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Abstract

Given a symmetrical social network, the network global testing is where we use the
adjacency matrix of the network to test whether it has only one community or multiple
communities. It’s also naturally connected to the problem of estimating the number of
network communities, which is arguably one of the most important problem in network
analysis area. Despite many interesting works in recent years, it remains unclear how to
find test statistics and estimators that are (a) applicable to networks with severe degree
heterogeneity and mixed-memberships with varying sparsity, and is (b) optimal. This thesis
aims to design statistics to solve the above two problems, under a more realistic network
model. To assess optimality, we use the phase transition framework, which includes the
standard minimax argument, but is more informative.

In the first part of this thesis, we focus on the network global testing problem and
propose the Signed Polygon as a class of new tests. Fixing m > 3, for each m-gon in the
network, define a score using the centered adjacency matrix. The sum of such scores is then
the m-th order Signed Polygon statistic. The Signed Quadrilateral (SgnQ) is special example
of the Signed Polygon with m = 4. We show that SgnQ test satisfies (a) accommodate
severe degree heterogeneity, (b) accommodate mixed-memberships, (c) have a tractable
null distribution, and (d) adapt automatically to different levels of sparsity, and achieve
the optimal phase diagram. and especially, it works well for very sparse and less sparse
networks. Our proposed tests compare favorably with the existing tests and achieve the
optimal phase diagram. Also, many existing tests do not allow for severe heterogeneity or
mixed-memberships, and they behave unsatisfactorily in our settings.

In the second part of the thesis, we propose Stepwise Goodness-of-Fit (StGoF) as a
new approach to estimating K, the number of network communities. For m = 1,2, ...,
StGoF alternately uses a community detection step (pretending m is the correct number of
communities) and a goodness-of-fit step. We use SCORE |Jin| (2015)) for community detection,
and propose a new goodness-of-fit measure. Denote the goodness-of-fit statistic in step m by
¢,(~Lm). We show that as n — oo, 1/)7(lm) — N(0,1) when m = K and qum) — 00 in probability
when m < K. Therefore, with a proper threshold, StGoF terminates at m = K as desired.
We consider a broad setting that allows severe degree heterogeneity, a wide range of sparsity,
and especially weak signals. In particular, we propose a measure for signal-to-noise ratio
(SNR) and show that there is a phase transition: when SNR — 0 as n — oo, consistent
estimates for K do not exist, and when SNR — oo, StGoF is consistent, uniformly for a
broad class of settings. In this sense, StGoF achieves the optimal phase transition. Stepwise
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testing algorithms of similar kind (e.g., [Wang et al.| (2017)); Ma et al. (2018)) are known to
face analytical challenges. We overcome the challenges by using a different design in the
stepwise algorithm and by deriving sharp results in the under-fitting case (m < K) and the
null case (m = K). The key to our analysis is to show that SCORE has the Non-Splitting
Property (NSP). The NSP is non-obvious, so additional to rigorous proofs, we also provide
an intuitive explanation.
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One

Introduction

Network data encodes connections between units of analysis, which introduces many inter-
esting research questions with broad applications. This thesis focus on two important and
related problems in network analysis area.

o Network global testing problem Given a symmetric social network, how to test whether

it has only one community or multiple communities.

o Estimating number of network communities Given a symmetric social network, how

many communities are there?
Real world networks have several characteristics that are ubiquitously found:

e Severe degree heterogeneity. The distribution of the node degrees usually has a
power-law tail, implying severe degree heterogeneity.

o Mixed-memberships. Communities are tightly woven clusters of nodes where we have
more edges within than between. Communities are rarely non-overlapping, and some
nodes may belong to more than one community (and thus have mixed-memberships).

e Sparsity. Many networks are sparse. The sparsity levels may range significantly from
one network to another.

o Weak signal. The community structure is masked by strong noise, and the signal-to-
noise ratio (SNR) is usually relatively small.

These features pose great challenges to both the modeling and inference of network data.
Most of existing works modeling the network with Stochastic Block Model (SBM), which is
well known for oversimplifying the features observed in real world networks. Instead, this
thesis would focus on more realistic and complicated network models. To understand the
statistical limits of the above problems, we adopt the phase transition framework, which
includes the classical minimax theory as a special case but is more informative.

1.1 NETWORK GLOBAL TESTING

Recently, the global testing problem has attracted much attention. A good understanding
of the problem is useful for discovering non-obvious social groups and patterns [Béjar et al.
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(2016); Du and Yang (2011), measuring diversity of individual nodes [Fu et al. (2015),
determining stopping time in a recursive community detection scheme |Li et al.| (2018); Zhao
et al.| (2011). It may also help understand other related problems such as membership

estimation [Zhang et al.| (2014)), and estimating the number of the communities [Saldana et al.
(2017)); Wang et al.| (2017).

Many interesting approaches have been proposed. Mossel et al.| (2015) and Banerjee and
Ma, (2017)) (see also Banks et al.|(2016))) considered a special case of the testing problem, where
they assume a simple null of Erdos-Renyi random graph model and a special alternative which
is an SBM with two equal-sized communities. They provided the asymptotic distribution of
the log-likelihood ratio within the contiguous regime. Since the likelihood ratio test statistic
is NP-hard to compute, [Banerjee and Mal (2017)) introduced an approximation by linear
spectral statistics. |Lei (2016) also considered the SBM model and studied the problem of
testing whether K = Ky or K > Ky, which is based on the Tracy-Widom law of extreme
eigenvalues and requires delicate random matrix theory. Unfortunately, these work have
been focused on the SBM (which allows neither severe degree heterogeneity nor mixed
membership). Therefore, despite the elegant theory in these works, it remains unclear how to
extend their ideas to our settings. The approach by |Gao and Lafferty| (2017)) is probably the
first that tackles the global testing problem in settings that allow severe degree heterogeneity,
but still in a relatively idealized setting. \Jin et al.| (2018) considered the problem in much
broader settings, with a very different theoretical framework. They suggested a general
recipe for constructing test statistics that have N(0,1) as the asymptotic null distribution,
and proposed a class of test statistics called the graphlet counting (GC), which includes the
EZ test as a special case. They explained why both GC and EZ tests are reasonable ideas
(for settings much broader than that of |(Gao and Lafferty| (2017))) and showed that both tests
have competitive power in many cases.

Compared to previous works, our contributions are as follows:

e Identify the Region of Impossibility and the Region of Possibility in the phase space.

e Propose the Signed Polygon as a class of new tests that are appropriate for net-
works with severe degree heterogeneity and mixed-memberships, with an easy-to-track
asymptotic null distribution.

e Prove that the Signed Triangle and Signed Quadrilateral tests are optimally adaptive
and perform well for all networks in the Region of Possibility, ranging from very sparse
ones to the least sparse ones.

To show the success of the Signed Polygon test for the whole Region of Possibility is very
subtle and extremely tedious. The main reason is that we hope to cover the whole spectrum
of degree heterogeneity and sparsity levels. Crude bounds may work in one case but not
another, and many seemingly negligible terms turn out to be non-negligible. The lower bound
argument is also very subtle. Compared to work on SBM where there is only one unknown
parameter under the null, our null has n unknown parameters. The difference provides a lot
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of freedom in constructing inseparable hypothesis pairs, and so the Region of Impossibility
in our setting is much wider than that for SBM. Our construction of inseparable hypothesis
pairs uses theorems on non-negative matrix scaling, a mathematical area pioneered by
Sinkhorn| (1974) and |[Marshall and Olkin| (1968) among others (e.g., Brualdi (1974)); |Johnson
and Reams) (2009)).

1.2 ESTIMATING NUMBER OF NETWORK COMMUNITIES

In network analysis, how to estimate the number of communities K is a fundamental
problem. In many recent approaches, K is assumed as known a priori (see for example
Chen et al.| (2018); |Gao et al.| (2018); |Karrer and Newman| (2011); Ma et al.| (2020); |Zhao
et al.| (2011); Xu et al. (2020) on community detection, Jin et al.|(2017); [Zhang et al.| (2014)
on mixed-membership estimation, and [Liu et al. (2017) on dynamic community detection).
Unfortunately, K is rarely known in applications, so the performance of these approaches
hinges on how well we can estimate K.

In recent years, many interesting approaches for estimating K have been proposed. [Le
and Levina (2015)) proposed to estimate K using the eigenvalues of the non-backtracking
matrix or Bethe Hessian matrix, using ideas from mathematical graph theory. Unfortunately,
the approach requires relatively strong conditions for consistency. [Liu et al.| (2019) proposed
to estimate K by using the classical scree plot approach with careful theoretical justification,
but the approach is known to be unsatisfactory in the presence of severe degree heterogeneity,
for it is hard to derive a sharp bound for the spectral norm of the noise matrix W. [Saldana
et al.| (2017)) used a BIC-type objective function and Daudin et al.| (2008)); Latouche et al.
(2012) used an objective function of the Bayesian model selection flavor. However, these
methods did not provide explicit theoretical guarantee on consistency (though a partial result
was established in |Li et al.| (2020), which stated that under SBM, the proposed estimator K
is no greater than K with high probability). Wang et al.| (2017) proposed to estimate K by
solving a BIC type optimization problem, where the objective function is the sum of the
log-likelihood and the model complexity. The major challenge here is that the likelihood is
the sum of exponentially many terms and is hard to compute. In a remarkable paper, Ma
et al. (2018) extended the idea of Wang et al.| (2017)) by proposing a new approach that is
computationally more feasible.

Compared to previous works, our contributions are as follows.

e We propose StGoF as a new approach to estimating K. For m = 1,2,..., StGoF
alternately uses two sub-steps, a community detection sub-step where we apply SCORE
Jin| (2015), assuming m is the correct number of communities, and a Goodness-of-Fit
(GoF') sub-step.

e We derive N(0,1) as the explicit limiting null distribution for the GoF sub-step, and
use the NSP of SCORE to derive tight bounds in the under-fitting case. These sharp
results and the design of StGoF allow us to avoid the analysis in the over-fitting case
and so to overcome the technical challenges faced by stepwise testing of this kind.
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e We show that StGoF achieves the optimal phase transition under mild conditions and
consistent in broad settings (e.g., weak signals, severe degree heterogeneity, and a wide
range of sparsity).

1.3 OUTLINE

The reminder of the thesis is organized as follows. In the second chapter, we propose
Signed Polygons as a novel class of global testing statistic, with SgnQ as a special case. We
prove SgnQ) test is applicable to a wide range of networks, including those with severe degree
heterogeneity and mixed memberships. Moreover, for a broad class of parameter settings
where only minimum regularity conditions are required. For lower bound, we use a phase
transition framework and show that SgnQ achieves the optimal phase transition diagram.
For the third chapter, propose Stepwise Goodness-of-Fit (StGoF) as a new approach to
estimating K, the number of network communities in a given network. We consider a broad
setting where we allow severe degree heterogeneity, a wide range of sparsity, and especially
weak signals. We also prove that StGoF achieves the optimal phase transition diagram.

The second chapter is based on the paper |Jin et al| (2019), and is co-supervised by
Professor Jiashun Jin and Professor Zheng Tracy Ke. The third chapter is based on |Jin
et al. (2020), and is co-supervised by Professor Jiashun Jin and Professor Zheng Tracy Ke,
and Minzhe Wang and Shengming Luo have contributed equally.

My research on community detection Jin et al. (2021a), mixed membership estimation
Jin et al. (2017)) and network pairwise comparison [Jin et al.| (2021b)) is not included in this
thesis.
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Optimal Adaptivity of Signed-Polygon
Statistics for Network Testing

2.1 INTRODUCTION

Given a symmetrical social network, we are interested in the global testing problem where
we use the adjacency matrix of the network to test whether it has only one community
or multiple communities. A good understanding of the problem is useful for discovering
non-obvious social groups and patterns Béjar et al.|(2016); |Du and Yang| (2011), measuring
diversity of individual nodes |[Fu et al.| (2015), determining stopping time in a recursive
community detection scheme |Li et al.| (2018]); [Zhao et al. (2011). It may also help understand
other related problems such as membership estimation Zhang et al.| (2014), and estimating
the number of the communities |Saldana et al. (2017); |Wang et al.| (2017)).

Phase transition is a well-known optimality framework |Donoho and Jin (2004)); Ingster
et al. (2010); [Ma and Wul (2015); Paul| (2007)). It is related to the minimax framework but
can be more informative in many cases. Conceptually, for the global testing problem, in
the two-dimensional phase space with the two axes calibrating the “sparsity” and “signal
strength”, respectively, there is a “Region of Possibility” and a “Region of Impossibility”. In
“Region of Possibility”, any alternative is separable from the null. In “Region of Impossibility”,
any alternative is inseparable from the null. If a test is able to automatically adapt to
different levels of sparsity and is able to separate any given alternative in the “Region of
Possibility” from the null, then we call it “optimally adaptive”.

We are interested in finding tests that satisfy the following requirements.

e (R1). Applicable to networks with severe degree heterogeneity.
e (R2). Applicable to networks with mixed-memberships.

e (R3). The asymptotic null distribution is easy to track, so the rejection regions are
easy to set.

e (R4). Optimally adaptive: We desire a single test that is able to adapt to different
levels of sparsity and is optimally adaptive.



2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

2.1.1 The DCMM model

We adopt the Degree Corrected Mized Membership (DCMM) model Zhang et al. (2014)); |Jin
et al. (2017). Denote the adjacency matrix by A, where

(2.1.1)

1, if node ¢ and node j have an edge,
Aij = .
0, otherwise.

Conventionally, self-edges are not allowed so all the diagonal entries of A are 0. In DCMM,
we assume there are K perceivable communities Cq,Cs,...,Ck, and each node is associated
with a mixed-membership weight vector m; = (m;(1), 7 (2),...,m(K)) where for 1 <k < K
and 1 <17 <n,

mi(k) = the weight node i puts in community k. (2.1.2)
Moreover, for a K x K symmetric nonnegative matrix P which models the community
structure, and positive parameters 61,62, ..., 6, which model the degree heterogeneity, we
assume the upper triangular entries of A are independent Bernoulli variables satisfying

P(A;j = 1) = 0,0; - m, Pmj = Qj, 1<i<j<n, (2.1.3)
where (2 denotes the matrix OTIPII'O, with © being the n x n diagonal matrix diag(6s, ..., 0,)

and II being the n x K matrix [m1,m2,...,m,]". For identifiability (see Jin et al.| (2017)) for
more discussion), we assume

all diagonal entries of P are 1. (2.1.4)
When K =1, (3.2.4) implies P = 1, and so Q;; = 6;0;, 1 <1,j < n.
Write for short diag(Q2) = diag(Q11, 22, ..., Qny), and let W be the matrix where for
1<i,5 <n, Wi = Aj; — Qj it i # j and W;; = 0 otherwise. In matrix form, we have
A=Q—diag(Q) + W, where ) = OIIPII'O. (2.1.5)

DCMM includes three models as special cases, each of which is well-known and has been
studied extensively recently.

e Degree Corrected Block Model (DCBM) Karrer and Newman| (2011). If we do not allow
mixed-memberships (i.e., each weight vector m; is degenerate with one entry being
nonzero), then DCMM reduces to the DCBM.

o Mized Membership Stochastic Block Model (MMSBM) Airoldi et al.| (2008)). If 6, =
0 = ... =0, and we denote the common value by a,, then Q reduces to Q = o, ILPII'.
For identifiability in this special case, (3.2.4) is too strong, so we relax it to that the
average of the diagonals of P is 1.

e Stochastic Block Model (SBM)|Holland et al|(1983). MMSBM further reduces to the
classical SBM if additionally we do not allow mixed-memberships.

Under DCMM, the global testing problem is the problem of testing
gH": k=1 vs. H":K>2 (2.1.6)
The seeming simplicity of the two hypotheses is deceiving, as both of them are highly
composite, consisting of many different parameter configurations.

6
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2.1.2 Phase transition: a preview of our main results

Let A1, Ao, ..., A be the first K eigenvalues of €2, arranged in the descending order in
magnitude. We can view (a) v/A1 both as the sparsity level and the noise level Jin| (2015))
(i.e., spectral norm of the noise matrix W), (b) |\2| as the signal strength, so [Aa|/v/A1 is
the Signal-to-Noise Ratio (SNR), and (c) |[A2]|/A1 as a measure for the similarity between
different communities.

Now, in the two-dimensional phase space where the z-axis is v/ A1 which measures the
sparsity level, and the y-axis is |A2|/A; which measures the community similarity, we have

two regions.

e Region of Possibility (1 < /A1 < v/n, |A2|/v/A1 — o0). For any alternative hypothesis
in this region, it is possible to distinguish it from any null hypothesis, by the Signed
Polygon tests to be introduced.

e Region of Impossibility (1 < VA1 < /n, |A2|/v/A1 — 0). In this region, any
alternative hypothesis is inseparable from the null hypothesis, provided that some mild
conditions hold.

See Figure (left panel). The Signed Polygon test satisfies all requirements (R1)-(R4)
aforementioned. Since the test is able to separate all alternatives (ranging from very sparse
to less sparse) in the Region of Possibility from the null, it is optimally adaptive.

To further elucidate, consider the special DCMM in Example 1, where
M~ 1+ (K =Db)0]2 M~ @ =b)|0]? k=2,3,..., K.
The sparsity level is vA; = ||6]|, and the SNR is |A2|/v/ A1 = [|0]|(1 — b,), where (1 — b,,)

measures the community similarity. In this example, the Region of Possibility and Region of
Impossibility are defined by

{r< o < vn, [10](1 = by) — oo}, and {1 < [|0f| < v/, [|0]|(1 —bp) — 0},
respectively. See Figure (right panel).
Remark 1. As the phase transition is hinged on A2/4/A1, one may think that the

statistic /)\\2 / Xl is optimally adaptive, where Xk is the k-th eigenvalue of A, 1 < k < K,
arranged in the descending order in magnitude. This is however not true, for the consistency
of Xg to A9 can not be guaranteed in our range of interest, unless with strong conditions on
Omaz [Jin (2015).

2.1.3 Literature review, the Signed Polygon and our contribution

Recently, the global testing problem has attracted much attention and many interesting
approaches have been proposed. To name a few, Mossel et al.| (2015 and Banerjee and Ma,
(2017) (see also |Banks et al. (2016)) considered a special case of the testing problem, where
they assume a simple null of Erdos-Renyi random graph model and a special alternative which
is an SBM with two equal-sized communities. They provided the asymptotic distribution of

7
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Possibility Possibility
el /v A1 — o0 _ (1 =0a)[6]] = o0
M c
A -
Impossibility Impossibility
el /v A1 — 0 (1 —=bn)[|6]] — 0

Y

VA . 61|

Figure 2.1: Left: Phase transition. In Region of Impossibility, any alternative hypothesis
is indistinguishable from a null hypothesis, provided that some mild conditions hold. In
Region of Possibility, the Signed Polygon test is able to separate any alternative hypothesis
from a null hypothesis asymptotically. Right: Phase transition for the special DCMM model
in Example 1, where v/ A1 =< [|0|], [A2|/A1 =< (1 = by), and [X2| /v A1 < (1 — b,)]0]].

the log-likelihood ratio within the contiguous regime. Since the likelihood ratio test statistic
is NP-hard to compute, Banerjee and Maj (2017)) introduced an approximation by linear
spectral statistics. |Lei (2016)) also considered the SBM model and studied the problem of
testing whether K = Ky or K > Ky, where Ky is the number of communities. His approach
is based on the Tracy-Widom law of extreme eigenvalues and requires delicate random
matrix theory. Unfortunately, these work have been focused on the SBM (which allows
neither severe degree heterogeneity nor mixed membership). Therefore, despite the elegant
theory in these works, it remains unclear how to extend their ideas to our settings.

The approach by |Gao and Lafferty| (2017)) is probably the first that tackles the global
testing problem in settings that allow severe degree heterogeneity. They showed that the EZ
test has a null that is asymptotically N (0, 1), and has competitive powers in many interesting
settings. However, they only considered a relatively idealized setting where the off-diagonal
entries of P are all equal and where (6;,7;)’s are iid generated (see details therein), and
whether their ideas continue to work in our setting remains unclear.

Jin et al.| (2018) considered the problem in much broader settings, with a very different
theoretical framework. They suggested a general recipe for constructing test statistics that
have N(0,1) as the asymptotic null distribution, and proposed a class of test statistics called
the graphlet counting (GC), which includes the EZ test as a special case. They explained
why both GC and EZ tests are reasonable ideas (for settings much broader than that of
Gao and Lafferty| (2017)) and showed that both tests have competitive power in many cases.

At that time, our hope was that the GC test is the desired test. We tried very hard to
analyze the GC test, hoping that it satisfies (R1)-(R4). Unfortunately, after substantial
time and efforts, we found that in the less sparse case, the variance of the GC test becomes
unsatisfactorily large, and so the test loses power in many easy-to-test scenarios and is not

8
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optimally adaptive. Fortunately, right at the moment of despair, we came to realize that

e Especially for the less sparse case, the key to constructing a powerful test is not how
to capture the signal, but to reduce the variance.

e The GC test is based on counts of non-centered cycles/paths. The variance can be
much smaller if we count the centered cycles instead.

Centered and non-centered cycles are defined on the centered and non-centered adjacency
matrix, respectively. See details below.

These insights motivate a class of new tests which we call Signed Polygon, including the
Signed Triangle (SgnT) and the Signed Quadrilateral (SgnQ). The Signed Polygon statistics
are related to the Signed Cycle statistics, first introduced by Bubeck et al. |Bubeck et al.
(2016)) and later generalized by Banerjee Banerjee (2018).

The Signed Polygon and the Signed Cycle are cycle-counting approaches, both of which
recognize the benefit of variance reduction by counting centered cycles instead of non-centered
cycles, but there are some major differences. The study of the Signed Cycles has been focused
on the SBM and similar models, where under the null, P(4;; =1) = a, 1 <i# j <n, and «
is the only unknown parameter. In this case, a natural approach to centering the adjacency
matrix A is to first estimate « using the whole matrix A (say, @), and then subtract all
off-diagonal entries of A by a. However, under the null of our setting, P(A;; = 1) = 6;6;,
1 <i # j < n, and there are n different unknown parameters 61,05, ..., 0,. In this case, how
to center the matrix A is not only unclear but also worrisome, especially when the network
is very sparse, because we have to use limited data to estimate a large number of unknown
parameters. Also, for any approaches we may have, the analysis is seen to be much harder
than that of the previous case.

Note that the ways how two statistics are defined over the centered adjacency matrix
are also different. See Section and Bubeck et al.| (2016).

In the Signed Polygon, we use a new approach to estimate 61,605, ..., 6, under the null,
and use the estimates to center the matrix A. To our surprise, data limitation (though a
challenge) does not ruin the idea, and even for very sparse networks, the estimation errors
of 01,04, ...,0, only have a negligible effect. The main contributions of the chapter are as
follows.

e Identify the Region of Impossibility and the Region of Possibility in the phase space.

e Propose the Signed Polygon as a class of new tests that are appropriate for networks
with severe degree heterogeneity and mixed-memberships.

e Prove that the Signed Triangle and Signed Quadrilateral tests satisfy all the require-
ments (R1)-(R4), and especially that they are optimally adaptive and perform well for
all networks in the Region of Possibility, ranging from very sparse ones to the least
sparse ones.



2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

To show the success of the Signed Polygon test for the whole Region of Possibility is very
subtle and extremely tedious. The main reason is that we hope to cover the whole spectrum of
degree heterogeneity and sparsity levels. Crude bounds may work in one case but not another,
and many seemingly negligible terms turn out to be non-negligible (see Sections and
. The lower bound argument is also very subtle. Compared to work on SBM where there
is only one unknown parameter under the null, our null has n unknown parameters. The
difference provides a lot of freedom in constructing inseparable hypothesis pairs, and so the
Region of Impossibility in our setting is much wider than that for SBM. Our construction of
inseparable hypothesis pairs uses theorems on non-negative matrix scaling, a mathematical
area pioneered by Sinkhorn |Sinkhorn| (1974) and Olkin [Marshall and Olkin (1968) among
others (e.g., Brualdi (1974); |Johnson and Reams| (2009)).

2.1.4 The Signed Polygon statistic

Recall that A is the adjacency matrix of the network. Introduce a vector 7 by (1,, denotes
the vector of 1’s)

n=(1/VV)Al,,  where V =1/ A1,. (2.1.7)

Fixing m > 3, the order-m Signed Polygon statistic is defined by (notation: (dist) is short
for “distinct”, which means any two of i1, ..., i, are unequal)

U™ = > (Aigiy — Ty in) (Aigiy — DiaTiz) - - Ay — T iy )- (2.1.8)

11,82,..,0m (dist)
When m = 4, we call it the Signed-Quadrilateral (SgnQ) statistic:
Qn = Z (Aili2 - 7/7\1'17/7\1'2)(‘47?22'3 - 77\1'277\1':‘3)(141'31'4 - 7/7\7;37/7\7:4)(141‘47;1 - 7/7\1'47/7\7?1)' (2-1'9)
il,ig,i3,i4(d’ist)
For analysis, we focus on @,,, but the theoretical framework is extendable to general m.
The key to understanding and analyzing the Signed Polygon is the Ideal Signed Polygon.
Introduce a non-stochastic counterpart of 1 by

n* = Q1,//vo, where vy = 1/,Q1,,. (2.1.10)
Define the order-m Ideal Signed Polygon statistic by
U™ = > (Ais = mimh) Ay = ninly) - - (Aigiy — 15,715, (2.1.11)

11,82,...,0m (dist)
We expect to see that

*

n~E[n] ~n"

We can view ﬁ,ﬁm) as the oracle version of Uém), with n* given. We can also view UT(Lm) as

the plug-in version of ﬁém), where we replace n* by 7.

For implementation, it is desirable to rewrite 7,, and (),, in matrix forms, which allows
us to avoid using a for loop and compute much faster (say, in MATLAB or R). For any two
matrices M, N € R™", let tr(M) be the trace of M, diag(M) = diag(Mi1, Maa, ..., Myuy),
and M o N be the Hadamard product of M and N (i.e., MoN € R™", (M oN);; = M;;Ny;).
Denote A = A — n1’. The following theorem is proved in the supplementary material.
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2.1. Introduction

Theorem 2.1.1. We have
Qn = tr(A*) —4tr(Ao A%) 4+ 8tr(Ao Ao A?) —6tr(Ao Ao Ao A)
—2tr(A% 0 A?) +2- 1/, [diag(A)(A o A)diag(A)|1, + 1[Ac Ao Ao A]l,.
The complezity of computing Q,, is O(n%d), where d is the average degree of the network.

Compared to the EZ and GC tests proposed in |Gao and Lafferty| (2017)); |Jin et al.| (2018]),
the computational complexity of SgnQ is of the same order.

Remark 2 (Connection to the Signed Cycle). In the more idealized MMSBM or SBM
model, we don’t have degree heterogeneity, and Q@ = «,1,1/, under the null, where a,
is the only unknown parameter. In this simple setting, it makes sense to estimate a,, by
Qn = d/(n — 1), where d is the average degree. This gives rise to the Signed Cycle statistics
Banerjee| (2018)); Bubeck et al.| (2016):

C = > (Aiiy — 8n)(Aigis — Qn) - (Aiiy — Q).
01,1200 yim (dist)
Bubeck et al.| (2016) first proposed 01(13) for a global testing problem in a model similar to
MMSBM. Although their test statistic is also called the Signed Triangle, it is different from
our statistic, for their tests are only applicable to models without degree heterogeneity. The
analysis of the Signed Polygon is also much more delicate than that of the Signed Cycle, as
the error (@, — ;) is much smaller than the errors in (77 — n*).

It remains to understand (1) how the Signed Polygon manages to reduce variance, (2)
what are the analytical challenges.

Consider the first question. We illustrate it with the Ideal Signed Polygon and
the null case. In this case, Q = 66’. It is seen n* = 0, Aij — 77;‘77; = Aj; — Q5 = Wy, for
i # j (see for definition of W), and so

Um = 3" Wiiy,Wiyis - Wigiy
11,12, yim (dist)
In the sum, each term is an m-product of independent centered Bernoulli variables, and two
terms Wi, i, Wigiy - .. Wiy and Wiy Winir ... Wy i are correlated only when {i1,92, ..., im}
and {i},45,...,i,} are the vertices of the same polygon. Such a construction is known to
be efficient in variance reduction (e.g., Bubeck et al.| (2016])).

In comparison, the main term of an order-m GC test statistic \Jin et al. (2018)) is
N = S A Ay A

i1,i2,...,im(d’i8t)
Since here the Bernoulli variables are not centered, we can split Nr(Lm) into two uncorrelated
terms: N,(Lm) = U,gm) + (N,sm) — Uém)). Compared to the Signed Polygon, the additional
variance comes from the second term, which is undesirably large in the less sparse case (Kel
2019)).

Remark 3. The above argument also explains why the order-2 Signed Polygon does
not work well. To see the point, note that when m = 2, UT(Lm) = Ziﬁ% me under the null,

which has an unsatisfactory variance due to the square of the W-terms.

11



2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

Consider the second question. We discuss with the Sgn(Q statistic. Recall that n* is a non-
stochastic proxy of 7). For any 1 <4,j <n and i # j, we decompose n;n; — 1;1; = d;j + ij,
where §;; is the main term, which is a linear function of 7; and 7;, and 7;; is the remainder
term. Introduce

Q=Q—7n"(n9. (2.1.12)

We have A;j — i) = ﬁij + Wi + 0ij + 1ij. After inserting this into @, each 4-product is
now the product of 4 bracketed terms, where each bracketed term is the sum of 4 terms.
Expanding the brackets and re-organizing, @, splits into 4 x 4 X 4 x 4 = 256 post-expansion
sums, each of the form

Z @iyiyDigisCigigdigiy »

il,ig,i37i4(d’ist)

where a is a generic term which can be equal to either of the four terms fvl, W, 9, and r;
same for b, c and d. While some of these terms may be equal to each other, the symmetry
we can exploit is limited, due to (a) degree heterogeneity, (b) mixed-memberships, and (c)
the underlying polygon structure. As a result, we still have more than 50 post-expansion

sums to analyze.

The analysis of a post-expansion sum with the presence of one or more r-term is the
most tedious of all, where we need to further decompose each r-term into three different
terms. This requires analysis of more than 100 additional post-expansion sums.

At first glance, we may think most of the post-expansion sums are easy to control via a
crude bound (e.g., the Cauchy-Schwarz inequality). Unfortunately, this is not the case, and
many seemingly negligible terms turn out to be non-negligible. Here are some of the reasons.

e Due to the scarcity of data, the estimation error (7; — ;) is not sufficiently small. Also,
severe degree heterogeneity dictates that a crude bound may be enough for some 7;
but not for other 7;.

e We aim to cover all interesting sparsity levels: a crude bound may be enough for a
specific range of sparsity levels, but not for others.

o We desire to have a single test that works for all levels of sparsity. Alternatively, we
can find one test that works well for the more sparse case and another test that works
well for the less sparse case, but this is less appealing from a practical viewpoint.

As a result, we have to analyze a large number of post-expansion sums, where the analysis
is subtle, extremely tedious, and error-prone, involving delicate combinatorics, due to the
underlying polygon structure. See Section

2.1.5 Organization of the chapter

Section focuses on the Region of Possibility and contains the upper bound argument.
Section focuses on the Region of Impossibility and contains the lower bound argument.

12



2.2. The Signed Polygon test and the upper bound

Section presents the key proof ideas, with the proof of secondary lemmas deferred to the
supplementary material. Section presents the numerical study.

For any ¢ > 0 and 6 € R", ||f]|, denotes the ¢9-norm of § (when ¢ = 2, we drop the
subscript for simplicity). Also, Op,in and Oq, denote min{6y,...,0,} and max{6i,...,0,},
respectively. For any n > 1, 1,, € R™ denotes the vector of 1’s. For two positive sequences
{an}22, and {b,}>2 , we write a,, ~ by, if lim,,_,o ap /b, = 1, and we write a,, < b, if for
sufficiently large n, there are two constants ca > ¢; > 0 such that ¢; < a,, /b, < ca. We use
Zil’i%wim(dist) to denote the sum over all (i, ..., ;) such that 1 < i <n and i # iy for
1 <k # ¢ <m (so the number of summands is n(n — 1)--- (n — m + 1)).

2.2 THE SIGNED POLYGON TEST AND THE UPPER BOUND

For reasons aforementioned, we focus our discussion on the SgnQ statistic @, but the
ideas are extendable to general Signed Polygon statistics. In Section [2.2.1] we establish the
asymptotic normality of two statistics. In Section we use two statistics to construct
two tests, the SgnT test and the SgnQ test. In Section [2:2.3] we discuss the power of the
two tests.

In a DCMM model, Q = OIIPII'O, where © = diag(b1,...,0,), and I is the n x K

membership matrix [m, w2, ..., 7,]. We assume as n — oo,

101 = 00, Omaz — 0, and  (|6]*/[10]11)/log([[6]]1) — O. (2.2.13)

The first condition is necessary. In fact, if ||#|| — 0, then the alternative is indistinguishable
from the null, as suggested by lower bounds in Section The second one is mild as
the eligible range for 6,,,, is roughly (n_l/ 2/1). The last one is weaker than that of
Omaz/log(n) — 0, and is very mild.

Moreover, introduce G = ||§||~2I1'©%I1 € RE*X, This matrix is properly scaled and it
can be shown that |G| <1 (Appendix C, supplementary material). When the null is true,
K =P =G =1, and we don’t need any additional condition. When the alternative is true,
we assume

maxlngK{ZLl O;mi(k)}
minlgkgK{Z?zl giﬂi (k)}
The conditions are mild. Take the first two for example. When there is no mixed membership,

<c, ¢ <c Pl (2.2.14)

they only require the K classes to be relatively balanced.
2.2.1 Asymptotic normality of the null

The following two theorems are proved in Section

Theorem 2.2.1 (Limiting null of the SgnQ statistic). Consider the testing problem (2.1.6))
under the DCMM model (3.1.1))-(3.2.4), where the condition (2.2.13)) is satisfied. Suppose

the null hypothesis is true. As n — 0o,
E[Qn] = 2+o(W)|0*,  and  Var(Qn) ~ 8]6]7,
and

Qn B E[Qn]

— — N(0,1), in law.

Var(@n)
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

2.2.2 The level-a SgnQ tests

By Theorems the null variances of the two statistics depend on ||6]|?. To use the two

statistics as tests, we need to estimate ||0||?. For 7 and n* defined in (2.1.7) and ([2.1.10)),
respectively, we have ij ~ n* and 7* = 0 under the null. A reasonable estimator for ||0]|?

under the null is therefore ||7j]|2. We propose to estimate ||]|? with (||7j]|> — 1), which corrects
the bias and is slightly more accurate than ||j||*>. The following lemma is proved in the
supplementary material.

Lemma 1 (Estimation of ||§]|?). Consider the testing problem ([2.1.6) under the DCMM

model (3.1.1)-(3.2.4), where the condition (2.2.13)) holds when either hypothesis is true and
condition (2.2.14)) holds when the alternative is true. Then, under both hypotheses, as n — oo

(7% = 1)/ ln*I* — 1, in probability,
where
=10]|?, wunder H(n),
7112 = (1,921,,)/(1.01,,) , ?n)
= |10|I*, under H;".
Combining Theorem and Lemma |1, we have
Qn = 201717 - 1?

Sl — 1
With the same «, we propose the following Sgn(Q test, which is a one-sided test where we

N(0,1),  in law. (2.2.15)

reject the null hypothesis if and only if
Qn > (2+ 2aV8) ([l = 1)%, z4: upper a quantile of N(0,1). (2.2.16)
As a result, for both tests we just defined, the levels satisfy

P (Reject the null) — a, as n — oo.

=™
2.2.3 Power analysis of the SgnQ tests

The matrices 2 and Q play a key role in power analysis. Recall that € is defined in (3.1.3))
where rank(Q) = K, and Q = Q — n*(y*)" is defined in 1' with n* = Q1,,/,/1,Q1,, as
in . Recall that A1, Ao, ..., Ax are the K nonzero eigenvalues of (). Let &1,&s, ..., &k
be the corresponding eigenvectors. The following theorems are proved in Section [2.4.4

Theorem 2.2.2 (Limiting behavior of the SgnQ statistic (alternative)). Consider the testing

problem (2.1.6) under the DCMM model (3.1.1)-(3.2.4)). Suppose the alternative hypothesis
is true and the conditions (2.2.13))-(2.2.14) hold. As n — oo,

E[Qn] = tr(2%) + o((Aa/A0)*[10]1%) + o([16]1*),
and

Var(Qn) < C([[0][* + C(xa/X1)[10]1%]16]1$)-

By Theorem and Lemma |1}, under the alternative hypothesis,
f Qu=2(AlP=12 . tr(Q4) 2

1 nd o
8([Iml2-1)* v/ 8lln* 18 "

the mean and variance o
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2.2. The Signed Polygon test and the upper bound

respectively, where o2 denotes the asymptotic variance, which satisfies that
C, if Ao/ M| < (|65,
C2/A0)0 - (101§, i [X2/ M| > [16]]5

If we fix the degree heterogeneity vector € and let (A2/A1) range, there is a phase change in

2
nS

the variance. We shall call:

e the case of [\g/A\1| < C||0]|5" as the weak signal case for SgnQ.

e the case of [\a/A\1] > ||0]|5! as the strong signal case for SgnQ.

We now analyze tr(Q4). The following lemma is proved in the supplementary material.

Lemma 2 (Analysis of tr(§~24)) Suppose the conditions of Theorem 2 hold. Under the
alternative hypothesis,

o If|Xo|/A1 — 0, then tr(Q%) = tr(AY)+(¢'Aq)* +2(W A2h)% +4(h Ah)2 (h' A2h) +4h A*h +
A(W AR) (W' APh) + o(A3) = Sh_o AL

o If |A2|/ A1 > C, then tr(QY) > C S8, AL
e In the special case where K = 2, the vector h is a scalar, and tr(Q*) = [(h2 + 1)* +
o(1)] - A3.

As a result, it always holds that tr(Q%) > C 25:2 At. Then, in the weak signal case,

E[Q] C(3py M) 2 = 4
Var@n) — ol =y ,CZ:QA’“)’

In the strong signal case, since (Ag/A1)? < AIS(ZkK 9 )\4)%

K
E[Qn] > C (X2 \b) CHHH ( —22)\4>411
iy _ ; puiy
Var(Qn) — AP (240, Ai)4H9||§H¢9H"‘ 013
where [|0]]3/]|0]|3 — oo. So, in both cases, the power of the SgnQ test goes to 1 if
)\f2 Zszz )\i — 00. This is validated in Theorem which is proved in Section

Theorem 2.2.3 (Power of the SgnQ test). Under the conditions of Theorem for any
fized o € (0,1), consider the Sgn@ test in (2.2.16)). As n — oo, if

A;1/2<§: /\§>1/4 — 0,
k=2

then the Type I error — «, and the Type II error — 0.

In summary, Theorem [2.2.3] imply that as long as

Xa|/v/ AL — o0, (2.2.17)

the level of SgnQ test tend to o as expected, and the power tend to 1. The SgnT test
requires mild conditions to avoid “signal cancellation”, but the SgnQ test has no such issue.
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

Our simulations further support that Sgn(Q may have better performance than SgnT. See

Section B.3l

Remark 3. Practically, we prefer to fix «, say, a = 5%. If we allow the level a to
change with n, then when holds, there is a sequence of v, that tends to 0 slowly
enough such that [Aa|/(2q4,, /2 - VA1) = 00. As a result, for either of the two tests, the Type
I error — 0 and the power — 1, so the sum of Type I and Type II errors — 0.

2.3 OPTIMAL ADAPTIVITY, LOWER BOUND, AND REGION OF IMPOSSIBILITY

We now focus on the Region of Impossibility, where |X2|/v/A1 — 0. We first present a
standard minimax lower bound, from which we can conclude that there is a sequence of
hypothesis pairs (one alternative and one null) that are asymptotically indistinguishable.
However, this does not answer the question whether all alternatives in the Region of
Impossibility are indistinguishable from the null. To answer this question, we need much
more sophisticated study; see Section [2.3.2]

2.3.1 Minimax lower bound

Given an integer K > 1, a constant ¢o > 0, and two positive sequences {ap, }22 ; and {5, }72 1,
we define a class of parameters for DCMM (recall that Q = OIIPII'O, G = ||0|| 21I'60%11
and is properly scaled, and )y is the k-th largest eigenvalue of Q in magnitude):

Mn(Ka Co, O, Bn)

(0,15, P) + Bumax < B, 10171 < B, 1017116117 /10 ([16][1) < B

= max n 0;mi(k _
(1O < 6o, G| < o, ol /v < am

For the null case, K = P = m; = 1, and the above defines a class of #, which we write for
short by

Mn(la Co, On, ﬁn) = M;(ﬁn)
The following theorem is proved in the supplementary material:

Theorem 2.3.1 (Minimax lower bound). Fiz K > 2, a constant ¢y > 0, and any sequences
{an}2, and {Bp}02, such that o, — 0 and B, — 0 as n — oco. Then, as n — oo,

inf{ sup Py =1)+ sup P(y = 0)} — 1,
Y L9e Mz (Bn) (0,11,P)eM (K,c0,0m,5n)

where the infimum is taken over all possible tests 1.

The minimax theorem says that in the Region of Impossibility, there exists a sequence of
alternatives that are inseparable from the null. This does not show what we desire, that is
any sequence in the Region of Impossibility is inseparable from the null. This is discussed in
the next section.

2.3.2 Region of Impossibility

Recall that under DCMM, Q = OIIPII'O and II = |7y, 79, ..., ™). Since our model is
a mixed-membership latent variable model, in order to characterize the least favorable
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2.3. Optimal adaptivity, lower bound, and Region of Impossibility

configuration, it is conventional to use a random mized-membership (RMM) model for the
matrix II, while (O, P) are still non-stochastic. In detail,

o Let V={zecRN 2, >0, =1}

o Let Vy ={e1,ea,...,ex}, where e is the k-th Euclidean basis vector.

In DCMM-RMM, we fix a distribution F' defined over V' and assume
m; F, where h = E[m;].

If we further restrict that F' is defined over Vj, then the network has no mixed-membership,
and DCMM-RMM reduces to DCBM-RMM.

The desired result is to show that, for any given P and F', there is a sequence of hypothesis
pairs (a null and an alternative)

g": =00, ad H": Q=6IPIO, (2.3.18)

where © = diag(6’~1, 51, e gn) and 51 can be different from 6;, such that the two hypotheses

within each pair are asymptotically indistinguishable from each other, provided that under

the alternative |A\a|/v/ A1 — 0.

Here, since €2 depends on m;, A\ is random, and it is more convenient to translate the
condition of |A2|/v/A1 — 0 to the condition of
161 - [12(P)| = 0, (2.3.19)

where pi(P) is the k-th largest eigenvalue of P in magnitude. The equivalence of two
conditions are justified in Appendix D.1 of the supplementary material. The regularity
condition can also be ensured with high probability, by assuming that all entries of
E[m;] are at the order of O(1).

Under the DCBM, the desired result can be proved satisfactorily. The key is the following
lemma, which is in the line of Sinkhorn’s beautiful work on scalable matrices [Sinkhorn| (1974)
(see also Brualdi (1974)); |[Johnson and Reams| (2009); Marshall and Olkin! (1968])) and is
proved in the supplement.

Lemma 3. Fiz a matriz A € REK with strictly positive diagonal entries and non-negative
off-diagonal entries, and a strictly positive vector h € R | there exists a diagonal matriz
D = diag(dy,ds, ... ,dr) such that DADh =1k and dy, >0, 1 <k < K.

In detail, consider a DCBM-RMM setting where m; Y F and Fis supported over V)
(with possibly unequal probabilities on the K points). Recall h = E[m;]. By Lemma [3| there
is a unique diagonal matrix D such that DPDh = 1. Let

0, =d-0;, ifm=ep, 1<i<n, 1<k<K. (2.3.20)
The following theorem is proved in the supplementary material.

Theorem 2.3.2 (Region of Impossibility (DCBM)). Fiz K > 1 and a distribution F defined
over Vy. Consider a sequence of DCBM model pairs indexed by n:

H"Y: Q=00 and H™:0Q=06TPIIO,
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

where m; R and © = diag(al, 52, . ,gn) with gz defined as in A Opae < g for a
constant co < 1,

| N |
min (b} > C, and 0]+ lpa(P)] 0.

then for each pair of two hypotheses, the x%-distance between the two joint distributions
tends to 0, as n — oo.

We now generalize the result to DCMM. Fix a distribution F' defined over V. Given a
set of (O, P,TI) with © = diag(f1,0s, . ..,0,) and m; “* F, let hp = E[D " m; /|| D m;||1] for
any diagonal matrix D € REXK with positive diagonals. We assume that there exists D
such that

DPDhp = 1k, 15133}{{%%} > C. (2.3.21)

When such a D exists, we let

0;=0,/|D 'milly, 1<i<n. (2.3.22)
When the support of F' is restricted to Vj, this reduces to the DCBM setting discussed
above, in which 1) always holds, and 51 is the same as that in . When K =2
(but the support of F' is not restricted to V;), condition also holds for all matrices
A in our setting. The proof is elementary so is omitted. The following theorem is proved in
the supplementary material.

Theorem 2.3.3 (Region of Impossibility (DCMM)). Fiz K > 1 and a distribution F' defined
over V. Consider a sequence of DCMM model pairs indexed by n:
HM:Q=00 and H™:Q=6IPIIO,
where m; “Y F and © = diag(0y,0s, ... ,0,) with 6; defined as in (f?é’?d) If (f?S’QJI) holds,
Omaz < co for a constant co < 1, and
161 - lu2(P)] — 0,

then for each pair of two hypotheses, the x?-distance between the two joint distributions

tends to 0, as n — oo.

In Theorems [2.3.2] and [2.3.3] we try to be as general as possible, where ' and P are
arbitrarily given, and we seek for a ©-matrix in the alternative to make it most delicate

to separate two hypotheses. We now consider a special case where P is arbitrarily given,
but F'is allowed to alter slightly. For any P and F', by Lemma |3| there is a unique positive
diagonal matrix D such that

DPDh = 1k, where h = E[m;]. (2.3.23)
Let I = [71, T2, ..., Ty and 0= diag(gl,gg, .. .,gn), with
%i = Dm/||Dmll1,  0; = || Dmills - 6. (2.3.24)

The following theorem is proved in the supplementary material.

Theorem 2.3.4 (Region of Impossibility (DCMM with flexible II)). Fiz K > 1 and a
distribution F' defined over V. Consider a sequence of DCMM model pairs indexed by n:

H"Y: Q=00 and H™:Q=06IPI'S,
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2.3. Optimal adaptivity, lower bound, and Region of Impossibility

. - _
1§€1§UK{hk} >C,  and  [|f] - [p2(P)] =0,

where II and © are defined as in 423231)—(@324) If Oppax < co for a constant cg < 1,

then for each pair of two hypotheses, the x*-distance between the two joint distributions
tends to 0, as n — oo.

For completeness, one may wonder what happens if we require the null and the alternative
have perfectly matching © matrix (up to an overall scaling). Such a scenario is natural
when we focus on SBM or MMSBM, where degree heterogeneity is not allowed and so there
is little freedom in choosing the © matrix. In this case, in order that the two hypotheses
are indistinguishable, the expected node degrees under the alternative have to match those
under the null. For each node 1 < i < n, conditional on 7; and neglecting the effect of no
self edges, the expected degree equals to

10l1-6;  and 0] - (7 Ph)-0;,
under the null and under the alternative, respectively, where {m;};; Y Eand h = E[r;].
For the expected degrees to match under any realized ;, it is necessary that
Ph = q,1k, for some scaling parameter g, > 0. (2.3.25)

The following theorem is proved in the supplementary material.

Theorem 2.3.5 (Region of Impossibility (DCMM with matching 0)). Fiz K > 1 and a
distribution F' defined over V. Consider a sequence of DCMM model pairs indexed by n:

H":Q=gq,-00 and H™:Q=0IPIIO,
where © = diag(01,02,...,0,), m ud F, and (P, h,q,) satisfy o f Oppaz < co for a
constant co < 1,

. - .
(in {he} > G, and 0] - p2(P)] = 0,

then for each pair of two hypotheses, the x?-distance between the two joint distributions
tends to 0, as n — oo.

Example 1 (contd). In Example 1, 7; is drawn from ej, e, ..., ex with equal prob-
abilities, and P = (1 — by)Ix + by1x 1. Therefore, h = E[m;] = (1/K)1k. In this case,
all conditions of Theorem hold, and especially, ¢, = (1/K) + (K — 1)b,/K, and
p2(P) = (1= by).

Remark 6 (Least favorable configuration of LDA-DCMM). The Dirichlet model is often
used for mixed-memberships |Airoldi et al.| (2008)). Consider the model pairs

H":Q=¢00 and H™:Q=0TPIIO, = < Dir(a),
where Dir(«) is a Dirichlet distribution with parameters & = (a1, . .., ax)’. By Theorem
as long as Pa « 1k, the null and alternative hypotheses are asymptotically indistinguishable
if (1 —¢,)||#]] — 0. One can easily construct P such that Pa o 1g. For example,
P=(1-gy)MM' + gy1k1), where M € REX(E=1) i5 a matrix whose columns are from
Span(«) and satisfy diag(MM') = Ig.
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2.3.3 Optimal adaptivity

Recall that v/A1, [X2|/A1, and |A2|/v/A1 can be viewed as a measure for the sparsity, com-
munity similarity, and SNR, respectively. Combining Theorems Theorems [2.3.2}2.3.5]
and Remark 4 in Section in the two-dimensional phase space where the z-axis is v/ A1
and the y-axis is the |3 /A1, we have a partition to two regions, the Region of Possibility
and the Region of Impossibility.

e Region of Impossibility (1 < VA1 < v/n, |A2|/vA1 = o(1)). In this region, any
DCBM alternative is asymptotically inseparable from the null, and up to a mild
condition, any DCMM alternative is also asymptotically inseparable from the null.

e Region of Possibility (1 < VA1 < /1, |A2|/v/A1 — o0). In this region, asymptoti-
cally, any alternative is completely separable form any null.

The SgnQ test is optimally adaptive: for any alternative in the Region of Possibility, the test
is able to separate it from the null with a sum of Type I and Type II errors tending to O.

To the best of our knowledge, the Signed Polygon is the only known test that is both
applicable to general DCMM (where we allow severe degree heterogeneity and arbitrary
mixed-memberships) and optimally adaptive. The EZ and GC tests are the only other tests
we know that are applicable to general DCMM, but their variances are unsatisfactorily large

for the less sparse case, so they are not optimally adaptive.

Remark 4. Most lower bound results in the literature |Mossel et al.| (2015); |Banerjee
(2018)); |Gao and Lafferty (2017) are in the standard minimax framework, where they focus
on a particular sequence of alternative (e.g., the off-diagonals of P are equal). In our case,
the standard minimax theorem only implies that in the Region of Impossibility, there is a
sequence of alternative that are inseparable from the null. Our results (Theorems
are much stronger, implying that any alternative in the Region of Possibility is inseparable
from the null.

Remark 5. Existing minimax lower bounds |Mossel et al.| (2015); Banks et al.| (2016));
Banerjee (2018) have been largely focused on the SBM. Though a least favorable scenario
for SBM is also (one of the) least favorable scenario for DCMM, the former does not provide
much insight on how the least favorable configurations and the separating boundary of
the two regions (Possibility and Impossibility) depend on the degree heterogeneity and
mixed-memberships. Moreover, our results suggest that [|@]|, not ||@||;, determines the
separating boundary. In the SBM case, 6; = ... = 6, and ||0]1 = v/n||f], so it is hard to
tell which of the two norms decides the boundary. In DCMM, there is no simple relationship
between ||0||; and ||#]|, and we can tell this clearly.
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2.4 'THE BEHAVIOR OF THE SGN(Q) TEST STATISTICS

Recall that the Sgn(Q statistic @, are defined as
Qn = Z (Ailiz - ﬁi1ﬁi2)(Ai2i3 - ﬁizﬁis)(Aiaizl - %%)(Aim - 7/7\i47/7\i1)¢

i1,’i2,’i3,i4(dist)

where

= A1,/VV, where V = 1) A1,,.

In Section we have introduced the following non-stochastic proxy of 7:
n* = Q1,/\/vo, where vy = 1,,Q1,,.

We now introduce another non-stochastic proxy 7 by

n=Al,/\v, where v = E[1/,A1,] = 1,,(Q — diag())1,. (2.4.26)
Denoting the mean of 1 by 7, it is seen that
0 = ([ — diag()]1,)//T,(2 — diag(®) L. (2.4.27)

Here, 7 and n* are close to each other but #* has a more explicit form. For example, under
the null hypothesis, 2 = 06’, and it is seen that n* = 6. Recall that
A=Q—diag( Q) +W, and Q=Q—7n"(n").
Fix 1 <i,j <n and i # j. First, we write
Agj — i)y = (Aig — i) + (i} — Wiy) = Qij + Wi + (g} — 0iiy).

Second, we write
nim; — ity = Gij + 1ij,
where

Sij = ni(nj — 1) +nj(ni — 1) (2.4.28)

is the linear approximation term of (nfn; —:7;) and rij = (n;n; —1;7;) — 6;; is the remainder
term. By definition and elementary algebra,
* ~ ~ Vi~ ~
rig = min; —mmg) — (i — ) (n; — ;) + (1 — V)ﬁﬂ]j- (2.4.29)
It is seen that r;; is of a smaller order than that of d;;. The remainder term can be shown
to have a negligible effect over @), in terms of the variance. See Theorem [2.4.3

Let X be the symmetric matrix where all diagonal entries are 0 and for 1 < 4,5 < n but
i # j, Xij = Ayj — i1, or equivalently,
Xij = ﬁij + Wi + (51']‘ + 75 (2.4.30)
If we omit the remainder term, then we have a proxy of X, denoted by X*, where all diagonal
entries of X* are 0, and for 1 < 4,5 <n but i # j,
X5 = Quj + Wij + 0. (2.4.31)
If we further omit the § term, then we have another proxy of X, denoted by X , where all
diagonal entries of X are 0, and for 1 < 4,5 <n but ¢ # j,
X@'j = ﬁij + Wij. (2.4.32)
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With the above notations, we can rewrite ), as follows:
Qu=" > XiisXigig Xigis Xigir-
i1,i2,i3,74 (dist)
For the Ideal Signed Polygon in , we have the Ideal SgnQ) test statistic
On= > XiyiyXisiy Xigia Xisiy- (2.4.33)
i1,i2,i3,i4 (dist)
The Ideal SgnQ test statistics can be viewed as proxies of the SgnQ test statistics, respectively,
but such proxies are frequently not accurate enough. Therefore, we introduce another
proxy for SgnQ, which we call the Proxy SgnQ test statistics, respectively. Recall that
X:j = Qij + Wij + (Sij.

Definition 4. The Proxy Sgn(Q test statistic is
Q;kl = Z Xl?kliQX:QBX;;MX;;il :
i1,i2,i3,’i4(di$t)

By these notations, we can partition SgnQ by

Qn = Qn + (Q: - Qn> + (Qn - Q;)
Below, first in Section [2.4.1] we analyze the Ideal SgnQ test statistics. Then in Section [2.4.2
we analyze the difference between the Ideal SgnQ and the Proxy SgnQ. Last, in Section
we analyze the difference between the Proxy SgnQ and the real SgnQ.

2.4.1 The behavior of the Ideal SgnQ test statistics

Recall the Ideal SgnQ test statistic is defined as

Qn = Z Xilh)ziﬂs)?%u)ziup (2.4.34)

i1,i2,i3,’i4(di$t)
where for any i # j, )Nfij = Qij + Wi;;. Under the null, since Q is a zero matrix, the statistic
reduces to

Qn = Z WitisWinisWisiaWigiy -
i1,i2,i3,i4(dist)
Similarly, it can be shown that the statistic is asymptotically normal, with
E[Q.] =0, and  Var(Q,) ~ 86|
Under the alternative, similarly, we obtain
2Xx2x2x2=16
post-expansion sums, and divide them into 6 different types, according to (Ng, Nw ). See

Table where we recall v = |A2|/A1.

From the table, among all 16 post-expansion sums, the total mean is
~ (),
with Type V sum being the only contributor, and the total variance
< Cl811° + C(| A2l /20)° 101716115,
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Table 2.1: The 6 different types of the 16 post-expansion sums of @n.

Type # (Ng,Nw) Examples Mean Variance
I Lo (0,4) 32 keaisy WisWikWikeWei 0 = [16]]*
II 4 (L3 Xikeist LisWikWieWe 0 < ca?(|9]*[16]15 = o(ll6]1®)
Ma 4 (2,2) Xk eist) i QeWeeWe 0 < Ca*|0]°16115 = o(a®|l0]®[16113)
b 2 (2,2) s Qs WikQee W 0 < Ca|0]13 = o(||6]*)
Vo4 B 3 keisn Qi W 0 < a®lo®)011
\Y 1 (4,00 3 keaisn Ui~ tr(QY) 0

with Type I sum and Type IV sum being the major contributors. The following theorem is
proved in the supplementary material.

Theorem 2.4.1 (Ideal SgnQ test statistic). Consider the testing problem (2.1.6|) under the
DCMM model (3.1.1)-(3.2.4), where the condition (2.2.14)) is satisfied under the alternative

hypothesis. Suppose Omax — 0 and ||6]| — 0o as n — oo, and suppose |A2|// A1 — oo under
the alternative hypothesis. Then, under the null hypothesis, as n — oo,

E[Qa] =0,  Var(Qn) = 8||6]* - [1 + o(1)],

and

Qn — E[Qn]
Var(Qn)

Furthermore, under the alternative hypothesis, as n — oo,
E[Qn] = (@) +o(I01"),  Var(Ty) < ClII6]1* + (1A2]/ M) l1611°]1615].

— N(0,1), in law.

2.4.2 The behavior of (Q* — Q,)

Consider (Q; — @n), which is defined as
0, = Z Xro X Xr XF (2.4.35)

192 213 1314 g1
il,ig,i3,i4(dist)

Similarly, if we expand the bracket of all individual terms and re-organize, we have
3x3Ix3Ix3I=281

post-expansion sums. Out of the 81 post—ezpansion sums, 2 X 2 X 2 x 2 = 16 of them do not

depend on §, the sum of which equals to @,,. These leave us with 65 post-expansion sums,

the total sum of which is (Q} — @n) Similarly, according to (Ng, Nw, Ns), we divide these
65 sums into 10 types. See Table where we recall that o = |A2|/A1.

Consider the null hypothesis first. Under the null, Q is a zero matrix, so the nonzero
post-expansion sums only include Type Ia, Type IIa, Type IIla, and Type IV. It is seen that
IE[Q, — @nll < 0],

and that
Var(Qy, — Qn) = o([|0]|°).

Note that ||0]8 is the order of Var(Q,,) under the null. The difference between the variance of
@y, and the variance of @), is negligible, but the difference between the mean of (), and the
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Table 2.2: The 10 types of the post-expansion sums for (Q} — @n) .

Type # (N5,Ng,Nw) FExamples Abs. Mean Variance
AT 00 e Wl 0 < CTOTPT01E = o[10TF)
ist
b8 (L2 SaredWWe 0 < /|04 611§ = o|16]1*)
4 ikt O Wik e W 0 < Ca?|0]1*[16]15 = o(ll0]®)
(dist)
~ ~ N C 4 0 10 9 . 3
e 8 (20 TywebfuleWe < Coo=o0) < ColB IO — o(aS0]%)10]5)
ist
4 ik 01k Wiei 0 < 70‘14\\0\\4“0”3 =o(||0]®)
(dist)
4 (1,3,0) N0yl 0 < G — ool 6] )6115)
(dist) )
Mo 4 (202 MuwebudaWils < Clol'=ofaolf) < Cllollels = o(Io11*)
ist
2 Siint 65 WikbeWer < CJl0]*=o(a*[6]]%) < RO — o(0]1%)
(dist) ~
I 8 (2,1,1) Z}jkf 050k Wei 0 < Ca?(|0]"1011§ = o([|6]|®)
ist
4 Eige buduWes < Calf'=o(at|0]) < SOl — o))
(dist
Te 4 (220 Surdpinduls < CallBlf=oalo]®) < ol = o(ad)56))
(dist)
2 < Spne bl S oot o)) < CaIOIONS _ o(g13)
(dist)
Ma 4 (3,0,1)  YijkediuoeWe < Cllo]*=o(a™[0]|*) < RO — o(0)1%)
(dist)
A Calld Cca?0)1810)12
Mb o4 310 <Dl < S =o(at]0]®) < oI — o))
st
elll’] 10
v 1 (4,0, 0) Zz(ékf 3150k 0kede; < O|0]1*=o(a’|6]1®) < ‘l“ml‘l% = o(]|0]|*)
st

mean of @n is non-negligible. With lengthy calculations (see the supplementary material),

we can show that

Therefore, (Q

E[Q;, — Qn] ~ 2[10]*.

* —92]|0]|*) and Q,, have a negligible difference under the null.

Consider the alternative hypothesis next. From Table [3.3]
E[Q;, — Qnll < C(1X2l/X1)?]0]I°,

where the major contribution is from Type Ic and Type Ilc post-expansion sums. Under

our assumptions for the alternative, [A2]/vV/ A1 — oo and A\ < H0||4
Qn]| = 0o(A2), where M is the order of tr(Q*) and E[Q,]; see Lemma [2| and
Theorem [2.4.1] Additionally, [|f]* =

that [E[QF —

E[Q,]. We conclude that

From the table,

Var(Q}, — Qn) <

E[Q, — Qn — 21|6]"]

C(IA2l/ M) N0 210115

It is easy to see

O(M\?) = o(\3), which is also of a smaller order of

= o(E[Qn))-

+o(]|0]1®),
e (le1*

with the major contribution from Type Id. Here, the second term is smaller than Var(@n),
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2.4. The behavior of the SgnQ test statistics

and the first term is upper bounded by (using the universal inequality of ||8]|* < [|0]|1]/0(13)
C(1x2l/2) 011913,
which has a comparable order as Var(Q,,). It follows that
Var(Q;, = Qn = 2/|6]1*) = Var(Qy, — @n) < CVar(Qn).
Combining the above, we obtain that the SNR of (QF — 2||6]|4) and Q, are at the same

order.

These results are summarized in the following theorem, which is proved in the supple-
mentary material.

Theorem 2.4.2 (Proxy SgnQ test statistic). Consider the testing problem (2.1.6)) under the
DCMM model (3.1.1))-(3.2.4]), where the condition (2.2.14)) is satisfied under the alternative

hypothesis. Suppose Omax — 0 and [|0]| — oo as n — oo, and suppose |A2|//A1 — oo under
the alternative hypothesis. Then, under the null hypothesis, as n — oo,

E[(Q;, —20]") — Qu] = o(ll6lI*),  Var(Q}, — Qn) = o[16]]®).
Furthermore, under the alternative hypothesis,
E[(Q;, — 211611*) — @n] = o((|X2l/M1)*]16]®),
Var(Q, — Qn) < C([X2l/A0)° 61716113 + o([161]°).

2.4.3 The behavior of (Q, — QF)

The SgnQ statistic we introduce in Section is defined as
Qn= > XiiyXisiy Xiis Xigiy
i1,i2,i3,i4 (dist)
where X;; = Qij +Wij+6;5+r;; for any 7 # j. Similar to Sections we first expand
every bracket in the definitions and obtain 4 x 4 x 4 x 4 = 256 different post-expansion sums
in @Q,. Out of the 256 post-expansion sums in Q,, 3 x 3 x 3 x 3 = 81 of them do not involve
*; this leaves a total of

256 — 81 =175

different post-expansion sums in (Q, — Q}). In the appendix, we investigate the order of

any r term and are contained in )

mean and variance of each of 175 post-expansion sums in (Q, — @} ). The calculations are
very tedious: although we expect these post-expansion sums to be of a smaller order than
the post-expansion sums in Sections [2.4.1H2.4.2] it is impossible to prove this argument
rigorously using only some crude bounds (such as Cauchy-Schwarz inequality). Instead, we
still need to do calculations for each post-expansion sum.

Theorem 2.4.3 (Real SgnQ test statistic). Consider the testing problem (2.1.6) under the
DCMM model (3.1.1)-(3.2.4), where the condition (2.2.14)) is satisfied under the alternative

hypothesis. Suppose Opmax — 0 and [|0]| — oo as n — oo, and suppose |Aa2|// A1 — 0o under
the alternative hypothesis. Then, under the null hypothesis, as n — oo,

E[Qn — Qull =o(ll0]),  and  Var(Qn — Q) = o(|0]%).
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Under the alternative hypothesis, as n — oo,
E[Qn — Qull = o(([al /A1) 16]1%),
Var(Qn — Q) = o(([Aal /A)°101%1611%) + o([1611°)-

Similarly, we can conclude that (@, — Q) has a negligible effect to both the asymptotic
normality under the null and the SNR under the alternative.

2.4.4 Proof of the main theorems

Consider Theorem In this theorem, we assume the null is true. First, by Theorems

and and elementary statistics,
E[Qr, —Qn] ~ 201", [E[Qn — Q5] = o([6]"), (2.4.36)
and
Var(Q, — Qu) = o([6]I°),  Var(Qn — Q7)) = o([|6]]%). (2.4.37)
It follows that
E[Qn] —E[Qn] = 2+ o(W)][6]*,  Var(Qn—Qn) = o(||6]|*). (2.4.38)
By Theorem
A ~ én - E[én]
E[Qn] = o([|0]*), Var(Qn) ~ 8]0]*, ———=2
Var(Qn)
Since for any random variables X and Y, Var(X +Y) < (1 + a,)Var(X) + (1 + i)Var(Y)
for any number a,, > 0, combining the above and letting a,, tend to 0 appropriately slow,

E[Qn] ~20|*,  Var(Qn) ~ 8[10]°. (2.4.40)

— N(0,1). (2.4.39)

Moreover, write
Qn B ]E[Qn] o Var(Qn) n E Qn]

V Var(@n) Var(Qn) 4/ Var( Qn Var Qn \/Var(én)
On the right hand side, by (2.4.38] m m, as n — 0o, the term outside the bracket — 1,
and for the three terms in the bracket, the first one has a mean and variance that tend to 0

so it tends to 0 in probability, the second one weakly converges to N (0, 1), and the last one
— 0. Combining these,

Qn - E[Qn] —
Var(Qn)
Combining ([2.4.40) and (2.4.41)) proves Theorem [2.2.1]
Next, we consider Theorem where we assume the alternative is true. First, similarly,
by Theorems [2.4.2] and [2:4.3]
E[Qr, — Q] = (2 + o()[6]* + o((IA2 /A1) [16]%),

N(0,1),  in law. (2.4.41)

and
Var(Qn — Qn) < C(Aa/A)%[10]1%]16115 + o([16]I°)-
Second, by Theorems [2.4.1
E[Qn] = tr(@") +o([l6]*),  Var(Qn) < ClI6]* + (A2/A0)®[16]1®16115].
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Combining these proves Theorem
Last, we consider Theorems [2.2.3] First, by Theorem and Lemma [T} under the null,
Qn —2(|I7]* - 1)
8711 — 1)*

— N(0,1),
so the Type I error is
~ Qn —2(|I7* — 1)?

Second, fixing 0 < € < 1, let A. be the event {(||7]|*> — 1) < (1 +¢)||n*||*}. By Lemma and
definitions, on one hand, over the event A., (||7]|*> — 1) < (14 ¢)||n*||*> < C||f]|?, and on the
other hand, P(A¢) = o(1). Therefore, the Type II error

Py (@ < 2+ 21 - 177)

<Py (Qn < @+ 20V BT - D% AL) + PAD

<P, <Qn <02+ Za\/g)\|9||4> +o(1),
1
where by Chebyshev’s inequality, the first term in the last line
< [B(Qn) = C(2+ 2aVB)||0]'] 7% - Var(Qn). (2.4.42)
By Lemma D.2 of the supplementary material and our assumptions, A\; < [|0]|?, [Xa|/v/ A1 —

oo, and ||#]] — oo. Using Lemma E[Qn] > CA; > A2, and it follows that E(Q,) >
C(2 + 24V8)|10]|*, so for sufficiently large n,

E(Qn) — C(2+ 2aVB)[6]|* >
At the same time, by Theorem [2.2.2

Var(Qn) < C(I0]° + (A2/20)°[1611°161]5)-
Combining these, the right hand side of (2.4.42)) does not exceed
o OIP + Qa/ AP 61710115

)\8

2
where (I) = CA;8]|0]|® and (IT) = CA;%(A2/M1)C)|0)13]|0]|S. Now, first, since \; = ||6]?
and |[A2|/v A1 — 0, (I) < C(A2/v/A1)~® = 0. Second, since A\; = ||0]|? and [|0]|$ < ||0]|4,
(IT) = CA2A9)10]18110]18 < CAF2. As [Aa|/vVAL — 00, VAL < ||0]] with ||0]] — oo, [A2] — oo
and (IT) — 0. Inserting these into (2.4.43)), the Type II error — 0 and the claim follows. [

E[Q.] > C)i.

N

= (I) + (IT), (2.4.43)

2.5 SIMULATIONS

We investigate the numerical performance of the SgnQ test . We include the
SegnT test Jin et al.| (2019)), which is known for suffering from “signal cancellation” and is
only optimal adaptive under additional mild conditions. We also include the EZ test |Gao
and Lafferty (2017) and the GC test [Jin et al.| (2018]) for comparison. For reasons mentioned
in Jin et al. (2018]), we use a two-sided rejection region for EZ and a one-sided rejection
region for GC.

Given (n,K), a scalar 5, > 0 that controls ||0|, a symmetric nonnegative matrix
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P € REXE 4 distribution f(#) on R, and a distribution g(7) on the standard simplex of
RX | we generate two network adjacency matrices A" and A% under the null and the
alternative, respectively, as follows:

e Generate 0y, 0y,...,0, iid from f(0). Let 6; = B, - 6;/]16]], 1 <i < n.
e Generate 7y, Ty, ..., T, iid from g(m).

e Let Q% = OIIPII'®’, where © = diag(fy,--- ,0,) and II = [11,ma,...,7,]. Generate
A4 from Q% according to Model (3.1.1)).

o Let Q" = (a/Pa) - 0¢', where a = E,m € RE is the mean vector of g(m). Generate
A from QP according to Model (3.1.1)).

The pair (Q™“ Q) is constructed in a way such that the corresponding networks have ap-
proximately the same expected average degree. This is the most subtle case for distinguishing
two hypotheses (see Section [2.3)).

It is of interest to explore different sparsity levels and also to focus on the parameter
settings where the SNR is neither too large or too small. Therefore, for most of the
experiments, we let 3, = ||0| range but fix the SNR at a more or less the same level. See
details below.

For each parameter setting, we generate 200 networks under the null hypothesis and
200 networks under the alternative hypothesis, run all the four tests with a targeting level
a = 5%, and then record the sum of percent of type I errors and percent of type II errors.

We consider three experiments (and a total of 8 sub-experiments), exploring different
sets of n, K, 4, 11, and P, etc.

Ezxperiment 1: We study the role of degree heterogeneity. Fix (n, K) = (2000,2). Let P
be a 2 x 2 matrix with unit diagonal entries and all off-diagonal entries equal to b,. Let
g(m) be the uniform distribution on {(0,1),(1,0)}. We consider three sub-experiments, Exp
la-1c, where respectively we take f(6) to be the following:

e Uniform distribution U(2, 3).
e Two-point distribution 0.956; 4+ 0.0503, where J, is a point mass at a.

e Pareto distribution Pareto(10,0.375), where 10 is the shape parameter and 0.375 is
the scale parameter.

The degree heterogeneity is moderate in the Exp la-1b, but more severe Exp lc. In such
a setting, SNR is at the order of ||#||(1 — by,). Therefore, for each sub-experiment, we let
Brn = ||0]| vary while fixing the SNR to be

16]1(1 = bn) = 3.2.
The sum of Type I and Type II errors are displayed in Figure
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Figure 2.2: From left to right: Experiment la, 1b, and lc. The y-axis are the sum of Type
I and Type II errors (testing level is fixed at 5%). The z-axis are ||f|| or sparsity levels.
Results are based on 200 repetitions.

First, both the SgnQ test and the GC test are based on the counts of 4-cycles, but the
GC test counts non-centered cycles and the SgnQ test counts centered cycles. As we pointed
out in Section [2.1] counting centered cycles may have much smaller variances than counting
non-centered cycles, especially in the less sparse case, and thus improves the testing power.
This is confirmed by numerical results here, where the SgnQ test is consistently better than
the GC test, significantly so in the less sparse case. Similarly, both the SgnT test and the
EZ test are based on the counts of 3-cycles, but the EZ test counts non-centered cycles and
the SgnQ test counts centered cycles, and we expect the GC to significantly improve the EZ,
especially in the less sparse case. This is also confirmed in the experiment.

Second, Sgn@ and GC are order-4 test graphlet counting statistics, and SgnT and EZ are
order-3 graphlet counting statistics. In comparison, SgnQ significantly outperforms Sgn'T,
and GC significantly outperforms EZ (in the more sparse case; see discussion for the less
sparse case below). A possible explanation is that higher-order graphlet counting statistics
have larger SNR. Investigation on this is interesting, and we leave this to the future study.
Note that SgnQ is the best among all four tests.

Last, GC outperforms EZ in the more sparse case, but underperforms in the less sparse
case. The reason for the latter is as follows. The biases of both tests are negligible in the
more sparse case, but are non-negligible in the less sparse case, with that of GC is much
larger.

FEzxperiment 2: We study the cases with larger K and more complicate matrix P. For a
by € (0,1), let g, = % min(1— by, by,), and let P be the matrix with 1 on the diagonal but the
off-diagonal entries are iid drawn from Unif(b,, — &, by, + &,,); once the P matrix is drawn,
it is fixed throughout different repetitions. We consider two sub-experiments, Exp 2a and
2b. In Exp 2a, we take (n, K) = (1000,5), f(#) to be Pareto(10,0.375), and g(m) to be the
uniform distribution on {e1,--- ,ex} (the standard basis vectors of R¥). We let 3, range but
|0]|(1—by,) is fixed at 4.5, so the SNR will not change drastically. In Exp 2b, we take (n, K) =
(3000, 10), £(8) to be 0.956,+0.0533, and g(m) = 0.1 3 7_; e, +0.15 302 6c, +0.05 5,2 5,
(so to have unbalanced community sizes). Similarly, we let 3, range but fix ||6]|(1 —by) = 5.2.
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Figure 2.3: From left to right: Experiment 2a and 2b. The y-axis are the sum of Type I and
Type II errors (testing level is fixed at 5%). The z-axis are [|6]| or sparsity levels. Results
are based on 200 repetitions.

