
Statistical Guarantees for Spectral Methods
on Neighborhood Graphs

Alden Green

July 9th, 2021

Department of Statistics and Data Science
Carnegie Mellon University

Pittsburgh PA, 15213

Thesis Committee:
Sivaraman Balakrishnan (Co-chair)

Ryan Tibshirani (Co-chair)
Alessandro Rinaldo

Dejan Slepčev (CMU Math Department)
Mikhail Belkin (UCSD)

Abstract

This thesis studies spectral methods on neighborhood graphs. These methods operate on point-cloud data.
They form a neighborhood graph over this data, use the eigenvectors and eigenvalues of a graph Laplacian
matrix to map each point to a set of data-dependent features, then run a simple algorithm which uses these
features to perform a downstream task. Such methods are very general, and can be used to solve many
different learning problems. They are also flexible, in that the feature mapping adapts to the structure of
the data. However, this generality and flexibility also makes it challenging to understand the theoretical
properties of spectral methods.

To understand these theoretical properties, we adopt the classical perspective of nonparametric statistics.
We provide precise guarantees which establish that spectral methods on neighborhood graphs can effectively
solve various statistical problems. Chapter 2 analyzes a local spectral clustering method, PPR clustering,
and shows that it approximately recovers well-conditioned density clusters. Chapters 3 and 4 consider
two methods for regression, Laplacian smoothing and Laplacian eigenmaps, and show that each method is
minimax optimal under various data models. In Chapter 5, we discuss assorted other properties of these
methods, which differentiate them from more classical nonparametric approaches.

1

Acknowledgments

To start at the beginning, I would like to thank my family: Laurin, Davis, Mom, and Papa. My family
members are all incredibly bright and inquisitive; they are also incredibly argumentative. Growing up, I
learned to only make statements I could justify, to discard those beliefs I could not, and to question everything
else. On the other hand, I was also raised with the (unjustifiable) confidence that I could solve any problem
if I thought hard enough about it. My parents also made sure I received a great education, and still lived a
balanced life (at times over my own objections). I have them to thank for many of the qualities that served
me well in obtaining my doctorate. At the same time, funnily enough we are not really a mathematical
group by inclination or by training. So I also want to thank my family for being wholeheartedly supportive
as I made the somewhat surprising choices that ended up leading to this thesis.

I would also like to thank various members of the Carnegie Mellon Statistics Department, which has been
my academic home for the last six years. My first advisor, Cosma Shalizi, gave me my first problem to
solve, showed me the ropes of research, and only slightly complained when I sent him a first draft with no
citations and with the topic sentence “Networks matter.” The members of the Carnegie Mellon Networkshop
patiently listened to me repeatedly give the same basic talk, early versions of which were largely unintelligible,
and gently pushed me to speak simply and clearly about complicated subject matter. Ale Rinaldo gave me
essential professional and personal advice—for which I haven’t thanked him enough—and ended up being one
of my thesis committee members. I enjoyed talking about my research with Ale, and also with my (external
to the CMU Stat Department) committee members Misha Belkin and Dejan Slepcev; I was fortunate to have
a thesis committee representing a variety of intellectual communities (statistics, machine learning, computer
science, math) and each of them brought a distinct perspective while making insightful comments about my
work. I would especially like to thank my thesis advisors Siva Balakrishnan and Ryan Tibshirani. They
taught me the intellectual joys of doing rigorous theoretical work (which I quickly appreciated), but also
pushed me to view it as only one piece in the larger research puzzle (which I am still working on appreciating).
Finally, I greatly enjoyed being a part of the community of PhD students in our department; it is one of my
bigger regrets that I did not end up collaborating with other students on more of my work.

As any PhD student will tell you, doctoral work is a rewarding but lonely pursuit, and it has been particularly
so over the past 16 months. I have been fortunate to have a group of friends who helped make sure it was a
little less lonely (again, sometimes over my own objections). I enjoyed our game nights, getting dinners with
Ilmun and Neil, going to the movies with Xiao Hui, and beating Kayla and Ben in egg toss. I am not always
the most social person, and they deserve extra thanks for putting up with my occasional bouts of introversion.
I would like to especially thank Abby, whose enthusiasm for life and adventure are an inspiration, and who
has often served as my window to a wider world.

This document is the culmination of n years of work, where n equals (depending on how you look at it):
three and a half (the time I’ve spent working on the topics of this thesis), six (the time I’ve spent in the
Carnegie Mellon Statistics PhD program), ten (the time I’ve spent learning about statistics), or twenty-
seven and three quarters (the time I’ve spent learning, period). Regardless of how you slice it, it represents
a significant chunk of my life. Naturally, then, there are many people whose influence can be felt in this final
product; that I have singled out only a strict, small subset of these above should not obscure this fact.

2

Contents

1 Introduction 7
1.0.1 Why Spectral Methods on Neighborhood Graphs? . 7

2 Statistical Guarantees for Local Spectral Clustering on Neighborhood Graphs 9
2.0.1 PPR clustering . 10
2.0.2 Worst-case guarantees for PPR clustering . 10
2.0.3 PPR on a neighborhood graph . 11
2.0.4 Cluster accuracy . 11
2.0.5 Population normalized cut, conductance, and local spread 11
2.0.6 Main Results . 12
2.0.7 Related Work . 13
2.0.8 Organization . 14

2.1 Recovery of a generic cluster with PPR . 15
2.1.1 PPR cluster recovery: the fixed graph case . 15
2.1.2 Improved bounds on mixing time . 15
2.1.3 Sample-to-population results . 16
2.1.4 Cluster recovery . 17

2.2 Recovery of a density cluster with PPR . 19
2.2.1 Recovery of well-conditioned density clusters . 19

2.3 Negative result . 21
2.3.1 Lower bound on symmetric set difference . 22
2.3.2 Comparison between upper and lower bounds . 23

2.4 Experiments . 24
2.4.1 Validating theoretical bounds . 24
2.4.2 Empirical behavior of PPR . 24

2.5 Discussion . 25

3 Minimax Optimal Regression over Sobolev Spaces via Laplacian Regularization on Neigh-
borhood Graphs 28
3.1 Introduction . 28
3.2 Summary of Results . 30
3.3 Background . 32
3.4 Minimax Optimality of Laplacian Smoothing . 33
3.5 Manifold Adaptivity . 39
3.6 Discussion . 40

4 Minimax Optimal Regression Over Sobolev Spaces via Laplacian Eigenmaps on Neigh-
borhood Graphs 41
4.1 Introduction . 41
4.2 Setup and Background . 45

3

4.2.1 Nonparametric regression with random design . 45
4.2.2 Laplacian eigenmaps . 46
4.2.3 Sobolev Classes . 46
4.2.4 Minimax Rates and Spectral Series Methods . 48

4.3 Minimax Optimality of Laplacian Eigenmaps . 51
4.3.1 First-order Sobolev classes . 52
4.3.2 Higher-order Sobolev classes . 54
4.3.3 Analysis . 56
4.3.4 Computational considerations . 58

4.4 Manifold Adaptivity . 59
4.4.1 Laplacian eigenmaps error rates under the manifold hypothesis 59

4.5 Out-of-sample error . 61
4.6 Experiments . 64
4.7 Future Work . 66

5 Discussion 67
5.1 Comparison between Laplacian Smoothing and Laplacian Eigenmaps 68

5.1.1 Statistical Efficiency . 68
5.1.2 Computational Efficiency . 68
5.1.3 Regularity of Estimates . 71

5.2 Graph Laplacian methods and the cluster assumption . 73
5.2.1 Setup . 73
5.2.2 Upper bounds on risk of graph Laplacian methods . 74
5.2.3 Lower bounds on risk of kernel smoothing and least squares 74
5.2.4 Experiments . 76

5.3 Equivalent kernel perspective . 77
5.3.1 Discrete-to-continuum . 78
5.3.2 Bandwidth of equivalent kernel . 81
5.3.3 Shape of equivalent kernel . 82
5.3.4 Predictions based on theoretical findings . 82
5.3.5 Experiments . 83

A Chapter 2 Appendix 94
A.1 Fixed graph results . 94

A.1.1 Misclassification error of clustering with PPR and aPPR 95
A.1.2 Uniform bounds on PPR . 98
A.1.3 Mixedness of lazy random walk and PPR vectors . 99
A.1.4 Proof of Proposition 1 . 106
A.1.5 Spectral partitioning properties of PPR . 108

A.2 Sample-to-population bounds . 109
A.2.1 Review: concentration inequalities . 109
A.2.2 Sample-to-population: normalized cut . 110
A.2.3 Sample-to-population: local spread . 110
A.2.4 Sample-to-population: conductance . 111

A.3 Population functionals for density clusters . 114
A.3.1 Balls, Spherical Caps, and Associated Estimates . 114
A.3.2 Isoperimetric inequalities . 115
A.3.3 Reverse isoperimetric inequalities . 116
A.3.4 Proof of Lemma 2 . 118
A.3.5 Proof of Proposition 4 . 118
A.3.6 Proof of Proposition 5 . 119
A.3.7 Population functionals, hard case . 120

4

A.4 Proof of Major Theorems . 121
A.4.1 Proof of Theorem 3 . 121
A.4.2 Proof of Theorem 4 . 122
A.4.3 Proof of Theorem 5 . 122

A.5 Additional results: aPPR and Consistency of PPR . 126
A.5.1 Generic cluster recovery with aPPR . 126
A.5.2 Perfectly distinguishing two density clusters . 127

A.6 Experimental Details . 129
A.6.1 Experimental settings for Figure 2.2 . 129
A.6.2 Experimental settings for Figure 2.3 . 129

B Chapter 3 Appendix 131
B.1 Preliminaries . 131
B.2 Graph-dependent error bounds . 132

B.2.1 Error bounds for linear smoothers . 132
B.2.2 Analysis of Laplacian smoothing . 134

B.3 Neighborhood graph Sobolev semi-norm . 136
B.3.1 Stronger bounds under Lipschitz assumption . 137

B.4 Bounds on neighborhood graph eigenvalues . 138
B.4.1 Proof of Theorem 27 . 140
B.4.2 Proof of Proposition 21 . 144
B.4.3 Non-random functionals and integrals . 145
B.4.4 Random functionals . 149
B.4.5 Proof of Propositions 22 and 23 . 152

B.5 Bound on the empirical norm . 154
B.6 Graph functionals under the manifold hypothesis . 155
B.7 Proofs of main results . 156

B.7.1 Proof of estimation results . 156
B.7.2 Proofs of testing results . 159
B.7.3 Two convenient estimates . 160

B.8 Concentration inequalities . 161

C Chapter 4 Appendix 164
C.1 Graph-dependent error bounds . 164

C.1.1 Upper bound on Estimation Error of Laplacian Eigenmaps 164
C.1.2 Upper bound on Testing Error of Laplacian Eigenmaps 165

C.2 Analysis of Spectral Series Estimator . 166
C.3 Graph Sobolev semi-norm, flat Euclidean domain . 168

C.3.1 Decomposition of graph Sobolev semi-norm . 168
C.3.2 Approximation error of non-local Laplacian . 170
C.3.3 Boundary behavior of non-local Laplacian . 175
C.3.4 Estimate of non-local Sobolev seminorm . 177
C.3.5 Assorted integrals . 178

C.4 Graph Sobolev semi-norm, manifold domain . 180
C.4.1 Decomposition of graph Sobolev seminorm . 181
C.4.2 Error due to Euclidean Distance . 182
C.4.3 Approximation Error of non-local Laplacian . 183
C.4.4 Estimate of non-local Sobolev seminorm . 183
C.4.5 Integrals . 184

C.5 Lower bound on empirical norm . 185
C.5.1 Proof of Proposition 10 . 185
C.5.2 Proof of Proposition 13 . 186

5

C.6 Proof of Main Results . 186
C.6.1 Estimation Results . 186
C.6.2 Testing Results . 187

C.7 Analysis of kernel smoothing . 188
C.7.1 Some preliminary estimates . 188
C.7.2 Proof of Lemma 5 . 189
C.7.3 Kernel smoothing bias . 191

C.8 Miscellaneous . 193
C.8.1 Concentration Inequalities . 193
C.8.2 Taylor expansion . 194

D Chapter 5 Appendix 195
D.1 Proof of Lemma 6 . 195
D.2 Laplacian Regularization Out-of-Sample . 196

D.2.1 Proof of Theorem 21 . 197
D.2.2 Proof of Proposition 28 . 201

D.3 Proof of Proposition 14 . 201
D.3.1 A Useful Lemma . 202

D.4 Proof of Proposition 15 . 203
D.4.1 Proof of (5.15) . 203
D.4.2 Proof of (5.16) . 204

D.5 Proof of Proposition 16 . 207
D.6 Proof of Proposition 17 . 208

6

Chapter 1

Introduction

Spectral algorithms on neighborhood graphs are a powerful family of methods for learning from data in a
flexible, nonparametric manner. They work as follows. Given n data points X1, . . . , Xn, the algorithm first
forms a neighborhood graph G = ({1, . . . , n}, A), a weighted graph with weights Aij measuring the proximity
between points Xi and Xj . Then a graph Laplacian matrix L ∈ Rn×n is constructed, which operates on
vectors u ∈ Rn by taking sums of differences; for instance, the unweighted Laplacian L = D − A (D being
the diagonal degree matrix), or random walk Laplacian L = I − D−1A. The spectrum (eigenvectors and
eigenvalues) of this Laplacian matrix corresponds to a feature embedding, and a simple algorithm is then
applied to this feature embedding, depending on the task at hand. For instance, if the goal is to cluster the
points X1, . . . , Xn, k-means clustering can be applied, whereas if the goal is to learn a relationship between
X1, . . . , Xn and some observed responses Y1, . . . , Yn, one can run linear or ridge regression.

Spectral methods are intriguing because the spectrum of the graph Laplacian gives a data-dependent way to
measure smoothness of functions f defined over the data X1, . . . , Xn. Small eigenvalues of L correspond to
smooth eigenvectors, and large eigenvalues to wiggly eigenvectors. Measuring and enforcing smoothness is
one of the core principles underlying the theory and methods of nonparametric statistics. For this reason, it
is very natural to study the properties spectral methods through such a nonparametric lens, and we adopt
this perspective throughout this thesis.

Specifically, we consider three spectral methods—PPR clustering (Chapter 2), Laplacian smoothing (Chap-
ter 3), and Laplacian eigenmaps (Chapter 4)—for three different learning tasks: clustering, estimation and
hypothesis testing. We provide theoretical guarantees showing that when the data are randomly sampled,
these methods approximate ideal ground-truth solutions as the number of samples n grows. In each case, we
give finite-sample bounds on the error. In the latter two cases—meaning Laplacian smoothing and Laplacian
eigenmaps for both estimation and testing—we show that the algorithms are optimal, in a minimax sense,
over large classes of functions.

1.0.1 Why Spectral Methods on Neighborhood Graphs?

The primary contribution of this thesis is to show that spectral algorithms computed over neighborhood
graphs are well suited to solve many classical problems in nonparametric statistics. It has long been under-
stood that spectral methods (not using neighborhood graphs) are powerful candidates for such problems.
Indeed, some fundamental results show that spectral algorithms are theoretically optimal for certain prob-
lems in nonparametric regression. However, these algorithms depend on the spectrum (eigenvalues and
eigenfunctions) of complex continuum operators, which cannot typically be found in practice. In contrast,
the spectrum of graph Laplacians can be easily computed, and serves as a practical approximation to the
unknown spectrum of these aforementioned continuum operators. This thesis shows that, in certain senses,

7

methods that use the spectrum of a graph Laplacian inherit the strong theoretical guarantees of their con-
tinuum limits.

However, in each problem we consider there exist other (non-spectral) methods which are also well suited
for the task at hand. This naturally leads to the question: why should one use spectral algorithms over
neighborhood graphs? Or more precisely: do there exist theoretical (as opposed to empirical or practi-
cal) and statistical (as opposed to computational) reasons why one should prefer spectral algorithms over
neighborhood graphs?

This question represents a high bar—one common theme to work on minimax theory for statistical problems
is that there almost always exist multiple methods which are more or less optimal for any given problem—and
we cannot give a conclusive answer. However, in Chapter 5 we do offer a few explanations about what graphs
bring to the table that other methods cannot. Focusing on regression, we argue that spectral algorithms
on graphs return estimates which are both density adaptive and, potentially, spiky. This is in contrast to
more standard methods for nonparametric regression, which enforce a more uniform notion of smoothness.
Both properties are intriguing, for separate reasons. Density adaptivity means spectral algorithms can
provably outperform other estimators under certain structural assumptions on the relationship between
design distribution and regression function. Spikiness, a property more pronounced in Laplacian smoothing
than Laplacian eigenmaps, means that the former can have superior properties out-of-sample (that is, for
prediction) than in-sample (that is, for estimation). This is similar to the phenomenon of statistically well-
behaved interpolation, which of late has attracted tremendous interest in the statistics and machine learning
communities.

Finally, a note on organization: each of Chapters 2-4 corresponds to a different paper, either published or
currently in submission. These chapters are entirely self-contained, and each can be read separately from
the other two. As such, we make no effort to standardize notation between them.

8

Chapter 2

Statistical Guarantees for Local
Spectral Clustering on Neighborhood
Graphs

In this paper, we consider the problem of clustering: splitting a given data set into groups that satisfy
some notion of within-group similarity and between-group difference. Our particular focus is on spectral
clustering methods, a family of powerful nonparametric clustering algorithms. Roughly speaking, a spectral
algorithm first constructs a geometric graph G, where vertices correspond to samples, and edges correspond
to proximities between samples. The algorithm then estimates a feature embedding based on a (suitable)
Laplacian matrix of G, and applies a simple clustering technique (like k-means clustering) in the embedded
feature space.

When applied to geometric graphs built from a large number of samples, global spectral clustering methods
can be computationally cumbersome and insensitive to the local geometry of the underlying distribution
[Leskovec et al., 2010, Mahoney et al., 2012]. This has led to increased interest in local spectral clustering
algorithms, which leverage locally-biased spectra computed using random walks around some user-specified
seed node. A popular local clustering algorithm is the Personalized PageRank (PPR) algorithm, first intro-
duced by Haveliwala [2003], and then further developed by several others [Spielman and Teng, 2011, 2014,
Andersen et al., 2006, Mahoney et al., 2012, Zhu et al., 2013].

Local spectral clustering techniques have been practically very successful [Leskovec et al., 2010, Andersen
et al., 2012, Gleich and Seshadhri, 2012, Mahoney et al., 2012, Wu et al., 2012], which has led many authors
to develop supporting theory [Spielman and Teng, 2013, Andersen and Peres, 2009, Gharan and Trevisan,
2012, Zhu et al., 2013] that gives worst-case guarantees on traditional graph-theoretic notions of cluster
quality (such as normalized cut and conductance). In contrast, in this paper we adopt a classical statistical
viewpoint, and examine what the output of local clustering on a data set reveals about the underlying
density f of the samples. We establish conditions on f under which PPR, when appropriately tuned and
initialized inside a candidate cluster C ⊆ Rd, will approximately recover this candidate cluster. We pay
special attention to the case where C is a density cluster of f—defined as a connected component of the
upper level set {x ∈ Rd : f(x) ≥ λ} for some λ > 0—and show precisely how PPR accounts for both
geometry and density in estimating a cluster.

Before giving a more detailed overview of our main results, we formally define PPR on a neighborhood graph,
review some of the aforementioned worst-case guarantees, and introduce the population-level functionals that
govern the behavior of local clustering in our statistical context.

9

2.0.1 PPR clustering

We start by reviewing the PPR clustering algorithm. Let G = (V,E) be an undirected, unweighted, and
connected graph. We denote by A ∈ Rn×n the adjacency matrix of G, with entries Auv = 1 if (u, v) ∈ E
and 0 otherwise. We also denote by D the diagonal degree matrix, with entries Duu :=

∑
v∈V Auv, and by

I the n × n identity matrix. The PPR vector pv = p(v, α;G) is defined with respect to a given seed node
v ∈ V and a teleportation parameter α ∈ [0, 1], as the solution of the following linear system:

pv = αev + (1− α)pvW, (2.1)

where W = (I +D−1A)/2 is the lazy random walk matrix over G and ev is the indicator vector for node v
(that has a 1 in position v and 0 elsewhere).

In practice, exactly solving the system of equations (2.1) to compute the PPR vector may be too compu-
tationally expensive. To address this limitation, Andersen et al. [2006] introduced the ε-approximate PPR
vector (aPPR), which we will denote by p

(ε)
v . We refer the curious reader to Andersen et al. [2006] for a

formal algorithmic definition of the aPPR vector, and limit ourselves to highlighting a few salient points:
the aPPR vector can be computed in order O(1/(εα)) time, while satisfying the following uniform error
bound:

for all u ∈ V , pv(u)− εDuu ≤ p(ε)
v (u) ≤ pv(u). (2.2)

Once pv or p
(ε)
v is computed, the cluster estimate Ĉ is chosen by taking a particular sweep cut. For a given

level β > 0, the β-sweep cut of pv = (pv(u))u∈V is

Sβ,v :=

{
u ∈ V :

pv(u)

Duu
> β

}
. (2.3)

To determine Ĉ, one computes Sβ,v over all β ∈ (L,U) (where the range (L,U) is user-specified), and then
outputs the cluster estimate Ĉ = Sβ∗,v with minimum normalized cut. For a set C ⊆ V with complement
Cc = V \C, the cut and volume are respectively,

cut(C;G) :=
∑
u∈C

∑
v∈Cc

1{(u, v) ∈ E}, vol(C;G) :=
∑
u∈C

∑
v∈V

1{(u, v) ∈ E}, (2.4)

and the normalized cut of C is

Φ(C;G) :=
cut(C;G)

min {vol(C;G), vol(Cc;G)}
. (2.5)

2.0.2 Worst-case guarantees for PPR clustering

As mentioned, to date most analysis of local clustering has focused on worst-case guarantees, defined with
respect to functionals of an a priori fixed graph G = (V,E). For instance, Andersen et al. [2006] analyze the

normalized cut of the cluster estimate Ĉ output by PPR, showing that when PPR is appropriately seeded
within a candidate cluster C ⊆ V , the normalized cut Φ(Ĉ;G) is upper bounded by (a constant times)√

Φ(C;G). Zhu et al. [2013] build on this: they introduce a second functional, the conductance Ψ(G),
defined as

Ψ(G) := min
S⊆V

Φ(S;G), (2.6)

and show that if Φ(C;G) is much smaller than Ψ(G[C])2—where G[C] = (C,E∩ (C×C)) is the subgraph of

G induced by C— then (in addition to having a small normalized cut) the cluster estimate Ĉ approximately
recovers C. Our own analysis builds on that of Zhu et al. [2013], and we give a more detailed summary of
their results in Section 2.1. For now, we merely reiterate that the conclusions of Andersen et al. [2006], Zhu
et al. [2013] cannot be straightforwardly applied to our statistical setting, where the input data are random
samples {x1, . . . , xn} drawn from a distribution P, the graph G is a random neighborhood graph formed by
the user, and the candidate cluster is a set C ⊂ Rd.1

1Throughout, we use calligraphic notation to refer to subsets of Rd.

10

2.0.3 PPR on a neighborhood graph

We now formally describe the statistical setting in which we operate, as well as the method we will study:
PPR on a neighborhood graph. Let X = {x1, . . . , xn} be samples drawn i.i.d. from a distribution P on Rd.
We will assume throughout that P has a density f with respect to the Lebesgue measure ν on Rd . For a
radius r > 0, we define Gn,r = (V,E) to be the r-neighborhood graph of X, an unweighted, undirected graph
with vertices V = X, and an edge (xi, xj) ∈ E if and only if i 6= j and ‖xi − xj‖ ≤ r, where ‖ · ‖ is the
Euclidean norm. Once the neighborhood graph Gn,r is formed, the PPR vector pv is then computed over

Gn,r, with a resulting cluster estimate Ĉ ⊆ X. The precise PPR algorithm we analyze is summarized in
Algorithm 1.

Algorithm 1 PPR on a neighborhood graph

Input: data X = {x1, . . . , xn}, radius r > 0, teleportation parameter α ∈ [0, 1], seed v ∈ X, sweep cut
range (L,U).

Output: cluster estimate Ĉ ⊆ V .

1: Form the neighborhood graph Gn,r.
2: Compute the PPR vector pv = p(v, α;Gn,r) as in (2.1).
3: For β ∈ (L,U), compute sweep cuts Sβ as in (2.3).2

4: Return the cluster Ĉ = Sβ∗ , where

β∗ = argmin
β∈(L,U)

Φ(Sβ ;Gn,r).

2.0.4 Cluster accuracy

We need a metric to assess the accuracy with which Ĉ estimates the candidate cluster C. One commonly
used metric is the misclassification error, i.e. the size of the symmetric set difference between Ĉ and the
empirical cluster C[X] = C ∩ X [Korostelev and Tsybakov, 1993, Polonik, 1995, Rigollet and Vert, 2009].
We will consider a related metric, the volume of the symmetric set difference, which weights misclassified
points according to their degree in Gn,r. To keep things simple, for a given set S ⊆ X we write voln,r(S) :=
vol(S;Gn,r).

Definition 2.0.1. For an estimator Ĉ ⊆ X and a set C ⊆ Rd, their symmetric set difference is

Ĉ M C[X] :=
(
Ĉ \ C[X]

)
∪
(
C[X] \ Ĉ

)
.

Furthermore, we denote the volume of the symmetric set difference by

∆(Ĉ, C[X]) := voln,r(Ĉ M C[X]).

2.0.5 Population normalized cut, conductance, and local spread

Next we define three population-level functionals of C—the normalized cut ΦP,r(C), conductance ΨP,r(C),
and local spread sP,r(C)—which govern the volume of the symmetric set difference ∆(Ĉ, C[X]). Let the
population-level cut of C be the expectation (up to a rescaling) of cutn,r(C[X]) := cut(C[X];Gn,r), and
likewise let the population-level volume of C be the expectation (up to a rescaling) of voln,r(C[X]) :=
vol(C[X];Gn,r); i.e. let

cutP,r(C) :=

∫
C

∫
Cc

1{‖x− y‖ ≤ r} dP(y) dP(x), volP,r(C) :=

∫
C

∫
Rd

1{‖x− y‖ ≤ r} dP(y) dP(x),

2Technically speaking, for each β ∈ (L,U) ∩ {pv(u)/Duu : u ∈ V }.

11

where Cc := Rd \C. Also let degP,r(x) :=
∫
Rd 1{‖y − x‖ ≤ r} dP(y) to be the expected degree of x in

Gn,r.

Definition 2.0.2 (Population normalized cut). For a set C ⊂ Rd, distribution P and radius r > 0, the
population normalized cut is

ΦP,r(C) :=
cutP,r(C)

min{volP,r(C), volP,r(Cc)}
. (2.7)

Let P̃(·) = P(·|x ∈ C) be the conditional distribution of x, i.e let P̃(S) = P̃(S ∩ C)/P̃(C) for measurable sets
S ⊆ Rd.

Definition 2.0.3 (Population conductance). For a set C ⊂ Rd, distribution P and radius r > 0, the
population conductance is

ΨP,r(C) = inf
S⊆C

ΦP̃,r(S). (2.8)

Definition 2.0.4 (Population local spread). For a set C ⊂ Rd, distribution P and radius r > 0, the population
local spread is

sP,r(C) := min
x∈C

{(
degP̃,r(x)

)2
volP̃,r(C)

}
, (2.9)

It is quite natural that ΦP,r(C) and ΨP,r(C) should help quantify the role geometry plays in local spectral
clustering. Indeed, by construction these functionals are quite obviously the population-level analogues of
the empirical quantities Φn,r(C[X]) := Φ(C[X];Gn,r) and Ψn,r(C[X]) := Ψ(Gn,r

[
C[X]

]
), and as we have

already mentioned, these empirical quantities in turn suffice to upper bound the volume of the symmetric
set difference. For this reason, similar population level functionals are used by [Shi et al., 2009, Schiebinger
et al., 2015, Garćıa Trillos et al., 2019b] in the analysis of global spectral clustering in a statistical context.
We will comment more on the relationship between these works and our own results in Section 2.0.7.

The role played by sP,r(C) is somewhat less obvious. For now, we mention only that it plays an essential
part in obtaining tight bounds on the mixing time of a particular random walk that is closely related to the
PPR vector, and defer further discussion until later in Section 2.1.

2.0.6 Main Results

We now informally state our two main upper bounds, regarding the recovery of a generic cluster C, and
a density cluster Cλ. Theorem 1 informally summarizes the first of our main results (formally stated in
Theorem 3) regarding the recovery of a generic cluster C.

Theorem 1 (Informal). Let C ⊂ Rd and P satisfy appropriate regularity conditions, and suppose Algorithm 1
is well-initialized with respect to C. For all n ∈ N sufficiently large, with high probability it holds that

∆(Ĉ, C[X])

voln,r(C[X])
≤ c · ΦP,r(C) ·

(
log(1/sP,r(C))

ΨP,r(C)

)2

.

(In the above, and throughout, c stands for a universal constant that may change from line to line.) Put even

more succinctly, we find that ∆(Ĉ, C[X]) is small when ΦP,r(C) is small relative to
(
ΨP,r(C)/ log(1/sP,r(C))

)2
.

To the best of our knowledge, this gives the first population-level guarantees for local clustering in the
nonparametric statistical context.

Theorem 2 informally summarizes the second of our main results (formally stated in Theorem 4) regarding
the recovery of a λ-density cluster Cλ by PPR. For reasons that we explain later in Section 2.2, our cluster
recovery statement will actually be with respect to the σ-thickened set Cλ,σ := {x ∈ Rd : dist(x, Cλ) < σ},

12

for a given σ > 0. The upper bound we establish is a function of various parameters that measure the
conditioning of both the density cluster Cλ,σ and density f for recovery by PPR. We assume that Cλ,σ is
the image of a convex set K of finite diameter diam(K) ≤ ρ < ∞ under an Lipschitz, measure-preserving
mapping g, with Lipschitz constant L. We also assume that f is bounded away from 0 and∞ on Cλ,σ,

0 < λσ ≤ f(x) ≤ Λσ <∞ for all x ∈ Cλ,σ,

while satisfying the following low-noise condition:

inf
y∈Cλ,σ

f(y)− f(x) ≥ θ · dist(x, Cλ,σ)γ for all x such that dist(x, Cλ,σ) ≤ r.

(Here dist(x, C) := infy∈C ‖y − x‖.)

Theorem 2 (Informal). Let Cλ ⊂ Rd be a λ-density cluster of a distribution P that satisfies appropriate reg-
ularity conditions, and suppose Algorithm 1 is well-initialized with respect to Cλ,σ. For all n ∈ N sufficiently
large, with high probability it holds that

∆(Ĉ, Cλ,σ[X])

voln,r(Cλ,σ)
≤ c · d4 · L

2ρ2

σr
·

Λ2
σλ(λ− θ rγ

γ+1)

λ4
σ

· log2

(
Λ

2/d
σ Lρ

λ
2/d
σ 2r

)
. (2.10)

Equation (2.10) reveals the separate roles played by geometry and density in the ability of PPR to recover
a density cluster. The parameters L, ρ and σ capture whether Cλ,σ is well-conditioned (short and fat) or
poorly-conditioned (long and thin) for recovery by PPR. Likewise, the parameters λσ,Λσ, γ and θ measure
whether f is well-conditioned (approximately uniform over the density cluster, and having thin tails outside
the density cluster) or poorly conditioned (vice versa). Theorem 2 tells us that if the thickened density
cluster Cλ,σ is well-conditioned—i.e. L2ρ2/(σr) ≈ 1—and the density f is well-conditioned near Cλ,σ—i.e.
Λσ ≈ λ ≈ λσ and λ− θrγ/(γ + 1) is much less than λσ—then PPR will approximately recover Cλ,σ.

2.0.7 Related Work

We now summarize some related work (in addition to the background already given above), regarding the
theory of spectral clustering, and of density cluster recovery.

Spectral clustering. In the stochastic block model (SBM), arguably one of the simplest models of network
formation, edges between nodes independently occur with probability based on a latent community mem-
bership. In the SBM, the ability of spectral algorithms to perform clustering—or community detection—is
well-understood, dating back to McSherry [2001] who gives conditions under which the entire community
structure can be recovered. In more recent work, Rohe et al. [2011] upper bound the fraction of nodes
misclassified by a spectral algorithm for the high-dimensional (large number of blocks) SBM, and Lei and
Rinaldo [2015] extend these results to the sparse (low average degree) regime. Relatedly, Clauset et al.
[2008], Balakrishnan et al. [2011], Li et al. [2018], analyze the misclassification rate when the block model
exhibits some hierarchical structure. The framework we consider, in which nodes correspond to data points
sampled from an underlying density, and edges between nodes are formed based on geometric proximity, is
quite different than the SBM, and therefore so is our analysis.

In general, the study of spectral algorithms on neighborhood graphs has been focused on establishing asymp-
totic convergence of eigenvalues and eigenvectors of certain sample objects to the eigenvalues and eigenfunc-
tions of corresponding limiting operators. Koltchinskii and Gine [2000] establish convergence of spectral
projections of the adjacency matrix to a limiting integral operator, with similar results obtained using sim-
plified proofs in Rosasco et al. [2010]. von Luxburg et al. [2008] studies convergence of eigenvectors of the
Laplacian matrix for a neighborhood graph of fixed radius. Belkin and Niyogi [2007] and Garćıa Trillos and
Slepčev [2018a] extend these results to the regime where the radius r → 0 as n→∞.

13

These results are of fundamental importance. However, they remain silent on the following natural question:
do the spectra of these continuum operators induce a partition of the sample space which is “good” in some
sense? Shi et al. [2009], Schiebinger et al. [2015], Garćıa Trillos et al. [2019b], Hoffmann et al. [2019] address
this question, showing that spectral algorithms will recover the latent labels in certain well-conditioned
nonparametric mixture models. These works are probably the most similar to our own: the conditioning
of these mixture models depend on population-level functionals resembling the population-level normalized
cut and conductance introduced above, and the resulting bounds on the error of spectral clustering are
comparable to those we establish in Theorem 3. However, these results focus on global rather than local
methods, and impose global rather than local conditions on P. Moreover, they do not explicitly consider
recovery of density clusters, which is an important concern of our work. We comment further on the
relationship between our results and these works after Theorem 3.

Density clustering. For a given threshold λ ∈ (0,∞), let Cf (λ) denote the connected components of the
density upper level set {x ∈ Rd : f(x) ≥ λ}. In the density clustering problem, initiated by Hartigan [1975],
the goal is to recover Cf (λ). By now, density clustering (and the related problem of level-set estimation)
are quite well-understood. For instance, Polonik [1995], Rigollet and Vert [2009], Rinaldo and Wasserman
[2010], Steinwart [2015] study density clustering under the symmetric set difference metric, Tsybakov [1997],
Singh et al. [2009], Jiang [2017] describe minimax optimal level-set and cluster estimators under Hausdorff
loss, and Hartigan [1981], Chaudhuri and Dasgupta [2010], Kpotufe and von Luxburg [2011], Balakrishnan
et al. [2013a], Steinwart et al. [2017], Wang et al. [2019] consider consistent estimation of the cluster tree
{Cf (λ) : λ ∈ (0,∞)}.

We emphasize that our goal is not to improve on these results, nor to offer a better algorithm for density
clustering. Indeed, seen as a density clustering algorithm, PPR has none of the optimality guarantees found
in the aforementioned works. Rather, we hope to better understand the implications of our general theory
by applying it within an already well-studied framework. We should also note that since we study a local
algorithm, our interest will be in a local version of the density clustering problem, where the goal is to recover
a single density cluster Cλ ∈ Cf (λ).

2.0.8 Organization

We now outline the rest of the paper.

• In Section 2.1, we derive bounds on the error of PPR as a function of sample normalized cut, con-
ductance, and local spread. We then show that under certain conditions the sample normalized cut,
conductance, and local spread are close to their population-level counterparts, with high probability
for sufficient number of samples. As a result, we obtain an upper bound on ∆(Ĉ, C[X])/voln,r(C[X])
purely in terms of these population functionals (Theorem 4).

• In Section 2.2, we focus on the special case where the candidate cluster C = Cλ is a λ-density cluster—
that is, a connected component of the upper level set {x : f(x) ≥ λ}. We derive bounds on the
population normalized cut, conductance, and local spread of the density cluster, which depend on λ as
well as some other natural parameters. This leads to an upper bound on the symmetric set difference
between Ĉ and the λ-density cluster. (Theorem 4).

• In Section 2.3, we prove a negative result: we give a hard distribution P with corresponding density
cluster Cλ for which the symmetric set difference between Ĉ and the λ-density cluster is provably large.

• In Section 2.4 we empirically investigate some of our conclusions, before ending with some discussion
in Section 2.5.

14

2.1 Recovery of a generic cluster with PPR

In the main result (Theorem 3) of this section, we give a high probability upper bound on ∆(Ĉ, C[X]), in
terms of the population normalized cut ΦP,r(C) and conductance ΨP,r(C). We build to this theorem slowly,
giving new structural results in two distinct directions. First, we build on some previous work (mentioned

in the introduction) to relate ∆(Ĉ, C[X]) to the sample normalized cut Φn,r(C[X]), conductance Ψn,r(C[X]),
and local spread sn,r(C[X]) := s

(
Gn,r

[
C[X]

])
. Second, we argue that when n is large, each of these graph

functionals can be bounded by their population-level analogues.

2.1.1 PPR cluster recovery: the fixed graph case

When PPR is run on a fixed graph G = (V,E) with the goal of recovering a candidate cluster C ⊂ V , Zhu
et al. [2013] provide the sharpest known bounds on the volume of the symmetric set difference between the

cluster estimate Ĉ and candidate cluster C. Since these results will play a major part in our analysis, in
Lemma 1 we restate them for the convenience of the reader.3

In their most general form, the results of Zhu et al. [2013] depend on the mixing time of a lazy random walk
over the induced subgraph G[C]. The mixing time of a lazy random walk over a graph G is

τ∞(G) := min

{
t :

π(u)− q(t)
v (u)

π(u)
≤ 1

4
, for all u, v ∈ V

}
; (2.11)

here q
(t)
v := evW

t is the distribution of a lazy random walk over G that originates at node v and runs for t

steps, and π := limt→∞ q
(t)
v is the limiting distribution of q

(t)
v .

Lemma 1 (Lemma 3.4 of Zhu et al. [2013]). For a set C ⊆ V , suppose that

α ≤ min
{ 1

45
,

1

2τ∞(G[C])

}
, β ≤ 1

5vol(C;G)
(2.12)

Then there exists a set Cg ⊂ C with vol(Cg;G) ≥ 1
2vol(Cg;G) such that for any v ∈ Cg, the sweep cut Sβ,v

satisfies

vol(Sβ,v M C;G) ≤ 6
Φ(C;G)

αβ
. (2.13)

The upper bound in (2.13) does not obviously depend on the conductance Ψ(G[C]). However, as Zhu
et al. [2013] point out, letting πmin(G) := minu∈V {π(u)}, it follows from Cheeger’s inequality [Chung, 1997]
that

τ∞(G) ≤ log(1/πmin(G))

Ψ(G)2
. (2.14)

Therefore, setting (for instance) α = Ψ(G[C])2

2 log(1/πmin(G)) and Ĉ = Sβ0,v for β0 = 1
5vol(C;G) , we obtain from (2.13)

that
vol(C M Ĉ;G)

vol(C;G)
≤ 60

Φ(C;G) log
(
1/πmin(G[C])

)
Ψ(G[C])2

. (2.15)

2.1.2 Improved bounds on mixing time

Having reviewed the conclusions of Zhu et al. [2013], we return now to our own setting, where the data
is not a fixed graph G but instead random samples {x1, . . . , xn}, and our goal is to recover a candidate

3Lemma 1 improves on Lemma 3.4 of Zhu et al. [2013] by some constant factors, and for completeness we prove Lemma 1
in the Appendix. Nevertheless, to be clear the essential idea of Lemma 1 is no different than that of Zhu et al. [2013], and we
do not claim any novelty.

15

cluster C ⊂ Rd. Ideally, we would like to apply (2.15) with C = C[X] and G = Gn,r, replace Φn,r(C[X])

and Ψn,r(C[X]) by ΦP,r(C) and ΨP,r(C) inside (2.15), and thereby obtain an upper bound on ∆(Ĉ; C[X])
that depends only on P and C. Unfortunately, however, there is a catch: when the graph G = Gn,r and the
candidate cluster C = C[X], as n → ∞ the sample normalized cut Φn,r(C[X]) and conductance Ψn,r(C[X])
each converge to their population-level analogues, but πmin

(
Gn,r

[
C[X]

])
� 1/n.4 Therefore the right hand

side of (2.15) diverges at a log n rate, rendering (2.15) a vacuous upper bound whenever the number of
samples is sufficiently large.

