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Abstract

Computer vision today excels at recognizing narrow slices of the real world:
our models seem to accurately detect objects like cats, cars, or chairs in
benchmark datasets. However, deploying models requires that they work
in the open world, which includes arbitrary objects in diverse settings.
Current methods struggle on both axes: they recognize only a few classes,
and struggle in settings that differ from the training distribution. A model
that addresses these challenges can serve as a fundamental building block
for downstream applications, including recognizing actions, manipulating
objects, and navigating around obstacles. This thesis presents our work in
building robust models for detecting and tracking any object, especially
ones with few or even no training examples.

We start by exploring how traditional models, which recognize only a small
set of object classes, generalize to the real world. We show that current
methods are extremely sensitive: even subtle changes in the input image or
test distribution can lead to drops in accuracy. Our systematic evaluations
show that models — even ones trained for robustness to adversarial or
synthetic corruptions — often correctly classify one frame of a video, but
fail on a perceptually similar nearby frame. A similar phenomenon applies
even to small distribution shifts arising from natural variation between
datasets. Finally, we present an approach for addressing an extreme form
of generalization to object appearance: detecting fully occluded objects.

Next, we explore generalization to large or infinite vocabularies, which
contain rare and never-before-seen classes. Since current datasets are
largely limited to a small, closed-world set of objects, we first present
a large vocabulary benchmark for measuring progress in detection and
tracking. We show that current evaluations do not suffice for large
vocabulary benchmarks, and present alternative metrics that appropriately
evaluate progress in this setting. Finally, we present approaches which
leverage advances in closed-world recognition to build accurate, generic
detectors and trackers for any object.
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Chapter 1

Introduction

People have the astounding ability to operate in staggeringly diverse environments.
Children, for example, have no trouble playing with new toys, in new houses or
playgrounds, with minimal supervision. Adults routinely drive through new routes
and cities, tracking and planning around other people, cars and a vast variety of
potential obstacles. This thesis focuses on replicating just one aspect of this ability
in computer vision models: reliable perception in the open-world, which includes
arbitrary objects in diverse contexts.

Although computer vision systems have significantly improved in recognition
accuracy on benchmark datasets, they fall short on both of the above axes. They
recognize only a few object classes, and struggle in settings that differ from the
training distribution. Deploying models in real applications requires addressing both
challenges. Robotic agents, for example, must be able to detect any obstacle, even
ones that haven’t been seen before, in varied contexts. This thesis presents our work
on building robust models for detecting and tracking any object, especially ones with
few or even no training examples. We tackle this challenge in three parts:

Generalizing to appearance changes. We start by analyzing how closed-
world models, which are limited to small object vocabularies, generalize to the real
world. Surprisingly, even in this limited setting, models are extremely sensitive: small
changes to the appearance or context of objects can significantly degrade accuracy.
To systematically analyze this, we develop a benchmark for assessing robustness to
natural perturbations collected semi-automatically from videos [201]. We extend this

1



CHAPTER 1. INTRODUCTION

work to evaluate model robustness to a variety of distribution shifts [211], where we
evaluate models on data that varies in data collection procedure, object appearance, or
object context. We evaluate hundreds of models, and find that nearly all models – even
ones trained to be robust to adversarial or synthetic corruptions – lack such natural
robustness, with the exception of models trained on orders of magnitude more data.
We also consider a natural extreme of robustness to object appearance [123]: detection
in the face of complete occlusions, using temporal context and scene structure.

Scaling to large vocabularies. While models and datasets for recognizing a
few classes have matured, large-vocabulary recognition of thousands of classes remains
challenging. Most work, particularly in the video domain, evaluates on only a handful
of classes in datasets with limited scene diversity. In the video domain, we collected a
dataset for Tracking Any Object (TAO) [47], which contains tracking annotations for
hundreds of object classes, spanning over 17,000 objects in nearly 3,000 videos. TAO
allows evaluating multi-object trackers, person-specific trackers, and user-initialized
trackers on a level playing field, and our analysis highlights important avenues for
future improvements in object tracking. In addition to dataset limitations, we found
that even evaluation strategies for small-vocabulary recognition do not generalize well
to large-vocabulary settings [48]. To address this evaluation limitation, which arises
due to challenges in score calibration, we proposed a fix to current evaluations and a
calibration strategy for improving current image-based detectors.

Open-world detectors and trackers. In the limit, vision systems must rec-
ognize objects from an infinitely large vocabulary, detecting even objects that have
never been seen before. Detecting and segmenting individual objects, regardless of
their category, is crucial for applications ranging including action detection, robotic
interaction, or video editing. We present an approach that leverages motion cues and
synthetic training data to recognize such generic objects – even if the objects are miss-
ing from the training data [45]. A key insight here is that advances in category-specific
detectors can be used to improve category-agnostic detection. We leveraged this
insight again to build an approach to convert a category-specific object detector into
a category-agnostic, object-specific detector (i.e. a tracker) efficiently [46], leading to
significant improvements in video object tracking and segmentation.
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Open world detection
(Ch 5)

Tracking in the wild
(Ch 6)

Robustness to small 
perturbations (Ch 1)
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(Ch 2)

Evaluating Large-Vocabulary 
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Part I: Generalizing to
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Figure 1.1: Current vision models tend to be limited to a few classes, and struggle
to generalize to settings differing from training. This thesis tackles these challenges
in three parts: (I) generalizing to appearance changes, like subtle perturbations or
significant occlusions; (II) scaling to large vocabularies of hundreds or thousands of
objects, and (III) detecting any object in the open-world.

1.1 Overview

This thesis is presented in three parts, exploring (I) model generalization to changes
in object appearance or context, (II) large vocabulary recognition of hundreds to
thousands of classes, (III) generic detectors and trackers for any object.

Part I: Generalizing to appearance changes. We start by analyzing how current
models for limited vocabularies generalize to real world settings. Although these
models achieve high accuracy on average in benchmark datasets, they remain sensitive
to subtle changes in the input image or test distribution. Our work shows that
even small changes in the orientation of an object in an image or in the test set
can significantly degrade model accuracy. In the machine learning community,
this sensitivity of models has typically been analyzed on images perturbed by an
adversary [24, 81], or by hand-designed synthetic corruptions [56, 65, 92, 95]. However,
these benchmarks rely on synthetically modifying images, serving at best as proxies
for evaluating generalization to the real world. In this part, we systematically evaluate
and address model robustness to natural perturbations and distribution shifts.

3
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One result of this lack of robustness is a frustrating phenomenon when applying
image recognition systems to videos: models correctly recognize objects in one frame,
but fail to do so in the very next frame. In Chapter 3, we present a new benchmark
for assessing robustness to such temporal perturbations found in videos. In our
evaluation, we compare a model’s accuracy on a single video frame with its worst case
accuracy on nearby frames. Our results show a significant, consistent gap between
these accuracies across various models. In [211], we extended this work to evaluate
robustness to a number of distribution shifts, where the test distribution varies slightly
from the training distribution. Unfortunately, our work shows that nearly all models
– even ones trained to be robust to adversarial or synthetic corruptions – lack such
natural robustness. Fortunately, our work also highlights some important exceptions:
models trained on large, web-scale datasets (e.g . [182]) do confer some amount of
natural robustness. However, further improving the robustness of these models, while
reducing the amount of training data required, remains an ongoing challenge.

While we have so far considered robustness to subtle changes, such as partial
occlusions, we next consider a natural extreme: recognition under complete occlusions.
Object detection in online applications, such as self-driving vehicles, fundamentally
requires object permanence: the ability to reason about even invisible objects. In
Chapter 4, we re-purpose tracking benchmarks and propose new metrics for the task
of detecting invisible objects, focusing on the illustrative case of people. We treat
this as a short-term forecasting task, and incorporate scene structure from depth
estimators to build an accurate, probabilistic approach for detecting invisible people
from arbitrary, monocular videos.

Part II: Scaling to large vocabularies. The previous part focuses on model
generalization to changes in object appearance and context. These models are largely
limited to a narrow range of object classes, such as people or cars. Objects in the
real world, however, span orders of magnitude more classes. To accommodate such
diverse objects, we now turn to recognition of large class vocabularies.

A primary concern in large-vocabulary recognition is the lack of appropriate
benchmarks for training and evaluating models. Most datasets, especially for video-
based tasks, focus on a limited set of classes, such as people, vehicles, or animals. To
address this, we first present TAO, a dataset for Tracking Any Object, in Chapter 5.
TAO contains over 17,000 labeled object tracks, spanning hundreds of classes in
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nearly 3,000 videos. TAO allows evaluating multi-object trackers, person-specific
trackers, and user-initialized (or ‘single-object’) trackers on a level playing field.
Our analysis reveals important shortfalls in current trackers, highlighting avenues
for future research. For example, our experiments show that person tracking does
work fairly well. However, these advances have not generalized to other classes, like
hand-held objects or electronics, which have been overlooked in prior datasets.

Next, we consider appropriate strategies for evaluating large-scale recognition
systems. In Chapter 6, we show that scaling to hundreds or thousands of classes
which vary in recognition difficulty and rarity results in subtle, significant evaluation
issues. Our analysis shows that current evaluations, in fact, are over-fit to the small-
vocabulary regime. Specifically, the standard detection evaluation (Average Precision,
or AP) results in a gameable metric that encourages miscalibration of scores across
categories. We present a modification to address this issue, and a calibration strategy
to improve large-vocabulary detectors.

Part III: Open-world detectors and trackers. Scaling to larger vocabularies
allows recognizing a broad, but finite, array of objects. Many applications require
vision systems to go beyond such fixed vocabularies, so as to detect any object, even
ones which were absent from the training data. Autonomous navigation, for example,
requires detecting never-before-seen obstacles and debris, while efficient video editing
requires segmenting arbitrary objects and parts with minimal user input.

Defining the notion of a generic object can be ambiguous. A key insight in our
work is relying on external cues to delineate objects. For example, Chapter 7 presents
a detector for generic, moving objects, using motion as a cue to group pixels into
objects. Our work shows that diverse, synthetic data suffices for building accurate
motion-based detectors. Combining these detectors with models trained on limited
real image datasets results in a generic model that strongly improves over prior work.

In Chapter 8, we tackle tracking arbitrary objects specified by a user (e.g .,
human annotator) or external signal (e.g ., motion). A key insight in our approach
in Chapter 7 is that advances in category-specific detectors can be used to improve
category-agnostic detection. We leverage this insight again, presenting a strategy for
converting a category-specific object detector into a category-agnostic, object-specific
detector (i.e. a tracker) efficiently. The result is an accurate tracker which improves
over prior work in video object tracking with precise, pixel-level segmentation.
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Chapter 2

Background

Although recent work in computer vision focuses on class-specific object models, there
is a rich history in the literature of building generic recognition models that work
for arbitrary objects. Our work builds upon this literature, incorporating techniques
from recent advances in class-specific detection. In this section, we provide a brief
background of attempts at tackling open-world recognition in the literature.

Background subtraction. Perhaps the simplest approach for open-world de-
tection and tracking is background subtraction. One can model the background
of any scene, and remove this background component to mark generic, foreground
objects. Various strategies exist for background subtraction. Jain et al. [106] simply
computes the difference between successive frames to generate segmentation masks for
moving objects. Wren et al. [240] models the background with a Gaussian distribution
over color values for each pixel, marking as foreground pixels that deviate from the
distribution. Stauffer and Grimson [207] extends this to more general scenes where
even background pixels may have a multi-modal distribution, by representing the
background with a Gaussian mixture model per pixel. While such approaches suffice
for stationary cameras, they can struggle in the presence of camera motion. Addi-
tionally, while modeling the background allows for segmenting foreground objects,
it does not provide instance-level segmentations around individual objects. Such
instance-level segmentations can be useful for downstream applications, which may
require, for example, forecasting the trajectory of individual objects.

Motion segmentation. Motion segmentation addresses some of the challenges
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faced by background subtraction approaches. Rather than modeling the background
of a scene captured by a static camera, motion segmentation aims to group pixels
that move together. This allows for instance-level segmentation of arbitrary objects,
even in the presence of camera motion. An early work in this direction from Shi
and Malik [202] proposed treating this task as a spatio-temporal grouping problem,
a philosophy espoused by a number of more recent approaches, including Brox and
Malik [30], Grundmann et al. [83], Keuper et al. [119], as well as Ochs et al. [165].
In summary, these approaches track each pixel in a video individually (using optical
flow estimators), encode the motion information of a pixel in a compact descriptor,
and then obtain an instance segmentation by clustering the pixels based on motion
similarity. These approaches differ in the strategy used for tracking, encoding, and
clustering pixels. Unfortunately, while these approaches show promising results on
small-scale benchmarks, they struggle in the wild (see Chapter 7), as they rely heavily
on hand-designed heuristics for each stage. More recently, there has been an attempt
to incorporate convolutional neural networks which can learn from large training
datasets to improve the detection and segmentation of moving objects. Fragkiadaki
et al. [72], for example, train a CNN to detect (but not segment) moving objects, and
combines these detections with clustered pixel trajectories to derive segmentations.
Bideau et al. [23] proposed to combine a heuristic-based motion segmentation method
(from Bideau and Learned-Miller [22], Narayana et al. [163]) with a CNN trained for
semantic segmentation for the task of moving object segmentation. Xie et al. [246]
introduced a deep learning approach for motion segmentation that segments and
tracks moving objects using a recurrent neural network. In Chapter 7, we build upon
this line of work, and show how to re-purpose advances in class-specific detection
to build a simple, learned approach for segmenting moving objects. Our work is
perhaps most similar to that of Fragkiadaki et al. [72], but differs in that we predict
segmentation masks per frame and track them over time, while [72] predicts bounding
boxes and clusters pixel trajectories to create segmentations.

Object proposal generation. Methods for generating object proposals similarly
aim to localize generic objects, independent of their class. Since these approaches
operate on static images, they focus on appearance cues (color, boundaries, etc.) and
priors. Russell et al. [195] discovers objects in collections of images, by generating
segmentations in individual images and clustering these segmentations across the
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dataset. More common are methods for generating class-agnostic proposals from
single images, either in the form of a bounding box (as in Alexe et al. [4]) or a
segmentation mask (as in Carreira and Sminchisescu [34], Endres and Hoiem [55]).
These methods relied largely on bottom-up cues for localizing objects, and do not take
advantage of appearance priors that can be learned from object detection datasets.
More recent approaches leverage deep neural networks to learn such appearance priors,
either as a standalone proposal generator (Kuo et al. [129], Pinheiro et al. [177]),
as a part of an image-level segmentation method (Pham et al. [176]), or as part of
a class-specific detection system (Erhan et al. [57], Ren et al. [190]). For a more
thorough analysis of proposal generation methods, we refer the reader to Hosang
et al. [94]. In Chapter 7, we leverage ideas from these top-down proposal generation
methods to build an accurate motion-based, generic object segmentation system.
Importantly, Chapter 7 focuses on segmenting moving objects, and can thus leverage
synthetic data to detect generic objects based on their motion.

Open-world recognition. The term open-world was introduced, to the best
of our knowledge, in Bendale and Boult [13] for the classification setting. This
thesis focuses on the detection and tracking counterparts, which have also been
explored concurrently in Joseph et al. [113] (detection) and Liu et al. [146], Wang
et al. [229] (tracking). A related line of work aims to approximate open-world
recognition by scaling up closed-world vocabularies. Redmon and Farhadi [187],
for example, object detectors to thousands of classes by leveraging weak, image-
level supervision. Hu et al. [96] similarly extends instance segmentation methods
to larger vocabularies via bounding box supervision. Gupta et al. [88] relabels the
popular MS COCO [142] dataset with over a thousand classes. Farhadi et al. [64]
propose to use an attribute-based vocabulary, rather than a class-based one, which
may allow recognizing properties of never-before-seen objects. While scaling or
modifying vocabularies does not address the open-world task (as there may always
be some objects outside any finite vocabulary), it may suffice for many applications.
Chapter 5 follows this philosophy, introducing a large-scale benchmark for tracking
a large vocabulary of closed-world and open-world classes. Chapter 6 highlights
challenges and provides solutions for scaling approaches and evaluations to such large
vocabularies.

User-initialized tracking. In the video domain, user-initialized tracking (which
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includes tasks such as single-object tracking and video object segmentation) has
long tackled the task of tracking generic objects. This resolves the issue of finding
generic objects, by relying on user input. Initially, these approaches relied on simple
appearance and motion models, such as appearance features in the KLT tracker
(from Lucas and Kanade [149], Shi and Tomasi [203], Tomasi and Kanade [216]) or
smoothness assumptions on object motion, as in Rangarajan and Shah [184], Sethi
and Jain [199]. We refer the reader to the excellent survey from Yilmaz et al. [256]
for a more detailed review of varying approaches for generic user-initialized tracking,
including such generic appearance and motion models, state estimation techniques,
and varying object representations. While these approaches relied on generic models
for any object, subsequent work showed that tailoring appearance and motion models
to specific classes can lead to improved tracking. The introduction of improved
object detectors (e.g ., the Dalal-Triggs detector [42] and detectors based on pictorial
models, particularly the Deformable Parts Model from Felzenszwalb et al. [68]) led
to an increased interest in class-specific appearance modeling. Leibe et al. [136] is
an early work in this direction, leveraging strong, single frame object detectors as a
fundamental input for tracking pedestrians and vehicles in 3D from stereo cameras.
Ramanan et al. [183] similarly relies on an accurate, generic person detector (based
on pictorial structures [67, 69]) and adapting it to specific people in the (monocular)
video. Andriluka et al. [6] continues in this direction, using more accurate detectors
that allow for tracking in more diverse scenes. To our knowledge, Andriluka et al. [6]
popularized the term ‘tracking-by-detection,’ by which this series of approaches is
known today. Similar efforts have tailored motion models for specific classes, most
commonly for people. Agarwal and Triggs [2] and Pavlovic et al. [171] represent human
poses with a fixed, parametric model containing chains of limb segments, and learn
dynamical models of motion for tracking from monocular videos. Class-specific models
can be more accurate than their generic counterparts, as they can take advantage of
appearance priors learned from labeled datasets and learned or hand-coded motion
constraints. Recent effort has aimed to leverage advances in class-specific modeling
to improve generic tracking, particularly for appearance models. Bertinetto et al.
[18] and Held et al. [91] show that convolutional networks, traditionally used for
classification and class-specific detection, can be trained for generic object tracking.
Our work extends this line of work, and shows strategies for evaluating (Chapter 5)
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and improving (Chapter 7, Chapter 8) such generic appearance models. Chapter 8 is
particularly inspired by Bertinetto et al. [18] and Held et al. [91], but re-purposes
an existing object detection model (Mask R-CNN) to build a unified approach for
detecting, segmenting and tracking objects. Recent work, including this thesis, focuses
primarily on improving generic appearance models, but one could similarly build more
accurate, generic motion models. We hope that our new dataset (Chapter 5) will also
encourage improved generic motion modeling, which can reason about trajectories of
common objects (such as people or cars) as well as objects that have been ignored in
the past (hand-held objects or accessories).
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Chapter 3

Model robustness in the wild

3.1 Introduction

Applying state-of-the-art image recognition systems to videos reveals a troubling
phenomenon: models correctly recognize objects in one frame, but fail to do so in
the very next frame (Figure 3.1). In practice, this flickering of predictions is treated
as an unfortunate but unavoidable property of image-based models. This issue can
be mitigated in offline settings by smoothing predictions over time. However, online
smoothing isn’t nearly as effective and incurs a delay, resulting in catastrophic mistakes
in downstream applications: e.g ., flickering object classifications have reportedly led
to fatal autonomous vehicle collisions [25].

At its root, prediction flicker is a manifestation of a broader issue: current models
lack robustness to small input perturbations. In the machine learning community,
model robustness has typically been analyzed on images perturbed by an adversary [24,
81], or by hand-designed strategies, such as rotations or blurs [56, 65, 92, 95]. However,
these benchmarks rely on synthetically modifying the input image, serving at best
as proxies for evaluating robustness to natural perturbations, which are common in
videos.

In this work, we systematically analyze the prevalence of flicker across vision
models. Taking inspiration from the robustness literature, we evaluate models on
perceptually similar images, which we sample from nearby video frames. However,
nearby frames can still exhibit drastic changes (e.g ., significant occlusions), which
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Figure 3.1: Examples of natural perturbations from nearby video frames and resulting
classifier predictions from a ResNet-152 model fine-tuned on ImageNet-Vid. While
the images appear almost identical to the human eye, the classifier confidence changes
substantially.

may cause even robust models to fail. We discard such frame pairs by employing
human expert labelers to evaluate model robustness only on perceptually similar
images, unlike prior work [85]. As a cornerstone of our investigation, we introduce two
test sets for evaluating model robustness: ImageNet-Vid-Robust and YTBB-Robust,
carefully curated from the ImageNet-Vid and Youtube-BB datasets [185, 194]. To
the best of our knowledge these are the first datasets of their kind, containing tens
of thousands of images that are human reviewed and grouped into thousands of
perceptually similar sets. In total, our datasets contain 3,139 sets of temporally
adjacent and visually similar images (57,897 images total).

We use these datasets to measure the robustness of current models to small,
naturally occurring perturbations. Our testbed contains over 47 different models,
varying model types (CNNs, transformers), architectures (e.g ., AlexNet, ResNet)
and training methods (e.g ., adversarial training, augmentation). To systematically
characterize flicker, we also introduce a stringent robustness metric.

Our experiments show that all models in our testbed degrade significantly in
the presence of small, natural perturbations in video frames. Under our metric, we
find such perturbations in ImageNet-Vid-Robust and YTBB-Robust induce median
accuracy drops of 16% and 10% respectively for classification, and a median 14 point
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AP drop for detection1. Even for the best-performing classification models trained
on public datasets, we observe an accuracy drop of 14% for ImageNet-Vid-Robust
and 8% for YTBB-Robust. Recently introduced, contrastive models trained on weakly
supervised web images [182] can reduce this gap, but require over 400 million images,
and still exhibit noticeable gaps of 6.1% and 6.7%, respectively

Our results show that robustness to natural perturbations in videos is problematic
for a wide variety of models. Practical deployment of models, especially in safety-
critical environments like autonomous driving, requires predictions that are not only
accurate, but also robust over time. Our analysis indicates that ensuring reliable
predictions on every frame of a video is an important direction for future work.

3.2 Background

Adversarial examples. While various forms of adversarial examples have been
studied, the majority of research focuses on `p robustness [24, 81, 261]. However, it is
unclear whether adversarial examples pose a problem for robustness outside of a truly
worst case context. It is an open question whether perfect robustness against a `p
adversary will induce robustness to realistic image distortions such as those studied
in this paper. Recent work has proposed less adversarial image modifications such
as small rotations & translations [8, 56, 65, 115], hue and color changes [95], image
stylization [77] and synthetic image corruptions such as Gaussian blur and JPEG
compression [76, 92]. Even though the above examples are more realistic than the `p
model, they still synthetically modify the input images to generate perturbed versions.
In contrast, our work performs no synthetic modification and instead uses unmodified
video frames.

Studying robustness in videos. In recent work, Gu et al. [85] exploit the
temporal structure in videos to study robustness. However, their experiments suggest
a substantially smaller drop in accuracy. The primary reason for this is a less stringent
metric used in [85]. By contrast, our PM-k metric is inspired by the “worst-of-k”
metric used in prior work [56], highlighting the sensitivity of models to natural
perturbations. In the appendix, we study the differences between the two metrics in

1We only evaluated detection on ImageNet-Vid-Robust as bounding-box labels in Youtube-BB
are not temporally dense enough for our evaluation.
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Anchor frame Discarded frame Anchor frame Anchor frame Discarded frameDiscarded frame

Figure 3.2: Temporally adjacent frames may not be visually similar. We show three
randomly sampled frame pairs where the nearby frame was marked as “dissimilar” to
the anchor frame during human review and then discarded from our dataset.

more detail. Furthermore, the lack of human review and the high label error-rate we
discovered in Youtube-BB (Table 3.1) presents a potentially troubling confounding
factor that we resolve in our work.

Distribution shift. Small, benign changes in the test distribution are often
referred to as distribution shift. Recht et al. [186] explore this phenomenon by
constructing new test sets for CIFAR-10 and ImageNet and observe substantial
performance drops for a large suite of models on the newly constructed test sets.
Similar to our Figure 3.3, the relationship between their original and new test set
accuracies is also approximately linear. However, the images in their test set bear
little visual similarity to images in the original test set, while all of our failure cases are
on perceptually similar images. In a similar vein of study, [217] studies distribution
shift across different computer vision data sets such as Caltech-101, PASCAL, and
ImageNet.

Temporal consistency in computer vision. Authors of Jin et al. [112] ex-
plicitly identify flickering failures and use a technique reminiscent of adversarially
robust training to improve image-based models. A similar line of work focuses on
improving object detection in videos as objects become occluded or move quickly
[66, 117, 245, 272]. The focus in this work has generally been on improving object
detection when objects transform in a way that makes recognition difficult from a
single frame, such as fast motion or occlusion. In this work, we document a broader
set of failure cases for image-based classifiers and detectors and show that failures
occur when the neighboring frames are imperceptibly different.
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Table 3.1: Dataset statistics of ImageNet-Vid-Robust and YTBB-Robust. For
YTBB-Robust, we updated the labels from for 41% (834) of the accepted anchors due
to incomplete labels in Youtube-BB.

ImageNet-Vid
Robust

YTBB
Robust

A
nc
ho

r
fr
am

es Reviewed 1,314 2,467
Accepted 1,109 (84%) 2,030 (82%)

Labels updated - 834 (41%)

Fr
am

e
pa

ir
s Reviewed 26,029 45,631

Accepted 21,070 (81%) 36,827 (81%)

3.3 Evaluating temporal robustness

ImageNet-Vid-Robust and YTBB-Robust are sourced from videos in the ImageNet-
Vid and Youtube-BB datasets [185, 194]. All but one 2 of the object classes in
ImageNet-Vid and Youtube-BB are from the WordNet hierarchy [160] and direct ances-
tors of ILSVRC-2012 classes. Using the WordNet hierarchy, we construct a canonical
mapping from ILSVRC-2012 classes to ImageNet-Vid and Youtube-BB classes, which
allows us to evaluate off-the-shelf ILSVRC-2012 models on ImageNet-Vid-Robust and
YTBB-Robust. We provide more background on the source datasets in the appendix.

3.3.1 Dataset construction

Next, we describe how we extracted sets of naturally perturbed frames from ImageNet-
Vid and Youtube-BB to create ImageNet-Vid-Robust and YTBB-Robust. A straight-
forward approach would be to select a set of anchor frames and use temporally
adjacent frames in the video with the assumption that such frames contain only small
perturbations from the anchor. However, as Figure 3.2 illustrates, this assumption is
frequently violated, especially due to fast camera or object motion.

Instead, we first collect preliminary datasets of natural perturbations following the
same approach, and then manually review each of the frame sets. For each video, we
randomly sample an anchor frame and take k = 10 frames before and after the anchor

2the class “skateboard" in Youtube-BB is not present in ILSVRC-2012
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frame as candidate perturbation images3. This results in two datasets containing one
anchor frame each from 3,139 videos, with approximately 20 candidate perturbation
per anchor frame4.

Next, we curate the dataset with the help of four expert human annotators. The
goal of the curation step is to ensure that each anchor frame and its nearby frames
are correctly labeled with the same ground truth class, and that the anchor frame
and the nearby frames are visually similar.

