

JETFIRE: A Low-Cost, Trusted IoT Security Gateway

Matt McCormack, Amit Vasudevan, Guyue Liu, Tianlong Yu, Sanjay Chandrasekaran,

Brian Singer, Sebastián Echeverría, Grace Lewis, Vyas Sekar

December 1, 2020

CMU-CyLab-20-002

CyLab

Carnegie Mellon University

Pittsburgh, PA 15213

https://cylab.cmu.edu/files/pdfs/tech_reports/CMUCyLab20002.pdf
http://www.cylab.cmu.edu/

JETFIRE∗: A Low-Cost, Trusted IoT Security Gateway
Matt McCormack,∗ Amit Vasudevan,† Guyue Liu,∗ Tianlong Yu,∗ Sanjay Chandrasekaran,∗

Brian Singer,∗ Sebastián Echeverría,† Grace Lewis,† Vyas Sekar∗
∗Carnegie Mellon University - CyLab, †Carnegie Mellon Software Engineering Institute

Abstract
Many studies have pointed out security problems with IoT
deployments. Given the diversity of devices and the lack of
concerted efforts from device manufacturers to adopt best prac-
tices, recent efforts have recommended pragmatic “bolt on”
security gateways at the network layer to secure IoT deploy-
ments using software-defined principles. While such gateways
are an attractive option, they raise two natural concerns: (1)
Can the gateway architecture be trusted? and (2) Can we de-
liver these benefits to low-cost deployments?

This paper presents JETFIRE, a practical, low-cost system
with built-in trust for software-defined security gateways. In
designing and implementing JETFIRE, we make three key con-
tributions: (1) A practical and deployable basis for trust using a
micro-hypervisor root-of-trust; (2) A scalable low-cost system
design and implementation to support fine-grained per-device
policies; and (3) A formal analysis of the protection JETFIRE
offers against infrastructure threats by construction. We demon-
strate that JETFIRE provides intrinsic security against a broad
spectrum of known attacks against such software-defined ar-
chitectures. We also show that JETFIRE offers security at low
cost; e.g., a $35 Raspberry Pi can effectively support custom
per-device IPS instances for a small IoT deployment of 50+
devices. We also show an end-to-end validation of JETFIRE on
a representative home IoT deployment.

1 Introduction
Internet of Things (IoT) devices are continually being added

to our networks (e.g., homes, factories, etc.). Unfortunately,
IoT devices are plagued by vulnerabilities [3, 44, 106]. At-
tackers have used these devices as stepping stones to attack
protected enterprise networks [51, 59], and to compromise crit-
ical facilities such as city-scale infrastructures [23, 52] and
smart factories [36, 43]. These compromised devices have also
been used as launch pads for other attacks [5, 70].

Unfortunately, IoT device manufacturers continue to have
poor security practices and the devices often lack management
interfaces to be patched and/or configured. Thus, to satisfy
the imminent need to protect these IoT devices from attackers’
malicious actions (e.g., [5, 43]) and to ensure that these devices
do not become pivot points for larger attacks, industry and
academic efforts have proposed securing IoT deployments
with on-site network gateways [8, 9, 17, 35, 40, 65, 78, 106].

These security gateways use software-defined principles to
intercept traffic to and from an IoT device and apply network
∗JETFIRE is an autobot from the fictional Transformers universe, who

leverages commodity technology to mitigate evil. We adopt this fitting name
for our low-cost, trusted IoT security gateway.

layer security protections via software middleboxes (e.g., a fire-
wall) [35, 105]. These middleboxes implement network-layer
protections tailored to each individual IoT device’s vulnerabili-
ties. This allows for protecting devices that might not support
patching (e.g., a device vendor goes out of business) or are un-
able to run host-based defenses (e.g., antivirus software). The
specific protections are determined by a policy agent running
on a centralized controller managing the gateway.

Ideally, a software-defined IoT security gateway must satisfy
two fundamental requirements:
• Trusted: Gateways entail a single point of failure and

this raises a paradoxical question: Is the system providing
these network-layer protections trustworthy? This con-
cern is not merely hypothetical; prior work has demon-
strated attacks against the controller [95, 103], the control
channel [37, 95, 103], and middleboxes [56, 86].
• Low-Cost: We want a low-cost solution that can be inte-

grated into existing IoT ecosystems by run commodity
software on existing hardware. At the same time, we need
sufficient scalability to support constantly growing IoT
deployments and extensibility where new protections can
be added for adapting to new threats.

Unfortunately, existing approaches fail to achieve one or
more of these of requirements [56, 86, 105]. For example, se-
cure enclave-based approaches (e.g., SGX, TrustZone) and
other trusted hardware (e.g., TPM-based solutions) provides a
root-of-trust, but imposes a hardware requirement that may not
be present on all platforms (e.g., restricted to specific proces-
sors) and incur significant challenges to adding new capabilities
(e.g., requiring new hardware). We presently lack a low-cost,
end-to-end approach that can be deployed on a broad class of
existing commodity hardware.1

In this paper, we present the design and implementation of
JETFIRE, a low-cost, trusted security gateway. We address key
design and implementation challenges in adding cost-efficient
and extensible trust to a software-defined security architecture.
First, we use formal modeling to systematically identify key
loci for applying relevant protections that enable trusting a gate-
way’s packet processing. Second, we adopt a micro-hypervisor-
based system architecture as it provides a root-of-trust that
supports integrating protections in commodity software across
a broad hardware base (cost-effective) and rapidly adding new
protections (extensible) [4, 88, 89]. Third, as determined by our
formal model, we use key micro-hypervisor provided capabili-
ties such as attestation to verify software instances, mediation
to enforce correct packet routing, and isolation to prohibit

1A recent workshop paper by Mccormack et al., [45] presented a high-level
vision; their work is conceptual and falls short of a concrete implementation.

1

Fig. 1: Software-defined IoT security gateway architec-
ture, the controller’s security policy directs provisioning
device-specific middleboxes to process each IoT device’s
network traffic on a local security gateway.

tampering. We integrate these protections into the software
processing packets on the gateway and controller to guarantee
that all output packets are processed by the correct middlebox
in a known good state. Finally, we enable fine-grained per-
device security policies on low-cost platforms, by reducing the
footprint of canonical security middleboxes such as intrusion
prevention systems (IPS).

We implement an end-to-end system, JETFIRE, on a low-
cost Raspberry Pi and demonstrate its ability to patch real IoT
vulnerabilities in a representative smart home deployment. We
evaluate the security of JETFIRE using a model-driven analysis
and show that it provides security by construction, in addition
to mitigating 10 published attacks against software-defined
architectures. In terms of performance and cost, we demon-
strate how a single Pi instance can offer device-specific IPS
instances to protect small-to-medium scale deployments of 50+
IoT devices, with minimal impact on network performance.

Contributions and Roadmap:
• A practical micro-hypervisor based design of a trusted

software-defined IoT security gateway that implements fine-
grained protections guaranteeing output packets are pro-
cessed by the correct middlebox (§3 and §5).

• An approach for reducing a middlebox’s footprint to create
lightweight, device-specific versions (§6).

• A formal model that identifies salient architectural compo-
nents and a comprehensive security evaluation that demon-
strates that JETFIRE provides protections, by construction,
against a broad class of attacks including 10 published at-
tacks on software-defined network architectures (§4 and §8).

• A practical demonstration of our system on a realistic IoT
deployment showing performant and scalable network-level
protections for commodity IoT devices (§9).

We plan to release our open source code base [15] to allow
others to build on top of this trusted and low-cost architecture.

2 Background and Motivation
We start by discussing current IoT security gateway archi-

tectures (§2.1). Then, we motivate the need for a trustworthy
gateway by presenting example real-world attacks (§2.2).

Fig. 2: Example attacks against current IoT security gate-
way architectures altering a gateway’s packet processing.

2.1 IoT Security Gateways
Traditional security solutions include host-based (e.g., an-

tivirus) and network-based approaches (e.g., firewalls). For
vulnerable IoT devices, host-based approaches are ineffective
due to a lack of standard programming stacks and limited de-
vice resources [106]. Thus, defenders must use network-based
approaches to protect their IoT deployments.

A software-defined gateway architecture [8, 9, 17, 35, 65,
78, 105, 106] has been proposed to secure IoT deployments.
At a high level, the gateway intercepts all network traffic to
and from an IoT device and runs virtualized middleboxes (e.g.,
firewall) to impose a security policy (e.g., block IoT devices
from starting ssh connections). Compared to traditional static
network defenses with baked-in policies, a software-defined
architecture uses a centralized controller to flexibly define and
configure customized policies.

Figure 1 shows an example IoT deployment protected by
a software-defined security architecture. The controller con-
figures the gateway via the control channel. For example, if
a smart light is found to have an unpatched backdoor [1], the
controller could initialize a firewall on the gateway to block
access. The number and type of middleboxes depends on the
defense strategy. A weak defense strategy could run a few
shared middleboxes for all IoT devices [8, 78], while a stronger
defense strategy may deploy one middlebox per IoT device
[35, 105, 106]. A virtual switch (vSwitch [55]) routes packets
to the appropriate middlebox, with the controller dynamically
configuring the vSwitch’s routing rules.

2.2 Need for Trustworthy Gateways
While software-defined gateways are promising for securing

IoT deployments, it becomes ineffective when the architecture
itself is under attack. We substantiate and motivate the need
for trustworthy IoT security gateways by discussing four con-
crete, real-world attacks against such gateways, as identified by
prior work [37, 45, 56, 86, 95, 103] and limitations of existing
piecemeal solutions to mitigate all of these attacks.

As shown in Fig. 2, the controller (1), components on the
gateway (2 , 3), and interaction between the controller and
the gateway (4) can be exploited. While we discuss each
attack separately, it is possible for a single attack to consist of
a combination of these example attacks.

2

Table 1: Prior gateways and piecemeal security solutions.

Project Root of trust Mitigates Attacks
A1 A2 A3 A4

Existing IoT Gateways
[8, 35, 78, 105, 106] OS N N N N

Trustworthy Middleboxes
[24, 56, 71, 86] SGX, TrustZone N Y N N

Secure Controllers
[29, 57, 76] OS N N N N

Secure Protocols
[21, 34, 38, 39, 48] OS + Crypto N N Y Y

JETFIRE (Our system)
Micro-hypervisor
+ Crypto Y Y Y Y

Attack 1 - Tamper with security policy(A1): The first attack
(1 in Fig. 2) targets the controller’s security policy (à la [95]).
An attacker can gain access to the controller, in a manner
similar to how they gained access to the gateway in Attack
1. Once on the controller, the attacker can modify the IoT
device’s security policy. For example, specifying a more lenient
middlebox (e.g., changing an IPS to a firewall), which allows
the attacker’s exploit to transit the gateway without detection.
Attack 2 - Alter middlebox operations (A2): The second ex-
ample attack (2 in Fig. 2) targets modifying the middlebox
(à la [56, 86]). An attacker can gain access to the gateway,
using credentials (e.g., from a data breach) or an unpatched
vulnerability (e.g., [50, 102]). Once on the gateway, the at-
tacker can modify the middlebox’s configuration and remove
rules that block an IoT device’s known vulnerability. Now the
attacker’s exploit can bypass the security gateway’s middlebox
protections and compromise the IoT device.
Attack 3 - Alter packet path (A3): The third example attack
(3 in Fig. 2) targets a packet’s path on the gateway (à la [45]).
An attacker that has compromised the OS could modify the
packet’s header to cause it to be routed to the incorrect middle-
box, which fails to block the exploit payload.
Attack 4 - Inject malicious control channel messages (A4):
The fourth example attack (4 in Fig. 2) targets the control
channel (à la [37, 45, 95, 103]). In practice, a secure control
channel (e.g., TLS) is not often used [74, 100]. An insecure
channel allows an attacker to inject malicious messages. For ex-
ample, sending openflow commands to reconfigure the vSwitch
such that packets bypass a middlebox, thereby allowing the
attacker’s exploit to pass through undetected.

