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Abstract

Interactive testing is recently developed to allow to human experts participate in the hypothesis
testing algorithms. Most testing methods are predefined algorithms that do not allow modifications
after observing the data. However, in practice, analysts tend to choose a promising algorithm
after observing the data; unfortunately, this violates the validity of the conclusion. In contrast,
the interactive methods allow the algorithm to be much more flexible, such that a human (or a
computer program) may adaptively design the algorithm in a data-dependent manner if they adhere
to a particular protocol of “masking” and “unmasking”. Interactive testing was first proposed for
multiple hypothesis testing to control the false discovery rate (FDR). This thesis develops interactive
tests in various problem settings.

Following the problem setting in multiple testing, Chapter 2 and Chapter 3 propose interactive
tests with global type-I error control and familywise error rate (FWER) control, respectively. The
interactive procedures can take advantage of covariates and repeated user guidance to focus on
possible non-nulls, achieving high power in numerical experiments where the non-nulls are sparse
and structured. In addition, we explore alternative forms of masking, which could be more robust to
conservative nulls.

Moving outside of multiple testing with p-values, Chapter 4 studies the problem of comparing
multiple samples. Classical nonparametric tests, such as the Wilcoxon test, are often based on the
ranks of observations. We design an interactive rank test called i-Wilcoxon with type-I error control.
The i-Wilcoxon test is first proposed for two-sample comparison with unpaired data, and then
extended to paired data, multi-sample comparison, and sequential settings, thus also extending the
Kruskal-Wallis and Friedman tests. As alternatives, we also numerically investigate (non-interactive)
covariance-adjusted variants of the Wilcoxon test, and provide practical recommendations based on
the anticipated population properties of the treatment effects.

Out of the participants in a randomized experiment with anticipated heterogeneous treatment
effects, is it possible to identify which ones have a positive treatment effect, even though each has
only taken either treatment or control but not both? While subgroup analysis has received attention,
claims about individual participants are more challenging. Chapter 5 frame the problem in terms of
multiple hypothesis testing: we think of each individual as a null hypothesis (the potential outcomes
are equal, for example) and aim to identify individuals for whom the null is false (the treatment
potential outcome stochastically dominates the control, for example). We develop a novel interactive
algorithm that identifies such a subset, with nonasymptotic control of the false discovery rate (FDR).
We also propose several extensions: (a) relaxing the null to nonpositive effects, (b) generalizing the
setting to observational studies with heterogeneous and unknown propensity scores, (c) moving from
unpaired to paired samples, and (d) subgroup identification.
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and the test with ER(X)
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34 FDR (left) and power (right) of the Crossfit-I3 compared with the linear-BH proce-
dure, with the treatment effect specified as model (110) and the scale S∆ varying in
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1 Introduction
There is increasing concern that many published results in various medical and life sciences are over-
optimistic. Scientists tend to try out several statistical analyses on the same dataset until there is a
significant (“positive”) result. When a second group repeats the same experiments, the outcomes are
often not as positive. The problem in reproducibility comes from the bias in selecting the analysis tool:
researchers choose a promising method after observing the data, which violates the validity of the results.
In seek of a framework that allows experts (scientists and statisticians) to work together with statistical
models and machine learning algorithms to discover scientific insights with rigorous guarantees, we
work on the idea of interactive testing.

Classical hypothesis testing follows a pipeline of specifying a hypothesis, choosing a test, collecting
data, and running the test. Most tests follow a prespecified algorithm (or a fixed function of the data),
such as ordering p-values in multiple hypothesis testing. Therefore, to utilize domain knowledge in
various applications, each case might require designing a new test from scratch in order to optimally
combines the data with prior knowledge or certain structural constraints. Interactive testing, instead,
provides a simple and flexible framework to be customized to various sources of prior knowledge.
Furthermore, interactive tests are iterative so that a human analyst is allowed to participate in the loop to
modify the test progressively in a data-dependent manner.

Classical test (single step)Data

Side information

Conclusion

(a) Classical hypothesis testing: a pipeline.

Interactive test (multi-step)Masked data

Side information

Feedback
Unmask data

Human

Conclusion

(b) Interactive testing: a loop.

Figure 1: Procedures of classical testing and interactive testing.

The key idea that permits human interaction while ensuring valid error control is “masking and
unmasking”. As an example, we present one form of masking p-values for multiple hypothesis testing,
which is proposed in the first work of interactive testing. Given n hypotheses H1, . . . , Hn and their
corresponding p-values P1, . . . , Pn, each p-value Pi is decomposed into two parts,

h(pi) = 2 · 1{Pi < 0.5} − 1 and g(pi) = min{Pi, 1− Pi}. (1)

Here, g(Pi) is called the masked p-value, while h(Pi) is called the missing bit since it is either plus or
minus one. The critical observation is that h(Pi) and g(Pi) are independent if Hi is null (Pi is uniformly
distributed). Masking was introduced recently by Lei and Fithian [2018] in the context of false discovery
rate (FDR) control, and further generalized and extended in Lei et al. [2020]. More forms of masking
are also developed in this thesis for various problem settings. The underlying property of masking can
be traced to the “knockoff” method by Arias-Castro and Chen [2017]; Barber and Candès [2015].
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Figure 2: One form of masking p-values: missing bits h (left) and masked p-values g (right). For uniform
p-values, g(P ) and h(P ) are independent.

To describe the interactive test in short, the analyst initially designs the algorithm by observing only
the masked p-values. At each iteration, the missing bits are progressively unmasked (revealed) one at a
time, and the analyst can modify the test statistic or any working model as needed. Note that even though
a human is allowed to make subjective decisions at each step of the interaction, an algorithm can be
deployed to act on the human’s behalf. We remark that we do not wish to claim that our interactive tests
are more powerful than prior work in any universal sense, but instead, attempt to expand the creative
design space of new procedures that can involve a human in the loop and explore their potential benefits.

This thesis proposes interactive tests for several testing problems: multiple hypothesis testing
(Chapter 2 and 3), nonparametric tests for multi-sample comparison (Chapter 4), and identification
of positive treatment effect (Chapter 5). Different problem setups require different constructions of
masking and the corresponding test statistics, where various techniques such as martingales and recent
uniform concentration inequalities are involved. In the following chapters, we elaborate on each problem
setup, detail the proposed interactive tests, and discuss their performances and extensions.
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2 Interactive Martingale Tests for the Global Null

2.1 Introduction
This paper proposes new martingale-based methods for testing the global null corresponding to hy-
potheses {Hi}i∈I using a corresponding set of p-values {pi}i∈I and possibly other covariates {xi}i∈I ,
where the index set I can be finite or countably infinite. Global null testing corresponds to testing if all
individual hypotheses are truly nulls (denoted as Hi = 0), against its complement:

HG0 : Hi = 0 for all i ∈ I, HG1 : Hi = 1 for at least one i ∈ I.

As we review later in the introduction, this is a well-studied classical problem. We consider two settings,
the batch setting and the online setting, and our proposed framework applies to both settings:

• Batch setting: we have access to a fixed batch of n hypotheses, thus I = {1, . . . , n}.
• Online setting: an unknown and potentially infinite number of hypotheses arrive sequentially in a

stream, thus I = {1, 2, . . . , k, . . .}.
Most common global null tests involve a one-step operation, comparing a single statistic with a critical
value derived from its null distribution. Observing that many classical tests effectively use a martingale-
type test statistic, we propose novel martingale analogs of these tests that are inherently sequential
(multi-step) in nature, and thus naturally apply in the online setting, or in the batch setting if an ordering
can be created using prior knowledge and/or the data. Intriguingly, the ordering may also be created
interactively: this means that an analyst may adaptively create the ordering in a data-dependent manner
if they adhere to a particular protocol of masking and unmasking (the definition is introduced later in
equation (4)). In order to understand why our interactive martingale tests have desirable properties (both
controlling type-I errors and having higher power in structured settings), it is necessary to present them
last, after having derived the vanilla non-interactive martingale global null tests, which are also novel
in their own right. Specifically, for the purposes of progressively developing intuition, our treatment
follows three steps of increasing complexity:

• (Preordered setting, Section 2.2) In the batch setting, the analyst employs prior knowledge (data-
independent) to preorder the hypotheses. In the online setting, an ordering of hypotheses is
provided by nature.

• (Data-adaptive ordering, Section 2.3.1) In the batch setting, the hypotheses are unordered, but an
adaptive data-dependent ordering is created based on “masked” p-values. In the online setting,
nature orders hypotheses, but the analyst discards some hypotheses from the ordering based on
their masked p-values. Even though the data-adaptive and preordered settings proceed sequentially
and handle the p-values one at a time, the analyst plays no role during this sequential process, as
all the rules for how to order the hypotheses are prespecified before the data is observed.

• (Interactive ordering, Section 2.3.2). The utility of masking to enable interaction with a human is
most compelling in the batch setting, where in addition to the unordered hypotheses, we suppose
that the analyst also has additional side information in the form of covariates, and perhaps prior
knowledge in the form of structural constraints on the non-null set. Using these, and any working
models of their choice, the analyst interactively creates an ordering by initially observing only
masked p-values, and progressively unmasking them one at a time. The analyst can update their
prior knowledge and/or structural constraints and/or working model in the middle of the process
(when only some hypotheses have been ordered and their p-values unmasked), thus intervening to
change the rest of the ordering. It is important to note that even though an analyst is allowed to
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make subjective decisions at each step of the interaction, an algorithm can be deployed in place of
the analyst.

Since all our tests proceed sequentially in nature, accumulating evidence from one hypothesis at a
time, the type-I error guarantee we achieve is that

P0(∃i ∈ I : the test stops and rejectsHG0 after step i) ≤ α,

where P0 is the probability under the global nullHG0. They are judged based on their power,

P1(∃i ∈ I : the test stops and rejectsHG0 after step i),

where P1 is the probability under some alternative inHG1. We remark that even though we formulate
our tests in terms of a target type-I error level α, there is an equivalent formulation in terms of creating
a sequential “always-valid” p-value for the global null that is valid at any arbitrary stopping time.
Section 2.7 explicitly connects these two interpretations.

2.1.1 Assumptions

Instead of assuming that the marginal distribution of null p-values is exactly uniform, we relax it by
allowing conservative p-values defined in two different ways. We either assume that (a) if the global null
is true, all p-values are stochastically larger than uniform:

IfHG0 is true, P(pi ≤ t) ≤ t for all t ∈ [0, 1], i ∈ I. (2)

or assume that (b) if the global null is true, all p-values are mirror-conservative:

IfHG0 is true, fi(a) ≤ fi(1− a) for all 0 ≤ a ≤ 0.5, i ∈ I, (3)

where fi is the probability mass function of pi for discrete p-values or the density function otherwise.
Neither of the aforementioned conditions implies the other, though the former is more commonly made.
Examples of mirror-conservative p-values include permutation p-values and one-sided tests of univariate
parameters with monotone likelihood ratio [Lei and Fithian, 2018]. In the majority of the paper, it may
be easier for the reader to pretend that the null p-values are exactly uniform for simplicity. Later in the
paper, we explicitly demonstrate the distinct advantages of our tests for conservative p-values. We also
assume that if the global null is true, the null p-values are independent of each other:

IfHG0 is true, {pi}i∈I are jointly independent.

This is also a common assumption; Fisher’s test [Fisher, 1992] and Tukey’s Higher Criticism [Donoho
and Jin, 2015] are two other examples. Even though we are cognizant that independence is a strong
assumption that only holds in some limited situations in practice (like meta-analysis), we wish to explore
how much it can be exploited to design novel tests, for instance enabling the use of martingale techniques
and “masking”, as described soon.

We remark that all aforementioned assumptions on the null p-values only need to hold under the
global null. If the global null is not true, we do not require the null p-values (or the non-nulls) to have
any particular marginal distribution or to satisfy any independence assumptions.

2.1.2 Related work

Our paper builds on and connects three distinct lines of work: classical work on global null testing,
modern ideas on permitting interaction using p-value masking, and recent ideas on uniform martingale
concentration inequalities. We discuss these separately below.
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Global null testing. Most previous tests for the global null have been designed to work in the batch
setting, and it continues to be an active area of research [Kost and McDermott, 2002; Owen, 2009;
Rüger, 1978; Rüschendorf, 1982; Vovk and Wang, 2020a]. Our work is most directly connected to tests
which accumulate information as a sum, such as Fisher’s and Stouffer’s tests [Stouffer et al., 1949].

There are many other global null tests like the Bonferroni method, Simes’ test [Simes, 1986], and
Higher Criticism, and our techniques do not apply to these. Importantly, we do not claim that our
interactive martingale tests are more powerful than prior work in any universal sense, but instead, our
goal is to expand the creative design space of new procedures that can involve a human in the loop and
explore their potential benefits.

Permitting interaction by masking the p-values. The motivation behind masking p-values is to
permit interaction with an analyst, who may freely employ models, prior knowledge and intuition,
without any risk of violating type-I error control. The main idea is to decompose each individual p-value
pi into two parts,

h(pi) = 2 · 1{pi < 0.5} − 1 and g(pi) = min{pi, 1− pi}. (4)

Here, g(pi) is called the masked p-value, while h(pi) is called the missing bit since it is either plus or
minus one. The critical observation is that h(pi) and g(pi) are independent if Hi is null (pi is uniformly
distributed). Masking was introduced recently by Lei and Fithian [2018] in the context of false discovery
rate (FDR) control, and further generalized and extended in Lei et al. [2020] for FDR control under
structural constraints, and then followed by work on FWER control [Duan et al., 2020a]. The underlying
property of masking can be traced to the “knockoff” method by Arias-Castro and Chen [2017]; Barber
and Candès [2015]. In this paper, we show that masking is also useful for global null testing in structured
settings, and permitting interaction with an insightful analyst can improve power (but it is impossible for
any analyst to violate type-I error control).

Uniform martingale concentration inequalities. All new test statistics in this paper are designed to
be martingales under the global null. The type-I error control guarantees for our tests thus stem from
utilizing uniform martingale concentration inequalities. These “boundary crossing” inequalities are high
probability statements about the behavior of the entire trajectory of the martingale. In fact, several of
our martingales have increments which are either fair coin flips (±1) or standard Gaussians, which are
some of the most well studied objects in sequential analysis, especially through their natural connections
to Brownian motion [Siegmund, 1986]. In this paper, we care about nonasymptotic guarantees on the
type-I error, and hence we use some recent line-crossing inequalities [Howard et al., 2020a] and new
curve-crossing inequalities [Howard et al., 2020b] that are nonasymptotic generalizations of the law of
the iterated logarithm, which goes back to the work by Robbins [Robbins, 1970] (see Appendix A.4 for
a detailed comparison). For a martingale Mk, these boundaries are denoted uα(k) and satisfy

P(∃k ∈ N : Mk > uα(k)) ≤ α.

In the next section, we provide the exact expressions for the uα(k) that we use, which are chosen because
they have similar qualitative behavior but tighter constants than earlier work, references to which may
be found within the aforementioned papers.

2.1.3 Outline

To progressively build intuition, the preordered martingale test is described in Section 2.2 followed by
the adaptively ordered martingale test in Section 2.3.1. In Section 2.3.2, the general interactively ordered
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martingale test is presented. For all these methods, the type-I error guarantees are presented immediately
after the algorithms. However, power guarantees for all algorithms in the Gaussian sequence model are
derived in Section 2.4. We then perform extensive simulations in Section 2.5. In Section 2.6, we examine
the robustness of our test to conservative nulls. Section 2.7 explicitly describes how to interpret our
tests as tracking an anytime-valid sequential p-value. Finally in Section 2.8, we discuss alternative ways
of masking p-values. We end with a brief summary in Section 2.9, and defer all proofs and additional
experiments to the Appendix.

2.2 The preordered martingale test
The preordered martingale test is not a single test, but instead, a general framework to extend the
application of many classical methods that use the sum or product of transformed p-values, such as
Stouffer’s method [Stouffer et al., 1949] and Fisher’s method [Fisher, 1992], from the batch setting to
the online setting. In this section, the ordering of hypotheses is fixed in advance by nature, or by the
analyst using prior knowledge to place potential/suspected non-nulls early in the ordering.

The general framework. Our test takes the following general form:

Reject the null if
k∑
i=1

f(pi) ≥ uα(k), for some k ∈ I, (5)

where f(·) is some transformation of the p-value, and {uα(k)}k∈N is a boundary sequence depending on
the choice of f . The boundary is determined by first establishing that the sequence {

∑k
i=1 f(pi)}k∈N

is a martingale under the global null (after appropriate centering if needed). We then characterize the
tail behavior of the martingale increments f(pi) for a uniform p-value. Finally, to control the type-I
error, we employ recent results [Howard et al., 2020a,b] which provide boundaries under parametric
and nonparametric conditions on the increments, such that with high probability the entire trajectory of
the martingale is contained within the boundary.

The preordered martingale test improves on its original batch version in two aspects. First, the
applicability of the original test is extended from the batch setting to the online setting. Second,
in the case of sparse non-nulls, the martingale version greatly improves the detection power if the
non-nulls appear early on. As an example of converting a classic test to its martingale version, we
develop the martingale Stouffer test below. Two more examples can be found in Appendix A.5 for a
martingale Fisher test using f(pi) = −2 log pi, and Appendix A.6 for a martingale chi-square test using
f(pi) = [Φ−1(1− pi)]2.

An example: martingale Stouffer test (MST). The batch test by Stouffer et al. [1949] calculates
Sn =

∑n
i=1 Φ−1(1 − pi), where Φ(·) denotes the standard Gaussian CDF. Since the distribution of

Sn under the global null is N (0, n), the batch test rejects when Sn >
√
nΦ−1(1 − α). To design the

martingale test, simply observe that {Sk}k∈I is a martingale whose increments f(pi) = Φ−1(1− pi) are
standard Gaussians under the global null. There are several types of uniform boundaries uα(k) for a
Gaussian increment martingale, and here we give two examples: linear and curved. The first boundary
(transformed from equation (2.29) in Howard et al. [2020a]), which can be derived from the Gaussian
sequential probability ratio test [Wald, 1945], grows linearly with time. Specifically, the test rejects the
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global null if

∃k ∈ N :
k∑
i=1

Φ−1(1− pi) ≥
√
− logα

2m
k +

√
−m logα

2
, (6)

where m ∈ R+ is a tuning parameter that determines the time at which the bound is tightest: a larger m
results in a lower slope but a larger offset, making the bound loose early on. We suggest a default value
of m = n/4 if the number of hypotheses n is finite, but it should be chosen based on the time by which
we expect to have encountered most non-nulls (if any). In contrast, the martingale Stouffer test with a
curved boundary (equation (2) in Howard et al. [2020b]) rejects the global null if

∃k ∈ N :
k∑
i=1

Φ−1(1− pi) ≥ 1.7

√
k

(
log log(2k) + 0.72 log

5.2

α

)
. (7)

These bounds differ in the quota of error budget distributed to every step k = 1, 2, . . ., which can
influence the detection power of the martingale test as it is more likely to exceed a tighter bound. Curved
bounds have a slower growth rate O(

√
k log log k) than the linear bounds, indicating a tighter bound for

large enough k, but they are usually looser for small k. Comparisons of the test with several linear and
curved boundaries are given in Appendix A.4. Generally, the linear bound is recommended for the batch
setting, and the curved bound for the online setting.

The martingale Stouffer test with either boundary controls the type-I error, if under the global null
the sum {

∑k
i=1 Φ−1(1−pi)}k∈N is stochastically upper bounded by a martingale with standard Gaussian

increments, which holds under our assumption that the null p-values are stochastically larger than
uniform, as stated below.
Theorem 1. If the p-values are independent and stochastically larger than uniform under the global
null, then the martingale Stouffer test with linear boundary (6) or curved boundary (7) controls the
type-I error at level α.

The next natural question is what we can prove about the detection power of the aforementioned
tests. While this is treated more formally later in the paper, for now it suffices to say that the power of
the martingale Stouffer test relies on a good preordering that places non-nulls up front. If such prior
knowledge is not available (and say the preordering is completely random, or even adversarial), then the
preordered martingale tests can have poor power. This motivates the development of methods based on
data-adaptive orderings, as treated next.

2.3 Adaptive and interactive methods
To develop intuition progressively, we first introduce a martingale test whose ordering depends on
the p-values in Section 2.3.1, and extend it in Section 2.3.2 to an interactive test, whose ordering can
additionally depend on side information (covariates) and human interaction.

2.3.1 The adaptively ordered martingale test (AMT)

If we naively use the p-values to both determine the ordering as well as form the test statistic, the
resulting “double-dipped” sequence of test statistics does not form a martingale under the global null. In
order to allow using the p-value for determining the ordering, we use a recent idea called masking, as
briefly mentioned in the introduction. Each p-value pi is decomposed as

h(pi) = 2 · 1{pi < 0.5} − 1, g(pi) = min{pi, 1− pi},
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where h(pi) is called the missing bit, and g(pi) is called the masked p-value. The masked p-values
are used to create the ordering (by placing smaller ones up front) while the test statistic just sums the
missing bits h(pi) in that order. Since h(pi) and g(pi) are independent under the global null, sorting by
the g(pi) values results in a uniformly random ordering, and the sum of h(pi) is just a random walk of
independent coin flips. Formally, define the set Mk as the first k hypotheses ascendingly ordered by
g(pi). Our test rejectsHG0 if

∃k ∈ {1, . . . , n} :
∑
i∈Mk

h(pi) ≥ uα(k),

where the upper bound uα(k) is the same as for the martingale Stouffer test in equations (6) and (7),
since the sequence of sums

∑
i∈Mk

h(pi) is also a martingale with 1-subGaussian increments under the
global null. The adaptively ordered martingale test in the batch setting is summarized below.

Algorithm 1 The adaptively ordered martingale test (batch setting)
Input: p-values (pi)

n
i=1, target type-I error rate α;

Procedure: Initialize M0 = ∅;
for k = 1, . . . , n do

Mk = Mk−1 ∪ argmini/∈Mk−1
g(pi);

if
∑

i∈Mk
h(pi) > uα(k) then

reject the global null and stop;
end

The adaptively ordered martingale test in the online setting proceeds slightly differently: it screens
the hypotheses by g(p) so that only promising non-nulls enter the set Mk. Specifically, given a threshold
parameter c (such as 0.05), the set Mk expands at time t only if g(pt) < c, as summarized below.

Algorithm 2 The adaptively ordered martingale test (online setting)
Input: target type-I error rate α, threshold parameter c;
Procedure: Initialize M0 = ∅, size k = 0;
for t = 1, . . . , do

pt is revealed by nature;
if g(pt) < c then

k ← k + 1, Mk = Mk−1 ∪ {t};
if
∑

i∈Mk
h(pi) > uα(k) then

reject the global null and stop;
end

The adaptively ordered martingale test controls type-I error if under the global null, all p-values are
mirror-conservative (3), as formally stated below.
Theorem 2. If the p-values are independent and mirror-conservative under the global null, then the
adaptively ordered martingale test controls the type-I error at level α.

In the batch setting, the adaptive ordering (as realized by the nested sequence {Mk}) is fully
determined at the start of the procedure by sorting the masked p-values. In the next section, we
demonstrate that in the presence of independent covariates xi for each hypothesis and side information
such as structural constraints on potential rejected sets, it is actually beneficial to interactively determine
the ordering one step at a time with a human-in-the-loop, who may be guided by the masked p-values as
well as intuition and working models.

22



2.3.2 The interactively ordered martingale test (IMT)

The interactively ordered martingale test also applies to both batch and online settings. We first describe
the method in the batch setting with side information and structural constraints, where the power of
interactivity is more compelling.

To begin, first suppose that in addition to the p-values, the scientist also has some side information
about each hypothesis available to them in the form of covariates xi. For example, if the hypotheses are
arranged in a rectangular grid, then xi could be the coordinates on the grid for hypothesis i (examples
in Section 2.5.1). We then suppose that the scientist also has some prior knowledge or intuition about
what structural constraints the non-nulls would have, if the global null is false. For example, perhaps
the scientist thinks that the non-nulls (if any) would be clustered on the grid, themselves forming a
rectangular shape (of some size, at some location). Our main assumption about the covariates is:

Under the global null, xi ⊥ pj for all i, j ∈ I.

This is a common assumption for tests that incorporate covariate information, such as Independent
Hypothesis Weighting [Ignatiadis et al., 2016], AdaPT [Lei and Fithian, 2018], and STAR [Lei et al.,
2020]. In fact, because the aforementioned methods aim at error control of more stringent metrics such
as FDR and FWER, their assumptions are stronger in the sense that the independence between xi and pi
is required for the hypotheses that are truly null even when the global null is not true (i.e., there exist
non-nulls). Our interactively ordered martingale test satisfies the following two properties: (a) if the
global null is true, the type-I error is controlled, regardless of what the scientist thinks or acts, (b) if the
global null is false, and the prior knowledge and/or structural constraints are accurate (or somewhat so),
then the power of the test is high. The interactive test proceeds as follows:

• At the beginning, all covariates and masked p-values (xi, g(pi))i∈I are revealed to the scientist,
while only the missing bits (h(pi))i∈I remain hidden. We initialize M0 = ∅.

• The scientist repeats the following at each time step k ≥ 1: they choose a promising hypothesis i?k
from [n]\Mk−1, and update Mk = Mk−1 ∪ {i?k}.

• On doing so, they learn h(pi?k), and thus keep track of Sk :=
∑

i∈Mk
h(pi). If Sk > uα(k) for any

k, they stop and reject the global null.
Type-I error control is essentially guaranteed because regardless of how the scientist acts at each step, if
the global null is true, all the g(pi) values and the revealed h(pi) values do not provide any information
about the still hidden missing bits, and thus Sk is a martingale.

When the global null is false, we expect the power to be high because of the following reasons. First,
the scientist may use any working model of their choice (or none at all) to guide their choice at each step.
For example, they can attempt to estimate the likelihood of being non-null for each hypothesis i at each
step k, denoted as π(k)

i (posterior probability of being non-null). In fact, as they learn the missing bits at
each step, they can change their model or update their prior knowledge based on the observed p-values
thus far. The information available to the scientist at the end of step k is denoted by the filtration

Fk := σ ((xi, g(pi))
n
i=1, (pi)i∈Mk

) ,

and thus the choice i?k is predictable, meaning it is measurable with respect to Fk−1. The general
interactive framework is summarized below as Algorithm 3.
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Algorithm 3 The interactively ordered martingale test (batch setting)
Information available to the scientist: side covariate information and/or structural constraints, and
masked p-values F0 := σ((xi, g(pi))

n
i=1), target error α;

Procedure: Initialize M0 = ∅;
for k = 1, . . . , n do

Using Fk−1, pick any i?k ∈ [n]\Mk−1. Update Mk = Mk−1 ∪ {i?k};
Reveal h(pi?k) and update Fk := σ ((xi, g(pi))

n
i=1, (pi)i∈Mk

);
if
∑

i∈Mk
h(pi) > uα(k) then

reject the global null and exit;
end

The interactively ordered martingale test in the online setting screens the hypotheses based on
information in Ft−1 such that pt enters the set Mk only when it is a promising non-null, as described in
Algorithm 4.

Algorithm 4 The interactively ordered martingale test (online setting)
Procedure: Input target error α. Initialize M0 = ∅, size k = 0;
for t = 1, . . . , do

Information available to the scientist: side covariate information and/or structural constraints, and
(masked) p-values Ft−1 := σ((xi, g(pi))

t
i=1, (pi)

t−1
i=1);

Using Ft−1, decide whether hypothesis t should be included in Mk−1;
if include hypothesis t then

k ← k + 1, Mk = Mk−1 ∪ {t};
if
∑

i∈Mk
h(pi) > uα(k) then

reject the global null and stop;
end

The aforementioned algorithms (or frameworks) comes with the following error guarantee, regardless
of the choices made by the scientist.
Theorem 3. If underHG0, the p-values are mirror-conservative and are independent of each other and
of the covariates xi, then the interactively ordered martingale test controls the type-I error at level α.

Note that there is no requirement whatsoever on the null or non-null p-values (i.e., p-values from the
hypotheses that are truly non-null) when the global null is false. As before, note that under the global
null, the missing bits are random fair coin flips, and the masked p-values are uniform on [0, 0.5] and
completely uninformative about the missing bit. However, under the alternative, the true signals have
very small masked p-values (say 0.01, 0.003, etc.) and along with covariate information, one may be
able to infer that the missing bit is more likely to be +1 and thus include it in the ordering. Continuing
the grid example from the start of this section, by revealing all but one bit per p-value at the start of the
procedure, the scientist can possibly notice if small masked p-values are randomly scattered or clustered
on the grid.
Remark 1. For any particular setup, like our example of a grid with a cluster of signals, it may be
possible to design a better global null test that is perfectly suited for that setting. Hence, we do not
claim that our interactive method is the right test to use in all problem setups. Its main advantage is its
generality: instead of having to design a new test for each situation (trying to figure out how to optimally
combine prior knowledge, structural constraints and covariates from scratch), our general framework
provides a simple and flexible alternative.
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The correctness of the test (proof in Appendix A.1.2) hinges on one bit from each p-value being
hidden from the scientist. Once this protocol has been run once, and all p-values have been unmasked,
the procedure obviously cannot be run a second time from scratch. In other words, our interactive setup
does not prevent these and related forms of p-hacking. This is similar to the traditional offline setup,
where it is not allowed to pick the global null test after observing the p-values and guessing which test
will have the highest power to reject, and if scientists do this anyway and report only the final finding,
we would have no way to know whether such inappropriate double-dipping has occurred.

It is worth remarking on the main disadvantage of such a test, relative to (say) the martingale Stouffer
test introduced earlier. The interactive test statistic is a sum of coin flips (missing bits) – no matter how
strong the signal might be, the interactive test statistic can only increase by one at most. On the other
hand, the martingale Stouffer test adds up Gaussians, and if there is a strong signal (very small p-value),
it can stop very early. If a relatively good prior ordering is known to the scientist, the martingale Stouffer
test should be preferred. However, if the prior knowledge is not in the form of an ordering, but some
intuition about how the covariates and p-values may be related or what type of structure the non-nulls
may have (if any), then the interactive test can be much more powerful.

The above framework leaves the specific strategy of expanding Mk unspecified, allowing much
flexibility. Now, we give one example of how i?k can be chosen based on the available information Fk.
One straightforward choice for i?k is the hypothesis not in Mk with the highest posterior probability
of being non-null, computed with the aid of a working model, like the Bayesian two groups model,
where each p-value pi is drawn from a mixture of a null distribution F0 with probability 1− πi and an
alternative distribution F1 with probability πi:

pi ∼ (1− πi)F0 + πiF1. (8)

For example, we can choose F0 as a uniform and F1 as a beta distribution. We may further posit a working
model that treats πi as a smooth function of xi. The masked p-values g(pi) and the revealed missing
bits in Fk−1 can be used to infer the other missing bits using the EM algorithm (see Appendix A.7).
The missing bits that are inferred to be more likely +1 should be chosen, potentially in accordance with
other structural constraints. Importantly, the type-I error is controlled regardless of the correctness of the
working model or any heuristics to expand Mk.

2.4 Power guarantees of non-interactive procedures
This section is devoted to an analysis of the power of the martingale Stouffer test and the adaptively
ordered martingale test. It’s hard to analyze the power for the interactively ordered martingale test due to
its flexible framework offered to the user: it can have high power if the user specifies a good interactive
algorithm, and vice versa. Nevertheless, to demonstrate the advantages of the interactively ordered
martingale test, we present numerical results under structured non-nulls in the next section.

Our analysis includes power guarantees in the batch and online settings in a simple Gaussian setup.
Specifically, we consider a simple multiple testing problem where each hypothesis is a one sided
hypothesis on the mean value of a Gaussian. In this setting, the i-th null hypothesis is that a Gaussian
has zero mean, and the alternative is that the Gaussian has a positive mean µi > 0.
Setting 1. We observe Z1, . . . , Zn where Zi ∼ N(µi, 1) and wish to distinguish the following hypotheses:

HG0 : µi = 0 for all i ∈ I, versus
HG1 : µi > 0 for some i ∈ I.
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In the remainder of this section, we let ri := I(µi > 0) indicate the non-null hypotheses. Although we
compare the power of various tests in this relatively simple setting, we emphasize that our tests are more
broadly applicable to general settings where the p-values are mirror-conservative under the null.
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Figure 3: Illustrative simulations that compare the batch and online martingale Stouffer test (MST) and
the adaptively ordered martingale test (AMT) under Setting 1. All plots in this paper present the averaged
power (in the batch setting) and averaged rejection time (in the online setting) over 500 repetitions, and
the type-I error is α = 0.05.

With this setup in place, we now summarize the main results of this section.
• In Section 2.4.1, we focus on the batch setting. In Theorem 4, we compare the power of the

martingale Stouffer test with its batch counterpart, showing that when a good a-priori ordering is
used the martingale Stouffer test can have much higher power. Our next result, Theorem 5, studies
the adaptively ordered martingale test in the batch setting. The adaptively ordered martingale
test expands the testing set Mk based on masked p-values, and tests the global null using the
missing bits h(pi). We show that in cases when the signal strength is high, re-ordering by the
masked p-values can significantly improve power of the resulting test by ensuring that promising
hypotheses are considered early on with high-probability.

• In Section 2.4.2 we turn our attention to the online setting. In Theorem 6, we study the power of a
simple online Bonferroni test, and compare this in Theorem 7 with the power of the adaptively
ordered martingale test. For the adaptively ordered martingale test, we study the role of the
threshold parameter c in the power of the test, characterizing some of the tradeoffs involved in the
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choice of this parameter.
Figure 3 visualizes the above power comparisons by two simple simulations in batch and online settings1.
Details of the batch experiment appear next.

We simulate 104 hypotheses with 50 non-nulls (µi = 3). The position of the non-nulls is encoded by
a sparsity parameter: the non-nulls are uniformly distributed in the first sparsity · n hypotheses. Thus,
larger sparsity indicates a poorer prior ordering (the non-nulls are more scattered), and it is expected to
result in lower power for order-dependent methods. Indeed, we observe that: (1) two batch procedures
(the adaptively ordered martingale test (AMT) in the batch version and Stouffer’s test) get the p-values
as a set, ignoring the prior ordering, and hence their power is a flat line; (2) the online AMT and the
MST procedure uses p-values in the ordering provided to it, and their power degrades as the quality of
the ordering degrades; (3) the online AMT is less sensitive to bad prior ordering than the MST because it
discards possible nulls based on the masked p-values; but it could still let in many nulls if the discarding
threshold is not tight and most nulls are in front, leading to lower power under a worse prior ordering;
(4) overall, the AMT procedures (batch and online) are more robust to bad prior ordering than the MST
because they adaptively alter the ordering.

Keep in mind that the simulations above and the power analysis below assume no prior knowledge,
but the interactively ordered martingale test has higher power when taking advantage of the non-null
structure, as shown in Section 2.5.

2.4.1 Power guarantees in the batch setting

We begin by studying the power of the batch, martingale and interactive martingale tests in the batch
setting.

The batch Stouffer test and the martingale Stouffer test: The batch Stouffer test simply aggregates
the observed Z1, . . . , Zn and compares this with an appropriate threshold. In contrast, the martingale
Stouffer test sequentially compares partial aggregations with an appropriate threshold.

To state our result compactly, for a specified value γ, we define:

Cγ
k := 1.7

√
log log(2k) + 0.72 log

5.2

γ
, (9)

which corresponds to the curved boundary in (7) divided by
√
k. This quantity grows very slowly with k

(at the rate of
√

log log(k)) and for all practical purposes can be treated as a “constant”. We have the
following result:
Theorem 4. (a) Batch Stouffer Test (necessary+sufficient): A necessary and sufficient condition

for the batch Stouffer test with type-I error α to have at least 1− β power is that
n∑
i=1

riµi ≥ (Zα + Zβ)n1/2, (10)

where Zα = Φ−1(1− α) is the (1− α)-quantile of a standard Gaussian.
(b) Martingale Stouffer Test (sufficient): A sufficient condition for MST to have power at least

1− β is

∃ k ∈ {1, . . . , n},
k∑
i=1

riµi ≥
(
Cα
k + Cβ

k

)
k1/2. (11)

1https://github.com/duanby/interactive-martingale has R code to reproduce all plots.
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(c) Martingale Stouffer Test (necessary): If α < 1− β, the power of MST is less than 1 − β
whenever

∀ k ∈ {1, . . . , n},
k∑
i=1

riµi ≤ (Cα
k − C

1−β
k )k1/2.

We defer the proof of this result to Appendix A.2.1. Several remarks are in order.

• It is also possible to study the power of the Bonferroni test in the batch setting. A necessary
condition for the power of the Bonferroni method to be at least 1− β is:

∃ k ∈ {1, . . . , n}, rkµk ≥ Zα/n + Zβ.

Comparing with the batch Stouffer test, we see that the Bonferroni method has high power when
there is at least one large effect, but can have lower power in settings where there are many small
non-null effects.

• Comparing condition (10) for the batch Stouffer test with its martingale counterpart (condi-
tion (11)), we observe that the batch test rejects when the average of all the effects is sufficiently
large, while the martingale test rejects as long as any cumulative sum is sufficiently large. In cases
where a good a-priori ordering is available, the martingale test can have much higher power.

The adaptively ordered martingale test: To ease our calculations, we assume that all the non-nulls
have the same mean value, i.e. µi = µ if ri = 1. We denote the number of non-nulls by N1 and the nulls
by N0. Let Z(ν) be a Gaussian random variable with unit variance and mean ν, then the non-nulls are
{Zj(µ)} for j = 1, . . . , N1 and we let Z(j)(µ) be the j-th non-null after ordering by its absolute value
so that

|Z(1)(µ)| ≥ |Z(2)(µ)| ≥ . . . ≥ |Z(N1)(µ)|. (12)

Suppose that X ∼ Bin(n, p). We let tα(n, p) denote the α-upper quantile of the Binomial distribution
Bin(n, p), i.e. P(X ≥ tα(n, p)) = α. Recall the definition of Cγ

k in equation (9). We define, for
j ∈ {1, . . . , N1},

qj := P(|Z(0)| > |Z(j)(µ)|),

to be a measure of signal strength. Roughly, the values qj will be close to 0, if the signal strength µ is
large.
Theorem 5. The adaptively ordered martingale test with level α has at least 1− β power if

∃ j ∈ {1, . . . , N1} :

j∑
s=1

(
2P(Z(s)(µ) > 0)− 1

)
≥
(
Cα
n + Cβ/2

n

)
(j + tβ/(2N1)(N0, qj))

1/2. (13)

We prove this result in Appendix A.2.2. Condition (13) gives a reasonably tight sufficient condition
for the re-ordering based test to have high power (Figure 4). As expected, when the number of nulls
increases (right columns) or the number of non-nulls decreases (bottom rows), the sufficient condition
for the signal strength µ to guarantee high power grows.

The condition itself can be difficult to interpret as it depends on the distribution of Gaussian order
statistics, as well as on the quantiles of a Binomial distribution. To build some intuition, we consider
some simple cases.
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Figure 4: Sufficient signal strength µ for AMT to guarantee both type-I and type-II error control at 0.05
(derived from (13)), when varying the numbers of nulls N0 ∈ [102, 105] and non-nulls N1 ∈ [102, 103].
The required signal strength grows when the number of nulls increases or the number of non-nulls
decreases.

• In the extreme case, when the signal strength µ is quite large, the re-ordering will ensure that the
non-nulls are placed early on with high-probability. In this case, the left-hand side in condition (13)
grows linearly with j. On the other hand, if the signal strength is large then the probabilities qj
will be small and we can ignore the term tβ/(2N1)(N0, qj), so that the right-hand side grows at the
rate of roughly

√
j (ignoring log log factors), ensuring that the condition will be satisfied even for

a moderate number of non-nulls.
• We provide other conditions that suffice to ensure high power in Appendix A.2.3 by lower and

upper bounding the left and right hand sides (respectively). We present one sufficient condition

here. Suppose there are sufficient number of non-nulls such that N1 ≥ 6
(
Cα
n + C

β/2
n

)2

, and that

the number of nulls is sufficiently large, i.e. that N0 > 0.1N2
1 . A sufficient condition for the

adaptively ordered martingale test to have 1− β power is

µ ≥

√
2 log

(
N0

N2
1

)
+ 4 log

(
Cα
n + C

β/2
n

)
+ 3.45. (14)

For comparison, the batch Stouffer test requires

µ ≥ (Zα + Zβ)

√
N0

N2
1

+
1

N1

. (15)

Both conditions are stricter if the ratio N0

N2
1

is large, i.e. in the setting where there are many nulls
and few non-nulls. However, the adaptively ordered martingale test requires a signal strength that
only grows logarithmically with this ratio.

In Appendix A.2.3, we relate condition (14) to the detection threshold derived in the work of Donoho
and Jin [Donoho and Jin, 2015] for the same setting of detecting sparse Gaussian mixtures.

To summarize our findings in the batch setting: the martingale Stouffer test and the adaptively
ordered martingale test each require weaker conditions for the same power than the batch Stouffer
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test. The martingale Stouffer test relies on a good pre-defined ordering, whereas the adaptively ordered
martingale test relies on sufficiently large signal strength to ensure that re-ordering is helpful. We now
turn our attention to the online setting.

2.4.2 Power guarantees in the online setting

When testing the global null, the natural test to compare to is the online Bonferroni method, which
chooses a sequence of significance levels {αk}∞k=1 such that

∑∞
k=1 αk = α, and rejects the global null if

∃ k ∈ N : pk ≤ αk.

The following sections compare the power guarantee of the online Bonferroni method with the martingale
Stouffer test and adaptively ordered martingale test. Specifically, we derive necessary conditions for
the power of the online Bonferroni test, and compare it with sufficient conditions for the power of our
proposed methods – revealing situation where the online Bonferroni has lower power than our proposed
methods.

The online Bonferroni method versus the martingale Stouffer test: To better characterize the
power of online Bonferroni, we consider two cases:

• Dense non-nulls: the number of non-nulls is infinite,

∞∑
k=1

rk =∞. (16)

• Sparse non-nulls: the number of non-nulls is finite,

∞∑
k=1

rk ≤M <∞ for some large constant M. (17)

The sparse case yields a stronger necessary condition when the sequence of significance levels satisfies a
mild condition that {αk}∞k=1 is nonincreasing.

Unlike previous methods, the online Bonferroni method does not aggregate p-values, so its power
guarantee requires conditions on the individual means.
Theorem 6. Suppose α ≤ (1 − β)/4. In the case of dense non-nulls (16), a necessary condition for
online Bonferroni to have at least 1− β power is

∃k ∈ N : rkµk ≥ 0.25

(√
2 log

(
k2

α

))−1

. (18)

A stronger necessary condition can be derived for sparse non-nulls (17). If {αk}∞k=1 is nonincreasing,
then online Bonferroni can have at least 1− β power only if

∃k ∈ N :

 rkµk ≥ 0.4
√
αk∗ , if k ≤ k∗,

rkµk ≥
√

log
(
k

4α

)
−
√

2 log
(

M
2(1−β−3α)

)
, if k > k∗,

(19)

where k∗ = M2/α, and αk∗ is the k∗-th significance level.
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In contrast, a sufficient condition for the martingale Stouffer test to have at least 1− β power is

∃ k ∈ N :
k∑
i=1

µiri ≥ (Cα
k + Cβ

k )k1/2. (20)

Remarks:
• Condition (20) is (up to constants) necessary, because if α < 1− β, the power of the martingale

Stouffer test is less than 1− β whenever

∀ k ∈ N :
k∑
i=1

riµi ≤ (Cα
k − C

1−β
k )k1/2.

• The necessary condition (18) under dense non-nulls requires a lower bound on rkµk that decreases
at the rate of (log k)−1/2. This lower bound is fairly tight: for an example of sequence {αk}∞k=1

that decreases at the rate of 1/[k(log k)2], the power of the online Bonferroni test would be
one if all hypotheses are non-null when k > 1 and the mean value decreases at a slower rate:
µk = (log k)−1/c for any c > 2 (see Lemma 4 in Appendix A.3.1).

• The proof of Theorem 6 is in Appendix A.3.1. If asymptotically, the mean values are nonzero but
fade as k grows at a fast rate, the online Bonferroni method has little power, but the martingale
Stouffer test can have good power. For example, suppose all the hypotheses are non-nulls and
µk = k−1/3/10. Controlling the type-I error α at 0.15, the online Bonferroni method has power
less than 0.6 (by condition (18)) whereas the martingale Stouffer test has power that approaches 1
(by condition (20)).

The adaptively ordered martingale test: For clarity, we consider the same mean value for the non-
nulls, µi = µ if ri = 1. Let a Z score for each hypothesis Hi be Zi = Φ−1(1− pi). Our guarantee on
the power for the adaptively ordered martingale test depends critically on the choice of the threshold
parameter c (we consider Algorithm 2 with the filtering Φ−1(1 − g(pt)) > c, which is equivalent to
g(pt) < c′ for c′ = 1− Φ(c)). To concisely state our results, define the following quantities:

A(µ; c) =
5

3

√
Φ(−c)

Φ(µ− c)− Φ(−µ− c)
,

B(µ; c) =
10(Φ(µ− c) + Φ(−µ− c)− 2Φ(−c))

9(Φ(µ− c)− Φ(−µ− c))2
∨ 25

(Φ(µ− c) + Φ(−µ− c))2
,

T (β; c) =
0.79 log(15.57/β)Φ2(−c) + 0.4

Φ4(−c)
.

For a reasonable choice of the threshold parameter, i.e., setting c = µ for instance, we note that the
quantity B(µ;µ) is upper bounded by a universal constant (when µ > 0). On the other hand, the quantity
A(µ;µ) decays exponentially for large signal strength, i.e., when µ > 0.25 we have:

A(µ;µ) ≤ e−µ
2/4. (21)

With these quantities in place, we now state our main result on the power of the adaptively ordered
martingale test.
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Theorem 7. A sufficient condition for the adaptively ordered martingale test with type-I error α and
threshold parameter c to have 1− β power is that:

∃ k ≥ T (β; c) :
k∑
i=1

ri ≥ A(µ; c)
(
Cα
k + C

β/3
k

)
k1/2

+B(µ; c)
(
Cα
k + C

β/3
k

)2

k−1/2.

It is interesting to compare the above result with the necessary condition for the martingale Stouffer
test: the power of MST is less than 1− β if

∀ k ∈ N :
k∑
i=1

ri ≤ µ−1
(
Cα
k − C

1−β
k

)
k1/2. (22)

Both right-hand sides grow at the rate of k1/2 (ignoring log log factors), but the µ-dependent term
exp(−µ2/4) for AMT (derived in bound (21) for A(µ;µ)) is much smaller than the corresponding 1/µ
term in condition (22) for MST. As a consequence, the adaptively ordered martingale test will have
higher power when the non-nulls have sufficiently large mean values but are sparse.

To summarize the basic insights we derive in this section, we find that both in the batch setting and
the online setting, the martingale Stouffer test and the adaptively ordered martingale test require weaker
conditions than their classical counterparts to guarantee the same power when the non-nulls are sparse.
The martingale Stouffer test relies on good prior knowledge to order the hypotheses, while the adaptively
ordered martingale test uses masked p-values to generate a good ordering. The theoretical analyses
in this section discuss the case with no prior knowledge, and the simulations in the next section delve
deeper into the setting where the non-nulls are structured.

2.5 Numerical simulations
While the martingale Stouffer test can only use prior knowledge in the form of non-null probabilities for
each hypothesis, the interactively ordered martingale test combines (a) side covariate information (which
could include prior non-null probabilities in working model (8) as a component) with (b) structural
constraints on the unknown non-null set, and (c) masked p-values, to infer whether a hypothesis is
non-null and thus include it earlier in the ordering. Here, we demonstrate that prior structural constraints
can help the interactively ordered martingale test attain a higher power than the martingale Stouffer test
and some classical methods.

We first consider the batch setting and use two non-null structures as simple examples: a blocked
structure within a grid and a hierarchical structure within a tree; and we discuss similar structures in the
online setting. For each of these, we customize a heuristic strategy to expand Mk in the interactively
ordered martingale test (recalling that type-I error is controlled regardless of the heuristic used, and only
power is affected).

2.5.1 Clustered non-nulls in a grid of hypotheses

Consider the setting where the hypotheses are arranged in a rectangular grid, and if the null is false,
then the non-nulls form a single coherent cluster. This is a common structure which, as a hypothetical
example, is a reasonable belief when trying to detect if there is a tumor in a brain image. Here, the
covariates xi are simply the two-dimensional location of the hypothesis Hi on the grid. The blocked
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non-null structure is utilized in specifying the posterior probability of being non-null using model (8) by
constraining the prior non-null probabilities πi to be a smooth function of xi. Details can be found in
Appendix A.7.

The block structure is also imposed in the strategy of interactively expanding Mk such that Mk forms
a single connected component. The interactively ordered martingale test expands Mk by only including
possible non-nulls that are on the boundary of Mk (see Figure 5 for example).

Figure 5: Visualization of the interactively ordered martingale test under the block structure: the
hypotheses in Mk, which interactively expands (darker color indicates a lower p-value and possible
non-null).

We compare the interactively ordered martingale test with the martingale Stouffer test and the
batch Stouffer test. We use the martingale Stouffer test (MST) with a preordering that starts at the
center of the grid, and the following hypotheses are included into the preordering in randomly chosen
(data-independent) directions such that the hypotheses always form a single cluster. Our simulation has
104 hypotheses arranged in a 100× 100 grid with a disc of about 150 non-nulls, placed either at the grid
center and or at a corner of the grid. We use Setting 1 as defined in Section 2.4, where we varied the
non-null mean as (0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8).

The interactively ordered martingale test has high power for both positions of the non-null block,
whereas the power of martingale Stouffer test drops quickly when the block is not at the center (Figure 6),
which is because the martingale Stouffer test does not have information of the block position (its
preordering starts from the center by default), whereas the interactively ordered martingale test uses
masked p-values to learn the block position. It is worth noting that even with a bad preordering, the
martingale Stouffer test does not do worse than the batch version, but has much higher power with a
good preordering.
Remark 2. As mentioned in the introduction, we do not intend to claim that the interactively ordered
martingale test is in any sense the “best” test for this problem setting. It is possible, or even likely, that
several other generic tests (Bonferroni, chi-squared, higher criticism, or many others) or specialized
tests (scan statistics) might have higher power. We discuss the comparison with two recent methods:
the adaptively weighted Fisher test [Fang et al., 2019; Huo et al., 2020; Li and Tseng, 2011] and
the weighted Higher Criticism [Zhang et al., 2020] in Appendix A.8. Our goal in this section is to
demonstrate the tradeoffs between the batch and martingale versions of the same test (Stouffer in this
case), and the interactive versus preordered martingale tests. Also note that the power of our martingale
tests depends crucially on the preordering, or on the model and heuristic used to form the ordering
interactively, and perhaps better models/algorithms might further improve the power of our own tests.
We chose settings that are easy to visualize for intuition, keeping in mind that our tests apply to any
general covariates xi, and prior knowledge or structural constraints, any working models, etc.
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Figure 6: Testing the interactively ordered martingale test (IMT), the martingale Stouffer test (MST),
and the batch Stouffer test with varying alternative mean under a block non-null structure (batch setting).
The MST has lower power when the non-null is not in the center, whereas the IMT has high power
in both cases. Type-I error corresponds to the power when the alternative mean value is zero. The
horizontal line corresponds to the target type-I error level α = 0.05.

2.5.2 A sub-tree of non-nulls in a tree of hypotheses

In applications such as wavelet decomposition, the hypotheses can have a hierarchical structure, where
the child can be a non-null only if its parent is a non-null. The hierarchical structure is again encoded in
modeling the posterior probability of being non-null (8) by adding a partial order constraint on πi that

πi ≥ πj, if i is the parent of j.

Also, the hierarchical structure is imposed in the strategy of update Mk such that Mk should keep as a
sub-tree. Specifically, we compare the posterior probabilities of being non-null for all the leaf nodes of
Mk and choose the highest one.

We compare the interactively ordered martingale test with the martingale Stouffer test and Stouffer’s
test, where the martingale Stouffer test order the hypotheses by level and from left to right within
level. We simulate a tree of five levels (the root has twenty children and three children for each parent
node after that) with over 800 nodes in total and 7 of them being non-nulls. Each node tests if a
Gaussian is zero mean as described in Setting 1, where we vary the mean value for the non-nulls as
(0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4). The interactively ordered martingale test is implemented without model-
ing the posterior probabilities of being non-null for the sake of computational cost. The interactively
ordered martingale test has a higher power especially when the signal is strong so that the masked
p-values provide a better guide on the Mk update (Figure 7).

The interactively ordered martingale test with modeling is implemented on a smaller tree with 121
nodes (five levels and three children for each parent node) and 7 of them being non-nulls on a subtree.
We consider two types of hierarchical non-null structure: one with the probability of being non-null
decreasing down the tree, and one with increasing probability, which means the parent cannot be a
non-null unless its children are non-nulls. The result is consistent with the above: the interactively
ordered martingale test has higher power than the non-interactive martingale Stouffer test (Figure 8).
Compared with decreasing probability of being non-null, both methods have lower power for the tree
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Figure 7: Power of the interactively ordered martingale test (IMT), the martingale Stouffer test (MST),
and the batch Stouffer test under a hierarchical structure. Hypotheses form a fixed tree (batch setting)
with non-nulls only on a sub-tree. When the alternative mean is big, masked p-values and the hierarchical
non-null structure lead to a good ordering and hence high power for the IMT.
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Figure 8: Hypothesis tree in the batch setting with decreasing/increasing probability of being non-null.
Testing the interactively ordered martingale test (IMT) with a model for the posterior probability of
being non-null, which has higher power than the martingale Stouffer test (MST) in both cases.

with an increasing probability of being non-null, because in the latter case, the non-nulls gathered at
later generations where there are more nulls and the non-nulls are sparser.

2.5.3 Structures in the online setting

Recall that in the online setting, a potentially infinite number of hypotheses arrive, and the adaptively
ordered martingale test and interactively ordered martingale test use some discarding rules to only allow
promising non-nulls entering Mk. This section presents two examples of non-null structures in the online
setting, and demonstrates the power of the interactive test as follows.
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Blocks of non-nulls in a growing sequence of hypotheses. Suppose the non-nulls arrive as blocks.
In other words, the next hypothesis is more likely to be a non-null if the last arrived hypothesis is truly
non-null; and vise versa. Let the discarding rule in the interactively ordered martingale test be g(pt) > ct,
where ct = c = 0.05 by default. The interactively ordered martingale test adjusts ct for t > 10 based
on previous p-values: it alleviates the discarding rule by increasing ct to 2c if the ten p-values prior
to t (pt−10, . . . , pt−1) are all less than 0.1; otherwise, it decreases ct to c/4. For a fair comparison, the
discarding threshold in the adaptively ordered martingale test is set to c = 0.05.
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Figure 9: Number of hypotheses needed to reject the global null (detection time) in the online setting
of the interactively ordered martingale test (IMT), the adaptively ordered martingale test (AMT), the
martingale Stouffer test (MST), and the Bonferroni test when varying the alternative mean µ. The
non-nulls arrive in blocks, and on average, every 104 hypotheses contain a block of 500 non-nulls. The
length of the error bar is two standard error. The interactively ordered martingale test is the first to reject
the global null because it incorporates the block structure and adjusts the discarding threshold based on
past p-values.

The interactively ordered martingale test is the first to reject the global null since its discarding rule
accounts for the block structure (see Figure 9). This advantage is more evident when the non-null signal
is mild (µ < 3), where the prefixed discarding rule in the adaptively ordered martingale test might be too
strict or lenient, while the interactively ordered martingale test can adjust the rule accordingly. In practice,
the adjustment on the discarding threshold can also utilize side information and prior knowledge, if
provided.

A sub-tree of non-nulls in a growing tree of hypotheses. The online tree grows a new level at every
step, with the probabilities of being non-null no bigger than their parents. For an arriving level k, the
interactively ordered martingale test models the posterior probability of being non-null π(k)

j for the new
hypothesis Hj by equation (8), where the prior probability of being non-null is the same as its direct
parent Hi from the level k − 1,

π
(0)
j = π

(k−1)
i , if i is the parent of j.