Denser labels for Youtube-BB. As Youtube-BB contains only a single category
label per frame at 1 frame per second, annotators first inspected each anchor frame
individually and added any missing labels. In total, annotators corrected the labels
for 834 frames, adding an average of 0.5 labels per anchor frame. These labels are
then propagated to nearby, unlabeled frames at the native frame rate and verified in
the next step. ImageNet-Vid densely labels all classes per frame, so we skipped this
step for this dataset.

Frame pairs review. Next, for each pair of anchor and nearby frames, a human
annotates (i) whether the pair is correctly labeled in the dataset, and (ii) whether
the pair is similar. We took several steps to mitigate the subjectivity of this task
and ensure high annotation quality. First, we trained reviewers to mark frames as
dissimilar if the scene undergoes any of the following transformations: significant
motion, significant background change, or significant blur change. We asked reviewers
to mark each dissimilar frame with one of these transformations, or “other”, and to
mark a pair of images as dissimilar if a distinctive feature of the object is only visible
in one of the two frames (such as the face of a dog). If an annotator was unsure
about the correct label, she could mark the pair as “unsure”. Second, we present only
a single pair of frames at a time to reviewers because presenting videos or groups of
frames could cause them to miss large changes due to the phenomenon of change
blindness [170].

Verification. In the previous stage, all annotators were given identical labeling
instructions and individually reviewed a total of 71,660 image pairs. To increase
consistency in annotation, annotators jointly reviewed all frames marked as dissimilar,
incorrectly labeled, or “unsure”. A frame was only considered similar to its anchor if

3For YTBB-Robust we use a subset of the anchor frames used by Gu et al. [85].
4Anchor frames near the start or end of the video may have less than 20 candidate frames.
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a strict majority of the annotators marked the pair as such.

After the reviewing was complete, we discarded all anchor frames and candidate
perturbations that annotators marked as dissimilar or incorrectly labeled. The final
datasets contain a combined total of 3,139 anchor frames with a median of 20 similar
frames each.

3.3.2 The pm-k evaluation metric

Given the datasets introduced above, we propose a metric to measure a model’s
robustness to natural perturbations. In particular, let A = {a1, ..., an} be the set of
valid anchor frames in our dataset. Let Y = {y1, ..., yn} be the set of labels for A. We
let Nk(ai) be the set of frames marked as similar to anchor frame ai. In our setting,
Nk is a subset of the 2k temporally adjacent frames (plus/minus k frames from the
anchor).

Classification. The standard classification accuracy on the anchor frame is accorig =

1 − 1
N

∑N
i=1 L0/1(f(ai), yi), where L0/1 is the standard 0-1 loss function. We define

the pm-k analog of accuracy as

accpmk = 1− 1

N

N∑
i=1

max
b∈Nk(ai)

L0/1(f(b), yi) , (3.1)

which corresponds to picking the worst frame from each set Nk(ai) before computing
accuracy. We note the similarity of the pm-k metric to standard `p-robustness. If we
let Nk(ai) be the set of all images within an `p ball of radius ε around ai, then the
notions of robustness are identical.

Detection. The standard metric for detection is mean average precision (mAP) of
the predictions at a fixed intersection-over-union (IoU) threshold [142]. We define
the pm-k metric analogous to that for classification: We replace each anchor frame
with the nearest frame that minimizes the average precision (AP, averaged over recall
thresholds) of the predictions, and compute pm-k as the mAP on these worst-case
neighboring frames.
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3.4 Main results
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Figure 3.3: Model accuracy on original vs. perturbed images. Each data point
corresponds to one model in our testbed (shown with 95% Clopper-Pearson confidence
intervals). If models were robust to perturbations, we would expect them to fall
on the dashed line (y = x). Instead, we find they all lie significantly below this
ideal line, consistently exhibiting a significant accuracy drop to perturbed frames.
Each perturbed frame was taken from a ten frame neighborhood (approximately 0.3
seconds) of the original frame, and reviewed by experts to confirm visual similarity
to the original frame.

We evaluate a testbed of 47 classification models and three detection models
on ImageNet-Vid-Robust and YTBB-Robust. We first discuss the various types
of classification models evaluated with the pm-k classification metric. Second, we
evaluate the performance of detection models on ImageNet-Vid-Robust using use
the bounding box annotations inherited from ImageNet-Vid and using a variant of
the pm-k metric for detection. We then analyze the errors made on the detection
adversarial examples to isolate the effects of localization errors vs. classification errors.
Finally, we analyze the impact of dataset review, video compression, and video frame
rate on the accuracy drop.
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Figure 3.4: Naturally perturbed examples for detection. Red boxes indicate false posi-
tives; green boxes indicate true positives; white boxes are ground truth. Classification
errors are common failures, such as the fox on the left, which is classified correctly in
the anchor frame, and misclassified as a sheep in a nearby frame. However, detection
models also have localization errors, where the object of interest is not correctly
localized in addition to being misclassified, such as the airplane (middle) and the
motorcycle (right). All visualizations show predictions with confidence over 0.5.

3.4.1 Classification

The classification robustness metric is accpmk defined in Equation (3.1). For frames
with multiple labels, we count a prediction as correct if the model predicts any of the
correct classes for a frame. In Figure 3.3, we plot the benign accuracy, accorig, versus
the robust accuracy, accpmk, for all classification models in our test bed and find a
consistent drop from accorig to accpmk. Further, we note that the relationship between
accorig and accpmk is approximately linear, indicating that while improvements in
the benign accuracy do result in improvements in the worst-case accuracy, they do
not suffice to resolve the accuracy drop due to natural perturbations. We provide
implementation details and hyperparameters for all models in the supplementary.

Our test bed consists of six model types with increasing levels of supervision. We
present results for representative models from each model type in Section 3.4.1.

ILSVRC Trained The WordNet hierarchy enables us to repurpose models trained
for the 1,000 class ILSVRC-2012 dataset on ImageNet-Vid-Robust and YTBB-Robust
We evaluate a wide array of ILSVRC-2012 models (available from [31]) against our
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Table 3.2: Accuracies of six model types and the best performing model (shown
with 95% Clopper-Pearson confidence intervals). ∆ denotes accuracy drop between
evaluation on anchor frame (accorig) and worst frame in similarity set (accpmk). The
model architecture is ResNet-50 unless noted otherwise. ‘FT’ denotes ‘fine-tuning.’
See Section 3.4.1 for details.

Model Type Accuracy
Original

Accuracy
Perturbed ∆

ImageNet-Vid-Robust
Trained on ILSVRC 67.5 [64.7, 70.3] 52.5 [49.5, 55.5] 15.0
+ Noise Augmentation 68.8 [66.0, 71.5] 53.2 [50.2, 56.2] 15.6
+ `∞ robustness (ResNext-101) 54.3 [51.3, 57.2] 40.8 [39.0, 43.7] 12.4
+ FT on ImageNet-Vid 80.8 [78.3, 83.1] 65.7 [62.9, 68.5] 15.1
+ FT PM-k loss on ImageNet-Vid 36.2 [33.3, 39.1] 29.8 [27.1, 32.5] 6.4
+ FT on ImageNet-Vid (ResNet-152) 84.8 [82.5, 86.8] 70.2 [67.4, 72.8] 14.6
+ FT on ImageNet-Vid-Det 77.6 [75.1, 80.0] 65.4 [62.5, 68.1] 12.3
CLIP Zero-Shot 95.3 [93.8, 96.4] 89.2 [87.2, 91.0] 6.1

YTBB-Robust
Trained on ILSVRC 57.0 [54.9, 59.2] 43.8 [41.7, 46.0] 13.2
+ Noise Augmentation 62.3 [60.2, 64.4] 45.7 [43.5, 47.9] 16.6
+ `∞ robustness (ResNext-101) 53.6 [51.4, 55.8] 43.2 [41.0, 45.3] 10.4
+ FT on Youtube-BB 91.4 [90.1, 92.6] 82.0 [80.3, 83.7] 9.4
+ FT on Youtube-BB (ResNet-152) 92.9 [91.6, 93.9] 84.7 [83.0, 86.2] 8.2
CLIP Zero-Shot 95.2 [93.9, 95.8] 88.5 [87.0, 89.8] 6.7
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Table 3.3: Detection and localization mAP for Faster R-CNN and R-FCN models.
Both detection and localization suffer from significant mAP drops due to perturbations.
(R-FCN was trained on ILSVRC Det and VID 2015, and evaluated on the 2015 subset
of ILSVRC-VID 2017, indicated by *.)

Task Model mAP
Original

mAP
Perturbed

mAP
∆

FRCNN, ResNet 50 62.8 48.8 14.0
FRCNN, ResNet 101 63.1 50.6 12.5Detection
R-FCN, ResNet 101 [245]* 79.4* 63.7* 15.7*
FRCNN, ResNet 50 76.6 64.2 12.4
FRCNN, ResNet 101 77.8 66.3 11.5Localization
R-FCN, ResNet 101* 80.9* 70.3* 10.6*

Table 3.4: Impact of human review on ImageNet-Vid-Robust and YTBB-Robust on
original and perturbed accuracy, using ResNet-152 fine-tuned on ImageNet-Vid and
Youtube-BB, respectively.

Accuracy
Reviewed Original Perturbed ∆

ImageNet-Vid-Robust 7 80.3 64.1 16.2
3 84.8 70.2 14.4

YTBB-Robust 7 88.1 78.1 10.0
3 92.9 84.7 8.9

natural perturbations. Since these datasets present a substantial distribution shift
from the original ILSVRC-2012 validation set, we expect the benign accuracy accorig to
be lower than the comparable accuracy on the ILSVRC-2012 validation set. However,
our main interest here is in the difference between the original and perturbed accuracies
accorig - accpmk. A small drop in accuracy would indicate that the model is robust
to small changes that occur naturally in videos. Instead, we find significant median
drops of 15.0% and 13.2% in accuracy on our two datasets, indicating sensitivity to
such changes.

Noise augmentation One hypothesis for the accuracy drop from original to per-
turbed accuracy is that subtle artifacts and corruptions introduced by video com-
pression schemes could degrade performance when evaluating on these corrupted
frames. The worst-case nature of the pm-k metric could then be focusing on these
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corrupted frames. One model for these corruptions are the perturbations introduced
in [92]. To test this hypothesis, we evaluate models augmented with a subset of the
perturbations (exactly one of: Gaussian noise, Gaussian blur, shot noise, contrast
change, impulse noise, or JPEG compression). We found that these augmentation
schemes did not improve robustness against our perturbations substantially, and still
result in a median accuracy drop of 15.6% and 16.6% on the two datasets.

`∞-robustness. We evaluate the model from [247], which currently performs best
against `∞-attacks on ImageNet. We find that this model has a smaller accuracy
drop than the two aforementioned model types on both datasets. However, the robust
model achieves substantially lower original and perturbed accuracy than either of
the two model types above, and the robustness gain is modest (3% compared to
models of similar benign accuracy). In section 4.3 of Taori et al. [211], the authors
further analyze the performance of `∞-robust models on ImageNet-Vid-Robust and
YTBB-Robust.

Fine-tuning on video frames. To adapt to the new class vocabulary and the
video domain, we fine-tune several network architectures on the ImageNet-Vid and
Youtube-BB training sets. For Youtube-BB, we train on the anchor frames used for
training in [85], and for ImageNet-Vid we use all frames in the training set. The
resulting models significantly improve in accuracy over their ILSVRC pre-trained
counterparts (e.g., 13% on ImageNet-Vid-Robust and 34% on YTBB-Robust for
ResNet-50). This improvement in accuracy results in a modest improvement in
robustness for YTBB-Robust, but still suffers from a substantial 9.4% drop. On
ImageNet-Vid-Robust, there is almost no change in the drop from 15.0% to 15.1%.

Fine-tuning with a robust loss. Training on videos optimizes for the average
accuracy on video frames. However, our goal at test-time is to improve the worst-case,
PM-k accuracy. We adopt a strategy inspired by work in adversarial robustness [153],
which uses the PM-k metric as the training loss. Specifically, for each frame xt, let the
standard training loss be for a model f be L(xt, yt; f). We instead train the model
using

L̂(f(xt), yt) = max
x̂∈Nk(xt)

L(f(x̂), yt),
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Figure 3.5: We plot how often each frame offset resulted in error, across all models,
before and after review. Frames further away more frequently cause errors. Our
review reduces errors by removing dissimilar frames, especially ones further away.

where Nk(xt) contains all images within k frames of xt with labels that match yt.
Unfortunately, this results in a drastic drop in both the original and perturbed
accuracies by 31.3% and 22.7% respectively. However, the strategy does reduce the
robustness gap from 15.1% to 6.4%, suggesting this loss may be a promising avenue
for future improvements in robustness. We provide implementation details and further
analysis of this model in the supplementary.

Fine-tuning for detection on video frames. We further analyze whether ad-
ditional supervision in the form of bounding box annotations improves robustness.
To this end, we train the Faster R-CNN detection model [190] with a ResNet-50
backbone on ImageNet-Vid. Following standard practice, the detection backbone is
pre-trained on ILSVRC-2012. To evaluate this detector for classification, we assign
the class with the most confident bounding box as label to the image. We find that
this transformation reduces accuracy compared to the model trained for classification
(77.6% vs. 80.8%). While there is a slight reduction in the accuracy drop caused by
natural perturbations, the reduction is well within the error bars for this test set.

Contrastive Language-Image Pre-training (CLIP) Recent advancements in
large scale contrastive learning has leveraged supervision from text to achieve high
zero shot performance on down stream tasks [110, 182]. We evaluate the performance
of the largest CLIP model5 trained on 400 million image, text pairs from the internet.

5The underlying model was a large visual transformer evaluated on 336 x 336 images (ViT-
L/14@336px)
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We evaluate two versions of this model, a “zero-shot” variant trained solely on 400
million images, text pairs and a “linear-probe” variant where the last linear layer was
fine-tuned on ILSVRC-2012. We find that the zero shot variant while still suffering
from a 6% accuracy drop is significantly more robust and accurate than any of the
other models in our test bed. We note that due to the sheer amount of training data
and the size of the model, these models are incredibly expensive to train and are out
of reach to the computational resources of most researchers. Thus we leave further
investigation of the robustness of these models to future work.

3.4.2 Detection

We further study the impact of natural perturbations on object detection. Specifically,
we report results for two related tasks: object localization and detection. Object
detection is the standard computer vision task of correctly classifying an object
and finding the coordinates of a tight bounding box containing the object. “Object
localization”, meanwhile, refers to only the subtask of finding the bounding box,
without attempting to correctly classify the object.

We provide our results on ImageNet-Vid-Robust, which contains dense bounding
box labels unlike Youtube-BB, which only labels boxes at 1 frame per second. We
use the popular Faster R-CNN [190] and R-FCN [41, 245] architectures for object
detection and localization and report results in Table 3.3. For the R-FCN architecture,
we use the model from [245]6. We first note the significant drop in mAP of 12 to 15
points for object detection due to perturbed frames for both the Faster R-CNN and
R-FCN architectures. Next, we show that localization is indeed easier than detection,
as the mAP is higher for localization than for detection (e.g., 76.6 vs 62.8 for Faster
R-CNN with a ResNet-50 backbone). Perhaps surprisingly, however, switching to the
localization task does not improve the drop between original and perturbed frames,
indicating that natural perturbations induce both classification and localization errors.
We show examples of detection failures in Figure 3.4.

6This model was originally trained on the 2015 subset of ImageNet-Vid. We evaluated this
model on the 2015 validation set because the method requires access to pre-computed bounding box
proposals which are available only for the 2015 subset of ImageNet-Vid.
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3.4.3 Impact of Dataset Review

We analyze the impact of our human review, described in Section 3.3.1, on the
classifiers in our testbed. First, we compare the original and perturbed accuracies
of a representative classifier (ResNet-152 finetuned) on frames with and without
review in Section 3.4.1. We find that before review, the gap between the two
accuracies is 16.2 and 10.0 on ImageNet-Vid-Robust and YTBB-Robust respectively.
Our review improves the original accuracy by 3 to 4% (by discarding mislabeled or
blurry anchor frames), and improves perturbed accuracy by 5 to 6% (by discarding
dissimilar frame pairs). As a result, our review reduces the accuracy drop by 1.8% on
ImageNet-Vid-Robust and 1.1% on YTBB-Robust. These results indicate that the
changes in model predictions are indeed due to a lack of robustness, rather than due
to significant differences between adjacent frames.

To further analyze the impact of our review on model errors, we plot how frequently
each offset distance from the anchor frame results in a model error across all model
types in Figure 3.5. Larger offsets indicate pairs of frames further apart in time. For
both datasets, we find that such larger offsets lead to more frequent model errors.
Our review reduces the fraction of errors across offsets, especially for large offsets,
which are more likely to display large changes from the anchor frame.

3.4.4 Video compression analysis

One concern with analyzing performance on video frames is the impact of video com-
pression on model robustness. In particular, the ‘mp4’ videos in ImageNet-Vid-Robust
contain 3 frame types: ‘i-’, ‘p-’, and ‘b-’ frames. ‘p-frames’ are compressed by ref-
erencing pixel content from previous frames, while ‘b-frames’ are compressed via
references to previous and future frames. ‘i-frames’ are stored without references to
other frames.

We compute the original and perturbed accuracies, as well as the accuracy drop
for a subset without each frame type in Table 3.5. While there are modest differences
in accuracy due to compression, our analysis suggests that the sensitivity of models is
not significantly due to the differences in quality of frames due to video compression.
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Table 3.5: Analyzing results based on compressed frame type (See Section 3.4.4).

Accuracy
Original Perturbed ∆ # anchors

All frames 84.8 70.2 14.6 1109
w/o ‘i-frames’ 84.7 70.3 14.4 1104
w/o ‘p-frames’ 83.9 73.7 10.2 415
w/o ‘b-frames’ 85.4 73.2 12.2 699

Table 3.6: ImageNet-Vid-Robust subsets with fixed FPS.

Accuracy
FPS Original Perturbed ∆ # Videos
25 87.3 73.3 14.0 292
29 87.7 74.9 12.8 383
30 78.3 61.7 16.6 313

3.4.5 FPS analysis

Next, we analyze how video frame rate impacts model accuracy. At low frame rates,
nearby frames may be more likely to be dissimilar, or exhibit artifacts such as motion
blur. We show in Table 3.6 that videos in ImageNet-Vid-Robust range from 25
to 30 FPS. We evaluate a fine-tuned ResNet-152 model on subsets of the dataset
corresponding to different frame rates, and find that the gap between original and
perturbed accuracy is similar across these subsets, and similar to the gap for the
entire dataset. This suggests that low frame rates do not account for the drop in
accuracy, and different frame rates do not significantly impact the results.

3.5 Discussion

We analyze and quantify a common phenomenon in image models: flicker in predictions
over time, which is caused by a lack of model robustness to natural perturbations.
We show this results in significant accuracy drops for a wide range of classification
and detection models. We highlight two key avenues for future research:

Building more robust models. Our benchmarks provide a standard robustness
measure for classification and detection models. In Section 3.4.1, we found that several
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models suffer from substantial accuracy drops due to natural perturbations. Further,
improvements with respect to artificial perturbations (like image corruptions or `∞
adversaries) induce only modest robustness improvements. One exception to this
bleak overview are recent contrastive learning approaches trained on large-scale web
data [182], which confer partial robustness to natural perturbations. We hope our
standardized benchmarks will enable progress in improving the robustness of such
models, and in generalizing their improvements to models trained on more limited
datasets.

Further natural perturbations. Videos provide a straightforward method for
collecting natural perturbations of images, enabling the study of realistic forms of
robustness. Other methods for generating such natural perturbations are likely to
provide additional insights into robustness. As an example, photo sharing websites
contain many near-duplicate images: image pairs of the same scene captured at
different times, viewpoints, or from a different camera [186]. More generally, devising
similar, domain-specific strategies to collect, verify, and measure robustness to natural
perturbations in domains such as natural language processing or speech recognition
is a promising direction for future work.
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Chapter 4

Detecting Invisible People

t = 0 t = 10 t = 15 t = 20

Figure 4.1: We visualize an online tracking scenario from Argoverse [36] that requires
tracking a pedestrian through a complete occlusion. Such applications cannot wait
for objects to re-appear (e.g ., as re-identification approaches do): autonomous agents
must properly react during the occlusion. We treat online detection of occluded
people as a short-term forecasting challenge.

4.1 Introduction

In the previous chapter, we explored the robustness of models to small, nearly
imperceptible changes that occur between video frames, such as partial occlusions.
In this chapter, we will explore solutions for addressing a more extreme version of
this problem: what happens when objects become fully occluded, or invisible to the
camera? Standard object detection methods have seen immense progress over the
last few years, but require objects to be visible to the camera in the image. However,
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objects that are fully occluded (and thus, invisible) continue to exist and move in the
world. Indeed, object permanence is a fundamental visual cue exhibited by infants
in as early as 3 months [10, 100]. Practical autonomous systems must similarly
reason about objects under such occlusions to ensure safe operation (Figure 4.1).
Interestingly, existing work on object detection and tracking tends to de-emphasize
this capability, either choosing to completely ignore highly-occluded instances for
evaluation [61, 142, 194, 249], or simply downweighting them because they occur so
rarely that they fail to materially affect overall performance [158]. One reason that
invisible-object detection may have been under-emphasized in the tracking community
is that for offline analysis, one can post-hoc reason about the presence of an occluded
object by relinking detections after it reappears. This approach has spawned the
large subfield of reidentification (ReID). However, in an online setting (such as an
autonomous vehicle that must make decisions given the available sensor information),
intelligent agents must be able to instantaneously reason about occluded objects
before they re-appear.

Problem formulation: We begin by introducing benchmarks and metrics for
evaluating the task of detecting and tracking invisible people. To do so, we repurpose
existing tracking benchmarks and introduce metrics for evaluating this task that
appropriately reward detection of occluded people. To ensure benchmarks are online,
we forbid algorithms from accessing future frames when reporting object states for
the current frame. Although this task requires reasoning about object trajectories,
it can be evaluated as both a detection and a tracking problem. For the latter, we
introduce extensions to tracking metrics in the supplement. When analyzing our
metrics, it becomes readily apparent that human annotation of ground-truth occluded
objects is challenging. We provide pilot human vision experiments in Section 4.4 that
show annotators are still consistent, but exhibit larger variation in labeling the pixel
position of occluded instances. This suggests that algorithms for occluded object
detection should report distributions over object locations rather than precise discrete
(bounding box) locations. Inspired by metrics for evaluating multimodal distributions
in the forecasting literature [36], we explore probabilistic algorithms that make k
predictions which are evaluated by Top-k accuracy.

Analysis: Perhaps not surprisingly, our first observation is that performance of
state-of-the-art detectors and trackers plummets on occluded people, from 68.5% to
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28.4%; it is far easier to detect visible objects than invisible ones! This underscores
the need for the community to focus on this underexplored problem. We introduce
two simple but key innovations for addressing this task, which improve performance
from 28.4% to 39.8%. (a) We recast the problem of online tracking of occluded objects
as a short-term forecasting challenge. We explore state-of-the-art deep forecasting
networks, but find that classic linear dynamics models (Kalman filters) perform quite
well. (b) Because modeling occlusions is of central importance, we cast the problem
as one of 3D tracking given 2D image measurements.

Novelty: While there exists considerable classic work on 3D tracking from
2D [28, 40, 192, 206], much focuses on 3D modeling of tracked objects. Instead, we
find that the 3D structure of scene occluders is important for understanding where
tracked objects can “hide". Typically such dense 3D understanding requires calibrated
multiview sensors [59, 220]. Instead, we show that recent advances in uncalibrated
monocular depth estimation provide “good enough" estimates of relative depth that
still enable dense freespace reasoning. This is crucial because monocular depth has
the potential to be far more scalable [233]. To our knowledge, ours is the first work to
use uncalibrated depth estimates for multi-object tracking and detection of occluded
objects.

Overview: After reviewing related work, we present our core algorithmic contri-
butions, including straightforward but crucial extensions to classic linear dynamics
models to (a) incorporate putative depth observations from a monocular network
and (b) forecast object state even during occlusions. We conclude with extensive
evaluations on three datasets [50, 158, 232] repurposed for detecting occluded objects.

4.2 Background

Amodal object detection aims to segment the full extent of objects that may be
partially (but not fully) occluded. [273] introduces this task with a dataset labeled by
multiple annotators, which is later expanded by [273]. More recently, [181] introduces
a larger dataset of amodal annotations on the KITTI [75] dataset. Approaches in this
setting largely rely on training variants of standard detectors (e.g . [90]) on amodal
annotations generated synthetically from modal datasets [54, 139, 251, 266]. As this
line of work addresses detection from a single image, it requires objects to be at
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least partially visible. By contrast, we target fully occluded people, which cannot be
recovered from a single frame.

Multi-object tracking requires tracking across partial and full occlusions. Ap-
proaches for this task address occlusions post-hoc in an offline manner, using
appearance-based re-identification models to identify occluded objects after they
become visible. These appearance-based models can be incorporated into tracking
approaches, as part of a graph optimization problem [15, 178, 258] or online linking
[16, 238]. In this work, we point out that some approaches internally maintain online
estimates of the position of occluded people [16, 19, 238], but explicitly choose not to
report these internal predictions, as they tend to be noisy and, thus, are penalized
heavily by current benchmarks. We provide two simple extensions to these internal
predictions that significantly improve detection of occluded people while preserving
accuracy on visible people. [82] tracks occluded objects using contextual ‘supporters’,
but requires a user to initialize a single object to track in uncluttered scenes; by
contrast, we simultaneously detect and track people in large crowds.

Other work shares our motivation of tracking in 3D but relies on additional depth
sensors [73] or stereo setups [35, 105]. Finally, many surveillance-based tracking
systems explicity reason about object occupancy and occlusion, but require calibrated
cameras to compute ground plane coordinates [1, 71, 104, 121, 124]. By contrast,
our work emphasizes detection of occluded people in uncalibrated, monocular videos.
To do so, we use monocular depth estimators via technical innovations that address
noise in predicted depth estimates. Our method generalizes to arbitrary videos, since
estimating monocular depth is far more scalable than retrieving additional sensor
information for any video.

Forecasting approaches predict pedestrian trajectories in future, unobserved
frames. These approaches leverage social cues from nearby pedestrians or semantic
scene information to better model person trajectories [125, 133, 152, 172, 198, 250].
Recently, data-driven approaches have also been proposed for learning social cues [3,
193]. We note that detection of fully occluded people can be formulated as forecasting
the trajectory of a visible person in future frames, where the positions of the occluded
person are unobserved, but the rest of the frame can be observed. Our approach
uses a constant-velocity model to forecast trajectories, equipped with depth cues
from the observed frames, to improve detection of occluded people. In Section 4.4.3,
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we show that while this approach can use a more powerful forecasting model, the
constant-velocity approximation is sufficient in our setting.

4.3 Method

We build an online approach for detecting invisible people starting with a simple
tracker, using estimated trajectories of visible people to forecast their location during
occlusions. We describe our tracking mechanism, building upon [239]. While such
trackers internally forecast the location of occluded people for improved tracking,
these forecasts tend to be noisy and cannot directly localize occluded people. To
address this, we incorporate depth cues from a monocular depth estimator to reason
about occlusions in 3D.

