Automatic Discovery of Evasion Attacks Against
Stateful Firewalls

Soo-Jin Moon, Yves Bieri, Ruben Martins, Vyas Sekar
January 19, 2021

CMU-CyLab-21-001

CyLab
Carnegie Mellon University

Pittsburgh, PA 15213

https://cylab.cmu.edu/files/pdfs/tech_reports/CMUCyLab21001.pdf
http://www.cylab.cmu.edu/

Automatic Discovery of Evasion Attacks Against Stateful Firewalls

Soo-Jin Moon, Yves Bieri§;‘< Ruben Martins, Vyas Sekar

Carnegie Mellon University, 8 Compass Security

Abstract

Stateful firewalls (FW) play a critical role in securing our
current network infrastructure in various deployments. In this
work, we focus on discovering evasion attacks that arise due
to semantic implementation vulnerabilities of the intended
stateful behaviors. Such attacks enable firewall evasion even
if the rules are configured correctly. This is in contrast to
prior work that focused on software bugs for privilege esca-
lation and/or policy misconfigurations. Given the black-box
and proprietary nature of firewall implementations, we de-
sign and implement a model-guided approach for uncovering
such evasion vulnerabilities. Specifically, we infer a behav-
ioral model of a specific FW implementation and then use
the inferred model to synthesize attack strategies for a given
deployment and threat model. In designing Pryde, we address
key technical challenges in ensuring that our model infer-
ence is tractable and our attack synthesis can cover multiple
semantic vulnerability opportunities. We evaluate Pryde on
four production-quality firewalls. We discover thousands of
distinct attack sequences for 4 popular firewalls (FW).

1 Introduction

Network firewalls (FW) play a critical role in securing our
current network infrastructures in various deployment set-
tings — including enterprise networks [14], cloud virtualized
networks [3], and modern containerized settings [10]. Specifi-
cally, these firewalls impose restrictions on undesirable traffic
from the outside network to the intranet.

Of particular interest are stateful firewalls. As opposed to
simple access control lists, stateful firewalls track the state of
individual TCP connections (together with firewall rules) to
determine which packets are forwarded. A canonical policy
in such a setting is that only packets on TCP connections that
have previously been established by hosts inside the intranet
are allowed by the firewall.

*Contributions by Yves Bieri were made during the time he was a visiting
researcher at Carnegie Mellon University.

Administrators deploying firewalls implicitly assume that
the vendor implements the stateful semantics correctly. Unfor-
tunately, if vendor implementations are erroneous, then it can
weaken the security posture. For instance, an enterprise fire-
wall with such errors could allow external attackers to reach
internal hosts that should not be reachable. Note that this is
orthogonal to prior work in firewall analysis that examines
the safety of the firewall rules and misconfigurations (e.g.,
[18,20,42]). The types of vulnerabilities we consider are a
more fundamental semantic vulnerability in tracking internal
states and hence are viable even if the rules are configured
correctly.

Unfortunately, operators have few, if any, tools to check
if the vendor firewall implementations have such semantic
vulnerabilities. Manual investigation will be ineffective and
not scalable across many vendors and versions. Ideally, we
need to automatically identify such evasion vulnerabilities.
Complicating this further, FWs are proprietary and acquired
from vendors. Hence, operators have limited visibility into
the code/internals of these FWs.

This black-box setting makes the analysis even more
challenging. While fuzzing or black-box pen-testing tools
(e.g. [2,13,26,27]) or recent work on censorship evasion
(e.g., [22,41]) appear as strawman solutions, in practice they
have shortcomings. First, their focus is often orthogonal to our
intent. For instance, pen-testing focuses on finding privilege
escalation or application-layer problems in the management
APIs. The prior work on censorship evasion focuses on the
opposite problem of an internal host accessing an external
service. Second, they cannot handle the large search space
of possible stateful or connection-oriented packet sequences.
Third, they are not robust in discovering subtle attacks across
FW implementations with varying degrees of implementation
complexity.

In this work, we present Pryde, a black-box analysis frame-
work for automatically uncovering semantic evasion vulnera-
bilities for firewalls. Pryde only requires input-output access
to the firewall and does need visibility into the binary or the
code. We specifically focus on evasion vulnerabilities that al-

low an external attacker to circumvent the firewall to send an
undesirable “data” packet to an internal target which should
not be reachable by the policy. This capability can subse-
quently be used as a starting point for more detailed attack
campaigns for persistent threats, lateral movement, and/or
exfiltration of sensitive information.

Pryde uses a model-guided approach [40] that proceeds
in two logical phases. The first phase uses blackbox model
inference to reason about the stateful behavior a given fire-
wall implements for different packet sequences. Then, given
this inferred model, we consider different deployment and
threat scenarios to identify evasion vulnerabilities. In con-
trast to random fuzzing or randomly generating test packet
sequences, our approach is efficient and can uncover many
semantically different vulnerabilities (§6). Our approach is
general across firewall implementations and extensible to sup-
port future evasion scenarios. In designing and implementing
Pryde, we address key technical challenges to (1) make the
model inference robust to consider different types of packets,
and (2) efficiently encode the scenarios in a model checker
and define custom refinement constraints to enable the model
checker to explore new attack pathways efficiently.

Findings: Realizing the above workflow and ideas, we design
and implement Pryde.' We evaluate Pryde on four popular
(virtual) firewalls where three are commercial-grade and one
open-source. Two of these 4 are taken from the Amazon
EC2 marketplace [1] and also used in the cloud deployments.
(We anonymize vendors’ names.) We summarize our findings
below (§6):

* Many semantically distinct attacks: We uncover thousands
of semantically distinct (i.e., with respect to the connection
states traversed) attacks—2,591 for FW-1, 2,355 for FW-2,
8,220 for FW-3, and 294 for FW-4. Post-processing these
attacks, we find that these attacks exploit different aspects
of the TCP. For instance, some of these attacks exploit a
FW forwarding an external DATA packet “even before” the
three-way handshake has been completed or after an in-
complete handshake has been disrupted. Some exploit the
simultaneous open feature of the TCP and/or SYN retries.
At a high level, these attacks exploit (1) non-traditional se-
quences of TCP packets; (2) interference from other TCP
connections (e.g., same headers in reverse direction or non-
compliant sequence/ acknowledgement numbers), and com-
bination of (1) and (2).

* Many evasion attacks are subtle: While some attack se-
quences are simple (i.e., requiring only one or two TCP
packets), many others are quite subtle and require a nu-
anced TCP packet sequence. Specifically, we uncover more
attacks involving longer sequences that are not captured in
smaller sequences; e.g., 47 attacks for an attack length of 1
to 3 vs. 9,231 for an attack sequence length of just 7. For

'The name Pryde is inspired by the Marvel X-men superhero Kitty Pryde
who has the ability to use her “phasing” powers to walk through walls [8].

instance, FW-1 entails a carefully constructed TCP pack-
ets involving RST packets after the SYN retries to allow a
DATA. Several attacks are also unique to specific vendors
and do not extrapolate across vendors.

» Strawman solutions are ineffective: In contrast to Pryde,
random fuzzing only finds a handful of attacks (O to 3)
for FW-3 and FW-1 after more than 15K tries. This ap-
proach is not robust across FW implementations. Recent
work on automatic censorship evasion using genetic algo-
rithms (e.g., [22]) is also ineffective at uncovering these
attacks. (To be fair, censorship circumvention focuses on an
orthogonal problem with a different system goal and threat
model that makes their strategies ineffective in our context.)

Ethics and Disclosure: We have disclosed preliminary find-
ings to vendors.

2 Background and Motivation

In this section, we provide the background on stateful fire-
walls (FW) and the deployment model we consider. Then,
we highlight motivating examples of evasion vulnerabilities
against a commercial firewall to motivate our work.

2.1 Background on Stateful Firewalls

A FW is the central network device that stops or mitigates un-
wanted access to the private (protected) networks from other
untrusted external networks such as the Internet. We specif-
ically consider a layer-3 stateful firewall (FW) in this work.
A stateful FW decides whether to drop or forward a network
packet based on the 5-tuple defining a connection (srcip, src-
port, dstip, dstport, proto), and the configured rules. Typically,
a stateful FW is configured with rules of the following form:
{ interface, srcip, srcport, dstip, dstport — action} where in-
terface refers to an interface where incoming TCP packets are
matched to (also, can be a wildcard). A FW configured with
each rule keeps the states of network connections (i.e., a TCP
connection state) and tracks a state during a connection’s life-
time based on the 5-tuple. Further, a FW also monitors both
incoming and outgoing packets across interfaces to update the
connection state accordingly. This connection state may in-
clude details such as the sequence (seq) and acknowledgment
(ack) numbers of the packets traversing the connection.

Deployment model: In an enterprise network, stateful FWs
(Figure 1) are typically configured to drop all external packets
that do not belong to an established connection initiated from
an internal host. For instance, the firewall must allow internal
hosts to initiate a connection to a web service, W, and also
allow the return “data” packets from W to arrive at the host
that initiated the connection. This is the “stateful” part; if we
only had simple stateless rules to allow traffic from internal
hosts to W and block incoming traffic from the Internet, then
the return data packets from W would never arrive.

