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Abstract—Root-of-Trust (RoT) establishment ensures either
that the state of an untrusted system contains all and only content
chosen by a trusted local verifier and the system code begins
execution in that state, or that the verifier discovers the existence
of unaccounted for content. This ensures program booting into
system states that are free of persistent malware. An adversary
can no longer retain undetected control of one’s local system.

We establish RoT unconditionally; i.e., without secrets, trusted
hardware modules and instructions, or bounds on the adversary’s
computational power. The specification of a system’s chipset
and device controllers, and an external source of true random
numbers, such as a commercially available quantum RNG, is all
that is needed. Our system specifications are those of a concrete
Word Random Access Machine (cWRAM) model – the closest
computation model to a real system with a large instruction set.

We define the requirements for RoT establishment and
explain their differences from past attestation protocols. Then
we introduce a RoT establishment protocol based on a new
computation primitive with concrete (non-asymptotic) optimal
space-time bounds in adversarial evaluation on the cWRAM.
The new primitive is a randomized polynomial, which has k-
independent uniform coefficients in a prime order field. Its
collision properties are stronger than those of a k-independent
(almost) universal hash function in cWRAM evaluations, and are
sufficient to prove existence of malware-free states before RoT is
established. Preliminary measurements show that randomized-
polynomial performance is practical on commodity hardware
even for very large k.

To prove the concrete optimality of randomized polynomials,
we present a result of independent complexity interest: a Horner-
rule program is uniquely optimal whenever the cWRAM execution
space and time are simultaneously minimized.

I. INTRODUCTION

Suppose a user has a trustworthy program, such as a
formally verified micro-kernel [45] or a micro-hypervisor [89],
and attempts to boot it into a specific system state. The system
state comprises the contents of all processor and I/O registers
and random access memories of a chipset and peripheral
device controllers at a particular time; e.g., before boot. If
any malicious software (malware) can execute instructions
anywhere in the system state, the user wants to discover the
presence of such malware with high probability.

This goal has not been achieved to date. System compo-
nents that are not directly addressable by CPU instructions

or by trusted hardware modules enable malware to survive in
non-volatile memories despite repeated power cycles, secure-
and trusted-boot operations [67]; i.e., malware becomes per-
sistent. For example, persistent malware has been found in
the firmware of peripheral controllers [19], [53], [83], network
interface cards [20], [21], disk controllers [5], [59], [71], [93],
USB controllers [2], as well as routers and firewalls [5]. Natu-
rally, persistent malware can infect the rest of the system state,
and thus a remote adversary can retain long-term undetected
control of a user’s local system.

Now suppose that the user attempts to initialize the local
system state to content that s/he chooses; e.g., malware-
free code, or I/O register values indicating that the system
is disconnected from the Internet. Then, the user wants to
verify that the system state, which may have been infected
by malware and hence is untrusted, has been initialized to the
chosen content.

Root of trust (RoT) establishment on an untrusted system
ensures that a system state comprises all and only content
chosen by the user, and the user’s code begins execution in
that state. All implies that no content is missing, and only
that no extra content exists. If a system state is initialized to
content that satisfies security invariants and RoT establishment
succeeds, a user’s code begins execution in a secure initial
state. Then trustworthy OS programs booted in a secure initial
state can extend this state to include secondary storage and
temporarily attached (e.g., USB) controllers. If RoT estab-
lishment fails, unaccounted for content, such as malware,
exists. Hence, RoT establishment is sufficient for (stronger
than) ensuring malware freedom and necessary for all software
that needs secure initial states, such as access control and
cryptographic software. However, as with secure and trusted
boot, the trustworthiness of the software booted in secure initial
states is not a RoT establishment concern.

Unconditional Security. In this work we establish RoT
unconditionally; i.e., without secrets, trusted hardware modules
and special instructions (e.g., TPMs [87], ROMs [22], [38],
SGX [18]), or polynomial bounds on an adversary’s computing
power. By definition, a solution to a security or cryptography
problem is unconditional if it depends only on the existence
of physical randomness [13] and the ability to harvest it [37],
[70]. Unconditional security solutions have several fundamen-
tal advantages over conditional ones. For example:
• they are independent of any security mechanism, protocol,

or external party whose trustworthiness is uncertain; e.g.,
a mechanism that uses a secret key installed in hardware
by a third party depends on the unknowable ability and
interest of that party to protect key secrecy.

• they limit any adversary’s chance of success to provably
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low probabilities determined by the defender; i.e., they
give a defender undeniable advantage over the adversary.

• they are independent of the adversary’s computing power
and technology used; e.g., they are useful in post-quantum
computing.

In unconditional RoT establishment all the user needs is an
external source of non-secret physical randomness, such as one
of the many commercially available quantum random number
generators, and correct system specifications. That correct
system specifications are indispensable for solving any security
and cryptography problem has been recognized for a long time.
As security folklore paraphrases a well-known quote [92]: “a
system without specifications cannot be (in)secure: it can only
be surprising.” For RoT establishment, specifications are nec-
essarily low-level: we need a concrete Word Random Access
Machine (cWRAM) model of computation (viz., Appendix A),
which is the closest model to a real computer system. It has
a constant word length, up to two operands per instruction,
and a general instruction-set architecture (ISA) that includes
I/O operations and multiple addressing modes. It also supports
multiprocessors, caches, and virtual memory.

Contributions and Roadmap. We know of no other
protocols that establish RoT provably and unconditionally. Nor
do we know any other software security problem that has been
solved unconditionally in any realistic computational model.
This paper is organized as follows.

Requirements Definition (Section II). We define the require-
ments for RoT establishment, and provide the intuition for how
to jointly satisfy them to establish malware-free states and then
RoT. In Section VIII we show that these requirements differ
from those of past attestation protocols; i.e., some are stronger
and others weaker than in past software-based [7], [47], [77],
[78], [80], cryptographic-based [8], [22], [27], [38], [46], [64],
and hybrid [53], [94] attestation protocols.

New Primitive for establishing malware-free states (Sec-
tion IV). To support establishment of malware-free system
states, we introduce a new computation primitive with op-
timal space (m)-time (t) bounds in adversarial evaluation
on cWRAM, where the bounds can scale to larger values.
The new primitive is a randomized polynomial, which has
k-independent uniform coefficients in a prime order field. It
also has stronger collision properties than a k-independent
(almost) universal hash function when evaluated on cWRAM.
We use randomized polynomials in a new verifier protocol
that assures deterministic time measurement in practice (Sec-
tion VI). Preliminary measurements (Section VII) show that
their performance is practical on commodity hardware even
for very large k; i.e., k = 64.

RoT establishment (Section V). Given malware-free states,
we provably establish RoT and provide secure initial states
for all software. This requirement has not been satisfied since
its identification nearly three decades ago; e.g., see the NSA’s
Trusted Recovery Guideline [62], p. 19, of the TCSEC [61].

Optimal evaluation of polynomials (Section III). We use
Horner’s rule to prove concrete optimal bounds of random-
ized polynomials in the cWRAM. To do this, we prove
that a Horner-rule program is uniquely optimal whenever the
cWRAM execution space and time are simultaneously mini-
mized. This result is of independent complexity interest since

Horner’s rule is uniquely optimal only in infinite fields [12]
but is not optimal in finite fields [23], [43].

Appendix A provides a description of the cWRAM model.
Appendix B contains the proofs of the theorems, lemma, and
corollary of Section IV. Appendix C illustrates the imple-
mentation of the cWRAM encoding of Horner-rule steps in
real processors, the selection of k for these processors, and
practical ways to map strings of program words to strings of
Zp integers; i.e., to the inputs of randomized polynomials.

II. REQUIREMENTS DEFINITION

To define the requirements for RoT establishment we use
a simple untrusted system connected to a trusted local verifier.

Suppose that the system has a processor with register set R
and a random access memory M . The verifier asks the system
to initialize M and R to chosen content. Then the verifier
sends a random nonce, which selects Cnonce from a family
of computations Cm,t(M,R) with space and time bounds
m and t, and challenges the system to execute computation
Cnonce on input (M,R) in m words and time t. Suppose that
Cm,t is space-time (i.e., m-t) optimal, result Cnonce(M,R) is
unpredictable by an adversary, and Cnonce is non-interruptible.
If Cm,t is also second pre-image free and the system outputs
result Cnonce(M,R) in time t1, then after accounting for
the local communication delay, the verifier concludes that the
system state (M , R) contains all and only the chosen content.
Intuitively, second pre-image freedom and m-t optimality can
jointly prevent an adversary from using fewer than m words or
less time than t, or both, and hence from leaving unaccounted
for content (e.g., malware) or executing arbitrary code in the
system.

When applied to multiple device controllers, the verifier’s
protocol must ensure that a controller cannot help another
undetectably circumvent its bounds by executing some part of
the latter’s computation; e.g., act as an on-board proxy [53].

A. Adversary
Our adversary can exercise all known attacks that insert

persistent malware into a computer system, including having
brief access to that system to corrupt software and firmware;
e.g., an extensible firmware interface (EFI) attack [63] by an
“evil maid.” Also, it can control malware remotely and extract
all software secrets stored in the system via a network channel.
Malware can read and write the verifier’s local I/O channel,
but does not have access to the verifier’s device and external
source of true random numbers.

For unconditional security, we assume that the adversary
can break all complexity-based cryptography but cannot pre-
dict the true random numbers received from the verifier. Also,
the adversary’s malware can optimize Cm,t’s code on-the-fly
and at no cost; e.g., without being detected by the verifier.
Furthermore, the adversary can output the result of a different
computation that lowers t or m, or both, while attempting to
return a correct Cnonce(M,R) result.

1The verifier is trusted to obtain the correct result Cnonce(M,R) from the
execution of Cnonce on a trusted computer, or equivalently a trusted simulator
of the trusted computer, having the same configuration as the untrusted system
device. Also, optimal time bound t may vary among different computer
systems in reality, and hence the trusted verifier obtains it from the trusted
computer.
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B. Code Optimality in Adversary Execution
Concrete-Optimality Background. Recall that a computa-

tion’s upper time and space bounds are given by an algorithm
for that computation whereas the lower bounds are given by a
proof that holds for all possible algorithms for it. An algorithm
is space-time optimal if its bounds match the space and time
lower bounds of its computation.

Note that a verifier can use neither Cm,t computations
that have asymptotic lower bounds nor ones that have only
theoretical ones; i.e., bounds that cannot be matched by any
program, as illustrated below. If Cm,t’s lower bounds are
asymptotic, a verifier can never prove that an adversary is
unable to find an algorithm with better concrete bounds, by
improving the constants hidden in the asymptotic characteri-
zations. If the verifier measures the computation time against
a theoretical lower bound, it returns 100% false positives and
renders verification useless. If it measures time against a value
that exceeds the theoretical lower bound, it can never prove that
an adversary’s code couldn’t execute faster than the measured
time, which renders verification meaningless. If the memory
lower bound is theoretical and the adversary can exercise
space-time (m-t) trade-offs, a time measurement dilemma may
arise again: if m is scaled up to a practical value, t may drop
to a theoretical one.

A verifier needs Cm,t algorithms with concrete (i.e., non-
asymptotic) space-time optimal bounds in realistic models of
computers; e.g., models of general ISAs, caches and virtual
memory, and instruction execution that accounts for I/O and
interrupts, multiprocessors, pipelining. If such algorithms are
available, the only verifier challenge is to achieve precise
space-time measurements, which is an engineering, rather than
a basic computation complexity, problem; viz., Section VI.
In practice, finding such Cm,t algorithms is far from a
simple matter. For example, in Word Random Access Machine
(WRAM) models, which are closest to real computers (e.g.,
Appendix A), the lower bounds of even simple computations
such as static dictionaries are asymptotic even if tight [1], [60].
For more complex problems, such as polynomial evaluation,
lower bounds in WRAM have been purely theoretical. That is,
they have been proved in Yao’s cell (bit) probe model [91],
where only references to memory cells are counted, but not in-
struction execution time. Hence, a WRAM program can never
match these lower bounds2; see Related Work, Section VIII.

Concretely optimal algorithms exist for some classic prob-
lems in computation models that are limited to very few oper-
ations; e.g., Horner’s rule for polynomial evaluation. However,
lower bounds in such models do not hold in a WRAM model
with a general ISA or a real processor. For instance, lower
bounds for integer gcd programs obtained using integer divi-
sion (or exact division and mod [57]) can be lowered in modern
processors where an integer division by a known constant can
be performed much faster by integer multiplication [34], [39];
also a right shift can replace division by a power of two.
Furthermore, a Cm,t program must retain its optimality when
composed with system code; e.g., initialization and I/O code.
Its lower bounds must not be invalidated by the composition.

Adversary execution. Most optimality results assume hon-
est execution of Cm,t code. An execution is honest if the Cm,t

2The irrelevance of the cell-probe model in practice has not escaped
complexity theorists: “the true model is the [W]ord RAM, but the bitprobe
model is sometimes interesting as a mathematical curiosity [68].”

code is fixed before it reads any variables or input nonce,
and returns correct results for all inputs. Unfortunately, the
optimality in honest execution does not necessarily hold in
adversarial execution since an adversary can change Cm,t’s
code both before and after receiving the nonce, or simply
guess the Cnonce(M,R) result without executing any instruc-
tions. For example, the adversary can encode a small nonce
into immediate address fields of instructions to save register
space and instruction execution. More insidiously, an adversary
can change Cm,t’s code and nonce to that of C′m′,t′ and
nonce′ where (C ′nonce′ ,M

′, R′) 6= (Cnonce,M,R), such that
C ′nonce′(M

′, R′) = Cnonce(M,R) and t′ < t,m′ = m or
t′ = t,m′ < m or t′ < t,m′ < m. If the adversary can output
correct result C ′nonce′(M

′, R′) with only low probability over
the choices of nonce, we say that result Cnonce(M,R) is
unpredictable. Otherwise, the adversary wins.

The adversary can also take advantage of the optimal code
composition with initialization and I/O programs. For instance,
if the input of Cm,t’s variables and nonce requires multiple
packets, the adversary can pre-process input in early packet
arrivals and circumvent the lower time and/or space bounds;
viz., end of Section III for an example. Also, in a multi-
device system, a device can perform part of the computation
of another device and help the latter undetectably circumvent
its optimal bounds, as illustrated below.
C. Verifier Protocol Atomicity in Adversary Execution

The verifier’s protocol begins with the input into the
system and ends when the verifier checks the system’s output;
i.e., result-value correctness and timeliness. Protocol atomicity
requires integrity of control flow across the instructions of the
verifier’s protocol with each system device; i.e., each device
controller and the (multi)processor(s) of the chipset. Asyn-
chronous events, such as future-posted interrupts, hardware
breakpoints on instruction execution or operand access [47],
and inter-processor communication, can violate control-flow
integrity outside of Cm,t’s code execution. For instance,
malware instructions in initialization code can post a future
interrupt before the verifier’s protocol begins execution. The in-
terrupt could trigger after the correct and timely Cnonce(M,R)
result is sent to the verifier, and its handler could undetectably
corrupt the system state [52]. Clearly, optimality of Cm,t

code is insufficient for control-flow integrity. Nevertheless, it is
necessary: otherwise, a predictable Cnonce(M,R) result would
allow time and space for an interrupt-enabling instruction to
be executed undetectably.

Verifiable control flow. Instructions that disable asyn-
chronous events must be executed before the Cm,t code.
Their execution inside Cm,t code would violate optimality
bounds, and after Cm,t would be ineffective: asynchronous
events could trigger during the execution of the last instruction.
However, verification that an instruction is located before Cm,t

code in memory (e.g., via computing digital signatures/MACs
over the code) does not guarantee the instruction’s execution.
The adversary code could simply skip it before executing
Cm,t’s code. Hence, verification must address the apparent
cyclic dependency: on the one hand, the execution of the event-
disabling instructions before Cm,t code requires control-flow
integrity, and on the other, control-flow integrity requires the
execution of those instructions before Cm,t code.

Concurrent-transaction order and duration. Let a system
comprise c connected devices, where device i has random
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Fig. 1: Sequential and Concurrent Transaction Execution
access memory Mi and processor registers set Ri. Assume
for the moment that space-time optimal Cm1,t1 , . . . ,Cmc,tc
programs exist and that the control-flow integrity of the
verifier’s protocol is individually verifiable for each device
i. Then the verifier protocol must be transactional: either all
Cnoncei(Mi, Ri) result checks pass or the verification fails. In
addition, it must prevent two security problems.

First, the protocol must prevent a time gap between the end
of the Cmj,tj ’s execution and the beginning of Cmi,ti ’s, i 6= j.
Otherwise, a time-of-check-to-time-of-use (TOCTTOU) prob-
lem arises. A malicious yet-to-be-verified device controller can
perform an unmediated peer-to-peer I/O transfer [54], [55] to
the registers of an already verified controller, corrupt system
state, and then erase its I/O instruction from memory before its
attestation begins3. This is shown in Figure 1(A) and implies
that Cm1,t1 , . . . ,Cmc,tc must execute concurrently: none may
end before another starts4.

