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Abstract

Accurately describing the lives of historical figures can be challenging, but unraveling their social structures

perhaps is even more so. Historical social network analysis methods can help in this regard and may even

illuminate individuals who have been overlooked by historians, but turn out to be influential social connection

points. Text data, such as biographies, are a useful source of information for learning historical social

networks but the identification of links based on text data can be challenging. Traditional methods directly

use the number of name co-mentions in the text to infer relations. The use of a conditional independence

structure reduces the tendency to overstate the relationship between “friends of friends”. However, this

method does not take into account the abundance of covariate information that is often available in text

data.

In this work, we first explore the effect of multiple conditional independence structures on reconstructing

social network from the text. Then we extend the Local Poisson Graphical Lasso model with a (multiple)

penalty structure that incorporates covariates, opening up the opportunity for similar individuals to have

a higher probability of being connected. We propose both greedy and Bayesian approaches to estimate the

penalty parameters and present results on data simulated with characteristics of historical networks and show

that this type of penalty structure can improve network recovery as measured by precision and recall. We

also illustrate the approach on biographical data of individuals who lived in early modern Britain between

1500 to 1575. Finally, we show the model can also incorporate continuous covariates and discuss several

applications of how to create continuous covariates from text data.
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Chapter 1

Introduction

A social network is a structure representing the relationships in a social community. Typically, a node

in a social network represents a person or an organization while a link represents a social interaction,

such as knowing each other, between two nodes. Characterizing and understanding the social network of

a community can help us to learn how information flows within the community and how the individuals

and sub-communities interact with each other. When reconstructing a modern social network, the process

is relatively simple and flexible, since accessing information about or from each individual could be done

through multiple sources. For example, to learn someone’s personal social network, we could either survey

them or use information from social media platforms. In an academic setting, co-authorship information

from curriculum vitae, journals, or online archives can provide information about collaborations.

There is also interest in learning and understanding historical social networks where information might

not be as readily available. For example, Backhouse (2007) studies the correspondence between Cambridge

Economists during early 20th century to understand how economists communicate and develop ideas with

each other. With respect to information flow, Johansen (2017) focuses on learning how people diffused ideas

about Western science and civilization with cheap secular books and periodicals in 1830s London. Moreover,

if we can generate a dynamic (longitudinal) historical network, we can also learn how political, historical,

social changes over time. For example, Med́jedović (2021) proposed to use dynamic network analysis to

conceptualize human life history pathways.

However, learning historical social networks comes with additional challenges. First, we can not directly

access the individuals or the original network, thus verification requires external sources. Also, the study

of social networks began in the late 19th century. As such, it is not common to see records of links or

relationships prior to that time period. Therefore, in order to learn a historical social network, researchers

usually rely on historical documents associated with individuals to build a network. One of the historical

documents we can consider is the biography, written by scholars to include information about all major
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phases and life events. Information in a biography can be very comprehensive but often without a fixed

format. In addition, a person can have a biography only if his or her life has been well studied. Based on

people’s social identities, the amount of information in biographies for each person varies. Some people may

have independent records for their titles, occupations, educations and family relationships while some others

may only have a name and birth/ death year referred once. In this case, what if there exist some people that

are ignored by historians for a long time but turn out to key connection points in the social network at that

time? In other words, there may exist some less well-known people, who do not have their own biographies,

but frequently appear in some other’s biographies. Notice that those less well-known people in potential

social connection positions of influence usually bring troubles to generate a comprehensive historical social

network but reconstructing the social networks at that time is also a potential way to identify them.

Previous work on estimating social networks from text data spans different humanities and social science

applications. First of all, some format of historical text data does indicates relations. For example,

Marsden (1990) and Üsdiken and Pasadeos (1995) use structured surveys and citations respectively to

estimate collaboration networks. If the data is unstructured, some people use pattern match and The

China Biographical Database Project∗ is also a great example of that. This labor-intensive project involved

manually listing all the possible expressions of human relations (e.g., “A is friends with B”) and then

searching the text using pattern matching to extract relational links. A more common way is to use the

co-occurrence, which means if two people’s name appear in the same part of the document, we assume that

there is a link between them. For example, Almquist and Bagozzi (2019) uncover the underlying network

structure of radical activist groups with British radical environmentalist texts from 1992 to 2003. Their

work primarily concentrates on the application of topic models to analyze the text, and they infer a network

using text co-occurrence counts. Such strategy is not only applied to the historical document analysis, but

can also be be applied on fiction texts: Bonato et al. (2016) extract and analyze the social network from

three best-selling novels, defining a link between two characters if their names co-appear within 15 words.

Even though the co-appearance is considered as the most popular and convenient signal for the social

connection, Six Degree of Francis Bacon (SDFB) project † argues that co-appearance does not necessarily

suggest a connection, especially when the research period is long enough, and there is a strict definition on

the social connection, such as people have to yearly overlapped to know each other physically. It is possible

that the co-appearance is caused by a common friends. For example, two people do not know each other, but

they can be mentioned together in one of their common friends’ biography. In that case, using co-appearance

as the solo standard to create links between people may bring mistakes into the reconstructed social network

thus lead to more errors in later historical analysis. In order to solve such problem, Warren et al. (2016)

proposed to use a conditional independence structure to model the relationships and show their methods

∗See https://projects.iq.harvard.edu/cbdb/home.
†See http://www.sixdegreesoffrancisbacon.com/
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tends to increase the accuracy of the reconstructed social network. We will discuss their approach in the

following section.

1.1 Six Degrees of Francis Bacon

SDFB estimated a social network in Britain in 1500–1700 (Warren et al., 2016). The project makes use

of natural language processing (NLP) tools and statistical graph learning techniques to extract names and

infer relations from biography data. Figure 1.1 is a snapshot from the SDFB website, which shows the

social network between Francis Bacon and Robert Cecil, including two targeted people (large blue circles),

common connections between the two target people (large red circles), common connections between one

of the targeted people and one of the common connections between two targeted people (small red circles)

and connections only connect to one of the targeted people (small blue circles). The grey lines are the

social relations inferred from the statistical models, and the black lines are the ones later justified by the

experts. The website has over 15000 people as the nodes and over 170000 relations as the links. The network

is constructed based on text from the Oxford Dictionary of National Biography (ONDB). ODNB‡ is the

national document of people who are known in British history and culture, worldwide, from the Romans to

the 21st century. The dictionary, constructed in 12 sections, is a set of biographies written by experts in

each field. It was first published in 2004 but has been updated ever since. So far, the dictionary contains

over 60,000 individuals biography and 536 Theme articles, which represent critical social groups and events

across British history.The website also allows experts to manipulate the current nodes and links, including

adding, deleting, and annotating any nodes and links. The website also includes 130 groups listed on the

website right now, and most of them are extracted from the ODNB’s list of Theme articles in the targeted

period (1500-1700), which cover the groups, clubs, factions, and movements that are important during the

period. Also, experts have manually added some groups about the occupations, like judges and booksellers.

For each biography owner in ODNB, we can extract their information about name, title, birth/death

year, and historical identity from the website. The following is a short example of the biography text of

Francis Bacon.

Bacon, Francis, Viscount St Alban (1561–1626), lord chancellor, politician, and philosopher, was born
on 22 January 1561 at York House in the Strand, London, the second of the two sons of Sir Nicholas
Bacon (1510–1579), lord keeper, and his second wife, Anne (c.1528–1610) [see Bacon, Anne], daughter
of Sir Anthony Cooke, tutor to Edward VI, and his wife, Anne, née Fitzwilliam. He was baptized
in the local church of St Martin-in-the-Fields, but spent most of his childhood, together with his elder
brother, Anthony Bacon (1558–1601), at Gorhambury, near St Albans, Hertfordshire, which their
father had purchased in 1557.

Identifying links from such historical text data is challenging, since (1) people who are mentioned in the

same part of a text may not necessarily know each other, it may only be due to the fact they both know

‡See https://www.oxforddnb.com/
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Figure 1.1: A snapshot of a part of social network of SDFB. Large blue circles: targeted people Francis
Bacon and Robert Cecil; large red circles: first degree common connections; small red circles: second
degree common connections; small blue circles: non-common connections; grey lines: connections inferred
by statistical model; black lines: connections later justified by experts.

another person. For example, Edward VI is mentioned in this paragraph only because he is a student of

Bacon’s grandfather, but he has no direct connection with Francis Bacon; (2) the cases of people share the

same name (duplicated) or people referred by only first or last name (partial) are ubiquitous in historical

texts, and it is unclear how to assign their mentions to individuals. For example, there are two “Anne” in

the text, so it is hard to decide which lady is referred to without having a correctly associated last name; and

(3) there is a lot of information of various types in the text, like time, location, title, etc. The information

usually does not have a specific format, thus is hard to extract and organize.

The first step of SDFB is to create a person-by-document matrix based on the text. The process is

described in Figure 1.2. The people’s names are extracted from the biographies during the targeted period

(1500-1700) with a Name-Entity-Recognition (NER) tool (Finkel et al., 2005). The biographies are chopped

into short documents that have no more than 500 words each, and if a document does not refer to any

names from the target period (1500-1700), it will be removed. Among 12149 biographies in the research,

73.6% of them result in only one document, and 15.3% of them are chopped into two documents. The longest

biography is chopped into 42 documents, which belongs to a Scottish politician and judge, Sir James Murray.

Then, we can create a doc-by-person matrix such that an entry Yij in the matrix represents how many times

a person j is mentioned in a document i.

There is also a lot of labor work to roughly clean and handle the duplicated and partial names afterward

since the NER tool determines whether a word is a name or not, but fails to distinguish people with the

same name. In all the SDFB data, approximate 13.3% of the names are duplicated. Also, the tool can not
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Figure 1.2: The data processing of SDFB. SDFB takes the biographies from the ODNB, then extracted
names with NLP tools and chop each biographies into shorter documents to generate document-by-person
metrics.

automatically distribute credit for partial matches either. For example, “Bacon, Francis” will be considered as

two individual names “Bacon” and “Francis”. In those cases, SDFB applied the following rules to distributed

counts:

• If two people have exactly the same name and their life span (based on birth/death year and allow for

one-year margin) overlapped and if both of them have a biography in ODNB, then the total counts of

their name will be distributed based on the length of their biography with the percentages capped at

a max/min of 75% and 25%.

• If there are more than two people who have precisely the same name and their life span (based on

birth/death year and allow for one-year margin) overlapped, then the total counts of their name will

be distributed evenly.

• For the partial names (only first name or only last name is mentioned), the count will be randomly

allocated to the people with the same first or last name.

These assignments were done a 100 times, with the last point in the rules mentioned above leading to

100 doc-by-person matrices with different random assignments. An example of one doc-by-person matrix Y

is the following Figure 1.3, where each row represents a document, each column represents a person, and

each entry represents how many times this person is being mentioned in the corresponding documents. For

example, in Figure 1.3 the circled entry represents in document n, King Charles I has been mentioned three

times.
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𝑌 =

2 3 … 0 1
2 1 … 1 0
2 5 … 1 3
… … … … …
0 1 … 4 1
1 3 … 0 2

Document 1 

Document 2 

Document n 
…

…
.........

King 
Charles I 

George 
Villiers 

Prince 
Rupert

There are in total 3 times 
that the Document n 
mentions “King Charles I”

Figure 1.3: Example of SDFB data structure

When inferring the relations, all 100 doc-by-person matrices were considered. Together, these help to

quantify the certainty of the relationship, defined as the number of times a link has been identified among

the 100 matrices. Notice that certainty here does not represent the strength of a link. A high certainty link

may be a weak link. On the SDFB website, only the links with certainty over 50 are depicted.

The relation inference of such a doc-by-person matrix is through statistical graphical models, using a

conditional independent structure. The assumption for this choice is that if two people know each other, it

is more likely that they show up in the same biography or the same part of the biography. However, even if

two people are co-mentioned in the same paragraph, it does not necessarily mean that they know each other

since they may be co-mentioned. They may be in the same paragraph only because they both know another

(third) person. This implies that a conditional independence structure may be useful for representing social

relations, and SDFB uses the Local Poisson Graphical Lasso Model (Allen and Liu, 2012). SDFB validated

the Local Poisson Graphical Lasso Model in several ways and showed that it performs better than simply

using co-appearance.

There is no doubt that the methodology of SDFB creates a pioneer pipeline of generating large social

networks from the text data. However, there is also much room for improvement. In the validation of

precision and recall among 12 non-random people, even though Warren et al. (2016) have shown that the

methodology leads to high precision, we have observed that the links picked up by the SDFB model tend

to relatively low recall. There are several reasons for the missing links. First, the inference only makes use

of the co-mention counts but ignores all the semantic information. According to homophily theory, similar

individuals are more likely to connect to each other than the dissimilar ones (McPherson et al., 2001). In

the validation with topics models, Warren et al. (2016) have shown that the people within the same topics
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are more likely to be linked. Besides of that, several studies also have shown that people who share similar

age, education level (Kossinets and Watts, 2009), occupation (Calvo-Armengol and Jackson, 2004), gender

and economic status (McPherson and Smith-Lovin, 1982) are more likely to be connected. Given these

results and from the first validation, we can see that the people who know each other do share some common

characteristics, so including the information like common last name and collective group identities should be

able to help us pick more links than what SDFB has done. In a subsequent study, Mohamed (2020) used a

logistic model to predict whether two people know each other using features of the estimated SDFB network

(e.g., common links) and pairwise covariates (e.g., same gender or social group), and finds that at least one

third of the false positive links (i.e., the links that the model predicts with a high probability but do not

exist in the estimated SDFB network) have supporting historical sources. This indicates that using covariate

information within the model may help us to improve estimation of historical networks.

Second, the randomization of partial names and duplicated names have weakened the signals. Even

though the current approach with repeated evaluation through 100 doc-by-person matrix helps to correct

the effect of randomness, it is much more time consuming. We are wondering whether Record linkage or other

NLP techniques should be included in the name assignment process or later in the modeling process, like

through adding a covariate to address the existence of duplicated names. This may help identify links more

accurately. Last but not the least, if we know there exists some covariates that largely affect the probability

whether two people know each other or not, for example, a covariate to indicate family relationships, it is

reasonable to include them into the modelling process, since even though a friend’s friend is not necessarily

a friend, a family’s family is still family.

In the Chapter 2 of the thesis, we first try to explore and understand SDFB’s approach to infer relations

through the local Poisson graphical lasso model. We compare the performance of local Poisson graphical

Lasso model with traditional Gaussian Graphical model as well as the Poisson log-normal model. We will

focus on both metric performance and evaluation efficiency.

In Chapter 3, we extend the local Poisson graphical lasso model in the context of the SDFB project

to include covariates information. We will show how to implement the node covariates into the network

model’s penalty factors and describe two potential methods for estimating penalty factors for potentially

a large number of covariates. The performance of the extension is represented by how the inclusion of

additional information into penalty estimation can significantly improve precision and recall.