Block external accesses unless
previously ESTABLISHED from internal host

Internal Network (LAN) {}

|:|: E::'I: :|:__|

Internal Host (1) /\ External Host (E)

Rule 1: <iface=LAN, srcip=10.1.1.0/24, srcport=*, dstip=*, dstport=*, ACCEPT>
Rule 2: <iface=WAN, srcip=*, srcport=*, dstip=", dstport=*, DROP>

External Network (WAN)

v

Figure 1: A Stateful Firewall in an Enterprise Network

More generally, suppose a TCP packet with srcip:A, src-
port:Ap, dstip:B, dstport:Bp enters via an external interface,
the FW checks whether the connection from srcip:B, src-
port:Bp, dstip:A, dstport:Ap is in the established state. If it is,
the packet will be forward and otherwise, this packet will be
dropped.

The enterprise scenario we consider differs from other
scenarios such as censorship. In the censorship scenario, FWs
are typically configured with the “default-allow” policy for
packets originating from both directions. However, these FWs
will inject RST packets (to terminate the connection) if a
client accesses “blocked” content. As such, the evasion attacks
we focus on are orthogonal to those considered in censorship
circumvention (e.g., [22,41]).

I FW E
I FW B SYN
SYN SYN
5 I FW E RIT
ACK SYN S
DATA !’ R$T
DATA ﬂm DATA

(a) Normal Scenario (b) Scenario 1 (c) Scenario 2

Figure 2: Packet sequences played against FW-1

2.2 Motivating Scenarios

Note that the logic of how the FW decides to a particular
action to the current state plays a critical role in determin-
ing whether a packet is dropped or not. Therefore, a flawed
implementation on how a FW tracks a connection state can
have a detrimental effect on the security posture. To motivate
this, we use concrete evasion attacks we uncovered with a
real commercial FW-1. Before discussing the concrete attack
scenarios, we first showcase vulnerable sequences of packets
(which can be exploited for attacks). Specifically, this leads
to a FW allowing a DATA packet from an untrusted external

host (E) to an internal host (I).

To explain these suspicious sequences, we contrast them
with a normal (standard) packet sequence (probably, a se-
quence a FW expects to see) as shown by Figure 2a. An inter-
nal host wants to access W and initiates a connection setup
by sending a TCP SYN. W acknowledges this by sending a
SYN-ACK (SA for short), followed by an ACK from an in-
ternal host, thereby completing a proper three-way handshake.
At that point, an internal host and W can freely exchange
DATA packets. Now, we show two strange sequences of TCP
packets, that will start allowing a DATA packet from an un-
trusted external host; these strange packet sequences drive
a connection state to some limbo (vulnerable) state and that
is when the FW also starts to accept a DATA packet from
untrusted external hosts.

Scenario 1 (Incomplete handshake): As seen in Figure 2b,
the FW-1 FW allows a DATA packet from W “even before” a
three-way TCP handshake has been completed; i.e., the FW
is not checking whether the last ACK packet from an internal
host has been sent or not. Such a simple error highlights that
implementing even a very basic stateful semantics of checking
for a complete handshake can be erroneous. In practice, this
problem is much worse than what it appears as such an error
can manifest in so many different ways (i.e., polymorphic
variants of this attack as we will see in §6.2).

Scenario 2 (SYN retries + Teardown): We now show a
more complex and a different sequence (Figure 2c) from the
Scenario 1. This scenario exploits an implementation error in
how a FW-1 FW handles a combination of SYN retries and
connection teardown.” Here, an internal host first sends two
subsequent SYN packets (like SYN retries). Then, an external
host sends a RST packet, which drives this connection state
to some “limbo” state. After two non-traditional TCP packet
exchanges (an internal SA followed by an RST), a FW al-
lows a DATA packet from an external host! One may wonder
whether all of these 5 packets are necessary for a FW to allow
a DATA packet. In fact, that is the case as each packet in a
sequence modifies the connection state. Further, only after the
first two SYN packets, the FW does not allow a DATA packet
for a FW-1 FW (however, a FW-3 stateful FW does, which is
motivating our work). These sequences are discovered by our
tool and as we discuss in §5.1, we specifically only output
semantically-distinct attacks (from a black-box perspective).

Attack scenarios: Now, let us think about how such erro-
neous implementation can lead to concrete evasion attacks.
One precondition for concrete attacks for the above two sce-
narios is that an internal host needs to send specific TCP
packets (e.g., the first SYN packet in Scenario 1) in coordina-
tion with an external attacker. But, this isn’t too difficult as
any internal host can easily spoof the source IP-port and send

2While prior works on censorship evasion (e.g., [22,41]) find similar
attacks, their focus is orthogonal to ours as their deployment and the system
model differs. Their tool/findings do not directly apply to our setting (§6.1)

@ (can spoof & send) TCP packets

VLAN 1 Q

Insider (1)

VLAN 2

(CLASSIFIED) External Attacker (E)

Victim (V) @ (malicious) data packets

Internal Network (LAN) External Network (WAN)

Figure 3: Attack scenario setup

it outwardly. Consider a case where we have a compromised
insider such as an IoT device (e.g., a smart printer) in the
intranet [7, 15]. In fact, first compromising these IoT devices
is increasingly gaining traction for hackers due to IoT devices’
prevalence in today’s enterprise network [11] and their lack
of built-in-security [7]. In fact, it is recently reported that
Russian-state hackers, Strontium (APT28), have been caught
attempting to hack IoT devices (e.g., an office printer, a video
decoder) to gain entry points into their targets’ internal net-
works [9]. Such an insider (Figure 3) may lack direct access
to the target victims as it is not located in the same VLAN as
the target victims (e.g., router, end host). However, this insider
colludes with an external attacker and exchange a sequence
of pre-defined TCP packets (including Step (1). Finally, a
FW allows a DATA packet directed at the target victim (Step
(2)). The best micro-segmented network with VLANS using
the best practices today [5] is also vulnerable to these attacks.

Figure 4: Scenario 1 mapped to an attack setup

Figure 4 shows the Scenario 1 mapped to a concrete attack.
In this attack, an insider first sends a SYN packet with a source
IP-port that of a victim, followed by a SA from an attacker.
Then, an external attacker can circumvent the FW policy by
sending a DATA packet (containing malicious payload) at a
victim. It is outside the scope to precisely guarantee whether
all victim software stacks actually accept and process this data
packet as such. As such, we observe that there are many cases
(e.g., routers, IoT devices) that will accept the data packet. At
this point, the attacker gained an entry into a highly-classified
VLAN. An attacker could either compromise this target victim
or use this victim as another stepping stone to enable more
sophisticated multi-stage attacks.

Attack characteristics: Having described motivating exam-
ples, we now derive several characteristics of these attacks:

» Semantic evasion attacks are subtle: These attacks exploit
subtle implementation nuances in a FW’s logic of tracking

a per-connection state. Specifically, to make these attacks
to work, one needs to carefully construct packet headers
with the above TCP flags and seq numbers. Moreover, these
attacks may be specific to each FW vendor’s implementa-
tion.

o Semantic diversity of evasion opportunities: As we saw
brief examples for FW-1, as these attacks the fundamental
issue in tracking per-connection states, there tend to be
multiple such attacks exploiting diverse mechanisms (e.g.,
handling teardown packets, incomplete handshake, SYN
retries). Further, even within attacks that exploit a similar
mechanism, there are multiple polymorphic variants that
are semantically different [33] (detail in §6) that explore
the different stateful semantics.

The above suggests that we need a general and robust frame-
work to uncover such evasion attacks. Given the subtle and
implementation-specific nature of these attack opportunities
and stateful behaviors involved, strawman solutions such as
randomly generating packet sequences are inefficient (§6).

3 Problem Overview

In this section, we formulate the problem of enabling a model-
guided approach and formulate our problem. We provide an
overview of the Pryde workflow and discuss the key chal-
lenges in realizing our workflow.

3.1 Threat Model

We begin by scoping the adversary’s goals and capabilities.

Adversary goals and capabilities: The attacker’s goal is
to circumvent the FW and send a DATA packet to an “un-
reachable” internal victim. We assume the following attacker
capabilities and constraints.

» Send constructed packets: An external attacker can craft
TCP packets and send them to internal hosts.

* A colluding insider with minimal privileges: The attack
may optionally have a “weak” insider that can spoof the
source of the TCP packets and send them to external hosts.
A “weak” insider cannot directly send packets to the victim;
e.g., internal firewalls or VLAN policies may prevent this.

o FW-specific knowledge: The attacker does not know the
rules that the firewall is configured with. We assume the
attacker knows the FW vendor/version; if not this can be
obtained by known fingerprinting mechanisms such as ban-
ner grabbing [6]. We assume the attacker has no visibility
into the internal implementation or code. However, we do
assume that the attacker can have offline “black-box” access
to the FW (e.g., obtain a virtual FW appliance [1]).

Threat Model

Victim Model (FSM)
9 Firewall l 3
model (FSM)
Firewall Model « e Strategy
Binary Inference hd Generator

l <S1:P1 .. SniPn>

Concrete Evasion Strategy
Figure 5: Pryde System Overview
3.2 Problem Formulation

Input and output: Pryde takes as inputs: (1) FW binary
or virtual appliance; and (2) a deployment and threat model
defining different entities (i.e., an insider, an external attacker)
and their capabilities (e.g., an insider can spoof and send TCP
packets). The output of Pryde is a set of semantically-distinct
concrete evasion strategies (Def. in §5.2). Specifically, each
concrete evasion strategy is an ordered sequence of input TCP
packets mapped to the corresponding sender (i.e., an insider
or an external attacker); an example was shown in Figure 4.

