

RADAR: A Robust Behavioral Anomaly Detection for

IoT Devices in Enterprise Networks

Tianlong Yu, Yuqiong Sun, Susanta Nanda, Vyas Sekar, Srinivasan Seshan

May 21, 2019

CMU-CyLab-19-003

CyLab

Carnegie Mellon University

Pittsburgh, PA 15213

https://www.cylab.cmu.edu/_files/pdfs/tech_reports/CMUCyLab19003.pdf
http://www.cylab.cmu.edu/

RADAR: A Robust Behavioral Anomaly Detection
for IoT Devices in Enterprise Networks

Tianlong Yu†, Yuqiong Sun♭, Susanta Nanda♭, Vyas Sekar†, Srinivasan Seshan†

†Carnegie Mellon University, ♭Symantec

ABSTRACT
IoT devices deployed inside enterprise networks (e.g., routers, stor-
age appliances, cameras) are emerging security threats for enter-
prises. It is impractical for security administrators to address IoT
threats with existing enterprise or smart home security techniques,
e.g., host-based or mobile-based detection are not applicable, net-
work firewall rules are too coarse-grained, signature-based detec-
tion fails with zero-day attacks, and existing anomaly detection
mechanisms are ineffective for IoT devices (e.g., cannot detect IoT
backdoor access) as they are proposed for computer activities (e.g.,
email spear phishing). Fortunately, we observe that unlike general-
purpose computing devices, the normal behavior of an IoT device is
limited (e.g., a camera has zooming-in, video streaming and audio
recording behaviors). Based on this insight, we revisit behavioral
anomaly detection at the network layer. Designing such a system
is challenging on two fronts. First, we need a behavior model to
abstract the key characteristics of IoT-specific behaviors (e.g., com-
mands or arguments used) from network traffic. Second, in practical
enterprise environment, the network traces for learning normal
behavior models are unlabeled and potentially polluted. We address
these challenges in designing RADAR, a practical and robust be-
havioral anomaly detection system for enterprise IoT devices. We
design a novel learning mechanism that can build benign behavior
models (finite-state-machines) for IoT devices, from unlabeled and
potentially polluted network traces. We show that our approach
achieves high detection accuracy (F-Score improved by 5X com-
paring with other approaches) and is robust to polluted behavior
samples (F-Score>0.9 when 15% of the network traffic of IoT devices
is polluted).

KEYWORDS
IoT security; behavioral anomaly detection; robust learning

1 INTRODUCTION
As Internet-of-Things (IoT) devices proliferate [7], a significant
and growing majority of these devices (78.8% [9]) are deployed
inside enterprise networks. These enterprise IoT devices include
both infrastructure devices (such as routers, switches and network
attached storages) and consumer devices (such as cameras, DVRs,
smart lights, fire alarms, sensor gateways and smart speakers). Un-
fortunately, enterprise IoT devices often have numerous security
flaws and have become severe security threats to enterprise net-
works [13].

These enterprise IoT devices pose several unique challenges for
existing security solutions that include host-based defenses[16,
18], mobile-application-based defenses[40, 57], signature-based

defenses[51, 53], network access control, and existing anomaly
detection mechanisms[29, 31, 43–45, 52, 56]. The scale and diver-
sity of enterprise IoT deployments make it hard for security ad-
ministrators to correctly configure ACLs (access control lists), e.g.,
blocking the access to a NAS would impact legitimate users. The
management APIs of some enterprise IoT devices (e.g., snmp client
or smb client) are different from common management APIs of
smart home IoT devices (e.g. mobile apps), so mobile-application-
based defenses [40, 57] are not applicable here. In an enterprise
environment, attackers are intended to adopt more stealthy tech-
niques; consequently, common attacks against enterprise IoTs, such
as code injection and authentication bypass, are designed to eas-
ily evade flow-statistics-based anomaly detection [43] as well as
anomaly detection proposed for specialized computer activities
(e.g., email spear phishing or malware C&C) [29, 31, 44, 45, 52, 56].
Finally, host-based defenses[16, 18] or signature-based network
defenses [51, 53] are not applicable due to the fact that IoT devices
have limited resources and that zero-day attacks are common for
these devices.

We argue that, network-based behavioral anomaly detection
tailored for IoT devices would offer a pragmatic path for security
administrators. Our key insight is that an IoT device serves single-
purpose functionality in the enterprise setting, and is likely to
exhibit a limited set of high-level behaviors under normal operation.
When an attacker tricks the device into performing a malicious
operation – for example, using a printer to exfiltrate a file as opposed
to printing it – this action would appear as an anomaly.

Building on this insight, we develop a behavioral anomaly detec-
tion system to detect IoT-related malicious activities in enterprise
networks. This is challenging on two key fronts:
Modeling IoT behaviors from network traffic: Even though an
IoT device exhibits a limited set of high-level behaviors (e.g., cam-
era’s video recording behavior), there is a gap between a high-level
behavior and the network traffic structures associated with it (e.g.,
the sequence of http URIs used for the camera’s video recording
behavior). It is non-trivial to bridge the gap and define a network be-
havior model to abstract key characteristics of a device’s high-level
behaviors (e.g., commands or arguments used, sequential semantics
and directionality) from network traffic.
Availability of labeled behavior samples: Labeled behavior
samples (network traces) of the IoT devices are required for ac-
curately learning the behavior model. However, such labeled data
is often difficult to obtain in a practical enterprise setup [55]. At-
tack samples that cover all possible attacks are difficult to obtain
because zero-day attacks are common for enterprise IoTs. Benign
samples are also hard to obtain, as generating all possible benign

1

network traces for every IoT device deployed is too costly for ad-
ministrators if not impossible. A common practice is to directly
install the devices in production environment and then passively
monitor their behaviors. The network traces collected in this case
is prone to pollution (i.e., the network traces may already contain
attack samples). Therefore, a robust learning approach that can
handle the unlabeled, potentially polluted samples is required in
operational enterprise environments.

In this paper, we present RADAR (Robust behavioral Anomaly
Detection for enterprise IoT devices), which tackles these chal-
lenges and detects behavior anomalies based on benign behavior
models learned from unlabeled, potentially polluted network traffic.
RADAR contains two components – a passive learning component
and an online detection component. The learning component pas-
sively monitors the network traffic of the enterprise IoT devices, and
build FSM (finite-state machine) models to precisely abstract their
behaviors (Section 4). To learn the behavior model from unlabeled
network traces, RADAR provides a FSM inference mechanism based
on the characteristics of IoT traffic (Section 5). Then, to address
the challenge of pollution, RADAR provides an outlier detection
mechanism to generate multiple candidate models, and leverages
several IoT heuristics to filter out polluted models and selects the
best benign model from the candidate models (Section 5). After the
benign behavior model is obtained, the detection component checks
if the network traffic of a device is consistent with the benign FSM
model and raises alerts when anomalies are detected.

To evaluate RADAR, we setup a sandbox IoT environment with
9 classes of IoTs in an organization. We conducted an IRB-approved
study, and obtained more than 10000 benign behavior samples
from 10 human users. We also built an enterprise IoT penetration
test bundle and obtained more than 1000 attack samples. Benign
behavior samples and attack behavior samples are randomly mixed
to generate the unlabeled samples for evaluation. We show that
our system provides accurate detection and lower FP and FN (F-
Score>0.9 and F-Score improved by 5X) when comparing with the
best detection results by previous anomaly detections adapted to
enterprise IoTs, including two clustering-based anomaly detection
(Antonakakis et al.[28] and Perdisci et al.[52]) and the two protocol
FSM-based anomaly detection (Prospex[34] and Suricata[26]). We
show that the FSM model effectively detects common IoT attacks
including code injection, authentication bypass and unrestricted
outbound access. We also demonstrate that our approach is robust
to polluted behavior samples and yields low FP and FN (F-Score>0.9)
when the fraction of polluted samples ranges from 1% to 15%.

2 BACKGROUND AND MOTIVATION
In this section, we investigate the prevalence of IoT devices de-
ployed in enterprise networks, their security issues and why exist-
ing security solutions fail to address them.
Prevalence of enterprise IoT devices: IoT devices deployed in
enterprise networks are special-purpose computing systems. Typical
enterprise IoT devices include both infrastructure devices (such as
routers, switches and network attached storage (NAS)) and con-
sumer devices (such as cameras, DVRs, smart lights, fire alarms,
sensors & sensor gateways, smart speakers, smart TVs, smart
thermostats, smart plugs, and smart refrigerators). To investigate
the common types of such devices, we leverage Censys[3] and

Device Class Total Number
Router 162931
Network Switch 9503
NAS 328503
Camera 12890
DVR 12645
Smart Light 28083
Fire Alarm 104693
Sensor Gateway 20502
Smart Speaker 58
Smart TV 1209
Thermostat 316
Smart Plug 283
Refrigerator 195

Figure 1: Different classes of IoT devices in enterprises and
their network protocols exposed.

NAS 210711
Router 140629
Fire Alarm 94905
Smart Light 25892
Sensor Gateway 18801
Camera 11102
DVR 10419
Network Switch 8434
Smart TV 967
Smart Plug 277
Thermostat 223
Refrigerator 180
Smart Speaker 42

Figure 2: Common IoT devices in enterprises.

SHODAN[25] to search for these IoT devices deployed inside enter-
prise networks. Specifically, we use keywords such as “tags:nas" to
find device of each class, and keywords such as “inc", “llc", “com-
pany" and “corporation" on the WHOIS records to search for de-
vices inside enterprise. To avoid including IoT devices in smart
homes, we filter out common ISPs providing residential internet
connectivity[15].

As shown in Figure 1, the number of the IoT devices deployed
inside the enterprises is large1. In addition, Figure 1 shows that these
devices expose multiple sensitive protocols that can be accessed
and exploited by attackers, including http, https, ssh, ftp, telnet and
smb. Surprisingly, unencrypted protocols including telnet, http and
ftp are widely used by enterprise IoT devices. For example, 88% of
the enterprise IoT devices use unencrypted http protocol, as shown
in Figure 1. Therefore, monitoring the unencrypted traffic alone is
important for IoT devices in enterprise networks.

Then, to investigate what IoT devices are commonly used in
enterprise, in Figure 2, we rank these IoT devices by the number of
enterprises that have them deployed. We use the organization field
in the WHOIS records to distinguish enterprises. From Figure 2, we
can see that 8 classes of IoT devices, namely, NASes, routers, fire
alarms, smart lights, sensor gateways, cameras, DVRs and network
switches, all have been deployed in more than 1K enterprises. In
this paper, we also consider the smart speakers (Amazon Alexa and
Google Mini) due to their growing deployment in enterprises/orga-
nizations (especially in conference rooms and hotels[1]). Therefore,
we consider these 9 classes of IoT devices as the commonly used
devices in this paper.
Security issues for IoT devices in enterprise: As shown by
previous work on firmware analysis [32, 35, 36, 54] and by reports

1 Noting that the result here only includes IoT devices that are exposed to the internet,
and the actual number of all enterprise IoT devices is likely to be even higher.