Limitations of existing solutions: As shown in Table 1, cur-
rent IoT gateways [8, 35, 78, 105, 106] do not secure any of
the above attacks. While there is some prior work securing
individual pieces of the architecture, they still lack end-to-end
trust (see details in §11). First, recent work on trustworthy
middleboxes uses trusted enclaves to run middleboxes inside
untrusted cloud environments (e.g., [56, 86]), but this solu-
tion requires specific hardware (e.g., SGX [27], TrustZone [6],
TPM [7]) which is not widely available. Second, research on
securing the controller (e.g., [57, 76]) has been focusing on us-
ing permissions to limit the access of multiple applications, but
cannot provide runtime protections against an attacker capable

of compromising the OS. Finally, existing secure tunnels (e.g.,
IPSec, TLS) and work on customized verification protocols
(e.g., [34, 38, 39, 48]) can be used to achieve traffic integrity,
but they alone are not enough to defend against all attacks.

3 System Overview
In the previous section, we have made a case for a trustwor-

thy gateway. For such a gateway to be deployed in practice
across a wide range of IoT deployments, it must also be low-
cost. In this section, we first define what we mean by trust-
worthy and low-cost (§3.1), then present JETFIRE’s overall
architecture (§3.2), assumptions(§3.3), and challenges(§3.4).

3.1 System Goals
Overarching Trust Property (G1): a trustworthy software-
defined IoT security gateway should provide a guarantee that
all output packets are processed by the correct middlebox, even
when under attack. We formulate this guarantee in §4 and
examine how it mitigates existing attacks in §8.2.

Achieving the overarching trust property (G1), requires a
root-of-trust that current software-defined IoT security gateway
approaches lack (Table 1). This root-of-trust must provide
foundational capabilities (e.g., memory isolation) to enable
building a holistic defense on both the data and control planes.
Low-Cost (G2): A IoT security gateway that meets the above
trust requirements alone is not very useful, if it cannot be
readily deployed within today’s edge IoT ecosystems. We
view small, localized IoT deployments such as homes, of-
fices, and manufacturing floors as those are most likely to
experimentally deploy IoT (often having less than 20 local-
ized devices [10, 26, 63, 87]) and experience more frequent
attacks [68]. However, they often have limited budgets for IoT
security. A high-end solution would not be practical for these
customers. We therefore focus on providing low-cost gateways
for small to medium enterprises supporting upto 50 devices
with a single hardware gateway costing less than $100.

3.2 Key Components
To meet these goals, we envision JETFIRE, a trustworthy and

low-cost software-defined IoT security system, that enables a
new trustworthy “security-as-a-service” offering that providers
(e.g., ISPs, CDNs) can offer to IoT consumers.

In contrast to existing gateway architectures [35, 105, 106],
JETFIRE runs both the controller and gateway software on
top of a carefully chosen root-of-trust (§5.1).The root-of-trust
provides capabilities for isolating sensitive data (e.g., control
policy, secure keys) and attesting the integrity of running soft-
ware (e.g., middleboxes), while supporting many hardware
platforms and commodity software (e.g., Linux, Docker).

Building upon the root-of-trust, we add four extensions to
achieve our overarching trust property (G1) while mitigating
the attacks previously mentioned in § 2.2. (1) We migrate the
control policy into the isolated memory protected by the root-
of-trust (mitigating attack class 1). (2) We use a performant
attestation approach to verify the integrity of running software

3

Fig. 3: JETFIRE’s trusted IoT security gateway adds fine-
grained protections to provide low-cost, end-to-end packet
processing guarantees.

(mitigating attack class 2). (3) In each gateway, we design
a trusted signing mechanism between the vSwitch and each
middlebox to protect a packet’s path and data (mitigating attack
class 3). (4) We create a secure channel between the controller
and the gateway to protect control messages (mitigating attack
class 4). Our formal system model (§8.1.1) and comprehen-
sive system evaluation (§8.2) shows that JETFIRE can achieve
our trust property and mitigate several prior attacks.

3.3 Assumptions
System Assumptions: We assume all packets to and from an
IoT device must go through the gateway as their first-hop. And
we scope our system to only providing network protections
to devices using an IP-based network. While some devices
use other protocols (e.g., BLE, ZigBee), many use IP directly
or connect to a hub on an IP network. We also assume mid-
dleboxes are correctly implemented and are able to block all
network exploits targeting the IoT device they are protecting.
Threat Model: We consider a powerful network adversary ca-
pable of compromising the gateway and controller’s operating
system (OS) via the network. The adversary’s aim is to ren-
der the gateway ineffective, and then access unprotected IoT
devices. The adversary can flexibly choose combinations of
attacks from the literature (e.g., attacks in §8.2), but cannot
directly access an IoT device or use an evil twin attack (e.g.,
[67]) to bypass the gateway.

We do not aim to protect against an attacker generating
DoS conditions (e.g., maliciously dropping packets [103]),
nor provide confidentiality to packets and middleboxes (e.g.,
[56, 86]). Attacks modifying the controller’s global network
view by impersonating an IoT device or advertising false paths
(e.g., [18, 95, 103]) are out-of-scope of this work.

3.4 Challenges
We highlight two challenges towards achieving our goals.

• Good performance with a small TCB (§5) For a trustwor-
thy IoT security gateway to be used in practice, it must pro-
vide good performance. Additionally, the added trust should

not come at the expense of a large TCB. Our key idea is to
use a combination of isolation and attestation techniques so
that we can isolate small pieces of critical software while
attesting bigger, legacy software components.

• Scalable middleboxes on low-cost platforms (§6) A low-
cost gateway needs to support continuing growth IoT devices
([10, 26, 63, 87]). However, existing low-cost platforms (e.g.,
Raspberry Pi) only supports 3 IPS middleboxes (see details
in §9.2), which is not enough for a normal household (hav-
ing on average 8 connected devices [13]). We identify that
memory consumption is the main bottleneck for scalability
and propose two optimization techniques for scaling support
to approximately 50 IoT devices.

4 Formulate Trust Requirements
We begin by formulating our overarching trust property.

We create a formal model of today’s software-defined IoT
security gateways (§2.1) to inform the design of JETFIRE (see
discussion and evaluation of this model in §8). This model
helps us define our overarching trust property (§3.1) and derive
four required sub-properties protecting critical components
and interfaces. These properties then define JETFIRE’s trust
requirements for achieving our overarching trust property.
Overarching Trust Property: Given a network where all of
an IoT device’s inbound and outbound traffic goes through our
trusted security gateway, GW, our goal is to ensure that any
packet, pkt, output by the gateway was processed by the correct
middlebox while operating in a known state, so that benign
packets are allowed and malicious packets are dropped. Our
trust goal can be denoted as:

∀pkt ∈ BenignPkt, processPkt(GW,pkt) = Allow
∀pkt ∈MaliciousPkt, processPkt(GW,pkt) = Drop

(1)

To achieve this goal in the presence of an attacker, the entire
gateway architecture must be trustworthy, expressed formally:

TrustedGateway(GW,Controller) ⇐⇒
tamperProof (policy) ∧

correctInstance(vSwitch,mbox0,...,n,appsctl) ∧
secureChannel(channelgw,channelctl) ∧

∀mboxi, authenticateRoute(vSwitch,mboxi)

(2)

Where: GW = {vSwitch,{mbox0, . . . ,mboxn},channelgw}
Controller = {policy,appsctl,channelctl}

Our overarching security property is composed of four sub-
properties, where each maps to a trustworthy requirement:
tamperProof (T Rsw1), correctInstance (T Rsw2), secureChan-
nel (T Rcomm1), and authenticateRoute (T Rcomm2).
Security Policy Isolation and Mediation (T Rsw1): The first
sub-property is to protect the security policy stored in the con-
troller. Controller applications are subject to attacks [95, 103]
which make the security policy vulnerable. As the correctness
of the rest of the system is based upon this policy, we need
to ensure it is tamper proof. To achieve this, the security pol-
icy needs to be isolated in protected memory with all access

4

mediated by a trusted entity (e.g., blocking the OS and other
untrusted applications from accessing the security policy). Our
security policy isolation and mediation sub-property (T Rsw1)
can be denoted as:

tamperProof (policy) ⇐⇒
isolatedMemory(policy) ∧ mediatedAccess(policy)

(3)

Component Instance Validation (T Rsw2): Besides the secu-
rity policy, the software of key components must not be altered
by an attacker (e.g., Attack 2 where the middlebox was altered
[56, 86]). Such alterations can be detected by validating key
software components are running the correct instance. Soft-
ware components that must be validated includes the controller
application, vSwitch and all middleboxes. Our component in-
stance validation sub-property (T Rsw2) can be denoted as:

correctInstance(vSwitch,mbox0,...,n,appctl) ⇐⇒
remoteAttest(appsctl) ∧ remoteAttest(vSwitch) ∧

∀mboxi, remoteAttest(mboxi)

(4)

Packet Path and Data Validation (T Rcomm1): Each packet
must be routed to the correct middlebox as specified by the se-
curity policy. Prior work on Internet routing has advocated for
per-hop path authentication to validate that packets followed
the specified path [39, 48]. We aim to provide similar guaran-
tees in order to detect packets maliciously routed to the wrong
middlebox (e.g., Attack 3). In particular, we need to verify
whether the intended path of a packet has been enforced, and
whether packet data has been modified in-between. We denote
our packet path and data validation sub-property (T Rcomm1) as:

∀mboxi,authenticateRoute(vswitch,mboxi) ⇐⇒
∀pkt, intendedPath(pkt,policy) = mboxi =⇒

actualPath(pkt) = vSwitch mboxi vSwitch ∧
unmodifiedData(pkt,vSwitch,mboxi)

(5)

Control Message Integrity and Authentication (T Rcomm2):
To protect against control channel attacks (e.g., Attack 4)[18,
37, 95, 100, 103], we aim to ensure that the control channel is
secure. To achieve this, the control channel needs to be authen-
ticated and encrypted so that data transmitted over the channel
has not been modified or spoofed (e.g., only the controller
can send middlebox configuration commands to the gateway).
Meanwhile, the secret keys used by the channel need to be
isolated and any access is mediated by a trusted entity, denoted:

secureChannel(channelgw,channelctl) ⇐⇒
authenticatedEncrypted(channelgw,channelctl) ∧
isolatedMemory(keys) ∧ mediatedAccess(keys)

(6)

A system that provides these properties will be secure by
construction and mitigate the example attacks in §2.2. Next,
we design a system to provide these trust requirements.

5 System Design for Low-cost, Low-TCB Trust
Based on our formal model of today’s software-defined IoT

security gateways (§4), we first identify a low-cost, low-TCB

Table 2: Comparison of root-of-trust design space options.

Root of Trust Security Capabilities Low-Cost
Legacy software Hardware

Trusted enclave
(SGX, TrustZone) isolation, attestation No system calls,

Limited memory
Limited

processors
Secure languages
(Rust, OCaml) isolation, mediation Requires

reimplementation x86, ARM

Micro-hypervisor isolation, mediation,
attestation Supports x86, ARM,

microcontroller

root-of-trust that provides the foundational security capabili-
ties (e.g., isolation) required to achieve our overarching trust
property (§5.1). Then, we discuss our approach for building
fine-grained security protections that realize each of our trust
requirements (§4) on top of this root-of-trust.

