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Abstract

The overall theme of the research is focused on the behavior of heterogeneous functional and structural ma-

terials; more specifically, on new computational methods for the prediction of structure-property relations

in settings that existing methods cannot handle. Under this theme, there are three distinct though related

projects:

(1) Grain Evolution with Experimentally-derived Interface Properties. Threshold dynamics model is

applied to simulate 3D isotropic grain growth with experiment data. The simulations use the reconstructed

microstructures from experiment of a nickle sample before annealing as the input, and try to match the ex-

perimentally observed microstructures at different anneal states. Statistical analyses on both simulated and

observed microstructures are conducted and compared. While the isotropic simulations are validated to pro-

mote grain growth isotropically, it cannot fully reproduce the observed microstructures. Possible reasons for

the mismatch are studied and presented.

(2) Modeling of Dislocation Dynamics in Metals. The 3D Phase Field Dislocation Dynamics (PFDD)

model is extended to body-centered cubic (BCC) metals by accounting for the dependence of the Peierls bar-

rier on the line-character of the dislocation. Simulations of the expansion of a dislocation loop belonging to

the {110} 〈111〉 slip system are presented with direct comparison to Molecular Statics (MS) simulations. The

extended PFDD model is able to capture the salient features of dislocation loop expansion predicted by MS

simulations. The model is also applied to simulate the motion of a straight screw dislocation through kink-

pair motion. Furthermore, PFDD formulation is adapted to use non-orthogonal grids that are constructed

with lattice primitives. Simulations with the non-orthogonal grids show improved performance when com-

paring to the rotated grids used before. A test with two dislocation loops on two non-coplanar slip planes

annihilating each other demonstrates the advantages of using the non-orthogonal grids.

(3) Computational Methods for High-contrast Composites. This project applies the Recursive Projection

Method (RPM) to the problem of finding the effective mechanical response of a periodic heterogeneous solid.

Previous works apply the Fast Fourier Transform (FFT) in combination with various fixed-point methods to

solve the problem on the periodic unit cell. These have proven extremely powerful in a range of problems

ranging from image-based modeling to dislocation plasticity. However, the fixed-point iterations can con-

verge very slowly, or not at all, if the elastic properties have high contrast, such as in the case of voids. The
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reasons for slow, or lack of convergence, are examined in terms of a variational perspective. In particular,

when the material contains regions with zero or very small stiffness, there is lack of uniqueness, and the

energy landscape has flat or shallow directions. Therefore, in this work, the fixed-point iteration is replaced

by the RPM iteration. The RPM uses the fixed-point iteration to adaptively identify the subspace on which

fixed-point iterations are unstable, and performs Newton iterations only on the unstable subspace, while

fixed-point iterations are performed on the complementary stable subspace. This combination of efficient

fixed-point iterations where possible, and expensive but well-convergent Newton iterations where required,

is shown to lead to robust and efficient convergence of the method. In particular, RPM-FFT converges well

for a wide range of choices of the reference medium, while usual fixed-point iterations are usually sensitive

to this choice.
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1 Introduction

The three projects that compose the PhD dissertation are all related to the topic of Computational

Methods for Structure-Property Relations in Heterogeneous Materials. The dissertation is orga-

nized as follows:

• Section 1.1 and Section 2 present the work related to Grain Evolution with Experimentally-

derived Interface Properties;

• Section 1.2 and Section 3 present the work related to Modeling of Dislocation Dynamics in

Metals;

• Section 1.3 and Section 4 present the work related to Computational Methods for High-

contrast Composites.

In this chapter, the motivations and introductions of these three projects are separately presented.

1.1 Grain Evolution with Experimentally-derived Interface Properties

This is joint work with Prof. Gregory Rohrer and Dr. Aditi Bhattacharya in the Department of

Material Science and Engineering and Prof. Robert Suter in the Department of Physics at CMU.

All experiments were conducted by the collaborators. My contributions are performing the simu-

lations, validating the model, and comparing the simulated and observed microstructures with the

collaborators. Some results here are also presented in Dr. Aditi Bhattacharya’s dissertation.

Numerous advanced manufacturing processes for metals – ranging from additive manufacturing

to single-crystal growth of turbine blades – use annealing or other heat-treatment processes as the

final step to achieve vast improvement in properties. A central feature of all these post-processing

methods is that they cause the microstructure of polycrystalline materials to change through grain

boundary motion, and important physical properties of these materials, such as their yield strength
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or electrical conductivity, depend on the grain boundary network structure. This work focus on

modeling grain growth during annealing.

The complexity of modeling grain growth lies in many properties of the materials affecting the

grain boundary motion. A grain boundary can be determined by 5 parameters, 3 from the mis-

orientation between the 2 neighboring grains sharing this boundary and 2 from the inclination of

the grain boundary [Sut95]. Local grain boundary velocity depends on its surface energy, mobility

and curvature. Except for curvature, which solely depends on the geometry, surface energy and

mobility are hard to determine. It has been shown that surface energy is a function of these 5 pa-

rameters [Roh11,ROB+15]. Some studies of grain boundary velocities of bicrystals suggested that

mobility is correlated with the 5 parameters as well [GMS+01, RGSM04, GS09], but has not been

validated for polycrystalline materials by experiment. Meanwhile, Zhang et al. [ZLZ+20] reports

no strong correlation between the reduced grain boundary mobility (the product of surface energy

and mobility) and the 5 parameters by finding the reduced mobility using phase field simulations

with experiment data. This raises the question that what assumptions of these properties should be

made in a grain growth model.

Numerous studies are performed to understand grain growth over the years such as Monte Carlo

Potts models [SASG84,Sro86], cellular automata models [HG91,Raa05], vertex simulations [BN47,

Hum00] and phase field models [KS12, Che02]. In this work, we choose to use threshold dynam-

ics (TD) scheme developed by Merriman et al. [MBO92] and extended to multi-phase anisotropic

settings for grain growth simulations by Esedoglu et al. [EO15, EJZ17, EE18]. The reasons come

naturally from its benefits: (1) can use experiment image/data directly without additional mesh-

ing; (2) implicit representation of the interface as in the phase field or level set methods and

tracking topological changes automatically; (3) unconditional stability and high computing effi-

ciency and (4) extension from isotropic formulation to anisotropic formulation can be achieved by

replacing isotropic kernel with anisotropic ones constructed with different anisotropic surface en-

ergy/mobility forms. All these benefits, especially the last one, give us the flexibility to do isotropic

and different anisotropic simulations.
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A nickel (Ni) sample with approximately 2,500 grains were measured at 6 anneal states for regular

time intervals with near-field high energy X-ray diffraction microscopy [Hef12, HLLS10]. Mi-

crostructures of these annealing stages were reconstructed [Li11, Mad16]. The goal of this project

is to simulate grain growth by a direct comparison to the experimental data in three dimensions. In

this chapter, we use “observed”, “measured”, “reconstructed” and “experimental” interchangeably

to refer the reconstructed microstructures from experiments.

As a highly anisotropic metal, Ni has properties such as surface tension, mobility, electrical and

magnetic properties varying with crystallographic orientation. The abundant existence of Σ3 twin

boundaries (about 29% among all boundaries) complicates its grain evolution even more. Thus, to

better interpret the experimental microstructure evolution, we start the simulations with isotropic

TD scheme. In this framework, each experimental microstructure was modified to merge all grains

sharing a twin boundary. This was done to reduce the anisotropy from the odd shaped grains. And

the total number of grains is reduced to 921.

While the distributions of grain characteristics between the simulations and experiments match

well to each other in general, simulations can not predict individual grain growth correctly. The dif-

ferences such as volume and topological changes between the isotropic simulated microstructures

and the experimental microstructures are investigated and provide insights about what to consider

for the anisotropic simulations.

1.2 Modeling of Dislocation Dynamics in Metals

This is joint work with Dr. Abigail Hunter, Dr. Nithin Mathew, Dr. Ricardo Lebensohn at Los

Alamos National Laboratory, Prof. Enrique Martinez at Clemson University and Prof. Irene J.

Beyerlein at University of California, Santa Barbara. Two topics are covered in this work. PFDD

is extended to BCC metals in Section 1.2.1 and Section 3.1, this part has been published

in [PMB+20a]. PFDD is adapted to use non-orthogonal grids in Section 1.2.2 and Section 1.2.2,

this part is under preparation for publishing.
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1.2.1 A 3D Phase Field Dislocation Dynamics Model for Body-centered Cubic Crystals

Dislocations are carriers of plasticity in metals [HB01, HL68, KM03]. While straining, individ-

ual crystals, microns across, will contain a collection of dislocations gliding on particular crys-

tallographic slip planes in particular slip directions. They move and are stored heterogeneously

throughout the crystal. Dislocations or groups of dislocations have been represented in various

ways, atomically including their core to discretely as a line to statistically as a dislocation density

to finally crystallographically as slip. Models that represent dislocations discretely, including their

Burgers vector and line orientation, have thus far been successful in capturing heterogeneity in slip.

Atomistic approaches, including Molecular dynamics (MD), Molecular Statics (MS), and Density

Functional Theory (DFT), are one such example. These methods can model the movement of a few

dislocations in small volumes (high dislocation densities) and account for the atomic-scale effects

of the dislocation core during motion along with interactions and reactions with other dislocations

and boundaries in the system [LeS13,ZRSOB17,WScGI04,WTF13,LBW18]. The chief disadvan-

tage of atomic-scale techniques is that they are limited in the material sizes and time scales they

can access.

Moving up in length scale, mesoscale dislocation-dynamics (DD) codes have been emerging over

the recent past in an effort to overcome the short time and length scales that limit atomistic methods.

These models account for each dislocation as a line in a 3D continuum that interacts with other

linear dislocations via elastic fields. The motion and interaction of the individual dislocation lines

in a system is modeled over time and under various applied loading conditions. These approaches

do not resolve the dislocation lines to the atomic level, hence features such as the dislocation cores

cannot be explicitly captured.

One such DD model, classified as discrete DD techniques (DDD), was developed in the late 90s

[GTS00, DK97, RZH+98, WFVdGN02]. Since then DDD models have become a well-developed

approach for modeling a group to several interacting dislocation lines in 3D space. They have been

successful in addressing the evolution of many interacting dislocations [ZOAB11, CB04, KDT98,
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WBL08, ZBL11] and the formation of organized dislocation structures in strained crystals. They

have also considered a variety of crystal structures including face-centered cubic (FCC), body-

centered cubic (BCC) metals and hexagonal close-packed (HCP) metals [ZdlRRH00, ACT+07,

BTB+14, MDK04, LeS13, BC06]. They were originally developed for bulk crystals but in the

past decade have been further developed to account for the barrier effects of interfaces and grain

boundaries, twin boundaries, precipitates, and thin films [EAFH16, HRU+17, GFMH15].

In DDD models, the dislocation line is discretized into a finite number of segments, and at each

point along the line the equation of motion is solved. Some elementary processes, such as dis-

sociation, climb, non-Schmid effects, or cross slip can be modeled with the help of rules, typi-

cally motivated by atomistic simulations, including MS, MD, or DFT [EABG08, WB11, WBT14,

SLB+07, WB11]. For instance, the model by Shehadeh et al. [SLB+07] incorporates fault ener-

gies into the DDD model to simulate slip transmission across an interface, including the possibility

of core spreading in the interface. A number of DDD models have incorporated the effects of

cross slip [WBL07,KCC+92,WBL08], finding that they lead to formation of slip bands or cellular

structures. A recent set of works have applied to examine the effects of precipitates in superal-

loys [HRU+17, YLH13, HZT12, GFMH15].

Another type of mesoscale mechanics technique for simulating dislocations that has emerged is

phase field dislocation dynamics (PFDD). Phase field models have been traditionally used to study

phase transformations [Ste09]. In the last few decades, they been extended to model dislocation be-

havior and interactions [WJCK01, KCO02], giving rise to the name PFDD. PFDD adopts the orig-

inal basis of phase field models in the sense that system dynamics are directly dependent on mini-

mization of the total system energy. However, in contrast to traditional phase field approaches, the

order parameters in PFDD represent individual dislocations rather than different material phases.

More specifically, in PFDD, dislocations in each slip system, α, are represented by scalar order

parameters, ζα(x, t); one order parameter per slip plane. At any given point on a slip plane, this

phase field parameter records the amount of slip that has occurred due to dislocation motion in units

of the Burgers vector [KCO02]. Transitions in the order parameter can represent the locations of
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dislocation lines. A master energy functional is comprised of the elastic strain energy, calculated

from continuum linear elastic dislocation theory, and the dislocation lattice energy, which is often

informed from atomic scale simulations. The equilibrium positions of the dislocations in the crystal

are determined by minimizing this energy functional at every time step. In this way, PFDD enables

simulations with much larger crystal sizes and time scales (seconds and 10-100 nanometers), more

comparable to those used in experiments, than atomic-scale simulations.

The PFDD model was developed to simulate the evolution of dislocations in any material. De-

spite this, most PFDD studies have focused on modeling dislocations in FCC materials, with a few

modeling BCC dislocations [BH16a, MKO11]. In FCC metals, PFDD studies have considered not

only perfect dislocations but also partial dislocations [BH16a, HZB14, HBGK11], heterophase in-

terfaces [ZHBK16, HLB18], and deformation twinning [HB14a, HB15]. In recent years, they have

successfully been advanced to model grain boundary sliding [KWLL11], grain boundary disloca-

tion nucleation [HB14b, HZB14], glide in high entropy alloys [ZCK19], formation and glide of

partial dislocations in polycrystals [CHBK15], the presence of void space [LMK13], slip transfer

across biphase boundaries [ZHBK16, HLB18], again, all for FCC metals. Recent advancements

have been made in predicting dislocation networks in boundaries of BCC metals [QZS+19] and

transformations to the HCP phase by sequential glide of FCC Shockley partials [LTBL17].

Dislocation motion in FCC materials is fundamentally simpler than that in other metals. First,

FCC materials deform predominantly via one slip mode. In comparison, BCC metals have three

possible slip modes {110} 〈111〉, {112} 〈111〉 and {123} 〈111〉. Also in contrast to FCC disloca-

tions, the motion of dislocations can be directional, being harder to move in one direction versus

another (resulting in the well known tension/compression asymmetry), and can depend on the line-

character [UW75, LT62, BH67, TKC98]. These distinctions induce changes in the types of active

deformation mechanisms in the metal. For example, low temperature electron microscopy mea-

surements in BCC crystals have shown the presence of long screw dislocations, indicating that

non-screw dislocations are more mobile and require a lower resolved shear stress (RSS) for mo-

tion [HB01]. Due to the high RSS required, screw dislocations in BCC metals move by nucleation
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and propagation of kink-pairs. A kink-pair is first nucleated along the screw-oriented dislocation

dislocation line. The kink is bound by a pair of oppositely signed edge oriented components. Due to

the low RSS required to propagate edge-oriented dislocations, the sides of the kink can move easily

laterally along the dislocation line and the screw dislocation ultimately advances. Thus, to accu-

rately capture dislocation motion in BCC materials, it is important to account for the line-character

and capture the dependence of RSS on the line-character.

In this work, we present a 3D PFDD framework that includes dislocation character dependent be-

havior applicable to BCC metals. The section is structured as follows. First, the PFDD framework

traditionally used for perfect dislocation motion in FCC materials is briefly presented in Section

3.1.1. Extensions to account for a line-character dependent Peierls barrier are presented next in

Section 3.1.2. Two cases are treated with the extended BCC PFDD model in Section 3.1.4, dis-

location loop expansion and the kink-pair motion of a screw dislocation, the former of which is

presented with direct comparison to atomistic results.