To fix this, in Proposition 1 we improve the upper bound on mixing time given in (2.14). Specifically,
in (2.16) the “start penalty” of log(1/πmin(G)) is replaced by log(1/s(G)), where s(G) is the graph local
spread, defined as

s(G) := dmin(G) · πmin(G),

for dmin(G) = minu∈V
{

deg(u;G)
}

, and likewise dmax(G) = maxu∈V
{

deg(u;G)
}

. Note that s(G) ≥
πmin(G).

Proposition 1. Assume dmax(G)/dmin(G)2 ≤ 1/16. Then,

τ∞(G) ≤ 13

ln(2)

(
ln
(
8/s(G)

)
Ψ(G)

)2

(2.16)

While Proposition 1 can be applied to any graph G (as long as the ratio of maximum degree to squared
minimum degree is at most 1/16), it is particularly useful when G is a geometric graph. In the case
where G = Gn,r

[
C[X]

]
for a fixed radius r, the minimum degree dmin

(
Gn,r

[
C[X]

])
� n, and therefore

s
(
Gn,r

[
C[X]

])
� 1. We give a precise upper bound on s

(
Gn,r

[
C[X]

])
in Proposition 2, which does not grow

with n, and in combination with Proposition 1 this allows us to remove the unwanted log n factor from the
upper bound in (2.15).

The local spread s(G) plays an intuitive role in the analysis of mixing time. Indeed, in any graph G
sufficiently small sets are expanders—that is, if a set R ⊆ V has cardinality less than the minimum degree,
the normalized cut Φ(R;G) will be much larger than the conductance Ψ(G). As a consequence, a random
walk over G will rapidly mix over all small sets R, and in our analysis of the mixing time we may therefore
“pretend” that the random walk was given a warm start over a larger set S. The local spread s(G) simply
delineates small sets R from larger sets S. Of course, the proof of Proposition 1 requires a substantially more
careful analysis, and—as with the proofs of all results in this paper—it is deferred to the appendix.

2.1.3 Sample-to-population results

In Propositions 2 and 3, we establish high probability bounds on the sample normalized cut, conductance,
and local spread in terms of their population-level analogues. To establish these bounds, we impose the
following regularity conditions on P̃ and C.

(A1) The distribution P̃ has a density f̃ : C → (0,∞) with respect to Lebesgue measure. There exist
0 < fmin ≤ 1 ≤ fmax <∞ for which

(∀x ∈ C) fmin ≤ f̃(x) ≤ fmax

(A2) The candidate cluster C ⊆ Rd is a bounded, connected, open set. If d ≥ 2 then it has a Lipschitz
boundary.

In what follows, we use b1, b2, . . . and B1, B2, . . . to refer to positive constants that may depend on P, C, and
r, but do not depend on n or δ. We explicitly keep track of all constants in our proofs.

4For sequences (an) and (bn), we say an � bn if there exists a constant c ≥ 1 such that an/c ≤ bn ≤ can for all n ∈ N.

16

Proposition 2. Fix δ ∈ (0, 1/3). Suppose C and P̃ satisfy (A1) and (A2). Then each of the following
statements hold.

• With probability at least 1− 3 exp{−b1δ2n},

Φn,r(C[X]) ≤ (1 + 3δ)ΦP,r(C). (2.17)

• For any n ∈ N for which
1

n
≤ δ · 2P(C)

3
(2.18)

the following inequality holds with probability at least 1− (n+ 2) exp{−b2δ2n}:

sn,r(C[X]) ≥ (1− 4δ)sP,r(C). (2.19)

Let pd := 1/2 if d = 1, pd := 3/4 if d = 2, and otherwise pd := 1/d for d ≥ 3.

Proposition 3. Fix δ ∈ (0, 1/2). Suppose P̃ and C satisfy (A1) and (A2). Then for any n ∈ N satisfying

B1
(log n)pd

min{n1/2, n1/d}
≤ δ, (2.20)

the following inequality holds with probability at least 1−B2/n− (n+ 1) exp{−b3n}:

Ψn,r(C[X]) ≥ (1− 2δ)ΨP,r(C). (2.21)

A word on the proof techniques: the upper bound in (2.17) follows by applying Bernstein’s inequality to
control the deviations of cutn,r(C[X]), voln,r(C[X]) and voln,r(Cc[X]) around their expectations (noting that
each of these is an order-2 U-statistic). To prove the lower bound (2.19), we require a union bound to
control the minimum degree dmin

(
Gn,r

[
C[X]

])
, but otherwise the proof is similarly straightforward. On the

other hand, the proof of (2.21) is considerably more complicated. Our proof relies on the recent results
of [Garćıa Trillos and Slepcev, 2015], who upper bound the L∞-optimal transport distance between the
empirical measure Pn and P. For further details, we refer to Appendix A.2.4, where we prove Proposition 3,
as well as [Garćıa Trillos et al., 2016], who establish the asymptotic convergence of the sample conductance
as n→∞ and r → 0.

2.1.4 Cluster recovery

As is typical in the local clustering literature, our algorithmic results will be stated with respect to specific
ranges of each of the user-specified parameters. In particular, for δ ∈ (0, 1/4) and a candidate cluster C ∈ Rd,
we require that some of the tuning parameters of Algorithm 1 be chosen within specific ranges,

α ∈
[
(1− 4δ)2, (1− 2δ)2

)
· αP,r(C, δ)

2

(L,U) ⊆
(1

5(1 + 2δ)
,

1

5(1 + δ)

)
· 1

n(n− 1)volP,r(C)
.

(2.22)

where

αP,r(C, δ) :=
ln(2)

13
·

Ψ2
P,r(C)

ln2
(

8
(1−4δ)sP,r(C)

) . (2.23)

Definition 2.1.1. If the input parameters to Algorithm 1 satisfy (2.22) for some C ⊆ Rd and δ ∈ (0, 1/4),
we say the algorithm is δ-well-initialized with respect to C.

17

Of course, in practice it is not feasible to set tuning parameters based on the underlying (unknown) distri-
bution P and candidate cluster C. Typically, one runs PPR over some range of tuning parameter values and
selects the cluster which has the smallest normalized cut.

By combining Lemma 1 and Propositions 1-3, we obtain an upper bound on ∆(Ĉ, C[X]) that depends solely
on the distribution P and candidate cluster C. To ease presentation, we introduce the condition number,
defined for a given C ⊆ Rd and δ ∈ (0, 1/4) as

κP,r(C, δ) :=
(1 + 3δ)(1 + 2δ)

(1− 4δ)2(1− δ)
· ΦP,r(C)
αP,r(C, δ)

. (2.24)

Theorem 3. Fix δ ∈ (0, 1/4). Suppose P̃ and C satisfy (A1) and (A2). Then for any n ∈ N which
satisfies (2.18), (2.20), and

(1 + δ)

(1− δ)4
·B3 ≤ n, (2.25)

the following statement holds with probability at least 1− B2/n− 4 exp{−b1δ2n} − (2n+ 2) exp{−b2δ2n} −
(n + 1) exp{−b3n}: there exists a set C[X]g ⊆ C[X] of large volume, voln,r(C[X]g) ≥ voln,r(C[X])/2, such
that if Algorithm 1 is δ-well-initialized with respect to C, and run with any seed node v ∈ C[X]g, then the

PPR estimated cluster Ĉ satisfies

∆(Ĉ; C[X])

voln,r(C[X])
≤ 60 · κP,r(C, δ). (2.26)

We now make some remarks:

• It is useful to compare Theorem 3 with what is already known regarding global spectral clustering in the
context of nonparametric statistics. Schiebinger et al. [2015] consider the following variant of spectral
clustering: first embed the data X into Rk using the bottom k eigenvectors of the degree-normalized
Laplacian I−D−1/2AD−1/2, and then partition the embedded data into estimated clusters Ĉ1, . . . , Ĉk
using k-means clustering. They derive error bounds on the misclassification error that depend on a
difficulty function ϕ(P). In our context, where the goal is to successfully distinguish C and Cc and thus
k = 2, this difficulty function is roughly

ϕ(P) ≈
√

ΦP,r(C) ·max

{
1

ΨP,r(C)2
;

1

ΨP,r(Cc)2

}
. (2.27)

We point out two ways in which (2.26) is a tighter bound than (2.27). First, (2.27) depends on ΨP,r(Cc)
in addition to ΨP,r(C), and is thus a useful bound only if Cc and C are both internally well-connected.
In contrast (2.26) depends only on ΨP,r(C), and is thus a useful bound if C has small conductance,
regardless of the conductance of Cc. This is intuitive: PPR is a local rather than global algorithm,
and as such the analysis requires only local rather than global conditions. Second, (2.27) depends on√

ΦP,r(C) rather than ΦP,r(C), and since ΦP,r(C) ≤ 1 this results in a weaker bound. [Schiebinger et al.,
2015] provide experiments suggesting that the linear, rather than square-root, dependence is correct,
and we theoretically confirm this in the local clustering setup. Of course, on the other hand (2.26)
depends on log2(1/sP,r(C)), which is due to the locally-biased nature of the PPR algorithm, and does
not appear in (2.27).

• Although Theorem 3 is stated with respect to the exact PPR vector pv, for a sufficiently small choice
of ε, the application of (2.2) within the proof of Theorem 3 leads to an analogous result which holds
for the aPPR vector p

(ε)
v . We formally state and prove this fact in Appendix A.5.

18

2.2 Recovery of a density cluster with PPR

We now apply the general theory established in the last section to the special case where C = Cλ is a λ-
density cluster—that is, a connected component of the upper level set {x ∈ Rd : f(x) ≥ λ}. In Section 2.3,
we also derive a lower bound, giving a “hard problem” for which PPR will provably fail to recover a density
cluster. Together, these results can be summarized as follows: PPR recovers a density cluster Cλ if and only
if both Cλ and f are well-conditioned, meaning that Cλ is not too long and thin, and that f is approximately
uniform inside Cλ while satisfying a low-noise condition near its boundary.

2.2.1 Recovery of well-conditioned density clusters

All results on density clustering assume the density f satisfies some regularity conditions. A basic requirement
is the need to avoid clusters which contain arbitrarily thin bridges or spikes, or more generally clusters which
can be disconnected by removing a subset of (Lebesgue) measure 0, and thus may not be resolved by any
finite number of samples. To rule out such problematic clusters, we follow the approach of Chaudhuri
and Dasgupta [2010], who assume the density is lower bounded on a thickened version of Cλ, defined as
Cλ,σ := {x ∈ Rd : dist(x, C) < σ} for a given σ > 0. The point is that regardless of the dimension of Cλ, the
set Cλ,σ is full dimensional. Under typical uniform continuity conditions, the requirement that the density
be lower bounded over Cλ,σ will be satisfied. Such continuity conditions can be weakened (see for instance
Rinaldo and Wasserman [2010], Steinwart [2015]) but we do not pursue the matter further.

In summary, our goal is to obtain upper bounds on ∆(Ĉ, Cλ,σ[X]), for some fixed λ and σ > 0. We have

already derived upper bounds on the symmetric set difference of Ĉ and a generic cluster C that depend on
some population-level functionals C. What remains is to analyze these population-level functionals in the
specific case where the candidate cluster is Cλ,σ. To carry out this analysis, we will need to impose some
conditions, and for the rest of this section we will assume the following.

(A3) Bounded density within cluster: There exist constants 0 < λσ < Λσ <∞ such that

λσ ≤ inf
x∈Cλ,σ

f(x) ≤ sup
x∈Cλ,σ

f(x) ≤ Λσ.

(A4) Low noise density: There exist θ ∈ (0,∞) and γ ∈ [0, 1] such that for any x ∈ Rd with 0 <
dist(x, Cλ,σ) ≤ σ,

inf
y∈Cλ,σ

f(y)− f(x) ≥ θ · dist(x, Cλ,σ)γ .

Roughly, this assumption ensures that the density decays sufficiently quickly as we move away from the
target cluster Cλ,σ, and is a standard assumption in the level-set estimation literature (see for instance
Singh et al. [2009]).

(A5) Lipschitz embedding: There exists g : Rd → Rd, ρ ∈ (0,∞) and L ∈ [1,∞) such that

(a) we have Cλ,σ = g(K), for a convex set K ⊆ Rd with diam(K) = supx,y∈K ‖x− y‖ ≤ ρ <∞;

(b) det(∇g(x)) = 1 for all x ∈ K, where ∇g(x) is the Jacobian of g evaluated at x; and

(c) for some L ≥ 1,
‖g(x)− g(y)‖ ≤ L‖x− y‖ for all x, y ∈ K.

Succinctly, we assume that Cλ,σ is the image of a convex set with finite diameter under a measure
preserving, Lipschitz transformation.

For convenience only, we will also make the following assumption.

19

(A6) Bounded volume: The volume of Cλ,σ is no more than half the total volume of Rd:

volP,r(Cλ,σ) ≤ volP,r(Ccλ,σ).

This assumption implies that the normalized cut of Cλ,σ will be equal to the ratio of cutP,r(Cλ,σ) to
volP,r(Cλ,σ).

Normalized cut, conductance, and local spread of a density cluster. In Lemma 2, Proposition 4,
and Proposition 5, we give bounds on the population-level local spread, normalized cut, and conductance of
Cλ,σ. These bounds depend on the various geometric parameters just introduced.

Lemma 2. Assume Cλ,σ satisfies Assumptions (A3) and (A5) for some λσ,Λσ, ρ and L. Then,

sP,r(Cλ,σ) ≥ 1

4
· λ

2
σ

Λ2
σ

·
(

2r

ρ

)d
·
(

1− r

σ

√
d+ 2

2π

)
(2.28)

Proposition 4. Assume Cλ,σ satisfies Assumptions (A3), (A4) and (A6) for some λσ,Λσ, θ, and γ, and
additionally that 0 < r ≤ σ

4d . Then,

ΦP,r(Cλ,σ) ≤ 16

9
· dr
σ
·
λ
(
λσ − θ rγ

γ+1

)
λ2
σ

(2.29)

Proposition 5. Assume Cλ,σ satisfies Assumptions (A3) and (A5) for some λσ,Λσ, ρ and L. Then,

ΨP,r(Cλ,σ) ≥
(

1− r

4ρL

)
·
(

1− r

σ

√
d+ 2

2π

)2

·
√

2π

36
· r

ρL
√
d+ 2

· λ
2
σ

Λ2
σ

(2.30)

Some remarks are in order:

• We prove Proposition 4 by separately upper bounding cutP,r(Cλ,σ) and lower bounding the volume
volP,r(Cλ,σ). Of these two bounds, the trickier to prove is the upper bound on the cut, which involves
carefully estimating the probability mass of thin tubes around the boundary of Cλ,σ.

• Proposition 5 is proved in a completely different way. The proof relies heavily on bounds on the
isoperimetric ratio of convex sets (as derived by e.g. Lovász and Simonovits [1990] or Dyer et al.
[1991]), and thus the embedding assumption (A5) and Lipschitz parameter L play an important role
in proving the upper bound in Proposition 5.

• There is some interdependence between L and σ, ρ, which might lead one to hope that (A5) is non-
essential. However, it is not possible to eliminate condition (A5) without incurring an additional
factor of at least (ρ/σ)d in (2.30), achieved, for instance, when Cλ,σ is a dumbbell-like set consisting
of two balls of diameter ρ linked by a cylinder of radius σ. In contrast, (2.30) depends polynomially
on d, and many reasonably shaped sets—such as star-shaped sets as well as half-moon shapes of the
type we consider in Section 2.4—satisfy (A5) for reasonably small values of L [Abbasi-Yadkori, 2016,
Abbasi-Yadkori et al., 2017].

Applying these results along with Theorem 3, we obtain an upper bound on ∆(Ĉ, Cλ,σ[X]). In what follows,
C1,δ, C2,δ, . . . are constants which may depend on δ, but not on n, P or Cλ,σ, and which we keep track of in
our proofs.

Theorem 4. Let Cλ ⊆ Rd and δ ∈ (0, 1/4). Suppose that Cλ,σ satisfies (A2)-(A6) for some λσ,Λσ, θ, γ, ρ
and L, that 0 < r ≤ σ/4d, and that the sample size n satisfies the same conditions as in Theorem 4. Then

20

with probability at least 1−B2/n−4 exp{−b1δ2n}− (2n+2) exp{−b2δ2n}− (n+1) exp{−b3n}, the following
statement holds: there exists a set Cλ,σ[X]g ⊆ Cλ,σ[X] of large volume, voln,r(Cλ,σ[X]g) ≥ voln,r(Cλ,σ[X])/2,
such that if Algorithm 1 is δ-well-initialized with respect to Cλ,σ, and run with any seed node v ∈ Cλ,σ[X]g,

then the PPR estimated cluster Ĉ satisfies

∆(Ĉ; Cλ,σ[X])

voln,r(C[X])
≤ C1,δ · d3(d+ 2) · L

2ρ2

σr
·

Λ2
σλ(λ− θ rγ

γ+1)

λ4
σ

· log2

(
C

1/d
2,δ

Λ
2/d
σ Lρ

λ
2/d
σ 2r

)
(2.31)

As we have previously summarized, Theorem 4 shows the separate roles played by geometry and density in
the ability of PPR to recover a density cluster. Now, we make some other remarks:

• Observe that while the diameter ρ is absent from our upper bound on normalized cut in Proposition
4, it enters the ultimate bound in Theorem 4 through the conductance. This reflects (what may be
regarded as) established wisdom regarding spectral partitioning algorithms more generally [Guattery
and Miller, 1995, Hein and Bühler, 2010], but newly applied to the density clustering setting: if the
diameter ρ is large, then PPR may fail to recover Cλ,σ[X] even when Cλ is sufficiently well-conditioned
to ensure that Cλ,σ[X] has a small normalized cut in Gn,r. This will be supported by simulations in
Section 2.4.2.

• Several modifications of global spectral clustering have been proposed with the intent of making such
procedures essentially independent of the shape of the density cluster Cλ. For instance, Arias-Castro
[2009], Pelletier and Pudlo [2011] introduce a cleaning step to remove low-degree vertices, whereas Little
et al. [2020] use a weighted geometric graph, where the weights are computed with respect to a density-
dependent distance. The resulting procedures come with stronger density cluster recovery guarantees.
However, the key ingredient in such procedures is the explicitly density-dependent part of the algorithm,
and spectral clustering functions as more of a post-processing step. These methods are thus very
different in spirit to PPR, which is a bona fide (local) spectral clustering algorithm.

• As mentioned in the discussion after Theorem 3, the population-level normalized cut and conductance
also play a leading role in the analysis of global spectral clustering algorithms. It therefore seems likely
that similar bounds to (2.31) would apply to the output of global spectral clustering methods as well,
but formalizing this is outside the scope of our work.

• The symmetric set difference does not measure whether Ĉ can (perfectly) distinguish any two distinct

clusters Cλ, C′λ ∈ Cf (λ). In Appendix A.5, we show that the PPR estimate Ĉ can in fact distinguish
two distinct clusters Cλ and C′λ, but the result holds only under relatively restrictive conditions.

2.3 Negative result

We now exhibit a hard case for density clustering using PPR, that is, a distribution P for which PPR is
unlikely to recover a density cluster. Let C(0), C(1), C(2) be rectangles in R2,

C(0) =

[
−σ

2
,
σ

2

]
×
[
−ρ

2
,
ρ

2

]
, C(1) = C(0) − {(σ, 0)} , C(2) = C(0) + {(σ, 0)} ,

where 0 < σ < ρ, and let P be the mixture distribution over X = C(0) ∪ C(1) ∪ C(2) given by

P =
1− ε

2
P1 +

1− ε
2

P2 +
ε

2
P0,

where Pk is the uniform distribution over C(k) for k = 0, 1, 2. The density function f of P is simply

f(x) =
1

ρσ

(
1− ε

2
1(x ∈ C(1)) +

1− ε
2

1(x ∈ C(2)) + ε1(x ∈ C(0))

)
, (2.32)

so that for any ε < λ < (1− ε)/2, we have Cf (λ) =
{
C(1), C(2)

}
. Figure 2.1 visualizes the density f for two

different choices of ε, σ, ρ.

21

0.5

1.0

1.5

2.0

−
0.

6
−

0.
36

−
0.

12
0.

12
0.

36
0.

6

−0.6 −0.36 −0.12 0.12 0.36 0.6

0.5

1.0

1.5

2.0

−
0.

6
−

0.
36

−
0.

12
0.

12
0.

36
0.

6

−0.6 −0.36 −0.12 0.12 0.36 0.6

Figure 2.1: The density f in (2.32), for ρ = 1, and two different choices of ε and σ. Left: ε = 0.3 and σ = 0.1; right:
ε = 0.2 and σ = 0.2.

2.3.1 Lower bound on symmetric set difference

As the following theorem demonstrates, even when Algorithm 1 is reasonably initialized, if the density cluster
C(1) is sufficiently geometrically ill-conditioned (in words, tall and thin) the cluster estimator Ĉ will fail to
recover C(1). Let

L = {(x1, x2) ∈ X : x2 < 0} . (2.33)

In the following Theorem, B1,δ and B2,δ are constants which may depend on δ,P, Cλ,σ and r, but not on
n.

Theorem 5. Fix δ ∈ (0, 1/7). Assume the neighborhood graph radius r < σ/4, that

max

{
B1,δ ·

r

ρ
,B2,δ ·

1

n

}
<

1

18
and n ≥ 8

(1 + δ)

(1− δ)
, (2.34)

and that Algorithm 1 is initialized using inputs α = 36 ·Φn,r(L[X]), and (L,U) = (0, 1). Then the following
statement holds with probability at least 1 − (B4 + 2n + 10) exp{−nδ2b4}: there exists a set C[X]g of large
volume, voln,r(C[X]g ∩ C(1)[X]) ≥ voln,r(C(1)[X];Gn,r)/8, such that for any seed node v ∈ C[X]g, the PPR
estimated cluster Ĉ satisfies

σρ

r2n2
· voln,r(Ĉ M C(1)[X]) ≥ 1− δ

2
− C3,δ ·

√
σ/ρ

ε2
·
√

log
(
C4,δ ·

ρσ

ε2r2

) σ
r
, (2.35)

We make a couple of remarks:

• Theorem 5 is stated with respect to a particular hard case, where the density clusters are rectangu-
lar subsets of R2. We chose this setting to make the theorem simple to state, and our results are
generalizable to Rd and to non-rectangular clusters. Technically, the rectangles C(0), C(1), C(2) are not
σ-expansions due to their sharp corners. To fix this, one can simply modify these sets to have appro-
priately rounded corners, and our lower bound arguments do not need to change significantly, subject
to some additional bookkeeping. Thus we ignore this technicality in our subsequent discussion.

22

• Although we state our lower bound with respect to PPR run on a neighborhood graph, the conclusion
is likely to hold for a much broader class of spectral clustering algorithms. In the proof of Theorem 5,
we rely heavily on the fact that when ε2 is sufficiently greater than σ/ρ, the normalized cut of C(1) will
be much larger than that of L. In this case, not merely PPR but any algorithm that approximates the
minimum normalized cut is unlikely to recover C(1). In particular, local spectral clustering algorithms
based on truncated random walks [Spielman and Teng, 2013], global spectral clustering algorithms [Shi
and Malik, 2000], and p-Laplacian based spectral embeddings [Hein and Bühler, 2010] all have provable
upper bounds on the normalized cut of cluster they output, and thus we expect that they would all
fail to estimate C(1).

2.3.2 Comparison between upper and lower bounds

To better digest the implications of Theorem 5, we translate the results of our upper bound in Theorem 4
to the density f given in (2.32). Observe that C(1) satisfies each of the Assumptions (A3)–(A6):

(A1) The density f(x) = 1−ε
2ρσ for all x ∈ C(1).

(A2) The density f(x) = ε
ρσ for all x such that 0 < dist(x, C(1)) ≤ σ. Therefore for all such x,

inf
x′∈C(1)

f(x′)− f(x) =

{
1− ε

2
− ε
}

1

ρσ
,

which meets the decay requirement with exponent γ = 0.

(A3) The set C(1) is itself convex, and has diameter ρ.

(A4) By symmetry, volP,r(C(1)) = volP,r(C(2)), and therefore volP,r(C(1)) ≤ 1
2volP,r(Rd).

If the user-specified parameters are initialized according to (2.22), we may apply Theorem 4. This implies that
there exists a set C(1)[X] ⊆ C(1) with voln,r(C[X]g) ≥ 1

2voln,r(C[X]) such that for any seed node v ∈ C(1)[X],

and for large enough n, the PPR estimated cluster Ĉ satisfies with high probability

voln,r(Ĉ M C(1)[X])

voln,r(C(1)[X])
≤ 32C1,δ ·

ρ2

σr
· ε

1− ε
· log2

(√
C2,δ

ρ

2r

)
To facilitate comparisons between our upper and lower bounds set r = σ/8. Then the following statements
each hold with high probability.

• If the user-specified parameters satisfy (2.22), and for some a ≥ 0,

ε

1− ε
≤ a

256C1,δ

(
σ

ρ log(ρ/σ
√
C2,δ)

)2

,

then ∆(Ĉ, C(1)[X]) ≤ a · voln,r(C(1)[X]).

• The population-level volume volP,r(C(1)) ≤ (1− ε)/2 · πr2/(ρσ), and

voln,r(C(1)[X]) ≤ (1 + δ) · n(n− 1)volP,r(C(1)).

Therefore, if the user-specified parameters are as in Theorem 5, and

ε ≥
√

8C3,δ

(
σ

ρ
log
(

64C4,δ ·
ρ

ε2σ

))1/4

,

then ∆(Ĉ, C(1)[X]) ≥ 1
8voln,r(C(1)[X]).

23

Ignoring constants and log factors, we can summarize the above conclusions as follows: if ε is much less
than (σ/ρ)2, then PPR will approximately recover the density cluster C(1), whereas if ε is much greater
than (σ/ρ)1/4 then PPR will fail to recover C(1), even when reasonably initialized with a seed node v ∈ C(1).
Jointly, these upper and lower bounds give a relatively precise characterization of what it means for a density
cluster to be well- or poorly-conditioned for recovery using PPR.5

Of course, it is not hard to show that in the example under consideration, classical plug-in density cluster
estimators can consistently recover the σ-expansion Cλ,σ of a density cluster Cλ, even if ε is large compared
to σ/ρ. That PPR has trouble recovering density clusters here (where standard plug-in approaches do not) is
not meant to be a knock on PPR. Rather, it simply reflects that while classical density clustering approaches
are specifically designed to identify high-density regions regardless of their geometry, PPR relies on geometry
as well as density when forming the output cluster.

2.4 Experiments

We provide numerical experiments to investigate the tightness of our theoretical results in Section 2.2, and
compare the performance of PPR with a density clustering algorithm on the “two moons” dataset. We defer
details of the experimental settings to Appendix A.6.

2.4.1 Validating theoretical bounds

We investigate the tightness of Lemma 2 and Propositions 4 and 5— i.e. the bounds on population functionals
required for the eventual density cluster recovery result in Theorem 4—via simulation. Figure 2.2 compares
our bounds on normalized cut, conductance, and local spread of a density cluster with the actual empirically-
computed quantities, when samples are drawn from a mixture of uniform distributions over rectangular
clusters. In the first row we vary the diameter ρ of the candidate cluster, in the second row we vary the
width σ, and in the third row we vary the ratio (λ− θ)/λ of the density within and outside the cluster. In
almost all cases, it is encouraging to see that our bounds track closely with their empirical counterparts,
and are loose by roughly an order of magnitude at most. The one exception to this is the dependence of
local spread on the width σ; this theoretical deficiency stems from a loose bound on the volume of sets with
large aspect ratio (meaning ρ/σ is much greater than 1), but in any case the local spread contributes only
log factors to the ultimate bound on cluster recovery. On the other hand, the looseness in each of these
bounds will propagate to our eventual upper bound on ∆(Ĉ, Cσ[X])/voln,r(Cσ[X]), which as a result is loose
by several orders of magnitude.

2.4.2 Empirical behavior of PPR

In Figure 2.3, to drive home the implications of Sections 2.2 and 2.3, we compare the behavior of PPR and
the density clustering algorithm of Chaudhuri and Dasgupta [2010] on the well-known “two moons” dataset
(with added 2d Gaussian noise), considered a prototypical success story for spectral clustering algorithms.
We also examine the cluster which minimizes the normalized cut; as we have discussed previously, this can
be as a middle ground between the geometric sensitivity of PPR, and the geometric insensitivity of density
clustering. The first column shows the empirical density clusters Cλ[X] and C′λ[X] for a particular threshold
λ of the density function; the second column shows the cluster recovered by PPR; the third column shows
the global minimum normalized cut, computed according to the algorithm of Bresson et al. [2012]; and the
last column shows a cut of the density cluster tree estimator of Chaudhuri and Dasgupta [2010]. We can
see the degrading ability of PPR to recover density clusters as the two moons become less well-separated.
Of particular interest is the fact that PPR fails to recover one of the moons even when normalized cut still
succeeds in doing so. Additionally, we note that the Chaudhuri-Dasgupta algorithm succeeds even when

5It is worth pointing out that the above conclusions are reliant on specific (albeit reasonable) ranges and choices of input
parameters, which in some instances differ between the upper and lower bounds. We suspect that our lower bound continues
to hold even when choosing input parameters as dictated by our upper bound, but do not pursue the details.

24

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x2

0.5 1.0 1.5 2.0

0.
01

0.
02

0.
05

0.
10

0.
20

rho

no
rm

al
iz

ed
 c

ut

● ● ● ● ● ● ● ● ● ●

0.5 1.0 1.5 2.02e
−

04
1e

−
03

5e
−

03
2e

−
02

rho

co
nd

uc
ta

nc
e

●
●

●
●

●
●

●
●

●
●

0.5 1.0 1.5 2.0

1e
−

04
5e

−
04

2e
−

03

rho

lo
ca

l s
pr

ea
d

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x2

0.10 0.12 0.14 0.16 0.18 0.20

0.
00

1
0.

00
5

0.
02

0
0.

05
0

sigma

no
rm

al
iz

ed
 c

ut

●
●

●
●

●
●

●
●

●
●

0.10 0.12 0.14 0.16 0.18 0.201e
−

04
5e

−
04

2e
−

03

sigma

co
nd

uc
ta

nc
e

● ● ● ● ● ● ● ● ● ●

0.10 0.12 0.14 0.16 0.18 0.20

2e
−

05
5e

−
05

1e
−

04
2e

−
04

sigma

lo
ca

l s
pr

ea
d

● ● ● ● ● ● ● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

● ●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x2

0.10 0.15 0.20 0.25

0.
00

5
0.

02
0

0.
05

0
0.

20
0

density ratio

no
rm

al
iz

ed
 c

ut

●
●

●
●

●
●

●
●

●
●

0.10 0.15 0.20 0.25

0.
00

1
0.

00
5

0.
02

0
0.

05
0

density ratio

co
nd

uc
ta

nc
e

● ● ● ● ● ● ● ● ● ●

0.10 0.15 0.20 0.25

0.
00

1
0.

00
2

0.
00

5

density ratio

lo
ca

l s
pr

ea
d

● ● ● ● ● ● ● ● ● ●

Figure 2.2: Empirical normalized cut, conductance, and local spread (in red), versus their theoretical bounds (in blue).
In the first row we vary the diameter ρ, in the second row we vary the thickness σ, and in the third row we vary the
density ratio (λ− θ)/λ. The first column shows n = 8000 samples for three different parameter values.

both PPR and normalized cut fail. This supports one of our main messages, which is that PPR recovers
only geometrically well-conditioned density clusters.

2.5 Discussion

In this work, we have analyzed the behavior of PPR in the classical setup of nonparametric statistics. We have
shown how PPR depends on the distribution P through the population-level normalized cut, conductance,
and local spread, and established upper bounds on the error with which PPR recovers an arbitrary candidate
cluster C ⊆ Rd. In the particularly important case where C = Cλ is a λ-density cluster, we have shown that
PPR recovers Cλ if and only if both the density cluster and density are well-conditioned. We now conclude
by summarizing a couple of interesting directions for future work.

Letting the radius of the neighborhood graph shrink, r → 0 as n→∞, would be computationally attractive,
as it would ensure that the graph Gn,r is sparse. However, the bounds (2.26) and (2.31) will blow up as the
radius r goes to 0, preventing us from making claims about the behavior of PPR in this regime. Although
the restriction to a kernel function fixed in n is common in spectral clustering theory [von Luxburg et al.,
2008, Schiebinger et al., 2015, Singer and Wu, 2017], recent works [Shi, 2015, Calder and Garćıa Trillos,
2019, Garćıa Trillos and Slepčev, 2018a, Garćıa Trillos et al., 2020, Yuan et al., 2020] have demonstrated

25

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Figure 2.3: True density (column 1), PPR (column 2), minimum normalized cut (column 3) and estimated density
(column 4) clusters for 3 different simulated data sets. Seed node for PPR denoted by a black cross.

26

that spectral methods have meaningful continuum limits when r → 0 as n → ∞, and given precise rates
of convergence. Garćıa Trillos et al. [2019b] have applied these results to analyze global spectral clustering
in the nonparametric mixture model, obtaining asymptotic upper bounds that do not depend on r; it
seems plausible that similar bounds could be obtained for local spectral clustering with PPR, although the
arguments would necessarily be quite different.

In another direction, it would be very useful to find reasonable conditions under which the ratio ∆(Ĉ, C[X])/voln,r(C[X])
would tend to 0 as n → ∞. It seems likely that such a strong result would entail bounds on the L∞-error
of PPR. Although most results thus far derive bounds only on the L1- or L2-error of spectral clustering
methods, some recent works [Dunson et al., 2020, Calder et al., 2020a] have established L∞-bounds on the
error with which the eigenvectors of a graph Laplacian matrix approximate the eigenvectors of a weighted
Laplace-Beltrami operator. It is not clear whether the techniques used in these works can be applied to
PPR.

27

Chapter 3

Minimax Optimal Regression over
Sobolev Spaces via Laplacian
Regularization on Neighborhood
Graphs

3.1 Introduction

We adopt the standard nonparametric regression setup, where we observe samples (X1, Y1), . . . , (Xn, Yn)
that are i.i.d. draws from the model

Yi = f0(Xi) + εi, εi ∼ N(0, 1), (3.1)

where εi is independent of Xi. Our goal is to perform statistical inference on the unknown regression
function f0, by which we mean either estimating f0 or testing whether f0 = 0, i.e., whether there is any
signal present.

Laplacian smoothing [Smola and Kondor, 2003] is a penalized least squares estimator, defined over a
graph. Letting G = (V,W) be a weighted undirected graph with vertices V = {1, . . . , n}, associated with
{X1, . . . , Xn}, and W ∈ Rn×n is the (weighted) adjacency matrix of the graph. the Laplacian smoothing
estimator f̂ is given by

f̂ = argmin
f∈Rn

n∑
i=1

(Yi − fi)2 + ρ · f>Lf. (3.2)

Here L is the graph Laplacian matrix (defined formally in Section 3.3), G is typically a geometric graph
(such as a k-nearest-neighbor or neighborhood graph), ρ ≥ 0 is a tuning parameter, and the penalty

f>Lf =
1

2

n∑
i,j=1

Wij(fi − fj)2

encourages f̂i ≈ f̂j when Xi ≈ Xj . Assuming (3.2) is a reasonable estimator of f0, the statistic

T̂ =
1

n
‖f̂‖22 (3.3)

is in turn a natural test statistic to test if f0 = 0.

28

Of course there are many methods for nonparametric regression (see, e.g., Györfi et al. [2006], Wasserman
[2006], Tsybakov [2008b]), but Laplacian smoothing has its own set of advantages. For instance:

• Computational ease. Laplacian smoothing is fast, easy, and stable to compute. The estimate f̂ can
be computed by solving a symmetric diagonally dominant linear system. There are by now various
nearly-linear-time solvers for this problem (see e.g., the seminal papers of Spielman and Teng [2011,
2013, 2014], or the overview by Vishnoi [2012] and references therein).

• Generality. Laplacian smoothing is well-defined whenever one can associate a graph with observed
responses. This generality lends itself to many different data modalities, e.g., text and image classifi-
cation, as in Kondor and Lafferty [2002], Belkin and Niyogi [2003], Belkin et al. [2006].

• Weak supervision. Although we study Laplacian smoothing in the supervised problem setting (3.1),
the method can be adapted to the semi-supervised or unsupervised settings, as in Zhu et al. [2003],
Zhou et al. [2005], Nadler et al. [2009].

For these reasons, a body of work has emerged that analyzes the statistical properties of Laplacian smoothing,
and graph-based methods more generally. Roughly speaking, this work can be divided into two categories,
based on the perspective they adopt.

• Fixed design perspective. Here one treats the design points X1, . . . , Xn and the graph G as fixed, and
carries out inference on f0(Xi), i = 1, . . . , n. In this problem setting, tight upper bounds have been
derived on the error of various graph-based methods (e.g., Wang et al. [2016], Hütter and Rigollet
[2016], Sadhanala et al. [2016a, 2017], Kirichenko and van Zanten [2017], Kirichenko et al. [2018])
and tests (e.g., Sharpnack and Singh [2010], Sharpnack et al. [2013a,b, 2015]), which certify that such
procedures are optimal over “function” classes (in quotes because these classes really model the n-
dimensional vector of evaluations). The upside of this work is its generality: in this setting G need not
be a geometric graph, but in principle it could be any graph over V = {1, . . . , n}. The downside is that,
in the context of nonparametric regression, it is arguably not as natural to think of the evaluations of
f0 as exhibiting smoothness over some fixed pre-defined graph G, and more natural to speak of the
smoothness of the function f0 itself.

• Random design perspective. Here one treats the design points X1, . . . , Xn as independent samples from
some distribution P supported on a domain X ⊆ Rd. Inference is drawn on the regression function
f0 : X → R, which is typically assumed to be smooth in some continuum sense, e.g., it possesses a
first derivative bounded in L∞ (Hölder) or L2 (Sobolev) norm. To conduct graph-based inference, the
user first builds a neighborhood graph over the random design points—so that Wij is large when Xi

and Xj are close in (say) Euclidean distance—and then computes e.g., (3.2) or (3.3). In this context,
various graph-based procedures have been shown to be consistent : as n → ∞, they converge to a
continuum limit (see Belkin and Niyogi [2007], von Luxburg et al. [2008], Garćıa Trillos and Slepčev
[2018b] among others). However, until recently such statements were not accompanied by error rates,
and even so, such error rates as have been proved [Lee et al., 2016, Garćıa Trillos and Murray, 2020]
are not optimal over continuum function spaces, such as Hölder or Sobolev classes.

The random design perspective bears a more natural connection with nonparametric regression (the focus
in this paper), as it allows us to formulate smoothness based on f0 itself (how it behaves as a continuum
function, and not just its evaluations at the design points). In this paper, we will adopt the random design
perspective, and seek to answer the following question:

When we assume the regression function f0 is smooth in a continuum sense, does Laplacian
smoothing achieve optimal performance for estimation and goodness-of-fit testing?

This is no small question—arguably, it is the central question of nonparametric regression—and without an
answer one cannot fully compare the statistical properties of Laplacian smoothing to alternative methods. It
also seems difficult to answer: as we discuss next, there is a fundamental gap between the discrete smoothness

29

imposed by the penalty f>Lf in problem (3.2) and the continuum smoothness assumed on f0, and in order
to obtain sharp upper bounds we will need to bridge this gap in a suitable sense.

3.2 Summary of Results

Advantages of the Discrete Approach. In light of the potential difficulty in bridging the gap between
discrete and continuum notions of smoothness, it is worth asking whether there is any statistical advantage
to solving a discrete problem such as (3.2) (setting aside computational considerations for the moment).
After all, we could have instead solved the following variational problem:

f̃ = argmin
f :X→R

n∑
i=1

(
Yi − f(Xi)

)2
+ ρ

∫
X
‖∇f(x)‖22 dx, (3.4)

where the optimization is performed over all continuous functions f that have a weak derivative ∇f in
L2(X). Analogously, for testing, we could use:

T̃ = ‖f̃‖2n :=
1

n

n∑
i=1

f̃(Xi)
2. (3.5)

The penalty term in (3.4) leverages the assumption that f0 has a smooth derivative in a seemingly natural
way. Indeed, the estimator f̃ and statistic T̃ are well-known: for d = 1, f̃ is the familiar smoothing spline,
and for d > 1, it is a type of thin-plate spline. The statistical properties of smoothing and thin-plate splines
are well-understood [van de Geer, 2000, Liu et al., 2019]. As we discuss later, the Laplacian smoothing
problem (3.2) can be viewed as a discrete and noisy approximation to (3.4). At first blush, this suggests
that Laplacian smoothing should at best inherit the statistical properties of (3.4), and at worst may have
meaningfully larger error.