For simplicity, we set the discarding rule in the interactively ordered martingale test to be π(k)
i < c where

c = 0.6 as a default. That is, hypothesis with π(k)
i < 0.6 are omitted. We compare the interactively

ordered martingale test with the martingale Stouffer test and a classical method, the online Bonferroni
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method (with the sequence of significance levels {αk}∞k=1 decreases at the rate of 1/[k(log k)2]). In the
online setting, their performances are assessed by the averaged number of hypotheses required to reject
the global null (detection time); the smaller the better.
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Figure 10: Number of hypotheses needed to reject the global null (detection time) in the online setting
of the interactively ordered martingale test (IMT), the adaptively ordered martingale test (AMT), the
martingale Stouffer test (MST), and the Bonferroni test when varying the alternative mean in a growing
hypothesis tree (online setting). IMT incorporates the hierarchical structure of non-nulls, so it is the first
to reject the global null when the non-null signal is mild (µ < 2).

We simulate the online tree with forty children for the root node and three children for each parent
node after that. The probability of being non-null for the first generation children is set to 0.1 for 30
children and 0.9 for the other 10 children. The ongoing three children of each node reduce the probability
of being non-null as by a proportion of 100%, 20%, 0%. Each node tests if a Gaussian is zero mean as
described in Setting 1, where we vary the mean value for the non-nulls as (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4).
The interactively ordered martingale test needs much shorter time when the non-null signal is not strong
(µ < 2) because it incorporates the hierarchical structure and estimates the probability of an arriving
hypothesis being non-null with the aid of the data from its ancestors (Figure 10). When the alternative
mean is large, p-values themselves provide strong evidence of non-null, while the algorithm using the
tree structure would treat all children from a non-null parent as promising non-nulls while at least one of
them is null in our simulated example. Thus, the online AMT that uses only the p-value information can
have better performance when the alternative mean is large.

Overall, both in the batch setting and the online setting, the interactively ordered martingale test has
a higher detection power than the martingale Stouffer test, Stouffer’s test, and the online Bonferroni
method, provided with structured alternatives. We again remark the advantage of the interactively
ordered martingale test in practice where prior knowledge often exists in various forms. The interactively
ordered martingale test is highly flexible in that it allows modifications to the strategy of expanding
Mk, at any step and with any form as a human analyst (or a program) wants to. The next section
demonstrates one more advantage of the interactively ordered martingale test under the conservative
nulls (see definition in the next section).
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2.6 Robustness to conservative nulls
In all the above simulations, the nulls have uniformly distributed p-values, but in practice they could
be stochastically larger than uniform (condition (2)) or mirror-conservative (condition (3)); both are
henceforth referred to as “conservative nulls”. For simplicity, this section focuses on the conservative
null with an increasing density, which satisfies both descriptions in condition (2) and condition (3).
Such conservative nulls diminish the detection power of many batch global null tests like Fisher’s and
Stouffer’s methods. For example, each term in Stouffer’s test is Φ−1(1− p), whose value can be smaller
than −2 if the p-value is bigger than 0.98; thus as the nulls grow more conservative and their p-values
closer to one, its power can quickly drop to zero.

To examine the effect of conservative nulls on the interactively ordered martingale test, we first
propose an alternative definition of a masked p-value as g̃(p) := min(p, (p+ 1

2
)mod1). Recalling that

g(p) = min(p, 1 − p), we call g and g̃ as the tent and railway functions respectively (see Figure 11a,
Figure 11b). Note that if the p-value is exactly uniformly distributed, g̃(p) is still independent of h(p),
and g(p) has the same distribution as g̃(p), and so all previous results still hold with the new masking
function in place of the old one. (The error control when using the railway masking function can be
found in Appendix A.1.3 for uniform and conservative p-values.) However, when the p-values are
conservative, the new masking function has a clear advantage. To see this, consider a p-value of 0.99.
The original masked p-value would be 0.01, thus causing the methods to potentially confuse this with a
non-null masked p-value, but the new masked p-value would be 0.49, which the methods would easily
exclude as being a null.

(a) The original masking function
(tent).

(b) The modified masking func-
tion (railway).
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Figure 11: Comparing the interactively ordered martingale test (IMT) with tent and railway masking
functions, the martingale Stouffer test (MST), and Stouffer’s test for the robustness to conservative nulls.
The IMT with railway function is more robust.

As an example, we consider the simple case with no prior knowledge and simulate 1000 hypotheses
with 100 non-nulls. Each hypothesis is a one sided hypothesis on whether a Gaussian is zero mean as
described in Setting 1. The alternative mean values are set to 1.5. The mean values for nulls are negative
so that the resulting null p-values are conservative. We tried nine values from 0 to −4 for the mean of
nulls, with a smaller value indicating higher conservativeness. Figure 11c compares the power of the
interactive martingale test with tent and railway functions, the martingale Stouffer test and Stouffer’s
test. The power of most tests drops sharply to zero, but the power of interactively ordered martingale
test with the new railway function initially dips and then improves. The reason for the initial dip is that
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the increasingly conservative nulls influence the interactive martingale test in two opposite directions:
(a) more null h(p) values are now equal to −1 (instead of being ±1 with equal probability), and this
hurts power because including a null h(p) in the martingale almost always lowers its value (instead of
increasing and lowering its value with equal probability), (b) as the p-value gets more conservative, g(p)
will approach 0.5 for nulls, allowing the tests to easily distinguish between the non-nulls and the nulls to
increase the power. When the p-values are only slightly conservative, effect (a) dominates and hurts
power, causing the initial dip in power in Figure 11c.

2.7 Anytime-valid p-values and safe e-values
In this paper, we defined the problem as testing the global null at a predefined level α. Instead, we
could ask the test to output a sequential or anytime p-value for the global null, which is a sequence of
p-values {pt}∞t=1 that are valid at any stopping time. We use pt to differentiate it from pt — the latter is
the input to our global null test, the former is the desired output of our global null test. Specifically, pt is
a function of p1, . . . , pt, such that if p1, . . . , pt are all null, then pt will be a valid p-value (its distribution
will be stochastically larger than uniform), and this fact will be true uniformly over t.

Recall that all of the proposed procedures follow the same form; we reject the global null if

∃k ∈ {1, 2, . . .} s.t. Sk > uα(k),

where Sk is a martingale under the global null and uα(k) is a sequence of upper bounds at level α. The
anytime p-value pt at time t is defined by the smallest level at which our test would have rejected the
null at or before time t.
Definition 1. The p-value pt can be defined as the smallest level α at which the test would have rejected
at or before time t:

pt = inf{α : ∃k ∈ {1, . . . , t} s.t. Sk > uα(k)}. (23)

Viewing uα(k) as a function of two variables k, α, we define an inverse function at a fixed k with respect
to the level α as

u−1(S; k) = α iff uα(k) = S,

which is unique for a given input S since the bound uα(k) is continuous and strictly decreasing in α.
Then the p-value at time t can be computed as

pt = min
1≤k≤t

{u−1(Sk; k)}.

As one example, if uα(k) is the linear bound as in test (6), its inverse is

u−1(S; k) = exp

{
−2m

S2

(k +m)2

}
.

The p-value sequence {pt}∞t=1 has the following nice properties,
1. the anytime p-values decrease with time:

pt+j ≤ pt for all j, t > 0.

2. inft∈I pt is also a valid p-value for the global null:

P(inf
t∈I

pt ≤ x) ≤ x ≡ P{∃t : pt ≤ x} ≤ x, for all x ∈ (0, 1).

In fact inft∈I pt is the global p-value: the smallest level α at which the test would ever reject:

inf
t∈I

pt = inf{α : ∃k ∈ {1, 2, . . .} s.t. Sk > uα(k)}.
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3. for any arbitrary stopping time τ ∈ I, pτ is a valid p-value:

P(pτ ≤ x) ≤ x, for all x ∈ (0, 1).

The second property implies that the p-value at any time t is a valid p-value. Recalling that fixed-sample
p-values are dual to fixed-sample confidence intervals, it is also the case that anytime p-values are dual
to anytime confidence intervals. These ideas are explored and explained in depth by Howard et al.
[2020b]. An alternative to anytime p-values, called safe e-values, was recently proposed by Grünwald
et al. [2019], and their relationship to confidence sequences, sequential tests and anytime p-values was
detailed by Ramdas et al. [2020]. Specifically, optionally stopped nonnegative supermartingales, which
underlie all our bounds, yield safe e-values. The main takeaway message for our current paper is that all
aforementioned tests can be reformulated as calculating anytime p-values or safe e-values. To exactly
recover our level α tests, we just stop and reject at the first time that pt ≤ α (or equivalently, the e-value
exceeds 1/α).

2.8 Alternative masking functions
In most of this paper, we have considered one way of decomposing p-value as equation (4), but interactive
tests can be developed for other decompositions. Shafer et al. [2011] discuss a class of calibrators
(functions) for the p-values f : [0, 1]→ [0,∞) such that f is non-increasing and

∫ 1

0
f(p)dp ≤ 1. They

consider a “product-martingale”
∏k

i=1 f(pi) and reject the null if

∃k ∈ N :
k∏
i=1

f(pi) ≥ α−1,

which uses Ville’s inequality (an infinite-horizon uniform extension of Markov’s inequality). For each
calibrator f , an interactive test can be developed by viewing f(p) as the missing bit for inference and
finding the corresponding masked p-value g(p) for interactive ordering. Type-I error is controlled if the
pair of f(p) and g(p) are mean independent under the null:

E(f(p) | g(p)) = E(f(p)). (24)

Lei et al. [2020] provide a recipe to construct mean independent g(p) given any calibrator. The interactive
test given a pair of f(p) and g(p) follows the same procedure as Algorithm 3, with the rejection rule at
each step k changed to

Mk∏
i=1

f(pi) ≥ α−1. (25)

or equivalently
Mk∑
i=1

log f(pi) ≥ log(α−1).

We explore a class of calibrators fc parameterized by a constant c ∈ (0, 1):

fc(p) = cpc−1. (26)

In an interactive test, log fc(pi) is viewed as playing the role of the missing bit for inference (even
though it is technically not one bit, we use the same terminology for simplicity). To calculate the
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corresponding masked p-value, we define function Hc(x) = xc − x for x ∈ [0, p∗], where p∗ is the
solution of log fc(p) = 0. The masked p-value is defined as

gc(pi) =

{
pi, if pi ≤ p∗

s(pi), otherwise,

where for any pi > p∗, we define s(pi) as the unique solution of Hc(x) = Hc(pi) within the range [0, p∗].
Both p∗ and s(pi) can be obtained numerically by a simple binary search since log fc(p) and Hc(x) are
monotonic. To compare different options of missing bits, Figure 12 shows the maps for original h(pi)
(one bit) and the log term log(fc(pi)), since they play similar roles in the interactive tests as forming
cumulative sum statistics.

Different choices of missing bit and the corresponding masked p-value reflect a tradeoff between
the information of p-values allocated for inference and interactive ordering. Compared with one bit h
defined in equation (4), fc maps small p-values to large value (Figure 12a), so that an evident non-null
leads to a big increment in the test statistics and higher likelihood of being detected. In other words, fc
takes more information from p-values than h for inference. However, the corresponding masked p-value
is less informative to suggest a good ordering. It’s because a wider range of p-values that are bigger
than 0.5 (from nulls) would have small masked p-value (Figure 12b), which mixes with the actual small
p-values and makes it harder to select possible non-nulls. As c approaches zero, more information is
allocated to inference and less for interactive ordering.

We also consider a mixture of fc, denoted as fm:

fm(p) =

∫ 1

0

cpc−1dc ≡ 1− p+ p log p

p(log p)2
. (27)

The corresponding masked p-value gm(p) can be calculated using the same formula as above except for
a new definition of Hm(x) as x−1

log x
− x. As shown in Figure 12, the amount of information that fm takes

for inference is between f0.2 and f0.4.
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Figure 12: Different choices of missing bit and its corresponding masked p-value. When small p-values
(possible non-nulls) are more evident when measured by one choice of the missing bit, they are less
distinctive when looking at the corresponding masked p-values.

We compare the interactively ordered martingale tests using different missing bits: (a) the original
one bit h(pi) defined in equation (4); (b) fc(pi) where we vary parameter c as (0.2, 0.4, 0.6, 0.8); and (c)
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the mixed missing bit fm(pi). Our simulation uses the structured hypotheses with a cluster of non-nulls
(described in Section 2.5.1). The highest power comes from the test with the original definition of the
missing bit: h(pi) = 2 · 1{pi < 0.5} − 1 (Figure 13).
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Figure 13: Power of interactive tests using different missing bits. Under the block structure of non-nulls
as described in Section 2.5.1, the IMT with the original missing bit defined in equation (4) has the
highest power.

However, given that there is a tradeoff between the information contained in the missing bit and
the masked p-value, and that the masked p-value is used together with the prior knowledge for a good
ordering, we conjecture that the performance of tests with different missing bits depends on the amount
of prior knowledge. When the prior knowledge is informative to order the hypotheses, the test with
most of the information in the missing bit has a higher power (an example is the martingale Stouffer test,
which has the highest power in Figure 6a). We leave the following as an open question: under different
types of prior knowledge, does there exist and can one determine an “optimal” p-value decomposition
that leads to the highest power?

2.9 Summary
We have introduced martingale analogs of some classical global null tests, and used these to build
adaptively ordered martingale tests through the idea of masking. These are further generalized to a
protocol for interactively ordered martingale tests that possess the following interesting advantages:

• It is a general global null testing framework that can utilize any types of covariates, structural
constraints, prior knowledge and repeated user interaction guided by a posited working model, all
while provably controlling the type-I error.

• It permits the use of Bayesian modeling techniques while retaining frequentist error guarantees.
• It applies to both the batch and online settings.
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• It is robust against conservative nulls.
• It has favorable theoretical power guarantees in simple settings, and performs well in simulations.
In fact, in most of this paper, we do not need to know the null distribution of the underlying test

statistics and be tied to working with p-values as inputs. Given test statistics Ti ∈ Rn for each hypothesis
Hi, the framework of the interactively ordered martingale test applies as long as there exits two functions
h : Rn → {−1, 1} and g : Rn → R such that

E [h(Ti) | g(Ti)] ≤ 0 for all i ∈ I. (28)

As an example, if the distribution of the test statistic Ti is symmetric under the null (such as Gaussian
with unknown covariance, a t distribution with unknown degrees of freedom, or a centered Cauchy), we
can still use sign(Ti) and |Ti| as h(Ti) and g(Ti) respectively. Indeed, type-I error control (Theorem 3)
still holds in this setting, since h(Ti) and g(Ti) for the aforementioned decompositions are independent
under the null.

Thus far, interactive tests are developed for FDR control and globel type-I error control. The next
chapter considers another commonly used error metric: familywise error rate (FWER).
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3 Familywise Error Rate Control by Interactive Unmasking

3.1 Introduction
Hypothesis testing is a critical instrument in scientific research to quantify the significance of a discovery.
Recent work on testing focuses on a large number of hypotheses, referred to as multiple testing, driven by
various applications in Genome-wide Association Studies, medicine, brain imaging, etc. (see [Farcomeni,
2008; Goeman and Solari, 2014] and references therein). In such a setup, we are given n null hypotheses
{Hi}ni=1 and their p-values P1, . . . , Pn. A multiple testing method examines the p-values, possibly
together with some side/prior information, and decides whether to reject each hypothesis (i.e., infers
which ones are the non-nulls). Let H0 be the set of hypotheses that are truly null and R be the set of
rejected hypotheses, then V = |H0 ∩R| is the number of erroneous rejections. This paper considers a
classical error metric, familywise error rate:

FWER := P(V ≥ 1),

which is the probability of making any false rejection. Given a fixed level α ∈ (0, 1), a good test should
have valid error control that FWER ≤ α, and high power, defined as the expected proportion of rejected
non-nulls:

power := E
(
|R\H0|
|[n]\H0|

)
,

where [n] := {1, . . . , n} denotes the set of all hypotheses.
Most methods with FWER control follow a prespecified algorithm (see, for instance, [Bretz et al.,

2009; Goeman and Solari, 2011; Hochberg, 1988; Holm, 1979; Tamhane and Gou, 2018] and references
therein). However, in practice, analysts tend to try out several algorithms or parameters on the same
dataset until results are “satisfying”. When a second group repeats the same experiments, the outcomes
are often not as good. This problem in reproducibility comes from the bias in selecting the analysis tool:
researchers choose a promising method after observing the data, which violates the validity of error
control. Nonetheless, data would greatly help us understand the problem and choose an appropriate
method if it were allowed. This motivates us to propose an interactive method called the i-FWER test,
that (a) can use observed data in the design of testing algorithm, and (b) is a multi-step procedure such
that a human can monitor the performance of the current algorithm and is allowed to adjust it at any step
interactively; and still controls FWER.

The word “interactive” is used in many contexts in machine learning and statistics. Specifically, multi-
armed bandits, active learning, online learning, reinforcement learning, differential privacy, adaptive
data analysis, and post-selection inference all involve some interaction. Each of these paradigms has a
different goal, a different model of interaction, and different mathematical tools to enable and overcome
the statistical dependencies created by data-dependent interaction. The type of interaction proposed
in this paper is different from the above. Here, the goal is to control FWER in multiple testing. The
model of interaction involves “masking” of p-values followed by progressive unmasking (details in
the next paragraph). The technical tools used are (a) for p-values of the true nulls (null p-values), the
masked and revealed information are independent, (b) an empirical upper bound on the FWER that can
be continually updated using the revealed information.

The key idea that permits interaction while ensuring FWER control is “masking and unmasking”,
proposed by Lei and Fithian [2018]; Lei et al. [2020]. In our method, it has three main steps and
alternates between the last two (Figure 14):
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p-values {Pi}

{g(Pi)}

{h(Pi)}

Prior/side information, covariates {xi}

Rejection setRt

Estimate F̂WERt ReportRt

Selection

Error control

Masking

Shrink

If F̂WERt ≤ αIf F̂WERt > α

Unmasking

Figure 14: A schematic of the i-FWER test. All p-values are initially ‘masked’: all {g(Pi)} are revealed
to the analyst/algorithm, while all {h(Pi)} remain hidden, and the initial rejection set is R0 = [n]. If
F̂WERt > α, the analyst chooses a p-value to ‘unmask’ (observe the masked h(P )-value), effectively
removing it from the proposed rejection setRt; importantly, using any available side information and/or
covariates and/or working model, the analyst can shrinkRt in any manner. This process continues until
F̂WERt ≤ α (orRt = ∅).

Figure 15: Functions for masking (29): missing bits h (left) and masked p-values g (right) when p∗ = 0.5.
For uniform p-values, g(P ) and h(P ) are independent.

1. Masking. Given a parameter p∗ ∈ (0, 1), each p-value Pi is decomposed into two parts by
functions h : [0, 1]→ {−1, 1} and g : [0, 1]→ (0, p∗):

h(Pi; p∗) = 2 · 1{Pi < p∗} − 1;

and g(Pi; p∗) = min

{
Pi,

p∗
1− p∗

(1− Pi)
}
, (29)

where g(Pi), the masked p-value, is used to interactively adjust the algorithm, and h(Pi), the
revealed missing bit, is used for error control. Note that h(Pi) and g(Pi) are independent if Hi is
null (Pi is uniformly distributed); this fact permits interaction with an analyst without any risk of
violating FWER control.

2. Selection. Consider a set of candidate hypotheses to be rejected (rejection set), denoted asRt for
iteration t. We start with all the hypotheses included, R0 = [n]. At each iteration, the analyst
excludes possible nulls from the previous Rt−1, using all the available information (masked
p-values, progressively unmasked h(Pi) from step 3 and possible prior information). Note that
our method does not automatically use prior information and masked p-values. The analyst is
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free to use any black-box prediction algorithm or Bayesian working model that uses the available
information, and orders the hypotheses possibly using an estimated likelihood of being non-null.
This step is where a human is allowed to incorporate their subjective choices.

3. Error control (and unmasking). The FWER is estimated using h(Pi). If the estimation
F̂WERt > α, the analyst goes back to step 2, provided with additional information: unmasked
(reveal) h(Pi) of the excluded hypotheses, which improves her understanding of the data and
guides her choices in the selection step.

The rest of the paper is organized as follows. In Section 3.2, we describe the i-FWER test in detail.
In Section 3.3, we implement the interactive test under a clustered non-null structure. In Section 3.4, we
propose two alternative ways of masking p-values and explore their advantages.

3.2 An interactive test with FWER control
Interaction shows its power mostly when there is prior knowledge. We first introduce the side information,
which is available before the test in the form of covariates xi as an arbitrary vector (mix of binary,
real-valued, categorical, etc.) for each hypothesis i. For example, if the hypotheses are arranged in a
rectangular grid (such as when processing an image), then xi could be the coordinate of hypothesis
i on the grid. Side information can help the analyst to exclude possible nulls, for example, when the
non-nulls are believed to form a cluster on the grid by some domain knowledge. Here, we state the
algorithm and error control with the side information treated as fixed values, but side information can be
random variables, like the bodyweight of patients when testing whether each patient reacts to a certain
medication. Our test also works for random side information Xi by considering the conditional behavior
of p-values given Xi.

The i-FWER test proceeds as progressively shrinking a candidate rejection setRt at step t,

[n] = R0 ⊇ R1 ⊇ . . . ⊇ Rn = ∅,

where recall [n] denotes the set of all the hypotheses. We assume without loss of generality that one
hypothesis is excluded in each step. Denote the hypothesis excluded at step t as i∗t . The choice of i∗t can
use the information available to the analyst before step t, formally defined as a filtration (sequence of
nested σ-fields) 2:

Ft−1 := σ
(
{xi, g(Pi)}ni=1, {Pi}i/∈Rt−1

)
, (30)

where we unmask the p-values for the hypotheses that are excluded from the rejection setRt−1.
To control FWER, the number of false discoveries V is estimated using only the binary missing bits

h(Pi). The idea is to partition the candidate rejection setRt intoR+
t andR−t by the value of h(Pi):

R+
t := {i ∈ Rt : h(Pi) = 1} ≡ {i ∈ Rt : Pi < p∗},
R−t := {i ∈ Rt : h(Pi) = −1} ≡ {i ∈ Rt : Pi ≥ p∗};

recall that p∗ is the prespecified parameter for masking (29). Instead of rejecting every hypothesis in
Rt, note that the test only rejects the ones inR+

t , whose p-values are smaller than p∗ inRt. Thus, the
number of false rejection V is |H0 ∩R+

t | and we want to control FWER, P(V ≥ 1). The distribution of
|H0 ∩R+

t | can be estimated by |H0 ∩R−t | using the fact that h(Pi) is a (biased) coin flip. ButH0 (the

2This filtration denotes the information used for choosing i∗t . The filtration with respect to which the stopping time in
Algorithm 5 is measurable includes the scale of R−

t : Gt−1 := σ
(
Ft−1, |i ∈ Rt : h(Pi) = −1|

)
.
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Algorithm 5 The i-FWER test

Input: Side information and p-values {xi, Pi}ni=1, target FWER level α, and parameter p∗;
Procedure:
InitializeR0 = [n];
for t = 1 to n do

1. Pick any i∗t ∈ Rt−1, using {xi, g(Pi)}ni=1 and progressively unmasked {h(Pi)}i/∈Rt−1;
2. Exclude i∗t and updateRt = Rt−1\{i∗t};
if F̂WERt ≡ 1− (1− p∗)|R

−
t |+1 ≤ α then

Reject {Hi : i ∈ Rt, h(Pi) = 1} and exit;
end if

end for

set of true nulls) is unknown, so we use |R−t | to upper bound |H0 ∩R−t |, and propose an estimator of
FWER:

F̂WERt = 1− (1− p∗)|R
−
t |+1. (31)

Overall, the i-FWER test shrinks Rt until F̂WERt ≤ α and rejects only the hypotheses in R+
t (Algo-

rithm 5).
Remark 3. The parameter p∗ should be chosen in (0, α], because otherwise F̂WERt is always larger
than α and no rejection would be made. In principle, because |R−t | only takes integer values, we should
p∗ such that log(1−α)

log(1−p∗) is an integer; otherwise, the estimated FWER at the stopping time, F̂WERτ , would
be strictly smaller than α rather than equal. Our numerical experiments suggest that the power is
relatively robust to the choice of p∗. A default choice can be p∗ ≈ α/2 (see detailed discussion in
Appendix B.7).
Remark 4. The above procedure can be easily extended to control k-FWER:

k-FWER := P(V ≥ k), (32)

by estimating k-FWER as

̂k-FWERt = 1−
k−1∑
i=0

(
|R−t |+ i

i

)
(1− p∗)|R

−
t |+1pi∗.

The error control of i-FWER test uses an observation that at the stopping time, the number of false
rejections is stochastically dominated by a negative binomial distribution. The complete proof is in
Appendix B.2.
Theorem 8. Suppose the null p-values are mutually independent and they are independent of the
non-nulls, then the i-FWER test controls FWER at level α.
Remark 5. The null p-values need not be exactly uniformly distributed. For example, FWER control
also holds when the null p-values have nondecreasing densities. Appendix B.1 presents the detailed
technical condition for the distribution of the null p-values.

Related work. The i-FWER test mainly combines and generalizes two sets of work: (a) we use the idea
of masking from Lei and Fithian [2018]; Lei et al. [2020] and extend it to a more stringent error metric,
FWER; (b) we use the method of controlling FWER from Janson and Su [2016] by converting a one-step
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procedure in the context of “knockoff” statistics in regression problem to a multi-step (interactive)
procedure in our context of p-values.

Lei and Fithian [2018] and Lei et al. [2020] introduce the idea of masking and propose interactive
tests that control false discovery rate (FDR):

FDR := E
(

V

|R| ∨ 1

)
,

the expected proportion of false discoveries. It is less stringent than FWER, the probability of making
any false discovery. Their method uses the special case of masking (29) when p∗ = 0.5, and estimate V
by
∑

i∈Rt 1{h(Pi) = −1}, or equivalently
∑

i∈Rt 1{Pi < 0.5}. While it provides a good estimation on
the proportion of false discoveries, the indicator 1{Pi < 0.5} has little information on the correctness of
individual rejections. To see this, suppose there is one rejection, then FWER is the probability of this
rejection being false. Even if h(Pi) = 1, which indicates the p-value is on the smaller side, the tightest
upper bound on FWER is as high as 0.5. Thus, our method uses masking (29) with small p∗, so that
h(Pi) = 1, or equivalently Pi < p∗, suggests a low chance of false rejection.

In the context of a regression problem to select significant covariates, Janson and Su [2016] proposes
a one-step method with control on k-FWER; recall definition in (32). The FWER is a special case of
k-FWER when k = 1, and as k grows larger, k-FWER is a less stringent error metric. Their method
decomposes statistics called “knockoff” [Barber and Candès, 2015] into the magnitudes for ordering
covariates (without interaction) and signs for estimating k-FWER, which corresponds to decomposing
p-values into g(Pi) and h(Pi) when p∗ = 0.5. However, the decomposition as magnitude and sign
restricts the corresponding p-value decomposition with a single choice of p∗ as 0.5, making the k-FWER
control conservative and power low when k = 1; yet our method shows high power in experiments.
Their error control uses the connection between k-FWER and a negative binomial distribution, based on
which we propose the estimator F̂WERt for our multi-step procedure, and prove the error control even
when interaction is allowed. As far as we know, this estimator viewpoint of the FWER procedure is also
new in the literature.

Jelle Goeman (private communication) pointed out that the i-FWER test can be interpreted from
the perspective of closed testing [Marcus et al., 1976]. Our method is also connected with the fallback
procedure [Wiens and Dmitrienko, 2005], which allows for arbitrary dependence but is not interactive
and combine covariate information with p-values to determine the ordering. See Appendix B.3 for
details.

The i-FWER test in practice. Technically in a fully interactive procedure, a human can examine all
the information in Ft−1 and pick i∗t subjectively or by any other principle, but doing so for every step
could be tedious and unnecessary. Instead, the analyst can design an automated version of the i-FWER
test, and still keeps the flexibility to change it at any iteration. For example, the analyst can implement
an automated algorithm to first exclude 80% hypotheses (say). If F̂WERt is still larger than level α, the
analyst can pause the procedure manually to look at the unmasked p-value information, update her prior
knowledge, and modify the current algorithm. The next section presents an automated implementation
of the i-FWER test that takes into account the structure on the non-nulls.
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(a) True non-nulls (21
hypotheses).

(b) 18 rejections by the
i-FWER test.

(c) 7 rejections by the
Šidák correction

Figure 16: An instance of rejections by the i-FWER test and the Šidák correction [Šidák, 1967].
Clustered non-nulls are simulated from the setting in Section 2 with a fixed alternative mean µ = 3.

3.3 An instantiation of an automated algorithm, and numerical experiments
One main advantage of the i-FWER test is the flexibility to include prior knowledge and human guidance.
The analyst might have an intuition about what structural constraints the non-nulls have. For example,
we consider two structures: (a) a grid of hypotheses where the non-nulls are in a cluster (of some
size/shape, at some location; see Figure 16a), which is a reasonable prior belief when one wants to
identify a tumor in a brain image; and (b) a tree of hypotheses where a child can be non-null only if its
parent is non-null, as may be the case in applications involving wavelet decompositions.

3.3.1 An example of an automated algorithm under clustered non-null structure

We propose an automated algorithm of the i-FWER test that incorporates the structure of clustered
non-nulls. Here, the side information xi is the coordinates of each hypothesis i. The idea is that at each
step of excluding possible nulls, we peel off the boundary of the currentRt, such that the rejection set
stays connected (see Figure 17).

Figure 17: An illustration of Rt generated by the automated algorithm described in Section 3.3.1, at
t = 50, 100, 150 and t = 220 when the algorithm stops. The p-values inRt are plotted.

Suppose each hypothesis Hi has a score Si to measure the likelihood of being non-null (non-null
likelihood). A simple example is Si = −g(Pi) since larger g(Pi) indicates less chance of being a
non-null (more details on Si to follow). We now describe an explicit fixed procedure to shrinkRt. Given
two parameters d and δ (eg. d = 5, δ = 5%), it replaces step 1 and 2 in Algorithm 5 as follows:

(a) DivideRt−1 from its center to d cones (like slicing a pizza); in each cone, consider a fraction δ of
hypotheses farthest from the center, denotedR1

t−1, . . . ,Rd
t−1;

(b) Compute S̄j = 1

|Rjt−1|

∑
i∈Rjt−1

Si for j = 1, . . . , d;

(c) UpdateRt = Rt−1\Rk
t−1, where k = argminj S̄

j .
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The score Si that estimates the non-null likelihood can be computed with the aid of a working
statistical model. For example, consider a mixture model where each p-value Pi is drawn from a mixture
of a null distribution F0 (eg: uniform) with probability 1− πi and an alternative distribution F1 (eg: beta
distribution) with probability πi, or equivalently,

Pi
d
= (1− πi)F0 + πiF1. (33)

To account for the clustered structure of non-nulls, we may further assume a model that treats πi as
a smooth function of the covariates xi. The hidden missing bits {h(Pi)}i∈Rt can be inferred from
g(Pi) and the unmasked h(Pi) by the EM algorithm (see details in Appendix B.8). As Rt shrinks,
progressively unmasked missing bits improve the estimation of non-null likelihood and increase the
power. Importantly, the FWER is controlled regardless of the correctness of the above model or any
other heuristics to shrink Rt.

The above algorithm is only one automated example and there are many possibilities of what we can
do to shrink Rt.

1. A different algorithm can be developed for a different structure. For example, when hypotheses
have a hierarchical structure and the non-nulls only appear on a subtree, an algorithm can gradually
cut branches.

2. The score Si for non-null likelihood is not exclusive for the above algorithm – it can be used in
any heuristics such as directly ordering hypotheses by Si.

3. Human interaction can help the automated procedure: the analyst can stop and modify the
automated algorithm at any iteration. It is a common case where prior knowledge might not be
accurate, or there exist several plausible structures. The analyst may try different algorithms and
improve their understanding of the data as the test proceeds. In the example of clustered non-nulls,
the underlying truth might have two clustered non-nulls instead of one. After several iterations
of the above algorithm that is designed for a single cluster, the shape of Rt could look like a
dumbbell, so the analyst can splitRt into two subsets if they wish.

Note that there is no universally most powerful test in nonparametric settings since we do not make
assumptions on the distribution of non-null p-values, or how informative the covariates are. It is possible
that the classical Bonferroni-Holm procedure [Holm, 1979] might have high power if applied with
appropriate weights. Likewise, the power of our own test might be improved by changing the working
model or choosing some other heuristic to shrinkRt. The main advantage of our method is that it can
accommodate structural and covariate information and revise the modeling on the fly (as p-values are
unmasked) while other methods commit to one type of structure without looking at the data.

Next, we demonstrate via experiments that the i-FWER test can improve power over the Šidák
correction, a baseline method that does not take side information into account3. We chose a clustered
non-null structure for visualization and intuition, though our test can utilize any covariates, structural
constraints, domain knowledge, etc.

3.3.2 Numerical experiments for clustered non-nulls

For most simulations in this paper, we use the setting below,
Setting 2. Consider 900 hypotheses arranged in a 30 × 30 grid with a disc of 21 non-nulls. Each
hypothesis tests the mean value of a univariate Gaussian, where the null hypothesis is nonpositive
mean. The true nulls are generated from N(0, 1) and non-nulls from N(µ, 1), where we varied µ as

3In all experiments, the Hommel method has similar power to the Šidák correction, and was hence omitted.
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Figure 18: The i-FWER test versus Šidák for clustered non-nulls. The experiments are described in
Section 2 where we tried two sizes of hypotheses grid: 10×10 and 30×30 (the latter is a harder problem
since the number of nulls increases while the number of non-nulls remains fixed). Both methods show
valid FWER control (left). The i-FWER test has higher power under both grid sizes (right).

(1, 2, 3, 4, 5). For all experiments in the paper, the FWER control is set at level α = 0.2, and the power
is averaged over 500 repetitions4.

The i-FWER test has higher power than the Šidák correction, which does not use the non-null
structure (see Figure 18). It is hard for most existing methods to incorporate the knowledge that non-
nulls are clustered without knowing the position or the size of this cluster. By contrast, such information
can be learned in the i-FWER test by looking at the masked p-values and the progressively unmasked
missing bits. This advantage of the i-FWER test is more evident as the number of nulls increases (by
increasing the grid size from 10× 10 to 30 × 30 with the number of non-nulls fixed). Note that the
power of both methods decreases, but the i-FWER test seems less sensitive. This robustness to nulls is
expected as the i-FWER test excludes most nulls before rejection, whereas the Šidák correction treats all
hypotheses equally.

3.3.3 An example of an automated algorithm under a hierarchical structure of hypotheses

When the hypotheses form a tree, the side information xi encodes the parent-child relationship (the set
of indices of the children nodes for each hypothesis i). Suppose we have prior knowledge that a node
cannot be non-null if its parent is null, meaning that the non-nulls form a subtree with the same root.
We now develop an automated algorithm that prunes possible nulls among the leaf nodes of currentRt,
such that the rejection set has such a subtree shape. Like the algorithm for clustered non-nulls, we use a
score Si to choose which leaf nodes to exclude. For example, the score Si can be the estimated non-null
likelihood learned from model (33), where we account for the hierarchical structure by further assuming
a partial order constraint on πi that πi ≥ πj if j ∈ xi (i.e., i is the parent of j).

We simulate a tree of five levels (the root has twenty children and three children for each parent
node after that) with 801 nodes in total and 7 of them being non-nulls. The non-nulls gather in one
of the twenty subtrees of the root. Individual p-values are generated by the hypotheses of testing
zero-mean Gaussian, same as for the clustered structure, where we varied the non-null mean values µ as
(1, 2, 3, 4, 5).

4Code can be found in https://github.com/duanby/i-FWER. It was tested on macOS using R (version 3.6.0) and the
following packages: magrittr, splines, robustbase, ggplot2. The standard error of FWER and averaged power are less than
0.02, thus ignored from the plots in this paper.
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Figure 19: Power of the i-FWER test under a tree structure when varying the alternative mean value. It
has higher power than inheritance procedure, Meinshausen’s method, and the Sidak correction.

In addition to the Šidák correction, we compare the i-FWER test with two other methods for tree-
structured hypotheses: Meinshausen’s method [Meinshausen, 2008] and the inheritance procedure
[Goeman and Finos, 2012], which work under arbitrary dependence. Their idea is to pass the error
budget from a parent node to its children in a prefixed manner, whereas our algorithm picks out the
subtree with non-nulls based on the observed data. In our experiments, the i-FWER test has the highest
power (see Figure 19).

The above results demonstrate the power of the i-FWER test in one particular form where the
masking is defined as (29). However, any two functions that decompose the null p-values into two
independent parts can, in fact, be used for masking and fit into the framework of the i-FWER test (see
the proofs of error control when using the following new masking functions in Appendix B.6). In the
next section, we explore several choices of masking.

3.4 New masking functions
Recall that masking is the key idea that permits interaction and controls error at the same time, by
decomposing the p-values into two parts: masked p-value g(P ) and missing bits h(P ). Such splitting
distributes the p-value information for two different purposes, interaction and error control, leading to
a tradeoff. More information in g(P ) provides better guidance on how to shrinkRt and improves the
power, while more information in h(P ) enhances the accuracy of estimating FWER and makes the test
less conservative. This section explores several ways of masking and their influence on the power of the
i-FWER test. To distinguish different masking functions, we refer to masking (29) introduced at the
very beginning as the “tent” function based on the shape of map g (see Figure 20a).

3.4.1 The “railway” function

We start with an adjustment to the tent function that flips the map g when p > p∗, which we call the
“railway” function (see Figure 20b). It does not change the information distribution between g(P ) and
h(P ), and yet improves the power when nulls are conservative, as demonstrated later. Conservative nulls
are often discussed under a general form of hypotheses testing for a parameter θ:

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1,

where Θ0 and Θ1 are two disjoint sets. Conservative nulls are those whose true parameter θ lies in the
interior of Θ0. For example, when testing whether a Gaussian N(µ, 1) has nonnegative mean where
Θ0 = {µ ≤ 0}, the nulls are conservative when µ < 0. The resulting p-values are biased toward
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(a) Tent functions when p∗
varies as (0.5, 0.2). We
need p∗ ≤ α for FWER
control.

(b) The railway function
when p∗ = 0.2.

(c) The gap function when
(pl, pu) = (0.2, 0.9).

(d) The gap-railway
function when
(pl, pu) = (0.2, 0.9).

Figure 20: Different masking functions leaves different amount of information to g(P ) (and the
complement part to h(P )).

larger values, which compared to the uniform p-values from nonconservative nulls should be easier to
distinguish from that of non-nulls. However, most classical methods do not take advantage of it, but the
i-FWER test can, when using the railway function for masking:

h(Pi) = 2 · 1{Pi < p∗} − 1;

and g(Pi) =

{
Pi, 0 ≤ Pi < p∗,
p∗

1−p∗ (Pi − p∗), p∗ ≤ Pi ≤ 1.
(34)

The above masked p-value, compared with the tent masking (29), can better distinguish the non-nulls
from the conservative nulls. To see this, consider a p-value of 0.99. When p∗ = 0.2, the masked p-value
generated by the originally proposed tent function would be 0.0025, thus causing potential confusion
with a non-null, whose masked p-value is also small. But the masked p-value from the railway function
would be 0.1975, which is close to 0.2, the upper bound of g(Pi). Thus, it can easily be excluded by our
algorithm.

We follow the setting in Section 2 for simulation , except that the alternative mean is fixed as µ = 3,
and the nulls are simulated from N(µ0, 1), where the mean value µ0 is negative so that the resulting null
p-values are conservative. We tried µ0 as (0,−1,−2,−3,−4), with a smaller value indicating higher
conservativeness, in the sense that the p-values are more likely to be biased to a larger value. When
the null is not conservative (µ0 = 0), the i-FWER test with the railway function and tent function have
similar power. As the conservativeness of nulls increases, while the power of the i-FWER test with the
tent function decreases and the Šidák correction stays the same, the power of the i-FWER test with the
railway function increases (see Figure 21).

3.4.2 The “gap” function

Another form of masking we consider maps only the p-values that are close to 0 or 1, which is referred
to as the “gap” function (see Figure 20c) . The resulting i-FWER test directly unmasks all the p-values in
the middle, and as a price, never rejects the corresponding hypotheses. Given two parameters pl and pu,
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Figure 21: Power of the i-FWER test with the tent function and the railway function, where the nulls
become more conservative as the null mean decreases in (0,−1,−2,−3,−4). The i-FWER test benefits
from conservative null when using the railway function.

the gap function is defined as

h(Pi) =

{
1, 0 ≤ Pi < pl,

−1, pu < Pi ≤ 1;

and g(Pi) =

{
Pi, 0 ≤ Pi < pl,
pl

1−pu (1− Pi), pu < Pi ≤ 1.
(35)

All the p-values in [pl, pu] are available to the analyst from the beginning. Specifically, letM = {i :
pl < Pi < pu} be the set of skipped p-values in the masking step, then the available information at step t
for shrinkingRt−1 is

Ft−1 := σ
(
{xi, g(Pi)}ni=1, {Pi}{i/∈Rt−1}, {Pi}{i∈M}

)
.

The i-FWER test with the gap masking changes slightly. We again consider two subsets ofRt:

R+
t := {i ∈ Rt : h(Pi) = 1} ≡ {i ∈ Rt : Pi < pl},
R−t := {i ∈ Rt : h(Pi) = −1} ≡ {i ∈ Rt : Pi > pu},

and reject only the hypotheses inR+
t . The procedure of shrinkingRt stops when F̂WERt ≤ α, where

the estimation changes to

F̂WERt = 1−
(

1− pl
pl + 1− pu

)|R−t |+1

. (36)

To avoid the case that F̂WERt is always larger than α and the algorithm cannot make any rejection, the
parameters pl and pu need to satisfy 1−α

α
pl + pu < 1. The above procedure boils down to the original

i-FWER test with the tent function when pl = pu = p∗.
The “gap” function reveals more information to select out possible nulls and help the analyst shrink

Rt, leading to power improvement in numerical experiments. We present the power results of the
i-FWER test using different masking functions after introducing a variant of the gap function.
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Figure 22: Power of the i-FWER test with the tent function (p∗ = 0.1) and the gap function (pl =
0.1, pu = 0.5). The gap function leads to slight improvement in power. Simulation follows the setting in
Section 2.

3.4.3 The “gap-railway” function

Combining the idea of the gap and railway functions, we develop the “gap-railway” function such that
the middle p-values are directly unmasked and the map g for large p-values is an increasing function
(see Figure 20d). Given parameters pl and pu, the gap-railway function is defined as

h(Pi) =

{
1, 0 ≤ Pi < pl,

−1, pu < Pi ≤ 1;

and g(Pi) =

{
Pi, 0 ≤ Pi < pl,
pl

1−pu (Pi − pu), pu < Pi ≤ 1.
(37)

Comparing with the tent function with p∗ = pl, the i-FWER test using the gap function additionally
uses the entire p-values in [pl, pu] for interaction, which leads to an increased power (see Figure 22). The
same pattern is maintained when we flip the mappings for large p-values, shown in the comparison of the
railway function and the gap-railway function5. This improvement also motivates why the i-FWER test
progressively unmasks h(Pi), in other words, to reveal as much information to the analyst as allowed
at the current step. Unmasking the p-values even for the hypotheses outside of the rejection set can
improve the power, because they help the joint modeling of all the p-values, especially when there is
some non-null structure.

To summarize, we have presented four types of masking functions: tent, railway, gap, gap-railway
(see Figure 20). Compared to the tent (gap) function, the railway (gap-railway) functions are more robust
to conservative nulls. Compared with the tent (railway) function, the gap (gap-railway) function reveals
more information to guide the shrinkage of Rt. Note however that the railway or gap function is not
always better than the tent function. We may favor the tent function over the railway function when
there are less p-values close to one, and we may favor the tent function over the gap function when there
is considerable prior knowledge to guide the shrinkage ofRt.

The above discussion has explored specific non-null structures and masking functions. A large
variety of masking functions and their advantages are yet to be discovered.

5The tests with the tent function and the railway function have similar power; and same for the gap function and the
gap-railway function. As the null p-values follow an exact uniform distribution, so flipping the map g for large p-values does
not change the power.
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3.5 A prototypical application to genetic data
Below, we further demonstrate the power of the i-FWER test using a real ‘airway dataset’, which
is analyzed by Independent Hypothesis Weighting (IHW) [Ignatiadis et al., 2016] and AdaPT [Lei
and Fithian, 2018]; these are (respectively) adaptive and interactive algorithms with FDR control for
independent hypotheses. We compare the number of rejections made by a variant of the IHW with
FWER control and the i-FWER test using the tent function with the masking parameter p∗ chosen as
α/20, α/10, α/2, when the targeted FWER level α varies in (0.1, 0.2, 0.3).

The airway data is an RNA-Seq dataset targeting the identification of differentially expressed genes in
airway smooth muscle cell lines in response to dexamethasone, which contains 33469 genes (hypotheses)
and a univariate covariate (the logarithm of normalized sample size) for each gene6. The i-FWER test
makes more rejections than the IHW for all considered FWER levels and choices of p∗ (see Table 1).

Table 1: Number of rejections by IHW and i-FWER test under different FWER levels.

level α IHW
i-FWER

p∗ = α/2 p∗ = α/10 p∗ = α/20
0.1 1552 1613 1681 1646
0.2 1645 1740 1849 1789
0.3 1708 1844 1925 1894

In hindsight, a small value for the masking parameter was more powerful in this dataset because
over 1600 p-values are extremely small (< 10−5), and these are highly likely to be the non-nulls. Thus,
even when the masked p-values for all hypotheses are in a small range, such as (0, 0.01) when α = 0.1
and p∗ = α/10, the p-values from the non-nulls still stand out because they gather below 10−5. At the
same time, the smaller the p∗, the more accurate (less conservative) is our estimate of FWER in (31);
the algorithm can stop shrinkingRt earlier since more hypotheses with negative h(P ) are allowed to
be included in the final Rt. In practice, the choice of masking parameter can be guided by the prior
belief of the strength of non-null signals: if the non-nulls have strong signal and hence extremely
small p-values (such as the mean value µ ≥ 5 when testing if a univariate Gaussian has zero mean), a
small masking parameter is preferred; otherwise, we recommend α/2 to leave more information for
interactively shrinking the rejection setRt.

3.6 Summary
We proposed a multiple testing method with a valid FWER control while granting the analyst freedom
of interacting with the revealed data. The masking function must be fixed in advance, but during the
procedure of excluding possible nulls, the analyst can employ any model, heuristic, intuition, or domain
knowledge, tailoring the algorithm to various applications.

The first two chapters focus on multiple testing, where we are given p-values and ignore the process
of how individual p-values are generated. The next chapter switches the direction, and studies the
problem of multi-sample comparison. In such a problem setting, we are given n subjects, each associated
with an outcome of interest, a vector of covariates such as gender or age, and an indicator of which
group this subject belongs to. In the next chapter, we describe how the masking idea can applied outside
of the p-values and multiple testing.

6Data is collected by Himes et al. [2014] and available in R package airway. We follow Ignatiadis et al. [2016] and Lei
and Fithian [2018] to analyze the data using DEseq2 package [Love et al., 2014].
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4 Which Wilcoxon should we use? An interactive rank test and
other alternatives

4.1 Introduction
The problem of comparing two samples in a randomized experiment without parametric assumptions is
frequently encountered in biology, medical research, and social sciences (see, for example, Calel and
Dechezlepretre [2016]; Matsumoto and Hikosaka [2009]; Olive et al. [2009]). A classical nonparametric
method is the Wilcoxon test (both rank-sum and signed-rank). However, the original Wilcoxon test does
not adjust for covariates, but there have been several proposed extensions that do. For example, suppose
we want to evaluate a medication by conducting a randomized trial and comparing the blood pressure
(outcome) of subjects who take the medication (treatment) with that of subjects who do not (control).
The blood pressure could be affected by the subject’s gender, age, etc.—accounting for these would help
increase power, especially when the medication only affects a subpopulation. In this paper, we discuss
two classes of tests that take covariates into account. First, we propose a multi-step “interactive” test
that allows an analyst to look at (partial) data and employ flexible working models to improve power.
Second, we analyze several old and new (non-interactive) covariate-adjusted extensions of the Wilcoxon
test and numerically examine how their powers are affected by the effects being one- or two-sided, dense
or sparse, and the skewness of control outcomes, thus providing several practical insights along the way.

4.1.1 Problem setup

Consider a sample with n subjects. Let the outcome of subject i be Yi, the covariates be Xi, and the
treatment assignments be indicators Ai for i ∈ [n] ≡ {1, 2, . . . , n}. The null hypothesis of interest is
that there is no difference between treatment and control outcomes conditional on the covariates:

H0 : (Yi | Ai = 1, Xi)
d
= (Yi | Ai = 0, Xi) for all i ∈ [n]. (38)

Rejecting the above null means that there exist some subjects who respond differently when treated or
not. We do not further identify which subject respond differently. Testing the above global null may
appear in an exploratory analysis to see whether the treatment has any effect on any person, or as a
building block within a closed testing procedure. For our interactive algorithm that we propose later
to succeed in rejecting the global null, it must indeed implicitly learn which part of the covariate space
exhibits this difference between treatment and placebo, and if the global null is rejected, one may use
this information to design followup studies or analyses focused on other goals.

This paper deals with randomized experiments, and in particular we assume that
(i) the treatment assignments are independent and randomized:

P(Ai = 1 | Xi) = 1/2 for all i ∈ [n];

(ii) the outcome of one subject Yi1 is independent of the assignment of another Ai2 for any i1 6= i2 ∈
[n].

To enable us to effectively adjust for covariates, we use the following “working model”:

Yi = ∆(Xi)Ai + f(Xi) + Ui, (39)

where ∆(Xi) is the treatment effect, f(Xi) as the control outcome, and Ui is zero mean ‘noise’ (unex-
plained variance). When working with such a model, we effectively want to detect if ∆(Xi) is nonzero.
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Importantly, model (39) only exists on the analyst’s computer, and it need not be correctly specified
or accurately reflect reality in order for the tests in this paper to be valid (but the more ill-specified or
inaccurate the model is, the more test power may be hurt).

Notation. In the rest of the paper, capital letters are used to denote random variables. We use Ẑ1(Z2)
to denote a prediction of Z1 using Z2 as input.

4.1.2 Rosenbaum’s covariance-adjusted Wilcoxon rank-sum test

Recall that the original Wilcoxon rank-sum test (also referred to as the Mann–Whitney U-test) calculates

W ori =
n∑
i=1

(2Ai − 1) rank (Yi) ,

where rank(Zi) is the rank of Zi amongst {Zi}ni=1. When the treatment effect is large, the subjects
receiving treatment (Ai = 1) tend to have larger outcomes, and hence W ori would be large. Note that
there is another version of the Wilcoxon test called the signed-rank test7, which differs slightly from the
above one but usually has similar power; we examine this in detail in Section 4.3. The above Wilcoxon
test ranks the outcomes, which may not be reliable evidence of the treatment effect, especially when the
potential control outcome of different subjects is heterogeneous (varies with their covariates).

To increase power, Rosenbaum [2002] proposed the covariance-adjusted Wilcoxon test that considers
the residuals of regressing the outcome Yi on covariates Xi (without assignment Ai). Specifically, denote
the residual for subject i as Ri:

Ri ≡ Ri(Yi, Xi) := Yi − Ŷ (Xi), (40)

where Ŷ (Xi) the prediction of Yi using Xi via any modeling and Ri can be viewed as an approximation
of the treatment effect after accounting for heterogeneous control outcome. The covariance-adjusted
Wilcoxon test replaces the outcomes with the residuals:

W CovAdj =
n∑
i=1

(2Ai − 1) rank (Ri) , (41)

abbreviated as CovAdj Wilcoxon test in the rest of the paper. Note that the CovAdj Wilcoxon test
improves power when the control outcome changes with covariates; however, it can have low power
when the treatment effect is heterogeneous, as we show later in experiments.

A major merit of CovAdj Wilcoxon test is that its null distribution can be derived for any choice of
the prediction model Ŷ without any parametric assumption on the outcomes, because under the null,

P (Ai = 1 | Yi, Xi) = 1/2 for all i ∈ [n]. (42)

In other words, the assignment Ai is independent of the outcome Yi and the covariates Xi. In this paper,
we build on the above observation and propose new tests that improve on the CovAdj Wilcoxon test by
taking the heterogeneous treatment effect into consideration.

7Although the statistic W ori for the rank-sum test appears to include a sign-like term (2Ai − 1), this term is not the sign
of Yi, for which we calculate the rank, and hence the name of the rank-sum test to distinguish with the signed-rank test.
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4.1.3 An interactive test

The tests we discuss can be broadly classified into two categories: (a) in contrast to one-step tests such
as CovAdj Wilcoxon test, we propose a multi-step test involving human interaction to adjust its working
model on the fly; and (b) we examine non-interactive variations of Rosenbaum’s CovAdj Wilcoxon test
that have complementary benefits. We focus on the first category since interactive testing is a recent idea
that emerged in response to the growing practical needs of allowing human interaction in the process of
data analysis. In practice, analysts tend to try several methods on the same dataset until the results are
satisfying, but this violates the validity of standard statistical methods and causes reproducibility issues.
The appealing advantage of an interactive test is (a) flexibility for the analyst to use combine (partial)
data and prior knowledge in the design of the testing algorithm, and (b) the multi-step protocol during
which the analyst can monitor the current algorithm’s performance and is allowed to make adjustments
to their working model at any step. Our proposed testing protocol always maintains valid type I error
control.

The core idea that enables human interaction is to separate the information used for interactive
algorithm design and that for testing, via “masking and unmasking” (Figure 23). Masking means we hide
the information of treatment assignments {Ai}ni=1 from the analyst. The test considers the cumulative
sums

St =
t∑

j=1

(2Aπj − 1) · wj, (43)

where {πj}nj=1 denotes an ordering interactively decided by the analyst and wj denotes a weight, both
of which can be based on all the revealed information {Yi, Xi}ni=1 and the true treatment assignments
of all previous subjects in the ordering Aπ1 , . . . , Aπj−1

(initially empty). The decision rule will involve
rejecting the null when St is sufficiently large, meaning that it crosses some boundary uα(t), which we
specify later.

The above test retains validity amidst significant flexibility. For example, the analyst could employ
any probabilistic working model or predictive machine-learning algorithm to guess the treatment
assignments Âi ∈ {0, 1}, perhaps along with an associated level of confidence such as a posterior
probability or a score νi ∈ [0, 1], for each subject i that have not yet been included in the ordering. Then,
at step t of the algorithm, the next subject in the ordering πt could be the one where the analyst is most
confident, and wt could equal 2Ât−1 ∈ {−1, 1} or 2νt−1 ∈ [−1, 1]. Regardless of the specific choices
of the ordering and the weights, the fact that wj is independent of Aπj under the null (but not under the
alternative), will allow us to provide a type-I error guarantee of the form P(∃t ≤ n : St > uα(t)) ≤ α.

Formally, such bounds are not loose or overly conservative: a martingale property of St allows us
to circumvent a naive union bound and use sophisticated maximal inequalities instead. To elaborate,
under the null where Ai is independent of Yi, Xi as described in (42), the increments behave like the
sum of mutually independent (weighted) coin flips, regardless of how the order is determined and how
we choose wj . Such a process is a martingale with bounded increments, whose deviation up to time t
can be controlled using

∑t
j=1w

2
j . If the cumulative sum St deviates from this null behavior at any step t,

we reject the null.
Intuitively, our algorithm tests whether there exist any non-nulls by examining whether we can

succeed at guessing the treatment assignments better than random chance, and this is reflected by
our ability to form a “smart, nonrandom” ordering that causes St to grow faster than a random walk,
and cross the mentioned boundary as soon as possible. When all subjects are nulls and we have the
independence property (42), we cannot distinguish subjects who are treated or not based on the outcomes
and covariates, so each increment is ±wj with equal probability, and no algorithm can result in St losing
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this martingale property (and thus having controlled growth). In contrast, if the null is false, we hope
that our algorithm will be able to correctly guess the treatment assignments, especially for subjects we
are most confident about (ordered upfront), so that the cumulative sums (St)

n
t=1 are larger than the null

case.
Interaction enters in the process of unmasking. Intuitively, to construct large St and reject the null,

the analyst should guess whether a subject receives treatment while the assignments {Ai}ni=1 are hidden.
She can guess the treatment assignments using the revealed data information {Yi, Xi}ni=1 and {Aπj}t−1

j=1

(for the t-th iteration), and any prior knowledge, and she is free to use any algorithms or models. Even if
the model chosen initially is inaccurate because of masking, the interactive test progressively reveals the
assignments (of the first t− 1 subjects at step t) to the analyst, so that she can improve her understanding
of the data and update the model or heuristic for estimating the treatment assignments at any step.

