
SAFETAP: An Efficient Incremental Analyzer for
Trigger-Action Programs

McKenna McCall∗, Faysal Hossain Shezan†, Abhishek Bichhawat∗, Camille Cobb∗, Limin Jia∗, Yuan Tian†,
Cooper Grace†, Mitchell Yang∗

∗ Carnegie Mellon University, † University of Virginia

Abstract—Home automation rules that allow users to connect
smart home devices using trigger-action programs (TAP) can
interact in subtle and unexpected ways. Determining whether
these rules are free of undesirable behavior is challenging; so
researchers have developed tools to analyze rules and assist users.
However, it is unclear whether users need such tools, and what
help they need from such tools. To answer this question, we
performed a user study where half of the participants were given
our custom analysis tool SAFETAP and the other half were not.
We found that users are not good at finding issues in their TAP
rules, despite perceiving such tasks as easy.

The user study also indicates that users would like to check
their rules every time they make rule changes. Therefore, we
designed a novel incremental symbolic model checking (SMC)
algorithm, which extends the basic SMC algorithm of SAFETAP.
SAFETAP∆ only performs analysis caused by the addition or
removal of rules and reports only new violations that have not
already been reported to the user. We evaluate the performance
of SAFETAP∆ and show that incremental checking on average
improves the performance by 6X when adding new rules.

I. INTRODUCTION

Automatic interaction among home devices is making the
Internet of things (IoT) platforms more user friendly and popu-
lar. Some of the most popular platforms are IFTTT [29], Smart-
Things [44], openHAB [39], Microsoft Power Automate [36],
Zapier [53], and Homekit [4]. Generally, IoT platforms follow
the trigger-action programming (TAP) paradigm to create
automation rules which trigger based on some condition and
perform an action as a result. For instance, users can install
the rule “IF Nest Protect detects carbon monoxide THEN
turn Phillips Hue light red” that turns the light red (action)
to indicate that carbon monoxide is detected by Nest Protect
(trigger). Currently, more than 11 million people use IoT
automation rules in their home devices [30].

TAP automation rules connect IoT devices and can interact
with each other, without the involvement of the user. Unfortu-
nately, this may cause devices to behave differently than the
user intends because the devices can interact in subtle and un-
expected ways. Prior work has shown that interactions between
rules and devices have the potential to create undesirable and
unsafe states in smart home environments (e.g., leaving doors
unlocked when the user is not home [12], [13], causing users’
private information to be leaked [11], or allowing untrusted
parties to control users’ home devices [45], [55]).

As an illustration of unexpected behavior caused by rule-
interactions, consider a user who installs the following rules:
(R1) “IF my garage is opened THEN send me a notification”
(R2) “IF I am at work THEN turn off my notifications”

When the user is at work, she won’t be notified right away
if her garage is opened because of the rule (R2). Interactions
between rules—rules triggering other rules, rules interacting
via the physical environment, multiple rules interacting with
the same device, or even triggering the same events—make
it difficult to guarantee that the rules, and by extension, the
devices, will behave as intended.

Studies have shown that users have trouble understanding
interactions between multiple rules or interpreting actions and
triggers of rules in IoT platforms; Brackenbury et al. [9]
showed that users have trouble predicting the behavior of TAP
rules when the rules have bugs. Researchers have proposed
tools for identifying such unsafe behavior in TAP rules (and
IoT applications) by using model checking [12], [28], [32],
[38], [48], [55]. Some of this work focus on describing general
unsafe behaviors that rule-interactions can cause [32], [38],
[48]. Other works [12], [28], [55] have designed more targeted
tools for users to specify their desired behaviors which are
checked for against the user-installed rules and mostly are
limited to checking safety properties, e.g., temperature of the
house should never be more than 75◦F1. It is unclear whether
users need such tools and to what extent such tools can help
users in identifying unsafe behavior in their TAP rules.

Based on these observations, the first goal of our work
is to answer these questions via a user study. To do so, we
designed and implemented a tool SAFETAP that allows users
to check for different types of desired behaviors. We forego
general-purpose model checkers like SPIN [27], Uppaal [31] or
NuSMV [16], and instead develop a symbolic model checking
tool for TAP rules. By focusing only on TAP rules, we can
apply efficient domain-specific strategies.

We designed a user study to evaluate how well users un-
derstand the nuances of TAP rule interactions and to determine
if they can identify problems themselves, or if they need a tool
like SAFETAP to assist them. We gave half of the participants
access to a web interface for SAFETAP to additionally measure
whether SAFETAP helped them find problems. We designed
various tasks where they were asked to determine if a set
of rules would behave as intended by a pretend user. We
randomly assigned the participants tasks to perform either for
“Alice” who had 8 rules installed or for “Bob” who had 5 rules
installed, to see whether and how the number of rules would
affect their performance.

In general, people were able to identify when the rules
would behave as intended, but they performed about half as
badly at spotting problems, despite most of the participants

1The terms “behaviors” and “properties” are interchangeable in this paper

reporting that they found the tasks “easy”. Moreover, par-
ticipants were approximately five times more likely to spot
problems with the “Bob” ruleset than with the “Alice” ruleset,
even though “Alice” had only 3 more rules none of which
contributed to any misbehavior. Users tended to perform better
if they were given the SAFETAP web interface, even though
only a small number of participants used it to check behaviors.
Our findings suggest that users need tools to help them
understand how TAP rules interact and, more specifically, to
help them spot problems and what cause them.

An important observation from the user study was that
about 57% of the participants indicated that they would be
interested in using such a service every time they installed
or modified a rule. Our study also led us to hypothesize that
participants struggled with finding problems because whenever
they found a rule which did what they expected, they assumed
that no other rules would interfere. Consequently, we believe
that they would struggle even more with the task of determin-
ing if a ruleset will behave as they expect after adding a new
rule or removing an existing rule, if the rule does something
desirable. These observations motivated the second goal of
this work: improve model checking-based analysis to be more
efficient and responsive to users’ incremental changes to their
TAP rules. More specifically, we aim to provide users with a
tool to easily verify and incrementally re-check their rules as
they make changes.

Our incremental analysis works by storing state from
previous analyses and using it in future analysis so that only the
modifications in the system are re-analyzed, thereby avoiding
the repetition of previously performed analysis. Newly-added
rules can be incrementally analyzed in combination with all
other rules without having to check for interactions amongst
the existing rules. This has two advantages—a reduced cost for
checking the behavior, and not flagging the user repeatedly for
violations that they have already ignored. This is particularly
useful when small changes are made to a large rule set. Simi-
larly, removal of rules only requires removal of the previously
stored state related to those rules, and can identify the rule
whose removal induced a violation, if any.

As SAFETAP is a light-weight custom tool, we have full
control of the analysis algorithm and the internal state of the
model checking. We developed a novel incremental symbolic
model checking algorithm for TAP rules and integrated it with
SAFETAP (which we call SAFETAP∆). SAFETAP∆ does not
re-check already analyzed unchanged rules and only reports
new issues caused by rule changes.

SAFETAP and SAFETAP∆ are implemented in Python.
Our evaluation of SAFETAP shows that it can detect all
property violations for a set of 100 rules in less than 60ms
and scales well. We evaluate SAFETAP∆ by comparing its
performance in subsequent analyses (after an initial analysis
which stores the state for incremental analysis) with SAFE-
TAP, and find that SAFETAP∆ is on an average 6 times faster
than SAFETAP when performing incremental analysis.

This paper makes the following contributions:
• A web-based tool, SAFETAP, to help users check for

unsafe behavior of their TAP rules.
• A user study assessing users’ understanding of TAP

rules and needs for tool assistance.

• An efficient incremental analysis tool, SAFETAP∆,
that only analyzes modified rules.

II. BACKGROUND

We briefly describe trigger-action programming (TAP) and
review key concepts in model checking.

A. End-user trigger-action programming for home IoT

Typically, the home IoT ecosystem includes three main
components: hardware, applications, and automation plat-
forms. The hardware includes the IoT devices which have
sensors that collect data from the physical environment or
affect the physical environment. For instance, a location tracker
might return the GPS coordinates for the device and a temper-
ature sensor would return the current temperature of room in
which it is installed.

An application processes the data collected by hardware.
Based on the collected data, an application may control hard-
ware devices, perform analytics and reporting, or communicate
with the server and other devices. For instance, an application
controlling the heater in a room may turn on the heater if the
temperature of the room drops below a certain threshold, and
turn it off once the temperature reaches a preset value.

Automation platforms like IFTTT [29] and Smart-
Things [44] allow users to programmatically form links be-
tween devices and applications and web services via trigger-
action programming (TAP). Generally, TAP rules are specified
in the format: “IF trigger THEN action”, where trigger is a
state change reported by the devices (e.g., alarm is turned off)
or state of the environment (e.g., the temperature is below
75◦F), and action is the update to device status or other
services (e.g., turn on the alarm, or send me an email).

When rules’ actions alter the environment, they may trigger
other rules—intentionally or unintentionally.For instance, con-
sider the rules: (R1) “IF the user nears home THEN unlock
door” and (R2) “IF door is unlocked THEN start recording
with camera”. Once the user reaches home, the rule (R1)
is triggered, and the action (unlock door) triggers the rule
(R2), causing the camera to start recording. This may lead
to unexpected behavior because it can be hard to anticipate
how and when the rules will interact.

B. Model checking

Model checking is an approach to determine if a formally-
modeled system satisfies a specification, written as a set of
properties. The model is an abstract formal representation
of the system, which is given by a finite number of states
and transitions between the states. A state is a snapshot of
the system, which, in our case, includes variables and their
respective values representing all the device statuses and the
physical environments. Transitions from one state to another
are based on events (triggers and actions) in the system.
Properties are usually specified as formulas in temporal logics
like linear temporal logic (LTL) or computational tree logic
(CTL). The model is typically represented as a transition
system with every node of the system representing a unique
state [6].

2

Desired behavior

Violating rules

Current state

SafeTAP

Rules

Web interface

Fig. 1: System Architecture for Property Checking with SAFETAP

SAFETAP uses a fragment of CTL for specifying proper-
ties. The system’s behavior is modeled as a computational tree.
Along with standard logical operators, CTL formulas include
temporal operators (X, G, F and U) quantified over paths in
the tree, which are called traces. Figure 10 in Appendix B
illustrates the semantics of these operators. The existential
quantifier, written E, says that the property holds for at least
one trace, while the universal quantifier, written A, says that
it holds for every trace, starting from the initial state. A state
formula, α, is a fact determined by looking at a single state.

The next operator, X α, says that the formula α holds in
at least one (EX) or all (AX) states reachable from the current
state in a single transition. The global operator, AG(α) holds in
the current state if α holds in all subsequent states. Similarly,
EG(α) says that α holds in all states along at least one trace.
The future operator, AF(α), says that, regardless of which
transitions we make, α will eventually hold in the future, while
the property EF(α) says that α will hold along some path at
some point in the future. The until operator, α U α′, says that
α is true at least until we reach a state where α′ is true, in at
least one (EU) or all (AU) paths starting from the initial state.

Instead of traversing one reachable state at a time, a more
efficient approach to CTL model checking is symbolic model
checking (SMC) [17], [35] that considers a set of states in a
single step by using a symbolic representation for those states.
We describe the algorithms for SMC used by SAFETAP in
Section VI and Appendix D.

III. SAFETAP ARCHITECTURE AND DESIGN

An overview of the system architecture with SAFETAP,
an analysis tool for checking whether a set of TAP rules
satisfy desired properties, is shown in Figure 1. SAFETAP
takes as inputs: TAP rules, desired behaviors (or properties)
to be checked (see Section IV-A for a list of properties that
SAFETAP can check), and the current state of the system.
When the rules do not satisfy a property, SAFETAP generates
all violating cases, composed of sequences of violating rules,
as output. We have built a web interface for users to interact
with SAFETAP (Section IV-B).

Next, we provide an overview of SAFETAP, high-level
descriptions of how trigger-action programming platforms are
modeled in SAFETAP and the algorithm behind SAFETAP
via examples. Finally, we present motivating scenarios for
SAFETAP∆ in Section III-B, an extension of SAFETAP that
implements our novel incremental analysis.

A. SAFETAP Design

SAFETAP is a custom analyzer which builds on classic
SMC algorithms for checking TAP rules for any violations
of the properties. Building a custom tool allows us to easily
report all violations at once, consider the impact of users’
actions (e.g., entering the house), and extend it to incrementally
analyze the rules in real time (in more detail in Section III-B).