In Chapter 4, we extend the model to include continuous covariates. We will discuss several applications

to include continuous covariates with record linkage, natural language processing (NLP) tools as well as

other text information in the biographies, so that more text information can be included into the model to

create a more comprehensive reconstructed early social network.
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Chapter 2

Using Graphical Models to identify

social links

SDFB used the Local Poisson Graphical Lasso Model to estimate the social network, but this is not the

only model using a conditional independence structure. In this section, besides the Local Poisson Graphical

Lasso Model, we also consider two other graphical models: the Gaussian Graphical Model and the Poisson

Log-Normal Model. The Gaussian Graphical Model is the most well-studied model that interpreting the

conditional independence structure, while the Poisson Log-Normal Model is designed for the conditional

independence structure of discrete count data. Notice that we only consider undirected graphs, since we

assume the acquaintance relation between two people to be mutual. Both of the models can be estimated

globally, in contrast with the local estimation of the Local Poisson Graphical Lasso Model in SDFB. There

also exist some other models designed to estimate a network based on count data, but they usually can be

considered as the variations of the Poisson Graphical Model. In the following, we will discuss the definitions

of the models, their estimation as well as whether each model fits our context. The final section compares

the performance of three model using simulations, measured by area under the curves (AUC).

2.1 Local Poisson Graphical Lasso Model

2.1.1 Model definitions

The local Poisson graphical lasso model is the model that generates the current SDFB network, and is

originated from the Poisson Graphical Model(Allen and Liu, 2012). The Poisson Graphical Model assumes

that conditional on all the other variables, each variable is a Poisson random variable. Suppose now we only

have one document, and Yj is the count for the person j mentioned in this document and Y\j is the counts
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for all the other person excluding j, then the model can be expressed as:

P (Yj |Y\j = y\j , θ,Θ) ∼ Poisson(eθj+
∑
k 6=j Θjkyk). (2.1)

What we need to estimate is the edge parameter matrix Θ. We assume Θjk = 0 if and only if there is no

connection between person j and person k.

2.1.2 Estimation

Based on the previous definition, the model is stated in a pairwise and local relation. If we want the equations

to hold jointly and form a Poisson Markov Random Field, we will have the probability density as

P (Y |θ,Θ) = exp

∑
j

(θjYj − log(Yj !)) +
∑
j,k

ΘjkYjYk −A(θ,Θ)

 . (2.2)

Now if we try to estimate Θ globally, we will realize that since the value of Yij will be 0 to infinity, to make

sure A(θ,Θ) is finite and P (Y |θ,Θ) is a probability between 0 to 1, all Θ̂jk need to be non-positive. However,

in our context, the negative coefficient is not meaningful since a negative Θ̂jk suggests that the number of

mentions for person j will decreases if the number of mentions for the person k increases, which does not

show a social relation between j and k.

In order to allow Θ̂ to be positive, the SDFB project therefore chose to estimate the model locally, which

leads to the Local Poisson Graphical Lasso Model. Thus, for each j, we fit a generalized linear model with

the package glmnet and include an L1 penalty to enforce the sparsity (Friedman et al., 2010).

2.2 Gaussian Graphical Model

2.2.1 Model definitions

The Gaussian Graphical Model is the most popular model for which a graph represents the conditional

independence structure between random variables (Lauritzen, 1996). Consider a multivariate Gaussian

X ∼ Nd(µ,Σ), with the density

f(x|µ,Σ) = (2π)−d/2(det(Ω))1/2e−(x−µ)TΩ(x−µ)/2, (2.3)

where Ω = Σ−1 is called the precision matrix. We interpret Ωjk = 0 as person j and person k not being

connected. Notice that the conditional distributions for each variable of the multivariate Gaussian will

be univariate Gaussian and the quadratic form xTΩx can be written as
∑
ij xi, xjΩij , thus the density is

proportional to a product of potential functions
∏
ij φ(xi, xj), which each of these potential functions depends
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on only two coordinates. Therefore, it can satisfy the Markov conditional property, and thus the multivariate

Gaussian distribution can be represented by a pairwise Gaussian Markov Random Field (GMRF). Unlike the

Poisson Graphical Model, parameter estimates can range from −∞ to∞. Thus, the model can be estimated

globally.

2.2.2 Estimation

We can estimate Ω using the gLASSO package in R, and the regularization parameter can be selected via cross-

validation (Friedman et al., 2008). The estimation takes the empirical covariance matrix as the input and

then estimates one row and one column synchronously at each time until convergence, so that it guarantees

a global estimate and Ω̂jk = Ω̂kj in the final Ω̂.

2.3 Poisson Log Normal Model

2.3.1 Model definitions

The Poisson Log-normal Model was first introduced in 1989 in a regression-based structure (Aitchison and

Ho, 1989). Instead of estimating the Poisson Graphical Model directly, it maps the Poisson data to latent

Gaussian data and then estimates the Gaussian Graphical Model. Let Y = (Y1, ..., Yn)T be n independent

and identically distributed p-dimensional count observations, then a Gaussian Z = (Z1, ..., Zn)T is drawn

and the coordinates of Yi are sampled independently from a Poisson distribution conditionally on Zi. The

model is described as Yij |Zij ∼ Poisson(exp(Zij))

Zi ∼ Np(β,Σ)

(2.4)

where β is a p-dimensional vector and Σ is p×p. The goal is to estimate the edge parameter matrix Ω = Σ−1.

2.3.2 Estimation

The main obstacle for estimating the Poisson Log-normal Model is that the latent variable Z is unobserved.

Therefore, it is hard to evaluate the log-likelihood of the observed data log pΩ(Y ) = log
∫
pΩ(Y,Z)dZ. There

are several ways to bypass this problem. Here we will describe three methods proposed in the last few years

that we have considered. Choi et al. (2017) choose to use Laplace’s method to approximate the likelihood

and its gradients. The parameters are obtained by minimizing the objective function with Newton’s method

and ADMM (alternating direction method of multipliers) algorithm. The method is implemented in the R

package PLNet but unfortunately, this package does not consider the case with sparse data, so it will have

non-converge errors with our data. Also, it is much slower than the following two EM algorithm methods.
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Another method is the EM algorithm, which requires to evaluate the conditional expectation of the

complete log-likelihood, which involves the p-dimensional integral. Since, in our case, p is much larger

than 4, there is no closed-form solution. Sinclair and Hooker (2019) propose to assume the initial Σ to be

diagonal so that the computational burden is much smaller. Then a one-step EM algorithm is applied to

the transformed data Zi from Yi and performed gLASSO model on Zi to infer the network. This method

originally also did not consider the sparsity of the data but with some minor adjustment by setting some

infinite integral results to zero it can accommodate sparse data.

Chiquet et al. (2018)’s method adopts a similar but more comprehensive approach, which use variational

inference . In this case, each conditional distribution pΘ(Zi|Yi) is approximated by a set of multivariate

Gaussian distribution Q with mean vector mi and diagonal covariance matrix diag(S2
i ). Let ψ = (M,S) and

M = (m1, ...mp). Then the objective function JY ;ψ,θ is defined as

JY ;ψ,Θ =

n∑
i=1

E[log pΘ(Zi|Yi)] + E[log pΘ(Zi)]− E[log qψ(Zi)] (2.5)

which is the sum of conditional expectation and the error of approximation, measured by the Kullback-

Leibler divergence. The objective function is optimized through repeatedly solving a gradient ascent with

box-constraint and Gaussian maximum likelihood until it converges. This method is implemented in the R

package PLNmodels (Chiquet et al., 2018).

In practice, the variational inference beats the other two on computational complexity and can directly

work with sparse data. Even though it is still a question of whether it can be applied to extensive data such

as ODNB, it is enough for the simulation study to evaluate the model. Therefore, in the following section,

we adopt the variational inference method to estimate the Poisson Log Normal Model.

2.4 Summary of the models

After examining all the choices, unfortunately we realize there is no perfect solution in our case. Each model

has its own pros and cons which are summarized in the Table 2.1.

Fit assumption Fast estimate Global estimate
LP Yes Yes No

GGM No Yes Yes
PLN Yes No Yes

Table 2.1: Summary of the conditional independence models

The local estimation is relatively fast compared to other methods of modification on the Poisson Graphical

Model. However, the estimation is local, so Θ̂jk is not necessarily equal to Θ̂kj . Thus, it requires an

“AND/OR” rule to determine whether j and k are connected. To be more specific, the “AND” rule suggests
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that Θ̂jk and Θ̂kj both have to be positive for a link between person j and a person k to exists, while the

“OR” rule suggests that if at least one of Θ̂jk and Θ̂kj is positive then we can say the link exists. SDFB

adopts the “OR” rule. If we want to implement a global penalty, it needs to re-run the model multiple times

until it converges, which is not practical with such a large dataset. Another option is to add an additional

penalty to control the difference between Θ̂jk and Θ̂kj . In that case, we need to train all people’s penalties

at the same time, and a reasonable initialization is required so that the computation complexity can be

smaller. Therefore, one possible combination is to train the model locally first and then use the result from

the local model as the initialization of global training. A small simulation shows that this idea works, and

the result is similar to the OR rule SDFB has used.

The Gaussian Graphical Model is well defined. There are a lot of studies and applications about it, and

gLASSO is a relatively fast way to perform the global estimation. The problem for Gaussian Graphical Model

is that under our setting, the data are the number of mentions, which are non-negative integers. Thus the

data distribution is probably not Gaussian. It could be Poisson or an other count-valued distribution, like

the negative Binomial. Therefore, using Gaussian Graphical Model may violate the assumption of the model.

The Poisson Log-Normal is designed for count data. The estimation is global, which solves the major

disadvantage of the Local Poisson Graphical Model. However, as a mixture model, it is hard to estimate

the model’s parameters. Even though the new algorithm improves the computational efficiency of Poisson

Log-Normal, when the sample size is large, it may still not handle the high-dimensional data, like in the case

of SDFB project with over 15000 people. Also, the transformation of the data in the variational inference

method may introduce some errors when interpreting the dependence structure, since we have to balance

the density approximation and optimizing the objective function at the same time.

2.5 Model comparison by simulation

2.5.1 Simulation methods

In order to compare the models quantitatively, we compare the models’ performance on different networks,

and try to understand how the network structures may affect the linking. First, we create a small community

(network) as the ground truth for the simulation. The community is similar by design to the SDFB social

network, and we assume to have similar available demographic information. When creating the network, we

consider three covariates: last name, group membership and birth/death year overlap. Note that we assume

that if the lifespan of two people does not overlap (i.e., it is impossible that they physically met each other),

then they should not be linked, regardless of all other factors. Below is a description of the general network

design:
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1. We generate 50 families in the community with 30 different last names (i.e., people with the same last

name can be from different families).

2. For each family, we randomly generate 5 to 12 people, each with a birth and death year between 1500

and 1600 and a life length varying from 5 to 70.

3. Within a family, among those people whose lifespan overlaps, 50% know each other.

4. There are three social groups, A, B and C. Each person is randomly assigned to one of the groups with

probability 0.5, 0.25 and 0.25, respectively.

5. Among those people whose lifespan overlaps, we additionally create 100, 100 and 50 links within groups

A, B and C, respectively.

6. At the end, we add 300 random links to the whole community.

This design yields 464 people and 1164 links. We will refer this network as the “social network”. Figure

2.1 illustrates a subset of the community with ten families, 100 people, and 158 links.

Figure 2.1: 10-family sub-community (100 people, 158 links), Last names are represented by colors and
social groups by shapes. The network shows clear family structure with some social group structure and
additional random links.
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To contrast with the first network, we also generate a random network with the Erdös-Renyi model.This

model is a uniform random graph model on the set of all graphs with a specified number of nodes and edges,

and the number of nodes is set to 464 and the number of edges is set to 1164 to match what we have in the

social network. We will refer this network as the “random network”.

With each simulated network, we generate a document-by-count matrix. The simulation method is

described in Allen and Liu (2012), which is based on Karlis (2003). The n × p simulated data X, with n

independent observations with p nodes, is simulated from the model

X = Y B + E. (2.6)

E is the n × p matrix of noise and Eij ∼ Poisson(ε) for all i and j, where ε is the noise signal; Y is the

n× (p+ p(p−1)
2 ) matrix of true signal Yij ∼ Poisson(µ) for all i and j where µ is the true signal. B matrix is

defined as B = [Ip∗pP � (1ptri(A)T )]T where P is the p× p(p−1)
2 pair-wise permutation matrix, � represents

the Hadamard or element-wise product and tri(A) denotes the vectorized upper triangular portion of the

adjacency matrix A. Here is an example for the method. Suppose we need to generate n documents for 3

people j, k and h. Their network and corresponding adjacency matrix are in Figure 2.2:

j

hk

0 1 1
1 0 0
1 0 0

j k        h

j

k

h

Figure 2.2: Example of the network and corresponding adjacency matrix with three people. Suppose we
have three people j, k and h, and person j is the common friend of the other two while person k and person
h do not know each other.

For one document, for each pair j and k, we generate a count Poissjk(µ), and for each person j, we

generate a noise Poissj(ε). Then the total count for each person in the document will be:

Person j Poissjk(µ) + Poissjh(µ) + Poissj(ε)

Person k Poissjk(µ) + Poissk(ε)

Person h Poissjh(µ) + Poissh(ε)

We will repeat this step until we have n documents. In the first simulation, we let n = 2000, which is a

similar number of documents for 400 people as in the SDFB study. We then generate 10 different document-

by-person matrices with this simulation framework and compare the precision and recall for each model. In
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the second simulation, we also try to compare the computing time on local Poisson graphical model and

Gaussian Graphical model when the n and p are increasing.

2.5.2 Simulation results

We first compare the results in the first two network when there is no extreme cases with the “popular”

group. We compare through the AUC, which represents the overall ROC performance, and the precision and

recall of the best model. The AUC calculation is self-implemented by calculating the 20 rectangles under

the curves. The best model is selected as the one with highest sum of precision and recall, where precision

and recall are defined as

precision =
True Positive

True Positive + False Positive
recall =

True Positive

True Positive + False Negative
. (2.7)

The result for the random network is given in Figure 2.3 and the result for social network is reported in

Figure 2.4. It seems that the Local Poisson graphical model tends to perform better with metrics on precision

and recall for both cases. If we value equally on precision and recall, local Possion tends to give us the better

reconstruction of the network. However, notice that the difference between the Gaussian Graphical model

and the local Poisson model is not large. In fact, in the social network, Gaussian graphical model tends to

perform slightly better on the AUC.

AUC Best model

GGM LP PLN GGM LP PLN
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0.82
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Figure 2.3: Left: The AUC for the GGM, the LP and the PLN on random network with high degree nodes
over 10 runs. Right: The best average of precision and recall for the GGM, the LP and the PLN on the
random network.
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Figure 2.4: Left: The AUC for GGM and LP on social network over 10 runs; Right: The best average of
precision and recall for GGM and LP on social network over 10 runs

Considering the fact that the current simulation scale is much smaller than actual SDFB data scale, we

have also considered the computational complexity to understand how the data size will affect the model’s

performance. In the current simulation, the Poisson Log-normal is much more time consuming than the

other two models thus makes it harder to be applied on larger data. Therefore we no longer consider it

unless with a more efficient estimation method. The average time costs for each run is listed in Table 2.2.