2

DoS Code Injection Authentication Bypass Memory Corruption Cross-Site Request Forgery Directory Traversal File Inclusion
Cisco IOS 342 85 35 6 1 0 0
FreeNAS 0 2 1 0 1 0 0
D-Link Camera 2 6 2 0 0 0 0
HiSilicon DVR 1 3 1 0 0 1 1
Philips Hue Smart Light 0 9 5 0 0 0 0
OpenWRT Fire Alarm 1 3 1 0 0 0 0
LoRA Sensor Gateway 0 0 2 0 0 0 0
Alexa Echo Dot2 0 1 0 0 0 0 0
Google Mini 0 0 1 0 0 0 0
Total 346 109 48 6 2 1 1

Code Injection Authentication BypassMemory Corruption Cross-Site Request ForgeryDirectory Traversal File Inclusion
Number of Vulnerabilities 125 58 6 2 2 2

Figure 3: Different vulnerabilities for commonly used enter-
prise IoT devices from 1999 to 2018 from NVD[19].

��

	
	
	
	
	

Internet	

Web	Server	
(Joomla)	

DMZ	 Intranet	1	 Intranet	2	

Enterprise	Network	

DB	Server	
(Mongo	DB)	

Router	

Server	
(Blackberry)	

NAS	
(Synology)	

Step1:		
code	injec5on	

(0-day)	

Step2:		
backdoor	
(0-day)	

Step3:		
remote	login	

(stepping	stone)	

Computers	

IoT	Devices	

Figure 4: The famous HackingTeam incident to show how
attackers can intrude the enterprise via IoT devices.
of security incidents [4, 5, 10], existing enterprise IoT devices have
several security issues:
• IoT devices often have flaws when processing commands/argu-
ments, which allows the attacker to inject code via the flawed
commands or arguments [4, 5, 32, 35, 36].
• Many IoT devices contain flawed authentication routines (back-
doors) [54], which allow the attacker to bypass authentication.
• Since the IoT devices are deployed inside the enterprise net-
works, they often have unrestricted access to other IoT devices
or computers, which allows the attacker to use the compromised
IoT devices as stepping stones [10].
To identify common vulnerabilities for enterprise IoT deploy-

ments, we select a few devices to represent each IoT device class
and analyzed their vulnerabilities. Figure 3 shows the number of dif-
ferent types of vulnerabilities reported between 1999 to 2018 in the
National Vulnerability Database[19] for Cisco IOS router/switch,
FreeNAS, D-Link camera, HiSilicion DVR, Philips Hue smart light,
OpenWRT fire alarm, LoRA sensor gateway, Alexa Echo Dot2 and
Google Mini smart speakers. Code injection and authentication
bypass are the primary source of vulnerabilities. We also consider
the unrestricted outbound access, which are commonly seen in
incidents after the IoT devices are compromised [10].
A case study of an actual attack: We describe a realistic at-
tack scenario to highlight the above security issues and why exist-
ing security mechanisms, including host-based detection [16, 18],
signature-based detection [51, 53], ACLs and network-based anom-
aly detection [29, 31, 43–45, 52, 56], are impractical for administra-
tors.

Figure 4 depicts a real-world security incident (a IoT-based intru-
sion against the HackingTeam - a famous hacker organization[10]).
In step 1, the attacker found a zero-day flaw and compromised the

router using code injection. In step 2, after compromising the router,
the attacker obtained access to the NAS via a backdoor (authentica-
tion bypass). In step 3, he used the NAS to remotely login to the
Blackberry Server and exfiltrated valuable data.

Now we discuss why current security solutions fail to address
above threats:
• Host-based detection [16, 18] is impractical because IoT de-
vices have limited resources to support any host-based detection.
Therefore, in step 1, the attacker chose to attack the router rather
than the webserver [10].
• Signature-based network detection [51, 53] is ineffective because
zero-day attacks are common (because of bad development prac-
tice). For example, in step 1, attacker easily found a zero-day
code injection vulnerability within two weeks and evaded the
signature-based detection between the Internet and the DMZ
zone.
• Network-layer access control (ACLs) fails because of the scale
and diversity of the enterprise IoT devices. In step 2, the admin-
istrators cannot simply block the access from the DMZ to the
NAS because the NAS was used to backup some servers in DMZ.
• Current network anomaly detection is easy to evade because
they either focus on low-level traffic statistics [43] or only model
a specific type of attack behaviors for generic computers (e.g.,
malware C&C, port scanning or email spear phishing) [29, 31,
44, 45, 52, 56]. In step 3, the attacker performs remote login at a
low frequency to avoid causing flow-statistics anomalies. Also,
the remote login behavior is a legitimate computer behavior
(although it is abnormal for a NAS), so the anomaly detection
specialized for computer activities[29, 31, 44, 45, 52, 56] will not
raise any alert.

3 SYSTEM OVERVIEW
In this section, we present an overview of RADAR. Our design fo-
cuses on detecting the IoT-related malicious activities including code
injection, authentication bypass, and the unrestricted outbound
access, based on the security issues of enterprise IoTs described in
Section 2.
Threat Model: The goal of the attacker is to attack the enterprise
network by compromising devices, exfiltrating data, or disrupting
services offered by IoT devices.

Specifically, we make the following assumptions:
• The attacker can inject code via the flawed commands/argu-
ments or bypass the authentication (e.g., using backdoor) to
compromise the enterprise IoT devices, exfiltrate data, or disrupt
services of enterprise IoT devices.
• The attacker can leverage the unrestricted outbound access of
the IoT devices to attack other IoT devices or computers in the
enterprise network.
• The attacker cannot bypass (e.g., via covert channels) or com-
promise the detection component.
• The attacker cannot bypass the interception techniques used
by the enterprise admins that enforces inspection on encrypted
traffic (e.g., Google and other companies use various TLS proxy
solutions, such as Google Beyondcorp Framework[8], to inspect
encrypted traffic).

3

Initial State
GET "/user"

Logged in
POST

"/recording"

Sound
recording

GET
"/view/zoom/x4"

Enable
streaming

POST
"/setSystemStream"

Zoom in
X4

Initial State
GET "/user"

Logged in

POST
"/setDebugLevel"

Debug
mode

Benign Camera Behaviors Mirai Malware Behaviors

Figure 5: The limited benign behaviors of a camera and the
attack behaviors (Mirai Malware[27]) against it.

Class

Vendor

SKU

Instance

e.g., routers or cameras

e.g., Cisco or Juniper

e.g., Cisco 3640 or Cisco 7200

e.g., router 2 in sales department

Device
Type

Figure 6: Different granularities to categorize IoTs.

Intuition behindRADAR: Our key insight is that each enterprise
IoT device is typically used for a limited number of specialized
use cases. Therefore, each device has a limited set of behaviors
even if the network protocols it employs can support a wide range
of behaviors. To perform attacks, attackers are likely to deviate
from the specialized use cases, so attacks will be logically different
from the limited device behaviors. For example, Figure 5 shows
the difference between the limited benign behaviors of a camera
and the Mirai malware[27] against it. The benign behaviors include
logging in, recording sound, enable streaming and zoom in. The
attack behavior, however, includes sending a HTTP POST message
with URI “/setDebugLevel” to force the camera to debug mode (so
the attacker can change the camera’s firmware).

Thus, we posit that detecting behavioral anomalies can help us
identify IoT-related malicious activities.
Problem Formulation: At a high-level, the problem is to learn a
network behavior model for IoT devices from historical network
traffic, and then use the model to detect IoT attacks in real-time.

The first thing we need to define is the granularity of the model,
i.e., the aggregated set of IoT devices sharing the same model. As
shown in Figure 6, IoTs can be categorized at different granularities,
including the device class (class of functionality, e.g., router or cam-
era), the vendor of the device (e.g., Cisco or Juniper), SKUs (Stock
Keeping Unit, a unique identifier for each distinct product) and
instances (the physical device deployed in a certain environment).
We define the device type as the combination of device class, vendor
and SKU (e.g. router of Cisco 3640). Formally, let devicet, i denote
the device instance number i of type t (e.g., Cisco 3640 router with
instance ID 2) in the enterprise. Now we introduce a granularity
notion g, and the aggregated set of IoTs sharing the same model
can be denoted as {devicet, i}g . The administrator can specify the
granularity g to be a device instance, a device SKU or a device type.

Next, we explain the structure of the IoT network traffic that
we are modeling. Suppose IoT devices of granularity g, denoted
as {devicet, i}g , support a number of possible protocols {p} (e.g.,

http, ftp, telnet) to communicate with other IoT devices or com-
puters. For each protocol p, we can logically consider a notion of
a application protocol session, defined as a group of TCP (or UDP)
connections executing a specific task. A session consists of a series
of Application-layer Data Unit (ADUs). An ADU is defined as all
the application-layer data in a network flow. A network flow is all
the packets in one direction in a tcp/udp connection. So an ADU
is a consecutive chunk of application data, which spans one or
more packets in one direction in a connection. The connections
can be grouped to sessions by previous approaches [46, 51] using
timing information or protocol specification. In this paper, we rely
on Bro IDS [51] to identify session structure. We assume that the
network protocol formats can be obtained from RFCs or by existing
protocol reverse engineering mechanisms [37]. We assume that the
traffic is either unencrypted inside the enterprise (e.g., http, telnet
or DNS traffic) or other enterprise security mechanisms (e.g., TLS
proxy [2]) are employed to observe encrypted traffic (e.g., Google
BeyondCorp [8]).

In this paper, the problem we address is: Given a historical trace
Traceg,p consists of multiple sessions {SN g,p, l}l (l is session index)
for a set of aggregated device instances {devicet, i}g and protocol p,
we need to learn a behavioral model to identify if a future session
SN g,p, l is anomalous. We focus on homogeneous sessions that
consist of consecutive connections within the same protocol and
leave anomalies that span multiple protocols for future work.
System Overview: Figure 7 shows the overview of the RADAR
system with two stages:

Offline Learning: For a set of aggregated IoT devices {devicet, i}g
with granularity g and protocol p, we split Traceg,p into applica-
tion sessions {SN l}l and further subdivide each session SN l into
its constituent ADU series {Al}. Then, given the unlabeled {Al},
RADAR provides a robust learningmechanism to build a FSMmodel
FSMbenign

g,p to abstract the benign behaviors of the aggregated IoT
devices. We will explain why RADAR uses a FSMmodel in Section 4.