The sum of Type I and Type II errors are displayed in Figure 3.5

In these examples, EZ and GC underperform SgnT and SgnQ, especially in the less sparse
case, and the performances of the SgnT and Sgn() are more similar to each other, compared
to those in Experiment 1. In these examples, we have larger K, more complicate P, and
unbalanced community sizes, and the performance of the SgnT and SgnQ test statistics
suggest that they are relatively robust.

Ezperiment 3: We investigate the role of mixed-membership. We have three sub-
experiments, Exp 3a-3c. where the memberships are not-mixed, lightly mixed, and signifi-
cantly mixed, respectively. For all sub-experiments, we take (n, K) = (2000, 3) and f(6) to
be Unif(2, 3). For Exp 3a, we let gi(7) = 0.49¢, + 0.3d¢, + 0.3d¢,. In Exp 3b, we let ga(7) =
0.3 Zi:l Je,, + 0.1 - Dirichlet, and in Exp 3c, we let g3(m) = 0.25 22:1 ¢, + 0.25 - Dirichlet,
where Dirichlet represents the symmetric K-dimensional Dirichlet distribution. In Exp
3a-3b, we let 3, range while (1 — b,)||0|| is fixed at 4.2 so the SNR’s are roughly the same.
In Exp 3c, we also let (3, range but (1 — b,)||0|| = 4.5 (the SNR’s need to be slightly larger
to counter the effect of mixed-membership, which makes the testing problem harder).

The sum of Type I and Type II errors are presented in Figure 3.6l First, the results
confirm that mixed-memberships make the testing problem harder. For example, the value of
|6]|(1 —by,) in Exp 3c is higher than that of Exp 3a-3b, but the testing errors are higher, due
to that the memberships in Exp 3c are more mixed. Second, SgnQ) consistently outperforms
EZ and SgnT. Third, GC is comparable with Sgn(@ in the more sparse case, but performs
unsatisfactorily in the less sparse case, for reasons explained before. Last, in these settings,
SgnT is uniformly better than EZ, and more so when the memberships become more mixed.

2.A  MATRIX FORMS OF SIGNED-POLYGON STATISTICS

We prove Theorem Recall that A = A4 — nn. By definition,
Qn = tr(A*) - Z Aij A Ao Ay,

at least two of
,5,k,¢ are equal
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Figure 2.4: From left to right: Experiment 3a, 3b, and 3c. The y-axis are the sum of Type
I and Type II errors (testing level is fixed at 5%). The z-axis are ||f|| or sparsity levels.
Results are based on 200 repetitions.

When at least two of {i,j, k, ¢} are equal, depending on how many indices are equal, we
have four patterns: {i,4,4,}, {4,4,4,5}, {4,4,4,7}, {i,4,7, k}, where (i, j, k) are distinct. For
each pattern, depending on the appearing locations of the next distinct indices, there are
a few variations. Take the pattern {i,1, j, k} for example: (a) when a new distinct index
appears at location 2 and at location 3, the variations are (i, j, k,%), (i,7,k,7), (i,7,k, k);
(b) when a new distinct index appears at location 2 and at location 4, the variations are
(i,7,1,k), (1,7,7,k); (c) when a new distinct index appears at location 3 and location 4, the
variation is (4,14, j, k). Using similar arguments, we can find all variations of each pattern.
Define

Si= Y AuAiAu Ay, Sp= > ALAL,
ij.k(dist) i,j.k(dist)
i,j(dist) i,j(dist)
Ss= Y AuA}Aj, Se =Y _ Af.
1,j(dist) i
Therefore
Qn = tr(A%) — 48 — 255 — 455 — 4 — 255 — Sg. (2.A.44)

What remains is to derive the matrix form of S1-Sg. By direct calculations,

S, = Zﬁii[ > AjApAn =Y ﬁijjﬂﬁji]

i i kit #i
- S A(S A -2 R B - (DA, - )]
i Ik J J
= AadyAp A -2 ARAG - Ay AL Ay +2) A
injok i iy i

= tr(Ao A%) — 2tr(A o Ao A%) — 1/, [diag(A)(A o A)diag(A)]1, + 2.
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Moreover, we can derive that
$=%| T A -S|
i i kA i

_;[(ZA —22A2A2+A4)—(Zﬁﬁj—ﬁﬁi)]
=>4 ik—zzA,?j/ﬁ ZA +2ZA

i,k
= tr(A%20 A%) — 2tr(A o AoAz) —1'[Ao Ao Ao All, + 25s.
It is also easy to see that
ZA?ZA?] ZA tr(Ao Ao A%) — S,

S4—ZA ZA4—1/AOAOAOA] — Sg,
Z Ay A2 A — S =1/ [diag(A)(A o A)diag(A)]1, — Ss,

Se :tr(AvoAog).
Plugging the matrix forms of Si-Sg into ([2.A.44)), we obtain
Qn =tr(AY) — 4tr(A o A%) — 2tr(A% 0 A?) + 8tr(Ao Ao A%) —6tr(Ao Ao Ao A)
+ 2.1/ [diag(A)(A o A)diag(A)|1, + 1,[Ao Ao Ao A]l,
This gives the desired expression of @Q,,.

Last, we discuss the complexity of computing @Q,,. It involves the following operations:

Compute the matrix A = A — 7]’

Compute the Hadamard product of finitely many matrices.

Compute the trace of a matrix.

Compute the matrix DM D for a matrix M and a diagonal matrix D.

Compute 1, M 1,, for a matrix M.

Compute the matrices Ak , for k=2,3,4.

Excluding the last operation, the complexity is O(n?). For the last operation, since we
can compute Ak recursively from Ak = gkflﬁ, it suffices to consider the complexity of
computing Bg, for an arbitrary n x n matrix B. Write

BA = BA — Bi(1)’.
Consider computing BA. The (i,j)-th entry of BA is Z&Aeﬂéo BigAyj, where the total
number of nonzero Ay; equals to d;, the degree of node j. Hence, the complexity of

computing the (7, j)-th entry of BA is O(d;). It follows that the complexity of computing

BAis O3, dj) = O(n?d). Consider computing B7(7)’. We first compute the vector
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v = B7 and then compute v(7)’, where the complexity of both steps is O(n?). Combining the
above, the complexity of computing BA is O(n2d). We have seen that this is the dominating
step in computing T}, and @, so the complexity of the latter is also O(n?d).
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2.B  ESTIMATION OF ||0]|

We prove Lemma (1| First, we show that
o | =017, under the null,
Il { = [10]|%, under the alternative.
Recall that n* = (1/,/1,9Q1,,)1,. Hence,
I 1 = (1,9°15)/(1,Q15)- (2.B.45)

Under the null, Q = 66’, and the claim follows by direct calculations. Under the alternative,

Q=0 Mk, 50

K K
1,08, =Y Ae(1,6)7 1,0%1, =) A (1,4)
k=1 k=1
By Lemmal[6] A; < [|0]|%. By Lemmal[7} 1,¢& = ||6]|71]|6]|1 and [1], §k! o(llel=16ll1). Tt
follows that 1,021, > N3 (1,61)2 > C||0]2[6]2 and 1,021, < X K (1,62 < C[6]2] ]I
‘We conclude that

1,021, = [|6]3]16]> (2.B.46)

Moreover, 12,01, < [\ S, (12,6,)% < C||0]|3, and by Lemma 1101, > C||6]3. Tt follows
that

1201, = [|0]3. (2.B.47)

Plugging (2.B.46))-(2.B.47)) into (2.B.45) gives the claim.

Next, we show (||7]|> — 1)/||n*||> — 1 in probability. Since ||n*|| < ||0| — co as n — oo,
it suffices to show ||7j]|2/||n*||*> — 1 in probability. By definition,
1A%,
17 A1,
Compare this with (2.B.45)), all we need to show is that in probability,
1Al 17, A%1
- © 51, and 3 n
17,01, 1,0%1,
Since the proofs are similar, we only show the second one. By elementary probability, it is

I7l* =

1. (2.B.48)

sufficient to show that as n — oo,
E[1/,A%1,) . Var(1/,A%1,,)

— — 0. 2.B.49
17021, ’ (11,921,)2 ( )
We now prove . Consider the first claim. Write
1, A2 Ly = AjAp =Y A5+ Y AjA. (2.B.50)
7]7 Z#] 7 j k(dZSt)

It follows that

E[1,A%0,) => Qi+ > Qi

1#] i,J,k(dist)
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Since ;; < 6;0; under both hypotheses, we have

B[l A%1,] — 1,01, — 11,021,| < ‘ZQWL 3y QZ]QJk’
(4,4,k) are
not distinct

< Ze2+029292+029§9k
i,k

< CH9H2 + CH9H4 + ClIOI5 10114
< Clo13001l1,

where we have used the universal inequality [|0]|* < [|6]|3]|0]|1. Since [|0]|3 < 02, 10]l1 =
o(||0]]1), the right hand side is o(|6]|?) = o(1,,221,). So,

E[1,A%1,] = 1,0%1, + 1,Q1, + o(1,Q1,,). (2.B.51)
Combining this with (2.B.46|)-(2.B.47)) gives
‘E[1;A21n] e L, 1

1,021, ‘ ~ 1021, 91’
and the claim follows by ||0|| — oc.
Consider the second claim. By (2.B.50)),
Var(1, A21,) < 2Var (Z Afj) + 2Var< 3 AijAjk). (2.B.52)
i#j i,k (dist)
We re-write >, ,; A% = >izj Aij =23 Aij. The variables {A;;}1<i<j<p are mutually
independent. It follows that
Var(Z Afj) =4 Var(4y) < CZQU < C|9|2. (2.B.53)
i i<j
Moreover, since A;j A, = (Qij + Wij)(Qr + W), we have

Do Ayd= ) uu+2 Y Wit Y WyW

ivjk(dist) ivjik(dist) i g,k (dist) ivjk(dist)
Z Qi + X1 + Xo.
ivjk(dist)

By elementary probability,
3 AijAjk) < 2Var(X1) + 2Var(Xa).
1,5,k (dist)
To compute the variance of X;, we note that
X1=4> BiuWik,  Bi= > Q.
Jj<k i¢{j.k}

The variables {Wji}1<j<k-n are mutually independent, and |B;,| < C )", 0:0; < C||6][16;.
It follows that

Var(X1) < C ) (1161:6;)%(8;6x) < Cl613113.

j7k
To compute the variance of X5, we note that
Var(X3) = Z Z E[Wi i Wix Wi s W]
i,5,k(dist) i',j' k' (dist)

The summand is nonzero only when the two variables {Wj/;/, W} are the same as the
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two variables {W;;, Wji}. This can only happen if (¢, 5, k) = (¢, j', k') or (i,4, k) = (K, 7',7),
where in either case the summand equals to E[WéWfk] It follows that

Var(Xp) = Y 2B[WIWZR]I<CY 0,020, < C|10]1%]0]]3.

i,9,k(dist) 4,5,k
Combining the above gives
var( 3 AyAg) < ClOIRIOI + ClOII0) < Cleli ol (2.8.54)

i,j,k(dist)
where we have used the fact that ||€]|1]|0]|3 > ||0]|* (Cauchy-Schwarz inequality) and ||0|| — oco.
Plugging (2.B.53)-(2.B.54) into (2.B.52) gives
Var(1,4%1,,) < C|0]|3]10]3. (2.B.55)
Comparing this with and using [|0]|3 < 62,..1/0|/1, We obtain
Var(144%1,) _ ClOIRIOIS _ C82a
(1.921,)2 = lelzlent — lel*
and the claim follows by |0 — oo.
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2.C. Spectral analysis for 2 and Q

2.C SPECTRAL ANALYSIS FOR ) AND Q

We state and prove some useful results about eigenvalues and eigenvectors of ) and Q.
In Section 2.C.4] we prove Lemma 2]

For 1 < k < K, let A\; be the k-th largest (in absolute value) eigenvalue of £ and let
&, € R™ be the corresponding unit-norm eigenvector. We write
== [51,62, e ,5[(] = [ul, Uy .- ,Un]/,
so that wu; is the i-th row of Z. Recall that G is the K x K matrix |0 ~2(II'©21I).

2.C.1 Spectral analysis of 2

The following lemma relates A\p and & to the eigenvalues and eigenvectors of the K x K
matrix G2 PG,

Lemma 5. Consider the DCMM model. Let dy be the k-th largest (in absolute value)
eigenvalue of G> PG5 and let B € RE be the associated eigenvector, 1 < k < K. Then
under the null,
A =1017, &=+6/]0].
Under the alternative, for 1 < k < K,
1
Me=d|l6?, & =10]7 [0 o (TG 2 ).

Under the alternative hypothesis, we further have the following lemma:

Lemma 6. Under the DCMM model, as n — oo, suppose (2.2.14) holds. As n — oo, under
the alternative hypothesis,

A= 01, |wil| < C|\6]|716;,  for all 1 <i < n.

The quantities (1],&x) play key roles in the analysis of the Signed Polygon tests. By
Lemma,
&= (o) renc12p,,

where f3 is the first eigenvector of GY/2PGY2, corresponding to the largest eigenvalue of
GY2PGY2. 1t is seen G~1/28, is the eigenvector of the matrix PG associated with the
largest eigenvalue of GP, which is the same as the largest eigenvalue of GY/2PGY/2. Since
PG is a non-negative matrix, by Perron’s theorem, we can assume all entries of G=1/23; are
non-negative. As a result, all entries of £; are non-negative, and

1In§1 > 0.

The following lemma is proved in Section [2.C.3

Lemma 7. Under the DCMM model, as n — oo, suppose (2.2.14) holds. As n — oo,

! < —1 / > -1 )
Jmax L8l < ClOII00, - 1n& = 10l

and so for any 2 <k < K,
11.8k] < CI17,61]
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We also have a lower bound for 1/,Q1,,. The following lemma is proved in Section 2.C.3]

Lemma 8. Under the DCMM model, as n — 0o, suppose (2.2.14)) holds. As n — oo, both
under the null hypothesis and the alternative hypothesis,

1,91, > C|0])3.
2.C.2 Spectral analysis of Q

Recall that

Q=Q— """, where n* = (1/4/1,Q1,,)Q1,,
and Aq,...,Ax are the K nonzero eigenvalues of {2, arranged in the descending order in
magnitude, and &, ..., &k are the corresponding unit-norm eigenvectors of {2 The following
lemma is proved in Section
Lemma 9. Under the DCMM model, as n — oo, suppose (2.2.14]) holds. Then,

| < QU < CPal.

Moreover, for any fized integer m > 1,

1(Q™)ii] < Clxo|™ - 10]720:0;, for all 1 <i,j <n.

Recall that dy,...,dx are the nonzero eigenvalues of G PG3. Tntroduce
D:d’iag(dl,d27...,dK), ﬁzdiag(d2ad37"')dK)a

and

h:( w2 153 - 1%&()’ _Z nfk
INSER TS (TSR
By Lemma 1,61 > 0, so h and ug are both well—deﬁned. erte == [§1,£2, ...,¢k]. The
following lemma gives an alternative expression of (2.
Lemma 10. Under the DCMM model,
ﬁ = H0H2 = El?
where M is a K x K matriz satisfying
(1+up) "WDh —(1+up)~'W'D ]

~(14wuo)"'Dh D — (di(1+ uo))"*Dhi'D
If additionally |X\2|/A\1 — 0, then for the matriz M e REK

' NS
=|re||2-[“3" ~hD],

—Dh D

we have
|My; — Mij| < CX3/\1,  foralll <i,j<K.

We now study tr(ﬁ‘l), which is related to the power of the SgnQ test. We discuss the two
cases |A2|/A1 — 0 and |A\2|/A1 > ¢o separately. Consider the case of |\a|/A\1 = o(1). Since
Q=2M= , where Z'Z = I, we have

tr(Q*) = tr(M?).



2.C. Spectral analysis for 2 and Q

The following lemma is proved in Section

Lemma 11. Consider the DCMM model, where (2.2.14]) holds. As n — oo, if |A2|/A\1 — 0,
then

1 tr(QY) — tr(MY)] < o(|A2]), (2.C.56)
Moreover,
tr(M*) = tr(D*) + (h'Dh)* + 4(k' D*h)* + A(h' Dh)? (k' Dh) + 4K D*h + 4(h' Dh)(h' D*h)
> tr(D*) + (W' Dh)* + 2[(W' D*h)? + (W Dh)*(h' D?h) + b’ D*h)
> tr(DY).
e In the special case where Ao, A3, ..., A\ have the same signs,
K K
| te(M%)] > [ DAY =D Il
k=2 k=2
and so

K
[tr(Q%)] = D [l + o[ Aol?).
k=2

e In the special case where K = 2, the vector h is a scalar, and
(M) = (L+ 1%\, t(M*) = (1+h%)"\3,
and so

(%) = [(L+ 1% + o)A, (") = [(1+A%)! + o(1)]A3.

We now consider the case |A2/A1| > ¢p. In this case, M is not a good proxy for M any
more, so we can not derive a simple formula for tr(Q3) or tr(2*) as above. However, for
tr(Q*), since

tr(Q4) > |0,
by Lemma [9] we immediately have
K K
tr(Q) > CA3 > CON)/(K—1) > C > AL (2.C.57)
k=2 k=2

2.C.3 Proof of Lemmas
Proof of Lemma@

The proof for the null case is straightforward, so we only prove the lemma for the alternative
case. Consider the spectral decomposition

G/?pG'/? = BDB'.
where

D =diag(dy,...,dx) and B =[,...,Bx]
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Combining this with = OIIPII'O gives
Q = OIIG2(G2 PG2)G 21T’
— O1IG 2 (BDB')G 21T’
= (|lol~*enG=2 B)(||6|*D)(||0| ~*enG—: BY
= H(||0|*D)H’,
where

H = |6|"'enc:s.

Recalling that G = (||0]|?)~! - II'©211, it is seen
H'H = ||| 2B'G 2(I'0*)G 2B = B'B = I, (2.C.58)
Therefore,
Q= H(||6|*D)H’

is the spectral decomposition of €2. Since (Ek, &) are the k-th eigenvalue of Q and unit-norm
eigenvector respectively, we have

& = %1 - the k-th column of H = =(||0)~'OIIG~"/?8;.
This proves the claim. O

Proof of Lemma@

Consider the first claim. By Lemma |5} A\ = d;|0]|?, where d; is the maximum eigenvalue
1 1

of G2 PG2. It suffices to show that d; < 1. Since all entries of P are upper bounded by

constants, we have

1P <C.
Additionally, since G is a nonnegative symmetric matrix,
K K n
— — -2 ) . 2
HG” < ||GHmax = 1g}qa<XK;G(ka€) = ||9H 1I<I}€a<XK;Z;7Tz(k)7Tz(€)9i <L (2'0'59)
= =1 1=
It follows that
d < ||IG|IIP|I < C. (2.C.60)

At the same time, for any unit-norm non-negative vector « € RX since all entries of P are
non-negative and all diagonal entries of P are 1,

' Px > a2z =1.

It follows that

_1 / 1 1 _1 /
& = |Gipgl) » G 2I(GEPC)G Br) | e 1
I(G™2a)? vGe e
Combining it with the assumption ([2.2.14]) gives
dy > C. (2.C.61)

where we note C' denotes a generic constant which may vary from occurrence to occurrence.
Combining (2.C.60)-(2.C.61) gives the claim.

40



2.C. Spectral analysis for 2 and Q

Consider the second claim. Let B = [f1, B2, ..., k] and D = diag(dy,da,...,dk) as in
the proof of Lemma [5| where we note B is orthonormal. By Lemma [5| and definitions,

u) = 6] 07 G2 B.
It follows that
lall < 116]726: - [milllIG=2 1B < (lol) " 0:l1G2]
where we have used ||B|| = 1 and ||m;|| = [>35—, m(k)?]*/? < 1. Finally, by the assumption

[2.2.14), |G~ < C and so ||[G~'/?|| < C. Combining these gives the claim. O
Proof of Lemmaﬁ

It is sufficient to show the first two claims. Consider the first claim. By Lemma[6] for all
1<k<Kand1l<i<n,

&k (0)| < C|6]| 7" 6.
It follows that

&l <Y loI70 < Cllo) o],  forall 1 <k <K, (2.C.62)
i=1
and the claim follows.

Consider the second claim. By Lemma
& = [|0] T OI(G 2 8y), (2.C.63)
where 1 is the (unit-norm) eigenvector of G 2 PG associated with A1, which is the largest
eigenvalue of GY/2PG'/2. By basic algebra, \; is also the largest eigenvalue of the matrix
PG, with G=/23; being the corresponding eigenvector. Since PG is a nonnegative matrix,
Gf%ﬁl is a nonnegative vector (e.g., (Horn and Johnson) |1985, Theorem 8.3.1)). Denote for
short by

h=G Y25
It follows from (2.C.63) that
K n
6= (o))" 10 = 0]+ S (3 m(k: ) . (2.C.64)
k=1 i=1

We note that Zle (>, mi(k)8;) = ||6]|1. Combining it with the assumption (2.2.14)) yields

min {Zm(k;)el} > 6]
i=1

1<k<K
Inserting this into (2.C.64) gives
1.6 > C>101) 10N - (1Al (2.C.65)

We claim that ||h|| > 1. Otherwise, if ||h]| < 1, then every entry of h is no greater than 1 in
magnitude, and so

1Rl > IR = IGT Bl

Since |G = |G[|7" > 1 (see (2.C.59)) and ||51]] = 1,
IG=261] > 1.
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and so it follows ||h|| > 1. The contradiction show that ||h|| > 1. The claim follows by

combining this with . O
Proof of Lemma@
For 1 <k <K, let
c=([l6])'r'eL, = (|6]) " (1,em)".
Since 2 = OIIPII'O and all entries of P are non-negative,

K
101, = ||0]2(' Pe) > HOHQ(Z cz). (2.C.66)
k=1

Note that, first, ¢, > 0, and second, [|6]]1 Zszl cr = 1, 1101,, = 1,,01,,, where the last term
is ||0]]1, and so

K
Z Cl — 1.
k=1

Together with the Cauchy-Schwartz inequality, we have

K K

S d > (Y ew)?/K =1/K.

k=1 k=1
Combining this with (2.C.66) gives the claim. O
Proof of Lemma@

Consider the first claim. We first derive a lower bound for [|€2]|. By Lemma

1€2]] = [161f* - 1M1 (2.C.67)
where with the same notations as in the proof of Lemma M =D — (1+up) tvv'. Let
My be the top left 2 x 2 block of M. Let Dy = diag(dy,ds), and let vy be the sub-vector of

v in (2.C.72) restricted to the first two coordinates. By (2.C.72)),
1 _1 1
My = Dy — (1 + UO)_1UQU6 = D02 (IQ — (1 + UO)_1D81/21}006D0 2)D5,
and so by HDO_I/QH = |da|~'/2 we have

_1 _ _ _
(72 = (1 + o)™ D5 PugopDy ? )| < 105 20 Dg 2| < o 7H - Mo (2.C.68)

At the same time, since (1+ug) 1Dy Y 2U0U6D0_ 1/2 {5 a rank-1 matrix, there is an orthonormal
matrix and a number b such that

Q1+ uo)_lD(;l/QvovéDalﬂQ' = diag(b,0).
It follows
1(7— 1+ u) "Dy 2oy Dy )| = |1 — diag(b, 0)]| = max{|1 —b],1} > 1.
Inserting this into gives
1Mol > |dal,
Note that ||M]|| > || Mp||. Combining this with gives
192]] > [da][|6]]*.
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Next, we derive an upper bound for Hﬁ” By Lemma

Ll < -1 Ler > -1 ) .C.
1I§T}3§XK\1n€k\_CII9II 01]1, 1,61 > Cllo[ 0] (2.C.69)

By (2.C.69)), all the entries of M are upper bounded by C|Az2|, which implies ||M|| < C|da|.
Plugging it into (2.C.67)) gives

192 < o [16]]%, (2.C.70)

’1 + U()‘
and all remains to show is

1+UQ20>0.

Now, recalling that Q = > ¢ | Meli€, and Ay = d||0]|?, by definitions,

K
dy (15,6021 +uo) = Y di(15,6)* = [10] 721,01,

k=1
By Lemma [8 which gives 1,Q1,, > C||6]|2. Tt follows that
10121791, 110172 - 16113
1+ug > - >C > C,
dy(17,61) 1012 - 11613

where in the second inequality we have used (2.C.69) and d; = (||0]|)~2 - A1 < 1 (see Lemma
@. Inserting this into (2.C.70) gives the claim.
Consider the second claim. By Lemma
Q==M=

where = and M are the same there. Write

== [51,52, . ,5[{] = [ul, Uz, ... ,un]'.
Note that 2 and M have the same spectral norm. It follows that

Q" ==M"E,

and

Q)i = [ M| < || D] s .
By Lemma@, |uil[luj|| < C||0]|726;0;, and by the first part of the current lemma,

1M =[] < Clda|]16]1*.
It follows that
()] < Clda|™(|6]1*™~26:6;.

This proves the claim. O

Proof of Lemma

Consider the first claim. By definitions,

~ 1
Q=Q- """, where n* =

—Ql,.
V1LQL,

(2.C.71)

Recalling Dy, = di||0]|2 and E = [¢1, &, . . ., £k], we have
K
Q=) Dp&é&), = [l0]*-EDE".
k=1
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK

TESTING

It follows that
K
1,01, = [0 de(15,6)?,
k=1

and
K K

e ol . o "
" T e = i Ve

where the vector in the big bracket on the right is Zv, if we let

B da(17,62) di (18K) |/
V=V ey Vi)

Combining these gives

A 2
||9H2 / || || E’UU/E
1 +’LLO
Plugging it into (2.C.71) gives
~ 0112
Q= ||0||*)=D=' — 1||+HUOEUU/E = |10]*2(D — (1 + up) 'wd/)Z.

By definitions,
D = diag(dy, ds, ...,dx), and  v=d;/* (d, D).
It follows

(1 +U0)_1d1U0 —(1 +U0)_1h/5

D—-(1 “l' = ~ ~
(Lt uo) 0w =1 ) Bh D — (di(1+ o)) D

where we note that
K
d _ d (1;158)2 _ h/ﬁh

s=2

Combining these gives the claim.

Consider the second claim. By definitions,

[(1+uo)—1 — 1]dyug (1-— (1+U0)_1)h’

M=M= (1 ) )Dh (1 + o))~ it

Note that
11— (14 up)™"| < Clug| < C|Dq| /Dy,

and that by Lemma[7]
|(1,6)| < C1.61,

Vitien®)

(2.C.72)

o)

5[;]'

and so each entry of Dh does not exceed C |da|. It follows that for all 2 <i,j < K,

|My; — My;| < C||6]*(|Ds|/D1)d3 < CD3/ Dy,
and
|M;j — M| < C||0)|2dy ' d3 < CD3/D;.

Finally,

diu = dj?t Zd

2 < Od2/dy,

44



2.C. Spectral analysis for 2 and Q

SO
|Myy — My < C|6)%d3/dy < CD2/D;.

Combining these gives the claim. O

Proof of Lemma

It is sufficient to show (2.C.56)). In fact, once (2.C.56)) is proved, other claims follow by

direct calculations, except for the first inequality regarding tr(§4), we have used

|(W' Dh) (k' D3h)| < \h’f)m\/ (W D2h) (K D*h) < % (W' DR)?(h'D?h) + ' D*h|.
We now show (2.C.56). Since tr(2™) = tr(M™), for m = 3,4, it is sufficient to show
[tr(M3) — tr(M3)| < CAY/N1), [ tr(MY) = tr(MY)| < C|Aal?/ A1 (2.C.73)
Since the proofs are similar, we only show the first one. By basic algebra,
tr(M® — M?) = tr((M — M)®) + 3tr(M (M — M)?) + 3tr(M?*(M — M)).
By Lemmal 10} for all 1 <i,j < K,
|Mij — Mig| < CA3/ A1
Also, by Lemma [7] all entries of h are bounded, so for all 1 <1i,j7 < K,

| M;j] < Aol
It follows
[tr((M — M)3| < C(A3/M)%,
| tr(M (M — M)?)| < Chal(XN2/A\1)? < Claal? /A,
and

| tr(M2(M — M)| < CA3(A2/A1) < CAL/A.

where we note that A\y/A; = o(1). Combining these gives the claim.
2.C.4 Proof of Lemma

The second bullet point is a direct result of (2.C.57)), and the other two bullet points follow
directly from Lemma [11] of this appendix.
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2.D LOWER BOUNDS, REGION OF IMPOSSIBILITY

We study the Region of Impossibility by considering a DCMM with random mixed
memberships. First, in Section [2.D.1] we establish the equivalence between regularity
conditions for a DCMM with non-random mixed memberships and those for a DCMM with
random mixed memberships. Next, we prove Lemma [3| which is key to the construction of
inseparable hypothesis pairs. Last, we prove Theorem [2.3.1 of the main article.

2.D.1 Equivalence of regularity conditions

Let pq, po, ..., ux be the eigenvalues of P, arranged in the descending order in magnitude.
Recall that Ai, Ao, ..., Ak are the eigenvalues of 2. The following lemma is proved in
Section 2.D.5l

Lemma 12 (Equivalent definition of Region of Impossibility). Consider the DCMM model
(3.1.1)-(3.2.4), where the alternative is true and the condition (2.2.14) holds. Suppose

Omax — 0 and [|0]] — oo as n — oco. Then, as n — oo,
2| _ A2
=1 — =< — P — 1] < C(|A2]/A1)-
=t el Bl (2 - 1)< o)
As a result, |Aa|/v/A1 — 0 if and only if ||0]| - |p2(P)| — 0.

We now consider DCMM with random mixed memberships: Given (O, P) and a distri-
bution F over V (the standard simplex in R¥), let

Q=0IPI'e, T =[r,m,....,m], m %SF (2.D.74)

We notice that the conclusion of Lemma [12| holds provided that the regularity condition

(2.2.14)) is satisfied. The next lemma shows that (2.2.14)) holds with high probability. It is

proved in Section 2.D.5]

Lemma 13 (Equivalence of regularity conditions). Consider the model . Let
h = E[m] and ¥ = Cov(m;). Suppose |P| < C, minj<p<x{hx} > C and |71 < C.
Suppose Opax — 0, ||0]] — oo, and (||0]1?/10]]1)+/log(||0]1) — 0, as n — oco. Then, as
n — 00, with probability 1 — o(1), the condition is satisfied, i.e.,
n

mé‘xlﬁkSK{Z:‘lzl bimi(k)} o 161 < Co,

ming <p< i {25, Oimi(k)}
for a constant Cy > 0 and G = ||0||"2(II'©%1).

2.D.2 Proof of Lemma

Let M = diag(p1, pa, ..., x). It is seen p = M1 and so the desired result is to find a D
such that

DADMI1g =1 <= MDADMI1g = M1k = p <= D(MAM)D1g = p.
Since M AM has strictly positive entries, it is sufficient to show that for any matrix A
(M AM in our case; a slight misuse notation here) with strictly positive entries, there is a

46
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unique diagonal matrix D with strictly positive diagonal entries such that
DAD1, = k. (2.D.75)
We now show the existence and uniqueness separately.
For existence, we follow the proof in Marshall and Olkin| (1968)). Consider d’'Ad for a

vector d € R¥ with strictly positive entries. It is shown there that d’Ad can be minimized
using Lagrange multiplier:

K
L
@ Ad = > log(dy,).
k=1
Differentiating with respect to d and set the derivative to 0 gives

K
Ad =X g /dy, (2.D.76)
k=1

where A\ = d'Ad/(37, ux) > 0. Letting D = \~"/2diag(dy, da, ..., dk). Tt is seen that

(2.D.76]) can be rewritten as
DAD1g = u,

and the claim follows.

For uniqueness, we adapt the proof in |Johnson and Reams| (2009) to our case. Suppose
there are two different eligible diagonal matrices D; and Dy satisfying (2.D.75). Let
dy = D11k and dy = Dsl, and let M = diag(u1, po, - .., px). It follows that

D2D1Ad1 = D2D1AD11K = DQ/,L = Mdg,
and so

M™'DyD; Ady = ds.

Now, for a diagonal matrix S with strictly positive diagonal entries to be determined, we
have

STMDyDASS ™ dy = S71dy.
We pick S such that
SM~'DyD, =8,
and denote such an S by Sy. It follows
SoASo(Sytdy) = Sy tds.
or equivalently, if we let d; = Sy 'd; and dy = Sy 'dy,
SoASody = ds. (2.D.77)

Similarly, by switching the places of D; and Do, we have
SoASody = dj. (2.D.78)
Combining and gives
SoASo(dy +do) = (dy +do),  and  SoASo(di — d2) = —(d1 — da).
This implies that 1 and —1 are the two eigenvalues of Sy ASy, with c?l + JQ and élvl — 32 being

the corresponding eigenvectors, respectively, where we note that especially, 671 + JQ has all
strictly positive entries. By Perron’s theorem Horn and Johnson| (1985), since SyASy have
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all strictly positive entries, the eigenvector corresponding to the largest eigenvalue (i.e., the
Perron root) have all strictly positive entries. As for any symmetric matrix, we can only
have one eigenvector that has all strictly positive entries, so 1 must be the Perron root of
S9ASy. Using Perron’s Theorem again, all eigenvalues of SyASy except the Perron root
itself should be strictly smaller than 1 in magnitude. This contradicts with the fact that —1
is an eigenvalue of SyASy. The contradiction proves the uniqueness. O

2.D.3 Proof of Theorem m

This theorem follows easily from Theorems [2.3.2]2.3.5] Fix (©,P,F) such that § €
M (Br/log(n)) and ||6]| - |u2(P)| < an/log(n). Consider a sequence of hypotheses indexed
by n, where Q = 06’ under H, (n), and € follows the construction in any of Theorems
under H fn). Let Pén) and Pi()n) be the probability measures associated with two hypotheses,
respectively. By those theorems, the y2-distance satisfy

D(Pén), Pln)) =o(1), as n — oo.
By connection between L'-distance and y?-distance, it follows that

1P = PM| = o(1),  asn— oo
We now slightly modify the alternative hypothesis. Let Il be a non-random membership

matrix such that (0,1, P) € M, (K,cq, an, Bn). In the modified alternative hypothesis
A,

ﬁ7 if (97ﬁap) € MTL(Ka COvanvﬁn)’ ~ iid
= where m; ~ F.
IIy, otherwise,

Let ]51(n) be the probability measure associated with H 1(n). By Lemmas II= ﬁ, except
for vanishing probability. It follows that

HPl(n) — ﬁl(n)Hl =o(1), as n — oo.
Under f]f"), all realizations (0,11, P) are in the class M, (K, co, o, By). By Neymann-
Pearson lemma and elementary inequalities,

f{ s Pw=1+ sup P =0)}
¥ YoeMz (Bn) (6,11, P)EM. (K ,co,0n,Bn)

>1- inf _

Z foEM%(ﬂn),ﬁEMn(Kycoﬂmﬁn){HfO filli}

>1- 1B = A"
>1— IR — P — 1P~ By
>1- 0(1)7
where in the second line we have mis-used the notation f € M, (K, cg, an, Br) to denote the

probability density for a DCMM with non-random mixed memberships whose parameters
are in the class M,, (K, co, an, Bn).
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2.D.4 Proof of Theorems [2.3.212.3.5

We note that Theorem Theorem and Theorem [2.3.5] can be deduced from
Theorem [2.3.3 To see this, recall that Theorem [2.3.3] assumes there exists a positive
diagonal matrix D such that

DPDhp = 1k, ér}ng{hD K> C, (2.D.79)

where hp = E[D'm;/||D " m|1]. We show that the condition is implied by

conditions of other theorems. Theorem assumes m; € {e1,e2,...,ex}. It follows that

D77 /||ID7 ||y = 7, and so ED = h. By Lemma there exists D such that DPDh = 1,

hence, is satisfied. Theorem constructs the alternative hypothesis using

i = Dm;/||Dmil|1. Equlvalently, D% /HD Lrilli = m, and so hp becomes h. Since

DPDh = 1k, condition ) holds. Theorem [2.3.5] n assumes Ph = qgulg. Let D =
1/2.7K Then, hD =h and DPDh = qglPh = 1g. Again, is satisfied.

We only need to prove Theorem Let PO( " and P1( " he the probability measure
associated with H(gn) and H 1(n), respectively. Let D(Pén), Pl(n)) be the chi-square distance
between two probability measures. By elementary probability,

(n)72
D(Pé”),me):/[dPl ] apr{™ — 1.

ap™
It suffices to show that, when |0 - u2(P) — 0,
(n)q2
P n
/[d ! )} dP{™ =1+ o(1). (2.D.80)
dpPy"

Let p;j and g¢;;(II) be the corresponding €;; under the null and the alternative, respectively.
It is seen that
Ayj Ay y _A,
W =TIrea=pip)tt,  aP™ =En [H[Chj(ﬂ)]A” [1 — g (1] A”]
i<j 1<J

Let II be an independent copy of II. Then,

] =T () ™) sl (™

ap™

=Eqq [H(qw(ﬂ)q’](ﬁ)y‘lu ([1 —qi; (ID][1 — qij(ﬁ)}>1Au] |

2

S(A,ILII)

/[dP(”)] 4P & [dpf”r
A
api" ari"
=B, 1.51lS(A4, TLTD)]

= By, 7 {EA[S(A, IL TD)IL, 1]}

where the distribution of A|(II, ﬁ) is under the null hypothesis. Under the null hypothesis,
A is independent of (II,II), the upper triangular entries of A are independent of each other,

It follows that
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and A;; ~ Bernoulli(p;;). It follows that

95 ( qzj(ﬁ) A ¢ [1 = g (ID][1 — gi (D] 1=4ss | -~
E 4 [S(A, TT, TT) I1, 1] EE [( 7 ) ( T ) H,H}
_ H { i (11 zzj an (1= piy) [1- qij[(lﬂ—)]ij]_ﬁj(ﬂ)] }
_ ¢ (Mg (M) | [1 — gy (] [1 — g (TT)]
- g{ v 1 = pij }

Let Ai]’ = qij (H) — Pij and zi]’ = qij (ﬁ) — Pij- By direct calculations,
gij (IT) gy (IT) n 1 —ai (D] — g5 (AID] _ n AijAij

Dij 1 —pij pij(1 = pij)
Combining the above gives
dpfn)] () _ [ AyAis ]
dPy" =& 1+ —2= ). (2.D.81)
/{dPO(") i E( pij(1 Pz’j)>

We then plug in the expressions of A;; and ﬁij from the model. Let D be the matrix in
(2.D.79). Introduce M = DPD — 1x1’.. We re-write

DPD =11 + M.
It is seen that Mh p = 0g. The following lemma is proved in Section

Lemma 14. Under the conditions of Theorem[2.3.3, | M|| < C|ua(P)|.

Write for short 7TZ- = WD Ly and y; = ﬂ'D — E[ﬂ'iD

| = 7P - hp. Under the
alternative hypothesis,
qij(T) = 0:0;| D" il |1 | D~ |1 - 7} P
= 0;6; - (v)(DPD)(x})
= 0,0; - (x) (L U + M)(7})
=0,0; - [1+ (=) M(r])]
= 0,;0; - [1 + (7LD + yi)/M(ﬁD + yj)]
Here, the fourth line is due to 1%-m; = 1 and the last line is due to MED = 0. Under the
null hypothesis, p;; = 6;0;. As a result,
Ai]‘ :9¢0j~y7’;Myj, yiEﬂ'iD—E[ﬂ'iD].
Similarly, ﬁij = 0;0; - y.My;, with y; = %iD - IE[?riD]. We plug them into (2.D.81]) and use
pz'j = 919] It gives
dPl(n) 2 (n) 0;0; , PN
/[ w| o =E H(1+ T4 9,(yiMyj)(yiMyj)) : (2.D.82)
dF, i< J

where {y;, y;}_, are iid random vectors with E[y;] = Og.
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We bound the right hand side of (2.D.82)). Since 1+ x < ex for all x € R,

My])(szy])

D(P{", P") <Elexp(S)],  where S=3_
1<j
Let M = Zszl ibb), be the eigen-decomposition of M. Then,

(Wi My))@My;) = > ube(biys) (b)) (0j3).
1<k (<K

1—99

This allows us to decompose
2 eiej ’ / I~ N\ (pl
> Sk, where Sy =K 5k5ez W( ki) (by;) (i) (bgy;)-
1<k (<K i<y

By Jensen’s inequality, exp(z> > ko Ske) < = > k.0 €xP(Ske). It follows that

aP™? o
/ { dpén)] dFy" < Efexp(5)] < | max, Efexp(See)]. (2.D.83)

We now fix (k, /) and derive a bound for E[exp(Sk¢)]. For n large enough, Oy < 1/2
and K*||M|?)|0]]? < 1/9. By Taylor expansion of (1 — 6;6;)~*

Ske =K 5k5zzz9m9m (byi) (05) (0 ) (b )

1<j m=1

= Xp,  where Xn=K26:00 ) 0707 (bys) (bhys) (00:) (0)).

m=1 1<j
Since | X,,,| < C||M|?|6]>™ < CHMHHGHQHIMX Y where Do m;;i Y < o0, the random

variable > 7 | X, is always well-defined. For m > 1, let a,, = Gm(ax )(1 —62..). Then,
> o0 1 am = 1. By Jenson’s inequality,
[e.e] oo oo
eXp(Z Xm) = eXp(Z am * a;11|Xm’> < Z Qm * eXp(a;anm)'
m=1 m=1 m=1
Using Fatou’s lemma, we have
Elexp(Ske)] Z Qo+ exp 1Xm)]. (2.D.84)

By definition of X,,,
Xm = K25k51z{ {29 (b3) (be9i) } Zéﬂm (hyi) eyi)Q}-
Note that max;{||y;||, |7:]|} < \F K and maxy, 0| = HMH Therefore,
Xl < K2ME] 0 G 64530)] + KM 013
i

Write Y = >, 07 (b,y:) (byyi). We see that Y is sum of independent, mean-zero random
variables. Since |(b).y;)(b;7:)| < K, by Hoeffding’s inequality,

2
P(lY|>1t) < 2exp(—7>, for any ¢ > 0.
AK2||0] 3
Since [[0][3m < [0]|20% " < 20|02, we have LK M |?]|6]3m < 26| M|20]|2. Note
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that K4||M|?||0]|> < 1/9. By direct calculations,
E[exp(a;!| Xm|)] < cam KA M2 (6135 .E[ea%lKQIIMIIQW]

< 2K M2 l6]? .E[BC%IKQHMHQYQ]
o
= 2K Ml [1 +/ et - P(ay, K2||M|*Y? > t)dt}
0
0 t
< 2K M2 0] [1 + / et . e SKAIMIZ]0I2 dt]
0

< IIMIPION . (1 4 724 M2 )10))2).

We plug it into (2.D.84)) and notice that > >, ap, = 1. It gives
Elexp(Sie)] < 1MW (14 72K 212 6)]2). (2.D.85)
Combining (2.D.83|) and (2.D.85)) gives
P(n) 2
/V?Jd%”<ﬁ”“9’u+mKmem%
dpy"

We recall that ||0]| - [|[M]| < C||0|| - |u2(P)| — 0. Hence, the right hand side is 1 + o(1). This
proves (12.D.80)).

2.D.5 Proof of Lemmas
Proof of Lemma

The first claim follows by our assumptions on P, so we omit the proof. Consider the second
claim. Recall that G = ||]|"2I'©2II and d;,ds, .. .,dx are the eigenvalues of G'/2PG'/2,
arranged in the descending order in magnitude. By Lemmas D.1 and D.2, A\ = ||0]|?dy,
1<k <K, and d; < 1. Combining these, it suffices to show

2| = [da].

We now prove for the cases where P is non-singular and singular, separately. Consider
the first case. Since 1/dy and 1/ug are the largest eigenvalue of G=1/2P~%/2G=1/2 and P~
in magnitude, respectively, and ||G|| < C and |G| < C, it is seen that |ux| < |dk|. To
show the claim, it sufficient to show that for any m > 2, if |ug| < |di| for k=m+1,... K,
then |py,| < |dm.

We now fix m > 2, and assume |uy| < |dg| for Kk =m +1,..., K. The goal is to show
|ttm| =< |dp|. By symmetry, it is sufficient to show that

|dm| < C|pim]- (2.D.86)
Let P = Vdiag(dy,da,...,dx)V’ be the SVD of P, where V € RX is orthonormal, and
let V,,, be the sub-matrix of V' consisting the first m columns of V. Introduce
P, =VmDnV5.,  where D,, = diag(dy,da, ..., dp).
Let pj,p5,...,pn, and dj,ds, ..., d;, be the first m eigenvalues of P, and GY/2p,GY/2,
respectively, arranged in the descending order in magnitude. Since ||G|| < C, we have
IP = Pull < Clitmal,  IGV2(P = Pa)GV2| < Clanal.
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By Theorem (Bai and Silverstein), 2010, Theorem A.46),
i = 115,] < CIP = Pl < A, (2.D.87)
and
| = dy| < |GY?(P = Pp)GY?| < Clpgnsa . (2.D.83)

and At the same time, note that the nonzero eigenvalues of G*/2P,,G/2 are the same as the
nonzero eigenvalues of D,,, V! GV;,, and also the same as those of (V. GV, ) /2Dy, (V. GV )2
Since ||G|| < C and |G7Y|| < O, it is seen ||V,,GViy|| < C and ||V,,,GV;,) 7| < C. Therefore,

by similar arguments,

] = Id5 | (2.D.89)

Combining (2.D.87)), (2.D.88)), and (2.D.89) gives
|| < bl + e = | < C(ldp,| + [dimga])
<Cl(ldm| + |dm — dyp]) + [dimta]] < Cldim].
This proves (2.D.86]) and the claim follows.

We now consider the case where P is singular, say, rank(P) = r < K, and the nonzero
eigenvalues are pi1, o, ..., u,. Let P = UDU’ be the SVD, where U € R®" and D =
diag(p1, p2, - .., fr). By similar argument, the nonzero eigenvalues of GY2PGY/? are the
same as (U'GU)Y2D(U'GU)'/2, where |U'GU|| < C and ||(U'GU)~!|| < C. The remaining
part of the proof is similar so is omitted.

Consider the last claim. Let P = nn’, where 7 is the first eigenvector of P, scaled to
have a /2-norm of /u7. Write

|Pij — 1| = | Py — niny| + |minj — 1]. (2.D.90)
Now, first, by definitions and elementary algebra, for 1 <i,j < K,
Py — mimj| < Py — Py| < ||P = P|| < pa, (2.D.91)

where by the second claim, po = o(1). Note that for 1 < i,j5 < K, P;; =1 and P;; > 0.
It is seen that |n;| = 1+ o(1) and all n; must have the positive sign. It follows |p; — 1| =
(1+n)7'(1 = nf) < p2, and so

11— mimy| < [(1=m)(1 = ns) [+ 11 —mil + |1 = n;| < Cpa. (2.D.92)
Combining (2.D.90))-(2.D.92)) gives the claim. O
Proof of Lemma

Consider the first claim about >, 6;m;(k). Write X = >""" | 0;(m;(k) — hy). It is seen that
X is sum of independent mean-zero random variables, where 6;|m;(k) — hi| < COpax and
S, Var(0;(m;(k) — hi)) < C||0]|*. By Bernstein’s inequality, for any ¢ > 0,

t2
P(X]>1) < eXp(‘CHeyP T cemt>'

It follows that, with probability 1 — ||0(|;,

37 0umi(h) = el | = 1] < o1l /08 (I011) + COma Log((10]1):
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Since [|0]] — 00, Omax — 0, and (||0]|%/]10]11)/1og(||0]|1) — 0, the right hand side is o(]|0]]1).
Combining it with the assumption of ming{h;} > C, we have

> 0mi(k) > C||0]ly,  with probability 1 — [|6] "' =1 - o(1).

Additionally, since m;(k) <1, >, 0;m;i(k) < ||0||1. Therefore, with probability 1 — o(1), each
>; 0imi(k) is at the order of ||f|;. This proves the first claim.

Consider the second claim about G. Let yi = m; — h. We can write

10]12°G = Zeﬂm_wu hh') + 292%% Ze%% Ze2y,h’

=1
\W_/ \—v—’ \ﬁ,_/
=Y Al =Z>

Note that E[y;¢/] = =. Then, Y — ||0]|>S = Y, 0?(yiy, — ¥) is sum of independent, mean-zero
random matrices, where 67[|y;y; — || < C6?. Using the matrix Hoeffding inequality Tropp
(2012), P(IY — [|0]I*2] > t) < exp(—W), for any ¢ > 0. With ¢ = ||0|| 7!, we have
4
|y - ||0H2EH < C10]13+/1og(]16])), with probability 1 — ||@]| L.
Similarly, we can apply matrix Hoeffding inequality to Z; and Zs. It gives
121 + Zs|| < C|16]3/1og(||0]]),  with probability 1 — [|6]|~".
Since ||0]|% < Omaxl|0]] < 1|0]2, it follows that, with probability 1 — o(1),
|Y + Z1 + Z, — 10122 = o(]|6]%).
At the same time, Apin([|0]]2Z) = [|0]|% - |71 71 > C||0]|>. We thus have, with probability
1- O(l)a
Amin([[0°G) = Amin (Y + Z1 4+ Z2) > Aain (|10]1°Z) — ||Y + Z1 + Zo — 0172 > C|16)*.
This guarantees |G| < C. O

Proof of Lemma

Let Q = P — 1g1%, and introduce d € RE such that D = diag(d). By Lemma
|Q|| < C|uz|. With these notations,

DPD — 1kl =dd + DQD — 1x1%. (2.D.93)

Using the same notations, the assumption DPD%D = lg can be written as D(1x1% +
Q)Dhp = 1k. It implies

x = (d'hp)d + DQDhp. (2.D.94)

We multiply 7L/D on both sides and notice that 1’Kﬁ p = 1. It gives
(d'hp)?* =1 — h'yDQDhp. (2.D.95)
Combining (2.D.94))-(2.D.95) gives
dd — 151 = [1 = (d'hp)?|dd — (d'hp)(DQDhpd + dhpDQD) — DQDhph', DQD
= (WpDQDhp) - dd' — (d'hp)(DQDhpd + dhpDQD) — DQDhph, DQD.
Since |[hp| < C and ||d|| < C, we immediately have
ldd” — 1k ke[| < ClQI < Clpsal.
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Plugging it into (2.D.93)) gives
IDPD — 11| < CllQ] < Clpa-
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2.E  PROPERTIES OF SIGNED POLYGON STATISTICS

We prove Table [3.3] and Theorem Recall the following notations:

~ 1
Q=0— (r)(n*) h =01, =1'01,;
(n*)(n*), where 7 NG , vo =1,
1

N N 1 _
Sij = ni(n; — ny) +ni(ni — 0i), where 7 = %(EA)lm n= %Alm v =1, (EA)Ly;

)iy, where V =1, AL,

<|=

rij = (0 — ning) — (i — ) (n; — ;) + (1 =
Then, the Ideal Sgn(Q statistic equals to
Qn=" > (Qj+Wij)( Qi+ Wir) Qe + Wie) (i + W),
0,4,k L(dist)
the Proxy SgnQ statistic equals to
Q, = Z (s + Wi+ 6:5) (U + Wik + 61) (e + Wi + r0) (i + Wei + 44),
irj.ke,0(dist)
and the SgnQ) statistic equals to
Qn = Z (i 4+ Wij 40554747 (iAW A0 1+758) Qo+ Wie+Ore-+710) Qi+ Wei+Spi-+74:).
i,k 0(dist)

As explained in Section each of @n, Q.. Qy is the sum of a finite number of post-
expansion sums, each having the form

Y. aibjicreds, (2.E.96)
i,k 0(dist)

where a;; equals to one of {(Zij,Wij,dij,nj}; same for b;;, ¢;; and d;;. Let Ng be the
(common) number of Q terms in each product; similarly, we define Ny, N5, N,.. These
numbers satisfy Ny + Nw + N5 + N, = 4. For example, for the post-expansion sum

ik cdisy) i WikWeeWei, (Ng, Nw, Ns, Ny) = (1,3,0,0). In Section we study Qp,
and it involves these post-expansion sums such that

Ns = N, =0,
In Section we study (Q — @n), which involves post-expansion sums such that
Ns >0, and N, =0,
In Section we study (@, — @), which is related to the sums such that
N, > 0.

2.E.1 Analysis of Table proof of Theorem m

Define
X1 = Z Wz‘jokWMWéia X2 = Z ﬁijokaEWKia
i,5,k£(dist) 1,5,k £(dist)
X3 = Z ﬁijﬁjkaZWZia Xy = Z ﬁijok;ﬁkKWKia
i,5,k,0(dist) i,5,k,¢(dist)
X5 = Z ﬁijﬁjkﬁkgWﬁ, X = Z Qijﬁjkﬁkfﬁéi'
i,4,k,0(dist) 1,3,k 0(dist)
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We first consider the null hypothesis. Since Q is a zero matrix, it is not hard to see that
Qn = X1.
The following lemmas are proved in Section [2.E.4

Lemma 15. Suppose the conditions of Theorem [2.4.1] hold. Under the null hypothesis, as
n — oo, E[Q,] = 0 and Var(Q,) = 8/|0||® - [1 + o(1)].

Lemma 16. Suppose the conditions of Theorem [2.].1] hold. Under the null hypothesis, as
n — oo,

@n B E[@n]
Var(Qn)

— N(0,1), in law.

We then consider the alternative hypothesis. By elementary algebra,

Qn =X1+4Xo +4X3 42X, +4X5 + Xo.

The following lemma characterizes the asymptotic mean and variance of X1-Xg under the
alternative hypothesis. It gives rise to Columns 5-6 of Table

Lemma 17 (Table [3.2). Suppose conditions of Theorem hold. Write o = |Aa|/ 1.
Under the alternative hypothesis, as n — oo,

e E[X;] =0 for1<k<5, and E[Xg] = tr(Q4) - [1 4 o(1)].

CHO]® < Var(Xy) < C|10]°.

Var(Xy) < Co?[|0]14]0]1§ = o([16]1°).

Var(X3) < Ca[|0]°[10]15 = o(a®[|0]|*[|6]]5).-

Var(Xy) < Cal[|6]3* = o([10]]%).

Var(Xs5) < Ca®(|0]*(|0]]5.
As a result, E[Qp] ~ tr(QY) and Var(Q,,) < C(||0]|® + ab]|6]1®]10]19).

Theorem follows directly from Lemmas
2.E.2 Analysis of Table proof of Theorem m

We introduce U,, Uy and U, such that
Q;_@n:Ua‘FUb‘{'UCa
where U,, U, and U, contain post-expansion sums (2.E.96) with Ns = 1, Ns = 2, and Ns > 3,
respectively.
First, we consider the post-expansion sums with N5 = 1. Define

U, = 4Y] + 8Ya + 4Y3 + 8Y; + 4Y; + 45, (2.E.97)
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where
Yi= Z 0i Wik WieWes, Yo = Z 85k Wi Wi,
1,5,k £(dist) i,5,k,¢(dist)
Y = Z 8 Wik Wi, Yy = Z 8: kWi,
i,5,k,£(dist) i,5,k,0(dist)

Y; = Z 5ij§jka€§£i> Yo = Z 5ij§jk§ké§£i-
i,4,k,0(dist) i,5,k,€(dist)
Under the null hypothesis, only Y7 is nonzero, and

U, = 4Y.
Lemma 18. Suppose the conditions of Theorem [2.4.1] hold. Under the null hypothesis, as
n — 00, E[U,] = 0 and Var(U,) < C|0]*(|0]|§ = o([|0]|*)-

Under the alternative hypothesis, the following lemma characterizes the asymptotic
means and variances of Y7-Ys. It gives rise to Rows 1-6 of Table and is proved in
Section 2.E.4l

Lemma 19 (Table Rows 1-6). Suppose the conditions of Theorem hold. Let
a = [X2]/A1. Under the alternative hypothesis, as n — 0o,

o E[Yi] =0 for k € {1,2,3,5,6}, and |E[Y3]| < Ca?||6]|° = o(a||6]®).

Var(Y1) < C|l0]2[10115 = o([10]]%)-

Var(Yz) < Co?||0]*[10]1§ = o([|6]*)-

Var(Ys) < Co?||0]*[10]15 = o([|6]*).

Cat0]I*)I6113
Var(v;) < SIS — o(ab o)1 0]13).

Ca*(0]1*110]13
Var(vs) < RIS — o(j0)1%).

Var(¥g) < S — 0 (a6 o]).

As a result, E[Us] = o(a(|0]]%) and Var(Ua) < Ca®||0[*[|0]1§ + o([|0]®).-

Next, we consider the post-expansion sums with N5 = 2. Define
Ub = 4Z1 + 2Z2 + 8Z3 =+ 4Z4 + 4Z5 + 2Z67 (2E98)
where

Zv= > 0 WkWe, Zo= Y 8iiWikbrWa,

0,3k, 0(dist)

Z3 = Z 5z‘j5jkf~2uWez‘,

3.5,k (dist)

Zs= > 80,

i,k E(dist)
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i3,k 0(dist)

Zg = Z 8110k
ivj.k,E(dist)



2.E. Properties of Signed Polygon statistics

Under the null hypothesis, only Z; and Zs are nonzero, and

Uy =471+ 22,.

Lemma 20. Suppose the conditions of Theorem [2.7.1] hold. Under the null hypothesis, as
n — 0o,

o EB[Z1] = [|0]I* - [1 + o(1)], and Var(Z1) < C|I0]*[10]13 = o([|0]*).

C|10)16)10)|12
o E[Z5] = 2|16||* - [1 + o(1)], and Var(Zy) < UL — ojg)%).

As a result, E[Uy)] ~ 8]|0||* and Var(Uy) = o(]|0]|®).

Under the alternative hypothesis, the following lemma provides the asymptotic means
and variances of Z1-Zg. It gives rise to Rows 7-12 of Table

Lemma 21 (Table Rows 7-12). Suppose conditions of Theorem hold. Write
a = |X2|/A1. Under the alternative hypothesis, as n — 0o,

o [E[Z1]] < ClI0]]* = o(a™(|6]]*), and Var(Z1) < C|10]2[0]1 = o([|0]®).

c|e)°10)13
[E[Z2]] < CJl0][* = o(a[0]]%). and Var(Zy) < LR — o(jj0)%).

EZs =0, and Var(Zs) < Co?||0]*[|0]1§ = o([|0]I*)-

ca20)86]2
[B[Z4)| < Call0]* = o(a*[|6]]®), and Var(Zs) < eI = o(jj0]%).

Coc4 0 14
E[Zs]| < Ca?|[6]1° = o(a0]1%), and Var(Zs) < S8 = o(a|j0]1* 60])-

C 2 0 8 C 4 9 8 0 6
[ElZs]| < S5 = o(aI611%), and Var(Zq) < “RIINE — o o)),

As a result, E[Up] = o(a®||0]]°) and Var(Us) = o([|0]|* + o [|0](|0]]).

Last, we consider the post-expansion sums with Ns > 3. Define
U, = 4T + 4T, + F, (2.E.99)
where
Ty= > 6i0ubuWe, To= > 000k,
0,7,k €(dist) i,,k,€(dist)
F= Z 0i§0k0ke0¢;-
4.5,k (dist)
Under the null hypothesis, only 77 and F' are nonzero, and

Uy, =411+ F.

Lemma 22. Suppose the conditions of Theorem [2.].1] hold. Under the null hypothesis, as
n — oo,
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Cle)°6)12
e E[T] = —2[0]1* - [1 + o(1)], and Var(Ty) < LI — o(jj0))%).

e [E[F]| = 2]6]1* - [1+ o(1)], and Var(F) < = = o(|0]*).

As a result, E[U.] ~ —6||0||* and Var(U.) = o(||0]|®).

Under the alternative hypothesis, the next lemma studies the asymptotic means and
variances of 17, T and F'. It gives rise to Rows 13-15 of Table

Lemma 23 (Table Rows 13-15). Suppose conditions of Theorem hold. Write
a = |X2|/A1. Under the alternative hypothesis, as n — 0o,

6 3
e [E[T1])| < Cl0]}* = o(a(|6]*), and Var(Ty) < UL — o(jj0))%).

Cal|6)|® Ca2||0)816]2
e [E[T3]] < Sl = o(0]1%), and Var(Tz) < =G — o(|g]%).

10

o [E[F]] < Cl10]|* = o(a]|0]®), and Var(F) < C”f”% = o([|0]®).

As a result, E|U.| = o(a*0||®) and Var(U.) = o(||0]|®).

We now prove Theorem Since @}, — @n =U, + Uy + U., we have
E[Q;, — Qu] = E[Ud] +E[Uy] + E[UL],
Var(QX — Qn) < 3Var(U,) + 3Var(U,) + 3Var(U,).
Consider the null hypothesis. By Lemmas [18] 20} 22
E[Q;, — Qn] = 0+ 8]10]* = 6]0]1* + o(ll6]|*) ~ 2[16]*,

and
clolels C||9H1°.
1011 160113

Var(Q;, — Qn) < C|0]°/16]1$ +

Using the universal inequality ||0]|* < [|0]|1]|0]|3, we further have
« _ A 29|16 8
Var(Q, — Qn) < Cll0]7110]l5 = o([16]]°),
where ||0]|3 = o(||0]|?) and ||#]| — oo in our range of interest. This proves claims for the null
hypothesis. Consider the alternative hypothesis. By Lemmas
[E[Q) — Qnl| < Ca?|6]|°,
where the main contributors are Yy and Z5. Since «||f|| — oo in our range of interest, the

above is o(a*||0]|®). By Lemmas
. C 6 i 12 0 3
Var(Q; - @) = ST
1

where the main contributor is Y5. Using the universal inequality of [|0]|* < [|0]|1]0]|3, the
above is O(a%]|0]|8]|0]|S). This proves claims for the alternative hypothesis.
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2.E.3 Analysis of (Q, — Q},), proof of Theorem m

By definition, (@, — @},) expands to the sum of 175 post-expansion sums, where each has
the form (2.E.96]) and satisfies IV, > 0. Recall that
v

rij = (mim; —mimg) — (ni — n:)(n; — 1) + (1 V)ﬁﬁj-

Since &;; = ni(n; — 1;) +n;(ni — 0:), we have 5;1; = min; — 045 + (i — 1:)(N; — n;). Inserting
it into the definition of r;; gives
v -

N6y — < (@ — i) (@ — ). (2E.100)

* ok v
rig = (min; —ming) + (L — —)mim; — (1 — V) v

1%
Define
_ v _ . % v v
rig = =g = m) (5 =), e = (g —ming) + (1= g2)ming = (1= 37)0i;-
Then, we can write
rij = Fij + €. (2.E.101)
Using this notation, we re-write
Qn= Y MjMjpMyMy;, — where Mij = Qi+ Wij + 0 + 75 + €,
i,5,k,0(dist)
and
Qn= Y MM MM, where M= Qi+ Wy + by
0.4k, 0(dist)
We then introduce an intermediate variable:
Qn= Y MM M;M;, where M = Q;; + Wij + 0ij + 7. (2.E.102)
i,5,k,0(dist)
As a result, (@, — @) decomposes into

Qn— Q= (Q — Q)+ (Qn — QL) (2.E.103)

We note that ),, can be expanded to the sum of 5% = 625 post-expansion sums, each
with the form

> aigbikcrede,
3,9,k 0(dist)
where each of a;j;, bij, ¢ij, di; takes values in {ﬁij, Wij, 6ij,Tij, €i5}. Let Ng be the (common)
number of 2 terms in each product and define Ny, N5, Nz, N, similarly. Among the 625
post-expansion sums,

e 3% =81 of them are contained in Q¥,
e 4% — 3% = 175 of them are contained in (Q% — Q%),

e and 5% — 4% = 369 of them are contained in (Q, — Q%).

n

We shall study (@;fb — @) and (Qn — Q), separately.

In our analysis, one challenge is to deal with the random variable V' that appears in
the denominator in the expression of 7;;. The following lemma is useful and proved in

Section 2.E.4l

61



2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

Lemma 24. Suppose conditions of Theorem hold. Asn — oo, for any sequence

such that \/log(||0]]1) < xn < [|0]]1,
E[(Qn — Qn)? - I{|V — | > [|0]l12,}] — .

The next two lemmas are proved in Section [2.E.4

Lemma 25. Suppose conditions of Theorem [2.4.5 hold. Write o = |Aa]/A1. As n — oo,

e Under the null hypothesis, |E[QF — Q]| = o(||0]|*) and Var(Q¥ — Q%) = o(||0]|®).

e Under the alternative hypothesis, [E[Q% — Q]| = o(a||0]|®) and Var(QF — Q%) =
o([10]1® + a®[l0*[16115)-

Lemma 26. Suppose conditions of Theorem [2.4.5 hold. Write o = |[Aa]/A1. As n — oo,

e Under the null hypothesis, |E[Q, — Q]| = o(||0]|*) and Var(Q, — Q) = o(||0]|®).

e Under the alternative hypothesis, [E[Qn — Q]| = o(a||0]|®) and Var(Q: — Q%) =
O([I911* + a®[lof*[16115)-

Theorem follows directly from (2.E.103) and Lemmas

2.E.4 Proof of Lemmas
Proof of Lemma

Under the null hypothesis,
Qn=X1= Z Wi Wik WieeWo;.
4,5k, 0(dist)
For mutually distinct indices (7, j, k, £), (Wij, Wik, Wie, Wy;) are independent of each other,
each with mean zero. So E[W;;W;, Wy Wy;] = 0. It follows that
E[Qvn] =0.
We now calculate the variance of @n Under the null hypothesis, €;; = 0;0;; hence,
Var(Wij) = Qi]‘(l — Qi]‘) = 91‘9]‘ — 939? = 91‘9]‘[1 + O(@?nax)]. It follows that
Var(Wi;WisWieWe:) = 070502607 - [1 + O(05,)]"
= 076707607 - [1+ O(02,.,)]- (2.E.104)
Note that each (1,4, k,¢) corresponds to a 4-cycle in a complete graph of n nodes. For
(i,7,k,£) and (i, 5", k', 0'), we can write Wi; W WieWy; - Wit jt Wiy Wiyp Wy in the form of
[1,(W;,;,)™, where {Wj,;,} are mutually distinct with each other and m; is the number of
times that W;,;, appears in this product. If the two 4-cycles corresponding to (3, j, k, ¢) and
(i',4', k', £') are not exactly overlapping, then at least two of m; equals to 1. As a result, the
mean of [[,(W;,;,)™ is zero. In other words, we have argued that
Cov(WigWiiWieWei, Wirj Wiy Wiy Werir) = 0 if the
two cycles corresponding to (i, j, k,¢) and (¢, j', k', ¢) (2.E.105)
are not exactly overlapping.

62



2.E. Properties of Signed Polygon statistics

In the sum over all distinct (7, j, k, £), each 4-cycle is repeatedly counted by 8 times

(7:7j7 k7€)7 (j’ k7€77:)’ (k’g) i)j)7 (E? i?j? k)?
(67 kaj’ 7’)7 (kvjv i7€)7 (.]7 7;7 67 k)v (Z'7£7 ku])
It follows that
Var(Q,) = Var <8 > Wijokagng>
Aeyeles
=64 - Var< > Wz-jwjkWMW&>

unique
4-cycles

=64 Z Var(WijokaeWm)

unique
4-cycles

=8 Y Var(WiW;sWiWe)
i.5,k,0(dist)
=[1+0(05.1-8 > 07626367, (2.E.106)
i,k €(dist)
where the third line is from (2.E.105)) and the last line is from (2.E.104]). We then compute
the right hand side of (2.E.106[). Note that

e =P - > 67636,

1,5,k 0(dist) 1,7,k,£(not dist)
where

62929292 < 4 926294 < Cllo 4 0 4 _ 0 8 o) He”jl1

> ;050107 < 222-“;_ 1011160115 = 116l o)
1,4,k €(not dist) 0,5,k
Combining the above gives
2029202 _ 8 . ”9”?11
ST 02626207 = || [1+0(—”9H4)] (2.E.107)

i,5,k,(dist)
We combine (2.E.106)-(2.E.107)) and note that fiax = o(1) and ||0]/3/]10]|* < (10]|?02...)/110]I* =
o(1). So,

Var(Qn) = 8]16]|® - [1 + o(1)).
This completes the proof.

Proof of Lemma

Under the null hypothesis,
Qn=X1= Z Wi Wik WieeWo;.
i,7,k,0(dist)
In the proof of Theorem 3.2 of Jin et al. (2018), it has been shown that X;/+/Var(X;) —
N(0,1) in law (in the proof there, X;/+/Var(X1) is denoted as S, ). Since E[X1] = 0, we
can directly quote their results to get the desired claim.
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Proof of Lemma

We shall study the mean and variance of each of X;-Xg and then combine those results.

Consider X1. We have analyzed this term under the null hypothesis. Under the alternative
hypothesis, the difference is that we no longer have {);; = 0;0;. Instead, we have an upper
bound Q;; = 0;0;(w}Pn;) < C0;0;. Using similar proof as that for the null hypothesis, we
can derive that

E[X;]) =0, Var(X;) < C|6|®. (2.E.108)

To get a lower bound for Var(X;), we notice that Var(W;;) = Q;;(1 — Q) > Q[1 —
O(?

max

)] > €;;/2; this inequality is true even when §2;; = 0. It follows that
1
Var(Wi; Wi WieeWi) > EQiijkQMQEi-
Note that the second last line of (2.E.106)) is still true. As a result,

Var(X1) =8 > Var(Wy Wi Wik We)
i,5,k,0(dist)

1
25 > Qe
1,5,k 0(dist)
14 1
= S tr(@h) — 5 > Qe

i,j,k,0(not dist)

zltr(m)—c > 02656767

2 - .
1,4,k,0(not dist)
1
> 5“"(94) —o([161I®),

where the last inequality is due to (2.E.107)). Recall that A1,..., Ax denote the K nonzero
eigenvalues of 2. By Lemma @ A1 > C7 Y02 Tt follows that

K
() =D A=A > o)
k=1
Combining the above gives
Var(X1) > C71|98. (2.E.109)

So far, we have proved all claims about Xj.

Consider X5. Recall that
Xo = Z QijokaZWZi-
i,5,k,0(dist)
It is easy to see that E[X3] = 0. Below, we bound its variance. Each index choice (i, j, k, ¢)
defines a undirected path j-k-f-i in the complete graph of n nodes. If the two paths j-k-f-i
and j'-k'-0'-i’ are not exactly overlapping, then WWieWy; - Wity Wi Wy have mean
zero. In the sum above, each unique path j-k-¢-i is counted twice as (i, j, k,¢) and (j,1, ¢, k).
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2.E. Properties of Signed Polygon statistics

Mimicking the argument in (2.E.106)), we immediately have
VaI‘(Xg) =2 Z Var(ﬁiijjkagng)
i,j.k E(dist)
=2 > QF - Var(WiyWieWe).
i,j,k,E(dist)
By Lemma@ |SN)”| < |A2][|0]|726;6;. In our notations, a = |A2|/A1; additionally, by Lemma@
A1 < C|0)|?>. Combining them gives
;] < Cabib;. (2.E.110)
Moreover, Var(W;WieWe) < Q5000 < C’%H%Gg@i. It follows that
Var(Xp) <C > (abi6;)? - 0;6076070;
i,j,k,£(dist)
< Ca® ) 03676726
ok,
< Ca?||0)1*19]15.
Since [|0]3 < Omax ;07 = Omax||0]|?, the right hand side is < Ca?(|0]|%62 Note that

max-*

a <1 and fpax — 0. So, this term is o(||#]|®). We have proved all claims about Xo.
Consider X3. Recall that
Xg= Y Qi Qe Wi Wes = > ( > ﬁijﬁjk>Wk€W£i-
ivjik,b(dist) ik l(dist) ¢ {ik,0}
It is easy to see that E[X3] = 0. We then study its variance. We note that for Wy,Wy; and
Wi Wi to be correlated, we must have that (k',¢',4") = (k,¢,4) or (K',¢',i') = (i,£,k); in
other words, the two underlying paths k-f-i and k’-¢’-i’ have to be equal. Mimicking the

argument in , we have
Var(Xg) < C Z Var[( Z ﬁmﬁjk) Wkgng:|
ik, 0(dist) ¢k, 0}

<C Z ( Z ﬁijﬁjk)2'VaF(Wk£Wez‘)-
ik f(dist) j@{ik.0)

By [2-E.110),

‘ S Qijﬁjk( <Y 020,626, < Ca®|0])* - 6,6y
i i} j

Combining the above gives
Var(Xs) < C Y (a?[|0]*0:0k) - 0676;
1,k 0
< Ca'llo* Y 076367
i,k 0
< Ca'l|6]°l|6]]3-
Since ||]| — oo, the right hand side is o(a?(|0(/®|0]|$). We have proved all claims about X3.
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Consider X4. Recall that
Xy = Z ﬁijokﬁkeWez‘ = Z QijﬁkZijWZi-
0.5k 0(dist) ivj.k0(dist)
It is easy to see that E[X4] = 0. To calculate its variance, note that W;,Wy; and W Wy
are uncorrelated unless (i) {7/, k'} = {j,k} and {¢',i'} = {¢,i} or (ii) {j/,K'} = {¢,i} and
{¢',i'} = {j, k}. Mimicking the argument in (2.E.106]), we immediately have
Var(Xy) < C Z Var(ﬁijﬁkéwjkwéi)
ijk,0(dist)
<C > Q50 Var(Wi,Wy)
1,J,k,0(dist)
<C Z (aB;0;)*(01.00)? - 0,01000;
i gkt
<ca' ) 03030707
i,5,k,€
< Ca0)3%.
Since [|0]|3 < Omax||0]]* = o(]|0]|?), the right hand side is o(]|#]|®). This proves the claims of
Xy
Consider X5. Recall that

X5 = Z Qijﬁjkﬁkéwéi:2z< Z Qijﬁjkﬁkf)wﬁ‘

1,3,k 0(dist) i<l jkg{i,l}
ik
It is easily seen that E[X5] = 0. Furthermore, we have
<~ o~ N2
Var(Xs) = 22( 3 QiijkQM> - Var(Wi). (2.E.111)
i<t jke¢{il}
J#k

By (2.B.110),
3 ﬁijﬁjkﬁ,d’ < C " aP0:03030, < Ca® 0" - 0,6,
Jk¢{il} gk
JAk
We plug it into (2.E.111)) and use Var(Wy;) < Qg < C0y0;. It yields that

Var(Xs) < C ) (®)60]6:6,)° - 6,6,
Li(dist)

< CallolF Y 0263
< C’a6||9||8HgT|g. (2.E.112)
This proves the claims of X5.
Consider Xg. Recall that
X¢ = Z ﬁz’jﬁjkﬁkfﬁéi = tr(Q*) — Z Qijﬁjkﬁkéﬁﬁi'
i,j, kb (dist) i,5,k,£(not dist)

This is a non-stochastic number, so its variance is zero and its mean is Xg itself. By
Lemma@ IAo| < |9 < ClAa|. Since [|Q* < tr(Qt) < K[|Q|*, we immediately have
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2.E. Properties of Signed Polygon statistics

tr(Q%) = |Q|* < |X2|t. Additionally, [A2| = aA; in our notation, and A; = ||0]|2 by Lemma@
It follows that

tr(Q4) = | Xof* < |05,

At the same time, by (2.E.110)), |§ij§jk§u§£i| < Ca49i29j2~9,%9%. We thus have
Xe—tr(QY) < Ca® Y 07030767
i,J,k,0(not dist)
< Ca*> 07030}
05,k
< Ca|9]*16]3 = o(a™[|6]%),
where the last equality is due to ||0]|3 < 02,..110]> = o(]|0||*). Combining the above gives
Xg = tr(QY) - [L 4 o(1)].
This proves the claims of Xg.
Last, we combine the results for X1-Xg to study @n Note that
Qn = X1 +4Xo + 4X3 + 2X4 + 4X5 + Xo.
Only Xg has a nonzero mean. So,
E[Qn] = E[Xe] = tr(2) - [1 + o(1))],
At the same time, given random variables Zi, Zs, ..., Z,, Var(zzlzl Zy) = >, Var(Zy) +
> ke Cov(Zi, Zy) < 32 Var(Zy) + 350/ Var(Zy) Var(Zy) < m? maxy{Var(Z;)}. We thus

have

Var(Qn) < C max Var(Xy) < C(|0]* + a®[0]*0]]5)-

The proof of this lemma is now complete.