1.2.2 Non-orthogonal Computational Grids for Studying Dislocation Motion in Phase Field

Approaches

Phase Field Dislocation Dynamics (PFDD), as well as many other mesoscale dislocation mod-

els [MS15, SW03, BUPC15], use the Fast Fourier Transform (FFT) method [MS98] to solve the

stress equilibrium equation. While there are many benefits of using the FFT method, such as

high numerical efficiency and easy handling of elastic anisotropy, it also introduces Gibbs oscil-

lations [HH79] which arise from taking Fourier transforms of discontinuous fields. Dislocations

induce discontinuous plastic strain/stress fields, so FFT-based mesoscale dislocation models all face

the Gibbs effect. Many studies developed effective treatments to suppress the oscillations such as

using a “centered” [DMO99] and/or a “rotated” [Wil15] Green operator.

The easiest configuration of a computational grid for dislocations would be having a orthogonal

grid that is rotated from the Cartesian grid such that the slip plane is perfectly aligned with the
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grid plane. This simplifies assigning the initial configuration and computational work. In Figure

21, the rotated grid has one slip plane (111) aligned with its xy plane, but the same slip plane

in the cubic/Cartesian grid is inclined. An inclined slip plane can produce more numerical errors

(shown in Section 3.2.2) from the FFT method, which can impact the overall solution. However,

when modeling a more complex structure with multiple slip planes and one slip plane is aligned

with the rotated grid, then the other planes are bound to be inclined. In this work, we present a

new non-orthogonal computational grid that is constructed with lattice primitives. The new non-

orthogonal grids can accommodate multiple slip planes in either the face centered cubic (FCC)

or body centered cubib (BCC) crystallographic systems. In these computational grids all the slip

planes align with point withing the computational grid, thus avoiding the possible numerical errors

induced by the inclined slip plane.

1.3 Computational Methods for High-contrast Composites

This is joint work with experimentalists at Air Force Research Laboratory, led by Dr. Dhriti Nepal’s

group in the Composites Branch. This work has been published in [PND20].

This project proposes and applies the Recursive Projection Method (RPM) – a method to adaptively

combine Newton and fixed-point iterations – to the problem of finding the effective mechanical

response of a periodic heterogeneous linear elastic solid. Specifically, given the average strain

or stress, the goal is to compute the stress and strain distribution within the unit cell. While the

linear elastic setting is of interest in itself, it is also used extensively as part of the iterative solution

process in nonlinear elastic or inelastic settings.

Early numerical works in the periodic setting exploited Fast Fourier Transforms (FFT)1 to partially

simplify the problem; however, due to the heterogeneity of the elastic properties, the problem is

not completely decoupled in Fourier space. Therefore, fixed-point methods are used to complete

1Following common practice in this field, we denote also the class of algorithms that use Fast Fourier Transforms
as FFT methods.
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the solution process [MS94, MS98, MMS99]. This approach was used to compute the effective

properties of heterogeneous materials that are linear, or nonlinear through iteration. However,

while the method is extremely fast for small elastic contrasts, the convergence is slow or even

lost for higher elastic contrasts. This rules out systems such as materials with voids, where the

void is treated as a part of the body with zero stiffness, for instance. This led to the formulation

of the Accelerated FFT Method in [MMS01], based on a scheme proposed in [EM99] for scalar

conductivity problems, that modified the original method to handle high contrast composites. A

further refinement, proposed in [MB12], is the Polarization FFT Method, which has been shown

to be a special case of a general class of methods in [MS14]. A separate promising approach

is [PL13], based on ideas from energy minimization, though they do not test it on the case of large

elastic contrasts.

These methods have been applied in a variety of settings, including in highly nonlinear problems

where they are used in each step of the iteration. For instance, in the context of plasticity, we

mention application at the macroscale [Leb01, LR20], to continuous dislocation models [BH16b,

PMB+20b], as well as recent seminal work in coupling discrete dislocations with fast calculation

of elastic interactions [GRL16]. Another important area of application is to phase-field models

of microstructure formation in multifunctional materials, e.g. [CS13]. The Fourier methods have

also proven powerful in simulating experimental images of microstructure because of the ability to

apply the method directly on image data without needing the identification of material boundaries

and related challenges [PMG+15].

The methods mentioned above – starting from the original FFT method to the Accelerated and Po-

larization FFT methods – are based on fixed-point methods or variations thereof; see [MS14] for a

summary. Consequently, though some of these methods can converge for large elastic contrasts, the

convergence gets slower as the contrast increases. In addition, an important part of these methods

is the notion of a homogeneous reference medium (for details, see Section 4.1). The notion of a

reference medium goes back to [Esh59], and has proven to be a powerful concept in homogeniza-

tion analysis [AP13, Lip93]. However, in the numerical setting, the convergence of the fixed-point
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methods can be very sensitive to the choice of the reference medium. These reasons motivate the

proposed work in applying the RPM to this problem.

A classical result is that the solution of the elasticity problem can be posed as a minimization of

the strain energy density under standard assumptions, e.g. [Cia88]. That is, the balance of linear

momentum, represented by divσ = 0 where σ is the stress and y is the deformation, is equivalent

to min
y

∫
Ω

W (∇y), where W is the elastic energy density, Ω is the domain, and
∂W

∂∇y
= σ.

For simplicity, we have assumed displacement fixed on the entire boundary. The perspective that

the solution of the equilibrium equation is equivalent to the minimization of strain energy leads

to useful insights into the solution methods. In particular, consider the case of a heterogeneous

elastic material with voids. Typically, the voids are not taken to be part of the body Ω, and instead

they are defined through interior surfaces that are traction-free. However, in the FFT method,

one cannot easily treat the voids in this manner because the discretization must be uniform for

efficiency; hence, the voids are taken to be part of Ω, and treated as regions with zero stiffness. The

zero stiffness regions imply that there is infinite elastic contrast, but also loss of uniqueness of the

solution.

The uniqueness of solutions is an elementary calculation in linear elasticity, e.g. [Cia88]. As-

suming a boundary value problem with 2 solutions y1 and y2, it can be shown that the difference

u := y1 − y2 satisfies
∫
Ω

εu : Cεu = 0, where C is the linear elastic stiffness tensor, and εu is

the small strain associated with u. If C is pointwise positive-definite, then εu ≡ 0, and we have

uniqueness up to rigid motions; Dirichlet boundary conditions on a finite part of the boundary fixes

the rigid motion.

From a heuristic perspective, the lack of uniqueness of the solution in a material with zero-stiffness

regions is reasonable: the fictitious material points in the void region can have arbitrary displace-

ment (while respecting the required smoothness), and this does not cost any elastic energy or affect

the physics of the problem. Hence, we can expect soft or flat directions in energy landscape. When

we have large elastic contrast due to regions with very low stiffness, the energy will be shallow
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though perhaps not completely flat. Convergence along these directions can be exceedingly slow,

or even lost, in a fixed-point method.

We briefly note that for rigid inclusions, the strain within the rigid objects must vanish, while the

stress can be arbitrary as long as smoothness and equilibrium are satisfied. The discussion above

can be readily adapted to this setting using the complementary strain energy density.

Given the expectation that the energy landscape is flat or shallow in some directions, the use of

Newton or similar iterations is likely to provide convergence within a relatively small number of

iterations. However, each Newton iteration is far more expensive than a fixed-point iteration, and

increasingly so as the dimension of the solution space increases. The RPM, proposed in [SK93],

provides the possibility of a balance between the fixed-point and the Newton methods. The first key

aspect of RPM is that it uses the fixed-point iterations to adaptively identify the unstable subspace.

That is, starting from the assumption that fixed-point methods will converge when applied to the

problem, RPM examines successive outcomes from the fixed-point iteration scheme to discern if,

and how, the basis of the unstable subspace should be augmented. The second key aspect of RPM is

that as the unstable subspace is built up, Newton iterations are performed on the unstable subspace.

This enables a balance between the less expensive but non-converging fixed-point method and the

more expensive but better converging Newton method.

We point out that while Newton iterations are performed only on the unstable subspace, the fixed-

point iterations are performed on the entire space. The reason to perform fixed-point iterations not

only on the stable subspace, but rather on the entire subspace which is slightly more expensive, is

that it enables the use of existing fixed-point methods with minimal changes to existing code and

algorithm. In fact, we exploit this feature to apply RPM to both the original FFT method [MS98]

as well as to the Accelerated FFT method [MS14].

Briefly, the key outcomes of our comparisons of RPM-FFT with the existing methods is that the

RPM-FFT method is faster than the other methods for large elastic contrasts. However, an even

more important advantage appears to be that the convergence of RPM-FFT is very robust with
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respect to the choice of the reference homogeneous material, whereas the fixed-point methods are

sensitive to this choice; this is particularly important since there are only some heuristic ideas about

how to optimally choose the reference material.

For brevity, we refer below to the method proposed in this project as RPM-FFT; the conventional

algorithm from [MS98] as Classical FFT; the method proposed in [MMS01] as Accelerated FFT;

and the method proposed in [MB12] as Polarization FFT.
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2 Grain Evolution with Experimentally-derived Interface Prop-

erties

This is joint work with Prof. Gregory Rohrer and Dr. Aditi Bhattacharya in the Department of

Material Science and Engineering and Prof. Robert Suter in the Department of Physics at CMU.

All experiments were conducted by the collaborators. My contributions are performing the simu-

lations, validating the model and comparing the simulated and observed microstructures with the

collaborators. Some results here are also presented in Dr. Aditi Bhattacharya’s dissertation.

This chapter is organized as follows: Section 2.1 summarizes threshold dynamics scheme (TD),

validates it with classical theories of isotropic grain growth and describes data processing for com-

parison; Section 2.2 presents the simulated and observed microstructures comparisons.

2.1 Methods

First, we review TD both in a two-phase and multi-phase settings in Section 2.1.1. To validate

the model, grain size distribution and average grain size at different simulation steps are plotted in

Section 2.1.2. Comparisons are made possible by establishing the common volume and time scale

between the simulation and experiment in Section 2.1.3.

2.1.1 Threshold Dynamics

In TD, phases can be represented through the characteristic function (order parameter) 1Σi
of each

phase Σi.

1Σi
=


1, if x ∈ Σi.

0, otherwise.
(2.1)

The evolution of the interface network is reflected by the change of the phase boundary of 1Σi
. The

original TD scheme from Merriman, Bence and Osher in the isotropic, two-phase setting is given
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as in Algorithm 1 from [MBO92].

Algorithm 1 MBO

1: Initialization Given Σ0 and time step size δt
2: For iterate k + 1
3: ψk = Kδt ∗ 1Σk . Convolution/Diffusion step
4: Σk+1 = {x : ψk(x) ≥ 1

2
} . Threshold/Sharpening step

The convolution kernel K : Rd → R, can be any spherically symmetric kernel, and is usually

chosen to be the Gaussian for computation purpose:

Gδt(x) =
1

(4π(δt))d/2
exp(− |x|

2

4(δt)
) (2.2)

By this choice of kernel, the MBO scheme evolves the boundary ∂Σ by mean curvature motion

[MBO92] and the phase boundary velocity is

v(x) = µσκ(x) (2.3)

where κ is the mean curvature, the boundary mobility µ and the surface energy σ are constants.

The time step size δt is a model variable that has no effect on stability, but should be considered

to reach desired accuracy. In [EO15], Esedoglu and Otto introduced an extension of the two-phase

MBO scheme to a general multi-phase setting, as showing in the Algorithm 2.

Algorithm 2 EO

1: Initialization Given Σ0
1 , ..., Σ

0
N and time step size δt

2: For iterate k + 1

3: ψki =
N∑
j=1
j 6=i

Ki,j
δt ∗ 1Σk

j
. Convolution/Diffusion step

4: Σk+1
i = {x : ψki (x) ≤ min

j 6=i
ψkj (x)} . Threshold/Sharpening step

The main difference between the MBO and the EO schemes is that in the EO scheme the new

kernel Ki,j
δt is designated for the boundary between Σi and Σj . The new kernel in the EO scheme
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is constructed to account for non-constant σ and µ between two phases. As mentioned in Section

1.1, σ and µ play far more complex roles in grain growth than being constant. They are affected

by both grain boundary normal and misorientation between neighboring grains. Incorporating the

anisotropic surface energy and mobility into Ki,j
δt yield to an anisotropic grain growth formulation

with the boundary velocity being

v(x) = µi,j(n(x))σi,j(n(x))κ(x) (2.4)

In this work, we focus on multi-phase isotropic simulations. We use Algorithm 2 and take the

same form as in Equation (2.2) for the kernel Ki,j
δt . In the grain growth simulations performed in

this work, Algorithm 2 makes direct use of the observed microstructures as the input by assigning

one characteristic function 1Σi
to each grain Σi, and evolve the grain boundary network by first a

convolution/diffusion step and then a threshold/sharpening step.

2.1.2 Model Validation

In this section, we want to validate the isotropic TD model is evolving the grain boundaries isotrop-

ically. According to classical grain growth theories, it is expected to observe self-similarity in grain

size distribution for ideal isotropic grain growth (normal grain growth) [BT52, Atk88]. The grain

size distributions of the simulated microstructures at different anneal states are plotted in Figure 1

and they have self-similar forms.

Burke and Turnbull [BT52] found a linear relation between time and the power of the average grain

size (usually is 2nd, 3rd or 4th power according to different studies) using an isotropic curvature-

driven model for both 2D and 3D systems. In Figure 2, the difference between the 2nd power of

average grain size 〈R〉2 and initial average grain size 〈R0〉2 of a simulation are plotted as a function

of iteration step. The iteration steps can be seen as normalized time steps. The linear relation is

clearly shown. Grain size is calculated as R = ( 3
4π
V )1/3 with V being volume of the grain in
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Figure 1: Grain size distributions of simulations at different annealing stages.

voxels.

Figure 2: 〈R〉2 − 〈R0〉2 as a function of iteration step.

Good agreements with the classical theories are presented in this section. More discussions will

be included in Section 2.2 when the simulated microstructures are compared to the experimental

ones.

16



2.1.3 Data Processing for Comparison

To compare the simulations with the experiment data, it is important to establish the common

volume between experimental anneal states and the time scale in simulations.

2.1.3.1 Establishing the common volume. The Ni sample from experiment is of cylinder

shape, and the microstructure is described with an orientation map that are colored according to

grain orientations. Figure 3 shows the anneal state 0 with all the twin boundaries merged. Voxels

marked in red indicate they do not belong to any grain. The simulation directly uses the orientation

map to create characteristic functions 1Σi
as in Equation 2.1, and the phases Σ0

i is the input for

iterations as in Algorithm 2. Thus, the computational grid of the simulation has the same size of

the input microstructure, for example 369× 372× 62 for anneal state 0.

Figure 3: Twin-boundary-merged orientation map of the Ni sample at anneal state 0. The size of
the map is 369 × 372 × 62. Grains are colored by their orientations. Voxels marked in red do not
belong to any grain.

To simulate the experimental microstructure of the cylinder shape Ni sample with 921 grains (an-

neal state 0), special treatments have been made to exclude the space that is inside of the computa-

tional grid but outside of the actual sample (red region in Figure 3). The easiest way to accomplish

this is to manipulate the characteristic function of the red region Σ0. By setting 1Σ0 = 0, if x ∈ Σ0

the contribution to ψi (i = 1, 2, ...921) from Σ0 is always 0 in the convolution step in Algorithm
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2, and the boundary between Σ0 and Σi will not evolve during the iteration. Thus, the volume is

preserved throughout the simulation.

For comparison, we apply cropping and shifting to experimental microstructures for two reasons:

(1) the measurements made for the 6 anneal states of Ni sample were took at slightly different

locations; (2) the experimental microstructures have different volumes. Usually the following state

has bigger volume than that of the previous state, this is to make sure even with the shift of view,

most of the grains in the previous state remain in the following one. The most difference on the

size measurements is on the vertical direction of the cylinder (z direction) as one state has 62 layers

of voxels and the other has 88. This corresponds to a volume difference of about 3 million voxels.