4.3.1 Background

To detect people during occlusions, we build on a simple online tracker [239] that
estimates the trajectories of visible people. We briefly describe aspects relevant to
our approach, but refer the reader to [239] for a more detailed explanation. In the
first frame, this tracker instantiates a track for each detected person. The tracker
adds each track to its “active” set, representing people that have been seen so far.
Each track maintains a Kalman Filter whose state space encodes the position (x, y),
aspect ratio (a), height (h), and corresponding velocities (ẋ, ẏ, ȧ, ḣ) of the person.The
filter’s process model assumes a constant velocity model with gaussian noise (i.e.,
xt = xt−1 + ˙xt−1 + εx). At each successive frame, the tracker first runs the predict
step of the filter, using the process model to forecast the location of the track in
the new frame. Next, each detection in the current frame is matched to this set of
active tracks based on appearance features, and distance to the tracks’ forecasted
location (as estimated by the filter). A new track is created for all detections that
are unmatched. If a track is matched to a detection, the detection is used as a new
observation to update the track’s filter, and the detection is reported as part of the
track. Importantly, if a track does not match to any detection, its forecasted box is
not reported. When a track is not matched to a detection for more than Nage frames,
it is deleted.
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Figure 4.2: (a) Frame t− 1 has active tracks {1, 2, 3, 4}, each with an internal state
of its 2D position, size, velocity, and depth (see text). (b) We forecast tracks in 3D
for frame t. (c) Tracks are matched to observed detections at t using spatial and
appearance cues. Matched tracks are considered visible (e.g . 1, 3). Tracks which
don’t match to a visible detection (e.g . 2, 4) may be occluded, or simply incorrectly
forecasted. (d) To resolve this ambiguity, we leverage depth cues from a monocular
depth estimator, to compute (e) the freespace horizon. The region between the camera
and the horizon must be freespace, while the area beyond it is unobserved, and so
may contain occluded objects. Tracks lying beyond the freespace horizon are reported
as occluded (e.g . 2). Tracks within freespace (e.g . 4) should have been visible, but did
not match to any visible detections. Hence, we assume these tracks are incorrectly
forecasted, and we delete them.

4.3.2 Short-term forecasting across occlusions

Although this tracker internally forecasts the positions of all tracks at each step, its
estimates are used only to improve the association of tracks to detections, and are not
reported externally. However, these internally forecasted track locations are crucial
as they may correspond to an occluded person. We show that naively reporting these
track locations leads to significant recall of occluded people, but the noise in these
estimates results in poor precision. Further, these noisy estimates lead to a small
decrease in overall accuracy, as standard benchmarks largely focus on visible people.
We improve these estimates by augmenting them with 3D information. Specifically,
we use a monocular depth estimator [141] to get per pixel depth estimates of the scene.
We then augment our Kalman Filter state space with the inverse depth. Inverse
depth is a commonly used representation predicted by depth estimators [132, 141]
due to important benefits, including the ability to represent points at infinity and
ability to model uncertainty in pixel disparity space (commonly used for stereo-based
depth estimation [166]). Our state space thus additionally includes 1/z variable.
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4.3.3 Tracking in 3D camera coordinates using 2D image

coordinates

Equipped with depth estimates, we formulate tracking with a constant velocity model
in 3D using 2D measurements. Unlike prior work which assumes linear dynamics in
(projected) 2D image measurements, our dynamics model operates in 3D using depth
cues, resulting in far more realistic person trajectories. We derive our uncalibrated
tracker by demonstrating that the unknown camera focal length f can be folded into
a motion noise parameter that can be easily tuned on a training set. Hence our final
method runs without calibration on arbitrary videos.

Let us model objects as cylinders with centroids (Xt, Yt, Zt), height H and aspect
ratio At. We model object height as constant, but allow for varying aspect ratios
because people are non-rigid. We can then compute image-measured bounding boxes
with centroid (xt, yt) and dimensions (ht, at) as follows:

xt = f
Xt

Zt

, yt = f
Yt
Zt

, ht = f
H

Zt

, at = At (4.1)

We extend the commonly used constant velocity model with Gaussian noise from
2D [19, 238] to 3D:

Xt = Xt−1 + Ẋt−1 + εX , εX ∼ N (0, σX), (4.2)

where similar equations hold for Yt, Zt and At. Let the observed (inverse) depth
from a depth estimator associated with an object be 1/zt. Since image measurements
are given by perspective projection of real world coordinates, we have the following
equations (assuming Gaussian image noise):

xt = f
Xt

Zt

+ εx, εx ∼ N (0, σx) (4.3)

1

zt
=

1

Zt

+ εz, εz ∼ N (0, σz) (4.4)

with similar equations for yt, ht, and at. Note that inverse depth naturally assumes
a large uncertainty in far away regions, and a small uncertainty in nearby regions.
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Defining a 3D state space leads us to a modified formulation, written as(
f
Xt

Zt

, f
Yt
Zt

,
1

Zt

, At, f
H

Zt

, f
Ẋt

Zt

, f
Ẏt
Zt

, Ȧt

)
(4.5)

We can therefore rewrite Equation (4.2) as:

f
Xt

Zt

≈ f
Xt

Zt−1
= f

Xt−1

Zt−1
+ f

Ẋt−1

Zt−1
+ f

εX
Zt−1

(4.6)

xt ≈ xt−1 + ẋt−1 + f
εX
Zt−1

(4.7)

where the approximation holds if depths are smooth over time (Zt ≈ Zt−1). Technically,
the above is no longer a linear dynamics model since the noise depends on the state.
But the equation suggests that one can approximately apply a Kalman filter on 2D
image measurements augmented with a temporal noise model that is scaled by the
estimated inverse-depth of the object. Intuitively, this suggests that one should enforce
smoother tracks for objects far away. Our approach thus scales the process noise
(εX) for far away objects, leading to more accurate predictions. Algorithmically,
[239] by default scales process and observation noise covariances according to the
person’s height; our approach instead multiplies the process covariance by the person’s
estimated depth, computed by aggregating past monocular depth observations and
state estimates over time.

Assumptions. Because we do not assume calibrated cameras, we do not know
f . Rather, we make use of training videos provided in standard tracking benchmarks
and simply tune scaled variances σ′X = fσX directly on the training set. We make
two additional assumptions: that people move with constant velocity in 3D, and that
depth estimates are smooth over time. Although these do not always hold in real
world scenarios, we empirically find that our method generalizes to diverse scenarios.

Filtering estimates lying in freespace. Equipping our state space with depth
information allows us to forecast 3D trajectories. Meanwhile, applying a monocular
depth estimator allows us to determine regions in 3D space that are occluded to the
camera without requiring calibration. Specifically, if our approach forecasts a person
at a point Pf = (xf , yf , zf), we can determine whether Pf should be visible to the
camera by estimating whether Pf lies in the freespace [59] between the camera and
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its nearest occluder. In the filter stage in Figure 4.2, we visualize one slice of the
“freespace horizon”: points beyond this horizon are occluded, while points between
the camera and the horizon should be visible.

Concretely, let zo be the (observed) depth of the horizon at (xf , yf). If the
forecasted depth (zf) lies closer to the camera than the horizon depth (zo), as with
person “4” in Figure 4.2 (e), then the person must be in the freespace between the
camera and its closest object, and therefore visible. If we do not detect this person,
then we assume the forecast is an error, and either suppress the forecasted box for
the current frame (in the case of small errors, when zf < αsuppzo) or delete the track
entirely (for large errors, when zf < αdeletezo). A key advantage of this approach
is the ability to reason about occlusions arising not only from interactions between
tracked people, but also from natural occluders such as trees or cars. Section 4.4.3
shows that this modification is critical for improving the precision of our trajectory
forecasts.

Camera motion. Camera motion is challenging, as our approach assumes
linear dynamics for trajectories. To address this, we follow prior work (e.g., [16]) in
estimating a non-linear pixel warp W between neighboring frames which maps pixel
coordinates (xt−1, yt−1) in one frame to the next (xt, yt). This warp is then used to
align boxes forecasted using frames up to t− 1 with frame t. Note that this alignment
assumes the motion of dynamic objects is small relative to the scene motion, allowing
for the use of an image registration algorithm [60]. Despite the simplicity of this
modification, we show in the supplement that it helps considerably for the moving
camera sequences. We also detail our algorithm with pseudo-code in the supplement.
We proceed to an empirical analysis of the task and prior methods, showing the
benefits of each component of our proposed approach.

4.4 Experimental Results

We first describe our proposed benchmarks, including the datasets and our proposed
metrics for evaluating the task of detecting occluded people. Next, we conduct an
oracle study in Section 4.4.1 to analyze how well existing approaches can detect
occluded people. We then compare our proposed approach to these state-of-the-art
approaches in multiple settings in Section 4.4.2. Finally, we analyze each component
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Figure 4.3: We visualize bounding boxes labeled by multiple (4) in-house annotators
(left). During small occlusions, annotators strongly agree. During large occlusions
(less than 10% visible, last frame), annotators still agree to a fair extent (average IoU
overlap of 60%, right), but require temporal video context. We use these to justify
our Top-k evaluation and motivate our probabilistic tracking approach.

of our approach with a detailed ablation study in Section 4.4.3.

Dataset. Evaluating our approach is challenging, as most datasets do not
annotate occluded objects. The MOT-17 [158], MOT-20 [50] and PANDA [232]
datasets are key exceptions which label both visible and occluded people, along with
a visibility field indicating what portion of the person is visible to the camera. We
find that a majority of the annotations in these datasets (over 85% in each dataset)
are people that are at least partially visible, leading standard evaluations on these
datasets to underemphasize occluded people. To address this, we separately evaluate
accuracy on the subset of fully occluded people (indicated by < 10% visibility). MOT-
17 contains 7 sequences with publicly available groundtruth, and 7 test sequences
with held-out groundtruth. We evaluate on these 14 sequences. MOT-20 contains
8 sequences, of which 4 have held-out groundtruth. PANDA officially releases a
high-resolution 2FPS groundtruth for its 10 train and 5 test sequences. Because
tracking and forecasting is challenging at such low frame rates, we reached out to the
authors who provided a high-frame rate (30FPS), low-resolution groundtruth for 9
train videos. We report results on MOT-20 and PANDA train set without tuning our
pipeline on any of the videos in these datasets. From visual inspection, we found that
visibility labels in PANDA tend to be noisy (see the supplement), and so we define
objects with up to 33% visibility as occluded. We carry out the analysis including
oracle and ablation study on MOT-17 train and report the final results on MOT-17
test, MOT-20 and PANDA datasets. In all, these three datasets target a diverse
set of application scenarios – static surveillance cameras, car-mounted cameras, and
hand-held cameras.
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Table 4.1: Oracle ablations on MOT-17 train reporting Top-5 F1, Top-1 F1 and IDF1
for occluded and all people, using Faster R-CNN detections. ‘Occl strat’ stands for
Occlusion Strategy. We report the Top-5 mean and standard deviation for 3 runs.

Detections Tracks Occl Strat Online? Top-5 Top-1 F1
Occl F1 Occl Prec Occl Rec All F1 Occl All

Groundtruth (vis.) Groundtruth Interpolate 7 87.3 ±0.1 83.8 ±0.2 91.1 ±0.1 98.0 ±0.0 79.8 96.8
Faster R-CNN Groundtruth Interpolate 7 46.4 ±0.1 65.5 ±0.1 35.9 ±0.1 70.5 ±0.0 34.4 68.1
Groundtruth (vis.) DeepSORT Interpolate 7 53.3 ±0.2 86.7 ±0.1 38.5 ±0.2 92.3 ±0.0 44.4 92.0
Faster R-CNN DeepSORT Interpolate 7 32.2 ±0.0 60.8 ±0.2 21.9 ±0.0 69.9 ±0.0 23.2 68.4
Faster R-CNN DeepSORT Forecast 3 29.8 ±0.2 29.5 ±0.4 30.2 ±0.1 69.4 ±0.0 20.9 66.5

Metric. As most benchmarks consist primarily of visible people, existing metrics
which measure performance across all people underemphasize the accuracy of detecting
occluded people. We propose detection and tracking metrics (see supplement for
latter) which evaluate accuracy on occluded people, as indicated by visibility < 10%

and on all (visible and invisible) people. Since localizing fully-occluded people involves
higher positional uncertainty than visible people, we allow algorithms to predict k
potential locations for each person.

Top-k F1: We start by modifying the standard detection evaluation protocol [61,
142]. For every person, we allow methods to report k predictions, P = {p1, p2, . . . , pk}.
We match these predictions to all groundtruth boxes based on intersection-over-union
(IoU). We define the overlap between a groundtruth g and P as the maximum overlap
with the predictions pi in P — i.e., IoU(g, P ) = maxiIoU(g, pi). We use this overlap
definition and perform standard matching between predictions and groundtruth, with
a minimum overlap threshold of αIoU .

When evaluating accuracy across all people, matched groundtruth boxes are true
positives (TP), all unmatched groundtruth are false negatives (FNs, or misses), and
unmatched detections are false positives (FP). When evaluating accuracy on occluded
people, only matched occluded groundtruth boxes count as TPs, only unmatched
occluded groundtruth boxes count as FNs, and all unmatched detections count as
FPs. Intuitively, when evaluating metrics for occluded people, we do not penalize
a detector for correctly detecting a visible person, but we do penalize it for false
positives that do not match any visible or occluded person.

We now describe how the k-vector of predictions is obtained: in addition to a state
mean (first sample), our probabilistic method maintains covariances for x and z state
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variables which result in a 2D gaussian. Since these gaussians may extend incorrectly
into freespace, we perform rejection sampling to accumulate k-1 predictions which
respect freespace constraints. This gives us P . For baseline methods that are not
probabilistic or do not have access to a depth map, we artificially simulate this
distribution by tuning two scale factors that control the size of gaussians as a function
of a bounding box’s height. We tune these scale factors on MOT-17 train and use
them throughout experiments.

Top-1 F1: When k = 1, this metric is simply the standard F1 metric. We
additionally report this Top-1 F1 for occluded and all people. We do not use the
standard ‘average precision’ (AP) metric as most detectors and trackers on the MOT
and PANDA datasets do not report confidences.

To guide evaluation, we conduct a human vision experiment with 10 in-house
annotators who annotated 991 boxes in 59 tracks with occlusion phases. Figure 4.3
shows that annotators have lower consistency when labeling occluded people than
visible people. To address this ambiguity in localizing occluded people, we choose a
low αIoU = 0.5 and k = 5 in our experiments.

Implementation details. We empirically set parameters in our approach on
MOT-17 train with Faster R-CNN [190] detections. The optimal thresholds for
filtering forecasts on the train set are αdelete = 0.88, αsupp = 1.061. During occlusion
we treat a person as a point, freezing its aspect ratio and height. We fix Nage to 30.
The supplement presents further details of our method, parameters and their tuning
protocol, including improvements by tuning Nage. We tune on MOT-17 train and
apply these tuned parameters on MOT-17 test, MOT-20, and PANDA. We find that
our method and its hyperparameters tuned on the train set generalize well to the test
set. We use [141] for monocular depth estimates, which has been shown to work well
in the wild. While these estimates can be noisy, we qualitatively find that the relative
depth orderings used in our approach are fairly robust.

1Note that αsupp > 1 allows the forecasted depth to be closer to the camera than the observed
depth, accounting for potential noise in the depth estimator to reduce the number of forecasts that
are suppressed.
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4.4.1 Oracle Study

What is the impact of visible detection on occluded detection? We first
evaluate an offline approach which uses groundtruth detections and tracks for visible
people to (linearly) interpolate detections for occluded people in Table 4.1. As this
method perfectly localizes visible people, and most people in this benchmark are
visible, it achieves a high overall Top-5 F1 of 98.0 (Table 4.1, row 1). Additionally,
despite using simple linear interpolation, this oracle also achieves a high Top-5 F1 of
87.3 for invisible people. This result indicates that although long-term forecasting of
pedestrian trajectories may require higher-level reasoning [133, 152, 198], short-term
occlusions may be modeled with simple linear models.

Next, we evaluate the same approach with detections from a Faster R-CNN [190]
model in place of groundtruth (Table 4.1, row 2). This leads to a significant drop in
both overall and occluded accuracy, indicating that improvements in visible person
detection can improve detection for invisible people. Finally, although Occluded
Top-5 F1 drops, it is significantly above chance, suggesting that current detectors
equipped with appropriate trackers can detect invisible people.

What is the impact of tracking on occluded detection? So far, we have
assumed oracle linking of detections, allowing for linear interpolation of bounding
boxes to detect people through occlusion. We now evaluate the impact of using
an online tracker, equipped with re-identification, on detecting occluded people.
Removing the oracle results in a drastic drop in accuracy: the Top-5 F1 score
for occluded people drops by over 30 points (87.3 to 53.3, Table 4.1 row 3) using
groundtruth detections, and 14 points with Faster R-CNN detections (46.4 to 32.2,
Table 4.1 row 4). Despite this significant drop in Occluded Top-5 F1, the overall Top-5
F1 is significantly more stable (from 98.0 to 92.3 for groundtruth detections and 70.5
to 69.9 for Faster R-CNN), showing that overall person detection underemphasizes
the importance of detecting occluded people.

Can online approaches work? These results indicate that in the offline setting,
existing visible-person detection and tracking approaches can detect invisible people
via interpolation. We now evaluate a simple online approach, which uses an off-the-
shelf visible person detector (Faster R-CNN), equipped with a tracker (DeepSORT)
and linear (constant velocity) forecasting for detecting invisible people (Table 4.1, row
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Table 4.2: Detection and tracking results on MOT-17 [158], MOT-20 [50] and PANDA
[232] train. We evaluate on public detections provided with MOT-17 (DPM [68],
FRCNN [190], SDP [252]), two trackers that operate on public detections (Tracktor++
[16], MIFT [99]), and CenterTrack [270] which does not use public detections. We
use (public FRCNN, visible groundtruth) detections for (MOT-20, PANDA). Our
method improves on occluded people across all trackers.

Top-5 F1 Top-1 F1
Occl All Occl All

M
O
T
-1
7

DPM 17.2 46.7 13.2 46.5
+ Ours 24.6 (+7.4) 49.3 (+2.6) 17.4 48.4
FRCNN 28.4 68.5 20.1 67.4
+ Ours 39.8 (+11.4) 70.5 (+2.0) 26.7 68.5
SDP 45.2 80.5 35.8 79.8
+ Ours 51.2 (+6.0) 80.8 (+0.3) 38.5 79.4
Tracktor++ 32.4 77.0 22.7 76.8
+ Ours 45.4 (+13.0) 77.2 (+0.2) 33.2 76.5
MIFT 37.8 75.9 29.9 75.1
+ Ours 44.9 (+7.1) 75.6 (-0.3) 33.8 74.3
CTrack 38.7 84.8 29.4 84.2
+ Ours 47.9 (+9.2) 84.4 (-0.4) 36.4 83.4

M
O
T
-2
0 FRCNN 42.5 71.2 27.5 70.7

+ Ours 46.1 (+3.6) 71.5 (+0.3) 28.6 70.9

P
A
N
D
A GT (visible) 45.5 90.6 30.5 90.5

+ Ours 49.5 (+4.0) 90.5 (-0.1) 34.1 90.3

5). Moving to an online setting results in a similar Top-5 F1 score but significantly
reduces the precision for occluded persons, from 60.8 to 29.5. This is expected as
even though linear forecasting recalls slightly more number of boxes than offline
interpolation (recall from 21.9 to 30.2), its naive nature results in many more false
positives resulting in a much lower precision and therefore, a similar F1 score. In
Section 4.4.3, we present simple modifications to this approach that recover much of
this performance gap.

4.4.2 Comparison to Prior Work

Next, we apply our approach to the output of existing methods to evaluate its
improvement over prior work. Table 4.2 shows results on the MOT-17 train set,
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Table 4.3: Results on MOT-17 and MOT-20 test set. The best, second-best and
third-best methods are highlighted.

Top-5 F1 Top-1 F1
Occl All Occl All

M
O
T
-1
7

Ours 43.4 76.8 31.4 75.6
MIFT [99] 38.4 77.3 29.7 76.7
UnsupTrack [118] 35.9 78.1 26.6 77.4
GNNMatch [168] 35.2 74.3 26.3 73.7
GSM_Tracktor [144] 35.4 73.8 26.2 73.2
Tracktor++ [16] 33.3 73.3 24.8 73.0

M
O
T
-2
0 Ours 46.9 76.7 33.3 75.2

Tracktor++ [16] 44.2 76.0 34.2 75.3
UnsupTrack [118] 41.7 71.4 30.9 70.8
SORT20 [239] 38.5 65.2 27.3 63.6

showing our approach improves significantly in Occluded Top-5 F1 ranging from 6.0
to 13.0 points, while maintaining the overall F1. Detecting invisible people requires
reliable amodal detectors for visible people (ref. Section 4.4.1). For this reason, we
use visible groundtruth detections from PANDA, similar to the oracle experiments
in Section 4.4.1, as no public set of amodal detections come with PANDA (unlike
MOT-17 or MOT-20). Table 4.2 shows that our method improves the detection of
occluded people by 4.0% on PANDA using groundtruth visible detections and by
3.6% on MOT-20 using the Faster-RCNN public detections. We explicitly do not
tune our hyperparameters for these two datasets, showing that our method is robust
to changes in video data distribution. MOT-20 and PANDA contain a few sequences
with top-down views, where occlusions are rare. We disable our depth and occlusion
reasoning on such sequences; please see supplement.

As MOT-17 and MOT-20 test labels are held out, we worked with the MOTChal-
lenge authors to implement our metrics on the test server. Table 4.3 shows that
MIFT2[99] and Tracktor++ [16] achieve the highest Occluded Top-5 F1 amongst prior
online approaches on MOT-17 and MOT-20 test respectively. Applying our approach
on top of these methods improves results significantly by 5.0% to 43.4 F1 and by
2.7% to 46.9 F1, leading to a new state-of-the-art for occluded person detection on

2MIFT is referred to as ISE_MOT17R on the MOT leaderboards
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Figure 4.4: Our probabilistic model reports a distribution over 3D location during
occlusions. We visualize (occluded, visible) detection with (outlined, filled-in) bound-
ing boxes (top). We provide “birds-eye-view" top-down visualizations of Gaussian
distributions over 3D object centroids with covariance ellipses (bottom). During
occlusion, variance grows roughly linearly with the number of consecutively-occluded
frames. We are also able to correctly predict depth of occluded people in the top down
view, e.g. in the second last frame, which would not be possible with single-frame
monocular depth estimates. During evaluation, we truncate the uncertainty using
our freespace estimates (not visualized). Please refer to the supplement video.

MOT-17 and MOT-20 test.
Table 4.2 shows that our method consistently improves occluded F1. However, it

sometimes results in a drop in overall accuracy. We attribute this to the increased
number of false positives introduced while tackling the challenging task of detecting
invisible people. These false positives for invisible people are counted as false positives
for all people, whether visible or invisible. This causes existing metrics to penalize
methods for even trying to detect invisible people. In safety critical applications, where
worst-case accuracy may be more appropriate, our approach significantly improves
during complete occlusions by up to 13.0% on MOT-17, while mildly decreasing
average accuracy by 0.4%.

4.4.3 Ablation Study

We now study the impact of each component of our approach in Table 4.4, focusing on
the Occluded Top-5 F1 metric using Faster R-CNN detections on the MOT-17 train
set. First, we show that the DeepSORT tracker, upon which our approach is built,
results in a 28.4 Occluded Top-5 F1. Reporting the internal, linear forecasts from
the tracker increases the score to 29.8, driven primarily by a 12.5% improvement in
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Table 4.4: MOT-17 train ablations. Each row adds a component to the row above.
‘Dep. noise’ is depth-aware noise.

Top-5 Top-1 F1
Occl F1 Occl Prec Occl Rec All F1 Occl All

DeepSORT 28.4 ±0.1 71.9 ±0.2 17.7 ±0.1 68.5 ±0.0 20.1 67.4
+ Forecast 29.8 ±0.2 29.5 ±0.4 30.2 ±0.1 69.4 ±0.0 20.9 66.5
+ Egomotion 32.2 ±0.2 33.1 ±0.3 31.3 ±0.1 70.4 ±0.0 23.2 67.9
+ Freespace 35.7 ±0.0 47.7 ±0.1 28.6 ±0.0 70.4 ±0.0 25.7 68.4
+ Dep. noise 39.8 ±0.2 52.6 ±0.6 32.0 ±0.0 70.5 ±0.1 26.7 68.5

recall. Compensating for camera motion provides another 2.4% improvement. Next,
leveraging depth cues to incorporate freespace constraints, as detailed in Section 4.3.3,
improves accuracy by 3.5%, driven primarily by a 14.6% jump in precision, indicating
that this component drastically reduces false positives. Finally, we add depth-aware
process noise to handle perspective transformations between 2D and 3D coordinates,
which leads to an improvement of 4.1%, resulting in a final score of 39.8. Only a 1.0%
improvement in F1 as compared to 4.1% with Top-5 F1 suggests that our uncertainty
estimates are significantly improved by the depth-aware process noise scaling. In all,
our approach leads to an improvement of 11.4% over the baseline. Figure 4.4 presents
a sample result from our approach, where the person in the green bounding box is
detected throughout two full occlusion phases, marked with an unfilled box.

One concern with our approach might be that the average depth inside a person’s
bounding box may contain pixels from the background or an occluder. To verify
the impact of this, we evaluate a variant where we use segmentation masks for all
the bounding boxes in MOT-17’s FRCNN public detections using MaskRCNN [90].
We initialize the z state variable in the model with the average depth inside this
mask. On doing so, the Top-1 occluded F1 increases from 26.7 to 27.3, indicating
that masks can help with estimating the person’s depth, but boxes are a reasonable
approximation. We kindly refer the reader to our supplement for further ablative
analysis, including an analysis of more recent depth estimators, ablations on moving
vs . stationary sequences, and failure cases (in supplementary video).

Forecasting: We evaluate replacing our linear forecaster with state-of-the-art
forecasters. We supply these forecasters with a birds-eye-view representation of
visible person trajectories. As these forecasters forecast only the birds-eye-view
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(x, z) coordinates, we rely on our approach’s estimates of the height, width, and y
coordinate. We evaluate two trajectory forecasting approaches for crowded scenes,
Social GAN (SGAN) [87] and STGAT [101]. SGAN and STGAT result in Occluded
Top-5 F1 scores of 36.0 and 36.4 respectively. While this improves over the baseline at
28.4, it underperforms our linear forecaster at 39.8. This suggests that simple linear
models suffice for short, frequent occlusions. We refer the reader to the supplement
for more details and analysis.

4.5 Discussion

We propose the task of detecting fully-occluded objects from uncalibrated monocular
cameras in an online manner. Our experiments show that current detection and
tracking approaches struggle to find occluded people, dropping in accuracy from
68% to 28% F1. Our oracle experiments reveal that interpolating across tracklets
in an offline setting noticeably improves F1, but the task remains difficult because
underlying object detectors do not perform well during large occlusions. We propose
an online approach that forecasts the trajectories of occluded people, exploiting
depth estimates from a monocular depth estimator to better reason about potential
occlusions. Our approach can be applied to the output of existing detectors and
trackers, leading to significant accuracy gains of 11% over the baseline, and 5%
over state-of-the-art. We hope our problem definition and initial exploration of this
safety-critical task encourages others to do so as well.
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Generalizing to large vocabularies
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Chapter 5

TAO: A Large-Scale Dataset for
Tracking Any Object

5.1 Introduction

In the previous part, we analyzed how computer vision models generalize to in-the-
wild settings, where the appearance of objects and scenes may differ from that of the
training distribution. This work largely focused on models for a few objects, such as
people or cars. Now, we explore how well models can generalize to large vocabularies
of hundreds or thousands of object classes. Scaling to such large vocabularies leads
to new challenges for dataset collection and annotation, method development, and
evaluation. Building a dataset which covers a large vocabulary of classes can require
a significant annotation budget, and evaluation strategies for small vocabulary tasks
do not readily transfer to large vocabulary settings. We address these challenges
in the following two chapters. We start by describing a new dataset we have built
for large vocabulary object tracking in Chapter 5, and then highlight issues (and
solutions) in current evaluations of large vocabulary methods in Chapter 6.

