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Abstract

Liquidity is a central feature in the research of financial markets. Broadly speaking,

liquidity describes the ease with which an asset can be traded both quickly and without

deviating much from the current market price. In this collection of essays, I investigate

three aspects of liquidity – one affecting stocks in the context of a limit order book

market, and two in the context of the over-the-counter market governing U.S. corporate

bonds. In the first essay, measuring liquidity as the depth of the limit order book at

price levels extending from the mid-quote price, I explore the implications of private

information which can be drawn from the dynamic levels of liquidity in the order book.

In the second essay, measuring illiquidity as the effective bid-ask spread, I create an

estimate for the aggregate illiquidity of the broader over-the-counter market for U.S.

corporate bonds from the observed illiquidity of bonds that are traded. In the third

essay, measuring liquidity as the market’s ability to absorb the large demand to sell

bonds resulting from a fire sale, I observe the unintended impacts that Dodd-Frank

regulations have on bond market liquidity and the indirect effects they have on the

cost of capital faced by corporations when raising debt in the bond market.

Essay 1: Informed Liquidity in Limit Order Book Markets

In this essay, I propose a novel estimator for the presence of asymmetric information

among market makers in limit order book markets. Model parameters are structurally

estimated using a continuously-updated generalized method of moments regression on

historical Nasdaq TotalView-ITCH high-frequency data, which includes every order

sent to the exchange. I find statistically significant evidence that market makers are

able to anticipate the presence of informed traders in the near future and allocate their

provision of liquidity accordingly.

Keywords: market making, asymmetric information, order flow, microstructure

JEL codes: C13, C58, D40, G14
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Essay 2: Estimating Aggregate Illiquidity of the Corporate Bond Market

In this essay, I create an estimation procedure for measuring the liquidity available

in the U.S. corporate bond market as a whole. The procedure is split into two primary

components. First, I use a hidden Markov model framework to estimate the ex-ante

probability that each bond issue will trade on a particular day. Next, I estimate the

illiquidity of those bonds which trade throughout the day in question, and use a locally

weighted regression to estimate what the liquidity of bonds that did not trade would

have been had they traded. Both stages of this estimation demonstrate strong external

predictive validity and outperform alternative estimation methodologies. I compare my

estimate of overall market illiquidity to other macroeconomic factors with known ties

to bond market liquidity, extending the results of existing literature performed at the

individual bond level to the overall bond market.

Keywords: hidden Markov model, local regression, machine learning

JEL Codes: C11, C13, C14, C38, C53, G14

Essay 3: Liquidity Risk from Dealer Inventory Limits

In this essay, I seek to better understand how the Volcker rule has affected the

provision of liquidity in the market for U.S. corporate bonds by conducting various

natural experiments on the observed trading patterns surrounding stress events. I use

credit rating downgrades to test the differential impact of liquidity shocks before and

after the Volcker rule went into effect. I find very little evidence that the regulations

have deteriorated the market’s ability to absorb liquidity shocks, contradicting exist-

ing literature. I do, however, find strong evidence that the Volcker rule has increased

institutional investors’ aversion to holding BBB- rated bonds. Moreover, I show that

after the implementation of the Volcker rule, investment grade bonds on the cusp of

junk ratings are priced as if they are already junk bonds due to the increased aversion

to holding such bonds. In this way, the cost of capital for the affected firms increased

substantially – ostensibly as a result of the Volcker rule.

Keywords: Dodd-Frank, Volcker rule, dealer inventories

JEL codes: G14, G23, G24, G28
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1 Informed Liquidity in Limit Order Book Markets

1.1 Introduction

I propose a model in which a market maker adds an order to a pre-existing limit order book.

A market maker solves for her optimal supply of liquidity by maximizing an expected profit

function. Using this model, I can predict the optimal size of an order placed by a market

maker who has no private information. I can compare the observed actions of market makers

to those which one would expect if they had no private information. The differences can

be used to identify when market makers are acting on private information. Moreover, the

direction of the divergence - less or more liquidity provision than is optimal - provides insights

about the private information market makers possess.

Actions taken by an informed market maker are visible to other market participants.

Those participants therefore receive a signal from the informed market maker, and revise their

expectations accordingly. In this way, there exist feedback loops, both directly (mechanically

altering the empirical price impact function), and indirectly (by shifting the other market

participants’ expectations about future order flow). Thus, the private information is filtered

through the market to the other participants. It is possible to glean a better understanding

of this process by investigating the type of information market makers have, how they act

on that information, and how the rest of the market responds to those actions.

Central to the notion of market completeness is the ease with which a market participant

can place a trade. This, in turn, is in large part a result of the amount of liquidity supplied

to the market. I find that market makers can predict the impending presence of informed

traders, and adjust their liquidity provisioning to compensate for the presence of such traders.

Market completeness, or maximal market completeness, is fundamentally important to the

optimal functioning of financial markets. The degradation of completeness reduces the ability

of market participants to allocate their resources so as to insure consumption across various

states of nature, thereby decreasing the social welfare provided by the markets.

In practice, global capital markets can never be fully complete, spanning every source of
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risk. There is, however, some maximal level of completeness that is possible to achieve if

all the assets benefit from perfectly efficient trading. As trading frictions of any one asset

increase, the ease of trading that asset necessarily diminishes, making the market as a whole

less complete. The presence of informed traders in financial markets introduces a significant

amount of additional risk to market makers.

In the canonical microstructure framework, there are two types of agents placing market

orders: informed traders and uninformed traders. Informed traders have knowledge about

a stock. Observing the schedule of liquidity provisioning provided by market makers and

taking into consideration their knowledge, these agents place informed trades. By acting

upon their information, these traders are signaling what they know to the liquidity providers.

Informed traders will place larger orders whey they expect to see greater gains based on

their information, which in turn sends a larger signal to the market. The presence of this

signal motivates the concept of a price impact function, wherein the size and direction of an

order affect the price of a stock moving forward, as market makers respond to the signal.

Uninformed traders have some exogenous liquidity demand, unrelated to the value of the

asset. In this way, the actions of the uninformed traders add noise to the signal of the

informed traders, and they are therefore often referred to as noise traders.

Market makers, in turn, attempt to provide liquidity in such a way that their expected

losses from trading against an informed trader are compensated by their expected gains from

collecting a spread when trading against noise traders. It is this intuition that allows me to

establish the optimal spread for a market maker to provide on an asset and to obtain the

optimal shape of the order book. The greater the activity of noise traders at any time, the

greater the volume of orders being placed in the market, and the greater the volatility. In

periods such as this, it is possible for informed traders to hide more of their signal in the

noise. It has been shown [Back, 1992] that it is therefore optimal for informed traders to

act more aggressively on their knowledge, placing larger orders at these times. Because of

the increased activity of informed traders, periods of high volume and volatility are costly

to a market maker. If a market maker knows that such a period is beginning to occur, she
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would want to prepare herself by reducing her liquidity provisioning until once again, in

expectation, her losses from informed traders are balanced by her gains from noise traders.

In response to the presence of informed traders, market makers supply less liquidity to

the market than they otherwise would. These actions decrease the short term price efficiency,

making it more expensive to execute trades. Insofar as social welfare is derived from the

proper functioning of financial markets, market makers’ responses to the perceived presence

of informed traders therefore carry a social cost borne from the resulting increase in trading

frictions. However, by exhibiting such behavior, market makers are able to provide more

liquidity to the market when they see that the presence of informed traders is diminished.

In this way, while financial markets experience periods of poor functioning as a result of

informed market makers, the net welfare effect depends upon the duration of those periods.

If the activity of informed traders is limited to short, intermittent bouts of increased

aggressiveness, then the resulting social costs would be limited to similarly short periods.

Moreover, for the majority of the time, the provision of liquidity would be enhanced (due

to the market makers’ knowledge of the presence of informed traders), resulting in better

functioning financial markets.

1.1.1 Contributions to Current Literature

My paper adds to the current literature in three ways. First, existing models ignore the

existing order book when considering a market maker’s optimal behavior. A market maker

places orders which maximize her expected profit. The profit function depends on the the

existing supply of liquidity in the market. Thus, it is important to consider the depth of the

existing limit order book when solving for the optimal liquidity provision. Without doing so,

one cannot accurately model the behavior of market makers in a limit order book market.

Second, my paper is the first to consider informed market makers outside the context of a

dealer market. The bulk of market microstructure theory regarding information asymmetries

considers a market in which new information filters into the market purely through the

actions of informed traders placing market orders. Such models, however, are most applicable
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to a broker-dealer market in which the market makers do not possess any informational

advantages beyond the trivial knowledge of their own individual actions, preferences, and

constraints. Financial markets operated in large part as dealer markets when the seminal

works of Kyle (1985) and Glosten and Milgrom (1985) were introduced. In modern markets

characterized by electronic limit order books, however, those traders who possess private

information often act as market makers [e.g. Bloomfield, O’Hara, and Saar (2005)], placing

the limit orders which make up the spread and provide liquidity to the market. As such,

it would be beneficial to take seriously a model which considers the possibility that the

placement, revision, or cancellation of a limit order is done by an informed market maker.

While there exists a growing set of research which investigates the dynamics of equilibria

for models in which market makers possess private information [e.g., Gould and Vericchia

(1985), Biais (1993), Kumar and Seppi (1994), and Calcagno and Lovo (2006)], the literature

builds off of the Kyle (1985) framework in which the trading process takes place as a first-

price auction. This paper extends the Glosten and Milgrom framework, proposing a model

in which market makers place quotes in a limit order market. Moreover, my model allows

for inferences to be made about several aspects of private information. Optimal liquidity

provisioning is dependent on the future value of the security, the future market order flow,

and the existing supply of liquidity. Divergences from a market maker’s optimal behavior

imply private knowledge about one or more of these channels of information. In this way,

my model allows for my measure of asymmetric information to be more flexible in the type

of private information market makers can possess than the current literature.

Finally, the measure of asymmetric information I propose is the first I know of to directly

identify asymmetric information through the divergences between the observed action of a

market maker and the action which would be optimal if said market maker had no private

information. Current empirical measures of asymmetric information measure it in one of

two ways. Some attempt to identify it directly, through the actions of traders placing

market orders [Easley et al. (2002) and Chang, Chang, and Wang (2014)], while others

measure asymmetric information indirectly, through observing signs of the adverse selection
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which would result from the presence of information asymmetries [Roll (1984) and Yueshen

(2016)]. By identifying asymmetric information through the actions of market makers, I am

able to investigate both the ways in which market makers act upon their private information

as well as the type of private information available to market makers. These aspects of

asymmetric information inform both the theoretical market microstructure models and the

empirical tests for the presence of asymmetric information. In this way, by developing

a better understanding of the nature of market makers’ information asymmetries, I am

facilitating future work in this area of study.

This essay is organized as follows. Section 1.2 describes the model environment; the

setup of the model, the optimal behavior of uninformed market makers, and the behavior of

informed market makers. Section 1.3 introduces the data used in testing this estimator, and

Section 1.4 describes the empirical methods used in fitting the model to the data. Section

1.5 proposes estimators to measure either the relative provision of liquidity supplied to the

market or the amount of price pressure driven by the informed market-makers’ actions. The

empirical content contained in these estimators is investigated in Section 1.6 and discussed

in Section 1.7. Finally, Section 1.8 reviews the limitations of this study, Section 1.9 proposes

avenues for future research, and Section 1.10 concludes.

1.2 Model of Optimal Liquidity Provision

1.2.1 Preliminaries

My model builds off of the Glosten (1994) model. I then impose discrete prices and a

time priority rule as in Seppi (1997). Consider an environment in which market makers

can place limit orders along a finite price schedule. Let p1 < p2 < · · · < pn be the set

of prices at which there exist positive quantities of limit sell orders, with corresponding

quantities {Q1,Q2, . . . ,Qn}. Similarly, let p−1 > p−2 > · · · > p−m be the set of prices

at which there exist positive quantities of limit buy orders, with corresponding quantities

{Q−1,Q−2, . . . ,Q−m}. In this way, p−1 represents the price of the best bid, and p1 represents
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the price of the best offer. When a market order is submitted, limit orders are filled first in

order of price, favoring price levels beneficial to the market order, then in order of the time

at which the market’s orders of the same price level were submitted, filling older limit orders

first. At any time before a limit order is filled, the agent who submitted the order may either

reduce the size of the order (without losing her previously established time preference), or

cancel it entirely. For every limit order placed in the market, the agent placing said order

faces some fixed costs, γ0, and for every order that is successfully executed, the agent faces

some variable costs, γ1, that depend on the quantity traded. γ0 can be interpreted as the

on-going cost associated with monitoring the order. In this way, when an agent already has

an open limit order in the market, she must weigh the expected revenue generated by that

limit order against the fixed on-going cost to continue monitoring the order.

The fundamental value of the stock evolves according to the stochastic process

dXt = µ · dt+ σt · dWt (1)

where µ is the instantaneous drift of the stock price, σ2
t is the time t variance of the value,

and Wt is a Brownian motion under the physical measure.

Let mt denote market order quantity at time t where m < 0 corresponds to a sell order.

In the presence of a market order mt′ , the expected future value of the stock is given by

E[Xt′|Xt,mt′ ] = Xt + µ(t′ − t) + h(mt′) (2)

where h(m) = αm is a price impact function. Note the simplifying assumption that the

price impact function is linear. Also assume that the distribution of market order quan-

tities is given by the probability mass function f(m) and corresponding cumulative mass

function F (m). Further assume that the time between market orders follows an exponential

distribution given by the probability density function

k(∆Tt) =
1
ψ
e−

1
ψ∆Tt (3)
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so that ψ is the expected time between market orders. Note that, because of the memo-

rylessness of the hazard function, at any given time, ψ is the expected time until the next

market order arrival1.

1.2.2 “Agnostic” Market Makers

Assume that the trading structure is set up as a repeated single stage game. First, the

fundamental value of the asset is announced, and a continuum of liquidity providers facing

perfect competition are exogenously assigned either an existing limit order to monitor or a

price level at which they may enter a new limit order. If assigned an existing limit order,

liquidity providers are then allowed to either modify or cancel said order. Otherwise, they

decide if they want to place an order at their assigned price level, and if so, its size. After

a random period of time, a new market order is submitted, a new fundamental value is

announced, and liquidity providers are randomly assigned either one of the limit orders

which remains after the market order is filled or a price level. Thus, the game repeats itself.

The expected marginal profit on the last unit of a sell limit order at price level p of size

q is given by

E[(p− γ1 −E[Xt′|Xt,mt′ ])1mt′≥Q+q] (4)

where γ0 + γ1q is the total order monitoring and processing costs2 for an order of size q, and

Q is the sum of the sizes of all those sell limit orders with either price preference or time

preference to the order in question. (4) can be combined with (2) and the distribution of m
1Easley et. al. (2008) show that the order arrival intensity of market orders is highly persistent. For this

reason, it may be beneficial to allow for the order intensity to evolve according to an auto-regressive process
in future work.

2In this way, γ0 is the fixed cost of placing an order and γ1 is the variable cost. These costs implicitly
include the cost of monitoring the additional order, the additional risk the order places on the market maker’s
portfolio, and the cost that results from tightening the market maker’s inventory constraints.
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to be rewritten as

E[(p− γ1 −E[Xt′|Xt,mt′ ])1mt′≥Q+q]

= E[(p− γ1 −E[Xt + µ(t′ − t) + αmt′ ])1mt′≥Q+q]

= E[(p− γ1 −Xt − µE[t′ − t]− αE[mt′ ])1mt′≥Q+q]

= (p− γ1 −Xt − µψ− αE[mt′|mt′ ≥ Q+ q])P(mt′ ≥ Q+ q)

(5)

where ψ is the expected time until the next market order is placed. Setting (5) equal to

zero, I have

0 = p− γ1 −Xt − µψ− αE[mt′|mt′ ≥ Q+ q] (6)

which I can use to find the optimal order size q̂ at price level p for a risk-neutral, profit-

maximizing market maker. The market maker will place the order so long as the following

condition is satisfied:

q̂∑
n=1

(
p− γ1 −Xt − µψ− αE[mt′|mt′ ≥ Q+ n]

)
≥ γ0. (7)

As a market maker monitors an existing order, if said order does not execute quickly,

then she re-evaluates the position. Monitoring an open limit order is costly – both in the

attention that it requires and in the opportunity cost of a different limit order that may have

a higher probability of executing. Therefore, when monitoring an existing limit order, the

market maker will cancel her order if the following condition is not satisfied:

P
(
mt′ ≥ Q

) q̂∑
n=1

(
p− γ1 −Xt − µψ− αE[mt′|mt′ ≥ Q+ n]

)
≥ γ0, (8)

where P
(
mt′ ≥ Q

)
is an added penalty such that the market maker is more likely to cancel

an order that is less likely to be filled. With a cancellation correlating to a size of 0 shares,

the optimal order size is restricted to q̂ ∈ [0,∞].
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Similarly, on the other side of the book, I have the conditions

0 = Xt − γ1 − p+ µψ+ αE[mt′|mt′ ≤ −Q− q̂], (9)

q̂∑
n=1

(
Xt − γ1 − p+ µψ+ αE[mt′|mt′ ≤ −Q− n]

)
≥ γ0, (10)

and

P
(
mt′ ≤ −Q

) q̂∑
n=1

(
Xt − γ1 − p+ µψ+ αE[mt′|mt′ ≤ −Q− n]

)
≥ γ0. (11)

1.2.3 Informed Market Makers

Here, I examine three classes of informed market makers: those that have private information

about the fundamental value of the asset, those that have information about the presence of

informed traders, and those that have information about the future market order flow but

no additional information about the presence of informed traders in that order flow. Market

makers with private information about the fundamental value of the asset are shown to

behave in a similar fashion as informed traders; they act upon their information to maximize

expected profits, and in so doing, release that information to the market. The second and

third class of informed market makers do not have information concerning the value of the

asset. Rather, the second class have information about the presence (or lack thereof) of

informed traders, and the third only has information about the level of future market order

flow. The latter two types of informed market maker act upon their knowledge in such a

way that the efficient provision of liquidity is maximized; by knowing about the presence of

informed traders – or the conditions during which informed traders are most active – they

are able to avoid providing liquidity to the market when the probability of trading against

informed traders is high and provide more liquidity to the market when the probability is

low.

1.2.3.1 Information Regarding the Fundamental Value of the Asset Recall from

Equation (4) that the expected marginal profit on the last unit of a sell limit order at price
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p and size q is given by

E[(p− γ1 −E[Xt′|Xt,mt′ ])1mt′≥Q+q],

where Q is the total depth of the limit order book ahead of the order. Suppose that a

market maker has private information about the fundamental value of the asset, X̃. Thus,

E[Xt′|Xt,mt′ ] = X̃, ∀mt′ , so the expected marginal profit on the last unit of a sell limit

order becomes

E[(p− γ1 − X̃)1mt′≥Q+q] = (p− γ1 − X̃)P(mt′ ≥ Q+ q).

Without loss of generality, assume that X̃ < p− γ1. In such a situation, the informed

market maker would earn guaranteed profits for every unit of her limit order that is filled,

and would therefore be willing to provide an arbitrarily large amount of liquidity at that price

level. Moreover, the market maker would be willing to provide arbitrarily large amounts of

liquidity to the sell side of the order book for any price p such that p > X̃ + γ1. Note that

the market maker would also be willing to provide arbitrarily large amounts of liquidity to

the buy side of the order book for any price p such that p < X̃ − γ1.

Thus, given the current limit order book Bt, where

Bt ≡ ({Q−m, . . . ,Q−2,Q−1,Q1,Q2, . . . ,Qn}, {p−m < · · · < p−2 < p−1 < p1 < p2 < · · · < pn}),

the informed market maker’s expected marginal profits at the next market order mt′ ’s arrival

for a sell limit order are

πA(pa, q|Bt) = (pa − γ1 − X̃)P

(
mt′ ≥ q+

a∑
i=1

Qi

)
,
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and her expected profits for a buy limit order are

πB(p−b, q|Bt) = (X̃ − γ1 − p−b)P

mt′ ≤ −q−
b∑
i=1

Q−i

 .

The informed market maker’s optimal strategy is similar to that of the informed trader

in the Kyle (1985) model; such a strategy maximizes expected profits (and in so doing

greatly increases trade volume) while simultaneously minimizing the information revealed

to the other market participants through her actions. While the informed trader attempts

to hide her actions in the market order flow from noise traders, the informed market maker

attempts to hide her actions in the limit order flow from information agnostic market makers.

An important difference in the optimal strategy of an informed market maker and that of

an informed trader is that the market maker’s strategy must additionally be optimized over

the conditional expectation of future market order flow. Whereas the informed trader can

directly control the volume she submits to the market, the informed market maker can only

directly control the maximum volumes that she will absorb; the market maker only has

indirect control over the expected volume she will absorb.

Solving for the informed market maker’s optimal strategy is outside the scope of this

essay. That being said, inferences can be drawn about how the presence of such market

makers and their actions would present themselves in the limit order book. In order to

maximize expected profits, these market makers must maximize the amount of liquidity that

they absorb at profitable price levels. In this way, they will provide more liquidity to the

order book than would otherwise be optimal, but only at certain price levels. In the event

that the fundamental value of the asset, which is known to the informed market maker, is

below the best-bid price3, then the market maker will add increased levels of liquidity to the

ask side of the order book. Conversely, if the fundamental value of the asset is above the
3Prima facie analysis might suggest that an actor with knowledge that the fundamental value of the asset

is below the best-bid price will sell the asset and fill the bid in order to capture guaranteed profits. It is
conceivable, however, that the informed actor will instead attempt to absorb market buy order flow in an
effort to capture greater profits in expectation by maintaining their informational advantage for a longer
time period.
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best-ask price, then the informed market maker will provide greater liquidity to the bid side

of the book.

1.2.3.2 Information Regarding the Presence of Informed Traders Market makers

and informed traders are in a perpetual cat and mouse game. Transacting with a trader who

is acting on private information leads to losses for the market maker. The premiums that

market makers charge must therefore compensate in expectation for the losses stemming from

informed traders. Moreover, when market makers believe that they are more likely to be

trading against an informed trader, they will charge greater premiums. As market makers

charge greater premiums on liquidity, however, they disincentivize trading activity from

uninformed noise traders. Thus, profit maximizing market makers attempt to discriminate

informed market order flow from the market order flow generated by noise traders. In

response, informed traders attempt to hide their order flow in the order flow from noise

traders, executing their informed trades in periods of increased trading activity.

If a market maker has no information about the presence of informed traders, then her

response to periods of increased market order flow would be to provide less liquidity than

normal. Since informed traders hide their trades in periods of increased order flow, the risk

of transacting with an informed trader is greater during these periods. Thus, the uninformed

market maker must charge higher premiums in periods when market order flow is elevated,

forgoing the profits that she would otherwise earn during these periods were she not at risk

of trading against an informed trader. Conversely, if a market maker has information about

the presence (or lack thereof) of informed traders, then she is better able to discriminate

between the market order flow from noise traders and the order flow from informed traders

and can better respond to periods of increased market order flow. For example, if a market

maker has information that no informed traders are present during a period of increased

order flow, then her profit maximizing action will be to provide more liquidity than would

otherwise be optimal.

In the context of my model, the price impact, α̃, of an informed trader’s order is greater
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than the average price impact, α, of a market order, which is itself greater than the price

impact, α̈, of a noise trader’s order. Since my model is designed as a repeated single stage

game, changes in the aggressiveness of market order flow can be represented by changes to

the distribution of market order quantities, f(m). A period of increased market order flow

can be represented by the distribution fH (m), and a period of decreased market order flow,

by fL(m), such that fL(m) is second-order stochastically dominant over f(m), which is itself

second-order stochastically dominant over fH (m).

Recall from Equation (6) that the optimal size q̂ of a limit sell order satisfies

0 = p− γ1 −Xt − µψ− αE[mt′|mt′ ≥ Q+ q̂] = p− γ1 −Xt − µψ− α
∑∞

m=Q+q̂
f(m) ·m

Holding all else constant, in order to satisfy the optimality condition, it must be the case

that
1
α
∝
∑∞

m=Q+q̂
f(m) ·m.

Let q̂A(α, f(·)|p, γ1,Xt,µ,ψ,Q) be a function that maps the tuple (α, f(·)) to the size of

a limit sell order that satisfies the aforementioned optimality condition, given the other

parameters. From the stochastic dominance of fL(m), f(m), and fH (m), it is known that

for a given q,

∑∞
m=Q+q

fH (m) ·m >
∑∞

m=Q+q
f(m) ·m >

∑∞
m=Q+q

fL(m) ·m.

It is also assumed that α̃ > α > α̈. Therefore, I have the following relationships:

q̂A(α, fH (·)) < q̂A(α, f(·)) < q̂A(α, fL(·))

q̂A(α̃, f(·)) < q̂A(α, f(·)) < q̂A(α̈, f(·)).

Following the same logic, these relationships also hold for the optimal size of a limit buy

order. Note that, if a market maker only has information about the presence of informed

traders, her response will be symmetric across both sides of the order book. Thus, if a
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market maker has information that an informed trader is present in the market, then she

will provide less liquidity to both sides of the order book than she otherwise would have

given the current market order flow. Alternatively, if a market maker has information that

informed traders are not present, then she will provide more liquidity to both sides than she

otherwise would.

1.2.3.3 Information Regarding Future Market Order Flow As discussed in Sec-

tion 1.2.3.2, informed traders are most active during periods of increased market order flow

when it is easier for them to hide their informed order flow among the order flow of noise

traders. If a market maker has no information about the presence of informed traders, then

her response to periods of increased market order flow would be to provide less liquidity than

normal. If a market maker without information about the presence of informed traders has

information about future market order flow, then her optimal reaction to this information

would be to proactively adjust her provision of liquidity ahead of the changing order flow.

Thus, if a market maker has information that the market order flow will increase in the

near future, increasing the risk of informed traders being present, then she will provide less

liquidity than she otherwise would. Alternatively, if a market maker has information that

the market order flow will decrease in the near future, then she will provide more liquidity

than she otherwise would. Note that, similar to market makers with information about the

presence of informed traders, a market maker with information about future market order

flow will act symmetrically on both sides of the order book.