Model GGM LP PLN
Time (mins) 3.29 ± 0.12 7.77 ± 1.63 275.54 ± 36.83

Table 2.2: Average time cost for each run in the simulation.

2.5.3 Comparing the Gaussian and local Poisson graphical model

From the previous simulation, it seems that if we only want to select one estimated network when we care

equally about precision and recall, we may choose the Local Poisson Graphical model. However, the AUC

of the local Poisson graphical model is not always the best. In order to understand what features in the

network lead to the difference in performance, we add another two networks to the simulation.

The third network is a scale-free network. When evaluating the degree distribution on the first two

networks, we realize the ranges of the degree distribution are pretty similar. Even though the degree

distribution for the social network is skewed left but there are no individuals with a super high degree.
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When evaluating a similar size sub-network on SDFB, it seems that even within the sub-network, we may

have some people with degree near 30 while in the first two simulated networks, the maximum degree is less

than 15. Therefore, it seems that in the simulated social network, we are still lacking some people with a

higher-than-average degree. Therefore, we generate a scale free network with linear preferential attachment

which leads to a network with 464 nodes and 1386 edges. The degree distribution for the scale free network

and the previous two networks are in Figure 2.5. We can see the third network tends to have a heavier tail

on the degree distribution than the other two.

social random scale

0 20 40 0 20 40 0 20 40

0

50

100

150

co
un

t

Figure 2.5: The degree distribution of the three networks in the simulation.

Another feature we have considered the clustering patterns in the network. Instead of having a random

network with one major component, now we generate a network consists with four equal size components,

which represents four clusters in the network. The size of the network is the same as previous random

network, with 464 nodes and 1164 links.

The result for the scale-free network is given in Figure 2.6 and the result for random network with clusters

is in Figure 2.7. For the two networks, the best average of precision and recall are always better for the local

Poisson graphical model, which is consistent with the previous two simulations in subsection 2.5.2. When

the network has some people with extremely high degree, like in the scale-free network, the local Poisson

graphical model tends to perform better than the Gaussian Graphical model. However, if there exists clear

cluster patterns, the performance of the two models in terms of AUC are similar.

In general, it seems that the existence of high degree nodes does affect the model performance, and if

there is no clear cluster patterns in the network, the local Poisson model tends to perform better. Also, as a

global model, the computational complexity of Gaussian Graphical model may be affected by the increasing

size of data. Therefore, for the rest of the thesis, we will focus on and extend the local Poisson graphical

model.
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Figure 2.6: Left: The AUC for the GGM and the LP on scale-free network degree nodes over 10 runs;
Right: The best average of precision and recall for the GGM and the LP on scale-free network degree nodes
over 10 runs
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Figure 2.7: Left: The AUC for the GGM and the LP on random network with clusters over 10 runs; Right:
The best average of precision and recall for the GGM and the LP random network with clusters over 10
runs.
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Chapter 3

Covariate-dependent link penalization

There is no doubt that with the Local Poisson Graphical model, the SDFB project contributed a rich resource

to support humanities research on early modern Britain. However, given this auspicious start, there is room

for improvement. As we have stated in Chapter 1, homophily theory indicates that similar individuals are

more likely to connect to each other than the dissimilar ones (McPherson et al., 2001). Even though with

free-format text data like in biographies, in general it is hard to extract covariate information, the ODNB

does provide us with a list of covariates for each person with a biography listed. The covariates do not

represent all the information in the biography but we can start from there to think about how to incorporate

that information into the model. In Chapter 4, we will discuss how to generate covariates directly from the

text.

The idea to incorporating additional information into the Lasso regression model is not new. Yuan and

Lin (2006) proposed group Lasso to add penalties to groups rather than individuals. Li et al. (2015) extended

this method to a multivariate sparse group Lasso to incorporate arbitrary and group structures in the data.

Their model provided a unique penalty for each node but also include a penalty for each group where

the groups could overlap and even be nested. Zou (2006) proposed the adaptive Lasso which uses initial

coefficient estimates without regularization to inform starting penalty weights. However, these papers did

not include approaches for incorporating additional information into the penalties outside of group structure.

On the other hand, Boulesteix et al. (2017) proposed IPF-Lasso which assigns different penalty factors to

all independent variables in their model that are a function of external information, and use cross validation

to select penalty parameters based on model performance. In a similar vein, Zeng et al. (2020) use the

Bayesian interpretation of the penalized regression, re-formulating Lasso regression as a Bayesian model.

However, these approaches have not been implemented in the Poisson case, which involves different estimation

challenges.
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In this chapter, we first explore and extend both Boulesteix et al. and Zeng et al.’s approaches to the Local

Poisson Graphical Lasso model in the context of the SDFB project. We will (1) show how to incorporate

the node-wise covariates and information into the network model’s penalty factors, (2) identify two potential

methods for estimating penalty factors for potentially a large number of covariates (greedy approach and

Bayesian approach), and (3) show how the inclusion of additional information into penalty estimation can

significantly improve precision and recall, and may even help us to understand how the covariates affect the

linking probabilities.

Next, we will modify Zeng et al.’s approach with a Laplace approximation which will decrease the

computational complexity. This approach is promising in case one wants to fit a large data set. We

will compare the Laplace approach with the double approximation method on model performance and

computational complexity. Finally, we consider the effects of coefficient constraints in the model. In SDFB,

all the links with negative coefficients are removed post-modeling since only positive coefficients indicates

two people are mentioned together. We explore how the results change if we include this process into the

model itself.

3.1 Including covariate information with penalty factors

We need a model to learn networks from text data that incorporates more information from the text than

just the co-mentions. When adding additional covariates to our network model, there are several factors

we need to consider. First, the model should be flexible enough to include the large number and variety

of covariates available in historical text data. Even though the information provided in the SDFB data

only includes people’s name, birth/death year and a sentence to address people’s historical significance, we

expect there may be other text data coming in, like people’s occupation and education. Among the available

information, having a common last name is a strong indication that people belong to the same family, and

thus should be useful in identifying the links. Birth/death year is also important since we are only interested

in the physical social relation, like whether two people knowing each other or not. Historical significance,

even though it is currently given in free format text (e.g. occupation and social identity) which also helps

us to identify relationships. Each of these variables should be treated as at least one covariate in the model,

and sharing both last name and occupation likely has a different impact on a possible relationship than just

sharing last name. Moreover, covariate comparisons should not be restricted to just binary, e.g. match vs

non-match, since the numerical information on distance and similarity may also be important to affect the

linking probability.

Here we extend the Local Poisson Graphical Lasso model with a multiplicative factor for the penalty

term that depends on individual covariate information inferred from the text. We start with the case of
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binary covariates. For person j, we define the covariate matrix Zj ∈ {0, 1}p×m, with m covariates, by

Zjkh =

1 if person j, person k have an equal value for covariate h,

0 otherwise.

(3.1)

We here consider binary-valued matrices Zj , but the approach proposed in this paper is also applicable

to real-valued covariates. Examples of these include last name similarity and last name or social group

commonality scores. In this case, vector Zj would no longer be binary, but would also contain continuous-

valued similarity scores. For example, if we want to account for misspelling when we are comparing the last

names, instead of considering whether person j and person k have exactly the same last name, we can use

their last name similarity, e.g., the Jaro-Winkler similarity the last names of person j and person k (Winkler,

1990). See Chapter 4 for a more detailed discussion of continous covariates.

For each covariate we include a different penalty factor. Thus, for each person j, the penalized Lasso

estimators are given by

Θ̂j = arg max
Θj

n∑
i=1

[
yij(yi,6=jΘ 6=j,j)− eyi, 6=jΘ6=j,j

]
−
∑
k 6=j

|ρkjΘkj | with log(ρ 6=j,j) = Zj∗α,

(3.2)

where Zj∗ is the matrix Zj with the jth row taken out and prefixed by an all-one column vector and

α ∈ Rm+1 denotes the penalty factor. The first element of α is α0, an intercept controlling the overall

shrinkage. If two individuals k and j share a common value on a covariate h, the penalty for parameter

Θjk, indicating the link between them, is eαh times the overall penalty. Therefore, if having covariate h

in common makes two people more likely to be connected, then αh will be negative. Otherwise, it will be

positive.

To illustrate this setup, suppose we have two covariates – last name and occupation – and consider the

model for the name mentions Yij of Francis Bacon (person j) in document i. The p× 2 covariate matrix Zj

indicates for the p individuals in the data whether they share their last name and occupation with Francis

Bacon. An example of this matrix is shown in Table 3.1.

Matrix Zj∗ equals matrix Zj , but with the row of Francis Bacon taken out and prefixed by an all-one

column vector. The penalty factor in this case is given by α = (α0, αln, αoc), where α0 is the penalty

intercept and αln and αoc are the penalty factors corresponding to sharing a last name and sharing an

occupation, respectively. Their effects on the penalty for parameter Θjk are given in Table 3.2. Notice

that the signs of the penalty factors indicate how the covariates affect the linking probability. If the sign
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is negative, then sharing the covariates lead to a decrease on the penalty thus making two people are more

likely to be connected. The scale of the penalty factors indicate the scale of the effects.

Birth and death date are covariates that deserve special treatment in this framework, since if two

individuals were not alive at the same time, they could not have had a social connection, that is the two

people cannot have known each other personally. To address this, Warren et al. (2016) removed the links

between people who were not alive at the same time post-network estimation. Given our penalty factor

structure, we can instead include birth and death year information directly into the model. We set the

penalty factor for the lifespan overlap covariate to infinity and so do not link people with non-overlapping

birth and death years. Including infinite penalties into the model serves the same purpose as post-modeling

removal of ‘impossible’ links, but will largely decrease the computational complexity since it deceases the

dimension of the predictors during the estimation.

Once we know the values of the penalty factors, we can solve the optimization problem in Equation 3.2.

For each person j, we fit a Poisson regression model including an L1 penalty to enforce sparsity. We estimate

model parameters via penalized maximum likelihood using cyclical coordinate descent, as implemented in the

R package glmnet (Friedman et al., 2010). This method consecutively optimizes the objective function given

as part of expression (3.2) over each parameter while keeping the others fixed, and cycles until convergence.

After estimating the edge parameters Θjk, we only interpret positive estimates as an indication of the

existence of a link, as proposed by Warren et al. (2016). A negative Θjk would imply that if a document

mentions person j more it would mention person j less:this is not indicative of a relationship between persons

j and k. Also, note that both Θjk and Θkj reflect the relation between persons j and k. Here, we adopt the

“OR” rule, meaning that after estimating the edge parameter vectors for persons j and k, we say that there

is a social tie between j and k when at least one of Θ̂jk and Θ̂kj is positive. The “AND” rule would require

both Θ̂jk and Θ̂kj to be positive to claim a social tie, likely resulting in higher specificity, but lower recall.

The “OR” rule can avoid missing links due to collinearity. For example, if two people’s mentions are highly

correlated, like a couple sharing highly similar social relations, when their mentions are both predictors in

the model, it is possible that the Lasso model will only choose one of their coefficients to be positive while

Same last name Same occupation
as Francis Bacon as Francis Bacon

Nicolas Bacon 1 1
Anne Bacon 1 0
Francis Bacon 1 1
Walter Raleigh 0 1
Queen Elizabeth I 0 0

...
...

...

Table 3.1: Example excerpt of covariate matrix Zj , when j refers to Francis Bacon.
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Person j and k... Penalty ρjk

share no common covariate eα0

only have the same last name eα0+αln

only have the same occupation eα0+αoc

share both last name and occupation eα0+αln+αoc

Table 3.2: Lasso penalty parameters ρkj as in (3.2) for parameters Θjk in a model with penalty factors
depending on last name and occupation.

forcing the other one to be zero. Using the“OR” rule can help identify the missing links since each link has

two chances to be picked from both directions.

Therefore, estimating the value of penalty vector α is essential for determining the edge parameters. In

the following two sections, we discuss two approaches to estimate the penalty vector:using greedy search

(Section 3.1.1) and using the reformulation of Lasso regression in the Bayesian framework (Section 3.1.2).

3.1.1 Greedy approach

One way to estimate the penalty factor α is by defining a grid of penalty parameter values and evaluating

the corresponding models, selecting the values that minimize the prediction error, the mean square error

(Boulesteix et al., 2017). It is also possible to use other metrics like AIC or BIC. However, this approach

is generally computationally feasible only when the number of covariates is small (say, no more than four).

Greedily searching the parameter space allows for inclusion of more covariates. Our proposed greedy

algorithm for α is described in the following; the pseudo code is give in Appendix A1. Starting with all

αh = 0, i.e. no penalty adjustment, the algorithm first iterates over all covariates in random order. For each

covariate h and a gridded range of pre-specified αh values, we use cross-validation to choose the baseline α̂0

(holding all other αh penalty parameters fixed) and calculate the corresponding MSE. We then choose the

α̂h corresponds to the lowest MSE. After randomly iterating through all covariates, the algorithm repeatedly

randomly iterates through all covariates again, looking for possible updated α̂h values, stopping when no

further αh tuning leads to a decrease in MSE.

To use this algorithm, we need to specify the search range for αh and the step size d, which is the minimum

incremental value for each step. We recommend starting with a search range for αh such as [−1.2, 0.5] (values

outside that range have diminishing impact on the multiplicative factor value) and a relatively large step

size d (e.g., 0.1). The search range can be enlarged if the margins are hit during the initial estimation.

Decreasing the step size d can of course lead to a more fine-grained solution but will depend on any present

computational constraints. We could also choose the search range [an, bn] using prior information, such as

which covariates are expected to be influential and approximately how they might affect the chance of two

individuals to be connected. For example, if we know a covariate h is likely associated with an increased
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chance of a link, we could initially limit the search range of αh to the negative numbers. This type of search

range adaptation can also decrease the number of algorithm iterations and computational time.

3.1.2 Bayesian approach with Laplace prior

Lasso estimates can equivalently be derived as the Bayesian posterior modes under independent Laplace

priors for the parameters to which shrinkage is applied (Tibshirani, 1996). Therefore, we can use the

Bayesian framework to estimate the penalty parameters α. To this end, we complement model at Equation

(3.2) with a Laplace prior for the edge parameters:for k 6= j,

Θkj ∼ Laplace (0, bkj) , bkj ∝ ρkj , log(ρ 6=j,j) = Zj∗α. (3.3)

Notice that α only influences the penalties on the edges and not the node parameters θj . We will specify

the exact form of bkj later in this section. We here extend work by Zeng et al. (2020) on incorporating

covariate-dependent penalty factors in the Lasso term in linear regression and linear discriminant analysis

(LDA) models to the Local Poisson Graphical Lasso model.