As is standard in SMC, SAFETAP needs a formal specifi-
cation language for the properties and a model of TAP. Here,
we describe the syntax necessary for modeling TAP, give an
informal overview of the model, and explain the algorithm
using examples.

Formulas used by SAFETAP. SAFETAP properties are writ-
ten in a fragment of CTL, where we restrict the nesting of
temporal operators to what is required for the properties in Sec-
tion IV-A. For checking properties in the universally-quantified
fragment (e.g., AG and AU), SAFETAP looks for violations
of the property by translating it to the existentially-quantified
fragment and checking the satisfiability of the negated formula,
as is standard in SMC [6], [17], [35].

Consider the scenario from Section I where the user wants
to be notified whenever her garage door is opened. The
property is specified in CTL as:

AG(garage door opened→ notify user)

The equivalent formula using only existential operators is:

¬E(> U (garage door opened ∧ (¬ notify user)))

This property says that there does not exist a trace that reaches
a state where the garage door is opened and the user is not
notified. SAFETAP checks whether there exists a trace that
reaches this “bad” state, i.e.,

E(> U (garage door opened ∧ (¬ notify user)))

If SAFETAP finds traces satisfying this property, a violation is
found and reported to the user; otherwise, SAFETAP reports
that no violations are found.

The properties in Section IV-A are specified over all paths.
We translate these to existential properties, like in the example
above; the satisfaction of the translated property means there
is a violation. SAFETAP returns all traces which satisfy these
existential properties (i.e. traces which are counterexamples for
the original, universally-quantified properties).

Modeling the trigger-action platform. TAP rules are modeled
as a labeled-transition system. Given the current state of the
environment and some event, for instance “temperature rising”,
the system checks to see if any TAP rules are triggered in
Step 1. Next, the system collects all of the triggered rules in
Step 2 by comparing the triggers to the event and the current
environment. The rules trigger actions in Step 3, which may
themselves be events, or state effects. Finally, in Step 4, the
state is updated to reflect the state effects and the system
returns to Step 1 to process any events which were triggered
in Step 3. The complete syntax, figure and formal semantics
can be found in Appendix A.

We model interactions between the rules as a computation
tree, which represents all possible executions starting from a

3

given initial configuration, represented as the root of the tree.
Each node in the tree is a state in the system’s execution. Each
edge from a parent node to one of its children represents a
possible transition (triggered by an event). Since it is possible
for multiple events to trigger rules in any particular state, a
node may have multiple children.

Example safety property analysis in SAFETAP. Our al-
gorithms use formulas to represent a set of states and work
backwards. We start at the set of states which satisfy the
property and compute a pre-state formula to compute the set
of conditions necessary to reach these states. The pre-state
formula lets us walk backward through the tree until we reach
a fixed-point. Our algorithm then checks if the initial state is
in the set of states that satisfy the pre-state formula. If it is,
we know the property is satisfied. If it is not, we know that
the property does not hold.

To understand how SAFETAP analyzes properties, consider
the example described earlier where the user specified the
property: “Whenever the garage door is opened, I should be
notified” and installed the rules:
(R1) “IF my garage is opened THEN send me a notification”
(R2) “IF I am at work THEN turn off my notifications”
The property, which we input to SAFETAP is:

E(> U (garage = Open ∧ notify = False))

Suppose in the initial configuration the garage door is closed,
and the notifications to the user are turned on, i.e, (garage =
Closed ∧ notify = True).

SAFETAP begins with the set of states which satisfy the
condition: (garage = Open ∧ notify = False). First, it checks
if the set of states satisfying this condition contains the initial
conditions (garage door is closed and the notifications to the
user are turned on). Since they do not, it then generates the
pre-state formula by checking the actions of the two rules.
When traversing the action of (R2), it updates the action in
the condition and adds the trigger to the formula, i.e., the pre-
state formula computed by SAFETAP is (garage = Open ∧
location = Work ∧ False = False). As the event, “opening
the garage door”, can be a user-triggered event, SAFETAP
simulates the action of this user-event and generates a new
pre-state formula where garage is set to Open, i.e., the pre-
state formula is location = Work. As no more rules can be
traversed on this path, it returns this as the final disjunction
of the pre-state formula. As the initial conditions satisfy this
formula, SAFETAP reports a violation due to rule (R2).

B. Incremental Analysis

To provide feedback to users, we extend SAFETAP to
incrementally analyze rules for violations of behaviors, i.e.,
when new rules are added (or removed) by the user. In
this case, the algorithm verifies only the interactions induced
by the newer rules for property violation. More specifically,
SAFETAP∆ stores partial results from previous analysis of a
behavior and when a new rule is added or an existing rule is
removed, it restricts its analysis to the set of rules that was
added or removed; thus, it avoids having to analyze the entire
ruleset every time it is modified.

Incrementally analyzing new rules We illustrate the incre-
mental analysis with a smart-home example [13]. Consider a

user who has installed the following three rules:
(R1) When I enter home, turn the lights on,
(R2) When the lights are turned on, activate home-mode,
(R3) When home-mode is activated, turn on the heater
Suppose that the user wants: “Whenever I exit home, make
sure that heater remains turned off”. None of the three installed
rules or their interactions violate this behavior.

Now, suppose that the user is going on a vacation, and
installs another rule (R4) to simulate occupancy by turning
on and off the lights when a button is tapped in a mobile
app. Traditional model checkers would have to verify all
installed rules and possible interactions to check if the desired
behavior is violated, repeating all of the analysis performed
before. SAFETAP∆, on the other hand, only checks if (R4)
or combinations of rules involving (R4) violates the behavior,
and reports this to the user.

Incremental analysis in the presence of prior violations.
When adding a new rule, SAFETAP∆ incrementally checks
whether the rule or its interaction with all other rules violates
the property. This has two advantages—a reduced cost for
verifying the property and not notifying the user repeatedly
for the same violation. The latter might be useful from the
perspective of usability, as the user might not be interested
in viewing a previously reported violation because they inten-
tionally ignored it. Recall the example from Section I where
a user has installed the following rules:
(R1) Turn off notifications when I am in a meeting
(R2) Send me a notification when the garage door is opened
and specifies the property—“Whenever the garage door is
opened, I must receive a notification”. The rule (R1) violates
this property, which is reported to the user. The user might
be fine with this violation as they might prioritize not wanting
to be disturbed during a meeting. Suppose they install a new
rule:
(R3) Turn off notifications at night
When (R3) is added, SAFETAP reports (R3) as the only rule
that violates the behavior because the violation caused by (R1)
was already reported.

Incrementally analyzing rules after removal. Similarly,
incrementally verifying the removal of rules does not require
all state formulas to be re-computed. Instead, SAFETAP∆ uses
the existing state formulas to decide whether the removal of a
rule caused a new violation to occur and can identify the rule
which caused a violation upon removal. For instance, consider
a scenario where a user has installed two rules:
(R1) Turn off the air-conditioner in the morning
(R2) Turn on the air-conditioner at night
and the behavior—“Check that turn on A/C is always followed
by turn off A/C” (see Section VIII for more details on this
property). Rules (R1) and (R2) together satisfy this property
but if the user removes rule (R1), the property is violated.
SAFETAP∆ can use the results from previous verification to
report that the removal of the rule (R2) causes this violation
without having to run the verification algorithm again.

IV. BEHAVIOR-SPECIFICATION INTERFACE

SAFETAP can be used to check any property that can be
specified in the fragment of CTL described in Section III-A. To
make the tool more user-friendly, we created a web interfacefor

4

specifying and checking properties (which we call desired
behaviors on the website). In this section, we describe the
properties supported on the behavior-specification interface
and introduce the web tool and its capabilities.

A. Properties

We name and describe each property the SAFETAP web
tool supports. The CTL formulas used to check each property
can be found in Table 9 in Appendix B.

Property 1 (Always/Never). Always and Never properties
(otherwise known as safety properties) capture high-level user
intent and ensure that the system never enters a “bad” state.
Safety properties are similar to some policies described in prior
work [10], [12], [13], [32], [33], [38], [55].

Depending on the circumstance, it might be more natural
to use Always or Never. For instance, a user might always want
the temperature inside their house to be between 68◦ and 75◦.
There is a matching Never property which expresses the same
thing, but it is not as elegant: the temperature should never be
below 68◦ or above 75◦. We allow the user to specify both
Always and Never properties for convenience.

Property 2 (Whenever). Whenever properties have the form,
“whenever A happens, make sure that B happens”. A property
of this form is satisfied by checking that for all states where
A is true, B also holds. Like Property 1, Whenever properties
are useful for specifying at a high level how TAP rules should
behave. For instance, a user might install a TAP rule to ensure
that whenever they leave their home, their air conditioner is
turned off, and want to verify that no other rule will interfere
with this behavior.

One noteworthy use for this property was exemplified in
Section I where the user installs the rule “IF my garage door
is opened THEN send me a notification.”. The effect of this
rule was overridden by another rule that mutes the notifications
while the user is at work. The property, “whenever my garage
door is opened, make sure that my notifications are on” would
identify the rule that mutes notifications as problematic.

Property 3 (Only When). Sometimes it is not enough to
ensure that A happens whenever B is true. The user may also
want to know that A happens only when B is true. This is
especially useful for rules which are supposed to signal to the
user when something important happens. Consider the scenario
where a user installs the following rule: “IF smoke detected
THEN blink light”. The intention here is to be notified when
smoke is detected by a blinking light. If this user forgets that
they also have the rule “IF World Cup update THEN blink
light” installed, this could be a problem. When the user’s
light blinks, they might not know without further investigation
whether there is a game update or there is a fire in their house.

To ensure that there is no ambiguity about which event
(smoke or the World Cup) triggers a signal (a blinking light),
the user might want to check that the important action occurs
only after a particular trigger.

Property 4 (No Loops). TAP allows rules to be chained
together to perform complex tasks. However, chaining can have
unintended consequences if the chains contain loops.

For example, the rules “IF an event is added to your
calendar THEN add a reminder” and “IF a new reminder is
added THEN create an event on your calendar” creates a loop.
Triggering either of these rules triggers the other, creating
infinitely many reminders, and calendar events. This property
is also identified as undesirable by Wang et al. [48] and is
similar to the “loop triggering” property identified by Chi
et al. [15], which accounts for more subtle chaining due to
environmental changes, like we do.

Property 5 (No Action Cancelling). Action cancelling (also
referred to as action conflict [12], [13], [33], [38], [48])
occurs when the triggers of two rules overlap, but their actions
disagree. For example, the rules: “IF user leaves home THEN
turn on security camera” and “IF time is 6AM THEN turn off
security camera” cancel each other’s actions. If the triggers
(user leaves home, and time is 6AM) happen simultaneously
(user leaves home at 6AM), then both rules will be activated.

These rules disagree on what to do; while one rule turns on
the security camera, the other one turns off the security camera.
Because TAP rules are not usually installed with priorities to
determine what order they are processed, it is hard to predict
what will happen when two rules cancel each other’s actions.
Whichever rule happens to be processed first will have its
action cancelled by the rule processed second, which could
lead to unexpected behavior.

B. SAFETAP Web Interface

The SAFETAP web interface 2 (shown in Figure 11 in
Appendix C) helps users write and check properties, also called
desired behaviors, for their TAP rules. The SAFETAP web
interface also supports profiles. For our user study, profiles
were used to simulate different “users”. This feature is also
useful for users with IoT devices that do not interact with
each other (for instance, some devices might be at their homes,
while others are at their office) to check each setting “home”
and “office” independently. Users can check that their TAP
rules will behave the way they intend in 3 steps, which we
outline below.

1) Install Rules: The first step is to install rules, which are
organized by service. For example, the rule “Turn on camera
if the user is away from home” appears under the “Location”
and “Camera” services. Currently, the set of rules available to
install are a small subset of IFTTT rules. Rules can also be
temporarily deactivated.

2) Add Behaviors: The next step is adding properties. To
do so, the user clicks on a behavior type and fills out a
template.

Templates are available for the Always (“I always want
[condition]”), Never (“I never want [condition]”), Whenever
(“Whenever [condition 1] make sure [condition 2]”), and Only
When (“[condition 1] only when [condition 2]”) behavior
types. Loops (Property 4) and action cancelling (Property 5)
do not involve conditions, so they do not require templates.

2When we released the website, our tool was named VerIoT, but we changed
it to SAFETAP as Yuan et al. [52] proposed a tool with a similar name.

5

3) Verify Rules: The final step is to run SAFETAP to
check if the TAP rules selected by the user will behave as
desired. The verification page includes a verification summary
of all of the behaviors at the top of the page, as well as the
verification status of the configured desired behaviors. The
summary includes buttons for checking Property 4 for rules
which create loops and Property 5 for rules which cancel each
other’s actions.