A key component in the success of modern object detection methods was the
introduction of large-scale, diverse benchmarks, such as MS COCO [142] and LVIS [88].
By contrast, multi-object tracking datasets tend to be small [158, 225], biased towards
short videos [254], and, most importantly, focused on a very small vocabulary of
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Figure 5.1: (left) Super-category distribution in existing multi-object tracking datasets
compared to TAO and COCO [142]. Previous work focused on people, vehicles and
animals. By contrast, our bottom-up category discovery results in a more diverse
distribution, covering many small, hand-held objects that are especially challenging
from the tracking perspective. (right) Wordcloud of TAO categories, weighted by
number of instances, and colored according to their supercategory.

categories [158, 225, 235] (see Table 5.1). As can be seen from Figure 5.1, they
predominantly target people and vehicles. Due to the lack of proper benchmarks, the
community has shifted towards solutions tailored to the few videos used for evaluation.
Indeed, Bergmann et al. [16] have recently and convincingly demonstrated that simple
baselines perform on par with state-of-the-art (SOTA) multi-object trackers.

In this work we introduce a large-scale benchmark for Tracking Any Object (TAO).
Our dataset features 2,907 high resolution videos captured in diverse environments,
which are 30 seconds long on average, and has tracks labeled for 833 object categories.
We compare the statistics of TAO to existing multi-object tracking benchmarks in
Table 5.1 and Figure 5.1, and demonstrate that it improves upon them both in terms
of complexity and in terms of diversity (see Figure 5.2 for representative frames from
TAO). Collecting such a dataset presents three main challenges: (1) how to select a
large number of diverse, long, high-quality videos; (2) how to define a set of categories
covering all the objects that might be of interest for tracking; and (3) how to label
tracks for these categories at a realistic cost. Below we summarize our approach for
addressing these challenges. A detailed description of dataset collection is provided
in Section 5.4.

Existing datasets tend to focus on one or just a few domains when selecting the
videos, such as outdoor scenes in MOT [158], or road scenes in KITTI [74]. This

54



CHAPTER 5. TAO: A LARGE-SCALE DATASET FOR TRACKING ANY
OBJECT

Table 5.1: Statistics of major multi-object tracking datasets. TAO is by far the largest
dataset in terms of the number of categories, and the total duration of videos used
for evaluation. In addition, we ensure that each video is challenging (long, containing
several moving objects) and of high quality.

Dataset Classes Videos
Eval. Train

Avg
length (s)

Tracks
/ video

Min
resolution

Ann.
fps

Total Eval
length (s)

MOT17 [158] 1 7 7 35.4 112 640x480 30 248
KITTI [74] 2 29 21 12.6 52 1242x375 10 365
UA-DETRAC [235] 4 40 60 56 57.6 960x540 5 2,240
ImageNet-Vid [194] 30 1,314 4,000 10.6 2.4 480x270 ∼25 13,928
YTVIS [254] 40 645 2,238 4.6 1.7 320x240 5 2,967
TAO (Ours) 833 2,407 500 36.8 5.9 640x480 1 88,605

results in methods that fail when applied in the wild. To avoid this bias, we construct
TAO with videos from as many environments as possible. We include indoor videos
from Charades [204], movie scenes from AVA [84], outdoor videos from LaSOT [63],
road-scenes from ArgoVerse [36], and a diverse sample of videos from HACS [267]
and YFCC100M [213]. We ensure all videos are of high quality, with the smallest
dimension larger or equal to 480px, and contain at least 2 moving objects. Table 5.1
reports the full statistics of the collected videos, showing that TAO provides an
evaluation suite that is significantly larger, longer, and more diverse than prior work.
Note that TAO contains fewer training videos than recent tracking datasets, as we
intentionally dedicate the majority of videos for in-the-wild benchmark evaluation,
the focus of our effort.

Given the selected videos, we must choose what to annotate. Most datasets
are constructed with a top-down approach, where categories of interest are pre-
defined by benchmark curators. That is, curators first select the subset of categories
deemed relevant for the task, and then collect images or videos expressly for these
categories [51, 142, 222]. This approach naturally introduces curator bias. An
alternative strategy is bottom-up, open-world discovery of what objects are present in
the data. Here, the vocabulary emerges post factum [84, 88, 268], an approach that
dates back to LabelMe [196]. Inspired by this line of work, we devise the following
strategy to discover an ontology of objects relevant for tracking: first annotators are
asked to label all objects that either move by themselves or are moved by people.
They then give names to the labeled objects, resulting in a vocabulary that is not
only significantly larger, but is also qualitatively different from that of any existing
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Figure 5.2: Representative frames from TAO, showing videos sourced from multiple
domains with annotations at two different timesteps.

tracking dataset (see Figure 5.1). To facilitate training of object detectors, that can
be later used by multi-object trackers on our dataset, we encourage annotators to
choose categories that exists in the LVIS dataset [88]. If no appropriate category
can be found in the LVIS vocabulary, annotators can provide free-form names (see
Section 5.4.2 for details).

Exhaustively labeling tracks for such a large collection of objects in 2,907 long
videos is prohibitively expensive. Instead, we extend the federated annotation
approach proposed in [88] to the tracking domain. In particular, we ask the annotators
to label tracks for up to 10 objects in every video. We then separately collect exhaustive
labels for every category for a subset of videos, indicating whether all the instances
of the category have been labeled in the video. During evaluation of a particular
category, we use only videos with exhaustive labels for computing precision and all
videos for computing recall. This allows us to reliably measure methods’ performance
at a fraction of the cost of exhaustively annotating the videos. We use the LVIS
federated mAP metric [88] for evaluation, replacing 2D IoU with 3D IoU [254]. For
detailed comparisons, we further report the standard MOT challenge [158] metrics in
our paper appendix [47].

Equipped with TAO, we set out to answer several questions about the state of the
tracking community. In particular, in Section 5.5 we report the following discoveries:
(1) SOTA trackers struggle to generalize to a large vocabulary of objects, particularly
for infrequent object categories in the tail; (2) while trackers work significantly better
for the most-explored category of people, tracking people in diverse scenarios (e.g.,
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frequent occlusions or camera motion) remains challenging; (3) when scaled to a large
object vocabulary, multi-object trackers become competitive with user-initialized
trackers, despite the latter being provided with a ground truth initializations. We
hope that these insights will help to define the most promising directions for future
research.

5.2 Related work

The domain of object tracking is subdivided based on the way the tracks are initialized.
Our work falls into the multi-object tracking category, where all the objects out of
a fixed vocabulary of classes have to be detected and tracked. Other formulations
include user-initialized tracking, and saliency-based tracking. In the remainder of this
section we will first review the most relevant benchmarks datasets in each of these
areas, and then discuss SOTA methods for multi-object and user-initialized tracking.

5.2.1 Benchmarks

Multi-object tracking (MOT) is the task of tracking an unknown number of
objects from a known set of categories. Most MOT benchmarks [70, 74, 158, 235]
focus on either people or vehicles (see Figure 5.1), motivated by surveillance and self-
driving applications. Moreover, they tend to include only a few dozen videos, captured
in outdoor or road environments, encouraging methods that are overly adapted to the
benchmark and do not generalize to different scenarios (see Table 5.1). In contrast,
TAO focuses on diversity both in the category and visual domain distribution, resulting
in a realistic benchmark for tracking any object.

Several works have attempted to extend the MOT task to a wider vocabulary
of categories. In particular, the ImageNet-Vid [194] benchmark provides exhaustive
trajectories annotations for objects of 30 categories in 1314 videos. While this dataset
is both larger and more diverse that standard MOT benchmarks, videos tend to be
relatively short and the categories cover only animals and vehicles. The recent YTVIS
dataset [254] has the most broad vocabulary to date, covering 40 classes, but the
majority of the categories still correspond to people, vehicles and animals. Moreover,
the videos are 5 seconds long on average, making the tracking problem considerably
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easier in many cases. Unlike previous work, we take a bottom-up approach for
defining the vocabulary. This results in not only the largest set of categories among
MOT datasets to date, but also in a qualitatively different category distribution. In
addition, our dataset is over 7 times larger than YTVIS in the number of frames. The
recent VidOR dataset [200] explores Video Object Relations, including tracks for a
large vocabulary of objects. But, since ViDOR focuses on relations rather than tracks,
object trajectories tend to be missing or incomplete, making it hard to repurpose for
tracker benchmarking. In contrast, we ensure TAO maintains high quality for both
accuracy and completeness of labels (see our paper appendix [47] for a quantitative
analysis).

Finally, several recent works have proposed to label masks instead of bounding
boxes for benchmarking multi-object tracking [225, 254]. In collecting TAO we made a
conscious choice to prioritize scale and diversity of the benchmark over pixel-accurate
labeling. Instance mask annotations are significantly more expensive to collect than
bounding boxes, and we show empirically that tracking at the box level is already a
challenging task that current methods fail to solve.

User-initialized tracking forgoes a fixed vocabulary of categories altogether and
instead relies on the user to provide bounding box annotations for the objects that
need to be tracked at test time [63, 98, 126, 222, 241]. The benchmarks in this
category tend to be larger and more diverse than their MOT counterparts, but most
of them still offer a tradeoff between the number of videos in the benchmarks and
the average length of the videos (see our paper appendix [47]). Moreover, even if the
task itself is category-agnostic, empirical distribution of categories in the benchmarks
tends to be heavily skewed towards a few common objects. We study whether this
bias in category selection results in methods failing to generalize to more challenging
objects by evaluating state-of-the-art user-initialized trackers on TAO in Section 5.5.2.

Semi-supervised video object segmentation differs from user-initialized tracking
in that both the input to the tracker and the output are object masks, not boxes [174,
249]. As a result, such datasets are a lot more expensive to collect, and videos tend
to be extremely short. The main focus of the works in this domain [32, 122, 223] is
on accurate mask propagation, not solving challenging identity association problems,
thus their effort is complementary to ours.
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Saliency-based tracking is an intriguing direction towards open-world tracking,
where the objects of interest are defined not with a fixed vocabulary of categories,
or manual annotations, but with bottom-up, motion- [165, 174] or appearance-
based [33, 231] saliency cues. Our work similarly uses motion-based saliency to
define a comprehensive vocabulary of categories, but presents a significantly larger
benchmark with class labels for each object, enabling the use and evaluation of
large-vocabulary object recognition approaches.

5.2.2 Algorithms

Multi-object trackers can be categorized into people and multi-category trackers.
The former have been mainly developed on the MOT benchmark [158] and follow
the tracking-by-detection paradigm, linking outputs of person detectors in an offline,
graph-based framework [14, 15, 27, 58]. These methods mainly differ in the way they
define the edge cost in the graph. Classical approaches use overlap between detections
in consecutive frames [111, 178, 262]. More recent methods define edge costs based
on appearance similarity [159, 191], or motion-based models [3, 37, 39, 134, 189, 198].
Very recently, Bergmann et al. [16] proposed a simple baseline approach that performs
on par with SOTA people trackers, which repurposes an object detector’s bounding
box regression capability to predict the position of an object in the next frame. Notice
that all these methods have been developed and evaluated on the relatively small
MOT dataset, which consists of 14 videos captured in very similar environments.
By contrast, TAO provides a much richer, more diverse set of videos, encouraging
trackers more robust to tracking challenges such as occlusion and camera motion.

The more general multi-object tracking scenario is usually studied using ImageNet-
Vid [194]. Methods in this group also use offline, graph-based optimization to link
frame-level detections into tracks. To define the edge potentials, in addition to
bounding box overlap, Feichtenhofer et al. [66] propose to use a similarity embedding,
which is learned jointly with the detector. Alternatively, Kang et al. [117] directly
predict short tubelets, and Xiao et al. [245] incorporate a spatio-temporal memory
module inside a detector. Inspired by [16], we show that a simple baseline approach,
relying on the Viterbi algorithm for linking detections across frames [66, 80], performs
on par with the methods mentioned above on ImageNet-Vid. We then use this
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baseline for evaluating generic multi-object tracking on TAO in Section 5.5.2, and
demonstrate that it struggles when faced with a large vocabulary and a diverse data
distribution.

User-initialized trackers tend to rely on a Siamese network architecture that was
first introduced for signature verification [29], and later adapted for tracking [18, 43,
91, 210]. They learn a patch-level distance embedding and find the closest patch to
the one annotated in the first frame in the following frames. To simplify the matching
problem, state-of-the-art approaches limit the search space to the region in which
the object was localized in the previous frame. Recently there have been several
attempts to introduce some ideas from CNN architectures for object detection into
Siamese trackers. In particular, Li et al. [137] use the similarity map obtained by
matching the object template to the test frame as input to an RPN-like module
adapted from Faster-RCNN [190]. Later this architecture was extended by introducing
hard negative mining and template updating [274], as well as mask prediction [228].
In another line of work, Siamese-based trackers have been augmented with a target
discrimination module to improve their robustness to distractors [20, 44]. We evaluate
several state-of-the-art methods in this paradigm for which public implementation is
available [20, 43, 44, 138, 228] on TAO, and demonstrate that they achieve only a
moderate improvement over our multi-object tracking baseline, despite being provided
with a ground truth initialization for each track (see Section 5.5.2 for details).

5.3 Dataset design

Our primary goal in this work is collecting a large-scale dataset of videos with a
diverse vocabulary of labeled object tracks for evaluating trackers in the wild. This
requires designing a strategy for (1) video collection, (2) vocabulary discovery, (3)
scalable annotation, and (4) evaluation. We detail our strategies for (2-4) in this
section, and defer the discussion of video collection to Section 5.4.1.

Category discovery. Rather than manually defining a set of categories, we discover
an object vocabulary from unlabeled videos which span diverse operating domains.
Our goal is to focus on dynamic objects in the world. Towards this end, we ask
annotators to mark all objects that move in our collection of videos, without any
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object vocabulary in mind. We then construct a vocabulary by giving names for all
the discovered objects, following the recent trend for open-world dataset collection [88,
268]. In particular, annotators are asked to provide a free-form name for every object,
but are encouraged to select a category from the LVIS [88] vocabulary whenever
possible. We detail this process further in Section 5.4.2.

Federation. Given this vocabulary, one option might be exhaustively labelling all
instances of each category in all videos. Unfortunately, exhaustive annotation of a
large vocabulary is expensive, even for images, as noted in [88]. We choose to use
our labeling budget instead on collecting a large-scale, diverse dataset, by extending
the federated annotation protocol of [88] from image datasets to videos. Rather than
labeling every video v with every category c, we define three subsets of our dataset
for each category: Pc, which contains videos where all instances of c are labeled,
Nc, videos with no instance of c present in the video, and Uc, videos where some
instances of c are annotated. Videos not belonging to any of these subsets are ignored
when evaluating category c. For each category c, we only use videos in Pc and Nc

to measure the precision of trackers, and videos in Pc and Uc to measure recall. We
describe how to define Pc, Nc, and Uc in Section 5.4.2.

Granularity of annotations. To collect TAO, we choose to prioritize scale and
diversity of the data at the cost of annotation granularity. In particular, we label tracks
at 1 frame per second with bounding box labels but don’t annotated segmentation
masks. This allows us to label 833 categories in 2,907 videos at a relatively modest
cost. Our decision is motivated by the observation of [222] that dense frame labeling
does not change the relative performance of the methods.

Evaluation and metric. Traditionally, multi-object tracking datasets use either
the CLEAR MOT metrics [17, 74, 158] or a 3D intersection-over-union (IoU) based
metric [194, 254]. We report the former in our paper appendix [47] (introducing
modifications for large-vocabularies of classes, including multi-class aggregation and
federation), but focus our experiments on the latter. To formally define 3D IoU, let
G = {g1, . . . , gT} and D = {d1, . . . , dT} be a groundtruth and predicted track for a
video with T frames. 3D IoU is defined as: IoU3d(D,G) =

∑T
t=1 gt∩dt∑T
t=1 gt∪dt

. If an object is
not present at time t, we assign gt to an empty bounding box, and similarly for a
missing detection. We choose 3D IoU (with a threshold of 0.5) as the default metric
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for TAO, and provide further analysis in our paper appendix [47].
Similar to standard object detection metrics, (3D) IoU together with (track)

confidence can be used to compute mean average precision across categories. For
methods that provide a score for each frame in a track, we use the average frame
score as the track score. Following [88], we measure precision for a category c in video
v only if all instances of the category are verified to be labeled in it.

5.4 Dataset collection

5.4.1 Video selection

Most video datasets focus on one or a few operating domains. For instance, MOT
benchmarks [158] correspond to urban, outdoor scenes featuring crowds of people,
whereas AVA [84] is sourced from produced films, typically capturing actors with
close shots in carefully staged scenes. As a result, methods developed on any single
dataset (and hence domain) fail to generalize in the wild. To avoid this bias, we
constructed TAO by selecting videos from a variety of existing video benchmarks to
ensure diversity of scenes and objects.

Diversity. In particular, we used datasets for action recognition, self-driving cars,
user-initialized tracking, as well as in-the-wild Flickr videos. In the action recognition
domain we selected 3 datasets: Charades [204], AVA [84], and HACS [267]. Charades
features complex human-human and human-object interactions, but all videos are
indoor with limited camera motion. In contrast, AVA has a much wider variety
of scenes and cinematographic styles but is scripted. HACS provides unscripted,
in-the-wild videos. These action datasets are naturally focused on people and objects
with which people interact. To include other animals and vehicles, we also source
clips from LaSOT [63] (a benchmark for user-initialized tracking), BDD [257] and
ArgoVerse [36] (benchmarks for self-driving cars). LaSOT is a diverse collection
whereas BDD and ArgoVerse consist entirely of outdoor, urban scenes. Finally we
sample in-the-wild videos from the YFCC100M [213] Flickr collection.

Quality. The videos are automatically filtered to remove short videos and videos
with a resolution below 480p. For longer videos, as in AVA, we use [148] to extract
scenes without shot changes. In addition, we manually reviewed each sampled video

62



CHAPTER 5. TAO: A LARGE-SCALE DATASET FOR TRACKING ANY
OBJECT

(a)

(c) (d)

(b)

: {person} 

: {camel} 

: {bicycle, mirror}

exhaustive 

non-exhaustive 

negative

Figure 5.3: Our federated video annotation pipeline. First (a), annotators mine and
track moving objects. Second (b), annotators categorize tracks using categories from
the LVIS vocabulary or free-form text, producing the labeled tracks (c). Finally,
annotators identify categories that are exhaustively annotated or verified to be absent.
In this example (d), ‘person’s are identified as being exhaustively annotated, ‘camel’s
are present but not exhaustively annotated and ‘bicycle’s and ‘mirror’s are verified
as absent. Such federated labels allow one to accurately penalize false-positives and
missed detections for exhaustively annotated and verified categories.

to ensure it is high quality: i.e., we removed grainy videos as well as videos with
excessive camera motion or shot changes. Finally, to focus on the most challenging
tracking scenarios, we only kept videos that contain at least 2 moving objects. The
full statistics of the collected videos are provided in Table 5.1. We point out that
many prior video datasets tend to limit one or more quality dimensions (in terms of
resolution, length, or number of videos) in order to keep evaluation and processing
times manageable. In contrast, we believe that in order to truly enable tracking in
the open-world, we need to appropriately scale benchmarks.

5.4.2 Annotation pipeline

Our annotation pipeline is illustrated in Figure 5.3. We designed it to separate
low-level tracking from high-level semantic labeling. As pointed out by others [12],
semantic labeling can be subtle and error-prone because of ambiguities and corner-
cases that arise in category boundaries. By separating tasks into low vs high-level, we
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are able to take advantage of unskilled annotators for the former and highly-vetted
workers for the latter.

Object mining and tracking. We combine object mining and track labeling
into a single stage of annotation. Given the set of videos described above, we ask
annotators to mark objects that move at any point in the video. To avoid overspending
our annotation budget on a few crowded videos, we limited the number of labeled
object per video to 10. Note that this stage is category-agnostic: annotators are not
instructed to look for objects from any specific vocabulary, but instead use motion
as a saliency cue for mining relevant objects. They are then asked to track these
objects throughout the video, and label them with bounding boxes at 1 frame-per-
second. Finally, the tracks are verified by one independent annotator. This process is
illustrated in Figure 5.3, where we can see that 6 objects are discovered and tracked.

Object categorization. Next, we collected category labels for objects discovered
in the previous stage and simultaneously constructed the dataset vocabulary. We
focus on the large vocabulary from the LVIS [88] object detection dataset, which
contains 1,230 synsets discovered in a bottom-up manner similar to ours. Doing so
also allows us to make use of LVIS as a training set of relevant object detectors (which
we later use within a tracking pipeline to produce strong baselines - Section 5.5.1).
Because maintaining a mental list of 1,230 categories is challenging even for expert
annotators, we use an auto-complete annotation interface to suggests categories from
the LVIS vocabulary (Figure 5.3 (b)). The autocomplete interface displays classes
with a matching synset (e.g., “person.n.01"), name, synonym, and finally those with a
matching definition. Interestingly, we find that some objects discovered in TAO, such
as “door” or “marker cap”, do not exist in LVIS. To accommodate such important
exceptions, we allow annotators to label objects with free-form text if they do not fit
in the LVIS vocabulary.

Overall, annotators labeled 16,144 objects (95%) with 488 LVIS categories, and
894 objects (5%) with 345 free-form categories. We use the 488 LVIS categories for
MOT experiments (because detectors can be trained on LVIS), but use all categories
for user-initialized tracking experiments in our paper appendix [47].

Federated “exhaustive” labeling. Finally, we ask annotators to verify which
categories are exhaustively labeled for each video. Specifically, for each category
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c labeled in video v, we ask annotators whether all instances of c are labeled. In
Figure 5.3, after this stage, annotators marked that ‘person’ is exhaustively labeled,
while ‘camel’ is not. Next, we show annotators a sampled subset of categories that
are not labeled in the video, and ask them to indicate categories which are absent in
the video. In Figure 5.3, annotators indicated that ‘bicycle’ and ‘mirror’ are absent.

5.4.3 Dataset splits

We intend for TAO to be used primarily as an evaluation benchmark. We split TAO
into three subsets: train, validation and test, containing 500, 988 and 1,419 videos
respectively. Typically, ‘train’ splits tend to be larger than ‘val’ and ‘test’. We choose
to make TAO’s training set small for several reasons. Firstly, the primary goal of
TAO is to reliably benchmark trackers in-the-wild. Secondly, most MOT systems
are modularly trained using image-based detectors with hyper-parameter tuning of
the overall tracking system. In our case, we ensure the train set is sufficiently large
for hyper-parameter tuning, and ensure that our large-vocabulary is aligned with
large-vocabulary image datasets (e.g., LVIS). This allows us to devote most of our
annotation budget for large-scale ‘val’ and held-out ‘test’ sets." We ensure that the
videos in train, validation and test are well-separated. As an example, we ensure that
each subject in the Charades dataset appears in only one of the train, validation or
test sets. We provide further details on split construction in our paper appendix [47].

5.5 Analysis of state-of-the-art trackers

We now use TAO to analyze how well existing multi- and single-object trackers
perform in the wild and when they fail. We tune the hyperparameters of each
tracking approach on the ‘train’ set, and report results on the ‘val’ set. To capitalize
on existing object detectors, we evaluate using the 488 LVIS categories in TAO. We
begin by shortly describing the methods used in our analysis.
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5.5.1 Methods

Detection. We analyze how well state-of-the-art object detectors perform on our
dataset. To this end, we present results using a standard Mask R-CNN [190] detector
trained using [243] in Section 5.5.2.

Table 5.2: ImageNet-Vid detection and
track mAP; see text (left) for details.

Viterbi Det mAP Track mAP
Detection 73.4 [245] -
D&T [66] 3 79.8 -
STMN [245] 3 79.0 60.4
Detection 3 79.2 60.3

Multi-Object Tracking. We analyze
SOTA multi-object tracking methods on
ImageNet-Vid, the largest vocabulary
dataset prior to TAO. We first clarify
whether such approaches improve detec-
tion or tracking. Table 5.2 reports the
standard ImageNet-Vid Detection mAP
and Track mAP. The ‘Detection’ row corresponds to a detection-only baseline widely
reported by prior work [66, 245, 272]. D&T [66] and STMN [245] are spatiotemporal
architectures that produce SOTA improvements of 6-7% in detection mAP over a
per-frame detector. However, both D&T and STMN post-process their per-frame
outputs using the Viterbi algorithm, which iteratively links and re-weights the confi-
dences of per-frame detections (see [80] for details). When the same post-processing
is applied to a single-frame detector, one achieves nearly the same performance gain
(Table 5.2, last row).

Our analysis reinforces the bleak view of multi-object tracking progress suggested
by [16]: while ever-more complex approaches have been proposed for the task, their im-
provements are often attributable to simple, baseline strategies. To foster meaningful
progress on TAO, we evaluate a number of strong baselines in this work. We evaluate
a powerful single-frame detector trained on LVIS [88] and COCO [142], followed by
two linking methods: SORT [19], a simple, online linker initially proposed for tracking
people, and the Viterbi post-processing step used by [66, 245], in Section 5.5.2.

Person detection and tracking. Detecting and tracking people have been a
distinct focus in the multi-object tracking community. Section 5.5.2 compares the
above baselines to a recent SOTA people-tracker [16].

User-initialized tracking. We additionally present results using user-initialized
trackers. We evaluate several recent methods for which public implementation is
available [20, 43, 44, 138, 228]. Unfortunately, these trackers do not provide a class
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label for the objects they are tracking, and cannot directly be compared to multi-
object trackers. However, these trackers can be evaluated with an oracle classifier,
allowing us to directly compare their accuracy with the methods that simultaneously
detect and track objects.

Oracles. Finally, to disentangle the complexity of object classification and tracking,
we use two oracles. The first, a class oracle, computes the best matching between
predicted and groundtruth tracks in each video. Predicted tracks that match to a
groundtruth track with 3D IoU > 0.5 are assigned the category of their matched
groundtruth track. Tracks that do not match to a groundtruth track are not modified,
and are treated as false positives. This allows us to evaluate the performance of
trackers assuming the semantic classification task is solved.

The second oracle computes the best possible assignment of per-frame detections
to tracks, by comparing them with groundtruth. When doing so, class predictions for
each detection are held constant. Any detections that are not matched are discarded.
This oracle allows us to analyze the best performance we could expect given a fixed
set of detections.

5.5.2 Results

How hard is object detection on TAO? We start by assessing the difficulty of
the detection task on TAO. To this end we evaluate the SOTA object detector [90]
using detection mAP. We train this model on a combination of LVIS and COCO,
finding that training on LVIS alone led to a model that struggles to detect people.
The final model achieves an mAP of 27.1 on TAO val at IoU 0.5, suggesting that
single-frame detection is challenging on TAO.

Do multi-object trackers generalize to TAO? Table 5.3 reports results using
tracking mAP on TAO. As a sanity check, we first evaluate a per-frame detector
by assigning each detection to its own track. As expected, this achieves an mAP of
nearly 0 (which isn’t quite 0 due to the presence of short tracks).

