

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

ALGORITHMS, COMBINATORICS, AND OPTIMIZATION

Titled

“Theoretical and Computational Methods for Network

Design and Routing”

Presented by

Ziye Tang

Accepted by

Willem-Jan van Hoeve 4/23/2021
___ _________________
Chair: Prof. Willem-Jan van Hoeve Date

Approved by the Dean

Isabelle Bajeux 5/12/2021
___ _________________
Dean Isabelle Bajeux Date

Theoretical and Computational Methods for
Network Design and Routing

Ziye Tang

April 2021

Tepper School of Business,

Carnegie Mellon University

Submitted to the Tepper School of Business in Partial

Fulfillment of the Requirements for the Degree

of Doctor in Algorithms, Combinatorics and Optimization

Dissertation Committee:
Willem-Jan van Hoeve (Chair)

Chrysanthos Gounaris

John Hooker

Ben Moseley

R. Ravi

ii

Abstract

Complex decision-making is ubiquitous in contemporary supply chain management. Over the years, re-

searchers from related fields have developed a variety of techniques to facilitate the modeling and opti-

mization arising in supply chain areas such as network design, inventory management and vehicle routing.

Traditionally, however, techniques from these fields are developed separately with their own strengths and

weaknesses. For instance, approximation algorithms, developed by theoretical computer scientists, are able

to produce solutions with a provable worst-case guarantee but can be too pessimistic for practical applica-

tions. On the other hand, heuristics typically focus on the improvement of feasible solutions and neglect the

rigorous analysis of the gap with respect to the optimal value.

This dissertation aims to explore connections between neighboring fields such as computer science and

operations research by bringing together ideas and techniques from approximation algorithms, complexity

theory, constraint programming, decision diagrams and mixed-integer programming. In particular, we study

the following three problems in supply chain optimization.

In Chapter 2, we study a two-level network design problem to route demand between source-sink pairs. The

demand is routed in a combination of lower level routes that aggregate and disseminate demand to and from

local hubs, and upper level routes that transport aggregated demands between hubs. Due to economies of

scale, the unit cost of upper level arcs is significantly lower than the lower level counterpart. The objective is

to cluster demand at hubs so as to optimally trade off the cost of opening and operating hubs against the dis-

counted costs of cheaper upper level routes. We construct a mathematical model for this problem and term

it the hub network design (HND) problem. We study the computational complexity and develop approxima-

tion algorithms for the HND and its variants. Inspired by our theoretical analysis, we develop matheuristics

that combine evolutionary algorithms, very large neighborhood search and mixed integer programming. Us-

ing realistic data, we demonstrate that our approximation techniques provide very good starting solutions

for further heuristic search. Our methods produce solutions with an optimality gap of less than 3% in a

reasonable amount of time on instances of up to 100 nodes.

In Chapter 3, we consider the deterministic inventory routing problem over a discrete finite time horizon.

Given clients on a metric, each with daily demands that must be delivered from a depot and holding costs

iii

over the planning horizon, an optimal solution selects a set of daily tours through a subset of clients to

deliver all demands before they are due, with the goal of minimizing total holding and tour routing costs

over the horizon. For the capacitated case, a limited number of vehicles are available, where each vehicle

makes at most one trip per day. Each trip from the depot is allowed to carry a limited amount of supply.

Motivated by an approximation algorithm proposed in the literature that relies on a reduction to a related

problem called the prize-collecting Steiner tree (PCST) problem, we develop fast heuristics for both cases by

solving a family of PCST instances. Computational experiments show that proposed methods can find near

optimal solutions for both cases and substantially reduce the computation time compared to a MIP-based

approach.

In Chapter 4, we study a new routing problem called the traveling salesman problem with drone (TSP-

D), which is a promising new model for future logistics networks that involves the collaboration between

traditional trucks and modern drones. The drone can pick up packages from the truck and deliver them by air

while the truck is serving other customers. The operational challenge combines the allocation of customers

to either the truck or the drone, and the coordinated routing of the truck and the drone. In this work,

we consider the scenario of a single truck with one drone, with the objective to minimize the completion

time (or makespan). As a partial explanation for the computational challenge of the TSP-D, we show it is

strongly NP-hard to solve a restricted version where drone deliveries need to be optimally integrated in a

given truck route. Then we present a compact scheduling-based constraint programming (CP) formulation.

Our computational experiments show that solving the CP model to optimality is significantly faster than

the state-of-the-art exact algorithm at the time of publication. For larger instances up to 60 customers, our

CP-based heuristic algorithm is competitive with a state-of-the-art heuristic method in terms of the solution

quality.

The increasing popularity of drone-assisted routing has met with the difficulty of solving those problems

to optimality, which has inspired a surge of research efforts in developing fast heuristics. To help develop

scalable exact algorithm, as well as to evaluate the performance of heuristics, strong lower bounds on the

optimal value are needed. In Chapter 5, we propose several iterative algorithms to compute lower bounds

motivated by connections between decision diagrams (DDs) and dynamic programming (DP) models used

for pricing in a branch-and-cut-and-price algorithm. Our approaches are general and can be applied to var-

ious vehicle routing problems where corresponding DP models are available. By adapting techniques from

the DD literature, we are able to generate and strengthen novel route relaxations. We also propose alternative

approaches to derive lower bounds from DD-based route relaxations that do not use column generation. All

the techniques are then integrated into iterative frameworks to obtain improved lower bounds. When applied

to the TSP-D, our algorithms are able to produce lower bounds whose values are competitive to those from

the state-of-the-art approach. Applied to larger problem instances where the state-of-the-art approach does

not scale, our methods are shown to outperform all other existing lower bounding techniques.

iv

Acknowledgments

First and foremost, I would like to thank my advisor Willem-Jan van Hoeve. Under your continuous guid-

ance, with your unwavering encouragement and support, I improved my technical skills. More importantly,

I learned how to get unstuck by approaching things from different angles and seeing opportunities through

difficulties, which applies not only to research, but also to life. As I said towards the end of my defense – I

will always cherish our random chats at the end of our research meetings during this eventful year.

My gratitude goes to R. Ravi, who taught me how to write the first research paper and continued to provide

his mentorship throughout my PhD journey. I’d like to thank the remaining members of my dissertation

committee including Chrysanthos Gounaris, John Hooker and Ben Moseley for their helpful comments. I’d

like to thank Gérard Cornuéjols and Fatma Kilinç-Karzan for their advice during my time in Tepper. I’d like

to thank Anupam Gupta for introducing me to beautiful geometric problems. Last but not least, I’d like to

thank Liqiu Meng for offering her invaluable support and advice whenever I needed them.

The work of this dissertation as well as other research output is made possible through the collaboration

with many beautiful minds, including C.J. Argue, Patrick Briest, Fei Fang, Takuro Fukunaga, Oleksandr

Rudenko, Paul Shaw and Ryan Zheyuan Shi. My life outside research is made colorful by the many people I

had fun with, including Alex, Amin, Anthony, Arash, Ashley, Christian, Chenmei, Dabeen, Gerdus, Goran,

Mehmet, Melda, Musa, Nam, Neda, Ozgun, Qiao, Rudy, Sagnik, Thiago, Thomas, Violet, Yuchen, Yuyan

and Zhiqi. I also would like to thank Sadless for making my PhD journey joyful and I wish you all the best

in your future.

My warmest gratitude goes to my family, especially my parents, my grandparents, my great-grandparents

and my aunt’s family. Thank you for showing me how to be kind and strong. Thank you to my mom for

her microscopic care. Thank you to my dad for leading as an example of a hard-working and responsible

person. I dedicate this dissertation to all of you.

v

vi

Table of Contents

1 Introduction 1

2 Hub Network Design 5
2.1 Introduction . 5

2.1.1 Our Contributions . 9

2.1.2 Related Work . 10

2.2 Hub Steiner Tree . 12

2.2.1 Hardness of Hub Spanning Tree Problem . 13

2.2.2 Non-metric Hub Steiner Tree . 15

2.3 Metric Hub Steiner Tree . 17

2.4 Approximation Algorithm for HND . 20

2.5 Heuristic Algorithms for HND . 23

2.5.1 MIP Model for HND . 23

2.5.2 Heuristic Algorithms for Initial Population . 24

2.5.3 Evolutionary Framework . 26

2.6 Numerical Experiments . 27

2.6.1 Data and Parameter Description . 27

2.6.2 Comparison of Heuristic Search . 28

2.6.3 Improvement from Evolutionary Framework . 30

2.7 Conclusion . 31

3 Combinatorial Heuristics for Inventory Routing Problems 33
3.1 Introduction . 33

3.2 Related Work . 37

3.3 Uncapacitated Local Search Heuristics . 38

3.3.1 DELETE . 39

3.3.2 ADD . 40

3.3.3 Prioritized Local Search . 42

vii

3.4 Uncapacitated IRP Results . 42

3.4.1 Experimental Setup . 43

3.4.2 Comparison of Different Heuristics . 43

3.4.3 Comparison between the Prioritized Local Search and the Baseline MIP 44

3.4.4 True Optimality Gap when MIP is solved exactly 47

3.5 Capacitated Local Search . 48

3.5.1 Capacitated ADD . 50

3.5.2 Capacitated DELETE . 51

3.5.3 Prioritized Local Search . 52

3.5.4 From PCST to Feasible Subtours . 52

3.6 Capacitated IRP Results . 52

3.6.1 Experimental Setup . 52

3.6.2 Parameter Settings . 53

3.6.3 Performance Evaluation . 53

3.6.4 True Optimality Gap when MIP is solved exactly 55

3.7 Conclusion . 56

4 A Study on the Traveling Salesman Problem with Drone 57
4.1 Introduction . 57

4.2 Related Work . 58

4.3 Problem Definition . 59

4.4 Theoretical Analysis . 60

4.4.1 Computational Complexity . 60

4.4.2 Approximation Algorithm for a Special Case . 62

4.5 Constraint Programming Formulation . 64

4.6 Logic-based Benders Decomposition . 67

4.6.1 The Partition Master Problem . 68

4.6.2 The Truck-Drone Scheduling Subproblem . 70

4.6.3 Benders Cuts . 70

4.6.4 Preliminary Results and Limitations . 70

4.7 Conclusion . 71

5 Truck-Drone Routing with Decision Diagrams 73
5.1 Introduction . 73

5.2 Related Work . 74

5.3 Problem Definition . 76

5.4 Preliminaries . 79

5.4.1 Dynamic Programming Model . 79

viii

5.4.2 Basic Definitions of Decision Diagrams . 81

5.4.3 DD Compilation based on DP . 82

5.4.4 Lower Bound from Set Partitioning . 83

5.5 Route Relaxation . 84

5.5.1 ng-Route Relaxation . 84

5.5.2 DD-based Route Relaxation . 85

5.5.3 Conflict Refinement . 87

5.6 Lower Bound Computation . 90

5.7 Iterative Framework . 93

5.8 Implementation Details . 95

5.8.1 Conflict Refinement . 96

5.8.2 Path Decomposition . 97

5.8.3 Step Size for the Subgradient Method . 97

5.8.4 Improvement Criterion for Function lagAdapt . 98

5.8.5 Sensitivity of Bucket and Buffer Size . 98

5.9 Computational Experiments . 98

5.9.1 Size and Lower Bound from Initial Route Relaxation 99

5.9.2 Lower Bound Improvement . 100

5.9.3 Scalability of Iterative Refinement Algorithms . 102

5.9.4 Effect of Drone-Truck Speed Ratio . 104

5.10 Conclusion . 106

6 Conclusions 109

Appendices 123

A Appendix for Chapter 3 125
A.1 Greedy Heuristic . 126

A.1.1 Greedy Framework . 126

A.1.2 Approximate Minimum Density Set . 127

A.1.3 Implementation Detail . 129

A.2 Primal Dual Heuristic . 130

A.2.1 LP Formulation . 131

A.2.2 A Primal-dual Approach . 132

A.2.3 Defining a Feasible Dual . 133

A.2.4 Implementation . 135

A.3 Uncapacitated IRP Results . 137

A.3.1 MIP Formulation for Uncapacitated IRP . 137

A.3.2 Additional Experimental Results on Uncapacitated IRP 139

ix

A.4 MIP Formulation for Capacitated IRP . 141

B Appendix for Chapter 5 147

x

Chapter 1

Introduction

The supply chains of large corporations consist of various components such as retailers, distributors, plants

and suppliers (Mentzer et al., 2001; Min et al., 2019). The goals of corporate supply chains is to provide

customers with the products they want in a timely way and as efficiently and profitably as possible. Fueled

in part by the rise of e-commerce, the development of models of supply chains and their optimization has

emerged as an important way of coping with this complexity (Min and Zhou, 2002; Mula et al., 2010).

Over the years, researchers from related fields such as computer science and operation research have made

contributions to a wide range of problems arising in supply chain management (SCM), including network

design (Costa, 2005; Gupta and Könemann, 2011), inventory management (Silver, 1981), vehicle rout-

ing (Toth and Vigo, 2014) and their integrations (Andersson et al., 2010; Melo et al., 2009). Although their

works share a common theme to improve upon the current state of supply chain management, each field has

its own focus and many connections between neighboring fields remain unexplored. As a first example, the

field of approximation algorithms (Vazirani, 2013; Williamson and Shmoys, 2011) aims to design efficient

algorithms that output solutions whose quality has a provable guarantee in the worst case. Therefore the

focus is on the theoretical worst-case scenario, rather than the practical performance. On the other hand,

its neighboring community of heuristics (Rothlauf, 2011; Talbi, 2009) relies on designing problem-specific

solution representation, neighborhood structure, search strategy as well as population-based methods, which

typically does not require involved theoretical analysis and proof techniques. As a second example, deci-

sion diagrams are originally designed for switching circuits or more generally, Boolean functions (Akers,

1978; Lee, 1959; Wegener, 2000). Only in recent years were they applied to the area of combinatorial

optimization (Bergman et al., 2016a).

This dissertation aims to further explore connections among related fields. In particular, we leverage theoret-

ical and computational techniques, including complexity theory, approximation algorithms, mixed-integer

programming, constraint programming and decision diagrams, developed from computer science and oper-

1

ations research, to tackle the following three supply chain optimization problems:

• We begin by studying a hierarchical network design problem that trades off the cost of hub installation

and management, against the reduction on the inter-hub routing cost due to the economies of scale.

We prove complexity results and develop tight approximation algorithms. Inspired by the theoretical

analysis, we design fast matheuristics to compute near-optimal solutions.

• We then zoom in on the inventory management and routing component. In particular, we study the de-

terministic inventory routing problem. We design an efficient very large neighborhood search heuristic

based on an approximation algorithm proposed in the literature and Lagrangian relaxation.

• We further zoom in on the routing component. We first study the traveling salesman problem with

drone (TSP-D), which is a truck-drone coordinated routing problem. We prove the computational

complexity of a restricted version of the TSP-D and propose a compact constraint programming

model. We further explore connections between decision diagrams and dynamic programming models

used for pricing in a branch-and-cut-and-price algorithm. This motivates us to develop iterative frame-

works that generate lower bounds for general vehicle routing problems. The proposed algorithms are

applied and tested on TSP-D instances.

Below we give a more detailed description.

In Chapter 2, we study a two-level network design problem to route demand between source-sink pairs. The

demand is routed in a combination of lower level routes that aggregate and disseminate demand to and from

local hubs, and upper level routes that transport aggregated demands between hubs. Due to the economies of

scale, the unit cost of upper level arcs is significantly lower than the lower level counterpart. The objective

is to cluster demand at hubs so as to optimally trade off the cost of opening and operating hubs against the

discounted costs of cheaper upper level routes. We formulate a mathematical model for this problem and

term it the hub network design (HND) problem. In addition, we propose a simplified variant called the hub

Steiner tree (HStT) problem which focuses on the connectivity of a network by abstracting away the routing

component. We start with this simplified variant. We prove that it is NP-hard by reducing it to the set cover

problem. We then develop tight (up to constants) approximation algorithms for the HStT by reducing the

non-metric (metric, resp.) HStT to the node-weighted (edge-weighted, resp.) Steiner tree. Next we consider

solving the HND in practice. In particular, we first develop an approximation algorithm for the HND by

problem reduction and graph spanners. The HND is reduced to the uncapacitated facility location (UFL)

problem, which highlights the importance of hub locations. This inspires us to develop an evolutionary

framework where the initial population consists of approximate solutions to a family of UFL instances or a

mixed-integer program. Using realistic data, we demonstrate that our approximation techniques can provide

very good starting solutions for further heuristic search. Our framework can produce solutions with an

optimality gap of less than 3% in a reasonable amount of time.

In Chapter 3, we consider the deterministic inventory routing problem (IRP) over a discrete finite time

2

horizon. Given clients on a metric, each with daily demands that must be delivered from a depot and

holding costs over the planning horizon, an optimal solution selects a set of daily tours through a subset of

clients to deliver all demands before they are due and minimizes the total holding and tour routing costs over

the horizon. In the capacitated case, a limited number of vehicles are available, where each vehicle makes

at most one trip per day. Each trip from the depot is allowed to carry a limited amount of supply to deliver.

We exploit a conceptual reduction proposed in the literature to a related problem called prize-collecting

Steiner tree (PCST) problem, for which fast exact algorithms exist in the literature. A unifying theme of

our heuristics is to reduce the search space by creating and solving PCST instances as intermediate steps to

determine which clients to visit each day. For the uncapacitated case, we define a very large neighborhood

search step and reduce it to a PCST problem. For the capaciated case, we show a similar approach is

possible with the help of Lagrangian relaxation. Computational experiments show our heuristics can find

near optimal solutions for both cases and substantially reduce the computation time compared to a MIP-

based approach. This work will appear in INFORMS Journal on Computing (Tang et al., to appear).

In Chapter 4, we study a new routing problem called the traveling salesman problem with drone (TSP-

D). TSP-D is a promising new model for future logistics networks that involves the collaboration between

traditional trucks and modern drones. The drone can pick up packages from the truck and deliver them by air

while the truck is serving other customers. The operational challenge combines the allocation of customers

to either the truck or the drone, and the coordinated routing of the truck and the drone. In this work, we

consider the scenario of a single truck and one drone, with the objective to minimize the completion time (or

makespan). Since TSP-D generalizes the well-known traveling salesman problem (TSP), it is theoretically

hard to solve to optimality. However this theoretical result is not sufficient to explain the computational

findings in the literature that TSP-D is significantly harder to solve than TSP. In this chapter, we first shed

light on this question: we prove that this problem is strongly NP-hard, even in the restricted case when drone

deliveries need to be optimally integrated in a given truck route. We then present a constraint programming

formulation that compactly represents the operational constraints between the truck and the drone. Our

computational experiments show that solving the CP model to optimality is significantly faster than the

state-of-the-art exact algorithm at the time of publication. For larger instances up to 60 customers, our

CP-based heuristic algorithm is competitive with a state-of-the-art heuristic method in terms of the solution

quality. This work is published in the conference proceedings of CPAIOR 2019 (Tang et al., 2019).

The increasing popularity of drone-assisted routing has met with the difficulty of solving those problems to

optimality, which has inspired a surge of research efforts in developing fast heuristics. To help develop scal-

able exact algorithm, as well as to evaluate the performance of heuristics, strong lower bounds on the optimal

value are needed. In Chapter 5, we propose several iterative algorithms to compute lower bounds motivated

by connections between decision diagrams (DDs) and dynamic programming (DP) models used for pricing

in a branch-and-cut-and-price algorithm. Our approaches are general and can be applied to various vehi-

cle routing problems where corresponding DP models are available. By adapting merging and refinement

techniques from the DD literature, we are able to generate and strengthen novel route relaxations. We also

3

propose two alternative approaches to derive lower bounds from DD-based route relaxations which use a

flow model with side constraints and Lagrangian relaxation, respectively, in place of column generation. All

the techniques are then integrated into iterative frameworks to obtain improved lower bounds. When applied

to the TSP-D, our algorithms are able to produce lower bounds whose values are competitive to those from

the state-of-the-art approach. Applied to larger problem instances where the state-of-the-art approach does

not scale, our methods are shown to outperform all other existing lower bounding techniques.

4

Chapter 2

Hub Network Design

2.1 Introduction

Designing and operating logistics networks has become increasingly important with the evolution of online

shopping and fulfillment and a variety of delivery services. Logistics service providers typically operate at

minimal margins, so that a high degree of consolidation and the resulting economies of scale are mandatory

to run a profitable business. This leads to a typical layered or hierarchical design of logistics networks, in

which the upper layer handles high volume traffic and achieves lower unit cost by consolidating multiple

flows on longer distance connections, while the lower layer solves the last mile issues using local aggregation

and distribution services.

In this chapter, we study this abstract problem that arises in the design of logistics networks that handle

periodic demands between origin-destination (O-D) pairs (or simply client pairs). The intention is to exploit

the cost differential between full-truck routing (FTL) and less-than-full truck routing (LTL). In FTL, the fleet

is owned by the logistics firm which strives to maximize its amortized utilization. In LTL, typically smaller

volumes than the capacity of the truck are subcontracted to other providers who operate the truck, but since

only a fraction of the capacity is used (both in time and space), the rates per unit distance per unit demand

(weight or volume) are also much higher than FTL. Furthermore, FTL operations require opening hubs

which are locations where the fleet is parked and maintained and serve as potential transshipment points for

material flow. This necessitates that FTL routes are operated only between pairs of hubs. Non-hub demand

locations are served by LTL routes (also called ”milkruns”) that originate and end at a hub. We think of

the short-haul LTL milkruns as pickup and delivery runs, while the FTL runs between facilities form the

mainhaul routes. We refer to the network of LTL milkruns as the lower level network and the network of

FTL runs as the upper level network.

The network is typically designed for periodic multi-commodity demand. Every period, each client pair may

5

be served by a route consisting of the following three segments: a pickup milkrun that collects the demand

from the origin and aggregates it at its hub; a series of mainhaul FTL routes that transport the demand from

the pickup hub to a delivery hub; a final delivery milkrun that deposits the demand from the final hub to the

destination. For operational simplicity, we assume that each client is served by a unique hub which may be

located in the same place. We also assume a direct connection between each client and its assigned hub,

where the cost is linear in the distance and the quantity demanded. Thus, we have a two-level network design

problem: in the lower level we have a partition clustering of the demand locations into hubs that serve them

using LTL pickup-delivery routes – a set of stars under our assumption; In the upper level, we have trucks

that carry all implied demand using inter-hub routes; however we allow aggregated flows between hubs to

be split during the routing process. We call this two-level problem the hub network design (HND) problem,

and describe it more formally next.

Problem Definition: Hub Network Design (HND)

We are given an undirected graph G = (V,E) with non-negative edge cost ce for e ∈ E per unit flow, non-

negative hub opening cost fv for v ∈ V , and an upper level truck capacity M and an economies-of-scale

parameter λ ∈ [0, 1]. Each client pair (i, j) has a nonnegative demand requirement Wij for flow between

them. The HND problem involves three sets of decisions.

1. The choice of a subset of vertices F ⊆ V to install hubs.

2. The assignment of each client to a single hub via an allocation function π : V → F , which we call

the parent hub of the client, and

3. A routing of all origin-destination demands (i, j) in three segments: (i, π(i)) from the origin to its

parent hub in a direct link, a set of paths in the upper level P uij from the origin’s parent hub π(i) to the

destination’s parent hub π(j) via other hubs if necessary, and (π(j), j) from the destination’s parent

hub to the destination. See Figure 2.1 for an illustration of a single path routing such a demand. We

emphasize that the aggregated flow between the hubs can be routed in a splittable fashion using more

than one path from any hub to another hub.

Recall that we refer to the star network which sends flows from clients to hubs as the lower level network

and the network which sends flows between hubs as the upper level network. Each of the decisions above

gives rise to a term in the final cost. We pay the hub opening costs f : V → R+ for vertices in the hubs F .

The demands to and from hubs is paid at the rate of the edge costs c per unit demand in the lower level. The

upper level flows between hubs are supported by copies of bidirected arcs of capacity M each representing

roundtrips of trucks, but the cost of such an arc in an edge e is λMce reflecting the economies of scale. We

detail the assumptions and cost calculations below.

We make the following assumptions in defining HND and its cost function. (a) Each client sends its total

6

j

p1

p2

p3

p4

i j

Figure 2.1: An example of flow routing from origin i to destination j: each point inside a square denotes an
open hub. The flow travels from i to p1 = π(i) using a direct LTL route, from p1 = π(i) to p3 = π(j) using
fractional FTL routes such as the one shown via p4 and finally from p3 = π(j) to j again using a direct
LTL route. Note that the costs of the LTL segments are paid fractionally while the FTL edges in the network
between hubs are installed and paid for integrally.

demand directly to its parent hub, i.e. the lower level network is a collection of star networks (Section 2.6.1

explains how we move from the milkrun problem to this approximation to the star). Note that this implies a

simplification of the costs on these star networks: If i is assigned to parent hub π(i), and the total flow out of

i is Oi =
∑

jWij and the total flow into i is Di =
∑

jWji, the flow cost of the edge from i to its parent hub

is c(i, π(i)) · (Oi + Di). (b) The upper level network consists of 2-cycles (anti-parallel arcs) representing

the movement of the same truck between two hubs (The upper level FTLs are implemented in practice as

round trips between a pair of hub locations). (c) Each commodity (represented by the flow) is assumed to

be divisible, except for the part to and from the hubs. (d) We assume all upper level trucks have the same

capacityM which cannot be exceeded when transporting goods. However, if the total aggregated flow on an

upper level edge exceeds M , we are allowed to buy multiple copies of anti-parallel arcs to support it.

We emphasize that the distinctive feature between the lower and upper level network is that trucks can be

leased fractionally in the lower level whereas only integer copies of trucks can be deployed on the upper

level network. Thus the flow in the upper level network implements the paths between hubs fractionally but

the number of integral FTL links purchased between a pair of hubs g, h is determined by the maximum of

the flow in either direction between the pair (due to the 2-cycle requirement). Let yij(g, h) be the amount of

flow that demand pair (i, j) sends via arc (g, h). Then the number of FTL trucks purchased between g and

h is

tgh = thg =

max

 ∑
(i,j):Pu

ij3(g,h)

yij(g, h)

M
,

∑
(i,j):Pu

ij3(h,g)

yij(h, g)

M
.

 ,
where P uij is the set of upper level arcs in the chosen path sending demand from i to j.

7

However the upper level truck is λ times cheaper per unit distance than the lower level truck for a given fixed

economies-of-scale factor λ ∈ [0, 1]. Recall c(·) is the lower level cost per unit demand. Thus, the total cost

of these FTL routes is
∑

g,h∈F λc(g, h)M · tgh, where F is the set of hubs opened to operate the upper level

edges. To summarize, the total cost to be minimized has three corresponding components.

1. The cost of opening hubs
∑

v∈F f(v),

2. The cost of lower level star networks
∑

i,j(c(i, π(i))+ c(π(j), j) ·Wij =
∑

i∈V c(i, π(i)) · (Oi+Di)

and

3. The cost of upper level truck routes
∑

g,h∈F λc(g, h)M · tgh.

The complexity of the HND problem is driven by the combination of lower and upper level network design.

In order to approach the problem from a theoretical angle, we next define two variations with different

degrees of simplifications on the network architecture – (i) by relaxing the integral requirement in the upper

level and (ii) further relaxing a flow routing network altogether and just building a Steiner tree with two

levels representing economies of scale. Investigations of the approximability of these two variations yields

helpful insights into combinatorial aspects of the problem. The first, the clique hub location problem (CHLP)

defined below provides the basis for our approximation algorithm for the HND. The second, hub Steiner tree

(HStT), provides a simplified model that highlights the difficulty of the non-metric version of the problem

where the cost function c does not obey the triangle inequality. For this problem, we show polynomial-time

reductions to well-known graph problems in both non-metric and metric cases, which yield approximation

algorithms with matching approximation factors (up to constants).

Problem Definition: Clique Hub Location Problem (CHLP)

Definition 2.1.1. The clique hub location problem (CHLP) is a relaxed version of the HND where we allow

trucks to be fractionally leased on the upper level network, and the flows in both directions in the upper level

network need not be equal.

Since we no longer have integrality constraints on the number of trucks deployed on the upper level, each

flow on the upper level will travel directly from an origin hub to a destination hub in an unsplittable fashion

along the shortest path. Moreover, when the cost function obeys the triangle inequality, this path will

be the direct edge from the origin to destination. We use CHLP as an intermediate step in designing an

approximation algorithm for the general HND.

8

Problem Definition: Hub Steiner Tree (HStT)

Definition 2.1.2. Given an undirected graph G = (V,E) with a terminal set R ⊆ V , non-negative edge

cost ce for e ∈ E, non-negative hub opening cost fv for v ∈ V and a constant λ ∈ [0, 1] reflecting the cost

differential between two levels, a hub Steiner tree (HStT) is a tree T spanning the terminal set R along with

a set of hubs H ⊂ V . Let TH denote the set of edges in T induced by H (i.e., with both ends in H). We call

TH the set of upper-level edges and T\TH the set of lower-level edges. We use the shorthand notation to let

c(S) =
∑

e∈S ce for S ⊆ E and f(U) =
∑

v∈U fv for U ⊆ V . The cost of the hub spanning tree (T,H)

is λc(TH) + c(T\TH) + f(H). Note that the cost of upper-level edges is λ times cheaper than the cost of

lower-level edges. The goal of the HStT problem is to find an HStT of minimum cost.

Remark 2.1.1. When G is a complete graph and the edge costs c satisfy the triangle inequality (i.e., cxy +

cyz ≥ cxy for all x, y, z ∈ V), then the instance belongs to the metric case, and the problem consisting of

such instances is called the metric HStT problem.

Remark 2.1.2. It is immediate to extend the HStT to more general network design problems such as the

Steiner forest and the generalized one-connected network design problems using the formalism and tech-

niques in Klein and Ravi (1995a), but we do not elaborate on these extensions here.

2.1.1 Our Contributions

1. One of our key contributions is the theoretical modeling of the two-level logistics network problem as

a hub network design problem, and introducing its simplified variants, the CHLP and the HStT.

2. We consider the HStT in Section 2.2.

(a) In Section 2.2.1, we show NP-hardness and logarithmic approximation hardness for the HStT

from the set cover problem.

(b) For the non-metric HStT in Section 2.2.2, we show a polynomial-time reduction to the node-

weighted Steiner tree problem. This implies an approximation algorithm with matching loga-

rithmic ratio that extends to more general connectivity requirements modeled in Klein and Ravi

(1995a).

(c) For the metric HStT in Section 2.3, we show a polynomial-time reduction to its original version

(with no hub installation or two-level edge cost). This implies a constant-factor approximation

algorithm that also extends to the more general cases modeled in Klein and Ravi (1995a).

3. Next we consider the HND with metric costs in Section 2.4.

(a) We design the first constant approximation algorithm for the CHLP with performance ratio 1 +

2γUFL where γUFL is the best known approximation ratio for the uncapacitated facility location

9

problem with metric costs.

(b) To design an approximation algorithm for the metric HND problem, we reduce it to the CHLP.

By constructing a light graph spanner for the upper level and sending consolidated flows along

the spanner, we obtain an O(log n) approximation algorithm for the HND on an n-node graph.

4. In Section 2.5 we study the HND from a computational lens. We propose an evolutionary framework

motivated by the aforementioned theoretical analysis.

(a) In Section 2.5.1, we propose a mixed-integer programming (MIP) model for the HND, which

will be used for our evolutionary framework.

(b) The initial set of solutions for our framework comes from two heuristic algorithms proposed in

Section 2.5.2 – one based on the MIP model and the other based on solving a family of uncapac-

itated facility location instances, both of which are motivated by the design of our approximation

algorithm for the HND.

(c) Section 2.5.3 describes our evolutionary framework in more detail. In particular, we imple-

ment a MIP-based very large neighborhood search. This search mechanism is used in both the

exploration and exploitation step in our framework.

5. Finally in Section 2.6, we present numerical experiments on both randomly sampled and real-world

datasets. It is shown that our approximation techniques can provide very good starting solutions, and

that our framework can find near-optimal solutions for all test instances. When tested on realistic data,

our methods can provide solutions within 3% of optimal solution in less than an hour.

2.1.2 Related Work

Models. First we review network design models closely related to the HND. A two-level network design that

appears very similar to HND and has been well-studied in telecommunication network design goes by the

name of access network design (Balakrishnan et al., 1994). The key difference is that in access networks, the

inner or upper networks need more resilience and hence are of higher cost per unit volume per unit distance,

while in HND, the costs of the upper level are lower than that of the lower level. Andrews and Zhang (1998)

showed an O(K2) approximation algorithm for a special case of the problem where K is the number of

edge types. We refer the reader to Carpenter and Luss (2006) for a comprehensive review.

Our work is more directly related to the so-called buy-at-bulk network design problem (Salman et al., 2001).

In buy-at-bulk network design, one needs to minimize the cost of sending flow from sources to sinks along

paths where the cost of each edge displays economies of scale, i.e. the more capacity is installed on an

edge, the cheaper it is per unit capacity (per unit distance). For the uniform cost model where each edge

has the same cost function, Awerbuch and Azar (1997) showed an O(log n) approximation algorithm for

10

multicommodity buy-at-bulk problem while O(1) approximations are known for the single-sink case (Guha

et al., 2009; Gupta et al., 2003; Kawahara et al., 2009). For the non-uniform case, Chekuri et al. (2010)

improved upon Charikar and Karagiozova (2005) and showed a poly-logarithmic approximation. A super-

constant hardness of approximation for the multi-commodity case was shown by Andrews (2004). Our

problem differs from buy-at-bulk network design in two ways. First our problem involves more levels of

decisions (hub location, client allocation and flow routing). Second the economies of scale in our problem

relies on the fact that FTL routes have lower cost per unit volume per unit distance than LTL routes but needs

hubs to operate between, while in buy-at-bulk network design these economies are modeled by considering

several types of cables, where cables with larger capacity has lower cost per capacity than ones with smaller

capacity with no hubs to open.

The most closely related problem to HND that has been studied in the literature is the hub location problem

(HLP). HLP involves hub opening and client-hub allocation decisions. The key difference from HND is that

in HLP, the upper level cost is also linear in distance times the quantity demanded, which means the mainhaul

upper level trucks can also be bought fractionally. Further structural assumptions are often made on both

lower and upper level network, the most common ones being that the upper level is fully connected, forms

a star, or a cycle (see e.g. Contreras and Fernández (2012)). The clique hub location problem (CHLP) we

defined is a variant of this general hub location problem. Also, our mixed integer programming (MIP) model

in Section 2.5.1 is a modification of a user-user demand model from Contreras and Fernández (2012) with

additional integrality constraints on the upper level network. For a comprehensive review of general HLP

and its variants, we refer the reader to Alumur and Kara (2008); Farahani et al. (2013) and the references

therein.

Another related problem is location routing problem (LRP). In the classical setting of this problem, one

needs to determine ‘depots’ to open and vehicle routes traveling from each depot to servicing its clients.

The cost consists of three parts: cost of opening depots, fixed costs of vehicle used and the cost of routes.

Our problem (HND) differs from LRP in two aspects. First our problem considers sending flow from client

to client instead of distributing flow from each depot to clients assigned to it. Second we make a further

simplification on the vehicle routes as star networks in the lower level. For a review of LRP, we refer the

reader to two surveys by Nagy and Salhi (2007); Prodhon and Prins (2014).

Table 2.1 presents a comparison of the key features of various models above with HND. We consider the

multi-commodity versions of all these problems in the table

Techniques. We next review previous work containing algorithmic results that we draw upon in our

work.

Our approximation for the non-metric HStT uses a reduction to the node-weighted Steiner tree problem,

for which Klein and Ravi (1995b) showed a greedy algorithm which achieves a logarithmic approximation

factor. For the metric HStT, we show a reduction to the (edge-weighted) Steiner tree problem, for which the

11

Hub costs Two levels Upper level Lower Level Upper versus
of edge costs integral Lower costs

HND Yes Yes Yes Star Cheaper

Buy-at-Bulk No Yes General General Cheaper
Access ND Yes Yes Yes Star Costlier

HLP Yes Yes No Star Cheaper
LRP Yes No N/A Tours N/A

Table 2.1: Comparison of HND with related problems

best approximation ratio γST = ln 4 + ε is obtained by Byrka et al. (2013); Goemans et al. (2012).

Our approximation for the HND uses a reduction to the CHLP. Sohn and Park (1997) first considered this

problem and proved polynomial-time solvability when the number of hubs is at most two. Subsequently,

they showed the NP-hardness result when the number of hubs is more than two (Sohn and Park, 2000). When

all the hub locations are given, Iwasa et al. (2009) showed the first constant approximation for the CHLP.

When all the nodes are in the Euclidean plane, Ando and Matsui (2011) showed a 1 + 2
π -approximation

based on a dependent rounding procedure applied to an LP relaxation.

We also make use of a light graph spanner (subgraphs that preserve all-pair distances approximately while

being not much larger than a minimum spanning tree) to give a new approximation algorithm for the HND.

Mansour and Peleg (1994) used a light spanner to give an approximation algorithm for the buy-at-bulk

network design problem with a single cable type. In particular, they showed how to construct such a spanner

for a general weighted n-node graph that is O(log n) on both the stretch of all-pair distances and the weight

of the spanner w.r.t. the minimum spanning tree. Recent developments for improving the lightness of the

spanner can be found in Chechik and Wulff-Nilsen (2016); Elkin et al. (2015).

We use the UFL as a way to obtain approximation algorithms for the CHLP. We note that γUFL = 1.488 is

the best known approximation ratio for the UFL problem due to Li (2011).

For heuristic algorithms presented in Section 2.5, our MIP-based evolutionary framework is based on the

very large neighborhood search idea from Rothberg (2007). The integration of evolutionary frameworks and

MIP models falls into the category of matheuristics. We refer the reader to Raidl and Puchinger (2008) and

references therein for this type of hybridization.

2.2 Hub Steiner Tree

In this section, we first study the computational complexity of the HStT by proving hardness results for

a special case of the HStT, which we call the hub spanning tree (HST) problem. Next, we develop tight

12

approximation algorithms (up to constants) for the non-metric and the metric HStT. The special case is

defined as follows. Recall R is the set of terminals for the HStT.

Definition 2.2.1 (Hub spanning tree (HST)). The hub spanning tree (HST) problem is a special case of the

HStT where the terminal set R = V .