Scope: In this work, we focus on sending a DATA packet
from an external attack to an “unreachable” internal victim (as
defined by the policy). We acknowledge that not all victims
may actually accept and process this data packet. As such, we
observe that there are many cases (e.g., routers, [oT devices)
that will accept the data packet. Note that the attack’s goal
after this circumvention (e.g., installing back-doors or lateral
movement) is outside our scope. Our attack is a fundamental
first step that can enable future attacks.

Challenges: There are two main challenges in enabling our
vision. First, the input space is too /arge for an unstructured
search (i.e., random search). Specifically, as we deal with
an adversarial scenario, we need to consider sequences of
packets where each packet can come from diverse sets (e.g., a
sequence of non-standard TCP flags, out-of-window packets,
a flow with a flipped direction). Second, there may be multiple
such evasion strategies that could exploit different features
or code paths. While we cannot guarantee coverage, our goal
is to discover as many attacks as possible and also attacks
that are semantically different (from the point of view of the
black-box analysis).

3.3 High-Level Design

A case for a model-guided approach: The evasion attacks
we consider exploit nuanced FW-specific aspects. For in-
stance, Scenario 2 (§2) incorrectly allows an external DATA
packet, after SYN retries and teardown packets. That is, identi-
fying such attacks require carefully-constructed sequences of
TCP packets, triggering internal state transitions that will not
be exercised by normal TCP sequences. As a result, strawman
solutions (e.g., random fuzzing) will not discover many of

these attacks for many FW (§6.1). Instead, we adopt a model-
guided approach, where we first infer a behavior model of
the stateful semantics. We do note that this model has to be
specific to each FW implementation, since the connection han-
dling semantics of different FWs may be different. Having a
model enables us to systematically search over this state-space
to discover semantically distinct attack opportunities.

A case for a two-phase approach: One option of a model-
guided approach is to couple threat model encoding with
model inference. Unfortunately, this is not extensible as our
system and deployment assumptions change; e.g., modeling a
weak insider option would require us to re-learn the model for
each possible scenario of the insider’s capabilities. By decou-
pling model inference from attack generation, our workflow
is extensible to future threat and deployment models.
Thus, Pryde consists of two logical modules (Figure 5):

1. Model Inference (§4): Given a black-box FW implementa-
tion/binary, the Model Inference engine outputs a Finite-
State Machine (FSM) model. This model describes the
input and output packets of the FW in a given connection
state. Recent work demonstrates the feasibility of black-
box model inference for stateful FWs [33]. However, they
make several simplifying assumptions and focus on infer-
ring a FW model under typical or normal packet sequences
and thus cannot directly be used in our context; e.g., how
a FW behaves in presence of out-of-window packets that
“interfere” with an existing connection. We address key
challenges in extending prior work to infer model under
more general or anomalous packet sequences.

2. Strategy Generator (§5): Given a FW model, we need a
systematic way to uncover of evasion attacks under the in-
teractions of different entities (i.e., attacker, victim, insider,
and the FW). To this end, in this module, we formulate
these system interactions using SMT and use Z3 [24] to
build a custom model checker. We model the problem
similar to bounded model checking [23], where we check
if a bounded length path sequence exists. To uncover se-
mantically different attacks, after finding one attack, we
refine our constraints in the model checker to uncover more
semantically-different attacks.

4 Model Inference

In this section, we discuss the design of the Model Inference
module.

4.1 Prior work on model inference for stateful
FWs

A FW’s processing behavior can intuitively be captured as a
finite state machine or FSM [25,33]. Thus, we can potentially
use classical algorithms (e.g., L* [21]) for a black-box FSM
inference. At a high-level, L* adaptively constructs sequences

Input Alphabet Output Model

SYN: lan
SA: wan
ACK: lan;wan
FIN: lan;wan

[wan, FIN] /
fwd

[wan, SA] / fwd

Figure 6: An example of an output model and the corre-
sponding input alphabet used (lan for internal and wan
for external due to space)

of varying lengths using these input symbols (in an input al-
phabet), injects them into the blackbox under consideration,
and infers the hidden states and transitions by observing the
outputs. However, directly applying L* in a network setting
is challenging as we would need to handle NF (network func-
tion) specific behavior (e.g., drops, modify) and a large space
of possible TCP/IP packets to consider.

Moon et al. [33] proposed a tool called Alembic that ad-
dresses some of these network-specific challenges to make
the model inference for network functions or NFs (e.g., FW)
tractable. At a high-level, this tool takes an input alphabet (X)
describing a scoped set of packet types of interest (e.g., TCP
SYN from A to B, TCP SA from B to A) to extract the NF be-
haviors. Further, they propose using specific optimizations to
reduce the size of an X. For instance, rather than considering
the entire possible space of TCP headers such as sequence
(seq) and acknowledge (ack) numbers (32-bits each), their
system re-writes these seq and ack number of TCP packets
during the actual inference to adhere to the TCP semantics.
By doing so, Alembic does not have to search the space of seq
and ack numbers.

Concrete example: Consider a FW configured with a pol-
icy (Figure 1). The intended policy is to “drop all external
plackets unless it belongs to a connection established from an
internal host.” Here, the default rule for packets originating
from external hosts is to drop. To reason about the stateful
semantics, we need to infer a model with an input alphabet
(X) as shown in Figure 6 (i.e., SYN from an internal/lan inter-
face, SA from an external/wan interface). Each output model
is a Mealy machine, where inputs and outputs defining the
machine are located packets (e.g., a SYN packet with source
A and destination entering from an internal interface). Each
located packet is a tuple of (interface, TCP flag, srcip, srcport,
dstip, dstport). For simplicity, the model in Figure shows the
model for one connection only. (To be more precise, Alembic
produces an ensemble of FSM, one for each connection, but
that is not relevant for our work.)

4.2 Limitations of the prior work

While Alembic [33] is a good starting point, we now elaborate
on why it is insufficient for Pryde.

1. Need to consider diverse input alphabets: This prior
work [33] is designed to model the FW for mostly TCP-
compliant workloads. However, we need to consider ad-
versarial scenarios (e.g., out-of-window packets) that “in-
terfere” with the TCP-compliant connection states. For
instance, Scenario 2 (§2) would not have been discovered
if we hadn’t considered an internal SA. While this is just
a simple example, we need a systematic way to generate
input alphabets to reason about potential evasions.

2. Support for rewriting logic: As this tool, Alembic, makes
optimizations to reduce the search space by rewriting seq
and ack numbers during the inference. Unfortunately, we
need to consider adversarial cases where such re-writing
logic may not help us to uncover certain types of evasion
attacks. We need to come up with a general way of han-
dling seq and ack headers during the inference to support
various types of input alphabets.

4.3 Generating evasion-centric input alpha-
bets

We discuss how we generate input alphabets (X) for the eva-
sion attacks. A strawman solution is to just generate all pos-
sible packets as X.. Unfortunately, the size of input will grow
exponentially as we need to consider possible combinations
of directions, TCP flags, and those TCP packets that adhere
to the TCP semantics and those that do not. Instead, our idea
is to come up with an ensemble of independent ¥ where each
model learned with a given X sheds light on the potential eva-
sion scenario (i.e., TCP states interfering with packets with
the reverse direction). That way, our method is systematic and
extensible to future ¥ we may consider.

Further, evasion can happen with or without interfering
packets. Hence, we first set a basic ¥ that can reason about
attacks using just “non-traditional” sequences of packets (i.e.,
a sequence of non-standard TCP flags). Then, we showcase
how we generate ¥ to reason about interference. In this work,
we only consider interference from packets that share the
same bi-directional tuple; i.e., a TCP packet from lan has
source A and destination B and a packet from wan has source
B and destination A. This is a conscious decision as from
observations/anecdotes suggest the FWs mostly have flaws
in processing the state for packets with the same 5-tuples. (It
is easy to extend our design to check if two connections with
different source and/or destination interfere with each other.)

Basic input alphabet: Figure 7 shows the two basic input
alphabets (X). We also denote abbreviations for input symbols
or packet types (e.g., SA and SYN-ACK, DA for DATA).

Data Injection (DI) | Data Injection with Teardown (DI-T) | Apbreviation:

SYN: lan SYN: lan R: lan; wan SA : SYN-ACK

SA: wan SA: wan RA: lan; wan R:RST; RA:RST-ACK
A: lan; wan A: lan; wan F: lan; wan F:FIN; FA: FIN-ACK
DA: wan DA: wan FA: lan; wan DA : DATA

Figure 7: Basic Input Alphabet for Pryde

* Data Injection (DI) : This X helps to reason about potential
circumvention just using the connection setup packets. This
Y has SYN from lan, SYN-ACK from wan, ACK from lan
and wan, and DATA from wan (left column in Figure 7).

Further, from anecdotes and prior works [41], we also know
that the connection teardown packets can transition the con-
nection to some “TIME-WAIT” or some limbo state where
certain packets (e.g., a DATA) can slip through. Hence, we
also need to reason about such a scenario and introduce an
additional basic input alphabet.

* Data Injection with Teardown (DI-T) : This alphabet adds
teardown packets to the DI input alphabet.

Interference input alphabet: We now need to consider X
to also reason about potential evasion from interference with
non-compliant TCP packets; e.g., packets that do not belong to
the same connection (e.g., [22,41]). Specifically, we observe
from anecdotes/prior works that the FWs can incorrectly map
the state with (1) TCP connection with flipped direction (e.g.,
SYN from lan vs wan); and (2) packets with out-of-window
seq numbers. These cases are “subtle” such that these packets
share the same 5-tuple. However, if a FW was implemented
correctly, it should have not been considered so.

