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Abstract

Given a symmetrical social network, the network global testing is where we use the

adjacency matrix of the network to test whether it has only one community or multiple

communities. It’s also naturally connected to the problem of estimating the number of

network communities, which is arguably one of the most important problem in network

analysis area. Despite many interesting works in recent years, it remains unclear how to

find test statistics and estimators that are (a) applicable to networks with severe degree

heterogeneity and mixed-memberships with varying sparsity, and is (b) optimal. This thesis

aims to design statistics to solve the above two problems, under a more realistic network

model. To assess optimality, we use the phase transition framework, which includes the

standard minimax argument, but is more informative.

In the first part of this thesis, we focus on the network global testing problem and

propose the Signed Polygon as a class of new tests. Fixing m ≥ 3, for each m-gon in the

network, define a score using the centered adjacency matrix. The sum of such scores is then

the m-th order Signed Polygon statistic. The Signed Quadrilateral (SgnQ) is special example

of the Signed Polygon with m = 4. We show that SgnQ test satisfies (a) accommodate

severe degree heterogeneity, (b) accommodate mixed-memberships, (c) have a tractable

null distribution, and (d) adapt automatically to different levels of sparsity, and achieve

the optimal phase diagram. and especially, it works well for very sparse and less sparse

networks. Our proposed tests compare favorably with the existing tests and achieve the

optimal phase diagram. Also, many existing tests do not allow for severe heterogeneity or

mixed-memberships, and they behave unsatisfactorily in our settings.

In the second part of the thesis, we propose Stepwise Goodness-of-Fit (StGoF) as a

new approach to estimating K, the number of network communities. For m = 1, 2, . . .,

StGoF alternately uses a community detection step (pretending m is the correct number of

communities) and a goodness-of-fit step. We use SCORE Jin (2015) for community detection,

and propose a new goodness-of-fit measure. Denote the goodness-of-fit statistic in step m by

ψ
(m)
n . We show that as n→∞, ψ

(m)
n → N(0, 1) when m = K and ψ

(m)
n →∞ in probability

when m < K. Therefore, with a proper threshold, StGoF terminates at m = K as desired.

We consider a broad setting that allows severe degree heterogeneity, a wide range of sparsity,

and especially weak signals. In particular, we propose a measure for signal-to-noise ratio

(SNR) and show that there is a phase transition: when SNR → 0 as n → ∞, consistent

estimates for K do not exist, and when SNR → ∞, StGoF is consistent, uniformly for a

broad class of settings. In this sense, StGoF achieves the optimal phase transition. Stepwise
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testing algorithms of similar kind (e.g., Wang et al. (2017); Ma et al. (2018)) are known to

face analytical challenges. We overcome the challenges by using a different design in the

stepwise algorithm and by deriving sharp results in the under-fitting case (m < K) and the

null case (m = K). The key to our analysis is to show that SCORE has the Non-Splitting

Property (NSP). The NSP is non-obvious, so additional to rigorous proofs, we also provide

an intuitive explanation.
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One

Introduction

Network data encodes connections between units of analysis, which introduces many inter-

esting research questions with broad applications. This thesis focus on two important and

related problems in network analysis area.

• Network global testing problem Given a symmetric social network, how to test whether

it has only one community or multiple communities.

• Estimating number of network communities Given a symmetric social network, how

many communities are there?

Real world networks have several characteristics that are ubiquitously found:

• Severe degree heterogeneity. The distribution of the node degrees usually has a

power-law tail, implying severe degree heterogeneity.

• Mixed-memberships. Communities are tightly woven clusters of nodes where we have

more edges within than between. Communities are rarely non-overlapping, and some

nodes may belong to more than one community (and thus have mixed-memberships).

• Sparsity. Many networks are sparse. The sparsity levels may range significantly from

one network to another.

• Weak signal. The community structure is masked by strong noise, and the signal-to-

noise ratio (SNR) is usually relatively small.

These features pose great challenges to both the modeling and inference of network data.

Most of existing works modeling the network with Stochastic Block Model (SBM), which is

well known for oversimplifying the features observed in real world networks. Instead, this

thesis would focus on more realistic and complicated network models. To understand the

statistical limits of the above problems, we adopt the phase transition framework, which

includes the classical minimax theory as a special case but is more informative.

1.1 Network global testing

Recently, the global testing problem has attracted much attention. A good understanding

of the problem is useful for discovering non-obvious social groups and patterns Béjar et al.
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1. introduction

(2016); Du and Yang (2011), measuring diversity of individual nodes Fu et al. (2015),

determining stopping time in a recursive community detection scheme Li et al. (2018); Zhao

et al. (2011). It may also help understand other related problems such as membership

estimation Zhang et al. (2014), and estimating the number of the communities Saldana et al.

(2017); Wang et al. (2017).

Many interesting approaches have been proposed. Mossel et al. (2015) and Banerjee and

Ma (2017) (see also Banks et al. (2016)) considered a special case of the testing problem, where

they assume a simple null of Erdos-Renyi random graph model and a special alternative which

is an SBM with two equal-sized communities. They provided the asymptotic distribution of

the log-likelihood ratio within the contiguous regime. Since the likelihood ratio test statistic

is NP-hard to compute, Banerjee and Ma (2017) introduced an approximation by linear

spectral statistics. Lei (2016) also considered the SBM model and studied the problem of

testing whether K = K0 or K > K0, which is based on the Tracy-Widom law of extreme

eigenvalues and requires delicate random matrix theory. Unfortunately, these work have

been focused on the SBM (which allows neither severe degree heterogeneity nor mixed

membership). Therefore, despite the elegant theory in these works, it remains unclear how to

extend their ideas to our settings. The approach by Gao and Lafferty (2017) is probably the

first that tackles the global testing problem in settings that allow severe degree heterogeneity,

but still in a relatively idealized setting. Jin et al. (2018) considered the problem in much

broader settings, with a very different theoretical framework. They suggested a general

recipe for constructing test statistics that have N(0, 1) as the asymptotic null distribution,

and proposed a class of test statistics called the graphlet counting (GC), which includes the

EZ test as a special case. They explained why both GC and EZ tests are reasonable ideas

(for settings much broader than that of Gao and Lafferty (2017)) and showed that both tests

have competitive power in many cases.

Compared to previous works, our contributions are as follows:

• Identify the Region of Impossibility and the Region of Possibility in the phase space.

• Propose the Signed Polygon as a class of new tests that are appropriate for net-

works with severe degree heterogeneity and mixed-memberships, with an easy-to-track

asymptotic null distribution.

• Prove that the Signed Triangle and Signed Quadrilateral tests are optimally adaptive

and perform well for all networks in the Region of Possibility, ranging from very sparse

ones to the least sparse ones.

To show the success of the Signed Polygon test for the whole Region of Possibility is very

subtle and extremely tedious. The main reason is that we hope to cover the whole spectrum

of degree heterogeneity and sparsity levels. Crude bounds may work in one case but not

another, and many seemingly negligible terms turn out to be non-negligible. The lower bound

argument is also very subtle. Compared to work on SBM where there is only one unknown

parameter under the null, our null has n unknown parameters. The difference provides a lot
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1.2. Estimating number of network communities

of freedom in constructing inseparable hypothesis pairs, and so the Region of Impossibility

in our setting is much wider than that for SBM. Our construction of inseparable hypothesis

pairs uses theorems on non-negative matrix scaling, a mathematical area pioneered by

Sinkhorn (1974) and Marshall and Olkin (1968) among others (e.g., Brualdi (1974); Johnson

and Reams (2009)).

1.2 Estimating number of network communities

In network analysis, how to estimate the number of communities K is a fundamental

problem. In many recent approaches, K is assumed as known a priori (see for example

Chen et al. (2018); Gao et al. (2018); Karrer and Newman (2011); Ma et al. (2020); Zhao

et al. (2011); Xu et al. (2020) on community detection, Jin et al. (2017); Zhang et al. (2014)

on mixed-membership estimation, and Liu et al. (2017) on dynamic community detection).

Unfortunately, K is rarely known in applications, so the performance of these approaches

hinges on how well we can estimate K.

In recent years, many interesting approaches for estimating K have been proposed. Le

and Levina (2015) proposed to estimate K using the eigenvalues of the non-backtracking

matrix or Bethe Hessian matrix, using ideas from mathematical graph theory. Unfortunately,

the approach requires relatively strong conditions for consistency. Liu et al. (2019) proposed

to estimate K by using the classical scree plot approach with careful theoretical justification,

but the approach is known to be unsatisfactory in the presence of severe degree heterogeneity,

for it is hard to derive a sharp bound for the spectral norm of the noise matrix W . Saldaña

et al. (2017) used a BIC-type objective function and Daudin et al. (2008); Latouche et al.

(2012) used an objective function of the Bayesian model selection flavor. However, these

methods did not provide explicit theoretical guarantee on consistency (though a partial result

was established in Li et al. (2020), which stated that under SBM, the proposed estimator K̂

is no greater than K with high probability). Wang et al. (2017) proposed to estimate K by

solving a BIC type optimization problem, where the objective function is the sum of the

log-likelihood and the model complexity. The major challenge here is that the likelihood is

the sum of exponentially many terms and is hard to compute. In a remarkable paper, Ma

et al. (2018) extended the idea of Wang et al. (2017) by proposing a new approach that is

computationally more feasible.

Compared to previous works, our contributions are as follows.

• We propose StGoF as a new approach to estimating K. For m = 1, 2, . . ., StGoF

alternately uses two sub-steps, a community detection sub-step where we apply SCORE

Jin (2015), assuming m is the correct number of communities, and a Goodness-of-Fit

(GoF) sub-step.

• We derive N(0, 1) as the explicit limiting null distribution for the GoF sub-step, and

use the NSP of SCORE to derive tight bounds in the under-fitting case. These sharp

results and the design of StGoF allow us to avoid the analysis in the over-fitting case

and so to overcome the technical challenges faced by stepwise testing of this kind.
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1. introduction

• We show that StGoF achieves the optimal phase transition under mild conditions and

consistent in broad settings (e.g., weak signals, severe degree heterogeneity, and a wide

range of sparsity).

1.3 Outline

The reminder of the thesis is organized as follows. In the second chapter, we propose

Signed Polygons as a novel class of global testing statistic, with SgnQ as a special case. We

prove SgnQ test is applicable to a wide range of networks, including those with severe degree

heterogeneity and mixed memberships. Moreover, for a broad class of parameter settings

where only minimum regularity conditions are required. For lower bound, we use a phase

transition framework and show that SgnQ achieves the optimal phase transition diagram.

For the third chapter, propose Stepwise Goodness-of-Fit (StGoF) as a new approach to

estimating K, the number of network communities in a given network. We consider a broad

setting where we allow severe degree heterogeneity, a wide range of sparsity, and especially

weak signals. We also prove that StGoF achieves the optimal phase transition diagram.

The second chapter is based on the paper Jin et al. (2019), and is co-supervised by

Professor Jiashun Jin and Professor Zheng Tracy Ke. The third chapter is based on Jin

et al. (2020), and is co-supervised by Professor Jiashun Jin and Professor Zheng Tracy Ke,

and Minzhe Wang and Shengming Luo have contributed equally.

My research on community detection Jin et al. (2021a), mixed membership estimation

Jin et al. (2017) and network pairwise comparison Jin et al. (2021b) is not included in this

thesis.
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Two

Optimal Adaptivity of Signed-Polygon

Statistics for Network Testing

2.1 Introduction

Given a symmetrical social network, we are interested in the global testing problem where

we use the adjacency matrix of the network to test whether it has only one community

or multiple communities. A good understanding of the problem is useful for discovering

non-obvious social groups and patterns Béjar et al. (2016); Du and Yang (2011), measuring

diversity of individual nodes Fu et al. (2015), determining stopping time in a recursive

community detection scheme Li et al. (2018); Zhao et al. (2011). It may also help understand

other related problems such as membership estimation Zhang et al. (2014), and estimating

the number of the communities Saldana et al. (2017); Wang et al. (2017).

Phase transition is a well-known optimality framework Donoho and Jin (2004); Ingster

et al. (2010); Ma and Wu (2015); Paul (2007). It is related to the minimax framework but

can be more informative in many cases. Conceptually, for the global testing problem, in

the two-dimensional phase space with the two axes calibrating the “sparsity” and “signal

strength”, respectively, there is a “Region of Possibility” and a “Region of Impossibility”. In

“Region of Possibility”, any alternative is separable from the null. In “Region of Impossibility”,

any alternative is inseparable from the null. If a test is able to automatically adapt to

different levels of sparsity and is able to separate any given alternative in the “Region of

Possibility” from the null, then we call it “optimally adaptive”.

We are interested in finding tests that satisfy the following requirements.

• (R1). Applicable to networks with severe degree heterogeneity.

• (R2). Applicable to networks with mixed-memberships.

• (R3). The asymptotic null distribution is easy to track, so the rejection regions are

easy to set.

• (R4). Optimally adaptive: We desire a single test that is able to adapt to different

levels of sparsity and is optimally adaptive.
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2. optimal adaptivity of signed-polygon statistics for network testing

2.1.1 The DCMM model

We adopt the Degree Corrected Mixed Membership (DCMM) model Zhang et al. (2014); Jin

et al. (2017). Denote the adjacency matrix by A, where

Aij =

{
1, if node i and node j have an edge,

0, otherwise.
(2.1.1)

Conventionally, self-edges are not allowed so all the diagonal entries of A are 0. In DCMM,

we assume there are K perceivable communities C1, C2, . . . , CK , and each node is associated

with a mixed-membership weight vector πi = (πi(1), πi(2), . . . , πi(K))′ where for 1 ≤ k ≤ K
and 1 ≤ i ≤ n,

πi(k) = the weight node i puts in community k. (2.1.2)

Moreover, for a K × K symmetric nonnegative matrix P which models the community

structure, and positive parameters θ1, θ2, . . . , θn which model the degree heterogeneity, we

assume the upper triangular entries of A are independent Bernoulli variables satisfying

P(Aij = 1) = θiθj · π′iPπj ≡ Ωij , 1 ≤ i < j ≤ n, (2.1.3)

where Ω denotes the matrix ΘΠPΠ′Θ, with Θ being the n×n diagonal matrix diag(θ1, . . . , θn)

and Π being the n×K matrix [π1, π2, . . . , πn]′. For identifiability (see Jin et al. (2017) for

more discussion), we assume

all diagonal entries of P are 1. (2.1.4)

When K = 1, (3.2.4) implies P = 1, and so Ωij = θiθj , 1 ≤ i, j ≤ n.

Write for short diag(Ω) = diag(Ω11,Ω22, . . . ,Ωnn), and let W be the matrix where for

1 ≤ i, j ≤ n, Wij = Aij − Ωij if i 6= j and Wij = 0 otherwise. In matrix form, we have

A = Ω− diag(Ω) +W, where Ω = ΘΠPΠ′Θ. (2.1.5)

DCMM includes three models as special cases, each of which is well-known and has been

studied extensively recently.

• Degree Corrected Block Model (DCBM) Karrer and Newman (2011). If we do not allow

mixed-memberships (i.e., each weight vector πi is degenerate with one entry being

nonzero), then DCMM reduces to the DCBM.

• Mixed Membership Stochastic Block Model (MMSBM) Airoldi et al. (2008). If θ1 =

θ2 = . . . = θn and we denote the common value by αn, then Ω reduces to Ω = αnΠPΠ′.

For identifiability in this special case, (3.2.4) is too strong, so we relax it to that the

average of the diagonals of P is 1.

• Stochastic Block Model (SBM) Holland et al. (1983). MMSBM further reduces to the

classical SBM if additionally we do not allow mixed-memberships.

Under DCMM, the global testing problem is the problem of testing

H
(n)
0 : K = 1 vs. H

(n)
1 : K ≥ 2. (2.1.6)

The seeming simplicity of the two hypotheses is deceiving, as both of them are highly

composite, consisting of many different parameter configurations.

6



2.1. Introduction

2.1.2 Phase transition: a preview of our main results

Let λ1, λ2, . . . , λK be the first K eigenvalues of Ω, arranged in the descending order in

magnitude. We can view (a)
√
λ1 both as the sparsity level and the noise level Jin (2015)

(i.e., spectral norm of the noise matrix W ), (b) |λ2| as the signal strength, so |λ2|/
√
λ1 is

the Signal-to-Noise Ratio (SNR), and (c) |λ2|/λ1 as a measure for the similarity between

different communities.

Now, in the two-dimensional phase space where the x-axis is
√
λ1 which measures the

sparsity level, and the y-axis is |λ2|/λ1 which measures the community similarity, we have

two regions.

• Region of Possibility (1�
√
λ1 �

√
n, |λ2|/

√
λ1 →∞). For any alternative hypothesis

in this region, it is possible to distinguish it from any null hypothesis, by the Signed

Polygon tests to be introduced.

• Region of Impossibility (1 �
√
λ1 �

√
n, |λ2|/

√
λ1 → 0). In this region, any

alternative hypothesis is inseparable from the null hypothesis, provided that some mild

conditions hold.

See Figure 2.1 (left panel). The Signed Polygon test satisfies all requirements (R1)-(R4)

aforementioned. Since the test is able to separate all alternatives (ranging from very sparse

to less sparse) in the Region of Possibility from the null, it is optimally adaptive.

To further elucidate, consider the special DCMM in Example 1, where

λ1 ∼ (1 + (K − 1)bn)‖θ‖2, λk ∼ (1− bn)‖θ‖2, k = 2, 3, . . . ,K.

The sparsity level is
√
λ1 � ‖θ‖, and the SNR is |λ2|/

√
λ1 � ‖θ‖(1 − bn), where (1 − bn)

measures the community similarity. In this example, the Region of Possibility and Region of

Impossibility are defined by

{1� ‖θ‖ �
√
n, ‖θ‖(1− bn)→∞}, and {1� ‖θ‖ �

√
n, ‖θ‖(1− bn)→ 0},

respectively. See Figure 2.1 (right panel).

Remark 1. As the phase transition is hinged on λ2/
√
λ1, one may think that the

statistic λ̂2/

√
λ̂1 is optimally adaptive, where λ̂k is the k-th eigenvalue of A, 1 ≤ k ≤ K,

arranged in the descending order in magnitude. This is however not true, for the consistency

of λ̂2 to λ2 can not be guaranteed in our range of interest, unless with strong conditions on

θmax Jin (2015).

2.1.3 Literature review, the Signed Polygon and our contribution

Recently, the global testing problem has attracted much attention and many interesting

approaches have been proposed. To name a few, Mossel et al. (2015) and Banerjee and Ma

(2017) (see also Banks et al. (2016)) considered a special case of the testing problem, where

they assume a simple null of Erdos-Renyi random graph model and a special alternative which

is an SBM with two equal-sized communities. They provided the asymptotic distribution of

7



2. optimal adaptivity of signed-polygon statistics for network testing

|λ2|
λ1

√

λ1

Impossibility
|λ2|/

√
λ1 → 0

Possibility
|λ2|/

√
λ1 → ∞

(1
-b

n
)

‖θ‖

Impossibility
(1− bn)‖θ‖ → 0

Possibility
(1− bn)‖θ‖ → ∞

Figure 2.1: Left: Phase transition. In Region of Impossibility, any alternative hypothesis
is indistinguishable from a null hypothesis, provided that some mild conditions hold. In
Region of Possibility, the Signed Polygon test is able to separate any alternative hypothesis
from a null hypothesis asymptotically. Right: Phase transition for the special DCMM model
in Example 1, where

√
λ1 � ‖θ‖, |λ2|/λ1 � (1− bn), and |λ2|/

√
λ1 � (1− bn)‖θ‖.

the log-likelihood ratio within the contiguous regime. Since the likelihood ratio test statistic

is NP-hard to compute, Banerjee and Ma (2017) introduced an approximation by linear

spectral statistics. Lei (2016) also considered the SBM model and studied the problem of

testing whether K = K0 or K > K0, where K0 is the number of communities. His approach

is based on the Tracy-Widom law of extreme eigenvalues and requires delicate random

matrix theory. Unfortunately, these work have been focused on the SBM (which allows

neither severe degree heterogeneity nor mixed membership). Therefore, despite the elegant

theory in these works, it remains unclear how to extend their ideas to our settings.

The approach by Gao and Lafferty (2017) is probably the first that tackles the global

testing problem in settings that allow severe degree heterogeneity. They showed that the EZ

test has a null that is asymptotically N(0, 1), and has competitive powers in many interesting

settings. However, they only considered a relatively idealized setting where the off-diagonal

entries of P are all equal and where (θi, πi)’s are iid generated (see details therein), and

whether their ideas continue to work in our setting remains unclear.

Jin et al. (2018) considered the problem in much broader settings, with a very different

theoretical framework. They suggested a general recipe for constructing test statistics that

have N(0, 1) as the asymptotic null distribution, and proposed a class of test statistics called

the graphlet counting (GC), which includes the EZ test as a special case. They explained

why both GC and EZ tests are reasonable ideas (for settings much broader than that of

Gao and Lafferty (2017)) and showed that both tests have competitive power in many cases.

At that time, our hope was that the GC test is the desired test. We tried very hard to

analyze the GC test, hoping that it satisfies (R1)-(R4). Unfortunately, after substantial

time and efforts, we found that in the less sparse case, the variance of the GC test becomes

unsatisfactorily large, and so the test loses power in many easy-to-test scenarios and is not

8



2.1. Introduction

optimally adaptive. Fortunately, right at the moment of despair, we came to realize that

• Especially for the less sparse case, the key to constructing a powerful test is not how

to capture the signal, but to reduce the variance.

• The GC test is based on counts of non-centered cycles/paths. The variance can be

much smaller if we count the centered cycles instead.

Centered and non-centered cycles are defined on the centered and non-centered adjacency

matrix, respectively. See details below.

These insights motivate a class of new tests which we call Signed Polygon, including the

Signed Triangle (SgnT) and the Signed Quadrilateral (SgnQ). The Signed Polygon statistics

are related to the Signed Cycle statistics, first introduced by Bubeck et al. Bubeck et al.

(2016) and later generalized by Banerjee Banerjee (2018).

The Signed Polygon and the Signed Cycle are cycle-counting approaches, both of which

recognize the benefit of variance reduction by counting centered cycles instead of non-centered

cycles, but there are some major differences. The study of the Signed Cycles has been focused

on the SBM and similar models, where under the null, P(Aij = 1) = α, 1 ≤ i 6= j ≤ n, and α

is the only unknown parameter. In this case, a natural approach to centering the adjacency

matrix A is to first estimate α using the whole matrix A (say, α̂), and then subtract all

off-diagonal entries of A by α̂. However, under the null of our setting, P(Aij = 1) = θiθj ,

1 ≤ i 6= j ≤ n, and there are n different unknown parameters θ1, θ2, . . . , θn. In this case, how

to center the matrix A is not only unclear but also worrisome, especially when the network

is very sparse, because we have to use limited data to estimate a large number of unknown

parameters. Also, for any approaches we may have, the analysis is seen to be much harder

than that of the previous case.

Note that the ways how two statistics are defined over the centered adjacency matrix

are also different. See Section 2.1.4 and Bubeck et al. (2016).

In the Signed Polygon, we use a new approach to estimate θ1, θ2, . . . , θn under the null,

and use the estimates to center the matrix A. To our surprise, data limitation (though a

challenge) does not ruin the idea, and even for very sparse networks, the estimation errors

of θ1, θ2, . . . , θn only have a negligible effect. The main contributions of the chapter are as

follows.

• Identify the Region of Impossibility and the Region of Possibility in the phase space.

• Propose the Signed Polygon as a class of new tests that are appropriate for networks

with severe degree heterogeneity and mixed-memberships.

• Prove that the Signed Triangle and Signed Quadrilateral tests satisfy all the require-

ments (R1)-(R4), and especially that they are optimally adaptive and perform well for

all networks in the Region of Possibility, ranging from very sparse ones to the least

sparse ones.

9



2. optimal adaptivity of signed-polygon statistics for network testing

To show the success of the Signed Polygon test for the whole Region of Possibility is very

subtle and extremely tedious. The main reason is that we hope to cover the whole spectrum of

degree heterogeneity and sparsity levels. Crude bounds may work in one case but not another,

and many seemingly negligible terms turn out to be non-negligible (see Sections 2.1.4 and

2.4). The lower bound argument is also very subtle. Compared to work on SBM where there

is only one unknown parameter under the null, our null has n unknown parameters. The

difference provides a lot of freedom in constructing inseparable hypothesis pairs, and so the

Region of Impossibility in our setting is much wider than that for SBM. Our construction of

inseparable hypothesis pairs uses theorems on non-negative matrix scaling, a mathematical

area pioneered by Sinkhorn Sinkhorn (1974) and Olkin Marshall and Olkin (1968) among

others (e.g., Brualdi (1974); Johnson and Reams (2009)).

2.1.4 The Signed Polygon statistic

Recall that A is the adjacency matrix of the network. Introduce a vector η̂ by (1n denotes

the vector of 1’s)

η̂ = (1/
√
V )A1n, where V = 1′nA1n. (2.1.7)

Fixing m ≥ 3, the order-m Signed Polygon statistic is defined by (notation: (dist) is short

for “distinct”, which means any two of i1, . . . , im are unequal)

U (m)
n =

∑
i1,i2,...,im(dist)

(Ai1i2 − η̂i1 η̂i2)(Ai2i3 − η̂i2 η̂i3) . . . (Aimi1 − η̂im η̂i1). (2.1.8)

When m = 4, we call it the Signed-Quadrilateral (SgnQ) statistic:

Qn =
∑

i1,i2,i3,i4(dist)

(Ai1i2 − η̂i1 η̂i2)(Ai2i3 − η̂i2 η̂i3)(Ai3i4 − η̂i3 η̂i4)(Ai4i1 − η̂i4 η̂i1). (2.1.9)

For analysis, we focus on Qn, but the theoretical framework is extendable to general m.

The key to understanding and analyzing the Signed Polygon is the Ideal Signed Polygon.

Introduce a non-stochastic counterpart of η̂ by

η∗ = Ω1n/
√
v0, where v0 = 1′nΩ1n. (2.1.10)

Define the order-m Ideal Signed Polygon statistic by

Ũ (m)
n =

∑
i1,i2,...,im(dist)

(Ai1i2 − η∗i1η
∗
i2)(Ai2i3 − η∗i2η

∗
i3) . . . (Aimi1 − η∗imη

∗
i1). (2.1.11)

We expect to see that

η̂ ≈ E[η̂] ≈ η∗.

We can view Ũ
(m)
n as the oracle version of U

(m)
n , with η∗ given. We can also view U

(m)
n as

the plug-in version of Ũ
(m)
n , where we replace η∗ by η̂.

For implementation, it is desirable to rewrite Tn and Qn in matrix forms, which allows

us to avoid using a for loop and compute much faster (say, in MATLAB or R). For any two

matrices M,N ∈ Rn,n, let tr(M) be the trace of M , diag(M) = diag(M11,M22, . . . ,Mnn),

and M ◦N be the Hadamard product of M and N (i.e., M ◦N ∈ Rn,n, (M ◦N)ij = MijNij).

Denote Ã = A− η̂η̂′. The following theorem is proved in the supplementary material.
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2.1. Introduction

Theorem 2.1.1. We have

Qn = tr(Ã4)− 4 tr(Ã ◦ Ã3) + 8 tr(Ã ◦ Ã ◦ Ã2)− 6 tr(Ã ◦ Ã ◦ Ã ◦ Ã)

− 2 tr(Ã2 ◦ Ã2) + 2 · 1′n[diag(Ã)(Ã ◦ Ã)diag(Ã)]1n + 1′n[Ã ◦ Ã ◦ Ã ◦ Ã]1n.

The complexity of computing Qn is O(n2d̄), where d̄ is the average degree of the network.

Compared to the EZ and GC tests proposed in Gao and Lafferty (2017); Jin et al. (2018),

the computational complexity of SgnQ is of the same order.

Remark 2 (Connection to the Signed Cycle). In the more idealized MMSBM or SBM

model, we don’t have degree heterogeneity, and Ω = αn1n1
′
n under the null, where αn

is the only unknown parameter. In this simple setting, it makes sense to estimate αn by

α̂n = d̄/(n− 1), where d̄ is the average degree. This gives rise to the Signed Cycle statistics

Banerjee (2018); Bubeck et al. (2016):

C(m)
n =

∑
i1,i2,...,im(dist)

(Ai1i2 − α̂n)(Ai2i3 − α̂n) . . . (Aimi1 − α̂n).

Bubeck et al. (2016) first proposed C
(3)
n for a global testing problem in a model similar to

MMSBM. Although their test statistic is also called the Signed Triangle, it is different from

our statistic, for their tests are only applicable to models without degree heterogeneity. The

analysis of the Signed Polygon is also much more delicate than that of the Signed Cycle, as

the error (α̂n − αn) is much smaller than the errors in (η̂ − η∗).

It remains to understand (1) how the Signed Polygon manages to reduce variance, (2)

what are the analytical challenges.

Consider the first question. We illustrate it with the Ideal Signed Polygon (2.1.11) and

the null case. In this case, Ω = θθ′. It is seen η∗ = θ, Aij − η∗i η∗j = Aij − Ωij = Wij , for

i 6= j (see (2.1.5) for definition of W ), and so

Ũ (m)
n =

∑
i1,i2,...,im(dist)

Wi1i2Wi2i3 . . .Wimi1 .

In the sum, each term is an m-product of independent centered Bernoulli variables, and two

terms Wi1i2Wi2i3 . . .Wimi1 and Wi′1i
′
2
Wi′2i

′
3
. . .Wi′mi

′
1

are correlated only when {i1, i2, . . . , im}
and {i′1, i′2, . . . , i′m} are the vertices of the same polygon. Such a construction is known to

be efficient in variance reduction (e.g., Bubeck et al. (2016)).

In comparison, the main term of an order-m GC test statistic Jin et al. (2018) is

N (m)
n =

∑
i1,i2,...,im(dist)

Ai1i2Ai2i3 . . . Aimi1 .

Since here the Bernoulli variables are not centered, we can split N
(m)
n into two uncorrelated

terms: N
(m)
n = Ũ

(m)
n + (N

(m)
n − Ũ (m)

n ). Compared to the Signed Polygon, the additional

variance comes from the second term, which is undesirably large in the less sparse case (Ke,

2019).

Remark 3. The above argument also explains why the order-2 Signed Polygon does

not work well. To see the point, note that when m = 2, Ũ
(m)
n =

∑
i1 6=i2 W

2
i1i2

under the null,

which has an unsatisfactory variance due to the square of the W -terms.

11



2. optimal adaptivity of signed-polygon statistics for network testing

Consider the second question. We discuss with the SgnQ statistic. Recall that η∗ is a non-

stochastic proxy of η̂. For any 1 ≤ i, j ≤ n and i 6= j, we decompose η∗i η
∗
j − η̂iη̂j = δij + rij ,

where δij is the main term, which is a linear function of η̂i and η̂j , and rij is the remainder

term. Introduce

Ω̃ = Ω− η∗(η∗)′. (2.1.12)

We have Aij − η̂iη̂j = Ω̃ij +Wij + δij + rij . After inserting this into Qn, each 4-product is

now the product of 4 bracketed terms, where each bracketed term is the sum of 4 terms.

Expanding the brackets and re-organizing, Qn splits into 4× 4× 4× 4 = 256 post-expansion

sums, each of the form ∑
i1,i2,i3,i4(dist)

ai1i2bi2i3ci3i4di4i1 ,

where a is a generic term which can be equal to either of the four terms Ω̃, W , δ, and r;

same for b, c and d. While some of these terms may be equal to each other, the symmetry

we can exploit is limited, due to (a) degree heterogeneity, (b) mixed-memberships, and (c)

the underlying polygon structure. As a result, we still have more than 50 post-expansion

sums to analyze.

The analysis of a post-expansion sum with the presence of one or more r-term is the

most tedious of all, where we need to further decompose each r-term into three different

terms. This requires analysis of more than 100 additional post-expansion sums.

At first glance, we may think most of the post-expansion sums are easy to control via a

crude bound (e.g., the Cauchy-Schwarz inequality). Unfortunately, this is not the case, and

many seemingly negligible terms turn out to be non-negligible. Here are some of the reasons.

• Due to the scarcity of data, the estimation error (η̂i− ηi) is not sufficiently small. Also,

severe degree heterogeneity dictates that a crude bound may be enough for some η̂i
but not for other η̂i.

• We aim to cover all interesting sparsity levels: a crude bound may be enough for a

specific range of sparsity levels, but not for others.

• We desire to have a single test that works for all levels of sparsity. Alternatively, we

can find one test that works well for the more sparse case and another test that works

well for the less sparse case, but this is less appealing from a practical viewpoint.

As a result, we have to analyze a large number of post-expansion sums, where the analysis

is subtle, extremely tedious, and error-prone, involving delicate combinatorics, due to the

underlying polygon structure. See Section 2.4.

2.1.5 Organization of the chapter

Section 3.2 focuses on the Region of Possibility and contains the upper bound argument.

Section 2.3 focuses on the Region of Impossibility and contains the lower bound argument.
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2.2. The Signed Polygon test and the upper bound

Section 2.4 presents the key proof ideas, with the proof of secondary lemmas deferred to the

supplementary material. Section 3.5 presents the numerical study.

For any q > 0 and θ ∈ Rn, ‖θ‖q denotes the `q-norm of θ (when q = 2, we drop the

subscript for simplicity). Also, θmin and θmax denote min{θ1, . . . , θn} and max{θ1, . . . , θn},
respectively. For any n > 1, 1n ∈ Rn denotes the vector of 1’s. For two positive sequences

{an}∞n=1 and {bn}∞n=1, we write an ∼ bn if limn→∞ an/bn = 1, and we write an � bn if for

sufficiently large n, there are two constants c2 > c1 > 0 such that c1 ≤ an/bn ≤ c2. We use∑
i1,i2,...,im(dist) to denote the sum over all (i1, . . . , im) such that 1 ≤ ik ≤ n and ik 6= i` for

1 ≤ k 6= ` ≤ m (so the number of summands is n(n− 1) · · · (n−m+ 1)).

2.2 The Signed Polygon test and the upper bound

For reasons aforementioned, we focus our discussion on the SgnQ statistic Qn, but the

ideas are extendable to general Signed Polygon statistics. In Section 2.2.1, we establish the

asymptotic normality of two statistics. In Section 2.2.2, we use two statistics to construct

two tests, the SgnT test and the SgnQ test. In Section 2.2.3, we discuss the power of the

two tests.

In a DCMM model, Ω = ΘΠPΠ′Θ, where Θ = diag(θ1, . . . , θn), and Π is the n ×K
membership matrix [π1, π2, . . . , πn]′. We assume as n→∞,

‖θ‖ → ∞, θmax → 0, and (‖θ‖2/‖θ‖1)
√

log(‖θ‖1)→ 0. (2.2.13)

The first condition is necessary. In fact, if ‖θ‖ → 0, then the alternative is indistinguishable

from the null, as suggested by lower bounds in Section 2.3. The second one is mild as

the eligible range for θmax is roughly (n−1/2, 1). The last one is weaker than that of

θmax
√

log(n)→ 0, and is very mild.

Moreover, introduce G = ‖θ‖−2Π′Θ2Π ∈ RK×K . This matrix is properly scaled and it

can be shown that ‖G‖ ≤ 1 (Appendix C, supplementary material). When the null is true,

K = P = G = 1, and we don’t need any additional condition. When the alternative is true,

we assume
max1≤k≤K{

∑n
i=1 θiπi(k)}

min1≤k≤K{
∑n

i=1 θiπi(k)}
≤ C, ‖G−1‖ ≤ C, ‖P‖ ≤ C. (2.2.14)

The conditions are mild. Take the first two for example. When there is no mixed membership,

they only require the K classes to be relatively balanced.

2.2.1 Asymptotic normality of the null

The following two theorems are proved in Section 2.4.4.

Theorem 2.2.1 (Limiting null of the SgnQ statistic). Consider the testing problem (2.1.6)

under the DCMM model (3.1.1)-(3.2.4), where the condition (2.2.13) is satisfied. Suppose

the null hypothesis is true. As n→∞,

E[Qn] = (2 + o(1))‖θ‖4, and Var(Qn) ∼ 8‖θ‖8,
and

Qn − E[Qn]√
Var(Qn)

−→ N(0, 1), in law.
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2.2.2 The level-α SgnQ tests

By Theorems 2.2.1, the null variances of the two statistics depend on ‖θ‖2. To use the two

statistics as tests, we need to estimate ‖θ‖2. For η̂ and η∗ defined in (2.1.7) and (2.1.10),

respectively, we have η̂ ≈ η∗ and η∗ = θ under the null. A reasonable estimator for ‖θ‖2

under the null is therefore ‖η̂‖2. We propose to estimate ‖θ‖2 with (‖η̂‖2−1), which corrects

the bias and is slightly more accurate than ‖η̂‖2. The following lemma is proved in the

supplementary material.

Lemma 1 (Estimation of ‖θ‖2). Consider the testing problem (2.1.6) under the DCMM

model (3.1.1)-(3.2.4), where the condition (2.2.13) holds when either hypothesis is true and

condition (2.2.14) holds when the alternative is true. Then, under both hypotheses, as n→∞
(‖η̂‖2 − 1)/‖η∗‖2 → 1, in probability,

where

‖η∗‖2 = (1′nΩ21n)/(1′nΩ1n)

= ‖θ‖2, under H
(n)
0 ,

� ‖θ‖2, under H
(n)
1 .

Combining Theorem 2.2.1 and Lemma 1, we have

Qn − 2(‖η̂‖2 − 1)2√
8(‖η̂‖2 − 1)4

−→ N(0, 1), in law. (2.2.15)

With the same α, we propose the following SgnQ test, which is a one-sided test where we

reject the null hypothesis if and only if

Qn ≥
(
2 + zα

√
8
)
(‖η̂‖2 − 1)2, zα: upper α quantile of N(0, 1). (2.2.16)

As a result, for both tests we just defined, the levels satisfy

P
H

(n)
0

(Reject the null)→ α, as n→∞.

2.2.3 Power analysis of the SgnQ tests

The matrices Ω and Ω̃ play a key role in power analysis. Recall that Ω is defined in (3.1.3)

where rank(Ω) = K, and Ω̃ = Ω− η∗(η∗)′ is defined in (2.1.12) with η∗ = Ω1n/
√

1′nΩ1n as

in (2.1.10). Recall that λ1, λ2, . . . , λK are the K nonzero eigenvalues of Ω. Let ξ1, ξ2, . . . , ξK
be the corresponding eigenvectors. The following theorems are proved in Section 2.4.4.

Theorem 2.2.2 (Limiting behavior of the SgnQ statistic (alternative)). Consider the testing

problem (2.1.6) under the DCMM model (3.1.1)-(3.2.4). Suppose the alternative hypothesis

is true and the conditions (2.2.13)-(2.2.14) hold. As n→∞,

E[Qn] = tr(Ω̃4) + o((λ2/λ1)4‖θ‖8) + o(‖θ‖4),

and

Var(Qn) ≤ C
(
‖θ‖8 + C(λ2/λ1)6‖θ‖8‖θ‖63

)
.

By Theorem 2.2.2 and Lemma 1, under the alternative hypothesis,

the mean and variance of Qn−2(‖η̂‖2−1)2√
8(‖η̂‖2−1)4

are tr(Ω̃4)√
8‖η∗‖8

and σ2
n,
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respectively, where σ2
n denotes the asymptotic variance, which satisfies that

σ2
n ≤

C, if |λ2/λ1| � ‖θ‖−1
3 ,

C(λ2/λ1)6 · ‖θ‖63, if |λ2/λ1| � ‖θ‖−1
3 .

If we fix the degree heterogeneity vector θ and let (λ2/λ1) range, there is a phase change in

the variance. We shall call:

• the case of |λ2/λ1| ≤ C‖θ‖−1
3 as the weak signal case for SgnQ.

• the case of |λ2/λ1| � ‖θ‖−1
3 as the strong signal case for SgnQ.

We now analyze tr(Ω̃4). The following lemma is proved in the supplementary material.

Lemma 2 (Analysis of tr(Ω̃4)). Suppose the conditions of Theorem 2.2.2 hold. Under the

alternative hypothesis,

• If |λ2|/λ1 → 0, then tr(Ω̃4) = tr(Λ4)+(q′Λq)4+2(h′Λ2h)2+4(h′Λh)2(h′Λ2h)+4h′Λ4h+

4(h′Λh)(h′Λ3h) + o(λ4
2) &

∑4
k=2 λ

4
k.

• If |λ2|/λ1 ≥ C, then tr(Ω̃4) ≥ C
∑K

k=2 λ
4
k.

• In the special case where K = 2, the vector h is a scalar, and tr(Ω̃4) = [(h2 + 1)4 +

o(1)] · λ4
2.

As a result, it always holds that tr(Ω̃4) ≥ C
∑K

k=2 λ
4
k. Then, in the weak signal case,

E[Qn]√
Var(Qn)

≥
C
(∑K

k=2 λ
4
k

)
‖θ‖4

≥ C
(
λ−2

1

K∑
k=2

λ4
k

)
,

In the strong signal case, since (λ2/λ1)3 ≤ λ−3
1 (
∑K

k=2 λ
4
k)

3
4 ,

E[Qn]√
Var(Qn)

≥
C
(∑K

k=2 λ
4
k

)
λ−3

1 (
∑K

k=2 λ
4
k)

3
4 ‖θ‖33‖θ‖4

≥ C‖θ‖3

‖θ‖33

(
λ−2

1

K∑
k=2

λ4
k

) 1
4
,

where ‖θ‖3/‖θ‖33 → ∞. So, in both cases, the power of the SgnQ test goes to 1 if

λ−2
1

∑K
k=2 λ

4
k →∞. This is validated in Theorem 2.2.3, which is proved in Section 2.4.4.

Theorem 2.2.3 (Power of the SgnQ test). Under the conditions of Theorem 2.2.2, for any

fixed α ∈ (0, 1), consider the SgnQ test in (2.2.16). As n→∞, if

λ
−1/2
1

( K∑
k=2

λ4
k

)1/4
→∞,

then the Type I error → α, and the Type II error → 0.

In summary, Theorem 2.2.3 imply that as long as

|λ2|/
√
λ1 →∞, (2.2.17)

the level of SgnQ test tend to α as expected, and the power tend to 1. The SgnT test

requires mild conditions to avoid “signal cancellation”, but the SgnQ test has no such issue.
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Our simulations further support that SgnQ may have better performance than SgnT. See

Section 3.5.

Remark 3. Practically, we prefer to fix α, say, α = 5%. If we allow the level α to

change with n, then when (2.2.17) holds, there is a sequence of αn that tends to 0 slowly

enough such that |λ2|/(zαn/2 ·
√
λ1)→∞. As a result, for either of the two tests, the Type

I error → 0 and the power → 1, so the sum of Type I and Type II errors → 0.

2.3 Optimal adaptivity, lower bound, and Region of Impossibility

We now focus on the Region of Impossibility, where |λ2|/
√
λ1 → 0. We first present a

standard minimax lower bound, from which we can conclude that there is a sequence of

hypothesis pairs (one alternative and one null) that are asymptotically indistinguishable.

However, this does not answer the question whether all alternatives in the Region of

Impossibility are indistinguishable from the null. To answer this question, we need much

more sophisticated study; see Section 2.3.2.

2.3.1 Minimax lower bound

Given an integer K ≥ 1, a constant c0 > 0, and two positive sequences {αn}∞n=1 and {βn}∞n=1,

we define a class of parameters for DCMM (recall that Ω = ΘΠPΠ′Θ, G = ‖θ‖−2Π′Θ2Π

and is properly scaled, and λk is the k-th largest eigenvalue of Ω in magnitude):

Mn(K, c0, αn, βn)

=

 (θ,Π, P ) : θmax ≤ βn, ‖θ‖−1 ≤ βn, ‖θ‖2‖θ‖−1
1

√
log(‖θ‖1) ≤ βn,

maxk{
∑n
i=1 θiπi(k)}

mink{
∑n
i=1 θiπi(k)

≤ c0, ‖G−1‖ ≤ c0, |λ2|/
√
λ1 ≤ αn

 .

For the null case, K = P = πi = 1, and the above defines a class of θ, which we write for

short by

Mn(1, c0, αn, βn) =M∗n(βn).

The following theorem is proved in the supplementary material:

Theorem 2.3.1 (Minimax lower bound). Fix K ≥ 2, a constant c0 > 0, and any sequences

{αn}∞n=1 and {βn}∞n=1 such that αn → 0 and βn → 0 as n→∞. Then, as n→∞,

inf
ψ

{
sup

θ∈M∗n(βn)
P(ψ = 1) + sup

(θ,Π,P )∈Mn(K,c0,αn,βn)
P(ψ = 0)

}
→ 1,

where the infimum is taken over all possible tests ψ.

The minimax theorem says that in the Region of Impossibility, there exists a sequence of

alternatives that are inseparable from the null. This does not show what we desire, that is

any sequence in the Region of Impossibility is inseparable from the null. This is discussed in

the next section.

2.3.2 Region of Impossibility

Recall that under DCMM, Ω = ΘΠPΠ′Θ and Π = [π1, π2, . . . , πn]′. Since our model is

a mixed-membership latent variable model, in order to characterize the least favorable
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configuration, it is conventional to use a random mixed-membership (RMM) model for the

matrix Π, while (Θ, P ) are still non-stochastic. In detail,

• Let V = {x ∈ RK , xk ≥ 0,
∑K

k=1 xk = 1}.

• Let V0 = {e1, e2, . . . , eK}, where ek is the k-th Euclidean basis vector.

In DCMM-RMM, we fix a distribution F defined over V and assume

πi
iid∼ F, where h ≡ E[πi].

If we further restrict that F is defined over V0, then the network has no mixed-membership,

and DCMM-RMM reduces to DCBM-RMM.

The desired result is to show that, for any given P and F , there is a sequence of hypothesis

pairs (a null and an alternative)

H
(n)
0 : Ω = θθ′, and H

(n)
1 : Ω = Θ̃ΠPΠ′Θ̃, (2.3.18)

where Θ̃ = diag(θ̃1, θ̃1, . . . , θ̃n) and θ̃i can be different from θi, such that the two hypotheses

within each pair are asymptotically indistinguishable from each other, provided that under

the alternative |λ2|/
√
λ1 → 0.

Here, since Ω depends on πi, λk is random, and it is more convenient to translate the

condition of |λ2|/
√
λ1 → 0 to the condition of

‖θ‖ · |µ2(P )| → 0, (2.3.19)

where µk(P ) is the k-th largest eigenvalue of P in magnitude. The equivalence of two

conditions are justified in Appendix D.1 of the supplementary material. The regularity

condition (2.2.14) can also be ensured with high probability, by assuming that all entries of

E[πi] are at the order of O(1).

Under the DCBM, the desired result can be proved satisfactorily. The key is the following

lemma, which is in the line of Sinkhorn’s beautiful work on scalable matrices Sinkhorn (1974)

(see also Brualdi (1974); Johnson and Reams (2009); Marshall and Olkin (1968)) and is

proved in the supplement.

Lemma 3. Fix a matrix A ∈ RK,K with strictly positive diagonal entries and non-negative

off-diagonal entries, and a strictly positive vector h ∈ RK , there exists a diagonal matrix

D = diag(d1, d2, . . . , dK) such that DADh = 1K and dk > 0, 1 ≤ k ≤ K.

In detail, consider a DCBM-RMM setting where πi
iid∼ F and F is supported over V0

(with possibly unequal probabilities on the K points). Recall h = E[πi]. By Lemma 3, there

is a unique diagonal matrix D such that DPDh = 1K . Let

θ̃i = dk · θi, if πi = ek, 1 ≤ i ≤ n, 1 ≤ k ≤ K. (2.3.20)

The following theorem is proved in the supplementary material.

Theorem 2.3.2 (Region of Impossibility (DCBM)). Fix K > 1 and a distribution F defined

over V0. Consider a sequence of DCBM model pairs indexed by n:

H
(n)
0 : Ω = θθ′ and H

(n)
1 : Ω = Θ̃ΠPΠ′Θ̃,
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2. optimal adaptivity of signed-polygon statistics for network testing

where πi
iid∼ F and Θ̃ = diag(θ̃1, θ̃2, . . . , θ̃n) with θ̃i defined as in (2.3.20). If θmax ≤ c0 for a

constant c0 < 1,

min
1≤k≤K

{hk} ≥ C, and ‖θ‖ · |µ2(P )| → 0,

then for each pair of two hypotheses, the χ2-distance between the two joint distributions

tends to 0, as n→∞.

We now generalize the result to DCMM. Fix a distribution F defined over V . Given a

set of (Θ, P,Π) with Θ = diag(θ1, θ2, . . . , θn) and πi
iid∼ F , let h̃D = E[D−1πi/‖D−1πi‖1] for

any diagonal matrix D ∈ RK×K with positive diagonals. We assume that there exists D

such that

DPDh̃D = 1K , min
1≤k≤K

{h̃D,k} ≥ C. (2.3.21)

When such a D exists, we let

θ̃i = θi/‖D−1πi‖1, 1 ≤ i ≤ n. (2.3.22)

When the support of F is restricted to V0, this reduces to the DCBM setting discussed

above, in which (2.3.21) always holds, and θ̃i is the same as that in (2.3.20). When K = 2

(but the support of F is not restricted to V0), condition (2.3.21) also holds for all matrices

A in our setting. The proof is elementary so is omitted. The following theorem is proved in

the supplementary material.

Theorem 2.3.3 (Region of Impossibility (DCMM)). Fix K > 1 and a distribution F defined

over V . Consider a sequence of DCMM model pairs indexed by n:

H
(n)
0 : Ω = θθ′ and H

(n)
1 : Ω = Θ̃ΠPΠ′Θ̃,

where πi
iid∼ F and Θ̃ = diag(θ̃1, θ̃2, . . . , θ̃n) with θ̃i defined as in (2.3.22). If (2.3.21) holds,

θmax ≤ c0 for a constant c0 < 1, and

‖θ‖ · |µ2(P )| → 0,

then for each pair of two hypotheses, the χ2-distance between the two joint distributions

tends to 0, as n→∞.

In Theorems 2.3.2 and 2.3.3, we try to be as general as possible, where F and P are

arbitrarily given, and we seek for a Θ-matrix in the alternative to make it most delicate

to separate two hypotheses. We now consider a special case where P is arbitrarily given,

but F is allowed to alter slightly. For any P and F , by Lemma 3, there is a unique positive

diagonal matrix D such that

DPDh = 1K , where h = E[πi]. (2.3.23)

Let Π̃ = [π̃1, π̃2, . . . , π̃n]′ and Θ̃ = diag(θ̃1, θ̃2, . . . , θ̃n), with

π̃i = Dπi/‖Dπi‖1, θ̃i = ‖Dπi‖1 · θi. (2.3.24)

The following theorem is proved in the supplementary material.

Theorem 2.3.4 (Region of Impossibility (DCMM with flexible Π)). Fix K > 1 and a

distribution F defined over V . Consider a sequence of DCMM model pairs indexed by n:

H
(n)
0 : Ω = θθ′ and H

(n)
1 : Ω = Θ̃Π̃P Π̃′Θ̃,
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where Π̃ and Θ̃ are defined as in (2.3.23)-(2.3.24). If θmax ≤ c0 for a constant c0 < 1,

min
1≤k≤K

{hk} ≥ C, and ‖θ‖ · |µ2(P )| → 0,

then for each pair of two hypotheses, the χ2-distance between the two joint distributions

tends to 0, as n→∞.

For completeness, one may wonder what happens if we require the null and the alternative

have perfectly matching Θ matrix (up to an overall scaling). Such a scenario is natural

when we focus on SBM or MMSBM, where degree heterogeneity is not allowed and so there

is little freedom in choosing the Θ matrix. In this case, in order that the two hypotheses

are indistinguishable, the expected node degrees under the alternative have to match those

under the null. For each node 1 ≤ i ≤ n, conditional on πi and neglecting the effect of no

self edges, the expected degree equals to

‖θ‖1 · θi and ‖θ‖1 · (π′iPh) · θi,

under the null and under the alternative, respectively, where {πj}j 6=i
iid∼ F and h = E[πj ].

For the expected degrees to match under any realized πi, it is necessary that

Ph = qn1K , for some scaling parameter qn > 0. (2.3.25)

The following theorem is proved in the supplementary material.

Theorem 2.3.5 (Region of Impossibility (DCMM with matching Θ)). Fix K > 1 and a

distribution F defined over V . Consider a sequence of DCMM model pairs indexed by n:

H
(n)
0 : Ω = qn · θθ′ and H

(n)
1 : Ω = ΘΠPΠ′Θ,

where Θ = diag(θ1, θ2, . . . , θn), πi
iid∼ F , and (P, h, qn) satisfy (2.3.25). If θmax ≤ c0 for a

constant c0 < 1,

min
1≤k≤K

{hk} ≥ C, and ‖θ‖ · |µ2(P )| → 0,

then for each pair of two hypotheses, the χ2-distance between the two joint distributions

tends to 0, as n→∞.

Example 1 (contd). In Example 1, πi is drawn from e1, e2, . . . , eK with equal prob-

abilities, and P = (1 − bn)IK + bn1K1′K . Therefore, h = E[πi] = (1/K)1K . In this case,

all conditions of Theorem 2.3.5 hold, and especially, qn = (1/K) + (K − 1)bn/K, and

µ2(P ) = (1− bn).

Remark 6 (Least favorable configuration of LDA-DCMM). The Dirichlet model is often

used for mixed-memberships Airoldi et al. (2008). Consider the model pairs

H
(n)
0 : Ω = qnθθ

′ and H
(n)
1 : Ω = ΘΠPΠ′Θ, πi

iid∼ Dir(α),

where Dir(α) is a Dirichlet distribution with parameters α = (α1, . . . , αK)′. By Theorem 2.3.5,

as long as Pα ∝ 1K , the null and alternative hypotheses are asymptotically indistinguishable

if (1 − qn)‖θ‖ → 0. One can easily construct P such that Pα ∝ 1K . For example,

P = (1 − qn)MM ′ + qn1K1′K , where M ∈ RK×(K−1) is a matrix whose columns are from

Span⊥(α) and satisfy diag(MM ′) = IK .
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2.3.3 Optimal adaptivity

Recall that
√
λ1, |λ2|/λ1, and |λ2|/

√
λ1 can be viewed as a measure for the sparsity, com-

munity similarity, and SNR, respectively. Combining Theorems 2.2.2, Theorems 2.3.2-2.3.5,

and Remark 4 in Section 2.2.3, in the two-dimensional phase space where the x-axis is
√
λ1

and the y-axis is the |λ2|/λ1, we have a partition to two regions, the Region of Possibility

and the Region of Impossibility.

• Region of Impossibility (1 �
√
λ1 �

√
n, |λ2|/

√
λ1 = o(1)). In this region, any

DCBM alternative is asymptotically inseparable from the null, and up to a mild

condition, any DCMM alternative is also asymptotically inseparable from the null.

• Region of Possibility (1�
√
λ1 �

√
n, |λ2|/

√
λ1 →∞). In this region, asymptoti-

cally, any alternative is completely separable form any null.

The SgnQ test is optimally adaptive: for any alternative in the Region of Possibility, the test

is able to separate it from the null with a sum of Type I and Type II errors tending to 0.

To the best of our knowledge, the Signed Polygon is the only known test that is both

applicable to general DCMM (where we allow severe degree heterogeneity and arbitrary

mixed-memberships) and optimally adaptive. The EZ and GC tests are the only other tests

we know that are applicable to general DCMM, but their variances are unsatisfactorily large

for the less sparse case, so they are not optimally adaptive.

Remark 4. Most lower bound results in the literature Mossel et al. (2015); Banerjee

(2018); Gao and Lafferty (2017) are in the standard minimax framework, where they focus

on a particular sequence of alternative (e.g., the off-diagonals of P are equal). In our case,

the standard minimax theorem only implies that in the Region of Impossibility, there is a

sequence of alternative that are inseparable from the null. Our results (Theorems 2.3.2-2.3.5)

are much stronger, implying that any alternative in the Region of Possibility is inseparable

from the null.

Remark 5. Existing minimax lower bounds Mossel et al. (2015); Banks et al. (2016);

Banerjee (2018) have been largely focused on the SBM. Though a least favorable scenario

for SBM is also (one of the) least favorable scenario for DCMM, the former does not provide

much insight on how the least favorable configurations and the separating boundary of

the two regions (Possibility and Impossibility) depend on the degree heterogeneity and

mixed-memberships. Moreover, our results suggest that ‖θ‖, not ‖θ‖1, determines the

separating boundary. In the SBM case, θ1 = . . . = θn and ‖θ‖1 =
√
n‖θ‖, so it is hard to

tell which of the two norms decides the boundary. In DCMM, there is no simple relationship

between ‖θ‖1 and ‖θ‖, and we can tell this clearly.

20



2.4. The behavior of the SgnQ test statistics

2.4 The behavior of the SgnQ test statistics

Recall that the SgnQ statistic Qn are defined as

Qn =
∑

i1,i2,i3,i4(dist)

(Ai1i2 − η̂i1 η̂i2)(Ai2i3 − η̂i2 η̂i3)(Ai3i4 − η̂i3 η̂i4)(Ai4i1 − η̂i4 η̂i1),

where

η̂ = A1n/
√
V , where V = 1′nA1n.

In Section 2.1.4, we have introduced the following non-stochastic proxy of η̂:

η∗ = Ω1n/
√
v0, where v0 = 1nΩ1n.

We now introduce another non-stochastic proxy η̃ by

η̃ = A1n/
√
v, where v = E[1′nA1n] = 1n(Ω− diag(Ω))1n. (2.4.26)

Denoting the mean of η̃ by η, it is seen that

η = ([Ω− diag(Ω)]1n)/
√

1′n(Ω− diag(Ω))1n. (2.4.27)

Here, η and η∗ are close to each other but η∗ has a more explicit form. For example, under

the null hypothesis, Ω = θθ′, and it is seen that η∗ = θ. Recall that

A = Ω− diag(Ω) +W, and Ω̃ = Ω− η∗(η∗)′.
Fix 1 ≤ i, j ≤ n and i 6= j. First, we write

Aij − η̂iη̂j = (Aij − η∗i η∗j ) + (η∗i η
∗
j − η̂iη̂j) = Ω̃ij +Wij + (η∗i η

∗
j − η̂iη̂j).

Second, we write

η∗i η
∗
j − η̂iη̂j = δij + rij ,

where

δij = ηi(ηj − η̃j) + ηj(ηi − η̃i) (2.4.28)

is the linear approximation term of (η∗i η
∗
j − η̂iη̂j) and rij ≡ (η∗i η

∗
j − η̂iη̂j)−δij is the remainder

term. By definition and elementary algebra,

rij = (η∗i η
∗
j − ηiηj)− (ηi − η̃i)(ηj − η̃j) + (1− v

V
)η̃iη̃j . (2.4.29)

It is seen that rij is of a smaller order than that of δij . The remainder term can be shown

to have a negligible effect over Qn in terms of the variance. See Theorem 2.4.3.

Let X be the symmetric matrix where all diagonal entries are 0 and for 1 ≤ i, j ≤ n but

i 6= j, Xij = Aij − η̂iη̂j , or equivalently,

Xij = Ω̃ij +Wij + δij + rij . (2.4.30)

If we omit the remainder term, then we have a proxy of X, denoted by X∗, where all diagonal

entries of X∗ are 0, and for 1 ≤ i, j ≤ n but i 6= j,

X∗ij = Ω̃ij +Wij + δij . (2.4.31)

If we further omit the δ term, then we have another proxy of X, denoted by X̃, where all

diagonal entries of X̃ are 0, and for 1 ≤ i, j ≤ n but i 6= j,

X̃ij = Ω̃ij +Wij . (2.4.32)
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2. optimal adaptivity of signed-polygon statistics for network testing

With the above notations, we can rewrite Qn as follows:

Qn =
∑

i1,i2,i3,i4(dist)

Xi1i2Xi2i3Xi3i4Xi4i1 .

For the Ideal Signed Polygon in (2.1.11), we have the Ideal SgnQ test statistic

Q̃n =
∑

i1,i2,i3,i4(dist)

X̃i1i2X̃i2i3X̃i3i4X̃i4i1 . (2.4.33)

The Ideal SgnQ test statistics can be viewed as proxies of the SgnQ test statistics, respectively,

but such proxies are frequently not accurate enough. Therefore, we introduce another

proxy for SgnQ, which we call the Proxy SgnQ test statistics, respectively. Recall that

X∗ij = Ω̃ij +Wij + δij .

Definition 4. The Proxy SgnQ test statistic is

Q∗n =
∑

i1,i2,i3,i4(dist)

X∗i1i2X
∗
i2i3X

∗
i3i4X

∗
i4i1 .

By these notations, we can partition SgnQ by

Qn = Q̃n + (Q∗n − Q̃n) + (Qn −Q∗n).

Below, first in Section 2.4.1, we analyze the Ideal SgnQ test statistics. Then in Section 2.4.2,

we analyze the difference between the Ideal SgnQ and the Proxy SgnQ. Last, in Section

2.4.3, we analyze the difference between the Proxy SgnQ and the real SgnQ.

2.4.1 The behavior of the Ideal SgnQ test statistics

Recall the Ideal SgnQ test statistic is defined as

Q̃n =
∑

i1,i2,i3,i4(dist)

X̃i1i2X̃i2i3X̃i3i4X̃i4i1 , (2.4.34)

where for any i 6= j, X̃ij = Ω̃ij +Wij . Under the null, since Ω̃ is a zero matrix, the statistic

reduces to

Q̃n =
∑

i1,i2,i3,i4(dist)

Wi1i2Wi2i3Wi3i4Wi4i1 .

Similarly, it can be shown that the statistic is asymptotically normal, with

E[Q̃n] = 0, and Var(Q̃n) ∼ 8‖θ‖8.
Under the alternative, similarly, we obtain

2× 2× 2× 2 = 16

post-expansion sums, and divide them into 6 different types, according to (N
Ω̃
, NW ). See

Table 3.2, where we recall α = |λ2|/λ1.

From the table, among all 16 post-expansion sums, the total mean is

∼ tr(Ω̃4),

with Type V sum being the only contributor, and the total variance

≤ C‖θ‖8 + C(|λ2|/λ1)6‖θ‖8‖θ‖63,
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Table 2.1: The 6 different types of the 16 post-expansion sums of Q̃n.

Type # (N
Ω̃
, NW ) Examples Mean Variance

I 1 (0, 4)
∑

i,j,k,`(dist)WijWjkWk`W`i 0 � ‖θ‖8

II 4 (1, 3)
∑

i,j,k,`(dist) Ω̃ijWjkWk`W`i 0 ≤ Cα2‖θ‖4‖θ‖63 = o(‖θ‖8)

IIIa 4 (2, 2)
∑

i,j,k,`(dist) Ω̃ijΩ̃jkWk`W`i 0 ≤ Cα4‖θ‖6‖θ‖63 = o(α6‖θ‖8‖θ‖63)

IIIb 2 (2, 2)
∑

i,j,k,`(dist) Ω̃ijWjkΩ̃k`W`i 0 ≤ Cα4‖θ‖12
3 = o(‖θ‖8)

IV 4 (3, 1)
∑

i,j,k,`(dist) Ω̃ijΩ̃jkΩ̃k`W`i 0 ≤ α6‖θ‖8‖θ‖63
V 1 (4, 0)

∑
i,j,k,`(dist) Ω̃ijΩ̃jkΩ̃k`Ω̃`i ∼ tr(Ω̃4) 0

with Type I sum and Type IV sum being the major contributors. The following theorem is

proved in the supplementary material.

Theorem 2.4.1 (Ideal SgnQ test statistic). Consider the testing problem (2.1.6) under the

DCMM model (3.1.1)-(3.2.4), where the condition (2.2.14) is satisfied under the alternative

hypothesis. Suppose θmax → 0 and ‖θ‖ → ∞ as n→∞, and suppose |λ2|/
√
λ1 →∞ under

the alternative hypothesis. Then, under the null hypothesis, as n→∞,

E[Q̃n] = 0, Var(Q̃n) = 8‖θ‖8 · [1 + o(1)],

and
Q̃n − E[Q̃n]√

Var(Q̃n)
−→ N(0, 1), in law.

Furthermore, under the alternative hypothesis, as n→∞,

E[Q̃n] = tr(Ω̃4) + o(‖θ‖4), Var(T̃n) ≤ C[‖θ‖8 + (|λ2|/λ1)6‖θ‖8‖θ‖63].

2.4.2 The behavior of (Q∗n − Q̃n)

Consider (Q∗n − Q̃n), which is defined as

Q̃n =
∑

i1,i2,i3,i4(dist)

X∗i1i2X
∗
i2i3X

∗
i3i4X

∗
i4i1 . (2.4.35)

Similarly, if we expand the bracket of all individual terms and re-organize, we have

3× 3× 3× 3 = 81

post-expansion sums. Out of the 81 post-expansion sums, 2× 2× 2× 2 = 16 of them do not

depend on δ, the sum of which equals to Q̃n. These leave us with 65 post-expansion sums,

the total sum of which is (Q∗n − Q̃n). Similarly, according to (N
Ω̃
, NW , Nδ), we divide these

65 sums into 10 types. See Table 3.3, where we recall that α = |λ2|/λ1.

Consider the null hypothesis first. Under the null, Ω̃ is a zero matrix, so the nonzero

post-expansion sums only include Type Ia, Type IIa, Type IIIa, and Type IV. It is seen that

|E[Q∗n − Q̃n]| ≤ C‖θ‖4,
and that

Var(Q∗n − Q̃n) = o(‖θ‖8).

Note that ‖θ‖8 is the order of Var(Q̃n) under the null. The difference between the variance of

Q∗n and the variance of Q̃n is negligible, but the difference between the mean of Q∗n and the
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Table 2.2: The 10 types of the post-expansion sums for (Q∗n − Q̃n). .

Type # (Nδ,NΩ̃
,NW ) Examples Abs. Mean Variance

Ia 4 (1, 0, 3)
∑

i,j,k,`
(dist)

δijWjkWk`W`i 0 ≤ C‖θ‖2‖θ‖63 = o(‖θ‖8)

Ib 8 (1, 1, 2)
∑

i,j,k,`
(dist)

δijΩ̃jkWk`W`i 0 ≤ Cα2‖θ‖4‖θ‖63 = o(‖θ‖8)

4
∑

i,j,k,`
(dist)

δijWjkΩ̃k`W`i 0 ≤ Cα2‖θ‖4‖θ‖63 = o(‖θ‖8)

Ic 8 (1, 2, 1)
∑

i,j,k,`
(dist)

δijΩ̃jkΩ̃k`W`i ≤ Cα2‖θ‖6=o(α4‖θ‖8) ≤ Cα4‖θ‖10‖θ‖33
‖θ‖1 = o(α6‖θ‖8‖θ‖63)

4
∑

i,j,k,`
(dist)

δijΩ̃jkWk`Ω̃`i 0 ≤ Cα4‖θ‖4‖θ‖93
‖θ‖1 = o(‖θ‖8)

Id 4 (1, 3, 0)
∑

i,j,k,`
(dist)

δijΩ̃jkΩ̃k`Ω̃`i 0 ≤ Cα6‖θ‖12‖θ‖33
‖θ‖1 = O(α6‖θ‖8‖θ‖63)

IIa 4 (2, 0, 2)
∑

i,j,k,`
(dist)

δijδjkWk`W`i ≤ C‖θ‖4=o(α4‖θ‖8) ≤ C‖θ‖2‖θ‖63 = o(‖θ‖8)

2
∑

i,j,k,`
(dist)

δijWjkδk`W`i ≤ C‖θ‖4=o(α4‖θ‖8) ≤ C‖θ‖6‖θ‖33
‖θ‖1 = o(‖θ‖8)

IIb 8 (2, 1, 1)
∑

i,j,k,`
(dist)

δijδjkΩ̃k`W`i 0 ≤ Cα2‖θ‖4‖θ‖63 = o(‖θ‖8)

4
∑

i,j,k,`
(dist)

δijΩ̃jkδk`W`i ≤ Cα‖θ‖4=o(α4‖θ‖8) ≤ Cα2‖θ‖8‖θ‖33
‖θ‖1 = o(‖θ‖8)

IIc 4 (2, 2, 0)
∑

i,j,k,`
(dist)

δijδjkΩ̃k`Ω̃`i ≤ Cα2‖θ‖6=o(α4‖θ‖8) ≤ Cα4‖θ‖14

‖θ‖21
= o(α6‖θ‖8‖θ‖63)

2 ≤
∑

i,j,k,`
(dist)

δijΩ̃jkδk`Ω̃`i
Cα2‖θ‖8
‖θ‖21

=o(α4‖θ‖8) ≤ Cα4‖θ‖8‖θ‖63
‖θ‖21

= o(‖θ‖8)

IIIa 4 (3, 0, 1)
∑

i,j,k,`
(dist)

δijδjkδk`W`i ≤ C‖θ‖4=o(α4‖θ‖8) ≤ C‖θ‖6‖θ‖33
‖θ‖1 = o(‖θ‖8)

IIIb 4 (3, 1, 0) ≤
∑

i,j,k,`
(dist)

δijδjkδk`Ω̃`i ≤ Cα‖θ‖6
‖θ‖31

=o(α4‖θ‖8) ≤ Cα2‖θ‖8‖θ‖33
‖θ‖1 = o(‖θ‖8)

IV 1 (4, 0, 0)
∑

i,j,k,`
(dist)

δijδjkδk`δ`i ≤ C‖θ‖4=o(α4‖θ‖8) ≤ C‖θ‖10

‖θ‖21
= o(‖θ‖8)

mean of Q̃n is non-negligible. With lengthy calculations (see the supplementary material),

we can show that

E[Q∗n − Q̃n] ∼ 2‖θ‖4.

Therefore, (Q∗n − 2‖θ‖4) and Q̃n have a negligible difference under the null.

Consider the alternative hypothesis next. From Table 3.3,

|E[Q∗n − Q̃n]| ≤ C(|λ2|/λ1)2‖θ‖6,
where the major contribution is from Type Ic and Type IIc post-expansion sums. Under

our assumptions for the alternative, |λ2|/
√
λ1 → ∞ and λ1 � ‖θ‖4. It is easy to see

that |E[Q∗n − Q̃n]| = o(λ4
2), where λ4

2 is the order of tr(Ω̃4) and E[Q̃n]; see Lemma 2 and

Theorem 2.4.1. Additionally, ‖θ‖4 = O(λ2
1) = o(λ4

2), which is also of a smaller order of

E[Q̃n]. We conclude that ∣∣E[Q∗n − Q̃n − 2‖θ‖4]
∣∣ = o(E[Q̃n]).

From the table,

Var(Q∗n − Q̃n) ≤ C(|λ2|/λ1)6‖θ‖12‖θ‖33
‖θ‖1

+ o(‖θ‖8),

with the major contribution from Type Id. Here, the second term is smaller than Var(Q̃n),
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and the first term is upper bounded by (using the universal inequality of ‖θ‖4 ≤ ‖θ‖1‖θ‖33)

C(|λ2|/λ1)6‖θ‖8‖θ‖63,
which has a comparable order as Var(Q̃n). It follows that

Var(Q∗n − Q̃n − 2‖θ‖4) = Var(Q∗n − Q̃n) ≤ CVar(Q̃n).

Combining the above, we obtain that the SNR of (Q∗n − 2‖θ‖4) and Q̃n are at the same

order.

These results are summarized in the following theorem, which is proved in the supple-

mentary material.

Theorem 2.4.2 (Proxy SgnQ test statistic). Consider the testing problem (2.1.6) under the

DCMM model (3.1.1)-(3.2.4), where the condition (2.2.14) is satisfied under the alternative

hypothesis. Suppose θmax → 0 and ‖θ‖ → ∞ as n→∞, and suppose |λ2|/
√
λ1 →∞ under

the alternative hypothesis. Then, under the null hypothesis, as n→∞,

E[(Q∗n − 2‖θ‖4)− Q̃n] = o(‖θ‖4), Var(Q∗n − Q̃n) = o(‖θ‖8).

Furthermore, under the alternative hypothesis,

E[(Q∗n − 2‖θ‖4)− Q̃n] = o((|λ2|/λ1)4‖θ‖8),

Var(Q∗n − Q̃n) ≤ C(|λ2|/λ1)6‖θ‖8‖θ‖63 + o(‖θ‖8).

2.4.3 The behavior of (Qn −Q∗n)

The SgnQ statistic we introduce in Section 2.1.4 is defined as

Qn =
∑

i1,i2,i3,i4(dist)

Xi1i2Xi2i3Xi3i4Xi4i1 ,

where Xij = Ω̃ij+Wij+δij+rij for any i 6= j. Similar to Sections 2.4.1-2.4.2, we first expand

every bracket in the definitions and obtain 4× 4× 4× 4 = 256 different post-expansion sums

in Qn. Out of the 256 post-expansion sums in Qn, 3× 3× 3× 3 = 81 of them do not involve

any r term and are contained in Q∗n; this leaves a total of

256− 81 = 175

different post-expansion sums in (Qn −Q∗n). In the appendix, we investigate the order of

mean and variance of each of 175 post-expansion sums in (Qn −Q∗n). The calculations are

very tedious: although we expect these post-expansion sums to be of a smaller order than

the post-expansion sums in Sections 2.4.1-2.4.2, it is impossible to prove this argument

rigorously using only some crude bounds (such as Cauchy-Schwarz inequality). Instead, we

still need to do calculations for each post-expansion sum.

Theorem 2.4.3 (Real SgnQ test statistic). Consider the testing problem (2.1.6) under the

DCMM model (3.1.1)-(3.2.4), where the condition (2.2.14) is satisfied under the alternative

hypothesis. Suppose θmax → 0 and ‖θ‖ → ∞ as n→∞, and suppose |λ2|/
√
λ1 →∞ under

the alternative hypothesis. Then, under the null hypothesis, as n→∞,

|E[Qn −Q∗n]| = o(‖θ‖4), and Var(Qn −Q∗n) = o(|θ‖8).
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2. optimal adaptivity of signed-polygon statistics for network testing

Under the alternative hypothesis, as n→∞,

|E[Qn −Q∗n]| = o((|λ2|/λ1)4‖θ‖8),

Var(Qn −Q∗n) = o((|λ2|/λ1)6‖θ‖8|θ‖63) + o(‖θ‖8).

Similarly, we can conclude that (Qn −Q∗n) has a negligible effect to both the asymptotic

normality under the null and the SNR under the alternative.

2.4.4 Proof of the main theorems

Consider Theorem 2.2.1. In this theorem, we assume the null is true. First, by Theorems

2.4.2 and 2.4.3 and elementary statistics,

E[Q∗n − Q̃n] ∼ 2‖θ‖4, |E[Qn −Q∗n]| = o(‖θ‖4), (2.4.36)

and

Var(Q∗n − Q̃n) = o(‖θ‖8), Var(Qn −Q∗n) = o(‖θ‖8). (2.4.37)

It follows that

E[Qn]− E[Q̃n] = (2 + o(1))‖θ‖4, Var(Qn − Q̃n) = o(‖θ‖8). (2.4.38)

By Theorem 2.4.1.

E[Q̃n] = o(‖θ‖4), Var(Q̃n) ∼ 8‖θ‖8, Q̃n − E[Q̃n]√
Var(Q̃n)

→ N(0, 1). (2.4.39)

Since for any random variables X and Y , Var(X + Y ) ≤ (1 + an)Var(X) + (1 + 1
an

)Var(Y )

for any number an > 0, combining the above and letting an tend to 0 appropriately slow,

E[Qn] ∼ 2‖θ‖4, Var(Qn) ∼ 8‖θ‖8. (2.4.40)

Moreover, write

Qn − E[Qn]√
Var(Qn)

=

√
Var(Q̃n)

Var(Qn)
·
[

(Qn − Q̃n)√
Var(Q̃n)

+
Q̃n − E[Q̃n]√

Var(Q̃n)
+

E[Q̃n]− E[Qn]√
Var(Q̃n)

]
.

On the right hand side, by (2.4.38)-(2.4.40), as n→∞, the term outside the bracket → 1,

and for the three terms in the bracket, the first one has a mean and variance that tend to 0

so it tends to 0 in probability, the second one weakly converges to N(0, 1), and the last one

→ 0. Combining these,
Qn − E[Qn]√

Var(Qn)
→ N(0, 1), in law. (2.4.41)

Combining (2.4.40) and (2.4.41) proves Theorem 2.2.1.

Next, we consider Theorem 2.2.2, where we assume the alternative is true. First, similarly,

by Theorems 2.4.2 and 2.4.3,

E[Q∗n − Q̃n] = (2 + o(1))‖θ‖4 + o((|λ2|/λ1)4‖θ‖8),

and

Var(Qn − Q̃n) ≤ C(λ2/λ1)6‖θ‖8‖θ‖63 + o(‖θ‖8).

Second, by Theorems 2.4.1,

E[Q̃n] = tr(Ω̃4) + o(‖θ‖4), Var(Q̃n) ≤ C[‖θ‖8 + (λ2/λ1)6‖θ‖8‖θ‖63].

26



2.5. Simulations

Combining these proves Theorem 2.2.2.

Last, we consider Theorems 2.2.3. First, by Theorem 2.2.1 and Lemma 1, under the null,

Qn − 2(‖η̂‖2 − 1)2√
8(‖η̂‖2 − 1)4

→ N(0, 1),

so the Type I error is

P
H

(n)
0

(
Qn ≥ (2 + zα

√
8)(|η̂‖2 − 1)2

)
= P

(
Qn − 2(‖η̂‖2 − 1)2√

8(‖η̂‖2 − 1)4
≥ zα

)
= α+ o(1).

Second, fixing 0 < ε < 1, let Aε be the event {(‖η̂‖2 − 1) ≤ (1 + ε)‖η∗‖2}. By Lemma 1 and

definitions, on one hand, over the event Aε, (‖η̂‖2 − 1) ≤ (1 + ε)‖η∗‖2 ≤ C‖θ‖2, and on the

other hand, P(Acε) = o(1). Therefore, the Type II error

P
H

(n)
1

(
Qn ≤ (2 + zα

√
8)(‖η̂‖2 − 1)2

)
≤P

H
(n)
1

(
Qn ≤ (2 + zα

√
8)(‖η̂‖2 − 1)2, Aε

)
+ P(Acε)

≤P
H

(n)
1

(
Qn ≤ C(2 + zα

√
8)‖θ‖4

)
+ o(1),

where by Chebyshev’s inequality, the first term in the last line

≤ [E(Qn)− C(2 + zα
√

8)‖θ‖4]−2 ·Var(Qn). (2.4.42)

By Lemma D.2 of the supplementary material and our assumptions, λ1 � ‖θ‖2, |λ2|/
√
λ1 →

∞, and ‖θ‖ → ∞. Using Lemma 2 E[Qn] ≥ Cλ4
2 � λ2

1, and it follows that E(Qn) �
C(2 + zα

√
8)‖θ‖4, so for sufficiently large n,

E(Qn)− C(2 + zα
√

8)‖θ‖4 ≥ 1

2
E[Qn] ≥ Cλ4

2.

At the same time, by Theorem 2.2.2,

Var(Qn) ≤ C(‖θ‖8 + (λ2/λ1)6‖θ‖8‖θ‖63).

Combining these, the right hand side of (2.4.42) does not exceed

C
‖θ‖8 + (λ2/λ1)6‖θ‖8‖θ‖63

λ8
2

= (I) + (II), (2.4.43)

where (I) = Cλ−8
2 ‖θ‖8 and (II) = Cλ−8

2 (λ2/λ1)6‖θ‖8‖θ‖63. Now, first, since λ1 � ‖θ‖2

and |λ2|/
√
λ1 → 0, (I) ≤ C(λ2/

√
λ1)−8 → 0. Second, since λ1 � ‖θ‖2 and ‖θ‖63 ≤ ‖θ‖4,

(II) = Cλ−2
2 λ−6

1 ‖θ‖8‖θ‖63 ≤ Cλ
−2
2 . As |λ2|/

√
λ1 →∞,

√
λ1 � ‖θ‖ with ‖θ‖ → ∞, |λ2| → ∞

and (II)→ 0. Inserting these into (2.4.43), the Type II error → 0 and the claim follows.

2.5 Simulations

We investigate the numerical performance of the SgnQ test (2.2.16). We include the

SgnT test Jin et al. (2019), which is known for suffering from “signal cancellation” and is

only optimal adaptive under additional mild conditions. We also include the EZ test Gao

and Lafferty (2017) and the GC test Jin et al. (2018) for comparison. For reasons mentioned

in Jin et al. (2018), we use a two-sided rejection region for EZ and a one-sided rejection

region for GC.

Given (n,K), a scalar βn > 0 that controls ‖θ‖, a symmetric nonnegative matrix
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2. optimal adaptivity of signed-polygon statistics for network testing

P ∈ RK×K , a distribution f(θ) on R+, and a distribution g(π) on the standard simplex of

RK , we generate two network adjacency matrices Anull and Aalt, under the null and the

alternative, respectively, as follows:

• Generate θ̃1, θ̃2, . . . , θ̃n iid from f(θ). Let θi = βn · θ̃i/‖θ̃‖, 1 ≤ i ≤ n.

• Generate π1, π2, . . . , πn iid from g(π).

• Let Ωalt = ΘΠPΠ′Θ′, where Θ = diag(θ1, · · · , θn) and Π = [π1, π2, . . . , πn]′. Generate

Aalt from Ωalt according to Model (3.1.1).

• Let Ωnull = (a′Pa) · θθ′, where a = Egπ ∈ RK is the mean vector of g(π). Generate

Anull from Ωnull according to Model (3.1.1).

The pair (Ωnull,Ωalt) is constructed in a way such that the corresponding networks have ap-

proximately the same expected average degree. This is the most subtle case for distinguishing

two hypotheses (see Section 2.3).

It is of interest to explore different sparsity levels and also to focus on the parameter

settings where the SNR is neither too large or too small. Therefore, for most of the

experiments, we let βn = ‖θ‖ range but fix the SNR at a more or less the same level. See

details below.

For each parameter setting, we generate 200 networks under the null hypothesis and

200 networks under the alternative hypothesis, run all the four tests with a targeting level

α = 5%, and then record the sum of percent of type I errors and percent of type II errors.

We consider three experiments (and a total of 8 sub-experiments), exploring different

sets of n, K, θ, Π, and P , etc.

Experiment 1: We study the role of degree heterogeneity. Fix (n,K) = (2000, 2). Let P

be a 2 × 2 matrix with unit diagonal entries and all off-diagonal entries equal to bn. Let

g(π) be the uniform distribution on {(0, 1), (1, 0)}. We consider three sub-experiments, Exp

1a-1c, where respectively we take f(θ) to be the following:

• Uniform distribution U(2, 3).

• Two-point distribution 0.95δ1 + 0.05δ3, where δa is a point mass at a.

• Pareto distribution Pareto(10, 0.375), where 10 is the shape parameter and 0.375 is

the scale parameter.

The degree heterogeneity is moderate in the Exp 1a-1b, but more severe Exp 1c. In such

a setting, SNR is at the order of ‖θ‖(1 − bn). Therefore, for each sub-experiment, we let

βn = ‖θ‖ vary while fixing the SNR to be

‖θ‖(1− bn) = 3.2.

The sum of Type I and Type II errors are displayed in Figure 2.2.
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Figure 2.2: From left to right: Experiment 1a, 1b, and 1c. The y-axis are the sum of Type
I and Type II errors (testing level is fixed at 5%). The x-axis are ‖θ‖ or sparsity levels.
Results are based on 200 repetitions.

First, both the SgnQ test and the GC test are based on the counts of 4-cycles, but the

GC test counts non-centered cycles and the SgnQ test counts centered cycles. As we pointed

out in Section 2.1, counting centered cycles may have much smaller variances than counting

non-centered cycles, especially in the less sparse case, and thus improves the testing power.

This is confirmed by numerical results here, where the SgnQ test is consistently better than

the GC test, significantly so in the less sparse case. Similarly, both the SgnT test and the

EZ test are based on the counts of 3-cycles, but the EZ test counts non-centered cycles and

the SgnQ test counts centered cycles, and we expect the GC to significantly improve the EZ,

especially in the less sparse case. This is also confirmed in the experiment.

Second, SgnQ and GC are order-4 test graphlet counting statistics, and SgnT and EZ are

order-3 graphlet counting statistics. In comparison, SgnQ significantly outperforms SgnT,

and GC significantly outperforms EZ (in the more sparse case; see discussion for the less

sparse case below). A possible explanation is that higher-order graphlet counting statistics

have larger SNR. Investigation on this is interesting, and we leave this to the future study.

Note that SgnQ is the best among all four tests.

Last, GC outperforms EZ in the more sparse case, but underperforms in the less sparse

case. The reason for the latter is as follows. The biases of both tests are negligible in the

more sparse case, but are non-negligible in the less sparse case, with that of GC is much

larger.

Experiment 2: We study the cases with larger K and more complicate matrix P . For a

bn ∈ (0, 1), let εn = 1
6 min(1− bn, bn), and let P be the matrix with 1 on the diagonal but the

off-diagonal entries are iid drawn from Unif(bn − εn, bn + εn); once the P matrix is drawn,

it is fixed throughout different repetitions. We consider two sub-experiments, Exp 2a and

2b. In Exp 2a, we take (n,K) = (1000, 5), f(θ) to be Pareto(10, 0.375), and g(π) to be the

uniform distribution on {e1, · · · , eK} (the standard basis vectors of RK). We let βn range but

‖θ‖(1−bn) is fixed at 4.5, so the SNR will not change drastically. In Exp 2b, we take (n,K) =

(3000, 10), f(θ) to be 0.95δ1+0.05δ3, and g(π) = 0.1
∑2

k=1 δek+0.15
∑6

k=3 δek+0.05
∑10

k=7 δek
(so to have unbalanced community sizes). Similarly, we let βn range but fix ‖θ‖(1− bn) = 5.2.
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Figure 2.3: From left to right: Experiment 2a and 2b. The y-axis are the sum of Type I and
Type II errors (testing level is fixed at 5%). The x-axis are ‖θ‖ or sparsity levels. Results
are based on 200 repetitions.

The sum of Type I and Type II errors are displayed in Figure 3.5.

In these examples, EZ and GC underperform SgnT and SgnQ, especially in the less sparse

case, and the performances of the SgnT and SgnQ are more similar to each other, compared

to those in Experiment 1. In these examples, we have larger K, more complicate P , and

unbalanced community sizes, and the performance of the SgnT and SgnQ test statistics

suggest that they are relatively robust.

Experiment 3: We investigate the role of mixed-membership. We have three sub-

experiments, Exp 3a-3c. where the memberships are not-mixed, lightly mixed, and signifi-

cantly mixed, respectively. For all sub-experiments, we take (n,K) = (2000, 3) and f(θ) to

be Unif(2, 3). For Exp 3a, we let g1(π) = 0.4δe1 + 0.3δe2 + 0.3δe3 . In Exp 3b, we let g2(π) =

0.3
∑3

k=1 δek + 0.1 ·Dirichlet, and in Exp 3c, we let g3(π) = 0.25
∑3

k=1 δek + 0.25 ·Dirichlet,

where Dirichlet represents the symmetric K-dimensional Dirichlet distribution. In Exp

3a-3b, we let βn range while (1− bn)‖θ‖ is fixed at 4.2 so the SNR’s are roughly the same.

In Exp 3c, we also let βn range but (1− bn)‖θ‖ = 4.5 (the SNR’s need to be slightly larger

to counter the effect of mixed-membership, which makes the testing problem harder).

The sum of Type I and Type II errors are presented in Figure 3.6. First, the results

confirm that mixed-memberships make the testing problem harder. For example, the value of

‖θ‖(1− bn) in Exp 3c is higher than that of Exp 3a-3b, but the testing errors are higher, due

to that the memberships in Exp 3c are more mixed. Second, SgnQ consistently outperforms

EZ and SgnT. Third, GC is comparable with SgnQ in the more sparse case, but performs

unsatisfactorily in the less sparse case, for reasons explained before. Last, in these settings,

SgnT is uniformly better than EZ, and more so when the memberships become more mixed.

2.A Matrix forms of Signed-Polygon statistics

We prove Theorem 2.1.1. Recall that Ã = A− η̂η̂. By definition,

Qn = tr(Ã4)−
∑

at least two of
i,j,k,` are equal

ÃijÃjkÃk`Ã`i.
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Figure 2.4: From left to right: Experiment 3a, 3b, and 3c. The y-axis are the sum of Type
I and Type II errors (testing level is fixed at 5%). The x-axis are ‖θ‖ or sparsity levels.
Results are based on 200 repetitions.

When at least two of {i, j, k, `} are equal, depending on how many indices are equal, we

have four patterns: {i, i, i, i}, {i, i, i, j}, {i, i, j, j}, {i, i, j, k}, where (i, j, k) are distinct. For

each pattern, depending on the appearing locations of the next distinct indices, there are

a few variations. Take the pattern {i, i, j, k} for example: (a) when a new distinct index

appears at location 2 and at location 3, the variations are (i, j, k, i), (i, j, k, j), (i, j, k, k);

(b) when a new distinct index appears at location 2 and at location 4, the variations are

(i, j, i, k), (i, j, j, k); (c) when a new distinct index appears at location 3 and location 4, the

variation is (i, i, j, k). Using similar arguments, we can find all variations of each pattern.

Define

S1 =
∑

i,j,k(dist)

ÃiiÃijÃjkÃki, S2 =
∑

i,j,k(dist)

Ã2
ijÃ

2
ik,

S3 =
∑

i,j(dist)

Ã2
iiÃ

2
ij , S4 =

∑
i,j(dist)

Ã4
ij ,

S5 =
∑

i,j(dist)

ÃiiÃ
2
ijÃjj , S6 =

∑
i

Ã4
ii.

Therefore

Qn = tr(Ã4)− 4S1 − 2S2 − 4S3 − S4 − 2S5 − S6. (2.A.44)

What remains is to derive the matrix form of S1-S6. By direct calculations,

S1 =
∑
i

Ãii

[ ∑
j 6=i,k 6=i

ÃijÃjkÃki −
∑
j 6=i

ÃijÃjjÃji

]

=
∑
i

Ãii

[(∑
j,k

ÃijÃjkÃki − 2
∑
j

Ã2
ijÃii + Ã3

ii

)
−
(∑

j

Ã2
ijÃjj − Ã3

ii

)]
=
∑
i,j,k

ÃiiÃijÃjkÃki − 2
∑
i,j

Ã2
iiÃ

2
ij −

∑
i,j

ÃiiÃ
2
ijÃjj + 2

∑
i

Ã4
ii

= tr(Ã ◦ Ã3)− 2 tr(Ã ◦ Ã ◦ Ã2)− 1′n[diag(Ã)(Ã ◦ Ã)diag(Ã)]1n + 2S6.
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Moreover, we can derive that

S2 =
∑
i

[ ∑
j 6=i,k 6=i

Ã2
ijÃ

2
ik −

∑
j 6=i

Ã4
ij

]

=
∑
i

[(∑
j,k

Ã2
ijÃ

2
ik − 2

∑
j

Ã2
ijÃ

2
ii + Ã4

ii

)
−
(∑

j

Ã4
ij − Ã4

ii

)]
=
∑
i,j,k

Ã2
ijÃ

2
ik − 2

∑
i,j

Ã2
ijÃ

2
ii −

∑
i,j

Ã4
ij + 2

∑
i

Ã4
ii

= tr(Ã2 ◦ Ã2)− 2 tr(Ã ◦ Ã ◦ Ã2)− 1′n[Ã ◦ Ã ◦ Ã ◦ Ã]1n + 2S6.

It is also easy to see that

S3 =
∑
i,j

Ã2
iiÃ

2
ij −

∑
i

Ã4
ii = tr(Ã ◦ Ã ◦ Ã2)− S6,

S4 =
∑
i,j

Ã4
ij −

∑
i

Ã4
ii = 1′n[Ã ◦ Ã ◦ Ã ◦ Ã]1n − S6,

S5 =
∑
i,j

ÃiiÃ
2
ijÃjj − S6 = 1′n[diag(Ã)(Ã ◦ Ã)diag(Ã)]1n − S6,

S6 = tr(Ã ◦ Ã ◦ Ã ◦ Ã).

Plugging the matrix forms of S1-S6 into (2.A.44), we obtain

Qn = tr(Ã4)− 4 tr(Ã ◦ Ã3)− 2 tr(Ã2 ◦ Ã2) + 8 tr(Ã ◦ Ã ◦ Ã2)− 6 tr(Ã ◦ Ã ◦ Ã ◦ Ã)

+ 2 · 1′n[diag(Ã)(Ã ◦ Ã)diag(Ã)]1n + 1′n[Ã ◦ Ã ◦ Ã ◦ Ã]1n.

This gives the desired expression of Qn.

Last, we discuss the complexity of computing Qn. It involves the following operations:

• Compute the matrix Ã = A− η̂η̂′.

• Compute the Hadamard product of finitely many matrices.

• Compute the trace of a matrix.

• Compute the matrix DMD for a matrix M and a diagonal matrix D.

• Compute 1′nM1n for a matrix M .

• Compute the matrices Ãk, for k = 2, 3, 4.

Excluding the last operation, the complexity is O(n2). For the last operation, since we

can compute Ãk recursively from Ãk = Ãk−1Ã, it suffices to consider the complexity of

computing BÃ, for an arbitrary n× n matrix B. Write

BÃ = BA−Bη̂(η̂)′.

Consider computing BA. The (i, j)-th entry of BA is
∑

`:A`j 6=0Bi`A`j , where the total

number of nonzero A`j equals to dj , the degree of node j. Hence, the complexity of

computing the (i, j)-th entry of BA is O(dj). It follows that the complexity of computing

BA is O(
∑n

i,j=1 dj) = O(n2d̄). Consider computing Bη̂(η̂)′. We first compute the vector
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v = Bη̂ and then compute v(η̂)′, where the complexity of both steps is O(n2). Combining the

above, the complexity of computing BÃ is O(n2d̄). We have seen that this is the dominating

step in computing Tn and Qn, so the complexity of the latter is also O(n2d̄).
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2.B Estimation of ‖θ‖

We prove Lemma 1. First, we show that

‖η∗‖2
{

= ‖θ‖2, under the null,

� ‖θ‖2, under the alternative.

Recall that η∗ = (1/
√

1′nΩ1n)Ω1n. Hence,

‖η∗‖2 = (1′nΩ21n)/(1′nΩ1n). (2.B.45)

Under the null, Ω = θθ′, and the claim follows by direct calculations. Under the alternative,

Ω =
∑K

k=1 λkξkξ
′
k, so

1′nΩ1n =
K∑
k=1

λk(1
′
nξk)

2, 1′nΩ21n =
K∑
k=1

λ2
k(1
′
nξk)

2.

By Lemma 6, λ1 � ‖θ‖2. By Lemma 7, 1′nξ1 � ‖θ‖−1‖θ‖1 and |1′nξk| = O(‖θ‖−1‖θ‖1). It

follows that 1′nΩ21n ≥ λ2
1(1′nξ1)2 ≥ C‖θ‖21‖θ‖2 and 1′nΩ21n ≤ λ2

1

∑K
k=1(1′nξk)2 ≤ C‖θ‖21‖θ‖2.

We conclude that

1′nΩ21n � ‖θ‖21‖θ‖2. (2.B.46)

Moreover, 1′nΩ1n ≤ |λ1|
∑K

k=1(1′nξk)2 ≤ C‖θ‖21, and by Lemma 8, 1′nΩ1n ≥ C‖θ‖21. It follows

that

1′nΩ1n � ‖θ‖21. (2.B.47)

Plugging (2.B.46)-(2.B.47) into (2.B.45) gives the claim.

Next, we show (‖η̂‖2 − 1)/‖η∗‖2 → 1 in probability. Since ‖η∗‖ � ‖θ‖ → ∞ as n→∞,

it suffices to show ‖η̂‖2/‖η∗‖2 → 1 in probability. By definition,

‖η̂‖2 =
1′nA

21n
1′nA1n

.

Compare this with (2.B.45), all we need to show is that in probability,

1′nA1n
1′nΩ1n

→ 1, and
1′nA

21n
1′nΩ21n

→ 1. (2.B.48)

Since the proofs are similar, we only show the second one. By elementary probability, it is

sufficient to show that as n→∞,

E[1′nA
21n]

1′nΩ21n
→ 1,

Var(1′nA
21n)

(1′nΩ21n)2
→ 0. (2.B.49)

We now prove (2.B.49). Consider the first claim. Write

1′nA
21n =

∑
i,j,k

AijAjk =
∑
i 6=j

A2
ij +

∑
i,j,k(dist)

AijAjk. (2.B.50)

It follows that

E[1′nA
21n] =

∑
i 6=j

Ωij +
∑

i,j,k(dist)

ΩijΩjk.
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Since Ωij ≤ θiθj under both hypotheses, we have∣∣E[1′nA
21n]− 1′nΩ1n − 1′nΩ21n

∣∣ ≤ ∣∣∣∑
i

Ωii +
∑

(i,j,k) are
not distinct

ΩijΩjk

∣∣∣
≤
∑
i

θ2
i + C

∑
i,j

θ2
i θ

2
j + C

∑
i,k

θ3
i θk

≤ C‖θ‖2 + C‖θ‖4 + C‖θ‖33‖θ‖1
≤ C‖θ‖33‖θ‖1,

where we have used the universal inequality ‖θ‖4 ≤ ‖θ‖33‖θ‖1. Since ‖θ‖33 ≤ θ2
max‖θ‖1 =

o(‖θ‖1), the right hand side is o(‖θ‖21) = o(1′nΩ1n). So,

E[1′nA
21n] = 1′nΩ21n + 1′nΩ1n + o(1′nΩ1n). (2.B.51)

Combining this with (2.B.46)-(2.B.47) gives∣∣∣E[1′nA
21n]

1′nΩ21n
− 1
∣∣∣ . 1′nΩ1n

1′nΩ21n
� 1

‖θ‖2
,

and the claim follows by ‖θ‖ → ∞.