Second, the protocol must assure correct execution order
and duration of Cmi,ti programs. That is, the difference
between the start times and/or end times of any two programs
Cmi,ti and Cmj,tj must be small enough so that neither device
i nor j can undetectably perform any computation for the other
enabling it to lower its bounds and circumvent attestation.

For instance, if the verifier challenges fast device i to start
Cmi,ti a lot later than slower device j to start Cmj,tj , device i
can execute some of Cmj,tj ’s instructions faster, or even act as
an on-board proxy [53], for j. Then device i can undetectably

3Powering off all stateful devices and then powering them individually to
perform one-at-a-time verification is inadequate because some (e.g., chipset)
devices cannot be powered-off without system shutdown. The TOCTTOU
problem is still not solved because malicious firmware can still corrupt already
verified devices in the time gap between device power-on and attestation start.

4TOCTTOU attacks generalize to remote attestation in networks [22], [27]:
a yet-to-be-attested host can reinfect an already-attested host and then reboot
itself to a clean software copy before its attestation. Reinfection is possible
because attestation does not guarantee correctness of the attested software [67].
Duqu 2 illustrates similar malware mobility [42].
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restore its correct Cmi,ti code before its challenge arrives.
This is illustrated in Figure 1(B). Or, if Cmi,ti ends well
before Cmj,tj ends, malicious device j can act as the verifier
and fool attested device i into completing Cmj,tj ’s execution
faster. This is illustrated in Figure 1(C). (Recall that, even if
attested, devices cannot securely authenticate and distinguish
unattested-device requests from verifier’s requests and deny
them.) Note that slower devices can also help faster ones lower
their bounds. Nevertheless, the faster Cmi,ti to slower Cmj,tj
execution order [53] helps ensure that start-time and end-time
differences are small enough; e.g., see small differences δstart
and δend in Figure 2.

Scalable bounds. Given an optimal Cm,t program, one
must be able to obtain other optimal Cmi,ti programs from
it, where mi > m, ti > t. Furthermore, given an optimal
Cmi,ti program for a fast device i, one must be able to
obtain an optimal program Cmi,t′i

for it, where time bound
t′i ≥ max(ti), i = 1, . . . , c, independent of mi; see Figure 2.
This is intended to prevent the on-board proxy attacks as
described above. Neither scaling is obvious.

For example, an intuitive scaling of Cm,t to Cmi,ti might
copy Cm,t code k ≥ dmi/me times in Mi and then challenge
the k optimal copies sequentially; and the scaling from Cmi,ti
to Cmi,t′i

might execute Cmi,ti on k′ ≥ dt′i/tie nonces. Nei-
ther achieves optimal bounds in adversary execution. Consider
the second scaling; the first has similar drawbacks. The k′

executions Cnonce0(Mi, Ri), . . . , Cnoncek′−1
(Mi, Ri) must be

linked to avoid exploitable time gaps, as noted above. If linking
is done by the verifier, Cnoncej (Mi, Ri)’s code cannot end its
execution until it inputs the next nonce, noncej+1, from the
verifier [53]. Then Cmi,ti can no longer be optimal, since
the variable input-synchronization delays in Cmi,ti invalidate
the optimal ti5. If the synchronization buffers noncej+1, op-
timal mi also becomes invalid. The alternate linking whereby
noncej+1 = Cnoncej (Mi, Ri) is inadequate since nonces are
no longer random, or even pseudo-random [47], [77].

Figure 3 summarizes the relationships among requirements
for RoT establishment on an untrusted system. The engineering
requirements for time-measurement security and a new mech-
anism that satisfies them are presented in Section VI.

5Synchronization delays for noncej+1 input in a checksumj computation
on a network interface card (Netgear GA 620) can be as high as 0.4t with a
standard deviation of about 0.0029t; see [53], Sections 5.4.2-5.4.4.
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Fig. 3: RoT Establishment on an Untrusted System

D. Satisfying the requirements – Solution Overview
Individually, the two properties presented below are neces-

sary but insufficient to satisfy the Cm,t requirements. However,
jointly they do satisfy all of them.
1. k-independent (almost) universal hash functions. The sound-
ness of the verifier’s result-value check requires that Cm,t is
second pre-image free in a one-time evaluation. That is, no
adversary can find memory or register words whose contents
differ from the verifier’s choice and pass its check, except with
probability close to a random guess over nonces. Also, in-
putting the Cm,t variables and nonce into an untrusted device
must use a small constant amount of storage. k-independent
(almost) universal hash functions based on polynomials satisfy
both requirements. Their memory size is constant for constant
k [16], [65] and they are second pre-image free. We introduce
the notion of randomized polynomials to construct such func-
tions for inputs of d+1 log p-bit words independent of k; i.e.,
degree d polynomials over Zp with k-independent, uniformly
distributed coefficients; see the Corollary in Section IV-D.
2. Optimal polynomial evaluation. The soundness of the veri-
fier’s result-timeliness check requires a stronger property than
second pre-image freedom. That is, no computation C ′m′,t′
and nonce′ exists such that C ′nonce′(M

′, R′) = Cnonce(M,R)
and either one of its bounds, or both, are lower than Cm,t’s
in a one-time cWRAM evaluation, except with probability
close to a random guess over nonces. Concrete space-time
optimality of randomized polynomials in adversary evaluation
on cWRAM yields this property; viz., Section IV-D. Its proof
is ultimately based on a condition under which a Horner-rule
program for polynomial evaluation is uniquely optimal in an
honest one-time cWRAM evaluation; see Theorem 1 below.

Why are these combined properties sufficient for RoT
establishment? Randomized polynomials enable a verifier to
check the integrity of control flow in the code it initializes
on an untrusted cWRAM device (Theorem 6). In turn, this
helps implement time-measurement security; viz., Section VI.
They also assure bounds scalability6, which enables the verifier
to satisfy the transaction order and duration requirement and
leads to the establishment of malware-free states on a multi-
device system (Theorem 7). Finally, the verifier uses ordinary

6k-independent universal hash functions with constant time bounds and very
good space-time trade-offs exist in a standard WRAM model [17]. However,
these bounds aren’t (concretely) optimal and don’t allow independent time-
bound scalability. Hence these functions are impractical for this application.

universal hash functions to establish RoT in malware-free
states (Theorem 8).

III. FOUNDATION: OPTIMAL POLYNOMIAL EVALUATION

In this section we provide the condition under which a
Horner-rule program for polynomial-evaluation is uniquely
optimal in the concrete WRAM (cWRAM) model, which
we use for proving the optimality of randomized-polynomial
evaluation in Section IV. We begin with a brief overview of the
cWRAM model and illustrate the challenges of proving opti-
mality of universal hash functions in it. A detailed description
of cWRAM is in Appendix A.

A. Overview of the cWRAM model
The cWRAM model is a concrete variant of Miltersen’s

practical RAM model [60]; i.e., it has a constant word length
and at most two operands per instruction. It also extends the
practical RAM with higher-complexity instructions (e.g., mod,
multiplication), as well as I/O instructions, special registers
(e.g., for interrupt and device status), and an execution model
that accounts for interrupts. The cWRAM includes all known
register-to-register, register-to-memory, and branching instruc-
tions of real system ISAs, as well as all integer, logic, and
shift/rotate computation instructions. In fact, any computation
function implemented by a cWRAM instruction is a finite-state
transducer; see Appendix A. (The limit of two operands per
instruction is convenient, not fundamental: instructions with
higher operand arity only complicate optimality proofs.) All
cWRAM instructions execute in unit time. However, floating-
point instructions are not in cWRAM because, for the same
data size, they are typically twice as slow as the corresponding
integer instructions in latency-bound computations; i.e, when
one instruction depends on the results of the previous one,
as in the Horner-rule step below. Thus they cannot lower
the concrete space-time bounds of our integer computations.
Likewise, non-computation instructions left out of cWRAM
are irrelevant for our application.

Like all real processors, the cWRAM has a fixed number
of registers with distinguished names and a memory that
comprises a finite sequence of words indexed by an integer.
Operand addressing in memory is immediate, direct and indi-
rect, and operands comprise words and bit fields.

B. Proving optimality of universal hash functions in cWRAM
The immediate consequence of the constant word length

and limit of two single-word operands per instruction is
that any instruction-complexity hierarchy based on variable
circuit fan-in/fan-out and depth collapses. Hence, lower bounds
established in WRAM models with variable word length and
number of input operands [1], [60], [65] and in branching-
program models [56] are irrelevant in cWRAM. For example,
lower bounds for universal hash functions show the necessity
of executing multiplication instructions [1], [56]. Not only is
this result unusable in cWRAM, but proving the necessity of
any instruction is made harder by the requirement of unit-time
execution for all instructions.

In contrast, concrete space-time lower bounds of crypto-
graphic hash functions built using circuits with constant fan-
in, fan-out, and depth [3], [4] would be relevant to cWRAM
computations. However, these bounds would have to hold in
adversary execution, which is a significant challenge, as seen
in Section II-B. Even if such bounds are eventually found,
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these constructions allow only bounded adversaries and hence
would not satisfy our goal of unconditional security.

Since we use polynomials to construct k-independent (al-
most) universal hash functions, we must prove their concrete
optimality in cWRAM evaluations. However, all concrete op-
timality results for polynomial evaluation are known only over
infinite (e.g., rational) fields [12], and the gap between these
bounds and the lower bounds over finite fields (e.g., Zp) is
very large [43]. Furthermore, optimality is obtained using only
two operations (i.e., +,×) and cannot hold in computation
models with large instruction sets like the cWRAM and real
processors. We address these problems by adopting a com-
plexity measure based on function locality [60], which enables
us to distinguish between classes of unit-time computation
instructions, and by providing an evaluation condition that
extends the unique optimality of Horner’s rule to cWRAM.

C. Unique optimality of Horner’s rule in cWRAM
Horner’s Rule. Let p be a prime. Polynomial

Pd(x) = ad× xd + ad−1× xd−1 + · · ·+ a1× x+ a0 (mod p)
is evaluated by Horner’s rule in a finite field of order p as
Pd(x) = (· · · (ad×x+ad−1)×x+ · · ·+a1)×x+a0 (mod p).

Horner-rule step and programs. A program that evaluates
ai × x + ai−1 (mod p) as a sequence of four instructions
integer multiplication (·), mod p, integer addition (add), mod p
in cWRAM, or mod(add(mod(·(ai, x), p), ai−1), p) in infix
notation, is called the Horner-rule step. If arithmetic is in
mod 2w−1 where w − 1 bits represent an unsigned integer
value of a w-bit word, the Horner-rule step7 simplifies to the
multiply-add sequence; i.e., add(·(ai, x), ai−1).

A cWRAM loop that executes a Horner-rule step d times to
evaluate Pd(x) is a Horner-rule program. Note that there may
be multiple encodings of a Horner-rule program that evaluate
Pd(x) in the same space and time.

Initialization. If p < 2w−1, the initialization of a Horner-
rule program is a cWRAM structure of d+ 11 storage words
comprising 6 instructions (i.e., 4 for a Horner-rule step and 2
for loop control) and d+ 5 data words; i.e., d, ai(0 ≤ i ≤ d),
x, p, and output z. If arithmetic is mod 2w−1, the structure
has d+ 8 storage words; i.e., 4 instructions and d+ 4 words.

One time, honest evaluation. Polynomial Pd(x) is evaluated
one time if nothing is known about coefficients ai and input
x before the evaluation starts; i.e., ai and x are variables.
The evaluation of Pd(x) is honest if its program code is
fixed before constants are assigned to variables ai and x (i.e.,
before constants are input and initialized in cWRAM memory)
and returns correct results for all inputs. In a dishonest (e.g.,
adversarial) evaluation, program code can be changed after x
or any ai become known; e.g., if x = 0, Pd(0) = a0 can be
output without code execution.

Theorem 1. Let w > 3 be an integer, 2 < p < 2w−1

a prime, and Pd(·) =
d∑
i=0

ai × xi (mod p) a polynomial over

Zp. The honest one-time evaluation of Pd(x) by a Horner-rule
program is uniquely space-time optimal whenever the cWRAM
execution time and memory are simultaneously minimized;
i.e., no other programs can use fewer than both d+ 11 storage
words and 6d time units after initialization.

7In many processors, this is implemented by a single three-operand
multiply-accumulate instruction.

The proof of this theorem and of all others are in Ap-
pendix B. Briefly, since a Horner-rule program provides the
upper bounds, we only need to prove the lower bounds that
match them in cWRAM. To prove the lower bounds, we use
finite field properties, linear polynomials over Zp, locality-
based cWRAM instruction complexity, and the two-operand
per instruction limit. First, we show that a four-instruction
Horner-rule step is optimal when the cWRAM evaluation space
and time for linear polynomials are simultaneously minimized.
Then, we use the facts that the evaluation is one-time and
honest to show that a Horner-rule step is uniquely optimal.
Finally, we define a polynomial of degree d as a special
composition of linear polynomials, and show that its evaluation
requires a unique two-instruction loop-control sequence that
must iterate d times over the Horner-rule step.

A similar proof holds over Fq when q > 2 is a prime
power. To illustrate, we outline it for the important case q =
2w−1. Here the Horner-rule program needs only d+ 8 words
and 4d time units after initialization.

Theorem 1 answers A. M. Ostrowski’s 1954 questions
regarding the optimality of Horner’s rule [12] in a realistic
model of computation. However, both bounds t = 6d and
m = d+11 depend on d, and thus t cannot scale independently
of m. If t needs to be large, d becomes large. Hence not all
d+1 coefficients of Pd could always be input at the same time;
e.g., in one packet. This would enable an adversary’s code to
pre-process the coefficients that arrive early and circumvent the
optimal bounds; e.g., with pre-processing, the lower bound for
Pd’s evaluation drops from d to (d+1)/2 multiplications [72].

IV. RANDOMIZED POLYNOMIALS AND MALWARE
FREEDOM

In this section we define a family of randomized polynomi-
als, prove their space-time optimality in adversary evaluation
on cWRAM (Theorem 5), and show that they have stronger
collision-freedom properties than k-independent (almost) uni-
versal hash functions in cWRAM (Corollary). These properties
enable the verifier to establish control-flow integrity on a single
device (Theorem 6), and scale bounds for correct transaction
order and duration in a multi-device untrusted system. This
helps establish malware-free states (Theorem 7).

A. Randomized Polynomials – Definition
Let p be prime and d > 0, k > 1 integers. A degree-d

polynomial over Zp with k-independent (e.g., [16]), uniformly
distributed coefficients si

Pd,k(·) = sd × xd + · · ·+ s1 × x+ s0 (mod p),
is called the (d, k)-randomized polynomial 8.

If vd, . . . , v0 ∈ Zp are constants independent of si and x,
and ⊕ is the bitwise exclusive-or operation, then polynomial

Hd,k(·) = (vd⊕sd)×xd+· · ·+(v1⊕s1)×x+(v0⊕s0) (mod p)

is called the padded9 randomized polynomial.
Each padding constant vi will be used to represent the

least significant log p bits of a memory word i or of a special

8Our notion of randomized polynomial differs from Tarui’s [85] as we
cannot input variable numbers (i.e., d + 1) of random coefficients.

9Of course, other padding schemes not based on the ⊕ operation exist,
which preserve the k-wise independence and uniform distribution of the
padded coefficients.
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processor-state register; whereas the k of random numbers
(which generate the si) will fill the least significant log p bits
of all general-purpose processor registers; e.g., see the device
initialization in Section IV-E1 below.

Theorem 2 below shows that Hd,k(·) is second pre-image
free, has uniform output, and is k-independent. Everywhere
below, $←− denotes a uniform random sample.

Theorem 2. Let p > 2 be a prime and u ∈ Zp a constant.

1. Pr[x $←− Zp,∃y ∈ Zp, y 6= x : Hd,k(y) = Hd,k(x)]
≤ 1

(p−1)

2. Pr[x $←− Zp : Hd,k(x) = u] = 1
p

3. Hd,k(·) is k-independent.

The proofs of parts 1 and 2 follow from two notable facts.
First, let x,m be positive integers. If gcd(x,m) = 1, then
equation α · x = y (mod m) has a unique solution mod m.
Hence, for all y ∈ Zp and x ∈ Z+

p there exists a unique α such
that y = α · x mod p, and thus Hd,k(y)−Hd,k(x) becomes a
univariate polynomial in x. Second, any univariate polynomial
over Zp whose free coefficient is uniformly distributed and
independent of input x has uniform output in Zp when evalu-
ated on a uniform, random x. For part 3, we evaluate Hd,k(·)
at k distinct points and obtain a system of k linear equations
with d+ 1 unknowns vi⊕ si, k of which are independent. We
fix any d−k+ 1 unknowns, evaluate their terms, and obtain a
system of k linear equations that has a unique solution. Now
the independence result follows by definition [90].

Below we define the k-independent uniform elements si
for a family of randomized polynomials H in the traditional
way [16], [90]. We use family H in the rest of this paper.