Proof of Lemma

Recall that Ua = 4Y1 =4 Zi,j,k,é(dist) (Sijokagng. By deﬁnition, (Sij =T (’I’]j —ﬁj) —{—T]j (’I’]l —
7;). It follows that

Us=4 Y mi(ny =) WisWeWea+4 > ni(ns — ) Wik Wi Wa.

i5.k,0(dist) 0,5k, 0(dist)
In the second sum, if we relabel (i, 7, k,¢) = (5',7, ¢, k'), it becomes
4 ey = ) WaeWereWeyp =4 > milny — ) WeeWee Wi,

i, 4! k2 (dist) i,7,k,0(dist)

which is the same as the first term. It follows that
Us=8 > miln; — ) WisWeeWei.
i,,k,£(dist)

By definition, n; = \iﬁ > szj EAjs and 1 = % > szj Ajs- Hence,

_ 1
n—n = ﬁgsz, (2.E.113)
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We then re-write

1
U, = -8 Z ni(ﬁ;st)ijWkEWﬁ

i,5.k,0(dist)
8
= A > Wi Wi Wi W,
i,7,k,0(dist)
s#j

In the summand, (i, j, k,¢) are distinct, but s is only required to be distinct from j. We
consider two different cases: (a) the case of s = k, where the summand becomes WJZkagng,
and (b) the case of s # k. Correspondingly, we write

8 8
0,5,k L(dist) 1,5,k £(dist)
s¢{j.k}
= Ual + Ua2- (2E114)
It is easy to see that the summands in both sums have mean zero. Therefore,
E[U,] = 0.

Next, we bound the variance of U,. Since Var(U,) < 2Var(U,1) + 2Var(Uy,2), it suffices
to bound the variances of U,; and Ug. Consider U,;. Note that

64
Var(Un) = — S i BIWRWaeWa W Wive Wers]. (2.E.115)

J
3,3,k 0(dist)
il 5K 0 (dist)

By definition, v = 1,(EA)1, = 1,Q1, — >, Q. Since Q; < 62, it implies v = 1,Q1,, —
O(]|0]1?) = 1,91, + o(||0]|?). Moreover, we note that 1/,Q1,, < C>, ;00 < C||0]|3, and by
Lemma |8 1/,Q1,, > C~1]|0||2. Combining these results gives

c012 <v < )93 (2.E.116)
Moreover, 17; = % Es# Qs < ﬁ > 0ifs. This gives
0<n <CH;, forall 1 <:<n. (2.E.117)

We plug (2.E.116)-(2.E.117) into (2.E.115)) and find out that

C
Var(Ua) < 5 > il - E[W 3 WieWe Wi Wie Wo].

~[lo1 !
1,4k, 0(dist)
il 5K 0 (dist)

In order for the summand to be nonzero, all W terms have to be perfectly paired. By

elementary calculations,

O EWRWELWEWE,  if (0K, i)=(L, k,9);

0.0, EIW2WRW2W2], it (¢, ki) =((,1, k);
eiei’E[I/kaWkZWéiWJ%k/Wk’K/W’i/} _ k [ JkTTRLTT G ] ( ) ( )

6 9 E[W ka‘ZWEZ] if ( k,) (176)7 (/L',7£/):(j7 k)a

0, otherwise.
Here, (i, j, k,¢) are distinct. In the second case above, (Wfk, WM, W2, I/V2 ;) are independent
of each other, no matter j = j’ or j # j' (we remark that j’ # ¢, because g i K 0} =
{i,k, £}). Tt follows that E[WZWZW2W2] < Q3 Qs < C026;02620,. Tn the first
case, when j # 7/, E[WJQ,CWMW&WJQ,,C] < Qi Qe Qg < C@zﬁ]ﬂiﬁz@-/; when j = 7, it holds
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that E[WkafeWZWﬁk] = E[Wka,?gW;i] < C0;0,;6767. In the third case, (Wf’k, W2, W)
are mutually independent, so E[WkaIEZWé] < QS < CGZ-HJ'G,%Q%. We then have

CO30,0360%, f (K =k, 0), j = 7;
CO30,63020;, if (0 K',i') = ((,k,5), j' # j;

9i0i/E[Wj2kagngW]%k,Wk/ngW] < S CO30,03020,, if (O K ,i") = (£, k);
CO7030%07, it (5, k)=, 0), (7', £")=(j, k);
0, otherwise.

It follows that
3 3 2n2 2
Var(Up) < IIOIQ(E 030,0307 + Y 020,03030, + > 630 akeg)

»],k’ﬁ ,]k[,] Jke
= H9H2(”9H 16130611 + o1 l815l1e1T + 161°)
< Clle|*lols, .

where we obtain the last inequality as follows: By Cauchy-Schwarz inequality, [|0||* =
1/2

(00,77 - 03/2)2 < (,00)(3; 02) < 110]1]10]3; therefore, (6] < (0] *030]11 < [0]]10]3.

We then consider U,s. Define

pr { path i-¢-k-j-s in a complete : nodes 4, j, k, ¢ are distinct, }

57 graph with n nodes and node s is different from j, k

Fix a path i-¢-k-j-s in PZ. If s ¢ {3, ¢}, then this path is counted twice in the definition of
Ua2, as i-l-k-j-s and s-j-k-0-i, respectively. If s € {i, ¢}, then it is counted only once in the
definition of U,s. Hence, we can re-write

8 8
Uyp = _\ﬁ Z (Th + nS)Wsj W]kaKWEZ \f Z n7«W5] ijWkZW&
path in Pg path in Pg
s¢{i, 0} s€{i,l}
For two distinct paths in Pz, the corresponding summands are uncorrelated with each other.
It follows that
64
VaI‘(UQQ) - ? Z (77i + 778)2 Var(WSjokWMng)
path in P
s¢{i}

64
4+ = Z n? Var (W Wi WieWo;)

path in P}
se{i,l}

Z (n? +n?) - 0,6202620,
7,k

% > (036763070 + 0,67630767)

—lIelT,
clol ol
ol
By Cauchy-Schwarz inequality, ||0]|* < [|0]|1]|0]|3, so the right hand side of ([2.E.119) is

(2.E.119)
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< C|10]?||0]|S. Combining it with (2.E.118) gives
Var(Uy) < C18][16113 = o([16]]%).

This proves the claim.

Proof of Lemma

It suffices to prove the claims for each of Y;-Ys. Consider Y;. We have analyzed this term
under the null hypothesis. Using similar proof, we can easily derive that

EYi]=0,  Var(Y1) < CllolP*0]l5 = o(0]*).

Consider Ys. Using the definition of Y5 and the expression of 7; in (2.E.113)), we have

Ya= > 0 QWiWe
4.5,k 0(dist)

= > nil —UWeWa + > 0 — 7) Qe Wie W

i,4,k,£(dist) i,5,k,¢(dist)
1 ~ 1 ~
= % 2 ni(—Zst)ijWkZng + % Z U (_ZVV'L'S)ijWkZWKi
i,4,k,£(dist) s#j 1,5,k £(dist) s#1
1 ~ 1 ~
= _\ﬁ Z ninijku’ZWﬁi — % Z < Z anjk) WiSWkZW&'
i,j,kz,i(dist) Lk,ﬁ(d?st) J¢{i,k, L}
SF£] SF1

In the second sum above, we further separate two cases, s = £ and s # £. It then gives rise
to three terms:

Yo = ——— Z UiﬁjijkuEWZi
17]7k7é(d1’8t)

s#£j
1 _

- 0k ) Wi Wi
ﬁi’kﬂ%st)g%%f} n ) Z

T > ( > njﬁjk> WisWieWii
ik E(dist) j¢{ik,C}
s¢{i,0}
= Yo, + Yo + Yo (2.E.120)
Since (i, 7, k, ¢) are distinct, it is easy to see that all three terms have mean zero. We thus
have

E[V3] = 0.

Below, we calculate the variances. First, we bound the variance of Ya,. Each (i, 4, k, ¢, s) is
associated with a length-3 path i-k-¢ and an edge j-s in the complete graph. For (i, 7, k, ¢, s)
and (i, 5/, k', ', s"), if the associated path and edge are the same, then we group them
together. Given a length-3 path i-k-¢ and an edge j-s (such that the edge is not in the
path), they are counted four times in the definition of Y., as (i) i-k-¢ and j-s, (ii) i-k-¢ and
s-7, (iil) ¢-k-i and j-s, (iv) ¢-k-i and s-j, so we group these four summands together. After
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grouping the summands we re-write

You = ——+ Z Z Th ik 771 sk T nkQ]z + nkgsz)W]kuZWZz

length 3 edge not
path in the path

In this new expression of Ys,, two summands are correlated only when the underlying

path&edge pairs are exactly the same. Additionally, by (2.E.110) and (2.E.117)),
195 + 0 + Ml + M| < Ca(B; + 05)0,05.
It follows that
Var(Ya,) < ¢ > (05 + 05)6707 - Var(W;s Wi We)
v 1,5,k,,s
¢ 2 20202 2
< Z o? (0 + 05)20207 - 0,0;0,070,
1,5,k,,s
Cao?
< 10 > (036367070 + 670;676767)
LG gk,0,s
< Ca?||6|[10113
10112
Second, we bound the variance of Yy,. Write B, = Zj¢{i,k,€} n;€,. By (2.E.110) and
R-E117), |Binel < CY2; 05 - b6k < Ca[|0]|*6y. Using this notation,

1
Yo=— D BwWiWe,  where |Bi| < Call0]6;.

1,4k, 0(dist)

(2.E.121)

It follows that

C
Var(Ya) =EIVEI <= 3 BucBiwe - EIWEWiuW iy Wiee]
i,k,0(dist)
i K0 (dist)
ca?|o|*
< J Z 0.0y -E[WingkgWiQ/Z/Wk/g/].

> 2
1913 3,k,0(dist)
i k' 0 (dist)

The summand is nonzero only when the two variables Wy, and Wy equal to each other or
when each of them equals to some other squared variables. By elementary calculations,
ekek/ . [W Wk[W/g/Wk/g/]

,

2E[WAWR] < C6:6362, if (K, 0) = (k, 0), ' =1;
2E[W2IWEW2,] < CO:030360,,  if (K, ) = (k, L), i #i;
00, E[W2WEW2,] < CO.63630,, i (K, ) = (£, k);

0L E[W Wi < C0:6;67, if ¢ = ¢, (i', k') = (i, k);
0x0; E[W; W} < CO70307, it =¢, (i, k) = (k,i);
0, otherwise.
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As a result,
Var(Yay) < 0‘12”9”4(2 0:0307 + > 0,03070; +2929,39,§>
= g2\ L T
ikl i,k 0,3 ikl
Ca?6||*
< 2L (0ol Ne1 -+ 1O1S1O1% + o)
1

< Ca?||0[*||6]/5, (2.E.122)
where to get the last inequality we have used [|0]|% < [|0]|® < (||€]]1|€]|3)? and H9H§||0H2||9||1~<<
1013110114110111 < (11€]11]|0]13)?. Last, we bound the variance of Ya.. Let Bixe = 2 jetikey MLk
be the same as above We write

Yoo = 7 > BieWisWeWe,  where  [Bige| < Cor||6]|* .

i,k 0(dist)
sé{z 0}

For E[W;sWieWe; - Wy g Wi g W] to be nonzero, it has to be the case that (Wis, Wie, We;)
and (Wi, Wy, Wyr) are the same set of variables, up to an order permutation. For each
fixed (i,k, ¢, s), there are only a constant number of (7', k’ ¢’ s") such that the above is
satisfied. As we have argued many times before (e.g., see ), it is true that

C
Var(Ya:) < — Z Biee - Var(WisWieWo;)
Y i kt(dist)
8¢{i 4

<5 > (all0]6k)* - 676,670,
H9|| s
< Ca?|10][10115
19111
We now combine the variances of Ya,-Ya.. Since [|0]|3 < 02, [10]l1 < ||0]|1, the right hand
side is EETZI) is o(a?[6]218]5) = o(a?|6]*I6]1). Since 8] < 6163, the right hand
side is (2.E.123)) is < Ca?(|0]|*]|0]|S. Tt follows that
Var(Yz) < Ca?||0]*[10]15 = o([|6]*).

This proves the claims of Y5.

(2.E.123)

Consider Y3. By definition,
Yo= > (i —i)WileWa+ Y ni(mi — 1) WikQe W
1,5,k ,£(dist) 1,5,k,0(dist)
In the segmd sum, if we relabel (4, j, k, €) = (j',4', ', k), it can be written as > ;s o+ s pr(gise) Mt (N7 —
07 )Wirg Qprjy Wi . This shows that the second sum is indeed equal to the first sum. As a
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result,

Ys=2 Y milny — ) WikQreWe
1,5,k 0(dist)

=2 ) m(—\%Zst)ijﬁkeWm

1,9,k £(dist) s#£j

) ~
=7 > QW W W
gk {(dist)

s#£]
2 ~ 2 5
= —% Z UiQkZWJZkW& - % Z N8 e Wis Wik Wei
i,j,k,0(dist) 1,7,k £(dist)
s¢{j.k}
= Y3, + Y3, (2.E.124)

where the second line is from and the second last line is from dividing all summands
into two cases of s = k and s # k. Both terms have mean zero, so

E[Y;] = 0.
Below, first, we calculate the variance of Y3,.

4 .
Var(Yza) = > iSeni Quer) - BW W W2 W),

J
3.5,k 0(dist)
i §' K 0 (dist)

The summand is nonzero only if either the two variables Wy; and Wy are the same, or
each of the two variables Wy; and Wy, equals to another squared W term. By (2.E.110),
(2.E.117)), and elementary calculations,

(i %enir Qrer) - BIW L We W5 Wi

< CoP0:010,0: 01y - E[W 3 Wei W W]

Ca?G7070, EW W] < Ca”030,0307, it {0,d'y = {64}, (7, K') = (4, k);
Ca02670,0; E[W i, WZ] < Ca*63020767, if {¢,4% ={¢4,i}, (5, k) = (k,j);

| CaPO2070,0, BIWRWEWE,] < Ca0260;603070,,07,, i {€,i'y = (0,4}, {7/, K} # {4, k};
Ca0260,0;07 E]W W] < Ca?03036367, if {4 = {4,k}, (', k') = (£,1);
Ca0:;030;0F E[W3 W] < Ca?07630303, if {¢/,i'} = {4, k}, (5, k') = (i,0);
0, otherwise.

There are only three different cases in the bounds. It follows that
Ca?

Var(Yaa) < H9H2<Z 030,020% + > 03020203 + Y afejegegej,eg,)
1 % k,e i,5.k,0 i.5.k, 0,5 k'
Ca® 9 419116 4 p11211 0116
< W(HGIMIGH?,H\@II 16115 + lelI*1el1511el3)
1
< Ca|0]*101, (2.E.125)

where in the last line we have used [|0]|3 < ||0]|$(0max||0]|?) = o(||0]12]|0]lS) and [|0]]; >

0L ||0]|> — oo. Next, we calculate the variance of Y3,. We mimic the argument in (2.E.121))
and group summands according to the underlying path s-j-k and edge ¢-i in a complete
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graph. It yields

9 ~ ~ ~ ~
Y3 = 7 S0 (e + 0o + 0ip + 06 W Wik Wi,
length-3 edge not
path in the path

where

Qe + 10 + 10 + 162si| < Ca(Og + 0,)0:0,.

It follows that
Var(Ys,) <

2| Q

> 0% (b + 0)°6767 - Var (W Wi W)
0,5,k 4,8

Ca?
< g 2 (1361600, + 61030010
15 4.k0,s

Co?|10]1 16115
I

Since |01 < [10]S(Omax]0]]1) = o(]|0]]1110]|S), so the right hand side of (2.E.126) is much
smaller than the right hand side of (2.E.125)). Together, we have

Var(Y3) < Ca?||9]*[19113 = o(/|6]I°).
This proves the claims of Y.
Consider Yy. We plug in ;; = n;(n; — ;) + nj(n; — ;) and the expression (2.E.113). It
gives

o= > ni(n = )ueWer + > ni(m — 7) Qe W

(2.E.126)

i,j,k,@(dist) Z’vjvkv[(disﬂ
1 S 1 U

= Y w (—% > st> LreWei + Y <_ﬁ > Wis) Qi QWi

1,5,k,0(dist) s#j i,j,k,0(dist) s#£i

1 S 1 U
=~ > ( > ﬁinkae> WisWei — 7 > ( > Uijkaz) WisWii
ig.b(dist) ke {ij,0} 1,5(;?#) J ke (3,0}
s#£j s#£i

= Yia + Yap.

First, we analyze Yi,. When (4, j, ¢) are distinct, W;sWy; has a mean zero. Therefore,
E[Y4,] = 0.
To calculate the variance, we rewrite
1 ~ ~
Yip=—— Z BijeWis W, where (3, = Z UAUAYY)

Vv i,5,0(dist) k¢ {i,5.¢}
s

By (2.E.110) and R.E.117), |Bije| < C) a?0,0;020, < Ca?||0]0:0;0,. Also, for W;sWy;
and Wy gWpy to be correlated, there are only two cases: (Wjs, Wy) = (Wjrg, W) or
(Wis, Wei) = (Werir, Wirgr). Mimicking the argument in (2.E.121)) or (2.E.126|), we can easily

74



2.E. Properties of Signed Polygon statistics

obtain that
Var(Yy,) < BUZ Var(W;s W)

J,4(dist)
s£j

@\Q

< WHQ > (@]101120:0;60¢)° - 6:0,0,0,
4,5,0,8
Catllo|*[10113
- 16111
Next, we analyze Yy,. We re-write
1 ~ ~
Yop = ——= Z BieWisWei, where [ = Z 1588 Ut

i,f(dist) ],k¢{l,z}
sF#£i

By separating the case of s = /£ from the case of s # £, we have

Yip = S BWiE——= > BiWisWei = Yy + Y.
\/> i,¢(dist) f ,€(dist)
s¢{z 0}

Only Yy, has a nonzero mean. By (2.E.110) and ([2.E.117),

Bul < €3 63630, < Ca?|] "0y
7,k

(2.E.127)

It follows that
~ Cc
E[Yy]| = [E[Ya]| < ol > (@2)10*6,)6:60, < Ca?||6]°. (2.E.128)

We now bound the variances of Yy, and Yi’;) By direct calculations,

Ca||0]*16]13
Yip) 2(19(149,)% - 6,0, < —— 71703
Var(Yy) M%;St B2 - Var(W3) < He”g Z 10]]%6,)? < 1l 7

Var(Yj;) < ; > Bh Var(WisWe) < IIGIIQZ (2]10][*6,)? - 26,0, <
i,(dist) il,s
s¢{i L}

Together, we have

Ca|10]*]10113
16111

Co[10]™]10113

[ Fo—
We combine the results of Yy, and Yy, Since [|0]|$ < (Omax|0])? = o([|0]|*), the right hand
side of dominates the right hand side of (2.E.127). It follows that

Ca?|0]119)19(3
EY)| < Ca? 0] = o(a®|0]), Var(¥) < ”HQ”H”'S — o(a®0]*0]5).

Var(Yy,) < 2Var(Yy,) + 2Var(Y},) < (2.E.129)

Here, we explain the equalities. The first one is due to a?||#]|> — co. To get the second equal-

10
ity, we compare Var(Yy) with the order of a%(|]|®||]|$. Note that (21 1 71 lo]|* <

16111 10111
a||°|0
R oy 08 < 10151015 1t follows that Var(Ys) < Ca*||g]°[6]§ < Ca®|||*|l6],

where the last inequality is due to a?||f]|> — co. So far, we have proved all claims about Y.
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Consider Y5. Recall that
Ys= > mi(n— )W+ D> (i — 7)mi Qe WieQus.
ivj.k,0(dist) i\j.k.€(dist)
With relabeling of (i, j, k, £) = (j3',7', ¢/, k"), the second sum can be written as Zi',j/,k/,e'(dz’st) (nj—
1)t Qiro W Q jo- This suggests that it is actually equal to the first sum above. Hence,
Vs=2 > niln — i)W
i,4,k,0(dist)

= Z m<_\377 Zst>§jka€§€i

i,J,k,0(dist) s#£j

S E T (X el

v
Gk L(dist) i¢{jk,C}

5#J
= > BieWjWie,  where Bie= > 1l
Jok.£(dist) i¢{j,k,C}
s
It is easy to see that E[W;sWj] = 0 when (j, k,¢) are distinct. Hence,

E[Ys] = 0.

By (2.E.110) and (2.E.117), |Bjkel < CY, 0; - a20;0,0,0; < Ca?||6]|?0;016,. Similar to the
argument in (2.E.121)) or (2.E. 126|) we can show that
Var(Ys) < — > B Var(WisWie)
] k,t(dist)
57#]

<1d H2 > (@?[10]1%6;0x0¢)°0;650x0¢
g,k,l,s
< Catlo]*iens
— olh
Since [|0]13 = (1013?1013 < (Omaxl|01?)* (OraxcllOll1) = o(I0]*[10]]1), the right hand side is
0(]|0]|®). This proves the claims of Y.

Consider Y. By definition and elementary calculations,
Yo=Y m(n— i)+ > mi(mi — )k
i,j,k£(dist) 1,5,k 0(dist)
=2 > mimy — ) Qe
0,5,k £(dist)

=2 ) Ui(—\}azsz)ﬁjkﬁkéﬁéi

',j k,£(dist)

:_7 Z ( Z niﬁjkﬁkéﬁéi>sz-

J.s(dist) i,k,(dist)¢{j}

Here, to get the second line above, we relabeled (i, j, k,¢) = (j',4,¢', k') in the second sum
and found out the two sums are equal; the third line is from (2.E.113]). We immediately see
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2.E. Properties of Signed Polygon statistics

that

E[Ys] =

By (2.E.110)) and (2.E.117)),
S Q| < COi - 020,03070; < Ca®)0]|%0;.
ik, 0(dist)¢{j} ik,
It follows that

~ o~ o~ 2
Var(Ys) = Z ( Z Uinkasz) - Var(W,)
j s(dist) i,k,0(dist)¢{j}

C
< WZ(O&?)II@II%)Q@J’@S

< Ca®l01™2116115
16]]1
Since [|0]|* < ||0]11]|0]|3, the variance is bounded by Ca®(|0]|®|0]|S. This proves the claims of
Y.

Proof of Lemma

It suffices to prove the claims for each of Z; and Zs; then, the claims of Uj, follow immediately.

We first analyze Z;. Plugging d;; = n;(n; — ;) +n;j(n: — ;) into the definition of Z; gives
Zv= > miln = i)ni O = ) WeeWei + Y mi(ng — ) Wee Wi

i,k E(dist) i,k E(dist)
+ > =T o = T WeeWai + Y (i — T)mi (s — ) Wike Woes.
5,k Z(dlst) i,k 0(dist)

In the last term above, if we relabel (i,j, &k, £) = (K, j',i',¢'), it becomes Doir g e (dist) (e —
N )Ng7 (njr —0jr )Ny Wirg Wi . This shows that the last sum equals to the first sum. Therefore,
Zy o= > milny = ) mWeWe
0.4,k 0(dist)

+2 > milny = W) e — ) WieWes
,5,k,( dzst)

+ D = )} (e — ) WieWes
i, kf(dzst)
= Zia+ Zwp+ Zie- (2.E.130)

Below, we compute the means and variances of Z1,-Z1..

First, we study Z1,. When (i,j,k,¢) are distinct, Wy,Wy; has a mean zero and is
independent of (7; — n;)?, so E[(n; — 1;)*WiWy;] = 0. It follows that
E[Z14] = 0.
To bound the variance of Z1,, we use (2.E.113|) to re-write

Zia = Z 771‘(—\}5 ; st) (-\% ; th) MWW
s#j j

i,5.k,0(dist)
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1
= 3 Z i Wis Wi WieWo;
4.4k, 0(dist)

) s,t¢{j}
= > Wi W W + = > Wi W Wi W
1,7,k €(dist) 1,5,k £(dist)
_ s#) s,t(dist)¢ {5}
= Zla =+ Zika.
We first bound the variance of Zla. It is seen that
~ 1
Var(Zia) = > ik - BIWEWieWei - W3y Wigeg W),

Z7J7k7e(d18t) >3¢{j}
i 5’ k' 0 (dist),s' ¢ {5’}

The summand is nonzero only if ¢ = ¢ and {¥,i'} = {k,i}. We also note that, if we switch

i and k', the summand remains unchanged. So, it suffices to consider the case of ¢ = ¢ and
(k',i") = (k,i). By (2.E.117)) and elementary calculations,

i M+ BIWEWieWe - W Wiee W]

i BIWEWEWE] < CO70,070705, it (¢,K,1) = (6,k,0), {7, 8"} = {j. s}
= n; nkE[WZ WkZW&W2 ] < 09;‘,39]020?039]/98’7 if (Elaklai/) = (£7k7i)7 {j/73/} # {]’ S};
0, otherwise.

It follows that

C
Var(Zia) < 0 ||4( > 03005070, + > 0§9j9,§9§959j,95,)
1,5,k,,s 1,5,k,2,8,5" 8"

C
=< W(H@HQII@II%H@II? +01”191500117)

< ClolP1o15-
We then bound the variance of Z7,. Note that
ki e - BIW s Wi WieWes - Wi g Wiy Wig o Wi |

n?n,%E[W2 VV2 WMW&] < 06?0]2020%050“ if (79,0') = (3,0),{s',t'} = {s,t},{K, 7'} = {k,i};
Tiks TNt [W2 WEWEWE] < CO70307070307, i (5',0) = (L,5), {s", t'} = {k, i}, {K, 7'} = {s,t};
0, otherwise.
It follows that
Var(Z},) < 4( S 0302030%0,0,+ Y 92929ke§9§9§)
” H 1,7,k,2,8,t i,4,k,£,8,t
C
< W(HGH‘*H@H?II@II? + 611"
10111
411916
< el QGH;@’
1611

where the last inequality is because of [|0[|'2 = [|0]|*([|6]]*)* < [|[I*([[¢ll[1]13)* = [IolI*lo115]1]].
Combining the above gives

Var(Z1,) < 2Var(Z14) + 2Var(Z5,) < C|10]1%(16]$. (2.E.131)
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2.E. Properties of Signed Polygon statistics

Second, we study Zip. Since (n; — 1), (k — k) Wie and Wy; are independent of each
other, each summand in Z7; has a zero mean. It follows that
E[Z14] = 0.
We now compute its variance. By direct calculations,
1 1
Zw=2 >,  m (_ﬁ > st) N (—% > Wkt) WieWei
i,5.k,0(dist) s#j £k
2
=5 > W Wi Wi W
i3k, 0(dist)

s#jt#k
2 2
=5 Z minyWisWiWe: + " Z 0N Wis Wit Wie W

i3k, 0(dist) i3k, 0(dist)

$7] s#jt¢{k.(}

We first bound the variance of Zlb. Note that
~ 4
V&I'(Zlb) = ; Z i i 15 E[WJSW]gEWh . Wj/s/nglg/ngi/].

Z,‘],k,f(d’LSt) ,875]'
ilujlvk/ 7€/(di5t) 7S/¢j/

For this summand to be nonzero, there are only two cases. In the first case, (Wjs, Wy;) are
paired with (Wjs, Wy ). It follows that
minnenj - BIWis Wi WeWig Wiy W] = ningnany - EIWS W WEWE ).
This happens only if (i) {j’,s'} = {j,s} and {¢',i'} = {¢,i}, or (ii) {j',¢'} = {¢,i} and
{,i'} ={j,s}. By (2.E.117)) and elementary calculations,
ninminy - BIWis W Wei - Wirg Wiy W]

(202  EIWZWEWEWE,) < CO020030,00, i (7,5') = (s s), (£,7') = (£,0):
mimyne - BIWEWEWE W] < CO3030,03050,,  if (5, 8') = (4,8), (') = (i, 4);
ningns - E(WEWEWE W] < CO030,00030,,  if (5',8) = (s,5), (¢, 1) = (£,9);
mingnens - EWEWEWEWE| < CO3030507030,, i (5',8") = (s,4), (¢',i") = (4, 0);

= § nmgnens - BIWZWEWZWE ] < CO030,63020,,, if (§7,5) = (€,1), (£, ) = (4, 5);
mingne - BIWEWEWEWE ] < CO7030:07020,  if (5',8") = (£,9), (¢',7') = (s, ]);
ninns - EWZWEWEWE] < COM030,07050,,  if (7',8") = (i,0), (¢,7) = (4, );
ning - BWEWEWE WL < CO030107030,, if (', 8') = (i,0), (¢, i) = (s, 4);
0, otherwise.

The upper bound on the right hand side only has two types C’H?Q?Qkﬁi’ﬁsekx and CH?H?GW?Q?HH
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

The contribution of this case to Var(Zlb) is

C

< vﬁ( S 020%0:030.00 + > 9§9§0k9§*0§9k,)
ij ke l,s,k! ij ke l,s,k!

C
W(WH%HHH? +lol*lelSlel)

1

_ Clolg
16111

In the second case, {Wjs, Wie, Wy} and {Wjrg, Wi, Wi } are two sets of same variables.
Then,

nimnim; - BWisWEWeuWirs Wiy W] = nim;nim;: 'E[WJ?’SW/?eWE]-

This can only happen if ¢/ = ¢, {i/ k'} = {i,k}, and {j/,s'} = {j,s}. By (2.E.117) and
elementary calculations,

iy - BIWisWigWei - Wing Wiy Weri]
m?nJQ' ' E[W;’SWEW&] < 0939?9k039s, if ¢/ =4,

; (@' k') = (i, k), (', s') = (4, 5)
ningns - BIWSWRWE) < CO3050,6705,  if ¢/ = ¢, (i',K') = (i, k), (7', 8') = (5,7)
= Qmimkn? - BIWRWEWE] < CO203026036,,  if £/ =€, (', k') = (k, ), (5', ") = (4, 9);
minnins - E(WEWEWR] < C07036030707, it € =1, (', K) = (i,k), (5',8') = (s,7)

0, otherwise.

The upper bound on the right hand side has three types, and the contribution of this case
to Var(Zyy) is

c 3n3 2 302 2n2 2n2n2n2n2
< (X e0ioie.+ Y 620200300+ S 0303030707
i,9,k,0,s i,k 0,8 ij.k,0s

C
(letensliens + o1°els el + el

= o
< Clorzlens
el
where we use [|0]|* < ||0]|1]|0]|3 (Cauchy-Schwarz) in the last line. It is seen that the
contribution of the first case is dominating, and so

~ C912
Var(Zlb) < ” HS
10]]1
We then bound the variance of Z3,. Note that
. 4
Var(Zy,) = 5 > ninininy - E[W;s Wit WieWei - Wirs Wiy Wirg W]

i.J,k,0(dist),s#j,t ¢ {k,(}
i/ 7jl7k,7£/ (dlSt)7s/ #j/7tl¢{k/ 7€l}

For the summand to be nonzero, all W terms have to be perfectly matched, so that the

expectation in the summand becomes

E[W;s Wit WieWei - Wits Wioss Wioo Werg] = EIWEWEWEWE] < C0,0;07630,0,.
For this perfect match to happen, we need (¢, k', ¢',i") = (¢, k,£,i) or (¢, k', 0',i") = (i, 4, k, 1),
as well as {j', '} = {4, s}. This implies that, i’ can only take values in {i,¢} and j' can only
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take values in {j, s}. It follows that ;n;n,7; belongs to one of the following cases:

nin;(nin;) < CO;03, nin; (nins) = C6;0,0s,
nin; (mn;) < CO;0306;, ninj(nens) < C0;0;0405.

Combining the above gives

Var(Z5,) < % D (6767 + 670,64 + 6:056, + 6,0,0,0) - 0:0,67070.6;
1,7,k,L,s,t
C
<
~ el
CHGII“HHHS
- el

We combine the variances of Zy, and Z3,. Since [|0]|* < ||0]]1]|0]]3, the variance of Z

(eI 1S 01T + Mol o113 1011 + 1o1*)

dominates. It follows that

~ o3
Var(Z1p) < 2Var(Zy) + 2Var(Z7;,) < |||g||||3 (2.E.132)
1
Third, we study Zi.. It is seen that
1 1
Zie= Y (_\ﬁ > VVis) m; (—% > Wkt) WieWei
irj,ke,0(dist) s#i t£k
1
=5 > ( > U?)WikutheWei
ik 0(dist) j@{ik,0}
sAitAk
1
=5 > BiktWis Wit Wie Wi,
i,k 0(dist)
sAitAk
where
Bre= Y. m<od e2<clo* (2.E.133)
J¢{ik 0} J

We divide all summands into four groups: (i) s=t=2¢; (ii) s =4, t # ¢; (iii) s # {, t = ¢;
(iv) s # £, t # £. It yields that

1 1
Zie =" > ﬂz‘keW;?ngﬂr; > BireWWie Wy,

ik, 0(dist) i,k,£(dist)
t#{k,0}
1 1
o D BuWiWEWet+ > BueWa Wi WieWai.
i,k 0(dist) i,k 0(dist)
s¢{i, L} s@{i L} t¢{k, 0}

In the third sum, if we relabel (i, k, £, s) = (k’,4',¢',t'), it then has the form of Zz",k’,é'(dist),t'gé{k:',e'} Brerire Wity W2y W
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This shows that this sum equals to the second sum. We thus have

1 2
Zie = — : 2212 : 2
e =" E BikeWieeWii + ” E Bike Wit Wie W ;

ik, (dist) i, (dist)
14k, }
1
+= > BiWisWu Wi W
(%
i,k 0(dist)
s¢{it}t¢{k,L}

=21+ 25+ 7).
Among all three terms, only Zlc has a nonzero mean. It follows that

E[Z1]) = E[Z1.) = . HE(; ) Bire Qe (1 — Qo) Qi (1 — Qi)

5 > Bk e[l + O(02,))-
i,k,0(dist)

: 0 6,116
Under the null hypothesis, €2;; = 6;6;. It f(;llows that 7; = Z= D it 91-2: 2[1 + 0(1)]%
and that et = e 12 = 1+ oA 00 02 = [1+ o(1)] IR - Aqditionaly,
v=17);0i0; = 10117 - [1 + o(1)]. As a result,
1 [ A
ElZi] = Z [T+ o(1)] =L = - 0070,
i,k,0(dist)
o11310]>
= 1 o) T 5 020,
i,k,0(dist)
=[1+o(1)]- T [Iolzlel (1e1* + Nellliels)]
1
=[1+o(1)]-]6]%, (2.E.134)

where in the last line we have used [|0]|%> = o(||0]|1), |0]|3 = o(||#]]1) and ||8]|; — co. We
then bound the variance of Z;. by studying the variance of each of the three variables, Z1.,
Zi. and ZL. Consider Zy, first. For W2 W2 and W2, W2, to be correlated, it has to be
the case of either {k/,¢'} = {k, ¢} or {i',¢'} = {i,¢}. By symmetry between k and i in the
expression, it suffices to consider {k’,¢'} = {k,¢}. Direct calculations show that
E[WLWA] < C8,626;, it (K, 0) = (k,0), ' = i;
EWLWEWZ < COLO30:0,, if (K. 0) = (k,0), ;é i;
Cov(WiWei, WiigWiy) <  EIWLWEWZ] < CO20202, it (K, 0) = (,k), 7
EWLWEWE,| < CO2020,0,, if (K. 0) = (¢,k), ;é i;

otherwise.

9

=
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Combining it with (2.E.133)) and the fact of v > C~1(|0]|?, we have

ol
Var(Z.) < ||l9|||‘|* (Zekaée +2kze:l 0,630,0; +%9k0£92+z§ 02620,0; )

Cllej*
19111
_ Cleltlens
- el
Consider Z7,. By direct calculations,

E[Wit Wi Wi Wiy Wi o W]

(11611 + 161301013 + 1161 + 1ol /1617)

E[W;?tW;?gWé] < 091'(9,%9?(9,:, if (
EWEWEWiWi] < C0:07036010,, if (K¢, 0") = (k,t,0), i # i';

= CEWEWEWEWZ] < C0,63020%0,, if (
[

E[WEWZW}R] < C0;02620,, if (K¢, 0,7) = (0,i,k,t);
0, otherwise.
We combine it with (2.E.133)) and find that
. 4
Var(Zy,) = — > BixeBiwre - EIWiWig Wi Wiy Wiao W]

ik, 0(dist) t£{k,(}
ik E’(dz‘st) tA{K 0}

||9H4 <Z 0; 9k9£9t + Z 0; Gké’eet@g + Z 0; 0k0£‘9291’>

ik, 0t i,k 0,t,3 i,k Lt

(1161 + o1 helgnens + lencel)

< Cllej
1
10]]F
 CII°I9I8,
10]]1
Consider ZL. Re-write
1 1
Z]. == Z Bikt Wi Wike Wi + Y Z BiteWis Wit WieWei.
ik b(dist) ik b(dist)

s¢{i,0},t¢{k,0}
(s,0) 7 (ki)

Regarding the first term, by direct calculations,
E[W3WieWei - Wiy Wieo W]
EWAWZWZE] < CO20202, if 0/ =0, {i',k'} = {i, k};
= JEWIWZWS) < CO20202, i (¢, 1) = (k,0), 7 = i
0, otherwise.

Combining it with (2.E.133) gives

cllo)* |61
Var<f > W, kWMW&) <l ‘l 3" 6020307 < ” ”4 .
1017 4 10117
i,k,0(dist) 0,5,k ¢

Regarding the second term, for W;s Wy Wy, Wy; and Wy g Wiy Wirg Wi to be correlated, all
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W terms have to be perfectly matched. For each fixed (i, k, ¢, s,t), there are only a constant
number of (¢, k', ¢, s',t') so that the above is satisfied. Mimicking the argument in ([2.E.106]),

we have

1 C
Var(; Z BikéWikuthZWZi) < p) Z B2y - Var(Wis Wi Wie W)

i,k 0(dist) i,k 0(dist)
s@{i, 0}t {k,0} s¢ {4}, t¢{k.C}
(5,t) 7 (ky0) (s:8)7(ky7)
10
< €5 o earaza,0 < 101
eIt , 7, 1613

It follows that

Clo)
1013

Var(Z1) <

Combining the above results and noticing that [|0]|* < [|0]|1]|0]|3, we immediately have
Clol°liels
[ Fa—
We now combine (2.E.131)), (2.E.132), (2.E.134), and (2.E.135)). Since Z1 = Z14 + Z1p +
Z1c, it follows that
E[Zi] = 0" -[L+o(1)],  Var(Z) < C0I*10]15 = o([10]).

This proves the claims of 7.

Var(Z1.) < 3Var(Zi.) + 3Var(Z,) + 3Var(Z],) < (2.E.135)

Next, we analyze Zo. Since 0;; = 1;(n; — ;) + 1;(n: — 1:), by direct calculations,
Zo= > il — ) Wiemk(ne — ) Wea + > mi(ny — ) Wik(ne — k) neWes

0.4,k 0(dist) i,k O(dist)
+ > = Wiknke =10 Wei + > (i — T)m Wik(ne — k) neWes.
,7,k, K(dzst) 1,J,k,0(dist)

By relabeling the indices, we find out that the first and last sums are equal and that the
second and third sums are equal. It follows that
Zy = 2 Y niny — ) Wikne(ne — i) We
0,5,k 0(dist)
+2 > milny = ) Wik(nk — k) neWes
i,5,k,0(dist)
= Zog + Zop. (2E136)

First, we study Za,. It is seen that

ZZa =2 Z U (\}5 Zst>ijnk( ZW&) Wéz
ivj.k,E(dist) s#j t;«éé
_2 Z i WisWit Wt Wo;.

v
i,k 0(dist)
s#jt#L

We divide summands into four groups: (i) s =k and t =1, (ii) s =k and ¢t # ¢, (iii) s # k
and t =1, (iv) s # k and t # i. By symmetry between (j, k, s) and (¢, ,t), the sum of group
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2.E. Properties of Signed Polygon statistics

(ii) and group (iii) are equal. We end up with
2 4
Z2a =~ Z nineW Wi + - Z nimkWis Wik Wi
i,j,ke,0(dist) i,k E(dist)
s¢ {7k}
2
+ > Z i Wis Wi Wee Wi
i,j,k.E(dist)
s¢ {5k} t¢{€,i}

= 220« + Z;a + Z;rau
Only Zga has a nonzero mean. It follows that
. 2
E[Z2q] = E[Z24] = - Z NikSx (1 — Q1) Qi (1 — Q).

i4 ke 0(dist)
Under the null hypothesis, Qi]’ = 919] Hence, ij(l — Q]k)ﬂgz(l — ng) = 9j0k949i . [1 +
O(G?nax)] Additionally, in the proof of (2.E.134]), we have seen that v = [1 4+ o(1)] - [|0]|? and

= [1+4 o(1)] - #;. Combining these results gives

E[Zy] = W > (6:61)(0;050:6:)
zgkﬂ(dzst)

= P [ eete - S et

bkt i.jk,t
(not dist)
2[1+ o(1 ‘

= 2l o160z - o(ienen: + leigierie + 1o1°)]

1
= AL oo + o)

1
= [Lroll)] 2”9H4' (2.E.137)

We then bound the variance of Z,. Consider Zza first. Note that Wkafi and W]%k,W;,i,
are correlated only if either {j/,k'} = {j, k} or {j',k'} = {{,i}. By symmetry, it suffices to
consider {j/,k'} = {j, k}. Direct calculations show that

Cov(nmkW . W2, i szlk, Wai)

(

M EWH W] < CO20;636,, if (j,k)=(j,k),i=1, (=1,
e BW A WEWE] < C610;630,0,, if (,K) = (j,k),i=1, 0+,
nknmz/]E[Wka&WW ] < CO20;030,0%0,,  if (5, k) = (4,k), i #

< < nymen? [Wfkm] < C6}63636,, if (k') = (k,5),i=14,¢0=1;
n;mn? E[W; SWEWE] < 09492929405/ if (,K)=(k,j),i=1d,L#;
njnknmifE[W;‘kWéWﬁi/] < CO7020:0,0700, if (7', k') = (k,j), i #
0, otherwise.
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

As a result,

~ 4
Var(Zy,) = pe Z Cov(nmkakWé, m/nk/W]%k/WE,i,)
ij.k,(dist)
ij k' (dist)

< H;’%(IWIIQH@H? +6lllelzlens + elsien* el
+ 613101 161+ llelzlen* 11T + el e17)
Cllof*(1e113
I (/PO
where the last line is obtained as follows: There are six terms in the brackets; since
10114 < [|0]11]|€]|3, the last three terms are dominated by the first three terms; for the first
three terms, since |03 < 02,10/l = o(||0]l1) and [|0]|F < 62,1101 = o([|0]?), the third
term dominates. Consider Z3, next. We note that for
E[W;s Wi Wi - Wig Wi Wiy
to be nonzero, it has to be the case of either (W g, W) = (Wjs, W) or (Wirg, W) =
(Wi, Wjs). This can only happen if (j',s', k) = (4,s,k) or (j/,¢,k') = (j,k,s). By
elementary calculations,

N - BIW;s Wik W2 - Wirng Wi W]

,

i E [W2 VV2 - Wi < 0939203959 (', s k) = (4,8, k), ' =i, 0 =4
ﬁ?ﬂkE[WQ W - WEWE] < 09492939g0 O, (4,8 k) = (4,8, k), ' =14, O #¢;
ninime [W2 W2 . WEW2,] < 0020293039 020, if (5,8, k)= (4,8,k), i #£1;

= i EIVAW2WE] < CO362020,67, (oK) = Gy s), i =i, € = £
n2nens E [W2 W2 . WEAWE] < 0049?9,%@039@, f (', s k)= (4,k,s), i =i, 0 #£Y;
mm/nknsE[WQW  WRWE,] < CO262020,02020,, if (7', ', k) = (j k,s), i # i
0, otherwise.

It follows that
16

Var(Zg,) = — >ty EIWisWikWE - Wya Wi Wiy
i,j.k 0(dist)
it Gk 0 (dist)

C
< W(WII?WHQHQH? + 101310131012 1611 + llelslel° el
1
+ 111111611, + llelIzl1el (181 + el ™ 1611%)
Clol°lol3
B [ PR
where the last inequality is obtained similarly as in the calculation of Var(Zs,). Last, consider
Z3,. Write
2a°

2 2
AR - > i WEW W + - S Wi Wi We W (2.E.138)
i,j,k,£(dist) 1,5,k £(dist)
s@{g.k}t¢{e}
(s,8)7#(6:3)
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2.E. Properties of Signed Polygon statistics

Regarding the first term, we note that

mineny e BIW G WieWes - W2y Wi W]

iy BIWAWEWS] < CO3036307, if (7, k) = (4, k), (@, 0) = (i, 6);
ningne BIWRWEWEW2] < COP030007, it (5, k') = (5,k), (', 0) = (£, 1);

= e EIWRWEWEWE] < CO020%0;, it (5, k') = (k,j), (¢',¢') = (i, 0);
ninknen; EWZWaWEWE] < CO30307607, if (7, k) = (k. j), (¢/,€') = (£, 1);
0, otherwise.

It follows that
2
Var(; > ninkwszéwjkwéi)
0,5,k (dist)
C
<o > (02676307 + 070307367 + 6367636})
101y %=,
C
SW(H@H?WW +16115* + [lelz19131611%)
1
clefglel*
— el
Regarding the second term in (2.E.138). We note that, for 7;n, W;s Wi Wes We; and 0y m Wi g Wi Wy Wy
to be correlated, all the W terms have to be perfectly paired. It turns out that
E[WisWikWaWei - Wirg Wine Woy W] = EIWLWEWEWE.
To perfectly pair the W terms, there are two possible cases: (i) (5/,¢') = (4, ¢), {s',k'} =
{s,k}, {¢,i'} = {¢,4}. (ii) (§),0) = (4,9), {s',k'} = {¢,i}, {¢,i'} = {s,k}. As a result,
NN Mk only has the following possibilities:
it (i) = 10 ik (ins) = i mens, ik (nenk) = niine, ik (nens) = minknens,
mine (k1) = g ik (kne) = nanine, ik (i) = 7 0k0ss Wik (Ns71e) = MineNs-
By symmetry, there are only three different types: nl?r],%, n2nens, and n;nEnens. 1t follows

that
2
Var (* > ik Wis Wi Wet Wfi)

v 1,5,k 0(dist)
s@ {4k}t {L,i},(s,6)£(L.9)
0202 + 020,05 + 0;0,0,0,) - 620,0,.620,6;
i’k ) J J4
4,9,k 0,8t
> (026763670.6, + 63676207020, + 67676767626,
1,9,k 0,s,t

< ¢
~liely

< @
~llen

C

4 6
S Clol”liels
1

(lenslieniens + lenznel*nen) < TIE
1

It follows that

C||6]1*110)$
vzl < LIS

Comparing the variances of Zoa, Z5, and Zg we find out that the variance of Z3, dominates.

a’
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

As a result,
ClIoI°lI61I3

Var(ZQa) < 3Var(22a) + 3V&I’(Z§a> + 3V&1"(Z;a> < ||6H
1

(2.E.139)

Second, we study Zop. It is seen that

Zy=2 Y w(-— ZWJS) Wik (= 7= 3 W)tV
4.5,k (dist) £k
I% Z NiNeWis Wik Wi W

i3,k 0(dist)
53'5]7t3ék

We divide summands into four groups: (i) s =k and t = j, (ii) s = k and ¢t # 7, (iii) s # k
and t = j, (iv) s # k and ¢t # j. By index symmetry, the sums of group (ii) and group (iii)
are equal. We end up with

2 4
Zw = > mWiWe + - > 0ieW Wit Wei
0,5,k £(dist) i3,k 0(dist),t¢{k,j}
2
s > NineWis Wik Wi Wi

5,k (dist),s£{j,k} t#{j,k}
= Zoy + Ziy + Z3,.
It is easy to see that all three terms have mean zero. Therefore,
E[Z9] = 0. (2.E.140)
We then bound the variances. Consider 221, first. By direct calculations,

ninenine - BIW3Wei - Wiy We)

ning - EIWSWE] < CO30,6,07, if {5/, k'Y = {4, k}, {€,i"} = {¢,i};
= S minenjne - EIW3 Wil < CO7036307, it {j',K'} = {£,i}, {¢',¢'} = {4, k};
0, otherwise.

It follows that

\ a

Va,r(Zgb S

(Z 620,0,07 + Y 02e29k9§)

il 1,9,k,¢ i,5,k,£

W(H@IIQHGII% +11011°)

clol
S

QCD
—
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2.E. Properties of Signed Polygon statistics

Consider Z3; next. By direct calculations,

ninenime - BIWSWiWei - W Wiy Weri ]

ning EIW; Wi Wil < C020,02070:, if (K1) = (k,t), {€,7'} = {3}, 5 = j;
ming EWRWEWEWEL] < CO0;00000:05, it (K. t) = (k,1), {€,i"} = {¢,3}, ' # J;
ning EIWRWEWEWZ] < CO30,67070701, if (K,¢) = (t, k), {¢,i'} = {£,i};
ineNkNt E[WJZkW,?th‘;] < C620,630707, if (K ) = (4,4), {¢,i'} ={k,t}, i =1i;
= mnemen: EIWRWEWEWE | < C070;0300070;, if (K',t') = (€,9), {',d'} = {k,t}, j #Z
ninenen E[W R WE W] < CO760;6,0767, if (K',t') = (3,0), {¢,i'} = {k,t}, §'
ninenke EW S WEWEWS ] < C020;0307070,, if (K. t') = (i,0), {¢',i'} = {k,t}, j #f
ning W, WE W] < C070;63070:, if (K, ¢, 5") = (k,j,t), {", €'} = {i, ¢}
0, otherwise.

There are only two four types on the right hand side. It follows that

Var(Z3,) < C4( D 030;65030,0; + Y 670,0707670;
H ” 0,4,k L,t,5" 0,4,k L,t,5"

+ 3 620,03050,+ > 93@929593)
0,5,k 0t 1,7,k 0.t

C
< W(WII%II@II? + 0101 101F + llensliel el + lo131e1°101l1)
1

_Cllelg
1611
Last, consider Z;b. By direct calculations,
ninenine - BIWis Wi Wi Wes - Wi g Wit Wiy W |

ming EWZ WA WEWE] < CO0307070:0,, if (5',8) = (5, 5), (K, ¢') = (k. t), {4} = {¢,i};

= 172421%?1[:7,[1/[/2 W2 WktW&] < 09?9?9,%9?95&, if (5/,¢") = (k,t), (K,t') = (j,s), {€,i'} ={¢,i};
0, otherwise.

It follows that
Clollels

Var(Z},) <
) o113

> 0702636706, <
i,5,k,0,s,t

16 H4

Since [|0]|1]|0]|3 > ||0||* — oo, the variance of Z3 dominates the variances of Zop, and Zgb.
We thus have

~ el

Var(Zy,) < 3Var(Zy) + 3Var(Z3,) + 3Var(Z1,) < s

191,
We now combine (2.E.137), (2.E.139), (2.E.140)), and (2.E.141)). Since ||0]|§ < 02, 10]|* <

|0(%, the right hand side of (2.E.141) is much smaller than the right hand side of (2.E.139).
It yields that

(2.E.141)

6 3
E(Zs] = 200" [1+0(1)],  Var(Z) < (W — o(l6]®).
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

This proves the claims of Zs.

Proof of Lemma

It suffices to prove the claims for each of Z1-Zg. We have analyzed Z1-Zs under the null
hypothesis. The proof for the alternative hypothesis is similar and omitted. We obtain that

E[Z]| <Clolt,  Var(Z1) < ClI9)1*(10]15 = o(|0]1%),
C|6]/6]2
[Biz]| < clolt. Var(ze) < S —oqiope)
First, we analyze Z3. Since d;; = n;(n; — ;) + 1;(n: — 1;), we have
Zs =Y mi(n; — )i (0 — ) Qe Wer + > mi(nj — )21 Qe Wi

i7j7k7£ i7j7k7e
(dist) (dist)
+ > 0= T O — k) Qe Wer + D (i — ) (1 — 715 e W
i7j7k7[ i7j7k7£
(dist) (dist)
= Zga + Zgb + ch + Z3d. (2.E.142)

First, we study Z3,. By direct calculations

Zsq = i’j’k’%ist) ( = ; Wjs ) ( = g Wi ) Qi Woi

1 ~
== Z BijkeWisWii Wi, where Bijre = 10 ke

i,7.k,0(dist)

s#jt£k

Since (i, j, k, ¢) are distinct, all summands have mean zero. Hence,
E[Z34) = 0. (2.E.143)
To bound its variance, re-write
1 1
Z3a = > BisWiWe + > BijkeWis Wit Wes
i,J,k,0(dist) 1,5,k £(dist)
s#Jt#k,(s,0)#(k,J)
= Zga —+ Zéka.

We note that |Bijre| < Cad;0;0,0, by (2.E.110) and (2.E.117)). Consider the variance of Zsq.
By direct calculations,

5@]165/81 ke COV<W WEZ: W]‘Q/k’WZ’i’)

Ca?07030707 B[W;, W] < Ca?070760767, if {¢,d'} = {0,i}, {4/, K} = {j, k};

) CaP020,0,020, 0 EIWAW2, WE] < CaP030267076% 67, if {¢,i'y = {¢,3}, {§",k'} # {4, k};
Ca?0703620; E[WE W3] < Ca02630367, if {j/, K'Y ={¢,3}, {0} = {j, k};
0, otherwise.
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2.E. Properties of Signed Polygon statistics

It follows that
Var(Zsq) < HHII“(Z 02630307 + > 95’9;9,39393,0,3,)

i.jikt ik K
Ca?

< ”9H4(H9H +le11e115)
Ca?|0]|5?

- el

Consider the variance of Z3,. For W;Wy Wy and Wj g Wiy Wy to be correlated, all
W terms have to be perfectly paired. By symmetry across indices, it reduces to three

cases: (i) (glvi,) = (£,1), (j,’sl) = (4,9), (klvt,) = (k,1); (ii) (EIJI) = (4,5), (jlvsl) = (£,19),
(W 4) = (k,): (i) (€,7) = (), (7, 8') = (k. 2), (K,#) = (£,). Tt follows that

BijreBitjrire - BIW;js Wi Wy - Wiy g Wiy W]
< Ca®(0:0;0:00) (0001 0p) - E[W 2 W2, W]
Ca?0050207E[W2 W2 W] < Ca®676030707056;, case (i)
Ca2(0,0,0,00) (0500010, E[WEWEWE] < Ca202030303020,,  case (ii)

<
B Ca2(0i0j0k94)(Hsﬁkegﬁj)E[WfkutW&] < Ca29?9§?629§’6§0t, case (iii)
0, otherwise.
As a result,
Var(Zi,) < ¢ GCH Ca(X weedeies Y o6600,)
1,7,k,0,s,t 3,9,k 0,s,t
Ca
< ”9H4(H9H 2l161 + el len3lel)
Ca?||0]3?
.
Combining the variance of Zsa and Z3, gives
Ca?(0|5?
Var(Zs,) < H9HH2H3 (2.E.144)
1
Second, we study Zsp. It is seen that
1
RSB NAET
4,5,k £(dist) s#£j t#£j
. Z ( Z ninkﬁld) Wi s Wi W,
i,5,0(dist) k¢{i,j,0}
sFEJAF]
1
=5 Z BijeW;s Wi W,
i,5,0(dist)
sFEJAF]
where by (2.E.110) and (2.E.117)),
Bizel < D> InimeQuel < Cahif70, < Cal|6]* - 0,0,. (2.E.145)
k¢{i,5.0} k
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We further decompose Zs3; into

1 1 - .
Zsp =~ > BiW W + " > BiyWisWuWei = Zsy + Z3,

i,5,0(dist) i.5,0(dist)
s#j s,t(dist)¢{j}
It is easy to see that both terms have mean zero. It follows that
E[Z3] = 0. (2.E.146)

To calculate the variance of Zgb, we note that
BijeBije - BIWE Wei - W W]
< 0042H9||49¢9i/9g05/ . [W2 Wy - W]%S/Wg/i/]

Ca?||0]|"0707 - E[W;,W7] < Ca?(|0][*6070,0705 if {¢,i'y ={¢i}, {7, s'} ={j. s}
Ca?(|0]*0707 - E[WZWE W3] < Ca?||0]*070;6030,0,05, if {¢',i'} = {€,3}, {j',s'} # {4, s}
Ca2H0H40i9g9]95 . IE[W3 WZ] < C’a2H0H402929202 if {0/,i'}y ={4,s}, {5, ¢} ={4,i};
0, otherwise.

It follows that
Var(Z 0042”9H4< 3. 3 29212 12
) < — e (Y 020,000+ Y 070,000,000 + Y 67676707

4
”9H1 i,5,4,8 i,5,€,8,3",8' 1,5,4,8,5",8'
Co?||g]*
< W(IWIISHGIE +lel31e15 + 1611°)
1

< ca?|6]1*105.
To calculate the variance of Z3,, we note that E[W;sW;;W; - W g W1y W] is nonzero only
if i/ =g, {s',t'} = {s,t} and {¢,i'} = {¢,i}. Combining it with (2.E.148) gives

e,
Var(Z3,) < 2 Z Bie - EWE WA W]
0.5, 0(dist)
s t(dist)%{j}
> (all0]126:60)% - 620,6,0,9;
1,5,,8,t

Ca2||9||4 31203
< - 7 0°050,0,0
= e 2 0107070:0:

=6 H4

i7j7€787t

_ Ca[o]6]
I 5
Since [|0]| < [|0]|*]|0]1> < [|0]|*|€]]1, the variance of Z3, dominates the variance of Z3.

Combining the above gives
Var(Zsy) < 2Var(Zsy) + 2Var(Z3,) < Ca?(|0]Y16]S. (2.E.147)
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Third, we study Zs.. It is seen that

Zse= Y. (—\}5 > Wz’s) ; ( Z Wkt) QpeWii

i,7.k,0(dist) s#i tyék

Z ( Z U?ﬁkz>mkuth

v
ik 0(dist) j¢{ik,C}
s#it4k

S| =

§ BiteWisWitW,
i,k 0(dist)
s#i,t#k

where by (2.E.110) and (2.E.117]),
Barel < D 112l <D Cab20,8, < Cal|6]*0:0e. (2.E.148)
J¢{i.k,e} J
There are two cases for the indices: i = ¢ and i # . We further decompose Z3. into

1 1 7 *
Z3e = v Z BikZWiQZWkt + > Z PikeWisWiaWei = Zse + Zse.

i,k,0(dist) i,k,0(dist)
t#k s¢{i, 0} t#£k

It is easy to see that both terms have zero mean. Hence,
E[Zs.] = 0. (2.E.149)
To calculate the variance of ch, we note that WEZWM and Wﬁglwk’t’ are correlated only
when (i) {¥,t'} = {k,t} or (ii) {K',t'} = {i,¢} and {¢/,¢'} = {k,t}. By direct calculations,
BiktBiwe - EIWiWie - Wip Wiy
< Co?||0|* 0k0k 0000 - E[WEWit - Wiy Wiy

,

Ca?||0||*0202 E[WAWE] < Ca?(|6]|46,63030;, if (K,t) = (k,t), (¢/,0") = (i,0);
Ca?||6|1*0260,0, EIWAWE] < Ca?||6]|* 6263026, if (K',t") = (k,t), (i',0) = (£,1);
Ca?||0||*0,020, E[W 3 W2] < Ca?(0]/40,6203062, if (K',¢)=(t,k), (¢/,0") = (i,0);
Ca?|0]|*0x0,0,0; E]W 3 W2] < Ca?(|0]/*62626767, if (K',t) = (t, k), (¢,0') = (¢,9);
Ca?|6]'620,00 EIWZWEWE,] < Ca|0]'6,03626,6,63. it (K.¢) = (k.1), {i'.0'} # {i.}

< L Ca?||0)|10k0,0,0p EIWEZWREW2,] < Ca?||0|*0,02602020,,02, if (K',t') = (t, k), {i',¢'} # {i, ¢}
Ca?|0|*0x0:0,0, E]WSW3] < Ca?(|0]|462626262, if (K',t) = (i,0), (i',0) = (k,t);
Ca?||0||1*020,0, EIWEW 2] < Ca?||0]|*0263026;, if (K',t")=(i,0), (',0) = (t,k);
Ca?||0||*0,020, E[W3W3] < Ca?|0]/40,620302, if (K',¢) = (4,1), (i',0) = (k,t);
Ca?||0||*0202 EIWEW ] < Ca?(|0]*6,03030,, if (K',¢")=(4,1), (',0) = (t,k);
0, otherwise.
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There are only five types on the right hand side. It follows that

> Ca?|0|*
Var(Zse) < =0 (Z 003030, + S 6263020, + > 62036367
1 ik, 0t ik,b,t ik, 0t
+ Y 00l + > 06363020403
ik b, 0 ikl 0
Ca?||6[*
< ”9H4H (I61SN61T + N1t Iel13101 + 611® + el le3Ne115 + [l [161f7)
1
_ Ca?[oF 6]

R ] IO
where the last inequality is obtained as follows: Among the five terms in the brackets, the
first and third terms are dominated by the last term, and the second term is dominated by
the fourth term; it remains to compare the fourth term and the last term, where the fourth
term dominated because [|0|* < ||€]|1|0]|3. To calculate the variance of Z3,, we write

1 1
ZF =~ E W2 W + = E : LW -
3¢ =1 Bite Wi, Wi + » BiteWis Wit Wy,
i,k,0(dist) i,k 0(dist)
s&{i,0} t#£k,(s,t) £ (k,7)

Regarding the first term, we note that
BikeBrer - BIWWei - Wi W]
<Co?||0]|* 01000100 - E[WAW; - Wi W]

Ca?||0||*0202 E[WA W] < Ca?||6]|*6026363, it (0/,i") = (¢,1), k' = k;
Ca?||0||* 0,020, EIW2ZWEW2,] < Ca?||0||*0302030%,,  if (¢/,d') = (¢,4), k' # k;
< Ca?|6]1*6:046,0 EIWAWEWR] < Co? 0] '02626362, it (¢/.17) = (i, 0);
Ca? 0] 46267 EIWWE] < Co?[6]*626363, i (£,) = (k,), K = &
0, otherwise.
It follows that
V(L S0 swawiwis) < SO (S o S waien)
ik, 0(dist) L ik ik, 0k
< LG (oiong + portyons) < OIS,
1 1
Regarding the second term, we note that
BikeBirkrer - EIWisWieWei - Wirg Wiy Wiyt
< C?|0|* k01 0080 - EIWisWie Wi - Wirg Wiy Wit
Co?||6|[*0307 EIWRWAWE] < Co?|6]*0263030.6,,  if (I, () = (i.5.0), (K'.t') =
Ca?||0]|*6,0,02 EIW2AWRWZ] < Ca?|0||10202630,607,  if (i, s',0') = (i,s,0), (K,t) =
< L Ca?||0]|1020,0, EIWZWEWE] < Ca?||0||*020302620,, if (¢/,8,0") = (i,4,s), (K',t) =
Ca?|0)|10x0:0,0, EWEWEWE] < Ca?||0||*0207620207, if (i',8',0') = (i, 4, ), (K.t) =
0, otherwise.
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2.E. Properties of Signed Polygon statistics

It follows that

1 2 6 4
var( S suewmiown) < S S” a0, + 6203600.07 + 0263020767)
Y k(dist) 16117 ik,L,
s@ {0}, ik, st
(s,0)# (ki)
Ca?||0]*
= W(H@HZH@H?H@H% +101°10131911: + 11611™)
1
2 Ca?lol°lieNs
- oIl
We plug the above results into Z3.. Since [|0]|? < ||6]]10max < [|0]|2 have CeZIOICI013
g 3¢ < 10max 1, we have [ <
%. It follows that
1

2 6 6
VaI'(ch) S Ca H0||2||0”3
160117

Since [|0]|§ < [|€]|3]|0]|1, the variance of Z3. is dominated by the variance of Zse. Tt follows
that

< Ca?loIP1915

Var(Zs.) < 2Var(Zs,) + 2Var(Z3,) < T (2.E.150)
1

Last, we study Zs4. In the definition of Z34, if we switch the two indices (7, k), then it
becomes

Zsg =Y (mi — m)me(me — T)miQeWer = Y (ki Qe) (i — 33) (e — i)
. .
(dist) (dist)

At the same time, we recall that
Ze =Y (0 = 70y (e — ) Qe Wer = > (07 Q) (03 — 735) (e — 7).

i7j7k7€ i7j7k7g
(dist) (dist)

Here, Z34 has a similar structure as Zs.. Moreover, in deriving the bound for Var(Zs.), we
have used |173-ng\ < Ca@?@kﬁg. In the expression of Z3; above, we also have |71, <
Coz@?@kﬁg. Therefore, we can use (2.E.149) and (2.E.150|) to directly get

C 2 0 8 0 3
E[Z3a) =0,  Var(Zsq) < OW” (2.E.151)
1
Now, we combine (2.E.143), (2.E.146)), (2.E.149) and (2.E.150) to get

E[Z3] = 0.
We also combine (2.E.144)), (2.E.147)), (2.E.150)-(2.E.151)). Since ||0]|* < ||6]1]|0]|3, the right
hand side of (2.E.150)-(2.E.151) is dominated by the right hand side of (2.E.147); since

101$ < [|0]3, the right hand side of (2.E.144)) is negligible to the right hand side of (2.E.147).
It follows that

Var(Zs) < Ca?||0]*]1015-

This proves the claims of Z3.
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Next, we analyze Z4. Since 0;; = n;(n; — 0;) + 1;(n:i — 7i),
Zy= Y wiln =) Qe — 7)) We + > milny — )k (e — ) neWes

i,k E(dist) i,k E(dist)
+ Y = ek —TOWa+ Y (1 — )0k — Te)meWs.
5,k Z(dzst) 1,3,k 0(dist)

If we relabel (i, j, k,¢) as (¢, k', j',i') in the last sum, it is equal to the first sum. Therefore,
Zy=2 Y malny — 1) knk(ne — 70 W
ivj. ke (dist)
+ > milny = )Rk — )W

irj ke 0(dist)
+Y = )k (ne — ) W
1,5,k E(dzst)
= Zsa + Zap + Zaec. (2.E.152)

First, we study Z4, and Zy. We show that they have the same structure as Z3. and
Z3q, respectively. In Zy,, by relabeling (i, j, k,¢) as (¢, k, j,4), we have
Zaa =2 nelme — T6)Qgmi (i — ) Wie =2 > (0meS;5) (mi — 733) (7 — ) Woi.

1,5,k,¢ i,7,k,L
(dist) (dist)

At the same time, we recall the definition of Z3. in (2.E.142)):
Zae =Y (0 =) e — T) e Wei = D (07 Q) (0 — 33) (e — 73) Woi.

i7j7k7€ i7j7k7e
(dist) (dist)

It is seen that Zy, has a similar structure as Zs. does. Also, by (2.E.110) and (2.E.117)),
in the expression of Z4,, we have |1;7,8;| < CaHJQ-Hng, while in the expression of Z3q4, we

have |’I7]2§kg| < C’aﬂ?@kﬂg. As a result, if we use similar calculation as before, we will get the

same conclusion for Zy, and Z3;. Hence, we use (2.E.149)-(2.E.150) to conclude that

Ca?||0]*16]13
1611

E[Z44) = 0, Var(Z4q)

IN

(2.E.153)

For Z4,, we note that

Zip=Y_ ni(n; — 7 Qi (1 — k) eWei = > (ine) (nj — 71) (e — ) W,
i.9,k,0 1,5,k,¢
(dist) (dist)

where \nmgﬁjk| < Cab;0;0i0,. At the same time, we recall the definition of Z3, in (2.E.142)):
Zaa = ni(n — )ni (e — k) e Wi = Y (06m;Q0) (nj — 73) Ok — ) Wi,

i,5,k,¢ 1,5,k,€
(dist) (dist)

where |17mj§kg| < Cab);0;0,,0,. Therefore, we can quote the results for Z3, in (2.E.143))-

(2.E.144)) to get

Ca?|0]5°

E[Z4b} = 0, Var(Z4b) < ||9||2
1

(2.E.154)
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2.E. Properties of Signed Polygon statistics

Second, we study Zy.. It is seen that

Zie= Y ( \[ Z Wzs) 15k ( Z Wet) Wi

4,5,k £(dist) t;éﬁ

Z( Z ﬁjﬁijk>Wz’sWeth

v 1,0(dist)  j,k(dist)¢{i,C}

st
1
= Z BieWisWet W,

i,0(dist)

st
where

Bl < Y Iyl <D Cabi0} < Cal0)*. (2.E.155)
g, k(dist)¢{il} J:k

We divide the summands into four groups: (i) s =¥, t =i; (ii) s =¥, t #4; (iii) s # ¢, t =1
(iv) s # ¢, t # i. By symmetry, the sum of group (ii) and the sum of group (iii) are equal. It
yields that
1 2 1
Zae = > BuWi+ - > BuWiWi + > > BuWisWa W

i,0(dist) i,0(dist) i,0(dist)
s¢{i,l} s¢{i, 0} t¢{l,i}

=Zye+ Zi + 7).
Only Zy. has a nonzero mean. By (|2.E.116|) and (2.E.155)),

IE[Z4]| = |E[Z4]] < HQHQ Zaueu49 0, < Carl|0]|. (2.E.156)
We now compute the Variances of these terms. It is seen that
C’a2 0|3 Ca2|0|®
VaZ) < § S siverowy < S Sas callor
JPN R 1917

For Z} ., by direct calculations,
BieBire - E[Wis Wi - Wag Wiy
< Ca?||0||® - BWisWE - Wig W]

Ca?||0]|® - E[WAWL] < Ca?|012626,0,, ifi =i,s =s, 0 =1
Co?||0||® - E[WAWEWS.] < Ca?||0|860360,050,, ifi =i, s’ =s, ! #¢;
Ca?||0||® - E[W2W2] < Ca?|0)|2626,0,, ifi' =i, =010 =s;
0, otherwise.

It follows that

Ca=||0
Var(Z}.) < | 9‘|||4” <292949 + ) 60,0, 95,)
1,0, i,0,8,0'
Ca=||0
= N(H@IIQH@II? + [10113116117)
16111
10]]1
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

where, to get the last line, we have used ||0]|?> < [|0[|* < ||0]|1]|0]|3. Regarding the variance of
Zlc, we note that W;s Wy Wy; and Wy o Wy Wy are correlated only when the two undirected
paths s-i-¢-t and s'-i’-¢’-t' are the same. Mimicking the argument in (2.E.121]) or (2.E.126)),
we can derive that

C
Var(Z},) < o) > B Var(WiWe W)

1,0(dist)
s¢{i,0},t¢{l,i}
2
< S 5
i,0,8,t
Ca?|l0]*
- lenr
Since [|0]|* < ||0]|1]10]|3, the variance of Z:{C is dominated by the variance of Zj,. Since
16]] = oo, we have [|0]|3 > 1/]|0])1; it follows that the variance of Zy. is dominated by the
variance of Zj,. Combining the above gives
Ca?|10]*16113

0, (2.E.157)

Var(Zs.) < 3Var(Zs.) + 3Var(Z},) + 3Var(Z],) <

We combine (2.E.153)), (2.E.154)) and (2.E.156) to get
[E[Z4]] < Call0]|* = o(a™]0]]%).
We then combine (2.E.153)), (2.E.154) and (2.E.157). Since ||0[|§ < (62,.:/10111) (6max||0]|?) =
o(]|0]|1|6]/?), the variance of Zy, is negligible compared to the variances of Zy, and Zy.. It
follows that

Co?|10]*]10113

=0 8 .
o = o)

Var(Z4) <

This proves the claims of Zy.