Consider the second claim. By (2.B.50),

Var(1′nA
21n) ≤ 2Var

(∑
i 6=j

A2
ij

)
+ 2Var

( ∑
i,j,k(dist)

AijAjk

)
. (2.B.52)

We re-write
∑

i 6=j A
2
ij =

∑
i 6=j Aij = 2

∑
i<j Aij . The variables {Aij}1≤i<j≤n are mutually

independent. It follows that

Var
(∑
i 6=j

A2
ij

)
= 4

∑
i<j

Var(Aij) ≤ C
∑
i,j

Ωij ≤ C‖θ‖21. (2.B.53)

Moreover, since AijAjk = (Ωij +Wij)(Ωjk +Wjk), we have∑
i,j,k(dist)

AijAjk =
∑

i,j,k(dist)

ΩijΩjk + 2
∑

i,j,k(dist)

ΩijWjk +
∑

i,j,k(dist)

WijWjk

≡
∑

i,j,k(dist)

ΩijΩjk +X1 +X2.

By elementary probability,

Var
( ∑
i,j,k(dist)

AijAjk

)
≤ 2Var(X1) + 2Var(X2).

To compute the variance of X1, we note that

X1 = 4
∑
j<k

βjkWjk, βjk =
∑

i/∈{j,k}

Ωij .

The variables {Wjk}1≤j<k 6=n are mutually independent, and |βjk| ≤ C
∑

i θiθj ≤ C‖θ‖1θj .
It follows that

Var(X1) ≤ C
∑
j,k

(‖θ‖1θj)2(θjθk) ≤ C‖θ‖31‖θ‖33.

To compute the variance of X2, we note that

Var(X2) =
∑

i,j,k(dist)

∑
i′,j′,k′(dist)

E[WijWjkWi′j′Wj′k′ ].

The summand is nonzero only when the two variables {Wi′j′ ,Wj′k′} are the same as the
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two variables {Wij ,Wjk}. This can only happen if (i, j, k) = (i′, j′, k′) or (i, j, k) = (k′, j′, i′),

where in either case the summand equals to E[W 2
ijW

2
jk]. It follows that

Var(X2) =
∑

i,j,k(dist)

2E[W 2
ijW

2
jk] ≤ C

∑
i,j,k

θiθ
2
j θk ≤ C‖θ‖2‖θ‖21.

Combining the above gives

Var
( ∑
i,j,k(dist)

AijAjk

)
≤ C‖θ‖31‖θ‖33 + C‖θ‖2‖θ‖21 ≤ C‖θ‖31‖θ‖33, (2.B.54)

where we have used the fact that ‖θ‖1‖θ‖33 ≥ ‖θ‖4 (Cauchy-Schwarz inequality) and ‖θ‖ → ∞.

Plugging (2.B.53)-(2.B.54) into (2.B.52) gives

Var(1′nA
21n) ≤ C‖θ‖31‖θ‖33. (2.B.55)

Comparing this with (2.B.46) and using ‖θ‖33 ≤ θ2
max‖θ‖1, we obtain

Var(1′nA
21n)

(1′nΩ21n)2
≤ C‖θ‖31‖θ‖33
‖θ‖41‖θ‖4

≤ Cθ2
max

‖θ‖4
,

and the claim follows by ‖θ‖ → ∞.
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2.C Spectral analysis for Ω and Ω̃

We state and prove some useful results about eigenvalues and eigenvectors of Ω and Ω̃.

In Section 2.C.4, we prove Lemma 2.

For 1 ≤ k ≤ K, let λk be the k-th largest (in absolute value) eigenvalue of Ω and let

ξk ∈ Rn be the corresponding unit-norm eigenvector. We write

Ξ = [ξ1, ξ2, . . . , ξK ] = [u1, u2, . . . , un]′,

so that ui is the i-th row of Ξ. Recall that G is the K ×K matrix ‖θ‖−2(Π′Θ2Π).

2.C.1 Spectral analysis of Ω

The following lemma relates λk and ξk to the eigenvalues and eigenvectors of the K ×K
matrix G

1
2PG

1
2 .

Lemma 5. Consider the DCMM model. Let dk be the k-th largest (in absolute value)

eigenvalue of G
1
2PG

1
2 and let βk ∈ RK be the associated eigenvector, 1 ≤ k ≤ K. Then

under the null,

λ1 = ‖θ‖2, ξ1 = ±θ/‖θ‖.

Under the alternative, for 1 ≤ k ≤ K,

λk = dk‖θ‖2, ξk = ‖θ‖−1[θ ◦ (ΠG−
1
2βk)].

Under the alternative hypothesis, we further have the following lemma:

Lemma 6. Under the DCMM model, as n→∞, suppose (2.2.14) holds. As n→∞, under

the alternative hypothesis,

λ1 � ‖θ‖2, ‖ui‖ ≤ C‖θ‖−1θi, for all 1 ≤ i ≤ n.

The quantities (1′nξk) play key roles in the analysis of the Signed Polygon tests. By

Lemma 5,

ξ1 = (‖θ‖)−1ΘΠG−1/2β1,

where β1 is the first eigenvector of G1/2PG1/2, corresponding to the largest eigenvalue of

G1/2PG1/2. It is seen G−1/2β1 is the eigenvector of the matrix PG associated with the

largest eigenvalue of GP , which is the same as the largest eigenvalue of G1/2PG1/2. Since

PG is a non-negative matrix, by Perron’s theorem, we can assume all entries of G−1/2β1 are

non-negative. As a result, all entries of ξ1 are non-negative, and

1′nξ1 > 0.

The following lemma is proved in Section 2.C.3.

Lemma 7. Under the DCMM model, as n→∞, suppose (2.2.14) holds. As n→∞,

max
1≤k≤K

|1′nξk| ≤ C‖θ‖−1‖θ‖1, 1′nξ1 ≥ C‖θ‖−1‖θ‖1.

and so for any 2 ≤ k ≤ K,

|1′nξk| ≤ C|1′nξ1|
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We also have a lower bound for 1′nΩ1n. The following lemma is proved in Section 2.C.3.

Lemma 8. Under the DCMM model, as n→∞, suppose (2.2.14) holds. As n→∞, both

under the null hypothesis and the alternative hypothesis,

1′nΩ1n ≥ C‖θ‖21.

2.C.2 Spectral analysis of Ω̃

Recall that

Ω̃ = Ω− (η∗)(η∗)′, where η∗ = (1/
√

1′nΩ1n)Ω1n,

and λ1, . . . , λK are the K nonzero eigenvalues of Ω, arranged in the descending order in

magnitude, and ξ1, . . . , ξK are the corresponding unit-norm eigenvectors of Ω The following

lemma is proved in Section 2.C.3.

Lemma 9. Under the DCMM model, as n→∞, suppose (2.2.14) holds. Then,

|λ2| ≤ ‖Ω̃‖ ≤ C|λ2|.
Moreover, for any fixed integer m ≥ 1,

|(Ω̃m)ij | ≤ C|λ2|m · ‖θ‖−2θiθj , for all 1 ≤ i, j ≤ n.

Recall that d1, . . . , dK are the nonzero eigenvalues of G
1
2PG

1
2 . Introduce

D = diag(d1, d2, . . . , dK), D̃ = diag(d2, d3, . . . , dK),

and

h =
(1′nξ2

1′nξ1
,
1′nξ3

1′nξ1
, . . . ,

1′nξK
1′nξ1

)′
, u0 =

K∑
k=2

dk(1
′
nξk)

2

d1(1′nξ1)2
.

By Lemma 7, 1′nξ1 > 0, so h and u0 are both well-defined. Write Ξ = [ξ1, ξ2, . . . , ξK ]. The

following lemma gives an alternative expression of Ω̃.

Lemma 10. Under the DCMM model,

Ω̃ = ‖θ‖2 · ΞMΞ′,

where M is a K ×K matrix satisfying

M =

[
(1 + u0)−1h′D̃h −(1 + u0)−1h′D̃

−(1 + u0)−1D̃h D̃ − (d1(1 + u0))−1D̃hh′D̃

]
.

If additionally |λ2|/λ1 → 0, then for the matrix M̃ ∈ RK,K ,

M̃ = ‖θ‖2 ·

[
h′D̃h −h′D̃
−D̃h D̃

]
,

we have

|Mij − M̃ij | ≤ Cλ2
2/λ1, for all 1 ≤ i, j ≤ K.

We now study tr(Ω̃4), which is related to the power of the SgnQ test. We discuss the two

cases |λ2|/λ1 → 0 and |λ2|/λ1 ≥ c0 separately. Consider the case of |λ2|/λ1 = o(1). Since

Ω̃ = ΞMΞ′, where Ξ′Ξ = IK , we have

tr(Ω̃4) = tr(M4).
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The following lemma is proved in Section 2.C.3.

Lemma 11. Consider the DCMM model, where (2.2.14) holds. As n→∞, if |λ2|/λ1 → 0,

then

| tr(Ω̃4)− tr(M̃4)| ≤ o(|λ2|3), (2.C.56)

Moreover,

tr(M̃4) = tr(D̃4) + (h′D̃h)4 + 4(h′D̃2h)2 + 4(h′D̃h)2(h′D̃2h) + 4h′D̃4h+ 4(h′D̃h)(h′D̃3h)

≥ tr(D̃4) + (h′D̃h)4 + 2[(h′D̃2h)2 + (h′D̃h)2(h′D̃2h) + h′D̃4h]

≥ tr(D̃4).

• In the special case where λ2, λ3, . . . , λK have the same signs,

| tr(M̃3)| ≥ |
K∑
k=2

λ3
k| =

K∑
k=2

|λk|3,

and so

| tr(Ω̃3)| ≥
K∑
k=2

|λk|3 + o(|λ2|3).

• In the special case where K = 2, the vector h is a scalar, and

tr(M̃3) = (1 + h2)3λ3
2, tr(M̃4) = (1 + h2)4λ4

2,

and so

tr(Ω̃3) = [(1 + h2)3 + o(1)]λ3
2, tr(Ω̃4) = [(1 + h2)4 + o(1)]λ4

2.

We now consider the case |λ2/λ1| ≥ c0. In this case, M̃ is not a good proxy for M any

more, so we can not derive a simple formula for tr(Ω̃3) or tr(Ω̃4) as above. However, for

tr(Ω̃4), since

tr(Ω̃4) ≥ ‖Ω̃‖4,

by Lemma 9, we immediately have

tr(Ω̃4) ≥ Cλ4
2 ≥ C(

K∑
k=2

λ4
k)/(K − 1) ≥ C

K∑
k=2

λ4
k. (2.C.57)

2.C.3 Proof of Lemmas 5-11

Proof of Lemma 5

The proof for the null case is straightforward, so we only prove the lemma for the alternative

case. Consider the spectral decomposition

G1/2PG1/2 = BDB′.

where

D = diag(d1, . . . , dK) and B = [β1, . . . , βK ].
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Combining this with Ω = ΘΠPΠ′Θ gives

Ω = ΘΠG−
1
2 (G

1
2PG

1
2 )G−

1
2 Π′Θ

= ΘΠG−
1
2 (BDB′)G−

1
2 Π′Θ

= (‖θ‖−1ΘΠG−
1
2B)(‖θ‖2D)(‖θ‖−1ΘΠG−

1
2B)′

= H(‖θ‖2D)H ′,

where

H = ‖θ‖−1ΘΠG−
1
2B.

Recalling that G = (‖θ‖2)−1 ·Π′Θ2Π, it is seen

H ′H = ‖θ‖−2B′G−
1
2 (Π′Θ2Π)G−

1
2B = B′B = IK , (2.C.58)

Therefore,

Ω = H(‖θ‖2D)H ′

is the spectral decomposition of Ω. Since (D̃k, ξk) are the k-th eigenvalue of Ω and unit-norm

eigenvector respectively, we have

ξk = ±1 · the k-th column of H = ±(‖θ‖)−1ΘΠG−1/2βk.

This proves the claim.

Proof of Lemma 6

Consider the first claim. By Lemma 5, λ1 = d1‖θ‖2, where d1 is the maximum eigenvalue

of G
1
2PG

1
2 . It suffices to show that d1 � 1. Since all entries of P are upper bounded by

constants, we have

‖P‖ ≤ C.

Additionally, since G is a nonnegative symmetric matrix,

‖G‖ ≤ ‖G‖max = max
1≤k≤K

K∑
`=1

G(k, `) = ‖θ‖−2 max
1≤k≤K

K∑
`=1

n∑
i=1

πi(k)πi(`)θ
2
i ≤ 1. (2.C.59)

It follows that

d1 ≤ ‖G‖‖P‖ ≤ C. (2.C.60)

At the same time, for any unit-norm non-negative vector x ∈ RK , since all entries of P are

non-negative and all diagonal entries of P are 1,

x′Px ≥ x′x = 1.

It follows that

d1 = ‖G
1
2PG

1
2 ‖ ≥ (G−

1
2x)′(G

1
2PG

1
2 )(G−

1
2x)

‖(G−
1
2x)‖2

=
x′Px

x′G−1x
≥ 1

‖G−1‖
.

Combining it with the assumption (2.2.14) gives

d1 ≥ C. (2.C.61)

where we note C denotes a generic constant which may vary from occurrence to occurrence.

Combining (2.C.60)-(2.C.61) gives the claim.
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Consider the second claim. Let B = [β1, β2, . . . , βK ] and D = diag(d1, d2, . . . , dK) as in

the proof of Lemma 5, where we note B is orthonormal. By Lemma 5 and definitions,

u′i = ‖θ‖−1θiπ
′
iG
− 1

2B.

It follows that

‖ui‖ ≤ ‖θ‖−1θi · ‖πi‖‖G−
1
2 ‖‖B‖ ≤ (‖θ‖)−1θi‖G−1/2‖,

where we have used ‖B‖ = 1 and ‖πi‖ = [
∑K

k=1 πi(k)2]1/2 ≤ 1. Finally, by the assumption

(2.2.14), ‖G−1‖ ≤ C and so ‖G−1/2‖ ≤ C. Combining these gives the claim.

Proof of Lemma 7

It is sufficient to show the first two claims. Consider the first claim. By Lemma 6, for all

1 ≤ k ≤ K and 1 ≤ i ≤ n,

|ξk(i)| ≤ C‖θ‖−1θi.

It follows that

|1′nξk| ≤ C
n∑
i=1

‖θ‖−1θi ≤ C‖θ‖−1‖θ‖1, for all 1 ≤ k ≤ K, (2.C.62)

and the claim follows.

Consider the second claim. By Lemma 5,

ξ1 = ‖θ‖−1ΘΠ(G−
1
2β1), (2.C.63)

where β1 is the (unit-norm) eigenvector of G
1
2PG

1
2 associated with λ1, which is the largest

eigenvalue of G1/2PG1/2. By basic algebra, λ1 is also the largest eigenvalue of the matrix

PG, with G−1/2β1 being the corresponding eigenvector. Since PG is a nonnegative matrix,

G−
1
2β1 is a nonnegative vector (e.g., (Horn and Johnson, 1985, Theorem 8.3.1)). Denote for

short by

h = G−1/2β1.

It follows from (2.C.63) that

1′nξ1 = (‖θ‖)−1 · 1′nΘΠh = ‖θ‖−1 ·
K∑
k=1

( n∑
i=1

πi(k)θi

)
hk. (2.C.64)

We note that
∑K

k=1

(∑n
i=1 πi(k)θi

)
= ‖θ‖1. Combining it with the assumption (2.2.14) yields

min
1≤k≤K

{ n∑
i=1

πi(k)θi

}
≥ C‖θ‖1.

Inserting this into (2.C.64) gives

1′nξ1 ≥ C(‖θ‖)−1‖θ‖1 · ‖h‖1. (2.C.65)

We claim that ‖h‖ ≥ 1. Otherwise, if ‖h‖ < 1, then every entry of h is no greater than 1 in

magnitude, and so

‖h‖1 ≥ ‖h‖2 = ‖G−1β1‖2.

Since ‖G−1‖ = ‖G‖−1 ≥ 1 (see (2.C.59)) and ‖β1‖ = 1,

‖G−
1
2β1‖ ≥ 1.
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and so it follows ‖h‖ ≥ 1. The contradiction show that ‖h‖ ≥ 1. The claim follows by

combining this with (2.C.65).

Proof of Lemma 8

For 1 ≤ k ≤ K, let

c = (‖θ‖1)−1Π′Θ1n = (‖θ‖1)−1(1′nΘΠ)′.

Since Ω = ΘΠPΠ′Θ and all entries of P are non-negative,

1′nΩ1n = ‖θ‖21(c′Pc) ≥ ‖θ‖2
( K∑
k=1

c2
k

)
. (2.C.66)

Note that, first, ck ≥ 0, and second, ‖θ‖1
∑K

k=1 ck = 1′nΠΘ1n = 1′nΘ1n, where the last term

is ‖θ‖1, and so
K∑
k=1

ck = 1.

Together with the Cauchy-Schwartz inequality, we have
K∑
k=1

c2
k ≥ (

K∑
k=1

ck)
2/K = 1/K.

Combining this with (2.C.66) gives the claim.

Proof of Lemma 9

Consider the first claim. We first derive a lower bound for ‖Ω̃‖. By Lemma 10,

‖Ω̃‖ = ‖θ‖2 · ‖M‖, (2.C.67)

where with the same notations as in the proof of Lemma 10, M = D − (1 + u0)−1vv′. Let

M0 be the top left 2× 2 block of M . Let D0 = diag(d1, d2), and let v0 be the sub-vector of

v in (2.C.72) restricted to the first two coordinates. By (2.C.72),

M0 = D0 − (1 + u0)−1v0v
′
0 = D

1
2
0

(
I2 − (1 + u0)−1D

−1/2
0 v0v

′
0D
− 1

2
0

)
D

1
2
0 ,

and so by ‖D−1/2
0 ‖ = |d2|−1/2 we have

‖
(
I2 − (1 + u0)−1D

−1/2
0 v0v

′
0D
− 1

2
0

)
‖ ≤ ‖D−1/2

0 M0D
−1/2
0 ‖ ≤ |d2|−1 · ‖M0‖. (2.C.68)

At the same time, since (1+u0)−1D
−1/2
0 v0v

′
0D
−1/2
0 is a rank-1 matrix, there is an orthonormal

matrix and a number b such that

Q(1 + u0)−1D
−1/2
0 v0v

′
0D
−1/2
0 Q′ = diag(b, 0).

It follows

‖
(
I2 − (1 + u0)−1D

−1/2
0 v0v

′
0D
− 1

2
0

)
‖ = ‖I2 − diag(b, 0)‖ = max{|1− b|, 1} ≥ 1.

Inserting this into (2.C.68) gives

‖M0‖ ≥ |d2|,

Note that ‖M‖ ≥ ‖M0‖. Combining this with (2.C.67) gives

‖Ω̃‖ ≥ |d2|‖θ‖2.
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Next, we derive an upper bound for ‖Ω̃‖. By Lemma 7,

max
1≤k≤K

|1′nξk| ≤ C‖θ‖−1‖θ‖1, 1′nξ1 ≥ C‖θ‖−1‖θ‖1. (2.C.69)

By (2.C.69), all the entries of M are upper bounded by C|λ2|, which implies ‖M‖ ≤ C|d2|.
Plugging it into (2.C.67) gives

‖Ω̃‖ ≤ C

|1 + u0|
|d2|‖θ‖2, (2.C.70)

and all remains to show is

1 + u0 ≥ C > 0.

Now, recalling that Ω =
∑K

k=1 λkξkξ
′
k and λk = dk‖θ‖2, by definitions,

d1(1′nξ1)2(1 + u0) =

K∑
k=1

dk(1
′
nξk)

2 = ‖θ‖−21′nΩ1n.

By Lemma 8 which gives 1′nΩ1n ≥ C‖θ‖21. It follows that

1 + u0 ≥
‖θ‖−21′nΩ1n
d1(1′nξ1)2

≥ C ‖θ‖
−2 · ‖θ‖21

‖θ‖−2 · ‖θ‖21
≥ C,

where in the second inequality we have used (2.C.69) and d1 = (‖θ‖)−2 · λ1 ≤ 1 (see Lemma

6). Inserting this into (2.C.70) gives the claim.

Consider the second claim. By Lemma 10,

Ω̃ = ΞMΞ′,

where Ξ and M are the same there. Write

Ξ = [ξ1, ξ2, . . . , ξK ] = [u1, u2, . . . , un]′.

Note that Ω̃ and M have the same spectral norm. It follows that

Ω̃m = ΞMmΞ′,

and

|(Ω̃m)ij | = |u′iMmuj | ≤ ‖ui‖‖M‖m‖uj‖.

By Lemma 6, ‖ui‖‖uj‖ ≤ C‖θ‖−2θiθj , and by the first part of the current lemma,

‖M‖ = ‖Ω̃‖ ≤ C|d2|‖θ‖2.
It follows that

|(Ω̃m)ij | ≤ C|d2|m‖θ‖2m−2θiθj .

This proves the claim.

Proof of Lemma 10

Consider the first claim. By definitions,

Ω̃ = Ω− (η∗)(η∗)′, where η∗ =
1√

1′nΩ1n
Ω1n. (2.C.71)

Recalling D̃k = dk‖θ‖2 and Ξ = [ξ1, ξ2, . . . , ξK ], we have

Ω =
K∑
k=1

D̃kξkξ
′
k = ‖θ‖2 · ΞDΞ′.
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It follows that

1′nΩ1n = ‖θ‖2
K∑
k=1

dk(1
′
nξk)

2,

and

η∗ =
‖θ‖√∑K

s=1 ds(1
′
nξs)

2

K∑
k=1

dk(1
′
nξk)ξk =

‖θ‖√
(1 + u0)

[√
d1 ξ1 +

K∑
k=2

dk(1
′
nξk)√

d1(1′nξ1)
ξk

]
,

where the vector in the big bracket on the right is Ξv, if we let

v = (
√
d1,

d2(1′nξ2)√
d1(1′nξ1)

, . . . ,
dK(1′nξK)√
d1(1′nξ1)

)′.

Combining these gives

Ω̃ = ‖θ‖2ΞDΞ′ − ‖θ‖2

1 + u0
Ξvv′Ξ.

Plugging it into (2.C.71) gives

Ω̃ = ‖θ‖2ΞDΞ′ − ‖θ‖2

1 + u0
Ξvv′Ξ = ‖θ‖2Ξ(D − (1 + u0)−1vv′)Ξ′. (2.C.72)

By definitions,

D = diag(d1, d2, . . . , dK), and v = d
−1/2
1 · (d1, h

′D̃)′.

It follows

D − (1 + u0)−1vv′ =

[
(1 + u0)−1d1u0 −(1 + u0)−1h′D̃

−(1 + u0)−1D̃h D̃ − (d1(1 + u0))−1D̃hh′D̃

]
,

where we note that

d1u0 =
K∑
s=2

ds
(1′nξs)

2

(1′nξ1)2
= h′D̃h,

Combining these gives the claim.

Consider the second claim. By definitions,

M − M̃ = ‖θ‖2 ·

[
[(1 + u0)−1 − 1]d1u0 (1− (1 + u0)−1)h′D̃

(1− (1 + u0)−1)D̃h −(d1(1 + u0))−1D̃hh′D̃

]
.

Note that

|1− (1 + u0)−1| ≤ C|u0| ≤ C|D̃2|/D̃1,

and that by Lemma 7,

|(1′nξk)| ≤ C1′nξ1,

and so each entry of D̃h does not exceed C|d2|. It follows that for all 2 ≤ i, j ≤ K,

|M1i − M̃1i| ≤ C‖θ‖2(|D̃2|/D̃1)d2
2 ≤ CD̃2

2/D̃1,

and

|Mij − M̃ij | ≤ C‖θ‖2d−1
1 d2

2 ≤ CD̃2
2/D̃1.

Finally,

d1u
2
0 = d−1

1 (
∑
s=2

d2
(1′nξs)

2

(1′nξ1)2
)2 ≤ Cd2

2/d1,
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2.C. Spectral analysis for Ω and Ω̃

so

|M11 − M̃11| ≤ C‖θ‖2d2
2/d1 ≤ CD̃2

2/D̃1.

Combining these gives the claim.

Proof of Lemma 11

It is sufficient to show (2.C.56). In fact, once (2.C.56) is proved, other claims follow by

direct calculations, except for the first inequality regarding tr(Ω̃4), we have used

|(h′D̃h)(h′D̃3h)| ≤ |h′D̃h|
√

(h′D̃2h)(h′D̃4h) ≤ 1

2

[
(h′D̃h)2(h′D̃2h) + h′D̃4h

]
.

We now show (2.C.56). Since tr(Ω̃m) = tr(M̃m), for m = 3, 4, it is sufficient to show

| tr(M3)− tr(M̃3)| ≤ Cλ4
2/λ1), | tr(M4)− tr(M̃4)| ≤ C|λ2|5/λ1. (2.C.73)

Since the proofs are similar, we only show the first one. By basic algebra,

tr(M3 − M̃3) = tr((M − M̃)3) + 3 tr(M̃(M − M̃)2) + 3 tr(M̃2(M − M̃)).

By Lemma 10, for all 1 ≤ i, j ≤ K,

|Mij − M̃ij | ≤ Cλ2
2/λ1.

Also, by Lemma 7, all entries of h are bounded, so for all 1 ≤ i, j ≤ K,

|M̃ij | ≤ |λ2|.
It follows

| tr((M − M̃)3| ≤ C(λ2
2/λ1)3,

| tr(M̃(M − M̃)2)| ≤ C|λ2|(λ2/λ1)2 ≤ C|λ2|5/λ2
1,

and

| tr(M̃2(M − M̃)| ≤ Cλ2
2(λ2/λ1) ≤ Cλ4

2/λ1.

where we note that λ2/λ1 = o(1). Combining these gives the claim.

2.C.4 Proof of Lemma 2

The second bullet point is a direct result of (2.C.57), and the other two bullet points follow

directly from Lemma 11 of this appendix.
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2.D Lower bounds, Region of Impossibility

We study the Region of Impossibility by considering a DCMM with random mixed

memberships. First, in Section 2.D.1, we establish the equivalence between regularity

conditions for a DCMM with non-random mixed memberships and those for a DCMM with

random mixed memberships. Next, we prove Lemma 3, which is key to the construction of

inseparable hypothesis pairs. Last, we prove Theorem 2.3.1-2.3.5 of the main article.

2.D.1 Equivalence of regularity conditions

Let µ1, µ2, . . . , µK be the eigenvalues of P , arranged in the descending order in magnitude.

Recall that λ1, λ2, . . . , λK are the eigenvalues of Ω. The following lemma is proved in

Section 2.D.5.

Lemma 12 (Equivalent definition of Region of Impossibility). Consider the DCMM model

(3.1.1)-(3.2.4), where the alternative is true and the condition (2.2.14) holds. Suppose

θmax → 0 and ‖θ‖ → ∞ as n→∞. Then, as n→∞,

µ1 � 1,
|µ2|
µ1
� |λ2|

λ1
, max

1≤i,j≤K
|Pij − 1| ≤ C(|λ2|/λ1).

As a result, |λ2|/
√
λ1 → 0 if and only if ‖θ‖ · |µ2(P )| → 0.

We now consider DCMM with random mixed memberships: Given (Θ, P ) and a distri-

bution F over V (the standard simplex in RK), let

Ω = ΘΠPΠ′Θ, Π = [π1, π2, . . . , πn]′, πi
iid∼ F. (2.D.74)

We notice that the conclusion of Lemma 12 holds provided that the regularity condition

(2.2.14) is satisfied. The next lemma shows that (2.2.14) holds with high probability. It is

proved in Section 2.D.5.

Lemma 13 (Equivalence of regularity conditions). Consider the model (2.D.74). Let

h = E[πi] and Σ = Cov(πi). Suppose ‖P‖ ≤ C, min1≤k≤K{hk} ≥ C and ‖Σ−1‖ ≤ C.

Suppose θmax → 0, ‖θ‖ → ∞, and (‖θ‖2/‖θ‖1)
√

log(‖θ‖1) → 0, as n → ∞. Then, as

n→∞, with probability 1− o(1), the condition (2.2.14) is satisfied, i.e.,

max1≤k≤K{
∑n

i=1 θiπi(k)}
min1≤k≤K{

∑n
i=1 θiπi(k)}

≤ C0, ‖G−1‖ ≤ C0,

for a constant C0 > 0 and G = ‖θ‖−2(Π′Θ2Π).

2.D.2 Proof of Lemma 3

Let M = diag(µ1, µ2, . . . , µK). It is seen µ = M1K and so the desired result is to find a D

such that

DADM1K = 1K ⇐⇒MDADM1K = M1K = µ⇐⇒ D(MAM)D1K = µ.

Since MAM has strictly positive entries, it is sufficient to show that for any matrix A

(MAM in our case; a slight misuse notation here) with strictly positive entries, there is a
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2.D. Lower bounds, Region of Impossibility

unique diagonal matrix D with strictly positive diagonal entries such that

DAD1k = µK . (2.D.75)

We now show the existence and uniqueness separately.

For existence, we follow the proof in Marshall and Olkin (1968). Consider d′Ad for a

vector d ∈ RK with strictly positive entries. It is shown there that d′Ad can be minimized

using Lagrange multiplier:

1

2
d′Ad− λ

K∑
k=1

µk log(dk).

Differentiating with respect to d and set the derivative to 0 gives

Ad = λ
K∑
k=1

µk/dk, (2.D.76)

where λ = d′Ad/(
∑K

k=1 µk) > 0. Letting D = λ−1/2diag(d1, d2, . . . , dK). It is seen that

(2.D.76) can be rewritten as

DAD1K = µ,

and the claim follows.

For uniqueness, we adapt the proof in Johnson and Reams (2009) to our case. Suppose

there are two different eligible diagonal matrices D1 and D2 satisfying (2.D.75). Let

d1 = D11K and d2 = D21K , and let M = diag(µ1, µ2, . . . , µK). It follows that

D2D1Ad1 = D2D1AD11K = D2µ = Md2,

and so

M−1D2D1Ad1 = d2.

Now, for a diagonal matrix S with strictly positive diagonal entries to be determined, we

have

S−1M−1D2D1ASS
−1d1 = S−1d2.

We pick S such that

S−1M−1D2D1 = S,

and denote such an S by S0. It follows

S0AS0(S−1
0 d1) = S−1

0 d2.

or equivalently, if we let d̃1 = S−1
0 d1 and d̃2 = S−1

0 d2,

S0AS0d̃1 = d̃2. (2.D.77)

Similarly, by switching the places of D1 and D2, we have

S0AS0d̃2 = d̃1. (2.D.78)

Combining (2.D.77) and (2.D.78) gives

S0AS0(d̃1 + d̃2) = (d̃1 + d̃2), and S0AS0(d̃1 − d̃2) = −(d̃1 − d̃2).

This implies that 1 and −1 are the two eigenvalues of S0AS0, with d̃1 + d̃2 and d̃1− d̃2 being

the corresponding eigenvectors, respectively, where we note that especially, d̃1 + d̃2 has all

strictly positive entries. By Perron’s theorem Horn and Johnson (1985), since S0AS0 have
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all strictly positive entries, the eigenvector corresponding to the largest eigenvalue (i.e., the

Perron root) have all strictly positive entries. As for any symmetric matrix, we can only

have one eigenvector that has all strictly positive entries, so 1 must be the Perron root of

S0AS0. Using Perron’s Theorem again, all eigenvalues of S0AS0 except the Perron root

itself should be strictly smaller than 1 in magnitude. This contradicts with the fact that −1

is an eigenvalue of S0AS0. The contradiction proves the uniqueness.

2.D.3 Proof of Theorem 2.3.1

This theorem follows easily from Theorems 2.3.2-2.3.5. Fix (Θ, P, F ) such that θ ∈
M∗n(βn/ log(n)) and ‖θ‖ · |µ2(P )| ≤ αn/ log(n). Consider a sequence of hypotheses indexed

by n, where Ω = θθ′ under H
(n)
0 , and Ω follows the construction in any of Theorems 2.3.2-2.3.5

under H
(n)
1 . Let P

(n)
0 and P

(n)
1 be the probability measures associated with two hypotheses,

respectively. By those theorems, the χ2-distance satisfy

D(P
(n)
0 , P

(n)
1 ) = o(1), as n→∞.

By connection between L1-distance and χ2-distance, it follows that

‖P (n)
0 − P (n)

1 ‖1 = o(1), as n→∞.
We now slightly modify the alternative hypothesis. Let Π0 be a non-random membership

matrix such that (θ,Π0, P ) ∈ Mn(K, c0, αn, βn). In the modified alternative hypothesis

H̃
(n)
1 ,

Π =

Π̃, if (θ, Π̃, P ) ∈Mn(K, c0, αn, βn),

Π0, otherwise,
where π̃i

iid∼ F.

Let P̃
(n)
1 be the probability measure associated with H̃

(n)
1 . By Lemmas 12-13, Π = Π̃, except

for vanishing probability. It follows that

‖P (n)
1 − P̃ (n)

1 ‖1 = o(1), as n→∞.
Under H̃

(n)
1 , all realizations (θ,Π, P ) are in the class Mn(K, c0, αn, βn). By Neymann-

Pearson lemma and elementary inequalities,

inf
ψ

{
sup

θ∈M∗n(βn)
P(ψ = 1) + sup

(θ,Π,P )∈Mn(K,c0,αn,βn)
P(ψ = 0)

}
≥ 1− inf

f0∈M∗n(βn),f1∈Mn(K,c0,αn,βn)
{‖f0 − f1‖1}

≥ 1− ‖P (n)
0 − P̃ (n)

1 ‖1
≥ 1− ‖P (n)

0 − P (n)
1 ‖1 − ‖P

(n)
1 − P̃ (n)

1 ‖1
≥ 1− o(1),

where in the second line we have mis-used the notation f ∈Mn(K, c0, αn, βn) to denote the

probability density for a DCMM with non-random mixed memberships whose parameters

are in the class Mn(K, c0, αn, βn).
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2.D.4 Proof of Theorems 2.3.2-2.3.5

We note that Theorem 2.3.2, Theorem 2.3.4 and Theorem 2.3.5 can be deduced from

Theorem 2.3.3. To see this, recall that Theorem 2.3.3 assumes there exists a positive

diagonal matrix D such that

DPDh̃D = 1K , min
1≤k≤K

{h̃D,k} ≥ C, (2.D.79)

where h̃D = E[D−1πi/‖D−1πi‖1]. We show that the condition (2.D.79) is implied by

conditions of other theorems. Theorem 2.3.2 assumes πi ∈ {e1, e2, . . . , eK}. It follows that

D−1πi/‖D−1πi‖1 = πi, and so h̃D = h. By Lemma 3, there exists D such that DPDh = 1K ,

hence, (2.D.79) is satisfied. Theorem 2.3.4 constructs the alternative hypothesis using

π̃i = Dπi/‖Dπi‖1. Equivalently, D−1π̃i/‖D−1πi‖1 = πi, and so h̃D becomes h. Since

DPDh = 1K , condition (2.D.79) holds. Theorem 2.3.5 assumes Ph = qn1K . Let D =

q
−1/2
n IK . Then, h̃D = h and DPDh = q−1

n Ph = 1K . Again, (2.D.79) is satisfied.

We only need to prove Theorem 2.3.3. Let P
(n)
0 and P

(n)
1 be the probability measure

associated with H
(n)
0 and H

(n)
1 , respectively. Let D(P

(n)
0 , P

(n)
1 ) be the chi-square distance

between two probability measures. By elementary probability,

D(P
(n)
0 , P

(n)
1 ) =

∫ [
dP

(n)
1

dP
(n)
0

]2

dP
(n)
0 − 1.

It suffices to show that, when ‖θ‖ · µ2(P )→ 0,∫ [
dP

(n)
1

dP
(n)
0

]2

dP
(n)
0 = 1 + o(1). (2.D.80)

Let pij and qij(Π) be the corresponding Ωij under the null and the alternative, respectively.

It is seen that

dP
(n)
0 =

∏
i<j

p
Aij
ij (1− pij)1−Aij , dP

(n)
1 = EΠ

[∏
i<j

[qij(Π)]Aij [1− qij(Π)]1−Aij
]
.

Let Π̃ be an independent copy of Π. Then,[
dP

(n)
1

dP
(n)
0

]2

= EΠ

[∏
i<j

(qij(Π)

pij

)Aij(1− qij(Π)

1− pij

)1−Aij
]
· E

Π̃

[∏
i<j

(qij(Π̃)

pij

)Aij(1− qij(Π̃)

1− pij

)1−Aij
]

= E
Π,Π̃

[∏
i<j

(qij(Π)qij(Π̃)

p2
ij

)Aij( [1− qij(Π)][1− qij(Π̃)]

[1− pij ]2
)1−Aij

︸ ︷︷ ︸
S(A,Π,Π̃)

]
.

It follows that ∫ [
dP

(n)
1

dP
(n)
0

]2

dP
(n)
0 = EA

[
dP

(n)
1

dP
(n)
0

]2

= E
A,Π,Π̃

[S(A,Π, Π̃)]

= E
Π,Π̃

{
EA
[
S(A,Π, Π̃)|Π, Π̃

]}
,

where the distribution of A|(Π, Π̃) is under the null hypothesis. Under the null hypothesis,

A is independent of (Π, Π̃), the upper triangular entries of A are independent of each other,
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and Aij ∼ Bernoulli(pij). It follows that

EA
[
S(A,Π, Π̃)|Π, Π̃

]
=
∏
i<j

EA
[(qij(Π)qij(Π̃)

p2
ij

)Aij( [1− qij(Π)][1− qij(Π̃)]

[1− pij ]2
)1−Aij

∣∣∣∣Π, Π̃]

=
∏
i<j

{
pij
qij(Π)qij(Π̃)

p2
ij

+ (1− pij)
[1− qij(Π)][1− qij(Π̃)]

[1− pij ]2

}

=
∏
i<j

{
qij(Π)qij(Π̃)

pij
+

[1− qij(Π)][1− qij(Π̃)]

1− pij

}
.

Let ∆ij = qij(Π)− pij and ∆̃ij = qij(Π̃)− pij . By direct calculations,

qij(Π)qij(Π̃)

pij
+

[1− qij(Π)][1− qij(Π̃)]

1− pij
= 1 +

∆ij∆̃ij

pij(1− pij)
.

Combining the above gives∫ [
dP

(n)
1

dP
(n)
0

]2

dP
(n)
0 = E

Π,Π̃

[∏
i<j

(
1 +

∆ij∆̃ij

pij(1− pij)

)]
. (2.D.81)

We then plug in the expressions of ∆ij and ∆̃ij from the model. Let D be the matrix in

(2.D.79). Introduce M = DPD − 1K1′K . We re-write

DPD = 1K1′K +M.

It is seen that Mh̃D = 0K . The following lemma is proved in Section 2.D.5.

Lemma 14. Under the conditions of Theorem 2.3.3, ‖M‖ ≤ C|µ2(P )|.

Write for short πDi = 1
‖D−1πi‖1D

−1πi and yi = πDi − E[πDi ] = πDi − h̃D. Under the

alternative hypothesis,

qij(Π) = θiθj‖D−1πi‖1‖D−1πj‖1 · π′iPπj
= θiθj · (πDi )′(DPD)(πDj )

= θiθj · (πDi )′(1K1′K +M)(πDj )

= θiθj ·
[
1 + (πDi )′M(πDj )

]
= θiθj ·

[
1 + (h̃D + yi)

′M(h̃D + yj)]

= θiθj · (1 + y′iMyj).

Here, the fourth line is due to 1′Kπi = 1 and the last line is due to Mh̃D = 0K . Under the

null hypothesis, pij = θiθj . As a result,

∆ij = θiθj · y′iMyj , yi ≡ πDi − E[πDi ].

Similarly, ∆̃ij = θiθj · ỹ′iMỹj , with ỹi = π̃Di − E[π̃Di ]. We plug them into (2.D.81) and use

pij = θiθj . It gives∫ [
dP

(n)
1

dP
(n)
0

]2

dP
(n)
0 = E

[∏
i<j

(
1 +

θiθj
1− θiθj

(y′iMyj)(ỹ
′
iMỹj)

)]
, (2.D.82)

where {yi, ỹi}ni=1 are iid random vectors with E[yi] = 0K .
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We bound the right hand side of (2.D.82). Since 1 + x ≤ ex for all x ∈ R,

D(P
(n)
0 , P

(n)
1 ) ≤ E[exp(S)], where S ≡

∑
i<j

θiθj
1− θiθj

(y′iMyj)(ỹ
′
iMỹj).

Let M =
∑K

k=1 δkbkb
′
k be the eigen-decomposition of M . Then,

(y′iMyj)(ỹ
′
iMỹj) =

∑
1≤k,`≤K

δkδ`(b
′
kyi)(b

′
kyj)(b

′
`ỹi)(b

′
`ỹj).

This allows us to decompose

S =
1

K2

∑
1≤k,`≤K

Sk`, where Sk` = K2δkδ`
∑
i<j

θiθj
1− θiθj

(b′kyi)(b
′
kyj)(b

′
`ỹi)(b

′
`ỹj).

By Jensen’s inequality, exp( 1
K2

∑
k,` Sk`) ≤

1
K2

∑
k,` exp(Sk`). It follows that∫ [

dP
(n)
1

dP
(n)
0

]2

dP
(n)
0 ≤ E[exp(S)] ≤ max

1≤k,`≤K
E[exp(Sk`)]. (2.D.83)

We now fix (k, `) and derive a bound for E[exp(Sk`)]. For n large enough, θmax ≤ 1/2

and K4‖M‖2‖θ‖2 ≤ 1/9. By Taylor expansion of (1− θiθj)−1,

Sk` = K2δkδ`
∑
i<j

∞∑
m=1

θmi θ
m
j (b′kyi)(b

′
kyj)(b

′
`ỹi)(b

′
`ỹj)

≡
∞∑
m=1

Xm, where Xm ≡ K2δkδ`
∑
i<j

θmi θ
m
j (b′kyi)(b

′
kyj)(b

′
`ỹi)(b

′
`ỹj).

Since |Xm| ≤ C‖M‖2‖θ‖2mm ≤ C‖M‖‖θ‖21θ
2(m−1)
max , where

∑∞
m=1 θ

2(m−1)
max < ∞, the random

variable
∑∞

m=1Xm is always well-defined. For m ≥ 1, let am = θ
2(m−1)
max (1 − θ2

max). Then,∑∞
m=1 am = 1. By Jenson’s inequality,

exp
( ∞∑
m=1

Xm

)
= exp

( ∞∑
m=1

am · a−1
m |Xm|

)
≤
∞∑
m=1

am · exp(a−1
m Xm).

Using Fatou’s lemma, we have

E[exp(Sk`)] ≤
∞∑
m=1

am · E
[
exp(a−1

m Xm)
]
. (2.D.84)

By definition of Xm,

Xm = K2δkδ`

{[∑
i

θmi (b′kyi)(b
′
`ỹi)
]2
−
∑
i

θ2m
i (b′kyi)

2(b′`ỹi)
2

}
.

Note that maxi{‖yi‖, ‖ỹi‖} ≤
√
K and maxk |δk| = ‖M‖. Therefore,

|Xm| ≤ K2‖M‖2
[∑

i

θmi (b′kyi)(b
′
`ỹi)
]2

+K4‖M‖2‖θ‖2m2m.

Write Y =
∑

i θ
m
i (b′kyi)(b

′
`ỹi). We see that Y is sum of independent, mean-zero random

variables. Since |(b′kyi)(b′`ỹi)| ≤ K, by Hoeffding’s inequality,

P(|Y | > t) ≤ 2 exp
(
− t2

4K2‖θ‖2m2m

)
, for any t > 0.

Since ‖θ‖2m2m ≤ ‖θ‖2θ
2(m−1)
max ≤ 2am‖θ‖2, we have a−1

m K4‖M‖2‖θ‖2m2m ≤ 2K4‖M‖2‖θ‖2. Note
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2. optimal adaptivity of signed-polygon statistics for network testing

that K4‖M‖2‖θ‖2 ≤ 1/9. By direct calculations,

E
[
exp(a−1

m |Xm|)
]
≤ ea

−1
m K4‖M‖2‖θ‖2m2m · E

[
ea
−1
m K2‖M‖2Y 2]

≤ e2K4‖M‖2‖θ‖2 · E
[
ea
−1
m K2‖M‖2Y 2]

= e2K4‖M‖2‖θ‖2
[
1 +

∫ ∞
0

et · P
(
a−1
m K2‖M‖2Y 2 > t

)
dt
]

≤ e2K4‖M‖2‖θ‖2
[
1 +

∫ ∞
0

et · e−
t

8K4‖M‖2‖θ‖2 dt
]

≤ eK4‖M‖2‖θ‖2 · (1 + 72K4‖M‖2‖θ‖2).

We plug it into (2.D.84) and notice that
∑∞

m=1 am = 1. It gives

E[exp(Sk`)] ≤ eK
4‖M‖2‖θ‖2 · (1 + 72K4‖M‖2‖θ‖2). (2.D.85)

Combining (2.D.83) and (2.D.85) gives∫ [
dP

(n)
1

dP
(n)
0

]2

dP
(n)
0 ≤ eK4‖M‖2‖θ‖2 · (1 + 72K4‖M‖2‖θ‖2).

We recall that ‖θ‖ · ‖M‖ ≤ C‖θ‖ · |µ2(P )| → 0. Hence, the right hand side is 1 + o(1). This

proves (2.D.80).

2.D.5 Proof of Lemmas 12-14

Proof of Lemma 12

The first claim follows by our assumptions on P , so we omit the proof. Consider the second

claim. Recall that G = ‖θ‖−2Π′Θ2Π and d1, d2, . . . , dK are the eigenvalues of G1/2PG1/2,

arranged in the descending order in magnitude. By Lemmas D.1 and D.2, λk = ‖θ‖2dk,
1 ≤ k ≤ K, and d1 � 1. Combining these, it suffices to show

|µ2| � |d2|.

We now prove for the cases where P is non-singular and singular, separately. Consider

the first case. Since 1/dk and 1/µK are the largest eigenvalue of G−1/2P−1/2G−1/2 and P−1

in magnitude, respectively, and ‖G‖ ≤ C and ‖G−1‖ ≤ C, it is seen that |µK | � |dK |. To

show the claim, it sufficient to show that for any m ≥ 2, if |µk| � |dk| for k = m+ 1, . . . ,K,

then |µm| � |dm|.

We now fix m ≥ 2, and assume |µk| � |dk| for k = m + 1, . . . ,K. The goal is to show

|µm| � |dm|. By symmetry, it is sufficient to show that

|dm| ≤ C|µm|. (2.D.86)

Let P = V diag(d1, d2, . . . , dK)V ′ be the SVD of P , where V ∈ RK,K is orthonormal, and

let Vm be the sub-matrix of V consisting the first m columns of V . Introduce

P̃m = VmDmV
′
m, where Dm = diag(d1, d2, . . . , dm).

Let µ∗1, µ
∗
2, . . . , µ

∗
m and d∗1, d

∗
2, . . . , d

∗
m be the first m eigenvalues of P̃m and G1/2PmG

1/2,

respectively, arranged in the descending order in magnitude. Since ‖G‖ ≤ C, we have

‖P − Pm‖ ≤ C|µm+1|, ‖G1/2(P − Pm)G1/2‖ ≤ C|µm+1|.
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By Theorem (Bai and Silverstein, 2010, Theorem A.46),

|µm − µ∗m| ≤ C‖P − Pm‖ ≤ |λm+1|, (2.D.87)

and

|dm − d∗m| ≤ ‖G1/2(P − Pm)G1/2‖ ≤ C|µm+1|. (2.D.88)

and At the same time, note that the nonzero eigenvalues of G1/2PmG
1/2 are the same as the

nonzero eigenvalues ofDmV
′
mGVm, and also the same as those of (V ′mGVm)1/2Dm(V ′mGVm)1/2.

Since ‖G‖ ≤ C and ‖G−1‖ ≤ C, it is seen ‖V ′mGVm‖ ≤ C and ‖V ′mGVm)−1‖ ≤ C. Therefore,

by similar arguments,

|µ∗m| � |d∗m|. (2.D.89)

Combining (2.D.87), (2.D.88), and (2.D.89) gives

|µm| ≤ |µ∗m|+ |µm − µ∗m| ≤ C(|d∗m|+ |dm+1|)
≤C[(|dm|+ |dm − d∗m|) + |dm+1|] ≤ C|dm|.

This proves (2.D.86) and the claim follows.

We now consider the case where P is singular, say, rank(P ) = r < K, and the nonzero

eigenvalues are µ1, µ2, . . . , µr. Let P = UDU ′ be the SVD, where U ∈ Rn,r and D =

diag(µ1, µ2, . . . , µr). By similar argument, the nonzero eigenvalues of G1/2PG1/2 are the

same as (U ′GU)1/2D(U ′GU)1/2, where ‖U ′GU‖ ≤ C and ‖(U ′GU)−1‖ ≤ C. The remaining

part of the proof is similar so is omitted.

Consider the last claim. Let P̃ = ηη′, where η is the first eigenvector of P , scaled to

have a `2-norm of
√
µ1. Write

|Pij − 1| = |Pij − ηiηj |+ |ηiηj − 1|. (2.D.90)

Now, first, by definitions and elementary algebra, for 1 ≤ i, j ≤ K,

|Pij − ηiηj | ≤ |Pij − P̃ij | ≤ ‖P − P̃‖ ≤ µ2, (2.D.91)

where by the second claim, µ2 = o(1). Note that for 1 ≤ i, j ≤ K, Pii = 1 and Pij ≥ 0.

It is seen that |ηi| = 1 + o(1) and all ηi must have the positive sign. It follows |ηi − 1| =
(1 + ηi)

−1(1− η2
i ) ≤ µ2, and so

|1− ηiηj | ≤ |(1− ηi)(1− ηj)|+ |1− ηi|+ |1− ηj | ≤ Cµ2. (2.D.92)

Combining (2.D.90)-(2.D.92) gives the claim.

Proof of Lemma 13

Consider the first claim about
∑

i θiπi(k). Write X =
∑n

i=1 θi(πi(k)− hk). It is seen that

X is sum of independent mean-zero random variables, where θi|πi(k) − hk| ≤ Cθmax and∑n
i=1 Var(θi(πi(k)− hk)) ≤ C‖θ‖2. By Bernstein’s inequality, for any t > 0,

P(|X| > t) ≤ exp
(
− t2

C‖θ‖2 + Cθmaxt

)
.

It follows that, with probability 1− ‖θ‖−1
1 ,∣∣∣∑

i

θiπi(k)− hk‖θ‖1
∣∣∣ = |X| ≤ C‖θ‖

√
log(‖θ‖1) + Cθmax log(‖θ‖1).
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2. optimal adaptivity of signed-polygon statistics for network testing

Since ‖θ‖ → ∞, θmax → 0, and (‖θ‖2/‖θ‖1)
√

log(‖θ‖1)→ 0, the right hand side is o(‖θ‖1).

Combining it with the assumption of mink{hk} ≥ C, we have∑
i

θiπi(k) ≥ C‖θ‖1, with probability 1− ‖θ‖−1 = 1− o(1).

Additionally, since πi(k) ≤ 1,
∑

i θiπi(k) ≤ ‖θ‖1. Therefore, with probability 1− o(1), each∑
i θiπi(k) is at the order of ‖θ‖1. This proves the first claim.

Consider the second claim about G. Let yi = πi − h. We can write

‖θ‖2G =

n∑
i=1

θ2
i πiπ

′
i = ‖θ‖2(hh′) +

n∑
i=1

θ2
i yiy

′
i︸ ︷︷ ︸

≡Y

+

n∑
i=1

θ2
i hy

′
i︸ ︷︷ ︸

Z1

+

n∑
i=1

θ2
i yih

′

︸ ︷︷ ︸
≡Z2

.

Note that E[yiy
′
i] = Σ. Then, Y −‖θ‖2Σ =

∑
i θ

2
i (yiy

′
i−Σ) is sum of independent, mean-zero

random matrices, where θ2
i ‖yiy′i − Σ‖ ≤ Cθ2

i . Using the matrix Hoeffding inequality Tropp

(2012), P
(
‖Y − ‖θ‖2Σ‖ > t

)
≤ exp

(
− t2

C‖θ‖44

)
, for any t > 0. With t = ‖θ‖−1, we have∥∥Y − ‖θ‖2Σ

∥∥ ≤ C‖θ‖24√log(‖θ‖), with probability 1− ‖θ‖−1.

Similarly, we can apply matrix Hoeffding inequality to Z1 and Z2. It gives

‖Z1 + Z2‖ ≤ C‖θ‖24
√

log(‖θ‖), with probability 1− ‖θ‖−1.

Since ‖θ‖24 ≤ θmax‖θ‖ � ‖θ‖2, it follows that, with probability 1− o(1),∥∥Y + Z1 + Z2 − ‖θ‖2Σ
∥∥ = o(‖θ‖2).

At the same time, λmin(‖θ‖2Σ) = ‖θ‖2 · ‖Σ−1‖−1 ≥ C‖θ‖2. We thus have, with probability

1− o(1),

λmin(‖θ‖2G) ≥ λmin(Y + Z1 + Z2) ≥ λmin(‖θ‖2Σ)−
∥∥Y + Z1 + Z2 − ‖θ‖2Σ

∥∥ ≥ C‖θ‖2.
This guarantees ‖G−1‖ ≤ C.

Proof of Lemma 14

Let Q = P − 1K1′K , and introduce d ∈ RK such that D = diag(d). By Lemma 12,

‖Q‖ ≤ C|µ2|. With these notations,

DPD − 1K1′K = dd′ +DQD − 1K1′K . (2.D.93)

Using the same notations, the assumption DPDh̃D = 1K can be written as D(1K1′K +

Q)Dh̃D = 1K . It implies

1K = (d′h̃D)d+DQDh̃D. (2.D.94)

We multiply h̃′D on both sides and notice that 1′K h̃D = 1. It gives

(d′h̃D)2 = 1− h̃′DDQDh̃D. (2.D.95)

Combining (2.D.94)-(2.D.95) gives

dd′ − 1K1′K = [1− (d′h̃D)2]dd′ − (d′h̃D)(DQDh̃Dd+ dh̃DDQD)−DQDh̃Dh̃′DDQD

= (h̃′DDQDh̃D) · dd′ − (d′h̃D)(DQDh̃Dd+ dh̃DDQD)−DQDh̃Dh̃′DDQD.

Since ‖h̃D‖ ≤ C and ‖d‖ ≤ C, we immediately have

‖dd′ − 1K1′K‖ ≤ C‖Q‖ ≤ C|µ2|.

54



2.D. Lower bounds, Region of Impossibility

Plugging it into (2.D.93) gives

‖DPD − 1K1′K‖ ≤ C‖Q‖ ≤ C|µ2|.
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2. optimal adaptivity of signed-polygon statistics for network testing

2.E Properties of Signed Polygon statistics

We prove Table 3.3 and Theorem 2.4.3. Recall the following notations:

Ω̃ = Ω− (η∗)(η∗)′, where η∗ =
1
√
v0

Ω1n, v0 = 1′nΩ1n;

δij = ηi(ηj − η̃j) + ηj(ηi − η̃i), where η =
1√
v

(EA)1n, η̃ =
1√
v
A1n, v = 1′n(EA)1n;

rij = (η∗i η
∗
j − ηiηj)− (ηi − η̃i)(ηj − η̃j) + (1− v

V
)η̃iη̃j , where V = 1′nA1n.

Then, the Ideal SgnQ statistic equals to

Q̃n =
∑

i,j,k,`(dist)

(Ω̃ij +Wij)(Ω̃jk +Wjk)(Ω̃k` +Wk`)(Ω̃`i +W`i),

the Proxy SgnQ statistic equals to

Q∗n =
∑

i,j,k,`(dist)

(Ω̃ij +Wij + δij)(Ω̃jk +Wjk + δjk)(Ω̃k` +Wk` + δk`)(Ω̃`i +W`i + δ`i),

and the SgnQ statistic equals to

Qn =
∑

i,j,k,`(dist)

(Ω̃ij+Wij+δij+rij)(Ω̃jk+Wjk+δjk+rjk)(Ω̃k`+Wk`+δk`+rk`)(Ω̃`i+W`i+δ`i+r`i).

As explained in Section 2.4, each of Q̃n, Q
∗
n, Qn is the sum of a finite number of post-

expansion sums, each having the form∑
i,j,k,`(dist)

aijbjkck`d`i, (2.E.96)

where aij equals to one of {Ω̃ij ,Wij , δij , rij}; same for bij , cij and dij . Let N
Ω̃

be the

(common) number of Ω̃ terms in each product; similarly, we define NW , Nδ, Nr. These

numbers satisfy N
Ω̃

+ NW + Nδ + Nr = 4. For example, for the post-expansion sum∑
i,j,k,`(dist) Ω̃ijWjkWk`W`i, (N

Ω̃
, NW , Nδ, Nr) = (1, 3, 0, 0). In Section 2.E.1, we study Q̃n,

and it involves these post-expansion sums such that

Nδ = Nr = 0,

In Section 2.E.2, we study (Q∗n − Q̃n), which involves post-expansion sums such that

Nδ > 0, and Nr = 0,

In Section 2.E.3, we study (Qn −Q∗n), which is related to the sums such that

Nr > 0.

2.E.1 Analysis of Table 3.2, proof of Theorem 2.4.1

Define

X1 =
∑

i,j,k,`(dist)

WijWjkWk`W`i, X2 =
∑

i,j,k,`(dist)

Ω̃ijWjkWk`W`i,

X3 =
∑

i,j,k,`(dist)

Ω̃ijΩ̃jkWk`W`i, X4 =
∑

i,j,k,`(dist)

Ω̃ijWjkΩ̃k`W`i,

X5 =
∑

i,j,k,`(dist)

Ω̃ijΩ̃jkΩ̃k`W`i, X6 =
∑

i,j,k,`(dist)

Ω̃ijΩ̃jkΩ̃k`Ω̃`i.
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We first consider the null hypothesis. Since Ω̃ is a zero matrix, it is not hard to see that

Q̃n = X1.

The following lemmas are proved in Section 2.E.4.

Lemma 15. Suppose the conditions of Theorem 2.4.1 hold. Under the null hypothesis, as

n→∞, E[Q̃n] = 0 and Var(Q̃n) = 8‖θ‖8 · [1 + o(1)].

Lemma 16. Suppose the conditions of Theorem 2.4.1 hold. Under the null hypothesis, as

n→∞,

Q̃n − E[Q̃n]√
Var(Q̃n)

−→ N(0, 1), in law.

We then consider the alternative hypothesis. By elementary algebra,

Q̃n = X1 + 4X2 + 4X3 + 2X4 + 4X5 +X6.

The following lemma characterizes the asymptotic mean and variance of X1-X6 under the

alternative hypothesis. It gives rise to Columns 5-6 of Table 3.2.

Lemma 17 (Table 3.2). Suppose conditions of Theorem 2.4.1 hold. Write α = |λ2|/λ1.

Under the alternative hypothesis, as n→∞,

• E[Xk] = 0 for 1 ≤ k ≤ 5, and E[X6] = tr(Ω̃4) · [1 + o(1)].

• C−1‖θ‖8 ≤ Var(X1) ≤ C‖θ‖8.

• Var(X2) ≤ Cα2‖θ‖4‖θ‖63 = o(‖θ‖8).

• Var(X3) ≤ Cα4‖θ‖6‖θ‖63 = o(α6‖θ‖8‖θ‖63).

• Var(X4) ≤ Cα4‖θ‖12
3 = o(‖θ‖8).

• Var(X5) ≤ Cα6‖θ‖8‖θ‖63.

As a result, E[Q̃n] ∼ tr(Ω̃4) and Var(Q̃n) ≤ C(‖θ‖8 + α6‖θ‖8‖θ‖63).

Theorem 2.4.1 follows directly from Lemmas 15-17.

2.E.2 Analysis of Table 3.3, proof of Theorem 2.4.2

We introduce Ua, Ub and Uc such that

Q∗n − Q̃n = Ua + Ub + Uc,

where Ua, Ub and Uc contain post-expansion sums (2.E.96) with Nδ = 1, Nδ = 2, and Nδ ≥ 3,

respectively.

First, we consider the post-expansion sums with Nδ = 1. Define

Ua = 4Y1 + 8Y2 + 4Y3 + 8Y4 + 4Y5 + 4Y6, (2.E.97)
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where

Y1 =
∑

i,j,k,`(dist)

δijWjkWk`W`i, Y2 =
∑

i,j,k,`(dist)

δijΩ̃jkWk`W`i,

Y3 =
∑

i,j,k,`(dist)

δijWjkΩ̃k`W`i, Y4 =
∑

i,j,k,`(dist)

δijΩ̃jkΩ̃k`W`i,

Y5 =
∑

i,j,k,`(dist)

δijΩ̃jkWk`Ω̃`i, Y6 =
∑

i,j,k,`(dist)

δijΩ̃jkΩ̃k`Ω̃`i.

Under the null hypothesis, only Y1 is nonzero, and

Ua = 4Y1.

Lemma 18. Suppose the conditions of Theorem 2.4.1 hold. Under the null hypothesis, as

n→∞, E[Ua] = 0 and Var(Ua) ≤ C‖θ‖2‖θ‖63 = o(‖θ‖8).

Under the alternative hypothesis, the following lemma characterizes the asymptotic

means and variances of Y1-Y6. It gives rise to Rows 1-6 of Table 3.3 and is proved in

Section 2.E.4.

Lemma 19 (Table 3.3, Rows 1-6). Suppose the conditions of Theorem 2.4.1 hold. Let

α = |λ2|/λ1. Under the alternative hypothesis, as n→∞,

• E[Yk] = 0 for k ∈ {1, 2, 3, 5, 6}, and |E[Y4]| ≤ Cα2‖θ‖6 = o(α4‖θ‖8).

• Var(Y1) ≤ C‖θ‖2‖θ‖63 = o(‖θ‖8).

• Var(Y2) ≤ Cα2‖θ‖4‖θ‖63 = o(‖θ‖8).

• Var(Y3) ≤ Cα2‖θ‖4‖θ‖63 = o(‖θ‖8).

• Var(Y4) ≤ Cα4‖θ‖10‖θ‖33
‖θ‖1 = o(α6‖θ‖8‖θ‖63).

• Var(Y5) ≤ Cα4‖θ‖4‖θ‖93
‖θ‖1 = o(‖θ‖8).

• Var(Y6) ≤ Cα6‖θ‖12‖θ‖33
‖θ‖1 = O(α6‖θ‖8‖θ‖63).

As a result, E[Ua] = o(α4‖θ‖8) and Var(Ua) ≤ Cα6‖θ‖8‖θ‖63 + o(‖θ‖8).

Next, we consider the post-expansion sums with Nδ = 2. Define

Ub = 4Z1 + 2Z2 + 8Z3 + 4Z4 + 4Z5 + 2Z6, (2.E.98)

where

Z1 =
∑

i,j,k,`(dist)

δijδjkWk`W`i, Z2 =
∑

i,j,k,`(dist)

δijWjkδk`W`i,

Z3 =
∑

i,j,k,`(dist)

δijδjkΩ̃k`W`i, Z4 =
∑

i,j,k,`(dist)

δijΩ̃jkδk`W`i,

Z5 =
∑

i,j,k,`(dist)

δijδjkΩ̃k`Ω̃`i, Z6 =
∑

i,j,k,`(dist)

δijΩ̃jkδk`Ω̃`i.
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Under the null hypothesis, only Z1 and Z2 are nonzero, and

Ub = 4Z1 + 2Z2.

Lemma 20. Suppose the conditions of Theorem 2.4.1 hold. Under the null hypothesis, as

n→∞,

• E[Z1] = ‖θ‖4 · [1 + o(1)], and Var(Z1) ≤ C‖θ‖2‖θ‖63 = o(‖θ‖8).

• E[Z2] = 2‖θ‖4 · [1 + o(1)], and Var(Z2) ≤ C‖θ‖6‖θ‖33
‖θ‖1 = o(‖θ‖8).

As a result, E[Ub] ∼ 8‖θ‖4 and Var(Ub) = o(‖θ‖8).

Under the alternative hypothesis, the following lemma provides the asymptotic means

and variances of Z1-Z6. It gives rise to Rows 7-12 of Table 3.3:

Lemma 21 (Table 3.3, Rows 7-12). Suppose conditions of Theorem 2.4.1 hold. Write

α = |λ2|/λ1. Under the alternative hypothesis, as n→∞,

• |E[Z1]| ≤ C‖θ‖4 = o(α4‖θ‖8), and Var(Z1) ≤ C‖θ‖2‖θ‖63 = o(‖θ‖8).

• |E[Z2]| ≤ C‖θ‖4 = o(α4‖θ‖8), and Var(Z2) ≤ C‖θ‖6‖θ‖33
‖θ‖1 = o(‖θ‖8).

• EZ3 = 0, and Var(Z3) ≤ Cα2‖θ‖4‖θ‖63 = o(‖θ‖8).

• |E[Z4]| ≤ Cα‖θ‖4 = o(α4‖θ‖8), and Var(Z4) ≤ Cα2‖θ‖8‖θ‖33
‖θ‖1 = o(‖θ‖8).

• |E[Z5]| ≤ Cα2‖θ‖6 = o(α4‖θ‖8), and Var(Z5) ≤ Cα4‖θ‖14

‖θ‖21
= o(α6‖θ‖8‖θ‖63).

• |E[Z6]| ≤ Cα2‖θ‖8
‖θ‖21

= o(α4‖θ‖8), and Var(Z6) ≤ Cα4‖θ‖8‖θ‖63
‖θ‖21

= o(‖θ‖8).

As a result, E[Ub] = o(α4‖θ‖8) and Var(Ub) = o(‖θ‖8 + α6‖θ‖8‖θ‖63).

Last, we consider the post-expansion sums with Nδ ≥ 3. Define

Uc = 4T1 + 4T2 + F, (2.E.99)

where

T1 =
∑

i,j,k,`(dist)

δijδjkδk`W`i, T2 =
∑

i,j,k,`(dist)

δijδjkδk`Ω̃`i,

F =
∑

i,j,k,`(dist)

δijδjkδk`δ`i.

Under the null hypothesis, only T1 and F are nonzero, and

Ub = 4T1 + F.

Lemma 22. Suppose the conditions of Theorem 2.4.1 hold. Under the null hypothesis, as

n→∞,
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• E[T1] = −2‖θ‖4 · [1 + o(1)], and Var(T1) ≤ C‖θ‖6‖θ‖33
‖θ‖1 = o(‖θ‖8).

• |E[F ]| = 2‖θ‖4 · [1 + o(1)], and Var(F ) ≤ C‖θ‖10

‖θ‖21
= o(‖θ‖8).

As a result, E[Uc] ∼ −6‖θ‖4 and Var(Uc) = o(‖θ‖8).

Under the alternative hypothesis, the next lemma studies the asymptotic means and

variances of T1, T2 and F . It gives rise to Rows 13-15 of Table 3.3:

Lemma 23 (Table 3.3, Rows 13-15). Suppose conditions of Theorem 2.4.1 hold. Write

α = |λ2|/λ1. Under the alternative hypothesis, as n→∞,

• |E[T1]| ≤ C‖θ‖4 = o(α4‖θ‖8), and Var(T1) ≤ C‖θ‖6‖θ‖33
‖θ‖1 = o(‖θ‖8).

• |E[T2]| ≤ Cα‖θ‖6
‖θ‖31

= o(α4‖θ‖8), and Var(T2) ≤ Cα2‖θ‖8‖θ‖33
‖θ‖1 = o(‖θ‖8).

• |E[F ]| ≤ C‖θ‖4 = o(α4‖θ‖8), and Var(F ) ≤ C‖θ‖10

‖θ‖21
= o(‖θ‖8).

As a result, E|Uc| = o(α4‖θ‖8) and Var(Uc) = o(‖θ‖8).

We now prove Theorem 2.4.2. Since Q∗n − Q̃n = Ua + Ub + Uc, we have

E[Q∗n − Q̃n] = E[Ua] + E[Ub] + E[Uc],

Var(Q∗n − Q̃n) ≤ 3Var(Ua) + 3Var(Ub) + 3Var(Uc).

Consider the null hypothesis. By Lemmas 18, 20, 22,

E[Q∗n − Q̃n] = 0 + 8‖θ‖4 − 6‖θ‖4 + o(‖θ‖4) ∼ 2‖θ‖4,
and

Var(Q∗n − Q̃n) ≤ C‖θ‖2‖θ‖63 +
C‖θ‖6‖θ‖33
‖θ‖1

+
C‖θ‖10

‖θ‖21
.

Using the universal inequality ‖θ‖4 ≤ ‖θ‖1‖θ‖33, we further have

Var(Q∗n − Q̃n) ≤ C‖θ‖2‖θ‖63 = o(‖θ‖8),

where ‖θ‖33 = o(‖θ‖2) and ‖θ‖ → ∞ in our range of interest. This proves claims for the null

hypothesis. Consider the alternative hypothesis. By Lemmas 19, 21, 23,∣∣E[Q∗n − Q̃n]
∣∣ ≤ Cα2‖θ‖6,

where the main contributors are Y4 and Z5. Since α‖θ‖ → ∞ in our range of interest, the

above is o(α4‖θ‖8). By Lemmas 19, 21, 23,

Var(Q∗n − Q̃n) ≤ Cα6‖θ‖12‖θ‖33
‖θ‖1

,

where the main contributor is Y6. Using the universal inequality of ‖θ‖4 ≤ ‖θ‖1‖θ‖33, the

above is O(α6‖θ‖8‖θ‖63). This proves claims for the alternative hypothesis.
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2.E.3 Analysis of (Qn −Q∗n), proof of Theorem 2.4.3

By definition, (Qn −Q∗n) expands to the sum of 175 post-expansion sums, where each has

the form (2.E.96) and satisfies Nr > 0. Recall that

rij = (η∗i η
∗
j − ηiηj)− (ηi − η̃i)(ηj − η̃j) + (1− v

V
)η̃iη̃j .

Since δij = ηi(ηj − η̃j) + ηj(ηi − η̃i), we have η̃iη̃j = ηiηj − δij + (η̃i − ηi)(η̃j − ηj). Inserting

it into the definition of rij gives

rij = (η∗i η
∗
j − ηiηj) + (1− v

V
)ηiηj − (1− v

V
)δij −

v

V
(η̃i − ηi)(η̃j − ηj). (2.E.100)

Define

r̃ij = − v
V

(η̃i − ηi)(η̃j − ηj), εij = (η∗i η
∗
j − ηiηj) + (1− v

V
)ηiηj − (1− v

V
)δij .

Then, we can write

rij = r̃ij + εij . (2.E.101)

Using this notation, we re-write

Qn =
∑

i,j,k,`(dist)

MijMjkMk`M`i, where Mij = Ω̃ij +Wij + δij + r̃ij + εij ,

and

Q∗n =
∑

i,j,k,`(dist)

M∗ijM
∗
jkM

∗
k`M

∗
`i, where M∗ij ≡ Ω̃ij +Wij + δij .

We then introduce an intermediate variable:

Q̃∗n =
∑

i,j,k,`(dist)

M̃∗ijM̃
∗
jkM̃

∗
k`M̃

∗
`i, where M̃∗ij = Ω̃ij +Wij + δij + r̃ij . (2.E.102)

As a result, (Qn −Q∗n) decomposes into

Qn −Q∗n = (Q̃∗n −Q∗n) + (Qn − Q̃∗n). (2.E.103)

We note that Qn can be expanded to the sum of 54 = 625 post-expansion sums, each

with the form ∑
i,j,k,`(dist)

aijbjkck`d`i,

where each of aij , bij , cij , dij takes values in {Ω̃ij ,Wij , δij , r̃ij , εij}. Let N
Ω̃

be the (common)

number of Ω̃ terms in each product and define NW , Nδ, Nr̃, Nε similarly. Among the 625

post-expansion sums,

• 34 = 81 of them are contained in Q∗n,

• 44 − 34 = 175 of them are contained in (Q̃∗n −Q∗n),

• and 54 − 44 = 369 of them are contained in (Qn − Q̃∗n).

We shall study (Q̃∗n −Q∗n) and (Qn − Q̃∗n), separately.

In our analysis, one challenge is to deal with the random variable V that appears in

the denominator in the expression of rij . The following lemma is useful and proved in

Section 2.E.4.
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2. optimal adaptivity of signed-polygon statistics for network testing

Lemma 24. Suppose conditions of Theorem 2.4.3 hold. As n→∞, for any sequence xn
such that

√
log(‖θ‖1)� xn � ‖θ‖1,

E
[
(Q̃n −Qn)2 · I{|V − v| > ‖θ‖1xn}

]
→ 0.

The next two lemmas are proved in Section 2.E.4.

Lemma 25. Suppose conditions of Theorem 2.4.3 hold. Write α = |λ2|/λ1. As n→∞,

• Under the null hypothesis, |E[Q̃∗n −Q∗n]| = o(‖θ‖4) and Var(Q̃∗n −Q∗n) = o(‖θ‖8).

• Under the alternative hypothesis, |E[Q̃∗n − Q∗n]| = o(α4‖θ‖8) and Var(Q̃∗n − Q∗n) =

o(‖θ‖8 + α6‖θ‖8‖θ‖63).

Lemma 26. Suppose conditions of Theorem 2.4.3 hold. Write α = |λ2|/λ1. As n→∞,

• Under the null hypothesis, |E[Qn − Q̃∗n]| = o(‖θ‖4) and Var(Qn − Q̃∗n) = o(‖θ‖8).

• Under the alternative hypothesis, |E[Qn − Q̃∗n]| = o(α4‖θ‖8) and Var(Q̃∗n − Q∗n) =

O(‖θ‖8 + α6‖θ‖8‖θ‖63).

Theorem 2.4.3 follows directly from (2.E.103) and Lemmas 25-26.

2.E.4 Proof of Lemmas 15-26

Proof of Lemma 15

Under the null hypothesis,

Q̃n = X1 =
∑

i,j,k,`(dist)

WijWjkWk`W`i.

For mutually distinct indices (i, j, k, `), (Wij ,Wjk,Wk`,W`i) are independent of each other,

each with mean zero. So E[WijWjkWk`W`i] = 0. It follows that

E[Q̃n] = 0.

We now calculate the variance of Q̃n. Under the null hypothesis, Ωij = θiθj ; hence,

Var(Wij) = Ωij(1− Ωij) = θiθj − θ2
i θ

2
j = θiθj [1 +O(θ2

max)]. It follows that

Var(WijWjkWk`W`i) = θ2
i θ

2
j θ

2
kθ

2
` · [1 +O(θ2

max)]4

= θ2
i θ

2
j θ

2
kθ

2
` · [1 +O(θ2

max)]. (2.E.104)

Note that each (i, j, k, `) corresponds to a 4-cycle in a complete graph of n nodes. For

(i, j, k, `) and (i′, j′, k′, `′), we can write WijWjkWk`W`i ·Wi′j′Wj′k′Wk′`′W`′i′ in the form of∏
t(Witjt)

mt , where {Witjt} are mutually distinct with each other and mt is the number of

times that Witjt appears in this product. If the two 4-cycles corresponding to (i, j, k, `) and

(i′, j′, k′, `′) are not exactly overlapping, then at least two of mt equals to 1. As a result, the

mean of
∏
t(Witjt)

mt is zero. In other words, we have argued that

Cov(WijWjkWk`W`i, Wi′j′Wj′k′Wk′`′W`′i′) = 0 if the

two cycles corresponding to (i, j, k, `) and (i′, j′, k′, `′)

are not exactly overlapping.

(2.E.105)
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In the sum over all distinct (i, j, k, `), each 4-cycle is repeatedly counted by 8 times

(i, j, k, `), (j, k, `, i), (k, `, i, j), (`, i, j, k),

(`, k, j, i), (k, j, i, `), (j, i, `, k), (i, `, k, j).

It follows that

Var(Q̃n) = Var

(
8
∑

unique
4-cycles

WijWjkWk`W`i

)

= 64 ·Var

( ∑
unique
4-cycles

WijWjkWk`W`i

)

= 64
∑

unique
4-cycles

Var
(
WijWjkWk`W`i

)
= 8

∑
i,j,k,`(dist)

Var
(
WijWjkWk`W`i

)
= [1 +O(θ2

max)] · 8
∑

i,j,k,`(dist)

θ2
i θ

2
j θ

2
kθ

2
` , (2.E.106)

where the third line is from (2.E.105) and the last line is from (2.E.104). We then compute

the right hand side of (2.E.106). Note that∑
i,j,k,`(dist)

θ2
i θ

2
j θ

2
kθ

2
` = ‖θ‖8 −

∑
i,j,k,`(not dist)

θ2
i θ

2
j θ

2
kθ

2
` ,

where ∑
i,j,k,`(not dist)

θ2
i θ

2
j θ

2
kθ

2
` ≤

(
4

2

)∑
i,j,k

θ2
i θ

2
j θ

4
k ≤ C‖θ‖4‖θ‖44 = ‖θ‖8 ·O

(‖θ‖44
‖θ‖4

)
.

Combining the above gives∑
i,j,k,`(dist)

θ2
i θ

2
j θ

2
kθ

2
` = ‖θ‖8 ·

[
1 +O

(‖θ‖44
‖θ‖4

)]
. (2.E.107)

We combine (2.E.106)-(2.E.107) and note that θmax = o(1) and ‖θ‖44/‖θ‖4 ≤ (‖θ‖2θ2
max)/‖θ‖4 =

o(1). So,

Var(Q̃n) = 8‖θ‖8 · [1 + o(1)].

This completes the proof.

Proof of Lemma 16

Under the null hypothesis,

Q̃n = X1 =
∑

i,j,k,`(dist)

WijWjkWk`W`i.

In the proof of Theorem 3.2 of Jin et al. (2018), it has been shown that X1/
√

Var(X1)→
N(0, 1) in law (in the proof there, X1/

√
Var(X1) is denoted as Sn,n). Since E[X1] = 0, we

can directly quote their results to get the desired claim.
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Proof of Lemma 17

We shall study the mean and variance of each of X1-X6 and then combine those results.

ConsiderX1. We have analyzed this term under the null hypothesis. Under the alternative

hypothesis, the difference is that we no longer have Ωij = θiθj . Instead, we have an upper

bound Ωij = θiθj(π
′
iPπj) ≤ Cθiθj . Using similar proof as that for the null hypothesis, we

can derive that

E[X1] = 0, Var(X1) ≤ C‖θ‖8. (2.E.108)

To get a lower bound for Var(X1), we notice that Var(Wij) = Ωij(1 − Ωij) ≥ Ωij [1 −
O(θ2

max)] ≥ Ωij/2; this inequality is true even when Ωij = 0. It follows that

Var(WijWjkWk`W`i) ≥
1

16
ΩijΩjkΩk`Ω`i.

Note that the second last line of (2.E.106) is still true. As a result,

Var(X1) = 8
∑

i,j,k,`(dist)

Var
(
WijWjkWk`W`i

)
≥ 1

2

∑
i,j,k,`(dist)

ΩijΩjkΩk`Ω`i

=
1

2
tr(Ω4)− 1

2

∑
i,j,k,`(not dist)

ΩijΩjkΩk`Ω`i

≥ 1

2
tr(Ω4)− C

∑
i,j,k,`(not dist)

θ2
i θ

2
j θ

2
kθ

2
`

≥ 1

2
tr(Ω4)− o(‖θ‖8),

where the last inequality is due to (2.E.107). Recall that λ1, . . . , λK denote the K nonzero

eigenvalues of Ω. By Lemma 6, λ1 ≥ C−1‖θ‖2. It follows that

tr(Ω4) =
K∑
k=1

λ4
k ≥ λ4

1 ≥ C−1‖θ‖8.

Combining the above gives

Var(X1) ≥ C−1‖θ‖8. (2.E.109)

So far, we have proved all claims about X1.

Consider X2. Recall that

X2 =
∑

i,j,k,`(dist)

Ω̃ijWjkWk`W`i.

It is easy to see that E[X2] = 0. Below, we bound its variance. Each index choice (i, j, k, `)

defines a undirected path j-k-`-i in the complete graph of n nodes. If the two paths j-k-`-i

and j′-k′-`′-i′ are not exactly overlapping, then WjkWk`W`i · Wj′k′Wk′`′W`′i′ have mean

zero. In the sum above, each unique path j-k-`-i is counted twice as (i, j, k, `) and (j, i, `, k).
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Mimicking the argument in (2.E.106), we immediately have

Var(X2) = 2
∑

i,j,k,`(dist)

Var
(
Ω̃ijWjkWk`W`i

)
= 2

∑
i,j,k,`(dist)

Ω̃2
ij ·Var

(
WjkWk`W`i

)
.

By Lemma 9, |Ω̃ij | ≤ |λ2|‖θ‖−2θiθj . In our notations, α = |λ2|/λ1; additionally, by Lemma 6,

λ1 ≤ C‖θ‖2. Combining them gives

|Ω̃ij | ≤ Cαθiθj . (2.E.110)

Moreover, Var(WjkWk`W`i) ≤ ΩjkΩk`Ω`i ≤ Cθjθ2
kθ

2
` θi. It follows that

Var(X2) ≤ C
∑

i,j,k,`(dist)

(αθiθj)
2 · θjθ2

kθ
2
` θi

≤ Cα2
∑
i,j,k,`

θ3
i θ

3
j θ

2
kθ

2
`

≤ Cα2‖θ‖4‖θ‖63.
Since ‖θ‖33 ≤ θmax

∑
i θ

2
i = θmax‖θ‖2, the right hand side is ≤ Cα2‖θ‖8θ2

max. Note that

α ≤ 1 and θmax → 0. So, this term is o(‖θ‖8). We have proved all claims about X2.

Consider X3. Recall that

X3 =
∑

i,j,k,`(dist)

Ω̃ijΩ̃jkWk`W`i =
∑

i,k,`(dist)

( ∑
j /∈{i,k,`}

Ω̃ijΩ̃jk

)
Wk`W`i.

It is easy to see that E[X3] = 0. We then study its variance. We note that for Wk`W`i and

Wk′`′W`′i′ to be correlated, we must have that (k′, `′, i′) = (k, `, i) or (k′, `′, i′) = (i, `, k); in

other words, the two underlying paths k-`-i and k′-`′-i′ have to be equal. Mimicking the

argument in (2.E.106), we have

Var(X3) ≤ C
∑

i,k,`(dist)

Var
[( ∑

j /∈{i,k,`}

Ω̃ijΩ̃jk

)
Wk`W`i

]
≤ C

∑
i,k,`(dist)

( ∑
j /∈{i,k,`}

Ω̃ijΩ̃jk

)2
·Var(Wk`W`i).

By (2.E.110),

∣∣∣ ∑
j /∈{i,k,`}

Ω̃ijΩ̃jk

∣∣∣ ≤ C∑
j

α2θiθ
2
j θk ≤ Cα2‖θ‖2 · θiθk.

Combining the above gives

Var(X3) ≤ C
∑
i,k,`

(α2‖θ‖2θiθk)2 · θkθ2
` θi

≤ Cα4‖θ‖4
∑
i,k,`

θ3
i θ

3
kθ

2
`

≤ Cα4‖θ‖6‖θ‖63.
Since ‖θ‖ → ∞, the right hand side is o(α4‖θ‖8‖θ‖63). We have proved all claims about X3.
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Consider X4. Recall that

X4 =
∑

i,j,k,`(dist)

Ω̃ijWjkΩ̃k`W`i =
∑

i,j,k,`(dist)

Ω̃ijΩ̃k`WjkW`i.

It is easy to see that E[X4] = 0. To calculate its variance, note that WjkW`i and Wj′k′W`′i′

are uncorrelated unless (i) {j′, k′} = {j, k} and {`′, i′} = {`, i} or (ii) {j′, k′} = {`, i} and

{`′, i′} = {j, k}. Mimicking the argument in (2.E.106), we immediately have

Var(X4) ≤ C
∑

i,j,k,`(dist)

Var
(
Ω̃ijΩ̃k`WjkW`i

)
≤ C

∑
i,j,k,`(dist)

Ω̃2
ijΩ̃

2
k` ·Var(WjkW`i)

≤ C
∑
i,j,k,`

(αθiθj)
2(αθkθ`)

2 · θjθkθ`θi

≤ Cα4
∑
i,j,k,`

θ3
i θ

3
j θ

3
kθ

3
`

≤ Cα4‖θ‖12
3 .

Since ‖θ‖33 ≤ θmax‖θ‖2 = o(‖θ‖2), the right hand side is o(‖θ‖8). This proves the claims of

X4.

Consider X5. Recall that

X5 =
∑

i,j,k,`(dist)

Ω̃ijΩ̃jkΩ̃k`W`i = 2
∑
i<`

( ∑
j,k/∈{i,`}
j 6=k

Ω̃ijΩ̃jkΩ̃k`

)
W`i.

It is easily seen that E[X5] = 0. Furthermore, we have

Var(X5) = 2
∑
i<`

( ∑
j,k/∈{i,`}
j 6=k

Ω̃ijΩ̃jkΩ̃k`

)2
·Var(W`i). (2.E.111)

By (2.E.110), ∣∣∣ ∑
j,k/∈{i,`}
j 6=k

Ω̃ijΩ̃jkΩ̃k`

∣∣∣ ≤ C∑
j,k

α3θiθ
2
j θ

2
kθ` ≤ Cα3‖θ‖4 · θiθ`

We plug it into (2.E.111) and use Var(W`i) ≤ Ω`i ≤ Cθ`θi. It yields that

Var(X5) ≤ C
∑

`,i(dist)

(α3‖θ‖4θiθ`)2 · θ`θi

≤ Cα6‖θ‖8
∑
`,i

θ3
i θ

3
`

≤ Cα6‖θ‖8‖θ‖63. (2.E.112)

This proves the claims of X5.

Consider X6. Recall that

X6 =
∑

i,j,k,`(dist)

Ω̃ijΩ̃jkΩ̃k`Ω̃`i = tr(Ω̃4)−
∑

i,j,k,`(not dist)

Ω̃ijΩ̃jkΩ̃k`Ω̃`i.

This is a non-stochastic number, so its variance is zero and its mean is X6 itself. By

Lemma 9, |λ2| ≤ ‖Ω̃‖ ≤ C|λ2|. Since ‖Ω̃‖4 ≤ tr(Ω̃4) ≤ K‖Ω̃‖4, we immediately have
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tr(Ω̃4) � ‖Ω̃‖4 � |λ2|4. Additionally, |λ2| = αλ1 in our notation, and λ1 � ‖θ‖2 by Lemma 6.

It follows that

tr(Ω̃4) � |λ2|4 � α4‖θ‖8.

At the same time, by (2.E.110), |Ω̃ijΩ̃jkΩ̃k`Ω̃`i| ≤ Cα4θ2
i θ

2
j θ

2
kθ

2
` . We thus have

|X6 − tr(Ω̃4)| ≤ Cα4
∑

i,j,k,`(not dist)

θ2
i θ

2
j θ

2
kθ

2
`

≤ Cα4
∑
i,j,k

θ2
i θ

2
j θ

4
k

≤ Cα4‖θ‖4‖θ‖44 = o(α4‖θ‖8),

where the last equality is due to ‖θ‖44 ≤ θ2
max‖θ‖2 = o(‖θ‖4). Combining the above gives

X6 = tr(Ω̃4) · [1 + o(1)].

This proves the claims of X6.

Last, we combine the results for X1-X6 to study Q̃n. Note that

Q̃n = X1 + 4X2 + 4X3 + 2X4 + 4X5 +X6.

Only X6 has a nonzero mean. So,

E[Q̃n] = E[X6] = tr(Ω̃4) · [1 + o(1)].

At the same time, given random variables Z1, Z2, . . . , Zm, Var(
∑m

k=1 Zk) =
∑

k Var(Zk) +∑
k 6=` Cov(Zk, Z`) ≤

∑
k Var(Zk) +

∑
k 6=`
√

Var(Zk)Var(Z`) ≤ m2 maxk{Var(Zk)}. We thus

have

Var(Q̃n) ≤ C max
1≤k≤6

Var(Xk) ≤ C
(
‖θ‖8 + α6‖θ‖8‖θ‖63

)
.

The proof of this lemma is now complete.

Proof of Lemma 18

Recall that Ua = 4Y1 = 4
∑

i,j,k,`(dist) δijWjkWk`W`i. By definition, δij = ηi(ηj− η̃j)+ηj(ηi−
η̃i). It follows that

Ua = 4
∑

i,j,k,`(dist)

ηi(ηj − η̃j)WjkWk`W`i + 4
∑

i,j,k,`(dist)

ηj(ηi − η̃i)WjkWk`W`i.

In the second sum, if we relabel (i, j, k, `) = (j′, i′, `′, k′), it becomes

4
∑

i′,j′,k′,`′(dist)

ηi′(ηj′ − η̃j′)Wi′`′W`′k′Wk′j′ = 4
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Wi`W`kWkj ,

which is the same as the first term. It follows that

Ua = 8
∑

i,j,k,`(dist)

ηi(ηj − η̃j)WjkWk`W`i.

By definition, ηj = 1√
v

∑
s 6=j EAjs and η̃j = 1√

v

∑
s 6=j Ajs. Hence,

η̃j − ηj =
1√
v

∑
s 6=j

Wjs. (2.E.113)
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We then re-write

Ua = −8
∑

i,j,k,`(dist)

ηi

( 1√
v

∑
s6=j

Wjs

)
WjkWk`W`i

= − 8√
v

∑
i,j,k,`(dist)

s 6=j

ηiWjsWjkWk`W`i.

In the summand, (i, j, k, `) are distinct, but s is only required to be distinct from j. We

consider two different cases: (a) the case of s = k, where the summand becomes W 2
jkWk`W`i,

and (b) the case of s 6= k. Correspondingly, we write

Ua = − 8√
v

∑
i,j,k,`(dist)

ηiW
2
jkWk`W`i −

8√
v

∑
i,j,k,`(dist)
s/∈{j,k}

ηiWjsWjkWk`W`i

≡ Ua1 + Ua2. (2.E.114)

It is easy to see that the summands in both sums have mean zero. Therefore,

E[Ua] = 0.

Next, we bound the variance of Ua. Since Var(Ua) ≤ 2Var(Ua1) + 2Var(Ua2), it suffices

to bound the variances of Ua1 and Ua2. Consider Ua1. Note that

Var(Ua1) =
64

v

∑
i,j,k,`(dist)

i′,j′,k′,`′(dist)

ηiηi′ · E[W 2
jkWk`W`iW

2
j′k′Wk′`′W`′i′ ]. (2.E.115)

By definition, v = 1′n(EA)1n = 1′nΩ1n −
∑

i Ωii. Since Ωii ≤ θ2
i , it implies v = 1′nΩ1n −

O(‖θ‖2) = 1′nΩ1n + o(‖θ‖21). Moreover, we note that 1′nΩ1n ≤ C
∑

i,j θiθj ≤ C‖θ‖21, and by

Lemma 8, 1′nΩ1n ≥ C−1‖θ‖21. Combining these results gives

C−1‖θ‖21 ≤ v ≤ C‖θ‖21. (2.E.116)

Moreover, ηi = 1√
v

∑
s 6=i Ωis ≤ C

‖θ‖1
∑

s θiθs. This gives

0 ≤ ηi ≤ Cθi, for all 1 ≤ i ≤ n. (2.E.117)

We plug (2.E.116)-(2.E.117) into (2.E.115) and find out that

Var(Ua1) ≤ C

‖θ‖21

∑
i,j,k,`(dist)

i′,j′,k′,`′(dist)

θiθi′ · E[W 2
jkWk`W`iW

2
j′k′Wk′`′W`′i′ ].

In order for the summand to be nonzero, all W terms have to be perfectly paired. By

elementary calculations,

θiθi′E[W 2
jkWk`W`iW

2
j′k′Wk′`′W`′i′ ] =


θ2
i E[W 2

jkW
2
k`W

2
`iW

2
j′k], if (`′, k′, i′)=(`, k, i);

θiθk E[W 2
jkW

2
k`W

2
`iW

2
j′i], if (`′, k′, i′)=(`, i, k);

θiθj E[W 3
jkW

2
k`W

3
`i], if (j′, k′)=(i, `), (i′, `′)=(j, k);

0, otherwise.

Here, (i, j, k, `) are distinct. In the second case above, (W 2
jk,W

2
k`,W

2
`i,W

2
j′i) are independent

of each other, no matter j = j′ or j 6= j′ (we remark that j′ 6= `, because j′ /∈ {i′, k′, `′} =

{i, k, `}). It follows that E[W 2
jkW

2
k`W

2
`iW

2
j′i] ≤ ΩjkΩk`Ω`iΩj′i ≤ Cθ2

i θjθ
2
kθ

2
` θj′ . In the first

case, when j 6= j′, E[W 2
jkW

2
k`W

2
`iW

2
j′k] ≤ ΩjkΩk`Ω`iΩj′k ≤ Cθiθjθ3

kθ
2
` θj′ ; when j = j′, it holds
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that E[W 2
jkW

2
k`W

2
`iW

2
j′k] = E[W 4

jkW
2
k`W

2
`i] ≤ Cθiθjθ

2
kθ

2
` . In the third case, (W 3

jk,W
2
k`,W

3
`i)

are mutually independent, so E[W 2
jkW

2
k`W

2
`i] ≤ ΩjkΩk`Ω`i ≤ Cθiθjθ2

kθ
2
` . We then have

θiθi′E[W 2
jkWk`W`iW

2
j′k′Wk′`′W`′i′ ] ≤



Cθ3
i θjθ

2
kθ

2
` , if (`′, k′, i′) = (`, k, i), j′ = j;

Cθ3
i θjθ

3
kθ

2
` θj′ , if (`′, k′, i′) = (`, k, i), j′ 6= j;

Cθ3
i θjθ

3
kθ

2
` θj′ , if (`′, k′, i′) = (`, i, k);

Cθ2
i θ

2
j θ

2
kθ

2
` , if (j′, k′)=(i, `), (i′, `′)=(j, k);

0, otherwise.

It follows that

Var(Ua1) ≤ C

‖θ‖21

(∑
i,j,k,`

θ3
i θjθ

2
kθ

2
` +

∑
i,j,k,`,j′

θ3
i θjθ

3
kθ

2
` θj′ +

∑
i,j,k,`

θ2
i θ

2
j θ

2
kθ

2
`

)
≤ C

‖θ‖21

(
‖θ‖4‖θ‖33‖θ‖1 + ‖θ‖2‖θ‖63‖θ‖21 + ‖θ‖8

)
≤ C‖θ‖2‖θ‖63, (2.E.118)

where we obtain the last inequality as follows: By Cauchy-Schwarz inequality, ‖θ‖4 =

(
∑

i θ
1/2
i · θ3/2)2 ≤ (

∑
i θi)(

∑
i θ

3
i ) ≤ ‖θ‖1‖θ‖33; therefore, ‖θ‖8 ≤ ‖θ‖4‖θ‖33‖θ‖1 ≤ ‖θ‖63‖θ‖21.

We then consider Ua2. Define

P∗5 =

{
path i-`-k-j-s in a complete : nodes i, j, k, ` are distinct,

graph with n nodes and node s is different from j, k

}
.

Fix a path i-`-k-j-s in P∗5 . If s /∈ {i, `}, then this path is counted twice in the definition of

Ua2, as i-`-k-j-s and s-j-k-`-i, respectively. If s ∈ {i, `}, then it is counted only once in the

definition of Ua2. Hence, we can re-write

Ua2 = − 8√
v

∑
path in P∗5
s/∈{i,`}

(ηi + ηs)WsjWjkWk`W`i −
8√
v

∑
path in P∗5
s∈{i,`}

ηiWsjWjkWk`W`i.

For two distinct paths in P∗5 , the corresponding summands are uncorrelated with each other.