To run SAFETAP, the user simply clicks the checkmark
next to the behaviors they are interested in checking. Green
checkmarks mean the TAP rules they selected satisfy that prop-
erty. Red X’s mean that violations were found. Clicking the red
X displays which rule(s) were involved in the counterexample
violating the property.

V. USER STUDY

We performed a user study to measure how well users
can evaluate whether a set of rules will satisfy a property (or
desired behavior). The goal of our study was to determine
whether they can identify problems themselves, or if they
require the help of a tool like SAFETAP to assist them. In
the process, we evaluated the usability of the web interface
for SAFETAP.In this section, we discuss how we designed our
user study. In addition to describing the high-level methodol-
ogy, we outline the types of questions that appear in the survey
we distributed as well as the tasks we gave the participants3.
Finally, we discuss the results of our study and its limitations.

A. Methodology

We initially recruited 55 people through Amazon Me-
chanical Turk [1] to participate in our study. We required
that participants have at least an 85% HIT acceptance rate
on previously-completed MTurk tasks, be able to speak and
read English fluently, be over the age of 18, and “have
prior experience with IoT devices.” 18 responses were not
included in our analysis because these participants either did
not follow our directions or their answers conveyed that they
did not pay attention.We were left with 37 “valid” responses.
Unfortunately, we found that very few people used the website
(we discuss this in more detail in Section V-E), so we used
only the responses without access to SAFETAP from this first
round. We re-released the study and additionally required that
people use the website to perform the tasks and collected
40 additional responses. Of these, 22 were “valid” responses,
by the same metrics listed above, plus participants were also
excluded if we knew they did not use the website because they
did not enter a valid website code (generated by the web tool)
in the survey.

The study was approved by UVA’s IRB. We paid partic-
ipants a base rate of US$5, plus up to a US$3 bonus, as
described below. The survey consisted of 4 sections:

1) Experience with IoT: Participants specified what
type of experience they had with IoT (e.g., if they
own IoT devices, how often they interact with IoT
devices, and whether they use TAP systems).

2) Rule Evaluation Questions: Section V-B

3The full survey questions may be found at https://safetap.s3.amazonaws.
com/userstudy.pdf

3) Survey Follow-up: Participants answered questions
about the survey tasks, as explained below.

4) Demographics: The study concluded with a set of
demographic questions.

B. Rule Evaluation Questions

Number of participants
Without With Total

SAFETAP (-) SAFETAP (+)
Alice Task (A) 9 8 17
Bob Task (B) 9 14 23

Total 18 22 40

Fig. 2: Distribution of participants each survey condition: Alice task
without SAFETAP (A-), Bob task without SAFETAP (B-), Alice

task with SAFETAP (A+), Bob task with SAFETAP (B+)

The primary goal of the rule evaluation section is to assess
whether participants are able to determine if a set of rules
satisfy a given property (called a “desired behavior” in the
survey). We varied the number of rules to measure whether the
difficulty of the tasks scales with the number of TAP rules. We
varied the inclusion of SAFETAP to evaluate whether it was
helpful to the participants, and to measure the usability of the
web interface. The distribution of participants, after removing
“invalid” responses, is shown in Figure 2.

Each participant received two tasks with different rule sets
and three questions for each task. The rule sets were static
throughout the task. Each question had a desired behavior
specification (property) and the participant was asked to decide
if the rule set would satisfy it. Regardless of whether they gave
the expected correct answer or not, participants were asked to
indicate which rules support their answer. That is, if they say
that the behavior is satisfied, we asked them which rules must
remain installed to achieve this behavior? And if they say that
the behavior is not satisfied, we asked them which rules should
be uninstalled to fix the problem?

Before asking the participants to begin the tasks, we gave
them an example rule set and shared the expected correct
answer with participants so they knew what to expect. The
main survey tasks asked participants to consider two sets of
TAP rules installed by “Alice” (or “Bob”, depending on which
group they were in) and “Charlie.” Alice and Bob’s set of
desired behavior specifications were the same and they also
had the same correct answers even though Alice’s rule set had
eight rules while Bob’s had only five. Alice and Bob’s rule sets
were the same except for the three additional rules in Alice’s
rule set, which were not required to justify any of the correct
answers (although they might be related to the properties we
asked about).

We group questions based on how they can be answered
with SAFETAP. The questions for Alice and Bob’s sections
could be answered using Never or Whenever properties. We
group these questions together because these properties all
specify high-level user intent and could be expressed more
than one way, depending on which property better fit their
intuition. The questions for Charlie’s section cannot easily be
expressed multiple ways and require more specific properties.
The first is meant to be checked with an Only When property,

6

https://safetap.s3.amazonaws.com/userstudy.pdf
https://safetap.s3.amazonaws.com/userstudy.pdf

the second checks if there are No Loops, and the third asks if
there is No Action Cancelling.

To discourage participants from randomly guessing, we
offered a US$0.50 bonus for each question that was answered
correctly or accompanied by a thoughtful free-response answer
(i.e., up to US$3 bonus, or US$8 total compensation).

SAFETAP (+) Condition The survey for the (+) condition
is very similar to the (-) condition. It includes a modified set
of instructions, specific to the SAFETAP web interface, with
a tutorial video as well as follow-up questions about their
experiences with SAFETAP.

To keep the effort similar among all participants, we pre-
loaded profiles for Alice, Bob, and Charlie with the rules for
each section already loaded. We did not allow them to add,
delete, or edit the rules on these profiles. To complete the
tasks, the participants only needed to add the properties, run
the verification, and interpret the results. At the end of the
tasks, they were encouraged to create their own profiles and
explore the site with full functionality, including adding their
own rules.

C. Survey Follow-up

After they completed the rule evaluation questions, par-
ticipants in the (+) condition answered a series of questions
about their experiences with SAFETAP, such as the difficulty
of adding a desired behavior in SAFETAP and whether they
found SAFETAP useful. This helped us evaluate the usability
of SAFETAP. Participants in all conditions indicated their
perception of the difficulty of answering the questions on a
Likert scale. We were interested whether people seemed to
overestimate their ability to understand TAP rule interaction.

At the end of the survey, participants were invited to give
“any other feedback” they wanted to share.

D. Survey Data Analysis

Before publishing the survey, we created an “answer key”
for the tasks. Each question includes a Yes/No answer and
a set of rules supporting that answer (when applicable). We
considered two correctness measures: both Yes/No answer and
rules match our answer key, and Yes/No answer matches our
answer key. We were strict with our scoring and did not take
into account any explanations in the free-response boxes for
each question when deciding if the answers were correct. This
is because many participants did not take advantage of the
free-response boxes to explain their answers, so there was no
principled way to determine if “incorrect” answers should be
considered correct.

E. Results of user study

In this section, we highlight the key findings of our user
study. General statistics about IoT and home automation expe-
rience and demographic data are summarized in Appendix E.

Users struggle to identify problems with TAP rules. Par-
ticipants’ average score for the tasks was 70% (4.18 of 6
questions answered correctly). This is consistent with results
from prior work that show that users do not fully understand

TAP rule interactions, especially in the presence of bugs [9].
Even more troubling, participants were more successful at
identifying when behaviors would be achieved by a set of rules
than when it would not be (90% vs 60% correct on average).

Further, even when they correctly determined whether the
rules caused a problem, participants were only able to identify
the rules that contributed to this problem 39% of the time. This
statistic drops to 25% of the time if we exclude the tasks where
they checked for loops and action cancelling, which people
were generally more sucessful at4. In a real-world scenario,
it would be important to identify not only when there is a
problem, but precisely which rule causes the problem.

Despite the relatively poor performance when identifying
problems, 70% of participants expressed that they agreed or
strongly agreed that the tasks were easy. As justification for
an incorrect answer, P14 wrote: “[rule] is obviously correct.”
Several other participants gave similar justifications for their
incorrect answers. Explanations like this illustrate not only that
participants are overly confident in their abilities to understand
how TAP rules behave, it also gives us some insight into why
they might have answered incorrectly: their strategy may have
been to skim the list of rules only looking for a rule which
produced the expected behavior, not realizing that other rules
interfered.

Our study also gave us some insight into the types of
properties users struggle with. Of the four questions in the
survey where participants should have identified a problem
with the rule set, two were Whenever/Never behaviors, and two
were looking for loops and action cancelling. We found that
participants scored much worse when looking for problems
with the Whenever/Never behaviors (35% compared to 84%
average score for identifying loops and action cancelling).

Question and whether it identifies a problem (Y/N)

%
 o

f p
eo

pl
e

w
ho

 a
ns

w
er

ed
 c

or
re

ct
ly

0.00%

25.00%

50.00%

75.00%

100.00%

Q1 - Y Q2 - N Q3 - Y

All participants Alice Bob

Comparison of Scores Given Alice vs Bob Tasks

Fig. 3: Average scores for all participants with Alice vs Bob task

Users struggled more with more TAP rules. The Alice
ruleset (8 rules) is the same as the Bob ruleset (5 rules) except
that it has 3 additional rules, which do not directly contribute
to any of the problems. The Alice vs. Bob condition was
designed to test the hypothesis that a larger rule set made
the questions more difficult to answer correctly. Our results
support this hypothesis: participants with the Alice ruleset

480% correctly identified that there was a loop and 88% correctly identified
that there was action cancelling, but sometimes people only identified one of
the rules involved in the interaction instead of both rules

7

correctly identified that there was a problem just 9% of the
time, as opposed to the people with the Bob ruleset who
correctly found a problem 55% of the time. It is not surprising
that the difficulty of the tasks scale with the number of rules,
but it is surprising how much of a difference only 3 rules
made. This is an especially startling result given that 5 of the
22 participants who use TAP themselves reported having 10 or
more rules, and prior work found that IFTTT users on online
home automation forums had on average 26 rules installed
(and as many as 66 rules) [18].

SAFETAP helped people perform (marginally) better. The
results thus far support the claim that a tool such as SAFETAP
could help users identify problems with their TAP rules as
well as how to fix them. Unfortunately, participants in our
study performed only marginally better at identifying problems
when they had access to SAFETAP: 43% correctly identified
the violation using SAFETAP compared to 32% without.

Of course, the usability of SAFETAP may have been a
contributing factor; however, the feedback we received about
the participants’ experiences with the tool was fairly positive.
82% of the participants that had the opportunity to interact
with SAFETAP agreed or strongly agreed that “it was easy to
add desired behaviors for the tasks”. Similarly, only 14% of
participants disagreed with the statement that it was “easy to
understand the results” after running SAFETAP.

The free-response justifications for the questions point to
other factors that may have contributed to the finding that
SAFETAP helped only a small amount. Participants’ overcon-
fidence and belief that the tasks were easy may have led them
to believe that they did not need to use SAFETAP. This is
supported by our analysis of SAFETAP logs. We could confirm
the activity of only 11 participants (50% of those with access to
SAFETAP). These are the people we know used the website to
install and verify behaviors, but we are not sure to what extent
they used the website to complete the tasks, nor can we be sure
whether or not the other 11 participants used SAFETAP. Given
the uncertainty about who used SAFETAP, we cannot draw any
meaningful conclusions about whether or not using SAFETAP
helps users determine if TAP rules behave as intended.

Taken as a whole, these results suggest that participants
struggle to identify TAP rule(s) that cause problems, especially
for Whenever/Never behaviors, and they are overly confident
in their ability to do so. Their difficulties increase quickly
with larger rule sets. It is therefore reasonable to conclude that
users would benefit from a tool that could help them identify
unintended behaviors, especially as rules are added.

VI. INCREMENTAL ANALYSIS IN SAFETAP∆

Users may install new rules when new services are added
or when they buy new devices, and modify or delete old
ones; they may do so based on feedback from SAFETAP.
Reanalyzing all the rules every time changes are made would
cause a perceptible slowdown in how long it takes SAFETAP
to verify rules. We leverage the characteristics of TAP to
implement a novel incremental analysis of the rules where
SAFETAP∆ stores the state from previous analysis, checking
only newly added or modified rules.