5.1 Micro-hypervisor as a root-of-trust
As current software-defined IoT security gateways lack a

root-of-trust (Table 1), we begin by adding a root-of-trust. The
root-of-trust must be available for low-cost hardware (e.g.,
ARM) and support legacy software without requiring reimple-
mentation to be practical in the IoT domain.

Design Alternatives for Root-of-Trust: The design space for
root-of-trust can be categorized along two axes (summarized
in Table 2). First, hardware dependent approaches (e.g., SGX
enclaves [56, 86]) have been used to secure middleboxes in
cloud environments. Unfortunately, these hardware features are
not common on low-cost platforms and only support limited
applications (e.g., no system calls [27]). On the other hand,
pure software approaches such as formal verification and se-
cure programming languages too have limitations. However,
these approaches are hard to directly deploy today as they re-
quire significant reimplementation and verification effort to
add protections to existing software. As many commonly used
software applications can span over 100,000 lines of C/Java,
these approaches quickly become intractable.

Why a Micro-hypervisor: Rather than using a pure hard-
ware or software approach, we advocate using a hybrid ap-
proach in the form of a micro-hypervisor. A micro-hypervisor
[46, 77, 88, 89] is in essence a software reference monitor [69],
that acts as a guardian of system resources (e.g., files, sockets).
Hypervisors have been used to integrate fine-grained security
protections into commodity software; e.g., identifying covert
malware, providing trusted system calls, attestation, debugging,
tracing, application-level integrity and confidentiality, trustwor-
thy resource accounting, on-demand I/O isolation, trusted path,
and authorization [11, 19, 22, 41, 42, 47, 61, 73, 75, 79, 83,
84, 92, 94, 96, 101, 104, 108, 112, 113]. A micro-hypervisor
retains the foundational capabilities (isolation, mediation, attes-
tation and extensibility) of traditional feature-rich hypervisors,
but with a small software base that is amenable to formal
verification to ensure it is implemented without vulnerabili-
ties [4, 88, 89]. Further, they only require hardware support
for virtualization, allowing it to run on most existing low-cost
hardware platforms (e.g., ARM [90], x86 [77, 88], microcon-
troller [4]). It directly supports commodity software without

5

Fig. 4: JETFIRE migrates the policy file and process-
ing logic into a data capsule, protected by the micro-
hypervisor. An application (App2) that is not in the
whitelist or fails at attestation cannot access it.

any limitations or modifications. Thus, a micro-hypervisor is a
low-cost root-of-trust that is well suited to the IoT domain.

Unfortunately, a root-of-trust alone is insufficient for achiev-
ing our overarching trust property (§3.1) as it does not innately
integrate with the existing gateway software to enforce spe-
cific protections. Next, we show how we build on top of the
micro-hypervisor to achieve each of our trust requirements. To
this end, we build four micro-hypervisor extensions (shown
in Fig. 3): data capsule and vTPM for protecting the software
(T Rsw1, T Rsw2), and packet signing and trusted agent for pro-
tecting the communications (T Rcomm1, T Rcomm2). We discuss
each of these below.

5.2 Data Capsule for Security Policy Isolation
and Mediation

Recall that our trust guarantee requires that the security pol-
icy be in isolated memory with mediated access. A naïve ap-
proach is to place the entire controller into memory protected
by the micro-hypervisor. However, this approach creates two
unwanted impacts: (1) it significantly increases the TCB, po-
tentially exposing the micro-hypervisor to new attacks.2 (2) it
incurs performance penalties for all operations as every sys-
tem call or external functionality needs to be mediated by the
micro-hypervisor.

Our Approach: Instead of placing everything into the TCB,
we carve out small critical pieces (e.g., control policy, secret
keys) from the software, and migrate them into the micro-
hypervisor as a data capsule. Each data capsule is isolated from
unprotected memory and all accesses are meditated, providing
fine-grained protection.

Figure 4 shows an example data capsule protecting the con-
troller’s security policy. The security policy specifies a finite
state machine (FSM) for each IoT device. Each state of the
FSM describes a specific middlebox configuration (e.g., Snort
with ruleset 1). Transitions between states are based upon alert
messages sent by the middlebox. For example, an alert message
(or series) could indicate a network “scan detected”, trigger-
ing the controller to reconfigure the middlebox with ruleset 2

2A typical SDN controller (e.g., NOX, ONOS, OpenDayLight) has a code
base from 20-300k lines of code, which is an order of magnitude larger than
many micro-hypervisors.

which performs deep packet inspection.
In a traditional security gateway, the security policy along

with other controller applications run in unprotected memory
which is exposed to attackers (e.g., 1 in Fig. 2). Rather than
placing all of them (20k lines of code for OpenDaylight) into
the root-of-trust, we only migrate the control policy and its state
transition logic into a data capsule, which is a small portion
of the controller’s code (195 lines of code). Access to the data
capsule which is placed in isolated memory protected by the
micro-hypervisor, is then mediated by the micro-hypervisor via
code white-listing [58, 93]. This scheme ensures that the data
capsule can only be accessed by the middlebox management
application. The original code base is then refactored to access
these data capsules (see details in 7).

5.3 vTPM for Component Instance Validation
The code of critical software components (e.g., middleboxes)

must be protected from malicious modifications. Instead of
carving out individual pieces of these components, we relax
our protection to only identifying changes to the code using
remote attestation [7, 16] via a vTPM. This limits the TCB
increase to only the attestation operations and measurements.
This combination of isolation and attestation allows us to main-
tain a small TCB with good per-packet performance.
Our Approach: Attestation is often provided by a Trusted
Platform Modules (TPM). As a physical TPM is not available
on all hardware, we leverage a software implementation, a vir-
tual trusted platform module (vTPM) in the micro-hypervisor.
We utilize a subset of its capabilities to securely store a chain of
measurements, by extending a platform configuration register
(PCR), and its ability to securely provide the stored values (i.e.,
a PCR quote). These vTPM measurements can be trusted as
access to the vTPM is mediated by the micro-hypervisor and
the PCR values are placed in a data capsule, precluding an
attacker from maliciously altering the PCR values. While the
vTPM does not provide persistent secure storage and attesta-
tion keys by itself, it has performance advantages compared
to a physical TPM (e.g., not limited by physical memory or
data bus).3 This allows applying vTPM measurements at a fine
granularity, providing increased PCRs (100+) and lower access
latency (0.9 msecs).4

5.4 Packet Signing for Packet Path and Data
Validation

To provide packet path and data validation on the gateway, a
strawman solution is to use existing secure tunneling protocols
(e.g., IPsec, TLS). Unfortunately, this has two limitations. (1)
Most tunneling implementations rely on the OS to protect
secret keys files (e.g., .ssh directory), allowing an attacker
who has compromised the OS to craft secure messages. (2)
Exiting tunneling approaches are too heavyweight for traffic
on the gateway (data path traffic). As we show in §9.3, when
3Note that a vTPM can be bridged with a platform hardware (physical) TPM,
if available, to provide persistent secure storage and attestation keys.

4Comparison between physical TPM and vTPM in Appendix A.

6

Fig. 5: Packet signing operations to verify packet path and
data between the vSwitch and middleboxes.

enforcing tunneling between the vSwitch and middleboxes for
every packet, it could reduce packet processing throughput by
greater than 67% of the baseline throughput.
Our Approach: Inspired by prior work on path verification
protocols (e.g., [39, 48]), we design a simple packet signing
mechanism to enforce each packet follows the correct path with
the correct data. Figure 5 shows our packet signing mechanism.
We extend the vSwitch and each middlebox by adding two
functions: sign and verify (see details in §7). Both functions
use keys stored in the micro-hypervisor to generate a digital
signature. The sign is triggered when sending a packet and
verify is called when receiving a packet.

For example, a packet pkt arrives at the vSwitch, which looks
up its intended path to mboxa (configured by the controller).
Then vSwitch calls sign to create a digital signature over the
entire packet (header and payload) using key ka1, a unique
key shared between the vSwitch and the mboxa. After the mid-
dlebox receives the packet, it uses its key ka1 to verify the
signature. If the packet has been tampered with or routed to the
wrong destination (e.g., Attack 3 in §2.2), the verification fails
and the packet is dropped. After the middlebox processes the
packet, it signs the packet using another key (e.g., ki2). Note
that this is necessary as the middlebox might modify the packet
data, resulting in the previous signature being obsolete. The
vSwitch similarly verifies this signature.

Compared to traditional tunneling, our verification approach
is more lightweight. It does not require expensive setup (unlike
TLS) and uses a simpler verification header (unlike IPSec). Fur-
thermore, the micro-hypervisor provides assurances that the
digital signatures can be trusted, as it protects the secret keys
and sign/verification functions, thereby stopping an attacker
from forging signed packets. Thus, our signing mechanism
ensures that packets follow the correct paths at a low perfor-
mance overhead (see comparison in §9). Next, we discuss how
we secure the control channel.

5.5 Trusted Agent for Control Message In-
tegrity and Authentication

Existing SDN architectures often support an encrypted mes-
sage exchange mechanism (e.g., IPsec/TLS) for the control
channel. Unfortunately, these do not protect the secret keys.
Our Approach: We add trusted agents on the controller and
gateway to secure control channel traffic. These agents inter-

Table 3: Summary of design components for achieving
trust requirement in order to mitigate attacks from §2.2.
Attack in §2.2 Requirement Defense
Attack 1 T Rsw1 Limit access via data capsule
Attack 2 T Rsw2 Attest component via vTPM
Attack 3 T Rcomm1 Identify modification via packet signatures
Attack 4 T Rcomm2 Protect secret keys via trusted agent

cept all control channel messages and protect the secret keys
in a data capsule. Further, micro-hypervisor mediation ensures
only trusted applications can access the secret keys. We assume
that the secret keys are exchanged out of band and that a unique
pair exists for each controller and gateway set. Since the se-
cret keys and agents are memory-protected and isolated by the
micro-hypervisor, they are immune to attacks from untrusted
components including the OS.

5.6 Design Summary
Table 3 summarizes key components of our system design,

the trust requirements they address and the class of attacks
they protect against. Our system design relies on a micro-
hypervisor root-of-trust to provide the needed trust capabilities
at a low-cost, running legacy software on a broad base of exist-
ing hardware. Our performant, low-TCB hypervisor extensions
(data capsule, vTPM, packet signing, and trusted agent) work in
synergy towards achieving our overarching trust property. As
shown in Table 3, the data capsule (T Rsw1) blocks an attacker
from modifying the security policy (Attack 1). Attestation via
the vTPM (T Rsw2) detects an attacker modifying a middle-
box (Attack 2). Packet signatures (T Rcomm1) mitigates local
attackers modifying packets (Attack 3). Finally, trusted agents
(T Rcomm2) blocks an attacker from forging control channel
messages (Attack 4).

6 Lightweight Middleboxes for Scalability
In the previous sections, we have described how we can

design a trustworthy gateway based on a low-cost root-of-trust.
Another key challenge is scalability, where a single gateway
can protect all IoT devices in a deployment (e.g., a home en-
vironment). In this section, we first identify the scalability
bottlenecks and then present two of our optimizations.

6.1 Identifying Bottlenecks
We start with testing how many middleboxes a low-cost

Raspberry Pi 3 can run simultaneously. Since each middlebox
is assigned to one IoT device, this test shows the maximum
number of IoT devices the current platform can protect. We
pick Snort [14] as an example middlebox because an intrusion
prevention system (IPS) is likely required by all deployments.
For each Snort instance, we run it using the default configura-
tion with the full community rule set [14] to provide broad cov-
erage. Unfortunately, we could only run three snort instances
simultaneously, which cannot even support the current average
US household (∼8 devices [13]), not to mention future growth.