Anneal state 0 to 4 is cropped and shifted respectively to have the same number of layers as its

following state.

2.1.3.2 Establishing the time scale. As the simulation goes on, the overall grain size keeps

growing through each iteration following isotropic grain growth rules. A stopping criterion need to

be established so it can be compared with experiment. We tried three different criteria:

(1) maximum agreement between the simulation output and the targeted anneal state. It goes

through every grain that is matched between the initial and targeted anneal states, and sums up

the number of voxels that exist both in the grain of the simulation and the grain in targeted anneal

state. Higher the sum, better the agreement.

For example, a simulation that has anneal state 0 (An0) as input and tries to match with An1, for

every iteration, we calculate Vmatch, which is:

Vmatch =
M∑
i=1

ni (2.5)

where ni is number of the voxels that exist in both the i-th grain in the current iteration step and the

i-th grain in the targeted anneal state (An1 in this case). Note that the calculation is summed over

M (M ≤ N ) grains, as not all grains between two anneal states are matched in the experiment.
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The lists of the matched grains are provided by the analyses of the reconstructed microstructures,

and M varies between different anneal states. After applying this criterion, we observed first a

small increase (about 2%) of Vmatch and then a continuous decrease. It indicates that the simulation

quickly diverged from the targeted anneal state. However, there is not enough evolution occurred

(the overall grain size is still small) when Vmatch is at its maximum. The simulation stopped too

early by this criterion.

(2) matching average grain boundary movement. It calculates the movement of each boundary and

then its average for each iteration step. It stops when the average reaches the experimental average

boundary movement. The calculation of the boundary movement is done by Dr. Aditi Bhattacharya

and shown in her dissertation.

The iteration step picked by this criterion has significantly lower number of grains than the target

anneal state (the overall grain size is much larger). The simulation stopped too late by this criterion.

(3) matching average grain sizes. It calculates the average grain size for each iteration step and

stop when reaches the average grain size of the targeted anneal state. The iteration step picked

this way has reasonable amount of evolution that is comparable to the experiment. Therefore, it is

chosen to be the stopping criterion. The average grain size Vave is calculated by:

Vave =
1

N

N∑
i=1

Vi (2.6)

where Vi is volume of the i-th grain.

Even though the first two criteria are not used here, they can be good indicators when the model

is extended to include anisotropy. We expect them to pick a much better iteration step for the

anisotropic model.
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2.2 Results

Simulations are preformed for each neighboring anneal state pair, so in total of 5 simulations for

the 6 anneal states. Figure 4 shows An0 experimental microstructure of 921 grains that is used

as simulation input, the targeted experimental microstructure An1 of 756 grains and the simulated

microstructure with 601 grains.

Figure 4: Left: experimentally measured microstructure of anneal state 0 of 921 grains, middle:
experimentally measured microstructure of anneal state 1 of 756 grains and right: the simulated
microstructure of the anneal state 1 with 601 grains.

Figure 5 shows a single bulk grain across all anneal states in experiment and simulations. This

grain shrinks with annealing in the experiment as well as simulation. By comparing each column

which has the target grain shape on the top and simulated grain shape on the bottom, it is fair to say

that the isotropic model can not predict for individual grain. When comparing every diagonal grain

pair (from top left to bottom right), which has the input grain shape and the simulated grain shape,

it is clear that the simulations smooth out the grain surface (reduce boundary curvature).

In [BSH+19] an assumption based on isotropic grain growth is made that the difference of the

number of neighbors F of a grain and the average number of neighbors of the neighboring grains

〈FNN〉 ( FNN is the number of one neighbor’s neighbors) serves as a good predictor for the sign of

the grain’s volume change:

(V
2/3
F − V 2/3

I ) ∝ (F − 〈FNN〉) (2.7)
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Figure 5: Visualization of a bulk grain across all anneal states in experiment and simulations.
The top row shows experiment grains starting from An 0 to An 5 and the bottom row shows the
simulated grains from An 1 to An 5.

When a grain is large, thus having more neighbors than its neighbors, it is more likely to grow

and vice versa. In Figure 6, the two thirds of the change of volume between the final and initial

states V 2/3
F − V 2/3

I versus F − 〈FNN〉 is plotted for all grains in both experiment and simulation.

Simulation shows a more obvious linear relation that cross x-axis at 0, meaning positive F−〈FNN〉

results in an increase of volume.

Figure 7 shows the grain size distribution and grain volume distributions of the experimental and

simulated microstructures for all the anneal states. The experiment and simulation distributions

are similar with some differences at the small grain size region. The distribution shows simulated

microstructure has a significantly higher fraction (0.15%) of smaller grains (<5µm) than in experi-

ment (0.01%). In other words, simulation is shrinking more grains than what actually shrunk. This

is expected, as in isotropic simulation, small grains have much larger curvature therefore disappear

fast according to Equation 2.3. However, the experiment is not isotropic, and small grains are not

necessarily disappearing (even growing according to Figure 9).

Figure 8 shows the distribution of volume fraction change between the initial and the final states

for experimental and simulated grains. For experiment, this would be Vf−Vi
Vi

where Vi is the grain

volume at the initial anneal state and Vf is at the following state; for simulation, this would be Vs−Vi
Vi
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Figure 6: Change in volume versus the difference between the number of neighbors and the average
number of neighbors of the neighbors in (a) experiment and (b) simulation. For each class of F −
〈FNN〉, the marker is the mean value and the bar shows one standard deviation of the distribution.

Figure 7: The grain size distribution and grain volume distribution of experimental and simulation
microstructures for all the anneal states.

where Vs is the grain volume at the iteration step picked by the stopping criterion in Section 2.1.3.2.

While both the experiment and simulation plots have the maximum number of grains around zero

volume fraction change (simulation is slightly more than experiment), a higher number of simulated
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grains (about 17%) shrunk to zero (these grains completely disappeared) than they actually did in

experiment (about 10%). Also the higher end of the plots indicate that experiment has more grains

growing, and they could grow as much as almost doubling the size (85%), which is much more than

simulation (maximum of 55% increase). This is expected, as in isotropic simulation, large grains

have much smaller curvature therefore grows slower.

Figure 8: The distribution of fractional change in volume for experimental and simulated grains.

To understand Figure 8 better, we plot the fractional change in grain volume vs grain size in Figure

9. The simulation follows the isotropic grain growth such that smaller grains shrink and larger

grains grow, as shown in 9, while in experiment such relation is less apparent with data points

spreading out more evenly above and below the 0 volume fraction change. It also shows that in

both experiment and simulation, as the grain size gets lager, the magnitude of fractional change

is smaller. The data points in experiment having large fractional volume increase are usually the

smaller grains. This suggests that the mismatch at the high end of the distribution in Figure 8 is

mainly caused by wrong volume predictions of these small grains. Noticed that the grains disappear

in simulation are clustering in the small grain size region, whereas in experiment the grains of this
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region exhibit significant growth. It is sufficient to say that the simulation is hard to capture this

phenomenon and therefore most errors would result from small grains.

Figure 9: The fractional change in volume vs grain size in experimental and simulated grains.

Figure 10 plots the triangle curvature distributions (grain boundaries are segmented into triangles

after meshing and smoothing with Dream.3D, details can be found in Dr. Aditi Bhattacharya’s

dissertation.) of all boundaries in the simulation and experiment. Experiment curvatures have a

higher fraction at the higher end and simulation curvatures have a higher fraction at the lower end,

meaning the simulation decreases boundary curvatures. This behavior agrees with the isotropic TD

formulation that high curvature boundaries, mostly from smaller grains, move faster and make the

small grains disappear faster, so the grain boundary network evolve to a lower curvature state.

Since most mismatches are associated with smaller grains (are size-dependent), we plot the volume

prediction error V PE as a function of the topological error TE (topology as in number of faces of
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Figure 10: The triangle curvatures for all boundaries in the simulation and experiment.

a grain) in Figure 11. These values are calculated as follows:

∆Ns = Nsim −Nexp(initial) (2.8)

∆Ne = Nexp(final) −Nexp(initial) (2.9)

TE = ∆Ns −∆Ne = Nsim −Nexp(final) (2.10)

V PE =
Vs − Ve
Ve

(2.11)

(2.12)

where V PE is the relative difference between the volume predicted by simulation Vs and volume

at experimental final state Ve. And TE, topological error, is the difference between the number

of neighbors predicted by simulation Nsim and the number of neighbors at experimental final state

Nexp(final). A low V PE indicates small difference between the volume predicted and actual final
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volume of the grain. A low TE value means the error of predicting topological evolution of the

grains is small. This plot is linear and monotonically increasing, indicating a strong correlation

between the wrong prediction of grain topology change and wrong prediction of grain volume

change.

Figure 11: The volume prediction error as a function of topological error.
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2.3 Conclusions

Isotropic TD model is applied to simulate 3D grain growth on reconstructed microstructures of

a Ni sample during annealing. The model is first validated by checking with classical isotropic

grain growth theories. Then simulations of every neighboring anneal state pair are performed.

Statistical analysis results of the simulated and experimental microstructures match to each other

in general with some differences mostly associated with small grains. Simulations following the

isotropic grain growth theories shrink the small grains and grow the larger ones, while small grains

in experiment can grow as much as 85% of its original size and large grains can shrink as much

as 40%. The wrong prediction of topology change of individual grains further affects the volume

prediction in simulations. This motivated the use of anisotropic model briefly mentioned in Section

2.1.1.

The isotropic TD scheme can be extended to include anisotropic surface energy and mobility data

from experiment [EJZ17]. By comparisons between simulations with the isotropic TD scheme and

anisotropic TD scheme, different forms of anisotropic kernel can be tested and give insights about

how the boundary properties affect grain boundary evolution.
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3 Modeling of Dislocation Dynamics in Metals

This is joint work with Dr. Abigail Hunter, Dr. Nithin Mathew, Dr. Ricardo Lebensohn at Los

Alamos National Laboratory, Prof. Enrique Martinez at Clemson University and Prof. Irene J.

Beyerlein at University of California, Santa Barbara. Two topics are covered in this work. PFDD

is extended to BCC metals in Section 1.2.1 and Section 3.1, this part has been published

in [PMB+20a]. PFDD is adapted to use non-orthogonal grids in Section 1.2.2 and Section 3.2, this

part is under preparation for publishing.

3.1 A 3D Phase Field Dislocation Dynamics Model for Body-centered Cubic

Crystals

In this section, the PFDD formulation that has been traditionally used for perfect dislocations

in FCC metals is first reviewed [BH16a]. Since BCC metals typically do not mediate plasticity

through partial dislocation motion, the formulation for perfect dislocations is extended to account

for differences in edge/screw dislocation motion that is common to BCC metals. This extension in-

corporates a character dependence into the energy functional minimized in the PFDD formulation.

3.1.1 Phase Field Dislocation Dynamics (PFDD)

As briefly described in the previous section, in the PFDD formulation, dislocations are described

using scalar-valued order parameters ζα(x, t) defined on each active slip system α. For example,

in an FCC material there can be up to 12 active order parameters, one parameter per slip system.

Integer values of these order parameters represent perfect Burgers vector translations (or no trans-

lation at all with a zero value order parameter), where atomic bonds have already been broken and

reformed and the crystal has undergone slip. A positive perfect dislocation on system corresponds

to a positive integer jump in the order parameters and vice versa for a negatively signed dislo-

cation. Order parameters with values between zero to one indicate the location of the dislocation
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core, where the atoms in the crystal structure are broken and not perfectly aligned. The total system

energy E, can be expressed as a function of these order parameters. To capture the motion of the

dislocation network, the system is expected to evolve toward a minimum energy state. Minimiza-

tion of the total energy is done using a time-dependent Ginzburg-Landau (TDGL) kinetic equation,

which also allows for stress equilibrium, divσ = 0, to be achieved:

∂ζα(x, t)

∂t
= −L ∂E(ζ)

∂ζα(x, t)
(3.1)

with the assumption that the total strain ε(x, t) = εe(x, t) + εp(x, t), where εe is the elastic strain,

and εp is the plastic strain. The coefficient L governs the rate at which equilibrium is achieved.

We assume that plasticity is mediated by the motion and interaction of dislocations, and hence

the plastic strain, εp, is directly dependent on the active order parameters in a system [KCO02,

WJCK01], following

εpij(x, t) =
1

2

N∑
α=1

bζα(x, t)δα(sαim
α
j + sαjm

α
i ), (3.2)

where N is the number of active slip systems, b is the magnitude of the Burgers vector b, sα is the

slip direction (normalized Burgers vector s ≡ b
b
), mα is the slip plane normal α, and δα is a Dirac

distribution supported on the slip plane of slip system α.

The total system energy consists of two key energy terms [KCO02]:

E = Estrain + Elattice. (3.3)

The first term, Estrain, is the strain energy, which accounts for elastic interactions between dislo-

cations (e.g., attraction and repulsion), and interactions between the applied stress and the disloca-

tions. It can be written as the sum of internal and external interaction terms:
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Estrain = Eint + Eext =
1

2

∫
Cijklε

e
ij(x, t)ε

e
kl(x, t)d

3x−
∫
σapplij εpijd

3x, (3.4)

where C is the elasticity tensor, and σappl is the applied stress. εe can be solved in terms of εp

through transformation into Fourier space, which provides the following expression of the internal

strain energy [KCO02]:

Eint(ζ) =
1

2
−
∫
Âmnuv(k)ε̂pmn(k)ε̂p∗uv(k)

d3k

(2π)3
(3.5)

where Âmnuv(k) = Cmnuv − CkluvCijmnĜki(k)kjkl, (ˆ) denotes the Fourier transform, and (∗)

denotes the complex conjugate, k is the wave vector, Ĝ is the Fourier transform of the Green’s

tensor of linear elasticity [Mur87], and the −
∫

denotes the Cauchy principal value of the integral.

The second term in Equation (3.3), Elattice, accounts for the energy expended on breaking and

reforming atomic bonds as dislocations move through the crystal lattice. Due to the periodicity

of the crystal lattice, for perfect dislocations, Elattice is modeled with as a sinusoidal function

[WJCK01, BH16a]:

Elattice(ζ) =
N∑
α=1

∫
B sin2(nπζα(x, t))δαd

3x (3.6)

whereB is the Peierls barrier, or the magnitude of the energy barrier to activate slip. This parameter

can be informed many ways. For a wide range of BCC metals the Peierls potential for screw

dislocations have been calculated using DFT [WTF13, LBW18]. It can also be calculated more

quickly via MD simulations but with the caveat that accuracy depends on the reliability of the

interatomic potential used [LeS13, LBW18, ZBGW11]. More often, this term is informed using

information from the material γ-surface, such as specific stacking fault energies or generalized

stacking fault energy (GSFE) curves as calculated with atomistic methods [Sch05, Vit68]. Such

energetic calculations do not involve the motion of a dislocation but rather shifts of two crystal
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halves with respect to one another across a crystallographic plane, and therefore do not correspond

directly to the Peierls potential. A relationship has been determined between the Peierls potential

and the energy of the atomic bonds across a plane as a function of shifts in the atomic positions

[JD97,Pei40,Sch05]. In BCC metals, the peak value of this energy function in the unstable stacking

fault energy (γU ), which can therefore be related to motion of the entire dislocation.

3.1.2 Extension to BCC Metals

It has been shown that in BCC metals the Peierls stress for screw dislocations is one to two orders of

magnitude greater than that for edge dislocations [LK79, Vit74]. Consequently edge dislocations

move faster through the crystal lattice than screw-type dislocations which, in turn, dominate the

plastic response [HB01, HL68, KBC12]. To better model the plastic deformation in BCC metals,

we extend the PFDD model to account for differences between edge and screw dislocation motion.