Algorithm 1 Algorithm to incrementally verify E(α U β)

1: function INCADDEU(state0, α, β, (ϕ,L,Rold), Rnew)
2: ϕ = ϕ ∨ β
3: Rnew = Rnew \ (Rnew ∩ Rold)
4: Rall = Rnew ∪ Rold

5: if SATCONF(ϕ, state0) then
6: . A violation found in initial state
7: return ()
8: end if
9: L′ = `′n = []

10: `n = PREDSTATELIST([(noop, β, [])], Rnew)
11: if L 6= [] then
12: for all ` ∈ L do
13: `′ = `n ++ `′n
14: for all (evi, ϕi,Ri) ∈ `′ do
15: ϕ = ϕ ∨ (ϕi ∧ α)
16: if SATCONF((ϕi ∧ α), state0) then
17: . A violation found
18: end if
19: end for
20: `′n = PREDSTATELIST(`, Rnew)
21: `n = PREDSTATELIST(`n, Rall)
22: L′ = L′ ++ [` ++ `′]
23: end for
24: `n = `n ++ `′n
25: end if
26: repeat
27: ϕo = ϕ
28: for all (evi, ϕi,Ri) ∈ `n do
29: ϕ = ϕ ∨ (ϕi ∧ α)
30: if SATCONF((ϕi ∧ α), state0) then
31: . A violation found
32: end if
33: end for
34: `n = PREDSTATELIST(`n, Rall)
35: L′ = L′ ++ [`n]
36: until ϕ→ ϕo and ϕo → ϕ
37: return (ϕ, L′, Rall)
38: end function

We describe the algorithm used by SAFETAP∆ for incre-
mental analysis in this section via an example. We show the
algorithm for checking E(α U β), where α and β are two state
formulas. We defer all other algorithms to Appendix D.

Example: Consider the scenario from Section III-B where the
user desires the following behavior: “Whenever I am not at
home, make sure that heater is not on” for the following rules
(the third column shows a formula-based representation of the
rule):

R1
When I enter home,
turn the lights on

Location = Home⇒ Lights = On

R2
When the lights are turned on,

activate home-mode
Lights = On⇒ Homemode = On

R3
When home-mode is activated,

turn on the heater
Homemode = On⇒ Heater = On

The violating property that SAFETAP∆ looks for is:

P = E(> U (Location 6= Home ∧ Heater = On))

It states that the bad behavior is a trace that has a state where
user’s location is not home and the heater is on.

The top-level function for incrementally verifying EU
properties when new rules are added, INCADDEU, is shown

8

in Algorithm 1. It takes as input the current state (state0),
formulas α and β, the state from previous analysis (ϕ,L,Rold),
and the newer set of rules, Rnew, against which the formula
E(α U β) needs to be checked. In the tuple (ϕ,L,Rold), ϕ
represents the final pre-state formula, L contains the list of
states from every iteration, and Rold are the rules involved from
the previous analysis. If the tuple is (False, [], []), no analysis
has been performed previously. INCADDEU returns the final
pre-state formula (ϕ), an updated list of states L′, which are
used as input for the next analysis when users add or remove
rules, and the set of rules Rall involved in the current analysis.

In our example, R1, R2 and R3 do not violate the behavior.
After the initial analysis, SAFETAP∆ stores the state (L) as
follows: A., B. and C. are identifiers for the lists of formulas

A.
False R1

Location 6= Home ∧ Lights = On ∧ Heater = On R2
Location 6= Home ∧ Homemode = On R3

B.
False [R2, R1]

Location 6= Home ∧ Lights = On [R3, R2]
C. False [R3, R2, R1]

(`n on line 28) generated in every iteration (lines 26-36 for the
initial analysis) of the algorithm; the second column contains
the state formula (ϕi on line 28) that was generated when
processing the rule(s) mentioned in the third column (Ri on
line 28). The events that lead to the pre-state formula (evi
on line 28) like LOCATIONENTER for R1, LIGHTSON for R2
or HOMEMODEACTIVE for R3 are also stored but we omit
them from the tables above for brevity. In the initial state
state0, Location 6= Home, Lights = Off, Heater = Off and
Homemode = Off.

The algorithm works by repeatedly computing the pre-
condition for the given property and the set of rules until a
fixpoint is reached. This corresponds to assuming that there is
a state in the computation tree that satisfies β and moving up
the tree to collect the states that satisfy α, and then checking
if the state state0 is in that collected set of states.

INCADDEU calls PREDSTATELIST (Algorithm 2) to gener-
ate the list of pre-state event, formula and rules involved in the
pre-state formula tuples (shown as (evi, ϕi,Ri)). The function
PREDSTATERULE takes as input an event, a formula and a rule
representing a set of configurations and returns another event
and a new formula. The goal of this function is to compute the
precondition of reaching configurations satisfying ϕ, via rule
r, which is triggered by event evt and generates event eva. The
function UPDFORMULA takes the formula ϕ and modifies it
according to the updates to the state variables to generate the
updated formula. The function PREDSTATERULE conjuncts the
pre-conditions of the rule α along with the updated formula
to generate the formula ϕ′.

Here, the first row of A. is the formula representing the
state that can reach the state that heater is on and user
not at home by triggering R1, i.e., Location 6= Home ∧
Heater = On with Location having the value Home; thus,
Home 6= Home ∧ Heater = On, which is False. The function
PREDSTATELIST (Algorithm 2) updates the action in the
formula (β = (Location 6= Home ∧ Heater = On)) using
UPDFORMULA and joins (∧) the trigger state to it. Intuitively,
R1 is triggered when Location = Home but the property we
are checking for requires Location 6= Home, thus eliminating

(False) R1 alone as a possible rule for satisfying P . Similarly,
the second row of A. is the formula that can reach the state
by triggering R2, and the third row by triggering R3.

Similarly, the first row of B. is the formula representing
the state that can reach the state that heater is on and user
not at home by triggering R2 and then R1, i.e., Location =
Home∧Location 6= Home∧Heater = On, which is False, and
the second row by triggering R3 followed by R2.

The only row in C. is the formula that can reach the
state that heater is on and user not at home by triggering
R3 followed by R2 followed by R1, which is Location =
Home ∧ Location 6= Home or False.

The final fixed-point pre-state formula is the disjunction of
all of the formulas in the second column:

ϕ =
(
(Location 6= Home ∧ Lights = On ∧ Heater = On)

∨ (Location 6= Home ∧ Homemode = On)

∨ (Location 6= Home ∧ Lights = On)
)

In the initial state state0, Location 6= Home. The initial state
is in the set of states satisfying this formula only if either
(Lights = On ∧ Heater = On) or (Homemode = On) or
(Lights = On). As all of these three state changes are user-
events triggered by the user when at home, the installed rules
do not satisfy the property P . As the formula does not satisfy
P , the desired behavior of the user is not violated.

Inserting New Rules. When the user installs the new rule
(R4) to simulate occupancy by turning on and off the lights
on a button tap (shown below), SAFETAP∆ can incrementally
verify the last installed rule using the state-table (L) generated
before. The initial state state0 = [Location 6= Home]. INCAD-

R4
Simulate occupancy,

when I am not at home
OccButton = On⇒ Lights = On

DEU starts by testing the satisfiability of ϕ ∨ β in the initial
state state0 where ϕ is the disjunction of all state formulas in
L and β = (Location 6= Home ∧ Heater = On). The function
SATCONF used in the algorithm is an abstract function used to
check if the set of states satisfying the boolean formula ϕ∨ β
contains the state state0. If it returns true, a violation is found
in the initial state, i.e., the current state in the model already
violates the condition being checked for. If the state in state0 is
not in the set of states satisfying ϕ∨β, the algorithm computes
the pre-state formula from the set of states satisfying β, i.e.,
given the set of rules Rnew that end up in states satisfying β,
the algorithm searches for pre-states that satisfied α and the
preconditions αr for each rule in Rnew.

After the rule R4 is added, the initial state that the
user wants to check for contains Location 6= Home and
OccButton = On apart from the other state to simulate
occupancy when the user is not at home. In the example, when
R4 is added to the set of rules, SAFETAP∆ adds another row
to A.: (OccButton = On ∧ Location 6= Home ∧ Heater =
On), R4 and checks if this satisfies the property P . Further, it
checks if either R1 or R2 or R3 can be triggered by R4, and
hence adds another row to B.: (OccButton = On ∧ Location
6= Home ∧ Heater = On), [R2, R4]. It checks if this formula
satisfies P or not, and continues to the next iteration. It then
adds another row to C.: (OccButton = On ∧ Location 6=

9

Algorithm 2 Auxiliary functions used by SAFETAP∆

1: function PREDSTATERULE(ev, ϕ, r)
2: (evt, αr)⇒ (eva,U , E)← r
3: if ev = noop ∨ eva = ev then
4: ϕ′ = αr ∧ UPDFORMULA(ϕ,U , E)
5: return (evt, ϕ

′)
6: end if
7: return ()
8: end function
9:

10: function PREDSTATELIST(list ,R)
11: nlist = nil
12: for all (evi, ϕi,Ri) ∈ list do
13: nl = nil
14: for all r ∈ R do
15: t = PREDSTATERULE(evi, ϕi, r)
16: if t 6= () then
17: nl = (t.ev, t.ϕ,Ri ++ [r]) :: nl
18: end if
19: end for
20: nlist = nl :: nlist
21: end for
22: return nlist
23: end function

Home, [R3, R2, R4]. When it checks whether this formula
satisfies P or not, it finds a violation as the user’s location is
not Home in the state state0 and OccButton is On. Again, the
fixed-point formula is a disjunction of all the pre-state formulas
in the second column. The updated state-table is shown below
with the newly added states in blue:

A.

False R1
Location 6= Home ∧ Lights = On ∧ Heater = On R2

Location 6= Home ∧ Homemode = On R3
OccButton = On ∧ Location 6= Home ∧ Heater = On R4

B.
False [R2, R1]

Location 6= Home ∧ Lights = On [R3, R2]
OccButton = On ∧ Location 6= Home ∧ Heater = On [R2, R4]

C.
False [R3, R2, R1]

OccButton = On ∧ Location 6= Home [R3, R2, R4]

In the case when some prior analysis has been done, the
algorithm proceeds by computing pre-states for only the rules
in Rnew and their interactions amongst themselves and with
the rules in Rold until it reaches the point where the previous
analysis stopped. It then continues with all the rules (Rall) to
check if any further pre-state formulas are possible.

If no prior analysis has been performed, INCADDEU
directly proceeds to line 26 and performs analysis of all rules
in Rnew to determine the pre-state formulas. Once the function
reaches a fixpoint, i.e., no more states can be added to the set
of states satisfying the newly-generated formula ϕ, it returns
ϕ. The new formula ϕ includes the pre-conditions of rules for
different possible paths that could have led to β along with the
boolean formula α. The formula ϕ corresponds to the maximal
set of states that satisfy the original formula E(α U β).

Thus, instead of executing the complete functionality from
scratch, SAFETAP∆ is able to incrementally verify rules for
behavior violations. Once SAFETAP∆ reports the violation
and the rules involved, the user can take appropriate actions.

In the incremental part of the algorithm (lines 11-36), the
previously computed state formulas are only used to generate

Algorithm 3 Algorithm to verify E(α U β) when rules are
removed

1: function REMOVEEU(state0, α, β, (,L,Ro), Rn)
2: if SATCONF(β, state0) then
3: . A violation found in initial state
4: return ()
5: end if
6: if L 6= [] then
7: ϕ = False
8: L′ = []
9: for all ` ∈ L do

10: `n = []
11: for all (evi, ϕi,Ri) ∈ ` do
12: if 6 ∃r.r ∈ Rn ∧ r ∈ Ri then
13: ϕ = ϕ ∨ (ϕi ∧ α)
14: if SATCONF(ϕi ∧ α, state0) then
15: . A violation found
16: end if
17: `n = `n ++ [(evi, ϕi,Ri)]
18: end if
19: end for
20: L′ = L′ ++ `n
21: end for
22: return (ϕ, L′, Ro \Rn)
23: end if
24: end function

the pre-state formulas for interaction with the newer rules. The
algorithm does not include them in the check for satisfiability
(line 16), and hence, does not report violations from the
previous analyses. Note that the final pre-state formula ϕ
contains the actual formula, which is a disjunction of all the
pre-state formulas from both previous and current analysis.

Removing Rules. Incremental verification of rules for a prop-
erty violation when a rule is removed is handled differently.
The algorithm, REMOVEEU, proceeds by checking if pre-state
formulas computed earlier violate the property for those rules
that have not been deleted from the set of rules Ro. If a
violation is detected with the newer set of rules, i.e., Ro \Rn,
it is reported along with the set of rules in the Rn that the
user deleted. As the fixed-point formula is a disjunction of
the pre-state formulas from the second column in the table,
REMOVEEU works by simply deleting the row from the table
and updating the final fixed-point formula.