We use an empirical Bayesian approach to estimate the penalty parameters α. First, for each person j,

we approximate the marginal log-likelihood of α, denoted by lj(α), marginalizing over the coefficients Θ6=j,j .

The estimate of α is given by

α̂ = arg max
α

p∑
j=1

lj(α). (3.4)

Note that we maximize the sum of the marginal distributions, because we need a global penalty factor

over all people instead of for one specific person j. Since the lj(α) are not convex, we use a Majorization

Minimization procedure (Zeng et al., 2020) to estimate α̂. We then use the α̂ as input for the penalized

maximum likelihood estimation of the model, as summarized at the Equation 3.2.

Since the Poisson regression likelihood and the Laplace prior are not conjugate pairs, there is no closed

form expression for the marginal likelihood of α. We here present a general outline of how we approximated

lj(α), approximating both the Poisson regression likelihood and the Laplace prior – see Appendix A.2 for

the full derivation.

First, we apply the log-gamma transformation to approximate the Poisson regression likelihood by a

multivariate Gaussian distribution (Chan and Vasconcelos, 2009). In order to avoid log(0) in our derivation,

we add 1 to all the observed outcomes yij , that is, define y∗ij = yij + 1.

Second, we assume Θkj follows the Laplace prior Θkj ∼ Laplace(0,
ρkj
2σ2
j
), where σ̂2

j =
∑n
i=1

1
y∗ij

is the

estimated variance in Gaussian distribution approximating the Poisson likelihood. We approximate this
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prior by a normal distribution with the same variance (Zeng et al., 2020), yielding

Θ 6=j,j ∼ N (0, V j), (3.5)

where V j ∈ R(p−1)×(p−1) is a diagonal matrix with V jkk = 2σ2
j exp−2Zj∗k α, in which Zj∗k is the kth row of the

covariate matrix Zj∗. Combining the two, we can approximate the log-likelihood of α for person j and find

− lj(α) ∝ log |Cα|+ log(y∗j )>C−1
α log(y∗j ), (3.6)

where Cα = σjI
2 + y 6=jV

jy>6=j , y6=j denotes data matrix y excluding the jth column, and log(·) is applied

element-wise to y∗j = (y∗1j , . . . , y
∗
nj)
>. Integrating this in expression (3.4), we can estimate the penalty

factors.

3.2 Application of the greedy and Bayesian approaches

3.2.1 Simulation

We use the same 10 simulated data sets corresponding to the simulated social network as discussed in Section

2.5.1. We first apply both Greedy and Bayesian approaches to estimate the penalty factor α and then use

the α to reconstruct the network. We anticipate all α should be negative, leading to a smaller penalty if two

people share the same last name or are in the same group.

Figure 3.1 shows the distributions of |α̂| for the greedy and Bayesian approach. All α̂ are negative,

indicating if two people have the same last name or social group membership, they are more likely to be

linked. (In general, we plot the magnitudes to allow for easier comparison, particularly when we have both

positive and negative α̂h.) The larger the absolute value of |α̂h|, the stronger the covariate effect is on the

penalty. Here we see that the Bayesian approach gives more similar α̂ values across the ten runs, correctly

identifying last name as the most important covariate and group B as having a slightly stronger effect than

the other two groups. The greedy method gives α̂ values that are more varied and do not reflect the network

design. For example, although last name has a non-zero effect, it is not substantially larger than the other

α̂h for the social groups. One potential reason for the consistency differences is that the Bayesian approach is

trying to optimize the log likelihood of α while the greedy algorithm tries to optimize the model performance

based on the MSE which may find multiple combinations of |α̂h| that lead to similar results. For example,

if two people share the same last name and the same social group, a smaller penalty on either last name or

social group or both can help with recovering the link.

For each generated document by person matrix, we also use the α̂h for both the greedy and Bayesian

approach to estimate the network and calculate the corresponding precision and recall. We compare these
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Figure 3.1: The distribution of |α̂h| estimated by the greedy and Bayesian approaches over ten runs. Both
approaches generally pick the last name as the most important covariate. The Bayesian approach tends to
give more consistent values while the greedy approach estimates have a larger variance.

values to those for the model without penalty adjustment. Figure 3.2 shows the resulting distributions for

precision, recall, and the average of the two. We see that the model with penalty adjustment has improved

precision, regardless of estimation approach, while the recall for all three options remains similar. The slight

improvements in the average of the two follow.
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Figure 3.2: The distribution of precision and recall for the model without penalty factor, with penalty
factor estimated using the greedy approach, and with the penalty factor estimated using the Bayesian
approach. With penalty adjustment, both estimation approaches show an improvement in precision without
a substantial change in recall. There is no significant difference on the average of precision and recall between
the two estimation approaches.

Now examining the predicted network structure, we see that all three model/estimation approaches

overestimated the true number of links in the original simulated network (1164). On average across the ten

document by person matrices, the model without penalty adjustment detects 1662.1 links. With penalty

adjustment, the greedy estimation approach averages 1434.7 links, and the Bayesian approach averages

1358.1 links, both an improvement over the original model.

We then take a closer look at the estimated network structure for our ten family, 100 people sub-

community (Figure 2.1) for two of the simulated document by person matrices. For Run 10 (top row of

Figure 3.1), the greedy and Bayesian estimation approaches give similar |α̂h| for last name, but the greedy

approach gives slightly larger |α̂h| values (in magnitude) for the social group covariates. Therefore, we

expect more links between people with the same group membership when using the estimates from the

greedy approach compared to those of the Bayesian approach.

The relevant estimated networks for Run 10 can be seen in Figure 3.3 and corresponding number of links

are in Table 3.3. We can see that for the network estimated by the model without a penalty adjustment,

the false positive links exists across the whole network but with for the network estimated with penalty

adjustment, both the number of false positive and false negative links decreases. The predicted networks

with α̂ from the greedy and Bayesian approach are similar, but there are slightly more false positive links
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cross group A and B for this sub-community with α̂ from the Bayesian approach and more false positive

links within group C for the greedy approach. Note that this is in line with the observation that the absolute

values of group-related penalties factors, for Run 10, are much larger for the greedy approach for group

B and C. Thus greedy approach tends to pick up more within-group links while Bayesian may picks more

cross-groups links.

We also examine Run 1 where the |α̂| are quite different between the two estimation approaches (see

Figure 3.1). The greedy method tends to give a much smaller penalty change for last name but a larger

penalty change on social groups A and C, although we do note that the |α̂h| for group B is incorrectly

estimated to be smaller than those for groups A, C. The corresponding predicted networks are depicted

in Figure 3.4 and the corresponding number of links are in Table 3.4. The networks corresponding to the

penalties estimated by the greedy and Bayesian approach are more dissimilar for for Run 1 than for Run

10, like the penalties themselves. Compared to the Bayesian method, the absolute value of group A penalty

factors are larger for the greedy approach, leading to the detection of more links between people within

group A in this subset.

In summary, our simulation study gives some evidence that including covariate information through

penalty adjustment can improve the performance of Local Poisson Graphical Lasso model in the context of

estimating social networks from co-mention/count data derived from text. With respect to differences in the

two estimation approaches, we see that the Bayesian approach tends to give more consistent results; however,

we note that, given its global estimation and computational tasks (e.g. matrix inverse calculations), it will

be slower than the greedy algorithm.

3.2.2 Six Degrees of Francis Bacon:1500-1575

We illustrate the model proposed in this Chapter by an application to part of the data used in the SDFB

project (Warren et al., 2016), focusing on the period between 1500 and 1575. We compare the results of

the models with and without covariate-dependent penalty factors. We consider the interpretability of the

penalty factors, how they affect which network links are estimated, and approximate the precision of the

models with and without penalty factors using Wikipedia as a reference.

We first extract all documents from the SDFB database that contain references to individuals who were

born and passed away between 1500 and 1575. This results in 2003 documents on 420 people. Over 83% of

True Positive False Positive False Negative

No penalty factor 129 20 29
Greedy 137 12 21
Bayesian 139 12 19

Table 3.3: The number of true positive, false positive, and false negative links for Run 10.
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Simulated network
Predicted network 

without penalty adjustment

Predicted network 
with alpha from Greedy method

Predicted network 
with alpha from Bayesian method

Figure 3.3: Predicted ten-family community network for Run 10 for the model without penalty factor,
with the penalty factor estimated using the greedy approach and with the penalty factor estimated using the
Bayesian approach. Grey line:True Positive; Blue line:False Positive; Red line:False negative. Node color:last
name; Node shape:social groups. In Run 10, the α̂h are similar for last name; the greedy approach gives
slightly higher values for group covariates. We see fewer false positives using the greedy approach.

them (394) are male, about 8% (34) are female, and for the rest the gender is unknown. Women who appear

in these data are usually associated with men in the data through family or marriage.
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Simulated network
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Predicted network 
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Figure 3.4: Predicted ten-family community network for Run 1 for the model without penalty factor,
with the penalty factor estimated using the greedy approach and with the penalty factor estimated using the
Bayesian approach. Grey line:True Positive; Blue line:False Positive; Red line:False negative. Node color:last
name; Node shape:group membership. In Run 1, the greedy approach tends to give a smaller penalty on
last name but a larger penalty on social groups which gives us more false positives and a few fewer false
negatives within social groups.

Apart from last name and birth and death year, we here consider three other covariates, related to

individuals’ occupation. We distinguish three groups:the Writer group (the occupation variable in the

data contains the words “poet”, “writer” or “author”), the Church group (occupation contains “church”,
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True Positive False Positive False Negative

No penalty factor 121 17 33
Greedy 139 21 19
Bayesian 138 14 21

Table 3.4: The number of true positive, false positive, and false negative links for Run 1.

“religious”, “bishop” or “catholic”), and the Royal group (occupation contains “royal”, “king”, “queen” or

“regent”).

Table 3.5 includes some descriptives of the data. Since we have limited the data to people who were

alive in a period of 75 years, the lifespan of most pairs of people overlapped. Compared to the simulated

data, the proportion of pairs with shared last name is much smaller. This indicates a more diverse last

name distribution (the most common last name “Stewart” is the last name of royalty during this period and

appeared for only 9 individuals, while other last names appeared for no more than 5 individuals), but also

suggests that as long as two people shared the same last name, the chances of them belonging to the same

family and knowing each other are high. Among all occupations that were listed in the data, the writer and

the church-related occupations are most popular. Individuals with a royal-related occupation tend to be

closer connected than other people, which is why we consider this group, even though not that many people

are part of it. People can have multiple group membership across the three groups. Five individuals are

part of more than one group, like Roger Ascham, who was an author and a royalty tutor, and John Seton,

who was a Roman Catholic priest as well as a writer on logic.

Table 3.5: Descriptive statistics of the SDFB data on people from the period 1500–1575.

Group Number of people

Writer 40
Church 49
Royal 19

In multiple groups 5

Number of pairs

Same last name 117 (0.13%)
Lifespan overlaps 81625 (92.8%)

We estimated the penalty parameters α using the Bayesian approach outlined in Section 3.1.2 since the

Bayesian approach tends to give more consistent and reasonable estimation on the α. We find that

α̂lastname = −1.853 α̂writer = 0.369

α̂church = −1.262 α̂royal = −0.801.
(3.7)
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From the size of the penalty factors, the last name is the most important covariate, indicating that if two

people share the same last name, this is a strong indication that they may know each other. It is interesting

that not for all groups the penalty factor is negative:if two people are both a writer, they are less likely to

be connected. It is possible that being a writer is an occupation for which little collaboration is required, so

that the writers did not socialize much with their peers. On the other hand, if two people are both related

to the church or the royal family, this increases their chance of being linked.

Next, we compare the networks generated by the Local Poisson Graphical Lasso model with and without

penalty adjustment. The overall penalty level for both models is the one minimizing the MSE. For the

model without penalty adjustment, the estimated network consists of 156 links and for the model with

penalty adjustment, the estimated network consists of 135 links. Although they partially overlap, the two

networks have also contain many different links. There are 40 links that are only picked up by the model with

penalty adjustment picks up and 61 links that are picked up only by the model without penalty adjustment.

How do the penalty factor values α relate to the difference between the two estimated network? To answer

this question, we consider the percentage of links estimated by the two that had covariates in common (see

Table 3.6).

Table 3.6: Numbers and percentages of links estimated by the models with and without penalty adjustment,
for whom the corresponding people had a common covariate.

With penalty Without penalty
Covariate adjustment model adjustment model

Last name 19 (8.9%) 16 (5.8%)
Writer group 4 (3.0%) 4 (2.6%)
Church group 2 (3.0%) 6 (5.2%)
Royal group 8 (5.9%) 4 (2.6%)

As expected based on the negative penalty factor estimate for the last name and the royal group, the

model with penalty adjustment picks up more links between people with the same last name or both related

to the royal family. To be more specific, the model with penalty adjustment detects four additional links

without losing the seven links that were estimated by the model without penalty adjustment model. However,

the proportion of links between individuals from the writer or the church group does not differ much between

the two models. Both models select one link between two people in the writer group. The model with penalty

adjustment even picks one link less within the church group, even though the negative penalty factor αchurch

indicates that links between people within the church group are penalized less. Note that the difference in

within-group estimated links only contributes a small portion of the difference among the estimated networks.

This suggests that changing the penalty on the links between people within the same groups also affects the

links that are not within those groups.

34



Finally, we approximate the precision of the estimated networks by looking for evidence for links on

Wikipedia. For a link involved with two people, I looks for the Wikipedia pages for either person and as

long one of the persons’ Wikipedia document contains the other one’s name, we consider this as evidence

that a link exists. Of the 135 links that are picked by the model with penalty adjustment, we find evidence

for 62 (45.9%). Of the 156 links that are picked by the model without penalty adjustment, we find evidence

for 67 (42.6%).

There are 95 links overlapped in both groups. For the 61 links that were only detected by the model

without penalty adjustment, we notice that some people show up repeatedly. George Wishart, who is listed

as “evangelical preacher and martyr” and Thomas Wynter, who is listed as “clergyman” should both belong

to the church group. However, when we first defined the group, we did not pick up words like “preacher”

and “clergyman” to include the in the Church group, which causes the model with penalty adjustment did

not pick up the links for them and also may lead to the lower linking rate in the church group in Table

3.6. This indicates it is important to systematically define the groups with all the synonyms considered and

classified since people may use different words to indicates similar meanings in the literature work. On the

other hand, for the 40 links that were only detected by the model with penalty adjustment, we also have

some people show up repeatedly, like Katherine Seymour, who belongs to the royal family, which related to

decreasing penalty for the royal family member. We also have Margaret Roper and Nicholas Udall in the

group, who are authors closely related to the royal family.

There is no doubt that an in-depth analysis of these results would require the help from experts on British

history, but from these preliminary analyses, it seems that the model with penalty adjustment yields a more

precise and conservative estimate of the relationships.