Specifically these extensions primarily modify Elattice, so that character dependence of the Peierls

energy barrier can be accounted for. As mentioned above, the Peierls barrier itself can be estimated

with atomistic modeling approaches. However, to determine the Peierls potential for the all (or

even many) dislocation characters is computationally costly. In an effort to approximate the varia-

tion of the Peierls potential and also move up in length-scale, we utilize γU in conjunction with a

transition function. The transition function captures the dependence of the Peierls energy barrier on

screw/edge character of a dislocation. Furthermore, this function describes how the energy barrier

varies with character in general, and by incorporating such a term into Elattice dependence on dis-

location line character is added into the PFDD model. Determining the line character of a general

dislocation line requires calculation of the gradient of the order parameter. This is followed by, the

development of the transition function which is a function of the character angle, θ.

3.1.2.1 Calculating the Dislocation Line Sense. Figure 12 presents a schematic of a general

dislocation loop, with a local coordinate system comprised of orthogonal vectors: one is normal to
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the glide plane (also the slip plane normalm as defined in the global coordinate system), another is

normal to the dislocation line n, and a third that is the local tangent to the dislocation line t. Within

this system, the Burgers vector could be any vector within the t-n plane. The tangent vector t

defines the line sense of the dislocation segment at that point along the loop. The angle between

this vector and the Burgers vector will define the character of that segment of dislocation, with an

angle of 90◦ indicating dislocations of pure edge type, and an angle of 0◦ representing segments of

pure screw type.

Figure 12: A dislocation loop (black curve surrounding the slipped region (denoted in blue)) with
a Burgers vector b. The gradient of the order parameter∇ζα lies in the plane formed by dislocation
line normal n and slip plane normalm.

Within the PFDD model, such a loop would be modeled with a single active order parameter with

a value of unity inside the loop and a value of zero outside the loop. Hence, the gradient of the

order parameter, ∇ζα, will only be non-zero at points along the dislocation line, where the order

parameter transitions between 0 and 1. In addition, the gradient of the order parameter lies in the

n-m plane, as shown in Figure 12, and defines the direction in which the order parameter has the

most dramatic change.

In order to add character dependence to the total system energy the character angle, θ, is needed

for all points along all dislocation lines present in the simulation. To achieve this we first calculate

the gradient of all active order parameters across all computational points within a simulation using

a central difference approach,
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∇ζα(x, t) =

(
ζα(xi+1, t)− ζα(xi−1, t)

2∆x
,
ζα(yj+1, t)− ζα(yj−1, t)

2∆y
,
ζα(zk+1, t)− ζα(zk−1, t)

2∆z

)
(3.7)

where (xi, yj, zk) is any computational grid point, and (∆x,∆y,∆z) are the grid spacings in the

(x, y, z) directions, respectively. Taking the cross product of this gradient vector with the slip plane

normal produces the vector tangent to the dislocation line, i.e., the line sense. This unit tangent

vector can be expressed as:

tα(x, t) =
∇ζα(x, t)×mα

|∇ζα(x, t)×mα|
. (3.8)

Finally, the character angle, θα, can be calculated by taking a dot product of the tangent vector and

the slip direction (i.e., the normalized Burger vector):

θα(x, t) = tα(x, t) · sα. (3.9)

Recall, θα = 90◦ represents a point on the dislocation loop that is of pure edge type, and θα = 0◦

indicates pure screw type. Other values between 0◦ and 90◦ represent dislocation segments that are

of mixed character.

3.1.2.2 Defining the Transition between Edge and Screw Type. To account for the anisotropy

in the Peierls barrier within the PFDD model, Equation 3.6 will be dependent on the line-character

such that dislocations that are of screw type must overcome a much larger energy barrier than dislo-

cation of edge type. However, the transition of the height of the energy barrier from screw character

(maximum) to edge character (minimum) must also be defined in order to allow simulations of gen-

eral dislocation segments and configurations. The functional form of such a transition is generally

unknown, and the formulation presented here allows for different functions to be tried and tested
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against atomistic simulations and/or experimental results.

Perhaps the simplest and easiest definitions of the transition function, β(θ(x, t)), are either a simple

linear or a sinusoidal transition. Both of these proposed functional shapes failed to yield matching

results to atomistic results (discussed in later sections). Previous work by Kang et al. [KBC12]

included a large number of MD simulations that determined the Peierls stresses of b = 1
2

[111] dis-

locations on the (11̄0) slip plane of BCC Ta as a function of dislocation character. As expected, pure

screw dislocations required the largest stress to initiate motion. Interestingly, they also found an

asymmetric, local maximum in the Peierls stress for a mixed type dislocation with a character angle

of θ = 70.5°. Based on this previous study, we chose to incorporate this second peak (preserving

the asymmetry) into the transition function producing a local maximum in the energy barrier for

this mixed type dislocation in addition to the global maximum for screw type dislocations.

The two-peak transition function was initially determined through interpolating the mobility data

from Kang et al. [KBC12]. This function is expressed as:

β(θ) =


1.1603θ2 − 2.0431θ + 1 θ ≤ 0.39π

0.5473θ2 − 2.0035θ + 1.8923 0.39π < θ ≤ π

(3.10)

Using this transition function, Equation 3.6 can be rewritten for BCC materials as:

Elattice(ζ) =
N∑
α=1

∫
Boβ(θα(x, t))(sinnπζα(x, t))2δαd

3x, (3.11)

and is now dependent on the character angle, θ. The parameter Bo is analogous to B originally

in Equation 3.6 in that it parameterizes the magnitude of the energy barrier. In this case, however,

it is different because it will define the magnitude of the energy barrier for only pure screw type

dislocations, where the previous parameter B defined the magnitude of the energy barrier for all

dislocation character types. For results presented in later section, Bo = γU , where γU is determined

using MS simulations (described next in Section 3.1.3). Unstable stacking fault energies for Ta
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and Nb are calculated to be 950.21 mJ/m2 and 720.89 mJ/m2, respectively. The transition of the

magnitude of the energy barrier, Boβ(θ), for Ta and Nb are shown in Figure 13.

Figure 13: Energy barrier Boβ(θ) as a function of line character angle θ for Ta and Nb.

On implementation of this new formulation for Elattice into the TDGL Equation (Equation 3.1),

we note that an approximation must be made. The variation of the lattice energy with respect

to the order parameter becomes challenging due to the functional dependence of the transition

function on the gradient of the order parameter. Furthermore, β (θ) is a piecewise function making

the variation ∂Elattice/∂ζ analytically intractable. Hence, in calculation of the variation we have

made the following approximation, ∂Elattice/∂ζ = β (θ)
(
∂Elattice

? /∂ζ
)
, whereElattice

? is the lattice

energy as defined by Equation 3.6 with B = Bo.

3.1.3 Molecular Statics Simulations

All Molecular Statics simulations were conducted by Dr. Nithin Mathew at Los Alamos National

Laboratory.

As mentioned in the previous section, the PFDD model was calibrated for Nb and Ta using MS

calculations of material parameters such as γU and the lattice parameter. In addition, MS predic-

tions of isotropic Voigt moduli calculated from (C) were also used to inform the PFDD model.
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All MS simulations were performed using the LAMMPS [Pliov] software. The components of C

were calculated using separate MS simulations in which a 3D periodic 5x5x5 simulation cell, with

the Cartesian axes x, y, z oriented along the [100], [010], and [001] crystallographic directions, at

equilibrium geometry corresponding to P = 0 atm and T = 0 K. This simulation cell was affinely de-

formed using a prescribed set of lattice strains. These deformed geometries were used to construct

energy-strain curves with respect to the applied strain, from which the Cijkl were obtained. The

γU were calculated from the γ-surfaces calculated using the standard procedure, [Vit68, DV98] in

which, relaxation of atoms are allowed only in the m direction and periodic boundary conditions

are used only in the glide plane. The predicted lattice parameters, linear elastic coefficients, and γU

are provided in Table 1.

Table 1: Material parameters calculated from MS simulations and corresponding Young’s modulus
E, shear modulus G, and Poisson’s ratio ν calculated with the Voigt isotropic approximation. All
elastic coefficients are specified in units of GPa.

Material Lattice parameter (Å) C11 C12 C44 E G ν γU (mJ/m2)
Nb 3.3008 246.58 133.31 28.23 110.27 39.59 0.39 720.89
Ta 3.3040 266.05 160.62 82.65 189.24 70.67 0.34 950.21

The 〈111〉 trace of the γ-surfaces predicted by MS simulations for Ta and Nb are shown in Figure

14. We used the Finnis-Sinclair inter-atomic potential for Nb and Ta [AT06] to ensure consistency

of our simulations with the input parameterization provided to our model by Kang et al. [KBC12].

We note here that a shallow minimum was predicted at 0.5 ∗ 〈111〉 in the γ-surface for Nb for the

Finnis-Sinclair potential. In addition, cross-slip of screw components during loop expansion was

predicted with EAM-type potentials for Ta (Ta1 potential in [RGG+13]) but not with the Finnis-

Sinclair potential that was used in the current study.

The PFDD model will be applied to first simulate the expansion of a single dislocation loop (dis-

cussed in more detail in the next section). To validate the PFDD results, MS simulations were

carried out for similar cases. Initial simulation cells of size 108×39×67 (in units of lattice param-

eter in the specific crystallographic orientation) were created using equilibrium lattice parameter
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Figure 14: 〈111〉 trace of the γ-surfaces predicted by MS simulations for Ta and Nb. Note the
shallow minima in Nb.

corresponding to P = 0 atm and T = 0 K, with the Cartesian axes x, y, z oriented along the 〈111〉,

〈112〉, and 〈110〉 crystallographic directions and 3D periodic boundary conditions. Following this a

dislocation loop of radius 18*|b| was inserted on a 〈110〉 plane close to the center of the simulation

cell using the isotropic linear elasticity displacement field of a dislocation loop, as implemented in

the ATOMSK software [Hir15]. A RSS was applied to expand the loop on the slip plane in the b

direction. The RSS was applied by applying an affine deformation to all the atoms in the simulation

cell to result in the strain corresponding to the RSS predicted by a linear elasticity model. Extrac-

tion and visualization of the dislocation loops were done using OVITO [Stu09, SBA12, Stu14].

3.1.4 Results and Discussion

To test the extension of the PFDD model described above, we consider two different simulation

configurations. The first is expansion of a single, initially circular, dislocation loop and the second

is propagation of a kink-pair. The first case is informative because in BCC metals the dislocation

loop will not expand symmetrically due to the difference in the energy barrier for the screw, edge,

and mixed typed dislocations. A dislocation loop contains the full range of line characters, hence

the role played by the character-dependent core energy on dislocation motion can be assessed.
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An example of the initial conditions for the expansion of a loop in PFDD is shown in Figure 15.

The 3D configuration is shown schematically in Figure 15(a). This consists of a cubic box with

dimensions 108× 108× 108 (in units of |b|) and an applied stress, σxz, that will cause the loop to

expand. Figure 15(b) shows a close-up of the loop on the glide plane as generated from PFDD. A

circular dislocation loop with radius 18*|b| is initialized on the (11̄0) slip plane with b = 1
2
[111].

This loop size was chosen to match the loop radius used in the MS simulations. The green region

in Figure 15(b) indicates areas that have not been slipped, whereas the blue region are areas that

have been slipped by a single perfect dislocation. The red line represents the dislocation line.

Figure 15: Figure (a) presents a schematic of the 3D simulation cell for the PFDD simulations of
expansion of a single dislocation loop. Figure (b) presents the initial conditions on the glide plane
for these simulations.

The second simulation configuration is for kink-pair propagation. Kink-pairs are a common mech-

anism for screw dislocation motion in which the screw dislocation nucleates a small step in the

dislocation line. This step is comprised of two oppositely signed edge segments and one screw

segment. Due to the ease at which edge dislocations move, the two edge segments will move away

from each other (with appropriate loading conditions) along the length of the straight screw dislo-

cation. This, in turn, propagates the screw dislocation. Figure 16 presents the PFDD simulation

set-up for the kink-pair simulation. In this work, we do not explicitly address kink-pair nucleation.

Hence, the kink-pair is placed along the straight screw dislocation as part of the initial conditions,

and allowed to propagate under an applied load.
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Figure 16: Figure (a) presents a schematic of the 3D simulation cell for the PFDD simulations
propagation of a kink pair. Figure (b) presents the initial conditions on the glide plane for this
simulation.

All simulations had a computational grid spacing of 1*|b| in the x, y, and z directions. In addition,

due to the use of a Fourier transform in the calculation of Equation 3.5, all PFDD simulations

have periodic boundary conditions. This will result in the presence of some image forces due to

dislocations in neighboring periodic cells, which is also the case in the MS simulations. In both

methods, the interactions with image dislocations will have an affect on the simulation, particularly

when dislocation line are near the edges of the simulation cell. Finally, in these PFDD simulations

the materials are assumed to be elastically isotropic. The Voigt isotropic moduli are reported in

Table 1.

3.1.4.1 Expansion of a Perfect Dislocation Loop. To test our character-dependent lattice en-

ergy, we first simulated the expansion of a perfect dislocation loop in both PFDD and MS for Ta

and also Nb. Ta provides the most direct comparison between modeling approaches since the func-

tional form of the transition function is formulated using MD information generated for Ta. In

addition, these MD results utilized the same interatomic potential as the MS results presented here.

However, the model should be general enough to extend to other BCC metals. Hence, we have also

modeled Nb using the same piecewise function for the transition function. This is somewhat of an
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extrapolation, since Peierls stress or Peierls energy barrier calculations as a function character have

not been previously done for Nb.

Figures 17 and 18 show the expanding dislocation loop at different stages of the minimization for

an applied RSS. A RSS value of 2 GPa was used for the Ta and Nb in both the PFDD and MS sim-

ulations. This value was selected to be smaller than the Peierls stress for the screw dislocation, but

large enough to overcome the elastic attraction between the dislocation segments within the loop.

The loops are colored by character, with a continuous red-white-blue coloring scheme transitioning

from screw (red) to edge (blue) character. For all quantitative comparisons, screw dislocations were

defined as θ = 0°± 10° and edge as θ = 90°± 10°.

Figure 17: Ta loop expansion snapshots in (a) PFDD (b) MS at normalized time t = 0, 0.2, 0.4.
The time for each snapshots is normalized with respect to the time that loops reach their steady
state. The loops are colored by character with screw-type dislocation shown in red, and edge-type
dislocations shown in blue.

Figures 17 and 18 show that, with the addition of line character dependence to the Elattice term,

PFDD qualitatively captures the correct loop growth as predicted by MS. Rather than symmetric

expansion of the loop, the edge segments propagate while the screw dislocation segments remain

relatively stationary and increase in length. This quickly results in an elliptical loop shape. The

edge segments continue to propagate until they annihilate with the periodic image dislocations,
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leaving two long pure screw dislocation segments. This final configuration is considered to be the

steady state solution for these simulations.

Figure 18: Nb loop expansion snapshots in (a) PFDD (b) MS at normalized time t = 0, 0.2, 0.4.
Time for each snapshots is normalized with respect to the time that loops reach their steady state.
The loops are colored by character with screw-type dislocation shown in red, and edge-type dislo-
cations shown in blue.

Note that, in Figure 18, MS predicts a faceted loop structure for Nb due to the presence of the mixed

type dislocation with θ = 70.5°. This is also qualitatively captured by PFDD as the line-character

dependent Elattice includes multiple minima as discussed in section 3.1.2.2. This faceted loop

structure is slightly more pronounced in the MS results that the PFDD. This may be due in part to

the assumption of elastic isotropy used in the PFDD simulations. A more quantitative comparison

between the MS and PFDD simulations of dislocation loop expansion is shown in Figure 19. The

comparisons are made at different stages of minimization, for which the minimization steps were

normalized based on the step at which edge components of the loop interact across the periodic

boundaries and annihilate each other.