In this work, we consider four possible types of interference
(IX) input alphabet. Given each IX set, we append them to
the basic X to reason about FW’s behavior when it encounters
both types of packets. While we come up with a representative
¥, our design is easily extensible for a new X. Further, we
consider interference from connection setup-relevant packets.

1. Reverse directions (IX%r) : These TCP 3-way handshake
packets have flipped direction only; i.e., SYN coming from
the wan network, SYN-ACK from lan, and ACK from wan.
The seq and ack numbers are not out-of-window.

2. Reverse direction and random seq/ack numbers (IXI \):
These TCP 3-way handshake packets have flipped direc-
tion and also are out-of-window. Specifically, the seq &
ack numbers are randomly initialized.

3. Reverse direction and random seq/ack numbers (IX3r :

This case is similar to the previous case. However, these

out-of-sequence packets themselves form a connection;

i.e., their seq/ack are are in-window among themselves.

4. Packets with out-of-sequence (IX;ang): These TCP 3-way
handshake packets have the same direction but are out-of-
window and randomly initialized.

A generative model for input alphabets: The generative
model for the input alphabet is formed by considering each of
the four basic X independently. For each basic input alphabet

RWLogic(seq=X)

RWLogic(seq=X) RWLogic(seq=X) RWLogic(seq=Y)

X Basic X
SYN: wan SYN: lan SYN: wan

— i di - .
L = Basic UIXT % = Basic U IXdir ¥ = Basic U X4,

Reverse direction &
out-of-window packets

Interference from
reverse direction

Reverse direction &
Out-of-window packets
that form connection

Figure 8: Rewriting logic to handle interference (IX) set

(%), we append the IX set and reason about the FW’s behavior.
This gives a total of 2 basic ¥ and x 5 (1 for basic and 4
for interference) = 10 input alphabet for each FW. However,
note that during the model interference, the model may not
converge for certain FWs; i.e., Alembic assumes that the un-
derlying model is deterministic and fail if this is not the case.
Hence, if the model does not converge for the basic X, we
do not model for the corresponding input alphabet appended
with IX set.

4.4 Extending the inference algorithm

We now discuss how we enable the model inference under
these diverse input alphabets.

Baseline rewriting logic (RWLogic()): We briefly discuss
the seqg/ack rewriting logic used by the prior work [33] to
reduce || At a high-level, their tool tracks seq and ack of
the transmitted packets and rewrites them during the infer-
ence to adhere to the correct semantics. For instance, suppose
the underlying L* plays this packet sequence of length 2:
1) SYN from A to B from the lan network (SYN:lan), and
2) SYN-ACK from wan. If the FW forwards the first SYN
to a wan interface, then the seq number of the transmitted
SYN is used to update the seq and ack number of the TCP
packets with a source B and a destination A. We refer to this
entire logic as RWLogic(seq = X) where X is the initial seq
number.

Rewriting logic to support interference set: We now dis-
cuss how we adjust this logic to handle the “interference”
packets. The beauty of this extension is in the generality of
this design that makes it extensible and general for future ¥ to
consider. Note that from the IX sets from §4.3, there are cases
where we need to subject only a certain group of packets to
rewriting, or subject multiple groups of packets to indepen-
dent rewriting (i.e., reasoning when two connections with the
same 5-tuple but initialized with different seq number such as
IX¢)-

For a systematic design, we group packets accordingly and
subject each group to a corresponding rewriting logic (as
shown in Figure 8). For instance, if we consider an interfer-
ence set where only a direction is reversed (i.e., X4, then we
would subject both the basic and the IX set to have the seq/ack
numbers in-sync (the left side of Figure 8 shows both sets

being subject to RWLogic(X)). Now, consider an interference
set where these packets have a reverse direction and have out-
of-window seq/ack numbers are (i.e., IX"). Then, packets in
the basic X are subject to RWLogic(X) and packets in the IX
set are only randomly initialized and not re-written during the
inference. Similarly, for IX where packets themselves form a
connection, then we will independently rewrite seq % ack for
them RWLogic(Y). The internal of modified implementation
of Pryde keeps track of which “set” each packet belongs and
decides if/how the rewriting logic is applied. These are all
exposed configurable parameters.

5 Attack Strategy Generator

In this section, we discuss how we used the inferred models
from §4 to generate concrete evasion strategies. We discuss
how we encode the entire system model and the interaction
between different entities (§5.1). Then, we demonstrate how
we achieve coverage across distinct attacks (§5.2).

5.1 Encoding the system model

Strategy Generator takes an input of a firewall (FW) model
(from §4) and the system model. The system model is defined
by (1) a model of a victim, and (2) the threat model that defines
each entity (i.e., insider, attacker) and their capabilities w.r.t.
the packets that they can send. Specifically, we encode into
the model checker that an insider can spoof the source IP and
address of another internal host (e.g., victim).

The output is a concrete evasion strategy, which is an or-
dered sequences of located input packets (a concept borrowed
from prior work in network verification [31]) mapped to the
corresponding sender (i.e,. an insider or an external attacker).

At a high-level, a located input packet that comes to either
of an interface of a FW and we define it below:

Definition 1 (A located input packet). A located
input packet, o, is defined by the following tuple
(int f,srcip,srcport,dstip,dstport ,tcp,data, pre, seq, ack):

(1) intf, an incoming interface (i.e., internal or external),
(2) srcip, a source IP, (3) srcport, a source port, (4) dstip, a
destination IP, (5) dst port, a destination port, (6) tcp, TCP
flags, (7) data, a Boolean indicating the presence of a DATA
(payload), (8) pre, a prefix indicating whether the seq/ack
numbers were rewritten during the inference to follow the
TCP semantics, (9) seq, a sequence number , (10) ack, an
acknowledgement number. For (9) and (10), we use a variable
such as X, X+1 to denote a relation across packets.

A model of a FW (from §4) is a Mealy machine and is
defined by the following tuple (Q,A,0,®): (1) Q, a set of
states, (2) A, a set of input packets, (3) O, a set of output
packets, and (4) P, a set of transitions. Similarly, a model of
a victim is defined in the same manner as a FW.

Encoding a FW as a function of time: As mentioned, a
concrete evasion strategy is an ordered sequence at discrete
timesteps; i.e., we need to model the progression of time as a
function of timesteps. For instance, when a FW gets an event
(i.e., get a located input packet), the timestep 7 advances to
T + 1. Such an event changes the “state” of the entire system.
Therefore, we use the following functions to describe a state
of a FW at a given timestep, T:

1. State : Q x T — Bool. Boolean function that indicates if a

given state of the FW, s € Q, occurs at a timestep T;

2. Input: A x T — Bool. Boolean function that indicates if
an input packet, 6 € A, occurs at a timestep T;

3. Output : O x T — Bool. Boolean function that indicates if
an output packet, o € O, occurs at a timestep T;

4. Trs : @ x T — Bool. Boolean function that indicates
whether a specific transition, ¢ € ®, occurs at a timestep

T. A particular transition is determined by an input packet

(o), output packet (0), and a current state (s).

We determine the possible sending entities based on the
pre-specified thread model. As dictated by the threat model,
an insider can spoof the source IP as a victim. Our encoding
is extensible and more attributes can be easily be added.

Encoding constraints: We briefly describe how we encode
these entities. Specifically, we encode a FW function using
propositional logic with the following constraints:

» Atagiven timestep T, we encode the following restrictions:
(1) exactly one state occurs, (2) at most one input packet
occurs, (3) at most one output packet occurs, and (4) exactly
one transition happens.

* To encode a FW input model (a Mealy machine), we add
pre- and post-conditions to specify the state transition.
Intuitively, a transition ¢; at a timestep T implies occur-

rences of a specific state and an arrival of a located input

packet at the same timestep T. After a transition ¢; happens,

then the state of a FW changes and as a result, we observe a

corresponding output packet (defined by a Mealy machine).

This can be represented as:

(State(s;, T) A Input(c;,T)) = \/Trs(¢;,T))
J
Trs(9;,T)) = (State(siy1,T+1) AInput(cit(, T+1)
A Output(o;41,T+1))

We also encode the victim’s model using a similar logic. If
an attacker’s packet reaches the victim, then the next input is
dictated by the victim’s model (where in our current victim, a
victim accepts all TCP packets). We discuss how this model
could be extended in §8.

Encoding the goal: The goal is to find an ordered sequence
of ¢ that leads to the FW to be “evadable” at a given timestep
T; i.e., a DATA packet from an external attacker reaches an
internal victim.

5.2 Discovering
tacks

semantically-different at-

To discover concrete attack strategies (i.e., sequences of a
located input packet mapped to a corresponding sender),
we model the problem similar to bounded model checking
(BMC) [23] where we find counterexamples with a bounded
length. BMC is a common technique to find bugs in software
that can be identified within a few iterations (i.e., timesteps
in our case). By default, the solver terminates upon finding
one counterexample. To find a new counterexample, we must
add additional constraints to block this counterexample and
make a new call to the solver. However, this procedure would
find many attacks that may be semantically-identical. Since
the model-checker can be time-consuming, instead of out-
putting thousands of semantically-identical attacks and then
do post-processing, we made a design decision to encode ad-
ditional constraints that block semantically-identical attacks
during the search. This procedure is repeated until no more
counterexamples are discovered.

We now discuss the invariant of the attacks we output and
the refinement strategy we use to enable the discovery of
semantically-distinct attacks.

Loop-free invariant: To efficiently search over the state
space of a FW’s model, we want to output an attack string
that uses a minimum of packets in traversing the state-space
of a FW. Hence, we encode a loop-free invariant into our
model.