We call our proposed procedure the i-Wilcoxon test, because (a) it exploits the same property as the
classical CovAdj Wilcoxon test to ensure a valid error control: the independence between treatment
assignment and other data information under the global null as mentioned in (42), and (b) the test
statistic St in (43) shares a similar form as (41) for CovAdj Wilcoxon test. Our contribution is to
demonstrate a new class of interactive multi-step algorithms that, by masking some of the data and
progressively revealing it to the scientist, can combine the strengths of (automated) statistical modeling
and (human-guided) scientific knowledge, in order to reject the global null while not suffering from any
p-hacking or data-dredging concerns despite a great deal of flexibility provided to the scientist.

{Yi, Xi}ni=1

Prior information

Explore outcome mod-
eling and select the t-th
subject

Obtain St Reject
Initialize
t = 1

If |St| is large

If |St| is small

Reveal Aπt and update working model

(t← t+ 1)

Figure 23: Schematics of the i-Wilcoxon test. At each step, a human analyst can freely explore and
update models to guide the selection of the t-th subject (as the red box shows).

4.1.4 Related work

Interactive tests. The idea of interactive testing was recently proposed by Lei and Fithian [2018] and
Lei et al. [2020], in the context of multiple testing problem to control FDR (the false discovery rate),
followed by several works for other error metrics in multiple testing. Our interactive test for two-sample
comparison relates most with the work of controlling the global type-I error [Duan et al., 2019], where
the individual null hypothesis is zero effect for each subject, and the global null corresponds to the null
of no treatment effect as null hypothesis (38). The main difference is that previous development of the
interactive tests focused on generic multiple testing problems, which operates on the p-values, ignoring
the process of generating p-values from data. Here, interactive testing is directly applied to the observed
data, bringing another perspective to the potential of interactive tests.

Uniform martingale concentration inequalities. Type-I error control of the interactive test is based
on the observation that, under the null, St is the cumulative sum of independent, fair coin flips; thus,
the sequence of S1, S2, . . . forms a martingale. The rejection rule stems from utilizing time-uniform
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boundary-cross inequalities for martingales. For a martingale Mt, the boundary is denoted as uα(t)
which satisfies

P(∃t ∈ N : Mt > uα(t)) ≤ α, (44)

for a constant α ∈ (0, 1). The martingale of fair coin flips is well studied in sequential analysis, especially
through their natural connections to Brownian motion [Siegmund, 1986].

In this paper, we use a recent line-crossing inequality [Howard et al., 2020a]:

uα(t) =

√
log(1/α)

2m
Vt +

√
m log(1/α)

2
, (45)

where Vt =
∑t

j=1w
2
j (for a simple example where wj ∈ {−1,+1}, Vt equals t), and m ∈ R+ is a tuning

parameter that determines the time at which the bound is tightest: a larger m results in a lower slope but
a larger offset, making the bound loose early on. We suggest a default value of m = n/4, but it should
be chosen based on the time by which we expect to have encountered most non-nulls (if any). One can
also use curved boundaries [Howard et al., 2020b] that scale smaller than O(Vt):

uα(t) = 1.7

√
Vt

(
log log(2Vt) + 0.72 log

5.2

α

)
or

uα(t) =
√

(Vt + 0.13) log
(
Vt+0.13
0.52α2

)
,

(46)

(47)

but these curved boundaries do not uniformly dominate the linear ones, and hence their powers are
in general not comparable. We present the results using boundary (45) since it has a simple form and
consistently resulted in reasonably good power.

Related problems. There are many works on related problems, but most of these tend to focus on a
less strict null hypothesis H ′0 than the global null H0 in (38), which of course has pros and cons. These
related methods would continue valid for the global null hypothesis of our interest, but they could have
lower power especially when H ′0 is true and H0 is not true. Our strong global null is still sometimes
of scientific interest, for example when certain quantiles of the distribution may be different under two
different treatments (without the means differing), or one may be interested in the heavy-tailed case
when the means may not even exist. We elaborate on the related work as follows.

While several works study treatment with multiple levels, we describe them in the case with two
levels (treated or not) in our discussion. Akritas et al. [2000] assess the treatment effect by comparing the
outcome CDF of treated and control group, denoted as F T

x (y) and FC
x (y) where x is the given covariate

value. Let G(x) be a prespecified distribution for the covariate or its empirical distribution. The null
hypothesis concerns marginal CDF after averaging over the covariate:

H ′0 :

∫
F T
x (y)dG(x) =

∫
FC
x (y)dG(x), (48)

which is implied by the global null H0 in our discussion. Fan and Zhang [2017] also study the above
null hypothesis (48), and propose an alternative test statistic to incorporate covariates. Wang and Akritas
[2006] consider several extensions in the type of null hypothesis and suggest the possibility of testing
whether the conditional outcome CDF given the covariates is identical:

H ′0 : F T
x (y) = FC

x (y) for every x and y, (49)
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which is equivalent to the global null H0 in our discussion, but no explicit test is provided for this
null hypothesis. Similar null hypotheses are discussed in the work of Edgar Brunner (such as Akritas
et al. [1997]; Bathke and Brunner [2003]), which focus on factorial design and develop tests for the
effect of one factor conditional on the level of the other factors. Thus, their methods can be used to test
our global null H0 when the covariate takes a finite number of values. Hettmansperger and McKean
[2010] focus on testing the global null H0 when the treatment effect is a linear function of the covariates,
and discusses inference such as confidence intervals of the involved parameters. Along a different
line of work, Thas et al. [2012] considers outcome Y and covariates Z (which include the treatment
assignment A and other covariates X in our context) and let two instances (Y, Z) and (Y ∗, Z∗) be
independently distributed. The outcomes Y and Y ∗ are compared by estimating the probabilistic index
P(Y > Y ∗ | Z,Z∗) + 1

2
P(Y = Y ∗ | Z,Z∗). Their results imply a test for the null hypothesis of the

probabilistic index being 1/2, which can be used in our context:

H ′0 :P(Y > Y ∗ | A = 1, A∗ = 0, X = X∗ = x)

+ 1
2
P(Y = Y ∗ | A = 1, A∗ = 0, X = X∗ = x) = 1/2 for all x,

which is true when our global null H0 is true; hence, their method is valid for our problem of interest.
Aside from different target null hypotheses, several features distinguish our proposed algorithms

from most existing work: (a) previous methods often commit to a single fixed procedure, while the
i-Wilcoxon test we propose can employ arbitrary working models, and the working model can be
changed by a human analyst at any iteration to improve power; (b) most other methods mentioned above
guarantee type-I error asymptotically, whereas our interactive methods have exact type-I error control
(without any parametric or model assumptions on the outcomes); (c) we demonstrate through numerical
experiments that the advantage of our proposed methods is more evident when a treatment effect exists
only for a few subjects, whereas the above methods do not specifically focus on such sparse effects.

4.1.5 Outline

The rest of the paper is organized as follows. In Section 4.2, we describe the i-Wilcoxon test in detail,
followed by numerical experiments to demonstrate its advantage over standard methods. In Section 4.3,
we discuss non-interactive tests that are variants of the Wilcoxon signed-rank test to improve its power
under heterogeneous treatment effects. In Section 4.4, we discuss extensions of the i-Wilcoxon test to
other settings, such as paired data, multiple treatments, and dynamic settings. Section 4.5 concludes the
paper by a discussion on the potential of interactive rank tests.

4.2 An interactive Wilcoxon test with covariates (i-Wilcoxon)
To account for covariates through a flexible algorithm that involves human interaction, we propose
the i-Wilcoxon test. In short, the analyst decides the ordering of subjects {πj}nj=1 and the weights
{wj}nj=1 progressively: at step t, she selects the t-th subject from the to-be-ordered subjects [n]\{πj}t−1

j=1

and decides the weight wt, based on an increasing amount of data information starting from all the
assignments {Ai}ni=1 masked and then gradually revealed. Mathematically, the data information available
to the analyst at the end of step t is denoted by the filtration:

Ft = σ
(
{Yi, Xi}ni=1 ∪ {Aπj}tj=1

)
. (50)

The choice of πt and wt are predictable (measurable) with respect to Ft−1, while the analyst is allowed
to explore and choose arbitrary models or heuristics to form the ordering and get the weights. After each
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iteration of selecting πt and choosing wt, the test calculates

St =
t∑

j=1

(2Aπj − 1) · wj, (51)

and the iteration stops once |St| reaches the boundary uα/2(t) as defined in equation (45), or all the
subjects are ordered. In other words, let the stopping time be

τ := min{t ∈ [n+ 1] : |St| > uα/2(t) or t = n+ 1}, (52)

where Sn+1 ≡ Sn, and τ = n + 1 indicates |St| never crosses the boundary. The null is rejected if
τ ≤ n. Note that although ideally St should be large under the alternative, we monitor the absolute
value |St| because it is possible to guess the opposite assignments when all the assignments are hidden,
making St goes in the opposite direction as intended and decreases to a smaller value than the null
case. Still, the decreasing St can reflect difference from the behavior under the null, by monitoring the
absolute value |St| (see Appendix C.2 for a detailed explanation). We summarize the i-Wilcoxon test in
Algorithm 6.

Algorithm 6 Framework for the interactive Wilcoxon test (i-Wilcoxon)
Input: Outcomes, treatment assignment, and covariates {Yi, Ai, Xi}ni=1, target Type-I error rate α;
Procedure:
for t = 1, · · · , n do

1. Using Ft−1, pick any πt ∈ [n]\{πj}t−1
j=1 and obtain an arbitrary weight wt ∈ R;

2. Reveal Aπt and update Ft;
if
∣∣∣∑t

j=1

(
2Aπj − 1

)
· wj
∣∣∣ > uα/2(t) then

reject the null and stop;
end

Remark 6. We defined the problem as testing the global null (38) of no treatment effect at a predefined
level α. Instead, we could ask the test to output a sequential or anytime p-value for the global null, which
is a sequence of p-values {pt}∞t=1 that are valid at any stopping time. Specifically, the stopping boundary
uα/2(t) as defined in (45) stems from applying Ville’s (often attributed to Doob) maximal inequality [Ville,
1939] to an exponential supermartingale: Mt := exp(λSt − λ2

2

∑t
j=1 w

2
j ) for a particular choice of

λ =
√

2 log(1/α)/m. Indeed by Ville’s inequality, pt = infs≤t 1/Ms is a p-value, and it is anytime valid
in the sense that for arbitrary stopping time τ , pτ is also a p-value. In another perspective, Mt is called
a safe e-value, recently proposed by Grünwald et al. [2019]. Their relationship to confidence sequences,
sequential tests and anytime p-values is detailed by Ramdas et al. [2020].

Although more information is revealed to the analyst after each step, the error control is valid. It is
because under the null, the increment Aπt for testing is independent of the information for interaction:

P (Aπt = 1 | Ft−1) = 1/2. (53)

The complete proof is in Appendix C.1.
Theorem 9. With the flexibility for an analyst to explore, examine, and update working models at any
step t using the information in Ft, the i-Wilcoxon test controls type-I error for null hypothesis (38) under
assumptions (i),(ii) of randomized experiments.
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The i-Wilcoxon test allows the analyst to incorporate covariates and various types of domain
knowledge for ordering and choosing weights. However, manually picking πt for every step could be
tedious and unnecessary. The analyst can instead design an automated algorithm for choosing πt and wt,
such as the example we provide in the next section, and still keeps the flexibility to modify it at any step.

4.2.1 A concrete, automated, instantiation of i-Wilcoxon

We can infer the treatment assignments by exploring various models to fit the (partial) data. An example
is to model the outcome as a mixture of the distributions for treatment and control groups:

Yi ∼

{
N(µ1

i , 1), when Ai = 1

N(µ0
i , 1), when Ai = 0

with µji = θj(Xi) for j = 0, 1, (54)

where θj could be linear functions of the covariates and their second-order interaction terms. The
masked treatment assignments can be viewed as missing values, and by the EM algorithm (details in
Appendix C.4), we get an estimated posterior probability of receiving the treatment for each subject.
The estimated probability of receiving treatment, denoted as q̂i, provides an estimation of the assignment
and an approach to select πt. Recall that we hope to order upfront the subject whose estimated
assignment we are most confident, which can be measured by |q̂i − 0.5|, so we could select πt =
argmaxi∈[n]\{πj}t−1

j=1
{|q̂i − 0.5|}. For the chosen subject, we weight the true assignment 2Aπj − 1 by the

estimated assignment 2Âπj − 1:

St =
t∑

j=1

(2Aπj − 1) · (2Âπj − 1), (55)

where the estimated assignment Âπj := 1{q̂πj > 0.5} is a function of the estimated probability of
receiving treatment. By design, the increment of St is +1 if the estimated assignment is consistent with
the truth; and −1 otherwise. Ideally, when the null is false, we could guess most assignments correctly
and order them upfront, leading to a larger St that could exceed the boundary uα(t) 8. We summarize
this automated procedure in Algorithm 7.

Algorithm 7 An automated implementation of the i-Wilcoxon test
Input: Outcomes, treatment assignment, and covariates {Yi, Ai, Xi}ni=1, target Type-I error rate α;
Procedure:
for t = 1, · · · , n do

1. Estimate q̂i for subjects in [n]\{πj}t−1
j=1 2. Choose πt = argmaxi∈[n]\{πj}t−1

j=1
{|q̂i − 0.5|};

3. Reveal Aπt and update Ft;
if
∣∣∣∑t

j=1

(
2Aπj − 1

)
· (21{q̂πj > 0.5} − 1)

∣∣∣ > uα/2(t) then
reject the null and stop;

end

8Recall the discussion in the previous section, that St could decrease fast and have smaller value than the null case at the
first few iterations (all the assignments are hidden). Thus, we propose an alternative choice of the weights to either make
St decrease or increase based on the previous trend of St (we put it in Appendix C.3 for conciseness of the paper). This
alternative strategy tends to result in slightly higher power in numerical experiments.
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As test proceeds and more actual assignments get revealed for interaction, we refit the above model
and update the estimation of posterior probabilities for every 100 steps (say). Keep in mind that the
validity of the error control does not require model (54) to be correct. The analyst can choose other
models such as logistic regression for θj if the revealed data or prior knowledge suggests so.

4.2.2 Numerical experiments

Simulation setup. To evaluate the performance of the automated algorithm, we simulate 500 subjects
(n = 500). Suppose each subject is recorded with two binary attributes (e.g., female/male and se-
nior/junior) and one continuous attribute (e.g., body weight), denoted asXi = (Xi(1), Xi(2), Xi(3)) ∈ {0, 1}2 × R.
Among n subjects, the binary attributes are marginally balanced, and the subpopulation with Xi(1) = 1
and Xi(2) = 1 is of size m (see Table 2), where we set m = 30. The continuous attribute is independent
of the binary ones and follows the distribution of a standard Gaussian.

Table 2: Size of the subpopulation in terms of two binary attributes.

Xi(1) = 0 Xi(1) = 1 Totals
Xi(2) = 0 m n/2−m n/2
Xi(2) = 1 n/2−m m n/2

Totals n/2 n/2 n

The outcomes are simulated as a function of the covariates Xi and the treatment assignment Ai
following the generating model (39), where we vary the functions for the treatment effect ∆ and the
control outcome f to evaluate the performance of the i-Wilcoxon test. Recall that earlier, we used
model (39) as a working model, which is not required to be correctly specified. Here, we generate data
from such a model in simulation to provide various types of underlying truth for a clear evaluation of the
considered methods9.

Alternative tests for comparison. In addition to the CovAdj Wilcoxon test, we compare the i-
Wilcoxon test with a semi-parametric test derived from the literature of estimating conditional average
treatment effect (CATE), which we refer to as the linear-CATE-test. Here, the nonparametric testing
problem is transformed into testing a parameter, potentially considering a less stringent null. Specifically,
null hypothesis (38) implies that

if E(Yi | Ai = 1, Xi)− E(Yi | Ai = 0, Xi) = XT
i ψ
∗, then ψ∗ = 0. (56)

Assume that the outcome difference is a linear function of covariates Xi, the method for CATE provides
an asymptotic confidence interval for ψ∗, and the null is rejected if the confidence interval does not
include zero (see Appendix C.5 for an explicit form of the test). Note that the test has valid error control
even if the outcome difference is not linearly correlated with Xi, in which case, however, the power
would be low.

The presented methods (the CovAdj Wilcoxon test, the linear-CATE-test, and the automated al-
gorithm of the i-Wilcoxon test) all involve some working model of the outcomes, but the extent of
flexibility varies. The linear-CATE-test requires us to specify the parametric model before looking at the
data; the CovAdj Wilcoxon test allows model exploration given partial data {Yi, Xi}ni=1 before testing;
and the i-Wilcoxon test further permits the analyst to interactively change the model as the test proceeds
and more assignments Ai become available for modeling.

9R code to fully reproduce all plots in the paper are available at https://github.com/duanby/interactive-rank.
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Test performances when the default model is a good fit. Consider outcomes from the generating
model (39) with the treatment effect ∆ and the control outcome f specified as:

∆(Xi) = S∆[Xi(1) ·Xi(2) +Xi(3)],

f(Xi) = 5[Xi(1) +Xi(2) +Xi(3)],

(57)
(58)

where S∆ encodes the signal strength of the effect. Intuitively, all subjects have some Gaussian-
distributed effect correlated with X(3) and the subjects with X(1) = 1 and X(2) = 1 additionally have
a constant positive effect. In such a setting, all the methods with their working models specified as linear
functions should fit the data well.
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Figure 24: Power of the i-Wilcoxon test compared with the standard tests when varying the scale of
the treatment effect, which is defined in (57). The linear model used in all the tests is a good fit for the
underlying truth, and the linear-CATE-test (195) has higher power.

Under heterogeneous treatment effect, the CovAdj Wilcoxon test has low power because the positive
effect cancels out with the negative effect in the sum statistics (41), while the linear-CATE-test and the
i-Wilcoxon test can cumulate the effect of both signs. The linear-CATE-test has higher power as it targets
the specific alternative of nonzero parameters in the linear model (56), although the i-Wilcoxon test also
achieves comparable power (see Figure 24). Note that the three methods we compare (CovAdj Wilcoxon
test, linear-CATE, i-Wilcoxon test) all have valid type-I error control for the same global null H0, while
these methods target alternatives in different directions. Since we do not make any assumptions on the
distribution of non-nulls (ie, if some people do respond, no assumption is made on how they respond),
or how informative the covariates are, it is well known that in such nonparametric settings, there is no
universally most powerful test (Janssen [2000] discuss this phenomenon when testing goodness of fit).
We argue through numerical experiments that our proposed methods could have higher power when the
outcomes have a non-normal distribution as discussed below, among other situations.

Illustrations of adaptive modeling. One advantage of the interactive test is that it allows exploration
of the working model using the revealed data. Here, we present two examples where model (54) might
not fit the data well, but the i-Wilcoxon test can have higher power than the default automated algorithm
because, before testing, the analyst explores and evaluates various models to find a reasonably good fit.
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Suppose the control outcome is nonlinearly correlated with the attributes by specifying function f in
the generating model (39) as

f(Xi) = 2 exp{−2Xi(3)}1(Xi(3) < −2), (59)

where the distribution of potential control outcomes is skewed (treatment effect ∆ is the same as before
in (57)). When we fit the default working model (54) with linear functions, the QQ-plot and Cook’s
distance indicate a poor fit because of possible outliers in the outcomes (see Figure 25a and 25b). An
easy fix is to use robust linear regression, which leads to significant power improvement compared with
the default algorithm (see Figure 25c). In practice, we recommend using the robust regression, since it
keeps good power when the working model is correct while it improves power when the control outcome
has a skewed distribution. The robust regression is also observed to improve power under heavy-tailed
noise (see Appendix C.7).

(a) Eg: diagnose a misfit via
QQ-plot for the original lin-
ear model before testing.

(b) Eg: diagnose a misfit via
Cook’s distance for the orig-
inal linear model before test-
ing.
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(c) Power under skewed control out-
come (67).

Figure 25: Before ordering and testing, the analyst is allowed to explore and examine different working models
using the revealed data {Yi, Xi}ni=1. In the example with skewed control outcome, the QQ-plot and Cook’s
distance of the regular linear regression suggest outliers in the outcomes. The analyst can instead choose the robust
linear regression, and the power is higher than that using the default model. For fair comparison, the CovAdj
Wilcoxon test (41) is also implemented with robust linear regression. In plots of this section, the power is averaged
over 500 repetitions and the error bar is omitted because its length is usually less than 0.02.

Another example considers the treatment effect as a quadratic function of the covariates, by specifying
the function ∆ in the generating model (39) as

∆(Xi) = S∆

[
3

5

(
X2
i (3)− 1

)]
. (60)

The control outcome is linearly correlated with the attributes as defined in (58). We observe that with
the robust linear regression, the residuals have a nonlinear trend (see Figure 26a), indicating that the
linear functions of covariates might not be accurate. If we add a quadratic term of X2

i (3) in the robust
regression, the trend in residuals is less obvious, and the model fits better (see Figure 26b). As a result,
the power is higher than the test using robust linear regression (see Figure 26c). Note that the presented
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(a) Residual plot when using
the robust linear regression.

(b) Residual plot when ap-
plying regression with a
quadratic term.
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Figure 26: A second illustration of model exploration when the treatment effect is nonlinearly correlated with
the attributes. The residuals show a quadratic pattern when using robust linear regression, and this trend is
weakened by adding a quadratic term in the regression, suggesting the latter is a better modeling choice; this type
of exploration using only {Yi, Xi} is permitted without violating error control, and can be repeated as {Ai} are
revealed one by one. The power can be improved using the adjusted (quadratic) model because the i-Wilcoxon test
permits the analyst to explore models. For fair comparison, the CovAdj Wilcoxon test is also implemented with a
quadratic term.

experiments use a large sample size (n = 500), and the results with a small sample size can be found
in Appendix C.8. In short, the power of the i-Wilcoxon test decreases when the sample size is small
but is still high when the treatment effect is nonlinear. Generally when the sample size is small, we
recommend a Bonferroni correction of the i-Wilcoxon test and the non-interactive permutation tests we
introduce in Section 4.3.

To summarize, the i-Wilcoxon test has valid error control without any parametric assumption on the
outcomes and yet allows exploration of the working models so that the algorithm can adapt to different
underlying data distribution. In practice, the working model can also be changed in the middle of the
testing procedure, for example, if it fits the data worse as more treatment assignments get revealed. The
flexibility of interactive data-dependent model design with the freedom of adjustment on the fly makes
the i-Wilcoxon test with parametric working models practical and promising. One can also employ
nonparametric working models, and infer the assignments based on nonparametric extensions of the
EM algorithm (see Train [2008] without covariate information and Huang et al. [2013] for univariate
covariate using kernel regression). To incorporate nonparametric modeling under various data types
without involving advanced EM algorithms, we propose a variation of the i-Wilcoxon test in the next
section.

4.2.3 A variation of the i-Wilcoxon test without parametric modeling

In the above automated algorithms, we use parametric working models for the outcomes because it
enables us to use the EM algorithm to infer the posterior probabilities of receiving treatment when
the actual treatment assignment is hidden. Below, we propose a variation if one prefers to use a
nonparametric model such as random forest, and still get an estimated posterior probability of receiving
treatment for ordering.

We randomly split the sample D = {Yi, Ai, Xi}ni=1 into two parts by index (of equal size by default),
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denoted as D(1) and D(2). First, use D(1) with the complete data information to train a classifier (e.g.,
random forest) for Ai using {Yi, Xi}. With this initial model, we follow the procedure of the i-Wilcoxon
test on D(2). That is, the assignment Ai in D(2) is masked, and we use the model trained by D(1) to
estimate the probability of receiving treatment for subjects in D(2). The test statistic St cumulates Ai
only for subjects in D(2) after ordering them based on the estimated probabilities. As the test proceeds,
the actual assignments in D(2) are progressively revealed so that we obtain the complete data of more
subjects, using which we can update the classifier at any step.

In this section, we presented the i-Wilcoxon test, which allows a human to guide the model or
heuristic for ordering while keeping valid error control without parametric assumption on the underlying
truth. As alternatives, we next introduce and compare several non-interactive nonparametric tests that
are variants of the Wilcoxon signed-rank test in the following.

4.3 Options for adjusting Wilcoxon’s signed-rank test for covariates
The Wilcoxon signed-rank test is a simple and efficient nonparametric test with a known null distribution.
Of course, rank-based statistics have been explored in many directions: see Lehmann and D’Abrera
[1975] for a review of classical methods. Recent work focuses on how to incorporate covariate infor-
mation to improve power. Zhang et al. [2012] develop an optimal statistic to detect constant treatment
effect; in multi-sample comparison, Ding et al. [2018] numerically compare rank statistics of outcomes
or residuals from linear models; Rosenblum and Van Der Laan [2009] and Vermeulen et al. [2015] focus
on related testing problems for conditional average effect and marginal effect; Rosenbaum [2010] and
Howard and Pimentel [2020] use generalizations of rank tests for sensitivity analysis in observational
studies. Here, we introduce variants of the signed-rank test for two-sample comparison in a random-
ized trial, which can improve the power of Rosenbaum’s CovAdj Wilcoxon test under heterogeneous
treatment effect.

The signed-rank test offers a general formula to construct tests for two-sample comparison. We note
that the signed-rank test is perhaps more frequently used for paired data; but it can also be applied to
unpaired data because the error control is also based on a decoupling between the sign and the rank. We
discuss methods for the paired setting in Section 4.4.1. In the unpaired setting, for each subject i ∈ [n],
let Ei be any statistic that is larger when subject i has treatment effect. We compute

W =
n∑
i=1

sign(Ei)rank(|Ei|), (61)

and the null is rejected when W is large. As an example, Rosenbaum [2002] proposed the covariance-
adjusted signed-rank test by specifying Ei as

E
R(X)
i := (2Ai − 1)Ri, (62)

where recall Ri is the residual of regressing Yi on Xi without using Ai as a predictor. (The covariance-
adjusted signed-rank test is slightly different from the covariance-adjusted Wilcoxon rank-sum test (41),
but they had similar power in most of our experiments.) The null distribution of W depends on Ei,
but one can use a permutation test that is valid for any choice of Ei. Recall that under the null, the
assignment Ai is independent of other data information {Yi, Xi}, as stated in (42). The permutation
test estimates the null distribution of W by permuting the treatment assignments {Ai}ni=1, described as
follows:

(i) calculate W using the observed data {Yi, Ai, Xi}ni=1;
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(ii) let W 1 = W and for b = 2, . . . , B, generate a random permutation of the treatment assignments
(Ab1, . . . , A

b
n); and calculate W b using the permuted data {Yi, Abi , Xi}ni=1;

(iii) obtain the p-value as 1
B

∑B
b=1 1(W b ≥ W ).

Ideally, statistic Ei should be designed to take larger value when subject i has larger treatment effect. In
the following, we discuss the question of whether the original choice of Ei = E

R(X)
i can be improved,

and which choice of Ei should we prefer given different types of treatment effect.

4.3.1 Existing statistics and their drawbacks

Aside from Rosenbaum’s design ofEi asER(X)
i , we can find several other alternatives to detect treatment

effects in the causal inference literature. For example, one can construct a confidence interval for the
ATE, which implies a test for zero ATE. However, the null of zero ATE is not the focus of this paper,
as we are interested in the null of zero effect for any subpopulation. Lin [2013] suggests modeling Yi
by a linear function of Ai and Xi (recently extended in a preprint by Guo and Basse [2020] to other
parametric models), and construct the estimator for ATE as an average over subjects:

1

n

n∑
i=1

(2Ai − 1)(Yi − Ŷ (Xi; 1− Ai)),

where Ŷ (·; ·) denotes a fitted outcome using Xi, Ai and Ŷ (Xi; 1− Ai) predicts using the false assign-
ment.

This estimator provides a design of Ei that calculates the residual of predicting Yi using covariates
Xi and the false assignment 1− Ai as follows:

E
R(X,1−A)
i := (2Ai − 1)(Yi − Ŷ (Xi; 1− Ai)), (63)

where Ŷ (Xi; 1− Ai) can be the prediction via any black box algorithm, such as a random forest.
There is also a rich literature on doubly-robust methods (see, for example, Cao et al. [2009];

Chernozhukov et al. [2018]; Robins et al. [1994]; Robinson [1988]) to estimate ATE when the probability
of receiving treatment varies with Xi. In a randomized experiment, the estimator boils down to

1

n

n∑
i=1

(2Ai − 1)(Yi − Ŷ (Xi; 1)/2− Ŷ (Xi; 0)/2),

which suggests a design of Ei as (2Ai− 1)(Yi− Ŷ (Xi; 1)/2− Ŷ (Xi; 0)/2). This design leads to similar
power as ER(X,1−A)

i in most experiments and hence is omitted from this paper.
To examine the performance of tests using the statistics ER(X)

i and ER(X,1−A)
i , we simulate out-

comes from the generating model (39) where the function for treatment effect ∆ and that for control
outcome f are constructed with different features (e.g., dense/sparse effect and bell-shaped/skewed
control outcome):

∆(Xi) = S∆ [1− | sin(3Xi(3))|] (dense and weak effect);
∆(Xi) = S∆ [2 exp{Xi(3)}1 (Xi(3) > 1.5)] (sparse and strong effect);
f(Xi) = 5[Xi(1) +Xi(2) +Xi(3)] (bell-shaped control outcome);
f(Xi) = 2 exp{−2Xi(3)}1(Xi(3) < −2) (skewed control outcome).

(64)
(65)
(66)
(67)
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The dense (sparse) effect is set to be weak (strong) since otherwise all methods have power near one
(zero).

We intentionally let the treatment effect and control outcome be nonlinear functions of the covariates
because our discussion focuses on methods using nonparametric working models. In the rest of this
paper, we employ random forests (with default parameters in the R package randomForest) as our
working model since it usually generates good predictions for various data distributions [Breiman, 2001].

Although both methods have high power under a well-behaved distribution where the treatment
effect is dense, the control outcome is bell-shaped, and the noise is standard Gaussian (solid lines in
Figure 27a), they show different weak points when the effect is harder to detect—the test using ER(X)

i

tends to have lower power when the treatment effect is sparse (Figure 27b); and the test using ER(X,1−A)
i

tends to be less robust when the control outcome is skewed (Figure 27c). When the noise is heavy-tailed,
both tests have lower power as expected, but the one using ER(X,1−A)

i appears to be more sensitive
(Figure 27a). Broadly, the aforementioned pros and cons may be traced to two characteristics in the
design of Ei:

(i) the prediction model that uses both Xi and Ai as in E
R(X,1−A)
i accounts for heterogeneous

treatment effect (by the interaction terms between Xi and Ai), leading to high power for sparse
effects;

(ii) the residuals in E
R(X)
i only uses Xi as predictors so that it effectively reduces the outcome

variation that is not caused by the treatment, making the test robust under skewed control outcome.
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Figure 27: Power of the Wilcoxon test (61) using ER(X)
i and ER(X,1−A)

i as the scale of treatment effect S∆

increases under different types of treatment effect, control outcome and noise. The test when using ER(X,1−A)
i

tends to be more sensitive to heavy-tailed noise or skewed control outcome; and the test withER(X)
i can have lower

power when the treatment effect is sparse. Here and henceforth, we use 200 permutations, and the experiment is
repeated 500 times.

Next, we propose other designs of Ei that combine the advantages of the above two characteristics.

4.3.2 Improve robustness under skewed control outcome by predicting residuals Ri

Because residuals Ri can downsize the noise caused by skewed control outcome, we propose to measure
the treatment effect via a prediction onRi. That is, we compute the statistic Ei by two steps of prediction:
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(i) obtain residuals Ri by predicting Yi using Xi (without Ai);

(ii) fit a prediction model for Ri using Xi and Ai, denoted as R̂(·, ·);

(iii) get Ei from the prediction error of Ri using covariates Xi and the false assignment 1− Ai:

E
R−R̂(X,1−A)
i := (2Ai − 1)(Ri − R̂(Xi, 1− Ai)). (68)

Notice that ER−R̂(X,1−A)
i has a similar form as ER(X,1−A)

i , where {Ri}ni=1 can be viewed as “denoised”
outcomes: a large Yi could stem from skewness in the control outcome, but a large Ri is more likely
to indicate large treatment effect, and hence achieves higher robustness to skewed control outcome.
Numerical experiments coincide with our intuition: the power of using ER−R̂(X,1−A)

i improves from that
using ER(X,1−A)

i when the control outcome is skewed (see Figure 28).
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Figure 28: Power of Wilcoxon test (61) using ER(X,1−A)
i and ER−R̂(X,1−A)

i as the treatment effect increases
under skewed control outcome. The latter has higher power for both dense and sparse effects.

4.3.3 Improve robustness under heavy-tailed noise using difference in the prediction error

Treating residuals Ri as the pseudo outcomes is useful to account for variation in the control outcome,
but Ri can still contain much irrelevant variation, such as when the random noise Ui in model (39) is
Cauchy. Under heavy-tailed noise, the prediction model R̂(·, ·) in ER−R̂(X,1−A)

i could be inaccurate; and
a large prediction error of using the false assignment as in ER−R̂(X,1−A)

i could result from heavy-tailed
noise, while it is supposed to be evidence of large treatment effect.

So how to remove the large prediction error caused by poor modeling? We propose to consider the
difference between the prediction error of using the false assignment |R̂(Xi, 1− Ai)−R(Xi)| and that
using the true assignment |R̂(Xi, Ai)−R(Xi)|:

E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i := |R̂(Xi, 1− Ai)−R(Xi)| − |R̂(Xi, Ai)−R(Xi)|. (69)

Intuitively, when the prediction model R̂(·, ·) is a good fit, the prediction error using true assignment
|R̂(Xi, Ai)−R(Xi)| should be close to zero, and the proposed statistic is similar to ER−R̂(X,1−A)

i . The
advantage shows when the modeling is poor, such as under heavy-tailed noise. Here, the prediction error
is large using either true or false assignment, so taking their difference as in E|R̂(X,1−A)−R|−|R̂(X,A)−R|

i

can help rule out the variation caused by noise, letting the variation from treatment effect stand out. In
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the experiment with sparse effect (65), the test using E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i has similar power as that

using ER−R̂(X,1−A)
i when data is well-distributed (see Figure 29a), while it can achieve higher power

under Cauchy noise or skewed control outcome (see Figure 29b and 29c), consistent with our intuition.
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Figure 29: The power of Wilcoxon test (61) using three statistics: E
R(X)
i , E

R−R̂(X,1−A)
i , and

E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i under sparse treatment effect, with the noise varies as Gaussian and Cauchy, and the

control outcome varies as a bell-shaped or skewed distribution. The test using E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i tends

to have higher power especially under heavy-tailed noise or skewed control outcome.
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Figure 30: The power of Wilcoxon test (61) using three statistics: E
R(X)
i , E

R−R̂(X,1−A)
i , and

E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i under dense and weak treament effect, with the noise varies as Gaussian and Cauchy,

and the control outcome varies as a bell-shaped or skewed distribution. Rosenbaum’s Wilcoxon test using ER(X)
i

can be more robust to heavy-tailed noise or skewed control outcome.

Remark 7. Note that E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i leads to high power when we want to detect a sparse

and strong effect. However, when the effect is dense and weak as in model (64), Rosenbaum’s Wilcoxon
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test using ER(X)
i is more robust to peculiar noise or control outcomes (see Figure 30). It is because

E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i uses a prediction model for Ri, which can be less informative for weak effect,

especially when the noise is large. In practice, one may have some anticipation on the population
properties of the treatment effect (density or strength), and choose the statistic accordingly. We summarize
our recommendations under different settings in flowchart (74).

4.3.4 On one-sided versus two-sided effects

The statistic of difference in the prediction error leads to high power for two-sided effects. A
major distinction between E|R̂(X,1−A)−R|−|R̂(X,A)−R|

i and the statistics discussed previously is that it
takes large value for both positive and negative effects. It is because the difference in the prediction
error of using opposite assignments is large as long as the assignment is a significant predictor for the
outcome, regardless of the direction of effect. Therefore, the test using E|R̂(X,1−A)−R|−|R̂(X,A)−R|

i can
cumulate effects of both signs while they cancel out in other statistics, leading to high power even when
the average effect is close to zero. As some examples, we construct the following treatment effect:

∆(Xi) = S∆ [exp{Xi(3)}1 (Xi(3) > 2)−Xi(1)/2]

(Sparse strong positive effect and dense weak negative effect);
∆(Xi) = S∆

[
X3
i (3)1(|Xi(3)| > 1)

]
(Sparse strong effect of both signs);

∆(Xi) = S∆

[
2

5
sin(3Xi(3))

]
(Dense weak effect of both signs).

(70)

(71)

(72)

In all examples, only the test using E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i has nontrivial power (see the first row

in Figure 31). Such sensitivity may or may not be desirable depending on the problem context. For
example, we would hope to reject the null when the positive effect is strong for a subpopulation as
in (70). However, one might want to treat a weak effect in both directions (72) as noise and leave the
null unrejected. Next, we propose a modification of E|R̂(X,1−A)−R|−|R̂(X,A)−R|

i with such behavior.

Targeting one-sided effects. To differentiate between positive and negative effects, we modify the
statistic E|R̂(X,1−A)−R|−|R̂(X,A)−R|

i by incorporating a sign that indicates the direction of the treatment
effect. Consider the sign of two other statistics that approximate the treatment effect:

S1
i := 1{ER−R̂(X,1−A)

i ≥ 0} ≡ 1{(2Ai − 1)(Ri − R̂(Xi, 1− Ai)) ≥ 0},
S2
i := 1{(2Ai − 1)(R̂(Xi, Ai)− R̂(Xi, 1− Ai)) ≥ 0}, and combine them to get
Si := 1{S1

i > 0 or S2
i > 0}.

We then define

E
S·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i := (2Si − 1) · E|R̂(X,1−A)−R|−|R̂(X,A)−R|

i , (73)

which is large when the treatment effect is large and positive. We tried using only S1
i or S2

i for the
sign, but the combined one is more robust in experiments. The essential idea is to construct Si using
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(f) Power for sparse strong
positive effect under Cauchy
noise.

Figure 31: Power of Wilcoxon test (61) using four statistics: ER(X)
i , ER−R̂(X,1−A)

i , E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i

and ES·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i . In the first row where the treatment effect can be positive or negative, only

the test using E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i has nontrivial power. In the second row, the treatment effect is sparse

and positive, and the control outcome and noise varies. The test using ES·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i can have

high power without being too sensitive to the weak effect in both directions (see subplot 31c).

some statistics that have a consistent sign with the treatment effect, while keeping the advantage of
E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i under skewed control outcome and heavy-tailed noise.

As desired, the test using ES·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i is less sensitive to weak effect of both signs

(Figure 31c) and keeps high power for sparse strong positive effect (Figure 31d). Note that the signed
statistic is more sensitive to noise because the signs are generated from less robust statistics (Figures 31e,
31f). Nonetheless, among statistics that are insensitive to two-sided effect, ES·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)

i

leads to high power for sparse effect, irrespective of whether the control outcome and the noise are
well-distributed or have outliers.

4.3.5 Summarizing the observations made in this section

In this section, we proposed several variants of Rosenbaum’s covariate adjusted Wilcoxon as follows:
(i) Instead of predicting the outcomes, using the prediction model R̂(·, ·) for residuals Ri can improve
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power under skewed control outcome. This is because the residuals Ri, which are themselves
obtained by regressing Yi only on Xi (without Ai), can remove much variation caused by the
control outcome, and in turn highlight the treatment effect (see Section 4.3.2).

(ii) The evidence of treatment effect can be measured by the prediction error using the false assignment,
but large prediction error could also be a result of poorly fit model, such as when the noise is
heavy-tailed. In contrast, the difference in the prediction error of using true and false assignments
can eliminate most of the prediction error that is irrelevant to the treatment, including that from
poorly fit models, and thus improve the power (see Section 4.3.3).

(iii) The difference in prediction error detects both positive and negative effects with no distinction,
so it can arguably be too sensitive (if there is such a thing) to a weak effect in both directions. If
one wishes to target one-sided effects while maintaining the robustness achieved by “difference in
prediction error”, we propose to multiply it with an estimated sign of the effect (see Section 4.3.4).

In summary, we recommend choosing one out of the three test statistics discussed in this section—
E
R(X)
i ,

E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i , and E

S·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i —depending on one’s prior belief of the

population properties of treatment effect (if one exists), as shown below:

Nonzero effect


Effect of both signs→ E

|R̂(X,1−A)−R|−|R̂(X,A)−R|
i

Positive effect

{
Sparse and strong effect→ E

S·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i

Dense and weak effect→ E
R(X)
i

(74)

When there is little prior knowledge on the properties of treatment effect, we recommend using the
Bonferroni correction of the above three Wilcoxon tests, which we call the Wilcoxon-Bonferroni test.
This combination shows similar power as the recommended test in most simulations (see Appendix C.6
for simulation results). The presented experiments use a large sample size (n = 500), and the power
comparison under a small sample size is similar (see the last paragraph of Appendix C.8). Note that the
i-Wilcoxon test is not included here because its performance depends on the interaction and progressive
updates to the initial working model made by the analyst based on revealed data. The flexibility makes
the i-Wilcoxon test a potentially more robust and promising method compared with the aforementioned
methods that also use a parametric (or semiparametric) working model.

4.4 Extensions
We have investigated several tests to account for heterogeneous treatment effect: (a) a new i-Wilcoxon
test that allows human interaction; and (b) variants of the Wilcoxon signed-rank test. So far, the paper
focuses on the setting of comparing two samples with unpaired data that is collected before testing as a
batch. However, the proposed tests can be extended to other settings: (a) both the i-Wilcoxon test and
the variants of the Wilcoxon signed-rank test can be applied to paired data; and (b) the i-Wilcoxon test
can be extended to a multi-sample comparison for data with/without block structure (i.e., matching);
and (c) the interactive test also works for two/multi-sample comparison with/without matching data in
dynamic settings, where we obtain new data as the test proceeds.
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4.4.1 Two-sample comparison with paired data

Suppose there are n pairs of subjects. Let the outcomes of subjects in the i-th pair be Yij , the treatment
assignments be indicators Aij , the covariates be vector Xij for j = 1, 2 and i ∈ [n]. The null hypothesis
of interest is that there is no difference between treatment and control outcomes conditional on covariates:

(Yij | Aij = 1, Xij)
d
= (Yij | Aij = 0, Xij) for all j = 1, 2 and i ∈ [n]. (75)

This paper deals with randomized experiments, and assume that
(i) the treatment assignments are independent across pairs, and randomized within each pair:

P(Ai1 = 1, Ai2 = 0) = P(Ai1 = 0, Ai2 = 1) = 1/2, for all i ∈ [n];

(ii) the outcome of one subject Yi1,j1 is independent of the treatment assignment of another sub-
ject Ai2,j2 for any (i1, j1) 6= (i2, j2) ∈ [n]× [2].

Under the null, observe that

P(Ai1 − Ai2 = 1 | Yi1, Yi2, Xi1, Xi2) = 1/2 for all i ∈ [n], (76)

which is similar to the critical property (42) that guarantees the error control of all discussed methods.
We can compress the paired data to an “unpaired” form, by treating the difference of paired assignments
(after rescaling) Ãi := (Ai1 − Ai2 + 1) /2 as the pseudo treatment assignment, and the difference in
the paired outcomes Ỹi := Yi1 − Yi2 as the pseudo outcome, and the union of the covariates as the
pseudo covariates X̃i := {Xi1, Xi2}. In such a way, observation (42) holds under the null with pseudo
data {Ỹi, Ãi, X̃i}ni=1, and hence all the methods can be applied to paired data with valid error control.
Meanwhile, under the alternative with positive (negative) effect, the outcome difference Ỹi is positively
(negatively) correlated with the (rescaled) assignment difference Ãi, so our proposed tests can have
nontrivial power. For example, in the i-Wilcoxon test, the outcome difference Ỹi can be used along with
the union of covariates X̃i to gather pairs with positive Ãi, as described in Algorithm 6 once we replace
the input data with {Ỹi, Ãi, X̃i}ni=1.

Interestingly, we can derive another set of corresponding tests for the paired data from a different
perspective. Rosenbaum [2002] and Howard and Pimentel [2020] consider the treatment-minus-control
difference of the outcome, denoted as Di := (Ai1 − Ai2)(Yi1 − Yi2). Observe that under the null,

P(sign(Di) = 1 | |Di|, Xi1, Xi2) = 1/2 for all i ∈ [n], (77)

because (Ai1 − Ai2) has equal probability to be positive or negative as in (76). Note that here, we
assume the outcomes are continuous to avoid nonzero probability of sign(Di) = 0. Under the alternative,
the treatment-minus-control difference Di can bias to positive (or negative) value. Therefore, all the
discussed methods can be applied to the data {|Di|, sign(Di), X̃i}ni=1 where sign(Di) is viewed as the
pseudo treatment assignment (if rescaled), and |Di| as the pseudo outcome. In fact, using this design of
pseudo data in the Wilcoxon signed-rank test (61) leads to the classical Wilcoxon test for paired sample.

Generally, we can derive nontrivial tests of similar forms for various problems, as long as we can
find a binary statistic for each individual (subject or pair) that is independent of other data information
under the null, but can be effectively inferred under the alternative. In the next section, we show that the
i-Wilcoxon test can be further extended to using test statistics that are not binary.

77



4.4.2 Multi-sample comparison for data with/without block structure

Tests for data without block structure. In multi-sample comparison, the case where subjects are not
matched is often referred to as data without block structure, for which a classical test is the Kruskal-
Wallis test [Kruskal and Wallis, 1952] (details in Appendix C.9). We call the interactive test in this
setting the i-Kruskal-Wallis test. Follow the notation of two-sample comparison with unpaired data,
where the treatment assignment Ai now takes values in [k] ≡ {1, . . . , k} for k-sample comparison. The
null hypothesis asserts that there is no difference between outcomes of any two treatments conditional
on covariates:

(Yi | Ai = a1, Xi)
d
= (Yi | Ai = a2, Xi) for all i ∈ [n] and a1, a2 ∈ [k]. (78)

In a randomized experiment, we assume that
(i) the treatment assignments are independent and randomized

P(Ai = a | Xi) = 1/k for all i ∈ [n] and a ∈ [k];

(ii) the outcome of one subject Yi1 is independent of the assignment of another Ai2 for any i1 6= i2 ∈
[n].

Observe that under the null,

P(Ai = a | Yi, Xi) = 1/k for all a ∈ [k] and i ∈ [n], (79)

similar to two-sample comparison. In other words, Ai is independent of {Yi, Xi} with a known
distribution. A difference from comparing two treatment is that under the alternative, the association
between the outcome Yi and the treatment Ai can have various patterns depending on the underlying
truth. Here, we consider an example of the i-Kruskal-Wallis test that targets a specific type of alternative.

Given three treatments (k = 3), suppose we wish to target the alternative of decreasing outcomes:

(Yi | Ai = 1, Xi) � (Yi | Ai = 2, Xi) � (Yi | Ai = 3, Xi), (80)

where Y 1 � Y 2 means that Y 1 stochastically dominants Y 2. We can define the pseudo assignment Ãi as

Ãi =


1, if Ai = 1,

0, if Ai = 2,

−1, if Ai = 3,

such that Ãi is larger for larger outcomes under the targeted alternative. The i-Kruskal-Wallis test can
then use {Yi, Xi} to infer and gather Ãi with larger values, and reject the null. The complete procedure
follows Algorithm 6 where the input data is replaced by {Yi, Ãi, Xi}.

Note that the error control uses boundary uα/2(t) for fair coin flips although Ãi is not binary, because
here the null distribution of |St| is stochastically dominated by the sum of weighted coin flips (given
that the null distribution of Ãi is discrete uniform in {−1, 0, 1}). We can also use tighter boundaries for
cumulative sums of discrete uniforms, which are well-studied by Howard et al. [2020a] and Howard et al.
[2020b]. Keep in mind that the above design of Ãi is an example to target the specific alternative (80)
for three treatments; similar tests can be developed for other alternatives or comparing more treatments.
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Tests for data with block structure. Suppose we want to compare k treatments with n blocks of data;
a “block” is a group of k subjects each of whom receives a different treatment (each treatment is assigned
to exactly one subject). A classical test is the Friedman test [Friedman, 1937] (see Appendix C.10
for details), and we call the interactive test as the i-Friedman test. For block i ∈ [n] and subject
j ∈ [k], denote the outcome as Yij , the treatment assignment as Aij , and the covariates as Xij . The
null hypothesis states that there is no difference between outcome of any two treatments conditional on
covariates:

(Yij | Aij = a1, Xij)
d
= (Yij | Aij = a2, Xij) for all j ∈ [k] and i ∈ [n] and a1, a2 ∈ [k]; (81)

We focus on randomized experiments, and in particular assume that
(i) the treatment assignment Aij takes value 1, . . . , k such that (a) {Ai1, . . . , Aik} is equally likely

to be any permutation of {1, . . . , k}, and (b) the treatment assignments are independent across
blocks;

(ii) the outcome of one subject Yi1,j1 is independent of the assignment of another subject Ai2,j2 for
any (i1, j1) 6= (i2, j2) ∈ [n]× [k].

Consider the vector of treatment assignments within each block i ordered by the outcomes, denoted as
Ai =

(
Ai,(1), . . . , Ai,(k)

)
, where Yi,(1) ≥ . . . ≥ Yi,(k). Because the assignments are independent of the

outcomes under the null, we claim that

P(Ai = a | {Yij, Xij}kj=1) = 1/k! for all a ∈ permute([k]) and i ∈ [n], (82)

where permute([k]) denotes the set of all possible permutations of [k]. Under the alternative, the
conditional distribution of Ai can bias to a certain ordering depending on the underlying truth.

As an example to compare three treatments (k = 3), suppose we wish to detect the following
alternative:

(Yij | Aij = 1, Xij) � (Yij | Aij = 2, Xij) � (Yij | Aij = 3, Xij), (83)

in which case Ai are more likely to be (1, 2, 3). To develop an interactive test, which uses cumulative
sums as test statistics, we encode the vector of assignments by a scalar (pseudo assignment Ãi) such
that it takes larger value when Ai is more “similar” to the ideal permutation (1, 2, 3). Specifically, the
similarity (distance) between Ai and (1, 2, 3) can be measured by the number of exchange operations
needed to convert Ai to (1, 2, 3). We define Ãi as:

Ãi =



1, if Ai = (1, 2, 3),

1, if Ai = (2, 1, 3),

1, if Ai = (1, 3, 2),

− 1, if Ai = (3, 1, 2),

− 1, if Ai = (2, 3, 1),

− 1, if Ai = (3, 2, 1),

(84)
(85)
(86)
(87)
(88)
(89)

where the ordered assignments (85) and (86) need one exchange operation to be converted to (1, 2, 3);
(87) and (88) need two; and (89) is the opposite of the ideal permutation, which needs three exchange
operations. This design of Ãi takes binary values, but it can also take different values for each ordering
of Ai. We present above definition because it has a simple form and leads to relatively high power for a
broad range of alternatives in simple simulations.
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With the above transformation from a vector of assignments to a scalar Ãi for each block i, we
can view the blocks as individuals in the interactive test. That is, we use the pseudo assignment Ãi for
testing while ordering the blocks using the revealed data {Yij, Xij}i=n,j=ki=1,j=1 and the actual assignments
{Aij}kj=1 once block i is ordered. In other words, let the pseudo assignment Ãi be defined in (84)-
(89), the pseudo outcome be the union within each block, Ỹi = {Yij}kj=1, and same for the pseudo
covariates X̃i = {Xij}kj=1. The i-Friedman test follows Algorithm 6 with the input data replaced by
{Ỹi, Ãi, X̃i}ni=1.

4.4.3 Sample comparison in dynamic settings

We have proposed interactive tests for two/multi-sample comparison with unpaired/paired data, all
of which are in the batch setting where the sample size is fixed before testing. Nonetheless, in many
applications, one hopes to monitor the null of zero treatment effect as more subjects are collected, so
that the experiment can stop once there is enough evidence to reject the null. In this section, we consider
an sequential setting where an unknown and potentially infinite number of subjects (or pairs) arrive
sequentially in a stream and introduce the sequential interactive tests.

First, we propose the seq-Wilcoxon test for two-sample comparison with unpaired data. Because the
subjects arrive one by one, it is hard to order them on the fly, and we instead propose to filter the subjects
to be cumulated in the sum St. At time t+ 1 when a new subject arrives, the analyst can interactively
decide whether to add At+1 to current St. Denote the decision by an indicator It+1, and the sum is

St =
t∑
i=1

Ii(2Ai − 1) · wi. (90)

The available information to decide It+1 and weight wt+1 includes the complete data information of the
first t subjects and the revealed data of the (t+ 1)-th subject, denoted by the filtration:

Gt = σ
(
{Yi, Ai, Xi, Ii}ti=1 ∪ {Yt+1, Xt+1}

)
, (91)

where the complete data {Yi, Ai, Xi}ti=1 can be used for modeling and guide the decision of It+1. Under
the null, we have

P(Ai = 1 | Ii = 1) = 1/2, (92)

so the sum St+1 behaves as the sum of
∑t+1

i=1 Ii number of coin flips (see details in Appendix C.11).
The algorithm stops and rejects the null when |St| reaches the boundary uα/2(v) where v =

∑t
i=1 Ii.

Equivalently, we can define a stopping time as

τ := min

{
t ∈ N : |St| > uα/2

(
t∑
i=1

Ii

)}
, (93)

and the null is rejected if τ <∞. Recall in definition (44), the boundary uα/2(v) is valid uniformly for
any v ∈ N, so the test has valid error control even in the sequential setting where

∑t
i=1 Ii can potentially

be infinite. The seq-Wilcoxon test is summarized in Algorithm 8.
In practice, to get a reasonably good model for our filtering process, we can first collect 50 subjects

(say) and reveal their complete data {Yi, Ai, Xi} for modeling and then apply the seq-Wilcoxon test
from the 51-th subject. Note that Algorithm 8 also applies to the sequential setting with paired data
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Algorithm 8 Framework of the sequential Wilcoxon test (seq-Wilcoxon)
Input: First sample {Y1, A1, X1}, target type-I error rate α;
Procedure: for t = 1, 2, . . . , do

1. Using Gt−1 to decide It, that is whether to include the t-th subject;
2. Reveal At and update Ft;
if
∣∣∑t

i=1 Ii(2Ai − 1)wi
∣∣ > uα/2

(∑t
i=1 Ii

)
then

reject the null and stop;
else

Collect the (t+ 1)-th sample {Yt+1, At+1, Xt+1};
end

end

or multi-sample comparison when we replace the input data by pseudo sample {Ỹt, Ãt, X̃t} defined in
previous sections.

Another dynamic setting of practical interest lies in the middle of the batch setting and the sequential
setting. That is what we call the mini-batch setting, where small batches of subjects arrive sequentially.
Let Bt be the set of subjects arrive at time t. The interactive test can compute the cumulative sum
St by progressively selecting subjects from the current pool of subjects

⋃t
i=1 Bi, but not necessarily

ordering each subject. For example, we can order the subjects collected so far if their estimated posterior
probabilities of receiving treatment are higher than a threshold, say 0.7; then, we wait for the next
mini-batch to see if there are new subjects with higher posterior probabilities of receiving treatment. We
remark that in both the sequential and mini-batch settings, human interaction is allowed to design and
change the algorithm of filtering or ordering the subjects; and the interactive tests still have valid error
control.

4.5 Summary
We have discussed two types of tests for sample comparison in a randomized trial. First is i-Wilcoxon
test that incorporates the recent idea of allowing human interaction via the procedure of “masking”
and “unmasking”. A second type is non-interactive variants of the Wilcoxon signed-rank test with
different intermediate statistics Ei that improve the power of detecting heterogeneous treatment effect.
The latter offer good options when one does not want to impose any parametric model, possibly
because the data is messy and we want to avoid potential power loss caused by misspecification of the
working model. We recommend choosing Ei from three candidates ER(X)

i , E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i ,

and ES·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i based on the prior beliefs or anticipated population properties of the

treatment effect. In contrast, the interactive tests encourage the analyst to explore various working models
before and during the testing procedure, so that the test can integrate the observed data information with
prior knowledge of various types and even a human’s subjective belief in a highly flexible manner.