Family H. Let p > 2 be a prime and rj , x
$←− Zp. Let v =

vd, . . . , v0, vi ∈ Zp, be a string of constants independent of
rj and x. Family H is indexed by tuples (d, r0, . . . , rk−1, x)
denoted as (d, k, x) below.

H = {Hd,k,x(·) | Hd,k,x(v) =
d∑
i=0

(vi ⊕ si)× xi (mod p),

si =
k−1∑
j=0

rj × (i+ 1)j (mod p)},

where vi ⊕ si is represented by a mod p integer.

Note that Hd,k,x(·) ∈ H has properties 1 and 2 of Hd,k(·)
in Theorem 2 in a one-time evaluation on x $←− Zp. The proof
of its k-independence is similar to that of part 3.

Notation. For the balance of this paper, p is the largest
prime less than 2w−1, w > 4. The choices made for the
random uniform selection of nonce Hd,k,x

$←− H are denoted
by S = {rj , x

$←− Zp, 0 ≤ j ≤ k − 1}.

B. Code optimality in honest evaluation
In this section, we prove the optimal space-time bounds in

a honest one-time evaluation of Hd,k,x(·). The only reason we
do this is to set the bounds an adversary must aim to beat.

Let Horner(Hd,k,x(·)) denote a Horner-rule program for
the honest one-time evaluation of Hd,k,x(·) ∈ H on input
string v. That is, Horner(Hd,k,x(·)) is implemented by a
nested cWRAM loop using the recursive formula zi−1 =
zi × x+ (vi−1 ⊕ si−1), where zd = vd ⊕ sd, z0 = Hd,k,x(v),

1 < i ≤ d. (We omit the correctness proof of the Horner
loop invariant since it’s a simple exercise.) Both the outer

loop
d∑
i=0

(vi ⊕ si) × xi (mod p) and the inner loop si =

k−1∑
j=0

rj × (i+ 1)j (mod p) are Horner-rule programs.

Upper bounds. We show that the upper bounds are m =
k + 22 storage words and t = (6k − 4)6d execution time
units in cWRAM, after variable initialization. By Theorem 1,
the inner and the outer loops of Horner(Hd,k,x(·)) can be
implemented by 6 instructions each. For each of coefficient,
vi ⊕ si, 2 instructions are sufficient whenever word indexing
in v is sequential; i.e, an addition for indexing in v and an
exclusive-or. The addition is sufficient when d+1 ≤ |v|, where
|v| is the number of words comprising memory M and the
special processor registers. If d + 1 > |v|, indexing in v also
requires a mod |v| instruction.

Modular indexing in v increases the instruction bound by 1
but does not affect the concrete optimality proofs since fewer
instructions cannot simulate memory addressing in cWRAM.
Furthermore, indexing to access a special processor register
(e.g., asynchronous event status bits) contained in v assumes
that the register is mapped in physical memory. When it isn’t,
accessing it via its index in v would require a couple of extra
instructions. Again, these instructions would only insignifi-
cantly increase the memory and time bounds, but not affect
their optimality. Thus, for simplicity of exposition and without
loss of generality, we assume coefficient padding requires only
2 instructions. Hence, 14 instructions comprising 2 nested
6-instruction loops and the 2 instructions for computing a
coefficient vi ⊕ si are sufficient. Thus, Horner(Hd,k,x(·))’s
time bound is t = [6(k − 1) + 2]6d = (6k − 4)6d time units.

By the definition of family H, the operands of these
instructions are evident; i.e., k + 8 data words comprising
the Hd,k,x(·)’s index in H, namely (d, r0, . . . , rk−1, x), degree
k−1, index i+1, coefficient si, modulus p, output z = vd⊕sd,
and vi’s word index in v. Thus k + 8 data words and 14
instruction words, or k+22 (general-purpose processor register
and memory) words, is Horner(Hd,k,x(·))’s space bound.

Lower bounds. The upper space-time bounds of Hd,k,x(·)
are unaffected by the excess memory and register space
required by the programs for processor-state (i.e., special
processor register) initialization, I/O, and general-purpose
register initialization (Init) in cWRAM; see Section IV-E1.
However, excess space prevents us from using Theorem 1 to
prove the lower bounds since the execution space is no longer
minimized. To avoid this technical problem, we assume these
programs are space-optimal and memory M contains only the
additional k+22 words. We also take advantage of the fact that
an honest program does not surreptitiously modify the settings
of the special processor registers after its code is committed.
The above assumption is only used to simplify the concrete-
optimality proof for the honest evaluation of Hd,k,x(·). It is
unnecessary for the optimality proof of Horner(Hd,k,x(·))
code in adversarial evaluation; see Section IV-C. There we use
the collision-freedom properties of Hd,k,x(·) in cWRAM (e.g.,
Corollary, Section IV-D) and its uniform distribution of output,
which we can avoid here thanks to the assumption made.

Theorem 3 (Optimality in Honest Evaluation). Let M
comprise space-optimal processor-state initialization, I/O, and
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Horner(Hd,k,x(v))  
space = k+22  
time = (6k-4)6d  

  

Horner(Hd,k,x(v)) = predictable  
     Adv executes loop i     Horner(Hd,k,x(v)) = unpredictable     

 Adv chooses (Hd’,k,y(),v’) ≠ (Hd,k,x(),v) 
 

             
Hd,k,y(v)             Hd’,k,y(v’)              Hd,k,x(v) 
            
          in (m, t) < (k+22, (6k-4)6d)  

predicts evaluates 
    

goal 

Adv guesses 

Fig. 4: Adversary goal and strategy space

Init code, and k+ 22 words. The honest one-time evaluation
of Hd,k,x(·) on v by Horner(Hd,k,x(·)) is optimal whenever
the cWRAM execution time and memory are simultaneously
minimized; i.e., no other programs can use both fewer than k+
22 storage words and (6k−4)6d time units after initialization.

The proof of this theorem follows from Theorem 1, k-
independence, and honest one-time evaluation.

C. Code optimality in adversary evaluation
Adversary Goal. By Theorem 3, the adversary’s goal is to

output Hd,k,x(v) using only m words of storage and time t
such that at least one of the lower bounds is lowered; i.e., m <
k+22 and t = (6k−4)6d, or m = k+22 and t < (6k−4)6d,
or m < k + 22 and t < (6k − 4)6d. We denote this goal by
(m, t) < (k + 22, (6k − 4)6d).

Strategy Space. We partition the adversary’s strategy space
into mutually exclusive cases 1 - 3 below, which s/he can select
at no cost, and bound the probability of success in each case.
These cases are summarized in Figure 4.

1. Guess Hd,k,x(v). The adversary predicts Hd,k,x(v) inde-
pendent of nonce Hd,k,x

$←− H and v; i.e., the prediction is a
constant relative to the random choices made in Hd,k,x

$←− H.
Hence, the probability of adversary’s success in a one-time
evaluation within bounds (m, t) is 1

p , by Theorem 2-2.
For any evaluation that depends on nonce Hd,k,x

$←− H,
the adversary must execute a program which inputs at least one
of the random choices y made by Hd,k,x

$←− H, or a function
thereof; e.g., y ∈ {x, rj , 0 ≤ j < k}, y = sd. The choice of
program instructions depends on whether Horner(Hd,k,x(v))
is predictable: either the adversary executes at least one
Horner-rule step (i.e., at least one outer loop execution) and
then outputs the result prediction or s/he executes an entirely
different instruction sequence in (m, t).

2. Horner(Hd,k,x(v)) is unpredictable. In this case, the
adversary does not execute any Horner-rule step. Instead, s/he
chooses a sequence of cWRAM instructions which inputs at
least a y ∈ Zp that depends on nonce Hd,k,x

$←− H, executes
the sequence, and outputs its result in Zp. That is, the chosen
sequence evaluates a function fH(·) : Zp → Zp on an input
y and outputs fH(y) in (m, t). Its instructions may read and
write multiple values in Zp; e.g., they may read and modify the
values of the general-purpose processor registers, and/or those
of v. Since Hd,k,x(v) is unknown before fH(y) is output, the
adversary’s success depends on whether fH(y) = Hd,k,x(v).

Note that the execution of any instruction sequence with
input and output in Zp represents the evaluation of a unique
polynomial Qd′(·) of degree d′ ≤ p− 1 on some input y over
Zp. This follows from a well-known fact that establishes the

one-to-one correspondence between functions and polynomials
Qd′(·) in finite fields10. Hence, the adversary can always find
a pair (Qd′(·), y) 6= (Hd,k,x(·), v) whose cWRAM evaluation
has desired bounds (m, t) < (k + 22, (6k − 4)6d). To upper
bound the probability of adversary’s success, we write Qd′(·)’s
coefficients ai (0 ≤ i ≤ d′) as ai = si ⊕ v′i for some v′ =

v′d′ , . . . , v
′
0, where si =

k−1∑
j=0

rj×(i+1)j (mod p) and rj
$←− Zp

are the same values used to generate Hd,k,x(·)’s coefficients. If
for any index i < d′ coefficient ai = 0, we set v′i = si. Thus,
Qd(y) ≡ Hd′,k,y(v′) and (Hd′,k,y(·), v′) 6= (Hd,k,x(·), v).

Let Adv(Hd,k,x(·), v) = Hd′,k,y(v′) denote the adver-
sary’s choice of polynomial, input v′, and evaluation result
output in (m, t). We denote event [S,Adv(Hd,k,x(·), v) =
Hd′,k,y(v′) : Hd′,k,y(v′) = Hd,k,x(v) | (m, t)] succinctly by
[S : Hd′,k,y(v′) = Hd,k,x(v)]. Lemma 4 bounds the adver-
sary’s probability of success, Pr[S : Hd′,k,y(v′) = Hd,k,x(v)].

Lemma 4. Let Hd,k,x
$←− H and v be its input. For any

one-time choice of (Hd′,k,y(·), v′) 6= (Hd,k,x(·), v), let the
adversary output Hd′,k,y(v′) in (m, t) < (k+ 22, (6k− 4)6d).
Then Pr[S : Hd′,k,y(v′) = Hd,k,x(v)] ≤ 3

p .

To prove this lemma, we partition all adversary’s one-
time choices of (Hd′,k,y(·), v′) into mutually exclusive attack
events, given nonce Hd,k,x(·) $←− H and v. Then we use the
definition of family H, Theorem 2, and two notable facts. The
first is that Z+

p is closed under multiplication. The second is
the first fact used in the proof of Theorem 2 above.

3. Horner(Hd,k,x(v)) is predictable. Alternatively, the
adversary decides that, for the given nonce Hd,k,x(·) $←− H
and v, Horner(Hd,k,x(v)) can be predicted within bounds
(m, t). Hence, s/he executes at least one Horner-rule step
(i.e., at least one outer loop of Horner(Hd,k,x(v)) and then
predicts Hd,k,x(v) without completing Horner(Hd,k,x(v)).
The bounds goal (m, t) is met: m ≤ k+22 and t < (6k−4)6d.

Let us denote the event of adversary’s success by [S :
Adv(Horner(Hd,k,x(·), v) = Hd,k,x(v) | (m, t)], or suc-
cinctly by [S : Hd,k,x(v) = predictable].

In the proof of Theorem 5 below we show that the bound of
Pr[S : Hd,k,x(v) = predictable] is not higher than the bound
in Lemma 4. This theorem shows that the concrete optimality
requirements of Section II-B are satisfied for a Horner(·)
program with bounds m = k + 22, t = (6k − 4)6d, which
is invoked with nonce = Hd,k,x(·) $←− H on input v. This is
summarized in Figure 5.

Theorem 5 (Optimality in Adversary Evaluation).

In a one-time cWRAM evaluation of Hd,k,x(·) $←− H on v
an adversary can lower either the space or the time bound of
Horner(Hd,k,x(v)), or both, with probability at most 3

p .

The proof of this theorem follows from the definition of
result (un)predictability in a one-time evaluation, Theorem 2
and the second notable fact used in its proof, Lemma 4, and
the definition of family H.

10By L. E. Dickson (1897) and C. Hermite (1854); viz., Lemma 1.1-1.2 [79].
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Fig. 5: Optimality of Cm,t with Family H

D. Collision Freedom of H in cWRAM

.The corollary below shows not only that H is a family of
k-independent (almost) universal hash functions, but also that
an adversary is unable to find a function in Zp whose one-
time cWRAM evaluation on an input y collides with Hd,k,x(v)
within bounds (m, t) < k + 22, (6k − 4)6d.

Corollary.
1. H is a k-independent (almost) universal hash function
family.
2. Let (m, t) < (k + 22, (6k − 4)6d). For a given one-time
evaluation of Hd,k,x(·) $←− H on input v in cWRAM,

Pr[Hd,k,x
$←− H, v,∃f, y ∈ Zp : f(y) = Hd,k,x(v) | (m, t)] ≤ 3

p
.

Part 1 follows by a similar proof as in Lemma 4, and the
k-independence follows along the same lines as the proof of
Theorem 2-3. Part 2 follows directly from Theorem 5.

E. Device Initialization and Atomicity of Verifier’s Protocol

1) Device Initialization: Upon system boot, the verifier
requests each device’s boot loader (e.g., akin to U-boot in
Section VII) to initialize the device memory with the verifier’s
chosen content, as described in steps (i) – (v) below, and then
transfer control to the first instruction of the processor-state
initialization program. The boot loaders may not contain all
and only the verifier’s chosen code, and hence are untrusted.

i) Processor-state initialization. This is a straight-line pro-
gram that accesses special processor registers to:

• disable all asynchronous events; e.g., interrupts, traps,
breakpoints;

• disable/clear caches, disable virtual memory, TLBs11, and
power off/disable stateless devices;

11Disabling/clearing caches/TLBs prevents an adversary from loading cho-
sen content before the timed protocol starts and circumvent time measure-
ments; viz., Sections VI-B and VII.
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Fig. 6: Device Initialization and Verifier Protocol Execution

• set all remaining state registers to chosen values; e.g.,
clock frequency, I/O registers.

When execution ends, the Input program follows in straight
line.

ii) Input/Output programs. The Input program busy-waits
on the verifier’s channel device for input. Once nonce Hd,k,x

arrives, the Init program follows in straight line. The Output
program sends result Hd,k,x(v) to the verifier after which it
returns to busy-waiting in the boot loader for further verifier
input.

iii) Init program. This is a straight-line program that loads
the k random values of nonce Hd,k,x into the general-purpose
processor registers so that no register is left unused; e.g., if
16 registers are available, k = 16. Its execution time, t0,
is constant since k is constant. When execution ends, the
Horner(Hd,k,x(·)) program follows in straight line.

iv)Horner(Hd,k,x(·)) program. This comprises 14 in-
structions whenever the address space is linear in physical
memory. When execution ends, the Output program follows
in straight line and outputs Hd,k,x(v).

v) Unused-memory initialization. After the initialization
steps (i) – (iv) are performed, the rest of the memory M is
filled with verifier’s choice of constants.

The device initialization and the verifier’s protocol with the
device are illustrated in Figure 6.

2) Control Flow Integrity: Recall that the verifier’s proto-
col begins with the input of nonce Hd,k,x into a device and
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ends when the verifier checks the device’s output.

Theorem 6 (Verifiable Control Flow). Let the verifier re-
quest a device’s untrusted boot loader to initialize its memory,
and constant t0 be the time required by the Init program on
cWRAM. Let the verifier receive Hd,k,x(v) in t0 +(6k−4)6d
time units in response to nonce Hd,k,x. Then

a) there exists a verifier choice of instruction encoding and
sequencing for the processor-state initialization, Input, or Init
programs such that the omission of any instruction execution
modifies at least a word of input v to Horner(Hd,k,x(·));

b) a control flow deviation in the verifier-protocol code on
the device remains undetected with probability at most 6

p .
In the proof of a), we use the fact that a verifier can

choose instruction encoding and sequencing for the three
programs such that the lower log p bits of their memory words
form a unique sequence of distinct words of the input v to
Horner(Hd,k,x(·)). For part b) we show that, given the the
verifier’s choice of instruction encoding and sequencing, any
control flow deviation from it requires either a modification of
input v or a violation of Horner(Hd,k,x(·))’s bounds, or both.
The probability of the former event is bounded by Lemma 4
and of the latter by Theorem 5.

Scalable Bounds. By Theorem 6, the Horner(Hd,k,x(·))
code bounds for device i must scale from m = k + 22
to mi = ki + 22, ki > k, and from t = (6k − 4)6d to
ti = (6ki − 4)6di, di = |vi| − 1 > d, where |vi| is the
number of memory and special processor-register words. To
scale execution time ti for a constant ki (and hence mi), the
verifier can increase di past constant |vi|−1 to whatever value
is required by transaction duration. In this case, indexing in vi
would require an additional mod |vi| instruction execution.