Figure 19(a) compares the ratio between major and minor axis of the loop. Effectively this metric

measures the ratio of the distance between opposite screw components to the distance between the

opposite edge components. This ratio is initially close to 1, as the loop is approximately circu-

lar, and quickly changes to a value > 1 as the loop expands asymmetrically. A fair agreement is
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(a) (b)

Figure 19: Quantitative comparisons between PFDD and MS for Ta and Nb: (a) Ratio of major to
minor axis of dislocation loop (b) Fraction of screw segment.

observed between PFDD and MS predictions, with the ratio saturating to a value ≈ 3.

The PFDD values more closely match the MS results for Ta. Any differences seen in this case

lie primarily in the steady state result, where PFDD slightly under-predicts the MS result. This

discrepancy is likely due to the differences in the elastic interaction between the screw type dislo-

cations as captured in MS versus PFDD. The model assumes the material is isotropic and, therefore,

the screw and edge segments within the same loop do not interact elastically. As a measure of elas-

tic anisotropy, Zener anisotropy ratios, A = 2C44

C11−C12
, can be calculated as: ATa = 1.568 and

ANb = 0.499. Although the departure from unity (signifying isotropy) in the anisotropy ratios is

similar for Ta and Nb,ANb < 1 and ATa > 1. In the case of Nb, PFDD shows a very good match in

the aspect ratio at the initial stages of loop growth, but quickly starts to over-predict the MS results.

Converse to Ta, PFDD over-predicts the steady result calculated by MS for Nb.

Figure 19(b) compares the fraction of the screw dislocation in the expanding loop at various stages

of minimization. The fraction was determined by counting all dislocation segments with a line-

character θ = 0° ± 10° as screw and comparing this to total number of dislocation segments at

various stages of minimization. Note that beyond the initial few steps in minimization, both MS

and PFDD predict that the expanding loop has a higher screw fraction in Nb compared to Ta.

About halfway through the simulation, there is a noticeable change in slope indicating a sudden
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growth in screw type dislocations, particularly in the PFDD generated results. This change in slope

indicates where elastic interactions with image dislocations start to dominate, motivating the edge

type dislocations to annihilate with the neighboring dislocations. This change in slope is present in

the MS simulations, although it is more gradual and occurs later in the normalized simulation time.

The PFDD and MS results show reasonable agreement. Interestingly the PFDD results first under-

predict the fraction of screw dislocation in the loop, and then over-predict the amount of screw

dislocation once the image forces start becoming more dominant. We note that in the initial configu-

ration of the loop in PFDD, there are relatively long screw segments due to the cubic computational

grid. Hence, initially the PFDD results show a decrease in the fraction of screw dislocation as the

loop quickly relaxes to minimize the amount of screw type dislocation once energy minimization

occurs.

3.1.4.2 Propagation of a Straight Screw Dislocation through Kink-Pair Motion. In addition

to the expansion of a loop, the propagation of a straight screw dislocation through kink-pair motion

in Ta was also modeled in PFDD. Simulation results are shown in Figure 20. The kink-pair is

initially placed along the screw dislocation. With an applied stress of 1.77 GPa, the edge segments

of the kink-pair rapidly propagate to the end of the simulation cell where they annihilate with the

image dislocation in the periodic cells. The screw type-dislocation has then propagated forward by

on Burgers vector step.

3.1.5 Conclusions

We have presented a PFDD model extended to BCC metals. In particular, the model extensions

are focused on capturing the dependence of the Peierls energy barrier on character. This has been

achieved through the addition of a transition function, which describes how the energy for a dis-

location to glide through the crystal lattice depends on the dislocation character angle, θ. In this

work, the functional form of the energy barrier transition has been informed by MD calculations
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Figure 20: PFDD simulation of screw dislocation motion by propagation of kinks with edge char-
acter. Snapshots are shown at normalized time, t = 0, 0.2, 0.3, 1.0.

of Peierls stress as a function character for Ta previously reported in [KBC12]. We realize that this

approach relies on the quality of the interatomic potential used for the MD simulations, and we note

that the form of the transition function could easily be modified as new atomisitic data becomes

available.

The character dependent PFDD model was demonstrated by modeling expansion of a dislocation

loop and propagation of a screw dislocation through kink-pair motion in Ta. In addition, a dis-

location loop expansion was modeled in Nb to illustrate the ability of the transition function to

extrapolate to other BCC metals beyond Ta. The PFDD results for expansion of a dislocation loop

in both Ta and Nb were directly compared to similar simulations completed with MS. The results

from the two methods compared reasonably well, with the largest source or error likely being in the

calculation of the elastic interactions, which were considered only isotropically in PFDD. Perhaps

most notable were the evolution of a faceted loop structure and the higher screw fraction in Nb as

shown in the MS calculations, which are also captured by PFDD.

Ultimately, dislocation dynamics in BCC metals are rate dependent, giving rise to a macroscopic

deformation response that is highly sensitive to the applied strain rate and temperature. With the

mechanistic model in place in the present framework, it is now possible to incorporate temperature

and rate effects on dislocation motion. With such additions, this model could model both nucleation
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and propagation of kink-pairs for example. Such topics are interesting extensions for future work.
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3.2 Non-orthogonal Computational Grids for Studying Dislocation Motion

in Phase Field Approaches

In this work, the new non-orthogonal grids are compared to the cubic and rotated grids Previously

mentioned. Hence, there are three types of computational grids that are discussed and compared

in this work, which we will term as 1) the Rotated Grid, 2) the Cubic or Cartesian Grid and 3)

the Non-orthogonal Grid. The “Rotated Grid” and the “Cubic/Cartesian Grid” both rely on a cubic

computational grid. However in the “Rotated Grid” the coordinate system is rotated so that the slip

plane normal corresponds to the z-direction (e.g., (111) in fcc and (110) in bcc).

This chapter is organized as follows. First in Section 3.2.2, a performance test of the rotated and

the cubic grids is first shown, which motivates the use of the non-orthogonal grids. Then in Section

3.2.2.1, a detailed comparison between the three grids is performed with dislocation loop expansion

tests. And lastly, an example of two slip planes is illustrated in Section 3.2.2.2 by simulating two

loops interacting in the cubic and non-orthogonal grids.

3.2.1 Incorporation of Varying Computational Grids

As mentioned previously, there are three types of grids that are used and compared in this work: 1)

the Rotated grid 2) the Cubic or Cartesian grid, and 3) the Non-orthogonal grid, all of which are

illustrated in Figure 21. The cubic/Cartesian grid, shown in Figure 21(b), is a fairly standard formu-

lation for computational models, and has the basis {eoi}, with eo1 = [1, 0, 0]T , eo2 = [0, 1, 0]T , eo3 =

[0, 0, 1]T . In this case we note that slip planes in general will be at various angles within the com-

putational cell. The example of a (111) FCC slip plane is denoted with red outlines in Figure

21(b).

The rotated, orthogonal grid is similar to the cubic grid. It has the basis {ei}, and is rotated from the

cubic grid with the rotation matrix beingQ = [e1|e2|e3] (QT = Q−1, detQ = 1). For example, in

the case of an FCC crystal, we can rotate the cubic grid such that the slip plane (111) in the cubic
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Table 2: FCC and BCC non-orthogonal lattice primitive vectors.

Type p̄1 p̄2 p̄3

FCC 1√
2
[11̄0]T 1√

2
[011̄]T 1√

2
[101]T

BCC 1√
3
[111̄]T 1√

3
[11̄1]T 1√

3
[111]T

grid is aligned with the xy-plane of the rotated grid, and in this case e1 = 1√
2
[1,−1, 0]T , e2 =

1√
6
[1, 1,−2]T , e3 = 1√

3
[1, 1, 1]T . This example is shown in Figure 21(a), where the (111) glide

plane is denoted with a red outline and appears horizontal within the computational cell.

Finally, the non-orthogonal grid has the basis {p̄i} (̄· – normalization), with p1,p2,p3 being the lat-

tice primitives. We denote non-orthogonal lattice primitives as {pi}, so that they are distinguished

from orthogonal basis vectors, which are shown as {ei}. Table 2 lists the FCC and BCC primi-

tives that we use to construct their non-orthogonal grids. Figure 21(c) shows an example of the

FCC non-orthogonal computational grid. Due to the non-orthgonal primitives, the computational

cell no longer appears as a cuboidal cell. Again, a (111) glide plane is highlighted with a red outline.

Figure 21: An example of the rotated, cubic and non-orthogonal grids for FCC crystallography.
The red lines indicate the (111) slip planes.

For all three computational grids, cubic grid is defined as the global grid where all the calculations

are conducted, and the local grid where the dislocation network is assigned can be either of the three

grids (rotated/cubic/non-orthogonal). Thus, transformation rules are required between the global

and local grids namely for the rotated and non-orthogonal grids. A point r ∈ R3 can be represented
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in the global grid asX(r) and in the local grid as x(r). The transformation rule between them is:

x = F−1X (3.12)

where F is the transformation matrix. F = Q when the local grid is a rotated grid; and F =

[p̄1|p̄2|p̄3] when the local grid is a non-orthogonal grid. For any v ∈ R3 and T ∈ R3×3 the

transformation rules are:

[ṽ] = F−1[v], (3.13)

[T̃ ] = F−1[T ]F (3.14)

where [̃·] represents the components of v and T in the local grid and [·] represents the components

in the global grid.

Either choosing a rotated grid or a non-orthogonal grid the transformation rules are the same as in

Equation (3.12, 3.13, 3.14), and the rotated grid is a special case when F = Q. Without loss of

generality, the formulation for a local grid will be described for the case of a non-orthogonal grid.

When modeling with non-orthogonal grids for FCC and BCC metals, the dislocation network is

assigned to a local non-orthogonal grid. Transformations between the local non-orthogonal grid

and the global cubic grid need to be applied in the calculations, including the coordinates of local

grid points, the Fourier transform of ζα(x) and the applied stress σappl.

The global coordinates of the local grid points follow the transformation rule Equation (3.12):

X = Fx (3.15)

where x = (i, j, k) is the coordinates of the grid points on the local grid.
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The reciprocal lattice (Fourier transform) of the non-orthogonal grid is:

[pf1 |p
f
2 |p

f
3 ] = F−T (3.16)

where {pfi } is the basis of the reciprocal lattice. Notice that with orthonormal F (F = I or Q),

which correspond to the cubic and rotated grids respectively, the reciprocal lattice is the same as the

original lattice; therefore, the calculation of Equation 3.16 is not required for the cubic and rotated

grids. The wave vectors k is on the reciprocal lattice and can be calculated as:

k(i, j, k) =
i

N1

× pf1 +
j

N2

× pf2 +
k

N3

× pf3 (3.17)

where i, j, k are the grid indices and N1, N2, N3 are the grid box size.

3.2.2 Results and Discussion

Here we present two test cases. The first is the expansion of a dislocation loop, presented in Section

3.2.2.1. This problem allows us to compare dislocation motion for all character types in all of the

computational grids discussed. This will allow us to verify the newly proposed non-orthogonal

computational grid with the more standardly used rotated grids. Following this, in Section 3.2.2.2,

we present a test problem in which two loops on different planes interact. This shows some unique

advantages of the non-orthogonal grid in comparison to the cubic computational grid.

For all the tests in this work, we use material parameters of Cu (copper) in isotropic Voigt form

listed in Table 3. γU is the unstable stacking fault energy that corresponds to B in Equation 3.6.

Table 3: Material parameters in the Voigt form. All elastic coefficients are specified in units of
GPa.

Material Lattice parameter (Å) E G ν γU (mJ/m2)
Cu 3.64 144.4 54.5 0.325 163.7
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To better illustrate the numerical errors associated with the commonly used orthogonal computa-

tional grids, we first present results for the stress fields surrounding a straight edge dislocations. We

calculated the stress field of a Cu straight edge dislocation line [11̄0](111) in an infinite medium

with both PFDD rotated and cubic grids, which are then compared to the analytical solution [HL68]

in Figure 22. The grid spacing along the x direction (Burgers vector direction) is b, and along the

z direction (slip plane normal direction) is b for the rotated grid and analytical solution,
√

6/2b for

the cubic grid.

Figure 22: Stresses normalized with shear modulus left: σxx, middle: σzz, right: σxz of a Cu
straight edge dislocation [11̄0](111) calculated with PFDD rotated and cubic grids and compared
to the analytical solution. σxx and σzz are plotted along z[111] direction and σxz is plotted along
x[11̄0] direction at the dislocation.

Both the rotated and cubic grids show Gibbs oscillations from the discontinuous stress fields caused

by the dislocations. Oscillations are apparent in σzz and σxz for the cubic grid, but only in σxx for

the rotated grid. Apart from the oscillations, the rotated grid results match to the analytical ones.

The cubic grid also has the peaks less in magnitude and wider than the peaks in the rotated grid and

analytical solution.

A simple explanation is that the inclined slip plane in the cubic grid makes the discontinuity spread

out onto all three axes of the grid, and make it more difficult for a Fourier series representation.

Here by “discontinuity” we mean the out of plane discontinuity of the order parameter. The order

parameter is confined on its slip plane, but the system is described with a 3D structure, a cube

in this case. Even though there are also discontinuities on the slip plane, the order parameter is

smoothed out in the PFDD algorithm on the plane, so less oscillations are expected on the in-plane
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component, namely σxz. Consequently, expanding to systems in which several dislocations are

operating on non-coplanar slip systems, these errors in the stress fields could impact dislocation

interactions and reactions.

By refining the grid, the Gibbs oscillations can be reduced but not completely eliminated without

special treatments. This is shown in Figure 23, which presents the comparison between the analyt-

ical solution, the rotated grid with a cell size of 64b× 64b× 64b and the refined rotated grid, which

has a simulation cell size of 256b × 256b × 256b. As expected, oscillations are less in magnitude

for the refined grid. Overall the presence of Gibbs oscillations is a common issue with FFT-based

methods, but many approaches such as using “centered” [DMO99] and “rotated” [Wil15] Green

operator have been proved effective. In this work, however, suppressing the oscillations is not the

main focus. We only consider the use of the original FFT method without any treatment directly

on the oscillations.

Figure 23: Stresses normalized with shear modulus left: σxx, middle: σzz, right: σxz of a Cu
straight edge dislocation [11̄0](111) calculated with analytical solution, the PFDD rotated grid
64b × 64b × 64b and the refined rotated grid 256b × 256b × 256b. σxx and σzz are plotted along
z[111] direction and σxz is plotted along x[11̄0] direction at the dislocation.

3.2.2.1 Loop expansion tests on three grids. To show the performance of the non-orthogonal

grid, we conduct a test of stress comparisons of a dislocation loop on the rotated, cubic and non-

orthogonal grids. In this test problem, a Cu dislocation loop of radius r = 10b is assigned onto

a (111) slip plane with b = 1
2
[11̄0] in the different grids. Figure 21 shows these three grids, and

Figure 24 shows their corresponding (111) slip planes with the dislocation loops. The grid sizes
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are 64b× 64b× 64b (cubic), 48a× 48a× 48a (rotated) and 64b× 64b× 64b (non-orthogonal), so

that the length of the yellow dashed lines in Figure 24 are 64b and grid spacing along b is b. While

these grid spacings are different, the aim was to keep the same resolution along the Burgers vector

direction to enable a fair comparison.

Figure 24: Cu dislocation loops on the (111) slip planes of (a) rotated grid (b) cubic grid and (c)
non-orthogonal grid. The sizes of the loops are r = 10b and the lengths of the dashed yellow lines
which follow the b direction are 64b.

We apply a shear stress to the loops in the crystals for each case. In the rotated grid, the applied

stress is σxz = 0.06µ, and directly corresponds to the resolved shear stress on the glide plane. The

corresponding applied stress tensor in the cubic and non-orthogonal grids has more non-zero stress

components and is determined with the transformation rule shown in Equation (3.14). These stress

tensors produce an equivalent resolved shear stress on the glide plane as is specified in the rotated

grid.