However, as we shall see the actual story is quite different: remarkably, Laplacian smoothing enjoys optimal-
ity properties even in settings where the thin-plate spline estimator (3.4) is not well-posed (to be explained
shortly); Tables 3.1 and 3.2 summarize. As we establish in Theorems 6-10, when computed over an appro-
priately formed neighborhood graph, Laplacian smoothing estimators and tests are minimax optimal over
first-order continuum Sobolev balls. This holds true either when X ⊆ Rd is a full-dimensional domain and
d = 1, 2, or 3, or when X is a manifold embedded in Rd of intrinsic dimension m = 1, 2, or 3. Additionally,
the estimator f̂ is nearly minimax optimal (to within a (log n)1/3 factor) when d = 4 (or m = 4 in the
manifold case).

By contrast, smoothing splines are optimal only when d = 1. When d > 1, the thin-plate spline estimator
(3.4) is not even well-posed, in the following sense: for any (X1, Y1), . . . , (Xn, Yn) and any δ > 0, there exists
(e.g., Green and Silverman [1993] give a construction using “bump” functions) a differentiable function f
such that f(Xi) = Yi, i = 1, . . . , n, and ∫

X
‖∇f(x)‖22 ≤ δ.

In other words, f achieves perfect (zero) data loss and arbitrarily small penalty in the problem (3.4). This
will clearly not lead to a consistent estimator of f0 across the design points (as it always yields Yi at each Xi).
In this light, our results when d > 1 favorably distinguish Laplacian smoothing from its natural variational
analog.

Future Directions. To be clear, there is still much left to be investigated. For one, the Laplacian smooth-
ing estimator f̂ is only defined at X1, . . . , Xn. In this work we study its in-sample mean squared error

∥∥f̂ − f0

∥∥2

n
:=

1

n

n∑
i=1

(
f̂i − f0(Xi)

)2

. (3.6)

30

Dimension Laplacian
smoothing
(3.2)

Thin-plate
splines (3.4)

d = 1 n−2/3 n−2/3

d = 2, 3 n−2/(2+d) 1
d = 4 n−1/3(log n)1/3 1
d ≥ 5 (log n/n)4/(3d) 1

Table 3.1: Summary of estimation rates over first-order Sobolev balls. Black font marks new results from this paper, red
font marks previously-known results; bold font marks minimax optimal rates. Although we suppress it for simplicity,
in all cases the dependence of the error rate on the radius of the Sobolev ball is also optimal. The rates for thin-plate
splines with d ≥ 2 assume the estimator f̃ interpolates the responses, f̃(Xi) = Yi for i = 1, . . . , n; see the discussion
in Section 3.2. Here, we use “1” to indicate inconsistency (error not converging to 0). Lastly, when X is an m-
dimensional manifold embedded in Rd, all Laplacian smoothing results hold with d replaced by m, without any change
to the method itself.

Dimension Laplacian
smoothing
(3.3)

Thin-plate
splines (3.5)

d = 1 n−4/5 n−4/5

d = 2, 3 n−4/(4+d) n−1/2

d ≥ 4 n−1/2 n−1/2

Table 3.2: Summary of testing rates over first-order Sobolev balls; black, red, and bold fonts are used as in Table 3.1.
The rates for thin-plate splines with d ≥ 2 assume the test statistic T̃ is computed using an f̃ that interpolates
the responses, f̃(Xi) = Yi for i = 1, . . . , n. Rates for d ≥ 4 assume that f0 ∈ L4(X ,M). Lastly, when X is an
m-dimensional manifold embedded in Rd, all rates hold with d replaced by m.

In Section 3.4, we discuss how to extend f̂ to a function over all X , in such a way that the out-of-sample
mean squared error ‖f̂ − f0‖2L2(X) should remain small, but leave a formal analysis to future work.

In a different direction, problem (3.4) is only a special, first-order case of thin-plate splines. In general, the
kth order thin-plate spline estimator is defined as

f̃ = argmin
f :X→Rd

n∑
i=1

(
Yi − f(Xi)

)2
+ ρ

∑
|α|=k

∫
X

(
Dαf(x)

)2
dx,

where for each multi-index α = (α1, . . . , αd) we write Dαf(x) = ∂kf/∂xα1
1 · · · ∂x

αd
d . This problem is in

general well-posed whenever 2k > d. In this regime, assuming that the kth order partial derivatives Dαf0

are all L2(X) bounded, the degree k thin-plate spline has error on the order of n−2k/(2k+d) [van de Geer,
2000], which is minimax rate-optimal for such functions. Of course, assuming f0 has k bounded derivatives
for some 2k > d is a very strong condition, but at present we do not know if (adaptations of) Laplacian
smoothing on neighborhood graphs achieve these rates.

Notation. For an integer p ≥ 1, we use Lp(X) for the set of functions f such that

‖f‖pLp(X) :=

∫
X
|f(x)|p dx <∞,

and Cp(X) for the set of functions that are p times continuously differentiable. For sequences an, bn, we
write an . bn to mean an ≤ Cbn for a constant C > 0 and large enough n, and an � bn to mean an . bn
and bn . an. Lastly, we use a ∧ b = min{a, b}.

31

3.3 Background

Before we present our main results in Section 3.4, we define neighborhood graph Laplacians, and review
known minimax rates over first-order Sobolev spaces.

Neighborhood Graph Laplacians. In the graph-based approach to nonparametric regression, we first
build a neighborhood graph Gn,r = (V,W), for V = {1, . . . , n}, to capture the geometry of P (the design
distribution) and X (the domain) in a suitable sense. The n×n weight matrix W = (Wij) encodes proximity
between pairs of design points; for a kernel function K : [0,∞)→ R and radius r > 0, we have

Wij = K

(
‖Xi −Xj‖2

r

)
,

with ‖·‖2 denoting the `2 norm on Rd. Defining D as the n×n diagonal matrix with entries Dii =
∑n
j=1Wij ,

the graph Laplacian can then be written as

L = D −W. (3.7)

We use L =
∑n
k=1 λkvkv

>
k for an eigendecomposition of L, and we always assume, by convention, ordered

eigenvalues 0 = λ1 ≤ · · · ≤ λn, and unit-norm eigenvectors.

Sobolev Spaces. We step away from graph-based methods for a moment, to briefly recall some classical
results regarding minimax rates over Sobolev classes. We say that a function f ∈ L2(X) belongs to the
first-order Sobolev space H1(X) if, for each j = 1, . . . , d, the weak partial derivative Djf exists and belongs
to L2(X). For such functions f ∈ H1(X), the Sobolev seminorm |f |H1(X) is the average size of the gradient
∇f = (D1f, . . . ,Ddf),

|f |2H1(X) :=

∫
X

∥∥∇f(x)
∥∥2

2
dx,

with corresponding Sobolev norm

‖f‖H1(X) := ‖f‖L2(X) + |f |H1(X).

The Sobolev ball H1(X ,M) for M > 0 is

H1(X ,M) :=
{
f ∈ H1(X) : ‖f‖2H1(X) ≤M

2
}
.

For further details regarding Sobolev spaces see, e.g., Evans [2010], Leoni [2017].

Minimax Rates. To carry out a minimax analysis of regression in Sobolev spaces, one must impose
regularity conditions on the design distribution P . We shall assume the following.

(P1) P is supported on a domain X ⊆ Rd, which is an open, connected set with Lipschitz boundary.

(P2) P admits a density p such that

0 < pmin ≤ p(x) ≤ pmax <∞, for all x ∈ X .

Additionally, p is Lipschitz on X , with Lipschitz constant Lp.

Under conditions (P1), (P2), the minimax estimation rate over a Sobolev ball of radius M ≥ n−1/2 is (e.g.,
Tsybakov [2008b]):

inf
f̂

sup
f0∈H1(X ,M)

E
[
‖f̂ − f0‖2L2(X)

]
�M2d/(2+d)n−2/(2+d). (3.8)

32

(Throughout we assume M ≥ n−1/2, as otherwise the trivial estimator f̂ = 0 achieves smaller error than the
parametric rate n−1, and the problem does not fit well within the nonparametric setup.)

As minimax rates in nonparametric hypothesis testing are (comparatively) less familiar than those in non-
parametric estimation, we briefly summarize the main idea before stating the optimal error rate. In the
goodness-of-fit testing problem, we ask for a test function—formally, a Borel measurable function φ taking
values in {0, 1}—which can distinguish between the hypotheses

H0 : f0 = f?0 , versus Ha : f0 ∈ F \ {f?0 }. (3.9)

Typically, the null hypothesis f0 = f?0 ∈ F reflects the absence of interesting structure, and F \ {f?0 } is a
set of smooth departures from this null. In this paper, as in Ingster and Sapatinas [2009], we focus on the
problem of signal detection in Sobolev spaces, where f?0 = 0 and F = H1(X ,M) is a first-order Sobolev ball.
This is without loss of generality since our test statistic and its analysis are easily modified to handle the
case when f?0 is not 0, by simply subtracting f?0 (Xi) from each observation Yi.

The Type I error of a test φ is E0[φ], and if E0[φ] ≤ α for a given α ∈ (0, 1) we refer to φ as a level-α test.
The worst-case risk of φ over F is

Rn(φ,F , ε) := sup
{
Ef0 [1− φ] : f0 ∈ F , ‖f0‖L2(X) > ε

}
,

and for a given constant b ≥ 1, the minimax critical radius ε(F) is the smallest value of ε such that some
level-α test has worst-case risk of at most 1/b. Formally,

ε(F) := inf
{
ε > 0 : inf

φ
Rn(φ,F , ε) ≤ 1/b

}
,

where in the above the infimum is over all level-α tests φ, and Ef0 [·] is the expectation operator under the
regression function f0.1

The classical approach to hypothesis testing typically focuses on designing test statistics, and studying their
(limiting) distribution in order to ensure control of the Type I error. In many cases the Type II error (or
risk in our terminology) is not emphasized, or the risk of the test against fixed or directional alternatives
(i.e. alternatives which deviate from the null in a fixed direction) is studied. In contrast, in the minimax
paradigm the (uniform or worst-case) risk against a large collection of alternatives is the central focus. See
Ingster [1982, 1987], Ingster and Suslina [2012], Arias-Castro et al. [2018], Balakrishnan and Wasserman
[2019, 2018] for a more extended treatment of the minimax paradigm in nonparametric testing, and for a
discussion of its advantages (and disadvantages) over other approaches to studying hypothesis tests.

Testing f0 = 0 is an easier problem than estimating f0, and hence the minimax testing critical radius
over H1(X ,M) is smaller than the minimax estimation rate, for 1 ≤ d < 4 (see Ingster and Sapatinas
[2009]):

ε2
(
H1(X ,M)

)
�M2d/(4+d)n−4/(4+d). (3.10)

When d ≥ 4 the functions in H1(X) are very irregular; formally speaking H1(X) does not continuously
embed into L4(X) when d ≥ 4, and the minimax testing rates in this regime are unknown.

3.4 Minimax Optimality of Laplacian Smoothing

We now formalize the main conclusions of this paper: that Laplacian smoothing methods on neighborhood
graphs are minimax rate-optimal over first-order continuum Sobolev classes. We will assume (P1), (P2) on
P , and the following condition on the kernel K.

1Clearly, the minimax critical radius ε depends on α and b. However, we adopt the typical convention of treating α ∈ (0, 1)
and b ≥ 1 as small but fixed positive constants; hence they will not affect the testing error rates, and we suppress them
notationally.

33

(K1) K : [0,∞)→ [0,∞) is a nonincreasing function supported on [0, 1], its restriction to [0, 1] is Lipschitz,
and K(1) > 0. Additionally, it is normalized so that∫

Rd
K(‖z‖2) dz = 1.

We assume σK = 1
d

∫
Rd ‖x‖

2
2K(‖x‖2) dx <∞.

This is a mild condition: recall the choice of kernel is under the control of the user, and moreover (K1) covers
many common kernel choices.

Estimation Error of Laplacian Smoothing. Under these conditions, the Laplacian smoothing estimator
f̂ achieves an error rate that matches the minimax lower bound over H1(X ,M). This statement will hold
whenever the graph Gn,r is computed with radius r in the following range.

(R1) For constants C0, c0 > 0, the neighborhood graph radius r satisfies

C0

(
log n

n

) 1
d

≤ r ≤ c0 ∧M
d−4
4+2dn−

3
4+2d .

Next we state Theorem 6, our main estimation result. Its proof, as with all proofs of results in this paper,
can be found in the appendix.

Theorem 6. Given i.i.d. draws (Xi, Yi), i = 1, . . . , n from (3.1), assume f0 ∈ H1(X ,M) where X ⊆ Rd
has dimension d < 4 and M ≤ n1/d. Assume (P1), (P2) on the design distribution P , and assume the
neighborhood graph Gn,r is computed with a kernel K satisfying (K1). There are constants N,C,C1, c, c1 > 0
(not depending on f0) such that for any n ≥ N , and any radius r as in (R1), the Laplacian smoothing
estimator f̂ in (3.2) with ρ = M−4/(2+d)(nrd+2)−1n−2/(2+d) satisfies∥∥f̂ − f0

∥∥2

n
≤ C

δ
M2d/(2+d)n−2/(2+d),

with probability at least 1− δ − C1n exp(−c1nrd)− exp(−c(M2n)d/(2+d)).

To summarize: for d = 1, 2, or 3, with high probability, the Laplacian smoothing estimator f̂ has in-sample
mean squared error that is within a constant factor of the minimax error. Some remarks:

• The first-order Sobolev space H1(X) does not continuously embed into C0(X) when d > 1 (in general,
the kth order space Hk(X) does not continuously embed into C0(X) except if 2k > d). For this reason,
one really cannot speak of pointwise evaluation of a Sobolev function f0 ∈ H1(X) when d > 1 (as we
do in Theorem 6 by defining our target of estimation to be f0(Xi), i = 1, . . . , n). We can resolve this
by appealing to what are known as Lebesgue points, as explained in Appendix B.1.

• The assumption M ≤ n1/d ensures that the upper bound provided in the theorem is meaningful (i.e.,
ensures it is of at most a constant order).

• The lower bound on r imposed in condition (R1) is compatible with practice, where by far the most
common choice of radius is the connectivity threshold r � (log(n)/n)1/d, which makes Gn,r as sparse
as possible while still being connected, for maximum computational efficiency. The upper bound may
seem a bit more mysterious—we need it for technical reasons to ensure that f̂ does not overfit, but we
note that as a practical matter one rarely chooses r to be so large anyway.

• It is possible to extend f̂ to be defined on all of X and then evaluate the error of such an extension
(as measured against f0) in L2(X) norm. When f̂ and f0 are suitably smooth, tools from empirical
process theory (see e.g., Chapter 14 of Wainwright [2019]) or approximation theory (e.g., Section

34

15.5 of Johnstone [2011]) guarantee that the L2(X) error is not too much greater than its in-sample
counterpart. In fact, as shown in Appendix B.7.1, if f0 is Lipschitz smooth and we extend f̂ to be
piecewise constant over the Voronoi tessellation induced by X1, . . . , Xn, then the out-of-sample error
‖f̂ − f0‖L2(X) is within a negligible factor of the in-sample error ‖f̂ − f0‖n. We leave analysis of the
Sobolev case to future work.

• When f0 is Lipschitz smooth, we can also replace the factor of δ in the high probability bound by a
factor of δ2/n, which is always smaller than δ when δ ∈ (0, 1).

When d = 4, our analysis results in an upper bound for the error of Laplacian smoothing that is within a
(log n)1/3 factor of the minimax error rate. But when d ≥ 5, our upper bounds do not match the minimax
rates.

Theorem 7. Under the assumptions of Theorem 6, if instead X has dimension d = 4, r � (log n/n)1/4 and
ρ = M−2/3(nr6)−1(log n/n)1/3, then we obtain

∥∥f̂ − f0

∥∥2

n
≤ C

δ
M4/3

(
log n

n

)1/3

,

with the same probability guarantee as in Theorem 6. If the dimension of X is d ≥ 5, r � (log n/n)1/d and
ρ = M−2/3(nr2+d)−1n−4/(3d), then

∥∥f̂ − f0

∥∥2

n
≤ C

δ
M4/3

(
log n

n

)4/(3d)

,

again with the same probability guarantee.

This mirrors the conclusions of Sadhanala et al. [2016a] who investigate estimation rates of Laplacian smooth-
ing over the d-dimensional grid graph. These authors argue that their analysis is tight, and that it is likely
the estimator, not the analysis, that is deficient when d ≥ 5. Formalizing such a claim turns out to be harder
in the random design setting than in the fixed design setting, and we leave it for future work.

However, we do investigate the matter empirically. In Figure 3.1, we study the (in-sample) mean squared
error of the Laplacian smoothing estimator as the dimension d grows. Here X1, . . . , Xn are sampled uniformly
over X = [−1, 1]d, and the regression function is taken as f0(x) ∝ Πd

i=1 cos(aπxi), where a = 2 for d = 2,
and a = 1 for d ≥ 3. This regression function f0 is quite smooth, and for d = 2 and d = 3 Laplacian
smoothing appears to achieve or exceed the minimax rate. When d = 4, Laplacian smoothing appears
modestly suboptimal; this fits with our theoretical upper bound, which includes a (log n)1/3 factor that
plays a non-negligible role for these problem sizes (n = 1000 to n = 10000). On the other hand, when d = 5,
Laplacian smoothing seems to be decidedly suboptimal.

Testing Error of Laplacian Smoothing. For a given 0 < α < 1, define a threshold t̂α as

t̂α =
1

n

n∑
k=1

1

(ρλk + 1)2
+

1

n

√√√√ 2

α

n∑
k=1

1

(ρλk + 1)4
,

where we recall λk is the kth smallest eigenvalue of L. The Laplacian smoothing test is then simply

ϕ̂ = 1
{
T̂ > t̂α

}
.

We show in Appendix C.1 that f̂ is a level-α test. In the next theorem, we upper bound the worst-case risk
Rn(ϕ̂,H1(X ,M), ε) of ϕ̂, whenever ε is at least (a constant times) the critical radius given in (3.10). For
this to hold, we will require a tighter range of scalings for the graph radius r.

35

1000 2000 5000 10000

0.
05

0.
10

0.
20

0.
50

1.
00

d = 2. Minimax slope = −2/4.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

LS [Slope = −0.61].

1000 2000 5000 10000

0.
05

0.
10

0.
20

0.
50

1.
00

d = 3. Minimax slope = −2/5.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

LS [Slope = −0.41].

1000 2000 5000 10000

0.
05

0.
10

0.
20

0.
50

1.
00

d = 4. Minimax slope = −2/6.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

LS [Slope = −0.27].

1000 2000 5000 10000

0.
05

0.
10

0.
20

0.
50

1.
00

d = 5. Minimax slope = −2/7.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

LS [Slope = −0.15].

Figure 3.1: Mean squared error of Laplacian smoothing (LS) as a function of sample size n. Each plot is on the log-
log scale, and the results are averaged over 5 repetitions, with Laplacian smoothing tuned for optimal average mean
squared error. The black line shows the minimax rate (in slope only; the intercept is chosen to match the observed
error).

(R2) For constants C0, c0 > 0, the neighborhood graph radius r satisfies

C0

(
log n

n

) 1
d

≤ r ≤ c0 ∧M
(d−8)
8+2d n

d−20
32+8d .

We will also require that the radius of the Sobolev class not be too large. Precisely, we will require M ≤
Mmax(d), where we define

Mmax(d) :=

{
n1/8 d = 1

n(4−d)/(4d) d ≥ 2.

We now give Theorem 8, our main testing result.

Theorem 8. Given i.i.d. draws (Xi, Yi), i = 1, . . . , n from (3.1), assume f0 ∈ H1(X ,M) where X ⊆ Rd
with d < 4, and M ≤ Mmax(d). Assume (P1), (P2) on the design distribution P , and assume Gn,r is
computed with a kernel K satisfying (K1). There exist constants N,C,C1, c1 > 0 such that for any n ≥
N , and any radius r as in (R2), the Laplacian smoothing test ϕ̂ based on the estimator f̂ in (3.2), with
ρ = (nrd+2)−1n−4/(4+d)M−8/(4+d), satisfies the following: for any b ≥ 1, if

ε2 ≥ CM2d/(4+d)n−4/(4+d)

(
b2 + b

√
1

α

)
, (3.11)

then the worst-case risk satisfies the upper bound: Rn(ϕ̂,H1(X ,M), ε) ≤ C/b+ C1n exp(−c1nrd)
)
.

Some remarks:

• As mentioned earlier, Sobolev balls H1(X ,M) for d ≥ 4 include quite irregular functions f 6∈ L4(X).
Proving tight lower bounds in this case is nontrivial, and as far as we understand such an analysis
remains outstanding. On the other hand, if we explicitly assume that f0 ∈ L4(X ,M), then Guerre
and Lavergne [2002] show that the testing problem is characterized by a dimension-free lower bound
ε2(L4(X ,M)) & n−1/2. Moreover, by setting ρ = 0 so that the resulting estimator f̂ interpolates the
responses Y1, . . . , Yn, the subsequent test ϕ̂ will achieve (up to constants) this lower bound. That is,
for any f0 ∈ L4(X ,M) such that ‖f0‖2L2(X) ≥ C(b2 +

√
1/α)n−1/2, we have that E0[ϕ̂] ≤ α and

Ef0
[
1− ϕ̂

]
≤ C(1 +M4)

b2
. (3.12)

36

• To compute the data-dependent threshold t̂α, one must know all of the eigenvalues λ1, . . . , λn. Com-
puting all these eigenvalues is far more expensive (cubic-time) than computing T̂ in the first place
(nearly-linear-time). But in practice we would not recommend using t̂α anyway, and would instead we
make the standard recommendation to calibrate via a permutation test [Hoeffding, 1952]. Recent work
Kim et al. [2020], has shown that in a variety of closely related settings, calibration of a test statistic
via the permutation test often retains minimax-optimal power, and we expect similar results to hold
for the Laplacian smoothing-based test statistic.

More Discussion of Variational Analog. With some results in hand, let us pause to offer some explana-
tion of why Laplacian smoothing can be optimal in settings where thin-plate splines are not even consistent.
First, we elaborate on why this difference in performance is so surprising. As mentioned previously, the
penalties in (3.2), (3.4) can be closely tied together: Bousquet et al. [2004] show that for f ∈ C2(X),

lim
1

n2rd+2
f>Lf =

∫
X
f(x) ·∆P f(x)p(x) dx

=

∫
X
‖∇f(x)‖22p2(x) dx.

(3.13)

In the above, the limit is as n→∞ and r → 0, ∆P is the (weighted) Laplace-Beltrami operator

∆P f := −1

p
div
(
p2∇f),

and the second equality follows using integration by parts.2 To be clear, this argument does not formally
imply that the Laplacian eigenmaps estimator f̂ and the thin-plate spline estimator f̃ are close (for one,
note that (3.13) holds for f ∈ C2(X), whereas the optimization in (3.4) considers a much broader set of
continuous functions with weak derivatives in L2(X)). But it does seem to suggest that the two estimators
should behave somewhat similarly.

Of course, we know this is not the case: f̂ and f̃ look very different when d > 1. What is driving this
difference? The key point is that the discretization imposed by the graph Gn,r—which might seem prob-
lematic at first glance—turns out to be a blessing. The problem with (3.4) is that the class H1(X), which
fundamentally underlies the criterion, is far “too big” for d > 1. This is meant in various related senses.
By the Sobolev embedding theorem, for d > 1, the class H1(X) does not continuously embed into any
Hölder space; and in fact it does not even continuously embed into C0(X). Thus we cannot really restrict
the optimization to continuous and weakly differentiable functions, as we could when d = 1 (the smoothing
spline case), without throwing out a substantial subset of functions in H1(X). Even among continuous
and differentiable functions f , as we explained previously, we can use “bump” functions (as in Green and
Silverman [1993]) to construct f that interpolates the pairs (Xi, Yi), i = 1, . . . , n and achieves arbitrarily
small penalty (and hence criterion) in (3.4). In this sense, any estimator resulting from solving (3.4) will
clearly be inconsistent.

On the other hand, problem (3.2) is finite-dimensional. As a result f̂ has far less capacity to overfit than does
f̃ , for any given sample size n. Discretization is not the only way to make the problem (3.4) more tractable:
for instance, one can replace the penalty

∫
X ‖∇f(x)‖22 dx with a stricter choice like ess supx∈X ‖∇f(x)‖2, or

conduct the optimization over some finite-dimensional linear subspace of H1(X) (i.e., use a sieve). While
these solutions do improve the statistical properties of f̃ for d > 1 (see e.g., Birgé and Massart [1993, 1998],
van de Geer [2000]), Laplacian smoothing is generally speaking much simpler and more computationally
friendly. In addition, the other approaches are usually specifically tailored to the domain X , in stark contrast
to f̂ .

2Assuming f satisfies Neumann boundary conditions.

37

Overview of Analysis. The comparison with thin-plate splines highlights some surprising differences
between f̂ and f̃ . Such differences also preclude us from analyzing f̂ by, say, using (3.13) to establish a
coupling between f̂ and f̃—we know this cannot work, because we would like to prove meaningful error
bounds on f̂ in regimes where no such bounds exist for f̃ .

Instead we take a different approach, and directly analyze the error of f̂ and T̂ using a bias-variance decom-
position (conditional on X1, . . . , Xn). A standard calculation shows that

∥∥f̂ − f0

∥∥2

n
≤ 2ρ

n

(
f>0 Lf0

)
︸ ︷︷ ︸

bias

+
10

n

n∑
k=1

1

(ρλk + 1)2︸ ︷︷ ︸
variance

,

and likewise that ϕ̂ has small risk whenever

∥∥f0

∥∥2

n
≥ 2ρ

n

(
f>0 Lf0

)
︸ ︷︷ ︸

bias

+
2
√

2/α+ 2b

n

√√√√ n∑
k=1

1

(ρλk + 1)4︸ ︷︷ ︸
variance

.

The bias and variance terms are each functions of the random graph Gn,r, and hence are themselves random.
To upper bound them, we build on some recent works [Burago et al., 2014, Garćıa Trillos et al., 2019a, Calder
and Garćıa Trillos, 2019] regarding the consistency of neighborhood graphs to establish the following lemmas.
These lemmas assume (P1), (P2) on the design distribution P , and (K1) on the kernel used to compute the
neighborhood graph Gn,r.

Lemma 3. There are constants N,C2 > 0 such that for n ≥ N , r ≤ c0, and f ∈ H1(X), with probability at
least 1− δ, it holds that

f>Lf ≤ C2

δ
n2rd+2|f |2H1(X). (3.14)

Lemma 4. There are constants N,C1, C3, c1, c3 > 0 such that for n ≥ N and C0(log n/n)1/d ≤ r ≤ c0, with
probability at least 1− C1n exp(−c1nrd), it holds that

c3An,r(k) ≤ λk ≤ C3An,r(k), for 2 ≤ k ≤ n, (3.15)

where An,r(k) = min{nrd+2k2/d, nrd}.

Lemma 3 gives a direct upper bound on the bias term. Lemma 4 leads to a sufficiently tight upper bound
on the variance term whenever the radius r is sufficiently small; precisely, when r is upper bounded as in
(R1) for estimation, or (R2) for testing. The parameter ρ is then chosen to minimize the sum of these upper
bounds on bias and variance, as usual, and some straightforward calculations give Theorems 6-8.

It may be useful to give one more perspective on our approach. A common strategy in analyzing penalized
least squares estimators is to assume two properties: first, that the regression function f0 lies in (or near)
a ball defined by the penalty operator; second, that this ball is reasonably small, e.g., as measured by
metric entropy, or Rademacher complexity, etc. In contrast, in Laplacian smoothing, the penalty induces a
ball

H1(Gn,r,M) := {f : f>Lf ≤M2}

that is data-dependent and random, and so we do not have access to either of the aforementioned properties
a priori, and instead, must prove they hold with high probability. In this sense, our analysis is different than
the typical one in nonparametric regression.

38

3.5 Manifold Adaptivity

The minimax rates n−2/(2+d) and n−4/(4+d), in estimation and testing, suffer from the curse of dimensionality.
However, in practice it can be often reasonable to assume a manifold hypothesis: that the data X1, . . . , Xn

lie on a manifold X of Rd that has intrinsic dimension m < d. Under such an assumption, it is known
[Bickel and Li, 2007, Arias-Castro et al., 2018] that the optimal rates over H1(X) are now n−2/(2+m) (for
estimation) and n−4/(4+m) (for testing), which are much faster than the full-dimensional error rates when
m� d.

On the other hand, a theory has been developed [Belkin, 2003, Belkin and Niyogi, 2008, Niyogi et al., 2008,
Niyogi, 2013, Balakrishnan et al., 2012, 2013b] establishing that the neighborhood graph Gn,r can “learn”
the manifold X in various senses, so long as X is locally linear. We contribute to this line of work by
showing that under the manifold hypothesis, Laplacian smoothing achieves the tighter minimax rates over
H1(X).

Error Rates Assuming the Manifold Hypothesis. The conditions and results presented here will be
largely similar to the previous ones, except with the ambient dimension d replaced by the intrinsic dimension
m. For the remainder, we assume the following.

(P3) P is supported on a compact, connected, smooth manifold X embedded in Rd, of dimension m ≤ d.
The manifold is without boundary and has positive reach [Federer, 1959].

(P4) P admits a density p with respect to the volume form of X such that

0 < pmin ≤ p(x) ≤ pmax <∞, for all x ∈ X .

Additionally, p is Lipschitz on X , with Lipschitz constant Lp.

Under the assumptions (P3), (P4), and (K1), and for a suitable range of r, the error bounds on the estimator
f̂ and test ϕ̂ will depend on m instead of d.

(R4) For constants C0, c0 > 0, the neighborhood graph radius r satisfies

C0

(
log n

n

) 1
m

≤ r ≤ c0 ∧M
(m−4)
(4+2m)n

−3
(4+2m) .

Theorem 9. As in Theorem 6, but where X ⊆ Rd is a manifold with intrinsic dimension m < 4, the design
distribution P obeys (P3), (P4), and M ≤ n1/m. There are constants N,C, c > 0 (not depending on f0)
such that for any n ≥ N , and any r as in (R4), the Laplacian smoothing estimator f̂ in (3.2), with L = Ln,r
and ρ = M−4/(2+m)(nrm+2)−1n−2/(2+m), satisfies∥∥f̂ − f0

∥∥2

n
≤ C

δ
M2m/(2+m)n−2/(2+m),

with probability at least 1− δ − Cn exp(−cnrm)− exp(−c(M2n)m/(2+m)).

In a similar vein, we obtain results for manifold adaptive testing under the following condition on the graph
radius parameter.

(R5) For constants C0, c0 > 0, the neighborhood graph radius r satisfies

C0

(
log n

n

) 1
m

≤ r ≤ c0 ∧M
(m−8)
8+2m n

m−20
32+8m .

39

Theorem 10. As in Theorem 8, but where X ⊆ Rd is a manifold with intrinsic dimension m < 4, M ≤
Mmax(m), and the design distribution P obeys (P3), (P4). There are constants N,C, c > 0 such that for
any n ≥ N , and any r as in (R5), the Laplacian smoothing test ϕ̂ based on the estimator f̂ in (3.2), with
ρ = (nrm+2)−1n−4/(4+m)M−8/(4+m), satisfies the following: for any b ≥ 1, if

ε2 ≥ CM2m/(4+m)n−4/(4+m)

(
b2 + b

√
1

α

)
, (3.16)

then the worst-case risk satisfies the upper bound: Rn(ϕ̂,H1(X ,M), ε) ≤ C/b+ Cn exp(−cnrm).

The proofs of Theorems 9 and 10 proceed in a similar manner to that of Theorems 6 and 8. The key difference
is that in the manifold setting, the equations (3.14) and (3.15) used to upper bound bias and variance will
hold with d replaced by m.

We emphasize that little about X need be known for Theorems 9 and 10 to hold. Indeed, all that is needed
is the intrinsic dimension m, to properly tune r and ρ (from a theoretical point of view), and otherwise f̂ and
ϕ̂ are computed without regard to X . In contrast, the penalty in (3.4) would have to be specially tailored
to work in this setting, revealing another advantage of the discrete approach over the variational one.

3.6 Discussion

We have shown that Laplacian smoothing, computed over a neighborhood graph, can be optimal for both
estimation and goodness-of-fit testing over Sobolev spaces. There are many extensions worth pursuing,
and several have already been mentioned. We conclude by mentioning a couple more. In practice, it is
more common to use a k-nearest-neighbor (kNN) graph than a neighborhood graph, due to the guaranteed
connectivity and sparsity of the former; we suspect that by building on the work of Calder and Garćıa Trillos
[2019], one can show that our main results all hold under the kNN graph as well. In another direction,
one can also generalize Laplacian smoothing by replacing the penalty f>Lf with f>Lsf , for an integer
s > 1. The hope is that this would then achieve minimax optimal rates over the higher-order Sobolev class
Hs(X).

40

Chapter 4

Minimax Optimal Regression Over
Sobolev Spaces via Laplacian
Eigenmaps on Neighborhood
Graphs

4.1 Introduction

Suppose we observe data X1, . . . , Xn ∈ Rd, sampled independently from an unknown distribution P . As a
replacement for P , we form a geometric graph G over the observed data, with vertices at X1, . . . , Xn and
weighted edges Wij corresponding to proximity between samples Xi and Xj . Geometric graphs encode both
local information and global information about P in an extremely general manner. For this reason they
have been leveraged to conduct many different fundamental statistical tasks, such as clustering, manifold
learning, semi-supervised learning, classification, and regression. Substantial theoretical progress has been
made regarding the consistency of graph-based learning, that is, learning algorithms defined with respect to
geometric graphs. This work sheds light on why such procedures work, by showing that they converge to
interesting continuum limits as n → ∞. However, thus far little has been said regarding the optimality of
graph-based learning methods, even for classic statistical tasks.

In this paper we focus on the theoretical statistical properties of a particularly popular graph-based learning
method for regression. We assume that in addition to the design points X1, . . . , Xn one observes real-valued
responses Y1, . . . , Yn, and seeks to learn the unknown regression function f0(x) := E[Y |X = x]. The specific
graph-based method we study is Laplacian eigenmaps, first introduced by Belkin and Niyogi [2003], which
projects the response vector Y = (Y1, . . . , Yn) onto the span of eigenvectors of a graph Laplacian. We focus
on the the unnormalized graph Laplacian L, which is a difference operator acting on vectors u ∈ Rn as
follows,

(Lf)i =

n∑
j=1

(ui − uj)Wij . (4.1)

The graph Laplacian L is a discrete approximation to a weighted continuum Laplacian operator ∆P , defined
when P admits a differentiable density p as

∆P f = −1

p
div(p2∇f). (4.2)

41

The eigenvectors of L form an orthonormal basis of Rn, and serve as estimates of eigenfunctions of ∆P .
Their corresponding eigenvalues are likewise estimates of eigenvalues of ∆P , and give a notion of smooth-
ness to each eigenvector—roughly speaking, the smaller the eigenvalue, the smoother the corresponding
eigenvector.

We can therefore view Laplacian eigenmaps as a twist on a very classical approach to nonparametric re-
gression: spectral projection, or more generally orthogonal series, regression. Classically, in orthogonal series
regression one fixes a reference measure Q, takes an ordered orthonormal basis ψ1, ψ2, . . . of L2(Q), computes
empirical Fourier coefficients 〈Y, ψk〉n, and uses the first few terms in the resulting Fourier series to construct
an estimator. Regression by spectral projection is a special case of this general setup, where one takes ψk to
be the kth eigenfunction of the continuum Laplacian operator ∆Q. In contrast to this classical approach—in
which the reference measure Q and resulting Laplacian ∆Q are determined a priori—in Laplacian eigen-
maps the eigenvectors of the graph Laplacian serve as the basis. These eigenvectors are data-dependent
objects, and adapt to the geometry of the unknown design distribution P in a rich manner. For instance,
they respect the cluster structure of P , meaning that if the density p has multiple connected components,
the first few eigenvectors of L will (with high probability) be piecewise constant over each such component
Von Luxburg [2007]. On the other hand if P is supported on some low-dimensional manifold, the graph
Laplacian eigenvectors concentrate around the eigenfunctions of a manifold Laplace-Beltrami operator, and
thus give a principled embedding of potentially high dimensional design points Xi into a lower dimensional
space [Belkin and Niyogi, 2003].

Thus Laplacian eigenmaps is a data-dependent alternative to classical spectral projection estimators. This
data-dependency is appealing. Classical spectral projection estimators possess attractive theoretical prop-
erties for nonparametric regression—in particular, they are minimax rate-optimal for regression over Hölder
and Sobolev spaces Tsybakov [2008a], Johnstone [2011], Giné and Nickl [2016]—but in practice suffer from
some serious drawbacks. A basic difficulty is that finding the eigenfunctions of ∆Q is in general non-trivial,
so that it may not be possible to compute the estimator in the first place. Moreover, spectral projection
estimators make sense (and are minimax optimal) only if the reference measure Q is very close or equal to P ,
since otherwise the basis functions are orthogonalized with respect to the wrong measure. For these reasons,
such estimators are typically proposed and studied under very restrictive conditions on the design points: for
instance, that they are equally spaced fixed grid points, or that they are random but uniformly distributed
on the unit cube [0, 1]d. There do exist fixes to the issues just raised, for instance using nonparametric
least-squares. We will compare Laplacian eigenmaps to nonparametric least squares in more detail later,
and for now merely point out that it fundamentally changes the estimator under consideration.

In contrast, Laplacian eigenmaps directly approximates a spectral projection method: it projects the re-
sponses onto an orthogonal basis (eigenvectors of the graph Laplacian) that approximates the smooth eigen-
functions of ∆P . Laplacian eigenmaps is perfectly well-defined, and indeed straightforward to compute, when
the design P is unknown. This includes the situation where P may be non-uniform, or even concentrated
on a low-dimensional manifold. On the other hand, because graph Laplacian eigenvectors depend on the
random design points X1, . . . , Xn in complicated ways, it is substantially more difficult to analyze Laplacian
eigenmaps than to analyze classical spectral projection methods. For this reason, the theoretical statistical
properties of Laplacian eigenmaps, and in particular its optimality as a method for nonparametric regression
with random design, remain poorly understood.

Our contributions. The primary contribution of our paper is to fill this theoretical gap, by answering
the following question:

Is Laplacian eigenmaps an optimal method for nonparametric regression over Sobolev functions?

Broadly seeking, our answer is yes. We consider two different data models, one of which assumes the support
X of the distribution P is a full-dimensional, flat Euclidean domain, and the other of which assumes that
X is a manifold of small intrinsic dimension m. We show that when the regression function f0 is smooth,
in the Sobolev sense of having weak derivatives bounded in L2(X) norm, Laplacian eigenmaps methods

42

Smoothness order Flat Euclidean
(Model 4.2.1)

Manifold
(Model 4.2.2)

s ≤ 3 n−2s/(2s+d) n−2s/(2s+m)

s > 3 n−2s/(2s+d) n−6/(6+m)

Table 4.1: Summary of estimation rates over Sobolev balls. Bold font marks minimax optimal rates. In each case,
rates hold for all d ∈ N (under Model 4.2.1), and for all m ∈ N, 1 < m < d (under Model 4.2.2). Although we suppress
it for simplicity, in all cases when the Laplacian eigenmaps estimator is optimal, the dependence of the error rate on
the radius M of the Sobolev ball is also optimal, as long as n−1/2 .M . n1/d.

Smoothness order Dimension Flat Euclidean
(Model 4.2.1)

Manifold
(Model 4.2.2)

s = 1
dim(X) < 4 n−4s/(4s+d) n−4s/(4s+m)

dim(X) ≥ 4 n−1/2 n−1/2

s = 2 or 3
dim(X) ≤ 4 n−4s/(4s+d) n−4s/(4s+m)

4 < dim(X) < 4s n−2s/(2(s−1)+d) n−2s/(2(s−1)+m)

dim(X) ≥ 4s n−1/2 n−1/2

s > 3
dim(X) ≤ 4 n−4s/(4s+d) n−12/(12+d)

4 < dim(X) < 4s n−2s/(2(s−1)+d) n−6/(4+m)

dim(X) ≥ 4s n−1/2 n−1/2

Table 4.2: Summary of Laplacian eigenmaps testing rates over Sobolev balls. Bold font marks minimax optimal rates.
Rates when d > 4s assume that f0 ∈ L4(P,M). Although we suppress it for simplicity, in all cases when the Laplacian
eigenmaps test is optimal, the dependence of the error rate on the radius M of the Sobolev ball is also optimal, as
long as n−1/2 .M . n1/d.

are statistically minimax optimal, for both estimation and goodness-of-fit testing. Our statements hold for
different relations between the dimension d (or m) and number of derivatives s, depending on the problem
(estimation or testing), and are summarized in Tables 4.1 and 4.2.