3) Concurrent-transaction order and duration: Let a sys-
tem comprise c devices with the smallest word size of w bits
and p < 2w−1. Let the verifier request an untrusted boot loader
to initialize device i with chosen content vi as described in
Section IV-E1. Then Initi initializes the ki general-purpose
registers on device i in constant time t0i . If t0j + tj is the
slowest Horner(Hdj ,kj ,xj

(·)) execution time on any device’s
vj , then the verifier selects values of di, ki for the other device
nonces Hdi,ki,xi

such that ti = t0i + (6ki − 4)6di equals
t0j + tj , or exceeds it by a very small amount, to satisfy the
duration requirement. Then the verifier’s chosen concurrent-
transaction order can assure that the start times and end times
do not allow malicious devices to circumvent lower bounds.

Theorem 7 (Malware-free state). Let a verifier initialize
an untrusted c-device system to vi (i ∈ [1, c]), where c is
small; i.e., 10c << p. Then the verifier challenges the devices
concurrently in transaction order, with device i receiving
nonce Hdi,ki,xi

whose ti satisfies the duration requirement.
If the verifier receives result Hdi,ki,xi

(vi) at time ti for all
i, the probability that malware survives in a system state is at
most 9c

p . If the verifier runs the protocol n times, the malware-
survival probability becomes negligible in n; i.e., ε(n) = [9cp ]n.

The proof follows directly from the concurrent transaction
order and duration property of the verifier’s protocol, Theorem
6, and Lemma 4.

Example. For w = 32 and w = 64 bits, the largest primes
p < 2w−1 are 231 − 1 and 263 − 25. In practice c ≤ 16 as
we rarely encounter commodity computer systems configured

with more than eight CPU cores and eight peripheral-device
controllers whose non-volatile memories can be re-flashed with
code12. For w = 32 (w = 64), the probability of malware
survival for n = 1 is less than 2−23 (2−55), for n = 2 is less
than 2−46 (2−110), etc. Hence, n ≤ 2 is sufficient, in practice.

V. UNCONDITIONAL ROOT OF TRUST ESTABLISHMENT

Theorem 7 establishes a malware-free, multi-device system
state. However, this is insufficient to establish RoT. While the
general-purpose registers contain w-bit representations of the k
random numbers, the memory and special processor registers
of a device comprise w-bit words, rather than the log p-bit
fields vidi , . . . , v

i
0 words, where p < 2w−1 is the largest prime.

Hence, a sliver of unaccounted for content exists.
To establish RoT, the verifier can load a word-oriented

(almost) universal hash function in each malware-free device
memory and verify the results they return after application
to memory and special processor register content. Note that
space-time optimality of these hash functions and verifier’s
protocol atomicity are unnecessary, since malware-freedom
is already established. A pairwise verifier - devicei protocol
checking device memory and special register content is suffi-
cient. Let Hw be such a family and V comprise the set of w-bit
words of a device’s memory and special processor registers.

Fact (e.g., Exercise 4.4 [88]). Let q > 2w be a prime,
|V | = q/2w, and a, b, c $←− Zq be the function index of family
Hw, where
Hw = {Ha,b,c(·) | wi ∈ [0, 2w), Ha,b,c(w|V |−1 . . . w0)

= ((a× (
|V |−1∑
i=0

wi × ci) + b) mod q) mod 2w}
is a family of almost universal hash functions, with collision
probability of 2−(w−1). The probability is computed over the
choices of Ha,b,c(·)

$←− Hw.

Theorem 8 (RoT Establishment). Let a verifier estab-
lish a malware-free state of a c-device system in n proto-
col runs, as specified in Theorem 7. Then let the verifier
load Hai,bi,ci(·)

$←− Hw on device i and check each result
Hai,bi,ci(Mi) received. If all checks pass, the verifier estab-
lishes RoT with probability at least (1− ε(n))(1− c · 2w−1),
where ε(n) = [ 9cp ]n; e.g., higher than 1− 10c

p for n = 1.

The proof is immediate by Theorem 7 and the Fact above.

Implementation considerations of the cWRAM model in
real processors for suitable choices of prime p are discussed
in Appendix C.

Secure Initial State. After the verifier establishes RoT, it
can load a trustworthy program in the system’s primary mem-
ory. That program sets the contents of all secondary storage to
verifier’s choice of content; i.e., content that satisfy whatever
security invariants are deemed necessary. This extends the
notion of the secure initial state to all system objects.

VI. TIME-MEASUREMENT SECURITY

Past software-based attestation designs fail to assure that
a verifier’s time measurements cannot be bypassed by an
adversary. For example, to account for cache, TLB, and clock

12Although GPUs have many cores, GPU malware is cannot persist, as it
cannot survive GPU power-offs/reboots [76] by processor-state initialization.
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jitter caused primarily by pseudo-random memory traversals by
Cm,t(·) computations and large t, typical verifiers’ measure-
ments build in some slack time; e.g., 0.2% – 2.6% of t [47],
[52], [53], [77]. An adversary can easily exploit the slack time
to undetectably corrupt Cm,t(·)’s memory [47], [52]. In this
section we show how to counter these threats.

A. Verifier Channel
The verifier’s local channel must satisfy two common-sense

requirements. First, the channel connection to any device must
not pass through a peripheral device controller that requires
RoT establishment. Otherwise, malware on the controller could
pre-process some of the computation steps for the verifier’s
protocol with that device and help it to circumvent the time
measurements. Second, the channel’s delay and its variation
must be small enough so that the verifier time measurements
can reliably detect all surreptitious untrusted-system com-
munication with external devices and prevent both memory-
copy [52] and remote-proxy [53] attacks.

We envision a verifier device to be attached to the main
system bus via a DMA interface, similar in spirit to that
of Intel’s Manageability Engine or AMD’s Platform Security
Processor, but without flaws that would enable an attacker
to plant malware in it [63]. These processors can operate
independently of all other system components; e.g., even when
all other components are powered down [83]. The external
verifier could also run on a co-processor connected to the main
system bus, similar in spirit to Ki-Mon ARM [51]. In both
cases, the verifier would have direct access to all components
of the system state. An advantage of such verifiers is that their
communication latency and variation of the local channel are
imperceptible in contrast with the adversary’s network channel.

B. Eliminating Cache and TLB jitter
To perform deterministic time measurement, it is necessary

to eliminate cache/TLB jitter and interprocessor interference,
and avoid clock jitter in long-latency computations.

Preventing Cache, Virtual Memory, and TLB use. In con-
trast with traditional software-based attestation checksums
(e.g., [47], [52], [77], [78]), the execution-time measure-
ments of Horner(Hd,k,x(v)) is deterministic. Most modern
processors, such as the TI DM3730 ARM Cortex-A8 [6], in-
clude cache and virtual-memory disabling instructions. Hence,
processor-state initialization can disable caches, virtual mem-
ory, and the TLB verifiably (by Theorem 6). In addition, the
Horner-rule step is inherently sequential and hence unaffected
by pipelining or SIMD execution. The only instructions whose
execution could be overlapped with Horner-rule steps are the
two loop control instructions, and the corresponding timing is
easily accounted for in the verifier’s timing check.

Preventing Cache pre-fetching. In systems where
caches cannot be disabled, the inherent sequentiality of
Horner(Hd,k,x(v)) code and the known locality of the
instruction and operand references helps assure that its
execution-time measurements are deterministic. However, the
adversary’s untrusted boot loader could perform undetected
cache pre-fetches before the verifier’s protocol starts, by
selectively referencing memory areas, and obtain better
timing measurements than the verifier’s; viz., Section VII. To
prevent pre-fetching attacks the processor-state initialization
can clear caches verifiably (by Theorem 6), so that Init and

Horner(Hd,k,x(v)) code can commence execution with clean
caches. Hence, cache jitter can be prevented.

Alternately, the verifier’s processor-state initialization could
warm up caches [77] by verifiable pre-fetching. Nevertheless,
verifiable cache clearing is often required; e.g., in ARM
processors instruction and data caches are not hardware syn-
chronized, and hence they have to be cleared to avoid malware
attacks [52]. Furthermore, cache anomalies may occur for
some computations where a cache miss may result in a shorter
execution time than a cache hit because of pipeline scheduling
effects [24]. This makes cache clearing a safer alternative.

C. Handling clock jitter and inter-processor interference

When Horner(Hd,k,x(v)) executes in large memories it
can have large latencies; e.g., several minutes. These may
experience small time-measurement variations in some systems
due to uncorrected random clock jitter at high frequencies [84],
and multi-processor interference in memory accesses. These
timing anomalies are typically addressed in embedded real-
time systems [24]. For such systems, we use a random sequen-
tial protocol. This protocol leverages smaller memory segments
and the verifiable choice of clock-frequency setting such that
random clock jitter becomes unmeasurable by an adversary. It
also ensures that different processors access different memory
segments to eliminate interprocessor interference. The protocol
also provides an alternate type of bounds scaling. For example,
in controller devices can complete verification concurrently
with the first memory segments without having to scale their
space-time optimal computations to meet the large time bound
of a primary memory verification.

Random Sequential Evaluation. Let F = {f1, f2, . . . , fn}
be a family of n functions and Ki

$←− [1, n], i = 1, . . . , N , be
identifiers of their random invocations. fK1 , fK2 , . . . , fKN

are
evaluated on inputs x1, x2, . . . , xN , and ⊥ denotes the event
that an invalid result is returned by a function evaluation. The
protocol for the random sequential evaluation of F , namely
(fK1

(x1), fK2
(x2), . . . , fKN

(xN )), is as follows:
1) N = n · log n;
2) if fKi

(xi) 6=⊥, then fKi+1
(xi+1), 1 ≤ i < N ; and

3) Pr[Ki
$←− [1, n] : ∀j > i, fKj

(xj) = yj | fKi
(xi) =

yi, · · · , fK1(x1) = y1] = Pr[Ki
$←− [1, n] : fKj (xj) = yj ].

The evaluation terminates correctly if fKi(xi) 6=⊥ for all i,
and incorrectly, otherwise.

Condition 1) implies that the evaluation invokes all ran-
domly selected functions with high probability at least once
[25], [77]. Condition 2) defines the sequential evaluation
rule. Condition 3) implies that the j-th function evaluation is
independent from the previous i < j evaluations.

Verifier Initialization. Let the verifier request the boot
loader to initialize M to n memory segments each
comprising processor-state initialization, I/O, Init, and
Horner(Hd,k,x(·)) programs. Then verifier’s boot loader
transfers control to the first instructions of the processor-
initialization program.

Verifier Protocol. Let F be family H, fKi
be

Horner(Hdi,ki,xi
(·)), where Ki

$←− [1, n], and Hdi,ki,xi
(·) $←−
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Fig. 7: Random Sequential Evaluation Protocol

H; i.e., the random selection of a memory segment13. If the
random sequential evaluation protocol terminates incorrectly
or the termination is untimely, or both, the verifier rejects.
Otherwise, the verifier accepts. This is the verifier’s protocol
for the n-segment memory model. The protocol is illustrated
in Figure 7.

Specifically, the verifier writes the values denoting the
choice of Hdi,ki,xi(·)

$←− H separately to each of the n memory
segments. Furthermore, the verifier’s Output code is modified
so that it returns to the Input busy-waiting code after outputting
an evaluation result, which transfers to the first instruction
of the Input code of the next randomly chosen segment. The
address of the next segment’s Input code is provided by the
verifier along with the next nonce Hdi,ki,xi

(·) $←− H.
Note that the size of the segments shown in Figure 7 can

vary. Memory M can be initialized with segments that are
small enough such that their evaluation time becomes smaller
than the round-trip time necessary for a remote proxy attack,
where the remote proxy is powerful enough to evaluate any
randomized polynomial in zero time [53]. Hence, if malware
attempts to enlist the help of an adversary of unbounded power
to bypass the optimal space-time bounds of all the small-
memory segments, the verifier protocol fails.

In a multiprocessor system where j processors share RAM
memory M , the Init programs would start the concurrent
execution of all j processors in different memory segments
along with those of the device controllers; see Figure 8. The
assignment of segments to processors can be done by selecting
j segments at random without replacement from the n ≥ j
segments. Thus no two processors or more can interfere in
accessing the same segment at the same time.

Theorem 9 (Malware-free Segmented Memory). Let a
verifier initialize memory M of a (e.g., multiprocessor) device
to n segments and perform the verifier’s protocol for the

13A non-random sequential selection would enable malware to take control
after a correct and timely result is returned by a memory segment evaluation,
modify the memory of an already evaluated segment or prefetch instructions,
and then overwrite itself with correct evaluation code before the next input
arrives from the verifier.
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Fig. 8: Processors Accessing Different Memory Segments

segmented memory. If the verifier accepts the result, the device
state is malware-free, except with probability at most 9n

p .
The proof of this theorem follows from the definition of the

verifier’s initialization of memory M including the modified
I/O instruction sequences, by the verifier’s protocol for the
segmented memory model, and by Theorem 6 and Lemma 4.

VII. PERFORMANCE

In this section, we present preliminary performance mea-
surements for the Horner-rule evaluation of randomized poly-
nomials. The only goal here is to illustrate implementation
practicality on a commodity hardware platform. For this rea-
son, we compare these measurements to those of Pioneer
– the best-known attestation checksum [77] – on the same
hardware configuration [52]. Presenting a study of randomized-
polynomial performance is beyond the scope of this paper.

Our measurements also illustrate the importance to prov-
ably clearing (or disabling, when possible) caches for deter-
ministic time measurements. We noticed no timing anomalies
due to uncorrected clock jitter in our single-processor configu-
ration for a fairly large memory. This suggests that the random
sequential evaluation for large memories (Section VI) may be
useful primarily to prevent inter-processor interference.

Hardware. Our measurements were done on a Gumstix
Overo FireSTORM-P Computer-On-Module (COM), which is
the ARM-based development platform for embedded hardware
used by Li et al. [52]. This gives us an opportunity to compare
the performance of Horner’s rule for randomized polynomials
with that of the Pioneer checksum. This platform features
a 1GHz Texas Instruments DM3730 ARM Cortex-A8 32-bit
processor and 512MB of DDR SDRAM [86]. The processor
has a 32KB L1 instruction cache and a 32KB L1 data cache,
both with 16 bytes per cache line. In addition, it also features
a 256KB L2 unified cache [6].

Recall that the parameter |M | must reflect the total amount
of primary storage in the device. Besides the 512MB of
SDRAM, our particular Gumstix also features 64KB of SRAM
and also a large address space for device control registers with
5, 548 registers. Summing these up as bits, we set |M | to
4, 295, 669, 120.

Software. Our measurements are implemented inside a
popular secondary boot loader known as U-Boot, which in a
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typical application would be responsible for loading the Linux
kernel on the COM. For our purpose, however, we extend U-
Boot with measurement capabilities; i.e., U-Boot 2015.04-rc4
is cross-compiled with Linaro gcc 4.7.3.

We implemented Horner’s rule for several polynomials in
Zp, where p = (232−5) is the largest prime that can fit inside
a 32-bit register. Since the DM3730 ARM Cortex-A8 CPU
does not support the udiv (unsigned integer division) instruc-
tion, gcc uses the __aeabi_uidivmod function to emulate
division, which is slower than the hardware udiv instruction
followed by the mls (integer multiply-and-subtract) instruction
to compute the modulus. Nevertheless, an adversary cannot
change the emulation since the code image is committed by
the second pre-image freedom of randomized polynomials.

The first Horner-rule measurement is for ordinary poly-
nomials; i.e., with constant, rather than k-wise independent,
coefficients. This establishes the baseline, which helps calibrate
the expected performance loss for increasing the values of k.
The performance of Horner rule for a single polynomial of
degree 128M covering the entire SDRAM is 11, 739ms.

For the measurements of Horner-rule evaluation of random-
ized polynomials, the k random numbers are stored contigu-
ously in memory. For values of k that match one cache line,
namely k = 4, evaluating a polynomial of degree d = 128M
(same as the baseline) takes 67, 769ms due to extra memory
accesses and added cache contention. However, most modern
processors have more than k = 4 and fewer than k = 64
registers. Hence, larger values of k would have to be used to
ensure that the adversary cannot be left with spare processor
registers after loading the k random numbers.

Randomized Polynomials vs. Pioneer Checksum. The tim-
ing for k = 64 and d = 10M is 54, 578ms. For the baseline
d = 128M the running time is close to 700 seconds, which
is about 6% faster than the fastest Pioneer checksum (745.0
seconds), 8.7% faster than the average (765.4 seconds), and
9% faster than the slowest (768.1 seconds) reported by Li
al. [52] on the same hardware configuration. While these
measurements illustrate practical usefulness, additional mea-
surements are necessary for a complete performance study;
e.g., additional hardware platforms and configurations.

Why Disable or Clear Caches? Instruction and data caches
on the DM3730 ARM Cortex-A8 can be disabled and enabled
individually, using single instructions. We used this feature
to illustrate the inferior cache utilization compared to an
adversary’s cache pre-fetching strategy. With only the instruc-
tion (data) cache turned off, we observed a 5.15x (23.76x)
slowdown in Horner-rule evaluation. With both caches turned
off, the slowdown increases to 53.13x. This shows that the
adversary can gain a real advantage by cache pre-fetching.