1.3 Data

This essay uses Nasdaq’s Historical TotalView-ITCH data, which includes messages indicat-

ing all orders and trade transactions, time-stamped to the nanosecond. From this, I am able

to reconstruct Nasdaq’s Level 1 TotalView data stream, which Nasdaq describes as “...the

standard Nasdaq data feed for serious traders - [displaying] the full order book depth for Nas-
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daq market participants.”4 Thus, I am able to match every order to the order book present

at the time of the order’s arrival. Moreover, the data contain unique order ID numbers

allowing me to track the precise depth of limit orders with either price preference or time

preference, Q, for orders which are either revised or canceled. Market orders that execute

against multiple limit orders are reported as separate orders – one market order for each

limit order against which they execute – with identical trade times (recorded in nanoseconds

since midnight). I am therefore able to identify these orders by matching market orders in

the same direction that execute at the same time, and can reconstruct the full market orders

by aggregating their constituent pieces.

I use the order book data for ten highly liquid stocks, [American Airlines (ticker AAL),

Apple (AAPL), Bank of America (BAC), Caterpillar (CAT), Cisco Systems (CSCO), Face-

book (FB), General Electric (GE), Google (GOOG), Goldman Sachs (GS), and Microsoft

(MSFT)], for the 20 trading days in January of 2015. I split this sample into an in-sample

training data set consisting of the 15 trading days between January 2, 2015 and January 23,

2015 and an out-of-sample testing data set containing January 26, 2015 through January 30,

2015.

The distributions of market order sizes over the in-sample and out-of-sample periods are

presented in Figure 1, and the distributions of limit order sizes over the same periods are

presented in Figure 2. The distributions of limit order placements/revisions across price

levels away from the bid-ask spread, for both the in-sample and out of sample periods, are

shown in Figure 3. Similarly, the distributions of the location in the limit order book at which

orders are canceled, for both the in-sample period and the out-of-sample period, are shown

in Figure 4. The most activity with respect to limit orders occurs in the five price levels

on either side of the order book that are nearest to the bid-ask spread. This is indicative

of market makers, who by their nature only act near the spread, limiting the bulk of their

activity to price levels within a few ticks of the spread. Therefore, I restrict my attention

to limit orders which are placed (or canceled) within five active price levels of the current
4“Nasdaq TotalView-ITCH,” http://www.nasdaqtrader.com/Trader.aspx?id=Totalview2, (April 12, 2016)
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spread.

The behavior observed in a subset of limit order placements and cancellations is consis-

tent with the anecdotal trend of “flickering orders,” in which liquidity providers try to learn

about other market participants’ strategies by placing a limit order only to cancel it almost

immediately. Placing and canceling limit orders in this fashion neither affects market liquid-

ity in any meaningful way, nor does it resemble the behavior exhibited by limit orders that

are submitted with the intent to provide liquidity to the market. I therefore exclude these

flickering orders from my sample, identifying them as those limit orders that are canceled

within a few seconds of being placed and before a new market order arrives.

A summary of the market activity observed for each of the stocks during the in-sample

and out-of-sample periods, after restricting the sample to the five ticks nearest the spread

and excluding flickering orders, is presented in Table 1. For each stock and for both time

periods, the table reports the number of market orders observed, the number of limit order

placements/revisions observed, the number of limit order cancellations observed, the total

number of order messages included in the study, as well as the number of flickering orders

that were observed and subsequently excluded.

1.4 Empirical Model Estimation

1.4.1 Distribution of Market Orders

In order to match the empirical distribution of market orders, I first allow for the possibility

that the probability of a market order being a sell or a buy order is not equal to 0.5. It

is immediately apparent from the histogram of market orders (Figure 1) that a significant

mass of the distribution exists over orders of sizes which are less than a full lot (between 1

and 99 shares). It is also readily apparent that, stylistically, given |m| ≥ 100, the order sizes

are even lots almost surely. Thus, I impose the following distributional assumption on the

size of market orders.
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f(m) =



(1− ξ)λ1(1− λ2)m/100λ2 if m ∈ 100n,n ∈N

(1− ξ)(1− λ1) · 1
99 if m ∈ {1, . . . , 99}

ξ(1− φ1) · 1
99 if m ∈ {−1, . . . ,−99}

ξφ1(1− φ2)−m/100φ2 if m ∈ −100n,n ∈N

(12)

Note that this distributional assumption implicitly restricts the domain of m to

±{1, . . . , 99} ∪±100n,n ∈N. The above pmf implies that the cmf is given by

F (m) =



ξ + (1− ξ)(1− λ1) + (1− ξ)λ1(1− (1− λ2)m/100) if m ≥ 100

ξ + (1− ξ)(1− λ1) · 1
99 ·m if m ∈ {1, . . . , 99}

ξφ1 + ξ(1− φ1) · 1
99(m+ 100) if m ∈ {−1, . . . ,−99}

ξφ1(1− φ2)−m/100 if m ≤ −100
(13)

While the parameterization of market orders smaller than a full lot as uniformly dis-

tributed clearly doesn’t match the empirical distribution precisely (with the empirical dis-

tribution showing a spike at orders of 50 shares), the cumulative mass over this region plays

a much larger part in determining the optimal size of a limit order than the shape of the

distribution over the region. This is because the vast majority of orders are located in the

order book in such a way that the sum of the size of limit orders with either price or time

preference totals at least 100 shares. Caring only about orders large enough to execute

against their own limit order, market makers thus do not care about the exact distribution

of such small market orders. Therefore, this essay need not concern itself with the precise

distribution over said region, and is safe in its assumption of a uniform distribution.

Under the above parameterization, by the properties of conditional expectations of uni-

form distributions and geometric distributions, for A > 0,

E[m|m ≥ A] =


(100−A)

99 (1− λ1)
99+A

2 + (1− (100−A)
99 (1− λ1))

100
λ2

if A < 100

A+ 100
λ2

if A ≥ 100.
(14)
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Similarly, for A < 0,

E[m|m ≤ A] =


(100+A)

99 (1− φ1)
A−99

2 − (1− (100+A)
99 (1− φ1))

100
φ2

if A > −100

A− 100
φ2

if A ≤ −100.
(15)

1.4.2 Estimation of Model Parameters

This essay’s structural model contains ten parameters which must be estimated,

θ = {µ,α, ξ,λ1,λ2,φ1,φ2,ψ, γ0, γ1}.

Given the assumption of the characterization of the stochastic process of the stock’s

underlying value Xt, I have the process

∆Xt = µ∆Tt + αmt + εt,

which I can use to arrive at the moment condition

E[e1(θ; yt)] = E[∆Xt − µ∆Tt − αmt|executed against visible liquidity] = 0, (16)

where ∆Xt denotes the change in mid-quote price caused by the execution of the market

order mt. When a market order executes against hidden liquidity, the remainder of the

hidden limit order becomes visible, resulting in a tightening of the bid-ask spread. Since I

measure the stock price as the mid-quote price, this implies that α < 0. Clearly the price

impact function should be monotonically increasing, so I must remove these observations

from my moment matching condition.

Since ξ = P(mt < 0), I can create the moment condition

E[e2(θ; yt)] = E[1mt<0 − ξ] = 0 (17)

Since I assume that the distribution of market orders follows a geometric distribution for
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orders of even lots, I have the moment conditions

E[e3(θ; yt)] = E[mt −
100
λ2
|mt ≥ 100] = 0 (18)

E[e4(θ; yt)] = E[−mt +
100
φ2
|mt ≤ −100] = 0 (19)

Since I assume that the distribution of market orders smaller than a full lot follow uniform

distributions, I need only to match the distribution of mass between orders of even lots and

orders smaller than a full lot. I can do this by matching the mean of the distribution to the

sample average, resulting in the moment conditions

E[e5(θ; yt)] = E[mt − 50(1− λ1)−
100λ1
λ2
|mt > 0] = 0 (20)

E[e6(θ; yt)] = E[−mt + 50(1− φ1) +
100φ1
φ2
|mt < 0] = 0 (21)

In order to find the average time until a new market order is placed, ψ, I can simply fit a

hazard function to the time intervals between market orders such that the pdf is 1
ψe
− 1
ψ∆Tt ,

where ∆Tt is the time elapsed since the previous market order when mt is entered, arising

in the moment condition

E[e7(θ; yt)] = E[∆Tt − ψ] = 0 (22)

I am now able to derive moment conditions for γ1 by using the break-even conditions (6)

and (9).

E[e8(θ; yt)] = E
[
p− γ1 −Xt − µψ− αE[mt′|mt′ ≥ Q+ q]| limit sell order

]
= 0 (23)

E[e9(θ; yt)] = E
[
Xt − γ1 − p+ µψ+ αE[mt′|mt′ ≤ −Q− q̂]| limit buy order

]
= 0 (24)

The inequality constraints governing whether a limit order should be placed (Equations

(7) and (10)) and whether an existing limit order should be canceled (Equations (8) and
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(11)) lead to a set of weak inequality moment conditions for γ0.

E[e10(θ; yt)] = E

[∑q̂

n=1

(
p− γ1 −Xt − µψ− αE[mt′ |mt′ ≥ Q+ n]

)
− γ0| limit sell

]
≥ 0 (25)

E[e11(θ; yt)] = E

[∑q̂

n=1

(
Xt − γ1 − p+ µψ+ αE[mt′ |mt′ ≤ −Q− n]

)
− γ0| limit buy

]
≥ 0 (26)

E[e12(θ; yt)] = E

[
γ0 −P

(
mt′ ≥ Q

)∑q̂

n=1

(
p− γ1 −Xt − µψ− αE[mt′ |mt′ ≥ Q+ n]

)
| cancel sell

]
≥ 0

(27)

E[e13(θ; yt)] = E

[
γ0 −P

(
mt′ ≤ −Q

)∑q̂

n=1

(
Xt − γ1 − p+ µψ+ αE[mt′ |mt′ ≤ −Q− n]

)
| cancel buy

]
≥ 0

(28)

Inequality constraints pose a problem for conventional moment-based estimation tech-

niques. However, Moon and Schorfheide (2008) show that models for which inequality mo-

ment conditions provide overidentifying information can be modified in such a way that

that they can be included in a generalized method of moment estimator and that the in-

clusion of these conditions can reduce the mean-squared estimation error. I rewrite the

moment conditions e10 through e13 such that E[e10(θ; yt)− ζ ] = 0, E[e11(θ; yt)− ζ ] = 0,

E[e12(θ; yt) − η] = 0, and E[e13(θ; yt) − η] = 0 for ζ, η ≥ 0. In this way, the slackness

parameters, ζ and η, can be interpreted as the average opportunity costs of placing a new

limit order and maintaining an existing limit order, respectively.

Using these thirteen moment conditions, setting e1 through e7 equal to zero for all obser-

vations of market orders, setting e8 through e11 equal to zero for all limit order placements,

and setting e12 and e13 equal to zero for all limit order cancellations, I am able to estimate

the twelve parameters θ = {µ,α, ξ,λ1,λ2,φ1,φ2,ψ, γ0, γ1, ζ, η}. I perform a Continuous-

Updating Generalized Method of Moments (CUGMM) regression,

θ̂ = argmin
θ∈Θ

[ 1
T

∑
g(θ; yt)

]>
Ŵ (θ̂)

[ 1
T

∑
g(θ; yt)

]
(29)

where g′(θ; yt) = [e1(θ; yt), . . . , e14(θ; yt)] and Ŵ (θ̂) is a continuously updated weighting
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matrix such that

Ŵ (θ̂) =
( 1
T

∑
g(θ̂; yt)g(θ̂; yt)>

)−1
(30)

is estimated simultaneously with θ̂. Hansen, Heaton, and Yaron (1996) find, in a comparison

of Monte-Carlo simulations for various GMM estimation procedures, that CUGMM tends

to outperform two-step feasible GMM and iterated GMM procedures.

The results of my estimation for each stock are reported in Table 2. Interestingly, for

six of the ten stocks in my sample, the fixed cost γ0 is negative. This suggests that, on

average, the on-going monitoring costs associated with these stocks are surpassed by the

on-going benefit of holding such an order. Such a result could be indicative of traders acting

through the limit order book, placing orders that reflect their heterogeneous beliefs about

the valuation of the asset. The result could also be indicative of market makers acting upon

a non-linear price impact function with respect to market orders.

1.4.3 Optimal Order Size

Recall from Equations (6) and (9) that the optimal order size, q̂, is that which setsE[mt′|mt′ ≥

Q+ q̂] or E[mt′|mt′ ≤ −Q− q̂] equal to p−γ1−Xt−µψ
α or p+γ1−Xt−µψ

α , respectively. There-

fore, given the current price of the equity, Xt, the model parameters {γ1,µ,ψ,α}, and the

amount of liquidity in the book with either price or time priority, Q, the optimal order size

for price level p is wholly dependent upon the conditional distribution of market orders.

With the distributional assumptions I impose on the parameterization of market orders, if

Q ≥ 100, there exists a closed form solution to the optimal size of a limit order. Specifically,

if Q ≥ 100, the optimal order size for limit sell orders is given by

q̂A =
p− γ1 −Xt − µψ

α
−Q− 100

λ2
, (31)

and the optimal order size for limit buy orders is given by

q̂B =
100
φ2
−Q− p+ γ1 −Xt − µψ

α
. (32)
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Given the parameterization of this model, however, for Q < 100, the above closed form

solution is not guaranteed to hold. The solution has the possibility of becoming quadratic,

with no guarantee of real roots. Thus, the estimation procedure requires a search function

for the zero of the derivative of the expected profit function.

1.4.4 Comparison of Observed Orders to Model-Implied Optimal Orders

I am able to evaluate the ability for my model to capture the behavior of model makers by

comparing the sizes of observed limit orders to the optimal order size projected by my model.

Reported in Figure 5 are the in-sample and out-of-sample distributions across price levels

of the count of limit orders for the ten stocks which are optimally provisioned, relatively

thin, and relatively thick acording to my model. Over both the in-sample and out-of-sample

periods, more than a third of the orders (38% and 37%, respectively) are equal in size to

that which is predicted by the model. Over the in-sample period, 23% of the orders provided

more liquidity than is predicted by the model, and 39% of the orders provide less liquidity.

Over the out-of-sample period, 24% of the orders were larger than predicted, and 40% were

smaller than predicted. Not only does this demonstrate that my model is able to explain the

provision of liquidity well, the out-of-sample performance shows that my model has strong

external predictive validity.

This result provides evidence that contradicts Sand̊as’s (2001) conclusions about market

makers’ behavior. Sand̊as (2001) rejects a similar model, concluding that the aggregate

depth of the empirical order book was too thin relative to his model of the aggregate order

book. The effectiveness of this model to capture the behavior of market makers placing

individual orders within the context of the rest of the order book, however, suggests that

Sand̊as’s findings are in part driven by the latency with which agents are able to observe

the market. Sand̊as’s trading mechanism allows liquidity providers to continue to add or

modify limit orders until they no longer wish to make any changes, and only then does a

market order arrive. While Sand̊as finds that the aggregate liquidity provided by the limit

order book is sub-optimal, his trading mechanism assumes that all market makers are able
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to view and respond to changes in the market before the next market order arrives. My

model relaxes this assumption and in so doing, makes it possible to examine the behavior

of individual market makers. When market makers do respond to changes in the market, I

find that the majority of their actions provide as much if not more liquidity than would be

optimal according to my model.

The optimal order size for any given price level can be used to calculate the maximal

expected profit available for limit orders placed at said price levels. Other strategic order

placement strategies notwithstanding, one would expect market makers to place their orders

at the price level which offers them the highest possible expected profit. With this in mind, I

can compare the price levels at which I observe orders to the predicted price levels in order to

investigate the strategic considerations of market makers with respect to future limit order

flow. Placing a limit order at a price level away from the spread leaves open the possibility

for another market maker to place an order which undercuts the order in question. Moreover,

placing a limit order away from the spread increases the probability that, should a new limit

order be placed, it undercuts the former. For example, if an order is placed four ticks away

from the spread, the likelihood of an order five or more ticks away being fulfilled diminishes

because of the new liquidity in the book, and the price impact of a market order large enough

to fulfill an order at those price levels increases. Therefore, the price levels one to three ticks

away from the spread become relatively more profitable in expectation, and this increased

desirability makes it more likely that a new limit order will be placed such that it has price

priority over the former order.

My procedure for examining the choice of price levels is as follows. For each limit order

placement, I take the limit order book on the same side as the order immediately preceding

the order submission and find all active price levels within ten ticks of the bid ask spread

and the existing depth at each price. For orders that are submitted at a price not currently

represented in the limit order book, I add said price level to my record of the order book

with a quantity of zero. For each price level in the order book, I predict the optimal order

size given the price and existing depth of the order book in front of the hypothetical order.
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Next, for each of these predicted orders, I find the expected profit of the order, conditional

on being executed, then discount that by the probability of being executed in order to find

the unconditional expected profit for the order. Finally, I compare the price level of the

hypothetical order that maximizes expected profit to the price level of the observed order,

and record whether the observed order was placed closer to the bid-ask spread than the

profit maximizing order, at the same price level, or further away from the spread.

Reported in Figure 6 is the distribution across price levels of the count of limit orders

which are placed at the optimal price, those placed relatively too near the bid-ask spread,

and those placed relatively too far away from the bid-ask spread. The vast majority of

limit orders – 81% of orders placed during the in-sample period and 83% of orders placed

during the out-of sample period – are placed at price levels too near the bid-ask spread.

Interestingly, for both the in-sample and out-of-sample periods, about 91% of those orders

that are placed at the model-projected optimal price are observed on the buy side of the

book. Moreover, for those orders that are placed at a price level too far away from the

bid-ask spread, 91% and 92% of the orders are observed on the buy side of the book over

the in-sample and out-of-sample periods, respectively.

This demonstrates a potential inconsistency between the behavior of market makers and

my model of optimal liquidity provision. Given the model’s predictions of optimal limit

orders, it appears that market makers are placing their orders too aggressively. Since profit

maximizing orders are determined using the unconditional probability that they will be

executed against by the next market order, this finding cannot be a result of market makers

positioning their orders in the book such that the next market order is likely to fill the limit

order given the current size of the order book. Rather, I argue that this observation provides

evidence that market makers strategically position their orders based on their expectations of

future limit order flow. The aggressiveness with which limit orders are placed with respect to

their position in the order book suggests that future limit order flow is a major consideration

for market makers when choosing how to provide liquidity to the market.

29



1.5 Estimator of Relative Liquidity Provisioning

Focusing my attention on those orders which diverge in size from the optimal q̂ given by

the model with no private information, I can attempt to extract the private information of

the market makers. While looking at the limit orders’ sizes alone cannot reveal the specific

channel through which the information is influencing the market maker’s decision, it can

provide implications of the decision, as well as the relative amount of information. I can

thus define a measure of relative liquidity provision at time T (RLPT ) in as general a form

as possible.

RLPT =
∑

τ∈[0,T ]
ω(τ ,T )I(qτ ,Qτ , q̂τ ) (33)

where ω(·) is a weighting function that measures the residual impact of the order on the level

of asymmetric information at time T , and I(·) measures the informational content (available

to the econometrician) of the order, given the order qτ , the composition of the order book

immediately prior to the order Qτ , and the optimal q̂ given by the model with no private

information.

Any sensible ω(τ ,T ) must be strictly monotonically decreasing in T − τ so that older

orders play less of a roll in determining the level of asymmetric information at time T . One

natural weighting function is

ω(τ ,T ) = eρ(τ−T ) (34)

where ρ is a parameter that controls the speed of decay of the weighting over time. Note

that with this weighting function, since eρ(τ−(T+t)) = eρ(τ−T )e−ρt, I can split the calculation

of the estimator into intervals.

RLPT+t = e−ρt ·RLPT +
∑

τ∈[T ,T+t]
eρ(τ−(T+t))I(qτ ,Qτ , q̂τ ) (35)

Structurally, it would be beneficial for (abusing notation a bit) |I(qτ ,Qτ , q̂τ )| to be

strictly monotonically increasing in |q̂τ − qτ |, 1/Qτ , and the probability of the order executing

against the next market order. Since the probability of a limit order being filled is inversely
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proportional to the aggregate depth of the order book out to the price level at which the

order is placed, I can define

Q̃τ =


∑j
n=1Qn,τ if the order is a sell limit order

∑j
n=1Q−n,τ if the order is a buy limit order

(36)

where Qn,τ is the aggregate depth of the order book at price level n immediately after the

order at time τ is placed. The probability of the order executing against the next market

order on its side of the book is then

Pτ =


P(m ≥ Q̃τ ) = 1− F (Q̃τ ) if the order is a sell limit order

P(m ≤ Q̃τ ) = F (−Q̃τ ) if the order is a buy limit order
(37)

As discussed in Section 1.2.3, there are three types of informed market makers, of which

two behave symmetrically on either side of the book and one acts asymmetrically. Those

informed market makers that act symmetrically will either increase their provision of liquidity

to both sides of the order book or decrease their provision of liquidity to both sides of the

book, depending on the information upon which they are acting. Conversely, those informed

market makers who act asymmetrically have information about the fundamental value of

the asset, and will increase their provision of liquidity on one side of the order book while

simultaneously decreasing their provision of liquidity on the other side of the book. Thus,

I construct two different information functions – one that measures the symmetric actions

taken by informed market makers without knowledge about the fundamental value of the

asset, and one that measures the asymmetric directional actions taken by market makers

with information about the fundamental value of the asset.
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The symmetric information function IS(qτ ,Qτ , q̂τ ) can be given by

IS(qτ ,Qτ , q̂τ ) =


(qτ − q̂Aτ )(1− F (Q̃τ )) if the order is a sell limit order

(qτ − q̂Bτ )F (−Q̃τ ) if the order is a buy limit order

= [(qτ − q̂Bτ )F (−Q̃τ )]1B [(qτ − q̂Aτ )(1− F (Q̃τ ))]1−1B ,

(38)

and the and the directional information function ID(qτ ,Qτ , q̂τ ) is given by

ID(qτ ,Qτ , q̂τ ) =


(q̂Aτ − qτ )(1− F (Q̃τ )) if the order is a sell limit order

(qτ − q̂Bτ )F (−Q̃τ ) if the order is a buy limit order

= [(qτ − q̂Bτ )F (−Q̃τ )]1B [(q̂Aτ − qτ )(1− F (Q̃τ ))]1−1B ,

(39)

where 1B is again an indicator function for the order being a bid, q̂At is the optimal sell

limit order size given by Equation (31), and q̂Bt is the optimal buy limit order size given by

Equation (32).

The construction of the symmetric information function IS(qτ ,Qτ , q̂τ ) allows it to be

positive whenever an order provides more liquidity than the average optimal depth and neg-

ative when the order provides less liquidity. The construction of the directional information

function ID(qτ ,Qτ , q̂τ ) allows it to be positive when the ask side of the book provides less

liquidity than would otherwise be optimal and the bid side of the book provides more liq-

uidity than would otherwise be optimal. In this way, given the behavior of market makers

with information about the fundamental value of the asset discussed in Section 1.2.3.1, the

directional information function is positive when market makers have information that the

asset’s fundamental value is above the current mid-quote price and is negative when market

makers have information that the value is below the mid-quote price.

By plugging Equation (34) and Equation (38) into Equation (33), I then arrive at a
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measure of symmetric actions taken by informed market makers

RLPST =
∑

τ∈[0,T ]
eρ(τ−T )[(qτ − q̂Bτ )F (−Q̃τ )]1B [(qτ − q̂Aτ )(1− F (Q̃τ ))]1−1B . (40)

Similarly, by plugging Equation (34) and Equation (39) into Equation (33), I arrive at a

measure of directional actions taken by informed market makers

RLPDT =
∑

τ∈[0,T ]
eρ(τ−T )[(qτ − q̂Bτ )F (−Q̃τ )]1B [(q̂Aτ − qτ )(1− F (Q̃τ ))]1−1B . (41)

Here, ρ determines the “stickiness” of any one observation’s impact on the estimate. Intu-

itively, the impact shouldn’t last too long. For this reason, ρ̂ is calibrated to 1
5∗60∗109 so that

eρ̂(τ−T ) = eNo. of 5 min intervals since order.

A representative day of the directional and symmetric estimators for American Airlines

(AAL) is presented in Figures 7 and 8, respectively.

1.6 Results

My estimator being a measure of liquidity supply relative to that which is optimal in my

model of liquidity provisioning, I can compare the value of the estimator to various aspects

of the price process and market order flow in order to examine to what extent deviations

from the model-implied optimal level of liquidity can identify the actions of informed market

makers.

Information Regarding Future Market Order Flow First, I investigate whether

there is evidence that market makers are acting on information about market order flow

in the near future. Since my model of optimal liquidity provisioning is static, the current

level of my symmetric estimator of relative liquidity provisioning is not necessarily indicative

of informed market maker activity. Rather, as market makers respond to changing market

conditions, the estimator is expected to reflect those responses. There is much empirical
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evidence of the presence of volatility clustering in financial markets. Volatility generally

follows an autoregressive process, wherein volatility is likely to remain high if it is currently

high and remain low if it is currently low. It is possible, therefore, that the market makers’

liquidity supply is simply a response to current market volatility and is not informative about

future volatility beyond that which is due to the autoregressive nature of volatility. Thus, I

will use the change in the value of my estimator as an indicator of potential informed market

maker activity. While the level of the estimator may be reflective of the current market

order activity, the change in the estimator’s value is indicative of informed market makers’

actions.

As discussed in Section 1.2.3.3, if market makers have information about future market

order flow but do not have information about the presence of informed market makers, then

they will decrease their provision of liquidity ahead of an increase in market order flow and

will likewise increase their provision of liquidity ahead of a decrease in market order flow.

Several factors regarding the distribution of market order flow affect the optimal provision

of liquidity - namely, the standard deviation of the size of market orders, the average order

size, the maximum order size, and the total volume of market order flow over the course of

the interval. Therefore, I regress the change in these factors on the change of the symmetric

measure of relative liquidity provisioning. To test the estimator’s predictive power over the

factors in the near future, I regress the change in these factors over one minute periods,

comparing the change in the value of my estimator in the preceding interval to the change

in market order flow.

(R1) : ∆σmt = β · ∆RLPSt−1 + εt

(R2) : ∆|m|t = β · ∆RLPSt−1 + εt

(R3) : ∆max{|m|}t = β · ∆RLPSt−1 + εt

(R4) : ∆sum{|m|}t = β · ∆RLPSt−1 + εt

If market makers have information about future market order flow, then I expect that the
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coefficients for these regressions would be negative.