Related Work. There is an incredible amount of work on the properties of classical spectral projection
methods, which go far beyond their optimality for nonparametric regression. We will not attempt to sum-
marize this work, and instead refer to Wasserman [2006], Györfi et al. [2006], Tsybakov [2008a], Johnstone
[2011], Giné and Nickl [2016] and the references therein.

More recent work has considered regression on a fixed graph, where one treats the design points x1, . . . , xn
as vertices in a fixed graph G, and carries out inference with respect to the function evaluations (f0(xi))

n
i=1

By this point there exists a relatively mature theory describing this setting. Tight upper bounds have been
established that certify the optimality of graph-based methods for both nonparametric estimation [Wang
et al., 2016, Hütter and Rigollet, 2016, Sadhanala et al., 2016a, 2017, Kirichenko and van Zanten, 2017,
Kirichenko et al., 2018]) and testing (e.g., Sharpnack and Singh [2010], Sharpnack et al. [2013a,b, 2015]
over different “function” classes (in quotes because these classes really model the n-dimensional vector of
evaluations) We call particular attention to Sadhanala et al. [2016a] and Sharpnack et al. [2015], who analyze
the Laplacian eigenmaps estimator and test statistic, respectively. This setting is quite general, because the
graph need not be a geometric graph defined on a vertex set which belongs to Euclidean space. On the other
hand, in many situations it may be somewhat to unnatural to assume that the design points are a priori
fixed, and that the regression function f0 exhibits “smoothness” over this fixed design. Instead, it may be
more reasonable to adopt the random design perspective that we work in, and assume that the regression
function f0 exhibits a more classical notion of smoothness.

However, as already mentioned, when the design points are random so too are the graph Laplacian eigen-
vectors, and grasping their properties is in general non-trivial. For this reason, there has not been much

43

analysis of random design nonparametric regression using Laplacian eigenmaps. Zhou and Srebro [2011]
consider the Laplacian eigenmaps estimator, but in the semi-supervised setting, where one additionally ob-
serves unlabeled design points Xn+1, . . . , Xn+m. Their analysis assumed that for a fixed number of labeled
samples n, the number of unlabeled samples m grows to infinity. In this case the eigenvectors of the graph
Laplacian converge to eigenfunctions of a continuum Laplacian, and the analysis of the resulting estimator
is identical to that of a classical spectral projection estimator. Lee et al. [2016] consider the diffusion maps
estimator—which uses the eigenvectors of a different normalization of the graph Laplacian L—in both the
supervised and semi-supervised setups. In the supervised case, they show that the diffusion maps estimator
converges to the regression function as the sample size n→∞, but at a suboptimal rate. As far as we know,
there has been no analysis of the test statistic T̂ in the random design framework which we study.

There has been much more analysis of the convergence properties of eigenvectors of random graph Laplacians
to their continuum limits. Belkin and Niyogi [2007], von Luxburg et al. [2008], Singer and Wu [2017],
Garćıa Trillos and Slepčev [2018a] show that eigenvalue-eigenvector pairs (λ, v) of a graph Laplacian converge
to eigenvalue-eigenfunction pairs (λ, ψ) of a limiting differential or integral operator. Burago et al. [2014],
Shi [2015], Garćıa Trillos et al. [2019a], Calder and Garćıa Trillos [2019], Cheng and Wu [2021] build on these
works, by giving finite sample bounds, rates of convergence, and making statements uniform. These results
justify our intuition that Laplacian eigenmaps, which projects the responses Y onto eigenvectors of a graph
Laplacian, is approximating a classical spectral projection method, which projects Y onto eigenfunctions of
the limiting differential operator ∆P . In fact, more formally these results imply that for a fixed number of
eigenvectors K > 0, the Laplacian eigenmaps estimator converges to its classical counterpart as n → ∞.
By taking K → ∞ sufficiently slowly with n, we can even conclude that Laplacian eigenmaps will be
a consistent estimator of f0. Unfortunately, the resulting rates of convergence implied by this approach
are severely suboptimal, compared to the minimax rates. Our analysis showing that Laplacian eigenmaps
achieves minimax optimal rates of convergence will use some of the results mentioned above, but will overall
proceed by a very different route than the one just considered.

Finally, we point out that there are other ways to use neighborhood graphs, and specifically graph Laplacians,
for nonparametric regression. For instance, Garćıa Trillos and Murray [2020], Green et al. [2021] use the

graph Laplacian to induce a penalty over functions f : {X} → R. The Laplacian smoothing estimator f̂LS is
obtained by minimizing the sum of this penalty with a data-fidelity term,

f̂LS := ‖Y − f‖2n + λ〈Ln,εf, f〉n.

Green et al. [2021] show that the resulting estimator is minimax optimal, but only for s = 1 and d ≤ 4. In
contrast, we show in this work that the Laplacian eigenmaps estimator is optimal for all s and d.

Organization. We now outline the structure of the rest of this paper. In Section 4.2, we formally define
the regression problem and estimator we consider. We also give some background about minimax regression
over Sobolev spaces, and recall the classical spectral projection estimators which achieve minimax rates of
convergence. In Sections 4.3 and 4.4, we establish our main results regarding the optimality of Laplacian
eigenmaps. Since thhe Laplacian eigenmaps estimator f̂ is defined only at the design points X1, . . . , Xn,
in Section 4.5 we propose a method for out-of-sample extension of f̂ , and show that it has optimal out-of-
sample error. In Section 4.6 we examine the empirical behavior of Laplacian eigenmaps, and compare it to
some natural competitors for nonparametric regression. We conclude with some discussion of future work in
Section 4.7.

Notation. We frequently refer to various classical function classes. For a domain X with volume form
dµ, we let L2(X) denote the set of functions f for which ‖f‖2L2(X) :=

∫
f2 dµ < ∞, and equip L2(X)

with the norm ‖ · ‖L2(X). We define 〈f, g〉P :=
∫
fg dP , and let L2(P) contain those functions f for which

‖f‖2P := 〈f, f〉P is finite. Finally, we let L2(Pn) consist of those “functions” f : {X1, . . . , Xn} → R for which

the empirical norm ‖f‖2n := 1
n

∑n
i=1

(
f(Xi)

)2
<∞. When there is no chance of confusion, we will sometimes

44

associate functions in L2(Pn) with vectors in Rn, and vice versa. We use Ck(X) to refer to functions which are
k times continuously differentiable in X , either for some integer k ≥ 1 or for k =∞. We let C∞c (X) represent
those functions in C∞(X) which are compactly contained in X . We write ∂f/∂ri for the partial derivative
of f in the ith standard coordinate of Rd, and use the multi-index notation Dαf := ∂|α|f/∂α1x1 . . . ∂

αdxd
for multi-indices α ∈ Rm.

We write ‖ · ‖ for Euclidean, and dX (x′, x) for the geodesic distance between points x and x′ on a manifold
X . Then for a given δ > 0, B(x, δ) is the radius-δ ball with respect to Euclidean distance, whereas BX (x, δ)
is the radius-δ ball with respect to geodesic distance. Letting Tx(X) be the tangent space at a point x ∈ X ,
we write Bm(v, δ) ⊂ Tx(X) for the radius-δ ball centered at v ∈ Tx(X).

For sequences (an) and (bn), we use the asymptotic notation an . bn to mean that there exists a number C
such that an ≤ Cbn for all n. We write an � bn when an . bn and bn . an. On the other hand we write
an = o(bn) when lim an/bn = 0, and likewise an = ω(bn) when lim an/bn = ∞. Finally a ∨ b := max{a, b}
and a ∧ b := min{a, b}.

4.2 Setup and Background

In this section, we begin by giving a precise definition of our framework, and the Laplacian eigenmaps
methods we study. We then review minimax rates for nonparametric regression over Sobolev spaces. We pay
special attention to the classical spectral projection methods which achieve these rates, since such methods
are closely connected to Laplacian eigenmaps.

4.2.1 Nonparametric regression with random design

We will operate in the usual setting of nonparametric regression with random design, in which we observe
independent random samples (X1, Y1), . . . , (Xn, Yn). The design points X1, . . . , Xn are sampled from a
distribution P with support X ⊆ Rd, and the responses follow the signal plus noise model

Yi = f0(Xi) + wi, (4.3)

with regression function f0 : X → R, and wi ∼ N(0, 1) independent Gaussian noise. For simplicity we will
assume throughout that the noise has unit-variance, but all of our results extend in a straightforward manner
to the case where the variance is equal to a known positive value.

We now formulate two models, which differ in the assumed nature of the support X of the design distribution
P : the flat Euclidean and manifold models.

Definition 4.2.1 (Flat Euclidean model). The data (X1, Y1), . . . , (Xn, Yn) are sampled according to (4.3).
The support X of the design distribution P is an open, connected, and bounded subset of Rd, with Lipschitz
boundary. The distribution P admits a Lipschitz density p with respect to the d-dimensional Lebesgue
measure ν, which is bounded away from 0 and ∞,

0 < pmin ≤ p(x) ≤ pmax <∞, for all x ∈ X .

In the following, we recall that the injectivity radius of a m-dimensional Riemannian manifold X is the
maximum value of δ such that the exponential map expx : Bm(0, δ) ⊂ Tx(X) → BX (x, δ) ⊂ X is a
diffeomorphism for all x ∈ X .

Definition 4.2.2 (Manifold model). The data (X1, Y1), . . . , (Xn, Yn) are sampled according to (4.3). The
support X of the design distribution P is a closed, connected, smooth and boundaryless Riemannanian
manifold embedded in Rd, of intrinsic dimension 1 ≤ m < d. The injectivity radius of X is lower bounded
by a positive constant i0 > 0. The design distribution P admits a Lipschitz density p with respect to the
volume form dµ induced by the Riemannian structure of X , which is bounded away from 0 and ∞,

0 < pmin ≤ p(x) ≤ pmax <∞, for all x ∈ X .

45

Finally, at various points we will have to assume that the density p also displays different types of higher-
order regularity, beyond Lipschitz continuity. When such assumptions are necessary, we always will state
them explicitly.

4.2.2 Laplacian eigenmaps

We now formally define the estimator and test statistic we study. Both are derived from eigenvectors of a
graph Laplacian. For a positive, symmetric kernel η : [0,∞) → [0,∞), and a radius parameter ε > 0, let
G = ([n],W) be the neighborhood graph formed over the design points {X1, . . . , Xn}, with a weighted edge
Wij = η(‖Xi −Xj‖/ε) between vertices i and j. Then the neighborhood graph Laplacian Ln,ε : Rn → R is
defined by its action on vectors u ∈ Rn as

(
Ln,εu

)
i

:=
1

nε2+dim(X)

n∑
j=1

(
ui − uj

)
η

(
‖Xi −Xj‖

ε

)
. (4.4)

(Here dim(X) stands for the dimension of X . It is equal to d under the assumptions of Model 4.2.1, and
equal to m under the assumptions of Model 4.2.2. The pre-factor (nε2+dim(X))−1 is purely for convenience
in taking limits as n → ∞, ε → 0). Written in standard coordinates we have (nεdim(X)+2) · Ln,ε = D −W ,
where D ∈ Rn×n is the diagonal degree matrix, Dii =

∑n
i=1Wij .

The graph Laplacian is a positive semi-definite matrix, and admits the eigendecomposition Ln,ε =
∑n
k=1 λkvkv

>
k ,

where for each k = 1, . . . , n the eigenvalue-eigenvector pair (λk, vk) satisfies

1

n
Ln,εvk = λkvk, ‖vk‖2n = 1.

We will assume without loss of generality that each eigenvalue λ of Ln,ε has algebraic multiplicity 1, and so
we can index the eigenpairs (λ1, v1), . . . , (λn, vn) in ascending order of eigenvalue, 0 = λ1 < . . . < λn.

The Laplacian eigenmaps estimator f̂ simply projects the response vector Y onto the first K eigenvectors
of Ln,ε: letting VK ∈ Rn×K be the matrix with columns v1, . . . , vK , we have that

f̂ :=

K∑
k=1

〈Y, vk〉nvk =
1

n
VKV

>
K Y. (4.5)

Thus f̂ is equivalently a vector in Rn, or a function in L2(Pn). If f̂ is a reasonable estimate of f0, then the
Laplacian eigenmaps test statistic

T̂ := ‖f̂‖2n (4.6)

is in turn a reasonable estimate of ‖f0‖2P , and can be used to distinguish whether or not f0 = 0.

It may be helpful to comment briefly on the term “Laplacian eigenmaps”, which we use a bit differently than
is typical in the literature. Laplacian eigenmaps typically refers to an algorithm for embedding, which maps
each design point X1, . . . , Xn to RK according to Xi 7→ (v1,i, . . . , vK,i). Viewing this embedding as a feature

map, we can then interpret the estimator f̂ as the least-squares solution to a linear regression problem with
responses Y1, . . . , Yn and features v1, . . . , vK . Often, the Laplacian eigenmaps embedding is viewed as a tool
for dimensionality reduction, wherein it is implicitly assumed that K is much smaller than d. We will neither
explicitly nor implicitly take K < d; indeed, the embedding perspective is not particularly illuminating in
what follows, and we do not henceforth make reference to it. Instead, we use “Laplacian eigenmaps” to
directly refer to the estimator f̂ or test statistic T̂ .

4.2.3 Sobolev Classes

We now review the definition of Sobolev classes, dividing our discussion into two cases—the flat Euclidean
case and the manifold case, corresponding respectively to Models 4.2.1 and Model 4.2.2.

46

Flat Euclidean case. Take X to be a open, connected and bounded set with Lipschitz boundary, as in
Model 4.2.1. Recall that for a given multiindex α ∈ Nd, a function f is α-weakly differentiable if there exists
some h ∈ L1(X) such that ∫

X
hg = (−1)|α|

∫
X
fDαg, for every g ∈ C∞c (X).

If such a function h exists, it is the αth weak partial derivative of f , and denoted by Dαf := h.

Definition 4.2.3 (Sobolev space on an open set). For an integer s ≥ 1, a function f ∈ L2(X) belongs to
the Sobolev space Hs(X) if for all |α| ≤ s, the weak derivatives Dαf exists and satisfy Dαf ∈ L2(X). The
jth order semi-norm for f ∈ Hs(X) is |f |Hj(X) :=

∑
|j|=s ‖Dαf‖L2(X), and the corresponding norm

‖f‖2Hs(X) := ‖f‖2L2(X) +

s∑
j=1

|f |2Hj(X),

induces a ball
Hs(X ;M) :=

{
f ∈ Hs(X) : ‖f‖Hs(X) ≤M

}
.

We note that Hs(X) is the completion of C∞(X) with respect to the ‖ · ‖Hs(X) norm, so that C∞(X) is
dense in Hs(X).

Manifold case. There are several equivalent ways to define Sobolev spaces on a compact, smooth, m-
dimensional Riemannian manifold embedded in Rd. We will stick with a definition that parallels our setup
in the flat Euclidean setting as much as possible. To do so, we first recall the notion of partial derivatives on
a manifold, which are defined with respect to a local coordinate system. Letting r1, . . . , rm be the standard
basis of Rm, for a given chart (φ,U) (meaning an open set U ⊆ X , and a smooth mapping φ : U → Rm) we
write φ =: (x1, . . . , xm) in local coordinates, meaning xi = ri ◦ φ. Then the partial derivative ∂f/∂xi of a
function f with respect to xi at x ∈ U is

∂f

∂xi
(x) :=

∂(f ◦ φ−1)

∂ri

(
φ(x)

)
.

The right hand side should be interpreted in the weak sense of derivative. As before, we use the multi-index
notation Dαf := ∂|α|f/∂α1x1 . . . ∂

αmxm.

Definition 4.2.4 (Sobolev space on a manifold). A function f ∈ L2(X) belongs to the Sobolev space
Hs(X) if for all |α| ≤ s, the weak derivatives Dαf exist and satisfy Dαf ∈ L2(X). The jth order semi-norm
|f |Hj(X), the norm ‖f‖Hs(X), and the ball Hs(X ;M) are all defined as in Defintion 4.2.3.

The partial derivatives Dαf will depend on the choice of local coordinates, and so will the resulting Sobolev
norm ‖f‖Hs(X). However, regardless of the choice of local coordinates the resulting norms will be equivalent1

and so the ultimate Sobolev space Hs(X) is independent of the choice of local coordinates.

Boundary conditions. In the flat Euclidean model (Model 4.2.1), in order to show that Laplacian eigen-
maps is optimal over Hs(X) for s > 1 we will need to assume that the regression function f0 satisfies some
boundary conditions. In particular, we will assume that f0 is zero-trace.

1Recall that norms ‖ · ‖1 and ‖ · ‖2 on a space F are said to be equivalent if there exist constants c and C such that

c‖f‖1 ≤ ‖f‖2 ≤ C‖f‖2 for allf ∈ F .

47

Definition 4.2.5 (Zero-trace Sobolev space). The order-s zero-trace Sobolev space Hs
0(X) is the closure of

C∞c (X) with respect to ‖ · ‖Hs(X) norm. That is, f ∈ Hs
0(X) if f ∈ Hs(X) and additionally there exists a

sequence f1, f2, . . . of functions in C∞c (X) such that

lim
k→∞

‖fk − f‖Hs(X) = 0.

The normed ball Hs
0(X ;M) := Hs

0(X) ∩Hs(X ;M).

The zero-trace condition can be made more concrete when f ∈ C∞(X), since we can then speak of the
pointwise behavior of f and its derivatives. Letting ∂/(∂n) be the partial derivative operator in the direction
of the vector n normal to the boundary of X , then the zero-trace condition implies that ∂kf/∂nk(x) = 0 for
each k = 0, . . . , s− 1, and for all x ∈ ∂X .

We now explain why Laplacian eigenmaps should be optimal only when f0 satisfies certain boundary con-
ditions. Let (λ1(∆P), ψ1), (λ2(∆P), ψ2), . . . be the solutions to the weighted Laplacian eigenvector equation
with Neumann boundary conditions,

∆Pψk = λk(∆P)ψk,
∂

∂n
ψk = 0 on ∂X . (4.7)

As we have already alluded to, it is known [Garćıa Trillos and Slepčev, 2018a] that each graph Laplacian
eigenpair (λk,vk) converges to a corresponding solution (λk(∆P), ψk) of (4.7). Thus it is relevant to consider
which Sobolev functions f ∈ Hs(M) we can reconstruct using the eigenfunctions ψ1, ψ2, To that end,
we introduce the spectrally defined Sobolev space

Hs(X) :=

{
f ∈ L2(X) :

∞∑
k=1

[
〈f, ψk〉P

]2 · [λk(∆P)
]s
<∞

}
. (4.8)

Under the conditions p ∈ C∞(X) and ∂X ∈ C1,1, Dunlop et al. [2020] show the strict inclusion H2s(X) ⊂
H2s(X). More precisely, they show that for any s > 0,

H2s(X) =

{
f ∈ H2s(X) :

∂∆r
P f

∂n
= 0 on ∂X , for all 0 ≤ r ≤ s− 1

}
, (4.9)

and for any s ≥ 0, H2s+1(X) = H2s(X)∩H2s+1(X). If P is uniform on X , then (4.8) means that a Sobolev
function f ∈ Hs(X) additionally belongs to Hs(X) only if all its odd lower order derivatives vanish at the
boundary ∂X .

The bottom line is that the eigenvectors vk of the graph Laplacian accurately approximate only those
functions f ∈ Hs(X) which satisfy some additional boundary conditions. Although the zero-trace boundary
condition is more restrictive than (4.9)—since it also requires that derivatives of even-order be equal to
0—the point is that some kind of boundary condition will be necessary in order to obtain optimal rates. We
will stick to the zero-trace condition, since it greatly eases some of the steps in our proofs.

On the other hand, in the manifold model (Model 4.2.2) the domain X is without boundary—precisely, every
point x ∈ X has a neighborhood that is homeomorphic to an open set in Rm, for instance the open ball
B(x, δ) for any δ smaller than the injectivity radius i0—and so boundary conditions are irrelevant.

4.2.4 Minimax Rates and Spectral Series Methods

We now review the minimax estimation and goodness-of-fit testing rates over Sobolev balls. We will pay
special attention to certain classical spectral projection methods which achieve these rates. This is be-
cause, as we have already discussed, classical spectral projection methods are very related to Laplacian
eigenmaps.

48

Estimation rates over Sobolev balls. In the estimation problem, we ask for an estimator—formally,
a Borel measurable function f̂ that maps from X to R—which is close to the regression function f0 with
respect to the squared norm ‖f̂ − f0‖2P . Under Model 4.2.1, the minimax estimation rate over the order-s
Sobolev ball is

inf
f̂

sup
f0

E‖f̂ − f0‖2P �M2(M2n)−2s/(2s+d); (4.10)

here infimum taken over all estimators f̂ , and the supremum over all f0 ∈ H1(X ;M) (first-order case) or
f0 ∈ Hs

0(X ;M) (higher-order case), and we assume n−1/2 .M .

The lower bound in (4.10) is due to [Stone, 1980] (at least for the case of M constant, as is most typically

considered). The upper bound can be certified by a particular spectral projection estimator f̃ ,

f̃ :=

K∑
k=1

〈Y, ψk〉nψk, (4.11)

where ψk are the eigenfunctions of ∆P defined in (4.7). The optimality of spectral projection estimators
over Sobolev type spaces is generally well-understood. For instance, see Tsybakov [2008a], Johnstone [2011],
Giné and Nickl [2016], who work in the Gaussian sequence model and show that analogous estimators are
optimal over Sobolev ellipsoids. However, we have not found an analysis of the specific estimator (4.11)
under Model 4.2.1, and so for completeness we state the result in the following proposition.

Proposition 6. Suppose Model 4.2.1, and additionally that ∂X ∈ C1,1, that p ∈ C∞(X), and that f0 ∈
H1(X ;M) (first-order case) or f0 ∈ Hs

0(X ;M) for some s > 1 (higher-order case). Then there exists a
constant C which does not depend on f0,M or n such that the following statement holds: if the spectral

projection estimator f̃ is computed with parameter K =
⌊
M2n

⌋d/(2s+d)
, then

E
[
‖f̃ − f0‖2P

]
≤ C min

{
M2(M2n)−2s/(2s+d),M2

}
The proof of Proposition 6, along with proofs of all of our results, can be found in the appendix. It is worth
mentioning some aspects of the analysis here, because it sets the stage for the strategy we will use to analyze
Laplacian eigenmaps.

In particular, three essential facts are needed to establish Proposition 6.

1. The continuous embedding of Hs
0(X) into Hs(X)—recall the latter is defined in (4.8)—which is a

consequence of the zero-trace condition, the conditions on ∂X and p, and (4.9).

2. Weyl’s Law, which gives the asymptotic scaling of eigenvalues λk(∆P) � k2/d, and allows us to properly
control the bias induced by spectral projection.

3. A local version of Weyl’s law, which gives an estimate on
∑K
k=1

(
ψk(x)

)2
, and allows us to appropriately

control the difference 〈f0, ψk〉n − 〈f0, ψk〉P between the empirical and population Fourier coefficients.

With these facts in hand the proof of Proposition 6 follows from calculations standard to analysis of the
Gaussian sequence model. Our analysis of Laplacian eigenmaps will depend on analogues to the first and
second of these facts, with the space Hs(X) and eigenvalues λk(∆P) replaced by alternatives suitably defined
with respect to the neighborhood graph Laplacian Ln,ε.

Goodness-of-fit testing rates over Sobolev balls. In the goodness-of-fit testing problem, we ask for
a test function—formally, a Borel measurable function φ that takes values in {0, 1}— which can distinguish
between the hypotheses

H0 : f0 = f∗0 , versus Ha : f0 ∈ F \ {f∗0 }. (4.12)

49

Typically, the null hypothesis f0 = f∗0 ∈ F reflects the absence of interesting structure, and F \ {f∗0 } is a
set of smooth departures from this null. To fix ideas, as in Ingster and Sapatinas [2009] we focus on the
problem of signal detection in Sobolev spaces, where f∗0 = 0 and F = Hs(X ;M) is a Sobolev ball. This is
without loss of generality since our test statistic and its analysis are easily modified to handle the case when
f∗0 is not 0, by simply subtracting f∗0 (Xi) from each observation Yi.

The Type I error of a test φ is E0[φ], and if E0[φ] ≤ a for a given a ∈ (0, 1) we refer to φ as a level-a test2.
The worst-case risk of φ over F is

Rn(φ,F , ε) := sup
{
Ef0 [1− φ] : f0 ∈ F , ‖f0‖P > ε

}
,

and for a given constant b ∈ (0, 1), the minimax critical radius εn(F) is the smallest value of ε such that
some level-a test has worst-case risk of at most b. Formally,

εn(F) := inf
{
ε > 0 : inf

φ
Rn(φ,F , ε) ≤ b

}
,

where in the above the infimum is over all level-a tests φ, and Ef0 [·] is the expectation operator under the
regression function f0.3 We will refer to the rate at which the squared critical radius εn(F)2 tends to 0 as
the minimax testing rate.

Testing whether a regression function f0 is equal to 0 is an easier problem than estimating f0, and so the
minimax testing rate is much smaller than the minimax estimation rate. Ingster and Sapatinas [2009] give
the minimax testing rate in the special case where X = [0, 1]d and P is uniform, and we restate their result
in the terms and notation of our paper.

Theorem 11 (Theorem 1 of Ingster and Sapatinas [2009]). Suppose Model 4.2.1, and additionally that
X = [0, 1]d, P is the uniform distribution on [0, 1]d, and f0 ∈ Hs

0(X). Then

ε2n
(
Hs

0(P ; 1)
)
� n−4s/(4s+d) for 1 ≤ d < 4s. (4.13)

The analysis used by Ingster and Sapatinas [2009] to show the upper bound in (4.13) relies on a similar trio
of facts as used in the proof of Proposition 6. It is otherwise reminiscent of calculations made in the Gaussian
sequence model, which can be found in Ingster and Suslina [2012]. This analysis can be straightforwardly
adapted to handle design distributions P that satisfy the conditions of Model 4.2.1, or to handle the case
where M is not 1. Finally, the test Ingster and Sapatinas [2009] use to certify the upper bound in (4.13)
is implicitly a spectral projection method: the test statistic is the L2(Pn) norm of a particular spectral
projection estimator.4

A major difference between testing and estimation over Sobolev spaces is the requirement that 4s > d.
When 4s ≤ d, the functions in Hs(X) are very irregular. Crucially, Hs(X) no longer continuously embeds
into L4(X) when 4s ≤ d, and test statistics using the L2(Pn) norm are no longer guaranteed to have finite
variance.5 In fact, we have not seen any analysis which describes the minimax rate for nonparametric
regression testing over Sobolev spaces in the 4s ≤ d regime. However, if one explicitly assumes that f0 ∈
L4(X), then the critical radius is characterized by the dimension-free rate ε2n(L4(X ;M)) �Mn−1/2.6 As we
discuss after our first main theorem regarding testing with Laplacian eigenmaps (Theorem 13), this rate is

achievable by a test based on T̂ .

2We reserve the more common symbol α for multi-indices, so as to avoid confusion
3Clearly, the minimax critical radius εn(F) depends on a and b. However, we adopt the typical convention of treating

α, b ∈ (0, 1) and as small but fixed positive constants; hence they will not affect the testing error rates, and we suppress them
notationally.

4Ingster and Sapatinas [2009] project the responses onto a the span of trigonometric basis functions. Since P is uniform on
the unit cube, such functions are eigenfunctions of ∆P when the right boundary conditions are imposed.

5Note that this will not affect the analysis for estimation, because for estimation we only need to control the first two
moments of f0.

6As a sanity check note that this is strictly worse than the rate in (4.13). In other words, whenever 4s > d, the embedding
Hs(X) ⊆ L4(X) never yields a tight upper bound.

50

Manifold setup. Under Model 4.2.2, both (4.10) and (4.13) continue to hold, but with the ambient

dimension d replaced everywhere by the intrinsic dimension m. The estimator f̃ and a test using the
statistic T̃—with ψ1, ψ2, . . . now the eigenfunctions of the manifold weighted Laplace-Beltrami operator
∆P—achieve the optimal estimation and testing rates. This is because each of the three facts mentioned
after Proposition 6 have analogues when the domain is a smooth manifold (See Hendriks [1990], who analyzes
a spectral projection density estimator, for details.)

In-sample mean squared error. As mentioned in our introduction, roughly speaking one of our main
conclusions is that the Laplacian eigenmaps estimator f̂ is minimax rate-optimal. It is worth being clear
about what we do and do not mean by this statement. We do not mean that the estimator f̂ will match the
upper bound given in (4.10), since such a statement does not make sense when the estimator is defined only
at the random design points X1, . . . , Xn. Instead we will measure loss using the squared L2(Pn) error. In

Section 4.5 we show that an extension of f̂ defined over all X has L2(P) error comparable to the L2(Pn) error

of f̂ . We also believe that in the random design setting we work in, simple arguments will imply that L2(Pn)
risk has the same minimax rate of convergence as L2(P) risk. We sketch such an argument in Section 4.5,
but do not further pursue the details.

Additionally, we will not actually measure accuracy using the expectation of the loss. Rather, we will give a
high-probability bound on ‖ · ‖2n. For instance, when f0 ∈ H1(X ; 1), we will show that with probability 1− δ
the loss ‖f̂ − f0‖2n ≤ Cδn

−2/(2+d), for a constant Cδ that depends on δ but not on f0 or n. Thus we give

an upper bound on the (1− δ)th quantile of ‖f̂ − f0‖2n, rather than an upper bound on its expectation. We
explain the reason for this in Section 4.3. We also show that if f0 is bounded in a larger norm—for instance,
if it is Hölder rather than Sobolev smooth—then we can obtain bounds on the expected L2(Pn) loss.

There is one other subtlety introduced by the use of in-sample mean squared error. Technically speaking,
elements f ∈ Hs(X) are equivalence classes, defined only up to a set of measure zero. Thus one cannot speak
of the pointwise evaluation f0(Xi), as we do by defining our target of estimation to be f0(Xi), i = 1, . . . , n,
until one selects representatives. When s > d/2, every element f of Hs(X) admits a continuous version f∗,
and as is standard we set this to be our favored representative. When s ≤ d/2, some elements in Hs(X) do
not have any continuous version; however they admit a quasi-continuous version [Evans and Gariepy, 2015]
known as the precise representative, and we use this representative. To be clear, however, it does not really
matter which representative we choose. Since all versions agree except on a set of measure zero, and since
P is absolutely continuous with respect to Lebesgue measure (in Model 4.2.1) or the volume form dµ (in
Model 4.2.2), with probability 1 any two versions g0, h0 ∈ f0 will satisfy g0(Xi) = h0(Xi) for all i = 1, . . . , n.
The bottom line is that we can use the notation f0(Xi) without fear of ambiguity or confusion.

Finally, we note that for testing none of these comments are relevant. We will show that our test has small
worst case risk whenever ε & εn(Hs

0(X ;M)), thus establishing that it is a minimax optimal test in the usual
sense.

4.3 Minimax Optimality of Laplacian Eigenmaps

As previously explained, Laplacian eigenmaps is a discrete and noisy approximation to a spectral projection
method using the eigenfunctions of ∆P . This is particularly useful when P is unknown, or when the
eigenfunctions of ∆P cannot be explicitly computed. Our goal is to show that Laplacian eigenmaps methods
are rate-optimal, notwithstanding the potential extra error incurred by this approximation. In this section
and the following one, we will see that this is indeed the case: the estimator f̂ , and a test using the statistic
T̂ , achieve optimal estimation and goodness-of-fit testing rates over Sobolev classes.

In this section we will cover the flat Euclidean case, where we observe data (X1, Y1), . . . , (Xn, Yn) according
to Model 4.2.1. We will divide our theorem statements based on whether we assume the regression function

51

f0 belongs to the first order Sobolev class (s = 1) or a higher-order Sobolev class (s > 1), since the details
of the two settings are somewhat different.

4.3.1 First-order Sobolev classes

We begin by assuming f0 ∈ H1(X). We show that f̂ and a test based on T̂ are minimax optimal, for all
values of d, and under no additional assumptions (beyond those of Model 4.2.1) on the data generating
process, i.e. on either P or f0.

Estimation. When the kernel η, graph radius ε, and number of eigenvectors K are chosen appropriately,
we show in Theorem 12 that the estimator f̂ achieves the minimax rate over H1(X ;M), when error is
measured in squared L2(Pn) norm.

(K1) The kernel function η is a nonincreasing function supported on [0, 1]. Its restriction to [0, 1] is Lipschitz,
and η(1) > 0. Additionally, it is normalized so that∫

Rd
η(‖z‖) dz = 1.

and we assume ση := 1
d

∫
Rd ‖x‖

2η(‖x‖) dx <∞.

(P1) For constants c0 and C0, the graph radius ε and the number of eigenvectors K satisfy the following
inequalities:

C0

(
log n

n

)1/d

≤ ε ≤ c0 min{1,K−1/d}, (4.14)

and
K = min

{⌊
(M2n)d/(2+d)

⌋
∨ 1, n

}
. (4.15)

We comment on these assumptions after stating our first main theorem, regarding the estimation error of
Laplacian eigenmaps.

Theorem 12. Suppose Model 4.2.1, and additionally f0 ∈ H1(X ,M). There are constants c, C and N (not
depending on f0, M or n), such that the following statement holds for all n ≥ N and any δ ∈ (0, 1): if

the Laplacian eigenmaps estimator f̂ is computed with kernel η satisfying (K1), and parameters ε and K
satisfying (P1), then

‖f̂ − f0‖2n ≤ C
(1

δ
M2(M2n)−2/(2+d) ∧ 1

)
∨ 1

n
, (4.16)

with probability at least 1− δ − Cn exp(−cnεd)− exp(−K).

From (4.16) it follows immediately that with high probability ‖f̂ − f0‖2n . M2(M2n)−2/(2+d) whenever
n−1/2 .M . n1/d.

Some other remarks:

• When M = o(n−1/2), then computing Laplacian eigenmaps with K = 1 achieves the parametric rate

‖f̂ − f0‖2n . n−1, and the zero-estimator f̂ = 0 achieves the better rate ‖f̂ − f0‖2n .M2. However, we
do not know what the minimax rate is in this regime. On the other hand, when M = ω(n1/d), then

computing Laplacian eigenmaps with K = n achieves the rate ‖f̂ − f0‖2n . 1, which is better than the
rate in (4.10). This is because we are evaluating error in L2(Pn) rather than L2(P). However, in truth
these are edge cases, which do not fall neatly into the framework of nonparametric regression.

52

• The assumptions placed on the kernel function η are needed for technical reasons. They can likely
be weakened, although we note that they are already fairly general. The lower bound on ε imposed
by (4.14) is on the order of the connectivity threshold, the smallest length scale at which the resulting
graph will still be connected with high probability. On the other hand, as we will see in Section 4.3.3,
the upper bound on ε is needed to ensure that the graph eigenvalue λK is of at least the same order as
the continuum eigenvalue λK(∆P). Finally, we choose K = (M2n)2d/(2+d) (when possible) to optimally
trade-off bias and variance.

• We note that the ranges (4.14) and (4.15) depend on quantities, such as the dimension d and radius of
the Sobolev ball M , which are usually unknown. In practice, one typically tunes hyper-parameters by
sample-splitting or cross-validation. However, because the estimator f̂ is defined only in-sample, we
cannot use such methods to select the graph radius ε, or number of eigenvectors K. We return to this
issue in Section 4.5, when we propose an out-of-sample extension of f̂ .

• The upper bound given in equation (4.16) holds with probability 1 − δ − Cn exp(−cnεd). Under the
stronger assumption that f0 ∈ C1(X ;M) we can replace the factor of δ by the sharper δ2/n, which is
less than δ because δ ∈ (0, 1). Then a routine calculation shows that the expected L2(Pn) loss is on
the same order as (4.16), matching the minimax rate.

Testing. Consider the test ϕ = 1{T̂ ≥ ta}, where ta is the threshold

ta :=
K

n
+

1

n

√
2K

a
.

This choice of threshold ta guarantees that ϕ is a level-a test. Moreover, when ε and K are chosen ap-
propriately, the test ϕ has negligible Type II error against alternatives separated from the null by at least
‖f0‖2P &M2(M2n)−4/(4+d), whenever d < 4.

(P2) The graph radius ε and the number of eigenvectors K satisfy (4.14). Additionally,

K = min
{⌊

(M2n)2d/(4+d)
⌋
∨ 1, n

}
. (4.17)

Theorem 13. Fix a, b ∈ (0, 1). Suppose Model 4.2.1. Then E0[ϕ] ≤ a, i.e ϕ is a level-a test. Suppose
additionally f0 ∈ H1(X ,M), and that d < 4. Then there exist constants C and N that do not depend on
f0, such that the following statement holds for all n larger than N : if the Laplacian eigenmaps test ϕ is
computed with kernel η satisfying (K1), and parameters ε and K satisfying (P2), and if f0 satisfies

‖f0‖2P ≥ C
((

M2(M2n)−4/(4+d) ∧ n−1/2
)[√1

a
+

1

b

]
∨ M2

bn2/d

)
∨ 1

n
, (4.18)

then Ef0 [1− φ] ≤ b.

Although (4.18) involves taking the maximum of several different terms, the important takeaway of The-
orem 13 is that if n−1/2 . M . n1/d, then ϕ has small worst-case risk as long as f0 is separated from
0 by at least M2(M2n)−4/(4+d). Note that unlike in the estimation setting—where we measured loss in
L2(Pn) error—the separation in (4.18) is measured in L2(P) norm. Thus (4.18) implies that ϕ is a minimax
rate-optimal test over H1(X ;M), in the usual sense.

Some other remarks:

• As mentioned previously, when d ≥ 4 the first order Sobolev space H1(X) does not continuously embed
into L4(X), and we do not know the optimal rates for regression testing over H1(X ,M). On the other
hand, if we explicitly assume f0 ∈ L4(X), then the Laplacian eigenmaps test with K = n, has small
type II error whenever ‖f0‖2P &Mn−1/2. Note that when K = n the Laplacian eigenmaps test statistic

is nothing but the squared L2(Pn) norm of Y, T̂ = ‖Y‖2n. See Green et al. [2021] for details.

53

• As in the estimation setting, the range of Sobolev ball radii n−1/2 .M . n1/d for which Theorem 13
implies that ϕ is a rate-optimal test covers all those cases for which the critical radius ε(H1(X ;M)) is
both Ω(1/n) and O(1).

4.3.2 Higher-order Sobolev classes

We now consider the situation where the regression function displays some higher-order regularity. For
reasons already discussed, we also assume the zero-trace boundary condition, i.e. f0 ∈ Hs

0(X). We show
that Laplacian eigenmaps methods continue to be optimal for all orders of s, as long as the design density
is itself also sufficiently regular, p ∈ Cs−1(X). In estimation, this is the case for any dimension d, whereas
in testing it is the case only when d ≤ 4.

Estimation. In order to show that f̂ is an optimal estimator over Hs
0(X ;M), we will require that ε be

meaningfully larger than the lower bound in (P1).

(P3) For constants c0 and C0, the graph radius ε and number of eigenvectors K satisfy

C0 max

{(
log

n

)1/d

, (M2n)−1/(2(s−1)+d)

}
≤ ε ≤ c0 min{1,K−1/d} (4.19)

and
K = min

{⌊
(M2n)d/(2s+d)

⌋
∨ 1, n

}
Crucially, when n is sufficiently large the two conditions in (P3) are guaranteed to not be mutually exclusive.
This is because so long as M2 = ω(n−1) then (M2n)−2/(2(s−1)+d) = o((M2n)−2/(2s+d)), regardless of s and
d.

Theorem 14. Suppose Model 4.2.1, and additionally f0 ∈ Hs
0(X ,M) and p ∈ Cs−1(X). There exist

constants c, C and N that do not depend on f0, such that the following statement holds all for all n larger than
N and for any δ ∈ (0, 1): if the Laplacian eigenmaps estimator f̂ is computed with kernel η satisfying (K1),
and parameters ε and K satisfying (P3), then

‖f̂ − f0‖2n ≤ C
(1

δ
M2(M2n)−2s/(2s+d) ∧ 1

)
∨ 1

n
, (4.20)

with probability at least 1− δ − Cn exp(−cnεd)− exp(−K).