VIII. RELATED WORK

A. Past Attestation Protocols
Past attestation protocols, whether software-based [7], [40],

[47], [77], [78], [80], cryptographic-based [8], [22], [27], [38],
[46], [64], or hybrid [53], [94], have different security goals
than those of RoT requirements defined here: some are weaker
and some are stronger. For example, whether these protocols
are used for single or multiple devices, they typically aim
to verify a weaker property, namely the integrity of software
– not system – state. However, they also satisfy a stronger

property: in all cryptographic and hybrid attestation protocols
verification can be remote and can be repeated after boot, rather
than local and limited to pre-boot time.

Given their different goals, it is unsurprising that past
attestation protocols fail to satisfy some RoT establishment re-
quirements defined in Section II even for bounded adversaries
and secret-key protection in trusted hardware modules. For ex-
ample, these protocols need not be concerned with the content
of system registers (e.g., general processor and I/O registers),
since they cannot contain executable code. Furthermore, they
need not satisfy the concurrent-transaction order and duration
requirements (see Section II-C) of the verifier’s protocol since
they need not establish any system state properties, such as
secure initial state in multi-device systems. Finally, none of
these protocols aims to satisfy security properties provably
and unconditionally. Beyond these common differences, past
protocols exhibit some specific differences.

Software-based attestation. Some applications in which
software-based attestation can be beneficially used do not re-
quire control-flow integrity [69], and naturally this requirement
is not always satisfied [15], [52]. A more subtle challenge
arises if one uses traditional checksum designs with a fixed time
bound in a multi-device system since scalable time bounds
are important. As shown in Section II-C, these checksums
cannot scale time bounds by repeated checksum invocation
with different nonces and retain optimality. Software-based
attestation models [7], [40] also face this challenge.

Despite their differences from RoT establishment,
software-based attestation designs met their goals [77], [78],
and offered deep insights on how to detect malware on
peripheral controllers [53], embedded devices [15], [52],
mobile phones [40], and special processors; e.g., TPMs [47].

Cryptographic attestation. Cryptographic protocols for re-
mote attestation typically require a trusted hardware module in
each device, which can be as simple as a ROM module [46],
to protect a secret key for computing digital signatures or
MACs. If used in RoT establishment, the signature or MAC
computations must verifiably establish control-flow integrity.
Otherwise, similar control-flow vulnerabilities as software-
based attestation would arise. Furthermore, the trusted hard-
ware module must protect both the secret key and the signa-
ture/MAC generation code.

More importantly, cryptographic attestation relocates the
root of trust to the third parties who install the cryptographic
keys in each device controller and those who distribute them
to verifiers. However, the trustworthiness of these parties can
be uncertain; e.g., a peripheral-controller supplier operating in
jurisdictions that can compel the disclosure of secrets could
not guarantee the secrecy of the protected cryptographic key.
Similarly, the integrity of the distribution channel for the
signature-verification certificate established between the device
supplier/integrator and verifier can be compromised, which
enables known attacks; e.g., see the Cuckoo attack [66]. Thus,
these protocols can offer only conditional security.

Nevertheless if the risk added when third parties manage
one’s system secrets is acceptable and protocol atomicity
requirements are met, then cryptographic protocols for remote
attestation could be used in RoT establishment.
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B. Polynomial Evaluation
If the only operations allowed for polynomial evaluation

are the addition and multiplication, Horner rule’s bound of
2d operations for degree-d polynomials was shown to be
uniquely optimal in one-time evaluations [12], [72]. How-
ever, this bound does not hold in finite fields, where the
minimum number of modular additions and multiplications is
Ω(

√
(d+ 1)) [43]. Furthermore, these bounds do not hold in

any WRAM models or any real computer where many more
operations are implemented by the ISA.

For WRAM models with variable word widths,
polynomial-evaluation lower bounds are typically obtained in
the cell probe model. Here the polynomial is assumed to be
already initialized in memory. The evaluation consists of the
reading (probing) a number of cells in memory, and after of
all read operations are finished, it must output the result. The
cell probed by each read operation may be any function of
the previously probed cells and read operations, and thus all
computations on the already read data take no time.

Using the cell-probe model, Gál and Miltersen [28] showed
that the size r of any additional data structure needed for the
evaluation of a degree-d polynomial beyond the information
theoretical minimum of d+ 1 words must satisfy r · t = Ω(d),
where t is the number of probes, d ≤ p/(1 + ε), p is a prime,
and ε > 0. For linear space data structures (i.e., w-bit words
and memory size |M | = O(d·log p/w)), Larsen’s lower bound
of Ω(log p) is the highest [50], but it is not close to the lowest
known upper bound [44]. Neither bound holds in cWRAM or
in a real computer.

C. Memory-Hard Functions
Recent interest in countering password cracking and

crypto-currency mining by off-line cryptographic computations
on GPU and ASIC cores has led to the design of memory-
hard functions (MHFs). If n is the number of hash function
output blocks that fit into a large memory buffer, an opti-
mal MHF implements the fundamental space-time trade-off
m · t ∈ Ω(n2) in sequential evaluation; whereas in parallel
evaluation, the amortized space cost over time has the lower
bound of Ω( n2

log n ) [10], [11]. A goal of MHF design is to make
the asymptotic constants be as high as possible to amplify the
space-time trade-off.

Leaving aside the fact that the MHF adversary is always
bounded, the properties of optimal MHFs differ from those
of the optimal space-time computations in RoT establishment
for at least three basic reasons. First, no matter how one
adjusts the number of rounds an MHF traverses the available
memory to increase its asymptotic constant, the evaluation time
t cannot scale independently of m, as required by the verifier’s
protocol; see Section II-C. Second, while a MHF’s memory
space comprises n blocks, it does not capture the number and
content of processor registers, since they do not add any MHF
adversary advantage. Third, the MHF time measurement is
approximate: it is unaffected by jitter caused by cache/TLB
use and multiprocessor interference in shared memory access,
in contrast with time-measurement in establishing malware-
freedom and RoT. Of course, MHF have other desirable prop-
erties, such as the independence of memory access patterns [9],
[10], [11] , which are irrelevant for randomized polynomials.

Further, the use of MHFs in password and mining attacks
is very different from randomized polynomials in RoT estab-

lishment. First, unlike a MHF [11], a randomized polynomial
cannot be evaluated in parallel; i.e., the verifier ensures that
different device controllers (Section II-C), and different pro-
cessors or cores (Section VI-C), of the same system evaluate
different randomized polynomials. Second, the evaluation of
a randomized polynomial on a real processor, such as an
Intel x86 processor, yields two or more space-time optimal
execution points that exclude each other; see Appendix C. That
is, unlike with MHFs, space-time trade-offs are ruled out in
randomized polynomial evaluations. Third, the MHF bounds
are asymptotic, even when optimal, and hence unusable by
verifiers; see Section II-B.

IX. CONCLUSIONS

RoT establishment is a necessary primitive for a variety of
basic system security problems, including starting a system
in a secure initial state [30], [31] and performing trusted
recovery [62]. These problems have not been demonstrably
resolved since their identification decades ago. They only
became harder in the age of persistent malware attacks. RoT
establishment is also necessary for verifiable boot – a stronger
notion than secure and trusted boot [29]. It is also a basic
requirement for the installation of secrets into a computing
device for later use in secure cryptographic protocols and
applications [32].

In this paper we showed that, with a proper theory foun-
dation, RoT establishment can be both provable and uncon-
ditional. We know of no other software security problem that
has had such a solution, to date. Finally, the security of time
measurements on untrusted systems has been a long-standing
unsolved engineering problem [47], [52], [53], [77]. Here, we
also showed that this problem can be readily solved given the
provable atomicity of the verifier’s protocol.
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X. Appendix A – The Concrete Word RAM Model
Storage. cWRAM storage includes a fixed sequence M of

w-bit memory words indexed by an integer, such that constant
w > log|M |. The allocation of each instruction in a memory
word follows typical convention: the op code in the low-order
bytes and the operands in the higher-order bytes. Furthermore,
cWRAM storage also includes k w-bit general-purpose proces-
sor registers, R0, R1, . . . , Rk−1. A memory area is reserved for
the memory mapped I/O registers of different devices and the
interrupt vector table, which specifies the memory location of
the interrupt handlers. The I/O registers include data registers,
device-status registers, and device-control registers.

Special Registers. In addition to the program counter (PC),
the processor state includes internal registers that contain the
asynchronous-event status bits specifies whether these events
can be posted or are disabled; e.g., by the events clear or enable
instructions. It also includes a set of flags and processor con-
figuration settings (e.g., clock frequency) and specifies whether
virtual memory/TLBs and caches are enabled. Instructions to

16



enable and disable cashes/virtual memory are also included.
In systems that do not automatically disable cache use when
virtual memory is disabled, an internal register containing
cache configuration status is provided.

Addressing. Each instruction operand is located either in
a separate memory word or in the immediate-addressing fields
of instructions. Immediate addressing is applicable only when
operands fit into some fraction of a word, which depends on the
size of the instruction set and addressing mode fields. Indirect,
PC-relative, and bit addressing are also supported.

Instruction Set. The cWRAM instruction set includes all
the types of practical RAM instructions [60] with up to two
operands.

- Register initialization. Load immediate: Ri := α, or
relative: Ri := M [PC +α], where α is a constant, and direct
Read: Ri := M [Rj ];

- Register transfer. Move: Ri := Rj ; Write: M [Ri] := Rj ;

All known register initialization and transfer instructions can
be represented in cWRAM. They can access memory-mapped
I/O registers in I/O transfers.

- Unconditional branches: go to g. Branch target g desig-
nates either a positive/negative offset from the current program
counter, PC, and the branch-target address is PC + g, or a
register Rk, which contains the branch-target address.

- Conditional branches: for each predicate pred: F2w ×
F2w → {0, 1}, where pred ∈ {≤,≥,=, 6=}, there is an instruc-
tion pred(Ri, Rj)g, which means if pred(Ri, Rj) = 1(true),
go to PC + g.

If one of the input registers, say Rj , contains a bit mask,
there is an instruction pred(Ri,mask)g, which means if (Ri∧
mask) = 0, go to PC + g. If Rj = 0, there is an instruction
pred(Ri)g, which means if pred(Ri, 0) = 1, go to PC+g.

Note that the predicate set, pred, can be extended with
other two-operand predicates so that all known conditional-
branch instructions can be represented in cWRAM.

- Halt: there is an instruction that stops program execution
and outputs either the result, when program accepts the input,
or an error when the program does not.

- Computation Instructions. We adapt Miltersen’s notion of
the function locality [60] for computation functions and use it
to classify the set of cWRAM computation instructions based
on their locality.

Function Locality. Let I = {ij > ij−1 > ... > i1} ⊆
{0, 1, ..., w− 1} be a bit-index set, x ∈ {0, 1}w a bit string of
length w, and write x[I] = x[ij ]x[ij−1]...x[i1] for the bits of
x selected by I . Let I = {i, i+ 1, , j − 1, j} be an interval of
consecutive bit indices. Then, for constants α, β ≥ 1, function
f : F2w × F2w → F2w is (α, β)-local if for any interval I of
cardinality #I there are intervals I1 and I2, such that:

- #I1,#I2 ≤ α ·#I; and
- if the values represented by the bits of x selected by I1

and those of y selected by I2 are fixed, then the bits of f(x, y)
selected by I take on at most β different values; i.e., for any
constants c1, c2,

#{f(x, y)[I] | (x)[I1] = c1 ∧ (y)[I2] = c2} ≤ β.

Basic set: For any f : F2w×F2w → F2w , where f ∈ {∨,∧;⊕,
logic shiftr/l(Ri, α), rotater/l(Ri, α),+,−}, and f : F2w →

F2w , where f ∈ {bitwise ¬}, there is an instruction Rh =
f(Ri, Rj), Rh = f(Ri, α), and Rh = f(Rk), respectively.
Integers are represented in two’s complement binary notation
and hence are in the range [−2w−1 . . .− 1, 0, 1 . . . 2w−1− 1].

The instructions of the basic set implement (1, β)-local
functions where β ≤ 2; e.g., all logic instructions are (1, 1)-
local, and the addition/subtraction are (1, 2)-local [60].
Extended set: This set includes all instructions implement-
ing (1, β)-local functions with β ≤ w − 1. For exam-
ple, variable shiftr/l(Ri, Rj) and rotater/l(Ri, Rj), where
content(Rj) ∈ [0, w − 1), are (1, w − 1)-local.
Multiplication set: This set includes all instructions imple-
menting (1, β)-local functions with β ≤ 2w−1. For example,
Ri mod Rj

14, where content(Rj) = p, 2 < p < 2w−1, is
(1, p)-local. Integer multiplication is (1, 2w−1)-local15.

All integer, logic, and shift/rotate computation instructions
of real ISAs with up to two operands fall into the three sets
defined above. In fact, any computation function implemented
by a finite-state transducer is (1, β)-local for a constant β.
Note that in all other WRAM models w is a variable, and
hence the instructions of the extended and multiplication sets
become non-local since β is no longer constant.

However, as in all WRAM models [36], floating-point
instructions are not included in cWRAM. These instructions
are irrelevant to the concrete space-time bounds of optimal
integer computations where instruction sequences are latency-
bound; i.e., where an instruction depends on the results of
another. Here integer operations are always faster for the same
data size; e.g., typically twice as fast in most commodity ISAs.
Similarly, non-computation instructions left out of cWRAM
are irrelevant to these types of optimal integer computations.
Relationship with other WRAM computation instructions. The
basic set is in all WRAM models; viz., the practical/restricted
model [36], [60]. The extended set augments the basic set
since its instructions do not violate the unit-cost execution
requirement of WRAM; e.g., the (non-local) variable shift is in
the practical RAM [60]. The multiplication set was excluded
from all early WRAM models since its (non-local) instructions
cannot meet the unit-cost requirement. A notable exception is
the Circuit RAM, which allows variable instruction-execution
cost [1]. In a concession to the small constant execution-
time difference between multiplications and additions in real
instruction sets, all recent unit-cost WRAM models include the
multiplication set [16], [50], [65].

Function Simulation. Let functions f, g : F2w × F2w →
F2w be (1, βf )- and (1, βg)-local, respectively. Function f
simulates function g if for all x, y ∈ [0, 2w), f(x, y) = g(x, y),
which implies that βf = βg . If βf 6= βg , the simulation of g
by f causes a simulation error. This implies, for instance, that
neither the addition nor the multiplication instructions can be
simulated by any single other instruction without error.

Execution Model. Once a program’s instructions are stored
in memory and the processor registers are initialized, the
program counter register, PC, is set to the index of the

14When a Ri mod Rj instruction is unavailable, an optimal implementation
by other cWRAM instructions exists; see Appendix C.

15This is for signed integer multiplication with single-word output. Un-
signed integer multiplications with a two-word register output, Rlo and Rhi,
is illustrated in Appendix C.
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memory word denoting the next instruction (i.e., program
line number) to be executed. The PC is incremented at the
completion of each instruction, except when (1) a conditional-
branch predicate evaluates to 1, (2) an unconditional branch
instruction is executed, (3) an interrupt triggers, and (4) the
Halt instruction is executed. In cases (1) and (2), the PC is
either offset by g or set to Rk, whereas in case (3) the PC
is set to the first instruction of an interrupt handler. Appendix
C shows that conditional instruction execution is also useful;
i.e., an instruction is executed only if a condition flag, such as
the carry flag, is set in the special processor registers.

A program in which the execution of all branching in-
structions precede their targets is called a loop-free program.
A program with no branch instructions is straight-line. Let
I1, . . . , In be a straight-line program. A program

repeat I1, . . . , In until pred(Ri, Rj)g = 0
is called the loop program16. Alternatively, the conditional-
branch instruction can be pred(Ri)g.

A loop program can implement synchronous I/O by busy
waiting; e.g., if register Ri selects the busy/done status bit
of a device-status register and g = −1, then one-operand
instruction pred(Ri)g represents a busy waiting loop program.

Running Time. Unit-time instruction execution implies the
running time of a computation is the number of instructions
executed until Halt or error output.

XI. Appendix B – Proofs

In the proofs of some theorems we use the well-known
Facts 1–4, and let p > 2 be a prime.

Theorem 1.
Fact 1. If q > 2 is a prime power, every permutation

of Fq is the composition of permutations induced by linear
polynomials over Fq and by xq−2 [96].

If q is a power of two, a linear polynomial induces a
permutation in Fq only if the leading coefficient is odd [73].

Fact 2 Let x,m be two positive integers such that
gcd(x,m) = 1, and c a constant integer.

a) If U is a uniformly distributed variable in [0,m), then
(x× U) mod m and (x× U + c) mod m are also uniformly
distributed in [0,m) [88]; and

b) For any y ∈ [0,m) there exists a unique α ∈ [0,m)
such that y = α× x mod m [82].

Important cases are (i) x < m and m > 2 is a prime, and
(ii) x is odd and m is a power of two.

