. Hagihara, Y. Nakamura, and T. Yoshimura.
Timing optimization by replacing flip-flops to latches. pages 186–191. Institute of
Electrical and Electronics Engineers (IEEE), 10 2004. 50, 54

[69] Charles E. Leiserson and James B. Saxe. Retiming synchronous circuitry. Algorith-
mica, 1991. 50

[70] Perry H. Wang, Sebastian Steibl, Hong Wang, Jamison D. Collins, Christopher T.
Weaver, Blliappa Kuttanna, Shahram Salamian, Gautham N. Chinya, Ethan Schuch-
man, Oliver Schilling, and Thorsten Doil. Intel® atomâ„¢ processor core made
FPGA-synthesizable. page 209. Association for Computing Machinery (ACM), 2
2009. 50

[71] Graham Schelle, Jamison Collins, Ethan Schuchman, Perry Wang, Xiang Zou, Gau-
tham Chinya, Ralf Plate, Thorsten Mattner, Franz Olbrich, Per Hammarlund, Ronak

BIBLIOGRAPHY 111

Singhal, Jim Brayton, Sebastian Steibl, and Hong Wang. Intel© Nehalem Processor
Core Made FPGA Synthesizable. In FPGA, page 296. ACM, 2010. 50

[72] Ferran Parés, Dario Garcia-Gasulla, Armand Vilalta, Jonatan Moreno, Eduard
Ayguadé, JesÃºs Labarta, Ulises Cortés, and Toyotaro Suzumura. Fluid Commu-
nities: A Competitive, Scalable and Diverse Community Detection Algorithm. 3
2017. 54

[73] David Chinnery, Kurt Keutzer, Jagesh Sanghavi, Earl Killian, and Kaushik Sheth.
Automatic Replacement of Flip-Flops by Latches in ASICs. In Closing the Gap Be-
tween ASIC & Custom. 2004. 54

[74] Min Shi, Jin He, Lining Zhang, Chenyue Ma, Xingye Zhou, Haijun Lou, Hao
Zhuang, Ruonan Wang, Yongliang Li, Yong Ma, Wen Wu, Wenping Wang, and
Mansun Chan. Zero-mask contact fuse for one-time-programmable memory in
standard CMOS processes. IEEE Electron Device Letters, 32(7):955–957, 7 2011. 58

[75] Kuei-Sheng Wu, Tseng Ching-Hsiang, Wong Chang-Chien, Chi Sinclair, Su Titan,
Liu Yensong, Wei Huan-Sheng, Lien Wai Yi, and Chen Chuck. Investigation of
Electrical Programmable Metal Fuse in 28nm and beyond CMOS Technology. In
2011 IEEE International Interconnect Technology Conference. IEEE, 2011. 58

[76] Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan.
Smt attack: Next generation attack on obfuscated circuits with capabilities and
performance beyond the sat attacks. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 97–122, 2019. 60

[77] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011. 61

[78] Sven Sandberg. 1 homing and synchronizing sequences. In Model-based testing of
reactive systems, pages 5–33. Springer, 2005. 67

[79] S. Malik. Analysis of cyclic combinational circuits. In Proceedings of 1993 International
Conference on Computer Aided Design (ICCAD), pages 618–625, 1993. 69

[80] Peter Eades, Xuemin Lin, and William F Smyth. A fast and effective heuristic for
the feedback arc set problem. Information Processing Letters, 47(6):319–323, 1993. 70

BIBLIOGRAPHY 112

[81] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessan-
dro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta.
The nuxmv symbolic model checker. In Armin Biere and Roderick Bloem, editors,
CAV, volume 8559 of Lecture Notes in Computer Science, pages 334–342. Springer,
2014. 70

[82] Matthew Hicks, Paul Fiscarelli, engll, and Brendon Chetwynd. mit-ll/cep: Cep
release v3.01, December 2020. 71

[83] K. Shamsi, T. Meade, M. Li, D. Z. Pan, and Y. Jin. On the approximation resiliency of
logic locking and ic camouflaging schemes. IEEE Transactions on Information Foren-
sics and Security, 14(2):347–359, 2019. 85

[84] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Algorithmic improve-
ments in approximate counting for probabilistic inference: From linear to logarith-
mic sat calls. In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI), 7 2016. 88