When running multiple Snort instances, we noted that the
main bottleneck limiting scalability was the memory required
by each Snort instance. One Snort instance consumes 452

7

MB of memory. We used Intel’s VTune Amplifier profiling
tool to identify the most significant contributors to memory
consumption and found that the majority of the memory was
allocated on the heap for rules and their processing, followed
by socket buffers. Based on these findings, we propose two
optimizations to reduce the memory consumption:

6.2 Optimizations
Customized Configurations: Our first optimization is to cus-
tomize Snort configurations based on the protected IoT device.
Our analysis shows that the memory required by a Snort in-
stance is directly proportional to the number of rules it is con-
figured with (∼27.5 KB per rule). The full community rule set,
composed of 10,918 rules, is designed to protect a wide array
of devices. Our idea is to use custom profiles that only contain
the rules that are applicable to that particular device (e.g., an
IoT device running Linux does not need Windows rules). Thus,
we categorize the community rules (based upon rule descrip-
tions and exploit references) into 116 separate categories to
more precisely identify which rules might be applicable for a
given IoT device. This customization realized up to a five-fold
decrease in Snort rules.

We also optimize the socket buffer, the second largest mem-
ory consumer. Snort has a default socket buffer of 166 MB,
to support analyzing network traffic from multiple devices at
rates of 200-500 Mbps. For our use case, supporting such high
throughput is unnecessary, as each IoT device has its own in-
stance of Snort and peak bandwidths of less than 20 Mbps5.
Using this observation, we reduce the socket buffer and free
up 163 MB per Snort instance.

Sharing Rules: After categorizing rules for each device, we
noted that many of the rules were still common across multiple
IoT devices, with only a small fraction of the rules being device-
specific. This results in the same rule being in memory multiple
times (i.e., once for each IoT device being protected). Our
insight is to place these common rules into a shared memory
region, so that we only have one instance of the rules in memory
(similar to [53]). Subsequent instances can be instantiated at
a significantly reduced memory footprint (e.g., 30 MB per
instance). Combining these optimizations, reduces the memory
footprint of Snort by more than 12x per instance, allowing a
single hardware platform to support more than 50 simultaneous
Snort instances (Fig. 7a).

Our approach and optimizations are general and can apply
to other platforms and middleboxes as well. For instance, many
other low-cost platforms (e.g., OpenWRT routers) have less
than 2 GB of RAM giving them the same bottleneck. Similarly,
other middleboxes (e.g., Zeek [107], Suricata [81]) that use a
common set of rules across multiple devices, could also benefit
from our analysis approach and optimizations. Next, we discuss
a prototype implementation of JETFIRE.

5In sampling 10 commodity home IoT devices, we noted a peak throughput of
less than 1 Mbps. For additional details, see Appendix A.

7 Implementation
We implemented a JETFIRE prototype using two Raspberry

Pi 3Bs, one for the controller and the other for the gateway.
Both use the uberXMHF micro-hypervisor framework [89] and
Raspbian Jessie (Linux 4.4.y). For the controller, we use Open-
DayLight (Aluminum), the largest open source SDN controller.
For the gateway, we run Dockerized middleboxes (e.g., Snort,
Squid, iptables) with OpenvSwitch (OVS 2.12.1) for packet
routing. Next, we describe uberXMHF and how we extend it
to achieve our trust properties.
uberXMF micro-hypervisor: Our trust architecture is built
on top of uberXMHF, an open-source,6 formally veri-
fied, micro-hypervisor framework [89, 90, 91]. We chose
uberXMHF because it supports both x86 and ARM platforms
and provides a modular framework for compositional verifi-
cation. This allows for adding hypervisor extensions while
preserving the core micro-hypervisor’s memory integrity with-
out needing to repeat the verification [89].

We use uberXMHF (v5.0) and realize our protections (§5)
as hypervisor extensions. Each hypervisor extension exposes
a hypercall interface that is callable from both user and ker-
nel space and allows for transferring up to 4 KB of data. Our
security policy extension stores and transitions each IoT de-
vice’s current FSM state, it prohibits adding states by setting
the maximum number of states for each device’s FSM and
limiting this to only occur once. Our packet signing extension
uses the micro-hypervisor’s internal cryto library to perform
an SHA256-HMAC on an input data buffer using secret keys
stored in the micro-hypervisor. Our trusted agent uses a secret
key in the hypervisor to encrypt a data buffer using AES. The
lines of code for each hypervisor extension is given in Table 5.
Trusted Data and Code (T Rsw1, T Rsw2): We integrate our
security policy into our modified OpenDayLight controller
so that each policy query goes to the micro-hypervisor (to
achieve T Rsw1). As the hypervisor extensions are in C and
the controller in Java, we build a shared library that performs
the hypercalls and leverage a Java Native Interface to inte-
grate these into the controller’s operations. For attestation, we
create a Python daemon that measures each middlebox’s exe-
cutables and configuration. Measurements are stored using the
micro-hypervisor’s PCR extend interface, and then sent to the
controller (as a vTPM quote), and checked against the value
in the security policy (to achieve T Rsw2). These measurements
and quotes are then repeated periodically (e.g., 1 min).
Trusted Communications (T Rcomm1, T Rcomm2): We integrate
our packet signing into OVS and our Dockerized middleboxes
(to achieve T Rcomm1). Within OVS, we add two new actions
(sign and verify) to both the user and kernel space virtual
switch functionality (where the kernel module realizes a 2x
throughput increase (§9.3). The sign function appends the
signature returned by the hypercall to the packet’s payload.
For this added data to arrive at the middlebox, the packet’s

6https://uberxmhf.org

8

https://uberxmhf.org

headers are modified to account for the increased packet length.
The verify function strips the signature from the packet, re-
calculates the packet header, and performs a hypercall to verify
whether the two signatures match.

For middleboxes, we leverage NFQUEUE interfaces to imple-
ment our signing. Since NFQUEUE can intercept both received
and output packets, we added a userspace callback to perform
operations similar to the sign and verify actions added to OVS.
This allows for an unmodified packet to be analyzed by the
network function (e.g., Snort). We also integrate our trusted
agent into the middleboxes (to demonstrate T Rcomm2). We im-
plement a Python daemon that checks the middlebox’s log files
for alerts. Upon a modification, the daemon performs a hyper-
call to encrypt the new data prior to sending it to the controller
which decrypts the data using a hypercall to its trusted agent
(integrated similar to the security policy).

SDN Controller and Example Middleboxes: Realizing our
prototype system required extending the OpenDayLight con-
troller (adding approximately 2k lines of code). This includes
adding functionality for remotely configuring the Dockerized
middleboxes (leveraging the Docker API), sending flow rules
to that included our added actions (as these are not a part of
the OpenFlow protocol), and integrating remote attestation of
middleboxes. Additionally, we realize example middleboxes
running commodity network functions: (1) Snort IPS to block
known vulnerabilities, (2) iptables as a firewall, and (3)
Squid authenticating HTTP proxy to add authentication for
devices with default credentials.

8 Security Evaluation
We analyze the security of JETFIRE’s design along four

axis: (1) model-based validation of our design §8.1, (2) the
architecture’s robustness to attacks from the SDN litera-
ture §8.2, (3) validation of our implementation using syn-
thetic attacks §8.3, and (4) measure the increase of the micro-
hypervisor’s TCB §8.4.

8.1 Validating Our Design
We build a formal model of our software-defined security

gateway to specify our trust properties (§4). We describe this
model and then evaluate it using bounded model checking to
validate our design is secure by construction.
8.1.1 Formal Model Description

We specify our software-defined gateway model using the
Alloy modeling language[28]. We briefly introduce Alloy and
before describing our model.

Alloy Modeling Language: Alloy models are defined using
first-order, relational logic. At its core, the Alloy language is an
easy to use but expressive logic based on the notion of relations,
and was inspired by the Z specification language and Tarski’s
relational calculus [28]. The Alloy model is compiled into a
scope-bounded satisfiability problem and analyzed by off-the-
shelf SAT solvers. We use this analysis to identify counter
examples to constraints and verify our trust properties.

Listing 1 Abridged formal model of JETFIRE’s trusted
software-defined security gateway architecture.
1: sig Controller {
2: policy : one Policy,
3: apps: set Application,
4: controlchannel : one Channel
5: }
6: sig Gateway {
7: vswitch : one vSwitch,
8: mbox : set Middlebox,
9: controlchannel : one Channel

10: }
11: function PROCESSPKT(pkt : Packet, g : Gateway)
12: g.mboxi = ROUTEPKT(pkt,g.vswitch)
13: pkt.state = MIDDLEBOXPROCESS(pkt,g.mboxi)
14: if pkt.state == Benign then
15: pkt.action = Allow
16: else
17: pkt.action = Drop
18: return pkt.action
19: pred TRUSTEDGATEWAY(g : Gateway, c : Controller)
20: TAMPERPROOF(c.policy)
21: SECURECHANNEL(g.controlchannel,c.controlchannel)
22: REMOTEATTEST(c.apps)
23: REMOTEATTEST(g.vswitch)
24: for g.mboxi in c.policy do
25: REMOTEATTEST(g.mboxi)
26: AUTHENTICATEROUTE(g.vswitch,g.mboxi)
27: assert PROCESSPKTCORRECTLY(g : Gateway, pkt : Packet)
28: TRUSTEDGATEWAY(g)
29: pkt ∈ BenignPkts =⇒ PROCESSPKT(pkt,g) == Allow
30: pkt ∈MaliciousPkts =⇒ PROCESSPKT(pkt,g) == Drop

Software-defined Gateway Model: JETFIRE’s software-
defined IoT security gateway model consists of a centralized
controller and a set of gateways that process packets to and
from IoT devices. For brevity, we discuss an example architec-
ture with a single gateway to explain our abridged Alloy model
in Listing 1 (the full model can be found in [15]).

1. Controller and Gateway. We first model two key enti-
ties: a Controller and a Gateway using Alloy’s sig interface
(lines 1-10). A sig, or signature, defines a set (i.e., Controller)
and its relationship to other sets (i.e., each Controller has one
Policy, line 2). The controller maintains the security policy,
and the control applications use the control channel to con-
figure each gateway based on the policy. Each gateway runs
one vSwitch and a set of middleboxes. The gateway receives
commands over the control channel for instantiating middle-
boxes and installing paths in the vSwitch. Each path speci-
fies which middlebox a specific IoT device’s traffic should be
routed through.

2. ProcessPkt. We model how the gateway processes
packets using Alloy’s function interface (lines 11-18). A
function evaluates a series of statements and returns all pos-
sible solutions. A packet received by the gateway is sent to
the vSwitch for routing. The vSwitch routes the packet to the
specific middlebox (line 12). Then the middlebox processes
the packet and determines if the packet is benign or malicious
(lines 13). Benign packets are routed back to the switch and
sent to the IoT device while all other packets are dropped.

9

Table 4: JETFIRE’s mitigation of known SDN attacks.
Attack Type Example Attack Our Defense Mitigates

(a) Controller Application
A1: Manipulate controller application’s state [103]

Data Capsule + vTPM
A2: Manipulate controller application’s operations [37, 95, 103]
A3: Manipulate command or variable [37, 76] Data Capsule

(b) Control Channel
A4: Sniff messages [37]

Trusted AgentA5: Inject messages [18, 37, 95, 100, 103]
A6: Modify messages [37, 95, 103]

(c) Gateway Application
A7: Subvert middlebox execution [56, 86] Data Capsule + vTPM
A8: Manipulate command or variable [37, 76] Data Capsule

(d) Data Channel
A9: Modify packet path [45]

Packet Signing
A10: Modify packet data [45]

3. TrustedGateway. Next, we define a trusted gateway
(Eq 2) using Alloy’s pred interface (lines 19-26). A pred,
or predicate, evaluates a series of constraints. It returns true
only if all the constraints are met and false otherwise. Thus,
the following conditions must all be met for a gateway to be
trusted. First, an attacker must not be able to tamper with the
policy on the controller (line 20, Eq 3) Second, the control
channel between the controller and the gateway must be se-
cure so that it is immune to an attacker injecting malicious
messages (line 21, Eq 6). Third, the correct software must be
running on the controller, vSwitch, and middlebox (lines 22-
25, Eq 4). Finally, each packet must follow the path specified
by the controller. This must be enforced by the vSwitch and
each middlebox (line 26, Eq 5). If all of these conditions are
true then the gateway is trusted.