Since the HST is a special case of the HStT, hardness results for the former immediately implies those for

the latter.

2.2.1 Hardness of Hub Spanning Tree Problem

In this section, we prove hardness results for the HST problem by reducing from the set cover problem.

Similar reductions have been used in several related network design problems (e.g., Klein and Ravi (1995a);

Bentert et al. (2017); Erzin et al. (2013)).

Definition 2.2.2 (Set Cover). Let S1, . . . , Sn be arbitrary subsets on a ground set of elements x1, . . . , xt.

The set cover problem is to find a minimum cardinality set of subsets whose union is the set of all elements.

The following hardness of approximation result for the set cover problem is due to Dinur and Steurer Dinur

and Steurer (2014).

Theorem 2.2.1 (Dinur and Steurer (2014)). For every δ > 0, it is NP-hard to approximate the set cover

problem to within (1− δ) lnn, where n is the size of the instance.

Our hardness results presented in this section repeatedly use the following reduction from the set cover

problem.

Reduction 1. We construct an undirected weighted graph G = (V,E) as follows: create a node vSi for

each set Si, a vertex vj for each element xj , and a new vertex vr as the root. Let A := {vSi : i = 1, . . . , n}
and B := {vj : j = 1, . . . , t}. For each vS ∈ A we create an edge (vr, vS) with cost 0. For each vS ∈ A
and vj ∈ B such that j ∈ S, we create an edge (vj , vS) with cost β whose value will be set later to achieve

desired hardness results. The hub opening cost is one for all vertices in A and zero for all others. See

Figure 2.2 for an illustration.

A

B

vr

Figure 2.2: An illustration of the reduction. The cost of a solid (dashed, resp.) edge is zero (β, resp.).

13

Non-metric HST Based on the above construction, we have the following theorem:

Theorem 2.2.2. For any λ ∈ [0, 1), the non-metric HST is NP-hard.

Proof. Set β > 1
1−λ in Reduction 1. We show that the minimum set cover has cardinality k if and only if

the optimal HST cost in Reduction 1 is k + λβt, where t is the number of elements. Notice this proves the

theorem.

Without loss of generality, assume an optimal set cover is {Sj}kj=1. Our HST is constructed by opening hubs

in {vr} ∪ {vSj}kj=1 ∪ B and selecting the following set of edges: {(vr, vSj), (vSj , vl) : ∀j = 1, . . . , k, l ∈
Sj}. In the resulting HST, a vertex in set B is connected to only one vertex in set A (breaking ties arbitrarily

between a pair of A nodes that have edges to it). The resulting HST has cost k + λβt. This shows the

minimum cost of the HST problem is less than or equal to k + λβt. Conversely, we claim all edges in the

optimal HST between A and B have both endpoints opened as hubs: suppose not, let (vS , vl) be an edge

violating this property. We can alternatively open hubs on both endpoints which incurs a unit hub opening

cost and reduces the cost of (vS , vl) by (1 − λ)β > 1 (this might lead to cost decrease in other edges too),

which results in a contradiction. Consequently the set S := {vS : S ∈ A is an opened hub in HST} is a

valid set cover. Observe that the edges between A and B now have cost βλ and there are t such edges, so

we have |S| ≤ k. This shows the minimum set cover has cardinality less than or equal to k.

Similarly we have the following approximation hardness result.

Theorem 2.2.3. If there is an α-approximation algorithm for the non-metric HST problem with λ = 0, then

there is an α-approximation algorithm for the set cover problem.

Proof. Given a set cover instance with minimum cardinality k, we generate the HST instance as in Reduc-

tion 1 with λ = 0 and β > αk. Let T be an α-approximate solution of this instance. We will prove that

every edge in T has both endpoints opened as hubs. Suppose not, there exists one edge that is not between

two hubs, incurring a cost of at least β + (t− 1)βλ = β (since λ = 0). Since β > αk, this implies T is not

an α-approximate solution, contradicting our assumption.

Let k be the cardinality of a minimum set cover. Next we show the cost of an optimal HST is at most k: we

can open hubs at the k vertices that correspond to the optimal set-cover, whose cost is k + λβt = k. As a

result, the cost of T is at most αk. We can therefore obtain an α-approximate set cover solution by selecting

those sets opened as hubs.

We obtain the following corollary by combining Theorems 2.2.1 and 2.2.3.

Corollary 2.2.4. When λ = 0, for any δ > 0 it is NP-hard to approximate the non-metric HST problem

within a factor of (1− δ) lnn.

14

Metric HST For notational convenience, we shall denote nodes in A as A-nodes and nodes in B as B-

nodes. We call an A-node selected if its corresponding set is included in the set cover solution.

Theorem 2.2.5. For any λ ∈ (0, 1), the metric HST problem with uniform hub opening cost is NP-hard.

Proof. We modify Reduction 1 for the non-metric HST. We assign a unit hub opening cost for every node.

Recall that the edge weight between the root and an A-node is 0, and the edge weight between an A-node

and an B-node is β. We take the metric completion of this graph, i.e., we add all the edges in the complete

graph where the cost of an edge is defined as the shortest path length between its two endpoints. based on

these edge weights. Recall t is the number of elements. We claim that for β > max{ 1
λ ,

2
1−λ}, the minimum

cost of a HST is k + t+ tλβ if and only if the size of the minimum set cover is k.

For the ‘if’ part, given a set cover of size k, we install hubs on allB-nodes and selectedA-nodes. We connect

each A-node to the root by edge cost 0. We connect each B-node to a selected A-node which includes that

element by paying λβ. This gives an HST with cost k + t+ tλβ.

For the ‘only if’ part, since the root and all A-nodes are connected by the edges of cost 0, no hub is needed

at the root to reduce the edge cost between the root and an A-node. We will ensure that opened hubs among

A-nodes exactly represent selected sets. To do so, we need to ensure two things in an optimal HST.

(I) Each edge between an A-node and a B-node is an upper-level edge (i.e., hubs are opened on its both

endpoints);

(II) No edge exists between two A-nodes, or two B-nodes.

A sufficient condition for (I) is β > λβ + 2 where β is the lower-level edge cost for connecting an B-node

to an A-node and λβ + 2 is the upper-level edge cost and the hub opening costs of its two end nodes. This

condition also implies that, if an edge joining two B-nodes is used in the optimal HST, it is the upper-level

edge because lower-level edges joining two B-nodes are of cost at least 2β (> β > λβ + 2). For (II), first

notice two A-nodes are already connected via the root by two 0-cost edges. Second, under the condition for

(I), it is sufficient to have 2λβ > βλ+1 where 2λβ is the cost of the upper-level edges joining two elements-

nodes and βλ + 1 is the cost for connecting a B-node to an A-node by an upper-level edge by opening a

hub on the common A-node. To summarize, we need β > max{ 1
λ ,

2
1−λ} which are the conditions in the

claim.

2.2.2 Non-metric Hub Steiner Tree

In this section we reduce the HStT problem to the node-weighted Steiner tree problem defined below.

Definition 2.2.3 (Node-weighted Steiner tree (NWST)). Let G be an undirected graph with nonnegative

costs assigned to its nodes and edges. Let R ⊆ V be a set of terminals. A Steiner tree for R in G is a

15

connected subgraph of G containing all the nodes of R. The node-weighted Steiner tree (NWST) problem

is to find a minimum-cost Steiner tree.

For NWST, Klein and Ravi Klein and Ravi (1995a) showed a greedy algorithm which achieves a logarithmic

approximation factor.

Theorem 2.2.6 (Klein and Ravi (1995a)). The NWST problem admits a polynomial-time 2 ln k-approximation

algorithm, where k is the number of terminals.

Below we present our reduction.

Reduction 2. Given an HStT problem as in Definition 2.1.2. We create an NWST instance as follows. Let

V ′ andE′ be the node and edge set of the NWST instance respectively. Let c′ : E′ → R+ be the edge weight

function. For each node v ∈ V in HStT, we create a pair of nodes vh, vl. Let Vupper := {vh : v ∈ V } and

Vlow := {vl : v ∈ V }, where Vupper stands for the ‘upper-level nodes’ and Vlow for the ‘lower-level nodes’.

Let V ′ = Vupper ∪ Vlow. Define the set of terminals R′ := {vl : v ∈ R}. For each edge e = (u, v) in HStT,

we add to E′ all possible edges between these vertices: (uh, ul), (vh, vl), (uh, vh), (ul, vl), (uh, vl), (ul, vh).

Edge weights are defined as follows:

c′(uh, ul) = c′(vh, vl) := 0.

c′(ul, vl) = c′(uh, vl) = c′(ul, vh) := c(u, v).

c′(uh, vh) := λc(u, v).

For each v ∈ V , the node weight on vh is defined as fv and on vl as zero. See Figure 2.3 for an illustration.

ul vl

uh vh

0
c(u, v)

c(u, v)

λc(u, v)

0

Figure 2.3: Edge weights in Reduction 2

Theorem 2.2.7. If we have a γ-approximation algorithm for the NWST problem, then there exists a γ-

approximation algorithm for the HStT problem.

Proof. First, we show that the optimal value of the reduced NWST instance is at most that of the given

HStT instance. Let T be a hub Steiner tree T of cost c(T) in the HStT instance. We construct a Steiner

tree T ′ of cost at most c(T) for the reduced NWST instance. For upper-level edges (u, v) in T , we add

(uh, vh), (uh, ul), (vh, vl) to T ′. For lower-level edges (u, v) in T , we add (ul, vl) to T ′. It is straightforward

to verify that T ′ has the same cost as T . Next we show T ′ is indeed a Steiner tree that connects terminals

16

in R′. Consider any pair of nodes (u, v) in R; Since T is a Steiner tree in HStT, there exists a path that

connects u and v in T . Call this path P . We will find a path P ′ in T ′ that connects ul and vl as follows: for

any upper-level edge (a, b) in P , add edges (al, ah), (ah, bh), (bh, bl) to P ′. For any lower-level edge (a, b)

in P , add an edge (al, bl). It is easy to see that P ′ indeed connects ul and vl.

Next, we prove the opposite direction. Let T ′ be a feasible Steiner tree spanning R for the NWST instance.

We show that there exists a hub Steiner tree T with cost c(T) ≤ c′(T ′) for the HStT instance. For each

upper-level node vh ∈ Vupper spanned by T ′, we install a hub on v in T . For each edge (uh, vh) in T ′ where

uh, vh ∈ Vupper, we add an upper level edge (u, v) to T . For edges of the form (uh, vl) or (ul, vl), we add

a lower-level edge (u, v). For the remaining edges in T ′, we do nothing. Arbitrarily delete edges to remove

cycles in T as necessary. It is easy to verify that T connects all terminals of R and has cost no more than

c′(T ′).

As a corollary of Theorems 2.2.6 and 2.2.7, we obtain the following result.

Corollary 2.2.8. There is a polynomial-time 2 ln k-approximation algorithm for the non-metricHStTproblem,

where k is the number of terminals.

2.3 Metric Hub Steiner Tree

In the previous section, we reduced the HStT problem to the NWST problem. In this section, we show that,

if the edge-costs are metric, the HStT problem can be reduced to the edge-weighted Steiner tree (EWST)

problem, the special case of the NWST in which all node costs are zero. The EWST problem admits

a number of constant-factor approximations. The currently known best approximation factor is ρST =

ln 4 + ε ≈ 1.38 Byrka et al. (2013); Goemans et al. (2012).

Theorem 2.3.1 (Byrka et al. (2013); Goemans et al. (2012)). For any constant ε > 0, there is a polynomial-

time (ln 4 + ε)-approximation algorithm for the EWST problem.

Reduction 3. Let V ′ and E′ be the vertex and edge set of the instance we reduce to. Let c′ : E′ → R+

be the edge weight function. For each node v ∈ V in HStT, we create a pair of nodes vh, vl. Let V ′ be the

set of all newly created nodes. Define the set of terminals R′ := {vl : v ∈ V }. For each edge e = (u, v)

in HStT, we add to E′ the following edges (uh, vh), (ul, vl), (uh, ul), (vh, vl). Edge weights are defined as:

c′(uh, vh) := λc(u, v), c′(ul, vl) := c(u, v), c′(uh, ul) := fu, c
′(vh, vl) := fv. Call the metric completion

of this graph G′ = (V ′, E′).

For ease of presentation, we define the following partition of E′: H := {(uh, vh) : u, v ∈ V }, L :=

{(ul, vl) : u, v ∈ V }, J := {(vh, vl), v ∈ V },K := {(uh, vl), (ul, vh) : u, v ∈ V }, where H stands for

upper-level edges, L for lower-level edges, J for vertical edges and K for cross edges.

Theorem 2.3.2. If there exists a γ-approximation algorithm for the EWST problem, then there exists a

2γ-approximation algorithm for the metric HStT problem.

17

Proof. First, we show that from a hub Steiner tree T in G, we can construct a Steiner tree T ′ in G′ whose

cost is the same as T . Next, we show that for any Steiner tree T ′ spanning R′ in G′, we can construct a hub

Steiner tree T in G with total cost at most twice the cost of T ′.

For the first part, we define a tree T ′ from T by including all upper-level and lower-level edges in T in

addition to each edge of the form (ul, uh) that corresponds to installing a hub u in T . Then T ′ is the

required Steiner tree in G′. See Figure 2.4 for an illustration.

c

d

a

b

ah bh ch dh

al bl cl dl

Figure 2.4: Convert a HStT to a Steiner tree where the terminal set R = {a, b, c, d}. On the left, squares

(disks, resp.) indicate hubs (non-hubs, resp.). On the right, the corresponding Steiner tree uses two vertical

edges, two lower-level edges and one upper-level edge.

For the second part, we first partition edges of T ′ into four sets as follows. Define EH := H ∩ T ′, EL :=

L ∩ T ′, EJ = J ∩ T ′, EK = K ∩ T ′. Recall that for each edge (uh, vl) ∈ EK , there exists a shortest path

Puhvl from uh to vl realizing the distance on this edge which only uses edges from H ∪L∪ J . Let P be the

set of such paths, i.e. P := {Puhvl : (uh, vl) ∈ EK}. To construct a hub Steiner tree in G, we install hubs

F := {v : (vh, vl) ∈ EJ ∪ {P ∩ J : P ∈ P}}. We add in all edges (u, v) such that their copies (uh, vh)

or (ul, vl) is in EH ∪ EL ∪ {P\J : P ∈ P}. Let S be the graph constructed as described above. Since

T ′ is a Steiner tree, S guarantees the connectivity for terminals R. We may assume by short-cutting edges

that S is a tree. Figure 2.5 shows an example of our construction. On the left, solid lines represent edges in

the Steiner tree. The dashed path between el and fh represents the shortest path between these two nodes.

Similarly for the dashed path between fh and gl. By definition S contains all solid edges except (el, fh) and

(fh, gl) which we replace by four dashed edges.

Let SH be the restriction of S on the upper-level edges (i.e., the edges (u, v) added to S corresponding to an

edge (uh, vh) ∈ H). SH may have multiple connected components, each of which may contain unhubbed

nodes (for which we do not have vertical edges of the form (uh, ul) in F). In Figure 2.5, the left bottom

tree corresponds to S with two components (subtrees): one containing a single edge (b, c) and the other

containing two edges (e, f) and (f, g) where node f is an unhubbed node. For each subtree, by doubling the

tree, taking an Eulerian walk and short-cutting edges, we can construct a new subtree on only the hubbed

nodes with the cost at most doubled w.r.t. the original subtree. The final solution consists of edges from

18

all these new subtrees, as well as edges that are contained in S but not in any of the original subtrees. In

Figure 2.5, the bottom right shows this solution after postprocessing, which short-cuts the visit to node f .

ah bh ch dh eh fh

al bl cl dl el fl

gh

gl

f

c
b

d

g

a
e

f

c
b

d

g

a
e

construct S

Eulerian walk+short-cutting

Figure 2.5: Convert a Steiner tree to a HStT where the terminal set R = {a, b, c, d, e, g}. By replacing

solid edges with shortest paths, we construct S (bottom left). Its hub level restriction SH contains two

components (subtrees): one containing a single edge (b, c) and the other containing two edges (e, f) and

(f, g) where node f is an unhubbed node. By postprocessing (doubling tree edges, taking Eulerian walks

and short-cutting on SH), we obtain a valid HStT (bottom right).

Notice any two components are connected by our construction, which implies that this solution is connected.

Recall S spans the terminal set R. As a result, the solution also spans R. In particular, it means the solution

is a valid HStT whose cost is at most twice the cost of the original Steiner tree. The theorem is then proved

by combining the two parts.

We get the following corollary from Theorems 2.3.1 and 2.3.2.

Corollary 2.3.3. There is a polynomial-time 2ρST -approximation algorithm for the metric HStT problem,

where ρST = ln 4 + ε for any constant ε > 0.

19

2.4 Approximation Algorithm for HND

In this section, we first design an approximation algorithm for the CHLP (see Definition 2.1.1) and use this

to design an approximation algorithm for the HND.

Approximation algorithm for CHLP. For the CHLP we design a constant approximation algorithm by

connecting it to the uncapacitated facility location (UFL) problem. For our purposes, the UFL problem is

defined as follows.

Definition 2.4.1 (Uncapacitated facility location (UFL)). Given a graph G = (V,E) with edge cost c(i, j)

for each edge (i, j) ∈ E, the demand di for each node i ∈ V , and the hub open cost fi for i ∈ V , the

uncapacitated facility location problem is to find a subset of nodes H ⊂ V to open hubs, and the node-hub

assignment function π : V → H such that the cost
∑

i∈H fi +
∑

i∈V dic(i, π(i)) is minimized.

For the CHLP, we can assume WLOG that each truck has unit capacity by scaling all demand values by M ,

the capacity of the truck. In contrast with the UFL that defines dv as the demand from node v, the CHLP

instead definesW (i, j) as the amount of flow from i to j. The objective function of the CHLP can be written

as follows:∑
i,j∈V

[c(i, π(i)) + λc(π(i), π(j)) + c(π(j), j)]W (i, j) + f(H)

=
∑
i∈V

c(i, π(i))
∑
j∈V

W (i, j) +
∑
j∈V

c(π(j), j)
∑
i∈V

W (i, j) + λ
∑
i,j∈V

c(π(i), π(j))W (i, j) + f(H)

=
∑
i∈V

(Oi +Di)c(i, π(i)) + λ
∑
i,j∈V

c(π(i), π(j))W (i, j) + f(H)

In particular, if we set di in Definition 2.4.1 equal to Oi +Di for each i ∈ V , we see that the UFL problem

is a special case of the CHLP which ignores the cost from the upper level network.

Our approximation algorithm for the CHLP is as follows: we first run the approximation algorithm for the

corresponding UFL instance and obtain an approximate solution. Then we fix hub opening and assignment

decisions based on the approximate solution and route the upper level demand via a clique network on hub

nodes.

Lemma 2.4.1. The approximation ratio for CHLP is (1 + 2γUFL) where γUFL is the best known approxi-

mation ratio for metric UFL.

Proof. Let cl, cu, co be the cost of lower level, upper level and open hubs induced by πA. Since the CHLP

instance reduces to UFL when ignoring upper level cost, we have ZUFL ≤ ZCHLP . By triangle inequality

20

we have the following bound on cu:

cu =
∑
i,j∈V

λc(πA(i), πA(j))W (i, j)

≤λ
∑
i,j∈V

[c(πA(i), i) + c(i, j) + c(j, πA(j))]W (i, j)

≤λ
∑
i∈V

(Oi +Di)c(i, πA(i)) + λ
∑
i,j∈V

c(i, j)W (i, j)

≤λZA + λ
∑
i,j∈V

c(i, j)W (i, j)

Notice ZA ≤ γUFLZUFL ≤ γUFLZCHLP and the second term λ
∑

i,j∈V c(i, j)W (i, j) is the flow rout-

ing cost when each node is an open hub, which is a trivial lower bound on ZCHLP . Altogether cu ≤
λγUFLZCHLP + ZCHLP . On the other hand, notice cl + co = ZA ≤ γUFLZCHLP . To sum up, we have

cu + cl + co ≤ (1 + γUFL + λγUFL)ZCHLP ≤ (1 + 2γUFL)ZCHLP .

Remark 2.4.1. The above proof easily extends to variants of CHLP problem, e.g. capacitated hub location

variant by reducing to its corresponding facility location counterpart.

Next we present our approximation result for the HND problem. The main theorem is the following.

Theorem 2.4.2. There exists an O(log n) approximation algorithm for HND in general metric case on

n-node graphs.

The main idea of our algorithm is to reduce the HND problem to the CHLP via light graph spanner defined

below.

Definition 2.4.2. Let G = (V,E,w) be a weighted graph with weights w(·). For any subgraph G′ =

(V ′, E′, w) of G, let distG′(u, v) be the weighted distance from u to v in G′. For a spanning subgraph

G′ = (V,E′, w), let Stretch(G′) = maxv,u∈V {distG′(v, u)/distG(v, u)}. The subgraph G′ is said to be

a κ-spanner for G if Stretch(G′) ≤ κ. G′ is said to be α-light if w(G′) ≤ αw(MST), where MST is a

minimum spanning tree in G.

Mansour and Peleg (1994) showed a simple greedy algorithm to construct an O(log n)-light, O(log n)-

spanner. Based on this spanner, we show the following result:

Lemma 2.4.3. Given an O(f(n))-approximation algorithm for the CHLP, there exists an O(f(n) log n)-

approximation algorithm for the HND problem.

Proof. Let ZHND, ZCHLP be the optimal total cost for HND and CHLP respectively. Clearly ZCHLP ≤
ZHND since HND has additional integrality constraints on the upper level compared to CHLP. Let TA be

the approximate solution constructed by the given approximation algorithm for CHLP. Recall a valid HND

21

solution consists of open hubs, lower and upper level network. We construct such a solution by opening

the same set of hubs as TA and thus the same lower level network. For the upper level network, let H be

the complete graph induced by open hubs. We construct an O(log n)-light O(log n)-spanner H ′ of H as in

Mansour and Peleg (1994) and send all upper level flows along the shortest path induced by H ′. We bound

the upper level routing cost cu on H ′ below.

For i, j ∈ V (H), let W (i, j) be the flow from i to j. Let c(i, j) be the distance between i, j in H . P (i, j)

be the shortest path from i to j in H ′. Let c(P (i, j)) be the length of the shortest path. Recall that we

assumed each truck has unit capacity. For each edge e ∈ E(H ′), let x(e) be the total flow along edge e,

i.e. x(e) =
∑

i,j∈V (H′):e∈P (i,j)W (i, j). Let c(MST (H)) be the cost of an MST on H where edge weight

equals the distance between two endpoints. Then

cu = 2
∑

e∈E(H′)

λdx(e)ec(e) (2.1)

≤ 2λ
∑

e∈E(H′)

(x(e) + 1)c(e) (2.2)

≤ 2λ
∑

e∈E(H′)

x(e)c(e) +O(λ log n)c(MST (H)) (2.3)

= 2λ
∑

i,j∈V (H′)

W (i, j)c(P (i, j)) +O(λ log n)c(MST (H)) (2.4)

≤ O(λ log n)
∑

i,j∈V (H′)

W (i, j)c(i, j) +O(λ log n)c(MST (H)) (2.5)

Inequality 2.3 holds becauseH ′ isO(log n)-light. Equality 2.4 follows by the definition of x(e) and a change

of summation. Inequality 2.5 follows because c(P (i, j)) ≤ O(log n)c(i, j) for the O(log n) spanner H ′.

Note
∑

i,j∈V (H′)W (i, j)λc(i, j) is exactly the upper level routing cost of our f(n)-approximate solution

TA to CHLP and λMST (H) is a lower bound for this cost since any valid routing requires connectivity. To

wrap up, we have cu ≤ O(log n)f(n)ZCHLP .

Recall the total cost of an HND instance consists of the cost of opening hubs, lower level and upper level

routes. The sum of the first two parts are exactly the costs of the corresponding part in TA. Therefore the

result follows with the above bound on the upper level cost and the fact that ZCHLP ≤ ZHND.

Now it is easy to derive the proof of the main theorem 2.4.3.

Proof of Theorem 2.4.2. Lemma 2.4.1 shows that f(n) in lemma 2.4.3 is at most (1+2γUFL). The theorem

follows by replacing f(n) in lemma 2.4.3 by 1 + 2γUFL, where γUFL = 1.488 (Li, 2011).

22

2.5 Heuristic Algorithms for HND

In this section, we propose an evolutionary framework based on theoretical insights from Section 2.4 and

a novel MIP model for the HND, which will be outlined in Section 2.5.1. Our evolutionary framework

starts with a set of initial solutions, typically referred to as the initial population. In our implementation,

the initial population consists of solutions from two heuristic algorithms described in Section 2.5.2 – one

based on the MIP model and the other based on the UFL problem. Each individual in this population has a

corresponding genetic representation. In our implementation the genetic representation of each individual is

a binary vector indicating hub locations and client-hub assignments. In Section 2.5.3, starting from the initial

population, the framework iteratively performs two types of operations, crossover and mutation, to improve

solution quality. A crossover step creates new individuals by combing two or more ‘genes’ in a meaningful

way. A mutation step creates new individuals by modifying the ‘gene’ of one individual. This phase is

terminated when population diversity decreases below a user-specified threshold. Finally, we generate and

solve restricted MIP instances by fixing hub locations from the genes of final individuals.

2.5.1 MIP Model for HND

We adapt a flow-based model for the hub location problem (Contreras and Fernández, 2012) to take the

upper level network into consideration. Our MIP formulation is presented below. Wij is the amount of flow

from i to j, Oi is the total out-flow from i, Di is total in-flow into i, cij is the lower level cost of sending

one unit flow along edge (i, j), fi is the hub opening cost at i, M is the capacity of an FTL truck. zip is

the indicator of assigning i to p and we use zii as an indicator for opening hub i. f ipq is the fraction of total

out-flow from i along arc pq and tpq is the number of FTL trucks running roundtrips on edge (p, q).

Two types of costs are considered, namely hub opening cost and routing cost. The first part equals
∑

i fizii.

The second part consists of upper and lower level routing cost. From previous section the lower level

network is assumed to be a collection of star networks, therefore its cost equals
∑

i(Oi + Di)
∑

p zipcip.

The upper level cost is due to running roundtrip trucks on each edge:
∑
p<q

2λMcpqtpq.

min
∑
i

fizii +
∑
i

(Oi +Di)
∑
p

zipcip +
∑
p<q

2λMcpqtpq (2.6)

s.t. zip ≤ zpp, ∀i, p (2.7)∑
p

zip = 1, ∀i (2.8)

f ipq ≤ zpp, f ipq ≤ zqq, ∀p, q (2.9)

(
∑
q

f ipq −
∑
q

f iqp)Oi = Oizip −
∑
q

Wiqzqp, ∀i, p (2.10)

23

M · tpq ≥
∑
i

f ipqOi, M · tpq ≥
∑
i

f iqpOi, ∀p < q (2.11)

f ipq ≥ 0, zip ∈ {0, 1}, tpq ∈ Z+ (2.12)

Main constraints (2.10) imply flow conservation: the left hand side is the net flow originating from i at vertex

p – if i is assigned to p, the net flow equals i’s total demand Oi minus i’s demand to those assigned to p

which is
∑

qWiqzqp; if i is not assigned to p, the net flow should be zero (in equal out) minus i’s demand to

those assigned to p which is again
∑

qWiqzqp. Constraints (2.7), (2.8) are standard assignment constraints.

Constraints (2.9) ensure the upper level network consists of only hub nodes. Constraints (2.11) ensures the

total capacity on edge (p, q) to route the required amount of flow. This is where we incorporate the 2-cycle

constraint that all truck routes are in anti-parallel arcs, which is critical to making the problem practical so

that FTL trucks may be sourced, maintained and operated from home hubs.

2.5.2 Heuristic Algorithms for Initial Population

The initial population is constructed by the following two heuristic algorithms, both of which are inspired

by the importance of hub locations for designing approximation algorithms (Section 2.4).

• Prioritized Search (PS). We first ignore all integrality constraints except those on variables represent-

ing hub locations. We search for good hub locations by solving the resulting (relaxed) MIP model

within a time limit chosen a priori. Then we fix hub locations, restore the remaining integrality con-

straints and solve the resulting problem to near-optimality.

• Facility Location-based Search (FLS). We search for good hub locations and client-hub assignments

by solving a family of UFL instances.

Prioritized Search

Recall the proof of Theorem 2.4.2 suggests the importance of hub locations. Based on this, we propose a

simple MIP-based heuristic algorithm prioritizing the search for near-optimal hub locations. We first relax

all integrality constraints except those on variables related to hub locations. We solve the resulting (relaxed)

MIP model within a predetermined time limit and store the best choice of hub locations. We then fix the hub

locations, restore those relaxed integrality constraints and solve the restricted problem to near-optimality.

For ease of notation, we define these two related problems below:

Definition 2.5.1. The hub choice HND (HC-HND) problem is a relaxed version of the HND, where all

variables except those representing hub locations in model 2.6 are relaxed to be fractional, i.e., we only

require hub opening decisions zii’s (defined in Sect. 2.5.1) to be integral.

24

Definition 2.5.2. The fixed hub HND (FH-HND) problem is the HND problem restricted to a given set of

open hubs.

Our algorithm outlined in Algorithm 1 starts by solving the HC-HND until the MIP gap α1 is achieved.

Using Gurobi 7.5 solution pool option, we store the best k sets of hub locations and solve the corresponding

the FH-HND problem induced by each set of hub locations. In our implementation, we set α1 = α2 =

0.02, k = 2.

Algorithm 1: Prioritized search
Input: α1 : optimality gap for HC-HND; α2 : optimality gap for FH-HND; k : number of hub choices

to store
Output: P : a set of solutions

1 Solve HC-HND to optimality gap α1

2 Store in S k best sets of hub locations from the solution pool
3 for each set of hub location in S do
4 Solve FH-HND induced by the hub location to optimality gap α2

Facility Location-based Search

We design another heuristic method for finding good solutions for larger instances. Inspired by our proof

ideas for CHLP in Lemma 2.4.1, we solve a family of parametrized UFL instances to obtain a set of near-

optimal solutions. Recall Lemma 2.4.1 essentially uses an UFL instance to construct an upper bound for

CHLP. Its cost is directly connected to the cost of lower level and hub opening. However, the cost of upper

level network is overlooked. We deal with this problem in a heuristic fashion: the routing cost of UFL, same

as the cost of lower level network for HND is multiplied by a factor θ > 0, which results in a parametrized

famility of UFL instances, denoted by UFL(θ). A finite set of UFL instances is thus generated by varying θ

over a set of discrete values. We then solve each instance and obtain the corresponding assignment and hub

opening decisions. This method is outlined in Algorithm 2. In our implementation, the set of values for θ is

{0.2, 0.4, . . . , 1.6}.

Algorithm 2: Facility location-based search
Input: L : a list of positive values, k : number of feasible solutions to store
Output: P : a set of solutions

1 P ← ∅ ;
2 for θ ∈ L do
3 Solve UFL(θ) and store hub locations and client-hub assignments;

4 Add the best k solutions to P

25

2.5.3 Evolutionary Framework

A generic evolutionary framework makes use of two important operations: the crossover operation and the

mutation operation. The crossover operation is aimed at generating better solutions from a solution pool.

This corresponds to the concept of exploitation in a generic search algorithm. The mutation operation is

aimed at diversifying the current population, therefore corresponding to the concept of exploration in a

generic search mechanism. Unlike traditional evolutionary frameworks where crossover and mutation are

inexpensive operations, in order to maintain MIP feasibility and cater to the specific problem domain, we

adapt the idea of very large neighborhood search. More specifically, in the crossover step a set of individuals

are selected from the pool. We fix variables whose values agree in all chosen individuals and allow the values

for other variables to be determined by solving a restricted MIP. Similarly, in the mutation step a random

subset of variables are fixed. The remaining variables are determined by solving a restricted MIP. The

solving process of the restricted MIP in both operations may be terminated early to limit the computational

cost. A new individual is added to the population as soon as it is generated due to the expensiveness of each

operation.

The probability for either crossover or mutation to happen is dynamically adjusted according to the popu-

lation diversity which is calculated by the average L1 distance of hub location variables between the best

individual and others. We choose to measure the distance of only hub location variables because once they

are fixed, the remaining problem can then be solved to a desirable optimality gap in a reasonable amount

of time. The threshold for changing mutation and crossover probability is calculated as the ratio of current

diversity over previous diversity. If it is less than the current crossover probability, we increase mutation

probability and decrease crossover probability. If it is greater than the reciprocal of current mutation proba-

bility, we decrease mutation probability and increase crossover probability. During each iteration we always

select two individuals for crossover. The first individual is selected at random, the second is selected at

random among those better than the first one, which introduces a slight bias for selecting better individuals.

Every five iterations all individuals are selected for crossover, i.e. we fix those values where all individuals

agree and solve a restricted MIP. The algorithm terminates when the population diversity drops below a

certain threshold. In our implementation, the initial mutation and crossover probability are set to be 0.7 and

0.3 respectively. The initial increase or decrease of this probability is 0.1, which is decreased by a factor

of 0.25 each time the probability is dynamically adjusted. The termination diversity threshold δ is set to be

1. We use Gurobi 7.5 to solve all MIP models. All optimality gaps stated below are calculated w.r.t. the

optimal value of each LP relaxation.

26

Algorithm 3: Evolutionary framework
Input: P : a set of solutions (‘individuals’); pm: mutation probability; pc crossover probability; δ:

diversity threshold for termination
1 while Population diversity > δ do
2 Perform mutation with probability pm;
3 Perform crossover with probability pc;
4 Calculate the current population diversity;
5 Adjust mutation and crossover probability based on the change of diversity

2.6 Numerical Experiments

In this section, we first describe our dataset and parameter settings in Section 2.6.1. We then compare the

population quality from two heuristic algorithms proposed in Section 2.5.2. Finally we report the solution

quality from our evolutionary framework. Computational experiments were run on a Lenovo laptop with

2.80GHz Dual-Core Intel Core i7 and 24GB memory.

2.6.1 Data and Parameter Description

The network data used in our computational experiments is based on a real-world LTL trucking network,

consisting of approximately 560k ft3 of volume to be shipped between 100 locations. Vehicle and facility

costs are set to industry averages. More precisely, we assume a fully loaded cost of USD 1.50 per mile

for a standard 40-ft trailer and fully loaded daily operating cost (administrative labor, maintenance, rent or

depreciation of facility and equipment) of USD 1000 per transshipment hub. We note that our simplifying

assumption here that facility cost is independent of the facility size and volume handled may seem somewhat

unrealistic - however, in practice facility cost can be approximated reasonably well by a simple linear com-

bination of some fixed cost component and a (non-location dependent) unit cost per unit capacity required

for the volume handled. As the latter is more or less a constant in our objective (items will be handled in ex-

actly one sending and receiving hub and cross-docking operations along the mainhaul route tend to require

less work than the initial receiving and final dispatching), it can be justified even in this realistic setting to

consider only the fixed portion of the facility cost in an uncapacitated facility location problem. In order to

provide some intuition of the typical tradeoff between facility and upper level transport cost in a real-life

network, in our setting opening an additional facility is equivalent in cost to 600 − 700 miles of daily FTL

mainhaul transport.

As stated before, transport on the lower level (pickup/delivery) network is typically done in milkruns -

sometimes also combining pickup and delivery into joint runs and using a combination of 40-ft and smaller

vehicles depending on the customers served (not every customer address will be able to physically acco-

modate delivery by a 40-ft truck). In order to simplify the problem, we assume here that 20-ft delivery

27

Hub

Pickup/

delivery point

Avg distortion

2.3

Figure 2.6: Star network as an approximation to milkruns

trucks with a maximum capacity of 1000 ft3 and fully loaded cost of 1.30 USD per mile are deployed on

joint pickup/delivery milkruns and will maintain an average utilization level of 60% over the course of each

milkrun. This yields an average cost of 0.21 cents per mile per ft3 of product moved. Finally, assuming that

on average the distance traveled between pickup/delivery location and hub is roughly 2.3 times the direct

distance (assuming 15 stops per milkrun equally distributed on a circle),we arrive at a cost approximation

of 0.48 cents per ft3 per mile (direct distance) for our simplified star-topology model of the lower level

network. Thus, lower level LTL transport is approximately 5− 6 times as expensive as the upper level FTL

transport on a per cubic feet per mile basis.

2.6.2 Comparison of Heuristic Search

We compare the performance of the two heuristic algorithms – PS and FLS proposed in Section 2.5.2. We

measure the performance from two aspects: runtime and optimality gap. We perform numerical tests on

problem size of 30, 40, . . . , 70. For each size, we generate 10 instances by randomly sampling locations

from the entire dataset. Average runtime and optimality gap are reported in Fig. 2.7. For the FLS heuristic,

for each test instance, we report the best solution found among a set of θ values (see Section 2.5.2). Fig. 2.7a

shows that the average runtime of PS is longer than FLS for all test instances. Compared to the runtime of

FLS, PS cannot scale to the real-world problem size, largely due to the fact that uncapacitated facility

location problem can be solved efficiently by the modern MIP solver while solving HC-HND can be a

bottleneck in PS heuristic. On the other hand, Fig. 2.7b shows that on average PS finds better solutions

than FLS, which is also in line with our expectation since FLS relies on the UFL model while PS relies on

partial linear relaxation of the HND model, which tends to be a more accurate representation of the original

problem.

Next we study the closeness between the objective value of the HC-HND and the best objective value of the

28

30 40 50 60 70
Size

0

100

200

300

400

500

600

700

Ru
nt

im
e

PS
FLS

(a) Runtime (s)

30 40 50 60 70
Size

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

Op
tim

al
ity

 G
ap

PS
FLS

(b) Optimality Gap

Figure 2.7: Average runtime and optimality gap for two heuristic search algorithms (PS: prioritized search;
FLS: facility location-based search)

induced FH-HND, defined as the absolute difference between these two values divided by the larger of the

two. Fig. 2.8 reports that the closeness averaged over all instances is small, which means that little is lost

by relaxing the integrality of assignement variables and the upper level decisions. It also indicates that hub

locations play an important role in the HND problem, which is in line with the proof of Theorem 2.4.2.