Next, we evaluate two multi-object tracking approaches. We compare the SOTA
Viterbi linking method to an online SORT tracker [19]. We tune SORT hyperparame-
ters on our diverse ‘train’ set. Our paper appendix [47] shows that this tuning is key
for good accuracy. The offline Viterbi algorithm takes over a month of processing
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Oracle
Method Class Track Track mAP
Detection 0.6
Viterbi [66, 80] 6.3
SORT [19] 13.2
Detection 3 31.5
Viterbi [66, 80] 3 15.7
SORT [19] 3 30.2
Detection 3 3 83.6

Table 5.3: SORT [19] and Viterbi link-
ing [66, 80] provide strong baselines on
TAO, but detection and tracking remain
challenging. Relabeling and linking detec-
tions from current detectors using the class
and track oracles is sufficient to achieve
high performance, suggesting a pathway
for progress on TAO.

Figure 5.4: SORT qualitative results,
showing (left) a successful tracking result,
and (right) a failure case due to semantic
flicker between similar classes, suggesting
that large-vocabulary tracking on TAO
requires additional machinery.

time to run on our ‘train’ set, prohibiting thorough parameter tuning. Instead, we
tune a post-processing parameter for Viterbi: the score threshold for reporting a
detection at each frame. We detail our tuning procedure in our paper appendix [47].

Surprisingly, we find that the simpler, online approach of SORT outperforms
Viterbi, perhaps because the latter has been heavily tuned for ImageNet-Vid. Because
of its scalablity (to many categories and long videos) and relatively better performance,
we focus on SORT for the majority of our experiments. However, the performance
of both methods remains low, suggesting TAO presents a major challenge for the
tracking community, requiring principled novel approaches.

To better understand the nature of the complexity of TAO, we separately measure
the challenges of tracking and classification. To this end, we first evaluate the “track”
oracle that perfectly links per-frame detections. It achieves a stronger mAP of 31.5,
compared to 13.2 for SORT. Interestingly, providing SORT tracks with an oracle class
label provides a similar improvement, boosting mAP to 30.2. We posit that these
improvements are orthogonal, and verify this by combining them; we link detections
with oracle tracks and assign these tracks oracle class labels. This provides the largest
delta, dramatically improving mAP to 83.6%. This suggests that large-vocabulary
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tracking requires jointly improving tracking and classification accuracy (e.g., reducing
semantic flicker as shown in Fig. 5.4).

Table 5.4: Person-tracking re-
sults on TAO. See text (left) for
details.

Method Person AP
Viterbi [66, 80] 16.5
SORT [19] 18.5
Tracktor++ [16] 36.7

How well can we track people? We now evalu-
ate tracking on one particularly important category:
people. Measuring AP for individual categories in
a federated dataset can be noisy [88], so we empha-
size relative performance of trackers rather than
their absolute AP. We evaluate Tracktor++ [16],
the state-of-the-art method designed specifically for
people tracking on our dataset, and compare it to the SORT and Viterbi baselines in
Table 5.4. For fairness, we update Tracktor++ to use the same detector used by our
SORT and Viterbi baselines, but only use the ‘person’ predictions from this detector.
Additionally, we tune the score threshold for Tracktor++ on our ‘train’ set, but find
the method is largely robust to this parameter (see our paper appendix [47]). We
find that Tracktor++ strongly performs other approaches (36.7 AP), while SORT
comes in second, modestly outperforming Viterbi (18.6 vs 16.5 AP). It is interesting
to note that SORT, which can scale to all object categories, performs noticeably
worse on all categories on average (13.2 mAP). Our paper appendix [47] shows that
this delta between ‘person’ and other classes is even more dramatic using the MOTA
metric (6.7 overall vs 54.8 for ‘person’). We attribute the higher accuracy for the
‘person’ category to two factors: (1) a rich history of focused research on this one
category, which has led to more accurate detectors and trackers, and (2) more complex
categories present significant challenges, such as hand-held objects which undergo
repeated occlusions during interactions.

To further investigate Tracktor++’s performance, we evaluate a simpler variant
of the method from [16], which does not use appearance-based re-identification nor
pixel-level frame alignment. We evaluate this variant on TAO, and find that removing
these components reduces AP by over 8 points (from 36.7 to 25.9), suggesting that a
majority of improvements over our baselines come from these two components. Our
results contrast those of [16], which suggest that re-id and frame alignment are not
particularly helpful. Compared to prior benchmarks, we posit the diversity of TAO
results in a challenging testbed for person tracking which encourages trackers robust
to occlusion and camera jitter.
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Do user-initialized trackers generalize better? Next, we present results of
recent user-initialized trackers in Table 5.5. For each object in TAO, we provide
the user-initialized tracker with a groundtruth box. We consider two strategies for
initialization. The standard approach (denoted ‘Init first’) initializes trackers using
the first frame an object appears in, and runs trackers for the rest of the video. As the
object may be partially occluded in this first frame, we additionally report a variant
which initializes trackers using the frame with the largest bounding box (denoted
‘Init biggest’), and runs trackers forwards and backwards in time.

Unlike multi-object trackers, most user-initialized trackers report a bounding box
and confidence for objects at each frame, and do not explicitly report when an object
is absent [222]. To resolve this, we modify each method to report an object as absent
when the confidence drops below a threshold. We tune this threshold on the ‘train’
set in our paper appendix [47] and find that user-initialized trackers are particularly
sensitive to this threshold.

We compare these trackers to SORT, supplying both with a class oracle. As
expected, the use of a ground-truth initialization allows the best user-initialized
methods to outperform the multi-object tracker. However, even with an oracle
box initialization and an oracle classifier, tracking remains challenging on TAO.
Indeed, most user-initialized trackers provide at most modest improvements over

Table 5.5: SOTA user-initialized tracking results on ‘val’. Surprisingly, despite using
an oracle initial bounding box, these methods provide only modest improvements
over a multi-object tracker. Because some user-initialized trackers are trained on
videos in TAO, we re-train them on their original train set with TAO videos removed,
denoting this with *.

Oracle Track mAP
Method Box Init Class Init first Init biggest
SORT 3 30.2
ECO [43] 3 3 23.7 30.4
SiamMask [228] 3 3 30.8 37.0
SiamRPN++ LT [138] 3 3 27.2 30.4
SiamRPN++ [138] 3 3 29.7 35.9
ATOM* [44] 3 3 30.9 38.6
DIMP* [20] 3 3 33.2 38.5
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SORT, despite using an oracle box initialization. The ‘Init biggest’ strategy provides
stronger improvements by initializing with easier frames, but this strategy cannot
be used in online applications, as it requires access to the entire video. Our paper
appendix [47] notes that user-initialized trackers can accurately track for a few frames
after initialization, leading to improvements in MOTA, but provide little benefits in
longer-term tracking. We hypothesize that the small improvement of user-initialized
trackers over SORT is due to the fact that the former are trained on videos with a
small vocabulary of objects with limited occlusions, leading to methods that do not
generalize to the most challenging cases in TAO. One goal of user-initialized trackers
is open-world tracking of objects without good detectors. TAO’s large vocabulary
allows us to analyze progress towards this goal, indicating that large-vocabulary multi-
object trackers may now address the open-world of objects as well as category-agnostic,
user-initialized trackers.

5.6 Discussion

Developing tracking approaches that can be deployed in-the-wild requires being able
to reliably measure their performance. With nearly 3,000 videos, TAO provides such
a robust evaluation benchmark. Our analysis provides new conclusions about the
state of tracking, while further raising a number of important questions to be explored
in future work.

The role of user-initialized tracking. User-initialized trackers aim to track
any object, without requiring category-specific detectors. In this work, we raise a
provocative question: with the advent of large vocabulary object detectors [88], to
what extent can (detection-based) multi-object trackers perform generic tracking
without user initialization? Table 5.5, for example, shows that large-vocabulary
datasets (such as TAO and LVIS) now allow multi-object trackers to match or
outperform user-initialization for a number of categories.

Specialized tracking approaches. Our hope in collecting TAO is to measure
progress in tracking in-the-wild. A valid question is whether progress may be better
achieved by building trackers for application-specific scenarios. An indoor robot, for
example, has little need for tracking elephants. However, success in many computer
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vision fields has been driven by the pursuit of generic approaches, that can then be
tailored for specific applications. We do not build one class of object detectors for
indoor scenes, and another for outdoor scenes, and yet another for surveillance videos.
We believe that tracking will similarly benefit from targeting diverse scenarios. Of
course, due to its size, TAO also lends itself to use for evaluating trackers for specific
scenarios or categories, as in Section 5.5.2 for ‘person.’

Video object detection. Although image-based object detectors have shown
significant improvements in recent years, our analysis in Section 5.5.1 suggests that
simple post-processing of detection outputs remains a strong baseline for detection in
videos. While we do not emphasize it in this work, we note that TAO can also be used
to measure progress in video object detection, where the goal is not to maintain the
identity of objects, but simply to reliably detect them in each frame of a video. The
large vocabulary in TAO particularly provides avenues for incorporating temporal
information to resolve classification errors, which remain challenging (see Figure 5.4).
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Chapter 6

Evaluating Large-Vocabulary
Detectors: The Devil is in the Details

6.1 Introduction

In the previous chapter, we presented a new dataset, TAO, for tracking large vocabu-
laries of objects. A qualitative issue we found when applying detectors on TAO was
that they often output many overlapping detections for varying classes. This arises
from the fact that object detectors today do not have confidence estimates that can
be compared across classes: they are not well-calibrated. In this chapter, we show
that current evaluation metrics may encourage such miscalibration, and propose new
evaluations and calibration techniques for addressing this issue.

The task of object detection is commonly benchmarked by the mean of a per-
category performance metric, usually average precision (AP) [61, 142]. This evaluation
methodology is designed to treat all categories independently : the AP for each category
is determined by its confidence-ranked detections and is not influenced by the other
categories. On one-hand, this is a desirable property as it treats all classes equally.
On the other hand, it ignores cross-category score calibration, a key property in
real-world use cases.

Surprisingly, in practice object detection benchmarking diverges from the goal of
category-independent evaluation. Cross-category interactions enter into evaluation
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Figure 6.1: The standard object detection average precision (AP) imple-
mentation can be gamed by an unintuitive re-ranking strategy. Top: A
detector normally outputs its top-k most confident detections per image. Bottom:
We discover an unintuitive re-ranking strategy that can increase AP substantially
by reducing the number of detections output for frequent classes (e.g ., ‘person’)
and increasing the number output for rarer classes (e.g ., ‘bicycle’). This re-ranking
balances AP better across categories, but counterintuitively removes some higher
confidence true positives while also adding some lower confidence false positives, as
shown above. We analyze why this happens in practice, how to fix it, and explore
the consequences of the proposed solution.

due to a seemingly innocuous implementation detail: the number of detections per
image, across all categories, is limited to make evaluation tractable [88, 142]. If a
detector would exceed this limit, then a policy must be chosen to reduce its output.
The commonly used policy ranks all detections in an image by confidence and retains
the top-scoring ones, up to the limit. This policy naturally outputs the detections
that are most likely to be correct according to the model.

However, this natural policy is not necessarily the best policy given the objective
of maximizing AP. We will demonstrate a counterintuitive result: there exists a policy,
which can achieve higher AP, that discards a well-chosen set of higher-confidence
detections in favor of promoting lower-confidence detections; see Figure 6.1. We first
derive this result using a simple toy example with a perfectly calibrated detector.
Then, we show that given a real-world detection model, we can employ this new
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ranking policy to improve AP on the LVIS dataset [88] by a non-trivial margin. This
policy is unnatural because it directly contradicts the model’s confidence estimates—
even when they are perfectly calibrated—and shows that AP, as implemented in
practice, can be vulnerable to gaming-by-re-ranking.

This analysis reveals that the default AP implementation neither achieves the goal
of being independent per class nor, to the extent that it involves cross-category interac-
tions, does it measure cross-category score calibration with a principled methodology.
Further, the metric can be gamed. To address these limitations, first we fix AP
to make it truly independent per class, and second, given the practical importance
of calibration, we consider a complementary metric, APPool, that directly measures
cross-category ranking.

Our fix to the standard AP implementation removes the detections-per-image
limit and replaces it with a per-class limit over the entire evaluation set. This simple
modification leads to tractable, class-independent evaluation. We examine how recent
advances on LVIS fare under the new evaluation by benchmarking recently pro-
posed loss functions, classifier head modifications, data sampling strategies, network
backbones, and classifier retraining schemes. Surprisingly, we find that many gains
in AP stemming from these advances do not translate into improvements for the
proposed category-independent AP evaluation. This finding shows that the standard
AP is sensitive to changes in cross-category ranking. However, this sensitivity is an
unintentional side-effect of the detection-per-image limit, not a principled measure of
how well a model ranks detections across categories.

To enable more reliable benchmarking, we propose to directly measure improve-
ments to cross-category ranking with a complementary metric, APPool. APPool pools
detections from all classes and computes a single precision-recall curve — the detec-
tion equivalent of micro-averaging from the information retrieval community [154].
To optimize APPool, true positives for all classes must rank ahead of false positives
for any class, making it a principled measure of cross-category ranking. We extend
simple score calibration approaches to work for large-vocabulary object detection
and demonstrate significant APPool improvements that result in state-of-the art
performance.
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6.2 Related work

Large-vocabulary detection. Object detection research has largely focused on
small-to-medium vocabularies (e.g ., 20 [61] to 80 [142] classes), though notable
exceptions exist [49, 96]. Recent detection benchmarks with hundreds [131, 269] to
over one-thousand classes [88] have renewed interest in large-vocabulary detection.
Most approaches re-purpose models originally designed for small vocabularies, with
modifications aimed at class imbalance. Over-sampling images with rare classes to
mimic a balanced dataset [88] is simple and effective. Another strategy leverages
advances from the long-tail classification literature, including classifier retraining [116,
264] and using a normalized classifier [147, 227]. Finally, recent work proposes several
new loss functions to reduce the penalty for predicting rare classes, e.g ., equalization
loss (EQL) [147], balanced group softmax (BaGS) [140] or the CenterNet2 Federated
loss [271]. We analyze these advances in large-vocabulary detection, finding that a
number of them do not show improvements under our fixed, independent per-class
AP evaluation, indicating that they improve existing AP by modifying cross-category
rankings.

Detection evaluation. Average precision (AP) is the most common object detec-
tion metric, used by PASCAL [61], COCO [142], OpenImages [131], and LVIS [88].
Conceptually, AP evaluates detectors independently for each class. We show that
common implementations deviate from this conceptual goal in important ways, and
propose potential fixes and alternatives. Prior work analyzing AP focuses on com-
parisons across classes, e.g . Hoiem et al . [93] present a normalized average precision
(APN) and Zhang et al . [264] propose ‘sampled AP’, but does not expose the issues
covered in this paper. Our procedural fix for AP computation removes the impact of
cross-category scores on evaluation, and thus we propose a variant, APPool, which
explicitly rewards better cross-category rankings. From an information retrieval
perspective, APPool is the micro-averaging counterpart to AP [154], which evaluates
macro-averaged performance, and has been used as a diagnostic in prior work [52].

Model calibration. A well-calibrated model is one that provides accurate probabilis-
tic confidence estimates. Calibration has been explored extensively in the classification
setting, including parametric approaches, such as Platt scaling [179] and beta calibra-
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tion [128], and non-parametric approaches, such as histogram binning [259], isotonic
regression [260], bayesian binning into quantiles (BBQ) [161]. While small neural
networks tend to be well-calibrated [164], Guo et al . [86] show that deep networks are
heavily uncalibrated. Kuppers et al . [130] extend this analysis to deep network based
object detectors and show that size and position of predicted boxes helps reduce
calibration error. We also apply calibration strategies to object detectors, but find
that per-class calibration is crucial for improving APPool.

6.3 Pitfalls of AP on large-vocabulary detection

Through both toy and real-world examples, we show that cross-category scores impact
AP in counterintuitive ways.

6.3.1 Background

The standard object detection evaluation aims to evaluate each class independently.
In practice, however, this independence is broken due to an apparently harmless
implementation detail: to evaluate efficiently, benchmarks limit the number of de-
tections a model can output per image (e.g . to 100). In practice, this limit is set
(hopefully) to be high enough that detections beyond it are unlikely to be correct.
Importantly, this limit is shared across all classes, implicitly requiring models to rank
predictions across classes.

Our analysis shows that this detections-per-image limit, when used with a class-
balanced evaluation like AP, can enable an unintuitive ranking policy to perform
better than the natural policy of ranking detections by their estimated confidence.
The effect size is correlated with increasing the number of categories or the average
instances per category.

6.3.2 Analysis

A toy example. Consider a toy evaluation on a dataset with two classes, as shown
in Figure 6.2. For simplicity, suppose we have access to a detector that is perfectly
calibrated: when the model outputs a prediction with confidence s (e.g . 0.3), the
prediction is a true positive 100 · s% (e.g . 30%) of the time. We consider evaluating
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(a) Left: Predictions from a perfectly cali-
brated model: a prediction with confidence s
is correct 100·s% of the time. Middle, Right:
the two possible groundtruth scenarios and
their probabilities.
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(c) Ranking 1 precision and recall. Since A1,
A2 have a precision of 1.0, AP for class A is
1.0. Class B has no predictions, so the AP
is 0.0, leading to an overall AP of 0.5.
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(d) Ranking 2 precision and recall. AP for A
is 0.5. For B: B1 is either a true positive (AP
1.0) or not (AP 0.0). On average, this results
in AP 0.8 for B, and overall AP of 0.65.

Figure 6.2: Limiting detections-per-image rewards unintuitive rankings. A
toy scenario showing the interplay between a class-balanced AP evaluation and a limit
on the number of detections per image. A perfectly calibrated model should output
‘Ranking 1’ in (b) since it ranks detections that are more likely correct first. However,
given a detections-per-image limit of 2, ‘Ranking 2’ yields a higher AP even though
it ranks a detection that is more likely incorrect (B1) ahead of one that is more likely
correct (A2). Note that by removing the limit, the rankings across categories become
fully independent and both rankings would result in an equal overall AP for the two
rankings (0.75 in expectation; not visualized).
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this model’s outputs under two different rankings, using the standard class-balanced
AP evaluation with a limit of two detections per image.

Under this setting, consider the predictions w.r.t. two possible groundtruth sce-
narios in Section 6.3.1. The model predicts two instances for class A (A1, A2) with
confidence 1.0, and one instance for class B (B1), with confidence 0.8. Since the
model is perfectly calibrated (by assumption), we know A1 and A2 are true positives
100% of the time, while B1 is a true positive 80% of the time.

With these predictions, consider the two potential rankings depicted in Sec-
tion 6.3.1. Ranking 1 appears ideal: it ranks more confident detections before lower
confident ones, as is standard practice. By contrast, Ranking 2 is arbitrary: B1 is
ranked above A2, despite having lower confidence.

Surprisingly, Ranking 2 outperforms Ranking 1 under the AP metric with a limit
of two detections per image, as shown in Section 6.3.1 and Section 6.3.1. While
Ranking 1 gets a perfect AP of 1.0 for class A, it gets 0 AP for class B, leading to an
overall AP of 0.5. By contrast, while Ranking 2 leads to a lower AP for class A (0.5),
it scores an expected AP of 0.8 for class B, yielding an overall AP of 0.65!

Of course, this is a toy scenario, concocted to highlight an evaluation pitfall using
an artificially low detections-per-image limit of only two predictions. We now show
that a similar effect exists for a real-world detection benchmark.

A real-world example. The LVIS [88] dataset uses the evaluation described above,
with a limit of 300 detections per image. We investigate whether an artificial ranking
policy, as in Figure 6.2, can lead to improved AP on this dataset. Concretely, we
evaluate a simple policy: we first discard all but the top k scoring detections per class
across the entire evaluation dataset. Given the predictions in Section 6.3.1, applying
this policy with k = 1 leads to Ranking 2 from Section 6.3.1: an arbitrary ranking
which, nevertheless, leads to a higher AP than the baseline Ranking 1.

This ranking policy, combined with the detections-per-image limit, is unintuitive:
it explicitly discards high-scoring predictions for many classes in order to fit low-
scoring predictions from other classes into the detections-per-image limit, as shown
by our toy example in Section 6.3.1 and with real-world detections in Figure 6.1.
Using a baseline Mask R-CNN model [90] (see supp. for details), we find that this
strategy, with k = 10, 000, improves LVIS AP by 1.2 points, and APr by 2.9 points,
as shown in Table 6.1. Note that this results purely from a modified ranking policy,
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dets/class dets/im AP APr APc APf

∞ (Ranking 1) 300 22.6 12.6 21.1 28.6
10,000 (Ranking 2) 300 23.8 (+1.2) 15.5 (+2.9) 22.7 28.5

Table 6.1: Unintuitive Ranking 2 (Section 6.3.1) improves LVIS AP. Arti-
ficially limiting the number of detections per class across the entire validation set
leads to higher LVIS AP when using the standard limit of 300 detections per image,
perhaps paradoxically. In Figure 6.1 we show how this ranking policy (which, again,
improves AP) suppresses some higher-confidence detections in favor detections that
the model estimates are more likely incorrect.

LVIS
dets/im AP APr APc APf

100 18.2 6.5 15.8 26.1
300 22.6 12.6 21.1 28.6

1,000 25.0 (+2.4)16.8 (+4.2)24.1 29.7
2,000 25.6 (+3.0)18.1 (+5.5)24.6 29.9
5,000 26.0 (+3.4)19.7 (+7.1)24.9 30.0
10,000 26.1 (+3.5)19.8 (+7.2)25.0 30.1

COCO
AP
37.4
37.5 (+0.1)

37.5 (+0.1)

37.5 (+0.1)

37.5 (+0.1)

37.5 (+0.1)

Table 6.2: Increasing the limit on detections per image significantly im-
proves LVIS AP. APr improves by over 7 points (over 50% relative), indicating
many accurate rare class predictions are ignored due to the default limit of 300
detections per image. By contrast, this limit does not significantly impact COCO,
which contains a significantly smaller vocabulary.

without any changes to the evaluation or model. This non-trivial improvement
is roughly the magnitude achieved by a typical new method published at CVPR
(e.g . [140, 209]). The relatively larger improvement to APr suggests that under the
standard confidence-based ranking, accurate predictions for rare classes are crowded
out by frequent class predictions due to the detections-per-image limit.

Although this limit appears high (at 300 detections-per-image), LVIS contains
over a thousand object classes: even outputting a single prediction for each class is
impossible under the limit. The assumption is that detections beyond the first 300
are likely to be false positives. Table 6.2 verifies that this assumption is incorrect:
increasing the limit on detections per image leads to significantly higher results on
the LVIS dataset. In particular, the AP for rare categories improves drastically from
12.6 to 19.5 with a higher limit.

When is gameability an issue? Given the impact of the detections-per-image
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# instances AP@dets/im
Subset # classes per class 300 5,000 ∆

R 337 3.6 18.5 19.0 +0.5
C 461 28.4 24.6 25.0 +0.4

F 405 569.0 28.7 30.0 +1.3
R C 798 17.9 22.2 23.3 +1.1

C F 866 281.2 24.7 27.4 +2.7
R F 742 312.2 24.1 26.6 +2.5
R C F 1,203 203.4 22.6 26.0 +3.4

Table 6.3: Analyzing dets/image limit on LVIS subsets. We restrict a baseline
model to a subset of classes and evaluate on the subset. ‘R’, ‘C’, and ‘F’ indicate rare,
common and frequent. We compare the AP change (∆) at the default 300 dets/im
limit vs . a high limit of 5,000. The change is more prominent for subsets with more
classes and more instances per class, suggesting it is driven by both large vocabularies
and the number of labeled objects.

limit on LVIS, a natural question is whether this also affects the widely used COCO
dataset. Table 6.2 shows that increasing this limit does not significantly change
COCO AP, suggesting the limit has not negatively impacted COCO evaluation. We
hypothesize that this is due to the significantly smaller vocabulary in COCO relative
to the detections limit: with only 80 classes, detections beyond the top 100 per image
are unlikely to impact AP.

To analyze this hypothesis, we evaluate on subsets of LVIS. Given a baseline model
trained on LVIS, we restrict its predictions to a subset of classes, and report AP with
a low and a high detections-per-img limit in Table 6.3. We find that on subsets which
have small vocabularies and few labeled instances per class, the gap between AP in
the two settings is small (0.4-0.5 points). However, when there are many labeled
instances in the evaluation set (as with the ‘F’ subset), or the vocabulary is large (as
with the second and third blocks of the table), the gap is much higher. This suggests
that AP is sensitive to the detections limit on large vocabulary datasets, particularly
if they contain many labeled instances per image.
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dets/class dets/im AP APr APc APf

1,000 ∞ 21.9 17.7 22.2 23.5
5,000 ∞ 25.0 (+3.1) 19.5 (+1.8) 24.4 28.2
10,000 ∞ 25.6 (+3.7) 19.7 (+2.0) 24.7 29.1
30,000 ∞ 26.0 (+4.1) 19.8 (+2.1) 24.9 29.8
50,000 ∞ 26.0 (+4.1) 19.9 (+2.2) 25.0 30.0

Table 6.4: LVIS AP evaluation with varying limits on the number of de-
tection/class, with no limit on detections/image. A limit of 10,000 balances
evaluation speed, memory, and AP well.

6.4 AP without cross-category dependence

We now address this undesirable interaction between AP and cross-category scores.
We have already diagnosed that this interaction is caused by the detections-per-image
limit. In theory, then, the solution is simple: don’t limit the number of detections
per image. Of course, this is impossible in practice, as we cannot evaluate infinite
detections. How, then, can we approximate this hypothetical evaluation?

Higher detections-per-image limit. A natural option is to have a large, but finite,
detections-per-image limit. Predictions beyond a very high limit are exceedingly
unlikely to be correct, and thus may not affect the evaluation. Indeed, Table 6.2 shows
that increasing the limit beyond 5,000 does not significantly affect AP. Unfortunately,
this results in prohibitively slower evaluation: on LVIS validation, a baseline model’s
outputs are 15× larger using a limit of 5,000 detections than at the default limit of
300 (37GB vs . 2.4GB). Moreover, submitting such results to an evaluation server, as
required for the LVIS test sets, is impractical.

Limit detections-per-class. We now present an alternative, tractable implementa-
tion. Rather than discarding low-scoring detections per image, we discard low-scoring
detections per class across the dataset. That is, given a model’s output on the
evaluation set, the benchmark would only evaluate the top k predictions per class,
discarding the rest.

We find that this strategy significantly reduces the storage and time requirements
for evaluation. Table 6.4 shows that limiting detections to 10,000 per class across the
dataset achieves a good balance. This limit yields 98.5% of full AP while increasing
file size and evaluation time only by a factor of 2× (compared to 15× for the previous
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strategy), making evaluation tractable. In principle, this limit depends on the size
of the evaluation set, similar to how the standard per-image limit depends on the
vocabulary size and labeling density. In practice, the LVIS validation and test sets
all contain 20,000 images and thus a single limit suffices.

This evaluation may appear similar to the undesirable Ranking 2 in Figure 6.2.
However, Ranking 2 is an undesirable strategy for resolving competition across classes,
while our evaluation removes this competition altogether by providing an independent
detection budget per class. This evaluation has a natural appeal when viewing
detection as an information retrieval task, the field from which AP originates: the
detector is allowed to ‘retrieve’ up to k detections (or ‘documents’) per class from the
entire evaluation set (or ‘corpus’). In practice, various strategies exist for efficiently
selecting the top k detections over a large set of images.