Under the applied stress, the loops expand. First, in Figure 25, we compare the stresses of the

one of the edge segments in the dislocation loops on the rotated, cubic and non-orthogonal grids

at step 0 before they start to expand. Figure 25 shows good agreement between the rotated and

the non-orthogonal grids in all three stress components. Notably, the stress fields calculated on

the non-orthogonal grid show no oscillations. The cubic grid, however, not only fail to match to

the other two on σxx and σzz (the peaks are less in magnitude and wider than the other two grids’

peaks) but also show more noticeable oscillations on σzz.
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Figure 25: Stresses normalized with shear modulus left: σxx, middle: σzz, right: σxz of a Cu
dislocation loop [11̄0](111) calculated with the non-orthogonal grid, the cubic grid and the rotated
grid at step 0. σxx and σzz are plotted along z[111] direction and σxz is plotted along x[11̄0] direction
at the edge segments.

Next, we compare the stresses after the loops have expanded. Figure 26 compares the shape of

the loops at time step 100. While the dislocation loops across all three grids have equivalent major

axes, the loop shapes themselves show some differences. In the rotated and non-orthogonal grids

the loop shapes are not perfectly circular. The oval shape is most apparent in the rotated grid. Even

in an FCC metal where edge, screw, and mixed type dislocation have the same mobility, the screw

type dislocations have a lower self energy. Since the order parameters in PFDD are evolved base

on energy minimization, it becomes energetically favorable to maximize the screw components

of the dislocation loop. This effect of the dislocation self energy is lost in the cubic grid, which

reproduces nearly a perfectly circular loop shape.

Figure 27 shows the stresses at an edge segment within the dislocation loops. The non-orthogonal

and the rotated grids give similar results for all stress components. The out of slip plane stress σxx

of the cubic grid has a much lower peak than the other two grids, and σzz has more oscillations.

Again, only the stress field calculated with the non-orthogonal grid show no oscillations.

To test if by refining the gird, the cubic grid can reduce the oscillations and yield better results, we

refine the cubic grid by reducing the grid spacing by half (i.e., to 0.5b). Figure 28 compares the

three stress components among the cubic grid, the refined cubic grid and the non-orthogonal grid.

While a finer cubic grid slightly improves the agreement and reduced the oscillations, it is still not

as good as the non-orthogonal grid with the coarser spacing.
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Figure 26: Dislocation loops in (a) rotated (b) cubic and (c) non-orthogonal grids at step 100. Top
row shows the loops on their slip plane and bottom row shows the zoomed-in loop shapes.

Figure 27: Stresses normalized with shear modulus left: σxx, middle: σzz, right: σxz of a Cu
dislocation loop [11̄0](111) calculated with the non-orthogonal grid, the cubic grid and the rotated
grid at step 100. σxx and σzz are plotted along z[111] direction and σxz is plotted along x[11̄0]
direction at the edge segments.

3.2.2.2 Two loop annihilation test on non-orthogonal grid. Next we consider the case where

2 loops lying on different, non-parallel {111} planes are driven to interact under an applied stress.

With 2 slip planes, the rotated grid can accommodate one so that it is perfectly aligned, but the other

slip plane will be inclined. And for the cubic grid, both the 2 slip planes are inclined. Here we use

the cubic grid and the non-orthogonal grid to maximize the differences brought by the inclined

planes.
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Figure 28: Stresses normalized with shear modulus left: σxx, middle: σzz, right: σxz of a Cu
dislocation loop [11̄0](111) calculated with the cubic grid, the refined cubic grid and the non-
orthogonal grid at step 0. σxx and σzz are plotted along z[111] direction and σxz is plotted along
x[11̄0] direction at the edge segments.

Figure 29 shows the set up consisting of 2 dislocation loops of same size r = 6b in a 64b×64b×64b

non-orthogonal grid. The loop on slip system (111)[11̄0] is marked in red and the one on (111̄)[11̄0]

is in blue.

Figure 29: Two dislocation loops on non-coplanar slip systems in the non-orthogonal grid. Both
loops have the same slip direction, [11̄0], and different slip plane normals:(111) (red loop) and
(111̄) (blue loop).

Under applied stress (shear stress, equivalent to the σxz used in the one loop test), both loops

grow, and intersect at their screw segments. In this configuration, screw segments from each loop

will meet and intersect. These segments have the same slip direction ([11̄0]), but opposite line

sense, thus they should annihilate. This is shown in Figure 30. The two loops approach each other,

intersect, and then continue to expand within their respective glide planes. The screw segments that

meet at the intersection point, do indeed annihilate; this point in highlighted in white in the figure.

In contrast, in the case of the cubic grid, shown in Figure 31, the annihilation between screw
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Figure 30: Snapshots of two dislocation loops expanding in the non-orthogonal grid. The loops
expand, meet and annihilate at screw segment marked in white.

segments is not capture. Rather as the dislocations expand and meet, they intersect and continue

propagating instead of annihilating. In this case, the dislocation reaction is not appropriately cap-

tured, resulting in unphysical behavior. The two loops on the two inclined slip planes are assigned

such that there is no misalignment (all gird points representing the loops are on the planes, and the

planes intersect each other at the same set of grid points). So the fail to annihilation is due to the

numerical errors associated with the inclined planes rather than misalignment. This agrees with the

what we have seen in the stress calculations, where there is also no misalignment but results from

the cubic grids have more errors.

3.2.3 Conclusions

Non-orthogonal grids outperforms the rotated grids that are previously applied to many problems.

Without any special treatment to the FFT method used in the PFDD formulation, calculations on

the non-orthogonal grids show no oscillations caused by Gibbs effect.

A slip plane lies on the grid plane for the rotated grid but is inclined when using the cubic grid.
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Figure 31: Snapshots of two dislocation loops expanding in the cubic grid. The loops expand,
meet but do not annihilate.

This difference of the plane orientations induce numeric errors that are not able to be resolved by

refining the gird.

In the two-loop test, the non-orthogonal grid correctly capture the interactions and reactions of the

two loops, enables the annihilation at the screw segments when the two loops expand and meet,

which the cubic grid fails. Non-orthogonal grids avoid the numerical errors associated with the

inclined slip plane and reproduce true physical behaviors. Solving systems with multiple non-

coplanar slip planes by the non-orthogonal grids is shown to be effective.
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4 Computational Methods for High-contrast Composites

This is joint work with experimentalists at Air Force Research Laboratory, led by Dr. Dhriti Nepal’s

group in the Composites Branch. This work has been published in [PND20]. This chapter is

organized as follows:

• Section 4.1 summarizes the Classical FFT method;

• Section 4.2 describes the RPM-FFT method;

• Section 4.3 provides a variational perspective;

• Section 4.4 provides numerical examples and comparisons.

4.1 Classical FFT Method Based on Fixed-Point Iteration

The original FFT method proposed by Moulinec and Suquet [MS98], and some subsequent im-

provements, are briefly summarized below in the setting of linear elasticity. The goal is to solve

the linear elasticity problem on a unit cell V in a periodic geometry with a heterogeneous medium.

The average symmetric strain tensor E is given.

We use F [·], ·̂,F−1[·] respectively to denote the Fourier transform, Fourier space representation,

and inverse Fourier transform.

The displacement field u(x) is decomposed into a linear part and a zero-mean fluctuating part:

u(x) = E · x + v(x), ignoring a constant. This implies the strain decomposition εu(x) =

E + εv(x), where ε(·) := 1
2

(
∇(·) +∇(·)T

)
is the strain.

We notice that ε̂v(k) = ε̂u(k) ∀ k 6= 0, and ε̂u(0) = E while ε̂v(0) = 0. Therefore, for

conciseness after this section, we will use ε̂ to represent both ε̂v and ε̂u, and ε to represent both εu

and εv.
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The unit cell problem can then be written as

divσ(x) = 0 ∀ x ∈ V (4.1)

σ(x) = C(x)εu(x) (4.2)

where σ is the stress field, and is periodic.

We can then introduce, following [MB12, MS14, EM99] and others, a homogeneous linear elastic

comparison medium with stiffness C0 and the polarization τ (x) := (C(x)−C0) εu(x). This

enables us to rewrite the stress-strain relation as:

σ(x) = C0εv(x) + τ (x) +C0E (4.3)

The solution to the unit cell problem can be written in terms of the periodic Greens function Γ 0

corresponding to C0:

εv(x) = −Γ 0(x) ∗ τ (x) ∀ x ∈ V (4.4)

The Fourier space representation of this relation is:

ε̂v(k) = −Γ̂ 0(k)τ̂ (k) ∀ k 6= 0; ε̂v(0) = 0 (4.5)

Typical FFT methods use the fact that taking the (fast) Fourier transform and then multiplying in

Fourier space is much faster than convolution in real-space. However, we note that both the real and

Fourier representations in (4.4, 4.5) are implicit, through the dependence of the effective forcing τ

on the solution u. Therefore, further work is required to solve this (linear) implicit equation.

From a linear algebra perspective, the Fourier transform takes us to the eigenbasis in a homoge-

neous problem; in a heterogeneous problem, the Fourier transform brings us close to the eigenbasis,

and further calculations are required to completely diagonalize the operator. Roughly, one can make
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an analogy between the effort to completely diagonalize and the effort to solve the implicit equation

in Fourier space.

The implicit equations are typically solved with fixed point methods, and variations of these. In

[MS98], for instance, they use the iteration ε̂i+1(k) = ε̂i(k) − Γ̂ 0(k)σ̂i(k); see Algorithm 3.

Like all fixed point methods, convergence is slow or lost when the problem contains an unstable

subspace. This is precisely the case when there is large contrast leading to flat energy landscapes

and loss of uniqueness, as has been observed in practice [EM99].

Algorithm 3 Classical FFT algorithm [MS98]
1: Initialization
2: ε0 ← E; σ0 ← C(x) : ε0

3: Iteration (ε0,σ0)
4: while error > tolerance do
5: ε̂i ← F [εi]; σ̂i ← F [σi] . FFT on ε and σ
6: ε̂i+1 ← ε̂i − Γ̂ 0 : σ̂i . ∀ k 6= 0; ε̂i+1(0) = E
7: εi+1 ← F−1[ε̂i+1]
8: σi+1 ← C(x) : εi+1

9: error← (〈‖k·σ̂(k)‖2〉)1/2
‖σ̂(0)‖ ≡ (〈‖divσ‖2〉)1/2

‖〈σ〉‖

10: end while

4.2 The Proposed RPM-FFT Method

We first outline the key elements of the recursive projection method following the seminal work of

Shroff and Keller [SK93], and then the application of RPM to the FFT approach.

When using fixed-point iterative procedures to solve nonlinear problems, slow convergence or even

divergence can be caused by a small number of eigenvalues of the Jacobian matrix approaching

or leaving the unit disk {|z| < 1}. The Recursive Projection Method (RPM) is a stabilization

procedure that can recover the convergence.

Consider a problem in N dimensions posed on RN . The method begins by dividing the space

RN into P, that we denote as the unstable eigenspace, and its orthogonal complement Q. P and

Q correspond respectively to the eigenspace of those eigenvalues leaving the disk and those inside
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the disk. Then, the fixed-point iteration is performed only on the complement Q while Newton’s

method – or, in practice, a variation such as quasi-Newton – is performed on the unstable eigenspace

P.

Writing the original problem to be solved in the fixed-point form as follows:

u = F (u), F : RN → RN (4.6)

the fixed-point iteration can be written:

u(ν+1) = F (u(ν)) (4.7)

where ν indicates the iteration number. While the eigenvalues of the Jacobian matrix Fu := ∂F
∂u

lie

inside of the disk

Kδ = {|z| ≤ 1− δ} for some δ > 0 (4.8)

and the initial value u(0) is sufficiently close to the solution, the fixed-point iteration will converge.

A small positive constant δ is used to ensure that one is sufficiently far from the boundary between

stable and unstable fixed point iterations.

Suppose now that m eigenvalues lie outside the disk Kδ

|µ1| ≥ · · · ≥ |µm| > 1− δ ≥ |µm+1| ≥ · · · ≥ |µN | (4.9)

Let Z ∈ RN×m be the orthonormal basis for P. The projectors of the subspaces P and Q are

respectively P = ZZT andQ = I −ZZT . For each u ∈ Rn, there is a unique decomposition:

u = p+ q, p ≡ Pu ∈ P, q ≡ Qu ∈ Q (4.10)

This allows the introduction of f(p, q) := PF (p+ q) and g(p, q) := QF (p+ q).
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Applying Newton’s method on the unstable subspace P:

p(ν+1) = p(ν) + (I − f (ν)
p )−1(f(p(ν), q(ν))− p(ν)) (4.11)

where fp(p(ν), q(ν)) = PFu(u
(ν))P is the derivative of f with respect to p.

We continue to use fixed-point iteration on Q:

q(ν+1) = g(p(ν), q(ν)) (4.12)

Efficiently identifying the unstable eigenspace P is an essential feature of RPM. This corresponds

to finding the basis Z; or, in practice, an approximation of Z since the Jacobian matrix can be

expensive to compute. In [SK93], this is accomplished directly by monitoring the convergence

rate of q(ν), without computing the Jacobian matrix. This is an important feature that significantly

reduces the computational cost, and we follow that procedure here.

The method begins by assuming that the unstable eigenspace P is 0-dimensional and Z = 0. We

then iteratively build up the unstable eigenspace by adding to Z the eigenspace corresponding to

those eigenvalues that approach the unit disk . The eigenspace that corresponds to the eigenvalues

approaching the unit disk corresponds to the dominant eigenspace of gq = QFuQ.

If the fixed-point iteration does not converge within the specified limit of iterations nmax, the

eigenspace corresponding to the eigenvalues approaching the unit disk is identified as follows.

In [SK93], it is shown that ∆q(ν) ≡ q(ν+1) − q(ν) ≈ (gq)
ν∆q(0), i.e., a power iteration with gq

applied to ∆q(0). From the properties of power iterations, ∆q(ν) identifies the eigenspace of gq that

corresponds to the largest eigenvalue, assuming that ∆q(0) has a nonzero component in this space.

Following [SK93], we approximate the dominant eigenspace of gq using QR factorization to write:

D ≡
[
∆q(ν), ∆q(ν−1)

]
=: D̃T (4.13)
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where D̃ ∈ RN×2 is orthogonal and T ∈ R2×2 is upper triangular. When T11 � T22, we add

the first column of D̃ to the basis Z, corresponding to one real eigenvalue approaching the unit

disk. Else, we add both columns of D̃ to the basisZ, corresponding to a complex conjugate pair of

eigenvalues approaching the unit disk. Alternate approximations are further discussed in [SK93].

To apply the RPM method to the specific context of the FFT fixed-point algorithm, we formally

define the fixed-point operator F from Algorithm 3 through the equation:

εi+1 = F−1
[
F [εi]− Γ̂ 0 : F [C(x) : εi]

]
(4.14)

Define z := ZTp ∈ Rm to represent p in the basis Z. Then the stable / unstable decomposition

can also be written as:

u = Zz + q, p = Zz, q = (I −ZZT )u (4.15)

It is suggested in [SK93] that it is often sufficient for convergence to simply compute only once the

quantity (I − fp)−1 using finite differences. In our calculations in this work, we have also found

this to be sufficient for convergence, and of course very efficient.

Defining H := ZTFuZ, the iteration (4.11, 4.12) can now be rewritten in a form that is more

efficient and transparent for implementation:

z(ν+1) = z(ν) + (I −H)−1(ZTF (u(ν))− z(ν)) (4.16)

q(ν+1) = (I −ZZT )F (u(ν)) (4.17)

u(ν+1) = Zz(ν+1) + q(ν+1) (4.18)

Finally, integrating the FFT method into RPM, gives us Algorithm 4.