30 40 50 60 70
Size

0.00

0.01

0.02

0.03

0.04

0.05

Cl
os

en
es

s

Figure 2.8: Average closeness between the objective value of HC-HND and the best objective value of the
induced FH-HND

Finally we run the above two heuristic algorithms on our entire dataset of 100 nodes. FLS is able to find a

feasible solution within 5% of optimality gap in less than 3 minutes, whereas it takes PS more than an hour

to solve the LP relaxation.

29

2.6.3 Improvement from Evolutionary Framework

In this section we investigate the effectiveness of our improvement heuristic on the same samples generated

in the previous section and the full real instance on 100 locations.

We store solutions generated by both heuristic algorithms in the previous section as the initial population

and run our evolutionary algorithm based on this set. The improvement and runtime is shown in Tab. 2.2.

We are able to obtain minor improvement on solution quality when the starting solutions are already very

close to optimality, which is competitive to the performance of Gurobi (last column) if we allow it to run

with the best solution in the starting population as a known incumbent for the same amount of time after the

root relaxation finishes.

Size Initial Gap (%) Final Gap (%) Time (s) Gurobi Gap (%)

30 6.50 4.21 2.93 6.50

40 5.50 3.52 15.54 2.71

50 4.53 3.78 94.91 3.91

60 5.55 4.29 124.60 3.48

70 5.12 3.52 167.71 4.73

Table 2.2: Improvement on random samples

For the real-world instance, as a baseline approach we first run Gurobi solver with its parameter ‘MIPFocus’

set as 1 so that the solver focuses on finding feasible solutions. For our particular problem, it takes more

than 80 minutes to solve the root LP relaxation. Then the solver spent more than an hour before a feasible

solution of around 10% gap is found.

In comparison, we start by generating a set of solutions using facility location-based search. This process

takes less than 10 minutes. Next we run the improvemen heuristic on this set of solutions. The population

diversity is shown in Figure 2.9a together with a comparison of individual optimality gap between the start

and the end of this genetic algorithm in Figure 2.9b. Y axis indicates the optimality of our population at

each iteration which is computed with respect to LP relaxation of our MIP model. The shaded area indicates

gap values between 25 percentile and 75 percentile. The population is shown to start with a median of about

6% and gradually converge to a median of below 4% over about 40 runs of our algorithm in about half an

hour. We remark this step can be parallelized to further speed up the computation. Finally we pick the best

three individuals and use the set of open hubs in each individual’s genetic representation to generate three

FH-HND instances. After solving those instances the best optimality gap decreases to 2.87%.

30

0 10 20 30 40
Iteration

0

1

2

3

4

5

6

7

8

Di
ve

rs
ity

(a) Population Diversity

0 10 20 30 40
Iteration

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

M
IP

 g
ap

(b) MIP gap of the population

2.7 Conclusion

In this paper, we proposed a new theoretical model for a common logistics network problem. The novelty of

our model is the tradeoff between reduced per unit transportation cost in the upper aggregated level and the

cost of opening and operating hubs in this level. Furthermore, the difficulty arises from the combination of

segments in the upper and lower levels of the network for demand routing and partitioning of the demands

across hubs.

We studied two special variants of the general problem involving Steiner trees and simpler upper level

networks, respectively. For the hub Steiner tree problem, we analyzed the hardness and presented approx-

imation algorithms. Hardness results rely on reductions from the set cover problem, and approximation

algorithms rely on reductions to the node-weighted or edge-weighted instances. For the clique hub loca-

tion problem, we presented a constant-factor approximation algorithm using uncapacitated facility location,

and combined this with a light spanner to derive a logarithmic approximation algorithm for the general

problem.

Inspired by our theoretical analysis, we develop matheuristics that combine evolutionary algorithms, very

large neighborhood search and mixed integer programming. Using realistic data, we demonstrate that our

approximation techniques provide very good starting solutions for further heuristic search. Our methods

produce solutions with an optimality gap of less than 3% in a reasonable amount of time.

31

32

Chapter 3

Combinatorial Heuristics for Inventory
Routing Problems

3.1 Introduction

The Inventory Routing Problem (IRP) arises from Vendor Managed Inventory systems in which a product

supplier and its retailers cooperate in the inventory planning. First, the retailers share with the supplier the

demand patterns for its product and the storage costs for keeping early deliveries per retailer location. Then

the supplier is responsible for planning a delivery schedule that serves all the demands on time. Naturally,

the supplier wishes to minimize its routing cost and storage cost over the time horizon. This optimization

problem is called IRP and has been studied extensively in, for example, Burns et al. (1985); Campbell et al.

(1998); Campbell and Savelsbergh (2002); Chan et al. (1998).

In the classical single-depot IRP, a set of client demand locations in a metric containing the depot is given,

and for a planning horizon of T days, a daily demand at each client location is specified. The goal is to come

up with vehicle routing schedules in each of the T days to stock the client demands before they materialize.

However, early stocking at a location incurs a location- and duration-specific inventory holding cost that are

also specified. If we assume the daily replenishing vehicle has infinite capacity, the distance traveled by the

vehicle in a daily route translates to a routing cost. The goal of IRP is to find daily vehicle schedules for

the T days that deliver enough supply at each location to meet all daily demands and minimizes the sum of

inventory holding costs for units supplied ahead of their demand and the daily routing costs of the vehicle,

over the T days.

A generalization of IRP is the Capacitated Inventory Routing Problem (CIRP), which has K vehicles avail-

able per day and imposes a vehicle capacity U on the amount of demand that can be delivered per vehicle

from the depot. We assume the demands can be split and served by more than one delivery.

33

Problem Definition. We now give the formal definition of IRP. In IRP, we are given a complete graph

Kn = (V,E) whose vertices are potential locations of clients and whose edge weights are determined by

a metric w : E → R≥0 (wxz ≤ wxy + wyz for all x, y, z ∈ V). In a graph metric, the distance between

every pair of vertices is the length of the shortest path between them in a given weighted graph. There is

a depot r ∈ V from which a vehicle of infinite capacity loads supply to drop off to clients. Thus, in this

basic uncapacitated version, the vehicle may carry any amount of supply from the depot at each time. We

have a discrete time horizon [T] := 1, . . . , T over which client v ∈ V demands dvt ≥ 0 units of supply to

be delivered to it by time t. For each client v ∈ V , demand time t ∈ [T], and potential serving time s ≤ t,

storing one unit of supply at v during time [s, t] incurs a holding cost of hvs,t. We denote by D(V × [T])

the set points (v, t) such that dvt > 0. When the context of V and [T] are clear, we use D and D(V × [T])

interchangeably. We call such points demand points. The objective is to select a tour from r through a subset

of clients per time t ∈ [T] to satisfy every demand point (no late delivery allowed) so that the total routing

cost and holding cost over [T] is minimized. Denote by Hv
s,t the holding cost incurred if dvt is served at time

s, i.e., Hv
s,t = hvs,td

v
t . We remark that in the uncapacitated case, there is always an optimal solution such that

each dvt is served at a single time, for if dvt is delivered in separate portions at times s1 < . . . < sl, then the

total cost does not increase if we move all of dvt to be delivered at time sl. This is due to the infinite capacity

available at the delivery vehicle.

In CIRP, we are given an additional constraint that K vehicles are available per time and each vehicle may

carry at most U units from the depot per trip and at most one trip per vehicle is allowed per time. A feasible

solution consists of the routes (with multiplicity over the edges) per day s ≤ T and the amount delivered to

each v ∈ V on day s such that all demands are satisfied on time.

Although existing computational research on IRP has been extensive, the instance sizes solved are still

limited. The state-of-the-art method (Archetti et al., 2017) is able to solve problems of 200 clients over 6

days, detailed in Section 3.2. There have not been new conceptual ideas beyond refinements of traditional

integer programming methods e.g. branch and cut (Archetti et al., 2007), branch-cut-and-price (Desaulniers

et al., 2016), and matheuristics (Archetti et al., 2012, 2017).

A related problem, called Prize-Collecting Steiner Tree (PCST), will be crucially used in our heuristics for

obtaining IRP solutions. The Prize-Collecting Steiner Tree problem has as input a graph G = (V,E) with

root r, edge weights w : E → R≥0 and vertex penalties π : V → R≥0. The goal is to find a tree rooted at

r visiting some subset of vertices minimizing the total edge cost of the tree and the penalties of vertices not

spanned by the tree.

The unifying theme of our heuristics is to reduce the search space of IRP by creating and solving PCST

instances as intermediate steps to determine which clients to visit each day. PCST is a suitable intermediate

problem because it is much faster to solve than IRP since it does not involve the inter-temporal constraints

of IRP. Although it is NP-hard, Leitner et al. (2020) uses a dual-ascent-based branch-and-bound approach

to very quickly solve PCST problems to near-optimality over 200, 000 nodes. Additionally, PCST is able

34

to capture the challenge of IRP’s trade-off between holding cost and routing cost by using the trade-off

between routing cost and penalty cost in its own objective, even though it does not have the multi-period

nature of IRP. Each of our heuristics will convert the holding cost of IRP over the whole planning horizon

to penalties in PCST so that the PCST solutions eventually form a good IRP solution. Next, we explain in

more detail our contributions to applying ideas from PCST solutions in deriving better computational results

for IRP.

Contributions.

1. We exploit a conceptual reduction proposed by Fukunaga et al. (2014) from periodic IRP to PCST

and extend the ideas to the general IRP.

2. We design a new suite of algorithms for general IRP using this reduction to look for local improve-

ments. In particular, we define a very large neighborhood search step and reduce it to a PCST problem.

3. We implement the algorithms and compare their performance using a data generation model similar

to Archetti et al. (2012) but without the capacity constraints on the vehicles and clients, resulting in

much faster solution time while still obtaining low optimality ratio.

4. Extending the local search ideas for IRP, we refine the algorithms to solve the capacitated IRP (CIRP)

by penalizing any infeasibility until reaching a solution satisfying the capacities. We implement the

algorithms on randomly generated instances of CIRP using the same data generation model and obtain

similar results, with slightly larger ratios than the uncapacitated case.

Techniques. Our heuristics are inspired by the approximation algorithm for the periodic IRP in Fukunaga

et al. (2014). In the periodic IRP, we are given additionally a set of frequencies f0, . . . , fk to assign to the

clients. Assigning a client v to frequency f means that v must be visited exactly every f days. A feasible

solution will choose a frequency from the available set for each client and produce a delivery schedule that

obeys the assigned frequencies. Thus, the periodic IRP is more restrictive than the general IRP we consider

here. Fukunaga et al. (2014) exploits the restriction of periodic schedules by reducing the periodic IRP to

the Prize-Collecting Steiner Tree (PCST) problem such that the holding costs are simulated by the penalties

of PCST. The idea of the reduction is to create a copy of the input graph per frequency fi. For the ith copy

of the graph, scale the edge costs by roughly T/fi because the clients assigned frequency fi are to be visited

bT/ficmany times in the schedule. Denote by vj the copy of v in the jth graph. To capture the holding costs

of periodic IRP, they set the penalties p(vj) so that
∑i−1

j=0 p(vj) is the holding cost for v if v is visited every

fi days (Section 3.3.1 contains an example of how we adapt this to our setting). In this way, the connection

cost and penalty cost of the PCST instance correspond to the routing cost and holding cost of the periodic

IRP instance. See Fukunaga et al. (2014) for more details.

We adapt their idea to propose three types of heuristics that each take advantage of solving the easier PCST

problem. First, our local search heuristics use PCST to quickly perform large neighborhood search among

35

the potential improvements per round. In our work, we designed a new greedy construction heuristic for

(uncapacitated) IRP using a reduction of the greedy step to a PCST problem. Our greedy heuristic uses

PCST to determine the best density demand set to cover each round. The density of a set of demands for a

specified delivery day is the ratio of the total cost to satisfy the demand on the delivery day to the total units

of demands satisfied.

We also adapt the primal-dual method to design a primal construction heuristic for uncapacitated IRP. While

the algorithm proceeds using a reverse waveform method introduced in earlier work of Levi et al. (2006),

we introduce a new additional step of choosing routes in each period by solving an appropriately defined

PCST. The primal-dual heuristic uses PCST to guide the growth of the dual values and identify the set of

demands to serve. Since the performance of greedy and primal dual is dominated by that of the local search

heuristics, we defer the details of greedy and primal dual heuristics to the Appendix A.1 and A.2. We

describe the motivation for using PCSTs in Section 3.3.

For the capacitated case, we identify a set of knapsack constraints to add to the PCST instance. The La-

grangian relaxation is solved via the classic subgradient ascent method to search for a high-quality feasible

solution. Each Lagrangian subproblem corresponds to a perturbed PCST instance which can be solved very

quickly to optimality using the solver developed by Leitner et al. (2016).

Results. We measure the quality for a solution value UB by its optimality gap (UB − LB)/UB where

the lower bound LB is computed from a mixed integer programming (MIP) formulation (the details can

be found in the Online Supplement). The MIP may be terminated early due to certain criterion, which is

detailed in Section A.3 and Section 3.6. For uncapacitated IRP, the MIP is terminated when the optimality

gap reaches 10%. For capacitated IRP, the MIP is terminated at one hour.

Uncapacited IRP: Among a suite of combinatorial heuristics we implemented, the Prioritized Local Search

outperforms others. Further extensive computational study on this heuristic shows that it achieves a median

gap between 5% to 7% across all instances and solves faster than the MIP by more than two orders of

magnitude.

Capacitated IRP: Given the effectiveness of the Prioritized Local Search heuristic, we investigated the per-

formance of a modified version of it, which obeys the truck capacity. We found that the optimality gap

decreases as we increase the number of clients and the length of the time horizon. In particular, we were

able to achieve a median gap lower than 20% when the number of locations is 70 and the length of the time

horizon is 9 days, while the MIP is unable to find any reasonable solution within an hour when the number

of trucks is 3 or 4.

Paper Outline. The remaining sections are organized as follows. In Section 3.2, we describe related

work. Section 3.3 describes three local search heuristics for uncapacitated IRP. Section A.3 shows the

computational results of the various heuristics across a range of input parameters on uncapacitated IRP

instances. Section 3.5 provides modified local search heuristics for CIRP. Finally, Section 3.6 shows the

36

results of the local search for CIRP.

3.2 Related Work

Methods for Capacitated IRP. For the capacitated single-vehicle deterministic IRP, Archetti et al. (2007)

introduced and found exact solutions for small benchmark instances of up to 50 clients over 3 days and up

to 30 clients over 6 days. Later Archetti et al. (2012) gave a heuristic combining tabu search with MIPs that

found near-optimal solutions to the small instances. They also improved upper bounds on large instances

of 200 clients over 6 days in the case of order-up-to-level policy. Recently Avella et al. (2018) provided re-

formulations under the maximum level policy with new valid inequalities and effective separation methods.

For the more general multivehicle case, Archetti et al. (2014) present and compare several formulations as

well as valid inequalities for capacitated IRP. Adulyasak et al. (2014) present branch-and-cut algorithms for a

more general setting called multivehicle production and inventory routing problem. Desaulniers et al. (2016)

provide a branch-price-and-cut algorithm, finding 54 new optima out of the 238 instances from Archetti et al.

(2012) with unknown optima. Archetti et al. (2017) give a metaheuristic that solves MIPs both before and

after tabu search. To initialize a solution, they formulate MIPs of different strengths and choose the MIP

based on the instance size, stronger MIP for smaller instances. Then the tabu search adds, deletes, or moves

visits. If the instance was small, the MIP after the tabu search fixes some variables to integer values based

on how often the variable is 0 or 1 among the solutions from the search. For large instances, the routes from

the tabu solutions are included as route variables in the MIP. They were able to improve the upper bound on

224 of the 240 large instances. Adaptive large neighborhood search has been used on IRP (Coelho et al.,

2012a) and Multi-vehicle IRP (Coelho et al., 2012b). Large neighborhood search has also been investigated

on other variants of IRP (Shirokikh and Zakharov, 2015; Aksen et al., 2014; Goel et al., 2012). The use of

Lagrangian methods for discrete optimization is extensively studied in the literature. We refer the interested

reader to the two excellent surveys by Fisher (1981) and Shapiro (1979) and references therein. For the

capacitated IRP, we follow the classic approach outlined in Held et al. (1974) for the Lagrangian relaxation

using subgradient ascent to search for a feasible solution. Lagrangian methods have been applied to variants

of IRP, see e.g. Chien et al. (1989), Shen and Qi (2007) and Yu et al. (2008).

To the best of our knowledge, there are no computational studies specifically geared towards the uncapac-

itated IRP considered here. However, as a starting point, we test our heuristics on uncapacitated instances

having the same parameter values (except for the vehicle and inventory capacities that we ignore) as the large

instances of size 200 by 6 in Archetti et al. (2012). In the case of capacitated IRP (CIRP), our results are not

directly comparable with the aforementioned existing results since we only consider the truck capacity, but

not the inventory capacity. We tested on instances of size up to 70 locations, 9 days and 4 vehicles including

vehicle capacities (but not inventory capacities), with all other parameters remaining the same as Archetti

et al. (2012). To evaluate the quality of our heuristics, we need to reduce the size of the instances in order to

37

obtain lower bounds within reasonable time from the MIP for CIRP.

Prize-Collecting Steiner Trees and Tours. Since we will use the solvers for PCST in our implementation,

we also review previous work on PCST. Specifically, we use the dual-ascent-based branch-and-bound solver

of Leitner et al. (2020) for PCST, which reaches near-optimality and performs the fastest on many categories

of instances from the DIMACS Challenge. Prior to this, Ljubić et al. (2006) and Fischetti et al. (2017)

provided the most competitive algorithms to find exact solutions for PCST. Whenever we obtain a tree from

the solver (Leitner et al., 2020), we convert the tree to a tour by running the TSP solver Concorde (Cook,

2015) on the subset of vertices spanned by the tree.

Theoretically, our greedy algorithm will solve a PCST problem to find low density set covers. The solution

to each PCST instance will come from the primal dual algorithm for PCST (Goemans and Williamson,

1995), whose analysis is used in eventually proving a logarithmic factor guarantee of our greedy algorithm

for IRP.

Besides our application of PCST to IRP, PCST and the related Prize-Collecting Steiner Forest (PCSF) prob-

lem have been applied in a variety of contexts. For example, PCST was used to extract seismic features when

the features form a small number of strong connected components (Schmidt et al., 2015). In a similar ap-

proach, the sparse recovery problem was solved by reducing to PCSF (Hegde et al., 2016). In computational

biology, solving PCSF identified high-scoring hits from RNA-interference that are connected (Berger et al.,

2013), linked yeast hits with hidden human genes (Khurana et al., 2017), and determined simultaneously

acting pathways in biological networks (Tuncbag et al., 2013).

Approximation Algorithms for IRP. On the theoretical side, approximation algorithms for special cases of

IRP have been studied but mostly for the uncapacitated versions that we study here. IRP on general metrics

has aO(log T
log log T)-approximation by Nagarajan and Shi (2016) and anO(logN)-approximation by Fukunaga

et al. (2014). For variants of periodic IRP, Fukunaga et al. (2014) provide constant approximations. Another

special case of IRP is the joint replenishment problem (JRP). JRP is equivalent to IRP on a two-level tree

metric, where the first level has one edge of cost K0 and the second level consists of children of the first

level, with an edge of cost Ki for each commodity i. JRP is known to be NP-hard (Arkin et al., 1989) and

APX-hard (Nonner and Souza, 2009). On the positive side, Levi et al. (2006) give a 2-approximation via a

primal dual approach. The approximation factor was reduced to 1.8 in Levi et al. (2008) by LP rounding.

Bienkowski et al. (2014) improve the approximation factor further to 1.791 by randomized rounding.

3.3 Uncapacitated Local Search Heuristics

To solve the uncapacitated problem, we consider seven combinatorial heuristics: DELETE, ADD, Priori-

tized Local Search, greedy, pruned greedy, primal dual and pruned primal dual. Among them, the Prioritized

38

Local Search and ADD, which are based on solving a family of PCST problems, are shown to be the most

competitive by our computational experiments in the next section.

We briefly describe how a solution to the PCST problem can be used to implement a local search that

identifies tours to add. We use the total edge cost of a tree as a proxy of routing cost since it is generally

much easier to construct a tree than a tour. At each iteration of our heuristic, we encode as the penalty in a

PCST instance the change in the holding cost of adding or removing a visit to a client on a day. An optimal

PCST solution on that day will trade-off the holding cost change with the routing cost change. To obtain

an IRP solution at the end, we convert each day’s tree into a tour visiting the clients spanned by the tree

by calling Concorde on the graph induced by the spanned clients. We will apply the same conversion from

trees to tours in all other heuristics as well.

In Section 3.3.1, we introduce a local search procedure that applies only DELETEs. Section 3.3.2 describes

a local search procedure applying only ADDs. In Section 3.3.3 we introduce the DELETE-ADD operation

and define a more refined local search that applies all three operations in order of complexity.

3.3.1 DELETE

In the delete-only local search, we start with a feasible solution that visits everyone everyday and delete an

entire day’s visit as long as it makes an improvement.

We define the following notations needed for the algorithm. Let l(v, s) be the latest visit before day s that

visits v. Denote by Ts the existing tree on day s in the current step of the algorithm. For a subgraph F ⊆ G,

let E(F) and V (F) be the edge set and vertex set of F , respectively. We use the vector T to represent the

current set of existing trees on each day throughout the time horizon. Let t̂(v, s) be the latest day t such that

T does not visit v during the time interval [s + 1, t]. Notice that if a visit to v on day s is removed, then

each demand (v, t) with t ∈ [s, t̂(v, s)] would incur an extra holding cost of Hv
l(v,s),t −H

v
s,t. So we set the

penalty of removing v on day s to be

πs(v) :=

∑t̂(v,s)

t=s (Hv
l(v,s),t −H

v
s,t) if v ∈ Ts

0 else.
(3.1)

If the tree Ts on day s is deleted, then the routing cost decreases by c(E(Ts)) and the holding cost increases

by πs(V (Ts)). So the total change in cost for deleting the tree on day s is ∆DELETE(s) := −c(E(Ts)) +

πs(V (Ts)). Finally, the operation DELETE(s) removes the existing tree Ts on day s.

Denote by c(T) the total cost of a solution T. The improvement ratio of an operation is the magnitude of

the change in cost induced by the operation divided by the total cost of the current feasible solution. In

all of the local search heuristics, whenever we scan through the time period to find an improving step, we

39

will make the improving operation on the day that gives the best improvement while keeping the solution

feasible. To avoid potentially long running time, we shall stop looking for improvements whenever the best

possible improvement ratio is smaller than some small value, typically 0.01.

Now, we formally define the DELETE algorithm.

Algorithm 4: Local Search with DELETE

1 Initialize a feasible solution T
2 Let t′ = argmins∈[1,T]∆DELETE(s)

3 while |∆DELETE(t′)|
|c(T)| ≥ 0.01 do

4 DELETE(t′)

The initial feasible solution here is a “full” solution, where each day consists of a minimum cost tree that

visits everyone.

3.3.2 ADD

In the add-only local search, we start with a feasible solution and we find an optimal subset of clients to add

to the current subset on some day as long as it improves the total cost. To find the best subset of clients to

add on a given day s, we solve an appropriately constructed PCST problem whose cost captures the rewards

in terms of savings in holding cost when visits are added and the extra routing cost to connect the added

visits.

We use the same definitions of l(v, s), Ts, and t̂(v, s) from Section 3.3.1. However, the penalties now apply

to the clients not visited on the day we are adding visits. In particular, if a visit to v on day s is added, then

every demand point (v, t) with t ∈ [s, t̂(s, v)] saves a holding cost ofHv
l(v,s),t−H

v
s,t. So we set the penalties

as follows.

πs(v) :=

∑t̂(v,s)

t=s (Hv
l(v,s),t −H

v
s,t) if v /∈ Ts

0 else.
(3.2)

The total change in cost is ∆ADD(s) := c(E(PCSTs))−πs(V (PCSTs)), where PCSTs denotes an opti-

mal PCST solution on the instance G with penalty function πs and edge weights defined as follows.

ws(e) :=

{
c(e) if e /∈ Ts
0 else.

(3.3)

The reason we set edge costs to 0 for the edges in Ts is that the existing tree should be free to use for

40

Figure 3.1: Here, we consider an ADD operation on day s. If a client v is added to the existing tree on day
s (shown in blue), then any demand point at v with deadline day t within s and t̂(v, s) would benefit from
the extra visit. The red segment represents the amount of holding cost that would be reduced for (v, t) if v
was visited on day s instead of day l(v, s). To reach v from the existing tree, the extra routing required is
represented by the purple path connecting the blue tree to v.

connecting to the vertices that the PCST adds to the visit set. Notice that minimizing c(E(PCSTs)) −
πs(V (PCSTs)) is the same as minimizing this quantity after adding a fixed constant value πs(V). After this

addition, the total minimization objective becomes c(E(PCSTs)) +πs(V \V (PCSTs)). Thus solving the

PCST with its original objective function is consistent with minimizing ∆ADD(s). The operation ADD(s)

adds the tree E(PCSTs) to Ts covering the extra clients V (PCSTs). Figure 3.1 shows how the penalty at

each client captures the savings in holding cost if the client is added on a specified day.

Note that the neighborhood for the improvement step is of exponential size since each step decides which

subset of vertices to add to the current tree for some fixed day. Creating and solving the appropriate PCST

instance enables us to find the best improvement step quickly in practice. Unlike the DELETE step where

the PCST instance evaluates good possibilities for deletes (of which there are is at most one tree per day),

the ADD step uses the auxiliary PCST instance to carry out the very large neighborhood search efficiently,

and represents a key innovation in our algorithm. Algorithm 5 formally describes the ADD algorithm, where

the initial feasible solution used is a near-empty solution, which visits everyone only on day 1.

Algorithm 5: Local Search with ADD

1 Initialize a feasible solution T
2 Let t′ = argmins∈[1,T]∆ADD(s)

3 while |∆ADD(t′)|
c(T) ≥ 0.01 do

4 ADD(t′)

Proof. By the optimality of T, there cannot exist a subset of nodes which after adding, the solution value is

lower than the value of T. By the definition of algorithm 5, we would be able to find a subset of nodes to

add which gives the same (optimal) value as T.

41

3.3.3 Prioritized Local Search

For the prioritized local search, we start with the final solution from the ADD local search of Section 3.3.2.

Then we try three operations in order of complexity. First, we look for a day for which DELETE improves

the cost while preserving feasibility. If no such day exists, we look for one that ADD improves the cost on. If

still no such day exists, we look for a pair (s1, s2) of days such that the net change in cost ofDELETE(s1)

followed by ADD(s2) is negative and the operation leaves a feasible solution. As long as any of the three

operations makes an improvement, we continue updating the solution. Now we formally define the final

pairwise operation DELETE −ADD(s1, s2).

In the previous sections, the cost change ∆DELETE(s1) and ∆ADD(s2) were each computed relative to the

existing trees T. Here, ∆DELETE(s1) will be defined relative to the existing trees T, but ∆ADD(s2) will

be defined relative to the leftover trees after deleting Ts1 from T since we want to find the cost of adding to

day s2 right after deleting everything from day s1. To keep the context of which solution the cost changes

are computed on, we denote the new cost changes by ∆DELETE(T, s1) and ∆ADD(T− Ts1es1 , s2). Then

the change in cost for the pairwiseDELETE−ADD is ∆DA(s1, s2) := ∆DELETE(T, s1)+∆ADD(T−
Ts1es1 , s2).

We test prioritized local search starting with the solution from greedy and primal dual, respectively, as the

initial feasible solution.

In the prioritized local search, the cost-minimizing pair of days for DELETE-ADD often has s1 coinciding

with s2, although they are different occasionally. Most of the time s1 coincides with s2 since having both

operations on the same day allows optimizing for the best visit set for that day. Note that ∆DA(s, s) ≤ 0

for all s as the operation would choose a set that has better or equal cost as the current set on day s. As a

heuristic to reduce the run time of prioritized local search, we also test the restricted version of it that only

applies DELETE-ADDs to the same day, i.e., DELETE −ADD(s, s).

3.4 Uncapacitated IRP Results

In this section, we examine the solution quality of our heuristic methods. We measure the quality for a

solution value UB by its optimality gap (UB − LB)/UB where the lower bound used for computing this

gap is obtained by solving a MIP, whose detail can be found in Appendix A.3. We first show in Section 3.4.2,

via a set of preliminary tests, that the Prioritized Local Search and ADD are the most competitive heuristics

among others, including DELETE, greedy, pruned greedy, primal dual and pruned primal dual. Since the

Prioritized Local Search builds upon ADD as explained in Section 3.3.3, we proceed in Section 3.4.3 to

focus solely on the former and conduct extensive computational tests to study its performance as multiple

problem parameters vary.

42

3.4.1 Experimental Setup

All the heuristics were implemented in C++ on an Intel Xeon processor X5680, 3.33 GHz machine with 8

GB RAM. Each heuristic uses 1 thread. A copy of the code and data used to conduct the experiments is

available on Github at https://github.com/yjiao18/EuclideanIRP. The MIP was solved by

Gurobi Version 7 on default settings using 8 threads. We report the runtime directly without accounting for

the number of threads.

We follow the same data generation model of the largest instances tested in Archetti et al. (2012), except

that our model has no capacity constraints at vehicles and store locations. More specifically, below is how

our data sets were generated.

• The location of each client is sampled uniformly from a 500× 500 grid

• The holding cost per day at each client is sampled uniformly from the interval [0.1, 0.5]

• In addition we introduce a parameter H as the scaling factor for the holding cost, i.e. the objective

function is r(S) +H×h(S), where r(S) is the routing cost and h(S) is the holding cost of a solution

S, Therefore a larger H is oriented towards a solution that pays more attention to optimizing holding

cost.

3.4.2 Comparison of Different Heuristics

Recall we use N and T to denote the number of clients and days respectively. To compare the performance

between different heuristics, we create three data sets, each with one parameter vary in a meaningful range.

For each data set, we generated 100 test instances and computed the lower bound via a MIP (detailed in

Appendix A.3, which was set to terminate when the MIP gap reaches 10%.

• In the first set, N varies from 110 to 160 in increments of 10 while H is fixed to 2.6 and T fixed to

6. We picked H = 2.6 because results on varying H indicated that the highest gaps of the heuristics’

occur around H = 2.6, which means the trade-off between routing cost and holding cost is hardest

there.

• In the second set, T varies from 6 to 18 in increments of 2 while N = 50 and H = 2.6. We

kept H = 2.6 for the aforementioned reason and chose a smaller N to accommodate the increased

computation time that the MIP requires on instances with large T .

In the Online Supplement, we describe the results from letting H vary from 0.01 to 6.01 in increments of

0.5 while fixing N at 100 and T at 6. We chose N = 100 and T = 6 to keep the base values the same as

large instances in Archetti et al. (2012).

43

https://github.com/yjiao18/EuclideanIRP

For each test, we solve 100 instances using each heuristic and report the boxplot of corresponding optimality

gaps in Figures A.6 and A.8. The main finding is that the heuristics achieving the best gap and solution

time are the Prioritized Local Search and ADD. Below we explain in more detail our findings when we vary

each parameter.

Varying N

Here, T and H are fixed to 6 and 2.6, respectively. The number of clients N varies from 110 to 160

at increments of 10. Due to limited computation time, results which require MIP values are restricted to

N ≤ 140. The heuristics in order from lowest to highest gap are Local Search with ADDs and Prioritized

Local Search, Pruned Primal Dual, Local Search with DELETEs, Pruned Greedy, Primal Dual, and Greedy.

The gap values of the heuristics did not form any particular patterns with respect to N . Results of the gap

are detailed below.

• Local search with ADDs and Prioritized Local Search both have gaps of 1.04.

• Local search with DELETEs has slightly higher gap than Pruned Primal Dual, from 1.09 to 1.1.

Varying T

Here,N andH are fixed to 50 and 2.6, respectively. The number of days T varies from 6 to 18 in increments

of 2. Results that involve MIP values are available only up to T = 16 due to the MIP’s high computation

time. In order from lowest to highest gap, the heuristics are Local Search with ADDs and Prioritized

Local Search, Local Search with DELETEs, Pruned Primal Dual, Pruned Greedy, Primal Dual, and Greedy.

Results for the gap are detailed below.

• Local search with ADDs and Prioritized Local Search both have gaps ranging from 1.03 to 1.08.

• Local search with DELETEs’ gap does not exhibit any trend with respect to T . The gap ranges from

1.03 to 1.09.

3.4.3 Comparison between the Prioritized Local Search and the Baseline MIP

Since Section 3.4.2 shows the Prioritized Local Search outperforms other heuristics, we proceed to study its

solution quality as we vary two parameters N and T while keeping H fixed. We choose to vary N and T

because the performance of both the MIP and the heuristic is more sensitive to these two parameters. More

specifically, here are the range of values we tested.

• The number of clients N = 40, 50, 60, 70

• The number of days T = 3, 5, 7, 9

44

Figure 3.2: Comparison of methods for the uncapacitated case by varying the number of locationsN (colors
online). The fixed parameters have values H = 2.6 and T = 6. The vertical points span the gap values of
the 100 instances tested for each value of N . The gaps for Delete, Add, Prioritized Local Search, Pruned
Greedy, Primal Dual, and Pruned Primal Dual are shown in vertical stripes, horizontal stripes, downward
diagonal stripes, upward diagonal stripes, zig zags, and bricks, respectively. Greedy is omitted in this plot
due to its high gap relative to the other heuristics. See Appendix A.3 for the plot including all heuristics.

45

Figure 3.3: Comparison of methods for the uncapacitated case by varying the time horizon T (colors online).
The fixed parameters have values N = 50 and H = 2.6. The vertical points span the gap values of the 100
instances tested for each value of T . The gaps for Delete, Add, Prioritized Local Search, Pruned Greedy,
Primal Dual, and Pruned Primal Dual are shown in vertical stripes, horizontal stripes, downward diagonal
stripes, upward diagonal stripes, zig zags, and bricks, respectively. Greedy is omitted in this plot due to its
high gap relative to the other heuristics. See the Online Supplement for the plot including all heuristics.

46

For each parameter setting, we randomly generated 10 instances following the procedure in Section 3.4.1.

The gap of the Prioritized Local Search is computed with respect to the lower bound found by the MIP. Each

MIP is terminated when either the MIP gap reaches 10% or the solution time exceeds one hour. The speedup

factor is computed as the ratio between the solution time of the MIP and the Prioritized Local Search. In

Figure 3.4 our result is reported in a 4 × 4 grid where each cell corresponds to the gap comparison for an

(N,T) pair. Similarly the speedup factor is reported in Figure 3.5. These two figures jointly summarize the

relative performance of the heuristic against the MIP since the speedup factor must be evaluated along with

the corresponding gaps provided by these experiments.

Recall each MIP terminated whenever the gap reaches 10%, or the solution time exceeds one hour. Fig-

ure 3.4 shows that, for any (N,T) pair, the median gap of the Prioritized Local Search is smaller than the

median MIP gap and remains between 5% to 7%. The gap of our heuristic remains stable and does not show

any worsening pattern as N and T increases. On the other hand, the median MIP gap is between 8% to 10%

except for instances of the largest size where N = 70 and T = 9 shown in the bottom-right corner. In fact,

the MIP gap of this test displays a large variation from 10% to 97%, with a median of 19.38%, whereas the

average gap of our heuristic is 5.79%.

Figure 3.5 shows that the runtime of our heuristic. It can be seen that the runtime increases slightly as N

and T increases, and all instances are finished within 10 seconds.

3.4.4 True Optimality Gap when MIP is solved exactly

Recall each MIP is set to terminate before the optimal solution is found. Therefore we computed the gap

(UB − LB)/UB of our heuristic for those data sets where an optimal solution could be found within

reasonable time. Table 3.1 reports this gap for four small data sets. It shows that median gap of our heuristic

is between 3% to 4%. We remark that no instance is solved to optimality by our heuristic.

N T Min Gap (%) Median Gap (%) Max Gap (%)

30 3 0.26 3.68 6.04
30 5 1.62 3.32 7.80
40 3 0.82 3.86 5.48
40 5 1.98 3.32 5.48

Table 3.1: Gap (UB−LB)/UB of the Prioritized Local Search heuristic for uncapacitated instances solved
to optimality. N is the number of clients and T is the number of days.

47

Figure 3.4: Comparison of methods for the uncapacitated case. A 4 × 4 grid of the gap comparison when
varying N and T . Starting from the top-left corner, N increases from 40 to 70 at an interval of 10 along the
vertical axis and T increases from 3 to 9 at an interval of 2 along the horizontal axis. The scales of y-axis
are all the same except for the bottom-right figure.

3.5 Capacitated Local Search

Recall in Section 3.4.2 the Prioritized Local Search is shown to outperform other heuristics. Since the

Prioritized Local Search is built upon two heuristics: ADD and DELETE, we explain how to modify them

to incorporate the vehicle capacity. It is not hard to see that ADD and DELETE defined for uncapacitated

instances can lead to infeasibility when vehicles have capacity constraints. Indeed, adding too many nodes

48

Figure 3.5: Runtime of the heuristic for the uncapacitated case. A 4× 4 grid of the runtime of the heuristic
in seconds when varyingN and T . Starting from the top-left corner,N increases from 40 to 70 at an interval
of 10 along the vertical axis and T increases from 3 to 9 at an interval of 2 along the horizontal axis.

on a particular day could make the total demand of that day exceed the total truck capacity. Similarly

deleting too many nodes could lead to infeasibility on previous days. To restore feasibility, we modify ADD

and DELETE based on Lagrangian relaxation. At a high level, for a fixed operation on a fixed day, we

associate a knapsack constraint with each day where the capacity can be violated. Then we dualize the set

of knapsack constraints and iteratively update corresponding multipliers via subgradient ascent. We remark

that each iteration has a nice interpretation as solving an instance of PCST with modified penalties. The

49

algorithm terminates when either we reach feasibility or the maximum number of iterations allowed. If the

obtained solution is still not feasible, we do not make any change to the current day and move on to perform

local search for the next day. The next two sections explain the modifications for ADD and DELETE in more

detail. Section 3.5.3 combines ADD and DELETE to carry out each local search step. Finally Section 3.5.4

converts PCST solution into tours which respect the capacity constraint.