Theorem 14, in combination with Theorem 12, implies that in the flat Euclidean setting Laplacian eigenmaps
is an in-sample minimax rate-optimal estimator over Sobolev classes, for all values of s and d. Some other
remarks:

• We do not require that the regularity of the Sobolev space satisfy s > d/2, a condition often seen in
the literature. In the sub-critical regime s ≤ d/2, the Sobolev space Hs(X) is quite irregular. It is
not a Reproducing Kernel Hilbert Space (RKHS), nor does it continuously embed into C0(X), much
less into any Hölder space. As a result, for certain versions of the nonparametric regression problem—
e.g. when loss is measured in L∞ norm, or when the design points {X1, . . . , Xn} are assumed to
be fixed—in a minimax sense even consistent estimation is not possible. Likewise, certain estimators
are “off the table”, most notably RKHS-based methods such as thin-plate splines of degree k ≤ d/2.
Nevertheless, for random design regression with error measured in L2(P)-norm, the spectral projection

estimator f̃ defined in (4.11) obtains the “usual” minimax rates n−2s/(2s+d) for all values of s and
d. Theorems 12 and 14 show that the same is true with respect to Laplacian eigenmaps, with error
measured in L2(Pn)-norm.

• The requirement p ∈ Cs−1(X) is a strong condition, but is essential to showing that f̂ enjoys faster
rates of convergence when s > 1. We explain why in Section 4.3.3, where we discuss our analysis.

54

Testing. The test ϕ can adapt to the higher-order smoothness of f0, when ε and K are chosen cor-
rectly.

(P4) The graph radius ε and the number of eigenvectors K satisfy (4.19). Additionally,

K = min
{⌊

(M2n)2d/(4+d)
⌋
∨ 1, n

}
. (4.21)

When d ≤ 4, for any value of s ∈ N when n is sufficiently large it is possible to choose ε and K such that
both (4.19) and (4.21) are satisfied, and our next theorem establishes that in this situation ϕ is an optimal
test.

Theorem 15. Fix a, b ∈ (0, 1). Suppose Model 4.2.1. Then E0[ϕ] ≤ a, i.e ϕ is a level-a test. Suppose
additionally f0 ∈ Hs

0(X ,M), that p ∈ Cs−1(X), and that d ≤ 4. Then there exist constants c, C and N that
do not depend on f0, such that the following statement holds for all n ≥ N : if the Laplacian eigenmaps test
ϕ is computed with kernel η satisfying (K1), and parameters ε and K satisfying (P4), and if f0 satisfies

‖f0‖2P ≥
C

b

((
M2(M2n)−4s/(4s+d) ∧ n−1/2

)[√1

a
+

1

b

]
∨ M2

bn2s/d

)
∨ 1

n
, (4.22)

then Ef0 [1− φ] ≤ b.

Similarly to the first-order case, the main takeaway from Theorem 15 is that ϕ is a minimax optimal test
over Hs

0(X) when n−1/2 . M2 . n1/d. However, unlike the first-order case, when 4 < d < 4s the minimax
testing rate over Hs

0(X) is still on the order of M2(M2n)−4s/(4s+d). Unfortunately, we can no longer claim
that ϕ is an optimal test in this regime.

Theorem 16. Under the same setup as Theorem 14, but with 4 < d < 4s. If the Laplacian eigenmaps
test ϕ is computed with kernel η satisfying (K1), number of eigenvectors K satisfying (4.21), and ε =
(M2n)−1/(2(s−1)+d), and if

‖f0‖2P ≥
C

b

((
M2(M2n)−2s/(2(s−1)+d) ∧ n−1/2

)[√1

a
+

1

b

]
∨ M2

bn2s/d

)
∨ 1

n
, (4.23)

then Ef0 [1− φ] ≤ b.

Note that as a consequence of Theorem 14, if we choose K = n−2s/(2s+d) then ϕ must have small Type II
error whenever ‖f0‖2P & n−2s/(2s+d). Theorem 16 shows that ϕ can achieve better, but still not optimal,
rates. As a technical matter, the problem is that when d > 4 there do not exist any choices of ε and K which
satisfy both (4.19) and (4.21), and as a result we cannot optimally balance (our upper bound on) testing
bias and variance (defined momentarily in (4.25)). Although we suspect ϕ is truly suboptimal when d > 4,
technically speaking (4.25) gives only an upper bound on testing bias, and thus we cannot rule out that the
test ϕ is optimal for all 4 < d < 4s. We leave the matter to future work.

That being said, it is somewhat remarkable that Laplacian eigenmaps can take advantage of higher-order
smoothness, and especially surprising that it can do so in an optimal manner. The sharpest known results
Cheng and Wu [2021] show that the graph Laplacian eigenvectors vk converge to eigenfunctions ψk at a

rate of n−1/(4+d) . Naively applying these results, one can show that f̂ to f̃ , but only at a rate far slower
than the optimal rates for regression. Of course when the index K increases with n, as is necessary to
optimally balance bias and variance, the issue only gets worse. Clearly, as a method for regression, the rate
of convergence of Laplacian eigenmaps is much better than the rate implied by (what is currently known
about) the concentration of individual eigenvectors around their continuum limits.

55

4.3.3 Analysis

We now outline the high-level strategy we follow when proving each of Theorems 12-16. We analyze the
estimation error of f̂ , and the testing error of ϕ̂, by first conditioning on the design points X1, . . . , Xn and
deriving design-dependent bias and variance terms. For estimation, we have that with probability at least
1− exp(−K),

‖f̂ − f0‖2n ≤
〈Lsf0, f0〉n

λsK︸ ︷︷ ︸
bias

+
5K

n︸︷︷︸
variance

. (4.24)

For testing, we have that ϕ (which is a level-a test by construction) also has small Type II Error, Ef0 [1−φ] ≤
b/2, if

‖f0‖2n ≥
〈Lsf0, f0〉n

λsK︸ ︷︷ ︸
bias

+ 32

√
2K

n

[√
1

a
+

1

b

]
︸ ︷︷ ︸

variance

. (4.25)

The quadratic form 〈Lsn,εf0, f0〉n, eigenvalue λK , and empirical squared norm ‖f0‖2n are each random vari-
ables that depend the random design points X1, . . . , Xn. We proceed to establish suitable upper and lower
bounds on these quantities.

Estimates on graph quadratic forms. In Proposition 7 we restate an upper bound on the Dirichlet
energy 〈Ln,εf, f〉n from Green et al. [2021].

Proposition 7 (Lemma 1 of Green et al. [2021]). Suppose Model 4.2.1, and additionally f ∈ H1(X). There
exist constants c, C that do not depend on f or n such that the following statement holds for any δ ∈ (0, 1):
if η satisfies (K3) and ε < c, then

〈Ln,εf, f〉n ≤
C

δ
‖f‖2H1(X), (4.26)

with probability at least 1− δ.

Proposition 7 follows by upper bounding the expectation of 〈Ln,εf, f〉n, which is the Dirichlet energy
EP,ε(f) := 〈LP,εf, f〉P , by (a constant times) the squared Sobolev norm ‖f‖2H1(X).

In this work, we establish that an analogous bound holds for 〈Lsn,εf0, f0〉n when s > 1. We call this quantity
the order-s graph Sobolev semi-norm.

Proposition 8. Suppose Model 4.2.1, and additionally that f ∈ Hs
0(X) and p ∈ Cs−1(X). Then there exist

constants c and C that do not depend on f0 or n such that the following statement holds for any δ ∈ (0, 1):
if η satisfies (K1) and Cn−1/(2(s−1)+d) < ε < c, then

〈Lsn,εf, f〉n ≤
C

δ
‖f‖2Hs(X), (4.27)

with probability at least 1− δ.

We now summarize the techniques used to prove Proposition 8, which will help explain what role the
conditions on f0,p and ε play. To upper bound 〈Lsn,εf, f〉n in terms of ‖f‖2Hs(X), we introduce an intermediate

quantity: the order-s non-local Sobolev seminorm 〈LsP,εf, f〉P . This seminorm is defined with respect to LP,ε,
which is a non-local approximation to ∆P ,

LP,εf(x) :=
1

εd+2

∫
X

(
f(z)− f(x)

)
η

(
‖z − x‖

ε

)
dP (x). (4.28)

Then the proof of Proposition 8 proceeds according to the following steps.

56

• First we note that 〈Lsn,εf, f〉n is itself a biased estimate of the non-local seminorm 〈LsP,εf, f〉P . Specif-
ically, 〈Lsn,εf, f〉n is a V -statistic, meaning it is the sum of an unbiased estimator of 〈LsP,εf, f〉P (in
other words, a U -statistic) plus some higher-order, pure bias terms. We show that these pure bias
terms are negligible when ε = ω(n−1/(2(s−1)+d)).

• For x sufficiently in the interior of X , we show that LjP,εf(x)→ σjη∆j
P f(x) as ε→ 0. Here j = (s−1)/2

when s is odd and j = (s− 2)/2 when s is even. This step bears some resemblance to the analysis of
the bias term in kernel smoothing, and requires that p ∈ Cs−1(X).

• On the other hand for x sufficiently near the exterior of X , LjP,εf(x) does not converge to ∆j
P f(x).

Instead, we use the zero-trace property of f to show that LjP,εf(x) is small.

• Finally, we combine the results of previous two steps to deduce an upper bound on 〈LsP,εf, f〉P in terms

of the squared Sobolev norm ‖f‖2Hs(X). Roughly speaking, when s is odd, 〈LsP,εf, f〉P = EP,ε(L
j
P,εf) ≈

σ2j
η EP,ε(∆

j
P f), whereas when s is even 〈LsP,εf, f〉P = ‖LP,εLjP,εf‖2P ≈ σ2j

η ‖LP,ε∆P f‖2P . Reasoning in

this way, we can translate estimates of LjP,εf into an upper bound on the order-s non-local Sobolev
seminorm, even though s > j.

Together, these steps establish Proposition 8. It is worth pointing out that we do not try to show LsP,εf(x)→
∆s
P f(x). This may seem like a natural first step towards a simple proof that 〈LsP,εf, f〉P → 〈∆s

P f, f〉P . The
problem is that ∆s

P is an order-2s differential operator, whereas we assume that f has only s bounded
derivatives. Instead we go for the slightly more complicated approach outlined above.

Neighborhood graph eigenvalue. On the other hand, several recent works [Burago et al., 2014, Garćıa Tril-
los and Slepčev, 2018a, Calder and Garćıa Trillos, 2019] have analyzed the convergence of λk towards λk(∆P).
They provide explicit bounds on the relative error |λk − λk(∆P)|/λk(∆P), which show that the relative
error is small for sufficiently large n and small ε. Crucially, the guarantees hold simultaneously for all
1 ≤ k ≤ K as long as λK(∆P) = O(ε−2). These results are actually stronger than are necessary to estab-
lish Theorems 12-15—in order to get rate-optimality, we need only show that for the relevant values of K,
λK/λK(P) = ΩP (1)—but unfortunately they all assume P is supported on a manifold without boundary
(i.e. they assume Model 4.2.2 rather than Model 4.2.1).

In the case where X is assumed to have a boundary, the graph Laplacian Ln,ε is a reasonable approximation
of the operator ∆P at points x ∈ X for which B(x, ε) ⊆ X . In contrast, at points x near the boundary of
X , the graph Laplacian is known to approximate a different operator altogether [Belkin et al., 2012]. This is
reminiscent of the boundary effects present in the analysis of kernel smoothing. Thus proving convergence
of λk to a continuum limit becomes a substantially more challenging problem when X has a boundary.
Rather than establishing such a result, we will instead directly use Lemma 2 of Green et al. [2021], whose
assumptions match our own, and who give a weaker bound on λk/λk(∆P) that will nevertheless suffice for
our purposes.

Proposition 9 (Lemma 2 of Green et al. [2021]). Suppose Model 4.2.1. Then there exist constants c and C
such that the following statement holds: if η satisfies (K1) and C(log n/n)1/d < ε < c, then

λk ≥ c ·min
{
λk(∆P),

1

ε2

}
for all 1 ≤ k ≤ n, (4.29)

with probability at least 1− Cn exp{−cnεd}.

Note immediately that λ0(∆P) = λ0 = 0. Furthermore, Weyl’s Law (Lemma 44) tells us that under
Model 4.2.1, k2/d . λk(∆P) . k2/d for all k ∈ N, k > 1. Combining these statements with (4.29), we
conclude that λK = ΩP (K2/d) so long as K . ε−d.

57

Empirical norm. Finally, in order to show that ϕ has small Type II error whenever ‖f0‖P is greater than
the critical radius given by (4.13), we require a lower bound on ‖f0‖2n in terms of ‖f0‖2P . In Proposition 10
we establish that such a one-sided bound holds, whenever ‖f0‖P is sufficiently large.

Proposition 10. Suppose Model 4.2.1, and additionally that f ∈ Hs(X ,M) for some s > d/4. There exist
constants c and C that do not depend on f0 or n such that the following statement holds for any δ > 0: if

‖f‖P ≥ CM
(

1

δn

)s/d
(4.30)

then with probability at least 1− exp{−(cn ∧ 1/δ)}.

‖f‖2n ≥
1

2
‖f0‖2P . (4.31)

To prove Proposition 10, we use the Gagliardo-Nirenberg interpolation inequality to control the 4th moment
of f in terms of ‖f‖P and |f |Hs(X), then invoke a one-sided Bernstein’s inequality as in [Wainwright, 2019,
Section 14.2]. Note carefully that the statement (4.31) is not a uniform guarantee over all f ∈ Hs(X ;M), as
such a statement cannot hold in the sub-critical regime (2s ≤ d). Fortunately, a pointwise bound—meaning
a bound that holds with high probability for a single f ∈ Hs(X)—is sufficient for our purposes.

Finally, invoking the bounds of Propositions 7-10 inside the bias-variance tradeoffs (4.24) and (4.25) and then
choosing K to balance bias and variance (when possible), leads to the conclusions of Theorems 12-16.

4.3.4 Computational considerations

Recall that when s = 1, we have shown that Laplacian eigenmaps is optimal when ε � (log n/n)1/d is (up
to a constant) as small as possible while still ensuring the graph G is connected. On the other hand, when
s > 1, we can show Laplacian eigenmaps is optimal only when ε = ω(n−c) for some c < 1/d. For such a
choice of ε, the average degree in G will grow polynomially in n as n → ∞, and computing eigenvectors
of the Laplacian of a graph will be more computationally intensive than if the graph were sparse. Thus
Theorems 12 and 14 can be seen as revealing a tradeoff between statistical and computational efficiency;
although to be clear, we have no theoretical evidence that Laplacian eigenmaps fails to adapt to higher-order
smoothness when ε � (log n/n)1/d—we simply cannot prove that it succeeds.

Suppose one does choose ε meaningfully larger than the connectivity threshold, as our theory requires when
s > 1. We now discuss a procedure to efficiently compute an approximation to the Laplacian eigenmaps
estimate, without changing the rate of convergence of the resulting estimator: edge sparsification. By now
there exist various methods see (e.g., the seminal papers of Spielman and Teng [2011, 2013, 2014], or the
overview by Vishnoi [2012] and references therein) to efficiently remove many edges from the graph G while
only slightly perturbing the spectrum of the Laplacian. Specifically such algorithms take as input a parameter
σ ≥ 1, and return a sparser graph G̃, E(G̃) ⊆ E(G), with a Laplacian L̃n,ε satisfying

1

σ
· u>L̃n,εu ≤ u>Ln,εu ≤ σ · u>L̃n,εu for all u ∈ Rn.

Let f̃ be the Laplacian eigenmaps estimator computed using the eigenvectors of the sparsified graph Laplacian
qLn,ε . Because G̃ is sparser than G, it can be (much) faster to compute the eigenvectors of L̃n,ε than the

eigenvectors of Ln,ε, and consequently much faster to compute f̃ than f̂ . Statistically speaking, letting λ̃k
be the kth eigenvalue of qLn,ε, we have that conditional on X1, . . . , Xn,

‖f̃ − f0‖2n ≤
〈L̃sn,εf0, f0〉n

λ̃sK+1

+
5K

n
≤ σ2s

〈L̃sn,εf0, f0〉n
λ̃sK+1

+
5K

n
,

58

with probability at least 1−exp(−K). Consequently f̃ has L2(Pn)-error of at most σ2s times our upper bound

on the error of f̂ , and for any choice of σ that is constant in n the estimator f̃ will also be rate-optimal.

In fact the aforementioned edge sparsification algorithms are overkill for our needs. For one thing, they are
designed to work when σ is much larger than 1, whereas in order for qf to be rate-optimal setting σ to be any
constant greater than 1, say σ = 2, is sufficient. Additionally, edge sparsification algorithms are traditionally
designed to work in the worst-case, where no assumptions are made on the structure of the graph G. But
the geometric graphs we consider in this paper exhibit a special structure, in which very roughly speaking
no single edge is a bottleneck. As pointed out by Sadhanala et al. [2016b], in this special case there exist far
simpler and faster methods for sparsification, which at least empirically seem to do the job.

4.4 Manifold Adaptivity

In this section we consider the manifold setting, where (X1, Y1), . . . , (Xn, Yn) are observed according to
Model 4.2.2. A theory has been developed [Niyogi et al., 2008, Belkin, 2003, Belkin and Niyogi, 2008,
Niyogi, 2013, Balakrishnan et al., 2012, 2013b] establishing that the neighborhood graph G can “learn” the
manifold X in various senses, so long as X is locally linear. We build on this work by showing that when
f0 ∈ Hs(X) and P is supported on a manifold, Laplacian eigenmaps achieve the sharper minimax estimation
and testing rates reviewed in Section 4.2.4.

4.4.1 Laplacian eigenmaps error rates under the manifold hypothesis

Unlike in the flat-Euclidean case, since Model 4.2.2 assumes that X is boundaryless it is easy to deal with
the first-order (s = 1) and higher-order (s > 1) cases all at once. A more important distinction between
the results of this section and those of Section 4.3 is that we will establish Laplacian eigenmaps is optimal
only when the regression function f0 ∈ Hs(X ;M) for s ≤ 3. Otherwise, this section will proceed in a similar
fashion to Section 4.3.2.

Estimation. To ensure that f̂ is an in-sample minimax rate-optimal estimator, we choose the kernel
function η, graph radius ε and number of eigenvectors K as in (P3), except with ambient dimension d
replaced by the intrinsic dimension m.

(P5) The kernel function η is a nonincreasing function supported on a subset of [0, 1]. Its restriction to [0, 1]
is Lipschitz, and η(1/2) > 0. Additionally, it is normalized so that∫

Rm
η(‖z‖) dz = 1,

and we assume
∫
Rm ‖x‖

2η(‖x‖) dx <∞.

(P6) For a constant C0, the graph radius ε and number of eigenvectors K satisfy

C0 max

{(
log

n

)1/m

, n−1/(2(s−1)+m)

}
≤ ε ≤ min{i0,K−1/m} (4.32)

and
K = min

{⌊
(M2n)m/(2s+m)

⌋
∧ 1, n

}
.

Theorem 17. Suppose Model 4.2.2, and additionally f0 ∈ Hs(X ,M) and p ∈ Cs−1(X) for s ≤ 3. There
exist constants c, C and N that do not depend on f0, such that the following statement holds all for all n
larger than N and for any δ ∈ (0, 1): if the Laplacian eigenmaps estimator f̂ is computed with kernel η
satisfying (P5), and parameters ε and K satisfying (P6), then

‖f̂ − f0‖2n ≤ C
(1

δ
M2(M2n)−2s/(2s+m) ∧ 1

)
∨ 1

n
, (4.33)

59

with probability at least 1− δ − Cn exp(−cnεm)− exp(−K).

Testing. Likewise, to construct a minimax optimal test using T̂ , we choose ε and K as in (P2), except
with the ambient dimension d replaced by the intrinsic dimension m.

(P6) The graph radius ε and number of eigenvectors K satisfy (4.32). Additionally, the

K = min
{⌊

(M2n)2m/(4s+m)
⌋
∧ 1, n

}
.

Theorem 18. Fix a, b ∈ (0, 1). Suppose Model 4.2.2. Then E0[ϕ] ≤ a, i.e ϕ is a level-a test. Suppose
additionally f0 ∈ Hs(X ,M), that p ∈ Cs−1(X), and that s ≤ 3 and m ≤ 4. Then there exist constants c,
C and N that do not depend on f0, such that the following statement holds for all n larger than N : if the
Laplacian eigenmaps test ϕ is computed kernel η satisfying (P5), and parameters ε and K satisfying (P6),
and if f0 satisfies

‖f0‖2P ≥
C

b

((
M2(M2n)−4s/(4s+m) ∧ n−1/2

)[√1

a
+

1

b

]
∨ M2

bn2s/d

)
∨ 1

n
, (4.34)

then Ef0 [1− φ] ≤ b.

• The proofs of Theorems 17 and 18 follow very similarly to the full-dimensional setting. The difference is
that when X is a manifold with intrinsic dimension m, we can prove analogous results to Propositions 7-
9, but with the ambient dimension d replaced by the intrinsic dimension m.

• Unlike in the full-dimensional case, our upper bounds on the estimation and testing error of Laplacian
eigenmaps match the minimax rate only when s ≤ 3. Our upper bounds when s ≥ 4 follow from the
embedding Hs(X ;M) ⊂ H3(X ;M), i.e they match the rates we get just by assuming that the 3rd
order derivative is bounded, and are clearly suboptimal.

We now explain this discrepancy. At a high level, thinking of the graph G as an estimate of the
manifold X , we incur some error by using Euclidean distance rather than geodesic distance to form the
edges of G. This is in contrast with the full-dimensional setting, where the Euclidean metric exactly
coincides with the geodesic distance for all points x, z ∈ X that are sufficiently close to each other and
far from the boundary of X . This extra error incurred in the manifold setting by using the “wrong
distance” dominates when s ≥ 4.

As this explanation suggests, by building G using the geodesic distance one could avoid this error, and
might obtain superior rates of convergence. However this is not an option for us, as we assume X—and
in particular its geodesics—are unknown. Likewise, a classical spectral projection estimator, using
eigenfunctions of the manifold Laplace-Beltrami operator, will achieve the minimax rate for all values
of s and m; but this is undesirable for the same reason—we do not want to assume that X is known.
It is not clear whether this gap between spectral projection and Laplacian eigenmaps estimators—or
more generally, between estimators which assume the manifold is known, and those which do not—is
real, or a product of loose upper bounds.

• Finally, when m > 4, we get an upper bound on testing error equivalent to that of Theorem 16, except
with the ambient dimension d replaced by intrinsic dimension m.

Analysis. The high-level strategy used to prove Theorems 17 and 18 is the same as in the flat-Euclidean
setting. More specifically, we will use precisely the same bias-variance decompositions (4.24) (for estimation)
and (4.25) (for testing). The difference will be that our bounds on the graph Sobolev seminorm 〈Lsn,εf0, f0〉n,
graph eigenvalue λK , and empirical norm ‖f0‖2n will now always depend on the intrinsic dimension m, rather
than the ambient dimension d. The precise results we use are contained in Propositions 11-13.

60

Proposition 11. Suppose Model 4.2.2, and additionally that f0 ∈ Hs(X ;M) and p ∈ Cs−1(X) for s = 1, 2
or 3. Then there exist constants c0, C0 and C that do not depend on f0, n or M such that the following
statement holds for any δ ∈ (0, 1): if η satisfies (P5) and C0n

−1/(2(s−1)+m) < ε < c0, then

〈Lsn,εf, f〉n ≤
C

δ
‖f‖2Hs(X), (4.35)

with probability at least 1− 2δ.

As discussed previously, when X is a domain without boundary and ∆P is the manifold weighted Laplace-
Beltrami operator, appropriate bounds on the graph eigenvalues λk have already been derived in [Burago
et al., 2014, Garćıa Trillos et al., 2019a,b]. The precise result we need is a simple consequence of Theorem
2.4 of [Calder and Garćıa Trillos, 2019].

Proposition 12 (c.f Theorem 2.4 of [Calder and Garćıa Trillos, 2019]). Suppose Model 4.2.2. Then
there exist constants c and C such that the following statement holds: if η satisfies (P5) and C(log n/n)1/m <
ε < c, then

λk ≥ c ·min
{
λk(∆P),

1

ε2

}
for all 1 ≤ k ≤ n, (4.36)

with probability at least 1− Cn exp{−cnεd}.

(For the specific computation used to deduce Proposition 12 from Theorem 2.4 of [Calder and Garćıa Trillos,
2019], see Green et al. [2021].)

Finally, using a Gagliardo-Nirenberg inequality for functions on compact Riemmanian manifolds, we obtain
a lower bound on empirical norm ‖f‖n under the hypotheses of Model 4.2.2.

Proposition 13. Suppose Model 4.2.2, and additionally that f0 ∈ Hs(X ,M) for some s > m/4. There
exists a constant C that does not depend on f0 such that the following statement holds for all δ > 0: if

‖f0‖P ≥
CM

δs/m
n−s/m, (4.37)

then with probability at least 1− exp{−(cn ∧ 1/δ)},

‖f0‖2n ≥
1

2
‖f0‖2P . (4.38)

4.5 Out-of-sample error

Sections 4.3 and 4.4 show that f̂ is a minimax optimal estimator over Sobolev spaces. However, as mentioned
previously we have measured loss in-sample—that is, measured in L2(Pn) norm—whereas out-of-sample
error—error measured in L2(P) norm—is the more typical metric in the random design setup.

Of course, the Laplacian eigenmaps estimator is only defined at the observed design points X1, . . . , Xn, and
to measure its error in L2(P) norm we must first extend it to be defined over all of X . We propose a simple
method, kernel smoothing, to do the job. The method can applied to any estimator defined at the design
points, including Laplacian eigenmaps, and we show that a smoothed version of our original estimator f̂
has optimal L2(P) error. For simplicity, in this section we will stick to the flat Euclidean setting, where
(X1, Y1), . . . , (Xn, Yn) are observed according to Model 4.2.1.

61

Extension by kernel smoothing. We now formally define our approach to extension by kernel smoothing.
For a kernel function ψ(·) : [0,∞) → (−∞,+∞), bandwidth h > 0, and a distribution Q, the Nadaraya-
Watson kernel smoother Th,Q is given by

(
TQ,hf)(x) :=

1

dQ,h(x)

∫
Ω

f(z)ψ

(
‖z − x‖

h

)
dQ(z), if dQ,h(x) > 0,

0, otherwise,

where dQ,h(x) :=
∫

Ω
ψ
(
‖z − x‖/ε

)
dQ(z). For convenience, we will write Tε,nf(x) := Tε,Pnf(x), and

dn,h(x) := n · dPn,h(x). We extend the Laplacian eigenmaps estimator by passing the kernel smoother

Th,n over it, that is we consider the estimator Th,nf̂ , which is defined at every x ∈ X (indeed, at every

x ∈ Rd). Note that “extension” here is a slight abuse of nomenclature, since Th,nf̂(Xi) and f̂i may not agree
in-sample.

Out-of-sample error of kernel smoothed Laplacian eigenmaps. In Lemma 5, we consider an arbi-
trary estimator qf ∈ L2(Pn). We show that the out-of-sample error ‖Tn,h qf − f0‖2P can be upper bounded

by three terms— (a constant times) the in-sample error ‖ qf − f0‖2n, and variance and bias terms that arise
naturally in the analysis of kernel smoothing over noiseless data.. We shall assume the following conditions
on ψ and h.

(K3) The kernel function ψ is supported on a subset of [0, 1]. Additionally, ψ is Lipschitz continuous on
[0, 1], and is normalized so that ∫ ∞

−∞
ψ(|z|) dz = 1.

(P7) For constants c0 and C0, the bandwidth parameter h satisfies

C0

(
log(1/h)

n

)1/d

≤ h ≤ c0.

Lemma 5. Suppose Model 4.2.1, and additionally that qf ∈ L2(Pn), f0 ∈ H1(X) and p ∈ C1(X). If the

kernel smoothing estimator Th,n qf is computed with kernel ψ satisfying (K3) and bandwidth h satisfying (P7),
it holds that

‖Tn,h qf − f0‖2P ≤ C
(
‖ qf − f0‖2n +

1

δ
· h

2

nhd
|f |2H1(X) +

1

δ
‖Th,P f0 − f0‖2P

)
, (4.39)

with probability at least 1− δ − Chd exp{−Cnhd}.

Notice that the variance term in the above is smaller than the typical variance term for kernel smoothing of
noisy data, by a factor of h2. On the other hand the bias term is typical. When ψ is an order-s kernel, a
standard analysis shows that the ‖Th,P f0 − f0‖2P . ε2s.

(K4) The kernel function ψ is an order-s kernel, meaning that it satisfies∫ ∞
−∞

ψ(|z|) dz = 1,

∫ ∞
−∞

zjψ(|z|) dz = 0 for j = 1, . . . , s+ d− 2, and

∫ ∞
−∞

zs+d−1ψ(|z|) dz <∞.

Choosing h � n−1/(2(s−1)+d) balances the kernel smoothing bias and variance terms in (4.39), and implies
that

‖Tn,h qf − f0‖2P ≤ C
(
‖ qf − f0‖2n +

1

δ
n−2s/(2(s−1)+d)

)
. (4.40)

(4.40) tells us that the additional error incurred by passing a kernel smoother over an in-sample estimator
qf is negligible compared to the minimax rate of estimation. Consequently, if qf converges at the minimax

62

rate in L2(Pn), then Tn,h qf will converge at the minimax rate in L2(P). It follows immediately from Theo-

rem 12 (when s = 1) or Theorem 14 (when s > 1), that Th,nf̂ achieves the optimal rate of convergence in
L2(P).

Theorem 19. Suppose Model 4.2.1. There exist constants c, C, and N that do not depend on f0 or n such
that each the following statements hold with probability at least 1− δ − Cn exp{−cnεd} − Chd exp{−cnhd},
for all n ≥ N and for any δ ∈ (0, 1).

• If f0 ∈ H1(X ;M), the Laplacian eigenmaps estimator f̂ is computed with parameters ε and K that

satisfy (P1), and the out-of-sample extension Th,nf̂ is computed with bandwidth h = n−1/d and kernel
ψ that satisfies (K3), then

‖Th,nf̂ − f0‖2P ≤
C

δ
M2(M2n)−2s/(2s+d).

• If f0 ∈ Hs
0(X ;M) and p ∈ Cs−1(X) for some s ∈ N, s > 1, and the Laplacian eigenmaps estimator

f̂ is computed with parameters ε and K that satisfy (P3), and the out-of-sample extension Th,nf̂ is
computed with bandwidth h = n−1/(2(s−1)+d) and kernel ψ that satisfies (K3) and (K4), then

‖Th,nf̂ − f0‖2P ≤
C

δ
M2(M2n)−2s/(2s+d).

Some remarks:

• Since Tn,hf̂ is defined out-of-sample, we can use sample splitting or cross validation methods to tune

hyperparameters, which we could not do for the original estimator f̂ . For instance, we can (i) split

the sample into two halves, (ii) use the first half to compute Th,nf̂ for various values of ε, h, and
K, (iii) choose the optimal values of these three hyperparameters by minimizing error on the held
out set. Practically speaking, cross-validation is one of the most common approaches to choosing
hyperparameters. Theoretically, it is known that choosing hyper-parameters through sample splitting
can result in estimators that optimally adapt to the order of regularity s. In other words, it leads to
estimators that are rate-optimal (up to log n factors), even when s is unknown. Similar arguments

should imply that Th,nf̂ is adaptive in this sense when ε, h and K are chosen by sample splitting.

• There exist many other approaches to extending a function f using only evaluations {f(X1), . . . , f(Xn)}.
We consider extension by kernel smoothing because it is a simple and statistically optimal procedure
that does not require any knowledge of the domain X or distribution P—as we have argued, this
latter property is one of the main selling points of Laplacian eigenmaps as a tool for nonparametric
regression.

We now comment on a few alternative methods. One such approach is minimum norm interpolation.
Here one defines a normed space (F , ‖ · ‖F) and then solves the optimization problem

min
u∈F
‖u‖F , such that u(Xi) = f(Xi) for i = 1, . . . , n.

A particularly popular version of this general approach takes F to be an RKHS Rieger and Zwicknagl
[2010], Belkin [2018], which encompasses thin-plate spline interpolation (where F = Hs(X) for s > d/2)
as a special case. Naturally, this approach works well when f is close to a function u ∈ F with
reasonably small norm. This holds true when f ∈ Hs(X ;M) and s > d/2, but as already discussed
when s ≤ d/2 the Sobolev space Hs(X) is not an RKHS, and in fact when s ≤ d/2 thin-plate spline
interpolation is ill-posed [Green and Silverman, 1993]. Another, arguably simpler approach is to extend
f to be piecewise constant on the Voronoi tessellation induced by X1, . . . , Xn, or equivalently to perform
1-nearest neighbors regression on f . However, this approach is theoretically optimal only when f0 is
Lipschitz, in contrast to the kernel smoothing method we propose and study.

63

1000 1500 2500 35000.
00

4
0.

00
6

0.
01

0
0.

01
4

d = 1, s = 1.Minimax slope = −2/3.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

LE [Slope = −0.74].
SP [Slope = −0.67].

1000 1500 2500 3500

0.
00

2
0.

00
3

0.
00

5

d = 1, s = 2.Minimax slope = −4/5.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

LE [Slope = −0.91].
SP [Slope = −0.78].

1000 1500 2500 35000.
00

4
0.

00
6

0.
00

8
0.

01
2d = 2, s = 1.Minimax slope = −2/4.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

LE [Slope = −0.54].
SP [Slope = −0.5].

1000 1500 2500 3500

0.
00

4
0.

00
6

0.
01

0

d = 2, s = 2.Minimax slope = −4/6.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

LE [Slope = −0.69].
SP [Slope = −0.67].

1000 1500 2500 3500

0.
00

4
0.

00
6

0.
01

0
0.

01
4

d = 1, s = 1.Minimax slope = −2/3.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

LE+KS [Slope = −0.76].
SP [Slope = −0.71].

1000 1500 2500 3500

0.
00

2
0.

00
3

0.
00

5

d = 1, s = 2.Minimax slope = −4/5.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

LE+KS [Slope = −0.89].
SP [Slope = −0.76].

1000 1500 2500 35000.
00

4
0.

00
6

0.
00

8

d = 2, s = 1.Minimax slope = −2/4.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

LE+KS [Slope = −0.57].
SP [Slope = −0.52].

1000 1500 2500 3500

0.
00

4
0.

00
6

0.
01

0

d = 2, s = 2.Minimax slope = −4/6.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

LE+KS [Slope = −0.75].
SP [Slope = −0.67].

Figure 4.1: Mean squared error (mse) of Laplacian eigenmaps and spectral projection estimators. Top row: in-sample
mse of Laplacian eigenmaps (LE) and a spectral projection estimator (SP) as a function of sample size n. Bottom row:
out-of-sample mse of Laplacian eigenmaps plus kernel smoothing (LE+KS) and a spectral projection estimator. Each
plot is on the log-log scale, and the results are averaged over 400 repetitions. All estimators are tuned for optimal
average mse. The black line shows the minimax rate (in slope only; the intercept is chosen to match the observed
error).

None of these three methods are intrinsically linked to Laplacian eigenmaps. This is in one sense a
strength, since they can be used to extrapolate any estimator defined only in-sample. But it is also
potentially a weakness. Each of these methods have their own approximation and estimation errors
(bias and variance) which can be fundamentally different than those of Laplacian eigenmaps, and there
is a danger that in extrapolating the Laplacian eigenmaps estimator in this way we are taking the
“worst of both worlds”. Our theory shows that when the data model is Model 4.2.1 and we perform
extrapolation by kernel smoothing, this is not a problem, at least in a minimax sense.

4.6 Experiments

In this section we empirically demonstrate that Laplacian Eigenmaps is a reasonably good alternative to
spectral projection, even when n is only moderately large. In order to compare the two methods, in our
experiments we stick to simple settings where we can compute eigenfunctions of ∆P , and thus the spectral
projection estimator. Of course in general, it is not easy to compute these eigenfunctions: hence the appeal
of Laplacian Eigenmaps.

In our first experiment, we compare the mean-squared error of Laplacian eigenmaps to that of its classical
spectral projection counterpart. We vary the sample size from n = 1000 to n = 4000; sample n design
points X1, . . . , Xn from the uniform distribution on the cube [−1, 1]d; and sample responses Yi according

to (4.3) with regression function f0 = M/λ
s/2
K · ψK for K � nd/(2s+d); the pre-factor M/λ

s/2
K is chosen so

that |f0|2Hs(X) = M2. In Figure 4.1 we show the in-sample mean-squared error of Laplacian eigenmaps and a
classical spectral projection estimator as a function of n, for different dimensions d and order of smoothness
s. We see that all estimators have mean-squared error converging to zero at roughly the minimax rate. We
also see that the mean-squared error of Laplacian Eigenmaps gets closer to that of spectral projection as n

64

1000 1500 2500 3500

0.
01

0
0.

01
5

d = 1, s = 1.Minimax slope = −4/5.

Sample size

C
rit

ic
al

 r
ad

iu
s

LE [Slope = −0.84].
SP [Slope = −0.81].

1000 1500 2500 3500

0.
00

4
0.

00
6

0.
01

0

d = 1, s = 2.Minimax slope = −8/9.

Sample size

C
rit

ic
al

 r
ad

iu
s

LE [Slope = −0.99].
SP [Slope = −0.98].

1000 1500 2500 3500

0.
01

5
0.

02
0

0.
03

0

d = 2, s = 1.Minimax slope = −4/6.

Sample size

C
rit

ic
al

 r
ad

iu
s

LE [Slope = −0.76].
SP [Slope = −0.72].

1000 1500 2500 3500

0.
00

5
0.

01
0

0.
01

5

d = 2, s = 2.Minimax slope = −8/10.

Sample size

C
rit

ic
al

 r
ad

iu
s

LE [Slope = −0.99].
SP [Slope = −0.96].

Figure 4.2: Worst-case testing risk Laplacian eigenmaps (LE) and spectral projection (SP) tests, as a function of
sample size n. Plots are on the same scale as Figure 4.1, and black line shows the minimax rate. All tests are set to
have .05 Type I error, and are calibrated by simulation under the null.

gets larger. The fact that spectral projection outperform Laplacian Eigenmaps

We also compare the error, over a held-out test set, of Laplacian eigenmaps plus kernel smoothing to the
spectral projection estimator. The out-of-sample mean squared error of the two estimators is very similar
to the in-sample mean-squared error. This supports our theoretical claim that the additional error incurred
by kernel smoothing of Laplacian Eigenmaps is negligible.

In our second experiment, we compare tests using Laplacian eigenmaps and spectral projection test statistics.
The setup, in terms of n and P , is the same as that of our first experiment. To empirically evaluate the
critical radius εn(φ,H1(X ;M)) of a test φ, we compute φ for each f0 ∈ F ⊂ H1(X ;M), where F is a
discrete subset of H1(X ;M). For each of b = 1, 2, . . . , 100, we compute εb, the smallest value of ε such that

Rn(φ,F , εb) ≥ b/100. Then we take ε̄ = 1/100 ·
∑100
b=1 εb to be our empirical measure of worst-case risk. In

Figure 4.2, we see that the critical radii of both Laplacian eigenmaps and spectral projection tests are quite
close to each other, and converge to 0 at roughly the minimax rate.

These experiments demonstrate that in terms of statistical error, Laplacian eigenmaps methods are reason-
able replacements for spectral projection methods. Laplacian eigenmaps depends on two tuning parameters,
and in our final experiment we investigate the importance of both, focusing now on estimation. In Figure 4.3,
we see how the mean-squared error of Laplacian eigenmaps changes as each tuning parameter is varied. As
suggested by our theory, properly choosing the number of eigenvectors K is crucial: the mean-squared error
curves, as a function of K, always have a sharply defined minimum. On the other hand, as a function of the
graph radius parameter ε the mean-squared error curve is much closer to flat. This squares completely with
our theory, which requires that the number of eigenvectors K be much more carefully tuned that the graph
radius ε.

We also plot the out-of-sample mean squared error of Laplacian eigenmaps plus kernel smoothing, as a
function of its various tuning parameters (which include the bandwidth h as well as ε and K.) Here the
relationship between theory and empirics is more nuanced. On the one hand, empirically it seems that the
optimal choice of bandwidth parameter h is usually smaller than ε, as suggested by our theory. On the other
hand, for Laplacian eigenmaps plus kernel smoothing we see that mean-squared error curves as a function
of K are often quite close to their minima even when we choose many more eigenvectors than is optimal
for Laplacian eigenmaps or spectral projection. This is not reflected in our theory, where we require that
K be chosen in the same tight range as was required for Laplacian Eigenmaps to be optimal in-sample.
However, it does make intuitive sense: extension by kernel smoothing further attenuates the noise, making
the algorithm more forgiving to overfitting during the Laplacian Eigenmaps step.

65

5 10 15 200.
01

0.
02

0.
03

0.
04

0.
05

d = 1, s = 1. Eigenfunction.