Next, we analyze Zs5. By plugging in the definition of d;;, we have
Zs= > niln —ami(me — ) Qe+ D mi(ny — 75) 16w

i,k 0(dist) 4.k E(dist)
+ > =T = ) Qe+ Y (0 — T)mi(ny — 775 Qe
4,7,k, Z(dzst) 1,4k, 0(dist)
=2 > il — )il — ) Qe+ > 130y — ) Qe
i,k 0(dist) i,k 0(dist)
) =) (k — ) Qe
,5,k, E(dzst)
= Zso + Zsp + Lse. (2E158)

First, we study Zs,. By definition, (7; — ;) has the expression in (2.E.113). It follows
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2.E. Properties of Signed Polygon statistics

that
Zsa =2 Z 77i( 7 Z st>ng< 7 Z Wkt) Qe
1,5,k 0(dist) s#£j t£k
2 ~ ~
=5 > ( > UiﬁijzQez') WijsWht
J.k(dist) 4,0(dist)¢{j,k}
s#£j,t#£k
== ) BiWjs Wi,
7,k (dist)
s#£j,t#£k
where
Biel < D Il < (C0:0,)(Ca?0,076;) < Ca|0]*0;0.  (2.E.159)
i,0(dist)¢{j,k} il
In Zs,, the summand has a nonzero mean only if (s,t) = (k, 7). We further decompose Zs,
into
Z5a - Z Bjk k + - Z BykW]kut ZSa + Z5a
j k(dist) J.k(dist)
S#jytik,
(s,t)#(k.5)

Only the first term has a nonzero mean. By (2.E.116) and (2.E.159)), we have

. Ca?|0®
[EZ5el| = [ElZs0]] < g7 2 I010566) (0360) < =g
1 j.k !

(2.E.160)

We then compute the variances. In each of Zs, and Zz,, two summands are uncorrelated
unless they are exactly the same variables (e.g., when (5', k") = (k,j) in Z5,). Mimicking
the argument in (2.E.121)) or (2.E.126]), we can derive that

Ca?||0))® Carlo18110116
Var(Zs) < Z Bl Var(W,) < w > (6367)0,6), < a”@”z;””g’
jk(dzst) I ||1 3.k | Hl
c Co?| 63 Cat110118116116
Var(Zs,) < v2 Z Var (WjsWit) < = H4” Z(ejzalz)gjas@kgt < 0‘”9H2||||3'
v J.k(dist) H Hl 3k ” ||1
s#j,t#k,
(s,t)#(k.7)

It immediately leads to
Ca o] 10]3

Var(Zs,) < 2Var(Zs,) + 2Var(Z2,) < e
1

(2.E.161)

Second, we study Zsp. It is seen that

Zsp= > m (—\% ; st> (—\}5 ; th> Qe Qi

3,5,k 0(dist)

:% Z < Z ninkﬁuﬁzi>szwjt

Js#IA#ET Ak L(dist)¢ {5}

» > BW Wy,
JrsFEJtF]
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where
B < > el <D (CO:8)(Ca20:8,6%) < Ca?|9]°. (2.E.162)
ik 0(dist)¢{} ik
In Zsp, the summand has a nonzero mean only if s = ¢. We further decompose Zs;, into

1 1 - .
Zsb = - > Wi+ - Yo BW Wy = Zsy + Z,

7,s(dist) j
st(dist)¢{j}
Only 25(, has a nonzero mean. By (2.E.116|) and (2.E.162)),
= C
|E[Zss)| = |E[Zss)| < TE > (@2)0]1%)6,0, < Ca?|0]|°. (2.E.163)
1 j,s

To compute the variance, we note that in each of 251; and Z7;, two summands are uncorrelated
unless they are exactly the same random variables (e.g., when {j/,s'} = {s,j} in Zs, and
when j' = j and {s',t'} = {s,t} in Z},). Mimicking the argument in (2.E.121)) or (2.E.126)),
we can derive that

4119|112 419|112
Var(Zs) < Z B} Var(W},) < MZ%GS < M
11y 4 1611
7,s(dist) g,s
N C Cat(|0||*? Cat(|o||*
Var(Z5,) < ) Z 5]2 Var(W;sWj;) < T ””4” 2929 0, < Hél’HzH '
J 7,8,
s,t(dist)¢{j}
Combining the above gives
> o Cat]g]™
Var(Z5b) S 2Var(Z5b) + 2Var(Z5b) S W (2E164)
1

Third, we study Zs.. If we relabel (i, j, k,€) = (4,4, k, ¢), then Z5. becomes

Zse =Y (nj — )i (e — i) Qe = > (2 Qe (0 — 775) (ke — Tk,
Z’?j?k?E i7j7k7e
(dist) (dist)

where |n? ngﬂm < Ca?6?0; 9k92 At the same time, we recall that
Zsa =2 mi(nj — )i (e — ) Qees = D (0im;eQi) (0 — 715) (e — ),

i,5,k,L i,5,k,L
(dist) (dist)

where |77¢’I’]jﬁkg§gi| < C’a29i29j9k0?. It is easy to see that Zs. has a similar structure as Zs..
As a result, from (2.E.160)-(2.E.161]), we immediately have

Ca?|0|® Ca*||6]1210$
EZs)| < S9N varz,,) < CoNOINOS
16117 16117

(2.E.165)

We now combine the results for Zsq-Zs.. Since ||0]|?> < Omax||0]1 < 10]12, E[Z54] and
E[Z5.] are of a smaller order than the the right hand side of (2.E.163)). Since [|0]|$ <
02..101* < 1101|°, Var(Zs,) and Var(Zs.) are of a smaller order than the right hand side of

(2.E.164)). It follows that
2119116 40118 C'044H9||14 611911811116
[E[Z5]| < Ca?[|0]|° = o(a®[|0]°),  Var(Zs) < TR = o(a”|0]]10][3)-
1

We briefly explain why Var(Zs) = o(a®]|0]|8]|0]|$): since [|8]|* < [|0]]1]|0]|3, we immediately
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have [|0]|** < [1011°(1|€]]1]|0]13)?; it follows that the bound for Var(Zs) is < Ca*||0]|%]|6]|$; note
that a|@|| — oo, we immediately have o0]|%(|0]|S = o(a||0]|®]|0]|$). This proves the claims
of Z5.

Last, we analyze Zg. Plugging in the definition of 4;;, we have
Ze= > ni(n; — i) Urme(ne — 10+ > nilny — )k — )06 e

i,j,k,0(dist) 1,4,k ¢(dist)
+ 0 = — ) Qe+ Y (= T k(e — )16
i,J,k é(dzst) 1.,k 0(dist)
=2 > milny = )k — )% +2 Y ni(ny — 7)) — 7)1
i,5,k0(dist) i,5,k,€(dist)
= Zga + Zegp.

By relabeling (i, j, k, £) as (i, 7,4, k), we can write

Zgg = 2 E ni(n; — ;) Qene(me — ) Qi = E (ime€2e) (nj — 77) (7 — k),
i7j7k7£ i7j7k‘7€
(dist) (dist)

where |77¢17g$~)jg§ki| < C’a29i29j9k0?. Also, we write
Zep =2 mi(nj — )k — Te)meQui = 2> (nimeQnei) (nj — 73) (e — Tie)-
igkl 04k,
(dist) (dist)
where |77mg5~2jk5~2ﬁ| < C’a2929-9k03. At the same time, we recall that
Zsa =2 miln; — )i O — k) e = > (i Qo) (nj — ) (i — i)

i,5,k,¢ i,5,k,¢
(dist) (dist)

where |77mj5~2kgf~lgi| < Ca29i29j0k0§. It is clear that both Zg, and Zg, have a similar structure
as Zsq. From (2.E.160)-(2.E.161)), we immediately have

Ca?||0]® Ca|16]*[16113
BIZ)| < S = o 0)S),  Var(Zg) < SRS = of 6]F).
1611 1011
This proves the claims of Zg.
Proofs of Lemmas and
Recall that A1, Ag, ..., Ax are all the nonzero eigenvalues of €2, arranged in the descending

order in magnitude. Write for short az = |A2|/|A1]. We shall repeatedly use the following
results, which are proved in (2.E.110), (2.E.116]), and (2.E.117):

v = ||0”%, 0<ny < CHZ-, ’ﬁlﬂ < Ca@zﬁj.
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Recall that U, = 4T + F', under the null hypothesis; U, = 4T} +4715+ F under the alternative
hypothesis. By definition,

T = g 0ivinOinis Oigis Wigiy »
11,82,13,54(dist)

T = E OivioOinig Oinis Qigiy »
11,142,034 (dist)

F = E 010 Oiniz Oigiy Oigiy »

11,82,i3,i4(dist)
where ;5 = n;(n; — n;) +nj(n — 0s), for 1 <4, j <n, i # j. By symmetry and elementary
algebra, we further write

Ty = 2T + 214 + 2T + 2T14, (2.E.166)
where
Tia = Z NiaMigMia [(771'1 - 77731)(”@'2 - ﬁi2)(77i3 - ﬁz3>] Wigiy,
11,02,13,14(dist)
Ti= Y 0umi [0 = 7)) i = i) i — 72)] - Wiais
11,92,13,54 (dist)
Te = Z i1 MigMia [(% - 771'2)2(771'3 - 77%3)] Wi,
il,ig,ig,i4(dist)
Ta= Z 771'1771'23 [(m2 - 771‘2)2(7%‘4 - ﬁm)] ) Wi4i1-

$1,82,83,84 (dist)

Similarly, we write

Ty = 2T5g + 215y + 2T5. + 27154, (2E167)
where

Toa= > MiaisTia [0 = i) iy — Thin) (Wi — 7))+ Qg

i1,i2,’i3,i4(dist)
Ty = Z ni2ni23 [(771‘1 - 7~7i1)(77i2 - ﬁiz)(nu - ﬁu)] ’ Qi4i17

il,ig,ig,i4(dist)
Toe = Z Niy MizMiy [(771'2 - 771‘2)2(771‘3 - ﬁls)] ) Qicﬂla

i1,i2,i3,i4(dist)
Toaa= > Tt [0 = ) (i — Tia)] - Qg -

11,12,13,54(dist)

Also, similarly, we have

F =2F, 4+ 12F, + 2F, (2.E.168)
where
Fa= > 0amiolistia [0 = i) i — o) (i — i) (i, — 7))
il,’iz,ig,i4(dist)
Fy, = Z 77i2772'2377i4 [(771'1 - "71‘1)2(771‘2 - 77@'2)(771‘4 - ﬁi4)]a
11,42,13,54 (dist)
Fo= > mand [ =) (s — 7))

i1,i2,13,i4(dist)
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To show the lemmas, it is sufficient to show the following 11 items (a)-(k), corresponding to
Tras Ty, Thc, Tha, Toas Tov, Toc, Tod, Fa, Fp, Fe, respectively. Item (a) claims that both under
the null and the alternative,

E[T1a]] < Cl101°/1011F,  Var(Tia) < Cll6]1*|6113/116113- (2.E.169)
Item (b) claims that both under the null and the alternative,
E[Tw]| < CIOI°/161F.,  Var(Tw) < ClI0]°10]13/116]]1- (2.E.170)
Item (c) claims that both under the null and the alternative,
E[Ti) =0,  Var(Ti.) < C|0]3/110]l1, (2.E.171)
Item (d) claims that
E[T14] < —||0||* under the null,
|E[T14]| < C||0]|* under the alternative, (2.E.172)
and that both under the null and the alternative,
Var(T14) < ClOI° 101/ 1011 (2.E.173)

Next, for item (e)-(h), we recall that under the null, 7o = 0, and correspondingly T, =
Top = To. = Toqg = 0, so we only need to consider the alternative. Recall that a = |A2/\1].
Item (e) claims that under the alternative,

E[Tp] =0,  Var(Ty) < Ca?- [|0]1*0]3/116]]3. (2.E.174)
Item (f) claims that under the alternative,
E[To] =0,  Var(Ty) < Ca®-[|0]]"]|6]]3/]191]7, (2.E.175)
Item (g) claims that under the alternative,
[E[T3]| < Call6]°/01I5,  Var(Tae) < Ca® - [|6]°[|6]|5/]10]]:- (2.E.176)
Item (h) claims that both under the null and the alternative,
[E[Toq)| < Call0]°/10]3,  Var(Taa) < Ca®-|0]5)1013/110])1- (2.E.177)
Finally, for items (i)-(k). Item (i) claims that both under the null and the alternative,
[E[F.]| < Cl01°/110117,  Var(F.) < C160]13*/116]]3- (2.E.178)
Item (j) claims that both under the null and the alternative,
E[E] < Cl01°/101F,  Var(F) < Cllo]*|0]13/111]3- (2.E.179)

Item (k) claims that
E[F,] = ||#]|* under the null,

IE[F.]| < C||6]|* under the alternative, (2.E.180)
and that under both under the null and the alternative,
Var(F3) < C|10]|'/]10]|3. (2.E.181)

We now show Lemmas (18| and [19| follow once (a)-(k) are proved. In detail, first, we note

that [|0]/%/]|0]|2 = o(||0]|*). Inserting (2.E.172) and the first equation in each of (2.E.169)-

(2.E.171)) into (2.E.166)) gives that
E[Ty] =< —2/|0||* under the null, IE[T1]| < C||0]|* under the alternative,
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and inserting (2.E.173) and the second equation in each of (2.E.169)-(2.E.171)) into (2.E.166])
gives that both under the null and the alternative,

Var(Ty) < ClIOII*I011S/101F + 191°1013/11011 + 1el5/ 1611 + 1611°16115/11611],
where since [|0]]3/]|0]|> = o(1) and ||0]|?/]|0]l1 = o(1), the right hand side
< ClIOI°N611E/1101F + Io1°1013/11e11] < CloI°No1I5/1101]1-
Second, inserting the first equation in each of (2.E.174))-(2.E.177)) into (2.E.167) gives that
under the alternative (recall that 75 = 0 under the null),
[E[T2]] < Call9]°/116113,
and inserting the second equation in each of (2.E.174)-(2.E.177) into (2.E.167) gives
Var(Ty) < Ca?[|0]1°10]13/11011 + 1011 110113/116117]) < Ca? 101 [10113/116]]1.
where we have used [|0]|?> = o(||0]|2). Third, note that ||8]|3/]|0|1 = o(||0||*) and [|0]|%/||0| =
o(/|0]|*). Inserting (2.E.180) and the first equation in each of (2.E.178)-(2.E.179) into

(2.E.168)) gives
E[F] ~ 2|6]|* under the null, IE[F]| < C||0]|* under the alternative,

and inserting (2.E.181)) and the second equation in each of (2.E.178))-(2.E.179)) into (2.E.168)

gives that both under the null and the alternative,
Var(F) < CllI0l5*/11011 + 101*1015/11011F + 1N /19113] < Cllel*® /119113,
where we have used ||0]|3 < 6]|? < [|0]|1 and [|0]|3/]|0]> = o(1).

We now combine the above results for 17, 15 and F. First, since that U, = 4T} + F
under the null, it follows that under the null,

E[Uc] ~ —6]9]1%,

and

Var(Ue) < CllI01°lI013/ 11611 + 1011/ 19117] < Cllel°l61I5/1191]x,

where we have used [|0]|* < [|0]|1]|0]|3 (a direct use of Cauchy-Schwartz inequality). Second,
since U, = 417 + 4715 + F under the alternative, it follows that under the alternative,

E[U.]] < C|16]*,
and
Var(Ue) < C[160]°(16113/ 110111+ (1011 [16113/116111+11611"° /116117 < Cl16]1°116115 (o (16117 +1) /(1611

where we have used ||0]|* < ||0]|1]|0]|3 and basic algebra. Combining the above gives all the
claims in Lemmas [1§ and [19

It remains to show the 11 items (a)-(k). We consider them separately.
Consider Ttem (a). The goal is to show (2.E.169). Recall that
Tia= Y MigWiaTis [y — i) (i = Tin) Wiy, — i) | - Wi
il,i27i3,i4(dist)
and that
7—n=v""?W1,. (2.E.182)
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2.E. Properties of Signed Polygon statistics

Plugging (2.E.182) into T7; gives
1
Tia = T 32 Z 77i277i377i4< Z Wi1j1> ( Z Wiz]é)( Z Wi3j3>Wi4i1

i1,12,13,14(dist) Jui1#i J2,J2#42 J3,J3#13
1
= 03/2 E , NigNigMia Wiy js Wiajo Wia js Wiy -
11,12,13,54 (dist)
J1#i,j2#12,53 743
By basic combinatorics and careful observations, we have

W2, Wi if j1 = da, (J2, J3) = (i3, 12),
W2 WiyioWisjs if j1 = i4, (J2, J3) # (i3,12),
171 Wiaga Wiz jzs Wirig .. e
W2 1, Wi js Wisia if (j1,j2) = (i2,11),
Wi21i3Wi2j2M/i1i4v if (jlij) = (ii’nil)v
Wiljl Wi2j2 Wi3j3 Wi1i4 s otherwise.
This allows us to further split 771 into 6 different terms:
Tio = Xg+ Xp1 + Xpo + Xpg + Xpa + X, (2.E.184)
where
1
Xa = _m Z 77i27]i377i4Wi21¢4W/¢22¢37
il,ig,ig,i4(dist)
1
Xbl - _m Z Z 771277137714W12114M/22]2‘M3]37
i1,92,i3,14(dist) J2,J3
(42,93)#{isiz}
1
Xp2 = _03/2 Z Z 77i277i377i4Wi22i3Wi1j1 Wit
11,12,i3,i4(dist) j1(j1744)
1
Xpg = ) Z Z MiaMisMia Wi iy Wis s Winia
i17i27i3’i4(di8t) .73(]3?513)
1
Xpy = 2 Z Z MiaMisMia Wi 15 Winis Wi
11,i2,i3,i4(dist) jo(joFiz)
1
X = T 32 Z Z Nia Mz Mia Wiy j1 Wiz jo Wis js Wivis -

i1,92,i3,i4(dist) J1,J2,J3
J1¢{in,ia},(J2,73)#(i3,02)

(J1,92)#(i2,i1),(41,J8) #(i3,i1)

We now show ([2.E.169)). Consider the first claim of (2.E.169)). It is seen that out of the
6 terms on the right hand side of (2.E.184)), the mean of all terms are 0, except for the first
term. Note that for any 1 < i,5 <mn, i # j, IE[VV%] = Q4;(1 — €y5), where €;; are upper
bounded by o(1) uniformly for all such i, j. It follows

E[Xa] = _U73/2 Z nizni3ni4E[m2114]E[W122i3]
il,ig,i3,i4(dist)
=—(1+o0(1))- v Z Mg Miz Mia $iria inis -

11,12,13,54 (dist)
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

Since for any 1 <i,j <n,i#j,0<n < CO;, Qi; < CO;0; and v < ||0]3,
EXG <C0))™ > 0,0565,67 < Clo[°/1I6]3-
i1,i2,i3,i4(dist)

Inserting these into (2.E.184]) gives
E[Tw]| < Cll6lI1°/ 119113, (2.E.185)

and the first claim of (2.E.169) follows.

Consider the second claim of (2.E.169)) next. By (2.E.184) and Cauchy-Schwartz inequal-
ity,
Var(T1,) < CVar(X,) + Var(Xp1) + Var(Xpe) + Var(Xp3) + Var(Xps) + Var(X,))
< O(Var(X,) + E[XZ] + E[X3] + E[XA] + E[XZ] + E[X?]). (2.E.186)
We now consider Var(X,), E[X?] + E[X3] + E[X3] + E[X?,], and E[X?], separately.
Consider Var(X,). Write Var(X,) as

-3
v E Miz i Mia ity ity i
i1, ,i4(dist)
it e iy (dist)

E[(W2;, W2,

1114 " 213

—E[W?, W2,

1144 1213

2 2 2 2
DWi oy Wiy —EWi, Wiy )] (2.E.187)

In the sum, a term is nonzero only when one of the following cases happens.

o (A). {Wiyiys Wiyig, Wirir, Wi s } has 2 distinet random variables.

1ty

o (B). {Wisis, Wiz iz, Wigi,, Wiy, } has 3 distinct random variables. This has 4 sub-cases:

(B1) Wiyiy = Wi, (B2) Wiyiy = Wigir, (B3) Wigiy = Wiy, and (B4) Wigsy = Wig .

For Case (A), the two sets {i1,i2,i3,i4} and {4}, 5, 45,4} are identical. By basic statistics
and independence between W;,;, and Wiy,

(W2, W2, —E[W?, W2,

91194 "V 013 [ 9114 7" 1213

2 2 2 2
Y(Wir iy Wit i — BIWir o Wi 1)

[ ] /RSN
:E[(W12114W12223 - E[WiMWngz ])2]
E[ 1114] [ 1213]7( [ 1114])2(E[ 1223])2
<E[W;;, JEW3,, (2.E.188)

where by basic statistics and that €;; < C8;0; for all 1 <1i,5 < n, i < j, the right hand side
S CQi1i4Qi2i3 S Cai19i20i30i4'
Combining these with (2.E.187) and noting that v ~ ||0||? and that 0 < n; < C#; for all

1 < ¢ < n, the contribution of this case to Var(X,) is no more than
C(HQHl)—G Z Z (gal-|—10612-"-29a3-i-29a4-i-27 (2.E.189)

- ,ia(dist) @
where a = (a1, ag, as, aq) and each a; is either 0 and 1, satisfying ay + as + ag + a4 = 3. Note
that the right hand side of (2.E.189)) is no greater than

C(l1611) = max{[|6]l 16113, [l1*16115} < Cllel3/116113,
where we have used [|0]|* < ||0]|1]6]]3.
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2.E. Properties of Signed Polygon statistics

Next, consider (B1). By independence between W;,;,, Wi,i,, and Wi’zz’g and basic algebra,

E[(W3i, Wi, — EW3 i, WED (Wi Wiy —EWi, Wiy )]
ZE[(WiMWéZS—E[WiuWizg])(WﬁuW - [WiuW 1))
=E[W;:JEW5:, JEW, ] — (E [WiMJ)QE[Wizg] (W]

=Var(W?,;, )E[W2,,JE [Wélé] (2.E.190)

where by similar arguments, the last term
< Oy Qigis Qugr, < C03,0,03505,0,;1 01 -
Combining this with and using similar arguments, the contribution of this case to
Var(X,)
ool Y. cortierer et 07, (2.E.191)
i1,i2,i3,i4 (dist)

ity it (dist)

where similarly by, by are either 0 or 1 and b; + b2 = 1. By similar argument, the right hand
side

< CollO1P1013/11611S = Cllel®o115/1113.

The discussion for (B2), (B3), and (B4) are similar so is omitted, and their contribution
to Var(X,) are respectively

< ClelPlIeN3/ 16113, (2.E.192)

< Cl91P16113/116113, (2.E.193)
and

< Clol*|ols/11e1:- (2.E.194)

Finally, inserting (2.E.189)), (2.E.191)), (2.E.192)), (2.E.193|), and (2.E.194)) into (2.E.187)

gives
Var(Xa) < ClI01I5/101F + 101F10113/11611F + lel1* 1615/ 16111] < Cllel*lels/ 1011, (2E.195)
where we have used ||0]|3 < [|0]|? and ||0]|* < ||0]]1]0]3-

Consider E[X?] + E[X},] + E[XZ] + E[X?]. We claim that both under the null and
the alternative,

E[Xp] < Clo]*l0l5/1011%, (2.E.196)
E[Xp] < ClOIPl015/19117, (2.E.197)
E[Xi] < Clo]°llols/ 1011, (2.E.198)
E[Xp] < Clol°lolis/ 10115, (2.E.199)

where the last two terms are seen to be negligible compared to the other two. Therefore,
E[X3] + E[Xj5] + E[XG] +ELXG] < IO 018/ 1615 + lel*el3/11e13],  (2.E.200)
where since [|0]|* < [|6]|1]|0]|3 (Cauchy-Schwartz inequality) the right hand side
< Clllel*1o13/1013.
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

We now prove (2.E.196)-(2.E.199)). Since the study for E[X? ], E[X5], E[X2] and E[XZ,]
are similar, we only present the proof for E[X?]. Write E[X?] as
v_3 Z Z Z 772'277i377i477i’277ig7714W1114W12J2Wl333W’ QLVVZ’QJQVVZ’ g4

11,12,13,54 (dist) J2,J3 Jh,d5%
i 4,14 i} (dist) (J2,43)#(i3,i2) (95,55)#(1%,i5)

Consider the term

W2 I/I/v12J2VV13]3VV W’ ’W/ jf

1114 1572

In order for the mean to be nonzero, we have two cases

e Case A. The two sets of random variables {W; ;,, Wi, j,, Wiy, } and {Wy 0, Wi oo, Wi i }

ihiys Wihgys YVisgy
are identical.

e Case B. The two sets {Wi,j,, Wiyj, } and {Wy ;1 , Wiy« } are identical.

Consider Case A. In this case, {i, 14,7} are three distinct indices in {71, i2, i3, i, j2, j3 },
and for some integers satisfying 0 < a1,a0,...,a6 <1, a1 +as+ ...+ ag = 3,

a1, l+as_ l+as_ l+aq. as
Mz iz Mia ity it M, —mf% Mig My M5 e

and for some integers satisfying 0 < by, bo,b3 < 1, and by + bs + b3 = 1,
mez L@2232[¢23]3I¢// /‘4// /14// / [4/b1_%31%/b24‘2l%/b34-2.

i1ig ¥2J2 1174 1272 1373

Similarly, by v ~ ||0]|3, 0 < n; < C8;, and uniformly for all by, by, bg above,
0 < B[WPHBWh2r2ywhst2) < 0, 5 Qi Qi < CO;0,05,0i,05,05,.

1174 1272 2373

Therefore under both the null and the alternative, the contribution of Case A to the variance

is
C(HGHI)% Z Z Z eal+10(12+29a3+29a4+29a5+10a6+1]
i1,92,i3,i4(dist) J2,J3
JaFi2,3743,(d2,43)#(i3,52)
(2.E.201)
where a = (a1, a9, ...,a¢) and a; satisfies the above constraints. Note that the right hand
size

< C(1011)=" - max{|0]]10113, 11110119113, lelllel* 1913, 6112} < Clioll3/11ell3-
Here in the last inequality we have used [|0]|> < /||0]|1]/6]]3

Consider Case B. In this case, {i2,13,J2,73} = {i5, 15,75, j5}, and for some integers
0<eci,co,c3,ca<l,c1tcatce3t+cy=2
c1+1, _ca+1 €3,,C4

Mo Mi Mia iy Mit, Wity = My i Mia M M50 Mt
and

W3 WisisWigjs Wit 3 Wiy iy Wi jo = Wit Wi i, Wi, Wi

1174 1232 1373 1194 'V 9272 "V 1373

where the four W terms on the right are independent of each other. Similarly, by v ~ ||6]|2,
0<n <00,
0 <E[W2, Wi i, Wi Wit ] < Ouyiy iy Qs sy, < C03,05,0:,0:,07,05,01, 0,

1114 "V i2J2 'V 1373 i2j25 %373
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2.E. Properties of Signed Polygon statistics

we have that under both the null and the alternative, the contribution of Case B to the
variance

12 47 72

<c(on Y S 000 0GR 0 0,03

1,12,13,54 (dist) ) ]27]3 )
it i (dist)  (J2,43)F#(i3,02)

where the right hand size
< C(1010)=°-IoIENeN* -max{ oI 1115, l1el 10116113, 161%} < Cllol*Iols/1611F. (2.E.202)
Here we have again used [0 < /||0]|1]|0]]3.

Finally, combining (2.E.201)) and (2.E.202) gives
E[X3] < CI0l3/11617 + 191*16115/161F) < Cliel*lo15/1913,

which proves (2.E.196)).

Consider E[X?]. Consider the terms in the sum,
NigMizMig Wiljl Wi2j2 Wi3j3 Wi1i4v and UORIDRIA Wit s Wi s Wir s Wz’l il

11J1 7" J2 7 1373 Lt
Each term has a mean 0, and two terms are uncorrelated with each other if only if the
two sets of random variables {W;,j,, Wiy, Wiyjy, Wiyiy } and {Wis o, Wis o, Wir o, Wi 1 } are
identical (however, it is possible that Wj, ;, does not equal to W;, i but equals to Wiz 1 say).
Additionally, the indices i, 5,4y € {i1,142,13,1%4, j1, J2, j3}, and it follows

EXZ < Cv )] >
i1,92,i3,14(dist) J1:J2,J3
J1¢{insia},(d1,53)#(isyi1)
(J2,73) #(13,32),(J2,51) # (i2,31)
1 1 1
[Z 77;111 ng;-i— 77;133+ nzl4+ 77?1577?2677?37] 'E[Wizlﬁ Wi22j2Wi23j3Wi21j1]’
a
where a = (a1, a2, -+ ,a7) and the power 0 < aj,ag, - ,a7 < 1,and a; + a2+ ---+ a7 = 3.
Note that Wi, j,, Wisj,, Wisj, and W;,;, are independent and IE(WE) < Q; <C00;, 1 <
i, <n,i# ],
2 2 2 2 2
E[Wiljlwizjzwi3j3mli4] S Qi1j19i2j29i3j39i17;4 § 00219@29230240‘]19‘]20‘]3
Also, recall that both under the null and the alternative, v =< [|0]|? and 0 < n; < C0;,
1 < i < n. Combining these gives

EXZ < (o) Y 2

i1,92,i3,i4(dist) J1,J2,73
1¢{in,iat, (1,53) #(is,i1)
(42,J3)7#(i3,i2),(J2,41) # (i2,i1)
a1+2, az+2 a3+2 as+2 as+1, _as+1 _ar+1
[Zml Moy Mg My My My Ty ]’
a

where the last term

2 2 2 2 1 1 1
<O 01T - olet3 - ol s - lole el ol lena /101,
a

Since a1, az, - - ,a7 have to take values from {0, 1} and their sum is 3, the above term
< ClIOIP16115/11611F = o(l16113),
where we have used [|0]|3 < [|0]|3 < [|0]|1. Combining these gives
E[XZ] < O8] 16115/ 16113- (2.E.203)
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Finally, inserting (2.E.195)), (2.E.200|), and (2.E.203|) into (2.E.184]) gives that both under

the null and the alternative,
Var(Tu1) < C[lI01°/110117 + llel*1elis/ 116113 + el le1i5/ 191151 < Cllel*lleNs/ 61z,
where we have used [0||* < [|0]|1]|0]|3 and [|0]|3/]|0]l1 = o(1). This gives (2.E.169)) and

completes the proof for Item (a).
Consider Item (b). The goal is to show (2.E.170]). Recall that
Ty = Z 771‘2771'23 [(771'1 - 7~h‘1)(77i2 - 771'2)(77i4 - 771'4)] : Wi4i1’

11,92,13,54 (dist)

and that

Plugging this into 17, gives

-3/2 2
Ty=—v2 S gt (3 Wi ) (32 Wi ) (32 Waas ) Wi

11,023,454 (dist) J#i JoFiz JaFia

1 2

- 03/2 Z Nix Mig Wirin Wizga Wiaja Wiia -
il,ig,ig,i4(dist)
J1#i1,J2702,Ja 714
By basic combinatorics and careful observations, we have

Wi?imwiﬁw if j1 = 14, ja = i1,
W2, Wi if j1 =g, jo = i1, Ja = i1,
W2, Wi, if j1 = i4, J2 = i4, ja = iz,
Wiy js Winis Winja Wiyis = Wi21i2Wi4j4m1i47 ?f ].1 = 2123‘72 =11, (2.E.204)
Wi2114Wi1j1 Wisias if j4 =11,
Wit Wizgs Wisja, if 1 = ia, {iz, o} # {ia ja}s
W2 Winjs Wisia, if jo = i4, ju = io,
| Wirjs Wigjs WisjsWiyis,  otherwise.
This allows us to further split 77, into 8 different terms:
Tip = Ya1 + Yoo + Ya3 + Yy + Yio + Vi3 + Vi + Y2, (2.E.205)
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2.E. Properties of Signed Polygon statistics

where
1

Yal = —m Z Z ni2n7j23 WZ317,4 Wi2j27

i1,02,13,i4(dist) j2(joF#i2)

1 2 1172 2
Yoo=——m >0 memh WhL Wi,

i1,i2,i3,i4(di5t)

1 2 1172 2
Yas=——m Do mambWhL Wi,

11,82,13,54 (dist)

1
Yn=-—5 2 D el Wihn Wi Wi
11,02,13,54(dist) ja(jaFia)
1
Yo=—m5 2. > Wiy Wiy Winjs Wi
i1,02,03,04(dist) j1(j1701).52 (jaFi2)
{il»jl}#{i%j?}
1 2 1172
Vis == D D W Wi Wi,
i1,12,i3,i4(dist) jo(jaF#i2),ja(jaFia)
{i2,52}#{t4,54}
1 2 1172
Ya=——m D D i Wi, Wins Wiy,
11,92,13,54(dist) j1(j1701)
1
Ye=-up 2 > el Wi Wiasa Wais Wi

i1,02,i3,i4(dist) J1,J2,94
J1¢{iz,ia},g2¢{i1,94},Ja {0102}
We now show the two claims in (2.E.170)) separately.

Consider the first claim of . It is seen that out of the 8 terms on the right hand
side of , the mean of all terms are 0, except that of the Y, o and Y,3. Note that
for any 1 <i,57 <n, i # j, IE[VV%] = Q4;(1 — €y5), where €;; are upper bounded by o(1)
uniformly for all such 4, j. It follows

BVl = ——s S nurAEWE EWE, ]

w32 e v
11,02,13,54 (dist)

=—(1+o0(1))- v Z 772'2771'2391'11'291'12'4'

’i1,i2,i3,i4(di8t)
Since for any 1 <i,j <n,i# 7, 0<n; < CO;, Qi < CH0; and v < |63,
BVl <C010)7° > 62.6567,0u, < ClI6|°/lI6]3-

i17ia Vi3
11,12,13,%4(dist)

Therefore,

ElYas]| < ClO1°/10113. (2.E.206)

By symmetry, we similarly find

E[Yas]| < Cl61I°/119113. (2.E.207)
Combining (2.E.206)) and (2.E.207) gives

E[|Tw]] < Cl191°/110]17.
This completes the proof of the first claim of (2.E.170]).
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We now show the second claim of (2.E.170) . By Cauchy-Schwartz inequality,
4

Var(T1p) < C(Var(Ya1) + Var(Yye) + Var(Y,s) + ZVar(Ybs) + Var(Y,))
s=1

4
< C(Var(Yar) + Var(Yae) + Var(Yas) + Y E[Vi] + E[Y7)). (2.E.208)
s=1

We now show Var(Y,1), Var(Yas), Var(Yas), Yr, E[Y?], and E[Y;?], separately.
Consider Var(Y,1). Recalling E[Y,;1] = 0, we write Var(Yg1) as
vy Yo D My B[V Wi, Wi Wi . (2.E.209)

11,02,13,14(dist) ja(jaF#i2) 55 (jh7ih)
14 ity %, (dist)

In the sum, a term is nonzero only when one of the following cases happens.

o (A). {Wiyiy, Wiyjp, Wi ir, Wig ji } has 2 distinct random variables.

o (B). {Wiyiss Wiyjo, Wirin, Wiy js } has 3 distinet random variables. While it may seem

7/2.]2 ’
we have 4 possibilities in thls case, but the only one that has a nonzero mean is when
Wiyis = WZ/Q iy

For Case (A), the two sets {i1,1i2,14,72} and {i},15,4), j5} are identical, and so for two
integers 0 < by, <1 and by + b = 1,

W3 m2]2 W W ;o W4+2b1 W2+2b2

i1i4 t2J2 1174 12j2

and SO
1272 / i EW, W: E|\W: E[W: ,

1194 1174 1272 11104 1272
Note that for any integer 2 § b § 6,
0 < E[W}] < CQy,
where note that ;; < C0;0; for all 1 < i,j < n, i < j. Recall that v ~ ||0]|, and that
0 <m < C0; for all 1 < i < n. Combining these that, the contribution of Case (A) to
Var(Yg1) is no more than
c(|6f)~° Z D> optterEter o9t e) o5t (2.E.210)
i1, ,ia(dist) if,jo @
where a = (a1, ag, a3, aq) and each a; is either 0 and 1, satisfying a; + as + ag + a4 = 1. Note
that the right hand side of (2.E.210|) is no greater than
C([10]1) = max{||0[IF |01 *[|0113, 0131101} < Cllol* 110113/ 10113,

where we have used [|0]|* < ||0]|1]0]]3.

Next, consider Case (B). In this case, {i2, jo} = {i}, j5} and
Wi Wisia Wit oy Wiy iy = Wi, Wit i, Wit

1114 1114 1272
and by similar argument,
0 < E[W; 3, Wik, Wit ] < CQuiy iy Q- (2.E.211)

1194 7" 1272
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Recall that €;; < C6;0; for all 1 <i,5 <mn, i <j, that v ~ 10|12, and that 0 < n; < C6; for

all 1 <i < n. Combining this with (2.E.209)), the contribution of this case to Var(Yg1)
— b b
<c(o)® > Y co6ert 167, 0,0:, 07 0,10, (2.E.212)
i1,i2,i3,i4(dist) J2
i1,45,74 (dist)
where similarly by, by are either 0 or 1 and b; + b2 = 1. By similar argument, the right hand
side

< ClO1T° - (NOIR I 10113 + el 101%] < Cllol*lelis/ el

where we’ve used Cauchy-Schwartz inequality that [|0]|* < ||0]|1]|0])3.
Now, inserting (2.E.210)) and (2.E.212)) into (2.E.209) gives

Var(Yar) < ClI0I*16115/10113 + l011*10115/ 10111 < Clol*l1o115/101lx, (2.E.213)
where we have used [|f]|; — oo and ||0|* < [|0]|1]|€]|3. This shows
Var(Yar) < C10] 46113/ 16]1 (2.5.214)

Next, we consider Var(Y,2) and Var(Yg3). The proofs are similar to that of Var(X,) of
Item (a), so we skip the detail, but claim that

Var(Yaz) < Cll0]*16115/116]11, (2.E.215)

and

Var(Yas) < Cl10]*16115/1101]3. (2.E.216)

Combining (2.E.214)), (2.E.215), and (2.E.216|) gives
Var(Ya1) + Var(Ya2) + Var(Yas) < ClIOI013/110]1: + 161*10115/116111] < Clo1*1015/11011,
(2.E.217)

where we have used the universal inequality that ||0]|3 < ||0]|3.

Next, consider S22, E[Y2]. For each 1 < s < 4, the study of E[Y}2] is similar to that
of E[X7] in Item (a), so we skip the details. We have that both under the null and the
alternative,

E[Y;i] < Cllol™/119115, (2.E.218)
E[Yi3] < C|10[1°10113/101]1, (2.E.219)
E[Yy3] < Cll0]°l1613/11611x. (2.E.220)
E[Y5] < Cllo]™/]19111. (2.E.221)
Therefore,
4
SE[Y2] < OO0/ 1011 + 1012/ 1614] < ClO1e0113/ 1161 (2.E.222)
s=1

Third, we consider E[Y;?]. The proof is very similar to that of E[X?] and we have that
both under the null and the alternative,

E[YZ] < CloIP1o15/116];. (2.E.223)
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

Finally, combining (2.E.217)), (2.E.222)), and (2.E.223|) with (2.E.208)) gives
Var(Trp) < ClIOIIM1013/110111 + 1161°19113/1011: + 191 16115/16115) < ClolI° 16115/ 1611
(2.E.224)
where we have used ||| — oo and ||0||> < ||#||1. This completes the proof of (2.E.170)).

Consider Item (c). The goal is to show (2.E.171)). Recall that
Tlc = Z iy MizMig [(7722 - ﬁi2)2(ni3 - ﬁm)] ’ Wi4i17

©1,82,83,84 (dist)

and that
7—n=v"2W1,.

Plugging this into 7. gives

Ty = —# > 771'1771'3771'4( > Wi2j2> ( > Wz‘géz) ( > Wz‘gjs)Wm

11,12,13,14(dist) JaFia LaFia JaF#i3

1
== 03/2 E , Nix i Mia Wi jo Wigts Wiz js Wiy iy -
11,12,13,54 (dist)
JaFialaFiz, a3
By basic combinatorics and careful observations, we have

Wigziswilw if jo =l = i3, j3 = 12,
W/%jQWingWim, if jo = o, (j3,72) # (ia,i3),

WisjaWises Wisjs Wiriy = Wi, Wit Wiy, if jo = i3, j3 =io, 0y #1i3,  (2.5.225)
W2 Winis Wiy, if by = i3,j3 = i2, jo # i3,
WisisWigeaWisisWiii,,  otherwise.

This allows us to further split 77, into 5 different terms:
Tie=Zyg+ Zpn + Zpa + Zp3 + Ze, (2E226)
where

1 3
Za = _W Z ni1ni37]i4Wi2i3 Wi1i47

11,82,83,84 (dist)

1
2
Zbl = _03/2 E E 77i177i377z‘4Wi2j2 Wi3j3Wi1i47
11,12,13,14 (dist) j2,(j3,52)7#(i2,i3)
1 2
Zppy = — 03/2 § E Ni1 Miz iy Wi2i3 Wiz@g Wi1i47
11,82,i3,54 (dist) j2=13,j3=12
loF#is
1 § E 2
Zb3 = _1}3/2 77i177i377i4Wi2i3 Mfizjg Wi1i47
i1,42,13,14(dist) L2=13,J3=12
Jo#i3
1
ZC = —71}3/2 E E 77i177i377i4Wi2j2 Wi2€2 Wi3j3 Wi1i4-
i1,i2,i3,i4 (dist) J2,€2,53

Jo#l2,j2,02713,53F 12

We now show the two claims in (2.E.171]) separately. The proof of the first claim is
trivial, so we only show the second claim of (2.E.171|).
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2.E. Properties of Signed Polygon statistics

Consider the second claim of (2.E.171f). By Cauchy-Schwartz inequality,
Var(T1.) < C(Var(Z,) + Var(Zy1) + Var(Zye) + Var(Zp3) + Var(Z,))

3
< C(B[ZZ]+ D _E[Z] + E[ZZ]). (2.E.227)
s=1

Note that
e The proof of Var(Z,) is similar to that of Var(Y,) in Item (b).
e The proof of Y2_, E[ZZ,] is similar to that of S E[XZ] in Item (a).

e The proof of E[Z?] is similar to that of E[X?2] in Item (a).

For these reasons, we omit the proof details and only state the claims. We have that under
both the null and the alternative,

Var(Z,) < C|6]1*(161I5/110]]1, (2.E.228)
3
> E[Zp) < Cll6lI3/10]1, (2.E.229)
s=1
and
E[Z2) < C[0]%1613/116113- (2.E.230)

Inserting (2.E.228)), (2.E.229)), and (2.E.230)) into (2.E.227)) gives
Var(Tic) < CllI01I01S/11611T + 16115/161: + 1812 18113/118113] < Cliél13/116l]1,
where we have used [|0]|3 < [|0]|% < [|0]]1, [|0]|* < [|0]|1110]|3 and ||0]|1 — oo. This proves
REI7).
Consider Item (d). The goal is to show (2.E.172) and (2.E.173)). Recall that
1 ~ -
Tha= _U?’T Z 7]@'1771‘23 [(771'2 - 7]@'2)2(771'4 - 771'4)] : Wi4i1'

11,92,13,54 (dist)

and that
n—n= v 2w,

Plugging this into T4 gives

T = —1}3% Z iy Ty ( Z Wi2j2> ( Z Wm@) ( Z Wi4j4>Wi1¢4

i1,i2,i3,i4 (dist) Jaia Loz JaFia
1 2
= C03/2 E : 77i177i3mz]'zWiz&mAlﬂWili‘l‘
i1,i2,i3,54 (dist)
JoFia,LoFiz,jaFia
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

By basic combinatorics and careful observations, we have

W/igguwiliu if jo = lo = iy, js = io,
W3 Witias if jo = Lo, ju = i1,
Wi i WiaisWiria if jo = lo, ju # i1, (J2, Ja) # (ia,92),
WisjaWiats WisjsWiria =  Wiajo Wi, Wania if by = i4, ju = i2, Jo 7 id,
W/igfgw/i22i4wili4, if jo =4, j4 = i0, 0o # iy,
Wigss Wiatas Wik, if jy = i1, j2 # Lo,
WisioWines WinjuWiyiy, otherwise.
(2.E.231)
This allows us to further split 114 into 7 different terms:
Tia=Us +Ugo 4+ Upy + Upo + Upg + Ups + Uy, (2.E.232)

where
1 § : 2 3
U(ll = _U3/2 nilni3Wi2’i4Wi1i47

11,12,13,54 (dist)

1 2 1772 2
U =—— > 2 mmaWinWii,

11,82,13,%4 (dist) J2

1 2 2
U = _U3/2 Z Z 771'1771'3vvizjzW/i4j4w/vi1i47
11,02,43,14(dist) jo(joF#i2),ja(jaF#ia)
JaFin,(52,54) #(ia,512)

1 2 2
Upa = _m Z Z nilni3Wi2j2Wi2i4 VVili47
11,12,13,14(dist) jo(ja7#ia)
1 2 2
Uz = _W Z Z nilnigwigbmzuwiliu

11,12,13,54 (dist) la(L2Fi4)

1
Ups = C03/2 Z Z ni1n33Wi2j2wi2f2Wi21i4’

11,02,13,54 (dist) jaFl2

1 2
Ue=— 032 Z Z Nix Mg Wisga Wises Wisju Wiy -

i1,i2,i3,i4(dist) j2 2,54, W dist

We now show (2.E.172)) and (2.E.173) separately.
Consider (2.E.172). It is seen that out of the 7 terms on the right hand side of (2.E.226|),

all terms are mean 0, except for the second term U,s. Note that for any 1 <i,j < n, i # j,
IE[VVEJ] = Q;;(1 — Q;;), where Q;; are upper bounded by o(1) uniformly for all such 4, j. It
follows
1
E[Uq2] = 3 Z ZWz‘W%E[Wi]’Q]E[Wiu]
11,i2,i3,54 (dist) J2
—(1+o0(1))- v 32 Z 771'1771'23Q2'2j29i1i4'

i1,i2,i3?i4(dist)
J2
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2.E. Properties of Signed Polygon statistics

Under null, for any 1 <i,j <mn,i#j, n; = (1 +0(1))0;, Q; = (1 + 0(1))0;0; and v < |02,
ElUa] = (1010)7% > > 0705,0761,05, = —(1+o(1))[10],

il,ig,i3,i4(dist) J2
and under alternative, a similar arguments yields
IE[Ua1]| < C|6)|*. (2.E.233)
This proves (2.E.172)).

We now consider (2.E.173)). By Cauchy-Schwartz inequality,

4
Var(T1q) < C(Var(Ua1) + Var(Uaz) + Y Var(Uss) + Var(U))
s=1
4
< C(Var(Ua) + Var(Ua) + > E[Ug] + E[UZ)). (2.E.234)
s=1

Note that

e The proof of U, is similar to that of Yy in Item (b).
e The proof of U,y is similar to that of X,y in Item (a).
e The proof of Ups, 1 < s <4, is similar to that of Xp; in Item (a).

e The proof of U, is similar to that of X, in Item (a).

For these reasons, we omit the proof details, and claim that

Var(Ua1) < C16]1*10]15/110111, (2.E.235)
Var(Uaz) < C|161*10113/110111, (2.E.236)
4
> E[Ug] < Cllol®el3/116])s, (2.E.237)
s=1
and
Var(Ue) < C|10]°[10113/1161]3, (2.E.238)

Inserting (2.E.235)), (2.E.236)), (2.E.237)), and (2.E.238) into (2.E.234) gives
Var(Tig) < ClI0I*10113/1017 + 10110113/ 1161: + 61116115/ 1611 + 117 16113/101]3]
(2.E.239)
< C1ol°N0115/191]1, (2.E.240)
where we have used ||0| — oo and ||0]|3 < ||0]|3. This proves (2.E.173).

We now consider Item (e) and Item (f). Since the proof is similar, we only prove Item

(e). The goal is to show (2.E.174). Recall that
Toe = Z NigMizMiy [(nil - ﬁh)(niz - ﬁh)(nis - 7713)] ’ §v21'4i1a (2'E241)
11,82,13,54(dist)
and
~ _ . —1/2
n—n=uv T"WI,. (2.E.242)
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

Plugging (2.E.242) into (2.E.241]) gives
1 ~
Toq = — 03/2 Z MiaMiz iy ( Z Wiljl) ( Z Wi2j2> ( Z Wi3j3>Qi4i1

11,092,314 (dist) J1#i JoFiz JaF#i3

1 ~
= v3/2 E Nz Miz Mia Wiy js Wiz o Wis js Qs -
11,02,13,54 (dist)
#1527, 3713
By basic combinatorics and careful observations, we have

Wi21i2Wi3j3v if J1 =2, j2 = i1,
W2 Wisiss if j1 = i3, j3 = i1,
Wiy Wiz jo Wisjs = 12”3 o . ]‘1 ‘3 ]_3 .1 (2.E.243)
WiisWisii if jo = i3, j3 = i2,
W1 j1 WisjaWisjs, otherwise.
This allows us to further split T5, into 4 different terms:
Toq = Xa1 + Xa2 + Xa3 + X, (2.E.244)

where
1 2 o
Xa1 = ) Z Z 772'2772'377i4Wi1i2Wi3j39i11'4’
i1,i2,i3,54(dist) j3#is
1 2 o
Xa2 = _W Z Z 771277i377i4Wi1i3Wi2j2Qi1i4’

i1,82,i3,14(dist) j2F#i2

1 ~
Xaz = _W Z Z 771277i377i4Wi22i3Wi1j1Qi1i4a

i1,i2,13,14(dist) j1701

1 ~
Xy = _W E E "7i2"7i3"7i4m1j1 Wi2j2Wi3j3911i4'
i1,i2,i3,i4(dist) J1,J2,33
jk¢i€7k7é:17273

We now consider the two claims of (2.E.174)) separately. Since the mean of X1, X2, Xa3, Xp
are all 0, the first claim of (2.E.174]) follows trivially, so all remains to show is the second

claim of (2.E.174).
We now consider the second claim of . By Cauchy-Schwartz inequality,
Var(Ty,) < CVar(X,1) + Var(X,2) + Var(X,3) + Var(Xp))
< C(E[X2] + E[X2)] + E[X2%] + E[X2). (2.E.245)
We now consider E[X?] + E[X2)] + E[X2], and E[X?], separately.
Consider E[X2]+E[X2]+E[X2]. We claim that both under the null and the alternative,

E[Xa1] < Ca?|16]1"2]1613/116113, (2.E.246)
E[XZ] < Ca?|0]"]|6113/110117, (2.E.247)
E[XZ5] < Ca?||6]"216]3/ 116117 (2.E.248)
Combining these gives that both under the null and the alternative,
E[XZ] + E[X%)] + E[XZ] < Ca?[6]2/|6]13/[6]]. (2.E.249)

It remains to show (2.E.246[)-(2.E.248). Since the proofs are similar, we only prove

118



2.E. Properties of Signed Polygon statistics

(2.E.246[). Write
27 3 2 2 O. .0
E[Xa]=v > D Mg Tia iy iy iy EIWE o, Wi s Wiy Wi 219010, Qi
11,023,494 (dist)  j3,j4
i1,5,5,84 (dist) ja7#iz,jh iy
Consider the term
2 2
W, ‘¢93j3‘¢23¢glmﬁ"’

1112 13]3°

In order for the mean is nonzero, we have three cases

o Case A. Wyyj, = Wy and Wigjy = Wiryr .

1373

o Case B. Wigjy = Wy i and Wiy, = Wirr .

¥3J3

o Case C. Wiyjy = Wiy and Wiy, # Winir .
Consider Case A. In this case, {i,145,45} are three distinct indices in {i1, 72,73, 73}. In this
case,
W2, Wiy, W3
237377 4

1112 hi

Wiy = W2, W
2 373

192" " 4373"
where by similar arguments as before
0<EW?, W2. 1< CirQsjs < CO;iy 00,0,

1112 " i3]3
At the same time, recall that that 0 < n; < C#; for any 1 < i < n, and that \QU| < Cab;b;
for any 1 <i,j <mn, i # j, where & = |A2/\1] with A being the k-th largest (in magnitude)
eigenvalue of 2, 1 < k < K. By basic algebra,

5 0 2 2 2
|7 i Mia it it i, a4 iy a7 | < C”03,05,05,07, 0,1 031 01 67
Note that in the current case, {i1,i2} = {45, j5} and {is, js} = {7}, 15}, so for some integers

Ogbhbz < 1 and bl+b2: 1,
97;191'292‘39@'2491'391'2%9@'24 = eiljbleiljbmzzgejse?ﬁi-
Recall that v < ||0]|2. Combining these, the contribution of Case (A) to E[X2 ] is no greater
than
2 —6 2+b1 p2+b2 3 2 P2 2
LAV DEED DED DD DN A AL AL
i1,92,13,54(dist) i) j3(j3#i3) b1,b2(b1+ba=1)
where the right hand side < Ca? - [|0]/®(|0]/$/]|0]|S. This shows that the contribution of Case
(A) to E[X2] is no greater than

Co® - ||01*|16115/110115- (2.E.250)

Consider Case B. By similar arguments,
W2 Wi W2 W — WS W2
@333 YV il ih YWiggs = VWi '

ivio 1192 V7 13737
where
EW i, Wi ] < CQ4yiyQigjy < C4, 03,0505,

1112 ' i3]3
Also, by similar arguments,

.0 2 2 2
‘77i277i3771‘4771"277@‘%777;2191'11'491"1@‘21’ <Ca 0i19@'261'391401"101"2&1'%91&7
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where as Wi i, = Wiryy and Wiy, = W,y g, the right hand side
< Ca®03, 07,0, 05267, 67

11712713 RIS

where 0 < c1,cy < are integers satisfying c¢; + ¢ = 1. Recall v ~ ||0]|2. Combining these,
the contribution of Case (B) to E[X?]

2 -6 3 p3 p2+c1gltcapn2 p2

S CDREED VD DD DD DR L A
’i1,iQ,i3,i4(diSt) Z:l jg(jg;ﬁlg) bl,bg(b1+b2=1)

where by [|0|* < [|0]|1|€]|3, the above term

< ca?[ll01*1015/ 1013, 191P11013/118115) < Ca®([l1*10115/11613.
This shows that the contribution of Case (B) to E[X?

a

Cllel* 10115/ 116l (2.E.251)

1] is no greater than

Consider Case (C). In this case,
W2 i, Wiags Wit Wigj, = Wi Wi, Wi
2 3J3

1112 ’1 1112 'V 1373 7/17;'2’
where by similar arguments,

E[W2, W2. W3

t1ig "V izga Y i il

] < Oiy Qi s Qi iy, < C03,0,0,,05,0;1 0.
Also, by similar arguments,
|"i i Mhia Mty ity M, g Qi i | < Ca’f;, 9@'291‘3912401"1 9i’29ig9i7
where as Wi,j;, = Wy, the right hand side
2 1 2 2
<Ca 91'1(91‘202,34-019;;91-4@2,
with the same ¢y, cp as in the proof of Case B. Combining these and using v < ||@]|2, we have
that under both the null and the alternative, the contribution of Case (C) to E[X2]

2 —6 2 n2 p2+4c1pldtc2pn2 pn2 p2 p2
< Ca(|0]]1) > D AR I 0703 0%,

11712713 147 1h
i1,i2,13,14(dist) j3(ja#i3)
i115,14 (dist)
where the right hand size
< Ca” - [|012110113/110117 + 1611161153/19115] < Ca? (6] *2[1613/1101]3- (2.E.252)

Here we have again used [|0]|* < [|0]|1]|0]3.

Combining (2.E.250)), (2.E.251)), and (2.E.252|) gives
E[XZ] < Ca®([l01%]1615/11611 + 611 16115/1615 + 191°1613/11611°]) < Ca?[191*116113/116113,
where we have used [|0]|* < ||0]|1]|0]|3 and ||0]| — oco. This proves (2.E.246).
We now consider E[X7]. Write

EXg] =0 > > Wi i iy i,
i1,i2,i3,94(dist)  js,j4

i1,,15,04 (dist) j3#iz,js 7y

E[Wilh Wisja Wiz js Wit jt Wi 1 Wi

!
11J1 7 t2d2 T 33

[RRUR
Consider

Wi1j1 Wisz Wi3j3, and W’Lll]i Wi it W ghe

12J2 " " 373

Each term has a mean 0, and two terms are uncorrelated with each other if and only if
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2.E. Properties of Signed Polygon statistics

the two sets of random variables {W;, j,, Wiy, Wigjs b and {Wy 0, Wiy 50, Wiy,

i57%° 3J%
(however, it is possible that W, ;, does not equal to W,yl i but equals to Wiéjé, say). When
this happens, ﬁI’St, {i17i27i37j17j2aj3} = {%Jé?%ﬂa]{?]éﬂ]é} Recall that |§ZJ| < anleﬂ for
all 1 <i,j <mn,i# j, and that 0 < n; < C6; for all 1 < i < n. For integers a; € {0,1},

1 <i < 4, that satisfy Z?zl a; = 3, we have

} are identical

s o a1 _az. l+asz a4 l+as ag S o
|39 My M4 ity Mty i, i Qg | < Oy m oG miamiy [y [ |10,
2pl4+ay _as 1+asz, a4 l1+4+as_ ag..2 2
< Ca ‘91'1 i iy "My iz s 771'477i§1 )
Second,

E[Wi1j1 Wi2j2 W/i3j3W" i Wi 0 W jé] = E[Wz Wi, Wi ]7

GRS VoRARE t1j1 " " 9252 " 1373
where by similar arguments, the right hand side
< Oy Qinjn iy < C0;,04,0;,04,0;,0,,.
Recall that v ~ ||@]|?. Combining these gives
EXGl<ca®ol® >0 Y Y ettt el sy taeng

i1,02,13,04(dist) i J1,J2,J3 a
J17i1,J2742,3 713
where a = (a1, as,...,as) as above. By the way a; are defined, the right hand side
2 1 2 1 2 1
< (|01 10115E3 - 1015253 - 116115343 - 1olIg LT olge 3 lelse ) /1611,
a

which by [|0]|* < ||0]|1]|0]|3, the term in the bracket does not exceed
Cmax{[10]", 0111101116115, 11161116113, 1011710115} < Clolillels.
Combining these gives

E[Xp] < Ca?|0]*I6]5/11013- (2.E.253)

Finally, inserting (2.E.249)-(2.E.253)) into (2.E.245) gives
Var(Tza) < C?[[|6]P16113/11613 + 161116113/ 116117] < Ca®|l0]* 16113/ 11613.
and (2.E.174)) follows.
Consider Item (g) and Item (h). The proof are similar, so we only show Item (g). The
goal is to show (2.E.176[). Recall that
Toe= > 0ialishia (Mo = Ti2)* iy = i)+ Qi (2.E.254)

11,02,13,54 (dist)

and

7—n=v"2W1,.

Plugging this into 75, gives (note symmetry in (NZ)

) ~
T2c — _m Z i1 Mis Mig ( Z Wizjz) ( Z Wiﬂz) ( Z Wi3j3>Qi4i1
i1,02,13,i4(dist) JoFi2 Laiz 3743

1 ~
R > Niy Wi Mia Wia jo Wizt Wiz j iy -
i1,12,i3,54 (dist)
J17#41,J2712,53F13
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

By basic combinatorics and careful observations, we have

Wiis if j1 = o = i3, j3 = iz,
W2 Wisis: if j1 = Lo, (2, j3) # (i3, i2),

WisjoWises Wisjs = § W2, Wisey., if o = ig, j3 = 2, o # i, (2.E.255)
Wi Wisjas if 0y = i3, j3 = 12, j2 # i3,

Wiy jsWigesWis i,  otherwise.
This allows us to further split T5. into 4 different terms:

Toe =Ya + Yp1 + Yoo + Vi3 + Y, (2.E.256)

1 ~
Ya = _m Z Z 77i177i37h4W¢?;¢39i1i4,
11,02,13,54 (dist) j3#i3
1 2 ~
}/bl = _/03/2 Z Z 77i177i37h4W1»2j2Wi3j39i1i4a
i1,12,13,14(dist) jaFia

1 2
}/172 = _W Z Z 77i177i377i4W¢2i3 i2f29i1i47
il,ig,ig,i4(dist) JoFia
1 2 ~
Y3 = T2 Z Z nilnignuWigigWizszhu7
il,ig,ig,i4(dist) J1#i
1 ~
Ye = T2 Z Z Nir Mz Mia Wiz jo Wizt Wiz 3 iy -
11,i2,13,14(dist) J2,02,53
JeFi2,laF#12,53 713
JaFiz o713, j3 702
We now show the two claims in (2.E.176|) separately. Consider the first claim. It is seen
that out of the 5 terms on the right hand side of (2.E.256|), the mean of all terms are 0,
except for the first one. Note that for any 1 <i,5 < m,i # j, IE[WE}] < CQ;5. Together with
Q; < CO;0;, Qij < Cabif;, 0 < n; < Ch; and v ~ ||6]3, it follows

1 ~
E[|Ya]] < 32 Z Mir i Mia igis iy

11,82,13,54 (dist)
1
S Ca- 7”9”3 Z 01'2192'297;2377@'24)
1

i1,i2,i3,0a(dist)
where the last term is no greater than Cv-||0||%/||6]|3, and the first claim of (2.E.176) follows.
Consider the second claim of . By Cauchy-Schwartz inequality,
Var(Ty.) < C(Var(Y,) + Var(Yp1) + Var(Yye) + Var(Yys) + Var(Y;))
< C(Var(Ya) + E[Yi3] + E[Yi3] + E[V;3] + E[Y,7)). (2.E.257)
We now study Var(Y,). Write
Var(Yo) =v™® > 03,y E(WE,, — E[Wi:, ) (Wi —EW;,])]- Qiis Q-

il,ig,i3,i4(dist)
1] ,1%,85,1) (dist)

Fix a term (Wg“ - E[Wg%])(Wzlé — E[lez,g]) When the mean is nonzero, we must have
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2.E. Properties of Signed Polygon statistics

{ia,i3} = {4}, 4}, and when this happens,
E[(Wf};zg - E[Wz?;z;;])(WzZZg - E[szg])] = Var(Wiiig)‘

For a random variable X, we have Var(X) < E[X?], and it follows that
Var(Wi;,) <EW5, ] <E[WZ,],

1213 1213 1213
where we have used the property that 0 < me < 1. Notice that IE[VV%ZJ] < C6;,6;,, and
recall that v < ||0]|2, Q; < Ca#;f; and 0 < n; < CO; for all 1 < i < n. Combining these
gives
Var(Yo) < Ca®(|0)11%) - Y. 676,,67,6767 6% < Ca®|0]*[16]13/]16]3.  (2.E.258)
i1,i2,i3,i4(dist)
i), (dist)

Additionally, note that

e The proof of Yy, Yio, and Y3 is similar to that of X, in Item (e).

e The proof of Y, is similar to that of X} in Item (e).

For these reasons, we skip the proof details, but only to state that, both under the null and
the alternative,

E[Yi] < Ca®|0]1*(|0113/1101]1, (2.E.259)
E[Yy3] < Ca?(|0]"]|0]13/110117, (2.E.260)
E[Yy3] < Ca?(|0]"]10]13/110117, (2.E.261)
and therefore,
E[Y;}] + E[Yi3] + E[Yg] < Ca?|[0]®]6]13/110]:- (2.E.262)

At the same time, both under the null and the alternative,
E[YZ] < Ca® - |0]I"16113/]1613- (2.E.263)
Inserting (2.E.262)) and (2.E.263)) into (2.E.257) gives
E[T3.] < Ca®[||91P1613/116113 + 161 1615/116ll + 111" 1615/116113] < Ca®[181®16115/116]]1-
This proves (2.E.176]).
Consider Ttem (i). The goal is to show (2.E.178)). Recall that
Fo = Z Ny Mo Miz iy [(771'1 - 771’1)(7%‘2 - 771'2)(7’1'3 - ﬁis)(nizx - ﬁu)]v (2'E264)
i17’i2,i3,i4(dist)
and that for any 1 < i < n,

n
To—mi =02y Wi
J#
Inserting it into (2.E.264]) gives
F, = Z i MiaMis Mia [ (Wi — i) (Mia — Thia) (Mg — M) (Mig — Thia) ]

il,iQ,i3,i4(diSt)

123



2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

By basic combinatorics and basic algebra, we have
(

W2, Wi if (i1, 51) = (Jo,92), (i3, 43) = (ju, ia),
W2, W2, if (i1,71) = (J3,13), (i2, j2) = (ju,14),
W2, W2, if (i1,44) = (ja, 1), (i2, J2) = (43, 13),
Wi%igwizshwimu if (i17j1) = (]2722)7 (j47j3) 7é (i37i4)7
W2, Wiyjs Wiy if (i1,J1) = (J3,43), (Ju, Jo2) # (42,14)
We e Wie Wes W o = 1113 2J2 77 t4J4> ] .7- .7>v'a. »7.’
LT TR g8 T A Wi21i4I/I/i2j2Wi3j47 if (7’17j1) = (]4724)7 (J3aj2) # (Z2a 7’3))
W2 Wi Wi if (i2, j2) = (J3,13), (Ja, J1) # (i1,1%4),
Wi22i4m1j1Wi3j37 if (i2>j2) = (]47Z4)a (j3aj1) 7& (ila i3)7
W2, Wiy js Wigjy if (i3, 73) = (Ja,4a), (Jo, J1) # (71, 92)-
Wi1j1 W7;2j2 VVZ'BJ'3 Wi4j4 N otherwise.
By symmetry, it allows us to further split F} into 3 different terms:
F=3X,+6X, + X, (2.E.265)
where
Xo = v 2 Z 77i177i277i377i4wi21i2wi23@'4,
il,ig,i3,i4(dist)
Xy=0v"" Z Z i1 77%'2771'3771'4‘%217;2 Wisjs Wisjas
11,02,13,54 (dist) 73,74
(93,74)#(ia,i3)
and
Xe=v? > Do i isTis Winjy Wings Wi js Wiy

i1,i2,48,0a(dist)  J1.J2.73,)4
JrFiek=12,34

We now show the two claims in (2.E.178]) separately. Consider the first claim of (2.E.178)).
Note that E[X;] = E[X.] = 0. Recall that both under the null and the alternative, for any

i# 7, IE[VV%} = Q;;(1 — Q) < CH;0;, and that 0 < n; < C6;, and that v < ||0]|?, Therefore,

0< E[Xa] < v? Z 0:,0i,0i,05,0;,0:,6;,0i, < CH@HS/H@”%

i1,i2,i3,i4(dist)

Inserting into (2.E.265) gives
E[| 7] < Cllo)*/11111,

and the first claim (2.E.178) follows.

Consider the second claim (2.E.178)) next. By (2.E.265|) and Cauchy-Schwarz inequality,
Var(F}) < C(Var(X,) + Var(X) + Var(X,)) < C(Var(X,) + E[X?] + E[X?]). (2.E.266)
We now consider Var(X,), E[X?], and E[X?], separately. Note that

e The proof of Var(X,) is similar to that of Var(X,) in Item (a).
e The proof of E[X?] is similar to that of Z§:1 E[XZ] in Item (a).
e The proof of E[X?] is similar to that of E[X?] in Item (a).
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2.E. Properties of Signed Polygon statistics

For these reasons, we omit the proof details and only state the claims. We have that under
both the null and the alternative,

Var(Xa) < Cl19]P10115/1101]3- (2.E.267)
Var(X7) + Var(Yas) < Cl16]*[10115/11911, (2.E.268)
E[XZ] < Cl9115°/10111, (2.E.269)

Finally, inserting (2.E.267)), (2.E.268|), and (2.E.269)) into (2.E.265|) gives that, both under

the null and the alternative,

Var(F1) < CllI0IFI1015/ 116115 + 011011/ 10115 + 119115 /11e111] < ClloIPlol15/1e113,
where we have used ||0|| — oo and [|0||3 < ||0]|* < [|0]|1. This gives (2.E.178)) and completes
the proof for Item (i).

Consider Item (j). The goal is to show (2.E.179). Recall that

Fy, = Z 77@'27]1'23771'4 [(771'1 - 77@'1)2(771'2 - ﬁh)(nu - ﬁi4)]v

11,92,13,54 (dist)

and that
n—n= o2,

Plugging this into F}, we have
Fy, = v? Z Z 77i2771’2377i4Wi1j1 Wi o, Wis s Wiy -

i1,02,03,04(dist) Jil1,52,04
J1701, 1701, J2F 02,5404

By basic combinatorics and basic algebra, we have

Wi31i2m4j47 if j1,01 = 19, jo = i1,

Wi, Wisie: if g1, 01 = 14, ja = 11,

W2, Wi if (j1,J2) = (i, 11), (€1, ja) = (ia, i1),

Wi21i2m21i4’ if (Elaj2) = (i2a i1)7 (j17j4) = (i4,i1),

Wi Wiia: if (1, ja) = (ia,i0), (01, 52) = iz, 1),

Wi Wi if (01, 74) = (i4,71), (J1,J2) = (i2,%1),
_ Wiz j i2i ; if j1 =01, (Jo,74) = (i4,12),

Wi i Wine, Wi js Wiy, = WZ.%Z;WGLTWMM, if by =g, o = i1, J1 # 12,14,
Wi%igmﬂlwiuw if j1 = i9,j2 = i1, 01 # 12,14,
Wz‘21i4Wi1j1 Wi2j2> if £ = i4,J4 = i1, 01 7'£ 12,14,
Wi21i4Wi151vVi2j2v if j1 = 4, Ja = i1, J1 # 12,14,

W2 Wiy Wiyey, if j1 # £1, (Jo2,Ja) = (ia,12).
Wi21j1Wi2j2Wi4j4a if j1 =44, (j17j2) 75 (ig,’il), (jl,j4) ;é (i4’i1)7
Wit inWinex Wigios Wi otherwise.

By these and symmetry, we can further split Fy into 7 different terms,
We decompose
Fy =2Y,1 +4Yo2 + Yoz +4Y + Yo + Yz + Y, (2.E.270)

where

Yo =v"" Z Z m2m2377¢4Wf}¢2Wz'4j4,

i1,i2,13,i4 (dist) ja,jaFia
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

) 2: 2 W2 W2
Yio=v 7712771'37714Wi17l2 Wi1i4’

$1,82,83,04 (dist)

) 2 2
Y3 =0 Yo D mamnm W Wi,

i1,02,13,i4(dist) j1,5170

_ =2 2 2
Yyi=v § E 77i277i377i4Wi11'2 VViljl VVMJM
il,ig,ig,u(dist) ) ]:17]:4 )
J1#11,ja704
_ .2 2 2
Yipo=v § § NiaNigMia WisisWirjn Wiy,

i1,82,i3,d4(dist) J1,01
J1.l1741

) 2 2
Yis =0 g § Nia i3 Miy Wi1j1 WisjasWisjas
i1,02,83,04(dist)  J1.J2.04
NFi1,J2 A2, JaF 4
— 2 Z } { 2
Y.=v MiaMizMia Wi js Wire, Wi Wigja
11,952,034 (dist) J1,81,2,ja

J1,81¢4{i1,02,04}
Jo@{i1,ia},jag{i1 iz}

We now consider the two claims in (2.E.179)) separately. Consider the first claim. It is seen
that only the second and the third terms above have non-zero mean. Recall that both under
the null and the alternative, for any i # j, E[ij] = Q;(1 — Q) < 0605, 0 < n; < CO;,
and that v < ||0||3. Tt follows
0<ENa] v 2 Y 0,070, 050,60, < C|0]%/]0]|1. (2.E.271)
11,82,13,44(dist)
and
0<E[Yas] <v™ D 6,000 0,605,050, < C|6]°/]|0]7. (2.E.272)
i1,i2,i37i4(dist) J1
Combining (2.E.271)), (2.E.272)) with (2.E.270|) gives
E[[B[] < ClI6I1°/1161IT + 1611°/116113] < Cl6ll°/ 116113,
where we've used the universal inequality that ||0]> < ||0]];. It follows the first claim of

EETT).
We now show the second claim of . By Cauchy-Schwarz inequality,
Var(F,) < C(Var(Ya1) + Var(Yae) + Var(Yas) + Var(Yy) + Var(Yye) + Var(Yys) + Var(Ye))
< O(Var(Yar) + Var(Yaz) + Var(Yes) + E[YZ] + E[Y3] + E[V3] + E[Y?2)).
(2.E.273)

We now consider Var(Yq1), Var(Yy2)+ Var(Yy3), E[Y2]+E[YA]+E[Y,3], and E[Y,?], separately.
Note that

e The proof of Var(Y;) is similar to that of Var(Y,) in Item (b).
e The proof of Var(Y2) and Var(Yg3) are similar to that of Var(X,) in Item (a).
e The proof of Zi’zl E[Ybi] is similar to that of 23:1 E[XZ] in Item (a).
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2.E. Properties of Signed Polygon statistics

e The proof of E[Y?] is similar to that of E[X?] in Item (a).

For these reasons, we omit the proof details and only state the claims. We have that under
both the null and the alternative,

Var(Yo1) < C|0[1*[|0]13/11613- (2.E.274)
Var(Ya2) + Var(Yas) < C[16]1*[16[15/(101]1, (2.E.275)
3
DRI < Clo]*615/116113, (2.E.276)
s=1
E[YZ] < C19]°1615/116]]1- (2.E.277)

Finally, inserting (2.E.274)), (2.E.275)), (2.E.276), and (2.E.277)) into (2.E.273) gives
Var(Fy) < CllI01F1013/116117 + 0110115/ 1011 + 01*16115/1611F + llel° 116115/ 1161l1]
< Clol*ols/ 1915, (2.E.278)
where we have used ||0]|3 < [|0]|? < [|0]]1, ||0]] — oo and ||0]|* < [|0]|1]|0]|3. This completes
the proof of (2.E.179)).
Consider Item (k). The goal is to show (2.E.180) and (2.E.181)). Recall that
F. = Z 772'22771'24 [(nﬁ - ﬁi1)2(77i3 - ﬁi3)2]’

i1,i2,i3,i4(dist)

and that 77 — n = v~1/2W1,,. Plugging this into F3 gives
F. = v 2 Z Z 772'22 772'24 Wi s Wi e, Wi js Wigey -

i1,02,93,04(dist)  J1,01,52.04 )
J1#i41,01 741,53 713,03 F 3

By basic combinatorics and basic algebra, we have

Wi41i3’ it j1 =41 = 11,753 = {3 =11,
Wiris Wisjs if j3 = {3 = 11,01 = 13,
Wi?;iswilfl’ if j3 = {3 = i1, J1 = i3,
Wz‘?iigwiajm if j1 =01 =i3,03 = i1,
Wz‘?;i3Wi353ﬂ if j1 =41 =i3,j3 =11,
Wi21j1 W’i23j3’ if J1= 617j3 = {3,

Wi js Wines Wigjs Wiges = § Wi 5, Wigjs Wiges if j1 =41 # i3, j3 # {3,
W2 WirinWiye, if j3 =03 # 41,51 £ 0,
Wi Wine, Wiges if jy = i, j3 = i1,
Wi, Wi Wis s, if 0y =i, b3 = iy,
W2 i, Winjs Wit if 0 = ig, j3 = i1,
Wi21i3Wi151 Wi3j3’ if j1 =i3,43 = i1,
Wi isWiies Wiz jsWises otherwise.