[85] Mate Soos and Kuldeep S. Meel. Bird: Engineering an efficient cnf-xor sat solver
and its applications to approximate model counting. In Proceedings of AAAI Confer-
ence on Artificial Intelligence (AAAI), 1 2019. 88

[86] Joseph Sweeney, Ruben Purdy, Ronald D Blanton, and Lawrence Pileggi. Circuit-
graph: A python package for boolean circuits. Journal of Open Source Software,
5(56):2646, 2020. 88

[87] J. Sweeney, M. J. H. Heule, and L. Pileggi. Modeling techniques for logic locking. In
2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pages
1–9, 2020. 98, 99

[88] M Yasin, B Mazumdar, and O Sinanoglu. Security analysis of anti-sat. (Asp-Dac),
2017 . . . , pages 342–347, 2017. 98

Appendix A

Supporting Algorithms

A.1 Acyclic Key Constraints

Logic locked circuits will often contain feedback cycles that corrupt the formal attack

methods if they are not handled appropriately. Previous work has devised algorithms

that will create key constraints, ruling out any key that creates feedback through the

combinational logic [21, 60]. These algorithms are based on taint-propagation, ensuring

that for a sufficient set of nodes in the circuit’s combinational logic all paths from the

nodes back to themselves are broken. The sufficient set of nodes is a feedback node set

for the combinational logic. The feedback node set is a set of nodes in the combinational

logic that when disconnected renders the logic acyclic, i.e., no paths exist from one node

back to itself.

The algorithms find a feedback node set, F. For each f ∈ F, a function, Cf is built

that indicates there is not feedback through f . To build this function, we assume the

node is split, forming two nodes f and f ′. The function is specified recursively as

Cf(f , n) indicating there is no structural path from node f to node n. Initially, we define

Cf(f , f) = 0. bk(i, n) is the condition on the key that i does not effect n. NK(n) is the

set of fanin nodes of n that aren’t keys. For any node that does not have a key input,

bk(i, n) = 0.

113

APPENDIX A. SUPPORTING ALGORITHMS 114

Then, we recursively build the following:

Cf(f , n) =
∧

i∈NK(n)

Cf(f , i) ∨ bk(i, n) (A.1)

Simply put, Cf(f , n) is true if the cyclic path to f is broken at node n with bk(i, n)

being true or the path is broken upstream. The root node, Cf(f , f ′) is true when the path

is broken. The complete acyclic constraint is defined as:

Cacyclic(k) =
∧
f∈F

Cf(f , f ′) (A.2)

This constraint can then be utilized in various attack procedures. While the speci-

fication is most easily understood recursively, building the constraint function is more

efficient using dynamic programming methods, sharing logic cones. Ultimately, the

same key constraints are produced but with much smaller encoding. We roughly follow

a more efficient algorithm defined here [60].

A.2 Logic-Enhanced Banyan Locking Insertion

Here, we describe the insertion algorithm for our logic-enhanced Banyan locking tech-

nique. While this lock is resistant to the modeling techniques, the insertion of the Banyan

network is more complex than in its predecessor, Full-Lock. Now, gates from the orig-

inal circuit must be mapped onto the structure of the Banyan network, instead of just

being randomly selected. This entails finding a set of gates from the original circuit with

connectivity that maps onto the Banyan network’s. We automate this process to enable

scalable exploration of the mapping solution space. To augment the ability to map onto

the Banyan structure, we split all gates from the original circuit with three or more in-

puts into two input gates. We start with a Banyan network of the desired input width,

W and encode the problem of finding a mapping as a SAT instance through constraints

that we specify below.

The encoding uses a set of variables representing a mapping between an original

gate g and a banyan switch box output s. See Fig. 3.12 for a visualization of the gates

APPENDIX A. SUPPORTING ALGORITHMS 115

and switch box outputs. The switch box outputs provide a reference point within the

Banyan network that naturally correspond to gate outputs in the original circuit. For

all pairs of gates in the original circuit and switch box outputs in the Banyan network,

(g, s) ∈ C × B, we create a mapping variable mgs. The variable is true if gate g is

mapped to switch box output s. Over these variables, we encode constraints that ensure

the amount of mapping is sufficient. First, we ensure at least W gates are mapped to the

network.

AtLeastW({
∨
s∈B

mgs : g ∈ C}) (A.3)

Then we encode that at most one gate is mapped per switch box output.

