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Abstract 

With medical datasets becoming more readily available and standardized, machine 

learning (ML) has revolutionized healthcare through improved analysis of multi-variable 

clinical data, discovery of causal relationships or hidden states, and the generalization of 

predictive models to new and unseen patient data. Current ML architectures such as deep 

learning and canonical neural networks, rely on large datasets in order to make accurate models. 

However, variations in patient response due to heterogeneity in populations such as genomic, 

environmental, and physiological factors and processes suggest the need to tailor medical 

solutions to the unique features possessed by individual patients. As healthcare becomes more 

patient-specific, so too does the need to balance an ever-increasing feature-space (model 

complexity) with smaller numbers of patients. Thus, inherent in the applications of ML for 

smarter diagnostics and automation in patient-specific solutions is the drive to leverage 

biomedical datasets that are rich in information but limited in sample size. This work seeks to 

adapt ML techniques for feature-importance and predictions from size-limited data in the 

context of automating 3D-bioprinting for patient-specific implants and transplants, and early 

diagnosis of renal cancer progression for clinical decision support. 

 Additive manufacturing (AM) of biologically and physiologically active materials 

such as hydrogels, cell scaffold proteins, and cells is a promising avenue towards developing 

patient-specific implants and organ transplants using rapid fabrication and flexible design. 

However, the “plug-and-play” vision of bio-printed cell scaffolds and organs remains elusive 

due to the variability of biological materials. The heterogeneity of material response to the same 

physical process settings results in a complex feature-space that is difficult to optimize.  As a 
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result, Hierarchical Machine Learning (HML) is used to embed domain knowledge into a 

statistical inference framework to reduce the experimental data necessary to model error bias in 

process design choices. HML-optimized predictors were shown to produce high-fidelity bio-

printed constructs that deviate from expected dimensions by less than 10%. Furthermore, the 

use of a supervised physical middle layer that connects predictors to the quality of print response 

is shown to aid in transfer learning to new print materials suggesting a method for rapid 

optimization of parallel 3D bioprinting systems.  

Disease diagnosis can also benefit from small experimental or phase 1 clinical data. An 

innovative Markov model is developed to perform early classification of patient response to 

hydroxychloroquine/Aldesleukin (IL-2) treatment for progressive renal cancer. The model 

reduces the high-dimensional (1015 – 1025) feature-space of T-cell receptor (TCR) and B-cell 

receptor (TCR) systems biology to an intermediate-dimensional space of 400 descriptors, 

revealing the causal features responsible for predicting the final state of 30 patients after 15 days 

of treatment with 95% classification accuracy. Through quantitative monitoring of amino acid 

motifs in the primary structure of TCRs and BCRS over 3 treatment points, a mechanistic 

understanding of the orchestration of TCRs and BCRs towards patient recovery is discussed. 

These results suggest that this Markov model could be a powerful diagnostic tool for leveraging 

phase 1 clinical data towards early patient diagnosis, informing an early and individualized 

medical response. 
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Chapter 1. Introduction 
Machine learning (ML) is a tool that is revolutionizing healthcare and biomedical research. The 

number of publications that have utilized ML for advances in healthcare and biomedical 

sciences has increased almost exponentially in the last two decades (Figure 1). With large 

numbers of datasets more available and standardized, ML is becoming a robust tool for multiple 

disciplines from improved patient care, to diagnostic predictions and biomedical research.1 

Some major ways in which ML has been useful in these areas are (1) feature selection (2) 

unveiling of causal relationships, and (3) optimization of objectives. 

Feature selection has been a powerful tool for decomposing large healthcare datasets into the 

dominant underlying features that describe the data. A notable use of feature selection in 

healthcare datasets is the modeling of large genomic data from next generation sequencing 

(NGS). By harnessing disease signatures, such as mutations or up-/down- regulation of mRNA 

expression, high-level observations of diseased phenotypes can be elucidated for disease-risk 

predictions.2 For example, NGS data has been used to correlate genetic scores to predict the 

outcome of acute myeloid leukemia.3 Causal relationships between variables can also be useful 

for classification and advanced mechanistic understanding between seemingly disparate 

variables. One example is in the discovery of the correlation of ejection fraction (percentage of 

blood in the left ventricle after each heart contraction) with predictions for patient survival from 

heart failure.4 Finally, an example of machine learning for the optimization of a target objective 

can be seen in a recent study involving codon optimization for high performance synthetic 

genes.5  
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Figure 1.1. Publications using ML for biomedical sciences and healthcare from 1998 – 2020 
show a nearly exponential growth trend (blue) over approximately two decades. ML for 
personalized medicine has only grown in the last decade and is still relatively nascent. 
Publication data was gathered using google scholar with the search terms [“machine learning” 
or “artificial intelligence”] and [“Bio” or “biomedical” or “healthcare]. Publication data for 
ML in personal medicine was gathered using the search terms [“machine learning” or 
“artificial intelligence”] and [“personal” or “patient-specific”] and [“medicine” or 
“healthcare”]. The analysis is meant to show a general trend in the scientific community. 

 

Large datasets clearly provide promising avenues for predictions and pattern discovery that 

might not be realizable with traditional statistical techniques. However, many real-world 

datasets lack the sample size necessary to sift through redundant or irrelevant features, impeding 

model performance, generalizability, and interpretation.6 In fact, it is often difficult to achieve 

large sample sizes in real-world settings particularly if data acquisition is expensive, or the data 

being studied are rare.7 As a result, the potential for utilizing ML strategies to gain improved 

predictive power or mechanistic understanding from size-limited data remains, many times, 

untapped. In addition to resource challenges, size limitations in data arise from natural 

Machine Learning in biomedical sciences and 
healthcare 1998-2020*

*publication data from google scholar 
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heterogeneity in populations. Nearly 2,500 years ago, the Greek physician Hippocrates 

postulated the “individuality of disease,” noting that not all solutions are created equal for every 

individual.8  Known as the “Father of Western Medicine,” Hippocrates is perhaps the oldest 

proponent of patient-specific healthcare.  

Over two millennia later, a grand goal of future medicine still lies in patient-specific healthcare. 

The intersection of physics, biology, and computational power of the last decade have provided 

new tools to make the forward-thinking advice of an ancient Greek physician a reality. However, 

despite the tools and age-old motivation, the number of publications for ML in patient-specific 

(personalized) healthcare has been less prolific compared to the use of ML in healthcare and 

biomedical sciences (Figure 1.1). One reason for this may be that models that are truly patient-

specific must ultimately wrestle with population heterogeneity, both in features that describe 

patients, and patient responses to their environment. As a result, patient-specific ML models 

experience a curse of dimensionality: higher patient specificity splits seemingly homogeneous 

populations into more features, which in turn can have a negative effect on the sample size 

required for a model to properly learn and answer questions. After all, how can a model perform 

well on the whole population and also be highly specific to an individual? The sensitivity-

specificity relationship is a well-known, albeit challenging, tradeoff in many disciplines. ML is 

not a cure. Instead, the question becomes to what limits can ML help push this tradeoff in favor 

of highly sensitive and highly generalizable models? 

To begin to answer this question, the relationship between patient specificity, model complexity, 

sample size, and theoretical model feasibility is theorized in Figure 1.2. Initially, model 

feasibility scales with increasing complexity and data size (region-II). Moving along the sample-



4 

 

size axis, tall arrays (in which samples outnumber features) are typically well-suited for 

canonical ML algorithms as the sample size is sufficient for data-driven learning (region-IV). 

In the limit that there are large features combined with large data (region-III), model 

performance can eventually be limited by computational feasibility. Moving along the 

complexity axis, as models seek to become more patient-specific (yellow), higher model 

complexity is expected (region-I). However, the data available per feature decreases. Compared 

to region-IV, the region-I regime changes the shape of the data, which can cause difficulty with 

canonical ML architectures. Since Region I represents the data regime in which we still desire 

good model performance, ML strategies must be adapted. 

 

Figure 1.2. The intersection of machine learning with patient-specific models in terms of 
model feasibility. (I). The limit of high patient specificity (low sample number) and high 
model complexity. (II) Model feasibility scales with low model complexity and low sample 
number. (III) The limit of high complexity, high sample number in which computational 
feasibility eventually reaches a limit. (IV) The regime of low-intermediate model complexity 
combined with high sample number in which most conventional ML architectures are 
typically utilized. 
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Previous work for adapting ML strategies towards good model performance from high features 

and low sample-size has illuminated the challenge. A comprehensive survey of multiple ML 

models on a small materials dataset (<100 samples) showed that, irrespective of model strategy 

(SVM, ordinary least-square regression, random forest, and LASSO to name a few listed), the 

relationship of training data size to degrees of freedom in the models (defined as non-zero 

features after regularization) was most predictive of model performance.9 In summary, the 

relationship between data size and complexity was shown to be generally more important for 

good models than the strategy of the models themselves. Perhaps this result is somewhat 

expected as a natural consequence of the bias-variance tradeoff. However, the authors showed 

that providing low-quality estimations of the targeted property – essentially prior knowledge – 

consistently improved model performance for the same data size. Not surprisingly, Bayesian-

inspired methods that encourage the use of prior and posterior learned distributions such as 

Gaussian Process10 and Bayesian networks11, 12, are frequently used to work with size-limited 

data with good model outcomes. A method that will be discussed in depth in this work is to 

embed known empirical relationships within statistical inference models to drive down the data 

necessary to discover variable relationships with the system response. By initially supervising 

potentially notable relationships between predictors, rather than allowing predictor relationships 

to be discovered by inference on the data alone, models have been shown to have improved 

accuracy for small data.13  While physical laws are difficult to ascertain in healthcare, the 

success of Zhang and Ling et al from embedding crude measurements of target properties in 

their models implies a high likelihood that even loose estimates of prior knowledge from patient 

averages in healthcare literature could be both relevant and useful for improving model 

predictions.  
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This thesis will discuss strategies for learning from sample-limited datasets that are non-ideal 

candidates for “plug-and-play” into canonical ML architectures in the context of 3D bioprinting 

and early renal cancer diagnostics (Figure 1.3). 3D bioprinting is an exciting solution for 

fabricating organs that tailor to natural heterogeneities in the population due the ability to 

flexibly and rapidly prototype size variations of the same organ model. However, in order to 

meet the growing need for transplants at an industrial level, it will be crucial to validate that 

small variations in design can be printed reliably and with high fidelity given uncertainties in 

biological material composition and handling. In this thesis, we will argue that by leveraging 

physical knowledge of the 3D bioprinting system, we can predict high-fidelity prints from a 

capitalized experimental space. Furthermore, we will show how the empirical relationships that 

survive regularization improve model interpretability and create a knowledge bridge for 

predicting high-fidelity prints from parallel printing systems.  
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Figure 1.3. Patient-specific healthcare models and solutions are a grand future goal for 
machine learning and medicine. (A) shows the need for size variations in heart transplants. 
Data for this figure was adapted from Oberman and Karunas et al. Circulation, 1967.14 (B) 
shows how diversity of T-cell receptors naturally varies according to age in years but can 
occlude cancer signatures. Data for D50 variation is unpublished from iRepertoire.15 

 

Phase 1 clinical data encompasses the study of small numbers of patients (<50 patients) who are 

either healthy or are attempting experimental treatments due to a lack of response to more 

conventional treatments. Adaptome diversity (D50) has been shown to be a key indicator for 

disease.16 Decreased diversity has been associated with poor immune health due to disease 

epitopes. However, with 1015 - 1025 possible features in the adaptome, natural variations in 

diversity due to age (shown in Figure 1.3B) and other environmental or genetic factors can 

One size fits all Patient-specific solutions

One model fits all Patient-specific analysis

A

B

Natural population data

Natural population data
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occlude causal disease features necessary for patient diagnosis and treatment. In this thesis, we 

will argue that a carefully selected feature space combined with probability estimations of 

feature importance for distinguishing disease phenotypes, can harness the expansive 

dimensionality of the adaptome allowing early prediction for renal cancer response to HCQ/IL-

2 treatment in phase 1 clinical data. 

This work shows how patient-specific healthcare can become more realizable as ML algorithms 

are strategized to make predictions from data structures that are atypical for conventional 

methods. In this work, traditional statistical inference methods are supplemented with  

supervised physical middle-layer variables to allow both data-specific learning and transfer 

learning to unseen material types. The result is a model that can predict up-front optimal process 

settings for 3D bioprints that can themselves respond to heterogeneous needs in patient 

populations. Furthermore, we will show that careful selection of a common feature space can 

leverage key predictive knowledge in a Phase 1 clinical trial of <50 patients. We intend for the 

impact of this work to trend towards more patient-centered, flexible care, from reliable 

personalized implants and transplants to early diagnosis in the clinic.  
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Figure 1.4. Outline and organizational flow of the thesis.   
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Section 1. Machine Learning for smarter automation from size-limited datasets 

in the context of optimizing 3D bio-printed constructs 

 

Chapter 2. Hierarchical Machine Learning for High-Fidelity Bio-printed Constructs 
 

2. 1. Introduction 

Major structural and functional failure in the human body is often detrimental and requires rapid 

medical intervention via organ transplants, stents, hip or knee replacements, or prosthetics. At any 

given time, nearly 3,500 – 4,000 people are waiting for a heart or heart-lung transplant17,                  

and every ten minutes a new person is added to the national transplant waiting list.18        Moreover, 

the prevalence of rejection and immunosuppression currently impact the success of transplantation 

and highlight the need for patient-specific transplants that will increase the rate of survival. Due 

to this high demand, the market for patient-specific implants is projected to reach more than $10B 

by 2021.19 3D printing is an emerging technology that could strongly impact the future of research, 

translation, and industry. Three major areas of current impact are: transplantation, drug testing, 

and desktop print technology as shown in Figure 2.1.  
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Figure 2.1.The diverse and multi-variate space of 3D printing breaking into healthcare. 

 

Transplantation of functional tissue constructs leaped from benchtop to industry when 3-D 

Bioprinting Solutions printed a vascularized, functional thyroid, which they successfully 

implanted in mice in 2015.20  Additionally, 3D printed human tissue found in the heart, liver, and 

kidneys has been used to assess drug efficacy and toxicity testing. 3D printing company Organovo 

has generated revenue via functional printed liver organoid tissue for drug toxicity studies.21  

Finally, there is a growing market for desktop bioprinters that can be sold for in-house applications 

and research, such as BioBots who make and sell alginate-based hydrogel inks laden with various 

biological substrates, including cells. It is clear that 3D printing is moving from prototype to 

industry with applications spanning a multivariate space composed of eclectic inks and printing 

systems.22  However, while the concept of diverse applications is clearly a key element to the 

success of 3D printing in healthcare on an industry level, this laudable flexibility to print with 

many different biological materials comes at a price.  



12 

 

Workflow for additive manufacturing (AM) typically requires copious iterative testing. Using a 

full Design of Experiments (DOE) to find the “golden batch” of parameters that produce the 

highest-quality prints is costly and time-intensive. Furthermore, limited domain knowledge of the 

system is gained with this optimization method, making predictions for different ink-printer 

systems – even those composed of the same system but with a slightly altered design – challenging. 

3D printing as a manufacturing method to meet patient-specific implant or transplant needs on an 

industry level is weakened when design changes require iterative testing for every new design.  

 

Figure 2.2. Envisioned AI-driven workflow compared to current methods. (A) 3D printing is 
not “plug-and-play.” In reality, 3D printing requires multiple iterations of various process 
settings in order to achieve an optimal print. Small changes in design often requires a re-
collection of experimental data. (B) The AI-envisioned workflow strives to efficiently use the 
experimental space necessary to predict high-fidelity prints. Moreover, the predictive model 
could extend to new designs without the need to collect additional data.  
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An ideal optimization system would be composed of a small training dataset over which physical 

knowledge of the system could be leveraged to make targeted predictions for new materials and 

designs as shown in Figure 2.2.   

While hard materials such as ceramics and metal printing have started to incorporate AI in their 

work-flow to reduce error,23  state-of-the-art methods for optimizing 3D-printed soft materials, 

such as silicone polymers, still require large datasets even for a more streamlined hill climb 

optimization.24  Recently, Menon et al showed that small datasets of silicone 3D prints could be 

optimized via hierarchical machine learning (HML).25 Process predictors, such as ink viscosity 

and print speed, were related to physical equations and a measurable print score (output). LASSO 

regression parameterized the complex rheological space into its fundamental physical interactions. 

Armed with domain knowledge, optimal print parameters were elucidated. Print speed and defects 

were optimized and mitigated, respectively for a small dataset of 38 prints. In contrast to silicone 

printing, biomaterials, such as hydrogels, cells, and proteins, offer a unique challenge due to their 

non-Newtonian behavior and intrinsic variability in feedstocks. The complexity of the system 

makes 3D printing of biomaterials a good candidate for an HML framework since the presence of 

rheo-physical equations in the middle layer can better correlate experimental parameters to the 

final printed outcome. 

To date, there is limited technology that integrates machine learning with 3D biomaterial printing. 

The essence of soft-material additive manufacturing, which consists of polymer and non-

Newtonian fluid flow and gelation through a small capillary, is an age-old and well-studied 

phenomenon26 that has gained broader use in recent years due to the accessibility and promise of 

3D printing as an impactful manufacturing method. Integrating multiple engineering disciplines, 
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many successful bioprint prototypes utilizing a plethora of tested inks and print settings have 

impacted the literature;27  however, often the methods for reliably conferring system parameters 

with high-fidelity prints is ‘guess-and-check’ with limited fundamental knowledge of the system 

or materials. The time is right for rich datasets to be parameterized by physical modeling that can 

combine both the global laws of non-Newtonian soft-material flow with constraints specific to the 

desired printing system and design. 

A Hierarchical Machine Learning (HML) framework is presented that uses a small dataset to learn 

and predict the dominant build parameters necessary to print high fidelity 3D features of alginate 

hydrogels. We examine the 3D printing of soft hydrogel forms printed with the Freeform 

Reversible Embedding of Suspended Hydrogels (FRESH) method based on a CAD file that 

isolated the single-strand diameter and shape fidelity of printed alginate. Combinations of system 

variables ranging from print speed, flow rate,	ink concentration, and nozzle diameter were 

systematically varied to generate a small dataset of 48 prints.  Prints were imaged and scored 

according to their dimensional similarity to the CAD file, and high print fidelity was defined as 

prints with less than 10% error from the CAD file. As part of the HML framework, statistical 

inference was performed, here using the Least Absolute Shrinkage and Selection Operator 

(LASSO) to find the dominant variables that drive error in the final prints. Model fit between 

system parameters and print score was elucidated and improved by a parameterized middle layer 

of variable relationships which showed good performance between predicted and observed data 

(R! =	0.643). Optimization allowed for the prediction of build parameters that gave rise to high-

fidelity prints of the measured features. A trade-off was identified when optimizing for the fidelity 

of different features printed within the same construct, showing the need for complex predictive 
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design tools. A combination of known and discovered relationships was used to generate process 

maps for the 3D bio-printing designer that show error minimums based on chosen input variables. 

Our approach offers a promising pathway towards scaling 3D bioprinting by optimizing print 

fidelity via learned build parameters that reduces the need for iterative testing. 

Furthermore, applications of HML to parallel 3D printing systems will be discussed. Specifically, 

transfer learning for the optimization of target printing systems will be shown for the first time. 

We will show that the supervised middle layer can be leveraged for predicting FRESH-printed 

collagen features. We will also discuss the use of HML for rapid optimization of new biomaterials 

with FRESH, including an optically transparent bath solution and cell-laden inks. 