An important feature is that the fixed-point iteration is conducted on the entire solution space and

not only on the stable subspace. After the fixed-point iteration, only that part of the outcome corre-
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Algorithm 4 RPM-FFT algorithm
1: Initialization
2: ε0 ← E; ξ0 ← F (ε0)
3: Iteration (ε0, ξ0)
4: while error > tolerance do
5: z(ν) ← ZTε(ν); ζ(ν) ← ZTξ(ν) . Project to unstable subspace
6: z(ν+1) ← z(ν) + (I −H)−1(ζ(ν) − z(ν)) . Newton iteration
7: q(ν+1) ← ξ(ν) −Zζ(ν)
8: ε(ν+1) ← Zz(ν+1) + q(ν+1)

9: ξ(ν+1) ← F (ε(ν+1)) . Fixed-point iteration
10: ν = ν + 1
11: if ν > nmax then . Start Newton iteration if number of fixed-point iterations exceeds nmax
12: Z ← In(q,Z) . Increase basis size
13: H ← FuZ . Compute additional column ofH
14: ν = 0
15: end if
16: error← (〈‖k·σ̂(k)‖2〉)1/2

‖σ̂(0)‖

17: end while

sponding to the stable part is retained in constructing the next iterate of the approximate solution.

While marginally more computationally expensive than using a fixed-point iteration only on the

stable subspace, it has the important advantage that standard existing fixed-point codes can directly

be used with minimal modification as the RPM “wraps around” the fixed-point method.

4.3 A Variational Perspective

We begin with noting an analogy between the problem of interest here and the energy-minimization

formulation of electrostatic fields in matter. The field equations and constitutive response of elec-

trostatic fields in matter are respectively:

div∇φ = divp on Ω, p(x) = p̃(∇φ(x),x), BCs: φ(x) = V0(x) ∀x ∈ ∂Ω (4.19)

where φ is the electric potential, p is the dipole per unit volume induced by the electric field ∇φ,

and p̃ is the material-dependent response function that can be an explicit function of position. For
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simplicity, we have assumed Dirichlet boundary conditions V0 on the boundary ∂Ω of the domain

Ω, but it is straightforward to use more general BCs. Note that we neglected various constants such

as the permittivity of vacuum.

Under some physically-motivated conditions on p̃, this can be reformulated as the minimization

of electrostatic energy. For instance, we consider the case of a linear dielectric which is analogous

to the linear elastic medium considered in this work, in which case p̃ takes the form:

p̃(E(x),x) = χ(x)E (4.20)

where χ(x) is the second-order electrical susceptibility tensor.

Following [JK90] for magnetostatics – see also [SB01] and [YD11] for electrostatics – we can

write this as an energy minimization with a nonlocal constraint:

minEelectro[p, φ], with Eelectro[p, φ] =
1

2

∫
Ω

(
p · χ−1p+ |∇φ|2

)
, subject to div∇φ = divp on Ω

(4.21)

with BCs φ(x) = V0(x) ∀x ∈ ∂Ω.

From the fundamental physics of electrostatics problems, related to the motion of charges under an

electric field, we have χ is positive-definite pointwise. Therefore, from an elementary application

of the direct method of the calculus of variations, a unique minimizer exists; loosely, the energy is

bounded below and grows quadratically in all directions from the positive-definiteness of χ. The

nonlocal constraint, while somewhat nonstandard, can be readily dealt with, e.g. [JK90].

We turn now to linear inhomogeneous elasticity. We recall the balance of linear momentum:

divC(x)εu = 0 (4.22)

posed on the periodic unit cell V with periodic BCs. We decompose C(x) = C0 + d(x), where
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C0 is the homogeneous reference medium. This gives:

divC0εu = − divdεu (4.23)

Recall from Section 4.1 that we defined the polarization field τ := dεu. Following closely the

electrostatic case, we can pose this as a nonlocally-constrained critical-point problem. Define the

energy E:

E[τ ,u] =
1

2

∫
V

(
τ : d−1τ + εu : C0εu

)
, subject to divC0εu = − div τ (4.24)

Use the variation τ → τ + εω and u→ u+ εw:

δE =

∫
V

(
ω : d−1τ + εu : C0εw

)
(4.25)

The variations ω and w are not independent; they are constrained to satisfy:

divC0εw = − divω (4.26)

On both sides of the equation above, do the following: (1) take the inner product with εu; (2)

integrate over V ; (3) use integration-by-parts to move the derivatives. The result of these operations

is: ∫
V

εu : C0εw =

∫
V

−ω : εu (4.27)

where the boundary terms cancel out due to periodicity.

Using (4.27) in (4.25), and requiring δE = 0 for arbitrary ω, we have:

d−1τ − εu = 0, divC0εu = − div τ (4.28)
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We highlight here that the tensor d(x) is generally not positive-definite pointwise, particularly in

the important case of high elastic contrasts. For instance, consider a material with voids, where

the non-voided material is stable, i.e. C(x) is positive-definite in the non-voided material, and

C(x) = 0 in the void region. The reference medium is taken to be stable, i.e. C0 is positive-

definite to enable solution of the constraint equation. Then, d = −C0 in the voids, and is not

positive-definite pointwise. Therefore, in general, we do not expect existence of minimizers for E.

Loosely, the energy has unstable directions which are not bounded below. Therefore, gradient

descent methods – which can be written as fixed-point methods as shown below for this energy

formulation and by [Sch17] – do not converge. On the other hand, using Newton iterations along

the unstable directions – once these are identified – can greatly improve convergence, which is

precisely the role of the Recursive Projection Method.

4.3.1 Fixed-Point Iterations as Gradient Descent

We consider a gradient / steepest descent approach to minimizing the energy E:

E =
1

2

∫
Ω#

(
τ : d−1τ +

1

2
εu : C0εu

)
, subject to divC0εu = div τ (4.29)

The gradient direction in function space is given by d−1τ − εu, and a gradient flow in the standard

L2 norm is τ̇ ∼ d−1τ − εu.

Consider an explicit update scheme where the constraint equation is also updated at each iteration.

We obtain the following fixed-point algorithm:

1. given εiu

2. τ i+1 = τ i + a(d−1τ i − εiu)

3. divC0ε
i+1
u = div τ i+1

4. loop

(4.30)
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where a is related to the fictitious timestep and mobility, and the superscript indexes the iterations.

Notice that the constraint update (step 3 above) requires solution of a homogeneous periodic lin-

ear elastic problem with a given right side. This can be done very efficiently using fast Fourier

transforms. Each iteration in the loop above is therefore extremely quick, but the key question is

whether the algorithm converges and, if so, how many iterations it takes. Given that E may not

possess minimizers, it follows that gradient descent may not converge.

The Classical FFT, summarized in [MS14], can be written in the fixed point form:

1. given εiu

2. τ i+1 = dεiu

3. divC0ε
i+1
u = div τ i+1

4. loop

(4.31)

This can be considered as derived from the explicit update scheme above, except that the update

for τ in step 2 goes directly to the minimum – for a given εiu – using that the energy is quadratic.

As in the explicit update scheme, this is very fast for each iteration, but whether it converges, and

the rate of convergence, depend on the structure of the energy landscape.

The Polarization FFT proposed by [MB12] can be rewritten in the form:

1. given εiu

2. τ i+1 = dεiu

3. divC0ε
i+1
u = divC0d

−1τ i+1 + β divC0d
−1C0ε

i
u − divC0d

−1C0ε̃
i
u

where ε̃iu solves divC0ε̃
i
u = div

(
ατ i + (α + β)C0ε

i
u

)
4. loop

(4.32)

While this form is not as transparent or convenient, it enables us to compare the methods in the

context of gradient descent. We notice that in this form, the polarization method can be considered
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as a relaxation method that mixes in the value from the previous iteration, with α and β being the

relaxation parameters.

4.4 Numerical Comparisons Between Classical FFT, Accelerated FFT, and

RPM-FFT

As a canonical problem for many of the calculations below, we follow [MS98] in using a circular

stiff fiber embedded in a compliant matrix, at the center of a square unit cell and periodic boundary

conditions (Fig. 32). This example is chosen because of the availability of approximate closed-

form solutions. We use the following notation: a denotes the fiber radius; b denotes the size of

the square unit cell; Ef and νf = 0.35 denote respectively the elastic modulus and the Poisson’s

ratio of the fiber, noting that we assume isotropic elasticity; Em and νm = 0.23 denote respectively

the elastic modulus and the Poisson’s ratio of the matrix, again assuming isotropic elasticity; and

K = Ef/Em is the elastic contrast, where particular focus will be on large values of K. The

average strain is denoted by the components E12, E11, E22. For all tests in this section except

Section 5.5, the reference medium is assumed to be isotropic and we choose the elastic modulus

Eo =
Ef + Em

2
and the Poisson’s ratio νo = νf = νm.

As a first test, we simply confirm that RPM-FFT converges to the correct solution in Fig. 32.

There is no discernible difference2 in the solutions obtained from the Classical FFT and RPM-FFT

methods. Further, Classical FFT takes less time3 than RPM-FFT. This is unsurprising given that

the elastic contrast is small (K ≈ 5.8). As K increases, the advantages of the RPM-FFT method

over the Classical FFT method become clear. We examine this and other issues below, with a more

detailed reporting of computational time.

2The tolerance in all calculations reported in this work is taken to be 10−4.
3All times reported in this work are wall-clock times.

69



Figure 32: Top row: ε12 component of the strain using Classical FFT (left) and RPM-FFT (center)
methods. Bottom row: the figure on the right shows ε12 along the horizontal symmetric axis for
both RPM-FFT and Classical FFT; the figure on the left shows the normalized difference. The
geometry is given by a/b = 1/16, and the figure shows only the region in the vicinity of the fiber.
The mesh is 2048 × 2048. We use Ef = 68.9GPa and Em = 400GPa; the contrast K ≈ 5.8. We
apply shear loading: E12 = 0.5%, E11 = E22 = 0.

4.4.1 Time to Convergence vs. Elastic Contrast

We next compare the time taken for convergence across the Classical FFT, Accelerated FFT, and

RPM-FFT methods. We continue with the circular fiber in matrix setting, with K going from 10 to

105, and νm = νf = 0.25. We use a 256 × 256 discretization, and apply an average shear strain:

E12 = 0.5%, E11 = E22 = 0.

Fig. 33 shows the now well-known dramatic improvement between the Classical FFT and the

Accelerated FFT methods; [MMS01] show that the rate of convergence in the Classical FFT method
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goes as the contrast K, while for the Accelerated FFT method the rate of convergence goes as the

square root of the contrast K.

Fig. 33 also compares the Accelerated FFT method and RPM-FFT method. When the contrast

is below 103, the Accelerated FFT method converges faster. However, as the contrast increases,

RPM-FFT is increasingly competitive, and surpasses Accelerated FFT. The rate of convergence of

RPM goes as K0.43 for this particular class of examples. The exponent appears to be roughly the

same in a few other problems that we tested.

Figure 33: Time at convergence of three methods with varying K. Note the log scale. The lines
are linear best fits.

We note that the comparisons for all of these methods was conducted by implementing the codes

in Matlab with no additional optimization of any of the methods to ensure fair comparisons.

4.4.2 Balancing Newton Iterations against Fixed Point

As can be expected, the speed of RPM-FFT depends strongly on the size of the unstable subspace

on which Newton iterations must be performed. While the Newton’s method has better conver-

gence properties, each Newton iteration is also far more expensive than the fixed point iteration,

particularly as the dimension of the unstable subspace increases. On the other hand, the fixed point
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method converges slowly, or not at all, on the unstable subspace, which also increases the expense

as it requires a large number of iterations.

In this section, the term “unstable subspace” refers to the subspace that the RPM-FFT method

identifies; this is not necessarily the true unstable subspace whose corresponding eigenvalues are

outside the unit disk.

An optimal method has to balance between the opposing issues identified above. Denoting by nmax

the number of fixed-point iterations before increasing the size of the unstable subspace, we notice

that setting nmax too low causes the dimensionality of the unstable subspace to increase quickly

and makes each Newton iteration expensive; on the other hand, if nmax is too high, there will

be minimal progress from the large number of fixed-point iterations before switching to Newton

iterations.

We examine this interplay numerically for the model problem described previously, for varyingK.

We first fix K, and then compare the times obtained for a large range of nmax going from 1 to 50.

We then repeat over a range of K. Of these, we denote the value of nmax with the best (least) time

as nbestmax(K). Fig. 34 shows the times to convergence for a fixed value of nmax = 10, as well as the

times to convergence for nbestmax(K), as a function of K. An immediate conclusion is that there is

almost no difference at low K, and not much difference at higher K.

We next compare the effect of the size of the problem on nbestmax(K), for a fixed value of K = 50.

Fig. 35 shows nbestmax for different problem sizes, here identified with the number of grid points in

each direction. An immediate conclusion is that nbestmax increases with the problem size.

4.4.3 Effect of Volume Fraction and Problem Size

In the model problem of a stiff fiber in a soft matrix, the volume fraction of the stiff fiber has been

taken to be small; for a/b = 1/16, the stiff fiber has a volume fraction λ = 0.3%. Note that we use

the term volume fraction though we are working in the 2D setting.
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Figure 34: Time at convergence of RPM with fixed nmax = 10 and nbestmax(K). The lines are linear
best fits.

We expect that the size of the unstable subspace is related to the size of the fiber based on the

heuristics discussed in Sections 1.3, 4.2 and 4.3. As the volume fraction increases, we therefore

expect a a larger unstable subspace and consequently more expensive Newton iterations.

We examine this issue through numerical experiments, and find that RPM-FFT works well even at

the combination of large elastic contrast K and volume fraction of fiber λ. For instance, even with

K ≈ 104 or higher, and a/b = 9/10 ⇒ λ = 63.6%, RPM-FFT is easily able to converge. Fig. 36

shows the time to convergence as a function of λ. While larger elastic contrasts require more time

to converge – in line with our observations above – we notice that the time to converge is almost

insensitive to λ for volume fractions larger than 5%.

We next consider the case of fixed λ but with changing problem size with a fixed geometry. That

is, we compare discretizations of varying coarseness. The number of grid points within the fiber, as

well as overall, increases as the discretization is made finer. We consequently expect the unstable

subspace identified by RPM to also increase. Fig. 37 shows the relation between the size of the
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Figure 35: The best nmax for different problem sizes. The line connects datapoints to aid visual-
ization.

unstable subspace as the problem size increases from 32× 32 to 512× 512, for different values of

elastic contrast K. The volume fraction λ is held fixed 1.2%. Roughly, we observe a logarithmic

scaling between the size of the unstable subspace and the number of grid points within the fiber.

4.4.4 Interaction Between Stiff Fibers

Motivated by recent advances in functional composites [HSP+19, RRWN17], we examine the set-

ting of two circular carbon fibers embedded in a polyurethane matrix. It is a significant challenge to

characterize the effective properties of heterogeneous materials such as nanofiber- and nanoparticle-

reinforced nanocomposites starting from the scale of resolving the entire microstructure. This

makes it challenging to develop physics-based high-fidelity model that predict the performance

of such nanocomposite systems. The FFT methods can help to make stronger direct connections

between mechanics modeling and experimental data, which in turn can have a significant impact

on understanding the structure-property relations of these complex heterogeneous nanocomposite

systems.