3.3 Additional approach:Laplace approximation

Even though the simulation in Section 3.2 indicates that our greedy approach and Bayesian approach can

estimate the penalty factors and thus improve the network reconstruction. Both of them are time-consuming

thus hard to apply to larger data set. Therefore, in this section we explore whether there exists a more

efficient way to estimate the penalty factor. For the Bayesian approach, we use the double approximation

to model both Poisson regression likelihood and Laplace prior, since they are not conjugate pairs. However,

approximating both of them to Gaussian ignores the Poisson nature of the data and using the L1 norm to

replace the L2 norm did not enforce model selection during the estimation of α. Therefore, we decide to

take an additional way to estimate objective function in the Bayesian approach.

Recall that in the Bayesian approach in Section 3.1.2, for a local case with a specific person j, we need

to estimation marginal likelihood of α, which is
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Lj(α) =

∫
Rp

n∏
i=1

p(Yij | Yi,6=j = yi,6=j ,Θj)
∏
k 6=j

p(Θkj | α)dΘj

=

∫
Rp

n∏
i=1

1

y∗ij !
eλ(yi, 6=j)y

∗
ije−e

λ(yi, 6=j)
∏
k 6=j

eZ
j∗
k α

4σ2
j

e−
exp(Z

j∗
k
α)

2σ2
|Θkj |dΘj

(3.8)

Instead of approximating both the Poisson regression likelihood and the Laplace prior in Equation (A.11)

with a Gaussian distribution, we now use the Laplace approximation to directly approximate the integral.

We will compare the network reconstruction performance (measured by precision and recall) of the Laplace

approximation to double approximation.

The Laplace approximation is a technique used to approximate integrals of the form
∫
eMf(x)dx. Usually,

the method assumes that f(x) is a twice-differentiable function. Notice that in our case, the Laplace prior

is not differentiable when x = 0. We attach the proof that why the Laplace approximation still can be used

to approximate the integral in Appendix A.3. Moreover, to simplify the calculation, we adopt another form

of Laplace approximation which was proposed in Butler (2007).

We let

g(Θj) =
1

n

( n∑
i=1

−log(Yij !) + Yi,6=jΘjYij − exp(Yi,6=jΘj)
)
, (3.9)

h(Θj) =
∏
k 6=j

eZ
j∗
k α

4σ2
j

e−
exp(Z

j∗
k
α)

2σ2
|Θkj | (3.10)

where the function g(Θj) is maximized at Θ∗j . As g(Θj) is the Poisson regression log-likelihood, Θ∗j is the

MLE when there is no regularization. The Laplace approximation yields

Lj(α) =

∫
Rp
eng(Θj)h(Θj)dΘj

≈ (
2π

n
)(p/2)

eng(Θ
∗
j )h(Θ∗j )

| −H(g(Θ∗j ))|1/2
as n→∞

(3.11)

where H(·) denotes the Hessian. To calculate the exact likelihood is time consuming but notice that we

only need to maximize the likelihood to achieve the penalty factor α. The only part in Equation (3.11) that

contains α is h(Θ∗j ). Therefore, to estimate α̂, we only need to maximize

h(Θ∗j ) =
∏
k 6=j

e(Zj∗k α)

4σ2
j

e−
exp(Z

j∗
k
α)

2σ2
|Θ∗kj | (3.12)
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with respect to α. Notice that Equation (3.12) is only for one specific person j. We need a global α that

optimizes every local likelihood. To get a global estimate for α, we take

arg max
α

l(α) = arg max
α

p∑
j=1

log(Lj(α))

= arg max
α

p∑
j=1

log(
∏
k 6=j

exp(Zj∗k α)

4σ2
j

× exp(−
exp(Zj∗k α)

2σ2
j

|Θ∗kj |)) (3.13)

= arg max
α

p∑
j=1

(log(
1

4σ2
j

)p−1 +
∑
k 6=j

(Zj∗k α−
exp(Zj∗k α)

2σ2
j

|Θ∗kj |)) (3.14)

= arg max
α

p∑
j=1

∑
k 6=j

(Zj∗k α−
exp(Zj∗k α)

2σ2
j

|Θ∗kj |) (3.15)

This is a convex function that can be optimized directly.

3.3.1 Simulation

We apply the same simulation setting as discussed in Section 3.2. We first observe the α̂ estimated with

Laplace approximation and the results for 10 runs are listed in Figure 3.5. Almost always, the method
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Figure 3.5: The distribution of |α̂h| estimated by the Laplace approximation over ten runs. The approach
consistently pick the last name as the most important covariate. The approach also picks group C as the
most important group.
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selects family name as the most important covariate. However, compared to Figure 3.1, it incorrectly picks

a smaller group with medium density, Group C, to be the most important social group, and this behavior is

consistent.

Even though the method may fail to estimate the right α value it may still lead to an improvement in

precision and recall. The best precision and recall estimated in 10 runs are listed in Figure 3.6 The Laplace

Precision Recall Average
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Figure 3.6: The distribution of precision and recall for the model without penalty factor, with penalty
factor estimated using the Laplace approach, and with the penalty factor estimated using the Bayesian
double approximation approach. Laplace approximation tends to pick a relatively smaller network as the
best network, but on average, it is significantly better than the baseline without penalty factors but still
worse than the double approximation.

approximation tends to pick a relatively smaller network as the best network, giving a higher precision

but lower recall. On average, it is better than the baseline but still worse than the double approximation.

However, the estimation is much faster (approx 1 hr vs 6 hrs), since double approximation needs to repeatedly

estimate coefficients and α until convergence while the Laplace approximation only estimates Θ∗ once.

We also try to understand why the Laplace approximation favors group C, the median density group

with the fewest number of links. Therefore, we perform a few additional simulations to see how the α̂ varies

in different cases.

First, we decrease the number of groups to be two and let 75% of the people belong to group A and

25% of the people belong to group B, and 150 links are added to each group besides the random links. We

assume that the α̂ for group B should be always larger than group A since group B is denser. The result is

in Figure 3.7. It seems that in general group B does have a slightly larger scale on α̂ but the difference is

not large.

Next, we check how α̂ changes if the group sizes are the same while the number of links is different. We

let group A and B both have 50% of the total population but add 200 links to group A and 100 links to
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Figure 3.7: The distribution of |α̂h| estimated by the Laplace approximation with 2 groups with equal
number of links over ten runs. The approach predicts group B is slightly more important than group A, but
the difference is minimal.

group B. In this case, we expect that the α̂ for group A should be always larger than group B since group

A is denser. The result is in Figure 3.8. In this case, there is no difference on α̂ estimated for both groups.

Combining this with what we have found in the previous simulation, it seems that the algorithm favors the

group with a smaller size regardless of the number of links within the group.

To verify this idea, we extend the group number to be three and let group A, B, C contains 1/2, 1/3

and 1/6 of the population while 150, 100 and 50 links are added to the groups respectively. The relation

of density of groups should be C ≈ 2B ≈ 4A, thus we expect the scale of α̂ should also follow the order of

CBA with decreasing values. The results are given in Figure 3.9. We find group C with the smallest group

size to be the most important covariate, followed by group A, the one with the largest group size and also

most links, while group B with the middle level of size and links is the least important. In general, it seems

that the algorithm favors the small groups in the network.

Apart from group size and density, we have also considered whether other characteristics of the data may

affect the result. We notice that the α̂ is estimated with Θ∗, the edge coefficients without regularization.

However, for large sparse data, the estimation of Θ∗ may be hard. Therefore, we explore whether the sparsity

of the data may affect the value of α̂. We maintain the group size and the number of links to be the same

as in Section 3.2 but only increase the error and true signal parameter from 0.004 to 0.1 in Section 2.5.1.
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Figure 3.8: The distribution of |α̂h| estimated by the Laplace approximation with 2 groups with equal
number of group size over ten runs. The approach predicts group A and group B are equally important.

Figure 3.10 shows that decreasing the sparsity does not change the order of the scale of α̂, and group C is

still the most important one. Therefore, we can conclude that the sparsity of the data does not affect the

estimation of α.

Another cause we have considered is the independence between groups. In the original simulation setting,

people could only belong to one of the groups. Therefore, the covariate of groups is not independent. Now

we let each person have a 50% chance to be in group A, a 25% chance to be in group B, and a 25% change

to be group C. One person can belong to multiple groups at the same time. Figure 3.11 shows that Group

C is still considered the most important one but the advantages are much smaller than we have seen in

Figure 3.5. It could that with the Laplace approximation, whether the covariates independent do affect the

estimation of the penalty factors.

From the simulation, it seems that the α̂ estimated with Laplace approximation does not directly reflect

the density of the group. Unfortunately, the simulations fail to fully explain the reason. Moreover, there are a

few theoretical reasons why the Laplace approximation may not be a good choice involved with Poisson data.

If the mean of Poisson regression is large then the posterior may not be a Gaussian-like shape. Therefore,

even though the Laplace approximation may be useful for future modeling of large data, we will continue

the thesis using the double approximation.
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Figure 3.9: The distribution of |α̂h| estimated by the Laplace approximation with 3 groups with similar
density over ten runs. The approach predicts group C with smallest group size to be the most important
one, follow by group A, the one with largest group size and also most links while group B with middle level
of size and links is the least important.

3.4 Compare the effects on coefficient constraints

3.4.1 Motivation and setting

In all analyses up to here, we chose to get rid of the negative coefficients as a post-modeling process since if

the edge parameter Θjk is negative, it suggests that if we mention person j more, we are likely to mention

person k less, which does not indicate a relationship between person j and person k. Therefore, one natural

question here is whether we can incorporate this feature into the model. Including this post-modeling step

may provide a more elegant solution but also may affect the links. Therefore, here we explore what happens

if we constrain all the coefficients to be non-negative, and how this changes the α values and predicted links

happens.

We use the social network simulated in Section 2.5.1 as the simulation set, but try to compare the α̂

values and predicted network with and without edge positivity constraints. When estimating the α̂, for the

greedy approach, we fix the order of adding covariates and the fold of cross-validation, thus the change in α̂

should only be caused by the constraints on the coefficients, instead of other randomnesses in the approach.

For the Bayesian approach, we also constrain the edge parameters to be non-negative then to maximize the
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Figure 3.10: The distribution of |α̂h| estimated by the Laplace approximation with 3 groups with dense
data over ten runs. The approach predicts similar distribution of α̂ as in Figure 3.5.

log-likelihood during the estimation. When estimating the edge coefficients, we simply let the lower limits

option in the glmnet package be zero so that the coefficients will all be non-negative.

Once we get the edge coefficients, we also try to compare the difference between the estimated networks.

We explore how different the two estimated networks are and whether two models will pick some specific links

due to the constraints of edge coefficients. For example, do the constraints cause the model to favor links

that are well separated or the links that have mutual connections? Do the constraints cause the model to

pick up more links for important people, ones who have more connections than average? Do the constraints

pick up links to connect an isolated people? To assess these differences, we evaluate the estimated networks

through the following metrics:

• The number of estimated links and the precision and recall, to measure how well the models predict

the network with and without constraints.

• The percentage of common links of the estimated network, to measure how different the two estimated

networks are. For the set of links that are picked up by one model and not the other, are they true

positive or false positive?
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Figure 3.11: The distribution of |α̂h| estimated by the Laplace approximation with 3 groups with
independence over ten runs.

• Average distances and distance distribution of the false positive links which only predicted by either

model: long average distances indicate the model makes mistakes by picking the links that are well

separated. A peak around distance 2 would indicate that the model picks more links to form triangles

in the network.

• Degree distribution for the estimated network and false positive links which only predicted by either

model: For estimated network, the degree distribution of the estimated network should be consistent

with the original simulated network. If not, does the network over- or under-estimate the degree? We

also zoom in to see how the degree of false positive links estimated by both models affect the general

degree distribution.

• Number of false positive links that connect isolated nodes or components in the simulated network. It

indicates whether the constraints will tend to connect the isolated components or not and whether the

constraints will tend to average and even the degree.
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3.4.2 Results

We first compare the α̂. For the greedy approach, the α̂ remain the same with and without constraints. It

shows that having a constraints may not lead to a significant effect on the effects of the covariates. However,

this may also due to the fact that the searching grid of the α̂ is not fine enough. On the other hand, the

α̂ in the Bayesian approach did change. The α̂ values in Bayesian approach are displayed in the Figure

3.12. From Figure 3.12, it seems that the constraints do affect the α̂ values of the Bayesian approach a little

bit. However, the signs do not change and the relative scales are also similar. Therefore, it seems that the

constraints of the coefficients affect the overall penalties more than the covariates’ penalties.

Next we focus on the difference between the estimated networks. The number of estimated links and

precision and recall are given in Figure 3.13 and Figure 3.14. The simulated network has 1164 links, and

all four estimation procedures tend to predict a slightly larger network. The Bayesian approach without

edge positivity constraints on average estimates the largest network but with an edge positivity constraint,

the number of links drops. Compared to the average of precision and recall in Figure 3.14, it seems that

the decreases of links does not lead to an increase in accuracy. Instead of getting rid of the false links, the

edge positivity constraints lead to an missing true links. On the other hand, the greedy approach tends to

give a different result. With edge positivity constraints, the model tends to predict a larger network but the

performance also drops. Therefore, it seems that adding constraints to the model does not lead to recovering

more true links. In conclusion, it seems that the constraints do not lead to the improvement in the model

performance.

Next we try to understand whether there is difference in the estimated networks. The distance distribution

is one of the metrics to indicate the network structure and the distance distributions of data set 1 is given

in Figure 3.15. It seems that all models, Bayesian and greedy, with and without constraints, successfully

capture the true distribution.

Notice that among all the estimated links, approximately 80% are the same thus it may be hard to

capture the difference when we look at the overall distribution. Therefore, we zoom in to see the links

that are predicted by one model but not the other, and where are made mistakes. Figure 3.16 presents

the average distances in the true network for pairs of individuals incorrectly linked by one model but not

the other. For example, the left-most box indicates the average distance in the true network for pairs

of individuals incorrectly linked by the Bayesian model but not the Bayesian model with edge positivity

constraints. The figure indicates that the model without edge positivity constraints tends to pick more

wrong links that are more separated from each other while the model with edge positivity constraints tends

to pick the links with more common friends.

To verify this idea, we also plot the number of false-positive links with a mutual connection in the true

network in Figure 3.17. The number of false-positive links with a mutual connection is higher in the model
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Figure 3.12: The α̂ values in Bayesian approach with and without edge positivity constraints. The actual
α̂ values becomes larger with positivity constraints but the relatively scales are generally the same.
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Figure 3.13: Boxplots of the estimated size of the network. All four estimation procedures tend to estimate
a network slightly larger than the true simulation network. However, for the Bayesian approach, without
edge positivity constraints, picking more links means picking more true links while for the greedy approach,
with edge positivity constraints, picking more links but does not improve the recall.
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Figure 3.14: Boxplots of estimated average of precision and recall. With a edge positivity constraints, the
overall performance, measured by the average of precision and recall, decreases. The constraints hit Bayesian
approach more due to the no longer appropriate approximation of Laplace prior to normal prior during the
estimation.

with edge positivity constraints. Therefore, we can conclude that the constraints model tends to introduce

links to close triangles in the network. In general, if two people are well separated in the true network,

even though the model incorrectly links them, it is easier to be detected compared to the case involved with
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Figure 3.15: The distance distribution of simulated network and estimated network for data set 1. All
models correctly capture the distance distribution in the true simulated network.
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Figure 3.16: The average distances in the true network for pairs of individuals incorrectly linked by one
model but not the other. The model with positivity constraints tends to pick more false positive links with
nodes having shorter distance, while the model without positivity constraints tend to pick more false positive
links with nodes that are well-separated.