It follows that

Var(Ua2) =
64

v

∑
path in P∗5
s/∈{i,`}

(ηi + ηs)
2 Var(WsjWjkWk`W`i)

+
64

v

∑
path in P∗5
s∈{i,`}

η2
i Var(WsjWjkWk`W`i)

≤ C

v

∑
i,j,k,`,s

(η2
i + η2

s) · θiθ2
j θ

2
kθ

2
` θs

≤ C

‖θ‖21

∑
i,j,k,`,s

(θ3
i θ

2
j θ

2
kθ

2
` θs + θiθ

2
j θ

2
kθ

2
` θ

3
s)

≤ C‖θ‖6‖θ‖33
‖θ‖1

. (2.E.119)

By Cauchy-Schwarz inequality, ‖θ‖4 ≤ ‖θ‖1‖θ‖33, so the right hand side of (2.E.119) is
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≤ C‖θ‖2‖θ‖63. Combining it with (2.E.118) gives

Var(Ua) ≤ C‖θ‖2‖θ‖63 = o(‖θ‖8).

This proves the claim.

Proof of Lemma 19

It suffices to prove the claims for each of Y1-Y6. Consider Y1. We have analyzed this term

under the null hypothesis. Using similar proof, we can easily derive that

E[Y1] = 0, Var(Y1) ≤ C‖θ‖2‖θ‖63 = o(‖θ‖8).

Consider Y2. Using the definition of Y2 and the expression of η̃i in (2.E.113), we have

Y2 =
∑

i,j,k,`(dist)

δijΩ̃jkWk`W`i

=
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jkWk`W`i +
∑

i,j,k,`(dist)

ηj(ηi − η̃i)Ω̃jkWk`W`i

=
1√
v

∑
i,j,k,`(dist)

ηi

(
−
∑
s 6=j

Wjs

)
Ω̃jkWk`W`i +

1√
v

∑
i,j,k,`(dist)

ηj

(
−
∑
s 6=i

Wis

)
Ω̃jkWk`W`i

= − 1√
v

∑
i,j,k,`(dist)

s 6=j

ηiΩ̃jkWjsWk`W`i −
1√
v

∑
i,k,`(dist)

s 6=i

( ∑
j /∈{i,k,`}

ηjΩ̃jk

)
WisWk`W`i.

In the second sum above, we further separate two cases, s = ` and s 6= `. It then gives rise

to three terms:

Y2 = − 1√
v

∑
i,j,k,`(dist)

s6=j

ηiΩ̃jkWjsWk`W`i

− 1√
v

∑
i,k,`(dist)

( ∑
j /∈{i,k,`}

ηjΩ̃jk

)
W 2
i`Wk`

− 1√
v

∑
i,k,`(dist)
s/∈{i,`}

( ∑
j /∈{i,k,`}

ηjΩ̃jk

)
WisWk`W`i

≡ Y2a + Y2b + Y2c. (2.E.120)

Since (i, j, k, `) are distinct, it is easy to see that all three terms have mean zero. We thus

have

E[Y2] = 0.

Below, we calculate the variances. First, we bound the variance of Y2a. Each (i, j, k, `, s) is

associated with a length-3 path i-k-` and an edge j-s in the complete graph. For (i, j, k, `, s)

and (i′, j′, k′, `′, s′), if the associated path and edge are the same, then we group them

together. Given a length-3 path i-k-` and an edge j-s (such that the edge is not in the

path), they are counted four times in the definition of Y2a, as (i) i-k-` and j-s, (ii) i-k-` and

s-j, (iii) `-k-i and j-s, (iv) `-k-i and s-j, so we group these four summands together. After
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grouping the summands, we re-write

Y2a = − 1√
v

∑
length-3

path

∑
edge not

in the path

(
ηiΩ̃jk + ηiΩ̃sk + ηkΩ̃ji + ηkΩ̃si

)
WjsWk`W`i.

In this new expression of Y2a, two summands are correlated only when the underlying

path&edge pairs are exactly the same. Additionally, by (2.E.110) and (2.E.117),∣∣ηiΩ̃jk + ηiΩ̃sk + ηkΩ̃ji + ηkΩ̃si

∣∣ ≤ Cα(θj + θs)θiθk.

It follows that

Var(Y2a) ≤
C

v

∑
i,j,k,`,s

α2(θj + θs)
2θ2
i θ

2
k ·Var(WjsWk`W`i)

≤ C

‖θ‖21

∑
i,j,k,`,s

α2(θj + θs)
2θ2
i θ

2
k · θiθjθkθ2

` θs

≤ Cα2

‖θ‖21

∑
i,j,k,`,s

(θ3
i θ

3
j θ

3
kθ

2
` θs + θ3

i θjθ
3
kθ

2
` θ

3
s)

≤ Cα2‖θ‖2‖θ‖93
‖θ‖1

. (2.E.121)

Second, we bound the variance of Y2b. Write βik` =
∑

j /∈{i,k,`} ηjΩ̃jk. By (2.E.110) and

(2.E.117), |βik`| ≤ C
∑

j θj · αθjθk ≤ Cα‖θ‖2θk. Using this notation,

Y2b =
1

v

∑
i,j,k,`(dist)

βik`W
2
i`Wk`, where |βik`| ≤ Cα‖θ‖2θk.

It follows that

Var(Y2b) = E[Y 2
2b] ≤

C

v

∑
i,k,`(dist)
i′,k′,`′(dist)

βik`βi′k′`′ · E[W 2
i`Wk`W

2
i′`′Wk′`′ ]

≤ Cα2‖θ‖4

‖θ‖21

∑
i,k,`(dist)
i′,k′,`′(dist)

θkθk′ · E[W 2
i`Wk`W

2
i′`′Wk′`′ ].

The summand is nonzero only when the two variables Wk` and Wk′`′ equal to each other or

when each of them equals to some other squared variables. By elementary calculations,

θkθk′ · E[W 2
i`Wk`W

2
i′`′Wk′`′ ]

=



θ2
k E[W 4

i`W
2
k`] ≤ Cθiθ3

kθ
2
` , if (k′, `′) = (k, `), i′ = i;

θ2
k E[W 2

i`W
2
k`W

2
i′`] ≤ Cθiθ3

kθ
3
` θi′ , if (k′, `′) = (k, `), i′ 6= i;

θkθ` E[W 2
i`W

2
k`W

2
i′k] ≤ Cθiθ3

kθ
3
` θi′ , if (k′, `′) = (`, k);

θ2
k E[W 3

i`W
3
k`] ≤ Cθiθ3

kθ
2
` , if `′ = `, (i′, k′) = (i, k);

θkθi E[W 3
i`W

3
k`] ≤ Cθ2

i θ
2
kθ

2
` , if `′ = `, (i′, k′) = (k, i);

0, otherwise.
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As a result,

Var(Y2b) ≤
Cα2‖θ‖4

‖θ‖21

(∑
i,k,`

θiθ
3
kθ

2
` +

∑
i,k,`,i′

θiθ
3
kθ

3
` θi′ +

∑
i,k,`

θ2
i θ

2
kθ

2
`

)
≤ Cα2‖θ‖4

‖θ‖21

(
‖θ‖33‖θ‖2‖θ‖1 + ‖θ‖63‖θ‖21 + ‖θ‖6

)
≤ Cα2‖θ‖4‖θ‖63, (2.E.122)

where to get the last inequality we have used ‖θ‖6 � ‖θ‖8 ≤ (‖θ‖1‖θ‖33)2 and ‖θ‖33‖θ‖2‖θ‖1 �
‖θ‖33‖θ‖4‖θ‖1 ≤ (‖θ‖1‖θ‖33)2. Last, we bound the variance of Y2c. Let βik` =

∑
j /∈{i,k,`} ηjΩ̃jk

be the same as above. We write

Y2c =
1√
v

∑
i,k,`(dist)
s/∈{i,`}

βik`WisWk`W`i, where |βik`| ≤ Cα‖θ‖2θk.

For E[WisWk`W`i ·Wi′s′Wk′`′W`′i′ ] to be nonzero, it has to be the case that (Wis,Wk`,W`i)

and (Wi′s′ ,Wk′`′ ,W`′i′) are the same set of variables, up to an order permutation. For each

fixed (i, k, `, s), there are only a constant number of (i′, k′, `′, s′) such that the above is

satisfied. As we have argued many times before (e.g., see (2.E.106)), it is true that

Var(Y2c) ≤
C

v

∑
i,k,`(dist)
s/∈{i,`}

β2
ik` ·Var(WisWk`W`i)

≤ C

‖θ‖21

∑
i,k,`,s

(α‖θ‖2θk)2 · θ2
i θkθ

2
` θs

≤ Cα2‖θ‖8‖θ‖33
‖θ‖1

. (2.E.123)

We now combine the variances of Y2a-Y2c. Since ‖θ‖33 ≤ θ2
max‖θ‖1 � ‖θ‖1, the right hand

side is (2.E.121) is o(α2‖θ‖2‖θ‖63) = o(α2‖θ‖4‖θ‖63). Since ‖θ‖4 ≤ ‖θ‖1‖θ‖33, the right hand

side is (2.E.123) is ≤ Cα2‖θ‖4‖θ‖63. It follows that

Var(Y2) ≤ Cα2‖θ‖4‖θ‖63 = o(‖θ‖8).

This proves the claims of Y2.

Consider Y3. By definition,

Y3 =
∑

i,j,k,`(dist)

ηi(ηj − η̃j)WjkΩ̃k`W`i +
∑

i,j,k,`(dist)

ηj(ηi − η̃i)WjkΩ̃k`W`i.

In the second sum, if we relabel (i, j, k, `) = (j′, i′, `′, k′), it can be written as
∑

i′,j′,k′,`′(dist) ηi′(ηj′−
η̃j′)Wi′`′Ω̃`′k′Wk′j′ . This shows that the second sum is indeed equal to the first sum. As a
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result,

Y3 = 2
∑

i,j,k,`(dist)

ηi(ηj − η̃j)WjkΩ̃k`W`i

= 2
∑

i,j,k,`(dist)

ηi

(
− 1√

v

∑
s 6=j

Wjs

)
WjkΩ̃k`W`i

= − 2√
v

∑
i,j,k,`(dist)

s 6=j

ηiΩ̃k`WjsWjkW`i

= − 2√
v

∑
i,j,k,`(dist)

ηiΩ̃k`W
2
jkW`i −

2√
v

∑
i,j,k,`(dist)
s/∈{j,k}

ηiΩ̃k`WjsWjkW`i

≡ Y3a + Y3b, (2.E.124)

where the second line is from (2.E.113) and the second last line is from dividing all summands

into two cases of s = k and s 6= k. Both terms have mean zero, so

E[Y3] = 0.

Below, first, we calculate the variance of Y3a.

Var(Y3a) =
4

v

∑
i,j,k,`(dist)

i′,j′,k′,`′(dist)

(ηiΩ̃k`ηi′Ω̃k′`′) · E[W 2
jkW`iW

2
j′k′W`′i′ ].

The summand is nonzero only if either the two variables W`i and W`′i′ are the same, or

each of the two variables W`i and W`′i′ equals to another squared W term. By (2.E.110),

(2.E.117), and elementary calculations,

(ηiΩ̃k`ηi′Ω̃k′`′) · E[W 2
jkW`iW

2
j′k′W`′i′ ]

≤ Cα2θiθkθ`θi′θk′θ`′ · E[W 2
jkW`iW

2
j′k′W`′i′ ]

=



Cα2θ2
i θ

2
` θ

2
k E[W 4

jkW
2
`i] ≤ Cα2θ3

i θjθ
3
kθ

3
` , if {`′, i′} = {`, i}, (j′, k′) = (j, k);

Cα2θ2
i θ

2
` θkθj E[W 4

jkW
2
`i] ≤ Cα2θ3

i θ
2
j θ

2
kθ

3
` , if {`′, i′} = {`, i}, (j′, k′) = (k, j);

Cα2θ2
i θ

2
` θkθk′ E[W 2

jkW
2
`iW

2
j′k′ ] ≤ Cα2θ3

i θjθ
2
kθ

3
` θj′θ

2
k′ , if {`′, i′} = {`, i}, {j′, k′} 6= {j, k};

Cα2θ2
i θ`θjθ

2
k E[W 3

jkW
3
`i] ≤ Cα2θ3

i θ
2
j θ

3
kθ

2
` , if {`′, i′} = {j, k}, (j′, k′) = (`, i);

Cα2θiθ
2
` θjθ

2
k E[W 3

jkW
3
`i] ≤ Cα2θ2

i θ
2
j θ

3
kθ

3
` , if {`′, i′} = {j, k}, (j′, k′) = (i, `);

0, otherwise.

There are only three different cases in the bounds. It follows that

Var(Y3a) ≤
Cα2

‖θ‖21

(∑
i,j,k,`

θ3
i θjθ

3
kθ

3
` +

∑
i,j,k,`

θ3
i θ

2
j θ

2
kθ

3
` +

∑
i,j,k,`,j′,k′

θ3
i θjθ

2
kθ

3
` θj′θ

2
k′

)
≤ Cα2

‖θ‖21

(
‖θ‖1‖θ‖93 + ‖θ‖4‖θ‖63 + ‖θ‖4‖θ‖21‖θ‖63

)
≤ Cα2‖θ‖4‖θ‖63, (2.E.125)

where in the last line we have used ‖θ‖93 ≤ ‖θ‖63(θmax‖θ‖2) = o(‖θ‖2‖θ‖63) and ‖θ‖1 ≥
θ−1

max‖θ‖2 →∞. Next, we calculate the variance of Y3b. We mimic the argument in (2.E.121)

and group summands according to the underlying path s-j-k and edge `-i in a complete
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graph. It yields

Y3b = − 2√
v

∑
length-3

path

∑
edge not

in the path

(
ηiΩ̃k` + η`Ω̃ki + ηiΩ̃s` + η`Ω̃si

)
WsjWjkW`i,

where

∣∣ηiΩ̃k` + η`Ω̃ki + ηiΩ̃s` + η`Ω̃si

∣∣ ≤ Cα(θk + θs)θiθ`.

It follows that

Var(Y3b) ≤
C

v

∑
i,j,k,`,s

α2(θk + θs)
2θ2
i θ

2
` ·Var(WsjWjkW`i)

≤ Cα2

‖θ‖21

∑
i,j,k,`,s

(θ3
i θ

2
j θ

3
kθ

3
` θs + θ3

i θ
2
j θkθ

3
` θ

3
s)

≤ Cα2‖θ‖2‖θ‖93
‖θ‖1

. (2.E.126)

Since ‖θ‖93 ≤ ‖θ‖63(θmax‖θ‖1) = o(‖θ‖1‖θ‖63), so the right hand side of (2.E.126) is much

smaller than the right hand side of (2.E.125). Together, we have

Var(Y3) ≤ Cα2‖θ‖4‖θ‖63 = o(‖θ‖8).

This proves the claims of Y3.

Consider Y4. We plug in δij = ηi(ηj − η̃j) + ηj(ηi − η̃i) and the expression (2.E.113). It

gives

Y4 =
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jkΩ̃k`W`i +
∑

i,j,k,`(dist)

ηj(ηi − η̃i)Ω̃jkΩ̃k`W`i

=
∑

i,j,k,`(dist)

ηi

(
− 1√

v

∑
s 6=j

Wjs

)
Ω̃jkΩ̃k`W`i +

∑
i,j,k,`(dist)

ηj

(
− 1√

v

∑
s 6=i

Wis

)
Ω̃jkΩ̃k`W`i

= − 1√
v

∑
i,j,`(dist)
s6=j

( ∑
k/∈{i,j,`}

ηiΩ̃jkΩ̃k`

)
WjsW`i −

1√
v

∑
i,`(dist)
s 6=i

( ∑
j,k/∈{i,`}

ηjΩ̃jkΩ̃k`

)
WisW`i

≡ Y4a + Y4b.

First, we analyze Y4a. When (i, j, `) are distinct, WjsW`i has a mean zero. Therefore,

E[Y4a] = 0.

To calculate the variance, we rewrite

Y4a = − 1√
v

∑
i,j,`(dist)
s 6=j

βij`WjsW`i, where βij` =
∑

k/∈{i,j,`}

ηiΩ̃jkΩ̃k`

By (2.E.110) and (2.E.117), |βij`| ≤ C
∑

k α
2θiθjθ

2
kθ` ≤ Cα2‖θ‖2θiθjθ`. Also, for WjsW`i

and Wj′s′W`′i′ to be correlated, there are only two cases: (Wjs,W`i) = (Wj′s′ ,W`′i′) or

(Wjs,W`i) = (W`′i′ ,Wj′s′). Mimicking the argument in (2.E.121) or (2.E.126), we can easily
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obtain that

Var(Y4a) ≤
C

v

∑
i,j,`(dist)
s6=j

β2
ij` ·Var(WjsW`i)

≤ C

‖θ‖21

∑
i,j,`,s

(α2‖θ‖2θiθjθ`)2 · θiθjθ`θs

≤ Cα4‖θ‖4‖θ‖93
‖θ‖1

. (2.E.127)

Next, we analyze Y4b. We re-write

Y4b = − 1√
v

∑
i,`(dist)
s 6=i

βi`WisW`i, where βi` =
∑

j,k/∈{i,`}

ηjΩ̃jkΩ̃k`.

By separating the case of s = ` from the case of s 6= `, we have

Y4b = − 1√
v

∑
i,`(dist)

βi`W
2
`i −

1√
v

∑
i,`(dist)
s/∈{i,`}

βi`WisW`i ≡ Ỹ4b + Y ∗4b.

Only Ỹ4b has a nonzero mean. By (2.E.110) and (2.E.117),

|βi`| ≤ C
∑
j,k

α2θ2
j θ

2
kθ` ≤ Cα2‖θ‖4θ`.

It follows that

|E[Y4b]| = |E[Ỹ4b]| ≤
C

‖θ‖1

∑
i,`

(α2‖θ‖4θ`)θiθ` ≤ Cα2‖θ‖6. (2.E.128)

We now bound the variances of Ỹ4b and Y ∗4b. By direct calculations,

Var(Ỹ4b) =
2

v

∑
i,`(dist)

β2
i` ·Var(W 2

i`) ≤
C

‖θ‖21

∑
i,`

(α2‖θ‖4θ`)2 · θiθ` ≤
Cα4‖θ‖8‖θ‖33
‖θ‖1

,

Var(Y ∗4b) ≤
C

v

∑
i,`(dist)
s/∈{i,`}

β2
i` ·Var(WisW`i) ≤

C

‖θ‖21

∑
i,`,s

(α2‖θ‖4θ`)2 · θ2
i θ`θs ≤

Cα4‖θ‖10‖θ‖33
‖θ‖1

.

Together, we have

Var(Y4b) ≤ 2Var(Ỹ4b) + 2Var(Y ∗4b) ≤
Cα4‖θ‖10‖θ‖33

‖θ‖1
. (2.E.129)

We combine the results of Y4a and Y4b. Since ‖θ‖63 ≤ (θmax‖θ‖2)2 = o(‖θ‖4), the right hand

side of (2.E.128) dominates the right hand side of (2.E.127). It follows that

|E[Y4]| ≤ Cα2‖θ‖6 = o(α4‖θ‖8), Var(Y4) ≤ Cα4‖θ‖10‖θ‖33
‖θ‖1

= o(α6‖θ‖8‖θ‖63).

Here, we explain the equalities. The first one is due to α2‖θ‖2 →∞. To get the second equal-

ity, we compare Var(Y4) with the order of α6‖θ‖8‖θ‖63. Note that
‖θ‖10‖θ‖33
‖θ‖1 =

‖θ‖6‖θ‖33
‖θ‖1 ‖θ‖

4 ≤
‖θ‖6‖θ‖33
‖θ‖1 ‖θ‖1‖θ‖

3
3 ≤ ‖θ‖6‖θ‖63. It follows that Var(Y4) ≤ Cα4‖θ‖6‖θ‖63 � Cα6‖θ‖8‖θ‖63,

where the last inequality is due to α2‖θ‖2 →∞. So far, we have proved all claims about Y4.
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Consider Y5. Recall that

Y5 =
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jkWk`Ω̃`i +
∑

i,j,k,`(dist)

(ηi − η̃i)ηjΩ̃jkWk`Ω̃`i.

With relabeling of (i, j, k, `) = (j′, i′, `′, k′), the second sum can be written as
∑

i′,j′,k′,`′(dist)(ηj′−
η̃j′)ηi′Ω̃i′`′W`′k′Ω̃k′j′ . This suggests that it is actually equal to the first sum above. Hence,

Y5 = 2
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jkWk`Ω̃`i

=
∑

i,j,k,`(dist)

ηi

(
− 2√

v

∑
s 6=j

Wjs

)
Ω̃jkWk`Ω̃`i

= − 2√
v

∑
j,k,`(dist)

s 6=j

( ∑
i/∈{j,k,`}

ηiΩ̃jkΩ̃`i

)
WjsWk`

≡ − 2√
v

∑
j,k,`(dist)

s 6=j

βjk`WjsWk`, where βjk` ≡
∑

i/∈{j,k,`}

ηiΩ̃jkΩ̃`i.

It is easy to see that E[WjsWk`] = 0 when (j, k, `) are distinct. Hence,

E[Y5] = 0.

By (2.E.110) and (2.E.117), |βjk`| ≤ C
∑

i θi · α2θjθkθ`θi ≤ Cα2‖θ‖2θjθkθ`. Similar to the

argument in (2.E.121) or (2.E.126), we can show that

Var(Y5) ≤ C

v

∑
j,k,`(dist)

s 6=j

β2
jk` ·Var(WjsWk`)

≤ C

‖θ‖21

∑
j,k,`,s

(α2‖θ‖2θjθkθ`)2θjθsθkθ`

≤ Cα4‖θ‖4‖θ‖93
‖θ‖1

.

Since ‖θ‖93 = (‖θ‖33)2‖θ‖33 ≤ (θmax‖θ‖2)2(θ2
max‖θ‖1) = o(‖θ‖4‖θ‖1), the right hand side is

o(‖θ‖8). This proves the claims of Y5.

Consider Y6. By definition and elementary calculations,

Y6 =
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jkΩ̃k`Ω̃`i +
∑

i,j,k,`(dist)

ηj(ηi − η̃i)Ω̃jkΩ̃k`Ω̃`i

= 2
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jkΩ̃k`Ω̃`i

= 2
∑

i,j,k,`(dist)

ηi

(
− 1√

v

∑
s 6=j

Wjs

)
Ω̃jkΩ̃k`Ω̃`i

= − 2√
v

∑
j,s(dist)

( ∑
i,k,`(dist)/∈{j}

ηiΩ̃jkΩ̃k`Ω̃`i

)
Wjs.

Here, to get the second line above, we relabeled (i, j, k, `) = (j′, i′, `′, k′) in the second sum

and found out the two sums are equal; the third line is from (2.E.113). We immediately see
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that

E[Y6] = 0.

By (2.E.110) and (2.E.117),∣∣∣ ∑
i,k,`(dist)/∈{j}

ηiΩ̃jkΩ̃k`Ω̃`i

∣∣∣ ≤∑
i,k,`

Cθi · α3θjθ
2
kθ

2
` θi ≤ Cα3‖θ‖6θj .

It follows that

Var(Y6) =
8

v

∑
j,s(dist)

( ∑
i,k,`(dist)/∈{j}

ηiΩ̃jkΩ̃k`Ω̃`i

)2
·Var(Wjs)

≤ C

‖θ‖21

∑
j,s

(α3‖θ‖6θj)2θjθs

≤ Cα6‖θ‖12‖θ‖33
‖θ‖1

.

Since ‖θ‖4 ≤ ‖θ‖1‖θ‖33, the variance is bounded by Cα6‖θ‖8‖θ‖63. This proves the claims of

Y6.

Proof of Lemma 20

It suffices to prove the claims for each of Z1 and Z2; then, the claims of Ub follow immediately.

We first analyze Z1. Plugging δij = ηi(ηj− η̃j) +ηj(ηi− η̃i) into the definition of Z1 gives

Z1 =
∑

i,j,k,`(dist)

ηi(ηj − η̃j)ηj(ηk − η̃k)Wk`W`i +
∑

i,j,k,`(dist)

ηi(ηj − η̃j)2ηkWk`W`i

+
∑

i,j,k,`(dist)

(ηi − η̃i)η2
j (ηk − η̃k)Wk`W`i +

∑
i,j,k,`(dist)

(ηi − η̃i)ηj(ηj − η̃j)ηkWk`W`i.

In the last term above, if we relabel (i, j, k, `) = (k′, j′, i′, `′), it becomes
∑

i′,j′,k′,`′(dist)(ηk′ −
η̃k′)ηj′(ηj′− η̃j′)ηi′Wi′`′W`′k′ . This shows that the last sum equals to the first sum. Therefore,

Z1 =
∑

i,j,k,`(dist)

ηi(ηj − η̃j)2ηkWk`W`i

+2
∑

i,j,k,`(dist)

ηi(ηj − η̃j)ηj(ηk − η̃k)Wk`W`i

+
∑

i,j,k,`(dist)

(η̃i − ηi)η2
j (η̃k − ηk)Wk`W`i

≡ Z1a + Z1b + Z1c. (2.E.130)

Below, we compute the means and variances of Z1a-Z1c.

First, we study Z1a. When (i, j, k, `) are distinct, Wk`W`i has a mean zero and is

independent of (η̃j − ηj)2, so E[(ηj − η̃j)2Wk`W`i] = 0. It follows that

E[Z1a] = 0.

To bound the variance of Z1a, we use (2.E.113) to re-write

Z1a =
∑

i,j,k,`(dist)

ηi

(
− 1√

v

∑
s 6=j

Wjs

)(
− 1√

v

∑
t6=j

Wjt

)
ηkWk`W`i
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=
1

v

∑
i,j,k,`(dist)
s,t/∈{j}

ηiηkWjsWjtWk`W`i

=
1

v

∑
i,j,k,`(dist)
s/∈{j}

ηiηkW
2
jsWk`W`i +

1

v

∑
i,j,k,`(dist)
s,t(dist)/∈{j}

ηiηkWjsWjtWk`W`i

≡ Z̃1a + Z∗1a.

We first bound the variance of Z̃1a. It is seen that

Var(Z̃1a) =
1

v2

∑
i,j,k,`(dist),s/∈{j}

i′,j′,k′,`′(dist),s′ /∈{j′}

ηiηkηi′ηk′ · E[W 2
jsWk`W`i ·W 2

j′s′Wk′`′W`′i′ ].

The summand is nonzero only if `′ = ` and {k′, i′} = {k, i}. We also note that, if we switch

i′ and k′, the summand remains unchanged. So, it suffices to consider the case of `′ = ` and

(k′, i′) = (k, i). By (2.E.117) and elementary calculations,

ηiηkηi′ηk′ · E[W 2
jsWk`W`i ·W 2

j′s′Wk′`′W`′i′ ]

=


η2
i η

2
k E[W 4

jsW
2
k`W

2
`i] ≤ Cθ3

i θjθ
3
kθ

2
` θs, if (`′, k′, i′) = (`, k, i), {j′, s′} = {j, s};

η2
i η

2
k E[W 2

jsW
2
k`W

2
`iW

2
j′s′ ] ≤ Cθ3

i θjθ
3
kθ

2
` θsθj′θs′ , if (`′, k′, i′) = (`, k, i), {j′, s′} 6= {j, s};

0, otherwise.

It follows that

Var(Z̃1a) ≤
C

‖θ‖41

( ∑
i,j,k,`,s

θ3
i θjθ

3
kθ

2
` θs +

∑
i,j,k,`,s,j′,s′

θ3
i θjθ

3
kθ

2
` θsθj′θs′

)
≤ C

‖θ‖41

(
‖θ‖2‖θ‖63‖θ‖21 + ‖θ‖2‖θ‖63‖θ‖41

)
≤ C‖θ‖2‖θ‖63.

We then bound the variance of Z∗1a. Note that

ηiηkηi′ηk′ · E[WjsWjtWk`W`i ·Wj′s′Wj′t′Wk′`′W`′i′ ]

=


η2
i η

2
k E[W 2

jsW
2
jtW

2
k`W

2
`i] ≤ Cθ3

i θ
2
j θ

3
kθ

2
` θsθt, if (j′, `′) = (j, `), {s′, t′} = {s, t}, {k′, i′} = {k, i};

ηiηkηsηt E[W 2
jsW

2
jtW

2
k`W

2
`i] ≤ Cθ2

i θ
2
j θ

2
kθ

2
` θ

2
sθ

2
t , if (j′, `′) = (`, j), {s′, t′} = {k, i}, {k′, i′} = {s, t};

0, otherwise.

It follows that

Var(Z∗1a) ≤
C

‖θ‖41

( ∑
i,j,k,`,s,t

θ3
i θ

2
j θ

3
kθ

2
` θsθt +

∑
i,j,k,`,s,t

θ2
i θ

2
j θ

2
kθ

2
` θ

2
sθ

2
t

)
≤ C

‖θ‖41

(
‖θ‖4‖θ‖63‖θ‖21 + ‖θ‖12

)
≤ C‖θ‖4‖θ‖63

‖θ‖21
,

where the last inequality is because of ‖θ‖12 = ‖θ‖4(‖θ‖4)2 ≤ ‖θ‖4(‖θ‖1‖θ‖33)2 = ‖θ‖4‖θ‖63‖θ‖21.

Combining the above gives

Var(Z1a) ≤ 2Var(Z̃1a) + 2Var(Z∗1a) ≤ C‖θ‖2‖θ‖63. (2.E.131)
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Second, we study Z1b. Since (ηj − η̃j), (ηk − η̃k)Wk` and W`i are independent of each

other, each summand in Z1b has a zero mean. It follows that

E[Z1b] = 0.

We now compute its variance. By direct calculations,

Z1b = 2
∑

i,j,k,`(dist)

ηi

(
− 1√

v

∑
s 6=j

Wjs

)
ηj

(
− 1√

v

∑
t6=k

Wkt

)
Wk`W`i

=
2

v

∑
i,j,k,`(dist)
s 6=j,t6=k

ηiηjWjsWktWk`W`i

=
2

v

∑
i,j,k,`(dist)

s 6=j

ηiηjWjsW
2
k`W`i +

2

v

∑
i,j,k,`(dist)
s 6=j,t/∈{k,`}

ηiηjWjsWktWk`W`i

≡ Z̃1b + Z∗1b.

We first bound the variance of Z̃1b. Note that

Var(Z̃1b) =
4

v

∑
i,j,k,`(dist),s 6=j

i′,j′,k′,`′(dist),s′ 6=j′

ηiηjηi′ηj′ · E[WjsW
2
k`W`i ·Wj′s′W

2
k′`′W`′i′ ].

For this summand to be nonzero, there are only two cases. In the first case, (Wjs,W`i) are

paired with (Wj′s′ ,W`′i′). It follows that

ηiηjηi′ηj′ · E[WjsW
2
k`W`iWj′s′W

2
k′`′W`′i′ ] = ηiηjηi′ηj′ · E[W 2

jsW
2
k`W

2
`iW

2
k′`′ ].

This happens only if (i) {j′, s′} = {j, s} and {`′, i′} = {`, i}, or (ii) {j′, s′} = {`, i} and

{`′, i′} = {j, s}. By (2.E.117) and elementary calculations,

ηiηjηi′ηj′ · E[WjsW
2
k`W`i ·Wj′s′W

2
k′`′W`′i′ ]

=



η2
i η

2
j · E[W 2

jsW
2
`iW

2
k`W

2
k′`] ≤ Cθ3

i θ
3
j θkθ

3
` θsθk′ , if (j′, s′) = (j, s), (`′, i′) = (`, i);

ηiη
2
j η` · E[W 2

jsW
2
`iW

2
k`W

2
k′i] ≤ Cθ3

i θ
3
j θkθ

3
` θsθk′ , if (j′, s′) = (j, s), (`′, i′) = (i, `);

η2
i ηjηs · E[W 2

jsW
2
`iW

2
k`W

2
k′`] ≤ Cθ3

i θ
2
j θkθ

3
` θ

2
sθk′ , if (j′, s′) = (s, j), (`′, i′) = (`, i);

ηiηjη`ηs · E[W 2
jsW

2
`iW

2
k`W

2
k′i] ≤ Cθ3

i θ
2
j θkθ

3
` θ

2
sθk′ , if (j′, s′) = (s, j), (`′, i′) = (i, `);

ηiηjη`ηs · E[W 2
jsW

2
`iW

2
k`W

2
k′j ] ≤ Cθ2

i θ
3
j θkθ

3
` θ

2
sθk′ , if (j′, s′) = (`, i), (`′, i′) = (j, s);

ηiη
2
j η` · E[W 2

jsW
2
`iW

2
k`W

2
k′s] ≤ Cθ2

i θ
3
j θkθ

3
` θ

2
sθk′ , if (j′, s′) = (`, i), (`′, i′) = (s, j);

η2
i ηjηs · E[W 2

jsW
2
`iW

2
k`W

2
k′j ] ≤ Cθ3

i θ
3
j θkθ

2
` θ

2
sθk′ , if (j′, s′) = (i, `), (`′, i′) = (j, s);

η2
i η

2
j · E[W 2

jsW
2
`iW

2
k`W

2
k′s] ≤ Cθ3

i θ
3
j θkθ

2
` θ

2
sθk′ , if (j′, s′) = (i, `), (`′, i′) = (s, j);

0, otherwise.

The upper bound on the right hand side only has two types Cθ3
i θ

3
j θkθ

3
` θsθk′ and Cθ3

i θ
2
j θkθ

3
` θ

2
sθk′ .
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The contribution of this case to Var(Z̃1b) is

≤ C

v2

( ∑
i,j,k,`,s,k′

θ3
i θ

3
j θkθ

3
` θsθk′ +

∑
i,j,k,`,s,k′

θ3
i θ

2
j θkθ

3
` θ

2
sθk′

)
≤ C

‖θ‖41

(
‖θ‖93‖θ‖31 + ‖θ‖4‖θ‖63‖θ‖21

)
≤ C‖θ‖93
‖θ‖1

.

In the second case, {Wjs,Wk`,W`i} and {Wj′s′ ,Wk′`′ ,W`′i′} are two sets of same variables.

Then,

ηiηjηi′ηj′ · E[WjsW
2
k`W`iWj′s′W

2
k′`′W`′i′ ] = ηiηjηi′ηj′ · E[W 3

jsW
3
k`W

3
`i].

This can only happen if `′ = `, {i′, k′} = {i, k}, and {j′, s′} = {j, s}. By (2.E.117) and

elementary calculations,

ηiηjηi′ηj′ · E[WjsW
2
k`W`i ·Wj′s′W

2
k′`′W`′i′ ]

=



η2
i η

2
j · E[W 3

jsW
3
`iW

3
k`] ≤ Cθ3

i θ
3
j θkθ

2
` θs, if `′ = `, (i′, k′) = (i, k), (j′, s′) = (j, s);

η2
i ηjηs · E[W 3

jsW
3
`iW

3
k`] ≤ Cθ3

i θ
2
j θkθ

2
` θ

2
s , if `′ = `, (i′, k′) = (i, k), (j′, s′) = (s, j);

ηiηkη
2
j · E[W 3

jsW
3
`iW

3
k`] ≤ Cθ2

i θ
3
j θ

2
kθ

2
` θs, if `′ = `, (i′, k′) = (k, i), (j′, s′) = (j, s);

ηiηkηjηs · E[W 3
jsW

3
`iW

3
k`] ≤ Cθ2

i θ
2
j θ

2
kθ

2
` θ

2
s , if `′ = `, (i′, k′) = (i, k), (j′, s′) = (s, j);

0, otherwise.

The upper bound on the right hand side has three types, and the contribution of this case

to Var(Z̃1b) is

≤ C

v2

( ∑
i,j,k,`,s

θ3
i θ

3
j θkθ

2
` θs +

∑
i,j,k,`,s

θ3
i θ

2
j θkθ

2
` θ

2
s +

∑
i,j,k,`,s

θ2
i θ

2
j θ

2
kθ

2
` θ

2
s

)
≤ C

‖θ‖41

(
‖θ‖2‖θ‖63‖θ‖21 + ‖θ‖6‖θ‖33‖θ‖1 + ‖θ‖10

)
≤ C‖θ‖2‖θ‖63

‖θ‖21
,

where we use ‖θ‖4 ≤ ‖θ‖1‖θ‖33 (Cauchy-Schwarz) in the last line. It is seen that the

contribution of the first case is dominating, and so

Var(Z̃1b) ≤
C‖θ‖93
‖θ‖1

.

We then bound the variance of Z∗1b. Note that

Var(Z∗1b) =
4

v2

∑
i,j,k,`(dist),s 6=j,t/∈{k,`}

i′,j′,k′,`′(dist),s′ 6=j′,t′ /∈{k′,`′}

ηiηjηi′ηj′ · E[WjsWktWk`W`i ·Wj′s′Wk′t′Wk′`′W`′i′ ].

For the summand to be nonzero, all W terms have to be perfectly matched, so that the

expectation in the summand becomes

E[WjsWktWk`W`i ·Wj′s′Wk′t′Wk′`′W`′i′ ] = E[W 2
jsW

2
ktW

2
k`W

2
`i] ≤ Cθiθjθ2

kθ
2
` θsθt.

For this perfect match to happen, we need (t′, k′, `′, i′) = (t, k, `, i) or (t′, k′, `′, i′) = (i, `, k, t),

as well as {j′, s′} = {j, s}. This implies that, i′ can only take values in {i, t} and j′ can only
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take values in {j, s}. It follows that ηiηjηi′ηj′ belongs to one of the following cases:

ηiηj(ηiηj) ≤ Cθ2
i θ

2
j , ηiηj(ηiηs) = Cθ2

i θjθs,

ηiηj(ηtηj) ≤ Cθiθ2
j θt, ηiηj(ηtηs) ≤ Cθiθjθtθs.

Combining the above gives

Var(Z∗1b) ≤
C

v2

∑
i,j,k,`,s,t

(θ2
i θ

2
j + θ2

i θjθs + θiθ
2
j θt + θiθjθtθs) · θiθjθ2

kθ
2
` θsθt

≤ C

‖θ‖41

(
‖θ‖4‖θ‖63‖θ‖21 + 2‖θ‖8‖θ‖33‖θ‖1 + ‖θ‖12

)
≤ C‖θ‖4‖θ‖63

‖θ‖21
.

We combine the variances of Z̃1b and Z∗1b. Since ‖θ‖4 ≤ ‖θ‖1‖θ‖33, the variance of Z̃1b

dominates. It follows that

Var(Z1b) ≤ 2Var(Z̃1b) + 2Var(Z∗1b) ≤
C‖θ‖93
‖θ‖1

. (2.E.132)

Third, we study Z1c. It is seen that

Z1c =
∑

i,j,k,`(dist)

(
− 1√

v

∑
s 6=i

Wis

)
η2
j

(
− 1√

v

∑
t6=k

Wkt

)
Wk`W`i

=
1

v

∑
i,k,`(dist)
s 6=i,t 6=k

( ∑
j /∈{i,k,`}

η2
j

)
WisWktWk`W`i

≡ 1

v

∑
i,k,`(dist)
s 6=i,t 6=k

βik`WisWktWk`W`i,

where

βik` ≡
∑

j /∈{i,k,`}

η2
j ≤ C

∑
j

θ2
j ≤ C‖θ‖2. (2.E.133)

We divide all summands into four groups: (i) s = t = `; (ii) s = `, t 6= `; (iii) s 6= `, t = `;

(iv) s 6= `, t 6= `. It yields that

Z1c =
1

v

∑
i,k,`(dist)

βik`W
2
k`W

2
`i +

1

v

∑
i,k,`(dist)
t6={k,`}

βik`WktWk`W
2
`i

+
1

v

∑
i,k,`(dist)
s/∈{i,`}

βik`WisW
2
k`W`i +

1

v

∑
i,k,`(dist)

s/∈{i,`},t/∈{k,`}

βik`WisWktWk`W`i.

In the third sum, if we relabel (i, k, `, s) = (k′, i′, `′, t′), it then has the form of
∑

i′,k′,`′(dist),t′ /∈{k′,`′} βk′i′`′Wk′t′W
2
i′`′W`′k′ .
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This shows that this sum equals to the second sum. We thus have

Z1c =
1

v

∑
i,k,`(dist)

βik`W
2
k`W

2
`i +

2

v

∑
i,k,`(dist)
t6={k,`}

βik`WktWk`W
2
`i

+
1

v

∑
i,k,`(dist)

s/∈{i,`},t/∈{k,`}

βik`WisWktWk`W`i

≡ Z̃1c + Z∗1c + Z†1c.

Among all three terms, only Z̃1c has a nonzero mean. It follows that

E[Z1c] = E[Z̃1c] =
1

v

∑
i,k,`(dist)

βik`Ωk`(1− Ωk`)Ω`i(1− Ω`i)

=
1

v

∑
i,k,`(dist)

βik`Ωk`Ω`i[1 +O(θ2
max)].

Under the null hypothesis, Ωij = θiθj . It follows that ηj =
θj√
v

∑
i:i 6=j θi = [1 + o(1)]

θj‖θ‖1√
v

and that βik` =
∑

j /∈{i,k,`} η
2
j = [1 + o(1)]

‖θ‖21
v

∑
j /∈{i,k,`} θ

2
j = [1 + o(1)]

‖θ‖21‖θ‖2
v . Additionally,

v =
∑

i 6=j θiθj = ‖θ‖21 · [1 + o(1)]. As a result,

E[Z1c] =
1

v

∑
i,k,`(dist)

[1 + o(1)]
‖θ‖21‖θ‖2

v
· θkθ2

` θi

= [1 + o(1)] · ‖θ‖
2
1‖θ‖2

v2

∑
i,k,`(dist)

θkθ
2
` θi

= [1 + o(1)] · ‖θ‖
2
1‖θ‖2

‖θ‖41

[
‖θ‖21‖θ‖2 −O(‖θ‖4 + ‖θ‖1‖θ‖33)

]
= [1 + o(1)] · ‖θ‖4, (2.E.134)

where in the last line we have used ‖θ‖2 = o(‖θ‖1), ‖θ‖33 = o(‖θ‖1) and ‖θ‖1 → ∞. We

then bound the variance of Z1c by studying the variance of each of the three variables, Z̃1c,

Z∗1c and Z†1c. Consider Z̃1c first. For W 2
k`W

2
`i and W 2

k′`′W
2
`′i′ to be correlated, it has to be

the case of either {k′, `′} = {k, `} or {i′, `′} = {i, `}. By symmetry between k and i in the

expression, it suffices to consider {k′, `′} = {k, `}. Direct calculations show that

Cov(W 2
k`W

2
`i, W

2
k′`′W

2
`′i′) ≤



E[W 4
k`W

4
`i] ≤ Cθkθ2

` θi, if (k′, `′) = (k, `), i′ = i;

E[W 4
k`W

2
`iW

2
`i′ ] ≤ Cθkθ3

` θiθi′ , if (k′, `′) = (k, `), i′ 6= i;

E[W 4
k`W

2
`iW

2
ki] ≤ Cθ2

kθ
2
` θ

2
i , if (k′, `′) = (`, k), i′ = i;

E[W 4
k`W

2
`iW

2
ki′ ] ≤ Cθ2

kθ
2
` θiθi′ , if (k′, `′) = (`, k), i′ 6= i;

0, otherwise.
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Combining it with (2.E.133) and the fact of v ≥ C−1‖θ‖21, we have

Var(Z̃1c) ≤
C‖θ‖4

‖θ‖41

(∑
i,k,`

θkθ
2
` θi +

∑
i,k,`,i′

θkθ
3
` θiθi′ +

∑
i,k,`

θ2
kθ

2
` θ

2
i +

∑
i,k,`,i′

θ2
kθ

2
` θiθi′

)
≤ C‖θ‖4

‖θ‖41

(
‖θ‖2‖θ‖21 + ‖θ‖33‖θ‖31 + ‖θ‖6 + ‖θ‖4‖θ‖21

)
≤ C‖θ‖4‖θ‖33

‖θ‖1
.

Consider Z∗1c. By direct calculations,

E[WktWk`W
2
`iWk′t′Wk′`′W

2
`′i′ ]

=



E[W 2
ktW

2
k`W

4
`i] ≤ Cθiθ2

kθ
2
` θt, if (k′, t′, `′) = (k, t, `), i = i′;

E[W 2
ktW

2
k`W

2
`iW

2
`i′ ] ≤ Cθiθ2

kθ
3
` θtθi′ , if (k′, t′, `′) = (k, t, `), i 6= i′;

E[W 2
ktW

2
k`W

2
`iW

2
ti′ ] ≤ Cθiθ2

kθ
2
` θ

2
t θi′ , if (k′, t′, `′) = (k, `, t);

E[W 3
ktW

2
k`W

3
`i] ≤ Cθiθ2

kθ
2
` θt, if (k′, t′, `′, i′) = (`, i, k, t);

0, otherwise.

We combine it with (2.E.133) and find that

Var(Z∗1c) =
4

v2

∑
i,k,`(dist),t6={k,`}

i′,k′,`′(dist),t′ 6={k′,`′}

βik`βi′k′`′ · E[WktWk`W
2
`iWk′t′Wk′`′W

2
`′i′ ]

≤ C‖θ‖4

‖θ‖41

(∑
i,k,`,t

θiθ
2
kθ

2
` θt +

∑
i,k,`,t,i′

θiθ
2
kθ

3
` θtθi′ +

∑
i,k,`,t,i′

θiθ
2
kθ

2
` θ

2
t θi′
)

≤ C‖θ‖4

‖θ‖41

(
‖θ‖4‖θ‖21 + ‖θ‖2‖θ‖33‖θ‖31 + ‖θ‖6‖θ‖21

)
≤ C‖θ‖6‖θ‖33

‖θ‖1
.

Consider Z†1c. Re-write

Z†1c =
1

v

∑
i,k,`(dist)

βik`W
2
ikWk`W`i +

1

v

∑
i,k,`(dist)

s/∈{i,`},t/∈{k,`}
(s,t) 6=(k,i)

βik`WisWktWk`W`i.

Regarding the first term, by direct calculations,

E[W 2
ikWk`W`i ·W 2

i′k′Wk′`′W`′i′ ]

=


E[W 4

ikW
2
k`W

2
`i] ≤ Cθ2

i θ
2
kθ

2
` , if `′ = `, {i′, k′} = {i, k};

E[W 3
ikW

2
k`W

3
`i] ≤ Cθ2

i θ
2
kθ

2
` , if (`′, k′) = (k, `), i′ = i;

0, otherwise.

Combining it with (2.E.133) gives

Var
(1

v

∑
i,k,`(dist)

βik`W
2
ikWk`W`i

)
≤ C‖θ‖4

‖θ‖41

∑
i,j,k,`

θ2
i θ

2
kθ

2
` ≤

C‖θ‖10

‖θ‖41
.

Regarding the second term, for WisWktWk`W`i and Wi′s′Wk′t′Wk′`′W`′i′ to be correlated, all
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W terms have to be perfectly matched. For each fixed (i, k, `, s, t), there are only a constant

number of (i′, k′, `′, s′, t′) so that the above is satisfied. Mimicking the argument in (2.E.106),

we have

Var
(1

v

∑
i,k,`(dist)

s/∈{i,`},t/∈{k,`}
(s,t)6=(k,i)

βik`WisWktWk`W`i

)
≤ C

v2

∑
i,k,`(dist)

s/∈{i,`},t/∈{k,`}
(s,t)6=(k,i)

β2
ik` ·Var(WisWktWk`W`i)

≤ C

‖θ‖41

∑
i,k,`,s,t

‖θ‖4 · θ2
i θ

2
kθ

2
` θsθt ≤

C‖θ‖10

‖θ‖21
.

It follows that

Var(Z†1c) ≤
C‖θ‖10

‖θ‖21
.

Combining the above results and noticing that ‖θ‖4 ≤ ‖θ‖1‖θ‖33, we immediately have

Var(Z1c) ≤ 3Var(Z̃1c) + 3Var(Z∗1c) + 3Var(Z†1c) ≤
C‖θ‖6‖θ‖33
‖θ‖1

. (2.E.135)

We now combine (2.E.131), (2.E.132), (2.E.134), and (2.E.135). Since Z1 = Z1a + Z1b +

Z1c, it follows that

E[Z1] = ‖θ‖4 · [1 + o(1)], Var(Z1) ≤ C‖θ‖2‖θ‖63 = o(‖θ‖8).

This proves the claims of Z1.

Next, we analyze Z2. Since δij = ηi(ηj − η̃j) + ηj(ηi − η̃i), by direct calculations,

Z2 =
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Wjkηk(η` − η̃`)W`i +
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Wjk(ηk − η̃k)η`W`i

+
∑

i,j,k,`(dist)

(ηi − η̃i)ηjWjkηk(η` − η̃`)W`i +
∑

i,j,k,`(dist)

(ηi − η̃i)ηjWjk(ηk − η̃k)η`W`i.

By relabeling the indices, we find out that the first and last sums are equal and that the

second and third sums are equal. It follows that

Z2 = 2
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Wjkηk(η` − η̃`)W`i

+2
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Wjk(ηk − η̃k)η`W`i

≡ Z2a + Z2b. (2.E.136)

First, we study Z2a. It is seen that

Z2a = 2
∑

i,j,k,`(dist)

ηi

(
− 1√

v

∑
s 6=j

Wjs

)
Wjkηk

(
− 1√

v

∑
t6=`

W`t

)
W`i

=
2

v

∑
i,j,k,`(dist)
s 6=j,t6=`

ηiηkWjsWjkW`tW`i.

We divide summands into four groups: (i) s = k and t = i, (ii) s = k and t 6= i, (iii) s 6= k

and t = i, (iv) s 6= k and t 6= i. By symmetry between (j, k, s) and (`, i, t), the sum of group
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(ii) and group (iii) are equal. We end up with

Z2a =
2

v

∑
i,j,k,`(dist)

ηiηkW
2
jkW

2
`i +

4

v

∑
i,j,k,`(dist)
s/∈{j,k}

ηiηkWjsWjkW
2
`i

+
2

v

∑
i,j,k,`(dist)

s/∈{j,k},t/∈{`,i}

ηiηkWjsWjkW`tW`i

≡ Z̃2a + Z∗2a + Z†2a,

Only Z̃2a has a nonzero mean. It follows that

E[Z2a] = E[Z̃2a] =
2

v

∑
i,j,k,`(dist)

ηiηkΩjk(1− Ωjk)Ω`i(1− Ω`i).

Under the null hypothesis, Ωij = θiθj . Hence, Ωjk(1 − Ωjk)Ω`i(1 − Ω`i) = θjθkθ`θi · [1 +

O(θ2
max)]. Additionally, in the proof of (2.E.134), we have seen that v = [1 + o(1)] · ‖θ‖21 and

ηj = [1 + o(1)] · θj . Combining these results gives

E[Z2a] =
2[1 + o(1)]

‖θ‖21

∑
i,j,k,`(dist)

(θiθk)(θjθkθ`θi)

=
2[1 + o(1)]

‖θ‖21

[∑
i,j,k,`

θ2
i θjθ

2
kθ` −

∑
i,j,k,`

(not dist)

θ2
i θjθ

2
kθ`

]

=
2[1 + o(1)]

‖θ‖21

[
‖θ‖4‖θ‖21 −O

(
‖θ‖44‖θ‖21 + ‖θ‖33‖θ‖2‖θ‖1 + ‖θ‖6

)]
=

2[1 + o(1)]

‖θ‖21
· ‖θ‖4‖θ‖21[1 + o(1)]

= [1 + o(1)] · 2‖θ‖4. (2.E.137)

We then bound the variance of Za. Consider Z̃2a first. Note that W 2
jkW

2
`i and W 2

j′k′W
2
`′i′

are correlated only if either {j′, k′} = {j, k} or {j′, k′} = {`, i}. By symmetry, it suffices to

consider {j′, k′} = {j, k}. Direct calculations show that

Cov(ηiηkW
2
jkW

2
`i, ηi′ηk′W

2
j′k′W

2
`′i′)

≤



η2
kη

2
i E[W 4

jkW
4
`i] ≤ Cθ3

i θjθ
3
kθ`, if (j′, k′) = (j, k), i = i′, ` = `′;

η2
kη

2
i E[W 4

jkW
2
`iW

2
`′i] ≤ Cθ4

i θjθ
3
kθ`θ`′ , if (j′, k′) = (j, k), i = i′, ` 6= `′;

η2
kηiηi′E[W 4

jkW
2
`iW

2
`′i′ ] ≤ Cθ2

i θjθ
3
kθ`θ

2
i′θ`′ , if (j′, k′) = (j, k), i 6= i′;

ηjηkη
2
i E[W 4

jkW
4
`i] ≤ Cθ3

i θ
2
j θ

2
kθ`, if (j′, k′) = (k, j), i = i′, ` = `′;

ηjηkη
2
i E[W 4

jkW
2
`iW

2
`′i] ≤ Cθ4

i θ
2
j θ

2
kθ`θ`′ , if (j′, k′) = (k, j), i = i′, ` 6= `′;

ηjηkηiηi′E[W 4
jkW

2
`iW

2
`′i′ ] ≤ Cθ2

i θ
2
j θ

2
kθ`θ

2
i′θ`′ , if (j′, k′) = (k, j), i 6= i′;

0, otherwise.
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As a result,

Var(Z̃2a) =
4

v2

∑
i,j,k,`(dist)

i′,j′,k′,`′(dist)

Cov(ηiηkW
2
jkW

2
`i, ηi′ηk′W

2
j′k′W

2
`′i′)

≤ C

‖θ‖41

(
‖θ‖63‖θ‖21 + ‖θ‖44‖θ‖33‖θ‖31 + ‖θ‖33‖θ‖4‖θ‖31

+ ‖θ‖33‖θ‖4‖θ‖1 + ‖θ‖44‖θ‖4‖θ‖21 + ‖θ‖8‖θ‖21
)

≤ C‖θ‖4‖θ‖33
‖θ‖1

,

where the last line is obtained as follows: There are six terms in the brackets; since

‖θ‖4 ≤ ‖θ‖1‖θ‖33, the last three terms are dominated by the first three terms; for the first

three terms, since ‖θ‖33 ≤ θ2
max‖θ‖1 = o(‖θ‖1) and ‖θ‖44 ≤ θ2

max‖θ‖2 = o(‖θ‖2), the third

term dominates. Consider Z∗2a next. We note that for

E[WjsWjkW
2
`i ·Wj′s′Wj′k′W

2
`′i′ ]

to be nonzero, it has to be the case of either (Wj′s′ ,Wj′k′) = (Wjs,Wjk) or (Wj′s′ ,Wj′k′) =

(Wjk,Wjs). This can only happen if (j′, s′, k′) = (j, s, k) or (j′, s′, k′) = (j, k, s). By

elementary calculations,

ηiηkηi′ηk′ · E[WjsWjkW
2
`i ·Wj′s′Wj′k′W

2
`′i′ ]

=



η2
i η

2
k E[W 2

jsW
2
jkW

4
`i] ≤ Cθ3

i θ
2
j θ

3
kθ`θs, if (j′, s′, k′) = (j, s, k), i′ = i, `′ = `;

η2
i η

2
k E[W 2

jsW
2
jkW

2
`iW

2
`′i] ≤ Cθ4

i θ
2
j θ

3
kθ`θsθ`′ , if (j′, s′, k′) = (j, s, k), i′ = i, `′ 6= `;

ηiηi′η
2
k E[W 2

jsW
2
jkW

2
`iW

2
`′i′ ] ≤ Cθ2

i θ
2
j θ

3
kθ`θsθ

2
i′θ`′ , if (j′, s′, k′) = (j, s, k), i 6= i′;

η2
i ηkηs E[W 2

jsW
2
jkW

4
`i] ≤ Cθ3

i θ
2
j θ

2
kθ`θ

2
s , if (j′, s′, k′) = (j, k, s), i′ = i, `′ = `;

η2
i ηkηs E[W 2

jsW
2
jkW

2
`iW

2
`′i] ≤ Cθ4

i θ
2
j θ

2
kθ`θ

2
sθ`′ , if (j′, s′, k′) = (j, k, s), i′ = i, `′ 6= `;

ηiηi′ηkηs E[W 2
jsW

2
jkW

2
`iW

2
`′i′ ] ≤ Cθ2

i θ
2
j θ

2
kθ`θ

2
sθ

2
i′θ`′ , if (j′, s′, k′) = (j, k, s), i 6= i′;

0, otherwise.

It follows that

Var(Z∗2a) =
16

v2

∑
i,j,k,`(dist)

i′,j′,k′,`′(dist)

ηiηkηi′ηk′ · E[WjsWjkW
2
`i ·Wj′s′Wj′k′W

2
`′i′ ]

≤ C

‖θ‖41

(
‖θ‖63‖θ‖2‖θ‖21 + ‖θ‖44‖θ‖33‖θ‖2‖θ‖31 + ‖θ‖33‖θ‖6‖θ‖31

+ ‖θ‖33‖θ‖6‖θ‖1 + ‖θ‖44‖θ‖6‖θ‖21 + ‖θ‖10‖θ‖21
)

≤ C‖θ‖6‖θ‖33
‖θ‖1

,

where the last inequality is obtained similarly as in the calculation of Var(Z̃2a). Last, consider

Z†2a. Write

Z†2a =
2

v

∑
i,j,k,`(dist)

ηiηkW
2
j`WjkW`i +

2

v

∑
i,j,k,`(dist)

s/∈{j,k},t/∈{`,i}
(s,t) 6=(`,j)

ηiηkWjsWjkW`tW`i (2.E.138)
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Regarding the first term, we note that

ηiηkηi′ηk′ · E[W 2
j`WjkW`i ·W 2

j′`′Wj′k′W`′i′ ]

=



η2
i η

2
k E[W 2

jkW
2
`iW

4
j`] ≤ Cθ3

i θ
2
j θ

3
kθ

2
` , if (j′, k′) = (j, k), (i′, `′) = (i, `);

ηiη
2
kη` E[W 2

jkW
2
`iW

2
j`W

2
ji] ≤ Cθ3

i θ
3
j θ

3
kθ

3
` , if (j′, k′) = (j, k), (i′, `′) = (`, i);

η2
i ηkη` E[W 2

jkW
2
`iW

2
j`W

2
k`] ≤ Cθ3

i θ
2
j θ

3
kθ

4
` , if (j′, k′) = (k, j), (i′, `′) = (i, `);

ηiηkη`ηj E[W 2
jkW

2
`iW

2
j`W

2
ki] ≤ Cθ3

i θ
3
j θ

3
kθ

3
` , if (j′, k′) = (k, j), (i′, `′) = (`, i);

0, otherwise.

It follows that

Var
(2

v

∑
i,j,k,`(dist)

ηiηkW
2
j`WjkW`i

)
≤ C

‖θ‖41

∑
i,j,k,`

(θ3
i θ

2
j θ

3
kθ

2
` + θ3

i θ
3
j θ

3
kθ

3
` + θ3

i θ
2
j θ

3
kθ

4
` )

≤ C

‖θ‖41

(
‖θ‖63‖θ‖4 + ‖θ‖12

3 + ‖θ‖44‖θ‖63‖θ‖2
)

≤C‖θ‖
6
3‖θ‖4

‖θ‖41
.

Regarding the second term in (2.E.138). We note that, for ηiηkWjsWjkW`tW`i and ηi′ηk′Wj′s′Wj′k′W`′t′W`′i′

to be correlated, all the W terms have to be perfectly paired. It turns out that

E[WjsWjkW`tW`i ·Wj′s′Wj′k′W`′t′W`′i′ ] = E[W 2
jsW

2
jkW

2
`tW

2
`i].

To perfectly pair the W terms, there are two possible cases: (i) (j′, `′) = (j, `), {s′, k′} =

{s, k}, {`′, i′} = {`, i}. (ii) (j′, `′) = (`, j), {s′, k′} = {`, i}, {`′, i′} = {s, k}. As a result,

ηiηkηi′ηk′ only has the following possibilities:

ηiηk(ηiηk) = η2
i η

2
k, ηiηk(ηiηs) = η2

i ηkηs, ηiηk(η`ηk) = ηiη
2
kη`, ηiηk(η`ηs) = ηiηkη`ηs,

ηiηk(ηkηi) = η2
i η

2
k, ηiηk(ηkη`) = ηiη

2
kη`, ηiηk(ηsηi) = η2

i ηkηs, ηiηk(ηsη`) = ηiηkη`ηs.

By symmetry, there are only three different types: η2
i η

2
k, η

2
i ηkηs, and ηiηkη`ηs. It follows

that

Var
(2

v

∑
i,j,k,`(dist)

s/∈{j,k},t/∈{`,i},(s,t) 6=(`,j)

ηiηkWjsWjkW`tW`i

)

≤ C

‖θ‖41

∑
i,j,k,`,s,t

(θ2
i θ

2
k + θ2

i θkθs + θiθkθ`θs) · θ2
j θsθkθ

2
` θtθi

≤ C

‖θ‖41

∑
i,j,k,`,s,t

(θ3
i θ

2
j θ

3
kθ

2
` θsθt + θ3

i θ
2
j θ

2
kθ

2
` θ

2
sθt + θ2

i θ
2
j θ

2
kθ

3
` θ

2
sθt)

≤ C

‖θ‖41

(
‖θ‖63‖θ‖4‖θ‖21 + ‖θ‖33‖θ‖8‖θ‖1

)
≤ C‖θ‖4‖θ‖63

‖θ‖21
.

It follows that

Var(Z†2a) ≤
C‖θ‖4‖θ‖63
‖θ‖21

.

Comparing the variances of Z̃2a, Z
∗
2a and Z†2a, we find out that the variance of Z∗2a dominates.
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As a result,

Var(Z2a) ≤ 3Var(Z̃2a) + 3Var(Z∗2a) + 3Var(Z†2a) ≤
C‖θ‖6‖θ‖33
‖θ‖1

. (2.E.139)

Second, we study Z2b. It is seen that

Z2b = 2
∑

i,j,k,`(dist)

ηi

(
− 1√

v

∑
s 6=j

Wjs

)
Wjk

(
− 1√

v

∑
t6=k

Wkt

)
η`W`i

=
2

v

∑
i,j,k,`(dist)
s 6=j,t6=k

ηiη`WjsWjkWktW`i.

We divide summands into four groups: (i) s = k and t = j, (ii) s = k and t 6= j, (iii) s 6= k

and t = j, (iv) s 6= k and t 6= j. By index symmetry, the sums of group (ii) and group (iii)

are equal. We end up with

Z2b =
2

v

∑
i,j,k,`(dist)

ηiη`W
3
jkW`i +

4

v

∑
i,j,k,`(dist),t/∈{k,j}

ηiη`W
2
jkWktW`i

+
2

v

∑
i,j,k,`(dist),s 6={j,k},t6={j,k}

ηiη`WjsWjkWktW`i

≡ Z̃2b + Z∗2b + Z†2b.

It is easy to see that all three terms have mean zero. Therefore,

E[Z2b] = 0. (2.E.140)

We then bound the variances. Consider Z̃2b first. By direct calculations,

ηiη`ηi′η`′ · E[W 3
jkW`i ·W 3

j′k′W`′i′ ]

=


η2
i η

2
` · E[W 6

jkW
2
`i] ≤ Cθ3

i θjθkθ
3
` , if {j′, k′} = {j, k}, {`′, i′} = {`, i};

ηiη`ηjηk · E[W 4
jkW

4
`i] ≤ Cθ2

i θ
2
j θ

2
kθ

2
` , if {j′, k′} = {`, i}, {`′, i′} = {j, k};

0, otherwise.

It follows that

Var(Z̃2b) ≤
C

‖θ‖41

(∑
i,j,k,`

θ3
i θjθkθ

3
` +

∑
i,j,k,`

θ2
i θ

2
j θ

2
kθ

2
`

)
≤ C

‖θ‖41

(
‖θ‖63‖θ‖21 + ‖θ‖8

)
≤ C‖θ‖63
‖θ‖21

.
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Consider Z∗2b next. By direct calculations,

ηiη`ηi′η`′ · E[W 2
jkWktW`i ·W 2

j′k′Wk′t′W`′i′ ]

=



η2
i η

2
` E[W 4

jkW
2
ktW

2
`i] ≤ Cθ3

i θjθ
2
kθ

3
` θt, if (k′, t′) = (k, t), {`′, i′} = {`, i}, j′ = j;

η2
i η

2
` E[W 2

jkW
2
ktW

2
`iW

2
j′k] ≤ Cθ3

i θjθ
3
kθ

3
` θtθj′ , if (k′, t′) = (k, t), {`′, i′} = {`, i}, j′ 6= j;

η2
i η

2
` E[W 2

jkW
2
ktW

2
`iW

2
j′t] ≤ Cθ3

i θjθ
2
kθ

3
` θ

2
t θj′ , if (k′, t′) = (t, k), {`′, i′} = {`, i};

ηiη`ηkηt E[W 2
jkW

2
ktW

4
`i] ≤ Cθ2

i θjθ
3
kθ

2
` θ

2
t , if (k′, t′) = (`, i), {`′, i′} = {k, t}, j′ = i;

ηiη`ηkηt E[W 2
jkW

2
ktW

2
`iW

2
j′`] ≤ Cθ2

i θjθ
3
kθ

3
` θ

2
t θj′ , if (k′, t′) = (`, i), {`′, i′} = {k, t}, j′ 6= i;

ηiη`ηkηt E[W 2
jkW

2
ktW

4
`i] ≤ Cθ2

i θjθ
3
kθ

2
` θ

2
t , if (k′, t′) = (i, `), {`′, i′} = {k, t}, j′ = `;

ηiη`ηkηt E[W 2
jkW

2
ktW

2
`iW

2
j′i] ≤ Cθ3

i θjθ
3
kθ

2
` θ

2
t θj′ , if (k′, t′) = (i, `), {`′, i′} = {k, t}, j′ 6= `;

η2
i η

2
` E[W 3

jkW
3
ktW

2
`i] ≤ Cθ3

i θjθ
2
kθ

3
` θt, if (k′, t′, j′) = (k, j, t), {i′, `′} = {i, `};

0, otherwise.

There are only two four types on the right hand side. It follows that

Var(Z∗2b) ≤
C

‖θ‖41

( ∑
i,j,k,`,t,j′

θ3
i θjθ

3
kθ

3
` θtθj′ +

∑
i,j,k,`,t,j′

θ3
i θjθ

2
kθ

3
` θ

2
t θj′

+
∑

i,j,k,`,t

θ3
i θjθ

2
kθ

3
` θt +

∑
i,j,k,`,t

θ2
i θjθ

3
kθ

2
` θ

2
t

)
≤ C

‖θ‖41

(
‖θ‖93‖θ‖31 + ‖θ‖63‖θ‖4‖θ‖21 + ‖θ‖63‖θ‖2‖θ‖21 + ‖θ‖33‖θ‖6‖θ‖1

)
≤ C‖θ‖93
‖θ‖1

.

Last, consider Z†2b. By direct calculations,

ηiη`ηi′η`′ · E[WjsWjkWktW`i ·Wj′s′Wj′k′Wk′t′W`′i′ ]

=


η2
i η

2
` E[W 2

jsW
2
jkW

2
ktW

2
`i] ≤ Cθ3

i θ
2
j θ

2
kθ

3
` θsθt, if (j′, s′) = (j, s), (k′, t′) = (k, t), {`′, i′} = {`, i};

η2
i η

2
` E[W 2

jsW
2
jkW

2
ktW

2
`i] ≤ Cθ3

i θ
2
j θ

2
kθ

3
` θsθt, if (j′, s′) = (k, t), (k′, t′) = (j, s), {`′, i′} = {`, i};

0, otherwise.

It follows that

Var(Z†2b) ≤
C

‖θ‖41

∑
i,j,k,`,s,t

θ3
i θ

2
j θ

2
kθ

3
` θsθt ≤

C‖θ‖4‖θ‖63
‖θ‖21

.

Since ‖θ‖1‖θ‖33 ≥ ‖θ‖4 → ∞, the variance of Z∗2b dominates the variances of Z̃2b and Z†2b.

We thus have

Var(Z2b) ≤ 3Var(Z̃2b) + 3Var(Z∗2b) + 3Var(Z†2b) ≤
C‖θ‖93
‖θ‖1

. (2.E.141)

We now combine (2.E.137), (2.E.139), (2.E.140), and (2.E.141). Since ‖θ‖63 ≤ θ2
max‖θ‖4 �

‖θ‖6, the right hand side of (2.E.141) is much smaller than the right hand side of (2.E.139).

It yields that

E[Z2] = 2‖θ‖4 · [1 + o(1)], Var(Z2) ≤ C‖θ‖6‖θ‖33
‖θ‖1

= o(‖θ‖8).
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This proves the claims of Z2.

Proof of Lemma 21

It suffices to prove the claims for each of Z1-Z6. We have analyzed Z1-Z2 under the null

hypothesis. The proof for the alternative hypothesis is similar and omitted. We obtain that∣∣E[Z1]
∣∣ ≤ C‖θ‖4, Var(Z1) ≤ C‖θ‖2‖θ‖63 = o(‖θ‖8),∣∣E[Z2]
∣∣ ≤ C‖θ‖4, Var(Z2) ≤ C‖θ‖6‖θ‖33

‖θ‖1
= o(‖θ‖8).

First, we analyze Z3. Since δij = ηi(ηj − η̃j) + ηj(ηi − η̃i), we have

Z3 =
∑
i,j,k,`
(dist)

ηi(ηj − η̃j)ηj(ηk − η̃k)Ω̃k`W`i +
∑
i,j,k,`
(dist)

ηi(ηj − η̃j)2ηkΩ̃k`W`i

+
∑
i,j,k,`
(dist)

(ηi − η̃i)η2
j (ηk − η̃k)Ω̃k`W`i +

∑
i,j,k,`
(dist)

(ηi − η̃i)ηj(ηj − η̃j)ηkΩ̃k`W`i

≡ Z3a + Z3b + Z3c + Z3d. (2.E.142)

First, we study Z3a. By direct calculations,

Z3a =
∑

i,j,k,`(dist)

ηi

(
− 1√

v

∑
s 6=j

Wjs

)
ηj

(
− 1√

v

∑
t6=k

Wkt

)
Ω̃k`W`i

=
1

v

∑
i,j,k,`(dist)
s6=j,t6=k

βijk`WjsWktW`i, where βijk` = ηiηjΩ̃k`.

Since (i, j, k, `) are distinct, all summands have mean zero. Hence,

E[Z3a] = 0. (2.E.143)

To bound its variance, re-write

Z3a =
1

v

∑
i,j,k,`(dist)

βijk`W
2
jkW`i +

1

v

∑
i,j,k,`(dist)

s 6=j,t6=k,(s,t)6=(k,j)

βijk`WjsWktW`i

≡ Z̃3a + Z∗3a.

We note that |βijk`| ≤ Cαθiθjθkθ` by (2.E.110) and (2.E.117). Consider the variance of Z̃3a.

By direct calculations,

βijk`βi′j′k′`′ · Cov(W 2
jkW`i, W

2
j′k′W`′i′)

=


Cα2θ2

i θ
2
j θ

2
kθ

2
` E[W 4

jkW
2
`i] ≤ Cα2θ3

i θ
3
j θ

3
kθ

3
` , if {`′, i′} = {`, i}, {j′, k′} = {j, k};

Cα2θ2
i θjθkθ

2
` θj′θk′ E[W 2

jkW
2
j′k′W

2
`i] ≤ Cα2θ3

i θ
2
j θ

2
kθ

3
` θ

2
j′θ

2
k′ , if {`′, i′} = {`, i}, {j′, k′} 6= {j, k};

Cα2θ2
i θ

2
j θ

2
kθ

2
` E[W 3

jkW
3
`i] ≤ Cα2θ3

i θ
3
j θ

3
kθ

3
` , if {j′, k′} = {`, i}, {`′, i′} = {j, k};

0, otherwise.
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It follows that

Var(Z̃3a) ≤
Cα2

‖θ‖41

(∑
i,j,k,`

θ3
i θ

3
j θ

3
kθ

3
` +

∑
i,j,k,`,j′,k′

θ3
i θ

2
j θ

2
kθ

3
` θ

2
j′θ

2
k′

)
≤ Cα2

‖θ‖41

(
‖θ‖12

3 + ‖θ‖8‖θ‖63
)

≤ Cα2‖θ‖12
3

‖θ‖21
.

Consider the variance of Z∗3a. For WjsWktW`i and Wj′s′Wk′t′W`′i′ to be correlated, all

W terms have to be perfectly paired. By symmetry across indices, it reduces to three

cases: (i) (`′, i′) = (`, i), (j′, s′) = (j, s), (k′, t′) = (k, t); (ii) (`′, i′) = (j, s), (j′, s′) = (`, i),

(k′, t′) = (k, t); (iii) (`′, i′) = (j, s), (j′, s′) = (k, t), (k′, t′) = (`, i). It follows that

βijk`βi′j′k′`′ · E[WjsWktW`i ·Wj′s′Wk′t′W`′i′ ]

≤ Cα2(θiθjθkθ`)(θi′θj′θk′θ`′) · E[W 2
jsW

2
ktW

2
`i]

≤


Cα2θ2

i θ
2
j θ

2
kθ

2
`E[W 2

jsW
2
ktW

2
`i] ≤ Cα2θ3

i θ
3
j θ

3
kθ

3
` θsθt, case (i)

Cα2(θiθjθkθ`)(θsθ`θkθj)E[W 2
jsW

2
ktW

2
`i] ≤ Cα2θ2

i θ
3
j θ

3
kθ

3
` θ

2
sθt, case (ii)

Cα2(θiθjθkθ`)(θsθkθ`θj)E[W 2
jsW

2
ktW

2
`i] ≤ Cα2θ2

i θ
3
j θ

3
kθ

3
` θ

2
sθt, case (iii)

0, otherwise.

As a result,

Var(Z∗3a) ≤
C

‖θ‖41

( ∑
i,j,k,`,s,t

α2θ3
i θ

3
j θ

3
kθ

3
` θsθt +

∑
i,j,k,`,s,t

α2θ2
i θ

3
j θ

3
kθ

3
` θ

2
sθt

)
≤ Cα2

‖θ‖41

(
‖θ‖12

3 ‖θ‖21 + ‖θ‖4‖θ‖93‖θ‖1
)

≤ Cα2‖θ‖12
3

‖θ‖21
.

Combining the variance of Z̃3a and Z∗3a gives

Var(Z3a) ≤
Cα2‖θ‖12

3

‖θ‖21
. (2.E.144)

Second, we study Z3b. It is seen that

Z3b =
∑

i,j,k,`(dist)

ηi

(
− 1√

v

∑
s 6=j

Wjs

)(
− 1√

v

∑
t6=j

Wjt

)
ηkΩ̃k`W`i

=
1

v

∑
i,j,`(dist)
s 6=j,t6=j

( ∑
k/∈{i,j,`}

ηiηkΩ̃k`

)
WjsWjtW`i

≡ 1

v

∑
i,j,`(dist)
s 6=j,t6=j

βij`WjsWjtW`i,

where by (2.E.110) and (2.E.117),

|βij`| ≤
∑

k/∈{i,j,`}

|ηiηkΩ̃k`| ≤
∑
k

Cαθiθ
2
kθ` ≤ Cα‖θ‖2 · θiθ`. (2.E.145)
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We further decompose Z3b into

Z3b =
1

v

∑
i,j,`(dist)
s 6=j

βij`W
2
jsW`i +

1

v

∑
i,j,`(dist)

s,t(dist)/∈{j}

βij`WjsWjtW`i ≡ Z̃3b + Z∗3b.

It is easy to see that both terms have mean zero. It follows that

E[Z3b] = 0. (2.E.146)

To calculate the variance of Z̃3b, we note that

βij`βi′j′`′ · E[W 2
jsW`i ·W 2

j′s′W`′i′ ]

≤ Cα2‖θ‖4θiθi′θ`θ`′ · E[W 2
jsW`i ·W 2

j′s′W`′i′ ]

≤


Cα2‖θ‖4θ2

i θ
2
` · E[W 4

jsW
2
`i] ≤ Cα2‖θ‖4θ3

i θjθ
3
` θs if {`′, i′} = {`, i}, {j′, s′} = {j, s}

Cα2‖θ‖4θ2
i θ

2
` · E[W 2

jsW
2
`iW

2
j′s′ ] ≤ Cα2‖θ‖4θ3

i θjθ
3
` θsθj′θs′ , if {`′, i′} = {`, i}, {j′, s′} 6= {j, s};

Cα2‖θ‖4θiθ`θjθs · E[W 3
jsW

3
`i] ≤ Cα2‖θ‖4θ2

i θ
2
j θ

2
` θ

2
s , if {`′, i′} = {j, s}, {j′, s′} = {`, i};

0, otherwise.

It follows that

Var(Z̃3b) ≤
Cα2‖θ‖4

‖θ‖41

(∑
i,j,`,s

θ3
i θjθ

3
` θs +

∑
i,j,`,s,j′,s′

θ3
i θjθ

3
` θsθj′θs′ +

∑
i,j,`,s,j′,s′

θ2
i θ

2
j θ

2
` θ

2
s

)
≤ Cα2‖θ‖4

‖θ‖41

(
‖θ‖63‖θ‖21 + ‖θ‖63‖θ‖41 + ‖θ‖8

)
≤ Cα2‖θ‖4‖θ‖63.

To calculate the variance of Z∗3b, we note that E[WjsWjtW`i ·Wj′s′Wj′t′W`′i′ ] is nonzero only

if j′ = j, {s′, t′} = {s, t} and {`′, i′} = {`, i}. Combining it with (2.E.148) gives

Var(Z∗3b) ≤
C

v2

∑
i,j,`(dist)

s,t(dist)/∈{j}

β2
ij` · E[W 2

jsW
2
jtW

2
`i]

≤ C

‖θ‖41

∑
i,j,`,s,t

(α‖θ‖2θiθ`)2 · θ2
j θsθtθ`θi

≤ Cα2‖θ‖4

‖θ‖41

∑
i,j,`,s,t

θ3
i θ

2
j θ

3
` θsθt

≤ Cα2‖θ‖6‖θ‖63
‖θ‖21

.

Since ‖θ‖6 ≤ ‖θ‖4‖θ‖2 � ‖θ‖4‖θ‖1, the variance of Z̃3b dominates the variance of Z∗3b.

Combining the above gives

Var(Z3b) ≤ 2Var(Z̃3b) + 2Var(Z∗3b) ≤ Cα2‖θ‖4‖θ‖63. (2.E.147)
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Third, we study Z3c. It is seen that

Z3c =
∑

i,j,k,`(dist)

(
− 1√

v

∑
s 6=i

Wis

)
η2
j

(
− 1√

v

∑
t6=k

Wkt

)
Ω̃k`W`i

=
1

v

∑
i,k,`(dist)
s 6=i,t 6=k

( ∑
j /∈{i,k,`}

η2
j Ω̃k`

)
WisWktW`i

≡ 1

v

∑
i,k,`(dist)
s 6=i,t 6=k

βik`WisWktW`i,

where by (2.E.110) and (2.E.117),

|βik`| ≤
∑

j /∈{i,k,`}

|η2
j Ω̃k`| ≤

∑
j

Cαθ2
j θkθ` ≤ Cα‖θ‖2θkθ`. (2.E.148)

There are two cases for the indices: i = ` and i 6= `. We further decompose Z3c into

Z3c =
1

v

∑
i,k,`(dist)

t6=k

βik`W
2
i`Wkt +

1

v

∑
i,k,`(dist)
s/∈{i,`},t6=k

βik`WisWktW`i ≡ Z̃3c + Z∗3c.

It is easy to see that both terms have zero mean. Hence,

E[Z3c] = 0. (2.E.149)

To calculate the variance of Z̃3c, we note that W 2
i`Wkt and W 2

i′`′Wk′t′ are correlated only

when (i) {k′, t′} = {k, t} or (ii) {k′, t′} = {i, `} and {i′, `′} = {k, t}. By direct calculations,

βik`βi′k′`′ · E[W 2
i`Wkt ·W 2

i′`′Wk′t′ ]

≤ Cα2‖θ‖4θkθk′θ`θ`′ · E[W 2
i`Wkt ·W 2

i′`′Wk′t′ ]

≤



Cα2‖θ‖4θ2
kθ

2
` E[W 4

i`W
2
kt] ≤ Cα2‖θ‖4θiθ3

kθ
3
` θt, if (k′, t′) = (k, t), (i′, `′) = (i, `);

Cα2‖θ‖4θ2
kθ`θi E[W 4

i`W
2
kt] ≤ Cα2‖θ‖4θ2

i θ
3
kθ

2
` θt, if (k′, t′) = (k, t), (i′, `′) = (`, i);

Cα2‖θ‖4θkθ2
` θt E[W 4

i`W
2
kt] ≤ Cα2‖θ‖4θiθ2

kθ
3
` θ

2
t , if (k′, t′) = (t, k), (i′, `′) = (i, `);

Cα2‖θ‖4θkθtθ`θi E[W 4
i`W

2
kt] ≤ Cα2‖θ‖4θ2

i θ
2
kθ

2
` θ

2
t , if (k′, t′) = (t, k), (i′, `′) = (`, i);

Cα2‖θ‖4θ2
kθ`θ`′ E[W 2

i`W
2
ktW

2
i′`′ ] ≤ Cα2‖θ‖4θiθ3

kθ
2
` θtθi′θ

2
`′ , if (k′, t′) = (k, t), {i′, `′} 6= {i, `};

Cα2‖θ‖4θkθtθ`θ`′ E[W 2
i`W

2
ktW

2
i′`′ ] ≤ Cα2‖θ‖4θiθ2

kθ
2
` θ

2
t θi′θ

2
`′ , if (k′, t′) = (t, k), {i′, `′} 6= {i, `};

Cα2‖θ‖4θkθiθ`θt E[W 3
i`W

3
kt] ≤ Cα2‖θ‖4θ2

i θ
2
kθ

2
` θ

2
t , if (k′, t′) = (i, `), (i′, `′) = (k, t);

Cα2‖θ‖4θ2
kθiθ` E[W 3

i`W
3
kt] ≤ Cα2‖θ‖4θ2

i θ
3
kθ

2
` θt, if (k′, t′) = (i, `), (i′, `′) = (t, k);

Cα2‖θ‖4θkθ2
` θt E[W 3

i`W
3
kt] ≤ Cα2‖θ‖4θiθ2

kθ
3
` θ

2
t , if (k′, t′) = (`, i), (i′, `′) = (k, t);

Cα2‖θ‖4θ2
kθ

2
` E[W 3

i`W
3
kt] ≤ Cα2‖θ‖4θiθ3

kθ
3
` θt, if (k′, t′) = (`, i), (i′, `′) = (t, k);

0, otherwise.
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There are only five types on the right hand side. It follows that

Var(Z̃3c) ≤
Cα2‖θ‖4

‖θ‖41

(∑
i,k,`,t

θiθ
3
kθ

3
` θt +

∑
i,k,`,t

θ2
i θ

3
kθ

2
` θt +

∑
i,k,`,t

θ2
i θ

2
kθ

2
` θ

2
t

+
∑

i,k,`,t,i′,`′

θiθ
3
kθ

2
` θtθi′θ

2
`′ +

∑
i,k,`,t,i′,`′

θiθ
2
kθ

2
` θ

2
t θi′θ

2
`′

)
≤ Cα2‖θ‖4

‖θ‖41

(
‖θ‖63‖θ‖21 + ‖θ‖4‖θ‖33‖θ‖1 + ‖θ‖8 + ‖θ‖4‖θ‖33‖θ‖31 + ‖θ‖8‖θ‖21

)
≤ Cα2‖θ‖8‖θ‖33

‖θ‖1
,

where the last inequality is obtained as follows: Among the five terms in the brackets, the

first and third terms are dominated by the last term, and the second term is dominated by

the fourth term; it remains to compare the fourth term and the last term, where the fourth

term dominated because ‖θ‖4 ≤ ‖θ‖1‖θ‖33. To calculate the variance of Z∗3c, we write

Z∗3c =
1

v

∑
i,k,`(dist)

βik`W
2
ikW`i +

1

v

∑
i,k,`(dist)

s/∈{i,`},t6=k,(s,t)6=(k,i)

βik`WisWktW`i.

Regarding the first term, we note that

βik`βi′k′`′ · E[W 2
ikW`i ·W 2

i′k′W`′i′ ]

≤Cα2‖θ‖4θkθ`θk′θ`′ · E[W 2
ikW`i ·W 2

i′k′W`′i′ ]

≤



Cα2‖θ‖4θ2
kθ

2
` E[W 4

ikW
2
`i] ≤ Cα2‖θ‖4θ2

i θ
3
kθ

3
` , if (`′, i′) = (`, i), k′ = k;

Cα2‖θ‖4θkθ2
` θk′ E[W 2

ikW
2
`iW

2
ik′ ] ≤ Cα2‖θ‖4θ3

i θ
2
kθ

3
` θ

2
k′ , if (`′, i′) = (`, i), k′ 6= k;

Cα2‖θ‖4θiθkθ`θk′ E[W 2
ikW

2
`iW

2
`k′ ] ≤ Cα2‖θ‖4θ3

i θ
2
kθ

3
` θ

2
k′ , if (`′, i′) = (i, `);

Cα2‖θ‖4θ2
kθ

2
` E[W 3

ikW
3
`i] ≤ Cα2‖θ‖4θ2

i θ
3
kθ

3
` , if (`′, i′) = (k, i), k′ = `;

0, otherwise.

It follows that

Var
(1

v

∑
i,k,`(dist)

βik`W
2
ikW`i

)
≤ Cα2‖θ‖4

‖θ‖41

(∑
i,k,`

θ2
i θ

3
kθ

3
` +

∑
i,k,`,k′

θ3
i θ

2
kθ

3
` θ

2
k′

)
≤ Cα2‖θ‖4

‖θ‖41

(
‖θ‖2‖θ‖63 + ‖θ‖4‖θ‖63

)
≤ Cα2‖θ‖8‖θ‖63

‖θ‖41
.

Regarding the second term, we note that

βik`βi′k′`′ · E[WisWktW`i ·Wi′s′Wk′t′W`′i′ ]

≤ Cα2‖θ‖4θkθk′θ`θ`′ · E[WisWktW`i ·Wi′s′Wk′t′W`′i′ ]

≤



Cα2‖θ‖4θ2
kθ

2
` E[W 2

isW
2
ktW

2
`i] ≤ Cα2‖θ‖4θ2

i θ
3
kθ

3
` θsθt, if (i′, s′, `′) = (i, s, `), (k′, t′) = (k, t);

Cα2‖θ‖4θkθtθ2
` E[W 2

isW
2
ktW

2
`i] ≤ Cα2‖θ‖4θ2

i θ
2
kθ

3
` θsθ

2
t , if (i′, s′, `′) = (i, s, `), (k′, t′) = (t, k);

Cα2‖θ‖4θ2
kθ`θs E[W 2

isW
2
ktW

2
`i] ≤ Cα2‖θ‖4θ2

i θ
3
kθ

2
` θ

2
sθt, if (i′, s′, `′) = (i, `, s), (k′, t′) = (k, t);

Cα2‖θ‖4θkθtθ`θs E[W 2
isW

2
ktW

2
`i] ≤ Cα2‖θ‖4θ2

i θ
2
kθ

2
` θ

2
sθ

2
t , if (i′, s′, `′) = (i, `, s), (k′, t′) = (t, k);

0, otherwise.
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It follows that

Var
(1

v

∑
i,k,`(dist)
s/∈{i,`},t6=k,
(s,t)6=(k,i)

βik`WisWktW`i

)
≤ Cα2‖θ‖4

‖θ‖41

∑
i,k,`,
s,t

(θ2
i θ

3
kθ

3
` θsθt + θ2

i θ
2
kθ

3
` θsθ

2
t + θ2

i θ
2
kθ

2
` θ

2
sθ

2
t )

≤ Cα2‖θ‖4

‖θ‖41

(
‖θ‖2‖θ‖63‖θ‖21 + ‖θ‖6‖θ‖33‖θ‖1 + ‖θ‖10

)
≤ Cα2‖θ‖6‖θ‖63

‖θ‖21
.

We plug the above results into Z∗3c. Since ‖θ‖2 ≤ ‖θ‖1θmax � ‖θ‖21, we have
Cα2‖θ‖8‖θ‖63
‖θ‖41

�
Cα2‖θ‖6‖θ‖63
‖θ‖21

. It follows that

Var(Z∗3c) ≤
Cα2‖θ‖6‖θ‖63
‖θ‖21

.

Since ‖θ‖63 � ‖θ‖33‖θ‖1, the variance of Z∗3c is dominated by the variance of Z̃3c. It follows

that

Var(Z3c) ≤ 2Var(Z̃3c) + 2Var(Z∗3c) ≤
Cα2‖θ‖8‖θ‖33
‖θ‖1

. (2.E.150)

Last, we study Z3d. In the definition of Z3d, if we switch the two indices (j, k), then it

becomes

Z3d =
∑
i,j,k,`
(dist)

(ηi − η̃i)ηk(ηk − η̃k)ηjΩ̃j`W`i =
∑
i,j,k,`
(dist)

(ηkηjΩ̃j`)(ηi − η̃i)(ηk − η̃k).

At the same time, we recall that

Z3c =
∑
i,j,k,`
(dist)

(ηi − η̃i)η2
j (ηk − η̃k)Ω̃k`W`i =

∑
i,j,k,`
(dist)

(η2
j Ω̃k`)(ηi − η̃i)(ηk − η̃k).

Here, Z3d has a similar structure as Z3c. Moreover, in deriving the bound for Var(Z3c), we

have used |η2
j Ω̃k`| ≤ Cαθ2

j θkθ`. In the expression of Z3d above, we also have |ηkηjΩ̃j`| ≤
Cαθ2

j θkθ`. Therefore, we can use (2.E.149) and (2.E.150) to directly get

E[Z3d] = 0, Var(Z3d) ≤
Cα2‖θ‖8‖θ‖33
‖θ‖1

(2.E.151)

Now, we combine (2.E.143), (2.E.146), (2.E.149) and (2.E.150) to get

E[Z3] = 0.

We also combine (2.E.144), (2.E.147), (2.E.150)-(2.E.151). Since ‖θ‖4 ≤ ‖θ‖1‖θ‖33, the right

hand side of (2.E.150)-(2.E.151) is dominated by the right hand side of (2.E.147); since

‖θ‖63 � ‖θ‖21, the right hand side of (2.E.144) is negligible to the right hand side of (2.E.147).

It follows that

Var(Z3) ≤ Cα2‖θ‖4‖θ‖63.

This proves the claims of Z3.
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Next, we analyze Z4. Since δij = ηi(ηj − η̃j) + ηj(ηi − η̃i),
Z4 =

∑
i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jkηk(η` − η̃`)W`i +
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jk(ηk − η̃k)η`W`i

+
∑

i,j,k,`(dist)

(ηi − η̃i)ηjΩ̃jkηk(η` − η̃`)W`i +
∑

i,j,k,`(dist)

(ηi − η̃i)ηjΩ̃jk(ηk − η̃k)η`W`i.

If we relabel (i, j, k, `) as (`′, k′, j′, i′) in the last sum, it is equal to the first sum. Therefore,

Z4 = 2
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jkηk(η` − η̃`)W`i

+
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jk(ηk − η̃k)η`W`i

+
∑

i,j,k,`(dist)

(ηi − η̃i)ηjΩ̃jkηk(η` − η̃`)W`i

≡ Z4a + Z4b + Z4c. (2.E.152)

First, we study Z4a and Z4b. We show that they have the same structure as Z3c and

Z3a, respectively. In Z4a, by relabeling (i, j, k, `) as (`, k, j, i), we have

Z4a = 2
∑
i,j,k,`
(dist)

η`(ηk − η̃k)Ω̃kjηj(ηi − η̃i)Wi` = 2
∑
i,j,k,`
(dist)

(ηjη`Ω̃kj)(ηi − η̃i)(ηk − η̃k)W`i.

At the same time, we recall the definition of Z3c in (2.E.142):

Z3c =
∑
i,j,k,`
(dist)

(ηi − η̃i)η2
j (ηk − η̃k)Ω̃k`W`i =

∑
i,j,k,`
(dist)

(η2
j Ω̃k`)(ηi − η̃i)(ηk − η̃k)W`i.

It is seen that Z4a has a similar structure as Z3c does. Also, by (2.E.110) and (2.E.117),

in the expression of Z4a, we have |ηjη`Ω̃kj | ≤ Cαθ2
j θkθ`, while in the expression of Z3d, we

have |η2
j Ω̃k`| ≤ Cαθ2

j θkθ`. As a result, if we use similar calculation as before, we will get the

same conclusion for Z4a and Z3d. Hence, we use (2.E.149)-(2.E.150) to conclude that

E[Z4a] = 0, Var(Z4a) ≤
Cα2‖θ‖8‖θ‖33
‖θ‖1

. (2.E.153)

For Z4b, we note that

Z4b =
∑
i,j,k,`
(dist)

ηi(ηj − η̃j)Ω̃jk(ηk − η̃k)η`W`i =
∑
i,j,k,`
(dist)

(ηiη`Ω̃jk)(ηj − η̃j)(ηk − η̃k)W`i,

where |ηiη`Ω̃jk| ≤ Cαθiθjθkθ`. At the same time, we recall the definition of Z3a in (2.E.142):

Z3a =
∑
i,j,k,`
(dist)

ηi(ηj − η̃j)ηj(ηk − η̃k)Ω̃k`W`i =
∑
i,j,k,`
(dist)

(ηiηjΩ̃k`)(ηj − η̃j)(ηk − η̃k)W`i,

where |ηiηjΩ̃k`| ≤ Cαθiθjθkθ`. Therefore, we can quote the results for Z3a in (2.E.143)-

(2.E.144) to get

E[Z4b] = 0, Var(Z4b) ≤
Cα2‖θ‖12

3

‖θ‖21
. (2.E.154)
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Second, we study Z4c. It is seen that

Z4c =
∑

i,j,k,`(dist)

(
− 1√

v

∑
s 6=i

Wis

)
ηjΩ̃jkηk

(
− 1√

v

∑
t6=`

W`t

)
W`i

=
1

v

∑
i,`(dist)
s 6=i,t 6=`

( ∑
j,k(dist)/∈{i,`}

ηjηkΩ̃jk

)
WisW`tW`i

≡ 1

v

∑
i,`(dist)
s 6=i,t 6=`

βi`WisW`tW`i,

where

|βi`| ≤
∑

j,k(dist)/∈{i,`}

|ηjηkΩ̃jk| ≤
∑
j,k

Cαθ2
j θ

2
k ≤ Cα‖θ‖4. (2.E.155)

We divide the summands into four groups: (i) s = `, t = i; (ii) s = `, t 6= i; (iii) s 6= `, t = i;

(iv) s 6= `, t 6= i. By symmetry, the sum of group (ii) and the sum of group (iii) are equal. It

yields that

Z4c =
1

v

∑
i,`(dist)

βi`W
3
`i +

2

v

∑
i,`(dist)
s/∈{i,`}

βi`WisW
2
`i +

1

v

∑
i,`(dist)

s/∈{i,`},t/∈{`,i}

βi`WisW`tW`i

≡ Z̃4c + Z∗4c + Z†4c.

Only Z̃4c has a nonzero mean. By (2.E.116) and (2.E.155),∣∣E[Z4c]
∣∣ =

∣∣E[Z̃4c]
∣∣ ≤ C

‖θ‖21

∑
i,`

α‖θ‖4θiθ` ≤ Cα‖θ‖4. (2.E.156)

We now compute the variances of these terms. It is seen that

Var(Z̃4c) ≤
C

v2

∑
i,`(dist)

β2
i`Var(W 3

i`) ≤
Cα2‖θ‖8

‖θ‖41

∑
i,`

θiθ` ≤
Cα2‖θ‖8

‖θ‖21
.

For Z∗4c, by direct calculations,

βi`βi′`′ · E[WisW
2
`i ·Wi′s′W

2
`′i′ ]

≤ Cα2‖θ‖8 · E[WisW
2
`i ·Wi′s′W

2
`′i′ ]

≤


Cα2‖θ‖8 · E[W 2

isW
4
`i] ≤ Cα2‖θ‖8θ2

i θ`θs, if i′ = i, s′ = s, `′ = `;

Cα2‖θ‖8 · E[W 2
isW

2
`iW

2
`′i] ≤ Cα2‖θ‖8θ3

i θ`θsθ`′ , if i′ = i, s′ = s, `′ 6= `;

Cα2‖θ‖8 · E[W 3
isW

3
`i] ≤ Cα2‖θ‖8θ2

i θ`θs, if i′ = i, s′ = `, `′ = s;

0, otherwise.

It follows that

Var(Z∗4c) ≤
Cα2‖θ‖8

‖θ‖41

(∑
i,`,s

θ2
i θ`θs +

∑
i,`,s,`′

θ3
i θ`θsθ`′

)
≤ Cα2‖θ‖8

‖θ‖41

(
‖θ‖2‖θ‖21 + ‖θ‖33‖θ‖31

)
≤ Cα2‖θ‖8‖θ‖33

‖θ‖1
,
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2. optimal adaptivity of signed-polygon statistics for network testing

where, to get the last line, we have used ‖θ‖2 � ‖θ‖4 ≤ ‖θ‖1‖θ‖33. Regarding the variance of

Z†4c, we note that WisW`tW`i and Wi′s′W`′t′W`′i′ are correlated only when the two undirected

paths s-i-`-t and s′-i′-`′-t′ are the same. Mimicking the argument in (2.E.121) or (2.E.126),

we can derive that

Var(Z†4c) ≤
C

v2

∑
i,`(dist)

s/∈{i,`},t/∈{`,i}

β2
i` ·Var(WisW`tW`i)

≤ Cα2‖θ‖8

‖θ‖41

∑
i,`,s,t

θ2
i θ

2
` θsθt

≤ Cα2‖θ‖12

‖θ‖21
.