The results of these regressions are reported in Table 3. There are only two factors for a

singular stock for which coefficients are negative with any level of significance. Over the in-

sample period, the coefficients related to the change in standard deviation of market orders

and maximum market order size for Goldman Sachs are negatively related to the change in

RLPS . For all other stocks, both in-sample and out-of-sample, the only coefficients that

hold at any level of statistical significance are positive. Thus, there is strong evidence that

market makers do not change their provision of liquidity in response to information about

future market order flow. Such a result makes sense; traders tend to increase their activity

when liquidity is relatively high and decrease their market order activity when the provision

of liquidity is relatively low. Therefore, even if market makers had information about future

market order flow, changing their provision of liquidity to reflect this information would

cause market participants to adjust their market order flow in response, nullifying whatever

information the market makers had.

Information Regarding the Presence of Informed Traders Next, I investigate the

existence of market makers with information regarding the presence of informed traders. As

discussed in Section 1.2.3.2, market makers with information about the presence of informed

traders would present themselves by responding differently to changing levels of market

activity than would otherwise be expected. Namely, if there were market makers with

information that informed traders were active in the market, then they would provide less

liquidity to both sides of the book than they otherwise would given the current market order

flow, and if there were market makers with information that informed traders were not active,

then they would provide more liquidity to both sides of the order book than they otherwise

would. The presence of informed traders in the market cannot be measured directly and

must therefore be estimated via a proxy. Since informed traders place trades with higher

price impacts than noise traders, the amount by which prices change relative to the volume
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of market order flow observed and the depth of the limit order book5 can act as an estimate

of abnormal price impact, and therefore, a proxy for the presence of informed traders.

For each stock in my sample, I first partition each day into 1-minute intervals and find

the level of market order flow throughout each period, the relative provision of liquidity

throughout each period, as well as the change in price over each period. Then, I determine

the size of price change that is unexplained by limit order book depth and market order flow

by regressing the magnitude of price change observed over each period on the market order

flow throughout each period as well as the estimate of relative liquidity provisioning at the

end of each period (R5). The residuals of this regression represent abnormal price impacts;

a positive residual indicates that prices changed more than they normally would given the

market order flow and depth of the order book.

(R5) : |∆Xt| = β0 + β1 ·RLPSt + β2 · σmt + β3 · |m|t
+β4max{|m|}t + β5sum{|m|}t + νt

The results of this regression are reported in Table 4. There are several instances for which

the factors relating to the distribution of market order flow do not correlate with the change

in price in the expected direction. For example, there are four stocks for which either average

or maximum market order size is negatively correlated with the magnitude of price changes

over an interval. Insofar as the market order flow from noise traders has little impact on

price, it is plausible that an increase in market order flow being correlated with a decrease

in price impact is indicative of increased levels of noise trader activity.

Since noise traders have a smaller price impact than informed traders, if market makers

had information about the presence (or lack thereof) of informed traders, then periods of

greater liquidity provisioning, relative to current market order flow, would be associated with

smaller price movements, relative to the level of liquidity provisioning and level of market
5The price impact of market orders is mechanically tied to the depth of the order book; less depth in the

order book means that market orders will consume a greater portion of liquidity and will therefore have a
greater price impact. Thus, the relative depth of the order book must be accounted for when identifying
periods of abnormal price impact.
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order flow. Thus, in order to test for the presence of market makers that have information

about the presence of informed traders, I perform a regression of the unexplained price

impacts on the change of the symmetric measure of relative liquidity provisioning over the

previous interval.

(R6) : ν̂t = β · ∆RLPSt−1 + εt

If market makers have information about the presence of informed traders, then I expect the

coefficient of this regression to be negative.

The results of regression (R6) are reported in Table 5. There is only one stock for which

the coefficient is negative and statistically significant during the in-sample period. However,

over the out-of-sample period, five of the ten stocks have negative coefficients with statistical

significance. Thus, there is evidence that some market makers possess information about

the presence of informed traders and decrease their provision of liquidity ahead of periods

during which those informed traders are active.

Information Regarding the Fundamental Value of the Asset Next, I investigate

the hypothesis that market makers have information about the fundamental value of the

asset. As discussed in Section 1.2.3.1, if market makers have information about the value of

the asset, then they will decrease their provision of liquidity on the side of the order book

in the same direction as the fundamental value of the asset and increase their provision of

liquidity on the opposite side of the book. Thus, I regress the change in price over an interval

on the change in my directional estimator of relative liquidity provisioning in the preceding

interval.

(R7) : ∆Xt = β · ∆RLPDt−1 + εt

I also perform this regression after controlling for the autoregressive nature of asset returns.

(R8) : ∆Xt = β1 · ∆Xt−1 + β2 · ∆RLPDt−1 + εt
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Given the construction of my directional estimator of relative liquidity provisioning, if market

makers have information about the fundamental value of the asset, then I expect the value

of the coefficient acting on RLPDt−1 to be positive.

The result of these regressions are reported in Table 6. Without controlling for the

autoregressive nature of price returns, there are four stocks over the in-sample period and two

stocks over the out-of-sample period for which there is a positive coefficient with statistical

significance. After controlling for the autoregressive nature of price returns, five of the ten

stocks have statistically significant positive coefficients over the in-sample period, and two

stocks have significant positive coefficients over the out-of-sample period. Therefore, there

is evidence that some market makers have information about the fundamental value of the

asset and act upon that information.

Adverse Selection Finally, in order to test the influence of the measure of liquidity

provisioning on the the price impact of market orders, I first perform a standard regression

of the change in price on the size of market orders, controlling for the instantaneous price

drift.

(R9) : ∆Xt = µ · ∆Tt + α ·mt + εt

The results of this are reported in Table 7. For each market order, I can then find the

empirical price impact and compare it to the projected price impact. Regressing the residual

price impact on the value of the symmetric estimator at the time the order was placed, I can

then observe the effects of the market makers’ liquidity provisioning decisions on the price

execution of market orders.

(R10) : (∆Xt − µ̂ · ∆Tt)/mt − α̂ = β ·RLPSt + εt

The results of this regression are also reported in Table 7. More costly execution of market

orders is indicative of the presence of adverse selection. By the construction of the symmetric

estimator, if it is able to act as a proxy for adverse selection, I would expect a smaller
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estimator value to be correlated with a larger residual. Indeed, in the regression I find that

the coefficient for the estimator is negative for all ten stocks over both the in-sample and

out-of-sample periods and is significant at the 1% level for nine of those stocks over both

time periods. Thus, it is evident that my estimator serves as a good proxy for the costs to

investors borne from informed market makers.

1.7 Discussion

There are several different possible explanations for why a liquidity provider would deviate

from the model-implied optimal quantity. As previously mentioned, liquidity providers may

be informed about the fundamental value of the asset, future market order flow, or the

presence of informed traders in the market. A market maker with private information about

the fundamental value of the asset would place limit orders in such a way that takes advantage

of this information - providing less liquidity in the direction of the anticipated price movement

and more liquidity on the opposite side of the book. A market maker who is informed about

future market order flow would be able to position her orders in anticipation of this order

flow, providing less liquidity when the order flow increases than she would otherwise provide.

Finally, if a market maker has information about the presence of informed traders in the

market, then she would provide less liquidity when those traders are active.

It is also possible that a market maker will deviate from the expected optimal liquid-

ity provision not because of private information but because of issues stemming from the

structure of my model. Namely, it is possible that market makers deviate from the model’s

prediction either because they are responding to changing state variables or because they

have market power. It should be noted that the estimation procedure used herein implicitly

assumes a static model in which the dispersion of market order flow remains constant in

average over the course of the month. Insofar as market makers are reacting to changes in

current market conditions, it may therefore be the case that the deviations in liquidity pro-

vision we observe are a response to varying market conditions. Alternatively, it is possible

that liquidity providers wield market power. My model assumes that market makers are
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facing perfect competition. If they are not facing perfect competition, then market makers

who have limit orders placed at several different price levels would systematically provide

less liquidity at price levels close to the spread, positioning themselves in such a way that

they extract more profits from the market order flow.

If divergences in the supply of liquidity are driven only by changing market conditions,

then the actions of market makers would not reflect any anticipation of future market order

flow and asset price returns beyond that of the autoregressive tendencies of the conditions.

In order to determine whether market makers possess and act upon private information, I

compare various predictions implied by the type of information they might possess.

If a market maker possesses private information about the fundamental value of the as-

set, she would place limit orders in such a way that takes advantage of this information -

providing less liquidity in the direction of the anticipated price movement and more liquidity

on the opposite side of the book. The construction of my directional estimator of relative liq-

uidity provisioning leverages the above reasoning, and is positive when the actions of market

makers reflect the hypothesized behavior of a market maker who anticipates positive price

returns in the near future. When the provision of liquidity mirrors the behavior of a market

maker who anticipates negative price returns in the near future, my directional estimator is

negative. I use my directional estimator to test whether market makers have information

about the fundamental value of the stocks in my sample, and I find evidence that some mar-

ket makers exhibit behavior that indicates they indeed possess such information. Regressions

(R7) and (R8) demonstrate that the change in liquidity provisioning has a strong predictive

power over future price returns for several stocks in my sample. For these stocks, therefore,

there is evidence that market makers possess and act on private information regarding the

fundamental value of the stock throughout my sample.

If a market maker knows that an informed trader is present in the market, she would

want to reduce her liquidity provisioning on either side of the order book ahead of the

informed trader’s orders. The results of regression (R6) demonstrate that, for one stock over

the in-sample period and five stocks over the out-of-sample period, my symmetric measure

40



of relative liquidity provisioning is strongly negatively correlated with the abnormal price

impact of market orders submitted to NASDAQ in the near future. Therefore, it appears

that there exist market makers who have information about the presence of informed traders

in the market and adjust their provision of liquidity accordingly.

A market maker without information about the presence of informed traders, but with

information about future market order flow, would want to adjust her provision of liquidity

accordingly. As discussed in Section 1.2.3.3, a market maker with such information would

want to decrease her provision of liquidity ahead of periods of increased market order flow

and increase her provision of liquidity ahead of periods of decreased market order flow. I

find no evidence that market makers behave in this way. The results of regressions (R1)

through (R4) show that the change of liquidity provisioning has a strong positive correlation

with the change in market order flow in the near future. This result is intuitive. When

liquidity provisioning is low and the order book is thinner than usual, market orders are

more expensive. Thus, when the book is thin, one would expect traders to wait for more

liquidity before placing their orders.

In considering the broader usefulness of this estimator, it is beneficial to investigate

whether it can speak to the welfare effects of the actions taken by informed market makers.

Perhaps the most direct evidence of the instantaneous health of the market for an asset is

its price efficiency. Thus, the welfare effects stemming from the the liquidity provisioning

decisions of informed market makers can be measured by the price impact of market orders.

Regressions (R9) and (R10) test the impact that the symmetric measure of relative liquidity

provisioning has on the price impact functions of each stock. As expected, when market

makers decrease their providing of liquidity, the price impact of a market order increases.

An increase of the price impact of market orders is indicative of decreased price efficiency,

making it more costly for traders placing market orders. Clearly, therefore, the actions taken

by market makers when they sense the presence of informed traders temporarily damage the

liquidity of financial markets, diminishing the social welfare they provide.

However, the periods during which market makers supply less liquidity than normal are
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short in duration. Therefore, while the behavior of informed market makers – reducing

their supply of liquidity in anticipation of increased informed trader activity – makes order

execution more costly, these effects are transient. This aligns with the empirical findings

of Yueshen (2016) that, over the last decade in the U.S. equity markets, the average price

impact of market orders has decreased, while the dispersion of price impact has increased.

By having knowledge about the presence of informed traders, market makers are therefore

able to provide more liquidity on average, improving the price execution of the average order.

1.8 Limitations

The model of optimal limit order placements proposed herein is estimated as a static model.

That is to say, the estimation of this model assumes that the parameters describing the

evolution of stock values and the flow of market orders remain static over the sample period.

In reality, market makers must constantly re-evaluate their expectations of these features and

update their strategies accordingly. Indeed, the results of regressions (R3)-(R6), presented

in Table 4, suggest that market makers adjust their provision of liquidity based on recent

market order flow. The estimator of relative liquidity provisioning therefore captures both

the effects of changing market order flow and the effects of market makers acting on private

information. Regressions (R7)-(R10), the results of which are presented in Table 5, suggest

that after controlling for recent market order flow, market makers act on private information

about future market order flow that extends beyond recent market order flow. While this

result provides evidence that market makers have and act on private information in this

manner, the estimator of relative liquidity provisioning is not purely a measure of private

information.

This essay’s model of optimal limit order placements is also based on the assumption

that market makers are only placing and monitoring one limit order at any given time. In

reality, each market maker is responsible for a portfolio of limit orders at different price

levels on both sides of the order book. This limitation stems from the information available

to me. NASDAQ does not release identifying information about who places orders sent to
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the exchange. It is impossible, therefore, to match limit orders with one another by market

participant, which is necessary if one were to construct a model in which market makers

hold a portfolio of several outstanding limit orders at the same time. In this way, my model

is unable to capture more complex strategies that may be employed by market makers.

Additionally, my model of optimal limit order placements implicitly assumes that market

makers are able to view and respond to the market with zero latency. The latency with

which market makers are able to interact with the exchange is an important consideration

in constructing their strategies. As this latency increases for a market maker, the risk that

new limit orders will enter into the market, undercutting her position, increases. Thus, when

placing a new limit order, the market maker must optimize her order not based on the current

volume of limit orders that have price and time preference but rather her expectation of this

volume at the time of the next market order. The risk that a limit order will be undercut

non-linearly increases with the distance of the order from the bid-ask spread. By excluding

this risk from my model, its effects on optimal liquidity provisioning must instead be captured

by the model’s estimations of the costs associated with placing and monitoring a limit order.

However, given the nature of this risk and the treatment of costs in the model, capturing this

risk through these costs biases the model’s estimates of optimal limit order size. For limit

orders placed very close to the bid-ask spread, the model underestimates the optimal limit

order size, and for orders placed far away from the bid-ask spread, the model overestimates

the optimal size.

Finally, the sample of this model is restricted to ten stocks over the course of one month.

This limitation arises from two separate considerations that affect the chosen sample in

different ways. The restriction of stocks included in the sample is due to data availability;

extending the sample to a broader array of stocks is cost prohibitive. While the cost of data

is also a consideration with respect to the time window of the sample, the restriction of

the sample window to one month is also due to computational limitations. The estimations

performed for each stock in this study are highly memory intensive, and are dependent upon

the number of orders submitted to the exchange. For several stocks in the current sample, the
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memory required to estimate the model parameters exceeds 100GB. To expand the sample

window beyond one month, the use of a computing cluster would be required.

1.9 Future Research

This research, and specifically the model of optimal liquidity provisioning, can be extended

in two important ways. First, model parameters can be estimated on a rolling basis rather

than as a static model. While allowing the estimation to be conducted on a rolling basis

would decrease the transparency of the model, it would help to isolate the private information

held by the market makers. Second, the model’s implicit assumption that market makers

can view and respond to the market with zero latency can be relaxed to allow for their

expectations of future limit order flow to enter the model explicitly. Extending the model

in this way would allow for a more nuanced investigation into how market makers respond

to considerations of future limit order flow in addition to future market order flow. Such an

extension would also allow for a better understanding of the importance of latency to market

makers’ optimal behavior.

1.10 Conclusion

The model proposed herein of information agnostic market makers’ optimal order placement

does a good job capturing the bulk of orders sent to the Nasdaq exchange. This basic result

contradicts Sand̊as’s (2001) conclusions that a similar model, which solves for the optimal

aggregate order book depth using expected profit maximizing conditions, fails to explain the

empirically observed shape of the order book. When solving for the optimal order size of

an individual limit order placed within the context of an existing order book, my model can

correctly predict the order size of over 37% of limit orders sent to the exchange, both during

the in-sample and out-of-sample periods.

Insofar as the model accurately reflects the behavior of market makers who are acting

without private information, it is reasonable to assume that a divergence from this model

indicates that the market maker is acting on some private information. Using the differences
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between the model-implied order sizes, given the existing supply of liquidity in the order

book when the orders were placed, and the observed order sizes, I am therefore able to

create estimators both for the presence of asymmetric information and for the implications

it has on future market order flows. The estimators proposed herein contain predictive power

over forthcoming asset price returns and the presence of informed traders in the market. This

result suggests that the deviations from the model predictions are indeed indicative of market

makers acting on private information.

Market makers’ liquidity provisioning is not only responsive to evolving order flow; it

correctly anticipates the market order flow activity of informed traders in the immediate

future. Liquidity providers are able to get out of the way of the abnormal market order flow

that otherwise would be detrimental to their profitability. Moreover, the periods of significant

illiquidity in the order book are short lived. In this way, by punishing these informed traders

with a relatively thin order book, market makers are able to afford to provide extra liquidity

to everyone else in the market.
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2 Estimating Aggregate Illiquidity of the Corporate

Bond Market

2.1 Introduction

There is a rich body of work focusing on the estimation of liquidity in opaque, over-the-

counter markets such as the U.S. corporate bond market. The methods by which liquidity is

estimated can be broadly separated into two distinct groups: those which directly estimate

liquidity via observed trading activity [Roll (1984), Amihud (2002), Feldhütter (2012), Dick-

Nielsen et al. (2012), Chen et al. (2007)], and those which indirectly estimate liquidity

through the use of proxies. Proxy-based approaches have been used to estimate liquidity

both at the individual bond level [Mahanti et al. (2008), Longstaff et al. (2005)] and at the

aggregate level [Duffie and Singleton (1997), Collin-Dufresne et al. (2001), Grinblatt (2003),

Campbell and Taksler (2003)]. Currently, however, the majority of this branch of market

microstructure research only attempts to directly estimate the liquidity of an individual bond

issue, stopping short of using observed trading activity to estimate the broader liquidity of

corporate bond markets as a whole. To the best of my knowledge, Bao et al. (2011) represents

the only attempt to create an aggregate liquidity measure that is based on observed trading

activity. In this essay, I construct a measure of the illiquidity of the overall U.S. corporate

bond market that is estimated using observed trading activity.

The difficulty of using a liquidity measure that is directly estimated from trading activity

stems from the fact that the majority of outstanding corporate bonds do not trade on any

given day. If an estimate of market liquidity is constructed via a simple aggregation of the

observed liquidity of those bonds that do trade, then the estimate will be biased in favor of

the type of bonds that are traded on that day, and will therefore not be representative of the

liquidity available to the broader market. Bao et al. (2011) construct an estimate of overall

bond market liquidity by taking the median monthly Roll liquidity estimate of the 1,035

most actively traded investment grade bonds in their sample. Bao’s estimation procedure

46



restricts the sample to bonds that trade on at least 75% of the business days during which

they are outstanding. As will be demonstrated in the next section, such a restriction is not

representative of the trading patterns for the majority of U.S. corporate bonds. Thus, the

estimate of aggregate liquidity is heavily biased towards a small subset of the most liquid

bonds in the market. For this reason, while useful for the investigation of the connections

between liquidity and credit spreads, the aggregate measure is inappropriate for estimating

the liquidity of the bond market as a whole.

I propose a measure of overall market liquidity that combats this bias by first estimating

the latent liquidity of bonds that are not traded, then aggregating the liquidity across the

entire market. In this context, I define the latent liquidity of a bond that is not traded to

be the liquidity that would have been observed had the bond traded. The latent liquidity of

un-traded bonds is estimated using the observed liquidity of similar bonds that are traded.

Thus, the majority of this paper focuses on the method by which that measure is extended

to bonds that are not traded.

I can decompose the liquidity of a bond into two components: that which is driven by

the overall liquidity of the market, and that which is particular to the individual bond issue.

A contention of this paper is that the component of a particular issue’s liquidity which is

exogenous to the market is largely driven by the ex-ante probability that it will trade. The

willingness of a dealer to buy a bond is, in large part, driven by her expected costs either

of searching for the opposite side to the trade or of keeping the bond in her inventory until

such time that another party wishes to buy the bond in question. Alternatively, a dealer’s

willingness to sell a bond which she holds in her inventory is determined by weighing the

opportunity costs associated with keeping the bond in her inventory against the premium

she expects the other party will be willing to pay due to the search costs associated with

finding another dealer who is also holding the bond in their inventory. The spread that

dealers charge and the volume they are willing to absorb must therefore be related to the

probability that the bond will trade. A bond issue with a high probability of trading will be

easier to sell and have lower search costs than one with a low probability.
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The liquidity of a bond issue is directly linked to dealers’ willingness and ability to

trade the asset. In turn, the dealers’ ability is shaped by their expectations about the

ongoing demand for liquidity in the respective bond issue. Having constrained inventories,

the dealers must consider the potential impact a trade would have on their ability to absorb

future liquidity. This inventory consideration creates a feedback effect wherein bond dealers

prepare to provide liquidity for the issues which they expect to trade, thereby reducing the

trade costs for those issues, making it more likely that the issues will be traded. Conversely,

if dealers think that there will not be much ongoing demand for liquidity in an issue, they will

not be as willing or able to provide liquidity, increasing the trade costs, making it less likely

that the issue will be traded. In this way, the dealers’ expectations are not only self-fulfilling,

they are a factor driving the liquidity with which bonds trade.

While each bond has its own (path dependent) liquidity patterns, as the saying goes, a

rising tide lifts all boats. In this case, rising levels of liquidity in the market lift the liquidity

of all bond issues. When considering the impact that market liquidity has on individual

bonds, however, it is important to note that the asymmetric distribution of trading activity

across bonds leads to a non-linear impact on different bonds. To extend the metaphor, while

a rising tide lifts all boats, in this case it lifts some boats more than others. It is useful,

therefore, to observe the composition of market activity in some stylized sense.

At any given time, a very small minority of bond issues are responsible for the majority

of all trading activity and volume. A bond issue in this minority is traded almost daily, so

the probability of the issue trading is consistently quite high and the fluctuations in liquidity

must be driven primarily by outside market forces. On the opposite end of the spectrum,

those bonds which are dormant primarily face the challenge of dealers’ willingness to absorb

the demand for liquidity and search for an opposite side to the trade. For this reason,

one would expect that a dormant bond’s liquidity is primarily determined by the ex-ante

probability that it will trade.

The decomposition of liquidity into an issue’s individual liquidity (which is driven by its

probability of trading) and market driven liquidity (which affects issues in a non-linear way)
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leads to a procedure which is broken into two primary parts. First, I create an estimate for

the (path dependent) probability of trading given the bond issue’s characteristics and trade

history. I estimate this propensity to trade by implementing a hidden Markov model, which

leverages Bayesian updates given an issue’s trade history to better predict the underlying

factors which inform the probability of trading. I then use this probability, along with other

bond characteristics, to help inform my estimation of what the liquidity would have been

for an issue which didn’t trade had it actually traded. Since market liquidity affects bonds

asymmetrically, I must estimate the effect that the market would have on a particular issue

by interpolating between a group of similar bonds. I perform this interpolation using a locally

weighted multivariate polynomial regression (LOWESS), which estimates the latent liquidity

for each observation without trades by performing a weighted least squares regression on a

localized subset of data, selecting the localized subset via a nearest neighbor meta-model.

The organization of this essay is as follows. Section 2.2 introduces the data used in

the construction of the liquidity measure and briefly examines the observed distribution of

trading activity. Section 2.3 describes the trade-based estimate of individual bond liquidity.

Section 2.4 discusses the hidden Markov model estimate of the probability a bond will trade;

the structure of the model and the procedure by which it is tuned are described, and the

performance of the model is compared to alternatives. Section 2.5 explains the LOWESS

regression model used to extend liquidity estimates to non-traded bonds, details the tuning

procedure for the model, and compares its performance to alternative models. Section 2.6

aggregates the bond-level liquidity estimates into a measure of overall market liquidity and

explores the relationships between market liquidity and various macroeconomic factors with

ties to liquidity. Section 2.7 discusses the limitations of my estimator, Section 2.8 discusses

potential avenues for future research, and Section 2.9 concludes.

2.2 Data

Using FINRA’s Trade Reporting and Compliance Engine (TRACE) enhanced historical data

from January 1, 2006 through March 31, 2018, I select all bond issues that I am able to match
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with their respective issue dates and maturity dates6. I am left with 19,993 issues spanning

2,173 different corporations. For each of these bonds, I gather all of the trades that are

reported to TRACE. All FINRA-registered broker-dealers are obligated to report any trans-

action of a TRACE-eligible security7 in which they engage. Thus, for each bond, my data

set includes the transaction data for all of the trades in which broker-dealers participated.

This transaction data includes the date and time of the trade, the volume traded, the price

at which the trade took place, and a unique identifier for the trade.

Occasionally, there are errors in the transaction data that are reported to FINRA. For

these transactions, corrected transaction data are reported to FINRA, and these transactions

are assigned a new unique identifier while simultaneously retaining the original identifier

as a separate variable. I am therefore able to identify those trades for which inaccurate

transaction data was reported, remove all such errant transactions, and replace them with

their corrected counterparts.

The distribution of trading activity across bond issues is highly skewed. On average,

trades are observed on 24.2% of the days during which bonds in this sample are outstanding.

Of the 19,993 bonds in the sample, however, 11,475 have trades observed on fewer than 5%

of the days over which they are outstanding, while 983 bonds have trades observed on at

least 90% of the days over which they are outstanding. The distribution of trading frequency

is displayed in Figure 9.

The distribution of daily trading volume of individual bonds (shown in Figure 10) is

even more skewed than the distribution of trading frequency, following an approximately

log-normal distribution with a median of $450,000. 10% of daily volumes are greater than

$10 million, and the maximum daily trade volume observed for an individual bond is slightly
6In order to appropriately train and use my estimator of the probability of trading, it is necessary to know

the issue date and maturity date of the bonds being estimated. Bonds must only enter into the estimator
while they are outstanding. If, during the training of the model, a bond enters the estimator before its issue
date or remains in the estimator after its maturity date, then the projected probability of trading will be
biased downward for all bonds and the error of the model will be skewed upward. Moreover, after training
the model, if a bond enters the estimator before its issue date, then the projected probability of trading will
be biased downward for the lifetime of the bond.