Definition 2 (Loop-free invariant). A state, s;, can appear
at most once in a state sequence s - - - S, transitioned by an
Refiketnent/stsapegy : Poivdierhis;lsop b ddvapahpawhain
we discover an attack packet string, a, composed of a se-
quence of located input packets, {p; - - - p, }, we exclude the
exact packing string match. Hence, our refinement strategy
corresponds to exclude equivalent strings.

Semantically-distinct attacks: Having defined the loop-
free invariant and the refinement strategy, we can define
semantically-distinct attacks. Note that, we can only provide
this definition given the same input template (where the input
space is identical).

Definition 3 (Semantically-distinct attack). Given two loop-
free attack strings, a and a', they are semantically distinct if
atd.

By construction, the attack sequences (strings) generated
by our tool are loop-free (from Def. 2). Additionally, as we do
an exact string matching as a refinement strategy, all attacks
that we output are semantically distinct.

6 Evaluation

System implementation: We implemented Pryde in Java
atop Learnlib [38], an implementation of L* [21] for the

Model Inference. We also built a custom Python based model
checker using the Z3 [24] SMT solver. We implement other
supporting modules for packet generation using Scapy [12].
Additionally, we have an automated framework in EC2 to
spin up the Model Inference in EC2.

Setup: We use 4 off-the-shelf firewall implementations (i.e.,
FW-4, FW-1, FW-2, FW-3); three of them are proprietary and
one has an open-source implementation (but we emulate it
in a black-box manner). We ran FW-4 and FW-3 in VMs in
VirtualBox [16] in CloudLab [4]. Two proprietary firewalls
were from the Amazon EC2 marketplace [1] and were set
up in Amazon EC2. We ran the Strategy Generator to find
attacks of length 1 to 7. To test concrete attacks, we set up a
sandbox network with an insider, a victim, an external attacker,
and the stateful FW (configured to only allow TCP traffic
from external hosts on already established connections as
discussed in §2). We inject the packets via attacker and insider
as dictated by the concrete attack strategy.

For each FW, we consider the following candidate input
alphabets to identify evasion opportunities:

1. Baseline: Basic ¥ without involving interference packets
2. IXY": Interference by reverse direction only;

3. IXf;fld: Interference by reverse direction and out-of-

window packets with random seq and ack numbers;

4, 1Xdr . Interference by reverse direction and out-of-
window packets that adhere to the connection semantics

w.r.t. seq and ack numbers;

5. IXiang: Interference by out-of-window packets with ran-
dom seq and ack numbers.

For each template, we run the model inference and the
attack generation for 1) ¥ involving connection setup packets
(i.e., Data Injection from §4.3), and 2) ¥ for Data Injection
with Teardown.

6.1 Aggregate summary of attacks

We first start with an aggregate summary and discuss the
effectiveness of the strawman solutions.

Aggregate summary: Figure 9 shows the number of success-
ful evasion attacks across all input alphabets. We found 2,591
semantically distinct attacks against FW-1, 2,355 against FW-
2, 8,220 against FW-3, and 294 against FW-4.°> From the
Baseline templates, we have 1 attack (out of 294) for FW-4,
1253 (out of 2,591) for FW-1, 844 (out of 2,335) for FW-2,
and 1,253 (out of 8,220) for FW-3. The attacks found using
this template are the ones that come from non-traditional se-
quences of the TCP packets. The rest of the templates help

3These attacks are loop-free and semantically distinct given X (§5.2). For
attacks across templates, we compressed identical attack strings (composed
of located input packets). We also collapsed identical attacks identified by
both connection setup and teardown alphabets

3 Baseline BN Ixdr, xxq (xdr g X9 IXrand

-
Fw-a

0 1000 2000 3000 4000 5000 6000 7000

Number of semantically-distinct attacks

8000

Figure 9: Aggregate summary of semantically-distinct at-
tacks found 4 FWs across all input templates

OO FW-l O Fw-2 O FW-3 B FWH4
3
e
2V,
10° o &¢T
)
¥ &y
(| N

102 > ®
B =i

10! ©

[1,3] 4

5
Length of an attack sequence

Figure 10: Breakdown of the distinct attacks we found for
each attack length across all FWs (Y-axis on a log scale)

Pryde to discover attacks that come from the TCP packets
(with identical 5-tuple) inferring the seq/ack numbers and/or
other TCP connection with the reverse direction. For com-
pleteness, we also present the number of states for the inferred
models (Table 2 in §A).

The number of distinct attacks is correlated with the number
of states (i.e., the complexity of the stateful semantics) and
whether that attack can be discovered with the bounded length.
We see a relatively smaller number of attacks for FW-4 as
(1) the size of the inferred FSMs are smaller in contrast to
FW-3 (i.e., 2 for Baseline with teardown vs. 56 for FW-3),
or (2) for one large FSM (more than 200 states), we did not
find an attack within a bounded length.4 Here, the take away
is that there are hundreds to thousands of attacks leading to
circumvention; i.e., patching one such code-path or sequences
will be insufficient.

We also summarize the successful attacks based on the
length of an attack sequence (Figure 10), where the y-axis is
in a log-scale. We see a magnitude higher number of attacks
for larger attack lengths. While all attacks are equally impor-
tant, the attacks with longer sequences are likely more subtle
in exploiting the implementation error/nuances of the FWs
(more detail in §6.2).

4Using certain teardown-involving input templates, the model inference
did not converge due to non-deterministic actions. While for one template,
we inferred a large model, state transitions are rarely caused by the IX set.
For non-Baseline template, we constrained the checker to only use packets
from only IX set and we did not find an attack using less than 7 packets.

10

Attack length
T[2[3] 4 5 6 7 Total
#generated | || 5| 5| o5 | 6o | 3125] 15625 | 19,531
attacks
Without an insider
FW-1 01010 0 0 0 0 0
FW-2 1 5| 25| 125 624 3,124 | 12,068 | 19,096
FW-3 01010 0 0 0 0 0
FW-4 01010 0 0 0 0 0
With an insider
FW-1 01010 0 0 1 2 3
FW-2 1 5 251 125 625 3,123 | 15,618 | 19,522
FW-3 010]O0 0 0 0 0 0
FW-4 0|0 1 3 15 91 586 696

Table 1: # of “raw” attacks found using random fuzzing

Comparison with strawman solutions: First, we consider
a random fuzzing strategy that randomly generates packet
sequences of lengths 1 to 7; the last packet in a sequence is a
DATA packet from an external attacker. Hence, we only have
one attack for a length of 1. For an attack sequence of a length,
L+ 1, we generate 5x the number of attacks for a length of L
(giving a total of 19,531 sequences). Now, to pick each TCP
packet in a sequence, we randomly sample values from “valid”
TCP flags (i.e., SYN - - -, and a DATA packet), a direction (i.e.,
internal vs. external), and concrete values of seq/ack numbers.
Despite the strategy being called the random fuzzing, we only
generate “valid” TCP packets (i.e., being generous). Further,
as we lack information on the state each packet traverses to
enforce the loop-free invariant and the refinement strategy
(§5.2), we only report the “raw” number of attacks (it turns
out non-trivial and there is no one-to-one mapping to project
this randomly-generated sequence to our inferred models).

Note that using an insider was a pre-condition (found by
Pryde) and hence is one of our ideas. We first consider a
version with no insider. The top part of Table | shows the
results where for FW-1, FW-3, and FW-4, we find O raw at-
tacks. However, for FW-2, we see a high success rate.” As
we will see in §6.2, FW-2 allows a DATA originating from an
external network (even with an explicit “drop” rule). We also
evaluate this strategy with an insider (Table 1). Even with
using an insider, the fuzzing strategy is highly ineffective;
specifically, for FW-3 and FW-1, the strategy discovers only
0 to 3 raw attacks (from 20K generated ones). This contrasts
with 2,591 distinct attacks we discovered against FW-1, and
8,220 against FW-3. For FW-4, the random fuzzing found 696
raw attacks (may not necessarily be distinct). This is natural
as the state space of FW-4 is quite simplistic (i.e., only 3 states
for the IX%" with teardown packets). Hence, it is relatively
easy to get to a goal state. FW-2 has a close to 100% success
rate for a similar reason as the case without an insider. At a
high-level, this strategy is ineffective and not robust across
FW implementations.

52164 sequences caused an error, 12068 succeeded, and 38 sequences
failed.

(a) Incomplete handshake(C1)

(b) SYN + RST (C2+C3)

(c) Simultaneous open (C4) (d) SYN retries (C5) (e) SYN retries variant (C5)

Figure 11: Evasion attacks against FW-1 across 5 clusters.

We briefly also evaluate the strategies found by a related
work [22] on censorship evasion, which is an orthogonal
problem to our own. The system model in this body of
work [22,41] is considerably different as these censorship
FWs need to allow users accessing (un-censored) contents
and, hence, has a default-allow policy. However, we still eval-
uated the 24 published strategies from Geneva. To map their
attacks to our setting, an external web server maps to our in-
ternal victim, serving content, and their internal evader maps
to our external attacker (evading an enterprise FW). Across
all 4 FWs, none of these 24 strategies worked (i.e., a victim
doest not receive a DATA packet). This is even true for FW-2
as the initial SYN from an external attacker is dropped (due
to the default-drop policy). We discuss more about this body
of work and also broadly, about applying genetic algorithms
or model-free approaches for our problem context in §7.

