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The Pillars of AI Engineering

1.	Human-Centered

2.	Robust and Secure

3.	Scalable

The emergent discipline of AI Engineering 
is focused on three pillars: human-
centered AI, robust and secure AI, and 
scalable AI. 

To learn more about AI Engineering, 
visit sei.cmu.edu/our-work/artificial-
intelligence-engineering.

Scalable AI
Contributors:
Hollen Barmer, Rachel Dzombak,  
Matt Gaston, Jay Palat, Frank Redner, 
Tanisha Smith, John Wohlbier

Acknowledgements:
The team thanks Charles Holland, Ipek 
Ozkaya, and Joshua Poore for their review; 
and Nancy Ott for editing the paper.



Scalable AI
“In many instances, the whole seems to take 

on a life of its own, almost dissociated from 
the specific characteristics of its individual 
building blocks.” 
—Geoffrey West in Scale

Massive improvements in computing resources and data 
storage capacity enable us to create artificial intelligence 
(AI) models that encompass billions of parameters. 
Individuals, organizations, and governments are 
increasingly applying AI models to address complicated, 
wide-ranging problems—for example, managing the 
national electricity grid, tracking outbreaks of disease 
during pandemics, and combatting online bullying. These 
multifaceted problems involve large numbers of people, 
multiple data sources, many geographic locations, varying 
time scales, and other complex inputs. Solutions to such 
problems must consider the embedded interconnections 
and scale to meet the scope of the challenges. It’s not 
as simple as finding what works for small instances of 
a problem and applying the same methods for larger 
instances. (If that were the case, there would be no 
difference between managing a team of 10 employees 
and managing a team of 100.) Instead, when creating 
scalable systems of any kind, we must recognize that 
system properties change as size changes. As a result, 
we need to carefully consider how to create and guide 
system development at a scale that is proportional to the 
scale of the problems we face [1].

Scalable AI is defined as the ability of algorithms,  
data, models, and infrastructure to operate at the 
size, speed, and complexity required for the mission. 
This is not a trivial problem. For example, many academic 
research teams have developed AI applications with 
advanced capabilities, such as computer vision systems 
that detect vehicles in satellite imagery and machine 
learning systems that predict leakage from gas wells. 
However, the rocky process of transitioning these 
systems from research prototypes to enterprise-wide 
implementations shows how difficult it is to design AI 
systems for scale. Gartner estimates that as many as 
85% of AI projects will fail to deliver their intended value 
[2]. This failure is often caused by a lack of emphasis on 
the technological, financial, and organizational factors 
that change when an AI system is implemented at a large 
scale. For example, training GPT-3, the world’s largest 
language model, is estimated to have cost OpenAI  

$12 million dollars due to the expense of its 
computational requirements [3]. Although this is not a 
direct failure, the unexpectedly high cost of training this 
model shows the lack of repeatability over time. 

Creating scalable AI systems requires disciplined 
engineering approaches to guide their development, 
deployment, and maintenance. From an AI Engineering 
perspective, the field must work to overcome 
challenges pertaining to scarcity of data sets and data 
labels for training and using AI models, obsolescence 
and reusability of AI tools, and deficiencies in the 
infrastructure needed to develop and deploy AI 
capabilities. These challenges are often addressed in an 
ad-hoc manner. For example, many organizations employ 
individuals to manually label training data. But what will 
happen when the data required for training grows by 
an order of magnitude? What if the time scheduled to 
complete this task is cut in half? Scalable AI’s focus must 
also include the processes, policies, practices, and tools to 
support the enterprise scalability of AI capabilities.

Scalability is a critical concept in many engineering 
disciplines and is crucial to realizing operational 
AI capabilities. We identify three areas of focus to 
advance scalable AI:

•	 Scalable management of data and models to 
overcome data scarcity and collection challenges, 
and promote reusing and recombining capabilities 
to scale across missions 

•	 Enterprise scalability of AI development and 
deployment including establishing production 
pipelines, extensible system architectures, and 
modern policies and acquisition practices to 
maintain advanced capabilities and take advantage 
of rapid innovation in AI technologies  

•	 Scalable algorithms and infrastructure to fully 
apply the power of AI to critical missions, including 
centralized data center capabilities and distributed 
cloud-enabled and network-enabled applications 
for edge devices   

For each area, we identify ongoing work as well as 
challenges and opportunities in developing and 
deploying AI systems at scale.