We consider the geometry of Fig. 38 with two fibers that are either close to each other – the
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Figure 36: Time to convergence of RPM-FFT with varying λ and K. The lines connect the
datapoints to aid visualization.

separation is smaller than the smaller fiber diameter – and when they are further apart. The moduli

are assumed to be Ef = 900 GPa for the carbon fiber and Em = 0.03 GPa for the polyurethane,

giving an elastic contrast of K = 3× 104. Two fibers, radius a and 2a, are located in a rectangular

unit cell of size 2b × b, with b = 10a. We examine two cases: when the fibers are far apart with

distance b between the centers of the fibers, and when the fibers are closer with distance 0.4b, see

Fig. 38. We apply a uniaxial average strain: E11 = 5%, E22 = E12 = 0.

Fig. 38 shows strain and strain energy density fields for the two configurations. In all of these

configurations, the strain and strain energy density fields are essentially 0 within the stiff fibers,

and also show good convergence properties with no obvious spurious oscillations near the transition

from matrix to fiber. We notice that in the case where the fibers are further apart, the energy density

and strain fields suggest that the fibers can be essentially considered dilute and non-interacting.

However, when the fibers are closer together – as is typical of experimental specimens [HSP+19,

RRWN17] – there is a clear interaction between the fields, and the energy density and strain fields

take their largest values in the region between the fibers.
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Figure 37: Size of unstable subspace with problem size. The lines connect the datapoints to aid
visualization.

4.4.5 RPM Applied to the Accelerated FFT Method

Two important advantages of the RPM approach are, first, that it uses the fixed-point iterations

to identify the unstable subspace; and, second, once identified, it performs Newton iterations on

the unstable subspace with fixed-point iterations on the entire space. This makes it easy to apply

the RPM strategy to existing fixed-point methods with minimal changes to algorithm / code. We

therefore exploit this to apply the RPM approach to the Accelerated FFT method which is also

based on a fixed-point framework. Given that the Accelerated FFT method has much superior

performance compared to the Classical FFT method, we might expect that a RPM-Accelerated

FFT method likely performs even better. We examine this issue below.

In [MS14], it is shown that the Accelerated FFT method is a special case of the general polarization-

based fixed-point method developed by [MB12]. Algorithm 5 is the general polarization-based

method, where α and β can take any value within a range. For the choice α = β = 2, the

polarization-based method reduces to the Accelerated FFT method. In [MS14], they also discuss
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Figure 38: Energy density (top row) and ε11 (bottom row) for almost-rigid fibers, when the fibers are
near and far away from each other.

and compare the Accelerated FFT method with other polarization-based methods, corresponding

to the choices α = β = 1.5 and α = β = 1.

All of these methods are fixed-point based methods, and therefore require that the eigenvalues of

the Jacobian are within the unit disk for convergence. The Accelerated FFT method has the lowest

upper bound [MS14], and we therefore combine this with the RPM method.

In all of these methods, an important part of the method is the additive decomposition of the

heterogeneous stiffness into a homogeneous reference medium and a fluctuation; see Section 4.3.

The convergence rate is typically very sensitive to the choice of reference medium.

It has been observed that the choice of the reference medium affects the rate of convergence in

many fixed-point based schemes. In the classical FFT method [MS98], the best choice was found

to be the average of the supremum and infimum of the elastic moduli. In Accelerated FFT [MMS01]

and Polarization FFT [MB12] the optimum is shown to be Eo/Ef =
√
K when computing with a
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Number of Iterations Time (seconds)
K Acc-FFT RPM-Acc-FFT Acc-FFT RPM-Acc-FFT

500 234 83 6.46 4.47
1000 335 81 8.51 4.42
5000 335 81 20.24 4.40

10000 1136 82 28.29 4.44
50000 2741 82 68.56 4.45

100000 3863 161 98.60 11.13

Table 4: Number of iterations and time to convergence for the Accelerated-FFT and RPM-
Accelerated-FFT for a wide range of K.

very high precision (10−10).

However, as also discussed in Section 4.3, we expect the RPM-based approach to be insensitive

to this choice. Therefore, we apply the RPM approach to the Accelerated FFT method, which

is readily obtained by simply replacing the fixed-point operation in algorithm 4 with the iteration

procedure in algorithm 5.

Algorithm 5 Polarization-FFT algorithm

1: Iteration i+ 1 (given εi)
2: σi ← C(x) : εi

3: sia = σi + (1− β)C0 : εi

4: sib = ασi + βC0 : εi

5: ŝb
i ← F [sib];

6: ε̂b
i ← −Γ̂ 0 : ŝb

i ∀k 6= 0 and ε̂b(0)i = βE
7: εib ← F−1[ε̂b

i]
8: εi+1 = (C(x) +C0)−1 : (sia +C0 : εib)

Table 4 compares the number of iterations and the time for Accelerated FFT and RPM-Accelerated

FFT for a wide range of contrasts. The enhancement provided by RPM is increasingly large as the

elastic contrast K increases.

We next examine the sensitivity to the choice of reference medium for Accelerated FFT and RPM-

Accelerated FFT. Fig. 39 compares the time to convergence and number of iterations – for a wide

range of K – for the usual Accelerated FFT method against the RPM-Accelerated FFT method, for

various choices of reference medium.
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When K is small, the performance of the Accelerated FFT follows what has been observed in

[MS14]: namely, the best choice is at when Eo/Ef =
√
K. But this is not the case for K =

103, 104. Meanwhile, RPM-Accelerated FFT is much less affected by the different choices of the

reference over all of the Ks being tested. As pointed out in [MS14], the Eo/Ef =
√
K choice

is valid when the precision is high (10−10), which explains Fig. 39 (e,f,g,h), as all tests here are

computed with 10−4 precision which is more in line with standard practice.

We notice, particularly at high contrast, that the use of RPM in conjunction with Accelerated FFT

makes the method much more robust with regard to the choice of reference medium.

4.5 Conclusions

We have applied RPM [SK93] to the problem of determining the stress and strain in the unit cell

of a periodic linear elastic material. Existing methods for this problem, e.g. Classical FFT [MS98]

and Accelerated FFT [MMS01] methods, are fixed-point methods, and can have difficulty converg-

ing when the eigenvalues of the Jacobian lie outside the unit disk. While Newton methods can

recover the convergence, they are very expensive on the high-dimensional problems of interest.

RPM [SK93] provides an elegant and efficient balance between fixed-point and Newton methods:

it uses the fixed-point iterations to adaptively identify the unstable subspace that requires Newton,

and performs Newton only on that subspace. Fixed-point iterations can be performed on the com-

plementary stable subspace. For practical reasons of not changing existing algorithms and code,

fixed-point is performed on the entire space, but is then projected to the complementary stable

subspace.

A variational perspective, using analogies from electromagnetism, provides insight into the reason

that the RPM decomposition can work well. In particular, we expect that there are flat or unstable

directions in the energy landscape in the context of certain formulations of heterogeneous linear

elasticity, particularly when the stiffness tensor can vanish, as in the case of voids in materials. The

RPM-FFT method proposed in this work exploits this structure to perform Newton iterations in
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Figure 39: Number of iterations and times to convergence as a function of reference medium modulus
Eo. We examine K = 10, 102, 103, 104 in the first, second, third and fourth rows respectively.
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directions along which the fixed-point would be unstable.

Our results show that the RPM-FFT is more efficient than the fixed-point methods as the contrast

is increased. Further, all of the fixed-point methods mentioned above require the use of a homo-

geneous reference medium as an important part of the method, but there is typically no systematic

approach to selecting the reference medium. We see that while the fixed-point methods can be

sensitive to the choice of reference medium, the RPM-FFT method is extremely robust in terms of

convergence for a wide range of choices for the reference medium.

We also note the feature of RPM that it can be easily used to “wrap-around” any fixed-point algo-

rithm. Consequently, while we have used it here for two specific instances of FFT-based methods,

it can be easily combined with other formulations if they are found to be more efficient.

While we have applied RPM-FFT to the context of mechanical response, our overall approach

is applicable to numerous linear problems with the same structure in homogenization [Mil02].

Further, while we have not examined nonlinear problems here, it is relatively straightforward to do

this. Briefly, most methods for nonlinear problems using the FFT consist of the repeated use of

linear solves [LR20], and the method presented can readily the other approaches in a modular way.

Finally, we note that while we have used Newton iterations for the space that is unstable under

fixed-point iterations, it is possible to replace or combine Newton iterations with a conjugate gra-

dient or other solver that could provide better performance [VZM14, GMC13, KBS14]. Potential

improvement can be achieved by combining the model order reduction techniques for FFT solvers

as proposed in [KMG+19] with RPM. This provides a direction for future exploration. In this

context, we particularly highlight the recent interesting approach proposed in [Sch17], where a

different variational principle is shown to provide promising results.
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5 Summary

In Section 2, 3D isotropic grain growth simulations were performed with experimental microstruc-

tures. Comparisons between the simulated and the experimental microstructures show that the

isotropic model cannot capture the grain growth on the grain-to-grain basis. Possible reasons are

studied and motivate the use of anisotropic model. For the future work on this topic, the isotropic

TD formulation will be extended to include anisotropy using anisotropic surface energy and mo-

bility from experiment. References to anisotropic TD scheme with arbitrary surface and mobility

data can be found in [EJZ17]. By comparisons between simulations with the isotropic TD scheme

and anisotropic TD schemes, different forms of anisotropic kernels can be tested and give insights

about how the boundary properties affect grain boundary evolution.

In Section 3.1, PFDD is extended to BCC metals. Tests designed to show this new capability are

performed and compared to Molecular Statics simulations. Ultimately, dislocation dynamics in

BCC metals are rate dependent, giving rise to a macroscopic deformation response that is highly

sensitive to the applied strain rate and temperature. With the mechanistic model in place in the

present framework, it is now possible to incorporate temperature and rate effects on dislocation

motion. With such additions, this model could model both nucleation and propagation of kink-pairs

for example. Such topics are interesting extensions for future work. A new kind of computational

grids – non-orthogonal grids are constructed and applied in Section 3.2. Non-orthogonal grids

outperform other grids used previously, and reproduce the correct physical behaviors with systems

of multiple non-coplanar planes.

Section 2 and Section 3 focus on modeling grain boundary and dislocation respectively. Different

models are used but share similarities in the formulations. Multiple phases are prescribed with

order parameters, which represent different grains in polycrystals and different slip systems of

the dislocations. The phase boundaries are evolved and tracked implicitly, corresponding to grain

boundaries and dislocations respectively.

82



Original FFT method is used in the PFDD formulation and motivates the study of the non-orthogonal

grids in Section 3.2. RPM-FFT in Section 4 is an adapted FFT method that recovers the con-

vergence for heterogeneous materials with high contrast elastic properties. It can be a useful

tool for PFDD when it comes to modeling such materials. While RPM-FFT uses Newton itera-

tions for the space that is unstable under fixed-point iterations, it is possible to replace or com-

bine Newton iterations with a conjugate gradient or other solver that could provide better perfor-

mance [VZM14,GMC13,KBS14]. Potential improvement can be achieved by combining the model

order reduction techniques for FFT solvers as proposed in [KMG+19] with RPM. This provides a

direction for future exploration.
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[WScGI04] G. Wang, A. Strachan, T. Çağin, and W. A. Goddard III. Calculating the peierls

energy and peierls stress from atomistic simulations of screw dislocation dynamics:

application to bcc tantalum. Model. Simul. Mater. Sci. Eng., 12:S371–S389, 2004.

[WTF13] C. R. Weinberger, G. J. Tucker, and S. M. Foiles. Peierls potential of screw dislo-

cations in bcc transition metals: Predictions from density functional theory. Phys.

Rev. B, 87:054114, 2013.

[YD11] Lun Yang and Kaushik Dayal. A completely iterative method for the infinite do-

main electrostatic problem with nonlinear dielectric media. Journal of Computa-

tional Physics, 230(21):7821–7829, 2011.

[YLH13] H. Yang, Z. Li, and M. Huang. Modeling dislocation cutting the precipitate in

nickel-based single crystal superalloy via the discrete dislocation dynamics with

sisf dissociation scheme. Comp. Mater. Sci., 75:52–59, 2013.

[ZBGW11] R. F. Zhang, I. J. Beyerlein, T. C. Germann, and J. Wang. Deformation twinning

in bcc metals under shock loading: a challenge to empirical potentials. Phil. Mag.

Lett., 91(12):731–740, 2011.

[ZBL11] C. Zhou, I. J. Beyerlein, and R. LeSar. Plastic deformation mechanisms of fcc

single crystals at small scales. Acta Materialia, 59(20):7673–7682, 2011.

[ZCK19] Y. Zeng, X. Cai, and M. Koslowski. Effects of the stacking fault energy fluctuations

on the strengthening of alloys. Acta Mater., 164:1–11, 2019.

98



[ZdlRRH00] H. M. Zbib, T. D. de la Rubia, M. Rhee, and J. P. Hirth. 3d dislocation dynamics:

Stress strain behavior and hardening mechanisms in fcc and bcc metals. Journal of

Nuclear Materials, 276:154–165, 2000.

[ZHBK16] Y. Zeng, A. Hunter, I. J. Beyerlein, and M. Koslowski. A phase field dislocation

dynamics model for a bicrystal interface system: An investigation into dislocation

slip transmission across cube-on-cube interfaces. Inter. J. Plas., 79:293–313, 2016.

[ZLZ+20] Jin Zhang, Wolfgang Ludwig, Yubin Zhang, Hans Henrik B Sørensen, David J

Rowenhorst, Akinori Yamanaka, Peter W Voorhees, and Henning F Poulsen. Grain

boundary mobilities in polycrystals. Acta Materialia, 191:211–220, 2020.

[ZOAB11] H. M. Zbib, C. T. Overman, F. Akasheh, and D. Bahr. Analysis of plastic defor-

mation in nanoscale metallic multilayers with coherent and incoherent interfaces.

International Journal of Plasticity, 27(10):1618–1639, 2011.

[ZRSOB17] Luis A. Zepeda-Ruiz, Alexander Stukowski, Tomas Oppelstrup, and Vasily V. Bu-

latov. Probing the limits of metal plasticity with molecular dynamics simulations.

Nature, 550(7677):492–495, 2017.

99


	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Grain Evolution with Experimentally-derived Interface Properties
	Modeling of Dislocation Dynamics in Metals
	A 3D Phase Field Dislocation Dynamics Model for Body-centered Cubic Crystals
	Non-orthogonal Computational Grids for Studying Dislocation Motion in Phase Field Approaches

	Computational Methods for High-contrast Composites

	Grain Evolution with Experimentally-derived Interface Properties
	Methods
	Threshold Dynamics
	Model Validation
	Data Processing for Comparison
	Establishing the common volume.
	Establishing the time scale.


	Results
	Conclusions

	Modeling of Dislocation Dynamics in Metals
	A 3D Phase Field Dislocation Dynamics Model for Body-centered Cubic Crystals
	Phase Field Dislocation Dynamics (PFDD)
	Extension to BCC Metals
	Calculating the Dislocation Line Sense.
	Defining the Transition between Edge and Screw Type.

	Molecular Statics Simulations
	Results and Discussion
	Expansion of a Perfect Dislocation Loop.
	Propagation of a Straight Screw Dislocation through Kink-Pair Motion.

	Conclusions

	Non-orthogonal Computational Grids for Studying Dislocation Motion in Phase Field Approaches
	Incorporation of Varying Computational Grids
	Results and Discussion
	Loop expansion tests on three grids.
	Two loop annihilation test on non-orthogonal grid.

	Conclusions


	Computational Methods for High-contrast Composites
	Classical FFT Method Based on Fixed-Point Iteration
	The Proposed RPM-FFT Method
	A Variational Perspective
	Fixed-Point Iterations as Gradient Descent

	Numerical Comparisons Between Classical FFT, Accelerated FFT, and RPM-FFT
	Time to Convergence vs. Elastic Contrast
	Balancing Newton Iterations against Fixed Point
	Effect of Volume Fraction and Problem Size
	Interaction Between Stiff Fibers
	RPM Applied to the Accelerated FFT Method

	Conclusions

	Summary