3.5.1 Capacitated ADD

We use the same notation as Section 3.3.2. ADD finds a set of additional clients to deliver on a given day

s. Since only day s may increase its total demand after ADD, this operation can only cause day s to be

infeasible. We associate a knapsack constraint for day s. For v /∈ V (Ts) let xv = 1 if v is added and 0

otherwise. Let ye = 1 if edge e is used. Let δs be the slack for day s which is the difference between total

capacity and the total demand on day s and Dv be the demand to deliver if v is added on day s. Let πs be

the same penalty defined in Section 3.3.2. We formulate the PCST problem with a knapsack constraint as

follows:

min
∑
e∈E

ceye +
∑

v/∈V (Ts)

πv(1− xv) (3.4)

subject to PCST constraints (3.5)∑
v/∈V (Ts)

Dvxv ≤ δs (3.6)

where (3.5) refers to classic cut type PCST constraints, see e.g. Bienstock et al. (1993). We next dualize

constraint (3.6) and obtain the following Lagrangian function:

L(λ) = min{
∑
e∈E

ceye +
∑

v/∈V (Ts)

(πv − λDv)(1− xv)− λδs + λ
∑

v/∈V (Ts)

Dv, subject to PCST constraints}

where λ is the dual multiplier. Below we explain why the classic subgradient method by Held et al. (1974)

can be used to guide us towards feasibility. The subgradient method updates the dual multiplier after solving

the Lagrangian subproblem in an iteration. The generic update rule is

λk+1 = λk + αk(Ax
k − b) (3.7)

where k is the iteration number, the dualized constraint is Ax ≤ b and αk is the step size to be discussed

later. In our case, the Lagrangian subproblem is an instance of PCST with penalty of node v /∈ V (Ts)

decreased by λDv to discourage adding too many nodes. Notice this subproblem can be solved very fast in

practice via the solver by Leitner et al. (2020). Therefore the proposed algorithm can be seen to decrease

penalty until we reach feasibility or the maximum number of iterations allowed. The latter case indicates

50

the slack of the current day s may be too small to add some more nodes, so we do not make any change to

the current day.

The step size used most commonly in practice is (justification of this formula is given in Held et al.

(1974)):

αk =
µk(L̄− L(λk))

‖Axk − b‖22
(3.8)

where µk is a scalar satisfying 0 < µk ≤ 2 and L̄ is an upper bound on the Lagrangian relaxation value,

frequently obtained by applying a heuristic to the problem. Often the sequence µk is determined by setting

µ0 = 2 and halving µk whenever L(λ) has failed to increase in some fixed number of iterations. We start

with µ0 = 2 and use the above step size strategy.

3.5.2 Capacitated DELETE

Similar to capacitated ADD, we associate a knapsack constraint with each day where the total demand

on that day can exceed total capacity. Because deletion could make multiple previous days infeasible,

we have multiple knapsack constraints. More specifically, let Γs be the set of latest visit days of visited

nodes on day s. Let P be the partition of V (Ts) based on Γs, i.e., for t ∈ Γs, Pt := {v ∈ V (Ts) :

latest visit day of v, l(v, s) = t}. Let δt be the slack of day t ∈ Γs. Let x, y be the same indicators as in

capacitated ADD. The PCST problem with knapsack constraints can be written as:

min
∑
e∈E

ceye +
∑

v∈V (Ts)

πv(1− xv) (3.9)

subject to PCST constraints (3.10)∑
v∈Pt

Dv(1− xv) ≤ δt, ∀t ∈ Γs (3.11)

The Lagrangian subproblem becomes:

L(λ) = min{
∑
e∈E

ceye +
∑
t∈Γs

∑
v∈Pt

(πv + λtDv)(1− xv), subject to PCST constraints}

We start with the initial penalty defined in Section 3.3.1 and each Lagrangian subproblem solves a PCST

instance with increased penalties which discourages deleting too many nodes. Dual multipliers are updated

in the same fashion as (3.7) and (3.8). The algorithm terminates when we reach feasibility or the maximum

number of iterations. The latter case indicates the slack of the previous affected days may be too small to

receive more demand due to deletion on day s, so we do not make any change to the current day s.

51

3.5.3 Prioritized Local Search

We start with the following initial solutions: on a fixed day, we either visit no one or visit everyone, and

we do not make any visit until the accumulated demand over time exceeds the total capacity of trucks. We

then perform local search on this initial solution: for ADD and DELETE, we respectively choose the day

that would result in the best improvement to perform the operation. We then choose the better of the two

operations. Notice we only perform one of the two operations instead of both of them sequentially – the

latter option is not more effective than the former one based on our initial testing. We terminate the local

search once the improvement ratio becomes less than 1% or we have run more than 1000 iterations.

3.5.4 From PCST to Feasible Subtours

Notice once the set of visits is fixed, the routing plan on each day reduces to an instance of the capacitated

vehicle routing problem (CVRP). We use the following simple heuristics to solve the CVRP for each day.

We break up the TSP tour obtained from Concorde into several subtours: visit the nodes in the order of the

tour and form a new subtour when the accumulated demand has exceeded the total capacity. For the subset of

nodes inside this new subtour, we then re-run the concorde solver and get a possibly cheaper subtour.

3.6 Capacitated IRP Results

In this section, we examine the solution quality of our heuristic method. We measure the quality of a solution

value UB by its optimality gap (UB − LB)/UB where the lower bound used for computing this gap is

obtained by solving a MIP by the branch-and-cut algorithm – details can be found in Appendix A.3. Recall

from Section A.3 that N,T,H are the number of clients, the number of days and the holding cost multiplier

respectively. In this section we introduce two new parameters –K to denote the number of available vehicles

and U to denote the vehicle capacity.

3.6.1 Experimental Setup

Heuristics were implemented on the same machine setup as the uncapacitated case (Section 3.4.1). A copy of

the code and data used to conduct the experiments is available at https://bitbucket.org/OrionT/

irp-code/src/master/.

52

https://bitbucket.org/OrionT/irp-code/src/master/
https://bitbucket.org/OrionT/irp-code/src/master/

3.6.2 Parameter Settings

In addition to the number of clients N and the number of days T , we add parameters K as the number

of vehicles and U as the vehicle capacity. We assume each vehicle is homogeneous. The ranges of these

parameters are detailed below.

• Time horizon T = 3, 5, 7, 9

• Number of clients N = 40, 50, 60, 70

• Number of vehicles K = 1, 2, 3, 4

• The capacity of a vehicle is set to the average demand per day multiplied by 2 divided by the number

of vehicles; Here multiplying by 2 is chosen in a heuristic fashion since we expect a vehicle delivery

roughly every two days.

For each parameter setting, we randomly generate 10 instances following the procedure in Section 3.4.1.

3.6.3 Performance Evaluation

In Figure 3.6, we report the optimality gap of the Capacitated Prioritized Local Search and the MIP. Fig-

ure 3.7 shows the runtime of our heuristic method. The termination criterion for the MIP is one hour. Below

we summarize our findings.

• In terms of the median gap, the MIP generally outperforms our heuristic method when N ≤ 60 and

T ≤ 5.

• For each fixed N and fixed K, the median gap of the heuristic generally decreases as T increases.

This is due to the larger neighborhood resulting from larger T , which provides more opportunities for

the local search to improve the cost of the solution.

• Our heuristic method tends to outperform MIP when the problem size becomes larger. More specifi-

cally, for K ≥ 3, N ≥ 60 and T ≥ 7, the heuristic finds a better solution than the MIP. This is again

because, as we increase N and T , the size of the neighborhood considered by our heuristic becomes

larger, while the MIP becomes more difficult to solve. As a result, our heuristic is likely to find better

solutions for larger sized instances.

• Our heuristic achieves a steady runtime of a few seconds across all test instance. The MIP generally

terminates at its time limit of one hour and is thus omitted from Figure 3.7.

Therefore it is recommended to apply our heuristic method when the problem size becomes larger, because

it is more likely to find a good solution due to the larger size of the neighborhood that can be searched, and

53

requires significantly less time to find a good solution than the MIP.

Figure 3.6: Comparison of methods for the capacitated case. A 4 × 4 grid of the gap comparison when

varying N , T and K. Starting from the top-left corner, N increases from 40 to 70 at an interval of 10 along

the vertical axis and T increases from 3 to 9 at an interval of 2 along the horizontal axis. K varies from 1 to

4 within each cell. Diagonal stripe pattern indicates MIP optimality gap.

54

Figure 3.7: Runtime of the heuristic for the capacitated case. A 4 × 4 grid of the runtime of the heuristic

when varying N and T . Starting from the top-left corner, N increases from 40 to 70 at an interval of 10

along the vertical axis and T increases from 3 to 9 at an interval of 2 along the horizontal axis. K varies

from 1 to 4 within each cell.

3.6.4 True Optimality Gap when MIP is solved exactly

We report the Gap (UB − LB)/UB of our heuristic for some data sets where an optimal solution can be

found within reasonable time. Table 3.2 reports this gap for four small data sets. It shows that the optimality

55

gap generally decreases as we increase T .

N T Min Gap (%) Median Gap (%) Max Gap (%)

30 3 19.67 25.93 31.47
30 5 8.50 13.11 17.75
40 3 23.24 27.42 32.31
40 5 10.45 15.09 17.15

Table 3.2: Gap (UB − LB)/UB of the capacitated Prioritized Local Search heuristic for capacitated in-

stances solved to optimality. N is the number of clients and T is the number of days and the number of

trucks is one.

3.7 Conclusion

In this chapter, we studied the deterministic inventory routing problem over a discrete finite time horizon.

Given clients on a metric, each with daily demands that must be delivered from a depot and holding costs

over the planning horizon, an optimal solution selects a set of daily tours through a subset of clients to deliver

all demands before they are due and minimizes the total holding and tour routing costs over the horizon. For

the capacitated case, a limited number of vehicles are available, where each vehicle makes at most one trip

per day. Each trip from the depot is allowed to carry a limited amount of supply to deliver.

Motivated by an approximation algorithm proposed by Fukunaga et al. (2014) which relies on a reduction to

a related problem called the prize-collecting Steiner tree (PCST) problem, we develop local search heuristics

for uncapacitated IRPs. In particular, we define a very large neighborhood search step and reduce it to

a PCST problem. Extending the local search ideas to the capacitated case, we refine the algorithms by

penalizing any infeasibility until reaching a solution satisfying the capacities. Computational experiments

show that proposed methods can find near optimal solutions for both cases and substantially reduce the

computation time compared to a MIP-based approach.

56

Chapter 4

A Study on the Traveling Salesman Problem
with Drone

4.1 Introduction

Vehicle routing problems have become increasingly important with the evolution of online shopping and

fulfillment and a variety of delivery services. The use of unmanned aerial vehicles, or drones, for this

purpose is actively explored by industry (Otto et al., 2018). A common model is to equip a delivery truck

with one or more drones to deliver packages in parallel to the truck (UPS, 2017). Unlike the traditional

setting where a fleet of vehicles have little operational constraints to each other, the drone operation is

highly constrained to the truck operation because it needs to pick up packages for delivery from a truck. As

a result the completion time also depends on the waiting time incurred due to the synchronization between

the truck and the drone.

In this paper we study the design of optimal joint truck and drone routes under this scenario. We consider

the elementary case where only one truck and one drone is available. Given a set of customers to be served

either by a truck or a drone, our objective is to minimize the completion time of the entire delivery task, i.e.

the total time it takes to serve all customers. For operational simplicity, we assume the drone can only be

dispatched at a customer location and the service time at each location is instant. In a feasible solution, the

truck route forms a tour which starts from and returns to the depot with a subset of customers served along

the tour. Each remaining customer is served by the drone which is dispatched from a customer location

and returns to a (possibly different) location on the truck tour. We follow Agatz et al. (2018) and call this

problem the traveling salesman problem with drone (TSP-D).

Contributions. Our first contribution is a proof that the TSP-D is strongly NP-hard even in the case when a

57

truck route is given and we need to optimally integrate the remaining drone visits. Our second contribution

is a new constraint programming (CP) formulation that relies on representing the TSP-D as a scheduling

problem. We show experimentally that at the time of publication, our CP approach outperforms the best

exact method from the literature, and is competitive with a state-of-the art heuristic method in terms of

solution quality.

Finally in Section 4.6 we discuss our attempt of using logic-based Bender decomposition.

4.2 Related Work

In this section, we provide a literature review on TSP-D, which can be viewed as a subfield of a more

general research area called drone-assisted routing. For other variants of drone-assisted routing problems,

we refer the interested reader to two recent comprehensive surveys by Macrina et al. (2020) and Chung et al.

(2020).

The hybrid truck and drone model was first studied by Murray and Chu (2015). In this work the au-

thors present two new variants of the traditional TSP called the flying sidekick traveling salesman problem

(FSTSP) and the parallel drone scheduling TSP (PDTSP), respectively. In FSTSP, the truck cooperates with

the drone during the routing process while in PDTSP, different vehicles operate as independent work units.

The authors present an integer programming model which is solved by Gurobi. Since it takes several hours

to solve instances of 10 customers, they propose a heuristic which starts by finding a solution of the classic

TSP, and then attempts to insert the drone and remove some customers from truck route by evaluating the

achievable savings. Agatz et al. (2018) slightly relaxes the assumption in Murray and Chu (2015) to allow

the truck to wait at the same location while the drone makes its delivery. They term this problem TSP-D. The

authors propose an exponential-sized integer programming model. Faced with the similar scalability issues,

they propose two route-first, cluster-second heuristics based on local search and dynamic programming and

show that substantial savings are possible with this hybrid logistics model compared to truck-only delivery.

Ponza (2016) proposes a simulated annealing heuristic for TSP-D and tested his method on a set of instances

with up to 200 customers. Poikonen et al. (2019) propose a specialized branch-and-bound procedure, which

includes boosted lower bound heuristics to further speed up the solving process. They analyze the trade-off

between objective value and computation time, as well as the effect of drone battery duration and drone

speed. Other (meta)heuristic algorithms for FSTSP or TSP-D have also been proposed in the literature, see

e.g., Carlsson and Song (2018); de Freitas and Penna (2020); Yurek and Ozmutlu (2018).

Variants of TSP-D have also been studied in the literature. Macrina et al. (2020) further relax problem

assumptions to allow the drone to be launched and connect to a truck either at a node or along a route arc.

They present a greedy randomized adaptive search procedure (GRASP). Energy consumption of drones is

considered in Dorling et al. (2017); Ferrandez et al. (2016). In addition to energy consumption, Jeon et al.

58

(2019) considers other practical limitations of drones such as ‘no fly zones’. Ha et al. (2018) consider a TSP-

D variant where the objective is to minimize operational costs including total transportation cost and the cost

incurred by vehicles’ waiting time. They present two heuristic algorithms for solving the min-cost TSP-D.

Ha et al. (2020) extends their previous work (Ha et al., 2018) by considering two objective functions: the first

one minimizes the total operational cost while the second one minimizes the completion time. The authors

propose a hybrid genetic algorithms which combines genetic search and local search. Salama and Srinivas

(2020) present mathematical programming models to jointly optimize customer clustering and routing and

propose a machine learning warm-start procedure to accelerate the MILP solution.

Compared with the popularity of heuristic methods, only a limited number of research papers have been pub-

lished on exact algorithms for TSP-D. Yurek and Ozmutlu (2018) develop a decomposition-based iterative

algorithm that solves instances optimally with up to 12 customers. A three-phase dynamic programming ap-

proach is proposed by Bouman et al. (2018), which can optimally solve instances with up to 15 customers.

Vásquez et al. (2021) proposes a Benders decomposition algorithm with additional valid inequalities and

improved optimality cuts. They are able to solve instances with up to 24 customers. The current state-of-

the-art is achieved by Roberti and Ruthmair (2019) via a branch-and-cut-and-price (BCP) algorithm with

ng-route relaxation. The proposed algorithm can solve optimally instances with up to 40 customers within

one hour of computation time.

The first theoretical study is by Wang et al. (2017), who consider the more general vehicle routing problem

with multiple trucks and drones. They study the maximum savings that can be obtained from using drones

compared to truck-only deliveries (i.e. TSP cost) and derive several tight theoretical bounds under different

truck and drone configurations. Poikonen et al. (2017) extend Wang et al. (2017) to different cases by

incorporating cost, limited battery life and different metrics respectively.

4.3 Problem Definition

The Traveling Salesman Problem with Drone (TSP-D) can be formally defined as follows. We are given a

complete directed graph G = (V,A). The vertex set V = {0, 0′}∪N where both 0 and 0′ represent a single

depot andN represents a set of customers. The arc setA is defined asA = {(0, j) : j ∈ N}∪{(i, j) : i, j ∈
N, i 6= j} ∪ {(j, 0′), j ∈ N}. Each customer demands one parcel. A single truck, equipped with a single

drone is used to complete the overall delivery task. They start together from the depot, visit each customer

by either vehicle and finally return to the depot. During the process, the drone may travel separately from the

truck for parcel deliveries before reconnecting with the truck at some point, therefore potentially increasing

efficiency via parallelization. The time for the truck and the drone to traverse arc (i, j) ∈ A is denoted by

tTij and tDij respectively. Furthermore, we make the following assumptions about the behavior of the truck

and the drone.

59

1. The truck can dispatch and pick up a drone only at the depot or at a customer location. The truck

may continue serving customers after a drone is dispatched and reconnect with the drone at a possibly

different node;

2. Due to capacity and safety considerations, the drone can only deliver one parcel at a time;

3. The vehicle (truck or drone) which first arrives at the reconnection node has to wait for the other one;

4. Once the drone returns to the truck, the time required to prepare the drone for another launch is

negligible.

Our objective is to minimize the completion time, i.e. from the time the truck is dispatched from the depot

with the drone to the time when the truck and the drone return to the depot.

Notation. Let n := |N | be the number of customers. A truck node is a node visited by the truck alone.

Similarly, a drone node is a node visited by the drone alone. A combined node is a node visited by both the

truck and the drone. In a feasible solution to TSP-D, denote Vd as the set of drone nodes, and Vn := V \Vd
as the set of non-drone nodes (including the depot) visited by the truck either with or without the drone atop

the truck. For i ∈ Vd, let p(i) be the dispatch node where the drone is dispatched right before visiting i, q(i)

be the pick up node where the drone returns immediately after visiting i. Let Et be the set of edges in the

truck tour. For i, j ∈ Vn, let Tij denote the path induced by Et and w(Tij) =
∑

a∈Tij t
T
ij . Consider a partial

drone schedule where the drone is dispatched from the truck at node j, visits node i and meets up with the

truck at node k (we allow j = k). We call this partial drone schedule a drone activity and use a shorthand

notation j → i→ k to represent this activity.

4.4 Theoretical Analysis

In this section, we perform theoretical analysis on TSP-D. In particular, we prove the NP-hardness of a

restricted problem and develop an approximation algorithm for a special case.

4.4.1 Computational Complexity

Solving the TSP-D to proven optimality is computationally challenging. While the TSP-D is known to be

NP-hard due to a reduction from TSP, we aim to provide more insight in the computational difficulty by

considering a restricted version, which we call the drone routing problem (DRS). Below We prove strong

NP-hardness result for this restricted version.

60

We associate the drone activity j → i→ k with a cost cijk defined as

cijk = max{0, tDji + tDik − w(Tjk)} (4.1)

This is the marginal time a drone activity adds to the truck tour. Given Vn, Vd and Et, we define a set of

drone activities to be feasible if (1) each drone node in Vd appears in exactly one drone activity and (2) any

pair of activities do not overlap in time.

We now define the drone routing problem as follows:

Definition 4.4.1 (Drone routing problem). Given Vn, Vd, Et. The drone routing problem is to find a feasible

set of drone activities with minimum total drone activity cost.

We show that DRS is strongly NP-hard by a reduction from 3-partition.

Definition 4.4.2 (3-Partition). Given positive integersm,B and 3m positive integers x1, . . . , x3m satisfying∑3m
q=1 xq = mB and B

4 < xq <
B
2 for q = 1, . . . , 3m. Does there exist a partition of the set Y =

{1, . . . , 3m} into m disjoint subsets Y1, . . . , Ym such that
∑

q∈Yi xq = B for i = 1, . . . ,m?

Theorem 4.4.1. The drone routing problem is strongly NP-hard.

Proof. We prove the theorem when the costs are symmetric and truck and drone traverse at the same speed,

i.e. tTa = tDa , ∀a ∈ A. We give a pseudo-polynomial time reduction from 3-partition. Given an instance

of 3-partition as in Definition 4.4.2, we construct a graph with m(B + 1) non-drone nodes and 4m drone

nodes. The truck route connects m paths Pi, each having B+ 1 nodes and B unit edges. Edges that connect

two paths are assigned ε = 1
2m . Direct all edges in the cycle counterclockwise. The tail of a directed path Pi

is defined as the tail of the first arc in Pi. We similarly define the head of Pi. The drone nodes are partitioned

into two disjoint sets A and B. A has 3m nodes v1, . . . , v3m. For i = 1, . . . , 3m, vi is connected to each

node on the cycle via an edge of weight xi2 . B containsm dummy nodes u1, . . . , um. For i = 1, . . . ,m, each

ui is connected to the head of Pi and tail of Pi+1 via two edges of weight ε2 (we assume Pm+1 = P1). Other

edges connected to ui are assigned a unit weight so metric inequality holds. Below we show Lemma 4.4.2,

from which the theorem follows.

Lemma 4.4.2. There exists a 3-partition if and only if there exists a feasible solution to the above DRS

instance of zero total cost.

Proof. ‘if’: connect each dummy node ui to the head of Pi and tail of Pi+1. Without loss of generality

assume the feasible partition is {x3k+1, x3k+2, x3k+3} for k = 0, . . . ,m− 1. Then v3k+1, v3k+2, v3k+3 are

connected to path Pk in the following way: v3k+1 is connected to the first node and (x3k+1 + 1)-th node on

the path, v3k+2 is connected to (x3k+1 + 1)-th and (x3k+1 + x3k+2 + 1)-th nodes, v3k+3 is connected to

(x3k+1 + x3k+2 + 1)-th and xB+1-th nodes. It is easy to check that the total cost is zero.

61

(1,1,5)

(1,2,4)

(2,2,3)

(1
,3

,3
)

Figure 4.1: An example of the reduction, with m = 4, B = 7 and feasible partitions (1, 1, 5), (1, 2, 4),
(1, 3, 3), (2, 2, 3). Drone activities are shown as dashed lines and dummy nodes are marked as solid. While
each drone node has the same distance to any node on the truck cycle, we put the drone nodes outside the
cycle for visualization purposes.

‘only if’: we claim each dummy node ui in any solution with zero total cost must be connected to the head

of Pi and tail of Pi+1: suppose not, note for any t 6= i, ui cannot be connected to the head of Pt and tail

of Pt+1 since otherwise such a drone activity has non-zero cost. As a result any drone activity which visits

ui covers at least a unit-length edge on the cycle. Therefore after visiting ui, remaining edges on the cycle

have at most mB − 1 +mε = mB − 1
2 < mB length to use for visiting the remaining drone nodes. Notice

each visit of a node vl ∈ A must cover a path at least xl to make the drone activity cost zero and each visit

must cover non-overlapping path on the cycle, which is a contradiction to the fact that the remaining edge

length on the cycle is less than mB. Therefore we’ve shown the claim. The result follows by reversing the

steps in the ‘if’ part to partition drone nodes into m sets where each set contains 3 nodes that are visited by

using edges in the same path.

4.4.2 Approximation Algorithm for a Special Case

A common simplification in the literature of TSP-D is the following: assume the graph is undirected, and

the truck is ρ times slower than the drone, i.e. for each edge e, tTe = ρtDe (ρ ≥ 1). In the remaining of this

section, we take the above assumptions. Below we present a constant-factor approximation algorithm for

this special case. Our algorithm applies a simple reduction to the ring-star network design (RSND) problem

defined below,

Definition 4.4.3 (Ring-Star Network Design Problem). We are given an undirected graph G = (V,E) with

non-negative edge cost ce for e ∈ E. The problem is to pick a tour (ring backbone) on a subset of the

nodes and connect the remaining nodes to the tour such that the sum of the tour cost and the access cost

is minimized. The cost of connecting a non-tour node i to a tour node j is cij . An edge used to connect

non-tour node to a tour node is called an access edge. The access cost includes the cost of all access edges.

On the other hand, the cost of including an edge e in the tour is ρce where ρ ≥ 1 is a given non-negative

62

constant which reflects the ratio between the cost per unit length of a tour edge and that of an access edge.

Ravi and Salman (1999) obtained a constant-factor approximation algorithm for the RSND by LP rounding

with filtering. The performance of their algorithm is summarized in the following lemma (Corollary 2 of

Ravi and Salman (1999)):

Lemma 4.4.3. There exists a polynomial-time (3 + 2
√

2)-approximation algorithm for RSND.

To reduce TSP-D to RSND, we construct an instance of TSP-D and an instance of RSND on the same graph

G = (V,E) with the same edge cost ce and truck-drone speed ratio ρ. Let vtspd, vrsnd be respectively the

optimal solutions to TSP-D and RSND. The following lemma relates the two quantities.

Lemma 4.4.4. vtspd ≥ 2
3vrsnd

Proof. Due to the synchronization requirement in section 4.3, the vehicle (truck or drone) that arrives at the

pick-up node first has to wait for the other one. Therefore the total completion time of TSP-D is at least the

travel time of the truck tour and that of the access connection traveled by the drone, i.e.,

vtspd ≥ ρ
∑
e∈Et

ce (4.2)

vtspd ≥
∑
i∈Vd

cp(i),i + ci,q(i) ≥ 2
∑
i∈Vd

ci,N(i) (4.3)

where the second inequality (4.3) holds since N(i) is i’s nearest non-drone node. Therefore we have

3vtspd ≥ 2ρ
∑
e∈Et

ce + 2
∑
i∈Vd

ci,N(i)

≥ 2vrsnd

where the first inequality follows by using the two lower bounds obtained above.

Combining lemma 4.4.3 and 4.4.4 and noticing that a feasible solution to RSND is also feasible to TSP-D,

we have

Theorem 4.4.5. There exists a polynomial-time (9
2 + 3

√
2)-approximation algorithm for TSP-D.

Finally we remark that inequality (4.2) and (4.3) form a non-trivial lower bound on the optimal value of

TSP-D. We will use this fact in Section 4.6 to obtain a valid subproblem relaxation.

63

4.5 Constraint Programming Formulation

An essential feature of a truck-drone schedule is the synchronization between truck and drone operations.

This poses a significant challenge to construct a MIP model with a tight linear relaxation. Below we explain

how to construct a compact CP with O(n2) variables and constraints, using the constraint-based scheduling

formalism introduced in IBM ILOG CPLEX (2017); Laborie (2009); Laborie et al. (2018). The CP solver

IBM ILOG CP Optimizer Laborie et al. (2018) provides an expressive modeling language based on the

notion of interval variables representing the execution of an activity. Its domain encodes the presence status

(Boolean) (true if the activity is executed). When a is present, it is represented by variables s(a) for its start

time, e(a) for its end time, and d(a) for its duration, obeying the relationship d(a) = e(a) − s(a). On the

other hand, an absent interval variable is not considered by any constraint or expression on interval variables

in which it is involved. An activity can be forced to present or declared ‘optional’, i.e. its presence status

can be either true or false to be decided by the solver. Below we assume all interval variables are optional

unless stated otherwise.

Recall the number of nodes including the starting and ending depot is n+ 2. Denote both node 0 and n+ 1

as the depot (leaving and returning). For each node i define three sets of interval variables: dVisit[i]

and tVisit[i] and visit[i]. For each customer i, tVisit[i] represents the time interval between

the truck arriving at i and leaving from i. Each dVisit[i] represents the time interval (if i is a drone cus-

tomer) between the drone leaving to serve i and the drone rejoining the truck. The variable visit[i] rep-

resents tVisit[i] if i is not a drone customer and dVisit[i] otherwise. For each node i, we create two

interval variables dVisit before[i] and dVisit after[i] which represent splitting dVisit[i]

(if present) into the interval before i is served and after i is served. For each pair (i, j), we define two interval

variables tdVisit[i][j] and dtVisit[i][j], where the former represents the drone leaving from

j to serve i and the latter represents the drone leaving from drone customer i to rejoin the truck at j. As an

example, an activity i→ j → k is composed of tdVisit[i][j] and dtVisit[i][k], which are con-

strained to be equivalent to dVisit before[i] and dVisit after[i] respectively. The complete

model is presented in pseudocode in Figure 4.2.

In the CP model (Figure 4.2), the objective endOf(visit[n+1]) is the end time of visist[n+1],

i.e. the time that both vehicles return to the depot. Constraints can be divided into three categories: (a) set

basic properties (presence, duration, etc.) of interval variables (line 4-16) (b) set correct logical relationships

or representations between interval variables (line 17-28) and (c) set precedence relations between interval

variables (line 29-40). Below we provide a detailed description of these three categories.

Line 5 requires each customer to be visited either by truck, drone or together. Line 6-7 forbid the drone to

deliver packages to the depot. Line 8-9 require that the tour starts from the depot and ends at the depot. Line

10-12 constrain the drone fly range to be shorter than R. Line 13-16 state that, if drone flies from j to i, then

travel time is at least tDij .

64

1 minimize
2 endOf(visit[n+1])
3 subject to {
4 // basic properties of variables
5 forall (i in 0...n+1) setPresent(visit[i])
6 setPresent(tVisit[0])
7 setPresent(tVisit[n+1])
8 first(tVisit, tVisit[0])
9 last(tVisit, tVisit[n+1])

10 forall(i in 0...n+1) {
11 dVisit[i].setUB(R)
12 }
13 forall(i, j in 0...n+1) {
14 tdVisit[i][j].setLB(tDji)
15 dtVisit[i][j].setLB(tDij)
16 }
17 // representations and logical constraints
18 forall(i in 0...n+1) {
19 alternative(visit[i], [tVisit[i], dVisit[i]])
20 alternative(dVisit before[i], [all (j in 0...n+1) tdVisit[i][j]])
21 alternative(dVisit after[i], [all (j in 0...n+1) dtVisit[i][j]])
22 span(dVisit[i], [dVisit before[i], dVisit after[i]])
23 presenceOf(dVisit[i]) == presenceOf(dVisit before[i]) && presenceOf(dVisit after[i])
24 }
25 forall(i, j in 0...n+1) {
26 ifThen(presence of(tdVisit[i][j]), presence of(tVisit[j]))
27 ifThen(presence of(dtVisit[i][j]), presence of(tVisit[j]))
28 }
29 // temporal constraints
30 noOverlap(tVisit, tT)
31 noOverlap(dVisit)
32 forall(i in 0...n+1) {
33 endBeforeStart(dVisit before[i], dVisit after[i])
34 }
35 forall(i, j in 0...n+1) {
36 startBeforeStart(tVisit[j], tdVisit[i][j])
37 startBeforeEnd(tdVisit[i][j], tVisit[j])
38 endBeforeEnd(dtVisit[i][j], tVisit[j])
39 startBeforeEnd(tVisit[j], dtVisit[i][j])
40 }

Figure 4.2: A compact constraint programming formulation for TSP-D.

Constraints of the form alternative(a,A) where a is an interval variable and A is an array of interval

variables, states that when a is present, its start time (end time, resp.) will be equal to the start time (end

time, resp.) of one of the intervals in A. Therefore line 19 states that each customer i is either visited by

the drone or not. Line 20 states that for each customer i, dVisit before[i] (if present, i.e. if i is a

drone customer) denotes the interval between the drone leaving j for some j and arriving at i. Similarly, line

21 states that for each customer i, dVisit after[i] (if present) denotes the interval between the drone

leaving i and arriving at j for some j. Constraints for the form span(a,A) states that, if a is present, the

interval starts together with the first present interval inA and ends together with the last present interval inA.

Therefore line 22 states that each dVisit[i] (if present) can be divided into dVisit before[i] and

dVisit after[i]. Line 23 states that, for each customer i, the presence of dVisit[i] is equivalent

65

to the presence of dVisit before[i] and dVisit end[i]. Similar logical constraints are imposed

from line 25-28.

Constraints of the form noOverlap(tVisit, tT) state that whenever both tVisit[i] and tVisit[j]

are present, tVisit[i] is constrained to end before the start of tVisit[j] by at least tTij amount of

time. Similarly noOverlap(dVisit) states that intervals denoting drone deliveries cannot overlap. Con-

straints for the form endBeforeStart(v1, v2) imposes a temporal constraint between interval v1 and

v2: it requires that v1 cannot end before the start of v2. Other temporal constraints such as startBefore,

startBeforeEnd, endBeforeEnd, startBeforeEnd are all similarly defined. It can be veri-

fied that line 35-40 implements the synchronization constraint between the truck and the drone.

Computational Experiments

We implemented and solved our CP model with CP Optimizer version 12.8.0, using the Python interface

DOcplex. Our experiments are run on a 2.2GHz Intel Core i7 quad-core machine with 16GB RAM. We

compared our approach to the two best approaches from the literature: the exact dynamic programming

(DP) algorithm in Bouman et al. (2018), and the branch-and-bound algorithm from Poikonen et al. (2019).

The implementation of the latter relies on the assumption that the drone has a finite range, for which the

method is not guaranteed to provide optimal solutions.

Runtime w.r.t. the number of locations. We first present the results on the exact comparison. Since

benchmark instances used in Bouman et al. (2018) are not publicly available, we follow their approach to

generate 10 uniform instances of each size and set the truck-drone speed ratio two. Table 4.1 reports the

average runtime (in seconds) of our approach (CP) and the reported runtime from Bouman et al. (2018)

(DP). While DP can solve the smaller problems faster than CP, our approach scales more gracefully.

Size 10 11 12 13 14 15 16 17 18

CP 6.79 5.71 16.66 15.66 50.83 120.59 216.46 375.49 564.22
DP 1.00 4.00 12.00 56.00 306.00 1568.00 9508.00 – –

Table 4.1: Runtime comparision (s) of CP and DP (exact)

Runtime w.r.t the truck-drone speed ratio. Computational experience from the literature suggests that

the problem becomes easier when the truck-drone speed ratio is large. To understand how sensitive our CP

approach is w.r.t. different ratios, we report in Figure 4.3 the average runtime of instances solved above with

the number of locations equal to 15. It confirms the finding from the literature that the problem is easier to

solve when the ratio becomes larger.

66

2 4
Truck-drone Speed Ratio

100

200

300

400

Ru
nt

im
e

(s
)

Figure 4.3: Runtime comparision (s) of CP varying the truck-drone speed ratio with 15 locations

Incumbent value for large instances. Finally we investigate the quality of incumbents found by CP Op-

timizer for large instances. Table 4.5 presents the comparison with the branch-and-bound method (BAB)

of Poikonen et al. (2019) in terms of solution quality. For this experiment, we apply a time limit of 10 min-

utes for each instance. As a benchmark, we use the same dataset as Poikonen et al. (2019) (25 instances of

each size). The speed ratio is set to two and the drone range is limited to 20 as in Poikonen et al. (2019).

The table reports the mean objective value for each problem size. The results for BAB are the best solutions

found among all branch-and-bound heuristic variants. We note that the runtime of the BAB approach is

typically less than one minute. In comparison, we terminate our CP model at a time limit of 10 minutes.

These results show that the time-limited CP approach can produce competitive solutions for instances of up

to 60 locations but that the dedicated heuristic branch-and-bound outperforms CP on larger instances.

Size 10 20 30 40 50 60 70 80 90 100 200

CP 116.60 136.64 160.12 198.88 237.4 276.96 316.20 407.36 515.80 679.64 –
BAB 149.53 171.64 200.95 226.15 241.36 267.54 283.30 299.09 322.37 337.91 465.63

Table 4.2: Solution value comparison of CP and BAB (heuristic)

4.6 Logic-based Benders Decomposition

Inspired by the theoretical analysis in Section 4.4, we design a logic-based Benders decomposition (LBBD)

algorithm. Computational experiments and its limitations are discussed in Section 4.6.4.

On a high level, LBBD divides a complex decision-making process into hierarchical levels. For simplicity,

we assume a two-level decomposition below. The upper and lower level form a feedback loop, i.e. the upper

level tries to fix a subset of decisions, the lower level solves the resulting subproblem and returns to the upper

level useful information to improve the current decision. The process continues until we reach optimality or

67

prove infeasibility. For a formal presentation of LBBD, we refer the interested reader to Hooker (2019b).

We remark that a traditional Benders decomposition approach is proposed by Vásquez et al. (2021) and can

solve instances of about 20 customers.

The routing process of TSP-D naturally suggests the following decomposition: first we determine the parti-

tion of customers into drone and non-drone nodes, and then we construct truck and drone routes. Formally,

we can decompose the problem into a partition master problem (PMP) and a truck-drone scheduling sub-

problem (TDSS). The PMP is concerned with finding a partition for all customer nodes into truck and drone

nodes and the TDSS aims to find the optimal schedule for the truck and the drone to coordinate with each

other and visit each customer. We model our master problem as an integer program (IP) and our subproblem

as a constraint program (CP).

4.6.1 The Partition Master Problem

The master problem partitions each customer into either the truck node or the drone node. In order to

find a high-quality partition, it is important, as suggested in Hooker (2007) to include a relaxation of the

subproblem within the master problem. Our subproblem relaxation is inspired by the lower bound used in

the design of our approximation algorithm in section 4.4.2. Recall Vn, Vd are the set of non-drone and drone

nodes respectively. For each i ∈ Vd, p(i) is the truck node from which the drone is dispatched right before

visiting i, q(i) is the truck node to which the drone returns immediately after visiting i and N(i) is nearest

truck node to drone node i. Et is the set of edges in the truck tour. Let v be the optimal solution to SVRP-D.