Machine learning (ML) is a collection of statistical tools that are used to discover relationships in 

data, allowing for modeling and optimization of complex systems that have several underlying and 

intertwined laws. 28, 13 ML tools are particularly powerful for biomedical research due to the highly 

interdisciplinary nature of the field that often does not result in simple analytical solutions. 

Consequently, ML methods to study biological processes, process engineering, and healthcare 

have grown significantly in number in the last decade.29 The increasing availability of large 

datasets has enabled the use of ML across multiple disciplines from diagnostics and patient care1 

to bacterial genome analysis and antibiotic resistance prediction.30 However, conventional ML 

methods typically rely on large datasets and statistical inference alone, with predictions decreasing 

in accuracy in small data domains (such as those that have less than 100 instances per feature). 

Thus, the full utility of ML tools in many biomedical applications is still largely unexplored.  

To extend the benefits of ML to a wider range of biomedical problems, it is essential to develop 

modeling techniques that can cope with systems defined by several complex relationships but 
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which are limited in data size or completeness. Clymer et al showed that the prediction of labral 

tear severity for a small medical dataset of 34 patients could be achieved using transfer learning 

from larger image databases.31 However, a large repository of similar data to train models is not 

always available, such as in the case of tissue engineering or analysis, wherein bottlenecks in 

experimentation time lead to small datasets. Shaikhina et al predicted risk of bone fracture for 

severe osteoarthritis from a dataset of only 35 femora bone tissue specimens using a multiple-run 

strategy to find the best-performing neural network from a small set of predictors.32  One major 

question that remains is how to perform feature selection in complex, collinear spaces to enable 

accurate predictions of new combinations of variables while still working from the small data 

domain. Such is the case with 3D bio-printing where an especially complex mixture of observed 

forces interact in ways that are difficult to predict and contribute to print error. A tool which could 

illuminate the driving physical laws behind inputs and desired outcomes would be useful for 

directing bio-printing. 

Physical and chemical insight (domain knowledge) can be leveraged to reduce the size of 

the dataset needed to discover complex predictor-response relationships.13 Hierarchical Machine 

Learning (HML) is a hybrid physical-statistical machine learning methodology developed on small 

experimental datasets in which predictors are connected to the system response by a middle layer 

whose variables are parameterized by known physiochemical relationships from domain 

knowledge pertaining to the system.33 Conventional regression techniques can then be used to 

connect the middle layer to the system response for prediction and optimization. In this work, we 

demonstrate that HML can be used to model and optimize Freeform Reversible Embedding of 
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Suspended Hydrogels (FRESH)34, a printing technique rich in physiochemical relationships but 

plagued by limited data for given conditions.  

FRESH is a rheochemical process that allows for the creation of three-dimensional, 

functional structures through layer-by-layer precise spatial control of biological building blocks 

such as hydrogels34, cells and proteins.35  This ability has advanced 3D bio-printing as a promising 

manufacturing method to meet the growing need for patient-specific medicine through the 

development of advanced cell scaffolds for tissue engineering,36 tissue organoids for high 

throughput drug testing,21 and ultimately fully functional printed organs.37 In this work, we focus 

on hydrogel bio-inks, which are widely utilized in bio-printing to make flexible, biocompatible 

cell scaffolds or cell-laden constructs. 

A significant challenge in soft-material additive manufacturing is the ability to print 

biological materials with high fidelity. We define high-fidelity prints as those in which the physical 

dimensionality of the final print deviates from the CAD design file by less than 10%. The challenge 

is to determine the optimal process settings that maximize print fidelity from a massive variable 

range and space covering materials selection, materials formulation, and process parameters. For 

biological materials, these variables are strongly coupled: Inks based on solutions of 

biomacromolecules and cells have rheological behavior that is highly dependent on concentration 

and shear rate,38 creating an enormous design challenge. 

ML has shown good predictive capabilities in aspects of additive manufacturing, such as 

gaussian process regression and Bayesian analysis for prediction of porosity defects in metal 3D 

prints23 and development of power-velocity process maps to aid print designers.39 State-of-the-art 

methods for optimizing 3D-printed soft materials, such as silicone polymers, still require large 
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datasets even for a more streamlined hill-climb optimization .24 However, Menon et al showed that 

small datasets of silicone 3D prints could be optimized via HML and optimal print parameters 

were elucidated.25  Additional methods such as neural networks have been discussed for improving 

print fidelity, predicting optimal process parameters, and error. As Yu and Jiang note, there is 

limited use of machine learning in 3D bio-printing processes due to the need for sufficient data to 

make predictions for a highly complex bio-fabrication system.40 Figure 2.3 describes how HML 

methodologies can be advantageous for addressing small 3D bio-printing datasets and draws a 

comparison with traditional neural networks. 
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Figure 2.3. (A) The methodology of a conventional neural network wherein variable 
relationships are discovered and represented by hidden layers. (B) HML provides a 
methodology to leverage experimenter knowledge and experience to reduce the data-driven 
burden of variable relationship discovery. Domain knowledge inputs known, general physical 
relationships into the model via a middle layer of physical variables parameterized by the 
input layer. Statistical inference and cross-validation discover more complex, system-specific 
relationships and evaluate the ability of the middle layer to describe the system response. 
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In this work, we propose a HML model for predicting and optimizing the print fidelity of hydrogel 

3D prints in terms of linewidth and shape fidelity. To begin, we generate a dataset of both high 

and low-fidelity alginate prints by systematically varying print input parameters and assessing the 

resulting prints in terms of dimensional similarity to the original CAD designs. To address the 

problem of a small dataset, an HML algorithm was constructed wherein the structure of the middle 

layer leverages known physical relationships in the flow-gelation process of alginate. The model 

fit was assessed by cross-validation and a comparison of R2 values across multiple fitting 

strategies. We compare the performance of HML to a conventional neural network. We further 

describe the improved fit of including a middle layer over direct modeling of bottom-layer 

variables to output. We then show an optimization of the HML model in which we minimize print 

error to generate a new set of optimized input variables predicted to generate high-fidelity prints 

with an error of less than 10% in dimensionality from the original CAD specification. We test 

these predictions experimentally by evaluating error in prints created from HML-predicted optimal 

print parameters. Finally, we leverage discovered variable relationships to generate process maps 

for the 3D bio-printing designer that foreshadow the success and pitfalls of choosing input variable 

combinations on the expected feature size. 

2.2 Experimental Methods  

A 3D bio-printing dataset was generated consisting of a series of prints manufactured on a pilot 

printing system by optimizing the FRESH printing method.35 In FRESH, a biomaterial ink is 

extruded into a sacrificial support fluid that cures and holds the ink in place. Once cured, the 

sacrificial solution is removed, leaving behind the printed form. The use of a sacrificial support 

fluid for the printing system alleviates errors due to post-processing damage caused from the 
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removal of cured extraneous support material that normally plagues finished prints. As a result, 

individual, free-floating printed fibers can be printed and imaged that allow for isolated study of 

individual process parameters.   

2.2.1. CAD model design  

The fundamental building blocks in layer-by-layer fabrication, namely the ability to print lines and 

corners with accuracy, play an important role in print fidelity. Many prints fail due to early errors 

in print features that are then carried throughout the entire print. In order to better isolate the 

physical characteristics of ink as it is extruded from the nozzle and cured, it is important to analyze 

free-floating printed strands that are not fused to an underlying layer. As a result, the CAD model 

was designed as a 10 mm x 10 mm x 10 mm cube containing a window modifier in which alginate 

strands are bridged from one end to the other thus allowing for the isolation of flow-gelation 

properties. Furthermore, corners were analyzed under the same variable combinations, providing 

implications for the estimation of path planning with material feedback.  

2.2.2. Ink material selection  

Sodium alginate was chosen due to its ubiquity in acellular bio-printing, and for its usage in cell 

scaffold printing41  and cell-laden inks.42 This approach has the potential to be generalized to other 

biomaterials such as collagen, chitosan, methacrylated hyaluronic acid, gelatin and other curable 

soft materials.  

2.2.3. FRESH Process 

Gelatin as a sacrificial support material in FRESH has multiple advantages. It is a cost-effective 

yield-stress material with well-studied biocompatibility.43  Furthermore, it undergoes a sol-gel 

transition at physiologically compatible temperatures, making it an excellent candidate for work 
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with cells-laden inks. The hydrophilicity of gelatin also has a compatible chemistry with 

hydrophilic alginate ink. This is important because print errors are likely to be prevalent in systems 

with highly mismatched surface energies. Alginate ink gelation readily occurs when its aqueous 

form is extruded into a medium that contains metallic divalent cations such as calcium. Thus, a 

gelatin support bath of packed microparticles containing calcium chloride can be used to print 

complex alginate constructs that can be released upon adding heat to the system.  

Alginate inks were prepared by dissolving 30 mg, 40 mg, and 50 mg of alginate separately into 10 

mL of DI-water to make 3%, 4%, and 5% w/v inks, respectively. The range was limited to 5% w/v 

due to the decreased flow of alginate at higher viscosities. Gelatin sacrificial supports displaying 

Bingham plastic rheology were prepared by dissolving Gelatin Type B (Sigma) into 200-proof 

ethanol: DI-water heated to 60 °C. The pH was adjusted to 6.0 and then the solution was allowed 

to cool to room temperature overnight (or a minimum of 6 hours) while stirring. Gelatin was then 

processed to make the support material. Aliquots of gelatin solution were collected into centrifuge 

tubes and centrifuged at 500 rpm. The supernatant was discarded and replaced to the same volume 

with DI-water. Tubes were vortexed until the gelatin was resuspended, and centrifuged at 2000 

rpm for 2 min. The supernatant was discarded and replaced with 11 mM calcium chloride (Sigma) 

for support material to be used with the 152 µm	nozzle diameter and with 8 mM calcium chloride 

for baths to be used with the 80 µm	nozzle diameter. The particles were washed and resuspended 

3 times using calcium chloride through centrifugation at 2000 rpm. The final centrifugation for 

concentrating the gelatin particles was conducted at 3000 rpm. Concentrated gelatin was then 

distributed into small petri dishes for printing.  
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All CAD files were processed using Slix3R. Layer height was kept constant at 0.06 mm for prints 

made using the 152 µm	nozzle diameter, and at 0.04 mm for prints made using the 80 µm nozzle 

diameter. Nozzle length was kept constant for each nozzle diameter and is inputted in the 

rheological flow calculations in the HML middle layer. Translational nozzle speed describes the 

velocity at which the nozzle extruding the ink traverses across the 3-dimensional print bed and was 

the range of speeds was chosen to span up to one order of magnitude. Flow rate was set and varied 

by an extrusion modifier. We ensured that defaults in the program were manually overridden by 

examining the g-code.  

2.2.4. Training set metrics 

We will briefly discuss the chosen metric for print system response and the print variables chosen 

as predictors.  

System Response Metric: Previous work in soft-material 3D printing has highlighted the 

importance of metrically quantifying the success of prints. We developed a method of standard 

metrics to quantify how closely a print dimensionally matches expectation based on the CAD file. 

Once printed and released, prints were visualized under a phase-contrast microscope. The diameter 

of the free-floating printed fibers, 𝛿 (µm), and corner radius, r	(mm), were then measured using 

ImageJ, and print score was determined as the percent difference in observed dimension compared 

to the original CAD design. In Eq. 2.1, ε, error is the difference between the observed and expected 

dimensions. The size of printed strands is expected to match the inner-diameter of the extrusion 

nozzle (δ"#$ = δ%&' = D()**+").  Corner estimation can also be measured at the same variable 

combinations and is expected to have a radius of 0 mm (corresponding to a 90° angle). We scored 
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prints according to the percent error from expected dimensions using the absolute value of error, 

although over- and under-estimation of error will be briefly discussed.  

 
P,-)." = 1 −	

|ε|
δ%&'

× 100% 
Eq. 2.1 

 

2.2.5. Data Set and Parameter Space 

A range of print variable predictors were chosen carefully to span the print design space shown in 

Figure 2.4 and summarized in Table 2.1.  

 

Figure 2.4. A schematic of bio-printing variables for the FRESH process in which 𝐂𝐢𝐧𝐤 refers 
to the concentration of alginate ink dissolved in DI water as a w/v%, 𝐃𝐧𝐨𝐳𝐳𝐥𝐞 reflects the inner-
diameter of the print nozzle that extrudes alginate ink, and Q is a normalized flow rate, and 
𝐯𝐓 is the translational velocity of the nozzle speed. FRESH printing extrudes pre-crosslinked 
alginate into a gelatin sacrificial support bath (held constant for this analysis) where it is 
quickly crosslinked by calcium chloride in the support bath. Prints were heated to 35-37 °C 
for release and further characterization. 
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Table 2.1. The experimental predictor space and associated tested ranges. The printer flow 
rate was set to 0.1 𝛍L/s and altered in the g-code as percentage change from this value in the 
form of an extrusion multiplier (EM). For example, 0.4 EM represents 40% of 0.1 𝛍L/s which 
would give a flow rate of 0.04 𝛍L/s. While most variables are effectively continuous (the user 
can easily input fractional values or even alter variables during printing), the nozzle size 
remains discrete as it must be selected each time a dimensional design change is required. 
Optimization of predictor values to produce high fidelity features must ultimately be 
constrained to available nozzle sizes. 

Predictor Description Tested Range Continuity 

Q Normalized Flow Rate 

 

            EM 

i = [0.4, 0.6, 1.0, 1.5]× 0.1 µL/s 

Continuous  

v7 Nozzle speed j = [10, 20, 30, 50, 100] mm/s Continuous 

C8(9 Alginate concentration  k = [0.03,0.04, 0.05] w/v%  Continuous 

D()**+" Nozzle diameter l = [80, 152] µm Discrete 

 

A total of 48 prints with combinations of variable predictors covering the range in Table 2.1 were 

generated. Printed features were assessed as shown in Figure 2.5 and assigned print scores (Eq. 

2.1) according to their similarity to the CAD design file.  
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Figure 2.5. (A) CAD file design to be printed with alginate consists of a 10 mm x 10 mm x 
10 mm box with 30% infill. Lines and corner features are extracted from each print. A window 
modifier was placed in the center and used to create freely floating printed strands which are 
analyzed as linewidths, 𝛅	(𝛍𝐦). Linewidths were free of support or infill material and were 
used to isolate print parameters related to the flow-gelation of alginate. Prints were evaluated 
by average linewidth similarity to CAD file, 𝛅𝐂𝐀𝐃	(𝛍𝐦) and sharp edge fidelity (corner radius) 
to the CAD file, 𝐫𝐂𝐀𝐃	. (B) Images representing random regions of interest (ROI) are loaded 
into Matlab and background subtracted. Each row of the image is scanned for feature signal 
and 𝜹 is defined as the measure of the linewidth for each line in the scan. The results are shown 
in (C) which uses a boxplot to show the variability in each linewidth throughout the full ROI, 
and the average linewidth, 𝛅	�  for each line. The variable 𝛅�𝐚𝐯𝐠 will be used to describe the 
average of all linewidths in the ROI for a given set of predictors. (D) The corner radius 
𝐫	(𝐦𝐦) describes the roundness of corners and can be used as a metric to demonstrate the 
system’s ability to estimate a rectangular edge. The corner radius was measured as the radius 
of the circle that is created if the corner arc is extended to form a complete circle. Corner 
radius 𝐫	(𝐦𝐦) 	→ 𝟎	(𝐦𝐦) as the corner angle 𝜽𝒄𝒐𝒓𝒏𝒆𝒓 → 𝟗𝟎°. (E) The relationship between 
two corner radii resulting from two different sets of predictors. Scale bars for (B) and (D) 
represent 250 𝛍𝐦. 

Figure 2.6 shows the visible effects of printing the same CAD file but with varying combinations 

of process parameters. Increasing the flow rate produces thicker, vertically taller constructs while 

decreasing the print speed at constant flow seems to have a mitigating effect. This is reasonable 

considering the conservation of mass, which will be further explored in section 2.3 of the model. 

However, interesting effects were observed when print parameter changes were combined with 

composition alterations in the ink. A closer look in Figure 2.6D shows that increasing nozzle speed 
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at fixed flow rate produces higher-fidelity corners that were closer in shape to a right angle. 

Furthermore, the concentration of ink, which was used as a pseudo-viscosity modifier due to the 

shear-thinning qualities of alginate, can powerfully alter the expected dimensions of the printed 

filaments, referred to as linewidths as shown in Figure 2.6C. Thus, it is exceedingly important for 

the bio-print designer to be aware of the causal effects of these basal print parameters on the final 

output. We will show that domain knowledge of the print system in the form of parameterized 

physical variables will bridge experimental predictors to the print score on the small, printed 

dataset described in Figure 2.6. We will further demonstrate that these relationships can be 

predicted and optimized. To visualize the entire dataset, including additional features not discussed 

in this work, please see Appendix Figure 3.5. 
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Figure 2.6. (A) The training set of prints was fabricated by combining the print predictors in 
Table 2.1 with their listed ranges for a total of 48 training prints, and examples of how variable 
combinations affect print outcomes are shown. Visual differences arise by combining the 
predictor inputs in different ways. (B) Fixed print speed and nozzle diameter, but at different 
flow rates, shows visibly different linewidths related to mass conservation. (C) Fixed print 
parameters but different w/v% alginate ink demonstrate the stark effect of ink composition 
characteristics on print outcomes related to shearing. (D) Estimation of how 90° edge changed 
with print speed. Scale bars represent 250 𝛍m. 

2.3. Computational Methodology  

2.3.1. HML Framework.  

The goal of our HML model is to use system variables to predict and optimize a system response 

given a small training set. We developed an HML model of FRESH printing to predict and 

optimize for print fidelity using the small training set of print predictors described in 2.2, the 

experimental section. A summary of the HML model is shown in Figure 2.7 and the full model 

can be viewed in Appendix Table 3.3.  
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The HML model consists of a bottom layer (labeled as system variables in Figure 2.7), a middle 

layer, and a top layer (labeled system response in Figure 2.7). The bottom layer consists of a set 

of chosen predictors ranging from ink-related variables to machine settings that can be 

systematically varied in the laboratory as discussed in 2.2, the experimental section. The middle 

layer is a set of generalized physical equations, which along with the training set, were selected 

(here, using LASSO) and tuned via cross-validated as important driving forces for print fidelity. 

Finally, the top layer (complex system response) is the measured output (in this case print score) 

that is described by discovered relationships in the middle layer. Print score is a measure of the 

print fidelity based on dimensional errors identified in the training set prints. HML is important in 

this work because complex systems have identifiable predictors	whose effect on the system 

response can be non-intuitive. One example of this is shown in Appendix Figure 3.7 in which 

changes in nozzle speed, v7, result in observable differences in the corner shape fidelity for fixed 

flow and ink composition.  
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Figure 2.7. HML model of the FRESH printing process represented by a tiered structure. The 
bottom layer consists of system variables (predictors) that are directly controlled in the 
laboratory. The middle layer is a set of physical variables chosen to describe the print system 
and are parameterized by the bottom-layer predictors. Statistical inference in the form of 
LASSO is used to determine   and determine the system response (print score for lines and 
corners).  Print score is related to print fidelity by prints that have less than 10% error 
compared to the CAD file (or a score of at least 90%) in randomly assessed regions of interest 
on the print. Scale bars are 250 𝛍𝐦. 