4. ProcessPktCorrectly. Finally, we define our goal (Eq 1)
that all output packets were processed correctly using Alloy’s
assert interface (lines 27-30). In Alloy, an assert claims
that a series of statements must be true based upon the model,
and will generate a counter example if any of the claims do not
hold to be true. A trusted gateway achieves the goal of allowing
all benign packets while dropping all malicious packets.
8.1.2 Model Evaluation

We analyzed our system model up to a bound of 100 (i.e.,
100 instances of each sig) and were unable to identify a
counter example resulting in the model outputing a packet
processed by an incorrect middlebox.7 Additionally, we system-
atically removed constraints related to our trust requirements
(e.g., middlebox code does not need to be attested, violating
T Rsw2) and verified that each resulted in a counter example that
violated our overarching trust property. This analysis provides
confidence in our our system’s design and trust requirements.

Our Alloy model aided in identifying nuances and helped us
refine our design. The model highlighted the need to prohibit
packets from completely skipping a middlebox. For example,
if a middlebox signs input and output packets with the same
key it allows a packet to bypass the middlebox without being
detected. Similarly, our model highlighted software compo-
nents that either needed to be trusted or be regularly attested
in order to trust the system’s operation (e.g., the controller
software). Next, we extend this model to evaluate JETFIRE’s
7This analysis can be performed on a personal computer (see Appendix A).

Listing 2 Example Alloy analysis of prior SDN attack, search
for ability of attacker to modify a controller application’s state.
1: pred CANMODAPPSTATE (c : Controller, a : Apps) {
2: a in c.apps ∧ a.state == Exposed

}
3: assert ATTACKERNOTMODTRUSTAPPSTATE(c : Controller, a : Apps)
4: TRUSTCONTROLLER(c)
5: a.state ==DataCapsule =⇒ CANMODAPPSTATE(c, a) == False

applicability beyond this use case, and look at securing broader
SDN architectures.

8.2 Robustness to Prior SDN Attacks
We further evaluated JETFIRE’s system model against 10

representant SDN attacks from the literature (summarized in
Table 4) [18, 37, 45, 95, 100, 103]. To identify if our system
could protect against these attacks, we extend our Alloy model.
Listing 2 provides an example extension for checking if a
controller application’s software state can be modified (the
full model of all attacks can be found in [15]). This example
verifies an attacker cannot modify an application’s state if it is
protected by a data capsule. The attacks we analyze fall into
the following four groupings based upon the attack’s target:
(a) controller applications, (b) control channel, (c) gateway
applications, and (d) data channel. We discuss each of these
attack types below.
(a) Controller Application Attacks: An attacker compromis-
ing the controller or a controller application could alter its state
or operations (e.g., controller’s global network view [103]).
JETFIRE can defend against this type of attack by placing the
critical data (e.g., security policy §5.2) into a data capsule, and
use a vTPM to attest other pieces.
(b) Control Channel Attacks: Attacks could tamper with an
established control channel between the controller and gateway
by injecting malicious flow rules into the vSwitch [103]. Our
trusted agent (§5.5) on the controller and each gateway can
prevent this type of attack by using encrypted and authenti-
cated channel. Further, JETFIRE can mitigate an attacker on the
gateway/controller from accessing the secret keys and sending
malicious messages from a compromised host.
(c) Gateway Application Attacks: Attackers could attack ap-
plications running on the gateway including middleboxes and
the vSwitch. For example, an attack could change the vSwitch’s
routing rules or modify a middlebox’s binary [56]. These will

10

result in incorrectly processing network traffic (e.g., disableing
a firewall’s drop action). As discussed in §5.3, a combination
of vTPM attestation and data capsule isolation can be used to
detect such attacks.
(d) Data Channel Attacks: Attackers that have tampered with
the OS can modify a packet’s processing path or its data,
such as bypassing a middlebox or modifying a packet pay-
load. These could result in incorrect gateway operations (e.g.,
allow a malicious packet the firewall should have dropped).
JETFIRE’s per-packet signing mechanism (§5.4) can detect
such data channel modifications.

This analysis implies our architecture’s applicability beyond
software-defined IoT security gateways and could be used for
securing a wider array of SDN-based architectures. Future
extensions such as confidential storage, controller DoS pro-
tections, and topology verification could provide additional
guarantees against prior attacks.

8.3 Synthetic Attacks on the Prototype
Beyond analyzing our system model, we generated synthetic

attacks to validate that our prototype implementation provided
each of our trust requirements (§4). We discuss each below.
(a) Rogue security policy modification (testing T Rsw1): We
simulate an attacker with local access to the controller attempt-
ing to modify the controller’s security policy (i.e., loading new
values). We verified that the micro-hypervisor access mediation
(via code white listing) denies this process access to the secu-
rity policy (as only the security policy application has access),
and that the security policy remains unchanged.
(b) Booting a modified middlebox image (testing T Rsw2):
We start a modified middlebox to simulate an attacker tamper-
ing with a middlebox. The controller detects this misconfigura-
tion (based upon the PCR quote it received) within 10 seconds
of the middlebox booting.
(c) Malicious control channel injection (testing T Rcomm1):
We inject false middlebox alert messages over the control chan-
nel to simulate an attacker attempting to change the middlebox
on the gateway. As these messages did not go through the
trusted agent, the messages were dropped by the controller for
failing authentication.
(d) Send packets on wrong path (testing T Rcomm2): To simu-
late an attacker sending packets to the wrong middlebox, we
sign packets with the wrong key (to generate an invalid signa-
ture). These malicious packets were injected both before and
after the middlebox process the packet to demonstrate both
OVS and the middlebox drop these invalid packets.

These validation tests gave us confidence that our implemen-
tation achieves our trust requirements. A more robust guarantee
about our implementation could be achieved using code verifi-
cation, we leave this to future work.

8.4 TCB of Micro-hypervisor and Extensions
Recall that one of our challenges §3.4 is to achieve our

trust properties while keeping a small TCB. Our baseline is

Fig. 6: Smart home IoT testbed deployment being pro-
tected by our prototype JETFIRE security gateway.
the uberXMHF micro-hypervisor used in our implementation,
which itself has a small TCB (5544 source lines [90]) and
has been formally verified [88, 91]. As shown in Table 5, we
add three main hypervisor extensions, each extensions was
implemented in less than 200 source lines of code. All of them
add a total increase of 6.6% of TCB size. This keeps the micro-
hypervisor code base amenable to (future) formal verification
(§10) as demonstrated by uberXMHF’s x86 verification [91].

Table 5: The impact of Jetfire’s extensions on TCB size.
Hypervisor Extensions Lines of code Percent increase
Data capsule 195 3.5%
Packet signing 70 1.3%
Trusted agent 102 1.8%

All extensions 367 6.6%

9 Performance Evaluation
Using our proof of concept implementation, we deployed

the system in a simulated IoT deployment(§9.1). This demon-
strates the ability to retrofit security into the deployment and
protect devices against various known network attacks.

9.1 Case Deployment
To demonstrate JETFIRE ease of deployment, we applied it to

protect a simulated smart home environment. These showcase
the diversity of security vulnerabilities it can patch without
impacting operations.
Smart Home IoT Testbed Deployment: Our simulated home
IoT deployment contained 17 IP-based, commercial home IoT
devices including: smart cameras, smart doorbells, smart plugs,
and smart lights (testbed shown in Fig. 6). These devices con-
nected to the JETFIRE gateway, which served as their WiFi
access point and deployed device-specific middleboxes for
each connected device. We then demonstrated the gateway’s
ability to patch two known vulnerabilities. (1) For camera with
default credentials, its traffic was routed through a Squid au-
thenticating HTTP proxy to add an extra layer of authentication.
(2) A network attached storage (NAS) with an unpatched Sam-
baCry vulnerability had its traffic routed through a Snort IPS

11

(a) Simultaneous Snort instances realized for each optimization. (b) Virtual memory profiling of single Snort instance.

Fig. 7: Scalability evaluation of the number of simultaneous Snort instances on a Raspberry Pi 3B after optimizations.

Fig. 8: Packet signing impact on median packets per sec-
ond (pps) throughput for user and kernel vSwitch.

that detected and blocked this exploit. Next, we measured the
latency latency increases for users’ HTTP requests when going
through the gateway. A small latency increase was noted, with
a median increase of 11.5 milliseconds. The increased latency
is much lower than the threshold (110 milliseconds) where
users error rates are noted to increase [54], which suggests that
JETFIRE can be deployed to provide trusted security for smart
homes without impacting users’ experience.

9.2 Scalability
For our architecture to be deployable in many settings (e.g.,

smart homes, factories), a single hardware gateway needs to
support small deployments (<20 IoT devices, §3.1). This scal-
ability is highly dependent upon the middlebox being used.
We utilized the most widely deployed IPS, Snort [14], as we
anticipate each IoT device requiring this security functionality.

As shown in Figure 7a, applying the optimizations discussed
in §6, we achieved a 19x increase in the number of simultane-
ous Snort instances. In particular, custom configurations (CC)
enabled an 8x increase (24 instances, average 69.8 MB/in-
stance), and utilizing both custom configurations and shared
memory enabled an additional 2.4x increase (57 instances,
average 36.1 MB/instance).

We noted a minimal impact on per-packet latency (with shar-
ing reducing latency) that these scalability optimizations had
on HTTP GET requests. As anticipated, the reduced config-
urations had similar latency. Moving the signature rules into
shared memory reduced the median latency by 4.3 milliseconds
(52% reduction). We hypothesize that this latency reduction
is from the shared memory not being evicted from the cache
during context switches.

9.3 Packet Processing Throughput
To protect data packets, Jetfire uses a lightweight signing

mechanism to add signatures for each packet (§5.4) in vSwitch.
In this experiment, we evaluate its throughput impact. As
shown Fig. 8, our baseline is ‘OVS kern’, which runs orig-
inal OVS kernel module for routing without involving any
extra overhead. First, we compare our kernel signing (‘Sign-
kern’) with IPsec tunnels, both without protection. We noted
our packet signing provided an additional 18% throughput for
full MTU, and 19% for 256 Byte packets. Second, we compare
our hypervisor protected packet signing (‘Hyp-Sign’) with an
alternative approach that performs signing in an enclave. As
noted earlier, trusted enclaves can only support user space ap-
plications, thus attempting to enable signing for vSwitch in
an enclave would require it operates in user space. We use
OVS packet signing in user space (‘OVS user’) to emulate this
approach. While this comparison favors our approximation of
a secure enclave as the real enclave implementation would add
extra overhead (e.g., memory copying), our approach still out-
performs this situation, particularly for smaller sized packets.

To further understand the impacts from the micro-hypervisor
protected signing, we microbenchmarked this operation. We
noted that the packet signing overhead is ∼1 millisecond (544
µseconds for HMAC and 519 µseconds for hypervisor call).
Impact on Real Deployment: In order to determine the
throughput impact in the real IoT deployment, we sampled
a number of commodity IoT devices during normal user inter-
action. We measured their median steady-state throughput to
approximate network utilization as well as the average packet
size (see details in Appendix A). We noted that many devices
have low steady-state throughput (<80 pps), with a small aver-
age packet size (<325 bytes). Additionally, the traffic is very
bursty, where the majority of devices had more than 30 sec-
onds between bursts. This burstiness makes our 1 millisecond
latency increase only impact a small percentage of IoT devices.
Thus, with many IoT devices having low network throughput
and send in bursts, a security gateway with a throughput of
1.6 Kpps could likely support 20 devices without creating a
significant impact on device operations.