Online Detection: In the online stage, we take each completed
session SN g,p, l in real-time and again parse it into ADU series
Ag,p, l and then compute a real-time FSM model FSMmix

g,p from

ADU series Ag,p, l and historical FSM model FSMbeniдn
g,p . Then we

calculate the similarity (defined in Section 5) between FSMmix
g,p

and FSM
beniдn
g,p . If the similarity is less than a similarity threshold

dt, we raise an alert on session SN g,p, l and Ag,p, l . We will show
that our approach is robust to the configuration of threshold dt in
Section 7 and Figure 19.

In the aboveworkflow, RADAR is designed to build an aggregated
behavior model FSMbeniдn

g,p with a granularity notion g. This design
provides a good coverage of possible benign behaviors and makes
it easy for RADAR to scale in the enterprise setting. To find out
why, let’s consider a fine-grained behavior model at per device
instance per protocol granularity (e.g., a FSM behavior model for
the HTTP traffic of camera instance 1). A single device instance
(camera instance 1) may not have sufficient historical traces to cover
possible benign behaviors (so the FP will be high), and is hard to
scale as the number of device instances is large. By building an
aggregated behavior model, RADAR can use more historical traces
to better cover possible benign behaviors. To better scale in the

4

for each {devicet,i}p
for each protocol p,
split {Traceg,p} into sessions {SNl}l
parse each session SNl to a ADU series {Al}

FSM inference (RPNI) without attack samples
Outlier detection (RANSAC) precluding pollution

Benign behavior
models {FSMg,p}

lookup model FSMg,p for session SNg,p,l
compute FSM mixg,p from FSMg,p and Ag,p,l
compute similarity between FSM mixg,p and FSMg,p
if similarity < threshold dt
alert on session SNg,p,l

IoT
devices

Aggregated IoTs
{{devicet,i}g}

Session detection & protocol format parsing
Session detection & protocol format parsing

ADU series Ag,p,l of
completed session SNg,p,l

Traffic
{Traceg,p}

Alerts on session SNg,p,l
Challenge 1: Modeling IoT behaviors

from complex network traffic

Challenge 2: Lack of labeled

behavior samples

Robust Behavior Model Inference

FSM-based Detection

New modules added by RADIO

offline stage online stage

Existing modules (e.g. IDS)

Admin

Admin

Unlabeled, potentially polluted ADU series {Al}

IoT
devices

Figure 7: The system architecture of RADAR.

operational setting of an enterprise, RADAR only needs to process
the historical traces of a few device instances (e.g., of the same
device type) to build an aggregated behavior model in the offline
stage, and apply the aggregated model to other device instances
(e.g., of the same type) in the online stage. In Section 7, we will
show that, by building aggregated behavior model from only a few
device instances, RADAR can provide good behavior coverage and
scalability.
Challenges: To build RADAR, there are two key challenges.

Challenge 1. Modeling IoT behaviors from network traffic: From our
explanation of the structure of IoT network traffic, it is obvious that
the limited set of high-level IoT behaviors are concealed in complex
network traffic patterns (e.g., the ADU series). It is hard to decide
how to abstract the key characteristics of the complex network
traffic patterns (e.g., the sequential semantics of ADU series) to
represent the high-level IoT behaviors. Previous network anomaly
detection approaches [26, 29, 31, 34, 43, 43, 45, 52, 56] focusing on
flow statistics or malicious computer behaviors (e.g., email spear
phishing) are not applicable for this task.
Challenge 2. Lack of labeled behavior samples: As stated in Section 1,
it is difficult to obtain clean and labeled samples in practical enter-
prise setting [55]. Attack behavior samples are hard to obtain as
zero-day attacks are common for enterprise IoT devices. Benign
behavior samples are hard to obtain as the management cost to
generate all possible benign samples are high considering the scale
and diversity of enterprise IoT devices. Passive monitoring also
does not solve the problem as it is prone to pollution. Therefore,
RADAR has to provide a robust learning mechanism that can learn
benign behavior models from unlabeled, potentially polluted be-
havior samples (unlabeled ADU series {Al} in Figure 7).

We address challenge 1 by defining a behavior model that can
precisely abstract IoT behaviors in Section 4. We address challenge
2 by designing a robust learning mechanism for enterprise IoT
devices in Section 5.

4 NETWORK BEHAVIOR MODEL FOR IOTS
Given the historical network traces, we need a network behavior
model to abstract the key characteristics of IoT-specific behaviors.

GET /user - to

- - 401 from

ADU1

ADU2

GET /user - toADU3

- - 200 fromADU4

Request Method URI Status Code Direction

The HTTP authentication behavior of a D-Link Camera
1. Commands and arguments 2. ADU direction

3. ADU
sequence

Strawman 1:
Flow statistics

Strawman 2:
ADU fields counts

RADIO’s FSM model

GET 2

/user 2

401 1

200 1

S0

S1

GET/401
GET/200

GET /user - to

- - 401 from

- - 200 from

GET:
401:
200:

Figure 8: The HTTP authentication behavior of a D-Link
camera and two modeling strawmans.

Formally, let Traceg,p denote the historical trace of protocol p from
a set of aggregated devices {devicet, i}g , our goal is to define a be-
havior model to abstract the behaviors of the aggregated devices. In
Figure 8, we illustrate the modeling process with a D-Link camera’s
HTTP authentication behavior.

The HTTP authentication behavior includes 4 ADUs. In ADU1,
the user is trying to access the camera with the request method
GET and URI /user. Then in ADU2, the camera notifies the user
to authenticate by using status code 401. Then user authenticates
using ADU3. The camera notifies the user that the authentication
is successful using the status code 200 in ADU4. Based on this
example, there are three key aspects of the behavior: 1) the com-
mands and arguments included in each ADU (e.g., the the request
method, URI and status code); 2) the direction of each ADU, i.e.,
whether the ADU is sent to or from the IoT device; 3) the sequence
of the ADUs, e.g., the sequence of ADU1 to ADU4 indicates the
authentication routine of the camera.

5

Now, we can think of some seemingly natural strawman solu-
tions for modeling the IoT behaviors. One natural starting point
(Figure 8, Strawman 1) may be to use the coarse-grained flow statis-
tics such as packet counts [43]. However, the flow statistics do not
capture IoT’s commands and arguments at application-level (e.g.,
URI). Alternatively, we can try to build a bag-of-words model (Fig-
ure 8, Strawman 2) that counts the appearance of different ADUs
field values. However, the bag-of-words model cannot capture the
directionality or sequential semantics (e.g., normal authentication
for this camera have status code 401 before status code 200, oth-
erwise it is backdoor access).

To overcome the limitations of the strawman solutions, we sug-
gest the following network behavior model. Instead of flow-level
statistics, we choose to abstract application-level ADU fields 2 that
contain the device-function-specific commands and arguments for
enterprise IoTs 3. To capture the directional semantics, we explicitly
include the direction of the ADU (from device or to device) to model
the interaction between the user and the device (e.g., HTTP GET
from admin to router). Finally, to capture the sequential seman-
tics of a session, we define a FSM model (Finite State Machine) to
capture the sequential pattern in the ADU series.

To capture both ADU fields and ADU direction, we define an ab-
stracted ADU m as the combination of a set of ADU fields {f1, ..., fv}
and an ADU direction dm. The ADU direction dm captures whether
the ADU is sent from the device or to the device. For example, the
abstracted ADU for ADU 1 in Figure 8 is {GET , /user ,−, to}.

To represent the sequence of ADUs in a compact way, we abstract
the sequence of ADUs using a FSM model. We define the FSM
model as a Mealy Machine 4. A Mealy Machine FSM is a six tuple
< S, s0, ΣI , ΣO ,δ , λ >, where S is a finite non-empty set of states,
s0 ∈ S is the initial state, ΣI is a finite set of input symbols,ΣO
is a finite set of output symbols, δ : S × ΣI → S is the transition
relation, λ : S×ΣI → ΣO is the output relation. For example, for the
camera’s HTTP authentication behaviors in Figure 8, the transition
relation at S0 is {S0} × {GET } → {S1}, and the output relation at
S0 is {S0} × {GET } → {401}. In RADAR, the Mealy Machines are
deterministic, which means at any given state (e.g. S0), one input
(e.g. GET) only yields one output (e.g. 401).

To define the transition relation δ and output relation λ, we
leverage the causality between a request ADU and a response ADU,
i.e., at a given state of the FSM (e.g. S0), a specific request ADU (e.g.
GET) will result in a specific response ADU (e.g. 401). Therefore,
we define the transition relation as δ : S × {mr equest } → S and
the output relation λ : S × {mr equest } → {mr esponse }, where m
is the abstracted ADU.

However, the above definition cannot handle general protocols
that may not have request and response ADU pairs (e.g., Telnet).
This is because the above definition relies on the causality be-
tween request and response (i.e., a certain request result in a cer-
tain response). To abstract protocols without request and response
ADU pairs, our idea is to also leverage the causality between the

2An ADU field is defined as a sequence of lines of characters with special syntax
defined by the protocol format.
3We can identify these ADU fields by existing protocol reverse engineering
mechanisms[37].
4Another alternative is Moore Machine. We did not choose Moore Machine as it has
“rejecting” states that relies on attack samples (as counter examples) to generate.

Abstracted	CMP	Messages	
	
ID�

Subset	{ma}� Subset	{mb}�
Direc7on+Command� Subcommand�

1� from	+	Will� Echo�
2� from	+	Do� Suppress	Go	Ahead�
3� to	+	Subop7on� Terminal	Type�
4� to	+	Do� Nego7ate	About�
5� to	+	Will� Environment	Op7on�
6� from	+	Subop7on� Remote	FlowControl�
7� Linemode�
8� New	Environment	Op7on�
9� Status�
10� End�

Figure 9: RADAR’s FSM model that represents a Cisco
router’s behaviors under Cluster Management Protocol.
ADUfields inside each ADU, i.e., the occurrence of some ADU fields
result in the occurrence of some other ADU fields in an ADU. For ex-
ample, a typical protocol without request and response ADU pairs,
called Cisco Cluster Management Protocol (CMP) used by Cisco
routers and switches, is demonstrated in Figure 9. As shown in the
table, the occurrence of some ADU fields (such as Suboption
command) will result in the occurrence of some other ADU fields
(such as Terminal Type and Remote FlowControl). Based
on this idea, an abstracted ADU m can be split into two subsets of
ADU fields ma = { fa } and mb = { fb }, e.g. { fa } is the command
and { fb } are the combination of its arguments. At a given state of
the FSM, a subset of ADU fields { fa } will result in a specific subset
of ADU fields { fb }. Therefore, for such protocols, we define the
transition relation as δ : S × {ma } → S and the output relation
λ : S × {ma } → {mb }.