By these and symmetry, we can further split Fj into 6 different terms:
Fo =20+ 420 + Zip + 2Zc1 + 4Zc2 + Za, (2.E.279)

where

_ =2 221574
Zg =0 E 771'277@'4Wi1137

’il,’ig,ig,i4(dist)
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

.2 E §
Zbl =0 77127724 1113 Z3.737

i1,02,83,i4(dist) ja,ja7ia

) 2 2

Zy = § E : n12n14m1]1msjs’
i1,02,13,04(dist) §1,J17%1,3,J3 713
) Z } : 2 . :
ch =0 77227724W11]1 W13]3 m3£3’
i1,52,i3,i4(dist) J1,J3,¢3
J1€{i1,13},53,03

=2

ey =0 g E 771277z4W1113Wi1f1 Wi3£37

i1,i0,i3,44(dist) 1,03
L1F41,03703

—2
Za=v Z Z 77127724W11J1W1€1W13J3W3€3'

i1,02,i3,d4(dist)  j1,01,53,03
J1#41,j3#3
J1,01#13,53,€3701

We now show ([2.E.180)) and (2.E.181]) separately. Consider (2.E.180)) first. It is among

all the 6 Z-terms, only Z, and Zj3 have non-zero means. We now consider E[Z,] and E[Z]
separately.

First, consider E[Z,]. By similar arguments, both under the null and the alternative,

[Wlﬁlg] < CQilis < 09i10i3'
Recalling that 0 < n; < C; and v < ||0]|?, it is seen that
ElZ]<C(oly™ Y 65,676,6i, < ClO|*/lI6I. (2.E.280)

i1,i2,i3,i4(dist)
Next, consider E[Zys]. First, recall that under the null, Q = 66’ v = 1/ (Q — diag(Q))1,, and
n=v"Y2(Q - diag(Q)1,. It is seen v ~ [|0]|2, 7; = (1 + 0o(1)6;, 1 < i < n, where o(1) — 0
uniformly for all 1 < i < n, and for any i # j, E[ij] = (14 0(1))8;0;, where o(1) — 0
uniformly for all 1 <14,j <n. It follows

E[Zp] = v~ Z Z ”i22”i24E[W12111W2iJ3] (2.E.281)
i1,i2,i3,i4(dist) 31,51711,53,73713
which
~ (||9||1)_4 Z Z 911912292391249 05 ~ HQH4

i1,32,13,i4(dist) j1,J1711,73,J3713

Second, under the alternative, by similar argument, we have that v < ||0||2, 0 < ; < C#; for
all1 <i<n,and ]E[WZZJ] < C6;0; for all 1 <4,j < n, i # j. Similar to that under the null,
we have

0 < |E[Zy]| < C|10]|*. (2.E.282)

Inserting (2.E.280)), (2.E.281)), and (2.E.282)) into (2.E.279)) and recalling that the mean of
all other Z terms are 0,

E[F3) ~ ||6]|*, under the null,

and
E[F3) < C||9)|*, under the alternative,
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2.E. Properties of Signed Polygon statistics

where we have used ||6||; — oo. This proves .
We now consider (2.E.181)). By Cauchy-Schwarz inequality,
Var(F,) < C(Var(Z,) 4+ Var(Zn) + Var(Zy) + Var(Za) + Var(Ze) + Var(Zy))
< C(Var(Z,) + E[ZZ] + Var(Zy) + E[Z3] + E[Z3] + E[Z])]). (2.E.283)
Consider Var(Z,). Write
VarZa) —vt S Rl BV, — B (Wi, — EW, )

2113 1113 i1l
1,02,13,54 (dist)
0] 4ibi%,1) (dist)
Fix a term (W}, —E[W},
{i1,13} = {4}, 45}, and when this happens,
BV, — BIVA OV, — EDV D] = Var(Wi).

1143 1143 143
For a random variable X, we have Var(X) < E[X?], and it follows that
Var(Wi,;,) <EWE, | <E[WZ,],

1113 1113 1113

N(W32., —E[W3.,]). When the mean is nonzero, we must have
217/3 117/3

where we have used the property that 0 < WZ?”-3 < 1; note that E[Wizg] < C0;,0;,. Recall
that v < |07 and 0 < n; < C0; for all 1 < i < n. Combining these gives
Var(Zo) S C(I0IT®) - D 03,07,0%0% 0, 0:, < C|10]°/ 1160115 (2.E.284)

i1,i2,i3,i4(di$t)
14,1 (dist)

We now consider all other terms on the right hand side of (2.E.283|). Note that
e The proof of E[Z7] is similar to that of Y, in Item (b).

e The proof of Var(Zy2) is similar to that of X, in Item (a).

e The proof of E[Z2] and E[Z2)] are similar to that of X} in Ttem (a).

e The proof of E[Z3] is similar to that of X, in Item (a).

For these reasons, we skip the proof details. We have that, under both the null and the

alternative,
E[Z] < ClOIPI61I5/ 1913, (2.E.285)
Var(Zy) < C|l6]%/116]2. (2.E.286)
E[Z4] +E[Z3] < Cllo)°/ 119113, (2.E.287)
and
E[Z3]) < Cl61* /11913 (2.E.288)

Inserting (2.F.284]), (2.E.285)), (2.E.286)), (2.E.287) and (2.E.288)) into (2.E.283) gives
Var(Ee) < C[I01°/1161F + 191°/101F + 1011 /191F + 161" /119115]
< Cllof* /eI,

which completes the proof of (2.E.181)).
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Proof of Lemma

Define an event D as

D= {|V —o| <01 - a:n}, for +/log(||0]1) < xn, < [|6]|1-

We aim to show that

E[(Qn — Qp)? - Ipe] = o(||6]|°). (2.E.289)

First, we bound the tail probability of |V — v|. Write
V—-v=2 Z(AZ] — Q”)
i<j
The variables {A;; — Q;;}1<i<j<n are mutually independent with mean zero. They satisfy
‘Aij — Qi]" <1 and Zi<j Var(Aij — Qz‘j) < Zi<j Qz‘j < 1;19171/2 < HHH%/Q Applying the
Bernstein’s inequality, for any ¢ > 0,
t2/2
B3y — 0| > 1) < 20sp(—o L2,
2 =] =) <2 g 7
We immediately have that, for some positive constants C,Cy > 0,

C
2exp(—qght?),  when 2,0l < t < |13,

PV —v| >t) < (2.E.290)
2exp(—Cat), when ¢ > [|0]|2.
Especially, letting ¢ = x,,||0||1, we have
P(D°) < 2exp(—Ciz2). (2.E.291)

Next, we derive an upper bound of (Q, — Q)? in terms of V. Recall that V is the total
number of edges and that @Q,, = Zi’j7k’£(dist) M;; M, My My;, where M;; = A;; — ;0. If one
node of 7, j, k, ¢ has a zero degree (say, node i), then A;; = 0 and 7; = 0, and it follows that
M;; =0 and M;; M My¢My; = 0. Hence, only when (i, j, k, £) all have nonzero degrees, this
quadruple has a contribution to @,,. Since V is the total number of edges, there are at most
V nodes that have a nonzero degree. It follows that

|Qn| < OV
Moreover, Q; = Zi,j,k,é(dist) M;}M;kM,jeMZ‘i, where M;; = Q,-j + Wi + 0ij. Re-write
M = Aij —ninj + ni(n; — n;) + nj(n; — n;). First, since 0 < Cf; and n; < CO; (see
(2.E.117)), [M5| < Aij + C0:0; + COi|nj — 1;] + CO;j|n; — 7] Second, note that 7; equals
to v~ /2 times degree of node i, where v < ||6]|? according to (2.E.116). It follows that
Ini — | < C(6; + [|0]|7 V). Therefore,
M5 < Aij + CO:6; + C|l0)|7'V (6; + 6;).
We plug it into the definition of @ and note that there are at most V' pairs of (7, j) such
that A;; # 0. By elementary calculation,
Q< C(VE+10117).

Combining the above gives

(Qn — Qp)? <205 +2(Qr)* < C(VE + [[4]19). (2.E.292)
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2.E. Properties of Signed Polygon statistics

Last, we show (2.E.289). By (2.E.292)) and that V& < Cv® + C|V — v|®, we have
E[(Qn — Q3)? - Ipe] < CE[|V —v[* - Ipe] + C(° + [|4]I%) - P(D?)
< CE[|V —v[® - Ipe] + C|6]|15 - P(D*), (2.E.293)
where the second line is from v < ||0]|2. Note that z,, > /log(||0]|1). For n sufficiently large,
z2 > 17C; Mog([|0]]1). Combining it with (2.E.291), we have
10]1 - B(D°) < [|6]116 - 2¢= 5 < (|01 - 2¢ 7171 = o(1). (2.E.294)
We then bound E[|V — v[® - Ipe]. Let f(t) and F(t) be the probability density and CDF
of |V — |, and write F(t) = 1 — F(t). Using integration by part, for any continuously
differentiable function g(t) and = > 0, [° g(t) f(t)dt = g(x)F(z)+ [° ¢'(t)F (t)dt. We apply
the formula to g(t) = t® and x = x,,||]|1. It yields

E[|V —o[® - Ipc] = (x,)|0]1)® - P(D°) + / 8t -P(|V —v| > t)dt

zn 1011

=1+11.
Consider I. By (2.E.294) and z,, < ||0]1,
I < ||6]Ii° - P(D) = o(1).
Consider I1. By (2.E.290), (2.E.294), and elementary probability,
1T < 8(|017)" - P(znllflls < [V — vl < [|6]I7) +/ 8t7-P(|V —v| > t)dt
2

10117

< C||9\}4-IP>(DC)+/ 8t7 - 2e 2t
6113

= 0(1)7
where in the last line we have used (2.E.294]) and the fact that f;o tTe=C2tdt — 0 as © — oo.
Combining the bounds for I and I1 gives

E[|V —o|® - Ip] = o(1). (2.E.295)
Then, (2.E.289) follows by plugging (2.E.294)-(2.E.295) into (2.E.293]).

Proof of Lemma

There are 175 post-expansion sums in (@fl — Q). They divide into 34 different types,
denoted by Ri-R34 as shown in Table It suffices to prove that, for each 1 < k < 34,
under the null hypothesis,

B[R] = o([0]I"),  Var(Ri) = o(||0]]®), (2.E.296)
and under the alternative hypothesis,
[E[Ry]| = o(a0]®),  Var(Ry) = O(||6]* + a°[|6]*]|6]]3)- (2.E.297)

We need some preparation. First, recall that 7;; = —{(1; — 1:)(1; — 1;). It follows that
each post-expansion sum has the form

v\ V&
(V> Z az‘jbjkckgdgi, (2.E.298)
4,5,k £(dist)
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Table 2.3: The 34 types of the 175 post-expansion sums for (@fl - Q).

Notation # N7 (N5, Ng, Nw) Examples Ny,
R 41 (0, 0,3) 2ijkedist) TisWikWeeWe 5
Ry 8 1 0,1,2) D et dist) TUQ]kWMWZz 4
Ry 4 Dt dist) Tis W]kaZW& 4
Ry 8 1 (0,2, 1) 2 gk t(dist) Ti3$ Qe Wei 3
Rs 4 Di gk o(dist) Tis JkazQez 3
Rg 4 (0, 3, 0) D g et(dist) 753 Q1 e Qs 2
Ry 8 (1,0,2) > i gk a(dist) 1707k WikeWei 5
Ry 4 Di gk o(dist) Tis Wik0reWei 5
Ry 8 1 (1,1, 1) Dok 0(dist) TZ](S]kaEWfl 4
Fao 8 D ik (dist) 7y Wi 4
R 8 Dot dist) Tis W]kékZQh 4
Rz 8 1 (1,2, 0) i gk (dist) sz5yk9kz9& 3
s 4 2 gk e(dist) Ti7$ 10k 3
R 8 1 (2,0, 1) Dot dist) TigOjkOkeWei 5
Fas 4 ik t(dist) Ti 03k Wkedei 5
Ras 8 1 (2,1, 0) i gk, (dist) sz5yk5ke9& 4
Rz 4 Dok 0(dist) sz5jk9k£5éz 4
g 4 1 (3,0,0) D_ijk,(dist) Ti39jkOkeOci 5
Rig 42 (0,0, 2) 2ijkot(dist) i ik WkeWes 6
Rao 2 i kt(dist) Tig WikTreeWei 6
Roy 4 2 (0, 2, 0) > ke l(dist) Tl]T]ka:EQEz 4
e 2 S0k ist) Tis ik TRe 4
Ros 42 (2,0,0) Sy b staisn FiiFsnObed 6
Ros 2 Doijke(dist) T 6jk7"k£5£z 6
Fos 8 2 (0, 1, 1) D et (dist) TUT]’CQMW& 5
Rag 4 D i et(dist) Tis ngrszm 5
Rar 8 2 (1, 1, 0) i gk, (dist) 7’137";1«5/%9& 5
s 4 D i et(dist) Tid 0TS 5
Rog 8 2 (1,0, 1) > i.doke0(dist) TiiTikOkeWoi 6
T 4 i ik 0(dist) T OikTReW i 6
s 43 (0,0, 1) ik 0(dist) T TikT ke Wi 7
R 4 3 (0,1, 0) Di gk 0(dist) ik ke Qe 6
Rss 4 3 (1,0,0) i kt(dist) T Tk koS 7
B3y 1 4 (0, 0, 0) Ll dist) T Tk TRt 3

where a;; takes values in {ﬁij, Wij, 8ij, — (1 — m3) (15 — nj)} and b, cke, dg; are similar. The
variable {7 has a complicated correlation with each summand, so we want to get rid of it.
Denote the variable in (2.E.298|) by Y. Write m = N; and

Y:(%)m)(, where X = Z a;jbjxCredy;. (2.E.299)
ik C(dist)
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2.E. Properties of Signed Polygon statistics

We compare the mean and variance of X and Y. By assumption, \/log(||0]|1) < ||6]|1/]10]|*-
Then, there exists a sequence x,, such that

Viog([[0]l1) < zn < [I0]11/10]%,  as n— .

We introduce an event

D ={|V =] < 6]r2a}.
In Lemma 24} we have proved E[(Q,, — Q%)% - Ip:] = o(1). By similar proof, we can show:
as long as |Y — X| is bounded by a polynomial of V" and ||0||1,

E[(Y — X)? - Ipc] = o(1). (2.E.300)
Additionally, on the event D, since v < [|0||3 > ||]|12n, we have |V — v| = o(v). It follows
that ‘VV;U‘ S @ < O]~ tw, = o(1). For any fixed m > 1, (1+x)™ < 1+ Cx for = being
close to 0. Hence, |1 — ‘1}—2] <CJl - %| < C’||0Hfla:n = o(||0|]_2). It implies

Y — X|=o(]|0]7%) - | X]|, on the event D. (2.E.301)
By (2.E.300)-(2.E.301)) and elementary probability,
E[Y — X]| < [E[(Y = X) - Ip]| + [E[(Y = X) - Ipe]]
< o(|6172) - E[|X| - Ip] + VE[(Y — X)? - Ipc]

< o([1017*) VELX?] + o(1),

and
Var(Y) < 2Var(X) + 2Var(Y — X)
< 2Var(X) + 2E[(Y — X)?]
= 2Var(X) + 2E[(Y — X)? - Ip] + 2E[(Y — X)? - Ipc]
< 2Var(X) +o(]|0]7*) - E[X?] + o(1).
Under the null hypothesis, suppose we can prove that
E[X?] = o(||6]|®). (2.E.302)
Since E[X?] = (E[X])? + Var(X), it implies |[E[X]| = o(||8]|*) and Var(X) = o(||0]|®).
Therefore,
Y] < [BIX]| + [E[Y — X]| = o([l0]1*),
Var(Y) < CVar(X) + o([|6]~*) - EIX?] + (1) = o(||6]]%).
Under the alternative hypothesis, suppose we can prove that
E[X]| = O(@2[6]),  Var(x) = of|l6]* + a®6IF0]19). (2.E.303)
Since E[X?] = (E[X])? + Var(X), we have E[X?] = O(a*||0||'2). Then,
EY] < 02101 + o([16]72) - O(a2[16]%) = o(a10]]%),
Var(Y) < o([|6]|° + a®[19]P[16113) + o(16]I7*) - O(a*[19]1"2) = o(116]1® + a°l|6]*[|6]]3).
In conclusion, to prove that Y satisfies the requirement in (2.E.296)-(2.E.297)), it is sufficient

to prove that X satisfies (2.E.302)-(2.E.303]). We remark that (2.E.303)) puts a more stringent
requirement on the mean of the variable, compared to (2.E.297).

From now on, in the analysis of each Ry of the form ([2.E.298)), we shall always neglect

the factor (1%)"V7, and show that, after this factor is removed, the random variable satisfies
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

(2.E.302))-(2.E.303]). This is equivalent to pretending

rij = =0 —n:) (M — nj)
and proving each Ry satisfies (2.E.302))-(2.E.303)). Unless mentioned, we stick to this mis-use
of notation 7;; in the proof below.

Second, we divide 34 terms into several groups using the intrinsic order of W defined

below. Note that 7i; = —(1; — 0:)(77; — nj), 6ij = ni(n; — ;) +n;(ni — M), and 7; — n; =
% Zs# W,;s. We thus have

Tij = —% (; Wis) (; th>, 0ij = —\}5771 (; th) - \;5773' (; Wz‘s>-

Each 7;; is a weighted sum of terms like W;,Wj;, and each d;; is a weighted sum of terms
like Wj;. Intuitively, we view r-term as an “order-2 W-term” and view J-term as “order-1
W-term.” It motivates the definition of intrinsic order of W as

N{fv = Nw + Ns + 2N;. (2.E.304)
We group 34 terms by the value of Nyj,; see the last column of Table

.There are 14 such terms, including Ro-Rg, Ro-R13, R16-R17, and Ro1-Res. They all equal
to zero under the null hypothesis, so it is sufficient to show that they satisfy (2.K.303)) under
the alternative hypothesis. We prove by comparing each Ry to some previously analyzed
terms. Take Ry for example. Plugging in the definition of 7;; and d;; gives
Ry= Y [ =) — )5 = np)me + 0 i — )| Qe W
i,7,k,£(dist)
= Roa + Rop,
where
Roa= Y meSe [T —m) (@ — y)°Wail,
i,k 0(dist)
Roy= Ym0 [T — ) (@ — ) (e — m) Wil (2.E.305)
i,j.k,€(dist)
At the same time, we recall that 77 in Lemmas is defined as
Ty= Y i0ouWei= > 60ik0niWie.
i,k €(dist) ij.k,€(dist)
In the proof of the above two lemmas, we express 17 as the weighted sum of T7,-T14; see

(2.E.166)). Note that 17, and T14 in (2.E.166]) can be re-written as
Tia= > e — )@ — n3)mel o (@i — 0:)] Wie
i3,k 0(dist)
= > npme- (@ — )G — 1)* Wail,
i,,k,£(dist)

Tia= Y [l —n))ny G — me)) ok (7 — 1)) W
i,k U(dist)

= > nmene [ — 1) (7 — 1) (T — k) W) (2.E.306)
i,k b(dist)
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2.E. Properties of Signed Polygon statistics

Compare (2.E.305)) and (2.E.306|). It is seen that Ry, and 174 have the same structure, where
the non-stochastic coefficients in the summand satisfy |[n;Qxe| < Ca@iﬁg and \7],%77@] < CG%G@,

respectively. This means we can bound |E(Ryg,)| and Var(Ry,) in the same way as we bound
|E[T14]| and Var(T14), and the bounds have an extra factor of a and o2, respectively. In
detail, in the proof of Lemmas 22}23] we have shown

101116113
Eml <ol Var(ria) < SIES.
It follows immediately that
Ca?16)1%)6)|2
BlRal| < Callf] = ofa?|81),  Var(zia) < S — ool
Similarly, since we have proved
|0 C|10]1*1161|8
B < D v,y < SIS
10/ 101/
it follows immediately that
Call6])|® Ca2||01%)16/|8
Blrtw < S5 = ola®lpl®), Var(iw) < IS — oo,
1 1

This proves (2.E.303)) for X = Ry,.

Analysis of post-expansion sums with Ny, <4 We use the same strategy to bound all other
terms with Ny, < 4. The details are in Table In each row of the table, the left column
displays a targeting variable X, and the right column displays a previously analyzed variable,
which we call X™*, that has a similar structure as X. It is not hard to see that we can obtain
upper bounds for |[E[X]| and Var(X) from multiplying the upper bounds of |E[X*]| and
Var(X*) by o™ and o™, respectively, where m is a nonnegative integer (e.g., m = 1 in the
analysis of Rg). Using our previous results, each X* in the right column satisfies
ELX*]| = 0@@[9]°),  Var(X*) = o([|0]]* + a®[|6]|[|6]]3)-
So, each X in the left column satisfies .

.There are 10 such terms, including R;, R7-Rg, R14-R15, R1s, and Ros-Rog. Using the the
notation

G; =n; — i,
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Table 2.4: The 14 types of post-expansion sums with Ny}, < 4. The right column displays
the post-expansion sums defined before which have similar forms as the post-expansion
sums in the left column. Definitions of the terms in the right column can be found in
(2.E.130), (2.E.136), (2.E.142), (2.E.152), (2.E.158)), (2.E.166)), (2.E.167), and .
For some terms in the right column, we permute (i, j, k, £) in the original definition for ease
of comparison with the left column. (In all expressions, the subscript “i,j, k, £(dist)” is
omitted.)

Expression Expression
Ry 2o = ni) (5 — m) e WieWei Zw 211 = mi)ni (5 = n)mWreWei
R3 > (1 = ma) (15 — 1 )W Wi Z2a 22 me(m5 = n) Wik (1 — 1) Wi
Ry S = mi) () — 1) e Wi Z3d 225 = mi)n; (5 — 1) e Wi
Rs S (7 = m) (7 — 1) e WaeQei Zap > Qi (5 — 13 ) e Wene (1 — ns)
R (7 = mi) (7 — 1) Qe Zs5a 2175 = 1) Lk Qeene (1 — i)
Ry S (0 = mi) 71y = my) e W T1a Z ne(j = n3)* 0 (i — 1i) Wie
(i —ma) (1 — m)m(nk — ) e Wi Thq > e — )0 (e — i) (T — 1) Wie
Rig Z(m mi)° (n n7) 0k Wene Tic (5 = 1) Wiene(m; — ni)*n;
> = m:) (5 — mj) jkae(W 1e)"i Tia 2215 = 1) Wiee (e — me)ni(ni — mi)n;
Ry 22 = ma) (105 = n )Wikne (e — 1¢)20i Tia 22 = )W (1 — n5)ne(1e — me)mi
S — i) (75 — ) ]k(nk — )i T 20Tk — 1) Wi (1 — ) (7 — 10i)
Ry Z(n m)(n =) P Tye (T — 1) e Qe (7 — i)
S0 = m) (1 — )y (e — 1) e Taq 22 mi (05 — 03 (e — nie) Qeene (i — i)

)
Ri3 > (i — 77:)(77] 1) T = 1i)ne e Top 2 mi(j = )k (e — ) (7 — i)
Rig > (7 )(77] 1)1 (T — 1) 0eS2es F > (M5 — )k (e — ) (i — 70i)
2. (1 = mi) (7 = m) 0 (il = ne) Qs £y 22T — 1) 0 (e — ne)ne (i — )
S =) ([ — 0y G — )0 | B Somi(my — 773)77](77k R/ AGED)
22 =) 05— n)m (e — ) (e — ne) Qi | Fao 22 mi(j — 1) (T — mi) e (e — me)me (7 — 15)
Riz 32(0i — m)(m )05 i — ) e (e = me)m | Fa S ma(ly — 0 (k= i)k (e — ne)me i — i)
20 = mi) (75 — 1) * 1Sk (T — 1) i Fy >2ni(05 — ) * i (e — ne)ne(@i — i)
(1 = mi)*(mj — mj)? nkazW Fe >0 = ma)*ni (7 — m5)° e
Ry S = 1) = n)* (e — ) eQi | Fo S2 i — )0k (e — ) (7 — i)
Fa

Roo  S°( — )@ — 1) (T — ) (e — me) Qi >y — n3)n; Tk — ) (e — me)ne (T — 1)

we get the following expressions (note: factors of ({)™ have been removed; see explanations
in (2.E.302))-(2.E.303))):
Ri= )  GiGWyWWe,
i,7.k,0(dist)
Rr= > GGmiGWiWu+ > GiGimWieWs

i,k L(dist) i3 (dist)
= Y n(GGGWEWa) + Y m(GiGIW W),
i,5,k0(dist) i,5,k,¢(dist)
Rs=2 >  GiGWimGWeu=2 >  m(GiG;GW; W),
i3k {(dist) i,k (dist)
Riu= Y GGmGWu+2Y  GiGmGunWeu+ Y GiGmGenG Wi
. . .
(dist) (dist) (dist)
= Y GGG W) +2 Y mene(GiG2GWa) + Y njie(GiGiGrG W),
136 1,7,k,0 3,9,k 0 1,9,k 0
(dist) (dist) (dist)

Ris = Y GiGmiGWiGmi +2 Y GiGiniWiGeni + > GiGimWimeG;
ik L )
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Each expression above belongs to one of the following types:

J1 = Z GiGiWiWieWei, Jo = Z 1j(GiGGeWieWi),
i,4,k,0(dist) 0,3,k 0(dist)

Js= Y m(GiG;GWWe), Ji= Y m(GiGIWeWe),
Z‘,j,k,f(dist) i:jzkzz(diSt)

o= Y nm(GiGGLGWy), =Y Q(GiGiGG W),
i,5,k0(dist) 4,5,k £(dist)

Jo= Y (GGG W), o= Y Qu(GiGiGWy),
i,4,k,0(dist) 0,3,k 0(dist)

Jr= Y (GGG W), Ts= Y mnl(GiGi W),
Z‘,j,k,f(dist) i:jzkzz(diSt)

Jg = Z nkﬁgi(GiG?Gng), JlO = Z néﬁéi(GiG?G%)'
i,5,k0(dist) 1,5,k £(dist)

Since |njni| < CO;6, and ]ﬁjkl < Cab;b, the study of J; and J. are similar. Also, the
study of Jg and Jé are similar. We now study Ji-J1g. Consider Ji. It is seen that

1 1
h=— > (X w) (Z W) WieWeeWe = 5 3" WasWaW5e Wy Wae.
i,5,k,(dist) s#i i,J,k,0(dist)
sFEitF£]
Since s can be equal to £ and t can be equal to k, there are three different types:
1 1
Ja=— D> WiWiWe,  Ju=— > WilWuWpWi,
4,5,k 0(dist) 4,5,k 0(dist)
t¢{j,k}

1
J1c = - Z WisWie Wi Wi Wi
ivj.k,E(dist)
s¢{i,0},t¢ {4k}

We now calculate E[JZ,]-E[JZ.]. Take Jj, for example. In order to get nonzero E[WZQKWkaMW K,W e Wie)s
we need either Wy = Wy or each of the two variables (Wye, Wy o) equals to another
squared-W term. The leading term of E[J?] comes from the first case. In this case, we
have Wiy = Wi but allow for Wi, # Wyp and Wy, # W, It has to be the case of
either (k',¢') = (k,€) or (K',¢') = (£, k). Therefore, we have E[W2 WJQkagW,Z,W]%k,Wk/g/] =
E[W?2 I/V2 er,Wz,k,WM] Using similar arguments, we have the following results, where
details are omitted, as they are similar to the calculations in the proof of Lemmas

C
E[J2] < ~ > EWIWW, W W) < > 0:0;65630,0, < C|l6]5,

N4
i 16 H i
7] 7]
C Cloltiens
E[J3) < = > EBWRWiWAWRWE < ——= > 0,0700070,0, < —— 3,
v ikt 16 H ikt 16111
8
E[J2] s% S RWAWIWAWRWE] < —— Y 020207070,6;, < 0”9! .
s 16 H e 16117
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The right hand sides are all o(||6]|®). Tt follows that
E[JZ] = o(||6]|®), under both hypotheses.

Consider Jo-J4. By definition,

1 1

Jo = o Z NiWisWitWigWieeWes, J3 = o Z M WisWii W Wi Wi,
0,4,k 0(dist) 1,9,k 0(dist)
s#Lt£],qFk sFEut#],qAL

1
Jp=—— E M WisWit WigWie Wi
’U\/;} o .
1,5,k £(dist)

s#itj.qi
The analysis is summarized in Table In the first column of this table, we study different
types of summands. For example, in the expression of Jo, WisWyWieWy; have four different
cases: (a) Wl?ZWEZw (b) Wk?ZW[iWiS or WkgWZqu, (C) WkgngWiQk, and (d) WkgngWiSqu.
In cases (b) and (d), Wjs or Wy, may further equal to Wj;. Having explored all variants and
considered index symmetry, we end up with 6 different cases, as listed in the first column of
Table In the second column, we study the mean of the squares of the sum of each type
of summands. Take the first row for example. We aim to study
E[( Y mvEwdm)].
i,5,k,0(dist)
t#j

The naive expansion gives the sum of n;n; E[W2W2EW; W2, Wz, W] over (i, 4, k, €, t,7,5' k', 0/, ).
However, for this term to be nonzero, all single-W terms have to be paired (either with
another single-W term or with a squared-W term). The main contribution is from the
case of Wj; = Wjpy. This is satisfied only when (j',s") = (j,s) or (j',s") = (s,7). By
calculations which are omitted here, we can show that (j',s") = (j, s) yields a larger bound.
Therefore, it reduces to the sum of 17]2- E[(W]%)W&WZW@@W%,] over (i,7,k, 0, t, i, k' 1),
which is displayed in the second column of the table. In the last column, we sum the quantity
in the second column over indices; it gives rise to a bound for the mean of the square of
sum. See the table for details. Recall that the definition of J5-J4 contains a factor of ﬁ in
front of the sum, where v < ||6||3 by (2.E.116). Hence, to get a desired bound, we only need
that each row in the third column of Table 2.5 is

o([1611°[1611%)-
This is true. We thus conclude that
max {E[J3], E[J5], E[J{]} = o([|0]®), under both hypotheses.

Analysis of post-expansion sums with Ny, =5 Consider Js5-Jg. It is seen that
1 1

Js = = Z NiMeWisWitWigWimWei, — Jo = 2 Z MeNeWisWitWigWiem Wi,
i,j,k,£(dist) i,5,k,£(dist)
1 1
Jr = 02 Z W%WistthqWEmW&, Jg = 02 Z NiNeWis Wit WigWim Wi,
i,j,k,0(dist) i,9,k,L(dist)
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Table 2.5: Analysis of Jo-J4.

In the second column, the variables in brackets are paired W

terms.
Types of summand Terms in mean-squared Bound
UJ(WMW&)W [(WQ)WMW& ’K’Wé’ <6 939169?9159@"916’9?/ H9H4||9||§||9||?
1 (WieWei W3, ) Wit E[(W;?EW&WQ)W“] < 09293929 O 1011°116113 116111
gy W WaW )th 1‘*3[(VV&W2W2)W2 Wi < 00293%95’9 0.0k 1917161151111
0 (Wi Wei) W njm'EKW&)WkeWQW Wi < 093929k9392 O o1 1e113 11117
(WquszqW Wie 07 E[(szeWe%quW?WQ)] < 0929392939 9t9 lol°le13le1s
U;(szWez)quW” iy E[(We,WaWE )WiEWE] < C9?9?9i939q9§/ 1911101131111+
Wi Wi 77k77k’ EWWiWiaWi] < C0:0,030:0:0,/07,00 [GIRIER
Wi (WjkWit) FE(WRWR)WEWE, /] < C0;03070,0,0;10p 10117 116113116113
nk(WéWis)Wfk 77k77k’ [(WQ)W&WJZI@WZ%Z‘W]%I@’] < CO20;0700050,:07,00 101" 1011310112
gy (Wi Wis) Wi Wiy i E[(WE W3 W2)W&W5] < CO2020700050,0p IRy
mWEWE Wi, niE[(WJQk)WZzWQWZN 7] < 0929393949295/ l911*1e1311e11%
nk(WeszWeq)Wfk e [(WM/2 Wi W2, W%k’] < 0929 03070040/07, 101119111
nk(WszSqu)ijth E[(W& AWEWARWE)] < 0929293959 0+0q lelienenznels
Wei W5 Weg Wi, [(W&Wqufk)W“] < 0929293929 [T
nk(WkZWg )W2 U%E[(Wkg)W2W2 W2 W%t,} < C’G 0; 93939t0i’9j’9t’ ||9||g||0||?
WVWWaW,, o SW2WAWRWAWE) < C0,62626%0,6,0, lol2le1g1014
o m(WeWaWi )W R E(WEW2WW2WS,] < Co20,0020.0.0,00 o] |o]3]0];
Wi W W3 R E(W, ZWEJW?’WS | < CO20,00620, GIRIGEEE
MWW W) Wiy, R E(WEWEWEWAWR) < C626203626,60,0, I
Wi Wi W2 Wig R EWZWAW) I < Co62630, el 8130611

The analysis is summarized in Table 2.6 We note that J7 can be written as

1
J7 = —
i,3,0(dist)

Z BijeWisWitWiqWiem W,

where ;0 = Z "71%-
ke{i.g,¢}

Although the values of 3;;; change with indices, they have a common upper bound of C||6?.
We treat S3;;0 as [|0]|* in Table as this doesn’t change the bounds but simplifies notations.
Recall that the definition of J5-Js contains a factor of % in front of the sum, where v < [|6]?
by . Hence, to get a desired bound, we only need that each row in the third column
of Table 2.5 is

o([lO11*]1619)-
This is true. We thus conclude that
max {E[JZ], E[J§], E[J7], E[J5]} = o(||6]®),

Consider Jg-J19. They can be analyzed in the same way as we did for Ji-Jg. To save

under both hypotheses.

space, we only give a simplified proof for the case of ||8]| > a[log(n)]?/2. For 1 < ||| <
Callog(n)]?/?, the proof is similar to those in Tables which is omitted. For a constant
Ch > 0 to be decided, we introduce an event

FE = ﬁ?zlEi, where FE; = {\/E‘Gl’ < CO\/GZ»HHHl log(n)}. (2.E.307)
Recall that \/vG; = o(; — ni) = 32,4 (Aij — EAjj). The variables {A;;};; are mutually
independent, satisfying that [4;; — EA;;| < 1 and ), Var(4;;) < >, 0:6; < 60;]|0]1. B
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Table 2.6: Analysis of Js5-.Jg. In the second column, the variables in brackets are paired W

terms.
Types of summand Terms in mean-squared Bound
Wi Wi, njmeny e EWEWE Wi, Wil < C0,03507000,07% 67, 0r [EIRIEE
e W (Wit Wikg) g E(WEWE ) WEWE ] < C6; 93939/5@9 0,00 1o11811011S
njnk(WZWis)Wfk njmkn e E[(WE2)WaW2 Wi, Wz’k’] < CO305630006%,07, 00 lo11® 161316
Js njnk(WZzW ) (Wit Wiq) N E [(W2)W2W;€q)WzZWer] < 0939393%9 0040, lo131e13
i Wa Wi Wig iy E(WE ) WEWEWE, Wi < 0929293959 02,0500 lo11® 1613116
ﬂjﬁk(Weszstm)Wfk njmeng e E(WEWEW i, W2 W%k/] < 0929292929 b 0% 0% [
njnk(WéiWisWZm)(thqu) ning E(WaWaWe, Wawe, )] < 0929393929 50t0q0m lol*fengle
i Wei Wi WemWig mnim/E[(WéWénW;?q)WQ W2 < 0939293929 087 lol°fensie
nkahW Whim nzngnglE[(WI?m)ngWQWl/ ,W%t,] < C; 9 03929,50 6 0,020, 110]*]10]|3]10
e Wi Wi, e ne BIWEWEWE,Wi] < CO6; 92949 00707 1911011
W2 (W5 W) Wi ninene B(WZW?, ka)W&We/ /] < C6; 929394&9 O 03 07, lol°fenzle
UkﬁeWéijWJq NNk e [(W2 )W&Wkaw W] < C0:0307070,0,07,07, [N
e (WeiWis) W5, Wi, nin?E[(WezWQka)WQW%y] < 09?91'92927‘989,:%9]"% 1911*19115]10
Js MWW Wi i E [(Weszm)W?’W?’ | < CO70,03070m0; 10115110113
UanWEiWisW]?)k e E [(W&WQ)W?’ W?’/k/] < CO70,0707050,/67, 1o1°16113]10
nkn[WZiWiQk_Wth nenine E[(W2)W3, W2 Wfk,W%t,} < C030;0%036,0;:0%,0, lon*else
nkm(WaWzs)(W]tWaq)ka iy E(WEWEWS, W2 T Win)] < 0929293939 01040m 19[1*19115]10
MneWe W WJqum 77;377@ [(Waw2, ka)W4] < 0929293939 Om lo[1*fengle
nka&WmW]kWJq nenne E[(WAW? w2 )W2 W] < 09203929395%62, lel°lensle
nkUEWEiWiQijthq mempne E[(WEWE W2 )W2 Wfk/] < 09?9?9;39?@%9;3 1611°11e15116
IIHIIQWE 1o11* [WZWQW@ /Wft/] < C|10]1*0:0;0,610,10: 0061 1911*1011%
19117 Wez( JtWJQ) 101*E [(WQWQ)W&We/ 2] < Cl10]1*6; 9294@0 0i0p 1o11°[1e11$
101> (W zs)Wf 1011 E[(W, Wez AWEWE < C||t9||493t9 00050:0; 040y 16[1*10113]1e
||9||2sz [l [W WewW?? /] <C||t9||4¢92t9 10007010 lo1*116113
101> (Wi W, )(thqu) [l [(WQW2 w3 )ngWg/} < C\I(9II49392W9 0:040, 1911°l19113(10
T Jo)Pw UWq 10[1* E[(W )W&WQWEI Wi < C||9|\4939?949q9395f [N
1011 (Wes Wis Wem )W 1o1*E [(Wez Wem)WQ W%t’] < C|10]1"070;6705010m0,: 0y o1*11el?
1011 Wei W W, 1o]*E [(W&Wzm W3W3 ] < C011670;676,0, 16111911310
101> (Wes Wis W) (Wi Wiq)  ||0]]* E[(W7W, WemW2 W2 )] < C0*076207050,0,0, 1o11™11011{
101> Wes W W Wig [l [(WeszmW2 )W4] < C||0[1*07 6367040, 101116113
101 We, Wi W, ||9||4E[(Wm) WeJWQ W2 )< C||9||49392¢9?’92 1611116113
Wi Wi nin; E[(W, )W“W‘} /] < ch; 0;0;00::0; 19115110111
s e (W3 Wis) Wie iy B[(W, Wu)W?’W?’ ] < 0939 939e9 0 19115110113
mene(WiWisWig) Wi iy E [(WQWQ Wké)W4] < 09292939?9 2 o1 1e151e
e (Wis Wit WigWjm ) Wie 771377@ (W3 WQWQ Wi Wi < 0929293939 501040m lo[*fensgle
Mne Wi WigWjm Wie i [(W2 W2 Wké)W2 Wi < Cﬁié’?@%@@s@q@meiﬁy 16111611510
MWW Wie nkU?E[(Wﬁe)WQ W Wfle2 ] < C0:0;07070504010 050y 1o11el3

Bernstein’s inequality, for large n, the probability of Ef is O(n
probability union bound, we find that the probability of E¢ is O(n~

V = On the event E°,
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2.E. Properties of Signed Polygon statistics

QF = QF = 0; otherwise, V > 1 and |Q¥ — Q*| < n%. Combining these results gives

E[|Qh — Qnl* - Ipe] < - O(n= /20,
With an properly large Cj, the right hand side is o(||0||®). Hence, it suffices to focus on the
event £. On the event F,

ol < > meQuil|GiGEGr Gl
1,5,k,0

C Y (b0 )\/Hieﬂz@kef!\@I!?[IOg(n)]B
< o800
1,3,k,¢ \/1)>5

Ca Qﬁ; (Z 93/2) (Z 0. ) (; 92/2> (; 0;/2)
< Callog(n)]*/? (Z 93/2)

/'\

16113 o
- CO‘%}E)/Z (2 93)3/2<; 91-)3/2

< Callog(n)]"?|10]°,
where the second last line is from the Cauchy-Schwarz inequality. Since ||0]| > «[log(n)]
the right hand side is o(||@||*), which implies that |Jg|?> = o(||6]|®). Similarly, on the event £,

ol < Y IneQuil|GiG3 G

5/2
)

2,5,k,0
W 620211 1o (n)°
<C a@z
Jz,;g 2 NG

s W(Z ) (S0 (£ 0) (S)

Callog(n) 2
< W(H@H\/W )elzlel

< Caflog(n)||6]*;
again, the right hand side is o(||f||*). Combining the above gives
max {E[Jg], IE[J%O]} = o(]|0]®), under both hypotheses.

So far, we have proved: for each Ry with Ny, = 5, it satisfies E[R2] = o(||0||®). This is
sufficient to guarantee (2.E.302)-(2.E.303) for X = Ry.

.There are 7 such terms, including Ri9-R2p, R23-Ro4, Rog-R3p, and R3s. We plug in the
definition of 7;; and d;; and neglect all factors of {; (see the explanation in (2.E.302)-
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2. OPTIMAL ADAPTIVITY OF SIGNED-POLYCGON STATISTICS FOR NETWORK TESTING

(2.E.303). It gives (G; = 1; — m;):
Rg= Y GGG Wi W,
ik (dist)
Ry = Z GiGiWirGrG oWy,
ik (dist)

Roz = Z GiG3GL(mGini + 2G G em; + G Gi)
3,7,k 0(dist)

= ) amGiGIGGE+2 > nmGiGIGIG + Y miGIGIGE
i,k 0(dist) i,k 0(dist) i,k 0(dist)

=3 Z nzﬁszGgGkG% + Z W%G?GgGZa
i,5,k,0(dist) i,5,k,¢(dist)

Rou= Y GiGi(n;iGi+ Gimk)GeGe(neGi + Goms)
0.4k, 0(dist)

=4 ) mGiGGiGy,
i,5,k,€(dist)

Ryg= Y GiGGrmGe+ Grne)We
i, (dist)

= Y mGGEGGWLi+ Y mGGG Wy,
i,4,k £ (dist) i,5,k,¢(dist)

R3p =2 Z GiGj(n;Gr)GrGeWy = 2 Z ;GG GG Woi,

i,5.k,0(dist) i.5.k,0(dist)
Rp= Y  Q4GGGGy.
0.5,k 0(dist)
Each expression above belongs to one of the following types:

Ki= Y GGG WiWa, Ky= > GiGiGGWyWy,
i,j,k,é(dist) ivjvkve(diSt)

Ky= ) mGiGGG Wy, Ki= ) nGGGWe,
i,5,k0(dist) 1,5,k £(dist)

Ks= ) nmGGGGY, Ky= > QuGiGiGiGE,
i,5,k,0(dist) 1,5,k £(dist)

Ke= Y nGGG;.
i,5,k,€(dist)

Since |n;ni| < CO;0, and |S~),k] < Cab;by, the study of K5 and K[ are similar; we thus omit

the analysis of K7. We now study K;-Kg.

Analysis of post-expansion sums with Ny, = 6 Consider K. Re-write

Ki=— > WisWWjWiem W Wai,

i,7.k,0(dist)
s#GE£G,qFJm#ER

Note that Wi, WieWy;Wis has four different cases: (a) W,?KWK%, (b) WEEWﬁWiS, (c) WieWy;

(2

and (d) WieWeiWin Wis. At the same time, W;;Wj, has two cases: (i) I/ka, and (ii) W Wjq.
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2.E. Properties of Signed Polygon statistics

This gives at least 4 x 2 = 8 cases. Fach case may have sub-cases, e.g., for (WgZngWis)Wﬁ,
if (s,t) = (j,4), it becomes WMW&W By direct calculations, all possible cases of the

summand are as follows:

(WEWaW5,  (WEWiR)(WiiWig), (Wi WaWis) W},

Wi WaWi, W WaWie)(WiWg),  WEWaWiWiqg,

(WieWaWi)W5,  (WieWaW3) (WiWiq),

(WieWeiWiemWis) W5, WieWeiWim W5,

(WikeWeiWinmWis) (Wi Wig)y  WidWeiWim W Wigs
WieeWe Wi, W (2.E.308)
Take the second type for example. We aim to bound E[(}_; ;1 4, , W2,WZEW ;i W;q)?], which

is equal to Y i jksitg E[WgéWg%thquWg,e,WEQ,i,Wj/t/Wj/q/]. For the expectation to be
i\ g Kt g
nonzero, each single W term has to be paired with another term. The main contribution comes

from the case that Wy Wy = W Wj,. It implies (5',t',¢") = (4, t,q) or (j',¢',¢") = (4,4, 1).
Then, the expression above becomes
> E(WRWR)WRWEWR Wil <C > 0:676,070,0,6:61,67

i7j7k7£7t’q i7j7k7£7t?q
WK ALK
< C|6]°1015.-

There are a total of 9 indices in this sum, which are (4, j, k, £,t,q,4', k', ¢'). Similarly, for each
type of summand, when we bound the expectation of the square of its sum, we count how
many indices appear in the ultimate sum. This number equals to twice of the total number
of indices appearing in the summand, minus the total number of indices appearing in single
W terms. For the above example, all indices appearing in the summand are (i, j, k, ¢, ¢, q),
while indices appearing in single W terms are (j,t,q); so, the aforementioned number is
2 x 6 —3 = 9. If this number if mg, then the expectation of the square of sum of this type is
bounded by C||0||{*°. We note that K; has a factor U% in front of the sum, which brings
in a factor of \GLH? in the bound. Therefore, for any type of summand with my < 8, the

expectation of the square of its sum is O(1), which is o(||0||®). As a result, among the types
in (2.E.308]), we only need to consider those with mg > 9. We are left with

(W W)Wz, (WEWRYWuWiq),  (WiWeWis) W5,
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We have proved that the expectation of the square of sum of the second type of summands
is bounded by C/||0]12[101|S = o(||0]|®]|€]|3). For the other two types, by direct calculations,

2
B|( X wawang)’| < X mOvRwAWRWEWEWE

i,k (dist) bkt
t#j i',g7 Kt
< D 0,0;040701040,0,070,
0,9,k Lt
il,jl7k/7£/,t/

< CIOI91F = oClolFI013),

2
Bl X wawamai)| < 5 mwiwRwRWAWEE)

1,4k, 0(dist) 1,7,k 0,s,t
S¢{/L7€}7t¢.]7 j”kl)t,
(s:)7(50)
<C D> 070,64070.6,0,0,0y
i7j7k7€787t
7K

< CIOIP1913101T = o(llel[lelf5)-
Combining the above gives
E[K?Z] = o(]|6]®), under both hypotheses.

Consider K5. Re-write

1
Ko=— Y WaWiWieWen Wi We.
4,5,k,L(dist)
s Ik, mAl

Note that W, Wi, Wj; has three cases: (a) ng’j, (b) W,?jot (or quWij), and (c) Wy Wi Wiy
Simiarly, W, We; Wis has three cases: (a) W2, (b) WZWis (or WneW2), and (¢) WipeWeWis.
By index symmetry, this gives 3 + 2 + 1 = 6 different cases. Some case may have sub-cases,
due to that (s,¢) may equal to (j,i), say. By direct calculations, all possible cases of the
summand are as follows:

WiiWe Wis(WiWas), Wis(WaeWaWis),  (WEW;0) (Wi Wis),

Wi WaWe, (Wi W) WaeWeWis), Wi WEWonWai,

(WareWiiWit) WineWeiWis),  WaWijWiWoiWei, Wi WEWE W
As in the analysis of , we count the effective number of indices, mg, which equals
to twice of the total number of indices appearing in the summand minus the total number
of indices appearing in all single-W terms. For the above types of summand, mg equals to
8,8,8,8,8,8,7,8, 6,4, respectively. None is larger than 8. We conclude that the expectation
of the square of sum of each type of summand is bounded by C||6||§. We immediately have

1
E[K3] = i Cll0I§ = 0(1) = o(||0]|®),  under both hypotheses.

Consider K3. Re-write

1
K3 = 2\ /v Z MeWis Wit WigWiem Wep W
1,5,k,0(dist)
57’51'7757’5]'7(175j:m7ék7p?55
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Note that W;;W;, Wi, has four cases: (a) W;’k, (b) W]-Qijt (or WjZijq), (c) WJZthm, and
(d) W;iWjqWim. At the same time, W;sWy,Wy; has three cases: (a) Wj, (b) W2iW;s (or
Wéng), and (c) WeWisWy,. This gives 4 x 3 = 12 different cases. Each case may have
sub-cases. For example, in the case of nk(Wkajt)(WéWis), if (s,t) = (j,1), it becomes

nkakWﬁ-Wé. By direct calculations, we obtain all possible cases of summands as follows:

MWW, mWk(WeWis),  meWi(WeWisWap),  me(Wa W) Wi,

mWaWi) WiWis),  meWaWiWe,  ne(Wi W) (WeWisWay),

Wi IWEWeiWep, Wi Wam)Weis k(Wi Wim)(WEWis), meWEWEWE,

M (WiiWin) WeWisWap), Wi Wi WeWep, e (WieWjqWien) Wi,

e WitWigWem) WiWis),  meWiWiWin Wi, mWu W WEWE,

(Wit WigWian) WeWisWap),  meWiW i WiemWeWep, Wi Wig Wi WeiWe.
Same as before, let mg be the effective number of indices for each type of summand, which
equals to twice of number of distinct indices appearing in the summand minus the number
of distinct indices appearing in single-W terms (see and text therein). By direct
calculations, mg < 10 for all types above. It follows that, for each type of summand, the
expectation of the square of their sums is bounded by

- CIOIE® < ClOI ™ = o) = of|9]")

We immediately have
E[K3] = o(]|0]]®), under both hypotheses.

Consider K4. Re-write

1
Ky =

o Z NeWis Wit WigWiemn Wi W
i,j. k. (dist)
s,t,q,;m,p

Note that W;sWy; has two cases: (a) WZ and (b) Wy W;s. Moreover, there are a total
of six cases for W WqWim Wiyt (a) W]4k, (b) W]?’kI/Vjt, (c) WJZijthm, (d) WﬁW,?m, (e)
VVjtVqung, and (f) Wy W;qWim Wiy It gives 2 x 6 = 12 different cases. Each case may
have some sub-cases. It turns out all different types of summand are as follows:

UEWE%W;lk? WWE%(WJSijt)a WWeZi(Wngthka)y nZWZZi(WJZtWI?m)’
Wi (WieWigWim)s Wi (WiWigWimWip),  1e(WeiWis) Wi,
ne(WeWis) Wi Wie),  meWaWia Wi, ne(WaWis) (WA W5eWian),
MWW 3 Wi Wi, ne(WaWis)WiWi), W Wi Wi,

e WaWie) WieWigWi),  meWeaWEW; Wi, neWaWWigWis,,
Ne(WeiWis) WiWiaWiemnWip),  1eWe; ij WigWiemWip.

Same as before, for each type, let mg be the effective number of indices. It suffices to focus

on cases where mg > 11. We are left with

WZWZ%(W]%WICQm% angz(W]tW]qugm)a nﬁ(W&Wzs)(WJZtWI?m)
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By direct calculations,

E |:( Z ’I%W&W ka>:| S Z NeNer E[W&W kaWE’ /W Gt Wk" ’
z,j,k,l(dzst) i7j7k7€7t1m
i4jmtk i gk
<C > 0i0;6167616m0:00,070, 0,
1,5,k £,t,m

i',j’,k’,€’7t',m’
< o161 = o(lI61P116111°),
E[( > mwgwjtquwgmﬂ < > e B(WW)WEWE Wi Wi
i,7,k,0(dist) i,3,k,6,t,g;m
t#,q7),m#k iR m
t

SC Y 0i6704070,0,600; 61670

i7j7k77£7t7q7m
ik m!
< Cl61°11611F = o([161I*116111°),
E{( Z nszinsWthm>] <C Z i E(WEW W Wi Wiy Wi,
z,],k,f(dzst) i,j,k,ﬁ,s,t,m
sit£§,m£k 7'kt m/

(5:6)# (5.2, (s,m) # (k1)
<C Y 6070;61670.0,0,0;040y6py

i7j7k7£7s7t7m
j/,k/,t/’m/
(191%16111°)-
It follows that
1
E[K3] < CENGE -o(||0]3]10]1%) = o(]|0]®), under both hypotheses.

Consider Kj-Kg. To save space, we only present the proof for the case of |8 > [log(n)]?/2.

m’]

/]

When 1 < [|0]| < C[log(n)]*/?, we can bound E[K2] and E[K?] in the same way as in the
study of Jy1-Jg, so the proof is omitted. Let E be the event defined in (2.E.307). We have
argued that it suffices to focus on the event E. On this event, |G;| < C/0;]|0]|1 log(n)/v. Tt

follows that
0,620:6711013 [log(n)]?

v3

|Ks| <C > (6:6)
i,j,k,0

< S (S0)(S0) (S7) (S0)
< SEL o)) o

< Cllog(n)*||6],
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where we have used the Cauchy-Schwarz inequality (3, 0?/ 2) < |19|I\/1|0]]1. Similarly,

0:0;61 10113 [log(n)]?
2 7Yk 1
|K6ygc§”9[ "

7‘7

CL
< Cllog(n 3 Z 0,0;0,,0
oy 2,
< Cllog(n)]*[10]*.
When ||0]| > [log(n)]?/2, both right hand sides are o(]|0]|*). We immediately have
max{E[K3], E[KE]} = o(]|0]|°).

We have proved: Each Ry with Ny;, = 6 satisfies E[R2] = o(||0||®). This is sufficient to
guarantee (2.E.302)-(2.E.303) for X = Ry.

.There are 3 such terms, R3;, R33 and Rs4. Consider R3;. By definition,

1
Ry = Y  GGIGG Wy = 3 > WisWWiq Wi Wiy Wy Wos.
i,5,k0(dist) i,7,k,€(dist)

sF#4UF£,q7 ],
m#k,pF#k,y#L

We note that Wy;W;, Wy, has three cases: (a) ngi, (b) WéWiS, and (c) We;W;isWey,. Moreover,
Wit WigWim Wiy has six cases: (a) Wi, (b) W Wy, (¢) WAW;Wim, (d) WAWZ . (e)
W/th/quW,fm, and (f) W WjqWimWip. This gives 3 x 6 = 18 different cases. Slnce each
case may have sub-cases, we end up with the following different types:

WiWi., Wia(WaWie), Wia(WiIW;iWem), Wa(WAWE,),
Wei(thquWka) WZ(thqukaWkp)> (szzW )ija
(WiWis) Wi Wie),  WEWRW2, (WiWis) (Wi Wi W),

WZ'LW W2 kav (WE'LW )(WQ ka) WZZ W3 Wkrm

(WaWis) WieWigWi),  WaWEW Wi, WaW Wi Wi,
(WiWis) WiWiqgWinWip),  WaWEWiq Wi Wiy,

(WaWisWe ) Wik, (WeWisWe ) (Wi Wie),  WeWe, Wi W2,
(WZZWZSny)(WJZijthm)v WZiWZyW W Wim, ngW W Wi,
(W&WZSW@)(WQ W) W&'WzyW W2, W&W W,
(W&WZSWZy)(thquka)y WéiWKijinqum, Wgz-WgijthqW,gi,

WEiWJZinquiﬁ (WeiWisWey ) (Wit WiqgWim Wip),
W(i W(y I/I/j2l W]q ka Wkp ) Wfi W]2z qu Wk?f Wkp :
For each type, we count my, the effective number of indices. It equals to twice of the number

of distinct indices in the summand, minus the number of distinct indices appearing in all
single-W terms. It turns out that mg < 12 for all types above. By similar arguments as in

(2.E.308), we conclude that
E[R3] < — - Cll0]I7" < C|19]]7°~" = O(1) = o(]|0]|®),  under both hypotheses.
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Analysis of terms with Nj;, > 7 Consider R33-R3s. We only give the proof when ||6]|° >
[log(n)], as it is much simpler. In the case of 1 < ||0]|% < C[log(n)]”, we can follow similar
steps above to obtain desired bounds, where details are omitted. On the event E (see

(2.E.307) for definition),
|Rss| < > el |GFG3GR Gl
ig kb

W?e?rﬁwneu [log(n)]7
M.M (Vo)

SW@)@@)@@)@@%)

oo(n 7/2
< W 61 1ol /TT)
1

< Cllog(n)]"26]]
where we have used the Cauchy-Schwarz inequality ), 9;’/ 2 < 10111/11€]]1 in the second last
line. When ||0]|® > [log(n)]”, the right hand side is o(||#||*). Similarly,
[Raa < ) |GFG3GRGH|
ZA7‘j7’€7e
<y 000 logtr)
i,,k,L
< Cllog(m]*.
When [|0]|® > [log(n)], the right hand side is o(||0]|*). As we have argued in (2.E.307)), the
event F° has a negligible effect. It follows that
max{]E[R%l], E[R3,], IE[R§4]} = o(]|0]1®), under both hypotheses.
This is sufficient to guarantee (2.E.302))-(2.E.303) for Ry.

We have analyzed all 34 terms in Table The proof is now complete.

Proof of Lemma

Consider an arbitrary post-expansion sum of the form
> aibjecredy,  where a,b,c,d € {Q, W, 5,7, €}. (2.E.309)
3,5,k 0(dist)
Let (Ng, Nw, Ns, N7, N¢) be the number of each type in the product, Where these numbers
have to satisfy Ng + Nw + Ns + Ny + N. = 4. As discussed in Section 3 (Qn— Q)
equals to the sum of all post-expansion sums such that N, > 0. Recall that

%k v v
€ij = (nin; —miny) + (1 — V)W?j —(1- V)(sz’j-
Define
* % v
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Then, €;; = egjl.) + 62(]2-) + fz(?)- It follows that each post-expansion sum of the form (2.E.309)
can be further expanded as the sum of terms like

Z a;jbjrcredei, where a,b,c,d € {Q W, 6,7, e e? 3)} (2.E.310)

i,7,k,£(dist)
Let (Ng, Nw, Ns, Ni) have the same meaning as before, and let Ne(m) be the number of (™
term in the product, for m € {1,2,3}. These numbers have to satisfy Ng + Ny + N5 + N7 +
Ne(l) + Ne(z) + Ne(g) = 4. Now, (@, — Q) equals to the sum of all post-expansion sums of

the form (2.E.310) with

NY 4+ N 4 NO) > 1, (2.E.311)

Fix such a post-expansion sum and denote it by Y. We shall bound |E[Y]| and Var(Y').

We need some preparation. First, we derive a bound for \68)] By definition, n; =
(1/V) 3254 iy and ) = (1//v0) > ; Sij. 1t follows that
1
n = ﬁm + —= Q.
NN
We then have

ninM = —min; + i(mﬂj;’ +1i8%i) + —Qiifly;.
vo vo v

Note that v =37, Q;; and vg = }_,; i < 10113. It follows that vo—v = >, Q; <>, 62 <
10]|>. Therefore,

. v \/17 1
[nim; — ming| < ‘1 — —min; + —— 05 + 0 Qi) + — QY5
Vo Vo Vo

Clol? C g2 o, O g
< 0305 + = (005 4 0;07) + —— - 070
19112 16112 ez
101> | 6 +6;  0:0
< C,;0; - +
! <||9||21) 1612 H9H%>
Since [|0]|? < Omax||0]|1, the term in the brackets is bounded by Cfuax/[|0]l1. We thus have
,6§;>| < C[";TX - 0,05, for all 1 <i # j <n. (2.E.312)
1

Second, in Lemmas we have studied all post-expansion sums of the form
7= Z a;jbjkCrede;, where a,b,c,d € {SN), W, 6,7},
0,5k, 0(dist)
where (Ng, Nw, N5, N7) are the numbers of each type in the product. We hope to take
advantage of these results. Using the proved bounds for |[E[Z]| and Var(Z), we can get

E[Z%] < C(a®)"a - f(6; Ng, Nw, N5, Ny), (2.E.313)

where a = |A\2|/A\1 and f(0;mq, ma, m3, my) is a function of § whose form is determined by
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(mq,ma, m3z, my). For example,

(f(ﬁ; 0,4,0,0)=|6]3, by claims of X; in Lemmas [15§J17]
f(6;4,0,0,0) = ||16]|*°, by claims of X¢ in Lemma [I7}
£(6;3,1,0,0)=10|%]|0]|S, by claims of X5 in Lemma [I7}
£(6;1,2,1,0)=10]|4]16]lS, by claims of Ya, Y3 in Lemma
£(0;1,1,1,1)= 0], by claims of Rg-Rj1 in the proof of Lemma

If there are more than one post-expansion sum that corresponds to the same (Nf27 Nw, Ns, Ny),
we use the largest bound to define f(0; Ng, Nw, N5, N7). Thanks to previous lemmas, we
have known the function f(6;m1, ma, mg, my) for all possible (my, ma, ms, my).

We now show the claim. Recall that Y is the post-expansion sum in (2.E.310)). The key is
to prove the following argument: For any sequence x,, such that \/log(]|0]]1) < x, < ||0||1,
(1) (2) (3)
HiaX>Ne ( Th )Ne Vs
19113 19113

E[Y?] < C(a?)Ma x (

x f(0;m1, ma, m3, ma) (2.E.314)

mi=Ng+ND+NP| mo=Nyy,
ms=Ns+N | my=Ny,

where (Ng, Ny, Ns, N, NE(I), N€(2), Nﬁ(g)) are the same as in (2.E.310))-(2.E.311)), and f(0; m1,ma, ms3, my)
is the known function in (2.E.313]).
We prove (2.E.314)). Let D be the event
D ={|V —v| < [|0]1zn}.
In Lemma we have proved E[(Q, — Q)? - Ipc] = o(1). By similar proof, we can show:
when |Y'| is bounded by a polynomial of V' and ||#]|; (which is always the case here),
E[Y? - Ipe] = o(1).

It follows that

E[Y?] <E[Y?-Ip]+o(1). (2.E.315)

We then bound E[Y?2 - Ip]. In the definition of Y, each € term introduces a factor of
(1 - 7), and each ¢ term introduces a factor of —(1 — 7). We bring all these factors to
the front and re-write the post-expansion sum as

X, X

Z aijbjxcredy;.
ivj. ke (dist)

(3) v NE(2)+N5(3)
v (- )
(-1) -

After the factor (1 — {7) is removed, ¢® becomes n;1;; similarly, ¢®3) becomes ;5. Therefore,
in the expression of X,
aij, bij, cij, dij € {ﬁij,Wij,5ij,77ij,€£]1-),77¢77j},
number of 7;n; in the product is N(z),
Tl P o (2.E.316)
number of ¢;; in the product is Ns + N7,

number of any other term in the product is same as before.
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v < @l _ oy 2
On the event D, |1 — | < clor = O(Il9ll1)' Hence,

o >N52>+N£3>
10111

Y| < C( | X, on the event D.

It follows that

n

e -E[X?. (2.E.317)

) 22 \NO4N®
E[Y®-Ip] < C’( )

To bound E[X?], we compare X and Z. In obtaining (2.E.313)), the only property of Q we
have used is

Q5] < - CO;6;.
In comparison, in the expression of X, we have (by (2.E.312)) and (2.E.117))

~ 0 max
|QZ]‘ <a- CGiﬂj, ’6,5]1)| < Hrgﬁ . CGiHj, |’I’]ﬂ]]| < 0919] (2E318)
1
If we consider (a/Va - (ﬁlgﬁ’l‘) & 1N€(2))_1X and (o¥2)~1Z, we can derive the same upper

bound for the second moment of both variables, except that the effective Ns in X should be
Ns + Ne(g) and the effective Nﬁ in X should be Nﬁ + Ne(l) + NE(Q). It follows that
2

N, e
E[X?] < O(a?)Va x (Hrgﬁ;)
1

x f(6;m1, ma, mz, ma) (2.E.319)

m1=Ng+ND+NP| mo=Ny,
m3:N5+N€(3), ma=DNp.

We plug (2.E.319)) into (2.E.317)), and then plug it into (2.E.315)). It gives (2.E.314)).
Next, we use (2.E.314) to prove the claims of this lemma. Under our assumption,

we can choose a sequence x, such that /log(||0]1) < =, < ||0]]1/]|6]|*>. Also, note that
16111 > Oac |01 > [6]]. Then,

0 T
ar=o([0172), n=o(]|6]| 7). (2.E.320)
101 101]]1
As a result, since Ne(l) =+ N€(2) + NE(S) > 1, (2.E.314)) implies
E[YQ] = O(He”_4) ' f(e;m1>m27m37m4)7 (2E321)

for m; = Ng + Ne(l) + NG(Q), mo = Ny, mg = N5 + Ne(g) and m4 = Ny. We then extract
f(0;my1,ma, m3, my) from previous lemmas. Recall the following facts:

e Under the null hypothesis, for any previously analyzed post-expansion sum Z, [E[Z]| <
C||6||* and Var(Z) < C|0)|®.

e Under the alternative hypothesis, except Zi,j,k,e(dz‘st) ﬁijﬁjkﬁwﬁgi, for all previ-
ously analyzed post-expansion sum Z , |E[Z]| < Ca?||0||® and Var(Z) < C||0]® +
Calllo|®]0]3.

Therefore, under both hypotheses, except for (my,ma, ms, mqs) = (4,0,0,0),
F(0;ma,ma,mz,ma) < C(|0]° + 101" + l0]*[16113) < Cllo]*. (2.E.322)
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Consider two cases for Y. The first case is Ng + Ne(l) + Ne(Q) # 4. Combining (2.E.321|)-
(12.E.322)) gives

E[Y?] = o(|6]~) - Cll6]I"** = o(|6]®)-
The claims follow immediately. The second case is Nﬁ + Ne(l) + Ne(z) = 4. In this case,

F(8;m1,ma, m3,ma) = f(6;4,0,0,0) = [|6]|*°.

if N + N2 > 2. then by (B.E.314) and (2.E.320),

E[Y?] = o(|6]7%) - Cl6]I"° = o(|6]®)-
The claims follow. It remains to consider Ne(l) + Ne(z) =1 (and so Ng = 3). Write for short
S=1-&. By [2.E.316),

(2)
y = §Ne - X, where X = Z a;ijbjkcredy;,
0,3k, 0(dist)

and a;j, b;j, ¢ij,d;; can only take values from {Qij,eg),ninj}. So, X is a non-stochastic
number. Using (2.E.318)), we can easily show
N

0 e
< N= max 8.
X] < Ca®a (7 ) ol

1 2 , _
When (N, N?) = (1,0), we have Y = X. By [2E320), %= = o(||6]| ~2). Tt follows that
Var(Y) =0,  [E[Y]|=|X]| < Ca®-o(|0]|7%) - [|0]° = o(a™]|0]).
This gives the desired claims. When (Ne(l), Ng(z)) =(0,1), we have Y =5 - X. So,
V] = |X]-]S] < Ca®||6]|° - |S].
Note that S = 1 — &%, where v = E[V]. Using the tail bound (2.E.290)), we can prove

Vo
E[S?] < C||0||;2. Therefore,

Ca®|0]*
E[Y?] <
1913
where the last inequality is due to [|0]|* < ||0]|1]|0]|3 (Cauchy-Schwarz). The claims follow

< Ca®ll6]*10]5,

immediately. O
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Three

Estimating the number of communities by
Stepwise Goodness-of-fit

3.1 INTRODUCTION

In network analysis, how to estimate the number of communities K is a fundamental
problem. In many recent approaches, K is assumed as known a priori. See for example
Chen et al. (2018); Gao et al.| (2018); |[Karrer and Newman (2011); Ma et al.| (2020)); Zhao
et al.| (2011); Xu et al. (2020) on community detection, Jin et al.|(2017); [Zhang et al.| (2014)
on mixed-membership estimation, and Liu et al.| (2017)) on dynamic community detection.
Unfortunately, K is rarely known in applications, so the performance of these approaches
hinges on how well we can estimate K.

The primary interest of this chapter is how to estimate K. Given a symmetric and
connected social network with n nodes and K communities, let A be the adjacency matrix:

1 if node 7 and node j h d
Aij:{ , if node ¢ and node j have an edge, 1<ij<n. (3.1.1)

0, otherwise,
As a convention, self-edges are not allowed so all the diagonal entries of A are 0. Denote the
K perceivable communities by N1, s, ..., Ng. We model the network by the widely-used
degree-corrected block model (DCBM) Karrer and Newman| (2011)). For each 1 <i <n, we
encode the community label of node i by a vector m; € RE where

i € N = mi(k) =1 and m;(m) = 0 for m # k. (3.1.2)
Moreover, for a K x K symmetric nonnegative matrix P which models the community

structure and positive parameters 601, 60o, ..., 08, which model the degree heterogeneity, we
assume the upper triangular entries of A are independent Bernoulli variables satisfying

P(A;; = 1) = 0,0, - 7 Pm; = Qyj, 1<i<j<n, (3.1.3)

where (2 denotes the matrix OIIPII'O, with © being the n x n diagonal matrix diag(6s, ..., 0,)
and II being the n x K matrix |7, w9, ..., m,]. For identifiability, we assume

all diagonal entries of P are 1. (3.1.4)

Write for short diag(Q2) = diag(211,Q22,...,Qun), and let W be the matrix where for
1<i,5 <n, Wi = Ajj — Q; it i # j and W;; = 0 otherwise. In matrix form, we have

A =Q—diag(Q) + W, where we recall Q = OIIPII'O. (3.1.5)
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3. ESTIMATING THE NUMBER OF COMMUNITIES BY STEPWISE GOODNESS-OF-FIT

In the special case of 6; = 6y = ... = 6,, DCBM reduces to the stochastic block model
(SBM) Holland et al.| (1983). In this paper, we focus on DCBM, but the idea is extendable
to the degree-corrected mixed-membership (DCMM) model |Zhang et al. (2014); lJin et al.
(2017)), where mixed membership is allowed; see Remark 3 below.

Real world networks have a few interesting features that we frequently observe.

o Severe degree heterogeneity. The distribution of the node degrees has a power-law tail,
implying severe degree heterogeneity. Therefore, the sparsity level for individual nodes

(measured by the number of edges) may vary significantly from one to another.

e Network sparsity. The overall network sparsity may range significantly from one
network to another.

o Weak signal. The community structure is masked by strong noise, and the signal-to-
noise ratio (SNR) is usually relatively small.

For analysis, we let n be the driving asymptotic parameter, and allow (0,11, P) to depend
on n, so that DCBM is broad enough to cover all interesting range of these metrics.
Let 0 = (61,02,...,0,), Omar = max{61,...,0,}, and 6., = min{6y,6s,...,60,}. Let
A, A2, ..., A be the K nonzero eigenvalues of €2, arranged in the descending order of
magnitudes. The following were suggested by existing literature (e.g., Jin et al. (2019); Jin
(2015)). First, a reasonable metic for network sparsity is ||f|| and a reasonable metric for
the degree heterogeneity is 0pnaz/0min. Second, the range of interest for ||0]] is

Cv/log(m) < |I6ll < Cv/m, (3.1.6)
where C' > 0 is a generic constant. Third, the signal strength and noise level are captured
by |Ax| and |[W|, respectively. When 6,45 < C0ppipn, and some mild conditions hold (e.g.,
1P| <C),

A= |6, and |[W|| = a multi-log(n) term -v/A; with high probability, (3.1.7)
(examples for multi-log(n)-terms are /log(n), loglog(n), etc.), so a reasonable metric for
the signal to noise ratio (SNR) is [Ak|/vA1. When 0,42 /0min — 00, we need an adjusted
SNR; see Section We consider two extreme cases.

e Strong signal case. |A1],|Az2], ..., |\k]| are at the same magnitude, and so SNR =< v/ ;.

o Weak signal case. |Ak|/v/A1 is much smaller than /A; and grows to oo slowly as
n — oo (in our range of interest, A; may grow to oo rapidly as n — oo, so for example,
we may have SNR = loglog(n) and A\; = \/n).

Section suggests that when SNR = o(1), consistent estimate for K does not exist, so
the weak signal case is a very challenging case. Motivated by the above observations, it is

desirable to find a consistent estimate for K that satisfies the following requirements.

e (R1). Allow severe degree heterogeneity (i.e., 04z /0min may tend to oo).
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e (R2). Optimally adaptive to network sparsity, where ||f|| may be as small as O(/log(n))
or be as large as O(y/n).

e (R3). Attain the information lower bound. Consistent for both the strong signal case
where SNR is large and the weak signal case where SNR may be as small as log log(n)

(say).

Example 1. Recently, a frequently considered DCBM is to assume P = Py and 6; < /o,
for all 1 <4 < n, where a,, > 0 is a scaling parameter and Py is a fixed matrix. It is seen
that Aq,..., \g are at the same order, so the model only considers the strong signal case.

