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The Pillars of AI Engineering

1.	Human-Centered

2.	Robust and Secure

3.	Scalable

The emergent discipline of AI Engineering 
is focused on three pillars: human-
centered AI, robust and secure AI, and 
scalable AI. 

To learn more about AI Engineering, 
visit sei.cmu.edu/our-work/artificial-
intelligence-engineering.
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Robust and Secure AI
“Failure is central to engineering. Every single 
calculation that an engineer makes is a failure 
calculation. Successful engineering is all about 
understanding how things break or fail.”
—Henry Petroski 

All systems fail at some point, no matter how much time 
and rigor are put into their design and development. 
AI systems are no different and are susceptible to 
unexpected and sometimes spectacular failure modes. 
Some failures show the fragility of system components, 
such as small stickers that prevent perception systems 
for self-driving cars from recognizing stop signs [1]. Others 
show how attackers can use the novel surfaces of AI to 
drive failure, such as social media “trolls” shifting the 
personality of an AI chat bot through a barrage of racist 
language [1], [2]. Still others highlight the lack of versatility 
in systems, such as when your smart speaker does not 
respond to the voice of a friend with an accent. Highly 
competent and well-intentioned developers inadvertently 
create failure-prone systems across domains and 
use cases even when operating in closely controlled 
development, laboratory, and test environments. How 
can we build robust and secure AI systems for complex 
and ambiguous contexts such as those in the national 
security domain, where the potential consequences of 
failure are catastrophic?

Robust and secure AI systems are AI systems that 
reliably operate at expected levels of performance, 
even when faced with uncertainty and in the 
presence of danger or threat. These systems have 
built-in structures, mechanisms, or mitigations to 
prevent, avoid, or provide resilience to dangers from a 
particular threat model. Our conceptualization builds on 
existing definitions that focus on correctness of system 
functions [3], and underscores that system behavior 
should meet expectations of quality and not generate 
unexpected emergent behavior as a result of novelty or 
other changes to the operating environment (e.g., noise, 
sensor degradation, context shifts). Robustness is not 
a guarantee against failure, but instead enables users, 
engineers, and system designers to mitigate common 
failure modes and know what to do when failure happens.

One of the biggest challenges facing the broad 
adoption of AI is having confidence that AI systems 
will work predictably when they are deployed in 
new and uncontrolled settings.

System developers task AI technologies with complex 
problems for which there are no guaranteed ways 
to achieve perfect solutions and no way to construct 
training data sets that reflect all aspects of the real-world 
use cases. As a result, the system goal must shift from 
achieving a perfect outcome to building confidence 
in AI throughout the entire lifecycle—from design to 
development to test to operations and around again as 
the system evolves. Developing new tools, processes, 
and practices for testing, evaluation, verification, and 
validation (TEV&V) is critical for building and deploying 
robust and secure AI systems with confidence.

Current test and evaluation practices predominantly 
occur during the model evaluation phase of the AI 
lifecycle and rely on accuracy measurements on test 
datasets that closely match training data [4]. Accuracy is 
an important and convenient metric, but focusing on 
only accuracy can impede assessment of whether or not 
mission outcomes are achieved. Defining relevant mission-
specific measurements of performance is critical to guide 
overall system evaluation, as well as ensure that reliable 
performance is maintained amidst uncertainty [5]. Expanding 
test and evaluation capabilities across the AI system lifecycle 
and across a much richer and mission-relevant set of 
qualities will enable the responsible adoption and use of AI 
technologies for defense and national security as well as the 
effective, iterative, and incremental development of leading-
edge mission capabilities [6]. 

We identify three specific areas of focus to advance 
Robust and Secure AI for defense and national security: 

•	 Improving the robustness of AI components 
and systems and the need to go beyond accuracy 
measurements to capture achievement of mission 
outcomes

•	 Designing for security challenges in modern 
AI systems including novel attack surfaces and 
patterns, as well as strategies for risk mitigation

•	 Developing processes and tools for testing, 
evaluating, and analyzing AI systems and adoption 
of comprehensive test and evaluation approaches 

For each area, we identify ongoing work as well as 
challenges and opportunities in developing and 
deploying AI systems with confidence. 