The interactive rank test is generalized to two/multi-sample comparison with unpaired/paired data in
the batch setting (with fixed sample size) or a dynamic setting (with subjects or mini-batches of subjects
arrive sequentially). These extensions can be combined, following Algorithm 6 for the batch setting
and Algorithm 8 for the sequential setting, where the input data is the union of pseudo samples from
different settings. As an example of mixed data from several settings, Kapelner and Krieger [2014]
propose a dynamic matching procedure that pairs the subjects on the fly, which generates a mixture of
paired and unpaired data that arrives sequentially; and the interactive test can be applied to the generated
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dataset as the matching proceeds.
An alternative perspective of unpaired two-sample comparison is causal inference. Testing the global

null can be interpreted as testing whether there is any subject having non-zero treatment effect. A
potentially more practically interesting question is to identify which subjects with positive treatment
effect with rigorous error control. By connecting the identification of positive effect with hypothesis
testing problem, we are able to propose interactive algorithms that identify positive treatment effects
with FDR control, as discussed in the next chapter.
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5 Interactive identification of individuals with positive treatment
effect while controlling false discoveries

5.1 Introduction
Subgroup identification has been a major topic in the clinical trial community and the causal literature
(see Lipkovich et al. [2017]; Loh et al. [2019]; Powers et al. [2018] and references therein). Typically, the
treatment effect in the investigated population varies by the subject’s gender, age, and other covariates.
Identifying subjects with positive effects can help guide follow-up research and provide medication
guidance. However, most existing methods do not have an error control guarantee at the level of the
individual — it is possible that most subjects in the identified subgroup do not have positive effects. For
example, an identified subgroup could be defined as “female subjects with age less than 40”, but only
10% of them with age between 18 and 20 may truly have a positive treatment effect.

We propose to upper bound the proportion of falsely identified subjects (whose potential outcomes
under treatment and control are equal, for example) via the language of hypothesis testing. As formalized
in the next section, we interpret the problem of identifying subjects with positive effects as one of multiple
hypothesis testing, where each subject corresponds to one null hypothesis, and the proportion of false
identifications corresponds to a standard error metric, the false discovery rate (FDR). In this context,
we propose algorithms with two appealing properties. First, they achieve a finite sample guarantee
on FDR control. Second, our proposed algorithms identify subjects with positive effects through an
interactive procedure according to a particular protocol — an analyst is allowed to look at an initially
“masked” dataset (that is progressively “unmasked” over rounds of interaction), and combines available
covariates with prior knowledge via flexible Bayesian (or black box machine learning) working models
to improve power. In summary, she can combine the strengths of (automated) statistical modeling and
(human-guided) scientific knowledge, all while avoiding selection bias and guaranteeing valid FDR
control.

5.1.1 Problem setup

Suppose we have n subjects in the data. Each subject i has potential control outcome Y C
i , potential

treated outcome Y T
i , and the treatment indicator Ai for i ∈ [n] ≡ {1, 2, . . . , n}. Our results allow the

potential outcomes to either be viewed as random variables or fixed. The treatment effect of subject i is
defined as Y T

i − Y C
i and the observed outcome is Yi = Y C

i (1− Ai) + Y T
i Ai under the standard causal

assumption of consistency (Yi = Y T
i when Ai = 1 and Yi = Y C

i when Ai = 0). Person i’s covariate is
denoted as Xi. This paper focuses on Bernoulli randomized experiments without interference:

(i) conditional on covariates, treatment assignments are independent coin flips:

P[(A1, . . . , An) = (a1, . . . , an) | X1, . . . , Xn] =
n∏
i=1

P(Ai = ai) = (1/2)n, (94)

for any (a1, . . . , an) ∈ {0, 1}n.

(ii) conditional on covariates, the outcome of one subject Yi is independent of the assignment Aj of
another subject, for any i 6= j:

Yi ⊥ Aj | {X1, . . . , Xn} for i 6= j, (95)

which is implied by (94) when the potential outcomes are viewed as fixed values.
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We do not assume the observed data (Yi, Ai, Xi) are identically distributed. We consider heterogeneous
effects in the sense that the distribution of Y T

i − Y C
i varies, and aim at identifying those individuals with

a positive treatment effect. (If the covariates Xi are not informative about the heterogeneity in Y T
i − Y C

i ,
our identification power could be low, and this is to be expected.) To formalize and frame the problem
in terms of multiple hypothesis testing, we first define the null hypothesis for subject i as having zero
treatment effect:

Hzero
0i : (Y T

i | Xi)
d
= (Y C

i | Xi), (96)

or equivalently, Hzero
0i : (Yi | Ai = 1, Xi)

d
= (Yi | Ai = 0, Xi). Alternatively, we can treat the potential

outcomes and covariates as fixed, and frame the null hypothesis as

Hzero
0i : Y T

i = Y C
i . (97)

A last, hybrid, version (e.g., Howard and Pimentel [2020]) is to treat the two potential outcomes as
random with joint distribution (Y T

i , Y
C
i ) | Xi ∼ Pi, and the null posits

Hzero
0i : Y T

i = Y C
i almost surely-Pi, (98)

meaning that Pi is supported on {(x, y) : x = y}. Our work handles any interpretation.
In later sections, we describe an extension where we relax the null as those with a nonpositive effect,

defined by stochastic dominance (Y T
i | Xi) � (Y C

i | Xi), meaning that P(Y T
i ≤ y | Xi) ≤ P(Y C

i ≤ y |
Xi), or simply Y T

i ≤ Y C
i if the potential outcomes are fixed.

Our algorithms control the error of falsely identifying subjects whose null hypothesis is true (i.e.,
having zero effect), and aim at correctly identifying subjects with positive effects. Let� denote stochastic
dominance, as above. We say a subject has a positive effect if

(Y T
i | Xi) � (Y C

i | Xi). (99)

When treating the potential outcomes and covariates as fixed, we simply write Y T
i > Y C

i .
The output of our proposed algorithms is a set of identified subjects, denoted asR, with a guarantee

that the expected proportion of falsely identified subjects is upper bounded. Specifically, denote the set
of subjects that are true nulls asH0 := {i ∈ [n] : Hzero

0i is true}. Then the number of false identifications
is |R∩H0|. The expected proportion of false identifications is a standard error metric, the false discovery
rate (FDR):

FDR := E
[
|R ∩ H0|

max{|R|, 1}

]
. (100)

Given α ∈ (0, 1), we propose algorithms that guarantee FDR ≤ α, and have reasonably high power,
which is defined as the expected proportion of correctly identified subjects:

power := E
[
|R ∩ Pos|

max{|Pos|, 1}

]
,

where Pos :=
{
i : (Y T

i | Xi) � (Y C
i | Xi)

}
or Pos := {i : Y T

i > Y C
i } is the set of subjects with

positive effects.
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5.1.2 Related work: error control in subgroup identification

We note that our problem setup is not exactly the same as most work in subgroup identification, such
as Foster et al. [2011]; Imai and Ratkovic [2013]; Zhao et al. [2012]. The identified subgroups are
usually defined by functions of covariates, rather than a subset of the investigated subjects as in our
paper. While defining the subgroup by a function of covariates makes it easy to generalize the finding in
the investigated sample to a larger population, it does not seem straightforward to nonasymptotically
control the error of false identifications using the former definition, which is a major distinction between
previous studies and our work. Most existing work does not have an error control guarantee (see an
overview in Lipkovich et al. [2017], Table XV), except a few discussing error control on the level of
subgroups as opposed to the level of individuals in our paper. The difference between FDR control at a
subgroup level and at an individual level is detailed below.

Subgroup FDR control. Gu and Shen [2018]; Karmakar et al. [2018]; Xie et al. [2018] discuss FDR
control at a subgroup level, where the latter two have little discussion on incorporating continuous
covariates and require parametric assumptions on the outcomes. Thus, we follow the setup in Karmakar
et al. [2018] to compare the FDR control at a subgroup level (in their paper) and individual level (in our
paper). Let the subgroups be non-overlapping sets {G1, . . . ,GG}. The null hypothesis for a subgroup Gg
is defined as:

H0g : Hzero
0i is true for all i ∈ Gg,

or equivalently, H0g : Gg ⊆ H0 (recall H0 is the set of subjects with zero effect). Let Dg be the
0/1-valued indicator function for whether H0g is identified or not. The FDR at a subgroup level is
defined as the expected proportion of falsely identified subgroups:

FDRsubgroup := E
[
|{g ∈ [G] : Gg ⊆ H0, Dg = 1|
max{|{g ∈ [G] : Dg = 1|, 1}

]
, (101)

which collapses to the FDR at an individual level as defined in (100) when each subgroup has exactly
one subject. Although our interactive procedure is designed for FDR control at an individual level, we
propose extensions to FDR control at a subgroup level in Section 5.9. As a brief summary, Karmakar
et al. [2018] propose to control FDRsubgroup by constructing a p-value for each subgroup and apply the
classical BH method [Benjamini and Hochberg, 1995]. While their method has many orthogonal benefits
(e.g., handling observational studies), it is not trivially applicable to control FDR at an individual level,
because their p-values would only take value 1/2 or 1 when each subgroup has exactly one subject,
leading to zero identification power following the BH procedure. In other cases where subgroups
have more than one subject, the above error control does not imply whether subjects within a rejected
subgroup are mostly non-nulls, or if many are nulls with zero effect. Our paper appears to be the first to
propose methods for identifying subjects having positive effects with (finite sample) FDR control.

Other related error control at a subgroup level. Cai et al. [2011] and Athey and Imbens [2016]
develop confidence intervals for the averaged treatment effect within subgroups, where the former
assumes the size of each subgroup to be large, and the latter requires a separate sample for inference.
These intervals can potentially be used to generate a p-value for each subgroup and control FDR at a
subgroup level via standard multiple testing procedures, but no explicit discussion is provided. Lipkovich
et al. [2011], Lipkovich and Dmitrienko [2014], Sivaganesan et al. [2011] and Berger et al. [2014]
propose methods with control on a different error metric: the global type-I error, which is the probability
of identifying any subgroup when no subject has nonzero treatment effect (i.e., Hzero

0i is true for all
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subjects). Our FDR control guarantee implies valid global type-I error, and FDR control is more
informative on the correctness of the identified subgroups/subjects when there exist subjects having
nonzero effects.

5.1.3 An overview of our procedure

As discussed, it appears to be new and practically interesting to provide FDR control guarantees at
an individual level. Another merit of our proposed method is that it allows a human analyst and an
algorithm to interact, in order to better accomplish the goal.

Interactive testing is a recent idea that emerged in response to the growing practical needs of allowing
human interaction in the process of data analysis. In practice, analysts tend to try several methods or
models on the same dataset until the results are satisfying, but this violates the validity of standard
testing methods (e.g., invalid FDR control). In our context of identifying positive effects, the appealing
advantages of an interactive test include that (a) an analyst is allowed to use (partial) data, together with
prior knowledge, to design a strategy of selecting subjects potentially having positive effects, and (b) it is
a multi-step iterative procedure during which the analyst can monitor performance of the current strategy
and make adjustments at any step (at the cost of not altering earlier steps). Despite the flexibility of an
analyst to design and alter the algorithm using (partial) data, our proposed procedure always maintains
valid FDR control. We name our proposed algorithm as I3 (I-cube), for interactive identification of
individual treatment effects.

{Ai}

{Yi, Xi}

Unmask
Ai∗t−1

Prior information

Rejection setRt

Estimate F̂DR(Rt) ReportRt

Start t = 0,
R0 = [n],
i∗0 = ∅Selection

Error control

Exclude i∗t

If F̂DR(Rt) ≤ α

If F̂DR(Rt) > α, then t← t+ 1

Figure 32: A schematic of the I3 algorithm. All treatment assignments are initially kept hidden: only
(Yi, Xi)i∈[n] are revealed to the analyst, while all {Ai} remain ‘masked’. The initial candidate rejection
set is R0 = [n] (thus no subject is excluded initially and i∗0 = ∅). The false discovery proportion
F̂DR of the current candidate setRt is estimated by the algorithm (dashed lines), and reported to the
analyst. If F̂DR(Rt) > α, the analyst chooses a subject i∗t to remove it from the proposed rejection set
Rt = Rt−1\{i∗t}, whose assignment At∗t is then ‘unmasked’ (revealed). Importantly, using any available
prior information, covariates and working model, the analyst can choose subject i∗t and shrinkRt in any
manner. This process continues until F̂DR(Rt) ≤ α (orRt = ∅).

The core idea that enables human interaction is to separate the information used for selecting subjects
with positive effects and that for error control, via “masking and unmasking” (Figure 32). In short,
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masking means we hide {Ai}ni=1 from the analyst. The algorithm alternates between two steps —
selection and error control — until a simple stopping criterion introduced later is reached.

1. Selection. Consider a set of candidate subjects to be identified as having a positive effect (whose
null to be rejected), denoted as rejection set Rt for iteration t. We start with all the subjects
included,R0 = [n]. At each iteration, the analyst excludes possible nulls (i.e., subjects that are
unlikely to have positive effects) from the previous Rt−1, using all the available information
(outcomes Yi and covariates Xi for all subjects i ∈ [n], and progressively unmasked Ai from the
step of error control, and possible prior information). Note that our method does not automatically
use prior information and the revealed data. The analyst is free to use any black-box prediction
algorithm that uses the available information, and evaluates the subjects possibly using an estimated
probability of having a positive treatment effect. This step is where a human is allowed to
incorporate her subjective choices.

2. Error control (and unmasking). The algorithm uses the complete data {Yi, Ai, Xi} to estimate
FDR of the current candidate rejection set F̂DR(Rt), as a feedback to the analyst. If the estimated
FDR is above the target level F̂DR(Rt) > α, the analyst goes back to the step of selection, along
with additional information: the excluded subjects (i /∈ Rt) have their Ai unmasked (revealed),
which could improve her understanding of the data and guide her choices in the next selection
step.

The algorithms we propose in the main paper build on and modify the above procedure to achieve
reasonably high power and develop various extensions. An illustration of the identifications made by the
Crossfit-I3 (our central algorithm) is in Figure 33.
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(a) Subjects in treated group and
control group separated by two
shapes and colors.
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(b) Blue round dots represent sub-
jects with true positive effect (un-
known ground truth).
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(c) Green round dots represent sub-
jects identified by the Crossfit-I3.

Figure 33: An illustrative example with 1000 subjects, each has two covariates that are uniform in [0, 1].
The Crossfit-I3 identifies most subjects with positive effects, although about half of them did not receive
treatment.

Outline. The rest of the paper is organized as follows. In Section 5.2, we describe an interactive
algorithm wrapped by a cross-fitting framework, which identifies subjects with positive effects with FDR
control. We evaluate our proposed algorithm numerically in Section 5.3, and provide theoretical power
analysis in simple settings in Section 5.4. We point out several extensions of the proposed algorithm from
Section 5.5 to 5.9, and present a prototypical application to a real data set in Section 5.10. Section 5.11
concludes the paper with a discussion on the potential of our proposed interactive procedures.
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5.2 An interactive algorithm with FDR control
To enable us to effectively infer the treatment effect, we use the following working model:

Y C
i = f(Xi) + Ui and Y T

i = ∆(Xi) + f(Xi) + Ui, (102)

where Ui is zero-mean noise (unexplained variance) that is independent of Ai. When working with such
a model, we effectively want to identify subjects with a positive treatment effect ∆(Xi). Importantly,
model (102) needs not be correctly specified or accurately reflect reality in order for the algorithms in
this paper to have a valid FDR control (but the more ill-specified or inaccurate the model is, the more
power may be hurt).

To identify subjects with positive effects, we first introduce an estimator of the treatment effect ∆(Xi)
following the working model (102). Denote the expected outcome given the covariates as m(Xi) :=
E(Yi | Xi), and let m̂(Xi) be an arbitrary estimator of m(Xi) using the outcomes and covariates
{Yi, Xi}ni=1. Define the residual as Ei := Yi − m̂(Xi), and an estimator of ∆(Xi) is

∆̂i := 4(Ai − 1/2) · Ei, (103)

which, under randomized experiments, is equivalent to the nonparametric estimator of the conditional
treatment average effect E(Y T

i | Xi)− E(Y C
i | Xi) in several recent papers [Kennedy, 2020; Nie and

Wager, 2020], and can be traced back to the semiparametrics literature with Robinson [1988]. A critical
property of ∆̂i that later leads to FDR control is that10

P(∆̂i > 0 | {Yj, Xj, Ej}nj=1) ≤ 1/2, (104)

under Hzero
0i (for any definition in (96), (97), or (98)), because Hzero

0i implies Ai ⊥⊥ {Yi, Xi} and P(Ai −
1/2 > 0) = 1/2. Recall in Figure 32, the treatment assignments Ai are hidden from the analyst in the
selection step, which is reflected in (104) as Ai omitted from the condition. The above property indicates
that the estimated effect ∆̂i is no more likely to be positive than negative if the selected subject has zero
effect, regardless of how the analyst decides which subject to select. Therefore, the sign of ∆̂i can be
used to estimate the number of false identifications and achieve FDR control, which we elaborate next.

5.2.1 An interactive algorithm with valid FDR control

This section presents the I3 with valid FDR control. We introduce a modification based on cross-fitting
that improves identification power in the next section.

The I3 proceeds as progressively shrinking a candidate rejection setRt at iteration t,

[n] = R0 ⊇ R1 ⊇ . . . ⊇ Rn = ∅,

where recall [n] denotes the set of all subjects. We assume without loss of generality that one subject
is excluded in each step. Denote the subject excluded at iteration t as i∗t . The choice of i∗t can use the
information available to the analyst before iteration t, formally defined as a filtration (sequence of nested
σ-fields):

Ft−1 = σ

{Yj, Xj}j∈Rt−1 , {Yj, Aj, Xj}j /∈Rt−1 ,
∑

j∈Rt−1

1{∆̂j > 0}

 , (105)

10Note that property (104) uses the fact that outcome estimator m̂(Xi) is independent of Ai, so it is important that
the estimation of m̂ does not use the assignments {Ai}ni=1; however, it should not affect the estimation much because
m(Xi) ≡ E(Yi | Xi) is not a function of Ai.
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where we unmask (reveal) the treatment assignments Aj for subjects excluded from Rt−1, and the
sum

∑
i∈Rt−1

1{∆̂i > 0} is mainly used for FDR estimation as we describe later. The above available
information include arbitrary functions of the revealed data, such as the residuals {Ej}nj=1 defined above
equation (103). Similar to property (104), for each candidate subject i ∈ Rt−1, we have

P(∆̂i > 0 | {Yj, Xj}j∈Rt−1 , {Yj, Aj, Xj}j /∈Rt−1) ≤ 1/2, (106)

which ensures the FDR control as we explain next.
To control FDR, the number of false identifications is estimated by (106). The idea is to partition the

candidate rejection setRt intoR+
t andR−t by the sign of ∆̂i:

R−t := {i ∈ Rt : ∆̂i ≤ 0}, R+
t := {i ∈ Rt : ∆̂i > 0}.

Notice that our proposed procedure only identifies the subjects whose estimated effect is positive, i.e.,
those in R+

t . Thus, the FDR is E
[
|R+
t ∩H0|

max{|R+
t |,1}

]
by definition, where recall H0 is the set of true nulls.

Intuitively, the number of false identifications |R+
t ∩H0| can be approximately upper bounded by

|R−t ∩H0|, since the number of positive signs should be no larger than the number of negative signs for
the falsely identified nulls, according to property (104). Note that the set of true nullsH0 is unknown, so
we use |R−t | to upper bound |R−t ∩H0|, and propose an estimator of FDR for the candidate rejection set
Rt:

F̂DR(Rt) =
|R−t |+ 1

max{|R+
t |, 1}

. (107)

Overall, the I3 shrinksRt until time τ := inf{t : F̂DR(Rt) ≤ α} and identifies only the subjects inR+
τ ,

as summarized in Algorithm 9. We state the FDR control of I3 in Theorem 10 and the proof can be
found in Appendix D.2.1.

Theorem 10. In a randomized experiment with assumptions (94) and (95), and for any analyst that
updates their working model(s) at any iteration t using the information in Ft−1, the set R+

τ rejected by
the I3 algorithm has FDR controlled at level α, meaning that

E
[
|R+

τ ∩H0|
max{|R+

τ |, 1}

]
≤ α,

for any definition of the null hypothesis (96), (97) or (98). For the last definition, FDR control also
holds conditional on the covariates and potential outcomes.

Consider a simple case where model (102) is accurate for every subject with a constant treatment
effect ∆(Xi) = δ > 0. If δ is larger than the maximum noise, we haveR+

0 = [n], and the algorithm can
stop at the very first step identifying all subjects. At the other extreme, if the effect δ is too small, the
algorithm may also return an empty set, and this makes sense because while small average treatment
effects can be learned using a large population, larger treatment effects are needed for individual-level
identification.

Related work. Testing procedures that allow human interaction are first proposed by Lei and Fithian
[2018] and Lei et al. [2020] for the problem of FDR control in multiple testing, followed by several
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Algorithm 9 The I3 (interactive identification of individual treatment effect) procedure.

Initial state: Explorer (E) knows covariates and outcomes {Xi, Yi}ni=1.
Oracle (O) knows the treatment assignments {Ai}ni=1.
Target FDR level α is public knowledge.
Initial exchange: Both players initializeR0 = [n] and set t = 1.
1. E builds a prediction model m̂ from Xi to Yi.
2. E informs O about residuals Ei ≡ Yi − m̂(Xi).
3. O estimates the treatment effect as ∆̂i ≡ 4(Ai − 1/2)Ei.
4. O then dividesRt intoR−t := {i ∈ Rt : ∆̂i ≤ 0} andR+

t := {i ∈ Rt : ∆̂i > 0}.
5. O reveals only |R+

t | to E (who infers |R−t |).
Repeated interaction: 6. E checks if F̂DR(Rt) ≡ |R−t |+1

max{|R+
t |,1}
≤ α.

7. If yes, E sets τ = t, reportsR+
τ and exits.

8. Else, E picks any i∗t ∈ Rt−1 using everything E currently knows.
(E tries to pick an i∗t that E thinks is null, i.e. E hopes that ∆̂i∗t

≤ 0.)
9. O reveals Ai∗t to E, who also infers ∆̂i∗t

and its sign.
10. E updatesRt+1 = Rt\{i∗t}, and also |R+

t+1| and |R−t+1|.
11. Increment t and go back to Step 6.

works for other error metrics [Duan et al., 2019, 2020a]. These papers focus on generic multiple testing
problems, which operate on the p-values and ignore the process of generating p-values from data. In
contrast, Duan et al. [2020b] applies the idea of interactive testing to observed data, to which our paper
relates most. Both works propose tests for treatment effect, and the difference is that Duan et al. [2020b]
test whether any subject has nonzero effect with type-I error control, whereas our proposed algorithm
aims at identifying subjects having positive effects with FDR control. While the former may appear in
an exploratory analysis to see whether the treatment has any effect on any person, the latter is useful to
characterize the population where the treatment has an effect.

We end the section with a remark. In step 8 of Algorithm 9, we hope to exclude subjects that are
unlikely to have positive effects, based on the revealed data in Ft−1. In other words, we should guess the
sign of treatment effect ∆̂i, which depends on both the revealed data {Yi, Xi} and the hidden assignment
Ai. However, notice that at the first iteration, we may learn/guess the opposite signs for all the subjects;
when all assignments {Ai}ni=1 are hidden at t = 1, the likelihood of {Ai}ni=1 being the true values
(leading to all correct signs for ∆̂i) is the same as the likelihood of all opposite values (leading to all
opposite signs for ∆̂i), no matter what working model we use. Consequently, the subjects with large
positive effects could be guessed as having large negative effects, causing them to be excluded from
the rejection set. To improve power, we propose to wrap around the I3 by a cross-fitting framework as
described in the next section.

5.2.2 Improving stability and power with Crossfit-I3

Cross-fitting refers to the idea of splitting the samples into two halves. We perform the I3 on each
half separately, so that for each half, the complete data (including the assignments) of the other half is
revealed to the analyst to help infer the sign of treatment effect, addressing the issue of learning the
opposite signs and improving the identification power.

Specifically, split the subjects randomly into two sets of equal size, denoted as I and II where
I ∪ II = [n]. The I3 (Algorithm 9) is implemented on each set separately: at the start of I3 on set I,
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the analyst has access to the complete data for all subjects in set II, and tries to identify subjects with
positive effects in set I with FDR control at level α/2; similar is the I3 on set II. Mathematically, let
the candidate rejection set of implementing the I3 on set I beRt(I), where the initial set isR0(I) = I.
The available information at iteration t is defined as:

Ft−1(I) = σ

{Yi, Xi}i∈Rt−1(I), {Yj, Aj, Xj}j /∈Rt−1(I),
∑

i∈Rt−1(I)

1{∆̂i > 0}

 , (108)

which includes the complete data {Yj, Aj, Xj} for j ∈ II at any iteration t ≥ 0 11. Similarly, we define
Rt(II) and Ft−1(II) for the I3 implemented on set II . The final rejection set is the union of rejections
in I and II (see Algorithm 10). We call this algorithm the Crossfit-I3.

Algorithm 10 The Crossfit-I3.

Input: Covariates, outcomes, treatment assignments {Yi, Ai, Xi}ni=1, target level α;
Procedure:
1. Randomly split the sample into two subsets of equal size, denoted as I and II;
2. Implement Algorithm 9 at level α/2, where E initially knows {Yk, Xk}nk=1 ∪ {Aj}j∈II and sets
R0(I) = I, getting a rejection setR+

τ (I) ⊆ I;
3. Implement Algorithm 9 at level α/2, where E initially knows {Yk, Xk}nk=1 ∪ {Aj}j∈I and sets
R0(II) = II, getting a rejection setR+

τ (II) ⊆ II;
4. Combine two rejection sets as the final rejection set,R+

τ = R+
τ (I) ∪R+

τ (II).

As long as the I3 on two sets do not exchange information, Algorithm 10 has a valid FDR control
(see the proof in Appendix D.2.2).
Theorem 11. Under assumption (94) and (95) of randomized experiments,R+

τ rejected by the Crossfit-
I3 has FDR controlled at level α for any of the null hypotheses (96), (97) or (98). For the last case, FDR
control also holds conditional on the covariates and potential outcomes.

In addition to addressing the issue of learning the opposite ∆̂i in the original I3, another benefit
of using the crossing-fitting framework is that with the complete data revealed for at least half of the
sample, the analyst does not have to deal with the problem of inferring missing data (the assignment Ai),
which probably needs some parametric probabilistic modeling and the EM algorithm. Instead, because
the assignments are revealed for subjects not in the candidate rejection set (at least half of the sample),
their signs of ∆̂j can be correctly calculated and used as “training data”. The analyst can then employ a
black-box prediction model, such as a random forest, to predict the signs of ∆̂i for the subjects whose
assignments are masked (hidden) 12. As an example, we propose an automated strategy as follows to
select a subject at step 8 in Algorithm 9.

11For notational clarity, we use i to denote candidate subjects i ∈ Rt(I), and j for non-candidate subjects j /∈ Rt(I),
while k is used to index all subjects k ∈ [n].

12We explore alternative algorithms for predicting the signs in Appendix D.5.2.
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Algorithm 11 An automated heuristic to select i∗t in the Crossfit-I3.

Input: Current rejection setRt−1(I), and available information for selection Ft−1(I);
Procedure:
1. Train a random forest classifier where the label is sign(∆̂j) and the predictors are Yj, Xj and the
residuals Ej , using non-candidate subjects j /∈ Rt−1(I);
2. Estimate the probability of ∆̂i being positive as p̂(i, t) for subjects i ∈ Rt−1(I);
3. Select i∗t = argmin{p̂(i, t) : i ∈ Rt−1(I)}.

We remark that in practice, the analyst can interactively change the prediction model, such as
exploring parametric models to see which fits the data better. In principle, the analyst can perform any
exploratory analysis on data in Ft−1(I) to decide a heuristic or score for selecting subject i∗t ; and the
FDR control is valid as long as she does not use the assignments Ai for candidate subjects i ∈ Rt−1(I).
For computation efficiency, we usually update the prediction models (or their parameters) once every
100 iterations (say).

To summarize, the Crossfit-I3 described in Algorithm 10 involves two rounds of the I3 (Algorithm 9),
where step 8 of selecting a subject is allowed to involve human interaction; alternatively, step 8 can
be an automated heuristic as presented in Algorithm 11. Recall the illustrative example in Figure 33,
where we implement the Crossfit-I3 with the above automated strategy to select subjects. Each subject,
recorded with two covariates in [0, 1], has a constant positive effect when the covariate values are around
0.5 (see Figure 33b). Even though half of the subjects with positive effects do not receive treatment
(hence we do not know their potential treated outcomes), the Crossfit-I3 correctly identifies most of them
(see Figure 33c). Next, we demonstrate through repeated numerical experiments and theoretical analysis
that the Crossfit-I3 has reasonably high power.

5.3 Numerical experiments
To assess our proposed procedure, we first describe a baseline method, which calculates a p-value for
each subject under the assumption of linear models, and applies the classical BH method [Benjamini
and Hochberg, 1995]. We call this method the linear-BH procedure.

5.3.1 A baseline: the BH procedure under linear assumptions

For the treated group and control group, we first separately learn a linear model to predict Yi using Xi,
denoted as l̂T and l̂C . By imputing the unobserved potential outcomes, we get estimators of the potential
outcomes Ỹ T

i = Yi1{Ai = 1} + l̂T (Xi)1{Ai = 0} and Ỹ C
i = l̂C(Xi)1{Ai = 1} + Yi1{Ai = 0}, and

the treatment effect for subject i can be estimated as ∆̂BH
i := Ỹ T

i − Ỹ C
i . If the potential outcomes are

linear functions of covariates with standard Gaussian noises (which we refer to as the linear assumption),
the estimated treatment effect asymptotically follows a Gaussian distribution. For each subject i ∈ [n],
we calculate a p-value for the zero-effect null (96) as

Pi = 1− Φ

(
∆̂BH
i

/√
V̂ar(∆̂BH

i )

)
, (109)

where the estimated variance is V̂ar(∆̂BH
i ) = V̂ar(Ỹ T

i ) + V̂ar(Ỹ C
i ), and Φ denotes the CDF of a standard

Gaussian. To identify subjects having positive effects with FDR control, we apply the BH procedure to
the above p-values. Notice that the error control would not hold when the linear assumption is violated
(see Appendix D.2.4 for the formal FDR control guarantee).
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5.3.2 Numerical experiments and power comparison

We run a simulation with 500 subjects (n = 500). Each subject is recorded with two binary attributes
(eg. female/male and senior/junior) and one continue attribute (eg. body weight), denoted as a vector
Xi = (Xi(1), Xi(2), Xi(3)) ∈ {0, 1}2 × R. Among n subjects, the binary attributes are marginally
balanced, and the subpopulation with Xi(1) = 1 and Xi(2) = 1 is of size 30. The continuous attribute
is independent of the binary ones and follows the distribution of a standard Gaussian.

The outcomes are simulated as a function of the covariates Xi and the assignment Ai following the
generating model (102). Recall that we previously used model (102) as a working model, which is not
required to be correctly specified. Here, we generate data from such a model in simulation for a clear
evaluation of the considered methods. We specify the noise Ui as a standard Gaussian, and the expected
control outcome as f(Xi) = 5(Xi(1) +Xi(2) +Xi(3)), and the treatment effect as

∆(Xi) = S∆ · [5X3
i (3)1{Xi(3) > 1} −Xi(1)/2], (110)

where S∆ > 0 encodes the scale of the treatment effect. In this setup, around 15% subjects have positive
treatment effects with a large scale, and 43% subjects have a mild negative effect 13. More experiments
can be found in Appendix D.5.1.
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Figure 34: FDR (left) and power (right) of the Crossfit-I3 compared with the linear-BH procedure, with
the treatment effect specified as model (110) and the scale S∆ varying in {0, 1, 2, 3, 4, 5}. The FDR
control level is 0.2, marked by a horizontal line in error control plots. For all plots in this paper, the FDR
and power are averaged over 500 repetitions. The linear-BH procedure does not have valid FDR control
because the treatment effect is nonlinear, whereas the Crossfit-I3 controls FDR and can achieve high
power.

For the Crossfit-I3, we use random forests (with default parameters in R) to compute m̂, and use the
automated selection strategy Algorithm 11 to select a subject at step 8 in Algorithm 9. The linear-BH
procedure results in a substantially higher FDR than desired because the linear assumption does not
hold in the underlying truth (110) (see Figure 34), whereas our proposed Crossfit-I3 controls FDR at
the target level as expected. At the same time, the Crossfit-I3 appears to have comparable power as the
linear-BH procedure to correctly identify subjects with true positive effects.

13R code to fully reproduce all plots in the paper are available at https://github.com/duanby/I-cube.
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5.4 Asymptotic power analysis in simple settings
In addition to the numerical experiments, we provide a theoretical power analysis in some simple cases
to understand the advantages and limitations of our proposed Crossfit-I3.

First, consider the case without covariates. Our analysis is inspired by the work of Arias-Castro
and Chen [2017]; Rabinovich et al. [2020], who study the power of methods with FDR control under a
sparse Gaussian sequence model. Let there be n hypotheses, each associated with a test statistic Vi for
i = 1, . . . , n. They consider a class of methods called threshold procedures such that the final rejection
setR is in the formR = {i : Vi ≥ τ(V1, . . . , Vn)}, for some threshold τ(V1, . . . , Vn); they discuss two
types of thresholds; see Appendix D.4 for details of their results. An example of the threshold procedure
is the BH procedure. Our proposed I3 can also be simplified to a threshold procedure when using an
automated selection strategy at step 8 of Algorithm 9: at each iteration, we exclude the subject with
the smallest absolute value of the estimated treatment effect |∆̂i| (note that this strategy satisfies our
requirement of not using assignments since |∆̂i| = |4(Ai − 1/2)(Yi − m̂(Xi))| = 2|Yi − m̂(Xi)|). The
resulting (simplified and automated) I3 is a threshold procedure where Vi = ∆̂i. Note that our original
interactive procedure is highly flexible, making the power analysis less obvious, so we discuss the power
of Crossfit-I3 with the above simplified selection strategy.

To contextualize our power analysis, we paraphrase one of the results in Arias-Castro and Chen
[2017]; Rabinovich et al. [2020]. Assume the test statistics Vi ∼ N(µi, 1) are independent, with µi = 0
under the null and µi = µ > 0 otherwise. Denote the number of non-nulls as n1 and the sparsity of
the non-nulls is parameterized by β ∈ (0, 1) such that n1/n = n−β . Let the signal µ increase with n as
µ =
√

2r log n, where the signal strength is encoded by r ∈ (0, 1). Their power analysis is characterized
by the signal r and sparsity β, which are also critical parameters to characterize the power in our context
as we state later. These authors effectively prove that for any fixed FDR level α ∈ (0, 1), no threshold
procedure can have nontrivial power if r < β, but there exist threshold procedures with asymptotic
power one if r > β.

Our analysis differs from theirs in the non-null distribution of the test statistics. Given n subjects,
suppose the potential outcomes for subject i are distributed as: Y C

i ∼ N(0, 1) and Y T
i ∼ N(µi, 1),

where the alternative mean is µi = 0 if subject i is null, or µi = µ > 0 if i is non-null. Thus, the observed
outcome of a null is N(0, 1), and that of a non-null is a mixture of N(µ, 1) and N(0, 1) (depending on
the treatment assignment), instead of a shift of the null distribution as assumed in Arias-Castro and
Chen [2017], and the proof of the following result thus involves some modifications on their proofs (see
Appendix D.4.1).
Theorem 12. Given a fixed FDR level α ∈ (0, 1) and let the number of subjects n go to infinity. When
there is no covariate, the automated Crossfit-I3 and the linear-BH procedure have the same power
asymptotically: if r < β, their power goes to zero; if r > β, their power goes to 1/2. Further, among
the treated subjects, their power goes to one.
Remark 8. Power of both methods cannot converge to a value larger than 1/2 because without
covariates, we cannot differentiate between the subjects with zero effect (whose outcome follows
standard Gaussian regardless of treated or not) and the subjects with positive effects that are not treated
(which also follows standard Gaussian). And the proportion of untreated subjects among those with
positive effects is 1/2 because of the assumed randomization.

The above theorem discusses the case where there are no covariates to help guess which untreated
subjects have positive effects. Next, we consider the case with an “ideal” covariate Xi: its value
corresponds to whether a subject is a non-null (having positive effect) or not, Xi = 1{µi > 0}. Here,
we design the selection strategy (for step 8 of Algorithm 9) as a function of the covariates, because

94



we hope that subjects with the similar covariates have similar treatment effects. Specifically, for
the I3 implemented on I, we learn a prediction of ∆̂j by Xj using non-candidate subjects j ∈ II:
Pred(x) = 1

|II|
∑

i∈II ∆̂j1{Xj = x}, where x = {0, 1}. Then for candidate subjects i ∈ I, we exclude
the ones whose Pred(Xi) are lower. As we integrate information among subjects with the same covariate
value, all non-null subjects (i.e., those with Xi = 1) would excluded after the nulls (with probability
tending to one), regardless of whether they are treated or not; hence we achieve power one.
Theorem 13. Given a fixed FDR level α ∈ (0, 1) and let the number of subjects n go to infinity. With
a covariate Xi = 1{µi > 0}, the power of the automated Crossfit-I3 converges to one for any fixed
r ∈ (0, 1) and β ∈ (0, 1). In contrast, the power of the linear-BH procedure goes to zero if r < β.
(When r > β, power of both methods converges to one.)

Here is a short informal argument for why our power goes to one. Since the nulls can be excluded
before the non-nulls, we focus on the test statistics of the non-nulls. Let d→ denote convergence in
distribution. The estimated effect ∆̂i

d→ N(µ, 1) for each non-null (since in the notation of Algorithm 9,
m̂(Xi = 1) converges to µ/2 for the non-nulls, and thus, Ei

d→ N(µ/2, 1) for those with Ai = 1, and
Ei

d→ N(−µ/2, 1) for those withAi = 0.) Hence, at the time t0 right after all the nulls are excluded (and
all the non-nulls are inRt0), the proportion of positive estimated effects |R+

t0|/|Rt0| converges to Φ(µ),
where Φ denotes the CDF of a standard Gaussian. We can stop before t0 and identify subjects inR+

t0 if
F̂DR(Rt0), as a function of |R+

t0|/|Rt0|, is less than α, which holds when Φ(µ) > 1
1+α

. The power goes
to one because µ grows to infinity for any fixed r ∈ (0, 1), so that for large n, we stop before t0 and the
proportion of rejected non-nulls |R+

t0|/|Rt0| (which converges to Φ(µ) as argued above) also goes to
one. In short, the power guarantee does not depend on the sparsity β because of the designed selection
strategy that incorporates covariates.

We note that our theoretical power analysis discusses two extreme cases, one with no covariate to
assist the testing procedure (Theorem 12), and the other with a single “ideal” covariate that equals the
indicator of non-nulls (Theorem 13). The numerical experiments in Section 5.3 consider more practical
settings, where the analyst is provided with a mixture of covariates informative about the heterogeneous
effect (Xi(1) and Xi(3) in our example) and some uninformative ones; still, the Crossfit-I3 tends to have
reasonably high power. In the following sections, we turn to present extensions of the Crossfit-I3 in
various directions.

5.5 Extension I: FDR control of nonpositive effects
The Crossfit-I3 controls the false identifications of subjects with zero treatment effect, as defined in the
null hypothesis (96), (97) or (98). In this section, we develop a modification to additionally control
the error of falsely identifying subjects with nonpositive treatment effects, by defining a different null
hypothesis.

Problem setup. We define the null hypothesis for subject i as nonpositive effect:

Hnonpositive
0i : (Y T

i | Xi) � (Y C
i | Xi), (111)

or equivalently, Hnonpositive
0i : (Yi | Ai = 1, Xi) � (Yi | Ai = 0, Xi). As before, our algorithm applies to

two alternative definitions of the null hypothesis. In the context of treating the potential outcomes and
covariates as fixed, the null hypothesis is

Hnonpositive
0i : Y T

i ≤ Y C
i , (112)
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and in the hybrid version where the potential outcomes are random with joint distribution (Y T
i , Y

C
i ) |

Xi ∼ Pi, the null posits

Hnonpositive
0i : Y T

i ≤ Y C
i almost surely-Pi. (113)

Note that the nonpositive-effect null is less strict than the zero-effect null. Thus, an algorithm with FDR
control for Hnonpositive

0i must have valid FDR control for Hzero
0i , but the reverse needs not be true. Indeed,

we observe in numerical experiments (Figure 35b) that the Crossfit-I3 does not control FDR for the
nonpositive-effect null. This section presents a variant of Crossfit-I3 that controls false identifications of
nonpositive effects, possibly more practical when interpreting the identified subjects. For example, when
controlling FDR for the nonpositive-effect null at level α = 0.2, we are able to claim that the expected
proportion of identified subjects with positive effects is no less than 80%.

An interactive procedure with FDR control of nonpositive effects. Recall that the FDR control of
the Crossfit-I3 is based on property (104) that when the null hypothesis is true for subject i, we have
P
(

∆̂i | {Yj, Xj, Ej}nj=1

)
≤ 1/2, but this statement no longer holds when the null hypothesis is defined

as Hnonpositive
0i in (111). Fortunately, this issue can be fixed by making the condition in (104) coarser and

removing the outcomes:
P
(

∆̂i | {Xj}nj=1

)
≤ 1/2,

which is reflected in the interactive procedure as reducing the available information for selecting
subject i∗t (at step 8 of Algorithm 9) — we additionally mask (hide) the outcome Yi of the candidate
subjects i ∈ Rt−1(I) when implementing the I3 on set I. We call the resulting interactive algorithm
MaY-I3, as it masks the outcomes.

Specifically, the MaY-I3 modifies Crossfit-I3 where we define the available information to select
subjects when implementing Algorithm 9 on set I as

F−Yt−1(I) = σ

{Xi}i∈Rt−1(I), {Yj, Aj, Xj}j /∈Rt−1(I) ,
∑

i∈Rt−1(I)

1{∆̂i > 0}

 . (114)

To calculate ∆̂i at t = 0 when Yi for all i ∈ I are masked, let m̂−I(Xi) be an estimator of E(Yi | Xi)
that is learned using data from non-candidate subjects {Yj, Xj}j /∈I , and let the residuals be E−Ii :=
Yi− m̂−I(Xi). Define ∆−Ii := 4(Ai− 1/2) ·E−Ii , and similar to property (104) for the zero-effect null,
we have

P
(

∆̂−Ii > 0 | {Xj}j∈I ∪ {Yj, Xj, E
−I
j }j /∈I

)
≤ 1/2, (115)

under Hnonpositive
0i , leading to valid FDR control for nonpositive effects. Overall, the MaY-I3 follows

Algorithm 10, except the estimated treatment effect ∆̂i replaced by ∆̂−Ii , and the available information
for selection Ft−1(I) replaced by F−Yt−1(I). See Appendix D.2.3 for the proof of FDR control.
Theorem 14. Under assumption (94) and (95) of randomized experiments, the MaY-I3 has a valid FDR
control at level α for the nonpositive-effect null hypothesis under any of definitions (111), (112) or (113).
For the last definition, FDR control also holds conditional on the covariates and potential outcomes.

Similar to Algorithm 11 for the Crossfit-I3, we can design an automated algorithm for the MaY-I3

to select a subject in step 8 of Algorithm 9, but the available information F−Yt−1(I) no longer includes
the outcomes of candidate subjects. We defer the details of the automated selection strategy in Ap-
pendix D.1.2.
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Figure 35: Performance of two interactive methods, Crossfit-I3 and MaY-I3, with the treatment effect
specified as model (110) and the scale S∆ varying in {0, 1, 2, 3, 4, 5}. The MaY-I3 controls FDR for
a more relaxed null (nonpositive effects) than the Crossfit-I3, while the Crossfit-I3 has slightly higher
power than the MaY-I3.

Numerical experiments. We compare the Crossfit-I3 and MaY-I3 using the same experiment as
Section 5.3.2. In terms of the error control, both the Crossfit-I3 and MaY-I3 control FDR for the zero-
effect null at the target level (Figure 35a). When the null is defined as having a nonpositive effect, the
Crossfit-I3 can violate the error control (Figure 35b), whereas the MaY-I3 preserves valid FDR control.
In terms of the power, the Crossfit-I3 has slightly higher power since the analyst can select subjects using
information defined by Ft−1(I) in (105), which is richer compared to F−Yt−1(I) in (114) for the MaY-I3.

To summarize, the error control of the MaY-I3 is more strict than the Crossfit-I3, controlling false
identifications of both zero effects and negative effects, while its power is slightly lower. We recommend
the Crossfit-I3 if one only concerns the error of falsely identifying subjects with zero effect. Alternatively,
we recommend the MaY-I3 when it is desired to control the error of falsely identifying subjects with
nonpositive effects.

5.6 Extension II: heterogeneous propensity scores with known bounds
Often in practice, different subjects might have a different probability of receiving treatment, possibly
depending on their demographics and possibly unknown to the analysts. Following standard terminology,
we refer to the probability of receiving treatment as the propensity score, denoted as

πi = P(Ai | X1, . . . , Xn). (116)

Note that we allow the propensity score for subject i to depend on covariates of other subjects. This
chapter extends the Crossfit-I3 and MaY-I3 from the setting where the propensity scores are independent
of the covariates and equals 1/2 for all subjects, to the setting with heterogeneous propensity scores that
can depend on covariates and can be unknown.

To enable inference on the potential outcomes and treatment effect, we consider two common
assumptions:
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(iii) the propensity scores are bounded away from 0 and 1:

0 < πmin ≤ πi ≤ πmax < 1 for all i ∈ [n], (117)

and the bounds πmin and πmax are known; and

(iv) conditional on the covariates, probabilities of receiving treatment are mutually independent:

P[(A1, . . . , An) = (a1, . . . , an) | X1, . . . , Xn] =
n∏
i=1

P(Ai = ai | X1, . . . , Xn), (118)

for any (a1, . . . , an) ∈ {0, 1}n.

FDR error control The Crossfit-I3 and the MaY-I3 have valid FDR control if we modify the FDR
estimator F̂DRt as

F̂DR
π
(Rt(I)) :=

(
1

1−max{1− πmin, πmax}
− 1

)
|R−t (I)|+ 1

|R+
t (I)| ∨ 1

, (119)

when conducting the I3 on set I; and similarly for set II. As the bounds get closer to zero or one,
the above estimator takes larger value, potentially leading to a more conservative FDR control. An
alternative FDR estimator is introduced in Appendix D.6, which can be less conservative when the
propensity scores have extreme bounds while most are close to 1/2 (yet, it can be more conservative
when there is only mild heterogeneity in propensity scores.) We call the interactive algorithms using
the above estimator F̂DR

π
(Rt(I)) as Crossfit-I3

π∗ and MaY-I3
π∗ , which has valid error control for the

zero-effect null and the nonpositive-effect null, respectively.
Theorem 15. Consider a randomized experiment with heterogeneous propensity scores where assump-
tion (117), (118) and (95) holds. The Crossfit-I3

π∗ has FDR controlled at level α for any of the null
hypotheses (96), (97) or (98). The MaY-I3

π∗ has a valid FDR control at level α for the nonpositive-effect
null hypothesis under any of definitions (111), (112) or (113). For the last definition of the zero-effect
null (98) and the nonpositive-effect null (113), FDR control also holds conditional on the covariates
and potential outcomes.

Numerical experiments. We follow the simulation setting in Section 5.3.2, except different propensity
scores specified as a function of covariates. Let the the treatment effect be

∆(Xi) = 15X3
i (3)1{Xi(3) > 1} − 3Xi(1)/2, (120)

which is the treatment effect in (110) with S∆ = 3. Consider the case where subjects with positive
effects coincides with those having higher propensity scores:

πi = π(Xi) = (1/2 + δ)1{∆(Xi) > 0}+ 1/21{∆(Xi) = 0}+ (1/2− δ)1{∆(Xi) < 0}, (121)

where δ ∈ (0, 0.5) denotes the deviation of the propensity score bounds to 1/2. Both the Crossfit-I3
π∗

and the MaY-I3
π∗ have valid error control for their target null hypotheses respectively (see Figure 36).

Compared with the simple setting with πi = 1/2 for all i ∈ [n] (i.e., δ = 0), power of both methods first
increase as the deviation δ increase (to the point where πmax = 0.7 and πmin = 0.3). It is because with
larger δ, more subjects potentially having positive treatment effects get treated, so that they show larger
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(a) FDR for the zero-effect null (96).
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(c) Power of identifying subjects
with positive effects.

Figure 36: Performance of of Crossfit-I3
π∗ and MaY-I3

π∗ with knowledge of the true propensity scores,
when the treatment effect specified as model (120) and the propensity score deviates from 1/2 by δ where
δ varies in {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}. Both Crossfit-I3

π∗ and MaY-I3
π∗ control FDR, and

have similar power. As δ increases, power first slightly increases and then decreases down to zero.

outcomes, making them easier to be identified. Nonetheless, when the deviation δ continue to increase,
the power decreases to zero because the FDR estimator (119) becomes too conservative. For example,
when δ = 0.25, the FDR estimator is three times the FDR estimation if πi were all 1/2; and nine times
when δ = 0.4.

The Crossfit-I3
π∗ and the MaY-I3

π∗ achieve valid error control when we have the oracle knowledge
of the bounds on the propensity scores, which might not be available in practice. Nonetheless, we can
easily extend both methods to estimate the propensity scores thanks to the cross-fitting framework. The
next section discusses their (asymptotic) FDR control guarantees under unknown bounds.

5.7 Extention III: unknown heterogeneous propensity scores (observational stud-
ies)

When the bounds for propensity scores πmin and πmax are unknown, we can estimate them using revealed
data and follow the algorithms under heterogeneous propensity scores described in the previous section.
Specifically in the first part of the cross-fitting framework, all the data information for subjects in II
is revealed and we aim at finding a rejection set in I. Prior to implementing the I3, we estimate the
bounds for the propensity scores as π̂min(I) and π̂max(I) by the complete data in II (see the first step
in blue text of Algorithm 12). For example, we can estimate individual propensity scores by a logistic
regression on covariates Xj using the complete data from non-candidate subjects j ∈ II. Then, the
analyst can conduct the I3 with the FDR estimator defined as

F̂DR
π̂

t (Rt(I)) :=

(
1

1−max{1− π̂min(I), π̂max(I)}
− 1

)
|R−t (I)|+ 1

|R+
t (I)| ∨ 1

; (122)

and similarly for the procedure on set II. We call the resulting algorithms Crossfit-I3
π̂ and MaY-I3

π̂, to
control FDR for the zero-effect null and the nonpositive-effect null, respectively.
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Algorithm 12 The I3 (implemented on I) in Crossfit-I3
π̂ with unknown bounds of propensity scores.

Initial state: Explorer (E) knows covariates and outcomes {Xk, Yk}nk=1 ∪ {Aj}j∈II .
Oracle (O) knows the treatment assignments {Ai}i∈I .
Target FDR level α is public knowledge.
Initial exchange: Both players initializeR0 = [I] and set t = 1.
1. E estimates the bounds of propensity scores π̂min(I) and π̂max(I).
2. E builds a prediction model m̂ from Xi to Yi.
3. E informs O about residuals Ei ≡ Yi − m̂(Xi).
4. O estimates the treatment effect as ∆̂i ≡ 4(Ai − 1/2)Ei.
5. O then dividesRt intoR−t := {i ∈ Rt : ∆̂i ≤ 0} andR+

t := {i ∈ Rt : ∆̂i > 0}.
6. O reveals only |R+

t | to E (who infers |R−t |).
Repeated interaction:
7. E checks if F̂DR

π̂

t (Rt(I)) ≡
(

1
1−max{1−π̂min(I),π̂max(I)} − 1

)
|R−t (I)|+1

|R+
t (I)|∨1

≤ α.
8. If yes, E sets τ = t, reportsR+

τ and exits.
9. Else, E picks any i∗t ∈ Rt−1 using everything E currently knows.
(E tries to pick an i∗t that E thinks is null, i.e. E hopes that ∆̂i∗t

≤ 0.)
10. O reveals Ai∗t to E, who also infers ∆̂i∗t

and its sign.
11. E updatesRt+1 = Rt\{i∗t}, and also |R+

t+1| and |R−t+1|.
12. Increment t and go back to Step 6.

5.7.1 Asymptotic FDR control

With estimated propensity scores, the FDR control can be achieved asymptotically if certain statistics
are well-estimated, as we discuss in the following.

Asymptotic FDR control when the bounds of propensity scores are well-estimated. Because the
bounds of propensity scores are estimated, the Crossfit-I3

π̂ cannot guarantee the FDR control exactly at
the target level. Still, we can show that small error in the propensity score estimation would not inflate
FDR dramatically.
Theorem 16. Suppose there are n samples. In the cross-fitting framework, let π̂min(I) and π̂max(I) be
the estimated lower and upper bound of the propensity scores based on F0(I) (data initially known to
the explorer). Define the estimation error as

επn(I) ≡ max{|π̂min(I)− πmin(I)|, |π̂max(I)− πmax(I)|}, (123)

where πmin(I) and πmax(I) are minimum and maximum propensity score among subjects in I; and
define επn(II) similarly. The FDR is upper bounded:

E
[
FDPπ̂

τ

]
≤ α

(
1 +

(
EF0(I) [επn(I)] + EF0(II) [επn(II)]

)
max{1− πmin, πmax}(1−max{1− πmin, πmax})

)
, (124)

in a Bernoulli randomized experiment with heterogeneous propensity scores where assumption (117), (118)
and (95) holds, for Crossfit-I3

π̂ under the zero-effect null in any of the definitions (96), (97) or (98), and
for MaY-I3

π̂ under the nonpositive-effect null in any of the definitions (111), (112) or (113).
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Corollary 1. The Crossfit-I3
π̂ (and MaY-I3

π̂) has asymptotic FDR control for the zero-effect null (and the
nonpositive-effect null) when the estimation of propensity score bounds is consistent in the sense that
EF0(I) [επn(I)] and EF0(II) [επn(II)] goes to zero as sample size n goes to infinity.

The Crossfit-I3
π̂ (and MaY-I3

π̂) would have a larger FDR than the target level if the propensity score
estimation is inconsistent, and this inflation increases as the true bounds of propensity score get close to
0 and 1. Nonetheless, in the perspective where the outcomes are treated as random variables, the MaY-I3

π̂

can still have asymptotic FDR control with inconsistent estimation on the propensity score bounds, if
m̂−I(Xi) is a good estimation of the expected outcomes E(Yi | {Xi}ni=1). In other words, the FDR
control of the MaY-I3

π̂ may be considered as doubly robust.

Doubly robust asymptotic FDR control for MaY-I3
π̂ when the outcomes are treated as random

variables. FDR control for MaY-I3 holds even when the bounds of true propensity scores reach 0 or 1:
(v) the propensity scores are bounded away from 0 and 1:

0 ≤ πmin ≤ πi ≤ πmax ≤ 1 for all i ∈ [n]. (125)

Recall that in the simple setting where πi = 1/2 for all subjects, FDR control guarantee is based on the
probability of the sign of ∆̂i:

qi(I) := P
(

∆̂i ≡ (Ai − 1/2) · (Yi − m̂−I(Xi)) > 0 | F−Y0 (I)
)
. (126)

Intuitively, the FDR control is close to the target level when the upper bound on qi(I) is close to our
estimation (for example, the bound equals 1/2 if πi = 1/2). In MaY-I3

π̂, the estimated upper bound of
qi(I) depends on two estimations: the estimated propensity scores denoted as π̂i(I), and the estimator
m̂−I(Xi) for the conditional expected outcome E(Yi | {Xi}ni=1).