Figure 9 illustrates an end-to-end example of how FSM model
captures the behavior of Cisco router under Cluster Management
Protocol (without request and response ADU pairs). At the top of
the figure, the table shows the alphabet for the transitions. The
FSM at the bottom captures common router management behaviors
such as login, traceroute, and clear router status. For example, a
common router management behavior is captured by the transition
from s0 to s8 in Figure 9. Specifically, the transition relation and the
output relation here mean that, at s0, if a ma1 ADU field (a Will
command) is seen, another mb1 ADU field (an Echo subcommand)
will also be seen, and the state will transit to s8.

5 LEARNING IOT BEHAVIOR MODEL
Given the historical traces from a set of aggregated IoT devices,
RADAR will learn a FSM model as defined in Section 4 to abstract
the benign behaviors of the aggregated IoT devices. There are two
key requirements for RADAR’s learningmechanism. First, the learn-
ing mechanism should be able to learn the FSM model with unla-
beled samples. Second, the learning mechanism should be able to
learn the FSM model from polluted historical traces. In this section,
we describe how we modify the state-of-art FSM inference algo-
rithm to learn a behavior model with unlabeled samples, and how
we modify the state-of-art outlier detection algorithm to address
the pollution issue.

6

High level idea: A natural starting point for learning an FSM from
the historical trace is using the state-of-the-art FSM inference algo-
rithms such as RPNI (Regular Positive and Negative Inference) [50].
Such FSM inference algorithms require both labeled benign sam-
ples and labeled attack samples to learn the FSM (Gold et al. [42]),
which are hard to obtain in enterprise setting. Therefore, the FSM
inference algorithms cannot be applied here. To address this issue,
our idea is to remove the requirement for attack samples by using
the causality in the IoT traffic (e.g., one ADU result in another ADU)
to determine the FSM states for unlabeled samples. We modified the
state-of-the-art FSM inference algorithm called RPNI5, and lever-
age two IoT causality heuristics to learn the behavior model for
unlabeled samples.

Note that this does not address the issue of pollution. If the
historical trace is unlabeled and contains malicious behaviors, then
the FSMmodel generatedwill also containmalicious behaviors, thus
the FNs will be high. To address this issue, our idea is to novelly
intergrate the state-of-the-art outlier detection algorithms (e.g.,
RANSAC[41]) with FSM inference algorithm RPNI[50] to generate
multiple candidate FSM models, and design a novel loss function
for RANSAC to select the best benign model from the candidate
models. In particular, two popular state-of-the-art outlier detection
algorithms are RANSAC[41] and Hough Transformation[39]. The
latter is designed for image structures (e.g., image pixels) and is not
applicable for IoT FSM models.

Next, we will first walk through the basic RPNI algorithm and
show our modifications. Then, we will introduce the basic RANSAC
algorithm and discuss how we modifies the RANSAC to address
the pollution issue.
Basic RPNI: The basic RPNI algorithm, shown in Figure 10, is
designed as follows. In Step 1, benign or “positive” samples are
used to build a tree where each sample is a path from root to leaf.
In Step 2, basic RPNI merges nodes to compact the tree and uses
labeled attack or “negative” samples to prevent merging of nodes
that would otherwise lead to false negatives. For example, in the
bottom left figure of Figure 10, in Step 2, if S0 and S2 are merged,
then the counterexample GET , 200 (indicating an authentication
bypass) will be included. When there are no attack samples, every
merge is allowed, and it results in a single state accepting all inputs,
and the false negatives will be high.
RADAR’s modification for RPNI: We extend this algorithm to
generate an FSM model without relying on the labeled samples. We
achieve this by replacing the traditional merge with two causality
heuristics: (1) at any state, same request ADU yields same response
ADU, and (2) at any state, same ADU fields subset ma yields same
message fields subset mb . We adopt the above heuristics based on
the observation that the protocols used by the enterprise IoTs either
have strong correlations between their request and response ADUs
(e.g. the request method and the status code of HTTP) or have
strong correlations between the commands and arguments inside
an ADU (e.g. the command and subcommand of Telnet). Based
on the protocols we have considered in this paper, we posit that

5The state-of-the art FSM inference algorithms include RPNI, Biermann & Feldman’s
algorithm[30], and DeLeTe2[38]. Biermann & Feldman’s algorithm and DeLeTe2 gener-
ate non-deterministic FSM, while RPNI generates deterministic FSM. Nondeterministic
means it can transition to, and be in, multiple states at once, which is contradicting
the deterministic behaviors of enterprise IoT devices.

Basic RPNI

Inputs:
1) example sequences
2) counterexample sequences

Step 1:
build a tree from example
sequences, each sequence is a
path from root to leaf.

Step 2:
merge the tree nodes, if a
merge generates a path for a
counterexample sequences, skip
the merge.

RPNI Extension

Inputs:
1) example sequences
2) counterexample sequences

Step 0:
pair abstract message

Step 1:
build a tree from example
sequences, each sequence is a
path from root to leaf.

Step 2:
merge the tree nodes by
causality heuristics:
a) at any state, same request

ADU yields same response ADU;
b) at any state, same ADU fields

subset ma yields same ADU
fields subset mb.

S0�

S2�

S0�

S1�

S2�

S5�

S6�

S3�

S4�

Examples
{Al}1: GET,401,GET,200
{Al}2: GET,401,POST,200

Counterexamples
{Al}3: GET,200

GET	

Step 1:Build Tree

S0�

S1�

401	

GET	

200	

POST	

200	

Step 0 + Step 1Step 2: Merge by
counterexamples

S0�

S1�

S3�S2�

GET/401	

GET/200	 POST/200	
GET/401	

GET/200	 POST/200	
GET	

POST	

401	

200	

GET	

Step 2: Merge by
heuristics

Examples
{Al}1: GET,401,GET,200
{Al}2: GET,401,POST,200

Basic RPNI RPNI Extension

Counterexamples
{Al}3: GET,200

Figure 10: Basic RPNI algorithm and our extension.
the two heuristics are generalizable. Consider a session for any
protocol, the session is composed by a sequence of ADUs. If the
protocol is composed of request and response pairs (e.g., HTTP,
SMB and SNMP), the occurrence of a response highly depends on
the previous request. If the protocol is not composed of request and
response pairs (e.g. Telnet, DNS and MQTT), then the occurrence
of some ADU fields highly depends on some other ADU fields. For
example, for Telnet, the choice of subcommand field in an ADU
highly depends the command field.

To extend RPNI, we first need to adapt basic RPNI to Mealy
Machine, so we add a Step 0 to pair abstract message and build a
Mealy Machine tree in Figure 10. Then we modify Step 2 to use the
causality heuristics, e.g., in the bottom right figure in Figure 10, in
Step 2, our causality heuristics will prevent S0 and S1 from been
merged, otherwise a GET input in S0 will result in two outputs -
200 and 401, which contradicts the determinism of Mealy machine.
Basic RANSAC: We first provide some background on the
RANSAC algorithm in Figure 11. RANSAC stands for “Random
Sampling and Consensus”. Intuitively, if the amount of pollution is
not a significant majority, then we can learn a robust model even
with polluted data if the model is “self-consistent” in some way. The
basic idea here is to randomly sample data from a possibly polluted
training set, build a model using just this random sample, and then
evaluate how well this model “fits” the remaining dataset. We can
simply repeat this process for a few iterations and pick the “best”
model over these iterations.

For a set of data items, or simply items, the algorithm first selects
a random subset of size r and builds a model from the subset. For
example, in Figure 11, build a line from a subset of points. Then

7

1 Input: D - a set of data points
2 for iterations← 1 to k
3 Diter ← SampleRand (D, r)
4 ▷ build a base model from r samples
5 Modeliter ← Learn(Diter)
6 Dadd ← {}
7 Dtest ← D − Diter
8 for each d ∈ Dtest
9 ▷ check if the rest of the data fits the model.
10 if DataFit(d, Modeliter) < dt
11 Dadd ← Dadd

⋃
d

12 ▷ check if a good model is found
13 if Dadd > n
14 ▷ Update the model with all “inliers”
15 Modeliter ← Learn(Diter

⋃
Dadd)

16 ▷ evaluate the loss on “inliers”
17 loss = ModelLoss(Modeliter, Dadd)
18 return theModeliter with the smallest loss in k iterations

Sampling 1 Sampling 2 Sampling 3

line 1 line 2 line 3

Figure 11: Basic RANSACand three iterations generating dif-
ferent models (line 1 - 3).
the algorithm tests all other items against the model based on a
DataFit function and if the mismatch is less than a threshold dt,
then the item is said to fit the model well, and it adds the item to the
subset. For example, in Figure 11, the DataFit function can be easily
defined as the Euclidean distance from point to line. Eventually, if
the subset size is greater than a size n, the model is considered to
be reasonably good. It then evaluates the model with a ModelLoss
function and computes the loss. For example, in Figure 11, the
ModelLoss function can be easily defined as the sum of Euclidean
distance from point to line. It repeats this process for k iterations
and selects the model with the minimum loss as the best model.
RADAR extension for RANSAC: However, RANSAC is not di-
rectly applicable for the FSM model of IoT-specific behaviors. This
is because there are two modules in RANSAC that are hard to de-
fine for the FSM model of IoT behaviors. First, we need to define
a DataFit function to find whether an ADU series A fits an FSM
model. More importantly, we need aModelLoss function to evaluate
how likely a model is a good benign IoT behavior model.

First, we show how we define the DataFit function by taking
advantage of the structural differences of the FSMmodels. The input
of a DataFit function is a ADU series A and an FSM model, and the
output is whether this ADU series A fits the FSM . First, we convert
each ADU series A to a sequence of transitions δ1, ...,δA, and match
δ1, ...,δA with FSM starting from its initial state s0. We can define
the output of the DataFit function as the number of unmatched
transitions in δ1, ...,δA. However, the problem with this definition
is that the transitions δ1, ...,δA generated by some attack behaviors
may deviate only slightly from the benign FSM model, resulting
in a very small mismatch. We amplify the mismatch caused by
the attack behavior A′, by computing the Levenshtein distance
between two FSM models – FSM and FSM ′. Here FSM corresponds
to the original subset of benign ADU series set, say {Al}or iдin ,
and FSM ′ corresponds to {Al}or iдin ∪ A

′. For example, Figure 12
shows the FSM generated from all benign behaviors, and the FSM ′
generated adding one more malicious behavior (code injection for

��

FSM	generated	from	all	
benign	behaviors	

FSM’	generated	by	adding	one	more	
malicious	behavior	(code	injec;on)	

Figure 12: A benign behavior model and a malicious behav-
ior model.