10 Discussion
Use Cases Leveraging a Trusted Architecture: A JETFIRE
architecture could serve as the foundation for advanced ca-

12

pabilities that require increased trust in their operation. For
example, other work has looked at granting middleboxes the
ability to decrypt TLS data to enable functions such as IPS
on end-to-end encrypted data [49, 98]. These encryption keys
could be protected by the micro-hypervisor, and all processing
on the cleartext data be performed in the hypervisor. Providing
a guarantee that the encrypted data remains protected from an
attacker while enabling the detection of malicious packets in an
encrypted stream. Similarly, this trusted foundation could be
used for performing active deception, ensuring that an attacker
cannot control the deception to hide their actions.

Strengthening Trust Properties: Our trust property can be
further strengthened (e.g., any packet sent to the gateway is pro-
cessed by the correct middlebox) by incorporating protections
with the NIC driver. We identify two potential approaches:
(1) adding a layer of sign/verify at the NIC kernel driver, and
(2) placing the NIC driver as an extension within the micro-
hypervisor. This will enable JETFIRE to mitigate DoS attacks
where the attacker maliciously drops packets on the gateway.

Increasing Hardware Capabilities: IoT devices currently
have low network utilization, many sending <3 Mbps. In the
future, their network utilization is likely to increase; however,
more capable hardware platforms will also be available at low-
cost. For example, our prototype platform (Raspberry Pi 3B)
was limited by its network hardware capabilities (limited by the
USB 2.0 bus). The Raspberry Pi 4 has removed this bottleneck,
providing a 1 Gbps NIC (in addition to increased CPU and
memory). These hardware changes make the CPU the bottle-
neck, as the network throughput of JETFIRE on a Raspberry
Pi 4 is dependent upon the complexity of the operation being
performed on the network traffic (with throughput differences
of >200 Mbps between a Snort IPS and an iptables firewall).

Future Work: This paper demonstrates that a micro-
hypervisor based system architecture can be used for creat-
ing an efficacious trusted software-defined security gateway.
We demonstrate that the design is secure (§8). Future work
involves formally verifying the micro-hypervisor extensions to
ensure their implementation does not create vulnerabilities.

11 Related Work
We group related efforts into two categories: trusted com-

puting and SDN security. Our architecture leverages trusted
computing works to build a practical solution to defend a wide
range of attacks uncovered by prior SDN security efforts.

Trusted Computing: We leverage prior works on trusted
computing to create a practical architecture for trusting
software-defined IoT security architectures (e.g., which have
often placed the entire security architecture within the TCB
[35, 105, 106]). Hypervisors have been used to provide se-
curity primitives such as isolation, mediation, and attestation
[41, 46, 62, 84, 89, 93]. Micro-hypervisors have been shown
to support a variety of hardware platforms (x86 [77, 88],
ARM [90], microcontroller [4]) running unmodified software

(e.g., Linux)[4, 85, 89]. A primary use of TPMs is providing
remote attestation [7], leading to multiple software implemen-
tations [64, 89]. Secure routing proposals have used signatures
to verify packet paths [39, 48].

SDN Security: Prior works adding trust to SDN architectures
have only analyzed securing pieces. Piecemeal approaches
have been employed for adding trust by (1) using trusted hard-
ware (e.g., SGX) on data planes [56, 86], (2) adding security
features to SDN controllers [57, 76], and (3) developing tools
for analyzing consistency between the control and data plane.

For the data plane, trusted hardware (e.g., SGX [56, 86],
MPX [111]) has been looked to for providing increased secu-
rity guarantees about middleboxes running in untrusted cloud
environments. These approaches provide code attestation, con-
fidentiality, and mediation8 [56], and memory access bound-
aries checking [111]. Unfortunately, they are not ideal for IoT
as they have high performance overheads and lack general-
ity (limited to a specific CPU and only supporting user space
applications with constrained memory allocations).

For the control plane, researchers have focused on mediating
multiple applications on the controller by adding permissions
[30, 72, 76, 97]. Others have looked to ensure consistency of
routing rules generated by separate applications [29, 57]. Our
work looks to support these controllers and provide the ability
to provide foundation for guaranteeing trust in their operations.

Others have developed tools to ensure consistency between
the control and data planes with respect to packet routing,
creating tools for identifying forwarding anomalies [2, 12, 20,
25, 31, 32, 33, 60, 80, 82, 109, 110] and SDN-specific attacks
[18, 37, 66, 99]. Unfortunately, none of these provide runtime
protections against our threat model.

12 Conclusions

This paper addresses a fundamental question for future IoT
deployments: Can we create a foundation for trustworthy gate-
way architectures to retrofit security onto IoT deployments with
potentially insecure devices? In designing JETFIRE, we tack-
led key challenges in providing practical foundations for trust
and ensuring scalable yet low-cost capabilities for fine-grained
security postures. JETFIRE is trustworthy by construction and
is backed by a formal validation of its design and interfaces.
Our evaluation shows that JETFIRE can serve as the basis for
a low-cost, deployable, and trustworthy foundation for future
IoT security gateways. Using JETFIRE, we can support IoT
deployments with 50+ IoT where each has a customized IPS
(Snort) module running in a single Raspberry Pi 3B gateway.
We plan to open source our formal models and end-to-end
implementation [15] to spur further innovations for different
IoT deployments and allow others to build on our work.

8Mediation requires re-implementing the middlebox software.

13

References
[1] Researcher: Backdoor mechanism still active in many iot prod-

ucts. https://www.zdnet.com/article/researcher-backdoor-
mechanism-still-active-in-many-iot-products/, 2020.

[2] Ehab Al-Shaer et al. FlowChecker: Configuration Analysis and Verifi-
cation of Federated OpenFlow Infrastructures. In SafeConfig, 2010.

[3] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. Sok: Security
evaluation of home-based iot deployments. In 2019 IEEE S&P, 2019.

[4] Mahmoud Ammar, Bruno Crispo, Bart Jacobs, Danny Hughes, and
Wilfried Daniels. Sµv - the security microvisor: A formally-verified
software-based security architecture for the internet of things. IEEE
Trans. Dependable Sec. Comput., 16(5):885–901, 2019.

[5] Manos Antonakakis et al. Understanding the mirai botnet. In USENIX
Security 17, Vancouver, BC, 2017. USENIX Association.

[6] ARM. Trustzone - arm developer. https://developer.arm.com/ip-
products/security-ip/trustzone, 2020.

[7] Will Arthur, David Challener, and Kenneth Goldman. History of the
TPM. Apress, Berkeley, CA, 2015.

[8] David Barrera, Ian Molloy, and Heqing Huang. Standardizing iot
network security policy enforcement. In DISS 2018, 2018.

[9] Bit defender box 2. https://www.bitdefender.com/box/, 2018.
[10] A. Cenedese, A. Zanella, L. Vangelista, and M. Zorzi. Padova smart

city: An urban internet of things experimentation. In Proceeding of
IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks 2014, pages 1–6, 2014.

[11] Chen Chen, Petros Maniatis, Adrian Perrig, Amit Vasudevan, and Vyas
Sekar. Towards verifiable resource accounting for outsourced computa-
tion. In ACM VEE, 2013.

[12] Po-Wen Chi, Chien-Ting Kuo, Jing-Wei Guo, and Chin-Laung Lei.
How to Detect a Compromised SDN Switch. In NetSoft. IEEE, 2015.

[13] Cisco. Cisco visual network index. https://www.cisco.com/
c/m/en_us/solutions/service-provider/vni-forecast-
highlights.html#, 2019.

[14] Cisco. Snort. https://www.snort.org, 2019.
[15] Jetfire code. http://www.filedropper.com/usenixtar, 2020.
[16] George Coker, Joshua Guttman, Peter Loscocco, Amy Herzog, Jonathan

Millen, Brian O’Hanlon, John Ramsdell, Ariel Segall, Justin Sheehy,
and Brian Sniffen. Principles of remote attestation. International
Journal of Information Security, 10(2), 2011.

[17] Cujo. https://www.getcujo.com, 2018. Accessed: 2018-03-23.
[18] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann.

Sphinx: Detecting security attacks in software-defined networks. In
Ndss, volume 15, pages 8–11, 2015.

[19] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether:
malware analysis via hardware virtualization extensions. In Proc. of
CCS, 2008.

[20] Mihai Dobrescu and Katerina Argyraki. Software dataplane verifica-
tion. In 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 101–114, 2014.

[21] Naganand Doraswamy and Dan Harkins. IPSec: the new security stan-
dard for the Internet, intranets, and virtual private networks. Prentice
Hall Professional, 2003.

[22] Aristide Fattori, Roberto Paleari, Lorenzo Martignoni, and Mattia
Monga. Dynamic and transparent analysis of commodity production
systems. In Proc. of IEEE/ACM ASE 2010, 2010.

[23] Branden Ghena, William Beyer, Allen Hillaker, Jonathan Pevarnek, and
J. Alex Halderman. Green lights forever: Analyzing the security of
traffic infrastructure. In Proceedings of the 8th USENIX Conference
on Offensive Technologies, WOOT’14, page 7, USA, 2014. USENIX
Association.

[24] Stephen Herwig, Christina Garman, and Dave Levin. Achieving keyless
cdns with conclaves. In 29th USENIX Security Symposium (USENIX
Security 20), pages 735–751. USENIX Association, August 2020.

[25] Alex Horn, Ali Kheradmand, and Mukul Prasad. Delta-net: Real-time
network verification using atoms. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), pages 735–
749, 2017.

[26] IHS. Internet of things (iot) connected devices installed base worldwide
from 2015 to 2025 (in billions). www.statista.com/statistics/
471264/iot-number-of-connected-devices-worldwide/, 2018.

[27] Intel. Intel software guard extensions: Developer guide.
https://download.01.org/intel-sgx/linux-1.7/docs/
Intel_SGX_Developer_Guide.pdf, 2016.

[28] Daniel Jackson. Alloy: A new technology for software modelling. In
Joost-Pieter Katoen and Perdita Stevens, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 20–20, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

[29] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. Covisor:
A compositional hypervisor for software-defined networks. In 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), pages 87–101, 2015.

[30] Heedo Kang, Seungwon Shin, Vinod Yegneswaran, Shalini Ghosh,
and Phillip Porras. Aegis: An automated permission generation and
verification system for sdns. In Proceedings of the 2018 Workshop on
Security in Softwarized Networks: Prospects and Challenges, pages
20–26, 2018.

[31] Peyman Kazemian et al. Real Time Network Policy Checking Using
Header Space Analysis. In NSDI. USENIX, 2013.

[32] Ahmed Khurshid et al. Veriflow: Verifying network-wide Invariants in
Real Time. In NSDI. USENIX, 2013.

[33] Hyojoon Kim et al. Kinetic: Verifiable Dynamic Network Control. In
NSDI. USENIX, 2015.

[34] Tiffany Hyun-Jin Kim, Cristina Basescu, Limin Jia, Soo Bum Lee,
Yih-Chun Hu, and Adrian Perrig. Lightweight source authentication
and path validation. In Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM ’14, 2014.

[35] Ronny Ko and James Mickens. Deadbolt: Securing iot deployments.
In Proceedings of the Applied Networking Research Workshop, pages
50–57, 2018.