The proof of lemma 4.4.4 also shows that v ≥ max{ρ
∑

e∈Et
ce, 2

∑
i∈Vt ci,N(i)}. We adapt an IP model

from Ravi and Salman (1999) to represent this lower bound. Define

xi =

1 if i is a truck node

0 otherwise

zij =

1 if non-tour node i is assigned to tour node j

0 otherwise

ye =

1 if edge e is chosen in the truck tour

0 otherwise

Note in the subproblem relaxation any drone node i is assigned to its nearest truck node N(i). These

decisions are captured by the set of z variables defined above. We allow self-assignment, i.e., zii = 1 when

i is a truck node. Recall 0 is the depot and N is the set of customer nodes. For any set S ⊂ N , δ(S)

denotes the cut around set S. We use y(δ(S)) as a shorthand expression for
∑

e∈δ(S) ye. The adapted IP

68

model (SPR) is formulated as follows:

min v (SPR)

s.t.
∑
j

zij = 1, ∀i ∈ V (4.4)

zij ≤ xj , ∀j ∈ V (4.5)

yij ≤ xi, yij ≤ xj , ∀i, j ∈ V (4.6)∑
j /∈S

zij +
1

2
y(δ(S)) ≥ 1, ∀i ∈ V, S ⊂ N (4.7)

v ≥ ρ
∑
e∈E

ceye (4.8)

v ≥
∑
i,j∈V

2cijzij (4.9)

xi, yij , zij ∈ {0, 1}, ∀i, j ∈ N0 (4.10)

Constraint (4.4) requires each node to be assigned to exactly one node (self-assignment is allowed when the

node itself is a truck node). Constraint (4.5) prevents invalid assignment to a drone node. Constraint (4.7)

is intended to capture the requirement of crossing certain cuts in the graph by edges in the subgraph that

connect the truck nodes. Consider a set of nodes S not including the depot r and a particular node i,

either i is assigned to some truck node outside S or S must contain at least one truck node. In the latter

case, there must be at least two edges crossing δ(S) due to the tour requirement on truck nodes. This

disjunction is expressed by constraint (4.7). Due to constraint (4.8) and (4.9), the objective function v is

lower bounded by ρ
∑

e∈E ce and 2
∑

i∈Vd ci,N(i), corresponding to the truck tour cost and drone connection

cost respectively.

Although (SPR) has exponential number of constraints, efficient row generation can be implemented via a

separation oracle based on a minimum cut procedure Ravi and Salman (1999). To separate a given solution

(x, y, z) over constraint (4.7) for a particular node i, we set up a capacitated undirected graph as follows:

For every edge (i, j) of the complete graph on the entire node set V , we assign an edge-capacity of yij/2.

We add a new node ui and assign the capacity of the undirected edge between ui and a node j ∈ V to be

zij . A polynomial-time procedure to determine the minimum cut separating r and pi can now be used to test

violation of all constraints of type (4.7) for node i. Repeating this for every node provides a polynomial-time

separation oracle for constraints (4.7).

69

4.6.2 The Truck-Drone Scheduling Subproblem

Given the partition of truck and drone nodes, the goal of the TDSS is to optimally schedule and coordinate

truck and drone routes so that each customer is visited. To solve the TDSS, wo formulate it as a scheduling

problem and use it by the CP Optimizer (Laborie et al., 2018). Although the CP model detailed in Section 4.5

models the original TSP-D (instead of the TDSS), it can be easily adapted to model the subproblem in the

following way. Recall Vn, Vd are the set of non-drone and drone nodes respectively. The change to make

to the CP model in section 4.5 is: for all k ∈ Vt, force tVisit[k] to be present and for all i ∈ Vd, force

dVisit[i] to be present.

4.6.3 Benders Cuts

Recall n is the number of customers and v is the objective function in the PMP. At iteration h, let V h
t , V

h
d be

the set of truck and drone nodes, xh be indicator variables for truck nodes. Let vhtdss be the optimal solution

to the TDSS given partition xh. We are only able to generate naive benders cuts of the following form

v ≥ vhtdss(
∑
i∈Vt

xhi +
∑
i∈Vd

(1− xhi)− n)

Recall |Vt ∪ Vd| = n + 1, therefore such a benders cut attains the value of vhtdss when x = xh and has

negative values otherwise. Based on the result shown by Hooker and Ottosson (2003), the addition of the

above benders cuts guarantees optimality as well as the finite convergence of the iterative process. We

discuss the challenge of generating stronger benders cuts in section 4.6.4.

4.6.4 Preliminary Results and Limitations

Preliminary tests on benchmark instances from Poikonen et al. (2019) show that the LBBD is able to solve

instances of n = 10 customers within 100 seconds, with a median of 40 seconds. However it fails to

converge when n ≥ 15. This is due to the following two reasons:

• The LBBD algorithm requires the subproblem to be solved exactly. In our decomposition, the sub-

problem is a non-trivial scheduling problem that is unscalable as the problem size increases;

• We are only able to generate nogood Benders optimality cuts which are ineffective to close the opti-

mality gap within a reasonable amount of time.

To overcome these issues, one should modify the decomposition in such a way that subproblems can be

completely decoupled from each other and solving each subproblem to optimality becomes easier. More-

over, stronger Benders cuts can be derived. Unfortunately, our alternative attempts along this direction so

70

far have been unsuccessful.

4.7 Conclusion

In this chapter, we studied a new routing problem called the traveling salesman problem with drone (TSP-

D) that involves the collaboration between traditional trucks and modern drones. The drone can pick up

packages from the truck and deliver them by air while the truck is serving other customers. The operational

challenge combines the allocation of customers to either the truck or the drone, and the coordinated routing

of the truck and the drone. In this work, we consider the scenario of a single truck and one drone, with

the objective to minimize the completion time (or makespan). Since TSP-D generalizes the well-known

traveling salesman problem (TSP), it is theoretically hard to solve to optimality. However this theoretical

result is not sufficient to explain the computational findings in the literature that TSP-D is significantly

harder to solve than TSP. To shed light on this question: we proved that this problem is strongly NP-hard,

even in the restricted case when drone deliveries need to be optimally integrated in a given truck route. We

then presented a constraint programming formulation that compactly represents the operational constraints

between the truck and the drone. Our computational experiments showed that solving the CP model to

optimality is significantly faster than the state-of-the-art exact algorithm at the time of publication. For

larger instances up to 60 customers, our CP-based heuristic algorithm is competitive with a state-of-the-

art heuristic method in terms of the solution quality. Finally, we described our attempts of a decomposition

approach based on the idea of logic-based Benders decomposition. We discussed its limitations and possible

alternatives.

71

72

Chapter 5

Truck-Drone Routing with Decision
Diagrams

5.1 Introduction

The problem of supplying customers using vehicles based at a central depot is generally known as a vehicle

routing problem (VRP). VRPs have become increasingly important with the evolution of online shopping

and fulfillment and a variety of delivery services. Alongide the growing commercial value of VRPs, tremen-

dous amount of research has been carried out on formulating and solving such problems. In this work, we

focus on exact algorithms for solving VRPs. Currently, the most effective exact algorithms are branch-

and-cut-and-price (BCP) algorithms. In general, a BCP algorithm is based on a mathematical programming

formulation with a huge number of variables. It starts with a small number of variables and iteratively gener-

ates new promising variables. As variables can also be viewed as columns in the model, this iterative process

is referred to as column generation (CG). The problem of finding new promising variables is referred to as

the pricing problem. Apart from CG, additional constraints may need to be identified and added as well,

which is referred to as cutting, and hence the name branch-and-cut-and-price.

In the context of VRPs, a BCP algorithm is typically based on a set partitioning (SP) formulation, where

an element represents a customer and a set represents a route. An element is contained in a set if and

only if the corresponding customer is visited in the corresponding route. Assuming the goal is to minimize

a certain objective function such as total travel time, an important building block of a BCP algorithm is

to obtain a tight lower bound on the optimal value. Such a bound is usually computed by solving the

linear relaxation of the SP, which is referred to as the master problem. The quality of this lower bound

crucially depends on the set of routes under consideration. At a first glance, one may only consider feasible

routes and exclude infeasible ones when solving the master problem, which indeed provides a tight lower

73

bound. However, this approach typically leads to a pricing problem as complicated as the original problem

itself. As a compromise, the set of routes under consideration is relaxed to also include infeasible ones in

such a way that it reduces the complexity of solving pricing problems without the quality of lower bounds

worsening excessively. Extensive research effort has been invested in designing effective route relaxations.

Generally speaking, researchers in the literature have focused on route relaxations that allow infeasible

routes excluding certain structures such as k-cycles. The resulting pricing problem is typically solved by

dynamic programming (DP).

In this chapter, we propose novel route relaxations based on decision diagrams (DDs). Our route relaxations

are motivated by close connections between DDs and DP models used for solving pricing problems. We

adapt techniques from the DD literature to tighten our route relaxations which in turn improves the lower

bounds. Furthermore, we propose two general approaches for deriving lower bounds from route relaxations

without solving the master problem by CG. Our approaches are based on a flow model with side constraints

and Lagrangian relaxation, respectively. Interestingly, these two approaches are shown to be equivalent

to CG in the sense that they all compute the same lower bound under the same route relaxation. Based

on these, we propose iterative frameworks which dynamically adjust route relaxations in order to compute

strong lower bounds. We numerically evaluate the performance of our iterative frameworks on a new and

challenging VRP variant called the Traveling Salesman Problem with Drone (TSP-D). Computational ex-

periments show that our approaches are able to generate lower bounds whose values are competitive to those

from the state-of-the-art BCP algorithm. Applied to larger problem instances where the BCP algorithm fails

to output a lower bound within an hour, our approaches are shown to outperform CP or other MIP-based

lower bounds.

The rest of this chapter is organized as follows. In Section 5.2 we review route relaxations used by BCP

algorithms and relevant background on DDs. In Section 5.3 we provide a formal definition of the TSP-

D. Section 5.4 provides preliminary information that connects DDs with DP models, as well as the set

partitioning formulation which forms the basis of our approaches. Section 5.5 describes our DD-based route

relaxations as well as techniques to refine those relaxations. Section 5.6 describes alternative approaches for

solving the master problem and Section 5.7 describes our iterative frameworks in detail. Key implementation

details are discussed in Section 5.8. Experimental evaluations are reported in Section 5.9.

5.2 Related Work

A BCP algorithm for a VRP uses CG to solve the master problem defined w.r.t a route relaxation. There

is typically a trade-off between the efficiency for solving the pricing problem and the quality of the route

relaxation: the higher the quality, the harder it is to solve the corresponding pricing problem. Extensive

research efforts have contributed to striking a balance between those two aspects. Below we review route

relaxations used by state-of-the-art BCP algorithms. We refer the interested reader to Chapter 3 of Toth and

74

Vigo (2014) and Costa et al. (2019) for other important components in BCP algorithms, such as cutting,

branching, etc.. For the literature review on TSP-D, we refer the reader to Section 4.2.

Pricing and Route Relaxation. For most VRPs, the pricing problem can be modeled as the elementary

shortest path problem with resource constraints (ESPPRC). Resources are quantities (e.g., time, load) used

to assess the feasibility or cost of a route. Dror (1994) showed that this problem is NP-hard in the strong

sense. For this reason, some authors have relaxed the ESPPRC to the shortest path problem with resource

constraints (SPPRC), where repeated visits to the same customer (i.e. cycles) are allowed. The SPPRC is

easier to solve than the ESPPRC as shown by Desrochers et al. (1992) who devised a pseudo-polynomial-

time algorithm. However, completely relaxing the elementarity of routes may significantly reduce the lower

bound quality obtained from the set partitioning formulation. As a result, several techniques have been

devised to seek a better compromise between bound quality and computational efficiency.

• k-Cycle Elimination. Christofides et al. (1981) introduced this technique that has been largely em-

ployed to avoid cycles. It consists of forbidding cycles of length k or less while solving SPPRC. The

use of 2-cycle elimination has been largely applied in the literature, as well as state-of-the-art tech-

niques as it yields stronger bounds without changing the complexity of the labeling algorithm used for

solving SPPRC (see e.g., Christofides et al. (1981)). To the best of our knowledge, k-cycle elimination

with k ≥ 3 has only been tested by Irnich and Villeneuve (2006) and Fukasawa et al. (2006).

• Partial Elementarity. Desaulniers et al. (2008) introduced another route relaxation called partially

ESPPRC. It requires elementarity only for a subset of customers, whose maximal cardinality is de-

termined a priori. This set is built dynamically from scratch by including customers that are visited

more than once in a route of the optimal solution to the current set partitioning formulation. Note that

if the maximal cardinality is less than the number of customers, there is no guarantee that elementary

routes will be obtained at the end of the algorithm.

• ng-Route Relaxation. Currently, state-of-the-art BCP algorithms use the ng-route relaxation in their

pricing procedures proposed by Baldacci et al. (2011). The ng-route concept relies on the definition

of a neighborhood Ni for each customer i, which is usually defined as k customers nearest to i, for

some parameter k chosen a priori. An ng-route is not necessarily elementary: it can contain a cycle

starting and ending at a customer i if and only if there exists another customer j such that j /∈ Ni.

An important parameter in this relaxation is k, the cardinality of the neighborhood. On the one hand,

the larger the value of k, the closer to the ESPPRC this relaxation becomes. On the other hand, the

algorithm complexity increases exponentially with the value of k.

In contrast with the above route relaxations which forbid repeated visits based on the past visiting history,

we propose novel relaxations based on DDs. Below we provide relevant background on DDs.

75

Decision Diagram. Decision diagrams are compact representations of Boolean functions, originally intro-

duced for applications in circuit design by Lee (1959) and widely studied and applied in computer science.

They have been recently used to represent the feasible set of discrete optimization problems, as demon-

strated in Becker et al. (2005) and Bergman et al. (2011, 2012). This is done by perceiving constraints of a

problem as a Boolean function representing whether a solution is feasible. Nonetheless, such DDs can grow

exponentially large which makes any practical computation prohibitive in general.

To circumvent this issue, Andersen et al. (2007) introduced the concept of a relaxed DD, which is a dia-

gram of limited size that represents instead an over-approximation of the feasible solution set of a problem.

Relaxed DDs have shown to be particularly useful as a discrete relaxation of the feasible set of optimiza-

tion problems. In particular, they can be embedded within a complete search procedure such as branch-

and-bound for integer programming (Tjandraatmadja and van Hoeve, 2019, 2020), backtracking search for

constraint programming (Cire and Van Hoeve, 2013; Kinable et al., 2017), or a stand-alone exact solver

for combinatorial optimization problems (Bergman et al., 2014a, 2016b; Castro et al., 2020). On the other

hand, the concept of a restricted DD was introduced by Bergman et al. (2014b) as a heuristic method for

optimization problems. A restricted DD represents an under-approximation of the set of feasible solutions.

O’Neil and Hoffman (2019) used restricted DDs as a primal heuristic for solving the traveling salesman

problem with pickup and delivery.

For the TSP-D, we make use of relaxed DDs to generate novel route relaxations. Unlike BCP algorithms

which solve the master problem via CG, we rely on a flow model with side constraints and Lagrangian

relaxation to compute lower bounds. Our constrained flow model is similar to the one in van Hoeve (2020),

which is used to computer lower bounds and refine relaxed DDs for graph coloring problems. Bergman et al.

(2015) first applied Lagrangian relaxation to DDs to obtain improved bounds and showed its effectiveness on

the traveling salesman problem with time window. This approach was used by Hooker (2019a) and Castro

et al. (2020) to obtain improved bounds for specific applications. In terms of general integer programming

models, Tjandraatmadja and van Hoeve (2020) explored a substructure amenable to DD compilations and

obtained improved bounds by Lagrangian relaxation and constraint propagation.

We enhance our route relaxations by iteratively refining relaxed DDs. Our refinement procedures are directly

inspired by constraint separation in van Hoeve (2020).

5.3 Problem Definition

The Traveling Salesman Problem with Drone (TSP-D) can be formally defined as follows. We are given

a complete directed graph G = (V,A). The vertex set V = {0, 0′} ∪ N where both 0 and 0′ represent a

single depot and N represents the set of customers. For technical reasons, we differentiate between 0 and

0′: we call 0 the starting depot and 0′ the ending depot. The arc set A is defined as A = {(0, j) : j ∈

76

N} ∪ {(i, j) : i, j ∈ N, i 6= j} ∪ {(j, 0′), j ∈ N}. Each customer demands one parcel. A single truck,

equipped with a single drone is used to complete the overall delivery task. They start together from the

depot, visit each customer by either vehicle and finally return to the depot. During the process, the drone

may travel separately from the truck for parcel deliveries before reconnecting with the truck at some point,

therefore potentially increasing efficiency via parallelization. The time for the truck and the drone to traverse

arc (i, j) ∈ A is denoted by tTij and tDij respectively. In general, the time to traverse an arc with the drone is

not greater than the time to traverse the same arc with the truck, i.e. tDij ≤ tTij , ∀(i, j) ∈ A. However we do

not need this assumption for our solution methods. Furthermore, we make the following assumptions about

the behavior of the truck and the drone.

1. The truck can dispatch and pick up a drone only at the depot or at a customer location. The truck

may continue serving customers after a drone is dispatched and reconnect with the drone at a possibly

different customer;

2. Due to capacity and safety considerations, the drone can only deliver one parcel at a time;

3. The vehicle (truck or drone) which first arrives at the reconnection customer has to wait for the other

one;

4. Once the drone returns to the truck, the time required to prepare the drone for another launch is

negligible.

Our objective is to minimize the completion time, i.e. from the time the truck is dispatched from the depot

with the drone to the time when the truck and the drone return to the depot.

Depot

1

2

3
4

5 6

7

8

Figure 5.1: A feasible solution to a TSP-D instance with eight customers

Example 1. Figure 5.1 illustrates a feasible solution to a TSP-D instance with eight customers and the

depot, i.e. customers 0 and 0′. The truck leaves the depot to visit customer 1 while the drone is dispatched

to visit customer 2. At customer 1 the truck and the drone have to be synchronized, and depending on the

travel time, either the truck waits for the drone (when tT01 > tD02 + tD21), or the drone waits for the truck

(when tT01 < tD02 + tD21). After they rejoin, the truck and the drone travel together to visit customer 3 and 4

77

consecutively. At customer 4, the drone is dispatched to visit customer 5 while the truck visits customer 6

and 7 consecutively. They rejoin at customer 7. The drone is dispatched to visit customer 8 before returning

to the depot while the truck returns directly to the depot. The total completion time of this solution is

computed as:

t = max{tT01, t
D
02 + tD21}+ tT13 + tT34 + max{tT46 + tT67, t

D
45 + tD57}+ max{tT70′ , t

D
78 + tD80′} (5.1)

In the remainder of this chapter, we adopt the same notations used by Roberti and Ruthmair (2019). Let

n := |N | be the number of customers. A truck customer is a customer visited by the truck alone. Similarly,

a drone customer is a customer visited by the drone alone. A combined customer is a customer visited by

both the truck and the drone. As an example, in Figure 5.1, customer 6 is a truck customer, customers

2, 5, 8 are drone customers and the rest are combined customers. A truck arc (drone arc, respectively) is an

arc traversed by the truck (drone, respectively) alone. A combined arc is an arc traversed by the truck and

the drone together. The solution in Figure 5.1 consists of four truck arcs ((0, 1), (4, 6), (6, 7), (7, 0′)), six

drone arcs ((0, 2), (2, 1), (4, 5), (5, 7), (7, 8), (8, 0′)) and two combined arcs ((1, 3), (3, 4)). A truck leg is

a concatenation of truck arcs traversed by the truck alone in between two consecutive combined customers.

A drone leg is a sequence of exactly two consecutive drone arcs traversed by the drone alone in between

two consecutive combined customers. A combined leg is a concatenation of combined arcs traversed by the

truck and the drone together that consists of combined customers only.

Example 2. The solution in Figure 5.1 consists of three truck legs (0 → 1, 4 → 6 → 7, 7 → 0′), three

drone legs (0 99K 2 99K 1, 4 99K 5 99K 7, 7 99K 8 99K 0′) and one combined leg (1 → 3 → 4).

An operation is a synchronized pair of a truck leg and a drone leg in between the same pair of combined

customers. Figure 5.1 consists of three operations, which we represent as [0 → 1, 0 99K 2 99K 1], [4 →
6 → 7, 4 99K 5 99K 7] and [7 → 0′, 7 99K 8 99K 0′] respectively. A TSP-D solution can be seen

as a concatenation of operations and combined legs. The solution in Figure 5.1 can be represented as

([0→ 1, 0 99K 2 99K 1], 1→ 3→ 4, [4→ 6→ 7, 4 99K 5 99K 7], [7→ 0′, 7 99K 8 99K 0′]).

We remark that a TSP-D solution can consist of operations only or a single combined leg. Based on the

above definitions, a route can be formally defined as follows:

Definition 5.3.1 (Route). A route is an ordered sequence of operations and combined legs that start from

the depot and end at the depot such that the final customer of each operation or combined leg coincides with

the initial customer of the subsequent operation or combined leg.

A route is feasible for the TSP-D if it visits each customer exactly once.

78

5.4 Preliminaries

In this section, we describe a dynamic programming (DP) model for the TSP-D and give a formal definition

of decision diagrams. These two concepts form the basis of our algorithms. We then connect them by

showing how to compile a DD based on a DP model.

5.4.1 Dynamic Programming Model

We slightly modify the DP model used by Roberti and Ruthmair (2019) to cater to our framework. Although

we will not use this exact DP to solve the TSP-D, elements in this DP model (state definition, state transition

function, etc.) are used throughout this chapter.

Recall from Section 5.3 that a solution to the TSP-D can be broken down into a concatenation of operations

and combined legs. By definition, each operation consists of a truck leg and a drone leg; each truck leg

is a sequence of truck arcs, and each drone leg is a sequence of exactly two drone arcs. Each combined

leg is a sequence of combined arcs. For example, the solution illustrated in Figure 5.1 can be represented

as ([0→ 1, 0 99K 2 99K 1], 1→ 3→ 4, [4→ 6→ 7, 4 99K 5 99K 7], [7→ 0′, 7 99K 8 99K 0′]). This can be

viewed as sequentially generating operation [0 → 1, 0 99K 2 99K 1], combined leg 1 → 3 → 4, operation

[4 → 6 → 7, 4 99K 5 99K 7] and finally operation [7 → 0′, 7 99K 8 99K 0′]. Each operation can be

generated by first generating the truck leg (one truck arc at a time), and then adding the drone leg. The

DP model we describe in this section is based on the idea that each TSP-D solution can be decomposed

into a set of truck arcs, drone legs, and combined arcs. Therefore, a complete solution can be generated

by sequentially adding a truck arc, a drone leg, or a combined arc at a time to a partial solution which is a

concatenation of operations and combined legs possibly followed by a concatenation of truck arcs.

In the DP model, the state information we maintain is the tuple (S, iC , iT , τ) where S is the set of forbidden

customers, i.e. those that cannot be visited when transitioning from this state, iC is the last customer visited

by the truck and the drone together, iT is the last visited by the truck and τ is the time spent by the truck

traveling alone since visiting iC . We start with an initial state ({0}, 0, 0, 0). A state transition takes place

when a control is applied to a state. For notational ease, we use A = (S, iC , iT , τ) to denote a state

and ω to denote a control. Γ(A,ω) is defined as the new state after transitioning from A by control ω.

The corresponding transition cost is denoted as γ(A,ω). Controls can be divided into the following three

categories:

1. Add a truck arc. This control is denoted as Tj where j is the customer or the depot to be visited by

the truck alone.

• If |S| < n, for each customer j ∈ N\S, a truck arc can be added to visit j, i.e. the truck travels

to j alone, and the current state transitions to Γ(A, Tj) = (S ∪ {j}, iC , j, τ + tT
iT j

) with cost

79

γ(A, Tj) = tT
iT j

;

• Else if |S| = n, a truck arc can be added to visit the depot 0′, i.e. the truck returns to the

depot, and the current state transitions to Γ(A, T0′) = (S ∪ {0′}, iC , 0′, τ + tT
iT 0′

) with cost

γ(A, T0′) = tT
iT 0′

;

• Else (consequently |S| = n + 1), no truck arc can be added – in this case, either both vehicles

are on their way back to the depot together, in which case 0′ /∈ S, or the truck is at the depot

with the drone finishing the last visit separately, in which case 0′ ∈ S.

2. Add a drone leg. This control is denoted as Dj where j is the customer to be visited by the drone

alone. For each customer j ∈ N\S, a drone leg can be added to visit j, i.e. the drone is dispatched

at iC to visit j and rejoins the truck at iT . As a result, the current state A transitions to Γ(A,Dj) =

(S ∪ {j}, iC , iC , 0) with cost γ(A,Dj) = max{0, tD
iCj

+ tD
jiT
− τ}.

3. Add a combined arc. This control is denoted by Cj where j is the customer or the depot to be visited

by the truck and the drone together. Controls of this type are allowed only if iC = iT . When this

condition holds, we further split into the following two cases:

• If |S| < n − 1, for each customer j ∈ N\S, a combined arc can be added to visit j, i.e.

the truck and the drone travels to j together. As a result, the current state A transitions to

Γ(A,Cj) = (S ∪ {j}, j, j, 0) with cost γ(A, Tj) = tT
iT j

;

• If |S| = n + 1, a combined arc can be added to visit 0′, i.e. the truck and the drone returns to

the depot together. As a result, the current state A transitions to Γ(A,C0′) = (S ∪{0′}, 0′, 0′, 0)

with cost γ(A,C0′) = tT
iT 0′

.

Example 3. The solution in Figure 5.1 can be decomposed into the following ordered sequence of controls:

(T1, D2, C3, C4, T6, T7, D5, T0′ , D8), with the following respective transition costs: tT01,max{0, tD02 + tD21−
tD01}, tT13, t

T
34, t

T
46, t

T
67,max{0, tD45 + tD57 − (tT46 + tT67)}, tT70′ ,max{0, tD78 + tD80′ − tT70′}. It can be verified that

the sum of transition costs coincide with the duration of this route.

Remark 5.4.1. By definition, |S| ≤ n + 2. In particular this holds for terminal states. In fact, we slightly

modified the transition function so that there exists exactly one terminal state, namely (N ∪{0, 0′}, 0′, 0′, 0),

which makes it easier to compile a DD (Section 5.4.3). Another slight modification is on the transition cost.

In particular, in our model, the transition cost of adding a truck arc (drone leg, respectively) to visit customer

j is tT
iT j

(max{τ, tD
iCj

+ tD
jiT
− τ}, respectively). On the other hand, their corresponding truck arc and drone

leg costs are 0 and max{τ, tD
iCj

+ tD
jiT
} respectively. In other words, their DP model ‘delays’ adding the

accumulated time spent by the truck traveling alone until a drone leg is added. We choose to define the

transition cost in such a way that it gives a more accurate estimate of the state quality, which is helpful when

we merge states to create a relaxed DD in Section 5.5.

80

Given the set of partial TSP-D solutions, we define the function

f(S, iC , iT , τ) (5.2)

as the minimum duration of any partial TSP-D solution that starts from the depot and visits the set of cus-

tomers S, where the last combined customer visited by the truck and the drone together is iC , the last vertex

visited by the truck is iT and the time by the truck traveling alone since visiting iC is τ . The function

f({0}, 0, 0, 0) is initialized as 0. Based on this and the observation that (N ∪ {0, 0′}, 0′, 0′, 0) is the only

terminal state (Remark 5.4.1), it is straightforward to show that:

Lemma 5.4.1. Value f(N ∪ {0, 0′}, 0′, 0′, 0) is equal to the minimum completion time t∗ of the TSP-D.

5.4.2 Basic Definitions of Decision Diagrams

For our purposes, a decision diagram (DD) will represent the set of solutions to an optimization problem

P defined on an ordered set of decision variables X = (x1, . . . , xm). The feasible set of P is denoted as

Sol(P).

A decision diagram for P is a layered directed acyclic graph D = (ND, AD) with node set ND and arc set

AD. D has m+ 1 layers that represent state-dependent decisions. The first layer is a single root node r and

the last layer is a single terminal node t. Layer j is a collection of nodes associated with the variable xj ,

for j = 1, . . . ,m. An arc a ∈ AD is directed from a node in layer j to a node in layer j + 1 and has an

associated label l(a) to denote the value of decision variable xj . Each arc, and each node, must belong to a

path from r to t. Each arc-specified r-t path P = (a1, a2, . . . , am) defines a variable assignment by letting

xj = l(aj) for j = 1, . . . ,m. We slightly abuse the notation and denote by Sol(D) the collection of variable

assignments defined by all r-t paths in D.

Definition 5.4.1. A decision diagram D is exact for problem P if Sol(D) = Sol(P). A decision diagram D

is relaxed for problem P if Sol(D) ⊃ Sol(P).

The benefit of using decision diagrams for representing solutions is that equivalent nodes, i.e., nodes with

the same set of completions, can be merged. A decision diagram is called reduced if no two nodes in a layer

are equivalent. For most applications, however, even reduced exact decision diagrams may be exponentially

large to represent all feasible solutions. In this case, heuristics can be devised to further merge states to

reduce the size, resulting in a relaxed decision diagram.

81

5.4.3 DD Compilation based on DP

On a high level, the state transition graph of a DP corresponds to a DD. Recall A = (S, iC , iT , τ) is the state

we maintain, ω denotes a control and Γ(A,ω) denotes the new state after transitioning from A by control ω

with transition cost equal to γ(A,ω). Let θ(A) be the set of feasible controls, i.e. those that can be applied

to A. The state transition graph of a DP is defined recursively. The initial state corresponds to a node of the

graph, and for a state A that corresponds to a node of the graph and a control ω ∈ θ(A), there is an arc from

that node to a node corresponding to Γ(A,ω). The arc has length equal to the transition cost γ(A,ω). A

shortest path from the initial state to the terminal state corresponds to an optimal solution to the TSP-D. This

state transition graph can be regarded as a DD, in which each layer (except the terminal layer) corresponds

to a stage of the recursion.

The above recursive definition can be converted into an algorithm. LetD be the DD which is being compiled.

In the algorithm, we represent D as a vector of n+ 2 ‘layers’, where each layer Lk is a data structure called

unordered map that stores {key, value} mappings based on hashing values of keys. Therefore Keys are

required to be unique. An unordered map has a field called keys that denote the set of keys from mappings

that are stored. It has two methods called insert that takes a mapping as the input and inserts that mapping

if its key does not exists already, and find that takes a key as the input and returns the mapping with that

key if it exists and a null pointer if not. For the TSP-D, a key in each layer is a state in the DP model and

a value is the graph node corresponding to that state. The main reason for using an unordered map instead

of other data structures such as a vector is that search based upon key values takes constant time, which is

useful, e.g., when we need to check the existence of certain states during the top-down compilation. A node

u in our DD is a class object which has a field u.A storing state information (S, iC , iT , τ). Node u also

contains a field u.arcs that stores its outgoing arcs. The field u.arcs is an unordered map where keys

are arc labels and values are (arc length, arc head) pairs.

The compilation algorithm (Algorithm 6) begins by initializing a root layer and a root node (line 1- 3). Then

we iteratively compile the DD as follows: for each node in layer k (k = 1, . . . , n + 1), we apply a feasible

control to its corresponding state (line 6). We check if the new state already exists among keys of the next

layer. If not, we create a new node corresponding to this new state in the next layer, and add an arc between

those two nodes (line 9- 12).

By construction an arc label represents a control in the DP model. Given a root-terminal path P =

(a1, . . . , an+1) in a DD constructed by Algorithm 6, it can be verified that (l(a1), . . . , l(an+1)) corresponds

to a feasible route for the TSP-D. The converse is also true by construction. Therefore we have:

Lemma 5.4.2. There is a one-to-one correspondence between a root-terminal path inD and a feasible route

for the TSP-D.

82

Algorithm 6: Exact DD compilation

1 create root layer L1 and root node ur
2 ur.A← ({0}, 0, 0, 0)
3 L1 ← {ur.A, ur}
4 for k = 1, . . . , n+ 1 do
5 Initialize layer Lk+1

6 for all u ∈ Lk and ω ∈ θ(u.A) do
7 A′ ← Γ(u.A, ω)
8 if A′ /∈ Lk+1.keys then
9 create node u′

10 u′.A← A′

11 Lk+1.insert({A′, u′})
12 u.arcs.insert({ω, (u′, γ(A,ω))}

5.4.4 Lower Bound from Set Partitioning

Our framework is based on the set partitioning (SP) formulation, where an element represents a customer

and a set represents a route (Definition 5.3.1). Let R be a valid route relaxation, i.e. a route set containing

all feasible routes (and possibly infeasible ones). Given a route r, let cr be the duration of route r. Let air
be the number of times customer i is visited in r. Define zr as the indicator that equals 1 if r is chosen and

0 otherwise. The set partitioning formulation is defined as follows:

t∗ := min
∑
r∈R

crzr (SP)

s.t.
∑
r∈R

zr = 1 (5.3)∑
r∈R

airzr = 1, ∀i ∈ N (5.4)

zr ∈ {0, 1}, ∀r ∈ R (5.5)

where constraints (5.3) ensure only one route is chosen in the end, constraints (5.4) ensure that each customer

is visited exactly once and constraints (5.5) are integrality constraints.

A feasible solution to (SP) corresponds to a feasible route. However solving (SP) (i.e. the set partitioning

problem) is NP-hard in general. The state-of-the-art algorithm (Roberti and Ruthmair, 2019) relies on the

linear relaxation of the SP, also referred to as the master problem, to obtain a lower bound and use it in a

branch-and-bound framework. In this chapter, we also focus on this linear relaxation. For notational ease,

we denote it by SPLP(R) to emphasize that this LP is defined w.r.t. a route relaxation R. As R contains

83

an exponential number of routes, solving the LP is a nontrivial task. Indeed, (Roberti and Ruthmair, 2019)

uses column generation, where the pricing problem is to find routes in R with negative reduced costs. They

observe that if the route set R only contains feasible routes, solving the pricing problem is as complicated

as solving the TSP-D itself. On the other hand, the more infeasible routes R contains, the worse the lower

bound value becomes. In order to obtain a better trade-off between the pricing problem complexity and the

lower bound quality, they propose ng-route relaxation, and solve the resulting pricing problem via DP. The

DP model for the ng-route relaxation allows infeasible routes of certain structure (see Section 5.5.1 for more

details).

Our approach is inspired by connections between their DP model and decision diagrams. More specifically,

recall Lemma 5.4.2 shows that solving a DP model corresponds to finding a shortest path from the root

to the terminal on the corresponding DD. As a consequence, a relaxed DD for the TSP-D gives rise to a

route relaxation. Indeed, the ng-route relaxation can be viewed as a relaxed DD. This simple observation

motivates us to adapt generic techniques developed by the DD community to compile and refine relaxed

DDs, which leads to novel route relaxations (Section 5.5). Furthermore, in Section 5.6 we present two

algorithms that compute lower bounds given a relaxed DD, without using CG to solve the SPLP defined

w.r.t. its corresponding route relaxation. Interestingly, it is shown that our approaches are equivalent to the

CG approach in the sense that they all obtain the same lower bound under the same route relaxation. Finally

in Section 5.7 we integrate all the techniques and present our iterative framework.

5.5 Route Relaxation

First we briefly describe the ng-route relaxation for the TSP-D by Roberti and Ruthmair (2019) and explain

why this relaxation corresponds to a relaxed DD. Then we apply generic techniques from the DD literature

to generate alternative route relaxations and discuss how to refine our DDs.

5.5.1 ng-Route Relaxation

Let us define for each customer i ∈ N , a set of customers Ni ⊂ N that contains the neighborhood of i, i.e.

the so-called ng-set. The ng-set usually contains the customers that are closest to i. An ng-route is a not

necessarily elementary route where a customer i ∈ N is visited more than once if and only if there exists at

least one customer j visited in between the two consecutive visits to i such that i /∈ Nj . The size of the sets

Ni determines the subtours allowed in the ng-routes, the quality of the lower bound returned by solving the

SPLP, and the difficulty of the pricing problem. Indeed, the larger the set Ni, the fewer subtours are allowed

in the ng-routes, the better the lower bound, but also the more time-consuming the pricing problem to solve.

In the extreme case where Ni = N for each customer i ∈ N , ng-routes cannot contain any subtour, so the

SPLP provides the best possible bound among all route relaxations, but the pricing problem would be as

84

complicated as solving the TSP-D itself. It is typically a trial-and-error process to choose a suitable size for

Ni for a specific application.

There exists a DP model for finding the shortest ng-route (Roberti and Ruthmair, 2019). As a result, we can

compile a DD in a similar fashion as Algorithm 6. Let us call it Dng. Based on the definition of ng-routes,

we can show that:

Proposition 5.5.1. Dng is a relaxed DD for the TSP-D.

Proof. By definition, the set of feasible routes is contained in the set of ng-routes. Therefore Dng is a

relaxed DD by Definition 5.4.1.

It is noted that BCP algorithms do not explicitly construct Dng to solve the pricing problem. Instead they

rely heavily on dominance rules to reduce the number of states to examine. More details on dominance rules

can be found in Roberti and Ruthmair (2019).

5.5.2 DD-based Route Relaxation

Generic techniques for creating relaxed DDs exist in the DD literature. In light of Proposition 5.5.1, a natural

question is: can we apply those techniques to produce a relaxed DD different from Dng, and how good is

the lower bound derived from this DD? Below we begin our investigation along these lines.

A relaxed DD can be compiled in either of the following two ways: one is by top-down compilation and the

other is by separation (Bergman et al., 2016a). The former one compiles a DD recursively starting from the

root based on a DP model, as described in Section 5.4.3. Additionally, one should also have a rule describing

how to merge nodes and perhaps how to adjust transition costs in a layer to ensure that the output DD will (a)

be a relaxed DD and (b) the length of each root-terminal path does not increase. The underlying goal of this

rule is to create a relaxed DD with a manageable size that provides a tight lower bound. The latter one starts

with a relaxed DD and applies constraint separations iteratively, i.e. changing the node and arc set of the DD

to remove the infeasible solutions that violate a particular constraint of the problem. This iterative process

can simply be stopped when the size of a layer grows too large and the output DD is still a relaxed DD. In

this section, we create an initial relaxed DD by top-down compilation with a problem-specific merging rule.

This rule consists of a merging heuristic and a merging operation which determine how to identify a set of

nodes to merge and how to merge a set of nodes, respectively.