1 for iterations← 1 to k
2 {Al }iter ← SampleRand ({Al }, r)
3 ▷ build a base model from r samples
4 FSM iter ← RPN IExtension({Al }iter)
5 {Al }add ← {}
6 {Al }test ← {Al } − {Al }iter
7 for each A ∈ {Al }test
8 ▷ check if the rest of the ADU fits the FSM .
9 if DataFit(A, FSM iter) < dt
10 {Al }add ← {Al }add

⋃
A

11 ▷ check if a good model is found
12 if {Al }add > n
13 ▷ Update the model with all “inliers”
14 FSM iter ← RPN IExtension({Al }iter

⋃
{Al }add)

15 ▷ evaluate the loss on “inliers”
16 loss = ModelLoss(FSM iter, {Al }add)
17 return the FSM iter with the smallest loss in k iterations

Figure 13: RADAR’s learning mechanism.
Cisco routers) to the subset. Our design takes advantage of the
structural differences of the FSM models to magnify the difference
between attack behaviors and benign behaviors. We can observe
that the small difference (2 transitions differences) in Figure 9 is
amplified to a huge structural difference between FSM and FSM ′.
Based on this idea, we define the data fit functionDataFit as follows:

DataFit(FSM, A) = lev(FSM, FSM′), (1)

where FSM
′

= RPNIExtension(FSM,A′) and lev is the Leven-
shtein distance between two FSMs, defined as:

lev(FSM1, FSM2) = (|λ1 | + |λ2 | − 2 ∗ |λ1 ∩ λ2 |)
+(|δ1 | + |δ2 | − 2 ∗ |δ1 ∩ δ2 |),

(2)

Next, we show how to define the ModelLoss function. The
ModelLoss function is used to evaluate how likely an FSM model is
a good benign behavior model. We posit that an attacker will need
to use extra states and/or state transitions beyond what the benign
model has for the limited set of IoT behaviors to launch an attack.
Based on this idea, we define the ModelLoss function as follows:

ModelLoss(FSM, {Al }) = ωλ ∗ |λ | + ωδ ∗ |δ |, (3)

where ωλ ∗ |λ | represents the loss caused by using extra transi-
tions and ωδ ∗ |δ | represents the loss caused by using extra states.
Together they capture how much the attacker’s behavior deviates
from the limited enterprise IoT behaviors.
Putting it together: Nowwe put the RPNI extension and RANSAC
extension together. The pseudo code is given in Figure 13. Com-
paring with basic RANSAC, the input is changed to a set of ADU
series. We replaced the model learning with our RPNI extension
and applied RADAR’s DataFit and ModelLoss function.

8

6 IMPLEMENTATION
We implemented RADAR by extending a number of open source
tools and libraries; e.g., we extend Bro to parse different protocols
and incorporate RADAR’s passive learning and online detection
module written in Java (3000 LoC).
• Protocol Parser: We use Bro to parse seven different protocols
http, https, CMP, snmp, smb, dns and telnet. We write Bro
Scripts for each protocol to build RADAR’s abstract ADUs.
The abstracted ADUs are exported to Bro logs that are fed into
the offline learning module as well as the online detection mod-
ule.
• FSM Model:We implement the FSM model as a Java class for a
Mealy Machine, and implemented operations such as calculating
the Levenshtein distance between two FSMs.
• Learning Module: We implement our custom extensions of RPNI
and RANSAC in Java. The input to the learning module are the
set of Bro ADU logs and the output is an FSM model to abstract
benign behaviors.
• Online Detection Module: We implement the online detection
module in Java. This module takes as input the benign or refer-
ence FSM model from the passive learning module and a ADU
series for a new session. Then, we check if the ADU series of the
completed session logically fits the benign FSM model. If not,
RADAR outputs an alert on this completed session to an alert log
file. To enable further diagnosis, we also output the abstracted
ADUs, the FSM model and the mismatches in the FSM model to
help administrators identify the root cause of the alert.

7 EVALUATION
In this section, we evaluate RADAR and show that
• RADAR achieves low FPs and FNs, improving the F-Score
by 5X comparing with adapting prior anomaly detection ap-
proaches [26, 28, 34, 52] for IoTs.
• RADAR is robust against pollution (F-Score>0.9 when the per-
centage of polluted traffic ranges from 1% to 15%),
• RADAR’s behavior model can be aggregated across device in-
stances for behavior coverage and scalability,
• RADAR’s performance is robust across a range of configuration
settings (F-Score>0.9) and does not require fine-grained tuning
to achieve satisfying performance, and
• RADAR’s representation output can provide useful insight for
enterprise admin to further investigate the incidence.

Setup: We evaluate RADAR by considering the common enter-
prise IoT devices as discussed in Section 2, i.e., routers, switches,
NAS, cameras, DVRs, smart lights, smart plugs, fire alarms, sensor
gateways and smart speakers (Amazon Alexa and Google Mini)6.
We setup a sandbox IoT environment in an organization with the
above 9 classes of IoT devices deployed, as shown in Figure 18 in
Appendix A. The IoT devices are either physical IoT devices or
emulated IoT devices running their official firmware via QEMU[23].
To handle IoT devices with encrypted traffic, we can use TLS proxy

6 Smart speakers (Amazon Alexa and Google Mini) are included in our evaluation
for their growing deployment (especially in conference rooms and hotels[1]), their
complex functionality (e.g. play music, check news or online shopping) and their
encrypted communication, altogether created a challenging use case for RADAR.

to inspect the encrypted traffic (e.g., for Amazon Alexa, we setup
a TLS proxy with certification and private key from Alexa Skills),
or only monitoring the unencrypted part of traffic (e.g., for Google
Mini, we monitor the unencrypted HTTP and DNS traffic).

One challenge for evaluating RADAR is that there are few be-
nign or attack traces available for IoTs in enterprise setting. We
surveyed a number of public repositories (e.g., [17, 21]) and found
few relevant traces for enterprise IoTs “in the wild”. To address
this challenge, we conducted an IRB-approved study to build an
network traffic dataset for 10 types of IoT devices (Figure 14, Alexa
and Google Mini considered as 2 device types). The dataset contains
371.6 MB of pcaps with >700K packets, including >10,000 benign
traces and >1000 attack traces. The traces are recorded from our
sandbox IoT environment. Each trace contains all the packets of a
benign or malicious session. To collect benign traces, we invite 10
human users to operate on the IoT devices and record the network
traffic as benign traces. We provide the official user interfaces of the
IoT devices (webpage, terminal or mobile apps) to the users. The
users are free to use any operation provided by the user interfaces.
For example, D-Link camera is controlled by a webpage with audio
on/off button, streaming on/off button and zoom-in X2, X4, X8
buttons. The users are free to click these buttons. To collect attack
traces, we build an IoT attack bundle, including several recent IoT
exploits, such as the Mirai malware[27] (against Camera), DNS
rebinding[14] (against smart speakers, smart lights, routers and
switches), Alexa eaves-dropping attack[6] (against smart speakers),
SambaCry[24] (against NAS) and CMP/SNMP exploits[12] (CIA
Vault 7 Exploits against routers and switches). Each attack trace in-
cludes a unique sequence of real-world exploits (e.g., different code
injections) and after-exploit operations (e.g., exfiltrate video/voice
or modify credentials) that are commonly seen in enterprises. In
total, we used 24 exploits (2-3 exploits per device type) and 92 after-
exploit operations (8-10 per device type) to build the attack traces.
Each attack trace is different from each other (different sequence of
operations). Then to build an unlabeled trace set for evaluation, we
randomly mix the attack traces and benign user traces by percent-
age (e.g., mix 100 attack traces and 900 benign traces for a trace set
with 10% of polluted traces.).
Accuracy: Figure 14 compares RADAR with several candidate
solutions on canonical accuracy metrics such as the false positive
rate, false negative rate, overall accuracy, and F-score. The Accu-
racy describes the correctness of detection, defined as Accuracy =
TP+TN

Pos+Neд . The FPR (False Positive Rate) describes the occurrence
of False Positives, defined as FPR = FP

FP+TN . The FNR (False Neg-
ative Rate) describes the occurrence of False Negatives, defined
as FNR = FN

FN+TP . The F-Score reflects the detection performance
combing FP and FN, defined as FScore = 2∗Precision∗Recall

Precision+Recall , where
Precision = TP

TP+FP and Recall = TP
TP+FN . These measurements are

taken over the unlabeled traces sets for 9 classes of enterprise IoT
devices. Each unlabeled traces set contains 1000 traces and 10% of
them are attack traces.

We compare RADAR with other approaches that can be applied
to unlabeled sample sets: two clustering-based anomaly detection
(Ngram + Xmeans by Antonakakis et al.[28] and Editing Distance
+ Single Hierachy by Perdisci et al.[52]) and two FSM-based ap-
proaches (Prospex[34] and the commercial Suricata IDS[26]). To

9

Router

0

0.5

1
Ac

cu
ra

cy
Switch

0

0.5

1
NAS

0

0.5

1
Camera

0

0.5

1
DVR

0

0.5

1
Smart Light

0

0.5

1
Fire Alarm

0

0.5

1
Sensor Gateway

0

0.5

1
Smart Speaker

0

0.5

1

0

0.5

1

FP
R

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

FN
R

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

F-
Sc

or
e

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Xmeans Single Hierachy Prospex Suricata RADIO

Figure 14: We measure the FP and FN of five different approaches over routers, switches, NASes, cameras, DVRs, smart lights,
fire alarms, sensor gateways and smart speakers. 10% of the traces for each device classes are attack samples.
apply the approach by Antonakakis et al.[28], we extract Ngrams
from the ADU series of each session, and use Xmeans to cluster the
sessions. To apply the approach by Perdisci et al.[52], we calculate
the Editing Distance among the ADU series of each session, and use
the Editing Distance vector of each session to cluster the sessions.
To apply the approach by Prospex[34], we implemented the FSM
inference mechanism in Prospex[34] to infer the FSM model. We
evaluate the performance of other approaches by selecting the best
result yield by different parameter combinations7 while using a
fixed set of parameters for RADAR (sampling size r = 4% of all sam-
ples, model assertion threshold n = 20% of all samples and iteration
k = 10000 times).

The first row shows that RADAR achieves the highest accuracy
close to 1. The second and third row shows that RADAR achieves
both low False Positive Rate and low False Negative Rate. The
clustering approaches often have a high False Positive Rate because
benign traces are often grouped into different clusters and only
one cluster is considered as normal by their mechanism. The FSM-
based approaches often have a high False Negative Rate, because
their mechanism cannot filter out the polluted data in the historical
traces, so the behavior models they generate contain malicious
behaviors. The last row shows that RADAR’s detection performance
combining FP and FN outperforms the comparison approaches and
achieves a F-Score close to 1.