B Fw-1 21.4 -90

T

< -75

- FW-2 100.0 100.0 100.0

]

? -60

FFw-3 | 87.5

2 -45

[&]

]

g Fw-4 98.8 - 30
FW-1 FW-2 FW-3 FW-4

Attacks Taken From

Figure 12: Cross-validating the discovered attacks by tak-
ing successful attacks against a FW (x-axis) and testing
on a FW (y-axis) and reporting the attack success rate

Pairwise overlaps of successful attacks: First, we took the
successful attack sequences from each vendor and replayed
the sequence on other vendors. Figure 12 shows the results.
For FW-2, attacks from the other three vendors lead to suc-
cesses. This is because the FW-2 FW forwards a DATA packet
to an internal host in all states (more details in §6.2). However,

11

other than FW-2, we see low success rates for attacks seen in
FW-4 and FW-2 on other FWs; only 23.5% of attacks from
FW-4 work on FW-1. We revisit this when we look at the
structure of these attacks in-depth.

6.2 Structure of evasion attacks

Clustering attack sequences: To help us shed light on the
structure of the uncovered attack sequences, for each FW
vendor we cluster the packet sequences as follows. In our
clustering formulation, each data point is an attack sequence
composed of an ordered sequence of located input packets
(Def. 3). From each located packet, for the clustering purposes,
we exclude the specific values used for seq/ack numbers but
a prefix (that indicates whether the seq/ack numbers was re-
written to comply to the TCP semantics). For each pair of
sequences, we compute the Levenshtein edit distance. Given
this metric, we run a complete-linkage hierarchical clustering
algorithm, with a pre-specified target number of clusters. As
the attacks differ across vendors, we used a different number
of clusters (3 to 7) for each FW vendor.

For each cluster, we report a concrete attack sequence with
the shortest attack length as a canonical example. We also
depict other polymorphic variants within the cluster as re-
quired. Similar to §2, we use timing diagrams to specify these
canonical attacks. In our diagrams, V refers to the victim, I
is the insider, and E is the external attacker. A “dotted” line
indicates whether a non-data packet reaches a victim. A bold
line means that a DATA packet reaches a victim (i.e., suc-
cessful circumvention). Further, each label in a line specifies
the (TCP flag, seq, ack) from a located input packet; we use
abbreviations for TCP flags (e.g., S for SYN, DA for DATA).

FW-1: From 2,591 attacks, we learned 5 clusters of size

2057, 163, 147, 144, and 80, respectively described below:

* Cl) Incomplete handshake and variants. Scenario 1 (Fig-
ure 4) from §2 is the shortest-length attack in this cluster.
Here, the FW allows a DATA packet just after seeing an

(a) Internal ACK (C1) (b) Internal ACK variant(C1)

(c) Internal SYN (C2+C4)

\Y% I FW E

(e) DA directly allowed (C3)

(d) Internal SYN (C2+C4) (f) External ACK (C3)

Figure 13: Evasion attacks against FW-2 across 4 clusters

SYN from an insider followed by a SYN-ACK from an at-
tacker. A natural question is whether patching this specific
sequence may remove this vulnerability. Unfortunately, this
is not the case. Figure |1a shows other polymorphic vari-
ants that is more subtle and involves the connection state
being “disrupted” by a teardown packet (i.e., RA). We also
find hundreds of variants traversing other parts of the FW
state-space; i.e., patching this problem can be non-trivial as
an attacker may use other sequences.

C2+C3) SYN disrupted by RST or RST-ACK and variants.
The next two clusters contain attacks involving an initial
SYN packet disrupted by an external RST packet (C2) or a
RST-ACK packet (C3). The shortest sequence in this clus-
ter is 6, indicating this attack is subtle; i.e., random fuzzing
cannot discover these. Figure | 1b shows that after an insider
sends a SYN followed by a RST packet from an attacker,
an insider and an attacker exchange three additional TCP
packets, leading to circumvention of a DATA packet. There
are many variants of this basic attack as well (not shown
for brevity).

C4) Simultaneous open and variants. The fourth cluster
with 144 attacks exploits how the FW-1 FW handles the
case where two SYN packets are concurrently sent from
both directions. (This was found using the IX templates.)
Figure 1 1c shows that in the shortest attack sequence. Af-
ter the first SYN from an insider, the attacker sends a SYN
packet, which drives the FW to another state (i.e., simultane-
ous open). After that point, the attacker sends a SYN-ACK
followed by a DATA packet, reaching the victim. Again,
we find many variants that explore the other regions of the
state space using a variety of TCP flags (e.g., FIN-ACK,
RST, and even DATA packets).

C5) SYN retries and variants. The last cluster of 80 attacks
exploits possibly incorrect handling of connection state
after SYN retries. Figure 11d shows the shortest attack of
length 6. We may think that to exploit SYN retries, we need

12

a SYN-ACK to drive the FW to an incomplete handshake
state (similar to C1). However, we also find an interesting
variant (Figure 1 1e) that does not involve any SYN-ACK
packet to exploit the SYN retries feature!

One invariant we observe here is that the first SYN packet

that needs to be sent from an insider. However, as we will see
shortly, this is not the case for other vendors (i.e., FW-2).

FW-2: We found 4 clusters of size 824, 806, 422, and 303,
respectively. Recall that (§6.1), FW-2 allows a DATA packet
from an external attacker even with an explicit drop rule (Fig-
ure 13e).

C1) Internal ACK and variants. Attacks in this cluster use
an external ACK from an attacker as the first packet. Fig-
ure 13a shows the shortest example. After an internal ACK
followed by an external FIN-ACK (FA) packet, an attacker
can circumvent and send a DATA packet. It is surprising
that an ACK transitions the connection state without a SYN
packet! This is the largest cluster and again has many vari-
ants (not shown).

C2+C4) Internal SYN and variants. The second and the
fourth clusters entail using an internal SYN packet followed
by non-traditional packet sequences. Figure 13c shows one
shortest example and Figure 13d shows an attack of length
7. This is interesting as for the other 3 FWs, having the first
SYN was a requirement but for FW-2, this is just 2 clusters
out of 4.

C3) External TCP packets with ACK flags and variants.
This cluster involves a first TCP packet with an ACK flag
(e.g., a DATA packet with an ACK bit or an ACK packet).
The shortest attack involves one DATA packet (Figure 13e),
but there are numerous variants involving a range of lengths.

FW-3: We identify 7 clusters of sizes 7,621, 212, 198, 63,
58, 37, and 31, respectively.

e Cl+C4) Incomplete handshake and variants. The attacks

in these clusters exploit a connection state being disrupted

v I FW E

6 Rand().Rand
V I FW E [3.Rand()-Rand()]

[$,Rand(),Rand()]

[DA,X+2,0]

(a) Incomplete handshake (b) SYN retries (C2+C3) () SYN + ACK (C5) (d) Simultaneous open (C6) (e) Multiple SYN (C7)

(&3]

Figure 14: Evasion attacks against FW-3 across 7 clusters

after an incomplete handshake. Figure 14a shows an exam-
ple where after the initial SYN and SYN-ACK exchanges,
a FW seeing a FIN-ACK packet leads to a circumvention.
Cluster 4 is also a special case where the packet disrupted
an incomplete handshake is a FIN-ACK packet (Figures
not shown).

C2+C3) SYN retries + an external SYN-ACK and vari-
ants. The attacks in these clusters exploit a connection state
being disrupted. Figure 14b shows an example where after
SYN retries, followed by an external SYN-ACK packets
and other TCP packets lead to a circumvention.

C5) Internal SYN+ACK (optional) variants. The shortest
attack in this sequence is identical to that of a FW-1’s attack.
Specifically, after a SYN followed by a SYN-ACK packet,
the FW-3 FW allows an external DATA packet.

Other attacks in this cluster exploit a combination of an
internal SYN and ACK packets. Figure 14c shows such an
example. This cluster is quite interesting as these attacks are
neither simultaneous open, SYN retries nor an incomplete
handshake, but rather some strange packet combinations.

C6) Simultaneous Open and Variants. Figure 14d shows
an example that only involves 3 attack packets. That is,
after the SYN exchanges, the FW directly allows an ex-
ternal DATA packet. This is in contrast with the attacks
against FW-1 (Figure 11c) and FW-4 (left of Figure 16)
exploiting simultaneous sequence; these require longer se-
quences. However, in the case of FW-3, only after SYN
exchanges, an external DATA packet is allowed! There are
many variants that also required a longer attack path (now
shown).

C7) Multiple SYN packets and Variants: Attacks in this
cluster involve multiple SYN packets in both directions.
Figure 14e shows such an example. Explaining this fully is
outside our scope; we posit that each packet is responsible
for affecting the connection state, and hence, critical in
enabling an attack.

FW-4: We clustered FW-4 attacks using 3 clusters. From

13

Figure 15: Evasion attacks against FW-4 exploiting SYN
+ (optional) ACK from (C1)

294 attacks, we learned 3 clusters of sizes 199, 84, and 11,

respectively.

* CI) SYN+ (optional) ACK and variants. Many attacks in
this cluster contain some combination of internal SYN and
ACK packets. Some also exploit an incomplete handshake
(Left side of Figure 15). After the initial SYN packet from
an insider, the FW-4 FW forwards a DATA packet from
an attacker to otherwise an unreachable victim. The right
side of Figure 15 shows another attack where 3 packets are
injected. That is, after the initial SYN followed by an ACK
from an attacker, the FW-4 FW replies with a RST packet.
However, an attacker can send a DATA packet. This was
flagged as a distinct attack from the previous one as the
state space traversed differs.

e C2) Simultaneous open and variants. Attacks here exploit
the simultaneous open mechanism (Figure 16a). Again, the
shortest attack length is 6, indicating the subtlety required
(and contrasting with FW-3 which had an attack sequence
length of 3 as shown in Figure 14d). Interestingly, a FW-
4 FW sends RST packets when it sees unexpected TCP
packets (unlike, FW-1, for instance).