Merging Heuristic. Recall from the DP model in Section 5.4.1 that a stateA for the TSP-D is represented

as a tuple (S, iC , iT , τ) where S is the set of customers visited so far, iC is the last visited combined cus-

tomer, iT is the last visited truck customer and τ is the time spent by the truck traveling alone since leaving

85

iC . To motivate our merging heuristic, consider the following case: two nodes to be merged have states

A1 = {S1, i
C
1 , i

T
1 , τ1} and A2 = {S2, i

C
2 , i

T
2 , τ2} respectively. To ensure no feasible solution is lost after

merging, the merged state should keep track of (iC1 , i
T
1) and (iC2 , i

T
2) simultaneously, since the feasible set

of controls of a state is related to its (iC , iT) pair (Section 5.4.1). As a result, we may end up using the set

representation {iC1 , iC2 } and {iT1 , iT2 } for iC and iT in the merged state, which is yet to be defined. Although

it is possible to define this representation, it leads to further issues such as a potentially loose relaxation. We

avoid these complications by simply forbidding A1 and A2 from merging if iC1 6= iC2 or iT1 6= iT2 . Given a

set of nodes whose states agree on (iC , iT) values, we apply a simple greedy heuristic for merging. This

merging heuristic is described below.

For a given layer, we first partition nodes by the value of (iC , iT) pair. A bucket B is defined as the set of

states within one partition class. The bucket size |B| is defined as the number of states in bucket B. Let M

be a parameter chosen a priori which denotes the maximum bucket size allowed after merging. For a bucket

B of size |B|, the greedy merging heuristic is defined as follows: if |B| < M , no merging needs to be done;

Else we sort nodes in B in increasing order of the length of the shortest path from the root to those nodes.

We then merge the last |B| −M + 1 nodes according to the merging operation defined below. By merging

nodes with larger shortest path lengths, we keep those most ‘promising’ nodes at the current layer exact and

relax those less promising ones which are less likely to participate in the set of optimal solutions.

Remark 5.5.1. Given M , the maximum bucket size allowed after merging, the number of nodes in a layer

is at mostO(Mn2) since there are at mostO(n2) buckets. Therefore the overall size of the resulting relaxed

DD is at most O(Mn3).

Merging Operation. Given a set of q states A1 = {S1, i
C , iT , τ1}, . . . , Aq = {Sq, iC , iT , τq} that agree

on (iC , iT), we use the symbol ⊕ as our merging operator and denote the merged node as A′ := ⊕qi=1Ai.

In order not to exclude any feasible solution, the set of customers that cannot be visited when transitioning

from A′ is defined as the intersection among visited customer sets, i.e. ∩qi=1Si. To define the state variable

τ of A′, notice that the only impact τ has is on the cost of taking a drone leg when transitioning from A′ (re-

call the definition of the transition function in Section 5.4.1). In particular, the large τ becomes, the smaller

the transition cost becomes. Therefore we define τ of state A′ as maxi=1,...,q τi. To sum up, the merging

operation is defined as:

Definition 5.5.1 (Merging Operation).

⊕qi=1Ai := (∩qi=1Si, i
C , iT , max

i=1,...,q
τi)

Given D, a relaxed DD and a root-terminal path P = (a1, . . . , an+1) in D, let r(P) denote the corre-

sponding route, i.e. r(P) = (l(a1), . . . , l(an+1)). Let γD(P) denote the length of path P in D, i.e.

86

γ(P) =
∑n+1

i=1 γ(ui.A, l(ai)), where (u1, . . . , un+1) is the ordered sequence of nodes on P . Recall cr(P)

denotes the duration of route r(P). When D is exact, we have γD(P) = cr(P). When D is relaxed, as we

shall see in Example 4, it may happen that γD(P) < cr(P).

Example 4. Consider an instance of 4 customers and the following two routes: r1 = (T1, T2, D4, C3, C0′)

and r2 = (T3, T2, D4, C1, C0′). For all a ∈ A, tTa = tDa . tT01 = tT12 = tT23 = 1, tT04 = tT42 = 2, tT03 =

3. Remaining arc lengths are omitted in this example. After taking the first two controls, we arrive at

A1 = ({0, 1, 2}, 0, 2, 2) and A2 = ({0, 2, 3}, 0, 2, 4) respectively. Suppose we are to merge A1 and A2.

According to the definition, the merged state A′ = ({0, 2}, 0, 2, 4). No other states are further merged. Call

the resulting diagram D. Let P1 and P2 be root-terminal paths in D corresponding to r1 and r2 respectively.

Notice both of them passes through A′. It can be verified that γD(P1) = 1 + 1 + (4 − 4) + 1 + 3 = 6

whereas cr1 = 1 + 1 + (4− 2) + 1 + 3 = 8. The discrepancy is due to merging A1 and A2. Also notice that

from A′, customer 1 or 3 may be visited again, which creates non-elementary routes.

Based on the above analysis, we have:

Lemma 5.5.2. Applications of the merging operation produce a relaxed decision diagram.

For a TSP-D instance, Lemma 5.5.2 guarantees that we output a relaxed DD by applying the above merging

rule. The set of root-terminal paths of this relaxed DD is thus a valid route relaxation that can be used to

compute a lower bound from the SPLP. This observation can also be applied to a general vehicle routing

problem, i.e., if the DP model for that problem is available, and a valid merging rule can be defined which

leads to a relaxed DD, then the resulting relaxed DD is a route relaxation for that problem. As we shall see

in Section 5.9.1, however, that this initial bound is typically not competitive to the state-of-the-art one from

the ng-route relaxation. To bridge this performance gap, we further refine the DD as described below in

Section 5.5.3.

5.5.3 Conflict Refinement

We describe two refinement techniques used to strengthen a relaxed DD. Our techniques are applied to

a prescribed path associated with certain conflicts which we define below. Throughout this section, we

assume we are given D, a relaxed DD compiled according to the merging rule in Section 5.5.2, and P , a

root-terminal path upon which we wish to refine (if any conflicts). We defer the discussion on how to find

such paths to Section 5.6.

Our techniques are very similar to constraint separation in van Hoeve (2020). Generally speaking, constraint

separation refers to the process of changing the node and arc set of a relaxed DD to remove the infeasible

solutions that violate a particular constraint of the problem. In the case of a relaxed DD for the TSP-D, the

only constraint on a path is that it should be elementary, i.e. it visits each customer exactly once. Given

a root-terminal path P , we say P is associated with a repetition conflict if it is non-elementary. Moreover,

87

there is another conflict that can be associated with P due to the merging operation: recall from Example 4

that if there is a relaxed state along P , it may happen that γD(P) < c(rP). We refer to this conflict as

inexact distance conflict since it is a consequence of relaxing the state variable τ for some state along path

P . Notice that inexact distance conflict can happen to a path with no repetition conflict. We identify a

repetition conflict with a pair (j, k) where the j-th arc label lj and the k-th arc label lk along this path

represents visiting the same customer (either by a truck, drone or both). To refine this conflict, we further

require that there exists no repetition conflict (j′, k′) such that j ≤ j′ < k′ < k. We identify an inexact

distance conflict with a single index j where the state variable τ of the next state uj+1 is relaxed due to

merging states. Next we describe two algorithms – refineRep and refineInexactDist that change the node

and arc set in order to fix repetition and inexact distance conflicts respectively.

Recall from Section 5.4.3 that a DD is a vector of layers where each layer Lk (k = 1, . . . , n + 2) is an

unordered map that stores (state, node) pairs. Each node u has two fields u.A that stores state information

and u.arcs that stores outgoing arcs. u.arcs is an unordered map where keys are controls and values

are (arc length, arc head) pairs. An unordered map has keys as its field, and insert and find as its

methods. For a mapping M , its key is denoted as M .key.

Function refineRep (Algorithm 7) considers each node along the path in sequence and splits off the next

node in the path. This is done by first creating a temporary node v by applying the transition function with

control lj (line 3). If there already exists a node v′ inLi+1 with an equivalent state, we reassign v to represent

v′ (line 6-7). Otherwise, we complete the definition of v by copying the outgoing arcs of ui+1 whenever

the arc does not introduce an additional repetition conflict (line 9-11). We add v to layer Li+1 (line 12).

Function redirectArc(ui, li, v) (line 13) redirects the arc with label li going out of ui by changing the

88

arc head from ui+1 to v. We set ui+1 to be v and iterate.

Algorithm 7: Function refineRep(D,P, j, k): refining repetition conflict (j, k) in decision diagram D

Input: decision diagram D, a path P with repetition conflict (j, k) (it is assumed that the path contains

no edge conflicts (j′, k′) such that j ≤ j′ < k′ < k)

Output: decision diagram in which the repetition conflict (j, k) along the path has been eliminated

1 for i = j, . . . , k − 1 do
2 create state v

3 v.A← Γ(ui, li) // split the path towards node v

4 if v.A ∈ Li+1.keys // check for equivalent states

5 then
6 v′ ← Li+1.find(v.A) // find node v′ in Li+1 such that v′.A = v.A

7 v ← v′

8 else
/* copy outgoing arcs from ui+1 which do not cause additional repetition

conflicts */

9 for all mapping M in ui+1.arcs do
10 if M.key ∈ θ(ui+1.A) then
11 v.arcs.insert(M)

12 Li+1.insert(v)

13 redirectArc(ui, li, v)

14 ui+1 ← v

Function refineInexactDist splits off from uj by creating a temporary node v by applying the transitioning

function with control lj . If there already exists a node v′ with an equivalent state in Lj+1, we reassign v

to represent v′ (line 4-6). Otherwise we complete the definition of v by copying the outgoing arcs of uj+1

whenever the arc does not introduce an additional repetition conflict (line 8-10). Finally, we add v to layer

89

j + 1 (line 11) and redirect arcs accordingly (line 12).

Algorithm 8: Function refineInexactDist(D,P, j): refining inexact distance conflict j in decision dia-

gram D

Input: decision diagram D, a path P with inexact distance conflict j

Output: decision diagram in which the inexact distance conflict j along the path has been eliminated

1 create state v

2 v.A← Γ(uj , lj) // split the path towards node v

3 if v.A exists among keys of Li+1 // check for equivalent states

4 then
5 v′ ← Li+1.find(v.A) // find node v′ in Li+1 such that v′.A = v.A

6 v ← v′

7 else
/* copy outgoing arcs from ui+1 which do not cause additional repetition

conflicts */

8 for all mapping M in ui+1.arcs do
9 if M.key ∈ θ(ui+1.A) then

10 v.arcs.insert(M)

11 Li+1.insert(v)

12 redirectArc(ui, li, v)

5.6 Lower Bound Computation

In the remainder of this chapter, any route relaxation under consideration will always correspond to the

set of root-terminal paths in a relaxed decision diagram D. For notational ease, we let RD denote this

route relaxation. In this section, we first describe two alternative approaches to derive lower bounds from

RD. We then show the equivalence between lower bounds derived from our approaches and the optimal

value of SPLP(RD). Throughout this section, we assume that we are given a precompiled relaxed DD

D = (VD, AD).

Constrained Flow Model

We construct a network flow model with side constraints where the network is D. Let r and t denote the

root and terminal of D respectively. For an arc a ∈ AD, let ω(a) be the arc label that represents the control

which encodes which customer to visit and how to visit the customer. Let la be the length of arc a. For a

vertex u ∈ VD, let δ+(u) and δ−(u) denote the set of outgoing arcs from u and the set of incoming arcs into

90

u respectively. For a customer i ∈ N , let ξ(i) denote the set of arcs whose label represent visiting customer

i (either by truck, drone or both). For each a ∈ AD, define an indicator variable ya that equals one if a is

chosen and 0 otherwise. The constrained flow model is defined as follows:

min
∑
a∈AD

γaya (5.6)

s.t.
∑

a∈δ+(u)

ya =
∑

a∈δ−(u)

ya, ∀u ∈ VD, u 6= r, t (5.7)

∑
a∈δ+(r)

ya = 1 (5.8)

∑
a∈δ−(t)

ya = 1 (5.9)

∑
l(a)∈ξ(i)

ya = 1, ∀i ∈ N (5.10)

ya ∈ {0, 1}, ∀a ∈ AD (5.11)

where constraints (5.7) (5.8) (5.9) ensure flow conservation on intermediate nodes, out-flow from the root

and in-flow into the terminal respectively. Constraint (5.10) ensures that each customer is visited exactly

once.

A feasible solution to the constrained flow model is a root-terminal path in D that visits each customer

exactly once. Therefore an optimal solution to the constrained flow corresponds to an optimal route for the

TSP-D. However, in general it is NP-hard to solve the constrained flow model. To derive a lower bound, we

relax integrality constraints (5.11). We refer to this linear relaxation as CFLP(D). We can solve CFLP(D)

by an off-the-shelf LP solver.

Lagrangian Relaxation

Another way of deriving lower bounds is to apply Lagrangian relaxation to the above constrained flow model

by dualizing constraints (5.10). For each customer i ∈ N , define λ as the vector of Lagrangian multipliers

where λi corresponds to constraint
∑

ω(a)∈ξ(i) ya = 1, which ensures that customer i is visited exactly once.

The Lagrangian subproblem is defined as:

ψD(λ) = min −
∑
i∈N

λi +
∑
a∈AD

(la +
∑
i∈N
{ω(a) ∈ ξ(i)}λi)ya

y subject to constraint (5.7) (5.8) (5.9)

91

where {ω(a) ∈ ξ(i)} is an indicator function that equals 1 if ω(a) ∈ ξ(i) and 0 otherwise. We omit subscript

D in ψD(λ) when there is no ambiguity.

Observe that the Lagrangian subproblem can be seen as finding a shortest path on D whose arc lengths are

modified in the following way: for each arc a ∈ AD, let i be the customer that ω(a) visits, we increase

arc length la by λi. Furthermore, for each arc a leaving the root, we decrease arc length la by the sum of

Lagrangian multipliers:
∑

j∈N λj . The Lagrangian dual problem is defined as the following maximization

problem:

max
λ

ψ(λ) (5.12)

We can solve the Lagrangian relaxation by the subgradient method, which is an iterative procedure that

updates dual multipliers according to a subgradient direction and a step size. More specifically, let t be the

iteration index of this method. Define λ(t) as the vector of dual multipliers, g(t) as the subgradient at λ(t)

for iteration t and αt as the step size at iteration t. Then the method updates dual multipliers in the following

way:

λ(t+1) = λ(t) + αtg
(t), (5.13)

where g(t) := (g
(t)
1 , . . . , g

(t)
n) can be computed as follows. Let P (t) be an optimal path found by solving

ψ(λ(t)). Let si be the number of times P (t) visits customer i, it can be verified that g(t)
i can be set as si− 1.

We defer the discussion on our step size strategy to Section 5.8.

Equivalence of SPLP(RD), CFLP(D) and LR(D)

We next show that optimal values of CFLP(D) and LR(D) are in fact equal to that of SPLP(RD). For nota-

tional ease, let v(P) denote the optimal value of an optimization problem P . We show that

Theorem 5.6.1. v(SPLP(RD)) = v(CFLP(D)) = v(LR(D)).

Proof. For the first equality, it is sufficient to observe that SPLP(RD) is the path formulation and CF(D) is

the flow formulation for the same problem. More formally, a route r ∈ RD corresponds to a path from the

root to the terminal in D. For an arc a ∈ AD, let β(a) be the set of paths (routes) that contain a. For any

feasible solution {zr : r ∈ RD} to SPLP(RD), there is a feasible solution to CF(D) with the same objective

value where ∀a ∈ AD, ya =
∑

r:r∈β(a) zr. Conversely, for any feasible solution to CF(D), there exists a

path decomposition of the flow, which corresponds to a feasible solution to SP(D) with the same objective

value.

The second equality is a direct application of Theorem 1 in Geoffrion (1974) that establishes the equivalence

between the value of the Lagrangian relaxation and that of a primal relaxation, and the fact that the flow

92

conservation constraints form an integral polyhedral.

CFLP(D) produces a bound that can only be better than ψD(λ). On the other hand, solving the CFLP can

become computationally prohibitive as the instance size grows, as we shall see in Section 5.9.3. In this

case, we can instead solve the Lagrangian subproblem that computes a lower bound for any multipliers λ

by solving a simple shortest path problem.

Finally, we remark that an optimal solution to CFLP(D) can be decomposed into a set of paths while an

optimal solution to the Lagrangian subproblem is a single path. In both cases, repetition or inexact distance

conflicts may be detected and refined on those paths. This motivates us to iteratively perform lower bound

computation and conflict refinements in Section 5.7.

5.7 Iterative Framework

In this section, we describe two iterative frameworks based on the constrained flow model and Lagrangian

relaxation respectively. Throughout this section, we assume that a relaxed DD D is initially compiled

according to the merging rule in Section 5.5.2 with a prescribed bucket size. Our goal is to iteratively refine

D in order to tighten the corresponding route relaxation and consequently improve the lower bound for

the TSP-D. Each iterative algorithm presented below can be terminated at the end of an arbitrary iteration

and can produce a valid lower bound. In this section, we leave the termination criterion unspecified to

make our frameworks general. A time limit is imposed when we perform computational experiments in

Section 5.9.

Combine CFLP with Conflict Refinement

Conflict refinement can be combined with the constrained flow model to improve the lower bound, as shown

in function flowRefine (Algorithm 9). Starting from an initial relaxed DD D, the algorithm solves CFLP(D)

which returns an optimal LP solution y∗ with optimal LP value v∗ (line 2). It then computes a path decom-

position on the support graph of y∗ (line 3), i.e. a subgraph of D with vertex set VD and set of arcs with

nonzero y∗a values. For each path contained in the decomposition, we check and refine its conflicts (line 5)

This iterative procedure continues until some termination criterion is met.

Function pathDecomp (Algorithm 10) computes a path decomposition corresponding to an optimal CFLP

solution x∗ in a heuristic fashion. An arc is implemented as a class object and has a field named head,

which is the head node of that arc. The algorithm decomposes the flow x∗ in the following iterative way:

while there is enough flow remaining, it starts from the root and recursively follows the arc going out of the

93

Algorithm 9: Function flowRefine(D): iterative refinement with CFLP
Input: relaxed decision diagram D
Output: refined decision diagram

1 while termination condition is not met do
2 (v∗, x∗)← solveCF(D)
3 P ← pathDecomp(D,x∗)
4 for P ∈ P do
5 refinePath(D,P)

current node with the most residual flow until the terminal is reached (line 5 - line 10). We add such a new

path to the set of paths P and then updates the residual flow on each arc in this path (line 11 - line 12).

Function refinePath (Algorithm 11) detects inexact distance and repetition conflicts and refine them in se-

quence (if any). Function findRep(p) finds the first repetition conflict (j, k) along path p for which there is

no conflict (j′, k′) such that j ≤ j′ < k′ < k. Similarly function findInexactDist(p) finds the first inexact

distance conflict j along path p. More details on implementations are discussed in Section 5.8.

Algorithm 10: Function pathDecomp(D, y∗): a path decomposition based on an optimal CFLP solution
Input: relaxed decision diagram D, optimal solution to CFLP y∗

Output: set of paths P
1 P ← ∅ // P stores the set of paths

2 while enough flow remains do
3 create path P // P stores a sequence of arcs (currently empty)

4 v ← D.root, f ← 1 // starting from the root

5 while v 6= D.terminal do
6 a← findArcWithMostFlow(v.arcs, x∗) // find arc a which carries the most flow

7 P.add(a) // extend the path with arc a

8 v ← a.head
9 if y∗a < f then

10 f ← y∗a // update the flow value to subtract from

11 for a ∈ P do
12 y∗a ← y∗a − f // update the residual flow for each arc in the path

Combine Lagrangian Relaxation with Conflict Refinement

It is also possible to combine conflict refinement with Lagrangian relaxation to obtain improved bounds.

Notice that,, however, the convergence of the subgradient method will not be guaranteed (in fact, it is not

well-defined) once we start to refine paths found during this process, since modifying the route relaxation

changes the Lagrangian dual. Therefore, it is better to think of this integration as an iterative process of

94

Algorithm 11: Function refinetPath(D,P): refine conflicts along a prescribed path
Input: relaxed decision diagram D, a prescribed path P
Output: refined decision diagram

1 i← findInexactDist(P)
2 if i 6= −1 // i = −1 means no such conflict exists

3 then
4 refineInexactDist(D,P, i)

5 (j, k)← findRep(P)
6 if k 6= −1 // k = −1 means no such conflict exists

7 then
8 refineRep(D,P, j, k)

searching for suitable Lagrangian multipliers that lead to strong lower bounds while refining conflicts on

paths computed during the search process. As a result, we need to decide when to stop/restart the subgradient

method and which paths found during the iterative process to refine upon. Below we describe two heuristic

implementations.

Function lagAdapt (Algorithm 12) immediately refines the path found at each iteration of the subgradi-

ent method. Lagrangian multipliers are then updated according to the same strategy as if we are solving

Lagrangian relaxation on a static DD. This process terminates until a prescribed improvement criterion is

violated (line 5-11), at which point it fixes multipliers to those corresponding to the best lower bound so far.

It then continues the iterative process of finding and refining the shortest path with arc lengths modified w.r.t.

those fixed multipliers (line 12-13). Details on the improvement criterion are discussed in Section 5.8.

Function lagRestart (Algorithm 13) restarts the subgradient method periodically according to the buffer size

H chosen a prior. The subgradient method is reset every h iterations. We refer to the interval between the

start and end of the subgradient method as an epoch. During an epoch, It runs h iterations of the subgradient

method, stores each path found during the epoch (line 10), refines all of them at the end of the epoch (line 12)

and restarts from scratch, treating the refined DD as an initial DD.

Remark 5.7.1. In principle, we can integrate CG with conflict refinements as well. This can be useful when

solving the CFLP(RD) becomes computationally prohibitive.

5.8 Implementation Details

This section discusses parameter choices in our implementation.

95

Algorithm 12: Function lagAdapt(D): iterative refinement that adaptively terminates the subgradient
method
Input: relaxed decision diagram D
Output: refined decision diagram

1 λ← 0
2 bestBound← 0
3 bestMultipliers← λ
4 while termination criterion is not met do
5 while improvement criterion holds do
6 (P, lb)← findShortestPath(D,λ)
7 if bestBound < lb then
8 bestBound← lb
9 bestMultipliers← λ

10 updateMultipliers(λ)
11 refinePath(D,P)

12 (P, lb)← findShortestPath(D, bestMultipliers)
13 refinePath(D,P)

5.8.1 Conflict Refinement

Recall that in Algorithm 11, when a path is processed for conflict refinement, we identify the first inexact

distance and repetition conflict encountered from the root to the terminal, refine the inexact distance conflict

first (if any) and then the repetition conflict (if any). Alternatively, one may try to identify multiple inexact

distance or repetition conflicts, or change the order in which the conflicts are refined. Preliminary tests show

that

• Refining multiple conflicts (either inexact distance or repetition conflicts) does not necessarily yield

stronger lower bounds than refining one conflict of each type. In other words, the improvement

of lower bounds do not outweigh the amount of time spent in identifying and refining those multiple

conflicts. Therefore we choose to only identify the first inexact distance conflict and the first repetition

conflict.

• Reversing the order in which the two types of conflicts are refined leads to worse lower bounds for

all test instances. This is due to the following reason: let (i, j) be the pair of layers of the repetition

conflict (i < j) and k be the layer of the inexact distance conflict. The order in which they are

refined matters only when k > j, i.e. the inexact distance conflict is below the repetition pair. In this

case, refining the repetition first eliminates the existence of the current path. As a result, the inexact

distance conflict is left unrefined. Therefore we choose to refine the inexact distance conflict before

the repetition conflict.

96

Algorithm 13: Function lagRestart(D,h): iterative refinement that periodically restarts the subgradient
method
Input: relaxed decision diagram D, buffer size H
Output: refined decision diagram

1 λ← 0
2 bestBound← 0
3 P ← ∅ // stores the set of paths that need to be refined upon

4 while termination criterion is not met do
5 while P.size < H do
6 (P, lb)← findShortestPath(D,λ)
7 if bestBound < lb then
8 bestBound← lb

9 updateMultipliers(λ)
10 P .add(P)

11 for P ∈ P do
12 refinePath(D,P)

13 P .clear()
14 λ← 0

5.8.2 Path Decomposition

Recall we decompose the flow into multiple paths in Algorithm 9. In practice, we need to set a tolerance

value to stop the iterative path finding procedure when the outgoing residual flow from the root is below the

tolerance. If this tolerance value is set too small, the number of paths to be further refined upon can be too

large. Preliminary tests show that the value below 0.001 produces too may paths and the value above 0.05

is too conservative. We choose 0.01 to be the tolerance value.

5.8.3 Step Size for the Subgradient Method

Recall from Section 5.6 that t is the iteration index of of the subgradient method. λ(t) is the vector of dual

multipliers, g(t) is the subgradient at λ(t) and αt is the step size at iteration t. The method updates dual

multipliers in the following way:

λ(t+1) = λ(t) + αtg
(t), (5.14)

We use an approximate version of Polyak’s step length to update our multipliers Boyd et al. (2003). Let ψ∗

be the optimal value of the Lagrangian dual problem. Polyak’s step length is defined as:

αt =
ψ∗ − ψ(λ(t))∥∥g(t)

∥∥2

2

(5.15)

97

When ψ∗ is not known, we can estimate it by ψbest(1 + ηt) where ψbest is the best lower bound found so far.

ηt satisfies that ηt → 0 as t→ +∞. In our implementation, ηt is set to be 0.05 · 100
100+t .

5.8.4 Improvement Criterion for Function lagAdapt

The underlying logic of function lagAdapt (Algorithm 12) is that it switches to pure conflict refinement

if updating multipliers via subgradient method is unlikely to further improve the lower bound. We de-

fine the improvement criterion as follows: let κ and µ be two parameters chosen a priori. We say the

improvement criterion does not hold if in each of the latest κ iterations, the improvement percentage

of the best lower bound is below µ. Preliminary tests are performed among κ ∈ {100, 200, 300} and

µ ∈ {0.05%, 0.1%, 0.15%, 0.2%}. We find the parameter pair κ = 200, µ = 0.1% achieves the best

performance.

5.8.5 Sensitivity of Bucket and Buffer Size

Each iterative refinement algorithm takes as input an initial relaxed DD, which depends on the maximum

bucket size M (Section 5.5.2). As a result, the performance of our algorithms depend on M . In addition,

function lagRestart (Algorithm 13) also depends on the buffer size H . We perform preliminary tests to

study the sensitivity of our algorithms w.r.t. these two parameters. In particular, they are chosen from

B ∈ {2, 4, 6, 8} and H ∈ {10, 20, 30} (H is only used by lagRestart). We found that all our algorithms are

not sensitive to B. We set B = 4 when compiling relaxed DDs for flowRefine (Algorithm 9) and lagAdapt

(Algorithm 12) since the performance is slightly better than other settings. For lagRestart (Algorithm 13),

we choose B = 4, H = 20 since the performance is both competitive and robust.

5.9 Computational Experiments

We implemented our iterative refinement algorithms in C++ and performed experimental evaluation on a

wide range of problem instances. We use CPLEX 12.10 as integer and linear programming solver, using a

single thread and the Barrier Method as LP algorithm. All reported experiments were run on a Macbook Pro

laptop with 2.2 GHz Quad-Core Intel Core i7 and 16GB memory. For notational ease, let m = n+ 1 denote

the number of locations, i.e. the number of customers plus the depot. Each problem instance is generated

as follows. Given m, the number of locations, and α, the speed ratio between the drone and the truck, we

sample m points uniformly from a 1000× 1000 Euclidean plane. We regard the first generated point as the

depot and the rest as customers. We take the Euclidean distance between a pair of points as its truck distance

and divide it by the speed ratio as the drone distance. We generate 10 instances for each (m,α) pair where

n ∈ {15, 20, 25, 30, 40, 50} and α ∈ {2, 4}.

98

We use optimality gap as the performance metric. Formally, given an upper boundUB, we measure the qual-

ity of a lower bound LB by the optimality gap defined as UB−LB
UB . In our experiments, UB is the incumbent

value when solving the CP model for the TSP-D (Section 4.5) by CP Optimizer whose time limit is set to

one hour. Best lower bounds in the literature are computed by the ng-route-based BCP algorithm (Roberti

and Ruthmair, 2019). More precisely, they showed their root LP gaps are very tight which means root

LP bounds from the ng-route relaxation are substantially better than other existing approaches. Since their

code is not publicly available, we re-implemented their column generation approach based on the ng-route

relaxation to solve the LP relaxation SPLP(R). In our implementation, column generation is terminated

when computation time exceeds one hour. In this section, the termination criterion of all our algorithms is a

prescribed time limit, which varies for different sets of experiments as we describe below.

5.9.1 Size and Lower Bound from Initial Route Relaxation

The first set of experiments studies the quality of lower bounds derived from our initial route relaxations,

i.e. SPLP(RD) where D is a relaxed DD compiled with maximum bucket size M according to the merging

rule in Section 5.5.2. Below we report the comparison of the sizes and optimality gaps between our initial

route relaxation and the ng-route relaxation. As Roberti and Ruthmair (2019), we set the neighborhood

size |Ni| = 5 for all i ∈ N in our ng-route relaxation. The lower bound from our route relaxation is

computed by solving CFLP(RD). The lower bound from the ng-route relaxation is computed by CG. In our

implementation, column generation exceeds the time limit for all instances with m ≥ 30. We report our

findings for m ∈ {15, 20, 25}, α ∈ {2, 4} and M ∈ {2, 4, 6, 8}.

Number of locations 15 20 25

M = 2 4974 12734 26043
M = 4 9736 25086 51485
M = 6 14498 37438 76928
M = 8 19260 49790 102370
ng-route 24114 73554 174725

Table 5.1: Average size of route relaxations. For DD-based route relaxations, the size is the number of nodes
in the DD; for ng-route, the size is the number of labels after dominance rules are applied.

Table 5.1 reports the size of our route relaxations as well as the ng-route relaxation. For DD-based route

relaxations, the size is the number of nodes in the DD; for ng-route, the size is the number of labels after

dominance rules are applied. Recall M is the bucket size after merging. The table shows that the size of

our relaxed DDs increases roughly linearly w.r.t. the bucket size M , and is typically smaller than that of the

ng-route relaxation. Next we report the optimality gap of our relaxed DDs.

In Figure 5.2, the horizontal axis represents the number of locations and the vertical axis represents the

optimality gap (%). Boxplots are divided into three groups based on the number of locations. Within each

99

15 20 25
Number of Locations

0

10

20

30

40

50
Op

tim
al

ity
 G

ap
 (%

)

M = 2 M = 4 M = 6 M = 8 ng-route

Figure 5.2: Optimality gap (%) of our initial route relaxation and the ng-route relaxation. M denotes the
maximum bucket size used in the merging process. CG denotes the column generation approach that solves
the ng-route relaxation. We follow the same parameter choice as Roberti and Ruthmair (2019) which set
|Ni| = 5 for all i ∈ N .

group, we vary bucket sizeM and compare with the ng-route relaxation. Figure 5.2 shows that the optimality

gap from the initial route relaxation typically worsens as the number of locations increases. Furthermore,

the optimality gap from the ng-route relaxation is better than that from all our initial route relaxations. This

is not surprising because the size of the DD corresponding to the ng-route relaxation is typically much

larger than that of our initial relaxations. In other words, the ng-route relaxation, viewed as a relaxed DD,

captures more structural information than ours do. Figure 5.2 also shows that, as the maximum bucket size

M increases, the quality of lower bounds improves but the marginal improvement decreases. Therefore, we

cannot hope to significantly improve lower bound quality by increasing the value of M when compiling our

initial route relaxations. Fortunately we can resort to our iterative frameworks. Below we study how our

frameworks can improve the initial relaxations.

5.9.2 Lower Bound Improvement

Recall that all of our iterative algorithms in Section 5.5.3 are able to output valid lower bounds at the

end of each iteration. We measure bound improvement as follows. For each instance, we take TCG, the

100

computation time of CG, as a baseline. During the process of an iterative refinement algorithm, we record

the best lower bound computed so far every 10% · TCG seconds. Experiments are run on instances with 15

and 20 locations.

Figure 5.3 shows bound improvement over time for flowRefine, lagAdapt and lagRestart. In the figure, x-

axis represents the runtime of each algorithm measured in percentages w.r.t TCG and y-axis represents the

average optimality gap (%). As we go from left to right along x-axis, the runtime of each algorithm increases

from 0 second to 150% ·TCG seconds, i.e., we overextend the runtime by 50% ·TCG seconds to examine the

decrease of optimality gap. The gap achieved by ng-route relaxation is shown in a solid line starting from

100% · TCG.

0 50 100 150
Time Percentages (%) w.r.t computation time of CG

 Number of locations = 15

5

10

15

20

25

30

35

40

45

Op
tim

al
ity

 G
ap

 (%
)

flowRefine
lagAdapt
lagRestart
ng-route

0 50 100 150
Time Percentages (%) w.r.t computation time of CG

 Number of locations = 20

5

10

15

20

25

30

35

40

45

Op
tim

al
ity

 G
ap

 (%
)

flowRefine
lagAdapt
lagRestart
ng-route

Figure 5.3: Optimality gap (%) over time for flowRefine, lagAdapt and lagRestart. Each interval on the
x-axis represent 10% of CG computation time. The optimality gap from the ng-route relaxation appears
after 100%.

Figure 5.3 shows that our algorithms are able improve the optimality gap over time. Compared among

each other, function lagAdapt and lagRestart are able to outperform function flowRefine with very similar

performance for both m = 15 and 20. It should be noted that a significant improvement in the optimality

gap (the gap decreases by at least 50%) occurs for lagAdapt and lagRestart at 10% · TCG. The initial gap

is large because we initialized our multipliers to be all zeros at the start of Lagrangian-based frameworks.

Therefore the first lower bound is simply the shortest path length in the initial relaxed DD, which creates a

large optimality gap. The sharp decrease in the gap suggests that lagAdapt and lagRestart are very effective

in improving the lower bound in the beginning. Indeed, both of them start to outperform flowRefine after

10% · TCG, although the latter starts with a relatively small gap (compared to lagAdapt and lagRefine). It

also shows the tapering effect of our iterative algorithms, i.e. the marginal improvement of the optimality

gap diminishes over time.

Compared against the ng-route relaxation, when m = 15, function lagAdapt achieves better gaps than CG

does given 80% of the computation time of CG and function lagRefine achieve better gaps than CG does

101

given only 40% of the computation time of CG. Function flowRefine gradually improves the gap but is

unable to outperform the ng-route relaxation bound given 150% of CG computation time. When m = 20,

function lagAdapt and lagRefine gradually improve the bound to very close to CG but are not yet able to

outperform the ng-route relaxation given 150% of the computation time of CG. Function flowRefine is worse

than the other two approaches in this case.

5.9.3 Scalability of Iterative Refinement Algorithms

Next, we study the performance of iterative refinement algorithms when m, the number of locations in-

creases. Below we report our computational results for m ∈ {15, 20, 25, 30, 40, 50} and speed ratio

α ∈ {2, 4}. Since our implementation of CG does not scale to 30 and the lower bound value found by

CP Optimizer is typically not competitive to our algorithms, we need better lower bounds when m >= 30.

The only other source of lower bounds available in the literature is the MIP model proposed by Roberti and

Ruthmair (2019). Their original MIP model uses big-M constraint which results in loose linear relaxations.

We replace these constraints with indicator constraints that are adaptively relaxed in a modern MIP solver

such as Gurobi (Gurobi Optimization, 2021). This typically leads to a stronger linear relaxation. Detailed on

this model can be found in Appendix B. We solve the modified model by Gurobi with parameter MIPFocus

set to 3 to force the solver to focus on improving the lower bound. The time limit for this set of experiments

is set as follows. When m ≤ 25, CG can terminate within one hour so we set the time limit of all other

algorithm as the computation time of CG. Otherwise, whenm ≥ 30, the computation time for all algorithms

is set to one hour.

In Figure 5.4, x-axis indicates the number of customers and y-axis indicates the optimality gap (%). ‘CP’

denotes the optimality gap from CP Optimizer, ‘ng-route’ denotes the optimality gap by solving the ng-

route relaxation via column generation and ‘MP’ denotes the optimality gap from the modified MIP model.

Figure 5.4 shows that lagAdapt and lagRestart are competitive to CG when m ≤ 25. flowRefine is slightly

worse. When m ≥ 30, CG cannot terminate within one hour due to the complexity of the pricing problem.

All our algorithms continue to output valid lower bounds. Although the quality deteriorates gradually,

lagAdapt and lagRestart still outperform CP and MIP-based lower bounds for all tested instances. Function

flowRefine cannot solve the initial CFLP within one hour when m = 50 and is thus not shown for this

case.

Remark 5.9.1. For m = 40, it is observed that only a limited number of iterations (typically fewer than 5)

were run by flowRefine due to the large size of the CFLP(D). Indeed, recall its size is proportional to the

number of edges and nodes. Although the number of nodes is bounded by O(Mn3), the number of edges is

much larger. Nevertheless, its optimality gap is still competitive to lagAdapt and lagRestart. Therefore, we

can obtain stronger bounds if the CFLP can be solved more efficiently. In light of Remark 5.7.1, we may

integrate CG with conflict refinements in our future work.

102

15 20 25 30 40 50
Number of Locations

0

10

20

30

40

50

60

70
Op

tim
al

ity
 G

ap
 (%

)

CP ng-route MP flowRefine lagAdapt lagRestart

Figure 5.4: Optimality gap (%) from different algorithms, where labels CP, ng-route, MP denote the opti-
mality gap achieved by the constraint programming model, the column generation approach for the ng-route
relaxation and the modified MIP model, respectively.

Table 5.2 reports the average size of the ng-route relaxation, and our DD-based route relaxations before and

after iterative refinements. For DD-based route relaxations, the size is the number of nodes in the DD; for

ng-route, the size is the number of labels after dominance rules are applied. The second row shows the

size of initial DDs, which can also be found in Table 5.1. The table shows that our DD size increases after

applying iterative algorithms, but is much smaller compared to that of the ng-route relaxation. It is noted

that algorithm lagRefine typically produces larger DDs than flowRefine does because solving Lagrangian

subproblems is significantly faster than solving the CFLP. As a result, lagRefine typically refines more paths

than flowRefine does given the same amount of computation time, and thus producing larger DDs.

103

Number of locations 15 20 25

initial DD 9736 25086 51485

flowRefine 10725 26538 51967

lagRestart 15567 37197 59204

ng-route 24114 73554 174725

Table 5.2: Average size of route relaxations before and after iterative refinements. For DD-based route

relaxations, the size is the number of nodes in the DD; for ng-route, the size is the number of labels after

dominance rules are applied. Recall we set the bucket size M = 4 for both flowRefine and lagRestart.