Lemma 1.1. In any implementation of fi(x) = ai × x +
ai−1 (mod p) that simultaneously minimizes space and time
in cWRAM, the program schema
mod(op2(mod(op1(operand1, operand2), p), operand3), p),

op1, op2 6≡ mod p, is optimal and so is a Horner-rule step.

Proof. In the proof we use the following two claims.
Claim 1: At least three instructions are necessary to im-

plement fi(x), the last of which must be mod p.

16Ibarra et al. [35] show that for any non-loop-free program an equivalent
while pred = 1 do I1, . . . , In end exists and its length is proportional with
the original program. This obviously holds for repeat-until programs.

Proof. fi(x) = ai × x + ai−1 (mod p) is a permutation
polynomial of Zp (by Fact 1) whose implementation requires
at least three instructions; i.e., it has four input variables, ai,
ai−1, x, and p, and all instructions have at most two operands.
Then ai × x mod p also permutes x in Zp, and thus the
size of its value set is p. Hence, its implementation requires a
two-instruction sequence, where at least one instruction must
have β ≥ p. Furthermore, one of the two instructions must be
mod p, since both cannot differ from mod p and both cannot
be mod p; i.e., in the former case, x would not be permuted
in Zp for all ai, and in the latter both ai and x could not
be assigned the single input left unused. Finally, if ai−1 6= 0,
the third instruction must read and use it, and if mod p is
not the last instruction, fi(x) could not permute x for all ai,
ai−1. .

Claim 2: If space and time are simultaneously minimized,
four instructions are necessary and sufficient to implement
fi(x), and the second and the last are mod p.

Proof. If three instructions the last of which is a mod p
were sufficient, then the other two must be

op2((op1(operand1, operand2), operand3),
since mod p has a single operand in addition to p. Then

op2(op1(operand1, operand2), operand3)
must map the operand assigned to x to the p distinct integers
of an interval [i, i+ p (mod 2w−1)), i = 0, . . . , 2w−1 − p− 1.
Otherwise, the three instructions could not permute x in Zp,
since mod p can implement a one-to-one correspondence only
between [i, i + p (mod 2w−1)) and [0, p). This means that
at least one of {op1, op2} must be mod p, and hence one of
its operands must be assigned to p. Since the single remaining
operand of op2((op1(operand1, operand2), operand3) cannot
be assigned both ai and ai−1, four instructions are necessary,
two of which must be mod p.

Now note that the second mod p can be neither the first
nor the third instruction executed. Otherwise, three instructions
would be sufficient: a mod p as the first instruction would be
redundant since all inputs are in Zp, whereas a mod p as
the third instruction would be redundant since the fourth is
already mod p. Hence, four instructions are sufficient when
op1, op2 6≡ mod p; e.g., a Horner-rule step

mod(add(mod(·(ai, x), p), ai−1), p),
where add denotes the addition and · the multiplication in-
structions of cWRAM.

Lemma 1.2. In any one-time honest evaluation of fi(x) =
ai × x + ai−1 (mod p) that simultaneously minimizes space
and time in cWRAM, the only possible assignment of fi(x)’s
variables to the operands of the optimal program-schema is:

(operand1, operand2)← (ai, x), operand3 ← ai−1.

Proof. By Fact 1, every linear polynomial induces a unique
permutation of x in Zp. Hence, all possible assignments of
fi(x)’s variables to the operands of instructions op1 and op2
of an honest evaluation must yield a linear polynomial and
induce the same permutation as fi(x) in Zp. We show that
two of the three possible operand assignments are excluded
for any op1, op2 in a one-time honest evaluation.

1) (operand1, operand2) ← (ai, ai−1) and operand3 ← x.
For all op1 in mod(op2(mod(op1(ai, ai−1), p), x), p), op2
must be a · (multiplication) instruction; otherwise, the as-
signment cannot yield a linear polynomial in Zp, since no
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single cWRAM instruction can simulate multiplication in a
honest one-time evaluation that minimizes space and time.
Hence, there exist ai and ai−1 that produce the permutation
error ·(mod(op1(ai, ai−1), p), x) 6= ai×x mod p+ai−1, which
the final mod p cannot remove to yield fi(x); i.e., mod p is the
only instruction executed after op2 in a one-time evaluation,
and it merely maps the error from [0, 2w−1) to Zp.

2) (operand1, operand2)← (ai−1, x) and operand3 ← ai.

For all op2 in mod(op2(mod(op1(ai−1, x), p), ai), p), op1
must be a · (multiplication) for the same reason as in part
1). However, if ai−1 = 0, mod(op2(mod(·(ai−1, x), p), ai), p)
cannot induce a permutation in Zp for any op2 and ai, since
it maps all values of x into mod(op2(0, ai), p). .

Lemma 1.3. A Horner-rule step is uniquely optimal in a
one-time honest evaluation of fi(x) = ai× x+ ai−1 (mod p)
that simultaneously minimizes space and time in cWRAM.

Proof. Lemma 1.2 allows instruction assignments op1 6=
·(multiplication) and op2 6= add (addition) to program
schema mod(op2(mod(op1(ai, x), p), ai−1), p). All such as-
signments can be partitioned into two possible simulation
cases:

1) either op1 = ·, op2 6= add or op1 6= ·, op2 = add; and

2) op1 6= · and op2 6= add.

We show that neither case is possible in an one-time honest
evaluation.

1) Since mod(·(ai, x), p) = y is uniform in Zp (by
Fact 2a), a simulation error op2(y, ai−1) 6= y + ai−1 is
generated for all op2 6= add. Similarly, for all op1 6= ·
there exists an error mod(op1(ai, x), p) 6= y. In the first case,
mod p is the only instruction executed after op2 in a honest
one-time evaluation, and mod p merely remaps error from
[0, 2w−1) to [0, p). For the second case, recall that the add
has at most two values in any bit interval of its output, and
thus βadd = 2. Hence, mod(add(mod(op1(ai, x), p), ai−1), p)
cannot permute x, since βadd < p and in any honest one-time
execution mod p is the only instruction executed after add.

2) For all op1 6= ·, there exists an ai and x that cause
the simulation error op1(ai, x) 6= ·(ai, x) in [0, 2w−1) and
y′ = mod(op1(ai, x), p) 6= mod(·(ai, x), p) in Zp. However,
for any y′ and x there exists a unique a′i ∈ Z+

p , such
that y′ = mod(·(a′i, x), p) (by Fact 2b), and a′i 6= ai.
Furthermore, by evaluation honesty, mod(op2(y′, ai−1), p)
is a linear polynomial in Zp for all y′ and ai−1. This
means that both mod(op2(mod(·(a′i, x), p), ai−1), p) and
mod(add(mod(·(ai, x), p), ai−1), p) must perform the same
linear permutation of x, for all a′i, ai, x and ai−1. Since that
permutation is unique (by Fact 1), op2 = add and, for
ai−1 = 0, a′i = ai, which implies op1 = ·.

Lemma 1.4. There exists a permutation polynomial Pd(·),
and input x over Zp whose honest one-time evaluation in mini-
mal cWRAM space and time requires a six-instruction Horner-
rule program. That is, a Horner-rule program is uniquely
optimal: no other program exists that can evaluate Pd(x) is
fewer than d+ 11 words and 6d time units.

Proof.
Loop Existence. Let ad, . . . , a0 ∈ Zp and ad 6= 0. Define

polynomials

fd−1(zd, x) = zd × x+ ad−1 (mod p)
. . .
f1(z2, x) = z2 × x+ a1 (mod p)
f0(z1, x) = z1 × x+ a0 (mod p)

where zi = fi(zi+1, x), 0 ≤ i < d, and zd = ad 6= 0. Now
choose ai ∈ Zp and set X = {x : x ∈ Z+

p } for which
all zi 6= 0, i > 0. Then all polynomials fi(zi+1, x) become
linear permutation polynomials for all x ∈ X , by Fact 1.
Furthermore, by composing the linear permutation polynomials
using rule zi = fi(zi+1, x) we obtain degree d polynomial

Pd(x) = f0(f1(· · · fd−1(ad, ·) · · · , x), x)
= (· · · (ad · x+ ad−1) · x+ · · ·+ a1) · x+ a0 (mod p),

which also permutes x ∈ X for some choices of ai. By
construction, the honest one-time evaluation of Pd(x) on input
x ∈ X in minimum space and time implies that each linear
permutation polynomial fi(x) is evaluated honestly one-time
in in minimum space and time. Then, by Lemma 1.3, the
evaluation of each fi(x) requires a Horner-rule step. Hence, a
loop is required for a sufficiently small memory when d > 1.

Loop Control. Without loss of generality, let the conditional
branch follow the Horner-rule step; see the definition of a loop
in Appendix A. Assume by contradiction that an additional
variable (and instruction) is unnecessary to implement the
branch predicate in a honest evaluation. Then the branch
outcome can depend only on either (1) the content of the
Horner-rule step’s output register zi or (2) the set of coef-
ficients already read, since x and p are loop constants. In case
(1), the branch outcome is independent of the memory size,
which determines the number of loops necessary regardless
of the evaluation result in zi. Hence the evaluation cannot
be honest. In case (2), polynomials Pd(x) and Pd+1(x) =
Pd(x)×x (mod p) must have identical branch outcomes, which
also contradicts the honest-evaluation assumption.

Let d be the additional variable. Since none of the in-
structions of the loop body has a free input to read it, an
additional instruction is necessary. Storage and execution time
minimization implies that this instruction must also update d
on every loop execution; i.e., an extra variable is unavailable
to count up to d. Hence, the additional instruction must be
d := d − 1, and the conditional branch instruction must be
pred(d)g17. The resulting six-instruction cWRAM program
provides the lower time bound and d + 11 words the lower
space bound for evaluating Pd(x).

A similar proof applies for polynomials over Fq, where q is
a prime power. Here the important case is q = 2w−1, and hence
ai must be odd (by Facts 1 and 2). Then we restate Lemmas
1.1–1.3 to show that a multiply-and-add Horner-rule step is
uniquely optimal for these linear permutation polynomials.
Also, the proof of Lemma 1.4 requires that, for all chosen
inputs x, zi has an odd value for all i.

Theorem 2.
Fact 3 (e.g., Construction 1, Theorem 2 [41], p. 6).

Let Pd(·) =
d∑
i=0

ai × xi (mod p) be a polynomial of degree

17In the absence of pred(d)g the simulation of sequence d := d −
1, pred(d)g would require at least three integer instructions; viz., Fig. 1 [35].
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d > 0 over Zp, and u ∈ Zp a constant. Then,

Pr[x, a0
$←− Zp : Pd(x) = u] = 1

p .

If x 6= 0, the probability equals 1
(p−1) .

Part 1. We use the total probability formula for disjoint events
x 6= 0 and x = 0.

Pr[x
$←− Zp,∃y ∈ Zp, y 6= x : Hd,k(y) = Hd,k(x)]

= Pr[x
$←− Zp : x 6= 0]

× Pr[x $←− Z+
p ,∃y ∈ Zp, y 6= x : Hd,k(y) = Hd,k(x)]

+ Pr[x
$←− Zp : x = 0]

× Pr[∃y ∈ Zp, y 6= 0 : Hd,k(y) = Hd,k(0)]

= p−1
p × Pr[x

$←− Z+
p ,∃y ∈ Zp, y 6= x : Hd,k(y) = Hd,k(x)]

+ 1
p × Pr[∃y ∈ Zp, y 6= 0 : Hd,k(y) = Hd,k(0)]. (∗)

To complete the proof, we bound the above probabilities.

Claim.
Pr[x

$←− Z+
p ,∃y ∈ Zp, y 6= x : Hd,k(y) = Hd,k(x)] ≤ 1

(p−1)

Proof. Since x ∈ Z+
p , we have y = α× x mod p (by Fact

2b), where α− 1 6= 0, since y 6= x. Then,
Hd,k(y)−Hd,k(x)
= (vd⊕sd)(αd−1)xd+. . .+(v1⊕s1)(α−1)x = Pd−1(x)×x,
where Pd−1(x) = (vd⊕sd)(αd−1)xd−1+. . .+(v1⊕s1)(α−1).

Hence,
Pr[x ∈ Z+

p ,∃y ∈ Zp, y 6= x : Hd,k(y) = Hd,k(x)]
= Pr[x ∈ Z+

p : Pd−1(x)× x = 0]
= Pr[x ∈ Z+

p : Pd−1(x) = 0].

Now recall that, by the definition of Hd,k(·), all si are
uniform and independent of x and all vi. Hence, v1 ⊕ s1 is
uniform and independent of x. Since α − 1 6= 0, polynomial
Pd−1(x)’s free term, (v1 ⊕ s1)(α − 1), is uniform in Zp (by
Fact 2a) and independent of x. Thus, when d− 1 > 0,

Pr[x ∈ Z+
p : Pd−1(x) = 0] = 1

(p−1) , by Fact 3.

When d− 1 = 0,

Pr[x ∈ Z+
p : (v1 ⊕ s1)(α− 1) = 0] = 1

p <
1

(p−1) ,
since (v1⊕s1)(α−1) is independent of x and uniform. Hence,

Pr[x ∈ Z+
p : Pd−1(x) = 0] ≤ 1

(p−1) .
To bound Pr[∃y ∈ Zp, y 6= 0 : Hd,k(y) = Hd,k(0)], we note
that Hd,k(y)−Hd,k(0)
= (vd⊕ sd)(αd−1)yd−1 + . . .+ (v1⊕ s1)(α−1) = Pd−1(y).
Then we proceed as in the proof of the Claim above and obtain

Pr[∃y ∈ Zp, y 6= 0 : Hd,k(y) = Hd,k(0)] ≤ 1
(p−1) .

Combining the above bounds in eq. (*) completes the proof.

Part 2 follows from Fact 3 and the definition of Hd,k(·).

Part 3. Let ui ∈ Zp be k constants and xi ∈ Zp be k distinct
values. By polynomial interpolation on the point set {(xi, ui)},
we obtain a system of k linear equations Hd,k(xi) = ui with
d+1 unknowns vi⊕xi, k of which are independent. Fix any of
the d−k+1 unknowns; e.g., fix vd⊕xd, . . . , vk⊕xk. Evaluate
the sums (vd⊕xd)xd+· · ·+(vk⊕xk)xk and move the results to
the right-hand side of the k equations. The new linear system,
Hd,k(xi) = ui − [(vd ⊕ xd)xd + · · ·+ (vk ⊕ xk)xk] = u′i, has

k equations with k unknowns and, by using its Vandermonde
matrix, we obtain its the k unique solutions vi ⊕ si = ai for
the distinct xi. Thus,
Pr[xi

$←− Zp : Hd,k(x0) = u′0, . . . ,Hd,k(xk−1) = u′k−1]

= Pr[xi
$←− Zp : v0 ⊕ s0 = a0, . . . , vk−1 ⊕ sk−1 = ak−1].

Since vi ⊕ si are k-independent and uniform,
Pr[xi

$←− Zp : v0 ⊕ s0 = a0, . . . , vk−1 ⊕ sk−1 = ak−1]

= Pr[xi
$←− Zp : v0⊕0 = a0]

× Pr[xi
$←− Zp : v1 ⊕ s1 = a1]

· · ·
× Pr[xi

$←− Zp : vk−1 ⊕ sk−1 = ak−1] = 1/pk.

Theorem 3.
By hypothesis, the honest evaluation code for Hd,k,x(v)

is committed to at most k + 22 words and (6k − 4)6d time
units after initialization. We show that these are also the lower
bounds for any evaluation that simultaneously minimizes space
and time. We distinguish two cases for the lower bounds of
Hd,k,x(v) depending on d.

1) d ≤ k− 1. Since each word vi is independent of si and
stored in word wi of M in cWRAM, each coefficient vi ⊕ si
must be computed. Note that vi⊕si are k-independent since si
are k-independent [65], [90]. Hence, the computation of any
one coefficient cannot decrease the computation time and space

of any others. Thus each si =
k−1∑
j=0

rj × (i+ 1)j (mod p) must

be computed one time, and its honest computation requires a
Horner-rule program of 6 instructions and at least k + 3 data
words (i.e., k random values, the degree k − 1, input j, and
modulus p), by Theorem 1, for a total of k + 9 words and
6(k − 1) time units.

Once a si is computed, a coefficient vi⊕si requires at least
2 instructions (i.e., one for computing the index of vi and the
exclusive-or), and 2 data words; i.e., one for the index and
one for si. Hence, each padded coefficient vi ⊕ si requires
at last k + 13 words and 6(k − 1) + 2 = 6k − 4 time units.
However, if d coefficients vi⊕si are computed and stored after
initialization, the one-time honest evaluation Hd,k,x(v) by a
Horner-rule program is optimal in an additional 6 instructions
and 3 data words (i.e., degree d, input x, output z) for a total
of k + 22 words by Theorem 1.