∧
s∈B

AtMostOne({mgs : g ∈ C}) (A.4)

We allow the same gate to be mapped to multiple switch box outputs enabling the

mapping of gates with fanout and to allow a gate to feed through a switch box. Finally,

we prohibit any path directly feeding all the way through from the network inputs

to outputs, avoiding the simplest mappings. This is done by prohibiting a gate to be

mapped to both the first and last layer of the Banyan network. We show the encoding

below where Bi and Bo are respectively the sets of switch box outputs in the first and

last layers of the network.

∧
g∈C

∧
si∈Bi

∧
so∈Bo

AtMostOne(mgso , mgsi) (A.5)

To maintain the structure of the circuit, we add constraints that enforce a correspon-

dence between the connectivity of the mapped gates and the switch box outputs. If a

gate is mapped to a switch box output, the fanin of the gate in the original circuit must

be mapped to the fanin of the switch box (i.e., the switch box outputs from the preceding

network layer). Similarly, we also ensure that at least one of the gate’s fanout is mapped

to the fanout of the switch box. We allow an exception to this rule if the gate is simply

fed through the switch box, which adds flexibility to the circuit structures that can be

mapped. Note that here we are allowing feed through for a switch box but prohibit it

APPENDIX A. SUPPORTING ALGORITHMS 116

through the entire network. More formally, mgs implies that every fanin of g is mapped

to the fanin of s or, in the case of a feedthrough, g itself is mapped to the fanin of s. This

encoding is shown below.

∧
s∈B

∧
g∈C

∧
g f∈ f anin(g)

mgs →
∨

s f∈ f anin(s)

mg f s f ∨mgs f (A.6)

Additionally, mgs implies that at least one fanout of g is mapped to the fanout of s or, in

the case of a feedthrough, g is in the fanout of s. This encoding is shown below.

∧
s∈B

∧
g∈C

mgs →
∨

s f∈ f anout(s)

∨
g f∈ f anout(g)∪{g}

mg f s f (A.7)

This system of constraints is solved and the gates in the resulting mapping are in-

serted into their corresponding switch boxes and removed from the original circuit. The

other MUX inputs are connected to randomly selected decoy functions of the switch box

inputs. The network inputs and outputs are connected depending on which gates have

been mapped to the first and last layer of switch boxes. It’s important to emphasize

that no intermediate connections are made to or from the network. Outputs with no

mapping are randomly connected to remaining gates such that they have no impact on

the logic of the system under the correct key.

	Contents
	List of Figures
	List of Tables
	Introduction
	Logic Locking for Protection of Intellectual Property
	Thesis Contributions

	Background
	Digital Integrated Circuits
	Structure, Operation, and Testing
	Manufacturing Process Vulnerabilities

	Logic Locking
	Attack Models
	Brief Taxonomy
	Related Techniques

	Attacks on Logic Locking
	Netlist-Based Attacks
	Brute Force and Sensitization Attacks
	Miter-Based Attacks

	Security of Existing Locking Schemes
	Sensitivity Analysis of Strip-Functionality Locks
	Strip-Functionality Locking
	Boolean Sensitivity Attack
	Resistant Locking Scheme
	Attack Results

	Modeling Techniques for Locked Circuits
	Full-Lock
	Relaxed Models
	Symmetry Breaking
	Resistant Locking Scheme

	Discussion
	Attack Insights
	Shortcomings of Proposed Fixes

	Keyed Sequential Elements for Low-Overhead Locking
	Latch-Based Design and Retiming
	Latch-Based Logic Locking
	Programmable Path Delay
	Programmable Logic
	Insertion Flow
	Design for Testability

	Attacking Latch-Based Logic Locking
	Netlist-Based Attacks
	Oracle-Based Attacks

	Overhead Analysis
	Power, Performance, Area Overhead
	Testing Overhead
	Tapeout

	Discussion

	Quantifying the Efficacy of Locking Methods
	Locking Metrics
	Existing Security Metrics
	Key Corruption
	Minimum Corruption
	Estimating Metrics

	Application of Metrics
	Minimum Corruption under Netlist Attack Model
	Incremental Key Corruption of Oracle Attack Model
	Overhead-Security Trade-Offs

	Discussion

	Conclusion and Future Work
	Improving and Impeding Oracle-Based Attacks
	Security-Aware Logic Synthesis
	Conclusion

	Bibliography
	Supporting Algorithms
	Acyclic Key Constraints
	Logic-Enhanced Banyan Locking Insertion