”friends’ friends”. If we do want to be conservative about the “friend’s friends” links, we thus probably need

to avoid using the edge positivity constraints.

We also have checked the degree distribution which is depicted in Figure 3.18. In general, the estimated

degree distribution is consistent with the true simulation network. However, notice that all the models tend
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Figure 3.17: The number of false positive links with at least one mutual friend in the true network for 10
runs. The model with positivity constraints tend to pick more false positive links with at least one mutual
friends.

to have a heavy tail on the degree distribution compared to the true simulation network. The largest degree

in the simulation network is 13 while all models have a maximum degree around 30 to 40. The heavy tails

may be related to our assumption with the Poisson model but also may be caused by how we simulated data.

In the simulation process, we assume people have similar chances to be linked and there are no “popular”

people, e.g., a king or queen may naturally connect to more people than average. On the other hand, from

the degree distribution, it seems there is no significant difference in the degree generated by the model with

and without edge positivity constraints.

As we have done in the distance distribution, we have also checked the difference of degree on the link

sets predicted by one model but not the other. The result is given in the Appendix A.4 since there is no

significant difference on the average degree. Therefore, adding the edge positivity constraints should not

affect the overall degree distribution predicted by the local Poisson graphical lasso model.

The last thing we have checked is the number of links that involve at least one isolated node in the true

simulated network. This is a special case in the degree that is not presented in the distribution plots and

boxplots. The number indicates whether the model tries to connect the isolated nodes to be huge components.

The result is also in the Appendix A.4 and again we also did not observe a significant difference between the

various models.

In conclusion, even though including the edge positivity constraints helps us to avoid removing links

with negative coefficients in a post-processing step, it does not help us to improve the overall performance
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Figure 3.18: The distance distribution of the simulated network and the estimated networks. Overall there
is no significant difference on the degree distribution estimated by different model but all the estimated
degree distributions tend to have a heavy tail compared to the true simulation network.

of the network reconstruction, particularly for the Bayesian approach. The edge positivity constraints tend

to introduce more false-positive links and form more triangles in the network.
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Chapter 4

Including continuous covariates

In the previous chapter, we have described how to include binary covariates into the Local Poisson Graphical

Model to improve the accuracy of network reconstruction. However, in some cases, binary covariates may

not be enough to define the relations between people. Therefore for person j, we now define the covariate

matrix Zj ∈ Rp×m, with m covariates, by

Zjkh = distance or similarity between person j and k on covariate h (4.1)

Notice that definition of Zjkh is an extension of the previous definition on the binary case, and Zjkh can also

include a mix of binary and continuous covariates.

The hardest part of the definition 4.1 is about how to define the concepts“distance” and “similarity”. For

some covariates, it is relatively obvious, like the geographical distance or the last name similarity. However,

some other text information may need a further process to convert it into numeric data. In this thesis, we

present two applications of including continuous covariates into the local Poisson graphical lasso model.

4.1 Continuous covariates to deal with name misspellings

The approaches described in Chapter 3 have multiple applications. Besides applying to the historical text

data, like biography to infer the historical social network, it can also be applied to fictional text to infer the

social network in a novel. However, compared to data from a novel, historical text data tends to have a lower

qualities. In most of the historical text data, transcript and misspelling errors are unavoidable. Even in

official documents, sometimes you will have a person’s name with more than one way to spell. For example,

Anthony Ascham is an English astrologer whose last name can also be recorded as “Askham”. Therefore,

it is important to consider applying record linkage techniques, like edit distance or phonetics code into the

modeling procedure.
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Edit distance is a way to quantify how dissimilar two strings (e.g., words) are to one another by counting

the minimum number of operations required to transform one string into the other. Common distances

include Jaro-Winkler and Levenshtein indices. Edit distance can catch a lot of typo errors in a text.

Meanwhile, another source of the spelling error in the historical documents is caused by similar pronunciation.

Therefore, besides only using edit distance to compare two strings, another common approach is to first

convert strings into phonetic codes and then compare the codes. Common algorithms for such conversion

include Soundex and Metaphone.

Recall that in early simulation and real data examples, the last name is always the most important

covariate to indicate whether two people have a relationship or not. So far, we assumed that last name data

are spelled accurate and thus a binary covariate that only indicates whether two last names are the same

or not is enough. Now suppose in the community, there exists some people’s last names are similar, for

example, Baker and Bacon, Walter and Waller. Besides that, there is also a chance that some letters in the

last names accidentally have been switched.

In this case, we assume that adding one round of noise is to randomly select 20% of the last names and

change one letter for each. Two rounds of noise to do the same thing again after the first round. Figure

4.1 shows the distribution of Jaro-Winkler distance on last names, with no noise, adding one round of noise,

adding two rounds of noise, and adding three rounds of noise.
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Figure 4.1: The distribution of Jaro-Winkler similarity of last names for each pair of individual in the
simulation community.

When there is no noise added to the data, there are clear peaks when the Jaro-Winkler similarity is 0 or 1,

which indicates a completely different or exact match. There is also a peak in the middle around 0.5, which

indicates that there exist some similar last names in the community. When the first round of noise is added

to the data, the proportion of exact matches largely decreases. After the second round of noise is added to

the data, not only does the proportion of exactly matched decrease, the proportion of completely different is
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also decreasing, since some letter switches may also make two different strings more similar. After the third

round of noise is added, the proportion of completely different name increases again, while the proportion

of exact matches is still decreasing.

The three rounds of noise are corresponding to how the noise affects the similarity of strings. We would

like to see how different covariates work under different levels of noise. In this simulation, we use three

methods to define the covariates for the last name:

1. Binary comparison on whether two last names are the same

2. First compares the last name pairs through Jaro-Winkler similarity. If the similarity is larger than 0.8,

we consider two strings are matched (coded as 1). Otherwise, it is not matched (coded as 0).

3. Use Jaro-Winkler similarity as a continuous covariate.

The first method is the one we used in the previous simulation. The second method, even though still

defining a binary covariate, includes Jaro-Winkler similarity to introduce a soft comparison boundary pre-

modeling. The boundary value 0.8 is chosen based on Figure 4.1. The third method directly includes the

Jaro-Winkler similarity, so the covariate is not binary anymore.

The new simulation community contains 464 people with 1170 relations, which is similar to the previous

simulation setup. Besides of the 20 random last names, we have also include 5 pairs of similar last names:

“Bacon” and “Baker”; “Hatton” and “Hobart”; “Smythe” and “Smith”; “Murray” and “Morton”; “Waller”

and “Walter”. After we generating the family members and network relations, we add one/two/three

round(s) of noise to the last name. For each round, we generate a document-by-person matrix with 2000

documents. Then we apply three different methods to calculate the covariate for the last name, and finally,

use the Bayesian method to calculate the penalty factor α for each method and corresponding ROC. The α

value for each round and each method are showed in Figure 4.2.

Figure 4.2 indicates that the level of noise does not change the value of α significantly but the method

of defining covariates does. The two binary covariates tend to have similar values while the continuous

covariate tends to have a much smaller scale. One of the potential reasons for the behavior is that even

though introducing the Jaro-Winkler similarity may help to catch the fuzzy names in the text, the middle-

level Jaro-Winkler similarity may weaken the continuous covariates. From the histogram in Figure 4.1, we

can see there is a large proportion of Jaro-Winkler similarity are around 0.5. Those should not be caused by

the typos thus they should be interpreted as non-match, just like the pairs with 0 similarities. For example,

suppose we have three pairs of people, pair A is two people with the last name “Bacon” and “White”

respectively and the Jaro-Winkler similarity is 0; pair B is two people with last name “Bacon” and “Cecil”

and the Jaro-Winkler similarity is 0.47 and pair C is two people with last name “Bacon” and “Bakon” and

the Jaro-Winkler similarity is 0.89. Simply looking at the last names, we know only pair C has a higher
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Figure 4.2: The α̂ estimated with Bayesian approach with one/two/three round(s) of noise. There is no
significant difference on the three rounds and two binary covariates tend to give similar α̂ while the value
for continuous covariate drops.

probability to be in the same family. For pair A and B, even though 0.47 is larger than 0, it does not

indicate pair B is more likely to be in the same family. In this case, using a continuous covariate may try to

distinguish the low-level similarity and the middle-level ones, and thus make the covariate less useful.

We have also compared the ROC for each noise round and each method with the estimated α̂ and the

result is given in Figure 4.3. In all three rounds, although the difference is not significant, the binary

covariates with a soft cut-off tend to have consistently better precision and recall than the other two. When

the noise level is large, like with three rounds of noise, continuous covariates start to perform better than

the binary covariate without soft boundary (exact match). Therefore, even though we can incorporate a

continuous covariate for the last name, it seems that using a binary covariate with a soft boundary is more

suitable to address the covariate of the last name when there are misspellings in the text.

4.2 Continuous covariates with people’s historical significance

Besides the last name, some other individual characteristics can also be incorporated in the model as a

continuous covariate, for example, one’s occupation. In the analysis of Chapter 3, we have only considered

whether two individuals are sharing a specific occupation or not, which led to a binary covariate for each

selected occupation. However, in the previous analysis, we only worked with three occupation categories and

it has been manually decided whether each person belongs to a group or not, since people may use different

words to describe similar occupations. Even we can manually classify the occupations, when the size of

data is increasing and we have a more and more different occupations, having a separate covariate for each

54



1.0 0.8 0.6 0.4 0.2 0.0

0.
4

0.
6

0.
8

1.
0

ROC for different alpha estimation with one round of noise

Precision

R
ec

al
l

Exact match
Jaro−Winkler > 0.8
Jaro−Winkler

1.0 0.8 0.6 0.4 0.2 0.0

0.
3

0.
5

0.
7

0.
9

ROC for different alpha estimation with two rounds of noise

Precision

R
ec

al
l

Exact match
Jaro−Winkler > 0.8
Jaro−Winkler

1.0 0.8 0.6 0.4 0.2 0.0

0.
3

0.
5

0.
7

0.
9

ROC for different alpha estimation with three rounds of noise

Precision

R
ec

al
l

Exact match
Jaro−Winkler > 0.8
Jaro−Winkler

Figure 4.3: ROC for each noise round and each methods with the α̂

occupation largely increase the computational complexity when we try to compare the penalty parameters

α̂.

In ODNB’s data, two pieces of information are related to people’s social identities. First of all, some

people may have a sentence of summary of their historical significance, usually indicates their occupation or

their family relationship. For example, “lord chancellor, politician, and philosopher” for Francis Bacon and

“maid of honor to Elizabeth I” for Elizabeth Southwell. To contrast with the historical significance, we also

have accessed to a manually labeled covariate summarizing people’s occupations. Some of the labels are the

same as the historical significance while some others are very different. For example, for Francis Bacon, both

occupation label and historical significance are “lord chancellor, politician, and philosopher”, and he is the

only one in the data with such label. On the other hand, the label “politician” includes such a large range

of historical significance text, including “army officer”, “administrator”, “Church of Scotland minister” and

“member of parliament”.

Besides the individual information, we also have a separate list of social groups during the time. There

are different types of social groups, some of them are the larger group involved with social identities, for
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example, the Judges and Catholics, while some the groups are much smaller social circles and literature

groups, such as Translators of the King James Bible and Castalian Band.

4.2.1 Using network node distances to measure the closeness of the text

In Chapter 3, we have shown how to add occupation as one binary covariate to indicate whether two

people sharing a specific occupation or not based on the historical significance information. However, when

evaluating the real data examples, we realize that not all historical significance entries are about people’s

occupation and even for the ones that indicate on occupation, there is no unique way to record similar jobs.

The way we manually construct the groups in Section 3.2.2 are inefficient, not quite accurate, and only uses

a small portion of the data. Even though now we have the manually labeled data, we should still explore

methodologies to quickly access the text information to avoid further label cost.

First, we want to take a closer look at the text data of historical significance. Among the 464 people in

the real data example in Section 3.2.2, 374 of them have information on historical significance. In Figure 4.4,

we show the word cloud of most frequent 100 entries. The size of the words represents their frequency. Even

though we have seen a lot of occupation words, like courtier and printer, there are also a few high-frequency

words that are more associated with identities, like rebel and murder victim. Moreover, a bunch of people

has multiple occupations and identities listed. To address the multiple identities, when we compare whether

two people are sharing the same occupation we assume that we need a partial match so that as long as one of

the words in people’s historical significance is the same, it should be considered a “match”. For example, if

person j’s entry is “writer and artiest” while person k’s entry is “writer”, we should consider it is a “match”:

they share the same occupation.

With the idea of a partial match, we first create a Network among historical significance roles. In Figure

4.5, each node represents a distinct historical significance entry while if there is an edge between two nodes,

then at least one of the words in the historical significance roles are the same, after getting rid of all the

stop words, like “and”, “of”, “in”, etc. The network is one large component with a bunch of isolated points.

Simply from the virtualization, there is no clear clustering pattern in the network. We have also labeled

the nodes we used to manually code the three occupation groups. As indicated in Figure 4.5, those groups

also do not form a clear clustering pattern. The church group is relatively compact while the poet group

and royal group are more sparse. This may be because we manually selected some people to be in the same

group when their historical significance indicates synonyms, for example, Bishop and clergyman.

The colored points show only a part of the information available, which indicates there is a lot of text

information we have not considered so far. Therefore, we like to develop a way that can quickly explore and

classify the information in historical significance entries, so that we can create covariates related to people’s

occupation and identities. If we have other similar short text information for people’s education or title, we
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Figure 4.5: Network among historical significance roles in the 1500-1575 SDFB data: if two historical
significance entries nodes have at least one word in common (excluding the stop words), then they are
linked.
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can use a similar approach to create corresponding covariates. When we try to create such covariates there

are several things we need to consider:

1. In Section 3.2.2, we created one covariate for each type of occupation. Having one covariate for a specific

type of occupation can help us learn how people in this particular type of career connect especially

if we do have interest in that occupation. However, it is not practical to do this in the general case

when we try to include all kinds of historical significance, since the computational complexity will be

too large. Therefore, we would like to use fewer covariates to represent the information.

2. Previously, we only considered binary covariates to represent whether the two people’s occupations

match or not. However, doing so, we miss all the cross-occupation information. For example, suppose

person j is a nobleman, person k is a politician, and person l is a translator. In the previous setting,

person j will be labeled as a non-match for both person k and person l. However, from common sense,

we would expect person j to be closer to person k than person l. Therefore, we want the covariates to

reflect such distance.