In the example above, suppose the user identifies that the
rule R2 should not be active (and deactivates it), and wants to
confirm that the desired behavior is not violated any more.
Instead of re-verifying all rules, SAFETAP∆ uses the RE-
MOVEEU functionality to remove R2 from the set of rules, and
uses the state-table to verify the behavior. The REMOVEEU
function removes the second row in A. corresponding to R2, all
three rows in B. and both the rows in C.. It then checks only the
rows R1, R3 and R4 in A., which verify successfully satisfying
the behavior. The updated state-table is shown below:

A.
False R1

Location 6= Home ∧ Homemode = On R3
OccButton = On ∧ Location 6= Home ∧ Heater = On R4

10

Property type Example property Violating rules
Always/Never (Property 1) Temperature of the house is never greater than 75◦ Raise temperature of the home when heater is turned on
Whenever (Property 2) Whenever my garage door is opened, make sure I receive a notification Mute phone at work; Mute your phone when battery is low
Only When (Property 3) Blink lights only if there is smoke in the house Blink lights when there is an in-game update from your favorite team

TABLE I: Example properties checked for in SAFETAP

VII. EVALUATION

We evaluate the performance of the basic analysis tool
SAFETAP and the performance gain of our incremental anal-
ysis in SAFETAP∆.

A. Methodology and system setup

We explain how we collect and process the data and then
how SAFETAP is implemented.

Data collection and dataset generation. To collect IFTTT
rules, we crawled IFTTT [29] for available services, and then
gathered the rules associated with the services by visiting
each service page5. For each rule, we collected all available
information—description, title, trigger title, trigger service,
action title, action service, number of downloads, and URL
for the rule—and used this dataset in our evaluation. To
evaluate SAFETAP’s performance, we sampled the 5,000 most
downloaded rules from the crawled dataset. Among those, we
identified 502 unique actions and triggers. As certain rules
are dependent on the arguments passed to the triggers and/or
actions, we manually encode the types and reasonable ranges
for these arguments (e.g., temperature: 32◦F–80◦F, security
system modes: home and away) along with getters and setters
to read and modify the state variables. We also encode the
trigger and action events.

We implemented an encoder to generate rule representa-
tions that SAFETAP understands. The encoder is also used
as part of a simulator for evaluation purposes. The simulator
randomly selects a specific number of rules from the dataset to
emulate rule installation. Our simulator also identifies chains
of rules in the dataset. Two rules form a chain if the action of
the first rule triggers the second. Our simulator uses the state
variables in rules to construct chains.

Experiment setup. We perform two sets of experiments on
a MacBook Pro with 8 GB RAM and 3.1 GHz Intel Core i5
processor, running macOS Catalina 10.15.3. We report the per-
formance numbers over 100 trials. SAFETAP and SAFETAP∆

are implemented in Python 3.7.3 over 960 LOC.

a) Performance and scalability of SAFETAP.: Our
simulator randomly selects rules from the 5, 000 rule dataset on
which we evaluate how well SAFETAP performs at detecting
property violations as we vary the number of rules. We start
with 100 rules in the first set and increment the number of rules
by 50 for each of the following rounds, for up to 500 rules.
We check the properties discussed in Section IV-A (example
properties are shown in Table I), and report the time taken to
detect the first violation and all possible violations (may be
0). For measuring the time taken to verify the first violations,
we manually add/remove rules to induce a violation if no
violations of the property are found in the rule-set.

5Scraped 259,523 IFTTT rules in October, 2017

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

100 150 200 250 300 350 400 450 500

Ti
m

e
ta

ke
n

to
 d

et
ec

t a
ll

vi
ol

at
io

ns
 (s

ec
)

Number of Rules

Only When Whenever Action Cancel
Always/Never No loops

Fig. 4: Performance of SAFETAP: x-axis plots the number of rules
in the data-set while y-axis plots the execution time in seconds to

detect all violations for different properties.

b) Effect of incremental analysis on the performance.:
To investigate the effect of incremental analysis on the per-
formance of SAFETAP∆, we perform an experiment varying
the number of rules and checking for Only when property in
three rounds. In the first round, we perform the initial analysis
needed to generate the state. In the second round, we perform
the incremental analysis with a couple of new rules added to
each set. In the third round, we perform the analysis without
using the incremental analysis on the newer rules added to the
initial set of rules as would be the case in a normal analysis.

Additionally, we perform an experiment to compare the
time taken with incremental analysis for addition and removal
of rules in SAFETAP∆ with the time taken in original analysis
in SAFETAP. We vary the number of rules used in each round.
This experiment is performed thrice, once each for 2, 4 and 8
rules being added to and removed from the original rule set.

B. Results of Evaluating SAFETAP and SAFETAP∆

The results of our experiments show that SAFETAP is
efficient and scales well with a larger number of rules. In-
terestingly, we observe that the time taken to detect property
violations increases with the maximum length of the chains.
This is because the length of the paths to be explored increases
with the length of the chains, which means SAFETAP takes a
longer time to detect a violation with longer chains. Additon-
ally, the incremental algorithm provides a better performance
as compared to normal analysis after the initial analysis.

Performance and scalability of SAFETAP. The results of our
experiment can be found in Figure 4. The detailed numbers are
found in Table VII in the Appendix. For the properties listed
in Table I, we include the time taken to check the property
until the first violation is found (FV) and the time taken to
check the property for all violations (AV) for each dataset.

The time taken to detect the first violation is less than 20

11

0

20

40

60

80

100

120

50 100 150 200 250 300 350 400 450 500

%
 ti

m
e

as
 c

om
pa

re
d

to
 b

as
el

in
e

No. of rules

8 Rules

Initial Analysis Incremental Addition Incremental Removal

0

20

40

60

80

100

120

50 100 150 200 250 300 350 400 450 500

%
 ti

m
e

as
 c

om
pa

re
d

to
 b

as
el

in
e

No. of rules

4 rules

Initial Analysis Incremental Addition Incremental Removal

0

20

40

60

80

100

120

50 100 150 200 250 300 350 400 450 500

%
 ti

m
e

as
 c

om
pa

re
d

to
 b

as
el

in
e

No. of rules

2 Rules

Initial Analysis Incremental Addition Incremental Removal

Fig. 5: Performance of SAFETAP∆ for both incremental addition and removal of rules varying both the number of rules in the original set
and the set being added or removed : x-axis plots the number of rules in the data-set while y-axis plots the percentage time taken for initial

analysis, incremental addition of rules, and incremental algorithm of rules with initial analysis as the baseline. The first graph shows the
results when 8 rules were added and removed, the second graph shows for 4 rules and the third graph shows for 2 rules.

ms for all properties for 100 rules data-set, while the time
taken to detect all violations for all properties is less than
60 ms for 100 rules data-set. Note that, the decrease in the
execution time, going from 300 to 350 rules and 400 to 450
rules, is due to a reduction in the number of paths explored by
SAFETAP. For 300 rules, the number of paths explored by the
algorithm is 335 while the same number for 350 rules is 71.
Similarly, the number of paths explored for the 400 rule data-
set is higher than for the 450 rule data-set. The number of paths
explored increases manifold for the 500 rule data-set; hence,
the significant slowdown (around 9 sec for all properties).

Performance of SAFETAP∆. Figure 18 in the Appendix
shows the performance evaluation results for the initial analysis
and the analyses with and without the incremental algorithm.
As the incremental algorithm has to traverse fewer paths
and re-compute fewer state formulas, it is more efficient and
provides a better performance than the analysis that does not
employ the incremental algorithm. Concretely, the analysis
without the incremental algorithm takes on an average 6
times more time than the one with the incremental algorithm.
However, there is an added cost of storing state shown in
Table VIII in the Appendix, which can be seen by comparing
the time taken by the initial analysis against the one shown
in Table VII; the average overhead for storing state is about
33.75% but the overhead balances out once the incremental
analysis kicks in.

Figure 5 shows the time to verify various set of rules,
varying by the number, with different rules being added and
removed in each iteration. The evaluation shows that incremen-
tal analysis with addition of rules is the fastest when adding 2
rules and increases for 4 and 8 rules. For removal of rules, the
trend is reversed with removal of 8 rules requiring less than
half the time of the analysis without the incremental algorithm
(around 55 − 60% performance increase), and increases to
three-fourths of the baseline time for the analysis with 2 rules
removed. The not-so-signficant increase in performace when
only 2 rules are removed from the rule-set is due to two
factors: (1) SAFETAP∆ incurs an additional cost for storage
and retrieval of prior states and (2) if the rules being removed
do not interact much with the other rules, the number of
pre-state formulas dependent on those rules are also fewer;
as the majority of pre-state formulas are not removed, the
analysis takes longer time. As an optimization for EU, if
the previous property was satisfied, we can directly remove
the rules without having to re-check the satisfiability of the

remaining rules.

VIII. DISCUSSION

Other properties. Prior work [48] has listed a few other
properties that might cause problems in home automation
platforms. While some of these properties can be represented
as a safety property, others work at a high-level without
needing a specific user-defined behavior. For instance, some
rules naturally form pairs based on the behavior of their
actions. “Start recording” and “stop recording”, and “turn light
on” and “turn light off” are two examples of actions which
form pairs. When an action is missing from a pair, it can lead
to unbounded behavior because the action is never “undone”.
For example, the rule, “IF I leave home THEN start recording”,
will begin recording when the user leaves home. If there is no
matching rule to stop recording, the recording will continue
indefinitely. Eventually, the device’s memory will fill and stop
recording, whether or not the user is home. SAFETAP∆ has
heuristics for finding un-matched rules and works by checking
a counterpart for each action. The CTL property is shown in
Appendix B. However, most users might not be interested in
such properties as they might have deliberately not installed
rules that perform the counter-action.

A rule cannot behave as intended if the action it triggers is
immediately reverted. No Undo is similar to the “action revert”
property from [48] and the detection of “self disabling” rules
by [15]. The smoke detecting rule, “IF smoke detected THEN
blink light” would be rendered useless if another rule “IF it
is daytime THEN turn off light” immediately turned off the
blinking light. A property to ensure that blinking lights are
not undone would be useful, here. While SAFETAP∆ supports
checking this property if specified as a CTL property, it does
not support a general version that checks for all possible cases.

Triggering the same action several times in quick succes-
sion could be annoying, or even dangerous, depending on how
sensitive the action is. A similar property has been referred to
as “action duplication” [48] and also appear in other work [12],
[38]. SAFETAP∆ does not support such properties yet because
the property specification does not account for time as a
parameter; instead it only deals with states. Adding support
for this is an interesting direction for future work.

IX. RELATED WORK

Formal analysis of TAP. Model checking is a popular tech-
nique for verifying properties about TAP for IoT devices

12

and IoT applications. Many prior approaches use general-
purpose model checkers [12], [28], [32], [33], [38], [48],
[52]; some, like our work, develop and implement their own
algorithms [55]. What sets our work apart from the above
mentioned model checking tools is SAFETAP∆, our novel
incremental algorithm. This not only allows properties to be
re-checked efficiently as users fiddle with their rules, it also
provides users with timely and precise feedback that is specific
to the TAP rules that caused the change in the analysis results.
In particular, SAFETAP∆’s ability to only report issues caused
by rule changes in the presence of existing violations would
be hard to achieve using an off-the-shelf model checker;
it would require nontrivial modifications which were more
straightforward to make in our custom tool.

SAFETAP can analyze many of the properties stated in
recent projects AutoTap [55] and Soteria [12]. Currently,
SAFETAP does not have support for the temporal properties
which AutoTap can verify, but we plan to address this in future
work. Soteria can spot apps which generate events without
first declaring that they subscribe to them. Our work focuses
on TAP rules instead of apps. We do not explicitly support
the “inconsistent events” property described in [12], but it is
similar to our Only When property.

On the other hand, SAFETAP additionally supports loop
detection (which neither AutoTap nor Soteria can do), and
action cancelling (which AutoTap can’t check). AutoTap fo-
cuses on user-defined safety (Always, Never, Whenever, Only
When) properties and cannot detect loops or action cancelling,
while Soteria does not support loop detection, nor do they
give special attention to Only When properties. SafeChain [28]
encodes privacy leaks and privilege escalation as reachability
properties, which is fundamentally different from SAFETAP,
AutoTap, and Soteria. Encoding and analyzing such properties
is an interesting future direction. We use a fragment of CTL for
property specification for efficiency, while AutoTap, Soteria,
and SafeChain use LTL for specifying properties.