Number of eigenvectors

M
ea

n
S

qu
ar

ed
 E

rr
or

0.05 0.10 0.15

0.
02

0.
03

0.
04

0.
05

0.
06

d = 1, s = 1. Eigenfunction.

Radius

M
ea

n
S

qu
ar

ed
 E

rr
or

5 10 15

0.
01

0.
02

0.
03

0.
04

0.
05

d = 2, s = 1. Eigenfunction.

Number of eigenvectors

M
ea

n
S

qu
ar

ed
 E

rr
or

0.2 0.3 0.4 0.5 0.60.
01

0.
02

0.
03

0.
04

0.
05

d = 2, s = 1. Eigenfunction.

Radius

M
ea

n
S

qu
ar

ed
 E

rr
or

0 10 20 30 40 50

0.
02

0.
04

0.
06

0.
08

0.
10

d = 1, s = 1. Sobolev.

Number of eigenvectors

M
ea

n
S

qu
ar

ed
 E

rr
or

0.05 0.10 0.15

0.
01

5
0.

02
5

0.
03

5

d = 1, s = 1. Sobolev.

Radius

M
ea

n
S

qu
ar

ed
 E

rr
or

0 50 100 150 200 250

0.
1

0.
3

0.
5

0.
7

d = 2, s = 1. Sobolev.

Number of eigenvectors

M
ea

n
S

qu
ar

ed
 E

rr
or

0.2 0.3 0.4 0.5 0.6

0.
10

0.
20

0.
30

0.
40

d = 2, s = 1. Sobolev.

Radius

M
ea

n
S

qu
ar

ed
 E

rr
or

Figure 4.3: Mean squared error of Laplacian Eigenmaps (red), Laplacian Eigenmaps plus kernel smoothing (blue),
and spectral projection (green) as a function of tuning parameters. Top row: the same regression function f0 as used

in Figure 4.1. Bottom row: the regression function f0 ∝
∑
k 1/λ

1/2
k ψk. For all experiments, the sample size n = 1000,

and the results are averaged over 200 repetitions. In each panel, all tuning parameters except the one being varied
are set to their optimal values. For Laplacian Eigenmaps plus kernel smoothing, circular points and a solid line are
used to denote the error as a function of the graph radius ε, whereas triangular points and a dashed line are used to
denote the error as a function of the bandwidth h.

4.7 Future Work

We view our work can be viewed as a contribution both to the fields of nonparametric regression with series
estimators, and to graph-based learning. We end our discussion by mentioning some open work in each of
these directions.

Much is known about classical spectral projection methods beyond their rate optimality. For instance: such
estimators and tests exhibit sharp optimality, meaning their risk is within a (1 + o(1)) factor of the optimal
risk; they can adapt to unknown smoothness of the regression function; they can be used to estimate smooth
functionals of the regression function; finally, they can be used to form confidence sets in L2(P). It would
be interesting to see if Laplacian eigenmaps could replicate the performance of classical methods in any, or
all, of these problems.

On the other hand, there are many variants of Laplacian eigenmaps worth considering. For instance, one can
change the graph under consideration (e.g. by using the k-nearest neighbors), or the normalization of the
graph Laplacian Ln,ε (e.g. by using the symmetric normalized Laplacian). The former is practically useful,
because it typically leads to connected graphs while always ensuring a given level of edge sparsity. In the
latter, the graph Laplacian converges to a different limiting operator, which possesses different eigenvectors
than ∆P and thereby induces a different bias. We believe that under the setup we consider here, both
methods will continue to be optimal.

66

Chapter 5

Discussion

In the previous two chapters, we separately considered two methods for estimation and testing: Laplacian
smoothing (Chapter 3) and Laplacian eigenmaps (Chapter 4). In this chapter, we discuss the two meth-
ods jointly. We first compare some of their properties in Section 5.1. Then in Section 5.2, we compare
both methods to some other classical methods for regression, which do not involve graphs. Each of these
comparisons will be further illuminated by the equivalent kernel perspective, which we cover in Section 5.3.
Throughout this section, we focus only on estimation. For ease of reading, as much as possible this chapter
will be self-contained, meaning all quantities and notation are redefined, even if they have appeared in a
prior chapter.

Setup. To that end, recall the setup of nonparametric regression given in Chapters 3 and 4. We observe
design points X1, . . . , Xn independently sampled from a distribution P , with density p bounded away from
0 and ∞ on a domain X ⊆ Rd, 0 < pmin ≤ p(x) ≤ pmax < ∞. We assume the boundary ∂X is Lipschitz.
Additionally we observe responses

Yi = f0(Xi) + wi,

where wi ∼ N(0, 1) are independent Gaussian noise, and f0 is the unknown regression function to be
learned.

Both the Laplacian smoothing and Laplacian eigenmaps estimates are constructed using a neighborhood
graph Gn,ε. To form this graph, we let η : [0,∞) → [0,∞) be a kernel that satisfies the hypotheses
of (K1). For a radius parameter ε > 0, the graph Gn,ε = ({1, . . . , n},W) is formed over vertices {1, . . . , n}
corresponding to the design points {X1, . . . , Xn}, and with a weighted edge Wij = η(‖Xi −Xj‖/ε) between
vertices i and j. The neighborhood graph Laplacian Ln,ε ∈ Rn×n is defined by its action on vectors u ∈ Rn
as (

Ln,εu
)
i

:=
1

nεd+2

n∑
j=1

(
ui − uj

)
η

(
‖Xi −Xj‖

ε

)
. (5.1)

Equivalently, Ln,ε = (nεd+2)−1(D−W), where D is the diagonal degree matrix with entries Dii = dn,ε(Xi) =∑n
j=1Wij . We write Ln,ε =

∑n
k=1 λkvkv

>
k for the spectral decomposition of Ln,ε, meaning

Ln,εvk = λkvk, v>k vk = 1.

Finally, we recall the two estimators analyzed in Chapters 3 and 4. The Laplacian smoothing estimator f̂LS

is defined as
f̂LS := (I + ρLn,ε)

−1Y, (5.2)

67

and the Laplacian eigenmaps estimator f̂LE as

f̂LE :=

K∑
k=1

vkv
>
k Y. (5.3)

5.1 Comparison between Laplacian Smoothing and Laplacian Eigen-
maps

We now compare Laplacian smoothing and Laplacian eigenmaps, along a few different axes. The first two—
statistical and computational efficiency — are fairly standard. The last — regularity of the estimate — is
somewhat less typical, and will reveal an interesting distinction between the two methods.

5.1.1 Statistical Efficiency

The main part of Chapters 3 and 4 deals with the statistical properties of Laplacian smoothing and Laplacian
eigenmaps. We now very briefly summarize the conclusions of these chapters. In Chapter 3, we show that
Laplacian smoothing is minimax rate-optimal over the Sobolev spaces H1(X) only when the dimension d
satisfies 1 ≤ d ≤ 4 (up to log factors when d = 4). In contrast, in Chapter 4 we show that Laplacian
eigenmaps is minimax rate-optimal over H1(X) for all d. We also show that Laplacian eigenmaps can adapt
to higher-order smoothness, i.e. it can be minimax rate-optimal over Hs

0(X) when s > 1. Thus, the known
statistical properties of Laplacian eigenmaps are much stronger than those of Laplacian smoothing.

5.1.2 Computational Efficiency

In this section we review several disparate lines of work regarding the computational properties of Laplacian
smoothing and Laplacian eigenmaps. We begin by reviewing the fastest known algorithms for computing
each solution, for a given choice of tuning parameters. Of course, typically we would like to compute
solutions over a grid of tuning parameters, and we discuss how graph sparsification can make this process
faster without substantially degrading the quality of the solution. In large part, the analysis of running time
of these algorithms is worst-case, meaning it holds for any response vector Y and Laplacian matrix L. We
conclude by returning to the setting of this thesis — where L = Ln,ε is the Laplacian of a neighborhood
graph, and Y = f0 + w is equal to a smooth signal plus independent noise — and mentioning some aspects
of this problem which may lead to even faster computation.

In this setting, where the input data are design points X1, . . . , Xn ∈ Rd, the first step of either Laplacian
eigenmaps or Laplacian smoothing is forming the neighborhood graph Gn,ε. Naively, computing this graph
takes O(n2) time (treating the dimension d as a constant), which will typically dominate the time necessary
to solve either (5.2) or (5.3). A more clever approach—for instance, using a kd-tree—can speed this up to
time O(n log n), but in practice this becomes very slow when d is even moderately large. However, forming
the graph is an embarrassingly parallel operation, and can thus be quickly done in a distributed fashion. For
this reason we ignore the complexity of forming Gn,ε in our subsequent discussion, and treat the graph as
having already been computed.

Algorithms for Laplacian smoothing and eigenmaps. Computing Laplacian smoothing as in (5.2)
amounts to solving a single symmetric and diagonally dominant linear system of the form Lf = Y, where L
is a graph Laplacian.1 A series of seminal works [Spielman and Teng, 2011, 2013, 2014] have shown that it
possible to solve such systems in time nearly linear in the sparsity, that is, in the number of non-zero entries
in L. We restate a formal result to this effect, from the review monograph of Vishnoi [2012].

1The Laplacian smoothing solution f̂ = f̂LS satisfies (I + ρLn,ε)f̂ = Y, not Ln,εf̂ = Y. However, one can treat (I + ρLn,ε)
as the Laplacian of a graph, in which all edges in Gn,ε have been weighted by a factor of ρ, and a loop of weight (nεd+2)−1

has been added at every vertex.

68

Theorem 20 (Theorem 3.1 of Vishnoi [2012]). There is an algorithm LSOLVE which takes as input a graph
Laplacian L, a vector Y, and an error parameter σ, and returns a vector f satisfying

‖f − L†Y‖L ≤ σ‖L†Y‖L (5.4)

where ‖f‖L :=
√
f>Lf . The algorithm runs in time Õ(m log(1/σ)), where m is the number of non-zero

entries in L.

(Here Õ(·) hides factors of poly(log n).). As discussed by Vishnoi [2012], the norms in (5.4) can be replaced
by Euclidean norm without changing the computational complexity by more than log n factors.

We turn now to Laplacian eigenmaps. A naive approach to solving (5.3) involves first computing the eigen-
vectors v1, . . . , vK , and then the inner products Y>v1, . . . ,Y

>vK . However, the fastest known algorithms
for computing eigenvectors v1, . . . , vK take time Õ(Km) [Musco and Musco, 2015].2 Typically, in Laplacian

eigenmaps one takes K to be polynomial in the number of vertices n, so that Õ(Km) is quite a bit larger

than Õ(m).

More recent work [Frostig et al., 2016, Allen-Zhu and Li, 2017, Jin and Sidford, 2019] implies that com-
putational cost of Laplacian eigenmaps can be independent of the number of eigenvectors K. The key
insight towards achieving computational cost independent of K is that one need only compute the projec-
tion ΠK = VKV

>
K , and not each individual eigenvector vk. Frostig et al. [2016] give an algorithm that finds a

solution f satisfying ‖f −ΠKY‖22 ≤ σ‖Y‖22 by solving a certain number of symmetric diagonally dominant
linear systems. Loosely speaking, this result implies that any upper bound on the time needed to solve a
symmetric diagonally dominant linear system, such as Theorem 20, can be translated into an upper bound
on the time needed to compute Laplacian Eigenmaps. Unfortunately, the number of linear systems one needs
to solve in order to approximately compute ΠKY depends inversely on the spectral gap (λK+1 − λK)/λK ,
and for neighborhood graphs the spectral gap is usually quite small. The subsequent work of Allen-Zhu and
Li [2017], Jin and Sidford [2019] sharpen the dependence on the spectral gap, and the topic remains an area
of active research.

Graph sparsification. The aforementioned discussion concerns solving (5.2) or (5.3) when the tuning
parameters ρ or K are fixed. It is often desirable to compute candidate solutions for many values of
these hyperparameters, and then choose among these candidates using some criterion, for instance by cross-
validation. In this case graph sparsification can be helpful.

Graph sparsification is the process of producing a graph Hn,ε, also defined over the nodes {1, . . . , n} but

with many fewer edges than Gn,ε. Once the sparse graph Hn,ε is obtained, then one computes f̃LS or f̃LE,

defined as the solutions to (5.2) or (5.3) but computed with respect to the Laplacian L̃n,ε of Hn,ε. As we
have seen, the sparsity of the graph plays a key role in determining the time required to compute Laplacian
smoothing or eigenmaps. On the other hand, it is important that f̃LS or f̃LE approximate f̂LS or f̃LE, the
solutions computed over the original graph Gn,ε. This produces a tradeoff: the sparser Hn,ε is, the faster
one can solve (5.2) or (5.3), but the worse the quality of approximation.

Spectral approximation is a particularly useful way to measure the quality with which Hn,ε approximates
Gn,ε. For some σ > 0, we say Hn,ε is a (1 + σ)-spectral approximation to Gn,ε if

(1 + σ)−1u>L̃n,εu ≤ u>Ln,εu ≤ (1 + σ)u>L̃n,εu, for all u ∈ Rn.

Batson et al. [2012] show that for any graph G with n nodes, there exists a (1 + σ)-spectral approximation
H with O(n/σ2) edges. However, the algorithms supplied by Batson et al. [2012] to find such a graph H

2Technically speaking, these algorithms are designed to compute the eigenvectors associated with the largest eigenvalues of
L, whereas the eigenvectors v1, . . . , vK needed for Laplacian eigenmaps are associated with the smallest eigenvalues of L. To
fix this nit, we can just consider dmax(Gn,ε)I − Ln,ε.

69

are computationally infeasible. A more practicable approach [Spielman and Srivastava, 2011] is to sample
O(n log n/σ2) edges in a clever way, such that with high probability the resulting graph H is a (1+σ)-spectral
approximation to G. The right choice of sampling probabilities are proportional to the effective resistance,
and can be approximately computed in Õ(m) time, by solving O(log n) symmetric and diagonally dominant
linear systems using the algorithm referred to in Theorem 20. For more details and alternative algorithms
for sparsification, we refer to Batson et al. [2013], Sadhanala et al. [2016b].

If one wishes to solve (5.2) or (5.3) for only one choice of tuning parameter, the aforementioned method
for sparsification provides no computational edge. As we have just reviewed, computing a sparse spectral
approximation Hn,ε takes Õ(m) time, which is the time it takes to solve solve (5.2) or (5.3) in the first
place. On the other hand, sparsification is more computationally desirable when tuning over many values
of hyperparameters. This is because the sparse graph Hn,ε need be computed only once, and can then be
used to solve (5.2) or (5.3) for all values of tuning parameters. Sadhanala et al. [2016b] provide some back-
of-the-envelope calculations suggesting that sparsification is “worth it”, from a computational perspective,
whenever one wishes to seperately solve (5.2) for at least O(log3/2 n) different tuning parameters.

There has been relatively limited analysis of the statistical properties of graph sparsification. Here the
chief question is: how small must σ be, in order for the solutions f̃LS and f̃LE to be sufficiently close to
f̂LS and f̂LE, respectively. Recall that the larger σ is, the sparser the graph Hn,ε can be, and the more
computational advantage achieved. Sadhanala et al. [2016b] give the only guarantees on the quality with

which f̃LS approximates f̂LS, and to the best of our knowledge there has been no analysis of Laplacian
eigenmaps over sparsified graphs. However, in the setting of nonparametric regression over neighborhood
graphs, there are reasons to believe that we may take σ quite large without degrading statistical performance.
We will discuss these reasons shortly.

(Even) faster algorithms in the setting of non-parametric regression. We now return to the setting
of nonparametric regression over neighborhood graphs. In this setting, many of the computational times
previously discussed are actually already quite fast. This is because the graph Gn,ε is already quite sparse.
For instance, suppose we take the graph radius ε � (log n/n)1/d, so that with high probability m � n log n.
We have shown that this choice of ε results in statistically optimal Laplacian smoothing and eigenmaps over
first-order Sobolev classes. Computationally speaking, Theorem 20 shows that for this choice of ε and any
choice of ρ, the Laplacian smoothing estimate can be computed in Õ(n) time, and the results of Frostig
et al. [2016], Allen-Zhu and Li [2017], Jin and Sidford [2019] translate this into analogous upper bounds for
computing Laplacian eigenmaps. In this case, there is no benefit to further sparsifying Gn,ε.

That being said, for higher order Sobolev classes, to show that Laplacian eigenmaps has minimax optimal
statistical error we require ε & n−1/(2(s−1)+d), which is much greater than (log n/n)1/d. For such a large
choice of ε, it can potentially be much faster to first sparsify the graph and then compute the estimator,
depending on how easy it is to sparsify Gn,ε, and how many edges are in the sparsified graph Hn,ε. In
Section 4.3.4, we show that to the preserve minimax optimality of Laplacian eigenmaps, it suffices to let
Hn,ε be a relatively crude approximation of Gn,ε; for instance, taking Hn,ε to be a 2-spectral approximation of
Gn,ε is fine. The results of Spielman and Srivastava [2011] imply that there exists a 2-spectral approximation

of Gn,ε with only O(n) edges, which can be computed Õ(m) time.

Indeed, as discussed by Sadhanala et al. [2016b], it may be possible to find such a spectral approximation even
more cheaply. Recall that the sparsification algorithm discussed in Spielman and Srivastava [2011] relies on
sampling edges with probability proportional to their effective resistance, and that the bottleneck operation
in graph sparsification was approximately computing these effective resistances. However, von Luxburg et al.
[2014] have shown that in many geometric graphs Gn,ε, each edge (i, j) has an effective resistance converging
to 1/dn,ε(Xi) + 1/dn,ε(Xj) (scaled by a constant) as n → ∞. Suppose that in the algorithm of Spielman
and Srivastava [2011], one were to use this theoretical limit in place of approximately computing effective

resistances. This would reduce the time required to sparsify Gn,ε to Õ(n), which is nearly linear in the
number of nodes. It is not yet clear how to translate the bounds in von Luxburg et al. [2014] into a spectral

70

similarity guarantee for the resulting graph Hn,ε, but of course remember that we only need Hn,ε to be a
2-spectral approximation to Gn,ε.

5.1.3 Regularity of Estimates

Now we compare the smoothness properties of Laplacian smoothing and Laplacian eigenmaps. Because each
of these methods returns a vector f̂ ∈ Rn, we assess smoothness using the graph Sobolev seminorm.

Lemma 6. Suppose f0 ∈ H1(X), and C0(log n/n)1/d < ε < c0. Then there exist constants c, C,N which do
not depend on f0, such that the following statements hold.

• Let f̂LE be given by (5.3). Suppose that additionally ε ≤ K−1/d. Then

E
[
〈Ln,εf̂LE, f̂LE〉n|X1, . . . , Xn

]
≤
(
K(2+d)/d

n
+
‖f0‖2H1(X)

δ

)
, (5.5)

with probability at least 1− δ − Cn exp{−cnεd}.

• Let f̂LS be given by (5.2). Then

E
[
〈Ln,εf̂LS, f̂LS〉n|X1, . . . , Xn

]
≥ cmin

{
ε2

ρ2
,

1

ε2

}
, (5.6)

with probability at least 1− Cn exp{−cnεd}.

Correctly interpreted, Lemma 6 shows that f̂LS is much less smooth than f̂LE, when both methods are
properly tuned. To see this, recall that in Chapter 3, we show that when ρ � n−2/(2+d), Laplacian smoothing
is an optimal estimator over first-order Sobolev classes, when 1 ≤ d ≤ 4. In Chapter 4, we show that when
K � nd/(2+d), Laplacian eigenmaps is an optimal estimator over first-order Sobolev classes, for all dimensions
d. In both cases, these conclusions are valid when the graph radius ε � (log(n)/n)1/d, and the function f0

has unit norm in the first-order Sobolev space, ‖f0‖2H1(X) ≤ 1. For these choices of tuning parameters, we

draw the following conclusions, each of which hold with probability at least 1− δ − Cn exp{−cnεd}.

• The first-order graph Sobolev seminorm of Laplacian eigenmaps is of a constant order, regardless of
the dimension d:

E
[
〈Ln,εf̂LE, f̂LE〉n|X1, . . . , Xn

]
.

1

δ
.

• Conversely, when d > 1, the first-order graph Sobolev seminorm of Laplacian smoothing is growing
with n:

E
[
〈Ln,εf̂LS, f̂LS〉n|X1, . . . , Xn

]
& (log n)2/d · n(2d−4)/(2+d)d.

Thus when d > 1, Laplacian eigenmaps has a much smaller graph Sobolev seminorm than does Laplacian
smoothing, when both methods are correctly tuned. Recall from Lemma 3 that the regression function
f0 also has bounded graph Sobolev seminorm, 〈Ln,εf0, f0〉n . 1/δ with probability at least 1 − δ. Thus

Lemma 6 tells us that the solution f̂LS to Laplacian smoothing is also much less smooth than the regression
function f0, except when d = 1. Interestingly, this means that in dimensions 2 and 3, Laplacian smoothing
is an optimal estimator even though it has much larger graph Sobolev norm than f0, and is thus an improper
estimator.

71

Laplacian smoothing at an unlabeled point. The previous discussion suggests that the deficiencies of
Laplacian smoothing as an estimator may be tied to its lack of smoothness. Now we show that remarkably,
these deficiencies are in a certain sense purely an in-sample phenomenon. Suppose we compute the following
variant of Laplacian smoothing,

qfLS := ‖Y − f‖2n−1 + ρ〈Ln,εf, f〉n. (5.7)

To be perfectly clear, in (5.7) we are using the same penalty term as in (5.3), but in the loss term we do not
measure loss at the nth data point, i.e. we ignore (Yn− fn)2. We refer to X1, . . . , Xn−1 as the labeled data,
and Xn as the unlabeled data.

As before, suppose the regression function is first-order Sobolev smooth, f0 ∈ H1(X). The following Theorem

shows that the error of the estimator qfLS at the unlabeled point Xn is small—on the order of at most
n−2/(2+d), which is the minimax optimal rate—for all dimensions d.

Theorem 21. Suppose that the regression function f0 ∈ H1(X) ∩ L∞(X), and that ‖f0‖H1(X) ≤ M and

‖f0‖L∞(X) ≤M . If the estimator qfLS in (5.7) is computed with tuning parameters 0 ≤ ρ ≤M2(M2n)−2/(2+d)

and ε = n−1/(2+d), then ∣∣(qfLS)n − f0(Xn)
∣∣2 ≤ CM2

δ2
(M2n)−2/(2+d),

with probability at least 1− C1δ − C2 exp(−c2nεd).

Comparing Theorem 21 to Theorem 6, we see that when d ≥ 4, the error of the estimator qfLS at the unlabeled
point Xn is much smaller than (our upper bound on) the in-sample mean-squared error of f̂LS.3 Moreover,

one can show that ‖ qfLS − f0‖2n−1, the mean-squared error of qfLS over the labeled points X1, . . . , Xn, is

comparable to the in-sample mean-squared error ‖ qfLS − f0‖2n. Seemingly, qfLS has stronger properties at the
one point (Xn) for which the response was discarded during training, than at the n−1 points (X1, . . . , Xn−1)

for which the responses were used during training. Put more simply, qfLS appears to be a better estimator
at unlabeled data than it is at labeled data.

The proof of Theorem 21 sheds light on this phenomenon. It turns out that qfLS is performing two types of
regularization. The first is the explicit regularization controlled by the parameter ρ, and affects the fit at all
points X1, . . . , Xn. The second is a kind of implicit regularization, and affects the fit only at the unlabeled
point Xn; it is simply kernel smoothing, using the kernel η and bandwidth ε. That is, the fit qfLS at point
Xn is given by

(qfLS)n =
1

dn,ε(Xn)

n−1∑
i=1

(qfLS)iη

(
‖Xi −Xn‖

ε

)
, (5.8)

where we recall the degree is dn,ε(Xn) =
∑n
i=1 η(‖Xi − Xn‖/ε). As it turns out, this second kind of

regularization attenuates the noise without overly smoothing out the underlying trend, whereas we cannot
prove that any choice of ρ has the same effect in-sample. This also explains why in Theorem 21 we allow ρ
to take a wide range of values, but require ε = n−1/(2+d) to be precisely the right choice for optimal kernel
smoothing.

We conclude by offering some joint interpretation to the results of this section. Lemma 6 establishes that
f̂LS has large in-sample graph Sobolev semi-norm, and it is not hard to show that qfLS inherits this property.
On the other hand, in the proof of Theorem 21, we show that qfLS additionally attenuates noise at the
out-of-sample point Xn, by passing a kernel smoother over the in-sample fitted values (qfLS)1, . . . , (qfLS)n−1.
We believe (although we cannot yet show) that in a certain sense, these properties of Laplacian smoothing
continue to hold in a bona fide semi-supervised setting, where there are many unlabeled points; for analysis of

3Of course, the hypothesis that f0 ∈ L∞(X)∩H1(X), which we assume in Theorem 21, is meaningfully stronger than merely
f0 ∈ H1(X), which is what we assume in Theorem 6. We believe Theorem 21 should hold without assuming the regression
function is bounded, but cannot prove it.

72

a related estimator in the noiseless case Y = f0, see Calder et al. [2020b]. If so, this would mean Laplacian
smoothing is a spiky estimator—unsmooth at labeled points but smoother around unlabeled data—with
better estimation properties at unlabeled points. The choice of the word “spiky” is not casual. As observed
by various authors [Nadler et al., 2009, El Alaoui et al., 2016, Slepčev and Thorpe, 2017, Calder et al., 2020b],
the solutions to problems which use graph-based regularizers often exhibit spikes at labeled data, even when
they have well-posed continuum limits and appear smooth at unlabeled data. This phenomenon is related
to, although distinct from, statistically well-behaved interpolation, which has garnered much recent interest
in the statistical community. We investigate the structure of the Laplacian smoothing estimate further in
Section 5.3.

5.2 Graph Laplacian methods and the cluster assumption

Chapters 3 and 4 show that Laplacian smoothing and Laplacian eigenmaps, respectively, are minimax
optimal methods for nonparametric regression over certain Sobolev classes. These are not the only optimal
methods. For instance, kernel smoothing and least squares using an appropriate set of basis functions as
features are two other minimax optimal methods over these Sobolev classes. We now give an example where
graph Laplacian methods are better than these two alternatives, in the sense of having (much) smaller risk.
This is possible because Laplacian smoothing and Laplacian eigenmaps perform remarkably well when the
regression function f0 and design distribution P satisfy a cluster assumption: that is, when the regression
function is (approximately) piecewise constant over high-density clusters of the design distribution P . On
the other hand, kernel smoothing (with Euclidean distance) and least squares (using eigenfunctions of an
unweighted Laplace operator) cannot take advantage of the cluster assumption. We call this property of
graph Laplacian based estimators density adaptivity.

5.2.1 Setup

We begin by specifying a sequence of design densities and regression functions {(p(n), f
(n)
0) : n ∈ N}. These

distributions will all be chosen to satisfy the cluster assumption. To that end, we define two clusters
Q1, Q2 ⊂ R using a cluster separation parameter r, as

Q1 := [0, 1/2− r], Q2 := [1/2 + r, 1],

and take the domain X (n) := Q1 ∪ Q2. We then take the design density to be uniform over X (n) and the
regression function to be a piecewise constant function over Q1 and Q2 of height θ,

p(n)(x) :=
1

1− 2r
1
{
x ∈ Q1 ∪Q2

}
, f

(n)
0 (x) := θ ·

(
1
{
x ∈ Q1

}
− 1
{
x ∈ Q2

})
. (5.9)

Thus p(n) and f
(n)
0 belong to a two-parameter family, where the parameters are the cluster separation r

and height θ. Generally speaking, the smaller the separation r, and the larger the height θ, the more graph
Laplacian methods will outperform both kernel smoothing and linear regression using eigenfunctions of the
unweighted Laplace operator as features.

We have already defined Laplacian smoothing and Laplacian eigenmaps. Kernel smoothing and least squares
using eigenfunction of an unweighted Laplace operator are defined in Chapter 4, but for completeness we
review their definitions here. For a kernel function ψ and bandwidth parameter h, the kernel smoothing
estimator f̃KS is defined at a point x ∈ X as

f̃KS(x) :=

0, if dn,h(x) = 0,

1

dn,h(x)

n∑
i=1

Yiψ

(
‖Xi − x‖

h

)
, otherwise.

(5.10)

73

Let (λ1, φ1), (λ2, φ2), . . . be eigenpairs of the unweighted Laplace operator ∆ on [0, 1], meaning

∆φk = λkφk, ‖φk‖L2([0,1]) = 1,
d

dx
φk(0) =

d

dx
φk(1) = 0. (5.11)

In this case the eigenfunctions φk of ∆ are simply cosine functions, with eigenvalues proportional to their
squared frequency. Noting that φ1(x) = 1 and λ1 = 0, for k = 2, 3, . . . we have

φk(x) =
√

2 · cos(2πkx), λk(∆) = π2k2.

The least squares estimator using φ1, . . . , φK (1 ≤ K ≤ n) eigenfunctions as features is simply4

f̃K := argmin
f∈span{φ1,...,φK}

‖Y − f‖2n = Φ(Φ>Φ)−1Φ>Y. (5.12)

Hereafter, we will refer to f̃K as the uniform least squares estimator.

5.2.2 Upper bounds on risk of graph Laplacian methods

Now we are in a position to state our results. Each of Laplacian smoothing, Laplacian eigenmaps, and kernel
smoothing depend in part on the choice of kernel. For simplicity, in our analysis we only consider the boxcar
kernel,

η(z) = ψ(z) = 1{z ≤ 1}. (5.13)

This is strictly for convenience, and the following results will also hold for any kernel that satisfies (K1).

Proposition 14. Suppose (X1, Y1), . . . (Xn, Yn) are sampled according to (5.9).

• Compute the Laplacian eigenmaps estimator f̂ = f̂LE using a kernel η which satisfies (5.13), number
of eigenvectors K = 2, and radius ε = r/2. Then,

E
[
‖f̂ − f (n)

0 ‖2n
]
≤
(

6θ2 +
1

n

)
· 8

r
exp(−nr/8) +

1

n
(5.14)

• Compute the Laplacian smoothing estimator f̂ = limρ→∞ f̂LS using the same kernel η and radius ε.
Then the same guarantee (5.14) holds.

5.2.3 Lower bounds on risk of kernel smoothing and least squares

Proposition 15. Suppose (X1, Y1), . . . , (Xn, Yn) are sampled according to (5.9). Suppose (log n)2/n ≤ r ≤
c, where c is a universal constant.

• Compute the kernel smoothing estimator f̃ = f̃KS as in (5.10), using a kernel ψ which satisfies (5.13).
Then there exist universal constants c,N > 0 such that for all n > N ,

inf
h′>0

E
[
‖f̃ − f (n)

0 ‖2n
]
≥ cmin

{
r−1

n
,
θ√
n

}
. (5.15)

• Compute the least squares estimator f̃ = f̃SP as in (5.12). Then there exist universal constants c,N > 0
such that for all n > N ,

inf
1≤K≤n

E
[
‖f̃ − f (n)

0 ‖2n
]
≥ cmin

{
r−1

n
,

1

log(n)
,
r−2/3

n
,

√
θ

n3/4

}
. (5.16)

4For convenience, we will assume Φ ∈ Rn×K is full rank. If this is not the case, the least squares estimator f̃K is not
uniquely defined, but any solution will equal Y in-sample, and will satisfy ‖f̃K − f0‖2n ≥ 1/2 with high probability.

74

Together, Propositions 14 and 15 illustrate that the risk of Laplacian eigenmaps and Laplacian smoothing
can be dramatically smaller than that of kernel smoothing or uniform least squares. For instance, taking
θ = n1/2 and r = n−3/4, when appropriately tuned, f̂ = f̂LE or f̂ = f̂LS satisfy

E
[
‖f̂ − f (n)

0 ‖2n
]
≤ C

(
n7/4 exp(−n1/4/8)) +

1

n

)
≤ C

n
,

for a universal constant C and all n larger than some universal constant N , whereas for f̃ = f̃KS,

inf
h′>0

E
[
‖f̃ − f (n)

0 ‖2n
]
≥ c

n1/4
,

and for f̃ = f̃SP,

inf
1≤K≤n

E
[
‖f̃ − f (n)

0 ‖2n
]
≥ c

n1/2
.

Other choices of θ and r lead to even more dramatic gaps between the risk of Laplacian-based estimators,
and the risk of kernel smoothing and least squares. The overall takeaway is that under Model 5.9, estimators

that use the graph Laplacian can converge to the true regression function f
(n)
0 at fast rates—parametric

rates that do not depend on the L2 norm of f
(n)
0 —whereas other estimators, optimal for estimation over

Sobolev spaces, converge to f
(n)
0 at slow rates—nonparametric rates that deteriorate as the L2 norm of f

(n)
0

grows.

Some remarks:

• The lower bound on the in-sample risk of f̃KS given by (5.15) is larger than that of f̃SP given by
(5.16). This does not mean that kernel smoothing exhibits less adaptivity to the cluster assumption
than uniform least squares. Instead, we suspect it is due to looseness in our lower bounds: we are able
to tightly control the bias of kernel smoothing, whereas we must use a potentially loose bound on the
bias of uniform least squares. Experimentally, it appears that kernel smoothing usually outperforms
uniform least squares, under various instantiations of the cluster assumption.

• The cluster assumption—in which the regression function is piecewise constant and p consists of mul-
tiple connected components—is a very strong assumption. The low-density separation condition is a
related but weaker assumption, in which the regression function is assumed to be smoother (but not
constant) in regions of higher density. This is a rather general hypothesis which can formalized in a
number of different ways. For instance, one could insist that the regression function f0 belong to a
normed ball in a weighted Sobolev space, with semi-norm given by

|f0|Hs(P) := 〈∆s
P f0, f0〉P .

Intuitively, when ‖f0‖Hs(P) is much smaller than ‖f0‖Hs(X), density-adaptive learners such as Laplacian
eigenmaps or Laplacian smoothing should have the advantage on non-density adaptive linear smoothers,
such as kernel smoothing or uniform least squares. Indeed, in the case of Model 5.9 we see that

‖f (n)
0 ‖Hs(P (n)) = 0 for all s ∈ N, and all r, θ > 0,

whereas f
(n)
0 does not even belong to the first-order Sobolev space H1([0, 1]). In words, this shows

the cluster assumption is an extreme case of the low-density separation condition. Unfortunately, it is
quite difficult to analyze graph-based estimators under the general low-density separation condition,
without making strong assumptions on P .

• Finally, we note that either changing the graph or the normalization of the Laplacian fundamentally
alters the type of density adaptivity displayed by graph-Laplacian-based estimators; see Hoffmann
et al. [2019] for an extensive discussion.

75

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

4
True function.

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

4

Laplacian methods.

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

4

Kernel smoothing, least squares.

500 1000 1500

0.
00

1
0.

00
5

0.
02

0

Mean squared error.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

Figure 5.1: Estimation error of Laplacian eigenmaps (red), Laplacian smoothing (green), spectral projection with
eigenfunctions of unweighted Laplace-Beltrami operator (blue), and kernel smoothing (purple) under Model 5.9. The
leftmost plot shows the true regression function; the middle two plots show the fits of Laplacian eigenmaps and
smoothing (left-middle), and of spectral projection and kernel smoothing (right-middle); the rightmost plot shows the
mean squared error of all four methods as a function of sample size.

−1.0 −0.5 0.0 0.5 1.0

−
4

−
2

0
2

4

True function.

−1.0 −0.5 0.0 0.5 1.0

−
4

−
2

0
2

4

Laplacian methods.

−1.0 −0.5 0.0 0.5 1.0

−
4

−
2

0
2

4

Kernel smoothing, least squares.

500 1000 1500

0.
01

0
0.

01
5

0.
02

5

Mean squared error.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

Figure 5.2: Same as Figure 5.1, but with p as in (5.17).

5.2.4 Experiments

We begin by verifying the practical relevance of Propositions 14 and 15 through simulation. We sample
n = 400, . . . , 2000 points according to Model (5.9), with r = (log n)2/(2n) and θ = 1. We examine the
empirical behavior of each of Laplacian smoothing, Laplacian eigenmaps, kernel smoothing, and uniform
least squares. In Figure 5.1, we see that Laplacian smoothing and Laplacian eigenmaps indeed have smaller
risk than kernel smoothing and uniform least squares, and moreover that the risk is decreasing at a faster
rate. We also see that the Laplacian methods are able to perfectly recover the piecewise constant structure
of f0. On the other hand both kernel smoothing and least squares overfit, and least squares additionally
displays boundary bias at points Xi near 1/2.

In our second experiment, we keep the same regression function f0 as in our first experiment. We change the
design distribution P to be a mixture of two Gaussians truncated in [−1, 1]; specifically, P is the distribution
with density

p(x) ∝ 1

2

(
ϕ((x+ 1)/.4)) + ϕ((x− 1)/.4)

)
· 1{x ∈ [−1, 1]}, (5.17)

with ϕ being the standard normal probability density function. Thus (p, f0) no longer satisfy the cluster
assumption, but rather only a weaker low-density separation condition. Even under these weaker con-
dition, Laplacian eigenmaps and smoothing still handily outperform kernel smoothing and uniform least
squares.

In our final experiment, we keep the same density p as in our second experiment, but change the regression
function f0. Instead of a stepfunction, we consider two alternatives, both of which are spatially inhomoge-

76

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

True function.

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

Laplacian methods.

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

Kernel smoothing, least squares.

500 1000 1500

0.
01

0
0.

01
5

0.
02

5
0.

03
5

Mean squared error.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

Figure 5.3: Same as Figure 5.2, but with f0(x) = x1/4.

−1.0 −0.5 0.0 0.5 1.0−
4

−
2

0
2

4

True function.

−1.0 −0.5 0.0 0.5 1.0−
4

−
2

0
2

4

Laplacian methods.

−1.0 −0.5 0.0 0.5 1.0−
4

−
2

0
2

4

Kernel smoothing, least squares.

500 1000 1500

0.
04

0.
05

0.
07

0.
09

Mean squared error.

Sample size

M
ea

n
sq

ua
re

d
er

ro
r

Figure 5.4: Same as Figure 5.2, but with f0(x) = cos(4π|x|−1/3).

neous: the cubed root and Doppler functions,

f0(x) = 4x1/4, and f0(x) = cos(4π|x|−1/3).

When paired with the design distribution P , these functions satisfy the low density-separation condition, but
to a lesser degree than the stepfunction. Unsurprisingly, the difference between the density adaptive graph-
based estimators, and their non-density adaptive competitors, is more muted. Nevertheless, in Figures 5.3
and 5.4 we still see that graph-based estimators generally continue to have the edge.

5.3 Equivalent kernel perspective

Laplacian smoothing and Laplacian eigenmaps are both linear smoothers, meaning there exists a matrix
S ∈ Rn×n such that f̂ = SY for both f̂ = f̂LS and f̂ = f̂LE. We can equivalently write this as

f̂(Xi) =
1

n

n∑
j=1

gXi(Xj)Yj (5.18)

where for all x ∈ Rd, gx : Rd → R. For a given estimator f̂ , a function gx(·) that satisfies (5.18) is the

equivalent kernel of f̂ .

Silverman [1984] studied the equivalent kernel of the smoothing spline estimator. We recall the definition of
smoothing splines: for a given number of derivatives s,

f̃SS := argmin
H1(R)

‖Y − f‖2n + ρ

∫
(f (S)(x))2 dx. (5.19)

Silverman [1984] showed that for any x, the equivalent kernel gx(·) of f̃SS asymptotically approaches (p(x))−1 ·
h ·κ(‖x−t‖/h), where the bandwidth h = (ρ ·p(x))1/2s, and the kernel function κ is the fundamental solution

77

of the differential equation
(−1)sκ(2s) + κ = δ0. (5.20)

The fundamental solution of (5.20) can be explicitly found for any value of s. For instance when s = 1, we
have that the κ is the Laplace density function,

κ(x) = 1/2 exp(−|x|).

These calculations show that, for smoothing splines, the regularization parameter ρ and density p determine
the level of smoothening at a design point x. On the other hand, the order of derivative s reveals the shape
of κ, and in turn shows the form of the ultimate estimator f̂ . Together, these shed substantial light on the
structure of smoothing spline estimates.

In this section we explore Laplacian smoothing from the equivalent kernel perspective. We begin in Sec-
tion 5.3.1 by providing some heuristic calculations, which suggest that the equivalent kernel of Laplacian
smoothing is close to the fundamental solution of a particular partial differential equation (PDE). In Sec-
tion 5.3.2, we show how the bandwidth of this solution can be written as a function of the density p and
regularization parameter ρ. Finally in Section 5.3.3, we show that the resulting kernel is not very smooth,
particularly as the dimension d gets larger. Together these developments allow us to make a series of pre-
dictions regarding the nature of the equivalent kernel of Laplacian smoothing. In Section 5.3.5, we support
these predictions with empirical evidence.