7All corporate bonds are TRACE-eligible. However, the trade history of non-investment-grade rated
bonds are only published in the enhanced historical TRACE data set.
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over $485 million. When restricting the sample to those bonds that trade on at least 90%

of the business days over which they are outstanding, I find the median daily volume to be

$1.99 million. Thus, not only do a small portion of the bonds trade much more frequently

than the rest of the bonds in the sample, but these actively traded bonds also tend to have

much larger daily volumes than the remainder of bonds in the sample.

2.3 Trade-Based Estimate of Bond Liquidity

There are several measures that can be used to directly estimate the liquidity of a bond

given observed trading activity [Roll (1984), Amihud (2002), Feldhütter (2012), Dick-Nielsen

et al. (2012)]. For the purpose of this paper, I aim to measure the cost of liquidity by

estimating the spread demanded by broker-dealers trading a particular bond. There are

two such measures proposed in the literature, Roll (1984) and Feldhütter (2012). Roll

(1984) proposes to estimate the spread of a security by assuming that consecutive trades

occur on opposite sides of the spread. With this assumption in place, we know that there

is a negative auto-correlation in the series of price returns and can therefore estimate the

spread as 2
√
−cov(∆pt, ∆pt−1). Feldhütter (2012) estimates the spread by leveraging the

microstructure observation that bond trades are often matched by the dealer, with both

sides of the transaction identified, before a transaction takes place. Matching trades of equal

volume that occur within a short time-window, we are able to construct what Feldhütter

denotes an “imputed round-trip trade.” The difference between the price at which a dealer

buys a bond from a customer and the price at which she sells a bond to a client is the “round-

trip cost” of the series of trades8. Feldhütter extends this approach to structurally estimate

a search model, but the methodology can be adopted to directly estimate the spread.

I create my trade-based estimate of individual bond liquidity by adopting Feldhütter’s

notion of imputed round-trip trades and their accompanying round-trip costs. For bond
8Note that the matching algorithm used to find imputed round-trip trades allows for the possibility that

a dealer sells the bond to second dealer, who in turn sells the bond to her own client. In this way the
imputed round-trip cost estimates the total spread that is imposed upon investors. Since dealers often trade
bonds among themselves before eventually selling the bond to a client, other measures of spread have the
possibility of underestimating the effective spread affecting investors.
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trades that occur on a given day, I isolate trades of equal volume. For each series of trades

of a given volume that occur within 15 minutes of one another, I classify the series of trades

as an imputed round-trip trade. The difference between the maximum and minimum price

observed in the imputed round-trip trade is the round-trip cost. Imputed round-trip trades

with zero round-trip cost are denoted “immediate matches” a la Green et al (2007), and are

removed from the estimator. For the bond and day in question, my estimate of the individual

bond liquidity is the log-volume weighted average of the round-trip costs of all the imputed

round-trip trades that occurred on that day.

2.4 Estimating the Probability of Trading

The challenge of creating a forward-looking estimate of the propensity for a bond issue to

trade is as follows. Having only the characteristics and realized trade history of an issue,

I wish to establish the probability that the bond will trade on the next trading day. For

this exercise, I use a hidden Markov model9, which assumes that bonds belong to one of

three (unobserved) type states and establishes a probability distribution of these types. The

distribution over states updates at the end of each trading day given the realized activity

that day. In this way, the model’s probability distribution undergoes Bayesian updates each

day evolving towards a path-dependent estimate of the current type to which the bond

belongs. Each day, given the bond’s characteristics, I also calculate a conditional probability

of trading for a bond belonging to each type. These type-dependent probabilities of trading

are then combined with the probability distribution over the type space to arrive at an overall

probability of trading.
9Hidden Markov models are a form of dynamic Bayesian network models in which the data generating

process is driven by an underlying state. The states are un-observable to the econometrician, and are
assumed to follow an action-dependent Markov process. In this sense, while the states are hidden, the
observed actions feed into Bayesian updates which inform the probability over possible states. This updating
procedure, when included in an optimization, not only determines the most likely final state but also the
most likely path of states which would result in the observed realizations. As more observations are included,
the econometrician’s estimate of the underlying state thus becomes more statistically powerful, leading to
more accurate predictions of the dependent variable.
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2.4.1 Hidden Markov Model Tuning Procedure

Suppose that there is a hidden Markov model describing the probability that a bond issue

will trade on a given day. There are I issues which we observe over T time periods. An

issue can belong to one of three unobserved states: actively traded, commonly traded, and

dormant. The probability of an issue being in each of the states is described by a 1x3 vector,

π, with an initial distribution π0 = [α1,α2, (1 − α1 − α2)] for α1,α2 ∈ (0, 1) such that

α1 +α2 < 1. π(1) represents the probability that the bond issue is the active type, and π(3)

is the probability that the bond issue is of the dormant type.

The issues can transition between the three states, and do so following action-dependent

rules of motion. These rules can be expressed through transition matrices wherein transition

probabilities vary depending on whether the issue traded in the period or not, with the

matrix Tr1 representing the transition probabilities given a trade occurs and the matrix Tr0

the probabilities given no trade.

Tr1 =


1 0 0

1− γ2 γ2 0

0 1− γ3 γ3

Tr0 =


λ1 1− λ1 0

0 λ2 1− λ2

0 0 1

 ,

where γ2, γ3,λ1,λ2 ∈ (0, 1). With this construction, Tra(i, j) gives the probability that a

bond issue of type i transitions to type j after action a is observed. Thus, if I observe a

bond trading on date t, πt = πt−1 ∗ Tr1 gives the updated probability distribution for bond

type after date t. In this way, the transition matrices act as simple Bayesian updates to

our estimate of the bond’s probability distribution over the latent states. Iterating over a

bond’s trade history therefore provides an efficient path-dependent estimate of the current

distribution over states.

Further assume that the bonds have state-dependent functions mapping various bond

characteristics to the probability of trading. Letting yi,t represent the binary variable indi-
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cating whether bond i is traded on date t, I have

yi,t =


1 if βs0 + β1Xi,t + εs,i,t > 0, and

0 otherwise,

where βs0 is a state-dependent parameter, β1 is a vector of parameters that applies equally

across states, Xi,t is a vector of bond characteristics, and εs,i,t is an error term following

the type-I extreme value distribution. Thus, the logistic function Fs(Xi,t) provides the

conditional probability that a trade will occur given state s.

Combining these conditional probabilities of a trade occurring with the probability dis-

tribution over latent states yields the unconditional probability that a trade will occur for

bond,

P(yi,t = 1) =
∑
S

πi,t−1(s) · Fs(Xi,t) = πi,t−1F (Xi,t), for F (Xi,t) =


F1(Xi,t)

F2(Xi,t)

F3(Xi,t)

 .

By leveraging the Markov property of the distribution over latent states, I have the

probability distribution over latent states for bond i after date t,

πi,t = π0
t∏

n=1
Tr

yi,n
1 Tr

(1−yi,n)
0 .

Substituting this into the unconditional probability that a trade will occur for bond i on

date t, I have

P(yi,t = 1) = π0
t−1∏
n=1

(
Tr

yi,n
1 Tr

(1−yi,n)
0

)
F (Xi,t).

Applying the unconditional probability that a trade will occur across all bonds i ∈ I

and dates t ∈ T , with some abuse of notation I am therefore able to find a maximum

likelihood estimate of the parameters θ̂ = [α̂1, α̂2, γ̂2, γ̂3, λ̂1, λ̂2, β̂1
0 , β̂2

0 , β̂3
0 , β̂1] describing the

initial state distribution, both the transition probability matrices, and the state-dependent
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trade probabilities by solving

θ̂ = argmax
θ∈Θ

∏
I
∏
T

[(
π0
∏t−1
n=1

(
Tr

yi,n
1 Tr

(1−yi,n)
0

)
F (Xi,t)

)yi,t
×
(

1− π0
∏t−1
n=1

(
Tr

yi,n
1 Tr

(1−yi,n)
0

)
F (Xi,t)

)(1−yi,t)]
= argmax

θ∈Θ

[∑
I
∑
T yi,t ln

(
π0
∏t−1
n=1

(
Tr

yi,n
1 Tr

(1−yi,n)
0

)
F (Xi,t)

)
+
∑
I
∑
T (1− yi,t) ln

(
1− π0

∏t−1
n=1

(
Tr

yi,n
1 Tr

(1−yi,n)
0

)
F (Xi,t)

)]
.

In order to evaluate the out-of-sample performance of the Hidden Markov Model estima-

tor for the probability of trading, I split the data into a training set (XTrain,Y Train) and a

test set (XTest,Y Test) such that

t ∈ T Train ∀ (~xit, yit) ∈ (XTrain,Y Train),

where T Train comprises the first ∼ 78% of the dates in the data set. Specifically,

t ≤ October 13, 2015 ∀t ∈ T Train. I train the model by performing the above described

maximum likelihood estimation on the training data set, which is comprised of a matrix of

bond characteristics, XTrain, consisting of indicator variables for the day of the week (with

indicators for Tuesday through Friday) and a vector of indicator variables for whether or

not bonds are traded for each day, Y Train. The parameters that are found by performing

this maximum likelihood estimation are presented in Table 8. Using the parameters given

by that optimization, I am able to use the model to create an estimate of the likelihood of

a trade occurring for each day throughout the life of each bond in the complete data set. I

am then able to test the in-sample and out-of-sample performance of the estimator. In the

following section, I assess the performance of the estimator and compare it to alternative

models.
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2.4.2 Performance of Hidden Markov Model Estimator

The distribution of probability estimates given by the hidden Markov model is presented

in Figure 11. The distribution is strongly bimodal, with a shape resembling that of the

distribution of trading frequency (Figure 9). I decompose the probability estimates into the

distributions of ex-ante trading probabilities for those observations for which a trade occurs

and those for which no trade occurs. These distributions are presented in Figures 12 and 13.

In order to assess the accuracy of my hidden Markov model estimator of the probability

that a bond will trade, I benchmark the performance of my model against alternative estima-

tors across various metrics of classification model performance. For each of the alternative

models, I train the model on the same training data set (XTrain,Y Train) as is used to train

the hidden Markov model. After training these models, I use them to generate alternative

estimates of the probability that each bond will trade throughout the entire data set. I am

then able to compare these probability estimates to the observed trade data. Thus, I can

evaluate the in-sample and out-of-sample performance of my model and of the alternative

models.

2.4.2.1 Alternative Models

Standard Logistic Regression Since estimating the probability that a bond will

trade is a binary classification problem, the natural choice for an alternative model is a

logistic regression. Letting yi,t represent the binary variable indicating whether bond i is

traded on date t, we have

yi,t =


1 if β0 + β1Xi,t + εi,t > 0, and

0 otherwise,

where θ = [β0, ~β1] is a vector of parameters, Xi,t is a vector of bond characteristics, and

εs,i,t is a an error term following the type-I extreme value distribution. Thus, the logistic

function Fθ(Xi,t) provides the probability that a trade will occur. The logistic regression
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model is trained on (XTrain,Y Train) by solving for the maximum likelihood estimator

θ̂ = argmin
θ

∏
I
∏
T Fθ(Xi,t)yi,t(1− Fθ(Xi,t))(1−yi,t)

= argmax
θ

∑
I
∑
T [yi,t ln (Fθ(Xi,t)) + (1− yi,t) ln (Fθ(Xi,t))] .

The estimated parameters (β0, ~β1) of the logistic regression model are presented in Table 9.

Weighted Logistic Regression As discussed in the description of the data in Section

2.2, the trading activity is quite imbalanced - with a significant portion of the bonds trading

very infrequently. This stylized fact leads to the existence of many more observations yi,t

in which no trade is observed than there are observations in which a trade is observed.

This imbalance will bias the estimates given by the standard logistic regression downward

by effectively assigning greater weight to the observations in which no trade is observed.

Weighted logistic regressions help to control for the bias introduced by imbalanced data sets

by applying class-weights that tune the relative importance of observations belonging to the

underrepresented class. Since this model is being applied to a binary classification problem,

the class-weights are fully parameterized by a single class-weight hyper-parameter ω > 0.

The weighted logistic regression model extends the standard logistic regression model, and

is trained on the same training data by solving for the maximum likelihood estimator

θ̂ = argmax
θ

∑
I

∑
T

[ωyi,t ln (Fθ(Xi,t)) + (1− yi,t) ln (Fθ(Xi,t))] ,

with the hyper-parameter ω chosen such that the impacts that the classes have on the

likelihood estimate are equalized. The estimated parameters (β0, ~β1) and hyper-parameter

ω that optimize the weighted logistic model are presented in Table 9.

Unconditional Probability To provide a baseline estimator to the bench-marking

of my hidden Markov model against alternative estimators, I also include an unconditional

trade probability model ŷi,t = α, where α ∈ (0, 1). This model is trained on Y Train by
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solving for the maximum likelihood estimator

α̂ = argmax
α

∏
I
∏
T α

yi,t(1− α)(1−yi,t)

= argmax
α

∑
I
∑
T [αyi,t + (1− α)(1− yi,t)] .

The maximum likelihood estimator α that is found for the unconditional probability model

when fit to the training data is given in Table 9.

2.4.2.2 Bench-marking of Hidden Markov Model against Alternative Models

Receiver Operator Characteristic (ROC) curves illustrate the ability of binary classification

models to distinguish between the two classes by graphing the true positive rate against the

false positive rate over the range of various threshold values. The closer a model’s ROC curve

approaches the upper left corner of the graph, the greater its ability to distinguish between

the two classes. A random classifier model with no ability to distinguish the two classes from

one another possesses a ROC curve that bifurcates the ROC space with a diagonal line from

the bottom left to the top right of the graph. The area under the ROC curve (ROC AUC) is

a metric that summarizes the ability for the classification model to discriminate between the

two classes, and can be conceptualized as the probability that the model will assign a higher

score to a randomly chosen positive observation than it will a randomly chosen negative

observation.

The ROC curves illustrating the in-sample and out-of-sample performance of the hidden

Markov model and its alternatives are presented in Figures 14 and 15, respectively. The

hidden Markov model clearly outperforms the alternative models, both in-sample (over the

training data set) and out-of-sample (over the test data set). The ROC AUC of the hidden

Markov model and the alternative models, both in-sample and out-of-sample, is presented

in Table 10. The ROC AUC of the hidden Markov model over the training data set is

0.9473, and the AUC over the test data set is 0.9519, demonstrating a high level of external

predictive validity. The next-best alternative model - the weighted logistic regression model

- achieves AUCs of 0.8268 and 0.8272 over the training and test data sets, respectively.
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The weighted logistic regression shows a marked improvement over the standard logistic

regression, which achieves AUCs of 0.5759 and 0.5758 over the training and test data sets,

meaning that it differentiates days in which a trade occurs from days in which there are no

trades only slightly better than random chance. As would be expected, the unconditional

probability model has no ability to differentiate between the two classes; the model has an

AUC of 0.5 over both the training and test data sets.

While the ROC AUC summarizes a classification model’s ability to differentiate between

the two classes, it does not take into account the confidence of the model’s predictions.

That is to say, the ROC AUC does not measure a model’s ability to assign higher prob-

ability to samples that are more likely to be positive. To measure this aspect of classifi-

cation model accuracy, it is useful to consider the log loss of the model, which is given by

− 1
N

N∑
i=1

(yi ln(ŷi) + (1− yi) ln(1− ŷi)). Given this construction, a lower log loss is indicative

of a model with better ability to predict the classes with higher probability. The log loss of

the hidden Markov model and of the alternative models, both in-sample and out-of-sample,

is presented in Table 10. Once again, the hidden Markov model outperforms the alternative

models over both the training and test data sets. The log loss of the hidden Markov model

is 0.2490 over the training data and 0.2325 over the test data. The next-best alternative

model is again the weighted logistic regression model, which has a log loss of 0.4897 over the

training data and 0.4827 over the test data.

2.5 Matching Estimator

Having estimates for each bond issue’s ex-ante probability of trading, I turn my attention

to the the estimation of bond liquidity. For those bonds which do not trade, the goal is to

estimate what the liquidity would have been by looking at the realized liquidity of those

issues which are most similar. The demand for a robust matching algorithm leads naturally

to the implementation of a nearest neighbors search. As this is an interpolation problem,

it is especially useful to consider nearest neighbor search algorithms which include multiple

observations in order to add consistency to the estimates. Such an estimator therefore acts
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as a kind of kernel density estimator, which provides strong non-parametric estimates with

low asymptotic error.

For this matching estimator, I use a locally weighted multivariate polynomial regres-

sion (LOWESS), as developed by Cleveland (1978) and extended by Cleveland, Devlin, and

Grosse (1988). The LOWESS regression is a non-parametric regression model that syn-

thesizes several weighted least squares regressions - each applied to localized subsets of the

data - in a nearest neighbor meta-model. In its most general form, a LOWESS regression

is carried out in the following manner. For each point x0, the local regression output ŷ0

is given by x0θ, where θ0 = argmin
θ

∑m
i=1wi(yi − xiθ)2 for the m observations nearest x0,

with weights wi given by some weighting function that satisfies the conditions specified in

Cleveland (1978).

I apply a LOWESS regression to each day separately, using the observed liquidity of

bonds that trade on a given day to estimate the liquidity of bonds that do not trade on

that day. The parameters of each LOWESS regression are separately found for each point

at the time of estimation and cannot be tuned directly. I therefore calibrate the matching

estimator by tuning hyper-parameters that indirectly affect the selection and weighting of

the neighboring observations used for each estimation. The specific procedure by which these

hyper-parameters are tuned is described in the following section.

2.5.1 LOWESS Regression Tuning Procedure

For the purpose of this discussion, let yit represent the liquidity of bond i on date t, and let

xiht represent characteristic h of bond i on date t. Let X be the set of bond characteristics,

such that each row ~xit ∈ X ∀ i ∈ I, t ∈ T is a vector of characteristics for bond i on

date t. These characteristics include (a) the ex-ante probability that the bond will trade,

as estimated by the hidden Markov model, (b) the number of days since the previous day

the bond traded, (c) the trading volume of the bond issue over the previous week, (d) the

observed liquidity of the bond issue over the previous week, (e) an indicator of whether other

bond issues belonging to the same corporation were traded, (f) the number of trades of other
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bond issues belonging to the same corporation, (g) the cumulative trading volume of other

bond issues belonging to the same corporation, (h) the cumulative trading volume of other

bond issues belonging to the same corporation over the previous week, (i) the number of

days since any other bond issue belonging to the same corporation traded, (j) the average

observed liquidity of other bond issues belonging to the same corporation, and (k) the average

observed liquidity of other bond issues belonging to the same corporation over the previous

week.

Restricting the data to observations for which the trade-based liquidity measure yit is

observable, I am left with a set of data XTrade and corresponding Y Trade with which I

can calibrate and test my matching estimator. The remaining data XNoTrade is the set of

bond characteristics for which no liquidity data is observable (and for which this estima-

tor aims to project the latent liquidity ỹit that would have been observed had the bonds

traded). To maintain consistency with the procedure used to train and test the Hidden

Markov Model from the previous section, I further split XTrade and Y Trade into a training

set (XTrain,Y Train) and a test set (XTest,Y Test) such that

t ∈ T Train ∀ (~xit, yit) ∈ (XTrain,Y Train),

where T Train is the same training window as used in the tuning of the Hidden Markov Model.

In order to maintain tractability with my estimation procedure and avoid the costs asso-

ciated with high-dimensional nearest neighbor searches, I first perform dimension reduction

on the bond characteristics data. To accomplish this, I perform principal component analysis

on the training set of bond characteristics XTrain. I project the matrix XTrain onto a two-

dimensional orthogonal space such that the resulting matrix CTrain = XTrainW2 preserves

the maximal amount of variance from the original data10. This process has the dual effect

of preserving the tractability of a nearest neighbor search over the set of bond characteris-
10Note here that for the bond characteristic data in question, I find that CT rain preserves over 90% of the

variance from XT rain. Thus, CT rain provides an acceptably small amount of information loss from XT rain,
with the span of the orthogonal bases approximating a dimension reduction subspace for the row space of
XT rain.
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tics while simultaneously increasing the signal-to-noise ratio of the resulting set of principal

components.

Let nt be the number of observations on date t. Thus, NTrain =
∑

TTrain

nt is the total

number of observations in the training set. The matching estimator is calibrated by finding

the hyper-parameters (q̃, α̃1, α̃2) such that

(q̃, α̃1, α̃2) = argmin
(q,α1,α2)

√√√√ 1
NTrain

∑
TTrain

∑
I

(yit − ŷit)2

,

where ŷit = citθit such that

θit = argmin
θ

mt∑
j=1

wj

yjt − cjt
α1 0

0 α2

 θ


2

,

with weights wj given by the tri-cube function applied to the Euclidean distance between

cit

α1 0

0 α2

 and cjt

α1 0

0 α2

 for the mt = ntq observations at date t nearest cit. In this way,

the hyper-parameters (q,α1,α2) control the behavior of the LOWESS regression. q ∈ (0, 1]

determines the number of neighboring observations to include in each local regression as

a portion of the total number of observations for each day. α1,α2 > 0 scale the principal

component vectors, thereby determining the relative importance of each principal component

in the calculation of distance between two observations. The value of these hyper-parameters

selected for the LOWESS regression model are reported in Table 11.

2.5.2 Performance of LOWESS Regression Matching Estimator

In order to assess the accuracy of my LOWESS regression matching estimator of the latent

liquidity of bonds that are not observed to trade, I benchmark the model against alternative

matching estimators across various metrics of regression model performance. For each of

the alternative models, I train the model on the same training data set (XTrain,Y Train) as

is used to train the LOWESS regression model. After training these models, I use them to
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generate alternative estimates of the liquidity of bonds based on the observed liquidity of

other bonds on the day in question throughout the entire data set. I am then able to compare

these liquidity estimates to the observed trade data. Thus, I can evaluate the in-sample and

out-of-sample performance of my model and of the alternative models.

2.5.2.1 Alternative Models

Ordinary Least Squares (OLS) Regression When choosing an interpolation model,

an OLS regression model is a natural consideration and is therefore taken as an alternative

model. The formulation of this approach is similar to that of the LOWESS regression model,

with the exception being that for each day an OLS regression is performed on the entirety

of the observations on that day. For each day, the liquidity estimates of bonds for which

liquidity is observable are regressed against their respective principal components. Note that

with this formulation, there are no hyper-parameters that can be tuned. Therefore, the daily

OLS regression model requires no pre-training.

K-Nearest Neighbor Search Given the non-linear relationship that exists between

bond characteristics, it is useful to consider a k-nearest neighbor search as an alternative

model. Rather than performing a local regression on the neighboring observations (as is done

in the LOWESS regression model) for each day, a simple average is taken of the liquidity

observations neighboring the observation in question. In this way, the k-nearest neighbor

model is a less complex estimator as compared to the LOWESS regression model. That

being said, the computational complexity of the k-nearest neighbor search meta-model in

the LOWESS regression dwarfs that of the weighted local regressions. Thus, by employing a

k-nearest neighbor model rather than a LOWESS regression, a significant amount of accuracy

is sacrificed to achieve only a minor improvement in computational speed.

The k-nearest neighbor model is calibrated by solving for the hyper-parameter k̂ such
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that

k̂ = argmin
k

√√√√√ 1
NTrain

∑
TTrain

∑
I

(yit −
k∑
j=1

yjt)2

,

where the k nearest observations to cit at date t are determined by the Euclidean distance

between cit and cjt. In this way, the hyper-parameter k ∈ N+ controls the behavior of the

k-nearest neighbor model, denoting the number of neighboring observations to include in

each estimation. The value of this hyper-parameter chosen for the k-nearest neighbor model

is reported in Table 11.

Deep Neural Network Deep neural networks are useful for identifying complex non-

linear relationships without the need to impose prior knowledge on the structure of these

relationships. Taking a vector ~xit of regularized bond characteristics as an input, each

characteristic enters the neural network through its own input node, independent from the

other input nodes. Each input node is mapped to the next layer of nodes via an array of

scalar weights such that it is connected to every node in the next layer. The next layer is the

first “hidden” layer of the network; neither its inputs nor its outputs are directly visible to

the econometrician. For each node in this hidden layer, the input to the node is the sum of

all the nodes from the previous layer, scaled by their respective weights corresponding to this

node. The output of each node in this hidden layer is determined by a Rectified Linear Unit

(ReLU)11 activation function f(x) = max{0,x}. The outputs from each node of the first

hidden layer are mapped to each node of the next hidden layer via an array of scalar weights.

Each hidden layer performs in the same way as the the first hidden layer, with nodes taking

the sum of their inputs and passing that through the activation function before sending their

output to each of the nodes in the next layer, scaled by an array of weights. The outputs

from the final hidden layer are mapped via scalar weights to one output node. The output

node takes the sum of the scaled inputs from each of the nodes in the final hidden layer and
11While the ReLU activation function is not differentiable at 0, it has been found that gradient descent

learning algorithms still perform well in practice [Goodfellow, et al. (2016)]. The computational simplicity,
representational sparsity, and local linearity of the ReLU activation function make it a popular choice for
training deep neural networks [Glorot, et al. (2011)].
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passes that sum as the network’s prediction of the bond’s liquidity measure.

The deep neural network is trained as follows. First, the model is initialized with small

random weights for each of the connections between the nodes in one layer and the nodes

in the next layer. Next, the matrix of bond characteristics are passed through the network,

and the network’s outputs are compared to the true liquidity estimates, finding the mean

squared error of the predictions. Using stochastic gradient descent, with gradients found via

back-propagation, the weights of the model are updated such that the mean squared error of

the model is minimized. The hyper-parameters (d,w), where d denotes the number of hidden

layers in the neural network (the network’s depth) and w denotes the number of nodes in

each layer (the network’s width), are optimized using k-fold cross validation to minimize the

average out-of-sample mean squared error. The value of these hyper-parameters selected for

the deep neural network model are reported in Table 11.