To formalize the FDR control, we use the above notion of error in propensity score estimation επn(I)
in (123); and introduce a characterization for error in outcome estimation. We define a “centered” CDF
Φ for the conditional distribution of outcome Yi given covariates:

Φi(ε) := P(Yi − E(Yi | {Xi}ni=1) ≤ ε | {Xi}ni=1), (127)

which measure the deviation of Yi from E(Yi | {Xi}ni=1). Given a fixed ε, denote the lower and upper
bounds as Φmin(ε) := mini∈[n] Φi(ε) and Φmax(ε) := maxi∈[n] Φi(ε). In our characterization, we define
the error of outcome estimation by m̂−I(Xi) as

εYn (I) := max
i∈I
{|E(Yi | {Xi}ni=1)− m̂−I(Xi)|}, (128)

where recall that m̂−I(Xi)) is the expected outcome estimated using F−Y0 (I), and such error is shown
in the deviation of estimating qi by the above centered CDF function Φ. Intuitively, if the estimation
error εYn (I) is small, the centered CDF Φi

[
εYn (I)

]
is close to 1/2 by definition (when the outcome

distribution is symmetric and continuous 14), leading to less FDR inflation as we describe soon.
With the above notion of estimation error in the propensity score bounds επn(I) and in the out-

come εYn (I), we can quantify two statistics that determine the FDR control:

14Readers might notice that the outcome distribution need not be symmetric for the centered CDF to be around 1/2,
if we replace the expected outcomes with median. Detailed discussion on the algorithm using median can be found in
Appendix D.7, which leads to more robust error control in certain cases but tend to have lower power.
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• an upper bound for qi(I) in (126), denoted as qmax(I),

qmax(I) := min{max{πmax(I), 1− πmin(I)},max
{

Φmax

[
εYn (I)

]
, 1− Φmin

[
−εYn (I)

]}
},

(129)
which is close to 1/2 (the ideal case) when either the true propensity score is close to 1/2 or the
error of the expected outcome estimation εYn (I) is small;

• an upper bound for the estimation error qmax(I)−q̂max(I), where q̂max(I) = max{1−π̂min(I), π̂max(I)}
in MaY-I3

π̂
15, denoted as εqn(I):

εqn(I) :=

επn(I)−max
{

0,max{πmax(I), 1− πmin(I)} −max
{

Φmax

[
εYn (I)

]
, 1− Φmin

[
−εYn (I)

]}}
,

(130)

which is small if either the propensity score bounds are well-estimated so that επn(I) is small, or
the expected outcomes are well-estimated so that εYn (I) is small and true propensity score bounds
πmin and πmax are away from 1/2.

Similar error terms can be derived for the procedure on set II.
Theorem 17. The FDR of MaY-I3

π̂ is upper bounded:

E
[
FDPπ̂

τ

]
≤ α

{
1 + EF0(I)

[
εqn(I)

qmax(I)(1− qmax(I))

]
+ EF0(II)

[
εqn(II)

qmax(II)(1− qmax(II))

]}
,

in a Bernoulli randomized experiment with heterogeneous propensity scores where assumption (117), (118)
and (95) holds, for the zero-effect null in the two definitions (96) or (98) that treats the outcomes as
random variables.
Corollary 2. As sample size n goes to infinity, the MaY-I3

π̂ has asymptotic FDR control for the zero-effect
null (96) or (98) when either

1. (a) the propensity score estimation is consistent in that EF0(I) [επn(I)] and EF0(II) [επn(II)] goes
to zero; and (b) the true propensity scores are bounded away from 0 and 1: 0 < πmin ≤ πmax < 1;
or

2. (a) the expected outcome estimation is consistent in that εYn (I) goes to zero almost surely over
the conditional distribution given F0(I) (and same for set II); and (b) the difference between
bounds on true propensity scores and 1/2 is larger than its estimation error: max{πmax(I), 1−
πmin(I)} − 1/2 ≥ επn(I) almost surely over the conditional distribution given F0(I) (and same
for set II); and (c) the distribution of outcome Yi is symmetric given the covariates for i ∈ [n].

Hence double robustness. We remark that there is one case where the FDR inflation could be large: the
actual propensity scores are 1/2 for all subjects but unknown, and the propensity score estimation is
poor.

The above theorem states the FDR guarantee for the zero-effect null, and the error control for the
nonpositive-effect null is discussed in Appendix D.3.4. The condition to ensure asymptotic error control
is the same as above except a different definition of the outcome estimation error ε̃Yn (I) and a different
definition of the centered CDF Φ̃i(ε). Also, we remark that the above theorem provides an upper bound

15Note that it is possible to design alternative estimation q̂max(I), which lead to different εqn(I), and in turn different
levels of robustness for FDR control and power. See Appendix D.8 for details, and the presented MaY-I3π̂ has reasonably high
power and double robustness.
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of the FDR in terms of the maximum estimation error over all subjects, which could potentially be
conservative, and in practice we expect the FDR to be close to the target level when the the estimation
error is small for most subjects.

5.7.2 Numerical experiments

Follow the same simulation setting as in Section 5.6, we explore several approaches when the propensity
scores are unknown: estimating the propensity scores as in Crossfit-I3

π̂ and MaY-I3
π̂; and falsely treating

all propensity scores as 1/2 and implement the original Crossfit-I3 and MaY-I3. We are interested in the
sensitivity of the latter approach because we might assume propensity scores to be 1/2 while they differ
in practice.

Crossfit-I3
π̂ and MaY-I3

π̂ with estimated propensity scores appear to control FDR at the target level
for their corresponding null hypotheses, respectively (see Figure 37). They have less power compared
with the Crossfit-I3

π∗ and MaY-I3
π∗ , which is expected since the latter two methods make use of the true

propensity scores.
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(a) FDR for the zero-effect null (96).
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(c) Power of identifying subjects
with positive effects.

Figure 37: Performance of Crossfit-I3
π̂ and MaY-I3

π̂, which estimate the propensity scores, compared with
Crossfit-I3

π∗ and MaY-I3
π̂, which use the knowledge of the true propensity scores, when the treatment

effect specified as model (120) and the propensity score deviates from 1/2 by δ where δ varies in
{0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}. Both Crossfit-I3

π̂ and MaY-I3
π̂ appears to control FDR, and

have similar power. Their power are lower than Crossfit-I3
π∗ and MaY-I3

π̂ because the latter additionally
use the true propensity scores.

When all propensity scores are falsely treated as 1/2, we can implement Crossfit-I3 and MaY-I3

(see Figure 38). In our experiments, the FDR for the zero-effect null seems to be controlled below
the target level even when the true propensity scores are extreme (with πmin = 0.1 and πmax = 0.9
when δ = 0.4). It coincides with our claim on doubly robust FDR control once noticing that MaY-I3

is equivalent to MaY-I3
π̂ when π̂min = π̂max = 1/2. In such a case, the propensity scores are poorly

estimated |π̂min − πmin| = |π̂max − πmax| = 0.4, but FDR can be small when the expected outcome
E(Yi | {Xi}ni=1) is well-estimated by m̂−I(Xi). The FDR for the nonpositive-effect null can exceed the
target level when the deviation δ is large and the propensity score estimation is poor, corresponding to
the case where πmin ≤ 0.25 and πmax ≥ 0.75. The power of Crossfit-I3 and MaY-I3 does not follow the
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same trend as Crossfit-I3
π∗ and MaY-I3

π∗ when δ grows large, because their FDR estimator does not suffer
from conservativeness introduced by extreme propensity scores.
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(a) FDR for the zero-effect null (96).
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(c) Power of identifying subjects
with positive effects.

Figure 38: Performance of Crossfit-I3 and MaY-I3, which falsely treat all propensity scores as 1/2,
compared with Crossfit-I3

π∗ and MaY-I3
π̂, which use the true propensity scores, when the treatment

effect specified as model (120) and the propensity score deviates from 1/2 by δ where δ varies in
{0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}. Power of the Crossfit-I3 and MaY-I3 increases because they
do not suffer from conservative FDR estimator as δ increases. Although FDR for the nonpositive-effect
null grows to exceed the target level when δ is larger than 0.2, FDR control for the zero-effect null seems
to hold even when the true propensity scores are vastly different from 1/2.

5.7.3 Adjustment in the case with a few extreme propensity scores.

We have seen in the above experiments that the FDR estimator accounting for heterogeneous propensity
scores can be rather conservative. Nonetheless, we hope the procedure to still be powerful for most
subjects when only a few have extreme propensity scores. A simple solution is to exclude the ones with
extreme propensity scores before implement I3. Data of these excluded subjects can be revealed at the
beginning for identification on the rest subjects (see Algorithm 13 where the changes from Crossfit-I3

π∗

are marked by blue text; similar changes applies to MaY-I3
π∗).

In the previous experiments, the highest propensity score corresponds to all subjects with positive
effect that we hope to identify, so excluding them would lead to low power. Here, we implement the
above procedure with only a few extreme propensity scores which possibly do not have positive effect.
Specifically, let e ∼ N(0, 1) be a random noise adding to the original propensity scores. Define

πi =


0.5 + δ + 0.05e, if ∆(Xi) > 0;

0.5 + 0.2e, if ∆(Xi) = 0;

0.5− δ + 0.05e, if ∆(Xi) < 0;

(131)

which compared with (121) add a small Gaussian noise with 0.05 standard deviation if a subject’s
covariates indicate nonzero effect; and a larger noise with 0.2 standard deviation otherwise. We bound

104



Algorithm 13 The Crossfit-I3
π∗ that excludes extreme propensity scores.

Input: Covariates, outcomes, treatment assignments {Yi, Ai, Xi}ni=1, target level α;
Procedure:
1. Randomly split the sample into two subsets of equal size, denoted as I and II;
2. Select subjects in I with extreme propensity scores, denoted as E(I).
3. Implement Algorithm 9 with FDR estimator F̂DR

π
at level α/2, where E initially knows

{Yk, Xk}nk=1 ∪ {Aj}j∈II∪E(I) and setsR0(I) = I\E(I), getting a rejection setR+
τ (I) ⊆ I\E(I);

4. Select subjects in II with extreme propensity scores, denoted as E(II).
5. Implement Algorithm 9 with FDR estimator F̂DR

π
at level α/2, where E initially knows

{Yk, Xk}nk=1 ∪ {Aj}j∈I∪E(II) and sets R0(II) = II\E(II), getting a rejection set R+
τ (II) ⊆

II\E(II);
4. Combine two rejection sets as the final rejection set,R+

τ = R+
τ (I) ∪R+

τ (II).
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Figure 39: Performance of Crossfit-I3
π∗ and MaY-I3

π∗ when the treatment effect specified as model (120)
and the propensity score deviates from 1/2 by 0.1, where we vary the percentage of excluded subjects
with most extreme propensity scores in {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. Excluding 20% of the
subjects seems to lead to the highest power.

πi in [0, 1]: πi = πi1{0 ≤ π ≤ 1}+ 11{πi > 1} for it to be a well-defined propensity score. Here, we
set δ = 0.1 and explore the performance of several excluding rules.

For an example in implementation, the set of excluded subjects E can be defined as subjects whose
propensity score deviation |πi − 1/2| is larger than a q-upper quantile. That is, q-percentage of the most
extreme propensity scores would be excluded. We try the excluding procedure with varying percentage
parameter q in {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. Note that the procedure when q = 0 collapse to
the original Crossfit-I3

π∗ (and MaY-I3
π∗). While excluding too small proportion of the extreme propensity

scores might leave FDR estimator still being conservative, excluding too many subjects could also lead
to power loss because the excluded subjects cannot be identified even if they have positive effects. In our
experiments, excluding 20% seems a good choice leading to high power. The adjustment of excluding
extreme propensity scores can also be applied to Crossfit-I3

π̂ and MaY-I3
π̂ where the propensity scores

are estimated, after which we can decide which subjects to exclude. However, because the estimated
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propensity scores often tends to be less extreme than the true ones, the benefit of excluding is not as
evident; thus omitted from the main paper.

5.8 Extension IV: paired samples
Problem setup. Our discussion has focused on the case where samples are not paired, and the proposed
algorithms can be extended to the paired-sample setting. Suppose there are n pairs of subjects. Let
outcomes of subjects in the i-th pair be Yij , treatment assignments be indicators Aij , covariates be Xij

for j = 1, 2 and i ∈ [n]. We deal with randomized experiments without interference, and assume that
(i) conditional on covariates, the treatment assignments are independent coin flips:

P[(A11, . . . , An1) = (a1, . . . , an) | X1, . . . , Xn] =
n∏
i=1

P(Ai = ai) = (1/2)n, and

Ai1 + Ai2 = 1 for all i ∈ [n].

(ii) conditional on covariates, the outcome of one subject Yi1,j1 is independent of the treatment
assignment of another subject Ai2,j2 conditional on Ai1,j1 , for any (i1, j1) 6= (i2, j2).

As before, we can develop interactive algorithms for two types of error control (only the definitions
when treating the potential outcomes as random variables are presented, but the FDR control still applies
to all versions of the null):

H (zero, paired)
0i : (Y T

ij | Xij)
d
= (Y C

ij | Xij) for both j = 1, 2;

H (nonpositive, paired)
0i : (Y T

ij | Xij) � (Y C
ij | Xij) for both j = 1, 2.

(132)

(133)

Here, we present the extension of Crossfit-I3 for FDR control of zero effect, and defer the extension of
MaY-I3 for FDR control of nonpositive effect to Appendix D.1.3.

Interactive algorithms for paired samples. With the pairing information, the treatment effect can be
estimated without involving m̂ as in (103):

∆̂paired
i := (Ai1 − Ai2)(Yi1 − Yi2), (134)

as used by Rosenbaum [2002] and Howard and Pimentel [2020], among others. The above estimation
satisfies the critical property to guarantee FDR control: for a null pair i of two subjects with zero effects
in (132), we have

P(∆̂paired
i > 0 | {Yj1, Yj2, Xj1, Xj2}nj=1) ≤ 1/2. (135)

Thus, the Crossfit-I3 (Algorithm 10) with ∆̂i replaced by ∆̂paired
i has valid FDR control for the zero-effect

null (132), where the analyst excludes pairs using the available information, including {Yi1, Yi2, Xi1, Xi2}
for candidate subjects i ∈ Rt−1(I), and {Yj1, Yj2, Aj1, Aj2, Xj1, Xj2} for non-candidate subjects j /∈
Rt−1(I), and the sum

∑
i∈R>t−1(I) 1{∆̂

paired
i > 0} for FDR estimation. An automated strategy exclude

pair i∗t (at step 8 of Algorithm 9) under paired samples is the same as Algorithm 11, except ∆̂i being
replaced by ∆̂paired

i .
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Numerical experiments. We compare the power of the interactive procedures with and without the
pairing information, using the same experiments as previous. When the subjects within each pair have
the same covariate values, the power under paired samples is higher than treating them as unpaired (see
Figure 40a), because the noisy variation in the observed outcomes that results from the potential control
outcomes can be removed by taking the difference in outcomes within each pair.

The advantage of procedures under paired samples becomes less evident when the subjects within
a pair do not match exactly. We simulate unmatched pairs by introducing a parameter ε such that for
each pair i, the covariates of the two subjects within satisfy: P(Xi1(1) 6= Xi2(1)) = ε,P(Xi1(2) 6=
Xi2(2)) = ε,Xi1(3) = Xi2(3) + U(0, 2ε), where U(0, 2ε) is uniformly distributed between 0 and 2ε,
and a larger ε leads to a larger degree of mismatch. As ε increases, the power of procedures using the
pairing information decreases (see Figure 40b), because the estimated treatment effect ∆̂paired

i becomes
less accurate for the mismatching setting. We further investigate the power decrease in Appendix D.5.3.
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(b) Subjects within the pair do not
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Figure 40: Power under paired samples with treatment effects specified by model (110) when our
proposed algorithms (Crossfit-I3 and MaY-I3) utilize the pairing information, which is higher than
treating all subjects as unpaired. The advantage is less evident when the subjects within each pair are
not exactly matched to have the same covariate values.

5.9 Extension V: FDR control at a subgroup level
Our proposed interactive methods control FDR on individual level, which means upper bounding the
proportion of falsely identified subjects. In this section, we show that the idea of interactive testing can
be extended to control FDR on subgroup level, where we aim at identifying multiple subgroups with
positive effects and upper bounding the proportion of falsely identified subgroups. Recall that FDR
control at a subgroup level is studied by Karmakar et al. [2018] as we review in Section 5.1.2 of the
main paper.
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Problem setup. Let there be G non-overlapping subgroups Gg for g ∈ [G] ≡ {1, . . . , G}. The null
hypothesis for each subgroup is defined as zero effect for all subjects within:

H0g : Hzero
0i is true for all i ∈ Gg, (136)

or equivalently, H0g : Gg ⊆ H0 (recall that H0 is the set of true null subjects). Let Dg be the decision
function receiving the values 1 or 0 for whether H0g is rejected or not rejected, respectively, and the
FDR at a subgroup level is defined as:

FDRsubgroup := E
[
|{g ∈ [G] : Gg ⊆ H0, Dg = 1|
max{|{g ∈ [G] : Dg = 1|, 1}

]
.

Same as the algorithms at an individual level, the algorithms we propose at a subgroup level can be
applied to samples that are paired or unpaired. For simple notation, we use {Yi, Ai, Xi} to denote the
observed data for subject i when the samples are unpaired, and for pair i when the samples are paired
(where Yi = {Yi1, Yi2} and similarly for Ai and Xi).

An interactive algorithm to identify subgroups. We first follow the same steps of Karmakar et al.
[2018] to define subgroups and generate the p-value for each subgroup. Specifically, the subgroups
Gg for g ∈ [G] is defined using the outcomes and covariates {Yj, Xj}nj=1 (by an arbitrary algorithm or
strategy, such as grouping subjects with the same covariates). For each subgroup Gg, we can compute a
p-value Pg by the classical Wilcoxon test (or using a permutation test, which obtains the null distribution
by permuting the treatment assignment {Ai}ni=1).

The interactive procedure we propose differs from Karmakar et al. [2018] by how we process
the p-values of the subgroups. We adopt the work of Lei et al. [2020] that proposes an interactive
procedure with FDR control for generic multiple testing problems. The key property that allows human
interaction while guaranteeing valid FDR control is similar to that in the I3: the independence between
the information used for selection and that used for FDR control. Here with the p-values of subgroups,
the two independent parts are

P 1
g := min{Pg, 1− Pg},

which is revealed to the analyst for selection and

P 2
g := 2 · 1{Pg < 1

2
} − 1,

which is masked (hidden) for FDR control. Notice that for a null subgroup with a uniform p-value,
(P 1

g , P
2
g ) are independent, and we have that

P(P 2
g = 1 | P 1

g , [Yi, Xi]i∈Gg) ≤ 1/2, (137)

because the p-values obtained by permutating assignments is uniform when conditional on the outcomes
and covariates. We remark that the above property is similar to property (104) and (115) in main paper
that lead to valid FDR control at an individual level.

Similar to the proposed methods at an individual level, the interactive procedure for subgroups
progressively excludes subgroups and recursively estimates the FDR. Let the candidate rejection setRt

be a set of selected subgroups, starting from all subgroups includedR0 = [G]. We interactively shrinkRt

using the available information:

F subgroup
t−1 = σ

{P 1
g , [Yi, Xi]i∈Gg}g∈Rt−1 , {Pg, [Yj, Aj, Xj]j∈Gg}g/∈Rt−1 ,

∑
g∈Rt−1

P 2
g

 ,
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Algorithm 14 An interactive procedure for subgroup identification.

Initial state: Explorer (E) knows the covariates, outcomes {Yi, Xi}ni=1.
Oracle (O) knows the treatment assignments {Ai}ni=1.
Target FDR level α is public knowledge.
Initial exchange: Set t = 1.
1. E defines subgroups {Gg}Gg=1 using {Yi, Xi}ni=1.
2. Both players initializeR0 = [G], and E informs O about the subgroup division.
3. O compute the p-value for each subgroup {Pg}Gg=1, and decompose each p-value as P 1

g :=
min{Pg, 1− Pg} and P 2

g := 2 · 1{Pg < 1
2
} − 1.

4. O then dividesRt intoR−t := {g ∈ Rt : P 2
g ≤ 0} andR+

t := {g ∈ Rt : P 2
g > 0}.

5. O reveals {P 1
g }Gg=1, |R−t | and |R+

t | to E.

Repeated interaction: 6. E checks if F̂DR
subgroup

(Rt) ≡ |R−t |+1

max{|R+
t |,1}
≤ α.

7. If yes, E sets τ = t, reportsR+
τ and exits;

8. Else, E picks any g∗t ∈ Rt−1 using everything E currently knows.
(E tries to pick an g∗t that they think is null; E hopes that P 2

g ≤ 0.)
9. O reveals {Ai}i∈Gg to E, who also infers P 2

g .
10. E updatesRt+1 = Rt\{g∗t }, and also |R+

t+1| and |R−t+1|;
11. Increment t and go back to Step 6.

which masks (hides) the partial p-value P 2
g and the treatment assignment Ai for candidate subgroups

in Rt−1; and the sum
∑

g∈Rt−1
P 2
g is mainly provided for FDR estimation. Similar to our previously

proposed interactive procedures, the FDR estimator is defined as:

F̂DR
subgroup

(Rt) =
|R−t |+ 1

max{|R+
t |, 1}

, (138)

with R+
t = {g ∈ Rt : P 2

g = 1} and R−t = {g ∈ Rt : P 2
g = −1}. The algorithm shrinks Rt until

time τ := inf{t : F̂DR
subgroup

(Rt) ≤ α}, and identifies only the subgroups in R+
τ , as summarized in

Algorithm 14. Details of strategies to select subgroup based on the revealed p-value and covariates can
be found in Lei et al. [2020]. As a comparison, Karmakar et al. [2018] use the same set of p-values
{Pg}g∈[G], and control FDR by the classical BH procedure.

Numerical experiments. We compare the performance of our proposed interactive procedure for
subgroup identification with the method proposed by Karmakar et al. [2018], following an experiment
in their paper. Suppose each subject is recorded with two discrete covariates Xi = {Xi(1), Xi(2)}
where Xi(1) ∈ {1, . . . , 40} takes 40 levels with equal probability, and Xi(2) is binary with equal
probability (for example, Xi(1) could encode the city subject i lives in, and Xi(2) the gender). The
treatment effect ∆(Xi) is a constant δ if Xi(1) is even, and we vary δ in six levels. We conduct the
above experiment in two cases: unpaired samples (n = 2000) with independent covariates and paired
samples (n = 1000) whose covariate values are the same for subjects within each pair.

Recall that the subgroups can be defined by covariates and outcomes. Here, since the covariates
are discrete, we define subgroups by different values of (Xi(1), Xi(2)), resulting in 80 subgroups.
The interactive procedure tends to have higher power than the BH procedure (see Figure 41a and
Figure 41b) because it focuses on the subgroups that are more likely to be the non-nulls using the
excluding process, and utilizes the covariates together with the p-values to guide the algorithm (see
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(b) Paired samples.
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Figure 41: Performance of methods to identify subgroups with positive effects: the BH procedure and
the interactive procedure (for 80 subgroups defined by the distinct values of covariates). We vary the
scale of treatment effect under unpaired or paired samples. In both cases, the interactive procedure can
have higher power than the BH procedure. When the number of non-null subgroups is too small (less
than 20), the BH procedure can have higher power. The error bar marks two standard deviations from
the center.

details in Appendix D.1.1). Meanwhile, the BH procedure does not account for covariates once the
p-values are calculated. Nonetheless, the interactive procedure can have lower power when the total
number of subgroups that are truly non-null is small. We simulate the case where a subject has a positive
effect δ if Xi(1) a multiplier of 4 (i.e., Xi(1)/2 is even), so that there are 20 non-null subgroups in
total (previously 40 non-nulls). The power of the interactive procedure is lower than the BH procedure
(see Figure 41c) because the FDR estimator in (138) can be conservative when |R+| is small due to a
small number of true non-nulls (for example, with FDR control at α = 0.2, we need to shrinkRt until
|R−| < 3 when |R+| is around 20).

A side note is that we define the subgroups by distinct values of the covariates, whereas Karmakar
et al. [2018] suggest forming subgroups by regressing the outcomes on covariates using a tree algorithm.
In their experiments and several numerical experiments we tried, we find that the number of subgroups
defined by the tree algorithm is usually less than ten. However, we think the FDR control is less
meaningful when the total number of subgroups is small. To justify our comment, note that an algorithm
with valid FDR control at level α can make zero rejection with probability 1−α and reject all subgroups
with probability α, which can happen when the total number of subgroups is small. In contrast, with
a large number of subgroups, a reasonable algorithm is unlikely to jump between the extremes of
making zero rejection and rejecting all n subgroups; and thus, controlling FDR indeed informs that the
proportion of false identifications is low for the evaluated algorithm.

5.10 A prototypical application to ACIC challenge dataset
We implement our proposed methods on datasets generated by Atlantic Causal Inference Conference
(ACIC), which intend to evaluate methods for average treatment effect(ATE) estimation and uses real data
covariates and modified outcomes to simulate cases with heterogeneous treatment effect, heterogeneous
propensity scores, etc. We take an example dataset with 500 subjects, each of which is recorded with 22
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continuous covariates. The proportion of treated subjects is 0.7, indicating that the propensity scores
might not be 1/2 as in a standard randomized experiment. The actual ATE is 0.1, rather small compared
to the outcomes range [14, 76], but the treatment effect could be positive and large for a subgroup of
subjects and our proposed algorithms can be used to identify them.

Four of our proposed methods are implemented with FDR control at level α = 0.2: the Crossfit-I3

and MaY-I3 which assume the propensity scores to be 1/2 for all subjects, and Crossfit-I3
π̂ and MaY-I3

π̂

which estimate the propensity scores. The numbers of identifications by Crossfit-I3, MaY-I3, Crossfit-I3
π̂

and MaY-I3
π̂ are 446, 429, 238, 162. Among them, 234 subjects are commonly identified by Crossfit-I3

and Crossfit-I3
π̂, which control the expected proportion of falsely identifying subjects with zero effect

(approximately if the propensity scores are not 1/2); and 158 subjects are commonly identified by MaY-
I3 and MaY-I3

π̂, which control the expected proportion of falsely identifying subjects with nonpositive
effect (approximately if the propensity scores are not 1/2). Compared with the rest subjects, the ones
identified as having positive effect tend to have larger values for covariate 8, 21 and smaller values for
covariate 6, 15, 17 (see Figure 42).

(a) Boxplot of covariates for subjects identified as nonzero effect (left) versus those not being identified (right).

(b) Boxplot of covariates for subjects identified as positive effect (left) versus those not being identified (right).

Figure 42: Characteristics of identified subjects: they tend to have larger value for variable 8, 21 and
smaller value for variable 6, 15, 17, compared with not identified subjects.

5.11 Summary
We discuss the problem of identifying subjects with positive effects. Most existing methods identify
subgroups with positive treatment effects, and they cannot upper bound the proportion of falsely identified
subjects within an identified subgroup. In contrast, we propose Crossfit-I3 with finite-sample FDR
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control (i.e., the expected proportion of subjects with zero effect is no larger than α among the identified
subjects). One advantage of the Crossfit-I3 is allowing human interaction — an analyst (or an algorithm)
can incorporate various types of prior knowledge and covariates using any working model; she can also
adjust the model at any step, potentially improving the identification power. Despite this flexibility,
the Crossfit-I3 achieves valid FDR control. Notably, because Crossfit-I3 incorporates covariates, it can
identify subjects with positive effects, including those not treated.

Our proposed interactive procedure was extended to various settings: from FDR control of zero
effects to FDR control of nonpositive effects, from equal and known propensity scores to heterogeneous
and unknown propensity scores, from unpaired samples to paired samples, and from FDR control at an
individual level to FDR control at a subgroup level.
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6 Discussion
Our interactive methods should be contrasted with data-splitting approaches, and have been called
“data-carving” to drive home the difference Lei and Fithian [2018]; Lei et al. [2020]. We remark that no
test, interactive or otherwise, can be run twice from scratch (with a tweak made the second time to boost
power) after the entire data has been examined; this amounts to p-hacking. Our interactive tests are one
step towards enabling experts (scientists and statisticians) to work together with statistical models and
machine learning algorithms in order to discover scientific insights with rigorous guarantees.

The error control for our interactive procedures is based on the independence properties between
the data used for error control and the revealed data for interaction. Such independence may either
implied by a specific null hypothesis or be constructed by decomposing or transforming the observed
data. Examples include the “railway” masking function in (34) for p-values in multiple testing; and
sign and absolute value decomposition in (77) for paired-sample comparison; and transformation of the
independence between treatment assignments and observed outcomes in property (104) for identification
of positive treatment effects.

Substantial potentials are to be explored in the idea of masking and interactive testing. For example,
while this thesis focuses on developing interactive tests via masking in nonparametric settings, we
recently realized that these ideas could also be powerful for parametric analysis. We can define
decomposition and masked data for many types of canonical distribution such as Gaussian, Beta, Gamma
distribution (which include special cases like Exponential distribution and Chi-square distribution),
and Bernoulli, Binomial, Poisson distribution, and so on. We anticipate that these ideas might have
downstream applications such as model selection, post-selection inference, data privacy, creation of fake
datasets, evaluating or comparing machine learning algorithms, and so on.

113



A Appendix for “Interactive Martingale Tests for the Global Null”

A.1 Error control
This section proves the type-I error control for our proposed methods: the martingale Stouffer test and
the interactively ordered martingale test.

A.1.1 Proof of Theorem 1

Proof. Under the global null, because p-values are independent and stochastically larger than the uniform,
the transformed p-values Φ−1(1−pi) are independent and stochastically smaller than a standard Gaussian.
Thus given the uniform bound for a Gaussian increment martingale uα(k),

P0

(
∃k ∈ N :

k∑
i=1

Φ−1(1− pi) ≥ uα(k)

)

≤ P

(
∃k ∈ N :

k∑
i=1

Gi ≥ uα(k)

)
≤ α,

where Gi for i ∈ I are i.i.d. standard Gaussians. By definition the above argument proves the type-I
error control.

A.1.2 Proof of Theorem 3

This proof also implies Theorem 2 since the adaptively ordered martingale test is a special case of the
interactively ordered martingale test.

Proof. Batch setting. We argue that the sum {
∑

i∈Mk
h(pi)}k∈I is a supermartingale with respect to

the filtration {Fk−1}k∈I . First, the sum
∑

i∈Mk
h(pi) is measurable with respect to Fk−1 because the

random set Mk = Mk−1 ∪ {i∗k} has its distribution defined with respect to Fk−1.
Second, we prove that

E(
∑
i∈Mk

h(pi) | Fk−1) ≤
∑

i∈Mk−1

h(pi), (139)

Because E(
∑

i∈Mk
h(pi) | Fk−1) =

∑
i∈Mk−1

h(pi) + E(h(pi∗k) | Fk−1), condition (139) boils down to
proving

E(h(pi∗k) | Fk−1) ≤ 0.

Since i∗k and Mk−1 are Fk−1 measurable, and i∗k /∈Mk−1, we see that

E(h(pi∗k) | Fk−1) ≤ max
i/∈Mk−1

E(h(pi) | Fk−1) = max
i/∈Mk−1

E(h(pi) | g(pi)),

where the last equation is because the p-values are assumed to be independent of each other and of the
covariates xi under the global null; and thus, h(pi) | Fk−1 has the same distribution as h(pi) | g(pi).

The proof is completed if

E(h(pi) | g(pi)) ≤ 0, (140)

for any i /∈ Mk−1. In this case, the sum {
∑

i∈Mk
h(pi)}k∈I is a martingale. Also, the increment is

stochastically smaller than a Rademacher and following the same argument in Section A.1.1, so the test
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using a bound for a Gaussian increment martingale controls the type-I error (because a Rademacher is
subGaussian).

We have an intermediate result: the interactively ordered martingale test has type-I error control for
any h(p) and g(p) such that condition (140) holds. For a mirror-conservative p-value, the missing bit
h(pi) conditioned on its corresponding masked p-value g(pi) is stochastically smaller than a fair coin
flip:

P0(h(pi) = −1 | g(pi) = x) =
fi(1− x)

fi(1− x) + fi(x)

≥ fi(x)

fi(1− x) + fi(x)
= P0(h(pi) = 1 | g(pi) = x),

for any x ∈ [0, 0.5] (i.e., the range of g(pi)), which implies condition (140) and thus completes the proof.
Online setting. Let the index of the hypothesis that enters the rejection set Mk−1 be t∗k. Notice that t∗k is
a stopping time with respect to Ft−1 (that is, {t∗k = t} is measurable with respect to Ft−1 because we
decide whether to include pt based on Ft−1). For a clear notation, define a filtration indexed by k as

Gk−1 := Ft∗k−1, (141)

denoting all the information available prior to the k-th entered hypothesis. We argue that the sum
{
∑

i∈Mk
h(pi)}k∈I is a supermartingale with respect to the filtration {Gk−1}k∈I . The proof is similar to

the above batch setting, where we prove that

E(h(pt∗k) | Gk−1) ≤ 0.

Since t∗k is a stopping time with respect to Ft∗k−1, we see that

E(h(pt∗k) | Gk−1) = E(h(pt∗k) | Ft∗k−1)

≤ max
t

E(h(pt) | Ft−1) = max
t

E(h(pt) | g(pt)),

where the last equation is because the p-values are assumed to be independent of each other and of the
covariates xi under the global null; and thus, h(pi) | Fk−1 has the same distribution as h(pi) | g(pi).

The rest of the proof is the same as the batch setting where we show condition (140) holds:

E(h(pt) | g(pt)) ≤ 0,

for mirror-conservative p-values. Thus, the sum {
∑

i∈Mk
h(pi)}k∈I is a supermartingale with respect

to the filtration {Gk−1}k∈I . Recall that the increment is stochastically smaller than a Rademacher.
Following the same argument in Section A.1.1, the interactively ordered martingale test in the online
setting using bound for a Gaussian increment martingale controls the type-I error.

A.1.3 Error control of the interactively ordered martingale test with railway masking function
in Section 2.6

Let the masked p-values defined by the railway function in Section 2.6 be:

g̃(p) := min(p, (p+ 1
2
)mod1)

The corresponding interactively ordered martingale test has a valid error control when the p-values have
nondecreasing densities under the global null.
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Theorem 18. If under HG0, the p-values have nondecreasing densities and are independent of each
other and of the covariates xi, then the interactively ordered martingale test using g̃(p) in place of g(p)
controls the type-I error at level α.

Proof. Recall that in Appendix A.1.2, we have an intermediate result: the interactively ordered martin-
gale test has type-I error control for any h(p) and g(p) such that condition (140) holds. For a p-value
with a nondecreasing density, the missing bit h(pi) conditioned on its corresponding masked p-value
g̃(pi) is stochastically smaller than a fair coin flip:

P0(h(pi) = −1 | g̃(pi) = x) =
fi(x+ 0.5)

fi(x+ 0.5) + fi(x)

≥ fi(x)

fi(x+ 0.5) + fi(x)
= P0(h(pi) = 1 | g̃(pi) = x),

for any x ∈ [0, 0.5] (i.e. the range of g̃(pi)), which implies condition (140) and thus completes the
proof.

Remark 9. The above proof implies that the error control holds as long as under the global null, the
p-values satisfy:

fi(a) ≤ fi(a+ 0.5) for all 0 ≤ a ≤ 0.5, i ∈ I,

where fi is the probability mass function of pi for discrete p-values or the density function otherwise. This
condition can be viewed as a third definition of conservativeness in addition to condition (2) and (3) in the
main paper. It is not a consequence of condition (2) (take f(a) = 1(a ≤ 0.5) + 4(a− 0.5)1(a > 0.5))
or condition (3) (take f(a) = 4 min(a, 1 − a)), and it does not imply condition (2) and (3) (take
f(a) = 4(0.5− a)1(a < 0.5) + 4(1− a)1(0.5 ≤ a < 1) + 41(a = 1)). For simplicity, we focus on the
p-values with increasing densities in Section 2.6, which are considered as conservative p-values in all
three definitions.

A.2 Power guarantees in the batch setting
This section presents the proofs of power guarantees in the batch setting for (1) the batch Stouffer test,
(2) the martingale Stouffer test and (3) the interactively ordered martingale test.

A.2.1 Proof of Theorem 4

We divide the proof into two subsections for the batch Stouffer test and the martingale Stouffer test.

The batch Stouffer test

Proof. Define the Z-score for each hypothesis Hi as Zi = Φ−1(1 − pi). Under setting 1 in the main
paper of testing Gaussian mean, the Z-score is a Gaussian Zi ∼ N(µi, 1), or written as N(riµi, 1)
to separate the true nulls from the true non-nulls. Thus, the sum Sn =

∑n
i=1 Zi is also a Gaussian

Sn ∼ N (
∑n

i=1 riµi, n). The power of the batch Stouffer test is

P1

(
Sn√
n
≥ Φ−1(1− α)

)
= P1

(
Sn −

∑n
i=1 riµi√
n

≥ Φ−1(1− α)−
∑n

i=1 riµi√
n

)
= 1− Φ

(
Φ−1(1− α)−

∑n
i=1 riµi√
n

)
.
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A power of at least 1− β is is equivalent to

1− Φ

(
Φ−1(1− α)−

∑n
i=1 riµi√
n

)
≥ 1− β,

which can be rewritten as
n∑
i=1

riµi ≥ (Φ−1(1− α) + Φ−1(1− β))n1/2,

which is the condition in Theorem 4.

The martingale Stouffer test

Proof. Following the same proof for Sn ∼ N(riµi, 1) in Section A.2.1, for any k = 1, . . . , n,
Sk ∼ N

(∑k
i=1 riµi, k

)
. The power of the martingale Stouffer test is

P1 (∃k ∈ {1, . . . , n} : Sk ≥ uα(k))

= P1

(
∃k ∈ {1, . . . , n} : Sk −

k∑
i=1

riµi ≥ uα(k)−
k∑
i=1

riµi

)
,

The power of martingale Stouffer test is at least 1− β if

∃k∗ ∈ {1, . . . , n} : uα(k∗)−
k∗∑
i=1

riµi ≤ −uβ(k∗) (a sufficient condition),

since under such condition,

P1

(
∃k ∈ {1, . . . , n} : Sk −

k∑
i=1

riµi ≥ uα(k)−
k∑
i=1

riµi

)

≥ P1

(
Sk∗ −

k∗∑
i=1

riµi ≥ uα(k∗)−
k∗∑
i=1

riµi

)

≥ P1

(
Sk∗ −

k∗∑
i=1

riµi ≥ −uβ(k∗)

)

≥ P1

(
∀k ∈ {1, . . . , n} : Sk −

k∑
i=1

riµi ≥ −uβ(k)

)
≥ 1− β.

The last step holds because Gaussian increment martingale is symmetric so that −uβ(k) is a uniform
lower bound.

The power of martingale Stouffer test is less than 1− β if

∀k ∈ {1, . . . , n} : uα(k)−
k∑
i=1

riµi ≥ u1−β(k) (a necessary condition),
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since

P1

(
∃k ∈ {1, . . . , n} : Sk −

k∑
i=1

riµi ≥ uα(k)−
k∑
i=1

riµi

)

≤ P1

(
∃k ∈ {1, . . . , n} : Sk −

k∑
i=1

riµi ≥ u1−β(k)

)
≤ 1− β.

Thus, we find a sufficient condition and a necessary condition for the martingale Stouffer test to have
1− β power. The proof completes by plugging the curved bound in test (7) in the main paper into the
conditions. If without further explanation, uα(k) in rest of the proofs denotes the curved bound.

A.2.2 Proof of Theorem 5

The adaptively ordered martingale test uses the missing bits h(pi) for testing, and under no prior
knowledge, uses the masked p-values g(pi) to order the hypotheses. We divide the proof into three steps:
(1) derive the power guarantee given a fixed order in Lemma 1; (2) quantify the effect of ordering by
masked p-values in Lemma 2, and (3) derive the power guarantee for the adaptively ordered martingale
test (Theorem 5).

The power of adaptively ordered martingale test given a fixed order
Lemma 1. Given a fixed sequence of {Mk}nk=1 with the size |Mk| = k, the adaptively ordered martingale
test with type-I error control α has power at least 1− β if

∃k ∈ {1, . . . , n} :
∑
i∈Mk

(ri(2Si(1)− 1) + (1− ri)(2Si(0)− 1)) ≥
(
Cα
k + Cβ

k

)
k

1
2 .

where Si(1) = P(h(pi) = 1 | ri = 1, {Mk}nk=1) is a measurement of the “signal strength” from the
non-nulls and Si(0) = P(h(pi) = 1 | ri = 0, {Mk}nk=1) is from the nulls. Meanwhile the power is less
than 1− β if

∀k ∈ {1, . . . , n} :∑
i∈Mk

(ri(2Si(1)− 1) + (1− ri)(2Si(0)− 1)) ≤
(
Cα
k − C

1−β
k

)
k

1
2 .

Proof. Consider the re-scaled increment (h(pi∗k) + 1)/2 | Fk, which follows a Bernoulli:

h(pi∗k) + 1

2
∼ riBer(Si∗k(1)) + (1− ri)Ber(Si∗k(0)).

So the cumulative sum Sk is a martingale with sub-Gaussian increments after centering, with expected
value

∑
i∈Mk

(ri(2Si(1)− 1) + (1− ri)(2Si(0)− 1)). So the power of adaptively ordered martingale
test is

P1 (∃k ∈ {1, . . . , n} : Sk ≥ uα(k))

= P1

(
∃k ∈ {1, . . . , n} : Sk −

∑
i∈Mk

[ri(2Si(1)− 1) + (1− ri)(2Si(0)− 1)]

≥ uα(k)−
∑
i∈Mk

[ri(2Si(1)− 1) + (1− ri)(2Si(0)− 1)]

)
.

The proof can be completed by following similar steps in the proof for martingale Stouffer test (Sec-
tion A.2.1).
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The effect of ordering Define the Z-score as Zi = Φ−1(1 − pi) for each hypothesis Hi. Under
setting 1 in the main paper, Zi is a Gaussian with unit variance and mean value µi. We consider the
simple case where for all the non-nulls µi = µ. The adaptively ordered martingale test orders the
hypotheses increasingly by g(pi), which is equivalent to ordering decreasingly by |Zi|. Following
definition (12), the Z-scores for non-nulls have the same distribution as Z(µ), and Z(j)(µ) is the Z-score
of j-th non-null when they are ordered decreasingly by |Zi|. We describe the effect of ordering by the
size of the set Mk right after the j-th non-null enters, denoted as M(j).
Lemma 2. The size of M(j) follows a Binomial distribution (up to a constant):

|M(j)| ∼ j + Bin
(
N0,P(|Z(0)| > |Z(j)(µ)|)

)
.

The size |M(j)| is uniformly upper bounded:

P1

(
∀j ∈ 1, . . . , N1 : |M(j)| ≤ j + tβ/N1(N0, qj)

)
≥ 1− β,

where tβ/N1(N0, qj) is β/N1-th upper quantile of Bin
(
N0,P(|Z(0)| > |Z(j)(µ)|)

)
.

Remark 10. Denote P (µ) = P(|Z(0)| ≥ |Z(µ)|). The quantile tβ/N1(N0, qj) is upper bounded by a
ratio of P (µ)N0 (when P (µ)N0 > 1):

tβ/N1(N0, qj) ≤
2 + 2

√
2 log(N1/β)

N1

[
N1+1−j
N1

− P (µ)
]2 max{P (µ)N0, 1},

for j = 1, . . . , bN1(1− P (µ)) + 1c.

Proof. In M(j), the number of non-nulls is known as j and the number of nulls is random. The nulls in
M(j) should have a higher absolute Z-score than |Z(j)(µ)|. Note that the Z-scores of the nulls are i.i.d.
standard Gaussians, so the probability of a null to be in front of the j-th non-null is P(|Z(0)| > |Z(j)(µ)|)
for any nulls. Thus the number of nulls before the j-th non-null follows a binomial distribution:∑

i:ri=0

1(|Zi(0)| > |Z(j)(µ)|) ∼ Bin
(
N0,P(|Z(0)| > |Z(j)(µ)|)

)
.

Thus, the size of M(j) is distributed as

|M(j)| ∼ j + Bin
(
N0,P(|Z(0)| > |Z(µπj)|)

)
.

By the Bonferroni correction, with high probability |M(j)| is upper bounded by

P1

(
∀j ∈ 1, . . . , N1 : |M(j)| ≤ j + tβ/N1(N0, qj)

)
≥ 1− β,

where tβ/N1(N0, qj) is β/N1-th upper quantile of Bin
(
N0,P(|Z(0)| > |Z(j)(µ)|)

)
.

We further characterize the Binomial quantile tβ/N1(N0, qj) (proof of Remark 10). The quantile is
upper bounded (by Chernoff inequality):

tβ/N1(N0, qj) ≤ P(|Z(0)| > |Z(j)(µ)|)N0 +
√

2P(|Z(0)| > |Z(j)(µ)|)N0 log(N1

β
)

≤ (1 +
√

2 log(N1

β
)) max{P(|Z(0)| > |Z(j)(µ)|)N0, 1}.
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The proof completes by showing that the probability term P(|Z(0)| > |Z(j)(µ)|) is upper bounded:

P(|Z(0)| > |Z(j)(µ)|) ≤ 2P (µ)

N1

[
N1+1−j
N1

− P (µ)
]2 . (142)

The above bound (142) holds because the event |Z(0)| > |Z(j)(µ)| can be viewed as comparing the
absolute value of Z(0) with N1 Gaussians {Zi(µ)}N1

i=1 with the same distribution as Z(µ), and |Z(0)|
is bigger than N1 − j + 1 of them. The number of Zi(µ) that |Z(0)| > |Zi(µ)| follows a binomial
distribution, with probability P (|Z(0)| > |Z(µ)|) := P (µ). Let X be Bin(N1, P (µ)) and bound (142)
holds because

P(|Z(0)| > |Z(j)(µ)|) = P(X > N1 − j + 1)

≤ exp

{
− [N1(1− P (µ))− j + 1]2

2N1P (µ)(1− P (µ))

}
≤ exp

−
N1

[
N1+1−j
N1

− P (µ)
]2

2P (µ)


≤ 2P (µ)

N1

[
N1+1−j
N1

− P (µ)
]2 ,

for j = 1, . . . , bN1(1− P (µ)) + 1c. The proof of Remark 10 is completed by plugging bound (142) in
the upper bound for tβ/N1(N0, qj).

Proof of Theorem 5

Proof. Lemma 1 provides a condition for adaptively ordered martingale test to have at least 1− β power
given any choice of {Mk}nk=1, thus when {Mk}nk=1 is random, the power is at least 1− β if

∃k ∈ {1, . . . , n} :∑
i∈Mk

(ri(2Si(1)− 1) + (1− ri)(2Si(0)− 1)) ≥
(
Cα
|Mk| + Cβ

|Mk|

)
(|Mk|)1/2, (143)

where Si(0) and Si(1) as the probabilities conditioning on Mk are random. Whether the above condition
holds is not determinant, and Theorem 5 provides a sufficient condition such that the above condition
holds with high probability.

First, for all the nulls,
Si(0) = P(h(pi) > 0|ri = 0, {Mk}nk=1)

(a)
= P(Zi > 0|ri = 0, {Mk}nk=1)

(b)
= P(Zi > 0|ri = 0) = 0.5,

where (a) is because by the definition of the Z-score, h(pi) > 0 is equivalent to Zi > 0; and (b)
is because {Mk}nk=1 is determined by |Zi| which is independent of 1(Zi > 0) when ri = 0. Thus,
(2Si(0)− 1)(1− ri) = 0 and in the above condition the sum on the left-hand side only increases when
a non-null enters Mk. Therefore, the above condition is satisfied if and only if it is satisfied when a
non-null enters Mk:

∃j ∈ {1, . . . , N1} :
∑
i∈M(j)

ri(2Si(1)− 1) ≥
(
Cα
|M(j)| + Cβ

|M(j)|

)
(|M(j)|)1/2.
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Second, the non-nulls in M(j) are the ones with j highest absolute Z-scores, whose Z-scores are
Z(1)(µ), . . . , Z(j)(µ). Thus,

∑
i∈M(j) riSi(1) can be expressed as

∑j
s=1 P(Z(s)(µ) > 0), and the above

condition can be rewritten as

∃j ∈ {1, . . . , N1} :

j∑
s=1

(
2P(Z(s)(µ) > 0)− 1

)
≥
(
Cα
|M(j)| + Cβ

|M(j)|

)
(|M(j)|)1/2.

The above condition holds with probability at least 1− β if

∃j ∈ {1, . . . , N1} :

j∑
s=1

(
2P(Z(s)(µ) > 0)− 1

)
≥
(
Cα
n + Cβ

n

)
(j + tβ/N1(N0, qj))

1
2 , (144)

where Cα
n + Cβ

n ≥ Cα
|M(j)| + Cβ

|M(j)| and j + tβ/N1(N0, qj) is the uniform upper bound of |M(j)| by
Lemma 2.

Overall when condition (144) as above holds, the probability of failing to reject is less than the sum
of (a) the probability that |M(j)| exceeds its upper bound, which is less than β; and (b) the probability
of not rejecting when condition (143) is satisfied, which is also less than β; thus the power is at least
1− 2β. The proof of theorem 5 completes after replacing all β in condition (144) with β/2.

A.2.3 Proof of condition (14) in the main paper

Proof. Let j = N1/2 in Theorem 5, the power of adaptively ordered martingale test is at least 1− β if

N1/2∑
s=1

(
2P(Z(s)(µ) > 0)− 1

)
≥
(
Cα
n + Cβ/2

n

) (
N1/2 + tβ/(2N1)

(
N0, qN1/2

))1/2
. (145)

First, the left-hand side can be lower bounded by

N1/2∑
s=1

(
2P(Z(s)(µ) > 0)− 1

)
≥ N1/2 · (2Φ(µ)− 1) = N1Φ(µ)−N1/2,

since the term 1
j

∑j
s=1

(
2P(Z(s)(µ) > 0)− 1

)
decreases in j and is minimum at j = N1, whose value is

1

N1

N1∑
s=1

(
2P(Z(s)(µ) > 0)− 1

)
=

1

N1

N1∑
s=1

(
2E(1(Z(s)(µ) > 0))− 1

)
=

1

N1

(
2E

(
N1∑
s=1

1(Z(s)(µ) > 0)

)
−N1

)
=

1

N1

(2N1E (1(Z(µ) > 0))−N1) = 2Φ(µ)− 1.

Second on the right-hand side, tβ/(2N1)

(
N0, qN1/2

)
can be upper bounded (by Chernoff inequality):

tβ/(2N1)

(
N0, qN1/2

)
≤ P(|Z(0)| > |Z(N1/2)(µ)|)N0

+
√

2P(|Z(0)| > |Z(N1/2)(µ)|)N0 log(2N1/β),
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in which the probability term P(|Z(0)| > |Z(N1/2)(µ)|) can be further upper bounded by

P(|Z(0)| > |Z(µπN1/2
)|) ≤ 2− 2Φ(µ),

since

P(|Z(0)| > |Z(µπN1/2
)|)

(a)

≤ 2P (µ)

N1

(
1− P (µ)− N1/2−1

N1

)2

(b)

≤ P (µ)
(c)

≤ 2− 2Φ(µ),

where (a) is in the proof of Remark 10 in Section A.2.2; (b) holds because of the conditionN1 ≥ 6
(
Cα
n + C

β/2
n

)2

and µ > 2 (an assumption we visit later); and (c) is because P (µ) = P(|Z(0)| ≥ |Z(µ)|) =
2P(Z(0) ≥ |Z(µ)|), which is less than 2P(Z(0) ≥ Z(µ)).

Plugging the lower bound of the left-hand side and the upper bound of the right-hand side, condi-
tion (145) is implied by

(Φ(µ)− 1
2
)2 ≥

(
Cα
n + Cβ/2

n

)2
4 max{(1− Φ(µ))N0,

√
(1− Φ(µ))N0 log(2N1

β
)}

N2
1

+
(
Cα
n + Cβ/2

n

)2 N1/2

N2
1

.

Given µ > 2 and N1 ≥ 6
(
Cα
n + C

β/2
n

)2

, the above condition holds if

1

(1− Φ(µ))

≥
(
Cα
n + Cβ/2

n

)2
(

28N0

N2
1

)
max

(
1,
(
Cα
n + Cβ/2

n

)2

(
28 log(2N1

β
)

N2
1

))
.

Given µ > 2 and N1 ≥ 6
(
Cα
n + C

β/2
n

)2

, indicating 1 − Φ(µ) ≤ e−µ
2/2/2 and log(2N1/β) < N1

5
, we

have a sufficient condition of the above condition:

2eµ
2/2 ≥ 28√

2π

(
Cα
n + Cβ/2

n

)2
(
N0

N2
1

)
,

which can be written as a condition on µ:

µ ≥

√
2 log

(
N0

N2
1

)
+ 4 log

(
Cα
n + C

β/2
n

)
+ 3.45.

Finally we complete the proof by noting that the above condition implies the assumption µ ≥ 2 when
N0 > 0.1N2

1 .

Remark 11. Condition (14) in the main paper falls within the “detectable region” derived in the work
of Donoho and Jin Donoho and Jin [2015]: for any test for the problem of detecting sparse Guassian
mean (N1 ≤ n1/2), type-I error α and type-II error β would be big such that α + β → 1 when n→∞
unless

µ ≥

√
log

(
n

N2
1

)
, when n1/4 ≤ N1 ≤ n1/2,

µ ≥
√

2(
√

log n−
√

logN1), when 1 < N1 < n1/4.

(146)

(147)
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Proof. First note that condition (14) in the main paper indicates

µ ≥

√
2 log

(
n

N2
1

)
,

for any N1 ≤ n1/2, since√
2 log

(
N0

N2
1

)
+ 4 log

(
Cα
n + C

β/2
n

)
+ 3.45

≥

√
2 log

(
N0

N2
1

)
+ 4 log (C1

1 + C1
1) + 3.45 =

√
2 log

(
n

N2
1

− 1

N1

)
+ 8.6

≥

√
2 log

(
n

2N2
1

)
+ 8.6 ≥

√
2 log

(
n

N2
1

)
,

when 2 ≤ N1 ≤ n1/2 and it is obvious when N1 = 1. So when n1/4 ≤ N1 ≤ n1/2, condition (14) is a
subset in the detectable region (146).

When 1 < N1 < n1/4, denote N1 = na where 0 < a < 1/4. The detectable region (147) can be
written as

µ ≥ (1−
√
a)
√

2 log n,

which is implied by condition (14), since√
2 log

(
n

N2
1

)
=
√

1− 2a
√

2 log n ≥ (1−
√
a)
√

2 log n,

when a < 1/4. Hence condition (14) is a subset of the detectable region (146) and (147).

A.3 Power guarantees in the online setting
This section proves the power guarantees in the online setting for three methods: the martingale Stouffer
test, the adaptively ordered martingale test, and a benchmark, the online Bonferroni method.

A.3.1 Proof of Theorem 6

The power guarantee for the martingale Stouffer test in the online setting follows the same steps as that
in the batch setting (Section A.2.1), except that the range of k is changed from {1, . . . , n} to {1, 2, . . .}.
We present the proof of the power guarantee for the online Bonferroni method as follows.

First, we derive an upper bound on the power of the online Bonferroni test. Recall the Z-score
Zk = Φ−1(1− pk), which follows a Gaussian distribution Zk ∼ N(rkµk, 1). The power of rejecting the
k-th hypothesis at αk is

P(pk < αk) = P(Zk > Φ−1(1− αk)) = 1− Φ[Φ−1(1− αk)− rkµk],

and the overall power of the online Bonferroni is upper bounded by a union of rejecting individual
hypotheses:

P(∃k ∈ N : pk < αk) ≤
∞∑
k=1

P(pk < αk) =
∞∑
k=1

1− Φ[Φ−1(1− αk)− rkµk]. (148)
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To upper bound the overall power, we claim the following upper bound on individual power of any
hypothesis k, which is in the ratio of the individual significance level αk.
Lemma 3. Given any constant C ∈ (e1/4, 1), if the alternative mean is upper bounded:

rkµk ≤
1

4Φ−1(1− αk)
, (149)

the power of rejecting individual hypothesis k is upper bounded:

1− Φ[Φ−1(1− αk)− rkµk] ≤ C · αk,

for large k such that αk < a(C), where the threshold a(C) increases in C. For example, a(2) > 0.3.

Proof. Consider the ratio of individual power over αk:

1− Φ
[
Φ−1(1− αk)− 1

4Φ−1(1−αk)

]
αk

,

which converges to e1/4 as αk → 0 by L’Hospital’s rule:

lim
αk→0

1− Φ
[
Φ−1(1− αk)− 1

4Φ−1(1−αk)

]
αk

= lim
αk→0

φ
[
Φ−1(1− αk)− 1

4Φ−1(1−αk)

]
φ [Φ−1(1− αk)]

(
1 +

1

4 (Φ−1(1− αk))2

)
= e1/4.

We observe through simulations that the threshold a(C) ≥ 0.3 when C ≥ 2.