5.3.1 Discrete-to-continuum

Recall that the Laplacian smoothing estimator f̂LS = (I + ρLn,ε)
−1Y. We fix a given point Xi, and let

ĝ ∈ Rn denote the equivalent kernel of Laplacian smoothing at x = Xi. Clearly, ĝ is the ith row of the
smoother matrix (I+ρLn,ε)

−1, multiplied by a factor of n, and so it satisfies the first-order condition

1

n
(I + ρLn,ε)ĝ = δi (5.21)

where δi ∈ Rn is the Kronecker delta, (δi)j = 1{i = j}.

Ideally, we would like to show that the solution ĝ to (5.21) is close to the fundamental solution g of the
differential equation

1

p(x)
(I + ρ∆P)g = δx, (5.22)

where δx is the Dirac delta centered at x = Xi and ∆P := −1/p · div(p2∇) is a weighted Laplace-Beltrami
operator. If we could relate (5.21) to (5.22), then we could use the results of Silverman [1984], Wang
et al. [2013] to determine the structure of g, and in turn the structure of ĝ. Unfortunately, it is not at all
straightforward to relate the solutions to (5.21) and (5.22).

A difficult calculation. Let us pause for a moment, to review why we might have expected the solutions ĝ
and g to be close in the first place. It is well-known that the graph Laplacian Ln,ε approaches the continuum
Laplace operator, in the sense that

(Ln,εu)i → ∆Pu(Xi) as n→∞, ε→ 0, nεd+2 →∞

for each design point Xi in the interior of X , and any function u sufficiently smooth, say u ∈ C3. Suppose
we knew that

(I + ρLn,ε)ĥ = u in X, and (I + ρ∆P)h = u in X .

Then the following basic algebra relates (I + ρLn,ε)h and (I + ρLn,ε)ĥ,

(I + ρLn,ε)h = (I + ρ∆P)h+ ρ(Ln,ε −∆P)h = (I + ρLn,ε)ĥ+ ρ(Ln,ε −∆P)h. (5.23)

78

By rearranging we obtain
(I + ρLn,ε)(ĥ− h) = ρ(Ln,ε −∆P)h,

and taking the L2(Pn) norm of both sides then gives

1

ρ2
‖ĥ− h‖2n +

2

ρ
〈Ln,ε(ĥ− h), ĥ− h〉n + ‖Ln,ε(ĥ− h)‖2n = ‖(Ln,ε −∆P)h‖2n. (5.24)

In words, we have that the magnitude of the difference between the solutions ĥ and h, measured in a linear
combination of various graph Sobolev semi-norms, is equal to the L2(Pn) norm of (Ln,ε−∆P)h. As we have
already mentioned, this latter quantity converges to 0 as n→∞ so long as h is sufficiently smooth.

Unfortunately, there are two reasons why these calculations do not apply to ĝ and g. The first is that,
as we will see, the solution g to (5.22) does not possess enough regularity to imply Ln,εg → ∆P g. Even
more fundamentally, the right hand sides of (5.21) and (5.22) are not equal; indeed the latter is not even

a function. For this reason, is not possible to make sense of (5.23) when h and ĥ are replaced by g and
ĝ.

The bottom line is that it is very non-trivial to relate the equivalent kernel of Laplacian smoothing on a
neighborhood graph to the fundamental solution of a relevant PDE. Instead, we will proceed by considering
a pair of idealized geometric graphs in place of the neighborhood graph; these idealized graphs will have a
very special structure which makes it easier to relate their equivalent kernels to the solution of a continuum
PDE. We will draw several conclusions from these calculations, which we conjecture are not dependent on
the special structure of the idealized graphs but instead apply more to more general classes of geometric
graphs, including the neighborhood graphs otherwise considered in this work. Experimentally we will verify
that each of these conclusions indeed appear to apply to neighborhood graphs.

Idealized Graph 1: Chain. Our first idealized graph is the (1d) chain graph. Let xi = (i − 1/2)/n
for i = 1, . . . , n. (We abandon our usual convention of capitalizing design points to emphasize that we are
dealing with a fixed design). Throughout this section, take P to be the uniform distribution on [0, 1]. Let
sGn = ({1, . . . , n}, E) be the chain graph, meaning E = {(i, i+1) : i = 1, 2, . . . , n−1}, with sLn the Laplacian
of the chain, meaning

(sLnu
)
i
=

(
ui − ui+1 + ui − ui−1

)
, if i = 2, . . . , n− 1

u1 − u2, if i = 1,

un − un−1, if i = n.

(5.25)

We will show that the equivalent kernel sgn of Laplacian smoothing using sLn is close to the solution of a
differential equation involving the unweighted Laplacian operator ∆ on [0, 1]. We define sg to be the solution
to

1

n
(I + n2ρsLn)g = δi, in Rn; (5.26)

the pre-factor of n2 puts the eigenvalues of sLn on the same scale as those of ∆. Taking x = xi, let g be the
solution to

(I + ρ∆)g = δx,
d

dx
g(0) =

d

dx
g(1) = 0. (5.27)

Recall that the eigenpairs of ∆ are φ1(x) = 1, λ1 = 0, and then φk(x) =
√

2 · cos(kπx), λk = π2k2 for
k ≥ 2. Let gn :=

∑n
k=1〈g, φk〉Pφk be the projection of the equivalent kernel g onto the span of φ1, . . . , φn in

L2([0, 1]).

Proposition 16. Let sg be the solution to (5.26), let g be the solution to (5.27), and let gn =
∑n
k=1〈φk, g〉Pφk.

Then there exists a universal constant C such that

‖sL−1
n (sg − gn)‖2n + ρ‖sg − gn‖2n + ρ2〈sLn(sg − gn), sg − gn〉n ≤

C

n
. (5.28)

79

Proposition (16) should be interpreted as saying that sg and gn are close in each of three norms: the L2(Pn)
norm, the first-order graph Sobolev norm, and the first-order dual graph Sobolev norm. The strength of
the estimate differs, in terms of the dependence on ρ, depending on the norm under consideration. We also
note that (5.27) is the same as setting s = 1 in (5.20), except for the presence of ρ in the former equation
(and ignoring boundary conditions). As we have already discussed, ρ influences the bandwidth but not the
shape of the equivalent kernel. Thus Proposition 16 shows that away from boundary points, the equivalent
kernel of Laplacian smoothing over the 1d chain has a similar shape to the equivalent kernel of a first-order
smoothing spline (i.e. the Laplace density function), but only after the latter has been passed through a
filter which preserves low-frequency components.

Idealized Graph 2: Tensor product of ring and complete graph. To discuss our second example,
we begin by recalling the definition of the tensor product of two graphs.

Definition 5.3.1 (Tensor product of graphs). For two weighted graphs G = ({1, . . . ,M},WG) and H =
({1, . . . , N},WH), the tensor product G × H has vertex set

{
(i, j) : i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}

}
. In

G×H, the vertices (i, j) and (i′, j′) have an edge of weight (WG)ii′ × (WH)jj′ .

Now we introduce our second idealized graph. For 0 < ε < 1, let M := 1/ε and N := nε be integers. Let
RM be the ring graph on {1, . . . ,M}, i.e. the graph with edges (1, 2), (2, 3), . . . , (M − 1,M), (M, 1). Let KN

be the complete graph on {1, . . . , N}, with edges (i, j) for all 1 ≤ i ≤ j ≤ N . The graph we will consider is

G̃n,ε := RM ×KN . Intuitively, this graph is more similar to a neighborhood graph than is the chain, because
microscopically—meaning at scale on the order of ε—it resembles the complete graph.

Let L̃n,ε : RM×N → RM×N be the Laplacian associated with the graph G̃n,ε. Take ĝ ∈ RM×N to be the

equivalent kernel of Laplacian smoothing on G̃n,ε, meaning the solution to

1

n

(
I + ρ

M2

N
L̃n,ε

)
u = δij , in RM×N , (5.29)

where (δij)k` = 1{i = k, j = `} ∈ RM×N is the Kronecker delta.

We will again compare the equivalent kernel of Laplacian smoothing to the solution g of a differential
equation; in this case, the differential equation

(I + ρ∆)g = δx, g(0) = g(1),
d

dx
g(0) =

d

dx
g(1). (5.30)

where x = xi. The eigenvalue and eigenvector pairs (λk, ψk) of (5.30) can be characterized as follows:
for even k ∈ N, λk = π2k2 and ψk(x) =

√
2 · cos(2kπx), and for odd k ∈ N, λk = π2(k − 1)2 and

ψk(x) =
√

2 · sin(2(k − 1)πx).

In Proposition 17, we show that ĝ = ĝM + ĝ⊥ is the sum of two terms. The first term ĝM is close to the
gM =

∑M
k=1〈g, φk〉Pφk, similar to Proposition 16. The second term ĝ⊥ is localized around point (i, j). In

the following, let 〈〈g, h〉〉n := n−1
∑M
i=1

∑N
j=1 gijhij , and let |||g|||2n = 〈〈g, g〉〉n.

Proposition 17. Let ĝ be the solution to (5.29), and let g be the solution to (5.30). Then ĝ = ĝM + ĝ⊥,
where ∣∣∣∣∣∣∣∣∣L̃−1

n,ε(ĝM − gM)
∣∣∣∣∣∣∣∣∣2
n

+ ρ |||ĝM − gM |||2n + ρ2〈〈L̃n,ε(ĝM − gM), ĝM − gM 〉〉n ≤
C

M
, (5.31)

and
ĝ⊥ =

n

(1 + 2ρM2)
· δi(δj − 1/

√
N)>. (5.32)

The difference between G̃n,ε and the chain sGn is the role played by ε. Proposition 17 reveals that changing
ε trades off two kinds of smoothness in the resulting equivalent kernel ĝ, as we now comment on.

80

• The first part of Proposition 17 is similar in spirit to Proposition (5.28). It says that ĝM lies close to gM ,
which is the projection of the solution g to (5.27) onto the span of φ1, . . . , φM in L2(P). There is one
importance difference, however. Unlike in Proposition 17, the continuum function gM now depends on
ε. As ε grows, M shrinks, and the continuum function gM depends only on lower frequency functions.

• The second part of Proposition 17 shows that, as opposed to the chain sGn, the equivalent kernel of
G̃n,ε has an additional component. This component ĝ⊥ is itself comprised of two separate terms: the

first is the Kronecker delta δiδj = δij , and the second is the locally supported function −δi/
√
N .

These functions are scaled by a pre-factor of n/(1 + 2ρM2) = n/(1 + 2ρε−2) ≈ 2nε2/ρ, with the last
approximation being accurate when ε2 is much smaller than ρ.

• Thus, qualitatively speaking, we see that ε effects a tradeoff between different aspects of the equivalent
kernel ĝ. As ε grows, one component of the equivalent kernel, ĝM , becomes smoother. On the other
hand, the other component ĝ⊥ has a spike with height growing quadratically in ε.

While G̃n,ε is not the neighborhood graph, previewing things to come, we shall see that the radius parameter
ε of a neighborhood graph effects a similar tradeoff, between smoothness of the equivalent kernel and spikiness
around xij .

5.3.2 Bandwidth of equivalent kernel

Propositions 16 and 17 show that by understanding the structure of a fundamental solution to (5.22), we
can understand the structure of the equivalent kernel of Laplacian smoothing. In one dimension (X = [0, 1])
equation (5.22) is a special case of the more general differential equation

g − ρ

p

{
w′g′ + wg′′

}
= δx, (5.33)

for w : [0, 1]→ R a twice-differentiable weight function, and x ∈ (0, 1).

Wang et al. [2013] characterize the shape and bandwidth of the fundamental solution J to (5.33); rewriting
their equation (8) in our notation,

J(t) = ρ−1/2%(t)Q′ρ(t)κ(|Qρ(x)−Qρ(t)|/ρ1/2),

where κ is the solution to (5.20) with s = 1—i.e. the Laplace density function—the function

Qρ(t) :=

∫ t

0

(
p(s)

w(s)

)1/2(
1 +O(ρ1/2)) ds,

is an increasing function of t, and %(t) satisfies supt |%(t)| = 1 +O(ρ1/2).

Taking w = p2 in (5.33), we recover (5.22). In the limit as ρ→ 0, the fundamental solution g to (5.22) thus
satisfies the following asymptotic equality.

Corollary 1. Let g be the solution to (5.22). Suppose P has a twice differentiable density p bounded away
from 0 and ∞ on [0, 1]. Then, for any x ∈ (0, 1), and any z ∈ R,

lim
ρ→0

ρ1/2p(x)1/2 · g(x+ ρ1/2p(x)1/2z) = κ(z).

Thus we see that the fundamental solution g to (5.22) corresponds asymptotically to a kernel with bandwidth
h = ρ1/2p(x)1/2, and shape given by that of the Laplace density function. A few remarks:

• We note that the bandwidth h is proportional to p(x)1/2, and will thus be smaller in low-density regions.
This is in contrast to the equivalent kernel of a first-order smoothing spline, where the bandwidth is

81

instead proportional to p(x)−1/2, and so is larger in low-density regions. Which is the better choice? It
depends on the nature of the regression function f0. Standard derivations establish that asymptotically,
the optimal bandwidth for kernel smoothing should be proportional to (p(x))−1/3(f ′0(x))−2/3. Thus if
f ′0(x) = p(x)−5/4, Laplacian smoothing is preferable, whereas if f ′0(x) = p(x)1/2 then the smoothing
spline makes more sense.

• The shape of the equivalent kernel is the same as the equivalent kernel for smoothing splines. This is
not necessarily the case when p violates the regularity conditions in Corollary 1; for instance, if p is a
piecewise uniform distribution supported on multiple connected components of [0, 1].

• The distance |Qρ(x)−Qρ(t)| depends on the average of the inverse square-root density p(s)−1/2 over
all x ≤ s ≤ t. It distorts the uniform metric |x− t| by “pulling” points x and t farther apart if p(s) is
on average small over s ∈ [x, t]. As t→ x, we have

lim
t→x

|Qρ(x)−Qρ(t)|
|t− x|

=
1

(p(x))1/2
.

5.3.3 Shape of equivalent kernel

Finally, in this section we turn to the fundamental solution κ of the PDE

(I + ∆)κ = δ0. (5.34)

Our analyses in the previous two sections suggest that the solution to (5.34) partly determines the shape
of the equivalent kernel of Laplacian smoothing. (Although to be clear, this is only a suggestion, since we
analyze only a pair of special geometric graphs in the univariate setting.)

When d = 1, we have already seen that κ(x) = 1/2 exp(−|x|) is the Laplace density function. It follows
that κ ∈ H1(R). More generally, we have that the fundamental solution to (5.34) is a Bessel potential, given
by

κ(x) =
1

2d/2

∫ ∞
0

e−t−
‖x‖2
4t

td/2
dt, for x ∈ Rd.

(See Chapter 4.3 of Evans [2010].) In particular, as ‖x‖ → 0

κ(x) = (1 + o(1)) ·

1

2d−1πd/2
ln

1

‖x‖
, if d = 2,

Γ
(
d−2

2

)
4π

1

‖x‖d−2
, if d ≥ 3.

Thus κ has a singularity at the origin for all d ≥ 2. Moreover, κ ∈ H1(Rd) only if d < 2, and κ ∈ L2(Rd)
only if d < 4. This is easily seen by the fact that the Fourier transform of κ is(

F(κ)
)
(y) =

1

1 + ‖y‖2
, y ∈ Rd.

Belkin et al. [2019] show that kernel smoothing of random data using a singular kernel can result in consistent
and even optimal estimators in terms of L2(P) error. However their results require that the smoothing kernel
itself belong to L2(Rd). This gives another perspective on the failure of Laplacian smoothing when d ≥ 4; it
is equivalent to smoothing with a kernel that is not sufficiently regular.

5.3.4 Predictions based on theoretical findings

Based on the findings of Sections 5.3.1-5.3.3, we make a series of qualitative predictions regarding the
equivalent kernel ĝ of Laplacian smoothing at a given design point Xi.

82

1. The equivalent kernel ĝ is close to the sum of two terms. The first term is approximately equal to
the fundamental solution g to the PDE (5.22), after g has been passed through a spectral filter. The
second term includes a spike at Xi.

2. The graph radius parameter ε trades off two types of smoothness, corresponding to the aforementioned
two terms. As ε is taken larger, the aforementioned spectral filter more aggressively filters out the
high-frequency components of g, but the aforementioned spike is larger.

3. The effective bandwidth h of ĝ depends on the regularization parameter ρ; as the regularization pa-
rameter ρ grows, so does h. The bandwidth also depends on the design density p evaluated at Xi; the
larger p(Xi), the larger the bandwidth.

4. As the dimension d grows, the shape of the continuum limit of the equivalent kernel becomes less
regular.

Our theory does not conclusively establish that these predictions hold for the neighborhood graph (which is
also why we do not summarize them in a more precise fashion). However, they do fit very nicely with some
of our previous theoretical developments.

• Prediction 3 gives a complementary view on the density adaptivity of Laplacian smoothing, explored
in Section 5.2.

• Predictions 2 and 4 explain why Laplacian smoothing is not optimal when the dimension is sufficiently
large (d ≥ 4). It corresponds to smoothing using a kernel with minimal regularity properties, and
which additionally has a spike at Xi.

• Prediction 2 also explains the finding in Theorem 21 that Laplacian smoothing can be optimal at an
unlabeled data point, when ε is taken to be sufficiently large. Taking ε larger makes the equivalent
kernel more regular (i.e. it can be extended a function which has a smaller norm in L2(Rd)). It also
increases the height of the spike, which degrades the quality of the estimate at labeled data, but has
no effect at an unlabeled data point.

We now perform a series of experiments, which offer empirical validation of Predictions 1-3.

5.3.5 Experiments

We now empirically examine the equivalent kernel of Laplacian smoothing with a neighborhood graph, in
the univariate setting d = 1. We consider two densities, the uniform density over [−1, 1], and the truncated
Gaussian mixture density given in (5.17). In both cases, we sample n = 500 points, form the neighborhood
graph using a truncated Gaussian graph kernel η(t) = 1|t| ≤ 1 · exp(−s2/2) and various graph radii ε. We
then solve for the Laplacian smoothing smoother matrix S = (I + ρLn,ε)

−1, and examine the ith row Si for
several different Xi.

Uniform density. We begin by examining the equivalent kernel of Laplacian smoothing when P is uniform.
Figure 5.5 shows the equivalent kernel ĝ, at each of x ≈ −.5, x ≈ 0, and x ≈ .5, and for three different values
of graph radius ε and smoothing parameter ρ.5 We see the following:

• The bandwidth of the equivalent kernel is controlled by the regularization parameter ρ. As ρ decreases,
the degrees of freedom of S increase, and the effective bandwidth becomes smaller.

• The equivalent kernel always has a spike at x. As ε increases, the height of this spike increases.

• Ignoring the spike, as in the 2nd row of Figure 5.5, we see that the equivalent kernel looks more regular
as the graph radius ε increases.

These observations all accord with the predictions made in Section 5.3.4.

5To be precise, it shows the row Si for the design point Xi closest to −.5, 0 and .5

83

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
02

0.
04

Radius: 0.025. Rho: 0.023.

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
05

0.
10

0.
15

Radius: 0.05. Rho: 0.022.

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
10

0.
20

0.
30

Radius: 0.1. Rho: 0.041.

−1.0 −0.5 0.0 0.5 1.00.
00

0
0.

00
4

0.
00

8
0.

01
2

Radius: 0.025. Rho: 0.023.

−1.0 −0.5 0.0 0.5 1.00.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Radius: 0.05. Rho: 0.022.

−1.0 −0.5 0.0 0.5 1.00.
00

0
0.

00
2

0.
00

4

Radius: 0.1. Rho: 0.041.

Figure 5.5: Top row: equivalent kernel of Laplacian smoothing with uniform design distribution. Bottom row: same
as the top row, but ignoring the influence of Sii.

Gaussian mixture density. Our second experiment examines the equivalent kernel of Laplacian smooth-
ing under the same setup, but where the design density is the truncated Gaussian mixture distribution given
in (5.17). Figure 5.6 shows the equivalent kernel at the same values of x as in Figure 5.5. Each of the
observations from the first experiment also apply to this experiment. Additionally, we see empirically that
the bandwidth of the equivalent kernel is smaller at points x where the density is smaller. Again, this is in
accordance with our predictions.

References

Yasin Abbasi-Yadkori. Fast mixing random walks and regularity of incompressible vector fields. arXiv
preprint arXiv:1611.09252, 2016.

Yasin Abbasi-Yadkori, Peter Bartlett, Victor Gabillon, and Alan Malek. Hit-and-Run for Sampling and Plan-
ning in Non-Convex Spaces. In Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, pages 888–895, 2017.

Zeyuan Allen-Zhu and Yuanzhi Li. Faster principal component regression and stable matrix chebyshev
approximation. In International Conference on Machine Learning, pages 107–115. PMLR, 2017.

Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving sets. In Proceedings of the Forty-
first Annual ACM Symposium on Theory of Computing, STOC ’09, pages 235–244, New York, NY, USA,
2009. ACM.

84

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

Radius: 0.025. Rho: 0.041.

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

Radius: 0.05. Rho: 0.038.

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Radius: 0.1. Rho: 0.082.

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

Radius: 0.025. Rho: 0.041.

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
01

0.
02

0.
03

Radius: 0.05. Rho: 0.038.

−1.0 −0.5 0.0 0.5 1.00.
00

0
0.

00
5

0.
01

0
0.

01
5

Radius: 0.1. Rho: 0.082.

Figure 5.6: Top row: equivalent kernel of Laplacian smoothing with design distribution. Bottom row: same as the top
row, but ignoring the influence of Sii.

Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors. In Proceedings
of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 475–486, 2006.

Reid Andersen, David F Gleich, and Vahab Mirrokni. Overlapping clusters for distributed computation. In
Proceedings of the fifth ACM international conference on Web search and data mining, pages 273–282.
ACM, 2012.

Ery Arias-Castro. Clustering based on pairwise distances when the data is of mixed dimensions. arXiv
preprint arXiv:0909.2353, 2009.

Ery Arias-Castro, Bruno Pelletier, and Venkatesh Saligrama. Remember the curse of dimensionality: the
case of goodness-of-fit testing in arbitrary dimension. Journal of Nonparametric Statistics, 30(2):448–471,
2018.

Thierry Aubin. Nonlinear analysis on manifolds. Monge-Ampere equations, volume 252. Springer Science &
Business Media, 2012.

Sivaraman Balakrishnan and Larry Wasserman. Hypothesis testing for high-dimensional multinomials: A
selective review. The Annals of Applied Statistics, 12(2):727 – 749, 2018.

Sivaraman Balakrishnan and Larry Wasserman. Hypothesis testing for densities and high-dimensional multi-
nomials: Sharp local minimax rates. Annals of Statistics, 47(4):1893–1927, 2019.

Sivaraman Balakrishnan, Min Xu, Akshay Krishnamurthy, and Aarti Singh. Noise thresholds for spectral
clustering. In Advances in Neural Information Processing Systems 24. Curran Associates, Inc., 2011.

85

Sivaraman Balakrishnan, Alesandro Rinaldo, Don Sheehy, Aarti Singh, and Larry Wasserman. Minimax rates
for homology inference. In International Conference on Artificial Intelligence and Statistics, volume 22,
2012.

Sivaraman Balakrishnan, Srivatsan Narayanan, Alessandro Rinaldo, Aarti Singh, and Larry Wasserman.
Cluster trees on manifolds. In Advances in Neural Information Processing Systems 26, pages 2679–2687,
USA, 2013a. Curran Associates, Inc.

Sivaraman Balakrishnan, Srivatsan Narayanan, Alessandro Rinaldo, Aarti Singh, and Larry Wasserman.
Cluster trees on manifolds. In Advances in Neural Information Processing Systems, volume 26, 2013b.

Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. SIAM Journal on
Computing, 41(6):1704–1721, 2012.

Joshua Batson, Daniel Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral sparsification of graphs:
Theory and algorithms. Communications of the ACM, 56:87–94, 08 2013.

Mikhail Belkin. Problems of Learning on Manifolds. PhD thesis, University of Chicago, 2003.

Mikhail Belkin. Approximation beats concentration? an approximation view on inference with smooth radial
kernels. In Conference On Learning Theory, pages 1348–1361. PMLR, 2018.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation, 15(6):1373–1396, 2003.

Mikhail Belkin and Partha Niyogi. Convergence of Laplacian eigenmaps. In Advances in Neural Information
Processing Systems, volume 20, 2007.

Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for Laplacian-based manifold methods.
Journal of Computer and System Sciences, 74(8):1289–1308, 2008.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399–2434, 2006.

Mikhail Belkin, Qichao Que, Yusu Wang, and Xueyuan Zhou. Toward understanding complex spaces:
Graph laplacians on manifolds with singularities and boundaries. In Shie Mannor, Nathan Srebro, and
Robert C. Williamson, editors, Proceedings of the 25th Annual Conference on Learning Theory, volume 23
of Proceedings of Machine Learning Research, pages 36.1–36.26, Edinburgh, Scotland, 25–27 Jun 2012.
JMLR Workshop and Conference Proceedings.

Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does data interpolation contradict statistical
optimality? In The 22nd International Conference on Artificial Intelligence and Statistics, pages 1611–
1619. PMLR, 2019.

Peter J Bickel and Bo Li. Local polynomial regression on unknown manifolds. In Complex datasets and
inverse problems, volume 54, pages 177–186. Institute of Mathematical Statistics, 2007.

Lucien Birgé. Model selection for density estimation with l2-loss. arXiv preprint arXiv:0808.1416, 2008.

Lucien Birgé and Pascal Massart. Rates of convergence for minimum contrast estimators. Probability Theory
and Related Fields, 97(1-2):113–150, 1993.

Lucien Birgé and Pascal Massart. Minimum contrast estimators on sieves: exponential bounds and rates of
convergence. Bernoulli, 4(3):329–375, 1998.

Olivier Bousquet, Olivier Chapelle, and Matthias Hein. Measure based regularization. In Advances in Neural
Information Processing Systems, volume 16, 2004.

86

Xavier Bresson, Thomas Laurent, David Uminsky, and James Brecht. Convergence and energy landscape
for cheeger cut clustering. In Advances in Neural Information Processing Systems 25, pages 1385–1393,
2012.

Dmitri Burago, Sergei Ivanov, and Yaroslav Kurylev. A graph discretization of the Laplace-Beltrami oper-
ator. Journal of Spectral Theory, 4(4):675–714, 2014.

Jeff Calder and Nicolás Garćıa Trillos. Improved spectral convergence rates for graph Laplacians on epsilon-
graphs and k-NN graphs. arXiv preprint arXiv:1910.13476, 2019.

Jeff Calder, Nicolas Garcia Trillos, and Marta Lewicka. Lipschitz regularity of graph laplacians on random
data clouds. arXiv preprint arXiv:2007.06679, 2020a.

Jeff Calder, Dejan Slepčev, and Matthew Thorpe. Rates of convergence for laplacian semi-supervised learning
with low labeling rates. arXiv preprint arXiv:2006.02765, 2020b.

Kamalika Chaudhuri and Sanjoy Dasgupta. Rates of convergence for the cluster tree. In Advances in Neural
Information Processing Systems 23, pages 343–351. Curran Associates, Inc., 2010.

Xiuyuan Cheng and Nan Wu. Eigen-convergence of gaussian kernelized graph laplacian by manifold heat
interpolation. arXiv preprint arXiv:2101.09875, 2021.

Fan RK Chung. Spectral graph theory. American Mathematical Soc., 1997.

Aaron Clauset, Cristopher Moore, and MEJ Newman. Hierarchical structure and the prediction of missing
links in networks. Nature, 453(7191):98–102, 2008.

R. M. Dudley. Distances of probability measures and random variables. Ann. Math. Statist., 39(5):1563–1572,
10 1968.

Matthew M Dunlop, Dejan Slepčev, Andrew M Stuart, and Matthew Thorpe. Large data and zero noise
limits of graph-based semi-supervised learning algorithms. Applied and Computational Harmonic Analysis,
49(2):655–697, 2020.

David B Dunson, Hau-Tieng Wu, and Nan Wu. Spectral convergence of graph laplacian and heat kernel
reconstruction in l∞ from random samples, 2020.

Martin Dyer, Alan Frieze, and Ravi Kannan. A random polynomial-time algorithm for approximating the
volume of convex bodies. Journal of the ACM (JACM), 38(1):1–17, 1991.

Ahmed El Alaoui, Xiang Cheng, Aaditya Ramdas, Martin J Wainwright, and Michael I Jordan. Asymptotic
behavior of\ell p-based laplacian regularization in semi-supervised learning. In Conference on Learning
Theory, pages 879–906, 2016.

Lawrence C. Evans. Partial Differential Equations. American Mathematical Society, 2010.

Lawrence Craig Evans and Ronald F Gariepy. Measure theory and fine properties of functions. Chapman
and Hall/CRC, 2015.

Herbert Federer. Curvature measures. Transactions of the American Mathematical Society, 93(3):418–491,
1959.

Roy Frostig, Cameron Musco, Christopher Musco, and Aaron Sidford. Principal component projection
without principal component analysis. In International Conference on Machine Learning, pages 2349–
2357. PMLR, 2016.

Nicolás Garćıa Trillos and Ryan W. Murray. A maximum principle argument for the uniform convergence
of graph Laplacian regressors. SIAM Journal on Mathematics of Data Science, 2(3):705–739, 2020.

Nicolas Garćıa Trillos and Dejan Slepcev. On the rate of convergence of empirical measures in infinity-
transportation distance. Canadian Journal of Mathematics, 67(6):1358–1383, 2015.

87

Nicolás Garćıa Trillos and Dejan Slepčev. On the rate of convergence of empirical measures in infinity-
transportation distance. Canadian Journal of Mathematics, 67(6):1358–1383, 2015.

Nicolás Garćıa Trillos and Dejan Slepčev. A variational approach to the consistency of spectral clustering.
Applied and Computational Harmonic Analysis, 45(2):239–281, 2018a.

Nicolás Garćıa Trillos and Dejan Slepčev. A variational approach to the consistency of spectral clustering.
Applied and Computational Harmonic Analysis, 45(2):239–281, 2018b.

Nicolás Garćıa Trillos, Dejan Slepčev, James Von Brecht, Thomas Laurent, and Xavier Bresson. Consistency
of cheeger and ratio graph cuts. Journal of Machine Learning Research, 17(1):6268–6313, 2016.

Nicolás Garćıa Trillos, Moritz Gerlach, Matthias Hein, and Dejan Slepcev. Error estimates for spectral
convergence of the graph Laplacian on random geometric graphs toward the Laplace–Beltrami operator.
Foundations of Computational Mathematics, 20:1–61, 2019a.

Nicolás Garćıa Trillos, Franca Hoffmann, and Bamdad Hosseini. Geometric structure of graph laplacian
embeddings. arXiv preprint arXiv:1901.10651, 2019b.

Nicolás Garćıa Trillos, Moritz Gerlach, Matthias Hein, and Dejan Slepčev. Error estimates for spectral
convergence of the graph laplacian on random geometric graphs toward the laplace–beltrami operator.
Foundations of Computational Mathematics, 20(4):827–887, 2020.

Shayan Oveis Gharan and Luca Trevisan. Approximating the expansion profile and almost optimal local
graph clustering. In Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 187–196. IEEE, 2012.

Evarist Giné and Armelle Guillou. Rates of strong uniform consistency for multivariate kernel density
estimators. In Annales de l’Institut Henri Poincare (B) Probability and Statistics, volume 38, pages 907–
921. Elsevier, 2002.

Evarist Giné and Richard Nickl. Mathematical foundations of infinite-dimensional statistical models, vol-
ume 40. Cambridge University Press, 2016.

David F Gleich and C Seshadhri. Vertex neighborhoods, low conductance cuts, and good seeds for local
community methods. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 597–605. ACM, 2012.

Alden Green, Sivaraman Balakrishnan, and Ryan Tibshirani. Minimax optimal regression over sobolev spaces
via laplacian regularization on neighborhood graphs. In International Conference on Artificial Intelligence
and Statistics, pages 2602–2610. PMLR, 2021.

Peter J. Green and Bernard W. Silverman. Nonparametric Regression and Generalized Linear Models: A
Roughness Penalty Approach. Chapman & Hall/CRC Press, 1993.

Stephen Guattery and Gary L Miller. On the performance of spectral graph partitioning methods. In SODA,
volume 95, pages 233–242, 1995.

Emmanuel Guerre and Pascal Lavergne. Optimal minimax rates for nonparametric specification testing in
regression models. Econometric Theory, 18(5):1139–1171, 2002.

László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A Distribution-Free Theory of Nonpara-
metric Regression. Springer, 2006.

John A Hartigan. Clustering algorithms. John Wiley & Sons, Inc., 1975.

John A. Hartigan. Consistency of single-linkage for high-density clusters. Journal of the American Statistical
Association, 1981.

88

Taher H Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE
transactions on knowledge and data engineering, 15(4):784–796, 2003.

Matthias Hein and Thomas Bühler. An inverse power method for nonlinear eigenproblems with applications
in 1-spectral clustering and sparse pca. In Advances in Neural Information Processing Systems 23, pages
847–855, 2010.

Harrie Hendriks. Nonparametric estimation of a probability density on a riemannian manifold using fourier
expansions. The Annals of Statistics, pages 832–849, 1990.

Wassily Hoeffding. The large-sample power of tests based on permutations of observations. Annals of
Mathematical Statistics, 23(2):169–192, 1952.

Franca Hoffmann, Bamdad Hosseini, Assad A Oberai, and Andrew M Stuart. Spectral analysis of weighted
laplacians arising in data clustering. arXiv preprint arXiv:1909.06389, 2019.

Lars Hörmander. The analysis of linear partial differential operators III: Pseudo-differential operators.
Springer Science & Business Media, 2007.

Daniel Hsu, Sham M Kakade, and Tong Zhang. Random design analysis of ridge regression. In Conference
on learning theory, pages 9–1, 2012.

Jan-Christian Hütter and Philippe Rigollet. Optimal rates for total variation denoising. In Conference on
Learning Theory, volume 29, 2016.

Yuri I. Ingster. Minimax nonparametric detection of signals in white Gaussian noise. Problems in Information
Transmission, 18:130–140, 1982.

Yuri I. Ingster. Minimax testing of nonparametric hypotheses on a distribution density in the Lp metrics.
Theory of Probability & Its Applications, 31(2):333–337, 1987.

Yuri I. Ingster and Theofanis Sapatinas. Minimax goodness-of-fit testing in multivariate nonparametric
regression. Mathematical Methods of Statistics, 18(3):241–269, 2009.

Yuri I. Ingster and Irina A. Suslina. Nonparametric goodness-of-fit testing under Gaussian models. Springer
Science & Business Media, 2012.

Heinrich Jiang. Density level set estimation on manifolds with DBSCAN. In Proceedings of the 34th Inter-
national Conference on Machine Learning, volume 70 of ICML’17, pages 1684–1693, 2017.

Yujia Jin and Aaron Sidford. Principal component projection and regression in nearly linear time through
asymmetric svrg. In Advances in Neural Information Processing Systems, volume 32, 2019.

Iain M. Johnstone. Gaussian estimation: Sequence and wavelet models. Unpublished manuscript, 2011.

Ilmun Kim, Sivaraman Balakrishnan, and Larry Wasserman. Minimax optimality of permutation tests.
arXiv preprint arXiv:2003.13208, 2020.

Alisa Kirichenko and Harry van Zanten. Estimating a smooth function on a large graph by Bayesian Laplacian
regularisation. Electronic Journal of Statistics, 11(1):891–915, 2017.

Alisa Kirichenko, Harry van Zanten, et al. Minimax lower bounds for function estimation on graphs. Elec-
tronic Journal of Statistics, 12(1):651–666, 2018.

Vladimir Koltchinskii and Evarist Gine. Random matrix approximation of spectra of integral operators.
Bernoulli, 6(1):113–167, 02 2000.

Risi Kondor and John Lafferty. Diffusion kernels on graphs and other discrete structures. In International
Conference on Machine Learning, volume 19, 2002.

89

Aleksandr P. Korostelev and Alexandre B. Tsybakov. Minimax theory of image reconstruction. Springer,
1993.

Samory Kpotufe and Ulrike von Luxburg. Pruning nearest neighbor cluster trees. In Proceedings of the 28th
International Conference on International Conference on Machine Learning, ICML’11, pages 225–232,
2011.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selection.
Annals of Statistics, pages 1302–1338, 2000.

Ann B. Lee, Rafael Izbicki, et al. A spectral series approach to high-dimensional nonparametric regression.
Electronic Journal of Statistics, 10(1):423–463, 2016.

Jing Lei and Alessandro Rinaldo. Consistency of spectral clustering in stochastic block models. Ann. Statist.,
43(1):215–237, 02 2015.

Giovanni Leoni. A first Course in Sobolev Spaces. American Mathematical Society, 2017.

Jure Leskovec, Kevin J. Lang, and Michael Mahoney. Empirical comparison of algorithms for network
community detection. In Proceedings of the 19th International Conference on World Wide Web, 2010.

Tianxi Li, Lihua Lei, Sharmodeep Bhattacharyya, Purnamrita Sarkar, Peter J Bickel, and Elizaveta Levina.
Hierarchical community detection by recursive partitioning. arXiv preprint arXiv:1810.01509, 2018.

Anna V Little, Mauro Maggioni, and James M Murphy. Path-based spectral clustering: Guarantees, robust-
ness to outliers, and fast algorithms. Journal of Machine Learning Research, 21(6):1–66, 2020.

Meimei Liu, Zuofeng Shang, and Guang Cheng. Sharp theoretical analysis for nonparametric testing under
random projection. In Conference on Learning Theory, volume 32, 2019.

László Lovász and Miklós Simonovits. The mixing rate of markov chains, an isoperimetric inequality, and
computing the volume. In Proceedings of the 31st annual symposium on foundations of computer science
(FOCS), pages 346–354. IEEE, 1990.

Michael W. Mahoney, Lorenzo Orecchia, and Nisheeth K. Vishnoi. A local spectral method for graphs: with
applications to improving graph partitions and exploring data graphs locally. Journal of Machine Learning
Research, 13:2339–2365, 2012.

Frank McSherry. Spectral partitioning of random graphs. In Proceedings of the 42nd IEEE Symposium on
Foundations of Computer Science (FOCS), pages 529–537, 2001.

Ravi Montenegro. Faster mixing by isoperimetric inequalities. PhD thesis, Yale University, 2002.

Ben Morris and Yuval Peres. Evolving sets, mixing and heat kernel bounds. Probability Theory and Related
Fields, 133(2):245–266, 2005.

Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster approx-
imate singular value decomposition. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

Boaz Nadler, Nathan Srebro, and Xueyuan Zhou. Semi-supervised learning with the graph Laplacian: The
limit of infinite unlabelled data. In Neural Information Processing Systems, volume 19, 2009.

Partha Niyogi. Manifold regularization and semi-supervised learning: Some theoretical analyses. Journal of
Machine Learning Research, 14(1):1229–1250, 2013.

Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds with high
confidence from random samples. Discrete & Computational Geometry, 39(1):419–441, 2008.

Bruno Pelletier and Pierre Pudlo. Operator norm convergence of spectral clustering on level sets. Journal
of Machine Learning Research, 12(12):385–416, 2011.

90

Wolfgang Polonik. Measuring mass concentrations and estimating density contour clusters-an excess mass
approach. Ann. Statist., 23(3):855–881, 1995.

Christian Rieger and Barbara Zwicknagl. Sampling inequalities for infinitely smooth functions, with ap-
plications to interpolation and machine learning. Advances in Computational Mathematics, 32(1):103,
2010.

Philippe Rigollet and Régis Vert. Optimal rates for plug-in estimators of density level sets. Bernoulli, 15
(4):1154–1178, 2009.

Alessandro Rinaldo and Larry Wasserman. Generalized density clustering. Ann. Statist., 38(5):2678–2722,
10 2010.

Karl Rohe, Sourav Chatterjee, and Bin Yu. Spectral clustering and the high-dimensional stochastic block-
model. Ann. Statist., 39(4):1878–1915, 08 2011.

Lorenzo Rosasco, Mikhail Belkin, and Ernesto De Vito. On learning with integral operators. Journal of
Machine Learning Research, 11(Feb):905–934, 2010.

Veeranjaneyulu Sadhanala, Yu-Xiang Wang, and Ryan J Tibshirani. Total variation classes beyond 1d:
Minimax rates, and the limitations of linear smoothers. In Advances in Neural Information Processing
Systems, volume 29, 2016a.