One perceived correlation between C8(9 and the print response derives from shear-thinning fluids 

which display a power-law dependence of viscosity on concentration and shear rate, among other 

physical variables, that affect pressure and flow. The middle layer is important in this respect, and 

when combined with regression techniques discussed below, demonstrates how simple predictors 

can be bridged to the observable output via the parameterized equations in the middle layer. By 

leveraging domain knowledge, HML allows the small dataset to be modeled in lieu of a full design 

of experiments. In order to understand the effectiveness of the middle layer, we assessed the model 

fit error using only predictors compared to passing predictors first through the middle layer before 

modeling the print response. HML is a type of multi-level hierarchical statistical modeling in 
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which equations are used to connect pre-determined features and layers.44 The difference between 

HML and conventional hierarchical approaches lies in feature discovery.  While Yao and Moon45 

used a hybrid unsupervised hierarchical model combined with a SVM to discover latent 

relationships in the data, both the layers and features in HML are expert-guided. Furthermore, 

HML allows for additional complex coupling between variables that exist in different layers. 

Known physicochemical relationships provide interpretability of results to the user and may 

provide extendibility to new prints governed by the same physical principles 

2.3.2. Designing the middle layer  

The HML middle layer aids in correlating the underlying physical interactions and processes 

between experimental predictors and the system output. Towards this goal, we chose a series of 

rheo-physical parameters to describe the fundamental physical processes that underlie 3D printing 

of non-Newtonian, soft materials. It is important to note that it is not pertinent or necessary that 

these middle variables are immediately or expertly known. Dimensional reduction can be 

performed to assess the importance of the chosen variables in the middle layer towards affecting 

the desired system response. When the chosen middle layer variables correlate strongly to the 

system response, the R2 score approaches unity, reflecting a more exact model. The following 

sections will discuss the chosen middle layer for the model FRESH 3D printing system, followed 

by a regularization and dimensional reduction that assess its accuracy in describing the system 

response. 

2.3.2.1. Proportionality 

In extrusion there is proportionality between the size of a printed filament, δ	µm, with the average 

set flow rate, Q	 µL s� 	and translational nozzle speed, v7 (mm/s).46  In principle, nozzle speeds and 
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flow rates are inversely related. For example, increasing the nozzle speed at a fixed flow rate will 

produce filaments of narrower diameter. The interplay of Q, v7 and the resulting shear forces play 

an important role in determining filament size, resolution, and precision when comparing printed 

constructs to the CAD file. This interplay is represented in Eq. 2.2. 

 ξ = � FG
HI!

	       Eq. 2.2 

 

2.3.2.2. Ink Viscosity  

Alginate is a shear-thinning polymer and thus its viscosity, η8(9	Pa ∙ s, is non-Newtonian at high 

shear rates, 𝛾̇ 	1 𝑠�  , and is dependent on the concentration of the polymer, C8(9. At low shear rates 

(𝛾̇ < 𝛾̇JKLM), alginate responds as a Newtonian fluid as the alginate polymer chain network 

reorganizes under flow. Above this critical shear rate, the viscosity decreases and is dependent on 

shear rate. The observed shear thinning of polymer solutions is caused by disentanglement of the 

polymer chains with increased orientation of the polymer coils in the direction of flow. The degree 

of disentanglement and orientation will depend on the concentration of dissolved polymer and the 

shear rate, which is captured in the filament size and morphology during the gelation process.26 

Comparatively high alginate concentrations require a longer chain relaxation time (1/𝛾̇JKLM)	w hich 

is reflected in observed differences between 3% and 5% alginate in the training set.47  In order to 

capture shear-thinning behavior, we tested the viscosity of alginate at specific concentrations of 

C8(9 using a 40 mm cone-in-plate rheometer. A cross-model21 was fitted to the data, and ultimately 

added to the HML middle layer as shown in Eq. 2.3.   We further confirmed that the critical shear 

rate at which alginate begins to lose viscosity is concentration-dependent. 
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 η8(9 = ηN + �
η)OηN

1 + 0.02γ(�								 
 Eq. 2.3  

 

2.3.2.3. Effective shear rate  

The effective shear rate depends on the nozzle size, D()**+", and flow rate, Q. While 

shear rates can vary at the nozzle walls of the extrusion nozzle, an effective shear rate was 

calculated for the total effective flow-rate measured in the system (Q ~0.1 µL/s). For a specified 

flow for small extrusion diameters relevant to the training set, 5% alginate is relatively more 

highly shear-thinned compared to other lower concentrations of alginate resulting in altered 

print features. A simple model for shear is added to the HML middle layer as shown in Eq. 2.4. 

 
γ =

Q
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Eq. 2.4 

 

2.3.2.4. Pressure  

The pressure of a shear-thinning fluid inside a small capillary tube is altered due to Hagen-

Poiseuille flow for non-compressible fluids. Its form is dependent on the fluid viscosity, power 

coefficient from shear thinning, flow rate, and nozzle diameter size as shown in Eq. 2.5.48 

    P = 32η'!(L.
&!)*
+!

/ +,
-.!"##$%&

          Eq. 2.5 

 

2.3.3. Model Assessment  

As we envision the future of bio-printing to include costly and complex components such as cell-

laden inks, the throughput of experimentation will continue to be challenging, limiting the dataset 
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in size and necessitating the development of improved ML strategies that can cope with small data. 

The effectiveness of multiple modeling strategies is assessed by comparing the residual sum of 

squares to the total sum of squares, or R2 value, between model predictions and observed data. We 

compared HML to a shallow, two-layer feed-forward neural network (the method of which is 

described in Appendix Figure 3.8). For a comparison of model performances, see Appendix Figure 

3.9.  

The middle layer is mapped to print response by statistical inference in the form of Least Absolute 

Shrinkage and Selection Operator (LASSO). LASSO is a powerful tool for regularization that 

drives model variables with weak correlations to zero, reducing the complexity of an otherwise 

high-dimensional print-space and retaining only those variables that correlate strongly with system 

properties. The variables used for LASSO included the squared and cross-terms of the four middle 

layer variables. First, the range of tuning parameters was set and cross-validated to determine the 

correct hyperparameter to use for the regression. The response was a vector of coefficients that 

reflected a parameterization of the response surface (line and corner scores) in terms of the middle 

layer variables (Eq. 2.6 and Eq. 2.7). A simple neural network was run on the same set of predictors 

using a two-layer feed-forward network with a sigmoid activation function for hidden layer 

neurons and a linear function for output neurons. The network was trained with the Levenberg-

Marquardt back-propagation algorithm following the Neural Fitting tool in Matlab. The R2 values 

comparing the model performances are reported in Figure 2.8.  
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Figure 2.8. We performed an HML fit and compared the performance to both conventional 
statistical inference and to a simple neural network. (A) We demonstrate how the middle layer 
in HML improves model fit of linewidth scores compared to conventional statistical inference 
with predictor-only inputs. LASSO is used to model the linewidth scores using only the four 
print predictors and leave-one-out cross-validation. The resulting 𝐑𝟐 is −𝟎. 𝟒𝟑𝟗, which is 
worse than fitting the mean to the data. Addition of the middle layer resulted in an improved 
test score, 𝐑𝟐 of 𝟎. 𝟔𝟒𝟑. The model accuracy is demonstrated by plotting the predicted score 
vs. the actual score where the 45º line represents error-free print fidelity. (B) HML is 
compared to a simple neural network with 10 neurons. The R2 values for both models are 
reported for linewidths and for corner print features. In both cases HML out-performs a black-
box network. 

The goal here is not to assert that HML will always out-perform a carefully trained and cross-

validated neural network that has sufficient data for model fitting and discovery of variable 

relationships. We have observed some fitting success with neural networks for predicting corner 

fidelity, and also with direct predictor-only fitting using non-linear methods such as random forest 

(Appendix Figure 3.8). In each analysis, however, the addition of the middle layer improved model 

fit. The aim of this analysis is to leverage physical knowledge to improve predictive power and to 

gain interpretability of the results for downstream analysis.  

Statistical regression correlates variables to the output for the HML method. A LASSO regression 

from the parameterized middle layer to the top layer showed good model performance with an R! 
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of 0.643. In contrast, when the experimental variables with squared and cross-terms included were 

modeled directly to the response, we observed poor model performance on the test set with R! =

0.23 while middle layer performance was generalizable to a score of 0.50 on the same test set. 

This demonstrates the importance of the HML framework, specifically in leveraging the middle 

layer for improved performance. Eq. 2.6 and Eq. 2.7 represent the print scores as linear 

combinations of the dominant middle layer variables, their cross-terms, and squared terms. 

 P$'!%/ = 2.17𝛾 + 1.21𝜂012 − 2.68𝑃 + 1.63𝜉 + 2.23𝛾𝑃 − 0.869𝛾𝜉 −
0.500𝜂012𝜉 + 1.01𝑃𝜉 − 2.23𝛾3 − 0.47𝜂0123 + 0.25𝑃3 − 0.61𝜉3	 

Eq. 2.6 

 

 P-).("., = 2.17𝛾 + 1.212𝜂LQR − 2.678𝑃 + 1.63𝜉 + 2.232𝛾𝜉 −
0.870𝜂LQR𝜉 − 0.498𝛾! + 1.010𝜂LQR! − 2.232𝑃! − 0.61𝜉!   

Eq. 2.7 

 

  

2.3.5. Physical Interpretation  

Feature importance is useful information for the designer to build physical intuition for the system. 

For HML, feature importance emerges from minimizing the L1 norm and fitting coefficients to the 

middle layer variables. Eq. 2.6 and Eq. 2.7 show variables that met the regularization criteria. Ink 

viscosity played a significant role in linewidth, Figure 2.9A, which shows altered line dimensions 

resulting from a concentration difference in the ink, quantified in Figure 2.9B. Shear rate and ink 

viscosity interplay with ink concentration as the flow profile for shear-thinned alginate is different 

from a typical non-compressible fluid, Figure 2.9D. Noticeable changes in surface roughness can 

also be noted in the images, which may be attributed to the effects of polymer chain relaxation on 

the gelation process, shown in Figure 2.9C.26 Finally, feature selection shows shear rate becomes 

important for nozzle directional changes which are necessary to print 90º angles (corresponding to 
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a corner radius of 0 mm). Visual comparison of corners at varying nozzle speeds is shown in 

Appendix Figure 3.7. The effects of acceleration and deceleration have important implications for 

reversing fluid flow, which can be challenging for highly viscous materials like hydrogels. Thus, 

higher w/v% concentration of alginates may be more suitable for designs that require smaller 

feature size.  

 

Figure 2.9. (A) Visual comparison of two prints at fixed Q, 𝐯𝐓, 𝐃𝐧𝐨𝐳𝐳𝐥𝐞 but at different ink 
composition: print 1 at 𝐂𝐢𝐧𝐤	= 5% w/v and print 2 at 𝐂𝐢𝐧𝐤	 = 3% w/v. (B) Quantification of 
average linewidth, 𝛅�𝐚𝐯𝐠, shows an over- and under-estimation of the desired linewidth, 
𝛅𝐂𝐀𝐃 = 𝟖𝟎	𝛍𝐦, from print 1 and print 2, respectively. Print 2 had a significantly higher 
linewidth compared to  print 1 (p <0.001; n=8). (C) Relaxation time, defined as 𝛕𝐜 = 𝟏

𝛄̇𝐜𝐫𝐢𝐭� , 
of alginate in DI water for 3% (blue), 4% (grey), and 5% (red) w/v showing a linear trend on 
a log-log plot with the slope ~𝑪𝒊𝒏𝒌𝟑.𝟔 implying the blob overlap concentration regime for the 
alginate ink polymer.47 5% w/v alginate requires more time to relax to its original state 
compared to 3% w/v. (D) Shear viscosity of alginate solutions at concentrations of 3%, 4%, 
and 5% w/v as a function of shear rate measured with a 40 mm cone-and-plate rheometer. 
Newtonian viscosity, 𝛈𝐍 and the concentration dependence of ink viscosity, 𝛈𝐢𝐧𝐤, after the 
critical shear rate (diamond). At 𝐃𝐧𝐨𝐳𝐳𝐥𝐞 = 𝟖𝟎	𝛍𝐦, we hypothesize that the 5% w/v ink was 
in a regime where it is shear-thinned more heavily than for 3% w/v alginate (grey box).  

 

Dominating coefficients in the HML equations suggest that proportionality is a driving feature for 

print score.  Based on mass conservation for Newtonian inks, the volumetric flow rate Q scales 
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with linewidth δ and translational velocity v7 as Q = H\"

F
v7.  Appendix Figure 3.6 shows how the 

data from the training set scales linearly with proportionality. The cross-sectional areas of printed 

lines for 3% and 5% alginate in the training set are plotted as a function of the ratio of print 

parameters, 𝛿! versus Q v7� .  The effect of ink concentration on proportionality is apparent in the 

constant offset of 3% w/v printed features compared to the theoretical relation, δ!~ F
H
G
I!

 shown in 

Appendix Figure 3.6(A). Data for 5% alginate w/v scales well for smaller diameters, Appendix 

Figure 3.6(B). We observe in the data that 5% alginate produced higher print scores for small 

linewidths but resulted in lower print scores at high flow rate where the ink may thinning due 

experiencing higher shear forces.  

Finally, the model predicted that printing corners with smaller corner radii generally had a better 

performance at higher translational nozzle speeds. A clear trend can be seen in the training set as 

shown in Appendix Figure 3.7 in which a speed of 100 mm/s had more accurate corner scores 

compared to 10 mm/s for 4% alginate. Physical interpretations of the HML model of the most 

fundamental building blocks of construct design (lines and corners) can act as starting point for 

selecting the best parameters that will go on to build more complex shapes, and can act as a 

gateway to introduce constraints in future optimization.  

2.3.6. Optimization  

The model was optimized with differential evolution, an optimization method built in SciPy, used 

to minimize the print error.49  Constraint ranges were applied to each of the bottom layer variables 

based on the range of the inputs. The HML equations given in Eq. 2.6 and Eq. 2.7 in combination 

with the physical equations in the middle layer were used to back-calculate the values of the 
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experimental predictors that give rise to HML-predicted high-fidelity prints for lines and corners, 

respectively. New prints were generated to test the optimization predictions, the results of which 

are summarized in Figure 2.10 and Table 2.2. As predicted, prints generated from optimal 

predictors reflected less than 10% deviation in dimensionality from the CAD file in randomly 

analyzed regions (and thus have a score of at least 90%), which we define as define high-fidelity. 

The HML model fit and optimization methodology are summarized and discussed in detail in 

Appendix Figure 3.9.   

Table 2.2. Optimized print parameters from HML equations and predicted print score 
showing parameter settings that resulted in the highest print fidelity. New experiments were 
run to validate the HML predictions. 

Feature Desired 
Dimension 

Optimized Printer and Material Settings Predicted 
Print 
Score 

Measured 
Print 
Score D()**+"	µm C8(9 

w/v% Q µL/s v7 
mm/s 

Linewidth 

80 µm 80 0.05  
0.06 

(EM 0.6) 
24.67 92% 95% 

152 µm 152 0.03 
0.16 

(EM 1.49) 
11.09 95.0% 92.0% 

Corner 
Radius 

0 mm 80 0.04 
0.06 

(EM 0.6) 
89.00 98% 98% 

0 mm 152 0.04 
0.13  

(EM 1.47) 
92.06 96% 96% 

 

Results from Table 2.2 show that a clear trend is established between the corner radius and faster 

translational nozzle speeds, predicting that 89 mm/s and ~92 mm/s will produce high-fidelity 

corners with 4% w/v alginate. Furthermore, higher concentrations of alginate were expected to 

produce lines with smaller diameters50  which was observed in the HML model prediction, 
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showing 5% w/v alginate as optimal concentration to print 80 µm.  Additionally, we noticed 

smaller nozzle diameters produced better print scores, and observed a trade-off between 

optimized features, as shown in Figure 2.10. Predictors for optimal linewidth scores gave sub-

optimal corner radius estimation while optimized corner predictors traded linewidth for corner 

fidelity. The clear trade-off between optimizing for directional control and line control shows 

how 3D printing systems will require multi-objective optimization for complex printed 

constructs. 

 

Figure 2.10. A tradeoff between optimized features, showing that conditions for optimizing 
corners were less well suited for lines (left), and conversely optimization of line morphology 
reduced the print fidelity for corners (right). In this experiment, 𝐐𝟏 = 𝟎. 𝟔	𝐄𝐌, 𝐯𝐓𝟏 =
𝟐𝟒. 𝟕	𝐦𝐦/𝐬, 𝐂𝐢𝐧𝐤𝟏 = 𝟓%	𝐰/𝐯 and 𝐐𝟐 = 𝟎. 𝟔	𝐄𝐌, 𝐯𝐓𝟐 = 𝟖𝟗	𝐦𝐦/𝐬, 𝐂𝐢𝐧𝐤𝟐 = 𝟒%	𝐰/𝐯. 
Scale bar represents 250 μm. 
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2.3.7. Process maps and printability: modeling error bias due to material feedback 

from the design space 

The impact of the optimized model is realized by creating a generalized tool for the 3D bio-printing 

designer that shows the predicted success and pitfalls of variable combinations. Due to the 

proportionality of printer variables, namely that the cross-sectional area (A#) of printed material 

scales with the ratio of flow rate and print speed, A# ∝
Q
v7� 	,	the 3D printing designer theoretically 

has nearly infinite possibilities of Q v7�  ratios that can produce a desired, fixed cross-sectional 

feature size. Figure 2.11A shows this relationship in more detail where (Q, v7) can be varied to 

produce a constant slope, A#. However, the non-Newtonian, shear-dependent nature of biopolymer 

ink extruded into a non-Newtonian, Bingham plastic support fluid means that not all combinations 

of (Q, v7) are created equal and for large, costly prints, it is paramount to predict the best (Q, v7) 

parameters that minimize error from the start.  
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Figure 2.11. Printability plots for desired feature size representing the interplay of printer 
machine variables, flow rate 𝐐 and translational speed 𝐯𝐓, on the predicted error in printing at 
a given nozzle diameter and ink concentration. The color scale and width of the curve show 
the HML predicted error for printing at different values of flow rate and translational print 
speed with optimal values identified in each. Furthermore, we updated the specificity of the 
plots by using a fitted equation to describe the dependence of 𝛅 on	𝐂𝐢𝐧𝐤.   Print data and 
corresponding fits, 𝛅(𝐂𝐢𝐧𝐤)	are shown in Appendix Figure 3.6A and B for 𝛅 = 𝟏𝟓𝟐	𝛍𝐦, and 
𝛅 = 𝟖𝟎	𝛍𝐦 respectively. (A) For linewidths, under the assumption that printed material is 
freely extruded into the gelatin support bath from a flat, non- tapered nozzle, then 𝐀𝐱 can be 
loosely approximated to linewidth as 𝐀𝐱 ≈ 𝝅

𝟒� 𝜹𝟐	giving rise to a slope that is proportional 
to linewidth (B) Printability plot for a 152 𝛍m nozzle with 3% w/v alginate and (C) 5% 
alginate from an 80 𝛍m nozzle showing a predicted minimum region of error for each. The 
color map represents the magnitude of HML predicted percent dimensional error from the 
CAD file. The width and shape of the error curves are mapped onto the chart as a visual tool 
to demonstrate to the user where the print error minimum lies given the optimal (𝐐, 𝐯𝐓). 
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Figure 2.11B and C shows basic process maps for printing 152 𝛍m and 80 𝛍m features 
for 3% w/v and 5% w/v alginate, respectively. The color map shows the magnitude of 
HML predicted percent error from the CAD file. An equation for the magnitude of the 
error (calculated from Appendix  

Table 3.4 HML results) is then parameterized onto the chart to create a visual of the 
location of minimum error, |𝜺| given the optimal user choice of (𝐐, 𝐯𝐓). The parameters 
from  

Table 3.4 that gave rise optimal linewidths for 3% and 5% alginate are shown to have errors that 

lie within the minimized regions in both Figure 2.11B and C. We envision the development and 

use of process maps towards more complex bio-print design and shapes wherein constraints add 

new challenges to optimization that can be inputted into the HML middle layer. For example, 

printing with cell-laden inks may restrict predictors to those that offer safe shear forces for cells. 