In summary, even with a fixed (default) parameter, RADAR out-
performs the best results of other approaches under different pa-
rameters by 5X.
Robustness against pollution: Next, we show that RADAR is
robust to unlabeled, potentially polluted sample sets from diverse
enterprise IoTs. There are four factors that may impact the detection
accuracy of RADAR: the fraction of attack samples; the diversity of
attack types in the attack samples; the time (number of iterations)
used by RADAR to build the model; and the diverse classes of IoT
devices.We evaluate the robustness of RADAR against the impact of
these four factors (by default, we set the fraction of attack samples
to 15%; the attack types to be evenly distributed; the time used to
200s; and the device class to be Cisco routers).

First, we change the fraction of attack samples (traces) in the
sample sets and measure the accuracy of RADAR, as shown in
7For Xmeans, we adjust the number of seeds from 2 to 20 and maximum number of
clusters from 2 to 20. For Single Hierarchy Clustering, we adjust the number of clusters
from 2 to 20 and try three different distance functions Euclidean Distance, Manhattan
Distance and Chebyshev Distance. For FSM-based approaches, there are no parameters
to adjust.

1% 5% 10% 15% 20% 30% 40% 50%
Percentage of attack traces

0

0.5

1

Av
er

ag
e

F-
Sc

or
e (a) Cisco Router, 200s

0.2s 1s 2s 10s 20s 100s 200s 300s
Time used

0

0.5

1
Av

er
ag

e
F-

Sc
or

e
(c) Cisco Router, 1%-15% attacks

1% attacks
5% attacks
10% attacks
15% attacks

0

100

200

300

Ti
m

e
us

ed
 (s

)

(d) 15% attacks, F-Score>0.9

Router
Switch NAS

Camera DVR

Smart L
ight

Fire Alarm

 Sensor G
ateway

Smart S
peaker

(0.2,0.2,0.2,0.2,0.2)

(0.3,0.2,0.3,0.1,0.1)

(0.1,0.1,0.3,0.2,0.3)

(1.0,0.0,0.0,0.0,0.0)

(0.0,1.0,0.0,0.0,0.0)

(0.0,0.0,1.0,0.0,0.0)

(0.0,0.0,0.0,1.0,0.0)

(0.0,0.0,0.0,0.0,1.0)

Different attack distributions

0

0.5

1

Av
er

ag
e

F-
Sc

or
e (b) Cisco Router, 15% attacks

Figure 15: RADAR’s robustness against pollution.
Figure 15(a). We generate 8 polluted trace sets (each with 1000
traces) for Cisco router with the fraction of attack traces ranging
from 1% to 50%8. We measure the RADAR’s average F-Score (with
min-max error) in 100 runs. We can see that, when the fraction of
attack traces is less than 15%, RADAR is accurate (F-Score>0.9).
Note that if the fraction of attack traces is higher than 15%, then the
attack is “noisy” and should be easy for the security administrators
to identify (e.g., by flow statistics).

Next, we evaluate the impact of the distribution of different
types of attacks in the sample sets, as shown in Figure 15(b). We
use 5 different types of attacks (including four code injections and
the DNS rebinding attack) to build the attack traces set (of 150
attack traces) for Cisco router. We change the distribution of the
5 types of attacks and measure RADAR’s average F-Scores (with
min-max error bar) in 100 runs. For example, in Figure 15(b), the
distribution “(0.2, 0.2, 0.2, 0.2, 0.2)” in the X axis means that each
type of attack occupies 20% of the attack traces. We can see that
the variation of the F-Score is small under different distributions.
This is because RADAR magnifies the structural changes to the
FSM behavior model caused by attacks, thus is robust against the
distribution changes of different types of attacks.

After that, we change the time (number of iterations) used by
RADAR to build the model to see if RADAR can generate a precise
FSM model (F-Score close to 1) in a reasonable amount of time. In
Figure 15(c), we change the iteration number k in the RANSAC

8By theory, the RANSAC module will not work when the fraction surpasses 50%[41].

10

1 2 3 4 5 6 7 8 9 10
Number of instances

0

0.5

1

Av
er

ag
e

F-
Sc

or
e

Number of instances used for aggregated model

Router
Switch
NAS

Camera
DVR
Smart Light

Fire Alarm
Sensor Gateway
Smart Speaker

Router Switch NAS Camera DVR Smart
Light

Fire
Alarm

 Sensor
Gateway

Smart
Speaker

0

5

10

N
um

be
r o

f i
ns

ta
nc

es Number of instances needed to ensure FScore > 0.9

Figure 16: Number of instances needed to learn the aggre-
gated models.

component to control the time used to generate the FSM model and
measure the F-Score for traces sets with fraction of attack traces
ranging from 1% to 15% (for Cisco routers). We can see that, when
the fraction of attack traces changes from 1% to 15%, RADAR can
always generate a precise FSM model within 200 seconds (F-Score
is 0.935).

We also show that RADAR is able to generate a precise FSM
model for different classes of IoT devices. Figure 15(d) shows the
time used by RADAR to generate a precise FSMmodel (F-Score>0.9)
for 9 different classes of enterprise IoTs. We can see that, even
when 15% of the traces are polluted, RADAR can generate a precise
FSM model for different IoT devices within 248 seconds (the smart
speaker case). Since building the model is one-time effort in the
offline stage, the time cost of 248s is acceptable.
Aggregated behavior model for coverage and scalability: In
this part, we show that, by building aggregated behaviormodel from
only a few device instances, RADAR can provide good behavior
coverage and scalability. We focus on aggregated behavior model
across IoT device instances of the same device type (e.g., all Cisco
3640 routers), or of the same class & vendor (e.g., all Cisco routers)
in an enterprise. We leave the aggregated model for IoT device
instances of different vendors (e.g. all Cisco and Juniper routers) or
deployed in different enterprises for future work.

In the first experiment, we evaluate how many device instances
are needed to generate a good model to cover the benign behav-
iors for one type of devices. We collect the historical traces for
10 device instances (each with a different user to maximize the
behavior difference) for each device types shown in Figure 16. We
randomly select a subset of instances from the 10 instances, and
build an aggregated behavior model form the unlabeled traces (10%
polluted) of subset of instances. Then we evaluate the aggregated
behavior model using all the unlabeled traces (10% polluted) from
all the 10 instances and measure the average F-Score by running
the experiment for 10 times.

The top figure in Figure 16 shows the F-Score when increasing
the number of instances used to generate the unlabeled sample sets
for learning from 1 to 10. The X axis is the number of instances
used to build the aggregated model, and the Y axis is the average
F-Score. From the figure we can see that for some devices, such as
NAS or smart speaker, the F-Score is low for 1 user-instance case,
meaning that the traces from a single instance are not sufficient to

Cisco 3640 Cisco 3660 Cisco 3725 Cisco 7200
Apply model to

Cisco 3640

Cisco 3660

Cisco 3725

Cisco 7200

Bu
ild

 m
od

el
 fr

om

Different types (same vendor)
0.982

0.982

0.982

0.982

0.982

0.982

0.982

0.982

0.982

0.982

0.982

0.982

0.976

0.976

0.976

0.982
0

0.5

1

Figure 17: Aggregated behavior model across different de-
vice types (same class & vendor).

provide a good coverage of the benign behaviors. Then the bottom
figure in Figure 16 shows the number of device instances needed
to ensure that the F-Score is greater than 0.9 for each device type
(same as device class here). We can see that all the device type need
at most 8 instances to provide a good coverage (F-Score>0.9). And
while Camera, DVR, Smart light, Fire Alarm and Sensor Gateway
only need one instance to ensure F-Score is greater than 0.9, routers,
switches, NASes and smart speakers need more instances. This is
because the behavior options for the routers, switches, NASes and
smart speakers are more diverse than the cameras, DVR, smart
lights, fire alarms and sensor gateways. For example, the NASes
provides 36 operations while the smart lights only provide two
operations (on and off).

Next, we explore the aggregated behavior model across device
instances of the same class & vendor (different device type, e.g.,
Cisco 3640 routers and Cisco 7200 routers). In Figure 17, we generate
the behavior model from a few router instances (5 instances) of one
type (Cisco 3640) in the offline stage, then apply the model to a few
other instances (5 instances) of a different type (e.g. Cisco 7200)
for detection. Then we measure the F-Score to see if the model is
suitable for sharing. Figure 17 shows the heatmap of the F-Scores
We can see that the F-Score varies little across the instances of the
same class & vendor (Cisco routers), which means it is possible to
share the behavior model across device instances of the same class
& vendor.
Sensitivity to parameters: There are three parameters for
RADAR: the threshold dt of the DataFit function that judge if a
sample fits a FSM model; the sampling size r ; and the assertion size
n that describes the number of samples to assert a FSM is good. We
measure the average F-Score of RADAR under different parameters
(Figure 19 in Appendix B) and observed that RADAR is not sensitive
to the configuration of parameters and does not require parameter
tuning to achieve satisfying detection performance.
Diagnostic Utility: Finally, we show that the FSM behavior model
of RADAR is useful for enterprise security administrators to diag-
nose the attacks against enterprise IoT devices (e.g. which com-
mand/argument is flawed and used by attacker). As shown in Fig-
ure 20 in Appendix C, RADAR can automatically identify the mis-
matches between the benign behavior model and the ADU series of
the attack, and will raise an alert containing the mismatched states
and transitions. Using the alerts we obtained from the detection of
RADAR, we were able to obtain the information about several flaws
the IoT attack exploits, which are not available from NVD[19]. The
results are shown in Table 2 in Appendix C. This shows that the
FSM behavior model of RADAR can help the admin quickly identify
the flaws of the IoT devices and better respond to the security issues
of the enterprise IoT devices.

11

Approach Class Method Input Target Precise Model Pollution
Bartos et al.[29] Classification SVM Proxy logs Malware ✗ ✗

Webwitness[49] Classification Statistic classifier Proxy logs Malware downloads ✗ ✗

Soska et al.[56] Classification Ensemble of decision trees Webpage Infected website ✗ ✗

Antonakakis et al.[28] Clustering Ngram + Xmeans DNS messages Dga malware ✗ ✓

Nazca[45] Clustering Graph clustering packets Malware distribution ✗ ✓

Ho et al.[44] Outlier detection Anomaly scoring Emails Spearphishing attacks ✗ ✓

Botminer[43] Clustering X-means Flow statistics Botnet ✗ ✓

Perdisci et al.[52] Clustering &
Outlier detection

Editing distance
+ Single Hierarchy Clustering

HTTP packets HTTP-based Malware ✗ ✓

Cho et al.[33] FSM-based L Star Packets Botnet ✓ ✗

Mace[34] FSM-based L Star Packets Protocol anomalies ✓ ✗

Prospex[34] FSM-based Prefix tree Packets Protocol anomalies ✓ ✗

Suricata[26] FSM-based Handcrafted protocol FSM Packets Protocol anomalies ✓ ✗

RADAR FSM Inference +
Outlier detection

RPNI + RANSAC ADU series IoT anomalies ✓ ✓

Table 1: Overview of the state-of-the-art approaches focusing on network anomaly detection.