Since ‖θ‖4 ≤ ‖θ‖1‖θ‖33, the variance of Z†4c is dominated by the variance of Z∗4c. Since

‖θ‖ → ∞, we have ‖θ‖33 � 1/‖θ‖1; it follows that the variance of Z̃4c is dominated by the

variance of Z∗4c. Combining the above gives

Var(Z4c) ≤ 3Var(Z̃4c) + 3Var(Z∗4c) + 3Var(Z†4c) ≤
Cα2‖θ‖8‖θ‖33
‖θ‖1

. (2.E.157)

We combine (2.E.153), (2.E.154) and (2.E.156) to get∣∣E[Z4]
∣∣ ≤ Cα‖θ‖4 = o(α4‖θ‖8).

We then combine (2.E.153), (2.E.154) and (2.E.157). Since ‖θ‖63 ≤ (θ2
max‖θ‖1)(θmax‖θ‖2) =

o(‖θ‖1‖θ‖2), the variance of Z4b is negligible compared to the variances of Z4a and Z4c. It

follows that

Var(Z4) ≤ Cα2‖θ‖8‖θ‖33
‖θ‖1

= o(‖θ‖8).

This proves the claims of Z4.

Next, we analyze Z5. By plugging in the definition of δij , we have

Z5 =
∑

i,j,k,`(dist)

ηi(ηj − η̃j)ηj(ηk − η̃k)Ω̃k`Ω̃`i +
∑

i,j,k,`(dist)

ηi(ηj − η̃j)2ηkΩ̃k`Ω̃`i

+
∑

i,j,k,`(dist)

(ηi − η̃i)η2
j (ηk − η̃k)Ω̃k`Ω̃`i +

∑
i,j,k,`(dist)

(ηi − η̃i)ηj(ηj − η̃j)ηkΩ̃k`Ω̃`i

= 2
∑

i,j,k,`(dist)

ηi(ηj − η̃j)ηj(ηk − η̃k)Ω̃k`Ω̃`i +
∑

i,j,k,`(dist)

ηi(ηj − η̃j)2ηkΩ̃k`Ω̃`i

+
∑

i,j,k,`(dist)

(ηi − η̃i)η2
j (ηk − η̃k)Ω̃k`Ω̃`i

≡ Z5a + Z5b + Z5c. (2.E.158)

First, we study Z5a. By definition, (η̃i − ηi) has the expression in (2.E.113). It follows

98



2.E. Properties of Signed Polygon statistics

that

Z5a = 2
∑

i,j,k,`(dist)

ηi

(
− 1√

v

∑
s 6=j

Wjs

)
ηj

(
− 1√

v

∑
t6=k

Wkt

)
Ω̃k`Ω̃`i

=
2

v

∑
j,k(dist)
s 6=j,t6=k

( ∑
i,`(dist)/∈{j,k}

ηiηjΩ̃k`Ω̃`i

)
WjsWkt

≡ 2

v

∑
j,k(dist)
s 6=j,t6=k

βjkWjsWkt,

where

|βjk| ≤
∑

i,`(dist)/∈{j,k}

|ηiηjΩ̃k`Ω̃`i| ≤
∑
i,`

(Cθiθj)(Cα
2θkθ

2
` θi) ≤ Cα2‖θ‖4θjθk. (2.E.159)

In Z5a, the summand has a nonzero mean only if (s, t) = (k, j). We further decompose Z5a

into

Z5a =
2

v

∑
j,k(dist)

βjkW
2
jk +

2

v

∑
j,k(dist)
s 6=j,t6=k,

(s,t)6=(k,j)

βjkWjsWkt ≡ Z̃5a + Z∗5a.

Only the first term has a nonzero mean. By (2.E.116) and (2.E.159), we have∣∣E[Z5a]
∣∣ =

∣∣E[Z̃5a]
∣∣ ≤ C

‖θ‖21

∑
j,k

(α2‖θ‖4θjθk)(θjθk) ≤
Cα2‖θ‖8

‖θ‖21
. (2.E.160)

We then compute the variances. In each of Z̃5a and Z∗5a, two summands are uncorrelated

unless they are exactly the same variables (e.g., when (j′, k′) = (k, j) in Z̃5a). Mimicking

the argument in (2.E.121) or (2.E.126), we can derive that

Var(Z̃5a) ≤
C

v2

∑
j,k(dist)

β2
jk Var(W 2

jk) ≤
Cα4‖θ‖8

‖θ‖41

∑
j,k

(θ2
j θ

2
k)θjθk ≤

Cα4‖θ‖8‖θ‖63
‖θ‖41

,

Var(Z∗5a) ≤
C

v2

∑
j,k(dist)
s 6=j,t6=k,

(s,t)6=(k,j)

β2
jk Var(WjsWkt) ≤

Cα4‖θ‖8

‖θ‖41

∑
j,k

(θ2
j θ

2
k)θjθsθkθt ≤

Cα4‖θ‖8‖θ‖63
‖θ‖21

.

It immediately leads to

Var(Z5a) ≤ 2Var(Z̃5a) + 2Var(Z∗5a) ≤
Cα4‖θ‖8‖θ‖63
‖θ‖21

. (2.E.161)

Second, we study Z5b. It is seen that

Z5b =
∑

i,j,k,`(dist)

ηi

(
− 1√

v

∑
s 6=j

Wjs

)(
− 1√

v

∑
t6=j

Wjt

)
ηkΩ̃k`Ω̃`i

=
1

v

∑
j,s6=j,t6=j

( ∑
i,k,`(dist)/∈{j}

ηiηkΩ̃k`Ω̃`i

)
WjsWjt

≡ 1

v

∑
j,s6=j,t6=j

βjWjsWjt,
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where

|βj | ≤
∑

i,k,`(dist)/∈{j}

|ηiηkΩ̃k`Ω̃`i| ≤
∑
i,k,`

(Cθiθk)(Cα
2θiθkθ

2
` ) ≤ Cα2‖θ‖6. (2.E.162)

In Z5b, the summand has a nonzero mean only if s = t. We further decompose Z5b into

Z5b =
1

v

∑
j,s(dist)

βjW
2
js +

1

v

∑
j

s,t(dist)/∈{j}

βjWjsWjt ≡ Z̃5b + Z∗5b.

Only Z̃5b has a nonzero mean. By (2.E.116) and (2.E.162),∣∣E[Z5b]
∣∣ =

∣∣E[Z̃5b]
∣∣ ≤ C

‖θ‖21

∑
j,s

(α2‖θ‖6)θjθs ≤ Cα2‖θ‖6. (2.E.163)

To compute the variance, we note that in each of Z̃5b and Z∗5b, two summands are uncorrelated

unless they are exactly the same random variables (e.g., when {j′, s′} = {s, j} in Z̃5b, and

when j′ = j and {s′, t′} = {s, t} in Z∗5b). Mimicking the argument in (2.E.121) or (2.E.126),

we can derive that

Var(Z̃5b) ≤
C

v2

∑
j,s(dist)

β2
j Var(W 2

js) ≤
Cα4‖θ‖12

‖θ‖41

∑
j,s

θjθs ≤
Cα4‖θ‖12

‖θ‖21
,

Var(Z∗5b) ≤
C

v2

∑
j

s,t(dist)/∈{j}

β2
j Var(WjsWjt) ≤

Cα4‖θ‖12

‖θ‖41

∑
j,s,t

θ2
j θsθt ≤

Cα4‖θ‖14

‖θ‖21
.

Combining the above gives

Var(Z5b) ≤ 2Var(Z̃5b) + 2Var(Z∗5b) ≤
Cα4‖θ‖14

‖θ‖21
. (2.E.164)

Third, we study Z5c. If we relabel (i, j, k, `) = (j, i, k, `), then Z5c becomes

Z5c =
∑
i,j,k,`
(dist)

(ηj − η̃j)η2
i (ηk − η̃k)Ω̃k`Ω̃`j =

∑
i,j,k,`
(dist)

(η2
i Ω̃k`Ω̃`j)(ηj − η̃j)(ηk − η̃k),

where |η2
i Ω̃k`Ω̃`j | ≤ Cα2θ2

i θjθkθ
2
` . At the same time, we recall that

Z5a = 2
∑
i,j,k,`
(dist)

ηi(ηj − η̃j)ηj(ηk − η̃k)Ω̃k`Ω̃`i =
∑
i,j,k,`
(dist)

(ηiηjΩ̃k`Ω̃`i)(ηj − η̃j)(ηk − η̃k),

where |ηiηjΩ̃k`Ω̃`i| ≤ Cα2θ2
i θjθkθ

2
` . It is easy to see that Z5c has a similar structure as Z5c.

As a result, from (2.E.160)-(2.E.161), we immediately have∣∣E[Z5c]
∣∣ ≤ Cα2‖θ‖8

‖θ‖21
, Var(Z5c) ≤

Cα4‖θ‖8‖θ‖63
‖θ‖21

. (2.E.165)

We now combine the results for Z5a-Z5c. Since ‖θ‖2 ≤ θmax‖θ‖1 � ‖θ‖21, E[Z5a] and

E[Z5c] are of a smaller order than the the right hand side of (2.E.163). Since ‖θ‖63 ≤
θ2

max‖θ‖4 � ‖θ‖6, Var(Z5a) and Var(Z5c) are of a smaller order than the right hand side of

(2.E.164). It follows that∣∣E[Z5]
∣∣ ≤ Cα2‖θ‖6 = o(α4‖θ‖8), Var(Z5) ≤ Cα4‖θ‖14

‖θ‖21
= o(α6‖θ‖8‖θ‖63).

We briefly explain why Var(Z5) = o(α6‖θ‖8‖θ‖63): since ‖θ‖4 ≤ ‖θ‖1‖θ‖33, we immediately
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have ‖θ‖14 ≤ ‖θ‖6(‖θ‖1‖θ‖33)2; it follows that the bound for Var(Z5) is ≤ Cα4‖θ‖6‖θ‖63; note

that α‖θ‖ → ∞, we immediately have α4‖θ‖6‖θ‖63 = o(α6‖θ‖8‖θ‖63). This proves the claims

of Z5.

Last, we analyze Z6. Plugging in the definition of δij , we have

Z6 =
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jkηk(η` − η̃`)Ω̃`i +
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jk(ηk − η̃k)η`Ω̃`i

+
∑

i,j,k,`(dist)

(ηi − η̃i)ηjΩ̃jkηk(η` − η̃`)Ω̃`i +
∑

i,j,k,`(dist)

(ηi − η̃i)ηjΩ̃jk(ηk − η̃k)η`Ω̃`i

= 2
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jkηk(η` − η̃`)Ω̃`i + 2
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jk(ηk − η̃k)η`Ω̃`i

≡ Z6a + Z6b.

By relabeling (i, j, k, `) as (i, j, `, k), we can write

Z6a = 2
∑
i,j,k,`
(dist)

ηi(ηj − η̃j)Ω̃j`η`(ηk − η̃k)Ω̃ki =
∑
i,j,k,`
(dist)

(ηiη`Ω̃j`Ω̃ki)(ηj − η̃j)(ηk − η̃k),

where |ηiη`Ω̃j`Ω̃ki| ≤ Cα2θ2
i θjθkθ

2
` . Also, we write

Z6b = 2
∑
i,j,k,`
(dist)

ηi(ηj − η̃j)Ω̃jk(ηk − η̃k)η`Ω̃`i = 2
∑
i,j,k,`
(dist)

(ηiη`Ω̃jkΩ̃`i)(ηj − η̃j)(ηk − η̃k).

where |ηiη`Ω̃jkΩ̃`i| ≤ Cα2θ2
i θjθkθ

2
` . At the same time, we recall that

Z5a = 2
∑
i,j,k,`
(dist)

ηi(ηj − η̃j)ηj(ηk − η̃k)Ω̃k`Ω̃`i =
∑
i,j,k,`
(dist)

(ηiηjΩ̃k`Ω̃`i)(ηj − η̃j)(ηk − η̃k),

where |ηiηjΩ̃k`Ω̃`i| ≤ Cα2θ2
i θjθkθ

2
` . It is clear that both Z6a and Z6b have a similar structure

as Z5a. From (2.E.160)-(2.E.161), we immediately have∣∣E[Z6]
∣∣ ≤ Cα2‖θ‖8

‖θ‖21
= o(α4‖θ‖8), Var(Z6) ≤ Cα4‖θ‖8‖θ‖63

‖θ‖21
= o(‖θ‖8).

This proves the claims of Z6.

Proofs of Lemmas 22 and 23

Recall that λ1, λ2, . . . , λK are all the nonzero eigenvalues of Ω, arranged in the descending

order in magnitude. Write for short α = |λ2|/|λ1|. We shall repeatedly use the following

results, which are proved in (2.E.110), (2.E.116), and (2.E.117):

v � ‖θ‖21, 0 < ηi < Cθi, |Ω̃ij | ≤ Cαθiθj .
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Recall that Uc = 4T1 +F , under the null hypothesis; Uc = 4T1 +4T2 +F under the alternative

hypothesis. By definition,

T1 =
∑

i1,i2,i3,i4(dist)

δi1i2δi2i3δi3i4Wi4i1 ,

T2 =
∑

i1,i2,i3,i4(dist)

δi1i2δi2i3δi3i4Ω̃i4i1 ,

F =
∑

i1,i2,i3,i4(dist)

δi1i2δi2i3δi3i4δi4i1 ,

where δij = ηi(ηj − η̃j) + ηj(ηi − η̃i), for 1 ≤ i, j ≤ n, i 6= j. By symmetry and elementary

algebra, we further write

T1 = 2T1a + 2T1b + 2T1c + 2T1d, (2.E.166)

where

T1a =
∑

i1,i2,i3,i4(dist)

ηi2ηi3ηi4
[
(ηi1 − η̃i1)(ηi2 − η̃i2)(ηi3 − η̃i3)

]
·Wi4i1 ,

T1b =
∑

i1,i2,i3,i4(dist)

ηi2η
2
i3

[
(ηi1 − η̃i1)(ηi2 − η̃i2)(ηi4 − η̃i4)

]
·Wi4i1 ,

T1c =
∑

i1,i2,i3,i4(dist)

ηi1ηi3ηi4
[
(ηi2 − η̃i2)2(ηi3 − η̃i3)

]
·Wi4i1 ,

T1d =
∑

i1,i2,i3,i4(dist)

ηi1η
2
i3

[
(ηi2 − η̃i2)2(ηi4 − η̃i4)

]
·Wi4i1 .

Similarly, we write

T2 = 2T2a + 2T2b + 2T2c + 2T2d, (2.E.167)

where

T2a =
∑

i1,i2,i3,i4(dist)

ηi2ηi3ηi4
[
(ηi1 − η̃i1)(ηi2 − η̃i2)(ηi3 − η̃i3)

]
· Ω̃i4i1 ,

T2b =
∑

i1,i2,i3,i4(dist)

ηi2η
2
i3

[
(ηi1 − η̃i1)(ηi2 − η̃i2)(ηi4 − η̃i4)

]
· Ω̃i4i1 ,

T2c =
∑

i1,i2,i3,i4(dist)

ηi1ηi3ηi4
[
(ηi2 − η̃i2)2(ηi3 − η̃i3)

]
· Ω̃i4i1 ,

T2d =
∑

i1,i2,i3,i4(dist)

ηi1η
2
i3

[
(ηi2 − η̃i2)2(ηi4 − η̃i4)

]
· Ω̃i4i1 .

Also, similarly, we have

F = 2Fa + 12Fb + 2Fc, (2.E.168)

where

Fa =
∑

i1,i2,i3,i4(dist)

ηi1ηi2ηi3ηi4
[
(ηi1 − η̃i1)(ηi2 − η̃i2)(ηi3 − η̃i3)(ηi4 − η̃i4)

]
,

Fb =
∑

i1,i2,i3,i4(dist)

ηi2η
2
i3ηi4

[
(ηi1 − η̃i1)2(ηi2 − η̃i2)(ηi4 − η̃i4)

]
,

Fc =
∑

i1,i2,i3,i4(dist)

η2
i2η

2
i4

[
(ηi1 − η̃i1)2(ηi3 − η̃i3)2

]
.
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To show the lemmas, it is sufficient to show the following 11 items (a)-(k), corresponding to

T1a, T1b, T1c, T1d, T2a, T2b, T2c, T2d, Fa, Fb, Fc, respectively. Item (a) claims that both under

the null and the alternative,

|E[T1a]| ≤ C‖θ‖6/‖θ‖21, Var(T1a) ≤ C‖θ‖4‖θ‖63/‖θ‖21. (2.E.169)

Item (b) claims that both under the null and the alternative,

|E[T1b]| ≤ C‖θ‖6/‖θ‖21, , Var(T1b) ≤ C‖θ‖6‖θ‖33/‖θ‖1. (2.E.170)

Item (c) claims that both under the null and the alternative,

E[T1c] = 0, Var(T1c) ≤ C‖θ‖93/‖θ‖1, (2.E.171)

Item (d) claims that

E[T1d] � −‖θ‖4 under the null,

|E[T1d]| ≤ C‖θ‖4 under the alternative, (2.E.172)

and that both under the null and the alternative,

Var(T1d) ≤ C‖θ‖6‖θ‖33/‖θ‖1. (2.E.173)

Next, for item (e)-(h), we recall that under the null, T2 = 0, and correspondingly T2a =

T2b = T2c = T2d = 0, so we only need to consider the alternative. Recall that α = |λ2/λ1|.
Item (e) claims that under the alternative,

E[T2a] = 0, Var(T2a) ≤ Cα2 · ‖θ‖4‖θ‖93/‖θ‖31. (2.E.174)

Item (f) claims that under the alternative,

E[T2b] = 0, Var(T2b) ≤ Cα2 · ‖θ‖12‖θ‖33/‖θ‖51, (2.E.175)

Item (g) claims that under the alternative,

|E[T2c]| ≤ Cα‖θ‖6/‖θ‖31, Var(T2c) ≤ Cα2 · ‖θ‖8‖θ‖33/‖θ‖1. (2.E.176)

Item (h) claims that both under the null and the alternative,

|E[T2d]| ≤ Cα‖θ‖6/‖θ‖31, Var(T2d) ≤ Cα2 · ‖θ‖8‖θ‖33/‖θ‖1. (2.E.177)

Finally, for items (i)-(k). Item (i) claims that both under the null and the alternative,

|E[Fa]| ≤ C‖θ‖8/‖θ‖41, Var(Fa) ≤ C‖θ‖12
3 /‖θ‖41. (2.E.178)

Item (j) claims that both under the null and the alternative,

|E[Fb]| ≤ C‖θ‖6/‖θ‖21, Var(Fb) ≤ C‖θ‖4‖θ‖63/‖θ‖21. (2.E.179)

Item (k) claims that

E[Fc] � ‖θ‖4 under the null,

|E[Fc]| ≤ C‖θ‖4 under the alternative, (2.E.180)

and that under both under the null and the alternative,

Var(F3) ≤ C‖θ‖10/‖θ‖21. (2.E.181)

We now show Lemmas 18 and 19 follow once (a)-(k) are proved. In detail, first, we note

that ‖θ‖6/‖θ‖21 = o(‖θ‖4). Inserting (2.E.172) and the first equation in each of (2.E.169)-

(2.E.171) into (2.E.166) gives that

E[T1] � −2‖θ‖4 under the null, |E[T1]| ≤ C‖θ‖4 under the alternative,
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and inserting (2.E.173) and the second equation in each of (2.E.169)-(2.E.171) into (2.E.166)

gives that both under the null and the alternative,

Var(T1) ≤ C[‖θ‖4‖θ‖63/‖θ‖21 + ‖θ‖6‖θ‖33/‖θ‖1 + ‖θ‖93/‖θ‖1 + ‖θ‖6‖θ‖33/‖θ‖1],

where since ‖θ‖33/‖θ‖2 = o(1) and ‖θ‖2/‖θ‖1 = o(1), the right hand side

≤ C[‖θ‖6‖θ‖33/‖θ‖21 + ‖θ‖6‖θ‖33/‖θ‖1] ≤ C‖θ‖6‖θ‖33/‖θ‖1.
Second, inserting the first equation in each of (2.E.174)-(2.E.177) into (2.E.167) gives that

under the alternative (recall that T2 = 0 under the null),

|E[T2]| ≤ Cα‖θ‖6/‖θ‖31,
and inserting the second equation in each of (2.E.174)-(2.E.177) into (2.E.167) gives

Var(T2) ≤ Cα2[‖θ‖8‖θ‖33/‖θ‖1 + ‖θ‖12‖θ‖33/‖θ‖51] ≤ Cα2‖θ‖8‖θ‖33/‖θ‖1,
where we have used ‖θ‖2 = o(‖θ‖21). Third, note that ‖θ‖8/‖θ‖41 = o(‖θ‖4) and ‖θ‖6/‖θ‖21 =

o(‖θ‖4). Inserting (2.E.180) and the first equation in each of (2.E.178)-(2.E.179) into

(2.E.168) gives

E[F ] ∼ 2‖θ‖4 under the null, |E[F ]| ≤ C‖θ‖4 under the alternative,

and inserting (2.E.181) and the second equation in each of (2.E.178)-(2.E.179) into (2.E.168)

gives that both under the null and the alternative,

Var(F ) ≤ C[‖θ‖12
3 /‖θ‖41 + ‖θ‖4‖θ‖63/‖θ‖21 + ‖θ‖10/‖θ‖21] ≤ C‖θ‖10/‖θ‖21,

where we have used ‖θ‖33 � θ‖2 � ‖θ‖1 and ‖θ‖33/‖θ‖2 = o(1).

We now combine the above results for T1, T2 and F . First, since that Uc = 4T1 + F

under the null, it follows that under the null,

E[Uc] ∼ −6‖θ‖4,
and

Var(Uc) ≤ C[‖θ‖6‖θ‖33/‖θ‖1 + ‖θ‖10/‖θ‖21] ≤ C‖θ‖6‖θ‖33/‖θ‖1,

where we have used ‖θ‖4 ≤ ‖θ‖1‖θ‖33 (a direct use of Cauchy-Schwartz inequality). Second,

since Uc = 4T1 + 4T2 + F under the alternative, it follows that under the alternative,

|E[Uc]| ≤ C‖θ‖4,
and

Var(Uc) ≤ C[‖θ‖6‖θ‖33/‖θ‖1+α2‖θ‖8‖θ‖33/‖θ‖1+‖θ‖10/‖θ‖21] ≤ C‖θ‖6‖θ‖33(α2‖θ‖2+1)/‖θ‖1,
where we have used ‖θ‖4 ≤ ‖θ‖1‖θ‖33 and basic algebra. Combining the above gives all the

claims in Lemmas 18 and 19.

It remains to show the 11 items (a)-(k). We consider them separately.

Consider Item (a). The goal is to show (2.E.169). Recall that

T1a =
∑

i1,i2,i3,i4(dist)

ηi2ηi3ηi4
[
(ηi1 − η̃i1)(ηi2 − η̃i2)(ηi3 − η̃i3)

]
·Wi4i1 ,

and that

η̃ − η = v−1/2W1n. (2.E.182)
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Plugging (2.E.182) into T11 gives

T1a = − 1

v3/2

∑
i1,i2,i3,i4(dist)

ηi2ηi3ηi4

( ∑
j1,j1 6=i1

Wi1j1

)( ∑
j2,j2 6=i2

Wi2j2

)( ∑
j3,j3 6=i3

Wi3j3

)
Wi4i1

= − 1

v3/2

∑
i1,i2,i3,i4(dist)

j1 6=i1,j2 6=i2,j3 6=i3

ηi2ηi3ηi4Wi1j1Wi2j2Wi3j3Wi1i4 .

By basic combinatorics and careful observations, we have

Wi1j1Wi2j2Wi3j3Wi1i4 =



W 2
i1i4

W 2
i2i3

, if j1 = i4, (j2, j3) = (i3, i2),

W 2
i1i4

Wi2j2Wi3j3 , if j1 = i4, (j2, j3) 6= (i3, i2),

W 2
i2i3

Wi1j1Wi1i4 , if j1 6= i4, (j2, j3) = (i3, i2),

W 2
i1i2

Wi3j3Wi1i4 , if (j1, j2) = (i2, i1),

W 2
i1i3

Wi2j2Wi1i4 , if (j1, j3) = (i3, i1),

Wi1j1Wi2j2Wi3j3Wi1i4 , otherwise.

(2.E.183)

This allows us to further split T11 into 6 different terms:

T1a = Xa +Xb1 +Xb2 +Xb3 +Xb4 +Xc, (2.E.184)

where

Xa = − 1

v3/2

∑
i1,i2,i3,i4(dist)

ηi2ηi3ηi4W
2
i1i4W

2
i2i3 ,

Xb1 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2,j3

(j2,j3)6={i3,i2}

ηi2ηi3ηi4W
2
i1i4Wi2j2Wi3j3 ,

Xb2 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j1(j1 6=i4)

ηi2ηi3ηi4W
2
i2i3Wi1j1Wi1i4 ,

Xb3 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j3(j3 6=i3)

ηi2ηi3ηi4W
2
i1i2Wi3j3Wi1i4 ,

Xb4 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2(j2 6=i2)

ηi2ηi3ηi4W
2
i1i3Wi2j2Wi1i4 ,

Xc = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j1,j2,j3

j1 /∈{i1,i4},(j2,j3)6=(i3,i2)
(j1,j2)6=(i2,i1),(j1,j3) 6=(i3,i1)

ηi2ηi3ηi4Wi1j1Wi2j2Wi3j3Wi1i4 .

We now show (2.E.169). Consider the first claim of (2.E.169). It is seen that out of the

6 terms on the right hand side of (2.E.184), the mean of all terms are 0, except for the first

term. Note that for any 1 ≤ i, j ≤ n, i 6= j, E[W 2
ij ] = Ωij(1 − Ωij), where Ωij are upper

bounded by o(1) uniformly for all such i, j. It follows

E[Xa] = −v−3/2
∑

i1,i2,i3,i4(dist)

ηi2ηi3ηi4E[W 2
i1i4 ]E[W 2

i2i3 ]

= −(1 + o(1)) · v−3/2
∑

i1,i2,i3,i4(dist)

ηi2ηi3ηi4Ωi1i4Ωi2i3 .
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Since for any 1 ≤ i, j ≤ n, i 6= j, 0 < ηi ≤ Cθi, Ωij ≤ Cθiθj and v � ‖θ‖21,

|E[Xa]| ≤ C(‖θ‖1)−3
∑

i1,i2,i3,i4(dist)

θi1θ
2
i2θ

2
i3θ

2
i4 ≤ C‖θ‖

6/‖θ‖21.

Inserting these into (2.E.184) gives

|E[T1a]| ≤ C‖θ‖6/‖θ‖21, (2.E.185)

and the first claim of (2.E.169) follows.

Consider the second claim of (2.E.169) next. By (2.E.184) and Cauchy-Schwartz inequal-

ity,

Var(T1a) ≤ CVar(Xa) + Var(Xb1) + Var(Xb2) + Var(Xb3) + Var(Xb4) + Var(Xc))

≤ C(Var(Xa) + E[X2
b1] + E[X2

b2] + E[X2
b3] + E[X2

b4] + E[X2
c ]). (2.E.186)

We now consider Var(Xa), E[X2
b1] + E[X2

b2] + E[X2
b3] + E[X2

b4], and E[X2
c ], separately.

Consider Var(Xa). Write Var(Xa) as

v−3
∑

i1,··· ,i4(dist)
i′1,··· ,i′4(dist)

ηi2ηi3ηi4ηi′2ηi′3ηi′4

E
[
(W 2

i1i4W
2
i2i3 − E[W 2

i1i4W
2
i2i3 ])(W 2

i′1i
′
4
W 2
i′2i
′
3
− E[W 2

i′1i
′
4
W 2
i′2i
′
3
])
]
. (2.E.187)

In the sum, a term is nonzero only when one of the following cases happens.

• (A). {Wi1i4 ,Wi2i3 ,Wi′1i
′
4
,Wi′2i

′
3
} has 2 distinct random variables.

• (B). {Wi1i4 ,Wi2,i3 ,Wi′1i
′
4
,Wi′2i

′
3
} has 3 distinct random variables. This has 4 sub-cases:

(B1) Wi1i4 = Wi′1i
′
4
, (B2) Wi1i4 = Wi′2i

′
3
, (B3) Wi2i3 = Wi′1i

′
4
, and (B4) Wi2i3 = Wi′2i

′
3
.

For Case (A), the two sets {i1, i2, i3, i4} and {i′1, i′2, i′3, i′4} are identical. By basic statistics

and independence between Wi1i4 and Wi2i3 ,

E[(W 2
i1i4W

2
i2i3 − E[W 2

i1i4W
2
i2i3 ])(W 2

i′1i
′
4
W 2
i′2i
′
3
− E[W 2

i′1i
′
4
W 2
i′2i
′
3
])]

=E[(W 2
i1i4W

2
i2i3 − E[W 2

i1i4W
2
i2i3 ])2]

=E[W 4
i1i4 ]E[W 4

i2i3 ]− (E[W 2
i1i4 ])2(E[W 2

i2i3 ])2

≤E[W 4
i1i4 ]E[W 4

i2i3 ], (2.E.188)

where by basic statistics and that Ωij ≤ Cθiθj for all 1 ≤ i, j ≤ n, i ≤ j, the right hand side

≤ CΩi1i4Ωi2i3 ≤ Cθi1θi2θi3θi4 .
Combining these with (2.E.187) and noting that v ∼ ‖θ‖21 and that 0 < ηi ≤ Cθi for all

1 ≤ i ≤ n, the contribution of this case to Var(Xa) is no more than

C(‖θ‖1)−6
∑

i1,··· ,i4(dist)

∑
a

θa1+1
i1

θa2+2
i2

θa3+2
i3

θa4+2
i4

, (2.E.189)

where a = (a1, a2, a3, a4) and each ai is either 0 and 1, satisfying a1 + a2 + a3 + a4 = 3. Note

that the right hand side of (2.E.189) is no greater than

C(‖θ‖1)−6 max{‖θ‖1‖θ‖93, ‖θ‖4‖θ‖63} ≤ C‖θ‖93/‖θ‖51,
where we have used ‖θ‖4 ≤ ‖θ‖1‖θ‖33.
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Next, consider (B1). By independence between Wi1i4 , Wi2i3 , and Wi′2i
′
3

and basic algebra,

E[(W 2
i1i4W

2
i2i3 − E[W 2

i1i4W
2
i2i3 ])(W 2

i′1i
′
4
W 2
i′2i
′
3
− E[W 2

i′1i
′
4
W 2
i′2i
′
3
])]

=E[(W 2
i1i4W

2
i2i3 − E[W 2

i1i4W
2
i2i3 ])(W 2

i1i4W
2
i′2i
′
3
− E[W 2

i1i4W
2
i′2i
′
3
])]

=E[W 4
i1i4 ]E[W 2

i2i3 ]E[W 2
i′2i
′
3
]− (E[W 2

i1i4 ])2E[W 2
i2i3 ]E[W 2

i′2i
′
3
]

=Var(W 2
i1i4)E[W 2

i2i3 ]E[W 2
i′2i
′
3
], (2.E.190)

where by similar arguments, the last term

≤ CΩi1i4Ωi2i3Ωi′2i
′
3
≤ Cθi1θi2θi3θi4θi′2θi′3 .

Combining this with (2.E.187) and using similar arguments, the contribution of this case to

Var(Xa)

≤ C(‖θ‖1)−6
∑

i1,i2,i3,i4(dist)
i′2,i
′
3(dist)

Cθb1+1
i1

θ2
i2θ

2
i3θ

b2+2
i4

θ2
i′2
θ2
i′3
, (2.E.191)

where similarly b1, b2 are either 0 or 1 and b1 + b2 = 1. By similar argument, the right hand

side

≤ C‖θ‖1‖θ‖8‖θ‖33/‖θ‖61 = C‖θ‖8‖θ‖33/‖θ‖51.

The discussion for (B2), (B3), and (B4) are similar so is omitted, and their contribution

to Var(Xa) are respectively

≤ C‖θ‖8‖θ‖33/‖θ‖51, (2.E.192)

≤ C‖θ‖8‖θ‖33/‖θ‖51, (2.E.193)

and

≤ C‖θ‖4‖θ‖63/‖θ‖41. (2.E.194)

Finally, inserting (2.E.189), (2.E.191), (2.E.192), (2.E.193), and (2.E.194) into (2.E.187)

gives

Var(Xa) ≤ C[‖θ‖93/‖θ‖51 + ‖θ‖8‖θ‖33/‖θ‖51 + ‖θ‖4‖θ‖63/‖θ‖41] ≤ C‖θ‖4‖θ‖63/‖θ‖41, (2.E.195)

where we have used ‖θ‖33 � ‖θ‖2 and ‖θ‖4 ≤ ‖θ‖1‖θ‖33.

Consider E[X2
b1] + E[X2

b21] + E[X2
b3] + E[X2

b4]. We claim that both under the null and

the alternative,

E[X2
b1] ≤ C‖θ‖4‖θ‖63/‖θ‖21, (2.E.196)

E[X2
b2] ≤ C‖θ‖8‖θ‖33/‖θ‖31, (2.E.197)

E[X2
b3] ≤ C‖θ‖6‖θ‖63/‖θ‖41, (2.E.198)

E[X2
b4] ≤ C‖θ‖6‖θ‖63/‖θ‖41, (2.E.199)

where the last two terms are seen to be negligible compared to the other two. Therefore,

E[X2
b1] + E[X2

b2] + E[X2
b3] + E[X2

b4] ≤ C[‖θ‖4‖θ‖63/‖θ‖21 + ‖θ‖8‖θ‖33/‖θ‖31], (2.E.200)

where since ‖θ‖4 ≤ ‖θ‖1‖θ‖33 (Cauchy-Schwartz inequality) the right hand side

≤ C[‖θ‖4‖θ‖63/‖θ‖21.
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We now prove (2.E.196)-(2.E.199). Since the study for E[X2
b1],E[X2

b2],E[X2
b3] and E[X2

b4]

are similar, we only present the proof for E[X2
b1]. Write E[X2

b1] as

v−3
∑

i1,i2,i3,i4(dist)
i′1,i
′
2,i
′
3,i
′
4(dist)

∑
j2,j3

(j2,j3) 6=(i3,i2)

∑
j′2,j
′
3

(j′2,j
′
3)6=(i′3,i

′
2)

ηi2ηi3ηi4ηi′2ηi′3ηi′4W
2
i1i4Wi2j2Wi3j3W

2
i′1i
′
4
Wi′2j

′
2
Wi′3j

′
3
.

Consider the term

W 2
i1i4Wi2j2Wi3j3W

2
i′1i
′
4
Wi′2j

′
2
Wi′3j

′
3
.

In order for the mean to be nonzero, we have two cases

• Case A. The two sets of random variables {Wi1i4 ,Wi2j2 ,Wi3j3} and {Wi′1i
′
4
,Wi′2j

′
2
,Wi′3j

′
3
}

are identical.

• Case B. The two sets {Wi2j2 ,Wi3j3} and {Wi′2j
′
2
,Wi′3j

′
3
} are identical.

Consider Case A. In this case, {i′2, i′3, i′4} are three distinct indices in {i1, i2, i3, i4, j2, j3},
and for some integers satisfying 0 ≤ a1, a2, . . . , a6 ≤ 1, a1 + a2 + . . .+ a6 = 3,

ηi2ηi3ηi4ηi′2ηi′3ηi′4 = ηa1
i1
η1+a2
i2

η1+a3
i3

η1+a4
i4

ηa5
j2
ηa6
j3

and for some integers satisfying 0 ≤ b1, b2, b3 ≤ 1, and b1 + b2 + b3 = 1,

W 2
i1i4Wi2j2Wi3j3W

2
i′1i
′
4
Wi′2j

′
2
Wi′3j

′
3

= W b1+3
i1i4

W b2+2
i2j2

W b3+2
i3j3

.

Similarly, by v ∼ ‖θ‖21, 0 < ηi ≤ Cθi, and uniformly for all b1, b2, b3 above,

0 < E[W b1+3
i1i4

W b2+2
i2j2

W b3+2
i3j3

] ≤ CΩi1i4Ωi2j2Ωi3j3 ≤ Cθi1θi2θi3θi4θj2θj3 .
Therefore under both the null and the alternative, the contribution of Case A to the variance

is

≤ C(‖θ‖1)−6
∑

i1,i2,i3,i4(dist)

∑
j2,j3

j2 6=i2,j3 6=i3,(j2,j3) 6=(i3,i2)

[
∑
a

θa1+1
i1

θa2+2
i2

θa3+2
i3

θa4+2
i4

θa5+1
j2

θa6+1
j3

],

(2.E.201)

where a = (a1, a2, . . . , a6) and ai satisfies the above constraints. Note that the right hand

size

≤ C(‖θ‖1)−6 ·max{‖θ‖31‖θ‖93, ‖θ‖21‖θ‖4‖θ‖63, ‖θ‖1‖θ‖8‖θ‖33, ‖θ‖12} ≤ C‖θ‖93/‖θ‖31.
Here in the last inequality we have used ‖θ‖2 ≤

√
‖θ‖1‖θ‖33.

Consider Case B. In this case, {i2, i3, j2, j3} = {i′2, i′3, j′2, j′3}, and for some integers

0 ≤ c1, c2, c3, c4 ≤ 1, c1 + c2 + c3 + c4 = 2,

ηi2ηi3ηi4ηi′2ηi′3ηi′4 = ηc1+1
i2

ηc2+1
i3

ηi4η
c3
j2
ηc4j3 ηi′4 ,

and

W 2
i1i4Wi2j2Wi3j3W

2
i′1i
′
4
Wi′2j

′
2
Wi′3j

′
3

= W 2
i1i4W

2
i2j2W

2
i3j3W

2
i′1i
′
4
,

where the four W terms on the right are independent of each other. Similarly, by v ∼ ‖θ‖21,

0 < ηi ≤ Cθi,
0 < E[W 2

i1i4W
2
i2j2W

2
i3j3W

2
i′1i
′
4
] ≤ CΩi1i4Ωi2j2Ωi3j3Ωi′1i

′
4
≤ Cθi1θi2θi3θi4θj2θj3θi′1θi′4 ,
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we have that under both the null and the alternative, the contribution of Case B to the

variance

≤ C(‖θ‖1)−6
∑

i1,i2,i3,i4(dist)
i′1,i
′
4(dist)

∑
j2,j3

(j2,j3)6=(i3,i2)

θi1θ
c1+2
i2

θc2+2
i3

θ2
i4θ

c3+1
j2

θc4+1
j3

θi′1θ
2
i′4
,

where the right hand size

≤ C(‖θ‖1)−6 ·‖θ‖21‖θ‖4 ·max{‖θ‖21‖θ‖63, ‖θ‖1‖θ‖4‖θ‖33, ‖θ‖8} ≤ C‖θ‖4‖θ‖63/‖θ‖21. (2.E.202)

Here we have again used ‖θ‖2 ≤
√
‖θ‖1‖θ‖33.

Finally, combining (2.E.201) and (2.E.202) gives

E[X2
b1] ≤ C(‖θ‖93/‖θ‖31 + ‖θ‖4‖θ‖63/‖θ‖21) ≤ C‖θ‖4‖θ‖63/‖θ‖21,

which proves (2.E.196).

Consider E[X2
c ]. Consider the terms in the sum,

ηi2ηi3ηi4Wi1j1Wi2j2Wi3j3Wi1i4 , and ηi′2ηi′3ηi′4Wi′1j
′
1
Wi′2j

′
2
Wi′3j

′
3
Wi′1i

′
4
.

Each term has a mean 0, and two terms are uncorrelated with each other if only if the

two sets of random variables {Wi1j1 ,Wi2j2 ,Wi3j3 ,Wi1i4} and {Wi′1j
′
1
,Wi′2j

′
2
,Wi′3j

′
3
,Wi′1i

′
4
} are

identical (however, it is possible that Wi1j1 does not equal to Wi1j′1
but equals to Wi′2j

′
2
, say).

Additionally, the indices i′2, i
′
3, i
′
4 ∈ {i1, i2, i3, i4, j1, j2, j3}, and it follows

E[X2
c ] ≤ Cv−3

∑
i1,i2,i3,i4(dist)

∑
j1,j2,j3

j1 /∈{i1,i4},(j1,j3)6=(i3,i1)
(j2,j3) 6=(i3,i2),(j2,j1)6=(i2,i1)

[
∑
a

ηa1
i1
ηa2+1
i2

ηa3+1
i3

ηa4+1
i4

ηa5
j1
ηa6
j2
ηa7
j3

] · E[W 2
i1j1W

2
i2j2W

2
i3j3W

2
i1j1 ],

where a = (a1, a2, · · · , a7) and the power 0 ≤ a1, a2, · · · , a7 ≤ 1, and a1 + a2 + · · ·+ a7 = 3.

Note that Wi1j1 ,Wi2j2 ,Wi3j3 and Wi1i4 are independent and E(W 2
ij) ≤ Ωij ≤ Cθiθj , 1 ≤

i, j ≤ n, i 6= j,

E[W 2
i1j1W

2
i2j2W

2
i3j3W

2
i1i4 ] ≤ Ωi1j1Ωi2j2Ωi3j3Ωi1i4 ≤ Cθ2

i1θi2θi3θi4θj1θj2θj3 .

Also, recall that both under the null and the alternative, v � ‖θ‖21 and 0 < ηi ≤ Cθi,

1 ≤ i ≤ n. Combining these gives

E[X2
c ] ≤ C(‖θ‖1)−6

∑
i1,i2,i3,i4(dist)

∑
j1,j2,j3

j1 /∈{i1,i4},(j1,j3) 6=(i3,i1)
(j2,j3)6=(i3,i2),(j2,j1)6=(i2,i1)

[
∑
a

ηa1+2
i1

ηa2+2
i2

ηa3+2
i3

ηa4+2
i4

ηa5+1
j1

ηa6+1
j2

ηa7+1
j3

],

where the last term

≤ C
∑
a

‖θ‖a1+2
a1+2 · ‖θ‖

a2+2
a2+2 · ‖θ‖

a3+2
a3+2 · ‖θ‖

a4+2
a4+2‖θ‖

a5+1
a5+1‖θ‖

a6+1
a6+1‖θ‖

a7+1
a7+1/‖θ‖

6
1.

Since a1, a2, · · · , a7 have to take values from {0, 1} and their sum is 3, the above term

≤ C‖θ‖2‖θ‖93/‖θ‖31 = o(‖θ‖33),

where we have used ‖θ‖33 � ‖θ‖22 � ‖θ‖1. Combining these gives

E[X2
c ] ≤ C‖θ‖2‖θ‖93/‖θ‖31. (2.E.203)
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Finally, inserting (2.E.195), (2.E.200), and (2.E.203) into (2.E.184) gives that both under

the null and the alternative,

Var(T11) ≤ C[‖θ‖8/‖θ‖41 + ‖θ‖4‖θ‖63/‖θ‖21 + ‖θ‖2‖θ‖93/‖θ‖31] ≤ C‖θ‖4‖θ‖63/‖θ‖21,
where we have used ‖θ‖4 ≤ ‖θ‖1‖θ‖33 and ‖θ‖33/‖θ‖1 = o(1). This gives (2.E.169) and

completes the proof for Item (a).

Consider Item (b). The goal is to show (2.E.170). Recall that

T1b =
∑

i1,i2,i3,i4(dist)

ηi2η
2
i3

[
(ηi1 − η̃i1)(ηi2 − η̃i2)(ηi4 − η̃i4)

]
·Wi4i1 ,

and that

η̃ − η = v−1/2W1n.

Plugging this into T1b gives

T1b = −v−3/2
∑

i1,i2,i3,i4(dist)

ηi2η
2
i3

(∑
j1 6=i1

Wi1j1

)(∑
j2 6=i2

Wi2j2

)(∑
j4 6=i4

Wi4j4

)
Wi1i4

= − 1

v3/2

∑
i1,i2,i3,i4(dist)

j1 6=i1,j2 6=i2,j4 6=i4

ηi2η
2
i3Wi1j1Wi2j2Wi4j4Wi1i4 .

By basic combinatorics and careful observations, we have

Wi1j1Wi2j2Wi4j4Wi1i4 =



W 3
i1i4

Wi2j2 , if j1 = i4, j4 = i1,

W 2
i1i2

W 2
i1i4

, if j1 = i2, j2 = i1, j4 = i1,

W 2
i1i4

W 2
i2i4

, if j1 = i4, j2 = i4, j4 = i2,

W 2
i1i2

Wi4j4Wi1i4 , if j1 = i2, j2 = i1,

W 2
i1i4

Wi1j1Wi2j2 , if j4 = i1,

W 2
i1i4

Wi2j2Wi4j4 , if j1 = i4, {i2, j2} 6= {i4, j4},
W 2
i2i4

Wi1j1Wi1i4 , if j2 = i4, j4 = i2,

Wi1j1Wi2j2Wi4j4Wi1i4 , otherwise.

(2.E.204)

This allows us to further split T1b into 8 different terms:

T1b = Ya1 + Ya2 + Ya3 + Yb1 + Yb2 + Yb3 + Yb4 + Yc, (2.E.205)
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2.E. Properties of Signed Polygon statistics

where

Ya1 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2(j2 6=i2)

ηi2η
2
i3W

3
i1i4Wi2j2 ,

Ya2 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

ηi2η
2
i3W

2
i1i2W

2
i1i4 ,

Ya3 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

ηi2η
2
i3W

2
i1i4W

2
i2i4 ,

Yb1 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j4(j4 6=i4)

ηi2η
2
i3W

2
i1i2Wi4j4Wi1i4 ,

Yb2 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j1(j1 6=i1),j2(j2 6=i2)
{i1,j1}6={i2,j2}

ηi2η
2
i3W

2
i1i4Wi1j1Wi2j2 ,

Yb3 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2(j2 6=i2),j4(j4 6=i4)
{i2,j2}6={i4,j4}

ηi2η
2
i3W

2
i1i4Wi2j2Wi4j4 ,

Yb4 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j1(j1 6=i1)

ηi2η
2
i3W

2
i2i4Wi1j1Wi1i4 ,

Yc = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j1,j2,j4

j1 /∈{i2,i4},j2 /∈{i1,i4},j4 /∈{i1,i2}

ηi2η
2
i3Wi1j1Wi2j2Wi4j4Wi1i4 .

We now show the two claims in (2.E.170) separately.

Consider the first claim of (2.E.170). It is seen that out of the 8 terms on the right hand

side of (2.E.232), the mean of all terms are 0, except that of the Ya2 and Ya3. Note that

for any 1 ≤ i, j ≤ n, i 6= j, E[W 2
ij ] = Ωij(1 − Ωij), where Ωij are upper bounded by o(1)

uniformly for all such i, j. It follows

E[Ya2] = − 1

v3/2

∑
i1,i2,i3,i4(dist)

ηi2η
2
i3E[W 2

i1i2 ]E[W 2
i1i4 ]

= −(1 + o(1)) · v−3/2
∑

i1,i2,i3,i4(dist)

ηi2η
2
i3Ωi1i2Ωi1i4 .

Since for any 1 ≤ i, j ≤ n, i 6= j, 0 < ηi ≤ Cθi, Ωij ≤ Cθiθj and v � ‖θ‖21,

|E[Ya2]| ≤ C(‖θ‖1)−3
∑

i1,i2,i3,i4(dist)

θ2
i1θ

2
i2θ

2
i3θi4 ≤ C‖θ‖

6/‖θ‖21.

Therefore,

|E[Ya2]| ≤ C‖θ‖6/‖θ‖21. (2.E.206)

By symmetry, we similarly find

|E[Ya3]| ≤ C‖θ‖6/‖θ‖21. (2.E.207)

Combining (2.E.206) and (2.E.207) gives

E[|T1b|] ≤ C‖θ‖6/‖θ‖21.
This completes the proof of the first claim of (2.E.170).
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We now show the second claim of (2.E.170) . By Cauchy-Schwartz inequality,

Var(T1b) ≤ C(Var(Ya1) + Var(Ya2) + Var(Ya3) +

4∑
s=1

Var(Ybs) + Var(Yc))

≤ C(Var(Ya1) + Var(Ya2) + Var(Ya3) +

4∑
s=1

E[Y 2
bs] + E[Y 2

c ]). (2.E.208)

We now show Var(Ya1), Var(Ya2), Var(Ya3),
∑4

s=1 E[Y 2
bs], and E[Y 2

c ], separately.

Consider Var(Ya1). Recalling E[Ya1] = 0, we write Var(Ya1) as

v−3
∑

i1,i2,i3,i4(dist)
i′1,i
′
2,i
′
3,i
′
4(dist)

∑
j2(j2 6=i2)

∑
j′2(j′2 6=i′2)

ηi2η
2
i3ηi′2η

2
i′3
E
[
W 3
i1i4Wi2j2W

3
i′1i
′
4
Wi′2j

′
2

]
. (2.E.209)

In the sum, a term is nonzero only when one of the following cases happens.

• (A). {Wi1i4 ,Wi2j2 ,Wi′1i
′
4
,Wi′2j

′
2
} has 2 distinct random variables.

• (B). {Wi1i4 ,Wi2j2 ,Wi′1i
′
4
,Wi′2j

′
2
} has 3 distinct random variables. While it may seem

we have 4 possibilities in this case, but the only one that has a nonzero mean is when

Wi2j2 = Wi′2j
′
2
.

For Case (A), the two sets {i1, i2, i4, j2} and {i′1, i′2, i′4, j′2} are identical, and so for two

integers 0 ≤ b1, b2 ≤ 1 and b1 + b2 = 1,

W 3
i1i4Wi2j2W

3
i′1i
′
4
Wi′2j

′
2

= W 4+2b1
i1i4

W 2+2b2
i2j2

,

and so

E[W 3
i1i4Wi2j2W

3
i′1i
′
4
Wi′2j

′
2
] = E[W 4+2b1

i1i4
W 2+2b2
i2j2

] = E[W 4+2b1
i1i4

]E[W 2+2b2
i2j2

],

Note that for any integer 2 ≤ b ≤ 6,

0 < E[W b
ij ] ≤ CΩij ,

where note that Ωij ≤ Cθiθj for all 1 ≤ i, j ≤ n, i ≤ j. Recall that v ∼ ‖θ‖21, and that

0 < ηi ≤ Cθi for all 1 ≤ i ≤ n. Combining these that, the contribution of Case (A) to

Var(Ya1) is no more than

C(‖θ‖1)−6
∑

i1,··· ,i4(dist)

∑
i′3,j2

∑
a

θa1+1
i1

θa2+2
i2

θ2
i3θ

a3+1
i4

θ2
i′3
θa4+1
j2

, (2.E.210)

where a = (a1, a2, a3, a4) and each ai is either 0 and 1, satisfying a1 + a2 + a3 + a4 = 1. Note

that the right hand side of (2.E.210) is no greater than

C(‖θ‖1)−6 max{‖θ‖31‖θ‖4‖θ‖33, ‖θ‖21‖θ‖8} ≤ C‖θ‖4‖θ‖33/‖θ‖31,
where we have used ‖θ‖4 ≤ ‖θ‖1‖θ‖33.

Next, consider Case (B). In this case, {i2, j2} = {i′2, j′2} and

W 3
i1i4Wi2j2W

3
i′1i
′
4
Wi′2j

′
2

= W 3
i1i4W

2
i2j2W

3
i′1i
′
4
,

and by similar argument,

0 < E[W 3
i1i4W

2
i2j2W

3
i′1i
′
4
] ≤ CΩi1i4Ωi2j2Ωi′1i

′
4
. (2.E.211)
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Recall that Ωij ≤ Cθiθj for all 1 ≤ i, j ≤ n, i ≤ j, that v ∼ ‖θ‖21, and that 0 < ηi ≤ Cθi for

all 1 ≤ i ≤ n. Combining this with (2.E.209), the contribution of this case to Var(Ya1)

≤ C(‖θ‖1)−6
∑

i1,i2,i3,i4(dist)
i′1,i
′
3,i
′
4(dist)

∑
j2

Cθi1θ
2+b1
i2

θ2
i3θi4θi′1θ

2
i′3
θi′4θ

1+b2
j2

, (2.E.212)

where similarly b1, b2 are either 0 or 1 and b1 + b2 = 1. By similar argument, the right hand

side

≤ C‖θ‖−6
1 · [‖θ‖

5
1‖θ‖4‖θ‖33 + ‖θ‖41‖θ‖8] ≤ C‖θ‖4‖θ‖33/‖θ‖1,

where we’ve used Cauchy-Schwartz inequality that ‖θ‖4 ≤ ‖θ‖1‖θ‖33.

Now, inserting (2.E.210) and (2.E.212) into (2.E.209) gives

Var(Ya1) ≤ C[‖θ‖4‖θ‖33/‖θ‖31 + ‖θ‖4‖θ‖33/‖θ‖1] ≤ C‖θ‖4‖θ‖33/‖θ‖1, (2.E.213)

where we have used ‖θ‖1 →∞ and ‖θ‖4 ≤ ‖θ‖1‖θ‖33. This shows

Var(Ya1) ≤ C‖θ‖4‖θ‖33/‖θ‖1. (2.E.214)

Next, we consider Var(Ya2) and Var(Ya3). The proofs are similar to that of Var(Xa) of

Item (a), so we skip the detail, but claim that

Var(Ya2) ≤ C‖θ‖4‖θ‖63/‖θ‖41, (2.E.215)

and

Var(Ya3) ≤ C‖θ‖4‖θ‖63/‖θ‖41. (2.E.216)

Combining (2.E.214), (2.E.215), and (2.E.216) gives

Var(Ya1) + Var(Ya2) + Var(Ya3) ≤ C[‖θ‖4‖θ‖33/‖θ‖1 + ‖θ‖4‖θ‖63/‖θ‖41] ≤ C‖θ‖4‖θ‖33/‖θ‖1,
(2.E.217)

where we have used the universal inequality that ‖θ‖33 ≤ ‖θ‖31.

Next, consider
∑4

s=1 E[Y 2
bs]. For each 1 ≤ s ≤ 4, the study of E[Y 2

bs] is similar to that

of E[X2
b1] in Item (a), so we skip the details. We have that both under the null and the

alternative,

E[Y 2
b1] ≤ C‖θ‖12/‖θ‖41, (2.E.218)

E[Y 2
b2] ≤ C‖θ‖6‖θ‖33/‖θ‖1, (2.E.219)

E[Y 2
b3] ≤ C‖θ‖6‖θ‖33/‖θ‖1, (2.E.220)

E[Y 2
b4] ≤ C‖θ‖12/‖θ‖41. (2.E.221)

Therefore,
4∑
s=1

E[Y 2
bs] ≤ C[‖θ‖6‖θ‖33/‖θ‖1 + ‖θ‖12/‖θ‖41] ≤ C‖θ‖6‖θ‖33/‖θ‖1. (2.E.222)

Third, we consider E[Y 2
c ]. The proof is very similar to that of E[X2

c ] and we have that

both under the null and the alternative,

E[Y 2
c ] ≤ C‖θ‖8‖θ‖33/‖θ‖31. (2.E.223)
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Finally, combining (2.E.217), (2.E.222), and (2.E.223) with (2.E.208) gives

Var(T1b) ≤ C[‖θ‖4‖θ‖33/‖θ‖1 + ‖θ‖6‖θ‖33/‖θ‖1 + ‖θ‖8‖θ‖33/‖θ‖31] ≤ C‖θ‖6‖θ‖33/‖θ‖1,
(2.E.224)

where we have used ‖θ‖ → ∞ and ‖θ‖2 � ‖θ‖1. This completes the proof of (2.E.170).

Consider Item (c). The goal is to show (2.E.171). Recall that

T1c =
∑

i1,i2,i3,i4(dist)

ηi1ηi3ηi4
[
(ηi2 − η̃i2)2(ηi3 − η̃i3)

]
·Wi4i1 ,

and that

η̃ − η = v−1/2W1n.

Plugging this into T1c gives

T1c = − 1

v3/2

∑
i1,i2,i3,i4(dist)

ηi1ηi3ηi4

(∑
j2 6=i2

Wi2j2

)(∑
`2 6=i2

Wi2`2

)(∑
j3 6=i3

Wi3j3

)
Wi1i4

= − 1

v3/2

∑
i1,i2,i3,i4(dist)

j2 6=i2,`2 6=i2,j3 6=i3

ηi1ηi3ηi4Wi2j2Wi2`2Wi3j3Wi1i4 .

By basic combinatorics and careful observations, we have

Wi2j2Wi2`2Wi3j3Wi1i4 =



W 3
i2i3

Wi1i4 , if j2 = `2 = i3, j3 = i2,

W 2
i2j2

Wi3j3Wi1i4 , if j2 = `2, (j3, j2) 6= (i2, i3),

W 2
i2i3

Wi2`2Wi1i4 , if j2 = i3, j3 = i2, `2 6= i3,

W 2
i2i3

Wi2j2Wi1i4 , if `2 = i3, j3 = i2, j2 6= i3,

Wi2j2Wi2`2Wi3j3Wi1i4 , otherwise.

(2.E.225)

This allows us to further split T1c into 5 different terms:

T1c = Za + Zb1 + Zb2 + Zb3 + Zc, (2.E.226)

where

Za = − 1

v3/2

∑
i1,i2,i3,i4(dist)

ηi1ηi3ηi4W
3
i2i3Wi1i4 ,

Zb1 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2,(j3,j2)6=(i2,i3)

ηi1ηi3ηi4W
2
i2j2Wi3j3Wi1i4 ,

Zb2 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2=i3,j3=i2

`2 6=i3

ηi1ηi3ηi4W
2
i2i3Wi2`2Wi1i4 ,

Zb3 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
`2=i3,j3=i2

j2 6=i3

ηi1ηi3ηi4W
2
i2i3Wi2j2Wi1i4 ,

Zc = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2,`2,j3

j2 6=`2,j2,`2 6=i3,j3 6=i2

ηi1ηi3ηi4Wi2j2Wi2`2Wi3j3Wi1i4 .

We now show the two claims in (2.E.171) separately. The proof of the first claim is

trivial, so we only show the second claim of (2.E.171).
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Consider the second claim of (2.E.171). By Cauchy-Schwartz inequality,

Var(T1c) ≤ C(Var(Za) + Var(Zb1) + Var(Zb2) + Var(Zb3) + Var(Zc))

≤ C(E[Z2
a ] +

3∑
s=1

E[Z2
bs] + E[Z2

c ]). (2.E.227)

Note that

• The proof of Var(Za) is similar to that of Var(Ya) in Item (b).

• The proof of
∑3

s=1 E[Z2
bs] is similar to that of

∑4
s=1 E[X2

bs] in Item (a).

• The proof of E[Z2
c ] is similar to that of E[X2

c ] in Item (a).

For these reasons, we omit the proof details and only state the claims. We have that under

both the null and the alternative,

Var(Za) ≤ C‖θ‖4‖θ‖63/‖θ‖41, (2.E.228)

3∑
s=1

E[Z2
bs] ≤ C‖θ‖93/‖θ‖1, (2.E.229)

and

E[Z2
c ] ≤ C‖θ‖2‖θ‖93/‖θ‖31. (2.E.230)

Inserting (2.E.228), (2.E.229), and (2.E.230) into (2.E.227) gives

Var(T1c) ≤ C[‖θ‖4‖θ‖63/‖θ‖41 + ‖θ‖93/‖θ‖1 + ‖θ‖2‖θ‖93/‖θ‖31] ≤ C‖θ‖93/‖θ‖1,
where we have used ‖θ‖33 � ‖θ‖2 � ‖θ‖1, ‖θ‖4 ≤ ‖θ‖1‖θ‖33 and ‖θ‖1 → ∞. This proves

(2.E.171).

Consider Item (d). The goal is to show (2.E.172) and (2.E.173). Recall that

T1d = − 1

v3/2

∑
i1,i2,i3,i4(dist)

ηi1η
2
i3

[
(ηi2 − η̃i2)2(ηi4 − η̃i4)

]
·Wi4i1 .

and that

η̃ − η = v−1/2W1n.

Plugging this into T1d gives

T1d = − 1

v3/2

∑
i1,i2,i3,i4(dist)

ηi1η
2
i3

(∑
j2 6=i2

Wi2j2

)(∑
`2 6=i2

Wi2`2

)(∑
j4 6=i4

Wi4j4

)
Wi1i4

= − 1

v3/2

∑
i1,i2,i3,i4(dist)

j2 6=i2,`2 6=i2,j4 6=i4

ηi1η
2
i3Wi2j2Wi2`2Wi4j4Wi1i4 .
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By basic combinatorics and careful observations, we have

Wi2j2Wi2`2Wi4j4Wi1i4 =



W 3
i2i4

Wi1i4 , if j2 = `2 = i4, j4 = i2,

W 2
i2j2

W 2
i1i4

, if j2 = `2, j4 = i1,

W 2
i2j2

Wi4j4Wi1i4 , if j2 = `2, j4 6= i1, (j2, j4) 6= (i4, i2),

Wi2j2W
2
i2i4

Wi1i4 , if `2 = i4, j4 = i2, j2 6= i4,

Wi2`2W
2
i2i4

Wi1i4 , if j2 = i4, j4 = i2, `2 6= i4,

Wi2j2Wi2`2W
2
i1i4

, if j4 = i1, j2 6= `2,

Wi2j2Wi2`2Wi4j4Wi1i4 , otherwise.

(2.E.231)

This allows us to further split T14 into 7 different terms:

T1d = Ua1 + Ua2 + Ub1 + Ub2 + Ub3 + Ub4 + Uc, (2.E.232)

where

Ua1 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

ηi1η
2
i3W

3
i2i4Wi1i4 ,

Ua2 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2

ηi1η
2
i3W

2
i2j2W

2
i1i4 ,

Ub1 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2(j2 6=i2),j4(j4 6=i4)
j4 6=i1,(j2,j4)6=(i4,i2)

ηi1η
2
i3W

2
i2j2Wi4j4Wi1i4 ,

Ub2 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2(j2 6=i4)

ηi1η
2
i3Wi2j2W

2
i2i4Wi1i4 ,

Ub3 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
`2(`2 6=i4)

ηi1η
2
i3Wi2`2W

2
i2i4Wi1i4 ,

Ub4 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2 6=`2

ηi1η
2
i3Wi2j2Wi2`2W

2
i1i4 ,

Uc = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2,`2,j4,Wdist

ηi1η
2
i3Wi2j2Wi2`2Wi4j4Wi1i4 .

We now show (2.E.172) and (2.E.173) separately.

Consider (2.E.172). It is seen that out of the 7 terms on the right hand side of (2.E.226),

all terms are mean 0, except for the second term Ua2. Note that for any 1 ≤ i, j ≤ n, i 6= j,

E[W 2
ij ] = Ωij(1− Ωij), where Ωij are upper bounded by o(1) uniformly for all such i, j. It

follows

E[Ua2] = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2

ηi1η
2
i3E[W 2

i2j2 ]E[W 2
i1i4 ]

= −(1 + o(1)) · v−3/2
∑

i1,i2,i3,i4(dist)
j2

ηi1η
2
i3Ωi2j2Ωi1i4 .
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2.E. Properties of Signed Polygon statistics

Under null, for any 1 ≤ i, j ≤ n, i 6= j, ηi = (1 + o(1))θi, Ωij = (1 + o(1))θiθj and v � ‖θ‖21,

E[Ua2] = (‖θ‖1)−3
∑

i1,i2,i3,i4(dist)

∑
j2

θ2
i1θi2θ

2
i3θi4θj2 = −(1 + o(1))‖θ‖4,

and under alternative, a similar arguments yields

|E[Ua1]| ≤ C‖θ‖4. (2.E.233)

This proves (2.E.172).

We now consider (2.E.173). By Cauchy-Schwartz inequality,

Var(T1d) ≤ C(Var(Ua1) + Var(Ua2) +
4∑
s=1

Var(Ubs) + Var(Uc))

≤ C(Var(Ua1) + Var(Ua2) +
4∑
s=1

E[U2
bs] + E[U2

c ]). (2.E.234)

Note that

• The proof of Ua1 is similar to that of Ya1 in Item (b).

• The proof of Ua2 is similar to that of Xa1 in Item (a).

• The proof of Ubs, 1 ≤ s ≤ 4, is similar to that of Xb1 in Item (a).

• The proof of Uc is similar to that of Xc in Item (a).

For these reasons, we omit the proof details, and claim that

Var(Ua1) ≤ C‖θ‖4‖θ‖63/‖θ‖41, (2.E.235)

Var(Ua2) ≤ C‖θ‖4‖θ‖33/‖θ‖1, (2.E.236)

4∑
s=1

E[U2
bs] ≤ C‖θ‖6‖θ‖33/‖θ‖1, (2.E.237)

and

Var(Uc) ≤ C‖θ‖8‖θ‖33/‖θ‖31, (2.E.238)

Inserting (2.E.235), (2.E.236), (2.E.237), and (2.E.238) into (2.E.234) gives

Var(T1d) ≤ C[‖θ‖4‖θ‖63/‖θ‖41 + ‖θ‖4‖θ‖33/‖θ‖1 + ‖θ‖6‖θ‖33/‖θ‖1 + ‖θ‖8‖θ‖33/‖θ‖31]

(2.E.239)

≤ C‖θ‖6‖θ‖33/‖θ‖1, (2.E.240)

where we have used ‖θ‖ → ∞ and ‖θ‖33 ≤ ‖θ‖31. This proves (2.E.173).

We now consider Item (e) and Item (f). Since the proof is similar, we only prove Item

(e). The goal is to show (2.E.174). Recall that

T2a =
∑

i1,i2,i3,i4(dist)

ηi2ηi3ηi4
[
(ηi1 − η̃i1)(ηi2 − η̃i2)(ηi3 − η̃i3)

]
· Ω̃i4i1 , (2.E.241)

and

η̃ − η = v−1/2W1n. (2.E.242)
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2. optimal adaptivity of signed-polygon statistics for network testing

Plugging (2.E.242) into (2.E.241) gives

T2a = − 1

v3/2

∑
i1,i2,i3,i4(dist)

ηi2ηi3ηi4

(∑
j1 6=i1

Wi1j1

)(∑
j2 6=i2

Wi2j2

)(∑
j3 6=i3

Wi3j3

)
Ω̃i4i1

= − 1

v3/2

∑
i1,i2,i3,i4(dist)

j1 6=i1,j2 6=i2,j3 6=i3

ηi2ηi3ηi4Wi1j1Wi2j2Wi3j3Ω̃i1i4 .

By basic combinatorics and careful observations, we have

Wi1j1Wi2j2Wi3j3 =


W 2
i1i2

Wi3j3 , if j1 = i2, j2 = i1,

W 2
i1i3

Wi2j2 , if j1 = i3, j3 = i1,

W 2
i2i3

Wi1j1 , if j2 = i3, j3 = i2,

Wi1j1Wi2j2Wi3j3 , otherwise.

(2.E.243)

This allows us to further split T2a into 4 different terms:

T2a = Xa1 +Xa2 +Xa3 +Xb, (2.E.244)

where

Xa1 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j3 6=i3

ηi2ηi3ηi4W
2
i1i2Wi3j3Ω̃i1i4 ,

Xa2 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2 6=i2

ηi2ηi3ηi4W
2
i1i3Wi2j2Ω̃i1i4 ,

Xa3 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j1 6=i1

ηi2ηi3ηi4W
2
i2i3Wi1j1Ω̃i1i4 ,

Xb = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j1,j2,j3

jk 6=i`,k,`=1,2,3

ηi2ηi3ηi4Wi1j1Wi2j2Wi3j3Ω̃i1i4 .

We now consider the two claims of (2.E.174) separately. Since the mean ofXa1, Xa2, Xa3, Xb

are all 0, the first claim of (2.E.174) follows trivially, so all remains to show is the second

claim of (2.E.174).

We now consider the second claim of (2.E.174). By Cauchy-Schwartz inequality,

Var(T2a) ≤ CVar(Xa1) + Var(Xa2) + Var(Xa3) + Var(Xb))

≤ C(E[X2
a1] + E[X2

a2] + E[X2
a3] + E[X2

b ]). (2.E.245)

We now consider E[X2
a1] + E[X2

a2] + E[X2
a3], and E[X2

b ], separately.

Consider E[X2
a1]+E[X2

a2]+E[X2
a3]. We claim that both under the null and the alternative,

E[X2
a1] ≤ Cα2‖θ‖12‖θ‖33/‖θ‖51, (2.E.246)

E[X2
a2] ≤ Cα2‖θ‖12‖θ‖33/‖θ‖51, (2.E.247)

E[X2
a3] ≤ Cα2‖θ‖12‖θ‖33/‖θ‖51. (2.E.248)

Combining these gives that both under the null and the alternative,

E[X2
a1] + E[X2

a2] + E[X2
a3] ≤ Cα2‖θ‖12‖θ‖33/‖θ‖51. (2.E.249)

It remains to show (2.E.246)-(2.E.248). Since the proofs are similar, we only prove
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(2.E.246). Write

E[X2
a1] = v−3

∑
i1,i2,i3,i4(dist)
i′1,i
′
2,i
′
3,i
′
4(dist)

∑
j3,j′3

j3 6=i3,j′3 6=i′3

ηi2ηi3ηi4ηi′2ηi′3ηi′4E[W 2
i1i2Wi3j3W

2
i′1i
′
2
Wi′3j

′
3
]Ω̃i1i4Ω̃i′1i

′
4
.

Consider the term

W 2
i1i2Wi3j3W

2
i′1i
′
2
Wi′3j

′
3
.

In order for the mean is nonzero, we have three cases

• Case A. Wi1i2 = Wi′3j
′
3

and Wi3j3 = Wi′1i
′
2
.

• Case B. Wi3j3 = Wi′3j
′
3

and Wi1i2 = Wi′1i
′
2
.

• Case C. Wi3j3 = Wi′3j
′
3

and Wi1i2 6= Wi′1i
′
2
.

Consider Case A. In this case, {i′1, i′2, i′3} are three distinct indices in {i1, i2, i3, j3}. In this

case,

W 2
i1i2Wi3j3W

2
i′1i
′
2
Wi′3j

′
3

= W 3
i1i2W

3
i3j3 ,

where by similar arguments as before

0 < E[W 3
i1i2W

3
i3j3 ] ≤ CΩi1i2Ωi3j3 ≤ Cθi1θi2θi3θj3 .

At the same time, recall that that 0 < ηi ≤ Cθi for any 1 ≤ i ≤ n, and that |Ω̃ij | ≤ Cαθiθj
for any 1 ≤ i, j ≤ n, i 6= j, where α = |λ2/λ1| with λk being the k-th largest (in magnitude)

eigenvalue of Ω, 1 ≤ k ≤ K. By basic algebra,

|ηi2ηi3ηi4ηi′2ηi′3ηi′4Ω̃i1i4Ω̃i′1i
′
4
| ≤ Cα2θi1θi2θi3θ

2
i4θi′1θi′2θi′3θ

2
i′4
.

Note that in the current case, {i1, i2} = {i′3, j′3} and {i3, j3} = {i′1, i′2}, so for some integers

0 ≤ b1, b2 ≤ 1 and b1 + b2 = 1,

θi1θi2θi3θ
2
i4θi′1θi′2θi′3θ

2
i′4

= θ1+b1
i1

θ1+b2
i2

θ2
i3θj3θ

2
i4θ

2
i′4
.

Recall that v � ‖θ‖21. Combining these, the contribution of Case (A) to E[X2
a1] is no greater

than

Cα2(‖θ‖1)−6
∑

i1,i2,i3,i4(dist)

∑
i′4

∑
j3(j3 6=i3)

∑
b1,b2(b1+b2=1)

θ2+b1
i1

θ2+b2
i2

θ3
i3θ

2
j3θ

2
i4θ

2
i′4
,

where the right hand side ≤ Cα2 · ‖θ‖8‖θ‖63/‖θ‖61. This shows that the contribution of Case

(A) to E[X2
a1] is no greater than

Cα2 · ‖θ‖8‖θ‖63/‖θ‖61. (2.E.250)

Consider Case B. By similar arguments,

W 2
i1i2Wi3j3W

2
i′1i
′
2
Wi′3j

′
3

= W 6
i1i2W

2
i3j3 ,

where

E[W 6
i1i2W

2
i3j3 ] ≤ CΩi1i2Ωi3j3 ≤ Cθi1θi2θi3θj3 ,

Also, by similar arguments,

|ηi2ηi3ηi4ηi′2ηi′3ηi′4Ω̃i1i4Ω̃i′1i
′
4
| ≤ Cα2θi1θi2θi3θ

2
i4θi′1θi′2θi′3θ

2
i′4
,
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2. optimal adaptivity of signed-polygon statistics for network testing

where as Wi1i2 = Wi′1i
′
2

and Wi3j3 = Wi′3j
′
3
, the right hand side

≤ Cα2θ2
i1θ

2
i2θ

1+c1
i3

θc2j3 θ
2
i4θ

2
i′4
,

where 0 < c1, c2 ≤ are integers satisfying c1 + c2 = 1. Recall v ∼ ‖θ‖21. Combining these,

the contribution of Case (B) to E[X2
a1]

≤ Cα2(‖θ‖1)−6
∑

i1,i2,i3,i4(dist)

∑
i′4

∑
j3(j3 6=i3)

∑
b1,b2(b1+b2=1)

θ3
i1θ

3
i2θ

2+c1
i3

θ1+c2
j3

θ2
i4θ

2
i′4
,

where by ‖θ‖4 ≤ ‖θ‖1‖θ‖33, the above term

≤ Cα2[‖θ‖4‖θ‖93/‖θ‖51, ‖θ‖8‖θ‖63/‖θ‖61] ≤ Cα2‖θ‖4‖θ‖93/‖θ‖51.
This shows that the contribution of Case (B) to E[X2

a1] is no greater than

C‖θ‖4‖θ‖93/‖θ‖51. (2.E.251)

Consider Case (C). In this case,

W 2
i1i2Wi3j3W

2
i′1i
′
2
Wi′3j

′
3

= W 2
i1i2W

2
i3j3W

2
i′1i
′
2
,

where by similar arguments,

E[W 2
i1i2W

2
i3j3W

2
i′1i
′
2
] ≤ CΩi1i2Ωi3j3Ωi′1i

′
2
≤ Cθi1θi2θi3θj3θi′1θi′2 .

Also, by similar arguments,

|ηi2ηi3ηi4ηi′2ηi′3ηi′4Ω̃i1i4Ω̃i′1i
′
4
| ≤ Cα2θi1θi2θi3θ

2
i4θi′1θi′2θi′3θ

2
i′4
,

where as Wi3j3 = Wi′3j
′
3
, the right hand side

≤ Cα2θi1θi2θ
1+c1
i3

θc2j3 θ
2
i4θ

2
i′4
,

with the same c1, c2 as in the proof of Case B. Combining these and using v � ‖θ‖21, we have

that under both the null and the alternative, the contribution of Case (C) to E[X2
a1]

≤ Cα2(‖θ‖1)−6
∑

i1,i2,i3,i4(dist)
i′1,i
′
2,i
′
4(dist)

∑
j3(j3 6=i3)

θ2
i1θ

2
i2θ

2+c1
i3

θ1+c2
j3

θ2
i4θ

2
i′1
θ2
i′2
θ2
i′4
,

where the right hand size

≤ Cα2 · [‖θ‖12‖θ‖33/‖θ‖51 + ‖θ‖12‖θ‖63/‖θ‖61] ≤ Cα2‖θ‖12‖θ‖33/‖θ‖51. (2.E.252)

Here we have again used ‖θ‖4 ≤ ‖θ‖1‖θ‖33.

Combining (2.E.250), (2.E.251), and (2.E.252) gives

E[X2
a1] ≤ Cα2(‖θ‖8‖θ‖63/‖θ‖61 + ‖θ‖4‖θ‖93/‖θ‖51 + ‖θ‖8‖θ‖93/‖θ‖5] ≤ Cα2‖θ‖8‖θ‖93/‖θ‖51,

where we have used ‖θ‖4 ≤ ‖θ‖1‖θ‖33 and ‖θ‖ → ∞. This proves (2.E.246).

We now consider E[X2
b ]. Write

E[X2
b ] = v−3

∑
i1,i2,i3,i4(dist)
i′1,i
′
2,i
′
3,i
′
4(dist)

∑
j3,j′3

j3 6=i3,j′3 6=i′3

ηi2ηi3ηi4ηi′2ηi′3ηi′4

E[Wi1j1Wi2j2Wi3j3Wi′1j
′
1
Wi′2j

′
2
Wi′3j

′
3
]Ω̃i1i4Ω̃i′1i

′
4
.

Consider

Wi1j1Wi2j2Wi3j3 , and Wi′1j
′
1
Wi′2j

′
2
Wi′3j

′
3
.

Each term has a mean 0, and two terms are uncorrelated with each other if and only if
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the two sets of random variables {Wi1j1 ,Wi2j2 ,Wi3j3} and {Wi′1j
′
1
,Wi′2j

′
2
,Wi′3j

′
3
} are identical

(however, it is possible that Wi1j1 does not equal to Wi′1j
′
1

but equals to Wi′2j
′
2
, say). When

this happens, first, {i1, i2, i3, j1, j2, j3} = {i′1, i′2, i′3, j′1, j′2, j′3}. Recall that |Ω̃ij | ≤ Cαθiθj for

all 1 ≤ i, j ≤ n, i 6= j, and that 0 < ηi ≤ Cθi for all 1 ≤ i ≤ n. For integers ai ∈ {0, 1},
1 ≤ i ≤ 4, that satisfy

∑6
i=1 ai = 3, we have

|ηi2ηi3ηi4ηi′2ηi′3ηi′4Ω̃i1i4Ω̃i′1i
′
4
| ≤ Cηa1

i1
ηa2
j1
η1+a3
i2

ηa4
j2
η1+a5
i3

ηa6
j3
ηi4ηi′4 |Ω̃i1i4 ||Ω̃i′1i

′
4
|

≤ Cα2θ1+a1
i1

ηa2
j1
η1+a3
i2

ηa4
j2
η1+a5
i3

ηa6
j3
η2
i4η

2
i′4
.

Second,

E[Wi1j1Wi2j2Wi3j3Wi′1j
′
1
Wi′2j

′
2
Wi′3j

′
3
] = E[W 2

i1j1W
2
i2j2W

2
i3j3 ],

where by similar arguments, the right hand side

≤ CΩi1j1Ωi2j2Ωi3j3 ≤ Cθi1θj1θi2θj2θi3θj3 .
Recall that v ∼ ‖θ‖21. Combining these gives

E[X2
b ] ≤ Cα2‖θ‖−6

1

∑
i1,i2,i3,i4(dist)

∑
i′4

∑
j1,j2,j3

j1 6=i1,j2 6=i2,j3 6=i3

∑
a

θ2+a1
i1

η1+a2
j1

η2+a3
i2

η1+a4
j2

η2+a5
i3

η1+a6
j3

η2
i4η

2
i′4
,

where a = (a1, a2, . . . , a6) as above. By the way ai are defined, the right hand side

≤ Cα2‖θ‖4(
∑
a

‖θ‖a1+2
a1+2 · ‖θ‖

a2+1
a2+1 · ‖θ‖

a3+2
a3+2 · ‖θ‖

a4+1
a4+1‖θ‖

a5+2
a5+2‖θ‖

a6+1
a6+1)/‖θ‖61,

which by ‖θ‖4 ≤ ‖θ‖1‖θ‖33, the term in the bracket does not exceed

C max{‖θ‖12, ‖θ‖1‖θ‖8‖θ‖33, ‖θ‖21‖θ‖4‖θ‖63, ‖θ‖31‖θ‖93} ≤ C‖θ‖31‖θ‖93.
Combining these gives

E[X2
b ] ≤ Cα2‖θ‖4‖θ‖93/‖θ‖31. (2.E.253)

Finally, inserting (2.E.249)-(2.E.253) into (2.E.245) gives

Var(T2a) ≤ Cα2[‖θ‖8‖θ‖33/‖θ‖51 + ‖θ‖4‖θ‖93/‖θ‖31] ≤ Cα2‖θ‖4‖θ‖93/‖θ‖31,
and (2.E.174) follows.

Consider Item (g) and Item (h). The proof are similar, so we only show Item (g). The

goal is to show (2.E.176). Recall that

T2c =
∑

i1,i2,i3,i4(dist)

ηi1ηi3ηi4
[
(ηi2 − η̃i2)2(ηi3 − η̃i3)

]
· Ω̃i4i1 , (2.E.254)

and

η̃ − η = v−1/2W1n.

Plugging this into T2c gives (note symmetry in Ω̃)

T2c = − 1

v2/3

∑
i1,i2,i3,i4(dist)

ηi1ηi3ηi4

(∑
j2 6=i2

Wi2j2

)(∑
`2 6=i2

Wi2`2

)(∑
j3 6=i3

Wi3j3

)
Ω̃i4i1

= − 1

v3/2

∑
i1,i2,i3,i4(dist)

j1 6=i1,j2 6=i2,j3 6=i3

ηi1ηi3ηi4Wi2j2Wi2`2Wi3j3Ω̃i1i4 .
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2. optimal adaptivity of signed-polygon statistics for network testing

By basic combinatorics and careful observations, we have

Wi2j2Wi2`2Wi3j3 =



W 3
i2i3

, if j1 = `2 = i3, j3 = i2,

W 2
i2j2

Wi3j3 , if j1 = `2, (j2, j3) 6= (i3, i2),

W 2
i2i3

Wi2`2 , if j2 = i3, j3 = i2, `2 6= i3,

W 2
i2i3

Wi2j2 , if `2 = i3, j3 = i2, j2 6= i3,

Wi2j2Wi2`2Wi3j3 , otherwise.

(2.E.255)

This allows us to further split T2c into 4 different terms:

T2c = Ya + Yb1 + Yb2 + Yb3 + Yc, (2.E.256)

Ya = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j3 6=i3

ηi1ηi3ηi4W
3
i2i3Ω̃i1i4 ,

Yb1 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j3 6=i3

ηi1ηi3ηi4W
2
i2j2Wi3j3Ω̃i1i4 ,

Yb2 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2 6=i2

ηi1ηi3ηi4W
2
i2i3Wi2`2Ω̃i1i4 ,

Yb3 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j1 6=i1

ηi1ηi3ηi4W
2
i2i3Wi2j2Ω̃i1i4 ,

Yc = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2,`2,j3

j2 6=i2,`2 6=i2,j3 6=i3
j2 6=i3,`2 6=i3,j3 6=i2

ηi1ηi3ηi4Wi2j2Wi2`2Wi3j3Ω̃i1i4 .

We now show the two claims in (2.E.176) separately. Consider the first claim. It is seen

that out of the 5 terms on the right hand side of (2.E.256), the mean of all terms are 0,

except for the first one. Note that for any 1 ≤ i, j ≤ n, i 6= j, E[W 3
ij ] ≤ CΩij . Together with

Ωij ≤ Cθiθj , Ω̃ij ≤ Cαθiθj , 0 < ηi < Cθi and v ∼ ‖θ‖21, it follows

E[|Ya|] ≤
1

v3/2

∑
i1,i2,i3,i4(dist)

ηi1ηi3ηi4Ωi2i3Ω̃i1i4

≤ Cα · 1

‖θ‖31

∑
i1,i2,i3,i4(dist)

θ2
i1θi2θ

2
i3η

2
i4 ,

where the last term is no greater than Cα · ‖θ‖6/‖θ‖31, and the first claim of (2.E.176) follows.

Consider the second claim of (2.E.176). By Cauchy-Schwartz inequality,

Var(T2c) ≤ C(Var(Ya) + Var(Yb1) + Var(Yb2) + Var(Yb3) + Var(Yc))

≤ C(Var(Ya) + E[Y 2
b1] + E[Y 2

b2] + E[Y 2
b3] + E[Y 2

c ]). (2.E.257)

We now study Var(Ya). Write

Var(Ya) = v−3
∑

i1,i2,i3,i4(dist)
i′1,i
′
2,i
′
3,i
′
4(dist)

ηi1ηi3ηi4ηi′1ηi′3ηi′4E[(W 3
i2i3 − E[W 3

i2i3 ])(W 3
i′2i
′
3
− E[W 3

i′2i
′
3
])] · Ω̃i1i4Ω̃i′1i

′
4
.

Fix a term (W 3
i2i3
− E[W 3

i2i3
])(W 3

i′2i
′
3
− E[W 3

i′2i
′
3
]). When the mean is nonzero, we must have
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2.E. Properties of Signed Polygon statistics

{i2, i3} = {i′2, i′3}, and when this happens,

E[(W 3
i2i3 − E[W 3

i2i3 ])(W 3
i′2i
′
3
− E[W 3

i′2i
′
3
])] = Var(W 3

i2i3).

For a random variable X, we have Var(X) ≤ E[X2], and it follows that

Var(W 3
i2i3) ≤ E[W 6

i2i3 ] ≤ E[W 2
i2i3 ],

where we have used the property that 0 ≤ W 2
i2i3
≤ 1. Notice that E[W 2

i2i3
] ≤ Cθi2θi3 , and

recall that v � ‖θ‖21, Ω̃ij ≤ Cαθiθj and 0 < ηi ≤ Cθi for all 1 ≤ i ≤ n. Combining these

gives

Var(Ya) ≤ Cα2(‖θ‖−6
1 ) ·

∑
i1,i2,i3,i4(dist)
i′1,i
′
4(dist)

θ2
i1θi2θ

3
i3θ

2
i4θ

2
i′1
θ2
i′4
≤ Cα2‖θ‖8‖θ‖33/‖θ‖51. (2.E.258)

Additionally, note that

• The proof of Yb1, Yb2, and Yb3 is similar to that of Xa1 in Item (e).

• The proof of Yc is similar to that of Xb in Item (e).

For these reasons, we skip the proof details, but only to state that, both under the null and

the alternative,

E[Y 2
b1] ≤ Cα2‖θ‖8‖θ‖33/‖θ‖1, (2.E.259)

E[Y 2
b2] ≤ Cα2‖θ‖12‖θ‖33/‖θ‖51, (2.E.260)

E[Y 2
b3] ≤ Cα2‖θ‖12‖θ‖33/‖θ‖51, (2.E.261)

and therefore,

E[Y 2
b1] + E[Y 2

b2] + E[Y 2
b3] ≤ Cα2‖θ‖8‖θ‖33/‖θ‖1. (2.E.262)

At the same time, both under the null and the alternative,

E[Y 2
c ] ≤ Cα2 · ‖θ‖10‖θ‖33/‖θ‖31. (2.E.263)

Inserting (2.E.262) and (2.E.263) into (2.E.257) gives

E[T 2
2c] ≤ Cα2[‖θ‖8‖θ‖33/‖θ‖51 + ‖θ‖8‖θ‖33/‖θ‖1 + ‖θ‖10‖θ‖33/‖θ‖31] ≤ Cα2‖θ‖8‖θ‖33/‖θ‖1.

This proves (2.E.176).

Consider Item (i). The goal is to show (2.E.178). Recall that

Fa =
∑

i1,i2,i3,i4(dist)

ηi1ηi2ηi3ηi4
[
(ηi1 − η̃i1)(ηi2 − η̃i2)(ηi3 − η̃i3)(ηi4 − η̃i4)

]
, (2.E.264)

and that for any 1 ≤ i ≤ n,

η̃i − ηi = v−1/2
n∑
j 6=i

Wij .

Inserting it into (2.E.264) gives

Fa =
∑

i1,i2,i3,i4(dist)

ηi1ηi2ηi3ηi4
[
(ηi1 − η̃i1)(ηi2 − η̃i2)(ηi3 − η̃i3)(ηi4 − η̃i4)

]
,
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2. optimal adaptivity of signed-polygon statistics for network testing

By basic combinatorics and basic algebra, we have

Wi1j1Wi2j2Wi3j3Wi4j4 =



W 2
i1i2

W 2
i3i4

, if (i1, j1) = (j2, i2), (i3, j3) = (j4, i4),

W 2
i1i3

W 2
i2i4

, if (i1, j1) = (j3, i3), (i2, j2) = (j4, i4),

W 2
i1i4

W 2
i2i3

, if (i1, i4) = (j4, i1), (i2, j2) = (j3, i3),

W 2
i1i2

Wi3j3Wi4j4 , if (i1, j1) = (j2, i2), (j4, j3) 6= (i3, i4),

W 2
i1i3

Wi2j2Wi4j4 , if (i1, j1) = (j3, i3), (j4, j2) 6= (i2, i4),

W 2
i1i4

Wi2j2Wi3j4 , if (i1, j1) = (j4, i4), (j3, j2) 6= (i2, i3),

W 2
i2i3

Wi1j1Wi4j4 , if (i2, j2) = (j3, i3), (j4, j1) 6= (i1, i4),

W 2
i2i4

Wi1j1Wi3j3 , if (i2, j2) = (j4, i4), (j3, j1) 6= (i1, i3),

W 2
i3i4

Wi1j1Wi2j2 , if (i3, j3) = (j4, i4), (j2, j1) 6= (i1, i2).

Wi1j1Wi2j2Wi3j3Wi4j4 , otherwise.

By symmetry, it allows us to further split F1 into 3 different terms:

F1 = 3Xa + 6Xb +Xc, (2.E.265)

where

Xa = v−2
∑

i1,i2,i3,i4(dist)

ηi1ηi2ηi3ηi4W
2
i1i2W

2
i3i4 ,

Xb = v−2
∑

i1,i2,i3,i4(dist)

∑
j3,j4

(j3,j4)6=(i4,i3)

ηi1ηi2ηi3ηi4W
2
i1i2Wi3j3Wi4j4 ,

and

Xc = v−2
∑

i1,i2,i3,i4(dist)

∑
j1,j2,j3,j4

jk 6=i`,k,`=1,2,3,4

ηi1ηi2ηi3ηi4Wi1j1Wi2j2Wi3j3Wi4j4 .

We now show the two claims in (2.E.178) separately. Consider the first claim of (2.E.178).

Note that E[Xb] = E[Xc] = 0. Recall that both under the null and the alternative, for any

i 6= j, E[W 2
ij ] = Ωij(1− Ωij) ≤ Cθiθj , and that 0 < ηi ≤ Cθi, and that v � ‖θ‖21, Therefore,

0 < E[Xa] ≤ v−2
∑

i1,i2,i3,i4(dist)

θi1θi2θi3θi4θi1θi2θi3θi4 ≤ C‖θ‖8/‖θ‖41.

Inserting into (2.E.265) gives

E[|F1|] ≤ C‖θ‖8/‖θ‖41,

and the first claim (2.E.178) follows.

Consider the second claim (2.E.178) next. By (2.E.265) and Cauchy-Schwarz inequality,

Var(F1) ≤ C(Var(Xa) + Var(Xb) + Var(Xc)) ≤ C(Var(Xa) + E[X2
b ] + E[X2

c ]). (2.E.266)

We now consider Var(Xa), E[X2
b ], and E[X2

c ], separately. Note that

• The proof of Var(Xa) is similar to that of Var(Xa) in Item (a).

• The proof of E[X2
b ] is similar to that of

∑4
s=1 E[X2

bs] in Item (a).

• The proof of E[X2
c ] is similar to that of E[X2

c ] in Item (a).
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2.E. Properties of Signed Polygon statistics

For these reasons, we omit the proof details and only state the claims. We have that under

both the null and the alternative,

Var(Xa) ≤ C‖θ‖8‖θ‖63/‖θ‖81. (2.E.267)

Var(X2
b ) + Var(Ya3) ≤ C‖θ‖4‖θ‖63/‖θ‖41, (2.E.268)

E[X2
c ] ≤ C‖θ‖12

3 /‖θ‖41, (2.E.269)

Finally, inserting (2.E.267), (2.E.268), and (2.E.269) into (2.E.265) gives that, both under

the null and the alternative,

Var(F1) ≤ C[‖θ‖8‖θ‖63/‖θ‖81 + ‖θ‖8‖θ‖63/‖θ‖61 + ‖θ‖12
3 /‖θ‖41] ≤ C‖θ‖8‖θ‖63/‖θ‖61,

where we have used ‖θ‖ → ∞ and ‖θ‖33 � ‖θ‖2 � ‖θ‖1. This gives (2.E.178) and completes

the proof for Item (i).

Consider Item (j). The goal is to show (2.E.179). Recall that

Fb =
∑

i1,i2,i3,i4(dist)

ηi2η
2
i3ηi4

[
(ηi1 − η̃i1)2(ηi2 − η̃i2)(ηi4 − η̃i4)

]
,

and that

η̃ − η = v−1/2W1n.

Plugging this into Fb, we have

Fb = v−2
∑

i1,i2,i3,i4(dist)

∑
j1,`1,j2,j4

j1 6=i1,`1 6=i1,j2 6=i2,j4 6=i4

ηi2η
2
i3ηi4Wi1j1Wi1`1Wi2j2Wi4j4 .

By basic combinatorics and basic algebra, we have

Wi1j1Wi1`1Wi2j2Wi4j4 =



W 3
i1i2

Wi4j4 , if j1, `1 = i2, j2 = i1,

W 3
i1i4

Wi2j2 , if j1, `1 = i4, j4 = i1,

W 2
i1i2

W 2
i1i4

, if (j1, j2) = (i2, i1), (`1, j4) = (i4, i1),

W 2
i1i2

W 2
i1i4

, if (`1, j2) = (i2, i1), (j1, j4) = (i4, i1),

W 2
i1i4

W 2
i1i2

, if (j1, j4) = (i4, i1), (`1, j2) = (i2, i1),

W 2
i1i4

W 2
i1i2

, if (`1, j4) = (i4, i1), (j1, j2) = (i2, i1),

W 2
i1j1

W 2
i2i4

, if j1 = `1, (j2, j4) = (i4, i2),

W 2
i1i2

Wi1j1Wi4j4 , if `1 = i2, j2 = i1, j1 6= i2, i4,

W 2
i1i2

Wi1`1Wi4j4 , if j1 = i2, j2 = i1, `1 6= i2, i4,

W 2
i1i4

Wi1j1Wi2j2 , if `1 = i4, j4 = i1, `1 6= i2, i4,

W 2
i1i4

Wi1`1Wi2j2 , if j1 = i4, j4 = i1, j1 6= i2, i4,

W 2
i2i4

Wi1j1Wi1`1 , if j1 6= `1, (j2, j4) = (i4, i2).

W 2
i1j1

Wi2j2Wi4j4 , if j1 = `1, (j1, j2) 6= (i2, i1), (j1, j4) 6= (i4, i1),

Wi1j1Wi1`1Wi2j2Wi4j4 , otherwise.

By these and symmetry, we can further split Fb into 7 different terms,

We decompose

Fb = 2Ya1 + 4Ya2 + Ya3 + 4Yb1 + Yb2 + Yb3 + Yc, (2.E.270)

where

Ya1 = v−2
∑

i1,i2,i3,i4(dist)

∑
j4,j4 6=i4

ηi2η
2
i3ηi4W

3
i1i2Wi4j4 ,
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2. optimal adaptivity of signed-polygon statistics for network testing

Ya2 = v−2
∑

i1,i2,i3,i4(dist)

ηi2η
2
i3ηi4W

2
i1i2W

2
i1i4 ,

Ya3 = v−2
∑

i1,i2,i3,i4(dist)

∑
j1,j1 6=i1

ηi2η
2
i3ηi4W

2
i1j1W

2
i2i4 ,

Yb1 = v−2
∑

i1,i2,i3,i4(dist)

∑
j1,j4

j1 6=i1,j4 6=i4

ηi2η
2
i3ηi4W

2
i1i2Wi1j1Wi4j4 ,

Yb2 = v−2
∑

i1,i2,i3,i4(dist)

∑
j1,`1

j1,`1 6=i1

ηi2η
2
i3ηi4W

2
i2i4Wi1j1Wi1`1 ,

Yb3 = v−2
∑

i1,i2,i3,i4(dist)

∑
j1,j2,j4

j1 6=i1,j2 6=i2,j4 6=i4

ηi2η
2
i3ηi4W

2
i1j1Wi2j2Wi4j4 ,

Yc = v−2
∑

i1,i2,i3,i4(dist)

∑
j1,`1,j2,j4

j1,`1 /∈{i1,i2,i4}
j2 /∈{i1,i4},j4 /∈{i1,i2}

ηi2η
2
i3ηi4Wi1j1Wi1`1Wi2j2Wi4j4 ,

We now consider the two claims in (2.E.179) separately. Consider the first claim. It is seen

that only the second and the third terms above have non-zero mean. Recall that both under

the null and the alternative, for any i 6= j, E[W 2
ij ] = Ωij(1 − Ωij) ≤ Cθiθj , 0 < ηi ≤ Cθi,

and that v � ‖θ‖21. It follows

0 < E[Ya2] ≤ v−2
∑

i1,i2,i3,i4(dist)

θi2θ
2
i3θi4 · θ

2
i1θi2θi4 ≤ C‖θ‖

8/‖θ‖41. (2.E.271)

and

0 < E[Ya3] ≤ v−2
∑

i1,i2,i3,i4(dist)

∑
j1

θi2θ
2
i3θi4 · θi1θi2θj1θi4 ≤ C‖θ‖

6/‖θ‖21. (2.E.272)

Combining (2.E.271), (2.E.272) with (2.E.270) gives

E[|F2|] ≤ C[‖θ‖8/‖θ‖41 + ‖θ‖6/‖θ‖21] ≤ C‖θ‖6/‖θ‖21,
where we’ve used the universal inequality that ‖θ‖2 ≤ ‖θ‖1. It follows the first claim of

(2.E.179).