Process maps such as those described in Figure 2.11 can help locate the minimum dimensionality 

error under such constraints.   

The generalizability of the HML model to related systems is an area for future investigation. We 

propose using HML to optimize a FRESH printing system with new materials, variables, or printer 

settings, for example, with various shear-thinning bio-inks whose viscosity is outside the range of 

ink tested in the training set but follows the generalized cross law for viscosity described in Eq. 

2.3 in the middle layer. Fixed physical relationships between the bottom and the middle layer 

provide a facile route for new materials or printer variables into the model-specific relationships 

from LASSO, such as the introduction of new nozzle sizes, or different dilutions of alginate that 

span broader viscosity regimes. Furthermore, additional predictors are expected to improve model 

fit, such as the inclusion of a predictor for monovalent salts in the ink. We foresee the use of the 

HML model and process described here as a future methodology for optimization of new print 

systems using a manageably sized training set from the laboratory, thereby allowing bio-printing 
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to be a good candidate for machine learning without the need for a large dataset. Furthermore, we 

believe this model has the potential to transfer to more complex printed constructs via the physical 

gateway in the middle layer, such as for printed constructs containing biological matter such as 

collagen or cell-laden inks with potential clinical relevance. 

2.4. Conclusion 

We have applied an HML methodology in order to use a small dataset to build predictions for 

high-fidelity bioprinting with alginate. The model utilized physical relationships to link build 

parameters to the print score, allowing improved accuracy for both training and test data. LASSO 

was utilized for tuning model coefficient and for feature selection of dominating causal physical 

forces that drive print error. Optimization allowed for the prediction of build parameters that give 

rise to high-fidelity prints, and a trade-off was elucidated between the most basic printing elements: 

printed lines and 90º corners. This approach could be used to guide printing constructs by selecting 

optimal material, formulation, and process variables for a given form. Known physical equations 

help expand the future generalizability of our method to incorporate a diversity of inks including 

biopolymers and cells, and these can be used to guide printing of complex constructs where figures 

of merit include both structural fidelity and biological function. 
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Chapter 3. Application of HML models: Proof of concept for leveraging the physical 
middle layer for rapid optimization of parallel 3D bioprinting systems 
 

3.1. Introduction  

It is a vision of 3D bioprinting that we can print with multiple or new materials. From a processing 

standpoint, despite the fine-tuning of parameters, the overall physical system remains largely 

defined by a small number of fundamental physical parameters. In theory, the appropriate middle 

layer developed from HML on FRESH-printed alginate is composed of the minimum physical 

features required to describe the system and can act as a knowledge source for unseen 3D 

bioprinting systems. The following discussion explores the generalizability of the middle layer to 

target bioprinting systems by updating the physical variables with user-defined estimations of the 

new materials used. To demonstrate the functionality of this approach, we task the source model 

with predicting print outcomes from estimations of the properties of unseen inks. Furthermore, we 

generally discuss how more complex target systems can be rapidly optimized by greedily 

leveraging similar data and updating variable weights.   

Transfer learning can be imagined as an ultimate form of generalizability, not just to unseen data, 

but to new target systems. Transfer learning generalizes to new systems by leveraging knowledge 

of source material in order to predict new target systems that have intersecting mechanisms, 

features, or predictor distributions, all without the need for copious experimental data.52 The 

generalizability of 3D bioprinting models is of great interest due to the plethora of available 

printing mechanisms, biological materials, and design choices that may be used in the clinic. 

Resource challenges for re-collecting data in order to conduct data-driven optimization of new 

printed materials via design of experiments lies in time-sensitive clinical needs for “plug-and-play” 

prototyping, lack of facile, quantitative shape/function assessment techniques, and high biological 
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material costs.  The objective of this section is to extend the HML model framework developed 

for alginate FRESH printing (hereon called the HML-alginate model) to successfully predict the 

fabrication parameters for high-fidelity FRESH-printed constructs with new materials. 

Specifically, we will show a proof-of-concept of the rapid optimization of two different FRESH 

3D bioprinting materials: collagen I ink and an optically transparent support bath via knowledge 

bridges constructed from latent variables in the HML embedded middle layer.  Free-floating 

collagen I lines are predicted to within 10% of expected dimensions and a pilot dataset for rapid 

HML modeling and optimization of a Pluronic-based support bath is discussed. Finally, we discuss 

the future applications of HML in 3D FRESH bioprinting for cell-laden inks.  

3.2. Proof of concept: leveraging the physical middle layer for predicting parallel 3D 

bioprinting systems 

Existing approaches to statistical transfer learning (transferring information from source to target) 

can be very broadly categorized by the following methods: (1) instance-based transfer learning, 

(2) feature-based transfer learning and (3) parameter-based transfer learning.53 Instance-based 

transfer learning can be used when the source and the target instances are generated from two 

different but closely related distributions, allowing the source data to be reused in the target task. 

Feature-based transfer approaches attempt to forge a bridge for knowledge transfer by learning 

common features or a common structure between source and target data. Parameter-based transfer 

learning assumes that source and target tasks share some common parameters, hyper-parameters, 

or prior distributions. Previous work involving transfer learning in 3D printing is sparse. One 

notable work seeks to address the challenge of comprehensively improving shape fidelity in FDM 

plastic printing in the face of a high-complexity error-space and limited training data.54 In this 
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scheme, the dimensional error of various printed shapes is predicted in a parameter-based transfer 

learning approach. In particular, shape deviation in the training data from expected dimension is 

decomposed into two independent error models that differentiate shape-independent error from 

shape-specific error. Shared dominant parameters discovered from each statistical model inform 

one another, forging a bridge that can infer up-front error in new shapes. 

The discussion of transfer learning in 3D bioprinting is still quite nascent as the similarities and 

differences between source and target printing systems that would inform the type of knowledge 

transfer necessary for good predictive models is still complex and elusive. Unlike plastic printing, 

bioprinting can experience additional constraints on the experimental space due rheological and 

functional complexity, motivating the powerful use of transfer learning for modeling in a reduced 

experimental space. To date, the extension of learned knowledge to predict relatable 3D 

bioprinting systems has not been attempted. We will show that a supervised middle physical layer 

allows for facile predictions of optimal linewidth for collagen I via the trained HML-alginate 

model without introducing additional experimental data. Next, we begin to optimize a clear 

Pluronic-based support bath solution to be used in place of gelatin support baths in FRESH. This 

analysis seeks to be proof-of-concept, and we will discuss future steps for more rigorous 

investigation.  
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Figure 3.1. HML-optimized model for FRESH-printed alginate (discussed in Chapter 1) can 
be used for reducing the experimental space necessary to predict high-fidelity constructs from 
parallel printing systems. In this work, we define a parallel printing system as one that shares 
physical mechanisms captured in the physical middle layer of the source system. Shear-
thinning inks such as alginate printed on the same FRESH printer and support bath, or novel 
print materials (such as a new sacrificial bath) that demonstrate Bingham plastic behavior are 
examples of new materials that can be bridged through the middle layer of the original HML-
alginate model.  The properties of new materials are bridged into a new model by updating 
the associated latent variable equations, 𝒉𝒏(𝒙𝟏…𝒙𝒊) → 𝒉𝒏∗ (𝒙𝒊…𝒙𝒊∗). New variable weights 
from statistical inference between the middle and top layers are calculated in the event of new 
predictors, but with a reduced experimental space. In some cases, such as for Collagen I, the 
print space for alginate optimization can be re-used to predict high-fidelity printed lines. In 
the case of novel material optimization, such as a novel Bingham support bath printed with 
alginate ink, additional but reduced experiments are required. 

3.2.1. Materials and Methods for Collagen I ink prediction 

Collagen I lines were extruded into a gelatin support bath prepared as described previously (See 

FRESH printing in section 2.2.3). For collagen ink, 5 mL of collagen (Lifeink 200, Type 1 purified 

high concentration, Advanced BioMatrix) was diluted from 35 mg/mL to 23 mg/mL in 2.5mL of 

0.24M acetic acid. An air-tight syringe was filled with 3 mL of diluted collagen ink and centrifuged 

for at 3000 G for 30s to get rid of bubbles. Once bubble-free, the collagen ink was loaded into the 

extruder for printing. The gelatin support bath was prepared according to section 1.2.3. However, 

instead of replacing ethanol with calcium chloride (as was done for alginate printing), the cross-
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linker used was 0.5M Na-HEPES at a pH of 7.4 since change in pH is the appropriate cross-linker 

for collagen. For printing, a152 µm nozzle was used with the following print settings derived from 

the HML-alginate model ((Q, v7, D()**+", C8(9) = 	 °0.1
Q`
a
, 23bb

a
, 152	µm, 23	mg/mL±.  In this 

system, Q = 0.1 (c
,

 corresponds to an extrusion multiplier (EM) of 1. Furthermore, the layer height 

was kept the same as for alginate prints at 60 µm. The CAD file printed was kept the same as for 

alginate, and collagen free-floating lines were analyzed as in Figure 2.5. Printed collagen lines 

were assessed with a phase-contrast microscope with a 5x objective lens for deviations in 

dimension from the expected size of 152 µm. Collagen I viscosity was estimated and entered into 

Eq. 2.6. The measured print score for collagen was then compared to the HML-predicted score. 

Small deviations in collagen line straightness were considered to be a small uncertainty. These 

deviations are likely a result of natural properties of the polymer that are revealed due to extrusion 

and due to interaction with heterogeneous particles in the gelatin bath solution. 

3.2.3. High-fidelity collagen I bioprinting from HML-alginate models: proof-of-

concept  

Free-floating collagen I lines were printed from expert-user process settings described in Lee et 

al. Science 2019.35 To demonstrate transfer learning of the HML-alginate model to collagen, we 

tasked the HML-alginate model with matching the measured collagen print score (printed with 

expert-user settings) with an HML-predicted score based on updated, collagen-specific estimates 

of physical variables in the middle layer bridge. The HML-predicted score was calculated by 

updating η8(9 in the HML-alginate model (Eq. 2.6) using an estimated value of collagen viscosity 

as a function of shear rate (see Figure 3.2) that was gathered from the literature.55 A profile of 

collagen I viscosity as a function of shear-rate can be measured with a 40 mm cone-in-plate 
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rheometer for better shear-dependent viscosity estimates.  Nevertheless, collagen lines were 

predicted to within 10% of their measured score. These results show the HML model can transfer 

to differences in ink compositions, thus allowing the model to accurately predict printed feature 

outcomes with different inks.  

 

Figure 3.2. Proof-of-concept for adapting the HML model generated for alginate on collagen 
I, a parallel material ink. The HML-alginate model, which has learned FRESH printing over 
alginate features, is used to generate an equation of parameterized physical variables needed 
to predict high-fidelity prints in alginate. The middle layer then acts as a bridge to predict 
FRESH printing with collagen I ink. Native collagen was used as an estimate for collagen I 
viscosity in 𝑷𝒂 ∙ 𝒔. Better estimates can be made on the ink itself with a cone-in-plate 
rheometer. Nevertheless, the model was able to closely predict the lines for collagen extrusion 
based on updating the middle layer with collagen-specific estimates in Eq. 2.6 using the model 
weights cross-validated for alginate. As a result, the middle layer acts as a bridge for parallel 
printing systems via shared physical links, and it was able to translate to a collagen-ink space 
without running additional experiments. The analysis is meant to show a proof-of-concept for 
future endeavors that strive to make more complicated print predictions. The graph of 
viscosity curves is derived from Draipandy et al. J Mater Chem B, 2015.55 

 

As shown in Table 3.1, the HML-predicted collagen prints (via the middle-layer parameterization) 

predicted lines with ~8% error compared to the measured values which measured approximately 
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10% error. We expect collagen to be less shear-dependent than alginate and thus more closely 

follow the inner-diameter nozzle dimensions. As the HML-alginate model would correctly predict 

a print score of 80% for alginate lines for the same print settings, we suspect that the feature 

importance relationships discovered from LASSO regularization in chapter 2 has a high 

generalizability regarding the causal physical parameters that drive the print response. These 

causal relationships are exploitable to unseen print materials, such as collagen, which undergo 

relatable physical forces in the printing system.  

Table 3.1. Collagen I printed lines from expert process settings from HML predictions. 

 Expert-user collagen print 
settings 

P,-)."(measured) 90% 

P,-)."(HML − Predicted) 92% 

 

More complicated print predictions requiring an expanded feature space such as multiple ink 

chemistries, dual-extruders, support bath optimization, and complex shapes may necessitate the 

use of additional predictors not covered in the original HML-alginate model. In the next section, 

we will discuss how additional experiments can be used in combination with an updated middle 

physical layer for rapid optimization of new print materials in a reduced experimental space via 

the use of collected data and statistical inference to update variable weights. While random forest 

and simple neural networks are powerful for discovering predictor-response relationships on the 

training data, the use of a supervised middle layer provides the model interpretability necessary 

for transferring targeted knowledge to parallel 3D bioprinting systems.  
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3.3. Future Directions 

The application of HML to more complex models will briefly be discussed in the context of 

designing an optimization strategy for a new optically transparent support bath solution to replace 

gelatin support bath in FRESH. Second, the application of HML to cell-laden inks will be 

discussed in the context of functional outputs (such as cellular viability), and process maps for 

multi-objective optimization.  

3.3.1. Pilot data for rapid optimization of new support bath for FRESH printing 

While we have shown that 3D printed inks can be optimized, the gelatin support bath solution has 

remained distinctly constant. Unlike silicone FRE printing in which the yield-stress of the 

Bingham PDMS support bath can be tuned by the polymer concentration and cross-linker, gelatin 

microparticles and their subsequent effect on yield stress are much more difficult to control. As a 

result, ink material and print predictors are tuned to the gelatin bath and not the other way around. 

The yield stress in gelatin-based support bath can be related to microparticle size, concentration of 

viscosity modifiers (such as gum arabic), packing density, and other factors.56 Furthermore, gelatin 

microparticle support baths form an opaque hue due to large microparticle size that occludes real-

time view of the construct during the printing process. While the index of refraction of prints could 

be tuned to match that of the gelatin support bath, allowing for real-time monitoring of the print 

process, an optically transparent support bath with tunable yield-stress and thermo-reversible 

properties within a biologically compatible temperature range may provide great benefit to the bio-

print optimization process. Pluronic F-127 is an excellent candidate for a FRESH support bath as 

it is biocompatible, behaves as a Bingham plastic, and is thermo-reversible.57 Furthermore, the 
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nature of micellular-packing gelation could mimic the gelatin microparticles previously used in 

FRESH printing. 

In this section, the ability to extend HML methodologies to improve print optimization via tuning 

of the support bath will be briefly discussed. Additional experimental data will be necessary in this 

case to create a usable model since the original HML-alginate model did not include yield stress 

as a predictor (the gelatin support bath was kept constant). The use of, for example, storage and 

loss modulus data as middle layer variables could allow for additional tuning on the 3D bioprinting 

model for optimized prints. The dependence of the F-127 yield stress on temperature and 

concentration of dissolved polymer is a relationship that can be leveraged as a physical variable 

rather than a discovered relationship. The experimental space necessary to model a target printing 

system with this new bath solution in which there are numerous benefits to the printing process 

will briefly be discussed.  
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Figure 3.3. Early development of an optically transparent support bath for alginate printing. 
(A) The micelles formed when F-127 is dissolved in aqueous environments at 37°C causes 
the polymer to gel and act as a yield-stress material similar to packed gelatin particles used in 
the HML-alginate model in Chapter 1. One major difference between Pluronic bath and 
gelatin bath is in the magnitude of the storage and loss modulus: Pluronic is two orders of 
magnitude stronger than the gelatin bath. As a result, we should expect that the translational 
print speeds for alginate printed in Pluronic bath solution will be higher compared to printing 
in gelatin. The data for F-127 in DI-H20 is taken from Gioffredi et al. Procedia CIRP 201658 
and the data for gelatin is taken from Hinton et al. Scientific Advances 2015.34 (B) shows the 
thermo-responsive nature of the Pluronic polymer and its ability to release prints just below 
room temperature.  As we seek to keep bio-printing at room temperatures, the variables 
𝒙𝟏, 𝒙𝟐,	 and 𝒙𝟑 represent the predictor-space for 𝑪𝒃𝒂𝒕𝒉	(concentration of dissolved Pluronic 
polymer) tested for purpose of optimization via the HML framework. Data for the phase 
diagram is taken from Gioffredi et al. Procedia CIRP 2016 (C) shows a CAD file of a circular 
tube and the resulting alginate prints at 𝑪𝒃𝒂𝒕𝒉 = {𝟐𝟎%, 𝟐𝟓%, 𝟑𝟎%, 𝟑𝟓%} w/v F-127. Low 
𝑪𝒃𝒂𝒕𝒉(x2) results in thermally unstable bath due to the proximity to the sol-gel transition. High 
𝑪𝒃𝒂𝒕𝒉 (x3) is too stiff for realizable prints and is likely the product of increased yield stress 
due to higher concentration of dissolved polymer. 𝑪𝒃𝒂𝒕𝒉 is both a function of yield-stress and 
sol-gel transition. 
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3.3.1.1. Materials and methods for support bath optimization 

Pluronic Bath Solution Preparation. First, 50 mL stocks of Pluronic F-127 (Sigma) at various 

w/v% concentrations were created. F-127 was dissolved in CaCl2 (in DI-H20) at 4ºC at the 

following w/v% concentrations: 20% w/v, 25% w/v, 30% w/v and 35% w/v. Calcium chloride was 

varied at 1 mM, 5.5 mM, 8 mM, and 11 mM for each Pluronic concentration. Dissolved Pluronic 

stocks were made in a 4ºC cold room and left to dissolve overnight. Once the solutions were fully 

dissolved (about 12 hours), they were clear in appearance. Then, 5-mLs of each were then pipetted 

into a series of 6-well petri dishes to be used as support material for FRESH printing. The Pluronic 

bath solutions were then brought to room temperature which allowed them to gel. The baths can 

also be placed in a 35 ºC incubator for faster gelling transition. Once gelled, a FRESH 3D 

bioprinter was loaded with 4% w/v alginate in DI-H20. Alginate constructs were then printed into 

the gelled Pluronic bath containing calcium chloride cross-linker. Various print settings were 

tested on the different bath solutions, keeping the alginate ink constant. During printing, the entire 

system was kept at room temperature. Once the printing was complete, printed constructs were 

imaged and then released at 4 ºC. To improve the release, prints were diluted with cold CaCl2 in 

DI-H20 (to help prevent alginate osmotic swelling). Released prints were then ready for additional 

assessment for dimensional similarity to the original CAD file.  

3.3.1.2. Pilot results for utilization in HML modeling 

A pilot dataset was created to model the optimization of Pluronic F-127 as an optically transparent 

bath solution for FRESH 3D bioprinting using HML. Multiple w/v% of Pluronic F-127 were tested 

in combination with variation in calcium chloride cross-linker, and variation of different printed 

shapes. Furthermore, a range of print-predictors (Q and v7) were tested. We found that 20% w/v 
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Pluronic was too unstable to be used for prints, which is unsurprising given the bath concentration 

exists on the border of the sol-gel transition for F-127 at room temperature. Consequently, we 

found that 35% w/v baths were unable to maintain Bingham plastic behavior, resulting in poor-

quality prints. We suspect that the yield-stress of the bath (which is also temperature dependent) 

is too high at 35% w/v for high-fidelity printing at the print speeds used. Higher print speeds are 

likely necessary for higher Pluronic bath concentrations. Finally, we noticed that 11 mM calcium 

chloride (used in alginate-FRESH printing) occluded the nozzle, preventing the print from 

emerging. This phenomenon was mitigated by printing at lower cross-linker concentrations 

compared to what was used in the HML-alginate model. Overall, we observed a complex interplay 

between print translational speed, flow rate, cross-linker, bath concentration, and bath yield stress 

that makes the system a great candidate for HML modeling and optimization. 