In the following, we derive sufficient conditions for the power of the online Bonferroni to be less
than 1− β (i.e., the complement of necessary conditions to have at least 1− β power), separately under
the case of dense non-nulls and sparse non-nulls.

Proof of Theorem 6. Dense non-nulls. First, consider the dense case where the number of non-nulls
are infinite,

∑∞
k=1 rk =∞. The power of the online Bonferroni is less than 1− β when

∞∑
k=1

1− Φ[Φ−1(1− αk)− rkµk] ≤ 1− β,

which holds if for each individual hypothesis k with a positive error budget (i.e., αk > 0), the power of
rejection is bounded

1− Φ
[
Φ−1(1− αk)− rkµk

]
≤ 1− β

α
αk, (150)

where the upper bound 1−β
α
αk is chosen to satisfy two conditions: (a) the overall power is less than

1 − β:
∑∞

k=1
1−β
α
αk ≤ 1 − β and (b) individual power bound is larger than the corresponding error

control level, 1−β
α
αk > αk, so that the above condition is not trivially satisfied in the case of a null:

rkµk = 0. By Lemma 3, the above bound on individual power holds when rkµk satisfy condition (149)
and αk < 0.3 (Notice that here the constant in the lemma is C = 1−β

α
≥ 4, so threshold a (C) > 0.3).

To further characterize condition (149) on rkµk, we consider a baseline sequence where α∗k =
(6/π2)α/k2, which sums to α. For an arbitrary sequence {αk}∞k=1 that sums to α, apply the condition for
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the baseline sequence, rkµk ≤ 1
4Φ−1(1−α∗k)

, and the power for each hypothesis k is still upper bounded.
Particularly, this upper bound differs by whether αk ≤ α∗k or αk > α∗k:

1− Φ

[
Φ−1(1− αk)−

1

2Φ−1(1− α∗k)

]
≤ 1− Φ

[
Φ−1(1− α∗k)−

1

2Φ−1(1− α∗k)

]
≤ Cα∗k, if αk ≤ α∗k;

1− Φ

[
Φ−1(1− αk)−

1

2Φ−1(1− α∗k)

]
≤ 1− Φ

[
Φ−1(1− αk)−

1

2Φ−1(1− αk)

]
≤ Cαk, if αk > α∗k,

for k such that max{αk, α∗k} ≤ a(C), and hence,

1− Φ

[
Φ−1(1− αk)−

1

2Φ−1(1− α∗k)

]
≤ C max{α∗k, αk} ≤ C(α∗k + αk).

Choose the constant C = 1−β
2α

(with a(C) > 0.3), and the overall power is upper bounded by 1− β:

∞∑
k=1

1− Φ

[
Φ−1(1− αk)−

1

2Φ−1(1− α∗k)

]
≤ 1− β

2α
(2α) = 1− β,

if (a) the significance levels are small: max{αk, α∗k} ≤ 0.3 for all k = 1, 2, . . ., which holds since
α ≤ (1 − β)/4 ≤ 0.25; and (b) the alternative mean rkµk satisfies condition (149) for the baseline
sequence, which holds when

rkµk ≤ 0.25

(√
2 log

(
k2

α

))−1

,

where the bound decreases at the rate of
(√

log k
)−1.

Sparse non-nulls. Suppose the sequence {αk}∞k=1 is nonincreasing. A stronger necessary condition
can be derived if the non-nulls are sparse in the sense that there exists an upper bound M such that∑∞

k=1 rk ≤M <∞. We separately discuss the set of nulls {k : rk = 0}, and the set of small and large
αk. Let k∗ = M2/α, and define the sets of large and small αk as L(k∗) := {k ≤ k∗ : rk = 1} and
S(k∗) := {k > k∗ : rk = 1}. The power would be less than 1− β if∑

rk=0

1− Φ[Φ−1(1− αk)− rkµk] ≤ α, and∑
k∈L(k∗)

1− Φ[Φ−1(1− αk)− rkµk] ≤ 2α, and

∑
k∈S(k∗)

1− Φ[Φ−1(1− αk)− rkµk] ≤ 1− β − 3α.

(151)

(152)

(153)

Power bound (151) for the nulls (rk = 0) holds because individual power equals αk and
∑

rk=0 αk ≤ α.
Power bound (152) for large αk holds if we bound the power of each individual hypothesis k ∈ L(k∗):

1− Φ[Φ−1(1− αk)− rkµk] ≤ 2αk,
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which can be rewritten as
rkµk ≤ Φ−1(1− αk)− Φ−1(1− 2αk).

Note that the above bound on rkµk decreases in αk and that the set of αk for k ∈ L(k∗) is lower bounded
because L(k∗) has finite number of hypotheses. Thus, the above condition holds if for k ∈ L(k∗), all
rkµk are smaller than the bound corresponding to the smallest significance level in L(k∗), which is αk∗ :

rkµk ≤ Φ−1 (1− αk∗)− Φ−1 (1− 2αk∗) ,

where k∗ = M2/α. Notice that Φ−1 (1− x) is a convex function and its derivative is− (φ(Φ−1 (1− x))
−1,

so we have

Φ−1 (1− αk∗)− Φ−1 (1− 2αk∗) ≥
(
φ(Φ−1 (1− 2αk∗)

)−1
αk∗ ≥ 0.4

√
αk∗ ,

and power bound (152) for large αk holds when rkµk ≤ 0.4
√
αk∗ .

For small αk, a sufficient condition for the power bound (153) is

1− Φ[Φ−1(1− αk)− rkµk] ≤
1− β − 3α

M
,

for all k ∈ S(k∗) using the fact that the number of hypotheses in S(k∗) is smaller than M . The above
condition can be rewritten as

rkµk ≤ Φ−1(1− αk)− Φ−1

(
1− 1− β − 3α

M

)
.

To characterize the rate of the above bound, recall that the sequence {αk}∞k=1 decreases and sums to α,
so αk ≤ α/k for any k = 1, 2, . . .. Thus, the above condition on rkµk holds when

rkµk ≤

√
log

(
k

4α

)
−

√
2 log

(
M

2(1− β − 3α)

)
,

where the threshold increases at the rate of
√

log k. We note that the above threshold is positive for
k ∈ S(k∗), since k > k∗ and k

4α
> M2

4α2 ≥ M2

4(1−β−3α)2
, so that the condition on rkµk is nontrivial.

We also demonstrate that the necessary condition for dense non-nulls is fairly tight when all the
hypotheses are non-null.
Lemma 4. Suppose the sequence {αk}∞k=1 decreases at a slow rate,

α1 = 0 and αk = A/[k(log k)2] for k > 1,

with constantA = α/ (
∑∞

k=2 1/[k(log k)2]) such that
∑∞

k=1 αk = α. The power of the online Bonferroni
test is one if all hypotheses are non-null for k > 1 and the mean value decreases: µk = (log k)−1/c for
any c > 2.

Proof. Let Zk = Φ−1(1 − pk) ∼ N(µk, 1) and Xk = Zk − µk ∼ N(0, 1). The power of the online
Bonferroni test is

P(∃k ∈ N : Zk ≥ Φ−1(1− αk)) = P(∃k ∈ N : Xk ≥ Φ−1(1− αk)− µk)

= 1−
∞∏
k=1

Φ
[
Φ−1 (1− αk)− µk

]
. (154)
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Intuitively, the power would not converge to one when Φ [Φ−1 (1− αk)− µk] ' (1−αk) (the case with
µk = 0) since 1 −

∏∞
k=1(1 − αk) ≤

∑∞
k=1 αk ≤ α, but could be one when Φ [Φ−1 (1− αk)− µk] �

1− αk. To quantify this comparison, we consider the following ratio:

bk :=
1− Φ [Φ−1 (1− αk)− µk]

αk
,

and the power could be one when bk is large. Indeed, we claim that bk increases at a rate faster than
log k, or equivalently, (log k)/bk → 0. It can be verified by L’Hospital’s rule:

lim
k→∞

(log k)/bk = lim
k→∞

αk log k

1− Φ [Φ−1 (1− αk)− µk]

= lim
k→∞

φ [Φ−1 (1− αk)]
φ [Φ−1 (1− αk)− µk]

log k + αk
k

/
∂αk
∂k

1 + φ [Φ−1 (1− αk)] ∂µk∂k
/
∂αk
∂k

,

where for large k, we have Φ−1 (1− αk) ≥
√

log k and

φ [Φ−1 (1− αk)]
φ [Φ−1 (1− αk)− µk]

≤ 2 exp{−(log k)1/2−1/c};

log k +
αk
k

/∂αk
∂k
≤ 2 log k;

1 + φ
[
Φ−1 (1− αk)

] ∂µk
∂k

/
∂αk
∂k
≥ 1.

Thus, limk→∞(log k)/bk ≤ limk→∞
4 log k

exp{(log k)1/2−1/c} = 0 for any c > 2. In other words, we have proved
that bk/ log k →∞.

The power (154) is one if
∏∞

k=1 Φ [Φ−1 (1− αk)− µk] = 0, or equivalently,

∞∑
k=1

log Φ
[
Φ−1 (1− αk)− µk

]
= −∞, (155)

where for large k, we have

log Φ
[
Φ−1 (1− αk)− µk

]
= log(1− bkαk) ≤ −bkαk
≤ − A log k/[k(log k)2] = −A/(k log k).

Condition (155) holds because
∑∞

k=1−A/(k log k) = −∞; and thus, we prove that the power of the
online Bonferroni test is one.

A.3.2 Proof of Theorem 7

Theorem 7 is a simplified version of the following Theorem 19 (by Claim 1). Before stating Theorem 19,
we first define the distinction measure D(c) as

D(c) =
P(|Z(µ)| > c)

P(|Z(0)| > c)
,
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where c is the screening parameter in the online adaptively ordered martingale test. BiggerD(c) indicates
bigger distinction. Further denote N1(k) =

∑k
i=1 ri as the number of non-nulls after k hypotheses arrive

and N0(k) =
∑k

i=1 1− ri as for the nulls.
Theorem 19. The adaptively ordered martingale test with type-I error α and threshold c guarantees
1− β power if

∃k ∈ N :(2S(µ, c)− 1)

(
N1(k)−

C
β/3
k

√
N1(k)

2P(|Z(µ)| > c)

)

≥ Cα
k + C

β/3
k

P1/2(|Z(µ)| > c)

[
N1(k) +D−1(c)N0(k) +

C
β/3
k k1/2

2P(|Z(µ)| > c)

]1/2

,

where S(µ; c) = P(Z(µ) > 0 | |Z(µ)| > c).

Proof. Denote Mk as the set of hypotheses that pass screening (|Zi| > c) after k hypotheses arrive. By
extending Lemma 1 from k = 1, . . . , n to k = 1, 2, . . ., the power of adaptively ordered martingale test
is at least 1− β if

∃k ∈ N :
∑
i∈Mk

(ri(2Si(1)− 1) + (1− ri)(2Si(0)− 1))

≥
(
Cα
|Mk| + Cβ

|Mk|

)
(|Mk|)1/2, (156)

where for the passed non-nulls, Si(1) = P(h(pi) = 1 | ri = 1, i ∈Mi), which can be written in terms
of Zi as P(Zi > 0 | ri = 1, |Zi| > c) = S(µ, c), and for passed the nulls, Si(0) = P(Zi > 0 | ri =
0, |Zi| > c) = P(Z(0) > 0 | |Z(0)| > c) = 0.5. By the lemmas presented below, the right-hand side is
upper bounded by

|Mk| ≤P(|Z(µ)| > c)
(
N1(k) +D−1(c)N0(k)

)
+
Cβ
k

2
k1/2,

with probability 1− β (Lemma 5). The left-hand side is lower bounded by∑
i∈Mk

(2Si(1)− 1)ri = (2S(µ, c)− 1)
∑
i∈Mk

ri

≥ (2S(µ, c)− 1)

(
P(|Z(µ)| > c)N1(k)− Cβ

k

2

√
N1(k)

)
,

with probability 1− β (Lemma 6). The condition in Theorem 19 results from plugging the bounds of
both sides into condition (156).

Overall, when the condition in Theorem 19 holds, the probability of failing to reject is less than the
sum of (a) the probability that the upper bound for the right-hand side is violated, which is less than
β/3; (b) the probability that the lower bound for the left-hand side is violated, which is less than β/3;
and (c) the probability of not rejecting when condition (156) is satisfied, which is less than β/3; thus the
power is at least 1− β.

Lemma 5. The size of Mk in the online setting is uniformly upper bounded:

P1

(
∀k ∈ N : |Mk| − E(|Mk|) ≤

Cβ
k

2
k1/2

)
≥ 1− β,
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where
E(|Mk|) = P(|Z(µ)| > c)

(
N1(k) +D−1(c)N0(k)

)
.

Proof. The probability of a hypothesis Hi passing screening is P(|Z(µ)| > c) when Hi is a non-null,
and P(|Z(0)| > c) when Hi is a null. Denote Xi as the indicator of whether Hi passes the screening,
then |Mk| =

∑k
i=1Xi. Because Xi are independent and each Xi is a mixture of two Bernoullis (of value

{0, 1}), the size |Mk| is a martingale with 1
4
-subGaussian increment. Therefore,

P1

(
∀k ∈ N : |Mk| − E(|Mk|) ≤

uβ(k)

2

)
≥ 1− β,

where uβ(k) is the upper bound for Gaussian increment martingale as test (7) in the main paper. The
expected value is

E(|Mk|) =
k∑
i=1

riP(Z(µ)| > c) + (1− ri)P(|Z(0)| > c)

= P(|Z(µ)| > c)
(
N1(k) +D−1(c)N0(k)

)
,

which completes the proof.

Lemma 6. The number of non-nulls in Mk is uniformly lower bounded:

P1

(
∀k ∈ N,

∑
i∈Mk

ri − E(
∑
i∈Mk

ri) ≥ −
Cβ
k

2
(N1(k))1/2

)
≥ 1− β,

where
E(
∑
i∈Mk

ri) = P(|Z(µ)| > c)N1(k).

The proof follows the same steps as in Lemma 5, by considering only the non-nulls, or equivalently
assuming ri = 1 for all i.
Claim 1. The condition of adaptively ordered martingale test to have 1− β power in Theorem 7 implies
that in Theorem 19.

Proof. First, the condition in Theorem 19 can be written as a quadratic inequality on N1(k),

∃k ∈ N :(2S(µ, c)− 1)2[0.9N1(k)]2

≥

(
Cα
k + C

β/3
k

)2

P(|Z(µ)| > c)

(
(1−D−1(c))N1(k) +D−1(c)k +

C
β/3
k k1/2

2P(|Z(µ)| > c)

)
,

by noting that N1(k)− C
β/3
k

√
N1(k)

2P(|Z(µ)|>c) ≥ 0.9N1(k) since the condition in Theorem 7 guarantees

N1(k) ≥
(

C
β/3
k

0.2P(|Z(µ)|>c)

)2

(a claim we visit later).
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Solve the quadratic inequality for N1(k) to get a sufficient condition of the above one:

2N1(k) ≥

(
Cα
k + C

β/3
k

)2

S̃(µ, c)
(1−D−1(c))

+


(
Cα
k + C

β/3
k

)4

S̃2(µ, c)

(
1−D−1(c)

)2
+ 4

(
Cα
k + C

β/3
k

)2

S̃(µ, c)
D−1(c)k

+

(
Cα
k + C

β/3
k

)2

S̃(µ, c)

C
β/3
k

2P(|Z(µ)| > c)
k1/2


1/2

,

where S̃(µ, c) = [0.9(2S(µ, c)− 1)]2P(|Z(µ)| > c) and D−1(c) = 2Φ(−c)
Φ(µ−c)+Φ(−µ−c) . Note that under the

square root, the last two terms involving k is upper bounded by

4

(
Cα
k + C

β/3
k

)2

S̃(µ, c)
D−1(c)k +

(
Cα
k + C

β/3
k

)2

S̃(µ, c)

C
β/3
k

2P(|Z(µ)| > c)
k1/2

=

(
Cα
k + C

β/3
k

)2

S̃(µ, c)(Φ(µ− c) + Φ(−µ− c))

(
8Φ(−c)k +

C
β/3
k

2
k1/2

)

≤

(
Cα
k + C

β/3
k

)2

S̃(µ, c)(Φ(µ− c) + Φ(−µ− c))
9Φ(−c)k =

9
(
Cα
k + C

β/3
k

)2

D−1(c)

2S̃(µ, c)
k,

when k ≥
(

C
β/3
k

2Φ(−c)

)2

. By the fact that
√
a+ b ≤

√
a +
√
b for a, b > 0, an upper bound on the

right-hand side is

2
1−D−1(c)

S̃(µ, c)

(
Cα
k + C

β/3
k

)2

+ 3(Cα
k + C

β/3
k )

√
D−1(c)/2

S̃1/2(µ, c)
k1/2.

Thus, the above condition on N1(k) is implied by

∃k ≥

(
C
β/3
k

2Φ(−c)

)2

: N1(k) ≥ B̃(µ; c)
(
Cα
k + C

β/3
k

)2

+ A(µ; c)(Cα
k + C

β/3
k )k1/2,

where A(µ; c) = 3/2

√
D−1(c)/2

S̃1/2(µ,c)
and B̃(µ; c) = 1−D−1(c)

S̃(µ,c)
.

Finally we review the assumptions made throughout the proof: (a) we assumeN1(k) ≥
(

C
β/3
k

0.2P(|Z(µ)|>c)

)2

,

which is implied if B̃(µ, c) is adjusted to B(µ, c) as defined in Theorem 7; and (b) we assume

k ≥
(

C
β/3
k

2Φ(−c)

)2

, which holds when k ≥ T (β; c); adjusting for these assumptions results in the condition

in Theorem 7.
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A.4 Choices for the uniform bounds in the martingale Stouffer test
The martingale Stouffer test has the general form:

∃k ∈ N :
k∑
i=1

Φ−1(1− pi) ≥ uα(k),

where uα(k) is the uniform bound for a martingale with standard Gaussian increment. We present four
bounds from the work of Howard et al. Howard et al. [2020a,b],

1. a linear bound

uα(k) =

√
− logα

2m
k +

√
−m logα

2
, (157)

where m ∈ R+ is a tuning parameter that determines the time at which the bound is tightest: a
larger m results in a lower slope but a larger offset, making the bound loose early on.

2. a curved bound from polynomial stitching method

uα(k) = 1.7

√
k

(
log log(2k) + 0.72 log

5.2

α

)
. (158)

3. a curved bound from discrete mixture method

uα(k) = inf

{
s ∈ R :

∞∑
i=0

ωi exp{λis− ψ(λi)k} ≥ 1/α

}
, (159)

where λi = 1.1−(i+1/2)λmax and ωi = 1.1−(i+1)λmaxf(1.05λi)/10, in which λmax =
√

2 logα−1

and f(x) = 0.4
10≤x≤λmax

x log1.4(eλmax/x)
.

4. a curved bound from inverted stitching method (for finite time)

uα(k) = 2.42
√
k log log(ek) + 4.7, k = 1, 2, . . . , 104, (160)

where the time limit 104 is chosen as the number of hypotheses in the following simulation.
We use simulations to explore two choices in the martingale Stouffer test: (1) the choice of parameter m
in the linear bound (157); and (2) the choice among the above four types of bound.

Choice of the parameter m in the linear bound A good choice of parameter m should make the
bound tight at where most non-nulls appear; thus, it depends on how the non-nulls distribute. A smaller
m results in a faster slope but a tighter bound at front, so it is desired when the non-nulls are gathered at
front; and vice versa.

We seek for a robust value of m such that the resulting test has relatively high power under different
non-null sparsity. The following constructed simulation is used for exploring bounds in both the
martingale Stouffer test and the martingale Fisher test (introduced in Appendix A.5).
Setting 3. Consider the hypothesis of testing if a Gaussian has zero mean as in Setting 1 in the main paper.
In total n = 104 samples are simulated, with 100 from the non-null distribution N(1.5, 1) and the rest
from the null N(0, 1). The non-null sparsity varies by restricting the range where the non-nulls randomly
distribute. The non-null range is set as H1 to Hl and we test values l = 100, 103, 2× 103, . . . , 104. We
define the non-null sparisty as l

n
and a bigger value indicates a more sparse non-null distribution.

We compare three choices of m = n/4, n/2, 3n/4, with an oracle benchmark of m = l (whose
corresponding bound is the tightest right after all the non-nulls appear). The choice of m = n/4 leads to
the highest power, which is also close to the oracle benchmark (see Figure 43a).
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Figure 43: Testing martingale Stouffer test using linear bound (157) with different choices of parameter
m across varying non-null sparsity. The choice m = n/4 leads to the highest power.

Choice of the uniform bound The four bounds presented above can be generally classified as two
types: linear and curved. Curved bounds have a slower increasing rate O(

√
k log log(k)) than the linear

bound, indicating a tighter bound for large enough k, but they are usually looser for small k (Figure 44b).
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Figure 44: Comparison of the aforementioned four bounds (157)-(160) for the martingale Stouffer test.

Under the batch setting where the number of hypotheses n is finite, we use the simulation setting 3,
and the linear bound (157) (with m = n/4) results in the highest power (Figure 44a). Similar to tuning
the parameterm in the linear bound, we explored to tune the implicit parameters in the curved bound, and
yet the linear bound still has the highest power. However, under the online setting where new hypotheses
keep arriving, the tests with curved bounds are expected to need less time (number of hypotheses) on
average to reach rejection.
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A.5 Martingale Fisher test
The batch test by Fisher Fisher [1992] calculates Sn = −2

∑n
i=1 log pi. Since the distribution of Sn

under the global null is χ2
2n (chi-square with 2n degree of freedom), the batch test rejects when Sn

is bigger than the 1− α quantile for χ2
2n. To design the martingale test, simply observe that {Sk}k∈I

is a martingale whose increments f(pi) = −2 log pi are χ2
2 under the global null (after centering as

Sk − 2k). Similar to the martingale Stouffer test, there are several types of uniform boundaries uα(k) for
chi-square increment martingales from the work of Howard et al. Howard et al. [2020a,b]. We present
two types: a sub-exponential (linear) boundary, and a sub-Gamma (curved) boundary. The general form
of the martingale Fisher test rejects the global null if

∃k ∈ N : −2
k∑
i=1

log pi − 2k ≥ uα(k), (161)

where examples of uα(k) include
1. a sub-exponential linear boundary

uα(k) =

((
1.41m

xm,α
+ 2

)
log

(
1 +

1.41xm,α
m

)
− 2

)
(k −m) + 2.82xm,α, (162)

where xm,α = min
{
x : exp

{
−0.71x+ m

2
log(1 + 1.41x

m
)
}
≤ α

}
; and

2. a sub-Gamma curved boundary

uα(k) = 4.07

√
k

(
log log(2k) + 0.72 log

5.2

α

)
+ 9.66

(
log log(2k) + 0.72 log

5.2

α

)
.

(163)

The linear bound contains a parameter m with the same interpretation as m in the linear bound (6) for
martingale Stouffer test (in the main paper): it determines the time at which the bound is tightest — a
larger m results in a lower slope but a larger offset, making the bound loose early on. Based on the
simulation results in Figure 45a, we suggest a default value of m = n/4 if the number of hypotheses n is
finite, but it should be chosen based on the time by which we expect to have encountered most non-nulls
(if any).

The power of the martingale Fisher test using linear and curved bounds are compared under different
non-null sparsity (using simulation setting 3). The curve bound loses power quickly when non-null is
rather sparse (see Figure 46a), consistent with the comparison between linear and curved bounds for the
martingale Stouffer test in Appendix A.4.

A.6 Martingale chi-squared test
The chi-squared test calculates Sn =

∑n
i=1 [Φ−1(1− pi)]2. Since the distribution of Sn under the global

null is χ2
n (a chi-square with n degrees of freedom), the batch test rejects when Sn is bigger than the

1− α quantile for χ2
n. To design the martingale test, simply observe that {Sk − k}k∈I is a martingale,

whose increment [Φ−1(1− pi)]2− 1 is distributed as χ2
1 (minus one) under the global null. Similar to the

martingale Stouffer test and martingale Fisher test (in Appendix A.4 and A.5), there are several linear and
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Figure 45: Testing the martingale Fisher test using the linear bound (162) with different choices of
parameter m across varying non-null sparsity. The choice m = n/4 leads to the highest power.
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Figure 46: Comparison of the aforementioned two bounds (162) and (163) for the martingale Fisher test.

curved boundaries uα(k) for chi-square increment martingales from the work of Howard et al. Howard
et al. [2020a,b]. We present two types: a sub-exponential (linear) boundary, and a sub-Gamma (curved)
boundary. The general form of the martingale chi-square test rejects the global null if

∃k ∈ N :
k∑
i=1

[
Φ−1(1− pi)

]2 − k ≥ uα(k), (164)

where examples of uα(k) include
1. a sub-exponential linear boundary

uα(k) =

((
m

2xm,α
+ 1

)
log

(
1 +

2xm,α
m

)
− 1

)
(k −m) + 2xm,α, (165)

where xm,α = min
{
x : exp

{
−x

2
+ m

4
log(1 + 2x

m
)
}
≤ α

}
; and
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2. a sub-Gamma curved boundary

uα(k) = 3.42

√
k

(
log log(2k) + 0.72 log

5.2

α

)
+ 9.66

(
log log(2k) + 0.72 log

5.2

α

)
.

(166)

We expect the discussions on parameter m in the linear bound and on the comparison between the linear
and curved bounds to be similar to that in the martingale Stouffer test (Appendix A.4) and the martingale
Fisher test (Appendix A.5). If testing the martingale chi-squared test by the same numerical experiment
in Setting 3, m = n/4 should lead to high power for various degrees of sparsity; and the linear bound
should be tighter than the curved bound for most time k ≤ 104, and hence lead to higher power when
non-null is rather sparse.

A.7 Bayesian modeling for the posterior probability of being non-null
Modeling the posterior probabilities of being non-null Define the Z-score for hypothesis Hi be
Zi = Φ−1(1 − pi). Instead of modeling the p-values, we choose to model the Z-scores since under
setting 1 in the main paper they are distributed as a Gaussian either under the null or the alternative:

H0 : Zi ∼ N(0, 1) versus H1 : Zi ∼ N(µ, 1),

where µ is the mean value for all the non-nulls. We model Zi by a mixture of Guassians:

Zi ∼ (1− qi)N(0, 1) + qiN(µ, 1), with qi ∼ Bernoulli(πi),

where qi is the indicator of whether the hypothesis Hi is a true non-null.
The non-null structures are imposed by the constraints on non-null probability πi. In our examples,

the blocked non-null structure is encoded by fitting non-null probabilities πi as a smooth function of the
hypothesis position (covariates) xi, specifically as a logistic regression model on a spline basis:

πi = πβ(xi) =
1

1 + exp(−βφ(xi))
, (167)

where φ(xi) is a spline basis. The hierarchical structure is imposed by a partial ordering constraint on πi:

πi ≥ πj, if i is the parent of j, (168)

when the probability of being non-null decreases down the tree (πi ≥ πj if the probability increases).

An EM framework for the posterior probabilities of being non-null An EM algorithm is used to
train the model because masked p-values are modeled. Specifically, we treat p-values as the hidden
variables, and the masked p-values g(p) as observed. In terms of the Z-score Zi, Zi is a hidden variable
and the observed variable Z̃i is its absolute value |Zi| (if pi is masked).

Define a sequence of hypothetical labels wi = 1(Zi = Z̃i), and the likelihood of data (Z̃i, wi, qi) is

l(Z̃i, wi, qi) = wiqi log(πiφ(Z̃i − µ)) + wi(1− qi) log((1− πi)φ(Z̃i))

+ (1− wi)qi log(πiφ(−Z̃i − µ))

+ (1− wi)(1− qi) log((1− πi)φ(−Z̃i)),
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where φ(·) is the PDF of a standard Gaussian.
The E-step updates wi, qi. Notice that wi and qi are not independent, so we update the joint

distribution of (wi, qi), namely parameters

wiqi =: ai, wi(1− qi) =: bi, (1− wi)qi =: ci, (1− wi)(1− qi) =: di,

where ai + bi + ci + di = 1. For a simple expression of the updates, we define

L
(
Z̃i, µ, πi

)
:= πiφ(Z̃i − µ)) + (1− πi)φ(Z̃i)

+ πiφ(−Z̃i − µ) + (1− πi)φ(−Z̃i).

For hypothesis i whose p-value is masked, the updates are

ai,new = E[wiqi | Z̃i] =
πiφ(Z̃i − µ)

L
(
Z̃i, µ, πi

) ;

bi,new = E[wi(1− qi) | Z̃i] =
(1− πi)φ(Z̃i)

L
(
Z̃i, µ, πi

) ;

ci,new = E[(1− wi)qi | Z̃i] =
πiφ(−Z̃i − µ)

L
(
Z̃i, µ, πi

) ;

di,new = E[(1− wi)(1− qi) | Z̃i] =
(1− πi)φ(−Z̃i)

L
(
Z̃i, µ, πi

) .

If the p-value is unmasked for hypothesis i, we have wi = 1 and the updates are

ai,new =

1 +
(1− πi)φ

(
Z̃i

)
πiφ

(
Z̃i − µ

)
−1

;

bi,new = 1− ai,new; ci,new = 0; di,new = 0.

In the M-step, parameters µ and πi are updated. The update for µ is

µnew = argmin
µ

∑
i

l(Z̃i) =

∑
(ai − ci)Z̃i∑
(ai + ci)

.

The update for πi depends on the non-null structure, which encodes different constraints on πi. Under
the block non-null structure, updating πi corresponds to updating β in model (167) for πβ(xi). The
update is equivalent to fitting ai + ci by a logistic regression:

(βnew) = argmax
β

∑
i

(ai + ci) log πβ(xi) + (bi + di) log(1− πβ(xi))

= argmax
β

∑
i

(ai + ci) log πβ(xi) + (1− ai − ci) log(1− πβ(xi)),
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and πi,new = πβnew(xi). Under the hierarchical structure, updating πi is equivalent to fitting a partial
isotonic regression on ai + ci (Barlow Barlow and Brunk [1972], Theorem 3.1 and Robertson Robertson
et al. [1988], Theorem 1.5.1):

(πi,new) = argmax
partial ordered{πi}

∑
i

(ai + ci) log πi + (1− ai − ci) log(1− πi)

= argmin
partial ordered{πi}

∑
i

(ai + ci − πi)2,

where the partial ordering is defined in statement (168).
Suppose we wish to model the alternative mean µ differently for individual hypotheses. In that case,

we can think of the alternative mean as a parametric function of the covariates: µi = µγ(xi) where the
vector γ denotes the parameters. A simple example is a linear function: µγ(xi) = γTxi. The updates in
the E-step is the same as above with µ replaced by µγ(xi). In the M-step, the update for µi corresponds
to the update for γ:

(γnew) = argmax
γ

∑
i

ai

(
Z̃i − µγ(xi)

)2

+ ci

(
−Z̃i − µγ(xi)

)2

,

which is equivalent to the solution of a least square regression to a set of pseudo responses {Z̃1, . . . , Z̃n,−Z̃1, . . .−
Z̃n} with weights {a1, . . . , an, c1, . . . , cn}. We use the EM algorithm with constant µ for the experiments
in our paper, because it tends to be robust to heterogeneous alternative mean values in simulations.

A.8 Comparison with alternative methods
We compared the interactive test with the adaptive weighted Fisher test (AW-Fisher) and weighted Higher
Criticism (weighted-HC) in the example of a grid of hypotheses. Our simulation considers a small
grid (10× 10) because the AW-Fisher test has a very high computational cost. We used the R package
AWFisher by Huo et al. (2020) Huo et al. [2020], which refers to a base library of null distributions
for cases with less than 100 hypotheses; it took 6373.5 CPU hours using AMD Opteron(tm) Processor
(1.4GHz) to complete the base library. Without such a base library, the computational complexity of the
AW-Fisher test is O(2n), and roughly O(n log(n)) for our interactive test.

As described in Section 2.5.1, we simulated a non-null cluster is in the center of the hypothesis grid.
The weights in HC use the oracle information of the non-null position and is set to 1 for the non-nulls
and 0.5 for others. Since we have included several simulations to compare the interactively ordered
martingale test with martingale Stouffer test and Stouffer’s test in Section 2.5, above in Figure 47, we
only focus on the comparison among the interactive test, AW-Fisher and weighted-HC. Although the
AW-Fisher test achieves similar power as the interactively ordered martingale test, it has very high
computational cost as described above. Also, we remark that one main advantage of the interactive
test we propose is that it can incorporate various types of prior knowledge and covariates in a data-
dependent way. Meanwhile, most existing methods require the analyst to commit to one structure or
prior knowledge before observing the p-values. For example, the weighted-HC might achieve higher
power with a different set of weights, but the weights need to be specified ahead of time.
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Figure 47: Power of the interactively ordered martingale test (IMT), AW-Fisher, and weighted-HC when
the non-null cluster is in the center of a 10× 10 grid. IMT and AW-Fisher both have high power, but the
AW-Fisher has a high computational cost.

B Appendix for “Familywise Error Rate Control by Interactive
Unmasking”

B.1 Distribution of the null p-values
With tent masking, error control holds for null p-values whose distribution satisfies a property called
mirror-conservativeness:

f(a) ≤ f

(
1− 1− p∗

p∗
a

)
, for all 0 ≤ a ≤ p∗, (169)

where f is the probability mass function of P for discrete p-values or the density function otherwise,
and p∗ is the parameter in Algorithm 5 (see proof in Appendix B.2). The mirror-conservativeness is
first proposed by Lei and Fithian [2018] in the case of p∗ = 0.5. A more commonly used notion of
conservativeness is that p-values are stochastically larger than uniform:

P(P ≤ a) ≤ a, for all 0 ≤ a ≤ 1,

which neither implies nor is implied by the mirror-conservativeness.
A sufficent condition of the mirror-conservativeness is that the p-values have non-decreasing densities.

For example, consider a one-dimensional exponential family and the hypotheses to test the value of its
parameter θ:

H0 : θ ≤ θ0, versus H1 : θ > θ0,

where θ0 is a prespecified constant. The p-value calculated from the uniformly most powerful test is
shown to have a nondecreasing density [Zhao et al., 2019]; thus, it satisfies the mirror-conservativeness.
The conservative nulls described in Section 3.4.1 also fall into the above category where the exponential
family is Gaussian, and the parameter is the mean value. Indeed, when the p-values have non-decreasing
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densities, the i-FWER test also has a valid error control using alternative masking functions as proposed
in Section 3.4 (see proof in Appendix B.6).

B.2 Proof of Theorem 8
The main idea of the proof is that the missing bits h(Pi) of nulls are coin flips with probability p∗ to be
heads, so the number of false rejections (i.e. the number of nulls with h(Pi) = 1 before the number of
hypotheses with h(Pi) = −1 reaches a fixed number) is stochastically dominated by a negative binomial
distribution. There are two main challenges. First, the interaction uses unmasked p-value information
to reorder h(Pi), so it is not trivial to show that the reordered h(Pi) preserve the same distribution as
that before ordering. Second, our procedure runs backward to find the first time that the number of
hypotheses with negative h(Pi) is below a fixed number, which differs from the standard description of
a negative binomial distribution.

B.2.1 Missing bits after interactive ordering

We first study the effect of interaction. Imagine that Algorithm 5 does not have a stopping rule and
generates a full sequence ofRt for t = 0, 1, . . . n, whereR0 = [n] andRn = ∅. It leads to an ordered
sequence of h(Pi):

h(Pπ1), h(Pπ2), . . . , h(Pπn),

where πn is the index of the first excluded hypothesis and πj denotes the index of the hypothesis excluded
at step n− j + 1, that is πj = Rn−j\Rn−j+1.
Lemma 7. Suppose the null p-values are uniformly distributed and all the hypotheses are nulls, then for
any j = 1, . . . , n,

E
[
1
(
h(Pπj) = 1

)]
= p∗,

and {1
(
h(Pπj) = 1

)
}nj=1 are mutually independent.

Proof. Recall that the available information for the analyst to choose πj isFn−j = σ
(
{xi, g(Pi)}ni=1, {Pi}i/∈Rn−j

)
.

First, consider the conditional expectation:

E
[
1
(
h(Pπj) = 1

)∣∣Fn−j]
=
∑
i∈[n]

E
[
1
(
h(Pπj) = 1

)∣∣πj = i,Fn−j
]
P (πj = i|Fn−j)

(a)
=

∑
i∈Rn−j

E [1 (h(Pi) = 1)|πj = i,Fn−j]P (πj = i|Fn−j)

(b)
=

∑
i∈Rn−j

E [1 (h(Pi) = 1)|Fn−j]P (πj = i|Fn−j)

(c)
=

∑
i∈Rn−j

E [1 (h(Pi) = 1)]P (πj = i|Fn−j)

= p∗
∑

i∈Rn−j

P (πj = i|Fn−j) = p∗, (170)

where equation (a) narrows down the choice of i because P(πj = i | Fn−j) = 0 for any i /∈ Rn−j;
equation (b) drops the condition of πj = i because πj is measurable with respect toFn−j; and equation (c)
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drops the condition Fn−j because by the independence assumptions in Theorem 8, h(Pi) is independent
of Fn−j for any i ∈ Rn−j .

Therefore, by the law of iterated expectations, we prove the claim on expected value:

E
[
1
(
h(Pπj) = 1

)]
= E

[
E
[
1
(
h(Pπj) = 1

)∣∣Fn−j]] = p∗.

For mutual independence, we can show that for any 1 ≤ k < j ≤ n, 1 (h(Pπk) = 1) is independent
of 1

(
h(Pπj) = 1

)
. Consider the conditional expectation:

E
[
1 (h(Pπk) = 1)

∣∣1 (h(Pπj) = 1
)]

= E
[
E
[
1 (h(Pπk) = 1)

∣∣Fn−k,1 (h(Pπj) = 1
)]∣∣1 (h(Pπj) = 1

)]
(note that 1

(
h(Pπj) = 1

)
is measurable with respect to Fn−k)

= E
[
E [1 (h(Pπk) = 1)|Fn−k]

∣∣1 (h(Pπj) = 1
)]

(use equation (170) for the conditional expectation)

= E
[
p∗ | 1

(
h(Pπj) = 1

)]
= p∗.

It follows that 1 (h(Pπk) = 1) | 1
(
h(Pπj) = 1

)
is a Bernoulli with parameter p∗, same as the marginal

distribution of 1 (h(Pπk) = 1); thus, 1 (h(Pπk) = 1) is independent of 1
(
h(Pπj) = 1

)
for any 1 ≤ k <

j ≤ n as stated in the Lemma.

Corollary 3. Suppose the null p-values are uniformly distributed and there may exist non-nulls. For any
j = 1, . . . , n,

E
[
1
(
h(Pπj) = 1

)∣∣∣{1 (h(Pπk) = 1)}nk=j+1 , {1 (πk ∈ H0)}nk=j+1 , πj ∈ H0

]
= p∗,

where {πk}nk=j+1 represents the hypotheses excluded before πj .

Proof. Denote the condition σ
(
{1 (h(Pπk) = 1)}nk=j+1 , {1 (πk ∈ H0)}nk=j+1

)
as Fhn−j . The proof is

similar to Lemma 7. First, consider the expectation conditional on Fn−j:

E
[
1
(
h(Pπj) = 1

)∣∣Fhn−j, πj ∈ H0,Fn−j
]

= E
[
1
(
h(Pπj) = 1

)∣∣πj ∈ H0,Fn−j
]

(since Fhn−j is a subset of Fn−j)

=
∑
i∈[n]

E [1 (h(Pi) = 1) | πj = i, πj ∈ H0,Fn−j]P(πj = i | πj ∈ H0,Fn−j)

=
∑

i∈Rn−j∩H0

E [1 (h(Pi) = 1) | πj = i, πj ∈ H0,Fn−j]P(πj = i | πj ∈ H0,Fn−j)

=
∑

i∈Rn−j∩H0

E [1 (h(Pi) = 1)|Fn−j]P(πj = i | πj ∈ H0,Fn−j)

= p∗
∑

i∈Rn−j∩H0

P(πj = i | πj ∈ H0,Fn−j) = p∗, (171)

where we use the same technics of proving equation (170).
Thus, by the law of iterated expectations, we have

E
[
1
(
h(Pπj) = 1

)∣∣Fhn−j, πj ∈ H0

]
= E

[
E
[
1
(
h(Pπj) = 1

)∣∣Fhn−j, πj ∈ H0,Fn−j
]∣∣Fhn−j, πj ∈ H0

]
= p∗,

which completes the proof.
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Corollary 4. Suppose the null p-values can be mirror-conservative as defined in (169) and there may
exist non-nulls, then for any j = 1, . . . , n,

E
[
1
(
h(Pπj) = 1

)∣∣∣{1 (h(Pπk) = 1)}nk=j+1 , {1 (πk ∈ H0)}nk=j+1 , πj ∈ H0, {g(Pπk)}nk=1

]
≤ p∗,

where {g(Pπk)}nk=1 denotes g(P ) for all the hypotheses (excluded or not).

Proof. First, we claim that a mirror-conservative p-value P satisfies that

E [1 (h(P ) = 1) | g(P )] ≤ p∗, (172)

since for every a ∈ (0, p∗),

E [1 (h(P ) = 1) | g(P ) = a]

=
p∗f(a)

p∗f(a) + (1− p∗)f
(

1− 1−p∗
p∗
a
)

=
p∗

p∗ + (1− p∗)f
(

1− 1−p∗
p∗
a
)
/f(a)

≤ p∗,

where recall that f is the probability mass function of P for discrete p-values or the density function
otherwise. The last inequality comes from the definition of mirror-conservativeness in (169). The rest of
the proof is similar to Corollary 3, where we first condition on Fn−j:

E
[
1
(
h(Pπj) = 1

)∣∣Fn−j,Fhn−j, πj ∈ H0, {g(Pπk)}nk=1

]
=

∑
i∈Rn−i∩H0

E [1 (h(Pi) = 1) | Fn−j]P
(
πj = i

∣∣Fn−j,Fhn−j, πj ∈ H0, {g(Pπk)}nk=1

)
(a)
=

∑
i∈Rn−i∩H0

E [1 (h(Pi) = 1) | g(Pi)]P
(
πj = i

∣∣Fn−j,Fhn−j, πj ∈ H0, {g(Pπk)}nk=1

)
≤ p∗

∑
i∈Rn−i∩H0

P
(
πj = i

∣∣Fn−j,Fhn−j, πj ∈ H0, {g(Pπk)}nk=1

)
= p∗,

where equation (a) simplify the condition of Fn−j to g(Pi) because for any i ∈ Rn−i ∩ H0, h(Pi) is
independent of other information in Fn−j .

Then, by the law of iterated expectations, we obtain

E
[
1
(
h(Pπj) = 1

)∣∣Fhn−j, πj ∈ H0, {g(Pπk)}nk=1

]
= E

[
E
[
1
(
h(Pπj) = 1

)∣∣Fn−j,Fhn−j, πj ∈ H0, {g(Pπk)}nk=1

]∣∣Fhn−j, πj ∈ H0, {g(Pπk)}nk=1

]
≤ p∗,

thus the proof is completed.

B.2.2 Negative binomial distribution

In this section, we discuss several procedures for Bernoulli trials (coin flips) and their connections with
the negative binomial distribution.
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Lemma 8. Suppose A1, . . . , An are i.i.d. Bernoulli with parameter p∗. For t = 1, . . . , n, consider the
sum Mt =

∑t
j=1Aj and the filtration Got = σ

(
{Aj}tj=1

)
. Define a stopping time parameterized by a

constant v(≥ 1):

τ o = min{0 < t ≤ n : t−Mt ≥ v or t = n}, (173)

then Mτo is stochastically dominated by a negative binomial distribution:

Mτo � NB(v, p∗).

Proof. Recall that the negative binomial NB(v, p∗) is the distribution of the number of success in
a sequence of independent and identically distributed Bernoulli trials with probability p∗ before a
predefined number v of failures have occurred. Imagine the sequence of Aj is extended to infinitely
many Bernoulli trials: A1, . . . , An, A

′
n+1, . . ., where {A′j}∞j=n+1 are also i.i.d. Bernoulli with parameter

p∗ and they are independent of {Aj}nj=1. Let U be the number of success before v-th failure, then
by definition, U follows a negative binomial distribution NB(v, p∗). We can rewrite U as a sum at
a stopping time: U ≡ Mτ ′ , where τ ′ = min{t > 0 : t − Mt ≥ v}. By definition, τ o ≤ τ ′ (a.s.),
which indicates Mτo ≤Mτ ′ because Mt is nondecreasing with respect to t. Thus, we have proved that
Mτo � NB(v, p∗).

Corollary 5. Following the setting in Lemma 8, we consider the shrinking sum M̃t =
∑n−t

j=1 Aj for

t = 0, 1, . . . , n−1. Let the filtration be G̃t = σ
(
M̃t, {Aj}nj=n−t+1

)
. Given a constant v(≥ 1), we define

a stopping time:

τ̃ = min{0 ≤ t < n : (n− t)− M̃t < v or t = n− 1}, (174)

then it still holds that M̃τ̃ � NB(v, p∗).

Proof. We first replace the notion of time t by n−s, and let time runs backward: s = n, n−1, . . . , 1. The
above setting can be rewritten as M̃t(=

∑n−t
j=1 Aj) ≡Mn−t ≡Ms and G̃t = σ

(
Ms, {Aj}nj=s+1

)
=: Gbs.

Define a stopping time:

τ b = max{0 < s ≤ n : s−Ms < v or s = 1}, (175)

which runs backward with respect to the filtration Gbs. By definition, we have n − τ̃ ≡ τ b, and hence
M̃τ̃ ≡Mτb .

Now, we show that Mτb ≡ Mτo for τ o defined in Lemma 8. First, consider two edge cases: (1) if
t −Mt < v holds for every 0 < t ≤ n, then τ b = n = τ o, and thus Mτb = Mτo; (2) if t −Mt ≥ v
holds for every 0 < t ≤ n, then τ b = 1 = τ o, and again Mτb = Mτo . Next, consider the case where
t−Mt < v for some t, and t−Mt ≥ v for some other t. Note that by definition, τ b + 1 is a stopping
time with respect to Got , and τ b + 1 = τ o. Also, note that by the definition of τ o, we have Aτo = 0, so
Mτo−1 = Mτo . Thus, Mτb = Mτo−1 = Mτo . Therefore, by Lemma 8, M̃τ̃ ≡Mτb ≡Mτo � NB(v, p∗),
as stated in the above Corollary.

Corollary 6. Consider a weighted version of the setting in Corollary 5. Let the weights {Wj}nj=1

be a sequence of Bernoulli, such that (a)
∑n

j=1Wj = m for a fixed constant m ≤ n; and (b) Aj |
σ
(
{Ak,Wk}nk=j+1,Wj = 1

)
is a Bernoulli with parameter p∗. Consider the sum Mw

t =
∑n−t

j=1 WjAj .
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Given a constant v(≥ 1), we define a stopping time:

τw = min{0 ≤ t < n :
n−t∑
j=1

Wj(1− Aj) < v or t = n− 1}

≡ min{0 ≤ t < n :
n−t∑
j=1

Wj −Mw
t < v or t = n− 1},

(176)

then it still holds that Mw
τw � NB(v, p∗).

Proof. Intuitively, adding the binary weights should not change the distribution of the sum Mw
τw =∑n−τw

j=1 WjAj , since by condition (b), Aj is still a Bernoulli with parameter p∗ when it is counted in the
sum. We formalize this idea as follows.

Let {Bl}ml=1 be a sequence of i.i.d. Bernoulli with parameter p∗, and denote the sum
∑m−s

l=1 Bl as
M̃s(B). Let T (t) = m−

∑n−t
j=1 Wj , then the stopping time τw can be rewritten as

τw ≡ min{0 ≤ t < n : m− T (t)− M̃T (t)(B) < v or t = n− 1}, (177)

because m− T (t) =
∑n−t

j=1 Wj by definition, and

M̃T (t)(B) =

m−T (t)∑
l=1

Bl
d
=

n−t∑
j=1

WjAj = Mw
t . (178)

For simple notation, we present the reasoning of equation (178) when t = 0 (for arbitrary t, con-
sider the distributions conditional on {Ak,Wk}nk=n−t+1). That is, we show that P(

∑m
l=1Bl = x) =

P(
∑n

j=1WjAj = x) for every x ≥ 0. Let {bl}mj=1 ∈ {0, 1}m, then we derive that

P(
m∑
l=1

Bl = x) =
∑

∑
bl=x

P(Bl = bl for l = 1, . . . , n) =
∑

∑
bl=x

m∏
l=1

fB(bl),

where fB is the probability mass function of a Bernoulli with parameter p∗. Let {ak}n−mk=1 ∈ {0, 1}n−m,
then for the weighted sum,

P(
n∑
j=1

WjAj = x)

=
∑

∑
bl=x

∑
∑
wj=m

∑
ak

P(Aj = bl if wj = 1;Aj = ak if wj = 0;Wj = wj for i = 1, . . . , n)

=
∑

∑
bl=x

m∏
l=1

fB(bl)
∑

∑
wj=m

∑
∑
ak

∏
wj=0

P(Aj = ak | σ
(
{Ak,Wk}nk=j+1,Wj = 0

) n∏
j=1

P(Wj = wj | {Ak,Wk}nk=j+1)

︸ ︷︷ ︸
C (a constant with respect to x)

= C
∑

∑
bl=x

m∏
l=1

fB(bl) = CP(
m∑
l=1

Bl = x),

for every possible value x ≥ 0, which implies that P(
∑m

l=1 Bl = x) and P(
∑n

j=1WjAj = x) have the
same value; and hence we conclude equation (178). It follows that the filtration for both the stopping
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time τw and the sum Mw
tw , denoted as σ

(∑n−t
j=1 Wj,M

w
tw , {Aj,Wj}nj=n−t+1

)
, has the same probability

measure as σ
(
m− T (t), M̃T (t)(B), {Aj,Wj}nj=n−t+1

)
. Thus, the sums at the stopping time have the

same distribution, Mw
τw

d
= M̃T (τw)(B). The proof completes if M̃T (τw)(B) � NB(v, p∗). It can be

proved once noticing that stopping rule (177) is similar to stopping rule (174) except T (t) is random
because ofWj , so we can condition on {Wj}nj=1 and apply Corollary 5; and this concludes the proof.

Corollary 7. In Corollary 6, considerAj with different parameters. SupposeAj | σ
(
{Ak,Wk}nk=j+1,Wj = 1

)
is a Bernoulli with parameter p

(
{Ak,Wk}nk=j+1

)
for every j = 1, . . . , n. Given a constant p∗ ∈ (0, 1),

if the parameters satisfy that p
(
{Ak,Wk}nk=j+1

)
≤ p∗ for all j = 1, . . . , n, then it still holds that

Mw
τw � NB(v, p∗).

Proof. We first construct Bernoulli with parameter p∗ based on Aj by an iterative process. Start with
j = n. Let Cn be a Bernoulli independent of {Ak}nk=1 with parameter p∗−pn

1−pn , where pn = E(An | Wn =

1). Construct

Bn = An1 (An = 1) + Cn1 (An = 0) , (179)

which thus satisfies that E(Bn | Wn = 1) = p∗, and that Bn ≥ An (a.s.). Now, let j = j − 1 where we
consider the previous random variable. Let Cj be a Bernoulli independent of {Ak}jk=1, with parameter

p∗ − p̃
(
{Bk,Wk}nk=j+1

)
1− p̃

(
{Bk,Wk}nk=j+1

) , (180)

where p̃
(
{Bk,Wk}nk=j+1

)
= E

[
Aj | σ

(
{Bk,Wk}nk=j+1,Wj = 1

)]
(note that the parameter for Cj is

well-defined since p̃
(
{Bk,Wk}nk=j+1

)
≤ p∗ by considering the expectation further conditioning on

{Ak}nk=j+1). Then, we construct Bj as

Bj = Aj1 (Aj = 1) + Cj1 (Aj = 0) , (181)

which thus satisfies that E
[
Bj | σ

(
{Bk,Wk}nk=j+1,Wj = 1

)]
= p∗, and that Bj ≥ Aj (a.s.).

Now, consider two procedures for {Aj}nj=1 and {Bj}nj=1 with the same stopping rule (176) in
Corollary 6, where the sum of Aj is denoted as Mw

t (A) and the stopping time as τwA (and the similar
notation for Bj). Since construction (181) ensures that Bj ≥ Aj for every j = 1, . . . , n, we have
Mw

t (B) ≥Mw
t (A) for every t; and hence, τwA ≥ τwB . It follows that

Mw
τwA

(A) ≤Mw
τwB

(A) ≤Mw
τwB

(B) � NB(v, p∗),

where the first inequality is because Mw
t is nonincreasing with respect to t, and the last step is the

conclusion of Corollary 6; this completes the proof.

B.2.3 Proof of Theorem 8.

Proof. We discuss three cases: (1) the simplest case where all the hypotheses are null, and the null
p-values are uniformly distributed; (2) the case where non-nulls may exist, and the null p-values are
uniformly distributed; and finally (3) the case where non-nulls may exist, and the null p-values can be
mirror-conservative.
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Case 1: nulls only and null p-values uniform. By Lemma 7, {1
(
h
(
Pπj
)

= 1
)
}nj=1 are i.i.d. Bernoulli

with parameter p∗. Observe that the stopping rule in Algorithm 5, F̂WERt ≡ 1− (1− p∗)|R
−
t |+1 ≤ α,

can be rewritten as |R−t |+ 1 ≤ v where

v =

⌊
log(1− α)

log(1− p∗)

⌋
, (182)

which is also equivalent as |R−t | < v. We show that the number of false rejections is stochastically
dominated by NB(v, p∗) by Corollary 5. Let Aj = 1

(
h
(
Pπj
)

= 1
)

and M̃t =
∑n−t

j=1 1
(
h
(
Pπj
)

= 1
)
.

The stopping time is τ̃ = min{0 ≤ t < n : |R−t | = (n− t)− M̃t < v or t = n− 1}. The number of
rejections at the stopping time is

|R+
τ̃ | ≡

n−τ̃∑
j=1

1
(
h
(
Pπj
)

= 1
)
≡ M̃τ̃ � NB(v, p∗),

where the last step is the conclusion of Corollary 5. Note that we assume all the hypotheses are null, so
the number of false rejections is |R+

τ̃ ∩H0| = |R+
τ̃ | � NB(v, p∗). Thus, FWER is upper bounded:

P(|R+
τ̃ ∩H0| ≥ 1) ≤ 1− (1− p∗)v ≤ α, (183)

where the last inequality follows by the definition of v in (182). Thus, we have proved FWER control in
Case 1.

Remark: This argument also provides some intuition on the FWER estimator (31): F̂WERt =
1− (1− p∗)|R

−
t |+1. Imagine we run the algorithm for one time without any stopping rule until time t0 to

get an instance of ̂FWERt0 , then we run the algorithm on another independent dataset, which stops once
F̂WERt ≤ ̂FWERt0 . Then in the second run, FWER is controlled at level ̂FWERt0 .

Case 2: non-nulls may exist and null p-values are uniform. We again argue that the number of
false rejections is stochastically dominated by NB(v, p∗), and in this case we use Corollary 6. Consider
Aj = 1

(
h
(
Pπj
)

= 1
)

and Wj = 1 (πj ∈ H0), which satisfies condition (b) in Corollary 6 according
to Corollary 3. Let m = |H0|, then

∑n
j=1 Wj = m, which corresponds to condition (a). Imagine an

algorithm stops once

n−t∑
j=1

1
(
h
(
Pπj
)

= −1 ∩ πj ∈ H0

)
=

n−t∑
j=1

Wj(1− Aj) < v, (184)

and we denote the stopping time as τw. By Corollary 6, the number of false rejections in this imaginary
case is

n−τw∑
j=1

1
(
h
(
Pπj
)

= 1 ∩ πj ∈ H0

)
=

n−t∑
j=1

WjAj = Mw
τw � NB(v, p∗).
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Now, consider the actual i-FWER test which stops when |R−t | = (n− t)−
∑n−t

j=1 1
(
h
(
Pπj
)

= 1
)
< v,

and denote the true stopping time as τwT . Notice that at the stopping time, it holds that

n−τwT∑
j=1

1
(
h
(
Pπj
)

= −1 ∩ πj ∈ H0

)
≤

n−τwT∑
j=1

1
(
h
(
Pπj
)

= −1
)

= (n− τwT )−
n−τwT∑
j=1

1
(
h
(
Pπj
)

= 1
)
< v,

which means that stopping rule (184) is satisfied at τwT . Thus, τwT ≥ τw and Mw
τwT
≤Mw

τw (because Mw
t

is nonincreasing with respect to t). It follows that the number of false rejections is

|R+
τwC
∩H0| ≡

n−τwC∑
j=1

1
(
h
(
Pπj
)

= 1 ∩ πj ∈ H0

)
≡Mw

τwC
≤Mw

τw � NB(v, p∗).