Robustness of AI Components and Systems 
There are two general approaches to robust AI: 1) 
robust against model errors and 2) robust against 
unmodeled phenomena [7]. Dietterich characterizes the 
two approaches as responses to known unknowns, 
or “uncertain aspects of the world about which the 
computer can reason explicitly” and unknown unknowns, 

“those aspects of the world that are not captured by 
the system’s models” [7]. For example, model errors 
include incorrectly specified hyperparameters, whereas 
unmodeled phenomena include unpredictable shifts 
in operating weather due to climate change. For 
model errors, approaches include robust optimization, 
regularization, risk-sensitive objective functions, and 
robust inference algorithms. For unmodeled phenomenon, 
approaches include expanding the model, learning a 
causal model, using a portfolio of models, and monitoring 
performance. Important prior and ongoing work supports 
each approach, and significant room for growth and 
improvement exists. Although these techniques exist in 
academic papers and have been proven in laboratory 
settings, many have not yet made their way into practical 
tools for realizing robustness in AI systems. 

Much of the current focus of AI is on modern machine 
learning (ML) techniques, with a special focus on deep 
learning or deep neural networks. One challenge 
to realizing robustness in modern ML systems is 
underspecification [8]. Underspecification means that 
the algorithms training deep neural networks solve 
optimization problems for which there are many possible 
solutions with equal performance. These algorithms 
pick one of many possible solutions, leading to models 
that contain hidden biases and other flaws that are likely 
to result in surprising failures or unexpected behavior 
when deployed. Challenges exist around both algorithm 
selection and the range of possible solutions. Researchers 
in explainable AI, or XAI, are currently working to address 
the issue of opaque model selection in deep learning [9]. 
Explainable AI has significant implications for robustness. 
If model selection is more transparent, errors can be 
efficiently communicated and performance expectations 
managed. The existence of large numbers of possible 
solutions implies that both the problem (optimization 
for predictive accuracy) and the solution (deep learning 
models) are underspecified. The fact that modern ML is 
underspecified begs for new approaches to make more 
robust models and to include appropriate metrics and 
measurements of robustness in the evaluation and 
testing of AI systems relying on deep learning algorithms. 

Related to the robustness of modern machine learning 
algorithms is understanding and trusting the uncertainty 
or confidence of ML models [10]. Dataset shift—when 
data in operations is drawn from different distributions 
than training data—can cause misrepresentation of 
uncertainty and ultimately overconfidence in model 
predictions. Results of a recent study show a 40–45% 
drop in performance when the context of data collection 
changes, implying that models trained on controlled data 
sets don’t always work in the real world [11]. Calibration 
techniques can adjust the natural uncertainty scores 
provided by ML models to more accurately reflect the 
probability of a prediction being correct, resulting in 
models that know when they don’t know. Equipped 
with properly calibrated uncertainty measures, design, 
integration, and monitoring policies can be created to 
make AI systems more robust. 

Robustness is critical for applications intended to 
operate in changing or challenging environments. To 
understand and design robust AI systems, we need 
accepted and validated tools, frameworks, and practices 
for measuring robustness. Promising directions and 
best practices for robust AI include methods to “build 
robustness in” to systems through smart design and 
the use of algorithms with robustness features, such as 
portfolio strategies or redundancy [7]. Robustness can 
be built into approaches to model evaluation. It can be 
extended across the AI system lifecycle through testing 
when AI components are integrated into bigger systems 
and deployed, and through continuously monitoring 
AI systems for performance and robustness during 
operations. There are open questions about which testing 
protocols and processes are employed at each lifecycle 
phase. Concepts from robustness also inform AI system 
design principles and patterns. At the systems level, there 
are opportunities to include uncertainty information 
as signaling between AI components and other system 
components. Patterns like ensembles of AI components 
can lead to more robust AI systems. Finally, improved 
tools for measuring and analyzing the robustness of 
both AI components [12] and AI systems will support 
AI engineers, product managers, designers, software 
engineers, systems engineers, and operators in designing, 
building, and operating AI-enabled capabilities. 