3. In the ODNB, there are no standard categories for the historical significance. Therefore, people may use

different words to describe similar occupations. For example, people can be recognized as courtiers or

politicians, while both words describe similar jobs. Also, we may have occupations that are naturally

associated with each other. For example, lawyers and judges should work together and politicians

usually come from the nobility. Therefore, only looking at the pairs who shared the same information

may lead us to miss a lot of information. When we create the covariates, we need to add a certain soft

boundary to compare the text information.

To address the first two points, we start with the occupation network we have created in Figure 4.5. In

the network, the shortest distance between nodes can be viewed as the closeness between people’s occupation

and identity. For example, in the occupation network, we may have the following two shortest paths starting

from “writer” extracted from SDFB data:

(1) Writer −→ Writer and translator −→ Translator

(2) Writer −→Writer and protestant martyr −→ Evangelical theologian and martyr −→ Theologian and

military engineer −→ Military engineer

The length of path (1) is 2 and the length of path (2) is 4. Therefore, we can conclude that the writer is

closer to a translator than a military engineer, which fits the common sense. Let ljk represent the length of

the shortest path between person j and k, and let ljk be ∞ if person j and person k are in different network

components. Figure 4.6 shows the distribution of ljk. When ljk is larger, the effect on penalties should be

smaller. Also, notice that not everyone in the ODNB has a entry of historical significance. Therefore, the
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Figure 4.6: The barplots of distances (the length of the shortest path) between any two people with entries
on historical significance.

covariate should only control the penalties between those people with a historical significance entry and who

are also connected. Thus, we can define following covariates Zjk for the historical significance based on the

network in Figure 4.5:

Zjk =


1
ljk

ljk <∞ and both person j and person k have entries on historical significance

0 Otherwise

(4.2)

The above-mentioned definition provides one continuous covariate that represents people’s closeness

through occupation and identity. It is easy to create without any additional information and it works

well when the text is short. We can also adapt the network such that nodes are linked only if they have a

noun in common.

However, in this way we do miss the ability to interpret the effect on penalties within a certain occupation,

like what we did in Section 3.2.2. One potential solution is that we can create a sub-network from Figure 4.5

so that we have another covariate to control the additional penalty limited to a certain group of people. For

example, suppose we have a special interest in the printers and what to know how if two people are printers

this affects the probabilities of them knowing each other. Then we can take out all the printers related nodes

and form a sub-network and corresponding covariate. In that case, we can interpret how if two people are

both printers this affects the probability of linking on top of the effect of being sharing the same occupation.

However, to generate such a sub-network, we need a way to classify people who are printer-related.
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4.2.2 Using relaxed word mover distance to measure the closeness of the text

However, Figure 4.5 only considers whether there is a common word in the historical significance entries.

We would like to add some more links to the network, such that people with similar jobs but described in

different ways or people who are usually working together can also be connected. Moreover, the network in

Figure 4.5 is created by checking whether there is an exact word overlapped. Even though the ONDB data

are relatively clean without any typos, still, people may use different words to describe similar occupations

or identities. For example, a person can be described either as “diplomat” or “courtier”. Therefore, it seems

that we need to consider synonyms in text.

To overcome this problem, we first considered natural language processing methods like topic models.

However, the phrases we have are short, and based on the historical significance network in Figure 4.5, it

is hard to see the clustering patterns among those phrases. Therefore, it is hard to decide the number of

topics. In the end, we therefore adopted the relaxed word mover’s distance (WMD) (Kusner et al., 2015).

This approach has two steps. First, it manages to identify synonyms by fitting a word embedding model, like

GloVe, on a “dictionary” to convert all words into vectors so that the meaning of the words are represented

by the location of the vectors in the high dimensional space (Pennington et al., 2014). Second, given the

distances between each word, it manages to measure the distances between the actual text by aggregating

the minimum changes to convert one text to the other.

To create a dictionary, we adopt the latest version of the ONDB data with contains manually labeled

occupations for each biography owner. For the 13309 biography owners, there are 4423 different occupation

labels. We first merge all the historical significance texts with the same occupation label into one document.

Now we have one document for each occupation label and this document contains all the words ODNB

authors have used to describe the corresponding occupation. An example of the process is given in Figure

4.7.

Uncleaned historical 
significance

manually labelled occupation

lord chancellor, politician, and 
philosopher

lord chancellor, politician, and 
philosopher

royalist army officer politician

army officer and administrator politician

Church of Scotland minister politician

soldier and member of 
parliament

politician

Document 1
lord chancellor, 
politician, and 
philosopher

lord chancellor, 
politician, and 
philosopher

Document 2 politician

royalist army 
officer army officer 
and administrator 
Church of Scotland 
minister soldier 
and member of 
parliament

Figure 4.7: An example of merging the historical significance text into occupation documents.
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Once we have the occupation documents, the next step is to fit a word embedding model, like GloVe, to

find the distances between the words. GloVe assumes that if two words’ meanings are closer, they should

appear together in the text more often. Thus, we first create the co-occurrence matrix C, where Cij represents

how many times word i and word j appear in the same occupation documents. Then we can define the cost

function Sij for each word pair j and j:

Sij = |wTi wj + bi + bj − log(Cij)|, (4.3)

where wi and wj are vectors for words and bi, bj are scalar biases to present each person’s popularity. Then

the goal is to minimize the sum of all pairwise cost functions to find w.

Once we have the distances between words, we can calculate the distances between texts. The approach

is similar to the edit distance where we calculate how many changes we need to do to change one word to

the other. Instead, here the distance represents how many word changes we have to do to change one text to

the other. After calculating distances between all pairs of words, the final distance on the text is the sum of

weighted minimum changes to convert one text to the other. Here is an example of text changing. Suppose

we have three phrases:

Text A: courtier

Text B: diplomat and writer

Text C: writer

In the historical significance network, Text A and B will not be linked since they do not contain a common

word. However, courtier and diplomat are synonyms thus they should be closer than the distance between

courtier and writer. We let da,b be the Euclidean distance between word a and word b, let tAB be the cost to

change from Text A to Text B. Notice that tAB may be different from tBA. We use the symmetry distance

as the final similarity which is represented by SAB and it is the same as SBA. The cost to change from A to

B is

tAB = dcourtier, diplomat, (4.4)

since there is only one word in A and the minimum change is to convert it to the closest meaning word in

text B, which is “diplomat”.

The cost to change from B to A is

tBA =
1

2
dcourtier, diplomat +

1

2
dcourtier, writer. (4.5)

Notice that there are two words (after getting rid of the stop word “and”) in Text B and only one word in

Text A. Both “diplomat” and “writer” have to change to courtier and each of them show up once among

the total sentence length.
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The cost to change from from A to C is

tAC = tCA = dcourtier, writer. (4.6)

. In this case, since there is only one word in each document, the distance is symmetrical.

Once we have the cost of changes, the similarity is equal to one minus the cost. Here is the final similarity

between the three texts in the example.

Courtier Diplomat and Writer Writer
Courtier 1 0.867 0.634

Diplomat and Writer 0.751 1 0.882
Writer 0.634 1 1

The final similarity between A and B is defined as the maximum of the similarity from both directions.

The reason why we choose maximum value is that in the network approach, we do not differentiate the

partial match and exact match. To match what we have done earlier, we should also treat partial match

as a match here. For example, for Text B and C, as long as the similarity from C to B is 1, it should be

considered as a match even though the other direction similarity is lower.

Thus, we have

SAB = SBA = max(0.751, 0.867) = 0.867

SAC = SCA = max(0.634, 0.634) = 0.634

SBC = SCB = max(1, 0.882) = 1

(4.7)

In general, the resulting similarity makes sense. It has caught all the partial matches we used to have

in the network like “diplomat and writer” and “writer” which has the highest similarity. Moreover, it also

correctly indicated that Text A and B are closer than Text A and C.

Instead of using the actual values, we can also just take a soft boundary. For example, as long as the

similarity is larger than 0.7, we consider the texts to be similar enough to add another edge into the historical

significance network in Figure 4.5. We will not explore this direction in the following discussion.

Even though using NLP tools can help to solve the problem of synonyms in the text, it largely relies

on the accuracy of the dictionary. Although we can always extract definitions for words through a formal

dictionary, the meaning and context of the words may change over time. Thus, for historical research data,

it is highly likely that it requires certain labeling input in the beginning. On the other hand, once the

dictionary is created, it will be much easier to extract the synonyms and compare text entries.
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4.2.3 Simulation

To illustrate our ideas that use the network connecting people’s identities, we use the real data example in

Section 3.2.2. We will compare five cases here:

• No penalty adjustment on the historical significance

• Penalty adjusted with three selected occupation groups. Each occupation has one separate covariate.

• Penalty adjusted with all manually labeled occupations. One binary covariate represents whether two

people share the same historical significance entry.

• Penalty adjusted with the occupation network. One continuous covariate represents the distance

between two people’s historical significance. The distance is represented by the length of the shortest

path between two historical significance roles.

• Penalty adjusted with NLP tools. One continuous covariate represents the distance between two

people’s historical significance. The distance is represented by the Word mover’s distance between the

text.

We report both the number of links and the precision. Notice that we only use partial data to generate

the network, thus it is hard to compare the precision and recall with the SDFB network which was generated

by nearly 20000 documents and 100 document-by-person matrices. Thus, we only focus on the relative

comparison of the precision values. The numbers are compared through Wikipedia. For each estimated link,

we script each person’s Wikipedia page through the R package WikipediR with their search name and check

whether the other one’s name has appeared. All results are summarized in Table 4.1.

No. of links Precision (%)
No occupation 142 19.2
Selected occupation 149 22.8
Full occupation 173 24.3
Occupation network approach 130 24.6
WMD approach 161 20.5

Table 4.1: The precision and number of links being identified with each approaches to create covaraites to
represent historical significance.

Simply from the numeric results, it seems that the network approach does provide a better reconstruction

with high precision. However, Wikipedia is not an official record thus the numbers may not be fully accurate.

Therefore, we also check the links that are identified by one model but not the other.

First, we compare the full occupation approach and occupation network approach. Table 4.2 presents

the only three links that are identified by the occupation network approach but not by the full occupation
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approach. Two of the three links are cases of a partial match which indicates that only considering whether

the occupation is an exact match maybe not be enough.

Name 1 Name 2 Path
Thomas Wyatt
soldier and rebel

Adrian Poynings
soldier

1

Elizabeth Bowes
protestant exile

George Bowes
soldier and rebel

3

Simon Renard
diplomat

Antoine de Noailles
soldier and diplomat

1

Table 4.2: Sample links that identified by occupation network approach but not the full occupation approach

On the contrary, 21 links have been selected by the full occupation approach but not by the occupation

network approach. We select several sample links in Table 4.3. These are the links that do not have common

words in their historical significance, thus for either approach, they are hard to detect. However, the α̂ for

historical significance in the network approach has a much larger scale compared to the one in the manually

labeled approach (1.6 vs 0.3). Relatively speaking, not sharing a common word in the text may tend to get

a heavier penalty with the occupation network approach thus may lead to the model missing those links.

Name 1 Name 2 Path
Henry Howard
clergyman

Hadrianus Junius
humanist and diplomat

3

King Edward
king of England and Ireland

Lady Jane Grey
noblewoman and claimant to
the English throne

2

Thomas Wynter
clergyman

Richard Morison
humanist and diplomat

4

Table 4.3: Sample links that identified by full occupation approach but not the occupation network approach

We also compare the network approach and the WMD approach. In Table 4.4, we have a sample of the

links that are identified by the WMD model but not by the network model. A common characteristic for

those links is that even though there are no common words across their historical significance, the occupations

do have a certain connection. WMD models catch the similarity while the occupation network approach

does not.

On the other hand, the links identified by the occupation network approach but not by the WMD

approach, some of which are shown in Table 4.5, are harder to interpret. It is possible that in some cases,

WMD fails to catch the similarity. For example, for the first pair, Jane Seymour and Anne Boleyn, their

historical significance roles are almost identical but WMD still believes they are not equal, as indicated by

a WMD score lower than 1. Note that the occupation network approach still has a much lower α̂ value

compared to the WMD approach (−1.6 vs. −0.5). The lower α̂ value in the occupation network approach
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Name 1 Name 2 WMD Path
Patrick Hepburn
magnate

James Stewart
nobleman

0.779 3

Bartholomew Traheron
protestant writer
and reformer

Richard Tracy
religious activist

0.601 2

Steven Mierdman
printer and bookseller

Francisco de Enzinas
humanist scholar

0.306 4

Table 4.4: Sample links that identified by WMD approach but not the network approach

thus leads to a stronger decrease in the penalty on edges between pairs of individuals who have similar

historical significance roles, and thus these individuals are more likely to be linked in the network approach.

Name 1 Name 2 WMD Path
Jane Seymour
queen of England, third
consort of Henry VIII

Anne Boleyn
queen of England, second
consort of Henry VIII

0.855 1

Anne Askew
writer and
protestant martyr

Katherine Parr
queen of England and Ireland
sixth consort of Henry VIII

0.280 2

Hugh Paulet
soldier and administrator

Adrian Poynings
soldier

1 1

Table 4.5: Sample links that identified by network approach but not WMD approach

Finally, we notice that some people frequently appear in the above-mention comparison, like King Edward

and Anne Boleyn. It seems that there are strong inconsistencies between approaches when it comes to

identifying the links involving these people. For example, both the full occupation approach and the

occupation network approach pick more than 4 links for King Edward, while the WMD approach picks

none. On the other hand, both the full occupation approach and the WMD approach pick exactly 1 link

for Anne Boleyn, while the network approach picks 4. In general, it seems that the network approach tends

to pick more links among the same set of people while the other two cover more candidates. For people

with relatively long historical significance texts, it is likely that with the occupation network approach, they

are more likely to be connected with other identities (as long as one word overlaps, they may get a high

similarity score), resulting in a decrease on the penalties on the corresponding links.
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Chapter 5

Conclusions

In this thesis, we first have compared different graphical models (the local Poisson graphical model, the

Gaussian graphical model, and the Poisson log-normal model) reconstructing a social network based on

name co-mention counts. All the models have advantages and disadvantages but as a local estimated model,

the local Poisson graphical lasso model does perform better on both AUC and average of precision and

recall across different network settings. Moreover, we anticipate that with the increasing dimension, the

local model should be less time-consuming than the global models. Also, we find that the network structure

also affects model performance. If the degree distribution of a network is highly right-skewed, then the local

Poisson graphical lasso model will significantly outperform its competitors. If a network has clear clustering

structures, then the local Poisson graphical lasso model tends to perform slightly worse.