The main objective of AutoTap is to synthesize rules for
users to satisfy desired properties, even though the synthesis
algorithm is based on model checking and can be used to verify
existing rules. Incorporating their synthesis algorithm to our
incremental symbolic model checking algorithm would be an
exciting future direction to explore. Soteria [12], meanwhile,
evaluates safety and security properties of IoT applications (not
TAP rules) by translating their source code to extract a state
model for model checking.

Similar to prior work [20], [28], [55], SAFETAP uses a
simple model of the physical environment, which consists of
only variables representing the state (e.g., temperature). Bu et
al. [10] use hybrid automata to accurately model the continu-
ous behavior of environment variables (like temperature). Such
a detailed model for physical environment is unnecessarily
complicated for identifying high-level problems in TAP rules.

Finally, SAFETAP considers the violations induced by the
user’s interactions with the devices or changing the environ-
ment, while others do not [28], [55].

Mitigating security and safety problems of TAP. In addition
to analysis tools for TAP, researchers have also built systems
using runtime monitoring to protect the users against potential
attacks or to prevent them from reaching an unsafe state or

by suggesting fixes to remove problematic rules. For example,
Bastys et al. proposed a runtime information flow tracking
monitor to prevent potential user privacy violations [8]. IoT-
Guard instruments application code and monitors the app and
TAP platform behavior at runtime to ensure they satisfy given
security policies [13]. When violations are found, users can ask
IoTGuard to automatically block the violating action, or allow
or deny the action through a runtime prompt. We proactively
analyze safety properties ahead of time. Mitigation is beyond
the scope of this work and we leave it for future work.

Smarthome security. Recent research has discovered potential
vulnerabilities in IoT devices and smarthome applications [22],
[25], [26], [42], [43], [51]. Celik et al. [11] identified sen-
sitive data flows in SmartThings applications using static
analysis. SmartAuth [47] identified issues with overprivileged
SmartThings applications based on program analysis of the
applications and Natural Language Processing (NLP) analysis
of the application descriptions. Whereas, Tkperm [41] pro-
posed a transfer learning-based scheme to detect overprivileged
applications across different IoT platforms. IoTMon also com-
bines static analysis and NLP analysis to identify chains in
SmartThings applications and the risks posed by the chains.
Most of the previous papers design security solutions without
knowledge of real home usage. To solve this problem, Man-
andhar et al. propose a framework that generates natural home
automation scenarios [34]. This line of work is orthogonal to
ours and covers a complementary area.

User studies of smart homes. To understand users’ pri-
vacy concerns about smart-home technology, several studies
investigated users’ experiences [3], [5], [7], [14], [19], [21],
[46] and preferences with different settings (such as multi-
user [23], [49], [54], and guest-host environment [7]). Studies
have shown that users have trouble understanding feature
interactions of IoT devices [9], [50]. Researchers have created
and tested tools using formal methods with end-users in mind
for use in other domains [2], [37]. While others [24], [40]
have studied desirable access controls for smart-home devices,
we perform a user study to understand the effectiveness of
SAFETAP in identifying problems in TAP rules.

X. CONCLUSION

This paper investigates the problem of helping users
identify undesired behaviors for their trigger-action programs
(TAP) used for home automation. We carried out a user study,
which shows that users struggle with uncovering issues in
their TAP rules and would like to check their rules when they
modify their rules. To help give users prompt feedback, we
designed and implemented SAFETAP∆, a novel incremental
symbolic model checker for TAP rules. Our evaluation shows
that incremental checking on average improves the perfor-
mance by 6X when adding new rules. Our case study highlights
the difficulty that users have with identifying problems with
TAP rules, especially as the size of the rule sets increase.
Moreover, we found that people overestimated their abilities to
understand TAP rule interactions, and were reluctant to use a
tool to help them make decisions about whether rules behave
as expected. This highlights the need for research not only
about how to build tools to help users reason about TAP rule
interactions, but how to make such tools desirable to the users
so that they are actually used.

13

REFERENCES

[1] “Amazon Mechanical Turk,” https://www.mturk.com/, June 06 2020.

[2] “Why can’t johnny fix vulnerabilities: A usability evaluation
of static analysis tools for security,” in Sixteenth Symposium on
Usable Privacy and Security (SOUPS 2020). USENIX Association,
Aug. 2020. [Online]. Available: https://www.usenix.org/conference/
soups2020/presentation/smith

[3] N. Abdi, K. M. Ramokapane, and J. M. Such, “More than smart
speakers: Security and privacy perceptions of smart home personal
assistants,” in Proceedings of the 15th Symposium on Usable Privacy
and Security (SOUPS), 2019.

[4] Apple Inc., “iOS - Home - Apple,” 2020. [Online]. Available:
https://www.apple.com/ios/home/

[5] N. Apthorpe, Y. Shvartzshnaider, A. Mathur, D. Reisman, and N. Feam-
ster, “Discovering smart home internet of things privacy norms using
contextual integrity,” Proceedings of ACM Interaction Mobile Wearable
Ubiquitous Technology, vol. 2, no. 2, pp. 59:1–59:23, 2018.

[6] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge,
MA, USA: The MIT Press, 2008.

[7] N. M. Barbosa, Z. Zhang, and Y. Wang, “Do privacy and security matter
to everyone? quantifying and clustering user-centric considerations
about smart home device adoption.”

[8] I. Bastys, M. Balliu, and A. Sabelfeld, “If This Then What?
Controlling Flows in IoT Apps,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’18. New York, NY, USA: Association for Computing
Machinery, 2018, pp. 1102–1119. [Online]. Available: https://doi.org/
10.1145/3243734.3243841

[9] W. Brackenbury, A. Deora, J. Ritchey, J. Vallee, W. He, G. Wang,
M. L. Littman, and B. Ur, “How users interpret bugs in trigger-action
programming,” in Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, ser. CHI ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3290605.3300782

[10] L. Bu, W. Xiong, C.-J. M. Liang, S. Han, D. Zhang, S. Lin, and X. Li,
“Systematically ensuring the confidence of real-time home automation
iot systems,” ACM Trans. Cyber-Phys. Syst., vol. 2, no. 3, Jun. 2018.
[Online]. Available: https://doi.org/10.1145/3185501

[11] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel, and
A. S. Uluagac, “Sensitive information tracking in commodity iot,” in
Proceedings of the 27th USENIX Conference on Security Symposium,
ser. SEC’18. USA: USENIX Association, 2018, pp. 1687–1704.

[12] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated iot safety
and security analysis,” in Proceedings of the 2018 USENIX Conference
on Usenix Annual Technical Conference, ser. USENIX ATC ’18. USA:
USENIX Association, 2018, pp. 147–158.

[13] Z. B. Celik, G. Tan, and P. D. McDaniel, “IoTGuard: Dynamic enforce-
ment of security and safety policy in commodity IoT,” in Proceedings of
the 23rd Network and Distributed Security Symposium. USA: Internet
Society, 2019.

[14] G. Chalhoub, I. Flechais, N. Nthala, and R. Abu-Salma, “Innovation
inaction or in action? the role of user experience in the security
and privacy design of smart home cameras,” in Proceedings of the
Symposium on Usable Privacy and Security. ACM Digital Library,
2020.

[15] H. Chi, Q. Zeng, X. Du, and J. Yu, “Cross-app interference threats
in smart homes: Categorization, detection and handling,” CoRR, vol.
abs/1808.02125, 2018. [Online]. Available: http://arxiv.org/abs/1808.
02125

[16] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: A new
symbolic model verifier,” in International conference on computer aided
verification. Springer, 1999, pp. 495–499.

[17] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: The MIT Press, 1999.

[18] C. Cobb, M. Surbatovich, A. Kawakami, M. Sharif, L. Bauer, A. Das,
and L. Jia, “How risky are real users ifttt applets?” in Proceedings of
the 16th Symposium on Usable Privacy and Security (SOUPS), 2020.

[19] ——, “How risky are real users ifttt applets?” 2020.

[20] R. Dimitrova, B. Finkbeiner, M. Kovács, M. N. Rabe, and H. Seidl,
“Model checking information flow in reactive systems,” in International
Workshop on Verification, Model Checking, and Abstract Interpretation.
Springer, 2012, pp. 169–185.

[21] P. Emami-Naeini, H. Dixon, Y. Agarwal, and L. F. Cranor, “Exploring
how privacy and security factor into IoT device purchase behavior,”
in Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (CHI), 2019.

[22] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and
A. Prakash, “Flowfence: Practical data protection for emerging iot ap-
plication frameworks,” in Proceedings of the 25th USENIX Conference
on Security Symposium, ser. SEC’16. USA: USENIX Association,
2016, pp. 531–548.

[23] C. Geeng and F. Roesner, “Who’s in control?: Interactions in multi-user
smart homes,” in Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI), 2019, pp. 268:1–268:13.

[24] W. He, M. Golla, R. Padhi, J. Ofek, M. Dürmuth, E. Fernandes, and
B. Ur, “Rethinking access control and authentication for the home
internet of things (IoT),” in Proceedings of the 27th USENIX Security
Symposium (USENIX Security), 2018, pp. 255–272.

[25] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter, “A
policy language for distributed usage control,” in Computer Security
– ESORICS 2007, J. Biskup and J. López, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 531–546.

[26] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner,
“Smart locks: Lessons for securing commodity internet of things
devices,” in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, ser. ASIA CCS ’16. New
York, NY, USA: Association for Computing Machinery, 2016, pp.
461–472. [Online]. Available: https://doi.org/10.1145/2897845.2897886

[27] G. J. Holzmann, The SPIN model checker: Primer and reference
manual. Addison-Wesley Reading, 2004, vol. 1003.

[28] K.-H. Hsu, Y.-H. Chiang, and H.-C. Hsiao, “Safechain: Securing
trigger-action programming from attack chains,” IEEE Transactions on
Information Forensics and Security, vol. 14, no. 10, pp. 2607–2622,
2019.

[29] IFTTT, “IFTTT: Every thing works better together,” 2020. [Online].
Available: https://ifttt.com

[30] James A. Martin and Matthew Finnegan, “What is
IFTTT? How to use If This, Then That services,” 2019.
[Online]. Available: https://www.computerworld.com/article/3239304/
what-is-ifttt-how-to-use-if-this-then-that-services.html

[31] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,”
International journal on software tools for technology transfer, vol. 1,
no. 1-2, pp. 134–152, 1997.

[32] C.-J. M. Liang, L. Bu, Z. Li, J. Zhang, S. Han, B. F. Karlsson,
D. Zhang, and F. Zhao, “Systematically debugging iot control
system correctness for building automation,” in Proceedings of the 3rd
ACM International Conference on Systems for Energy-Efficient Built
Environments, ser. BuildSys ’16. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 133–142. [Online]. Available:
https://doi.org/10.1145/2993422.2993426

[33] C.-J. M. Liang, B. F. Karlsson, N. D. Lane, F. Zhao, J. Zhang,
Z. Pan, Z. Li, and Y. Yu, “Sift: Building an internet of safe things,”
in Proceedings of the 14th International Conference on Information
Processing in Sensor Networks, ser. IPSN ’15. New York, NY, USA:
Association for Computing Machinery, 2015, pp. 298–309. [Online].
Available: https://doi.org/10.1145/2737095.2737115

[34] S. Manandhar, K. Moran, K. Kafle, R. Tang, D. Poshyvanyk, and
A. Nadkarni, “Towards a natural perspective of smart homes for
practical security and safety analyses,” in Proc. of 41st IEEE Symposium
on Security and Privacy, San Francisco, CA, USA, 2020, pp. 1–18.

[35] K. L. McMillan, Symbolic Model Checking. Norwell, MA, USA:
Kluwer Academic Publishers, 1993.

[36] Microsoft, “Microsoft Power Automate,” 2020. [Online]. Available:
https://flow.microsoft.com

[37] C. Nandi and M. D. Ernst, “Automatic trigger generation for rule-
based smart homes,” in Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security, 2016, pp. 97–102.

[38] D. T. Nguyen, C. Song, Z. Qian, S. V. Krishnamurthy, E. J. M.

14

https://www.mturk.com/
https://www.usenix.org/conference/soups2020/presentation/smith
https://www.usenix.org/conference/soups2020/presentation/smith
https://www.apple.com/ios/home/
https://doi.org/10.1145/3243734.3243841
https://doi.org/10.1145/3243734.3243841
https://doi.org/10.1145/3290605.3300782
https://doi.org/10.1145/3185501
http://arxiv.org/abs/1808.02125
http://arxiv.org/abs/1808.02125
https://doi.org/10.1145/2897845.2897886
https://ifttt.com
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://doi.org/10.1145/2993422.2993426
https://doi.org/10.1145/2737095.2737115
https://flow.microsoft.com

Colbert, and P. McDaniel, “IotSan: Fortifying the Safety of IoT
Systems,” in Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies, ser. CoNEXT
’18. New York, NY, USA: Association for Computing Machinery,
2018, pp. 191–203. [Online]. Available: https://doi.org/10.1145/
3281411.3281440

[39] openHAB Foundation e.V., “openHAB,” 2020. [Online]. Available:
https://www.openhab.org/

[40] R. Schuster, V. Shmatikov, and E. Tromer, “Situational access control
in the Internet of Things,” in Proceedings of the 25th ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2018,
pp. 1056–1073.