2.5.2.2 Bench-marking of LOWESS Regression against its Alternative Models

The coefficient of determination, R2, measures the proportion of total variance in the de-

pendent variable that is explained by the model. When evaluated on the in-sample training

data, R2 is a representation of the explanatory power of the model. When evaluated on

the out-of-sample test data, however, R2 provides a representation of the predictive power

of the model. The in-sample and out-of-sample R2 statistics for the LOWESS regression

and the alternative models are presented in Table 12. Also presented in Table 12 are the

in-sample and out-of-sample root-mean-square error (RMSE) statistics for the LOWESS re-

gression and its alternatives. While R2 measures the explanatory and predictive power of

the models, the RMSE serves as a measure of the accuracy of the model predictions. The

LOWESS regression model outperforms the alternative models across all of the measures of

performance by a wide margin, with an in-sample R2 of 0.3202, out-of-sample R2 of 0.3447,

and in-sample and out-of-sample RMSEs of 1.0886 and 1.0256, respectively. The next-best

performing model is the deep neural network, which itself outperforms the remaining models

across all of the measures of performance. The in-sample and out-of-sample R2s of the deep
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neural network are 0.1692 and 0.1295, respectively, and the in-sample and out-of-sample

RMSEs are 1.2294 and 1.1844, respectively.

2.6 Measure of Overall Market Illiquidity

Having applied the LOWESS regression matching estimator to interpolate illiquidity esti-

mates for bonds that do not trade, I then aggregate the individual illiquidity measures into

an estimate of the overall bond market illiquidity. To perform this aggregation, for each day

with a sufficient number of traded bonds12, I take the median illiquidity estimate of all the

bonds in my sample that are outstanding on the date in question. This aggregation method

captures the overall market illiquidity while remaining robust to individual bonds with ab-

normal illiquidity measures that may not be representative of the overall illiquidity in the

market. The evolution of my measure of total market illiquidity throughout the sample is

displayed in Figure 16. Using this measure of aggregate market illiquidity, I can examine the

relationship between overall bond market liquidity and other macroeconomic factors related

to liquidity.

2.6.1 Relationships between Market Liquidity and Macroeconomic Factors

First, I investigate the relationship between the aggregate market illiquidity of the U.S.

corporate bond market and the Chicago Board Options Exchange(CBOE) Volatility Index

(VIX). The VIX is a measure of the market’s expectation of stock market volatility over the

next 30 days, calculated as the square root of the variance strike of a hypothetical variance

swap replicated by a portfolio of out-of-the-money 30-day vanilla S&P 500 options. In periods
12For the LOWESS regression to be feasibly applied to a given day t, it must be the case that the following

inequality holds: qnt ≥ 5⇒ nt ≥ 5
q , where q is the hyper-parameter that determines the number of nearest

neighbors to include in the model’s local regressions as a portion of the number of bonds for which liquidity
data are observed. Given the training of the LOWESS regression model, the optimal q is found to be equal to
0.0074. Thus, the LOWESS regression can only be implemented on days for which the trade-based illiquidity
measure is observed for at least 676 bonds. Since my sample consists of all FINRA TRACE historical bond
transactions that are observed over the life of the bonds, the concurrent number of outstanding bonds in the
sample grows over time. The first date in my sample for which there are a sufficient number of traded bonds
is January 5, 2008. Therefore, my estimate of overall bond market activity spans the period from January
5, 2008 through March 31, 2018.
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of high stock market volatility, it is common for investors to de-risk by shifting out of stocks

and into bonds. Given the elevated demand for bonds during this flight to safety, we would

expect the cost of liquidity in the bond market to become elevated. Since my measure of

aggregate illiquidity is constructed from an estimate of the spread demanded from broker-

dealers, I would therefore expect my measure of aggregate bond market illiquidity to have a

positive correlation with the VIX.

Taking my measure of aggregate bond market illiquidity and comparing it to the daily

close value of the VIX, I find that the correlation between the two measures ρ = 0.6828.

Testing the null hypothesis H0 : ρ ≤ 0 against the alternative hypothesis Ha : ρ > 0, I

find that I am able to reject the null hypothesis at the 1% significance level. I also perform

a linear regression of the VIX on my measure of aggregate market illiquidity, the results

of which are reported in Table 13, and find a significant positive relationship. This strong

relationship between aggregate market illiquidity and stock market volatility reinforces the

finding in existing literature [Chordia et al. (2005), Campbell and Taksler (2003)] that stock

and bond market volatility and liquidity are correlated. Chordia et al.(2005) investigate the

relationship between the stock market and government bonds, and Campbell and Taksler

(2003) explore the effect that firm-level equity volatility has on corporate bonds. I extend

these results, establishing a link between stock market volatility and U.S. corporate bond

market liquidity at the aggregate level.

Next, I investigate the relationship between the aggregate market liliquidity and credit

spreads. There is a well established “credit spread puzzle” wherein a significant portion of

the spreads on corporate bonds cannot be fully explained by their default risk and other

credit risk determinants [Collin-Dufresne et al. (2001), Huang and Huang (2012)]. Much

research has been conducted in an attempt to explain the variation in credit spreads. Recent

work suggests that a bulk of the remaining spread can be explained by illiquidity, especially

when examining the credit spread of individual bonds [Longstaff et al. (2005), Edwards et al.

(2007), Bao et al. (2011)]. This essay makes no effort to address the credit spread puzzle at

the individual security level. Rather, I examine the relationship between aggregate market
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illiquidity and average credit spreads.

To serve as a proxy for the portion of overall credit spreads unexplained by default risk13,

I take the Intercontinental Exchange Bank of America Merrill Lynch US Corporate Master

Index Option-Adjusted Spread. This index tracks the market capitalization weighted average

of the option-adjusted spreads (OASs) of USD denominated investment grade corporate debt

that is publicly issued in the U.S. domestic market. Since my measure of aggregate illiquidity

is constructed from an estimate of the spread demanded from broker-dealers, I would again

expect my measure of aggregate bond market illiquidity to have a positive correlation with

the OAS index. Taking my measure of aggregate bond market illiquidity and comparing it to

the daily close value of the OAS index, I find that the correlation between the two measures

ρ = 0.7452. Testing the null hypothesis H0 : ρ ≤ 0 against the alternative hypothesis

Ha : ρ > 0, I find that I am able to reject the null hypothesis at the 1% significance level.

I also perform a linear regression of the OAS index on my measure of aggregate market

illiquidity, the results of which are reported in Table 13, and find a significant positive

relationship between the measure of aggregate market illiquidity and credit spreads. Based

on this linear regression, I further find that my measure of aggregate market illiquidity can

explain about 55% of the variation in credit spreads. This result reinforces the Longstaff

et al. (2005) finding that “nondefault components” account for approximately 50% of the

spreads of investment grade corporate bonds.

2.7 Limitations

I am unable to directly observe dealers’ willingness to provide liquidity. For this reason,

there are important aspects to liquidity that cannot be captured by this estimator. A dealer

may, for example, be willing to purchase a bond that is not expected to trade and is difficult

to resell in order to strengthen her network ties with the client who sells her the bond.
13The difference between the credit spread of high-yield corporate bonds and the credit spread of in-

vestment grade corporate bonds is commonly taken as a proxy for the additively separable portion of credit
spreads that is explained by default risk. A corollary to the assumption underlying this proxy for the portion
of spreads explained by default risk is that the credit spread of investment grade corporate bonds serves as
a proxy for the portion of credit spreads unexplained by default risk.
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Such a consideration on the dealer’s part is dependent upon the client attempting to sell

said bond, and cannot be captured by this estimator. The accuracy of this estimator on a

given day therefore relies on the sample of clients trading with the dealers that day being

representative of the population of bond investors. Moreover, this estimator may not capture

dealers’ willingness and ability to absorb large volumes. While the estimator is built upon

a volume-weighted average of the effective bid-ask spread, the robustness of the measure to

large trading volumes is dependent upon the observation of large trading volumes. If the

average trading volume on a given day is smaller than usual, then the estimator will likely

be biased, reporting more liquidity than would be available if larger volumes were traded.

Given the assumption that similar bonds have similar levels of liquidity, the accuracy of

this estimator is dependent upon the observation of bonds that are similar in nature to each

of the non-traded bonds. If no similar bond is traded, as would happen if the only bonds that

trade on a given day belong to the most actively traded highly liquid subset of bonds, then

this estimator will be biased toward the most liquid bonds on that day. Additionally, while

this estimator is trained on a sample of bonds with a high proportion of seldom-traded bonds,

it is trained only on those bonds for which trades are observed. Therefore, the accuracy of

this estimator is un-tested on bonds that never trade. This limitation is exacerbated by the

possibility that these excluded bonds are dissimilar to the bonds upon which the estimator

is trained in ways other than the propensity to trade.

The above-mentioned limitations of this estimator affect the intermediate step of esti-

mating the latent liquidity of bonds that do not trade on a given day, and primarily bias

the estimates in the direction of having more available liquidity. That being said, the final

aggregation into a measure of overall liquidity is performed via taking the median value of

active bond-level liquidity estimates. While this aggregation technique is robust to outliers,

be they due to idiosyncratic liquidity shocks or caused by biased or otherwise inaccurate

estimates of latent liquidity, it does not capture higher level notions such as the skewness

and kurtosis of the distribution of liquidity across the U.S. corporate bond market.
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2.8 Future Research

There are several potential avenues for future research. First, the time-series behavior of the

overall market liquidity can be used to investigate the impact that various market interven-

tions have had on the liquidity of the bond market as a whole. Second, the relationships

between overall bond market liquidity and other macroeconomic factors are explored herein

only at a cursory level; I investigate the extent to which overall liquidity is correlated with

CBOE’s VIX and the ICE BofA US Corporate Master Index OAS. These relationships can

be studied in greater detail, and the relationships between market liquidity and additional

macroeconomic factors can be explored in order to better understand the ways in which these

factors are connected to overall bond market liquidity. Third, as discussed in the previous

section, the aggregation technique used in forming the measure of overall liquidity does not

capture the skewness and kurtosis of the distribution of liquidity across the U.S. corporate

bond market. It may prove beneficial to explore the ways in which these other distributional

measures evolve over time and how they are related to other macroeconomic factors.

2.9 Conclusion

In this essay, I construct a measure of aggregate illiquidity in the U.S. corporate bond market.

This illiquidity measure employs a two-step approach to estimate the latent illiquidity of

bonds that do not trade from the observed illiquidity of similar bonds that do trade. For

each step, I find that my approach has a high level of out-of-sample predictive validity and

that my approach outperforms competing alternative models. I explore the relationships

between my measure of overall market illiquidity and both stock market volatility and the

portion of overall bond market credit spreads unexplained by default risk. For each of these

factors, I find a strong relationship exists between it and overall bond market illiquidity.

These results reinforce the findings of existing literature and extend their findings to the

overall bond market illiquidity.

70



3 Liquidity Risk from Dealer Inventory Limits

3.1 Introduction

Title VI of the Dodd-Frank Wall Street Reform and Consumer Protection Act – commonly

referred to as the “Volcker rule” – established regulations intended to curb proprietary trading

on behalf of commercial banks. The method by which the regulation achieves this, however,

may have unintentionally lead to a decrease in the liquidity available for affected securities.

Namely, the Volcker rule attempts to address proprietary trading by placing strict inventory

limits on each trading desk, which simultaneously restricts those dealers’ ability to absorb

shocks to the demand for liquidity.

An unintended consequence of the Volcker rule and Basel III regulations has been the

significant reduction of dealer inventories for the majority of bond issues. As reported by

Barclays Capital, “uncertainty about the implications of the limitations on proprietary trad-

ing included in the Volcker rule [led] dealers to reduce inventories” [Meli (2011)]. This

dissolution of inventories leads to potentially worse market health. Duffie (2012) warns of

the potential adverse effects of this regulation, including the degradation of the capacity for

market makers to provide their services.

If a dealer is unable to immediately find a counter-party to take on the opposite side of a

trade, then she would increase the spread she is offering on her quote to compensate for the

risk of not being able to find anyone. The extent to which dealers can exhibit this behavior,

however, is limited by the maximum size of their inventory. With the passage of Dodd-Frank

and the Volcker rule, dealers have been given strict limits on the size of inventories they can

accumulate. Therefore, the dealers are unable to absorb shocks in liquidity demand. With

low inventories, dealers no longer behave as normal market makers – they instead act more

like intermediaries, facilitating transactions. If a significant portion of a bond’s holders are

attempting to liquidate their positions at the same time, there is a possibility that market

makers, unable to hold large inventories, would be unable to provide adequate liquidity to

the market.
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Many institutional investors, especially pension funds, restrict themselves in their Invest-

ment Policy Statements14 to hold only so-called “investment grade” bonds. This common

self-imposed restriction forces them to liquidate their position in a bond issue if a Nationally

Recognized Statistical Rating Organization (NRSRO) downgrades the credit rating of the

issue from an investment grade rating to a “junk” rating (i.e. any rating BB+ or lower).

NRSROs being barred from leaking information about an upcoming downgrade, these down-

grading events therefore represent plausibly exogenous shocks to trade flow demands of these

often illiquid instruments. When such a downgrade occurs, institutional investors who face

the aforementioned restrictions are forced to liquidate their positions, spawning a fire sale.

This provides a potential test bed for a natural experiment to examine the impact of

lower dealer inventories on the price impact of such liquidity crunches. TRACE data provide

trade prices for all bond transactions. Implementing a Diff-in-Diff framework around these

regulations, I can test the impact of credit rating changes on price and liquidity in high and

low inventory environments. Special interest can be given to the impact of liquidity crunches

by focusing on instances in which bonds are downgraded from investment grade to junk.

The remainder of this essay is organized as follows. Section 3.2 discusses the current

literature concerning the impact of the Volcker rule on market liquidity. Section 3.3 describes

the data used in this essay. The specification of the tests performed and the results of those

tests are given in Section 3.4. These results are discussed in Section 3.5. Sections 3.6 and

3.7 assess the limitations of this essay and potential avenues for future research, and Section

3.8 concludes.

3.2 Related Literature

This essay is related to a class of working papers investigating the impacts of regulatory

interventions following the 2008 financial crisis. Contradicting anecdotal reports, Trebbi

and Xiao (2015) find no evidence of the deterioration of market liquidity resulting from

post-crisis regulatory activity. Trebbi and Xiao (2015), however, only examines the normal
14The self-imposed restrictions of the ten largest U.S. public pension funds are presented in Table 14.
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level of liquidity available in the market, and does not capture the effects of recent regulatory

reform on periods of abnormal demand for liquidity as exist during fire sales. Dick-Nielsen

and Rossi (2016) leverage index exclusions as events which spawn liquidity shocks, and show

that the cost of immediacy has increased substantially following the financial crisis. Dick-

Nielsen and Rossi (2016) provide evidence in support of Duffie (2012)’s prediction, but their

data span only through 2013 and can therefore not make a statement about the enforcement

of the Volcker rule specifically.

My work is most closely related to Bao, O’Hara, and Zhou (2016), which not only in-

vestigates the effects of the implementation of the Volcker Rule in times of stress, but does

so using bond downgrades as events that cause liquidity shocks. Their paper finds that

there has been an increase in illiquidity related to stress events. Moreover, they disentangle

the impacts stemming from the Volcker rule and those from Basel III requirements, and

show that the observed degradation is a result of the Volcker rule and not Basel III. These

results, however, are driven by comparing the liquidity of bonds which were downgraded

from investment grade to junk ratings with bonds that held junk ratings throughout. This

implementation stands to overestimate the impact of the Volcker rule on stress events by

failing to account for bond rating changes that do not move bonds from investment grade

to junk. Such rating changes would still impact the balance of supply and demand as the

market incorporates the new rating information into the price of the bond, and therefore will

affect the liquidity observed during this period. In this way, Bao et al. (2016)’s measurement

of the effects includes both those which result from forced fire sales and those which result

from the market pricing in new information.

3.3 Data

From the Mergent Fixed Income Securities Database (FISD), I obtain the credit rating

history of U.S. Corporate bonds for which there was at least one credit rating change between

January 1, 2010 and March 31, 2016. This database contains the complete ratings history

from each of the three largest NRSROs: Moody’s, Fitch, and Standard & Poor’s. This
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sample consists of 13,338 rating changes. Of these rating changes, 2,398 occurred before

the Volcker rule was announced, 3,699 occurred after the Volcker rule was announced but

before it was enforced, and 7,291 occurred after the Volcker rule went into effect. A complete

summary of the rating changes included in this sample are reported in Table 15.

For each rating change, I identify rating upgrades and downgrades as those rating changes

that cross the threshold between investment grade and junk. Upgrades take a rating from

BB+ or worse to BBB- or better, and downgrades take a rating from BBB- or better to

BB+ or worse. For each change, I also find the amount by which the rating changed and

the direction of the change, with a difference of a full rating (from BBB to BB or from BBB

to A) being equal to difference of 1 and a downward rating change being represented as a

negative change.

For bonds that are covered by more than one NRSRO, for each rating change, I also

find the most recent rating from the other rating agencies. Using the ratings from other

NRSROs, I identify what I denote “surprise upgrades” and “surprise downgrades.” For the

purposes of this essay, a surprise downgrade is a rating change from investment grade to

junk for a bond that is either a) not rated by any other NRSROs, or b) rated BBB- or better

by all other NRSROs that publish ratings for the bond. Similarly, a surprise upgrade is a

rating change from junk to investment grade for a bond that is either a) not rated by any

other NRSROs, or b) rated BB+ or worse by all other NRSROs that cover the bond. I also

identify what I denote “definitive upgrades” and “definitive downgrades.” Here, a definitive

downgrade is a rating change from investment grade to junk for a bond that is either a) not

rated by any other NRSROs, or b) rated as BB+ or worse by at least one other NRSRO. A

definitive upgrade is defined similarly.

Additionally, for each rating change, I identify what I denote “near upgrades” and “near

downgrades.” I define near downgrades to be rating changes that take a rating from BBB or

better to BBB- or worse, and define near upgrades to be rating changes that take a rating

from BBB- or worse to BBB or better. I also identify what I denote “large upgrades” and

“large downgrades.” Here, a large upgrade is a rating change from junk to a rating of BBB
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or better, and a large downgrade is a rating change from a rating of BBB or better to junk.

Using FINRA’s Trade Reporting and Compliance Engine (TRACE) enhanced historical

data from November 1, 2009 through May 31, 2016, for each credit rating change, I gather

all trades that are reported to TRACE for the bond whose rating changed in the four months

surrounding the change (i.e. the two months preceding and the two months following the

change). I then find the volume-weighted average price for the pre-change and post-change

periods. I find the volume-weighted average price over four different time windows: two

months, one month, two weeks, and one week. Using these volume-weighted average prices,

I find the change in price around each rating change for each of the four time windows.

3.4 Test Design and Results

In order to determine the price impact of credit rating downgrades, I first perform a regression

on the following linear relationship:

(R1) : ∆Pi,t = β0 · ∆Ri,t + β1 ·Upi,t + β2 ·Downi,t + εi,t,

where ∆Pi,t is the change in volume-weighted average price of bond i from before the credit

rating change to after the rating change, ∆Ri,t represents the size and direction of the rating

change for bond i on date t (in which a negative value corresponds to a downward change),

Upi,t is a dummy variable indicating that the rating change upgraded the bond issue from

junk grade to investment grade, Downi,t is a dummy variable indicating that the rating

change downgraded the bond issue from investment grade to junk grade, and εi,t is an error

term following a normal distribution. It is possible that effects of credit rating downgrades

are short-lived. Therefore, I perform this regression taking the pre-rating and post-rating

volume-weighted average price using a two-month window, a one-month window, a two-week

window, and a one-week window. Given that credit ratings are correlated with credit spread,

with a worse credit rating indicating a higher probability of default and thus a higher credit

spread, I expect β0 to be positive. Credit upgrades from junk to investment grade open up

75



the possibility for institutional investors to hold the bond, and represent both a decrease

in default risk as well as an increase in the marketability of the bond. Thus, I expect

β1 to be positive. Credit downgrades from investment grade to junk, on the other hand,

represent both an increase in default risk and a decrease in the marketability of the bond,

as institutional investors are no longer able to hold the bond in question. Downgrades are

not only expected to cause a sell-off of the bond by institutional investors, but also have the

potential of causing a fire sale as these investors liquidate their positions. Therefore, I expect

β2 to be negative. Additionally, given the fact that fire sales are a possible occurrence given

a credit downgrade but are not expected to occur after an upgrade, I expect the magnitude

of β2 to be greater than that of β1.

The results of this regression are reported in Table 16. For each of the four time windows,

the predictions regarding the direction of β0, β1, and β2 are all observed, and are all significant

at the 1% level. In order to test whether the magnitude of β2 is greater than that of β1, I

perform Welch’s unequal variances t-test on the following hypotheses:

H0 : |β2| ≤ |β1|, Ha : |β2| > |β1|.

The results of this test are reported in Table 18. I find that, over all four time windows, I

am able to reject the null hypothesis at the 1% significance level. Thus, all four predictions

about the price impact of credit rating changes, upgrades, and downgrades are confirmed at

the 1% significance level.

In order to determine whether the Volcker rule has had deleterious effects on the ability

of the bond market to absorb liquidity shocks, I perform a regression on the following linear

relationship:

(R2) : ∆Pi,t = β0 · ∆Ri,t + β1 ·Upi,t + β2 ·Downi,t

+β3 ·Upi,t ×Duringt + β4 ·Downi,t ×Duringt

+β5 ·Upi,t ×Aftert + β6 ·Downi,t ×Aftert + εi,t,
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where Duringt is a dummy variable indicating that the rating change occurred after the

Volcker rule regulations were announced but before they were enforced15, Aftert is a dummy

variable indicating that the change occurred after the regulations were enforced, and the other

factors are defined as in regression (R1). Thus, I employ a Diff-in-Diff approach to measure

the effects that the regulations have had on the price impact of credit rating downgrades,

with β3 and β4 representing the treatment effect of the announcement of the Volcker rule,

and with β5 and β6 representing the treatment effect of the enforcement of the regulations.

If the Volcker rule has had a deleterious effect on the ability of the bond market to absorb

liquidity shocks, then I expect β6 to be negative. Moreover, if dealers’ reductions in inventory

after the announcement of the Volcker rule had a deleterious effect on the market’s ability

to absorb liquidity shocks, then I expect β4 to be negative.

The results of this regression are reported in Table 17. While β6 is negative for the one

month, two week, and one week windows, and β4 is negative for the one month and two week

windows, neither of the two predictions about the effects of the Volcker rule hold with any

level of significance over any time window. Thus, using all credit downgrades as an indicator,

there is not evidence that the implementation of the Volcker rule has harmed the market’s

ability to absorb liquidity shocks.

“Surprise” Downgrades There is significant overlap in ratings coverage between

Moody’s, Fitch, and Standard & Poor’s, and thus significant overlap in the bonds that

are downgraded. For a bond that has already been downgraded by another rating agency,

the additional informational value of a second or third downgrade is limited. It is possible,

therefore, that by performing regressions (R1) and (R2) using all credit downgrades as an in-

dicator, I am diluting the effects of the Volcker rule, and thereby causing the negative results
15Starting as a proposal in a February 22, 2010 Wall Street Journal op-ed endorsed by several past

Secretaries of the Treasury, Dodd-Frank passed the Senate vote on May 20, 2010. Initial Volcker rule
regulations were proposed on October 11, 2011, and final rules were announced on July 21, 2012. After
issues implementing the new regulations, the ultimate form of the regulations began being enforced on
January 14, 2014. Note that, as reported by Barclays Capital, dealers had already started to reduce their
inventories to align with the new regulatory environment before it started being enforced. As such, it is
important to measure the impacts of the various treatment stages.
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that are observed. In order to control for the attenuating effects that pre-existing ratings

from other credit rating agencies would have on the price impact of credit rating downgrades,

I re-perform the analysis above using “surprise” credit rating downgrades. Thus, I perform

regressions on the following linear relationships:

(R3) : ∆Pi,t = β0 · ∆Rsi,t + β1 ·Upsi,t + β2 ·Downsi,t + εi,t

(R4) : ∆Pi,t = β0 · ∆Rsi,t + β1 ·Upsi,t + β2 ·Downsi,t
+β3 ·Upsi,t ×Duringt + β4 ·Downsi,t ×Duringt

+β5 ·Upsi,t ×Aftert + β6 ·Downsi,t ×Aftert + εi,t,

where ∆Rsi,t is the difference in ratings between the new rating and the most recent rating

from any agency covering bond i, Upsi,t is a dummy variable indicating that the rating change

is the first rating among any active ratings that takes the bond issue from junk grade to

investment grade (i.e. “surprise upgrades”), and Downsi,t is a dummy variable indicating

that the rating change represents the first rating among any active ratings that takes bond

i from investment grade to junk grade (i.e. “surprise downgrades”). The other factors are

defined as in regressions (R1) and (R2). Again, I perform these regressions taking volume-

weighted average prices using the four different time windows. For regression (R3), I expect

the same relationships to hold as in regression (R1). Namely, I expect that β0 > 0, β1 > 0,

β2 < 0, and |β2| > |β1|. For regression (R4), assuming “surprise downgrades” indeed carry

more weight than other downgrades, if the announcement and enforcement of the Volcker

rule harmed market liquidity in stress-related events, then I expect β4 and β6 to be negative.

The results of regression (R3) are reported in Table 19. For all time windows except

two months, the predictions regarding the direction of β0, β1, and β2 are all observed, and

are all significant at the 1% level. For the two month window, the predictions regarding

the directions of β0, β1, and β2 are all observed, with β0 being significant at the 1% level,

β1 being significant at the 10% level, and β2 not having any significance. I re-perform the

unequal variances t-test to test the prediction that |β2| > |β1|, the results of which are
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reported in Table 21. For the two week and one week time windows, I am able to reject the

null hypothesis at the 1% level, but I am unable to reject the null hypothesis for the two

month and one month time windows.

The results of regression (R4) are reported in Table 20. While β4 and β6 are negative

over all four time windows, the prediction regarding β4 only holds at the 1% significance

level for the one month time window and at the 5% significance level for the two week time

window, and the prediction regarding β6 only holds at the 10% significance level for the one

week time window. Thus, using “surprise downgrades” as an indicator, there is only weak

evidence that the Volcker rule has degraded the market’s ability to absorb liquidity shocks.