We now show the second claim of (2.E.179). By Cauchy-Schwarz inequality,

Var(Fb) ≤ C
(
Var(Ya1) + Var(Ya2) + Var(Ya3) + Var(Yb1) + Var(Yb2) + Var(Yb3) + Var(Yc)

)
≤ C

(
Var(Ya1) + Var(Ya2) + Var(Ya3) + E[Y 2

b1] + E[Y 2
b2] + E[Y 2

b3] + E[Y 2
c ]
)
.

(2.E.273)

We now consider Var(Ya1), Var(Ya2)+Var(Ya3), E[Y 2
b1]+E[Y 2

b2]+E[Y 2
b3], and E[Y 2

c ], separately.

Note that

• The proof of Var(Ya1) is similar to that of Var(Ya) in Item (b).

• The proof of Var(Ya2) and Var(Ya3) are similar to that of Var(Xa) in Item (a).

• The proof of
∑3

s=1 E[Y 2
bs

] is similar to that of
∑4

s=1 E[X2
bs] in Item (a).
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• The proof of E[Y 2
c ] is similar to that of E[X2

c ] in Item (a).

For these reasons, we omit the proof details and only state the claims. We have that under

both the null and the alternative,

Var(Ya1) ≤ C‖θ‖8‖θ‖33/‖θ‖51. (2.E.274)

Var(Ya2) + Var(Ya3) ≤ C‖θ‖4‖θ‖63/‖θ‖41, (2.E.275)

3∑
s=1

E[Y 2
bs ] ≤ C‖θ‖

4‖θ‖63/‖θ‖21, (2.E.276)

E[Y 2
c ] ≤ C‖θ‖6‖θ‖63/‖θ‖41. (2.E.277)

Finally, inserting (2.E.274), (2.E.275), (2.E.276), and (2.E.277) into (2.E.273) gives

Var(F2) ≤ C[‖θ‖8‖θ‖33/‖θ‖51 + ‖θ‖4‖θ‖63/‖θ‖41 + ‖θ‖4‖θ‖63/‖θ‖21 + ‖θ‖6‖θ‖63/‖θ‖41]

≤ C‖θ‖4‖θ‖63/‖θ‖41, (2.E.278)

where we have used ‖θ‖33 � ‖θ‖2 � ‖θ‖1, ‖θ‖ → ∞ and ‖θ‖4 ≤ ‖θ‖1‖θ‖33. This completes

the proof of (2.E.179).

Consider Item (k). The goal is to show (2.E.180) and (2.E.181). Recall that

Fc =
∑

i1,i2,i3,i4(dist)

η2
i2η

2
i4

[
(ηi1 − η̃i1)2(ηi3 − η̃i3)2

]
,

and that η̃ − η = v−1/2W1n. Plugging this into F3 gives

Fc = v−2
∑

i1,i2,i3,i4(dist)

∑
j1,`1,j2,j4

j1 6=i1,`1 6=i1,j3 6=i3,`3 6=i3

η2
i2η

2
i4Wi1j1Wi1`1Wi3j3Wi3`3 .

By basic combinatorics and basic algebra, we have

Wi1j1Wi1`1Wi3j3Wi3`3 =



W 4
i1i3

, if j1 = `1 = i1, j3 = `3 = i1,

W 3
i1i3

Wi1j1 , if j3 = `3 = i1, `1 = i3,

W 3
i1i3

Wi1`1 , if j3 = `3 = i1, j1 = i3,

W 3
i1i3

Wi3j3 , if j1 = `1 = i3, `3 = i1,

W 3
i1i3

Wi3`3 , if j1 = `1 = i3, j3 = i1,

W 2
i1j1

W 2
i3j3

, if j1 = `1, j3 = `3,

W 2
i1j1

Wi3j3Wi3`3 , if j1 = `1 6= i3, j3 6= `3,

W 2
i3j3

Wi1j1Wi1`1 , if j3 = `3 6= i1, j1 6= `1,

W 2
i1i3

Wi1`1Wi3`3 , if j1 = i3, j3 = i1,

W 2
i1i3

Wi1j1Wi3j3 , if `1 = i3, `3 = i1,

W 2
i1i3

Wi1j1Wi3`3 , if `1 = i3, j3 = i1,

W 2
i1i3

Wi1`1Wi3j3 , if j1 = i3, `3 = i1,

Wi1j1Wi1`1Wi3j3Wi3`3 , otherwise.

By these and symmetry, we can further split F3 into 6 different terms:

Fc = Za + 4Zb1 + Zb2 + 2Zc1 + 4Zc2 + Zd, (2.E.279)

where

Za = v−2
∑

i1,i2,i3,i4(dist)

η2
i2η

2
i4W

4
i1i3 ,
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Zb1 = v−2
∑

i1,i2,i3,i4(dist)

∑
j4,j4 6=i4

η2
i2η

2
i4W

3
i1i3Wi3j3 ,

Zb2 = v−2
∑

i1,i2,i3,i4(dist)

∑
j1,j1 6=i1,j3,j3 6=i3

η2
i2η

2
i4W

2
i1j1W

2
i3j3 ,

Zc1 = v−2
∑

i1,i2,i3,i4(dist)

∑
j1,j3,`3

j1 /∈{i1,i3},j3,`3

η2
i2η

2
i4W

2
i1j1Wi3j3Wi3`3 ,

Zc2 = v−2
∑

i1,i2,i3,i4(dist)

∑
`1,`3

`1 6=i1,`3 6=i3

η2
i2η

2
i4W

2
i1i3Wi1`1Wi3`3 ,

Zd = v−2
∑

i1,i2,i3,i4(dist)

∑
j1,`1,j3,`3
j1 6=`1,j3 6=`3

j1,`1 6=i3,j3,`3 6=i1

η2
i2η

2
i4Wi1j1Wi1`1Wi3j3Wi3`3 .

We now show (2.E.180) and (2.E.181) separately. Consider (2.E.180) first. It is among

all the 6 Z-terms, only Za and Zb2 have non-zero means. We now consider E[Za] and E[Zb2]

separately.

First, consider E[Za]. By similar arguments, both under the null and the alternative,

E[W 4
i1i3 ] ≤ CΩi1i3 ≤ Cθi1θi3 .

Recalling that 0 < ηi ≤ Cθi and v � ‖θ‖2, it is seen that

E[Za] ≤ C(‖θ‖1)−4
∑

i1,i2,i3,i4(dist)

θ2
i2θ

2
i4θi1θi3 ≤ C‖θ‖

4/‖θ‖21. (2.E.280)

Next, consider E[Zb2]. First, recall that under the null, Ω = θθ′, v = 1′n(Ω−diag(Ω))1n, and

η = v−1/2(Ω− diag(Ω)1n. It is seen v ∼ ‖θ‖21, ηi = (1 + o(1)θi, 1 ≤ i ≤ n, where o(1)→ 0

uniformly for all 1 ≤ i ≤ n, and for any i 6= j, E[W 2
ij ] = (1 + o(1))θiθj , where o(1) → 0

uniformly for all 1 ≤ i, j ≤ n. It follows

E[Zb2] = v−2
∑

i1,i2,i3,i4(dist)

∑
j1,j1 6=i1,j3,j3 6=i3

η2
i2η

2
i4E[W 2

i1j1W
2
i3j3 ], (2.E.281)

which

∼ (‖θ‖1)−4
∑

i1,i2,i3,i4(dist)

∑
j1,j1 6=i1,j3,j3 6=i3

θi1θ
2
i2θi3θ

2
i4θj1θj3 ∼ ‖θ‖

4.

Second, under the alternative, by similar argument, we have that v � ‖θ‖21, 0 < ηi < Cθi for

all 1 ≤ i ≤ n, and E[W 2
ij ] ≤ Cθiθj for all 1 ≤ i, j ≤ n, i 6= j. Similar to that under the null,

we have

0 < |E[Zb2]| ≤ C‖θ‖4. (2.E.282)

Inserting (2.E.280), (2.E.281), and (2.E.282) into (2.E.279) and recalling that the mean of

all other Z terms are 0,

E[F3] ∼ ‖θ‖4, under the null,

and

E[F3] ≤ C‖θ‖4, under the alternative,
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2.E. Properties of Signed Polygon statistics

where we have used ‖θ‖1 →∞. This proves (2.E.180).

We now consider (2.E.181). By Cauchy-Schwarz inequality,

Var(Fc) ≤ C
(
Var(Za) + Var(Zb1) + Var(Zb2) + Var(Zc1) + Var(Zc2) + Var(Zd)

)
≤ C

(
Var(Za) + E[Z2

b1] + Var(Zb2) + E[Z2
c1] + E[Z2

c2] + E[Z2
d ]
)
. (2.E.283)

Consider Var(Za). Write

Var(Za) = v−4
∑

i1,i2,i3,i4(dist)
i′1,i
′
2,i
′
3,i
′
4(dist)

η2
i2η

2
i4η

2
i′2
η2
i′4
E[(W 4

i1i3 − E[W 4
i1i3 ])(W 4

i′1i
′
3
− E[W 4

i′1i
′
3
])].

Fix a term (W 4
i1i3
− E[W 4

i1i3
])(W 4

i′1i
′
3
− E[W 4

i′1i
′
3
]). When the mean is nonzero, we must have

{i1, i3} = {i′1, i′3}, and when this happens,

E[(W 4
i1i3 − E[W 4

i1i3 ])(W 4
i′1i
′
3
− E[W 4

i′1i
′
3
])] = Var(W 4

i1i3).

For a random variable X, we have Var(X) ≤ E[X2], and it follows that

Var(W 4
i1i3) ≤ E[W 8

i1i3 ] ≤ E[W 2
i1i3 ],

where we have used the property that 0 ≤W 2
i1i3
≤ 1; note that E[W 2

i1i3
] ≤ Cθi1θi3 . Recall

that v � ‖θ‖21 and 0 < ηi ≤ Cθi for all 1 ≤ i ≤ n. Combining these gives

Var(Za) ≤ C(‖θ‖−8
1 ) ·

∑
i1,i2,i3,i4(dist)
i′2,i
′
4(dist)

θ2
i2θ

2
i4θ

2
i′2
θ2
i′4
θi1θi3 ≤ C‖θ‖8/‖θ‖61. (2.E.284)

We now consider all other terms on the right hand side of (2.E.283). Note that

• The proof of E[Z2
b1] is similar to that of Ya1 in Item (b).

• The proof of Var(Zb2) is similar to that of Xa in Item (a).

• The proof of E[Z2
c1] and E[Z2

c2] are similar to that of Xb in Item (a).

• The proof of E[Z2
d ] is similar to that of Xc in Item (a).

For these reasons, we skip the proof details. We have that, under both the null and the

alternative,

E[Z2
b1] ≤ C‖θ‖8‖θ‖33/‖θ‖51, (2.E.285)

Var(Zb2) ≤ C‖θ‖8/‖θ‖21, (2.E.286)

E[Z2
c1] + E[Z2

c2] ≤ C‖θ‖10/‖θ‖21, (2.E.287)

and

E[Z2
d ] ≤ C‖θ‖12/‖θ‖41. (2.E.288)

Inserting (2.E.284), (2.E.285), (2.E.286), (2.E.287) and (2.E.288) into (2.E.283) gives

Var(Fc) ≤ C[‖θ‖8/‖θ‖61 + ‖θ‖8/‖θ‖21 + ‖θ‖10/‖θ‖21 + ‖θ‖12/‖θ‖41]

≤ C‖θ‖10/‖θ‖21,
which completes the proof of (2.E.181).
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Proof of Lemma 24

Define an event D as

D =
{
|V − v| ≤ ‖θ‖1 · xn

}
, for

√
log(‖θ‖1)� xn � ‖θ‖1.

We aim to show that

E[(Qn −Q∗n)2 · IDc ] = o(‖θ‖8). (2.E.289)

First, we bound the tail probability of |V − v|. Write

V − v = 2
∑
i<j

(Aij − Ωij).

The variables {Aij − Ωij}1≤i<j≤n are mutually independent with mean zero. They satisfy

|Aij − Ωij | ≤ 1 and
∑

i<j Var(Aij − Ωij) ≤
∑

i<j Ωij ≤ 1′nΩ1n/2 ≤ ‖θ‖21/2. Applying the

Bernstein’s inequality, for any t > 0,

P
(∣∣∣2∑

i<j

(Aij − Ωij)
∣∣∣ > t

)
≤ 2 exp

(
− t2/2

2‖θ‖21 + t/3

)
.

We immediately have that, for some positive constants C1, C2 > 0,

P(|V − v| > t) ≤

2 exp
(
− C1

‖θ‖21
t2
)
, when xn‖θ‖1 ≤ t ≤ ‖θ‖21,

2 exp
(
−C2t

)
, when t > ‖θ‖21.

(2.E.290)

Especially, letting t = xn‖θ‖1, we have

P(Dc) ≤ 2 exp(−C1x
2
n). (2.E.291)

Next, we derive an upper bound of (Qn −Q∗n)2 in terms of V . Recall that V is the total

number of edges and that Qn =
∑

i,j,k,`(dist)MijMjkMk`M`i, where Mij = Aij − η̂iη̂j . If one

node of i, j, k, ` has a zero degree (say, node i), then Aij = 0 and η̂i = 0, and it follows that

Mij = 0 and MijMjkMk`M`i = 0. Hence, only when (i, j, k, `) all have nonzero degrees, this

quadruple has a contribution to Qn. Since V is the total number of edges, there are at most

V nodes that have a nonzero degree. It follows that

|Qn| ≤ CV 4.

Moreover, Q∗n =
∑

i,j,k,`(dist)M
∗
ijM

∗
jkM

∗
k`M

∗
`i, where M∗ij = Ω̃ij + Wij + δij . Re-write

M∗ij = Aij − η∗i η∗j + ηi(ηj − η̃j) + ηj(ηj − η̃j). First, since η∗i ≤ Cθi and ηi ≤ Cθi (see

(2.E.117)), |M∗ij | ≤ Aij + Cθiθj + Cθi|ηj − η̃j | + Cθj |ηi − η̃i|. Second, note that η̃i equals

to v−1/2 times degree of node i, where v � ‖θ‖21 according to (2.E.116). It follows that

|ηi − η̃i| ≤ C(θi + ‖θ‖−1
1 V ). Therefore,

|M∗ij | ≤ Aij + Cθiθj + C‖θ‖−1
1 V (θi + θj).

We plug it into the definition of Q∗n and note that there are at most V pairs of (i, j) such

that Aij 6= 0. By elementary calculation,

|Q∗n| ≤ C(V 4 + ‖θ‖41).

Combining the above gives

(Qn −Q∗n)2 ≤ 2Q2
n + 2(Q∗n)2 ≤ C(V 8 + ‖θ‖81). (2.E.292)
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Last, we show (2.E.289). By (2.E.292) and that V 8 ≤ Cv8 + C|V − v|8, we have

E[(Qn −Q∗n)2 · IDc ] ≤ CE[|V − v|8 · IDc ] + C(v8 + ‖θ‖81) · P(Dc)

≤ CE[|V − v|8 · IDc ] + C‖θ‖16
1 · P(Dc), (2.E.293)

where the second line is from v � ‖θ‖21. Note that xn �
√

log(‖θ‖1). For n sufficiently large,

x2
n ≥ 17C−1

1 log(‖θ‖1). Combining it with (2.E.291), we have

‖θ‖16
1 · P(Dc) ≤ ‖θ‖16

1 · 2e−C1x2
n ≤ ‖θ‖16

1 · 2e−17‖θ‖1 = o(1). (2.E.294)

We then bound E[|V − v|8 · IDc ]. Let f(t) and F (t) be the probability density and CDF

of |V − v|, and write F̄ (t) = 1 − F (t). Using integration by part, for any continuously

differentiable function g(t) and x > 0,
∫∞
x g(t)f(t)dt = g(x)F̄ (x)+

∫∞
x g′(t)F̄ (t)dt. We apply

the formula to g(t) = t8 and x = xn‖θ‖1. It yields

E[|V − v|8 · IDc ] = (xn‖θ‖1)8 · P(Dc) +

∫ ∞
xn‖θ‖1

8t7 · P(|V − v| > t)dt

≡ I + II.

Consider I. By (2.E.294) and xn � ‖θ‖1,

I � ‖θ‖16
1 · P(Dc) = o(1).

Consider II. By (2.E.290), (2.E.294), and elementary probability,

II ≤ 8(‖θ‖21)7 · P
(
xn‖θ‖1 < |V − v| ≤ ‖θ‖21

)
+

∫
‖θ‖21

8t7 · P(|V − v| > t)dt

≤ C‖θ‖14
1 · P(Dc) +

∫
‖θ‖21

8t7 · 2e−C2tdt

= o(1),

where in the last line we have used (2.E.294) and the fact that
∫∞
x t7e−C2tdt→ 0 as x→∞.

Combining the bounds for I and II gives

E[|V − v|8 · IDc ] = o(1). (2.E.295)

Then, (2.E.289) follows by plugging (2.E.294)-(2.E.295) into (2.E.293).

Proof of Lemma 25

There are 175 post-expansion sums in (Q̃∗n − Q∗n). They divide into 34 different types,

denoted by R1-R34 as shown in Table 2.3. It suffices to prove that, for each 1 ≤ k ≤ 34,

under the null hypothesis,∣∣E[Rk]
∣∣ = o(‖θ‖4), Var(Rk) = o(‖θ‖8), (2.E.296)

and under the alternative hypothesis,∣∣E[Rk]
∣∣ = o(α4‖θ‖8), Var(Rk) = O(‖θ‖8 + α6‖θ‖8‖θ‖63). (2.E.297)

We need some preparation. First, recall that r̃ij = − v
V (η̃i − ηi)(η̃j − ηj). It follows that

each post-expansion sum has the form( v
V

)Nr̃ ∑
i,j,k,`(dist)

aijbjkck`d`i, (2.E.298)
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Table 2.3: The 34 types of the 175 post-expansion sums for (Q̃∗n −Q∗n).

Notation # Nr̃ (Nδ, NΩ̃
, NW ) Examples N∗W

R1 4 1 (0, 0, 3)
∑

i,j,k,`(dist) r̃ijWjkWk`W`i 5

R2 8 1 (0, 1, 2)
∑

i,j,k,`(dist) r̃ijΩ̃jkWk`W`i 4

R3 4
∑

i,j,k,`(dist) r̃ijWjkΩ̃k`W`i 4

R4 8 1 (0, 2, 1)
∑

i,j,k,`(dist) r̃ijΩ̃jkΩ̃k`W`i 3

R5 4
∑

i,j,k,`(dist) r̃ijΩ̃jkWk`Ω̃`i 3

R6 4 1 (0, 3, 0)
∑

i,j,k,`(dist) r̃ijΩ̃jkΩ̃k`Ω̃`i 2

R7 8 1 (1, 0, 2)
∑

i,j,k,`(dist) r̃ijδjkWk`W`i 5

R8 4
∑

i,j,k,`(dist) r̃ijWjkδk`W`i 5

R9 8 1 (1, 1, 1)
∑

i,j,k,`(dist) r̃ijδjkΩ̃k`W`i 4

R10 8
∑

i,j,k,`(dist) r̃ijΩ̃jkWk`δ`i 4

R11 8
∑

i,j,k,`(dist) r̃ijWjkδk`Ω̃`i 4

R12 8 1 (1, 2, 0)
∑

i,j,k,`(dist) r̃ijδjkΩ̃k`Ω̃`i 3

R13 4
∑

i,j,k,`(dist) r̃ijΩ̃jkδk`Ω̃`i 3

R14 8 1 (2, 0, 1)
∑

i,j,k,`(dist) r̃ijδjkδk`W`i 5

R15 4
∑

i,j,k,`(dist) r̃ijδjkWk`δ`i 5

R16 8 1 (2, 1, 0)
∑

i,j,k,`(dist) r̃ijδjkδk`Ω̃`i 4

R17 4
∑

i,j,k,`(dist) r̃ijδjkΩ̃k`δ`i 4

R18 4 1 (3, 0, 0)
∑

i,j,k,`(dist) r̃ijδjkδk`δ`i 5

R19 4 2 (0, 0, 2)
∑

i,j,k,`(dist) r̃ij r̃jkWk`W`i 6

R20 2
∑

i,j,k,`(dist) r̃ijWjkr̃k`W`i 6

R21 4 2 (0, 2, 0)
∑

i,j,k,`(dist) r̃ij r̃jkΩ̃k`Ω̃`i 4

R22 2
∑

i,j,k,`(dist) r̃ijΩ̃jkr̃k`Ω̃`i 4

R23 4 2 (2, 0, 0)
∑

i,j,k,`(dist) r̃ij r̃jkδk`δ`i 6

R24 2
∑

i,j,k,`(dist) r̃ijδjkr̃k`δ`i 6

R25 8 2 (0, 1, 1)
∑

i,j,k,`(dist) r̃ij r̃jkΩ̃k`W`i 5

R26 4
∑

i,j,k,`(dist) r̃ijΩ̃jkr̃k`W`i 5

R27 8 2 (1, 1, 0)
∑

i,j,k,`(dist) r̃ij r̃jkδk`Ω̃`i 5

R28 4
∑

i,j,k,`(dist) r̃ijδjkr̃k`Ω̃`i 5

R29 8 2 (1, 0, 1)
∑

i,j,k,`(dist) r̃ij r̃jkδk`W`i 6

R30 4
∑

i,j,k,`(dist) r̃ijδjkr̃k`W`i 6

R31 4 3 (0, 0, 1)
∑

i,j,k,`(dist) r̃ij r̃jkr̃k`W`i 7

R32 4 3 (0, 1, 0)
∑

i,j,k,`(dist) r̃ij r̃jkr̃k`Ω̃`i 6

R33 4 3 (1, 0, 0)
∑

i,j,k,`(dist) r̃ij r̃jkr̃k`δ`i 7

R34 1 4 (0, 0, 0)
∑

i,j,k,`(dist) r̃ij r̃jkr̃k`r̃`i 8

where aij takes values in {Ω̃ij ,Wij , δij ,−(η̃i − ηi)(η̃j − ηj)} and bjk, ck`, d`i are similar. The

variable v
V has a complicated correlation with each summand, so we want to get rid of it.

Denote the variable in (2.E.298) by Y . Write m = Nr̃ and

Y =
( v
V

)m
X, where X =

∑
i,j,k,`(dist)

aijbjkck`d`i. (2.E.299)
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We compare the mean and variance of X and Y . By assumption,
√

log(‖θ‖1)� ‖θ‖1/‖θ‖2.

Then, there exists a sequence xn such that√
log(‖θ‖1)� xn � ‖θ‖1/‖θ‖2, as n→∞.

We introduce an event

D =
{
|V − v| ≤ ‖θ‖1xn

}
.

In Lemma 24, we have proved E[(Qn −Q∗n)2 · IDc ] = o(1). By similar proof, we can show:

as long as |Y −X| is bounded by a polynomial of V and ‖θ‖1,

E[(Y −X)2 · IDc ] = o(1). (2.E.300)

Additionally, on the event D, since v � ‖θ‖21 � ‖θ‖1xn, we have |V − v| = o(v). It follows

that |V−v|V . |V−v|
v ≤ C‖θ‖−1xn = o(1). For any fixed m ≥ 1, (1 +x)m ≤ 1 +Cx for x being

close to 0. Hence, |1− vm

Vm | ≤ C|1−
v
V | ≤ C‖θ‖

−1
1 xn = o(‖θ‖−2). It implies

|Y −X| = o(‖θ‖−2) · |X|, on the event D. (2.E.301)

By (2.E.300)-(2.E.301) and elementary probability,

|E[Y −X]| ≤ |E[(Y −X) · ID]|+ |E[(Y −X) · IDc ]|

≤ o(‖θ‖−2) · E[|X| · ID] +
√
E[(Y −X)2 · IDc ]

≤ o(‖θ‖−2)
√
E[X2] + o(1),

and

Var(Y ) ≤ 2Var(X) + 2Var(Y −X)

≤ 2Var(X) + 2E[(Y −X)2]

= 2Var(X) + 2E[(Y −X)2 · ID] + 2E[(Y −X)2 · IDc ]
≤ 2Var(X) + o(‖θ‖−4) · E[X2] + o(1).

Under the null hypothesis, suppose we can prove that

E[X2] = o(‖θ‖8). (2.E.302)

Since E[X2] = (E[X])2 + Var(X), it implies |E[X]| = o(‖θ‖4) and Var(X) = o(‖θ‖8).

Therefore,

|E[Y ]| ≤ |E[X]|+ |E[Y −X]| = o(‖θ‖4),

Var(Y ) ≤ CVar(X) + o(‖θ‖−4) · E[X2] + o(1) = o(‖θ‖8).

Under the alternative hypothesis, suppose we can prove that

|E[X]| = O(α2‖θ‖6), Var(X) = o(‖θ‖8 + α6‖θ‖8‖θ‖63). (2.E.303)

Since E[X2] = (E[X])2 + Var(X), we have E[X2] = O(α4‖θ‖12). Then,

|E[Y ]| ≤ O(α2‖θ‖6) + o(‖θ‖−2) ·O(α2‖θ‖6) = o(α4‖θ‖8),

Var(Y ) ≤ o(‖θ‖8 + α6‖θ‖8‖θ‖63) + o(‖θ‖−4) ·O(α4‖θ‖12) = o(‖θ‖8 + α6‖θ‖8‖θ‖63).

In conclusion, to prove that Y satisfies the requirement in (2.E.296)-(2.E.297), it is sufficient

to prove that X satisfies (2.E.302)-(2.E.303). We remark that (2.E.303) puts a more stringent

requirement on the mean of the variable, compared to (2.E.297).

From now on, in the analysis of each Rk of the form (2.E.298), we shall always neglect

the factor ( vV )Nr̃ , and show that, after this factor is removed, the random variable satisfies
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2. optimal adaptivity of signed-polygon statistics for network testing

(2.E.302)-(2.E.303). This is equivalent to pretending

r̃ij = −(η̃i − ηi)(η̃j − ηj)
and proving each Rk satisfies (2.E.302)-(2.E.303). Unless mentioned, we stick to this mis-use

of notation r̃ij in the proof below.

Second, we divide 34 terms into several groups using the intrinsic order of W defined

below. Note that r̃ij = −(η̃i − ηi)(η̃j − ηj), δij = ηi(ηj − η̃j) + ηj(ηi − η̃i), and η̃i − ηi =
1√
v

∑
s 6=iWis. We thus have

r̃ij = −1

v

(∑
s6=i

Wis

)(∑
t6=j

Wjt

)
, δij = − 1√

v
ηi

(∑
t6=j

Wjt

)
− 1√

v
ηj

(∑
s 6=i

Wis

)
.

Each r̃ij is a weighted sum of terms like WisWjt, and each δij is a weighted sum of terms

like Wjt. Intuitively, we view r̃-term as an “order-2 W -term” and view δ-term as “order-1

W -term.” It motivates the definition of intrinsic order of W as

N∗W = NW +Nδ + 2Nr̃. (2.E.304)

We group 34 terms by the value of N∗W ; see the last column of Table 2.3.

.There are 14 such terms, including R2-R6, R9-R13, R16-R17, and R21-R22. They all equal

to zero under the null hypothesis, so it is sufficient to show that they satisfy (2.E.303) under

the alternative hypothesis. We prove by comparing each Rk to some previously analyzed

terms. Take R9 for example. Plugging in the definition of r̃ij and δij gives

R9 =
∑

i,j,k,`(dist)

[(η̃i − ηi)(η̃j − ηj)][(η̃j − ηj)ηk + ηj(η̃k − ηk)]Ω̃k`W`i

= R9a +R9b,

where

R9a =
∑

i,j,k,`(dist)

ηkΩ̃k` · [(η̃i − ηi)(η̃j − ηj)2W`i],

R9b =
∑

i,j,k,`(dist)

ηjΩ̃k` · [(η̃i − ηi)(η̃j − ηj)(η̃k − ηk)W`i]. (2.E.305)

At the same time, we recall that T1 in Lemmas 22-23 is defined as

T1 =
∑

i,j,k,`(dist)

δijδjkδk`W`i =
∑

i,j,k,`(dist)

δ`jδjkδkiWi`.

In the proof of the above two lemmas, we express T1 as the weighted sum of T1a-T1d; see

(2.E.166). Note that T1a and T1d in (2.E.166) can be re-written as

T1d =
∑

i,j,k,`(dist)

[η`(η̃j − ηj)][(η̃j − ηj)ηk][ηk(η̃i − ηi)
]
Wi`

=
∑

i,j,k,`(dist)

η2
kη` · [(η̃i − ηi)(η̃j − ηj)2W`i],

T1a =
∑

i,j,k,`(dist)

[η`(η̃j − ηj)][ηj(η̃k − ηk)][ηk(η̃i − ηi)
]
Wi`

=
∑

i,j,k,`(dist)

ηjηkη` · [(η̃i − ηi)(η̃j − ηj)(η̃k − ηk)Wi`]. (2.E.306)
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Compare (2.E.305) and (2.E.306). It is seen that R9a and T1d have the same structure, where

the non-stochastic coefficients in the summand satisfy |ηkΩ̃k`| ≤ Cαθ2
kθ` and |η2

kη`| ≤ Cθ2
kθ`,

respectively. This means we can bound |E(R9a)| and Var(R9a) in the same way as we bound

|E[T1d]| and Var(T1d), and the bounds have an extra factor of α and α2, respectively. In

detail, in the proof of Lemmas 22-23, we have shown

|E[T1d]| ≤ C‖θ‖4, Var(T1d) ≤
C‖θ‖6‖θ‖33
‖θ‖1

.

It follows immediately that

|E[R9a]| ≤ Cα‖θ‖4 = o(α2‖θ‖6), Var(T1d) ≤
Cα2‖θ‖6‖θ‖33
‖θ‖1

= o(‖θ‖8).

Similarly, since we have proved

|E[T1a]| ≤
C‖θ‖6

‖θ‖21
, Var(T1a) ≤

C‖θ‖4‖θ‖63
‖θ‖21

,

it follows immediately that

|E[R9b]| ≤
Cα‖θ‖6

‖θ‖21
= o(α2‖θ‖6), Var(R9b) ≤

Cα2‖θ‖4‖θ‖63
‖θ‖21

= o(‖θ‖8).

This proves (2.E.303) for X = R9a.

Analysis of post-expansion sums with N∗W ≤ 4 We use the same strategy to bound all other

terms with N∗W ≤ 4. The details are in Table 2.4. In each row of the table, the left column

displays a targeting variable X, and the right column displays a previously analyzed variable,

which we call X∗, that has a similar structure as X. It is not hard to see that we can obtain

upper bounds for |E[X]| and Var(X) from multiplying the upper bounds of |E[X∗]| and

Var(X∗) by αm and α2m, respectively, where m is a nonnegative integer (e.g., m = 1 in the

analysis of R9). Using our previous results, each X∗ in the right column satisfies

|E[X∗]| = O(α2‖θ‖6), Var(X∗) = o(‖θ‖8 + α6‖θ‖8‖θ‖63).

So, each X in the left column satisfies (2.E.303).

.There are 10 such terms, including R1, R7-R8, R14-R15, R18, and R25-R28. Using the the

notation

Gi = η̃i − ηi,
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2. optimal adaptivity of signed-polygon statistics for network testing

Table 2.4: The 14 types of post-expansion sums with N∗W ≤ 4. The right column displays
the post-expansion sums defined before which have similar forms as the post-expansion
sums in the left column. Definitions of the terms in the right column can be found in
(2.E.130), (2.E.136), (2.E.142), (2.E.152), (2.E.158), (2.E.166), (2.E.167), and (2.E.168).
For some terms in the right column, we permute (i, j, k, `) in the original definition for ease
of comparison with the left column. (In all expressions, the subscript “i, j, k, `(dist)” is
omitted.)

Expression Expression

R2
∑

(η̃i − ηi)(η̃j − ηj)Ω̃jkWk`W`i Z1b
∑

(η̃i − ηi)ηj(η̃j − ηj)ηkWk`W`i

R3
∑

(η̃i − ηi)(η̃j − ηj)WjkΩ̃k`W`i Z2a
∑
η`(η̃j − ηj)Wjkηk(η̃i − ηi)Wi`

R4
∑

(η̃i − ηi)(η̃j − ηj)Ω̃jkΩ̃k`W`i Z3d
∑

(η̃i − ηi)ηj(η̃j − ηj)ηkΩ̃k`W`i

R5
∑

(η̃i − ηi)(η̃j − ηj)Ω̃jkWk`Ω̃`i Z4b
∑

Ω̃ij(η̃j − ηj)ηkWk`η`(η̃i − ηi)
R6

∑
(η̃i − ηi)(η̃j − ηj)Ω̃jkΩ̃k`Ω̃`i Z5a

∑
ηi(η̃j − ηj)Ω̃jkΩ̃k`η`(η̃i − ηi)

R9
∑

(η̃i − ηi)(η̃j − ηj)2ηkΩ̃k`W`i T1d
∑
η`(η̃j − ηj)2η2

k(η̃i − ηi)Wi`∑
(η̃i − ηi)(η̃j − ηj)ηj(η̃k − ηk)Ω̃k`W`i T1a

∑
η`(η̃j − ηj)ηj(η̃k − ηk)ηk(η̃i − ηi)Wi`

R10
∑

(η̃i − ηi)2(η̃j − ηj)Ω̃jkWk`η` T1c
∑

(η̃j − ηj)ηkWk`η`(η̃i − ηi)2ηj∑
(η̃i − ηi)(η̃j − ηj)Ω̃jkWk`(η̃` − η`)ηi T1a

∑
(η̃j − ηj)ηkWk`(η̃` − η`)ηi(η̃i − ηi)ηj

R11
∑

(η̃i − ηi)(η̃j − ηj)Wjkηk(η̃` − η`)Ω̃`i T1a
∑

(η̃i − ηi)ηkWkj(η̃j − ηj)η`(η̃` − η`)ηi∑
(η̃i − ηi)(η̃j − ηj)Wjk(η̃k − ηk)η`Ω̃`i T1b

∑
ηi(η̃k − ηk)Wkj(η̃j − ηj)η2

` (η̃i − ηi)
R12

∑
(η̃i − ηi)(η̃j − ηj)2ηkΩ̃k`Ω̃`i T2c

∑
ηi(η̃j − ηj)2ηkΩ̃k`η`(η̃i − ηi)∑

(η̃i − ηi)(η̃j − ηj)ηj(η̃k − ηk)Ω̃k`Ω̃`i T2a
∑
ηi(η̃j − ηj)ηj(η̃k − ηk)Ω̃k`η`(η̃i − ηi)

R13
∑

(η̃i − ηi)(η̃j − ηj)Ω̃jk(η̃k − ηk)η`Ω̃`i T2b
∑
ηi(η̃j − ηj)Ω̃jk(η̃k − ηk)η2

` (η̃i − ηi)
R16

∑
(η̃i − ηi)(η̃j − ηj)2ηk(η̃k − ηk)η`Ω̃`i Fb

∑
ηi(η̃j − ηj)2ηk(η̃k − ηk)η2

` (η̃i − ηi)∑
(η̃i − ηi)(η̃j − ηj)2η2

k(η̃` − η`)Ω̃`i Fb
∑
ηi(η̃j − ηj)2η2

k(η̃` − η`)η`(η̃i − ηi)∑
(η̃i − ηi)(η̃j − ηj)ηj(η̃k − ηk)2η`Ω̃`i Fb

∑
ηi(η̃j − ηj)ηj(η̃k − ηk)2η2

` (η̃i − ηi)∑
(η̃i − ηi)(η̃j − ηj)ηj(η̃k − ηk)ηk(η̃` − η`)Ω̃`i Fa

∑
ηi(η̃j − ηj)ηj(η̃k − ηk)ηk(η̃` − η`)η`(η̃i − ηi)

R17
∑

(η̃i − ηi)(η̃j − ηj)ηj(η̃k − ηk)Ω̃k`(η̃` − η`)ηi Fa
∑
ηi(η̃j − ηj)ηj(η̃k − ηk)ηk(η̃` − η`)η`(η̃i − ηi)∑

(η̃i − ηi)(η̃j − ηj)2ηkΩ̃k`(η̃` − η`)ηi Fb
∑
ηi(η̃j − ηj)2η2

k(η̃` − η`)η`(η̃i − ηi)∑
(η̃i − ηi)2(η̃j − ηj)2ηkΩ̃k`η` Fc

∑
η`(η̃i − ηi)2η2

k(η̃j − ηj)2η`
R21

∑
(η̃i − ηi)(η̃j − ηj)2(η̃k − ηk)Ω̃k`Ω̃`i Fb

∑
ηi(η̃j − ηj)2ηk(η̃k − ηk)η2

` (η̃i − ηi)
R22

∑
(η̃i − ηi)(η̃j − ηj)Ω̃jk(η̃k − ηk)(η̃` − η`)Ω̃`i Fa

∑
ηi(η̃j − ηj)ηj(η̃k − ηk)ηk(η̃` − η`)η`(η̃i − ηi)

we get the following expressions (note: factors of ( vV )m have been removed; see explanations

in (2.E.302)-(2.E.303)):

R1 =
∑

i,j,k,`(dist)

GiGjWjkWk`W`i,

R7 =
∑

i,j,k,`(dist)

GiGjηjGkWk`W`i +
∑

i,j,k,`(dist)

GiG
2
jηkWk`W`i

=
∑

i,j,k,`(dist)

ηj(GiGjGkWk`W`i) +
∑

i,j,k,`(dist)

ηk(GiG
2
jWk`W`i),

R8 = 2
∑

i,j,k,`(dist)

GiGjWjkηkG`W`i = 2
∑

i,j,k,`(dist)

ηk(GiGjG`WjkW`i),

R14 =
∑
i,j,k,`
(dist)

GiG
2
jη

2
kG`W`i + 2

∑
i,j,k,`
(dist)

GiG
2
jηkGkη`W`i +

∑
i,j,k,`
(dist)

GiGjηjGkηkG`W`i

=
∑
i,j,k,`
(dist)

η2
k(GiG

2
jG`W`i) + 2

∑
i,j,k,`
(dist)

ηkη`(GiG
2
jGkW`i) +

∑
i,j,k,`
(dist)

ηjηk(GiGjGkG`W`i),

R15 =
∑
i,j,k,`
(dist)

GiGjηjGkWk`G`ηi + 2
∑
i,j,k,`
(dist)

GiG
2
jηkWk`G`ηi +

∑
i,j,k,`
(dist)

GiG
2
jηkWk`η`Gi

=
∑
i,j,k,`
(dist)

ηiηj(GiGjGkG`Wk`) + 2
∑
i,j,k,`
(dist)

ηiηk(GiG
2
jG`Wk`) +

∑
i,j,k,`
(dist)

ηkη`(G
2
iG

2
jWk`),

R18 = 4
∑

i,j,k,`(dist)

ηjηkη`(G
2
iGjGkG`) + 4

∑
i,j,k,`(dist)

ηkη
2
` (G

2
iG

2
jGk),

R25 =
∑

i,j,k,`(dist)

GiG
2
jGkΩ̃k`W`i =

∑
i,j,k,`(dist)

Ω̃k`(GiG
2
jGkW`i),

R26 =
∑

i,j,k,`(dist)

GiGjΩ̃jkGkG`W`i =
∑

i,j,k,`(dist)

Ω̃jk(GiGjGkG`W`i),

R27 =
∑

i,j,k,`(dist)

GiG
2
jGkηkG`Ω̃`i +

∑
i,j,k,`(dist)

GiG
2
jG

2
kη`Ω̃`i

=
∑

i,j,k,`(dist)

ηkΩ̃`i(GiG
2
jGkG`) +

∑
i,j,k,`(dist)

η`Ω̃`i(GiG
2
jG

2
k),

R28 = 2
∑

i,j,k,`(dist)

GiGjηjG
2
kG`Ω̃`i = 2

∑
i,j,k,`(dist)

ηjΩ̃`i(GiGjG
2
kG`).
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Each expression above belongs to one of the following types:

J1 =
∑

i,j,k,`(dist)

GiGjWjkWk`W`i, J2 =
∑

i,j,k,`(dist)

ηj(GiGjGkWk`W`i),

J3 =
∑

i,j,k,`(dist)

ηk(GiGjG`WjkW`i), J4 =
∑

i,j,k,`(dist)

ηk(GiG
2
jWk`W`i),

J5 =
∑

i,j,k,`(dist)

ηjηk(GiGjGkG`W`i), J ′5 =
∑

i,j,k,`(dist)

Ω̃jk(GiGjGkG`W`i),

J6 =
∑

i,j,k,`(dist)

ηkη`(GiG
2
jGkW`i), J ′6 =

∑
i,j,k,`(dist)

Ω̃k`(GiG
2
jGkW`i),

J7 =
∑

i,j,k,`(dist)

η2
k(GiG

2
jG`W`i), J8 =

∑
i,j,k,`(dist)

ηkη`(G
2
iG

2
jWk`),

J9 =
∑

i,j,k,`(dist)

ηkΩ̃`i(GiG
2
jGkG`), J10 =

∑
i,j,k,`(dist)

η`Ω̃`i(GiG
2
jG

2
k).

Since |ηjηk| ≤ Cθjθk and |Ω̃jk| ≤ Cαθjθk, the study of J5 and J ′5 are similar. Also, the

study of J6 and J ′6 are similar. We now study J1-J10. Consider J1. It is seen that

J1 =
1

v

∑
i,j,k,`(dist)

(∑
s 6=i

Wis

)(∑
t6=j

Wjt

)
WjkWk`W`i =

1

v

∑
i,j,k,`(dist)
s 6=i,t 6=j

WisWi`WjtWjkWk`.

Since s can be equal to ` and t can be equal to k, there are three different types:

J1a =
1

v

∑
i,j,k,`(dist)

W 2
i`W

2
jkWk`, J1b =

1

v

∑
i,j,k,`(dist)
t/∈{j,k}

W 2
i`WjtWjkWk`,

J1c =
1

v

∑
i,j,k,`(dist)

s/∈{i,`},t/∈{j,k}

WisWi`WjtWjkWk`.

We now calculate E[J2
1a]-E[J2

1c]. Take J1a for example. In order to get nonzero E[W 2
i`W

2
jkWk`W

2
i′`′W

2
j′k′Wk′`′ ],

we need either Wk` = Wk′`′ or each of the two variables (Wk`,Wk′,`′) equals to another

squared-W term. The leading term of E[J2
1a] comes from the first case. In this case, we

have Wk` = Wk′`′ but allow for Wi` 6= Wi′`′ and Wjk 6= Wj′k′ . It has to be the case of

either (k′, `′) = (k, `) or (k′, `′) = (`, k). Therefore, we have E[W 2
i`W

2
jkWk`W

2
i′`′W

2
j′k′Wk′`′ ] =

E[W 2
i`W

2
jkW

2
i′`′W

2
j′k′W

2
k`]. Using similar arguments, we have the following results, where

details are omitted, as they are similar to the calculations in the proof of Lemmas 18-23.

E[J2
1a] ≤

C

v2

∑
i,j,k,`
i′,j′

E[W 2
i`W

2
jkW

2
i′`W

2
j′kW

2
k`] ≤

C

‖θ‖41

∑
i,j,k,`
i′,j′

θiθjθ
3
kθ

3
` θi′θj′ ≤ C‖θ‖63,

E[J2
1b] ≤

C

v2

∑
i,j,k,`,t
i′

E[W 2
i`W

2
i′`W

2
jtW

2
jkW

2
k`] ≤

C

‖θ‖41

∑
i,j,k,`,t
i′

θiθ
2
j θ

2
kθ

3
` θtθi′ ≤

C‖θ‖4‖θ‖33
‖θ‖1

,

E[J2
1c] ≤

C

v2

∑
i,j,k,`,s,t

E[W 2
isW

2
i`W

2
jtW

2
jkW

2
k`] ≤

C

‖θ‖41

∑
i,j,k,`,s,t

θ2
i θ

2
j θ

2
kθ

2
` θsθt ≤

C‖θ‖8

‖θ‖21
.
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The right hand sides are all o(‖θ‖8). It follows that

E[J2
1 ] = o(‖θ‖8), under both hypotheses.

Consider J2-J4. By definition,

J2 =
1

v
√
v

∑
i,j,k,`(dist)
s 6=i,t 6=j,q 6=k

ηjWisWjtWkqWk`W`i, J3 =
1

v
√
v

∑
i,j,k,`(dist)
s 6=i,t 6=j,q 6=`

ηkWisWjtW`qWjkW`i,

J4 =
1

v
√
v

∑
i,j,k,`(dist)
s 6=i,t 6=j,q 6=j

ηkWisWjtWjqWk`W`i.

The analysis is summarized in Table 2.5. In the first column of this table, we study different

types of summands. For example, in the expression of J2, WisWkqWk`W`i have four different

cases: (a) W 2
k`W

2
`i, (b) W 2

k`W`iWis or Wk`W
2
`iWkq, (c) Wk`W`iW

2
ik, and (d) Wk`W`iWisWkq.

In cases (b) and (d), Wis or Wkq may further equal to Wjt. Having explored all variants and

considered index symmetry, we end up with 6 different cases, as listed in the first column of

Table 2.5. In the second column, we study the mean of the squares of the sum of each type

of summands. Take the first row for example. We aim to study

E
[( ∑

i,j,k,`(dist)
t6=j

ηj(W
2
k`W

2
`i)Wjt

)]
.

The naive expansion gives the sum of ηjηj′ E[W 2
k`W

2
`iWjtW

2
k′`′W

2
`′i′Wj′t′ ] over (i, j, k, `, t, i′, j′, k′, `′, t′).

However, for this term to be nonzero, all single-W terms have to be paired (either with

another single-W term or with a squared-W term). The main contribution is from the

case of Wjt = Wj′t′ . This is satisfied only when (j′, s′) = (j, s) or (j′, s′) = (s, j). By

calculations which are omitted here, we can show that (j′, s′) = (j, s) yields a larger bound.

Therefore, it reduces to the sum of η2
j E[(W 2

jt)W
2
k`W

2
`iW

2
k′`′W

2
`′i′ ] over (i, j, k, `, t, i′, k′, `′),

which is displayed in the second column of the table. In the last column, we sum the quantity

in the second column over indices; it gives rise to a bound for the mean of the square of

sum. See the table for details. Recall that the definition of J2-J4 contains a factor of 1
v
√
v

in

front of the sum, where v � ‖θ‖21 by (2.E.116). Hence, to get a desired bound, we only need

that each row in the third column of Table 2.5 is

o(‖θ‖8‖θ‖61).

This is true. We thus conclude that

max
{
E[J2

2 ], E[J2
3 ], E[J2

4 ]
}

= o(‖θ‖8), under both hypotheses.

Analysis of post-expansion sums with N∗W = 5 Consider J5-J8. It is seen that

J5 =
1

v2

∑
i,j,k,`(dist)

ηjηkWisWjtWkqW`mW`i, J6 =
1

v2

∑
i,j,k,`(dist)

ηkη`WisWjtWjqWkmW`i,

J7 =
1

v2

∑
i,j,k,`(dist)

η2
kWisWjtWjqW`mW`i, J8 =

1

v2

∑
i,j,k,`(dist)

ηkη`WisWitWjqWjmWk`,
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Table 2.5: Analysis of J2-J4. In the second column, the variables in brackets are paired W
terms.

Types of summand Terms in mean-squared Bound

J2

ηj(W
2
k`W

2
`i)Wjt η2

j E[(W 2
jt)W

2
k`W

2
`iW

2
k′`′W

2
`′i′ ] ≤ θiθ3

j θkθ
2
` θtθi′θk′θ

2
`′ ‖θ‖4‖θ‖33‖θ‖51

ηj(Wk`W`iW
2
ik)Wjt η2

j E[(W 2
k`W

2
`iW

2
jt)W

4
ik] ≤ Cθ2

i θ
3
j θ

2
kθ

2
` θt ‖θ‖6‖θ‖33‖θ‖1

ηj(W
2
k`W`iWis)Wjt η2

j E[(W 2
`iW

2
isW

2
jt)W

2
k`W

2
k′`] ≤ Cθ2

i θ
3
j θkθ

3
` θsθtθk′ ‖θ‖2‖θ‖63‖θ‖41

ηj(W
2
k`W`i)W

2
ij ηjηj′ E[(W 2

`i)W
2
k`W

2
ijW

2
k′`W

2
ij′ ] ≤ Cθ3

i θ
2
j θkθ

3
` θ

2
j′θk′ ‖θ‖4‖θ‖63‖θ‖21

ηj(Wk`W`iWkqWis)Wjt η2
j E[(W 2

k`W
2
`iW

2
kqW

2
isW

2
jt)] ≤ Cθ2

i θ
3
j θ

2
kθ

2
` θsθtθq ‖θ‖6‖θ‖33‖θ‖31

ηj(Wk`W`i)WkqW
2
ij ηjηj′ E[(W 2

k`W
2
`iW

2
kq)W

2
ijW

2
ij′ ] ≤ Cθ3

i θ
2
j θ

2
kθ

2
` θqθ

2
j′ ‖θ‖8‖θ‖33‖θ‖1

J3

ηkW
3
`iW

2
jk ηkηk′ E[W 3

`iW
2
jkW

3
`′i′W

2
j′k′ ] ≤ Cθiθjθ2

kθ`θi′θj′θ
2
k′θ`′ ‖θ‖4‖θ‖61

ηkW
3
`i(WjkWjt) η2

k E[(W 2
jkW

2
jt)W

3
`iW

3
`′i′ ] ≤ Cθiθ2

j θ
3
kθ`θtθi′θ`′ ‖θ‖2‖θ‖33‖θ‖51

ηk(W
2
`iWis)W

2
jk ηkηk′ E[(W 2

is)W
2
`iW

2
jkW

2
`′iW

2
j′k′ ] ≤ Cθ3

i θjθ
2
kθ`θsθj′θ

2
k′θ`′ ‖θ‖4‖θ‖33‖θ‖51

ηk(W
2
`iWis)WjkWjt η2

k E[(W 2
isW

2
jkW

2
jt)W

2
`iW

2
`′i] ≤ Cθ3

i θ
2
j θ

3
kθ`θsθtθ`′ ‖θ‖2‖θ‖63‖θ‖41

ηkW
2
`iW

2
ijWjk η2

k E[(W 2
jk)W

2
`iW

2
ijW

2
`′i′W

2
i′j ] ≤ Cθ2

i θ
3
j θ

3
kθ`θ

2
i′θ`′ ‖θ‖4‖θ‖63‖θ‖21

ηk(W`iWisW`q)W
2
jk ηkηk′ E[(W 2

`iW
2
isW

2
`q)W

2
jkW

2
j′k′ ] ≤ Cθ2

i θjθ
2
kθ

2
` θsθqθj′θ

2
k′ ‖θ‖8‖θ‖41

ηk(W`iWisW`q)WjkWjt η2
k E[(W 2

`iW
2
isW

2
`qW

2
jkW

2
jt)] ≤ Cθ2

i θ
2
j θ

3
kθ

2
` θsθtθq ‖θ‖6‖θ‖33‖θ‖31

ηkW`iW
2
ijW`qWjk η2

k E[(W 2
`iW

2
`qW

2
jk)W

4
ij ] ≤ Cθ2

i θ
2
j θ

3
kθ

2
` θq ‖θ‖6‖θ‖33‖θ‖1

J4

ηk(Wk`W
2
`i)W

2
jt η2

k E[(W 2
k`)W

2
`iW

2
jtW

2
`i′W

2
j′t′ ] ≤ Cθiθjθ3

kθ
3
` θtθi′θj′θt′ ‖θ‖63‖θ‖61

ηk(Wk`W
2
`i)WjtWjq η2

k E[(W 2
k`W

2
jtW

2
jq)W

2
`iW

2
`i′ ] ≤ Cθiθ2

j θ
3
kθ

3
` θtθqθi′ ‖θ‖2‖θ‖63‖θ‖41

ηk(Wk`W`iWis)W
2
jt η2

k E[(W 2
k`W

2
`iW

2
is)W

2
jtW

2
j′t′ ] ≤ Cθ2

i θjθ
3
kθ

2
` θsθtθj′θt′ ‖θ‖4‖θ‖33‖θ‖51

ηkWk`W`iW
3
ij η2

k E[(W 2
k`W

2
`i)W

3
ijW

3
ij′ ] ≤ Cθ3

i θjθ
3
kθ

2
` θj′ ‖θ‖2‖θ‖63‖θ‖21

ηk(Wk`W`iWis)WjtWjq η2
k E[(W 2

k`W
2
`iW

2
isW

2
jtW

2
jq] ≤ Cθ2

i θ
2
j θ

3
kθ

2
` θsθtθq ‖θ‖6‖θ‖33‖θ‖31

ηkWk`W`iW
2
ijWjq η2

k E[(W 2
k`W

2
`iW

2
jq)W

4
ij ] ≤ Cθ2

i θ
2
j θ

3
kθ

2
` θq ‖θ‖6‖θ‖33‖θ‖1

The analysis is summarized in Table 2.6. We note that J7 can be written as

J7 =
1

v2

∑
i,j,`(dist)

βij`WisWjtWjqW`mW`i, where βij` ≡
∑

k/∈{i,j,`}

η2
k.

Although the values of βij` change with indices, they have a common upper bound of C‖θ‖2.

We treat βij` as ‖θ‖2 in Table 2.6, as this doesn’t change the bounds but simplifies notations.

Recall that the definition of J5-J8 contains a factor of 1
v2 in front of the sum, where v � ‖θ‖21

by (2.E.116). Hence, to get a desired bound, we only need that each row in the third column

of Table 2.5 is

o(‖θ‖8‖θ‖81).

This is true. We thus conclude that

max
{
E[J2

5 ], E[J2
6 ], E[J2

7 ], E[J2
8 ]
}

= o(‖θ‖8), under both hypotheses.

Consider J9-J10. They can be analyzed in the same way as we did for J1-J8. To save

space, we only give a simplified proof for the case of ‖θ‖ � α[log(n)]5/2. For 1 � ‖θ‖ ≤
Cα[log(n)]5/2, the proof is similar to those in Tables 2.5-2.6, which is omitted. For a constant

C0 > 0 to be decided, we introduce an event

E = ∩ni=1Ei, where Ei =
{√

v|Gi| ≤ C0

√
θi‖θ‖1 log(n)

}
. (2.E.307)

Recall that
√
vGi =

√
v(η̃i − ηi) =

∑
j 6=i(Aij − EAij). The variables {Aij}j 6=i are mutually

independent, satisfying that |Aij − EAij | ≤ 1 and
∑

j Var(Aij) ≤
∑

j θiθj ≤ θi‖θ‖1. By
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2. optimal adaptivity of signed-polygon statistics for network testing

Table 2.6: Analysis of J5-J8. In the second column, the variables in brackets are paired W
terms.

Types of summand Terms in mean-squared Bound

J5

ηjηkW
3
`iW

2
jk ηjηkηj′ηk′ E[W 3

`iW
2
jkW

3
`′i′W

2
j′k′ ] ≤ Cθiθ2

j θ
2
kθ`θi′θ

2
j′θ

2
k′θ`′ ‖θ‖8‖θ‖41

ηjηkW
3
`i(WjtWkq) η2

j η
2
k E[(W 2

jtW
2
kq)W

3
`iW

3
`′i′ ] ≤ Cθiθ3

j θ
3
kθ`θtθqθi′θ`′ ‖θ‖63‖θ‖61

ηjηk(W
2
`iWis)W

2
jk ηjηkηj′ηk′ E[(W 2

is)W
2
`iW

2
jkW

2
`′iW

2
j′k′ ] ≤ Cθ3

i θ
2
j θ

2
kθ`θsθ

2
j′θ

2
k′θ`′ ‖θ‖8‖θ‖33‖θ‖31

ηjηk(W
2
`iWis)(WjtWkq) η2

j η
2
k E[(W 2

is)W
2
jtW

2
kq)W

2
`iW

2
`′i] ≤ Cθ3

i θ
3
j θ

3
kθ`θsθtθqθ`′ ‖θ‖93‖θ‖51

ηjηkW
2
`iW

2
ijWkq ηjη

2
kηj′ E[(W 2

kq)W
2
`iW

2
ijW

2
`′i′W

2
i′j′ ] ≤ Cθ2

i θ
2
j θ

3
kθ`θqθ

2
i′θ

2
j′θ`′ ‖θ‖8‖θ‖33‖θ‖31

ηjηk(W`iWisW`m)W 2
jk ηjηkηj′ηk′ E[(W 2

`iW
2
isW

2
`m)W 2

jkW
2
j′k′ ] ≤ Cθ2

i θ
2
j θ

2
kθ

2
` θsθmθ

2
j′θ

2
k′ ‖θ‖12‖θ‖21

ηjηk(W`iWisW`m)(WjtWkq) η2
j η

2
k E[(W 2

`iW
2
isW

2
`mW

2
jtW

2
kq)] ≤ Cθ2

i θ
3
j θ

3
kθ

2
` θsθtθqθm ‖θ‖4‖θ‖63‖θ‖41

ηjηkW`iW
2
ijW`mWkq ηjη

2
kηj′ E[(W 2

`iW
2
`mW

2
kq)W

2
ijW

2
ij′ ] ≤ Cθ3

i θ
2
j θ

3
kθ

2
` θqθmθ

2
j′ ‖θ‖6‖θ‖63‖θ‖21

J6

ηkη`W
2
`iW

2
jtWkm η2

kη`η`′ E[(W 2
km)W 2

`iW
2
jtW

2
`′i′W

2
j′t′ ] ≤ Cθiθjθ3

kθ
2
` θtθmθi′θj′θ

2
`′θt′ ‖θ‖4‖θ‖33‖θ‖71

ηkη`W
2
`iW

3
jk ηkη`ηk′η`′ E[W 2

`iW
3
jkW

2
`′i′W

3
j′k′ ] ≤ Cθiθjθ2

kθ
2
` θi′θj′θ

2
k′θ

2
`′ ‖θ‖8‖θ‖41

ηkη`W
2
`i(WjtWjq)Wkm η2

kη`η`′ E[(W 2
jtW

2
jqW

2
km)W 2

`iW
2
`′i′ ] ≤ Cθiθ2

j θ
3
kθ

2
` θtθqθmθi′θ

2
`′ ‖θ‖6‖θ‖33‖θ‖51

ηkη`W
2
`iW

2
jkWjq ηkη`ηk′η`′ E[(W 2

jq)W
2
`iW

2
jkW

2
`′i′W

2
jk′ ] ≤ Cθiθ3

j θ
2
kθ

2
` θqθi′θ

2
k′θ

2
`′ ‖θ‖8‖θ‖33‖θ‖31

ηkη`(W`iWis)W
2
jtWkm η2

kη
2
` E[(W 2

`iW
2
isW

2
km)W 2

jtW
2
j′t′ ] ≤ Cθ2

i θjθ
3
kθ

3
` θsθtθmθj′θt′ ‖θ‖2‖θ‖63‖θ‖61

ηkη`W`iW
3
ijWkm η2

kη
2
` E[(W 2

`iW
2
km)W 3

ijW
3
ij′ ] ≤ Cθ3

i θjθ
3
kθ

3
` θmθj′ ‖θ‖93‖θ‖31

ηkη`W`iWisW
3
jk ηkη

2
` ηk′ E[(W 2

`iW
2
is)W

3
jkW

3
j′k′ ] ≤ Cθ2

i θjθ
2
kθ

3
` θsθj′θ

2
k′ ‖θ‖6‖θ‖33‖θ‖31

ηkη`W`iW
2
ikW

2
jt ηkη

2
` ηk′ E[(W 2

`i)W
2
ikW

2
jtW

2
ik′W

2
j′t′ ] ≤ Cθ3

i θjθ
2
kθ

3
` θtθj′θ

2
k′θt′ ‖θ‖4‖θ‖63‖θ‖41

ηkη`(W`iWis)(WjtWjq)Wkm η2
kη

2
` E[(W 2

`iW
2
isW

2
jtW

2
jqW

2
km)] ≤ Cθ2

i θ
2
j θ

3
kθ

3
` θsθtθqθm ‖θ‖4‖θ‖63‖θ‖41

ηkη`W`iW
2
ijWjqWkm η2

kη
2
` E[(W 2

`iW
2
jqW

2
km)W 4

ij ] ≤ Cθ2
i θ

2
j θ

3
kθ

3
` θqθm ‖θ‖4‖θ‖63‖θ‖21

ηkη`W`iWisW
2
jkWjq ηkη

2
` ηk′ E[(W 2

`iW
2
isW

2
jq)W

2
jkW

2
jk′ ] ≤ Cθ2

i θ
3
j θ

2
kθ

3
` θsθqθ

2
k′ ‖θ‖6‖θ‖63‖θ‖21

ηkη`W`iW
2
ikWjtWjq ηkη

2
` ηk′ E[(W 2

`iW
2
jtW

2
jq)W

2
ikW

2
ik′ ] ≤ Cθ3

i θ
2
j θ

2
kθ

3
` θtθqθ

2
k′ ‖θ‖6‖θ‖63‖θ‖21

J7

‖θ‖2W 3
`iW

2
jt ‖θ‖4 E[W 3

`iW
2
jtW

3
`′i′W

2
j′t′ ] ≤ C‖θ‖4θiθjθ`θtθi′θj′θ`′θt′ ‖θ‖4‖θ‖81

‖θ‖2W 3
`i(WjtWjq) ‖θ‖4 E[(W 2

jtW
2
jq)W

3
`iW

3
`′i′ ] ≤ C‖θ‖4θiθ2

j θ`θtθqθi′θ`′ ‖θ‖6‖θ‖61
‖θ‖2(W 2

`iWis)W
2
jt ‖θ‖4 E[(W 2

is)W
2
`iW

2
jtW

2
`′iW

2
j′t′ ] ≤ C‖θ‖4θ3

i θjθ`θsθtθj′θ`′θt′ ‖θ‖4‖θ‖33‖θ‖71
‖θ‖2W 2

`iW
3
ij ‖θ‖4 E[W 2

`iW
3
ijW

2
`′i′W

3
i′j′ ] ≤ C‖θ‖4θ2

i θjθ`θ
2
i′θj′θ`′ ‖θ‖8‖θ‖41

‖θ‖2(W 2
`iWis)(WjtWjq) ‖θ‖4 E[(W 2

isW
2
jtW

2
jq)W

2
`iW

2
`′i] ≤ C‖θ‖4θ3

i θ
2
j θ`θsθtθqθ`′ ‖θ‖6‖θ‖33‖θ‖51

‖θ‖2W 2
`iW

2
ijWjq ‖θ‖4 E[(W 2

jq)W
2
`iW

2
ijW

2
`′i′W

2
i′j ] ≤ C‖θ‖4θ2

i θ
3
j θ`θqθ

2
i′θ`′ ‖θ‖8‖θ‖33‖θ‖31

‖θ‖2(W`iWisW`m)W 2
jt ‖θ‖4 E[(W 2

`iW
2
isW

2
`m)W 2

jtW
2
j′t′ ] ≤ C‖θ‖4θ2

i θjθ
2
` θsθtθmθj′θt′ ‖θ‖8‖θ‖61

‖θ‖2W`iW
3
ijW`m ‖θ‖4 E[(W 2

`iW
2
`m)W 3

ijW
3
ij′ ] ≤ C‖θ‖4θ3

i θjθ
2
` θmθj′ ‖θ‖6‖θ‖33‖θ‖31

‖θ‖2(W`iWisW`m)(WjtWjq) ‖θ‖4 E[(W 2
`iW

2
isW

2
`mW

2
jtW

2
jq)] ≤ C‖θ‖4θ2

i θ
2
j θ

2
` θsθtθqθm ‖θ‖10‖θ‖41

‖θ‖2W`iW
2
ijW`mWjq ‖θ‖4 E[(W 2

`iW
2
`mW

2
jq)W

4
ij ] ≤ C‖θ‖4θ2

i θ
2
j θ

2
` θqθm ‖θ‖10‖θ‖21

‖θ‖2W`iW
2
ijW

2
`j ‖θ‖4 E[(W 2

`i)W
2
ijW

2
`jW

2
ij′W

2
`j′ ] ≤ C‖θ‖4θ3

i θ
2
j θ

3
` θ

2
j′ ‖θ‖8‖θ‖63

J8

ηkη`W
4
ijWk` η2

kη
2
` E[(W 2

k`)W
4
ijW

4
i′j′ ] ≤ Cθiθjθ3

kθ
3
` θi′θj′ ‖θ‖63‖θ‖41

ηkη`(W
3
ijWis)Wk` η2

kη
2
` E[(W 2

isW
2
k`)W

3
ijW

3
ij′ ] ≤ Cθ3

i θjθ
3
kθ

3
` θsθj′ ‖θ‖93‖θ‖31

ηkη`(W
2
ijWisWjq)Wk` η2

kη
2
` E[(W 2

isW
2
jqW

2
k`)W

4
ij ] ≤ Cθ2

i θ
2
j θ

3
kθ

3
` θsθq ‖θ‖4‖θ‖63‖θ‖21

ηkη`(WisWitWjqWjm)Wk` η2
kη

2
` E[(W 2

isW
2
itW

2
jqW

2
jmW

2
k`)] ≤ Cθ2

i θ
2
j θ

3
kθ

3
` θsθtθqθm ‖θ‖4‖θ‖63‖θ‖41

ηkη`W
2
isWjqWjmWk` η2

kη
2
`E[(W 2

jqW
2
jmW

2
k`)W

2
isW

2
i′s′ ] ≤ Cθiθ2

j θ
3
kθ

3
` θsθqθmθi′θs′ ‖θ‖2‖θ‖63‖θ‖61

ηkη`W
2
isW

2
jqWk` η2

kη
2
`E[(W 2

k`)W
2
isW

2
jqW

2
i′s′W

2
j′q′ ] ≤ Cθiθjθ3

kθ
3
` θsθqθi′θj′θs′θq′ ‖θ‖63‖θ‖81

Bernstein’s inequality, for large n, the probability of Eci is O(n−C0/4.1). Applying the

probability union bound, we find that the probability of Ec is O(n−C0/2.01). Recall that

V =
∑

i,j:i 6=j Aij . On the event Ec, if V = 0 (i.e., the network has no edges), then
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Q̃∗n = Q∗n = 0; otherwise, V ≥ 1 and |Q̃∗n −Q∗n| ≤ n4. Combining these results gives

E
[
|Q̃∗n −Q∗n|2 · IEc

]
≤ n4 ·O(n−C0/2.01).

With an properly large C0, the right hand side is o(‖θ‖8). Hence, it suffices to focus on the

event E. On the event E,

|J9| ≤
∑
i,j,k,`

|ηkΩ̃`i||GiG2
jGkG`|

≤ C
∑
i,j,k,`

(αθiθkθ`)

√
θiθ2

j θkθ`‖θ‖51[log(n)]5

√
v5

≤ Cα[log(n)]5/2√
‖θ‖51

(∑
i

θ
3/2
i

)(∑
j

θj

)(∑
k

θ
3/2
k

)(∑
`

θ
3/2
`

)
≤ Cα[log(n)]5/2√

‖θ‖31

(∑
i

θ
3/2
i

)3

≤ Cα[log(n)]5/2√
‖θ‖31

(∑
i

θ2
i

)3/2(∑
i

θi

)3/2

≤ Cα[log(n)]5/2‖θ‖3,
where the second last line is from the Cauchy-Schwarz inequality. Since ‖θ‖ � α[log(n)]5/2,

the right hand side is o(‖θ‖4), which implies that |J9|2 = o(‖θ‖8). Similarly, on the event E,

|J10| ≤
∑
i,j,k,`

|η`Ω̃`i||GiG2
jG

2
k|

≤ C
∑
i,j,k,`

(αθiθ
2
` )

√
θiθ2

j θ
2
k‖θ‖51[log(n)]5

√
v5

≤ Cα[log(n)]5/2√
‖θ‖51

(∑
i

θ
3/2
i

)(∑
j

θj

)(∑
k

θk

)(∑
`

θ2
`

)
≤ Cα[log(n)]5/2√

‖θ‖51

(
‖θ‖
√
‖θ‖1

)
‖θ‖21‖θ‖2

≤ Cα[log(n)]5/2‖θ‖3;

again, the right hand side is o(‖θ‖4). Combining the above gives

max
{
E[J2

9 ], E[J2
10]
}

= o(‖θ‖8), under both hypotheses.

So far, we have proved: for each Rk with N∗W = 5, it satisfies E[R2
k] = o(‖θ‖8). This is

sufficient to guarantee (2.E.302)-(2.E.303) for X = Rk.

.There are 7 such terms, including R19-R20, R23-R24, R29-R30, and R32. We plug in the

definition of r̃ij and δij and neglect all factors of v
V (see the explanation in (2.E.302)-
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2. optimal adaptivity of signed-polygon statistics for network testing

(2.E.303)). It gives (Gi = η̃i − ηi):
R19 =

∑
i,j,k,`(dist)

GiG
2
jGkWk`W`i,

R20 =
∑

i,j,k,`(dist)

GiGjWjkGkG`W`i,

R23 =
∑

i,j,k,`(dist)

GiG
2
jGk(ηkG

2
`ηi + 2Gkη`G`ηi +Gkη

2
`Gi)

=
∑

i,j,k,`(dist)

ηiηkGiG
2
jGkG

2
` + 2

∑
i,j,k,`(dist)

ηiη`GiG
2
jG

2
kG` +

∑
i,j,k,`(dist)

η2
`G

2
iG

2
jG

2
k

= 3
∑

i,j,k,`(dist)

ηiηkGiG
2
jGkG

2
` +

∑
i,j,k,`(dist)

η2
`G

2
iG

2
jG

2
k,

R24 =
∑

i,j,k,`(dist)

GiGj(ηjGk +Gjηk)GkG`(η`Gi +G`ηi)

= 4
∑

i,j,k,`(dist)

ηjη`G
2
iGjG

2
kG`,

R29 =
∑

i,j,k,`(dist)

GiG
2
jGk(ηkG` +Gkη`)W`i

=
∑

i,j,k,`(dist)

ηkGiG
2
jGkG`W`i +

∑
i,j,k,`(dist)

η`GiG
2
jG

2
kW`i,

R30 = 2
∑

i,j,k,`(dist)

GiGj(ηjGk)GkG`W`i = 2
∑

i,j,k,`(dist)

ηjGiGjG
2
kG`W`i,

R32 =
∑

i,j,k,`(dist)

Ω̃`iGiG
2
jG

2
kG`.

Each expression above belongs to one of the following types:

K1 =
∑

i,j,k,`(dist)

GiG
2
jGkWk`W`i, K2 =

∑
i,j,k,`(dist)

GiGjGkG`WjkW`i,

K3 =
∑

i,j,k,`(dist)

ηkGiG
2
jGkG`W`i, K4 =

∑
i,j,k,`(dist)

η`GiG
2
jG

2
kW`i,

K5 =
∑

i,j,k,`(dist)

ηiηkGiG
2
jGkG

2
` , K ′5 =

∑
i,j,k,`(dist)

Ω̃ikGiG
2
jGkG

2
` ,

K6 =
∑

i,j,k,`(dist)

η2
`G

2
iG

2
jG

2
k.

Since |ηiηk| ≤ Cθiθk and |Ω̃ik| ≤ Cαθiθk, the study of K5 and K ′5 are similar; we thus omit

the analysis of K ′5. We now study K1-K6.

Analysis of post-expansion sums with N∗W = 6 Consider K1. Re-write

K1 =
1

v2

∑
i,j,k,`(dist)

s 6=i,t 6=j,q 6=j,m6=k

WisWjtWjqWkmWk`W`i.

Note thatWkmWk`W`iWis has four different cases: (a)W 2
k`W

2
`i, (b)W 2

k`W`iWis, (c)Wk`W`iW
2
ik,

and (d) Wk`W`iWkmWis. At the same time, WjtWjq has two cases: (i) W 2
jk and (ii) WjtWjq.
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2.E. Properties of Signed Polygon statistics

This gives at least 4× 2 = 8 cases. Each case may have sub-cases, e.g., for (W 2
k`W`iWis)W

2
jt,

if (s, t) = (j, i), it becomes W 2
k`W`iW

3
ij . By direct calculations, all possible cases of the

summand are as follows:

(W 2
k`W

2
`i)W

2
jt, (W 2

k`W
2
`i)(WjtWjq), (W 2

k`W`iWis)W
2
jt,

W 2
k`W`iW

3
ij , (W 2

k`W`iWis)(WjtWjq), W 2
k`W`iW

2
ijWjq,

(Wk`W`iW
2
ik)W

2
jt, (Wk`W`iW

2
ik)(WjtWjq),

(Wk`W`iWkmWis)W
2
jt, Wk`W`iWkmW

3
ij ,

(Wk`W`iWkmWis)(WjtWjq), Wk`W`iWkmW
2
ijWjq,

Wk`W`iW
2
kjW

2
ij . (2.E.308)

Take the second type for example. We aim to bound E[(
∑

i,j,k,`,t,qW
2
k`W

2
`iWjtWjq)

2], which

is equal to
∑

i,j,k,`,t,q
i′,j′,k′,`′,t′,q′

E[W 2
k`W

2
`iWjtWjqW

2
k′`′W

2
`′i′Wj′t′Wj′q′ ]. For the expectation to be

nonzero, each singleW term has to be paired with another term. The main contribution comes

from the case that Wj′t′Wj′q′ = WjtWjq. It implies (j′, t′, q′) = (j, t, q) or (j′, t′, q′) = (j, q, t).

Then, the expression above becomes∑
i,j,k,`,t,q
i′,k′,`′

E[(W 2
jtW

2
jq)W

2
k`W

2
`iW

2
k′`′W

2
`′i′ ] ≤ C

∑
i,j,k,`,t,q
i′,k′,`′

θiθ
2
j θkθ

2
` θtθqθi′θk′θ

2
`′

≤ C‖θ‖6‖θ‖61.
There are a total of 9 indices in this sum, which are (i, j, k, `, t, q, i′, k′, `′). Similarly, for each

type of summand, when we bound the expectation of the square of its sum, we count how

many indices appear in the ultimate sum. This number equals to twice of the total number

of indices appearing in the summand, minus the total number of indices appearing in single

W terms. For the above example, all indices appearing in the summand are (i, j, k, `, t, q),

while indices appearing in single W terms are (j, t, q); so, the aforementioned number is

2× 6− 3 = 9. If this number if m0, then the expectation of the square of sum of this type is

bounded by C‖θ‖m0
1 . We note that K1 has a factor 1

v2 in front of the sum, which brings

in a factor of C
‖θ‖81

in the bound. Therefore, for any type of summand with m0 ≤ 8, the

expectation of the square of its sum is O(1), which is o(‖θ‖8). As a result, among the types

in (2.E.308), we only need to consider those with m0 ≥ 9. We are left with

(W 2
k`W

2
`i)W

2
jt, (W 2

k`W
2
`i)(WjtWjq), (W 2

k`W`iWis)W
2
jt.
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2. optimal adaptivity of signed-polygon statistics for network testing

We have proved that the expectation of the square of sum of the second type of summands

is bounded by C‖θ‖2‖θ‖61 = o(‖θ‖8‖θ‖81). For the other two types, by direct calculations,

E
[( ∑

i,j,k,`(dist)
t6=j

W 2
k`W

2
`iW

2
jt

)2
]
≤

∑
i,j,k,`,t

i′,j′,k′,`′,t′

E[W 2
k`W

2
`iW

2
jtW

2
k′`′W

2
`′i′W

2
j′t′ ]

≤
∑

i,j,k,`,t
i′,j′,k′,`′,t′

θiθjθkθ
2
` θtθi′θj′θk′θ

2
`′θt′

≤ C‖θ‖4‖θ‖81 = o(‖θ‖8‖θ‖81),

E
[( ∑

i,j,k,`(dist)
s/∈{i,`},t 6=j,
(s,t)6=(j,i)

W 2
k`W`iWisW

2
jt

)2
]
≤

∑
i,j,k,`,s,t
j′,k′,t′

E[(W 2
`iW

2
is)W

2
k`W

2
jtW

2
k′`W

2
j′t′ ]

≤ C
∑

i,j,k,`,s,t
j′,k′,t′

θ2
i θjθkθ

3
` θsθtθj′θk′θt′

≤ C‖θ‖2‖θ‖33‖θ‖71 = o(‖θ‖8‖θ‖81).

Combining the above gives

E[K2
1 ] = o(‖θ‖8), under both hypotheses.

Consider K2. Re-write

K2 =
1

v2

∑
i,j,k,`(dist)

s 6=i,t 6=j,q 6=k,m6=`

WisWjtWkqW`mWjkW`i.

Note thatWqkWkjWjt has three cases: (a)W 3
kj , (b)W 2

kjWjt (orWqkW
2
kj), and (c)WqkWkjWjt.

Simiarly, Wm`W`iWis has three cases: (a) W 3
`i, (b) W 2

`iWis (or Wm`W
2
`i), and (c) Wm`W`iWis.

By index symmetry, this gives 3 + 2 + 1 = 6 different cases. Some case may have sub-cases,

due to that (s, t) may equal to (j, i), say. By direct calculations, all possible cases of the

summand are as follows:

W 3
kjW

3
`i, W 3

kj(W
2
`iWis), W 3

kj(Wm`W`iWis), (W 2
kjWjt)(W

2
`iWis),

W 2
kjW

2
jiW

2
`i, (W 2

kjWjt)(Wm`W`iWis), W 2
kjW

2
jiWm`W`i,

(WqkWkjWjt)(Wm`W`iWis), WqkWkjW
2
jiWm`W`i, WkjW

2
jiW

2
k`W`i.

As in the analysis of (2.E.308), we count the effective number of indices, m0, which equals

to twice of the total number of indices appearing in the summand minus the total number

of indices appearing in all single-W terms. For the above types of summand, m0 equals to

8, 8, 8, 8, 8, 8, 7, 8, 6, 4, respectively. None is larger than 8. We conclude that the expectation

of the square of sum of each type of summand is bounded by C‖θ‖81. We immediately have

E[K2
2 ] =

1

v4
· C‖θ‖81 = O(1) = o(‖θ‖8), under both hypotheses.

Consider K3. Re-write

K3 =
1

v2
√
v

∑
i,j,k,`(dist)

s 6=i,t 6=j,q 6=j,m6=k,p6=`

ηkWisWjtWjqWkmW`pW`i
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2.E. Properties of Signed Polygon statistics

Note that WjtWjqWkm has four cases: (a) W 3
jk, (b) W 2

jkWjt (or W 2
jkWjq), (c) W 2

jtWkm, and

(d) WjtWjqWkm. At the same time, WisW`pW`i has three cases: (a) W 3
`i, (b) W 2

`iWis (or

W 2
`iW`p), and (c) W`iWisW`p. This gives 4 × 3 = 12 different cases. Each case may have

sub-cases. For example, in the case of ηk(W
2
jkWjt)(W

2
`iWis), if (s, t) = (j, i), it becomes

ηkW
2
jkW

2
jiW

2
`i. By direct calculations, we obtain all possible cases of summands as follows:

ηkW
3
jkW

3
`i, ηkW

3
jk(W

2
`iWis), ηkW

3
jk(W`iWisW`p), ηk(W

2
jkWjt)W

3
`i,

ηk(W
2
jkWjt)(W

2
`iWis), ηkW

2
jkW

2
jiW

2
`i, ηk(W

2
jkWjt)(W`iWisW`p),

ηkW
2
jkW

2
jiW`iW`p, ηk(W

2
jtWkm)W 3

`i, ηk(W
2
jtWkm)(W 2

`iWis), ηkW
2
jtW

2
kiW

2
`i,

ηk(W
2
jtWkm)(W`iWisW`p), ηkW

2
jtW

2
kiW`iW`p, ηk(WjtWjqWkm)W 3

`i,

ηk(WjtWjqWkm)(W 2
`iWis), ηkWjtW

2
jiWkmW

2
`i, ηkWjtWjqW

2
kiW

2
`i,

ηk(WjtWjqWkm)(W`iWisW`p), ηkWjtW
2
jiWkmW`iW`p, ηkWjtWjqW

2
kiW`iW`p.

Same as before, let m0 be the effective number of indices for each type of summand, which

equals to twice of number of distinct indices appearing in the summand minus the number

of distinct indices appearing in single-W terms (see (2.E.308) and text therein). By direct

calculations, m0 ≤ 10 for all types above. It follows that, for each type of summand, the

expectation of the square of their sums is bounded by
1

(v
√
v)2
· C‖θ‖m0

1 ≤ C‖θ‖m0−10
1 = O(1) = o(‖θ‖8).

We immediately have

E[K2
3 ] = o(‖θ‖8), under both hypotheses.

Consider K4. Re-write

K4 =
1

v2
√
v

∑
i,j,k,`(dist)
s,t,q,m,p

η`WisWjtWjqWkmWkpW`i.

Note that WisW`i has two cases: (a) W 2
`i and (b) W`iWis. Moreover, there are a total

of six cases for WjtWjqWkmWkp: (a) W 4
jk, (b) W 3

jkWjt, (c) W 2
jkWjtWkm, (d) W 2

jtW
2
km, (e)

WjtWjqW
2
km, and (f) WjtWjqWkmWkp. It gives 2× 6 = 12 different cases. Each case may

have some sub-cases. It turns out all different types of summand are as follows:

η`W
2
`iW

4
jk, η`W

2
`i(W

3
jkWjt), η`W

2
`i(W

2
jkWjtWkm), η`W

2
`i(W

2
jtW

2
km),

η`W
2
`i(WjtWjqW

2
km), η`W

2
`i(WjtWjqWkmWkp), η`(W`iWis)W

4
jk,

η`(W`iWis)(W
3
jkWjt), η`W`iW

3
jkW

2
ji, η`(W`iWis)(W

2
jkWjtWkm),

η`W`iW
2
jkW

2
jiWkm, η`(W`iWis)(W

2
jtW

2
km), η`W`iW

3
ijW

2
km,

η`(W`iWis)(WjtWjqW
2
km), η`W`iW

2
ijWjqW

2
km, η`W`iWjtWjqW

3
ki,

η`(W`iWis)(WjtWjqWkmWkp), η`W`iW
2
ijWjqWkmWkp.

Same as before, for each type, let m0 be the effective number of indices. It suffices to focus

on cases where m0 ≥ 11. We are left with

η`W
2
`i(W

2
jtW

2
km), η`W

2
`i(WjtWjqW

2
km), η`(W`iWis)(W

2
jtW

2
km).

145
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By direct calculations,

E
[( ∑

i,j,k,`(dist)
t6=j,m6=k

η`W
2
`iW

2
jtW

2
km

)]
≤

∑
i,j,k,`,t,m

i′,j′,k′,`′,t′,m′

η`η`′ E[W 2
`iW

2
jtW

2
kmW

2
`′i′W

2
j′t′W

2
k′m′ ]

≤ C
∑

i,j,k,`,t,m
i′,j′,k′,`′,t′,m′

θiθjθkθ
2
` θtθmθi′θj′θk′θ

2
`′θt′θm′

≤ C‖θ‖4‖θ‖10
1 = o(‖θ‖8‖θ‖10

1 ),

E
[( ∑

i,j,k,`(dist)
t6=j,q 6=j,m6=k

t6=q

η`W
2
`iWjtWjqW

2
km

)]
≤

∑
i,j,k,`,t,q,m
i′,k′,`′,m′

η`η`′ E[(W 2
jtW

2
jq)W

2
`iW

2
kmW

2
`′i′W

2
k′m′ ]

≤ C
∑

i,j,k,`,t,q,m
i′,k′,`′,m′

θiθ
2
j θkθ

2
` θtθqθmθi′θk′θ

2
`′θm′

≤ C‖θ‖6‖θ‖81 = o(‖θ‖8‖θ‖10
1 ),

E
[( ∑

i,j,k,`(dist)
s 6=i,t 6=j,m6=k

(s,t)6=(j,i),(s,m)6=(k,i)

η`W`iWisW
2
jtW

2
km

)]
≤ C

∑
i,j,k,`,s,t,m
j′,k′,t′,m′

η2
` E[(W 2

`iW
2
is)W

2
jtW

2
kmW

2
j′t′W

2
k′m′ ]

≤ C
∑

i,j,k,`,s,t,m
j′,k′,t′,m′

θ2
i θjθkθ

3
` θsθtθmθj′θk′θt′θm′

≤ C‖θ‖2‖θ‖33‖θ‖91 = o(‖θ‖8‖θ‖10
1 ).

It follows that

E[K2
4 ] ≤ 1

(v2
√
v)2
· o(‖θ‖8‖θ‖10

1 ) = o(‖θ‖8), under both hypotheses.

Consider K5-K6. To save space, we only present the proof for the case of ‖θ‖ � [log(n)]3/2.

When 1� ‖θ‖ ≤ C[log(n)]3/2, we can bound E[K2
5 ] and E[K2

6 ] in the same way as in the

study of J1-J8, so the proof is omitted. Let E be the event defined in (2.E.307). We have

argued that it suffices to focus on the event E. On this event, |Gi| ≤ C
√
θi‖θ‖1 log(n)/v. It

follows that

|K5| ≤ C
∑
i,j,k,`

(θiθk)

√
θiθ2

j θkθ
2
`‖θ‖

3
1[log(n)]3

v3

≤ C[log(n)]3

‖θ‖31

(∑
i

θ
3/2
i

)(∑
j

θj

)(∑
k

θ
3/2
k

)(∑
`

θ`

)
≤ C[log(n)]3

‖θ‖31

(
‖θ‖
√
‖θ‖1

)2‖θ‖21
≤ C[log(n)]3‖θ‖2,
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where we have used the Cauchy-Schwarz inequality (
∑

i θ
3/2
i ) ≤ ‖θ‖

√
‖θ‖1. Similarly,

|K6| ≤ C
∑
i,j,k,`

θ2
` ·
θiθjθk‖θ‖31[log(n)]3

v3

≤ C[log(n)]3

‖θ‖31

∑
i,j,k,`

θiθjθkθ
2
`

≤ C[log(n)]3‖θ‖2.
When ‖θ‖ � [log(n)]3/2, both right hand sides are o(‖θ‖4). We immediately have

max
{
E[K2

5 ], E[K2
6 ]
}

= o(‖θ‖8).

We have proved: Each Rk with N∗W = 6 satisfies E[R2
k] = o(‖θ‖8). This is sufficient to

guarantee (2.E.302)-(2.E.303) for X = Rk.

.There are 3 such terms, R31, R33 and R34. Consider R31. By definition,

R31 =
∑

i,j,k,`(dist)

GiG
2
jG

2
kG`W`i =

1

v3

∑
i,j,k,`(dist)
s 6=i,t 6=j,q 6=j,
m6=k,p6=k,y 6=`

WisWjtWjqWkmWkpW`yW`i.

We note that W`iWisW`y has three cases: (a) W 3
`i, (b) W 2

`iWis, and (c) W`iWisW`y. Moreover,

WjtWjqWkmWkp has six cases: (a) W 4
jk, (b) W 3

jkWjt, (c) W 2
jkWjtWkm, (d) W 2

jtW
2
km, (e)

WjtWjqW
2
km, and (f) WjtWjqWkmWkp. This gives 3 × 6 = 18 different cases. Since each

case may have sub-cases, we end up with the following different types:

W 3
`iW

4
jk, W 3

`i(W
3
jkWjt), W 3

`i(W
2
jkWjtWkm), W 3

`i(W
2
jtW

2
km),

W 3
`i(WjtWjqW

2
km), W 3

`i(WjtWjqWkmWkp), (W 2
`iWis)W

4
jk,

(W 2
`iWis)(W

3
jkWjt), W 2

`iW
3
jkW

2
ji, (W 2

`iWis)(W
2
jkWjtWkm),

W 2
`iW

2
jkW

2
jiWkm, (W 2

`iWis)(W
2
jtW

2
km), W 2

`iW
3
ijW

2
km,

(W 2
`iWis)(WjtWjqW

2
km), W 2

`iW
2
ijWjqW

2
km, W 2

`iWjtWjqW
3
ki,

(W 2
`iWis)(WjtWjqWkmWkp), W 2

`iW
2
ijWjqWkmWkp,

(W`iWisW`y)W
4
jk, (W`iWisW`y)(W

3
jkWjt), W`iW`yW

3
jkW

2
ji,

(W`iWisW`y)(W
2
jkWjtWkm), W`iW`yW

2
jkW

2
jiWkm, W`iW

2
jkW

2
jiW

2
k`,

(W`iWisW`y)(W
2
jtW

2
km), W`iW`yW

3
jiW

2
km, W`iW

3
jiW

3
k`,

(W`iWisW`y)(WjtWjqW
2
km), W`iW`yW

2
jiWjqW

2
km, W`iW`yWjtWjqW

3
ki,

W`iW
2
jiWjqW

3
ki, (W`iWisW`y)(WjtWjqWkmWkp),

W`iW`yW
2
jiWjqWkmWkp, W`iW

2
jiWjqW

2
k`Wkp.

For each type, we count m0, the effective number of indices. It equals to twice of the number

of distinct indices in the summand, minus the number of distinct indices appearing in all

single-W terms. It turns out that m0 ≤ 12 for all types above. By similar arguments as in

(2.E.308), we conclude that

E[R2
31] ≤ 1

v6
· C‖θ‖m0

1 ≤ C‖θ‖m0−12
1 = O(1) = o(‖θ‖8), under both hypotheses.
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Analysis of terms with N∗W ≥ 7 Consider R33-R34. We only give the proof when ‖θ‖6 �
[log(n)]7, as it is much simpler. In the case of 1� ‖θ‖6 ≤ C[log(n)]7, we can follow similar

steps above to obtain desired bounds, where details are omitted. On the event E (see

(2.E.307) for definition),

|R33| ≤
∑
i,j,k,`

|η`||G2
iG

2
jG

2
kG`|

≤ C
∑
i,j,k,`

θ`

√
θ2
i θ

2
j θ

2
kθ`‖θ‖71[log(n)]7

(
√
v)7

≤ C[log(n)]7/2√
‖θ‖71

(∑
i

θi

)(∑
j

θj

)(∑
k

θk

)(∑
`

θ
3/2
`

)
≤ C[log(n)]7/2√

‖θ‖71
· ‖θ‖31

(
‖θ‖
√
‖θ‖1

)
≤ C[log(n)]7/2‖θ‖,

where we have used the Cauchy-Schwarz inequality
∑

` θ
3/2
` ≤ ‖θ‖

√
‖θ‖1 in the second last

line. When ‖θ‖6 � [log(n)]7, the right hand side is o(‖θ‖4). Similarly,

|R34| ≤
∑
i,j,k,`

|G2
iG

2
jG

2
kG

2
` |

≤ C
∑
i,j,k,`

θiθjθkθ`‖θ‖41[log(n)]4

v4

≤ C[log(n)]4.

When ‖θ‖6 � [log(n)]7, the right hand side is o(‖θ‖4). As we have argued in (2.E.307), the

event Ec has a negligible effect. It follows that

max
{
E[R2

31], E[R2
33], E[R2

34]
}

= o(‖θ‖8), under both hypotheses.

This is sufficient to guarantee (2.E.302)-(2.E.303) for Rk.

We have analyzed all 34 terms in Table 2.3. The proof is now complete.

Proof of Lemma 26

Consider an arbitrary post-expansion sum of the form∑
i,j,k,`(dist)

aijbjkck`d`i, where a, b, c, d ∈ {Ω̃,W, δ, r̃, ε}. (2.E.309)

Let (N
Ω̃
, NW , Nδ, Nr̃, Nε) be the number of each type in the product, where these numbers

have to satisfy N
Ω̃

+ NW + Nδ + Nr̃ + Nε = 4. As discussed in Section 2.E.3, (Qn − Q∗n)

equals to the sum of all post-expansion sums such that Nε > 0. Recall that

εij = (η∗i η
∗
j − ηiηj) + (1− v

V
)ηiηj − (1− v

V
)δij .

Define

ε
(1)
ij = η∗i η

∗
j − ηiηj , ε

(2)
ij = (1− v

V
)ηiηj , ε

(3)
ij = −(1− v

V
)δij .
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Then, εij = ε
(1)
ij + ε

(2)
ij + ε

(3)
ij . It follows that each post-expansion sum of the form (2.E.309)

can be further expanded as the sum of terms like∑
i,j,k,`(dist)

aijbjkck`d`i, where a, b, c, d ∈ {Ω̃,W, δ, r̃, ε(1), ε(2), ε(3)}. (2.E.310)

Let (N
Ω̃
, NW , Nδ, Nr̃) have the same meaning as before, and let N

(m)
ε be the number of ε(m)

term in the product, for m ∈ {1, 2, 3}. These numbers have to satisfy N
Ω̃

+NW +Nδ +Nr̃ +

N
(1)
ε +N

(2)
ε +N

(3)
ε = 4. Now, (Qn −Q∗n) equals to the sum of all post-expansion sums of

the form (2.E.310) with

N (1)
ε +N (2)

ε +N (3)
ε ≥ 1. (2.E.311)

Fix such a post-expansion sum and denote it by Y . We shall bound |E[Y ]| and Var(Y ).

We need some preparation. First, we derive a bound for |ε(1)
ij |. By definition, ηi =

(1/
√
v)
∑

j 6=i Ωij and η∗i = (1/
√
v0)
∑

j Ωij . It follows that

η∗i =

√
v

√
v0
ηi +

1
√
v0

Ωii.

We then have

η∗i η
∗
j =

v

v0
ηiηj +

√
v

v0
(ηiΩjj + ηjΩii) +

1

v0
ΩiiΩjj .

Note that v =
∑

i 6=j Ωij and v0 =
∑

ij Ωij � ‖θ‖21. It follows that v0− v =
∑

i Ωii ≤
∑

i θ
2
i ≤

‖θ‖2. Therefore,

|η∗i η∗j − ηiηj | ≤
∣∣∣1− v

v0

∣∣∣ηiηj +

√
v

v0
(ηiΩjj + ηjΩii) +

1

v0
ΩiiΩjj

≤ C‖θ‖2

‖θ‖21
· θiθj +

C

‖θ‖1
(θiθ

2
j + θjθ

2
i ) +

C

‖θ‖21
· θ2
i θ

2
j

≤ Cθiθj ·
(‖θ‖2
‖θ‖21

+
θi + θj
‖θ‖1

+
θiθj
‖θ‖21

)
.

Since ‖θ‖2 ≤ θmax‖θ‖1, the term in the brackets is bounded by Cθmax/‖θ‖1. We thus have

|ε(1)
ij | ≤

Cθmax

‖θ‖1
· θiθj , for all 1 ≤ i 6= j ≤ n. (2.E.312)

Second, in Lemmas 15-25, we have studied all post-expansion sums of the form

Z ≡
∑

i,j,k,`(dist)

aijbjkck`d`i, where a, b, c, d ∈ {Ω̃,W, δ, r̃},

where (N
Ω̃
, NW , Nδ, Nr̃) are the numbers of each type in the product. We hope to take

advantage of these results. Using the proved bounds for |E[Z]| and Var(Z), we can get

E[Z2] ≤ C(α2)NΩ̃ · f(θ;N
Ω̃
, NW , Nδ, Nr̃), (2.E.313)

where α = |λ2|/λ1 and f(θ;m1,m2,m3,m4) is a function of θ whose form is determined by
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(m1,m2,m3,m4). For example,

f(θ; 0, 4, 0, 0) = ‖θ‖8, by claims of X1 in Lemmas 15&17;

f(θ; 4, 0, 0, 0) = ‖θ‖16, by claims of X6 in Lemma 17;

f(θ; 3, 1, 0, 0) = ‖θ‖8‖θ‖63, by claims of X5 in Lemma 17;

f(θ; 1, 2, 1, 0) = ‖θ‖4‖θ‖63, by claims of Y2, Y3 in Lemma 19;

f(θ; 1, 1, 1, 1) = ‖θ‖8, by claims of R9-R11 in the proof of Lemma 25.

If there are more than one post-expansion sum that corresponds to the same (N
Ω̃
, NW , Nδ, Nr̃),

we use the largest bound to define f(θ;N
Ω̃
, NW , Nδ, Nr̃). Thanks to previous lemmas, we

have known the function f(θ;m1,m2,m3,m4) for all possible (m1,m2,m3,m4).

We now show the claim. Recall that Y is the post-expansion sum in (2.E.310). The key is

to prove the following argument: For any sequence xn such that
√

log(‖θ‖1)� xn � ‖θ‖1,

E[Y 2] ≤ C(α2)NΩ̃ ×
(θ2

max

‖θ‖21

)N(1)
ε

×
( x2

n

‖θ‖21

)N(2)
ε +N

(3)
ε

× f(θ;m1,m2,m3,m4)

∣∣∣∣m1=N
Ω̃

+N
(1)
ε +N

(2)
ε , m2=NW ,

m3=Nδ+N
(3)
ε , m4=Nr̃,

(2.E.314)

where (N
Ω̃
, NW , Nδ, Nr̃, N

(1)
ε , N

(2)
ε , N

(3)
ε ) are the same as in (2.E.310)-(2.E.311), and f(θ;m1,m2,m3,m4)

is the known function in (2.E.313).