We recommend this latter strategy of limiting detections per class, with no limit
per image. In the remainder of the paper, we refer to the default evaluation (with a
detections-per-image limit) as ‘APOld’ and our new, recommended version that limits
detections per class as ‘APFixed’.

6.5 Impact on long-tailed detector advances

We have shown that the current AP evaluation introduces subtle, undesirable interac-
tions with cross-category rankings due to the detections-per-image limit. However, it
remains unclear to what extent this issue meaningfully affects prior conclusions drawn
on LVIS. To analyze this, we evaluate the importance of different design choices in
LVIS detectors with the original evaluation (‘APOld’), with a limit of 300 predictions
per image, and our modified evaluation (‘APFixed’), with a limit of 10,000 detections
per class across the whole evaluation set (with no per-image limit).

Experimental setup. The following experiments use Mask R-CNN [90]. Unless
noted differently: we use a ResNet-50 [89] backbone with FPN [143] pre-trained on
ImageNet [194] and fine-tuned on LVIS v1 [88] for 180k iterations with repeat factor
sampling, minibatch of 16 images, learning rate of 0.02 decayed by 0.1× at 120k and
160k iterations, and weight decay of 1e−4. Batch norm [103] parameters are frozen.
Results are reported on LVIS v1 validation using the mean of three runs with different
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Loss APOld APFixed

Softmax CE 22.3 25.5
Sigmoid BCE 22.5 (+0.2) 25.6 (+0.1)

EQL [209] 24.0 (+1.7) 26.1 (+0.6)

Federated [271] 24.7 (+2.4) 26.3 (+0.8)

BaGS [140] 24.5 (+2.2) 25.8 (+0.3)

(a) Loss functions. Choosing the right loss
is more important under APOld, providing an
improvement of up to +2.4 AP. Under our
proposed APFixed, the impact of losses is re-
duced, to at most +0.8 AP. This result indi-
cates that these loss functions may primarily
modify cross-category rankings (also see Fig-
ure 6.3).

Loss Obj Norm APOld APFixed

Softmax CE

7 7 22.3 25.5
3 7 23.2 (+0.9) 25.3 (−0.2)

7 3 23.2 (+0.9) 26.3 (+0.8)

3 3 24.4 (+2.1) 26.3 (+0.8)

Sigmoid BCE 3 3 24.2 (−0.2) 26.3 (+0.0)

EQL [209] 3 3 24.7 (+0.3) 26.1 (−0.2)

Federated [271] 3 3 25.1 (+0.7) 26.3 (+0.0)

BaGS [140] 3 3 25.1 (+0.7) 26.2 (−0.1)

(b)Classifier modifications. We evaluate two ideas com-
monly used for improving long-tail detection: an object-
ness predictor (‘Obj’) [140], and L2-normalizing both the
linear classifier weights and input features (‘Norm’). Once
again, we find that these components improve the baseline
significantly under the APOld, but provide minor improve-
ments under our APFixed. Nevertheless, our results indi-
cate these components provide a strong, simple baseline
that erases the impact of the training loss choice.

Sampler APOld APFixed

Uniform 18.4 22.8
CAS 19.2 (+0.8) 21.5 (−1.3)

RFS 22.3 (+3.9) 25.5 (+2.7)

(c) Samplers. Category Aware
Sampling (CAS) and Repeat Fac-
tor Sampling (RFS) are common
sampling strategies for addressing
class imbalance. While both strate-
gies outperform the uniform sam-
pling baseline under APOld, only
RFS provides significant improve-
ments under APFixed.

Phase 1 Phase 2 APOld APFixed

RFS - 22.3 25.5
Uniform RFS 21.6 (−0.7) 24.9 (−0.6)

Uniform CAS 23.1 (+0.8) 24.9 (−0.6)

RFS CAS 23.6 (+1.3) 25.6 (+0.1)

(d)Classifier retraining. We evaluate the effi-
cacy of training detectors in two phases, a com-
mon technique [116, 227]. Phase 1: the model
is trained end-to-end with one sampler. Phase
2: only the final classification layer is trained,
using a different sampler. This strategy im-
proves APOld, but not APFixed, suggesting that
classifier retraining may primarily modify cross-
category rankings.

Backbone APOld APFixed

ResNet-50 22.3 25.5
ResNet-101 24.6 (+2.3) 27.7 (+2.2)

ResNeXt-101 26.2 (+3.9) 28.7 (+3.2)

(e) Stronger backbones. Using larger
backbones consistently improves the de-
tector under both APOld and APFixed,
indicating, as one might expect, that
larger backbones improve overall detec-
tion quality and not just cross-category
rankings. ResNeXt-101 uses the 32x8d
configuration.

Table 6.5: Impact of various design choices on the LVIS v1 validation
dataset, comparing APOld to APFixed. Unless specified otherwise, each ex-
periment uses a ResNet-50 FPN Mask R-CNN model trained with Repeat Factor
Sampling (RFS) for 180k iterations with 16 images per batch. All numbers are the
average of three runs with different random seeds and initializations.
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Figure 6.3: Score distribution induced by different loss functions for LVIS
rare, common, and frequent categories. Compared to the baseline softmax CE
loss, BaGS, EQL, and Federated losses tilt the distribution to be more uniform,
modifying ranking of detections across categories.

random seeds.

6.5.1 Case studies

Loss functions. As discussed in Section 6.2, a number of new losses have been
proposed in the past year. We analyze three in particular: EQL [209], BaGS [140],
and a ‘Federated’ loss [271]. Section 6.4 (first column) shows that, under the original
evaluation, the choice of loss function can robustly improve the AP of a baseline
model by up to 2.4 points, from 22.3 using softmax cross-entropy (CE) to 24.7 using
the Federated loss. These gains suggests the choice of loss function is important.
However, under our ‘APFixed’, the losses are more similar, differing by at most 0.8
points.

To gain insight into why the losses improve APOld more than APFixed, we plot the
score distribution for the LVIS rare, common, and frequent categories (normalized so
the average score for frequent categories is 1.0). Figure 6.3 shows that the EQL, BaGS,
and Federated losses tilt the distribution to be more uniform relative to softmax
CE loss. This boosts the confidence of rare category detections, making them more
likely to appear in the 300 detections-per-image limit. This suggests that these losses
change cross-category rankings compared to softmax CE loss in a way that APOld

rewards. Because APFixed is category independent, it does not reward cross-category
ranking modifications.
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Classifier heads. Next, we evaluate two common modifications to the linear classifier
in detectors in Section 6.4. The first modification trains a linear objectness binary
classifier in parallel to the K-way classifier [140, 188, 227], denoted ‘Obj’. The
second L2-normalizes the input features and classifier weights during training and
inference [147, 226, 227], denoted ‘Norm.’ We share implementation details in
supplementary.

The first block in Section 6.4 shows that while adding an objectness predictor
modestly improves APOld (+0.9), it results in a slightly lower APFixed (−0.2). This
discrepancy suggests the objectness predictor optimizes the ranking of predictions
across classes, but doesn’t meaningfully improve the quality of the detections. On
the other hand, using a normalized classifier consistently leads to higher accuracy
under both APOld (+0.9) and APFixed (+0.8). Finally, we find that applying both
these modifications to the classifier results in a strong baseline under both APOld

and APFixed. The second block in Section 6.4 further shows that under APFixed, the
choice of loss function is largely irrelevant when both of these classifier modifications
are used.

Sampling strategies. Modifying the image sampling strategy is a common approach
for addressing class imbalance in LVIS. Section 6.4 analyzes three strategies: Uniform,
which samples images uniformly at random; Class Aware Sampling (CAS), which
first samples a category and then an image containing that category; and Repeat
Factor Sampling (RFS) [88], which oversamples images containing rare classes. RFS
consistently and significantly outperforms the others under both APOld and APFixed.
Surprisingly, while CAS outperforms uniform sampling under APOld, it hurts accuracy
under APFixed, suggesting that CAS improves primarily due to how it ranks predictions
across classes.

Classifier retraining. A common alternative to training with a single sampler is
to train the model end-to-end using one sampler, and fine-tune the linear classifier
with a different sampler [116, 264]. Under APOld, carefully choosing the samplers
for these phases appears important, improving by +1.3 AP. However, under APFixed,
this improvement disappears, indicating that on LVIS, classifier retraining primarily
improves by aligning scores across classes.

Stronger backbones. Finally, we evaluate the improvements due to stronger
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APPool

dets/im AP APr APc APf

300 26.2 8.0 16.7 27.0
1,000 26.8 (+0.6)10.6 (+2.6)19.8 27.6
2,000 27.0 (+0.8)11.0 (+3.0)20.5 27.7
5,000 27.0 (+0.8)11.3 (+3.3) 20.8 27.7
10,000 27.0 (+0.8)11.3 (+3.3) 20.8 27.7

Table 6.6: Impact of limiting detections-per-image on APPool. As expected,
APPool is less sensitive to this limit than APOld because each instance, rather than
each class, is weighted equally.

backbone architectures. We evaluate four progressively stronger models: ResNet-50,
ResNet-101 [89], and ResNeXt-101 32x8d [248]. Unlike many other LVIS-specific
design choices, we find that the choice of a larger backbone consistently improves
accuracy for both APOld and APFixed.

6.5.2 Discussion: something gained, something lost

APFixed makes AP evaluation category independent by design. As a result, it is no
longer vulnerable to gaming-by-re-ranking, as we demonstrate is possible with APOld

in Section 6.3. However, by benchmarking several recent advances in long-tailed object
detection we observe evidence that several of the improvements may be due to better
cross-category rankings, because the improvements that were observed with APOld

largely disappear when evaluated with APFixed. While APOld improperly evaluated
calibration, APFixed is invariant to calibration: i.e., per-category, monotonic score
transformations do not change APFixed.

Neither APOld nor APFixed appropriately specifies how detectors should be deployed
in the real world, a task which requires score calibration. In the simplest example,
one may want to produce a demo that visualizes all detections above a global score
threshold (e.g . 0.5) and expect to see consistent results across all categories. Given
this practical demand, we consider in the next section a variant of AP, called APPool,
that directly rewards cross-category rankings, without the vulnerability to gaming
displayed by APOld. Furthermore, we develop a simple detector score calibration
method and show that it improves APPool.
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6.6 Evaluating cross-category rankings

An independent, per-class evaluation is appealing in its simplicity. Most practical
applications, however, require comparing the confidence of predictions across classes
to form a unified understanding of the objects in an image. As an extreme example,
note that a detector can output arbitrary range of scores for each class for a truly
independent evaluation: that is, all detections for one class (say, ‘banana’) may
have confidences above 0.5, while all detections for another class (say, ‘person’) have
confidences below 0.5. Using such a detector in practice requires carefully calibrating
scores across classes—an open challenge that is not evaluated by current detection
evaluations.

6.6.1 APPool: A cross-category rank sensitive AP

To address this, we consider a complementary metric, APPool, which explicitly evalu-
ates detections across all classes together [52]. To do this, we first match predictions to
groundtruth per-class, following the standard evaluation. Next, instead of computing
a precision-recall (PR) curve for each class, we pool detections across all classes to
generate a single PR curve across all classes, and compute the Average Precision on
this curve to get APPool.

This evaluation has two key properties. First, it ranks detections across all classes
to generate a single precision-recall curve, incentivizing detectors to rank confident
predictions above lower confidence ones. Second, it weights all groundtruth instances,
rather than classes, equally. This removes a counterintuitive effect, illustrated in Fig-
ure 6.2, that can occur with class averaging. Further, it reduces the impact of the
detections-per-image limit, as low-confidence predictions for some rare classes do
not significantly impact the evaluation. Because of this, however, the evaluation is
influenced more by frequent classes than rare ones. To analyze performance for rare
classes, we further report three diagnostic evaluations which evaluate predictions only
for classes within a specified frequency: APPool

r (for rare classes), APPool
c (common),

and APPool
f (frequent).

88



CHAPTER 6. EVALUATING LARGE-VOCABULARY DETECTORS: THE
DEVIL IS IN THE DETAILS

APFixed APPool

Loss AP APr APc APf AP APr APc APf

Softmax CE 25.5 18.9 24.9 29.1 25.6 11.5 20.5 26.2
Sigmoid BCE 25.6 (+0.1)19.4 24.9 28.9 25.6 (+0.0)10.8 20.1 26.1

EQL [209] 26.1 (+0.6)19.9 26.1 28.9 25.9 (+0.3)11.3 22.9 26.3
Federated [271] 26.3 (+0.8)20.7 24.9 30.2 27.8 (+2.2)16.1 22.0 28.2

BaGS [140] 25.8 (+0.3)17.9 25.6 29.5 26.0 (+0.4) 9.1 20.8 26.4

Table 6.7: APFixed and APPool for models trained with varying losses. Fed-
erated significantly outperforms others under APPool.

6.6.2 Analysis

How does the dets/im limit affect APPool? Table 6.6 analyzes how the
detections-per-image limit impacts APPool. As expected, increasing this limit does not
significantly affect APPool: while AP can change drastically due to a few additional
true positives for rare classes, APPool treats true positives for all classes equally.
Increasing the limit beyond 300 detections improves the diagnostic APPool

r metric,
but only mildly improves APPool by 0.8 points. Nonetheless, for consistency, we
evaluate models with the same detections as APFixed: the top 10,000 per class, with
no per-image limit.

Do losses impact APPool? Next, we analyze various losses under APPool, though
we also analyze other detector components in supp. Table 6.7 compares losses under
APFixed and APPool. Perhaps surprisingly, while EQL and BaGS do not meaningfully
impact APPool, the Federated loss improves by 2.2 points over the baseline softmax
CE loss. This provides a new perspective for the Federated loss: Although it does
not explicitly calibrate models, it improves cross-category ranking of predictions
compared to other losses.

6.6.3 Calibration

We now propose a simple and effective strategy for improving APPool. We re-purpose
classic techniques for calibrating model uncertainty for the task of large-vocabulary
object detection. Calibration aims to ensure that the model’s confidence for a
prediction corresponds to the probability that the prediction is correct. In the
detection setting, if a model detects a box with confidence s, it should correctly
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Baseline + Calibration

Figure 6.4: Examples illustrating the effect of calibration. Each row shows the
20 highest-scoring predictions from the baseline, uncalibrated model (left) and its
calibrated version (right). True-positives and false-positives (at IoU 0.5) are indicated
with a green and red label, respectively. The calibrated model increases the rank of
low-confidence but accurate predictions, such as the ‘bird’s (top row) and ‘cowboy
hat’s (bottom), over incorrect predictions with artificially high scores, such as some
‘boat’s (top), and ‘horse’s (bottom).

localize a groundtruth box of the same category s% of the time [130]. While this
property is not necessary for APPool, it provides a sufficient condition for improving
cross-category rankings (APPool only requires that true positives are ranked higher
than false positives across all classes, without requiring the scores to be probabilistically
calibrated).

Following [130], we analyze various calibration strategies: histogram binning [259],
Bayesian Binning into Quantiles (BBQ) [161], beta calibration [128], isotonic re-
gression [260], and Platt scaling [179]. Prior work on calibrating detectors applies
calibration strategies to predictions across all classes [130]. However, this approach
does not account for class frequency: rare classes may, for example, have lower-scoring
predictions than frequent classes. Instead, we propose to calibrate each class individ-
ually, allowing the method to boost scores of under-confident classes and diminish
scores of over-confident classes.

Standard calibration strategies require a held-out dataset for calibration. However,
in the large-vocabulary setting, many classes have only a handful of examples in the
entire dataset. We instead calibrate directly on the training set. To understand the
impact of this choice, we also report an upper-bound by calibrating on the validation
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Calibration APPool APPool
r APPool

c APPool
f

Uncalibrated 27.8 16.1 22.0 28.2
Histogram Bin 28.6 (+0.8) 12.4 20.6 29.2

BBQ (AIC) 28.8 (+1.0) 13.6 21.6 29.3
Beta calibration 29.5 (+1.7) 12.8 22.7 30.0

Isotonic reg. 28.3 (+0.5) 14.4 22.2 28.7
Platt scaling 29.5 (+1.7) 13.1 22.8 30.0

Calibrate on validation (upper-bound oracle)
HistBin 30.1 (+2.3) 24.4 27.8 30.2

BBQ (AIC) 30.0 (+2.2) 22.9 26.9 30.2
Beta calibration 29.8 (+2.0) 22.4 25.2 30.1

Isotonic reg. 30.3 (+2.5) 24.6 27.2 30.4
Platt scaling 29.8 (+2.0) 22.2 24.9 30.1

Table 6.8: Calibrating detection outputs on the train set significantly im-
proves AP pooled. The gains are due to improved rankings across categories.
Calibrating on validation significantly improves APPool

r , indicating calibration remains
challenging in the tail. All models trained with the Federated loss.

set.
Table 6.8 reports APPool using various calibration approaches applied to a model

trained with the Federated loss. The results show that calibrating per class improves
APPool by 1.7 points, from 27.8 to 29.5, and the choice of calibration strategy is
not critical. Surprisingly, calibrating on the validation set, as in the second block,
outperforms training set calibration by only 0.8 points, suggesting that calibrating
on the training set is a viable strategy. However, calibrating on the validation set
significantly improves APPool

r while calibrating on the training set harms APPool
r ,

indicating that calibrating rare classes remains an open challenge. Figure 6.4 presents
qualitative examples of this improvement: calibration increases the scores of under-
confident, accurate predictions from some classes (e.g . ‘cowboy hat’) and suppresses
overconfident predictions from others (e.g . ‘horse’).

6.7 Discussion

Robust, reliable evaluations are critical for advances in large-vocabulary detection.
Our analysis reveals that current evaluations fail to properly handle cross-category
interactions by neither eliminating them (as intended) nor evaluating them in a
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principled fashion (as potentially desired). We show that, as a result, the current
AP implementation (APOld) is vulnerable to gaming. We propose APFixed, which
addresses this gameability by removing the effect of cross-category score calibration,
and recommend it as a replacement for APOld moving forward. APFixed provides new
conclusions about the importance of different LVIS advances. Finally, we recommend
a complementary diagnostic metric, APPool, for applications requiring cross-category
score calibration, and show that a simple calibration strategy offers off-the-self
detectors solid improvements to APPool.
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Chapter 7

Towards Segmenting Anything That
Moves

Bottom up grouping Our approach

Figure 7.1: Detecting and segmenting all objects, regardless of category, is key for
many perception and robotics tasks. Bottom-up grouping approaches, e.g. [119] (left),
aim to tackle this task, but lag behind the quality of closed-world methods that detect
a fixed set of N categories. Our work (right) bridges this gap, accurately segmenting
generic moving objects, even ones unseen in training.
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7.1 Introduction

People have the remarkable ability to thrive while frequently encountering things
they have never seen before. Our approaches for machine perception, meanwhile,
often remain trapped in a closed world, as in the case of object recognition, where
approaches are designed to recognize and name one of N pre-defined classes. In
the previous part, we scaled such approaches to a large number of classes, covering
a wider range of objects in the real world. But practical robot autonomy requires
robust perception in the open-world: even a self-driving car must be able to detect
never-before-seen obstacles and debris, regardless of what particular semantic name
it happens to associate with. In this part, we tackle how to segment and track such
novel objects through diverse scenes.

In the computer vision community, open-world recognition is typically addressed
from a machine-learning perspective such as zero-shot learning [205] or open-set
classification [197]. We advocate a different approach that has its roots in classic
vision: perceptual grouping. Specifically, we wish to segment out all moving object
instances in a video stream, including never-before-seen object categories. Defining
the notion of a generic, never-before-seen object is notoriously challenging [4]. We
intentionally focus on moving objects so as to take advantage of the “common fate”
principle of grouping: pixels that move together should tend to be grouped together
into objects [167].

Indeed, the problem of spatio-temporal grouping is a classic “mid-level” visual
understanding task, dating back to the iconic work of Marr [155, 237]. Pre-deep learn-
ing solutions tend to follow bottom-up computational strategies for self-organization
and clustering, often of long-term pixel trajectories [119, 165]. In the static image
case, pixels can grouped by relying on Gestaltian notions of appearance similarity
and curvilinear edge continuity [167]. One long-standing challenge in perceptual
organization has been operationalizing these cues into an accurate algorithm for
spatio-temporal grouping. Our key observation is that many of the recent advances in
closed-world instance segmentation can be repurposed for open-world spatio-temporal
grouping.

We first validate the performance of our proposed approach on the Freiburg
Berkeley Motion Segmentation benchmark (FBMS). Because the standard measure
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used in FBMS does not penalize false positives, we find that trivial solutions can score
well. We analyze the official metric in detail and propose a new, more informative
evaluation. We achieve state-of-the-art results on both measures, and specifically
outperform the next-best method of Keuper et al. [119] by 11.4% on our proposed
measure.

To further study our method, we introduce the DAVIS-Moving and YTVOS-
Moving benchmarks for motion-based grouping. We create these by selecting videos
from the DAVIS 2017 [180] and YTVOS [249] datasets where all moving objects are
labeled. On these new benchmarks, we strongly outperform top-down, closed world
methods such as Mask R-CNN, as well as traditional bottom-up grouping methods.
In particular, our approach is competitive with a top-down method for categories
seen during training, but outperforms both top-down and bottom-up approaches for
unseen categories by 27%.

To sum up, our contributions are three-fold: (1) we propose the first deep learning-
based method for spatio-temporal grouping; (2) we propose a more informative
metric and larger, more diverse benchmarks to enable further progress; (3) we report
state-of-the-art results on the FBMS dataset and our larger, proposed benchmarks.
The code and trained models will be made publicly available.

7.2 Related Work

Spatio-temporal grouping: Segmenting and tracking objects based on their motion
has a rich history. An early work [202] proposed treating this task as a spatio-temporal
grouping problem, a philosophy espoused by a number of more recent approaches,
including [30, 83, 119], as well as [165], which introduced FBMS. In particular, these
methods track each pixel individually with optical flow, encode the motion information
of a pixel in a compact descriptor and then obtain an instance segmentation by
clustering the pixels based on motion similarity. Unlike these works, our approach
is driven primarily by a top-down learning algorithm followed by a simple linking
step to generate spatio-temporal segmentations. The most relevant approach in this
respect is [72], which trains a CNN to detect (but not segment) moving objects, and
combines these detections with clustered pixel trajectories to derive segmentations.
By contrast, our approach directly outputs segmentations at each frame, which we
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link together with an efficient tracker. Very recently, Bideau et al . [23] proposed
to combine a heuristic-based motion segmentation method [22, 163] with a CNN
trained for semantic segmentation for the task of moving object segmentation. Their
method, however, does not handle discontinuous motion. In addition, the fact that
they rely strongly on heuristic motion estimates allows our learning-based approach to
outperform their method on FBMS by a wide margin. In very recent work, Xie et al .
[246] introduced a deep learning approach for motion segmentation that segments and
tracks moving objects using a recurrent neural network. By comparison, our method
uses a simple, overlap-based tracker that performs competitively with the learned
tracker from [246] while producing significantly fewer false positive segmentations
(see Supplementary).

Foreground/Background Video Segmentation: Several works have focused
on the binary version of the video segmentation task, separating all the moving
objects from the background. Early approaches [62, 135, 169, 230] relied on heuristics
in the optical flow field, such as closed motion boundaries in [169] to identified moving
objects. These initial estimates were then refined with appearance, utilizing external
cues, such as saliency maps [230], or object shape estimates [135]. Another line
of work focused on building probabilistic models of moving objects using optical
flow orientations [22, 163]. None of these methods are based on a robust learning
framework and struggle to generalize well to unseen videos. The recent introduction
of a standard benchmark, DAVIS 2016 [174], has led to a renewed interest. More
recent approaches propose deep models for directly estimating motion masks, as
in [108, 214, 215]. These approaches are similar to ours in that they also use a
two-stream architecture to separately process motion and appearance, but they are
unable to segment individual object instances, one of our primary goals. Our method
separately segments and tracks each individual moving object in a video.

Object Detection: The task of segmenting object instances from still images
has seen immense success in recent years, bolstered by large, standard datasets such
as COCO [142]. However, this standard task focuses on segmenting every instance of
objects belonging to a fixed list of categories, leading to methods that are designed
to be blind to objects that fall outside the categories in the training set.

Two recent works have focused on extending these models to detect generic ob-
jects. [96] aims to generalize segmentation models to new categories, but requires
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bounding box annotations for each new category. More relevant to our approach, [109]
aims to detect all “object”-like regions in an image, outputting a binary objectness
mask. While we share their goal of segmenting unseen objects, our approach addi-
tionally provides instance masks for each object.

7.3 Approach

We propose a two-stream spatio-temporal grouping method that uses appearance and
motion cues to segment all moving objects in a video. Our approach, illustrated in
Figure 7.3, takes a frame together with a corresponding optical flow as input, and
passes them through an “appearance stream” (top) and a “motion stream” (bottom)
respectively. The resulting features are combined and passed to the joint region pro-
posal network (RPN), which learn to detect and segment moving objects irrespective
of their category.

Our approach shares inspiration with prior work that proposes two-stream ap-
proaches for object detection [72, 80, 84, 173], with two key differences. First, we
design a novel region proposal module that learns to fuse both appearance and motion
information to generate moving object detections. Second, to overcome the dearth of
appropriate training data, we develop a stage-wise training strategy that allows us
to leverage synthetic data to train our motion stream, image datasets to train our
appearance stream, and a small amount of real video data to train the joint model.

We first discuss the architecture and training strategy for the motion and appear-
ance streams individually, and then detail how to combine these streams into one
coherent architecture. Finally, we describe a simple tracker that we use for linking
detections across time, allowing us to produce spatio-temporal groupings that span
across many frames.

7.3.1 Motion-based Segmentation

We start by training a motion-based instance segmentation model. As mentioned
above, this requires videos with segmentation masks for all moving objects, which
is difficult to obtain. Fortunately, prior work has shown that synthetic data can be
used for some low-level tasks, such as flow estimation [53] and binary motion segmen-
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Motion Stream Appearance Stream

Joint Training

Figure 7.2: We train our motion stream on FlyingThings3D [157] (top left), our
appearance stream on COCO [142] (top right), and our joint model on DAVIS’16 [174]
and a YTVOS [249] subset (bottom).

tation [214]. Inspired by this, we train our motion stream on the FlyingThings3D
dataset [157], which contains nearly 2,700 synthetically generated sequences of 3D
objects traveling in randomized trajectories, captured with a camera also traveling
along a random trajectory. The dataset provides groundtruth optical flow, as well
as segmentations for both static and moving objects (See Figure 7.2). We train our
motion-stream using the moving instance labels from [214], treating all moving objects
as a single category, and all other pixels, including static objects, as background.
The resulting model learns to segment moving objects irrespective of their category.
In fact, this model is oblivious to the whole notion of an object and is capable of
segmenting parts that exhibit independent motion (see Figure 7.5). We discuss more
details and variants of this approach in Section 7.5.3.

7.3.2 Appearance-based Segmentation

In order to incorporate appearance information, we next train an image-based object
segmentation model that aims to segment the full extent of generic objects. Fortu-
nately, large datasets exist for training image-based instance segmentation models.
Here, we train on the MS COCO dataset [142], which contains approximately 120,000
training images with instance segmentation masks for each object in 80 categories.
We could train our appearance stream following the standard Mask R-CNN training
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2. Motion + Appearance
Region Proposal

3. Box + Mask
Regression

Figure 7.3: Our model uses an appearance stream (blue) and a motion stream
(orange) to extract features from RGB and optical flow frames, respectively. Our
region proposal network fuses features from both streams and passes them to the box
and mask regression heads.

procedure, which jointly localizes and classifies each object in an image belonging to
the 80 categories. However, this results in a model that, while proficient at segmenting
80 categories, is blind to objects from any other, novel category. Instead, we train
an “objectness” Mask R-CNN by combining each of the 80 categories into a single
“object” category. In Section 7.5.3, we will show that this “objectness” training (1)
provides a significant improvement over standard training, and (2) leads to a model
that generalizes surprisingly well to objects that are not labeled in MS COCO.