Example 2 (A special DCBM). Let ey,...,ex be the standard basis vectors of R,
Fixing a positive vector § € R™ and a scalar b, € (0, 1), we consider a DCBM where K is
fixed, each community has n/K nodes, and P = (1 —by,)Ix +by1x 1. In this model, (1—by)
measures the “dis-similarity” of different communities and is small in the more challenging
case when different communities are similar. By basic algebra, A\; < [|0|?, \a = ... = A\g <
10]12(1 — b,), and SNR < ||0||(1 — by,). In the very sparse case, ||f]| = O(y/log(n)). In the
dense case, ||6]| = O(y/n). When b,, < ¢ for a constant ¢y < 1, |Ag| > C|\1| and SNR =< ||0]|;
we are in the strong signal case if ||f|| > n® for a constant a > 0. When b, = 1+ o(1) and
10]|(1 — by,) = loglog(n) (say), SNR =< loglog(n) and we are in the weak signal case.

3.1.1 Literature review and our contributions

In recent years, many interesting approaches for estimating K have been proposed, which
can be roughly divided into the spectral approaches, the cross validation approaches, the
penalization approaches, and the likelihood ratio approaches.

Among the spectral approaches, Le and Levina (2015) proposed to estimate K using the
eigenvalues of the non-backtracking matrix or Bethe Hessian matrix. The approach uses
ideas from mathematical graph theory, and is quite interesting for it is different from most
statistical approaches. Unfortunately, the approach requires relatively strong conditions for
consistency. For example, their Theorem 4.1 only considers the idealized SBM model in the
very sparse case, where §; =60y = ... =60, = 1/y/n and P = P, for a fixed matrix Fy. [Liu
et al.| (2019)) proposed to estimate K by using the classical scree plot approach with careful
theoretical justification, but the approach is known to be unsatisfactory in the presence of
severe degree heterogeneity, for it is hard to derive a sharp bound for the spectral norm of
the noise matrix W (e.g., Jin| (2015))). Therefore, their approach requires the condition of
Omaz < COpmin. The paper also imposed the condition of [|f]| = O(y/n) so it did not address
the settings of sparse networks (see for the interesting range of ||f||). Among the
cross-validation approaches, we have |Chen and Lei| (2018); |Li et al.| (2020), and among the
penalization approaches, we have [Saldana et al.| (2017)); Daudin et al.| (2008)); Latouche
et al.|(2012), where K is estimated by the integer that optimizes some objective functions.
For example, [Saldana et al.| (2017)) used a BIC-type objective function and Daudin et al.
(2008); [Latouche et al.|(2012) used an objective function of the Bayesian model selection
flavor. However, these methods did not provide explicit theoretical guarantee on consistency
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(though a partial result was established in (Li et al., [2020), which stated that under SBM,
the proposed estimator K is no greater than K with high probability).

For likelihood ratio approaches, [Wang et al.| (2017) proposed to estimate K by solving a
BIC type optimization problem, where the objective function is the sum of the log-likelihood
and the model complexity. The major challenge here is that the likelihood is the sum of
exponentially many terms and is hard to compute. In a remarkable paper, Ma et al.| (2018)
extended the idea of Wang et al. (2017)) by proposing a new approach that is computationally
more feasible.

On a high level, we can recast their methods as a stepwise testing or sequential testing
algorithm. Consider a stepwise testing scheme where for m = 1,2, ..., we construct a test
statistic é,({”) (e.g. log-likelihood) assuming m is the correct number of communities. We
estimate K as the smallest m such that the pairwise log-likelihood ratio (E%mﬂ) — E%m)) falls
below a threshold. As mentioned in [Wang et al. (2017); Ma et al.| (2018]), such an approach
faces challenges. Call the cases m < K, m = K, and m > K the under-fitting, null, and
over-fitting cases, respectively.

e We have to analyze ﬁﬁ{’” for both the under-fitting case and the over-fitting case, but

we do not have efficient technical tools to address either case.

e [t is hard to derive sharp results on the limiting distribution of 67({”“) — ﬁ%m) in the
null case, and so it is unclear how to pin down the threshold.

Ma et al.| (2018) (see also [Wang et al.| (2017)) made interesting progress but unfortunately
the problems are not resolved satisfactorily. For example, they require hard-to-check strong
conditions on both the under-fitting and over-fitting cases. Also, in the over-fitting case, it
is unclear whether their results are sharp, and in the under-fitting case, it is unclear how to

standardize ﬁ,(lmﬂ) — eSZ”)

as the variance term is unknown; as a result, how to pin down the
threshold remains unclear. Most importantly, both papers focus on the setting in Example
1 (see above), where severe degree heterogeneity is not allowed and they only consider the

strong signal case.

In this chapter, we propose Stepwise Goodness-of-Fit (StGoF') as a new approach to
estimating K. Our approach follows a different vein, so it is different not only by the
particular procedures we use, but also in the design of the stepwise testing. In detail, for
m=1,2,..., StGoF alternately uses two sub-steps, a community detection sub-step where
we apply SCORE Jin (2015 assuming m is the correct number of communities, and a
Goodness-of-Fit (GoF) sub-step. We propose a new GoF approach and let wq(q,m) be the GoF
test statistic in step m. Assuming SNR — 0o, we show that

(m) { — N(0,1), when m = K (null case),

Un, (3.1.8)

— o0 in probability, when 1 < m < K (under-fitting case).

This gives rise to a consistent estimate for K. Note that we have derived N(0,1) as the
explicit limiting null distribution which is crucial in our study. To prove (3.1.8)), the key is to
show that in the under-fitting case, SCORE has the so-called Non-Splitting Property (NSP),
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meaning that all nodes in each (true) community are always clustered together. In the
over-fitting case, m > K. The NSP does not hold and so the analytical challenge remains,
but the design of StGoF and the sharp results in (3.1.8) help avoid the analysis in this case.

For the stepwise testing algorithms in Wang et al.| (2017)); Ma et al.| (2018)), analysis in the
over-fitting case can not be avoided, as we need to analyze K%mﬂ) — E%m) form=1,2,..., K;
see details therein.

To assess the optimality, we use the phase transition, a well-known optimality framework.
It is related to the minimax framework but can be frequently more informative [Donoho
and Jin| (2004)); Ingster et al.| (2010); Ma and Wu| (2015)); Paul| (2007). We show that when
SNR — oo, gives rise to an estimator that is consistent in a broad setting. We also
obtain an information lower bound by showing that when SNR — 0, consistent estimates
for K do not exist. This suggests that our consistency result is sharp in terms of the rate of
SNR, so we say that StGoF achieves the optimal phase transition; see Section As far
as we know, such a phase transition result on estimating K is new.

In order to achieve the optimal phase transition, a procedure needs to work well in the
weak signal case. Since most existing methods have been focused on the strong signal case,
it is unclear whether they achieve the optimal phase transition. Our contributions are as
follows.

e We propose StGoF as a new approach to estimating K, where we use both a different
design for stepwise testing and a new GoF test.

e We derive N(0,1) as the explicit limiting null distribution, and use the NSP of SCORE
to derive tight bounds in the under-fitting case. These sharp results and the design of
StGoF allow us to avoid the analysis in the over-fitting case and so to overcome the
technical challenges faced by stepwise testing of this kind. Such an analytical strategy
is extendable to other settings (e.g., the study of directed or bipartite graphs).

e We show that StGoF achieves the optimal phase transition when 0,,x < C8,,.;n and
consistent in broad settings (e.g., weak signals, severe degree heterogeneity, and a wide
range of sparsity). In particular, StGoF satisfies all requirements (R1)-(R3) as desired.

Compared to|Jin| (2015), both papers study SCORE, but the goal of |Jin (2015)) is community
detection where K is assumed as known, and the analysis were focused on the null case
(m = K). Here, the goal is to estimate K: SCORE is only used as part of our stepwise
algorithm, and the analysis of SCORE is focused on the under-fitting case (m < K), where
the property of SCORE is largely unknown, and our results on the NSP of SCORE are new.

The proof of NSP is non-trivial when m < K. It depends on the row-wise distances of the
matrix Z consisting of the first m columns of [£1,...,{x]|I", where § is the k-th eigenvector
of © and T is an orthogonal matrix dictated by the Davis Kahan sin(f) theorem Davis and
Kahan| (1970). T is hard to track without a strong eigen-gap assumption, and when it ranges,
the row-wise distances of = are the same when m = K but may vary significantly when
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m < K. This is why the study on SCORE is much harder in the under-fitting case than in
the null case. See Section 3.3

3.1.2 Content

Sections [3.213.3| contain main theoretical results. In Section [3.2] we first propose a new GoF
test for DCBM. we then show that StGoF is consistent for K uniformly in a broad class
of settings. We also present the information lower bound and show that StGoF achieves
the optimal phase transition. In Section [3.3] we show that SCORE has the Non-Splitting
Property (NSP) for 1 < m < K. We also shed light on why SCORE has the NSP and what
the technical challenges are. In Section [3.4] we prove the main results. Section [3.5 presents
numerical results with real and simulated data. The supplementary material contains the
proofs for secondary theorems and lemmas.

In this chapter, C' > 0 denotes a generic constant which may vary from case to case.
For any numbers 01,...,60,, Omae = max{01,...,0,}, and 0,5, = min{6y,...,0,}. For any
vectors @ = (61,...,6,), both diag(f) and diag(6,...,6,) denote the n x n diagonal matrix
with 6; being the i-th diagonal entry, 1 < i < n. For any vector a € R", ||a|, denotes the
Euclidean ¢?-norm (we write ||a|| for short when ¢ = 2). For any matrix P € R™", || P||
denotes the matrix spectral norm, and || P||max denotes the entry-wise maximum norm. For
two positive sequences {ay} and {b,}, we say a,, ~ b, if lim,_,oc{an/by} =1 and a,, < b, if
there are constants co > ¢; > 0 such that cia, < b, < coa, for sufficiently large n.

3.2 OPTIMAL PHASE TRANSITION

This section contains the first part of our main results, where we discuss the consistency
and optimality of StGoF. Section contains the second part of our main results, where we
discuss the NSP of SCORE |Jin| (2015)).

Consider a DCBM with K communities as in (3.1.5). We assume
I|1P| < C, 10]] — oo, and Omaxy/log(n) — 0. (3.2.1)

The first one is a mild regularity condition on the K x K community structure matrix
P. The other two are mild conditions on sparsity. See for the interesting range
of ||0]|. We exclude the case where 6; = O(1) for all 1 < i < n for convenience, but our
results continue to hold in this case provided that we make some small changes in our proofs.
Moreover, for 1 < k < K, let N} be the set of nodes belonging to community k, let ng be
the cardinality of Ny, and let 0*) be the n-dimensional vector where H(k) =0; if i € N}, and

i

6?1@ = 0 otherwise. We assume the K communities are balanced in the sense that
i 0F111 /11611, |6¥]/110]} > C. 3.2.2
{1;%1;1;(}{”'@/”’ 1011 /110111, (1011711611} > (3.2.2)

In the presence of severe degree heterogeneity, the valid SNR for SCORE is

sn=ao(0)(Ax|/V M), where ao(8) = Gmin/bmaz) - (10]l/ v/ Gmazl0]1) < 1.

In the special case of 0,00 < COpin, it is true that ag(0) < 1 and s, < |Ag|/v/A1. In this

case, s, is the SNR introduced (3.1.7]). We assume
sp > Coy/log(n), for a sufficiently large constant Cy > 0. (3.2.3)
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In the special case of 002 < COmin, () is equivalent to |Ag|/v/A1 > C'y/log(n), which

is mild. See Remark 6 for more discussion. Define a K x K diagonal matrix H by
Hie = 10%)]]/]16]], 1 < k < K. For the matrix HPH and 1 < k < K, let (largest means
largest in magnitude)

i be the k-th largest eigenvalue and n; be the corresponding eigenvector.

By Perron’s theorem Horn and Johnson| (1985), if P is irreducible, then the multiplicity of

w1 is 1, and all entries of n; are all strictly positive. Note also the size of the matrix P is
small. It is therefore only a mild condition to assume that for a constant 0 < ¢y < 1,
: max; << {11 (k)}
— > , d == <C. 3.2.4
25!1@1311[{ |/J,1 Mk| = CO’N1| an mlnlSkSK{nl (k)} = ( )
In fact, (3.2.4]) holds if all entries of P are lower bounded by a positive constant or P — P
for a fixed irreducible matrix Py. We also note that the most challenging case for network

analysis is when the matrix P is close to the matrix of 1’s (where it is hard to distinguish
one community from another), and always holds in such a case. In this paper, we
implicitly assume K is fixed. This is mostly for simplicity, as there is really no technical
hurdle for the case of diverging K. See Remark 5 for more discussion.

3.2.1 The StGoF algorithm and a DCBM Goodness-of-Fit test

No

17m=m+1
Yes
— — e —_

Figure 3.1: The flow chart of StGoF.

The Stepwise Goodness-Of-Fit algorithm (StGoF) is a stepwise algorithm where for
m =1,2,..., we alternately use a community detection step and a Goodness-of-Fit (GoF)
step. In principle, we can view StGoF as a general framework, and for both steps, we may
use different algorithms. However, for most existing community detection algorithms (e.g.,
|Chen et al. (2018); |Gao et al. (2018); Zhang et al.| (2014))), it is unclear whether they have
the desired theoretical properties (especially the NSP), so we may face analytical challenges.
For this reason, we choose to use SCORE , which we prove to have the NSP.
For GoF, existing algorithms (e.g., [Hu et al. (2020); (2016)); see Remark 2 for more
discussion) do not apply to the current setting, so we propose a new GoF measure called
the Refitted Quadrilateral (RQ).

In detail, fixing a tolerance parameter 0 < o < 1 and letting z, be the « upper-quantile
of N(0,1), StGoF runs as follows. Input the adjacency matrix A and initialize m = 1.

e (a). Community detection. If m =1, let 1™ be the n-dimensional vector of 1’s. If
m > 1, apply SCORE to A assuming m is the correct number of communities and
obtain an n x m matrix II(™) for the estimated community labels.

e (b). Goodness-of-Fit. Assuming 1™ is the matrix of true community labels, we
obtain an estimate Q™ for Q by refitting the DCBM, following (3.2.6)-(3.2.7) below.
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Obtain the Refitted Quadrilateral test score w%m) as in (3.2.9)-(3.2.12)).

e (c). Termination. If w,&m) > Za, repeat (a)-(b) with m = m + 1. Otherwise, output m
as the estimate for K. Denote the final estimate by K.

We recommend o = 1% or 5%. See Figure [3.1] for the flow chart of the algorithm.

We now fill in the details for steps (a)-(b). Consider (a) first. The case of m =1 is trivial
so we only consider the case of m > 1. Let A be the k-th largest (in magnitude) eigenvalue
of A, and let & be the corresponding eigenvector. For each m > 1, we apply SCORE as
follows.

Input: A and m. Output: the estimated n x m matrix of community labels e,

e Obtain the first m eigenvectors 51, 52, . ,Em of A. Define the n x (m — 1) matrix of
entry-wise ratios R™ by R (i, k) = &,1(i)/€1(i), 1 <i<n,1 <k <m — 1.

e Cluster the rows of R(™ by the classical k-means assuming we have m clusters.
Output II(™) = [%im), e ,%&m)]’ (%Z(m)(k) = 1 if node i is clustered to cluster k& and 0
otherwise).

Existing study of SCORE has been focused on the null case of m = K. Our interest here is
on the under-fitting case (1 < m < K), where the property of SCORE is largely unknown.

Consider (b). The idea is to pretend that the SCORE estimate I1(™) is accurate. We
then use it to estimate €2 by re-fitting, and check how well the estimated € fits with the
adjacency matrix A. In detail, let d; be the degree of node 7, 1 < i < n, and let /i\/',gm) be
the set of nodes that SCORE assigns to group k, 1 < k < m. We decompose 1,, as follows

1, = Zil(gm)a where i,(gm) (j)=1ifje /Vk(m) and 0 otherwise. (3.2.5)
k=1

For most quantities that have superscript (m), we may only include the superscript when
introducing these quantities for the first time, and omit it later for notational simplicity

when there is no confusion. Introduce a vector #(™) = (%m),%m), . ,55{”))’ € R"” and a
matrix P € R™™ where for all 1 <i <n and 1 < k.l <m,
O = /AL AL, B = (34T ([AT) (G4l (3:20)
Let ©(m) = diag(@). We refit 2 by
QM = MIitm) pim) (fim)ygim), (3.2.7)

Recall that = OIIPII'O and P has unit diagonal entries. In the ideal case where m = K,
(™ =TI, and 4 = Q, we can verify that ((:)(m), Ig(m), Q(m)) = (0, P,Q2). This suggests that
the refitting in (3.2.7)) is reasonable. The Refitted Quadrilateral (RQ) test statistic is then
Q(m) = Z (Ai1i2 - ﬁ(m))(Azzw - ﬁ(m))(AwM - ﬁ(m))(Amn - ﬁ(m))’ (328)

n 1112 1213 1314 1411
il,ig,ig,i4(dist)

! As the network is connected, El is uniquely defined with all positive entries, by Perron’s theorem |Jin
(2015).
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(“dist” means the indices are distinct). Without the refitted matrix ﬁ(m), Q%m) reduces to
Cp = Z Ai1i2Ai2i3Ai3i4Ai4i17 (3'2'9)
i1,i2,13,i4(dist)
which is the total number of quadrilaterals in the networks [Jin et al.| (2018). This is why we
call Qq(lm) the refitted quadrilaterals.

We now discuss the mean and variance of Q%m) in the null case of m = K. In this
case, first, it turns out that the variance can be well-approximated by 8C),. Second, while
that EJ %K)] — 0 in the ideal case of Q) = Q, in the real case, Q) £ Q and E[Q%K)] is
comparable to the standard deviation of Qg{). Therefore, the mean is not negligible in the

null case, and we need bias correction.

Motivated by these, for any m > 1, we introduce two vectors fq\(m),ﬁ(m) € R™ where

g = @O/eh, WY = @GOT)VIRl. 1<k<m. (3:2.10)
Write for short V(™) = diag(]gfj) and HM = diag(ﬁ). We estimate the mean of lem) by
B{™ =2|9||*- [§V " (PH*P o PH*P)V '3, (3.2.11)

where for matrixes A and B, A o B is their Hadamard product |Horn and Johnson| (1985).
We show that in the null case, B{™ is a good estimate for EJ (m) |, and in the under-fitting
case, it is much smaller than the leading term of Qnm) and so is negligible. Finally, the

StGokF statistic is defined by
Wi =1V — BI™M]/v/8Ca. (3.2.12)

The computational cost of the StGoF algorithm is determined by (i) the number of
iterations, (ii) the cost of SCORE, and (iii) the cost of computing @bém) in (3.2.12). For (i),
we show in Section that, under mild conditions, StGoF terminates in exactly K steps
with high probability. For (ii), the costs are from implementing PCA and k-means (Jin,
2015). PCA is manageable even for very large networks, and the complexity is O(n?d) for
each m if we use the power method, where d is the average degree. In practice, the k-means
is usually implemented with the Lloyd’s algorithm which is fast (e.g., only a few seconds
when n is a few thousands). In theory, the computational cost of k-means for our setting is
polynomial-time, since the dimension of each row of R™ is (m — 1). For (iii), the following
lemma shows the complexity is polynomial time. Lemma [27]is proved in the supplementary
material.

Lemma 27. For each m =1,2,..., K, the complexity for computing wy(Lm) is O(n%d), where
d is average degree of the network.

Remark 1. The RQ test has some connections to the SgnQ test in [Jin et al. (2019)),
but is for different problem and is more sophisticated. The RQ test is for goodness-of-fit. It
depends on the matrix Q(m), refitted for each m using the community detection results by
SCORE. The SgnQ test is for global testing, where the goal is to test K =1 vs. K > 1.
The SgnQ test is not stepwise, and does not depend on any results of community detection.
In particular, to analyze RQ, we need new technical tools, where the NSP of SCORE plays
a key role.
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Remark 2. Existing GoF algorithms include Hu et al.| (2020); Lei| (2016), but they only
address the much narrower settings (e.g., dense networks with stochastic block model and
strong signals). As mentioned in Hu et al. (2020), it remains unclear how to generalize these
approaches to the DCBM setting here. In principle, a GoF approach only focuses on the
null case, and can not be used for estimating K without sharp results in the under-fitting
case, or the over-fitting case, or both.

Remark 3. We are primarily interested in DCBM, but the idea can be extended to
the broader DCMM |Zhang et al.| (2014)); Jin et al.| (2017), where mixed-memberships are
allowed. To this end, we need to replace SCORE by Mixed-SCORE |Jin et al.| (2017)) (an
adapted version of SCORE for networks with mixed memberships), and modify the refitting
step accordingly. The analysis of the resultant procedure is much more challenging so we
leave it to the future.

3.2.2 The null case and a confidence lower bound for K

In the null case, m = K. In this case, if we apply SCORE to the rows of R(m) assuming m
clusters, then we have perfect community recovery. As a result, StGoF provides a confidence
lower bound for K.

Theorem 3.2.1. Fiz 0 < a < 1. Suppose we apply StGoF to a DCBM model where -
hold. Asn — 0o, up to a permutation of the columns of IIUS), ]P’(H(K) £1I) < Cn73,
W) = N(0,1) in law, and P(K: < K) > (1 — &) + o(1).

Theorem [3.2.1]is proved in Section Theorem allows for severe degree heterogeneity.
If the degree heterogeneity is moderate, s, < |Ax|/v/A1, and we have the following corollary.

Corollary 3.2.1. Fiz 0 < a < 1. Suppose we apply StGoF to a DCBM model where

l and ' hold. Suppose Opmaz < COpmin and |Nk|/vVA1 > Cor/log(n for a

suﬁﬁczently large constant C’o > 0. Asn — oo, up to a permutatwn of the columns ofH K),
PIIE) £10) < On=3, ) = N(0,1) in law, and P(K* < K) > (1 — a) + o(1).

Theorem and Corollary show that K, ¥ provides a level-(1 — «v) confidence lower
bound for K. If o depends on n and tends to 0 slowly enough, these results continue to
hold. In this case, P(K} < K) > 1+ o(1). In cases (e.g., when the SNR is slightly smaller
than those above) where perfect community recovery is impossible but the fraction of of
misclassified nodes is small, the asymptotic normality continues to hold. Same comments

apply to Theorem [3.2.3] and Corollary [3.2.2]

3.2.3 The under-fitting case and consistency of StGoF

In the under-fitting case, m < K. We focus on the case of 1 < m < K as the case of m =1
is trivial. Suppose we apply SCORE to the rows of R(m) assuming m is the correct number
of communities and let II(™) be the matrix of estimated community labels as before. When
1 < m < K, we underestimate the number of clusters, so perfect community recovery is
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impossible. However, SCORE satisfies the Non-Splitting Property (NSP). Recall that II is
the matrix of true community labels.

Definition 28. Fiz K > 1 and m < K. We say that a realization of the n x m matrix of
estimated labels TL(™) satisfies the NSP if for any pair of nodes in the same (true) community,
the estimated community labels are the same. When this happens, we write 11 < ﬁ(m),
meaning the partition (into clusters) on the left is finer than that on the right.

Theorem 3.2.2. Consider a DCBM where - hold. With probability at least
1-0(n3), foreach 1 <m < K, II < ™) up to a permutation in the columns.

Theorem says that SCORE has the NSP and is proved in Section 3.3l The theorem is
the key to our study of the upper bound below. In Section we explain the main technical
challenges we face in proving the theorem, and present the key theorem and lemmas required
for the proof. Why SCORE has the NSP is non-obvious, so to shed light on this, we present
an intuitive explanation in Section The following theorem is proved in Section

Theorem 3.2.3. Fiz 0 < a < 1. Suppose we apply StGoF to a DCBM model where -
hold. As n — oo, min1§m<K{w7(Lm)} — 00 in probability and P(K}, # K) < a+ o(1).

Theorem allows for severe degree heterogeneity. When the degree heterogeneity is
moderate, SNR =< |Ax|/v/A1 and we have the following corollary.

Corollary 3.2.2. Fix 0 < a < 1. Suppose we apply StGoF to a DCBM model where
- and hold. Suppose Opmar < COpmin and | Nk |/vV/A1 > CO\/M for a
sufficiently large constant Cy > 0. As n — oo, min1§m<K{1/)q(1m)} — 00 in probability and
P(R: # K) < o+ o(1).

Note that in Theorem [3.2.3| and Corollary if we let o depend on n and tend to 0 slowly
enough, then we have P(K} = K) — 1.

Remark 4. While the NSP of SCORE largely facilitates the analysis, it does not mean
that StGoF ceases to work well once NSP does not hold; it is just harder to analyze in such
cases. Numerical experiments confirm that StGoF continues to behave well even when NSP
does not hold exactly. How to analyze StGoF in such cases is an interesting problem for the
future.

Remark 5. In this chapter, we assume K is fixed. For diverging K, the main idea
continues to be valid, but we need to revise several things (e.g., definition of consistency and
SNR, some regularity conditions, phase transition) to reflect the role of K. The proof for the
case of diverging K can be much more tedious, but aside from that, we do not see a major
technical hurdle. Especially, the NSP of SCORE continues to hold for a diverging K. Then,
with some mild conditions, we can show that 1™ has very few realizations, so the analysis
of StGoF is readily extendable. That we assume K as fixed is not only for simplicity but
also for practical relevance. For example, real networks may have hierarchical tree structure,
and in each layer, the number of leaves (i.e., clusters) is small (e.g., Ji and Jin (2016); Ji
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et al.| (2020)); Lei et al.| (2020); ILi et al. (2018])). Therefore, we have small K in each layer
when we perform hierarchical network analysis. Also, the goal of real applications is to have
interpretable results. For example, for community detection, results with a large K is hard
to interpret, so we may prefer a DCBM with a small K to an SBM with a large K. In this
sense, a small K is practically more relevant.

Remark 6. Conditions is the main condition that ensures (a) SCORE yields
exact community recovery when m = K, and (b) SCORE has the NSP when 1 <m < K.
The condition is much weaker than those in existing works (e.g., Wang et al.| (2017)), Ma,
et al.| (2018)), and can not be significantly improved in the case of 0,4, < COpin (see phase
transition results in Section . The more difficult case where 0,45 /0 min tends to oo
rapidly has never been studied before, at least for estimating K, and it is unclear whether we
can find an alternative algorithm that satisfies (a)-(b) under a significantly weaker condition
than (3.2.3). On the other hand, we can view StGoF as a general framework for estimating
K, where SCORE may be improved or replaced by some other procedures satisfying (a)-(b)
in the future as researchers continue to make advancements in this area, so whether
can be further improved does not affect our main contributions (see Section 1.1 for our
contributions).

3.2.4 Information lower bound and phase transition

In Theorem and Corollary we require the SNR, [Ak[/v/A1, to tend to co at a
speed of at least /log(n). Such a condition cannot be significantly relaxed. For example, if

SNR — 0, then it is impossible to have a consistent estimate for K. The exact meaning of
this is described below.

We say two DCBM models are asymptotically indistinguishable if for any test that tries
to decide which model is true, the sum of Type I and Type II errors is no smaller than
14 0(1), as n — oo. Given a DCBM with K communities, our idea is to construct a DCBM
with (K 4+ m) communities for any m > 1, and show that two DCBM are asymptotically
indistinguishable, provided that the SNR of the latter is o(1).

In detail, fixing Ky > 1, consider a DCBM with Ky communities that satisfies —
(13.1.4). Let (@,ﬁ,f’) be the parameters of this DCBM, and let 0 = OIIPII'O. When
Ky > 1, let (8,1) be the last column of ﬁ, and let S be the sub-matrix of P excluding the
last row and the last column. Given m > 1 and b,, € (0,1), we construct a DCBM model
with (Ko 4+ m) communities as follows. We define a (Ko + m) x (Ko + m) matrix P:

S 1/
pP= , iff“ . where M =(1—by) i1 +bplymil, .y (3.2.13)
]—m—l-lﬂ 1+mbnM
When Ky =1, we simply let P = 111;;” M. Let {; € {1,..., Ko} be the community label of
node % defined by II. We generate labels ¢; € {1,..., Ko+ m} by
‘;, if 6, € {1,...,Ky— 1},
=1" G ed 0= (5000

uniformly drawn from {Ky, Ko + 1,... Ko +m}, if ;= K.
Let II be the corresponding matrix of community labels. This gives rise to a DCBM
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model with (K¢ + m) communities, where Q@ = OIIPII'O. Note that P does not have unit
diagonals, but we can re-parametrize so that it has unit diagonals. In detail, introduce a
(Ko +m) x (Ko + m) diagonal matrix D where Dy, = v/Prx, 1 < k < Ko + m. Now, if we
let P* =D~ 'PD™Y, 07 = 0;||Dm;|1, and ©* = diag(6%,...,0}), then P* has unit-diagonals
and Q = ©*IIP*II'©*.

Here some rows of II are random (so we may call the corresponding model the random-
label DCBM), but this is conventional in the study of lower bounds. Let Ay be the kth
largest eigenvalue (in magnitude) of Q. Since 2 is random, A;’s are also random (but we
can bound |Ag|/v/A1 conveniently). The following theorem is proved in the supplementary
material.

Theorem 3.2.4. Fiz Ky > 1 and consider a DCBM model with n nodes and Ky communities,
whose parameters (0,11, P) satisfy - . Let (8',1) be the last column of P, and let
S be the sub-matriz of P excluding the last row and last column. We assume |3'S™18—1| > C.

o Fizm > 1. Given any b, € (0,1), we can construct a random-label DCBM model with
K = Ko+ m communities as in (3.2.15)-(3.2.14). Then, as n — oo, |Ag|/vV 1 <
C||9]|(1 — b,) with probability 1 — o(n~t). Moreover, if (1 — b,)/[Amin(S)| = o(1),
where Amin(S) s the minimum eigenvalue (in magnitude) of S, then |Ag|/v/A1 >
CYH0|l(1 = by) with probability 1 — o(n~'). Here C > 1 is a constant that does not
depend on by,.

o Fiz mi,mg > 1 with my # ma. As n — oo, if ||0]|(1 — b,) — 0, then the two random-
label DCBM models associated with my and ma are asymptotically indistinguishable.

By Theorem starting from a (fixed-label) DCBM with Ky communities, we can
construct a collection of random-label DCBM, with Ko+ 1, Kg+2, ..., Ko+ m communities,
respectively, where (a) for the model with (K + m) communities, |Ajy+m|/vA1 =< [|0]|(1 —
bn), with an overwhelming probability, and (b) each pair of models are asymptotically
indistinguishable if ||0||(1 — b,) = o(1). Therefore, for a broad class of DCBM with unknown
K where SNR = o(1) for some models, a consistent estimate for K does not exist.

Fixing mo > 1 and a sequence of numbers a,, > 0, let M,,(mg, ay,) be the collection of
DCBM for an n-node network with K communities, where 1 < K < my, \)\K]/ﬁl > ap,

and 1D|D hold. In Section we show that if a,, > Cyy/log(n) for a sufficiently

large constant Cp, then for each DCBM in M,,(myg, a,,), StGoF provides a consistent estimate
for K. The following theorem says that, if we allow a,, — 0, then M,,(mg, a,) is too broad,
and a consistent estimate for K does not exist.

Theorem 3.2.5. Fixmgy > 1 and let My, (mo, ay) be the class of DCBM as above. Asn — oo,
if an, — 0, then inff({supMn(mO,an)]P’(K # K)} > (1/6 + o(1)), where the probability is
evaluated at any given model in M, (mg, a,) and the supremum is over all such models.

Combining Theorems and Corollary we have a phase transition result.
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e Impossibility. If a,, — 0, then M,,(myg, a,,) defines a class of DCBM that is too broad
where some pairs of models in the class are asymptotically indistinguishable. Therefore,
no estimator can consistently estimate the number of communities for each model in
the class. In this case, we can say “a consistent estimate for K does not exist” for
short.

e Possibility. 1If a, > Cpy/log(n) for a sufficiently large Cj, then for every DCBM in
M, (mo, ar), StGoF provides a consistent estimate for the number of communities
if the model only has moderate degree heterogeneity (i.e., Opar < COpin). StGoF
continues to be consistent in the presence of severe degree heterogeneity if the adjusted

SNR satisfies that s, > Cp4/log(n) with a sufficiently large Cj.

The case of C < a,, < Cyy/log(n) is more delicate. Sharp results are possible if we consider
more specific models (e.g., for a scaling parameter «,, > 0, (6;/a,) are iid from a fixed
distribution F', and the off-diagonals of P are the same). We leave this to the future.

3.3 THE NON-SPLITTING PROPERTY (NSP) or SCORE

This section contains the second part of our main theoretical results. We first present
the main technical tools for proving Theorem (i.e., the NSP of SCORE), and then
prove Theorem Why NSP holds is non-obvious, so in Section we also shed light
by providing an intuitive explanation and several examples. The NSP may hold in many
other unsupervised learning settings, and the gained insight in Section [3.3.3| may serve as a
good starting point for studying NSP in these settings.

Here, the primary focus of our study on SCORE is on the under-fitting case of m < K,
while existing study on SCORE (e.g., Jin| (2015)) has been focused on the null case of m = K.
In the last two paragraphs of Section [3.1.1] we have briefly explained why the study in the
under-fitting case is much harder. This section will further explain this with details.

Recall that in the SCORE step, for each 1 < m < K, we apply the k-means to the rows of
an n x (m—1) matrix R(™) | where ﬁ(m)(i,k) = §k+1(z)/§1(z), 1<i<n,1<k<m-—1,and
{Ak is the k-th eigenvector (eigenvectors are arranged in the descending order in magnitudes
of corresponding eigenvalues) of the adjacency matrix A. Viewing each row of R™) as a
point in R™~1, we will show that there is a polytope in R™~! with vertices v, vs, ...,V
such that with large probability, row ¢ of R falls close to v if node 7 belongs to the true
community k, for all 1 < ¢ < n. Therefore, the n rows form K clusters (but K and true
cluster labels are unknown), each being a true community. To show that SCORE satisfies
the NSP, the goal is to show that the k-means algorithm will not split any of these K clusters.
See Figure where we illustrate the NSP with an example with (K, m) = (4, 3).

Definition 29 (Bottom up pruning and minimum pairwise distances). Fizing K > 1
and 1 < m < K, consider a K x (m — 1) matriz U = [uy,us,...,ug]|. First, let dg(U)
be the minimum pairwise distance of all K rows. Second, let ux and uy (k < ) be the
pair that satisfies ||ux — wel| = dg(U) (if this holds for multiple pairs, pick the first pair
in the lexicographical order). Remove row € from the matriz U and let dx_1(U) be the
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3.3. The non-splitting property (NSP) of SCORE

Figure 3.2: Illustration for what NSP means ((K,m) = (4,3)). The rows of R(™ (blue
crosses) form K clusters (red: cluster centers) each of which is a true community (K and
true cluster labels are unknown). SCORE aims to cluster all rows of R(™ into m clusters.
Left: Voronoi diagram of k-means when the NSP does not hold (which will not happen
according to our proof). Right: Voronoi diagram when the NSP holds.

minimum pairwise distance for the remaining (K — 1) rows. Repeat this step and define
dx—2(U),drx—3(U),...,d2(U) recursively. Note that dg(U) < dg_1(U) < ... <da(U).

For example, if (K, m) = (4,3), and the rows of U are (1,0), (1,0), (0,1) and (1, 1), then
ds(U) =0, d3(U) =1, and da(U) = +/2. The following theorem is the key to prove the NSP
of SCORE, and is proved in the supplementary material.

Theorem 3.3.1. Fiz 1 <m < K and let n be sufficiently large. Suppose x1,x2,...,2y €
R™ ! take K distinct values uy,us, ..., ux. Letting U = [uy,us,...,ux] and F, = {1 <
i <mn:z;=u}, for 1 <k < K, suppose minj<p<g |F| > aon and max;<p<r ||ug| <
Co - dn(U), for constants 0 < ag < 1, Cy > 0. Suppose we apply k-means to a set of
n points T1,To, ..., Ty assuming m clusters. Let §1,§2, .. .,§m be the resultant clusters
(which are not necessarily unique). There is a number ¢ = ¢(a, Co,m) > 0 such that if
maxi<i<n || — 2il| < ¢ dm(U), then #{1 <j <m: §j NF,#0} =1, foreach 1 <k < K.

When we apply Theorem to prove Theorem all conditions required in Theorem
can be deduced from those in Theorem so we do not need any additional conditions.
See Lemma [33] and Section [3.3.2] Theorem [3.3.1]is a general result on k-means and may
be useful in many other unsupervised settings. The proof is non-trivial for the following
reasons.

e The objective function of the k-means is complicate, and the k-means solution is not
necessarily unique. See Example 3.

e Theorem [3.3.3] only requires that there are at least m true cluster centers the minimum
pairwise distance of which is large. If we assume a stronger condition, say, the minimum
pairwise distance of all K cluster centers is large (i.e., maxi<x<x ||ug| < Co - dx(U)),
the proof is much easier, but unfortunately, such a condition does not always hold in
our settings. See Example 4 below.

Example 3. Suppose (K,m) = (4,3) and Fy, Fy, F3, Fy have equal sizes. We view
w1, Us, ..., ux as the vertices of a quadrilateral in R?. Suppose we apply the k-means to
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r1,%2,...,Ty, and let Cp, Ca, Cs be the resultant clusters. Suppose that among the 6 different
pairs of vertices, (u1,ug) is the pair with the smallest distance. In this case, the three clusters
are C; = Fy U Fy, Cy = F3, and C3 = Fy, and the cluster centers are (u1 + u2)/2, us, and uy.
If the quadrilateral is a square or rectangle, then among the 6 pairs of indices, more than
one pairs have the smallest pairwise distance, so the k-means solutions are not unique.

Now, to prove Theorem the idea is to apply Theorem with Z; being row 7 of
R(™)_ To do this, we study the geometrical structure underlying R in the under-fitting
case, where the ideal polytope and tight row-wise large deviation bounds for R(™ play a
key role.

3.3.1 Geometric structure, ideal polytopes, and row-wise bounds

Fix 1 <k < K. Let A\; be the k-th largest (in magnitude) eigenvalue of the n x n matrix
and let & be the corresponding unit-¢2-norm eigenvector. By Davis-Kahan sin(6)-theorem
Davis and Kahan| (1970), the two matrices [¢1,...,¢x]| and [§A1, e ,ZK] only match well
with each other by a rotation matrix I': [El, . ,EK] ~ [&1,...,&k]T. Let = be the matrix
consisting of the first m columns of [£1,...,Ex]|". The geometrical structure underlying = is
the key to our study.

In the null case of m = K, the geometric structure was studied in |Jin! (2015)); [Jin et al.
(2017). For the under-fitting case of 1 < m < K, the study is much harder. The reason is
that, I' is hard to track without a strong condition on the eigen-gap of €2, and as I' ranges,
the row-wise distances of Z remain the same when m = K, but may vary significantly when
m < K. To deal with this, we need relatively tedious notations and harder proofs, compared
to those in Jin (2015)); Jin et al.| (2017).

Recall that py is the k-th largest (in magnitude) eigenvalue of the K x K matrix HPH,
and 7, is the corresponding unit-£2-norm eigenvector. We now relate (ug,nx) to (A, &x)
above. The following lemma is proved in the supplementary material.

Lemma 30. Consider a DCBM where holds and let A\, k., Nk, & be as above. We
have the following claims. First, Ay = ||0||?ur for 1 <k < K. Second, the multiplicity of 1
is 1 and all entries of 1 have the same sign, and the same holds for A\1 and &;. Last, if ng
is an eigenvector of HPH corresponding to uy, then ||| *OILH ~1ny is an eigenvector of Q
corresponding to A\, and conversely, if &, is an eigenvector of ) corresponding to A\, then
0] 7Y H 'O, is an eigenvector of HPH corresponding to juy.

From now on, let 1; be the unique unit-#?>-norm eigenvector of HPH corresponding to
A1 that have all positive entries. Note that 79, ...,nx may not be unique. Fix a particular
candidate for n2,..., 0k, say, n3,...,n. Let

(€165, .., & = 10 O1LH " ny, 3, ..., nk]- (3.3.15)

Definition 31. Given any (K — 1) x (K — 1) orthogonal matriz T and 2 < k < K, let ni(T")
be the (k — 1)-th column of (03,15, . .., n]L, with ng(i,I') being the i-th entry, 1 <i < K,
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3.3. The non-splitting property (NSP) of SCORE

and let (') be the (k — 1)-th column of [£5,&5, ..., &5, with &,(4,T) being the j-th entry,
1<j<n

Note that (11,£1) are uniquely defined (up to a factor of £1), but {(nx, &) }o<k<k are
not necessarily unique. However, by Lemma [30| and basic linear algebra, there is a collection
of (K — 1) x (K — 1) orthogonal matrices, denoted by .4, such that when I" ranges in A,
{n2(T),...,nx(T")} give all possible candidates of {n2,...,nx}, and {&(T),...,E{x ()} give
all possible candidates of {{a,...,£x}. In the special case where po, ..., ux are distinct, A
is the set of all (K — 1) x (K — 1) diagonal orthogonal matrices, and in the special case
where g = ... = ug, A is the set of all (K — 1) x (K — 1) orthogonal matrices.

Fix 1 <m < K and a (K — 1) x (K — 1) orthogonal matrix I" (which is not necessarily
in A). We define a K x (m — 1) matrix V™(I') and an n x (m — 1) matrix R™)(T) by
VI (ke 6;T) = npyr (kD) /m(k), 1<k<K,1<0<m-—1, (3.3.16)
and
RM™ (3,07 = €41 (i:T) /61(3), 1<i<n, 1<{<m—1. (3.3.17)

We note that V™)(T') is the sub-matrix of V5)(I") consisting the first (m — 1) columns;
same comments for R™(I'). Write V")(I') = [vgm) (F),...,v%n)(l“)]’ and R"(I") =
[r%m) (T),... i ()], so that (v,gm)(F))’ is the k-th row of V(™)(T") and (rl(m)(I‘))’ is the
i-th row of R(m)(F), 1<k < K,1<1i<n. For notational simplicity, we may drop “I'” when
there is no confusion. Recall that for 1 < k < K, N}, denotes the k-th true community. The
following lemma is proved in the appendix.

Lemma 32 (The ideal polytope). Consider a DCBM model where holds. For any
1 <m < K and fized (K — 1) x (K — 1) orthogonal matriz T, rgm) () = v,gm) (I'), for any
1e€N, and1 <k < K.

Therefore, the n rows of R(™)(T') have at most K distinct values, (vgm) ()Y, (vém) ()Y,

. (vy(n) (T'))". For an “easy” setting, dx (V™) (T')) > C, so the minimum pairwise distance
of these K rows are large. In a more “difficult” case, we may have dg (V(™(T')) = 0.
However, we can always find m rows of V(™)(I') so that the minimum pairwise distance of
which is no smaller than a constant C'. This is the following lemma, which is proved in the

supplementary material.

Lemma 33. Consider a DCBM model where (3.2.2) and (3.2.4) hold. Fix 1 <m < K and
an (K —1) x (K — 1) orthogonal matriz T, we have dp, (V"™ (') > /2 when m = K, and
dm(VI™(T)) > C when 1 < m < K, where the constant C > 0 does not depend on T.

We should not expect that d (V™ (T')) > C holds for all rotation T'. We can only show
a weaker claim of d,,,(V(™)(T)) > C as in Lemma, Below, we use a special example to
illustrate how T affect dg (V (™)(T)).

Example 4. Consider a special case of Example 2 where P = (1 — b,,)Ix + b1 1%,
0<b, <1, and |0®]| = |6||/VK, 1<k < K (as a result, HPH = (1/K)P). Note that
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the eigenvectors of HPH, denoted by 11,72,...,nK, do not depend on b,. We take the
case of (K, m) = (3,2) for example. In this case, 71 = (1/v/3)[1,1,1], and a candidate for
{n2,m3} is m = (1/v/2)[1,—1,0)’, and n% = (1/v/6)[1,1,—2]’, and all possible candidates for
{m2,m3} are given by
cos(f) sin(0)
5, 5T r=r() =
[7727773] ) ( ) [ —Sln(e) COS(H)
Now, d3(V)(T')) changes continuously in # and take values in [0,v/3/v/2], and hits 0 when
0 € {r/6, 7/2,57/6,71/6,37/2,117/6}. However, do(V P (T)) > 1/3/+/2 for all 6.

Similarly, we write RmM) = [?ﬁm), ?gm)’ .. ,?’flm)]’, so that (rim))’ is the i-th row of R(™).
The following lemma provides a tight row-wise large-deviation bound for R and is proved

], 0<6<2m.

in the supplementary material.

Lemma 34. Consider a DCBM model where - hold. With probability 1 —
O(n=3), there exists a (K — 1) x (K — 1) orthogonal matriz T (which may depend on n and
RE)) such that as n — oo, ||'rim) - rl(m)(F)H < ||5“f-K) — TZ(K)(F)H < Cs,;1\/log(n), for all
l<m<Kandl <i<n.

For illustration, we assume dg (V™) > C for all 1 < m < K (we have dropped “T"”
to simplify notations) so the minimum pairwise distance of the K rows of V({m) s no
smaller than C. In this case, Lemmas say that the n rows of R(™) have K distinct
values, (Ugm))/ , (vém))’ ey (’U%n))’ , and partitioning the rows with respect to different values
gives exactly K true communities. Note that we can view vgm),vém), . ,v%n) as the
vertices of a polytope in R™~!. See Figure for an illustration of K = 4. In this
case, vgm),vém), cee Ug-n) are the vertices of a tetrahedron when m = 4, the vertices of a
quadrilateral when m = 3, and K scalars when K = 2. By Lemma |34] and the condition
(B3-2.3), forall 1 <i < n, Hﬁ(m) —rgm) | is much smaller than dg (V™). Therefore, the n rows
of R also form K clusters, each being a true community. If we apply k-means assuming
K clusters, then we can fully recover the true communities. Unfortunately, K is unknown.
In the under-fitting case, m < K and we under-estimate the number of clusters. However,
Theorem |3.3.1| guarantees that, although we are not able to recover all true communities,

the NSP holds.

3.3.2 Proof of Theorem

By Lemma [34] there is an event E, where P(E¢) = O(n~3), and on this event there exists a
(K —1) x (K — 1) orthogonal matrix I' (which may depend on n and R(%)) such that

max Hrim) - rgm)(F)H < Cs, 'y/log(n), forall1 <m < K.

1<i<n
Fix 1 <m < K. By Lemma rgm) () = v](fm) (T') for each i € N and 1 < k < K. Suppose
vgm) (I),..., i (") have L distinct values, where L may depend on m and I' and L > m

by Lemma Note that whenever two vectors (say) vgm)(l“) and U2m) (T") are identical, we
can always treat A7 and Ay as the same cluster before we apply Theorem [3.3.1] Therefore,
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3.3. The non-splitting property (NSP) of SCORE

Figure 3.3: An example (K = 4). From left to right: m = 4,3,2. Red dots: the 4 distinct

rows of R(™), vgm), vém), Ugm),vim). Blue crosses: rows of R(™). The red dots are the vertices
of a tetrahedron when m = 4, vertices of a quadrilateral when m = 3, and scalars when
m = 2. For each m, the n rows of R are seen to have K clusters, each of which is a true
community.

without loss of generality, we assume L = K, so UY”) (I),... ,U&?l) (T") are distinct. It suffices
to show that, on the event F, none of N1, Ns, ..., Nk is split by the k-means.

We now apply Theorem with z; = ?Em), xT; = rgm) ('), F, = Ny, and U = V™)(D).
Note that by Lemma dn(U) > C. Also, in the proof of Lemma we have shown
that max)<gp<x ||U,(€m)(F)|| < C. Tt follows that the £2-norm of each row of U is bounded by
C - dm(U). Additionally, on the event E, maxi<;<, ||Z; — z;]| < Cs,; 1 /log(n). As long as
sn > Coy/log(n) for a sufficiently large constant Cp, we have maxi<i<p ||Z; — zi|| < ¢- dp(U)
for a sufficiently small constant ¢. The claim now follows by applying Theorem O

3.3.3 Why NSP holds: intuitive explanations and examples

Why NSP holds is non-obvious, so we provide an intuitive explanation and some examples.
The NSP may hold for many other unsupervised learning settings, and this section may be
especially helpful if we wish to extend our ideas to other settings. Since the NSP in general
settings is already proved above and the purpose here is to provide some insight, we consider
settings where

dg (V™(ID)) > C. (3.3.18)

This condition is stronger than the condition d,, (V™) (T') > C needed in Theorem m
(e.g., see Example 4). Also, for notational simplicity, we drop “I'” below.

We start by introducing the minimum gap as a measure for the stability of the clustering
results by k-means. Fixing 1 < m < K, consider n points u, ug, ..., u, € R™! and let
U = [u1,us,...,u,]. Suppose we cluster uj,usg, ..., u, into m clusters using the k-means.

Definition 35. Let ¢1,ca,. .., ¢y be any possible cluster centers from k-means (the set is
not necessarily unique). Let dy(ui;ci,...,cm) and da(ug;cy, ..., cn) be the distances between
u; and its closest cluster center and the distance between u; and its second closest cluster

center, respectively. The minimum gap for the clustering results is defined by

m(U) = min min yda(ug;c1y ... 0m) — di(ui;ciy .. Cm) g
gm(U) {all possible 61,02,...,cm}1SiS"{ 2 ! ) i ! )}
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We now explain why NSP holds for the under-fitting case. We start by considering the
oracle case where we apply k-means to the n rows of the non-stochastic matrix R(m) (T).

Theorem 3.3.2. Consider a DCBM model where holds. Fiz 1 <m < K and any
(K —1) x (K — 1) orthogonal matriz T. Let V"™)(T') and R"™)(T') be as in and
, respectively. If dg(V™(I)) > 0 and we apply the k-means to rows of R (T),
then NSP holds and g,,(R"™) (")) > Cdg (V™(T)), where C only depends on the constant

in G22).

Theorem [3.3.2] is proved in the supplementary material. In the oracle case, since
rgm) = r§m) when ¢ and j are in the same community, the NSP must hold once we have
gm(R™) > 0 (otherwise we can easily find a contradiction). At the same time, it is
less obvious why g,,(R(™) > Cdy (V™) holds. Below, we use two examples for further
illustration. In these examples, we assume K = 4, and let N7, N2, N3, N, be the true
communities. We assume these communities have equal sizes. We consider the cases of
m = 2 and m = 3, separately.

Example 5a. When m = 3, the four points vgm), . ,vflm) are the vertices of a quadrilat-

eral in R2. Following Example 3, it is seen gy, (R™) > (1/2)[0\™ —o{™ || = (1/2)dk (V™).

Example 5b. When m = 2, vgm), e ,vim) are scalars. Without loss of generality,

we assume vgm) < Uém) < vém) < vim). In Section , we show that g, (R(™) >

[(3—/3)/2] - dre (V™).

In the real case, we take an intuitive approach to explain why NSP holds for the k-
means (see Theorem for a rigorous proof). Recall that NV, Na, ..., Nk are the true
communities. Suppose we apply the k-means to the rows of R("™) and obtain m clusters with

centers €1, Ca, . . ., Gm. Suppose we also apply the k-means to the rows of R(™) and obtain m
clusters ¢y, ca, ..., ¢p. Under some regularity conditions, we expect to see that
Cr — < T — T i f . 3.1
| max ek — ckll < ClrgizE%Hn il up to a permutation of ¢1,co,...,¢p.  (3.3.19)

By Lemma the right hand side is < Cs;!y/log(n) with large probability. In the k-means
on rows of R it follows from Theorem that every row i for ¢+ € N}, is clustered into
a cluster with center c;, for some 1 < j < m. By Definition

[ri — ¢l +9m(R(m)) < |ri — el for any ¢ # j.
Combining it with (3.3.19)), except for a small probability, for all i € N}, and £ # j,
17 =Sl < llri — ¢l + 117 = mall + 118 — ¢l < [Imi — ¢l + Oy, /log(n),
75 = Cell > i = el = 17 = rill = [[ée = eell > |Iri = cell = Cs;, " v/log(n).
It follows that
17 = &l < |17 — | + [2Cs,,* /log(n) — gim(R™)].
Therefore, as long as 2Cs;, '/log(n) < gm(R™), ¢ is the closest cluster center to 7;, for

every i € N},. This shows that except for a small probability, the whole set N}, is assigned
to the cluster with center ¢, i.e., NSP holds.
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While the above explanation is intuitive and easy to understand, quite strong conditions
are needed when we try to solidify each step. For example, while (3.3.19)) sounds correct
intuitively, it may not hold in some cases when the k-means solutions are not unique.
Condition may not hold in some cases either, due to the rotation aforementioned.
To show NSP in the general settings as in our paper, we need Theorem [3.3.1] and Lemmas
32134} On the other hand, the intuitive explanation here is easy-to-understand, and may
provide a starting point for proving NSP in other unsupervised learning settings.

Remark 7. A simpler version of Theorem was proved in Ma et al| (2018), under
stronger conditions of (a) when we apply the k-means to {z1,z2,...,2,}, the k-means
solution is unique, and (b) dx(U) > C (with the same notations as in Theorem [3.3.1)).
Unfortunately, Ma et al.| (2018) only proved their claim for the special case of (K, m) = (3,2)
(for general (K, m), the proof is non-trivial due to complex combinatorics). Also, conditions
(a)-(b) are hard to check especially as we need them to hold for U = V(") (T') with all T
and all m; see Examples 3-4. For example, as illustrated in Example 4, when I'" ranges
continuously, (b) tends to fail for some m. To make sure (b) holds, Ma et al.| (2018) assumes a
relatively strong condition (b1): P — Py for a fixed matrix Py with distinct eigenvalues. This
is a strong signal case where A1, A9, ..., A\x (eigenvalues of 2) are at the same magnitude,
and the eigen-gaps are also at the same magnitude; see Example 1. In this case, the I' in
David-Kahan sin(#) theorem is uniquely determined, so (b) holds. However, our primary
interest is in the more challenging weak signal case, where typically [A2|/A1 — 0. In this
case, (bl) won’t hold, because the only Py that can be the limit of P is the K x K matrix
of all ones, where the K eigenvalues are not distinct.

3.4 'THE BEHAVIOR OF THE RQ TEST STATISTIC

In this section, we prove Theorems [3.2.1) and [3.2.3] Corollaries follow directly
from Theorems and [3.2.3] respectively, so the proofs are omitted. All other theorems

and lemmas are proved in the supplementary material.

3.4.1 Proof of Theorem (the null case of m = K)

First, it is seen that the first item is a direct result of Theorem [3.2.2} Second, by definitions,
P(K; < K) > P < za),

and so the last item follows once the second item is proved. Therefore, we only need to show

the second item. Recall that when m = K,

o) = QY = B/ V/8Ch,
where QELK), BT(LK), and C,, are defined in (3.2.9)), (3.2.8) and (3.2.11]), respectively, which

we reiterate below:
Q= 3 (Ann = O (Aisiy — ) (Aiis — Q) (i, — DL,

1112 1213 1314 1411
i1,i2,i3,i4 (dist)

C, = Z AivigAigis Aigig Aigiy s BT(lK) = 2H§H4 . [@”17*1(13?[2]3 o ﬁﬁzﬁ)‘/}flﬁ]

il,iQ,i3,i4(diSt)
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In the first equation here, Q) depends on the estimated community label matrix %), To
facilitate the analysis, it’s desirable to replace II5) by the true membership matrix II. By
the first claim of the current theorem, this replacement only has a negligible effect.

Formally, we introduce QD) to be the proxy of Q&) with I in its definition replaced
by II. Moreover, define Q(KO to be the proxy of Q%K) with QU replaced by Q0 in its
(K)

definition, and define the corresponding counterpart of v,
0 = QO B /RC:,
Then, for any fixed number ¢t € R we have
P < 1) — PO < )| <P £10) -0,  asn— oo,
where the last step follows from the first claim in the current theorem. Hence by elementary

probability, to prove @z)ﬁf() — N(0,1) in law, if suffices to show 1/11(1[(’0) — N(0,1) in law.

as

Recall that if we neglect the difference in the main diagonal entries, then A — Q = W.
By definition, we expect that Q%0 ~ Q, and so (4 — QU59)) ~ W. This motivates us to
define

Qn = Z VthWiQis Wisi4Wi4i1 . (3'4'20)

11,12,13,54 (dist)
At the same time, for short, let b, and ¢, be the oracle counterparts of BT(LK) and Cj,
Cn = Z Qi ip Qi i Qi bn = 2HQH4 ) [glv_l(PHQP © PH2P>V_19]'
11,i2,13,54 (dist)
(3.4.21)
Here, two vectors g, h € RX are defined as g, = (1,0)/]|0])1 and hy, = (1,014)'/2/||0||, where
1; is for short of 1,(€K), which is defined as
1,(:() (i) =1 if i € N} and 0 otherwise.

Moreover, V' = diag(Pg), and H = diag(h). The following lemmas are proved in the
supplementary material.

Lemma 36. Under the conditions of Theorem we have E[C,] = ¢, < ||0]|® and
Var(C,,) < C||0]|® - [1 + [|0]1$], and so Cy/cy, — 1 in probability for ¢, defined in (3.4.21)).

Lemma 37. Under the conditions of Theorem 1, Qn/v/3cn — N(0,1) in law.

Lemma 38. Under the conditions of Theorem E(Q%K’O) — Qn — b))% = o(]|0]®).
Lemma 39. Under the conditions of Theorem we have b, =< [|0]|* and B /b -1
in probability for b, defined in (3.4.21)).

Among these lemmas, the proof of Lemma [38] is the most complicated one, as it requires
computing the bias in ng) caused by the refitting step; see Section in the supplementary
material for details.

We now prove Theorem Rewrite wr(lK’O) as

Cn @n (Q%K’O) - @n - bn) (bn - BT(LK)) o Cn
\/Cin[\/ﬁ—’_ J3e, + 8. :| = Cfn'[(f)-f—(ff)—f—(fff)], (3.4.22)
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3.4. The behavior of the RQ test statistic

where (I) = Qn/v/8cn, (II) = (QYY — Q,, — b,)/v/8en, and (I1I) = (b, — BSX))//3cn.
Now, first by Lemmas

¢n/Cr — 1 in probability, and (I) - N(0,1) in law. (3.4.23)
Second, by Lemma [37]
E[(I1)°] < 8en) ™ - E[(QYY = QI = b,)°] < - o((10]%), (3.4.24)

where the right hand side is o(1) for ¢, < ||6||® by Lemma Last, by Lemma m we
have b, < /¢, < ||0]|* and BT(LK)/bn 21, and so

(I11) = (\/%) : (Béf) — 1) 2. (3.4.25)

Inserting (3.4.23))-(3.4.25)) into ((3.4.22)) gives the claim and concludes the proof of Theorem
B2Z1

3.4.2 Proof of Theorem (the under-fitting case of m < K)

In the proof of Theorem we start from replacing %) with the true community label
matrix II. However, when m < K, 1™ does not concentrate on one particular label matrix.
Below, we introduce a collection of label matrices, G,,, consisting of all possible realizations
of TI(™) when NSP holds. We then study the GoF statistic on the event that m = Iy, for
a fixed Il € G,,.

Recall that IT is the true community label matrix. Fix 1 < m < K. Let G, be the class
of n x m matrices I1y, where each Iy is formed as follows: let {1,2,..., K} = S1USsy...US,,
be a partition, column £ of Ily is the sum of all columns of IT in Sy, 1 < ¢ < m. Let Ly be
the K x m matrix of 0 and 1 where

Lo(k,¢) = 1if and only if k € Sy, 1<kE<K, 1<{t<m. (3.4.26)
Therefore, for each Iy € G,,,, we can find an Lg such that IIy = IILg. Note that each I is

the community label matrix where each community implied by it (i.e., “pseudo community”)
is formed by merging one or more (true) communities of the original network.

Fix a IIp and let Nl(m’o),NQ(m’O), e ,N,Slm’o) be the m “pseudo communities” associated
with IIy. Recall that g(m), 0 and P(™) are refitted quantities obtained by using the
adjacency matrix A and ﬁ(m); see —. To misuse the notations a little bit, let
é\(m,O)’ O(m0) and P(mO) he the proxy of 5(’”), Om) and pm) respectively, constructed
similarly by -, but with I1(m) replaced by IIg. Introduce

Qm0) — gm0y, p(mO)yy §(m-0), (3.4.27)
QO = Y (A, — O Ay — OO (A, — QO (A, — IO,
11,02,13,54 (dist)
and
B0 — [Q(m0) _ RO/ /RC. (3.4.28)

These are the proxies of Q™) ng), and ¢£m)’ respectively, where 1™ is now frozen at a
non-stochastic matrix Il.
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3. ESTIMATING THE NUMBER OF COMMUNITIES BY STEPWISE GOODNESS-OF-FIT

In the under-fitting case, m < K, and we do not expect QM) t6 be close to Q. We define

a non-stochastic counterpart of Qm0) a5 follows. Let 9(m.0) @(m0) and P(M:0) he constructed

similarly by —, except that (A,ﬁ(m)) and the vector d = (dy,ds,...,d,)" are
replaced with (€, 1Iy) and Q1,,, respectively. Let

Qm0) = @m0y, pmO) I m0) (3.4.29)

(m,0)

The following lemma gives an equivalent expression of €2 and is proved in the supple-

mentary material.

Lemma 40. Fizx K > 1 and 1 < m < K. Let Il = IILy € G,, and Q0 pe as above.
Write D = II'OII € REX and Dy = IT,OI0 € R™X. Let Py be the K x K matriz given by

Py = diag(PD1x) - Lo - diag(DoPD1g )~ (Do PD})diag(DoPD1g) ™" - L} - diag(PD1g),

where the rank of Py is m. Then, Q™0 = OIIPII'O.

This lemmas says that QM0 has a similar expression as €2, with P replaced by a rank-m
matrix Py. When m = K, G,, has only one element II; then (Py, 2"0) reduces to (P, Q).

We expect QM) to concentrate at (™9, This motivates the following proxy of Q%m’o).

H(m m,0 m,0 m,0 m,0
Qq(1 0) — Z (Aiyiy — ng ))(Aim - ng ))(Ai3i4 — Ql(m ))(Aim _ Qz(‘m )>' (3.4.30)
11,12,13,54(dist)
Introduce

Q0 = g — im0, (3.4.31)

Recall that A = (Q — diag()) + W, we rewrite Q1" as
Q=3 (Wi, + O (Wigiy + Q) Wiy + Q) (Wi, + Q). (3.4.32)

1112 1213 1314 141
1,02,13,54 (dist)

Note that when m = K and Ily = II, the statistic @’%m,O) reduces to @n defined in ([3.4.20)).

The matrix Q(m0) captures the signal strength in @%m,o) . From now on, for notation
simplicity, we write QMmO =  in the rest of the proof. Let Xk be the k-th largest (in
magnitude) eigenvalue of ) and recall that Ak is the k-th largest (in magnitude) eigenvalue of
Q. In light of , we write © = Q™0 + Q) and apply Weyl’s theorem for singular values
(see equation (7.3.13) of Horn and Johnson! (1985)). Note that Q™9 has a rank m and Q has
arank K. By Weyl’s theorem, for all 1 < k < K —m, [Ama| < [Amst (Q0)] + [ x| = [ M-

It follows that
K

K—m
@ > > = >0
k=1

k=m+1

As we will see in Lemma |42| below, tr(€24) is the dominating term of E[~%m’0) |. Define

7m0 = |X1|/A;. (3.4.33)

(m,0)

For notation simplicity, we write 7 = 7, but keep in mind both Qand 7 actually depend

on m and Ily € G,,. The following lemmas are proved in the supplementary material.

Lemma 41. Under the conditions of Theorem foreach 1 <m < K, let Q and T be
defined as in (3.4.29) and (3.4.33). The following statements are true:
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3.4. The behavior of the RQ test statistic

o There exists a constant C' > 0 such that ‘ﬁw‘ < CT1;0;, for all 1 <i,j <n.
e c, < |08, A1 < ||0]|?, and T = O(1).
o tr(Q%) > C740||8, and 7|0]| — oco.

Lemma 42. Under the condition of Theorem[3.2.3, for 1 <m < K,
E[Q™] = tr(Q*) + o(|0]*),  Var(Q(™) < C(||6]* +7°|I6]*||0]]5)-

Lemma 43. Under the condition of Theorem[3.2.3, for 1 <m < K,

E[QU™ — QU = o(r[16]),  Var(Q™” — Q") < o([|6]*) + CT°l|6]*|6]13-

n n

Lemma 44. Under the conditions of Theorem|3.2.5, for 1 < m < K, there exists a constant
C >0, such that P(B{™ < C||0]*) > 1+ o(1).

We now prove Theorem Note that by Theorem the second item of Theorem
follows once the first item is proved. Therefore we only consider the first item, where
it is sufficient to show that for all 1 < m < K,

P - oo, in probability.
By the NSP of the solutions produced by SCORE, which is shown in Theorem there

exists an event A, with P(A¢) < Cn~3 as n — oo, such that on event A,, we have ™ e G,,.
This further indicates that on event A,, we have

Y™ > i By, (3.4.34)

where d)nm’o) is defined in . The LHS is hard to analyze, but the RHS is relatively
easy to analyze. Then further notice that the cardinality of G,, is |G| = m®, which is of
constant order as long as K is constant. Therefore to prove z/Jnm) — 00 in probability, it
suffices to show that for any fixed Iy € G,

@er(lm’o) — 00, in probability. (3.4.35)
We now show (|3.4.35]). Rewrite zpém’o) as
(m,0) (m)
Cn Qn By, Cn
no — =./—-[(I)-(II 3.4.36
Vo [ - el & w-un -

where (I) = Q%m’o)/\/%, and (IT) = Bflm)/\/@. First, by Lemma (since Cy, and ¢, do
not depend on m, this lemma applies to both the null case and the under-fitting case),
cn/Cp — 1 in probability. (3.4.37)
Second, by Lemma cn < ||0|®. Combining it with Lemma gives that there is a constant
C > 0 such that
P((II)<C)>1+o0(1). (3.4.38)
Last, by Lemma
E[(D)] = Cr|6]* - [L + o(1)] = oo,  Var((I)) < C(1+7°(16][3).
Therefore, by Chebyshev’s inequality, for any constant M > 0,
14 7)1

P((I) < M) < (E[(I)] = M)™*Var((I)) < C (T46]1*[1 + o(1)] — M)2 |’

(3.4.39)
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3. ESTIMATING THE NUMBER OF COMMUNITIES BY STEPWISE GOODNESS-OF-FIT

where on the denominator, 7||f|| — oo by Lemma Note that under our conditions,
101153 = o(||0]|*) and ||0|| — co. Combining these, the RHS of (3.4.39) tends to 0 as n — oo.
Inserting (3.4.37))-(3.4.39) into (3.4.36|) proves the claim, and concludes the proof of Theorem
B.2.3

3.5 REAL DATA ANALYSIS AND SIMULATION STUDY

In theory, a good approximation for the null distribution of 1#,(17”) is N(0,1) and Theorem
where we show w,(lm) — N(0,1) in the null case). Such a result requires some model
assumptions, which may be violated in real applications (e.g., outliers, artifacts). When
this happens, a good approximation for the null distribution of m(lm) is no longer N(0,1)
(i.e., theoretical null), but N(u,0?) (i.e., empirical null) for some (u,o) # (0,1). Such a
phenomenon has been repeatedly noted in the literature. For example, Efron [Efron| (2004)
argued that due to artifacts or model misspecification, the empirical null frequently works
better for real data than the theoretical null. The problem is then how to estimate the
parameters (u,o?) of the empirical null.

We propose a bootstrap approach to estimating (u, 02). Recall that //\\k is the k-th largest
eigenvalue of A and Ek is the corresponding eigenvector. Fixing N > 1 and m > 1, letting
M = pya XkEkE,; and let §(”:) =A—M™, Forb=12,...,N, we simultaneously
permute the rows and columns of SU™ and denote the resultant matrix by S(™% . Truncating
all entries of (Z\/Z (m) 4 § (m:9)) at 1 at the top and 0 at the bottom, and denote the resultant
b). Generate an adjacency matrix A® such that for all 1 < i < j < n, AZ(?)
are independent Bernoulli samples with parameters f\lg) (we may need to repeat this step
until the network is connected). Apply StGoF to A®) and denote the resultant statistic

by Qg’). We estimate u and o by the empirical mean and standard deviation of {Qﬁf’)}{)’: 1>

matrix by O

respectively. Denote the estimates by @™ and ™), respectively. The bootstrap StGoF
statistic is then
Pim) = QM —am/Em - m=1,2,..., (3.5.40)

where Q%m) is the same as in (3.2.12)). Similarly, we estimate K as the smallest integer m
such that wﬁlm’*) < Za, for the same z, in StGoF. We recommend N = 25, as it usually gives
stable estimates for 4(™ and (™).

The original StGoF works well for real data where the DCBM is reasonable, but for
data sets where DCBM is significantly violated, bootstrap StGoF may help. For the 6
data sets considered in Section two methods perform similarly for all but one data set.
This particular data set is suspected to have many outliers, and bootstrap StGoF performs
significantly better. For theoretical analysis, we focus on the original StGoF statistics ¢£Lm)

as in (3.2.12)).

3.5.1 Real data analysis

For real data analysis, we consider 6 different data sets as in Table which can be
downloaded from http://www-personal.umich.edu/~mejn/netdata/. We now discuss
the true K. For the dolphin network, it was argued in Liu et al.| (2016]) that both K = 2 or
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3.5. Real data analysis and simulation study

K = 4 are reasonable. For UKfaculty network, we symmetrize the network by ignoring the
directions of the edges. There are 4 school affiliations for the faculty members so we take
K = 4. For the football network, we take K = 11. The network was manually labelled as 12
groups, but the 12th group only consist of the 5 “independent” teams that do not belong
to any conference and do not form a conference themselves. For polbooks network, Le and
Levina Le and Levina, (2015) suggest that K = 3, but it was argued by Jin et al. (2017)) that
a more appropriate model for the network is a degree corrected mixed-membership (DCMM)
model with two communities, so K = 2 is also appropriate.

We compare StGoF and bootstrap StGoF (StGoF*) with the BIC approach by Wang
and Bickel Wang et al.| (2017)), BH approach by Le and Levina Le and Levinal (2015), ECV
approach by Li et al. |Li et al.| (2020), and NCV approach by Chen and Lei |Chen and Lei
(2018). For all these methods, we use the R package “randnet” to implement them. Note
that among these approaches, ECV and NCV are cross validation (CV) approaches and the
results vary from one repetition to the other. Therefore, we run each method for 25 times
and report the mean and SD. The StGoF* uses bootstrapping mean and standard deviation
and is also random, but the SDs are 0 for five data sets. Most methods require a feasible
range of K as a priori. We take {1,2,...,15} as the range in this section.

Table 3.1: Comparison of estimated K. Take ECV for Dolphins for example: for 25
independent repetitions, the estimated K have a mean of 3.08 and a SD of 0.91, ranging
from 2 to 5 (SD of StGoF* are 0 for the first 5 data sets).

Name n K BIC BH ECV NCV StGoF StGoF*
Dolphins 62 2,4 2 2 3.08(0.91) [2.5]  2.20(2.71) [L,15] 2 3
Football 115 11 | 10 10 11.28(0.61) [11,13] 12.36(1.15) [11,15] 10 10
Karate 34 2 2 2 2.60(1.00) [1,6] 2.56(0.58) [2,4] 2 2
UKfaculty 81 4 43 556(161) [3,11  2.40(0.28) [2,3] 4 4
Polblogs 1222 2 6 8  4.88(1.13) [4, §] 2(0.00) [2, 2] o 2
Polbooks 105 2,3 | 3 4  7.56(2.66) [2,15]  2.08(0.71) [2, 5] 5 2.4(0.25) 2, 3]

The polblogs network is suspected to have outliers, so most of the methods do not work
well. For this particular network, the mean of StGoF is much larger than expected, so we
choose to estimate K by the m that minimizes m&m) for 1 < m < 15 (for this reason, we put
a * next to 2 in the table). Note that StGoF* correctly estimates K as 2. The polbooks
network is suspected have a signifiant faction of mixing nodes (e.g., |Jin et al.| (2017)), which
explains why StGoF overestimates K. Fortunately, for both data sets, StGoF* estimates

K correctly, suggesting the bootstrapping means and standard deviations help standardize
(m)
no -

3.5.2 Simulations

We now study StGoF with simulated data. We compare StGoF with BIC, ECV, NCV via a
small scale simulations (for StGoF, o = 0.05). We do not include StGoF* since there is no
model specification. We do not include BH for comparison either: the method is designed
for very sparse stochastic block model and the performance is unsatisfactory for most of our
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settings.

Given (n, K), a scalar 3, > 0 that controls the sparsity, a symmetric non-negative matrix
P € REXE 4 distribution f(6) on (0, 00), and a distribution g(7) on the standard simplex
of RX | we generate the adjacency matrix A € R™" as follows:

1. Generate 01,0y, ..., 0, iid from f(6). Let 6; = B, - 0;/]|0]| and © = diag(61, ..., 0,).
2. Generate 71, 2, ..., Ty, iid from g(7), and let II = [my, 72, ..., 7]

3. Let Q = OIIPII'O. For each experiment below, once ) is generated, we keep it fixed,
and use it to generate A according to the DCBM, for 100 times independently.

For all algorithms, we measure the performance by the fraction of times the algorithm
correctly estimates the true number of communities K (i.e., accuracy). Note that [|0] = G,
and SNR =< ||6]|(1 — by,). For the experiments, we let 3, range so to cover many different
sparsity levels, but let ||#]|(1 — b,,) be at a more or less the same level, so the problem of
estimating K is not too difficult or too easy; see details below. We consider three experiments,
and each experiment has some sub-experiments.

Experiment 1. In this experiment, we study how degree heterogeneity affect the results
and comparisons. Fixing (n, K) = (600,4), we let P be the 4 x 4 matrix with unit diagonals
and off-diagonals P(k,¢) =1—[(1—0by)(|k — ¢+ 1)]/K, where 1 < k,¢ <4 and k # ¢. Such
matrix is called a Toeplitz matrix. Let g(m) be the uniform distribution over ej, es, €3, e4
(the standard basis vectors of R?).

We consider three sub-experiments, Exp la-lc. In these sub-experiments, we keep
(1 —b,)]|0] fixed at 9.5 so the SNR’s are roughly at the same level. We let 3,, range from 10
to 14 so to cover both the more sparse and the more dense cases. Moreover, for the three
sub-experiments, we take f(6) to be U(2,3) (uniform distribution), Pareto(8,.375) (8 is the
shape parameter and .375 is the scale parameter), and two point mixture 0.950; + 0.0503 (4
is a point mass at a), respectively. Note that from Exp la to Exp lc, the degree heterogeneity
is increasingly more severe on average.