8 RELATEDWORK
Now we discuss related work in the IoT security and anomaly
detection space.
Firmware based analysis: Firmware analysis approaches[32, 35,
36, 54] expose the vulnerabilities inside the device’s firmware. How-
ever, firmware may not always be available to enterprises for anal-
ysis. Other attestation approaches[47] detect unauthorized modifi-
cation of IoT firmware, but they are limited to detecting firmware
modification attacks.
Anomaly detection approaches: The closest work is a rich
body of previous anomaly detection approaches that use statis-
tical or behavioral anomalies to alert on attacks. As shown in Ta-
ble 1, previous network anomaly detection approaches include (1)
classification[29, 56], (2) clustering & outlier detection[43, 45, 52],
and (3) FSM-based detection [33, 34, 46]. To the best of our knowl-
edge, none of the existing approaches focus on detecting IoT-specific
behavioral anomalies. So, instead of directly applying these ap-
proaches to IoT devices, we discuss if the methods they use can be
adapted to detect IoT-specific behavioral anomalies.

The classification-based approaches [29, 49, 56] need labeled at-
tack and benign samples to train the classifier and cannot apply to
unlabeled samples. The clustering-based approaches can apply to
unlabeled samples, but none of the previous work provide a precise
model to capture the application-level behaviors of enterprise IoT
devices. Botminer[43] uses flow statistics as model, which might be
useful to detect data exfiltration (by flow data bytes) or botnets (by
connection statistics), but cannot detect code injection or authenti-
cation bypass attacks. Nazca[45] focuses on graphic representation
to detect malware distribution, and Ho et al.[44] focuses on email
representation to detect spearphishing. The model they use cannot
be applied to enterprise IoT devices. Of all the clustering approaches
we mentioned, we found two of them that can be adapted to detect
IoT attacks. We can use Ngram method, as described by Anton-
akakis et al.[28], to calculate similarity between message series
followed by the Xmeans method to cluster them. Likewise, we can
use editing distance method, as described in Perdisci et al.[52], to
calculate similarity between message series and then use single
hierarchical clustering to cluster them. Such approaches, however,
yield high FP and FN rates because it is hard to exhaustively cover
all the benign message series.

Among all the FSM-based approaches studied, we found only
two passive monitoring approaches, Prospex[34] and Suricata[26],
which can be adapted to detect IoT-specific anomalies. However,
they cannot differentiate attack samples from benign ones in an
unlabeled sample set in the FSM inference process andmay generate

states and transitions representing attack behaviors. As a result,
they tend to generate high FNs.
Other IoT security work: Several other related works [40, 48]
also studied the IoT security problem. FlowFence[40] provides data
protection for IoT applications. IoT Sentinel[48] tries to identify the
device types in a smart home setting. Both of these complement
our work by focusing on other aspects of IoT security.

9 DISCUSSION
Attack evasion: Any behavioral anomaly detection is subject to
evasion attacks that follow legitimate behaviors and RADAR is no
different. However, many of the core attack behaviors that grant
the attackers higher privilege or sensitive information intrinsically
violates the legitimate patterns and RADAR would be effective.
Prevention vs. detection: As a starting point, our work focuses
on a detection system. That said, our approach can also potentially
be extended to implement a real time prevention system (e.g., block
or modify the anomalous messages) or be augmented with other
kinds of defenses (e.g., dynamic quarantine or deep inspection)
when our detection raises alerts.
Non-enterprise IoT:We hypothesize that the insight on behavior
being restricted is more broadly true for IoT deployments beyond
enterprises. Some of the enterprise IoT devices (e.g. NAS, camera
or smart speaker) also widely exist in smart home environment. An
interesting direction for future work is to deploy RADAR in smart
home environment and evaluate its effectiveness.

10 CONCLUSION
Our work explored a somewhat atypical use case for IoT inside
enterprise networks. These devices are an increasing threat to en-
terprise security.We show that it is possible to revisit and practically
realize a behavioral anomaly detection system for such settings.
In designing RADAR, we tackled two key challenges: a compact
model for the behaviors and learning the model from unlabeled and
possibly polluted data. Our results are promising and show that
RADAR can detect many IoT attacks in reality and outperforms
several state-of-art detection systems. Looking forward, RADAR
serves as an interesting proof-of-concept for revisiting behavioral
anomaly detection for IoT deployments more broadly.

12

REFERENCES
[1] 2018. Amazon Wants More Hotels Using Alexa

Voice-Powered Services. https://skift.com/2017/11/30/
amazon-wants-more-hotels-using-alexa-voice-powered-services/. (2018).

[2] 2018. Blue Coat. https://www.symantec.com/products/
bc-data-loss-prevention-dlp. (2018).

[3] 2018. Censys. https://censys.io/. (2018).
[4] 2018. CVE-2017-3881 Detail. https://nvd.nist.gov/vuln/detail/CVE-2017-3881.

(2018).
[5] 2018. CVE-2017-6744 Detail. https://nvd.nist.gov/vuln/detail/CVE-2017-6744.

(2018).
[6] 2018. Eavesdropping with Amazon Alexa. https://www.checkmarx.com/2018/

04/25/eavesdropping-with-amazon-alexa/. (2018).
[7] 2018. ForeScout IoT Enterprise Risk Report. https://www.forescout.com/

wp-content/uploads/2016/10/ForeScout-IoT-Enterprise-Risk-Report.pdf. (2018).
[8] 2018. Google BeyondCorp. https://beyondcorp.com/. (2018).
[9] 2018. A Guide to the Internet of Things Infographic. https://www.intel.com/

content/www/us/en/internet-of-things/infographics/guide-to-iot.html. (2018).
[10] 2018. Hacking Team hack. https://gist.github.com/Sjord/

ac8dfff3a3ac3180c065f370f24b30a8. (2018).
[11] 2018. HiSilicon DVR hack. https://github.com/tothi/pwn-hisilicon-dvr. (2018).
[12] 2018. How to Mitigate CIA Vault 7 Exploits on

Your Cisco Switches. http://info.stack8.com/blog/
how-to-mitigate-cia-vault-7-exploits-cve-2017-3881-on-your-cisco-switches.
(2018).

[13] 2018. IDC Global Technology Prediction. https://www.idc.com/getdoc.jsp?
containerId=252872. (2018).

[14] 2018. IoT Security Flaw Leaves 496 Million Devices Vulnerable At
Businesses: Report. https://crn.com/news/internet-of-things/300106806/
iot-security-flaw-leaves-496-million-devices-vulnerable-at-businesses-report.
html. (2018).

[15] 2018. List of broadband providers in the United States. https://en.wikipedia.org/
wiki/List_of_broadband_providers_in_the_United_States. (2018).

[16] 2018. McAfee. https://www.mcafee.com/us/index.html. (2018).
[17] 2018. NETRESEC. http://www.netresec.com/?page=PcapFiles. (2018).
[18] 2018. Norton By Symantec. https://us.norton.com/. (2018).
[19] 2018. NVD. https://nvd.nist.gov/. (2018).
[20] 2018. OpenWrt 10.03 - Multiple Cross-Site Scripting Vulnerabilities. https:

//www.exploit-db.com/exploits/34994/. (2018).
[21] 2018. PacketTotal. https://packettotal.com/. (2018).
[22] 2018. Philips Hue susceptible to hack, vulnerable to blackouts. https://www.

engadget.com/2013/08/14/philips-hue-smart-light-security-issues/. (2018).
[23] 2018. QEMU. https://www.qemu.org/. (2018).
[24] 2018. SAMBACRY, THE SEVEN YEAR OLD SAMBA VULNERABILITY, IS THE

NEXT BIG THREAT. https://www.guardicore.com/2017/05/samba/. (2018).
[25] 2018. SHODAN. https://www.shodan.io/. (2018).
[26] 2018. Suricata IDS/IPS. https://suricata-ids.org/. (2018).
[27] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,

Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the mirai botnet. In USENIX Security Sympo-
sium.

[28] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed
Abu-Nimeh, Wenke Lee, and David Dagon. 2012. From Throw-Away Traffic to
Bots: Detecting the Rise of DGA-BasedMalware.. InUSENIX Security Symposium.

[29] Karel Bartos, Michal Sofka, and Vojtech Franc. 2016. Optimized Invariant Repre-
sentation of Network Traffic for Detecting Unseen Malware Variants.. In USENIX
Security Symposium. 807–822.

[30] Alan W Biermann and Jerome A Feldman. 1972. On the synthesis of finite-state
machines from samples of their behavior. IEEE transactions on Computers 100, 6
(1972), 592–597.

[31] Riccardo Bortolameotti, Thijs van Ede, Marco Caselli, Maarten H Everts, Pieter
Hartel, Rick Hofstede, Willem Jonker, and Andreas Peter. 2017. DECANTeR:
DEteCtion of Anomalous outbouNd HTTP TRaffic by Passive Application Fin-
gerprinting. In Proceedings of Computer Security Applications Conference.

[32] Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele. 2016. To-
wards Automated Dynamic Analysis for Linux-based Embedded Firmware.. In
NDSS.

[33] Chia Yuan Cho, Eui Chul Richard Shin, Dawn Song, et al. 2010. Inference and
analysis of formal models of botnet command and control protocols. In CCS.

[34] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin
Kirda. 2009. Prospex: Protocol specification extraction. In IEEE Symposium on
Security and Privacy.

[35] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. 2016. Automated
dynamic firmware analysis at scale: a case study on embedded web interfaces.
In Proceedings of the 11th ACM on Asia CCS. ACM.

[36] Ang Cui, Michael Costello, and Salvatore J Stolfo. 2013. When Firmware Modifi-
cations Attack: A Case Study of Embedded Exploitation.. In NDSS.

[37] Weidong Cui, Jayanthkumar Kannan, and Helen J Wang. 2007. Discoverer:
Automatic Protocol Reverse Engineering from Network Traces.. In USENIX
Security Symposium. 1–14.

[38] François Denis, Aurélien Lemay, and Alain Terlutte. 2004. Learning regular
languages using RFSAs. Theoretical computer science 313, 2 (2004), 267–294.