3.3.1.3. Discussion of HML optimization of new support bath  

The implementation of HML optimization for printing alginate in an optically clear Pluronic bath 

solution will now be discussed. The underlying assumption is that some predictors remain constant 

between the source model (HML-alginate) and the target model (HML-alginate + Pluronic). For 

example, we can use a consistent printing system or consistent ink between models. We believe it 

is a reasonable assumption, for example, that 4% alginate ink experiences shear-thinning and 

relaxation times independent of the bath. Consequently, the bath solution is expected to behave as 

a Bingham plastic similar to gelatin microparticles, a property that can be updated in the HML 

middle layer via the known relationship of storage and loss modulus. By harnessing known aspects 

of the physical space, statistical inference is allowed to do what it does best: discover the remaining 

connections in the data that drive the system response. It is up to the experimenter to interpret these 
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discovered relationships, which in theory (if over- or under-fitting is appropriately avoided through 

cross-validation) describe complex physical processes and material interactions. Unfortunately, 

due to recent events and laboratory shutdowns, we were unable to fully gather the experiments 

necessary to fully model the new Pluronic system. However, we are able to show promising pilot 

results of print-space necessary to model alginate FRESH printing in an optically clear bath 

solution. Completing the experimental space and testing the HML-optimized predictions is an 

exciting and motivating future step.  

3.3.2. Applications to cell-laden inks 

The system response in HML need not be dimensional fidelity but can instead contain a functional 

output. For example, a measurable response of 3D printed cells could be their viability27                        

(calcein AM stain), alignment (orientation-parameter),28   or attachment (E-cadherin),29   to name 

a few.  Thus, alginate inks laden with cells would be highly relevant as an extension of this work 

in which our known alginate system can be optimized alongside a functional output relating to the 

properties of cells. Furthermore, the introduction of constraints and visualization of key design-

space areas from a process map, as has been done for metals,30  could be useful for more complex 

printing processes that require the optimization of a multivariate space. Consider, for example, the 

pressing question whether 3D printing viable tissue constructs are feasible given high shear rates 

in the small, capillary-sized extrusion nozzles. High shear rates could negatively affect cells or 

other biomaterial inks during printing. It is well known that high shear forces can cause undesired 

coagulation,31  reduce cell viability and differentiation, or even rupture cells. Functional cell 

outcomes add attainable constraints to the multi-objective optimization problem as it narrows the 

design-space for the designer as shown in Figure 3.4. Table 3.2 shows a case study regarding the 
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optimization of 3D printed small line widths using a cell-laden alginate ink requiring theoretical 

cell rupture constraints and mechanical failure conditions.32                        

Table 3.2. Case study constraints 

Smallest feature size At most 80	µm 

Dimensional Precision At least 95% 

Critical shear stress Less than 500	Pa 

 

By mapping these constraints onto a Q-V space as in Figure 3.4, the user can direct machine-driven 

optimization parameters. In Figure 3.4, normalized user-defined print settings are plotted against 

measured effect on the cross-sectional area of the printed feature. Measured cross-sectional area 

from the data is shown. Print settings (Q and v7) are plotted with measured cross-sectional area 

for three concentrations of C8(9 printed with an 80 µm nozzle reflecting the ink material interaction 

with print settings. A red line is marked showing the critical shear stress beyond which cells printed 

into the system are expected to rupture. Furthermore, a line representing a cross-sectional area 

~6400 µm2 (derived from a nozzle diameter of 80 µm) is plotted with regions showing the location 

of 95% precision (or 5% deviation from 80 µm). Finally, the HML-alginate model is cross-

referenced from Figure 2.11 to identify error in chosen print parameters. Taken together, the user 

can begin to identify the print settings (Q, v7, C8(9) for D()**+" = 80	µm that satisfy the design 

constraints from Table 2.2.  Future work will involve updated error predictions from viscosity 

measurements of cell-laden alginate inks. 
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Figure 3.4. A pilot Q-V process map was generated using theoretical cell rupture conditions 
(72% strain, 8.7 𝛍N force, on a 30 𝛍m diameter cell). This shows the constrained design space 
for printed cell lines. From this map 𝑸, 𝐯𝐓, and 𝐂𝐢𝐧𝐤 can be chosen for achieving dimensional 
accuracy with 𝐃𝐧𝐨𝐳𝐳𝐥𝐞 = 𝟖𝟎	𝛍𝐦 based on material feedback from the data. Figure 2.9 can be 
cross-referenced to give estimates on HML-predicted dimensional error for the chosen print 
settings.  

Preliminary work involving HML for modeling functional cellular outputs was conducted in which 

both shear stress from bioprinting and functionalization of alginate with RGB groups were to be 

correlated with cell viability and cell alignment on printed constructs. Alginate polymers align in 

the direction of shear and retain this alignment after cross-linking. Since it has been shown that 

some cells (such as skeletal cells) align to small micro-grooves in their environment64, we aimed 

to devise an HML model in which shear rate in bioprinting nozzles could be used to map cell 

viability and alignment to the printed construct. Future work in this area is both exciting and 

necessary for the fidelity (both dimensionally and functionally) of future cell-laden prints.   
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3.4. Conclusion 

The benefits of model interpretability from an embedded physical middle layer become evident 

when aspiring to greater model generalizability. Initially, an HML-alginate model was created 

from a streamlined experiment space of 48 prints in which the effect of print predictors on error 

was systematically sampled and modeled to predict high-fidelity shapes in alginate. While random 

forest and neural networks were powerful statistical inference methods for predicting print 

outcomes, the supervised middle layer combined with regularization revealed the dominant and 

interpretable physical variables necessary to describe high-fidelity printing. These dominant 

physical variables, namely combinations of pressure, viscosity, and shear-rates became integral 

for transferring the HML-alginate model to unseen bio-inks. By updating the HML-alginate model 

with collagen-specific latent variable estimations, we were able to show that variables in the 

embedded middle layer can be leveraged to predict parallel 3D printing systems with good 

accuracy. As a result, we showed a proof-of-concept of one of the first attempts at transfer learning 

in 3D bioprinting.  The decomposition of the print-space into its dominant physical parameters 

also helped to identify modes of transfer to parallel systems for rapid optimization of new 

materials, such when choosing the experimental predictors for modeling a new, optically 

transparent support bath solution for FRESH. Finally, we can use HML-predicted error bias to 

create process maps that can help identify the trade-offs of choosing from a range of acceptable 

process parameters on the desired output. For example, the best shear-rates for printing with 80 

µm dimensional precision may be detrimental to the survival or function of some cell types and an 

intermediate value must be chosen.
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Section 1 Appendix 

 

Figure 3.5. Above dataset that was generated to study the fidelity of prints in terms of the 
HML bottom layer variables: 𝐃𝐧𝐨𝐳𝐳𝐥𝐞	𝐚𝐭	[𝟖𝟎	𝛍𝐦,	𝟏𝟓𝟐	𝛍𝐦],	𝐯𝐓 [10 mm/s – 100 mm/s], 𝑸 [0.4 
EM – 1.5 EM], and 𝐂𝐢𝐧𝐤 [3% w/v, 4%w/v, 5% w/v]. The EM is a multiplicative factor and the 
conversion from EM to flow rate is Q = 0.1 𝝁𝑳/𝒔 ×EM. Nozzle length could not be 
individually tested for this dataset and is represented in middle layer equations (see Table 3.3).    
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Figure 3.6. 𝝏𝟐 vs (𝑸, 𝒗𝑻) plot shows the expected and measured relationship between cross-
sectional area of printed material and print parameters. Cross-sectional area of each linewidth 
is plotted as a function of bottom-layer printer variables via the equation 𝑨𝒙 = 𝟒 𝝅�

𝑸
𝒗𝑻� =

	𝝏𝟐 where linewidths are assumed to be measured from cylindrical print fibers and thus are 
Â𝑨𝒙 = 𝜹. The location on the y-axis that corresponds to 152 𝝁𝒎 has been shown for 
convenience. The QV space provides a way to look at the linewidth data measured from prints 
created from multiple print variables. (A) shows the dataset that attempts to make 152 𝛍𝐦 
diameter linewidths using 3% alginate. Dashed line shows the expected theoretical scaling of 
cross-sectional printed area with print parameters. However, the data points measured at 
various (𝑸, 𝒗𝑻) instead fall just above this expected line (orange dashed line). Red triangle 
represents the measured linewidth from print settings derived from the HML-random forest 
optimized prediction. (B) The dataset that attempts to make 80 𝝁𝒎 diameter linewidths is 
shown in green compared to the expected relationship (black). The location on the y-axis that 
corresponds to 80 𝝁𝒎 has been shown for convenience. The HML predictions for optimized 
print settings is shown to fall within 10% of 80 𝛍𝐦. The following variable relationships are 
used for printability maps for 3%, 152 𝛍𝐦 error prediction, and 5%, 80 𝛍𝐦 error prediction: 
𝛅𝟐𝟏𝟓𝟐	𝛍𝐦(𝐂𝐢𝐧𝐤 = 𝟑%	𝐰/𝐯) = 𝟎. 𝟗𝟒𝟐𝟖 °𝟒 𝛑�

𝐐
𝐯𝐓� ± + 𝟗𝟔𝟎𝟕. 𝟕 and 𝛅𝟐𝟖𝟎	𝛍𝐦(𝐂𝐢𝐧𝐤 = 𝟓%	𝐰/

𝐯) = 𝟎. 𝟕𝟓𝟗𝟏°𝟒 𝛑�
𝐐
𝐯𝐓� ± + 𝟐𝟓𝟗𝟒. 𝟗. 
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Figure 3.7. A macro-view of shape fidelity was analyzed by measuring the corner radius  of 
the box window-frame at various printing conditions. At a fixed nozzle diameter of 80	𝛍𝐦, 
(A) and (B) the corner radius is shown to improve at higher printing speeds. Increasing print 
speed similarly improves the corner radius at a fixed, slightly higher nozzle   diameter of 152 
𝛍𝐦 (C) and (D). In general, higher print speeds and smaller nozzles gave better control over 
alginate during directional changes in the nozzle. 
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Figure 3.8. A schematic showing various modeling strategies with and without a middle layer 
for (A) linewidth features and (B) corner features. NN-1 represents a two-layer feed forward 
neural network with one neuron and NN-10 shows the same structure for 10 neurons. For each 
feature, we found modeling is improved with the addition of a middle layer. Random Forest 
(RF) and NN-10 also show promising model fits for linewidths. Neural networks and RF score 
reasonably well for corner predictions with the addition of the middle layer compared to HML 
in the text. HML was ultimately chosen in this work for its ability to perform well modeling 
both print outcomes. Furthermore, middle layer physical interpretation combined with the 
print scoring equations (Eq. 2.6 and Eq. 2.7) aid in the development of downstream analysis 
such as 3D bioprinter process maps for alginate and bridging to new material systems. 
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Figure 3.9. (A) HML fitting schematic and the optimization process. (1) TS = training set is 
generated using a combination of the set of X predictors. (2) X predictors are combined to 
parameterize a middle layer, M(X), consisting of known physical equations (see Table 3.3). 
(3) Statistical inference methods (LASSO in this analysis) discover combinations of middle 
layer variables that fit and further parameterize the system response Y(M) making it more 
specific to the system at hand. (4). Error, 𝜺 defined as 𝛆 = 𝛅𝐨𝐛𝐬 − 𝛅𝐂𝐀𝐃 is minimized using 
constraints C. (5) Parameterization equations from part 2 are used to back-calculate the 
optimal set of predictors Xopt. (6) New experiments using the optimized predictors from Xopt 
are done to test the model predictions. (7) PS = predicted set which consists of optimized 
prints. (B) A schematic of a shallow neural network with a 2-layer feed-forward network. The 
input layer has four predictors and between 1 and 10 neurons in the hidden layer. The network 
is trained with a Levenberg-Marquardt backpropagation algorithm in accordance with the 
Matlab Neural Network Fitting tool. 

 



66 

 

 

Figure 3.10. Additional shapes and experimental conditions explored for printing alginate 
with Pluronic F-127 bath solution. Since pH plays a large role in both micellular concentration 
and packing density and in the cross-linking of future bioinks (such as collagen), hepes (pH = 
7.25) was tested as a diluent in comparison to pure DI-H20. For an HML model, each of these 
prints would be scored quantitatively according to the expected CAD dimensions. Once 
scored, the print score and subsequent process conditions that led to this score would be 
inputted into the model. A similar model would be used as HML-alginate, with the exception 
of new predictor variables for concentration of bath 𝑪𝒃𝒂𝒕𝒉 and concentration of cross-linker, 
𝑪𝒄𝒓𝒐𝒔𝒔.	 The relevance of new middle layer variables such the relationship between 𝑪𝒄𝒓𝒐𝒔𝒔, 
bath yield stress, and 𝒗𝑻 in predicting quality prints would be explored. 
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Table 3.3. Hierarchical machine learning middle layer equations. 

 Variable Parameter Description Equation or Range 
Pr

ed
ic

to
rs

 

xr C8(9 Ink concentration  [0.03,0.04, 0.05] w/v% in DI 
water 

x! D()**+" Nozzle diameter 80 µm, 152 µm 

xs Q 
Normalized Flow 
Rate 

(Extrusion Multiplier) 
[0.4, 0.6, 1.0, 1.5]× 0.1 µL/s 

xF v7 Nozzle speed [10, 20, 30, 50, 100] mm/s 

xt ∗ C%u%+"  Alginate cross-linker 
concentration [11 mM, 5.5 mM]* 

Hi
dd

en
 L

ay
er

 

hr 

η8(9(C8(9, γ̇) 
 

ηN(C8(9) 
η)(C8(9) 
n	(C8(9) 

Ink viscosity [Pa ∙ s] 
 

Ink viscosity (infinite 
shear) 

Ink viscosity (zero 
shear) 

Power law exponent  

 

η8(9 = ηN + �
η)OηN

1 + 0.02γ̇(� 

 

ηN = 20.11C8(9 − 0.4483 
η) = 67.892C8(9 − 1.8237 

 

n = 4.08C8(9 + 0.5919 

 

h! 

γ(Q	, D()**+") 
 

𝐴v(D()**+") 

Effective shear rate 
[1/s] 

 

Cross-sectional area 
[µm!] 

 

γ =
Q
Av�

D()**+"
2�
=

8Q
πD()**+"s

 

 

𝐴v =
𝜋𝐷Qwwxyw!

4�  

 

hs 
P(Q	, D()**+") 

L 

Pressure [Pa] 

Needle Length [mm] 

 

P = 32η8(9L �
3n + 1
4n �

4Q
πD()**+"F
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L = 25.5 mm for D()**+"(152	µm) 
L = 6.5 mm for D()**+"	(80	µm) 
 

hF ξ	(Q, v7) Proportionality [µm] ξ = È
4Q
πv7

 

Re
sp

on
se

 

yr P+8(",(hr, … , hF) 
Print Score [0-100]% 

(measured line width 
[µm]) 

 

P+8(", = 1 −	
|ε|
δ"#$

× 100% 

 

ε = δ)z, − δ"#$ 

 

y! P.u{8|,(hr, … , hF) 
Print Score [0-100]% 

(measured corner 
radius 𝜑) 

P.u{8|, = 1 −	
|ε|
φ"#$

× 100% 

 

ε = φ)z, − φ"#$ 

 

Table 3.4. Coefficients from Eq. 2.6 and Eq. 2.7 in the text 

Parameterization Coefficients (Lines) Coefficients (Corners) 

𝛾 2.170 2.170 

𝜂LQR 1.210 1.212 

𝑃 -2.680 -2.678 

𝜉 1.630 1.631 

𝛾𝑃 2.230 0 

𝛾𝜉 -0.869 2.232 

𝜂LQR𝜉 -0.500 -0.870 

𝑃𝜉 1.010 0 

𝛾! -2.230 -0.498 

𝜂LQR! -0.470 1.010 

𝑃! 0.250 -2.232 

𝜉! -0.610 -0.614 
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Section 2: Smarter Diagnostics- Merging systems biology with molecular 
biology: ML methods for leveraging Phase 1 clinical data. 

Chapter 4. A Markov model for early prediction of renal cancer response to HCQ/IL-2 
treatment and disease monitoring from Phase 1 clinical data 

 

4.1. Introduction 

The advent of multiplex PCR and next generation sequencing recently has enabled robust high 

throughput analysis of the immune repertoire in response to disease and treatment.1 2 It has been 

well established that the diversity of the T cell repertoire gradually decreases with age 

correlating with an increased incidence of cancer.3 4 In a 30-year longitudinal study of 6 healthy 

individuals, 10-year sequential TCR Vβ sequencing identified a stable CD4 repertoire, but a 

reduction in CD8 diversity.3 This progressive increase in circulating repertoire clonality was 

validated in a large cohort of pan-cancer patients (n=218) and age matched healthy controls 

(n=95), which identified an age-specific reduction in repertoire richness (unique clones) and 

evenness (clone frequency) across both healthy individuals and cancer patients older than 40 

years.4 Intriguingly, despite administration of cytotoxic, lymphodepleting chemotherapies, 

patients with hematologic and solid tumors experienced an age specific rebound in TCR 

diversity that was attributed to thymic rebound rather than peripheral TCR clonal expansion.4 

These results demonstrate the dynamic nature of the adaptive immune repertoire, and the 

necessity to monitor such changes during disease development and treatment.  

With some of the earliest reports of cancer immunotherapy response identified in patients with 

metastatic clear cell renal carcinoma treated with high dose interleukin-2 (IL-2),5 6 7 several 

studies have since dissected the adaptive immune response in such cancers and other tumor 

types. Early reports established the tumor specific clonal expansion associated with tumor 
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infiltrating lymphocytes (TIL), whose oligoclonal population and longer CDR3 length 

drastically differed from circulating T cells in the blood.8 9 10 Modern high dimensional 

multiomics analysis of localized RCC TIL, adjacent normal tissue, and peripheral blood 

lymphocytes (PBL) from 40 patients classified tumors into immune regulated, immune 

activated, and immune silent subtypes. Although an increased infiltration of T cells was 

identified in both immune regulated and activated subtypes, an enrichment of ICOS+, PD-1+, 

LAG3+, CTLA4+ CD4 and CD8 cells in the immune regulated subtype corresponded with 

reduced TCR clonality, higher pathologic grade, larger tumors, and poorer overall survival.11  

Given immunologic control of health and cancer progression, the advent of multimodal cancer 

therapy, including chemotherapy, radiation, targeted therapy, immunotherapy, and surgery has 

warranted the need to assess treatment effects on the adaptive immune system. TCR sequencing 

of PBL before and after nephrectomy in 45 patients with localized RCC found that patients with 

higher baseline diversity had a reduced neutrophil to lymphocyte ratio (negative prognostic 

indicator), lower clinical stage, and longer overall survival. Trauma and acute inflammation 

following surgery resulted in a mobilization of naïve T cells and a reduction in T cells with an 

exhausted phenotype that corresponded to an increase in peripheral TCR diversity.12 In a small 

cohort of patients with RCC treated with and without neoadjuvant stereotactic body radiation 

(SBRT) prior to nephrectomy, TCR Vβ sequencing of the resected tumor and pre and post SBRT 

peripheral blood identified an intratumoral and peripheral clonal expansion in SBRT treated 

patients. This clonal expansion was accompanied by an increase in convergent TCR nucleotides 

coding for the same amino acid sequence and was present within two weeks of SBRT. This was 

slightly reduced compared to baseline by the time of nephrectomy (4 weeks)13 in two 
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independent cohorts of metastatic RCC, patients with high baseline TCR repertoire diversity 

had greater survival and response following combined high dose IL-214 and autophagy 

inhibition or anti-VEGF therapy.15 This strongly suggests a central role for receptor diversity in 

robust responses to cancer. 