Scalable Management of Data and Models
Effective approaches to managing data and models are 
critical to the scalable and responsible adoption and 
use of AI. Data is the driving force of modern machine 
learning and is equally as critical for other AI approaches 
(e.g., knowledge graphs to support reasoning). Models 
encode decision or inference processes of various AI 
techniques. In modern machine learning, a model is 
the output of a learning algorithm (e.g., a deep neural 
network) that is trained on a set of data. It can then make 
predictions about data that shares characteristics with 
the model’s training data. The disciplined management of 
data and models includes carefully collecting and curating 
data sets, versioning both data and models, reusing 
and recombining capabilities, and creating policies and 
procedures that support discovering and sharing data 
and models.

Scalable oversight is a major challenge for the careful 
collection and curation of data sets for use in AI systems [4]. 
Creating useful datasets for AI can be time consuming, 
expensive, error-prone, and labor-intensive. Scalable 
oversight encompasses methods that reduce the time, 
cost, errors, and labor required to collect and curate 
data sets that can be used to train or otherwise inform 
AI techniques. Realizing scalable oversight is particularly 
challenging in applications where data is scarce and 
difficult or expensive to collect, or requires specialized 
expertise to label or synthesize. One example is prediction 
and pattern-of-life models that require distributions of 
events that account for both normalcy and anomaly [5];  
the latter is a rare event that is by definition hard to 
capture and accurately label during collection.

In many industry applications of AI, two common 
approaches to scalable oversight are crowdsourcing 
and gathering the regular interactions of large 
numbers of users with Internet applications. At first 
glance, these approaches only apply to the collection, 
creation, and curation of useful AI data sets in private 
technology companies. However, public and government 
organizations have significant opportunities to use 
their current and future systems to gather information 
about the everyday interactions of their workforce 
(e.g., analysts working on intelligence missions). Proper 
instrumentation and data collection strategies to capture 
the interactions of users, analysts, and operators could 
significantly reduce the effort required to create and 
label datasets for developing new AI-enabled mission 
capabilities. Even rudimentary annotations would make 
data labeling much easier, especially if these annotations 
can be programmatically repurposed for a variety of 

use cases. Historically, security concerns prevented the 
adoption of scalable oversight process in operations. 
But in recent years, proactive policies enabled these 
approaches to be deployed. 

Successfully scaling AI requires both datasets and models 
to be discovered, shared, reused, and recombined across 
a variety of mission capabilities. This involves developing 
and institutionalizing policies and mechanisms for 
managing, tracking, versioning, and analyzing reused and 
derivative capabilities. The implementation and adoption 
of scalable management mechanisms allows for the use 
of powerful techniques for using machine learning in 
applications where there is limited—or in some cases 
no—labeled data (for examples, see: [6]–[8]). 

Transfer learning is commonly used in industry and 
academia to scale models across domains. A model is 
trained for a particular problem on a source domain and 
then reused—perhaps with some modest retraining—
for a different problem on a target domain [9]. A typical 
scenario for transfer learning is when the source domain 
has an abundance of labeled data and a well-trained 
model, but the target domain has a limited amount of 
labeled data. For example, transfer learning could be 
used to classify vehicles in radar data by applying what 
is known about classifying vehicles in electro-optical 
data. Few-shot learning is another scaling technique 
that can be used when labeled data is scarce. It applies 
machine learning to datasets with a small number of 
labeled instances [10].

Policies and mechanisms that promote sharing, reusing, 
and recombining AI capabilities across a variety of 
missions facilitate the use of powerful techniques like 
transfer learning and few-shot learning. Furthermore, 
organizational support for scalable management of data 
and models democratizes the adoption and use of AI 
capabilities. This leads to more generalizable and robust 
applications of AI across a broader variety of missions.

Enterprise Scalability of AI Development  
and Deployment
As the discipline of AI Engineering grows and matures, 
organizations that follow its practices will be able to further 
democratize the responsible development, deployment, 
adoption, and use of AI capabilities across their enterprise. 
In addition to scalable management of data and models, 
organizations can adopt processes, practices, tools, 
and frameworks to support enterprise scalability of AI. 
They include iterative development practices, reusable 
development pipelines, extensible AI-aware system 



architectures, common frameworks and interoperability 
standards, and modernized acquisition policies. 

Adapting DevOps practices for AI and machine 
learning supports iterative development practices 
and reusable development pipelines. So does 
the careful overall design and management 
of production pipelines and the development 
lifecycle.