* C3) SYN+ multiple DATA and variants. The last cluster is
interesting in that these attacks use multiple DATA packets
(Figure 16b). The intermediate DATA packets are required
to drive the connection state but are dropped by a FW (who
replies with a RST packet). However, eventually, the FW
allows the third attempt! While omitted for brevity, we find

multiple variants.

[DA,)

(a) Simultaneous open (C2)

(b) SYN + multiple DATA (C3)

Figure 16: Evasion attacks against FW-4 from (C2) and
(C3)

7 Related Work

Network testing and verification: There is a large body of
works (e.g., [25,34,39]) on network testing and verification.
Many use network function (NF) models to guide testing
and verification. Unfortunately, the models of these NFs are
hand-generated, and using a low-fidelity NF model can affect
the effectiveness of verification tools [33]. To address this
issue, Alembic [33] uses L*-based workflow to automatically
synthesize high-fidelity NF models. However, Alembic makes
certain design choices as it assumes that TCP packets are
adhering to the TCP semantics. Hence, the toolcannot directly
be applied to synthesizing evasion attack strategies for FWs.

Firewall policy checking: Prior works (e.g., [18, 20, 42])
have also focused on testing and verifying the correctness of
firewall ruleset. Many of them use abstractions such as Binary
Decision Diagrams (FIREMAN [42]) or a directed graph [19]
to verify the FW ruleset. Further, the work by El-Atawy et
al. [18] generates test cases to identify misconfiguration by
designing a mechanism to reduce the search space. At a high-
level, these works are orthogonal to Pryde since they do not
focus on evasion attacks enabled by implementation errors in
stateful semantics but on “how” the rules are configured.

Protocol fuzzer: Fuzz testing has been applied to reverse-
engineer or find bugs in protocol implementations. It is a
well-established knowledge that fuzzing purely randomly for
stateful protocol is not going to work [26]. Hence, there have
been many works in stateful network fuzzers (e.g., [17,26,27]).
The closest to our work [26,27] extracts state semantics from
a protocol implementation via black-box analysis and testing.

14

Unfortunately, these focus on specifically inferring the stateful
semantics from protocol implementation, which is a different
problem from inferring the model for a FW [33]. Further,
these require having a priori access to network traces for
inference [26] and suffer from the same limitations as the FW
model inference tool such as Alembic. Specifically, these also
cannot reason about potentially adversarial scenarios and do
not discover evasion strategies.

Side-channel attacks on TCP: Other works have looked at
exploiting TCP semantics to launch attacks. Chen et al. [36]
abused a side channel in the Wi-Fi half-duplex implementa-
tion to launch TCP injection attacks against major operating
systems (OS). To do so, the authors use vulnerabilities to first
infer existing TCP connections and poison these connections.
Similarly, [37] discovered off-path TCP sequence number in-
ference that can hijack a TCP connection to inject malicious
content. We find that their focus is different from ours as they
focus on side-channel attacks whereas our goal is to evade
the detection and prevention of a FW.

Censorship evasion: A seemingly plausible solution is to
directly use the tools that have reported evasion attacks for
censorship FWs [22,41] and/or IDS [35]. For instance, IN-
TANG [41] manually validates hypotheses to evade the Great
Firewall of China (GFW). Unfortunately, this approach will
not scale if the inner-working of GFW changes. Similarly,
prior work on IDS [35] also has similar issues of doing manual
analysis. A recent work, Geneva [22], uses genetic algorithms
to automate this process for censorship FWs. However, the
system model that they consider has different goals and config-
uration settings and hence, cannot directly be applied (§6.1).
Further, with its model-free approach, the tool is unaware of
the internal FW states, which are useful to discover subtle,
but semantically-different attacks. However, such model-free
approaches (e.g., genetics algorithms) may provide comple-
mentary tool-set that can help the model-guided approach to
be more efficient (more in §8).

Model-guided attack generation: Other prior works
(e.g., [29,30,32]) were successful in using a model-guided ap-
proach to generate attacks in other settings. For instance, [30]
generates attacks exploiting TCP congestion control mech-
anism to degrade throughput. LTEInspector [29] discovers
designs flaws of the 4G LTE protocol.

8 Discussion

Countermeasures: In the short term, we envision two fixes.
First, vendors could use our generated models and attack
strategies and identify bug fixes. While fixing such logic bugs
completely may be difficult, as a starting point, we could focus
on fixing bugs up to a length X. Here, the models learned from
Pryde could help narrow down the exact code region/path for
any given attack sequence. We envision doing this iteratively;
i.e., after patching specific vulnerable sequences, we can rerun

Pryde to validate/or identify new evasion attacks. Second,
operators can use our attacks to synthesize policies for traffic
normalizers [28]. Some of our post-processing analysis for
summarizing the patterns of attacks may help in this process
(e.g., generating signatures). A longer-term option would
perhaps be to use some type of program synthesis or formal
verification techniques to generate the FSM handling parts of
the FW that are correct by construction (e.g., [43]).

Handling more complex victims: Our current victim model
is simple and accepts all TCP packets. As future work, we
can consider more complex attacks (e.g., data exfiltration
from a stateful server). To handle this, we would need the
attacker to establish a TCP connection with the victim. Thus,
we would need we need additional logic to adjust the seq and
ack numbers of the generated strategies and ensure that an
attacker can establish a connection with a victim.

Extending model inference: We currently consider four in-
terference input alphabets. With the current templates, we
could discover hundreds to thousands of distinct attack strate-
gies. We could consider additional input alphabets that would
involve bad checksum, low TTL, among others, which would
help to discover additional attack strategies. Here it might be
useful to combine our approach with model-free efforts [22]
since they can quickly explore more TCP fields.

Handling application-layer attacks: We focus on TCP-
level evasion in this paper. An interesting future direction
is to extend our design to handle layer-7 FWs. To do so, we
would need to extend both the model inference (e.g., HTTP
GET, POST) and the attack synthesis steps.

9 Conclusions

Stateful firewalls are the “workhorse” of operational network
security but are surprisingly hard to implement correctly. As
such, vulnerabilities in the semantics of the stateful process-
ing can lead to fundamental sources of evasion attacks that
can manifest even if the policies are configured correctly. Our
work on Pryde automatically synthesizes evasion strategies
with a model-guided approach by taking as input only a black-
box FW implementation. Pryde is extensible and can be used
for analyzing a variety of scenarios, though in this work as a
starting point we focus on the circumventing a DATA to a vic-
tim host. Our analysis of multiple production-grade firewalls
reveals that: 1) there are more than hundreds (or a thousand
for some cases) of distinct attack sequences for each FW; and
2) these attacks are subtle that would be difficult to discover
if we had done them manually.

References

[11 AWS Marketplace. https://aws.amazon.com/marketplace, last

accessed July 31, 2020.

boofuzz: Network protocol fuzzing for humans. https://boofuzz.
readthedocs.io/en/latest/, last accessed July 31, 2020.

[2]

15

(3]

[4]
[3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Cloud-based firewalls are key to protecting employees while

working remotely. https://securityboulevard.com/2020/05/
cloud-based-firewalls-are-key-to-protecting-employees-while-workinc
last accessed July 31, 2020.

Cloudlab. https://www.cloudlab.us/, last accessed July 31, 2020.

FBI recommends that you keep your IoT devices on a

separate network. https://www.zdnet.com/article/
fbi-recommends-that-you-keep-your-iot-devices-on-a-separate-networl
last accessed July 31, 2020.

Firewall Penetration Testing: Steps, Methods And Tools That Work.
https://purplesec.us/firewall-penetration-testing/, last
accessed July 31, 2020.

IoT security fail: The weird devices that employees are connect-

ing to the office network. https://www.zdnet.com/article/
iot-security-warning-employees-are-connecting-these-unauthorised-de
last accessed July 31, 2020.

Katherine Pryde. https://marvel-movies.fandom.com/wiki/
Katherine_Pryde, last accessed July 31, 2020.

Microsoft: Russian state hackers are using IoT devices to

breach enterprise networks. https://www.zdnet.com/article/
microsoft-russian-state-hackers-are-using-iot-devices-to-breach-ent
last accessed July 31, 2020.

Red Hat Sprucing OpenShift for Network Functions on
Kubernetes. https://www.lightreading.com/nfv/
red-hat-sprucing-openshift-for-network-functions-on-kubernetes/
d/d-1d/754828, last accessed July 31, 2020.

Rogue IoT devices are putting your network at risk
from hackers. https://www.zdnet.com/article/
rogue-iot-devices-are-putting-your-network-at-risk-from-hackers/,

last accessed July 31, 2020.

Scapy. http://www.secdev.org/projects/scapy/, last accessed
July 31, 2020.

Sulley: Fuzzing Framework. http://www.fuzzing.org/
wp-content/SulleyManual.pdf, last accessed July 31, 2020.

The Importance of Using a Firewall for Threat Protection.
https://www.websecurity.digicert.com/security-topics/
importance-using-firewall-threat-protection, last accessed
July 31, 2020.

The IoT: Gateway for enterprise hackers.
https://www.csoonline.com/article/3148806/
the-iot-gateway-for-enterprise-hackers.html, last ac-

cessed July 31, 2020.

Virtualbox. https://www.virtualbox.org/, last accessed July 31,
2020.