The estimation accuracy is presented in Figure where StGoF is seen to consistently
outperform other approaches. Also, from Exp la to Explc, the estimation accuracy for all
algorithms get consistently lower, suggesting that when the degree heterogeneity gets more
severe, the problem of estimating K gets more challenging.

Experiment 2. In this experiment, we study how the relative sizes of different communi-
ties affect the results and comparisons. For b,, > 0 to be determined, we set (n, K) = (1200, 3),
f(0) as Pareto(10,0.375), and let P be the 3x3 matrix satisfying P(k,¢) = 1—|k—£|(1—by)/2,
1 <k, ¢ <3. Welet 5, range in {12,13,...,17} and keep (1 — b,)||0|| fixed at 10 so the
SNR’s are roughly at the same level. We take g(m) as the distribution with weights a, b, and
(1 — a — b) on vectors eg, ez, e3 (the standard basis vectors of R?), respectively. Consider
three sub-experiments, Exp 2a-2c, where we take (a,b) = (.30, .35), (.25,.375), and (.20, .40),
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Figure 3.4: Left to right: Experiment la, 1b, and 1c, where the degree heterogeneity are
increasingly more severe (x-axis: sparsity. y-axis: accuracy). Results are based on 100
repetitions.
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Figure 3.5: Left to right: Experiment 2a, 2b, and 2c¢ (z-axis: ||0|| (sparsity level); y-axis:
estimation accuracy. The results are based on 100 repetitions.

respectively, so the three communities in the network are slightly unbalanced, moderately
unbalanced, and slightly unbalanced, respectively.

Figure [3.5] presents the estimation accuracy. First, StGoF consistently outperforms
NCV, ECV and BIC. Second, when the three communities get increasingly unbalanced,
all methods become less accurate, suggesting that estimating K gets increasingly harder.
Last, the performance of ECV and NCV are relatively close to that of StGOF when the
communities are relatively balanced (e.g., Exp 2a), but are comparably more unsatisfactorily
when the models are more unbalanced (e.g., Exp 2b-2c).

Experiment 3. We study how robust these algorithms are in cases of model mis-
specification. Fix (n, K) = (600,4). We let f(0) be the uniform distribution U(2,3), and
let P be the 4 x 4 matrix with unit diagonals and where for 1 < k,/ < 4 and k # £,
P(k,t) =1—(1=0b,)(|k— ¢ +1)/K. We consider two sub-experiments, Exp 3a-3b. For
sparsity, we let 3, range from 11 to 16 in Exp 3a and range from 11 to 18 in Exp 3b. For
different 3, we choose b,, so that (1 —by,)|||| is fixed at 10.5. Moreover, in Exp 3a, we allow
mixed-memberships. We take g(7) to be the mixing distribution which puts probability
.2 on ey, e, e3,e4 (standard basis vectors of R*), respectively, and let 7 be the symmetric
K-dimensional Dirichlet distribution for the remaining probability of .2. Once we have 6;, 7;,
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Figure 3.6: Experiment 3a (left) and 3b (right) (z-axis: ||6| (sparsity level). y-axis:
estimation accuracy). The results are based on 100 repetitions.

and P, we let Q;; = 0,07/ Prj, 1 <1i,j <n, similar to that in DCBM. In Exp 3b, we allow
outliers. First, we let g(m) be the mixing distribution that puts masses .25 on ej, eg, €3, €4,
and obtain 2 as in DCBM. We then randomly select 10% of the nodes and re-define €;; as
pn if either ¢ or j is selected, where p, = n—2 Zlgi,jgn ;.

Figure presents the estimation accuracy. The two cross-validation methods (ECV
and NCV) are not model based algorithms and are expected to be less affected by model
misspecification, so we can use their results as a benchmark to evaluate the performances of
StGoF and the likelihood-based approach BIC. Figure [3.6| shows that StGoF continues to
perform well in all settings, suggesting that it is not sensitive to model misspecification. The
performance of BIC, if compared to those in Experiments 1-2, is less satisfactory, suggesting
that the method is more sensitive to the model misspecification.
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3.A. Proof of results in Sections 3.1H3.2

3.A  PROOF OF RESULTS IN SECTIONS

3.A.1 Proof of Lemma

For the goodness-of-fit test, it contains calculation of (a) QM) as the refitted €, (b) Q%m) as
(m)

the main term, (c) By  as the bias correction term and (d) C), as the variance estimator.

For (a), it requires calculation of d; for 1 < i < n, and T;Aig and T;Ain for1 <k ¢<m
with m < K. Since d; needs O(d;) operations, it takes O(nd) for calculating d;, 1 <i < n.
Similarly, it takes O(i%A/l\g) to calculate i\;gA/]tg and O(/l\;cAin) to calculate i%A/l\n, 1<
k,¢ < m. The total complexity is then O(nd). By ,

Q0 (i, j) = 6 D™ () &™) PR,
whose calculation takes O(m?) operations. Hence, calculation of QM needs O(m?n?)
operations. Combining together, we conclude that step (a) costs O(m?n?).

For (b), ™ can be calculated using the same form in Theorem 1.1 of Jin et al.| (2019).
As is shown there, this step requires O(n?d) operations.

For (c), given Q0™ and P the caleulation of g™, V(™ and H™ only takes O(n).
By (B.2.11)), calculation of BY™ only involves calculate 6] and gV -1(PH2Po PH2P)V 3.
The first part needs O(n) operations. The second part only involves vectors in R™ and
matrices in R"™"™. Moreover since m < K and K is fixed, it takes at most o(n) operations.
Combining above, step (c) costs O(n).

For (d), the calculation follows from Proposition A.1 of |Jin et al. (2018). It should be
noted C,, is denoted as Cy there, and it requires calculation of (i) trace of a matrix, (ii) A*
for matrix A and (iii) quadratic form of matrix A and A2. For (i), it only takes O(n). For
(iii), it takes at most O(n?). For (ii), we can compute A* recursively from A% = AF=1A. it
suffices to consider the complexity of computing BA, for an arbitrary n x n matrix B. The
(i,7)-th entry of BA is Zé:Aej;éo BiyAy;, where the total number of nonzero Ay equals to
dj, the degree of node j. Hence, the complexity of computing the (i, j)-th entry of BA is
O(d;). Tt follows that the complexity of computing BA is O(n%d).

Combining above, the goodness-of-fit test needs O(n?d) operations. O

3.A.2 Proof of Theorem

First, we show the claims on [Ax|/v/A1. Define a diagonal matrix H by Hy, = |||~ [> i1 07
for 1 <k < K. Note that H is also stochastic. By Lemma [30] the eigenvalues of 2 are equal
to the eigenvalues of ||0||?HPH, i.e.,

Me = 10117 - M(HPH), 1<k<K.
It follows that

Akl / VA= 10]l - Ak (HPH)|/ /M (HPH). (3.A.41)

Below, we first study the matrix H and then show the claims.

Consider the matrix H. Let ]\71, Ng, . ,]\NIKO be the (non-stochastic) communities of

183
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the DCBM with K communities. For each 1 < k < Ky, let #) € R" be such that
Hz(k) = 0; - 1{i € Ni}. By definition,

16|12, for 1 <k <Ky—1,

Hpy, = [|6]I~* >
ZieﬁKO Gi . 1{&' = kj}, for Ko <k < Kgy+m.

Since ([3.2.2) is satisfied, |02 > |8%¥)]|? > C||0]|?, for 1 < k < Kj. It implies that
Cl'<Hw<C, forl<k<K;—1. (3.A.42)
Fix k > Ky. The n indicators 1{¢; = k} are iid Bernoulli variables with a success probability
of %—i—l Therefore, EH,?,C = ﬁ|]9\\*2\\0(K0)\]2. Furthermore, by Hoeffding’s inequality,
2
P([1012(HE, — EHE)| > t) < 2exp(— 5 ).
W 1°(H g, k:k)‘ S 2€6Xp 25 - oF
ZENKO 1
By (3.2.1)), Omax+/log(n) — 0. Hence, Zz‘eﬁKO 0} < 02,110 |2 < ||0]|?/log(n). Taking
t = ||0|| in the above equation yields |H7, — EHZ,| < ||6]| ! with probability 1 —o(n~'). We
have seen that EH?, = #H\IHH*Q\\Q(KO)HZ, which is bounded above and below by constants.
Additionally, [|0]|~* = o(1). Combining these results gives

Cl<Hy<C, with probability 1 — o(n™!), for any k > Kj. (3.A.43)
It follows from (3.A.42)) and (3.A.43)) that
|H|<C, |H™'<C,  with probability 1 —o(n~1). (3.A.44)

Consider the the upper bound for [Ag|/v/A1. It suffices to get an upper bound for
Ak (HPH)| and a lower bound for A\{(HPH). Note that |Ax(HPH)| is the smallest
singular value of HPH, which can be different from the absolute value of the smallest
eigenvalue. Therefore, we cannot use Cauchy’s interlacing theorem (Horn and Johnson,
1985) to relate |\ (HPH)| to the smallest eigenvalue of M. We need a slightly longer proof.
Write

s AL,
1m+15/ 1m+11;n+1

O(Ko—1)x(Ko—1) O(ko—1)x1
P= + | Ko 0 0 =P*+A.
01x(Ko—1) %M — Ll

The matrix P* can be re-expressed as (e, is the Koth standard basis of R¥0)
S B
g1
Therefore, the rank of P* is only Ky. Then, H P*H is also a rank- Ky matrix. Consequently,
for K = Ky +m,

P* — IKU

1m€/KO [IKO eKolgn} :

Ax(HP*H) = 0.

By Weyl’s inequality (Horn and Johnson, 1985), |[\x(HPH) — Ax(HP*H)| < ||HAH]|.
Combining these results gives

Ak (HPH)| < |HAH]|. (3.A.45)
Note that |Al = ||1T$;HM — 14117, |- M is a matrix whose diagonals are 1 and
m(1—byp)

off-diagonals are equal to b,. As a result, A is a matrix whose diagonals are equal to 5 b
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—(1—by)

and off-diagonals are equal to 7

. It follows immediately that
JA] < C(1L = by).
We plug it into and apply . It yields that
Ak (HPH)| < C(1 —by). (3.A.46)
Furthermore, A\;(P) > Pi; = 1 and A\;(P) < ||HY||?A\1(HPH). Combining it with

gives

M(HPH) > C™ (3.A.47)

Note that ([3.A.46)-(3.A.47) hold with probability 1—o(n~!), because their derivation utilizes

BAL). We plug FA48)-FALT) into (BAL to get Axl/vA < C0(1 - by), with
probability 1 — o(n~!). This proves the upper bound of |Ag|/v/A1.

Consider the the lower bound for |Ax|/v/A1. Using (3.A.44]), we have
A (HPH)|™' = |(HPH)™| < |[HTH? - |P7H < ClIPT. (3.A.48)
We then bound ||[P~1|. Write

S 1/
P=A+B, where A= 1 and B = 0 , ! .
1+mbn, M 1m+16 0
The matrix B is a rank-2 matrix, which can be re-expressed as
2
B=XD1X' where X = b b and D = .
11 —lmp -2

We use the matrix inversion formula to get
IP7H = (A + XD~ X") 7|

=[|[AT - ATIX(D+ X'ATIX) I XA

< JATH] - L+ 1X(D + X"ATIX) X AT

=AY (14 (D + XA X)) H(X'ATIX))). (3.A.49)
By direct calculations, writing My = %M and 1 = 1,,41 for short, we have

BSTIB+1'M; 1 BS7IE— 1’M011]

BSTIp—1M;"1 BSTIA+ UMy

Note that M1 = (1 + mb,)1. It implies that M 11 = ﬁl. As a result,

_ 1+ mb _ 1+ mb 1
UM = 2 Mgty ”1’( 1) — 1.
0 m+1 0 m+1 1+ mb,
Plugging it into the expression of X’A~1X gives
B,S_lﬁ‘i'l B/S_lﬁ—l
615_15_1 6/5_118"’_1

X'A'X =

X'A'X =

It follows from direct calculations that

1A=Ly =1y’ 41 1)1 —1
B375-13-1
Under the condition |8'S™!8 — 1| > C, the absolute value of % is bounded by a

constant. Therefore, the spectral norm of the matrix in (3.A.50)) is bounded by a constant.
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3. ESTIMATING THE NUMBER OF COMMUNITIES BY STEPWISE GOODNESS-OF-FIT

We plug it into to get
IP7H < CIATH] < Cmax{ [ Amin(S)| 1 [Amin (M)}
The minimum eigenvalue of M is (1 —b,,). Hence, under the condition of |Amin(S)| > 1 — by,
we immediately have ||[P~1|| < C(1 —b,)~!. We plug it into to get
A (HPH)| > C71(1 —b,). (3.A.51)
Additionally, |P|| < C by (3-2.1). It follows from the connection between P and P in
that || P|| < C. Combining it with gives |HPH| < C, i.e.,
M(HPH) < C. (3.A.52)
Here and are satisfied with probability 1—o(1), because their derivation uses

(3.A44). We plug (3.A.51)-(3.A.52) into (3.A.41). It yields that |\g|/v/A1 > C~1|0]|(1—by),
with probability 1 — o(1). This proves the lower bound of |Ag|/v/A1.

Next, we show that, if ||6|/(1 — b,) — 0, the two random-label DCBM models associated
with m; and mo are asymptotically indistinguishable. It is sufficient to show that each
random-label DCBM is asymptotically indistinguishable from the (fixed-label) DCBM with
Ky communities.

Fix m > 1. Let fo(A) and f;(A) be the respective likelihood of the (fixed-label) DCBM
and the random-label DCBM. Write Q = OIIPII'O and Q = OIIPIT'O. 1t is seen that
fO(A) = H QZ]”(]. _ ﬁij)lfAz‘j’ / H QZJZJ 1 _ Z])l Alj d]P)( )
1<i<j<n 1<i<j<n

Recall that ./\N/'1,./{72, e ,./VKO are the (non-stochastic) communities in the firsst DCBM. We
observe that €);; # Qij only when both 7 and j are in Ng,. Therefore, the likelihood ratio is

/ 11 (gj> (1:3)1 A”dP(H)- (3.A.53)

y
{i.5}C Nk i<j "

L(A)

When ¢, j are both in NKO, it is seen that

~ (m+1)
Qi = 0.0, Q=007 <71 b M) 7,
where m; = ¢ ifand only if §; = Ko — 1+ k, 1 <k <m+1, and ey, e3,...,enyt1 are the

standard bases of R™*!. Here we have mis-used the notation 7;; previously, we use ) to
denote the i-th row of II, but currently, the i-th row of IT is (0%, ;,7})". Define
1 .
Zi:Wi_m1m+1, for aHZeNKO.
The random vectors {z;}, Ny are independently and identically distributed, satisfying
0

Ez; = 0 and ||z;]] < 1. In the paragraph below ([3.A.45)), we have seen that

m —1 .. —1
m+1 1-b6, [-1 m
—M=1 1 _ =1 1/ G.
1+ mb, methmgs 1+ mb, RE— i imi1 ¥
—1 -1 m
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The matrix G satisfies that G1,,4+1 = 0 and ||G|| < C(1 — by,). It follows that
Qij = 0i6; -} (Ls11p4q + G) 7
= (91'9]‘ + Qi(gj(ﬂgGﬂj)

1 ! 1

= 92‘9]'(1 + Z;GZ]'). (3.A.54)
We plug it into (3.A.53|) to get

1-A;;
_ fa(A) 1Ay | 1= 0i05(1 + 2Gzy) ’
L(A) = A —E,. H (14 2/Gz;)tis = (3.A.55)
ijeNK 1 !
<y

The x*-distance between two models is E 4~ 1, [(L(A) — 1)?]. To show that the two models are
asymptotically indistinguishable, it suffices to show that the y2-distance is o(1) Tsybakov
(2008). Using the property that Eaz [(L(A) — 1)%] = Eavf, [L3(A)] — 1, we only need to
show

Eanfo[L*(A)] < 1+ 0(1). (3.A.56)

We now show (3.A.56). Write L(A) = E,[g(A, z)], where g(A4, z) is the term inside the
expectation in (3.A.55)). Let {Zi}ieK/KO be an independent copy of {Zi}ieﬁ/Ko' Then,
Eavso L2(A)] = Eang {Exlg(A, 2)] - Ezlg(4, 2)] | = B 2{Eavsol9(4, 2)9(4, )]} (3.A57)
Using the expression of g(A, z) in (3.A.55]), we have

g(A 294 = ] [+=62)0+265))" { (1= 0:0;(1 + 2(G2)][1 — 0:0;(1 + ZGZ))] }I_Aij .

1 1+ 6;0,)2
ijeN, ( i0;)
1<J
Here A;;’s are independent Bernoulli variables, where P(A4;; = 1) = 6;0;. If we take

expectation with respect to A;; in each term of the product, it gives
[1—0:0,(1 + 2iGz))][1 — 0:0,(1 + ZGZ;)]

GRS A =0 (1—0:6,) P(4ij =0)
= 0,0;(1+ 2/Gz)(1 + ZGZ) + 1—0:6;(1+ z;Glz:]_)][;Zg; 0,0;(1 + Z/Gz;)]
= (1+2Gz)(1+ 5GZ) (0:6; + : 9_2?9]) L1000+ zgfz_j)gi—ejgieju +Z/G%))
= (142/G2)(1 + 5G%); f? g t1- 0:0;(1 +1z;_G;;éj+ %G%j)
- 1+ ) (63
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As a result,
0;0; o
Ea~plo(4,2)9(A, 0] = ] Lt 7o (2162 (3G)
(1.5} Ny i< Y
eiej / ~
< exp Z = 0,0, (2iGz)(z,Gz) |

{i.3}C Nk i<i
where the second line is from the inequality that 1 + x < e” for all x € R. We plug it into
(3.A.57). Then, to show (3.A.56)), it suffices to show that
00, oy~
E.zlexp(Y)] < 140(1),  where Y= Y L (21G2)(ZGZ;).  (3.A.58)

{i.3}C Nk i<i

We now show (3.A.58). We drop the subscript {i,j} C N, K, in most places to make
notations simpler. The matrix G can be re-written as

1-0
G = ﬁ |:(m + 1)Im+1 — 1m+11,/rn+11| .

Additionally, z/1,,+1 = 0. It follows that z/Gz; = (mt1)(A=bn)

14+mby,
(m—|—1)2(1 —bn)2 0,0; e
T (I +mby)? 21—9]-9 (2i2)) (27%))
n <] 1

(2zj). As a result,

m 4 — On ~
_ 1y (mED-b) Zlffw (k)2 (R)F (07 (0)

2
(m+1) 1<k, f<m+1 (1+mbn)

EYkZ

By Jensen’s inequality, exp(Y') = exp(m Zk,ﬂ Ykg) < W Zk’e exp(Yie). It follows
that

1
E. slexp(V)] < g > Eesfew(M)] < max B fexp(Yi)].
1<k <m+1
Therefore, to show (3.A.58]), it suffices to show that, for each 1 < k,/ < m + 1,
E. z[exp(Yie)] <1+ o0(1). (3.A.59)

Fix (k,¢). We now show (3.A.59)). Define o; = z;(k)z(¥), for all i € ]VKO. Then,

(m + 1)*(1 —b,)? 0,0;
Y., —
e (1 + mby)2 Z1—99

m+1 1—b
_ zrlmb ZZMJZ

i<j s=1

- _ + 141 - by)
_ 1— 02 yp2s—2 (m 0505050, .
Z( max) max (1 + mb ) (1 . er%lax)egfax2 Z O' gj

/

=X

In the second line above, we used the Taylor expansion 1%0;@ => 2, 6705 Tt is valid

because |0;0;] < 02, = o(1). In the third line, we have switched the order of summation.
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3.A. Proof of results in Sections 3.1H3.2

It is valid because the double sum is finite if we take the absolute value of each summand.
The numbers {w;}22; satisfy that Y oo, ws = 1. By Jenson’s inequality,

exp(Yie) = eXp(Z W - Xs) < Z ws - exp( X
s=1

s=1
By Fatou’s lemma,

Eq[exp(Yie)] < Zws- olexp(Xs)] < max Ey[exp(Xs)] (3.A.60)
s=1 5=
It remains to study X,. Note that
(m+1)*(1 —by,)

s =

0808 i
(1 + mby)2(1 - eaax>9?§ax2 Z 7

(m+1)*(1 — by,) 25 2
= (1 e ) (1 "y )H?Ifaxg Z 989801 Z 91.801-

max i

2

(m+ 1)1 —by,)
< 00,
~ 2(1 +mby,)2(1 — 62, )G%faﬁ Z ”

Note that the summation is over ¢ € NKO Let 6* € R™ be defined by 67 =6, - 1{i € KTKO}.

Since 1 — 62,0, > 1/2 and [[0°]}35 < 025:2/16%[12 < 6252612, we have
2
1 —by)?(|6]
x, < %= bn)7J0] Y 60i | (3.A.61)
161123 ;
for a constant ag > 0. We apply Hoeffding’s inequality to get that, for all t > 0,
t2 t2

IF’() Oio;| > t) < 26Xp<*7> = Qexp(fi). (3.A.62)

2 b 25, 67 206°11%3

For any nonnegative variable X, using the formula of integration by part, we can derive that
Elexp(aX)] = 14 a [;° exp(at)P(X > t)dt. As a result,

aO(l - b HHHQ s
<
E, [exp(XS)] < E, exp[ H‘9*H28 (ZQ 01>
ao[6]](1 — bn)? /°° ao|0]]*(1 — bn)? { }
=1+ p exp S Qmaz > todt
ao|6]](1 — bn)* /°° ao|0*(1 — bn)* t
<1+ e exp s t]-exp| —oipes | @
161133 0 1613 2(16+|3:

aol|0]*(1 — bn)? /°° 1 — 2a0]|60][*(1 — bn)?
=1+ exp | — t|dt
16+1133 0 2(16+113

B L S O
618 1= 201 = b.)?
2l b

1 — 2a0||0]]2(1 — b,)?
The right hand side does not depend on s, so the same bound holds for maxs>1{E,[exp(X;)]}.
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When ||6]|?(1—b)? — 0, this upper bound is 1+0(1). Plugging it into (3.A.60) gives (3.A.59).
Then, the second claim follows. O

3.A.3 Proof of Theorem m

We show a slightly stronger argument. Given 1 < K; < Ky < my, let M, (K1, K3, a,) be
the sub-collection of M, (myg, a,) corresponding to K; < K < Ks. Note that

inf{ sup IP’(I?;&K)} > inf{ sup IP’(I?#K)}

K Mn(m07an) K Mn(K17K27an)
It suffices to lower bound the right hand side.

Fix an arbitrary DCBM model with (K7 —1) communities. For each 1 < m < Ko—K;+1,
we use ([3.2.13)-(3.2.14) to construct a random-label DCBM with (K7 — 1+ m) communities,
where b, = 1 — c||f]|"a,, for a constant ¢ to be decided. Let P, denote the probability
measure associated with the k-community random-label DCBM, for K; < k < K3. By
Theorem we can choose an appropriately small constant ¢ such that |Ax|/vA1 > ap
with probability 1 — o(n™1), under each Pj. Additionally, using a proof similar to that
of ([3.A.43), we can show that (3.2.1)-(3.2.2) are satisfied with probability 1 — o(n™!).
Therefore, under each Py, the realization of (©,II, P) belongs to M, (K1, Ka,ay,) with
probability 1 — o(n~!). Then, for any I?,

~ > -1
Mn(lzl,lf)ﬁ,an) P(K#K)> B Pi(K # K)+o(n™ ). (3.A.63)
To bound the right hand side of , consider a multi-hypothesis testing problem: Given
an adjacency matrix A, choose one out of the models {Py} x, <k<K,. For any test 1, define

Ko
1
) = —— P ,
P = 7 O Peld £ H)
k=K,
We apply (Tsybakov, 2008, Proposition 2.4). It yields that
K>
1 2 . _ T(KQ — K1> }
_— E Py, P <a* = inf > su 1—7(@*+1)];.
Ko — I k:K1+1X (B fia) ¥ p) 0<TI<)1{1+T(K2—K1)[ ( )

We have shown in Theorem that a* = o(1). By letting 7 = 1/2 in the above, we
immediately find that

Lo Ky — K4 1+ 0(1)
inf = ( —

wEpW) 2 o (K — Ky 2
Now, given any estimator I?, it defines a test 15, where ¢p = K if K; < K < Ky and
Yz = K; otherwise. It is easy to see that

Plvg) <  max P (K # k). (3.A.65)

) > 1/6 + o(1). (3.A.64)

Combining (3.A.64)-(3.A.65) gives that maxg, <k<rk, Pu(K # k) > 1/6 + o(1). We plug it
into (3.A.63) to get the claim. O
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3.B PROOF OF RESULTS IN SECTION

3.B.1 Proof of Lemma

By definition of H, we have I120I1 = ||0||? - H?. As a result, the matrix U = ||§||"*©IIH !
satisfies that U'U = I. We now write
Q=0eMNPII'e = ||§|> - U-(HPH)-U',  where U'U=Ig.
Since U contains orthonormal columns, the nonzero eigenvalues of ) are the nonzero
eigenvalues of ||0||?(HPH). This proves that Ay = ||0|>us. Furthermore, there is a one-to-
one correspondence between the eigenvectors of {2 and the eigenvectors of H PH through
€15 825, &kl = Ulnu, ma, -, ]

It follows that & = Uny = ||0||"*OILH ~'n;. This proves the claim about &. We can
multiply both sides of the equation & = Uny by [|0|| ' H~'II'© from the left. It yields that
o)~ B~ r'eg, = (|0]|~ H~Ir'e)(||6]|~ O 1LH )

=07 H T O H 'y, = .
This proves the claim about n;. Last, the condition ensures that the multiplicity of

p1 is 1 and that pq is a strictly positive vector. It follows that A\; has a multiplicity of 1.
Note that &, = Uny, implies

K
N -1 —1 -1 . -1
61) = 1017165 3_ Hilmkym(s) > 1917161, i, {Fgdm ()
Since 11 is a positive vector and H is a positive diagonal matrix, we conclude that all entries

of &1 are positive. O

3.B.2 Proof of Lemma

We fix an arbitrary (K — 1) x (K — 1) orthogonal matrix I" and drop “I'” in the notations
Miey €y T4, V. By Definition

s o) = [, 7] [1 F], 1,62, 1] = (61,85, €] [1 F].

Here, 11,75, ...,n) is a particular candidate of the eigenvectors of HPH and &1,&5,...,&%
is linked to m1,73, ..., n) through

[6175;’ s 56;(] = ‘|9||_19HH_1[771777§a s 77’;(]
It follows immediately that

[£1a£27 s 7£K] = ||9H_1®HH_1[771>7]27 cee 777K] (3B66)
As a result, for any true community N,

&o(i) = [0/ (10 Hrr)] - me(k),  for all i € N
We plug it into the definition of R(™) to get that for each i € A and 1 < £ < m — 1,

RO (i, 0) = er1(1) _ [0/ (0N Hpr)] - mesr (k) _ mega (k) _ Vom) (k).
’ &1(2) [0:/ (01| Hiwo)] - m (F) m(k) ’

It follows that rl(m) = v,gm) for each i € Nj. O
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3.B.3 Proof of Lemma

The matrix V5)/(T') was studied in [Jin| (2015); [Jin et al.[ (2017). Since the pairwise distances
for rows in VU)(T') are invariant of T, the quantity dx (V)(T)) does not change with T
cither. Using Lemma B.3 of |Jin| (2015)), we immediately know that dg (V5)(I")) > v/2.

Below, we fix 1 < m < K and a (K — 1) x (K — 1) orthogonal matrix I', and study
dpm (V™)(T)). For notation simplicity, we drop “I'"” when there is no confusion.

We apply a bottom up pruning procedure (same as in Definition to V™) First, we
(m)

find two rows U](cm) and v, ~ that attain the minimum pairwise distance (if there is a tie,
pick the first pair in the lexicographical order) and change the ¢th row to v,gm) (suppose
k < {). Denote the resulting matrix by V(mE=1) Next, we consider the rows of V(™K1
and similarly find two rows attaining the minimum pairwise distance and replace one row

by the other. Denote the resulting matrix by V(mK-2),

We repeat these steps to get a
sequence of matrices:

V(m’K), V’(’fTL,I(*l)7 V(m,K72) V(m,Z) V(m,l)

where VmE) — v(m) and for each 1 < k < K, V(mk) has at most k distinct rows.
Comparing it with the definition of dj,(V (™) (see Definition , we find that V(7k=1)
differs from V(™) in only 1 row, and the difference on this row is a vector whose Euclidean
norm is exactly dy (V™). As a result,

|V k) k=1 — g () 2 <k <K. (3.B.67)
By triangle inequality and the fact that dj,(V (™) < dj_, (V™) we have

K
[V ) — ytmm=Di < N @ (VM) < (K —m 4 1) - d (V™).
k=m

To show the claim, it suffices to show that
|V mE) _ymm=1) > ¢ (3.B.68)

We now show . Introduce two matrices
V*(m’K) = [1x, V(mx)]’ V*(m,m—l) = [1g, V(m,m—l)],

where 1k is the K-dimensional vector of 1s. Adding the vector 1x as the first column

changes neither the number of distinct rows nor pairwise distances among rows. Additionally,

[V mE) _ymam=1) | K)oy tmm=1) (3.B.69)

)

Let 0y,,(U) denote the m-th singular value of a matrix U. Since V™™=V has at most (m—1)

distinct rows, its rank is at most (m — 1). As a result,

o (V™D = 0, (3.B.70)
We then study Gm(V*(m’K)). Note that
1 v%m)
VI = v = || = [diag)] T fpeme(D)ee ()], (3BATL)
1 ’U(m)
K

where 11, 1m2(T), ..., nx(T") is one choice of eigenvectors of HPH indexed by I' (see Defini-
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tion and diag(m) is the diagonal matrix whose diagonal entries are from 7;. Write for
short @ = [m1,m2(T), ..., nm(T)]. We have

VYV = Q'[diag(n)) Q.
By the last item of and that ||n|| = 1, we conclude that n;(k) < 1/VK for all
1 <k < K. In particular, there exists a constant ¢ > 0 such that ([dz’ag(m)]_2 — cIK)
is a positive semi-definite matrix. It follows that (Q’ [diag(m)]2Q — cQ’ Q) is a positive
semi-definite matrix. Therefore,

)\m((v;(m,K))/V*(m7K)) > /\m<CQ,Q) —c. )\m(QIQ)g (3B72)
where A, (+) denotes the m-th largest eigenvalue of a symmetric matrix. By (3.3.15)), for
some pre-specified choice of eigenvectors, n1,73,...,n5, of HPH,

@ is the first m columns of the matrix [n1, 715, ...,n%] - diag(1,T).

Note that [n1,73,...,1)] and diag(1,T") are both K x K orthogonal matrices. Then, their
product is also an orthogonal matrix, and the columns in ) are orthonormal. It follows that
Q/Q = In.

This shows that the right hand side of (3.B.72)) is equal to ¢. The left hand side of (3.B.72))

1 2 (va)
is equal to o7, (Vi ). It follows that
o (V™) > ¢ (3.B.73)

We now combine (3.B.70) and (3.B.73)), and apply Weyl’s inequality for singular values
(Horn and Johnson| 1985, Corollary 7.3.5). It gives

Combining it with (3.B.69)) gives (3.B.68|). The claim follows immediately. O

Remark. The proof of Theorem uses maxj<p<K Hv,(cm) (D)l < C, and we prove this
claim here. Note that v,gm) (T') is a sub-vector of the kth row of v 1 light of (3.B.71)),

the row-wise £5-norms of V™) are uniformly bounded by C||diag™!(n1)||. We have argued
that n1(k) < 1/VK < C forall 1 <k < K. As a result, max;<<f ||v,(€m)(f‘)|| <C.

3.B.4 Proof of Lemma

Since ||7(™) —rgm) @) < |7 —TZ(K) (I')||, we only need to show the claim for m = K. Write
T’Z(K) (I') = 74(I") for short. In the special case of I' = Ix_; (i.e., mp(I") = for 2 <k < K,

by Definition , we further write r; = r;(Ix—1) for short. It is easy to see that

ri(T) =T"-r;, for any orthogonal matrix I' € R(K—Dx(K-1),

It suffices to show that with probability 1—O(n~3) there exists a (K —1) x (K —1) orthogonal
matrix T', which may depend on n and R, such that

max [|7; — TV ry]| < Cs,_blx/log(n).

1<i<n
Such a bound was given by Theorem 4.1 of Jin et al.| (2021a) (also, see Lemma 2.1 of [Jin
et al. (2017) for a special case where Ag, ..., A\g are at the same order). O
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3.B.5 Proof of Theorem m

The key of proof is the following lemma, which characterizes the change of the k-means
objective under perturbation of cluster assignment. Consider the problem of clustering
points y1, Y2, - - . , Yn into two disjoint clusters A and B. The k-means objective is the residual
sum of squares by setting the two cluster centers as the within-cluster means. Now, we move
a subset C' from cluster A to cluster B. The new clusters are A = A \ C and B=BUC,
and the cluster centers are updated accordingly. There is an explicit formula for the change
of the k-means objective:

Lemma 45. For any y1,Y2,...,yn € R? and subset M C {1,2,...,n}, define 4y =

ﬁ YoiemYi- Let {1,2,...,n} = AU B be a partition, and let C be a strict subset of A.
Write A= A\C and B = BUC. Define

RSS =" llyi —gal’ + Yl =% RSS = lyi =557 + X llyy — 751"

icA i€B icA ieB
Then,
e oo IBIC) A1)

mAlve = g7 = oA llve — gall.
Bl +|C] Al = 1€

This lemma is proved by elementary calculation, which is relegated to Section [3.D.1] It shows
that the change of k-means objective depends on the distances from o to two previous
cluster centers.

We now apply Lemma 45| to prove the claim. For notation simplicity, we drop “I'” and
omit the superscript m, i.e., we write rgm) (T') = r; and v,gm) (') = vg. By Lemma [32/ and the

condition (3.2.2]),

e The n points r{,r9,..., 7, take K distinct values, vy, ..., vg.
e The minimum pairwise distance of vy, vs,..., vk is defined as dx (V') > 0.

e For each vy, there are at least agn points, corresponding to nodes in community N,
that are equal to vy, where ag > 0 is a constant determined by condition (3.2.2]).

First, we show that any optimal solution of the k-means clustering on {r1,r2,...,7,}
satisfies NSP. We prove by contradiction. If this is not true, there must exist a community
N and two clusters, say, S; and S, such that A, NS # 0 and N, NSy # (). Note that
we have either S1 \ Ny # 0 or So \ Ny # 0 (if both S; and Sy are contained in N, then we
can combine these two clusters and construct another cluster assignment with a smaller
residual sum of squares, which conflicts with the optimality of the solution). Without loss
of generality, we assume S7 \ N # ). We now move an arbitrary r; € N NSy to Se and
update the cluster centers (i.e., within-cluster means) accordingly. Let RSS and RSS be
the respective k-means objective before and after the change. We apply Lemma [45| to get
that

|| 51|

RSS — RSS = 220 1ps — o2 — —2H s — ey |12 3.B.74
‘52’_’_1” 2H ’Sl|—1H 1” ( )
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3.B. Proof of results in Section |§|

Since 7 is clustered to Sy in the optimal solution, it must be true that ||r; — ci|| < || — c2f|,
which further implies that ||vx — c1|| < [Jox — c2||. At the same time, if we take any
J € Nk NSy, we can similarly derive that ||vg — ca|| < ||vg — c1]]. Combining the above gives
|lvg — c1]] = |Jvk — c2||. Tt follows that

i — e1l| = [|ri — c2l|-

We immediately see that

[S2| |5 ) 51| + |52
[So| +1 S -1 REESETE
The optimality of k-means solutions ensures that RSS — RSS > 0. Therefore, the above

RE’JS—RSS:( i — e1]|? = 7 — ).

equality is possible only if ||r; — ¢i|| = 0. However, ||r; — ¢1]| = 0 implies ¢; = ¢z, which is
impossible.
Second, define g(r;c¢1,¢2,...,¢m) = da(ri;e1, ..., cm) — di(r3;¢1, ..., ¢m), which is the

gap between the distances from r; to the closest and second closest cluster centers. We aim
to show that g(r;;c1,ca,. .., ¢p) has a uniform lower bound for all 1 < i < n. Fix i. Without
loss of generality, we assume c¢; and co are the cluster centers closest and second closest to
r;. Then, 7 is clustered to S. Suppose i € Nj. The NSP we proved above implies that

N C Si.
Again, by NSP, there are only two possible cases: (a) S; = N, and (b) Sj is the union of
N, and some other true communities.
In case (a), we immediately have ¢; = vg. It follows that
Iri = erll = [lox — eal| = 0.

Furthermore, for any j € Sa, 7; equals to some vy that is distinct from v;. Therefore,

Iri = eall = flox = el = min [log = 75} = min o = vell = dic (V).
As a result,

g(rizer,ca, .o om) = [lri — cof| = [Iri — ea]| = [Iri — c2f| =2 dx (V).
The proves the claim in case (a).

In case (b), we consider moving N from S; to Sz, and let RSS and RSS denote the
respective k-means objective before and after the change. Applying Lemma we obtain

YT | Sa [Nk o |S1]|N 9
RSS — RSS = Uk — . 3.B.75
EAEEAL e e A LR (3:B.75)
Let A = |lvop, — c2]|? — ||vg — c1||>. By direct calculations,
— 2

- log, — e .
|Sa| + [N (1S2] + [Nk (IS1] = [Nk])
The optimality of k-means solutions implies that RSS > RSS. It follows that
Wil (1S1] + [S2l) 9
A Z Hvk — 61H .
|S2|(S1] — [Nkl)

|S1|+]S2| Vi |(S1[+]S2])
Note that [Ng| > agn, |S1]| — |Nk| < n, and St 2 1 It is seen that [ghiary > a

As a result,

lor = c2]|* = llow — el = A > agllog — eal|.
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3. ESTIMATING THE NUMBER OF COMMUNITIES BY STEPWISE GOODNESS-OF-FIT

It implies that ||vg — c2|* > (1 + ag)|lvx — c1]?, iee.,

||U]€ — CQH — H’Uk — ClH > (m — 1) ||Uk — Cl||. (3B76)
We then derive a lower bound on ||vgy — c1]|. Here, ¢; is the mean of r;’s in S;. For
any j € S1\Ng, rj equals to some vy that is distinct from vg. As a result, |vx — rj|| >
mingzy, [|vg — vel| > dg(V), for all j € S1\Nj. It follows that

Nl 1
w= (o gy X 0|

lox — crll =
J€S1\Nyg
1

=l D (ri—w)

e £ el
IS 1 N
N H<|Sl\Nk|je§Nkm> ka

[ST\N&| . o
> ’Sl| jEISI'lll\nNk ”T'] Uk H
> ag - dg(V), (3.B.77)

where in the last inequality we have used |S1| < n and [S1\Nk| > apn (because S; is the
union of Ny and at least one other community). Combing (3.B.76]) and (3.B.77) gives

g(riser,c2,. 0 Cm) > ao(\/l +ag — 1) dg (V).

This proves the claim in case (b). O

3.B.6 Proof of Theorem m

Write for short d,, = d,,,(U) and § = maxj<i<p, ||Z; —2;||. Given any partition {1,2,...,n} =
Uit By and vectors by, bo, ..., by, € R?, define

m
R(By,...,Bmsby, ... .bn) =00 > > [l — by (3.B.78)
k=11i€By,
Fixing Bjy,..., By, the value of R(By,...,Bny;bi,...,by) is minimized when by is the
average of x;’s within each By. When by, ..., b,, take these special values, we skip them in
the notation. Namely, define
R(Bi,...,Bm)=R(Bi,...,Bm;zy,...,1,,), where ;= |Bg|™' > x;,  (3.B.79)
iCBy,
We define E(Bl, ooy Bmib1, ..., by) and ﬁ(Bl, ..., By,) similarly but replace z; by z;. We
shall prove the claim by contradiction. Suppose there is 1 < k < K such that Fj intersects
with more than one §j. By pigeonhole principle, there exists j1, such that \Fkﬂ§j1 | > m~ Y Fl.
Let §j2 be another cluster that intersects with Fj. We have

|Fy N Sjl‘ > m_laon, F.nS;j, # 0,

Below, we aim to show: There exists C; = C1(ag, Cy, m) such that

“min R(S1,...,8m) > R(51,...,8,) — C16 - dum, (3.B.80)
51,0 8m
where the minimum on the left hand side is taken over possible partitions of {1,2,...,n}

into m clusters. We also aim to show that there exists Cy = Co(ag, Cy, m) such that we can
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3.B. Proof of results in Section |§|

construct a clustering structure §1, gz, ceey S satisfying that
R(S1,...,5m) < R(S1,...,8pm) — Cy - d2,. (3.B.81)
Combining (3.B.80)-(3.B.81)) gives
R(S1,...,8m) = C16 - dp < R(Sy,...,8n) — Cy - d2,
This is impossible if €19 - d,,, < Co - d2,. Hence, we can take
c(ag, Cop,m) < Co/C1.

There is a contradiction between (3.B.80) and (3.B.81)) whenever § < ¢ - d,,. The claim
follows.

It remains to prove (3.B.80f) and (3.B.81)). Consider (3.B.80)). For an arbitrary cluster
structure By, Ba,..., By, let R(By,...,Bny), R(Bi1,...,Bny), T, and z;, be defined as in

(3.B.79). By direct calculations,
~ o~ Bi|l—1, 1 =R
@ -2~ @i -z) = L@ ) - o Y @)
| B| |By| 4~
JEBy:j#i
Since ||Zj—x;|| < dforall 1 < j < n, the above equality implies that ||(Z;—z,)—(z;—z})|| < 9.
As aresult, ||7; — 2|12 < |7 — 24]|2 + 26|z — 24| + 62, Tt follows that

R(Bi,...,Bm) < R(Bi,...,Bp) + 20703 3 ||z — zy || + 6°
kiliGBk

< R(By,...,Bp)+20\/R(By,...,By)+ 6
< (VR(B1,. .., Bm) +6)°,

where the second line is from the Cauchy-Schwarz inequality. It follows that ﬁ(Bl, ..., Bp) <

VR(Bi,...,Bp) + 0. We can switch E(Bl, ..., By) and R(By,...,B;) to get a similar
inequality. Combining them gives

VR(B1,...,Bm) — 6 <\/R(Bi,...,Bp) < \/R(Bi,...,Bp) + 0. (3.B.82)

This inequality holds for an arbitrary partition (Bj, Bs,...,B;). We now apply it to
(Sl, e ,S ), which are the clusters obtained from applying k-means on zy, Zo, ..., Z,. We
also consider applying k-means on z1,xo,...,z, and let S1,.59,..., Sy, denote the resultant
clusters. By optimality of the k-means solutions,

R(S1,...,8,) < R(S1,...,5m).
Combining it with (3.B.82) gives
VEGL....5) < VRBu.....8m) +9

R(S1,...,5m) + 6

<
< /R(S1,...,5m) + 26. (3.B.83)

Since maxi<i<n ||| < Co - dm, we can easily see that R(S1,...,Sm) < CO d?,. Tt follows
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that, as long as 0 < d,,/4,

R(S1,...,5m) < R(S1,...,Sm) + 46\/R(S1, . .., Sm) + 462
< R(S1,...,8m) +4Co6 - dpy + 6 - dy
R

As a result,
“min R(Si,...,Sm) = R(S1,...,5m) = R(51,...,5,) — (4Co 4 1)5 - dy.
51,e,8m

This proves (3.B.80) for C; = 4(Cp + 1).
Consider (3.B.81]). Define
wj = |§j|_1 Z X, for each 1 < j < m. (3.B.84)
i€§j

~ -~

Using the notations in (3.B.78)-(3.B.79)), we write R(§1, . ,§m) = R(S1,..., SmyW1,...,Wy).
We aim to construct {(S;,w;)}1<j<m such that

R(S1, ..., 8m, W1, Wm) < R(S1, ..., 8, w1, .. W) — Cy - d2,. (3.B.85)
Since R(§1, e ,§m) =ming, . p,. R(§1, ce §m, bi,...,bn), we immediately have
R(S1,...,8m) < R(S1,...,8m, W1, ..., Wm) < R(S1,...,8m,w1,... wn)—Cy-d2,
This proves .
What remains is to construct {(gj,iDj)};”:l so that is satisfied. Let w; =

\§j|*1 Zie@ Z;, for 1 < j < m. Then, {(§j,@j)}1<]~<m are the clusters and cluster centers
: <<

obtained by applying the k-means algorithm on Z1,Z9,...,2Z,. The k-means solution
guarantees to assign each point to the closest center. Take i € Fj, N §j1 and i’ € Fj, N §j2. It
follows that
17 = Wi | < N|Zi — W ll, [T — Wl < |7 — wjiy |-

Since x; = xy = w, and max{||z; — ||, |2y — x|, |W), — wy, ||, [| W), — wjy ||} < 6, we have

lur = wiy | < (1 = @j [| + 20 < {|Z5 — @ [| + 20 < [Jug — wy, || + 49,
Similarly, we can derive that |luy — wj,|| < |lugp — wj, || + 4. Combining them gives

g — wjy || = [lur — wj, ||| < 46. (3.B.86)
This inequality tells us that [juy — wj, || and ||ur — wj,|| are sufficiently close. Introduce
m_lozo

"~ 36 x 120,
Below, we consider two cases: ||uy —wj, || < C3 - dp, and |Jug, — wj, || > C3 - dp,.

Cs

In the first case, ||uy — wj, || < C3 - dp,. The definition of d,, guarantees that there are
m points from {uy,ug,...,ux} such that their minimum pairwise distance is d,,,. Without
loss of generality, we assume these m points are uy, ug, ..., upy. If k€ {1,2,...,m}, then
the distance from u to any of the other (m — 1) points is at least d,,,. If k ¢ {1,2,...,m},
then ug cannot be simultaneously within a distance of < d,,/2 to two or more points of
UT, U, . .., Up. In other words, there exists at least (m — 1) points from ug, ug, .. ., u,, whose
distance to uy is at least > d,,/2. Combining the above situations, we conclude that there
exist (m — 1) points from {uj,us, ..., ux}, which we assume to be uy,usg, ..., un—1 without
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loss of generality, such that

i — ul| > d i — || > dm /2. 3.B.87
13#&%—1 |we — us|| > dm, | lue — ug|| > d/ ( )
We then consider two sub-cases. In the first sub-case, there exists £ € {1,2,...,m — 1}

such that |Fy N (§j1 U §j2)] > m~tagn. Then, at least one of §j1 and §j2 contains more than
(m~'ap/2)n nodes from F,. We only study the situation of |Fy N §j2| > (m~tap/2)n. The
proof for the situation of |Fy N §j1| > (m~tag/2)n is similar and omitted. We modify the
clusters and cluster centers {(§j, wj) hi<j<m as follows:

(i) Combine §j2 \F; and §j1 into one cluster and set the cluster center to be wy, .

(ii) Create a new cluster as §j2 N Fy and set the cluster center to be uy.

The other clusters and cluster centers remain unchanged. Namely, we let

S U (S, \Fy), if j = ju,

o P . ~ Uy lf] = j27
Sj = Sj2 N Fy, lf] = Jo2, w; = ’ )
A o o wj, otherwise.
S; if j ¢ {j1, 2},

Recall that n - R(Bi, ..., By, b1, ... by) =300 Ziij lz; — bj||>. By direct calculations,
AEn'R(§1,...,§m,w1,...,wm) —n'R(gl,...,gm,{El,...,@m)
= Y (lwi—wpl? =z —wl®) = D (i = wy ) = llzs — wj, )
iE(é\jQﬂFg) ie(ng\Fg)
= Ay — Aq.

Here A; is the increase of the residual sum of squares (RSS) caused by the operation (i)
and Ay is the decrease of RSS caused by the operation (ii).

Ar= Y (e —will = Nl = ws (Nl = wj | + [l = wg,l)
i€ (355 \Fe)
< > lw = will - (e —wjll + |z — wgy))
ie(ng\Fz)
<18 \Ful - lwjy = wgl - 4Co - dm,
where the third line is from the triangle inequality and the last line is because maxi<j<p, ||w;|| <
maxi<i<n ;|| < Co-dpm. Note that ||wj, —wj, || < ||up —wj, ||+ [|ur —wj,||. We have assumed
|ur, — wj, || < C3 - dpy, in this case. Combing it with (3.B.86)), as long as 6 < (C3/4) - dp,
[wjy = wy || < 2ljup, —wjy || +46 < 3C5 - din.
It follows that
Ay < 12CCs - nd2,. (3.B.88)

Since x; = uy for ¢ € Fy, we immediately have
a 2
Ay = ‘sz N Fy| - [Jug — ij” .

199



3. ESTIMATING THE NUMBER OF COMMUNITIES BY STEPWISE GOODNESS-OF-FIT

We have assumed ||ug, — wj, || < C3-dyy, in this case. Combining it with (3.B.86)) and (3.B.87))

gives
e — wiy | > flue — urll — lux — wp, ||
> Jlug — ugll — (lur — wj, || + 46)
> dm/2 — (C5 - dp, + 49).

Recall that C3 = % < 1/12. Then, as long as 6 < (1/48)d,,, we have ||ug—wj,| > dp,/3.
It follows that

m~tayg

Ay > (mflao/Q)n . (dm/?))2 > 13

-nd?,. (3.B.89)

As a result,

m_lozo

A=Ay— A > ( - 120003) nd2,.
We plug in the expression of C3, the right hand side is (m~'ag/36) - nd2,. It follows that

—1
mo Qg
~d2 .

36 mn

R(S1, ..., 8m, w1, wm) — R(S1, .., Sy W1, -, W) >

This gives (3.B.85|) in the first sub-case.

In the second sub-case, |Fy N (§j1 U §j2)] < m7tagn for all 1 < £ < m — 1. For
each Fy, by pigeonhole principle, there exists at least one j € {1,2,...,m} such that

(3.B.90)

\Fgﬁgjl > m™1|Fy| > m~lagn. Denote such a j by j;; if there are multiple indices satisfying
the requirement, we pick one of them. This gives

jf?j;a "'7jjn—1 € {172a"'am}\{j17j2}‘
These (m — 1) indices take at most (m — 2) distinct values. By pigeonhole principle, there
exist 1 < {1 # o < m—1 such that jj, :ZZQ = j*, for some j* ¢ {j1,j2}. Recalling (3.B.84),
we let wj~ denote the average of z;’s in Sj«. Since ||ug, — ug,|| > dp, the point w;» cannot

be simultaneously within a distance of d,,/2 to both uy, and wu,,. Without loss of generality,
suppose

> dp /2.

l[we, — wj
We modify the clusters and cluster centers {(§j, wj) hi<j<m as follows:
(i) Combine §j1 and §j2 into one cluster and set the cluster center to be wj;,.

(ii) Split §j* into two clusters, where one is (./S’\]* N Fy, ), and the other is (§j*\Fgl); the
two cluster centers are set as uy, and w;«, respectively.

The other clusters and cluster centers remain unchanged. Namely, we let

Sjl US]'Q, if 7 = 71,

§}_ §j*ﬁFgl, if j = jo, P Up, s if j = ja,
! §j*\F£1a ifj =7 ! wj;, otherwise.
Sj it j & {41, 42,57}
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By direct calculations,
A En-R(S\l,...,gm,wl,...,wm) —n-R(gl,...,gm,{ﬁl,...,fﬁm)

= D (lwi—wpl? = llzi = ue %) = Y (lzs — win® = llzi — wi,?)

1€(Sjx Ny, ) 1€,y
= Ay — Ay,
where A; is the increase of RSS caused by (i) and Ay is the decrease of RSS caused by (ii).
We can bound A; in a similar way as in the previous sub-case, and the details are omitted.

It gives

Ay <12C,Cs - nd?,.

Since x; = uy, for all i € Fy,, we immediately have

~ - m=la
Do = |5 N Fyy| - ey —wje|> > (m ™ aon) - (dn/2)* > TO ndp,
As a result, A > (mjo‘o — 12CoC3)mtag - nd?,. If we plug in the expression of C3, it
becomes > (%m_lao) -nd?,. This gives
~ ~ ~ ~ _ 2m 1
R(S1, ..., Spy i, wm) — R(S1, .., Sy Wy .., ) > % d2. (3.B.91)

This gives (3.B.85) in the second sub-case.

In the second case, ||uy —wj, || > C3 - dy,. We recall that |Fj N §j1‘ >m lagn. Let E
be a subset of Fj, NS;, such that |E| = [|F} N S;,|/2]. Note that |S;,\E| <n. We have
E
A| | >m /2.
|Sj1\E|

We now modify the clusters and cluster centers {(§j, wj) hi<j<m as follows:

S,\E#0, and

e Move the subset E from §j1 to §j2, and update each cluster center to be the within
cluster average of x;’s.

The other clusters and cluster centers are unchanged. Namely, we let

§j1\E7 if j = J1, 1 ‘ 1,
i 5 ) LS oo i€ i, el
Sj =18, UE, ifj=jo, @y = § Il e

S; if j ¢ {j1,72},

We apply Lemma to A= §j1, B = §j2, and C = FE, and note that x; = u; for all 7 € E.

wy, otherwise.
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It follows that
AEn-R(§1,...,§m,w1,...,wm)—n-R(§1,...,§m,@1,...,@m)

1S5,] - |E| 1S;,] - | E|
= - (”uuk —wp,|? - Jl—yuuk — w2

|S),| + | E| 1S, — |E
_ i ’ (’ ]1’/\ ’ J2D Huk_wj1H2+ ’AJ2‘ ’ ‘ (Huk_wj1H2_ Huk_ijH2)
(15| + [EN (15| = [E]) 1S5, + | E|
|E? 2, |Sp] - |E| 2 2
> = ||ug —wj |T+ = |ur — W |7 — |[ur — w; . 3.B.92
5. 7] | il AR ‘E|(|| ™ =l j2|I) ( )

By (3.B.86), |[ur — wj,|| < |lur — wj, || + 4. It follows that, as long as § < (C3/16) - dp,
g, = w5 [1* = llug — wip||* > =80 - [lug — wj, || — 166

= =96 - [Jug — wy ||,

where the last line is because 166? < C38 - dp, < 6 - ||ug — wj, ||. We plug it into ([3.B.92)) to

get
||

S| |E
> APy g - B2l 1EL

1S \E| 1), | + |E]|
> |B] - (m~a0/2) - lux — win|]? — |B]- 96 - ug — wy, |

296 - [Jug — wy, ||

Cgm’1a0
2

where the second line is because |E| > (m ™ 1ag/2)- ‘S\jl \F| and the last line is because we have
Cgm71a0
27

> 18] - lug — w |- A — 96),

assumed |luy, — wj, || > Cs - dyy, in the current case. As long as 6 < - dyy,, the number

-1
Cgm6 g dm

in brackets is > . We also plug in |E| = [m™tap/2]n and |lug — wj, || > Cs - di,

to get
A m_;aon Cud, - CgmG—laOdm > 03277;;2043 nd?..
It follows that
R(S1,. ., Sm, w01, wm) — R(S1, - Sy W1, -y W) > W-dfn. (3.B.93)

This gives (3.B.85)) in the second case. We combine ([3.B.90)), (3.B.91)) and (3.B.93), and take

the minimum of the right hand sides of three inequalities. Since m~'ag < 1 and C’g < 1/3,

we choose
Cy = (1/12)C3m™2ad.

Then, (3.B.85) is satisfied for all cases. This completes the proof of (3.B.81]).

We remark that the scalar ¢ = ¢(ag, Cp,m) is not exactly Co/C1. In the derivation of
(13.B.80) and , we have imposed other restrictions on §, which can be expressed as § <
Cy-d,y,, where Cy is determined by (Cy, a, m) and (Cy, Co, C3). Since (Cy, Co, C3) only depend
on (g, Co,m), Cy is a function of (ag, Cy, m) only. We take ¢ = min{Cy/Cy, Cy4}. O

3.B.7 Proof of the claim in Example 4b of Section

In Example 4b of Section we have the following claim.
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3.B. Proof of results in Section |§|

Lemma 46. Let R and V™ be as in (3.3.17) and (3.5.16), respectively. If (K, m) = (4,2)
and all 4 communities have equal sizes, then g, (R(™) > [(3 — v/3)/2)dx (V™).

We now show the claim. For short, let z, = v,gm) for all 1 < k < 4 and let dy = g, (R™).
Without loss of generality, we assume x1 =0, x5 = 1, x3 = z, and x4 = y, where y > x > 1.
Let z =y — . Tt is seen dg (V™) = min{1,2 — 1, z}. To show the claim, it is sufficient to

3-+3
2

show

dy >

min{l,z — 1, z}. (3.B.94)

By definitions,

d* - min m.in {di(Cl, 62)}7 (3B95)
{all possible ¢y, ¢y} 1si=4

where for 1 < i < 4, d;(c1,c2) > 0 is the difference between the distance from x; to the
center of the cluster to which x; does not belong and the distance from x; to the center of
the cluster to which x; belongs. For simplicity, we write d; = d;(c1,c2) when there is no
confusion.

For the four points x,x9,x3,x4, we have three possible candidates (a)-(c) for the
clustering results (which of them is the actual clustering result depends on the values of

(=,9)):
e (a). The left most point forms one cluster, the other three form the other cluster.

e (b). The left two points form one cluster, the other two points form the other cluster.

e (c). The left three points form one cluster, the right most point forms the other cluster.

Recall that for any n points x1,x9, ..., x,, the RSS for the k-means solution with K clusters

K
RSS = Z Z (z; — cp)?,

k=1 fiecluster k}

is

where ¢y, ¢a,...,cx are the cluster centers. For (a), the two cluster centers are ¢; = 0
and ¢ = (1 + z + y)/3. In this case, the RSS is S1 = 2 + 4y + 1 — (1/3)(z + y + 1)
For (b), the two cluster centers are ¢; = 1/2 and ¢z = (x + y)/2, and the RSS is Sy =
(1/2) + (1/2)(x — y)%. For (c), the two cluster centers are ¢; = (1 + x)/3 and x5 = g, and
the RSS is S3 = 22 + 1 — (1/3)(x + 1)2. It is seen that the actual clustering result is as in
(a) if and only if S; < Sy and Sy < S3; similar for (b) and (c).

Recall that z = y — . Consider the two-dimensional space with  and 2z being the two
axes. As in Figure we partition the region {(x, z) : x > 1,z > 0} into three sub-regions
as follows.

e Region (I). {(z,2): 224+ 2<2+3,2z < 1}.
e Region (II). {(z,2): 2 < (22 —1)/V/3,2x + z > 2+ /3}.
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! z= L(216 -1
(I1) V3
o= (a
(D 2x+z=2+13
(1,0 g

Figure 3.7: In the two dimensional space with x and z being the two axes, the whole region
{(z,2) : x > 1,z > 0} partitions into three sub-regions (I), (II), and (III), respectively.

e Region (IIT). {(z,2): 2> 1,2 > (22 — 1)//3}.

Note that any point (x, z) in our range of interest either belongs to one of the three regions,
or falls on one of the boundaries of these regions. We now show the claim by consider the
three regions in Figure separately. The discussions for the case where (z, z) fall on the
boundaries of these regions are similar so are omitted.

Consider Region (I). In this region, by elementary algebra, we have S; < Sy and

S1 < S3. Therefore, case (a) is the final clustering result, where the two clusters are {z;} and

{x2, x3, x4}, respectively, with cluster centers ¢; = 0 and ¢ = (x+y+1)/3. By definitions, for

(x,z) in Region (I), di = |c2—0|—|c1—0| = (1+2+y)/3,d2 = |c1 —1|—|ca—1| = (5—z—y)/3,

ds=lc1—z|—|ca—z| = (x+y+1)/3if 22 > y+ 1 and d3 = (5bx — y — 1)/3 otherwise,

and dy = |c1 —y| — |c2 —y| = (x + y+ 1)/3. By elementary algebra, it is seen that dy is the

smallest among {d1, d2, d3,ds}. Combining this with gives that for (z, z) in Region

M), d. = (5—x—1y)/3=(5—2x— 2)/3. Note that for (z,z) in Region (I), 2z + z < 2+ /3.
It follows 2(z — 1) + 2z < v/3 and so min{1,z — 1, 2} < +/3/3. Combining these,

d. L 15-(2+V3)

min{l,z - 1,2} — 3  /3/3

Consider Region (II). In this region, by elementary algebra, Sy < S; and Sy < Ss.
Therefore, case (b) is the actual clustering result, so the two cluster centers are ¢; = 1/2
and co = (z + y)/2, respectively. By definitions, d; = [c2 — 0| — |c1 — 0] = (x +y — 1)/2,
dy=lca—1 =1 =1 =(x+y—3)/2,ds =|c1 — x| —|ca — x| = Bx —y — 1)/2, and
dy = lc1 —y| — |ea —y| = (x +y — 1)/2. By elementary algebra, among the four numbers
{di,dz,ds,ds}, do is the smallest when z < 1 and d3 is smallest when z > 1. Combining this
with gives that for (z,z) in Region (II),

4 — (x4+y—3)/2=_2x+2-3)/2, if z <1,
T Br—y—1)/2=(22—2z—1)/2, if 2> 1.

> (V3-1). (3.B.96)
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3.C. Proof of results in Section |ﬁ|

Consider the case of z < 1 first. In this case, min{l,z — 1,2z} = min{z — 1,2z} > 0, and
20 +2—3 > (2—-2/V3)(x — 1)+ (1 — 1/4/3)z since 2z + z > (2 + +/3) in Region (II).
Therefore,

d. . 2zx+2z-3 >(2—2/\/§)(x—1)+(1—1/\/§)z
min{l,z — 1,2z}  2min{z — 1,2z} ~ 2min{x — 1,2} ’
where the right hand side is no smaller than
[(2—2/V3)+ (1 -1/V3)]/2=(3—V3)/2.
Consider the case z > 1. In this case, min{1,x—1, 2} = min{r—1,1} > 0, and 2z—2—-1) >
(2 —2/V3)(x — 1)+ (1 — 1/4/3) since z < (22 — 1)//3. Therefore,
d.  2r—2z-1 >(2—2/\/§)(a:—1)—|—(1—1/\/§)
min{l,z — 1,2} 2min{z — 1,1} ~ 2min{z — 1,1} ’
where the right hand side is no smaller than
[(2—2/V3)+(1—-1/V3)]/2=(3—V3)/2.

Combining the above, we have that in Region (II),

dy > (3_2‘/5) min{1,z — 1, z}. (3.B.97)

Consider Region (IIT). By elementary algebra, it is seen S3 < S7 and S3 < S in this case.

Therefore, case (c) is the actual clustering result, so the two cluster centers are ¢; = (1+x)/3
and ¢z = y, respectively. By definitions, d; = |c2 — 0] — |e;1 — 0] = 3y — 2 — 1)/3,
dy = |ca =1 = |eaan =1 = (-1 -2+ 3y)/3 if z > 2 and d2 = (x + 3y — 5)/3 elsewise,
d3 =|c1 —z|—|ca — x| = (1 =5z +3y)/3, and dg = |1 —y| — |2 —y| = (=1 —x + 3y)/3.
By elementary algebra, ds is the smallest in {dy,ds,ds,ds}. Combining these with
gives that for (z, z) in Region (III),
de = (1—=52+43y)/3=(1-2z+32)/3, min{l,z — 1,2z} = min{1,z — 1}.

When z > 2, min{l,z — 1} = 1, and the minimum of d, in Region (III) is (v/3 — 1)
attained at (z,2) = (2,v/3). When x < 2, min{1,z — 1} = x — 1. Therefore, d,/ min{1, 2 —
1} = (z — 1/3)/(x — 1) — 2/3, where the minimum in Region (III) is 2/v/3, attained at
(z,2) = ((v/341)/2,1). Combining these, we have that for (z,z) in Region (III),

d. > (V3 —=1)min{l,z — 1, z}. (3.B.98)
Combining (3.B.96)-(3.B.98|) gives the claim. O

3.C PROOF OF RESULTS IN SECTION

3.C.1 Proof of Lemma

Consider the first two claims. It is easy to see that E[C}] = ¢,. In the proof of Theorem 3.1
of |Jin et al. (2018]), it has been shown that

cn = () + O([][3]10]1*) = t2(2*) + o([|0]]%)-
Moreover, A} < tr(Q*%) < KA{. In the proof of Theorem we have seen that A\ =

10112 - Ay (HPH'). Using the condition (3.2.2)) and the fact that P has unit diagonals, we
have \{(HPH') > CX\(P) > C. Similarly, since we have assumed [|P| < C in (3.2.1),
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3. ESTIMATING THE NUMBER OF COMMUNITIES BY STEPWISE GOODNESS-OF-FIT

M(HPH') < CM\(P) < C. Here, C is a generic constant. We have proved that
E[C,] = cn =< ||6]|5.
To compute the variance of C,,, write
Co=Qn+4A, where Qn= > Wi, Wiy Wisis Wi,
11,12,13,54 (dist)
The variance of A is computed in the proof of Lemma B.2 of Jin et al.| (2018). Using the

upper bound of the variance of (ZCC(IR) AW ) for k =1, 2,3 there, we have
Var(A) < C|l]3]1611°.

11121314
Furthermore, we show in the proof of Lemma [37] that Var(Qn) = 8¢, - [1 + o(1)]. It follows
that Var(Q,) < ¢, =< [|0||®. Combining these results gives

Var(Cp) < CJ10] - 1+ [|6]]5].

Consider the last claim. For any € > 0, using Chebyshev’s inequality, we have
C(1+ 61§
P(Cp/en — 1] > £) < (cne)2Var(Cy) < W
Here we have used the first two claims. Since ||0]|3 < Omax]|0]> = o(]|0]|®), the rightmost
term is o(1) as n — oo. This proves that C), /¢, — 1 in probability. O

3.C.2 Proof of Lemma

In the proof of Theorem 3.2 of |Jin et al| (2018), it was shown that Q,/1/Var(Q,) — N(0,1)

in law (in the proof there, @n/ Var(@n) is denoted as Sy, ). It remains to prove Var(@n) =
8¢cp - [1+ o(1)].

Note that for each ordered quadruple (i, j, k, £) with four distinct indices, there are 8 sum-
mands in the definition of (), whose values are exactly the same; these summands correspond
to (il7i27 137Z’4) € {(Zaja k7€)7 (]7 kaga 7’)7 (kaga iu.j)v (£7i7j7 k)v (]C,j,i,E), (.77 ivéa k)a (iveu k?j)a (£7 kv.jv Z)}
We treat these 8 summands as in an equivalent class. Denote by C'Cy the collection of
all such equivalent classes. Then, for any doubly indexed sequence {xij}lgi?gjgn such that
Tij = xji, it is true that 3o, o .o s TiriaTiniaTigiaTisin = 8 2oy TiriaTisiaTigiaTigin - 10
particular,

Qvn =38 Z WilizmziSWiSMWi“l )
CCy

The summands are independent of each other, and the variance of W, s, Wiyis Wigi, Wi,i, is
equal to Q7 ; Q7 , QF , QF . where f; = Q;;(1 — Q;5). As a result,

1122 “1213 " Y1324 " Y1421
Var(Qn) - 64 Qi1i2Qi2i39i3i4Qi4i1 - 8 Qi1i29i2i39i3i49i4i1'
CCy i1,62,i3,14 (dist)
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3.C. Proof of results in Section |ﬁ|

Recall that Cp = Zil,iQ,ig,i4(dist) Qi1i29i2i39i3i49i4i1- Then,
]Var(@n) - 8671‘ <3 Z ’Qi1i29i2i39i3i49i4i1 - Qz1i29:2i3ﬂ* QF ‘

1384 " “14%1
11,82,i3,54 (dist)
<38 E QiliQQ’iQiSQiSiALQ’MiI ’ CHQ”maX
11,92,13,54 (dist)
= 8¢, - O(6?

max)'

Since Omax = o(1) by the condition (3.2.1)), we immediately have Var(Qy) = 8¢, [1+0(1)]. O
3.C.3 Proof of Lemma

The proof is combined with the proof of Lemma see below.

3.C.4 Proof of Lemma

Consider the first claim. Since b, = 2||0||* - [¢'V Y (PH?P o PH?*P)V ~g] (see (3.4.21))), it
suffices to show that

gV YPH?Po PH?’P)V g = 1.

The vectors g, h € RX are defined by g, = (1,60)/]|0]1 and hy = (1},021;)/2/||0]|, where 1}
is for short of 1§€K). By condition (3.2.2), ¢; < gr <1 and ¢; < hi <lforl<k<K,and
| P|| < e, for some constants cj, ca2 € (0, 1).

For the upper bound, by h? < 1 and ||P|| < ¢z, we have ||[(PH?P)o (PH?P)| < C. Since

P has unit diagonals and g > c¢1, the diagonal elements of V' = diag(Pg) is no less than c;.
Hence

JdV Y PH?*Po PH?P)V g <|¢V7Y?- |PH?*P o PH*P|| < C. (3.C.99)

For the lower bound, since P has unit diagonals and hi > ¢1, we can lower bound diagonal

elements of PH?PoPH?P by 2. Since g € R¥ is a non-negative vector with entries summing

to 1, the diagonal elements of V' = diag(Pg) is no more than max;; Py, < ||P| < co.

Therefore each entry of vector gV ! is at least ci/co. Since PH?P o PH?P ¢ RUEK) g
non-negative matrix and ¢’V-"! € R is non-negative vector, we can lower bound

gV Y PH*Po PH*P)V g > |ldV7? > C, (3.C.100)
Combining ((3.C.99))-(3.C.100|), we completes the proof of the first claim.

Consider the second claim. Introduce the following event
A, = {ﬁ(K) = II, up to a permutation in the columns of ﬁ(K)}. (3.C.101)
By Theorem when m = K, SCORE exactly recovers II with probability 1 — o(n™3),
ie.,
P(AS) < Cn™3 = o(1).

This means if we replace every 1% in the definition of BgK) with II, and denote the resulting

B7(1K’O)7 the above inequality immediately implies that BT(IK) / BgK’O) 21, So we
(K,0) )
i

only need to prove By, " /by, 2, 1. Since we will never use the original definition of B,(LK
the rest of the proof, without causing any confusion we will suspend the original definitions

quantity as
n
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of B,({K) and the quantities used to define BSLK), including (é\, g, 17, ﬁ, H ), and use them to
actually denote the correspondents with every II5) replaced by II

Recall the formulas for BY*) and by, in (3.2.11) and (3.4.21)), we have
B |6 gvV-Y(PH2Po PH2P)V 1§
b, ||0]* ¢V-Y(PH2PoPH2P)V-1g’

To show that B / b, — 1, we need the follow lemma, which is proved in Section

(3.C.102)

Lemma 47. Suppose the conditions of Theorem[3.2.1 hold. Let 1, € R™ be the vector of 1’s,
and let 1}, € R™ be the vector such that 1x(i) = 1{i € Ni.}, for 1 <i<mnand1 <k < K.
Asn — oo, foralll <k < K,

1AL, 5 1AL, 5 1/ A1),

voL, 0 101, 0 1,01,
Moreover, let d; be the degree of node i and let df = (Q1,);, for 1 < i < n. Write
D = diag(d) € R™" and D* = diag(d*) € R™". Asn — oo, forall1 <k <K,

101, 1, L] 5, LD

1612 161 1,.(D*)*1

First, by Lemma ! 16]1/116]l 2 1. Tt follows from the continuous mapping theorem that
161/ 1e1* (3.C.103)

Second, recall that g, = (1,6)/(|6||1 and gr = (1), )/HGHl, where by (3.2.6)), we have the
equality 1}, = (1,d) - /1], Alk/ (1, A1,). Here, keep in mind that we have replaced )
with II, which implies that 1k = 1. The vector d is such that d = A1,,. It follows that
1,0 = /1] A1,. Furthermore, 1,Q1; = (1,60)?, because P has unit diagonals. Combining
the above gives

ge _ 10 10lh _ V1AL (10 5 <k <K

e : PRI <k<K. (3.C.104)
R 1 VA PO P [

Third, note that by definition and basic algebra, both P and P have unit diagonals. We

compare their off-diagonals. By (3.2.6)), Py = ]_;CA]_K/\/(]_;CA]_]C)(]_/@A]_(). At the same time,

it can be easily verified that Py, = 1),Q1,/,/(1,,Q1;)(1,Q1,). Introduce

_ V(1,.01,)(1,01,)
v (1,A1;)(1,A1)
By Lemma X 5 1. We re-write
~ 1, A1, — 1,01, 1, W1,
Py — Py = —& = + Ppo(X — 1) = A= X + P(X — 1),
AL, (1AL (1,0)(1}0)

where in the last inequality we have used the fact that 1,Q1; = (1},0)? for all 1 < k < K.