Now note that the Horner-rule program that computes
si, the program that computes each coefficient vi ⊕ si, and
the Horner-rule program that implements the outer loop for
the evaluation of Hd,k,x(v) have no instruction in common.
Furthermore, neither has any instructions in common with
the space-optimal processor-state initialization, I/O and reg-
ister initialization (Init) programs in cWRAM. This implies
that none of these programs can reuse instructions from
the others or use extra space. Hence their composition in
a Horner(Hk−1,k,x(v)) program, which is stored alongside
processor-state initialization, I/O and Init code, in k+22 words
and which executes in (6k−4)6d time units after initialization
is optimal.

2) d > k−1. By honesty, the same Horner(Hk−1,k,x(v))
program must be used in this case, with the degree initialized
to d. Assume by contradiction that not all Horner-rule steps
between k and d need to be executed. Then at least one i >
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k−1 coefficient vi⊕si is not computed, and some other some
value, ai, is used at Horner-rule step i, zi = zi+1 × x + ai,
where vi ⊕ si 6= ai = v′i ⊕ si. Hence, Hd,k,x(v′) 6= Hd,k,x(v)
is evaluated, contradicting the honesty assumption.

Lemma 4.
Fact 4 (e.g., Fact 2.1 [88]). If p is a prime and α, β ∈ Z+

p ,
then α× β ∈ Z+

p .

To bound Pr[S : Hd′,k,y(v′) = Hd,k,x(v)], we use the total
probability formula for disjoint events x 6= 0 and x = 0. If
x 6= 0, for any y ∈ Zp, there exists a unique α such that y =

α × x mod p, by Fact 2b. Since S = {rj , x
$←− Zp, 0 ≤ j ≤

k−1}, we denote S+ = {rj
$←− Zp, x

$←− Z+
p , 0 ≤ j ≤ k−1}.

Pr[S : Hd′,k,y(v′) = Hd,k,x(v)]
= Pr[S : x 6= 0]× Pr[S+ : Hd′,k,α×x(v′) = Hd,k,x(v)]
+ Pr[S : x = 0]× Pr[S : Hd′,k,y(v′) = Hd,k,0(v)]

= p−1
p × Pr[S

+ : Hd′,k,α×x(v′) = Hd,k,x(v)]

+ 1
p × Pr[S : Hd′,k,y(v′) = Hd,k,0(v)]

≤ p−1
p × Pr[S

+ : Hd′,k,α×x(v′) = Hd,k,x(v)] + 1
p .

The following claim completes the proof.

Claim. Pr[S+ : Hd′,k,α×x(v′) = Hd,k,x(v)] ≤ 2
(p−1) .

Proof. Given polynomial Hd,k,x(·) and input v, we partition
all adversary’s choices (Hd′,k,α×x(·), v′) 6= (Hd,k,x(·), v) into
two mutually exclusive cases:

1) the index-ordered coefficients of one polynomial are
included in the other’s; i.e., for all i, 0 ≤ i ≤ min(d′, d),
(si ⊕ v′i)× αi = si ⊕ vi; and

2) there exists at least one (common) coefficient index
where the two polynomials have different coefficients; i.e.,
there exists an index i, 0 ≤ i ≤ min(d′, d), such that
(si ⊕ v′i)× αi 6= si ⊕ vi.

Case 1). Since (Hd′,k,α×x(·), v′) 6= (Hd,k,x(·), v), it must
be that d′ 6= d. Let j > min(d′, d) be the smallest coefficient
index of the polynomial difference Hd′,k,α×x(v′)−Hd,k,x(v),
such that either a) sj⊕vj 6= 0, if d > d′, or b) (sj⊕v′j)×αj 6=
0, if d′ > d.

a) We write Hd,k,x(v)−Hd′,k,α×x(v′) = Hd−j,k(x)×xj ,
where Hd−j,k(x) = (sd⊕ vd)× xd−j + · · ·+ (sj ⊕ vj). Thus,
Pr[S+ : Hd′,k,α×x(v′)−Hd,k,x(v) = 0]
= Pr[S+ : Hd−j,k(x)× xj = 0]
= Pr[S+ : Hd−j,k(x) = 0] ≤ 1

(p−1) ,
since x 6= 0. The probability bound is 1

(p−1) when d > j, by
Theorem 2-2, and 1

p when d = j, since sj ⊕ vj is uniform by
the definition of H.

b) Similarly, Pr[S+ : Hd′,k,α×x(v′)−Hd,k,x(v) = 0]
= Pr[S+ : Hd′−j,k(α× x)× (α× x)j = 0]
≤ Pr[S+ : α = 0]
+ Pr[S+ : Hd′−j,k(α× x)× (α× x)j = 0 | α 6= 0]
≤ Pr[S+ : α = 0] + 1

(p−1) ,
by Fact 4, since α× x 6= 0, and by a similar reason as in a).

To find the bound for Pr[S+ : α = 0], note that if α = 0,
Hd′,k,α×x(v′) = s0 ⊕ v′0 = s0 ⊕ v0, by definition, in case 1).
Then Hd,k,x(v)−Hd′,k,α×x(v′) = Hd,k(x)− (s0⊕ v0), since
Hd,k,x(v) = Hd,k(x) in a one-time evaluation. Thus

Pr[S+ : α = 0] ≤ Pr[S+ : Hd,k(x)− (s0 ⊕ v0) = 0]
= Pr[S+ : Hd−1,k(x)× x = 0] = Pr[S+ : Hd−1,k(x) = 0],
where Hd−1,k(x) = (sd ⊕ vd) × xd−1 + · · · + (s1 ⊕ v1) and
x 6= 0. By similar reasoning as above,
Pr[S+ : Hd−1,k(x) = 0] ≤ 1

(p−1) . Thus, for sub-case b)
Pr[S+ : Hd′,k,α×x(v′)−Hd,k,x(v) = 0] ≤ 2

(p−1) .

Case 2). Let i be the minimum coefficient index where the
two polynomials have different coefficients; i.e., (si ⊕ v′i) ×
αi 6= si⊕ vi. Then we can write Hd′,k,α×x(v′)−Hd,k,x(v) =
P (x)× xi+1 + ((si ⊕ v′i)× αi − (si ⊕ vi))× xi.

a) If the choice of Hd′,k,α×x(v′) implies P (x) = 0,
Pr[S+ : Hd′,k,α×x(v′)−Hd,k,x(v) = 0 | P (x) = 0] = 0,
by Fact 4, since both (si ⊕ v′i)× αi 6= (si ⊕ vi) and x 6= 0.

b) If the choice of Hd′,k,α×x(v′) implies P (x) 6= 0,
Pr[S+ : Hd′,k,α×x(v′)−Hd,k,x(v) = 0 | P (x) 6= 0]
= Pr[S+ : P (x)×xi+1 +(si⊕v′i)×αi− (si⊕vi))×xi = 0]
= Pr[S+ : x = ((si ⊕ vi)− (si ⊕ v′i)× αi)× P (x)−1]
= 1

(p−1) ,
since both (si⊕v′i)×αi− (si⊕vi) and P (x) are independent
of x $←− Z+

p . This is because (si ⊕ vi) is independent of x for
all i, by the definition of H, and hence P (x)’s free coefficient,
(si+1 ⊕ v′i+1)× αi+1 − (si+1 ⊕ vi+1) is independent of x.

The claim follows since the evaluation is one-time and the
adversary picks the the highest bound of the mutually exclusive
cases 1-a), 1-b), and 2), which is 2

(p−1) .

Theorem 5.
We only need to prove that Pr[S : Hd,k,x(v) =

predictable] ≤ 3
p . After executing Horner-rule step i (0 <

i ≤ d), the adversary has two mutually exclusive choices to
predict result z0:
1) output z0 after executing a (possibly empty) instruction sub-
sequence of the next Horner-rule step, i− 1; or
2) output z0 after executing a non-empty instruction sequence
that is not a sub-sequence of the next Horner-rule step, i−118.

We bound the probability of adversary success in both cases.
Case 1). If the prediction is made when executing instruc-

tions in Horner(Hd,k,x(v))’s inner loop, the adversary would
have no higher probability of success than if the prediction
is made when after executing outer-loop instructions. For
example, in the former case, adversary would have to predict
successfully both the step’s coefficient and z0 rather than only
z0 in the latter. Hence, we only need to consider z0 predictions
made in the outer loop. In this case, s/he cannot derive
any prediction benefit from interrupting execution between an
integer (i.e., mod 2w−1) instruction and the mod p reduction
of its output, nor from interrupting execution between the two
instructions that compute the next coefficient, vi−1 ⊕ si−1.

The adversary can output the prediction z0 at any of the
following three mutually exclusive points in outer-loop code.

• when loop i− 1 begins execution: zi = ui;
• after computing coefficient vi−1 ⊕ si−1 = wi−1;

18Note the case where the adversary executes an arbitrary sequence of
instructions followed by the instructions of a Horner-step falls into the event
of Lemma 2. This is because the arbitrary sequence must modify at least a
processor register or a memory word, vi. Thus, the subsequent execution of
a Horner-rule instructions no longer implement any Horner-rule step.
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• after computing ui × x mod p = yi−1.

By definition, there are no other useful prediction points in
the outer loop when i − 1 > 0. That is, the point after the
last instruction of a Horner-rule step, namely “after computing
zi−1 = (yi−1 + wi−1) mod p,” is the same as “when loop
i− 2 begins execution: zi−1 = ui−1.” The value zi−1 = ui−1
is known only in the next loop, i−2. Let ui, yi−1, wi−1 ∈ Zp

be constants. Then

• Pri>1[S : Hd,k,x(v) = z0 | zi = ui]
= Pri>1[S : ui×xi+(vi−1⊕si−1)×xi−1 + · · ·+(v0⊕
s0) = z0] = 1

p , by Fact 3, since S implies x, (s0⊕v0)
$←−

Zp. Similarly,
• Pri>1[S : Hd,k,x(v) = z0 | vi−1 ⊕ si−1 = wi−1]

= Pri>1[S : (ui × x mod p + wi−1) mod p × xi−1 +
· · ·+ (v0 ⊕ s0) = z0] = 1

p ; and
• Pri>1[S : Hd,k,x(v) = z0 | ui × x mod p = yi−1]

= Pri>1[S : (yi−1 +wi−1) mod p× xi−1 + · · ·+ (v0 ⊕
s0) = z0] = 1

p ;

Since the above prediction points are mutually exclusive and
one-time per evaluation, the maximum probability of success
at step i > 1 is 1

p . To output prediction z0 with higher
probability of success the adversary would have to wait until
the last Horner-rule step, namely when i = 1, and output
z0 after z0 = y0 + w0 (mod p) is executed. However, s/he
would have to know it is the last step (i = 1), which implies
that either a) s/he must execute the last two instructions
or b) she must modify the loop control instructions of the
Horner(Hd,k,x(·)) code. In case a) s/he would have to use
k + 22 words and execute the same number of (unit-time) in-
structions as Horner(Hd,k,x(·)), contradicting the hypothesis
that Hd,k,x(·) is predictable in (m, t) < (k+ 22, (6k− 4)6d).
In case b) the adversary’s probabilty of success is bounded by
Lemma 4 and hence is no higher than 3

p .

Case 2). For i > 1, the output register of
Horner(Hd,k,x(·)) code zi = (sd ⊕ vd)× xd−i + · · ·+ (si ⊕
vi) = Hd−i,k(x) in any one-time evaluation. By Theorem
2-2, zi is uniformly distributed, and by the definionon of H,
si⊕vi is also uniformly distributed. Thus, neither conveys any
information about z0 = Hd,k,x(v)) to the adversary. Hence,
the sequence of instructions executed after step i yields a
polynomial evaluation Hd′,k,y(v′)) that equals Hd,k,x(v)) with
probability no higher than 3

p , by Lemma 4. If i = 1, the
probability of outputting a correct prediction in (m, t) is no
higher than 3

p , by the same argument as in Case 1.

Corollary.
1. If v′ and v are two distinct strings of log p bit words,
Pr[S, v′ 6= v : Hd′,k,x(v′) = Hd,k,x(v)] ≤ 4

p .

Proof. Using the total probability formula and upper bound-
ing as in the proof of Lemma 4, we have
Pr[S, v′ 6= v : Hd′,k,x(v′) = Hd,k,x(v)]
≤ p−1

p × Pr[S
+, v′ 6= v : Hd′,k,x(v′) = Hd,k,x(v)] + 1

p .
Since α = 1 the probability bound in each of the three possible
adversary choices in the proof of Lemma 4’s Claim (i.e., Cases
1-a, 1-b and 2) is at most 1

p−1 . Here, the adversary can exercise
all three choices since the evaluation is not one-time. Hence,
Pr[S+, v′ 6= v : Hd′,k,x(v′) = Hd,k,x(v)] ≤ 3

p−1 .

The k-independence proof is similar to that of Theorem 2-3.

2. The proof of this part follows directly from Theorem 5.

Theorem 6
Part a) Any omission of an instruction execution in the

processor-state initialization, Input, or Init programs can be
caused by (1) absence of the instruction from a given memory
location of the initialized instruction sequence (e.g., incorrect
instruction or no instruction at that location) or (2) incorrect
instruction-execution order of a correctly initialized instruction
sequence in memory, or both. Below we say that a sequence
of distinct memory words is unique if no two words are equal
and no other sequence of the same number of words can be
found in the same memory locations.

Claim 1. There exists a verifier choice of instruction encod-
ing and sequencing for the three programs above such that the
lower log p bits of their memory words form a unique sequence
of distinct words of the input v to Horner(Hd,k,x(·)). Hence,
absence of any instruction from memory at a given memory
location in the sequence modifies at least one word of v.

Proof. The verifier can use the following instruction en-
coding and sequencing for the three program above. For the
straight-line processor-state initialization program, all disable
(e.g., asynchronous events, caches, virtual memory, TLBs)
operations and all power-off operations for stateless device
are executed by instructions with unique opcodes or single
operands, or both. At least one of the operands of all two-
operand instructions is unique; e.g., setting clock frequencies,
I/O register bits. Hence, their (opcode, unique operand) pairs
are unique for all verifier’s programs. All lower log p bits of
the memory words in this program form a unique instruction
sequence of distinct words of v.

The busy-waiting Input program, which follows the
processor-state initialization in a straight line, comprises the
status-reading instruction for the uniquely named I/O device
of the verifier’s channel followed by a conditional backward-
branching instruction (Appendix A), which is unique in all
three program sequences. Hence, the lower log p bits in the
two memory words are unique and distinct at their memory
locations.

The Init program comprises a straight-line sequence of
Load instructions that follow those of the Input program in
straight line. This sequence is unique in the lower log p bits
of its memory words because its encoding partitions both the
general-purpose registers and the k random numbers such that
no two numbers are loaded into the same register; i.e., (Load,
operandi) 6= (Load, operandj), i 6= j.

None of the three programs above shares any instruction
with the other two.

Claim 2. There exists a verifier choice of instruction
encoding and sequencing for the three programs above such
that an incorrect execution order of a correctly initialized
instruction sequence modifies at least one word of input v to
Horner(Hd,k,x(·)).

Proof. Let the straight-line processor-state initialization
program comprise a sequence of prefix instructions followed
by a sequence of suffix instructions. Let the verifier choose the
prefix to be the instructions that modify the lower log p bits

22



of special processor-state registers. Then if the execution of
any prefix instructions is omitted by the boot loader’s transfer
of control, or by a return from a surreptitiously triggered
interrupt whose handler causes a forward branch, some word
of v representing the lower log p bits of a special processor-
state register differs from the verifier’s choice, and hence is
modified.

Recall that, except the conditional backward-branching in-
struction of the busy-waiting the Input program, all instructions
of the three programs form a straight line. Now assume that no
instruction-execution omission occurs in the prefix instructions
of the processor-state initialization program. Hence the omis-
sion can only occur in the instruction sequences following the
prefix. However, this requires either that a forward-branching
instruction exists in these instruction sequences or that a return
from an interrupt causes a forward branch, or both. The former
case contradicts the claim’s hypothesis since no forward branch
instruction exists in the verifier’s programs, whereas the latter
contradicts the assumption the the prefix instructions, which
disable all asynchronous events, have been executed.

Part b) A control flow deviation from the verifier’s protocol
on the device can occur either 1) outside or 2) inside the op-
timal Horner(Hd,k,x(·))’s code execution, or both. We show
that in both cases either the input v to Horner(Hd,k,x(·)) is
modified, or the optimality bounds of Horner(Hd,k,x(·)) pro-
gram are violated, or both. The former occurs with probability
at most 3

p , by Part a) and Lemma 4, whereas the later with
probability at most 3

p , by Theorem 5.

Case 1) The control flow deviation can occur either before
or after the Horner(Hd,k,x(·))’s code execution, or both. If
the control flow deviation occurs after Horner(Hd,k,x(·))
executes, a future-posted asynchronous event must trigger
and the a surreptitiously initialized interrupt handler must
execute some verifier unaccounted instructions. This means
that some event-enabled bit has remained set at the time of
the event, which implies that the execution of an event-disable
instruction has been omitted in the verifier’s processor-state
initialization. By a similar argument as in Part a), the input v
to Horner(Hd,k,x(·)) is modified.