[41] F. Shezan, K. Cheng, Z. Zhang, Y. Cao, and Y. Tian, “Tkperm: Cross-
platform permission knowledge transfer to detect overprivileged third-
party applications,” in Proceedings of the 27th Network and Distributed
Security Symposium. Internet Society, 01 2020.

[42] V. Sivaraman, H. H. Gharakheili, A. Vishwanath, R. Boreli, and
O. Mehani, “Network-level security and privacy control for smart-home
iot devices,” in 2015 IEEE 11th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob).
USA: IEEE Press, Oct 2015, pp. 163–167.

[43] V. Sivaraman, D. Chan, D. Earl, and R. Boreli, “Smart-phones
attacking smart-homes,” in Proceedings of the 9th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, ser. WiSec ’16.
New York, NY, USA: Association for Computing Machinery, 2016, pp.
195–200. [Online]. Available: https://doi.org/10.1145/2939918.2939925

[44] SmartThings Inc., “SmartThings,” 2019. [Online]. Available: https:
//www.smartthings.com

[45] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia, “Some
Recipes Can Do More Than Spoil Your Appetite: Analyzing the
Security and Privacy Risks of IFTTT Recipes,” in Proceedings of the
26th International Conference on World Wide Web, ser. WWW ’17.
Republic and Canton of Geneva, CHE: International World Wide
Web Conferences Steering Committee, 2017, pp. 1501–1510. [Online].
Available: https://doi.org/10.1145/3038912.3052709

[46] M. Tabassum, T. Kosinski, and H. R. Lipford, ““I don’t own the data”:
End user perceptions of smart home device data practices and risks,”
in Proceedings of the 15th Symposium on Usable Privacy and Security
(SOUPS), 2019.

[47] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague,
“Smartauth: User-centered authorization for the internet of things,” in
Proceedings of the 26th USENIX Conference on Security Symposium,
ser. SEC’17. USA: USENIX Association, 2017, pp. 361–378.

[48] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter,
“Charting the attack surface of trigger-action iot platforms,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 1439–1453. [Online].
Available: https://doi.org/10.1145/3319535.3345662

[49] Y. Yao, J. R. Basdeo, O. R. Mcdonough, and Y. Wang, “Privacy
perceptions and designs of bystanders in smart homes,” Proceedings
of the ACM on Human-Computer Interaction, vol. 3, no. CSCW, pp.
59:1–59:24, Nov. 2019.

[50] S. Yarosh and P. Zave, “Locked or not? mental models of iot feature
interaction,” in Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, ser. CHI ’17. New York, NY, USA:
Association for Computing Machinery, 2017, pp. 2993–2997. [Online].
Available: https://doi.org/10.1145/3025453.3025617

[51] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a
trillion (unfixable) flaws on a billion devices: Rethinking network
security for the internet-of-things,” in Proceedings of the 14th ACM
Workshop on Hot Topics in Networks, ser. HotNets-XIV. New York,
NY, USA: Association for Computing Machinery, 2015. [Online].
Available: https://doi.org/10.1145/2834050.2834095

[52] B. Yuan, Y. Jia, L. Xing, D. Zhao, X. Wang,
D. Zou, H. Jin, and Y. Zhang, “Shattered chain of
trust: Understanding security risks in cross-cloud iot access
delegation,” in 29th USENIX Security Symposium (USENIX Security
20). USENIX Association, Aug. 2020. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/yuan

[53] Zapier Inc., “Zapier - The easiest way to automate your work,” 2020.
[Online]. Available: https://zapier.com/

[54] E. Zeng and F. Roesner, “Understanding and improving security and
privacy in multi-user smart homes: A design exploration and in-home
user study,” in Proceedings of the 28th USENIX Security Symposium
(USENIX Security), 2019, pp. 159–176.

[55] L. Zhang, W. He, J. Martinez, N. Brackenbury, S. Lu, and B. Ur,
“Autotap: Synthesizing and repairing trigger-action programs using
ltl properties,” in Proceedings of the 41st International Conference on
Software Engineering, ser. ICSE ’19. USA: IEEE Press, 2019, pp.
281–291. [Online]. Available: https://doi.org/10.1109/ICSE.2019.00043

15

https://doi.org/10.1145/3281411.3281440
https://doi.org/10.1145/3281411.3281440
https://www.openhab.org/
https://doi.org/10.1145/2939918.2939925
https://www.smartthings.com
https://www.smartthings.com
https://doi.org/10.1145/3038912.3052709
https://doi.org/10.1145/3319535.3345662
https://doi.org/10.1145/3025453.3025617
https://doi.org/10.1145/2834050.2834095
https://www.usenix.org/conference/usenixsecurity20/presentation/yuan
https://zapier.com/
https://doi.org/10.1109/ICSE.2019.00043

APPENDIX

A. Modeling TAP

Event ev ::= New email received |
Presence detected | . . .

Expressions e ::= c | s | e1 bop e2

Predicates p ::= e1 cop e2 | ev
Literals l ::= > |⊥ | p | ¬p
State formulas α, β ::=

∧n
i=i li

State σ ::= · |σ, s 7→ c
Rule r ::= (ev, α)⇒ (ev′,U , Eff)
Rules R ::= · |R, r
Updates U ::= · |U, s := e
Physical effects Eff ::= · | Eff , s ↑ | Eff , s ↓ · · ·
Event queue E ::= · |E, ev
Configuration C ::= (σ,E, Eff)

Fig. 6: Syntax for modeling TAP

We model the trigger-action platform as a labeled transition
system [6], which consists of states and transitions. The syntax
for modeling the trigger-action platform is shown in Figure 6.
Expressions e include environment or device state variables
s (e.g., temp, lightColor, sysArmed), constants c (e.g., 70,
“blue”, true), and binary operations on two expressions. An
event ev indicates a change in state—“New email received”,
“Heater on and user home”, and “Phone not charging” are
all valid events. The events themselves do not carry any
parameters, e.g., Nest temperature is 80◦. Instead the state
formula α capture these parameters using state variables.

Predicates are facts about the system that are expressed
using comparisons on expressions (e1 cop e2). A state formula,
α, is a fact that can be determined by looking at a single state;
the predicates temp > 70 and doorLocked = true are both
valid state formulas.

We write σ to denote the current state of the physical
environment and IoT devices. σ maps state variables, s, to
concrete values, c. A valid state could be σ = [NestTemp 7→
70; systemArmed 7→ true], indicating that currently, the Nest
temperature reading is 70◦ and the system is currently armed.

A trigger-action rule is denoted (ev, α) ⇒ (ev′,U , Eff),
where (ev, α) to the left of the double arrow represents the
triggering event and the tuple (ev′,U , Eff) to the right of the
double arrow represents the effect of the action. Here ev is
the triggering event and α describes additional conditions that
must hold in the current state for the rule to be triggered.
For example, a user turning on the heater can be represented
as (USER, temp < 68). While USER is the triggering event
corresponding to the user triggering this rule, temp < 68 is an
additional condition which checks if the current temperature is
less than 68◦ to trigger the rule; if not, the rule is not triggered.

The full effect of the action is represented as (ev′,U , Eff).
Here ev′ is the new event, if any, that is produced by the
action, U is the set of updates to state variables caused by the
action, and Eff is the set of resulting environmental effects. For
example, the action of turning on the heater will be encoded
as (HEATERON, heater := On, temp ↑); HEATERON is the
new event while the state of heater is set to On and the
temperature is set to rising. Note that the effect of turning
on the heater on the temperature does not include a new

1. Receive
event

Current
Environment

Installed Rules

Triggered Rules

2. Match event to triggers

3. Collect
triggered actions

> 75F

Actions and
Effects

4. Update
state

Fig. 7: Informal Semantics for Modeling TAP

temperature as a concrete value, so the effect is abstractly
encoded as temperature rising (temp ↑).

To model the effect of Eff on the state variables, we include
a function that modifies the state depending on what effect is
encoded in Eff . For instance, to model the effect of temp ↑ on
temp, we require a function that raises the temperature by n◦,
where n is the change in temperature that occurs as the system
transitions to the next state. Our model over-approximates
and raises the value of the state variable to the maximum
possible value given by the range of the state variable, for
optimization purposes. In this example, instead of increasing
the temperature by n◦ for every state transition, our algorithm
raises it to the highest possible temperature, given by a pre-
determined range in the encoding library (e.g., 100◦). This
is sufficient to model changes to the physical environment
without sacrificing efficiency by updating it one state at a time.

The system configuration, C includes a snapshot of the cur-
rent environmental state, σ, a queue of events to be processed,
E, along with list of current physical effects, Eff . The queue
of events is to keep track of any additional events generated
from triggered rules because this is how devices interact with
each other in the trigger-action platform.

The operational semantics for rule evaluation use the
judgement: R ` C −→ C ′ as shown in rule PROCEVENT in
Figure 8. C ′ is the resulting configuration when rules R receive
the event ev under configuration C. The notation (ev, E) and
(E, ev) indicate a list of events with ev as first element and
last element, respectively, while the notation E@E′ indicates
the concatenation of two lists E and E′. The triggering of each
rule is evaluated by the judgement R, σ, ev, Eff ⇓ σ′, E′, E ′ff ,
which is defined inductively.

Next, we explain the how TAP rules are triggered in the
semantics. Rule R-TRIG triggers a TAP rule r, if ev matches
the event in the TAP rule trigger and the state formula α
holds in the current state. The action of the triggered TAP rule
updates the physical effects in the environment along with the
state variables, and may trigger another event. The function
updEnv updates the environmental effects to E ′ff with the
effects generated by the rule, Erff , while the function updState
updates the state variables with the updates from the rule,
U , and the new environmental effects, E ′ff . This generates

16

R-EMP
[], σ, ev, Eff ⇓ σ, [], Eff

R-TRIG

r = (ev, α)⇒ (ev′,U , Erff)
isTrue(σ, α) E ′ff = updEnv(Eff , Erff)

(σ′, E′) = updState(σ,U , E ′ff)
R, σ′, ev, E ′ff ⇓ σ′′, E′′, E ′′ff

(r,R), σ, ev, Eff ⇓ σ′′, (ev, E′@E′′), E ′′ff

R-SKIP

r = (ev′, α)⇒
(
ev′ 6= ev ∨ ¬isTrue(σ, α)

)
R, σ, ev, Eff ⇓ σ′, E′, Eff

(r,R), σ, ev, Eff ⇓ σ′, E′, Eff

PROCEVENT
R, σ, ev, Eff ⇓ σ′, E′, E ′ff

R ` (σ, (ev, E), Eff) −→ (σ′′, E@E′, E ′ff)

Fig. 8: Semantics of rule evaluation.

an updated state σ′ and might trigger new events E′. The
evaluation of R-TRIG results in a modified state σ′′, a new
event-queue E′@E′′ and modified physical effects E ′ff . Rule
R-SKIP handles the case when the triggering event does not
match the TAP rule’s trigger or the pre-condition is not true,
in which case it proceeds with checking the rest of the TAP
rules R. Rule R-EMP states that when the list of TAP rules
is empty (i.e. all rules have been checked), the event has been
completely processed.

B. SAFETAP Properties

The various properties that can be analyzed by SAFETAP
are shown in the table in Figure 9.

C. Web Interface

A Whenever property which makes sure that the lights are
off whenever the user is away can be entered in the following
template:

D. Algorithms

1) Algorithm to check EU properties in SAFETAP∆: The
top-level function for checking EU properties, CHECKEU, is
shown in Algorithm 4. It takes as input state formulas α and
β, a set of rules, and the initial configuration against which
the formula E(α U β) needs to be checked. The algorithm
works by repeatedly computing the pre-condition for the given
property and the set of rules until a fixpoint is reached. It does
so by calling INCADDEU

Algorithm 4 Algorithm to check E(α U β) formulas

function CHECKEU(state0, α, β, R)
INCADDEU(state0, α, β, (False, [], []), R)

end function

Algorithm 5 Algorithm to check EF(β) formulas
function CHECKEF(state0, β, R)

CHECKEU(state0,True, β,R)
end function

2) Algorithm to check EG formula: The function
CHECKEG tests the satisfiability of the initial configuration
state0 in the set of states satisfying all the pre-state formulas
returned by SIMPLIFYEG. ϕn is a conjunction over all pre-
state formulas corresponding to all possible (pre-)states satis-
fying ϕ. If the function SATCONF returns true, a violation is
found. The function SIMPLIFYEG (Algorithm 7), similar to
SIMPLIFYEU, generates a list of pre-state event and formula
pairs given the set of rules R and the initial formula ϕ and
continues to generate pre-state formulas until it reaches a
fixpoint, which generates the final pre-state formula.