Security Challenges in Modern AI Systems
An integrated focus on security or “protection against 
intentional subversion or forced failure” [3] is critical to 
the goal of deploying robust AI systems that face dangers 
from a particular threat model. AI systems are software 



or cyber-physical systems that include AI components 
and likely many other software components. These AI 
components are built out of software and data. When 
considering the security of AI systems, AI engineers need 
to take full advantage of the vast body of knowledge 
and best practices for building and securing software 
systems as well as any security implications specific to 
AI components. Recent efforts to bring MITRE’s ATT&CK 
framework to securing ML systems in production draw 
from established knowledge of software security [13].

Much attention has been paid over the past few years 
to the novel attack surfaces that modern ML techniques 
(specifically deep learning) present. Adversarial machine 
learning is a field of study where researchers seek to 
understand both how machine learning models can be 
attacked and how to defend against those attacks [14]. 
One taxonomy of adversarial machine learning organizes 
attacks on ML models into three categories: learn the 
wrong thing, do the wrong thing, and reveal the wrong 
thing [15]. Manipulating training data or training methods 
can cause ML models to learn the wrong behaviors while 
still performing well in training and model evaluation [16], 

[17]. Manipulating operational data can deceive ML models 
and cause them to do the wrong thing in operations. 
Finally, depending on how much can be known about 
ML models in production, attackers can use various 
mechanisms to extract information that was used to 
train models to reveal potentially private or confidential 
information. A variety of methods can be used to mitigate 
specific attacks and enforce security policies for ML 
models in the systems where they are deployed.

As adversarial AI continues to advance, defenders 
(system builders and operators) must make trade-
offs when faced with attacks.

First are the relative trade-offs that come with information 
availability for both attackers and defenders. Perhaps 
more importantly, recent work in adversarial ML has 
demonstrated the potential trade-offs between enforcing 
the different policies of do, learn, and reveal. One example 
shows that models that are trained to do the right thing 
turn out to be more susceptible to revealing information 
about their training data [18]. Trade-offs between attacker 
and defender information availability and budget as well 
as dependencies between different defense policies are 
important areas for continued research and development. 
Furthermore, there is a large demand for tools that 
support AI system developers in understanding security-
related considerations for their systems. 

Beyond the specifics of the novel attack surfaces of 
ML algorithms and models, the security workforce 
and organizational ecosystem must also focus on the 
implications of increasing amounts of AI in real-world 
systems. Two areas of opportunity are 1) expansion of 
security vulnerability coordination to include new types 
of vulnerabilities that stem from AI technologies, and 2) 
enhancement of red teaming capabilities, which provide 
tremendous value for understanding and improving 
security in traditional software systems [1], [19], [20].

Processes and Tools for Testing, Evaluating, 
and Analyzing AI Systems
It is easy to focus attention on the robustness and 
security of AI systems by examining the technical, 
algorithmic, and even mathematical underpinnings 
of specific AI techniques. From an AI Engineering 
perspective, there is a greater need for tools, processes, 
design patterns, and best practices for promoting robust 
and secure AI system development and operations. AI 
engineers need tools similar to those used for software 
reverse engineering [21], static and dynamic code analysis, 
fuzz testing, and augmentations of standard approaches 
for unit, regression, and integration testing. In some 
cases, traditional software engineering tools are helpful. 
However, AI—and specifically ML—challenge the utility of 
existing testing tools. In contrast to traditional software, 
AI addresses problems that are often broader, less 
clear in purpose, and have more complex input and 
output spaces. In most cases, existing tools do not scale 
to these problems; in others, there is no clear analogy, 
necessitating the creation of new tools. 