If the flow of control deviates before Horner(Hd,k,x(·))
executes, the deviation can happen only in the Init program,
by the definition of the verifier’s protocol. This implies that
either (i) the sequence of instructions that exists in memory
differs from the verifier’s choice, or (ii) the verifier’s choice
of instructions are executed in an incorrect order and/or some
surreptitiously triggered interrupt occurs. Then either input
v to Horner(Hd,k,x(·)) is modified (by Part a)) or the
surreptitiously installed interrupt handler must execute at least
two instructions violating Horner(Hd,k,x(·))’s time bound.

Case 2) Any control flow deviation implies that either
(i) a different instruction sequence from Horner(Hd,k,x(·))’s
is initialized in memory or (ii) same instruction sequence is
initialized but it is executed in a different order. In case (i),
if a different number of instructions are initialized in memory
and executed, then either the result’s timeliness assumption
is contradicted or a violation of Horner(Hd,k,x(·)) bounds
occurs. Alternately, the correct number of instructions can be
initialized in memory but in a different sequence; e.g., recall
that multiple program encodings of Horner(Hd,k,x(·)) can

yield the same optimal bounds. However, as shown in Claim 3
below, the lower log p bits of the verifier’s Horner(Hd,k,x(·))
program form a unique sequence of distinct words of the input
v. Hence, a different encoding of a Horner-rule program from
the verifier’s implies that some word of input v is modified.

For case (ii), assume the verifier’s sequence of
Horner(Hd,k,x(·)) instructions exists in memory. However,
its instructions are either executed in an different order
from the verifier’s or it is interrupted by a surreptitiously
triggered interrupt before a modified input v can be used in
a coefficient computation. In the the former case, at least
an additional forward branch instruction must be executed
between Init and before Horner(Hd,k,x(·))’s loop control,
which contradicts the assumption made. In the later, the
surreptitiously installed interrupt handler must execute at least
two instructions violating Horner(Hd,k,x(·))’s time bound.

Claim 3. There exists a verifier’s choice of
Horner(Hd,k,x(·)) instructions such that the lower log p bits
of every instruction form a unique sequence of distinct words
of v; i.e., for any two instructions i 6= j, (opcodei, operandi)
6= (opcodej , operandj).

Proof. Let opcodei denote the operation code and operandi
the operand adjacent to it in the encoding of instruction i. Then

1) opcodei 6= opcodej , i 6= j, by the unique optimality of
Horner-rule program instructions (Lemmas 1.2–1.4).
2) operandi 6= operandj , i 6= j. This is the case because in both
the inner and outer loops of Horner(Hd,k,x(·)) code where
the two loops have pairs of instructions with the same opcode,
the instructions have different operandi. That is,

• the two loops assign different input variables to the same
opcodes of a Honer-rule step and loop-control instruc-
tions;

• the only common variable of the two loops is si, and
the verifier can assign it to the left operand (e.g., of the
instruction that produces it) in the inner loop, and the
right operand (of the instruction that uses it) in the outer
loop.

Theorem 7
Theorem 6 implies that if the verifier’s protocol returns

a correct and timely results, no malware instructions exist
in the verifier’s initialized programs (i.e., processor-state ini-
tialization, Input, Init, and Horner(Hd,k,x(·))) except with
probability at most 6

p . Nevertheless, the device memory may
still contain a malware instructions in the device boot loader;
i.e., the device boot loader is not the verifier’s. Then at least
one opcode in some sequence of instructions or the number of
boot loader instructions in the device’s memory, or both, must
differ from those chosen by the verifier. Hence, if any malware
exists anywhere in the boot loader, the lower log p bits some
word vi of input v must differ from the verifier’s choice. Since
no w-bit memory word i can be modified after the verifier’s
protocol started, an incorrect vi must be used in computing a
coefficient, si⊕ vi. However, if the result Hd,k,x(v) arrives in
time t0 +(6k−4)6d, the probability of any incorrect v is used
is at most 3

p by Lemma 4.

Furthermore, by the verifier’s choice of concurrent trans-
action order and duration, the results received at times t0i + ti
imply no device can help another device circumvent its optimal
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bounds. Finally, external proxy and memory copy attacks are
ruled out since communication with external devices is always
detectable by the verifier because of the added delays.

Theorem 8.
By Theorem 7, collision bound of the Fact, and the defi-

nition of the RoT establishment, the probability of verification
success is (1− ε(n))(1− c · 2w−1). Since p < 2w−1, if n = 1,
[1− 9c

p ]× [1− c
2w−1 ] > [1− 9c

p ]× [1− c
p ] > 1− 10c

p + 9c2

p2

> 1− 10c
p . Theorem 9.

The proof follows directly from the following claim.
Claim If the verifier accepts, the integrity of the control

flow is maintained a) within each segment and b) between
segments during the verifier’s protocol for the n-segment
memory model, except with probability at most 9n

p .

Proof. a) By definition, if the verifier accepts the result,
then all independent verifications of all n segments must have
passed. This implies that control flow integrity is maintained
in each memory segment independently of any other segment,
except with probability no higher than 6

p , by Theorem 6-b.

b) The control flow between memory segments is defined
by the random sequential selection of each segment; viz.,
Section VI-C. By the definition of the protocol, the Input
instruction sequence of a segment is modified such that it
unconditionally transfers control to the next random segment
selection. However, by a similar proof by Theorem 6-a, if
the verifier accepts the result of a segment evaluation, any
instruction-execution omission in the modified Input program
cause a modification of the inputv to Horner(Hd,k,x(·)),
which is detected except with probability at most 3

p , by
Lemma 4.

Finally, if the verifier accepts, the boot loader’s last in-
struction must have transfered control to one of the segments,
and by the Claim, the flow of control remains within the
instructions of each memory segment.

XII. Appendix C – From the Concrete Word RAM
Model to Real Processor Implementations

A. Implementing the Horner-rule Steps
When implemented on commodity processor architec-

tures, the space-time optimality of the cWRAM program
Horner(Hd,k,x(·)) on input v depends primarily on the per-
formance of the Horner-rule steps. The optimal implementation
of both the loop control and coefficient si ⊕ vi computation
is easily achieved on these processors. The Horner-rule steps
are defined on unsigned integers as z = (si+1 ⊕ vi+1)× x+
(si ⊕ vi) (mod p), i = d − 1, . . . , 0, for the outer loop, and
y = rk−j × (i+ 1) + rk−j−1 (mod p), j = 1, . . . , k − 1, for
the inner loop. Hence, the implementation of these Horner-rule
steps in different commodity processor architectures illustrates
the practical relevance of the results presented herein.

Division-based Implementations. As in cWRAM, the
mod p implementation of the Horner-rule steps avoids all
register carries. In practice, many real processors include the
mod (aka., integer division-with-remainder) instruction; e.g.,
Intel x86, AMD, MIPS, IBM PowerPC, SPARC V8 (with
special output register), RISC V (with division fused with the
remainder), among others. Lower end processors include only

the ordinary integer division-without-remainder; e.g., ARM
Cortex A15 and above and the M3-M4 and R4-R7 series. In
these processors, the mod instruction is typically implemented
by two instructions: an integer division followed by a (three-
operand) multiply-and-subtract. On processors limited to two-
operand instructions, mod requires three instructions as the
multiply-and-subtract needs two instructions. As expected, the
use of mod instructions lowers the memory bounds of the
Horner-rule step; viz., the proof of Theorem 1.

Unlike the cWRAM model where the mod instruction
has unit cost like all others, in real processors it is more
expensive than other instructions such as multiplication or
addition [26], [33] in terms of both execution time and energy
use. In fact, low-end processors lack even the ordinary integer
division-without-remainder – not just mod – due to its higher
execution time; e.g., ARM Cortex A5, A8, A919. However,
when computing the Horner-rule step all division instructions,
not just the mod instruction, can be avoided at the cost of
higher memory bounds.

Division-less Implementation. A Horner-rule step is imple-
mented by a unsigned integer multiplication and two addition
instructions [14]. Register carries are either handled by single
conditional additions or avoided by judicious choice of x [49].
In a full polynomial evaluation by the Horner rule the reduc-
tions mod p are postponed until the final Horner-rule value is
output.

Let p denote the largest prime that fits into a w-bit word.
The first Horner-rule step z can be expressed as z = ai+1 ·x+
ai (mod p), where ai+1 = si+1 ⊕ vi+1 for i = d − 1, . . . , 0.
Let the product ai+i ·x be implemented by an unsigned-integer
multiplication instruction with double word output in registers
Rhi and Rlo, and p = 2w − b, where p is the highest prime
that fits in a w-bit word. Then z = ai+1 · x + ai (mod p) =
Rhi ·2w+Rlo+ai (mod p) = b·Rhi+Rlo+ai (mod p), since
2w = b (mod p). Next, the register carries caused by additions
are handled by conditional additions of the unaccounted for 2w

to z; i.e., z + 2w = z + b (mod p). [Equivalently, reduce z
(mod p): z−p = z−(2w−b) = z+b (mod p).] In contrast, the
register carry in the integer multiplication b ·Rhi is avoided by
picking x ≤ b 2

w

b c at the cost of a negligibly higher collision
probability. The register carries of the second Horner-rule step,
y, above is implemented in a similar way as for z.

In the evaluation of a randomized-polynomial, the final
reduction z (mod p) comprises the test z > p and the
conditional subtraction by z − p, since register carries are
already handled20. The conditional testis implemented by a
single three-operand instruction or by two instructions when
only two-operand instructions are supported. Similarly, the
final y (mod p) reduction is performed at the end of each
si evaluation.

A division-less implementation of the Horner-rule step with
only eight instructions (without counting the final mod p re-
duction) has been available for an Intel x86-32 class processor

19If needed, the ordinary integer division by constant p can be simulated
by a multiplication and a shift instruction.

20When w = 64 and p = 261 − 1 < 2w , the reduction of z (mod p)
when p < z < 264 is preformed as z = a · 261 + b (mod p), where
0 ≤ a, b < 261. Hence, z = (z div 261) + (z mod 261) [48]. The integer
division operation, div, requires a right shift instruction, and mod requires
a bitwise and instruction with the mask 261 − 1, which requires the third
instruction.
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[49], where w = 32 and p = 232 − 5. A MIPS processor
requires two additional move instructions since its Rhi and
Rlo registers are not directly addressable. These programs far
exceed the four-instruction cWRAM implementation, which
nevertheless increases the measured time bound in practice.

Note that the time bound of division-less implementations
intimately depends on the type of arithmetic for a given word
size. A CPU performing w-bit arithmetic on 2w-bit words
needs many more instructions to implement the Horner-rule
step than a CPU performing w-bit arithmetic; e.g., an efficient
forty-instruction implementation exists for a 32-bit CPU op-
erating on 64-bit words (p = 264 − 59), and another one for
64-bit CPU arithmetic for 128-bit words (p = 2127 − 1) [48],
[49].

Optimal Space-Time Choice. Eliminating both the mod and
ordinary integer-division instructions in real processor imple-
mentations yields lower time bounds and higher space bounds
for evaluations of a Horner-rule step. In fact there exist multi-
ple space-time optimal bounds even on a single processor ISA.
However, every distinct space-time optimal implementation
has a different program encoding for the Horner-rule program
and hence a different input v to the Horner(Hd,k,x(v)) pro-
gram. Hence, by Part 2 of the Corollary of Section IV-D, none
of the different optimal implementations yields a higher chance
of adversary success in establishing malware-free states.

Nevertheless, optimal space-time implementations that
minimize the time bound are often preferable in devices
with large primary memories where randomized-polynomial
evaluations may take up to a few minutes for very large k;
viz., Section VII. For example, to minimize the time bound
of a division-less implementation of the optimal Horner-rule
step for a specific processor model and ISA instance, one
can use a stochastic superoptimization technique designed
for short, loop-free, fixed-point instructions [58], [74]. When
given this target implementation and the minimum time as
the optimization criterion, a superoptimizer produces the time-
optimized minimum-space program for that processor and
model; e.g., the STOKE tool use for the Intel x86-64 ISA,
which is generally considered to be the most complex instance
of a CISC architecture [75]. Program synthesis tools may also
be applicable [81].

B. Choosing k General Purpose Registers
The space-time optimality of the Horner(Hd,k,x(·)) pro-

gram on input v on commodity processor architectures also
depends on the number of general purpose registers available

to hold the k random numbers for computing si =
k−1∑
j=0

rj×(i+

1)j (mod p). The k + 8 data words required for randomized
polynomial evaluation (Section IV-B) are input and initialized
in general purpose registers by Init such that they occupy
all registers that affect the optimal space-time bounds of
the randomized polynomials. This requires the analysis of a
processor’s ISA so that an appropriate value of k > 1 is
selected.

For example, typical ARM processors have sixteen general
purpose registers per mode, including the PC register. Ad-
ditional registers exist for dedicated use in privileged mode
and floating point instructions, and none of these can be
used to bypass optimal bounds for randomized polynomial
evaluation. Of the fifteen general purpose registers available for

divisions-less evaluation, two are used for the output of integer
multiplication, only one of which is accounted for among the
k + 8 data words for randomized polynomial evaluation in
cWRAM. Hence, at most fourteen registers hold the k + 8
data words, and thus k is at most six.

In MIPS I processors, there are thirty-two general purpose
registers of which one is the source of constant zero and
the other is the extra register unaccounted for by the output
of integer multiplication in cWRAM. Since at most k + 8
resisters are required for randomized polynomial evaluations,
k is at most twenty-two. The other thirty-two register file
are dedicated to floating point instructions and are unusable
for randomized polynomial evaluation since they slow down
latency-bound integer computations considerably.

In other processors, such as the Intel x86-32, fewer than
eight general purpose registers are available. In this case,
the k random values are allocated to these registers and the
rest of k + 8 data values required by randomized polynomial
evaluation in cWRAM are allocated to the memory area. This
is done because coefficient evaluations based on the k random
numbers and the Horner-rule step are essential to optimal
evaluations. Hence, the value of k is less than eight; e.g.,
four. Of course, a higher value for k is expected for the
Intel x86-64 architectures where more registers are available.
However, similar considerations apply.

C. Mapping Instruction-Word Strings into Zp Integer Strings
Recall that p was chosen to be the largest prime that fits

into a word of w bits. This implies that some of the values
of the word-aligned instruction strings could not fit into Zp

integers, unlike the verifier-chosen constants which fill unused
memory. However, the shorter (opcode, single-operand) pairs
both fit into these integers and align with the least significant
bits of a word in cWRAM. Furthermore, the encoding of the
sequence of (opcode, single-operand) pairs of the verifier-
chosen instructions is unique; viz., the proof of Theorem 6-
a. Hence, the mapping from the unique sequence of verifier-
chosen word (e.g., instruction) strings to a unique sequence of
Zp integer strings is preserved without any additional memory
initialization action. Although this mapping requires us to
separate the establishment of malware free states (Theorem 7)
before RoT establishment (Theorem 8), the separation can be
beneficial in practical applications. For example, consider on-
demand I/O channel isolation [95]. A software-implemented
verifier of a malware-free application needs to establish only
that the controller of its newly allocated device, which is taken
from a malware-infested operating system is, in fact, malware-
free. Requiring RoT establishment is for the entire multi-device
system is impractical here.

Aligned Encodings in Zp. In some processor architectures,
such as the Intel x86 processors and their successors, the
alignment of the (opcode, single-operand) pairs with the least
significant bits of a word – as assumed in cWRAM – is
maintained. However, in other processors, such as MIPS and
ARM, it is not. The (conditional) opcode, addressing mode,
and operands specifications are aligned with the most signifi-
cant bits, so that part of the unique opcode encodings may be
chopped off. For example, if w = 64 and p = 264 − 59, then
some of the least significant six bits may be chopped off and
the sequence of (opcode, single-operand) pairs may no longer
be unique. In such cases, the uniqueness of this sequence is
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easily restored at the cost of a single additional instruction
execution during the evaluation of coefficients si⊕vi, without
affecting the optimality of the Horner(Hd,k,x(·) program.
That is, the processor register which contains vi is either
reversed (e.g., by executing a RBIT instruction in ARM
processors), or appropriately rotated/shifted (e.g., as in MIPS
processors). Of course, the endianness of the instruction and
data sequences in memory remains unaffected in any case.

Alignment-free encodings in Zp. Alignment-free encodings
of instruction words into Zp integers are supported if we
perform an additional unique word-string to integer-string
mapping during Horner rule program execution. Thus, the
second pass with an ordinary universal hash function (i.e.,
Hw in Section V) is avoided. Performing such an additional
mappings is always possible at the cost of a few additional
instruction execution and processor registers (and hence space-
time bounds). For example, it is always possible to bring out-
of-range numbers from {p,. . . , 2w− 1} into the {0,. . . , p− 1}
range by several alternate methods; e.g., see Figure 4 [49], or
probabilistic methods.
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