We prove (2.E.314). Let D be the event

D = {|V − v| ≤ ‖θ‖1xn}.
In Lemma 24, we have proved E[(Qn −Q∗n)2 · IDc ] = o(1). By similar proof, we can show:

when |Y | is bounded by a polynomial of V and ‖θ‖1 (which is always the case here),

E[Y 2 · IDc ] = o(1).

It follows that

E[Y 2] ≤ E[Y 2 · ID] + o(1). (2.E.315)

We then bound E[Y 2 · ID]. In the definition of Y , each ε(2) term introduces a factor of

(1− v
V ), and each ε(3) term introduces a factor of −(1− v

V ). We bring all these factors to

the front and re-write the post-expansion sum as

Y = (−1)N
(3)
ε

(
1− v

V

)N(2)
ε +N

(3)
ε

X, X ≡
∑

i,j,k,`(dist)

aijbjkck`d`i.

After the factor (1− v
V ) is removed, ε(2) becomes ηiηj ; similarly, ε(3) becomes δij . Therefore,

in the expression of X,
aij , bij , cij , dij ∈ {Ω̃ij ,Wij , δij , r̃ij , ε

(1)
ij , ηiηj},

number of ηiηj in the product is N
(2)
ε ,

number of δij in the product is Nδ +N
(3)
ε ,

number of any other term in the product is same as before.

(2.E.316)
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On the event D, |1− v
V | ≤

xn‖θ‖1
C‖θ‖21

= O( xn
‖θ‖1 ). Hence,

|Y | ≤ C
( xn
‖θ‖1

)N(2)
ε +N

(3)
ε

|X|, on the event D.

It follows that

E[Y 2 · ID] ≤ C
( x2

n

‖θ‖21

)N(2)
ε +N

(3)
ε

· E[X2]. (2.E.317)

To bound E[X2], we compare X and Z. In obtaining (2.E.313), the only property of Ω̃ we

have used is

|Ω̃ij | ≤ α · Cθiθj .

In comparison, in the expression of X, we have (by (2.E.312) and (2.E.117))

|Ω̃ij | ≤ α · Cθiθj , |ε(1)
ij | ≤

θmax

‖θ‖1
· Cθiθj , |ηiηj | ≤ Cθiθj . (2.E.318)

If we consider (αNΩ̃ · ( θmax
‖θ‖1 )N

(1)
ε · 1N

(2)
ε )−1X and (αNΩ̃)−1Z, we can derive the same upper

bound for the second moment of both variables, except that the effective Nδ in X should be

Nδ +N
(3)
ε and the effective N

Ω̃
in X should be N

Ω̃
+N

(1)
ε +N

(2)
ε . It follows that

E[X2] ≤ C(α2)NΩ̃ ×
(θ2

max

‖θ‖21

)N(1)
ε

× f(θ;m1,m2,m3,m4)

∣∣∣∣m1=N
Ω̃

+N
(1)
ε +N

(2)
ε , m2=NW ,

m3=Nδ+N
(3)
ε , m4=Nr̃.

(2.E.319)

We plug (2.E.319) into (2.E.317), and then plug it into (2.E.315). It gives (2.E.314).

Next, we use (2.E.314) to prove the claims of this lemma. Under our assumption,

we can choose a sequence xn such that
√

log(‖θ‖1) � xn � ‖θ‖1/‖θ‖2. Also, note that

‖θ‖1 ≥ θ−1
max‖θ‖2 � ‖θ‖2. Then,

θmax

‖θ‖1
= o(‖θ‖−2),

xn
‖θ‖1

= o(‖θ‖−2). (2.E.320)

As a result, since N
(1)
ε +N

(2)
ε +N

(3)
ε ≥ 1, (2.E.314) implies

E[Y 2] = o(‖θ‖−4) · f(θ;m1,m2,m3,m4), (2.E.321)

for m1 = N
Ω̃

+ N
(1)
ε + N

(2)
ε , m2 = NW , m3 = Nδ + N

(3)
ε and m4 = Nr̃. We then extract

f(θ;m1,m2,m3,m4) from previous lemmas. Recall the following facts:

• Under the null hypothesis, for any previously analyzed post-expansion sum Z, |E[Z]| ≤
C‖θ‖4 and Var(Z) ≤ C‖θ‖8.

• Under the alternative hypothesis, except
∑

i,j,k,`(dist) Ω̃ijΩ̃jkΩ̃k`Ω̃`i, for all previ-

ously analyzed post-expansion sum Z , |E[Z]| ≤ Cα2‖θ‖6 and Var(Z) ≤ C‖θ‖8 +

Cα6‖θ‖8‖θ‖63.

Therefore, under both hypotheses, except for (m1,m2,m3,m4) = (4, 0, 0, 0),

f(θ;m1,m2,m3,m4) ≤ C(‖θ‖8 + ‖θ‖12 + ‖θ‖8‖θ‖63) ≤ C‖θ‖12. (2.E.322)
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Consider two cases for Y . The first case is N
Ω̃

+ N
(1)
ε + N

(2)
ε 6= 4. Combining (2.E.321)-

(2.E.322) gives

E[Y 2] = o(‖θ‖−4) · C‖θ‖12 = o(‖θ‖8).

The claims follow immediately. The second case is N
Ω̃

+N
(1)
ε +N

(2)
ε = 4. In this case,

f(θ;m1,m2,m3,m4) = f(θ; 4, 0, 0, 0) = ‖θ‖16.

If N
(1)
ε +N

(2)
ε ≥ 2, then by (2.E.314) and (2.E.320),

E[Y 2] = o(‖θ‖−8) · C‖θ‖16 = o(‖θ‖8).

The claims follow. It remains to consider N
(1)
ε +N

(2)
ε = 1 (and so N

Ω̃
= 3). Write for short

S = 1− v
V . By (2.E.316),

Y = SN
(2)
ε ·X, where X =

∑
i,j,k,`(dist)

aijbjkck`d`i,

and aij , bij , cij , dij can only take values from {Ω̃ij , ε
(1)
ij , ηiηj}. So, X is a non-stochastic

number. Using (2.E.318), we can easily show

|X| ≤ CαNΩ̃

(θmax

‖θ‖1

)N(1)
ε

‖θ‖8.

When (N
(1)
ε , N

(2)
ε ) = (1, 0), we have Y = X. By (2.E.320), θmax

‖θ‖1 = o(‖θ‖−2). It follows that

Var(Y ) = 0, |E[Y ]| = |X| ≤ Cα3 · o(‖θ‖−2) · ‖θ‖8 = o(α4‖θ‖8).

This gives the desired claims. When (N
(1)
ε , N

(2)
ε ) = (0, 1), we have Y = S ·X. So,

|Y | = |X| · |S| ≤ Cα3‖θ‖8 · |S|.
Note that S = 1 − v

V , where v = E[V ]. Using the tail bound (2.E.290), we can prove

E[S2] ≤ C‖θ‖−2
1 . Therefore,

E[Y 2] ≤ Cα6‖θ‖16

‖θ‖21
≤ Cα6‖θ‖8‖θ‖63,

where the last inequality is due to ‖θ‖4 ≤ ‖θ‖1‖θ‖33 (Cauchy-Schwarz). The claims follow

immediately.
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Three

Estimating the number of communities by

Stepwise Goodness-of-fit

3.1 Introduction

In network analysis, how to estimate the number of communities K is a fundamental

problem. In many recent approaches, K is assumed as known a priori. See for example

Chen et al. (2018); Gao et al. (2018); Karrer and Newman (2011); Ma et al. (2020); Zhao

et al. (2011); Xu et al. (2020) on community detection, Jin et al. (2017); Zhang et al. (2014)

on mixed-membership estimation, and Liu et al. (2017) on dynamic community detection.

Unfortunately, K is rarely known in applications, so the performance of these approaches

hinges on how well we can estimate K.

The primary interest of this chapter is how to estimate K. Given a symmetric and

connected social network with n nodes and K communities, let A be the adjacency matrix:

Aij =

{
1, if node i and node j have an edge,

0, otherwise,
1 ≤ i 6= j ≤ n. (3.1.1)

As a convention, self-edges are not allowed so all the diagonal entries of A are 0. Denote the

K perceivable communities by N1,N2, . . . ,NK . We model the network by the widely-used

degree-corrected block model (DCBM) Karrer and Newman (2011). For each 1 ≤ i ≤ n, we

encode the community label of node i by a vector πi ∈ RK where

i ∈ Nk ⇐⇒ πi(k) = 1 and πi(m) = 0 for m 6= k. (3.1.2)

Moreover, for a K × K symmetric nonnegative matrix P which models the community

structure and positive parameters θ1, θ2, . . . , θn which model the degree heterogeneity, we

assume the upper triangular entries of A are independent Bernoulli variables satisfying

P(Aij = 1) = θiθj · π′iPπj ≡ Ωij , 1 ≤ i < j ≤ n, (3.1.3)

where Ω denotes the matrix ΘΠPΠ′Θ, with Θ being the n×n diagonal matrix diag(θ1, . . . , θn)

and Π being the n×K matrix [π1, π2, . . . , πn]′. For identifiability, we assume

all diagonal entries of P are 1. (3.1.4)

Write for short diag(Ω) = diag(Ω11,Ω22, . . . ,Ωnn), and let W be the matrix where for

1 ≤ i, j ≤ n, Wij = Aij − Ωij if i 6= j and Wij = 0 otherwise. In matrix form, we have

A = Ω− diag(Ω) +W, where we recall Ω = ΘΠPΠ′Θ. (3.1.5)
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In the special case of θ1 = θ2 = . . . = θn, DCBM reduces to the stochastic block model

(SBM) Holland et al. (1983). In this paper, we focus on DCBM, but the idea is extendable

to the degree-corrected mixed-membership (DCMM) model Zhang et al. (2014); Jin et al.

(2017), where mixed membership is allowed; see Remark 3 below.

Real world networks have a few interesting features that we frequently observe.

• Severe degree heterogeneity. The distribution of the node degrees has a power-law tail,

implying severe degree heterogeneity. Therefore, the sparsity level for individual nodes

(measured by the number of edges) may vary significantly from one to another.

• Network sparsity. The overall network sparsity may range significantly from one

network to another.

• Weak signal. The community structure is masked by strong noise, and the signal-to-

noise ratio (SNR) is usually relatively small.

For analysis, we let n be the driving asymptotic parameter, and allow (Θ,Π, P ) to depend

on n, so that DCBM is broad enough to cover all interesting range of these metrics.

Let θ = (θ1, θ2, . . . , θn)′, θmax = max{θ1, . . . , θn}, and θmin = min{θ1, θ2, . . . , θn}. Let

λ1, λ2, . . . , λK be the K nonzero eigenvalues of Ω, arranged in the descending order of

magnitudes. The following were suggested by existing literature (e.g., Jin et al. (2019); Jin

(2015)). First, a reasonable metic for network sparsity is ‖θ‖ and a reasonable metric for

the degree heterogeneity is θmax/θmin. Second, the range of interest for ‖θ‖ is

C
√

log(n) ≤ ‖θ‖ ≤ C
√
n, (3.1.6)

where C > 0 is a generic constant. Third, the signal strength and noise level are captured

by |λK | and ‖W‖, respectively. When θmax ≤ Cθmin and some mild conditions hold (e.g.,

‖P‖ ≤ C),

λ1 � ‖θ‖2, and ‖W‖ = a multi-log(n) term ·
√
λ1 with high probability, (3.1.7)

(examples for multi-log(n)-terms are
√

log(n), log log(n), etc.), so a reasonable metric for

the signal to noise ratio (SNR) is |λK |/
√
λ1. When θmax/θmin →∞, we need an adjusted

SNR; see Section 3.2. We consider two extreme cases.

• Strong signal case. |λ1|, |λ2|, . . . , |λK | are at the same magnitude, and so SNR �
√
λ1.

• Weak signal case. |λK |/
√
λ1 is much smaller than

√
λ1 and grows to ∞ slowly as

n→∞ (in our range of interest, λ1 may grow to ∞ rapidly as n→∞, so for example,

we may have SNR = log log(n) and λ1 =
√
n).

Section 3.2.4 suggests that when SNR = o(1), consistent estimate for K does not exist, so

the weak signal case is a very challenging case. Motivated by the above observations, it is

desirable to find a consistent estimate for K that satisfies the following requirements.

• (R1). Allow severe degree heterogeneity (i.e., θmax/θmin may tend to ∞).

154



3.1. Introduction

• (R2). Optimally adaptive to network sparsity, where ‖θ‖may be as small asO(
√

log(n))

or be as large as O(
√
n).

• (R3). Attain the information lower bound. Consistent for both the strong signal case

where SNR is large and the weak signal case where SNR may be as small as log log(n)

(say).

Example 1. Recently, a frequently considered DCBM is to assume P = P0 and θi �
√
αn

for all 1 ≤ i ≤ n, where αn > 0 is a scaling parameter and P0 is a fixed matrix. It is seen

that λ1, . . . , λK are at the same order, so the model only considers the strong signal case.

Example 2 (A special DCBM). Let e1, . . . , eK be the standard basis vectors of RK .

Fixing a positive vector θ ∈ Rn and a scalar bn ∈ (0, 1), we consider a DCBM where K is

fixed, each community has n/K nodes, and P = (1−bn)IK +bn1K1′K . In this model, (1−bn)

measures the “dis-similarity” of different communities and is small in the more challenging

case when different communities are similar. By basic algebra, λ1 � ‖θ‖2, λ2 = . . . = λK �
‖θ‖2(1− bn), and SNR � ‖θ‖(1− bn). In the very sparse case, ‖θ‖ = O(

√
log(n)). In the

dense case, ‖θ‖ = O(
√
n). When bn ≤ c0 for a constant c0 < 1, |λK | ≥ C|λ1| and SNR � ‖θ‖;

we are in the strong signal case if ‖θ‖ ≥ na for a constant a > 0. When bn = 1 + o(1) and

‖θ‖(1− bn) = log log(n) (say), SNR � log log(n) and we are in the weak signal case.

3.1.1 Literature review and our contributions

In recent years, many interesting approaches for estimating K have been proposed, which

can be roughly divided into the spectral approaches, the cross validation approaches, the

penalization approaches, and the likelihood ratio approaches.

Among the spectral approaches, Le and Levina (2015) proposed to estimate K using the

eigenvalues of the non-backtracking matrix or Bethe Hessian matrix. The approach uses

ideas from mathematical graph theory, and is quite interesting for it is different from most

statistical approaches. Unfortunately, the approach requires relatively strong conditions for

consistency. For example, their Theorem 4.1 only considers the idealized SBM model in the

very sparse case, where θ1 = θ2 = . . . = θn = 1/
√
n and P = P0 for a fixed matrix P0. Liu

et al. (2019) proposed to estimate K by using the classical scree plot approach with careful

theoretical justification, but the approach is known to be unsatisfactory in the presence of

severe degree heterogeneity, for it is hard to derive a sharp bound for the spectral norm of

the noise matrix W (e.g., Jin (2015)). Therefore, their approach requires the condition of

θmax ≤ Cθmin. The paper also imposed the condition of ‖θ‖ = O(
√
n) so it did not address

the settings of sparse networks (see (3.1.6) for the interesting range of ‖θ‖). Among the

cross-validation approaches, we have Chen and Lei (2018); Li et al. (2020), and among the

penalization approaches, we have Saldaña et al. (2017); Daudin et al. (2008); Latouche

et al. (2012), where K is estimated by the integer that optimizes some objective functions.

For example, Saldaña et al. (2017) used a BIC-type objective function and Daudin et al.

(2008); Latouche et al. (2012) used an objective function of the Bayesian model selection

flavor. However, these methods did not provide explicit theoretical guarantee on consistency
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(though a partial result was established in (Li et al., 2020), which stated that under SBM,

the proposed estimator K̂ is no greater than K with high probability).

For likelihood ratio approaches, Wang et al. (2017) proposed to estimate K by solving a

BIC type optimization problem, where the objective function is the sum of the log-likelihood

and the model complexity. The major challenge here is that the likelihood is the sum of

exponentially many terms and is hard to compute. In a remarkable paper, Ma et al. (2018)

extended the idea of Wang et al. (2017) by proposing a new approach that is computationally

more feasible.

On a high level, we can recast their methods as a stepwise testing or sequential testing

algorithm. Consider a stepwise testing scheme where for m = 1, 2, . . ., we construct a test

statistic `
(m)
n (e.g. log-likelihood) assuming m is the correct number of communities. We

estimate K as the smallest m such that the pairwise log-likelihood ratio (`
(m+1)
n − `(m)

n ) falls

below a threshold. As mentioned in Wang et al. (2017); Ma et al. (2018), such an approach

faces challenges. Call the cases m < K, m = K, and m > K the under-fitting, null, and

over-fitting cases, respectively.

• We have to analyze `
(m)
n for both the under-fitting case and the over-fitting case, but

we do not have efficient technical tools to address either case.

• It is hard to derive sharp results on the limiting distribution of `
(m+1)
n − `(m)

n in the

null case, and so it is unclear how to pin down the threshold.

Ma et al. (2018) (see also Wang et al. (2017)) made interesting progress but unfortunately

the problems are not resolved satisfactorily. For example, they require hard-to-check strong

conditions on both the under-fitting and over-fitting cases. Also, in the over-fitting case, it

is unclear whether their results are sharp, and in the under-fitting case, it is unclear how to

standardize `
(m+1)
n − `(m)

n as the variance term is unknown; as a result, how to pin down the

threshold remains unclear. Most importantly, both papers focus on the setting in Example

1 (see above), where severe degree heterogeneity is not allowed and they only consider the

strong signal case.

In this chapter, we propose Stepwise Goodness-of-Fit (StGoF) as a new approach to

estimating K. Our approach follows a different vein, so it is different not only by the

particular procedures we use, but also in the design of the stepwise testing. In detail, for

m = 1, 2, . . ., StGoF alternately uses two sub-steps, a community detection sub-step where

we apply SCORE Jin (2015) assuming m is the correct number of communities, and a

Goodness-of-Fit (GoF) sub-step. We propose a new GoF approach and let ψ
(m)
n be the GoF

test statistic in step m. Assuming SNR→∞, we show that

ψ(m)
n

{
→ N(0, 1), when m = K (null case),

→∞ in probability, when 1 ≤ m < K (under-fitting case).
(3.1.8)

This gives rise to a consistent estimate for K. Note that we have derived N(0, 1) as the

explicit limiting null distribution which is crucial in our study. To prove (3.1.8), the key is to

show that in the under-fitting case, SCORE has the so-called Non-Splitting Property (NSP),
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meaning that all nodes in each (true) community are always clustered together. In the

over-fitting case, m > K. The NSP does not hold and so the analytical challenge remains,

but the design of StGoF and the sharp results in (3.1.8) help avoid the analysis in this case.

For the stepwise testing algorithms in Wang et al. (2017); Ma et al. (2018), analysis in the

over-fitting case can not be avoided, as we need to analyze `
(m+1)
n − `(m)

n for m = 1, 2, . . . ,K;

see details therein.

To assess the optimality, we use the phase transition, a well-known optimality framework.

It is related to the minimax framework but can be frequently more informative Donoho

and Jin (2004); Ingster et al. (2010); Ma and Wu (2015); Paul (2007). We show that when

SNR→∞, (3.1.8) gives rise to an estimator that is consistent in a broad setting. We also

obtain an information lower bound by showing that when SNR→ 0, consistent estimates

for K do not exist. This suggests that our consistency result is sharp in terms of the rate of

SNR, so we say that StGoF achieves the optimal phase transition; see Section 3.2.4. As far

as we know, such a phase transition result on estimating K is new.

In order to achieve the optimal phase transition, a procedure needs to work well in the

weak signal case. Since most existing methods have been focused on the strong signal case,

it is unclear whether they achieve the optimal phase transition. Our contributions are as

follows.

• We propose StGoF as a new approach to estimating K, where we use both a different

design for stepwise testing and a new GoF test.

• We derive N(0, 1) as the explicit limiting null distribution, and use the NSP of SCORE

to derive tight bounds in the under-fitting case. These sharp results and the design of

StGoF allow us to avoid the analysis in the over-fitting case and so to overcome the

technical challenges faced by stepwise testing of this kind. Such an analytical strategy

is extendable to other settings (e.g., the study of directed or bipartite graphs).

• We show that StGoF achieves the optimal phase transition when θmax ≤ Cθmin and

consistent in broad settings (e.g., weak signals, severe degree heterogeneity, and a wide

range of sparsity). In particular, StGoF satisfies all requirements (R1)-(R3) as desired.

Compared to Jin (2015), both papers study SCORE, but the goal of Jin (2015) is community

detection where K is assumed as known, and the analysis were focused on the null case

(m = K). Here, the goal is to estimate K: SCORE is only used as part of our stepwise

algorithm, and the analysis of SCORE is focused on the under-fitting case (m < K), where

the property of SCORE is largely unknown, and our results on the NSP of SCORE are new.

The proof of NSP is non-trivial when m < K. It depends on the row-wise distances of the

matrix Ξ consisting of the first m columns of [ξ1, . . . , ξK ]Γ, where ξk is the k-th eigenvector

of Ω and Γ is an orthogonal matrix dictated by the Davis Kahan sin(θ) theorem Davis and

Kahan (1970). Γ is hard to track without a strong eigen-gap assumption, and when it ranges,

the row-wise distances of Ξ are the same when m = K but may vary significantly when
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m < K. This is why the study on SCORE is much harder in the under-fitting case than in

the null case. See Section 3.3.

3.1.2 Content

Sections 3.2-3.3 contain main theoretical results. In Section 3.2, we first propose a new GoF

test for DCBM. we then show that StGoF is consistent for K uniformly in a broad class

of settings. We also present the information lower bound and show that StGoF achieves

the optimal phase transition. In Section 3.3, we show that SCORE has the Non-Splitting

Property (NSP) for 1 ≤ m ≤ K. We also shed light on why SCORE has the NSP and what

the technical challenges are. In Section 3.4, we prove the main results. Section 3.5 presents

numerical results with real and simulated data. The supplementary material contains the

proofs for secondary theorems and lemmas.

In this chapter, C > 0 denotes a generic constant which may vary from case to case.

For any numbers θ1, . . . , θn, θmax = max{θ1, . . . , θn}, and θmin = min{θ1, . . . , θn}. For any

vectors θ = (θ1, . . . , θn)′, both diag(θ) and diag(θ1, . . . , θn) denote the n×n diagonal matrix

with θi being the i-th diagonal entry, 1 ≤ i ≤ n. For any vector a ∈ Rn, ‖a‖q denotes the

Euclidean `q-norm (we write ‖a‖ for short when q = 2). For any matrix P ∈ Rn,n, ‖P‖
denotes the matrix spectral norm, and ‖P‖max denotes the entry-wise maximum norm. For

two positive sequences {an} and {bn}, we say an ∼ bn if limn→∞{an/bn} = 1 and an � bn if

there are constants c2 > c1 > 0 such that c1an ≤ bn ≤ c2an for sufficiently large n.

3.2 Optimal phase transition

This section contains the first part of our main results, where we discuss the consistency

and optimality of StGoF. Section 3.3 contains the second part of our main results, where we

discuss the NSP of SCORE Jin (2015).

Consider a DCBM with K communities as in (3.1.5). We assume

‖P‖ ≤ C, ‖θ‖ → ∞, and θmax

√
log(n)→ 0. (3.2.1)

The first one is a mild regularity condition on the K × K community structure matrix

P . The other two are mild conditions on sparsity. See (3.1.6) for the interesting range

of ‖θ‖. We exclude the case where θi = O(1) for all 1 ≤ i ≤ n for convenience, but our

results continue to hold in this case provided that we make some small changes in our proofs.

Moreover, for 1 ≤ k ≤ K, let Nk be the set of nodes belonging to community k, let nk be

the cardinality of Nk, and let θ(k) be the n-dimensional vector where θ
(k)
i = θi if i ∈ Nk and

θ
(k)
i = 0 otherwise. We assume the K communities are balanced in the sense that

min
{1≤k≤K}

{nk/n, ‖θ(k)‖1/‖θ‖1, ‖θ(k)‖/‖θ‖} ≥ C. (3.2.2)

In the presence of severe degree heterogeneity, the valid SNR for SCORE is

sn = a0(θ)(|λK |/
√
λ1), where a0(θ) = (θmin/θmax) · (‖θ‖/

√
θmax‖θ‖1) ≤ 1.

In the special case of θmax ≤ Cθmin, it is true that a0(θ) � 1 and sn � |λK |/
√
λ1. In this

case, sn is the SNR introduced (3.1.7). We assume

sn ≥ C0

√
log(n), for a sufficiently large constant C0 > 0. (3.2.3)
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In the special case of θmax ≤ Cθmin, (3.2.3) is equivalent to |λK |/
√
λ1 ≥ C

√
log(n), which

is mild. See Remark 6 for more discussion. Define a K × K diagonal matrix H by

Hkk = ‖θ(k)‖/‖θ‖, 1 ≤ k ≤ K. For the matrix HPH and 1 ≤ k ≤ K, let (largest means

largest in magnitude)

µk be the k-th largest eigenvalue and ηk be the corresponding eigenvector.

By Perron’s theorem Horn and Johnson (1985), if P is irreducible, then the multiplicity of

µ1 is 1, and all entries of η1 are all strictly positive. Note also the size of the matrix P is

small. It is therefore only a mild condition to assume that for a constant 0 < c0 < 1,

min
2≤k≤K

|µ1 − µk| ≥ c0|µ1|, and
max1≤k≤K{η1(k)}
min1≤k≤K{η1(k)}

≤ C. (3.2.4)

In fact, (3.2.4) holds if all entries of P are lower bounded by a positive constant or P → P0

for a fixed irreducible matrix P0. We also note that the most challenging case for network

analysis is when the matrix P is close to the matrix of 1’s (where it is hard to distinguish

one community from another), and (3.2.4) always holds in such a case. In this paper, we

implicitly assume K is fixed. This is mostly for simplicity, as there is really no technical

hurdle for the case of diverging K. See Remark 5 for more discussion.

3.2.1 The StGoF algorithm and a DCBM Goodness-of-Fit test

 
!A 

m = 1
Community  
Detection Refitting αn < Z Stop

Yes

No
m = m + 1

(m)

Figure 3.1: The flow chart of StGoF.

The Stepwise Goodness-Of-Fit algorithm (StGoF) is a stepwise algorithm where for

m = 1, 2, . . ., we alternately use a community detection step and a Goodness-of-Fit (GoF)

step. In principle, we can view StGoF as a general framework, and for both steps, we may

use different algorithms. However, for most existing community detection algorithms (e.g.,

Chen et al. (2018); Gao et al. (2018); Zhang et al. (2014)), it is unclear whether they have

the desired theoretical properties (especially the NSP), so we may face analytical challenges.

For this reason, we choose to use SCORE Jin (2015), which we prove to have the NSP.

For GoF, existing algorithms (e.g., Hu et al. (2020); Lei (2016); see Remark 2 for more

discussion) do not apply to the current setting, so we propose a new GoF measure called

the Refitted Quadrilateral (RQ).

In detail, fixing a tolerance parameter 0 < α < 1 and letting zα be the α upper-quantile

of N(0, 1), StGoF runs as follows. Input the adjacency matrix A and initialize m = 1.

• (a). Community detection. If m = 1, let Π̂(m) be the n-dimensional vector of 1’s. If

m > 1, apply SCORE to A assuming m is the correct number of communities and

obtain an n×m matrix Π̂(m) for the estimated community labels.

• (b). Goodness-of-Fit. Assuming Π̂(m) is the matrix of true community labels, we

obtain an estimate Ω̂(m) for Ω by refitting the DCBM, following (3.2.6)-(3.2.7) below.
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Obtain the Refitted Quadrilateral test score ψ
(m)
n as in (3.2.9)-(3.2.12).

• (c). Termination. If ψ
(m)
n ≥ zα, repeat (a)-(b) with m = m+ 1. Otherwise, output m

as the estimate for K. Denote the final estimate by K̂∗α.

We recommend α = 1% or 5%. See Figure 3.1 for the flow chart of the algorithm.

We now fill in the details for steps (a)-(b). Consider (a) first. The case of m = 1 is trivial

so we only consider the case of m > 1. Let λ̂k be the k-th largest (in magnitude) eigenvalue

of A, and let ξ̂k be the corresponding eigenvector. For each m > 1, we apply SCORE as

follows.

Input: A and m. Output: the estimated n×m matrix of community labels Π̂(m).

• Obtain the first m eigenvectors ξ̂1, ξ̂2, . . . , ξ̂m of A. Define the n× (m− 1) matrix of

entry-wise ratios R̂(m) by R̂(m)(i, k) = ξ̂k+1(i)/ξ̂1(i), 1 ≤ i ≤ n, 1 ≤ k ≤ m− 1. 1

• Cluster the rows of R̂(m) by the classical k-means assuming we have m clusters.

Output Π̂(m) = [π̂
(m)
1 , . . . , π̂

(m)
n ]′ (π̂

(m)
i (k) = 1 if node i is clustered to cluster k and 0

otherwise).

Existing study of SCORE has been focused on the null case of m = K. Our interest here is

on the under-fitting case (1 < m < K), where the property of SCORE is largely unknown.

Consider (b). The idea is to pretend that the SCORE estimate Π̂(m) is accurate. We

then use it to estimate Ω by re-fitting, and check how well the estimated Ω fits with the

adjacency matrix A. In detail, let di be the degree of node i, 1 ≤ i ≤ n, and let N̂ (m)
k be

the set of nodes that SCORE assigns to group k, 1 ≤ k ≤ m. We decompose 1n as follows

1n =

m∑
k=1

1̂
(m)
k , where 1̂

(m)
k (j) = 1 if j ∈ N̂ (m)

k and 0 otherwise. (3.2.5)

For most quantities that have superscript (m), we may only include the superscript when

introducing these quantities for the first time, and omit it later for notational simplicity

when there is no confusion. Introduce a vector θ̂(m) = (θ̂
(m)
1 , θ̂

(m)
2 , . . . , θ̂

(m)
n )′ ∈ Rn and a

matrix P̂ (m) ∈ Rm,m where for all 1 ≤ i ≤ n and 1 ≤ k, ` ≤ m,

θ̂
(m)
i = [di/(1̂

′
kA1n)] ·

√
1̂′kA1̂k, P̂

(m)
k` = (1̂′kA1̂`)/

√
(1̂′kA1̂k)(1̂

′
`A1̂`). (3.2.6)

Let Θ̂(m) = diag(θ̂). We refit Ω by

Ω̂(m) = Θ̂(m)Π̂(m)P̂ (m)(Π̂(m))′Θ̂(m). (3.2.7)

Recall that Ω = ΘΠPΠ′Θ and P has unit diagonal entries. In the ideal case where m = K,

Π̂(m) = Π, and A = Ω, we can verify that (Θ̂(m), P̂ (m), Ω̂(m)) = (Θ, P,Ω). This suggests that

the refitting in (3.2.7) is reasonable. The Refitted Quadrilateral (RQ) test statistic is then

Q(m)
n =

∑
i1,i2,i3,i4(dist)

(Ai1i2 − Ω̂
(m)
i1i2

)(Ai2i3 − Ω̂
(m)
i2i3

)(Ai3i4 − Ω̂
(m)
i3i4

)(Ai4i1 − Ω̂
(m)
i4i1

), (3.2.8)

1As the network is connected, ξ̂1 is uniquely defined with all positive entries, by Perron’s theorem Jin
(2015).
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(“dist” means the indices are distinct). Without the refitted matrix Ω̂(m), Q
(m)
n reduces to

Cn =
∑

i1,i2,i3,i4(dist)

Ai1i2Ai2i3Ai3i4Ai4i1 , (3.2.9)

which is the total number of quadrilaterals in the networks Jin et al. (2018). This is why we

call Q
(m)
n the refitted quadrilaterals.

We now discuss the mean and variance of Q
(m)
n in the null case of m = K. In this

case, first, it turns out that the variance can be well-approximated by 8Cn. Second, while

that E[Q
(K)
n ] = 0 in the ideal case of Ω̂(K) = Ω, in the real case, Ω̂(K) 6= Ω and E[Q

(K)
n ] is

comparable to the standard deviation of Q
(K)
n . Therefore, the mean is not negligible in the

null case, and we need bias correction.

Motivated by these, for any m ≥ 1, we introduce two vectors ĝ(m), ĥ(m) ∈ Rm where

ĝ
(m)
k = (1̂′kθ̂)/‖θ̂‖1, ĥ

(m)
k = (1̂′kΘ̂

21̂k)
1/2/‖θ̂‖, 1 ≤ k ≤ m. (3.2.10)

Write for short V̂ (m) = diag(P̂ ĝ) and Ĥ(m) = diag(ĥ). We estimate the mean of Q
(m)
n by

B(m)
n = 2‖θ̂‖4 · [ĝ′V̂ −1(P̂ Ĥ2P̂ ◦ P̂ Ĥ2P̂ )V̂ −1ĝ], (3.2.11)

where for matrixes A and B, A ◦B is their Hadamard product Horn and Johnson (1985).

We show that in the null case, B
(m)
n is a good estimate for E[Q

(m)
n ], and in the under-fitting

case, it is much smaller than the leading term of Q
(m)
n and so is negligible. Finally, the

StGoF statistic is defined by

ψ(m)
n = [Q(m)

n −B(m)
n ]/

√
8Cn. (3.2.12)

The computational cost of the StGoF algorithm is determined by (i) the number of

iterations, (ii) the cost of SCORE, and (iii) the cost of computing ψ
(m)
n in (3.2.12). For (i),

we show in Section 3.2 that, under mild conditions, StGoF terminates in exactly K steps

with high probability. For (ii), the costs are from implementing PCA and k-means (Jin,

2015). PCA is manageable even for very large networks, and the complexity is O(n2d̄) for

each m if we use the power method, where d̄ is the average degree. In practice, the k-means

is usually implemented with the Lloyd’s algorithm which is fast (e.g., only a few seconds

when n is a few thousands). In theory, the computational cost of k-means for our setting is

polynomial-time, since the dimension of each row of R̂(m) is (m− 1). For (iii), the following

lemma shows the complexity is polynomial time. Lemma 27 is proved in the supplementary

material.

Lemma 27. For each m = 1, 2, . . . ,K, the complexity for computing ψ
(m)
n is O(n2d̄), where

d̄ is average degree of the network.

Remark 1. The RQ test has some connections to the SgnQ test in Jin et al. (2019),

but is for different problem and is more sophisticated. The RQ test is for goodness-of-fit. It

depends on the matrix Ω̂(m), refitted for each m using the community detection results by

SCORE. The SgnQ test is for global testing, where the goal is to test K = 1 vs. K > 1.

The SgnQ test is not stepwise, and does not depend on any results of community detection.

In particular, to analyze RQ, we need new technical tools, where the NSP of SCORE plays

a key role.
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Remark 2. Existing GoF algorithms include Hu et al. (2020); Lei (2016), but they only

address the much narrower settings (e.g., dense networks with stochastic block model and

strong signals). As mentioned in Hu et al. (2020), it remains unclear how to generalize these

approaches to the DCBM setting here. In principle, a GoF approach only focuses on the

null case, and can not be used for estimating K without sharp results in the under-fitting

case, or the over-fitting case, or both.

Remark 3. We are primarily interested in DCBM, but the idea can be extended to

the broader DCMM Zhang et al. (2014); Jin et al. (2017), where mixed-memberships are

allowed. To this end, we need to replace SCORE by Mixed-SCORE Jin et al. (2017) (an

adapted version of SCORE for networks with mixed memberships), and modify the refitting

step accordingly. The analysis of the resultant procedure is much more challenging so we

leave it to the future.

3.2.2 The null case and a confidence lower bound for K

In the null case, m = K. In this case, if we apply SCORE to the rows of R̂(m) assuming m

clusters, then we have perfect community recovery. As a result, StGoF provides a confidence

lower bound for K.

Theorem 3.2.1. Fix 0 < α < 1. Suppose we apply StGoF to a DCBM model where (3.2.1)-

(3.2.4) hold. As n→∞, up to a permutation of the columns of Π̂(K), P(Π̂(K) 6= Π) ≤ Cn−3,

ψ
(K)
n → N(0, 1) in law, and P(K̂∗α ≤ K) ≥ (1− α) + o(1).

Theorem 3.2.1 is proved in Section 3.4. Theorem 3.2.1 allows for severe degree heterogeneity.

If the degree heterogeneity is moderate, sn � |λK |/
√
λ1, and we have the following corollary.

Corollary 3.2.1. Fix 0 < α < 1. Suppose we apply StGoF to a DCBM model where

(3.2.1)-(3.2.2) and (3.2.4) hold. Suppose θmax ≤ Cθmin and |λK |/
√
λ1 ≥ C0

√
log(n) for a

sufficiently large constant C0 > 0. As n→∞, up to a permutation of the columns of Π̂(K),

P(Π̂(K) 6= Π) ≤ Cn−3, ψ
(K)
n → N(0, 1) in law, and P(K̂∗α ≤ K) ≥ (1− α) + o(1).

Theorem 3.2.1 and Corollary 3.2.1 show that K̂∗α provides a level-(1− α) confidence lower

bound for K. If α depends on n and tends to 0 slowly enough, these results continue to

hold. In this case, P(K̂∗α ≤ K) ≥ 1 + o(1). In cases (e.g., when the SNR is slightly smaller

than those above) where perfect community recovery is impossible but the fraction of of

misclassified nodes is small, the asymptotic normality continues to hold. Same comments

apply to Theorem 3.2.3 and Corollary 3.2.2.

3.2.3 The under-fitting case and consistency of StGoF

In the under-fitting case, m < K. We focus on the case of 1 < m < K as the case of m = 1

is trivial. Suppose we apply SCORE to the rows of R̂(m) assuming m is the correct number

of communities and let Π̂(m) be the matrix of estimated community labels as before. When

1 < m < K, we underestimate the number of clusters, so perfect community recovery is

162



3.2. Optimal phase transition

impossible. However, SCORE satisfies the Non-Splitting Property (NSP). Recall that Π is

the matrix of true community labels.

Definition 28. Fix K > 1 and m ≤ K. We say that a realization of the n×m matrix of

estimated labels Π̂(m) satisfies the NSP if for any pair of nodes in the same (true) community,

the estimated community labels are the same. When this happens, we write Π � Π̂(m),

meaning the partition (into clusters) on the left is finer than that on the right.

Theorem 3.2.2. Consider a DCBM where (3.2.1)-(3.2.4) hold. With probability at least

1−O(n−3), for each 1 < m ≤ K, Π � Π̂(m) up to a permutation in the columns.

Theorem 3.2.2 says that SCORE has the NSP and is proved in Section 3.3. The theorem is

the key to our study of the upper bound below. In Section 3.3, we explain the main technical

challenges we face in proving the theorem, and present the key theorem and lemmas required

for the proof. Why SCORE has the NSP is non-obvious, so to shed light on this, we present

an intuitive explanation in Section 3.3. The following theorem is proved in Section 3.4.

Theorem 3.2.3. Fix 0 < α < 1. Suppose we apply StGoF to a DCBM model where (3.2.1)-

(3.2.4) hold. As n→∞, min1≤m<K{ψ(m)
n } → ∞ in probability and P(K̂∗α 6= K) ≤ α+ o(1).

Theorem 3.2.3 allows for severe degree heterogeneity. When the degree heterogeneity is

moderate, SNR � |λK |/
√
λ1 and we have the following corollary.

Corollary 3.2.2. Fix 0 < α < 1. Suppose we apply StGoF to a DCBM model where

(3.2.1)-(3.2.2) and (3.2.4) hold. Suppose θmax ≤ Cθmin and |λK |/
√
λ1 ≥ C0

√
log(n) for a

sufficiently large constant C0 > 0. As n → ∞, min1≤m<K{ψ(m)
n } → ∞ in probability and

P(K̂∗α 6= K) ≤ α+ o(1).

Note that in Theorem 3.2.3 and Corollary 3.2.2, if we let α depend on n and tend to 0 slowly

enough, then we have P(K̂∗α = K)→ 1.

Remark 4. While the NSP of SCORE largely facilitates the analysis, it does not mean

that StGoF ceases to work well once NSP does not hold; it is just harder to analyze in such

cases. Numerical experiments confirm that StGoF continues to behave well even when NSP

does not hold exactly. How to analyze StGoF in such cases is an interesting problem for the

future.

Remark 5. In this chapter, we assume K is fixed. For diverging K, the main idea

continues to be valid, but we need to revise several things (e.g., definition of consistency and

SNR, some regularity conditions, phase transition) to reflect the role of K. The proof for the

case of diverging K can be much more tedious, but aside from that, we do not see a major

technical hurdle. Especially, the NSP of SCORE continues to hold for a diverging K. Then,

with some mild conditions, we can show that Π̂(m) has very few realizations, so the analysis

of StGoF is readily extendable. That we assume K as fixed is not only for simplicity but

also for practical relevance. For example, real networks may have hierarchical tree structure,

and in each layer, the number of leaves (i.e., clusters) is small (e.g., Ji and Jin (2016); Ji
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et al. (2020); Lei et al. (2020); Li et al. (2018)). Therefore, we have small K in each layer

when we perform hierarchical network analysis. Also, the goal of real applications is to have

interpretable results. For example, for community detection, results with a large K is hard

to interpret, so we may prefer a DCBM with a small K to an SBM with a large K. In this

sense, a small K is practically more relevant.

Remark 6. Conditions (3.2.3) is the main condition that ensures (a) SCORE yields

exact community recovery when m = K, and (b) SCORE has the NSP when 1 ≤ m < K.

The condition is much weaker than those in existing works (e.g., Wang et al. (2017), Ma

et al. (2018)), and can not be significantly improved in the case of θmax ≤ Cθmin (see phase

transition results in Section 3.2.4). The more difficult case where θmax/θmin tends to ∞
rapidly has never been studied before, at least for estimating K, and it is unclear whether we

can find an alternative algorithm that satisfies (a)-(b) under a significantly weaker condition

than (3.2.3). On the other hand, we can view StGoF as a general framework for estimating

K, where SCORE may be improved or replaced by some other procedures satisfying (a)-(b)

in the future as researchers continue to make advancements in this area, so whether (3.2.3)

can be further improved does not affect our main contributions (see Section 1.1 for our

contributions).

3.2.4 Information lower bound and phase transition

In Theorem 3.2.3 and Corollary 3.2.2, we require the SNR, |λK |/
√
λ1, to tend to ∞ at a

speed of at least
√

log(n). Such a condition cannot be significantly relaxed. For example, if

SNR→ 0, then it is impossible to have a consistent estimate for K. The exact meaning of

this is described below.

We say two DCBM models are asymptotically indistinguishable if for any test that tries

to decide which model is true, the sum of Type I and Type II errors is no smaller than

1 + o(1), as n→∞. Given a DCBM with K communities, our idea is to construct a DCBM

with (K +m) communities for any m ≥ 1, and show that two DCBM are asymptotically

indistinguishable, provided that the SNR of the latter is o(1).

In detail, fixing K0 ≥ 1, consider a DCBM with K0 communities that satisfies (3.1.1)-

(3.1.4). Let (Θ, Π̃, P̃ ) be the parameters of this DCBM, and let Ω̃ = ΘΠ̃P̃ Π̃′Θ. When

K0 > 1, let (β′, 1)′ be the last column of P̃ , and let S be the sub-matrix of P̃ excluding the

last row and the last column. Given m ≥ 1 and bn ∈ (0, 1), we construct a DCBM model

with (K0 +m) communities as follows. We define a (K0 +m)× (K0 +m) matrix P :

P =

[
S β1′m+1

1m+1β
′ m+1

1+mbn
M

]
, where M = (1− bn)Im+1 + bn1m+11

′
m+1. (3.2.13)

When K0 = 1, we simply let P = m+1
1+mbn

M . Let ˜̀i ∈ {1, . . . ,K0} be the community label of

node i defined by Π̃. We generate labels `i ∈ {1, . . . ,K0 +m} by

`i =

˜̀i, if ˜̀i ∈ {1, . . . ,K0 − 1},
uniformly drawn from {K0,K0 + 1, . . .K0 +m}, if ˜̀i = K0.

(3.2.14)

Let Π be the corresponding matrix of community labels. This gives rise to a DCBM
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model with (K0 +m) communities, where Ω = ΘΠPΠ′Θ. Note that P does not have unit

diagonals, but we can re-parametrize so that it has unit diagonals. In detail, introduce a

(K0 +m)× (K0 +m) diagonal matrix D where Dkk =
√
Pkk, 1 ≤ k ≤ K0 +m. Now, if we

let P ∗ = D−1PD−1, θ∗i = θi‖Dπi‖1, and Θ∗ = diag(θ∗1, . . . , θ
∗
n), then P ∗ has unit-diagonals

and Ω = Θ∗ΠP ∗Π′Θ∗.

Here some rows of Π are random (so we may call the corresponding model the random-

label DCBM), but this is conventional in the study of lower bounds. Let λk be the kth

largest eigenvalue (in magnitude) of Ω. Since Ω is random, λk’s are also random (but we

can bound |λK |/
√
λ1 conveniently). The following theorem is proved in the supplementary

material.

Theorem 3.2.4. Fix K0 ≥ 1 and consider a DCBM model with n nodes and K0 communities,

whose parameters (θ, Π̃, P̃ ) satisfy (3.2.1)-(3.2.2). Let (β′, 1)′ be the last column of P̃ , and let

S be the sub-matrix of P̃ excluding the last row and last column. We assume |β′S−1β−1| ≥ C.

• Fix m ≥ 1. Given any bn ∈ (0, 1), we can construct a random-label DCBM model with

K = K0 + m communities as in (3.2.13)-(3.2.14). Then, as n → ∞, |λK |/
√
λ1 ≤

C‖θ‖(1 − bn) with probability 1 − o(n−1). Moreover, if (1 − bn)/|λmin(S)| = o(1),

where λmin(S) is the minimum eigenvalue (in magnitude) of S, then |λK |/
√
λ1 ≥

C−1‖θ‖(1− bn) with probability 1− o(n−1). Here C > 1 is a constant that does not

depend on bn.

• Fix m1,m2 ≥ 1 with m1 6= m2. As n→∞, if ‖θ‖(1− bn)→ 0, then the two random-

label DCBM models associated with m1 and m2 are asymptotically indistinguishable.

By Theorem 3.2.4, starting from a (fixed-label) DCBM with K0 communities, we can

construct a collection of random-label DCBM, with K0 + 1,K0 + 2, . . . ,K0 +m communities,

respectively, where (a) for the model with (K0 +m) communities, |λK0+m|/
√
λ1 � ‖θ‖(1−

bn), with an overwhelming probability, and (b) each pair of models are asymptotically

indistinguishable if ‖θ‖(1− bn) = o(1). Therefore, for a broad class of DCBM with unknown

K where SNR = o(1) for some models, a consistent estimate for K does not exist.

Fixing m0 > 1 and a sequence of numbers an > 0, let Mn(m0, an) be the collection of

DCBM for an n-node network with K communities, where 1 ≤ K ≤ m0, |λK |/
√
λ1 ≥ an,

and (3.2.1)-(3.2.2) hold. In Section 3.2.3, we show that if an ≥ C0

√
log(n) for a sufficiently

large constant C0, then for each DCBM inMn(m0, an), StGoF provides a consistent estimate

for K. The following theorem says that, if we allow an → 0, then Mn(m0, an) is too broad,

and a consistent estimate for K does not exist.

Theorem 3.2.5. Fix m0 > 1 and letMn(m0, an) be the class of DCBM as above. As n→∞,

if an → 0, then inf
K̂

{
supMn(m0,an) P(K̂ 6= K)

}
≥ (1/6 + o(1)), where the probability is

evaluated at any given model in Mn(m0, an) and the supremum is over all such models.

Combining Theorems 3.2.1, 3.2.5, and Corollary 3.2.2, we have a phase transition result.
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• Impossibility. If an → 0, then Mn(m0, an) defines a class of DCBM that is too broad

where some pairs of models in the class are asymptotically indistinguishable. Therefore,

no estimator can consistently estimate the number of communities for each model in

the class. In this case, we can say “a consistent estimate for K does not exist” for

short.

• Possibility. If an ≥ C0

√
log(n) for a sufficiently large C0, then for every DCBM in

Mn(m0, an), StGoF provides a consistent estimate for the number of communities

if the model only has moderate degree heterogeneity (i.e., θmax ≤ Cθmin). StGoF

continues to be consistent in the presence of severe degree heterogeneity if the adjusted

SNR satisfies that sn ≥ C0

√
log(n) with a sufficiently large C0.

The case of C ≤ an < C0

√
log(n) is more delicate. Sharp results are possible if we consider

more specific models (e.g., for a scaling parameter αn > 0, (θi/αn) are iid from a fixed

distribution F , and the off-diagonals of P are the same). We leave this to the future.

3.3 The non-splitting property (NSP) of SCORE

This section contains the second part of our main theoretical results. We first present

the main technical tools for proving Theorem 3.2.2 (i.e., the NSP of SCORE), and then

prove Theorem 3.2.2. Why NSP holds is non-obvious, so in Section 3.3.3, we also shed light

by providing an intuitive explanation and several examples. The NSP may hold in many

other unsupervised learning settings, and the gained insight in Section 3.3.3 may serve as a

good starting point for studying NSP in these settings.

Here, the primary focus of our study on SCORE is on the under-fitting case of m < K,

while existing study on SCORE (e.g., Jin (2015)) has been focused on the null case of m = K.

In the last two paragraphs of Section 3.1.1, we have briefly explained why the study in the

under-fitting case is much harder. This section will further explain this with details.

Recall that in the SCORE step, for each 1 < m ≤ K, we apply the k-means to the rows of

an n× (m−1) matrix R̂(m), where R̂(m)(i, k) = ξ̂k+1(i)/ξ̂1(i), 1 ≤ i ≤ n, 1 ≤ k ≤ m−1, and

ξ̂k is the k-th eigenvector (eigenvectors are arranged in the descending order in magnitudes

of corresponding eigenvalues) of the adjacency matrix A. Viewing each row of R̂(m) as a

point in Rm−1, we will show that there is a polytope in Rm−1 with vertices v1, v2, . . . , vK
such that with large probability, row i of R̂(m) falls close to vk if node i belongs to the true

community k, for all 1 ≤ i ≤ n. Therefore, the n rows form K clusters (but K and true

cluster labels are unknown), each being a true community. To show that SCORE satisfies

the NSP, the goal is to show that the k-means algorithm will not split any of these K clusters.

See Figure 3.2 where we illustrate the NSP with an example with (K,m) = (4, 3).

Definition 29 (Bottom up pruning and minimum pairwise distances). Fixing K > 1

and 1 < m ≤ K, consider a K × (m − 1) matrix U = [u1, u2, . . . , uK ]′. First, let dK(U)

be the minimum pairwise distance of all K rows. Second, let uk and u` (k < `) be the

pair that satisfies ‖uk − u`‖ = dK(U) (if this holds for multiple pairs, pick the first pair

in the lexicographical order). Remove row ` from the matrix U and let dK−1(U) be the
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(I)

(II) (III)(I)

(II) (III)

Figure 3.2: Illustration for what NSP means ((K,m) = (4, 3)). The rows of R̂(m) (blue
crosses) form K clusters (red: cluster centers) each of which is a true community (K and
true cluster labels are unknown). SCORE aims to cluster all rows of R̂(m) into m clusters.
Left: Voronoi diagram of k-means when the NSP does not hold (which will not happen
according to our proof). Right: Voronoi diagram when the NSP holds.

minimum pairwise distance for the remaining (K − 1) rows. Repeat this step and define

dK−2(U), dK−3(U), . . . , d2(U) recursively. Note that dK(U) ≤ dK−1(U) ≤ . . . ≤ d2(U).

For example, if (K,m) = (4, 3), and the rows of U are (1, 0), (1, 0), (0, 1) and (1, 1), then

d4(U) = 0, d3(U) = 1, and d2(U) =
√

2. The following theorem is the key to prove the NSP

of SCORE, and is proved in the supplementary material.

Theorem 3.3.1. Fix 1 < m ≤ K and let n be sufficiently large. Suppose x1, x2, . . . , xn ∈
Rm−1 take K distinct values u1, u2, . . . , uK . Letting U = [u1, u2, . . . , uK ]′ and Fk = {1 ≤
i ≤ n : xi = uk}, for 1 ≤ k ≤ K, suppose min1≤k≤K |Fk| ≥ α0n and max1≤k≤K ‖uk‖ ≤
C0 · dm(U), for constants 0 < α0 < 1, C0 > 0. Suppose we apply k-means to a set of

n points x̂1, x̂2, . . . , x̂n assuming m clusters. Let Ŝ1, Ŝ2, . . . , Ŝm be the resultant clusters

(which are not necessarily unique). There is a number c = c(α0, C0,m) > 0 such that if

max1≤i≤n ‖x̂i− xi‖ ≤ c · dm(U), then #
{

1 ≤ j ≤ m : Ŝj ∩Fk 6= ∅
}

= 1, for each 1 ≤ k ≤ K.

When we apply Theorem 3.3.1 to prove Theorem 3.2.2, all conditions required in Theorem

3.3.1 can be deduced from those in Theorem 3.2.2, so we do not need any additional conditions.

See Lemma 33 and Section 3.3.2. Theorem 3.3.1 is a general result on k-means and may

be useful in many other unsupervised settings. The proof is non-trivial for the following

reasons.

• The objective function of the k-means is complicate, and the k-means solution is not

necessarily unique. See Example 3.

• Theorem 3.3.1 only requires that there are at least m true cluster centers the minimum

pairwise distance of which is large. If we assume a stronger condition, say, the minimum

pairwise distance of all K cluster centers is large (i.e., max1≤k≤K ‖uk‖ ≤ C0 · dK(U)),

the proof is much easier, but unfortunately, such a condition does not always hold in

our settings. See Example 4 below.

Example 3. Suppose (K,m) = (4, 3) and F1, F2, F3, F4 have equal sizes. We view

u1, u2, . . . , uK as the vertices of a quadrilateral in R2. Suppose we apply the k-means to
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x1, x2, . . . , xn and let C1, C2, C3 be the resultant clusters. Suppose that among the 6 different

pairs of vertices, (u1, u2) is the pair with the smallest distance. In this case, the three clusters

are C1 = F1 ∪F2, C2 = F3, and C3 = F4, and the cluster centers are (u1 + u2)/2, u3, and u4.

If the quadrilateral is a square or rectangle, then among the 6 pairs of indices, more than

one pairs have the smallest pairwise distance, so the k-means solutions are not unique.

Now, to prove Theorem 3.2.2, the idea is to apply Theorem 3.3.1 with x̂i being row i of

R̂(m). To do this, we study the geometrical structure underlying R̂(m) in the under-fitting

case, where the ideal polytope and tight row-wise large deviation bounds for R̂(m) play a

key role.

3.3.1 Geometric structure, ideal polytopes, and row-wise bounds

Fix 1 ≤ k ≤ K. Let λk be the k-th largest (in magnitude) eigenvalue of the n× n matrix Ω

and let ξk be the corresponding unit-`2-norm eigenvector. By Davis-Kahan sin(θ)-theorem

Davis and Kahan (1970), the two matrices [ξ1, . . . , ξK ] and [ξ̂1, . . . , ξ̂K ] only match well

with each other by a rotation matrix Γ: [ξ̂1, . . . , ξ̂K ] ≈ [ξ1, . . . , ξK ]Γ. Let Ξ be the matrix

consisting of the first m columns of [ξ1, . . . , ξK ]Γ. The geometrical structure underlying Ξ is

the key to our study.

In the null case of m = K, the geometric structure was studied in Jin (2015); Jin et al.

(2017). For the under-fitting case of 1 < m < K, the study is much harder. The reason is

that, Γ is hard to track without a strong condition on the eigen-gap of Ω, and as Γ ranges,

the row-wise distances of Ξ remain the same when m = K, but may vary significantly when

m < K. To deal with this, we need relatively tedious notations and harder proofs, compared

to those in Jin (2015); Jin et al. (2017).

Recall that µk is the k-th largest (in magnitude) eigenvalue of the K ×K matrix HPH,

and ηk is the corresponding unit-`2-norm eigenvector. We now relate (µk, ηk) to (λk, ξk)

above. The following lemma is proved in the supplementary material.

Lemma 30. Consider a DCBM where (3.2.4) holds and let λk, µk, ηk, ξk be as above. We

have the following claims. First, λk = ‖θ‖2µk for 1 ≤ k ≤ K. Second, the multiplicity of µ1

is 1 and all entries of η1 have the same sign, and the same holds for λ1 and ξ1. Last, if ηk
is an eigenvector of HPH corresponding to µk, then ‖θ‖−1ΘΠH−1ηk is an eigenvector of Ω

corresponding to λk, and conversely, if ξk is an eigenvector of Ω corresponding to λk, then

‖θ‖−1H−1Π′Θξk is an eigenvector of HPH corresponding to µk.

From now on, let η1 be the unique unit-`2-norm eigenvector of HPH corresponding to

λ1 that have all positive entries. Note that η2, . . . , ηK may not be unique. Fix a particular

candidate for η2, . . . , ηK , say, η∗2, . . . , η
∗
K . Let

[ξ1, ξ
∗
2 , . . . , ξ

∗
K ] = ‖θ‖−1ΘΠH−1[η1, η

∗
2, . . . , η

∗
K ]. (3.3.15)

Definition 31. Given any (K − 1)× (K − 1) orthogonal matrix Γ and 2 ≤ k ≤ K, let ηk(Γ)

be the (k − 1)-th column of [η∗2, η
∗
3, . . . , η

∗
K ]Γ, with ηk(i,Γ) being the i-th entry, 1 ≤ i ≤ K,
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and let ξk(Γ) be the (k − 1)-th column of [ξ∗2 , ξ
∗
3 , . . . , ξ

∗
K ]Γ, with ξk(j,Γ) being the j-th entry,

1 ≤ j ≤ n.

Note that (η1, ξ1) are uniquely defined (up to a factor of ±1), but {(ηk, ξk)}2≤k≤K are

not necessarily unique. However, by Lemma 30 and basic linear algebra, there is a collection

of (K − 1) × (K − 1) orthogonal matrices, denoted by A, such that when Γ ranges in A,

{η2(Γ), . . . , ηK(Γ)} give all possible candidates of {η2, . . . , ηK}, and {ξ2(Γ), . . . , ξK(Γ)} give

all possible candidates of {ξ2, . . . , ξK}. In the special case where µ2, . . . , µK are distinct, A
is the set of all (K − 1) × (K − 1) diagonal orthogonal matrices, and in the special case

where µ2 = . . . = µK , A is the set of all (K − 1)× (K − 1) orthogonal matrices.

Fix 1 < m ≤ K and a (K − 1)× (K − 1) orthogonal matrix Γ (which is not necessarily

in A). We define a K × (m− 1) matrix V (m)(Γ) and an n× (m− 1) matrix R(m)(Γ) by

V (m)(k, `; Γ) = η`+1(k; Γ)/η1(k), 1 ≤ k ≤ K, 1 ≤ ` ≤ m− 1, (3.3.16)

and

R(m)(i, `; Γ) = ξ`+1(i; Γ)/ξ1(i), 1 ≤ i ≤ n, 1 ≤ ` ≤ m− 1. (3.3.17)

We note that V (m)(Γ) is the sub-matrix of V (K)(Γ) consisting the first (m − 1) columns;

same comments for R(m)(Γ). Write V (m)(Γ) = [v
(m)
1 (Γ), . . . , v

(m)
K (Γ)]′ and R(m)(Γ) =

[r
(m)
1 (Γ), . . . , r

(m)
n (Γ)]′, so that (v

(m)
k (Γ))′ is the k-th row of V (m)(Γ) and (r

(m)
i (Γ))′ is the

i-th row of R(m)(Γ), 1 ≤ k ≤ K, 1 ≤ i ≤ n. For notational simplicity, we may drop “Γ” when

there is no confusion. Recall that for 1 ≤ k ≤ K, Nk denotes the k-th true community. The

following lemma is proved in the appendix.

Lemma 32 (The ideal polytope). Consider a DCBM model where (3.2.4) holds. For any

1 < m ≤ K and fixed (K − 1)× (K − 1) orthogonal matrix Γ, r
(m)
i (Γ) = v

(m)
k (Γ), for any

i ∈ Nk and 1 ≤ k ≤ K.

Therefore, the n rows of R(m)(Γ) have at most K distinct values, (v
(m)
1 (Γ))′, (v

(m)
2 (Γ))′,

. . ., (v
(m)
K (Γ))′. For an “easy” setting, dK(V (m)(Γ)) ≥ C, so the minimum pairwise distance

of these K rows are large. In a more “difficult” case, we may have dK(V (m)(Γ)) = 0.

However, we can always find m rows of V (m)(Γ) so that the minimum pairwise distance of

which is no smaller than a constant C. This is the following lemma, which is proved in the

supplementary material.

Lemma 33. Consider a DCBM model where (3.2.2) and (3.2.4) hold. Fix 1 ≤ m ≤ K and

an (K − 1)× (K − 1) orthogonal matrix Γ, we have dm(V (m)(Γ)) ≥
√

2 when m = K, and

dm(V (m)(Γ)) ≥ C when 1 < m < K, where the constant C > 0 does not depend on Γ.

We should not expect that dK(V (m)(Γ)) ≥ C holds for all rotation Γ. We can only show

a weaker claim of dm(V (m)(Γ)) ≥ C as in Lemma 33. Below, we use a special example to

illustrate how Γ affect dK(V (m)(Γ)).

Example 4. Consider a special case of Example 2 where P = (1 − bn)IK + bn1K1′K ,

0 < bn < 1, and ‖θ(k)‖ = ‖θ‖/
√
K, 1 ≤ k ≤ K (as a result, HPH = (1/K)P ). Note that
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3. estimating the number of communities by stepwise goodness-of-fit

the eigenvectors of HPH, denoted by η1, η2, . . . , ηK , do not depend on bn. We take the

case of (K,m) = (3, 2) for example. In this case, η1 = (1/
√

3)[1, 1, 1]′, and a candidate for

{η2, η3} is η∗2 = (1/
√

2)[1,−1, 0]′, and η∗3 = (1/
√

6)[1, 1,−2]′, and all possible candidates for

{η2, η3} are given by

[η∗2, η
∗
3]Γ, Γ = Γ(θ) =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
, 0 ≤ θ < 2π.

Now, d3(V (2)(Γ)) changes continuously in θ and take values in [0,
√

3/
√

2], and hits 0 when

θ ∈ {π/6, π/2, 5π/6, 7π/6, 3π/2, 11π/6}. However, d2(V (2)(Γ)) ≥
√

3/
√

2 for all θ.

Similarly, we write R̂(m) = [r̂
(m)
1 , r̂

(m)
2 , . . . , r̂

(m)
n ]′, so that (r̂

(m)
i )′ is the i-th row of R̂(m).

The following lemma provides a tight row-wise large-deviation bound for R̂(m) and is proved

in the supplementary material.

Lemma 34. Consider a DCBM model where (3.2.1)-(3.2.4) hold. With probability 1 −
O(n−3), there exists a (K − 1)× (K − 1) orthogonal matrix Γ (which may depend on n and

R̂(K)) such that as n → ∞, ‖r̂(m)
i − r(m)

i (Γ)‖ ≤ ‖r̂(K)
i − r(K)

i (Γ)‖ ≤ Cs−1
n

√
log(n), for all

1 < m < K and 1 ≤ i ≤ n .

For illustration, we assume dK(V (m)) ≥ C for all 1 < m ≤ K (we have dropped “Γ”

to simplify notations) so the minimum pairwise distance of the K rows of V (m) is no

smaller than C. In this case, Lemmas 32-34 say that the n rows of R(m) have K distinct

values, (v
(m)
1 )′, (v

(m)
2 )′, . . . , (v

(m)
K )′, and partitioning the rows with respect to different values

gives exactly K true communities. Note that we can view v
(m)
1 , v

(m)
2 , . . . , v

(m)
K as the

vertices of a polytope in Rm−1. See Figure 3.3 for an illustration of K = 4. In this

case, v
(m)
1 , v

(m)
2 , . . . , v

(m)
K are the vertices of a tetrahedron when m = 4, the vertices of a

quadrilateral when m = 3, and K scalars when K = 2. By Lemma 34 and the condition

(3.2.3), for all 1 ≤ i ≤ n, ‖r̂(m)
i −r(m)

i ‖ is much smaller than dK(V (m)). Therefore, the n rows

of R̂(m) also form K clusters, each being a true community. If we apply k-means assuming

K clusters, then we can fully recover the true communities. Unfortunately, K is unknown.

In the under-fitting case, m < K and we under-estimate the number of clusters. However,

Theorem 3.3.1 guarantees that, although we are not able to recover all true communities,

the NSP holds.

3.3.2 Proof of Theorem 3.2.2

By Lemma 34, there is an event E, where P(Ec) = O(n−3), and on this event there exists a

(K − 1)× (K − 1) orthogonal matrix Γ (which may depend on n and R̂(K)) such that

max
1≤i≤n

‖r̂(m)
i − r(m)

i (Γ)‖ ≤ Cs−1
n

√
log(n), for all 1 < m ≤ K.

Fix 1 < m ≤ K. By Lemma 32, r
(m)
i (Γ) = v

(m)
k (Γ) for each i ∈ Nk and 1 ≤ k ≤ K. Suppose

v
(m)
1 (Γ), . . . , v

(m)
K (Γ) have L distinct values, where L may depend on m and Γ and L ≥ m

by Lemma 33. Note that whenever two vectors (say) v
(m)
1 (Γ) and v

(m)
2 (Γ) are identical, we

can always treat N1 and N2 as the same cluster before we apply Theorem 3.3.1. Therefore,
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3.3. The non-splitting property (NSP) of SCORE

Figure 3.3: An example (K = 4). From left to right: m = 4, 3, 2. Red dots: the 4 distinct

rows of R(m), v
(m)
1 , v

(m)
2 , v

(m)
3 , v

(m)
4 . Blue crosses: rows of R̂(m). The red dots are the vertices

of a tetrahedron when m = 4, vertices of a quadrilateral when m = 3, and scalars when
m = 2. For each m, the n rows of R̂(m) are seen to have K clusters, each of which is a true
community.

without loss of generality, we assume L = K, so v
(m)
1 (Γ), . . . , v

(m)
K (Γ) are distinct. It suffices

to show that, on the event E, none of N1,N2, . . . ,NK is split by the k-means.

We now apply Theorem 3.3.1 with x̂i = r̂
(m)
i , xi = r

(m)
i (Γ), Fk = Nk, and U = V (m)(Γ).

Note that by Lemma 33, dm(U) ≥ C. Also, in the proof of Lemma 33, we have shown

that max1≤k≤K ‖v
(m)
k (Γ)‖ ≤ C. It follows that the `2-norm of each row of U is bounded by

C · dm(U). Additionally, on the event E, max1≤i≤n ‖x̂i − xi‖ ≤ Cs−1
n

√
log(n). As long as

sn ≥ C0

√
log(n) for a sufficiently large constant C0, we have max1≤i≤n ‖x̂i−xi‖ ≤ c · dm(U)

for a sufficiently small constant c. The claim now follows by applying Theorem 3.3.1.

3.3.3 Why NSP holds: intuitive explanations and examples

Why NSP holds is non-obvious, so we provide an intuitive explanation and some examples.

The NSP may hold for many other unsupervised learning settings, and this section may be

especially helpful if we wish to extend our ideas to other settings. Since the NSP in general

settings is already proved above and the purpose here is to provide some insight, we consider

settings where

dK(V (m)(Γ)) ≥ C. (3.3.18)

This condition is stronger than the condition dm(V (m)(Γ) ≥ C needed in Theorem 3.3.1

(e.g., see Example 4). Also, for notational simplicity, we drop “Γ” below.

We start by introducing the minimum gap as a measure for the stability of the clustering

results by k-means. Fixing 1 < m ≤ K, consider n points u1, u2, . . . , un ∈ Rm−1 and let

U = [u1, u2, . . . , un]′. Suppose we cluster u1, u2, . . . , un into m clusters using the k-means.

Definition 35. Let c1, c2, . . . , cm be any possible cluster centers from k-means (the set is

not necessarily unique). Let d1(ui; c1, . . . , cm) and d2(ui; c1, . . . , cm) be the distances between

ui and its closest cluster center and the distance between ui and its second closest cluster

center, respectively. The minimum gap for the clustering results is defined by

gm(U) = min
{all possible c1, c2, . . . , cm}

min
1≤i≤n

{
d2(ui; c1, . . . , cm)− d1(ui; c1, . . . , cm)

}
.
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3. estimating the number of communities by stepwise goodness-of-fit

We now explain why NSP holds for the under-fitting case. We start by considering the

oracle case where we apply k-means to the n rows of the non-stochastic matrix R(m)(Γ).

Theorem 3.3.2. Consider a DCBM model where (3.2.2) holds. Fix 1 < m < K and any

(K − 1) × (K − 1) orthogonal matrix Γ. Let V (m)(Γ) and R(m)(Γ) be as in (3.3.16) and

(3.3.17), respectively. If dK(V (m)(Γ)) > 0 and we apply the k-means to rows of R(m)(Γ),

then NSP holds and gm(R(m)(Γ)) ≥ CdK(V (m)(Γ)), where C only depends on the constant

in (3.2.2).

Theorem 3.3.2 is proved in the supplementary material. In the oracle case, since

r
(m)
i = r

(m)
j when i and j are in the same community, the NSP must hold once we have

gm(R(m)) > 0 (otherwise we can easily find a contradiction). At the same time, it is

less obvious why gm(R(m)) ≥ CdK(V (m)) holds. Below, we use two examples for further

illustration. In these examples, we assume K = 4, and let N1,N2,N3,N4 be the true

communities. We assume these communities have equal sizes. We consider the cases of

m = 2 and m = 3, separately.

Example 5a. When m = 3, the four points v
(m)
1 , . . . , v

(m)
4 are the vertices of a quadrilat-

eral in R2. Following Example 3, it is seen gm(R(m)) ≥ (1/2)‖v(m)
1 − v(m)

2 ‖ ≡ (1/2)dK(V (m)).

Example 5b. When m = 2, v
(m)
1 , . . . , v

(m)
4 are scalars. Without loss of generality,

we assume v
(m)
1 < v

(m)
2 < v

(m)
3 < v

(m)
4 . In Section 3.B.7, we show that gm(R(m)) ≥

[(3−
√

3)/2] · dK(V (m)).

In the real case, we take an intuitive approach to explain why NSP holds for the k-

means (see Theorem 3.3.1 for a rigorous proof). Recall that N1,N2, . . . ,NK are the true

communities. Suppose we apply the k-means to the rows of R̂(m) and obtain m clusters with

centers ĉ1, ĉ2, . . . , ĉm. Suppose we also apply the k-means to the rows of R(m) and obtain m

clusters c1, c2, . . . , cm. Under some regularity conditions, we expect to see that

max
1≤k≤m

‖ĉk − ck‖ ≤ C max
1≤i≤n

‖r̂i − ri‖, up to a permutation of c1, c2, . . . , cm. (3.3.19)

By Lemma 34, the right hand side is ≤ Cs−1
n

√
log(n) with large probability. In the k-means

on rows of R(m), it follows from Theorem 3.3.2 that every row i for i ∈ Nk is clustered into

a cluster with center cj , for some 1 ≤ j ≤ m. By Definition 35,

‖ri − cj‖+ gm(R(m)) ≤ ‖ri − c`‖, for any ` 6= j.

Combining it with (3.3.19), except for a small probability, for all i ∈ Nk and ` 6= j,

‖r̂i − ĉj‖ ≤ ‖ri − cj‖+ ‖r̂i − ri‖+ ‖ĉj − cj‖ ≤ ‖ri − cj‖+ Cs−1
n

√
log(n),

‖r̂i − ĉ`‖ ≥ ‖ri − c`‖ − ‖r̂i − ri‖ − ‖ĉ` − c`‖ ≥ ‖ri − c`‖ − Cs−1
n

√
log(n).

It follows that

‖r̂i − ĉj‖ ≤ ‖r̂i − ĉ`‖+
[
2Cs−1

n

√
log(n)− gm(R(m))

]
.

Therefore, as long as 2Cs−1
n

√
log(n) < gm(R(m)), ĉj is the closest cluster center to r̂i, for

every i ∈ Nk. This shows that except for a small probability, the whole set Nk is assigned

to the cluster with center ĉj , i.e., NSP holds.
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3.4. The behavior of the RQ test statistic

While the above explanation is intuitive and easy to understand, quite strong conditions

are needed when we try to solidify each step. For example, while (3.3.19) sounds correct

intuitively, it may not hold in some cases when the k-means solutions are not unique.

Condition (3.3.18) may not hold in some cases either, due to the rotation aforementioned.

To show NSP in the general settings as in our paper, we need Theorem 3.3.1 and Lemmas

32-34. On the other hand, the intuitive explanation here is easy-to-understand, and may

provide a starting point for proving NSP in other unsupervised learning settings.

Remark 7. A simpler version of Theorem 3.3.1 was proved in Ma et al. (2018), under

stronger conditions of (a) when we apply the k-means to {x1, x2, . . . , xn}, the k-means

solution is unique, and (b) dK(U) ≥ C (with the same notations as in Theorem 3.3.1).

Unfortunately, Ma et al. (2018) only proved their claim for the special case of (K,m) = (3, 2)

(for general (K,m), the proof is non-trivial due to complex combinatorics). Also, conditions

(a)-(b) are hard to check especially as we need them to hold for U = V (m)(Γ) with all Γ

and all m; see Examples 3-4. For example, as illustrated in Example 4, when Γ ranges

continuously, (b) tends to fail for some m. To make sure (b) holds, Ma et al. (2018) assumes a

relatively strong condition (b1): P → P0 for a fixed matrix P0 with distinct eigenvalues. This

is a strong signal case where λ1, λ2, . . . , λK (eigenvalues of Ω) are at the same magnitude,

and the eigen-gaps are also at the same magnitude; see Example 1. In this case, the Γ in

David-Kahan sin(θ) theorem is uniquely determined, so (b) holds. However, our primary

interest is in the more challenging weak signal case, where typically |λ2|/λ1 → 0. In this

case, (b1) won’t hold, because the only P0 that can be the limit of P is the K ×K matrix

of all ones, where the K eigenvalues are not distinct.

3.4 The behavior of the RQ test statistic

In this section, we prove Theorems 3.2.1 and 3.2.3. Corollaries 3.2.1-3.2.2 follow directly

from Theorems 3.2.1 and 3.2.3, respectively, so the proofs are omitted. All other theorems

and lemmas are proved in the supplementary material.

3.4.1 Proof of Theorem 3.2.1 (the null case of m = K)

First, it is seen that the first item is a direct result of Theorem 3.2.2. Second, by definitions,

P(K̂∗α ≤ K) ≥ P(ψ(K)
n ≤ zα),

and so the last item follows once the second item is proved. Therefore, we only need to show

the second item. Recall that when m = K,

ψ(K)
n = [Q(K)

n −B(K)
n ]/

√
8Cn,

where Q
(K)
n , B

(K)
n , and Cn are defined in (3.2.9), (3.2.8) and (3.2.11), respectively, which

we reiterate below:

Q(K)
n =

∑
i1,i2,i3,i4(dist)

(Ai1i2 − Ω̂
(K)
i1i2

)(Ai2i3 − Ω̂
(K)
i2i3

)(Ai3i4 − Ω̂
(K)
i3i4

)(Ai4i1 − Ω̂
(K)
i4i1

),

Cn =
∑

i1,i2,i3,i4(dist)

Ai1i2Ai2i3Ai3i4Ai4i1 , B(K)
n = 2‖θ̂‖4 · [ĝ′V̂ −1(P̂ Ĥ2P̂ ◦ P̂ Ĥ2P̂ )V̂ −1ĝ].

173



3. estimating the number of communities by stepwise goodness-of-fit

In the first equation here, Ω̂(K) depends on the estimated community label matrix Π̂(K). To

facilitate the analysis, it’s desirable to replace Π̂(K) by the true membership matrix Π. By

the first claim of the current theorem, this replacement only has a negligible effect.

Formally, we introduce Ω̂(K,0) to be the proxy of Ω̂(K) with Π̂(K) in its definition replaced

by Π. Moreover, define Q
(K,0)
n to be the proxy of Q

(K)
n with Ω̂(K) replaced by Ω̂(K,0) in its

definition, and define the corresponding counterpart of ψ
(K)
n as

ψ(K,0)
n = [Q(K,0)

n −B(K)
n ]/

√
8Cn.

Then, for any fixed number t ∈ R we have∣∣∣P(ψ(K)
n ≤ t)− P(ψ(K,0)

n ≤ t)
∣∣∣ ≤ P(Π̂(K) 6= Π)→ 0, as n→∞,

where the last step follows from the first claim in the current theorem. Hence by elementary

probability, to prove ψ
(K)
n → N(0, 1) in law, if suffices to show ψ

(K,0)
n → N(0, 1) in law.

Recall that if we neglect the difference in the main diagonal entries, then A− Ω = W .

By definition, we expect that Ω̂(K,0) ≈ Ω, and so (A− Ω̂(K,0)) ≈W . This motivates us to

define

Q̃n =
∑

i1,i2,i3,i4(dist)

Wi1i2Wi2i3Wi3i4Wi4i1 . (3.4.20)

At the same time, for short, let bn and cn be the oracle counterparts of B
(K)
n and Cn

cn =
∑

i1,i2,i3,i4(dist)

Ωi1i2Ωi2i3Ωi3i4Ωi4i1 , bn = 2‖θ‖4 · [g′V −1(PH2P ◦ PH2P )V −1g].

(3.4.21)

Here, two vectors g, h ∈ RK are defined as gk = (1′kθ)/‖θ‖1 and hk = (1′kΘ1k)1/2/‖θ‖, where

1k is for short of 1
(K)
k , which is defined as

1
(K)
k (i) = 1 if i ∈ Nk and 0 otherwise.

Moreover, V = diag(Pg), and H = diag(h). The following lemmas are proved in the

supplementary material.

Lemma 36. Under the conditions of Theorem 3.2.1, we have E[Cn] = cn � ‖θ‖8 and

Var(Cn) ≤ C‖θ‖8 · [1 + ‖θ‖63], and so Cn/cn → 1 in probability for cn defined in (3.4.21).

Lemma 37. Under the conditions of Theorem 3.2.1, Q̃n/
√

8cn → N(0, 1) in law.

Lemma 38. Under the conditions of Theorem 3.2.1, E(Q
(K,0)
n − Q̃n − bn)2 = o(‖θ‖8).

Lemma 39. Under the conditions of Theorem 3.2.1, we have bn � ‖θ‖4 and B
(K)
n /bn → 1

in probability for bn defined in (3.4.21).

Among these lemmas, the proof of Lemma 38 is the most complicated one, as it requires

computing the bias inQ
(m)
n caused by the refitting step; see Section 3.C.8 in the supplementary

material for details.

We now prove Theorem 3.2.1. Rewrite ψ
(K,0)
n as√

cn
Cn

[
Q̃n√
8cn

+
(Q

(K,0)
n − Q̃n − bn)√

8cn
+

(bn −B(K)
n )√

8cn

]
=

√
cn
Cn
· [(I) + (II) + (III)], (3.4.22)
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3.4. The behavior of the RQ test statistic

where (I) = Q̃n/
√

8cn, (II) = (Q
(K,0)
n − Q̃n − bn)/

√
8cn, and (III) = (bn − B(K)

n )/
√

8cn.

Now, first by Lemmas 36-37,

cn/Cn → 1 in probability, and (I)→ N(0, 1) in law. (3.4.23)

Second, by Lemma 37,

E[(II)2] ≤ (8cn)−1 · E[(Q(K,0)
n − Q̃(K,0)

n − bn)2] ≤ c−1
n · o(‖θ‖8), (3.4.24)

where the right hand side is o(1) for cn � ‖θ‖8 by Lemma 36. Last, by Lemma 36- 39, we

have bn �
√
cn � ‖θ‖4 and B

(K)
n /bn

p→ 1, and so

(III) =

(
bn√
8cn

)
·
(
B

(K)
n

bn
− 1

)
p→ 0. (3.4.25)

Inserting (3.4.23)-(3.4.25) into (3.4.22) gives the claim and concludes the proof of Theorem

3.2.1.

3.4.2 Proof of Theorem 3.2.3 (the under-fitting case of m < K)

In the proof of Theorem 3.2.1, we start from replacing Π̂(K) with the true community label

matrix Π. However, when m < K, Π̂(m) does not concentrate on one particular label matrix.

Below, we introduce a collection of label matrices, Gm, consisting of all possible realizations

of Π̂(m) when NSP holds. We then study the GoF statistic on the event that Π̂(m) = Π0, for

a fixed Π0 ∈ Gm.

Recall that Π is the true community label matrix. Fix 1 ≤ m < K. Let Gm be the class

of n×m matrices Π0, where each Π0 is formed as follows: let {1, 2, . . . ,K} = S1∪S2 . . .∪Sm
be a partition, column ` of Π0 is the sum of all columns of Π in S`, 1 ≤ ` ≤ m. Let L0 be

the K ×m matrix of 0 and 1 where

L0(k, `) = 1 if and only if k ∈ S`, 1 ≤ k ≤ K, 1 ≤ ` ≤ m. (3.4.26)

Therefore, for each Π0 ∈ Gm, we can find an L0 such that Π0 = ΠL0. Note that each Π0 is

the community label matrix where each community implied by it (i.e., “pseudo community”)

is formed by merging one or more (true) communities of the original network.

Fix a Π0 and let N (m,0)
1 ,N (m,0)

2 , · · · ,N (m,0)
m be the m “pseudo communities” associated

with Π0. Recall that θ̂(m), Θ̂(m) and P̂ (m) are refitted quantities obtained by using the

adjacency matrix A and Π̂(m); see (3.2.5)-(3.2.6). To misuse the notations a little bit, let

θ̂(m,0), Θ̂(m,0) and P̂ (m,0) be the proxy of θ̂(m), Θ̂(m) and P̂ (m) respectively, constructed

similarly by (3.2.5)-(3.2.6), but with Π̂(m) replaced by Π0. Introduce

Ω̂(m,0) = Θ̂(m,0)Π0P̂
(m,0)Π′0Θ̂(m,0), (3.4.27)

Q(m,0)
n =

∑
i1,i2,i3,i4(dist)

(Ai1i2 − Ω̂
(m,0)
i1i2

)(Ai2i3 − Ω̂
(m,0)
i2i3

)(Ai3i4 − Ω̂
(m,0)
i3i4

)(Ai4i1 − Ω̂
(m,0)
i4i1

),

and

ψ(m,0)
n = [Q(m,0)

n −B(m)
n ]/

√
8Cn. (3.4.28)

These are the proxies of Ω(m), Q
(m)
n , and ψ

(m)
n , respectively, where Π̂(m) is now frozen at a

non-stochastic matrix Π0.
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3. estimating the number of communities by stepwise goodness-of-fit

In the under-fitting case, m < K, and we do not expect Ω̂(m,0) to be close to Ω. We define

a non-stochastic counterpart of Ω̂(m,0) as follows. Let θ(m,0), Θ(m,0) and P (m,0) be constructed

similarly by (3.2.5)-(3.2.6), except that (A, Π̂(m)) and the vector d = (d1, d2, . . . , dn)′ are

replaced with (Ω,Π0) and Ω1n, respectively. Let

Ω(m,0) = Θ(m,0)Π0P
(m,0)Π′0Θ(m,0). (3.4.29)

The following lemma gives an equivalent expression of Ω(m,0) and is proved in the supple-

mentary material.

Lemma 40. Fix K > 1 and 1 ≤ m ≤ K. Let Π0 = ΠL0 ∈ Gm and Ω(m,0) be as above.

Write D = Π′ΘΠ ∈ RK,K and D0 = Π′0ΘΠ ∈ Rm,K . Let P0 be the K ×K matrix given by

P0 = diag(PD1K) · L0 · diag(D0PD1K)−1(D0PD
′
0)diag(D0PD1K)−1 · L′0 · diag(PD1K),

where the rank of P0 is m. Then, Ω(m,0) = ΘΠP0Π′Θ.

This lemmas says that Ω(m,0) has a similar expression as Ω, with P replaced by a rank-m

matrix P0. When m = K, Gm has only one element Π; then (P0,Ω
(m,0)) reduces to (P,Ω).

We expect Ω̂(m,0) to concentrate at Ω(m,0). This motivates the following proxy of Q
(m,0)
n .

Q̃(m,0)
n =

∑
i1,i2,i3,i4(dist)

(Ai1i2 − Ω
(m,0)
i1i2

)(Ai2i3 − Ω
(m,0)
i2i3

)(Ai3i4 − Ω
(m,0)
i3i4

)(Ai4i1 − Ω
(m,0)
i4i1

). (3.4.30)

Introduce

Ω̃(m,0) = Ω− Ω(m,0). (3.4.31)

Recall that A = (Ω− diag(Ω)) +W , we rewrite Q̃
(m,0)
n as

Q̃(m,0)
n =

∑
i1,i2,i3,i4(dist)

(Wi1i2 + Ω̃
(m,0)
i1i2

)(Wi2i3 + Ω̃
(m,0)
i2i3

)(Wi3i4 + Ω̃
(m,0)
i3i4

)(Wi4i1 + Ω̃
(m,0)
i4i1

). (3.4.32)

Note that when m = K and Π0 = Π, the statistic Q̃
(m,0)
n reduces to Q̃n defined in (3.4.20).

The matrix Ω̃(m,0) captures the signal strength in Q̃
(m,0)
n . From now on, for notation

simplicity, we write Ω̃(m,0) = Ω̃ in the rest of the proof. Let λ̃k be the k-th largest (in

magnitude) eigenvalue of Ω̃ and recall that λk is the k-th largest (in magnitude) eigenvalue of

Ω. In light of (3.4.31), we write Ω = Ω(m,0) +Ω̃ and apply Weyl’s theorem for singular values

(see equation (7.3.13) of Horn and Johnson (1985)). Note that Ω(m,0) has a rank m and Ω has

a rank K. By Weyl’s theorem, for all 1 ≤ k ≤ K −m, |λm+k| ≤ |λm+1(Ω(m,0))|+ |λ̃k| = |λ̃k|.
It follows that

tr(Ω̃4) ≥
K−m∑
k=1

|λ̃k|4 ≥
K∑

k=m+1

|λk|4.

As we will see in Lemma 42 below, tr(Ω̃4) is the dominating term of E[Q̃
(m,0)
n ]. Define

τ (m,0) = |λ̃1|/λ1. (3.4.33)

For notation simplicity, we write τ (m,0) = τ , but keep in mind both Ω̃ and τ actually depend

on m and Π0 ∈ Gm. The following lemmas are proved in the supplementary material.

Lemma 41. Under the conditions of Theorem 3.2.3, for each 1 ≤ m ≤ K, let Ω̃ and τ be

defined as in (3.4.29) and (3.4.33). The following statements are true:
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3.4. The behavior of the RQ test statistic

• There exists a constant C > 0 such that |Ω̃ij | ≤ Cτθiθj, for all 1 ≤ i, j ≤ n.

• cn � ‖θ‖8, λ1 � ‖θ‖2, and τ = O(1).

• tr(Ω̃4) ≥ Cτ4‖θ‖8, and τ‖θ‖ → ∞.

Lemma 42. Under the condition of Theorem 3.2.3, for 1 ≤ m < K,

E[Q̃(m,0)
n ] = tr(Ω̃4) + o(‖θ‖4), Var(Q̃(m,0)

n ) ≤ C(‖θ‖8 + τ6‖θ‖8‖θ‖63).

Lemma 43. Under the condition of Theorem 3.2.3, for 1 ≤ m < K,

E[Q(m,0)
n − Q̃(m,0)

n ] = o(τ4‖θ‖8), Var(Q(m,0)
n − Q̃(m,0)

n ) ≤ o(‖θ‖8) + Cτ6‖θ‖8‖θ‖63.

Lemma 44. Under the conditions of Theorem 3.2.3, for 1 ≤ m < K, there exists a constant

C > 0, such that P(B
(m)
n ≤ C‖θ‖4) ≥ 1 + o(1).

We now prove Theorem 3.2.3. Note that by Theorem 3.2.1, the second item of Theorem

3.2.3 follows once the first item is proved. Therefore we only consider the first item, where

it is sufficient to show that for all 1 < m < K,

ψ(m)
n →∞, in probability.

By the NSP of the solutions produced by SCORE, which is shown in Theorem 3.2.2, there

exists an event An with P(Acn) ≤ Cn−3 as n→∞, such that on event An we have Π̂(m) ∈ Gm.

This further indicates that on event An we have

ψ(m)
n ≥ min

Π0∈Gm
ψ(m,0)
n , (3.4.34)

where ψ
(m,0)
n is defined in (3.4.28). The LHS is hard to analyze, but the RHS is relatively

easy to analyze. Then further notice that the cardinality of Gm is |Gm| = mK , which is of

constant order as long as K is constant. Therefore to prove ψ
(m)
n → ∞ in probability, it

suffices to show that for any fixed Π0 ∈ Gm,

ψ(m,0)
n →∞, in probability. (3.4.35)

We now show (3.4.35). Rewrite ψ
(m,0)
n as√

cn
Cn
·
[
Q

(m,0)
n√
8cn

− B
(m)
n√
8cn

]
=

√
cn
Cn
· [(I)− (II)], (3.4.36)

where (I) = Q
(m,0)
n /

√
8cn, and (II) = B

(m)
n /
√

8cn. First, by Lemma 36 (since Cn and cn do

not depend on m, this lemma applies to both the null case and the under-fitting case),

cn/Cn → 1 in probability. (3.4.37)

Second, by Lemma 41, cn � ‖θ‖8. Combining it with Lemma 44 gives that there is a constant

C > 0 such that

P((II) ≤ C) ≥ 1 + o(1). (3.4.38)

Last, by Lemma 41-43,

E[(I)] ≥ Cτ4‖θ‖4 · [1 + o(1)]→∞, Var((I)) ≤ C(1 + τ6‖θ‖63).

Therefore, by Chebyshev’s inequality, for any constant M > 0,

P((I) < M) ≤ (E[(I)]−M)−2Var((I)) ≤ C
[

1 + τ6‖θ‖63
(τ4‖θ‖4[1 + o(1)]−M)2

]
, (3.4.39)
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3. estimating the number of communities by stepwise goodness-of-fit

where on the denominator, τ‖θ‖ → ∞ by Lemma 41. Note that under our conditions,

‖θ‖33 = o(‖θ‖2) and ‖θ‖ → ∞. Combining these, the RHS of (3.4.39) tends to 0 as n→∞.

Inserting (3.4.37)-(3.4.39) into (3.4.36) proves the claim, and concludes the proof of Theorem

3.2.3.

3.5 Real data analysis and simulation study

In theory, a good approximation for the null distribution of ψ
(m)
n is N(0, 1) and Theorem

3.2.1, where we show ψ
(m)
n → N(0, 1) in the null case). Such a result requires some model

assumptions, which may be violated in real applications (e.g., outliers, artifacts). When

this happens, a good approximation for the null distribution of ψ
(m)
n is no longer N(0, 1)

(i.e., theoretical null), but N(u, σ2) (i.e., empirical null) for some (u, σ) 6= (0, 1). Such a

phenomenon has been repeatedly noted in the literature. For example, Efron Efron (2004)

argued that due to artifacts or model misspecification, the empirical null frequently works

better for real data than the theoretical null. The problem is then how to estimate the

parameters (u, σ2) of the empirical null.

We propose a bootstrap approach to estimating (u, σ2). Recall that λ̂k is the k-th largest

eigenvalue of A and ξ̂k is the corresponding eigenvector. Fixing N > 1 and m > 1, letting

M̂ (m) =
∑m

k=1 λ̂kξ̂kξ̂
′
k and let Ŝ(m) = A − M̂ (m). For b = 1, 2, . . . , N , we simultaneously

permute the rows and columns of Ŝ(m) and denote the resultant matrix by Ŝ(m,b). Truncating

all entries of (M̂ (m) + Ŝ(m,b)) at 1 at the top and 0 at the bottom, and denote the resultant

matrix by Ω̂(b). Generate an adjacency matrix A(b) such that for all 1 ≤ i < j ≤ n, A
(b)
ij

are independent Bernoulli samples with parameters Ω̂
(b)
ij (we may need to repeat this step

until the network is connected). Apply StGoF to A(b) and denote the resultant statistic

by Q
(b)
n . We estimate u and σ by the empirical mean and standard deviation of {Q(b)

n }Nb=1,

respectively. Denote the estimates by û(m) and σ̂(m), respectively. The bootstrap StGoF

statistic is then

ψ(m,∗)
n = [Q(m)

n − û(m)]/σ̂(m), m = 1, 2, . . . , (3.5.40)

where Q
(m)
n is the same as in (3.2.12). Similarly, we estimate K as the smallest integer m

such that ψ
(m,∗)
n ≤ zα, for the same zα in StGoF. We recommend N = 25, as it usually gives

stable estimates for û(m) and σ̂(m).

The original StGoF works well for real data where the DCBM is reasonable, but for

data sets where DCBM is significantly violated, bootstrap StGoF may help. For the 6

data sets considered in Section 3.5, two methods perform similarly for all but one data set.

This particular data set is suspected to have many outliers, and bootstrap StGoF performs

significantly better. For theoretical analysis, we focus on the original StGoF statistics ψ
(m)
n

as in (3.2.12).

3.5.1 Real data analysis

For real data analysis, we consider 6 different data sets as in Table 3.1, which can be

downloaded from http://www-personal.umich.edu/~mejn/netdata/. We now discuss

the true K. For the dolphin network, it was argued in Liu et al. (2016) that both K = 2 or
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K = 4 are reasonable. For UKfaculty network, we symmetrize the network by ignoring the

directions of the edges. There are 4 school affiliations for the faculty members so we take

K = 4. For the football network, we take K = 11. The network was manually labelled as 12

groups, but the 12th group only consist of the 5 “independent” teams that do not belong

to any conference and do not form a conference themselves. For polbooks network, Le and

Levina Le and Levina (2015) suggest that K = 3, but it was argued by Jin et al. (2017) that

a more appropriate model for the network is a degree corrected mixed-membership (DCMM)

model with two communities, so K = 2 is also appropriate.

We compare StGoF and bootstrap StGoF (StGoF*) with the BIC approach by Wang

and Bickel Wang et al. (2017), BH approach by Le and Levina Le and Levina (2015), ECV

approach by Li et al. Li et al. (2020), and NCV approach by Chen and Lei Chen and Lei

(2018). For all these methods, we use the R package “randnet” to implement them. Note

that among these approaches, ECV and NCV are cross validation (CV) approaches and the

results vary from one repetition to the other. Therefore, we run each method for 25 times

and report the mean and SD. The StGoF* uses bootstrapping mean and standard deviation

and is also random, but the SDs are 0 for five data sets. Most methods require a feasible

range of K as a priori. We take {1, 2, ..., 15} as the range in this section.

Table 3.1: Comparison of estimated K. Take ECV for Dolphins for example: for 25
independent repetitions, the estimated K have a mean of 3.08 and a SD of 0.91, ranging
from 2 to 5 (SD of StGoF* are 0 for the first 5 data sets).

Name n K BIC BH ECV NCV StGoF StGoF*

Dolphins 62 2, 4 2 2 3.08(0.91) [2,5] 2.20(2.71) [1,15] 2 3
Football 115 11 10 10 11.28(0.61) [11,13] 12.36(1.15) [11, 15] 10 10
Karate 34 2 2 2 2.60(1.00) [1,6] 2.56(0.58) [2,4] 2 2
UKfaculty 81 4 4 3 5.56(1.61) [3,11] 2.40(0.28) [2,3] 4 4
Polblogs 1222 2 6 8 4.88(1.13) [4, 8] 2(0.00) [2, 2] 2* 2
Polbooks 105 2, 3 3 4 7.56(2.66) [2,15] 2.08(0.71) [2, 5] 5 2.4(0.25) [2, 3]

The polblogs network is suspected to have outliers, so most of the methods do not work

well. For this particular network, the mean of StGoF is much larger than expected, so we

choose to estimate K by the m that minimizes ψ
(m)
n for 1 ≤ m ≤ 15 (for this reason, we put

a ∗ next to 2 in the table). Note that StGoF* correctly estimates K as 2. The polbooks

network is suspected have a signifiant faction of mixing nodes (e.g., Jin et al. (2017)), which

explains why StGoF overestimates K. Fortunately, for both data sets, StGoF* estimates

K correctly, suggesting the bootstrapping means and standard deviations help standardize

Q
(m)
n .

3.5.2 Simulations

We now study StGoF with simulated data. We compare StGoF with BIC, ECV, NCV via a

small scale simulations (for StGoF, α = 0.05). We do not include StGoF* since there is no

model specification. We do not include BH for comparison either: the method is designed

for very sparse stochastic block model and the performance is unsatisfactory for most of our
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3. estimating the number of communities by stepwise goodness-of-fit

settings.