5.9.4 Effect of Drone-Truck Speed Ratio

Finally, we study the effect of drone-truck speed ratio on the performance of our algorithms. Computa-

tional experience from the literature suggest that the problem becomes easier to solve when the drone-truck

speed ratio becomes higher. Figure 5.5, 5.6 and 5.7 shows the optimality gap for flowRefine, lagAdapt and

lagRestart respectively, where x-axis represents the number of locations ranging between 15 and 40 and

y-axis represents the optimality gap (%). The speed ratio is 2 and 4.

15 20 25 30 40
Number of Locations

10

20

30

40

50

Op
tim

al
ity

 G
ap

 (%
)

Ratio = 2 Ratio = 4

Figure 5.5: Optimality gap from flowRefine w.r.t. the number of locations and drone-truck speed ratio.

Figure 5.5 shows that function flowRefine achieves better gaps when the speed ratio is large for all cases

except when m = 20. In that case, flowRefine is able to achieve a slightly better gap when the ratio is

smaller.

104

15 20 25 30 40 50
Number of Locations

0

10

20

30

40

50

60

Op
tim

al
ity

 G
ap

 (%
)

Ratio = 2 Ratio = 4

Figure 5.6: Optimality gap from lagAdapt w.r.t. the number of customers and drone-truck speed ratio.

15 20 25 30 40 50
Number of Locations

0

10

20

30

40

50

Op
tim

al
ity

 G
ap

 (%
)

Ratio = 2 Ratio = 4

Figure 5.7: Optimality gap from lagRestart w.r.t. the number of customers and truck-drone speed ratio.

Figure 5.6 and 5.7 show that lagAdapt and lagRestart typically perform better when the ratio is smaller

except when m = 40, which contradicts the computational experience from the literature. For m ≤ 25,

this phenomenon can be partially explained by the setup of our experiments. i.e., for m ≤ 25, our iterative

algorithms have a time limit equal to the computation time of CG, which is typically longer when the speed

105

ratio is smaller (this is due to the fact that dominance rules for the DP model become less effective when

the ratio becomes smaller). As a consequence, our algorithms are run for a longer period of time for cases

that are perceived difficult by the DP (and therefore the CG) approach. For m ≥ 30, however, further

investigations are needed.

5.10 Conclusion

In this chapter, we proposed novel route relaxations for the VRPs. Our relaxations are motivated by close

connections between DDs and DP models used for pricing in a BCP algorithm. More precisely, we showed

there is a one-to-one correspondence between a relaxed DD and a route relaxation. In contrast with relax-

ations proposed in the literature that forbid repeated visits based on structural information, we construct our

initial route relaxations by merging states in a relaxed DD. We further propose two approaches that com-

pute lower bounds from a given relaxed DD without using CG to solve the master problem defined w.r.t.

the corresponding route relaxation. We then proved all three approaches are in fact equivalent in the sense

that they produce the same lower bound under the same route relaxation. These approaches are integrated

with refinement techniques adapted from the DD literature into our iterative frameworks to obtain improved

lower bounds. We tested the proposed approaches on the TSP-D, a new and challenging VRP variant. Com-

putational experiments show that, although lower bound values from our initial route relaxations are not

competitive to those from the state-of-the-art route relaxation, the proposed iterative frameworks are very

effective in improving these bounds to make them competitive or outperform the state-of-the-art approach.

When applied to larger instances where the state-of-the-art approach does not scale, our methods are able to

generate lower bounds whose values outperform all other existing lower bounding techniques.

We conclude this chapter by outlining future research directions. On the methodological side, we did not

implement the integration of conflict refinement with CG, which can be beneficial when solving the CFLP

becomes computationally prohibitive, as seen in Section 5.9.1. Better yet, this integration naturally gives

a set of paths to refine upon, i.e. those that have non-zero values in an optimal solution to the SPLP.

In terms of the integration with Lagrangian relaxation, our algorithms are developed in a rather heuristic

fashion by updating Lagrangian multipliers via the subgradient method. Generally speaking, a fundamental

question is: how to choose the set of paths to refine upon and how do those refinements and the update

of Lagrangian multipliers affect each other. A more systematic approach is needed to improve the current

state. Furthermore, our methods can be incorporated into a branch-and-bound framework to compute exact

solutions in the following two ways: (a) we can perform branching directly on DDs as described in Bergman

et al. (2016b) and (b) we can use any branching scheme based on the set partitioning formulation by either

solving the SPLP by CG, or solving the CFLP (Theorem 5.6.1 shows solutions to the two models can be

converted to each other). In the second case, the major difference between our methods and traditional BCP

algorithms is that we keep and dynamically modify a DD in memory whereas they do not because their route

106

relaxations are typically much larger. A benefit for keeping the DD in memory is that, at each new node of

the branching tree, a lower bound is readily available without solving the resulting master by CG. Indeed,

notice that optimal dual variables obtained by solving the SPLP or the CFLP in any node in the branching

tree can be used to compute a Lagrangian bound. This bound may be sufficient to perform pruning, which

may in turn speed up the entire process.

On the application side, it is interesting to apply our approaches to other well studied VRP variants, such as

the capacitated VRP, the VRP with time windows, etc.. DP models for those problems are typically readily

available so one of the challenges is to develop merging rules that limit the size of relaxed DDs without the

initial bound worsening excessively. Furthermore, one may need to develop problem-specific refinement

procedures for different problem classes.

107

108

Chapter 6

Conclusions

Supply chain management frequently involves strategic decision-making. This dissertation studied the fol-

lowing three optimization problems arising in the management process: hub network design, inventory

routing and traveling salesman problem with drone. Our focus was on combining ideas and techniques

developed in computer science and operations research, with the final goal of accommodating large-size

real-world instances.

We contributed to the area of network design by introducing a novel logistics network model that captures

the trade-off between the cost of hub installation and management, and the reduced cost of routing aggre-

gated flows due to the economy of scales. We developed approximation algorithms for this novel problem

as well as its variant, and showed that they are optimal up to constant factors. Using realistic data, we

demonstrated our approximation techniques provide very good starting solutions. We further designed an

efficient population-based matheuristic that produces solutions with an optimality gap of less than 3% within

a reasonable amount of time.

We contributed to the inventory routing problem by designing fast heuristics by solving a family of prize-

collecting Steiner tree instances. We showed that our heuristics can find near optimal solutions for instances

with or without vehicle capacity in a substantially less amount of time than a mixed-integer programming

based approach.

We contributed to the traveling salesman problem with drone by proving a restricted version is still NP-

hard, and by formulating it as a compact constraint program model. Computational experiments showed

that solving the model by an off-the-shelf solver to optimality is significantly faster than the state-of-the-

art exact algorithm at the time of publication of this work. For larger instances up to 60 customers, our

CP-based heuristic algorithm is competitive with a state-of-the-art heuristic method in terms of the solution

quality.

109

As our final contribution, we propose several iterative algorithms to compute lower bounds for VRPs mo-

tivated by connections between decision diagrams (DDs) and dynamic programming (DP) models used for

pricing in a branch-and-cut-and-price algorithm. Our approaches are general and can be applied to various

vehicle routing problems where corresponding DP models are available. By adapting merging and refine-

ment techniques from the DD literature, we are able to generate and strengthen novel route relaxations. We

also propose alternative approaches to derive lower bounds from DD-based route relaxations which use a

flow model with side constraints or Lagrangian relaxation in place of column generation. All the techniques

are then integrated into iterative frameworks to obtain improved lower bounds. When applied to the TSP-D,

our algorithms are able to produce lower bounds whose values are competitive to those from the state-of-

the-art approach. Applied to larger problem instances where the state-of-the-art approach does not scale,

our methods are shown to outperform all other existing lower bounding techniques. Finally, we discussed

future research directions for solving vehicle routing problems with DD-based route relaxations.

110

Bibliography

Adulyasak, Y., Cordeau, J.-F., and Jans, R. Formulations and branch-and-cut algorithms for multivehicle

production and inventory routing problems. INFORMS Journal on Computing, 26(1):103–120, 2014.

Agatz, N., Bouman, P., and Schmidt, M. Optimization approaches for the traveling salesman problem with

drone. Transportation Science, 52(4):965–981, 2018.

Akers, S. B. Binary decision diagrams. IEEE Computer Architecture Letters, 27(06):509–516, 1978.

Aksen, D., Kaya, O., Salman, F. S., and Tüncel, O. An adaptive large neighborhood search algorithm for

a selective and periodic inventory routing problem. European Journal of Operational Research, 239(2):

413–426, 2014.

Alumur, S. and Kara, B. Y. Network hub location problems: The state of the art. European journal of

operational research, 190(1):1–21, 2008.

Andersen, H. R., Hadzic, T., Hooker, J. N., and Tiedemann, P. A constraint store based on multivalued

decision diagrams. In International Conference on Principles and Practice of Constraint Programming,

pages 118–132. Springer, 2007.

Andersson, H., Hoff, A., Christiansen, M., Hasle, G., and Løkketangen, A. Industrial aspects and literature

survey: Combined inventory management and routing. Computers & Operations Research, 37(9):1515–

1536, 2010.

Ando, R. and Matsui, T. Algorithm for single allocation problem on hub-and-spoke networks in 2-

dimensional plane. Algorithms and Computation, pages 474–483, 2011.

Andrews, M. Hardness of buy-at-bulk network design. In Foundations of Computer Science, 2004. Pro-

ceedings. 45th Annual IEEE Symposium on, pages 115–124. IEEE, 2004.

Andrews, M. and Zhang, L. The access network design problem. In Foundations of Computer Science,

1998. Proceedings. 39th Annual Symposium on, pages 40–49. IEEE, 1998.

Archetti, C., Bertazzi, L., Laporte, G., and Speranza, M. G. A branch-and-cut algorithm for a vendor-

managed inventory routing problem. Transportation Science, 41(3):382–391, 2007.

111

Archetti, C., Bertazzi, L., Hertz, A., and Speranza, M. G. A hybrid heuristic for an inventory routing

problem. INFORMS Journal on Computing, 24(1):101–116, 2012.

Archetti, C., Boland, N., and Speranza, M. G. A matheuristic for the multivehicle inventory routing problem.

INFORMS Journal on Computing, 29(3):377–387, 2017.

Archetti, C., Bianchessi, N., Irnich, S., and Speranza, M. G. Formulations for an inventory routing problem.

International Transactions in Operational Research, 21(3):353–374, 2014.

Arkin, E., Joneja, D., and Roundy, R. Computational complexity of uncapacitated multi-echelon production

planning problems. Operations Research Letters, 8:61–66, 1989.

Avella, P., Boccia, M., and Wolsey, L. A. Single-period cutting planes for inventory routing problems.

Transportation Science, 52(3):497–508, 2018.

Awerbuch, B. and Azar, Y. Buy-at-bulk network design. In Foundations of Computer Science, 1997.

Proceedings., 38th Annual Symposium on, pages 542–547. IEEE, 1997.

Balakrishnan, A., Magnanti, T. L., and Mirchandani, P. Modeling and heuristic worst-case performance

analysis of the two-level network design problem. Management Science, 40(7):846–867, 1994.

Baldacci, R., Mingozzi, A., and Roberti, R. New route relaxation and pricing strategies for the vehicle

routing problem. Operations research, 59(5):1269–1283, 2011.

Becker, B., Behle, M., Eisenbrand, F., and Wimmer, R. Bdds in a branch and cut framework. In International

Workshop on Experimental and Efficient Algorithms, pages 452–463. Springer, 2005.

Bentert, M., van Bevern, R., Nichterlein, A., Niedermeier, R., and Smirnov, P. V. Parameterized algo-

rithms for power-efficiently connecting sensor networks: Theory and experiments. INFORMS Journal on

Computing, to appear, 2017.

Berger, B., Peng, J., and Singh, M. Computational solutions for omics data. Nat Rev Genet., 14(5):333–346,

2013.

Bergman, D., Van Hoeve, W.-J., and Hooker, J. N. Manipulating mdd relaxations for combinatorial opti-

mization. In International Conference on AI and OR Techniques in Constriant Programming for Combi-

natorial Optimization Problems, pages 20–35. Springer, 2011.

Bergman, D., Cire, A. A., Van Hoeve, W.-J., and Hooker, J. N. Variable ordering for the application of

bdds to the maximum independent set problem. In International Conference on Integration of Artificial

Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, pages 34–49.

Springer, 2012.

112

Bergman, D., Cire, A. A., Sabharwal, A., Samulowitz, H., Saraswat, V., and van Hoeve, W.-J. Parallel

combinatorial optimization with decision diagrams. In International Conference on AI and OR Techniques

in Constriant Programming for Combinatorial Optimization Problems, pages 351–367. Springer, 2014a.

Bergman, D., Cire, A. A., van Hoeve, W.-J., and Yunes, T. Bdd-based heuristics for binary optimization.

Journal of Heuristics, 20(2):211–234, 2014b.

Bergman, D., Cire, A. A., and van Hoeve, W.-J. Lagrangian bounds from decision diagrams. Constraints,

20(3):346–361, 2015.

Bergman, D., Cire, A. A., Van Hoeve, W.-J., and Hooker, J. Decision diagrams for optimization, volume 1.

Springer, 2016a.

Bergman, D., Cire, A. A., Van Hoeve, W.-J., and Hooker, J. N. Discrete optimization with decision diagrams.

INFORMS Journal on Computing, 28(1):47–66, 2016b.

Bienkowski, M., Byrka, J., Chrobak, M., Jeż, L., Nogneng, D., and Sgall, J. Better approximation bounds for

the joint replenishment problem. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 42–54, 2014.

Bienstock, D., Goemans, M. X., Simchi-Levi, D., and Williamson, D. A note on the prize collecting traveling

salesman problem. Mathematical programming, 59(1-3):413–420, 1993.

Bouman, P., Agatz, N., and Schmidt, M. Dynamic programming approaches for the traveling salesman

problem with drone. Networks, 72(4):528–542, 2018.

Boyd, S., Xiao, L., and Mutapcic, A. Subgradient methods. lecture notes of EE392o, Stanford University,

Autumn Quarter, 2004:2004–2005, 2003.

Burns, L., Hall, R., Blumenfeld, D., and Daganzo, C. Distribution strategies that minimize transportation

and inventory costs. Operations Research, 33(3):469–490, 1985.

Byrka, J., Grandoni, F., Rothvoß, T., and Sanità, L. Steiner tree approximation via iterative randomized

rounding. J. ACM, 60(1):6:1–6:33, 2013.

Campbell, A. and Savelsbergh, M. Inventory Routing in Practice. SIAM Monographs on Discrete Mathe-

matics and Applications, 2002.

Campbell, A., Savelsbergh, M., Clarke, L., and Kleywegt, A. The Inventory Routing Problem. Springer US,

1998.

Carlsson, J. G. and Song, S. Coordinated logistics with a truck and a drone. Management Science, 64(9):

4052–4069, 2018.

113

Carpenter, T. and Luss, H. Telecommunications access network design. In Handbook of optimization in

telecommunications, pages 313–339. Springer, 2006.

Castro, M. P., Cire, A. A., and Beck, J. C. An mdd-based lagrangian approach to the multicommodity

pickup-and-delivery tsp. INFORMS Journal on Computing, 32(2):263–278, 2020.

Chan, L., Fedgergruen, A., and Simchi-Levi, D. Probabilistic analyses and practical algorithms for

inventory-routing models. Operations Research, 46(1):96–106, 1998.

Charikar, M. and Karagiozova, A. On non-uniform multicommodity buy-at-bulk network design. In Pro-

ceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 176–182. ACM,

2005.

Chechik, S. and Wulff-Nilsen, C. Near-optimal light spanners. In Proceedings of the Twenty-Seventh An-

nual ACM-SIAM Symposium on Discrete Algorithms, pages 883–892. Society for Industrial and Applied

Mathematics, 2016.

Chekuri, C., Hajiaghayi, M. T., Kortsarz, G., and Salavatipour, M. R. Approximation algorithms for nonuni-

form buy-at-bulk network design. SIAM Journal on Computing, 39(5):1772–1798, 2010.

Chien, T. W., Balakrishnan, A., and Wong, R. T. An integrated inventory allocation and vehicle routing

problem. Transportation science, 23(2):67–76, 1989.

Christofides, N., Mingozzi, A., and Toth, P. Exact algorithms for the vehicle routing problem, based on

spanning tree and shortest path relaxations. Mathematical programming, 20(1):255–282, 1981.

Chung, S. H., Sah, B., and Lee, J. Optimization for drone and drone-truck combined operations: A review

of the state of the art and future directions. Computers & Operations Research, page 105004, 2020.

Cire, A. A. and Van Hoeve, W.-J. Multivalued decision diagrams for sequencing problems. Operations

Research, 61(6):1411–1428, 2013.

Coelho, L. C., Cordeau, J.-F., and Laporte, G. The inventory-routing problem with transshipment. Comput.

Oper. Res., 39(11):2537–2548, 2012a.

Coelho, L. C., Cordeau, J.-F., and Laporte, G. Consistency in multi-vehicle inventory-routing. Transporta-

tion Res. Part C: Emerging Tech., 24(1):270–287, 2012b.

Contreras, I. and Fernández, E. General network design: A unified view of combined location and network

design problems. European Journal of Operational Research, 219(3):680–697, 2012.

Cook, W. Concorde TSP Solver, 2015. http://www.math.uwaterloo.ca/tsp/concorde/

index.html.

114

http://www.math.uwaterloo.ca/tsp/concorde/index.html
http://www.math.uwaterloo.ca/tsp/concorde/index.html

Costa, A. M. A survey on benders decomposition applied to fixed-charge network design problems. Com-

puters & operations research, 32(6):1429–1450, 2005.

Costa, L., Contardo, C., and Desaulniers, G. Exact branch-price-and-cut algorithms for vehicle routing.

Transportation Science, 53(4):946–985, 2019.

de Freitas, J. C. and Penna, P. H. V. A variable neighborhood search for flying sidekick traveling salesman

problem. International Transactions in Operational Research, 27(1):267–290, 2020.

Desaulniers, G., Rakke, J., and Coelho, L. A branch-price-and-cut algorithm for the inventory-routing

problem. Transportation Science, 50(3):1060–1076, 2016.

Desaulniers, G., Lessard, F., and Hadjar, A. Tabu search, partial elementarity, and generalized k-path in-

equalities for the vehicle routing problem with time windows. Transportation Science, 42(3):387–404,

2008.

Desrochers, M., Desrosiers, J., and Solomon, M. A new optimization algorithm for the vehicle routing

problem with time windows. Operations research, 40(2):342–354, 1992.

Dinur, I. and Steurer, D. Analytical approach to parallel repetition. In Proceedings of the forty-sixth annual

ACM symposium on Theory of computing, pages 624–633. ACM, 2014.

Dorling, K., Heinrichs, J., Messier, G. G., and Magierowski, S. Vehicle routing problems for drone delivery.

IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(1):70–85, 2017.

Dror, M. Note on the complexity of the shortest path models for column generation in vrptw. Operations

Research, 42(5):977–978, 1994.

Elkin, M., Neiman, O., and Solomon, S. Light spanners. SIAM Journal on Discrete Mathematics, 29(3):

1312–1321, 2015.

Erzin, A., Plotnikov, R., and Shamardin, Y. V. On some polynomially solvable cases and approximate

algorithms in the optimal communication tree construction problem. Journal of Applied and Industrial

Mathematics, 7(2):142–152, 2013.

Farahani, R. Z., Hekmatfar, M., Arabani, A. B., and Nikbakhsh, E. Hub location problems: A review of

models, classification, solution techniques, and applications. Computers & Industrial Engineering, 64(4):

1096–1109, 2013.

Ferrandez, S. M., Harbison, T., Weber, T., Sturges, R., and Rich, R. Optimization of a truck-drone in

tandem delivery network using k-means and genetic algorithm. Journal of Industrial Engineering and

Management (JIEM), 9(2):374–388, 2016.

115

Fischetti, M., Leitner, M., Ljubić, I., Luipersbeck, M., Monaci, M., Resch, M., Salvagnin, D., and Sinnl,

M. Thinning out steiner trees: A node-based model for uniform edge costs. Mathematical Programming

Computation, 9(2):203–229, 2017.

Fisher, M. L. The lagrangian relaxation method for solving integer programming problems. Management

science, 27(1):1–18, 1981.

Fukasawa, R., Longo, H., Lysgaard, J., De Aragão, M. P., Reis, M., Uchoa, E., and Werneck, R. F. Robust

branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical programming, 106

(3):491–511, 2006.

Fukunaga, T., Nikzad, A., and Ravi, R. Deliver or hold: Approxmation algorithms for the periodic inventory

routing problem. In Proceedings of the 17th International Workshop on Approximation Algorithms for

Combinatorial Optimization Problems, pages 209–225, 2014.

Geoffrion, A. M. Lagrangean relaxation for integer programming. In Approaches to integer programming,

pages 82–114. Springer, 1974.

Goel, V., Furman, K. C., Song, J., and El-Bakry, A. S. Large neighborhood search for lng inventory routing.

Journal of Heuristics, 18(6):821–848, 2012.

Goemans, M. and Williamson, D. A general approximation technique for constrained forest problems. SIAM

Journal on Computing, 24(2):296–317, 1995.

Goemans, M. X., Olver, N., Rothvoß, T., and Zenklusen, R. Matroids and integrality gaps for hypergraphic

steiner tree relaxations. In Karloff, H. J. and Pitassi, T., editors, Proceedings of the 44th Symposium on

Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 1161–1176.

ACM, 2012.

Guha, S., Meyerson, A., and Munagala, K. A constant factor approximation for the single sink edge instal-

lation problem. SIAM Journal on Computing, 38(6):2426–2442, 2009.

Gupta, A. and Könemann, J. Approximation algorithms for network design: A survey. Surveys in Operations

Research and Management Science, 16(1):3–20, 2011.

Gupta, A., Kumar, A., and Roughgarden, T. Simpler and better approximation algorithms for network

design. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 365–

372. ACM, 2003.

Gurobi Optimization, L. Gurobi optimizer reference manual, 2021. URL http://www.gurobi.com.

Ha, Q. M., Deville, Y., Pham, Q. D., and Hà, M. H. On the min-cost traveling salesman problem with drone.

Transportation Research Part C: Emerging Technologies, 86:597–621, 2018.

116

http://www.gurobi.com

Ha, Q. M., Deville, Y., Pham, Q. D., and Hà, M. H. A hybrid genetic algorithm for the traveling salesman

problem with drone. Journal of Heuristics, 26(2):219–247, 2020.

Hegde, C., Indyk, P., and Schmidt, L. A nearly-linear time framework for graph-structured sparsity. In

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pages 4165–

4169, 2016.

Held, M., Wolfe, P., and Crowder, H. P. Validation of subgradient optimization. Mathematical programming,

6(1):62–88, 1974.

Hooker, J. N. Planning and scheduling by logic-based benders decomposition. Operations Research, 55(3):

588–602, 2007.

Hooker, J. N. Improved job sequencing bounds from decision diagrams. In International Conference on

Principles and Practice of Constraint Programming, pages 268–283. Springer, 2019a.

Hooker, J. N. Logic-based benders decomposition for large-scale optimization. In Large Scale Optimization

in Supply Chains and Smart Manufacturing, pages 1–26. Springer, 2019b.

Hooker, J. N. and Ottosson, G. Logic-based benders decomposition. Mathematical Programming, 96(1):

33–60, 2003.

IBM ILOG CPLEX. CP Optimizer 12.7 User’s Manual, 2017.

Irnich, S. and Villeneuve, D. The shortest-path problem with resource constraints and k-cycle elimination

for k ≥ 3. INFORMS Journal on Computing, 18(3):391–406, 2006.

Iwasa, M., Saito, H., and Matsui, T. Approximation algorithms for the single allocation problem in hub-and-

spoke networks and related metric labeling problems. Discrete Applied Mathematics, 157(9):2078–2088,

2009.

Jeon, I., Ham, S., Cheon, J., Klimkowska, A. M., Kim, H., Choi, K., and Lee, I. A real-time drone map-

ping platform for marine surveillance. International Archives of the Photogrammetry, Remote Sensing &

Spatial Information Sciences, 2019.

Kawahara, Y., Nagano, K., Tsuda, K., and Bilmes, J. A. Submodularity cuts and applications. In Advances

in Neural Information Processing Systems, pages 916–924, 2009.

Khurana, V., Peng, J., Chung, C. Y., Auluck, P. K., Fanning, S., Tardiff, D. F., Bartels, T., Koeva, M.,

Eichhorn, S. W., Benyamini, H., Lou, Y., er Upham, A. N., Baru, V., Freyzon, Y., Tuncbag, N., Costanzo,

M., Luis, B.-J. S., Schöndorf, D. C., Barrasa, M. I., Ehsani, S., Sanjana, N. E., Zhong, Q., Gasser, T.

P. D., Bartel, D. P., Vidal, M., Deleidi, M., Boone, C., Fraenkel, E., Berger, B., and Lindquist, S. L.

Genome-scale networks link neurodegenerative disease genes to α-synuclein through specific molecular

pathways. Cell systems, 4:157–170, 2017.

117

Kinable, J., Cire, A. A., and van Hoeve, W.-J. Hybrid optimization methods for time-dependent sequencing

problems. European Journal of Operational Research, 259(3):887–897, 2017.

Klein, P. and Ravi, R. A nearly best-possible approximation algorithm for node-weighted steiner trees.

Journal of Algorithms, 19(1):104 – 115, 1995a. ISSN 0196-6774.

Klein, P. N. and Ravi, R. A nearly best-possible approximation algorithm for node-weighted steiner trees.

J. Algorithms, 19(1):104–114, 1995b.

Laborie, P. IBM ILOG CP Optimizer for Detailed Scheduling Illustrated on Three Problems. In Proceedings

of CPAIOR, volume 5547 of LNCS, pages 148–162. Springer, 2009.

Laborie, P., Rogerie, J., Shaw, P., and Vilı́m, P. IBM ILOG CP optimizer for scheduling. Constraints, 23

(2):210–250, 2018.

Lee, C.-Y. Representation of switching circuits by binary-decision programs. The Bell System Technical

Journal, 38(4):985–999, 1959.

Leitner, M., Ljubić, I., Luipersbeck, M., and Sinnl, M. A dual-ascent-based branch-and-bound framework

for the prize-collecting steiner tree and related problems. 2016.

Leitner, M., Ljubić, I., Luipersbeck, M., and Sinnl, M. A dual-ascent-based branch-and-bound framework

for the prize-collecting steiner tree and related problems. INFORMS Journal on Computing, 30(2):217–

420, 2020.

Levi, R., Roundy, R., and Shmoys, D. Primal-dual algorithms for deterministic inventory problems. Math-

ematics of Operations Research, 31(2):267–284, 2006.

Levi, R., Roundy, R., Shmoys, D., and Sviridenko, M. First constant approximation algorithm for the

one-warehouse multi-retailer problem. Management Science, 54(4):763–776, 2008.

Li, S. A 1.488 approximation algorithm for the uncapacitated facility location problem. Automata, lan-

guages and programming, pages 77–88, 2011.

Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G. W., Mutzel, P., and Fischetti, M. An algorithmic frame-

work for the exact solution of the prize-collecting steiner tree problem. Mathematical Programming, 105

(2-3):427–449, 2006.

Macrina, G., Pugliese, L. D. P., Guerriero, F., and Laporte, G. Drone-aided routing: A literature review.

Transportation Research Part C: Emerging Technologies, 120:102762, 2020.

Mansour, Y. and Peleg, D. An approximation algorithm for minimum-cost network design. Weizmann

Institute of Science. Department of Applied Mathematics and Computer Science, 1994.

118

Melo, M. T., Nickel, S., and Saldanha-Da-Gama, F. Facility location and supply chain management–a

review. European journal of operational research, 196(2):401–412, 2009.

Mentzer, J. T., DeWitt, W., Keebler, J. S., Min, S., Nix, N. W., Smith, C. D., and Zacharia, Z. G. Defining

supply chain management. Journal of Business logistics, 22(2):1–25, 2001.

Min, H. and Zhou, G. Supply chain modeling: past, present and future. Computers & industrial engineering,

43(1-2):231–249, 2002.

Min, S., Zacharia, Z. G., and Smith, C. D. Defining supply chain management: in the past, present, and

future. Journal of Business Logistics, 40(1):44–55, 2019.

Mula, J., Peidro, D., Dı́az-Madroñero, M., and Vicens, E. Mathematical programming models for supply

chain production and transport planning. European Journal of Operational Research, 204(3):377–390,

2010.

Murray, C. C. and Chu, A. G. The flying sidekick traveling salesman problem: Optimization of drone-

assisted parcel delivery. Transportation Research Part C: Emerging Technologies, 54:86–109, 2015.

Nagarajan, V. and Shi, C. Approximation algorithms for inventory problems with submodular or routing

costs. Mathematical Programming, pages 1–20, 2016.

Nagy, G. and Salhi, S. Location-routing: Issues, models and methods. European Journal of Operational

Research, 177(2):649–672, 2007.

Nonner, T. and Souza, A. Approximating the joint replenishment problem with deadlines. Discrete Math.,

Alg. and Appl., 1(2):153–174, 2009.

Otto, A., Agatz, N., Campbell, J., Golden, B., and Pesch, E. Optimization approaches for civil applications

of unmanned aerial vehicles (uavs) or aerial drones: A survey. Networks, 72(4):411–458, 2018.

O’Neil, R. J. and Hoffman, K. Decision diagrams for solving traveling salesman problems with pickup and

delivery in real time. Operations Research Letters, 47(3):197–201, 2019.

Poikonen, S., Wang, X., and Golden, B. The vehicle routing problem with drones: Extended models and

connections. Networks, 70(1):34–43, 2017.

Poikonen, S., Golden, B., and Wasil, E. A. A branch-and-bound approach to the traveling salesman problem

with a drone. INFORMS Journal on Computing, 31(2):335–346, 2019.

Ponza, A. Optimization of drone-assisted parcel delivery. 2016.

Prodhon, C. and Prins, C. A survey of recent research on location-routing problems. European Journal of

Operational Research, 238(1):1–17, 2014.

119

Raidl, G. R. and Puchinger, J. Combining (integer) linear programming techniques and metaheuristics for

combinatorial optimization. Hybrid metaheuristics, 114:31–62, 2008.

Ravi, R. and Salman, F. S. Approximation algorithms for the traveling purchaser problem and its variants

in network design. In European Symposium on Algorithms, pages 29–40. Springer, 1999.

Roberti, R. and Ruthmair, M. Exact methods for the traveling salesman problem with drone. Optimization

Online, 2019.

Rothberg, E. An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS

Journal on Computing, 19(4):534–541, 2007.

Rothlauf, F. Design of modern heuristics: principles and application. Springer Science & Business Media,

2011.

Salama, M. and Srinivas, S. Joint optimization of customer location clustering and drone-based routing for

last-mile deliveries. Transportation Research Part C: Emerging Technologies, 114:620–642, 2020.

Salman, F. S., Cheriyan, J., Ravi, R., and Subramanian, S. Approximating the single-sink link-installation

problem in network design. SIAM Journal on Optimization, 11(3):595–610, 2001.

Schmidt, L., Hegde, C., Indyk, P., Lu, L., Chi, X., and Hohl, D. Seismic feature extraction using steiner tree

methods. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 1647–1651, 2015.

Shapiro, J. F. A survey of lagrangean techniques for discrete optimization. In Annals of Discrete Mathemat-

ics, volume 5, pages 113–138. Elsevier, 1979.

Shen, Z.-J. M. and Qi, L. Incorporating inventory and routing costs in strategic location models. European

journal of operational research, 179(2):372–389, 2007.

Shirokikh, V. A. and Zakharov, V. V. Dynamic adaptive large neighborhood search for inventory routing

problem. Modelling, Computation and Optimization in Information Systems and Management Sciences,

359:231–241, 2015.

Silver, E. A. Operations research in inventory management: A review and critique. Operations Research,

29(4):628–645, 1981.

Sohn, J. and Park, S. A linear program for the two-hub location problem. European Journal of Operational

Research, 100(3):617–622, 1997.

Sohn, J. and Park, S. The single allocation problem in the interacting three-hub network. Networks, 35(1):

17–25, 2000.

Talbi, E.-G. Metaheuristics: from design to implementation, volume 74. John Wiley & Sons, 2009.

120

Tang, Z., Jiao, Y., and Ravi, R. Combinatorial heuristics for inventory routing problems. INFORMS Journal

on Computing, to appear.

Tang, Z., van Hoeve, W.-J., and Shaw, P. A study on the traveling salesman problem with a drone. In Inter-

national Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations

Research, pages 557–564. Springer, 2019.

Tjandraatmadja, C. and van Hoeve, W.-J. Target cuts from relaxed decision diagrams. INFORMS Journal

on Computing, 31(2):285–301, 2019.

Tjandraatmadja, C. and van Hoeve, W.-J. Incorporating bounds from decision diagrams into integer pro-

gramming. Mathematical Programming Computation, pages 1–32, 2020.

Toth, P. and Vigo, D. Vehicle routing: problems, methods, and applications. SIAM, 2014.

Tuncbag, N., Braunstein, A., Pagnani, A., Huang, S.-S. C., Chayes, J., Borgs, C., Zecchina, R., and Fraenkel,

E. Simultaneous reconstruction of multiple signaling pathways via the prize-collecting steiner forest

problem. J Comput Biol., 20(2):124–136, 2013.

UPS. UPS Tests Residential Delivery Via Drone. Youtube, 2017. URL https://www.youtube.com/

watch?v=xx9_6OyjJrQ.

van Hoeve, W.-J. Graph coloring lower bounds from decision diagrams. In International Conference on

Integer Programming and Combinatorial Optimization, pages 405–418. Springer, 2020.

Vásquez, S. A., Angulo, G., and Klapp, M. A. An exact solution method for the tsp with drone based on

decomposition. Computers & Operations Research, 127:105127, 2021.

Vazirani, V. V. Approximation algorithms. Springer Science & Business Media, 2013.

Wang, X., Poikonen, S., and Golden, B. The vehicle routing problem with drones: Several worst-case

results. Optimization Letters, 11(4):679–697, 2017.

Wegener, I. Branching programs and binary decision diagrams: theory and applications. SIAM, 2000.

Williamson, D. P. and Shmoys, D. B. The design of approximation algorithms. Cambridge university press,

2011.

Yu, Y., Chen, H., and Chu, F. A new model and hybrid approach for large scale inventory routing problems.

European Journal of Operational Research, 189(3):1022–1040, 2008.

Yurek, E. E. and Ozmutlu, H. C. A decomposition-based iterative optimization algorithm for traveling

salesman problem with drone. Transportation Research Part C: Emerging Technologies, 91:249–262,

2018.

121

https://www.youtube.com/watch?v=xx9_6OyjJrQ
https://www.youtube.com/watch?v=xx9_6OyjJrQ

122

Appendices

123

Appendix A

Appendix for Chapter 3

125

Figure A.1: To apply the greedy algorithm for set cover to IRP, we define a set in IRP to be a subset of
demands. The way that a set is served is determined by three choices: a day t of service, a subset of stores
to visit on day t which induces a minimum cost tree T spanning the subset, and a subset D(T) of demands
with deadlines no earlier than t. The routing cost of this set is cost of the blue tree. The holding cost of this
set is the holding cost to serve D(T) from day t, represented by the red segments.

A.1 Greedy Heuristic

In this section, we introduce a greedy heuristic for IRP. Section A.1.1 adapts the greedy framework of set

cover to IRP, where a minimum density set is repeatedly chosen to cover some subset of demands. The

search space for a minimum density set involves an exponential number of subsets of vertices. To simplify

the choices needed to pick the set, we instead will show how to find a set whose density at most 3 times the

minimum density value in Section A.1.2. We prove that picking the approximately minimum density as the

greedy step achieves a logarithmic approximation factor for IRP. However, this greedy step is still computa-

tionally expensive (even though it is in polynomial time). So the implementation will modify the algorithm

to repeatedly pick any set whose density is within a certain specified threshold and raise that threshold

whenever no more such sets exists. The details of the implementation are described in A.1.3.

A.1.1 Greedy Framework

The greedy algorithm will attempt to cover the demands with routes choosing a route that minimizes the

ratio of the coverage cost to the number of newly covered demands.

As before, Tt denotes the existing tree on day t. LetD be the set of uncovered demands. Let r be the routing

cost function, h the holding cost function. For D′ ⊂ D, define d(D′) =
∑

(v,t)∈D′ d
v
t . The density of a tree

T and coverage set D(T) of demands is ρ(T,D(T)) := r(T)+h(D(T))
d(D(T)) .

The greedy algorithm is as follows.

Figure A.1 illustrates how sets of demands are chosen to be covered by visits. Instead of finding the exact

126

Algorithm 14: Greedy Framework

1 Initialize Tt ← ∅∀t ∈ [1, T] and D ← D(V × [T])
2 while |D| > 0 do
3 Find a day t, tree T on day t, and coverage set D(T) ⊂ D minimizing ρ(T,D(T))
4 D ← D \D(T)
5 Tt ← Tt ∪ T

minimum density tree and coverage set, we will find those of density at most 3 times the minimum density

by solving a PCST whose penalties will represent the best total value of new demands to cover.

A.1.2 Approximate Minimum Density Set

Formally, given a time t that we attempt to add client v to and target density value ρ, define the coverage

number η(v, t, ρ) to be the maximum number of consecutive (with respect to the timeframe) uncovered

demand points D′ at client v day within days [t, T] such that the weighted average holding cost h(D′)
d(D′) to

serve all such demands is at most ρ. Let A(v, t, ρ) and h(v, t, ρ) be the total demand and total holding

cost, respectively, corresponding to the η(v, t, ρ) many uncovered demand points whose weighted average

holding cost stays within ρ. We use the Algorithm 15 to approximate the minimum density tree and coverage

set.

Algorithm 15: Approximately Minimum Density Set

1 Guess the best day t∗ to add a minimum density tree and density value ρ∗ of the best coverage set
2 Find the classical primal dual solution (Goemans and Williamson, 1995) to the PCST with edge costs

and penalties
3

w(e) :=

{
c(e) if e /∈ E(Tt∗)

0 else
(A.1)

4

π(v) :=

{
A(v, t∗, ρ∗)ρ∗ if v /∈ V (Tt∗)

0 else.
(A.2)

5 Return the PCST tree PCSTt∗ and coverage set ∪v∈V (TPCST)\V (Tt∗)Dv where Dv is the set of
η(v, t∗, ρ∗) uncovered demands with demand time closest to t∗ (starting from t∗)

Next, we show that the above procedure approximates the minimum density set within a factor of 3. For

the analysis, we provide the dual LP used to construct the primal dual solution for PCST (Goemans and

Williamson, 1995).