[36] Lora Kolodny. Elon musk emails employees about ’ex-
tensive and damaging sabotage’ by employee. https:
//www.cnbc.com/2018/06/18/elon-musk-email-employee-
conducted-extensive-and-damaging-sabotage.html, 2018.
Accessed: 2019-04-12.

[37] Seungsoo Lee, Changhoon Yoon, Chanhee Lee, Seungwon Shin, Vinod
Yegneswaran, and Phillip A Porras. Delta: A security assessment
framework for software-defined networks. In NDSS, 2017.

[38] Markus Legner, Tobias Klenze, Marc Wyss, Christoph Sprenger, and
Adrian Perrig. Epic: Every packet is checked in the data plane of a
path-aware internet. In 29th USENIX Security Symposium, USENIX
Security ’20, 2020.

[39] Matt Lepinski and Kotikalapudi Sriram. Bgpsec protocol specification.
Draft-ietf-sidr-bgpsecprotocol, 2013.

[40] Grace Lewis, Sebastian Echeverría, Craig Mazzotta, Christopher
Grabowski, Kyle O’Meara, Amit Vasudevan, Marc Novakouski,
Matthew McCormack, and Vyas Sekar. Kalki: a software-defined
iot security platform. In IEEE Virtual World Forum on Internet of
Things 2020, 2020.

[41] Lionel Litty, H Andrés Lagar-Cavilla, and David Lie. Hypervisor
support for identifying covertly executing binaries. In USENIX Security
Symposium, 2008.

[42] Lionel Litty, H. Andrés Lagar-Cavilla, and David Lie. Hypervisor
support for identifying covertly executing binaries. In Proc. of USENIX
Security, 2008.

[43] Lee Mathews. Boeing is the latest wannacry ransomware vic-
tim. https://www.forbes.com/sites/leemathews/2018/
03/30/boeing-is-the-latest-wannacry-ransomware-
victim/#9b1382d66344, 2018. Accessed: 2018-11-19.

[44] M. McCormack, S. Chandrasekaran, G. Liu, T. Yu, S. Wolf, and V. Sekar.
"security analysis of networked 3d printers". In IEEE Workshop on the
Internet of Safe Things, 2020.

[45] Matt McCormack, Amit Vasudevan, Guyue Liu, Sebastián Echeverría,
Kyle O’Meara, Grace Lewis, and Vyas Sekar. Towards an architecture
for trusted edge iot security gateways. In 3rd USENIX Workshop on

14

https://www.zdnet.com/article/researcher-backdoor-mechanism-still-active-in-many-iot-products/
https://www.zdnet.com/article/researcher-backdoor-mechanism-still-active-in-many-iot-products/
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://www.bitdefender.com/box/
https://www.cisco.com/c/m/en_us/solutions/service-provider/vni-forecast-highlights.html#
https://www.cisco.com/c/m/en_us/solutions/service-provider/vni-forecast-highlights.html#
https://www.cisco.com/c/m/en_us/solutions/service-provider/vni-forecast-highlights.html#
https://www.snort.org
http://www.filedropper.com/usenixtar
https://www.getcujo.com
www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://www.cnbc.com/2018/06/18/elon-musk-email-employee-conducted-extensive-and-damaging-sabotage.html
https://www.cnbc.com/2018/06/18/elon-musk-email-employee-conducted-extensive-and-damaging-sabotage.html
https://www.cnbc.com/2018/06/18/elon-musk-email-employee-conducted-extensive-and-damaging-sabotage.html
https://www.forbes.com/sites/leemathews/2018/03/30/boeing-is-the-latest-wannacry-ransomware-victim/#9b1382d66344
https://www.forbes.com/sites/leemathews/2018/03/30/boeing-is-the-latest-wannacry-ransomware-victim/#9b1382d66344
https://www.forbes.com/sites/leemathews/2018/03/30/boeing-is-the-latest-wannacry-ransomware-victim/#9b1382d66344

Hot Topics in Edge Computing (HotEdge 20). USENIX Association,
June 2020.

[46] Jonathan M. McCune et al. Trustvisor: Efficient TCB reduction and
attestation. In IEEE S&P, 2010.

[47] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam
Datta, Virgil Gligor, and Adrian Perrig. TrustVisor: Efficient TCB
reduction and attestation. In IEEE S&P, May 2010.

[48] Jad Naous, Michael Walfish, Antonio Nicolosi, David Mazières,
Michael Miller, and Arun Seehra. Verifying and enforcing network
paths with icing. In Proceedings of the Seventh COnference on Emerg-
ing Networking EXperiments and Technologies, CoNEXT ’11, New
York, NY, USA, 2011. Association for Computing Machinery.

[49] David Naylor et al. And then there were more: Secure communication
for more than two parties. In CoNEXT. ACM, 2017.

[50] Phil Oester. Linux kernel memory subsystem copy on write mechanism
contains a race condition vulnerability. https://www.kb.cert.org/
vuls/id/243144/, 2016. Accessed: 14 February 2020.

[51] Patrick Howell O’Neill. Russian hackers are infiltrating compa-
nies via the office printer. https://www.technologyreview.
com/f/614062/russian-hackers-fancy-bear-strontium-
infiltrate-iot-networks-microsoft-report/, 2019.

[52] Danny Palmer. Iot security: Now dark web hackers are tar-
geting internet-connected gas pumps. https://www.zdnet.
com/article/iot-security-now-dark-web-hackers-are-
targeting-internet-connected-gas-pumps/, 2019.

[53] Misun Park, Ketan Bhardwaj, and Ada Gavrilovska. Toward lighter
containers for the edge. In 3rd {USENIX} Workshop on Hot Topics in
Edge Computing (HotEdge 20), 2020.

[54] Andriy Pavlovych and Carl Gutwin. Assessing target acquisition and
tracking performance for complex moving targets in the presence of
latency and jitter. In Proceedings of Graphics Interface 2012, GI ’12,
page 109–116, CAN, 2012. Canadian Information Processing Society.

[55] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
Keith Amidon, and Martin Casado. The design and implementation
of open vswitch. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), Oakland, CA, 2015. USENIX
Association.

[56] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
Safebricks: Shielding network functions in the cloud. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18), pages 201–216, 2018.

[57] Phillip A Porras, Steven Cheung, Martin W Fong, Keith Skinner, and
Vinod Yegneswaran. Securing the software defined network control
layer. In NDSS, 2015.

[58] Dan RK Ports and Tal Garfinkel. Towards application security on
untrusted operating systems. In HotSec, 2008.

[59] J.M. PORUP. How hacking team got hacked. https:
//arstechnica.com/information-technology/2016/04/how-
hacking-team-got-hacked-phineas-phisher/, 2016. Accessed:
2019-10-02.

[60] Santhosh Prabhu, Gohar Irfan Chaudhry, Brighten Godfrey, and
Matthew Caesar. High-coverage testing of softwarized networks. In
Proceedings of the 2018 Workshop on Security in Softwarized Networks:
Prospects and Challenges, pages 46–52, 2018.

[61] Daniel Quist, Lorie Liebrock, and Joshua Neil. Improving antivirus
accuracy with hypervisor assisted analysis. J. Comput. Virol., 7(2), May
2011.

[62] Daniel Quist, Lorie Liebrock, and Joshua Neil. Improving antivirus ac-
curacy with hypervisor assisted analysis. Journal in computer virology,
7(2):121–131, 2011.

[63] S. Raileanu, T. Borangiu, O. Morariu, and I. Iacob. Edge computing
in industrial iot framework for cloud-based manufacturing control. In
2018 22nd International Conference on System Theory, Control and
Computing (ICSTCC), pages 261–266, 2018.

[64] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah
Cox, Paul England, Chris Fenner, Kinshuman Kinshumann, Jork Loeser,
Dennis Mattoon, Magnus Nystrom, David Robinson, Rob Spiger, Stefan

Thom, and David Wooten. ftpm: A software-only implementation of
a TPM chip. In 25th USENIX Security Symposium (USENIX Security
16), pages 841–856, Austin, TX, August 2016. USENIX Association.

[65] Rattrap. https://www.myrattrap.com, 2018. Accessed: 2018-03-
23.

[66] Christian Röpke and Thosten Holz. Preventing malicious sdn appli-
cations from hiding adverse network manipulations. In Proceedings
of the 2018 Workshop on Security in Softwarized Networks: Prospects
and Challenges, pages 40–45, 2018.

[67] Volker Roth, Wolfgang Polak, Eleanor Rieffel, and Thea Turner. Simple
and effective defense against evil twin access points. In Proceedings of
the First ACM Conference on Wireless Network Security, WiSec ’08,
page 220–235, New York, NY, USA, 2008. Association for Computing
Machinery.

[68] Bob Rudis, Wade Woolwine, and Kwan Lin. 2020: Q2 threat
report. https://www.rapid7.com/research/report/2020Q2-
threat-report/, 2020.

[69] J. M. Rushby and B. Randell. A distributed secure system. In 1983
IEEE Symposium on Security and Privacy, pages 127–127, April 1983.

[70] Alex Schiffer. How a fish tank helped hack a casino.
https://www.washingtonpost.com/news/innovations/wp/
2017/07/21/how-a-fish-tank-helped-hack-a-casino/, 2017.
Accessed: 2019-09-23.

[71] Fabian Schwarz and Christian Rossow. SENG, the sgx-enforcing net-
work gateway: Authorizing communication from shielded clients. In
29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, 2020.

[72] Sandra Scott-Hayward. Design and Deployment of Secure, Robust, and
Resilient SDN Controllers. In NetSoft. IEEE, 2015.

[73] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: A
tiny hypervisor to provide lifetime kernel code integrity for commodity
OSes. In Proc. of SOSP, 2007.

[74] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao. Are we ready for
sdn? implementation challenges for software-defined networks. IEEE
Communications Magazine, 51(7):36–43, 2013.

[75] Monirul I. Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. Secure
in-vm monitoring using hardware virtualization. In Proc. of CCS, 2009.

[76] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jae-
woong Chung, Phillip Porras, Vinod Yegneswaran, Jiseong Noh, and
Brent Byunghoon Kang. Rosemary: A robust, secure, and high-
performance network operating system. In Proceedings of the 2014
ACM SIGSAC conference on computer and communications security,
pages 78–89, 2014.

[77] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa
Omote, Shoichi Hasegawa, Takashi Horie, Manabu Hirano, Kenichi
Kourai, Yoshihiro Oyama, Eiji Kawai, et al. Bitvisor: a thin hyper-
visor for enforcing i/o device security. In Proceedings of the 2009
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, pages 121–130, 2009.

[78] A. K. Simpson et al. Securing vulnerable home iot devices with an
in-hub security manager. In 2017 IEEE PerCom Workshops, 2017.

[79] L. Singaravelu, C. Pu, H. Haertig, and C. Helmuth. Reducing TCB
complexity for security-sensitive applications: Three case studies. In
EuroSys, 2006.

[80] Sooel Son, Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and
Guofei Gu. Model Checking Invariant Security Properties in OpenFlow.
In ICC. IEEE, 2013.

[81] https://suricata-ids.org, 2020.
[82] Aisha Syed, Bilal Anwer, Vijay Gopalakrishnan, and Jacobus Van der

Merwe. Depo: A platform for safe deployment of policy in a software
defined infrastructure. In Proceedings of the 2019 ACM Symposium on
SDN Research, pages 98–111, 2019.

[83] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making trust
between applications and operating systems configurable. In OSDI,
2006.

[84] Richard Ta-Min, Lionel Litty, and David Lie. Splitting interfaces:
Making trust between applications and operating systems configurable.