Immune checkpoint blockade (ICB), targeting CTLA-4, PD-1, and PD-L1 has transformed 

oncology practice and now serves as a first line therapy for patients with advanced   clear cell 

RCC.16 17 18  Of course, patient heterogeneity, including tumor and T cell intrinsic factors, limit 

anti-tumor responses and leave significant patient populations without clinical benefit. In a 

recent report, 25 patients with metastatic RCC treated with anti-PD-1 (nivolumab) ICB, serial 

TCR Vα and Vβ sequencing helped to retrospectively identify patient response. Unlike the other 

metastatic cohorts, baseline TCR diversity was not associated with treatment response. Patients 

displaying an increase in peripheral TCR clonality at 3 and 6 months on therapy were more 

likely to respond to therapy and have greater overall survival. Clonal expansion of circulating 

T cells in response to presumed tumor specific antigens resulted in an increase in the number of 

shared tumor and peripheral blood TCRs and elevated CTL gene signatures (granzyme B, 

perforin, CD39, and PD-1) associated with response.18  

The vast majority of studies evaluating the immune repertoire in relation to patient outcome or 

treatment response often utilize broad metrics (diversity, clonality, etc) that reduce the high 

dimensionality of heterogenous immune repertoires. Although repertoire diversity is an 

essential summary statistic that reflects the potential breadth of antigen specificities and degree 

of clonal expansion, it is highly susceptible to biased calculation with under sampled TCR 

repertoires19 and does not verifiably capture subtleties associated with antigen recognition. 
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Advances in machine learning algorithms have enabled superior understanding and utilization 

of immune repertoires in the monitoring and classification of disease outcomes. In a cohort of 

90 patients with gastric cancer, a convolutional neural network outperformed support vector 

machine and random forest models in classifying cancer vs normal tissue based on BCR 

sequencing that utilized amino acid features coded into matrices with Kidera factors, CDR3 

length, and V/J frame, and number of somatic hypermutations.20 Utilizing the public TCGA 

database of 4200 RNA sequenced solid tumors, researchers at the University of Texas 

Southwestern developed a neural network, DeepCAT for de novo prediction of cancer 

associated TCRs that can provide a highly sensitive noninvasive cancer detection platform. 

Following removal of public CDR3s, 2x2 amino acid sequences are plotted and separated by 

CDR3 length and correlated to provide a Cancer score that was shown to be a robust predictor 

of cancer in several early and late-stage epithelial tumors of non-viral origin compared to non-

cancer PBMCs. The Cancer score was prospectively validated in untreated RCC, ovarian, and 

PDAC cohorts with high sensitivity that could classify patients by tumor stage.21 Following γδ 

TCR sequencing of 54 FFPE tissue specimens from patients with coeliac (CED) and non-coeliac 

disease, a machine learning algorithm that considered hypervariable CDR3 regions, short 

overlapping segments CDR3 sequences (kmers), and kmer sequence position (start, middle, 

end) utilized principal component analysis and hierarchical clustering with clinical indications 

to predict CED diagnosis that was accurate and independent of patient gluten sensitivity.22 

While machine learning algorithms utilizing immune repertoire sequencing data can greatly 

improve early cancer detection and diagnosis, they have not yet been utilized to predict 

treatment response and outcome. Patients with cancer receiving novel therapeutic agents often 

must wait several weeks if not months to receive potential clinical benefit, and in many cases 
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experience repertoire fitness and performance status decline and eventually succumb to their 

disease. A ML algorithm that can stratify treatments based on patient baseline or immediate 

immune repertoire response could dramatically improve precision medicine and clinical 

outcomes.  

In this work, ML methodologies for early prediction of treatment efficacy based on patient 

repertoires are developed from patients treated with hydroxychloroquine (HCQ) and 

Adlesleukin (IL-2) for progressive renal cancer. Two main assumptions drive this work forward. 

The first is that the adaptome plays a role in renal cancer progression, remission, and disease 

equilibrium.7  IL-2 is geared towards activating  the immune system, and the original study 

shows that prolonged IL-2 treatment (with the help of HCQ) results in 20 of 29 patients reaching 

at least stable disease. The second assumption is that this role (and its mechanisms) is visible in 

the vast repertoires of patients, which can be observed as clonotypes that circulate the blood. 

Both the clonotypes that are observed and those that are not observed (due to down-regulation 

or migration to the tumor site) in intravenous blood could carry important information about the 

cancer progression/regression battlefield. Thus, detecting clonotype signatures related to disease 

phenotypes via intravenous blood could be a non-invasive and rapid way to elucidate an earlier 

diagnosis of renal cancer disease state compared to current standards.  

A leading approach for CDR3 clonotypes-mediated prediction cancer states is to collapse a 

space of 1015-1025 possible sequences into a low-dimensional space of a few descriptors such as 

whole sample sequence diversity and entropy. However large-scale descriptors may mask the 

more sensitive information encoded in partial-sequence (or within-sequence) information 

content of individual clonotypes that is more specific to disease outcomes. In this work, we 
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present a methodology for modeling renal cancer response to IL-2 based on information entropy 

and first-order Markov chains. A probabilistic analysis on observed amino acid pair motifs in 

whole receptor sequences was conducted for three purposes: (1) intermediate-dimensionality 

representations of CDR3 repertoires as compact 20x20 matrices; (2) early predictive 

classification of final patient states following 15 days of immunotherapy with an accuracy of 

90%; (3) quantitative monitoring of changes in patient state via the information content of the 

adaptome. In comparison with t-SNE analysis of four standard diversity metrics, first order 

Markov chains of clonotypes elucidated entropic bias responses during IL-2 treatment mediated 

primarily by T cells or B cells. These results show the utility of Markov models for leveraging 

within-sequence information content as a powerful tool for advances in diagnostics in the clinic. 

4.1.1. Cohort of Renal Cancer Patients 

In this study, 29 patients with progressive renal cancer were treated with HCQ/IL-2 over the 

course of 15 days (Figure 4.1). At specified treatment points, namely day -14 (also called pre-

IL-2 treatment in this work), day 1 (first day of IL-2 dosage), and day 15 (second dosage of IL-

2), intravenous blood samples are extracted from each patient and sent to iRepertoire for 

analysis. A combination of NGS with damPCR and a proprietary bioinformatic pipeline were 

then used to extract clonotypes, after which the nucleotide and amino acid primary structure 

was reported. Examples of the extracted raw clonotype data used for this analysis, namely the 

CDR3 primary amino acid sequence and corresponding observed frequency are shown in Table 

4.1 and Table 4.2 for a responder and non-responder from three different treatment points. 
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Figure 4.1. The role of the adaptive immune response in fighting renal cancer was studied by 
sequence-specific profiling of 29 progressive disease patients over the course of 
hydroxychloroquine (HCQ) and Adlesleukin (IL-2) treatment. All 29 patients received HCQ 
treatment at day -14 (pre-IL-2 treatment). HCQ/IL-2 was given two weeks later at day 1, and 
again at day 15. Blood samples for immune profiling were collected at all three time points. 
Out of the 29 patients studied, 20 patients had responses evaluated at day 15. RNA from blood 
samples was analyzed using a combination of dam-PCR and next generation sequencing 
(NGS). The iRweb (from iRepertoire) bio-informatics pipeline was used to assemble profiles 
of CDR3 variable region clonotypes for all seven TCR and BCR chains used in this analysis. 
Patient response to HCQ-IL-2 treatment was determined up to and even exceeding 100 weeks 
post-treatment. In our analysis, we intend to use patient CDR3s from the adaptive immune 
profiling described above to make early-stage predictions of patient outcomes by day 15. 

 

It is important to note that the length of each individual sequence varies (10-25 amino acids on 

average) as does the size of each full sample list (102-105 total number of clonotypes observed 

in each sample, shown at the bottom of each list in Table 4.1 and Table 4.2). Furthermore, each 

patient sample was analyzed for all seven chains, resulting in 21 clonotype lists per patient. 

Since any combination of observed sequences from one of seven chains, frequency of clonotype 
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observation, or sample diversity could be a causal feature of patient response to treatment, a 

large and highly variable feature-space is obtained. Predictive models must carefully navigate 

over- and under- fitting the patient response. Figure 1.2 of this thesis reflects on the shape of 

data in which features drastically outnumber the patients studied. The challenge of good model 

feasibility in this regime lies in sufficient data to supplement features for more canonical data-

driven learning. Acquiring “bigger data” in this case boils down to measuring a greater number 

of patients, which would exclude the analysis of data in Phase 1 trials. The most effective model 

strategies will adapt to balance high numbers of features per patient while leveraging the small 

patient cohort.  

Table 4.1. Example of raw responder clonotype data (from IGH clonotypes) 

Patient 0321 – Responder   

Sample 1 
Day -14 (Pre) 

Sample 2 
Day 1 

Sample 3 
Day 15 

Observed Sequences Freq Observed Sequences Freq Observed Sequences Freq 
ARDGVGATHFDH 5350 ARIPPMIEVVYYGMDV 26097 ARGVHNSYDPAGYDN 18446 
ARGTTLVSRAEYFQD 4651 AKEHSSTSKGSFDI 18493 AHRRTYSSGWYFDY 5297 
VTDPSWDILTGYTFDY 4618 AKEISGISSGSFDY 15747 ARMGRMDV 3595 
AKYRIENMVHSGFDY 3563 AKEYSSVSKGSFDV 11227 ARTKRGVGGNFLYYFDY 3076 

⋮  ⋮  ⋮  
~19.9k clonotypes ~31.5k clonotypes ~ 35.5k clonotypes 

 
Table 4.2. Example of raw non-responder clonotype data (from IGH clonotypes) 

Patient 0627 – Non-Responder   
Sample 4 

Day -14 (Pre) 
Sample 5 

Day 1 
Sample 6 
Day 15 

Observed Sequences Freq Observed Sequences Freq Observed Sequences Freq 
ARTSAGRPGDY 13950 GSFTDS 14368 ARIYDSSVSYTGQDTFDI 14830 
ARRYCEGGVCYDDRG 10757 ARDRLTTMTSLVLDH 13040 ARDSVTTYFDY 3138 
AKDDDFWSGYYTFDD 8248 AKDRSYTIFGVFDY 10492 AKVPQNYGDSNLEY 2537 
ARNLPPDY 7356 ARIKLKATDALAY 9634 VKEDDYHRSGRLDA 2452 

⋮  ⋮  ⋮  
~45.9k clonotypes ~77.4k clonotypes ~ 105.4k clonotypes 
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As previously stated, each patient sample is analyzed for all seven chains (TRD, TRG, TRA, 

TRB and IGH, IGK, IGL). Tree maps highlighting the diversity of observed sequences in each 

sample for any of the seven chains can be generated to highlight the overarching clonotype 

diversity for each patient sample. An example of a tree plot for Day 15 comparing Patient 0321 

(Responder) to Patient 0627 (Non-Responder) is shown in Figure 4.2.  Each colored, rounded 

rectangle represents a unique CDR3 that can be mapped back to a specific V- and J- gene 

alignment. The size of the rectangles represents the observed frequency of each unique CDR3 

in the sample, reflecting the repertoire bias. As the adaptome has many functions other than 

tumor suppression, the tree plots exemplify the “needle in the haystack” challenge of locating 

the dominant CDR3s that are signatures of renal cancer disease within a myriad of possibilities. 

While the plots visualize diversity, they cannot give estimates on the clonal expansion of any 

specific CDR3s, which would theoretically come from the up- and down- regulation of relevant 

disease-fighting receptors.  The next step will be to analyze the repertoire bias using quantitative 

diversity metrics as discussed in the following sections.  
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Figure 4.2. The tree plot shows chain diversity for two patient samples comparing BCR 
Heavy (IGH) and TCR Delta (TRD) chains for Day 15 from Table 4.1 and Table 4.2. Each 
rounded rectangle represents a unique CDR3 (uCDR3) entry based on V- and J- gene usage, 
gathered during alignment in the bio-informatic pipeline. The entire plot area is divided in to 
sub-divided according to V usage, which is subdivided according to J usage. The size of the 
rounded rectangle represents the relative frequency of observation for the uCDR3. We found 
that for all patients, BCR chains tended to demonstrate consistently greater diversity compared 
to TCR chains, as shown for the TRD and IGH above. 

4.2. Results 

4.2.1. Analysis of Standard Diversity Metrics 

Standard diversity metrics from seven-chain sequence lists shown pictorially in Figure 4.2 were 

calculated from patient samples for Day 15. A detailed explanation of diversity calculations can 

be found in Appendix Table 4.5. Four standard diversity metrics were used: D50, Diversity 

Index (DI), Shannon Entropy, and Unique CDR3 count (uCDR3). After calculation, patient 

Patient 0321 Res Patient 0627 Non-Res

IGH

TRD
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samples at Day 15 were separated by known labels responders and non-responders, and the 

diversity metrics were individually analyzed for the null hypothesis that the patients come from 

a single distribution. Figure 4.3A shows the results of using diversity metrics on each of the 

seven chains to significantly distinguish two distinct (responder versus non-responder) patient 

distributions. In summary, neither TCR nor BCR diversity metrics showed significant 

distinction between responders and non-responders.  
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Figure 4.3. Four diversity metrics, D50, Diversity Index (DI), Entropy, and Unique CDR3 
(uCDR3) analyzed for Day 15. For each chain, patient data in the corresponding diversity 
metric was separated into known labels   to determine if patients could accurately be split into 
responder (blue) and non-responder (red) labels. Boxplots show the distributions of responder 
and non-responder patients for each metric. The significance of the data split by true its labels 
(shown) did not outperform splitting the data randomly in any of the four metrics calculated. 
We did notice that TRD and TRG chains had collectively lower diversity and lower unique 
CDR3s compared to other chains. 

 

To better understand the role of diversity metrics in the data, and to rule out higher-order 

combinations of diversity factors as important splitting features, a high-power clustering 
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algorithm, t-distributed Stochastic Neighbor Embedding (t-SNE), was run to visually capture 

non-linear patterns. Data from all seven chains were aggregated for each of the four diversity 

metrics aforementioned, creating an intermediate dataset [4 diversity features x 105 samples] in 

size. The t-SNE algorithm was then tuned at various perplexity hyperparameters to project the 

data onto a 2D axis of principle vectors. Datapoints were then annotated by patient response and 

by chain to help interpret clusters. We found that patient clusters were not observable by patient 

response to treatment.  However, we did find that non-linear transformation of diversity metrics 

via t-SNE tended to cluster based on TCR or BCR chain. We found distinct three distinct clusters 

(shown for Day 15 in Figure 4.4) that were invariant to the treatment point studied. Cluster I 

consisted of the TRD/TRG chains. Cluster II consisted of TRA/TRB chains, and cluster III 

contained IGH, IGK, IGL chains. This is an interesting result, both because it reflects the natural 

association of 𝛼/𝛽 and 𝛾/𝛿 subunits, but also suggests that the mechanism itself is more 

strongly observable in diversity metrics than disease signatures at Day 15. This may be due to 

non-specific expansion of the clonotypes as a result of IL-2 treatment. 
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Figure 4.4. Unsupervised clustering by diversity metrics. Four diversity metrics, D50, 
Entropy, Unique CDR3s, and Diversity Index (DI) were reduced to two principle t-SNE 
components to illuminate non-linear patterns in the data. While t-SNE representation of the 
data did not pull out any latent groups, diversity metrics clustered most readily by chain with 
distinct clusters forming for (I) TCR delta/gamma chains, (II) TCR alpha/beta chains, and (III) 
light, heavy and kappa chains. Clustering of TCR and BCR chains by diversity reflects a 
conserved underlying mechanism of adaptome function. 

 

Analysis of diversity metrics reveal the flaws with low dimensionality representations for 

predicting patient response. None of the 4 diversity metrics used were able to significantly split 

the patients into response and non-response. It is likely that the answer is embedded deeper in 

the data and may require more fine-tuned analysis of the individual clonotypes to uncover 

disease signatures. Consequently, we will conduct a series of full-length and partial-length 

analyses of clonotypes patterns to uncover the casual features necessary to predict patient 

response. 
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4.2.2. Markov Methods for classification from partial-length analysis  

Analysis of diversity metrics imply the possibility that by day 15, the effect of IL-2 treatment is 

a large-scale fortification of entire repertoires, rather than the targeted generation of clonotypes 

specific to disease epitopes. Furthermore, unsupervised clustering indicated that full-sample 

diversity metrics, while an excellent description of the overall chain contributions and 

mechanisms, are too global to accurately classify patients.  

Amino acids are often functionally interchangeable in terms of properties such as 

hydrophobicity, polarity, molecular weight, and acidity among other secondary structure 

attributes that affect binding to targets. In reality, the “lock and key” of perfect molecular 

recognition involves competition with complimentary constructs that have similar binding 

affinities but non-exact amino acid codes. Given the vast diversity and individuality of public 

repertoires due to random V(D)J recombination, full-length sequences likely contain too much 

individuality to be detected as shared, distinguishing features in responder or non-responder 

patient cohorts.  Rather than exact sequences, the down-stream selection and expression of 

TCRs and BCRs in patient cohorts is far more likely to converge on similar, but non-exact 

clonotypes with comparable properties that arise between individuals with common selection 

pressures. 

Not surprisingly, previous success has been achieved in using partial-length analysis of 

clonotypes for identifying causal motifs that give good classification of disease diagnosis. Using 

4-6 length snippets, statistical classifiers for using immune repertoires to diagnose multiple 

sclerosis with passable accuracy have been created.23 In this work, Ostmeyer, et al. further 

discuss the utility of including Achtley vectors, or hot-encoded amino acid property 
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representations,24 in the model design, raising classification accuracy from 65% to 87% for a 

cohort of 125 patients. Additional success has been achieved through k-mer analysis combined 

with Achtley vectors, achieving up to 80% accuracy for classification of small patient cohorts. 

However, k-mer analysis of clonotypes quickly becomes computationally expensive as features 

will scale as 20k where k is the number of amino acids in the sliding window in each sequence. 

For example, k=3 triplet analysis of clonotypes results in 203 = 8,000 features, nearing the size 

(or in the case of TRD/TRG increasing the size) of the features in the original dataset. 

Algorithms like PCA which has been used for feature selection from up to k=7-mer analysis, 

and the multitude of layers required for deep learning on amino acid pairs,21 may continue to 

battle model complexity at low patient numbers. In this way, the field is in constant risk of 

model non-convergence or else over-fitting the data and losing generalization to unseen patients.  