The recent proliferation of machine learning has led 
to promising initial work in adapting DevOps practices 
specifically for applications that use machine learning. 
This set of practices—now commonly referred to as 
MLOps [11]—extends DevOps to include data processing 
and preparation, model training, model evaluation, model 
deployment, and continuous monitoring capabilities. It 
ensures that machine learning components in the system 
continue to operate as expected when deployed in the 
real world. MLOps supports the continuous delivery 
of machine learning [12] capabilities in AI systems and 
provides opportunities to automate capabilities across 
the AI system development lifecycle. 

MLOps is a relatively new set of practices and tools; 
many challenges and opportunities remain open. It 
will continue to evolve as more practitioners and 
organizations focus on the production and operation of 
AI and machine learning. Adopting and evolving MLOps 
as a standard practice, including development pipelines 
that can be replicated and shared across an organization, 
directly enables the enterprise scalability of AI. 

To develop and grow MLOps as a practice, the workforce 
needs training and education in the design of machine 
learning systems for production. This focus on training 
is driven by the realization by both the research and 
practitioner community that there is a significant 
difference between building a machine learning model 
and deploying and operating it in production. To meet 
this need, Stanford and DeepLearning.ai recently 
offered two of the first courses in machine learning 
for production [13], [14]. To grow and evolve this body of 
knowledge, the field of AI Engineering will need to track 
ongoing education efforts and coalesce curricula. 

Scalability considerations also affect the design and 
development of systems that include AI components and 
the processes by which organizations acquire AI systems. 
At the systems level, system and software architectures 
[15] must be designed to allow AI capabilities to evolve over 
time. For example, most machine learning models must 
periodically be retrained to account for new data or shifts 

in the production or operational context. This retraining 
process can be facilitated by a system architecture that 
makes it easy to swap models in and out or operate 
multiple models for redundancy or roll-back. Recent work 
on capturing and understanding machine learning design 
patterns [16] is a helpful start to building a set of best 
practices for AI systems engineering. 

Scalable Algorithms and Infrastructure 
Two factors underlie the renewed focus and promise 
of AI over the past decade: 1) the availability of large 
amounts of data and 2) computing resources that can 
support the data processing and computational demands 
of modern AI techniques (e.g., training very large-scale 
deep neural networks). In turn, this promise drives the 
demand for computing resources higher and higher. 
In 2018, OpenAI identified a trend of exponentially 
increasing computing resources required for training the 
largest AI models, with a doubling every 3.4 months and 
an annual, year-over-year increase of a factor of ten [17]. 

As the computational demands of training grow, so do 
the size and power of the models and the cost to train 
them. As we mentioned earlier, GPT-3, a state-of-the-
art natural language generation model, has 175 billion 
parameters and is estimated to cost $12M to train [3]. 
The ability to scale computing infrastructure underlies 
all aspects of AI model development and deployment 
and drives continuous improvements and innovations. 
The computing demands of modern AI are particularly 
challenging for the defense and national security 
community. These demands include the need to use 
and maintain the necessary computing infrastructure to 
realize AI capabilities at the size, speed, and complexity 
of missions, plus the requirement to support a very 
wide array of different mission applications. Continuing 
to scale up this infrastructure may not be sustainable; 
different computing paradigms and alternative or 
improved algorithms and methods must be developed to 
support improvements in the capabilities of AI systems. 

“Extrapolating forward this reliance reveals that 
progress along current lines is rapidly becoming 
economically, technically, and environmentally 
unsustainable. Thus, continued progress in 
these applications will require dramatically 
more computationally-efficient methods, which 
will either have to come from changes to deep 
learning or from moving to other machine 
learning methods.” [18]



AI-specific computing is a growing market with a flurry 
of innovation. Over the last decade, graphics processing 
units (GPUs) have been the dominant resource for 
training of models, while CPUs still handle the majority of 
inference cycles. Early GPUs could have been considered 
an Application Specific Integrated Circuit (ASIC), where 
the application was graphics processing. While GPUs 
have been immensely successful, ASIC manufacturers 
are seeing opportunities to improve their performance 
over GPUs for training modern AI systems and CPUs 
for generating inferences. In particular, the use of 
low precision linear algebra in AI models has revived 
interest in older architectures such as Coarse-Grained 
Reconfigurable Architectures and Systolic Arrays, and 
has led to newly named architectures such as Data 
Processing Unit and Tensor Processing Unit [19]. 

While scaling up AI is challenging,  
the defense and national security community 
also wants AI to be scaled down to be run on 
edge devices by individual warfighters and scaled 
out to be run across regionally and globally 
distributed operations.