[39] Richard O Duda and Peter E Hart. 1972. Use of the Hough transformation to
detect lines and curves in pictures. Commun. ACM 15, 1 (1972), 11–15.

[40] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. 2016. FlowFence: Practical Data Protection for Emerging
IoT Application Frameworks.. In USENIX Security Symposium.

[41] Martin A Fischler and Robert C Bolles. 1981. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Commun. ACM 24, 6 (1981), 381–395.

[42] E Mark Gold. 1967. Language identification in the limit. Information and control
10, 5 (1967), 447–474.

[43] Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke Lee, et al. 2008. BotMiner:
Clustering Analysis of Network Traffic for Protocol-and Structure-Independent
Botnet Detection.. In USENIX security symposium. 139–154.

[44] Grant Ho, Aashish Sharma, Mobin Javed, Vern Paxson, and David Wagner. 2017.
Detecting Credential Spearphishing in Enterprise Settings. In USENIX Security
Symposium.

[45] Luca Invernizzi, Stanislav Miskovic, Ruben Torres, Christopher Kruegel,
Sabyasachi Saha, Giovanni Vigna, Sung-Ju Lee, and Marco Mellia. 2014. Nazca:
Detecting Malware Distribution in Large-Scale Networks.. In NDSS, Vol. 14.
23–26.

[46] Jayanthkumar Kannan, Jaeyeon Jung, Vern Paxson, and Can Emre Koksal. 2006.
Semi-automated discovery of application session structure. In ACM IMC.

[47] Yanlin Li, Jonathan M McCune, and Adrian Perrig. 2011. VIPER: verifying the
integrity of PERipherals’ firmware. In Proceedings of the 18th ACM conference on
Computer and communications security. ACM, 3–16.

[48] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, Tommaso Frassetto, N Asokan,
Ahmad-Reza Sadeghi, and Sasu Tarkoma. 2017. IoT Sentinel Demo: Automated
device-type identification for security enforcement in IoT. In ICDCS.

[49] Terry Nelms, Roberto Perdisci, Manos Antonakakis, andMustaque Ahamad. 2015.
WebWitness: Investigating, Categorizing, and Mitigating Malware Download
Paths.. In USENIX Security Symposium. 1025–1040.

[50] José Oncina and Pedro Garcia. 1992. Inferring regular languages in polynomial
update time. (1992).

[51] Vern Paxson. 1999. Bro: A System for Detecting Network Intruders in Real-Time.
In Computer Networks. 2435–2463.

[52] Roberto Perdisci, Wenke Lee, and Nick Feamster. 2010. Behavioral Clustering
of HTTP-Based Malware and Signature Generation Using Malicious Network
Traces.. In NSDI, Vol. 10. 14.

[53] Martin Roesch et al. 1999. Snort: Lightweight Intrusion Detection for Networks..
In LISA, Vol. 99. 229–238.

[54] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice-Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware.. In NDSS.

[55] Robin Sommer and Vern Paxson. 2010. Outside the closed world: On using
machine learning for network intrusion detection. In IEEE Symposium on Security
and Privacy. 305–316.

[56] Kyle Soska and Nicolas Christin. 2014. Automatically Detecting Vulnerable
Websites Before They Turn Malicious.. In USENIX Security Symposium. 625–640.

[57] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, XianZheng
Guo, and Patrick Tague. 2017. Smartauth: User-centered authorization for the
internet of things. In USENIX Security Symposium.

13

https://skift.com/2017/11/30/amazon-wants-more-hotels-using-alexa-voice-powered-services/
https://skift.com/2017/11/30/amazon-wants-more-hotels-using-alexa-voice-powered-services/
https://www.symantec.com/products/bc-data-loss-prevention-dlp
https://www.symantec.com/products/bc-data-loss-prevention-dlp
https://censys.io/
https://nvd.nist.gov/vuln/detail/CVE-2017-3881
https://nvd.nist.gov/vuln/detail/CVE-2017-6744
https://www.checkmarx.com/2018/04/25/eavesdropping-with-amazon-alexa/
https://www.checkmarx.com/2018/04/25/eavesdropping-with-amazon-alexa/
https://www.forescout.com/wp-content/uploads/2016/10/ForeScout-IoT-Enterprise-Risk-Report.pdf
https://www.forescout.com/wp-content/uploads/2016/10/ForeScout-IoT-Enterprise-Risk-Report.pdf
https://beyondcorp.com/
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
https://gist.github.com/Sjord/ac8dfff3a3ac3180c065f370f24b30a8
https://gist.github.com/Sjord/ac8dfff3a3ac3180c065f370f24b30a8
https://github.com/tothi/pwn-hisilicon-dvr
http://info.stack8.com/blog/how-to-mitigate-cia-vault-7-exploits-cve-2017-3881-on-your-cisco-switches
http://info.stack8.com/blog/how-to-mitigate-cia-vault-7-exploits-cve-2017-3881-on-your-cisco-switches
https://www.idc.com/getdoc.jsp?containerId=252872
https://www.idc.com/getdoc.jsp?containerId=252872
https://crn.com/news/internet-of-things/300106806/iot-security-flaw-leaves-496-million-devices-vulnerable-at-businesses-report.html
https://crn.com/news/internet-of-things/300106806/iot-security-flaw-leaves-496-million-devices-vulnerable-at-businesses-report.html
https://crn.com/news/internet-of-things/300106806/iot-security-flaw-leaves-496-million-devices-vulnerable-at-businesses-report.html
https://en.wikipedia.org/wiki/List_of_broadband_providers_in_the_United_States
https://en.wikipedia.org/wiki/List_of_broadband_providers_in_the_United_States
https://www.mcafee.com/us/index.html
http://www.netresec.com/?page=PcapFiles
https://us.norton.com/
https://nvd.nist.gov/
https://www.exploit-db.com/exploits/34994/
https://www.exploit-db.com/exploits/34994/
https://packettotal.com/
https://www.engadget.com/2013/08/14/philips-hue-smart-light-security-issues/
https://www.engadget.com/2013/08/14/philips-hue-smart-light-security-issues/
https://www.qemu.org/
https://www.guardicore.com/2017/05/samba/
https://www.shodan.io/
https://suricata-ids.org/

A EVALUATION SETUP

Detection
System

MetasploitCVE Exploits KALI

User Interfaces

Penetration Toolkits

IoT Devices Cisco IOS Router/Switches

FreeNAS

D-Link Camera

HiSilicon DVR

Philips Hue Smart Light

OpenWRT Fire Alarm

LoRA Sensor Gateway

Amazon Echo Dot2

Google Mini

Figure 18: The sandbox IoT environment in a medium-sized
organization.

B SENSITIVITY TO PARAMETERS
Sampling size r 1%-8%

2 4 6 8
DataFit Threshold dt

0

0.5

1

Av
er

ag
e

F-
Sc

or
e r=1%, n=20%

r=2%, n=20%
r=4%, n=20%
r=8%, n=20%

Model assertion threshold n 10%-40%

2 4 6 8
DataFit Threshold dt

0

0.5

1

Av
er

ag
e

F-
Sc

or
e r=4%, n=10%

r=4%, n=20%
r=4%, n=30%
r=4%, n=40%

Average F-Score for different devices (r=4%, n=20%)

2 4 6 8
DataFit Threshold dt

0

0.5

1

Av
er

ag
e

F-
Sc

or
e

Figure 19: The average F-Score for different combination
of parameters. The top and middle figure are measured on
Cisco router and the bottom figure is measured on different
devices. The above measurements suggest that RADAR is
not sensitive to the configuration of parameters. However,
it is worth noting that the threshold dt of the DataFit func-
tion should not be too large to sensitively distinguish FSMs.

C DIAGNOSTIC UTILITY

S16	 S17	

Remote	code	injec,on	
(CVE	2017-3881)		

1/1	
1/2	
2/3	
2/4	
3/5	
3/10	

3/5	 3/10	

Abstracted	CMP	Messages	

	IoT	Anomaly	
Detected	

	ID� Subset	{ma}� Subset	{mb}�
DirecCon+Command� Subcommand�

1� from	+	Will� Echo�
2� from	+	Do� Suppress	Go	Ahead�
3� to	+	SubopCon� Terminal	Type�
4� to	+	Do� NegoCate	About�
5� to	+	Will� Environment	OpCon�
6� from	+	SubopCon� Remote	FlowControl�
7� Linemode�
8� New	Environment	OpCon�
9� Status�
10� End�

Figure 20: An example of how RADAR’s benign behavior
model can help to identify an code injection attack (CVE
2017-3881).

Device Attack Flaws exploited
Cisco IOS
router

CMP Remote Code
Exec[12]

The attacker uses the Subcommand called Environ-
ment Option of the CMP protocol for code injection.

Cisco IOS
router

SNMP Remote Code
Exec

The attacker uses the oid argument of the SNMP pro-
tocol for code injection.

Cisco IOS
switch

HTTP Authentica-
tion Bypass

The first GET/POST request of the attacker is replied
with a 200 OK response because the attacker bypassed
the authentication.

FreeNAS SambaCry[24] The attacker first uploads a malicious file, and then
usesCreate Request File command on this file to trigger
the execution of the malicious payload.

Philips Hue
smart light

Smart light
blackout[22]

The attacker first accesses the smart light bridge to ob-
tain the token used to issue commands, then use the
token to turn off all the light to perform a blackout.

HiSilicon
DVR

HiSilicon DVR
hack[11]

The attacker try to access the root path to escalate the
privilege and perform code injection.

OpenWRT
fire alarm

Cross-site
scripting[20]

The attacker can access multiple URIs under “cgi-bin"
to inject arbitrary code.

D-Link Cam-
era

Mirai malware[27] The botnet exploits a backdoor access provided by the
debug module of the D-Link Camera.

Amazon Echo
Dot2

Alexa eaves drop-
ping attack[6]

Malicious Alexa skills applications are sending back
empty prompts to keep the session alive to eaves drop-
ping on users.

Google Mini DNS rebinding
attack[14]

The code snippet from the attacker directly accesses
the http APIs of the Google Mini smart speaker at
“/payload/google-home" to probe sensitive informa-
tion.

Table 2: The alerts and FSMmodel fromRADAR can provide
detailed informations about the IoT flaws that are been ex-
ploited.

14

	Abstract
	1 Introduction
	2 Background and Motivation
	3 System Overview
	4 Network Behavior Model for IoTs
	5 Learning IoT Behavior Model
	6 Implementation
	7 Evaluation
	8 Related Work
	9 Discussion
	10 Conclusion
	References
	A Evaluation Setup
	B Sensitivity to parameters
	C Diagnostic Utility