We then prove FWER control using a similar argument as (183):

P(|R+
τw ∩H0| ≥ 1) ≤ 1− (1− p∗)v ≤ α,

which completes the proof of Case 2.

Case 3: non-nulls may exist and null p-values can be mirror-conservative. In this case, we follow
the proof of Case 2 except additionally conditioning on all the masked p-values, {g(Pπk)}nk=1. By
Corollary 4 and Corollary 7, we again conclude that the number of false rejections is dominated by a
negative binomial:

|R+
τwC
∩H0| � NB(v, p∗),

if given {g(Pπk)}nk=1. Thus, FWER conditional on {g(Pπk)}nk=1 is upper bounded:

P
(
|R+

τw ∩H0| ≥ 1
∣∣{g(Pπk)}nk=1

)
≤ 1− (1− p∗)v ≤ α,

which implies the FWER control by the law of iterated expectations. This completes the proof of
Theorem 8.

B.3 An alternative perspective: closed testing
This section summarizes the comments from Jelle Goeman, who kindly points out the connection
between our proposed method and the closed testing [Marcus et al., 1976]. Closed testing is a general
framework that generates a procedure with FWER control given any test with Type 1 error control.
Specifically, we reject Hi if all possible sets of hypotheses involving Hi, denoted as U 3 i, can be
rejected by a “local” test for hypotheses in U with Type 1 error control at level α.

The i-FWER test we propose shares some commonalities with the fallback procedure [Wiens and
Dmitrienko, 2005], which can be viewed as a shortcut of a closed testing procedure. We briefly describe
the commonalities and differences next. Let v be a prespecified positive integer. The fallback procedure
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orders the hypotheses from most to least interesting, and proceeds to test them one by one at level α/v
until it has failed to reject v hypotheses. The hypothesis ordering is allowed to be data-dependent as long
as the ordering is independent of the p-values, corresponding to ordering by the side information xi in
our language. This procedure is essentially also what the i-FWER test does except (a) the i-FWER test
uses the Šidák correction instead of the Bonferroni correction; (b) we are interested in whether rejecting
each hypothesis instead of adjusting individual p-values, so the ordering only needs to be independent of
reject/non-reject status instead of on the full p-values, which allows us to split each p-value into h(Pi)
and g(Pi); (c) under the assumption of independent null p-values, we are allowed to use the p-values
excluded from the candidate rejection set Rt as independent information to create the ordering. The
latter two differences enable the i-FWER test to be interactive based on a considerably large amount of
data information.

B.3.1 Alternative proof of Theorem 8

The above observation leads to a simple proof of the error control guarantee without involving any
martingales or negative binomial distributions, once we rewrite the i-FWER test in the language of
closed testing.

Proof. For simplicity, we consider the nulls with only uniform p-values. Let v be a prespecified positive
integer, and define p∗ = 1− (1− α)1/v. Imagine that the i-FWER test does not have a stopping rule and
let πn, . . . , π1 be the order in which the hypotheses are chosen by an analyst, where each choice πt can
base on all the information in Fn−t.

Here, we construct a closed testing procedure by defining a local test with Type 1 error control for an
arbitrary subset U ∈ [n] of size |U |. Sort the hypotheses in U according to the analyst-specified ordering
from the last πn to the first chosen π1. If the number of hypotheses in U is larger than v, define Uv as
the subset of U of size v corresponding to the hypotheses in U that are chosen last. For example, if
U = [n], we have Uv = {πv, . . . , π1}. If |U | ≤ v, define Uv = U . We reject the subset U if h(Pi) = 1
(i.e., Pi ≤ p∗) for at least one i ∈ Uv. This is a valid local test, since it controls the Type 1 error when all
the hypotheses in U are null. To verify the error control, notice that h(Pi)’s are independent and follows
Bernoulli(p∗), and Uv is independent of {h(Pi)}i∈Uv by the construction of sequence π1, ..., πn, so the
Type 1 error satisfy

P(∃i ∈ Uv : h(Pi) = 1) ≤ 1− (1− p∗)v,

which is less than α by the definition of v and p∗. Indeed, the local test corresponds to a Šidák correction
for v number of hypotheses. Through closed testing, this local test leads to a valid test with FWER
control.

Next, we show that the rejection set from the i-FWER test,R+
τ , is included in the rejection set from

the above closed testing procedure. Choose any hypothesis j ∈ R+
τ and any set W 3 j. If Hj is among

the last v hypotheses last chosen in W (or if |W | ≤ v), the local test for W reject the null since Pj ≤ p∗
by the definition of R+

τ . Otherwise, the v hypotheses last chosen in W are all chosen after Hj . Since
j ∈ R+

τ and by the definition of τ , we have |R−τ | ≤ v− 1. That is, there can be at most v− 1 hypotheses
among these v such that h(Pi) = −1, so set W is rejected by the local test as described in the previous
paragraph. It follows from the definition of FWER and the error control of the larger (or equivalent)
rejection set from the closed testing procedure thatR+

τ has FWER control.
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B.3.2 Improvement on an edge case

From the closed testing procedure constructed in the above proof, we observe that the local tests do not
exhaust the α-level for intersections of less than v hypotheses. This suboptimality can be remedied, but
it will only improve power for rejecting all hypotheses given that almost all are already rejected (i.e.,
most subsets U with |U | > v are rejected by the local test). In the i-FWER test, such a case potentially
corresponds to the case where the initial rejection set has less than v hypotheses with negative h(Pi), so
the algorithm stops before shrinkingR0, and reject all the hypotheses with positive h(Pi). However, we
might not fully use the error budget because F̂WER0 < α. However, we might not fully use the error
budget because F̂WER0 < α. To improve power and efficiently use all the error budget, we propose
randomly rejecting the hypotheses with a negative h(Pi) if the algorithm stops at step 0.

Algorithm 15 The adjusted i-FWER test

Input: Side information and p-values {xi, Pi}ni=1, target FWER level α, and parameter p∗;
Procedure:
InitializeR0 = [n];
if F̂WER0 ≡ 1− (1− p∗)|R

−
0 |+1 ≤ α then

Obtain n independent indicators from a Bernoulli distribution with probability 1 − (1 − α +

F̂WER0)1/|R−0 |, denoted as {Ii}i∈[n];
Reject {Hi : i ∈ [n], h(Pi) = 1 or Ii = 1} and exit;

else
for t = 1 to n do

1. Pick any i∗t ∈ Rt−1, using {xi, g(Pi)}ni=1 and {h(Pi)}i/∈Rt−1;
2. Exclude i∗t and updateRt = Rt−1\{i∗t};
if F̂WERt ≡ 1− (1− p∗)|R

−
t |+1 ≤ α then

Reject {Hi : i ∈ Rt, h(Pi) = 1} and exit;
end if

end for
end if

Recall that the number of negative h(Pi) is |R−0 |. For each hypothesis with a negative h(Pi), we
independently decide to reject it with probability 1− (1− αre)

1/|R−0 |, where αre := α− F̂WER0 denotes
the remaining error budget after rejecting all the hypotheses with positive h(Pi)’s. We summarize the
adjusted i-FWER test in Algorithm 15. To see the error control guarantee of this improved algorithm,
notice that

P(∃i ∈ H0 : Hi is rejected)

≤ P(∃i ∈ H0 : h(Pi) = 1) + P(∃i ∈ H0 : h(Pi) = −1 and Hi is rejected)

≤ F̂WER0 + P(∃i ∈ R−0 : Hi is rejected)

≤ F̂WER0 + αre = α,

where P(∃i ∈ H0 : h(Pi) = 1) ≤ F̂WER0 follows the argument using negative binomial distribution
as in the proof of the original algorithm; and P(∃i ∈ R−0 : Hi is rejected) ≤ αre is the result of a Šidák
correction.
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B.4 Sensitivity analysis
The i-FWER test is proved to have valid error control when the nulls are mutually independent and
independent of the non-nulls. In this section, we evaluate the performance of the i-FWER test under
correlated p-values. Our numerical experiments construct a grid of hypotheses as described in the setting
in Section 2. The p-values are generated as

Pi = 1− Φ(Zi),where Z = (Z1, . . . , Zn) ∼ N(µ,Σ), (185)

where µ = 0 for the nulls and µ = 3 for the non-nulls. The covariance matrix Σ, which is identity matrix
in the main paper, is now set to an equi-correlated matrix:

1 ρ · · · ρ
ρ 1 · · · ρ
...

...
...

...
ρ ρ · · · 1

 . (186)

(a) Positively correlated
case where ρ = 0.5 in
the covariance matrix (186).
The non-null mean value is
3.

(b) Negatively correlated
case where ρ = −0.5/n in
the covariance matrix (186).
Non-null mean value is 3.

(c) Negatively correlated
case where ρ = −0.5/n in
the covariance matrix (186).
All hypotheses are nulls.

(d) Negatively correlated
case where ρ = −0.5/n in
the covariance matrix (186).
All hypotheses are nulls.

Figure 48: FWER and power of the i-FWER test and the Šidák correction for dependent p-values
generated by Gaussians as in (185) with covariance matrix (186) when the targeted level of FWER
control varies in (0.05, 0.1, 0.15, 0.2, 0.25, 0.3). The i-FWER test appears to control FWER below the
targeted level and has relatively high power.

Under both the positively correlated case (ρ = 0.5) and the negatively correlated case (−ρ = 0.5/n
to guarantee that Σ is positive semi-definite), the i-FWER test seems to maintain the FWER control at
most target levels even when all the hypotheses are nulls (see Figure 48c and 48d), and has higher power
than the Šidák correction (see Figure 48a and 48b).

B.5 More results on the application to genetic data
Section 3.5 presents the number of rejections of the i-FWER test when the masking uses the tent function.
We evaluate the i-FWER test when using the other three masking functions under the same experiments,
but for simplicity, we only present the result when the FWER control is at level α = 0.2 (see Table 3).
Overall, the gap function leads to a similar number of rejections as the tent function, consistent with the
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numerical experiments. However, the railway (gap-railway) function leads to fewer rejections than the
tent (gap) function, which seems counterintuitive. Upon a closer look at the p-values, we find that the
null p-values are not uniform or have an increasing density (see Figure 49). As a result, when using the
tent function, there are fewer masked p-values from the nulls that could be confused with those of the
non-nulls (with huge p-values), compared with using the railway function where the masked p-values of
the confused nulls are those close to the masking parameter (around 0.02).

Table 3: Number of rejections by i-FWER test using different masking functions when α = 0.2. The
tent function and the gap function leads to more rejections compared with the railway function and
the gap-railway function. The parameters in the gap and gap-railway function are set to pl = p∗ and
pu = 0.5, and we need pl < α/2 for the test to make any rejection under level α.

Masing function p∗ = α/2 p∗ = α/10 p∗ = α/20
Tent 1752 1848 1794

Railway 1778 1463 1425
Gap NA 1802 1846

Gap-railway NA 1764 1788

Figure 49: Histogram of p-values in the airway dataset. The number of p-values that are close to one is
less than those that are close to the cutting point of the masking function (say 0.02). Consequently, the
tent (gap) function leads to more rejections than the railway (gap-railway) function.

B.6 Error control for other masking functions
The proof in Appendix B.2 is for the i-FWER test with the original tent masking function. In this section,
we check the error control for two new masking functions introduced in Section 3.4.

B.6.1 The railway function

We show that the i-FWER test with the “railway” function (34) has FWER control, if the null p-values
have non-decreasing densities. We again assume the same independence structure as in Theorem 8 that
the null p-values are mutually independent and independent of the non-nulls.

The proof in Appendix B.2 implies that under the same independence assumption, the FWER
control is valid if the null p-values satisfy condition (172). When using the railway masking function,
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condition (172) is indeed satisfied if the null p-values have nondecreasing f since

P(h(P ) = 1 | g(P ) = a) =
p∗f(a)

p∗f(a) + (1− p∗)f(1−p∗
p∗
a+ p∗)

=
p∗

p∗ + (1− p∗)f(1−p∗
p∗
a+ p∗)/f(a)

≤ p∗,

for every a ∈ (0, p∗). Then, we can prove the FWER control following the same argument as Ap-
pendix B.2.

B.6.2 The gap function

The essential difference of using the gap function instead of the tent function is that here, 1 (h(P ) = 1)
for the nulls follow a Bernoulli distribution with a different parameter, p̃ = P(h(P ) = 1 | P < pl or P >
pu) = pl

pl+1−pu . Specifically, we replace replace condition (172) by

P(h(P ) = 1 | g(P ) = a) ≤ p̃, (187)

for every a ∈ (0, pl), which holds for p-values with non-decreasing densities because

P(h(P ) = 1 | g(P ) = a) =
plf(a)

plf(a) + (1− pu)f(1− 1−pu
pl
a)

=
pl

pl + (1− pu)f(1− 1−pu
pl
a)/f(a)

≤ p̃.

We also replace all p∗ by p̃ and get a the new FWER estimator F̂WERt as defined in (36), and the
error control can be proved following Appendix B.2.

B.6.3 The gap-railway function

The proof is the same as that for the gap function except condition (187) is verified for p-values with
non-decreasing densities differently as follow:

P(h(P ) = 1 | g(P ) = a) =
plf(a)

plf(a) + (1− pu)f(1−pu
pl
a+ pu)

=
pl

pl + (1− pu)f(1−pu
pl
a+ pu)/f(a)

≤ p̃,

for every a ∈ (0, pl).

B.7 Varying the parameters in the presented masking functions
We first discuss the original tent masking (29), which represents a class of masking functions parame-
terized by p∗. Similar to the discussion in Section 3.4, varying p∗ also changes the amount of p-value
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information distributed to g(P ) for interaction (to exclude possible nulls) and h(P ) for error control (by
estimating FWER), potentially influencing the test performance. On one hand, the masking function
with smaller p∗ effectively distributes less information to g(P ), in that a larger range of big p-values is
mapped to small g(P ) (see Figure 20a). In such a case, the true non-nulls with small p-values and small
g(P ) are less distinctive, making it difficult to exclude the nulls fromRt. On the other hand, the rejected
hypotheses inR+

t must satisfy P < p∗, so smaller p∗ leads to less false rejections given the sameRt.
Experiments show little change in power when varying the value of p∗ in (0, α) as long as it

is not near zero, as it would leave little information in g(P ). Our simulations follow the setting
in Section 2, where the alternative mean value is fixed at µ = 3. We tried seven values of p∗ as
(0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2), and the power of the i-FWER test does not change much for
p∗ ∈ (0.05, 0.2). This trend also holds when varying the mean value of non-nulls, the size of the grid
(with a fixed number of non-nulls), and the number of non-nulls (with a fixed size of the grid). In general,
the choice of p∗ does not have much influence on the power, and a default choice can be p∗ = α/2.

There are also parameters in two other masking functions proposed in Section 3.4. The railway
function flips the tent function without changing the distribution of p-value information, hence the effect
of varying p∗ should be similar to the case in the tent function. The gap function (35) has two parameters:
pl and pu. The tradeoff between information for interaction and error control exhibits in both values
of pl and pu: as pl decreases (or pu increases), more p-values are available to the analyst from the start,
guiding the procedure of shrinkingRt, while the estimation of FWER becomes less accurate. Whether
revealing more information for interaction should depend on the problem settings, such as the amount of
prior knowledge.

B.8 Mixture model for the non-null likelihoods
Two groups model for the p-values. Define the Z-score for hypothesis Hi as Zi = Φ−1(1 − Pi),
where Φ−1 is the inverse function of the CDF of a standard Gaussian. Instead of modeling the p-values,
we choose to model the Z-scores since when testing the mean of Gaussian, Z-scores are distributed as a
Gaussian either under the null or the alternative:

H0 : Zi
d
= N(0, 1) versus H1 : Zi

d
= N(µ, 1),

where µ is the mean value for all the non-nulls. We model Zi by a mixture of Gaussians:

Zi
d
= (1− qi)N(0, 1) + qiN(µ, 1), with qi

d
= Bernoulli(πi),

where qi is the indicator of whether the hypothesis Hi is truly non-null.
The non-null structures are imposed by the constraints on πi, the probability of being non-null.

In our examples, the blocked non-null structure is encoded by fitting πi as a smooth function of
the hypothesis position (coordinates) xi, specifically as a logistic regression model on a spline basis
B(x) = (B1(x), . . . , Bm(x)):

πβ(xi) =
1

1 + exp(−βTB(xi))
, (188)

EM framework to estimate the non-null likelihoods. An EM algorithm is used to train the model.
Specifically we treat the p-values as the hidden variables, and the masked p-values g(P ) as observed. In
terms of the Z-scores, Zi is a hidden variable and the observed variable Z̃i is

Z̃i =

{
Zi, if Zi > Φ−1(1− p∗),
t(Zi), otherwise,
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where t(Zi) depends on the form of masking. The updates needs values of its inverse function t−1(Z̃i)
and the derivative of t−1(·), denoted as (t−1)

′
(Z̃i), whose exact forms are presented below.

1. For tent masking (29),

t(Zi) = Φ−1

[
1− p∗

1− p∗
Φ(Zi)

]
;

t−1(Z̃i) = Φ−1

[
1− p∗
p∗

(
1− Φ(Z̃i)

)]
;(

t−1
)′

(Z̃i) = − 1− p∗
p∗

φ
(
Z̃i

)/
φ
(
t−1(Z̃i)

)
,

where φ(·) is the density function of standard Gaussian.

2. For railway masking (34),

t(Zi) = Φ−1

[
1− p∗ +

p∗
1− p∗

Φ(Zi)

]
;

t−1(Z̃i) = Φ−1

[
1− p∗
p∗

(
Φ(Z̃i)− 1 + p∗

)]
;(

t−1
)′

(Z̃i) =
1− p∗
p∗

φ
(
Z̃i

)/
φ
(
t−1(Z̃i)

)
.

3. For gap masking (35),

t(Zi) = Φ−1

[
1− pl

1− pu
Φ(Zi)

]
;

t−1(Z̃i) = Φ−1

[
1− pu
pl

(
1− Φ(Z̃i)

)]
;(

t−1
)′

(Z̃i) = − 1− pu
pl

φ
(
Z̃i

)/
φ
(
t−1(Z̃i)

)
.

if Zi < Φ−1(1 − pu). If Φ−1(1 − pu) ≤ Zi ≤ Φ−1(1 − pl), which corresponds to the skipped
p-value between pl and pu, then Z̃i = Zi.

4. For gap-railway masking (37),

t(Zi) = Φ−1

[
1− pl

1− pu
Φ(Zi)

]
;

t−1(Z̃i) = Φ−1

[
1− pu
pl

(
Φ(Z̃i)− 1 + pl

)]
;(

t−1
)′

(Z̃i) =
1− pu
pl

φ
(
Z̃i

)/
φ
(
t−1(Z̃i)

)
.

if Zi < Φ−1(1 − pu). If Φ−1(1 − pu) ≤ Zi ≤ Φ−1(1 − pl), which corresponds to the skipped
p-value between pl and pu, then Z̃i = Zi.

Define two sequences of hypothetical labels wi = 1{Zi = Z̃i} and qi = 1{Hi = 1}, where Hi = 1
means hypothesis i is truly non-null (Hi = 0 otherwise). The log-likelihood of observing Z̃i is

l(Z̃i) = wiqi log
{
πiφ

(
Z̃i − µ

)}
+ wi(1− qi) log

{
(1− πi)φ

(
Z̃i

)}
+ (1− wi)qi log

{
πiφ

(
t−1(Z̃i)− µ

)}
+ (1− wi)(1− qi) log

{
(1− πi)φ

(
t−1(Z̃i)

)}
.
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The E-step updates wi, qi. Notice that wi and qi are not independent, and hence we update the joint
distribution of (wi, qi), namely

E[wiqi] =: ai, E[wi(1− qi)] =: bi, E[(1− wi)qi] =: ci, E[(1− wi)(1− qi)] =: di,

where ai + bi + ci + di = 1. To simplify the expression for updates, we denote

Li := πiφ
(
Z̃i − µ

)
+(1−πi)φ

(
Z̃i

)
+
∣∣∣(t−1

)′
(Z̃i)

∣∣∣ πiφ(t−1(Z̃i)− µ
)

+
∣∣∣(t−1

)′
(Z̃i)

∣∣∣ (1−πi)φ(t−1(Z̃i)
)
.

For the hypothesis i whose p-value is masked, the updates are

ai,new = E[wiqi | Z̃i] = πiφ
(
Z̃i − µ

)/
Li;

bi,new = E[wi(1− qi) | Z̃i] = (1− πi)φ
(
Z̃i

)/
Li;

ci,new = E[(1− wi)qi | Z̃i] =
∣∣∣(t−1

)′
(Z̃i)

∣∣∣ πiφ(t−1(Z̃i)− µ
)/

Li;

di,new = E[(1− wi)(1− qi) | Z̃i] =
∣∣∣(t−1

)′
(Z̃i)

∣∣∣ (1− πi)φ(t−1(Z̃i)
)/

Li.

If the p-value is unmasked for i, the updates are

ai,new =

1 +
(1− πi)φ

(
Z̃i

)
πiφ

(
Z̃i − µ

)
−1

;

bi,new = 1− ai,new; ci,new = 0; di,new = 0.

In the M-step, parameters µ and β (in model (188) for πi) are updated. The update for µ is

µnew = argmax
µ

∑
i

l(Z̃i) =

∑
aiZ̃i + cit

−1(Z̃i)∑
ai + ci

.

The update for β is

βnew = argmax
β

∑
i

(ai + ci) log πβ(xi) + (1− ai − ci) log(1− πβ(xi)),

where πβ(xi) is defined in equation (188). It is equivalent to the solution of GLM (generalized linear
model) with the logit link function on data {ai + ci} using covariates {B(xi)}.
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C Appendix for “Which Wilcoxon should we use? An interactive
rank test and other alternatives”

C.1 Proof of Theorem 9
Proof. We argue that the sum {St}nt=1 is a martingale with respect to the filtration {Ft−1}nt=1. First, the
sum St is measurable with respect to Ft−1, because St =

∑t−1
j=1(2Aπj − 1)wj + (2Aπt − 1)wt, where∑t−1

j=1(2Aπj − 1)wj and the t-th selected subject πt and its weight wt are all Ft−1-measurable.
Second, we show that E(St | Ft−1) = St−1. Note that E(St | Ft−1) = St−1 + E((2Aπt − 1)wt |

Ft−1), so E(St | Ft−1) = St−1 holds when E((2Aπt − 1)wt | Ft−1) = 0, which is implied when
P(Aπt = 1 | Ft−1, wt) = P(Aπt = 0 | Ft−1, wt) = 1/2. Note that assignment A only takes two
values {0, 1} and wt is Ft−1-measurable, so proving P(Aπt = 1 | Ft−1, wt) = 1/2 is equivalent to
proving

E(2Aπt − 1 | Ft−1) = 0. (189)

Let the set of subjects ordered before t be Ct−1 = {πj}t−1
j=1. Claim (189) follows because

E(2Aπt − 1 | Ft−1) ≤ max
i/∈Ct−1

E(2Ai − 1 | Ft−1) = E(2Ai − 1) = 0,

where the last equation is because Ai is independent of each other and of the covarites and outcomes
under the global null; and thus, 2Ai − 1 | Ft−1 has the same distribution as 2Ai − 1. Similarly, we have
E(2Aπt − 1 | Ft−1) ≥ 0. Thus, we conclude that {St}nt=1 is a martingale.

Note that the increment 2Aπt − 1 conditional on Ft−1 takes value in {±1}. Combining with
Claim (189) that the increment has zero mean under the null, it follows that the increment is 1 or −1
with the same probability. Therefore, boundary uα(t) as defined in (45) for the sum of independent, fair
coin flips is a time-uniform upper boundary for St. Note that St is symmetric around zero under the null,
so uα/2(t) is a two-sided boundary at level α: P

(
∃t ∈ [n] : |St| > uα/2(t)

)
≤ α, under the null. Recall

the stopping time τ as defined in (52). The above inequality implies that the probability of τ ≤ n, which
corresponds to the case of rejection, is less α when the null hypothesis is true; thus, we have proved the
error control.

C.2 Comparison between monitoring St and its absolute value
We describe in Section 4.1.3 that the test statistic St is constructed such that it can grow fast under the
alternative hypothesis, and we can reject the null when St is larger than a boundary uα(t). However, when
testing the null, we use a two-sided test which compares the absolute value of St with the boundary uα/2(t)
at level α/2. It is because, at the first iteration, we could learn the opposite assignments for all the
subjects using any modeling. In other words, when all assignments {Ai}ni=1 are hidden at t = 1, the
likelihood of {Âi}ni=1 being the true values (treated/untreated) is the same as the likelihood of all opposite
values (untreated/treated), no matter what working model we use. Consequently, the increment would
take the opposite value and St decreases fast. This phenomenon is evident and not rare especially when
we only update the estimation of assignments every 100 iterations (say) in practice for computational
consideration (see Figure 50). Thus, we cannot reject the null when St decreases fast if we only monitor
whether St is larger than uα(t), although the decreasing St is also evidence of null being false (because
the increment under the null would take ±wj with equal probability).

Indeed, the decreasing St can be used to reject the null when we monitor the absolute value of St.
Specifically, we reject the null when |St| exceed the boundary uα/2(t), which includes the case of St
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(a) Linear effect (57) with S∆ =
2.
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(b) Nonlinear effect (60) with
S∆ = 0.8.

Figure 50: Instances of cumulative sums St under two types of effect. The solid lines are two-sided
boundaries −uα/2(t) and uα/2(t), and the dashed line is the one-sided boundary uα(t). Under linear
treatment effect, about half of the instances reject the null by crossing the lower boundary, which is
consistent with the power comparison (0.96 when using the two-sided test, and 0.65 using the one-sided
test). Similar behavior can be found under nonlinear treatment effect.

being smaller than −uα/2(t). We observe in numerical experiments that monitoring |St| leads to higher
power than monitoring St (see Figure 50).

C.3 An alternative strategy to choose weight wj
Recall that the cumulative sum St could decrease at early iterations, and we can still reject the null by
examining whether St becomes smaller than a lower bound −uα/2(t). The decreasing St results from
guessing all the assignments falsely when all assignments are hidden. Yet, St would start increasing
when we reestimate the assignments when some true assignments are revealed (see Figure 50 where we
reestimate the assignments after 100 iterations). However, the direction change of St trajectory could
potentially diminish the difference from the null behavior — St would not cross either the lower or the
upper boundary because St is not small enough when it decreases and cannot be large enough when
slowing increasing from a small value — and we could miss the chance of correctly rejecting the null.
Based on the above observation, we propose an adjustment to our default automated interactive test
(Algorithm 7), where the weight is constructed to make St either decrease or increase based on the
previous trend.

Recall that the originally choice wj = 21{q̂πj > 0.5}−1 would make St increase when q̂πj is a good
estimation. Suppose we update the estimation q̂πj every K iterations (eg. K = 20). After K iterations,
the updated q̂πj is likely to be a good estimation thanks to the revealed assignments. Thus, we propose
use the opposite weight wj = 21{q̂πj < 0.5} − 1 if t ≥ K and St−1 < 0 (indicating that the initial
estimation leads to small St and it is more likely to cross the lower boundary), such that St continues to
decrease even after most assignments are no longer falsely estimated (see Figure 51). We also observe
in the numerical experiments we discuss in the main paper, that this new strategy of choosing weights
leads to slightly higher power (see Figure 52).
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(a) Original weights.
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(b) New weights.

Figure 51: Instances of the cumulative sums St with two types of weighting: original weight wj =
21{q̂πj > 0.5} − 1, and new weight based on previous trend of St: wj = 21{q̂πj < 0.5} − 1 if t ≥ K
and St−1 < 0 where K is the number of iterations after which we update the estimation q̂i. We set
K = 20 and simulate linear treatment effect (57) with S∆ = 2 under Cauchy noise. The solid lines are
two-sided boundaries −uα/2(t) and uα/2(t) at level α/2. The trajectories of St tends to have a consistent
direction throughout the procedure, making it easy to cross the lower or the upper boundary and reject
the null.
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(c) Linear effect when
the noise follows
Cauchy distribution.
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defined in (60).

i−Wilcoxon (original weights) i−Wilcoxon (new weights)

Figure 52: Power of the i-Wilcoxon test using two weighting strategies when varying the scale of the treatment
effect under various situations of the outcome distribution. The new strategy that decide weights based on previous
St trend usually leads higher power than the original strategy wj = 21{q̂πj < 0.5} − 1 in the main paper.

C.4 Estimation of the posterior probability of receiving treatment
Under model (54), we view the treatment assignments of to-be-ordered subjects as hidden variables and
apply the EM algorithm. At step t, the hidden variables are Ai for subjects i /∈ {πj}t−1

i=1. And the rest of
the complete data {Yi, Ai, Xi}ni=1 is the observed data, denoted by σ-field Ft−1 as defined in (50). In the
working model (54), the log-likelihood of {Yi, Ai, Xi}ni=1 is

l ({Yi, Ai, Xi}ni=1) =
∑
i∈[n]

[Ai log φ (Yi − θ1(Xi)) + (1− Ai) log φ (Yi − θ0(Xi)) + g(Xi)] ,
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where φ(·) is the density of standard Gaussian and g(·) denotes the density of the covariates. In the
E-step, we update the hidden variable Ai for i /∈ {πj}t−1

i=1 as

Anew
i = E(Ai | Ft−1) =

φ (Yi − θ1(Xi))

φ (Yi − θ1(Xi)) + φ (Yi − θ0(Xi))
.

In the M-step, we update the (parametric) functions θ0 and θ1 as

θnew
0 = argmax l ({Yi, Ai, Xi}) = argmin

∑
i∈[n]

(1− Ai)(Yi − θ0(Xi))
2,

θnew
1 = argmax l ({Yi, Ai, Xi}) = argmin

∑
i∈[n]

Ai(Yi − θ1(Xi))
2,

which are least square regressions with weights. The posterior probability of receiving treatment is
estimated as E(Ai | Ft−1) for i /∈ {πj}t−1

i=1.

C.5 The linear-CATE-test
We first describe the general framework of CATE without specifying the working model (see Vansteelandt
and Joffe [2014] for a review). Suppose ψ∗ is a vector of parameters, and a pre-defined function h
satisfies h(ψ∗, x) = 0 if ψ∗ = 0, for which a standard choice is a linear function of the covariates,
h(ψ∗, x) = xTψ∗. CATE assumes that the difference in conditional expectations satisfy

E(Yi | Xi, Ai = 1)− E(Yi | Xi, Ai = 0) = h(ψ∗, Xi). (190)

Thus, a valid test for null hypothesis (38) can be developed by testing ψ∗ = 0. Note that the test is
model-free (regardless of the correctness of h) since ψ∗ = 0 is implied by null hypothesis (38) for any
function h specified as above. The inference on ψ∗ uses an observation that for any function g of the
covariates and the assignment, we have

E{[g(Xi, Ai)− E(g(Xi, Ai) | Xi)] · [Yi − E(Yi | Xi, Ai)]} = 0, (191)

where E(Yi | Xi, Ai) = Ai · h(ψ∗, Xi) + E(Yi | Xi, Ai = 0) because of (190). To get an estimation
of ψ∗, we need to specify function h and g, and estimate E(g(Xi, Ai) | Xi) and E(Yi | Xi, Ai = 0).
Notice that in a randomized experiment, E(g(Xi, Ai) | Xi) is known given g, which guarantee that
equation (191) holds regardless of whether E(Yi | Xi, Ai = 0) is correctly specified (double robustness).
In the following, we choose functions h, g and estimation of E(Yi | Xi, Ai = 0) without concerns on the
validity of equation (191). After getting the estimator of ψ∗, we present the test for ψ∗ = 0 in the end.

For fair comparison with the i-Wilcoxon test that uses linear model by default, we set h to be
a linear function of the covariates and their second-order interaction terms. Let X ′i be the vector
of covariates Xi and the interaction terms, then h = (X ′i)

Tψ∗. In such as case, a good choice of
function g is X ′i · Ai [Vansteelandt and Joffe, 2014]. Because other methods in our comparison
use linear models by default, we estimate E(Yi | Xi, Ai = 0) by a linear model of X ′i, denoted as
(X ′i)

T β̂ (note that β̂ can be learned by regressing Yi on Xi without involving Ai since under the null,
E(Yi | Xi, Ai = 0) = E(Yi | Xi, Ai = 1) = E(Yi | Xi)). With the above choices, equation (191) can be
written as

E

(Ai − 1/2)(Yi − (X ′i)
T β̂)X ′i︸ ︷︷ ︸

bi

 = E

(X ′Ti Ai(Ai − 1/2)X ′i
)︸ ︷︷ ︸

Bi

ψ∗

 , (192)
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which is denoted as E(bi) = E(Bi)ψ
∗ for simplicity. Let Pnb be the sample average of {bi}ni=1 and PnB

be the sample average of {Bi}ni=1. A consistent estimator of ψ∗ is

ψ̂ = (PnB)−1 Pnb

=

(
1

n

n∑
j=1

X ′Tj Aj(Aj − 1/2)X ′j

)−1(
1

n

n∑
i=1

(Ai − 1/2)(Yi − (X ′i)
T β̂)X ′i

)
.

(193)

To derive the distribution of ψ̂, notice that its asymptotic variance is B−1Var(b)(B−1)T , for which a
consistent estimator is

V̂ar(ψ) = (PnB)−1 V̂ar(b)
[
(PnB)−1]T , (194)

where V̂ar(b) denotes the sample covariance of {bi}ni=1. Under the null, we have

ψ̂T [V̂ar(ψ)]−1ψ̂ = (Pnb)T [V̂ar(b)]−1(Pnb)→ χ2
p,

where p is the dimension of X ′i. The linear-CATE-test rejects the null if

(Pnb)T [V̂ar(b)]−1(Pnb) > χ2
p(1− α), (195)

where bi is defined in (192); and Pn and V̂ar denotes sample average and sample covariance matrix; and
χ2
p(1− α) is the 1− α quantile of a Chi-squared distribution with p degrees of freedom.

C.6 Bonferroni correction of the candidate Wilcoxon tests
In Section 4.3, we recommend choosing from three candidate Wilcoxon tests using different Ei (ER(X)

i ,

E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i ,ES·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)

i ), whose p-values are denoted as p1, p2, p3 respec-
tively, depending on the property of treatment effect. In the case without prior knowledge of treatment
effect, we could combine these candidates by a meta test and have high power under various underlying
truth. We recommend using the Bonferroni correction of three tests according to the simulation results
as follows.

We tried four classical combinations [Vovk and Wang, 2020b]:
• arithmetic mean 2(p1 + p2 + p3)/3, and
• geometric mean e(p1 · p2 · p3)1/3, and
• harmonic mean e log(3) · 3/(p−1

1 + p−1
2 + p−1

3 ), and
• Bonferroni correction 3 min(p1, p2, p3).

Note that because p-values from the Wilcoxon tests can have arbitrary dependence, we cannot use
some alternative meta methods such as Fisher’s or Simes’ methods. Nonetheless, the above-presented
combinations are valid under arbitrary dependence.
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Figure 53: Power of the Wilcoxon test using ER(X)
i , E

|R̂(X,1−A)−R|−|R̂(X,A)−R|
i , E

S·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i

and four meta tests that combine these three tests (p-values) by arithmetic mean (not shown due to low power),
geometric mean, harmonic mean, Bonferroni correction, under different types of treatment effect with the scale
of treatment effect S∆ increases. In all simulations, the Bonferroni correction leads to similar power as the

recommended test (ER(X)
i for dense effect in the first row, ES·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)

i for sparse effect in the

second row, and E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i for two-sided effect in the third row).

We follow the same simulation settings in the main paper. In all simulations, the Bonferroni
correction leads to similar power as the recommended test (See Figure 53 for simulation results). Thus,
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we would recommend the Bonferroni correction when there is little prior knowledge of the treatment
effect type.

One may notice that the power of the Bonferroni correction is even higher than all of the candidate
Wilcoxon tests when the treatment effect is sparse and the control outcome is skewed (see Figure 53f).
While this may initially seem impossible, it is actually possible when different tests perform well
on different instances. To elaborate, this effect arises because the power curves are averaged over
many repetitions, and in each repetition different Wilcoxon tests have lower p-values (higher chance
of rejection) under different data realization. The low p-values from different tests are all captured by
taking the minimum as in the Bonferroni correction. Specifically, we found that although the test with
E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i has the highest power among three Wilcoxon tests, there are more than 10% of

repeated experiments such that the p-value of the recommended one is larger than α (no rejection using
this individual test), while the minimum of p-values from the other two is smaller than α/3 (rejection
using the Bonferroni correction).

C.7 Experiments for the i-Wilcoxon test under heavy-tailed noise
In the automated algorithm of i-Wilcoxon test, we recommend using the robust regression because it
is less sensitive to skewed control outcomes, as shown by Figure 25c. Here, we show that the robust
regression also makes the i-Wilcoxon test more robust to heavy-tailed noise (see Figure 54).
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Figure 54: Power of the i-Wilcoxon test using regular linear regression and robust linear regression compared
with standard methods. The outcome simulates from (39), where the function of treatment effect ∆ and the
function of control outcome f are linear as defined in (57) and (58). Instead of Gaussian noise in Section 4.2.2,
the noise Ui is now simulated from a Cauchy distribution. The i-Wilcoxon test with robust linear regression has
higher power than that using regular linear regression under heavy-tailed noise. For fair comparison, the CovAdj
Wilcoxon test is also implemented with robust linear regression.

C.8 Numerical experiments under small sample sizes
The experiments in the main paper generates 500 samples, and here, We present the results of the
same experiments with a smaller sample size n = 50 (the size of signals is doubled for a clear power
comparison). We focus on checking whether the power comparison among different methods is consistent
with the results under the large sample size in the main paper.

161



Numerical experiments for the i-Wilcoxon test. For the discussion of the i-Wilcoxon test, one of
the comparison methods, the linear-CATE-test, no longer has type-I error control as its validity only
holds asymptotically (see Figure 55). The power of the i-Wilcoxon test decreases compared to the
cases with a large sample size in the main paper. Upon a closer examination, it appears that this
decrease in power is primarily because the potential outcomes are not well estimated by our interactive
algorithm; this cannot hurt validity but it does hurt power, as explained next. Recall that in the i-
Wilcoxon test, we infer the treatment assignments by fitting a mixture model (54) on the outcomes,
and use the EM algorithm to alternate between estimating the function for potential outcomes (θ0, θ1)
and predicting the assignments Ai. We observe that poor estimation of the potential outcomes often
leads to a poor prediction of Ai, and hence the resulting ordering tends to include more subjects with
incorrect Âi at the front instead of the correct ones. As a result, the cumulative sum St in (52) would
grow slower, so it becomes harder to exceed the boundary uα/2(t) in order to reject. Take an example
of the experiment under Cauchy noise. In our original experiment with n = 500 (Figure 54), we
often need to accumulate more than 100 subjects for St to exceed the boundary and reject the null
(see Figure 56a). Thus, such a difference is not evident enough when we can at most accumulate 50
subjects when n = 50 (see Figure 56b). As a comparison, if an oracle knows the true potential outcomes
θ0(Xi) = f(Xi), θ1 = ∆(Xi) + f(Xi), where ∆ and f are in model (39) to generate the data in our
experiment, and uses the same mixture model (54) to infer assignments and order subjects, the resulting
power under small sample size improves significantly (see Figure 56d), because it allows for the treated
subjects to be better gathered earlier in the ordering (see Figure 56c).
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(b) Linear effect when the noise
follows Cauchy distribution.
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Figure 55: Power of the i-Wilcoxon test compared with the standard tests (the linear-CATE-test and the CovAdj
Wilcoxon test) when varying the scale of the treatment effect under various situations of the outcome distribution
(the small-sample-size version of experiments in Figure 25, Figure 26, and Figure 54). The sample size is set
to be as small as n = 50. As a result, the linear-CATE-test does not have valid type-I error control, and the
power of i-Wilcoxon test decreases, but its power still tends to be higher than others when the effect is nonlinear.
Additionally, we recommend the Bonferroni correction of the i-Wilcoxon test and the permutation-based Wilcoxon
tests (i-Wilcoxon-Bonferroni).

Still, when the treatment effect is a nonlinear function of the covariates, the difference in the
cumulative sums is usually detected before including 50 subjects in our original experiment when
n = 500, so the i-Wilcoxon test can preserve its advantage and have high power under a small sample
size n = 50. Moreover, we find that the Wilcoxon-Bonferroni test (our proposed Wilcoxon tests
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Figure 56: Diagnostics of the low power of the interactive test under small sample size when the noise follows
Cauchy distribution. Because heavy-tailed noise makes it harder to learn the potential outcomes, the cumulative
sum of treatment assignments usually exceeds the boundaries (black lines) after including 100 subjects; thus not
detectable when the total number of subjects is small (n = 50).

combined by Bonferroni correction as discussed in Appendix C.6) can have higher power in several
cases (see Figure 55). Specifically, recall that the Wilcoxon tests we propose in (61) involve the residual
Ri and two types of its estimation R̂(X,A), R̂(X, 1 − A), which can be obtained from an arbitrary
regression model. Here, we use robust linear regression for a fair comparison because other methods
also use linear regression as a default (note that the validity of all methods is not affected by whether
the linear model is the underlying truth). The Wilcoxon-Bonferroni test leads to higher power than
other methods when the noise is Cauchy or the control outcome is skewed. In the case where the
treatment effect is nonlinear, its advantage is less evident compared to the interactive test with quadratic
regression because the former uses linear regression. This comparison under the nonlinear effect also
indicates the advantage of the interactive test we demonstrate in Figure 26: the interactive test can
explore data information to decide which model to use (e.g., correctly choose the quadratic regression
in this example), whereas most existing methods including the Wilcoxon-Bonferroni test commit to a
pre-specified model (e.g., linear model in this example).

Overall, we would recommend the Bonferroni correction of the i-Wilcoxon test and the non-
interactive permutation-based tests for experiments with small sample sizes (the computation cost
of the permutation tests is also not heavy with small sample sizes).

Numerical experiments for the Wilcoxon tests. For the discussion of permutation tests in Section 4.3,
the power comparison has the same pattern as the case with a large sample size (see Figure 57). As
summarized in flowchart (74), we still recommend using the Wilcoxon test with ER(X)

i for dense effect,
E
S·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i for sparse effect, and E|R̂(X,1−A)−R|−|R̂(X,A)−R|

i for two-sided effect.
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trol outcome.
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Figure 57: Power of the candidate Wilcoxon test using three choices of Ei under different types of treatment
effect with the scale of treatment effect S∆ increases. The sample size is set to be small as n = 50, but the
power comparison is similar to the previous experiments with n = 500: we recommend using the Wilcoxon test

with ER(X)
i for dense effect (the first row), ES·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)

i for sparse effect (the second row), and

E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i for two-sided effect (the third row).
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C.9 The Kruskal-Wallis test for multi-sample comparison without block struc-
ture

The Kruskal-Wallis test considers the ranks of all observations. For subjects with treatment a, let the
sample size be Na =

∑n
i=1 1(Ai = a) and the average rank be RK(a) = 1

Na

∑n
i=1 rank(Yi)1(Ai = a).

Denote the overall averaged rank as RK = 1
n

∑n
i=1 rank(Yi). The test statistic is

H = (n− 1)

∑k
a=1Na

(
RK(a)−RK

)2

∑n
i=1

(
rank(Yi)−RK

)2 , (196)

which measures the relative variation across blocks and is expected to be large under the alternative.
Thus, the Kruskal-Wallis test rejects the null if H is larger than a threshold. The threshold is obtained
from the null distribution of H , which can be derived if the sample size is small; otherwise, it is
approximated by a chi-squared distribution.

C.10 The Friedman test for multi-sample comparison with block structure
The Friedman test considers the ranks within each block {Yi1, . . . , Yik}, denoted as rank(Yij). Let the
rank of the subjects with treatment a averaged over n blocks beRK(a) = 1

n

∑n
i=1

∑k
j=1 rank(Yij)1 (Aij = a),

and its expected value under the null is 1+k
2

. Under the alternative, the outcomes for one of the treatment
could be larger (or smaller) than those for other treatments and the averaged rank would be higher (or
lower). The Friedman test computes:

F =
k∑
a=1

(
RK(a)− 1 + k

2

)2

,

and reject the null if F is larger than a threshold obtained by the null distribution of F , which is
approximated by a Chi-square when n or k is large.

C.11 Error control of the seq-Wilcoxon test
In the sequential setting, we try to argue that even though we can filter the subjects to enter the sum in a
data-dependent manner, denoted by decision Ii, it does not affect the behavior of the cumulative sum
(sum of independent (weighted) coin flips). Intuitively, it is because the decision It+1 is based on the
σ-field Gt, which is independent of At+1 that we potentially would cumulate. We formalize this intuition
as follows.

By definition, only when It = 1, the sum St changes its value and the boundary uα/2
(∑t

i=1 Ii
)

updates, so the algorithm can only stop at τ when there is a new increment (Iτ = 1). Thus, we can
measure the time of the martingale sequence different from t by ignoring the subjects that are filtered
out (Ii = 0). Let the new “time” be v = 1, 2, . . . and define a random time Tv in terms of Ii’s:

Tv := min

{
t ∈ N :

t∑
i=1

Ii ≥ v + 1

}
− 1. (197)

In words, we count time v only before there is a new increment, which comes from the (Tv + 1)-th
subject. Consequently, we have

∑Tv
i=1 Ii = v. Let the sum be S̃v := STv ≡

∑Tv
i=1 Ii(2Ai − 1) · wi, and
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by definition, there are v number of nonzero increment in S̃v. Under this notation, the stopping time τ
for rejection can be equivalently defined as τ ≡ Tν where

ν := min
{
v ∈ N : |S̃v| > uα/2 (v)

}
. (198)

The test rejects the null if Tν <∞, which is equivalent as ν <∞. Thus, the proof of error control boils
down to proving that under the null, P

(
∃v ∈ N : |S̃v| > uα/2 (v)

)
≤ α, or equivalently that {S̃v} is a

martingale with weighted coin flips as increments. Define the filtration as G̃v := σ (GTv ∪ {T1, . . . , Tv}),
we prove that {S̃v+1} is a martingale with respect to the filtration {G̃v}.

Proof. We first argue that S̃v+1 is measurable with respect to G̃v. By definition, the last nonzero
increment in S̃v+1 comes from the (Tv + 1)-th subject, so S̃v+1 ≡ STv+1. And STv+1 is measurable with
respect to G̃v because ITv+1 has its distribution with respect to G̃v. Next, we show that E(S̃v+1 | G̃v) = S̃v,
which boils down to the claim that

E
(

2ATv+1 − 1 | G̃v
)

= 0, (199)

because S̃v+1 = STv+1 and ITv+1 = 1, and that wTv+1 is G̃v-measurable. Note that conditional on Tv,
the information in G̃v is independent of ATv+1. Thus, we derive that mathbbE

(
2ATv+1 − 1 | G̃v

)
=

E (2ATv+1 − 1 | Tv) . For any t ∈ N, we claim that

E (2ATv+1 − 1 | Tv = t) = 0,

because

E (2ATv+1 − 1 | Tv = t) = E (2At+1 − 1 | Tv = t)

(a)
= E

[
E

(
2At+1 − 1

∣∣∣I1, . . . , It,
t∑
i=1

Ii = v, It+1 = 1

)∣∣∣∣∣Tv = t

]
(b)
= E

[
E

(
E (2At+1 − 1 | Gt)

∣∣∣I1, . . . , It,
t∑
i=1

Ii = v, It+1 = 1

)∣∣∣∣∣Tv = t

]
(c)
= 0,

where (a) holds because {Tv = t} is implied by
⋃t+1
i=1{Ii} that satisfy

∑t
i=1 Ii = v and It+1 = 1;

and (b) is because Ii+1 is measurable with respect to Gi for each i ∈ [t], and G1 ⊆ . . . ⊆ Gt; to
see (c), notice that under the null, At+1 is independent of Gt and E(At+1) = 0; thus, we prove that
E (2ATv+1 − 1 | Tv = t) = 0. Notice that the increment of S̃v takes value in {±1} with zero mean value,
so its distribution is {±1} with equal probability. Thus, boundary uα/2(v) for the sum of independent,
fair coin flips leads to valid error control for Algorithm 8.
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D Appendix for “Interactive identification of individuals with pos-
itive treatment effect while controlling false discoveries”

D.1 Details in the extensions of the I3

D.1.1 FDR control at a subgroup level

Here, we provide explanation of the higher power achieved by the interactive procedure. Although
the interactive procedure and the BH procedure define the same set of subgroups and corresponding
p-values, the interactive procedure has two properties that potentially improve the power from the BH
procedure: (a) it excludes possible null subgroups so that it can be less sensitive to a large number of
nulls, whereas the BH procedure considers all the subgroups at once; (b) the interactive procedure
additionally uses the covariates. We can separately evaluate the effect of the above two properties by
implementing two versions of Algorithm 14, which differ in the strategy to select subgroups in step a.
Specifically, the adaptive procedure selects the subgroup whose revealed (partial) p-value P 1

g is the
smallest (not using the covariates); and the interactive procedure selects the subgroup by an estimated
probability of the P 2

g to be positive (using the revealed P 1
g , the covariates, and the outcomes).
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Figure 58: Power of two methods for subgroup identification: the BH procedure proposed by Karmakar
et al. [2018], the adaptive procedure, and the interactive procedure under different types of treatment
effect (we define 80 subgroups by discrete values of the covariates). Our proposed interactive procedure
tends to have higher power than the BH procedure because (1) it excludes possible nulls (shown by
higher power of the adaptive procedure than the BH procedure in both plots); and (2) it additionally uses
the covariates (shown when the treatment effect can be well learned as a function of covariates in the
right plot).

To see if both properties of Algorithm 14 contribute to the improvement of power from the BH
procedure, we tested the methods under two simulation settings. Recall that the previous experiment
defines a positive treatment effecte when the discrete covariate Xi(1) ∈ {1, . . . , 40} is even. Here,
we add another case where the treatment effect is positive when Xi(1) ≤ 20, so that the density of
subgroups with positive effects is the same as previous, but the treatment effect is a simpler function of
the covariates. Hence in the latter case, we would expect the interactive procedure learn this function of
covariates rather accurately, and have higher power than the adaptive procedure which does not use the
covairates; as confirmed in Figure 58b. In the former simulation setting where the treatment effect is
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not a smooth function of the covariates and hard to be learned, the adaptive procedure and interactive
procedure have similar power (Figure 58a). Still, they have higher power than the BH procedure because
they exclude possible null subgroups.

D.1.2 An automated algorithm with FDR control on nonpositive effects

We have proposed the MaY-I3 to guarantee a valid FDR control for the nonpositive-effect null in (111),
by reducing the available information for selecting subjects from Ft−1(I) for the Crossfit-I3 to F−Yt−1(I)
(recall it no longer includes the outcomes of candidate subjects). Here, we present an automated
algorithm to select a subject for the MaY-I3.

One naive strategy is to follow Algorithm 11 in the main paper, which is designed for the Crossfit-I3,
with the outcomes removed from the predictors; however, it appears to result in less accurate prediction of
the effect signs, and in turn rather low power (numerial results are in the next paragraph). Here, we take
a different approach by predicting the treatment effect instead of their signs, because the treatment effect
might be better predicted as a function of the covariates (without outcomes) than a binary sign, especially
when the treatment effect is indeed a smooth and simple function of the covariates. Specifically, we
first estimate the treatment effect for the non-candidate subjects j /∈ Rt−1(I) using a well-studied
doubly-robust estimator (see Kennedy [2020] and references therein):

∆DR
j = 4(Aj − 1/2) · (Yj − µ̂A(Xj)) + µ̂1(Xj)− µ̂0(Xj), (200)

where (µ̂0, µ̂1) are random forests trained to predict the outcomes for the control and treated group,
respectively. Using the provided covariates Xi, we can predict ∆DR

i for the candidate subjects i ∈
Rt−1(I). The subject with the smallest prediction of ∆DR

i is then excluded. This automated strategy is
described in Algorithm 16.

Algorithm 16 An automated heuristic to select i∗t in the MaY-I3.

Input: Current rejection setRt−1(I), and available information for selection F−Yt−1(I);
Procedure:
1. Estimate the treatment effect for non-candidate subjects j /∈ Rt−1(I) as ∆DR

j in (200);
2. Train a random forest where the label is the estimated effect ∆DR

j and the predictors are the
covariates Xj , using non-candidate subjects j /∈ Rt−1(I);
3. Predict ∆DR

i for candidate subjects i ∈ Rt−1(I) via the above random forest, denoted as ∆̂DR
i ;

4. Select i∗t as argmin{∆̂DR
i : i ∈ Rt−1(I)}.

To summarize, we have presented two types of strategy for selecting subjects: the Crossfit-I3 chooses
the one with the smallest predicted probability of a positive ∆̂i (see Algorithm 11 in the main paper),
which we denote here as the min-prob strategy; and the MaY-I3 chooses the one with the smallest
prediction of estimated effect ∆DR

j (see Algorithm 16), which we denote here as the min-effect strategy.
Note that the proposed interactive algorithm can use arbitrary strategy as long as the available information
for selection is restricted. That is, the Crossfit-I3 can use the same min-effect strategy, and the MaY-I3

can use the min-prob strategy (after removing the outcomes from the predictors, which we elaborate in
the next paragraph). However, we observe in numerical experiments that both interactive procedures
have higher power when using their original strategies, respectively (see Figure 59).

Before details of the experiment results, We first describe the min-prob strategy for the MaY-I3,
where the available information F−Yt−1(I) does not include the outcomes for candidate subjects. Similar
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to the min-prob strategy in Algorithm 11 of the main paper, we hope to use the outcome Yi and
residual Ei = Yi − m̂(Xi) as predictors, and predict the sign of treatment effect for candidate subjects
i ∈ Rt−1(I), but Yi and Ei for the candidate subjects are not available in F−Yt−1(I). Thus, we propose
algorithm 17, where we first estimate Yi and Ei using the covariates (see step 1-2); and step 3-5 are
similar to Algorithm 11, which obtain the probability of having a positive treatment effect.

Algorithm 17 The min-prob strategy to select i∗t in the MaY-I3.

Input: Current rejection setRt−1(I), and available information for selection F−Yt−1(I);
Procedure:
1. Predict the outcome Yk of each subject k ∈ [n] by covariates, denoted as Ŷ −I(Xk), where Ŷ −I is
learned using non-candidate subjects j /∈ Rt−1(I);
2. Predict the residual Ek = Yk − m̂(XK) of each subject k ∈ [n] by covariates, denoted as Ê−I(Xk),
where Ê−I is learned using non-candidate subjects j /∈ Rt−1(I);
3. Train a random forest classifier where the label is sign(∆̂j) and the predictors are(
Ŷ −I(Xj), Xj, Ê

−I(Xj)
)

, using non-candidate subjects j /∈ Rt−1(I);

4. Predict the probability of ∆̂i being positive as p̂(i, t) for candidate subjects i ∈ Rt−1(I);
5. Select i∗t = argmin{p̂(i, t) : i ∈ Rt−1(I)}.
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Figure 59: Power of the Crossfit-I3 and MaY-I3 with two strategies to select subjects: the min-prob
strategy and the min-effect strategy, under the treatment effect defined in (110) of the main paper with the
scale S∆ varies in {0, 1, 2, 3, 4, 5}. The Crossfit-I3 tends to have higher power when using the min-prob
strategy, and the MaY-I3 tends to have higher power when using the min-effect strategy.

The Crossfit-I3 has higher power when using the min-prob strategy than the min-effect strategy
because the former additionally uses the outcome as a predictor. For the MaY-I3, the min-effect strategy
leads to higher power because the estimated treatment effect ∆DR

j in (200) can provide reliable evidence
of which subjects have a positive effect. If using the min-prob strategy, it could be harder to learn an
accurate prediction by Algorithm 17 where two of the predictors Ŷ −I(Xj) and Ê−I(Xj) are obtained
by estimation, increasing the complexity in modeling. Therefore, we present the Crossfit-I3 and MaY-
I3 with the min-prob and min-effect strategies, respectively, as preferred in numerical experiments.
Nonetheless, we remark that our proposed interactive frameworks for the Crossfit-I3 and MaY-I3 allow
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arbitrary strategies to select subjects, and an analyst can design her own strategy based on her domain
knowledge.