Note that E[1, W1, = 0. Moreover, Var(W;;) < ||P|lmaxfit; < C6;0;. It follows that

Var(1,W1,) < C(17,0)(1}6). Therefore,
1 W1,

2
C o=t —
E[a;e)(lw)} < woyme ~ CUelT) = o).
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3.C. Proof of results in Section |3_4|

Hence, (11,;,)% 5 0. Combining the above results, we have
Py—Pu50, 1<k(<K. (3.C.105)
Fourth, since V = diag(Pg) and V = diag(Pg), it follows from and that
Vie/Vie 21,  1<k<K. (3.C.106)

Last, note that H?, H? € REK are diagonal matrices, with k-th diagonal elements being
hi and h}, respectively. By (3.2.10)), h7 = (1,,6%1;)/||0||?. In addition, by (3.2.6), for any
i € N, we have é? = d?(1}, A1) /(1) A1,)% We thus re-write
(1,D*1y) - (1},A1y)

(1,A1,)2 - [|6]>
Additionally, hy = (1,021)/]|0]|%, as defined in the paragraph below (3.4.21)). By di-
rect calculations, (1},Q1,)/y/1,Q1; = [(1,0) >, Pre(1,6)]/(1,6) = >, Pre(1,6). Also,
for any i € N, we have df = (Q1,); = 6;,[>°, Pee(1,0)]. It implies that 1} (D*)?1; =
(11,0%1,)[>°, Pee(10)]2. We can use these expressions to verify that
[13,(D*)?1] - (1,0215)

(1,01,)% - |02

ﬁkk EB2 =

We apply Lemma [{7] to obtain that

Hyw/Hwe 51, 1<k<K. (3.C.107)
We plug (3.C.103)), (3.C.104)), (3.C.105)), (3.C.106) and (3.C.107)) into (3.C.102)). It follows
from elementary probability that BT(,,K) /bn, — 1. This gives the second claim. O

3.C.5 Proof of Lemma

Recall Nl(m’o),NQ(m’O), ...,Nr(nm’o) are “fake” communities associated with Iy, and we decom-

pose the vector 1,, € R™ as follows
1, = Z 1](€m,0)’ where 1](€m,0) (j)=1ifje Ném’o) and 0 otherwise. (3.C.108)
k=1

Notice for IIy € G, defined in ([3.4.26]), there exists an K x m matrix Lg such that Iy = IILy.
By definitions, Q™9 = @(m’O)HOP(m’O)HE)@(m’O). Here ©(™9) and P(™0) are obtained by
replacing (di,ik, A) by (df, 1](€m’0), Q) in the definition (3.2.6|). It yields that, for 1 < k, ¢ <m
: (m,0)
and i € N,

* (m,0)\s (m,0)

m, dl m, m, m, (1 )Q(l )

o = Jalm Oyt RO - T a0 [ g
(1,01, yayenOyadyenn

As a result, for i € Nk(m’o) and j € J\/‘K(m’o),
(ll(emi)))lngm,O)
[(15:170))’91”] . [(1gm70))191n]'

Note that (1?yQ1{™% = (11,QT))x. Since Q@ = OIPII'O and Dy = II,OII, we
immediately have II{;QIT, = II[;OIIPII'O'Ily = DyPDj. It follows that

@ Oya1l™ — (DePDy)re, 1<k, <m,

m,0 m,0) 5(m,0 m,0 7%
Q0 = gm0l pirO) — gy (3.C.109)

ij i %
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Similarly, (1™%YQ1,, = (¢ I1)Q(1) = ¢} IT,OTPI'OI1 g = ¢}, DyPD1g. This gives
1mOYQ1, = diag(DoPD1g)g,, 1< kL <m.

We plug the above equalities into . It follows that, for ¢ € N,gm’o) and j € /\Q(m’o),

Q" = drd; - (diag(DoPD1k)) " DyPDj(diag(DoPD1)) "] (3.C.110)
Write for short

M = [diag(DoPD1g)]™ (Do PDy)[diag(DoPD1g)] L. (3.C.111)
Then, can be written equivalently as
QO = drdr " My 1{i e N0} 1{5 e N0
kl=1

By definition, Lg(u,k) = 1{N, C Ném’o)}, for 1 <u < K and 1 < k < m. Therefore,
we have the equalities: 1{i € N}gm,o)} =K Lo(u,k)-1{i € N} and 1{j € /\/'g(m’o)} =

Zle Lo(v,¢) - 1{j € N,}. Combining them with the above equation gives
K

ke*

QY = iy 0 i € Nu} 147 €N} Y Lol b)To(v, )M
u,v=1 k=1
K
=did;- > i€ Nu}-1{j € Ny} - (LoMLj)uw. (3.C.112)
u,v=1
By definition, d* = Q1,, = Q(II1k). Since = OIIPII'O, we immediately have

K
u=1

Similarly, we have d; = 0; - fo:l diag(PD1k )y, - 1{j € Ny}. Plugging the expressions of
(df,d;f) into (3.C.112) gives

K
Qz(‘;np) = 91'0]' Z 1{7; € Nu} 1{.7 € Nv}diag(PDlK)uu(LOMLé))uvdiag(PDlK)vv

u,v=1

= 0;0; - m; [diag(PD1g)LoM Lydiag(PD1g)] ;.

(3.C.113)
Combining it with the expression of M in (3.C.111)) gives the claim. 0

3.C.6 Proof of Lemma

The claim of ¢, < ||6||® is proved in Lemma . To prove the claim of A\; < [|0]|?, we
note that by Lemma e = ||0]]? - \(HPH), where H is the diagonal matrix such that
Hyi, = [|0%)]12/]10||2. By the condition (3.2.2), all the diagonal entries of H are between
[c, 1], for a constant ¢ € (0,1). It follows that A\;(HPH) =< A1(P). Since \; > P;; =1 and
M < ||P|| < C, we have \;(P) =< 1. Combining the above gives

A= 0122 (P) = [l6]%.
We then prove the claims related to the matrix Q. First, we show the upper bound
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3.C. Proof of results in Section |ﬁ|

of @w’ and the lower bound of tr(Q%). Recall that @ = Q — Q9. By Lemma
Qm0) — QIIRII'O for a rank-m matrix Py. It follows that
Q = OII(P — P)IT'O. (3.C.114)
Let H be the same diagonal matrix as above. It can be easily verified that ||0]|?- H? = II'©2IL.
This means that the matrix U = ||0|| "1OIIH ~! satisfies the equality U'U = I. As a result,
we can write Q = U - (||0||> - H(P — Py)H) - U’. Since U contains orthonormal columns, the
nonzero eigenvalues of 2 are the same as the nonzero eigenvalues of ||0||? - H(P — Py)H, i.e.,
e = 1012 \(H(P — P)H), 1<k<m.
In particular, [\i| = ||0]|2 - ||[H(P — Po)H| = ||6]|* - |P — Py|| < M\ ||P — Po]|, where we have
used |H|| < ||H~|| < 1, and A =< ||#||?>. Combining it with the definition of 7 gives
T ||P— P (3.C.115)
Consider |Q;|. By (B.C.114), || = 6:6; - |7/(P — Po)m;| < 6:6; - C||P — Py||. We plug
in (3.C.115) to get || < C7;0;, for 1 < i,j < n. Consider tr(Q2*). We have seen that
M| < [|0]]2 - [|P — Pyl < 7]|0]|?. As a result, tr(Q*) > A} > C74|0))5.

Next, we study the order of 7. Note that Q = Q(m0) 4 Q. We aim to apply Weyl’s
inequality. In our notation, A\x(-) refers to the kth largest eigenvalue (in magnitude) of a
symmetric matrix. As a result, |[\i()| is the kth singular value. By Weyl’s inequality for
singular values (equation (7.3.13) of [Horn and Johnson| (1985)), we have

Mot ()] < A QPN 4 X,(Q)], for1<rs<n-—1.
Since Q™9 only has m nonzero eigenvalues, by taking » = m + 1 and s = k in the above,
we immediately have
M (] < M) = [M], 1<k<K-—m. (3.C.116)
In particular, M| > [Ams1] = |Ak|. At the same time, A\; = [|0]|2 and by definition,
7 = |A\1]/A1. It follows that

Tl01l = (Axl/M) - 161 = C 1Akl / VA1) — oc.
This gives 70| — co. We then prove 7 < C. In light of (3.C.115)), it suffices to show
| Po|| < C. Consider the expression of Py in Lemma It is easy to see that ||Lg|| < C,
|DoPD}|| < C||6]3, and ||diag(PD1g)| < C||f]]1. As a result,

1Poll < Cl19111 - lldiag(DoP D1s) ™. (3.C.117)

Since Dy = I[[OII and D = II'OII, it is true that DyPD1x = II[OIPII'OI1;x =
II{OIIPII'O1,, = II{Q21,,. Then, for each 1 <k < m,
[diag(DoPD1g)|ke = (yQLy) = > df,  where d*=Ql,.

ieNt™O)
Here me’o),/\@(m’o), oy N0 are the pseudo-communities defined by IIy. Suppose i € Ny
for some true community Np. Then, df > 3., 056 P = 0:169|1 > C0;]|0]|1. Moreover,
for any Iy € G, each pseudo-community N, k(m,o) is the union of one or more true community.
It yields that Zie/\fém’m 0; > miny<p< {01} > C||0]|;. Combining these results gives

i = AS(m,0 T2 . i i . 0 K
D ienmo i = C||0||]3. This shows that each diagonal entry of diag(DyPD1) is lower
k
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bounded by C||0||3. We immediately have

|diag(DoPD1g) ™| < C||0]I; . (3.C.118)
Combining (3.C.117) and (3.C.118)) gives ||Py|| < C. The claim 7 < C then follows from
B.C115). O

3.C.7 Proof of Lemma

Recall that W = A — Q. Given any n X n symmetric matrix T, we can define a random
variable as follows:

Qw(T) = Z (Wi + Tivio) Wigis + Tigis) Wigis + Tigia) Wigi, + Tigiy). (3.C.119)

’il,’iQ,ig,i4(di5t)
Then, QV,({”’O) is a special case with T' = ﬁ(m,0)7 where Q™0 is defined in (13.4.31f). We study
the general form of Qy (7). By an expansion of each summand, we can write Qw (7)) as the
sum of 2* post-expansion sums. Each post-expansion sum takes a form
X = Z ailini2i3ci3i4di4il, (30120)
i1,i2,i3,i4(dist)

where each of a;j, b, ¢ij, dij may take value in {W;;,T;;}. We divide the post-expansion
sums into 6 common types and compute the mean and variance of each of them (see
Table for the special case of T = Q(m’o)). For example, the post-expansion sum
Zil’i”&u(dm) 140 Thnis Tisis 15, T3, 1s non-stochastic and has a zero variance. Its mean equals
to tr(T%) — A, where A contains the sum of T}, i, Tis Tisi, T3, Ti; when some of the indices
i1,12,13,i4(dist) Win‘z Wizis Wi3i4 Wi4z‘1
has a zero mean, and since the summands are mutually uncorrelated, its variance is

* * * * * _0O..(1_0..
Zz’l ,12,13,54 (dist) Quzz ngzg ngzl 91411 ) where Qij - QU (1 QZJ ) .

(i1,1492,13,14) are equal. As another example, the post-expansion sum

Table 3.2: The 6 different types of the 16 post-expansion sums of Qn ™) In our setting,
=AY ) and |07 < 7 < C, and ||0]3 < [|6]12 < [|6])1.

Type # (Ng,Nw) Examples Mean Variance
I 1 (0, 4) X = 211,22,Z3,z4(dzst) VVl”ZVVQBVVBMVVZ‘“‘1 0 = |10]®
II 4 (L,3) X =30 aniaist) Linia Wisia Wiais Wi 0 < C?[0)11011§ = o(ll6]®)
IITa 4 (2,2) X3 = Z“ ia,i3,i4(dist) 921129121311[{1314‘)[/1‘41‘1 0 < CT4H‘9H6H9H(§ = O(TﬁHGHSHQHg)
IITb 2 (2a 2) Xy = Zzl i9,i3,04(dist) Qzll2W122391314Wi4i1 0 < 07—4”9”52 = O(HQHS)
v 4 (3a 1) X5 = Zzl i9,i3,i4(dist) szﬂzzzﬁszml 0 < TGHGHSHQHE
% L (4,0) X6 =30 s iaaist) PirinQinis Yigiy Yigiy ~ tr(Q) 0

Here we omit the calculation details, because similar calculations were done in |Jin et al.
(2019). In their Theorem 4.4, they analyzed Qw (T') for T' equal to a rank-1 matrix (denoted
by Q there). However, their proof does not reply on the condition that Q is rank-1 and
applies to any symmetric matrix. They actually proved the following lemma:

Lemma 48. Consider a DCBM model where -(3-2.9) and hold. Let W = A—Q
and let Qw (T') be the random variable defined in (3.C.119)). As n — oo, suppose there is a
constant C > 0 and a scalar oy, > 0 such that o, < C, a,||8]| = oo, and |Ti;| < Co,b0,0;
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3.C. Proof of results in Section |3_4|

for all 1 < i,j < n. Then, E[Quw(T)] = tr(T*) + o(||0]|*) and Var(Qw (T)) < C(||0||® +
an[101°16115)-

We now set T' = Q™9 and verify the conditions of Lemma Recall that 7 = Xl /A1,
where A\; and \; are the respective largest (in magnitude) eigenvalue of Q(m0) and Q. By
Lemma [4T]

T<C, 70| = oo, |Q(m 0)| < CT6,0;, for all 1 <i,7 <n.

Therefore, we can apply Lemma [48 with «,, = 7. The claim follows immediately. O

3.C.8 Proof of Lemma

Before proceed, recall m ) that
QU = ST Wiy + Q) (Wigsy + Q) (Wi, + Q) (Wi, + Q0.

192 1213 1314 1401
i1,i9,i3,i4(dist)
Here Q™0 =  — Q(m0) and Q™9 s as in (3.4.29). By Lemman7 40, Q™0 = OIIRII'O,
for a rank-m matrix Py. If m = K and IIy = II, it can be verified that Py = P. Therefore,
QMmO = O and QM) reduces to a zero matrix. In this case, Qn 0 reduces to Qn in
m It means that we can treat Lemma (38| as a “special case” of Lemma with Q(m.0)

being a zero matrix. We thus combine the proofs of two lemmas.

We now show the claim. First, we introduce two proxies of Qn m0), By definition,
Q?&mp) = Z (Ai1i2 - Q(m 0))("412@3 - Q(m 0))(Ai314 - Q(m 0))(Ai4i1 - Q(m O))

Q119 Q913 1304 Q401

01,2314 (dist)
By , Q(m0) is defined by 5, 11y, and P.For1<k< m, let ./\/'Igm’o) and ll(cm’o) be the
same as in (3.C.108|). Then, (5, ]3) are obtained by replacing 1; with 1,(€m’0) in (3.2.6). For
the rest of the proof, we write 1, = 1,(:”’0) for short. It follows that, for 1 < k,¢ < K and

ie N0,

é\gm’o) — dii'};“Alk, ﬁézn’o) = - 1§€A14/ ,  with 1, = 1](€m,0) (for short).
1} A1, VAL ATLL) (1,A1y)
We plug it into (3.4.27) and note that d = Al,,. It yields that, for ¢ € Ném’o) and j € /\/g(m’o),
. . . 1/ A1,
QO = g - U(m’o), where U0 = kL (3.C.121)
i J ke ke (lzd)(lzd)

At the same time, in (3.C.109), we have seen that (recall: d* = 1,,)

1,01,
Q(m 0 _ did; - Uy, x(m, 0), where UXm0 — "kt
T )

ij
Note that (€2,d*) are approximately (E[A],[E[d]) but there is subtle difference. We thus

introduce an intermediate quantity:

(3.C.122)

(m.0) 1E[A]L,

7m0 _ 3.C.123
Y R (30129
We now use ([3.C.121)-(3.C.123) to decompose (A;j — )). Recall that @E}TL’O) =y —
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QE;”’O). We immediately have
Ay — Q0 = Wiy + Q0 4 (@i — oy, (3.C.124)
From now on, we omit the superscript “(m,0)” in [722”’0), U,:ém’o) and U,EZLO), and rewrite

them as ng, U}y, and Uy, respectively. By (3.C.121)-(3.C.123), Qg.n’o) —ﬁz(.;.n’o) =d;d;Up, —
didjﬁkg = [d:d;kU;:e — (Edl)(EdJ)UM] + UM[(EdZ)(Ed]) — didj] + (Uke — ﬁkg)didj. It turns our
that the term Uy[(Ed;)(Ed;) — d;d;] is the “dominating” term. This term does not have an

exactly zero mean, and so we introduce a proxy to this term as
05" = Ure[(Ed;) (Ed; — d;) + (Edy ) (Ed; — di)] (3.C.125)
Note that Uye[(Ed;)(Edy) — did;] = 8./"" — Uge(d; — Ed;)(d; — Ed;). We then have
QY — OO = [drd5UY, — (Bdy) (Ed;)Uge) + [80° — Ure(d; — Bdi)(dj — Ed;)] + (Uke — Uke)did;
= 500 4 [df U, — (Edy)(Ed;)Use] — Upe(d; — Ed;)(d; — Edy)
+ (Ut — Upe) (Bdi) (Ed;)) + (Upe — Ure)[(Bdy) (dj — Edy) + (Ed;)(d; — Ed;)]
+ (Ure — Une)(di — Ed;)(d; — Ed;)

= 5(m 0) +7r "'(m 0) + 6,5;”70),

where
7Y = —Upe(d; — Ed;)(d; — Edy) (3.C.126)
and
7" = [d; 45U}y — (Bdi) (Bdj)Use] + (Use — Une) (Edy) (Ed)
+ (U = Uro)[(Ed;)(d; — Edy) + (Bdy)(d; — Edy)]. (3.C.127)
We plug the above results into to get
Aij = QU =0 4w+ 6.(’.”’0’ rmO gm0, (3.C.128)

We then use ) to define two proxies of Qn . Forany 1 <i#j<n,let
ij=Q§?0)+Wij+5(- 0) A{mO)_i_E( )’
X5 =000 4 Wiy + 60 470
X; = Q(m Wy 5( 0,

)}Z] _ Q(m 0) 4 Wij. (3.C.129)
Correspondingly, we introduce
Qm0) — Z Xivio Xiniz Xigia Xigiy
11,12,13,i4 (dist)
Q;kl(ﬁho) — Z X;kleX’ZkQZgX;;MXZNl’
il,ig,’ig,i4(dist)
Q;‘L(m,o) — Z XZZQXZQZ;:,X;MX:MI’
11,92,13,54 (dist)
QO = N Xy Xigia Xiia Xisir (3.C.130)

i1,42,i3,14 (dist)
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By comparing it with (3.4.32] m, we can see that the above expressmn of Qn ) is the same as
before. Additionally, by m the above expressmn of Qn is also equivalent to the
definition. The other two quantities, Qn(m 0 and Qn m.0) , are the two proxies we introduce
here.

Next, we decompose

QO — G — (U~ GP) + (@ - Q4m0) + QP - Ty,

For any random variables X,Y, 7, we know that E[X +Y + Z] = EX + EY + EZ and
Var(X +Y + Z) < 3Var(X) + 3Var + 3Var(Z). Therefore, to show the claim, we only need
to study the mean and variance of each term in the above equation. The next three lemmas

are proved in Sections [3.D.3K3.D.5|

Lemma 49. Let b, = 2||0||* - [¢/V Y (PH?P o PH?P)V~1g] be the same as in (3.4.21)).
Under conditions of Lemma[38, it is true that

E[Qy™) — QY] = b +o(|0]"),  and  Var(Q;™% = Q") = o(||6]),
Let T = Xl/)\l be the same as in (3.4.33)). Under conditions of Lemma it is true that
B[ — QU = o(r*0]*),  and  Var(Qy™ — Q") < 061 10]1§ + o[16])-

Lemma 50. Under conditions of Lemma |38, it is true that
E[Q;™Y — Q™0 = o([|6]]"),  and  Var(Q™Y — Q™) = o(||0]]%).

Under conditions of Lemmal[{3, it is true that

B[RV =@ ™0 = o(||0]*+701*),  and  Var(Qy™V-@;

n

() — o(|16]1+75]|6]%116]13).

Lemma 51. Under conditions of Lemma|38, it is true that
E[Q — Qim0 = o(|6]*),  and  Var(Q — Qi) = o(||6]|®).
Under conditions of Lemmal[{3, it is true that
E[Q™O—Q ™0 = o(|0]*+7*(16]*),  and  Var(Q[V—@;™) = o(|[6]*+7°(0]1%]6]]5)-

We now prove Lemma [38 and Lemma By Lemma [{9}Lemma [51] under the conditions of

Lemma
E[Q™” — QY] = b, +o(|0]"), and  Var(Q™? — Q) = o(||0]%),

which implies E( (m0) _ @%’”’0) —b,)? = 0(]|0]|®) and completes the proof of Lemma
Under the conditions of Lemma it follows from Lemma 9} Lemma [51] that

E[Q[) — Q0 = o(r*[0]%) and  Var(Q[? — Q™) < 7010|6115 + o[16]),
which completes the proof of Lemma O

3.C.9 Proof of Lemma

Let G, be the class of n x m membership matrices that satisfy NSP (the definition of G,, is

in Section [3.4.2). By Theorem 1™ ¢ G, with probability 1 — O(n~3). Given any
Iy € G, Let BT(Lm) (I1y) be defined in the same way as in (3.2.11]), except that (6,9,V, P, H)
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are defined based on Il instead of ), Then, with probability 1 — O(n=3),

B < max By, (Iy).

It follows from the probability union bound that
P(BI™ > Cllo]) < Y P(Ba(Ilo) > Cl10]*) + O(n~?).
IIo€Gm
Since m < K and K is finite, G,, has only a bounded number of elements. Therefore, it
suffices to show that

P(B,(Ilp) > C||0]|*) = o(1),  for each I € Gyp. (3.C.131)

We now show (3.C.131)). From now on, we fix Iy € G,,, and write B,,(Ilp) = B,, for short.

By (3.2.11)) and direct calculations,

~ ~ N~ o N . [(PH2P 2
B, = 2||8||*- gV \(PH2P o PHP)V 1§ = 2/3||* - 9k94§A A,)ff]
1<k, 0<m (£9) - (F79)

where ]3k denotes the kth column of P. We have mis-used the notations (@\, g, 17, P , H ), using
them to refer to the counterparts of original definitions with II(™) replaced by IIy. Denote
by Nl(m’o),NQ(m’o), e 7/\/}(nm’0) the pseudo-communities defined by Ily. Let 1](€m,0) € R" be

such that 1](€m’0) (1)=1{i e Ném’o)}. We write 1, = 1](€m’0) when there is no confusion. By

EZI).

)

G=1.0)/110]1, K=/ 1<k<m.

Note that g, h and P all have non-negative entries, with all entries of g and h are further
bounded by 1. Moreover, the diagonals of P are all equal to 1. It follows that, for all
1<k, 0 <m,

0<gr <Plg, and 0<(PH?P) < (P*)k.

As a result,
m
By < 2061* YO (Ped® < 200]* - m||Pllfax (3.C.132)
k(=1
where || - |[max i the element-wise maximum norm. Below, we study ||P|max and ||§||
separately.

First, we bound || P||max. By (3.2.6),
Prr = (1,A10)//(14,A1,) (141,).
Write 17, A1, = ZieN]gm,O)JeA{ém,O) A;j, where E[A;;] = €5, and ZieN;im’O)»jGNg(m’o) Var(4;;) <
Zz‘e/\/,im’o),je/\fe(mvo) Ch;0; < C(15,0)(1,0). We apply the Bernstein’s inequality Shorack and
Wellner| (1986)) to get

t2/2
C(1,0)(1,0) + t/3)’
By NSP, each pseudo-community N, ém,()) contains at least one true community, say, Ny-.
Combining it with the condition gives 130 > >, . 0 > C|0][1. At the same
time, 1,0 < [|0]l1. We thus have 1,6 < ||8]; > /log(n). Similarly, we can show that
1,21, < ||0||?. In the above equation, if we choose t = C1||9||1\/M for a properly large

P(1,41, — 1301, > t) < 2exp<— for all ¢ > 0.
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constant C7 > 0, then the right hand side is O(n~3). In other words, with probability
1—-0(n3),

11,41, — 1,.Q14| < C|0]11/log(n).

Since 1,01, < [|0]|7 > [|0]|11/log(n), the above implies 1} A1, =< [|0]|7. We combine this

result with the probability union bound. It follows that there exists a constant Cy > 1 such
that with probability 1 — O(n=3),

CyHIO)2 < min {1441} < 1, A1} < Co||0)3 3.C.133

> 0l < min {1Ale} < max {1341} < Collfl ( )

We plug it into the expression of ]Skg above and can easily see that
|P]lmax < C, with probability 1 — O(n™?). (3.C.134)
Second, we bound Hé\H By (3.2.6)), 0; = din/1, A1 /(1) AL,,) for i € J\/’,gm’o). It follows
that

16])* = where D = diag(dy, do, ..., dy).

’Z": (1, D%15) (1} A1)
S (pAL,)T
Note that 1} A1, = 37", 1} A1,. Tt follows from (3.C.133) that 1} A1 < [|0]|] and 1} A1, =<
1613, As a result, 0] < Cl16]7* Y51, (1,D%1k). Since Y3 (14,D°1y) = [ld]]?, we
immediately have

162 < C|16]I72)|d|>,  with probability 1 — O(n™?). (3.C.135)
Recall that d; = Zj#iA~ = >_jj2i(8%j + Wi;). Then,

Id]|* = Z S Qi+ W) (s + Wis)
1=1 j,s:571,571

= Z szst +2 Z( Z st) Wz] + Z + Z Wz]Wzs
1,7,8:j71,871 i#j  s¢{i,jg} i#] 1,j,s(dist)
—
=X =X =X3
Since Y1,y s < CO;[0]1, we have E[X?] < 3, CO2(0]2 - E[WZ] < C|0]3]0]13. More-
over, X > 0 and E[X»] = 35, E[W2] < C||0]]7. Last, E[X3] = 237, ; ((gisr) Var(Wi;Wis) <
C>ijs 020,05 < C||0]%||0]|3. By Markov’s inequality, for any sequence €, — 0,

[Xal < CyJallOIBI01F,  1Xal < OOl X5l < Cyfen 161210113

It is not hard to see that we can choose a property €, — 0 so that all the right hand sides
are o(||6]2|0]|?). Then, with probability 1 — e,

ldi =" > Qs +o(ll6IF161%) < Cli6l* |63

i,j,sij 0,57
We plug it into to get
16]> < C||6]|>,  with probability 1 — o(1). (3.C.136)
Then, follows from plugging (3.C.134)) and (3.C.136)) into (3.C.132)). This proves
the claim. ]
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3.D PROOF OF SECONDARY LEMMAS

3.D.1 Proof of Lemma

Note that for any set M C {1,2,...,n} and z € R?,

>l =2l = " My — Gan) + (G — 2)|I?

€M ieM
= lyi — gl + 20 — 2) > (i — Gn) + M| gar — 22
ieM ieM
=y — gaell® + IM]1gas — 21
ieM

The clusters associated with RSS are A= AU C and B , and the clusters associated with
RSS are A and B = C' U B. By direct calculations,

RSS =" llyi = gall* + > llyi — gall* + > llvi — 78>

i€A icC i€B
_ (Z lyi = 7212 + 1 Alll75 yAHQ) ; (Dyz- o)’ +ICllge - W) 3 s — g
icA ieC i€B
RS = s — a1l2+ 3 s — 7512 + 3 i — 7517
i€A ieC i€B
= i — gl + (Z i — gl + Cllge — ygw) T (Z lvi - g5l + 1Bllgs - yg”)
i€A i€C i€B

It follows that
RSS—RSS = (1B75 -5 +IC||15c 751 — (14117~ 74l *+ICll|Fo—Fal?). (3.D.137)
By definition,
= Al e = e e
Al T4 AT BBl +C] B +]C]
Re-arranging the terms, we have
C| C] |B|

Yi—ya = W@A_QC)7 Yg—YB = W@C—QB% Yyc—Yg = W@C—@B)-
(3.D.138)
We plug (3.D.138) into (3.D.137)) to get
R55 - nss = (1Bl 9 sier 1B g e
(I1B] +1C1)? (IB[ +1C1)?
b [of 2
B [ e— R
(| | A= O] Il ] I
BIC| e AlCL
= ————yc —yBll” — -~ llvc — yall”.
B+ 1071 Vel = —ep e — 94l
This proves the claim. O
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3.D.2 Proof of Lemma

Recall that 1, € R™ is such that 1;(i) = {i € Ni}, D = diag(di,da, . ..,d,), and d* = Q1,,.
We re-state the claims as

=1, — 1, — 3.D.139
1,01, 101, 1,01, ( )
and R R
160 » 161l » D1
— =1, — =1, e L (3.D.140)
16111 161l 1,(D*)*1

We note that convergence in ¢?-norm implies convergence in probability. Hence, to show
X 5 1 for a random variable X it is sufficient to show E[(X — 1)?] — 0. Using the equality
E[(X —1)%] = (EX — 1)2 + Var(X), we only need to prove that E[X] — 1 and Var(X) — 0,
for each variable X on the left hand sides of (3.D.139)-(3.D.140j).

First, we prove the three claims in . Since the proofs are similar, we only show
the proof of the first claim. Note that 1;,Q1, = >, ,(1,.6)(1}0)Pye. Under the conditions
B21)-B22). 1,01, = ||0]2. Additionally, 1/,diag(Q)1, = [|0]2. It follows that

AL | Lidis@t, 0P _
1,01, oL, e o
where the last inequality is because [|0]|?> < Omax||0]1 < C||0]1 and [|0]; — oo. Also,

since the upper triangular entries of A are independent, Var(1j,A1,) = 4Var(}_,_; A;;) <
4% < C||0]]3. Tt follows that

Var(1/,A1,) _ C|0]?
n < =o(1).
wore = eir Y
Combining the above gives (1/,41,)/(1,Q1,) 5 1.
Second, we show the first claim in (3.D.140). By Theorem ) = II, with a

probability of 1 — O(n~3). It is sufficient to consider the re-defined 0 where TI(56) is replaced
with II. Combining it with the definition in (3.2.6]), we have 6; = d;\/1}, A1 /(1) AL,). It

follows that
~ (1’ 1’ Alk
i, - 3 i VIl ey z JuAL.

k=1

where the last equality is because of d = Al,. At the same time, it is easy to see that
1,01, = (14,0) Per.(1,,0) = (14,6)?, which implies [|0]; = Sp_; \/1,215. We thus have

2 K /17 /
Hg”i = Z&ka, where 0 = ZK11€91}’;21’ X, = 1531:

k=1 =1V gL k
By the last claim in and the continuous mapping theorem, Xj 21 for each
1<k<K. Also, Zszl 0r = 1. It follows immediately that Zle 6, X5 2 1. This proves

18112/l 1

Next, we show the last claim in (3.D.140). Recall that d* = Q1,, and D* = diag(d*)
Then, for i € N, Yjen ()2 < C e (11811) < ClOI21613. At the same time, df >
0; P (1,,0) > C6;]|60]|1, where we have used the condition (3.2.2)). As a result, D ieN, (al*)2 >
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3. ESTIMATING THE NUMBER OF COMMUNITIES BY STEPWISE GOODNESS-OF-FIT

C|lo)? D ieN, 62 > C|10%]|0|3, where we have used (3.2.2) again. Combining the above gives

1,01 = 61261 (3.D.141)
Note that 1, D*1 = 3 pcnr, (i Ait)® = 2005 2oteni\ iy AitAje. Similarly, 13 (D*)*1; =
Zi,j Zte/\/k Q1. We now write

kD21k = Z Z A + QZ Z AztA]ta

% tENk\{'L} 1<j tENk\{Z)]}
ORI B) BEEE) Bp SR
i teEN} 1<j teNy

Note that E[A%] = E[A] = Qi and E[A;1 4] = QitQjr. As a result,
[E[1,D%14] — 1,(D*)°16| <> > (e — Q5) +ZQ +2) (i + Qi Q5)

t teNE\{3} 1<j
<C> 00+ 0] +02930
i teENL
< C(llelfs + 191* + lolliel)
< Cl0Il3,
where the last line is because [|0]|3 < 62, /10]l1 < C||]];. Combining it with (3.D.141)) gives

E[1},D*1;] Clol
el A 1‘ < WL _ o). (3.D.142)
1;,(D*)?1y, o116l

We then compute the variance. Write for short X = ZKj Ztej\/k\{z’,j} At Aji. Note that
Var(1},D?1;,) < 2Var(z Z A?t) + 2Var(2X)

i teNK\{i}
<CY ) Q4+ 8Var(X)
i teENL

< C|0||7 + 8Var(X).
Since Ay Aje = (Qir + Wir) (¢ + Wye), we write
X=3 3 2> Y (X Q)WY Y W
i<j teN\{ij} JteN\{i} diAti<y i<j teNE\{iri}
= Xo +2X; + Xo.
Here, Xy is non-stochastic. Therefore, Var(X) = Var(2X; + Xs) < 8Var(X;) + 2Var(X>).

It is seen that Var(Xy) < > .37\ (O Qir)? - Qe < CY; EteNk(HtHHHl)Q <00, <
C|10113]101l3. Additionally, the summands in X, are mutually uncorrelated, so Var(X3) <

Dici 2oten; Qe < C Y25 0,0;07 < C|0]/10]|*>. Combining the above gives
Var(X) < C(ll01311013 + llelllel*) < Clelislel,
where in the second inequality we have used [|0]|? < ||0||1]|0]|3, which is a direct consequence
of the Cauchy-Schwarz inequality. We combine the above to get
Var(13,D°1) < C(II01F + 1013110113) < CUONT + Gumax 191 19117),
where in the second inequality we have used [|0||3 < Omax||0]|?>. Combining it with (3.D.141])
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3.D. Proof of secondary lemmas

gives
Var(1,D%1y) _ Cl0IF | COmaxl0]*]10]F
[15,(D*)21]2 ~ [10]|1*]16]]3 191141011

A

= o(1). (3.D.143)

By (3.D.142) and (3.D.143)), we have (1),D%1;)/[1,(D*)?1;] 5 1.
Last, we show the second claim in (3.D.140)). Since @ = d;\/1}, A1, /(1,,A1,,), we have

K
(1,.A1,)? '

k=1
At the same time, 1}Q1; = (1},0)? and 1/,Q1,, = (1,0) [Eﬁil Pr(1}0)]. Furthermore, for
i € Niy d = (91,,); = i[5, Pre(140)], and so 1;,(D*)*1,, = (1,0714)[3775, Pre(1}6)]%.
Combining these equalities gives

16]% = Z 1,0%1, — Z [17,(D*)?*1,](1}, Qlk)'

(1,01,,)2
t follows that
~ [15,(D*)?14](1;,015)
o i here 4, oty %, _ LD 1AL, (1301,)°
Al ere = = )
8 ~ 2 ke w k= S Bl D?,E{K)lém“’ " 1,(D)21, 1,01, (1,41,,)2

By the claims in (3.D.139) and the last claim in (3.D.140)), as well as the continuous

mappmg theorem, we have Xk 21 for each 1 < k < K. Since Z w1 Or = 1, it follows that
Zk:l 61Xy, 2 1. This proves that ||9|| 2/110> & 1. By the continuous mapping theorem
again, [|9]1/116]] & 1. 0

3.D.3 Proof of Lemma

We introduce a notation M;jie(X) = X Xx XpeXei, for any symmetric n x n matrix X and
distinct indices (i, j, k, ¢). Using the definition in (3.C.130)), we can write
Q;';(m,O) _ Qvglm,())

. X5 28 w4 6000
- Z [(Miyigizis(X™) — Mijigizis (X)), where JJ (m 0 ij T 9
11,12,13,14(dist) z] = Q + Wij-

(m,0)

For the rest of the proof, we omit superscripts in ﬁij and 51(Jm 0 to simplify notations.
From the expression of X/; and )~(Z-j, we notice that [M; iyizis (X™) — Mijigisia (X)] expands
Qvglm,())

to 3* — 2% = 65 terms. Consequently, there are 65 post-expansion sums in Qz(m’o) —

)

each with the form
Z ailini2i30i3i4di4i17 where a,b,c,d € {Q,VV,(S}
i1,i9,i3,i4(dist)
In the first 4 columns of Table 3.3, we group these post-expansion sums into 15 distinct
terms, where the second column shows the counts of each distinct term. For example, in the
setting of Lemma Q reduces to a zero matrix. Therefore, any post-expansion sum that
involves € is zero. Then, it follows from Table that

x(m0) _ QUm0) — 4y, 4+ 47, + 275 + 4T} + F, 3.D.144
n n
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3. ESTIMATING THE NUMBER OF COMMUNITIES BY STEPWISE GOODNESS-OF-FIT

where the expression of (Y1, 21,75, T1, F) are given in the fourth column of Table
Similarly, in the setting of Lemma we have Q;‘l(m’o) —Q%m’o) =4Y14+8Yo+4Y3+- - -+4T5+F.
These are elementary calculations.

Table 3.3: The 10 types of the post-expansion sums for (Q*(m 0) @%m,o)). Notations: same

as in Table

Type ## Name Formula Abs. Mean Variance
Ia i m Zn(ljlzi)u 5MWW Wisia Wisi, 0 < ClI07(1011§ = o(16]]F)
b8 Y Eaptnelen Wi 0 < or?|jo)*6]§ = ol6])
4 % Zu,(i;i,;‘g),u 8iis Winis Qigis Wi, 0 < or?)|9)1*)161§ = o(/16]1%)
o8 Y DupaabululWe <=0 I0F) < CrI O — o5 6] 613)
LY Cigainia OO Wisis Qi 0 < SRR — o(ji0)®)

d 4 Y - S CTO O3 _ (6101131616
6 Zn 1;1;?)14 sz inia $ligia Qigiy 0 < o =Oo(r°0| H0H3)

Mo 4 2 TapinbantesWeWin < Cl0l=o(r!|0]) < CloIP1915 = o(1911°)
2 2 DugaidwnWasdoaWun < CIOI o 10) < LI — o()0)1%)

1Ib 8 Z3 Z“’ﬁ{ii)’u 61»12»25,»22-3@3,»41/[/,[41»1 0 < CT0]1410]18 = o(||0)|®)
44 TapuatuladeWan < Crlolt=or!|0]) < CIRIO o)1)

e 4 7 D St s Qi < CT2ON=o(r l01%) < SE= = o(r6]1*)6]9)
2 Z Zil,(i;i,ig),u Bivia QigiaBigia Qi % o(r*[10]*) < %@m = o([|0]*)

Ola 4 Ty Zilki;i,igji4 ivinigisOizia Wigiy < Ol6)*=o(r10]®) < %‘]W =o([l0]*)
I 4 15 Z“,&zi),m (51-12-2(51-22-352-31-4@42-1 < C”TJ'?%‘G:O( 410]%) < CTz\l\lg\l\lef)Hg =o(|0|*)
Vo1 P Dugaitenbasdidin < IOl o) < ot = o(lelF)

To show the claim, we need to study the mean and variance of each post-expansion sum.
We take Y7 for example. Let Nl(m’o),/\fz(m’o), .. ,NT(,Lm’O) be the pseudo-communities defined
by IIy. For each 1 <i <mn, let 7(i) € {1,2,...,m} be the index of the pseudo-community
that contains node i. By (3.C.125)),

6i1i2 =U 7(i1)7(i2) [(Edll)(EdZQ - diz) + (EdiQ)(Edil - dl1)]
= Ur(in)r(ia) - Bdliy - (_ > Wm) + Ur(ia)r(ia) - Edliz - ( ) W“l)
Jiiiz C:Aiy
= =2 Urtiy)yrtia) - Ediy - Wiy, (3.D.145)
JigFie
It follows that
Yi=-2 Z (Z Ur(z‘1)7—(i2) 'Edil) WiiysWigis Wigia Wi
12,13,14,] 11
where we note that the indices {i1, 12,143,174, 7} have to satisfy the constraint that iy, 9, 13,14
are distinct and that j # i2. We can see that Y7 is a weighted sum of Wj;, Wi, i, Wiyiy Wiyiy
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3.D. Proof of secondary lemmas

where the summands have zero mean and are mutually uncorrelated. The mean and variance
of Y7 can be calculated easily. We will use the same strategy to analyze each term in
Table we use the expansion of J;; in to write each post-expansion sum
as a weighted sum of monomials of W, and then we calculate the mean and variance.
The calculations can become very tedious for some terms (e.g., 71, T3 and F'), because of
combinatorics. Fortunately, similar calculations were done in the proof of Theorem 4.4 in
Jin et al. (2019), where they analyzed a special case with Uiy = 1/v for all 1 < k, ¢ < m.
However, their proof does not rely on that Ug,’s are equal but only require that Ug’s have a
uniform upper bound. Essentially, they have proved the following lemma:

Lemma 52. Consider a DCBM model where ((3.2.1)-(3.2.2) and (3.2.4) hold. Let W = A—Q
and A = Zil’i%ig’u(dm) [Mi1¢2i3i4 (§~2+W+5) — M inigiy (§~2+W)] , where Q is a non-stochastic
symmetric matriz, 6;; = vij - [(Ed;)(Ed; — dj) + (Ed;)(Ed; — d;)], {vij}1<izj<n are non-
stochastic scalars, d; is the degree of node i, and M;,iyizi, () s as defined above. As n — oo,

suppose there is a constant C > 0 and a scalar o, > 0 such that o, < C, a,|0] — oo,
|§zj| < Canifj and |vi;| < C||0)|7" for all 1 < 4,5 < n. Then, [E[A]| = o(al|0]®) and
Var(A) < Ca808]10]1S + o(||0]|®). Furthermore, if  is a zero matriz, then |E[A]| < C||0]*
and Var(A) = o(||0]®).

We check the conditions of Lemma [52| By Lemma T < C, 7||0|| = o0, and |§~2U] < CT16,0;.
We now verify that Uy has a uniform upper bound for all 1 < k,¢ < m. By ,
Ue = (1:E[A]Le)/[(1,E[d]) (17E[d])].

where 1, = 1,(€m’0) is the same as in . Since E[A4;;] = Q4 < C0;0;, we have
0 < 1}E[A]1, < C||0]3. At the same time, by the NSP of SCORE, for each 1 < k < m,
there is at least one true community N+ such that NV« C N, ]Em,o). It follows that 1,E[d] =
Ziengm,O) Zj:j;éi Q5 > Z{z’,j}c/\/’k*,iyéj 0:0; P = H‘g(k)H%[l +0(1)] > C||8]|7, where the last
inequality is from the condition . We plug these results into Uy to get

0< U <072 (3.D.146)

Then, the conditions of Lemma are satisfied. We apply this lemma with a,, = 7 and
v;j = Uy for i € N, ’gm,o) and j € /\/'E(m’o). It yields that, under the conditions of Lemma

E[Q;™Y = QU] = o(r*16]),  Var(Q;™* = Qi) < CT0]1%|601I$ + o(110]),
and that under the conditions of Lemma [38] (where € is a zero matrix)
E[Q™ = Qi) < clolt,  Var(Qy™ — Q) < o(0]).

This proves all the desirable claims except for the following one: Under conditions of
Lemma, It remains to show that, under the conditions of Lemma

E[Q;™% — Q4™ = b, + o||0]*). (3.D.147)

We now show (3.D.147). By (3.D.144]), we only need to calculate the expectations
of 1,71, Z5,T1 and F. From Table E[Y1] = 0. We now study E[Z;]. Recall that

i = Ur(iyr(j) [(Ed;)(Ed; —d;) + (Ed;) (Ed; — d;)], where (i) is the index of pseudo-community

(4
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defined by Il that contains node i. We plug d;; into Z1, by elementary calculations,
Z = Z UT(il)T(i2)UT(i2)T(iB)(Edil)(Edlﬁ - di2)2(Edi3)Wi3i4 Wiy

11,02,13,54 (dist)

+2 Z UT(i1)T(i2)UT(i2)T(’i3) (Edi1)(Edi2 - diz)(Edi2)(Edi3 - di3)Wi3i4 Wi4i1
il,iz,i3,i4(dist)
+ Y Ur(iyr(in) Ur(ia)r(i) (Bdiy — diy ) (Bdiy ) (Bliy — dig)Wigi, Wiy,
i1,’i2,’i3,i4(dist)
We write it as Zy = Z11 + 2719+ Z13. For Zy), we can further replace Ed; — d; by Zj:#i Wi
and write Zy;, as a weighted sum of monomials of W. Then, E[Z;] # 0 if some of the
monomials are W?2. W2 . This will not happen in Z;; and Z;2, and so only Zi13 has a

i3iq " igi1”
nonzero mean. It is seen that

Zl3 E[ Z 721 )7 (42) 7—(12)7 i3) (Z Wﬂl) Edlz) ( Z mak)Wi3i4Wi4i1:|

11,12,83,14 Jiy#i k:k#is
(dist)

=E |: Z UT(il)T(iz)UT(iz)T(is) (I/Viu'l) (Ed;, )2(Wi3i4) - Wigiy Wi4i1:|

11,12,13,54 (dist)

= Y UrrtinUr(in)rts) (Bdiy)* - EIWE, W2,

$1,82,83,84 (dist)

4
= Z Z Z UkleUk‘ng (Ediz) [W12314W51@1]

k1,k2,k3,ks j=1 15 ENkj

(3.D.148)
Here, in the second line, we only keep (7, k) = (i4,14), because other (j, k) only contribute
zero means. Recall that we are considering the setting of Lemma where m = K and
Ilp = II. In (3.C.122)), we introduce a proxy of Uy, as U}, = (1,Q1,)/[(1,01,)(1,Q1,)], for
all 1 < k,¢ < K. Note that ;; = 0;0; Py for i € N}, and j € NV;. At the same time, by
(13.4.21)), g = (129)/”0”1, and Vi = (diag(Pg))kk = [Zé PM(].%@)]/”GM It follows that

Pre(13,0)(130) P

L0157, Pos (1 0)] - (1L0)55, Pty (1.0)]  VieVae [0
Comparing Uy, with U}, (see (3.C.122)-(3.C.123))), the difference is negligible. (We can
rigorously justify this by directly computing the difference caused by replacing Uy, with U},
similarly as in the proof of ¢, = tr(Q4) + o(||0||®) in Section see details therein. Such
calculations are too elementary and so omitted.) We thus have

Py
Ure = 40D} oo TaTE

* o __
Uk;f_

(3.D.149)

Furthermore, for i € N,

Eld;] = [1 + o(1 ZQU_ [1+o(1 [ZPM (1,0) } 1+ o(1)] - 6i]|0])1 Vi (3.D.150)
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3.D. Proof of secondary lemmas

Also, E[WQ] = Q;;(1 — Q45) = Qi;[1 + o(1)]. We plug these results into (3.D.148]) to get

Py ko Prosi:
Bl = Z Z Z Vi V; 2V2 : gl (0211013 Vieky) - Qigia igiy
k1,k2, j= lzje./\/ k1k1 Vigky k3k3” Hl
k3,kq
4
Py ko Proks Prskey Prak s
= 1 12233441( 9990)
[ +O( )] Z Vk1k1Vk3k3H0H% Z Z 172 Mg

e 45 €Nk; 7=1
3,k4

Prey by Prokes Prskea Prake 400112 2 2
_ 1 +0 1 1R2 2R3 3R4 4R1 0 9 ‘Qk gk‘ H H
[ ( )] Z Vklklvk‘g,k;g,“e”% (H ” || Hl 1Jk3 4 koko k4k24)

k1,ka,
k3,k4
9k 9k
= [1 + 0(1)]”6 ‘4 Z Vi o (Z Pk1k2Hk2k2Pk2k3> <Z Pk3k4Hk4k4Pk4k1> V. °
kiky | 1R k3ks3
= [L+o]IOI* > (V"' g)k, (PH*P)g, 4, (PH P)kgkl(V_lg)ks
k1,ks

— [L+o(][0]|* - ¢V [(PH?P) o (PH*P)]V g
— [1+0(1)] - bu/2,

where in the third line we have used the definition of H which gives Hyx = (1,0%14)/2/|0].
It follows that

E[Z1] = E[Z13] = [1 + 0(1)] - by /2. (3.D.151)

We then study E[Z>]. Similarly, we first plug in d;; = Ur;)-(j)[(Ed;) (Ed;—d;)+(Ed;) (Ed; —d;)]
and then plug in d; — Ed; = > ki W;;. This allows us to write Z as a weighted sum of
monomials of W. When calculating E[Z5], we only keep monomials of the form W2, W2, .
It follows that

ElZ)=E(2 > Uriyyrtiy) Beliy) Beliy — diy)Winis Un(ig)r(ia) Bdliy) (Bdliy — diy) Wi,
il,i27i37i4(d’i8t)

=E(2 > Ur(iyr(in) Bdi)) Wiy Uriia)r(iy) (Bdliy ) W7

12Z3 7’421
11,12,13,%4 (d’ist)

4
=2 Z Z Z Uk1k2Uk3k4(Edi1)(Edi3)Wz2213W12114
121,1;;2, j=lijeN;
3,k4

Pr, ko Pres 2

1—|—0 E E E 1727 Pt 0i, 010117 Vi by Vieaka ) * Qinia Qi
k1 ko, j=114;EN; Vk1k1vk2kzvk3ksvk4k4HQH%( " 23” Hl e 3) e
k3,kq

—ofl4o(1)] 3 DukeLiskilhaks Uik (Z S 20,6261,

i Ve ViakllOll VM S
k3,k4

=[1+o0(1)]-2|0|*¢V[(PH?*P) o (PH?P)]V ™ g.
Here, the first two lines come from discarding terms with mean zero, the fourth line is
because of (3.D.149))-(3.D.150), and the last line is obtained similarly as in the equation
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above (3.D.151)). Hence,
E[Zs] = by, - [1 4+ o(1)]. (3.D.152)

We then study E[T1]. We plug in 6;; = U, (y,(;)[(Edi)(Ed; — d;) + (Ed;)(Ed; — d;)] to get
Ti=2 3 Uiyt Ur(iayrtis) Urtis)rtia)

11,12,13,%4
(dist)

(Edh)(Ediz - diQ)Q(Edi;’.)Q(Edu - di4)Wi4i1 +rem
= 2171 + rem.
We claim that
[Efrem]| = o([|60]|*).

The calculations here are similar to those in Equation (E.176) of |Jin et al.| (2019), where

T, there (with a slightly different meaning) is decomposed into 277, + 277, + 271 + 2T14.

Here, T3 is analogous to T34, and the remainder term is analogous to 277, + 2717 + 2717..

In |Jin et al. (2019), it was shown that |E[T14]| + [E[T15)| + [E[T1]| = o(]|0]|*); see Equations

(E.179)-(E.181) in Jin et al(2019). We can adapt their proof to show |[E[rem]| = o(||6]|*).

Since the calculations are elementary, we omit the details to save space. We then compute
E[T11]. Since Ed; —d; = =} ,..,; Wji, it follows that

E[Th] =-E Z Z Z Uk ko Ukaks Uk ey (Ediy ) ( Z lels) )2< Z Wi4i6>Wi4i1]
“k1,ko j=11; GNk 1515712 1616704
k3,ka
=-E Z Z Z Ukiks Ukoks Uk Edll ( Z 2225> ) Wi“]
“k1,ko j=11; GNk 15105712
kg,k
3> U ka Uk Ui (Bdsy ) (B, VEIWZ 1 (2 EWE, )
ki,ka j=1i;€EN}; 1515712
k3,ka
=->) Z > Ukika Uk Unsis (Bdi, ) (Bdli )*E[W2, ] - (L4 o(1)] (03,1100 > P
k1kaYkoksYksky i1 i3 iqi1 is 1 koks ks
k1,k2 7=1 ZJGNk ks
k3,ka —_———

Viaka

o) Y PPt PP (5 5 2,2, )

2
i VeVl Mz vy
k3,ka

~[L+o()] - 0]V (PH?P) o (PH?P)]V g,
where we have plugged in (3.D.149)-(3.D.150) in the second last line, and the last line
can be derived similarly as in the equation above (3.D.151). We have proved E[T1;] =
—[1+40o(1)] - b,/2. Then,
E[T1] = 2E[T11] + o(||0]|*) = —by, - [1 + o(1)]. (3.D.153)
We then study E[F]. Similar to the analysis of T3, after plugging in 6;; = U (;)(j)[(Ed;)(Ed; —

226



3.D. Proof of secondary lemmas

d;j) + (Ed;)(Ed; — d;)], we can obtain that

F=rem+2 3 Urtiyr(in)Unlio)rtin Urtiyrtin Ur(iayr(in) X

11,12,13,54 (dist)
(Edil)(Edi2 - diz)Q(Edis)Q(Edu - di4)2(Edi1>a
=rem + 2F1, where [E[rem]| = o(||0]|*).

The proof of [E[rem]| = o(]|0]|?) is similar to the proof of (E.188)-(E.189) in |Jin et al.
(2019)). There they analyzed a quantity F', which bears some similarity to the F' here, and
decomposed F' = 2F, + 12F, + 2F,, where 2F, + 12F} is analogous to rem here. They proved
that |E[F,]| + |E[Fy]| = o(||@]|*). We can mimic their proof to show |E[rem]| = o(]|0||*). By
direct calculations,

4
ER=E[ Y Y Y UklngkaavkmUml<Edil>2<EdiS>2<Edi2—dh)?(Edu—du)?]
k1,k2 j= 1116Nk

ks3,k4
- E Z Z Z Uklk?Uk2k3Uk3k4Uk4k1 (Edu ]Edls < Z 1215)( Z Z4Z6):|
217’62 7= i;€N, 15315712 i61i6Fia
37
Py ky Proks Prsks Pryk, 07 02
=[L+o(1)] ) Z P V; 3V; 4||94\|41 i i (ewllell mesgk )(9i4\|e||1zpk4kﬁgk6)
ki,k2 j= 1Z]€Nk koko " kaky =
k37 \
Vieg ko Viegky

P Pt Pr.r, P
= (o] 3 e (L 5 o)
217,]:2 koko Vkaky 1 j= lzeNk

3,k4

= [L+o(V)]- |6'g'V T (PH?P) o (PH?P)]V 'y,
where in the second line we discard terms with mean zero, in the third line we plug in

(3.D.149)-(3.D.150)), and in the last line we use elementary calculations similar to those in
the equation above (3.D.151)). It follows that E[F}] = [1 + o(1)] - b,/2 and that

E[F] = 2E[F1] + o([|0]|*) = [1 + o(1)] - by. (3.D.154)
We now plug (3.D.151)), (3.D.152), (3.D.153)), and into to get
E[Q;™0 — Q™)) = 4E[24] + 2E[Z,] + 4E[T1] + E[F]
= [1+0(1)] - [4(bn/2) + 2b,, — 4by, + by
=[1+o0(1)] - by.
Since b, = ||0]|*, follows immediately. O
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3.D.4 Proof of Lemma

Similar to the proof of Lemma we use the notation M;jie(X) = X X;pXpeXe. By

(3.C.130),
QY — QO =N [Miyigigss (X7) = Miyigigiy (X7)],
il,ig,ig,u(dist)
« _ (my0) ( ,0) ~(m 0)

where "ij
* A (m,0) .. ( 0)
x5 = 000+ Wiy + 60,

For the rest of the proof, we omit the superscripts (m,0) in (SNI, §,7). There are 4* —3* = 175

post-expansion sums in , each with the form

S = Z Qiyigbigis Cigia Aigiy s where a,b,c,d € {Q, W, 6,7} (3.D.155)
i1,i2,i3,i4(dist)
Here we use S as a generic notation for any post-expansion sum. To show the claim, it
suffices to bound |E[S]| and Var(S) for each post-expansion sum S.

We now Study S. Let N (m.0) N (m.0) /\/ (m.0) he the pseudo-communities defined by
ITy. By (3.C.125) and (| , for i € ./\/ andj € ./\Q(WO),
8ij = ng[(IEdi)(dj - Edj) (Ed))(d; — Ed;)], 75 = —Upe(d; — Ed;)(d; — Edy).
The term fjkg has a complicated correlation with each summand, so we want to “replace” it
with Uye. Introduce a proxy of r;; as
rij = —Uke(d; — Ed;)(d; — Ed;) (3.D.156)
We define a proxy of S as
T= Z Wiyigbigis Cigig digiy s where a,b,c,d € {Q,W,8,r}. (3.D.157)
i1,i2,i3,ia (dist)
We note that T is also a generic notation, and it has a one-to-one correspondence with S. For
example, if § = Z“ ia.isia (dist) Oiyis W121391314rl4117 then T = 2“712723724@18” 52”2W121391314n4“,

if § = zn,zz,zs,m(dwt) OiyioTigiaTigis Wigiy , then T = 211722723#4@&5” iyioTigiaTigis Wigiy - There-
fore, to bound the mean and variance of S, we only need to study 1" and S — T separately.

First, we study the mean and variance of T. Since d; — Ed; = Zj:j# Wij, we can
write 0;; as a linear form of W and r;; as a quadratic form of W. We then plug them
into the expression of 7" and write T as a weighted sum of monomials of W. Take T =
D v sinsissia(dist) Tivie Wizis Wigia Wigi, for example. It can be re-written as (note: 7(i) is the
index of pseudo-community that contains node )

T=- Z UT(h)T(iz)( Z mljl) ( Z Wi2j2>Wi2i3m3i4Wi4i1
i1,i2,i3,i4(dist) JiigiFi JoijaFiz
== Z UT(i1)T(i2)Wi1j1 Wizjz WigigWigis Wigi, -

i1,i2,i3,i4 (dist)

Ju.J2:d170,j2#i2
Then, we can compute the mean and variance of T' directly. We use the same strategy to
analyze each of the 175 post-expansion sums of the form . Similar calculations
were conducted in the proof of Lemma E.11 of Jin et al. (2019). The setting of Lemma E.11
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is a special case where Uy = 1/v for a scalar v. However, their proof does not rely on that
Uye’s are equal to each other. Instead, their proof only requires a universal upper bound on
Uie. In fact, they have proved the following lemma:

Lemma 53. Consider a DCBM model where — and hold. Let W =
A—-Q and A = Zil,ig,i3,i4(dist) [Mi1i2i3i4 ((~2 +W+46+ T) — Miizizia (ﬁ + W+ 6)] , where
Q is a non-stochastic symmetric matriz, 0ij = vy - [(Edy)(Ed; — dj) + (Ed;)(Ed; — d;)],
rij = —uij(d; — Ed;)(dj — Edy), {vij, uij}1<izj<n are non-stochastic scalars, d; is the degree
of node i, and M;,iyigi,(+) is as defined above. Asn — oo, suppose there is a constant C' > 0
and a scalar a, > 0 such that a, < C, ayl|0]] — oo, ’ﬁw‘ < Canbib;, lvi| < C|6|l;", and
luij| < CO|lT" for 1 <i,j < n. Let T be an arbitrary post-expansion sum of A. Then,
E[T]] < Cag|i0]l° + o([10||*) and Var(T) = o(ag[0]I°/10]1§ + [16]I°)-

We apply Lemmafor an =7 and vi; = ui; = Ur(y)r(j)- By Lemmafdll 7 < C, 7|0 — oo,
and [Q;;| < C76;0;. In (3.D.146), we have seen that |Ug| < C|6]]7". The conditions of
Lemma |53 are satisfied. We immediately have: Under the conditions of Lemma [43| (note:
78]} = o)
E[T]] < CT2)0]1° + o(I01") = o(r*|101%),  Var(T) = o(°[I6I°[0]15 + [1]|°), (3.D.158)
and under the conditions of Lemma (3§ (i.e., Q is a zero matrix and 7 = 0),
E[T]] = o(0]"),  Var(T) = o(||0]%). (3.D.159)

Next, we study the variable (S — 7). In (3.D.155) and (3.D.157), if we group the
summands based on pseudo-communities of (i1, 42, i3, 74), then we have
S = > Skikoksk, — and T = > T kokgka
1<ky,k2,k3,ka<m 1<ky k2 ,k3,ka<m
where Si, k,ksk, contains all the summands such that i € N,iln’o) for s = 1,2,3,4. By
straightforward calculations and definitions of (r;;,7;), we have

4
Skikaksks = ﬁﬁszﬁ,fgksﬁﬁgk4l7,fjkl Z Z i i bigis Ciia digiy
s=licen™?
4 \ N _
Tk1k2k’3k4 = Uﬁ(llkg Ulfgkg Ulfgk4Ulek1 Z Z 51'12‘252'21'3&}37;461142-1,
s=1 isG/\/’,i;n’O)
where Zil-j, bij,gij, dij S {ﬁij, Wij, 5”, —(dz — Edl)(dj — Ed])}
Here ¢, € {0,1} is an indicator about whether a;; takes the value of 7;; in S, and (¢, £¢, £q)
are similar. For example, if S = Zil,iz,i&u(dist) 51'11‘2”/2‘2@'3@31'4771‘41'17 then (€g, ly, le,bg) =
(0, 0, O, 1), if §= Zi17i2,i3,i4(dist) 6i1i2:rv'i2i3?igi4Wi4i17 then (fa, fb, gmgd) = (0, 1, 1, 0) For any
post-expansion sum S considered here, 1 < £, + 6, + ¢, + ¢4 < 4. To study the difference

between Sk, koksk, and Tk, koksk,, We introduce an intermediate term
4

E E Aijqio bi2i30i3i4di4i1 .

s=1 iseN™”

1 ) La+Llp+Letly

Rk1k2k3k4 = (W
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In fact, Ry, kyksk, has a similar form as Ty, g,k4k, €xcept that the scalar Uy, in the definition
of r;; (see (3.D.156))) is replaced by 1/||0]|3. We apply Lemma [53| with w;; = 1/[|0]|3. It
yields that, under conditions of Lemma
B[Rk kokska]| = 0(||9||4), Var (R, kokgky) = O(HHHS)v

and under conditions of Lemma,

E[Riikahara)| < CT201° + 01011, Var(Ryparsr,) = o([16]° +7°(160]1%]16]13).
Particularly, since E[X?] = (E[X])? + Var(X) for any variable X, we have
o(|0||*), for setting of Lemma

1617 * B[R} kphsa)
CrH0)1® + o([|6]|* + 7°(|0]1*(|6]|3), for setting of Lemma

o(||0]|*), for setting of Lemma
C||0||®, for setting of Lemma
(3.D.160)
Note that in deriving we have used 7 < C and 790]4(|0(|S < 75|0||* - 02, 110]* <
Clol®.

We now investigate (Sk1k2k’3k4 - Tk1k2k’3k4)' By condition " V IOg(n) < ”9H1/H9”2
Hence, we can take a sequence of x,, such that \/log(n) < x, < ||8]]1/]|0]|?, and define the
event F,:

B, — {yUM ~ O < m for all 1 < k, ¢ < m} (3.D.161)
1

where Cy > 0 is a constant to be decided. To bound the probability of Ef, we recall that
(by definitions in and (3.C.123))

!/ !/
(13d)(17d) (LE[d]) (17E[d])
where 1j is a shorthand notation for 1;;”’0) in . Using Bernstein’s inequality and
mimicking the argument from (E.299)-(E.300) of Jin et al. (2019)), we can easily show that,
there is a constant C; > 0 such that, for any 1 < k,¢ < m,

P(\1;€A1g — 1,E[A]1,] > :cn||9\|1) < 2exp(—Cyz2). (3.D.162)

By probability union bound, with probability 1 — 2m? exp(—Cyz2),

(dmax {[13AL; — LE[AJL[} < |6]1.

Furthermore, 1, d—1,E[d] = >j* (1}, A1,—1,E[A]1,). So, with probability 1—2m? exp(—Ciz2),

max {[1pd — LE[d]|} <m - zu]l6]:.

At the same time, we know that 1,E[A]1, < ||0||? and 1}E[d] < |0||?. We plug the
above results into the expressions of Uy and Uy and can easily find that, with probability
1 — 2m?exp(—C122),

Ure — Upel < C 0|3
1§r2,%)§(m| ke — Ue| < Cozn/]0]]7,

for some constant Cy > 0 (Cy still depends on m, but m is bounded here). We use the same
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Cy to define E,. Then,

P(ES) < 2m2exp(—C1z2) = o(n~ 1), for any fixed L > 0, (3.D.163)
where the last equality is due to z2 > log(n). We aim to use to bound
E[(Skikoksks — Thikoksks) - LEc]. It is easy to see the trivial bound \ﬁkg] <1 and |Uy| < 1.
Also, recall that a;; takes value in {QZJ, Wij, 6ij, —(d; — Ed;)(d; — Ed;)}, and so |a;;| < n?;
we have the same bound for \b”] il |d23\ This gives a trivial bound

(Skykokaks — Thrkakaks)? < 25k1k2k3k4 + 2Tk1k2k3k4 <2(n*-n®)? +2(n* - n®)? = 4n?
Combining it with , we have
E[(Th kokska — Skrkokaks)® - Ipe] < 4n** - 2m? exp(—Cha2) = o(1). (3.D.164)
At the same time, on the event E,,,
| Sk kakaka — Thokokshs|

734, be 774 Lo Le £ 2(La+Lp+Le+Lyg)
‘Uk1k2Uk2k3Uk3k4U/€Zk1 - UkleUk2k3Uk3k4Ukal‘ ’ He”l ’ ¢ ’Rk1k2k3k4’

a 14 c £ 2(0q+Ly+Le+L
< C(’Uk1k2Uk;k3Uk3k4Uka1| | Jpax |Uke/Une — 1‘) [l et V| Ry ko]
< Clo| - | Jnax Ukt — Usel - | Ricyestegha |
< CanGHI '|Rk1k2/€3k4|

0(”9H72) ) |Rk1k2k3k4|7
where the fourth line is because [|0]|7% < |Ure| < C|10]|7? (e.g., see (3.D.146))) and the last
line is because x, < ||0||1/]|0]>. Tt follows that

E[(Thhakoks = Skikakoka)” - 15,] = 01017 - EIRE kypyn,)- (3.D.165)
We combine and and plug in . It follows that
E[(Thkakaks — Skakzkaka)’] = 0([1017*) - B[R pypak,] + 0(1)
o(]|0]|*), under conditions of Lemma [38
0(]|6||®), under conditions of Lemma 43

Since m is bound, we immediately know that

o(||0||*), under conditions of Lemma B8]
o(]|0]|®), under conditions of Lemma A3l

E[(S —T)*] = (3.D.166)

Last, we combine the results on 7" and the results on (S — T'). By (3.D.158)-(3.D.159))

and ,
[E[S]] < |[E[T]] + [E[S —T]||
< [E[T]] + VE[(S = T)?]
o(l611%) + o(l017) = o(l6lI*), for setting of Lemma
o(T4|0]1®) + o(||0||*) = o(74]|0]|®), for setting of Lemma
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3. ESTIMATING THE NUMBER OF COMMUNITIES BY STEPWISE GOODNESS-OF-FIT

Additionally,
Var(S) < 2Var(T') + 2Var(S — 7))
< 2Var(T) + 2E[(S — T)?]

o(||01®) + o(]|0]|*) = o(]|6]®), for setting of Lemma
o(ll0lI* + 7°I01P110113) + o(ll0N®) = o(l161° + 7°(IO]*[16]]S), for setting of Lemma
This gives the desirable claim. O

3.D.5 Proof of Lemma

Similar to the proof of Lemma we use the notation M;jre(X) = X;jX;p X Xe. By
(13.C.130)),
Q%mp) - @;c;(m,()) = Z [Mi1i2i3i4 (X) - Mili2i3i4 (5(:*)]’

i1,i2,i3,i4(d’ist)

~(m,0 m,0 m,0 m,0
X, :g}gj o Wi+ 000 4 70 40,
Xz =000 4 Wiy 4 000 470,

where

We shall omit the superscripts (m,0) in (€2, 6,7, ¢). Let Nl(m’o),NQ(m’o), .. ,/\/}(nm’o) be the

pseudo-communities defined by Ilg. By (3.C.127), €;; = i + Bz’j +7ij, where for i € N,Em’o)
and j € M(m’o),
ajj = d;d;Upy — (Ed;)(Ed;)Ugy,
Bij = (Ure — Uke)(Ed;) (Edy),
Yii = (Une — Upo) [(Bdi) (dj — Bd;j) + (EBd;)(d; — Edy)]. (3.D.167)
Therefore, we can write
Q7(7,m70) - Qv;kl(m,O)
= Z [Miyigigia (Q+ W + 8+ 7+ &+ B +7) = Miyigigis(2+ W + 6+ 7).
il,ig,i3,i4(d’i8t)
There are 74 — 4% = 2145 post-expansion sums. Let S be the generic notation for

any such post-expansion sum. Similarly as in the proof of Lemma we group the
summands according to which pseudo-communities (i1, i9,43,i4) belong to, i.e., we write

S = Zlékl,kz,ksyhﬁm Skikakska, Where

4
Sk1k2k3k4 - Z Z A1y bi2i30i3i4di4i17 where a, b? C, d S {Qa VVa 57 777 aa ﬁ? ?}
J=1 ijEng;n’O)
(3.D.168)
It suffices to study the mean and variance of each Sk, iyksk,-
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Let 7 and 7; be the same as in (3.4.33|) and (3.D.156]). Define

T 9 Xk *
i = (JLJLI [d;d;Ugy — (Ed;)(Ed;)Upel
Bij = TUre(Ed;) (Edy),
Yij = UM[(EdZ)(d] — Edj) -+ (Ed])(di — Edl)] (3D169)

We introduce a proxy of Sk, koksk, aS

4
Szlkgkgl@; = Z Z Qiyig bi2i3 Ci3i4di4i17 where a, b7 ¢ de {57 W, 57 T, &, /87 ’7}'
5= entm)

(3.D.170)
Reviewing the expressions of (Qij, Wij, 8ij, 15, g, Bij, Yij), we know that Shikoksk, Can always
be written as a weighted sum of monomials of W, and so we can calculate the mean and
variance of Sy, , . (the straightforward calculations are still tedious, but later we will
introduce a simple trick to do that). Comparing (3.D.169) with (3.D.167) and r;; with 7,
we observe that, for i € ./\/'k(m’o) and j € /\/é(m’o)7

~ Uk 5o Omax By = Uké_Uk:ZB 7”_Ukze—UMV”
1) Uk,e 17 (] 7_||0”1 17 1y 7_ ’L]? 1) Ukz (N

We plug them into (3.D.168)) to get

Ure\ N7 ( Omax \Na [ Ut — Upe\ N5 (Upe — Upe\ N4
S = (D00 (o Y5 (Uit = O Vs =Dy o
k1kaksky Uk@ 7'”(9”% TUké Uk@ k1kokska ( )

where Ny is the count of {a,b,c,d} in (3.D.168)) taking the value of 7, and (Na,NE, Ny)
are similar. For any post-expansion sum considered here, 1 < Nz + NE + N5 < 4. The

notation M 7 is interpreted in this way: For example, if in (3.D.168]) only a takes the
ké

value of 7, then Ny =1 and (U"i)N~ = g’“:Q if (a, b, ¢) take the value of r, then Ny = 3 and

@ Nz __ Uklkz Ukzks Uk3k4 : :
(UM) = Ui U U In (3.D.171)), S} 1, sk, IS @ random variable whose mean and

variance are relatively easy to calculate. The factor in front of S, , . has a complicated

correlation with the summands in S, . ., but fortunately we can apply a simple bound
on this factor. Consider the event F,, as in (3.D.161)). We have shown in (3.D.163)) that

P(ES) = o(n%) for any fixed L > 0. Therefore, the event ES has a negligible effect on the
mean and variance of S, koksky, 1-€-,

E[Sglkgk;ﬂm Ipg] = o(1).
On the event E,,, we have maxy, o{|Uk¢ — Upe|/Upe} < Coxy/||0]1. It follows that

g < U]\ N3 / Omax \ Na \Uke — Ure|\ N5 U — Upe| \ ¥ g
|Skykakskal max max ———— max ———— 7| v ko Ko

Uke [l TUke Uke
< C( max ) ( n ) 5( n ) S* .
R VAR VAN VAR
. 2] . .
Since z, < H H% and 7|0|| — oo, we immediately have - = O(W), o = O(T”é”2) =
2
(||9||) and & oy < 7_H9H2 = O(”9”) It follows that
(Na+N5+2N5
|Sk‘1k2k3k‘4| =o(1)- HHH atNg+ahs). |S;1k2k3k4|a on the event F,,.
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Combining the above gives
E[S£1k2k3k4] - E[Slz1k2k3k4 Ap,] + E[Slikzk:skz; ) IE%]
—(2Nz+2N;+4N5 «
— o(1) - |6~ BN g (5r )] H (1), (3.D.172)

It remains to bound E[(Sk1k2k3k4)2]. As we mentioned, we can write S, . . as a
weighted sum of monomials of W and calculate its mean and variance directly. However,
given that there are 2145 types of Sy, ;... the calculation is still very tedious. We now
use a simple trick to relate the S}:l koksk, 0O the post-expansion sums we have analyzed in

Lemmas We first bound |a;| in (3.D.169). Since df = E[d;] + Qi,
0L (B U, — Ul + (QuEl) + 9BV} + 29,07 ).

emax

|ovij| <
By basic algebra, |(x1 4 x2)/(y1 + y2) — 21/y1] < |2l /(41 + y2) + |z102l/[(y1 + y2)m]. We
apply it on (3.C.122)-(3.C.123) and note that 1, (2 — E[A])1, = 1} diag(2)1, = O(||0]]?)
and 1, (d* — E[d]) = 1}diag(Q)1,, = O(]|0]|). It yields
|Uge — Uel
1,921, — LE[A]L,| (1,E[A]1,)[(1}d")(1yd") — (1LE[d])(1,E[d])]
(1A (1) (12d*)(12d*)(1'E[d])(l’E[dD

< ClOlIT* - 1pdiag(Q)1n + Cl0)I7° - [(14d")(1pd") — (LLE[d)) (1E[d])]
< Clelit - 1612+ cliel® - el el
< 16117 *bimax,
where in the last line we have used ||0]|? < 6max||@]|1. Combining the above gives
Crll0]h - - -
o < (003110113 - 10117 Orma + (62051611 + 030:110]1) - 101172 + 03626177

< C||0||1 ' 0;0;0max
T Omax 1612
Additionally, in (3.D.169)), we observe that v;; = &;;. Since |Uy| < C||6]~" and E[d;] <
C0;)|0]|1, it is true that |5;;| < C760;6;. We summarize the results as
;| < CT:0;, |Bij| < CT10;:0;, Yij = 0ij. (3.D.173)
It says that 7 is the same as d, and («, ) behave similarly as Q. Consequently, the calculation

of mean and variance of S ;. kaky 110 (3.D.170)) can be carried out by replacing («, 3, 7) with
(§~2, §~2, 9). In other words, we only need to study a sum like

< Cr6:0;.

4
Sk1k2k3k4 Z Z iy 4y bi2i30i3i4 di4i1, where a, b, C, de {ﬁ, VV, 5, 7‘}.
J=ly; eN,g”’O)
Let (Ng, Nw, N5, Ny, No, Ng, N,) be the count of different terms in {a, b, ¢, d} determined by
St kaoksk,» Where these counts sum to 4. In STy, the counts become Né = Ng+ No+ Ng,
Ny = Nw, N§ = N5+ N, and N; = N,.. Luckily, anything like Sp%, , ., has been analyzed
in Lemmas Especially, in light of , the mean and variance contributed by
any post-expansion sum considered here must be dominated by the mean and variance of
some post-expansion sum considered in Lemmas We thus immediately obtain the
claim, without any extra calculation. O
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