Next, we proposed the idea to include covariates information to improve the estimation of social networks

from text data using a local Poisson graphical lasso model. The covariate information is incorporated through

the L1 penalty: we penalize the parameters representing the edges between two individuals depending on

the extent to which they have covariates in common. We use the penalty factor α to represents how the

common covariates affect the penalties. To estimate the penalty factors, we have discussed two approaches:

a greedy algorithm and a Bayesian framework. Both simulation and real data examples are implemented

to show the validation of the approach given binary covariates. We have also discussed the possibility

of replacing the double approximation in the Bayesian framework with the Laplace approximation. Even

though the Laplace approximation does provides a faster solution and leads to an improvement in the model

performance compares to the model without penalty factors, the average precision and recall are still worse

than what we can achieve with the double approximation. Also, the scale of α̂ is harder to interpret since

it does not fully align with the group densities as with double approximation. We also perform a further

exploration on the effect of limiting coefficients to be non-negative. We find that even though including the

edge positivity constraints helps us to avoid removing links with negative coefficients in a post-processing
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step, it does not help us to improve the overall performance of the network reconstruction, particularly for

the Bayesian approach.

Finally, we extend the methodology to include continuous covariates and discuss several applications

about how to generate continuous covariates from last name and short summary text. The simulation study

indicates that for the last name, if the name records are fuzzy with typos, including record linkage techniques

to add a soft boundary to the name match will be helpful. For short paragraphs and phrases, we can use

network distance and NLP tools, like Word Mover Distances (WMD) to measure their closeness. We find

that using network distance (the length of the shortst path between nodes) may be able to improve the

precision of network reconstruction. Even though the recall may be lower than the manually coded group,

the methodology is fully automatic and thus can be easily applied to a large data set. On the other hand,

even though WMD can help to pick up some edge cases where people use different words to describe similar

occupations or identities, in general, it brings more noise into the covariates thus leading to low performance.

There is some potential future development of this work. In the Bayesian approach, we have tried both

the double approximation and the Laplace approximation when trying to estimate the marginal likelihood

of α. However, both approaches assume that the posterior has uni-modal Gaussian shape and we have not

analytically evaluated the effect of both approximations. Even though the simulation study yields that the

penalty factor estimated by both approximations gives results comparable to those for the greedy approach,

we may want to look for other approximation methods that maintain the nature of Poisson data.

As an extension of the above-mentioned point, if we want to constrain the edge parameters to be non-

negative, for the Bayesian approach, we may consider a gamma prior with shape parameter equal to 1 instead

of Laplace prior. In that case, even if we want to approximate the prior distribution by a normal distribution,

we may need to consider a normal distribution with a non-zero mean. Moreover, in this thesis, we start

with a document-by-person matrix but in fact, converting the raw text to a numerical matrix is much more

complicated than simply counting names. People can be mentioned by partial names, like only their first

name or last name in the text. Also, in historical text, it is common to have people with the same name.

The machine learning tools like NER that used in SDFB cannot fully distinguish and distribute the names

accurately enough. Even though we can add covariates to models to indicate whether there are multiple

people with the same name, it is hard to generate one single accurate document-by-person matrix in the

pre-modeling process.

Also, even though we have discussed several applications of how to generate covariates from text data,

there are more improvements we can consider. For the last name, even though we have shown the typos in

a text can be caught with pre-modeling record linkage, the major misspelling problems in a historical text

are usually caused by similar pronunciation. Thus, we could rely on an additional Soundex dictionary to

measure the closeness of names. We did not have such data noise in the ODNB data but it may be interesting

to find some other historical data source to measure how important it is to include last name similarity.
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The comparison of the short phrases (e.g., about historical significance) relies a lot on how well people

generate them originally. If we only would have the full biographies or other longer historical text data, it

would be interesting to explore how to automatically extract information like occupation or identities. If we

choose not to extract the information, would comparing the full text lead to a good measure of similarity

between people? In that case, we may even have another approach that does not use a graphical model to

determine whether two people know each other. For example, if we can decide that both people’s biographies

have discussed a common historical event, we may consider that they are linked.

In the thesis, we only have talked about how to add covariates to the model. However, it is possible

that not all the covariates are necessary and including too many covariates may lead to large computational

complexity. In the context of the Bayesian approach with double approximation, we observe that the scales

of the penalty parameters indicate how important the covariates are in affecting the penalty. However, we

did not give an analytical solution to how large the scale has to be so that the covariates are necessary.

Thus, it would be relevant to develop a test to decide whether a covariate is useful or not. Such a test may

also tell us more about how people’s characteristics affect their connections.

Finally, we have applied the model to a subset of the SDFB data. The complete SDFB data contain over

19,000 documents with references to over 13,000 people. Both approaches we have proposed to estimate

the penalty factor, and especially the Bayesian approach, will be slow when dealing with large data.

Considering other optimization approaches to improve computational efficiency is an interesting avenue

for future research.
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Appendix A

Additional algorithms, derivations

and results

A.1 The algorithm of greedy method

Input : document-by-person matrix Y , covariate matrices Zj∗ for j = 1, . . . , p,
function MSE(α) evaluating the MSE for the model with penalty α,
search range [ah, bh] for h = 1, . . . ,m, grid size d

Output: α̂ = [α̂1, . . . , α̂m]

Initialization: α̂← [0, 0, ...0], repeat ← true,
MSEold ←MSE(α̂), MSEnew ←∞

while repeat do
repeat ← false
order ← a random permutation of 1 to m
for ( s← 1 to m by 1 ) do

h ← order[s]
for ( α̂∗h ← ah to bh by d ) do

α̂∗ ← [α̂1, ..., α̂
∗
h, ..., α̂m]

MSEnew ←MSE(α̂∗)
if MSEnew < MSEold then

MSEold ←MSEnew
α̂← α̂∗

repeat ← true
end

end

end

end

Algorithm 1: Greedy algorithm to estimate α̂

75



A.2 Approximating the marginal likelihood Lj(α)

As mentioned in Equation (2.1), we model the number of times person j appears in document i using Poisson

regression,

Yij |Yi,6=j = yi,6=j , θ,Θ ∼ Poisson(eλ(yi, 6=j)), (A.1)

where

λ(yi,6=j) = θj +
∑
k 6=j

yikΘkj , (A.2)

with a covariate-depedent Lasso penalty on the Θkj or, equivalently, a Laplace prior (see expression (3.3)).

To estimate the values of penalty parameters α in a Bayesian framework, we here approximate their marginal

likelihood.

We first approximate the Poisson likelihood by a normal distribution, using the log-gamma approximation

(Bartlett and Kendall, 1946; Prentice, 1974; Chan and Vasconcelos, 2009). Recall a Gamma random variable

µ ∼ Gamma(a, b) with distribution

p(µ | a, b) =
1

Γ(a)ba
µa−1 exp−

µ
b , (A.3)

then the transformed random variable log(µ) has a log-gamma distribution and for large a, the log-gamma

distribution is approximately to N (log(a) + log(b), a−1). Let b = 1 and a ∈ Z+, and let η = log(µ) then we

have

p(η | a, 1) = p(µ = expη | a, 1)× ∂

∂η
expη

=
1

(a− 1)!
expηa exp− expη

≈ G(η | log(a), a−1),

(A.4)

where G(x|µ,Σ) = (2π)−d/2|Σ|−1/2 exp( 1
2 ||x− µ||

2
Σ) is the equation of a multivariate Gaussian distribution,

||x||2Σ = xTΣ−1x.

Since our data y are often sparse, to avoid log(0) in the remainder of this derivation, we add 1 to all

response values yij and define y∗ij = yij + 1. Using the approximation derived in equation (A.4), we find that

1

(y∗ij − 1)!
eλ(yi, 6=j)y

∗
ije−e

λ(yi, 6=j) ≈ G

(
λ(yi,6=j) | log(y∗ij),

1

y∗ij

)
. (A.5)
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Then the Poisson likelihood can be written as

n∏
i=1

p(Y ∗ij | Yi,6=j = yi,6=j ,Θj) =

n∏
i=1

1

y∗ij !
eλ(yi, 6=j)y

∗
ije−e

λ(yi, 6=j)

≈
n∏
i=1

G

(
λ(yi,6=j) | log(y∗ij),

1

y∗ij

) (A.6)

Since the variance 1/y∗ij is likely to be similar across the documents i, we set σ̂2
j = 1

n

∑n
i=1

1
y∗ij

.

At this point, we specify the Laplace prior defined in equation (3.3) by

Θkj ∼ Laplace

(
0,
ρkj
2σ2

j

)
. (A.7)

We approximate this Laplace prior by a normal distribution with the same variance (Zeng et al., 2020).

That is, we can approximate βj ∼ N (0, 2
τ2
j

) by βj ∼ Laplace(0, τj). Therefore, we can approximate the

distribution of edge parameters Θ 6=j,j by

Θ 6=j,j ∼ N (0, V j) (A.8)

where V j ∈ R(p−1)×(p−1) is a diagonal matrix with V jkk =
2σ2
j

e2Z
j∗
k
α

in which Zj∗k is the kth row of the covariate

matrix Zj∗. Now we can write out the marginal likelihood of α:

Lj(α) =

∫
Rp

n∏
i=1

p(Y ∗ij | Yi,6=j = yi,6=j ,Θj)
∏
k 6=j

p(Θkj | α)dΘj

=

∫
Rp

n∏
i=1

1

y∗ij !
eλ(yi, 6=j)y

∗
ije−e

λ(yi, 6=j)
∏
k 6=j

e(Zj∗k α)

4σ2
j

e−
e(Z

j∗
k
α)

2σ2
|Θkj |dΘj

≈
∫
Rp

|σjIn|−1/2

(2π)
N
2

e
− 1

2 ||λ(y 6=j)−log(y∗j )||2σjIn |V
j |−1/2

(2π)
p
2

e−
1
2 ||Θj ||V j dΘj .

(A.9)

where y∗j = (y∗1j , . . . , y
∗
nj)
>, y 6=j denotes y excluding the jth column, and within the norm, λ(·) operates

on the columns of y6=j and log(·) is applied element-wise. Dropping terms that are not a function of Θj ,

expanding the norm term and completing the square within the integral, we obtain that the approximate

marginal log-likelihood of α satisfies

− lj(α) ∝ log |Cα|+ log(y∗j )>C−1
α log(y∗j ) (A.10)

where Cα = σjI
2 + y6=jV

jy>6=j .
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A.3 Laplace approximation for a non-differentiable prior

We’d like to approximate the integral

Lj(α) =

∫
Rp

n∏
i=1

p(Yij | Yi,6=j = yi,6=j ,Θj)
∏
k 6=j

p(Θkj | α)dΘj

=

∫
Rp

n∏
i=1

1

y∗ij !
eλ(yi, 6=j)y

∗
ije−e

λ(yi, 6=j)
∏
k 6=j

eZ
j∗
k α

4σ2
j

e−
exp(Z

j∗
k
α)

2σ2
|Θkj |dΘj

(A.11)

To simplify the notation, we let

g(Θj) = − 1

n

( n∑
i=1

− log(Yij !) + Yi,6=jΘjYij − exp(Yi,6=jΘj)
)
, (A.12)

h(Θj) =
∏
k 6=j

eZ
j∗
k α

4σ2
j

e−
exp(Z

j∗
k
α)

2σ2
|Θkj | (A.13)

then we have

Lj(α) =

∫
Rp
e−ng(Θj)h(Θj)dΘj (A.14)

where h(Θj) is not differentiable at the origin, but that it is positive, finite and continuous at the origin,

and that it’s twice-differentiable everywhere else. We also assume that the function g is minimized at Θ∗j ,

which is far away from zero. We also define ∆(Θj) = g(Θj) − g(Θ∗j ) ≥ 0 and we assume for a small δ > 0,

we have g(Θj)− g(Θ∗j ) ≤ δ implies |Θj −Θ∗j | < ε(δ). Pick a δ > 0 then we have

∫
Rp
e−ng(Θj)h(Θj)dΘj = e−ng(Θ

∗
j )

∫
exp(−n∆(Θ))h(Θj)dΘj

= e−ng(Θ
∗
j )(

∫
∆(Θj)≥δ

exp(−n∆(Θj))h(Θj)dΘj +

∫
∆(Θj)<δ

exp(−n∆(Θj))h(Θj)dΘj)

≤ e−ng(Θ
∗
j )(e−nδ

∫
∆(Θj)≥δ

h(Θj)dΘj +

∫
∆(Θj)<δ

exp(−n∆(Θj))h(Θj)dΘj)

≤ e−ng(Θ
∗
j )(e−nδ +

∫
∆(Θj)<δ

exp(−n∆(Θj))h(Θj)dΘj)

= e−ng(Θ
∗
j )(e−nδ +

∫
|Θj−Θ∗j |<ε(δ)

exp(−n∆(Θj))h(Θj)dΘj)

(A.15)

If δ is small enough, since Θ∗j is far away from zero, then all the Θj such that |Θj −Θ∗j | < ε(δ) will also far

away from zero, thus the domain of the new integral will satisfy the assumption of Laplace approximation,

then we can get a upper bound which is

∫
Rp
e−ng(Θj)h(Θj)dΘj ≤ e−ng(Θj)(e−nδ + (

2π

n
)p/2

h(Θ∗j )

| −H(g(Θ∗j ))|1/2
) (A.16)
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where H(·) denotes the Hessian. Notice that the polynomial term will dominate the formula.

Meanwhile, we also have∫
Rp
e−ng(Θj)h(Θj)dΘj = e−ng(Θ

∗
j )

∫
exp(−n∆(Θ))h(Θj)dΘj

= e−ng(Θ
∗
j )(

∫
∆(Θj)≥δ

exp(−n∆(Θj))h(Θj)dΘj +

∫
∆(Θj)<δ

exp(−n∆(Θj))h(Θj)dΘj)

≥ e−ng(Θ
∗
j )

∫
∆(Θj)<δ

exp(−n∆(Θj))h(Θj)dΘj

(A.17)

Based on the same reason, we also have the lower bound as

∫
Rp
e−ng(Θj)h(Θj)dΘj ≥ e−ng(Θj)(

2π

n
)p/2

h(Θ∗j )

| −H(g(Θ∗j ))|1/2
(A.18)

Therefore, by the sandwich theorem, we have

Lj(α) =

∫
Rp
e−ng(Θj)h(Θj)dΘj ≈ e−ng(Θj)(

2π

n
)p/2

h(Θ∗j )

| −H(g(Θ∗j ))|1/2
(A.19)

A.4 Extra positivity constraints results

In the Section 3.4.2, we have compared multiple network characteristics with and without positivity

constraints on the model edge coefficients. Follpowing are the comparison on average degree in Figure

A.1 and the number of false positive links involved isolated nodes in Figure A.2 with and without positivity

constrains. Both figures indicate that there is no evidence that the positivity constrains will affect the

average degree or the number of false positive links involved isolated nodes in the reconstructed network.
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Figure A.1: The average degree in the true network for pairs of individuals incorrectly linked by one model
but not the other. Even though the greedy approach with positivity constraints tends to connect with high
degree nodes, the results are not consistent in Bayesian approaches. Therefore, there is no strong evidence
to indicate that the positivity constraints will favor the high degree nodes.
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Figure A.2: The number of estimated links that involve at least one isolated node in the true network. It
seems that on average the models with positivity constraints are less likely to connect the isolated nodes but
the difference is not significant.
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