D.1.3 FDR control of nonpositive effects for paired samples

Recall the nonpositive-effect null under paired samples:

H (nonpositive, paired)
0i : (Yij | Aij = 1, Xij) � (Yij | Aij = 0, Xij) for both j = 1, 2,

and we observe that
P(∆̂paired

i > 0 | {Xj1, Xj2}nj=1) ≤ 1/2, (201)

where ∆̂paired
i is defined in (134) of the main paper. Thus, the MaY-I3 with ∆̂i replaced by ∆̂paired

i has
valid FDR control for the nonpositive-effect null, where the analyst progressively excludes pairs using
the available information:

F−Y,paired
t−1 = σ

{Xi1, Xi2}i∈Rt−1 , {Yj1, Yj2, Aj1, Aj2, Xj1, Xj2}j /∈Rt−1 ,
∑

i∈Rt−1(I)

1{∆̂paired
i > 0}

 .

We can also implement an automated version of the MaY-I3 where the selection of the excluded subject
follows a similar procedure as Algorithm 16. The difference is that in step 1, we estimate the treatment
effect for non-candidate subjects j /∈ R(I) directly as ∆̂paired

i ≡ (Ai1 − Ai2)(Yi1 − Yi2) instead of ∆DR
i

to avoid estimating outcomes in (µ̂0, µ̂1).

D.2 Proof of FDR control with 1/2 propensity scores
The proofs are based on an optional stopping argument, as a variant of the ones presented in Lei and
Fithian [2018], Lei et al. [2020], Li and Barber [2017] and Barber and Candès [2015].
Lemma 9 (Lemma 2 of Lei and Fithian [2018]). Suppose that, conditionally on the σ-field G−1,
b1, . . . , bn are independent Bernoulli random variables with

P(bi = 1 | G−1) = ρi ≥ ρ > 0, almost surely.

Let (Gt)∞t=0 be a filtration with G0 ⊂ G1 ⊂ . . . and suppose that [n] ⊇ C0 ⊇ C1 ⊇ . . ., with each subset
Ct+1 measurable with respect to Gt. If we have

Gt = σ

(
G−1, Ct, (bi)i/∈Ct ,

∑
i∈Ct

bi

)
, (202)

and τ is an almost-surely finite stopping time with respect to the filtration (Gt)t≥0, then

E

[
1 + |Cτ |

1 +
∑

i∈Cτ bi

∣∣∣∣∣G−1

]
≤ ρ−1.
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D.2.1 Proof of Theorem 10

Proof. We show that the I3 controls FDR by Lemma 9, where

bi := 1{(Ai − 1/2) · Ei ≤ 0} and G−1 := σ
(
{Yj, Xj}nj=1

)
and Ct := Rt ∩H0,

for t = 0, 1, . . .. The assumptions in Lemma 9 are satisfied: (a) P(bi = 1 | G−1) ≥ 1/2 for subjects with
zero effect i ∈ H0:

P ((Ai − 1/2) · Ei ≤ 0 | G−1)

= P(Ai = 1)1(Ei ≤ 0 | G−1) + P(Ai = 0)1(Ei ≥ 0 | G−1),

because Ai is independent of G−1

= 1/2 [1(Ei ≤ 0 | G−1) + 1(Ei ≥ 0 | G−1))] ≥ 1/2;

and (b) the filtration in our algorithm satisfies Ft ⊆ Gt, so the time of stopping the algorithm t̂ :=

min{t : F̂DR(Rt) ≤ α} is a stopping time with respect to Gt; and (c) Ct+1 is measurable with respect to
Gt. Thus, by Lemma 9, expectation, we have

E

[
1 + |Rt̂ ∩H0|
1 + |R−

t̂
∩H0|

∣∣∣ G−1

]
≤ 2,

By definition, the FDR conditional on G−1 at the stopping time t̂ is

E

[
|R+

t̂
∩H0|

max{|R+

t̂
|, 1}

∣∣∣ G−1

]
= E

[
1 + |R−

t̂
∩H0|

max{|R+

t̂
|, 1}

·
|R+

t̂
∩H0|

1 + |R−
t̂
∩H0|

∣∣∣ G−1

]

≤ E

[
F̂DR(Rt̂) ·

|R+

t̂
∩H0|

1 + |R−
t̂
∩H0|

∣∣∣ G−1

]
≤ αE

[
|R+

t̂
∩H0|

1 + |R−
t̂
∩H0|

∣∣∣ G−1

]

= αE

[
1 + |Rt̂ ∩H0|
1 + |R−

t̂
∩H0|

− 1
∣∣∣ G−1

]
≤ α,

and the proof completes by applying the tower property of conditional expectation.
Notice that when the potential outcomes are treated as fixed, the same proof applies to the null defined

as Y T
j = Y C

j , because the independence betweenAi and G−1 still holds for the nulls. In the hybird version
of the null (98) in the main paper, the above proof applies with G−1 := σ

(
{Yj, Y T

j , Y
C
j , Xj}nj=1

)
. Thus,

FDR is controlled at level α conditional on the potential outcomes and covariates {Y T
j , Y

C
j , Xj}nj=1.

D.2.2 Proof of Theorem 11

Proof. Let the set of false rejections inR(I) be V(I). We conclude that the FDR of the I3 implemented
on set I is controlled at level α/2:

E
[

|V(I)|
max{|R(I)|, 1}

∣∣∣ G−1

]
≤ α/2,

following the error control of the I3 in Section D.2.1, where the initial candidate rejection set is R0 = I ,
and thus, C0 = I ∩ H0. Similarly, the FDR of the I3 implemented on set II is also controlled at level
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α/2. Therefore, the FDR of the combined setR(I) ∪R(II) is controlled at level α as claimed:

E
[

|V(I) ∪ V(II)|
|R(I) ∪max{|R(II)|, 1}

∣∣∣ G−1

]
≤ E

[
|V(I)|

|R(I) ∪max{|R(II)|, 1}

∣∣∣ G−1

]
+ E

[
|V(II)|

|R(I) ∪max{|R(II)|, 1}

∣∣∣ G−1

]
≤ E

[
|V(I)|

max{|R(I)|, 1}

∣∣∣ G−1

]
+ E

[
|V(II)|

|max{|R(II)|, 1}

∣∣∣ G−1

]
≤ α,

the proof completes for the null (96) in the main paper after applying the tower property of conditional
expectation. The FDR control also applies to the other two definitions of the null (97) and (98) in the
main paper, following the same arguments as the end of Section D.2.1.

D.2.3 Proof of Theorem 14

Proof. We prove that the FDR control holds for the I3 implemented on I , and the same conclusion applies
to II, so the overall FDR control is guaranteed following the proof of Theorem 11 in Section D.2.2.

We first present the proof when the potential outcomes are viewed as random variables. Define
G−1 := σ

(
{Xi}ni=1 , {Yi, Ai}i/∈I

)
, and G ′t = σ

(
G−1, Ct, (Yi, Ai)i/∈Ct ,

∑
i∈Ct bi

)
, which contains more

information than Gt as defined in (202). We claim that Lemma 9 holds when we replace Gt by G ′t, because
the distribution of bi conditional on Gt is the same as on G ′t for any t = 0, . . . , n. Similar to the proof of
Theorem 10 in Section D.2.1, we check that the assumption in Lemma 9 are satisfied: (a) the filtration in
our algorithm satisfies Ft ⊆ G ′t, so the time of stopping the algorithm t̂ := min{t : F̂DR(Rt) ≤ α} is a
stopping time with respect to G ′t; and (b) Ct+1 is measurable with respect to G ′t; and (c) for subjects with
nonpositive effect i ∈ Hnonpositive

0 :

P
(
(Ai − 1/2) · E−Ii ≤ 0 | G−1

)
≥ 1/2. (203)

To see that the last assumption holds, notice that

P
(
(Ai − 1/2) · (Yi − m̂−I(Xi)) ≤ 0 | G−1

)
= P(Y C

i ≥ m̂−I(Xi) | G−1)P(Ai = 0) + P(Y T
i ≤ m̂−I(Xi) | G−1)P(Ai = 1); and

P
(
(Ai − 1/2) · (Yi − m̂−I(Xi)) > 0 | G−1

)
= P(Y C

i < m̂−I(Xi) | G−1)P(Ai = 0) + P(Y T
i > m̂−I(Xi) | G−1)P(Ai = 1).

For any potential outcomes of the nulls such that (Y T
i | Xi) � (Y C

i | Xi), it holds that

P(Y T
i ≤ D | Xi) ≥ P(Y C

i < D | Xi), and P(Y C
i ≥ D | Xi) ≥ P(Y T

i > D | Xi),

for any constant D, so

P(Y T
i ≤ m̂−I(Xi) | G−1) ≥ P(Y C

i < m̂−I(Xi) | G−1), and

P(Y C
i ≥ m̂−I(Xi) | G−1) ≥ P(Y T

i > m̂−I(Xi) | G−1),

because m−I(Xi) is fixed given G−1. Combined with the fact that P(Y T
i ≤ m̂−I(Xi) | G−1) + P(Y C

i <
m̂−I(Xi) | G−1) + P(Y C

i ≥ m̂−I(Xi) | G−1) + P(Y T
i > m̂−I(Xi) | G−1) = 2, we conclude that

P(Y C
i < m̂−I(Xi) | G−1) + P(Y T

i > m̂−I(Xi) | G−1) ≤ 1. (204)
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Thus, we have

P
(
(Ai − 1/2) · (Yi − m̂−I(Xi)) > 0 | G−1

)
≤ 1/2P(Y C

i < m̂−I(Xi) | G−1) + P(Y T
i > m̂−I(Xi) | G−1)) ≤ 1/2,

which proves Claim (203) and in turn the FDR control of the MaY-I3.
When the potential outcomes are treated as fixed, the above proof applies to the null defined as

Y T
i ≤ Y C

i in (112) of the main paper, in which case P(Y C
i ≥ D | G−1) is zero or one, and the above

arguments still hold. For the hybird version of the null (113) in the main paper, the above proof applies
with G−1 := σ

({
Y T
i , Y

C
i , Xi

}n
i=1

, {Yi, Ai}i/∈I
)
. Thus, FDR is controlled at level α conditional on the

potential outcomes and covariates {Y T
j , Y

C
j , Xj}nj=1.

D.2.4 Error control guarantee for the linear-BH procedure

Theorem 20. Suppose the outcomes follow a linear model: Yi = l∆(Xi)Ai + lf (Xi) + Ui, where l
denotes a linear function, and Ui is standard Gaussian noise. The linear-BH procedure controls FDR of
the nonpositive-effect null in (111) of the main paper asymptotically as the sample size n goes to infinity.

Note that the error control would not hold when the linear assumption is violated. For example, if the
expected treatment effect E(Y T

i − Y C
i | Xi) is some nonlinear function of the covariates, the estimated

treatment effect ∆̂BH
i would not be consistent; in turn, for the null subjects with zero effect, the p-values

would not be valid (i.e., not stochastically equal or larger than uniform). Hence, the linear-BH procedure
would not guarantee the desired FDR control, as we show in the numerical experiments in Section 5.3 of
the main paper.

Proof. For simplicity, we treat all the covariates as fixed values and denote them as the covariance
matrix Xa = (Xi : Ai = a)T for a ∈ {T,C}, where we temporarily use Ai = T to denote the case of
being treated Ai = 1. Under the linear assumption, the estimated outcome l̂a asymptotically follows a
Gaussian distribution, whose expected value is l∆(Xi)1{a = T}+ lf (Xi). Its variance can be estimated
as

V̂ar(l̂a(Xi)) = σ̂2
a(X

T
i (XT

aXa)
−1XT

i ),

where the variance from noise is estimated as

σ̂2
a =

∑
Ai=a

(Yi − l̂a(Xi))
2

/(∑
i

1{Ai = a} − d− 1

)
,

and d is the number of covariates. Note that the observed outcome also follows a Gaussian distribution
N(l∆(Xi)1{a = T}+ lf (Xi), σ

2
a). Note that in each estimated effect ∆̂BH

i , the observed outcome Y a
i is

independent of the estimated potential outcome Y a
i , where a is the complement of a: a ∪ a = {T,C}.

Thus, the estimated effect asymptotically follow a Gaussian distribution whose expected value is l∆(Xi)

(nonpositive under the null) and the variance is Var(∆̂BH
i ) = Var(Ỹ T

i ) + Var(Ỹ C
i ), where an estimation

is V̂ar(Ỹ a
i ) = σ̂2

a1{Ai = a} + V̂ar(l̂a(Xi))1{Ai = a}. Therefore, the resulting p-value Pi as defined
in (109) of the main paper is asymptotically valid (uniform or stochastically larger) if subject i is a null,
and hence the BH procedure leads to asymptotic FDR control [Fan et al., 2007].
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D.3 Proof of FDR control under heterogeneous propensity score
Lemma 10. Let qi be the conditional probability of a positive estimated sign:

qi(I) := P [(Ai − 1/2) · Ei > 0 | F0(I)] ,

and the maximum among the nulls i ∈ I ∩ H0 be qmax(I) := maxi∈I qi(I). Denote an estimation
of qmax(I) using information in F0(I) be q̂max(I), and the (one-sided) estimation error be εqn(I) =
max {qmax(I)− q̂max(I), 0}. For the I3 on set I, redefine the FDR estimator as

F̂DR(Rt(I)) ≡
(

1

1− q̂max(I)
− 1

)
|R−t (I)|+ 1

|R+
t (I)| ∨ 1

,

and stop the algorithm at τ := inf{t : F̂DR(Rt(I)) ≤ α/2}. Then, FDR for R+
τ (I) on set I is

bounded:

E
[
|R+

τ (I) ∩H0|
|R+

τ (I)| ∨ 1

∣∣∣F0(I)

]
≤ α/2

{
1 + εqn(I) · 1

qmax(I)(1− qmax(I))

}
.

Same conclusion applies to the MaY-I3 with residual E−Ii and σ-field F−Y0 (I).

Proof. By Lemma 9 where

bi := 1{(Ai − 1/2) · Ei ≤ 0} and Ct := Rt ∩H0,

we have

E
[

1 + |Rτ (I) ∩H0|
1 + |R−τ (I) ∩H0|

∣∣∣F0(I)

]
≤ 1

1− qmax(I)
,

by Appendix D.2.2 (and D.2.3 for MaY-I3). The FDR at τ is upper bounded:

E
[
|R+

τ (I) ∩H0|
|R+

τ (I)| ∨ 1

∣∣∣F0(I)

]
= E

[
1 + |R−τ (I) ∩H0|
|R+

τ (I)| ∨ 1
· |R

+
τ (I) ∩H0|

1 + |R−τ (I) ∩H0|

∣∣∣F0(I)

]
≤ α/2

(
1

1− q̂max(I)
− 1

)−1

E
[
|R+

τ (I) ∩H0|
1 + |R−τ (I) ∩H0|

∣∣∣F0(I)

]
≤ α/2

(
1

1− q̂max(I)
− 1

)−1(
1

1− qmax(I)
− 1

)
.

By Taylor expansion, FDR is close to the target level when qmax(I)− q̂max(I) is small:

E
[
|R+

τ (I) ∩H0|
|R+

τ (I)| ∨ 1

∣∣∣F0(I)

]
≤ α/2

{(
1

1− qmax(I)
− 1

)−1

+ εqn(I)

(
1

qmax(I)

)2
}(

1

1− qmax(I)
− 1

)
= α/2

{
1 + εqn(I)

1

qmax(I)(1− qmax(I))

}
.

Same proof applies to the MaY-I3 with residual E−Ii and σ-field F−Y0 (I); thus complete the proof.
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D.3.1 Proof of Theorem 15

Proofs of the Crossfit-I3
π∗ and MaY-I3

π∗ under heterogeneous propensity scores with known bounds.

Proof. We prove FDR control by Lemma 10, where we claim qmax(I) = q̂max(I) = max{1 −
πmin, πmax} (and thus εqn(I) = 0).

For the Crossfit-I3
π∗ , the probability of probability of a positive sign of the estimated treatment effect

qi for a null is

qi := P ((Ai − 1/2) · Ei > 0 | F0) = πiP(Ei > 0 | F0) + (1− πi)P(Ei < 0 | F0)

≤ max{1− πi, πi} ≤ max{1− πmin, πmax},

where the second equation holds because (Ei ⊥⊥ Ai | F0) for the nulls.
For the MaY-I3

π∗ , the probability of probability of a positive sign of the estimated treatment effect qi
for a null is

qi := P
(
(Ai − 1/2) · E−Ii > 0 | F−I0

)
= P(Y C

i < m̂−I(Xi) | F−I0 )P(Ai = 0) + P(Y T
i > m̂−I(Xi) | F−I0 )P(Ai = 1)

≤ max{P(Ai = 0),P(Ai = 1)}(P(Y C
i < m̂−I(Xi) | F−I0 ) + P(Y T

i > m̂−I(Xi) | F−I0 ))

≤ max{P(Ai = 0),P(Ai = 1)} ≤ max{1− πmin, πmax},

where the second to last inequality is proved in (204). The proof completes because a valid upper bound
on qi is qmax(I) = max{1− πmin, πmax}, which also equals to q̂max(I).

D.3.2 Proof of Theorem 16

Proof. Following the notations in Lemma 10, we have qmax(I) = max{1− πmin(I), πmax(I)} proved
in D.3.1, and that q̂max(I) = max{1− π̂min(I), π̂max(I)}. We claim that εqn(I) ≡ qmax(I)− q̂max(I) ≤
επn(I), which is trivial when qmax(I) = πmax(I) and q̂max(I) = π̂max(I), or when qmax(I) = 1−πmin(I)
and q̂max(I) = 1− π̂min(I). When qmax(I) = πmax(I) and q̂max(I) = 1− π̂min(I), we have qmax(I)−
q̂max(I) ≤ πmax(I) − π̂max(I) ≤ επn(I). When qmax(I) = 1 − πmin(I) and q̂max(I) = π̂max(I), we
have qmax(I) − q̂max(I) ≤ πmax(I) − π̂max(I) ≤ επn(I); thus proves the above claim. Therefore, by
Lemma 10, we have

E
[
FDPπ̂

τ (I)
]
≤ α/2

{
1 + EF0(I)

[
εqn(I) · 1

qmax(I)(1− qmax(I))

]}
,

and the proof completes by adding E
[
FDPπ̂

τ (I)
]

and E
[
FDPπ̂

τ (II)
]

together. The above proof holds
for both the Crossfit-I3

π̂ for the zero-effect null, and the MaY-I3
π̂ for the nonpositive-effect null.

D.3.3 Proof of Theorem 17

Proof. Following the notations in Lemma 10, we first claim that qmax(I) as defined in (129) is a valid
upper bound on qi(I). For a subject i with the zero-effect null that

qi(I) := P
(
(Ai − 1/2) · (Yi − m̂−I(Xi)) > 0 | F−Y0 (I)

)
= πiP(Yi − m̂−I(Xi) > 0 | F−Y0 (I)) + (1− πi)P(Yi − m̂−I(Xi) < 0 | F−Y0 (I)),

where P(Yi − m̂(xi) > 0 | F−Y0 (I)) can be separated from P(Ai − 1/2 > 0 | F−Y0 (I)) because
they are independent under the zero-effect null. Also, note that qi(I) ≤ max{πi, 1 − πi} because
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P(Yi− m̂−I(xi) > 0 | F−Y0 (I)) +P(Yi− m̂−I(xi) < 0 | F−Y0 (I)) ≤ 1, and also qi(I) ≤ max{P(Yi−
m̂−I(xi) > 0 | F−Y0 (I)),P(Yi − m̂−I(xi) < 0 | F−Y0 (I))} because πi + 1− πi = 1. Thus,

qi(I) ≤ min
{

max{πi, 1− πi},max{P(Yi − m̂−I(xi) > 0 | F−Y0 (I)),P(Yi − m̂−I(xi) < 0 | F−Y0 (I))}
}

≤ min
{

max{πmax(I), 1− πmin(I)},max{Φmax

[
εYn (I)

]
, 1− Φmin

[
−εYn (I)

]
}
}
≡ qmax(I).

Next, we prove that the estimation error qmax(I)−q̂max(I), where q̂max(I) = max{1−π̂min(I), π̂max(I)},
is upper bounded by εqn(I) as defined in (130). For concise notations, we define a difference

d(I) := max{πmax(I), 1− πmin(I)} −max{Φmax

[
εYn (I)

]
, 1− Φmin

[
−εYn (I)

]
},

which takes large value if the propensity scores deviate from 1/2 (and smaller value if εYn (I) is large).
The upper bound on the estimation error of qmax(I) depends on d(I):

if d(I) ≤ 0 :

qmax(I)− q̂max(I) = max{πmax(I), 1− πmin(I)} −max{1− π̂min(I), π̂max(I)} ≤ επn(I); and
if d(I) > 0 :

qmax(I)− q̂max(I) = max{Φmax

[
εYn (I)

]
, 1− Φmin

[
−εYn (I)

]
} − −max{1− π̂min(I), π̂max(I)}

= − d(I) + max{πmax(I), 1− πmin(I)} −max{1− π̂min(I), π̂max(I)}
≤ επn(I)− d(I),

where recall επn(I) in (123) and the first inequality is proved in Appendix D.3.2. The above bound can
be written in one line as

qmax(I)− q̂max(I) ≤ επn(I)−max {0, d(I)} ≡ εqn(I).

By Lemma 10, we have

E
[
FDPπ̂

τ (I)
]
≤ α/2

{
1 + EF0(I)

[
εqn(I)

(
1

qmax(I)(1− qmax(I))

)]}
,

and the proof completes by adding E
[
FDPπ̂

τ (I)
]

and E
[
FDPπ̂

τ (II)
]

together.

D.3.4 Double robustness for the nonpositive-effect null

The proof in Appendix D.3.3 can be applied to the nonpositive-effect null with a few changes. Notice
that for a subject with nonpositive-effect null, we have

qi(I) := P
(
(Ai − 1/2) · (Yi − m̂−I(Xi)) > 0 | F−Y0 (I)

)
= πiP(Y T

i − m̂−I(xi) > 0 | F−Y0 (I)) + (1− πi)P(Y C
i − m̂−I(xi) < 0 | F−Y0 (I))

≤ πiP(Y C
i − m̂−I(xi) > 0 | F−Y0 (I)) + (1− πi)P(Y C

i − m̂−I(xi) < 0 | F−Y0 (I)),

where the last inequality uses the definition of the nonpositive-effect null. Thus, intuitively, the error
would be small if m−I(xi) approximates E(Y C

i |Xi), and we define εY cn (I) = maxi∈I |m̂−I(Xi) −
E(Y C

i |Xi)|. Similar to Φi(ε) in (127), define a “centered” CDF for the control outcome

Φc
i(ε) := P(Y c

i − E(Y c
i | {Xi}ni=1) ≤ ε | {Xi}ni=1),
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and for a fixed ε, denote the lower and upper bounds as Φc
min(ε) := mini∈[n] Φc

i(ε) and Φc
max(ε) :=

maxi∈[n] Φc
i(ε). By the same arguments as in Appendix D.3.3, We can upper bound qi(I) as

qi(I) ≤ min
{

max{πmax(I), 1− πmin(I)},max
{

Φc
max

[
εY

c

n (I)
]
, 1− Φc

min

[
−εY cn (I)

]}}
,

and the double robustness claim in Theorem 17 holds when the estimation error bound εqn(I) is redefined
as

εqn(I) :=

επn(I)−max
{

0,max{πmax(I), 1− πmin(I)} −max
{

Φc
max

[
εY

c

n (I)
]
, 1− Φc

min

[
−εY cn (I)

]}}
.

(205)

However, it is harder to take advantage of the double robustness for the nonpositive-effect null when the
propensity scores are not well-estimated. Recall that m̂−I(xi) is an estimation for E(Yi | Xi), which
can be vastly different from the expected control outcome if subject i has a negative effect. (We can
construct m̂−I(xi) as an estimation of the expected control outcome in order to achieve doubly robust
FDR control when the propensity scores are not well-estimated, but it would lead to nearly zero power
for correctly identify positive effects.)

D.4 Proof of power analysis
Our proof of the power analysis mainly uses the results in Arias-Castro and Chen [2017], who consider
the setup with n hypotheses, each associated with a test statistic Vi for i ∈ [n]. Assume the test statistics
are independent with the survival function P(Vi ≥ x) = Ψi(x), which equals Ψ(x− µi) where µi = 0
under the null and µi > 0 otherwise. They focus on a class of distribution called asymptotically
generalized Gaussian (AGG), whose survial function satisfies:

lim
x→∞

x−γ log Ψ(x) = −1/γ, (206)

with a constant γ > 0. For example, a normal distribution is AGG with γ = 2. They discuss a class of
multiple testing methods called threshold procedure: the final rejection setR is in the form

R = {i : Vi ≥ τ(V1, . . . , Vn)}, (207)

for some threshold τ(V1, . . . , Vn), and separately study two types of thresholds: the BH procedure
[Benjamini and Hochberg, 1995] with threshold:

τBH = V(ιBH), ιBH := max{i : V(i) ≥ Ψ−1(iα/n)}, (208)

where V(1) ≥ . . . ≥ V(n) are ordered statistics; and the Barber-Cand‘es (BC) procedure [Barber and
Candès, 2015] with a threshold on the absolute value of Vi:

τBC = inf{ν ∈ |V| : F̂DP(ν) ≤ α}, (209)

where |V| := {|Vi| : i ∈ [n]} is the set of sample absolute values, and

F̂DP(ν) :=
|{i : Vi ≤ −ν}|+ 1

max{|{i : Vi ≥ ν}|, 1}
,
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and the final rejection set is those with positive Vi and value larger than τBC. The stopping rule for the
BC procedure is similar to our proposed algorithms, as detailed next.

Recall in Section 5.4 of the main paper, we consider a simplified automated version of the I3 that
exclude the subject with the smallest absolute value of the estimated treatment effect |∆̂i|. Thus, the
automated I3 is a BC procedure where the test statistic of interest is Vi = ∆̂i = 4(Ai−1/2)(Yi−m̂n(Xi)).
Following the above notations and let Φ be the CDF for standard Gaussian, we denote the survival
function for the nulls as

Ψnull
n (x) =

1

2
(1− Φ(x+ m̂n)) +

1

2
(1− Φ(x− m̂n)),

which is a mixture of two Gaussians, with m̂n = 1
n

∑n
i=1 Yi, and m̂n

a.s.→ 0 by the strong law of large
numbers. For the non-nulls, the survival function is

Ψnon-null
n (x) =

1

2
(1− Φ(x+ m̂n − µ)) +

1

2
(1− Φ(x− m̂n)).

Note that our setting is slightly different from the discussion in Arias-Castro and Chen [2017] because
the non-nulls differ from the nulls by a shift on one of the Gaussian component (rather than a shift in the
overall survival function Ψnull

n ). Similar to the characterization by AGG in (206), both survival functions
Ψnull
n and Ψnon-null

n asymptotically satisfy a tail property that for any xn →∞ as n→∞:

lim
n→∞

x−γn log Ψn(xn) = −1/γ, (210)

with probability one and γ = 2, which we later refer to as asymptotic AGG. Conclusions in our paper
basically follows the proofs in Arias-Castro and Chen [2017] with the test statistics Vi specified as the
estimated treatment effect ∆̂i.

D.4.1 Proof of Theorem 12

We first present the proof for the power of the automated Crossfit-I3, and the power of the linear-BH is
proven similarly as shown later.

Proof. Zero power when r < β. The argument of zero power indeed applies to any threshold procedure
as defined in (207): R = {i : ∆̂i ≥ d}, for some d ∈ R. Following the proof of Theorem 1 in Arias-
Castro and Chen [2017], we argue that the FDR control cannot be satisfied for any α ∈ (0, 1) unless the
threshold d is large enough such that d > µ+ δn with δn = log log n; but in this case, most non-nulls
cannot be included in the rejection set, and thus the power goes to zero.

First, we claim that when d ≤ µ+ δn, the false discovery proportion (FDP) goes to one in probability.
By the proof of Theorem 1 in Arias-Castro and Chen [2017], we have that FDP goes to one in probability
if (n−n1)Ψnull

n (µ+δn)
n1

→ ∞ with probability one, where n1 is the number of non-nulls. Their proof also

verifies that (n−n1)Ψnull
n (µ+δn)
n1

→∞ because Ψnull
n satisfies property (210) with probability one.

Next, we show that when d > µ+ δn, the power goes to zero. Notice that power can be equivalently
defined as E(1− FNR), where FNR (false negative rate) is defined as the proportion of non-nulls not
identified. Again by the proof of Theorem 1 in Arias-Castro and Chen [2017], we have that the FNR
converge to one in probability if Ψnon-null

n (µ+ δn) goes to zero with probability one, which is true because
δn →∞.

Combining the above two arguments, we conclude that for any threshold procedure whose rejection
set is in the form of (207), the power goes to zero for any FDR control α ∈ (0, 1) when r < β.
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Note that the above proof assumes that the test statistics Vi = ∆̂i are mutually independent. For
simplicity, we design the Crossfit-I3 where m̂n for the I3 implemented on I is computed using data in
II, to ensure the above mutual independence. Thus, the above proof applies to the I3 implemented on
each half, I and II. The overall power behaves the same asymptotically, since I and II result from
a random split of all subjects [n]. For all cases hereafter, we prove the power claim for the I3 imple-
mented on I conditional on data in II , and the same claim holds for the overall power as reasoned above.

Half power when r > β. We first prove the limit inferior of the power is at least 1/2, and then the limit
superior is at most 1/2, mainly using the proof of Theorem 3 in Arias-Castro and Chen [2017].

They consider a sequence of thresholds d∗n = (γr∗ log n)1/γ for some r∗ ∈ (β, r ∧ 1). We first claim
that the FDR estimator at d∗n is less than any α ∈ (0, 1) for large n, or mathematically F̂DR(d∗n) ≤ α. It
can be verified by the proof of Theorem 3 in Arias-Castro and Chen [2017] where the survival function of
∆̂i is G(d∗n) = (1− ε)Ψnull

n (d∗n) + εΨnon-null
n (d∗n) with ε = n−β , and the fact that Ψnon-null

n (d∗n)→ 1/2 and
Ψnull
n (d∗n)→ n−r

∗ (by property (210)) with probability one. It follows that the true stopping threshold
τn satisfies τn ≤ d∗n. Also, by Lemma 1 in Arias-Castro and Chen [2017], we have that the proportion
of correctly identified non-nulls at threshold d∗n is 1

n1

∑
i/∈H0

1{∆̂i ≥ d} = Ψnon-null
n (d∗n) + oP(1), where

Ψnon-null
n (d) decreases in d and converges to 1/2 when d = d∗n. Recall that the true stopping threshold is

no larger than d∗n, so the limit inferior of the power is at least 1/2.
The power converges to 1/2 once we show that the limit superior of the power is at most 1/2.

Consider a positive constant d0 ∈ (0,∞), and we claim that the actual stopping threshold τn ≥ d0 for
large n because the FDR estimator goes to one, following similar arguments in the proof of Theorem 3
in Arias-Castro and Chen [2017]. Specifically,

F̂DR(d0) ≡ |{i ∈ [n] : ∆̂i ≤ −d0}|+ 1

max{|{i ∈ [n] : ∆̂i ≥ d0}|, 1}
=

1 + n(1− Ĝn(−d0))

max{nĜn(d0), 1}
,

where Ĝn(d0) = 1
n

∑
i∈[n] 1(∆̂i ≥ d0) denotes the empirical survival function. Use the fact that

Gn(d0) = (1−ε)Ψnull
n (d0)+εΨnon-null

n (d0)→ 1−Φ(d0) andGn(−d0)→ Φ(d0) almost surely, we observe
that F̂DR(d0)→ 1 with probability one. Also, the proportion of correctly identified non-nulls at threshold
d0 is Ψnon-null

n (d0)+oP(1) (recall in the previous paragraph), where Ψnon-null
n (d0)→ 1/2+1/2(1−Φ(d0)).

Thus, the power for large n is smaller than 1/2 + 1/2(1− Φ(d0)) for all d∗ ∈ (0,∞); in other words,
the limit superior of the power is smaller than infd∈(0,∞) 1/2 + 1/2(1− Φ(d∗)) = 1/2.

With the limit inferior and superior of the power bounded by 1/2, we conclude that the power
converges to 1/2. In fact, the above proof implies that the power of identifying non-null subjects that are
treated is one (notice that Ψnon-null, treated

n (d∗n) = 1− Φ(d∗n + m̂n − µ)→ 1 with probability one, so the
limit inferior of the power for treated non-nulls is at least 1).

Proof for the linear-BH procedure The power of the linear-BH procedure when there is no covari-
ates can be proved following similar steps as above, and using intermediate results of Theorem 2 in
Arias-Castro and Chen [2017]. In their notation, the linear-BH procedure uses Vi = ∆̂BH

i as the test
statistics, and we separately discuss power among the treated group and the control group in ensure the
independence among Vi. The survival functions for the nulls and non-nulls in the treated group are

Ψnull
n (x) = 1− Φ

(
x√

1 + 1/nC

)
and Ψnon-null

n (x) = 1− Φ

(
x− µ√
1 + 1/nC

)
,
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where nC is the number of untreated subjects. For the control group, the survival functions are

Ψnull
n (x) = 1− Φ

(
x+ Ŷ T√
1 + 1/nT

)
and Ψnon-null

n (x) = 1− Φ

(
x+ Ŷ T√
1 + 1/nT

)
,

where Ŷ T =
∑

Ai=1 Yi
a.s.→ 0, and nT is the number of treated subjects. Since the above distributions

converge to a Gaussian, these survival functions satisfy the AGG property asymptotically as defined
in (210).

Proof. First, we claim that the power goes to zero when r < β, following the proof in Section D.4.1
for any threshold procedure (separately for the treated group conditional on control group). Then, we
prove that power converges to 1/2 when r > β: the power among untreated subjects is asymptotically
zero because the survival functions for the nulls and non-nulls are the same; the power among treated
subjects is asymptotically one following the proof of Theorem 2 in Arias-Castro and Chen [2017] as
detailed next.

Again consider the sequence of thresholds d∗n = (γr∗ log n)1/γ for some r∗ ∈ (β, r ∧ 1). We
first claim that the FDR estimator at d∗n is less than any α ∈ (0, 1) for large n, or mathematically
F̂DR(d∗n) ≤ α. It can be verified by the proof of Theorem 2 in Arias-Castro and Chen [2017] where
G(d∗n) = (1 − ε)Ψnull

n (d∗n) + εΨnon-null
n (d∗n) with ε = n−β, and the fact that Ψnon-null

n (d∗n) → 1 for the
treated group and Ψnull

n (d∗n) → n−r
∗ (by property (210)) with probability one. It follows that the true

stopping threshold τn satisfies τn ≤ d∗n. Also, by Lemma 1 in Arias-Castro and Chen [2017], we
have that the proportion of correctly identified non-nulls at threshold d∗n is 1

n1

∑
i/∈H0

1{∆̂BH
i ≥ d} =

Ψnon-null
n (d∗n) + oP(1), where Ψnon-null

n (d) for the treated group decreases in d and converges to 1 when
d = d∗n. Recall that the true stopping threshold is no larger than d∗n, so the limit inferior of the power
among the treated subjects is at least 1. Therefore, the overall power converges to 1/2.

D.4.2 Proof of Theorem 13

We first consider the power when all subjects are non-nulls (β = 0).
Lemma 11. Given any fixed FDR control level α ∈ (0, 1) and let the number of subjects n goes to
infinity. When all subjects are non-nulls, the stopping time τ = 0 with probability tending to one if
µ > Φ−1( 1

1+α
), and in this case the power converges to Φ(µ).

E.g., when α = 0.2, the asymptotic power of the automated I3 is larger than 0.8 if µ ≥ 1.

Proof. The stopping time τ = 0 if and only if the FDR control is satisfied when all the subjects are

included: F̂DRn(R0) =
|R−0 |+1

max{|R+
0 |,1}

≤ α, or equivalently, |R
+
0 |
n
≥ 1+

1
n

1+α
. Notice that the proportion of

positive ∆̂i converges to a constant: |R
+
0 |
n

a.s.→ Φ(µ), because ∆̂i of each non-null follows a Gaussian
distribution with mean µ and variance less than 2. Thus, if Φ(µ) > 1

1+α
, for any ε ∈ (0, 1), there

exists N such that for all n ≥ N , we have that (a)
∣∣∣ |R+

0 |
n
− Φ(µ)

∣∣∣ < ε with probability at least 1 − ε;

and (b) F̂DRn(R0) =
|R−0 |+1

max{|R+
0 |,1}

≤ α (hence τ = 0) with probability at least 1 − ε. (Notice that the
threshold N can be chosen as not depending on µ, which is useful in the next proof.) In such a case, the
power is no less than (1− ε)(Φ(µ)− ε) when n ≥ N ; and the power is no larger than Φ(µ)− ε; so the
power converges to Φ(µ). The proof completes once notice that the condition Φ(µ) > 1

1+α
is equivalent

to µ > Φ−1( 1
1+α

).
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Proof of Theorem 13. Power of the Crossfit-I3. Recall that the I3 implemented on I exclude subjects
based on the averaged estimated effect on II: Pred(x) = ∆̂i(Xi = x), which converges to µ almost
surely when x = 1 (the non-nulls), and 0 almost surely when x = 0 (the nulls). Thus, no non-nulls in I
would be excluded before excluding all the nulls in I (with probability going to one) for any fixed µ > 0.
Combined with Lemma 11, we have that if µ > Φ−1( 1

1+α
), for any ε ∈ (0, 1), there exists N(ε, α) such

that for all n ≥ N , the power of the I3 is higher than Φ(µ) − ε. Also, the limit of power increases
to one for any r > 0 (where the signal µ increases): there exists N ′(ε) such that for all n ≥ N ′(ε),
Φ(µ) ≥ 1 − ε. Therefore, for any ε ∈ (0, 1

1+α
), we have that for all n ≥ max{N ′(ε), N(ε, α)}, the

power of I3 implemented on I is no less than 1− 2ε; thus completes the proof.

Power of the linear-BH procedure. As before, we separately argue that the power for the treated
group and the control group converges to zero when r < β, and converges to one when r > β. For
a subject in the treated group with Xi = x where x ∈ {0, 1}, the estimated effect is a Gaussian
∆̂BH
i ∼ N(0, 1 + 1∑

i 1(Xi=x,Ai=0)
) for the nulls and ∆̂BH

i ∼ N(µ, 1 + 1∑
i 1(Xi=x,Ai=0)

) for the non-nulls.
For a subject in the control group with Xi = x where x ∈ {0, 1}, the estimated effect is a Gaussian
∆̂BH
i ∼ N(0, 1 + 1∑

i 1(Xi=x,Ai=1)
) for the nulls and ∆̂BH

i ∼ N(µ, 1 + 1∑
i 1(Xi=x,Ai=1)

) for the non-nulls.
The power of the linear-BH procedure directly results from Theorem 2 in Arias-Castro and Chen

[2017] because in both the treated and control group, (a) the linear-BH procedure is the BH procedure
where the random variable of interest is Vi = ∆̂BH

i ; and (b) ∆̂BH
i of non-nulls and nulls differ by a shift µ;

and (c) the survival function of ∆̂BH
i is asymptotically AGG (recall definition in (210)) since it converges

to a Gaussian distribution).

D.5 Additional numerical experiments
D.5.1 More examples on the type of treatment effect

We have seen the numerical results of the proposed methods in the main paper where the treatment
effect is defined in (110) with sparse and strong positive effect, and dense and weak negative effect. This
section presents three more examples of the treatment effect.

Linear effect. Let the treatment effect be

∆(Xi) = S∆ · [2Xi(1)Xi(2) + 2Xi(3)], (211)

where S∆ > 0. In this case, all subjects have treatment effects, and the scale correlates with the
covariates (with interaction terms) linearly. Thus, the linear-BH procedure has valid error control as
shown in Figure 60a (unlike other cases with nonlinear treatment effect).

Sparse and strong effect that is positive. Let the treatment effect be

∆(Xi) = S∆ · [5X3
i (3)1{Xi(3) > 1}], (212)

where S∆ > 0. Here, the subjects with Xi(3) > 1 have positive treatment effects. Although linear-BH
procedure seems to have high power, its FDR is largely inflated since the assumption of linear correlation
does not hold (see Figure 60b). In contrast, our proposed methods have valid FDR control.
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Sparse and strong effect in both directions. Let the treatment effect be

∆(Xi) = S∆ · [5X3
i (3)1{|Xi(3)| > 1}], (213)

where S∆ > 0. Here, the subjects with Xi(3) > 1 have positive treatment effects and those with
Xi(3) < −1 have negative treatment effects; the scale and proportion of effects in both directions are
the same. The power comparison is similar to the previous setting with only positive effect, except the
power for the methods with valid FDR control are lower since there is addtionally negative effect in this
example (see Figure 60c).
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(a) Dense two-sided effect (linear) as in model (211).
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(b) Sparse and strong effect that is positive (nonlinear) in model (212).
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(c) Sparse and strong effect in both directions (nonlinear) in model (213).

182



Figure 60: FDR for the zero-effect null (96) in the main paper (the first column), and FDR for the
nonpositive-effect null (111) in the main paper (the second column), and power (the third column) of
three methods: linear-BH procedure, Crossfit-I3, MaY-I3, under three types of treatment effect when
varying the scale of treatment effect S∆ in {0, 1, 2, 3, 4, 5}. When the linear assumption holds as in the
first row, the linear-BH procedure has valid FDR control and high power, but its FDR is large when the
treatment is a nonlinear function of the covariates as in the latter two rows. In contrast, the Crossfit-I3

and MaY-I3 have valid FDR control for their target null hypotheses, respectively.

D.5.2 Exploring working models for selection

Recall that in our numerical experiments, a random forest is involved in the selection strategy to predict
the probability of having positive ∆̂i for selection. Using random forest is merely for demonstration,
We could use alternative modeling to get the prediction of the sign probability. Here with the same
predictors (outcomes, covariates, and residuals), we consider four models: a linear model that include
the provided predictors and their second-order interaction, a Gaussian kernel regression model, a random
forest as we described in the main paper, and an oracle who use the function of covariates as predictors
in a linear model so that the model is consistent with the underlying truth.

● ●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

0 0.4 0.8 1.2 1.6 2
scale of treatment effect

po
w

er
_p

os

(a) Effect defined
as ∆(Xi) :=
2.4[Xi(1)Xi(2) +
Xi(3)].
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(b) Effect defined
as ∆(Xi) :=
6 sin(Xi(3)).
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(c) Effect defined
as ∆(Xi) :=
6[Xi(1)Xi(2) +
sin(Xi(3))].
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(d) Effect defined
as ∆(Xi) :=
6X3

i (3)1{Xi(3) > 1}−
0.6Xi(1).

Figure 61: Power of the Crossfit-I3 with four working models: a linear model, a consistent (oracle)
model, a Gaussian kernel model, and a random forest, under four types of treatment effect with varying
scale in {0, 0.4, 0.8, 1.2, 1.6, 2}. While the oracle’s consistent model leads to the highest power as
expected, using the Gaussian kernel model seems to lead to high power most examples.

Among four examples of treatment effects, the positive effects in the first three are dense, and the
power comparison seems similar among four models (see Figure 61). While the oracle’s consistent
model leads to the highest power as expected, the linear model and the Gaussian kernel model lead to
similar power, followed by the random forest. However, the Gaussian kernel model seems more robust
to sparse positive effects as in the fourth example.

D.5.3 Degree of mismatch in paired samples

We have presented in Section 5.8 of the main paper that the interactive algorithms can be applied to
paired samples, and have discussed their power in two cases where the samples within each pair either
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matched exactly or mismatch to some degree. A side observation is that the algorithms not using the
pairing information seem to have a small change in power when the degree of mismatch varies. Here,
we increase the degree of mismatch to show a more clear pattern of this change.
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Figure 62: Power of identifying subjects with positive effects of the proposed algorithms (Crossfit-I3

and MaY-I3) with or without pairing information, when the scale of treatment effect is fixed at 2 and the
degree of mismatch ε varies. The power of algorithms without pairing information first increase and
then decrease as ε becomes larger.

We extend the definition of mismatch for ε ∈ (0, 1) to a larger ε: P(Xi1(1) 6= Xi2(1)) = min{ε, 1}
and P(Xi1(2) 6= Xi2(2)) = min{ε, 1} and Xi1(3) = Xi2(3) + U(0, 2ε), where U(0, 2ε) is uniformly
distributed between 0 and 2ε, and a larger ε leads to a larger degree of mismatch. As ε increases, the
power under the unpaired samples first increases (see Figure 62). It is because the treatment effect is
positive when Xi(3) > 1, which only takes 15% proportion if without mismatching; thus, the pattern
of treatment effect is not easy to learn. In contrast, when there is a positive shift on Xi(3) as designed
in the mismatching setting above, more subjects have positive effects so that the algorithm can more
easily learn the effect pattern and hence increase the power. The power can slightly decrease when the
degree of mismatch is too large (ε > 1), because there are fewer subjects without treatment effect, also
affecting the estimation of treatment effect.

D.6 An alternative FDR estimator
Let π̃i = max{πi, 1 − πi} be a measurement of the degree of extreme propensity scores. The FDR
estimator we propose in the main paper can be written as

F̂DR
A
(R+

t ) ≡ 1

1−maxi π̃i
·

(maxi π̃i) ·
(

1 +
∑

i∈Rt 1{∆̂i ≤ 0}
)

max
(

1,
∑

i∈Rt 1{∆̂i > 0}
) , (214)

which counts each nonpositive ∆̂i by the same weight, and adjusts for the heterogeneous propensity
score by multiplying a common factor maxi π̃i (considering the worst case).

Another FDR estimator [Lei et al., 2020] puts heterogeneous weights on the nonpositive ∆̂i, depend-
ing on each subject’s propensity score: a wrongly included null subject is less punished if its propensity
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score is close to 1/2. Specifically, the FDR estimator is defined as

F̂DR
S
(Rt) :=

1

1−maxi π̃i
·

1 +
∑

i∈Rt
1−maxi π̃i

1−π̃i 1{∆̂i ≤ 0}
1 + |Rt|

. (215)

For example, when maxi π̃i = 0.9, a subject with nonpositive ∆̂i leads to an increment of 0.2 in the

numerator if π̃i = 0.5; for comparison, the increment is 0.9 if using F̂DR
A
(Rt). Notice that another

major difference is that, we have valid FDR control using the above estimator when rejecting all subjects
inRt.

Whether F̂DR
A
(Rt) or F̂DR

S
(Rt) leads to higher power depends: when the propensity scores do

not vary much among the investigated subjects, F̂DR
A
(Rt) tends to have higher power; when there are

a few extreme propensity scores, F̂DR
S
(Rt) seems better. Two examples are in Figure 63.
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(a) πj = 0.5 for all subjects except one
being as large as πi = 0.9.
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(b) πi = 0.6 for all subjects.

Figure 63: Power of the Crossfit-I3 with two FDR estimators in (214) and (215), when under a simple
treatment effect ∆(Xi) = S∆[2Xi(1)− 1] with the scale S∆ varying in {1, 2, 3, 4, 5}. The estimation

F̂DR
S
(Rt) in (214) leads to higher power when the propensity scores have a few outliers, and F̂DR

A
(Rt)

seems to be better when there is not much heterogeneity in propensity scores.

D.7 Effect estimator using median
Recall the proof of double robust FDR control in Appendix D.3.3, we characterize the probability
P(Yi − m̂−I(Xi) < 0 | F−Y0 (I)) by including the estimating target of m−I(Xi): P(Yi − m̂−I(Xi) <
0 | F−Y0 (I)) = P(Yi − E(Yi | {Xi}ni=1) < m̂−I(xi) − E(Yi | {Xi}ni=1) | F−Y0 (I)). We find that the
error can be small if this probability is close to 1/2, which requires not only small estimation error εYn (I)
on the outcome but also a symmetric distribution for Yi given covariates. Nonetheless, we can remove
the assumption of symmetric distribution by characterizing the probability differently that involves
median(Yi | {Xi}ni=1) instead of E(Yi | {Xi}ni=1).

Define the “centered” CDF as

Φm
i (c) := P(Yi −median(Yi | {Xi}ni=1) ≤ ε | {Xi}ni=1),
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and update the definition of the CDF bounds accordingly as Φm
min(ε) := mini∈[n] Φm

i (ε) and Φm
max(ε) :=

maxi∈[n] Φm
i (ε). This new CDF would be close to 1/2 when ε is small as long as the density of Yi

does not have a point mass near its median. Thus, with the new definition of the outcome estimation
εmedian
n (I) := maxi∈I{|median(Yi | {Xi}ni=1) − m̂−I(Xi)|}, the double robustness in Corollary 2

holds, where we replace the symmetric assumption in 2(c) by that the distribution of Yi is smooth in a
neighborhood of around median(Yi | {Xi}ni=1); thus a more lenient condition to achieve FDR control.

Notice that with the above characterization on median, double robustness indicates FDR control
with poor estimation on propensity scores if εmedian

n (I) is small; in words, m−I(Xi) should approximates
median(Yi | {Xi}ni=1). However, whether designing m−I(Xi) to approximate E(Yi | {Xi}ni=1) or
median(Yi | {Xi}ni=1) is better in terms of power depends. In short, using a median estimator seems
beneficial when the effect is dense and the noise is one-sided heavy-tail; however, it could lead to lower
power when the effect is sparse and large.

For demonstration, we consider two types of the outcome distribution by specifying the noise term
Ui in model (102) as either Cauchy (symmetric and heavy-tail) or the absolute value of Cauchy (skewed
and heavy-tail). First, we explore a simple case where the treatment effect is a constant ∆(Xi) = 2S∆.
When the noise is Cauchy, the power is low using either the median or the mean estimator because the
observed outcome has extremely large variance, leading to poor estimation of the treatment effect (and
its sign) regardless of the quality of m−I(Xi) (see blue and green line in Figure 64a). When the noise is
absolute-Cauchy, the outcome variance is small and the median estimator seems to have higher power
because of its robustness to the heavy tail (see olive and purple line in Figure 64a).

● ● ●

●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
scale of treatment effect

po
w

er
_p

os

(a) Dense effect defined as ∆(Xi) =
2S∆.
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(b) Sparse effect defined as ∆(Xi) =
S∆ · [10X3

i (3)1{|Xi(3)| > 1}].

Figure 64: Power of the MaY-I3 when m−I(Xi) approximates the conditional mean E(Yi | {Xi}ni=1) or
median(Yi | {Xi}ni=1), under Cauchy noise or absolute-Cauchy noise when the propensity scores are all
1/2. Letting m−I(Xi) approximates the median seems beneficial when the effect is dense and the noise
is absolute-Cauchy; however, it could lead to lower power when the effect is sparse and large.

However, the power comparison also depends on the type of treatment effect. Recall the above
results are for a constant treatment effect among all subjects. When the effect is sparse (see Figure 64b),
the mean estimator tends to have higher power with both Cauchy or absolute-Cauchy noise. The reasons
include: (a) the median estimator tends to underestimate the conditional outcome when the number
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of positive effects is small due to a large number of subjects with small negative effect, making the
treatment effect estimator less accurate; hence lower power; and (b) the mean estimator is less affected
by the heavy-tailed noise because the sparse effects require large scale to be identified by any method.

D.8 Alternative notions of robustness in FDR control
We propose three alternative ways of defining the FDR estimator, which leads to three “degrees” of
robustness (the MaY-I3

π̂ proposed in the main paper falls into one of the robustness degree). They differ
by how we estimate qmax(I), the upper bound of qi(I) defined in (126) for the null subjects in I.

For concise notations, define

pi(I) := P(Yi > m̂−I(Xi) | F−Y0 (I)). (216)

Recall the proof in Appendix D.3.3 that for subject i ∈ I ∩H0,

qi(I) ≤ min {max{1− πmin(I), πmax(I)},max{1− pmin(I), pmax(I)}} =: qmax(I),

where πmin(I), πmax(I) are bounds on πi and pmin(I), pmax(I) are bounds on pi for i ∈ I ∩H0. Let an
estimation of the minimum and the maximum be π̂min(I), π̂max(I) for πi(I), and p̂min(I), p̂max(I) for
pi(I). The estimation error is denoted as

επn(I) ≡ max{|π̂min(I)− πmin(I)|, |π̂max(I)− πmax(I)|},

same as (123) in the main paper, and

εpn(I) ≡ max{|p̂min(I)− pmin(I)|, |p̂max(I)− pmax(I)|},

both of which are measurable with respect to F0(I). For each q̂max(I) we propose later, the FDR
estimator is defined as (

1

1− q̂max(I)
− 1

) |R−
t̂
|+ 1

|R+

t̂
| ∨ 1

,

and by Lemma 10, the resulting FDR of MaY-I3 is upper bounded by

α

{
1 + EF0(I)

[
εqn(I)

qmax(I)(1− qmax(I))

]
+ EF0(II)

[
εqn(II)

qmax(II)(1− qmax(II))

]}
,

where εqn(I) = max{qmax(I)− q̂max(I), 0} is the (one-sided) estimation error of qmax(I). Intuitively, a
less conservative estimator q̂max(I) (close to 1/2) lead to a less conservative FDR estimator so that the
identification power could be higher. On the other hand, the estimation error εqn(I) tends to be larger in
such a case, making the FDR upper bound looser (less robust).

Half robustness. (named as the contrary of double robustness) Define

q̂max(I) := min{max{1− π̂min(I), π̂max(I)},max{1− p̂min(I), p̂max(I)}},

which leads to a less conservative procedure because the deviation of q̂max(I) from 1/2 (the desired
value) is the minimum of the deviation for the estimated propensity score π and the estimated outcome
p; potentially leading to higher power. However, the claimed upper bound on FDR can be loose because
the estimation error is bounded by the maximum of two sources of error:

εqn(I) = max{qmax(I)− q̂max(I), 0} ≤ max{επn(I), εpn(I), 0},

and thus, FDR is close to the target level only when both estimation error, επn(I) and εpn(I), are small.
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Exact double robustness. Define

q̂max(I) := max{max{1− π̂min(I), π̂max(I)},max{1− p̂min(I), p̂max(I)}},

which is more conservative because the deviation of q̂max(I) from 1/2 (the desired value) is the maximum
of the deviation for the estimated propensity score π and the estimated outcome p; potentially leading to
lower power. However, the claimed upper bound on FDR can be tight because the estimation error is
bounded by the minimum of two sources of error:

εqn(I) = max{qmax(I)− q̂max(I), 0} ≤ max{min{επn(I), εpn(I)}, 0},

and thus, FDR is close to the target level when either estimation error, επn(I) or εpn(I), is small.

One and a half robustness with p-estimation. Define

q̂max(I) := max{1− p̂min(I), p̂max(I)} (217)

whose conservativeness depends on p̂min(I) and p̂min(I). Following a similar argument as in Ap-
pendix D.3.3, we have that

εqn(I) ≤ εpn(I)−max {0,max{pmax(I), 1− pmin(I)} −max{πmax(I), 1− πmin(I)}} , (218)

which indicates that the FDR control would be close to the desired level when either
1. (a) the outcome probability estimation has small error: EF0(I) [εpn(I)] and EF0(II) [εpn(II)] are

small; and (b) the outcome probabilities are bounded away from 0 and 1: 0 < pmin ≤ pmax < 1; or

2. (a) the outcome probabilities deviates from 1/2 larger than its estimation error in the sense that
EF0(I) [max{pmax(I), 1− pmin(I)} − 1/2] ≥ EF0(I) [εpn(I)]; and (b) the true propensity scores
are close to 1/2.

There is one case with large FDR inflation: all pi are 1/2, but their bounds are poorly estimated.
Note that, however, using estimated bounds on pi might not be practically powerful because we

cannot tell which ones are the nulls, and pi for the non-nulls could be close to zero or one. Consequently,
for the methods with “exact double robustness” and “one and a half” robustness that involves p̂min(I)
and p̂max(I), their FDR estimators tend to be conservative, leading to almost zero power. The method
with “half robustness” has similar power as the MaY-I3

π̂ proposed in the main paper (which can be
viewed as having another notion of “one and a half double robustness” in the above scale).
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