“Definitive” Downgrades While “surprise downgrades” may provide more informa-

tion about credit risk than other downgrades, they do not necessarily force institutional

investors to liquidate their holdings. Among the ten largest U.S. public pension funds, in

the case of split-ratings (i.e. when NRSROs assign the same bond different credit ratings)

only one fund restricts itself to investing in bonds for which all ratings are investment grade;

three of the ten funds restrict themselves to investing in bonds for which at least one rating

is investment grade. A complete listing of the restrictions of the ten largest U.S. public

pension funds is reported in Table 14. Given the differing restrictions prescribed by various

funds’ investment policies, it is possible that “surprise downgrades” do not carry the risk of

sparking fire sales. For this reason, I re-perform the analysis using “definitive” credit rating

downgrades. Here, “definitive upgrades” are the second or third rating change that takes

the rating from junk to investment grade, and “definitive downgrades” are the second or

third rating change that takes the rating from investment grade to junk status. If no other

rating agencies cover the bond in question, then any upgrade or downgrade is taken to be

“definitive.”

Thus, I perform regressions on the following linear relationships:

(R5) : ∆Pi,t = β0 · ∆Ri,t + β1 ·Updi,t + β2 ·Downdi,t + εi,t
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(R6) : ∆Pi,t = β0 · ∆Ri,t + β1 ·Updi,t + β2 ·Downdi,t
+β3 ·Updi,t ×Duringt + β4 ·Downdi,t ×Duringt

+β5 ·Updi,t ×Aftert + β6 ·Downdi,t ×Aftert + εi,t,

where Updi,t is a dummy variable indicating that the rating change is a “definitive upgrade,”

Downdi,t is a dummy variable indicating that the rating change is a “definitive downgrade,”

and the other factors are defined as in regressions (R1) and (R2). Again, I perform these

regressions taking volume-weighted average prices using the four different time windows.

For regression (R5), I expect the same relationships to hold as in regression (R1); I expect

that β0 > 0, β1 > 0, β2 < 0, and |β2| > |β1|. For regression (R6), assuming “definitive

downgrades” indeed carry more weight than “surprise downgrades,” and if the announcement

and enforcement of the Volcker rule harmed market liquidity in stress-related events, then I

expect β4 and β6 to be negative.

The results of regression (R5) are reported in Table 22. For all time windows, the

predictions regarding the direction of β0, β1, and β2 are all observed. For β0, the prediction

is significant at the 1% level over all time periods. For β1, the prediction is only significant

at the 5% level over the one week time window, and significant at the 10% level over the

two month and two week time windows. For β2, the prediction is significant at the 1% level

over the two month, one month, and two week time levels. Again, I re-perform the unequal

variances t-test to test the prediction that |β2| > |β1|, the results of which are reported in

Table 24. I find that, over the two month, one month, and two week time windows, I am

able to reject the null hypothesis at the 1% significance level.

The results of regression (R6) are reported in Table 23. β4 is positive for all four time

windows, and β6 is only negative for the one month and two week time windows. Moreover,

the prediction for β6 does not hold at any significance level over the two time windows for

which β6 < 0. While β4 is positive over all four time windows, and β6 is positive over the

two month and one week time windows, the prediction regarding β4 only holds at the 10%

significance level for the two month time window and at the 5% significance level for one two

week time window, and the prediction regarding β6 only holds at the 10% significance level
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for the one week time window. Thus, using “definitive downgrades” as an indicator, there

is no evidence that the Volcker rule has degraded the market’s ability to absorb liquidity

shocks.

“Near” Downgrades The analysis heretofore offers only limited support of the hy-

pothesis that the Volcker rule has degraded the bond market’s ability to absorb liquidity

shocks. One possible explanation for this lack of observed impact is that institutional in-

vestors have become more risk averse in their bond holdings. It is reasonable to suspect that

institutional investors are sophisticated. Realizing the implications of the inventory reduc-

tion as a result of the Volcker rule, those investors who face the credit rating constraints

would choose to hold less debt that has a risk of losing its investment grade rating – remov-

ing bonds from their portfolio before they are downgraded to junk ratings in order to avoid

potential fire sales. Such behavior would reduce the volume of debt facing forced liquidation,

therefore mitigating the impact of a downgrade.

In order to test this possibility, I re-perform the analysis using “near downgrades.” Here,

“near downgrades” are rating changes that take a rating from BBB or better to BBB- or

worse, and “near upgrades” are rating changes that take a rating from BBB- or worse to

BBB or better. I perform regressions on the following linear relationships:

(R7) : ∆Pi,t = β0 · ∆Ri,t + β1 ·UpBBB
i,t + β2 ·DownBBB-

i,t + εi,t

(R8) : ∆Pi,t = β0 · ∆Ri,t + β1 ·UpBBB
i,t + β2 ·DownBBB-

i,t

+β3 ·UpBBB
i,t ×Duringt + β4 ·DownBBB-

i,t ×Duringt

+β5 ·UpBBB
i,t ×Aftert + β6 ·DownBBB-

i,t ×Aftert + εi,t,

where UpBBB
i,t is a dummy variable indicating that the rating change is a “near upgrade,”

DownBBB-
i,t is a dummy variable indicating that the rating change is a “near downgrade,” and

the other factors are defined as in regressions (R1) and (R2). For regression (R7), I expect

the same directional relationships to hold as in regression (R1); I expect that β0 > 0, β1 > 0,
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and β2 < 0. However, given that the entire sample period is included in this regression, and

the hypothesized aversion to holding BBB- rated bonds is only a result of the Volcker rule,

I do not expect the magnitude of β2 to be greater than that of β1. For regression (R8), if

the announcement and enforcement of the Volcker rule has caused investors to become more

risk averse to holding BBB- rated bonds, then I expect β4 and β6 to be negative.

The results of regression (R7) are reported in Table 25. For all time windows, the

predictions regarding the direction of β0, β1, and β2 are all observed. For β0, the prediction

is significant at the 1% level over all time periods. For β1, the prediction is only significant

at the 5% level over the two month time window, and significant at the 10% level over the

two week time window. For β2, the prediction is only significant at the 10% level over the

two month, one month, and two week time levels. While I do not maintain the expectation

that the magnitude of β2 to be greater than that of β1, I re-perform the unequal variances

t-test to test the prediction that |β2| > |β1|, the results of which are reported in Table 27. I

find that I am only able to reject the null hypothesis for the one month time window at the

5% significance level.

The results of regression (R8) are reported in Table 26. β4 is negative for the two

month, one month, and two week time windows, and the prediction for β4 holds at the 10%

significance level for the two month and one month time windows. β6 is negative over all

four time windows, and the prediction holds at the 1% significance level for the two month

and one month time windows, at the 5% significance level for the two week time window,

and at the 10% level for the one week time window. Thus, there is strong evidence that the

enforcement of the Volcker rule has caused investors to become more averse to holding BBB-

rated bonds.

The hypothesis that the Volcker rule has increased institutional investors’ aversion to

holding BBB- rated bonds is based on the supposition that this aversion is due to said

investors seeking to avoid fire sales. After a bond is rated BBB-, these investors will slowly

sell off their holdings of the bond, causing a slow decrease in the price of the bond. Therefore,

I expect the price impact of “near downgrades” to increase as the time window increases. To
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test this, I perform three separate unequal variance t-tests on the following sets of hypotheses:

H0 : |β2M
6 | ≤ |β1M

6 |, Ha : |β2M
6 | > |β1M

6 |

H0 : |β1M
6 | ≤ |β2W

6 |, Ha : |β1M
6 | > |β2W

6 |

H0 : |β2W
6 | ≤ |β1W

6 |, Ha : |β2W
6 | > |β1W

6 |,

where β2M
6 is the impact of the Volcker rule on the price impact of “near downgrades” over

a two month window, β1M
6 is the impact of the Volcker rule over a one month window, β2W

6

is the impact over a two week window, and β1W
6 is the impact over a one week window.

The results of these tests are reported in Table 28. I am able to reject all three null

hypotheses at the 1% significance level. This provides strong evidence that, after a bond

is rated BBB-, institutional investors slowly sell off their holdings of said bond. Rather

than immediately affecting the price of the bond, the price impact of such a rating change

slowly increases over time. Thus, investors are able to liquidate their holdings of such bonds

without sparking a fire sale.

“Large” Downgrades Given the strong evidence that institutional investors have be-

come averse to holding BBB- rated bonds, in order to isolate potential forced liquidation

events, I re-perform the previous analysis using “large downgrades.” Here, “large down-

grades” are rating changes that take a rating from BBB or better to BB+ or worse, and

“large upgrades” are rating changes that take a rating from BB+ or worse to BBB or better.

I also restrict the sample to rating changes for bonds for which only one NRSRO issued

a rating. In this way, I remove the downgrades of bonds for which investors have already

had the opportunity to divest their holdings when the bond was rated BBB-, and I remove

the possibility that investors are not forced to liquidate their holdings given the downgrade.

Thus, the downgrades identified in this analysis have the greatest likelihood of causing a fire

sale.

Over the sample period, there are no large upgrades for bonds covered by only one rating

agency, and there are only nine large downgrades for bonds covered by one agency. Moreover,
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only three such downgrades occur after the enforcement of the Volcker rule16. Nonetheless,

I perform regressions on the following linear relationship:

(R9) : ∆Pi,t = β0 · ∆Ri,t + β1 ·Downxi,t + β2 ·Downxi,t ×Aftert + εi,t,

where Downxi,t is a dummy variable indicating that the rating change is a “large downgrade,”

and the other factors are defined as in regressions (R1) and (R2). Again, I perform this

regression taking volume-weighted average prices using the four different time windows.

Following previous logic regarding the impact of credit ratings and downgrades on bond

prices, I expect β0 to be positive and β1 to be negative. If the enforcement of the Volcker

rule harmed market liquidity in stress-related events, then I expect β2 to be negative.

The results of regression (R9) are reported in Table 29. β0 is positive for all time windows,

is significant at the 1% level for the one week window, and is significant at the 5% level for

the one month and two week windows. β1 is negative and significant at the 1% level for the

two month and one month windows, but is positive for the two week and one week windows.

β2 is negative for the two week and one week time windows. β2 is significant at the 1% level

for the two week time window, but it is not significant at any level for the one week time

window. Therefore, using “large downgrades” as an indicator for potential forced liquidation

events, there is little evidence that the Volcker rule has degraded the market’s ability to

absorb liquidity shocks.

3.5 Discussion

As discussed in the previous section, there is little to no evidence that the Volcker rule has

deteriorated the bond market’s ability to absorb liquidity shocks. This result contradicts

Bao et al. (2016)’s finding that there has been an increase in illiquidity related to stress

events as a result of the Volcker rule. It is plausible that the test design employed by Bao

et al. (2016) overestimated the impact of credit downgrades by failing to control for the
16It should be noted that the limited number of observations for which the “large downgrade” flag applies

may lead to unreliable regression results.
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impact of non-downgrade credit rating changes. I do, however, find that the Volcker rule

has increased institutional investors’ aversion to holding bonds with a BBB- rating. I argue

that this aversion is a result of investors seeking to avoid the possibility of holding bonds for

which credit downgrades might spark a fire sale. Thus, as a result of the Volcker rule, these

investors are acting as if the Volcker rule has harmed the market’s ability to absorb liquidity

shocks.

An increased aversion to holding BBB- rated bonds has the potential to impact the real

economy through distorting the issuance of new bonds at a rating near junk. As illustrated

in Figure 17, the general relationship between a bond’s credit rating at the time of issuance

and its yield at origination remains consistent throughout the implementation of the Volcker

rule. Before the Volcker rule was enforced, there is a jump in yields between BBB- and BB+

rated bonds, reflecting a jump in yields between investment grade and junk bonds. After

the Volcker rule went into effect, however, there is a jump in yields between BBB and BBB-

with no such jump between BBB- and BB+ rated bonds. This jump in yields is indicative

of institutional investors treating bonds issued at a BBB- rating as if they were junk after

the Volcker rule was enforced.

I further investigate this relationship by performing several regressions of yield at orig-

ination on credit rating, the results of which are reported in Tables 30 and 31. Table 30

reports the results of regressing the yield at time of issuance on bond ratings, using various

combinations of controls. Table 31 reports the results of similar regressions, restricting the

sample to bond ratings ranging from BBB to BB. I find a sharp rise in the yield of bonds

issued with BBB- ratings relative to nearby ratings following the enforcement of the Volcker

rule. This rise is significant at the 1% level in all but one of the regressions performed – for

that regression, the rise in yield is significant at the 10% level.

This result is consistent with the distribution of bonds that are issued at each respective

credit rating. In the years immediately preceding the passing of Dodd-Frank, bonds with

ratings of BBB and BBB- comprised approximately 9% and 8.5% of new issues, respectively.

These proportions sharply declined after Dodd-Frank passed, falling to about 5.5% and 5%
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respectively. Declining again to about 3.3% and 2.3% after the regulations of the Volcker

rule were proposed, new BBB and BBB- issues maintained this low level of activity until

the final regulations went into effect in January of 2014, at which time they fell to 1% and

0.75% of total issues.

The steady decline of new, near-junk rated, bonds is indicative of firms electing not to

issue new debt at the now higher yield. As yields increase, firms whose debt is rated near

junk face a higher cost of capital if raising a new bond issue, and are therefore less likely to

issue debt unless they plan to fund a riskier endeavor. In response, investors must demand

even higher yields for holding this debt. This tension represents a cycle of adverse selection

which translates the financial market regulations into distortions of the decisions made in

the real economy.

Therefore, while I find little to no evidence that the Volcker rule has deteriorated the

market’s ability to absorb liquidity shocks, I argue that the regulation has had the unin-

tended consequence of distorting the issuance of new bonds at a rating near junk, negatively

impacting the real economy. I find significant evidence that the Volcker rule has increased

institutional investors’ aversion to holding U.S. corporate debt with a BBB- credit rating.

Such an aversion, I argue, is due to the investors seeking to avoid the potential of a credit

downgrade forcing the liquidation of their position and thus sparking a fire sale. Insofar as

this increased aversion is caused by fears of illiquidity related to stress events as a result of the

Volcker rule, then I argue that the distortions caused by the Volcker rule would be eliminated

if an exception to the inventory limits established by the regulation were carved out such that

said inventory limits did not apply to bonds that were downgraded from investment grade to

junk for some limited period of time. Such an exception would allay investor fears that credit

downgrades would lead to liquidity shocks. This would remove their increased aversion to

holding BBB- rated debt, and would therefore remove the adverse selection associated with

issuing new debt with a BBB- credit rating.

In this way, establishing an exception to inventory limits for downgraded bonds would

remove the distortions caused by the Volcker rule. Moreover, given the limited scope of
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such an exception, it would not affect the primary purpose of the Volcker rule – to restrict

bond dealers from engaging in proprietary trading. While dealers would be able to absorb

liquidity shocks caused by downgrades, they would not feasibly be able to construct private

positions to capitalize upon the exception.

3.6 Limitations

While I find little to no evidence that the Volcker rule has had deleterious effects on the

bond market’s ability to absorb liquidity shocks, this result only applies to potential liquid-

ity shocks caused by credit rating downgrades of U.S. corporate bonds. Given the strong

evidence that the Volcker rule has increased institutional investors’ aversion to holding bonds

with a BBB- credit rating, and the fact that the majority of downgrades affect bonds with

BBB- ratings, the likelihood that a credit downgrade will cause a liquidity shock is limited.

Moreover, there are too few large downgrades (downgrades that affect bonds with ratings

of BBB or better) for bonds covered by only one NRSRO to provide a reliable estimation

of the impact of the Volcker rule on the illiquidity surrounding those downgrades that are

most likely to cause liquidity shocks. It is still plausible, therefore, that that the Volcker

rule has caused an increase in illiquidity related to stress events, but that this illiquidity is

not observable through the identification of stress events using credit rating downgrades.

3.7 Future Research

As previously discussed, given institutional investors’ response to the Volcker rule, credit

rating downgrades may not be able to identify liquidity shocks of sufficient size to be af-

fected by the regulatory inventory limits faced by bond dealers. Using different events to

identify liquidity shocks may provide greater insight into how the Volcker rule has affected

the market’s ability to absorb liquidity shocks.

In this essay, I identify a plausible pathway by which the Volcker rule has distorted the

issuance of new bonds at a rating near junk, negatively impacting the real economy. I do

not, however, measure the complete impact of those distortions. As previously stated, these
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distortions are expected to cause bonds issued with a BBB- credit rating to become more

risky. Future work can therefore measure the impact of the Volcker rule on this debt by

comparing the default rate of bonds issued with a BBB- rating after the regulations went

into effect with the default rate of similar bonds issued before the Volcker rule.

3.8 Conclusion

In this essay, by identifying stress events using credit rating downgrades, I find little to

no evidence that the Volcker rule has harmed the bond market’s ability to absorb liquidity

shocks. Rather, I find strong evidence that the Volcker rule has increased institutional

investors’ aversion to holding BBB- rated bonds. I show that this increased aversion to BBB-

debt translates into a higher yield at issuance for bonds with such a rating, and that the

proportion of debt issued at this rating has decreased substantially since the enforcement of

the Volcker rule. I argue that this demonstrates a distortion of the decisions made regarding

the issuance of new debt, which harms the real economy. Finally, I recommend a change

to the Volcker rule that I argue would eliminate these distortions by removing institutional

investors’ increased aversion to holding BBB- rated bonds.
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B Tables

Table 1: Summary Data Statistics

In-Sample
Limit Order (Excluded)

Ticker Market Orders Placement/Revision Cancellation Total Included Flickering Orders
AAL 186,680 932,327 1,065,648 2,184,655 1,565,899

AAPL 684,584 5,164,812 5,765,407 11,614,803 7,790,732
BAC 106,181 1,009,475 1,292,938 2,408,594 1,964,235
CAT 115,550 757,949 1,088,388 1,961,887 1,754,239

CSCO 136,260 1,515,061 2,000,254 3,651,575 2,105,962
FB 345,725 2,338,654 3,117,182 5,801,561 4,930,529
GE 73,753 1,024,688 1,410,278 2,508,719 2,027,056

GOOG 132,733 790,110 921,185 1,844,028 1,486,236
GS 87,027 354,092 598,623 1,039,742 1,254,857

MSFT 235,526 2,194,676 2,912,029 5,342,231 4,313,775

Out-of-Sample
Limit Order (Excluded)

Ticker Market Orders Placement/Revision Cancellation Total Included Flickering Orders
AAL 78,102 470,566 518,332 1,067,000 669,452

AAPL 315,161 2,087,883 2,154,991 4,558,035 2,556,940
BAC 30,226 358,987 481,305 870,518 641,750
CAT 52,989 324,415 345,636 723,040 538,176

CSCO 52,296 587,730 760,319 1,400,345 737,685
FB 146,145 823,473 1,141,308 2,110,926 1,488,826
GE 28,534 354,773 455,091 838,398 668,333

GOOG 52,050 293,429 292,042 637,521 501,612
GS 23,748 97,118 172,491 293,357 396,330

MSFT 138,760 968,904 1,005,233 2,112,897 1,644,862

This table reports the number of each type of order observed for the sample of stocks in-

cluded in the training sample and outside the training sample, as well as the number of

excluded “flickering orders.” The counts of limit order placements/revisions and limit order

cancellations are restricted to those orders within five ticks from the bid-ask spread that are

not identified as “flickering orders.”
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Table 2: Estimated Model Parameters

Price Process Market Order Distribution Market Maker Costs
Ticker ψ µ α ξ λ1 λ2 φ1 φ2 γ0 γ1 ζ η

AAL 1.4793 -5.6713 · 10-5 2.1490 · 10-5 0.5616 0.5140 0.3702 0.8099 0.6484 -0.1895 0.2052 0 0
AAPL 0.2848 -2.8041 · 10-5 1.7223 · 10-5 0.4902 0.8056 0.5491 0.7821 0.6379 -0.1069 0.1185 0 0.0004
BAC 1.6302 -2.3653 · 10-5 1.0093 · 10-6 0.5205 0.9275 0.1630 0.9223 0.1433 -0.2169 0.0786 0 0.0041
CAT 1.9961 1.5707 · 10-5 1.3807 · 10-4 0.4768 0.6665 1.0166 0.6356 0.7449 0.0102 0.0296 0 0

CSCO 1.2726 2.3356 · 10-6 1.9669 · 10-6 0.4801 0.7707 0.3045 0.8880 0.2665 -0.0057 0.1004 0 0.0069
FB 0.5428 3.8032 · 10-6 6.4512 · 10-6 0.4971 0.8203 0.6448 0.8112 0.6281 -0.0379 0.1373 0.3173 0.0583
GE 1.8938 5.7583 · 10-6 3.4073 · 10-6 0.4346 0.9503 0.3332 0.9105 0.3024 0.1680 0.0637 0.1161 0.1722

GOOG 2.2770 -2.8178 · 10-4 1.0793 · 10-3 0.5164 0.1495 0.9085 0.1071 0.4721 -0.9223 1.5247 0 0
GS 3.5921 3.9197 · 10-6 5.3170 · 10-4 0.4585 0.5008 0.9996 0.5232 0.7331 0.5908 0.2779 0.0021 0.4604

MSFT 0.6796 -4.5100 · 10-6 7.3331 · 10-6 0.4804 0.8788 0.4847 0.8682 0.4235 0.3629 0.0924 0 0.3818

This table reports the estimates of model parameters found using the Continuous-Updating

Generalized Method of Moments (CUGMM) regression described in Section 1.4.2 on the

training sample (January 2, 2015 through January 23, 2015). ψ represents the average time,

in seconds, between market orders. µ represents the instantaneous price drift of the stock,

and α describes the average price impact of a market order. Given the parameterization

of the distribution of the size of market orders, we have the following parameters. ξ is the

unconditional probability that a market order is a sell order. λ1 is the probability that the

size of a market buy order is greater than or equal to a full lot (100 shares). 100 · λ2 is the

average size of a market buy order, conditional on being greater than or equal to a full lot.

φ1 is the probability that the size of a market sell order is greater than or equal to a full

lot. 100 · φ2 is the average size of a market sell order, conditional on being greater than or

equal to a full lot. Finally γ0 and γ1 are the fixed and variable costs, respectively, of either

placing a new limit order or continuing to maintain an existing order. γ0 can be interpreted

as the on-going cost associated with monitoring the order. ζ and η can be interpreted as

the average opportunity costs associated with placing a new limit order and continuing to

maintain an existing order, respectively.
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Table 3: Distribution of Current Market Order Flow Regressed on Recent ∆RLPS

In-Sample Results
Ticker Volatility Ave. Order Size Max. Order Size Trade Volume
AAL 8.4711 · 10-4*** 2.1534 · 10-4*** 1.1915 · 10-2*** 1.0500 · 10-3***

AAPL 7.4758 · 10-4*** 1.7061 · 10-4*** 1.4732 · 10-2*** 1.0668 · 10-3***
BAC 8.4530 · 10-3*** 2.1652 · 10-3** 5.9497 · 10-2*** 1.3973 · 10-3***
CAT 8.7445 · 10-4 4.1592 · 10-4 6.7682 · 10-4 1.6605 · 10-3***

CSCO 4.3763 · 10-4* 1.0128 · 10-4 5.2339 · 10-3*** 3.9563 · 10-4***
FB 4.5392 · 10-4*** 9.2799 · 10-5*** 6.4228 · 10-3*** 6.5742 · 10-4***
GE 9.0049 · 10-3*** 2.2969 · 10-3** 6.2415 · 10-2*** 1.5568 · 10-3***

GOOG 7.9925 · 10-4*** 2.2333 · 10-4* 6.2818 · 10-3*** 3.7201 · 10-3***
GS -1.3856 · 10-3** -5.7422 · 10-4 -5.2336 · 10-3** 4.6875 · 10-3***

MSFT 2.9698 · 10-3*** 8.8947 · 10-4*** 3.4825 · 10-2*** 3.6170 · 10-3***
Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

Out-of-Sample Results
Ticker Volatility Ave. Order Size Max. Order Size Trade Volume
AAL 4.6350 · 10-4** 1.5346 · 10-4*** 5.2002 · 10-3*** 2.1125 · 10-4***

AAPL 1.0089 · 10-3** 2.0207 · 10-4*** 1.9633 · 10-2*** 1.9125 · 10-4

BAC 1.1426 · 10-2*** 3.3587 · 10-3** 6.4570 · 10-2*** 1.4440 · 10-3***
CAT 2.2417 · 10-5 1.2508 · 10-5 -7.5158 · 10-4 2.0500 · 10-3***

CSCO 2.5790 · 10-3*** 5.6359 · 10-4* 2.9411 · 10-2*** 7.0958 · 10-4***
FB 1.1035 · 10-4 2.8110 · 10-5 1.3321 · 10-3 2.8065 · 10-4***
GE 8.9435 · 10-3*** 2.5957 · 10-3* 5.8001 · 10-2*** 1.9859 · 10-3***

GOOG 8.0878 · 10-5 2.1358 · 10-5 1.2827 · 10-3 4.0558 · 10-04**
GS 1.9023 · 10-3** 1.2401 · 10-3** 9.2468 · 10-3*** 3.3417 · 10-3***

MSFT 1.4264 · 10-3*** 2.6448 · 10-4* 2.4008 · 10-2*** 3.0772 · 10-7

Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

This table reports the in-sample and out-of-sample results of regressions (R1) through

(R4). These regressions explore the predictive power that changes to the symmetric measure

of relative liquidity provisioning, RLPS , have on changes to various factors that describe

the current distribution of market orders. Four factors describing the distribution of market

orders over one minute intervals are investigated: the distributional volatility of market order

flow (R1), the average size of market orders (R2), the maximum order size (R3), and the total

volume of market orders (R4). For each factor’s regression, a negative coefficient implies that

market makers have knowledge about future market order flow and are provisioning liquidity

accordingly.
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Table 4: Price Impact Regressed on Current RLPS and Market Order Flow

In-Sample Results
Ticker Intercept RLPS Volatility Ave. Order Size Max. Order Size Trade Volume
AAL 5.4405 · 10-4*** -8.3851 · 10-9*** -1.6523 · 10-7 -4.7985 · 10-8 3.4993 · 10-8*** 1.7331 · 10-6***

AAPL 3.6017 · 10-4*** -4.5900 · 10-10*** -5.4088 · 10-8 -4.9188 · 10-7*** 1.4963 · 10-8*** 5.2930 · 10-7***
BAC 2.1343 · 10-4*** -2.8346 · 10-9*** 8.8751 · 10-9 6.0112 · 10-8*** -1.5833 · 10-9 2.2571 · 10-6***
CAT 3.0178 · 10-4*** -4.5798 · 10-8*** -1.3816 · 10-6*** 1.0255 · 10-6*** 1.8605 · 10-7*** 1.2210 · 10-6***

CSCO 1.9893 · 10-4*** -1.3112 · 10-9*** -6.6188 · 10-8*** 1.0542 · 10-7*** 3.1870 · 10-9 2.2090 · 10-6***
FB 2.7769 · 10-4*** -1.3554 · 10-9*** 5.8677 · 10-8 -1.7672 · 10-7 -2.7302 · 10-9 9.4310 · 10-7***
GE 1.5792 · 10-4*** -8.2677 · 10-9*** 1.1087 · 10-8 8.5654 · 10-8*** -9.2962 · 10-9** 2.0518 · 10-6***

GOOG 2.4226 · 10-4*** -2.3620 · 10-8*** -6.5172 · 10-7*** 3.6400 · 10-7 1.6783 · 10-7*** 1.3037 · 10-6***
GS 3.6333 · 10-4*** -1.1263 · 10-7*** -7.4659 · 10-7*** 3.9491 · 10-7* 1.3429 · 10-7*** 1.5024 · 10-6***

MSFT 2.0482 · 10-4*** -2.2526 · 10-9*** -5.9639 · 10-7*** 7.9095 · 10-7*** 5.7893 · 10-8*** 9.4286 · 10-7***
Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

Out-of-Sample Results
Ticker Intercept RLPS Volatility Ave. Order Size Max. Order Size Trade Volume
AAL 1.9202 · 10-4* 2.5516 · 10-9*** -3.1496 · 10-7 -6.3956 · 10-7 4.9125 · 10-8 -3.1861 · 10-7

AAPL 9.3357 · 10-5 1.9734 · 10-9*** 8.7033 · 10-8 -4.4362 · 10-7 6.0012 · 10-10 -3.5510 · 10-8

BAC 1.3369 · 10-5 -1.9925 · 10-9 -1.2792 · 10-7*** 9.3238 · 10-8** 2.3771 · 10-8** -6.4219 · 10-7

CAT 6.3433 · 10-5 -3.7999 · 10-8*** -1.6442 · 10-6*** 1.7323 · 10-6*** 2.2593 · 10-7*** -1.5597 · 10-6***
CSCO 1.4911 · 10-4*** 3.8368 · 10-10 5.1161 · 10-8 -2.2769 · 10-7*** -4.2516 · 10-9 -4.0320 · 10-7**

FB 4.2145 · 10-5 1.1506 · 10-10 6.6110 · 10-7** -7.2938 · 10-7 -6.0814 · 10-8*** -4.3409 · 10-8

GE 2.7858 · 10-5 -2.8902 · 10-9* -1.2080 · 10-7*** 7.0703 · 10-8* 2.6771 · 10-8*** -8.1788 · 10-7***
GOOG 2.2220 · 10-5 1.3626 · 10-8*** -5.6352 · 10-6*** 4.5299 · 10-6*** 6.9692 · 10-7*** -1.9022 · 10-7

GS 7.9081 · 10-5 1.3522 · 10-8** -2.8851 · 10-6*** 1.5563 · 10-6** 5.0228 · 10-7*** -8.2255 · 10-7*
MSFT 2.0128 · 10-4*** -2.2985 · 10-9** -1.0861 · 10-7 -9.3074 · 10-8 1.0610 · 10-8 -3.5835 · 10-7***
Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

This table reports the in-sample and out-of-sample results of regression (R5), which shows

the relationship between the change in price over an interval and the relative provision of

liquidity over that period as well as the distribution of market order flow over that period.