Inspired by the use of Markov models for the classification of DNA snippets into CpG 

islands,25 we suggest a simple classification model built from measuring conditional 

probabilities of amino acid pairs (k=2-met analysis) to reduce the vast cardinality of full-length 

sequence lists into an intermediate-dimensional space of 400 features stored in transition 

probability maps calculated for each sample. Without the need for additional property features, 

we will show that the embedding of condition probability with amino acid pair motifs can 

classify patients with up to 90% accuracy regardless of the BCR or TCR chain analyzed at Day 

15 of IL-2 treatment. First, patient samples will be transformed into a common matrix structure 

representing the normalized amino acid usage bias. Then each k=2-mer pair will be tested for 

success in splitting the patient data by true labels versus random splits, resulting in a Significant 

Feature Filter that keeps only the causal pairs. Leave-one-out patient cross-validation will assign 
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a feature importance score to the features in the filter. Finally, the Hadamard product of the filter 

with raw patient data, reveals distinct amino acid abundance in the clonotypes of non-responders 

versus responders. After filtering, patients are given a scalar classification score. A significance 

test is then run to test the null hypothesis that responders and non-responder scores arise from 

the same distribution. The generalizability of this method with respect to features that survive 

cross-validation and receive high significance weights will be discussed.  

4.3. Model Building 

A visualization of the model pipeline for the transformation of patient samples into an 

intermediate feature space and subsequent feature significance tests from patient samples at Day 

15 is shown in Figure 4.5. First, whole clonotypes from the list are chopped into pairs. An 

example of k=2 pair analysis is as follows: GSFTDGS will be represented as GS | SF | FT | TD 

| DG | GS with a count of 1 for each pair except GS which receives a count of 2. Pairs in each 

sequence are counted and normalized in probability maps based on the frequency of observing 

a given amino acid with its previous neighbor. The probability of observing an amino acid pair 

in a single CDR3 sequence is 𝑃}~a(𝑋L|𝑋LOr) =
𝑁�#|�#$%

𝑁�#|�&
Ñ  where 𝑋L and 𝑋LOr are two 

neighboring amino acid pairs. The final vector 〈𝑋L , 𝑋LOr, 𝑃}~a〉 encodes the location and 

magnitude of each observation in the probability map. As there are 20 possible amino acids, the 

feature-space of the pair-wise probability map scales with 20k = 400 possible entries. Each 

clonotype in the list observed at day 15 for a given patient is analyzed with k=2-tuplet analysis 

and added to the map, resulting in a single probability map of 400 features for each patient. The 

rows of observations in the map are normalized to 1. Probability maps are generated for each 
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patient at day 15, patientℳx��rt'()#*(𝑋). Each vector in the map,  ℳ(〈𝑋L , 𝑋LOr, 𝑃}~a〉)	is 

considered an independent feature.  

 

 

Figure 4.5. Initial classification pipeline starting from clonotype lists from patient samples at 
Day 15. (A) Individual CDR3 sequences from the cardinal list elucidated from a patient 
sample are chopped into dimers, counted, and normalized in a conditional probability map of 
20k=2 = 400 features. (B) Probability maps from (A) are elucidated for each sample and 
compared for responder versus non-responders cohort for each k=2 pair feature. Significance 
is assigned to a feature if the observed probability distributions from the data can split the data 
more successfully for true patient-response labels than for random splits. The feature in the 
probability map is then replaced with a value of 1 or 0 depending on the significance test for 
describing patient outcomes, resulting in a Feature Significance matrix the keeps only the 
relevant features. 
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A supervised approach to finding the features driving patient response or non-response to 

treatment is conducted. Patients are divided into “responders” or “non-responders” and each 

feature (amino acid pair) in the map is assessed for this split individually. A feature is considered 

significant if splitting the data according to the true patient response performs better than 

splitting the data randomly. In the example of performing the analysis for patients at day 15 

using the TRD chain, identified significant pairs are {〈𝑋L|𝑋LOr〉} = {𝑁𝑀,𝐷𝑀, 𝐿𝐺, 𝐾𝑅, 𝑇𝐶}. 

Significant features are assigned a value of 1 and placed into a new matrix, ℱÚ𝜃L�Û, using the 

transformation 〈𝑋, 𝑋LOr, 𝑃}~a〉 → 〈𝜃L , 𝜃� , 𝑝aL�〉. Significant features 〈𝜃L , 𝜃� , 𝑝aL��r〉 are 

represented as black squares. Insignificant features are assigned 0 using the vector 

〈𝜃L , 𝜃� , 𝑝aL���〉 and represented as white squares. The result is a transformed feature-space 

ℳ(𝑋) → ℱ(𝜃) in which suspected high-performing features in the training analysis are 

identified and stored.  

Leave-one-out cross-validation (LOOCV) shown in Figure 4.6 is then conducted in which the 

analysis of significant features shown in Figure 4.5 is performed on n-1 patients with one sample 

removed each time. Given a cohort of 15 patients who gave Day 15 samples, 15 CV iterations 

were run. Each of the resulting significance matrices gave slightly different feature importance 

entries. Thus, the resulting feature selection matrix ensembles are then averaged so that features 

which survive leave-one-out cross validation for all data folds were given higher weights than 

those which only described a few iterations. The result is a final “Feature Significance Filter” 

	ℱÚ𝜃L,�Û in which values for entries, 𝜃L,� are a spectrum ranging from 0 (not-significant) to 1 

(significant) wherein a weight of 0.8 would imply that the feature survives in only 80% of the 
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cross-validation data folds. We suspect that features that are able to elucidate higher significance 

scores will be more generalizable to unseen patient cohorts. 

 

 

Figure 4.6. Ensembles of probability maps are used to evaluate the significance features in 
separating responders from non-responders. The features are cross validated using leave-one-
out cross-validation. The filter from each cross-validation iteration is then averaged element-
wise to make the final Feature Significance Filter wherein features that survived multiple data 
splits in the cross-validation receive a higher weight. The result is a pseudo-regularizer that 
retains only the features expected to successfully split responders from non-responders, 
sending all other features to zero. (B) coefficients in the filter, theta, represent the weights of 
the features. (C) Use of selection filter on raw patient data. The idea here is to show that the 
selection filter helps pick out the dominant motifs that separate out the patient groups. The 
algorithm is run independently for seven-chain analysis. 
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Armed with a cross-validated Feature Significance Filter, and inspired by image analysis 

techniques, the Hadamard product is calculated on raw patient data as shown in Figure 4.6B. 

The result is a new matrix 𝐻L,� = �ℳrt+), ∘ ℱÚ𝜃L,�Û� which keeps the frequency values ℳ8,� 

from the raw patient sample data that are most significant. Features determined from LOOCV 

analysis to be most significant (θ�,�ßßßß = 1) retain the raw observed frequency values from ℳ8,�. 

Like a cloudy window, as θ�,�ßßßß trends to zero (θ�,�ßßßß → 0), its product with the corresponding ℳ8,� 

raw data observation attenuates the raw values down to zero (no significance). Figure 4.6C 

shows the result of the Hadamard product between the Feature Significance Filter and two raw 

patient samples from Day 15 (TRD chain).  Finally, the rows and columns of 𝐻L,� for each patient 

are summed to give a scaler score from significant features and corresponding weights.  

 𝑠𝑐𝑜𝑟𝑒 = 	àà°ℳ.u� ∘ ℱÚ𝜃L,�Û±
�L

 Eq. 4.1 

 

 𝑠𝑐𝑜𝑟𝑒��� =	 á
range	[0.25	, 1.5] NonRes
range[−1.5	, 0.5] 								Res	 

Eq. 4.2 

 

From the feature significance tests, we observed that non-responder patients typically had a 

higher observed abundance of significant amino acids neighbors compared to non-responders 

(and example for this in TRD chain is shown in Figure 4.5B). In some cases, there were 

significant features which had higher observed abundance in responders. In order to consistently 

analyze attributes, features were assigned a value for θ�,�ßßßß = −1 in the event that responders had 

higher abundance after the significance test. For simplicity, the model is discussed above in 



95 

 

terms of non-responder abundance. In reality, the range of model weights θ�,�ßßßß = [−1,1] 

reflecting the possibility of responder abundance is used.  

A summary representing the full analysis for all seven chains from the classification model is 

shown in Figure 4.7. Within each chain, we were able to discover distinguishing features that 

differentiated patients into responders and non-responders, resulting in good separation of 

patients by their true labels.  

 

 

Figure 4.7. Classification of patients based on the scoring from the Feature Selection Filter 
and analysis. Each chain was able to pull out significant features in clonotypes that then 
distinguished patients by their true labels. A Shapiro-Wilk test was run to identify the presence 
of normal distributions in responder and non-responder cohorts, and ANOVA was run to 
identify the significance of the distributions by classification score. The significance values 
are **** for p<0.0001, ** for p<0.001, and ** for p<0.01. 

 

More data will allow us to draw distinct, scalar cut-off thresholds for classification scores for 

each chain.  For the purposes of this work, classification accuracy can be loosely identified as 

the number of patients who exist in the overlap between responder and non-responder score 
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distributions, a metric for confidence based on the degree of data separation. Specifically, 

Accuracy is defined as N(patients in overlapping regions)/N(total patients studied). The 

following table summarizes each chain’s performance on classification with respect to true 

labels.  

Table 4.3. Classification certainty by chain 

Chain Classification 
accuracy 

TRD 18/20 = 90% 

TRG 18/20 = 90% 

TRA 20/20 = 
100% 

TRB 19/20 = 95% 

IGH 20/20 = 
100% 

IGK 20/20 = 
100% 

IGL 18/20 = 90% 

 

All seven chains (TCR and BCR) significantly distinguished the patients by their true labels 

with a significance of at least p<0.01. Furthermore, classification certainty for each chain was 

at the lowest only 90% for TRD, TRD, and IGL and at most 100% for TRA, IGH, and IGK. 

Overfitting the data is a concern given that the low number of patients meant we could not run 

a true test on unseen data. However, we hypothesize that features that earned higher weights in 

the model are more likely to generalize to large populations. Ultimately, the ability to glean 

good classification accuracy as early as 15 days post treatment could have large benefits for 

patients in the clinic who may be able to quickly alter treatment to get a more efficient response.  
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4.4. Disease monitoring: Markov models for within-sequence information entropy 

The success of each chain in the Markov classification model in predicting early (Day 15) 

patient outcomes via observed motifs in clonotypes has the profound implication that all seven 

chains play an orchestral role in patient equilibrium with renal cancer. To further investigate 

this role, we will extend the Markov model to analyze individual patients with respect to 

themselves over three temporal treatment points. A benefit of monitoring individual patients 

against themselves is that with 400 features and 3 temporal treatment points, the shape of the 

data is well-suited to data-driven learning. Furthermore, we seek to gain an understanding of 

how each of the seven chains contributes to patient response over the course of treatment, 

ultimately allowing us to observe how the ensemble of chains function together and possibly 

obtaining additional mechanistic insight into immunotherapies.  

Table 4.1 shows how the cardinal number of each set of clonotypes extracted from 

patient samples changes over treatment. For patient 0321, the set of IGH sequences measures 

from 31.5k in size at day 1 to 35.5k at day 15. Likely an effect of the IL-2-driven expansion, 

changes in the cardinal number of each sample show how CDR3s are generated (or sometimes 

removed) over the course of treatment as selection pressures up- and down- regulate TCRs and 

BCRs. A lack of constant features discourages the use of volcano plot strategies for measuring 

the significance versus expression ratio over treatment conditions. The goal of this section is to 

monitor the significant fold-changes of clonotypes for an individual patient over the treatment. 

Fortunately, we have an excellent method for transforming samples into a consistent feature 

space using the probability maps described in section 4.3. We will use probability maps 
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combined with first order Markov approximation of full-length CDR3s to study the magnitude 

and bias of clonotype expression as the distribution of receptors shifts for each patient over time.  

4.4.1. Clonotype analysis for disease monitoring 

As classification greedily hunts for significant motifs for early diagnosis, the model loses 

interpretability. However, motifs alone cannot encompass the whole story. Motivated by the 

need for targeted T-cell therapies,26 there is additional interest in the full-length sequences of 

clonotypes with the highest therapeutic value. Furthermore, the data in this study provide a rare 

opportunity to observe the effect of high doses of IL-2 on repertoires, made possible from the 

mitigation of side-effects provided by HCQ.  Thus, the effect of IL-2 on wholistic changes in 

the repertoire can be elucidated. Data-driven learning over clonotype expression during 

treatment could provide better mechanistic understanding of patient response to IL-2 and renal 

cancer pressures. We hypothesize that wholistic changes in repertoire expression can be studied 

via the probabilistic information carried by amino acid motifs within full-length clonotypes. By 

studying changes in k-mer clonotype patterns at a baseline (Day-14) compared to post IL-2 

treatment at Day 1 and Day15, we will show the presence of entropic bias shifts for TCR and 

BCR each chain in response to IL-2.  

In the literature, Shannon entropy is typically calculated as a diversity metric for whole samples. 

The equation 	𝑆 = 	−∑ 𝑝L𝑙𝑜𝑔2(𝑝L)�
L , where 𝑝L is the frequency of observing the ith CDR3 in a 

sample of N sequences, measures the overall disorder of a sample. Higher values for entropy 

imply greater disorder in the observed list of full-length sequences. However, this representation 

neglects the information content contained within the primary structure of individual sequences. 

Within the primary structure of full-length CDR3 sequences is the combination of multiple 
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probabilistic V(D)J events that lead to the observance of specific amino acid motifs. Examples 

of such events include, VD or DJ insertions, P-nucleotide deletions, random recombination.27  

To begin to reconcile random V(D)J events from down-stream selection of dominant CDR3s, it 

will be important to intersect diversity metrics of full-length sequences with the information 

content from within-sequence patterns that arise due to variation in patient environments. In this 

work, we will show a novel application of how k-mer analysis of CDR3s combined with first-

order Markov chains allows a wholistic analysis of samples over time, giving broad insight into 

repertoire chain dynamics, stemming from the most basic sequence patterns.   

The abundance of within-sequence amino acid motifs can be represented in the probability maps 

of samples at each treatment point: æℳ$.",ℳ{u�r, and	ℳ{u�rtç. Patient samples for three 

temporal points, Day -14 (pre IL-2), Day 1 (IL-2 dose 1), and Day 15 (IL-2 dose 2) were 

analyzed according to section 4.3 (summarized in Figure 4.3). Probability maps were generated 

for each treatment point for individual patients. For example, 

0321æℳ$.",ℳ{u�r, and	ℳ{u�rtç�,�,�,�,���,���,��c represents the set of three probability maps for 

patient 0321 for samples obtained at pre IL-2, Day 1, and Day 15 for each chain. A total of 21 

maps per patient are created for the 3-timepoint analysis on all seven chains.   

Baseline pre-treatment sequences (from Day-14) were calculated as first-order Markov chains 

using the ℳ$.",ℳ{u�r, and	ℳ{u�rt data for conditional probability estimations. A given CDR3 

sequence can be expressed as the product of conditional probabilities of its k-mer parts. The 

probability of observing a sequence of specific dimer motifs in a given sample list can be 

calculated according to Eq. 4.3 below:  
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 𝑃(𝑋…𝑋L𝑋LOr) =è𝑃�𝑃(𝑋L|𝑋LOr) Eq. 4.3 

 

where 𝑃� is the nonuniform composition of individual amino acids in proteins and can be 

estimated as ~4.18 bits/amino acid (but will cancel out in subsequent calculations of this 

analysis). The values for 𝑃(𝑋L|𝑋LOr) are found from the address coordinates 〈𝑋, 𝑋LOr, 𝑃}~a〉 

given by probability maps ℳ8�#,			��#Or measured from data.  

For example, if the theoretical sequence seq = DRA is evaluated as a first-order Markov 

chain using k=2-mer analysis and using the Day 1 probability map, then the dimers AR | RD 

can be represented as 𝑃(𝑋L|𝑋LOr)~	P(A) ∗ P(A	|𝑅) ∗ 𝑃(𝑅|𝐷) where P(A	|𝑅) = ℳrL��,��� =

	〈𝐴, 𝑅, 𝑃}~ar〉x��r and P(𝑅	|𝐷) = ℳrL��,��� =	 〈𝑅, 𝐷, 𝑃}~ar〉{u�r. If instead the sequence were 

evaluated at Day 15 probability map, then P(𝐴	|𝑅) = ℳrtL��,��� and P(R	|𝐷) = ℳrtL��,��� 

resulting in 〈𝐴, 𝑅, 𝑃}~art〉{u�rt and 〈𝑅, 𝐷, 𝑃}~art〉{u�rt, respectively. In general, 

𝑃(𝑋…𝑋L𝑋LOr)|ℳr implies the first-order Markov chain for a CDR3 sequence evaluated with 

the ℳr probability map, 𝑃(𝑋…𝑋L𝑋LOr)|ℳrt is the first-order Markov chain for the same 

sequence calculated using the  ℳrt map, and 𝑃(𝑋…𝑋L𝑋LOr)|ℳ$." is a baseline. 

We can then take the log ratio 
𝑃(𝑋…𝑋L𝑋LOr)|ℳ{u�

𝑃(𝑋…𝑋L𝑋LOr)|ℳ$."
Ñ , which 

allows a logistic comparison of how Day-14 sequences compare to the sample distributions from 

other treatment points. Since 𝑙𝑜𝑔!Ú𝐴 𝐵� Û = 𝑙𝑜𝑔2(𝐴) − 𝑙𝑜𝑔2(𝐵), we get a description of the 

baseline distribution similarity to either Day1 or Day15. If 

𝑃(𝑋…𝑋L𝑋LOr)|ℳ{u�>>(𝑋…𝑋L𝑋LOr)|ℳ$.", then the score for 𝑙𝑜𝑔!Ú𝐴 𝐵� Û will be large and 
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positive. If 𝑃(𝑋…𝑋L𝑋LOr)|ℳ{u�<<(𝑋…𝑋L𝑋LOr)|ℳ$." then the score will be negative. If 

𝑃(𝑋…𝑋L𝑋LOr)|ℳ{u� ≈ (𝑋…𝑋L𝑋LOr)|ℳ$.", then the score becomes zero.  Day-14 sequences 

can be used as a baseline to compare changes of within-sequence entropy over treatment, 

representing frequency of pattern expression for Day 1 and Day 15 using the following 

equations:  

 
∆{u�r
$."

= log! ë
{seq}$."|ℳr

{seq}$."|ℳ$."
ì 

Eq. 4.4 

 

 
∆{u�rt

$."
= log! ë

{seq}$."|ℳrt

{seq}$."|ℳ$."
ì 

Eq. 4.5 

 

 Eq. 4.4 and Eq. 4.5 indicate how pre-treatment sequences are analyzed, with 

{seq}$."|ℳr implying that Day-14 (pre) sequences were analyzed with the conditional 

probabilities observed in Day 1 observations, and {seq}$."|ℳrt indicating the same set of Day-

14 sequences was calculated with Day15 observations. The expression, {seq}$."|ℳ$.", acts as 

the baseline. In this way, the baseline (Day-14) sequences are calculated as first order Markov 

chains using two different probabilities distributions, and the log-ratio acts as a fold-change 

metric normalized to a baseline. 

Each clonotype in Day-14 samples, {seq}$.", is analyzed, resulting in transformed 

distributions of the sample to reflect similarities and differences between the next analyzed 

treatment points. The treatment points compared from Eq. 4.4 and Eq. 4.5 are shown in Figure 

4.8A.  
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Figure 4.8. Analysis of patient repertoires over three treatment points. (A) First probability 
maps are generated showing normalized frequency of amino acid pair motifs in each sample. 
The fold-change pattern analysis is described by ∆𝒅𝒂𝒚𝟏

𝒑𝒓𝒆�  (change from Day-14 to Day 1), 

and ∆𝒅𝒂𝒚𝟏𝟓
𝒑𝒓𝒆�  (change from Day-14 to Day15). (B) Shows histograms of Day-14 sequences 

binned by their evolution or conservation of sequence patterns compared to respective 
treatment points for TRG and IGH. Diagonal plots show individual the individual Day-14 
distributions as they are calculated with the conditional probabilities from Day1 and Day15 
timepoints. Off-diagonal element (upper-left corners) shows the overlay of these two 
distributions, the entropic bias of which is quantified in the lower-off-diagonal Pearson 
correlation coefficient. 