Algorithm 6 Algorithm to check EG(α) formulas
function CHECKEG(state0, α, (ϕ,L,Rold), Rnew)

(ϕn,L′,R) = SIMPLIFYEG(α, (ϕ,L,Rold), Rnew)
if SATCONF(ϕn, state0) then

return True
end if
return False

end function

Algorithm 10 describes the algorithm for checking EF(α∧
EF(β)) formulas.

E. User Study Results

F. Evaluation

17

Property Description CTL formula SAFETAP formula
Property 1: Always/Never Always α AG(α) ¬E(> U α)

Never α AG(¬α) ¬E(> U (¬α))
Property 2: Whenever Whenever α, make sure that β AG(α→ β) E(> U (α ∧ ¬β))
Property 3: Only When α only when β AG(β → α) ¬E(> U (β → α))
Property 4: No Loops - - -
Property 5: No Action Cancelling - - -
No Missing Rules α has matching condition β AG(α→ AF β) EF(α ∧ EG(β))

Fig. 9: CTL and SAFETAP formulas for each property from Section IV-A

IoT Experience Own (23), Informed (1)
Number of IoT Device 0 (1), 1-2 (30), 3-5 (7), 6-9 (1), 10+(1)
Years of IoT Use(years) Less than a year (4), 1-2 (23), 3-5 (12), 6-9 (1)
IoT Interaction Frequency Daily (8), Most days (21), Once a week (4), Rarely

(1)
Home Automation Usage Yes (22), No (18)
Number of Home Automation Rules 1-10 (17), 10-25 (5)
Home Automation Rule Update Frequency Every time I add new rules (7), Every time I get a

new IoT device (5), Periodically (4), Infrequently,
but more than never(5)

Any Unexpected Rules Yes (5), No (35)
Want Service to Specify Behavior Yes (20), No (4), Maybe (16)
Service to Specify Behavior Frequency of Use Every time I removed or updated a rule (10), Every

time I installed a new rule (17), Infrequently, but
not never (9), I would install rules, but I would
never use this service (2), I would never install
rules, so I would never use this service(2)

The tasks were easy Strongly Agree (6), Agree (17), Somewhat Agree
(13), Neither Agree Nor Disagree (1),Somewhat
Disagree (4), Disagree (0), Strongly Disagree (0)

The tasks would be harder if there were more rules Strongly Agree(4), Agree (11), Somewhat
Agree(12), Neither Agree Nor Dis-
agree(4),Somewhat Disagree(5), Disagree(2),
Strongly Disagree(2)

The rule sets in the tasks seemed realistic Strongly Agree(14), Agree (16), Some-
what Agree(10), Neither Agree Nor
Disagree(),Somewhat Disagree(), Disagree(),
Strongly Disagree()

The desired behaviors in the tasks seemed realistic Strongly Agree(9), Agree (14), Somewhat
Agree(12), Neither Agree Nor Dis-
agree(1),Somewhat Disagree(3)

Age 18-20 (1), 21-25 (3), 26-30 (11), 31-35 (7), 36-40
(7), 41-45 (6), 46 or older (5)

Gender Male (25), Female (15)
Education High school graduate (1), Some college No degree

(10), Associates / 2 year degree (6), Bachelor / 4
year degree (18), Graduate degree Master, PhD,
professional, medicine, etc (5)

English Fluency I exclusively speak, read, and write in English.
(34), I speak, read, and write in English and another
language, about equally. (5), I primarily speak,
read, and write in English sometimes, but use a
different language other times. (1)

TABLE II: Summary of participant demographics.

statement strongly agree agree somewhat agree neutral somewhat disagree disagree strongly disagree
It was easy to add Desired Behaviors for the Tasks 7 3 8 0 0 1 0

After running SAFETAP, it was easy to understand the results 7 8 4 3 0 0 0
I need more instruction to use SAFETAP 2 2 2 4 2 7 2

SAFETAP’s interface was confusing 1 0 6 2 2 8 3

TABLE III: SAFETAP experience questions.

18

statement strongly agree agree somewhat agree neutral somewhat disagree disagree strongly disagree I don’t use
home automation

I would use SAFETAP to help make 0 13 7 1 0 0 0 1
decisions about my rules

SAFETAP would make me feel more 0 10 9 1 1 0 1 0
confident about my rules

Using SAFETAP would take too long 0 1 3 3 0 14 0 1

TABLE IV: SAFETAP experience questions, cont.

statement Whenever Only When Never Always No Loops No Action Cancelling
SAFETAP: Useful Behaviors 11 18 4 9 8 4
SAFETAP: Useless Behaviors 3 4 6 6 3 3

TABLE V: SAFETAP experience questions, cont.

statement strongly agree agree somewhat agree neutral somewhat disagree disagree strongly disagree
The tasks were easy 6 17 13 1 4 0 0

The tasks would be harder if there were more rules 4 11 12 4 5 2 2
The rule sets in the tasks seemed realistic 14 16 10 0 0 0 0

The desired behaviors in the tasks seemed realistic 9 14 12 1 3 0 0

TABLE VI: Survey experience questions

Rules Only when Whenever Action Cancelling Always/Never No Loops

FV AV FV AV FV AV FV AV FV AV
100 0.0195 0.0522 0.0196 0.0547 0.0062 0.0567 0.0055 0.0560 0.0062 0.0548
150 0.0366 0.0818 0.0352 0.0815 0.0085 0.0809 0.0083 0.0817 0.0095 0.0829
200 0.0603 0.2321 0.0569 0.2260 0.0121 0.2269 0.0109 0.2305 0.0124 0.2461
250 0.0745 0.1752 0.0724 0.1714 0.0174 0.1714 0.0159 0.1706 0.0206 0.1725
300 0.1044 0.9462 0.1012 0.9223 0.0229 0.9085 0.0213 0.9234 0.0227 0.9922
350 0.1250 0.5677 0.1267 0.5498 0.0235 0.5532 0.0294 0.5474 0.0242 0.5703
400 0.1699 1.5655 0.1681 1.5601 0.0254 1.5420 0.0256 1.6007 0.0289 1.6513
450 0.0285 0.8858 0.2043 0.9291 0.0288 0.8534 0.0306 0.9152 0.0338 0.8809
500 0.2425 8.9832 0.2534 8.9181 0.0305 8.8936 0.0295 8.9471 0.0331 9.7784

TABLE VII: Performance results of SAFETAP for different properties. All execution times are in seconds.
FV - Time taken to detect first violation; AV - Time taken to detect all violations

Fig. 10: CTL formula semantics. The current state is indicated by a
dotted circle.

Fig. 11: SAFETAP Web Interface Home Page

Fig. 12: SAFETAP Rule Installation Page

19

No.
of

rules

Time taken
for initial
analysis

Time taken for
second analysis with

incremental algorithm

Time taken for
second analysis without
incremental algorithm

% overhead of
non-incremental

analysis

% overhead for
storing state

in the first analysis

% gain in
second analysis with

incremental algorithm
100 0.0665 0.0124 0.0689 455.6451613 27.39463602 24.42528736
150 0.097 0.0169 0.1067 531.3609467 18.58190709 30.37897311
200 0.3268 0.051 0.3331 553.1372549 40.80137872 18.61266695
250 0.1997 0.0277 0.2058 642.9602888 13.98401826 35.10273973
300 1.365 0.1963 1.4023 614.3657667 44.26125555 17.49630099
350 0.7528 0.0951 0.7681 707.6761304 32.60524925 25.32147261
400 2.2026 0.2858 2.2828 698.7403779 40.69626317 20.52379431
450 1.0578 0.1167 1.0881 832.3907455 19.41747573 33.70399639
500 14.914 2.0856 15.046 621.4230917 66.02101701 5.381155936

TABLE VIII: Performance evaluation of incremental analysis for Only when property. All execution times are in seconds.
The time with and without incremental analysis is for a second analysis with a couple of extra rules added to each set.

Fig. 13: SAFETAP Verification Page

Algorithm 7 Algorithm to simplify EG(α) formulas
function SIMPLIFYEG(α, (ϕ,L,Rold), Rnew)

ϕn = ϕ ∧ α
Rnew = Rnew (Rnew ∩ Rold)
Rall = Rnew ∪ Rold

L′ = `′n = []
`n = PREDSTATELIST([(noop, α, [])], Rnew)
if L 6= [] then

for all ` ∈ L do
`′ = ` ++ `n ++ `′n
ϕn = ϕn ∧ (

∨
(,ϕi,)∈`′

ϕi)

`′n = PREDSTATELIST(`, Rnew)
`n = PREDSTATELIST(`n, Rall)
L′ = L′ ++ [`′]

end for
`n = `n ++ `′n

end if
repeat

ϕo = ϕn

ϕn = ϕo ∧ (
∨

(,ϕi,)∈`n
ϕi)

L′ = L′ ++ [`n]
`n = PREDSTATELIST(`n, Rall)

until ϕn → ϕo and ϕo → ϕn

return (ϕn,L′,Rall

end function

Algorithm 8 Algorithm to verify EG(α) when rules are
removed

1: function REMOVEEG(state0, α, (,L,Ro), Rn)
2: if L 6= [] then
3: L′ = []
4: ϕ = True
5: for all ` ∈ L do
6: `n = []
7: ϕ0 = False
8: for all (evi, ϕi,Ri) ∈ ` do
9: if 6 ∃r.r ∈ Rn ∧ r ∈ Ri then

10: ϕ0 = ϕ0 ∨ ϕi

11: `n = `n ++ [(evi, ϕi,Ri)]
12: end if
13: end for
14: ϕ = ϕ ∧ ϕ0

15: L′ = L′ ++ `n
16: end for
17: if SATCONF(ϕ, state0) then
18: . A violation found
19: end if
20: end if
21: return (ϕ,L′,Ro \ Rn)
22: end function

Algorithm 9 Algorithm to check EF(α ∧ EG(β)) formulas
function CHECKEFEG(α, β, R, state0)

(β′, ,) = SIMPLIFYEG(β,R)
CHECKEF(state0, α ∧ β′,R)

end function

Algorithm 10 Algorithm to check EF(α ∧ EF(β)) formulas
function CHECKEFEF(α, β, R, state0)

(β′, ,) = CHECKEU(state0, True, β, R)
CHECKEF(state0, α ∧ β′, R)

end function

20

Fig. 14: Average scores for all participants, per question

Fig. 15: Average scores for all participants with access to SAFETAP
vs without

Fig. 16: Average scores for all participants with Alice task vs Bob
task

Fig. 17: Average scores for all participants with home automation
experience vs without

0

100

200

300

400

500

600

700

800

900

100 150 200 250 300 350 400 450 500%
 o

ve
rh

ea
d

w
ith

ou
t

in
cr

em
en

ta
l a

na
ly

sis

Number of Rules

Incremental Analysis Without Incremental Analysis

Fig. 18: Performance of SAFETAP∆: x-axis plots the number of
rules in the data-set while y-axis plots the percentage overhead for a

subsequent analysis without the incremental algorithm with
SAFETAP∆ as the baseline.

21

	Introduction
	Background
	End-user trigger-action programming for home IoT
	Model checking

	SafeTAP Architecture and Design
	SafeTAP Design
	Incremental Analysis

	Behavior-Specification Interface
	Properties
	SafeTAP Web Interface
	Install Rules
	Add Behaviors
	Verify Rules

	User Study
	Methodology
	Rule Evaluation Questions
	Survey Follow-up
	Survey Data Analysis
	Results of user study

	Incremental Analysis in SafeTAP
	Evaluation
	Methodology and system setup
	Results of Evaluating SafeTAP and SafeTAP

	Discussion
	Related Work
	Conclusion
	References
	Appendix
	Modeling TAP
	SafeTAP Properties
	Web Interface
	Algorithms
	Algorithm to check mEU properties in SafeTAP
	Algorithm to check mEG formula

	User Study Results
	Evaluation