Given (n,K), a scalar βn > 0 that controls the sparsity, a symmetric non-negative matrix

P ∈ RK×K , a distribution f(θ) on (0,∞), and a distribution g(π) on the standard simplex

of RK , we generate the adjacency matrix A ∈ Rn,n as follows:

1. Generate θ̃1, θ̃2, ..., θ̃n iid from f(θ). Let θi = βn · θ̃i/‖θ̃‖ and Θ = diag(θ1, ..., θn).

2. Generate π1, π2, ..., πn iid from g(π), and let Π = [π1, π2, ..., πn]′.

3. Let Ω = ΘΠPΠ′Θ. For each experiment below, once Ω is generated, we keep it fixed,

and use it to generate A according to the DCBM, for 100 times independently.

For all algorithms, we measure the performance by the fraction of times the algorithm

correctly estimates the true number of communities K (i.e., accuracy). Note that ‖θ‖ = βn,

and SNR � ‖θ‖(1− bn). For the experiments, we let βn range so to cover many different

sparsity levels, but let ‖θ‖(1 − bn) be at a more or less the same level, so the problem of

estimating K is not too difficult or too easy; see details below. We consider three experiments,

and each experiment has some sub-experiments.

Experiment 1. In this experiment, we study how degree heterogeneity affect the results

and comparisons. Fixing (n,K) = (600, 4), we let P be the 4× 4 matrix with unit diagonals

and off-diagonals P (k, `) = 1− [(1− bn)(|k− `|+ 1)]/K, where 1 ≤ k, ` ≤ 4 and k 6= `. Such

matrix is called a Toeplitz matrix. Let g(π) be the uniform distribution over e1, e2, e3, e4

(the standard basis vectors of R4).

We consider three sub-experiments, Exp 1a-1c. In these sub-experiments, we keep

(1− bn)‖θ‖ fixed at 9.5 so the SNR’s are roughly at the same level. We let βn range from 10

to 14 so to cover both the more sparse and the more dense cases. Moreover, for the three

sub-experiments, we take f(θ) to be U(2, 3) (uniform distribution), Pareto(8, .375) (8 is the

shape parameter and .375 is the scale parameter), and two point mixture 0.95δ1 + 0.05δ3 (δa
is a point mass at a), respectively. Note that from Exp 1a to Exp 1c, the degree heterogeneity

is increasingly more severe on average.

The estimation accuracy is presented in Figure 3.4, where StGoF is seen to consistently

outperform other approaches. Also, from Exp 1a to Exp1c, the estimation accuracy for all

algorithms get consistently lower, suggesting that when the degree heterogeneity gets more

severe, the problem of estimating K gets more challenging.

Experiment 2. In this experiment, we study how the relative sizes of different communi-

ties affect the results and comparisons. For bn > 0 to be determined, we set (n,K) = (1200, 3),

f(θ) as Pareto(10, 0.375), and let P be the 3×3 matrix satisfying P (k, `) = 1−|k−`|(1−bn)/2,

1 ≤ k, ` ≤ 3. We let βn range in {12, 13, ..., 17} and keep (1 − bn)‖θ‖ fixed at 10 so the

SNR’s are roughly at the same level. We take g(π) as the distribution with weights a, b, and

(1 − a − b) on vectors e1, e2, e3 (the standard basis vectors of R3), respectively. Consider

three sub-experiments, Exp 2a-2c, where we take (a, b) = (.30, .35), (.25, .375), and (.20, .40),
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Figure 3.4: Left to right: Experiment 1a, 1b, and 1c, where the degree heterogeneity are
increasingly more severe (x-axis: sparsity. y-axis: accuracy). Results are based on 100
repetitions.
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Figure 3.5: Left to right: Experiment 2a, 2b, and 2c (x-axis: ‖θ‖ (sparsity level); y-axis:
estimation accuracy. The results are based on 100 repetitions.

respectively, so the three communities in the network are slightly unbalanced, moderately

unbalanced, and slightly unbalanced, respectively.

Figure 3.5 presents the estimation accuracy. First, StGoF consistently outperforms

NCV, ECV and BIC. Second, when the three communities get increasingly unbalanced,

all methods become less accurate, suggesting that estimating K gets increasingly harder.

Last, the performance of ECV and NCV are relatively close to that of StGOF when the

communities are relatively balanced (e.g., Exp 2a), but are comparably more unsatisfactorily

when the models are more unbalanced (e.g., Exp 2b-2c).

Experiment 3. We study how robust these algorithms are in cases of model mis-

specification. Fix (n,K) = (600, 4). We let f(θ) be the uniform distribution U(2, 3), and

let P be the 4 × 4 matrix with unit diagonals and where for 1 ≤ k, ` ≤ 4 and k 6= `,

P (k, `) = 1 − (1 − bn)(|k − `|+ 1)/K. We consider two sub-experiments, Exp 3a-3b. For

sparsity, we let βn range from 11 to 16 in Exp 3a and range from 11 to 18 in Exp 3b. For

different βn, we choose bn so that (1− bn)‖θ‖ is fixed at 10.5. Moreover, in Exp 3a, we allow

mixed-memberships. We take g(π) to be the mixing distribution which puts probability

.2 on e1, e2, e3, e4 (standard basis vectors of R4), respectively, and let π be the symmetric

K-dimensional Dirichlet distribution for the remaining probability of .2. Once we have θi, πi,
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Figure 3.6: Experiment 3a (left) and 3b (right) (x-axis: ‖θ‖ (sparsity level). y-axis:
estimation accuracy). The results are based on 100 repetitions.

and P , we let Ωij = θiθjπ
′
iPπj , 1 ≤ i, j ≤ n, similar to that in DCBM. In Exp 3b, we allow

outliers. First, we let g(π) be the mixing distribution that puts masses .25 on e1, e2, e3, e4,

and obtain Ω as in DCBM. We then randomly select 10% of the nodes and re-define Ωij as

ρn if either i or j is selected, where ρn = n−2
∑

1≤i,j≤n Ωij .

Figure 3.6 presents the estimation accuracy. The two cross-validation methods (ECV

and NCV) are not model based algorithms and are expected to be less affected by model

misspecification, so we can use their results as a benchmark to evaluate the performances of

StGoF and the likelihood-based approach BIC. Figure 3.6 shows that StGoF continues to

perform well in all settings, suggesting that it is not sensitive to model misspecification. The

performance of BIC, if compared to those in Experiments 1-2, is less satisfactory, suggesting

that the method is more sensitive to the model misspecification.
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3.A Proof of results in Sections 3.1-3.2

3.A.1 Proof of Lemma 27

For the goodness-of-fit test, it contains calculation of (a) Ω̂(m) as the refitted Ω, (b) Q
(m)
n as

the main term, (c) B
(m)
n as the bias correction term and (d) Cn as the variance estimator.

For (a), it requires calculation of di for 1 ≤ i ≤ n, and 1̂′kA1̂` and 1̂′kA1̂n for 1 ≤ k, ` ≤ m
with m ≤ K. Since di needs O(di) operations, it takes O(nd̄) for calculating di, 1 ≤ i ≤ n.

Similarly, it takes O(1̂′kA1̂`) to calculate 1̂′kA1̂` and O(1̂′kA1̂n) to calculate 1̂′kA1̂n, 1 ≤
k, ` ≤ m. The total complexity is then O(nd̄). By (3.2.8),

Ω̂(m)(i, j) = θ̂(m)(i)θ̂(m)(j)(π̂
(m)
i )′P̂ (m)π̂

(m)
j ,

whose calculation takes O(m2) operations. Hence, calculation of Ω̂(m) needs O(m2n2)

operations. Combining together, we conclude that step (a) costs O(m2n2).

For (b), Q
(m)
n can be calculated using the same form in Theorem 1.1 of Jin et al. (2019).

As is shown there, this step requires O(n2d̄) operations.

For (c), given Ω̂(m) and P̂ (m), the calculation of ĝ(m), V̂ (m) and Ĥ(m) only takes O(n).

By (3.2.11), calculation of B
(m)
n only involves calculate ‖θ̂‖ and ĝ′V̂ −1(P̂ Ĥ2P̂ ◦ P̂ Ĥ2P̂ )V̂ −1ĝ.

The first part needs O(n) operations. The second part only involves vectors in Rm and

matrices in Rm,m. Moreover since m ≤ K and K is fixed, it takes at most o(n) operations.

Combining above, step (c) costs O(n).

For (d), the calculation follows from Proposition A.1 of Jin et al. (2018). It should be

noted Cn is denoted as Ĉ4 there, and it requires calculation of (i) trace of a matrix, (ii) A4

for matrix A and (iii) quadratic form of matrix A and A2. For (i), it only takes O(n). For

(iii), it takes at most O(n2). For (ii), we can compute Ak recursively from Ak = Ak−1A. it

suffices to consider the complexity of computing BA, for an arbitrary n× n matrix B. The

(i, j)-th entry of BA is
∑

`:A`j 6=0Bi`A`j , where the total number of nonzero A`j equals to

dj , the degree of node j. Hence, the complexity of computing the (i, j)-th entry of BA is

O(dj). It follows that the complexity of computing BA is O(n2d̄).

Combining above, the goodness-of-fit test needs O(n2d̄) operations.

3.A.2 Proof of Theorem 3.2.4

First, we show the claims on |λK |/
√
λ1. Define a diagonal matrixH byHkk = ‖θ‖−1

√∑
i:`i=k

θ2
i ,

for 1 ≤ k ≤ K. Note that H is also stochastic. By Lemma 30, the eigenvalues of Ω are equal

to the eigenvalues of ‖θ‖2HPH, i.e.,

λk = ‖θ‖2 · λk(HPH), 1 ≤ k ≤ K.
It follows that

|λK |/
√
λ1 = ‖θ‖ · |λK(HPH)|/

√
λ1(HPH). (3.A.41)

Below, we first study the matrix H and then show the claims.

Consider the matrix H. Let Ñ1, Ñ2, . . . , ÑK0 be the (non-stochastic) communities of
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the DCBM with K0 communities. For each 1 ≤ k ≤ K0, let θ(k) ∈ Rn be such that

θ
(k)
i = θi · 1{i ∈ Ñk}. By definition,

H2
kk = ‖θ‖−2

‖θ(k)‖2, for 1 ≤ k ≤ K0 − 1,∑
i∈ÑK0

θ2
i · 1{`i = k}, for K0 ≤ k ≤ K0 +m.

Since (3.2.2) is satisfied, ‖θ‖2 ≥ ‖θ(k)‖2 ≥ C‖θ‖2, for 1 ≤ k ≤ K0. It implies that

C−1 ≤ Hkk ≤ C, for 1 ≤ k ≤ K0 − 1. (3.A.42)

Fix k ≥ K0. The n indicators 1{`i = k} are iid Bernoulli variables with a success probability

of 1
m+1 . Therefore, EH2

kk = 1
m+1‖θ‖

−2‖θ(K0)‖2. Furthermore, by Hoeffding’s inequality,

P
(∣∣‖θ‖2(H2

kk − EH2
kk)
∣∣ > t

)
≤ 2 exp

(
− t2

2
∑

i∈ÑK0
θ4
i

)
.

By (3.2.1), θmax

√
log(n) → 0. Hence,

∑
i∈ÑK0

θ4
i ≤ θ2

max‖θ(K0)‖2 � ‖θ‖2/ log(n). Taking

t = ‖θ‖ in the above equation yields
∣∣H2

kk −EH2
kk

∣∣ ≤ ‖θ‖−1 with probability 1− o(n−1). We

have seen that EH2
kk = 1

m+1‖θ‖
−2‖θ(K0)‖2, which is bounded above and below by constants.

Additionally, ‖θ‖−1 = o(1). Combining these results gives

C−1 ≤ Hkk ≤ C, with probability 1− o(n−1), for any k ≥ K0. (3.A.43)

It follows from (3.A.42) and (3.A.43) that

‖H‖ ≤ C, ‖H−1‖ ≤ C, with probability 1− o(n−1). (3.A.44)

Consider the the upper bound for |λK |/
√
λ1. It suffices to get an upper bound for

|λK(HPH)| and a lower bound for λ1(HPH). Note that |λK(HPH)| is the smallest

singular value of HPH, which can be different from the absolute value of the smallest

eigenvalue. Therefore, we cannot use Cauchy’s interlacing theorem (Horn and Johnson,

1985) to relate |λK(HPH)| to the smallest eigenvalue of M . We need a slightly longer proof.

Write

P =

[
S β1′m+1

1m+1β
′ 1m+11

′
m+1

]
+

[
0(K0−1)×(K0−1) 0(K0−1)×1

01×(K0−1)
m+1

1+mbn
M − 1m+11

′
m+1

]
≡ P ∗ + ∆.

The matrix P ∗ can be re-expressed as (eK0 is the K0th standard basis of RK0)

P ∗ =

[
IK0

1me
′
K0

][
S β

β′ 1

] [
IK0 eK01

′
m

]
.

Therefore, the rank of P ∗ is only K0. Then, HP ∗H is also a rank-K0 matrix. Consequently,

for K = K0 +m,

λK(HP ∗H) = 0.

By Weyl’s inequality (Horn and Johnson, 1985), |λK(HPH) − λK(HP ∗H)| ≤ ‖H∆H‖.
Combining these results gives

|λK(HPH)| ≤ ‖H∆H‖. (3.A.45)

Note that ‖∆‖ = ‖ m+1
1+mbn

M − 1m+11
′
m+1‖. M is a matrix whose diagonals are 1 and

off-diagonals are equal to bn. As a result, ∆ is a matrix whose diagonals are equal to m(1−bn)
1+mbn
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and off-diagonals are equal to −(1−bn)
1+mbn

. It follows immediately that

‖∆‖ ≤ C(1− bn).

We plug it into (3.A.45) and apply (3.A.44). It yields that

|λK(HPH)| ≤ C(1− bn). (3.A.46)

Furthermore, λ1(P ) ≥ P11 = 1 and λ1(P ) ≤ ‖H−1‖2λ1(HPH). Combining it with (3.A.44)

gives

λ1(HPH) ≥ C−1. (3.A.47)

Note that (3.A.46)-(3.A.47) hold with probability 1−o(n−1), because their derivation utilizes

(3.A.44). We plug (3.A.46)-(3.A.47) into (3.A.41) to get |λK |/
√
λ1 ≤ C‖θ‖(1 − bn), with

probability 1− o(n−1). This proves the upper bound of |λK |/
√
λ1.

Consider the the lower bound for |λK |/
√
λ1. Using (3.A.44), we have

|λK(HPH)|−1 = ‖(HPH)−1‖ ≤ ‖H−1‖2 · ‖P−1‖ ≤ C‖P−1‖. (3.A.48)

We then bound ‖P−1‖. Write

P = A+B, where A =

[
S

m+1
1+mbn

M

]
and B =

[
0 β1′m+1

1m+1β
′ 0

]
.

The matrix B is a rank-2 matrix, which can be re-expressed as

B = XD−1X ′, where X =

[
β β

1m+1 −1m+1

]
and D =

[
2

−2

]
.

We use the matrix inversion formula to get

‖P−1‖ = ‖(A+XD−1X ′)−1‖
= ‖A−1 −A−1X(D +X ′A−1X)−1X ′A−1‖
≤ ‖A−1‖ ·

(
1 + ‖X(D +X ′A−1X)−1X ′A−1‖

)
= ‖A−1‖ ·

(
1 + ‖(D +X ′A−1X)−1(X ′A−1X)‖

)
. (3.A.49)

By direct calculations, writing M0 = 1+mbn
m+1 M and 1 = 1m+1 for short, we have

X ′A−1X =

[
β′S−1β + 1′M−1

0 1 β′S−1β − 1′M−1
0 1

β′S−1β − 1′M−1
0 1 β′S−1β + 1′M−1

0 1

]
.

Note that M1 = (1 +mbn)1. It implies that M−11 = 1
1+mbn

1. As a result,

1′M−1
0 1 =

1 +mbn
m+ 1

1′M−1
0 1 =

1 +mbn
m+ 1

1′
( 1

1 +mbn
1
)

= 1.

Plugging it into the expression of X ′A−1X gives

X ′A−1X =

[
β′S−1β + 1 β′S−1β − 1

β′S−1β − 1 β′S−1β + 1

]
.

It follows from direct calculations that

(D +X ′A−1X)−1(X ′A−1X) =
1

2

[
1 −1

1 3β′S−1β+1
β′S−1β−1

]
. (3.A.50)

Under the condition |β′S−1β − 1| ≥ C, the absolute value of 3β′S−1β+1
β′S−1β−1

is bounded by a

constant. Therefore, the spectral norm of the matrix in (3.A.50) is bounded by a constant.
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We plug it into (3.A.49) to get

‖P−1‖ ≤ C‖A−1‖ ≤ C max
{
|λmin(S)|−1, |λmin(M)|−1

}
.

The minimum eigenvalue of M is (1− bn). Hence, under the condition of |λmin(S)| � 1− bn,

we immediately have ‖P−1‖ ≤ C(1− bn)−1. We plug it into (3.A.48) to get

|λK(HPH)| ≥ C−1(1− bn). (3.A.51)

Additionally, ‖P̃‖ ≤ C by (3.2.1). It follows from the connection between P and P̃ in

(3.2.13) that ‖P‖ ≤ C. Combining it with (3.A.44) gives ‖HPH‖ ≤ C, i.e.,

λ1(HPH) ≤ C. (3.A.52)

Here (3.A.51) and (3.A.52) are satisfied with probability 1−o(1), because their derivation uses

(3.A.44). We plug (3.A.51)-(3.A.52) into (3.A.41). It yields that |λK |/
√
λ1 ≥ C−1‖θ‖(1−bn),

with probability 1− o(1). This proves the lower bound of |λK |/
√
λ1.

Next, we show that, if ‖θ‖(1− bn)→ 0, the two random-label DCBM models associated

with m1 and m2 are asymptotically indistinguishable. It is sufficient to show that each

random-label DCBM is asymptotically indistinguishable from the (fixed-label) DCBM with

K0 communities.

Fix m ≥ 1. Let f0(A) and f1(A) be the respective likelihood of the (fixed-label) DCBM

and the random-label DCBM. Write Ω̃ = ΘΠ̃P̃ Π̃′Θ and Ω = ΘΠPΠ′Θ. It is seen that

f0(A) =
∏

1≤i<j≤n
Ω̃
Aij
ij (1− Ω̃ij)

1−Aij , f1(A) =

∫ ∏
1≤i<j≤n

Ω
Aij
ij (1− Ωij)

1−AijdP(Π).

Recall that Ñ1, Ñ2, . . . , ÑK0 are the (non-stochastic) communities in the first DCBM. We

observe that Ω̃ij 6= Ωij only when both i and j are in ÑK0 . Therefore, the likelihood ratio is

L(A) ≡ f1(A)

f0(A)
=

∫ ∏
{i,j}⊂ÑK0

,i<j

(Ωij

Ω̃ij

)Aij(1− Ωij

1− Ω̃ij

)1−Aij
dP(Π). (3.A.53)

When i, j are both in ÑK0 , it is seen that

Ω̃ij = θiθj , Ωij = θiθj · π′i
( (m+ 1)

1 +mbn
M
)
πj ,

where πi = ek if and only if `i = K0 − 1 + k, 1 ≤ k ≤ m + 1, and e1, e2, . . . , em+1 are the

standard bases of Rm+1. Here we have mis-used the notation πi; previously, we use π′i to

denote the i-th row of Π, but currently, the i-th row of Π is (0′K0−1, π
′
i)
′. Define

zi = πi −
1

m+ 1
1m+1, for all i ∈ ÑK0 .

The random vectors {zi}i∈ÑK0
are independently and identically distributed, satisfying

Ezi = 0 and ‖zi‖ ≤ 1. In the paragraph below (3.A.45), we have seen that

m+ 1

1 +mbn
M = 1m+11

′
m+1 +

1− bn
1 +mbn


m −1 · · · −1

−1 m
. . .

...
...

. . .
. . . −1

−1 · · · −1 m

 ≡ 1m+11
′
m+1 +G.
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The matrix G satisfies that G1m+1 = 0 and ‖G‖ ≤ C(1− bn). It follows that

Ωij = θiθj · π′i
(
1m+11

′
m+1 +G

)
πj

= θiθj + θiθj(π
′
iGπj)

= θiθj + θiθj

( 1

m+ 1
1m+1 + zi

)′
G
( 1

m+ 1
1m+1 + zj

)
= θiθj(1 + z′iGzj). (3.A.54)

We plug it into (3.A.53) to get

L(A) ≡ f2(A)

f1(A)
= Ez


∏

i,j∈ÑK−1
i<j

(1 + z′iGzj)
Aij

[
1− θiθj(1 + z′iGzj)

1− θiθj

]1−Aij

 . (3.A.55)

The χ2-distance between two models is EA∼f0 [(L(A)−1)2]. To show that the two models are

asymptotically indistinguishable, it suffices to show that the χ2-distance is o(1) Tsybakov

(2008). Using the property that EA∼f0 [(L(A)− 1)2] = EA∼f0 [L2(A)]− 1, we only need to

show

EA∼f0 [L2(A)] ≤ 1 + o(1). (3.A.56)

We now show (3.A.56). Write L(A) = Ez[g(A, z)], where g(A, z) is the term inside the

expectation in (3.A.55). Let {z̃i}i∈ÑK0
be an independent copy of {zi}i∈ÑK0

. Then,

EA∼f0 [L2(A)] = EA∼f0

{
Ez[g(A, z)] · Ez̃[g(A, z̃)]

}
= Ez,z̃

{
EA∼f0 [g(A, z)g(A, z̃)]

}
. (3.A.57)

Using the expression of g(A, z) in (3.A.55), we have

g(A, z)g(A, z̃) =
∏

i,j∈ÑK0
i<j

[
(1 + z′iGzj)(1 + z̃′iGz̃j)

]Aij { [1− θiθj(1 + z′iGzj)][1− θiθj(1 + z̃′iGz̃j)]

(1 + θiθj)2

}1−Aij

.

Here Aij ’s are independent Bernoulli variables, where P(Aij = 1) = θiθj . If we take

expectation with respect to Aij in each term of the product, it gives

(1 + z′iGzj)(1 + z̃′iGz̃j) · P(Aij = 1) +
[1− θiθj(1 + z′iGzj)][1− θiθj(1 + z̃′iGz̃j)]

(1− θiθj)2
· P(Aij = 0)

= θiθj(1 + z′iGzj)(1 + z̃′iGz̃j) +
[1− θiθj(1 + z′iGzj)][1− θiθj(1 + z̃′iGz̃j)]

1− θiθj

= (1 + z′iGzj)(1 + z̃′iGz̃j)
(
θiθj +

θ2
i θ

2
j

1− θiθj

)
+

1− θiθj(1 + z′iGzj)− θiθj(1 + z̃′iGz̃j)

1− θiθj

= (1 + z′iGzj)(1 + z̃′iGz̃j)
θiθj

1− θiθj
+ 1− θiθj(1 + z′iGzj + z̃′iGz̃j)

1− θiθj

= 1 +
θiθj

1− θiθj
(z′iGzj)(z̃

′
iGz̃j).
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As a result,

EA∼f0 [g(A, z)g(A, z̃)] =
∏

{i,j}⊂ÑK0
,i<j

[
1 +

θiθj
1− θiθj

(z′iGzj)(z̃
′
iGz̃j)

]

≤ exp

 ∑
{i,j}⊂ÑK0

,i<j

θiθj
1− θiθj

(z′iGzj)(z̃
′
iGz̃j)

 ,

where the second line is from the inequality that 1 + x ≤ ex for all x ∈ R. We plug it into

(3.A.57). Then, to show (3.A.56), it suffices to show that

Ez,z̃[exp(Y )] ≤ 1 + o(1), where Y ≡
∑

{i,j}⊂ÑK0
,i<j

θiθj
1− θiθj

(z′iGzj)(z̃
′
iGz̃j). (3.A.58)

We now show (3.A.58). We drop the subscript {i, j} ⊂ ÑK0 in most places to make

notations simpler. The matrix G can be re-written as

G =
1− bn

1 +mbn

[
(m+ 1)Im+1 − 1m+11

′
m+1

]
.

Additionally, z′i1m+1 ≡ 0. It follows that z′iGzj = (m+1)(1−bn)
1+mbn

(z′izj). As a result,

Y =
(m+ 1)2(1− bn)2

(1 +mbn)2

∑
i<j

θiθj
1− θiθj

(z′izj)(z̃
′
iz̃
′
j)

=
1

(m+ 1)2

∑
1≤k,`≤m+1

(m+ 1)4(1− bn)2

(1 +mbn)2

∑
i<j

θiθj
1− θiθj

zi(k)zj(k)z̃i(`)z̃j(`)︸ ︷︷ ︸
≡Yk`

.

By Jensen’s inequality, exp(Y ) = exp
(

1
(m+1)2

∑
k,` Yk`

)
≤ 1

(m+1)2

∑
k,` exp(Yk`). It follows

that

Ez,z̃[exp(Y )] ≤ 1

(m+ 1)2

∑
1≤k,`≤m+1

Ez,z̃
[
exp(Yk`)

]
≤ max

1≤k,`≤m+1
Ez,z̃

[
exp(Yk`)

]
.

Therefore, to show (3.A.58), it suffices to show that, for each 1 ≤ k, ` ≤ m+ 1,

Ez,z̃
[
exp(Yk`)

]
≤ 1 + o(1). (3.A.59)

Fix (k, `). We now show (3.A.59). Define σi = zi(k)z̃(`), for all i ∈ ÑK0 . Then,

Yk` =
(m+ 1)4(1− bn)2

(1 +mbn)2

∑
i<j

θiθj
1− θiθj

σiσj

=
(m+ 1)4(1− bn)2

(1 +mbn)2

∑
i<j

∞∑
s=1

θsi θ
s
jσiσj

=

∞∑
s=1

(1− θ2
max)θ2s−2

max︸ ︷︷ ︸
≡ws

(m+ 1)4(1− bn)2

(1 +mbn)2(1− θ2
max)θ2s−2

max

∑
i<j

θsi θ
s
jσiσj︸ ︷︷ ︸

≡Xs

.

In the second line above, we used the Taylor expansion
θiθj

1−θiθj =
∑∞

s=1 θ
s
i θ
s
j . It is valid

because |θiθj | ≤ θ2
max = o(1). In the third line, we have switched the order of summation.
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It is valid because the double sum is finite if we take the absolute value of each summand.

The numbers {ws}∞s=1 satisfy that
∑∞

s=1ws = 1. By Jenson’s inequality,

exp(Yk`) = exp
( ∞∑
s=1

ws ·Xs

)
≤
∞∑
s=1

ws · exp(Xs).

By Fatou’s lemma,

Eσ[exp(Yk`)] ≤
∞∑
s=1

ws · Eσ[exp(Xs)] ≤ max
s≥1

Eσ[exp(Xs)] (3.A.60)

It remains to study Xs. Note that

Xs =
(m+ 1)4(1− bn)2

(1 +mbn)2(1− θ2
max)θ2s−2

max

∑
i<j

θsi θ
s
jσiσj

=
(m+ 1)4(1− bn)2

(1 +mbn)2(1− θ2
max)θ2s−2

max

1

2

∑
i,j

θsi θ
s
jσiσj −

∑
i

θ2s
i σ

2
i


≤ (m+ 1)4(1− bn)2

2(1 +mbn)2(1− θ2
max)θ2s−2

max

∑
i

θsiσi

2

.

Note that the summation is over i ∈ ÑK0 . Let θ∗ ∈ Rn be defined by θ∗i = θi · 1{i ∈ ÑK0}.
Since 1− θ2

max ≥ 1/2 and ‖θ∗‖2s2s ≤ θ2s−2
max ‖θ∗‖2 ≤ θ2s−2

max ‖θ‖2, we have

Xs ≤
a0(1− bn)2‖θ‖2

‖θ∗‖2s2s

∑
i

θsiσi

2

, (3.A.61)

for a constant a0 > 0. We apply Hoeffding’s inequality to get that, for all t > 0,

P
(∣∣∣∑

i

θsiσi

∣∣∣ > t
)
≤ 2 exp

(
− t2

2
∑

i θ
2s
i

)
= 2 exp

(
− t2

2‖θ∗‖2s2s

)
. (3.A.62)

For any nonnegative variable X, using the formula of integration by part, we can derive that

E[exp(aX)] = 1 + a
∫∞

0 exp(at)P(X > t)dt. As a result,

Eσ
[
exp
(
Xs

)]
≤ Eσ

exp

[
a0(1− bn)2‖θ‖2

‖θ∗‖2s2s

(∑
i

θsiσi

)2
]

= 1 +
a0‖θ‖2(1− bn)2

‖θ∗‖2s2s

∫ ∞
0

exp

(
a0‖θ‖2(1− bn)2

‖θ∗‖2s2s
t

)
· P
{(∑

i

θmi σi

)2
> t

}
dt

≤ 1 +
a0‖θ‖2(1− bn)2

‖θ∗‖2s2s

∫ ∞
0

exp

(
a0‖θ‖2(1− bn)2

‖θ∗‖2s2s
t

)
· exp

(
− t

2‖θ∗‖2s2s

)
dt

= 1 +
a0‖θ‖2(1− bn)2

‖θ∗‖2s2s

∫ ∞
0

exp

(
−1− 2a0‖θ‖2(1− bn)2

2‖θ∗‖2s2s
t

)
dt

= 1 +
a0‖θ‖2(1− bn)2

‖θ∗‖2s2s
· 2‖θ∗‖2s2s

1− 2a0‖θ‖2(1− bn)2

= 1 +
2a0‖θ‖2(1− bn)2

1− 2a0‖θ‖2(1− bn)2
.

The right hand side does not depend on s, so the same bound holds for maxs≥1{Eσ[exp(Xs)]}.
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When ‖θ‖2(1−b)2 → 0, this upper bound is 1+o(1). Plugging it into (3.A.60) gives (3.A.59).

Then, the second claim follows.

3.A.3 Proof of Theorem 3.2.5

We show a slightly stronger argument. Given 1 ≤ K1 < K2 ≤ m0, let Mn(K1,K2, an) be

the sub-collection of Mn(m0, an) corresponding to K1 ≤ K ≤ K2. Note that

inf
K̂

{
sup

Mn(m0,an)
P(K̂ 6= K)

}
≥ inf

K̂

{
sup

Mn(K1,K2,an)
P(K̂ 6= K)

}
.

It suffices to lower bound the right hand side.

Fix an arbitrary DCBM model with (K1−1) communities. For each 1 ≤ m ≤ K2−K1+1,

we use (3.2.13)-(3.2.14) to construct a random-label DCBM with (K1− 1 +m) communities,

where bn = 1 − c ‖θ‖−1an, for a constant c to be decided. Let Pk denote the probability

measure associated with the k-community random-label DCBM, for K1 ≤ k ≤ K2. By

Theorem 3.2.4, we can choose an appropriately small constant c such that |λK |/
√
λ1 ≥ an

with probability 1 − o(n−1), under each Pk. Additionally, using a proof similar to that

of (3.A.43), we can show that (3.2.1)-(3.2.2) are satisfied with probability 1 − o(n−1).

Therefore, under each Pk, the realization of (Θ,Π, P ) belongs to Mn(K1,K2, an) with

probability 1− o(n−1). Then, for any K̂,

sup
Mn(K1,K2,an)

P(K̂ 6= K) ≥ max
K1≤k≤K2

Pk(K̂ 6= K) + o(n−1). (3.A.63)

To bound the right hand side of (3.A.63), consider a multi-hypothesis testing problem: Given

an adjacency matrix A, choose one out of the models {Pk}K1≤k≤K2 . For any test ψ, define

p̄(ψ) =
1

K2 −K1 + 1

K2∑
k=K1

Pk(ψ 6= k).

We apply (Tsybakov, 2008, Proposition 2.4). It yields that

1

K2 −K1

K2∑
k=K1+1

χ2(Pk,PK1) ≤ α∗ =⇒ inf
ψ
p̄(ψ) ≥ sup

0<τ<1

{
τ(K2 −K1)

1 + τ(K2 −K1)
[1− τ(α∗ + 1)]

}
.

We have shown in Theorem 3.2.4 that α∗ = o(1). By letting τ = 1/2 in the above, we

immediately find that

inf
ψ
p̄(ψ) &

K2 −K1

2 + (K2 −K1)

(
1− 1 + o(1)

2

)
≥ 1/6 + o(1). (3.A.64)

Now, given any estimator K̂, it defines a test ψ
K̂

, where ψ
K̂

= K̂ if K1 ≤ K̂ ≤ K2 and

ψ
K̂

= K1 otherwise. It is easy to see that

p̄(ψ
K̂

) ≤ max
K1≤k≤K2

Pk(K̂ 6= k). (3.A.65)

Combining (3.A.64)-(3.A.65) gives that maxK1≤k≤K2 Pk(K̂ 6= k) ≥ 1/6 + o(1). We plug it

into (3.A.63) to get the claim.
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3.B Proof of results in Section 3.3

3.B.1 Proof of Lemma 30

By definition of H, we have Π2ΘΠ = ‖θ‖2 ·H2. As a result, the matrix U = ‖θ‖−1ΘΠH−1

satisfies that U ′U = IK . We now write

Ω = ΘΠPΠ′Θ = ‖θ‖2 · U · (HPH) · U ′, where U ′U = IK .

Since U contains orthonormal columns, the nonzero eigenvalues of Ω are the nonzero

eigenvalues of ‖θ‖2(HPH). This proves that λk = ‖θ‖2µk. Furthermore, there is a one-to-

one correspondence between the eigenvectors of Ω and the eigenvectors of HPH through

[ξ1, ξ2, . . . , ξk] = U [η1, η2, . . . , ηK ].

It follows that ξk = Uηk = ‖θ‖−1ΘΠH−1ηk. This proves the claim about ξk. We can

multiply both sides of the equation ξk = Uηk by ‖θ‖−1H−1Π′Θ from the left. It yields that

‖θ‖−1H−1Π′Θξk = (‖θ‖−1H−1Π′Θ)(‖θ‖−1ΘΠH−1ηk)

= ‖θ‖−2H−1(Π′Θ2Π)H−1ηk = ηk.

This proves the claim about ηk. Last, the condition (3.2.4) ensures that the multiplicity of

µ1 is 1 and that µ1 is a strictly positive vector. It follows that λ1 has a multiplicity of 1.

Note that ξk = Uηk implies

ξ1(i) = ‖θ‖−1θi

K∑
k=1

H−1
kk πi(k)η1(k) ≥ ‖θ‖−1θi min

1≤k≤K

{
H−1
kk η1(k)

}
.

Since η1 is a positive vector and H is a positive diagonal matrix, we conclude that all entries

of ξ1 are positive.

3.B.2 Proof of Lemma 32

We fix an arbitrary (K − 1)× (K − 1) orthogonal matrix Γ and drop “Γ” in the notations

ηk, ξk, ri, vk. By Definition 31,

[η1, η2, . . . , ηK ] = [η1, η
∗
2, . . . , η

∗
K ]

[
1

Γ

]
, [ξ1, ξ2, . . . , ηK ] = [ξ1, ξ

∗
2 , . . . , ξ

∗
K ]

[
1

Γ

]
.

Here, η1, η
∗
2, . . . , η

∗
K is a particular candidate of the eigenvectors of HPH and ξ1, ξ

∗
2 , . . . , ξ

∗
K

is linked to η1, η
∗
2, . . . , η

∗
K through

[ξ1, ξ
∗
2 , . . . , ξ

∗
K ] = ‖θ‖−1ΘΠH−1[η1, η

∗
2, . . . , η

∗
K ].

It follows immediately that

[ξ1, ξ2, . . . , ξK ] = ‖θ‖−1ΘΠH−1[η1, η2, . . . , ηK ]. (3.B.66)

As a result, for any true community Nk,
ξ`(i) = [θi/(‖θ‖Hkk)] · η`(k), for all i ∈ Nk.

We plug it into the definition of R(m) to get that for each i ∈ Nk and 1 ≤ ` ≤ m− 1,

R(m)(i, `) =
ξ`+1(i)

ξ1(i)
=

[θi/(‖θ‖Hkk)] · η`+1(k)

[θi/(‖θ‖Hkk)] · η1(k)
=
η`+1(k)

η1(k)
= V (m)(k, `).

It follows that r
(m)
i = v

(m)
k for each i ∈ Nk.
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3.B.3 Proof of Lemma 33

The matrix V (K)(Γ) was studied in Jin (2015); Jin et al. (2017). Since the pairwise distances

for rows in V (K)(Γ) are invariant of Γ, the quantity dK(V (K)(Γ)) does not change with Γ

either. Using Lemma B.3 of Jin (2015), we immediately know that dK(V (K)(Γ)) ≥
√

2.

Below, we fix 1 < m < K and a (K − 1) × (K − 1) orthogonal matrix Γ, and study

dm(V (m)(Γ)). For notation simplicity, we drop “Γ” when there is no confusion.

We apply a bottom up pruning procedure (same as in Definition 29) to V (m). First, we

find two rows v
(m)
k and v

(m)
` that attain the minimum pairwise distance (if there is a tie,

pick the first pair in the lexicographical order) and change the `th row to v
(m)
k (suppose

k < `). Denote the resulting matrix by V (m,K−1). Next, we consider the rows of V (m,K−1)

and similarly find two rows attaining the minimum pairwise distance and replace one row

by the other. Denote the resulting matrix by V (m,K−2). We repeat these steps to get a

sequence of matrices:

V (m,K), V (m,K−1), V (m,K−2), . . . , V (m,2), V (m,1),

where V (m,K) = V (m) and for each 1 ≤ k ≤ K, V (m,k) has at most k distinct rows.

Comparing it with the definition of dk(V
(m)) (see Definition 29), we find that V (m,k−1)

differs from V (m,k) in only 1 row, and the difference on this row is a vector whose Euclidean

norm is exactly dk(V
(m)). As a result,

‖V (m,k) − V (m,k−1)‖ = dk(V
(m)), 2 ≤ k ≤ K. (3.B.67)

By triangle inequality and the fact that dk(V
(m)) ≤ dk−1(V (m)), we have

‖V (m,K) − V (m,m−1)‖ ≤
K∑
k=m

dk(V
(m)) ≤ (K −m+ 1) · dm(V (m)).

To show the claim, it suffices to show that

‖V (m,K) − V (m,m−1)‖ ≥ C. (3.B.68)

We now show (3.B.68). Introduce two matrices

V
(m,K)
∗ = [1K , V

(m,K)], V
(m,m−1)
∗ = [1K , V

(m,m−1)],

where 1K is the K-dimensional vector of 1s. Adding the vector 1K as the first column

changes neither the number of distinct rows nor pairwise distances among rows. Additionally,

‖V (m,K) − V (m,m−1)‖ = ‖V (m,K)
∗ − V (m,m−1)

∗ ‖. (3.B.69)

Let σm(U) denote the m-th singular value of a matrix U . Since V
(m,m−1)
∗ has at most (m−1)

distinct rows, its rank is at most (m− 1). As a result,

σm(V
(m,m−1)
∗ ) = 0. (3.B.70)

We then study σm(V
(m,K)
∗ ). Note that

V
(m,K)
∗ = [1K , V

(m)] =


1 v

(m)
1

...
...

1 v
(m)
K

 = [diag(η1)]−1 ·
[
η1, η2(Γ), . . . , ηm(Γ)

]
, (3.B.71)

where η1, η2(Γ), . . . , ηK(Γ) is one choice of eigenvectors of HPH indexed by Γ (see Defini-
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tion 31) and diag(η1) is the diagonal matrix whose diagonal entries are from η1. Write for

short Q = [η1, η2(Γ), . . . , ηm(Γ)]. We have

(V
(m,K)
∗ )′V

(m,K)
∗ = Q′[diag(η1)]−2Q.

By the last item of (3.2.4) and that ‖η1‖ = 1, we conclude that η1(k) � 1/
√
K for all

1 ≤ k ≤ K. In particular, there exists a constant c > 0 such that
(
[diag(η1)]−2 − cIK

)
is a positive semi-definite matrix. It follows that

(
Q′[diag(η1)]−2Q − cQ′Q

)
is a positive

semi-definite matrix. Therefore,

λm
(
(V

(m,K)
∗ )′V

(m,K)
∗

)
≥ λm(cQ′Q) = c · λm(Q′Q), (3.B.72)

where λm(·) denotes the m-th largest eigenvalue of a symmetric matrix. By (3.3.15), for

some pre-specified choice of eigenvectors, η1, η
∗
2, . . . , η

∗
K , of HPH,

Q is the first m columns of the matrix [η1, η
∗
2, . . . , η

∗
K ] · diag(1,Γ).

Note that [η1, η
∗
2, . . . , η

∗
K ] and diag(1,Γ) are both K ×K orthogonal matrices. Then, their

product is also an orthogonal matrix, and the columns in Q are orthonormal. It follows that

Q′Q = Im.

This shows that the right hand side of (3.B.72) is equal to c. The left hand side of (3.B.72)

is equal to σ2
m(V

(m,K)
∗ ). It follows that

σm(V
(m,K)
∗ ) ≥ C. (3.B.73)

We now combine (3.B.70) and (3.B.73), and apply Weyl’s inequality for singular values

(Horn and Johnson, 1985, Corollary 7.3.5). It gives

C ≤ σm(V
(m,K)
∗ )− σm(V

(m,m−1)
∗ ) ≤ ‖V (m,K)

∗ − V (m,m−1)
∗ ‖.

Combining it with (3.B.69) gives (3.B.68). The claim follows immediately.

Remark. The proof of Theorem 3.2.2 uses max1≤k≤K ‖v
(m)
k (Γ)‖ ≤ C, and we prove this

claim here. Note that v
(m)
k (Γ) is a sub-vector of the kth row of V

(m,K)
∗ . In light of (3.B.71),

the row-wise `2-norms of V
(m,K)
∗ are uniformly bounded by C‖diag−1(η1)‖. We have argued

that η1(k) � 1/
√
K ≤ C for all 1 ≤ k ≤ K. As a result, max1≤k≤K ‖v

(m)
k (Γ)‖ ≤ C.

3.B.4 Proof of Lemma 34

Since ‖r̂(m)−r(m)
i (Γ)‖ ≤ ‖r̂(K)−r(K)

i (Γ)‖, we only need to show the claim for m = K. Write

r
(K)
i (Γ) = ri(Γ) for short. In the special case of Γ = IK−1 (i.e., ηk(Γ) = η∗k for 2 ≤ k ≤ K,

by Definition 31), we further write ri = ri(IK−1) for short. It is easy to see that

ri(Γ) = Γ′ · ri, for any orthogonal matrix Γ ∈ R(K−1)×(K−1).

It suffices to show that with probability 1−O(n−3) there exists a (K−1)×(K−1) orthogonal

matrix Γ, which may depend on n and R̂(K), such that

max
1≤i≤n

‖r̂i − Γ′ · ri‖ ≤ Cs−1
n

√
log(n).

Such a bound was given by Theorem 4.1 of Jin et al. (2021a) (also, see Lemma 2.1 of Jin

et al. (2017) for a special case where λ2, . . . , λK are at the same order).
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3.B.5 Proof of Theorem 3.3.2

The key of proof is the following lemma, which characterizes the change of the k-means

objective under perturbation of cluster assignment. Consider the problem of clustering

points y1, y2, . . . , yn into two disjoint clusters A and B. The k-means objective is the residual

sum of squares by setting the two cluster centers as the within-cluster means. Now, we move

a subset C from cluster A to cluster B. The new clusters are Ã = A \ C and B̃ = B ∪ C,

and the cluster centers are updated accordingly. There is an explicit formula for the change

of the k-means objective:

Lemma 45. For any y1, y2, . . . , yn ∈ Rd and subset M ⊂ {1, 2, . . . , n}, define ȳM =
1
|M |
∑

i∈M yi. Let {1, 2, . . . , n} = A ∪ B be a partition, and let C be a strict subset of A.

Write Ã = A\C and B̃ = B ∪ C. Define

RSS =
∑
i∈A
‖yi − ȳA‖2 +

∑
i∈B
‖yi − ȳB‖2, R̃SS =

∑
i∈Ã

‖yi − ȳÃ‖
2 +

∑
i∈B̃

‖yj − ȳB̃‖
2.

Then,

R̃SS −RSS =
|B||C|
|B|+ |C|

‖ȳC − ȳB‖2 −
|A||C|
|A| − |C|

‖ȳC − ȳA‖2.

This lemma is proved by elementary calculation, which is relegated to Section 3.D.1. It shows

that the change of k-means objective depends on the distances from ȳC to two previous

cluster centers.

We now apply Lemma 45 to prove the claim. For notation simplicity, we drop “Γ” and

omit the superscript m, i.e., we write r
(m)
i (Γ) = ri and v

(m)
k (Γ) = vk. By Lemma 32 and the

condition (3.2.2),

• The n points r1, r2, . . . , rn take K distinct values, v1, . . . , vK .

• The minimum pairwise distance of v1, v2, . . . , vK is defined as dK(V ) > 0.

• For each vk, there are at least a0n points, corresponding to nodes in community Nk,
that are equal to vk, where a0 > 0 is a constant determined by condition (3.2.2).

First, we show that any optimal solution of the k-means clustering on {r1, r2, . . . , rn}
satisfies NSP. We prove by contradiction. If this is not true, there must exist a community

Nk and two clusters, say, S1 and S2, such that Nk ∩ S1 6= ∅ and Nk ∩ S2 6= ∅. Note that

we have either S1 \ Nk 6= ∅ or S2 \ Nk 6= ∅ (if both S1 and S2 are contained in Nk, then we

can combine these two clusters and construct another cluster assignment with a smaller

residual sum of squares, which conflicts with the optimality of the solution). Without loss

of generality, we assume S1 \ Nk 6= ∅. We now move an arbitrary ri ∈ Nk ∩ S1 to S2 and

update the cluster centers (i.e., within-cluster means) accordingly. Let RSS and R̃SS be

the respective k-means objective before and after the change. We apply Lemma 45 to get

that

R̃SS −RSS =
|S2|
|S2|+ 1

‖ri − c2‖2 −
|S1|
|S1| − 1

‖ri − c1‖2. (3.B.74)
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Since i is clustered to S1 in the optimal solution, it must be true that ‖ri − c1‖ ≤ ‖ri − c2‖,
which further implies that ‖vk − c1‖ ≤ ‖vk − c2‖. At the same time, if we take any

j ∈ Nk ∩ S2, we can similarly derive that ‖vk − c2‖ ≤ ‖vk − c1‖. Combining the above gives

‖vk − c1‖ = ‖vk − c2‖. It follows that

‖ri − c1‖ = ‖ri − c2‖.
We immediately see that

R̃SS −RSS =
( |S2|
|S2|+ 1

− |S1|
|S1| − 1

)
‖ri − c1‖2 = − |S1|+ |S2|

(|S2|+ 1)(|S1| − 1)
‖ri − c1‖2.

The optimality of k-means solutions ensures that R̃SS − RSS ≥ 0. Therefore, the above

equality is possible only if ‖ri − c1‖ = 0. However, ‖ri − c1‖ = 0 implies c1 = c2, which is

impossible.

Second, define g(ri; c1, c2, . . . , cm) ≡ d2(ri; c1, . . . , cm) − d1(ri; c1, . . . , cm), which is the

gap between the distances from ri to the closest and second closest cluster centers. We aim

to show that g(ri; c1, c2, . . . , cm) has a uniform lower bound for all 1 ≤ i ≤ n. Fix i. Without

loss of generality, we assume c1 and c2 are the cluster centers closest and second closest to

ri. Then, i is clustered to S1. Suppose i ∈ Nk. The NSP we proved above implies that

Nk ⊂ S1.

Again, by NSP, there are only two possible cases: (a) S1 = Nk, and (b) S1 is the union of

Nk and some other true communities.

In case (a), we immediately have c1 = vk. It follows that

‖ri − c1‖ = ‖vk − c1‖ = 0.

Furthermore, for any j ∈ S2, rj equals to some v` that is distinct from vk. Therefore,

‖ri − c2‖ = ‖vk − c2‖ ≥ min
j∈S2

‖vk − rj‖ ≥ min
` 6=k
‖vk − v`‖ = dK(V ).

As a result,

g(ri; c1, c2, . . . , cm) = ‖ri − c2‖ − ‖ri − c1‖ = ‖ri − c2‖ ≥ dK(V ).

The proves the claim in case (a).

In case (b), we consider moving Nk from S1 to S2, and let RSS and R̃SS denote the

respective k-means objective before and after the change. Applying Lemma 45, we obtain

R̃SS −RSS =
|S2||Nk|
|S2|+ |Nk|

‖vk − c2‖2 −
|S1||Nk|
|S1| − |Nk|

‖vk − c1‖2. (3.B.75)

Let ∆ = ‖vk − c2‖2 − ‖vk − c1‖2. By direct calculations,

R̃SS −RSS =
|S2||Nk|
|S2|+ |Nk|

∆− |Nk|2(|S1|+ |S2|)
(|S2|+ |Nk|)(|S1| − |Nk|)

‖vk − c1‖2.

The optimality of k-means solutions implies that R̃SS ≥ RSS. It follows that

∆ ≥ |Nk|(|S1|+ |S2|)
|S2|(|S1| − |Nk|)

‖vk − c1‖2.

Note that |Nk| ≥ a0n, |S1| − |Nk| ≤ n, and |S1|+|S2|
|S2| ≥ 1. It is seen that |Nk|(|S1|+|S2|)

|S2|(|S1|−|Nk|) ≥ a0.

As a result,

‖vk − c2‖2 − ‖vk − c1‖2 = ∆ ≥ a0‖vk − c1‖2.
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It implies that ‖vk − c2‖2 ≥ (1 + a0)‖vk − c1‖2, i.e.,

‖vk − c2‖ − ‖vk − c1‖ ≥
(√

1 + a0 − 1
)
‖vk − c1‖. (3.B.76)

We then derive a lower bound on ‖vk − c1‖. Here, c1 is the mean of ri’s in S1. For

any j ∈ S1\Nk, rj equals to some v` that is distinct from vk. As a result, ‖vk − rj‖ ≥
min 6̀=k ‖vk − v`‖ ≥ dK(V ), for all j ∈ S1\Nk. It follows that

‖vk − c1‖ =

∥∥∥∥vk − ( |Nk||S1|
vk +

1

|S1|
∑

j∈S1\Nk

rj

)∥∥∥∥
=
∥∥∥ 1

|S1|
∑

j∈S1\Nk

(rj − vk)
∥∥∥

=
|S1\Nk|
|S1|

∥∥∥( 1

|S1\Nk|
∑

j∈S1\Nk

rj

)
−vk

∥∥∥
≥ |S1\Nk|

|S1|
min

j∈S1\Nk
‖rj − vk‖

≥ a0 · dK(V ), (3.B.77)

where in the last inequality we have used |S1| ≤ n and |S1\Nk| ≥ a0n (because S1 is the

union of Nk and at least one other community). Combing (3.B.76) and (3.B.77) gives

g(ri; c1, c2, . . . , cm) ≥ a0

(√
1 + a0 − 1

)
dK(V ).

This proves the claim in case (b).

3.B.6 Proof of Theorem 3.3.1

Write for short dm = dm(U) and δ = max1≤i≤n ‖x̂i−xi‖. Given any partition {1, 2, . . . , n} =

∪mk=1Bk and vectors b1, b2, . . . , bm ∈ Rd, define

R(B1, . . . , Bm; b1, . . . , bm) = n−1
m∑
k=1

∑
i∈Bk

‖xi − bk‖2. (3.B.78)

Fixing B1, . . . , Bm, the value of R(B1, . . . , Bm; b1, . . . , bm) is minimized when bk is the

average of xi’s within each Bk. When b1, . . . , bm take these special values, we skip them in

the notation. Namely, define

R(B1, . . . , Bm) = R(B1, . . . , Bm;x1, . . . , xm), where xk = |Bk|−1
∑
i∈Bk

xi, (3.B.79)

We define R̂(B1, . . . , Bm; b1, . . . , bm) and R̂(B1, . . . , Bm) similarly but replace xi by x̂i. We

shall prove the claim by contradiction. Suppose there is 1 ≤ k ≤ K such that Fk intersects

with more than one Ŝj . By pigeonhole principle, there exists j1, such that |Fk∩Ŝj1 | ≥ m−1|Fk|.
Let Ŝj2 be another cluster that intersects with Fk. We have

|Fk ∩ Ŝj1 | ≥ m−1α0n, Fk ∩ Ŝj2 6= ∅,
Below, we aim to show: There exists C1 = C1(α0, C0,m) such that

min
S̃1,...,S̃m

R(S̃1, . . . , S̃m) ≥ R(Ŝ1, . . . , Ŝm)− C1δ · dm, (3.B.80)

where the minimum on the left hand side is taken over possible partitions of {1, 2, . . . , n}
into m clusters. We also aim to show that there exists C2 = C2(α0, C0,m) such that we can
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construct a clustering structure S̃1, S̃2, . . . , S̃m satisfying that

R(S̃1, . . . , S̃m) ≤ R(Ŝ1, . . . , Ŝm)− C2 · d2
m. (3.B.81)

Combining (3.B.80)-(3.B.81) gives

R(Ŝ1, . . . , Ŝm)− C1δ · dm ≤ R(Ŝ1, . . . , Ŝm)− C2 · d2
m

This is impossible if C1δ · dm < C2 · d2
m. Hence, we can take

c(α0, C0,m) < C2/C1.

There is a contradiction between (3.B.80) and (3.B.81) whenever δ ≤ c · dm. The claim

follows.

It remains to prove (3.B.80) and (3.B.81). Consider (3.B.80). For an arbitrary cluster

structure B1, B2, . . . , Bm, let R̂(B1, . . . , Bm), R(B1, . . . , Bm), x̂k and xk be defined as in

(3.B.79). By direct calculations,

(x̂i − x̂k)− (xi − xk) =
|Bk| − 1

|Bk|
(x̂i − xi)−

1

|Bk|
∑

j∈Bk:j 6=i
(x̂j − xj).

Since ‖x̂j−xj‖ ≤ δ for all 1 ≤ j ≤ n, the above equality implies that ‖(x̂i−x̂k)−(xi−xk)‖ ≤ δ.
As a result, ‖x̂i − x̂k‖2 ≤ ‖xi − xk‖2 + 2δ‖xi − xk‖+ δ2. It follows that

R̂(B1, . . . , Bm) ≤ R(B1, . . . , Bm) + 2δn−1
m∑
k=1

∑
i∈Bk

‖xi − xk‖+ δ2

≤ R(B1, . . . , Bm) + 2δ
√
R(B1, . . . , Bm) + δ2

≤
(√

R(B1, . . . , Bm) + δ
)2
,

where the second line is from the Cauchy-Schwarz inequality. It follows that

√
R̂(B1, . . . , Bm) ≤√

R(B1, . . . , Bm) + δ. We can switch R̂(B1, . . . , Bm) and R(B1, . . . , Bm) to get a similar

inequality. Combining them gives√
R(B1, . . . , Bm)− δ ≤

√
R̂(B1, . . . , Bm) ≤

√
R(B1, . . . , Bm) + δ. (3.B.82)

This inequality holds for an arbitrary partition (B1, B2, . . . , Bm). We now apply it to

(Ŝ1, . . . , Ŝm), which are the clusters obtained from applying k-means on x̂1, x̂2, . . . , x̂n. We

also consider applying k-means on x1, x2, . . . , xn and let S1, S2, . . . , Sm denote the resultant

clusters. By optimality of the k-means solutions,

R̂(Ŝ1, . . . , Ŝm) ≤ R̂(S1, . . . , Sm).

Combining it with (3.B.82) gives√
R(Ŝ1, . . . , Ŝm) ≤

√
R̂(Ŝ1, . . . , Ŝm) + δ

≤
√
R̂(S1, . . . , Sm) + δ

≤
√
R(S1, . . . , Sm) + 2δ. (3.B.83)

Since max1≤i≤n ‖xi‖ ≤ C0 · dm, we can easily see that R(S1, . . . , Sm) ≤ C2
0 · d2

m. It follows
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that, as long as δ ≤ dm/4,

R(Ŝ1, . . . , Ŝm) ≤ R(S1, . . . , Sm) + 4δ
√
R(S1, . . . , Sm) + 4δ2

≤ R(S1, . . . , Sm) + 4C0δ · dm + δ · dm
≤ R(S1, . . . , Sm) + (4C0 + 1)δ · dm.

As a result,

min
S̃1,...,S̃m

R(S̃1, . . . , S̃m) = R(S1, . . . , Sm) ≥ R(Ŝ1, . . . , Ŝm)− (4C0 + 1)δ · dm.

This proves (3.B.80) for C1 = 4(C0 + 1).

Consider (3.B.81). Define

wj = |Ŝj |−1
∑
i∈Ŝj

xi, for each 1 ≤ j ≤ m. (3.B.84)

Using the notations in (3.B.78)-(3.B.79), we writeR(Ŝ1, . . . , Ŝm) = R(Ŝ1, . . . , Ŝm, w1, . . . , wm).

We aim to construct {(S̃j , w̃j)}1≤j≤m such that

R(S̃1, . . . , S̃m, w̃1, . . . , w̃m) ≤ R(Ŝ1, . . . , Ŝm, w1, . . . , wm)− C2 · d2
m. (3.B.85)

Since R(S̃1, . . . , S̃m) = minb1,...,bm R(S̃1, . . . , S̃m, b1, . . . , bm), we immediately have

R(S̃1, . . . , S̃m) ≤ R(S̃1, . . . , S̃m, w̃1, . . . , w̃m) ≤ R(Ŝ1, . . . , Ŝm, w1, . . . , wm)− C2 · d2
m.

This proves (3.B.81).

What remains is to construct {(S̃j , w̃j)}mj=1 so that (3.B.85) is satisfied. Let ŵj =

|Ŝj |−1
∑

i∈Ŝj x̂i, for 1 ≤ j ≤ m. Then, {(Ŝj , ŵj)}1≤j≤m are the clusters and cluster centers

obtained by applying the k-means algorithm on x̂1, x̂2, . . . , x̂n. The k-means solution

guarantees to assign each point to the closest center. Take i ∈ Fk ∩ Ŝj1 and i′ ∈ Fk ∩ Ŝj2 . It

follows that

‖x̂i − ŵj1‖ ≤ ‖x̂i − ŵj2‖, ‖x̂i′ − ŵj2‖ ≤ ‖x̂i′ − ŵj1‖.

Since xi = xi′ = uk and max{‖x̂i − xi‖, ‖x̂i′ − xi′‖, ‖ŵj1 − wj1‖, ‖ŵj2 − wj2‖} ≤ δ, we have

‖uk − wj1‖ ≤ ‖x̂i − ŵj1‖+ 2δ ≤ ‖x̂i − ŵj2‖+ 2δ ≤ ‖uk − wj2‖+ 4δ.

Similarly, we can derive that ‖uk − wj2‖ ≤ ‖uk − wj1‖+ 4δ. Combining them gives∣∣‖uk − wj1‖ − ‖uk − wj2‖∣∣ ≤ 4δ. (3.B.86)

This inequality tells us that ‖uk − wj1‖ and ‖uk − wj2‖ are sufficiently close. Introduce

C3 =
m−1α0

36× 12C0
.

Below, we consider two cases: ‖uk − wj1‖ < C3 · dm and ‖uk − wj1‖ ≥ C3 · dm.

In the first case, ‖uk − wj1‖ < C3 · dm. The definition of dm guarantees that there are

m points from {u1, u2, . . . , uK} such that their minimum pairwise distance is dm. Without

loss of generality, we assume these m points are u1, u2, . . . , um. If k ∈ {1, 2, . . . ,m}, then

the distance from uk to any of the other (m− 1) points is at least dm. If k /∈ {1, 2, . . . ,m},
then uk cannot be simultaneously within a distance of < dm/2 to two or more points of

u1, u2, . . . , um. In other words, there exists at least (m− 1) points from u1, u2, . . . , um whose

distance to uk is at least ≥ dm/2. Combining the above situations, we conclude that there

exist (m− 1) points from {u1, u2, . . . , uK}, which we assume to be u1, u2, . . . , um−1 without
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loss of generality, such that

min
1≤ 6̀=s≤m−1

‖u` − us‖ ≥ dm, min
1≤`≤m−1

‖u` − uk‖ ≥ dm/2. (3.B.87)

We then consider two sub-cases. In the first sub-case, there exists ` ∈ {1, 2, . . . ,m− 1}
such that |F` ∩ (Ŝj1 ∪ Ŝj2)| ≥ m−1α0n. Then, at least one of Ŝj1 and Ŝj2 contains more than

(m−1α0/2)n nodes from F`. We only study the situation of |F` ∩ Ŝj2 | ≥ (m−1α0/2)n. The

proof for the situation of |F` ∩ Ŝj1 | ≥ (m−1α0/2)n is similar and omitted. We modify the

clusters and cluster centers {(Ŝj , wj)}1≤j≤m as follows:

(i) Combine Ŝj2\F` and Ŝj1 into one cluster and set the cluster center to be wj1 .

(ii) Create a new cluster as Ŝj2 ∩ F` and set the cluster center to be u`.

The other clusters and cluster centers remain unchanged. Namely, we let

S̃j =


Ŝj1 ∪ (Ŝj2\F`), if j = j1,

Ŝj2 ∩ F`, if j = j2,

Ŝj , if j /∈ {j1, j2},

w̃j =

u`, if j = j2,

wj , otherwise.

Recall that n ·R(B1, . . . , Bm, b1, . . . , bm) =
∑m

j=1

∑
i∈Bj ‖xi − bj‖

2. By direct calculations,

∆ ≡ n ·R(Ŝ1, . . . , Ŝm, w1, . . . , wm)− n ·R(S̃1, . . . , S̃m, w̃1, . . . , w̃m)

=
∑

i∈(Ŝj2∩F`)

(
‖xi − wj2‖2 − ‖xi − u`‖2

)
−

∑
i∈(Ŝj2\F`)

(
‖xi − wj1‖2 − ‖xi − wj2‖2

)
≡ ∆2 −∆1.

Here ∆1 is the increase of the residual sum of squares (RSS) caused by the operation (i)

and ∆2 is the decrease of RSS caused by the operation (ii).

∆1 =
∑

i∈(Ŝj2\F`)

(‖xi − wj1‖ − ‖xi − wj2‖)(‖xi − wj1‖+ ‖xi − wj2‖)

≤
∑

i∈(Ŝj2\F`)

‖wj1 − wj2‖ · (‖xi − wj1‖+ ‖xi − wj2‖)

≤ |Ŝj2\F`| · ‖wj1 − wj2‖ · 4C0 · dm,
where the third line is from the triangle inequality and the last line is because max1≤j≤m ‖wj‖ ≤
max1≤i≤n ‖xi‖ ≤ C0 ·dm. Note that ‖wj1−wj2‖ ≤ ‖uk−wj1‖+‖uk−wj2‖. We have assumed

‖uk − wj1‖ < C3 · dm in this case. Combing it with (3.B.86), as long as δ < (C3/4) · dm,

‖wj1 − wj2‖ ≤ 2‖uk − wj1‖+ 4δ ≤ 3C3 · dm.
It follows that

∆1 ≤ 12C0C3 · nd2
m. (3.B.88)

Since xi = u` for i ∈ F`, we immediately have

∆2 = |Ŝj2 ∩ F`| · ‖u` − wj2‖2.
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We have assumed ‖uk−wj1‖ ≤ C3 ·dm in this case. Combining it with (3.B.86) and (3.B.87)

gives

‖u` − wj2‖ ≥ ‖u` − uk‖ − ‖uk − wj2‖
≥ ‖u` − uk‖ −

(
‖uk − wj1‖+ 4δ

)
≥ dm/2− (C3 · dm + 4δ).

Recall that C3 = m−1α0
36×12C0

< 1/12. Then, as long as δ < (1/48)dm, we have ‖u`−wj2‖ ≥ dm/3.

It follows that

∆2 ≥ (m−1α0/2)n · (dm/3)2 ≥ m−1α0

18
· nd2

m. (3.B.89)

As a result,

∆ = ∆2 −∆1 ≥
(m−1α0

18
− 12C0C3

)
· nd2

m.

We plug in the expression of C3, the right hand side is (m−1α0/36) · nd2
m. It follows that

R(Ŝ1, . . . , Ŝm, w1, . . . , wm)−R(S̃1, . . . , S̃m, w̃1, . . . , w̃m) ≥ m−1α0

36
· d2

m. (3.B.90)

This gives (3.B.85) in the first sub-case.

In the second sub-case, |F` ∩ (Ŝj1 ∪ Ŝj2)| < m−1α0n for all 1 ≤ ` ≤ m − 1. For

each F`, by pigeonhole principle, there exists at least one j ∈ {1, 2, . . . ,m} such that

|F`∩ Ŝj | ≥ m−1|F`| ≥ m−1α0n. Denote such a j by j∗` ; if there are multiple indices satisfying

the requirement, we pick one of them. This gives

j∗1 , j
∗
2 , . . . , j

∗
m−1 ∈ {1, 2, . . . ,m}\{j1, j2}.

These (m− 1) indices take at most (m− 2) distinct values. By pigeonhole principle, there

exist 1 ≤ `1 6= `2 ≤ m−1 such that j∗`1 = j∗`2 = j∗, for some j∗ /∈ {j1, j2}. Recalling (3.B.84),

we let wj∗ denote the average of xi’s in Ŝj∗ . Since ‖u`1 − u`2‖ ≥ dm, the point wj∗ cannot

be simultaneously within a distance of dm/2 to both u`1 and u`2 . Without loss of generality,

suppose

‖u`1 − wj∗‖ ≥ dm/2.

We modify the clusters and cluster centers {(Ŝj , wj)}1≤j≤m as follows:

(i) Combine Ŝj1 and Ŝj2 into one cluster and set the cluster center to be wj1 .

(ii) Split Ŝj∗ into two clusters, where one is (Ŝj∗ ∩ F`1), and the other is (Ŝj∗\F`1); the

two cluster centers are set as u`1 and wj∗ , respectively.

The other clusters and cluster centers remain unchanged. Namely, we let

S̃j =


Ŝj1 ∪ Ŝj2 , if j = j1,

Ŝj∗ ∩ F`1 , if j = j2,

Ŝj∗\F`1 , if j = j∗,

Ŝj , if j /∈ {j1, j2, j∗},

w̃j =

u`1 , if j = j2,

wj , otherwise.
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By direct calculations,

∆ ≡ n ·R(Ŝ1, . . . , Ŝm, w1, . . . , wm)− n ·R(S̃1, . . . , S̃m, w̃1, . . . , w̃m)

=
∑

i∈(Ŝj∗∩F`1 )

(
‖xi − wj∗‖2 − ‖xi − u`1‖2

)
−
∑
i∈Ŝj2

(
‖xi − wj1‖2 − ‖xi − wj2‖2

)
≡ ∆2 −∆1,

where ∆1 is the increase of RSS caused by (i) and ∆2 is the decrease of RSS caused by (ii).

We can bound ∆1 in a similar way as in the previous sub-case, and the details are omitted.

It gives

∆1 ≤ 12C0C3 · nd2
m.

Since xi = u`1 for all i ∈ F`1 , we immediately have

∆2 = |Ŝj∗ ∩ F`1 | · ‖u`1 − wj∗‖2 ≥ (m−1α0n) · (dm/2)2 ≥ m−1α0

4
· nd2

m.

As a result, ∆ ≥ (m
−1α0
4 − 12C0C3)m−1α0 · nd2

m. If we plug in the expression of C3, it

becomes ≥ (2
9m
−1α0) · nd2

m. This gives

R(Ŝ1, . . . , Ŝm, w1, . . . , wm)−R(S̃1, . . . , S̃m, w̃1, . . . , w̃m) ≥ 2m−1α0

9
· d2

m. (3.B.91)

This gives (3.B.85) in the second sub-case.

In the second case, ‖uk − wj1‖ ≥ C3 · dm. We recall that |Fk ∩ Ŝj1 | ≥ m−1α0n. Let E

be a subset of Fk ∩ Ŝj1 such that |E| = d|Fk ∩ Ŝj1 |/2e. Note that |Ŝj1\E| ≤ n. We have

Ŝj1\E 6= ∅, and
|E|
|Ŝj1\E|

≥ m−1α0/2.

We now modify the clusters and cluster centers {(Ŝj , wj)}1≤j≤m as follows:

• Move the subset E from Ŝj1 to Ŝj2 , and update each cluster center to be the within

cluster average of xi’s.

The other clusters and cluster centers are unchanged. Namely, we let

S̃j =


Ŝj1\E, if j = j1,

Ŝj2 ∪ E, if j = j2,

Ŝj , if j /∈ {j1, j2},

w̃j =


1

|S̃j |

∑
i∈S̃j xi, if j ∈ {j1, j2},

wj , otherwise.

We apply Lemma 45 to A = Ŝj1 , B = Ŝj2 , and C = E, and note that xi = uk for all i ∈ E.
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It follows that

∆ ≡ n ·R(Ŝ1, . . . , Ŝm, w1, . . . , wm)− n ·R(S̃1, . . . , S̃m, w̃1, . . . , w̃m)

= −

(
|Ŝj2 | · |E|
|Ŝj2 |+ |E|

‖uk − wj2‖2 −
|Ŝj1 | · |E|
|Ŝj1 | − |E|

‖uk − wj1‖2
)

=
|E|2 · (|Ŝj1 |+ |Ŝj2 |)

(|Ŝj2 |+ |E|)(|Ŝj1 | − |E|)
‖uk − wj1‖2 +

|Ŝj2 | · |E|
|Ŝj2 |+ |E|

(
‖uk − wj1‖2 − ‖uk − wj2‖2

)
≥ |E|2

|Ŝj1 | − |E|
‖uk − wj1‖2 +

|Ŝj2 | · |E|
|Ŝj2 |+ |E|

(
‖uk − wj1‖2 − ‖uk − wj2‖2

)
. (3.B.92)

By (3.B.86), ‖uk − wj2‖ ≤ ‖uk − wj1‖+ 4δ. It follows that, as long as δ < (C3/16) · dm,

‖uk − wj1‖2 − ‖uk − wj2‖2 ≥ −8δ · ‖uk − wj1‖ − 16δ2

≥ −9δ · ‖uk − wj1‖,
where the last line is because 16δ2 ≤ C3δ · dm ≤ δ · ‖uk − wj1‖. We plug it into (3.B.92) to

get

∆ ≥ |E|2

|Ŝj1\E|
‖uk − wj1‖2 −

|Ŝj2 | · |E|
|Ŝj2 |+ |E|

· 9δ · ‖uk − wj1‖

≥ |E| · (m−1α0/2) · ‖uk − wj1‖2 − |E| · 9δ · ‖uk − wj1‖

≥ |E| · ‖uk − wj1‖ ·
(C3m

−1α0

2
dm − 9δ

)
,

where the second line is because |E| ≥ (m−1α0/2)·|Ŝj1\E| and the last line is because we have

assumed ‖uk −wj1‖ ≥ C3 · dm in the current case. As long as δ < C3m−1α0
27 · dm, the number

in brackets is ≥ C3m−1α0
6 dm. We also plug in |E| = dm−1α0/2en and ‖uk − wj1‖ ≥ C3 · dm

to get

∆ ≥ m−1α0

2
n · C3dm ·

C3m
−1α0

6
dm ≥

C2
3m
−2α2

0

12
· nd2

m.

It follows that

R(Ŝ1, . . . , Ŝm, w1, . . . , wm)−R(S̃1, . . . , S̃m, w̃1, . . . , w̃m) ≥ C2
3m
−2α2

0

12
· d2

m. (3.B.93)

This gives (3.B.85) in the second case. We combine (3.B.90), (3.B.91) and (3.B.93), and take

the minimum of the right hand sides of three inequalities. Since m−1α0 < 1 and C2
3 < 1/3,

we choose

C2 = (1/12)C2
3m
−2α2

0.

Then, (3.B.85) is satisfied for all cases. This completes the proof of (3.B.81).

We remark that the scalar c = c(α0, C0,m) is not exactly C2/C1. In the derivation of

(3.B.80) and (3.B.81), we have imposed other restrictions on δ, which can be expressed as δ ≤
C4·dm, where C4 is determined by (C0, α,m) and (C1, C2, C3). Since (C1, C2, C3) only depend

on (α0, C0,m), C4 is a function of (α0, C0,m) only. We take c = min{C2/C1, C4}.

3.B.7 Proof of the claim in Example 4b of Section 3.3

In Example 4b of Section 3.3, we have the following claim.
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Lemma 46. Let R(m) and V (m) be as in (3.3.17) and (3.3.16), respectively. If (K,m) = (4, 2)

and all 4 communities have equal sizes, then gm(R(m)) ≥ [(3−
√

3)/2]dK(V (m)).

We now show the claim. For short, let xk = v
(m)
k for all 1 ≤ k ≤ 4 and let d∗ = gm(R(m)).

Without loss of generality, we assume x1 = 0, x2 = 1, x3 = x, and x4 = y, where y > x > 1.

Let z = y − x. It is seen dK(V (m)) = min{1, x− 1, z}. To show the claim, it is sufficient to

show

d∗ ≥
3−
√

3

2
min{1, x− 1, z}. (3.B.94)

By definitions,

d∗ = min
{all possible c1, c2}

min
1≤i≤4

{di(c1, c2)}, (3.B.95)

where for 1 ≤ i ≤ 4, di(c1, c2) ≥ 0 is the difference between the distance from xi to the

center of the cluster to which xi does not belong and the distance from xi to the center of

the cluster to which xi belongs. For simplicity, we write di = di(c1, c2) when there is no

confusion.

For the four points x1, x2, x3, x4, we have three possible candidates (a)-(c) for the

clustering results (which of them is the actual clustering result depends on the values of

(x, y)):

• (a). The left most point forms one cluster, the other three form the other cluster.

• (b). The left two points form one cluster, the other two points form the other cluster.

• (c). The left three points form one cluster, the right most point forms the other cluster.

Recall that for any n points x1, x2, . . . , xn, the RSS for the k-means solution with K clusters

is

RSS =
K∑
k=1

∑
{i∈cluster k}

(xi − ck)2,

where c1, c2, . . . , cK are the cluster centers. For (a), the two cluster centers are c1 = 0

and c2 = (1 + x + y)/3. In this case, the RSS is S1 = x2 + y2 + 1 − (1/3)(x + y + 1)2.

For (b), the two cluster centers are c1 = 1/2 and c2 = (x + y)/2, and the RSS is S2 =

(1/2) + (1/2)(x− y)2. For (c), the two cluster centers are c1 = (1 + x)/3 and x2 = y, and

the RSS is S3 = x2 + 1− (1/3)(x+ 1)2. It is seen that the actual clustering result is as in

(a) if and only if S1 ≤ S2 and S1 ≤ S3; similar for (b) and (c).

Recall that z = y − x. Consider the two-dimensional space with x and z being the two

axes. As in Figure 3.7, we partition the region {(x, z) : x > 1, z > 0} into three sub-regions

as follows.

• Region (I). {(x, z) : 2x+ z < 2 +
√

3, z < 1}.

• Region (II). {(x, z) : z < (2x− 1)/
√

3, 2x+ z > 2 +
√

3}.
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Figure 3.7: In the two dimensional space with x and z being the two axes, the whole region
{(x, z) : x > 1, z > 0} partitions into three sub-regions (I), (II), and (III), respectively.

• Region (III). {(x, z) : z > 1, z > (2x− 1)/
√

3}.

Note that any point (x, z) in our range of interest either belongs to one of the three regions,

or falls on one of the boundaries of these regions. We now show the claim by consider the

three regions in Figure 3.7 separately. The discussions for the case where (x, z) fall on the

boundaries of these regions are similar so are omitted.

Consider Region (I). In this region, by elementary algebra, we have S1 < S2 and

S1 < S3. Therefore, case (a) is the final clustering result, where the two clusters are {x1} and

{x2, x3, x4}, respectively, with cluster centers c1 = 0 and c2 = (x+y+1)/3. By definitions, for

(x, z) in Region (I), d1 = |c2−0|−|c1−0| = (1+x+y)/3, d2 = |c1−1|−|c2−1| = (5−x−y)/3,

d3 = |c1 − x| − |c2 − x| = (x + y + 1)/3 if 2x > y + 1 and d3 = (5x − y − 1)/3 otherwise,

and d4 = |c1 − y| − |c2 − y| = (x+ y + 1)/3. By elementary algebra, it is seen that d2 is the

smallest among {d1, d2, d3, d4}. Combining this with (3.B.95) gives that for (x, z) in Region

(I), d∗ = (5− x− y)/3 = (5− 2x− z)/3. Note that for (x, z) in Region (I), 2x+ z < 2 +
√

3.

It follows 2(x− 1) + z <
√

3 and so min{1, x− 1, z} ≤
√

3/3. Combining these,

d∗
min{1, x− 1, z}

≥ 1

3

5− (2 +
√

3)√
3/3

≥ (
√

3− 1). (3.B.96)

Consider Region (II). In this region, by elementary algebra, S2 ≤ S1 and S2 < S3.

Therefore, case (b) is the actual clustering result, so the two cluster centers are c1 = 1/2

and c2 = (x + y)/2, respectively. By definitions, d1 = |c2 − 0| − |c1 − 0| = (x + y − 1)/2,

d2 = |c2 − 1| − |c1 − 1| = (x + y − 3)/2, d3 = |c1 − x| − |c2 − x| = (3x − y − 1)/2, and

d4 = |c1 − y| − |c2 − y| = (x+ y − 1)/2. By elementary algebra, among the four numbers

{d1, d2, d3, d4}, d2 is the smallest when z < 1 and d3 is smallest when z > 1. Combining this

with (3.B.95) gives that for (x, z) in Region (II),

d∗ =

{
(x+ y − 3)/2 = (2x+ z − 3)/2, if z < 1,

(3x− y − 1)/2 = (2x− z − 1)/2, if z ≥ 1.

204



3.C. Proof of results in Section 3.4

Consider the case of z < 1 first. In this case, min{1, x − 1, z} = min{x − 1, z} > 0, and

2x + z − 3 > (2 − 2/
√

3)(x − 1) + (1 − 1/
√

3)z since 2x + z > (2 +
√

3) in Region (II).

Therefore,

d∗
min{1, x− 1, z}

=
2x+ z − 3

2 min{x− 1, z}
≥ (2− 2/

√
3)(x− 1) + (1− 1/

√
3)z

2 min{x− 1, z}
,

where the right hand side is no smaller than

[(2− 2/
√

3) + (1− 1/
√

3)]/2 = (3−
√

3)/2.

Consider the case z ≥ 1. In this case, min{1, x−1, z} = min{x−1, 1} > 0, and (2x−z−1) ≥
(2− 2/

√
3)(x− 1) + (1− 1/

√
3) since z ≤ (2x− 1)/

√
3. Therefore,

d∗
min{1, x− 1, z}

=
2x− z − 1

2 min{x− 1, 1}
≥ (2− 2/

√
3)(x− 1) + (1− 1/

√
3)

2 min{x− 1, 1}
,

where the right hand side is no smaller than

[(2− 2/
√

3) + (1− 1/
√

3)]/2 = (3−
√

3)/2.

Combining the above, we have that in Region (II),

d∗ ≥
(3−

√
3)

2
min{1, x− 1, z}. (3.B.97)

Consider Region (III). By elementary algebra, it is seen S3 < S1 and S3 < S2 in this case.

Therefore, case (c) is the actual clustering result, so the two cluster centers are c1 = (1+x)/3

and c2 = y, respectively. By definitions, d1 = |c2 − 0| − |c1 − 0| = (3y − x − 1)/3,

d2 = |c2 − 1| − |c1 − 1| = (−1 − x + 3y)/3 if x > 2 and d2 = (x + 3y − 5)/3 elsewise,

d3 = |c1 − x| − |c2 − x| = (1− 5x+ 3y)/3, and d4 = |c1 − y| − |c2 − y| = (−1− x+ 3y)/3.

By elementary algebra, d3 is the smallest in {d1, d2, d3, d4}. Combining these with (3.B.95)

gives that for (x, z) in Region (III),

d∗ = (1− 5x+ 3y)/3 = (1− 2x+ 3z)/3, min{1, x− 1, z} = min{1, x− 1}.
When x > 2, min{1, x − 1} = 1, and the minimum of d∗ in Region (III) is (

√
3 − 1)

attained at (x, z) = (2,
√

3). When x < 2, min{1, x− 1} = x− 1. Therefore, d∗/min{1, x−
1} = (z − 1/3)/(x − 1) − 2/3, where the minimum in Region (III) is 2/

√
3, attained at

(x, z) = ((
√

3 + 1)/2, 1). Combining these, we have that for (x, z) in Region (III),

d∗ ≥ (
√

3− 1) min{1, x− 1, z}. (3.B.98)

Combining (3.B.96)-(3.B.98) gives the claim.

3.C Proof of results in Section 3.4

3.C.1 Proof of Lemma 36

Consider the first two claims. It is easy to see that E[Cn] = cn. In the proof of Theorem 3.1

of Jin et al. (2018), it has been shown that

cn = tr(Ω4) +O(‖θ‖44‖θ‖4) = tr(Ω4) + o(‖θ‖8).

Moreover, λ4
1 ≤ tr(Ω4) ≤ Kλ4

1. In the proof of Theorem 3.2.4, we have seen that λ1 =

‖θ‖2 · λ1(HPH ′). Using the condition (3.2.2) and the fact that P has unit diagonals, we

have λ1(HPH ′) ≥ Cλ1(P ) ≥ C. Similarly, since we have assumed ‖P‖ ≤ C in (3.2.1),
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λ1(HPH ′) ≤ Cλ1(P ) ≤ C. Here, C is a generic constant. We have proved that

E[Cn] = cn � ‖θ‖8.
To compute the variance of Cn, write

Cn = Q̃n + ∆, where Q̃n =
∑

i1,i2,i3,i4(dist)

Wi1i2Wi2i3Wi3i4Wi4i1 .

The variance of ∆ is computed in the proof of Lemma B.2 of Jin et al. (2018). Using the

upper bound of the variance of
(∑

CC(In) ∆
(k)
i1i2i3i4

)
for k = 1, 2, 3 there, we have

Var(∆) ≤ C‖θ‖63‖θ‖8.
Furthermore, we show in the proof of Lemma 37 that Var(Q̃n) = 8cn · [1 + o(1)]. It follows

that Var(Q̃n) � cn � ‖θ‖8. Combining these results gives

Var(Cn) ≤ C‖θ‖8 · [1 + ‖θ‖63].

Consider the last claim. For any ε > 0, using Chebyshev’s inequality, we have

P(|Cn/cn − 1| ≥ ε) ≤ (cnε)
−2Var(Cn) ≤ C(1 + ‖θ‖63)

ε2 ‖θ‖8
.

Here we have used the first two claims. Since ‖θ‖33 ≤ θmax‖θ‖2 = o(‖θ‖8), the rightmost

term is o(1) as n→∞. This proves that Cn/cn → 1 in probability.

3.C.2 Proof of Lemma 37

In the proof of Theorem 3.2 of Jin et al. (2018), it was shown that Q̃n/

√
Var(Q̃n)→ N(0, 1)

in law (in the proof there, Q̃n/

√
Var(Q̃n) is denoted as Sn,n). It remains to prove Var(Q̃n) =

8cn · [1 + o(1)].

Note that for each ordered quadruple (i, j, k, `) with four distinct indices, there are 8 sum-

mands in the definition of Q̃n whose values are exactly the same; these summands correspond

to (i1, i2, i3, i4) ∈ {(i, j, k, `), (j, k, `, i), (k, `, i, j), (`, i, j, k), (k, j, i, `), (j, i, `, k), (i, `, k, j), (`, k, j, i)}.
We treat these 8 summands as in an equivalent class. Denote by CC4 the collection of

all such equivalent classes. Then, for any doubly indexed sequence {xij}1≤i 6=j≤n such that

xij = xji, it is true that
∑

i1,i2,i3,i4(dist) xi1i2xi2i3xi3i4xi4i1 = 8
∑

CC4
xi1i2xi2i3xi3i4xi4i1 . In

particular,

Q̃n = 8
∑
CC4

Wi1i2Wi2i3Wi3i4Wi4i1 .

The summands are independent of each other, and the variance of Wi1i2Wi2i3Wi3i4Wi4i1 is

equal to Ω∗i1i2Ω∗i2i3Ω∗i3i4Ω∗i4i1 , where Ω∗ij = Ωij(1− Ωij). As a result,

Var(Q̃n) = 64
∑
CC4

Ω∗i1i2Ω∗i2i3Ω∗i3i4Ω∗i4i1 = 8
∑

i1,i2,i3,i4(dist)

Ω∗i1i2Ω∗i2i3Ω∗i3i4Ω∗i4i1 .
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Recall that cn =
∑

i1,i2,i3,i4(dist) Ωi1i2Ωi2i3Ωi3i4Ωi4i1 . Then,

|Var(Q̃n)− 8cn| ≤ 8
∑

i1,i2,i3,i4(dist)

|Ωi1i2Ωi2i3Ωi3i4Ωi4i1 − Ω∗i1i2Ω∗i2i3Ω∗i3i4Ω∗i4i1 |

≤ 8
∑

i1,i2,i3,i4(dist)

Ωi1i2Ωi2i3Ωi3i4Ωi4i1 · C‖Ω‖max

= 8cn ·O(θ2
max).

Since θmax = o(1) by the condition (3.2.1), we immediately have Var(Q̃n) = 8cn·[1+o(1)].

3.C.3 Proof of Lemma 38

The proof is combined with the proof of Lemma 43; see below.

3.C.4 Proof of Lemma 39

Consider the first claim. Since bn = 2‖θ‖4 · [g′V −1(PH2P ◦ PH2P )V −1g] (see (3.4.21)), it

suffices to show that

g′V −1(PH2P ◦ PH2P )V −1g � 1.

The vectors g, h ∈ RK are defined by gk = (1′kθ)/‖θ‖1 and hk = (1′kΘ21k)1/2/‖θ‖, where 1k

is for short of 1
(K)
k . By condition (3.2.2), c1 ≤ gk ≤ 1 and c1 ≤ h2

k ≤ 1 for 1 ≤ k ≤ K, and

‖P‖ ≤ c2, for some constants c1, c2 ∈ (0, 1).

For the upper bound, by h2
k ≤ 1 and ‖P‖ ≤ c2, we have ‖(PH2P ) ◦ (PH2P )‖ ≤ C. Since

P has unit diagonals and gk ≥ c1, the diagonal elements of V = diag(Pg) is no less than c1.

Hence

g′V −1(PH2P ◦ PH2P )V −1g ≤ ‖g′V −1‖2 · ‖PH2P ◦ PH2P‖ ≤ C. (3.C.99)

For the lower bound, since P has unit diagonals and h2
k ≥ c1, we can lower bound diagonal

elements of PH2P ◦PH2P by c2
1. Since g ∈ RK is a non-negative vector with entries summing

to 1, the diagonal elements of V = diag(Pg) is no more than maxk,l Pk,` ≤ ‖P‖ ≤ c2.

Therefore each entry of vector gV −1 is at least c1/c2. Since PH2P ◦ PH2P ∈ R(K,K) is

non-negative matrix and g′V −1 ∈ R(K is non-negative vector, we can lower bound

g′V −1(PH2P ◦ PH2P )V −1g ≥ c2
1‖g′V −1‖2 ≥ C, (3.C.100)

Combining (3.C.99)-(3.C.100), we completes the proof of the first claim.

Consider the second claim. Introduce the following event

An =
{

Π̂(K) = Π, up to a permutation in the columns of Π̂(K)
}
. (3.C.101)

By Theorem 3.2.1, when m = K, SCORE exactly recovers Π with probability 1− o(n−3),

i.e.,

P(Acn) ≤ Cn−3 = o(1).

This means if we replace every Π̂(K) in the definition of B
(K)
n with Π, and denote the resulting

quantity as B
(K,0)
n , the above inequality immediately implies that B

(K)
n /B

(K,0)
n

p→ 1. So we

only need to prove B
(K,0)
n /bn

p→ 1. Since we will never use the original definition of B
(K)
n in

the rest of the proof, without causing any confusion we will suspend the original definitions
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of B
(K)
n and the quantities used to define B

(K)
n , including (θ̂, ĝ, V̂ , P̂ , Ĥ), and use them to

actually denote the correspondents with every Π̂(K) replaced by Π.

Recall the formulas for B
(K)
n and bn in (3.2.11) and (3.4.21), we have

B
(K)
n

bn
=
‖θ̂‖4

‖θ‖4
· ĝ
′V̂ −1(P̂ Ĥ2P̂ ◦ P̂ Ĥ2P̂ )V̂ −1ĝ

g′V −1(PH2P ◦ PH2P )V −1g
. (3.C.102)

To show that B
(K)
n /bn → 1, we need the follow lemma, which is proved in Section 3.D.2.

Lemma 47. Suppose the conditions of Theorem 3.2.1 hold. Let 1n ∈ Rn be the vector of 1’s,

and let 1k ∈ Rn be the vector such that 1k(i) = 1{i ∈ Nk}, for 1 ≤ i ≤ n and 1 ≤ k ≤ K.

As n→∞, for all 1 ≤ k ≤ K,

1′nA1n
1′nΩ1n

p→ 1,
1′kA1n
1′kΩ1n

p→ 1,
1′kA1k
1′kΩ1k

p→ 1.

Moreover, let di be the degree of node i and let d∗i = (Ω1n)i, for 1 ≤ i ≤ n. Write

D = diag(d) ∈ Rn,n and D∗ = diag(d∗) ∈ Rn,n. As n→∞, for all 1 ≤ k ≤ K,

‖θ̂‖1
‖θ‖1

p→ 1,
‖θ̂‖
‖θ‖

p→ 1,
1′kD

21k
1′k(D

∗)21k

p→ 1.

First, by Lemma 47, ‖θ̂‖/‖θ‖ p→ 1. It follows from the continuous mapping theorem that

‖θ̂‖4/‖θ‖4 p→ 1. (3.C.103)

Second, recall that gk = (1′kθ)/‖θ‖1 and ĝk = (1′kθ̂)/‖θ̂‖1, where by (3.2.6), we have the

equality 1′kθ̂ = (1′kd) ·
√

1′kA1k/(1
′
kA1n). Here, keep in mind that we have replaced Π̂(K)

with Π, which implies that 1̂k = 1k. The vector d is such that d = A1n. It follows that

1′kθ̂ =
√

1′kA1k. Furthermore, 1′kΩ1k = (1′kθ)
2, because P has unit diagonals. Combining

the above gives

ĝk
gk

=
1′kθ̂

1′kθ
· ‖θ‖1
‖θ̂‖1

=

√
1′kA1k√
1′kΩ1k

· ‖θ‖1
‖θ̂‖1

p→ 1, 1 ≤ k ≤ K. (3.C.104)

Third, note that by definition and basic algebra, both P and P̂ have unit diagonals. We

compare their off-diagonals. By (3.2.6), P̂k` = 1′kA1`/
√

(1′kA1k)(1
′
`A1`). At the same time,

it can be easily verified that Pk` = 1′kΩ1`/
√

(1′kΩ1k)(1
′
`Ω1`). Introduce

X =

√
(1′kΩ1k)(1

′
`Ω1`)√

(1′kA1k)(1
′
`A1`)

.

By Lemma 47, X
p→ 1. We re-write

P̂k` − Pk` =
1′kA1` − 1′kΩ1`√
(1′kA1k)(1

′
`A1`)

+ Pk`(X − 1) =
1′kW1`

(1′kθ)(1
′
`θ)

X + Pk`(X − 1),

where in the last inequality we have used the fact that 1′kΩ1k = (1′kθ)
2 for all 1 ≤ k ≤ K.

Note that E[1′kW1`] = 0. Moreover, Var(Wij) ≤ ‖P‖maxθiθj ≤ Cθiθj . It follows that

Var(1′kW1`) ≤ C(1′kθ)(1
′
`θ). Therefore,

E
[

1′kW1`
(1′kθ)(1

′
`θ)

]2

≤ C

(1′kθ)(1
′
`θ)

= O(‖θ‖−2
1 ) = o(1).
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Hence,
1′kW1`

(1′kθ)(1
′
`θ)

p→ 0. Combining the above results, we have

P̂k` − Pk`
p→ 0, 1 ≤ k, ` ≤ K. (3.C.105)

Fourth, since V = diag(Pg) and V̂ = diag(P̂ ĝ), it follows from (3.C.104) and (3.C.105) that

V̂kk/Vkk
p→ 1, 1 ≤ k ≤ K. (3.C.106)

Last, note that H2, Ĥ2 ∈ RK,K are diagonal matrices, with k-th diagonal elements being

h2
k and ĥ2

k, respectively. By (3.2.10), ĥ2
k = (1′kΘ̂

21k)/‖θ̂‖2. In addition, by (3.2.6), for any

i ∈ Nk, we have θ̂2
i = d2

i (1
′
kA1k)/(1

′
kA1n)2. We thus re-write

Ĥkk ≡ ĥ2
k =

(1′kD
21k) · (1′kA1k)

(1′kA1n)2 · ‖θ̂‖2
.

Additionally, hk = (1′kΘ
21k)/‖θ‖2, as defined in the paragraph below (3.4.21). By di-

rect calculations, (1′kΩ1n)/
√

1′kΩ1k =
[
(1′kθ)

∑
` Pk`(1

′
`θ)
]
/(1′kθ) =

∑
` Pk`(1

′
`θ). Also,

for any i ∈ Nk, we have d∗i = (Ω1n)i = θi[
∑

` Pk`(1
′
`θ)]. It implies that 1′k(D

∗)21k =

(1′kΘ
21k)[

∑
` Pk`(1

′
`θ)]

2. We can use these expressions to verify that

Hkk ≡ h2
k =

[1′k(D
∗)21k] · (1′kΩ1k)

(1′kΩ1n)2 · ‖θ‖2
.

We apply Lemma 47 to obtain that

Ĥkk/Hkk
p→ 1, 1 ≤ k ≤ K. (3.C.107)

We plug (3.C.103), (3.C.104), (3.C.105), (3.C.106) and (3.C.107) into (3.C.102). It follows

from elementary probability that B
(K)
n /bn → 1. This gives the second claim.

3.C.5 Proof of Lemma 40

Recall N (m,0)
1 ,N (m,0)

2 , ...,N (m,0)
m are “fake” communities associated with Π0, and we decom-

pose the vector 1n ∈ Rn as follows

1n =

m∑
k=1

1
(m,0)
k , where 1

(m,0)
k (j) = 1 if j ∈ N (m,0)

k and 0 otherwise. (3.C.108)

Notice for Π0 ∈ Gm defined in (3.4.26), there exists an K×m matrix L0 such that Π0 = ΠL0.

By definitions, Ω(m,0) = Θ(m,0)Π0P
(m,0)Π′0Θ(m,0). Here Θ(m,0) and P (m,0) are obtained by

replacing (di, 1̂k, A) by (d∗i ,1
(m,0)
k ,Ω) in the definition (3.2.6). It yields that, for 1 ≤ k, ` ≤ m

and i ∈ N (m,0)
k ,

θ
(m,0)
i =

d∗i

(1
(m,0)
k )′Ω1n

·
√

(1
(m,0)
k )′Ω1

(m,0)
k , P

(m,0)
k` =

(1
(m,0)
k )′Ω(1

(m,0)
` )√

(1
(m,0)
k )′Ω1

(m,0)
k

√
(1

(m,0)
` )′Ω1

(m,0)
`

.

As a result, for i ∈ N (m,0)
k and j ∈ N (m,0)

` ,

Ω
(m,0)
ij = θ

(m,0)
i θ

(m,0)
j P

(m,0)
k` = d∗i d

∗
j ·

(1
(m,0)
k )′Ω1

(m,0)
`

[(1
(m,0)
k )′Ω1n] · [(1(m,0)

` )′Ω1n]
. (3.C.109)

Note that (1
(m,0)
k )′Ω1

(m,0)
` = (Π′0ΩΠ0)k`. Since Ω = ΘΠPΠ′Θ and D0 = Π′0ΘΠ, we

immediately have Π′0ΩΠ0 = Π′0ΘΠPΠ′Θ′Π0 = D0PD
′
0. It follows that

(1
(m,0)
k )′Ω1

(m,0)
` = (D0PD

′
0)k`, 1 ≤ k, ` ≤ m.
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Similarly, (1
(m,0)
k )′Ω1n = (e′kΠ

′
0)Ω(Π1K) = e′kΠ

′
0ΘΠPΠ′ΘΠ1K = e′kD0PD1K . This gives

(1
(m,0)
k )′Ω1n = diag(D0PD1K)kk, 1 ≤ k, ` ≤ m.

We plug the above equalities into (3.C.109). It follows that, for i ∈ N (m,0)
k and j ∈ N (m,0)

` ,

Ω
(m,0)
ij = d∗i d

∗
j ·
[
(diag(D0PD1K))−1D0PD

′
0(diag(D0PD1K))−1

]
k`
. (3.C.110)

Write for short

M = [diag(D0PD1K)]−1(D0PD
′
0)[diag(D0PD1K)]−1. (3.C.111)

Then, (3.C.110) can be written equivalently as

Ω
(m,0)
ij = d∗i d

∗
j ·

m∑
k,`=1

Mk` · 1{i ∈ N
(m,0)
k } · 1{j ∈ N (m,0)

` }.