127

min
∑
e∈E

cexe +
∑

X⊂V \{r}

π(X)zX (A.3)

s.t.
∑
e∈δ(S)

xe +
∑

X:X⊃S
zX ≥ 1 ∀S ⊂ V \ {r} (A.4)

xe ≥ 0 ∀e ∈ E (A.5)

zX ≥ 0 ∀X ⊂ V \ {r} (A.6)

max
∑

S⊂V \{r}

yS

s.t.
∑

S:e∈δ(S),S 63r

yS ≤ we ∀e ∈ E (A.7)

∑
S:S⊂X

yS ≤ π(X) ∀X ⊂ V \ {r} (A.8)

yS ≥ 0 ∀S ⊂ V \ {r} (A.9)

We can bound the routing cost with respect to the dual values using the same analysis as (Goemans and

Williamson, 1995), except that we bound the cost with respect to
∑

S⊂V (T) yS instead of their
∑

S⊂V \{r} yS .

Let y denote the dual solution defined by the algorithm in selecting the tree T . The following lemma is

implicit in (Goemans and Williamson, 1995).

Lemma A.1.1. r(T) ≤ 2
∑

S⊂V (T) yS .

Lemma A.1.2. Let T and D(T) be the tree and coverage set returned by the above PCST algorithm. Then

ρ(T,D(T)) ≤ 3ρ∗.

Proof. First, we compute the routing cost of T . We have

r(T) ≤2
∑

S⊂V (T)

yS by Lemma A.1.1

≤2π(V (T)) by the dual constraints

≤2
∑

v∈V (T)

A(v, t∗, ρ∗)ρ∗.

128

Second, the holding cost of D(T) is

h(D(T)) ≤
∑

v∈V (T)

∑
(v,t)∈Dv

Hv
t∗,t

≤
∑

v∈V (T)

A(v, t∗, ρ∗)ρ∗.

We know d(D(T)) =
∑

v∈V (T)A(v, t∗, ρ∗). So ρ(T,D(T)) = r(T)+h(D(T))
d(D(T)) ≤ 3ρ∗.

Finally, we show that if all demand values are at least 1, then the greedy algorithm which uses a 3-

approximate minimum density tree and coverage set each round still attains a logarithmic approximation

for IRP. The derivation is a simple modification of the set cover analysis.

Theorem A.1.3. If dvt ≥ 1∀(v, t) ∈ D, then iteratively picking a 3-approximate minimum density tree and

coverage set yields an O(log(d(D)))-approximation for IRP.

Proof. In each iteration, a set of density at most 3 times the minimum density was found. For each demand

point, define its price to be the density of the set that covered it. Label the demand points in order of coverage

from (v1, t1) to (v|D|, t|D|). Then the kth demand point covered has price at most 3OPT
d(D\{(v1,t1),...,(vk−1,tk−1)}) .

So the final cost is at most
∑|D|

k=1
3OPT

d(D\{(v1,t1),...,(vk−1,tk−1)}) ≤ 3Hd(D)OPT = O(log(d(D)))OPT , where

the first inequality follows from dvt ≥ 1∀(v, t) ∈ D.

A.1.3 Implementation Detail

While the aforementioned greedy algorithm attains a provable bound on the cost, it is impractical to run on

large instances. Just finding one coverage set per round involves a binary search for the best density value ρ∗
that will induce an approximately minimum density set. On instances of 30 clients over 60 days, the version

of greedy that searches for the approximately lowest density set took over an hour per instance. Another

technique we tried to reduce the running time was to search for a single value of the lowest density such that

there is a feasible set cover, instead of a different low density per round. However, the single density version

of greedy still took over 45 minutes per 30 by 60 sized instance. Finally, we implemented a modification of

this version that further limits the search space. First, given the existing trees Tt per day t and the uncovered

set D, define the procedure COV ER(ρ) as in the following algorithm.

If ρ is too low, it is possible that COV ER(ρ) does not satisfy all demands. So whenever COV ER(ρ) stops

serving new demands, we will relax the target density ρ by multiplying it a factor α > 1 to continue serving

demands until all are satisfied. Formally, given a relaxation factor α > 1, we implement a heuristic called

GREEDY (α) defined in Algorithm 17.

129

Algorithm 16: COV ER(ρ)

1 while there is a set of density ≤ ρ do
2 Find a day t, tree T on day t, and coverage set D(T) ⊂ D with lowest density (minimized over

t ∈ T), with PCST penalties induced by ρ and t
3 D ← D \D(T)
4 Tt ← Tt ∪ T

Algorithm 17: GREEDY (α)

1 Initialize Tt ← ∅∀t ∈ [1, T]
2 Find lowest value ρmin such that COV ER(ρmin) serves a nonempty set of demands and apply

COV ER(ρmin)
3 while |D| > 0 do
4 ρmin ← α ∗ ρmin

5 Apply COV ER(ρmin)

To estimate the correct value for ρmin, we start with a small initial value for ρmin and double it until

COV ER(ρmin) returns a nonempty set.

Since PCST already has fast near-optimal solvers, our implementation also differs from the stated algorithm

by finding using the solver of Leitner et. al. (Leitner et al., 2020) to solve PCSTs rather than the primal dual

algorithm of Goemans and Williamson (Goemans and Williamson, 1995).

Besides the pure Greedy heuristic, we also test how well Prioritized local search does if it is initialized with

the solution from Greedy instead of from local search with ADDs. We refer to the combination of Greedy

with Prioritized local search as Pruned Greedy.

In the next section, we show another application of the PCST ideas to design a primal-dual based heuristic

for IRP.

A.2 Primal Dual Heuristic

In this section, we investigate a primal-dual approach similar to (Levi et al., 2006) for solving IRP. Inspired

by the waveform mechanism introduced in (Levi et al., 2006) which was used for solving JRP, we generalize

this idea and try to make it applicable for solving IRP. We will solve PCST instances where each vertex of

the input represents a demand point of the IRP instance.

Section A.2.1 states the primal and dual LP relaxations for IRP. Using the LPs, the primal dual algorithm is

presented in Section A.2.2. For simplicity of the algorithm, not all of the dual values are defined explicitly in

the algorithm. In Section A.2.3, we prove that there is always a feasible setting of dual values corresponding

130

to the growth of moats in the algorithm. Finally, Section A.2.4 discusses a more efficient way that the primal

dual algorithm can be implemented.

A.2.1 LP Formulation

To simplify the notation, we assume that each client v has a unique day t such that dvt > 0, otherwise we

may add cost 0 edges to relabel multiple demand points at the same vertex as different vertices. Given a

client v, the day t for which dvt > 0 is denoted by t(v). For convenience, we use v to represent the demand

point (v, t(v)). The variable yes indicates whether edge e is used on day s. The variable xvs,t(v) indicates

whether demand (v, t(v)) is served on day s.

First, we state primal linear program and its dual:

min
∑
e∈E

T∑
s=1

wey
e
s +

∑
v∈D

t(v)∑
s=1

Hv
s,t(v)x

v
s,t(v)

s.t.
t(v)∑
s=1

xvs,t(v) ≥ 1 ∀(v, t(v)) ∈ D (A.10)∑
e∈δ(X)

yes ≥ xvs,t(v) ∀(v, t(v)) ∈ D, 1 ≤ s ≤ t(v), X ⊂ V : X 3 v,X 63 r

(A.11)

xvs,t(v) ≥ 0 ∀(v, t(v)) ∈ D, 1 ≤ s ≤ v(t) (A.12)

yes ≥ 0 ∀e ∈ E, 1 ≤ s ≤ T (A.13)

max
∑

(v,t(v))∈D

bvt(v)

s.t. bvt(v) ≤ H
v
s,t(v) +

∑
X3v,X 63r

βv,Xs,t(v) ∀(v, t(v)) ∈ D, 1 ≤ s ≤ t(v) (A.14)

∑
(v,t(v))∈D,X3v,X 63r,δ(X)3e

βv,Xs,t(v) ≤ we ∀e ∈ E, 1 ≤ s ≤ T (A.15)

bvt(v) ≥ 0 ∀(v, t(v)) ∈ D (A.16)

βv,Xs,t(v) ≥ 0 ∀(v, t(v)) ∈ D,X ⊂ V, 1 ≤ s ≤ T (A.17)

In the primal LP, constraint A.10 ensures that every demand point is served on time. Constraint A.11 ensures

that whenever a client v is served on day s, there is a path from the depot to v on day s.

131

A.2.2 A Primal-dual Approach

For the dual LP, variable bvt(v) represents the budget amount that demand point (v, t(v)) has available to pay

for visits to serve it. Variable βv,Xs,t(v) represents the amount that (v, t(v)) contributes towards building a tree

crossing X to get served on day s. However, since the βv,Xs,t(v) variables are not part of objective function

in the dual LP, we cannot directly use βv,Xs,t(v) to pay for visits. Instead, βv,Xs,t(v) represent copies of the total

budget bvt(v), one copy for each s. The general framework is to raise the budgets of demands as long as all

constraints in the dual LP are able to hold. The final values of the budgets are determined by the tightening

of dual constraints that they are involved in.

First, we describe the intuition of the algorithm. At the beginning of the algorithm, all budgets bvt(v) and

visit-specific payments βv,Xs,t(v) are to start at 0. We introduce a continuous parameter τ that slides through

time from T to 1 at a constant rate. The position of τ within the time horizon will determine what value

to raise the budgets and visit-specific payments. Whenever τ passes through an integral time t (i.e. τ <

t), it “wakes up” the budgets bvt(v) of demands (v, t(v)) occurring on day t(v) = t. Those bvt(v) shall

increase at the same rate that Hv
τ,t(v) is increasing as τ is sliding towards 1, i.e., we keep bvt(v) at exactly

the same value as Hv
τ,t(v). The definition of Hv

τ,t for non-integral τ is interpolated linearly, i.e., define

Hv
τ,t = (1− τ + bτc)Hv

bτc,t + (τ − bτc)Hv
dτe,t.

Observe that keeping bvt(v) = Hv
τ,t(v) ensures that each demand (v, t(v)) can at least pay for the holding cost

from time τ to t(v). To maintain feasibility to the dual constraints, we also raise βv,Xs,t(v) as needed to keep

constraint A.14 satisfied. That means for each demand (v, t(v)) and each s ∈ (τ, t(v)], we raise the value of∑
X3v,X 63r β

v,X
s,t(v) to at least Hv

τ,t(v) −H
v
s,t(v). For each value of τ and s, we create a PCST instance whose

penalty at v is assigned to Hv
τ,t(v) − H

v
s,t(v) and solve it using the primal dual algorithm of Goemans and

Williamson (Goemans and Williamson, 1995). The value to raise each βv,Xs,t(v) will be determined by the dual

values of the PCST instance set by primal dual algorithm (Goemans and Williamson, 1995). We defer the

details of the exact values to set them to the proof of feasibility for Theorem A.2.1.

Next, we give the necessary definitions to state the algorithm formally. Initially, all the dual variables are

unfrozen. During the running of the algorithm, we set the value of the dual variables as τ goes to 1. By

freezing a dual variable we mean that the value of that particular variable will not change from then on.

A vertex v ∈ D is a frozen vertex if and only if bvt(v) is frozen. In the algorithm, we shall serve a vertex

whenever it becomes frozen. Let F denote the set of the all frozen vertices since the beginning of the

algorithm until the current moment, i.e. since when τ = T till when τ = t where t is the current location of

the sweep line.

The algorithm assigns a service time l(v) to each frozen vertex v; the details of the assignment to v will be

explained later. This assignment would be in such a way that: 1 ≤ l(v) ≤ t(v) ≤ T , and for any v ∈ F , we

have bvt(v) = Hv
l(v),t(v).

132

Figure A.2: At each value of τ and s, we define a PCST instance whose penalty at each client is the holding
cost to store the product there from day τ to day s. A solution to the PCST instance determines the subset of
clients to visit on day τ . After this procedure is repeated for every value of τ and s, we know exactly which
clients are visited that day.

Finally, define the set of active vertices at time s to be A(s) = {v : v ∈ D, s ≤ t(v)} for all s ∈
[1, T].

Now, we are ready to give the algorithm formally in Algorithm 18. For the sake of intuition, we give a

continuous description of the algorithm which can be easily modified to be a discrete and polynomial time

algorithm. Figure A.2 provides a visualization of the algorithm.

Observe that at the end, all clients will have been frozen and served at some point.

A.2.3 Defining a Feasible Dual

Next, we show that there is a feasible dual solution b,β satisfying the assignment of values for bvt from the

algorithm. For the analysis, we shall refer to an particular iteration in the algorithm by the value of τ and s

at that point.

Theorem A.2.1. During any moment (τ, s) of the algorithm, for the setting bvt(v) = Hv
τ,t(v), there is an

assignment of β so that b,β is feasible to the dual.

Proof. Assume that we are in iteration (τ, s) of the algorithm. Let yS be the values of the dual variables

corresponding to the primal dual solution for PCST in this iteration. Note that yS depends on (τ, s), but we

omit further subscripting by (τ, s) for simplicity of notation. We will distribute the dual value yS among the

client-specific dual variables βv,Ss,t(v) with the goal of satisfying constraint A.14.

Define the potential of client v to be p(v) := πv −
∑

S3v,S 63r β
v,S
s,t(v). Initialize β = 0. As yS grows, assign

133

Algorithm 18: Primal Dual

1 Initialize F ← ∅ and ∀1 ≤ s ≤ T , A(s)← {v : v ∈ D, s ≤ t(v)}
2 for τ ← T towards 1 do
3 for s← dτe to T do
4 Make an instance of the prize-collecting Steiner tree problem by assigning a penalty πv to each

vertex v ∈ A(s) as follows for all v ∈ A(s) do
5 if v /∈ F then
6 πv = Hv

τ,t(v) −H
v
s,t(v)

7 else
8 πv = 0

9 Solve the prize-collecting Steiner tree instance using the classical primal dual
algorithm (Goemans and Williamson, 1995) and let X be the subset of A(s) getting connected
to the root r in the solution if X 6⊂ F then

10 For all v ∈ X\F let l(v) = τ and bvt(v) = Hv
l(v),t(v), and visit v at time dl(v)e (the values to

set βv,Xs,t(v) will be provided in the proof of Theorem A.2.1)

11 F ← F ∪X
12 Freeze the unfrozen vertices in X

13 For all v /∈ F let bvt(v) = Hv
1,t(v) and visit V \ F on day 1

14 Output the IRP schedule specified by the service times for each demand point
15 Output the dual variables bvt(v)

134

βv,Ss,t(v) = yS
|{v∈S:p(v)>0}| . Next, we show that this setting of β along with the setting bvt(v) = Hv

τ,t(v) of the

algorithm constitutes a feasible dual solution to IRP.

First, we can easily verify constraint A.15. For a given e ∈ E, s ≤ T , we have∑
v∈V,X3v,X 63r,δ(X)3e

βv,Xs,t(v) ≤
∑

X:δ(X)3e,X 63r

∑
v∈X

βv,Xs,t(v)

≤
∑

X:δ(X)3e,X 63r

yX by definition of β

≤we by the dual constraints for PCST.

Second, we show that
∑

X3v,X 63r β
v,X
s,t(v) ≥ H

v
τ,t(v)−H

v
s,t(v) for all v ∈ V and s ≤ t(v), which would imply

constraint A.14. Fix v and s. Consider the moment just before bvt(v) froze, which means the previous PCST

solution did not span v. By the primal dual algorithm of Goemans and Williamson, v was in some set X

such that π(X) =
∑

S:S⊂X yS . Then

π(X) =
∑

S:S⊂X
yS

=
∑
S∈X

∑
v∈S

βv,Ss,t(v)

≤
∑
S 63r

∑
v∈S∩X

βv,Ss,t(v)

=
∑
v∈X

∑
S3v,S 63r

βv,Ss,t(v)

≤
∑
v∈X

πv since only those v whose potential are positive grow their βv,Ss,t(v)

=π(X).

So all inequalities must be equalities, which means that
∑

X3v,X 63r β
v,X
s,t(v) = πv = Hv

τ,t(v)−H
v
s,t(v). Hence

constraint A.15 holds.

A.2.4 Implementation

Here, we provide a simpler implementation of Algorithm 18, which does not require setting dual values

and eliminates the loop over s from dτe to T . In Algorithm 18, the purpose of the loop over s is to help

determine feasible dual values to set for the variables βv,Xs,t(v) to prove Theorem A.2.1. However, for purposes

of obtaining the same primal solution, we do not need to create and solve the PCST instance per s value.

135

For a fixed τ , no matter which value s takes, the vertices spanned by the PCST solution all become assigned

to the service day τ . Also, for each demand day t(v), there is some round when s takes value t(v), so

that the penalty assigned to v is at its highest possible value Hv
τ,t(v). If v gets assigned to be served on

day τ by any s, it would certainly be part of the PCST solution to the instance having the highest penalty

Hv
τ,t(v) −H

v
t(v),t(v). So instead of collecting the visits on day τ separately through different values of s, we

could solve one PCST instance to determine the visit set for day τ by setting penalty Hv
τ,t(v) for v to collect

all visits that could possibly have been induced by the largest s. Similarly, the raising of dual values bvt(v) in

Algorithm 18 was included to help prove Theorem A.2.1 and is not needed to determine the primal solution.

One last detail we modify is the solution method for PCSTs. Algorithm 18 solved PCSTs using (Goemans

and Williamson, 1995) so that the dual values of PCST from (Goemans and Williamson, 1995) could be used

to determine the dual values to set βv,Xs,t(v), again to prove feasibility. However, for faster solving time, we

solve PCSTs using (Leitner et al., 2020) instead since we only need to recover the primal solution at the end

regardless of the dual values. Further, our implementation is a simplification of the original algorithm that

discretizes τ to take only integer values from T to 1. This allows us to use the fast PCST solver of Leitner

et. al. (Leitner et al., 2020) in a self-contained manner rather than having the breakpoints of τ depend on

the dual solution for PCST. However, as noted above, the simplification only finds a primal solution for IRP.

The dual values are no longer valid after restricting the breakpoints of τ to only integers. Algorithm 19

describes the aforementioned heuristic exactly as implemented.

Algorithm 19: Primal Only Implementation

1 Initialize F ← ∅ and ∀1 ≤ s ≤ T , A(s)← {v : v ∈ D, s ≤ t(v)}
2 for τ ← T to 1 do
3 Make an instance of the prize-collecting Steiner tree problem by assigning a penalty πv to each

vertex v ∈ A(τ) as follows for all v ∈ A(τ) do
4 if v /∈ F then
5 πv = Hv

τ,t(v)

6 else
7 πv = 0

8 Solve the prize-collecting Steiner tree instance using the solver (Leitner et al., 2020) and let X be
the subset of A(τ) getting connected to the root r in the solution

9 if X 6⊂ F then
10 For all v ∈ X\F , visit v at time τ
11 F ← F ∪X
12 Freeze the unfrozen vertices in X

13 For all v 6∈ F , visit V \ F on day 1
14 Output the IRP schedule specified by the service times for each demand point

In addition to the pure Primal Dual heuristic, we test Prioritized local search initialized with the solution

from the Primal Dual heuristic, which we call Pruned Primal Dual.

136

A.3 Uncapacitated IRP Results

In this section, we give two MIP formulations of uncapacitated IRP. Following that, we provide plots of all

heuristics’ gaps and running times against the parameters H , N , and T .

A.3.1 MIP Formulation for Uncapacitated IRP

First, we describe a compact MIP formulation of the IRP, that we use with modern solvers to establish the

benchmark for comparing our solutions. Our exact MIP formulation for IRP is of size O(N2T) +O(NT 2).

When the problem instances get larger, we are however only able to generate lower bounds for the value of

a solution even using state-of-the-art solvers such as Gurobi Version 7.

As before, xvs,t will be the variable indicating whether to serve (v, t) on day s. Define a related variable Xv
s

indicating whether v is visited on day s. Let zuws be the variable indicating whether to use an arc uw on day

s. Let huws be the continuous variable representing the amount of total flow through arc uw on day s coming

from the depot.

Intuitively, the purpose of huws is to enable expressing connectivity in a polynomial number of constraints,

in contrast with using a non-compact set of exponentially many cut-covering constraints. In Figure A.3, we

provide an example of how the values of huws are set in a feasible solution. Then IRP is modeled by the

following MIP.

min
∑
u∈V

∑
w 6=u∈V

T∑
s=1

cuwz
uw
s +

∑
(v,t)∈D

t∑
s=1

Hv
s,tx

v
s,t

s.t. zuws + zwus ≤ 1 ∀u ∈ V,w > u, s ≤ T (A.18)
t∑

s=1

xvs,t = 1 ∀v ∈ V, t ≤ T (A.19)

Xv
s ≥ xvs,t ∀v ∈ V, t ≤ T, s ≤ t (A.20)∑

w 6=v
zvws = Xv

s ∀v ∈ V \ {r}, s ≤ T (A.21)

∑
w 6=v

zwvs = Xv
s ∀v ∈ V \ {r}, s ≤ T (A.22)

∑
w 6=r

zrws ≤ 1 ∀s ≤ T (A.23)

∑
w 6=r

zwrs ≤ 1 ∀s ≤ T (A.24)

137

67

𝑟

𝑙

𝑗

𝑙 − 1

𝑗 − 1

2

1

𝒍

𝒍 − 𝟏𝟏

𝟎

𝒍 − 𝒋 + 𝟏

Figure A.3: For a fixed day s, suppose that nodes 1, . . . , l are visited by a cycle in a feasible solution to IRP.
To determine the appropriate values to set huws variables, note that each visited node contributes one unit of
flow along the path from from r to itself. Then the flow through an arc uw would be the total number of
all the paths between r and visited nodes that have uw in the path. The labels along the arcs indicate the
values that huws would take per arc uw. Values of the remaining variables would be set in the obvious ways:
zuws = 1 if and only if arc uw is in the cycle, Xv

s = 1 if and only if v ∈ {1, . . . , l}, xvst = 1 if and only if
day s is the latest day before or on day t having a visit to v.

∑
w 6=u

hwus −
∑
w 6=u

huws =

Xu
s , u 6= r∑
a6=r −Xa

s , u = r
∀u ∈ V, s ≤ T (A.25)

huws ≤ (N − 1)zuws ∀u ∈ V,w 6= u, s ≤ T (A.26)

Xv
s , x

v
s,t, z

uw
s ∈ {0, 1} ∀v ∈ V, u ∈ V,w 6= u ∈ V, t ≤ T, s ≤ T (A.27)

huws ≥ 0 ∀u ∈ V,w 6= u, s ≤ T (A.28)

Constraint A.18 ensures that each edge is used at most once. Constraint A.19 guarantees that all demands

are satisfied on time. Constraint A.20 ensures that whenever a demand is served on a specified day, there

must be a visit to the client on that day. Constraints A.21 and A.22 guarantee that if a vertex is visited, then

some in-arc and some out-arc incident to it must be traversed. Constraints A.23 and A.24 limit the number

of cycles to 1.

We needed a separate case for the fractional degree at r because the depot could be served by itself on day

s while not building any arcs on day s, which means that
∑

w 6=r z
rw
s and

∑
w 6=r z

wr
s could potentially be 0

even when Xr
s = 1. Constraint A.25 ensures that the net in-flow into any u 6= r corresponds to whether u is

visited on that day, and the net in-flow into r corresponds to the negative of the number of vertices visited

(i.e., out-flow of one per node). Constraint A.26 requires that on each day, an arc must be built if there is

flow through it from the depot, and the flow allowed is bounded by the maximum possible number of visited

nodes.

Solving this MIP directly within MIPGap of 10% was not practical past instances of size 140 (nodes) by 6

(days) and 50 by 16. We use the lower bound found at 10% MIPGap to compare with the costs from our

heuristics.

138

A.3.2 Additional Experimental Results on Uncapacitated IRP

First, we present results from varying the holding cost scaling parameter H . Then we provide more details

of performance plots as we vary all three parameters N,T and H .

Varying H

In this test, N and T are fixed to 100 and 6, respectively. The holding cost scale H varies from 0.01 to 6.01

at increments of 0.5. Results that require lower bound from the MIP go up to only H = 4.51 due to high

running times of the MIP and the large number of instances per parameter value. In summary, the heuristics

in order of lowest to highest gaps are Prioritized Local Search, ADD, DELETE, Pruned Greedy, Pruned

Primal Dual, Primal Dual, and Greedy. Detailed results are listed below.

• For ADD and Prioritized Local Search, the gap is at most 5% for all values of H . The values of H for

which they have their highest gaps occur at 2.01 and 2.51. Since ADD and Prioritized Local Search

are richer operations in their use of the PCST solutions, we expect them to reach close to optimality.

The Prioritized Local Search and Local Search with ADDs have similar gaps because the solution

from ADD is already nearly optimal and there is little room to improve the cost.

• For DELETE Local Search, the gap is largest at 1.1 for H at 2.51 and 3.01.

• Primal dual has its largest gap of 1.19 at H = 2.51.

• Pruned Primal Dual’s gaps increase as H increases, starting from 1.01 at H = 0.01 to 1.11 at H =

4.51. It might be the case that the gap would eventually taper off at a larger value of H , but we do not

have the lower bounds to compare with due to the long solution time of the MIP.

139

H

0.01 0.51 1.01 1.51 2.01 2.51 3.01 3.51 4.01 4.51

Ga
p

(%
)

0

10

20

30

40

50

60

Gap Vs H

DELETE ADD PRIORITIZED GREEDY PRUNED GREEDY PRIMAL DUAL PRUNED PRIMAL DUAL

Figure A.4: Delete, Add, and Prioritized each correspond to the local search that DELETEs, ADDs, and
all operations, respectively. The gaps for Delete, Add, Prioritized Local Search, Greedy, Pruned Greedy,
Primal Dual, and Pruned Primal Dual are shown in blue, red, green, purple, light blue, orange, and dark
blue, respectively.

Varying N

140

3

Figure A.5: The running times for Delete, Add, Prioritized Local Search, Greedy, Pruned Greedy, Primal
Dual, and Pruned Primal Dual are shown in blue, red, green, purple, light blue, orange, and dark blue,
respectively.

Varying T

A.4 MIP Formulation for Capacitated IRP

We adapt a MIP formulation for the multivehicle production and inventory routing problem due to Adulyasak

et al. (2014) to our specific problem that we use with modern solvers to establish the benchmark for compar-

ing our solutions. Specifically, we used the formulation in Secion 2.2.1 of their paper with a vehicle index

for the trucks, oriented towards a policy that allows replenishment up to the maximum level of inventory

at each destination (as opposed to the other formulations in the paper that avoid vehicle indices and use

delivery amounts that obey order-up-to levels at destinations). We ignored constraints and variables related

to depot and location capacities, as well as production capacity constraints at the depot since they were not

addressed in our study. We describe the resulting formulation below.

We first define variables used in the MIP: Iit is the inventory at node i at the end of period t. zikt is equal to

1 if node i is visited by vehicle k in period t and 0 otherwise. xijkt is equal to 1 if vehicle k travels directly

between node i and node j in period t and 0 otherwise. qikt is the quantity delivered to customer i with

vehicle k in period t. hi is the unit inventory holding cost at node i. cij is the transportation cost between

node i and j. dit is the demand at customer i in period t. Q is the vehicle capacity. Recall that V is the set of

141

N

110 120 130 140

Ga
p

(%
)

0

5

10

15

20

25

30

35

40

45

Gap vs N

DELETE ADD PRIORITIZED GREEDY PRUNED GREEDY PRIMAL DUAL PRUNED PRIMAL DUAL

Figure A.6: The gaps for Delete, Add, Prioritized Local Search, Greedy, Pruned Greedy, Primal Dual, and
Pruned Primal Dual are shown in blue, red, green, purple, light blue, orange, and dark blue, respectively.

clients, r is the depot, K is the number of trucks and we have T periods in the problem specification.

min
∑
t∈T

∑
i∈N

hiIit +
∑

(i,j)∈E

∑
k∈K

cijxijkt

 (A.29)

s.t. Ii,t−1 +
∑
k∈K

qikt = dit + Iit ∀i ∈ V, t ∈ T, (A.30)∑
i∈V

qikt ≤ Qz0kt ∀k ∈ K,∀t ∈ T, (A.31)∑
k∈K

zikt ≤ 1 ∀i ∈ V,∀t ∈ T, (A.32)

qikt ≤ min{Q,
l∑
j=t

dij}zikt ∀i ∈ V,∀k ∈ K,∀t ∈ T, (A.33)

∑
(j,j′)∈δ(i)

xjj′kt = 2zikt ∀i ∈ V ∪ {r}, ∀k ∈ K,∀t ∈ T, (A.34)

∑
(i,j)∈E(S)

xijkt ≤
∑
i∈S

zikt − zi′kt ∀S ⊂ V, |S| ≥ 2,∀i′ ∈ S,∀k ∈ K,∀t ∈ T, (A.35)

142

8

Figure A.7: The running times for Delete, Add, Prioritized Local Search, Greedy, Pruned Greedy, Primal
Dual, and Pruned Primal Dual are shown in blue, red, green, purple, light blue, orange, and dark blue,
respectively.

Ii,t−s−1 ≥

 s∑
j=0

di,t−j

1−
∑
k∈K

s∑
j=0

zik,t−j

 ∀i ∈ V,∀t ∈ T, s = 0, 1, . . . , t− 1,

(A.36)

zikt ≤ zrkt ∀i ∈ V,∀k ∈ K,∀t ∈ T, (A.37)

xijkt ≤ zikt, xijkt ≤ zjkt ∀(i, j) ∈ E(V),∀k ∈ K,∀t ∈ T, (A.38)

zrkt ≥ zr,k+1,t ∀1 ≤ k ≤ m− 1, ∀t ∈ T, (A.39)

Iit, qikt ≥ 0 ∀i ∈ V ∪ {r},∀k ∈ K,∀t ∈ T, (A.40)

zikt ∈ {0, 1} ∀i ∈ V ∪ {r},∀k ∈ K,∀t ∈ T, (A.41)

xijkt ∈ {0, 1} ∀(i, j) ∈ E : i 6= r, ∀k ∈ K,∀t ∈ T, (A.42)

xrjkt ∈ {0, 1, 2} ∀j ∈ V, k ∈ K, t ∈ T. (A.43)

Constraint (A.30) ensures inventory balance at all nodes across time. Constraint (A.31) enforces the vehicle

capacity constraints. Constraint (A.33) allows positive delivery from a truck at a location only if the truck

visits that node in that time period. We have the subtour elimination constraints in (A.35). Constraints (A.36)

ensure that sufficient inventory is at hand to satisfy future demand in light of no future vehicle visits.

The above MIP is solved by the branch-and-cut method where the subtour elimination constraints (A.35) is

143

T

6 8 10 12 14 16

Ga
p

(%
)

0

5

10

15

20

25

30

35

40

45

50

55

Gap vs T

DELETE ADD PRIORITIZED GREEDY PRUNED GREEDY PRIMAL DUAL PRUNED PRIMAL DUAL

Figure A.8: The gaps for Delete, Add, Prioritized Local Search, Greedy, Pruned Greedy, Primal Dual, and
Pruned Primal Dual are shown in blue, red, green, purple, light blue, orange, and dark blue, respectively.

separated via a generic min-cut subroutine. The branch-and-cut method is implemented in SCIP 6.0.2.

144

13

Figure A.9: The running times for Delete, Add, Prioritized Local Search, Greedy, Pruned Greedy, Primal
Dual, and Pruned Primal Dual are shown in blue, red, green, purple, light blue, orange, and dark blue,
respectively.

145

146

Appendix B

Appendix for Chapter 5

We describe a compact formulation for the TSP-D, which is a direct adoption of the MIP model from Roberti

and Ruthmair (2019) with big-M constraints replaced with indicator constraint. Let A and B be two state-

ments, we define A→ B denote the constraint that if A is true, then B is true. Let xTij ∈ {0, 1} be a binary

variable equal to 1 if the truck traverses arc (i, j) ∈ A (no matter if the drone is on-board or airborne),

and let xDij ∈ {0, 1} be a binary variable equal to 1 if the drone traverses arc (i, j) ∈ A (no matter if it is

on-board or airborne). Let yTi ∈ {0, 1} (yDi ∈ {0, 1}, resp.) be a binary variable equal to 1 if i ∈ N is a

truck customer (drone customer, resp.). Moreover, let yCi ∈ {0, 1} be a binary variable equal to 1 if i ∈ N
is a combined customer. Finally, let ai ∈ R+ be the arrival time of the truck or the drone (or both) at node

i ∈ V . The TSP-D can be formulated as:

min a0′ (B.1)

s.t.
∑

(i,j)∈A

xTij =
∑

(j,i)∈A

xTji, i ∈ N (B.2)

∑
(i,j)∈A

xTij = yTi + yCi , i ∈ N (B.3)

∑
(0,j)∈A

xT0j =
∑

(i,0′)∈A

xTi0′ = 1 (B.4)

∑
(i,j)∈A

xDij =
∑

(j,i)∈A

xDji , i ∈ N (B.5)

∑
(i,j)∈A

xDij = yDi + yCi , i ∈ N (B.6)

∑
(0,j)∈A

xD0j =
∑

(i,0′)∈A

xDi0′ = 1 (B.7)

yTi + yDi + yCi = 1, i ∈ N (B.8)

147

xTij = 1→ ai + tTij ≤ aj , ∀(i, j) ∈ A (B.9)

xDij = 1→ ai + tDij ≤ aj , ∀(i, j) ∈ A (B.10)

xDij + xDji ≤ yDi + yDj , ∀i, j ∈ N, i < j (B.11)

xTij , x
D
ij ∈ {0, 1}, ∀(i, j) ∈ A (B.12)

yTi , y
D
i , y

C
i ∈ {0, 1}, ∀i ∈ N (B.13)

ai ∈ R+, ∀i ∈ N (B.14)

a0′ ≥
∑

(i,j)∈A

tTijx
T
ij , a0′ ≥

∑
(i,j)∈A

tDijx
D
ij (B.15)

The objective function (B.1) aims at minimizing the total tour duration to serve all customers. Con-

straints (B.2) are flow conservation constraints for the truck. Constraints (B.3) links xTij variables with

yTi and yCi variables. Constraints (B.4) ensure that the truck leaves and returns to the depot exactly once.

Constraints (B.6)-(B.7) correspond to constraints (B.2)-(B.4) but are defined for the drone. Constraints (B.8)

ensure that each customer is visited at least once. The next two set of constraints act as subtour elimination

constraints and set the arrival time at each node of the truck/drone. Constraints (B.11) ensure that the drone

travels from i ∈ N to j ∈ N if and only if the truck visits at least one of the customers i and j, thus ensuring

that each drone leg consists of a single drone customer. Constraints (B.15) state that the duration of the tour

cannot be lower than the maximum of the sum of the travel time of the arcs traversed by the truck and that

traversed by the drone.

148

	Tang, Ziye.pdf
	DISSERTATION
	Titled
	Presented by
	Accepted by
	Approved by the Dean

	Tang Dissertation.pdf
	Introduction
	Hub Network Design
	Introduction
	Our Contributions
	Related Work

	Hub Steiner Tree
	Hardness of Hub Spanning Tree Problem
	Non-metric Hub Steiner Tree

	Metric Hub Steiner Tree
	Approximation Algorithm for HND
	Heuristic Algorithms for HND
	MIP Model for HND
	Heuristic Algorithms for Initial Population
	Evolutionary Framework

	Numerical Experiments
	Data and Parameter Description
	Comparison of Heuristic Search
	Improvement from Evolutionary Framework

	Conclusion

	Combinatorial Heuristics for Inventory Routing Problems
	Introduction
	Related Work
	Uncapacitated Local Search Heuristics
	DELETE
	ADD
	Prioritized Local Search

	Uncapacitated IRP Results
	Experimental Setup
	Comparison of Different Heuristics
	Comparison between the Prioritized Local Search and the Baseline MIP
	True Optimality Gap when MIP is solved exactly

	Capacitated Local Search
	Capacitated ADD
	Capacitated DELETE
	Prioritized Local Search
	From PCST to Feasible Subtours

	Capacitated IRP Results
	Experimental Setup
	Parameter Settings
	Performance Evaluation
	True Optimality Gap when MIP is solved exactly

	Conclusion

	A Study on the Traveling Salesman Problem with Drone
	Introduction
	Related Work
	Problem Definition
	Theoretical Analysis
	Computational Complexity
	Approximation Algorithm for a Special Case

	Constraint Programming Formulation
	Logic-based Benders Decomposition
	The Partition Master Problem
	The Truck-Drone Scheduling Subproblem
	Benders Cuts
	Preliminary Results and Limitations

	Conclusion

	Truck-Drone Routing with Decision Diagrams
	Introduction
	Related Work
	Problem Definition
	Preliminaries
	Dynamic Programming Model
	Basic Definitions of Decision Diagrams
	DD Compilation based on DP
	Lower Bound from Set Partitioning

	Route Relaxation
	ng-Route Relaxation
	DD-based Route Relaxation
	Conflict Refinement

	Lower Bound Computation
	Iterative Framework
	Implementation Details
	Conflict Refinement
	Path Decomposition
	Step Size for the Subgradient Method
	Improvement Criterion for Function lagAdapt
	Sensitivity of Bucket and Buffer Size

	Computational Experiments
	Size and Lower Bound from Initial Route Relaxation
	Lower Bound Improvement
	Scalability of Iterative Refinement Algorithms
	Effect of Drone-Truck Speed Ratio

	Conclusion

	Conclusions
	Appendices
	Appendix for Chapter 3
	Greedy Heuristic
	Greedy Framework
	Approximate Minimum Density Set
	Implementation Detail

	Primal Dual Heuristic
	LP Formulation
	A Primal-dual Approach
	Defining a Feasible Dual
	Implementation

	Uncapacitated IRP Results
	MIP Formulation for Uncapacitated IRP
	Additional Experimental Results on Uncapacitated IRP

	MIP Formulation for Capacitated IRP

	Appendix for Chapter 5