Some defense applications require AI capabilities to 
be deployed in delayed/disconnected, intermittently-
connected, low-bandwidth (DIL) environments. 
Developing and deploying AI capabilities for these 
resource-constrained settings builds upon ongoing 
research in communication protocols, AI-specific 
computing architectures, federated learning, TinyML, and 
related areas.

The competition in ASICs for edge computing is also rapidly 
growing, driven by attempts to realize AI for everyone, 
everywhere. Edge computing falls into three useful 
categories: push from the cloud, pull from the Internet 
of things, and hybrid cloud-edge analytics. One trend is 
to push deep learning networks to the edge. However, 
deep learning networks are notorious for being large and 
computationally expensive [20]. A significant amount of 
work has therefore been devoted to reducing model size. 
For example, the tinyML Foundation focuses on “Enabling 
Ultra-Low Power Machine Learning at the Edge.”

Federated learning is an emerging approach to AI that 
engages edge devices in the training process, and aims 
to keep the training data localized and private [21]. It 
is a significant departure from large-scale machine 
learning (which is undertaken in data centers) and 
attempts to train a global statistical model using remote 
devices that number from the tens to the millions. The 

challenges associated with federated learning at scale 
include communications expense, system heterogeneity, 
statistical heterogeneity, and privacy concerns. Future 
directions in federated learning could include extreme 
communication schemes, communication reduction 
and the Pareto frontier, novel models of asynchrony, 
heterogeneity diagnostics, granular privacy constraints, 
beyond supervised learning, productionizing federated 
learning, and establishing federated learning benchmarks.

The Future of Scalable AI
The field of AI Engineering is only beginning to 
understand what scale in AI systems actually means 
and how to achieve it. Guidance on the implementation, 
scale-up, and measurement of system impacts is sparse. 
How can an AI prototype or pilot project be transformed 
into a production scale system? Current implementation 
efforts are plagued with obstacles that include everything 
from data collection, ethics, and bias to the cost of 
maintenance and customer interaction. To enable AI 
systems to reach their full potential, we need research, 
processes, policy measures, and tools to comprehensively 
address these barriers. 

For the Department of Defense (DoD) and other national 
security organizations, scalability is critical to match the 
global size and scope of the problems they face. Data 
collection and data sharing looks far different in a DoD 
setting than in large technology companies, which can lead 
to situations where teams do not readily have the data 
they need and aren’t able to get their ideal dataset size. 
We need strategies and techniques to help teams navigate 
data-scarce situations and still ensure system quality. 
Further issues include the cost of computing resources 
and how to financially sustain model training over time, as 
well as how to push technologies to edge computing. 

With a large, distributed workforce, the DoD is also involved 
in guiding the responsible adoption of AI systems for a 
broad array of stakeholders. AI systems hold significant 
promise to support the work of intelligence analysts, 
warfighters, and support professionals, but what gets 
adopted and when remain open questions. Achieving 
enterprise scalability will require changes to the existing 
acquisition process to ensure that systems improvements 
are possible over time. While the government context has 
its own unique attributes, organizational uniqueness bias 
can often prevent learning from industry peers. “In plenty 
of workplaces, leaders are so focused on what makes their 
industry or culture different from others that they overlook 
all the ways it’s similar to others ” [22]. Adoption of AI systems 
requires leaders to rethink organizational structures, 



management strategies, and a host of other elements.  
Over the past two decades, many companies have executed 
new organizational models to accommodate AI systems. 
The DoD could benefit from their knowledge as it seeks to 
undergo further digital transformation.

At the acquisition level, AI demands more flexible 
and nimble processes for identifying, vetting, testing, 
integrating, and updating systems that include AI 
components. This includes how requirements are 
captured and shared, migrating to more continuous 
testing and monitoring of systems, use of modern 
software practices [23], and improving the skills, of the 
acquisition workforce. A more modern and flexible 
approach to acquisition is especially important for the 
defense and national security communities, as pointed 
out by the National Security Commission on AI [24] and 
current work by the DoD’s Joint Artificial Intelligence 
Center [25].

As we defined earlier, scalable AI is the ability of 
algorithms, data, models, and infrastructure to operate 
at the size, speed, and complexity of mission needs. At 
the same time, AI systems require a holistic approach. 
Scale is just one critical dimension to track. Many 
companies failed to successfully scale up their systems 
because they tried to do too much too fast, or lost sight 
of other outcomes.

“The moral is to watch out for the rules you 
set up, because you are likely to get what you 
specify and only that.” [26]

While an AI model itself may optimize for a single outcome, 
we need to remain cognizant of mission needs when 
designing broader AI systems and recognize that scale is 
one of the strategies that can help us to achieve them. 
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