7.3.3 Two-Stream Model

Equipped with the individual appearance and motion streams, we now propose a
two-stream architecture for fusing these information sources. In order to clearly
describe our two-stream model, we take a brief detour to describe the Mask R-
CNN architecture. Mask R-CNN contains three stages: (1) Feature extraction: a
“backbone” network, such as ResNet [89], is used to extract features from an image.
(2) Region proposal: A region proposal layer uses these features to selects regions
likely to contain an object. Finally, (3) Regression: for each proposed region, the
corresponding backbone features are pooled to a fixed size, and fed as input to
bounding box and mask regression heads.

To build a two-stream instance segmentation model, we extract the backbone
from our individual appearance-based and motion-based segmentation models. Next,
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as depicted in Figure 7.3, we propose a “two-stream” RPN that uses these two
backbones, instead of a single backbone, to predict proposals from spatio-temporal
features, extracted from the optical flow (blue) and RGB (orange) backbones. These
features are concatenated and fed to a short series of convolutional layers to reduce
the dimensionality to match that of Mask R-CNN, allowing us to maintain the
architecture of stages (2) and (3). Intuitively, we expect the appearance stream to
behave as a generic object detector, and our motion stream to help detect novel
objects that the appearance stream may miss and filter out static objects.

Although this may appear similar to prior approaches for building a two-stream
detection model, it differs in a key detail: prior approaches obtain region proposals
either only from appearance features [72, 80, 84], or from appearance and motion
features individually [173]. By contrast, we propose a novel proposal module that
learns to fuse motion and appearance features to find object-like regions.

We train our joint model on subsets of the DAVIS and YouTube Video Object
Segmentation datasets (as detailed in Section 7.5.1). We experiment with various
strategies for training this joint model in Section 7.5.3.

7.3.4 Tracking

So far, we have focused on segmenting moving objects in each frame of a video. To
maintain object identities and to continue segmenting objects after they stop moving,
we implement a simple, overlap-based tracker inspired by [19]. First, we remove all
detections with score below αlow. On the first frame, all high scoring detections (score
> αhigh) are used to initialize a track, which we define simply as a sequence of linked
detections. At each successive frame, we compute the mask intersection over union
between the most recent segmentation for each active track and predicted objects at
t+ 1, and use Hungarian Matching to assign predicted objects to tracks. Unmatched
predictions are discarded if their score is < αhigh; else, they are used to initialize a
new track. Tracks that have not been assigned a new object for up to tinactive frames
are marked as inactive.

Tracking static objects: To continue tracking moving objects when they stop
moving, we need to be able to detect static objects. A naïve way to do this is to run
the objectness model trained in Section 7.3.2 in parallel with our two-stream model
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at every frame. However, this would be computationally expensive. Fortunately,
our appearance stream shares the backbone of the objectness model. Thus, we
only need to apply the (inexpensive) stages (2) and (3) of the objectness model on
the appearance features extracted by our two-stream network. Using this, we can
efficiently output a set of moving and static object predictions for each frame in
a video. We merge the two outputs by removing any predicted static object that
overlaps with a predicted moving object. We use the same tracker described above,
using only moving objects to initialize tracks.

7.4 Evaluation

To evaluate methods for spatio-temporal grouping, we desire a metric that rewards
segmenting and tracking moving objects, but penalizes the detection of static objects
or background. While there has been a rich line of prior work related to our goal,
standard metrics surprisingly do not satisfy these criterion. We propose a novel
metric that does.

The default metric in FBMS [165] was designed for grouping-based approaches, but
does not penalize false positive predictions. Recently, Bideau et al . [21] tackled this
issue by measuring the difference between the number of groundtruth moving objects
and the number of predicted moving objects (∆ Obj). However, this complicates
method comparisons by relying on two separate metrics; instead, we propose a single
and intuitive F-measure that evaluates a method’s ability to detect all and only
moving objects.

Figure 7.4 (middle) visualizes the default FBMS metric which matches each
predicted segment with a groundtruth segment so as to maximize IoU overlap,
ignoring any unmatched predictions. This means the default F-measure does not
penalize false positive segments, unfairly favoring methods that generate a large
number of predictions. By contrast, our proposed F-measure, depicted in Figure 7.4
(right), counts unmatched predictions as false positives.

More precisely, we describe our metric roughly following the notation in [165].
For each video, let ci be the pixels belonging to a predicted region i, and gj be all
the pixels belonging to a groundtruth non-background region j. While [165] omits
unlabeled pixels from evaluation, we include all pixels in the groundtruth.
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True Positive

Original Measure

Prediction
Groundtruth
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Proposed Measure

Unmatched Prediction Unmatched Prediction

Figure 7.4: Left: we visualize a toy example with two predicted (red) segmentations
and one groundtruth (blue) segmentation. While the original FBMS measure (middle)
ignores predicted segments that do not match a groundtruth segment, such as the
dashed circle, our proposed measure (right) penalizes all false-positives.

Let Pij be the precision, Rij be the recall, and Fij be the F-measure corresponding
to this pair of predicted and groundtruth regions, as follows:

Pij =
|ci ∩ gj|
|ci|

, Rij =
|ci ∩ gj|
|gj|

, Fij =
2PijRij

Pij +Rij

Following [165], we use the Hungarian algorithm to find a matching between
predictions and groundtruth that maximizes the sum of the F-measure over all
assignments. Let g(ci) be the groundtruth matched to each predicted region; for any
ci that is not matched to a groundtruth cluster, g(ci) is set to an empty region. We
define our metric as follows:

P =

∑
i|ci ∩ g(ci)|∑

j|ci|
, R =

∑
i|ci ∩ g(ci)|∑

i|gj|
, F =

2PR

P +R

Any unlabeled pixel in a predicted region ci will reduce precision and F-measure,
penalizing the segmentation of static or unlabeled objects. In our experiments, we
report results with both the official and our proposed measure.

7.5 Experiments

We first analyze each component of our proposed model with experimental results.
Next, we compare our approach to prior work in spatio-temporal grouping on three
datasets.
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7.5.1 Datasets

An ideal dataset for training our model would contain a large number of videos where
every moving object has labeled instance masks, and static objects are not labeled.
Three candidate datasets exist for this task: YouTube Video Object Segmentation
(YTVOS) [249], DAVIS 2016 [174], and FBMS [165]. While YTVOS contains over
3,000 short videos with instance segmentation labels, not all objects in these videos
are necessarily labeled, and both moving as well as static objects may be labeled. The
DAVIS 2016 dataset contains instance segmentation masks (provided with DAVIS
2017) for only the moving objects, but only contains 30 training videos. Finally,
although FBMS contains a total of 59 sequences with labeled instance segmentation
masks for moving objects, prior work evaluates on the entire dataset, preventing us
from training on any sequences in the dataset in order to provide a fair comparison.

To overcome this lack of data, we use heterogeneous data sources to train our
model in a stagewise fashion. As described earlier, we train our appearance stream
on COCO [142]. We train our motion stream on FlyingThings3D [157], a synthetic
dataset of 2,700 videos of randomly moving 3D objects. Finally, we fine-tune our
joint model on DAVIS2016 and the training subset of YTVOS-Moving. We use a
held-out set of 100 YTVOS-Moving sequences for evaluation.

7.5.2 Implementation Details

Network Architecture: Our two-stream model is built off Mask R-CNN [90] with
a ResNet-50 backbone. We will publicly release the code and exact configuration
for training, highlight some important details here, and note further details in
supplementary. All our models are trained using the publicly available PyTorch
implementation of Detectron [219]. In general, we use the original hyper-parameters
provided by the authors of Mask R-CNN. The backbone for every model is pre-trained
on ImageNet [194]. When constructing our two-stream model, we initialize the
bounding box and mask heads from the appearance-only model.

Tracking: We set the confidence threshold for initializing tracks, as described in
Section 7.3.4, to αhigh = 0.9, and remove any detections with confidence lower than
αlow = 0.7. We allow tracks to stay alive for up to tinactive = 10 frames (approximately
0.33s for most videos), although we found the final results are fairly insensitive to
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this parameter. To detect objects before they move, we first run our tracker forwards,
and then backwards in time.

7.5.3 Ablation analysis

Evaluation: We analyze our model by benchmarking various configurations on the
DAVIS 2016 dataset [174]. For ablation, we found it helpful to use the standard
detection mean average precision (mAP) metric [142] in place of video object seg-
mentation metrics, which require tracking and obfuscate analysis of our architecture
choices. We report both detection and segmentation mAP at an IoU threshold of 0.5

Motion stream

To begin, we explore training strategies for the motion stream of our model. We
train our motion stream on the FlyingThings3D dataset, as described in Section 7.3.1.
This dataset provides groundtruth flow, which we could use for training. However, at
inference time, we only have access to noisy, estimated flow. In order to match flow in
the real world, we estimate flow on FlyingThings3D using two optical flow estimation
methods: FlowNet2 and LiteFlowNet. For both methods, we use the version of their
model that is trained on synthetic data and fine-tuned on real data.

In Table 7.1, we compare three strategies for training on FlyingThings3D. We
start by training using only FlowNet2 flow as input (“FlowNet2”). We hypothe-
size that training directly on noisy, estimated flow can lead to difficulties in early
training. To overcome this, we train a variant starting with groundtruth flow, and
fine-tune on FlowNet2 flow (“FlowNet2 ← Groundtruth” row). We find that this
provides a significant improvement (2.7%). We also considered using a more recent
flow estimation method, LiteFlowNet [102] (“LiteFlowNet ← Groundtruth” row).
Surprisingly, we find that FlowNet2 provides significant improvements for detection,
despite performing worse on standard flow estimation benchmarks. Qualitatively, we
found that FlowNet2 provides sharper results along boundaries than LiteFlowNet,
which may aid in localizing objects.

Figure 7.5 shows qualitative results of the motion stream. Despite never having
seen real images with segmentation labels, this model is able to group together parts
that move alike, while separating objects with disparate motion.
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Table 7.1: Comparing training with different flow estimation methods on FlyingTh-
ings3D, reporting mAP on DAVIS ’16 val. “← Groundtruth” means we first train
with groundtruth (synthetic) flow. See Section 7.5.3 for details.

Flow type Det @ 0.5 Seg @ 0.5
FlowNet2 40.5 23.9
FlowNet2 ← Groundtruth 43.2 24.1
LiteFlowNet ← Groundtruth 33.8 24.0

Figure 7.5: Despite being trained for segmentation only on synthetic data, our motion
stream (visualized) is able to separately segment object parts in real objects. See
Sec. 7.5.3 for details.

Appearance Stream

While our motion stream is proficient at grouping similarly-moving pixels, it lacks any
priors for real world objects and will not hesitate to oversegment common objects,
such as the man in Figure 7.5. To introduce these useful priors, we turn our attention
to the appearance stream of our model.

As described in Section 7.3.2, we train our appearance stream on the COCO
dataset [142]. We evaluate two variants of training. First, we train a standard,
“class-specific” Mask R-CNN, that outputs a set of boxes and masks for each of the
80 categories in the COCO Dataset. At inference time, we combine the boxes and
masks predicted for each category into a single “object” category. Second, we train
an “objectness” Mask R-CNN, by collapsing all the categories in COCO to a single
category before training.

We show results from these two variants in Table 7.2. Our “objectness” model
significantly outperforms the standard “class-specific” model by nearly 8%. We further
compare the two models qualitatively in Figure 7.6, noting that our objectness model
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Table 7.2: Comparison of training our appearance stream with and without category
labels on MS COCO (Class-specific and Objectness, respectively), reporting mAP
on DAVIS ’16 val. Training without category labels allows the model to generalize
beyond the training categories. See also Figure 7.6 and Section 7.5.3

COCO Training Det @ 0.5 Seg @ 0.5
Class-specific 42.0 40.2
Objectness 49.8 48.3

Figure 7.6: Unlike standard object detectors trained on COCO (left), our objectness
model (right) detects objects from categories outside of COCO, such as the packet
of film, a roll of quarters, a rubber duck, and a packet of fasteners. Both models
visualized at confidence threshold of 0.7. See Section 7.5.3 for details.

better generalizes to non-COCO categories.

Joint training

Finally, we combine our appearance and flow streams in a single two-stream model,
depicted in Figure 7.3 and described in detail in Section 7.3.3. We experiment with
different strategies for training this joint model. Throughout these experiments,
we initialize the flow stream with the “FlowNet2 ← Groundtruth” model from
Section 7.5.3, and use the objectness model from Section 7.5.3 to initialize the
appearance stream, the box and mask prediction heads, and the RPN. We show the
results in Table 7.3.

We start by training this joint model directly on the DAVIS 2016 training set,
which achieves 79.1% mAP. We note that even with joint-training, using the objectness
model for initialization provides a significant boost over using a category-specific
detector (73.8%). Next, to maintain the generalizability of the objectness model,
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Table 7.3: Comparing two-stream training strategies, reporting mAP on DAVIS ’16
val. Preserving knowledge from the individual streams is critical for good accuracy.
See Section 7.5.3 for details.

Variant Det @ 0.5 Seg @ 0.5
Joint Training, class-specific 73.8 70.3
Joint Training, objectness 79.1 73.3
+ Freeze appearance 81.9 76.7
+ Freeze motion 83.7 76.4
+ Freeze mask 83.9 77.4

Table 7.4: Comparing training sources, reporting mAP on DAVIS ’16 val. The lack
of static objects in ‘YTVOS-moving’ leads to worse performance, but fine-tuning on
DAVIS provides the best model. See Section 7.5.3 for details.

Joint Training Data Det @ 0.5 Seg @ 0.5
DAVIS 83.9 77.4
YTVOS-moving 79.9 75.8
DAVIS ← YTVOS-moving 85.1 77.9

we also train a variant where we freeze the weights of the appearance stream. This
provides nearly a 3% improvement in accuracy. Similarly, to maintain the generic
“grouping” nature of the synthetically-trained flow stream, we freeze the flow stream,
providing us with an additional 2% improvement.

Finally, we hypothesize that while features from the flow stream are helpful for
localizing generic moving objects, appearance information is sufficient for segmentation.
We verify this hypothesis by training one last variant where the mask head uses only
appearance stream features, and freeze its weights to those of the objectness model.
Indeed, this provides a modest improvement of 1% in segmentation AP.

Training Data: Next, we train our joint model on YTVOS-Moving (Section 7.5.1)
and show results in Table 7.4. Unfortunately, this dataset contains very few static
objects, causing the model to detect both static and moving objects, leading to a
significant (5%) drop in performance. However, fine-tuning this model on the DAVIS
16 training set leads to our best model (DAVIS ← YTVOS-moving).
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Keuper et'al Bideau et'al Ours

Figure 7.7: Qualitative results comparing our approach to two state-of-the-art methods.
Prior work frequently exhibits over- or under-segmentation, such as the cat (middle
row, [119]) and the dog (top row, [23]), respectively. Our method fuses motion and
appearance information to segment the full extent of moving objects.
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Table 7.5: FBMS 59 results using the official metric [165], which does not penalize
detecting unlabeled objects. We report precision (P), recall (R), F-measure (F), and
the number of objects for which the F-measure > 0.75 (N). Ours-A is our model’s
appearance stream only, and Ours-J is our joint model. Both Ours-A and Ours-J
out-perform all prior work. As expected, since this metric does not penalize false
positives, Ours-A outperforms Ours-J.

Training set Test set
P R F N/65 P R F N/69

[212] 83.0 70.1 76.0 23 77.9 59.1 67.3 15
[119] 86.9 71.3 78.4 25 87.6 70.2 77.9 25
[255] 89.5 70.7 79.0 26 91.5 64.8 75.8 27
[120] 93.0 72.7 81.6 29 95.9 65.5 77.9 28
Ours-A 89.2 79.0 83.8 43 88.6 80.4 84.3 40
Ours-J 85.1 78.5 81.7 39 80.8 75.8 78.2 39

7.5.4 Comparison to prior work

Official FBMS: We first evaluate our method against prior work on the standard
FBMS benchmark in Table 7.5. As discussed in Section 7.5.1, this metric does not
penalize false positive detections. As expected, our appearance stream alone, despite
segmenting both static and moving objects, performs best on this metric (‘Ours-A’),
outperforming all prior work by 6.4% in F-measure on the TestSet, and 2.2% on the
TrainingSet 1. For completion, we also report the performance of our joint model
(‘Ours-J’), which compares favorably to state-of-the-art despite the flawed metric.
Our improvements on this metric are likely driven by improvements in segmentation
boundaries (see Figure 7.7).

Proposed FBMS: Finally, we report results on our proposed metric in Table 7.6.
Recall that our proposed metric generally follows the official metric, but additionally
penalizes detection of static objects. We compare to all methods from Table 7.5
whose final results on FBMS were accessible or provided by the authors through
personal communication. On this proposed metric, we first note that, as expected,
the performance of our appearance model baseline is significantly worse than our
final, joint model, by 9.2% on TestSet and 6% on TrainingSet in F-measure. More
importantly, our final model strongly out performs prior work in F-measure by 11.3%

1Note that despite the name, we do not use either set for training.
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Table 7.6: FBMS 59 results on our proposed metric. Ours-A is our appearance stream,
Ours-J is our joint model. We compare to prior methods for which we were able to
obtain code or results.

Training set Test set
P R F P R F

[212] 74.8 61.7 65.5 66.8 49.2 53.6
[119] 68.1 68.5 67.1 70.0 64.6 65.0
Ours-A 61.6 80.4 64.0 66.8 84.7 70.3
Ours-J 75.0 77.8 73.2 77.0 83.0 76.3

on the TestSet, and 6.1% on the TrainingSet. In addition to improving segmentation
boundaries, our approach effectively removes spurious segmentations of background
regions and object parts (Figure 7.7).

Qualitative results: We qualitatively compare our approach with Keuper et
al . [119] and Bideau et al . [23] in Figure 7.72 In the top row of Figure 7.7, [119]
oversegments the dog into multiple parts, and [23] merges the dog with the background,
whereas our approach fully segments the dog. Similarly, the cat in the middle row is
over-segmented by [119] and under-segmented by [23], but well-segmented by our
approach. In the final row, both [119] and [23] exhibit segmentation and tracking
errors; the region corresponding to the man’s foot (colored yellow for Keuper et al .
and red for Bideau et al .) are mistakenly tracked into a background region thus
segmenting part of the background as a moving object. Meanwhile, our object-based
tracker fully segments the person and the tennis racket with high precision. We show
further qualitative results in supplementary material.

DAVIS-Moving: We further evaluate our method on a subset of the DAVIS
17 dataset. Unlike DAVIS 2016, the 2017 version provides instance-level masks for
objects, but contains sequences with labeled static or unlabeled moving objects. For
evaluation, we manually select 22 of 30 validation videos without these issues, and
refer to this subset as DAVIS-Moving. We compare to [119], the best FBMS method
we can obtain code for, with our proposed metric in Table 7.7. Surprisingly, we find
a much larger gap in performance on this dataset; while [119] achieves 42.3% on F-
measure with our proposed metric, our approach improves significantly to 77.9%. We

2 [23] only segments objects while they move. We provide an evaluation using an alternative
FBMS labeling they propose in our supplementary.
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Table 7.7: DAVIS-Moving results on our proposed metric. We compare to the best
FBMS method for which we could obtain code.

P R F
[119] 39.4 53.8 42.3
Mask R-CNN 70.8 75.6 71.6
Ours 78.3 78.8 78.1

Table 7.8: YTVOS-Moving results on our proposed metric. For fairness, we evaluate
our method without YTVOS training. We compare to the best FBMS method for
which we could obtain code.

P R F
[119]3 35.3 28.7 26.6
Mask R-CNN 70.4 49.5 53.6
Ours w/o YTVOS 74.5 66.4 68.3

believe this gap may be due to faster, more articulated motion and higher resolution
videos in DAVIS 17, which severely affect [119] but not our method.

YTVOS-Moving: Finally, we evaluate on sequences from YTVOS-Moving (se-
lected from YTVOS, as described in Section 7.5.1). Unlike FBMS and DAVIS,
YTVOS contains diverse objects, such as octopuses and snakes. For fairness, we
evaluate a version of our final model that was never trained on YTVOS, and show
results in Table 7.8. We show that Mask R-CNN struggles to detect such objects,
while our approach strongly improves performance from 53.6% to 67.7% in F-measure.
We further break down these results by splitting the YTVOS-Moving dataset into
two subsets: videos which contain COCO-category objects, which our model has seen

3[119] errored on some sequences, so we report numbers on a subset. By comparison, Ours w/o
YTVOS achieves 71.9% F-measure on this subset.

Table 7.9: YTVOS-Moving results on seen (COCO) vs. novel objects using our
proposed metric.

COCO Objects Novel objects
P R F P R F

[119] 28.2 25.4 20.6 41.8 31.6 31.9
Mask R-CNN 77.6 60.9 65.1 61.9 37.1 40.6
Ours w/o YTVOS 74.4 66.8 66.8 74.6 66.2 67.6
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during training, and videos which contain novel objects not from COCO categories
in Table 7.9. While Mask R-CNN is competitive with our approach on COCO cate-
gories (underperforming our model by 1.7% F-measure), it significantly underperforms
compared to our approach on novel objects, by 27% F-measure. We show qualitative
results in supplementary material.

7.6 Conclusion

We proposed a simple learning-based approach for spatio-temporal grouping. Our
method provides two key insights. First, learning based approaches are able to
generalize to never-before-seen objects (Section 7.5.3). Second, synthetic data can be
used to train a truly generic grouping method with little priors on real world objects.
As a result, our approach achieves state-of-the-art results on the FBMS benchmark
dataset. Finally, to enable further research in this direction, we introduced a new
metric as well as two new benchmarks (DAVIS-Moving, YTVOS-Moving).
Acknowledgements: We thank Pia Bideau for providing evaluation code, and Nadine Chang,
Kenneth Marino and Senthil Purushwalkam for reviewing drafts and discussions. Supported by
the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior
Business Center (DOI/IBC) contract number D17PC00345. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes not withstanding any copyright
annotation theron. Disclaimer: The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied of IARPA, DOI/IBC or the U.S. Government.
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Chapter 8

Learning to Track Any Object

Our approach

! = #! = 0

(a) Objectness prior (b) Discriminative template

%&

Figure 8.1: Objects of interest in generic, user-initialized tracking share a common set
of objectness traits. Our approach (a) learns a generic objectness prior from image-
based datasets, and (b) adapts it to a specific object of interest (e.g. the bus in the
top left) by computing a linear discriminator between the object and its background
in closed form. This allows tracking objects through significant deformations without
latching onto distractors.
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8.1 Introduction

Tracking is an essential element of video analysis. Extracting spatio-temporal regions
corresponding to objects from a video is not only the end goal for surveillance and
video labeling [107], but also an important intermediate representation for tasks such
as action recognition [234, 263]. The previous chapter focuses primarily on segmenting
never-before-seen objects, and tracking them for short periods of time with a simple
linking approach. In this chapter, we tackle long-term tracking through challenging,
diverse scenes.

Unfortunately, tracking in general is notoriously difficult and potentially ambiguous.
Consider the example in Figure 8.1 of tracking a bus with only one side visible initially.
Without prior knowledge, it is unclear whether the back side of the bus (visible in
future frames) is a different viewpoint of the same bus, or a new object itself. In
practice, many tracking approaches struggle to resolve such ambiguities, tending to
diverge to an object part which is most similar to the initial template (e.g., the back
window of the bus). Successful tracking in these scenarios necessitates object priors.
Indeed, approaches for category-specific tracking, where the tracked object categories
are known before hand, heavily rely on priors in the form of category-specific object
detectors [6, 16, 239, 244]. By contrast, approaches for user-initialized tracking have
largely eschewed such priors [18, 26, 274] in the pursuit of tracking generic objects,
sometimes known as model-free tracking [126, 242]. However, generic objects still
share a common set of objectness traits [5]. How can we operationalize this implicit
constraint into a useful prior?

In this work, we repurpose category-specific appearance models into a generic
objectness prior that can be used for category-agnostic tracking. In essence, we show
that model-free tracking is far easier with better models! Doing so requires tackling
two key challenges, shown in Figure 8.1: (1) How do we best adapt a category specific
prior into a generic objectness prior? (2) How do we further adapt this generic prior
to the particular instance of interest?

To address (1), we build a joint model for category-specific object detection and
category-agnostic tracking (Figure 8.2). It is based on the Mask R-CNN [90] object
detection architecture. For tracking, it takes as an additional input an object template
in the first frame and computes its feature embedding. This template is then used to
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compute the similarity between the object of interest and a new frame. The similarity
map is in turn applied to reweight spatial features from the new frame to detect
only the object of interest. Importantly, training the network jointly on image and
video datasets, allows us to both capture a generic object appearance model from the
diverse image data and learn to use it in a category-agnostic way for tracking.

To address (2) – e.g., better separating the bus in Figure 8.1 from other vehicles,
such as the van on the right – we propose a lightweight on-the-fly adaptation strategy.
We compute a linear separator (Td in Figure 8.1) between the object of interest and
other objects in the first frame. This separator is computed in closed form in a fully
differentiable manner, and applied in future frames to compute similarities.

An intriguing property of our proposed architecture is that it can be used both as
a single-object tracker and an object detector. Moreover, by capitalizing on the mask
prediction branch of [90], we are able to train and test the same network for instance
and video object segmentation. To sum up, we present a single unified approach for
object detection, tracking, instance and video object segmentation.

We evaluate our model on two very recent, large scale datasets for object tracking:
OxUvA [222] and GOT [98]. The former is focused on long-term object tracking,
with objects undergoing a lot of appearance variation and occlusion. In contrast, the
videos in GOT are shorter, but contain diverse object categories, covering more than
560 object classes. On both datasets our method outperforms the state-of-the-art
by a large margin. Next, we show results competitive with the state-of-the-art on
the LTB-35 dataset from the VOT 2018 Long Term challenge [127]. Finally, we
validate the quality of our masks on DAVIS’17 dataset for video segmentation [180],
demonstrating that our unified approach performs on par with specialized video
segmentation methods that don’t finetune on the test videos.

Our contributions are three-fold: (1) we incorporate an objectness prior in a generic
tracker with a joint model for object detection, tracking, instance and video object
segmentation; (2) we propose a lightweight strategy for computing discriminative
object templates in an end-to-end fashion for efficiently handling distractors; (3) our
method demonstrates state-of-the-art results on three benchmark datasets for object
tracking and video object segmentation.
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Figure 8.2: Overview of our approach. First, we use a state-of-the-art object detec-
tor [90] to extract features for the template image containing the object to be tracked
(top left). Next, we compute a discriminative template that separates the features
corresponding to the tracked object from the distractors in the first frame using linear
regression (top right). Finally, attention masks computed with this template are
used to reweight the feature maps of the detector to focus on the object of interest
(bottom). Note that unlike standard, category-specific detectors, our box-head and
mask-head output a single, category-agnostic prediction for the tracked object.