Additionally, AI system tools need to be incorporated 
into modern software development processes as 
well as automated development and deployment 
environments and frameworks. In particular, tools that 
support robust and secure AI should be integrated into 
DevOps or MLOps pipelines and systems for Continuous 
Integration and Continuous Delivery (CI/CD) wherever 
possible. AI systems require the expansion of CI/CD 
frameworks to include Continuous Monitoring (CM). This 
ensures that the robustness and security of AI systems 
can be assessed and assured throughout the system 
lifecycle and trigger necessary mitigations, incremental 
improvements, model retraining, or system redesign 
based on how the systems are performing in operation.



Robust and Secure AI
Robust and secure AI—specifically, the ability to design, 
develop, deploy, and operate robust and secure AI 
systems—is both a critical component of AI Engineering 
and an imperative for the DoD. Robustness and security 
in AI systems are key to achieving mission outcomes and 
can enable many other related qualities such as safety, 
reliability, dependability, and stability. Robust and secure 
systems also support policy-related concerns like privacy, 
fairness, and ethics.

In the DoD context, current approaches and policies  
for developmental test and evaluation (DT&E) and 
operational test and evaluation (OT&E) must evolve 
to include AI. In the context of AI Engineering, DT&E 
and OT&E have significant implications for acquisition 
processes and practices. They must factor in 
considerations for robust and secure systems, including 
how to generate system testing requirements, how to 
purchase them, and how to work within budgets when 
continuous monitoring is needed. A recent workshop 
hosted by the University of Maryland’s Applied Research 
Lab for Intelligence and Security (ARLIS) highlighted 
the needs and challenges that AI introduces for OT&E 
specifically [22]. The workshop emphasized the disconnect 
between what is easy to measure and what is operationally 
meaningful. Test and evaluation practices need to keep 
pace with rapid changes in technology. This requires 
growing a proactive and nimble test and evaluation 
community across the DoD, including growing the number 
of AI testers that currently exist within the DoD. 

Furthermore, the DoD faces a cultural challenge when it 
comes to instilling a mindset of experimentation across 
all stakeholders involved in AI system development and 
deployment. While experimentation and prototyping 
are needed for nearly all domains, the complexity of 
AI systems, the at-times information opacity, and the 
new behaviors needed to enable effective human-

machine teams all necessitate early and frequent system 
testing. Frequently, people assume that testing is a 
time-consuming activity, when in fact fixing errors is 
what takes time, particularly in later stages of project 
development [23]. This challenge is not unique to the DoD: 

“Culture—not tools and technology— prevents companies 
from conducting the hundreds, even thousands, of tests 
they should be doing annually and then applying the 
results [24].” 

Teams designing and developing AI systems need 
to engage in rigorous cycles of inquiry, learning, 
building, and testing to identify flaws in the 
structure of the system objective or data acquisition 
and manipulation processes.”

 They further need to continuously evaluate the model’s 
robustness to unmodeled phenomena, resilience to 
attacks, and ability to be used for decision making. As 
with any system, the behaviors of component parts must 
be viewed in relation to each other, and teams should use 
experimentation to characterize interdependence within 
the system and assess potential unexpected behaviors 
that emerge when a change is implemented [25], [26].

As organizations implement AI systems in higher-stakes 
contexts, the robustness and security of those systems 
become of utmost importance: “When AI systems wield 
control of highway networks, power grids, financial 
markets, they become attractive targets [7].” National 
security applications, of course, fall into the same 
category. To enable robust and secure AI systems, the 
DoD must consider how to approach problems from 
multiple views, how to consider both known unknowns 
and unknown unknowns, and how to instantiate a culture 
of experimentation and testing to ensure that AI systems 
are engineered and can reach the full potential of their 
impact over time.
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