The change in price over an interval that is unexplained by the market order flow and

liquidity provision over that interval will be used in regression (R6) to test whether market

makers have information about the presence of informed traders.
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Table 5: Unexplained Price Impact Regressed on Change of RLPS Over Previous Period

Ticker In-Sample Out-of-Sample
AAL -4.9120 · 10-10 -5.3749 · 10-09***

AAPL -6.4825 · 10-11 -1.7225 · 10-09***
BAC 1.7015 · 10-09*** -1.4942 · 10-09

CAT -1.1578 · 10-09 7.2310 · 10-09***
CSCO 8.3471 · 10-11 -1.6246 · 10-09***

FB -1.7924 · 10-10 1.1237 · 10-09***
GE 7.5276 · 10-10 1.7530 · 10-09*

GOOG -1.8877 · 10-09* -2.7350 · 10-09**
GS 1.6629 · 10-08*** -2.2550 · 10-08***

MSFT 6.7075 · 10-10** 1.2028 · 10-09***
Note: *,**, and *** indicate significance
at 0.10, 0.05, and 0.01, respectively.

This table reports the results of regression (R6). The residuals from regression (R5)

represent the change in price over an interval that is unexplained by the market order flow

and liquidity provision over that interval. These residuals are regressed on the change in the

provision of liquidity in the preceding interval. Here, a negative coefficient corresponds to

market makers decreasing their provision of liquidity ahead of periods during which market

orders have an unusually large impact on prices.
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Table 6: Price Change Regressed on Recent ∆RLPD

In-Sample

Ticker Regression (R7) Regression (R8)
∆RLPDt−1 ∆Xt−1 ∆RLPDt−1

AAL 4.2566 · 10-09** -1.4000 · 10-02 4.2588 · 10-09**
AAPL -3.8163 · 10-09*** -2.7340 · 10-03 -3.7939 · 10-09***
BAC 1.2879 · 10-09* -1.3278 · 10-02 1.2949 · 10-09*
CAT 1.4708 · 10-08** -1.2650 · 10-02 1.4694 · 10-08**

CSCO -8.3015 · 10-10 -3.1464 · 10-03 -8.3508 · 10-10

FB -2.5590 · 10-10 -7.4748 · 10-02*** -6.7407 · 10-11

GE -1.1423 · 10-09 -2.0359 · 10-02 -1.1039 · 10-09

GOOG 2.2776 · 10-09 1.4970 · 10-02 2.2939 · 10-09

GS 1.7864 · 10-08 1.8775 · 10-02 1.8237 · 10-08*
MSFT 3.3149 · 10-09* -2.1119 · 10-02 3.3941 · 10-09*
Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

Out-of-Sample

Ticker Regression (R7) Regression (R8)
∆RLPDt−1 ∆Xt−1 ∆RLPDt−1

AAL -5.2015 · 10-09** -7.7113 · 10-02*** -4.5798 · 10-09**
AAPL -1.2518 · 10-09 -3.4017 · 10-02 -1.0434 · 10-09

BAC 6.9468 · 10-10 -9.4427 · 10-02*** 7.7180 · 10-10

CAT 6.9142 · 10-08*** -1.0041 · 10-02 6.9330 · 10-08***
CSCO -2.5751 · 10-09 -2.5623 · 10-02 -2.4892 · 10-09

FB 4.3323 · 10-09*** 8.3533 · 10-02*** 4.7430 · 10-09***
GE -1.6075 · 10-09 -1.0701 · 10-01*** -1.5358 · 10-09

GOOG -2.8976 · 10-09* 1.0154 · 10-01*** -3.4427 · 10-09**
GS 1.5475 · 10-08 -1.3231 · 10-01*** 1.5528 · 10-08

MSFT -2.9104 · 10-09 2.0643 · 10-03 -2.9199 · 10-09

Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

This table reports the results of regressions (R7) and (R8) over the in-sample and out-

of-sample periods. Regression (R7) shows the relationship between the change in price over

an interval and the change in the directional liquidity estimator RLPD over the previous

interval. Regression (R8) controls for the autoregressive nature of asset price returns, showing

the relationship between the change in price over an interval and the change in price as well

as the change in RLPD over the previous interval. For both regressions, a positive coefficient

acting on ∆RLPD indicates that changes to the balance of the limit order book are predictive

of future asset price returns.
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Table 7: Price Impact of Market Order Regressed on Current RLPS Value

In-Sample

Ticker Regression (R9) Regression (R10)
Instantaneous Drift Price Impact RLPS

AAL -8.7103 · 10-5*** 1.8990 · 10-5*** -2.5504 · 10-9***
AAPL 4.7955 · 10-5 1.5960 · 10-5*** -4.3431 · 10-10***
BAC -3.2154 · 10-5*** 2.5596 · 10-6*** -3.5702 · 10-11

CAT -1.3218 · 10-4*** 1.0622 · 10-4*** -2.0600 · 10-8***
CSCO -4.4888 · 10-6 3.1722 · 10-6*** -1.1904 · 10-10***

FB -1.3963 · 10-5 1.2314 · 10-5*** -5.6309 · 10-10***
GE -2.6110 · 10-5*** 6.2396 · 10-6*** -5.3493 · 10-10***

GOOG -6.4754 · 10-4*** 3.5245 · 10-4*** -1.7054 · 10-7***
GS -4.4317 · 10-4*** 2.9331 · 10-4*** -1.6164 · 10-7***

MSFT -3.1419 · 10-6 1.1234 · 10-5*** -5.6527 · 10-10***
Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

Out-of-Sample

Ticker Regression (R9) Regression (R10)
Instantaneous Drift Price Impact RLPS

AAL -1.7541 · 10-4*** 2.4159 · 10-5*** -7.9252 · 10-10***
AAPL 3.4153 · 10-4*** 6.6096 · 10-6*** -5.1977 · 10-10***
BAC -4.6142 · 10-5*** 3.2974 · 10-6*** -2.0296 · 10-11

CAT -3.9524 · 10-5 6.5479 · 10-5*** -4.5932 · 10-09***
CSCO 9.1064 · 10-6 5.1714 · 10-6*** -2.4917 · 10-10***

FB 9.3878 · 10-6 1.0151 · 10-5*** -9.0984 · 10-11***
GE -4.4760 · 10-5*** 5.4312 · 10-6*** -6.9861 · 10-10***

GOOG -3.9607 · 10-4** 3.8963 · 10-4*** -8.1497 · 10-8***
GS -3.5862 · 10-4*** 3.5122 · 10-4*** -5.0625 · 10-7***

MSFT -1.8191 · 10-4*** 5.6876 · 10-6*** -4.2519 · 10-11***
Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

This table reports the results of regressions (R9) and (R10) performed over the in-sample

and out-of-sample periods. Regression (R9) finds the average price impact of a market order,

controlling for the instantaneous price drift. Regression (R10) uses the residual price impact

from regression (R9) to find the effect that the current value of the estimator (RLPSt ) has

on the unexplained price impact. For regression (R10), a negative coefficient multiplying the

current value of the estimator implies that the price impact of an arriving market order is

lower than normal when market makers are placing relatively larger limit orders.
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Table 8: Estimated Parameters of the Hidden Markov Model

Parameters Estimate
Initial State α1 0.0797
Distribution α2 0.3404

Transition Matrix γ2 0.9154
Trade γ3 0.8724

Transition Matrix λ1 0.8250
No Trade λ2 0.9374

State β1
0 3.5026

Dependent β2
0 -0.0164

Factors β3
0 -6.1739

β1(1) 0.6078
Other β1(2) -0.0829

Factors β1(3) 0.1827
β1(4) -0.3651

This table summarizes the parameters that optimize the hidden Markov model over

the in-sample training data. Using these parameters, it is possible to find the initial state

distribution that is estimated for the sample. The initial state distribution is estimated as

π0 = [α1,α2, (1− α1 − α2)] = [0.0797, 0.3404, 0.5799].

Thus, over half of the bonds in the study are expected to begin their life cycle in the

dormant state for which few trades are expected, and only ∼ 8% of bonds are expected to

begin their life cycle as actively traded bonds. This initial state distribution is similar to

the distribution of trade frequencies across bond issues (Figure 9). Similarly, it is possible

to find the transition matrices estimated by the model. The transition matrix given a trade

occurs is estimated as

Tr1 =

 1 0 0
1− γ2 γ2 0

0 1− γ3 γ3

 =

 1 0 0
0.0846 0.9154 0

0 0.1276 0.8724

 ,

and the transition matrix given no trade occurs is estimated as

Tr0 =

 λ1 1− λ1 0
0 λ2 1− λ2
0 0 1

 =

 0.8250 0.1750 0
0 0.9374 0.0626
0 0 1

 .
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Table 9: Estimated Parameters of Alternative Trading Probability Models

Model Parameters

Logistic Regression

β0: -1.1214
β1(1): 0.0119
β1(2): 0.0356
β1(3): 0.0600
β1(4): 0.0995
β1(5): -0.2621

Weighted Logistic Regression

ω: 3.0707
β0: -0.6045

β1(1): 3.1277
β1(2): 0.2707
β1(3): -0.8349
β1(4): -0.4617
β1(5): -1.0548

Unconditional Probability α: 0.2457

This table summarizes the parameters (and in the case of the weighted logistic regression

model, the hyper-parameter ω) that optimize the performance of the alternative trading

probability estimators over the in-sample training data set. For the logistic regression and

the weighted logistic regression models, β1(1) is the parameter corresponding to the indicator

variable of a trade occurring on the previous business day. From the value of β1(1) for the

weighted logistic regression model, it can be seen that for a given bond, trading activity

being observed on the previous business day is strongly correlated with a trade occurring

on the day in question. However, for the standard logistic regression model, the value of

β1(1) is much smaller, showing that the presence of a trade on the previous business day has

significantly less weight on the estimated probability of trading. This marked decrease in

impact on trade probability is due to the imbalanced nature of the data; without the class-

weight ω, the proportion of observations without a trade observed overwhelms the impact

of a trade occurring on the previous day.
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Table 10: In-Sample and Out-of-Sample Performance of Trading Probability Estimators

Model In-Sample Out-of-Sample
ROC AUC Log Loss ROC AUC Log Loss

Hidden Markov Model 0.9473 0.2490 0.9519 0.2325
Logistic Regression 0.5759 0.5565 0.5758 0.5377

Weighted Logistic Regression 0.8268 0.4897 0.8272 0.4827
Unconditional Probability 0.5 0.5575 0.5 0.5385

This table summarizes the discriminatory power and predictive accuracy of the hidden

Markov model and the alternative trade probability estimators. The ROC AUC measures

the discriminatory power of the classification model, with an AUC of 1 corresponding to a

perfect classifier and an AUC of 0.5 corresponding to a classifier that differentiates between

classes no better than random chance. The log loss measures the accuracy of the classifi-

cation model, with a lower log loss corresponding to a more accurate probability estimate.

Both in-sample, over the training data set, and out-of-sample, over the test data set, the

hidden Markov model outperforms the other estimators by a large margin, with a high level

of discriminatory power (as demonstrated by a high ROC AUC) and a high level of pre-

dictive accuracy (as demonstrated by a low log loss). As expected, the weighted logistic

regression significantly improves upon the standard logistic regression with respect to dis-

criminatory power, as measured by ROC AUC. However, with respect to the accuracy of

trade probability predictions, the weighted logistic regression’s improvement over the stan-

dard logistic regression is much more modest. The unconditional probability model assigns

the same trade probability to every observation. Therefore, as expected, the unconditional

probability model is unable to differentiate between classes.
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Table 11: Estimated Matching Model Hyper-Parameters

Model Hyper-Parameters

LOWESS Regression
q: 0.0074
α1: 0.9839
α2: 0.9942

OLS Regression No hyper-parameters
K-Nearest Neighbor Search k: 90

Deep Neural Network d: 4
w: 64

This table summarizes the hyper-parameters that optimize the performance of the match-

ing estimators over the in-sample training data set. For the LOWESS regression model, the

hyper-parameter q determines the number of neighboring observations that are used in each

local regression on a given day t as a proportion of the number of bonds that trade on that

day nt, where the number of neighbors to include is given by qnt. α1 and α2 are hyper-

parameter weights on the principal components that determine the impact each component

has on the distance measurement used to find the nearest observations. The OLS regression

model does not employ any hyper-parameters and therefore requires no pre-training. The

behavior of the k-nearest neighbor search model is fully determined by the hyper-parameter

k, which gives the number of neighboring observations to use in its estimation. The struc-

ture of the deep neural network model is described by the hyper-parameters d and w. In this

model, d describes the depth of the model, or the number of hidden layers within the model.

The hyper-parameter w describes the width of the model, or the number of nodes contained

on each hidden layer of the model.
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Table 12: In-Sample and Out-of-Sample Performance of Matching Estimators

Model In-Sample Out-of-Sample
RMSE R2 RMSE R2

LOWESS Regression 1.0886 0.3202 1.0256 0.3447
OLS Regression 1.3158 0.0068 1.2583 0.0136

K-Nearest Neighbor Search 1.3090 0.0207 1.2508 0.0253
Deep Neural Network 1.2294 0.1692 1.1844 0.1295

This table summarizes the explanatory and predictive power of the LOWESS Regression

and the alternative matching estimators, as well as the accuracy of their predictions. The

in-sample R2 describes the power of the estimators to explain the variation of of the target

variable in the training sample, and the out-of-sample R2 measures the power of the models

to predict the variation of the target variable in the testing sample. The in-sample and

out-of-sample RMSEs measure the accuracy of the models’ predictions over the training and

test samples, respectively. The LOWESS regression outperforms the other estimators by a

large margin, followed by the deep neural network estimator. The ordinary least squares

(OLS) regression and the k-nearest neighbor (KNN) search perform very similarly to one

another in terms of RMSE, with the KNN search algorithm slightly outperforming the OLS

regression with respect to R2.
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Table 13: Relationship Between Aggregate Illiquidity and Other Macroeconomic Factors

Regression
Coefficient VIX OAS

Intercept 4.7248*** 0.0539*
Agg. Illiq. 37.6468*** 4.6276***

R2 0.4662 0.5553
Note: *,**, and *** indicate significance
at 0.10, 0.05, and 0.01, respectively.

This table reports the results of regressing each macroeconomic factor on my measure of

aggregate bond market illiquidity. Here, “Intercept” reports the intercept of the regression,

and “Agg. Illiq.” reports the coefficient multiplying my measure of aggregate illiquidity.
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Table 14: Credit Rating Restrictions of the 10 Largest U.S. Pension Funds

Pension Fund Credit Rating Restriction
California Public Employees’ At least one rating must

Retirement System (CalPERS) be investment grade.
California State Teachers’ At lease two ratings*

Retirement System (CalSTRS) must be investment grade.
New York State Common At lease two ratings*

Retirement Fund (NYSCRF) must be investment grade.
New York City At lease two ratings*

Retirement System (NYCRS) must be investment grade.
State Board of Administration At least one rating must

of Florida (Florida SBA) be investment grade.
Teacher Retirement System No specific restriction;

of Texas (TRST) mostly externally managed.
New York State Teachers’ At lease two ratings*

Retirement System (NYSTRS) must be investment grade.
State of Wisconsin All ratings must be

Investment Board (SWIB) investment grade.
North Carolina At least one rating must

Retirement System (NCRS) be investment grade.
Washington State At lease two ratings*

Investment Board (WSIB) must be investment grade.
*If only one rating exists, it must be investment grade.

This table reports the credit rating restrictions for U.S. Corporate Bonds held by the ten

largest U.S. public pension funds, as measured by total assets. Of the ten pension funds,

only one fund (SWIB) requires that all ratings must be investment grade. Five of the ten

funds require that at least two ratings are investment grade (unless the bond is only rated

by one NRSRO, in which case it must be investment grade). Three of the ten funds only

require that at least one rating is investment grade. One of the ten pension funds (TRST),

has no explicit restrictions on credit ratings.
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Table 15: Summary Statistics of Rating Changes Included in Sample

# Included in Time Period
Type of 1/1/2010 7/21/2012 1/14/2014 Total

Rating Change to to to Included
7/20/2012 1/13/2014 3/31/2016

All Changes 2398 3699 7291 13388
All Upgrades 126 167 150 443

All Downgrades 41 167 423 631
Fitch Changes 287 574 1045 1906
Fitch Upgrades 25 11 38 74

Fitch Downgrades 16 48 88 152
Moody’s Changes 1692 1666 3039 6397
Moody’s Upgrades 84 35 48 167

Moody’s Downgrades 11 74 192 277
S&P Changes 419 1459 3207 5085
S&P Upgrades 17 121 64 202

S&P Downgrades 14 45 143 202
Surprise Upgrades 67 68 65 200

Surprise Downgrades 30 101 226 357
Definitive Upgrades 76 139 88 303

Definitive Downgrades 13 72 207 292
Near Upgrades 113 273 507 893

Near Downgrades 107 186 697 990
Large Upgrades 2 20 15 37

Large Downgrades 23 61 90 174

This table describes the distribution of rating changes that are included in the sample.

The period from 1/1/2010 to 7/20/2012 includes changes that occurred before the Volcker

rules were announced, the period from 7/21/2012 to 1/13/2014 includes changes that oc-

curred after the new regulations were announced but before they went into effect, and the

period from 1/14/2014 to 5/31/2016 includes changes that occurred after the Volcker rule

regulations were enforced. Here, a “surprise” upgrade or downgrade refers to the first rating

upgrade or downgrade that occurred among the three credit rating agencies. A “definitive”

upgrade or downgrade refers to the second or third rating upgrade or downgrade that oc-

curred among the rating agencies. “Near” upgrades and downgrades take ratings across

the threshold between BBB and BBB-, whereas “large” upgrades or downgrades represent

upgrades or downgrades that neither end nor begin at a BBB- rating.

109



Table 16: Price Impact of Credit Rating Downgrades

Factor Time Window
Two Months One Month Two Weeks One Week

∆R (β0) 0.2975*** 0.2999*** 0.2718*** 0.2801***
Up (β1) 0.5843*** 0.5191*** 0.5423*** 0.5787***

Down (β2) -0.7043*** -0.7253*** -0.7400*** -0.6983***
N 13388 12282 10943 9556

Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

Table 17: Effects of Volcker Rule on Price Impact of Credit Rating Downgrades

Factor Time Window
Two Months One Month Two Weeks One Week

∆R (β0) 0.2981*** 0.3091*** 0.2774*** 0.2831***
Up (β1) 1.2638*** 0.9392*** 1.0833*** 1.1088***

Up×During (β3) -0.9122* -0.6185 -0.7728** -0.7044**
Up×After (β5) -0.9922* -0.5682 -0.7351* -0.7679**

Down (β2) -0.9635 -0.0241 -0.3487 -0.5817
Down×During (β4) 0.4836 -0.8377 -0.4187 0.0436
Down×After (β6) 0.1971 -0.6949 -0.4042 -0.1824

N 13388 12282 10943 9556
Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

These tables report the results of regressions (R1) and (R2), regressing the change in

volume-weighted average price surrounding credit rating changes on the size and direction

of the rating changes, as well as flags for upgrades from junk to investment grade and flags

for downgrades from investment grade to junk status. Table 17 further applies a Diff-in-

Diff framework to study the effects of the announcement and enforcement of the Volcker

rule. Regressions are performed on volume-weighted average prices calculated over the time

windows of two months, one month, two weeks, and one week. Here, ∆R represents the

size and direction of a credit rating change, Up represents a rating upgrade from junk to

investment grade, Down represents a rating downgrade from investment grade to junk,

During represents the period after the Volcker rule was announced but before it was enforced,

and After represents the period after the Volcker rule was enforced.
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Table 18: Test of Relative Impact of Upgrades and Downgrades

Factor Time Window
Two Months One Month Two Weeks One Week

|β1| 0.5843 0.5191 0.5423 0.5787
(SE) (0.2157) (0.1742) (0.1538) (0.1393)

n 443 406 371 325
|β2| 0.7043 0.7253 0.7400 0.6983
(SE) (0.1966) (0.1543) (0.1319) (0.1139)

n 631 612 597 566
t 4.2486 7.9019 7.8419 4.7632

d.f. 923 830 739 621
P(H0) 1.1848 · 10-5 4.3299 · 10-15 7.7716 · 10-15 1.1869 · 10-6

This table reports the results of performing Welch’s unequal variances t-test on the

following hypotheses regarding the relative size of the coefficients regression (R1) reported

in Table 16:

H0 : |β2| ≤ |β1|, Ha : |β2| > |β1|.

t reports the t-statistic from performing the above-described test. d.f. reports the pooled

degrees of freedom for the test, as found by rounding the result of the Welch-Satterwaite

equation down to the nearest integer.

111



Table 19: Price Impact of Surprise Credit Rating Downgrades

Factor Time Window
Two Months One Month Two Weeks One Week

∆Rs (β0) 0.3419*** 0.3239*** 0.2807*** 0.2237***
Ups (β1) 0.5975* 0.6910*** 0.6904*** 0.7347***

Downs (β2) -0.3488 -0.5690*** -0.8330*** -1.1962***
N 13388 12282 10943 9556

Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

Table 20: Effects of Volcker Rule on Price Impact of Surprise Credit Rating Downgrades

Factor Time Window
Two Months One Month Two Weeks One Week

∆Rs (β0) 0.3439*** 0.3393*** 0.2924*** 0.2326***
Ups (β1) 0.7725 0.9486** 1.2351*** 1.3151***

Ups ×During (β3) -0.1234 -0.1801 -0.6003 -0.6478
Ups ×After (β5) -0.4128 -0.5680 -0.9122 -0.9295*

Downs (β2) -0.0092 0.5960 0.1086 -0.2707
Downs ×During (β4) -0.9872 -2.0419*** -1.3417** -0.8270
Downs ×After (β6) -0.0887 -0.8873 -0.8533 -1.0458*

N 13388 12282 10943 9556
Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

These tables report the results of regressions (R3) and (R4), regressing the change in

volume-weighted average price surrounding credit rating changes on the size and direction of

the rating changes, as compared to the existing credit ratings from other rating agencies, as

well as flags for “surprise” upgrades from junk to investment grade and flags for “surprise”

downgrades from investment grade to junk status. Table 20 further applies a Diff-in-Diff

framework to study the effects of the announcement and enforcement of the Volcker rule.