8.2 Related work

Single object tracking. Classical approaches for single object tracking, which
requires tracking an object given a bounding box annotation in the first frame, were
based on the tracking-by-detection paradigm: in many cases the detector is used to
first to localize all the objects in a frame. The box corresponding to the object of
interest was then selected by a discriminative classifier trained on the first frame
annotation [9, 97, 114]. Correlation filters were commonly used for classification due
to their efficiency [26]. To address appearance variation, some models updated the
object template over time [97, 208]. Recent approaches learn correlation filters on
top of deep features [43, 221].

Current methods for tracking largely ignore the objectness prior provided by
detectors. Instead, they rely on a Siamese network architecture (initially introduced
for signature verification [29]) adapted for tracking [18, 91, 210].

Recently, there have been several attempts to introduce ideas from CNN-based
detection architectures into Siamese trackers. In particular, Li et al. [137] use the
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similarity map obtained by matching the object template to the test frame as input
to an RPN-like module adapted from Faster R-CNN [190]. Later this architecture
was extended by introducing hard negative mining and template updating [274],
adding a mask prediction branch [228], and using deeper models [138]. Our approach
differs in that instead of integrating components of object detectors into a tracking
pipeline in a heuristic way, we turn a state-of-the-art object detection framework
into a tracker. This allows our model to fully utilize the objectness prior learned on
COCO, outperforming the heuristic-based approaches significantly.

Video object segmentation. Methods for video object segmentation take a pre-
cise object mask as input in the first frame and output pixel-level segmentations for
the object in each frame. Early methods for this task were based on mask propagation
through a graph connecting superpixels in the neighboring frames [218, 236]. More
recently, these methods have been outperformed by deep-learning based approaches,
which capitalize on the success of image segmentation architectures [32, 175]. In
particular, they fine-tune a model trained for foreground-background segmentation
using the annotation in the first frame and evaluate it on the remaining frames of
the video. Some approaches also update the model using its own predictions to
handle appearance variation [223]. While these methods demonstrate impressive
accuracy, they remain slow due to the need to update the model during evaluation.
Alternative approaches, that do not require network fine-tuning have been proposed
recently [38, 224, 253], but remain inferior in performance.

These approaches treat video object segmentation as a problem independent
from object tracking, with the recent exception of [228]. In contrast, we adapt
the intuition from [90] that instance masks can be computed as a by-product of
object detection. Our tracker with a mask prediction branch achieves competitive
performance on DAVIS’17 video object segmentation benchmark without requiring
mask-level supervision on the first frame.

Object detection. CNN architectures for detection have brought significant progress,
replacing classical methods for object detection that relied on hand-crafted features
and part-based models [68]. Early approaches [78, 79] trained CNNs to classify
pre-computed object proposals. More recent approaches solve the detection problem
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in an end-to-end way [145, 188, 190]. In particular, RCNN-like architectures [90, 190]
operate in a two-stage fashion: first an RPN proposes a set of boxes, and pools
features from each box region. Next, separate branches classify the object and refine
the box coordinates. [143] introduced feature pyramid network (FPN) to aggregate
features from several network layers. Finally, Mask R-CNN [90] extended this model
to instance segmentation by adding a mask prediction branch. In this work, we convert
this architecture into an object tracker by introducing a lightweight discriminative
template matching block before the RPN. The resulting attention map guides the
RPN to propose only boxes corresponding to the object of interest. Disabling the
matching component turns the model into a standard object detector.

8.3 Method

An ideal model for tracking by detection can be described as a generic object detector
that can be efficiently adapted to detect a specific object in a specific scene. In this
section, we propose such an approach, shown in Figure 8.2. Our model leverages
advances in standard object detection architectures by progressively incorporating
modifications to build a state-of-the-art tracker, while maintaining the model’s
detection capabilities.

We begin by briefly describing the Mask R-CNN architecture in Section 8.3.1.
We then discuss our strategy of incorporating Siamese-like template matching into
this model in a principled way in Section 8.3.2. Next, we propose our discriminative
templates that efficiently integrate information about the distractors in Section 8.3.4.
Finally, we discuss our strategy for training the unified model on object detection,
tracking, and video segmentation datasets in Section 8.3.5.

8.3.1 Preliminaries

A Mask R-CNN detector, shown in Figure 8.2, consists of a backbone network (often
a ResNet), a Region Proposal Network, and bounding box classification, regression
and mask prediction heads. The former takes a frame as input and outputs a set
of feature maps {C1, C2, C3, C4, C5}, extracted from the respective blocks of the
backbone and encoding the image with different degrees of spatial and semantic
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granularity. In practice, the output of the first block is discarded, due to memory
constraints. The remaining feature maps are then updated via top-down lateral
connections to propagate the information for the coarse but semantically rich top
layers to the more spatially precise bottom layers, resulting in the final set of feature
maps {P2, P3, P4, P5} (see [143] for details). The feature dimensionality of these maps
is fixed to 256, but their spatial dimensions decrease from fine to coarse, thus the
resulting architecture is referred to as Feature Pyramid Network (FPN).

An RPN is implemented as a 3 × 3 convolutional layer that is applied to each
FPN level in a sliding window fashion, outputting an objectness score for each of
the anchor boxes centered at the corresponding location. Crucially, the anchor boxes
only capture various aspect ratios of the boxes, wheres scale variation is handled by
the FPN. That is, a 1× 1×D dimensional feature at location (x, y) in P5 represents
the largest possible object centered at that location, whereas a feature of the same
dimension at the corresponding location in P2 represents the smallest possible object
in centered in the same region. We use this observation to derive our scale-invariant
object template in Section 8.3.2.

Finally, the top k boxes according to the RPN score are selected, and an ROI-Pool
operation is used to convert their feature representations to a fixed size. The resulting
features are passed to separate bounding box classification, regression, and mask
prediction branches (see [90] for details). We now describe our approach to efficiently
adapting this architecture to the task of object tracking.

8.3.2 Tracking as generalized object detection

Given a bounding box around the object of interest in the first frame, how can
we adapt the Mask R-CNN detector to only track that specific instance? We take
inspiration from Siamese-based approaches for tracking that store an object template
from the first frame and compute a similarity between the template and the test
frame representation in a sliding-window fashion. Differently from those methods,
instead of localizing the objects directly via template matching, we use the resulting
similarity map to reweight the feature representation of an object detector. This
allows us to reuse the rest of the detection architecture and train the model jointly
on images and videos.
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Our key observation is that every object can be represented by a 1× 1×D feature
T in one FPN layer, corresponding to its scale and center location. Thus, we begin
by extracting the corresponding representation for the template box in the first frame.
In the standard detection training setup, Mask R-CNN assigns each groundtruth box
in an image to a specific level in the feature pyramid, adding a loss that enforces that
features at that scale generate a proposal around the groundtruth box. We use this
same mapping to map our template box to the corresponding FPN level, and use the
feature in that level that corresponds to the center of the template box. At test time,
however, the scale of the object might have changed. Conveniently, we do not need
to update the template to account for this, since scale variation is already handled
by the FPN. Thus, we simply compute the similarity maps at all the levels of the
feature pyramid via Si = Pi ? T , where ? stands for cross-correlation.

Next, instead of directly using the resulting similarities to localize the object, we
propose to instead treat them as attention maps to guide the detector. To this end,
we update the original FPN representations via Pi ← Pi · Si, where · stands for the
dot product. Notice that this operation simply reweights the original representation,
preserving the information used by the RPN in the next stage. Thus, we can naturally
capitalize on the strong objectness prior learned by detectors on COCO, as well as
learn to produce objects masks for free. This re-weighted feature representation is
used to generate and pool features for region proposals. The pooled, re-weighted
features are finally passed through class-agnostic bounding box and mask regression
heads.

At test time, our model produces multiple detections with confidence scores at
every video frame. By default, we select the highest-scoring detection to construct the
track, but we can make use of multiple detections by re-ranking them with external
cues, such as predictions of an object dynamics model, or temporal smoothness cues
(Section 8.4.2).

8.3.3 Joint Detection and Tracking

The modifications described above convert a standard Mask R-CNN detector into
a tracker, which can not directly be used as a standard detector. We present two
modifications that allow the tracker to be trained and evaluated as a standard, image-
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based detection model. First, when applied to a single image, we disable the attention
module. Equivalenty, this can be thought of as setting the attention to a uniform
value of 1 at all pixel locations. Second, in order to output a class-specific bounding
box and mask, as in standard Mask R-CNN, we instantiate a separate final layer
for the box and mask regression heads for detection. Note that our model shares all
parameters for detection and tracking except this final fully connected layer. We show
in Section 8.4.3 that training jointly for detection with tracking improves tracking
accuracy, while allowing our model to operate as a powerful single-frame detector,
which can be useful for identifying distractor objects during tracking.

8.3.4 Discriminative Templates

Consider the frames from one of the videos in GOT shown in Figure 8.3 together with
the corresponding similarity map Si from the appropriate FPN level of our model.
The model is supposed to track the cart in this video, however, the similarity map
for the test frame shown in the bottom left is not localized on the object. We now
propose a simple and efficient way of learning a discriminative template, increasing
the robustness of the tracker.

Recall that in the FPN a feature vector at each location encodes an object centered
at that region at the corresponding scale. Thus, sampling a large enough pool of
features from all the levels outside of the ground truth bounding box naturally
provides us with a training set for learning a linear discriminator for the object of
interest in a given video. Moreover, such a discriminator can be found efficiently in a
closed form via least squares. In particular, given a template T and a set of negatives
N = {n1,n2, . . . ,nq}, we define the data matrix A, and the label vector y as follows:

A =
[
T ;n1;n2; . . . ;nq

]
,y =

[
1; 0; 0; . . . ; 0

]
(8.1)

We then want to find a vector Td, which we call a discriminative template, that
minimizes ‖ATd − y‖22 holds. A closed form solution is available via:

Td = (ATA+ λI)−1ATy, (8.2)

where I is the identity matrix and λ is a regularization hyper-parameter. We then
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Figure 8.3: The effect of our proposed discriminative template on an example of a
video from GOT-10k dataset [98]. By simply using the center feature of the bounding
box around the cart (top left), the resulting attention map (bottom left) for the
test frame (top right) is not focused on the object. In contrast, our discriminative
template (bottom right) results in a much better attention map.

use Td to compute the similarity maps in the same way: Si = Pi ? Td.
Note that computing Td requires only a matrix inverse and matrix multiplications,

operations which are fully differentiable in the elements of A, and can be implemented
in standard deep learning frameworks. Thus, we can backpropagate though this
computation. This guides the backbone to learn a feature space where objects can be
separated via a linear classifier in an end-to-end manner.

Figure 8.3 (bottom right) shows that our discriminative template indeed signifi-
cantly increases the precision of the similarity maps by incorporating the information
about the distractors in a principled way. We now describe how we train our unified
framework on dataset for object detection, tracking, and video segmentation.

8.3.5 Training

We first train our model on COCO for object detection [142] following Mask R-CNN
training [90]. We then transfer the learned objectness prior to the tracking task.

To this end we add the discriminative template computation, and attention
reweighting components described above, and fine-tune it on the ImageNet VID [194]
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and YTVOS [249] datasets. As ImageNet Vid does not provide segmentation
groundtruth, we do not use it to update the mask branch. When fine-tuning for
tracking, we make three simple modifications: (1) Our training batches consist of
pairs of frames: for a batch of size K, we sample K videos, and then sample a
template frame and a search frame at random from the video1; (2) We re-weight FPN
features of the search frame using the feature corresponding to the template frame’s
bounding box; (3) Only a single, class-agnostic groundtruth box is used for training,
which is the one corresponding to the tracked object in the search frame. These
minor modifications allow us to maximally preserve the objectness priors learned on
COCO.

8.4 Experiments

We begin with introducing the datasets used to train and evaluate our model, and
providing the implementation details. Next we analyze the various choices made
while designing our approach in Section 8.4.3. Finally, we compare our method to
the state-of-the-art in Section 8.4.4.

8.4.1 Datasets and evaluation

We use the COCO [142] dataset to train our model for object detection, and ImageNet
VID and YTVOS [249] to train the tracking module. We evaluate on two very recent,
large scale tracking benchmarks: OxUvA [222] for long term tracking and GOT [98] for
tracking of diverse objects. In addition, we use the DAVIS’17 [180] dataset for video
object segmentation to evaluate the quality of the masks produced by our tracker,
and the LTB35 videos from the VOT 2018 long term challenge to benchmark [127]
against prior submissions to the challenge. We describe each of these datasets in
more detail in the supplementary material.

1While we could limit the template frame to be the first frame of the video (as at test time), this
would drastically reduce the diversity of our frame pairs.
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8.4.2 Implementation details

Network architecture and trainingWe use the Mask R-CNN detection framework
throughout our experiments. In particular, we use the ResNet-50 FPN backbone,
which achieves a useful balance between accuracy and efficiency. Our final model is
trained for detection on MS COCO, as described in Sec. 8.4.3 and for bounding-box
tracking on ImageNet VID and YTVOS. We will release training and evaluation code
along with trained models upon acceptance.

Temporal heuristics Prior tracking approaches rely heavily on temporal information
to simplify the tracking problem. As these heuristics can obscure the improvement of
the underlying matching approach, we show results using no temporal information in
Sec. 8.4.3 and 8.4.4, and show state-of-the-art results without heuristics on OxUvA.
For completeness, we implement one simple heuristic which we ablate in Sec. 8.4.3. At
every frame t, our detector outputs a set of candidate detections Dt = {d1,t, . . . , dk,t},
along with a confidence score ci,t for each detection. In our standard implementation,
we select the detection d∗t with the highest confidence. To incorporate temporal
smoothness, we implement a simple heuristic: for each candidate box di,t, compute
the mask intersection-over-union ji,t with the predicted detection d∗t−1 at the previous
frame, and update the confidence as ci,t ← αci,t + (1− α)ji,t. Then, we select d∗t as
the detection that maximizes this reweighted confidence. We set α = 0.6 for all of
our experiments. In order to avoid latching onto distractors, we temporarily disable
this smoothness component if the track is broken, i.e. the IoU between the object
locations at time t and t+1 is small (< αlow); we re-enable the smoothness component
if we maintain a smooth track for n frames, i.e. a track with consecutive object
locations that have IoU > αrecover. We set αlow = 0.1, αrecover = 0.3, and n = 30. We
always show results both with and without this component for clarity.

8.4.3 Ablation study

In this section we analyze the influence of different components of our approach on
the final performance. We use the dev sets of OxUvA and GOT-10k datasets for
analysis, due to their complexity and diversity. Note that OxUvA requires explicitly
thresholding confidence scores in order to detect when an object is not present in
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Table 8.1: Evaluating the influence of different components of our approach on the
OxUvA dev and GOT-10k val sets.See Section 8.4.3 for details.

Det
Init?

Joint Det
Train? Td Smooth? OxUvA

AUC
GOT
AO

7 7 center 7 63.2 64.7
3 7 center 7 64.9 68.4
3 3 center 7 65.8 68.6
3 3 mean diff 7 67.6 68.8
3 3 mean pos 7 69.1 69.1
3 3 lin. reg. 7 71.1 69.5
3 3 lin. reg. 3 72.1 73.0

the video. For ablation, we report the area under the ROC curve (i.e., TPR vs.
FPR curve) to better understand the performance of ablated components across
score thresholds. GOT-10k does not require setting such a threshold, so we use the
standard Average Overlap metric described in Section 8.4.1.

We start with a baseline variant of our approach, which is trained only on videos
labeled for tracking and achieves 63.2 OxUvA AUC and 64.7 GOT AO. Next, we
evaluate the importance of object priors by pretraining our model on COCO as a
generic object detector. This variant, shown in row 2, results in an 1.7% improvement
in OxUvA AUC and a 3.7% improvement in GOT AO. Next, we train our model
for detection and tracking jointly. As expected, this multi-task training strategy
provides a modest bump on both OxUvA and GOT, leading to a model that improves
in tracking while additionally being able to perform single-image detection. These
improvements confirm our intuition that object priors are critical for tracking, and
that the universal nature of our model is indeed helpful in transferring information
from object detection datasets.

As described in Sec. 8.3.4, our framework is flexible, admitting various strategies for
computing a discriminative template, Td. We analyze a few strategies for computing
this template. In particular we compare our proposed linear regression framework
(denoted as Td =‘lin. reg.’) to two simple baselines: a non-discriminative one, that
simply averages several features vectors sampled from the ground truth bounding box
(denoted with Td = ‘mean pos’), and a discriminative one that uses the difference
between the means of positive and negative samples as a template (denoted with
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Table 8.2: In the top half, we show the current reported state-of-the-art results on
OxUvA, from [222]. As these methods perform poorly, we first run recent state-of-
the-art trackers (DaSiam [274] and SiamMask [228]). We show that our approach
significantly improves over both prior state-of-the-art, as well as these recent works.

Approach TPR TNR GM
LCT [151] 22.7 43.2 31.3
MDNet [162] 42.1 0 32.4
TLD [114] 14.1 94.9 36.6
SiamFC + R [18] 35.4 43.8 39.7
DaSiam [274] 40.0 84.2 58.0
SiamMask 50.4 88.7 66.9
Ours w/o temporal 63.2 79.1 70.8
Ours 65.5 78.2 71.6

Td =‘mean diff’). Note that these can be seen as special cases of linear regression.
First, we observe that all these variants increase the model’s performance, but the
linear regression approach results in the largest improvement of 5.3% OxUvA AUC and
0.9% GOT AO. Second, the ‘mean diff’ baseline actually shows the worst performance,
which is counterintuitive. We attribute this result to the fact that simply subtracting
the mean of the negative examples from the template leads to unstable behavior
during training. In contrast, our principled approach to computing the template
simplifies optimization. Finally, we show that incorporating the temporal smoothness
(Section 8.4.2) provides significant improvements, particularly for short-term tracking
as in GOT.

Discussion. Performing ablations on two diverse tracking datasets allows under-
standing the impact of ablated components for different challenges. For example, the
use of detection priors seems to be significantly more pronounced in GOT, which
requires tracking diverse objects, than for OxUvA. This is to be expected: while video
datasets are large enough to learn priors for common objects, image-based datasets
like COCO provide priors for more diverse categories. Meanwhile, our discrimina-
tive templates provide a significant improvement on OxUvA, but a more modest
improvement on GOT. We attribute this to the fact that our discriminative template
is able to avoid latching onto distractors when the object of interest disappears, a
phenomenon that is far more common in the long-term OxUvA dataset than on GOT.
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Table 8.3: We present results on the val set of GOT-10k. Prior methods on GOT-10k
train only on the GOT-10k training set. For a fair comparison, we compare to
DaSiam and SiamMask, which are trained on external data. By leveraging objectness
priors and detection mechanisms, our method significantly improves, likely due to
the diversity of objects in GOT.

Approach AO SR
DaSiam [274] 46.0 54.3
SiamMask [228] 66.8 78.3
Ours w/o temporal 69.5 79.1
Ours 73.0 82.8

8.4.4 Comparison to the state-of-the-art

We now compare our full approach to state-of-the art methods in object tracking and
video object segmentation.

OxUvA evaluation We begin by presenting comparisons on the dev set of the
OxUvA long term tracking benchmark in Table 8.2. We compare to the state-of-
the-art approaches reported in [222]. As the approaches reported in [222] perform
poorly qualitatively and quantitatively, we further evaluate two more recent trackers:
DaSiam [274] and SiamMask [228] on this dataset. We use their publicly available
code.

As shown in Table 8.2, our evaluation of DaSiam [274] and SiamMask [228] out-
perform the methods reported in [222]. Next, we evaluate our approach without using
any temporal information in the "w/o temporal" row. This variant is completely
stateless, and individually performs matching on each frame of the video. By contrast,
almost all prior tracking approaches use heuristic temporal smoothing to improve
the performance of their models. Despite this lack of temporal information, our
approach strongly outperforms all prior work, including the recent work of [228, 274],
by 3.9% in GM. By adding the simple temporal heuristic described in Sec. 8.4.2, we
further improve our results by 0.8%. We report results on the held out test set in
supplementary.

GOT evaluation To validate our conclusions above, we further evaluate our
approach on GOT-10k. As prior methods evaluated on GOT-10k use only the GOT-
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t = 0

DaSiam

t = k

Ours

t = k

Figure 8.4: We compare our method to DaSiam [274]. While DaSiam struggles to
accurately localize objects, leveraging objectness priors allows us to detect, track,
and segment the full extent of objects.

10k training set for training, we can not fairly compare our approach to them. Instead,
we use [228, 274] as baselines, which are the best method prior to ours on OxUvA.
We report results on the validation set in Table 8.3, and additionally show results
on the test set in the supplementary material. As can be see from the table, we
outperform both of these works by over 4%, which we attribute to the ability of our
method to generalize to diverse object categories.

LTB-35 Evaluation We compare to state-of-the-art methods on the LTB-35 bench-
mark, which was used to evaluate long term tracking in the VOT 2018-LT challenge.
This dataset focuses on tracking in videos over 2 minutes long on average, where the
object of interest can frequently disappear and reappear in the video. We compare
to state-of-the-art results in Table 8.4, as well as SiamMask[228]. Note that prior
approaches, other than [228], provide dataset-specific hyperparameters that are tuned
for this dataset. By contrast, we use a single model, a single set of hyperparameters,
and a simple temporal heuristic across all datasets. Despite this, our method obtains a
competitive F-measure of 61.2 on this dataset while outperforming on other datasets.

Mask evaluation on DAVIS’17 Finally, we evaluate our unified approach on
the task of video object segmentation. To this end we use the validation set of
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Table 8.4: F-measure on LTB35 (VOT 2018-LT challenge). While prior methods use
dataset-specific hyperparameters, we present a single model for all experiments that
is competitive on VOT while outperforming on other datasets.

Approach P R F
SiamMask [228] 64.8 38.5 48.3
DaSiam-LT [274] 62.7 58.8 60.7
MBMD [265] 63.4 58.9 61.0
SiamRPN++ [138] 65.0 61.0 62.9
Ours w/o temporal 61.0 56.9 58.9
Ours 61.2 61.2 61.2

Table 8.5: DAVIS ’17 validation results with intersection-over-union (J ) and F-
measure (F). Most prior methods require a labeled mask in the first frame (‘Mask
sup’) or perform computationally expensive end-to-end fine-tuning per video (‘Deep
FT’ row), our method efficiently and accurately segments objects without mask
supervision.

Measure PReMVOS CINM FeelVOS SiamMask Ours
[150] [11] [224] [228]

Mask sup? 3 3 3 7 7

Deep FT? 3 3 7 7 7

J
Mean 73.9 67.2 69.1 54.3 59.2
Recall 73.1 74.5 79.1 62.8 68.6
Decay 16.2 24.6 17.5 19.3 8.4

F
Mean 81.8 74.0 74.0 58.5 67.8
Recall 88.9 81.6 83.8 67.5 76.1
Decay 19.5 26.2 20.1 20.9 12.0

DAVIS’17, and compare to the state-of-the-art approaches, including the ones that
require finetuning the model on the test sequences. The results are presented in
Table 8.5. We show qualitative results of our method in the supplementary material.

All methods in Table 8.5, with the exception of SiamMask and our method, require
pixel-perfect segmentation in the first video frame and operate at a speed of less than
2 frames-per-second. By contrast, our method adds only a small overhead to the
underlying detection model used. For our experiments, we used a ResNet-50 FPN
backbone for Mask R-CNN, which led to a speed of approximately 7FPS. Despite
using less supervision and computational time, our approach is competitive with
dedicated video segmentation methods that use pixel-level masks in the first frame.
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Detection evaluation on COCO As discussed in Section 8.3.3, our model can
be used as a detector at test time. Although our focus is on tracking, we find that
our model outputs high quality detections, providing a COCO instance segmentation
mAP of 30.5, compared to 34.4 for an equivalent standalone detector that cannot
track objects.

Qualitative results. We show qualitative results in Fig. 8.4, comparing our results
with DaSiamRPN [274]. Note that [274] struggles to localize objects as they undergo
scale and appearance changes, such as the truck in the third column. By contrast,
leveraging objectness information allows our approach to localize the full extent of
objects, while simultaneously providing instance segmentations for the object of
interest.

8.5 Conclusion

This paper introduces a novel generic object tracking approach built on top of a
state-of-the-art object-detection framework. The resulting model can be trained
jointly for the two tasks, effectively incorporating objectness priors into tracking.
Additionally, we propose learning discriminative templates in a fully differentiable
manner that encode information both about the object of interest and about the
distractors, increasing the tracker’s robustness. Finally, we extend our method to the
related task of video object segmentation by simply adding a mask prediction branch.

Our resulting framework for tracking and video segmentation demonstrates state-of-
the-art results on two recent tracking datasets (OxUvA and GOT10k), and also shows
competitive performance on the DAVIS’17 benchmark for video object segmentation.
We empirically show that these improvements are largely due to the generic objectness
prior learned from the COCO dataset.
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Discussion

The past decade of progress has significantly advanced computer vision models in
the closed world of benchmark datasets, which usually contain only a few classes.
In this thesis, we explored how to extend vision approaches and benchmarks to the
open world, which can contain arbitrary scenes and objects. In Part I, we evaluated
and addressed the robustness of models to changes in object and scene appearances,
including partial and full occlusions. Part II presents datasets, evaluations, and
approaches for scaling detectors and trackers to large (albeit finite) vocabularies of
classes. Finally, Part III introduces approaches for detecting and tracking arbitrary
objects, without any fixed vocabulary.

Approaches. In the long run, building accurate methods for open-world recogni-
tion will require going beyond supervised, image datasets. The interaction between
different modalities, such as video, text, audio, and depth, in unlabeled data will
improve the generalization ability of our methods. In the community, recent models
trained on weakly supervised, multi-modal data have shown surprisingly useful prop-
erties, as in Radford et al. [182]: they can generalize to rare classes, and appear to
be more robust on the robustness benchmarks introduced in our work (Chapter 3,
Taori et al. [211]). Analyzing whether these models generalize to entirely unseen
objects, reducing their dependency on billions of images, and incorporating additional
modalities will be an important pathway for open-world recognition moving forward.

Tasks. A running challenge for open-world recognition is developing appropriate
intermediate tasks and evaluations. Ideally, one could evaluate methods in an end
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application: can an autonomous vehicle navigate around unknown objects, or can a
video understanding system recognize actions involving unknown objects? This may
suffice for certain applications, but progress in computer vision has excelled when we
define generic, atomic tasks that are useful for many downstream applications. What
might such tasks look like? In this thesis, we focused on some concrete tasks, which
include scaling up to large object vocabularies, and building methods to segment and
track novel objects. The former extends methods to a large (albeit fixed) set of class
names, while the latter provides segmentation masks around any object of interest.
Are there alternatives to these task definitions that can provide richer information
about any object or image region? For example, rather than naming pixels with object
classes, perhaps we should re-visit attribute-based taxonomies [64]. Attributes can
describe pixels (or objects) with traits that generalize across object classes, such as
‘movable,’ ‘living,’ or ‘heavy.’ Further, current tasks focus primarily on objects, largely
ignoring the hierarchical and compositional nature of visual recognition. Current
segmentation methods (including ours in Chapter 7), for example, can accurately
recognize the pixels on a car, but cannot provide finer segmentations of the objects’
parts (such as the door handle, the car doors, or wheels), unless the parts are explicitly
enumerated in the vocabulary. Can we instead design tasks that encourage methods
to learn a hierarchical grouping of pixels in images and videos? Such a mid-level task,
as explored in [7, 156], could generalize to more diverse applications, which require
going beyond object-level understanding.
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