15

https://www.kb.cert.org/vuls/id/243144/
https://www.kb.cert.org/vuls/id/243144/
https://www.technologyreview.com/f/614062/russian-hackers-fancy-bear-strontium-infiltrate-iot-networks-microsoft-report/
https://www.technologyreview.com/f/614062/russian-hackers-fancy-bear-strontium-infiltrate-iot-networks-microsoft-report/
https://www.technologyreview.com/f/614062/russian-hackers-fancy-bear-strontium-infiltrate-iot-networks-microsoft-report/
https://www.zdnet.com/article/iot-security-now-dark-web-hackers-are-targeting-internet-connected-gas-pumps/
https://www.zdnet.com/article/iot-security-now-dark-web-hackers-are-targeting-internet-connected-gas-pumps/
https://www.zdnet.com/article/iot-security-now-dark-web-hackers-are-targeting-internet-connected-gas-pumps/
https://arstechnica.com/information-technology/2016/04/how-hacking-team-got-hacked-phineas-phisher/
https://arstechnica.com/information-technology/2016/04/how-hacking-team-got-hacked-phineas-phisher/
https://arstechnica.com/information-technology/2016/04/how-hacking-team-got-hacked-phineas-phisher/
https://www.myrattrap.com
https://www.rapid7.com/research/report/2020Q2-threat-report/
https://www.rapid7.com/research/report/2020Q2-threat-report/
https://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/
https://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/
https://suricata-ids.org

In Proceedings of the 7th symposium on Operating systems design and
implementation, pages 279–292, 2006.

[85] Hendrik Tews, Tjark Weber, Marcus Völp, Erik Poll, MCJD van Eeke-
len, and PJB van Rossum. Nova micro–hypervisor verification. CTIT
technical report series, 2008.

[86] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod
Bhatotia, and Christof Fetzer. Shieldbox: Secure middleboxes using
shielded execution. In Proceedings of the Symposium on SDN Research,
pages 1–14, 2018.

[87] uan Pedro Tomás. Smart city case study: Santander, spain.
https://enterpriseiotinsights.com/20170116/smart-
cities/smart-city-case-study-santander-tag23-tag99,
2017.

[88] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta.
Design, implementation and verification of an extensible and modular
hypervisor framework. In 2013 IEEE S&P, 2013.

[89] Amit Vasudevan. The uber extensible micro-hypervisor framework
(uberxmhf). In Practical Security Properties on Commodity Computing
Platforms, pages 37–71. Springer, 2019.

[90] Amit Vasudevan and Sagar Chaki. Have your pi and eat it too: Practical
security on a low-cost ubiquitous computing platform. In 2018 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 183–
198. IEEE, 2018.

[91] Amit Vasudevan, Sagar Chaki, Petros Maniatis, Limin Jia, and Anupam
Datta. überspark: Enforcing verifiable object abstractions for auto-
mated compositional security analysis of a hypervisor. In 25th USENIX
Security Symposium (USENIX Security 16), pages 87–104, Austin, TX,
August 2016. USENIX Association.

[92] Amit Vasudevan, Bryan Parno, Ning Qu, Virgil D. Gligor, and Adrian
Perrig. Lockdown: Towards a safe and practical architecture for security
applications on commodity platforms. In Proc. of TRUST, 2012.

[93] Amit Vasudevan, Bryan Parno, Ning Qu, Virgil D Gligor, and Adrian
Perrig. Lockdown: Towards a safe and practical architecture for security
applications on commodity platforms. In International Conference on
Trust and Trustworthy Computing, pages 34–54. Springer, 2012.

[94] Amit Vasudevan, Ning Qu, and Adrian Perrig. Xtrec: Secure real-time
execution trace recording on commodity platforms. In Proc. of IEEE
HICSS, 2011.

[95] Haopei Wang, Guangliang Yang, Phakpoom Chinprutthiwong, Lei Xu,
Yangyong Zhang, and Guofei Gu. Towards fine-grained network se-
curity forensics and diagnosis in the sdn era. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’18, page 3–16, New York, NY, USA, 2018. Association
for Computing Machinery.

[96] Zhi Wang, Chiachih Wu, Michael Grace, and Xuxian Jiang. Isolating
commodity hosted hypervisors with hyperlock. In Proc. of EuroSys
2012, 2012.

[97] Xitao Wen et al. Towards a Secure Controller Platform for OpenFlow
Applications. In HotSDN. ACM, 2013.

[98] Judson Wilson et al. Trust but verify: Auditing the secure internet of
things. In MobiSys, pages 464–474. ACM, 2017.

[99] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou, and
Boon Thau Loo. Automated bug removal for software-defined net-
works. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 719–733, 2017.

[100] F. Xiao, J. Zhang, J. Huang, G. Gu, D. Wu, and P. Liu. Unexpected
data dependency creation and chaining: A new attack to sdn. In 2020
IEEE Symposium on Security and Privacy (SP), pages 1512–1526, Los
Alamitos, CA, USA, may 2020. IEEE Computer Society.

[101] X. Xiong, D. Tian, and P. Liu. Practical protection of kernel integrity
for commodity os from untrusted extensions. In Proc. of NDSS, 2011.

[102] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan
Zhang, and Dawu Gu. From collision to exploitation: Unleashing use-
after-free vulnerabilities in linux kernel. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
pages 414–425, 2015.

[103] C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, V. Yegneswaran, P. Porras,
and G. Gu. Flow wars: Systemizing the attack surface and defenses in

software-defined networks. IEEE/ACM Transactions on Networking,
25(6):3514–3530, 2017.

[104] Miao Yu, Virgil D. Gligor, and Zongwei Zhou. Trusted display on
untrusted commodity platforms. In ACM CCS, pages 989–1003, 2015.

[105] Tianlong Yu, Seyed Kaveh Fayaz, Michael P Collins, Vyas Sekar, and
Srinivasan Seshan. Psi: Precise security instrumentation for enterprise
networks. In NDSS, 2017.

[106] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj Agarwal, and Chen-
ren Xu. Handling a trillion (unfixable) flaws on a billion devices: Re-
thinking network security for the internet-of-things. In Proceedings of
the 14th ACM Workshop on Hot Topics in Networks, pages 1–7, 2015.

[107] Zeek. https://zeek.org, 2020.
[108] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. Cloudvisor:

retrofitting protection of virtual machines in multi-tenant cloud with
nested virtualization. In Proc. of SOSP, 2011.

[109] Peng Zhang, Hao Li, Chengchen Hu, Liujia Hu, Lei Xiong, Ruilong
Wang, and Yuemei Zhang. Mind the gap: Monitoring the control-data
plane consistency in software defined networks. In Proceedings of the
12th International on Conference on emerging Networking EXperiments
and Technologies, pages 19–33, 2016.

[110] Peng Zhang, Shimin Xu, Zuoru Yang, Hao Li, Qi Li, Huanzhao Wang,
and Chengchen Hu. Foces: Detecting forwarding anomalies in software
defined networks. In 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), pages 830–840. IEEE, 2018.

[111] Wei Zhang, Abhigyan Sharma, Kaustubh Joshi, and Timothy Wood.
Hardware-assisted isolation in a multi-tenant function-based dataplane.
In Proceedings of the Symposium on SDN Research, pages 1–7, 2018.

[112] Zongwei Zhou, Virgil D. Gligor, James Newsome, and Jonathan M.
McCune. Building verifiable trusted path on commodity x86 computers.
In IEEE S&P, 2012.

[113] Zongwei Zhou, Miao Yu, and Virgil D. Gligor. Dancing with Giants:
Wimpy Kernels for On-demand Isolated I/O. In Proc. of IEEE S&P,
2014.

16

https://enterpriseiotinsights.com/20170116/smart-cities/smart-city-case-study-santander-tag23-tag99
https://enterpriseiotinsights.com/20170116/smart-cities/smart-city-case-study-santander-tag23-tag99
https://zeek.org

A Additional Design Details

A.1 Packet Signing Algorithm Evaluation

As a sign and verify operation is performed twice for every
packet, our signing algorithm needs to provide high throughput
for short message sizes. We benchmarked a range of poten-
tial algorithms, from public-key signatures (e.g., ECDSA) to
signed message authentication codes (e.g., HMAC, CMAC,
etc.). We determined that a SHA1-HMAC was optimal on the
Raspberry Pi platform.

We compared the network throughput when computing a
signature in user space for each packet to a baseline throughput
when no signatures were calculated (shown in Table 6).

Table 6: Signing algorithm comparison on Raspberry Pi
3B for a user space application signing full MTU packets.

Algorithm Normalized
Throughput Signature Length (bytes)

Baseline (no signing) 1.0 0
HMAC-SHA1 0.243 20
HMAC-MD5 0.236 16
HMAC-SHA256 0.221 32
CMAC-AES 0.0313 16
CMAC-RC2 0.0274 8
ECDSA 0.00013 72
UMAC* 0.00067 16
GMAC* 0.27 16
*Requires random nonce/IV

A.2 vTPM vs physical TPM

As a microbenchmark, we compared the time required to
store a measurement (e.g., extend a PCR) on a physical TPM
with a virtual TPM. As shown in Table 7, the virtual TPM
was 20x faster while providing 8x more measurement storage
locations (PCRs).

Table 7: TPM PCR extend comparison between virtual
and physical TPMs on the Raspberry Pi 3B.

TPM Median Time PCR Registers
Physical 17.2 milliseconds 24
Virtual 0.86 milliseconds configurable, up to 120

A.3 Model Evaluation Resources

When evaluating our system model, we measured the sys-
tem resources required for a given model size. The resource
utilization is shown in Table 8.

Table 8: Resources required for Alloy model analysis.
Level of BMC Variables Memory (MB) Time (seconds)
5 18,212 110 0.062
10 81,239 159 0.27
20 430,174 702 1.98
50 4,976,794 4,441 143.63
60 8,276,734 6,034 406.59
100 35,358,494 10,240 5,998.29

A.4 Sample IoT Data
Our sampling of commodity IoT devices consisted of 10

devices. These ranged from smart speakers, to vacuum cleaners
and security systems. We measured their network traffic while
under normal usage conditions. Their network characteristics
are shown in Table 9.
Table 9: etwork characteristic of a sample of home IoT
devices during normal usage.

Device Type
Steady-state
Throughput

(pps)

Average
packet size

(bytes)

Peak
Throughput

(pps)

Time between
bursts (s)

Speaker A 191 793.5 2502 30
Speaker B 46 287.5 154 *
Vacuum A 8 291.5 >30 >10000
Vacuum B 5 103.5 5 *
Smart Plug A 10 87.5 50 >10000
Smart Plug B 15 166.5 32 >60
Security Sys A 10 87.5 10 *
Security Sys B 28 203.5 32 *
Smart TV 81 185.5 347 >10000
Smart Camera 392 322.5 392 *

* - Device traffic not bursty

17

	Introduction
	Background and Motivation
	IoT Security Gateways
	Need for Trustworthy Gateways

	System Overview
	System Goals
	Key Components
	Assumptions
	Challenges

	Formulate Trust Requirements
	System Design for Low-cost, Low-TCB Trust
	Micro-hypervisor as a root-of-trust
	Data Capsule for Security Policy Isolation and Mediation
	vTPM for Component Instance Validation
	Packet Signing for Packet Path and Data Validation
	Trusted Agent for Control Message Integrity and Authentication
	Design Summary

	Lightweight Middleboxes for Scalability
	Identifying Bottlenecks
	Optimizations

	Implementation
	Security Evaluation
	Validating Our Design
	Formal Model Description
	Model Evaluation

	Robustness to Prior SDN Attacks
	Synthetic Attacks on the Prototype
	TCB of Micro-hypervisor and Extensions

	Performance Evaluation
	Case Deployment
	Scalability
	Packet Processing Throughput

	Discussion
	Related Work
	Conclusions
	Additional Design Details
	Packet Signing Algorithm Evaluation
	vTPM vs physical TPM
	Model Evaluation Resources
	Sample IoT Data