By definition, L0(u, k) = 1{Nu ⊂ N (m,0)
k }, for 1 ≤ u ≤ K and 1 ≤ k ≤ m. Therefore,

we have the equalities: 1{i ∈ N (m,0)
k } =

∑K
u=1 L0(u, k) · 1{i ∈ Nu} and 1{j ∈ N (m,0)

` } =∑K
v=1 L0(v, `) · 1{j ∈ Nv}. Combining them with the above equation gives

Ω
(m,0)
ij = d∗i d

∗
j ·

K∑
u,v=1

1{i ∈ Nu} · 1{j ∈ Nv}
m∑

k,`=1

L0(u, k)L0(v, `)Mk`

= d∗i d
∗
j ·

K∑
u,v=1

1{i ∈ Nu} · 1{j ∈ Nv} · (L0ML′0)uv. (3.C.112)

By definition, d∗ = Ω1n = Ω(Π1K). Since Ω = ΘΠPΠ′Θ, we immediately have

d∗i = θi · π′iPΠ′ΘΠ1K = θi · π′iPD1K = θi ·
K∑
u=1

diag(PD1K)uu · 1{i ∈ Nu}.

Similarly, we have d∗j = θi ·
∑K

v=1 diag(PD1K)vv · 1{j ∈ Nv}. Plugging the expressions of

(d∗i , d
∗
j ) into (3.C.112) gives

Ω
(m,0)
ij = θiθj

K∑
u,v=1

1{i ∈ Nu} 1{j ∈ Nv} diag(PD1K)uu(L0ML′0)uvdiag(PD1K)vv

= θiθj · π′i
[
diag(PD1K)L0ML′0diag(PD1K)

]
πj .

(3.C.113)

Combining it with the expression of M in (3.C.111) gives the claim.

3.C.6 Proof of Lemma 41

The claim of cn � ‖θ‖8 is proved in Lemma 36. To prove the claim of λ1 � ‖θ‖2, we

note that by Lemma 30, λk = ‖θ‖2 · λk(HPH), where H is the diagonal matrix such that

Hkk = ‖θ(k)‖2/‖θ‖2. By the condition (3.2.2), all the diagonal entries of H are between

[c, 1], for a constant c ∈ (0, 1). It follows that λ1(HPH) � λ1(P ). Since λ1 ≥ P11 = 1 and

λ1 ≤ ‖P‖ ≤ C, we have λ1(P ) � 1. Combining the above gives

λ1 � ‖θ‖2λ1(P ) � ‖θ‖2.

We then prove the claims related to the matrix Ω̃. First, we show the upper bound
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of |Ω̃ij | and the lower bound of tr(Ω̃4). Recall that Ω̃ = Ω − Ω(m,0). By Lemma 40,

Ω(m,0) = ΘΠP0Π′Θ for a rank-m matrix P0. It follows that

Ω̃ = ΘΠ(P − P0)Π′Θ. (3.C.114)

Let H be the same diagonal matrix as above. It can be easily verified that ‖θ‖2 ·H2 = Π′Θ2Π.

This means that the matrix U = ‖θ‖−1ΘΠH−1 satisfies the equality U ′U = IK . As a result,

we can write Ω̃ = U · (‖θ‖2 ·H(P − P0)H) · U ′. Since U contains orthonormal columns, the

nonzero eigenvalues of Ω̃ are the same as the nonzero eigenvalues of ‖θ‖2 ·H(P − P0)H, i.e.,

λ̃k = ‖θ‖2 · λk(H(P − P0)H), 1 ≤ k ≤ m.
In particular, |λ̃1| = ‖θ‖2 · ‖H(P − P0)H‖ � ‖θ‖2 · ‖P − P0‖ � λ1‖P − P0‖, where we have

used ‖H‖ � ‖H−1‖ � 1, and λ1 � ‖θ‖2. Combining it with the definition of τ gives

τ � ‖P − P0‖. (3.C.115)

Consider |Ω̃ij |. By (3.C.114), |Ω̃ij | = θiθj · |π′i(P − P0)πj | ≤ θiθj · C‖P − P0‖. We plug

in (3.C.115) to get |Ω̃ij | ≤ Cτθiθj , for 1 ≤ i, j ≤ n. Consider tr(Ω̃4). We have seen that

|λ̃1| � ‖θ‖2 · ‖P − P0‖ � τ‖θ‖2. As a result, tr(Ω̃4) ≥ λ̃4
1 ≥ Cτ4‖θ‖8.

Next, we study the order of τ . Note that Ω = Ω(m,0) + Ω̃. We aim to apply Weyl’s

inequality. In our notation, λk(·) refers to the kth largest eigenvalue (in magnitude) of a

symmetric matrix. As a result, |λk(·)| is the kth singular value. By Weyl’s inequality for

singular values (equation (7.3.13) of Horn and Johnson (1985)), we have

|λr+s−1(Ω)| ≤ |λr(Ω(m,0))|+ |λs(Ω̃)|, for 1 ≤ r, s ≤ n− 1.

Since Ω(m,0) only has m nonzero eigenvalues, by taking r = m+ 1 and s = k in the above,

we immediately have

|λm+k(Ω)| ≤ |λk(Ω̃)| = |λ̃k|, 1 ≤ k ≤ K −m. (3.C.116)

In particular, |λ̃1| ≥ |λm+1| ≥ |λK |. At the same time, λ1 � ‖θ‖2 and by definition,

τ = |λ̃1|/λ1. It follows that

τ‖θ‖ ≥ (|λK |/λ1) · ‖θ‖ ≥ C
(
|λK |/

√
λ1

)
→∞.

This gives τ‖θ‖ → ∞. We then prove τ ≤ C. In light of (3.C.115), it suffices to show

‖P0‖ ≤ C. Consider the expression of P0 in Lemma 40. It is easy to see that ‖L0‖ ≤ C,

‖D0PD
′
0‖ ≤ C‖θ‖21, and ‖diag(PD1K)‖ ≤ C‖θ‖1. As a result,

‖P0‖ ≤ C‖θ‖41 · ‖diag(D0PD1K)−1‖2. (3.C.117)

Since D0 = Π′0ΘΠ and D = Π′ΘΠ, it is true that D0PD1K = Π′0ΘΠPΠ′ΘΠ1K =

Π′0ΘΠPΠ′Θ1n = Π′0Ω1n. Then, for each 1 ≤ k ≤ m,

[diag(D0PD1K)]kk = (Π′0Ω1n)k =
∑

i∈N (m,0)
k

d∗i , where d∗ = Ω1n.

Here N (m,0)
1 ,N (m,0)

2 , ...,N (m,0)
m are the pseudo-communities defined by Π0. Suppose i ∈ N`

for some true community N`. Then, d∗i ≥
∑

j∈N` θiθjP`` = θi‖θ(`)‖1 ≥ Cθi‖θ‖1. Moreover,

for any Π0 ∈ Gm, each pseudo-community N (m,0)
k is the union of one or more true community.

It yields that
∑

i∈N (m,0)
k

θi ≥ min1≤`≤K{‖θ(`)‖1} ≥ C‖θ‖1. Combining these results gives∑
i∈N (m,0)

k

d∗i ≥ C‖θ‖21. This shows that each diagonal entry of diag(D0PD1K) is lower
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bounded by C‖θ‖21. We immediately have

‖diag(D0PD1K)−1‖ ≤ C‖θ‖−2
1 . (3.C.118)

Combining (3.C.117) and (3.C.118) gives ‖P0‖ ≤ C. The claim τ ≤ C then follows from

(3.C.115).

3.C.7 Proof of Lemma 42

Recall that W = A − Ω. Given any n × n symmetric matrix T , we can define a random

variable as follows:

QW (T ) =
∑

i1,i2,i3,i4(dist)

(Wi1i2 + Ti1i2)(Wi2i3 + Ti2i3)(Wi3i4 + Ti3i4)(Wi4i1 + Ti4i1). (3.C.119)

Then, Q̃
(m,0)
n is a special case with T = Ω̃(m,0), where Ω̃(m,0) is defined in (3.4.31). We study

the general form of QW (T ). By an expansion of each summand, we can write QW (T ) as the

sum of 24 post-expansion sums. Each post-expansion sum takes a form

X =
∑

i1,i2,i3,i4(dist)

ai1i2bi2i3ci3i4di4i1 , (3.C.120)

where each of aij , bij , cij , dij may take value in {Wij , Tij}. We divide the post-expansion

sums into 6 common types and compute the mean and variance of each of them (see

Table 3.2 for the special case of T = Ω̃(m,0)). For example, the post-expansion sum∑
i1,i2,i3,i4(dist) Ti1i2Ti2i3Ti3i4Ti4Ti1 is non-stochastic and has a zero variance. Its mean equals

to tr(T 4)−∆, where ∆ contains the sum of Ti1i2Ti2i3Ti3i4Ti4Ti1 when some of the indices

(i1, i2, i3, i4) are equal. As another example, the post-expansion sum
∑

i1,i2,i3,i4(dist)Wi1i2Wi2i3Wi3i4Wi4i1

has a zero mean, and since the summands are mutually uncorrelated, its variance is∑
i1,i2,i3,i4(dist) Ω∗i1i2Ω∗i2i3Ω∗i3i1Ω∗i4i1 , where Ω∗ij = Ωij(1− Ωij).

Table 3.2: The 6 different types of the 16 post-expansion sums of Q̃
(m,0)
n . In our setting,

τ = λ̃
(m,0)
1 /λ1 and ‖θ‖−1 � τ ≤ C, and ‖θ‖33 � ‖θ‖2 � ‖θ‖1.

Type # (N
Ω̃
, NW ) Examples Mean Variance

I 1 (0, 4) X1 =
∑

i1,i2,i3,i4(dist)Wi1i2Wi2i3Wi3i4Wi4i1 0 � ‖θ‖8

II 4 (1, 3) X2 =
∑

i1,i2,i3,i4(dist) Ω̃i1i2Wi2i3Wi3i4Wi4i1 0 ≤ Cτ2‖θ‖4‖θ‖63 = o(‖θ‖8)

IIIa 4 (2, 2) X3 =
∑

i1,i2,i3,i4(dist) Ω̃i1i2Ω̃i2i3Wi3i4Wi4i1 0 ≤ Cτ4‖θ‖6‖θ‖63 = o(τ6‖θ‖8‖θ‖63)

IIIb 2 (2, 2) X4 =
∑

i1,i2,i3,i4(dist) Ω̃i1i2Wi2i3Ω̃i3i4Wi4i1 0 ≤ Cτ4‖θ‖12
3 = o(‖θ‖8)

IV 4 (3, 1) X5 =
∑

i1,i2,i3,i4(dist) Ω̃i1i2Ω̃i2i3Ω̃i3i4Wi4i1 0 ≤ τ6‖θ‖8‖θ‖63
V 1 (4, 0) X6 =

∑
i1,i2,i3,i4(dist) Ω̃i1i2Ω̃i2i3Ω̃i3i4Ω̃i4i1 ∼ tr(Ω̃4) 0

Here we omit the calculation details, because similar calculations were done in Jin et al.

(2019). In their Theorem 4.4, they analyzed QW (T ) for T equal to a rank-1 matrix (denoted

by Ω̃ there). However, their proof does not reply on the condition that Ω̃ is rank-1 and

applies to any symmetric matrix. They actually proved the following lemma:

Lemma 48. Consider a DCBM model where (3.2.1)-(3.2.2) and (3.2.4) hold. Let W = A−Ω

and let QW (T ) be the random variable defined in (3.C.119). As n→∞, suppose there is a

constant C > 0 and a scalar αn > 0 such that αn ≤ C, αn‖θ‖ → ∞, and |Tij | ≤ Cαnθiθj
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for all 1 ≤ i, j ≤ n. Then, E[QW (T )] = tr(T 4) + o(‖θ‖4) and Var(QW (T )) ≤ C(‖θ‖8 +

α6
n‖θ‖8‖θ‖63).

We now set T = Ω̃(m,0) and verify the conditions of Lemma 48. Recall that τ = λ̃1/λ1,

where λ̃1 and λ1 are the respective largest (in magnitude) eigenvalue of Ω̃(m,0) and Ω. By

Lemma 41,

τ ≤ C, τ‖θ‖ → ∞, |Ω̃(m,0)
ij | ≤ Cτθiθj , for all 1 ≤ i, j ≤ n.

Therefore, we can apply Lemma 48 with αn = τ . The claim follows immediately.

3.C.8 Proof of Lemma 43

Before proceed, recall (3.4.32) that

Q̃(m,0)
n =

∑
i1,i2,i3,i4(dist)

(Wi1i2 + Ω̃
(m,0)
i1i2

)(Wi2i3 + Ω̃
(m,0)
i2i3

)(Wi3i4 + Ω̃
(m,0)
i3i4

)(Wi4i1 + Ω̃
(m,0)
i4i1

).

Here Ω̃(m,0) = Ω− Ω(m,0) and Ω(m,0) is as in (3.4.29). By Lemma 40, Ω(m,0) = ΘΠP0Π′Θ,

for a rank-m matrix P0. If m = K and Π0 = Π, it can be verified that P0 = P . Therefore,

Ω(m,0) = Ω, and Ω̃(m,0) reduces to a zero matrix. In this case, Q̃
(m,0)
n reduces to Q̃n in

(3.4.20). It means that we can treat Lemma 38 as a “special case” of Lemma 43, with Ω̃(m,0)

being a zero matrix. We thus combine the proofs of two lemmas.

We now show the claim. First, we introduce two proxies of Q
(m,0)
n . By definition,

Q(m,0)
n =

∑
i1,i2,i3,i4(dist)

(Ai1i2 − Ω̂
(m,0)
i1i2

)(Ai2i3 − Ω̂
(m,0)
i2i3

)(Ai3i4 − Ω̂
(m,0)
i3i4

)(Ai4i1 − Ω̂
(m,0)
i4i1

).

By (3.4.27), Ω̂(m,0) is defined by θ̂, Π0, and P̂ . For 1 ≤ k ≤ m, let N (m,0)
k and 1

(m,0)
k be the

same as in (3.C.108). Then, (θ̂, P̂ ) are obtained by replacing 1̂k with 1
(m,0)
k in (3.2.6). For

the rest of the proof, we write 1k = 1
(m,0)
k for short. It follows that, for 1 ≤ k, ` ≤ K and

i ∈ N (m,0)
k ,

θ̂
(m,0)
i = di

√
1′kA1k

1′kA1n
, P̂

(m,0)
k` =

1′kA1`√
(1′kA1k)(1

′
`A1`)

, with 1k = 1
(m,0)
k (for short).

We plug it into (3.4.27) and note that d = A1n. It yields that, for i ∈ N (m,0)
k and j ∈ N (m,0)

` ,

Ω̂
(m,0)
ij = didj · Û (m,0)

k` , where Û
(m,0)
k` =

1′kA1`
(1′kd)(1′`d)

. (3.C.121)

At the same time, in (3.C.109), we have seen that (recall: d∗ = Ω1n)

Ω
(m,0)
ij = d∗i d

∗
j · U

∗(m,0)
k` , where U

∗(m,0)
k` =

1′kΩ1`
(1′kd

∗)(1′`d
∗)
. (3.C.122)

Note that (Ω, d∗) are approximately (E[A],E[d]) but there is subtle difference. We thus

introduce an intermediate quantity:

U
(m,0)
k` =

1′kE[A]1`
(1′kE[d])(1′`E[d])

. (3.C.123)

We now use (3.C.121)-(3.C.123) to decompose (Aij − Ω̂
(m,0)
ij ). Recall that Ω̃

(m,0)
ij = Ωij −
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Ω
(m,0)
ij . We immediately have

Aij − Ω̂
(m,0)
ij = Wij + Ω̃

(m,0)
ij + (Ω

(m,0)
ij − Ω̂

(m,0)
ij ). (3.C.124)

From now on, we omit the superscript “(m, 0)” in Û
(m,0)
k` , U

∗(m,0)
k` and U

(m,0)
k` , and rewrite

them as Ûk`, U
∗
k`, and Uk`, respectively. By (3.C.121)-(3.C.123), Ω

(m,0)
ij − Ω̂

(m,0)
ij = d∗i d

∗
jU
∗
k`−

didjÛk` = [d∗i d
∗
jU
∗
k`− (Edi)(Edj)Uk`] +Uk`[(Edi)(Edj)− didj ] + (Uk`− Ûk`)didj . It turns our

that the term Uk`[(Edi)(Edj)− didj ] is the “dominating” term. This term does not have an

exactly zero mean, and so we introduce a proxy to this term as

δ
(m,0)
ij = Uk`

[
(Edi)(Edj − dj) + (Edj)(Edi − di)

]
. (3.C.125)

Note that Uk`[(Edi)(Edj)− didj ] = δ
(m,0)
ij − Uk`(di − Edi)(dj − Edj). We then have

Ω
(m,0)
ij − Ω̂

(m,0)
ij = [d∗i d

∗
jU
∗
k` − (Edi)(Edj)Uk`] + [δ

(m,0)
ij − Uk`(di − Edi)(dj − Edj)] + (Uk` − Ûk`)didj

= δ
(m,0)
ij + [d∗i d

∗
jU
∗
k` − (Edi)(Edj)Uk`]− Uk`(di − Edi)(dj − Edj)

+ (Uk` − Ûk`)(Edi)(Edj) + (Uk` − Ûk`)[(Edi)(dj − Edj) + (Edj)(di − Edi)]

+ (Uk` − Ûk`)(di − Edi)(dj − Edj)

= δ
(m,0)
ij + r̃

(m,0)
ij + ε

(m,0)
ij ,

where

r̃
(m,0)
ij = −Ûk`(di − Edi)(dj − Edj) (3.C.126)

and

ε
(m,0)
ij = [d∗i d

∗
jU
∗
k` − (Edi)(Edj)Uk`] + (Uk` − Ûk`)(Edi)(Edj)

+ (Uk` − Ûk`)[(Edi)(dj − Edj) + (Edj)(di − Edi)]. (3.C.127)

We plug the above results into (3.C.124) to get

Aij − Ω̂
(m,0)
ij = Ω̃

(m,0)
ij +Wij + δ

(m,0)
ij + r̃

(m,0)
ij + ε

(m,0)
ij . (3.C.128)

We then use (3.C.128) to define two proxies of Q
(m,0)
n . For any 1 ≤ i 6= j ≤ n, let

Xij = Ω̃
(m,0)
ij +Wij + δ

(m,0)
ij + r̃

(m,0)
ij + ε

(m,0)
ij ,

X̃∗ij = Ω̃
(m,0)
ij +Wij + δ

(m,0)
ij + r̃

(m,0)
ij ,

X∗ij = Ω̃
(m,0)
ij +Wij + δ

(m,0)
ij ,

X̃ij = Ω̃
(m,0)
ij +Wij . (3.C.129)

Correspondingly, we introduce

Q(m,0)
n =

∑
i1,i2,i3,i4(dist)

Xi1i2Xi2i3Xi3i4Xi4i1

Q̃∗(m,0)
n =

∑
i1,i2,i3,i4(dist)

X̃∗i1i2X̃
∗
i2i3X̃

∗
i3i4X̃

∗
i4i1 ,

Q∗(m,0)
n =

∑
i1,i2,i3,i4(dist)

X∗i1i2X
∗
i2i3X

∗
i3i4X

∗
i4i1 ,

Q̃(m,0)
n =

∑
i1,i2,i3,i4(dist)

X̃i1i2X̃i2i3X̃i3i4X̃i4i1 . (3.C.130)
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By comparing it with (3.4.32), we can see that the above expression of Q̃
(m,0)
n is the same as

before. Additionally, by (3.C.128), the above expression of Q
(m,0)
n is also equivalent to the

definition. The other two quantities, Q
∗(m,0)
n and Q̃

∗(m,0)
n , are the two proxies we introduce

here.

Next, we decompose

Q(m,0)
n − Q̃(m,0)

n = (Q∗(m,0)
n − Q̃(m,0)

n ) + (Q̃∗(m,0)
n −Q∗(m,0)

n ) + (Q(m,0)
n − Q̃(∗,m,0)

n ).

For any random variables X,Y, Z, we know that E[X + Y + Z] = EX + EY + EZ and

Var(X + Y + Z) ≤ 3Var(X) + 3Var + 3Var(Z). Therefore, to show the claim, we only need

to study the mean and variance of each term in the above equation. The next three lemmas

are proved in Sections 3.D.3-3.D.5.

Lemma 49. Let bn = 2‖θ‖4 · [g′V −1(PH2P ◦ PH2P )V −1g] be the same as in (3.4.21).

Under conditions of Lemma 38, it is true that

E[Q∗(m,0)
n − Q̃(m,0)

n ] = bn + o(‖θ‖4), and Var
(
Q∗(m,0)
n − Q̃(m,0)

n

)
= o(‖θ‖8),

Let τ = λ̃1/λ1 be the same as in (3.4.33). Under conditions of Lemma 43, it is true that

E[Q∗(m,0)
n − Q̃(m,0)

n ] = o(τ4‖θ‖8), and Var
(
Q∗(m,0)
n − Q̃(m,0)

n

)
≤ Cτ6‖θ‖8‖θ‖63 + o(‖θ‖8).

Lemma 50. Under conditions of Lemma 38, it is true that

E[Q̃∗(m,0)
n −Q∗(m,0)

n ] = o(‖θ‖4), and Var
(
Q̃∗(m,0)
n −Q(∗,m,0)

n

)
= o(‖θ‖8).

Under conditions of Lemma 43, it is true that

E[Q̃∗(m,0)
n −Q∗(m,0)

n ] = o
(
‖θ‖4+τ4‖θ‖8

)
, and Var

(
Q̃∗(m,0)
n −Q∗(m,0)

n

)
= o
(
‖θ‖8+τ6‖θ‖8‖θ‖63

)
.

Lemma 51. Under conditions of Lemma 38, it is true that

E[Q(m,0)
n − Q̃∗(m,0)

n ] = o(‖θ‖4), and Var
(
Q(m,0)
n − Q̃∗(m,0)

n

)
= o(‖θ‖8).

Under conditions of Lemma 43, it is true that

E[Q(m,0)
n −Q̃∗(m,0)

n ] = o
(
‖θ‖4+τ4‖θ‖8

)
, and Var

(
Q(m,0)
n −Q̃∗(m,0)

n

)
= o
(
‖θ‖8+τ6‖θ‖8‖θ‖63

)
.

We now prove Lemma 38 and Lemma 43. By Lemma 49-Lemma 51, under the conditions of

Lemma 38,

E[Q(m,0)
n − Q̃(m,0)

n ] = bn + o(‖θ‖4), and Var(Q(m,0)
n − Q̃(m,0)

n ) = o(‖θ‖8),

which implies E(Q
(m,0)
n − Q̃(m,0)

n − bn)2 = o(‖θ‖8) and completes the proof of Lemma 38.

Under the conditions of Lemma 43, it follows from Lemma 49-Lemma 51 that

E[Q(m,0)
n − Q̃(m,0)

n ] = o(τ4‖θ‖8) and Var(Q(m,0)
n − Q̃(m,0)

n ) ≤ Cτ6‖θ‖8‖θ‖63 + o(‖θ‖8),

which completes the proof of Lemma 43.

3.C.9 Proof of Lemma 44

Let Gm be the class of n×m membership matrices that satisfy NSP (the definition of Gm is

in Section 3.4.2). By Theorem 3.2.2, Π̂(m) ∈ Gm with probability 1 − O(n−3). Given any

Π0 ∈ Gm, Let B
(m)
n (Π0) be defined in the same way as in (3.2.11), except that (θ̂, ĝ, V̂ , P̂ , Ĥ)
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are defined based on Π0 instead of Π̂(m). Then, with probability 1−O(n−3),

B(m)
n ≤ max

Π0∈Gm
Bn(Π0).

It follows from the probability union bound that

P
(
B(m)
n > C‖θ‖4

)
≤

∑
Π0∈Gm

P
(
Bn(Π0) > C‖θ‖4

)
+O(n−3).

Since m < K and K is finite, Gm has only a bounded number of elements. Therefore, it

suffices to show that

P
(
Bn(Π0) > C‖θ‖4

)
= o(1), for each Π0 ∈ Gm. (3.C.131)

We now show (3.C.131). From now on, we fix Π0 ∈ Gm and write Bn(Π0) = Bn for short.

By (3.2.11) and direct calculations,

Bn = 2‖θ̂‖4 · ĝ′V̂ −1(P̂ Ĥ2P̂ ◦ P̂ Ĥ2P̂ )V̂ −1ĝ = 2‖θ̂‖4 ·
∑

1≤k,`≤m

ĝkĝ`[(P̂ Ĥ
2P̂ )k,`]

2

(P̂ ′kĝ) · (P̂ ′` ĝ)
,

where P̂k denotes the kth column of P̂ . We have mis-used the notations (θ̂, ĝ, V̂ , P̂ , Ĥ), using

them to refer to the counterparts of original definitions with Π̂(m) replaced by Π0. Denote

by N (m,0)
1 ,N (m,0)

2 , . . . ,N (m,0)
m the pseudo-communities defined by Π0. Let 1

(m,0)
k ∈ Rn be

such that 1
(m,0)
k (i) = 1{i ∈ N (m,0)

k }. We write 1k = 1
(m,0)
k when there is no confusion. By

(3.2.10),

ĝ = (1′kθ̂)/‖θ̂‖1, ĥ2
k = (1′kΘ̂

21k)/‖θ̂‖2, 1 ≤ k ≤ m.

Note that ĝ, ĥ and P̂ all have non-negative entries, with all entries of ĝ and ĥ are further

bounded by 1. Moreover, the diagonals of P̂ are all equal to 1. It follows that, for all

1 ≤ k, ` ≤ m,

0 ≤ ĝk ≤ P̂ ′kĝ, and 0 ≤ (P̂ Ĥ2P̂ )k` ≤ (P̂ 2)k`.

As a result,

Bn ≤ 2‖θ̂‖4
m∑

k,`=1

[(P̂ 2)k`]
2 ≤ 2‖θ̂‖4 ·m4‖P̂‖4max, (3.C.132)

where ‖ · ‖max is the element-wise maximum norm. Below, we study ‖P̂‖max and ‖θ̂‖
separately.

First, we bound ‖P̂‖max. By (3.2.6),

P̂k` = (1′kA1`)/
√

(1′kA1k)(1
′
`A1`).

Write 1′kA1` =
∑

i∈N (m,0)
k ,j∈N (m,0)

`

Aij , where E[Aij ] = Ωij , and
∑

i∈N (m,0)
k ,j∈N (m,0)

`

Var(Aij) ≤∑
i∈N (m,0)

k ,j∈N (m,0)
`

Cθiθj ≤ C(1′kθ)(1
′
`θ). We apply the Bernstein’s inequality Shorack and

Wellner (1986) to get

P
(
|1′kA1` − 1′kΩ1`| > t

)
≤ 2 exp

(
− t2/2

C(1′kθ)(1
′
`θ) + t/3

)
, for all t > 0.

By NSP, each pseudo-community N (m,0)
k contains at least one true community, say, Nk∗ .

Combining it with the condition (3.2.2) gives 1′kθ ≥
∑

i∈Nk∗ θi ≥ C‖θ‖1. At the same

time, 1′kθ ≤ ‖θ‖1. We thus have 1′kθ � ‖θ‖1 �
√

log(n). Similarly, we can show that

1kΩ1` � ‖θ‖21. In the above equation, if we choose t = C1‖θ‖1
√

log(n) for a properly large
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constant C1 > 0, then the right hand side is O(n−3). In other words, with probability

1−O(n−3),

|1′kA1` − 1′kΩ1`| ≤ C‖θ‖1
√

log(n).

Since 1′kΩ1` � ‖θ‖21 � ‖θ‖1
√

log(n), the above implies 1′kA1` � ‖θ‖21. We combine this

result with the probability union bound. It follows that there exists a constant C2 > 1 such

that with probability 1−O(n−3),

C−1
2 ‖θ‖

2
1 ≤ min

1≤k,`≤m
{1′kA1`} ≤ max

1≤k,`≤m
{1′kA1`} ≤ C2‖θ‖21 (3.C.133)

We plug it into the expression of P̂k` above and can easily see that

‖P̂‖max ≤ C, with probability 1−O(n−3). (3.C.134)

Second, we bound ‖θ̂‖. By (3.2.6), θ̂i = di
√

1′kA1k/(1
′
kA1n) for i ∈ N (m,0)

k . It follows

that

‖θ̂‖2 =
m∑
k=1

(1′kD
21k)(1

′
kA1k)

(1′kA1n)2
, where D = diag(d1, d2, . . . , dn).

Note that 1′kA1n =
∑m

`=1 1′kA1`. It follows from (3.C.133) that 1′kA1k � ‖θ‖21 and 1′kA1n �
‖θ‖21. As a result, ‖θ̂‖2 ≤ C‖θ‖−2

1

∑m
k=1(1′kD

21k). Since
∑m

k=1(1′kD
21k) = ‖d‖2, we

immediately have

‖θ̂‖2 ≤ C‖θ‖−2
1 ‖d‖

2, with probability 1−O(n−3). (3.C.135)

Recall that di =
∑

j:j 6=iAij =
∑

j:j 6=i(Ωij +Wij). Then,

‖d‖2 =
n∑
i=1

∑
j,s:j 6=i,s 6=i

(Ωij +Wij)(Ωis +Wis)

=
∑

i,j,s:j 6=i,s 6=i
ΩijΩis + 2

∑
i 6=j

( ∑
s/∈{i,j}

Ωis

)
Wij︸ ︷︷ ︸

≡X1

+
∑
i 6=j

W 2
ij︸ ︷︷ ︸

≡X2

+
∑

i,j,s(dist)

WijWis︸ ︷︷ ︸
≡X3

.

Since
∑

s/∈{i,j}Ωis ≤ Cθi‖θ‖1, we have E[X2
1 ] ≤

∑
i 6=j Cθ

2
i ‖θ‖21 · E[W 2

ij ] ≤ C‖θ‖33‖θ‖31. More-

over, X2 ≥ 0 and E[X2] =
∑

i 6=j E[W 2
ij ] ≤ C‖θ‖21. Last, E[X2

3 ] = 2
∑

i,j,s(dist) Var(WijWis) ≤
C
∑

i,j,s θ
2
i θjθs ≤ C‖θ‖2‖θ‖21. By Markov’s inequality, for any sequence εn → 0,

|X1| ≤ C
√
ε−1
n ‖θ‖33‖θ‖31, |X2| ≤ Cε−1

n ‖θ‖21, |X3| ≤ C
√
ε−1
n ‖θ‖2‖θ‖21.

It is not hard to see that we can choose a property εn → 0 so that all the right hand sides

are o(‖θ‖21‖θ‖2). Then, with probability 1− εn,

‖d‖2 =
∑

i,j,s:j 6=i,s 6=i
ΩijΩis + o(‖θ‖21‖θ‖2) ≤ C‖θ‖2‖θ‖21.

We plug it into (3.C.135) to get

‖θ̂‖2 ≤ C‖θ‖2, with probability 1− o(1). (3.C.136)

Then, (3.C.131) follows from plugging (3.C.134) and (3.C.136) into (3.C.132). This proves

the claim.
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3.D Proof of secondary lemmas

3.D.1 Proof of Lemma 45

Note that for any set M ⊂ {1, 2, . . . , n} and z ∈ Rd,∑
i∈M
‖yi − z‖2 =

∑
i∈M
‖(yi − ȳM ) + (ȳM − z)‖2

=
∑
i∈M
‖yi − ȳM‖2 + 2(ȳM − z)′

∑
i∈M

(yi − ȳM ) + |M |‖ȳM − z‖2

=
∑
i∈M
‖yi − ȳM‖2 + |M |‖ȳM − z‖2.

The clusters associated with RSS are A = Ã ∪ C and B, and the clusters associated with

R̃SS are Ã and B̃ = C ∪B. By direct calculations,

RSS =
∑
i∈Ã

‖yi − ȳA‖2 +
∑
i∈C
‖yi − ȳA‖2 +

∑
i∈B
‖yi − ȳB‖2

=

(∑
i∈Ã

‖yi − ȳÃ‖
2 + |Ã|‖ȳ

Ã
− ȳA‖2

)
+

(∑
i∈C

(yi − ȳC)2 + |C|‖ȳC − ȳA‖2
)

+
∑
i∈B
‖yi − ȳB‖2,

R̃SS =
∑
i∈Ã

‖yi − ȳÃ‖
2 +

∑
i∈C
‖yi − ȳB̃‖

2 +
∑
i∈B
‖yi − ȳB̃‖

2

=
∑
i∈Ã

‖yi − ȳÃ‖
2 +

(∑
i∈C
‖yi − ȳC‖2 + |C|‖ȳC − ȳB̃‖

2

)
+

(∑
i∈B
‖yi − ȳB‖2 + |B|‖ȳB − ȳB̃‖

)
.

It follows that

R̃SS−RSS =
(
|B|‖ȳB−ȳB̃‖

2+|C|‖ȳC−ȳB̃‖
2
)
−
(
|Ã|‖ȳ

Ã
−ȳA‖2+|C|‖ȳC−ȳA‖2

)
. (3.D.137)

By definition,

ȳA =
|A| − |C|
|A|

ȳ
Ã

+
|C|
|A|

ȳC , ȳ
B̃

=
|B|

|B|+ |C|
ȳB +

|C|
|B|+ |C|

ȳC .

Re-arranging the terms, we have

ȳ
Ã
−ȳA =

|C|
|A| − |C|

(ȳA−ȳC), ȳ
B̃
−ȳB =

|C|
|B|+ |C|

(ȳC−ȳB), ȳC−ȳB̃ =
|B|

|B|+ |C|
(ȳC−ȳB).

(3.D.138)

We plug (3.D.138) into (3.D.137) to get

R̃SS −RSS =

(
|B| · |C|2

(|B|+ |C|)2
+ |C| · |B|2

(|B|+ |C|)2

)
‖ȳC − ȳB‖2

−

(
|Ã| · |C|2

(|A| − |C|)2
+ |C|

)
‖ȳC − ȳA‖2

=
|B||C|
|B|+ |C|

‖ȳC − ȳB‖2 −
|A||C|
|A| − |C|

‖ȳC − ȳA‖2.

This proves the claim.
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3.D.2 Proof of Lemma 47

Recall that 1k ∈ Rn is such that 1k(i) = {i ∈ Nk}, D = diag(d1, d2, . . . , dn), and d∗ = Ω1n.

We re-state the claims as
1′nA1n
1′nΩ1n

p→ 1,
1′kA1n
1′kΩ1n

p→ 1,
1′kA1k
1′kΩ1k

p→ 1. (3.D.139)

and
‖θ̂‖1
‖θ‖1

p→ 1,
‖θ̂‖
‖θ‖

p→ 1,
1′kD

21k
1′k(D

∗)21k

p→ 1. (3.D.140)

We note that convergence in `2-norm implies convergence in probability. Hence, to show

X
p→ 1 for a random variable X, it is sufficient to show E[(X − 1)2]→ 0. Using the equality

E[(X − 1)2] = (EX − 1)2 + Var(X), we only need to prove that E[X]→ 1 and Var(X)→ 0,

for each variable X on the left hand sides of (3.D.139)-(3.D.140).

First, we prove the three claims in (3.D.139). Since the proofs are similar, we only show

the proof of the first claim. Note that 1′nΩ1n =
∑

k,`(1
′
kθ)(1

′
`θ)Pk`. Under the conditions

(3.2.1)-(3.2.2), 1′nΩ1n � ‖θ‖21. Additionally, 1′ndiag(Ω)1n = ‖θ‖2. It follows that∣∣∣E[1′nA1n]

1′nΩ1n
− 1
∣∣∣ =

1′ndiag(Ω)1n
1′nΩ1n

� ‖θ‖
2

‖θ‖21
= o(1),

where the last inequality is because ‖θ‖2 ≤ θmax‖θ‖1 ≤ C‖θ‖1 and ‖θ‖1 → ∞. Also,

since the upper triangular entries of A are independent, Var(1′nA1n) = 4Var(
∑

i<j Aij) ≤
4
∑

i<j Ωij ≤ C‖θ‖21. It follows that

Var(1′nA1n)

(1′nΩ1n)2
≤ C‖θ‖21
‖θ‖41

= o(1).

Combining the above gives (1′nA1n)/(1′nΩ1n)
p→ 1.

Second, we show the first claim in (3.D.140). By Theorem 3.2.2, Π̂(K) = Π, with a

probability of 1−O(n−3). It is sufficient to consider the re-defined θ̂ where Π̂(K) is replaced

with Π. Combining it with the definition in (3.2.6), we have θ̂i = di
√

1′kA1k/(1
′
kA1n). It

follows that

‖θ̂‖1 =

K∑
k=1

(1′kd)
√

1′kA1k

1′kA1n
=

K∑
k=1

√
1′kA1k,

where the last equality is because of d = A1n. At the same time, it is easy to see that

1′kΩ1k = (1′kθ)Pkk(1
′
kθ) = (1′kθ)

2, which implies ‖θ‖1 =
∑K

k=1

√
1′kΩ1k. We thus have

‖θ̂‖1
‖θ‖1

=

K∑
k=1

δkXk, where δk =

√
1′kΩ1k∑K

`=1

√
1′`Ω1`

, Xk =

√
1′kA1k
1′kΩ1k

.

By the last claim in (3.D.139) and the continuous mapping theorem, Xk
p→ 1 for each

1 ≤ k ≤ K. Also,
∑K

k=1 δk = 1. It follows immediately that
∑K

k=1 δkXk
p→ 1. This proves

‖θ̂‖1/‖θ‖1
p→ 1.

Next, we show the last claim in (3.D.140). Recall that d∗ = Ω1n and D∗ = diag(d∗).

Then, for i ∈ Nk,
∑

i∈Nk(d
∗
i )

2 ≤ C
∑

i∈Nk(θi‖θ‖1)2 ≤ C‖θ‖2‖θ‖21. At the same time, d∗i ≥
θiPkk(1′kθ) ≥ Cθi‖θ‖1, where we have used the condition (3.2.2). As a result,

∑
i∈Nk(d∗i )

2 ≥
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C‖θ‖21
∑

i∈Nk θ
2
i ≥ C‖θ‖2‖θ‖21, where we have used (3.2.2) again. Combining the above gives

1′k(D
∗)21k � ‖θ‖2‖θ‖21. (3.D.141)

Note that 1′kD
21k =

∑
t∈Nk(

∑
i:i 6=tAit)

2 =
∑

i,j

∑
t∈Nk\{i,j}AitAjt. Similarly, 1′k(D∗)21k =∑

i,j

∑
t∈Nk ΩitΩjt. We now write

1′kD
21k =

∑
i

∑
t∈Nk\{i}

A2
it + 2

∑
i<j

∑
t∈Nk\{i,j}

AitAjt,

1′k(D
∗)21k =

∑
i

∑
t∈Nk

Ω2
it + 2

∑
i<j

∑
t∈Nk

ΩitΩjt.

Note that E[A2
it] = E[Ait] = Ωit and E[AitAjt] = ΩitΩjt. As a result,∣∣E[1′kD

21k]− 1′k(D
∗)21k

∣∣ ≤∑
i

∑
t∈Nk\{i}

(Ωit − Ω2
it) +

∑
i

Ω2
ii + 2

∑
i<j

(ΩiiΩji + ΩijΩjj)

≤ C
∑
i

∑
t∈Nk

θiθt + ‖θ‖2 + C
∑
i,j

θ3
i θj

≤ C
(
‖θ‖21 + ‖θ‖2 + ‖θ‖33‖θ‖1)

≤ C‖θ‖21,
where the last line is because ‖θ‖33 ≤ θ2

max‖θ‖1 ≤ C‖θ‖1. Combining it with (3.D.141) gives∣∣∣E[1′kD
21k]

1′k(D
∗)21k

− 1
∣∣∣ ≤ C‖θ‖21
‖θ‖2‖θ‖21

= o(1). (3.D.142)

We then compute the variance. Write for short X =
∑

i<j

∑
t∈Nk\{i,j}AitAjt. Note that

Var(1′kD
21k) ≤ 2Var

(∑
i

∑
t∈Nk\{i}

A2
it

)
+ 2Var(2X)

≤ C
∑
i

∑
t∈Nk

Ωit + 8Var(X)

≤ C‖θ‖21 + 8Var(X).

Since AitAjt = (Ωit +Wit)(Ωjt +Wjt), we write

X =
∑
i<j

∑
t∈Nk\{i,j}

ΩitΩjt + 2
∑
j

∑
t∈Nk\{j}

( ∑
i:i 6=t,i<j

Ωit

)
Wjt +

∑
i<j

∑
t∈Nk\{i,j}

WitWjt

≡ X0 + 2X1 +X2.

Here, X0 is non-stochastic. Therefore, Var(X) = Var(2X1 +X2) ≤ 8Var(X1) + 2Var(X2).

It is seen that Var(X1) ≤
∑

j

∑
t∈Nk(

∑
i Ωit)

2 · Ωjt ≤ C
∑

j

∑
t∈Nk(θt‖θ‖1)2 · θjθt ≤

C‖θ‖33‖θ‖31. Additionally, the summands in X2 are mutually uncorrelated, so Var(X3) ≤∑
i<j

∑
t∈Nk ΩitΩjt ≤ C

∑
i,j,t θiθjθ

2
t ≤ C‖θ‖21‖θ‖2. Combining the above gives

Var(X) ≤ C
(
‖θ‖33‖θ‖31 + ‖θ‖21‖θ‖2

)
≤ C‖θ‖33‖θ‖31,

where in the second inequality we have used ‖θ‖2 ≤ ‖θ‖1‖θ‖33, which is a direct consequence

of the Cauchy-Schwarz inequality. We combine the above to get

Var(1′kD
21k) ≤ C

(
‖θ‖21 + ‖θ‖33‖θ‖31) ≤ C(‖θ‖21 + θmax‖θ‖2‖θ‖31),

where in the second inequality we have used ‖θ‖33 ≤ θmax‖θ‖2. Combining it with (3.D.141)
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gives

Var(1′kD
21k)

[1′k(D
∗)21k]2

≤ C‖θ‖21
‖θ‖4‖θ‖41

+
Cθmax‖θ‖2‖θ‖31
‖θ‖4‖θ‖41

= o(1). (3.D.143)

By (3.D.142) and (3.D.143), we have (1′kD
21k)/[1

′
k(D

∗)21k]
p→ 1.

Last, we show the second claim in (3.D.140). Since θ̂i = di
√

1′kA1k/(1
′
kA1n), we have

‖θ̂‖2 =

K∑
k=1

(1′kD
21k)(1

′
kA1k)

(1′kA1n)2
.

At the same time, 1′kΩ1k = (1′kθ)
2 and 1′kΩ1n = (1′kθ)[

∑K
`=1 Pk`(1

′
`θ)]. Furthermore, for

i ∈ Nk, d∗i = (Ω1n)i = θi[
∑K

`=1 Pk`(1
′
`θ)], and so 1′k(D

∗)21n = (1′kΘ
21k)[

∑K
`=1 Pk`(1

′
`θ)]

2.

Combining these equalities gives

‖θ‖2 =

K∑
k=1

1′kΘ
21k =

K∑
k=1

[1′k(D
∗)21k](1

′
kΩ1k)

(1′kΩ1n)2
.

It follows that

‖θ̂‖2

‖θ‖2
=

K∑
k=1

δ̃kX̃k, where δ̃k =

[1′k(D∗)21k](1′kΩ1k)

(1′kΩ1n)2∑K
`=1

[1′`(D
∗)21`](1

′
`Ω1`)

(1′`Ω1n)2

, X̃k =
1′kD

21k
1′k(D

∗)21k

1′kA1k
1′kΩ1k

(1′kΩ1n)2

(1′kA1n)2
.

By the claims in (3.D.139) and the last claim in (3.D.140), as well as the continuous

mapping theorem, we have X̃k
p→ 1 for each 1 ≤ k ≤ K. Since

∑K
k=1 δ̃k = 1, it follows that∑K

k=1 δ̃kX̃k
p→ 1. This proves that ‖θ̂‖2/‖θ‖2 p→ 1. By the continuous mapping theorem

again, ‖θ̂‖/‖θ‖ p→ 1.

3.D.3 Proof of Lemma 49

We introduce a notation Mijk`(X) = XijXjkXk`X`i, for any symmetric n× n matrix X and

distinct indices (i, j, k, `). Using the definition in (3.C.130), we can write

Q∗(m,0)
n − Q̃(m,0)

n

=
∑

i1,i2,i3,i4(dist)

[Mi1i2i3i4(X∗)−Mi1i2i3i4(X̃)], where

X∗ij = Ω̃
(m,0)
ij +Wij + δ

(m,0)
ij ,

X̃ij = Ω̃
(m,0)
ij +Wij .

For the rest of the proof, we omit superscripts in Ω̃
(m,0)
ij and δ

(m,0)
ij to simplify notations.

From the expression of X∗ij and X̃ij , we notice that [Mi1i2i3i4(X∗)−Mi1i2i3i4(X̃)] expands

to 34 − 24 = 65 terms. Consequently, there are 65 post-expansion sums in Q
∗(m,0)
n − Q̃(m,0)

n ,

each with the form∑
i1,i2,i3,i4(dist)

ai1i2bi2i3ci3i4di4i1 , where a, b, c, d ∈ {Ω̃,W, δ}.

In the first 4 columns of Table 3.3, we group these post-expansion sums into 15 distinct

terms, where the second column shows the counts of each distinct term. For example, in the

setting of Lemma 38, Ω̃ reduces to a zero matrix. Therefore, any post-expansion sum that

involves Ω̃ is zero. Then, it follows from Table 3.3 that

Q∗(m,0)
n − Q̃(m,0)

n = 4Y1 + 4Z1 + 2Z2 + 4T1 + F, (3.D.144)
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where the expression of (Y1, Z1, Z2, T1, F ) are given in the fourth column of Table 3.3.

Similarly, in the setting of Lemma 43, we have Q
∗(m,0)
n −Q̃(m,0)

n = 4Y1+8Y2+4Y3+· · ·+4T2+F .

These are elementary calculations.

Table 3.3: The 10 types of the post-expansion sums for (Q
∗(m,0)
n − Q̃(m,0)

n ). Notations: same
as in Table 3.2.

Type # Name Formula Abs. Mean Variance

Ia 4 Y1
∑

i1,i2,i3,i4
(dist)

δi1i2Wi2i3Wi3i4Wi4i1 0 ≤ C‖θ‖2‖θ‖63 = o(‖θ‖8)

Ib 8 Y2
∑

i1,i2,i3,i4
(dist)

δi1i2Ω̃i2i3Wi3i4Wi4i1 0 ≤ Cτ2‖θ‖4‖θ‖63 = o(‖θ‖8)

4 Y3
∑

i1,i2,i3,i4
(dist)

δi1i2Wi2i3Ω̃i3i4Wi4i1 0 ≤ Cτ2‖θ‖4‖θ‖63 = o(‖θ‖8)

Ic 8 Y4
∑

i1,i2,i3,i4
(dist)

δi1i2Ω̃i2i3Ω̃i3i4Wi4i1 ≤ Cτ2‖θ‖6=o(τ4‖θ‖8) ≤ Cτ4‖θ‖10‖θ‖33
‖θ‖1 = o(τ6‖θ‖8‖θ‖63)

4 Y5
∑

i1,i2,i3,i4
(dist)

δi1i2Ω̃i2i3Wi3i4Ω̃i4i1 0 ≤ Cτ4‖θ‖4‖θ‖93
‖θ‖1 = o(‖θ‖8)

Id 4 Y6
∑

i1,i2,i3,i4
(dist)

δi1i2Ω̃i2i3Ω̃i3i4Ω̃i4i1 0 ≤ Cτ6‖θ‖12‖θ‖33
‖θ‖1 = O(τ6‖θ‖8‖θ‖63)

IIa 4 Z1
∑

i1,i2,i3,i4
(dist)

δi1i2δi2i3Wi3i4Wi4i1 ≤ C‖θ‖4=o(τ4‖θ‖8) ≤ C‖θ‖2‖θ‖63 = o(‖θ‖8)

2 Z2
∑

i1,i2,i3,i4
(dist)

δi1i2Wi2i3δi3i4Wi4i1 ≤ C‖θ‖4=o(τ4‖θ‖8) ≤ C‖θ‖6‖θ‖33
‖θ‖1 = o(‖θ‖8)

IIb 8 Z3
∑

i1,i2,i3,i4
(dist)

δi1i2δi2i3Ω̃i3i4Wi4i1 0 ≤ Cτ2‖θ‖4‖θ‖63 = o(‖θ‖8)

4 Z4
∑

i1,i2,i3,i4
(dist)

δi1i2Ω̃jkδi3i4Wi4i1 ≤ Cτ‖θ‖4=o(τ4‖θ‖8) ≤ Cτ2‖θ‖8‖θ‖33
‖θ‖1 = o(‖θ‖8)

IIc 4 Z5
∑

i1,i2,i3,i4
(dist)

δi1i2δi2i3Ω̃i3i4Ω̃i4i1 ≤ Cτ2‖θ‖6=o(τ4‖θ‖8) ≤ Cτ4‖θ‖14

‖θ‖21
= o(τ6‖θ‖8‖θ‖63)

2 Z6
∑

i1,i2,i3,i4
(dist)

δi1i2Ω̃i2i3δi3i4Ω̃i4i1
Cτ2‖θ‖8
‖θ‖21

=o(τ4‖θ‖8) ≤ Cτ4‖θ‖8‖θ‖63
‖θ‖21

= o(‖θ‖8)

IIIa 4 T1
∑

i1,i2,i3,i4
(dist)

δi1i2δi2i3δi3i4Wi4i1 ≤ C‖θ‖4=o(τ4‖θ‖8) ≤ C‖θ‖6‖θ‖33
‖θ‖1 = o(‖θ‖8)

IIIb 4 T2
∑

i1,i2,i3,i4
(dist)

δi1i2δi2i3δi3i4Ω̃i4i1 ≤ Cτ‖θ‖6
‖θ‖31

=o(τ4‖θ‖8) ≤ Cτ2‖θ‖8‖θ‖33
‖θ‖1 = o(‖θ‖8)

IV 1 F
∑

i1,i2,i3,i4
(dist)

δi1i2δi2i3δi3i4δi4i1 ≤ C‖θ‖4=o(τ4‖θ‖8) ≤ C‖θ‖10

‖θ‖21
= o(‖θ‖8)

To show the claim, we need to study the mean and variance of each post-expansion sum.

We take Y1 for example. Let N (m,0)
1 ,N (m,0)

2 , . . . ,N (m,0)
m be the pseudo-communities defined

by Π0. For each 1 ≤ i ≤ n, let τ(i) ∈ {1, 2, . . . ,m} be the index of the pseudo-community

that contains node i. By (3.C.125),

δi1i2 = Uτ(i1)τ(i2)

[
(Edi1)(Edi2 − di2) + (Edi2)(Edi1 − di1)

]
= Uτ(i1)τ(i2) · Edi1 ·

(
−
∑
j:j 6=i2

Wji2

)
+ Uτ(i1)τ(i2) · Edi2 ·

(
−
∑
`:`6=i1

W`i1

)
= −2

∑
j:j 6=i2

Uτ(i1)τ(i2) · Edi1 ·Wji2 . (3.D.145)

It follows that

Y1 = −2
∑

i2,i3,i4,j

(∑
i1

Uτ(i1)τ(i2) · Edi1
)
·Wji2Wi2i3Wi3i4Wi4i1 ,

where we note that the indices {i1, i2, i3, i4, j} have to satisfy the constraint that i1, i2, i3, i4
are distinct and that j 6= i2. We can see that Y1 is a weighted sum of Wji2Wi2i3Wi3i4Wi4i1 ,
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where the summands have zero mean and are mutually uncorrelated. The mean and variance

of Y1 can be calculated easily. We will use the same strategy to analyze each term in

Table 3.3— we use the expansion of δij in (3.D.145) to write each post-expansion sum

as a weighted sum of monomials of W , and then we calculate the mean and variance.

The calculations can become very tedious for some terms (e.g., T1, T2 and F ), because of

combinatorics. Fortunately, similar calculations were done in the proof of Theorem 4.4 in

Jin et al. (2019), where they analyzed a special case with Uk` ≡ 1/v for all 1 ≤ k, ` ≤ m.

However, their proof does not rely on that Uk`’s are equal but only require that Uk`’s have a

uniform upper bound. Essentially, they have proved the following lemma:

Lemma 52. Consider a DCBM model where (3.2.1)-(3.2.2) and (3.2.4) hold. Let W = A−Ω

and ∆ =
∑

i1,i2,i3,i4(dist)

[
Mi1i2i3i4

(
Ω̃+W+δ

)
−Mi1i2i3i4

(
Ω̃+W

)]
, where Ω̃ is a non-stochastic

symmetric matrix, δij = vij · [(Edi)(Edj − dj) + (Edj)(Edi − di)], {vij}1≤i 6=j≤n are non-

stochastic scalars, di is the degree of node i, and Mi1i2i3i4(·) is as defined above. As n→∞,

suppose there is a constant C > 0 and a scalar αn > 0 such that αn ≤ C, αn‖θ‖ → ∞,

|Ω̃ij | ≤ Cαnθiθj and |vij | ≤ C‖θ‖−1
1 for all 1 ≤ i, j ≤ n. Then, |E[∆]| = o(α4

n‖θ‖8) and

Var(∆) ≤ Cα6
n‖θ‖8‖θ‖63 + o(‖θ‖8). Furthermore, if Ω̃ is a zero matrix, then |E[∆]| ≤ C‖θ‖4

and Var(∆) = o(‖θ‖8).

We check the conditions of Lemma 52. By Lemma 41, τ ≤ C, τ‖θ‖ → ∞, and |Ω̃ij | ≤ Cτθiθj .
We now verify that Uk` has a uniform upper bound for all 1 ≤ k, ` ≤ m. By (3.C.123),

Uk` = (1′kE[A]1`)/[(1
′
kE[d])(1′`E[d])].

where 1k = 1
(m,0)
k is the same as in (3.C.108). Since E[Aij ] = Ωij ≤ Cθiθj , we have

0 ≤ 1′kE[A]1` ≤ C‖θ‖21. At the same time, by the NSP of SCORE, for each 1 ≤ k ≤ m,

there is at least one true community Nk∗ such that Nk∗ ⊂ N
(m,0)
k . It follows that 1′kE[d] =∑

i∈N (m,0)
k

∑
j:j 6=i Ωij ≥

∑
{i,j}⊂Nk∗ ,i 6=j θiθjPkk = ‖θ(k)‖21[1 + o(1)] ≥ C‖θ‖21, where the last

inequality is from the condition (3.2.2). We plug these results into Uk` to get

0 ≤ Uk` ≤ C‖θ‖−2
1 . (3.D.146)

Then, the conditions of Lemma 52 are satisfied. We apply this lemma with αn = τ and

vij = Uk` for i ∈ N (m,0)
k and j ∈ N (m,0)

` . It yields that, under the conditions of Lemma 43,∣∣E[Q∗(m,0)
n − Q̃(m,0)

n ]
∣∣ = o(τ4‖θ‖8), Var

(
Q∗(m,0)
n − Q̃(m,0)

n

)
≤ Cτ6‖θ‖8‖θ‖63 + o(‖θ‖8),

and that under the conditions of Lemma 38 (where Ω̃ is a zero matrix)∣∣E[Q∗(m,0)
n − Q̃(m,0)

n ]
∣∣ ≤ C‖θ‖4, Var

(
Q∗(m,0)
n − Q̃(m,0)

n

)
≤ o(‖θ‖8).

This proves all the desirable claims except for the following one: Under conditions of

Lemma 38. It remains to show that, under the conditions of Lemma 38,

E[Q∗(m,0)
n − Q̃(m,0)

n ] = bn + o(‖θ‖4). (3.D.147)

We now show (3.D.147). By (3.D.144), we only need to calculate the expectations

of Y1, Z1, Z2, T1 and F . From Table 3.3, E[Y1] = 0. We now study E[Z1]. Recall that

δij = Uτ(i)τ(j)[(Edi)(Edj−dj)+(Edj)(Edi−di)], where τ(i) is the index of pseudo-community
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3. estimating the number of communities by stepwise goodness-of-fit

defined by Π0 that contains node i. We plug δij into Z1, by elementary calculations,

Z1 =
∑

i1,i2,i3,i4(dist)

Uτ(i1)τ(i2)Uτ(i2)τ(i3)(Edi1)(Edi2 − di2)2(Edi3)Wi3i4Wi4i1

+ 2
∑

i1,i2,i3,i4(dist)

Uτ(i1)τ(i2)Uτ(i2)τ(i3)(Edi1)(Edi2 − di2)(Edi2)(Edi3 − di3)Wi3i4Wi4i1

+
∑

i1,i2,i3,i4(dist)

Uτ(i1)τ(i2)Uτ(i2)τ(i3)(Edi1 − di1)(Edi2)2(Edi3 − di3)Wi3i4Wi4i1 .

We write it as Z1 = Z11 + 2Z12 +Z13. For Z1k, we can further replace Edi−di by
∑

j:j 6=iWji

and write Z1k as a weighted sum of monomials of W . Then, E[Z1k] 6= 0 if some of the

monomials are W 2
i3i4

W 2
i4i1

. This will not happen in Z11 and Z12, and so only Z13 has a

nonzero mean. It is seen that

E[Z13] = E
[ ∑
i1,i2,i3,i4

(dist)

Uτ(i1)τ(i2)Uτ(i2)τ(i3)

( ∑
j:j 6=i1

Wji1

)
(Edi2)2

( ∑
k:k 6=i3

Wi3k

)
Wi3i4Wi4i1

]

= E
[ ∑
i1,i2,i3,i4(dist)

Uτ(i1)τ(i2)Uτ(i2)τ(i3)

(
Wi4i1

)
(Edi2)2(Wi3i4) ·Wi3i4Wi4i1

]
=

∑
i1,i2,i3,i4(dist)

Uτ(i1)τ(i2)Uτ(i2)τ(i3)(Edi2)2 · E[W 2
i3i4W

2
i4i1 ]

=
∑

k1,k2,k3,k4

4∑
j=1

∑
ij∈Nkj

Uk1k2Uk2k3(Edi2)2 · E[W 2
i3i4W

2
i4i1 ].

(3.D.148)

Here, in the second line, we only keep (j, k) = (i4, i4), because other (j, k) only contribute

zero means. Recall that we are considering the setting of Lemma 38, where m = K and

Π0 = Π. In (3.C.122), we introduce a proxy of Uk` as U∗k` = (1′kΩ1`)/[(1
′
kΩ1n)(1′kΩ1n)], for

all 1 ≤ k, ` ≤ K. Note that Ωij = θiθjPk` for i ∈ Nk and j ∈ N`. At the same time, by

(3.4.21), gk = (1′kθ)/‖θ‖1, and Vkk = (diag(Pg))kk = [
∑

` Pk`(1
′
`θ)]/‖θ‖1. It follows that

U∗k` =
Pk`(1

′
kθ)(1

′
`θ)

(1′kθ)[
∑

k1
Pkk1(1′k1

θ)] · (1′`θ)[
∑

`1
P``1(1′`1θ)]

=
Pk`

VkkV``‖θ‖21
.

Comparing Uk` with U∗k` (see (3.C.122)-(3.C.123)), the difference is negligible. (We can

rigorously justify this by directly computing the difference caused by replacing Uk` with U∗k`,

similarly as in the proof of cn = tr(Ω̃4) + o(‖θ‖8) in Section 3.C.1; see details therein. Such

calculations are too elementary and so omitted.) We thus have

Uk` = [1 + o(1)] · Pk`
VkkV``‖θ‖21

. (3.D.149)

Furthermore, for i ∈ Nk,

E[di] = [1 + o(1)]
n∑
j=1

Ωij = [1 + o(1)] · θi
[ K∑
`=1

Pk`(1
′
`θ)
]

= [1 + o(1)] · θi‖θ‖1Vkk. (3.D.150)
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Also, E[W 2
ij ] = Ωij(1− Ωij) = Ωij [1 + o(1)]. We plug these results into (3.D.148) to get

E[Z13] = [1 + o(1)]
∑
k1,k2,
k3,k4

4∑
j=1

∑
ij∈Nkj

Pk1k2Pk2k3

Vk1k1V
2
k2k2

Vk3k3‖θ‖41
·
(
θ2
i2‖θ‖

2
1V

2
k2k2

)
· Ωi3i4Ωi4i1

= [1 + o(1)]
∑
k1,k2,
k3,k4

Pk1k2Pk2k3Pk3k4Pk4k1

Vk1k1Vk3k3‖θ‖21

( ∑
ij∈Nkj

4∑
j=1

θi1θ
2
i2θi3θ

2
i4

)

= [1 + o(1)]
∑
k1,k2,
k3,k4

Pk1k2Pk2k3Pk3k4Pk4k1

Vk1k1Vk3k3‖θ‖21

(
‖θ‖4‖θ‖21 · gk1gk3H

2
k2k2

H2
k4k4

)
= [1 + o(1)]‖θ‖4

∑
k1,k3

gk1

Vk1k1

(∑
k2

Pk1k2H
2
k2k2

Pk2k3

)(∑
k4

Pk3k4H
2
k4k4

Pk4k1

) gk3

Vk3k3

= [1 + o(1)]‖θ‖4
∑
k1,k3

(V −1g)k1(PH2P )k1k3(PH2P )k3k1(V −1g)k3

= [1 + o(1)]‖θ‖4 · g′V −1[(PH2P ) ◦ (PH2P )]V −1g

= [1 + o(1)] · bn/2,
where in the third line we have used the definition of H which gives Hkk = (1′kΘ21k)1/2/‖θ‖.
It follows that

E[Z1] = E[Z13] = [1 + o(1)] · bn/2. (3.D.151)

We then study E[Z2]. Similarly, we first plug in δij = Uτ(i)τ(j)[(Edi)(Edj−dj)+(Edj)(Edi−di)]
and then plug in di − Edi =

∑
j 6=iWij . This allows us to write Z2 as a weighted sum of

monomials of W . When calculating E[Z2], we only keep monomials of the form W 2
i1i4

W 2
i2i3

.

It follows that

E[Z2] = E
[
2

∑
i1,i2,i3,i4(dist)

Uτ(i1)τ(i2)(Edi1)(Edi2 − di2)Wi2i3Uτ(i3)τ(i4)(Edi3)(Edi4 − di4)Wi4i1

]

= E
[
2

∑
i1,i2,i3,i4(dist)

Uτ(i1)τ(i2)(Edi1)W 2
i2i3Uτ(i3)τ(i4)(Edi3)W 2

i4i1

]

= 2
∑
k1,k2,
k3,k4

4∑
j=1

∑
ij∈Nj

Uk1k2Uk3k4(Edi1)(Edi3)W 2
i2i3W

2
i1i4

= 2 [1 + o(1)]
∑
k1,k2,
k3,k4

4∑
j=1

∑
ij∈Nj

Pk1k2Pk3k4

Vk1k1Vk2k2Vk3k3Vk4k4‖θ‖41

(
θi1θi3‖θ‖21Vk1k1Vk3k3

)
· Ωi2i3Ωi1i4

= 2 [1 + o(1)]
∑
k1,k2,
k3,k4

Pk1k2Pk3k4Pk2k3Pk1k4

Vk2k2Vk4k4‖θ‖21

( 4∑
j=1

∑
ij∈Nj

θ2
i1θi2θ

2
i3θi4

)
= [1 + o(1)] · 2‖θ‖4g′V −1[(PH2P ) ◦ (PH2P )]V −1g.

Here, the first two lines come from discarding terms with mean zero, the fourth line is

because of (3.D.149)-(3.D.150), and the last line is obtained similarly as in the equation
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3. estimating the number of communities by stepwise goodness-of-fit

above (3.D.151). Hence,

E[Z2] = bn · [1 + o(1)]. (3.D.152)

We then study E[T1]. We plug in δij = Uτ(i)τ(j)[(Edi)(Edj − dj) + (Edj)(Edi − di)] to get

T1 = 2
∑

i1,i2,i3,i4
(dist)

Uτ(i1)τ(i2)Uτ(i2)τ(i3)Uτ(i3)τ(i4)×

(Edi1)(Edi2 − di2)2(Edi3)2(Edi4 − di4)Wi4i1 + rem

≡ 2T11 + rem.

We claim that

|E[rem]| = o(‖θ‖4).

The calculations here are similar to those in Equation (E.176) of Jin et al. (2019), where

T1 there (with a slightly different meaning) is decomposed into 2T1a + 2T1b + 2T1c + 2T1d.

Here, T11 is analogous to T1d, and the remainder term is analogous to 2T1a + 2T1b + 2T1c.

In Jin et al. (2019), it was shown that |E[T1a]|+ |E[T1b]|+ |E[T1c]| = o(‖θ‖4); see Equations

(E.179)-(E.181) in Jin et al. (2019). We can adapt their proof to show |E[rem]| = o(‖θ‖4).

Since the calculations are elementary, we omit the details to save space. We then compute

E[T11]. Since Edi − di = −
∑

j:j 6=iWji, it follows that

E[T11] = −E
[∑
k1,k2
k3,k4

4∑
j=1

∑
ij∈Nkj

Uk1k2Uk2k3Uk3k4(Edi1)
( ∑
i5:i5 6=i2

Wi2i5

)2
(Edi3)2

( ∑
i6:i6 6=i4

Wi4i6

)
Wi4i1

]

= −E
[∑
k1,k2
k3,k4

4∑
j=1

∑
ij∈Nkj

Uk1k2Uk2k3Uk3k4(Edi1)
( ∑
i5:i5 6=i2

W 2
i2i5

)
(Edi3)2W 2

i4i1

]

= −
∑
k1,k2
k3,k4

4∑
j=1

∑
ij∈Nkj

Uk1k2Uk2k3Uk3k4(Edi1)(Edi3)2E[W 2
i4i1 ]

( ∑
i5:i5 6=i2

E[W 2
i2i5 ]

)

= −
∑
k1,k2
k3,k4

4∑
j=1

∑
ij∈Nkj

Uk1k2Uk2k3Uk3k4(Edi1)(Edi3)2E[W 2
i4i1 ] · [1 + o(1)]

(
θi2‖θ‖1

∑
k5

Pk2k5gk5︸ ︷︷ ︸
Vk2k2

)

= −[1 + o(1)]
∑
k1,k2
k3,k4

Pk1k2Pk2k3Pk3k4Pk1k4

Vk2k2Vk4k4‖θ‖21

( 4∑
j=1

∑
ij∈Nkj

θ2
i1θi2θ

2
i3θi4

)
= −[1 + o(1)] · ‖θ‖4g′V −1[(PH2P ) ◦ (PH2P )]V −1g,

where we have plugged in (3.D.149)-(3.D.150) in the second last line, and the last line

can be derived similarly as in the equation above (3.D.151). We have proved E[T11] =

−[1 + o(1)] · bn/2. Then,

E[T1] = 2E[T11] + o(‖θ‖4) = −bn · [1 + o(1)]. (3.D.153)

We then study E[F ]. Similar to the analysis of T1, after plugging in δij = Uτ(i)τ(j)[(Edi)(Edj−
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dj) + (Edj)(Edi − di)], we can obtain that

F = rem+ 2
∑

i1,i2,i3,i4(dist)

Uτ(i1)τ(i2)Uτ(i2)τ(i3)Uτ(i3)τ(i4)Uτ(i4)τ(i1)×

(Edi1)(Edi2 − di2)2(Edi3)2(Edi4 − di4)2(Edi1),

≡ rem+ 2F1, where |E[rem]| = o(‖θ‖4).

The proof of |E[rem]| = o(‖θ‖4) is similar to the proof of (E.188)-(E.189) in Jin et al.

(2019). There they analyzed a quantity F , which bears some similarity to the F here, and

decomposed F = 2Fa+ 12Fb+ 2Fc, where 2Fa+ 12Fb is analogous to rem here. They proved

that |E[Fa]|+ |E[Fb]| = o(‖θ‖4). We can mimic their proof to show |E[rem]| = o(‖θ‖4). By

direct calculations,

E[F1] = E
[∑
k1,k2
k3,k4

4∑
j=1

∑
ij∈Nkj

Uk1k2Uk2k3Uk3k4Uk4k1(Edi1)2(Edi3)2(Edi2 − di2)2(Edi4 − di4)2

]

= E
[∑
k1,k2
k3,k4

4∑
j=1

∑
ij∈Nkj

Uk1k2Uk2k3Uk3k4Uk4k1(Edi1)2(Edi3)2
( ∑
i5:i5 6=i2

W 2
i2i5

)( ∑
i6:i6 6=i4

W 2
i4i6

)]

= [1 + o(1)]
∑
k1,k2
k3,k4

4∑
j=1

∑
ij∈Nkj

Pk1k2Pk2k3Pk3k4Pk4k1θ
2
i1
θ2
i3

V 2
k2k2

V 2
k4k4
‖θ‖41

(
θi2‖θ‖1

∑
k5

Pk2k5gk5︸ ︷︷ ︸
Vk2k2

)(
θi4‖θ‖1

∑
k6

Pk4k6gk6︸ ︷︷ ︸
Vk4k4

)

= [1 + o(1)]
∑
k1,k2
k3,k4

Pk1k2Pk2k3Pk3k4Pk4k1

Vk2k2Vk4k4‖θ‖21

( 4∑
j=1

∑
ij∈Nkj

θ2
i1θi2θ

2
i3θi4

)
= [1 + o(1)] · ‖θ‖4g′V −1[(PH2P ) ◦ (PH2P )]V −1g,

where in the second line we discard terms with mean zero, in the third line we plug in

(3.D.149)-(3.D.150), and in the last line we use elementary calculations similar to those in

the equation above (3.D.151). It follows that E[F1] = [1 + o(1)] · bn/2 and that

E[F ] = 2E[F1] + o(‖θ‖4) = [1 + o(1)] · bn. (3.D.154)

We now plug (3.D.151), (3.D.152), (3.D.153), and (3.D.154) into (3.D.144) to get

E[Q∗(m,0)
n − Q̃(m,0)

n ] = 4E[Z1] + 2E[Z2] + 4E[T1] + E[F ]

= [1 + o(1)] · [4(bn/2) + 2bn − 4bn + bn]

= [1 + o(1)] · bn.
Since bn � ‖θ‖4, (3.D.147) follows immediately.
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3.D.4 Proof of Lemma 50

Similar to the proof of Lemma 49, we use the notation Mijk`(X) = XijXjkXk`X`i. By

(3.C.130),

Q̃∗(m,0)
n −Q∗(m,0)

n =
∑

i1,i2,i3,i4(dist)

[Mi1i2i3i4(X̃∗)−Mi1i2i3i4(X∗)],

where

X̃∗ij = Ω̃
(m,0)
ij +Wij + δ

(m,0)
ij + r̃

(m,0)
ij ,

X∗ij = Ω̃
(m,0)
ij +Wij + δ

(m,0)
ij .

For the rest of the proof, we omit the superscripts (m, 0) in (Ω̃, δ, r̃). There are 44−34 = 175

post-expansion sums in Q̃
∗(m,0)
n −Q∗(m,0)

n , each with the form

S ≡
∑

i1,i2,i3,i4(dist)

ai1i2bi2i3ci3i4di4i1 , where a, b, c, d ∈ {Ω̃,W, δ, r̃}. (3.D.155)

Here we use S as a generic notation for any post-expansion sum. To show the claim, it

suffices to bound |E[S]| and Var(S) for each post-expansion sum S.

We now study S. Let N (m,0)
1 ,N (m,0)

2 , . . . ,N (m,0)
m be the pseudo-communities defined by

Π0. By (3.C.125) and (3.C.126), for i ∈ N (m,0)
k and j ∈ N (m,0)

` ,

δij = Uk`
[
(Edi)(dj − Edj) + (Edj)(di − Edi)

]
, r̃ij = −Ûk`(di − Edi)(dj − Edj).

The term Ûk` has a complicated correlation with each summand, so we want to “replace” it

with Uk`. Introduce a proxy of r̃ij as

rij = −Uk`(di − Edi)(dj − Edj) (3.D.156)

We define a proxy of S as

T ≡
∑

i1,i2,i3,i4(dist)

ai1i2bi2i3ci3i4di4i1 , where a, b, c, d ∈ {Ω̃,W, δ, r}. (3.D.157)

We note that T is also a generic notation, and it has a one-to-one correspondence with S. For

example, if S =
∑

i1,i2,i3,i4(dist) δi1i2Wi2i3Ω̃i3i4 r̃i4i1 , then T =
∑

i1,i2,i3,i4(dist) δi1i2Wi2i3Ω̃i3i4ri4i1 ;

if S =
∑

i1,i2,i3,i4(dist) δi1i2 r̃i2i3 r̃i3i4Wi4i1 , then T =
∑

i1,i2,i3,i4(dist) δi1i2ri2i3ri3i4Wi4i1 . There-

fore, to bound the mean and variance of S, we only need to study T and S − T separately.

First, we study the mean and variance of T . Since di − Edi =
∑

j:j 6=iWij , we can

write δij as a linear form of W and rij as a quadratic form of W . We then plug them

into the expression of T and write T as a weighted sum of monomials of W . Take T =∑
i1,i2,i3,i4(dist) ri1i2Wi2i3Wi3i4Wi4i1 for example. It can be re-written as (note: τ(i) is the

index of pseudo-community that contains node i)

T = −
∑

i1,i2,i3,i4(dist)

Uτ(i1)τ(i2)

( ∑
j1:j1 6=i1

Wi1j1

)( ∑
j2:j2 6=i2

Wi2j2

)
Wi2i3Wi3i4Wi4i1

= −
∑

i1,i2,i3,i4(dist)
j1,j2:j1 6=i1,j2 6=i2

Uτ(i1)τ(i2)Wi1j1Wi2j2Wi2i3Wi3i4Wi4i1 .

Then, we can compute the mean and variance of T directly. We use the same strategy to

analyze each of the 175 post-expansion sums of the form (3.D.157). Similar calculations

were conducted in the proof of Lemma E.11 of Jin et al. (2019). The setting of Lemma E.11
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is a special case where Uk` ≡ 1/v for a scalar v. However, their proof does not rely on that

Uk`’s are equal to each other. Instead, their proof only requires a universal upper bound on

Uk`. In fact, they have proved the following lemma:

Lemma 53. Consider a DCBM model where (3.2.1)-(3.2.2) and (3.2.4) hold. Let W =

A − Ω and ∆ =
∑

i1,i2,i3,i4(dist)

[
Mi1i2i3i4

(
Ω̃ + W + δ + r

)
−Mi1i2i3i4

(
Ω̃ + W + δ

)]
, where

Ω̃ is a non-stochastic symmetric matrix, δij = vij · [(Edi)(Edj − dj) + (Edj)(Edi − di)],

rij = −uij(di − Edi)(dj − Edj), {vij , uij}1≤i 6=j≤n are non-stochastic scalars, di is the degree

of node i, and Mi1i2i3i4(·) is as defined above. As n→∞, suppose there is a constant C > 0

and a scalar αn > 0 such that αn ≤ C, αn‖θ‖ → ∞, |Ω̃ij | ≤ Cαnθiθj, |vij | ≤ C‖θ‖−1
1 , and

|uij | ≤ C‖θ‖−1
1 for 1 ≤ i, j ≤ n. Let T be an arbitrary post-expansion sum of ∆. Then,

|E[T ]| ≤ Cα2
n‖θ‖6 + o(‖θ‖4) and Var(T ) = o

(
α6
n‖θ‖8‖θ‖63 + ‖θ‖8

)
.

We apply Lemma 53 for αn = τ and vij = uij = Uτ(i)τ(j). By Lemma 41, τ ≤ C, τ‖θ‖ → ∞,

and |Ω̃ij | ≤ Cτθiθj . In (3.D.146), we have seen that |Uk`| ≤ C‖θ‖−1
1 . The conditions of

Lemma 53 are satisfied. We immediately have: Under the conditions of Lemma 43 (note:

τ‖θ‖ → ∞)

|E[T ]| ≤ Cτ2‖θ‖6 + o(‖θ‖4) = o(τ4‖θ‖8), Var(T ) = o
(
τ6‖θ‖8‖θ‖63 + ‖θ‖8

)
, (3.D.158)

and under the conditions of Lemma 38 (i.e., Ω̃ is a zero matrix and τ = 0),

|E[T ]| = o(‖θ‖4), Var(T ) = o(‖θ‖8). (3.D.159)

Next, we study the variable (S − T ). In (3.D.155) and (3.D.157), if we group the

summands based on pseudo-communities of (i1, i2, i3, i4), then we have

S =
∑

1≤k1,k2,k3,k4≤m
Sk1k2k3k4 and T =

∑
1≤k1,k2,k3,k4≤m

Tk1k2k3k4 ,

where Sk1k2k3k4 contains all the summands such that is ∈ N (m,0)
ks

for s = 1, 2, 3, 4. By

straightforward calculations and definitions of (rij , r̃ij), we have

Sk1k2k3k4 = Û `ak1k2
Û `bk2k3

Û `ck3k4
Û `dk4k1

4∑
s=1

∑
is∈N (m,0)

ks

ãi1i2 b̃i2i3 c̃i3i4 d̃i4i1 ,

Tk1k2k3k4 = U `ak1k2
U `bk2k3

U `ck3k4
U `dk4k1

4∑
s=1

∑
is∈N (m,0)

ks

ãi1i2 b̃i2i3 c̃i3i4 d̃i4i1 ,

where ãij , b̃ij , c̃ij , d̃ij ∈
{

Ω̃ij , Wij , δij , −(di − Edi)(dj − Edj)
}
.

Here `a ∈ {0, 1} is an indicator about whether aij takes the value of r̃ij in S, and (`b, `c, `d)

are similar. For example, if S =
∑

i1,i2,i3,i4(dist) δi1i2Wi2i3Ω̃i3i4 r̃i4i1 , then (`a, `b, `c, `d) =

(0, 0, 0, 1); if S =
∑

i1,i2,i3,i4(dist) δi1i2 r̃i2i3 r̃i3i4Wi4i1 , then (`a, `b, `c, `d) = (0, 1, 1, 0). For any

post-expansion sum S considered here, 1 ≤ `a + `b + `c + `d ≤ 4. To study the difference

between Sk1k2k3k4 and Tk1k2k3k4 , we introduce an intermediate term

Rk1k2k3k4 =
( 1

‖θ‖21

)`a+`b+`c+`d
4∑
s=1

∑
is∈N (m,0)

ks

ãi1i2 b̃i2i3 c̃i3i4 d̃i4i1 .
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In fact, Rk1k2k3k4 has a similar form as Tk1k2k3k4 except that the scalar Uk` in the definition

of rij (see (3.D.156)) is replaced by 1/‖θ‖21. We apply Lemma 53 with uij ≡ 1/‖θ‖21. It

yields that, under conditions of Lemma 38,

|E[Rk1k2k3k4 ]| = o(‖θ‖4), Var(Rk1k2k3k4) = o(‖θ‖8),

and under conditions of Lemma 43,

|E[Rk1k2k3k4 ]| ≤ Cτ2‖θ‖6 + o(‖θ‖4), Var(Rk1k2k3k4) = o
(
‖θ‖8 + τ6‖θ‖8‖θ‖63

)
.

Particularly, since E[X2] = (E[X])2 + Var(X) for any variable X, we have

‖θ‖−4 E[R2
k1k2k3k4

] ≤

o(‖θ‖4), for setting of Lemma 38,

Cτ4‖θ‖8 + o
(
‖θ‖4 + τ6‖θ‖4‖θ‖63

)
, for setting of Lemma 43,

=

o(‖θ‖4), for setting of Lemma 38,

C‖θ‖8, for setting of Lemma 43.

(3.D.160)

Note that in deriving (3.D.160) we have used τ ≤ C and τ6‖θ‖4‖θ‖63 ≤ τ6‖θ‖4 · θ2
max‖θ‖4 ≤

C‖θ‖8.

We now investigate (Sk1k2k3k4 − Tk1k2k3k4). By condition (3.2.1),
√

log(n)� ‖θ‖1/‖θ‖2.

Hence, we can take a sequence of xn, such that
√

log(n)� xn � ‖θ‖1/‖θ‖2, and define the

event En:

En =

{
|Uk` − Ûk`| ≤

C0xn
‖θ‖31

, for all 1 ≤ k, ` ≤ m
}
, (3.D.161)

where C0 > 0 is a constant to be decided. To bound the probability of Ecn, we recall that

(by definitions in (3.C.121) and (3.C.123))

Ûk` =
1′kA1`

(1′kd)(1′`d)
, and Uk` =

1′kE[A]1`
(1′kE[d])(1′`E[d])

,

where 1k is a shorthand notation for 1
(m,0)
k in (3.C.108). Using Bernstein’s inequality and

mimicking the argument from (E.299)-(E.300) of Jin et al. (2019), we can easily show that,

there is a constant C1 > 0 such that, for any 1 ≤ k, ` ≤ m,

P
(∣∣1′kA1` − 1′kE[A]1`

∣∣ > xn‖θ‖1
)
≤ 2 exp(−C1x

2
n). (3.D.162)

By probability union bound, with probability 1− 2m2 exp(−C1x
2
n),

max
1≤k,`≤m

{∣∣1′kA1` − 1′kE[A]1`
∣∣} ≤ xn‖θ‖1.

Furthermore, 1′kd−1′kE[d] =
∑m

`=1(1′kA1`−1′kE[A]1`). So, with probability 1−2m2 exp(−C1x
2
n),

max
1≤k≤m

{∣∣1′kd− 1′kE[d]
∣∣} ≤ m · xn‖θ‖1.

At the same time, we know that 1′kE[A]1` � ‖θ‖21 and 1′kE[d] � ‖θ‖21. We plug the

above results into the expressions of Uk` and Ûk` and can easily find that, with probability

1− 2m2 exp(−C1x
2
n),

max
1≤k,`≤m

|Ûk` − Uk`| ≤ C0xn/‖θ‖31,

for some constant C0 > 0 (C0 still depends on m, but m is bounded here). We use the same

230



3.D. Proof of secondary lemmas

C0 to define En. Then,

P(Ecn) ≤ 2m2 exp(−C1x
2
n) = o(n−L), for any fixed L > 0, (3.D.163)

where the last equality is due to x2
n � log(n). We aim to use (3.D.163) to bound

E[(Sk1k2k3k4 − Tk1k2k3k4) · IEcn ]. It is easy to see the trivial bound |Ûk`| ≤ 1 and |Uk`| ≤ 1.

Also, recall that ãij takes value in {Ω̃ij ,Wij , δij ,−(di − Edi)(dj − Edj)}, and so |aij | ≤ n2;

we have the same bound for |̃bij |, |c̃ij |, |d̃ij |. This gives a trivial bound

(Sk1k2k3k4 − Tk1k2k3k4)2 ≤ 2S2
k1k2k3k4

+ 2T 2
k1k2k3k4

≤ 2(n4 · n8)2 + 2(n4 · n8)2 = 4n24.

Combining it with (3.D.163), we have

E[(Tk1k2k3k4 − Sk1k2k3k4)2 · IEcn ] ≤ 4n24 · 2m2 exp(−C1x
2
n) = o(1). (3.D.164)

At the same time, on the event En,

|Sk1k2k3k4 − Tk1k2k3k4 |

=
∣∣Û `ak1k2

Û `bk2k3
Û `ck3k4

Û `dk4k1
− U `ak1k2

U `bk2k3
U `ck3k4

U `dk4k1

∣∣ · ‖θ‖2(`a+`b+`c+`d)
1 |Rk1k2k3k4 |

≤ C
(
|U `ak1k2

U `bk2k3
U `ck3k4

U `dk4k1
| max

1≤k,`≤m

∣∣Ûk`/Uk` − 1
∣∣) · ‖θ‖2(`a+`b+`c+`d)

1 |Rk1k2k3k4 |

≤ C‖θ‖21 · max
1≤k,`≤m

|Ûk` − Uk`| · |Rk1k2k3k4 |

≤ Cxn‖θ‖−1
1 · |Rk1k2k3k4 |

= o(‖θ‖−2) · |Rk1k2k3k4 |,
where the fourth line is because ‖θ‖−2

1 ≤ |Uk`| ≤ C‖θ‖−2
1 (e.g., see (3.D.146)) and the last

line is because xn � ‖θ‖1/‖θ‖2. It follows that

E[(Tk1k2k3k4 − Sk1k2k3k4)2 · IEn ] = o(‖θ‖−4) · E[R2
k1k2k3k4

]. (3.D.165)

We combine (3.D.164) and (3.D.165) and plug in (3.D.160). It follows that

E[(Tk1k2k3k4 − Sk1k2k3k4)2] = o(‖θ‖−4) · E[R2
k1k2k3k4

] + o(1)

=

o(‖θ‖4), under conditions of Lemma 38,

o(‖θ‖8), under conditions of Lemma 43.

Since m is bound, we immediately know that

E[(S − T )2] =

o(‖θ‖4), under conditions of Lemma 38,

o(‖θ‖8), under conditions of Lemma 43.
(3.D.166)

Last, we combine the results on T and the results on (S − T ). By (3.D.158)-(3.D.159)

and (3.D.166),

|E[S]| ≤ |E[T ]|+ |E[S − T ]||

≤ |E[T ]|+
√

E[(S − T )2]

=

o(‖θ‖4) + o(‖θ‖2) = o(‖θ‖4), for setting of Lemma 38,

o(τ4‖θ‖8) + o(‖θ‖4) = o(τ4‖θ‖8), for setting of Lemma 43.
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Additionally,

Var(S) ≤ 2Var(T ) + 2Var(S − T )

≤ 2Var(T ) + 2E[(S − T )2]

≤

o(‖θ‖8) + o(‖θ‖4) = o(‖θ‖8), for setting of Lemma 38,

o
(
‖θ‖8 + τ6‖θ‖8‖θ‖63

)
+ o(‖θ‖8) = o

(
‖θ‖8 + τ6‖θ‖8‖θ‖63

)
, for setting of Lemma 43.

This gives the desirable claim.

3.D.5 Proof of Lemma 51

Similar to the proof of Lemma 49, we use the notation Mijk`(X) = XijXjkXk`X`i. By

(3.C.130),

Q(m,0)
n − Q̃∗(m,0)

n =
∑

i1,i2,i3,i4(dist)

[Mi1i2i3i4(X)−Mi1i2i3i4(X̃∗)],

where

Xij = Ω̃
(m,0)
ij +Wij + δ

(m,0)
ij + r̃

(m,0)
ij + ε

(m,0)
ij ,

X̃∗ij = Ω̃
(m,0)
ij +Wij + δ

(m,0)
ij + r̃

(m,0)
ij .

We shall omit the superscripts (m, 0) in (Ω̃, δ, r̃, ε). Let N (m,0)
1 ,N (m,0)

2 , . . . ,N (m,0)
m be the

pseudo-communities defined by Π0. By (3.C.127), εij = α̃ij + β̃ij + γ̃ij , where for i ∈ N (m,0)
k

and j ∈ N (m,0)
` ,

α̃ij = d∗i d
∗
jU
∗
k` − (Edi)(Edj)Uk`,

β̃ij = (Uk` − Ûk`)(Edi)(Edj),

γ̃ij = (Uk` − Ûk`)[(Edi)(dj − Edj) + (Edj)(di − Edi)]. (3.D.167)

Therefore, we can write

Q(m,0)
n − Q̃∗(m,0)

n

=
∑

i1,i2,i3,i4(dist)

[Mi1i2i3i4(Ω̃ +W + δ + r̃ + α̃+ β̃ + γ̃)−Mi1i2i3i4(Ω̃ +W + δ + r̃)].

There are 74 − 44 = 2145 post-expansion sums. Let S be the generic notation for

any such post-expansion sum. Similarly as in the proof of Lemma 50, we group the

summands according to which pseudo-communities (i1, i2, i3, i4) belong to, i.e., we write

S =
∑

1≤k1,k2,k3,k4≤m Sk1k2k3k4 , where

Sk1k2k3k4 =

4∑
j=1

∑
ij∈N

(m,0)
kj

ai1i2bi2i3ci3i4di4i1 , where a, b, c, d ∈ {Ω̃,W, δ, r̃, α̃, β̃, γ̃}.

(3.D.168)

It suffices to study the mean and variance of each Sk1k2k3k4 .
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Let τ and rij be the same as in (3.4.33) and (3.D.156). Define

αij =
τ‖θ‖1
θmax

[
d∗i d
∗
jU
∗
k` − (Edi)(Edj)Uk`

]
,

βij = τUk`(Edi)(Edj),
γij = Uk`[(Edi)(dj − Edj) + (Edj)(di − Edi)]. (3.D.169)

We introduce a proxy of Sk1k2k3k4 as

S∗k1k2k3k4
=

4∑
j=1

∑
ij∈N

(m,0)
kj

ai1i2bi2i3ci3i4di4i1 , where a, b, c, d ∈ {Ω̃,W, δ, r, α, β, γ}.

(3.D.170)

Reviewing the expressions of (Ω̃ij ,Wij , δij , rij , αij , βij , γij), we know that S∗k1k2k3k4
can always

be written as a weighted sum of monomials of W , and so we can calculate the mean and

variance of S∗k1k2k3k4
(the straightforward calculations are still tedious, but later we will

introduce a simple trick to do that). Comparing (3.D.169) with (3.D.167) and rij with r̃ij ,

we observe that, for i ∈ N (m,0)
k and j ∈ N (m,0)

` ,

r̃ij =
Ûk`
Uk`

rij , α̃ij =
θmax

τ‖θ‖1
αij , β̃ij =

Uk` − Ûk`
τUk`

βij , γ̃ij =
Uk` − Ûk`

Uk`
γij .

We plug them into (3.D.168) to get

Sk1k2k3k4 =
( Ûk`
Uk`

)Nr̃( θmax

τ‖θ‖21

)Nα̃(Uk` − Ûk`
τUk`

)N
β̃
(Uk` − Ûk`

Uk`

)Nγ̃
S∗k1k2k3k4

, (3.D.171)

where Nr̃ is the count of {a, b, c, d} in (3.D.168) taking the value of r̃, and (Nα̃, Nβ̃
, Nγ̃)

are similar. For any post-expansion sum considered here, 1 ≤ Nα̃ + N
β̃

+ Nγ̃ ≤ 4. The

notation ( Ûk`Uk`
)Nr̃ is interpreted in this way: For example, if in (3.D.168) only a takes the

value of r̃, then Nr̃ = 1 and ( Ûk`Uk`
)Nr̃ =

Ûk1k2
Uk1k2

; if (a, b, c) take the value of r̃, then Nr̃ = 3 and

( Ûk`Uk`
)Nr̃ =

Ûk1k2
Uk1k2

Ûk2k3
Uk2k3

Ûk3k4
Uk3k4

. In (3.D.171), S∗k1k2k3k4
is a random variable whose mean and

variance are relatively easy to calculate. The factor in front of S∗k1k2k3k4
has a complicated

correlation with the summands in S∗k1k2k3k4
, but fortunately we can apply a simple bound

on this factor. Consider the event En as in (3.D.161). We have shown in (3.D.163) that

P(Ecn) = o(n−L) for any fixed L > 0. Therefore, the event Ecn has a negligible effect on the

mean and variance of Sk1k2k3k4 , i.e.,

E[S2
k1k2k3k4

· IEcn ] = o(1).

On the event En, we have maxk,`{|Ûk` − Uk`|/Uk`} ≤ C0xn/‖θ‖1. It follows that

|Sk1k2k3k4 | ≤
(

max
k,`

|Ûk`|
Uk`

)Nγ̃( θmax

τ‖θ‖21

)Nα̃(
max
k,`

|Uk` − Ûk`|
τUk`

)N
β̃
(

max
k,`

|Uk` − Ûk`|
Uk`

)Nγ̃
|S∗k1k2k3k4

|

≤ C
( θmax

τ‖θ‖1

)Nα̃( xn
τ‖θ‖1

)N
β̃
( xn
‖θ‖1

)Nγ̃
|S∗k1k2k3k4

|.

Since xn � ‖θ‖1
‖θ‖2 and τ‖θ‖ → ∞, we immediately have xn

‖θ‖1 = o( 1
‖θ‖2 ), xn

τ‖θ‖1 = o( 1
τ‖θ‖2 ) =

o( 1
‖θ‖) and θmax

τ‖θ‖1 ≤
θ2
max

τ‖θ‖2 = o( 1
‖θ‖). It follows that

|Sk1k2k3k4 | = o(1) · ‖θ‖−(Nα̃+N
β̃

+2Nγ̃) · |S∗k1k2k3k4
|, on the event En.
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Combining the above gives

E[S2
k1k2k3k4

] = E[S2
k1k2k3k4

· IEn ] + E[S2
k1k2k3k4

· IEcn ]

= o(1) · ‖θ‖−(2Nα̃+2N
β̃

+4Nγ̃) · E
[
(S∗k1k2k3k4

)2
]

+ o(1). (3.D.172)

It remains to bound E
[
(S∗k1k2k3k4

)2
]
. As we mentioned, we can write S∗k1k2k3k4

as a

weighted sum of monomials of W and calculate its mean and variance directly. However,

given that there are 2145 types of S∗k1k2k3k4
, the calculation is still very tedious. We now

use a simple trick to relate the S∗k1k2k3k4
to the post-expansion sums we have analyzed in

Lemmas 49-50. We first bound |αij | in (3.D.169). Since d∗i = E[di] + Ωii,

|αij | ≤
τ‖θ‖1
θmax

(
E[di]E[dj ]|U∗k` − Uk`|+ (ΩiiE[dj ] + ΩjjE[di])U

∗
k` + ΩiiΩjjU

∗
k`

)
.

By basic algebra, |(x1 + x2)/(y1 + y2)− x1/y1| ≤ |x2|/(y1 + y2) + |x1y2|/[(y1 + y2)y1]. We

apply it on (3.C.122)-(3.C.123) and note that 1′k(Ω − E[A])1` = 1′kdiag(Ω)1` = O(‖θ‖2)

and 1′k(d
∗ − E[d]) = 1′kdiag(Ω)1n = O(‖θ‖2). It yields

|U∗k` − Uk`|

≤
|1′kΩ1` − 1′kE[A]1`|

(1′kd
∗)(1′`d

∗)
+

(1′kE[A]1`) |(1′kd∗)(1′`d∗)− (1′kE[d])(1′`E[d])|
(1′kd

∗)(1′`d
∗)(1′kE[d])(1′`E[d])

≤ C‖θ‖−4
1 · 1

′
kdiag(Ω)1n + C‖θ‖−6

1 · |(1
′
kd
∗)(1′`d

∗)− (1′kE[d])(1′`E[d])|
≤ C‖θ‖−4

1 · ‖θ‖
2 + C‖θ‖−6

1 · ‖θ‖
2
1‖θ‖2

≤ C‖θ‖−3
1 θmax,

where in the last line we have used ‖θ‖2 ≤ θmax‖θ‖1. Combining the above gives

|αij | ≤
Cτ‖θ‖1
θmax

[
θiθj‖θ‖21 · ‖θ‖−3

1 θmax + (θ2
i θj‖θ‖1 + θ2

j θi‖θ‖1) · ‖θ‖−2
1 + θ2

i θ
2
j‖θ‖−2

1

]
≤ Cτ‖θ‖1

θmax
· θiθjθmax

‖θ‖1
≤ Cτθiθj .

Additionally, in (3.D.169), we observe that γij = δij . Since |Uk`| ≤ C‖θ‖−1 and E[di] ≤
Cθi‖θ‖1, it is true that |βij | ≤ Cτθiθj . We summarize the results as

|αij | ≤ Cτθiθj , |βij | ≤ Cτθiθj , γij = δij . (3.D.173)

It says that γ is the same as δ, and (α, β) behave similarly as Ω̃. Consequently, the calculation

of mean and variance of S∗k1k2k3k4
in (3.D.170) can be carried out by replacing (α, β, γ) with

(Ω̃, Ω̃, δ). In other words, we only need to study a sum like

S∗∗k1k2k3k4
=

4∑
j=1

∑
ij∈N

(m,0)
kj

ai1i2bi2i3ci3i4di4i1 , where a, b, c, d ∈ {Ω̃,W, δ, r}.

Let (N
Ω̃
, NW , Nδ, Nr, Nα, Nβ, Nγ) be the count of different terms in {a, b, c, d} determined by

S∗k1k2k3k4
, where these counts sum to 4. In S∗∗k1k2k3k4

, the counts become N∗
Ω̃

= N
Ω̃

+Nα+Nβ ,

N∗W = NW , N∗δ = Nδ +Nγ and N∗r = Nr. Luckily, anything like S∗∗k1k2k3k4
has been analyzed

in Lemmas 49-50. Especially, in light of (3.D.172), the mean and variance contributed by

any post-expansion sum considered here must be dominated by the mean and variance of

some post-expansion sum considered in Lemmas 49-50. We thus immediately obtain the

claim, without any extra calculation.
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