 

Histograms representing Day-14 sequences binned by the ratio of Markov probability estimates 

from equations 4 and 5 show the evolution of the repertoire over treatment based on within-
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sequence patterns. Positive bins on the x-axis indicate new sequence motifs in Day1 (Eq. 4.4, 

Figure 4.8B top left), and Day15 (Eq. 4.5, Figure 4.8B bottom right), respectively. The more 

positive the bin, the greater the evolution of amino acid motifs from baseline. Consequently, 

negative bins show a conservation of patterns from Day-14. Finally, sequences that did not 

change in expression over treatment are binned at zero. Entire distributions overlaid (Figure 4.8, 

upper right), give a wholistic estimate for the entropic change in the receptors between Day1 

and Day15 for the chain studied. Changes in the means of the distributions, for example, 

represent a paradigm shift in amino acid pattern bias (as demonstrated in the TRG chain 

histogram overlay in Figure 4.8B, upper right). As one could not presume to guess outright the 

shape of the resulting bias distributions, Pearson linear correlation coefficients, 𝜌, were used to 

compare the distributions from Eq. 4.4 and Eq. 4.5 (Figure 4.8B, bottom left) so as not to make 

assumptions about the distribution shapes. When significant change between Day1 and Day15 

occurred, 𝜌 trends towards 0 (shown for TRG in Figure 4.8B). When no change occurs, the 

internal entropy is frozen and 𝜌 trends towards 1 (shown for IGH in Figure 4.8B).  

4.4.2. Entropic bias shifts in patient repertoires 

To get a sense for how all seven chains contribute to entropic changes in the overall repertoire 

in response to IL-2, the Pearson linear correlation coefficients were collected for each of the 

seven chains and viewed for each patient. Interestingly, we noticed four mechanistic patterns 

within responding and non-responding patients: BCR bias, TCR bias, mixed bias (shown in 

Figure 4.9), and no bias. A subset of responding patients showed a dichotomy between BCR 

and TCR contributions to repertoire bias in response to IL-2. For these patients, we noticed that 

either the T-cells or the B-cells had small Pearson coefficients, but not both, and the difference 
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between either BCR or TCR populations was significant, p<0.05. Furthermore, all non-

responding patients showed either a mixed bias in which all seven chains had large bias shifts 

in the CDR3 receptors or no bias in which the entire repertoire was frozen. A summary of the 

repertoire bias responses from monitoring over the course of treatment is shown in Figure 4.9.  

 

Figure 4.9. Examples of 3 patients with different measured repertoire biases as a result of 
within-sequence pattern monitoring over three treatment points. (A) An example of BCR bias 
in which the B-cells take on large entropic changes in receptor sequences while the T-cells 
conserve patterns from before treatment. (B) An example of TCR bias in which TCRs 
demonstrate evolution over treatment while BCRS conserve pre-treatment pattern 
information. (C) An example of mixed bias in which very little pre-treatment patterns are 
conserved in the sequences of BCRs or TCRs and significant entropic shifting is observed for 
all chains. Not shown is an example of no bias, in which one patient, who responded as PD to 
IL-2 treatment, experienced no entropic change in sequences at all. 

 

A summary of measured repertoire bias as a function of patient outcomes to IL-2 treatment in 

shown in Table 4.4 below. Notably, only responders showed a clear orchestration of BCR and 

TCRs, allowing either one or the other to take on entropic shifts. In contrast, only non-

responders demonstrated a mixed bias, or lack of clear orchestration between chains. Nearly 

half the responders also demonstrated mixed bias, and future work will lie in the investigation 

of how chain entropy orchestrations correlate to patient outcomes.  
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Table 4.4. Patients with TCR, BCR, or mixed bias. 

 TCR Bias BCR Bias Mixed Bias 

Responders 8 2 5 

Non-Responders 0 0 5 

 

4.5. Discussion 

In this work, we designed a computational framework to analyze amino acid abundance in TCR 

and BCR clonotypes for early diagnosis of renal cancer response to IL-2, and to gain deeper 

mechanistic understanding of repertoire dynamics during treatment. We found that classic 

diversity metrics of patient repertoires occluded cancer signals at Day15, motivating a more in-

depth analysis of within-sequence amino acid biases.  

The initial challenge of in-depth clonotype analysis stemmed from a lack of a consistent feature 

space for making comparisons between patients, as the cardinal number of sequences observed 

in samples varied by individual patients and chains studied. Clonotype sequences from 

repertoires, analyzed by chain, were thus decomposed into amino acid strings and the frequency 

of observation of these strings was collected into an intermediate-dimensional space for 

comparison across patient cohorts, which we called probability maps. Since the feature-space 

of probability maps scales with the k-mer analysis as 20k, and given that the number of observed 

clonotypes can span 102 for TRD/TRG to 105 for BCRS, k=2 representations were selected 

resulting in a space of 400 common features. This feature reduction by within-sequence amino 

acid neighboring pairs formed the basis by which early classification and in-depth entropic 

response monitoring over treatment could be conducted. 
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Surprisingly, we found that all seven (TCR and BCR) chains were able to distinguish responders 

from non-responders by Day15 suggesting an orchestral role of the seven repertoire chains in 

cancer progression and recovery. This is counterintuitive given the generally accepted function 

of human IL-2, which is a growth factor inducing proliferation of activated T cells, 28 suggesting 

that TCRs would carry the clonotypes with detectable disease-related moieties. That BCRs also 

contained recognizable sequence patterns causal to disease response suggests the presence of B 

cell interactions with antigen-specific CD4+ helper T cells in response to IL-2.29 Since the 

signaling pathway is fortified by IL-2-driven T lymphocyte stimulation with an antigen, it is 

likely that TCRs will be more effective, and perhaps more generalizable, when this analysis is 

applied to unseen IL-2-treated patient cohorts. However, since the specificity of T cell clones is 

static once V(D)J rearrangement occurs (meaning new T cells must be created for every new 

clonotype observed), the comparable flexibility of BCR variability may play a more integral 

role in early detection of pre-IL-2 treated patients. Consistent with this, pilot data (unpublished) 

has shown that pre-IL-2 (Day-14) diversity in BCR heavy chain improves the likelihood that 

patients will show positive response outcomes to IL-2.  

The mechanism of TCR and BCR interactions with high IL-2 environments was further 

explored in the t-SNE plots generated from the canonical diversity metrics discussed in this 

work, namely D50, DI, unique CDR3, and Entropy. Greater than the ability to differentiate 

patient response by sample diversity, was the resilient (to treatment point or patient cohorts 

studied) higher-order clustering of the diversity metrics by their chains of origin. More 

specifically, TRA and TRB clustered distinctly from TRG and TRD, reflecting the well-

accepted association in the literature of TCR 𝛼/𝛽 and 𝛾/𝛿 subunits.30 That TCR 𝛼/𝛽 and BCR 
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light, heavy, and kappa chains formed distinct clusters from each other based on diversity of 

observed CDR3s reflects a distinction in the B- and T- cell types available in the peripheral 

blood.  

Further investigation into the mechanisms of TCR and BCR contribution to patient 

response/non-response to IL-2 was studied via monitoring the expression of observed 

clonotypes by chain over three treatment points (pre-IL-2, Day1 IL-2 dose 1, and Day15, IL-2 

dose 2). Rather than considering full-length clonotypes, the information content of amino acid 

bias within full-length clonotypes was studied. This was possible in a large part by the selection 

of the feature-space for classification which encoded the conditional probabilities for k=2mer 

amino acid patterns. The evolution of patient repertoires in terms of their information content, 

was elucidated from pre-IL-2 sequences (from Day-14) that were calculated as first-order 

Markov chains using the conditional probabilities from Day1 and Day15 samples.  

We found a distinct and significant entropic bias in TCR versus BCR populations in patients 

who responded to IL-2. TCR bias was defined a patient whose TCR chains collectively 

orchestrated high entropic change over treatment compared to BCRs in which the collective 

information content of clonotypes remained mostly the same. In contrast, some responder 

patients showed the opposite phenotype: BCR chains demonstrated high information shifts over 

treatment while TCRs remained mostly the same. Since the T cell repertoire is under constant 

turnover driven by antigen presentation and clearance, TCR or BCR bias may be reflected in 

the regulated, concerted effort of recruiting TILs to the tumor site. In the case of BCR bias, the 

effective elimination of malignant cells stemming from effector and memory T cell tissue 

homing, would effectively remove poignant T cells from circulation and thus from our detection 
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in peripheral blood.31 In contrast, patients with TCR bias may be in early stages of T cell 

generation and differentiation, before recruitment. When the immune system and cancer reach 

an equilibrium state (or worse, an immune escape state), cancer-associated T cells have been 

shown to accumulate in the blood32 wherein they may mix with both perfunctory and disease-

poignant receptors resulting in a mixed bias response. We speculate that this is the stage in 

which renal cancer is most diagnosable, and responsible for the mis-fired amino acid abundance 

detected in the early classified non-responders. The validation of the role of entropic bias in 

TCR and BCR chains will need to be studied by comparing clonotypes from peripheral blood 

from those found near tumor tissue.  
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Section 2 Appendix 

The t-SNE algorithm was calculated using sklearn in python.33 Perplexity for determining the 

number of nearest neighbors was tuned manually until visible clusters were established. The 

Markov model for classification and disease monitoring from amino acid motifs was generated 

from scratch using Matlab 2019. Example calculations are provided throughout the text. 

Descriptions of the computational functions and codes are provided in an appendix section 2. 

Table 4.5. Model equations 

Symbol /Equation  Variable/Operation  
patientæℳx��çJ��LQ 

Example: 

 
0321æℳ$.",ℳ{u�r, and	ℳ{u�rtç�,�,�,�,���,���,��c 

 

Probability maps representing stored 
conditional probability of observing 
k=2mer amino acid pairs in a sample. This 
calculation is done for all seven chains in 
an individual patient sample.  

ℱÚ𝜃L,�ÛR 
Feature matrix with entries, 𝑖, 𝑗	that survive 
the significance test at each CV iteration 
where k signifies the data fold. 

ℱÚ𝜃L,�Û 

Feature significance filter consisting of 
feature weights derived from cross-
validation. Range [-1, 1]. Features 
determined to be significant Features 
determined to be significant in  

𝜃L,�  

Feature weights derived from CV with 
range [-1,1] non-continuous. Keeps 
significant features and sends non-
significant features to zero. (supplement: 
case where theta = -1 

 

𝐻rt- = 𝐻 °ℳx��'()#* ∘ ℱÚ𝜃L,�Û± 

Hadamard product of individual patient 
probability maps with significance filter to 
retrieve transformed probability maps that 
retain significant k-tuplet (k=2) features.  

uCDR3 Unique CDR3. The number of unique 
peptide CDR3s observed within a sample. 
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𝐷50 =
𝑁� ��st�% ∗ 100
10,000  

D50 for uCDR3 frequency is in the top 
10,000 where 𝑁� ��st�% is the number of 
uCDR3s that make up 50% of the reads of 
the to 10,000 uCDR3s. 
The D50 is the percent of dominant and 
unique T or B cell clones that account for 
the cumulative 50% of the total CDR3s 
counted in the sample. The more diverse a 
library, the closer the value will be to 50 

(𝑆)𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 	− à 𝑝L𝑙𝑜𝑔2(𝑝L)
r�,���

L

 

Shannon entropy for a full patient sample 
where 𝑝L is the frequency of observing the 
𝑖th CDR3 within the top 10,000 CDR3. 
The CDR3s with frequencies below the top 
10,000 were not included in this 
calculation  

𝐷𝐼 =
∑ 𝑓L ��sR
L�r

∑ 𝑓L ��sQ
L�r

 
Diversity index where 𝑟L is the frequency 
of the 𝑖M� CDR3 and n is the total number 
of uCDR3s 

 

∆{u�r
$."

=	 {𝑠𝑒𝑞}∆./0%
123

 

 

∆{u�r
$."

= log! ë
{seq}$."|ℳr

{seq}$."|ℳ$."
ì 

 

 

 

Fold change Day-14 versus Day1 

 

∆{u�rt
$."

=	 {𝑠𝑒𝑞}∆./0%4
123

 

 

∆{u�rt
$."

= log! ë
{seq}$."|ℳrt
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Fold change Day-14 versus Day 15 
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𝜌 =
covë∆{u�rt

$."
, ∆{u�r

$."
ì

𝜎∆./0%
123

𝜎∆./0%
123

 

 

𝜌 =

∑ô∆{rt
$."L

− ∆{rt
$."
ßßßßßßõ ô∆ {r

$."L

− ∆ {r
$."
ßßßßßßõ

𝜎∆.%4
123

𝜎∆ .%
123

(𝑁 − 1)  

 

Pearson correlation coefficient used to 
determine the correlation between the fold 
change (day1/day14) to the fold change 
(day15/day1). The range is [-1 to 1] with 𝜌 
= 1 is complete correlation and 𝜌 = -1 is 
anti-correlation (and signifies a shifting of 
the distribution towards day15). 
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Chapter 5. Conclusion 
This work envisions a patient-specific future in medicine driven by ML in which medical 

diagnostics and interventions can flexibly and accurately cater to individual patient needs. For 

example, 3D bioprinting is an exciting technology for healthcare as the fabrication method can 

respond to natural heterogeneities in the population by rapidly prototyping size variants of the 

same implant or transplant design. Additionally, small patient datasets such as Phase 1 clinical 

data can be leveraged for advanced understanding of patient-response to experimental drugs or 

procedures.  The linchpin for learning from and for the benefit of better patient-specific 

healthcare is in the bias-variance tradeoff as higher patient-specificity comes at the price of high 

model complexity.  The limit of large features and small data-size necessitates the adaptation of 

ML techniques to fit atypical data shapes for good and generalizable model predictions.  

As previously mentioned, 3D bioprinting is a promising tool both for filling the gap of 

patients on the organ transplant waitlist and for tailoring custom organs and transplants to 

natural heterogeneities in the population. Despite the ability to rapidly prototype, the 

experimental data for optimizing 3D bioprinting is limited by bottlenecks in biological material 

handling and methods for rapid quantitative assessment of 3D-printed constructs, which retain 

the same high-absorbing biological matter that pose difficulties for imaging in conventional 

tissues. In this work, adapting ML techniques for 3D bioprinting looks like embedding domain 

knowledge of the bioprinting system into a statistical inference model to drive down the sample-

size necessary for data-driven learning on the system.  By inserting an intermediate layer of 

supervised relationships within input predictors, the data necessary to perform LASSO for 

simultaneous feature selection and inference was reduced. The resulting hierarchical model 

(HML) predicted print outcomes for just 48 prints with an R2 of ~0.6 in test prints. Furthermore, 
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the optimal process settings for high-fidelity printed features in alginate were elucidated from 

process printability maps, which narrowed the vast user design-space to process parameters that 

minimized HML-predicted error.  

The transfer of learning from one print system to the next is crucial for the intricate tissue 

features of functional biological tissue. Despite dual extrusion and multi-material print systems, 

transfer learning between parallel physical systems within bioprinting has not been readily 

attempted to date. In this work, the physical intermediate layer, tuned by cross-validation with 

model weights refined by LASSO, reflected the dominating physical relationships necessary to 

predict the print outcomes. As a result, a knowledge bridge was created to transfer learning to 

parallel printing systems, showing accurate predictions of FRESH-printed collagen ink. Future 

work involves the accelerated optimization of new materials in a FRESH printing system, 

including optically transparent support solutions, and multi-material or cell-laden inks.  

The impact of ML for predicting high-fidelity prints also lies in the regulatory pathway 

towards determining the “readiness” of bioprinting technology for customizable medical 

products such as cell-scaffolds with personalized geometries and constituent cells. The 

regulation of industrial medical-grade 3D printed products is already extensive.1 It is imperative 

that the data requirements for quality control of small batches of 3D bio-printed tissues do not 

discourage innovation through even higher regulation barriers. ML can aid in rapid regulation 

and approval of small sample-sizes tailored to patient geometries by predicting how changes in 

design affect the fidelity of the print.   
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Figure 5.1. Reasoning, methodology, and end-result of ML for small biomedical datasets. (A) 
There is a need for organs that fit specific patients and not a “one-size-fits-all.” (B) A hidden 
layer is generated from knowing the physical properties of the system. (C) Using HML, we 
can predict the error bias and optimized printing settings for a given filament diameter. (D) 
There is a need to understand heterogeneities in individuals for better immunotherapies. (E) 
Our ML approach creates an immunological disease fingerprint of the patient from their T and 
B cells. (F) Each patient can then be classified between responders and non-responders to a 
given therapy. 

The Herculean task of merging the vast and ever-growing data from systems biology 

with the targeted, theoretical knowledge from molecular biology is a task well-suited for the 

field of ML. Data-driven learning from systems biology, such as big ‘omics’ data, can excel at 

forging relationships, correlations, and patterns that can then be interpreted as either relevant or 

circumstantial by supervised knowledge from related fields. Difficulties arise when attempting 

to conserve the benefits of Big Data learning towards size-limited datasets that are skewed with 

large features and limited patient numbers – a common data regime for patient-specific datasets 

(Figure 5.1B). As a result, ML algorithms are less “plug-and-play” for patient specific models. 

By adapting ML strategies to Phase 1 clinical data, we show successful model predictions and 

advanced discovery of feature relationships from a cohort of <50 patients. Early, Day 15 
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classification of repertoire response to HCQ/IL-2 treatment for 29 patients with progressive 

renal cancer was achieved to at least 90% accuracy for all seven TCR and BCR chains. Disease 

fingerprints were discovered by transforming the vast numbers of TCR and BCR predictors into 

a series of intermediate feature-spaces, which we called probability maps, based on the 

information entropy within neighboring amino acids in TRC and BCR sequences. Significant 

neighboring motifs, cross-validated for their ability to split the data into true labels better than 

random, were ascertained and used as a filter for comparing raw patient data of responder and 

non-responder patients (Figure 5.1E). As a result, the classification model from this study for 

predicting patient outcomes from TCR and BCRs currently out-performs recent models which 

rely on large feature spaces2 or large numbers of model layers.3  

Furthermore, data-driven learning can both validate long-standing theories and postulate 

new variable relationships. Within the classification endeavor, we encountered interesting 

relationships along the way. We began the search for metastatic recovery signatures from 

standard diversity metrics and were surprised to find that while TCR and BCR diversity metrics 

were unable to accurately classify patients, combined together the metrics preserved a 

mechanistic undercurrent of association between the chains. Clusters were identified for TCR 

𝛾/𝛿  and TCR 𝛼/𝛽 chains, supporting the literature that 𝛾/𝛿 and 𝛼/𝛽 receptors interact as sub-

units.4 Additional mechanisms were elucidated from the data that will involve future study. 

Notably, disease monitoring in which first-order Markov models of clonotypes were calculated 

over three temporal treatment points, revealed an entropy bias for TCR and BCR chains. The 

bias was defined as a clearly measured entropic shift in either BCR populations or TCR 

populations, indicating a concerted orchestration of the chains. This orchestration may be 
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evidence of the antigen-recognition and clearing battleground of metastatic cells, parts of which 

can be viewed from peripheral blood. While some responders had clear bias, all non-responders 

showed a mixed bias in which no clear orchestration was present over treatment. We suspect 

that this repertoire “mis-firing” in which all TCRs and BCRs are circulating in the blood due to 

lack of recruitment to the tumor cite. Future research is on-going in which this disease 

monitoring analysis will be compared to clonotypes from tissue samples near the tumor site.  
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