Regressions are performed on volume-weighted average prices calculated over the time win-

dows of two months, one month, two weeks, and one week. Here, ∆Rs represents the size

and direction of a credit rating change, relative to the most recent credit rating from any

of the NRSROs, Ups represents a “surprise” rating upgrade from junk to investment grade,

Downs represents a “surprise” rating downgrade from investment grade to junk, During

represents the period after the Volcker rule was announced but before it was enforced, and

After represents the period after the Volcker rule was enforced.
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Table 21: Test of Relative Impact of Surprise Upgrades and Downgrades

Factor Time Window
Two Months One Month Two Weeks One Week

|β1| 0.5975 0.6910 0.6904 0.7347
(SE) (0.3197) (0.2658) (0.2417) (0.2226)

n 200 173 149 126
|β2| 0.3488 0.5690 0.8330 1.1962
(SE) (0.2649) (0.2086) (0.1779) (0.1538)

n 357 343 334 315
t -5.1398 -2.6353 3.0718 9.7184

d.f. 380 310 249 197
P(H0) 1 0.9956 0.0012 0

This table reports the results of performing Welch’s unequal variances t-test on the

following hypotheses regarding the relative size of the coefficients of regression (R3) reported

in Table 19:

H0 : |β2| ≤ |β1|, Ha : |β2| > |β1|.

t reports the t-statistic from performing the above-described test. d.f. reports the pooled

degrees of freedom for the test, as found by rounding the result of the Welch-Satterwaite

equation down to the nearest integer.
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Table 22: Price Impact of Definitive Credit Rating Downgrades

Factor Time Window
Two Months One Month Two Weeks One Week

∆R (β0) 0.3392*** 0.3520*** 0.3397*** 0.3647***
Upd (β1) 0.4296* 0.3137 0.3576* 0.3975**

Downd (β2) -1.1371*** -1.0022*** -0.6314*** -0.1756
N 13388 12282 10943 9556

Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

Table 23: Effects of Volcker Rule on Price Impact of Definitive Credit Rating Downgrades

Factor Time Window
Two Months One Month Two Weeks One Week

∆R (β0) 0.3440*** 0.3549*** 0.3419*** 0.3679***
Upd (β1) 1.4828*** 0.8502** 0.8855** 0.8595***

Upd ×During (β3) -1.4361** -0.8109 -0.7833* -0.6426
Upd ×After (β5) -1.3667* -0.6067 -0.6297 -0.6375

Down (β2) -2.1482* -0.6775 -0.6176 -1.7365**
Downd ×During (β4) 2.2564* 0.2761 0.5695 1.9839**
Downd ×After (β6) 0.6494 -0.5433 -0.2019 1.4987*

N 13388 12282 10943 9556
Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

These tables report the results of regressions (R5) and (R6), regressing the change in

volume-weighted average price surrounding credit rating changes on the size and direction

of the rating changes, as well as flags for “definitive” upgrades from junk to investment

grade and flags for “definitive” downgrades from investment grade to junk status. Table

23 further applies a Diff-in-Diff framework to study the effects of the announcement and

enforcement of the Volcker rule. Regressions are performed on volume-weighted average

prices calculated over the time windows of two months, one month, two weeks, and one

week. Here, ∆R represents the size and direction of a credit rating change, Upd represents a

“definitive” rating upgrade from junk to investment grade, Downd represents a “definitive”

rating downgrade from investment grade to junk, During represents the period after the

Volcker rule was announced but before it was enforced, and After represents the period

after the Volcker rule was enforced.
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Table 24: Test of Relative Impact of Definitive Upgrades and Downgrades

Factor Time Window
Two Months One Month Two Weeks One Week

|β1| 0.4296 0.3137 0.3576 0.3975
(SE) (0.2597) (0.2112) (0.1875) (0.1712)

n 303 274 248 214
|β2| 1.1371 1.0022 0.6314 0.1756
(SE) (0.2691) (0.2110) (0.1805) (0.1569)

n 292 283 277 262
t 16.7730 17.6798 7.2961 -5.9318

d.f. 591 554 514 446
P(H0) 0 0 5.6477 · 10-13 1

This table reports the results of performing Welch’s unequal variances t-test on the

following hypotheses regarding the relative size of the coefficients of regression (R5) reported

in Table 22:

H0 : |β2| ≤ |β1|, Ha : |β2| > |β1|.

t reports the t-statistic from performing the above-described test. d.f. reports the pooled

degrees of freedom for the test, as found by rounding the result of the Welch-Satterwaite

equation down to the nearest integer.
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Table 25: Price Impact of Credit Rating Near Downgrades

Factor Time Window
Two Months One Month Two Weeks One Week

∆R (β0) 0.3533*** 0.3664*** 0.3451*** 0.3614***
UpBBB (β1) 0.3157** 0.1875 0.1907* 0.1295

DownBBB- (β2) -0.2573* -0.2239* -0.2035* -0.1371
N 13388 12282 10943 9556

Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

Table 26: Effects of Volcker Rule on Price Impact of Credit Rating Near Downgrades

Factor Time Window
Two Months One Month Two Weeks One Week

∆R (β0) 0.3695*** 0.3780*** 0.3530*** 0.3697***
UpBBB (β1) 0.9744** 0.4121 0.3589 0.3190

UpBBB ×During (β3) -1.0589** -0.4541 -0.3648 -0.3664
UpBBB ×After (β5) -0.6009 -0.1690 -0.1239 -0.1632

DownBBB- (β2) 0.9701** 0.7166** 0.3699 0.2389
DownBBB- ×During (β4) -0.9538* -0.7371* -0.2997 0.0432
DownBBB- ×After (β6) -1.4691*** -1.1425*** -0.7438** -0.5549*

N 13388 12282 10943 9556
Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

These tables report the results of regressions (R7) and (R8), regressing the change in

volume-weighted average price surrounding credit rating changes on the size and direction

of the rating changes, as well as flags for upgrades from ratings of BBB- or worse to ratings

of BBB or better and flags for downgrades from BBB or better to BBB- or worse. Table

26 further applies a Diff-in-Diff framework to study the effects of the announcement and

enforcement of the Volcker rule. Regressions are performed on volume-weighted average

prices calculated over the time windows of two months, one month, two weeks, and one

week. Here, ∆R represents the size and direction of a credit rating change, UpBBB represents

a rating upgrade from BBB- or worse to BBB or better, DownBBB- represents a rating

downgrade from BBB or better to BBB- or worse, During represents the period after the

Volcker rule was announced but before it was enforced, and After represents the period after

the Volcker rule was enforced.
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Table 27: Test of Relative Impact of Near Upgrades and Downgrades

Factor Time Window
Two Months One Month Two Weeks One Week

|β1| 0.3157 0.1875 0.1907 0.1295
(SE) (0.1518) (0.1231) (0.1120) (0.1036)

n 893 812 700 588
|β2| 0.2573 0.2239 0.2035 0.1371
(SE) (0.1492) (0.1210) (0.1073) (0.0944)

n 990 901 818 754
t -3.2599 2.1523 0.7488 0.4365

d.f. 1857 1689 1469 1232
P(H0) 0.9994 0.0158 0.2271 0.3313

This table reports the results of performing Welch’s unequal variances t-test on the

following hypotheses regarding the relative size of the coefficients of regression (R7) reported

in Table 25:

H0 : |β2| ≤ |β1|, Ha : |β2| > |β1|.

t reports the t-statistic from performing the above-described test. d.f. reports the pooled

degrees of freedom for the test, as found by rounding the result of the Welch-Satterwaite

equation down to the nearest integer.
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Table 28: Test of Relative Impact of Near Downgrade Time Spans

Factor Time Window
Two Months One Month Two Weeks One Week

|β6| 1.4691 1.1425 0.7438 0.5549
(SE) (0.4683) (0.3712) (0.3253) (0.2919)

n 697 617 556 514

Factor Ha

|β2M
6 | > |β1M

6 | |β1M
6 | > |β2W

6 | |β2W
6 | > |β1W

6 |
t 9.1509 11.5756 5.5625

d.f. 1311 1169 1067
P(H0) 0 0 1.6801 · 10-8

This table reports the results of performing Welch’s unequal variances t-test on the

following hypotheses regarding the relative size of the coefficients reported in Table 26:

H0 : |β2M
6 | ≤ |β1M

6 |, Ha : |β2M
6 | > |β1M

6 |
H0 : |β1M

6 | ≤ |β2W
6 |, Ha : |β1M

6 | > |β2W
6 |

H0 : |β2W
6 | ≤ |β1W

6 |, Ha : |β2W
6 | > |β1W

6 |,

where β2M
6 is the impact of the Volcker rule on the price impact of “near downgrades” over

a two month window, β1M
6 is the impact of the Volcker rule over a one month window, β2W

6

is the impact over a two week window, and β1W
6 is the impact over a one week window.

t reports the t-statistic from performing the above-described test. d.f. reports the pooled

degrees of freedom for the test, as found by rounding the result of the Welch-Satterwaite

equation down to the nearest integer.
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Table 29: Effects of Volcker Rule on Price Impact of Large Credit Rating Downgrades

Factor Time Window
Two Months One Month Two Weeks One Week

∆R (β0) 0.1292 0.3157** 0.3468** 0.4192***
Downx (β1) -6.3711*** -7.2874*** 0.6569 0.1956

Downx ×After (β2) 4.2652 7.0650*** -0.6314*** -0.4576
N 1456 1158 847 616

Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively.

This table reports the results of regression (R9), regressing the change in volume-weighted

average price surrounding credit rating changes on the size and direction of the rating

changes, as well as flags for “large” downgrades from a rating of BBB or better to junk

status, as well as a Diff-in-Diff flag to study the effects of the enforcement of the Volcker

rule. Regressions are performed on volume-weighted average prices calculated over the time

windows of two months, one month, two weeks, and one week. Here, ∆R represents the size

and direction of a credit rating change, Downx represents a “large” rating downgrade, and

After represents the period after the Volcker rule was enforced.

To allow for the greatest probability that rating downgrades sparked a fire sale, the sample

is restricted to bonds that are rated by only one NRSRO. Over the sample period, there are

no large upgrades for bonds covered by only one rating agency, and there are only nine large

downgrades for bonds covered by one agency. Moreover, only three such downgrades occur

after the enforcement of the Volcker rule. It should be noted that the limited number of

observations for which the “large downgrade” flag applies may lead to unreliable regression

results.
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Table 30: Response of Yield Curve to Volcker Rule Taking Effect

Factor Regression
(1) (2) (3) (4) (5) (6)

AAA Yield 1.7852*** 1.9609*** 1.8172*** 1.9966*** 1.1380*** 1.2817***
Rating Yield Slope 0.8357*** 0.8769*** 0.7867*** 0.8276*** 0.3165*** 0.3722***

Junk Rated 1.4290*** 1.4725*** 1.1922*** 1.1953*** 2.0284*** 2.0616***
Junk Rated×Slope – – 0.4809*** 0.5069*** 1.1715*** 1.1630***

BBB Premium 0.4764*** 0.3665*** 0.5925*** 0.4814*** 0.7318*** 0.6390***
BBB- Premium 0.6467*** 0.5092*** 0.7774*** 0.6386*** 1.2009*** 1.0744***

Term – – – – 0.1512*** 0.1450***
% Time Through Sample -1.6513*** -2.2408*** -1.6554*** -2.2494*** -1.5994*** -2.0310***

AAA×Volcker 0.5613*** -2.2781*** 0.5599*** -2.3050*** 0.6930*** -1.3690***
Rating×Volcker – -0.1395*** – -0.1212*** – -0.1656***

Junk Rated×Volcker – -0.2464* – -0.0506 – -0.1325
Junk×Slope×Volcker – – – -0.2520*** – -0.1891***

BBB×Volcker -0.1576 -0.0293 -0.1541 -0.0665 -0.0890 0.0164
BBB-×Volcker 0.6084*** 0.8915*** 0.6119*** 0.8490*** 0.1716* 0.3814***
Term×Volcker – – – – – 0.0193***

% Time×Volcker – 4.0472*** – 4.0573*** – 2.8821***
Adjusted R2 0.665 0.669 0.657 0.670 0.838 0.848

Note: *,**, and *** indicate significance at 0.10, 0.05, and 0.01, respectively. N = 26570

This table reports the results of regressing the yield at time of issuance on bond ratings.

“AAA Yield” gives the average yield of AAA rated bonds. “Rating Yield Slope” gives the

additional yield for each full step in credit rating (for example, from AAA to AA, or from A

to BBB). “Junk Rated” represents the average additional yield for bonds with a junk rating.

“Junk Rated×Slope” gives the change in the yield slope for bonds with junk ratings. “BBB”

and “BBB-” give the additional yields for the respective ratings above that which is given by

the slope of the yield curve. “Term” gives the additional yield attributable to an additional

year of the bond’s term to maturity. “% Time Through Sample” reports the change in yield

attributable to the time at which the bond was issued, in order to account for the drift in

overall yields throughout the period. Finally, the “Volcker” coefficients report the changes

to the first five coefficients which are observed after the Volcker rule went into effect.

The “BBB-×Volcker” coefficient shows a sharp rise in the yield at origination of bonds

with BBB- ratings following the enforcement of the Volcker rule.
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Table 31: Yield Curve as Volcker Rule was Implemented

Factor

Regression Dates
1/1/2010 7/21/2012

to to
3/31/2016 3/31/2016

BBB- Yield 4.5538*** 3.0295***
Junk Premium 1.2072*** 1.1451***

Term 0.0791*** 0.0778***
BBB Premium -0.4687*** -0.2872***

BB Premium 0.3704*** 0.3401**
% of Time -2.6713*** –Through Sample

BBB-×Volcker 1.3331*** 0.6723***
Junk×Volcker -0.8071*** -0.7397***
Term×Volcker 0.0168*** 0.0170**
BBB×Volcker -0.4587*** -0.7183***

BB×Volcker -0.1327 -0.0747
N 2128 992

Adjusted R2 0.516 0.536
Note: *,**, and *** indicate significance
at 0.10, 0.05, and 0.01, respectively.

This table reports the results of regressing the yield at time of issuance on bond ratings

ranging from BBB to BB. “BBB- Yield” gives the yield of BBB- rated debt. “Junk Premium”

gives the additional yield for a bond with either BB+ or BB ratings. “Term” represents the

additional yield for a bond added by each additional year to maturity. “BBB Premium”

gives the additional yield of BBB rated debt (a negative premium represents a discount).

“BB Premium” represents the additional yield of BB rated debt. In this way, the average

yield of a BB bond with a 7 year maturity is given by “BBB- Yield” + “Junk Premium”

+ “BB Premium” + 7×“Term.” For the sample which spans January 1, 2010 to March

31, 2016, “% Time Through Sample” reports the change in yield attributable to the time

at which the bond was issued in order to account for the drift in overall yields throughout

the period. Finally, the “Volcker” coefficients report the changes to the first five coefficients

which are observed after the Volcker rule went into effect.

The “BBB-×Volcker” coefficient shows a sharp rise in the yield at origination of bonds

with BBB- ratings following the enforcement of the Volcker rule.
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C Figures

Figure 1: Distribution of Market Order Sizes
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The figure above shows a histogram of the size of market orders for the ten stocks in

the sample placed on NASDAQ between January 2, 2015 and January 23, 2015 (in-sample),

as well as a histogram of the size of market orders for the ten stocks in the sample placed

on NASDAQ between January 26, 2015 and January 30, 2015 (out-of-sample). Over half

of the observed orders were of sizes greater than or equal to 100 shares. Of these, a large

majority are orders of 100 shares, and the rest stylistically follow a geometric distribution

with mass points at multiples of 100 shares. Among orders of sizes less than 100 shares,

there are spikes at multiples of 50 shares, but the majority of the mass tends towards very

small orders. When aggregated over the ten stocks in the sample, market orders are biased

toward the buy side, but this is largely due to AAPL; at the individual security level, eight

of the ten stocks are biased toward the sell side. The distribution of market orders placed

in the out-of-sample period closely resembles that of orders placed in the in-sample period.

The mass of small orders may be a result of Reg NMS and the protected quotes established

by the regulation. Rule 611 requires that exchanges covered by the rule route part (or all)

of an incoming market order to another covered exchange if the best quote on the other

exchange is better than the best quote on the original exchange’s platform. Therefore,

the small orders observed on NASDAQ could possibly be a partial order being routed to

NASDAQ from another exchange, the remainder of an order which was placed on NASDAQ

but partially routed to other exchanges, or even simply an intentionally small order.

Reg NMS only protects the best quotes on protected markets when the order is placed.

For example, suppose that the best quote on exchange A is beaten by the best two quotes

on exchange B. If exchange A receives a market order, it is only obligated to re-route the

portion of the order which will be filled by the best quote on exchange B; it is not required

to give the order the best execution possible. For this reason, it is conceivable that some

traders are taking advantage of Reg NMS by placing several small orders back-to-back rather

than placing one full order. In this way, the trader would effectively be guaranteed to receive

the best execution possible among all protected exchanges.
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Figure 2: Distribution of Limit Order Sizes
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The figure above shows a histogram of the size of limit orders for the ten stocks in the

sample placed near the bid-ask spread on NASDAQ between January 2, 2015 and January

23, 2015 (in-sample), as well as a histogram of the size of limit orders for the ten stocks in

the sample placed on NASDAQ between January 26, 2015 and January 30, 2015 (out-of-

sample). Similar to market orders, the vast majority of limit orders are orders of 100 shares,

with the rest stylistically following a geometric distribution with mass points at multiples

of 100 shares. Again, the out-of-sample distribution closely resembles that of the in-sample

period.
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Figure 3: Distribution of Limit Order Placements/Revisions across Prices
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The figure above is a histogram showing the distribution of locations in the limit order

book at which limit orders are placed/revised, both for the in-sample period from January

2, 2015 through January 23, 2015, as well as the out-of-sample period from January 26,

2015 through January 30, 2015. The in-sample and out-of-sample distributions of limit

order placements/revisions are very similar to one another. The overwhelming majority of

limit orders on either side of the limit order book are placed within five ticks of the bid-ask

spread. Limit order activity remained elevated between six and ten ticks away from the

spread. Beyond ten ticks from the spread, the velocity of limit order activity rapidly decays

as the distance from the bid-ask spread increases.

The limit order Figure 15: ROC Curves for HMM and Alternative Modelsactivity between

six and ten ticks away from the spread is consistent with these orders being placed to serve

as liquidity back-stops. It is beneficial to a market maker to supply liquidity some distance

away from the bid-ask spread in order to both capture additional profit from (infrequent)

block orders and reduce the likelihood that a price just will occur due to a sudden influx

of market order flow. In this way, these orders placed at prices farther away from the bid-

ask spread act as a liquidity back-stop, and are placed with strategies that differ from the

ordinary provision of liquidity.
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Figure 4: Distribution of Limit Order Cancellations across Prices
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The figure above is a histogram showing how far away from the bid-ask spread those

limit orders that are canceled are at the time of cancellation, both for the in-sample period

from January 2, 2015 through January 23, 2015, as well as the out-of-sample period from

January 26, 2015 through January 30, 2015. The in-sample and out-of-sample distributions

of limit order cancellations are very similar to one another.

The majority of all limit orders were canceled before being filled. Since order cancellations

are commonplace, their distribution across locations in the limit order book closely follows

that of limit orders (Figure 3).

This behavior is consistent with the anecdotal trend of “flickering orders,” in which

liquidity providers try to learn about other market participants’ strategies by placing a limit

order only to cancel it immediately afterward. Limit orders placed and canceled in such a

way do not provide any meaningful liquidity to the market. Moreover, such orders are placed

and canceled following a completely different strategy than that which governs the behavior

of ordinary liquidity provisioning. The placement and cancellation of limit orders that are

identified as flickering orders are therefore removed from the sample.

The limit order activity between six and ten ticks away from the spread is consistent

with these orders being placed to serve as liquidity back-stops. These orders, which were

never intended to provide liquidity close to the bid-ask spread, are placed with strategies

that differ from the ordinary provision of liquidity, and are therefore canceled for different

reasons than those that govern the cancellation of ordinary limit orders. For this reason, I

restrict my sample to limit order activity that takes place within five ticks of the spread.

After excluding flickering orders from the sample, and restricting the sample to limit order

activity within five ticks of the spread, the majority of the remaining limit orders are canceled

before being filled. The prevalence of cancellations in the restricted sample is consistent with

the possibility that market makers are responding to changing market conditions, canceling

those orders which are either too far away from the spread to be useful or too aggressive

to be profitable in expectation. In this way, the remaining limit order cancellations provide

insight into the strategy governing market makers’ provision of liquidity.
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Figure 5: Distribution of Divergent Limit Orders
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Figure 5 displays, for the ten stocks in both the in-sample period and the out-of-sample

period, the relative frequency of limit orders which provide less liquidity than that which

would be optimal on average, those which provide more liquidity, and those orders which

are precisely the same size as the (static) model’s prediction. The frequency of optimal limit

orders, relatively large (thick) limit orders, and relatively small (thin) limit orders in the

out-of-sample period are very similar to the frequencies in the in-sample period. Over the

in-sample period, 38% of the orders are the same size of my model’s estimated optimal size,

39% of orders provide less liquidity than my model predicts as optimal, and 23% of orders

provide more liquidity. Over the out-of-sample period, 37% of orders are the same size as

predicted, 40% provide less liquidity than predicted, and 24% provide more than predicted.
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Figure 6: Distribution of Limit Orders by Optimal Price
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Figure 6 displays, for the ten stocks in both the in-sample period and the out-of-sample

period, the relative frequency of limit orders which (according to the model) are placed at

a price level that is too close to the bid-ask spread, at the most profitable price level, and

a price level that is too near the spread. Over the in-sample period, 81% of the orders are

placed at a price level too near the spread, 10% of the orders are placed at a price level

too far away from the spread, and only 8% of the orders are placed at the model-projected

optimal price level. The distribution of orders in the out-of sample period is very similar to

the distribution of the in-sample period, with 8% of the orders being placed at the model-

projected optimal price level, 83% of the orders placed too near the bid-ask spread, and 9%

of the orders place too far away from the spread.
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Figure 7: RLPD Throughout Day - AAL - 1/30/15
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This figure shows the time series progression of the directional (RLPD) estimator of

relative liquidity provisioning throughout January 30, 2015 for American Airlines (AAL).

This day and stock are representative of the patterns seen in the evolution of the directional

estimator’s value. The estimator is characterized by a process centered around zero that is

punctuated by several short lived spikes in either direction and occasional prolonged periods

of large values in either direction.
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Figure 8: RLPS Throughout Day - AAL - 1/30/15
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This figure shows the time series progression of the symmetric (RLPS) estimator of rel-

ative liquidity provisioning throughout January 30, 2015 for American Airlines (AAL). This

day and stock are representative of the patterns observed in the evolution of the symmetric

estimator’s value. The estimator appears to be centered above zero, with certain prolonged

periods of large negative values.
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Figure 9: Distribution of Trading Frequency Across Bonds
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The above figure is a histogram depicting the distribution of trading frequency across

bonds in my sample between January 1, 2006 and March 31, 2018. The distribution is heavily

skewed downward; over half of the bonds in the sample have trades observed on fewer than

5% of the days during which they remain outstanding, with the number of bonds decreasing

as the frequency of trading days increases. The distribution is also weakly bimodal, with a

slight increase in the number of bonds observed as the frequency of trading days increases

above 60%.

136



Figure 10: Distribution of Daily Trading Volume

(When Trades Are Observed)
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The above figure is a histogram depicting the distribution of daily trading volumes (for

days when trades are observed) across all dates and bonds in my sample between January

1, 2006 and March 31, 2018. The daily trade volumes follow an approximately log-normal

distribution.
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Figure 11: Distribution of Ex-Ante Trade Probabilities
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The above figure is a histogram displaying the distribution of the ex-ante probabilities

that a bond will trade generated by the hidden Markov model for bonds in my sample between

January 1, 2006 and March 31, 2018. This distribution closely resembles the distribution of

trading frequency shown in Figure 9.
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Figure 12: Distribution of Ex-Ante Trade Probabilities

(Observations for which Trades are Observed)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

1.4
·107

Ex-Ante Probability of Trading

#
of

Bo
nd

s

The above figure is a histogram displaying the distribution of the ex-ante probabilities

that a bond will trade for those observations for which a trade is observed. This decom-

position of the distribution of trading probabilities shown in Figure 11 into the portion of

the distribution corresponding to observed trades demonstrates the accuracy with which the

hidden Markov model predicts trades.
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Figure 13: Distribution of Ex-Ante Trade Probabilities

(Observations for which No Trades are Observed)
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The above figure is a histogram displaying the distribution of the ex-ante probabilities

that a bond will trade for those observations for which no trades are observed. This de-

composition of the distribution of trading probabilities shown in Figure 11 into the portion

of the distribution corresponding to the absence of trades demonstrates the accuracy with

which the hidden Markov model predicts that no trade will occur.
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Figure 14: In-Sample ROC Curves for HMM and Alternative Models
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This figure shows the receiver operator characteristic (ROC) curves over the training

sample for the hidden Markov model and the alternative trade probability models. The

closer a model’s ROC curve approaches the upper left corner of the graph, the greater its

ability to distinguish between the two classes. A random classifier model with no ability to

distinguish the two classes from one another possesses a ROC curve that bifurcates the ROC

space with a diagonal line from the bottom left to the top right of the graph.
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Figure 15: Out-of-Sample ROC Curves for HMM and Alternative Models
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This figure shows the receiver operator characteristic (ROC) curves over the test sample

for the hidden Markov model and the alternative trade probability models. The closer a

model’s ROC curve approaches the upper left corner of the graph, the greater its ability to

distinguish between the two classes. A random classifier model with no ability to distinguish

the two classes from one another possesses a ROC curve that bifurcates the ROC space with

a diagonal line from the bottom left to the top right of the graph.
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Figure 16: Aggregate U.S. Corporate Bond Market Illiquidity
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This figure shows the evolution of my measure of aggregate bond market illiquidity be-

tween January 5, 2008 and March 31 2018. There is a clear downward trend in the illiquidity

of the overall bond market, indicating that the liquidity available to investors has been in-

creasing steadily through the sample period.
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Figure 17: Average Yield for Credit Rating at Time of Offer
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This figure shows the average yield at the time of origination for each credit rating of U.S.

corporate bonds issued between January 1, 2010 and March 31, 2016. Bonds issued between

January 1, 2010 and July 20, 2012 were issued before the final Volcker rule regulations were

announced. The bonds issued between July 21, 2012 and January 13, 2014 were issued after

the final regulations were announced but before the Volcker rule was enforced, and bonds

issued after January 14, 2014 were issued after the regulations began being enforced. The

black vertical line indicates the threshold between investment grade credit ratings and junk

ratings.
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