ABDELNUR, H. J., STATE, R., AND FESTOR, O. Kif: a stateful STP
fuzzer. In IPTComm (2007), ACM, pp. 47-56.

ADEL EL-ATAWY, IBRAHIM, K., HAMED, H., AND EHAB AL-
SHAER. Policy segmentation for intelligent firewall testing. In NPSec
(2005), pp. 67-72.

ADISESHU, H., SURI, S., AND PARULKAR, G. M. Detecting and
resolving packet filter conflicts. In INFOCOM (2000), IEEE Computer
Society, pp. 1203-1212.

AL-SHAER, E., EL-ATAWY, A., AND SAMAK, T. Automated pseudo-
live testing of firewall configuration enforcement. /IEEE J. Sel. Areas
Commun. 27, 3 (2009), 302-314.

ANGLUIN, D. Learning regular sets from queries and counterexamples.
Inf. Comput. 75, 2 (1987), 87-106.

Bock, K., HUGHEY, G., QIANG, X., AND LEVIN, D. Geneva: Evolv-
ing censorship evasion strategies. In ACM Conference on Computer
and Communications Security (2019), ACM, pp. 2199-2214.

https://aws.amazon.com/marketplace
https://boofuzz.readthedocs.io/en/latest/
https://boofuzz.readthedocs.io/en/latest/
https://securityboulevard.com/2020/05/cloud-based-firewalls-are-key-to-protecting-employees-while-working-remotely/
https://securityboulevard.com/2020/05/cloud-based-firewalls-are-key-to-protecting-employees-while-working-remotely/
https://www.cloudlab.us/
https://www.zdnet.com/article/fbi-recommends-that-you-keep-your-iot-devices-on-a-separate-network/
https://www.zdnet.com/article/fbi-recommends-that-you-keep-your-iot-devices-on-a-separate-network/
https://purplesec.us/firewall-penetration-testing/
https://www.zdnet.com/article/iot-security-warning-employees-are-connecting-these-unauthorised-devices-to-your-network/
https://www.zdnet.com/article/iot-security-warning-employees-are-connecting-these-unauthorised-devices-to-your-network/
https://marvel-movies.fandom.com/wiki/Katherine_Pryde
https://marvel-movies.fandom.com/wiki/Katherine_Pryde
https://www.zdnet.com/article/microsoft-russian-state-hackers-are-using-iot-devices-to-breach-enterprise-networks/
https://www.zdnet.com/article/microsoft-russian-state-hackers-are-using-iot-devices-to-breach-enterprise-networks/
https://www.lightreading.com/nfv/red-hat-sprucing-openshift-for-network-functions-on-kubernetes/d/d-id/754828
https://www.lightreading.com/nfv/red-hat-sprucing-openshift-for-network-functions-on-kubernetes/d/d-id/754828
https://www.lightreading.com/nfv/red-hat-sprucing-openshift-for-network-functions-on-kubernetes/d/d-id/754828
https://www.zdnet.com/article/rogue-iot-devices-are-putting-your-network-at-risk-from-hackers/
https://www.zdnet.com/article/rogue-iot-devices-are-putting-your-network-at-risk-from-hackers/
http://www.secdev.org/projects/scapy/
http://www.fuzzing.org/wp-content/SulleyManual.pdf
http://www.fuzzing.org/wp-content/SulleyManual.pdf
https://www.websecurity.digicert.com/security-topics/importance-using-firewall-threat-protection
https://www.websecurity.digicert.com/security-topics/importance-using-firewall-threat-protection
https://www.csoonline.com/article/3148806/the-iot-gateway-for-enterprise-hackers.html
https://www.csoonline.com/article/3148806/the-iot-gateway-for-enterprise-hackers.html
https://www.virtualbox.org/

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

CLARKE, E. M., BIERE, A., RAIMI, R., AND ZHU, Y. Bounded
model checking using satisfiability solving. Formal Methods in System
Design 19, 1 (2001), 7-34.

DE MOURA, L. M., AND BJ@RNER, N. Z3: an efficient SMT solver.
In TACAS (2008), vol. 4963 of Lecture Notes in Computer Science,
Springer, pp. 337-340.

Favyaz, S. K., YU, T., TOBIOKA, Y., CHAKI, S., AND SEKAR, V.
BUZZ: testing context-dependent policies in stateful networks. In
NSDI (2016), USENIX Association, pp. 275-289.

GASCON, H., WRESSNEGGER, C., YAMAGUCHI, F., ARP, D., AND
RIECK, K. Pulsar: Stateful black-box fuzzing of proprietary network
protocols. In SecureComm (2015), vol. 164 of Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommuni-
cations Engineering, Springer, pp. 330-347.

GORBUNOV, S., AND ROSENBLOOM, A. Autofuzz: Automated net-
work protocol fuzzing framework. IJCSNS 10, 8 (2010), 239.

HANDLEY, M., PAXSON, V., AND KREIBICH, C. Network intrusion
detection: Evasion, traffic normalization, and end-to-end protocol se-
mantics. In USENIX Security Symposium (2001), USENIX.

HUSSAIN, S. R., CHOWDHURY, O., MEHNAZ, S., AND BERTINO, E.
Lteinspector: A systematic approach for adversarial testing of 4g LTE.
In NDSS (2018), The Internet Society.

JERO, S., HOQUE, M. E., CHOFFNES, D. R., MISLOVE, A., AND
NITA-ROTARU, C. Automated attack discovery in TCP congestion
control using a model-guided approach. In NDSS (2018), The Internet
Society.

KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header space
analysis: Static checking for networks. In NSDI (2012), USENIX
Association, pp. 113-126.

LL C., Tu, G., PENG, C., YUAN, Z,, L1, Y., LU, S., AND WANG, X.
Insecurity of voice solution volte in LTE mobile networks. In ACM
Conference on Computer and Communications Security (2015), ACM,
pp. 316-327.

MOON, S., HELT, J., YUAN, Y., BIERI, Y., BANERIJEE, S., SEKAR,
V., WU, W., YANNAKAKIS, M., AND ZHANG, Y. Alembic: Auto-
mated model inference for stateful network functions. In NSDI (2019),
USENIX Association, pp. 699-718.

PANDA, A., LAHAV, O., ARGYRAKI, K. J., SAGIV, M., AND
SHENKER, S. Verifying reachability in networks with mutable datap-
aths. In NSDI (2017), USENIX Association, pp. 699-718.

PTACEK, T. H., AND NEWSHAM, T. N. Insertion, evasion, and denial
of service: Eluding network intrusion detection. Tech. rep., SECURE
NETWORKS INC CALGARY ALBERTA, 1998.

QIAN, Z., AND MAO, Z. M. Off-path TCP sequence number inference
attack - how firewall middleboxes reduce security. In IEEE Symposium
on Security and Privacy (2012), IEEE Computer Society, pp. 347-361.

QIAN, Z., AND MAO, Z. M. Off-path tcp sequence number infer-
ence attack - how firewall middleboxes reduce security. 2072 I[EEE
Symposium on Security and Privacy (2012), 347-361.

RAFFELT, H., AND STEFFEN, B. Learnlib: A library for automata
learning and experimentation. In FASE (2006), vol. 3922 of Lecture
Notes in Computer Science, Springer, pp. 377-380.

STOENESCU, R., POPOVICI, M., NEGREANU, L., AND RAICIU, C.
Symnet: Scalable symbolic execution for modern networks. In SIG-
COMM (2016), ACM, pp. 314-327.

UTTING, M., AND LEGEARD, B. Practical Model-Based Testing: A
Tools Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2006.

WANG, Z., CAO0, Y., QIAN, Z., SONG, C., AND KRISHNAMURTHY,
S. V. Your state is not mine: a closer look at evading stateful internet
censorship. In Internet Measurement Conference (2017), ACM, pp. 114—
127.

16

[42]

[43]

YUAN, L., MAL J., Su, Z., CHEN, H., CHUAH, C., AND MOHAP-
ATRA, P. FIREMAN: A toolkit for firewall modeling and analysis.
In IEEE Symposium on Security and Privacy (2006), IEEE Computer
Society, pp. 199-213.

ZAOSTROVNYKH, A., PIRELLI, S., PEDROSA, L., ARGYRAKI, K. J.,
AND CANDEA, G. A formally verified NAT. In SIGCOMM (2017),
ACM, pp. 141-154.

A Size of the inferred models

FW-1 FW-2 FW-3 FW-4
Template| () | 2) | (D | @) | D[@ | D |2
Baseline | 8 23 | 3 12 |4 [356 |2 2
X dir 14 271411514 63 | 2 3
X3 11 |36 |5 16 | 10 | 63 | 57 N/A
xdr 15 [50 [7 11 [10 [78 | 30 N/A
Xand 10 | 10 | 3 11 | 18 | 62 | 55 247

Table 2: Number of states for inferred models (N/A means
not converged); (1) involves only connection setup, DI, and
(2) involves teardown packets, DI-T

	Introduction
	Background and Motivation
	Background on Stateful Firewalls
	Motivating Scenarios

	Problem Overview
	Threat Model
	Problem Formulation
	High-Level Design

	Model Inference
	Prior work on model inference for stateful FWs
	Limitations of the prior work
	Generating evasion-centric input alphabets
	Extending the inference algorithm

	Attack Strategy Generator
	Encoding the system model
	Discovering semantically-different attacks

	Evaluation
	Aggregate summary of attacks
	Structure of evasion attacks

	Related Work
	Discussion
	Conclusions
	Size of the inferred models