Veeranjaneyulu Sadhanala, Yu-Xiang Wang, James L Sharpnack, and Ryan J Tibshirani. Higher-order total
variation classes on grids: Minimax theory and trend filtering methods. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Veeru Sadhanala, Yu-Xiang Wang, and Ryan Tibshirani. Graph sparsification approaches for laplacian
smoothing. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics,
volume 51, pages 1250–1259, 2016b.

Geoffrey Schiebinger, Martin J. Wainwright, and Bin Yu. The geometry of kernelized spectral clustering.
Ann. Statist., 43(2):819–846, 04 2015.

James Sharpnack and Aarti Singh. Identifying graph-structured activation patterns in networks. In Advances
in Neural Information Processing Systems, volume 23, 2010.

James Sharpnack, Akshay Krishnamurthy, and Aarti Singh. Near-optimal anomaly detection in graphs using
Lovasz extended scan statistic. In Advances in Neural Information Processing Systems, volume 26, 2013a.

James Sharpnack, Aarti Singh, and Akshay Krishnamurthy. Detecting activations over graphs using spanning
tree wavelet bases. In International Conference on Artificial Intelligence and Statistics, volume 16, 2013b.

James Sharpnack, Alessandro Rinaldo, and Aarti Singh. Detecting anomalous activity on networks with the
graph Fourier scan statistic. IEEE Transactions on Signal Processing, 64(2):364–379, 2015.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8), 2000.

Tao Shi, Mikhail Belkin, and Bin Yu. Data spectroscopy: Eigenspaces of convolution operators and clustering.
Ann. Statist., 37(6B):3960–3984, 12 2009.

Zuoqiang Shi. Convergence of laplacian spectra from random samples. arXiv preprint arXiv:1507.00151,
2015.

B. W. Silverman. Spline Smoothing: The Equivalent Variable Kernel Method. The Annals of Statistics, 12
(3):898 – 916, 1984.

Amit Singer and Hau-Tieng Wu. Spectral convergence of the connection laplacian from random samples.
Information and Inference: A Journal of the IMA, 6(1):58–123, 2017.

91

Aarti Singh, Clayton Scott, and Robert Nowak. Adaptive hausdorff estimation of density level sets. Ann.
Statist., 37(5B):2760–2782, 10 2009.

Dejan Slepčev and Matthew Thorpe. Analysis of p-laplacian regularization in semi-supervised learning.
SIAM Journal on Mathematical Analysis, 51:2085–2120, 2017.

Alexander J. Smola and Risi Kondor. Kernels and regularization on graphs. In Learning Theory and Kernel
Machines, pages 144–158. Springer, 2003.

Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on
Computing, 40(6):1913–1926, 2011.

Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on Computing,
40(4):981–1025, 2011.

Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs and its application
to nearly linear time graph partitioning. SIAM Journal on Computing, 42(1):1–26, 2013.

Daniel A. Spielman and Shang-Hua Teng. Nearly linear time algorithms for preconditioning and solving
symmetric, diagonally dominant linear systems. SIAM Journal on Matrix Analysis and Applications, 35
(3):835–885, 2014.

Ingo Steinwart. Fully adaptive density-based clustering. Ann. Statist., 43(5):2132–2167, 10 2015.

Ingo Steinwart, Bharath K Sriperumbudur, and Philipp Thomann. Adaptive clustering using kernel density
estimators. arXiv preprint arXiv:1708.05254, 2017.

Charles J Stone. Optimal rates of convergence for nonparametric estimators. The annals of Statistics, pages
1348–1360, 1980.

Alexandre B Tsybakov. On nonparametric estimation of density level sets. Ann. Statist., 25(3):948–969,
1997.

Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2008a.

Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2008b.

Sara van de Geer. Empirical Processes in M-estimation. Cambridge University Press, 2000.

Nisheeth K. Vishnoi. Laplacian solvers and their algorithmic applications. Foundations and Trends in
Theoretical Computer Science, 8(1-2):1–141, 2012.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.

Ulrike von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral clustering. Annals of
Statistics, 36(2):555–586, 2008.

Ulrike von Luxburg, Agnes Radl, and Matthias Hein. Hitting and commute times in large random neigh-
borhood graphs. Journal of Machine Learning Research, 15:1751–1798, 2014.

Martin J Wainwright. High-Dimensional Dtatistics: A Non-Asymptotic Biewpoint. Cambridge University
Press, 2019.

Daren Wang, Xinyang Lu, and Alessandro Rinaldo. Dbscan: Optimal rates for density-based cluster esti-
mation. Journal of machine learning research, 2019.

Xiao Wang, Pang Du, and Jinglai Shen. Smoothing splines with varying smoothing parameter. Biometrika,
100(4):955–970, 2013.

Yu-Xiang Wang, James Sharpnack, Alexander J. Smola, and Ryan J. Tibshirani. Trend filtering on graphs.
Journal of Machine Learning Research, 17(1):3651–3691, 2016.

92

Larry Wasserman. All of Nonparametric Statistics. Springer, 2006.

Xiao-Ming Wu, Zhenguo Li, Anthony M. So, John Wright, and Shih fu Chang. Learning with partially
absorbing random walks. In Advances in Neural Information Processing Systems 25, pages 3077–3085.
Curran Associates, Inc., 2012.

Amber Yuan, Jeff Calder, and Braxton Osting. A continuum limit for the pagerank algorithm. arXiv preprint
arXiv:2001.08973, 2020.

Dengyong Zhou, Jiayuan Huang, and Bernhard Scholkopf. Learning from labeled and unlabeled data on a
directed graph. In International Conference on Machine Learning, volume 22, 2005.

Xueyuan Zhou and Nathan Srebro. Error analysis of laplacian eigenmaps for semi-supervised learning.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pages
901–908. JMLR Workshop and Conference Proceedings, 2011.

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using Gaussian fields and
harmonic functions. In International Conference on Machine Learning, volume 20, 2003.

Zeyuan Allen Zhu, Silvio Lattanzi, and Vahab S Mirrokni. A local algorithm for finding well-connected
clusters. In Proceedings of the 30th International Conference on International Conference on Machine
Learning, pages 396–404, 2013.

93

Appendix A

Chapter 2 Appendix

The proofs of our major theorems largely consist of (at most) three modular parts.

1. Fixed graph results. Results which hold with respect to an arbitrary graph G, and are stated with
respect to functionals (i.e. normalized cut, conductance, and local spread) of G;

2. Sample-to-population results. For the specific choice G = Gn,r, w e relate the aforementioned
functionals to their population analogues.

3. Bounds on population functionals. (In the case of density clustering only.) When the candidate
cluster is a λ-density cluster, we bound the population functionals by a function of λ, as well as the
other relevant parameters introduced in Section 2.2.

Appendices A.1-A.3 will correspond to each of these three parts. In Appendix A.4, we will combine these
parts to prove the major theorems of our main text, Theorems 3 and 4, as well as our negative result,
Theorem 5. In Appendix A.5 we derive upper bounds for the aPPR vector, and show that under certain
conditions the PPR vector can perfectly separate two density clusters. Finally, in Appendix A.6 we give
relevant details regarding our experiments.

A.1 Fixed graph results

In this appendix, we give all results that hold with respect to an arbitrary graph G. For the convenience
of the reader, we begin by reviewing some notation from the main text, and also introduce some new
notation.

Notation. The graph G = (V,E) is an undirected and connected but otherwise arbitrary graph, defined
over vertices V = {1, . . . , n} with m = |E| total edges. The adjacency matrix of G is A, the degree matrix
is D, and the lazy random walk matrix over G is W = (I + D−1A)/2. If the lazy random walk originates

at a node v, the distribution of the lazy random walk q
(t)
v := q(v, t;G) after t steps is q

(t)
v := evW

t, with

stationary distribution π := π(G) := limt→∞ q
(t)
v with entries π(u) = deg(u;G)/vol(u;G).

For a starting distribution s (by distribution we mean a vector with non-negative entries), the PPR vector
ps = p(s, α;G) is the solution of

ps = αs+ (1− α)psW. (A.1)

When s = ev, we write pv := pev . It is easy to check that ps = α
∑∞
t=0(1− α)tq

(t)
s . Note that s need not be

a probability distribution (i.e. its entries need not sum to 1) to make sense of (A.1).

94

Given a distribution q (for instance, q = q
(t)
v for t ∈ N, q = pv, or q = π) and β ∈ (0, 1), the β-sweep cut of

q is

Sβ(q) =

{
u :

q(u)

deg(u;G)
> β

}
;

in the special case where q = pv we write Sβ,v for Sβ(pv). The argument of Sβ(·) will usually be clear from
context, in which case we will drop it and simply write Sβ . For j = 1, . . . , n, let βj be the smallest value
of β ∈ (0, 1) such that the sweep cut Sβj contains at least j vertices. For notational ease, we will write
Sj := Sβj , and S0 = ∅.

We now introduce the Lovasz-Simonovits curve hq(·) : [0, 2m] → [0, 1] to measure the extent to which a
distribution q is mixed. To do so, we first define a piecewise linear function q[·] : [0, 2m] → [0, 1]. Letting
q(S) :=

∑
u∈S q(u), we take q[vol(Sj)] = q(Sj) for each sweep cut Sj , and then extend q[·] by piecewise linear

interpolation to be defined everywhere on its domain. Then the mixedness of q is measured by

hq(k) := q[k]− k

2m
.

The Lovasz-Simonovits curve is a non-negative function, with hq(0) = hq(2m) = 0. The stationary distribu-
tion π is mixed, i.e. hπ(k) = 0 for all k ∈ [0, 2m]. Finally, both q[·] and hq(·) are concave functions, which
will be an important fact later on.

The conductance of V is abbreviated as Ψ(G) := Ψ(V ;G), and likewise for the local spread s(G) := s(V ;G).
Finally, for convenience we introduce the following functionals:

dmax(C;G) := max
u∈C

deg(u;G), dmin(C;G) := min
u∈C

deg(u;G)

dmax(G) := dmax(V ;G), dmin(G) := dmin(V ;G)

We note that dmin(G)2 ≤ dmin(G)·n ≤ vol(G) ≤ n·dmax(G), and that for any S ⊆ V , |S|·dmin(G) ≤ vol(S;G)
(where |S| is the cardinality of S.)

Organization. In the following sections we establish: (Section A.1.1) an upper bound on the misclassifi-
cation error of PPR in terms of α and Φ(C;G) (Lemma 1), and an analogous result for aPPR (Corollary 2);
(Section A.1.2) a uniform bound on the perturbations of the PPR vector, to be used later in the proof of

Theorem 26 (consistency of PPR); (Section A.1.3) upper bounds on the mixedness of q
(t)
v (as a function of

t) and pv (as a function of α), which will be helpful in the proofs of Proposition 1 and Theorem 5; (Section
A.1.4) an upper bound on τ∞(G) in terms of Ψ(G) and s(G) (Proposition 1); and (Section A.1.5) an upper

bound on the normalized cut Φ(Ĉ;G) in terms of Φ(C;G), to be used later in the proof of Theorem 5
(negative example).

A.1.1 Misclassification error of clustering with PPR and aPPR

For a candidate cluster C ⊆ V , we use the tilde-notation G̃ = G[C] to refer to the subgraph of G induced by

C. Similarly we write q̃
(t)
v := q(v, t; G̃) for the t-step distribution of the lazy random walk over G̃, π̃ = π(G[C])

for the stationary distribution of q̃
(t)
v (we will always assume G[C] is connected), and p̃v := p(v, α; G̃) for the

PPR vector over G̃.

Proof of Lemma 1. As mentioned in the main text, Lemma 1 is equivalent, up to constants, to Lemma 3.4
in Zhu et al. [2013], and the proof of Lemma 1 proceeds along very similar lines to the proof of that lemma.
In fact, we directly use the following three inequalities, derived in that work:

• (c.f. Lemma 3.2 of Zhu et al. [2013]) For any seed node v ∈ C, the PPR vector is lower bounded,

p̃v(u) ≥ 3

4

(
1− α · τ∞(G̃)

)
· π̃(u), for every u ∈ C. (A.2)

95

• (c.f. Corollary 3.3 of Zhu et al. [2013]) For any seed node v ∈ C, there exists a so-called leakage
distribution ` = `(v) such that supp(`) ⊆ C, ‖`‖1 ≤ 2Φ(C;G)/α, and

pv(u) ≥ p̃v(u)− p̃`(u), for every u ∈ C. (A.3)

• (c.f. Lemma 3.1 of Zhu et al. [2013]) There exists a set Cg ⊂ C with vol(Cg;G) ≥ 1
2vol(C;G)

such that for any seed node v ∈ Cg, the following inequality holds

pv(C
c) ≤ 2

Φ(C;G)

α
. (A.4)

We use (A.2)-(A.4) to separately upper bound vol(Sβ,v \ C;G), vol(C int \ Sβ,v;G) and vol(Cbdry \ Sβ,v;G);
here C int ∪ Cbdry = C is a partition of C, with

C int :=
{
u ∈ C : deg(u; G̃) >

(
1− α · β · vol(C;G)

)
deg(u;G)

}
,

consisting of those vertices u ∈ C with sufficient large degree in G̃.

First we upper bound vol(Sβ,v \ C;G). Observe that for any u ∈ Sβ,v \ C, pv(u) > β · deg(u;G). Summing
up over all such vertices, from (A.4) we conclude that

vol(Sβ,v \ C;G) ≤ pv(C
c)

β
≤ 2

Φ(C;G)

β · α
. (A.5)

Next we upper bound vol(C int \ Sβ,v;G). From (A.2) and (A.3) we see that

pv(u) ≥ 3

4

(
1− α · τ∞(G̃)

)
· π̃(u)− p̃`(u) for all u ∈ C.

If additionally u 6∈ Sβ,v then pv(u) ≤ β deg(u;G), and for all such u ∈ C \ Sβ,v,

3

4

(
1− α · τ∞(G̃)

)
· π̃(u)− β deg(u;G) ≤ p̃`(u). (A.6)

On the other hand, for any u ∈ C int it holds that

π̃(u) =
deg(u; G̃)

vol(G̃)
≥ deg(u; G̃)

vol(G)
≥ (1− αβvol(C;G)) deg(u;G)

vol(C;G)
;

by plugging this in to (A.6) we obtain(
3(1− αβvol(C;G)) ·

(
1− ατ∞(G̃)

)
4vol(C;G)

− β
)
· deg(u;G) ≤ p̃`(u), for all u ∈ C int \ Sβ,v;

and summing over all such u gives(
3(1− αβvol(C;G)) ·

(
1− ατ∞(G̃)

)
4vol(C;G)

− β
)
· vol

(
C int \ Sβ,v;G

)
≤ p̃`

(
C int \ Sβ,v

)
≤ 2

Φ(C;G)

α
.

The upper bounds on α and β in (2.12) imply(
3(1− αβvol(C;G)) ·

(
1− ατ∞(G̃)

)
4vol(C;G)

− β
)
≥ 2

3
β,

96

and we conclude that

vol(C int \ Sβ,v;G) ≤ 3Φ(C;G)

αβ
. (A.7)

Finally, we upper bound vol(Cbdry \ Sβ,v;G). Indeed, for any u ∈ Cbdry,

1

vol(C;G)

∑
w 6∈C

1((u,w) ∈ E) ≥ α · β · deg(u;G)

and summing over all such vertices yields

vol(Cbdry;G) ≤ 1

αβvol(C;G)

∑
u∈Cbdry

w 6∈C

1((u,w) ∈ E) ≤ Φ(C;G)

α · β
. (A.8)

The claim follows upon summing the upper bounds in (A.5), (A.7) and (A.8).

If the cluster estimate Ĉ is instead obtained by sweep cutting the aPPR vector p
(ε)
v , a similar upper bound

on vol(Ĉ M C) holds, provided that ε is sufficiently small.

Corollary 2. For a set C ⊆ V , suppose that α, β satisfy (2.12), and additionally that

ε ≤ 1

25vol(C;G)
. (A.9)

Then there exists a set Cg ⊂ C with vol(Cg;G) ≥ 1
2vol(Cg;G) such that for any v ∈ Cg, the sweep cut Sβ,v

of the aPPR vector p
(ε)
v satisfies

vol(Sβ,v M C;G) ≤ 6
Φ(C;G)

αβ
. (A.10)

Proof of Corollary 2. Recall that the upper bound (2.13) on vol(Ĉ M C;G) comes from combining the

upper bounds on vol(Ĉ \ C;G), vol(C int \ Ĉ;G) and vol(Cbdry \ Ĉ;G) in (A.5), (A.7) and (A.8). From the

upper bound p
(ε)
v (u) ≤ pv(u) for all u ∈ V , it is clear that both (A.5) and (A.8) continue to hold when the

aPPR vector is used instead of the PPR vector.

It remains only to establish an upper bound on vol(C int \ Ĉ;G). For any u ∈ C \Sβ,v, from inequality (A.3)

and the lower bound p
(ε)
v (u) ≥ pv(u)− εdeg(u;G) in (2.2) we deduce that

3

4

(
1− α · τ∞(G̃)

)
· π̃(u)− (β + ε) deg(u;G) ≤ p̃`(u). (A.11)

Following the same steps as used in the proof of Lemma 1 yields the following inequality:(
3(1− αβvol(C;G)) ·

(
1− ατ∞(G̃)

)
4vol(C;G)

− β
)
· vol

(
C int \ Sβ,v;G

)
≤ p̃`

(
C int \ Sβ,v

)
≤ 2

Φ(C;G)

α
.

The upper bounds on α, β in (2.12), and on ε in (A.9), imply that(
3(1− αβvol(C;G)) ·

(
1− ατ∞(G̃)

)
4vol(C;G)

− β
)
≥ 2

3
β,

and we conclude that

vol(C int \ Sβ,v;G) ≤ 3Φ(C;G)

αβ
. (A.12)

Summing the right hand sides of (A.3), (A.8), and (A.12) yields the claim.

97

A.1.2 Uniform bounds on PPR

As mentioned in our main text, in order to prove Theorem 26, we require a uniform bound on the PPR
vector. Actually, we require two such bounds: for a candidate cluster C ⊆ V and an alternative cluster
C ′ ⊆ V , we require a lower bound on pv(u) for all u ∈ C, and an upper bound on pv(u

′) for all u′ ∈ C ′.
In Lemma 7 we establish an upper bound that holds for all vertices u in the interior Co of C, and a lower
bound holds for all vertices u′ in the interior of C ′o of C ′; here

Co =
{
u ∈ C : deg(u, G̃) = deg(u;G)

}
, and C ′o =

{
u ∈ C ′ : deg(u,G[C ′]) = deg(u;G)

}
,

and we remind the reader that G̃ = G[C].

Lemma 7. Let C and C ′ be disjoint subsets of V , and suppose that

α ≤ 1

2τ∞(G̃)
.

Then there exists a set Cg ⊆ C with vol(Cg;G) ≥ vol(C;G)/2 such that for any v ∈ Cg,

pv(u) ≥ 3

8
π̃(u)− 2Φ(C;G)

dmin(G̃) · α
for all u ∈ Co (A.13)

and

pv(u
′) ≤ 2Φ(C;G)

dmin(C ′;G) · α
for all u ∈ C ′o. (A.14)

“Leakage” and “soakage” vectors. To prove Lemma 7, we will make use of the following explicit
representation of the leakage distribution ` from (A.4), as well as an analogously defined soakage distribution
s:

`(t) := ev(WĨ)t(I −D−1D̃), ` =

∞∑
t=0

(1− α)t`(t)

s(t) := ev(WĨ)tW (I − Ĩ), s =

∞∑
t=0

(1− α)ts(t).

(A.15)

In the above, Ĩ ∈ Rn×n is a diagonal matrix with Iuu = 1 if u ∈ C and 0 otherwise, and D̃ is the diagonal
matrix with D̃uu = deg(u; G̃) if u ∈ C, and 0 otherwise.

These quantities admit a natural interpretation in terms of random walks. For u ∈ C, `(t)(u) is the probability

that a lazy random walk over G originating at v stays within G̃ for t steps, arriving at u on the tth step,
and then “leaks out” of C on the (t + 1)st step. On the other hand, for u 6∈ C, s(t)(u) is the probability

that a lazy random walk over G originating at v stays within G̃ for t steps and is then “soaked up” into u
on the (t + 1)st step. The vectors ` and s then give the total mass leaked and soaked, respectively, by the
PPR vector.

Three properties of ` and s are worth pointing out. First, supp(`) ⊆ C \ Co and supp(s) ⊆ V \ C. Second,
‖`(t)‖1 = ‖s(t)‖1 for all t ∈ N, and so ‖`‖1 = ‖s‖1. Third, for any u ∈ V \ C, pv(u) = ps(u). The first
two properties are immediate. The third property follows by the law of total probability, which implies
that

q(τ)
v (u) =

τ∑
t=0

q
(τ−t)
s(t)

(u), for all u ∈ V \ C.

or in terms of the PPR vector,

pv(u) = α

∞∑
τ=0

(1− α)τq(τ)
v (u) = α

∞∑
τ=0

τ∑
t=0

(1− α)τq
(τ−t)
s(t)

(u).

98

Substituting ∆ = τ + t and rearranging gives the claimed property, as

pv(u) = α

∞∑
τ=0

τ∑
t=0

(1− α)τq
(τ−t)
s(t)

(u) =

∞∑
∆=0

∞∑
t=0

(1− α)∆+tq
(∆)

s(t)
(u) = α

∞∑
∆=0

(1− α)∆q(∆)
s (u) = ps(u).

Proof of Lemma 7. We first show (A.13). From (A.4) and (A.3), we have that

pv(u) ≥ 3

4

(
1− α · τ∞(G̃)

)
· π̃(u)− p̃`(u) for all u ∈ C,

where ` has support supp(`) ⊆ C with ‖`‖1 ≤ 2Φ(C;G)/α. Recalling that u ∈ Co implies that u 6∈ supp(Co),
as a consequence of (A.32),

p̃`(u) ≤ ‖`‖1
dmin(G̃)

for all u ∈ Co,

establishing (A.13). The proof of (A.14) follows similarly:

pv(u) = ps(u)
(i)

≤ ‖s‖1
dmin(C ′;G)

=
‖`‖1

dmin(C ′;G)
, for all u ∈ C ′o,

where the presence of dmin(C ′;G) on the right hand side of (i) can be verified by inspecting (A.33).

A.1.3 Mixedness of lazy random walk and PPR vectors

In this subsection, we give upper bounds on h(t) := h
q
(t)
v

and h(α) := hpv . Although similar bounds exist in

the literature (see in particular Theorem 1.1 of [Lovász and Simonovits, 1990] and Theorem 3 of [Andersen
et al., 2006]), we could not find precisely the results we needed, and so for completeness we state and prove
these results ourselves.

Theorem 22. For any k ∈ [0, 2m], t0 ∈ N and t ≥ t0,

h(t)(k) ≤ 1

2t0
+
dmax(G)

dmin(G)2
+

m

dmin(G)2

(
1− Ψ(G)2

8

)t−t0
. (A.16)

Theorem 23. Let φ be any constant in [0, 1]. Either the following bound holds for any t ∈ N and any
k ∈ [dmax(G), 2m− dmax(G)]:

h(α)(k) ≤ αt+
2α

1 + α
+
dmax(G)

dmin(G)2
+

m

dmin(G)2

(
1− φ2

8

)t
,

or there exists some sweep cut Sj of pv such that Φ(Sj ;G) < φ.

The proofs of these upper bounds will be similar to each other (in places word-for-word alike), and will follow
a similar approach and use similar notation to that of [Lovász and Simonovits, 1990, Andersen et al., 2006].
For h : [0, 2m]→ [0, 1], 0 ≤ K0 ≤ m and k ∈ [K0, 2m−K0], define

LK0
(k;h) =

2m−K0 − k
2m− 2K0

h(K0) +
k −K0

2m− 2K0
h(2m−K0)

to be the linear interpolant of h(K0) and h(2m−K0), and additionally let

C(K0;h) := max

{
h(k)− LK0(k;h)√

sk
: K0 ≤ k ≤ 2m−K0

}
.

where we use the notation sk := min{k, 2m−k}, and treat 0/0 as equal to 1. Our first pair of Lemmas upper
bound h(t) and h(α) as a function of LK0

and C(K0). Lemma 8 implies that if t is large relative to Ψ(G),
then h(t)(·) must be small.

99

Lemma 8 (c.f. Theorem 1.2 of [Lovász and Simonovits, 1990]). For any K0 ∈ [0,m], k ∈ [K0, 2m−
K0], t0 ∈ N and t ≥ t0,

h(t)(k) ≤ LK0(k;h(t0)) + C(K0;h(t0))
√
sk ·
(

1− Ψ(G)2

8

)t−t0
(A.17)

Lemma 9 implies that if the PPR random walk is not well mixed, then some sweep cut of pv must have small
normalized cut.

Lemma 9 (c.f Theorem 3 of [Andersen et al., 2006]). Let φ ∈ [0, 1]. Either the following bound holds
for any t ∈ N, any K0 ∈ [0,m], and any k ∈ [K0, 2m−K0]:

h(α)(k) ≤ αt+ LK0
(k;h(α)) + C(K0;h(α))

√
sk

(
1− φ2

8

)t
(A.18)

or else there exists some sweep cut Sj of pv such that Φ(Sj ;G) < φ.

In order to make use of these Lemmas, we require upper bounds on LK0(·, h) and C(K0;h), for each of h =
h(t0) and h = h(α). Of course, trivially LK0

(k;h) ≤ max{h(K0);h(2m−K0)} for any k ∈ [K0, 2m−K0]. As
it happens, this observation will lead to sufficient upper bounds on LK0

(k, h) for both h = h(t0) (Lemma 10)
and h = h(α) (Lemma 11).

Lemma 10. For any t0 ∈ N and K0 ∈ [0,m], the following inequalities hold:

h(t0)
(
2m−K0

)
≤ K0

2m
and h(t0)

(
K0

)
≤ K0

dmin(G)2
+

1

2t0
. (A.19)

As a result, for any k ∈ [K0, 2m−K0],

LK0
(k;h(t0)) ≤ max

{K0

2m
,

K0

dmin(G)2
+

1

2t0

}
=

K0

dmin(G)2
+

1

2t0
. (A.20)

Lemma 11. For any α ∈ [0, 1] and K0 ∈ [0,m], the following inequalities hold:

h(α)
(
2m−K0

)
≤ K0

2m
and h(α)

(
K0

)
≤ K0

dmin(G)2
+

2α

1 + α
. (A.21)

As a result, for any k ∈ [K0, 2m−K0],

LK0
(k;h(α)) ≤ max

{K0

2m
,

K0

dmin(G)2
+

2α

1 + α

}
=

K0

dmin(G)2
+

2α

1 + α
. (A.22)

We next establish an upper bound on CK0
(k;h), which rests on the following key observation: since h(k) is

concave and LK0
(K0;h) = h(K0), it holds that

h(k)− LK0(k)√
sk

≤

{
h′(K0)

√
k, k ≤ m

−h′(2m−K0)
√

2m− k, k > m.
(A.23)

(Since h is not differentiable at k = kj , here h′ refers to the right derivative of h.)

Lemma 12 gives good estimates for h′(K0) and h′(2m−K0), which hold for both h = h(t0) and h = h(α), and
result in an upper bound on C(K0;h). Both the statement and proof of this Lemma rely on the following
explicit representation of the Lovasz-Simonovits curve hq(·). Order the vertices q(u(1))/deg(u(1);G) ≥

100

q(u(2))/ deg(u(2);G) ≥ · · · ≥ q(u(n))/ deg(u(n);G). Then for each j = 0, . . . , n − 1, and for all k ∈
[vol(Sj), vol(Sj+1)), the function hq(k) satisfies

hq(k) =

j∑
i=0

(
q(u(i))− π(u(i))

)
+

(
k − vol(Sj ;G)

)
deg(u(j+1);G)

(
q(u(j+1))− π(u(j+1))

)
. (A.24)

Lemma 12. The following statements hold for both h = h(α) and h = h(t0).

• Let K0 = k1 = deg(v;G) if u(1) = v, and otherwise K = 0. Then

h′
(
K0

)
≤ 1

dmin(G)2
. (A.25)

• For all K0 ∈ [0,m],

h′(2m−K0) ≥ − dmax(G)

dmin(G) · vol(G)
. (A.26)

As a result, letting K0 = deg(v;G) if u(1) = v, and otherwise letting K0 = 0, we have

C(K0, h) ≤
√
m

dmin(G)2
.

Proof of Theorems 22 and 23

Proof of Theorem 22. Take K0 = 0 if u(1) 6= v, and otherwise take K0 = deg(v;G). Combining
Lemmas 8, 10 and 12, we obtain that for any k ∈ [K0, 2m−K0],

h(t)(k) ≤ 1

2t0
+

K0

dmin(G)2
+

√
m

dmin(G)2

√
sk
(

1− Ψ2(G)

8

)t−t0
≤ 1

2t0
+
dmax(G)

dmin(G)2
+

m

dmin(G)2

(
1− Ψ2(G)

8

)t−t0
,

where the second inequality follows since we have chosen K0 ≤ dmax(G), and since sk ≤ m. If K0 = 0, we
are done.

Otherwise, we must still establish that (A.17) is a valid upper bound when k ∈ [0,deg(v;G)) ∪ (2m −
deg(v;G), 2m]. If k ∈ [0,deg(v;G)) then

h(t)(k)
(A.29)

≤ h(t0)(k)
(i)

≤ h(t0)(K0)
(A.19)

≤ K0

dmin(G)2
+

1

2t0
, (A.27)

where (i) follows since k ∈ [0,K0], and h(t0) is linear over [0,K0) with h(t0)(0) = 0 and h(t0)(K0) ≥ 0. For
similar reasons,

h(t)(k) ≤ h(t0)(k) ≤ h(t0)(2m−K0) ≤ deg(v;G)

2m
. (A.28)

Since the ultimate upper bounds in (A.27) and (A.28) are each no greater than that of (A.17), the claim
follows.

Proof of Theorem 23. The proof of Theorem 23 follows immediately from Lemmas 9, 11 and 12, taking
K0 = 0 if u(1) 6= v and otherwise K0 = deg(v;G).

101

Proofs of Lemmas

In what follows, for a distribution q and vertices u,w ∈ V , we write q(u,w) := q(u)/d(u) · 1{(u,w) ∈ E},
and similarly for a collection of dyads Ẽ ⊆ V × V we write q(Ẽ) :=

∑
(u,w)∈Ẽ q(u,w).

Proof of Lemma 8. We will prove Lemma 8 by induction on t. In the base case t = t0, observe that

C(K0;h(t0)) ·
√
sk ≥ h(t0)(k)− LK0(k;h(t0)) for all k ∈ [K0, 2m−K0], which implies

LK0(k;h(t0)) + C(K0;h(t0)) ·
√
sk ≥ h(t0)(k).

Now, we proceed with the inductive step, assuming that the inequality holds for t0, t0 + 1, . . . , t − 1, and
proving that it thus also holds for t. By the definition of LK0

, the inequality (A.17) holds when k = K0 or
k = 2m −K0. We will additionally show that (A.17) holds for every kj = vol(Sj), j = 1, 2, . . . , n such that
kj ∈ [K0, 2m −K0]. This suffices to show that the inequality (A.17) holds for all k ∈ [K0, 2m −K0], since
the right hand side of (A.17) is a concave function of k.

Now, we claim that for each kj , it holds that

q(t)
v [kj] ≤

1

2

(
q(t−1)
v [kj − skjΨ(G)] + q(t−1)

v [kj + skjΨ(G)]
)
. (A.29)

To establish this claim, we note that for any u ∈ V

q(t)
v (u) =

1

2
q(t−1)
v (u) +

1

2

∑
w∈V

q(t−1)
v (w, u) =

1

2

∑
w∈V

(
q(t−1)
v (u,w) + q(t−1)

v (w, u)
)
,

and consequentially for any S ⊂ V ,

q(t)
v (S) =

1

2

{
q(t−1)
v (in(S)) + q(t−1)

v (out(S))
}

=
1

2

{
q(t−1)
v

(
in(S) ∪ out(S)

)
+ q(t−1)

v

(
in(S) ∩ out(S)

)}
where in(S) = {(u,w) ∈ E : u ∈ S} and out(S) = {(w, u) ∈ E : w ∈ S}. We deduce that

q(t)
v [kj] = q(t)

v (Sj) =
1

2

{
q(t−1)
v

(
in(Sj) ∪ out(Sj)

)
+ q(t−1)

v

(
in(Sj) ∩ out(Sj)

)}
≤ 1

2

{
q(t−1)
v

[
|in(Sj) ∪ out(Sj)|

]
+ q(t−1)

v

[
|in(Sj) ∩ out(Sj)|

]}
=

1

2

{
q(t−1)
v

[
kj + cut(Sj ;G)

]
+ q(t−1)

v

[
kj − cut(Sj ;G)

]}
≤ 1

2

{
q(t−1)
v

[
kj + skjΦ(Sj ;G)

]
+ q(t−1)

v

[
kj − skjΦ(Sj ;G)

]}
≤ 1

2

{
q(t−1)
v

[
kj + skjΨ(G)

]
+ q(t−1)

v

[
kj − skjΨ(G)

]}
,

establishing (A.29). The final two inequalities both follow from the concavity of q
(t)
v [·].

Subtracting kj/2m from both sides, we get

h(t)(kj) ≤
1

2

{
h(t−1)

(
kj + skjΨ(G)

)
+ h(t−1)

(
kj − skjΨ(G)

)}
. (A.30)

At this point, we divide our analysis into cases.

102

Case 1. Assume kj−Ψ(G)skj and kj +2Ψ(G)skj are both in [K0, 2m−K0]. We are therefore in a position to
apply our inductive hypothesis to both terms on the right hand side of (A.30) and obtain the following:

h(t)(kj) ≤
1

2

(
LK0

(
kj −Ψ(G)skj ;h

(t0)
)

+ LK0

(
kj + Ψ(G)skj ;h

(t0)
))

+

1

2
C
(
K0;h(t0)

)
·
(√

�kj −Ψ(G)sjk +

√
�kj + Ψ(G)sjk

)(
1− Ψ(G)2

8

)t−t0−1

= LK0
(k;h(t0)) +

1

2

(
C(K0;ht0)

(√
�kj −Ψ(G)sjk +

√
�kj + Ψ(G)sjk

)(
1− Ψ(G)2

8

)t−t0−1)
≤ LK0(k;h(t0)) +

1

2

(
C(K0;h(t0))

(√
skj −Ψ(G)skj +

√
skj + Ψ(G)skj

)(
1− Ψ(G)2

8

)t−t0−1)
.

A Taylor expansion of
√

1 + Ψ(G) around Ψ(G) = 0 yields the following bound:

√
1 + Ψ(G) +

√
1−Ψ(G) ≤ 2− Ψ(G)2

4
,

and therefore

h(t)(kj) ≤ LK0
(k;h(t0)) +

C(K0;h(t0))

2
·
√
skj ·

(
2− Ψ(G)2

4

)(
1− Ψ(G)2

8

)t−1

= LK0(kj ;h
(t0)) + C(K0;h(t0))

√
skj

(
1− Ψ(G)2

8

)t−t0
.

Case 2. Otherwise one of kj − 2Ψ(G)skj or kj + 2Ψ(G)skj is not in [K0, 2m−K0]. Without loss of generality
assume kj < m, so that (i) we have kj − 2Ψ(G)skj < K0 and (ii) kj + (kj −K0) ≤ 2m−K0. We deduce the
following:

h(t)(kj)
(i)

≤ 1

2

(
h(t−1)(K0) + h(t−1)

(
kj + (kj −K0)

))
(ii)

≤ 1

2

(
h(t0)(K0) + h(t)

(
kj + (kj −K0)

))
(iii)

≤ 1

2

(
LK0

(K0;h(t0)) + LK0
(2kj −K0;h(t0)

)
+ C(K0;h(t0))

√
�2kj −K0

(
1− Ψ(G)2

8

)t−t0−1)

≤ LK0
(kj ;h

(t0)) + C(K0;h(t0))

√
2skj

2

(
1− Ψ(G)2

8

)t−t0−1

≤ LK0
(kj ;h

(t0)) + C(K0;h(t0))
√
skj ·

(
1− Ψ(G)2

8

)t−t0
where ((i)) follows from (A.30) and the concavity of h(t−1), we deduce (ii) from (A.30), which implies that
h(t)(k) ≤ h(t0)(k), and (iii) follows from applying the inductive hypothesis to h(t−1)(2kj −K0).

Proof (of Lemma 9). We will show that if Φ(Sj ; g) ≥ φ for each j = 1, . . . , n, then (A.18) holds for all t
and any k ∈ [K0, 2m−K0].

We proceed by induction on t. Our base case will be t = 0. Observe that C(K0;h(α)) ·
√
sk ≥ h(α)(k) −

LK0
(k;h(α)) for all k ∈ [K0, 2m−K0], which implies

LK0
(k;h(α)) + C(K0;h(α)) ·

√
sk ≥ h(α)(k).

103

Now, we proceed with the inductive step. By the definition of LK0 , the inequality (A.18) holds when k = K0

or k = 2m − K0. We will additionally show that (A.18) holds for every kj = vol(Sj), j = 1, 2, . . . , n such
that kj ∈ [K0, 2m −K0]. This suffices to show that the inequality (A.18) holds for all k ∈ [K0, 2m −K0],
since the right hand side of (A.18) is a concave function of k.

By Lemma 5 of Andersen et al. [2006], we have that

pv[kj] ≤ α+
1

2

(
pv[kj − cut(Sj ;G)] + pv[kj + cut(Sj ;G)]

)
≤ α+

1

2

(
pv[kj − Φ(Sj ;G)skj] + pv[kj + Φ(Sj ;G)skj]

)
≤ α+

1

2

(
pv[kj − φskj] + pv[kj + φskj]

)
and subtracting kj/2m from both sides, we get

h(α)(kj) ≤ α+
1

2

(
h(α)(kj − φskj) + h(α)(kj + φskj)

)
(A.31)

From this point, we divide our analysis into cases.

Case 1. Assume kj − 2φskj and kj + 2φskj are both in [K0, 2m−K0]. We are therefore in a position to apply
our inductive hypothesis to (A.31), yielding

h(α)(kj) ≤ α+

α(t− 1)
1

2

(
LK0

(kj − φskj) + LK0
(kj + φskj) + C(K0;h(α))

(√
�kj − φsjk +

√
�kj + φsjk

)(
1− φ2

8

)t−1)
≤ αt+ LK0(k;h(α)) +

1

2

(
C(K0;h(α))

(√
�kj − φsjk +

√
�kj + φsjk

)(
1− φ2

8

)t−1)
≤ αt+ LK0

(k;h(α)) +
1

2

(
C(K0;h(α))

(√
skj − φskj +

√
skj + φskj

)(
1− φ2

8

)t−1)
.

and therefore

h(α)(kj) ≤ αt+ LK0
(k;h(α)) +

C(K0;h(α))

2
·
√
skj ·

(
2− φ2

4

)(
1− φ2

8

)t−1

= αt+ LK0(k;h(α)) + C(K0;h(α))
√
skj

(
1− φ2

8

)t
.

Case 2. Otherwise one of kj − 2φskj or kj + 2φskj is not in [K0, 2m−K0]. Without loss of generality assume
kj < m, so that (i) we have kj − 2φskj < K0 and (ii) kj + (kj −K0) ≤ 2m−K0. By the concavity of h, and
applying the inductive hypothesis to h(α)2kj −K0), we have

h(α)(kj) ≤ α+
1

2

(
h(α)(K0) + h

(
kj + (kj −K0)

))
≤ α+

α(t− 1)

2
+

1

2

(
LK0(K0; pα) + LK0(2kj −K0

)
+ C(K0;h(α))

√
�2kj −K0

(
1− φ2

8

)t−1)

≤ αt+ LK0
(kj) + C(K0;h(α))

√
2skj

2

(
1− φ2

8

)t−1

≤ αt+ LK0(kj) + C(K0;h(α))
√
skj ·

(
1− φ2

8

)t

104

Proof of Lemma 10. We will prove that the inequalities of (A.19) hold at the knot points of h(t0), whence
they follow for all K0 ∈ [0,m].

We first prove the upper bound on h(t0)(2m−K0), when 2m−K0 = kj for some j = 0, . . . , n− 1. Indeed,
the following manipulations show the upper bound holds for hq(·) regardless of the distribution q. Noting
that hq(2m) = 0, we have that,

hq(kj) = hq(kj)− hq(2m) =

n∑
i=j+1

q(u(i))− π(u(i)) ≤
n∑

i=j+1

π(u(i)) = 1− kj
2m

=
K0

2m
.

In contrast, when K0 = kj the upper bound on h(t0)(·) depends on the properties of q = q
(t0)
v . In particular,

we claim that for any t ∈ N,

q(t)
v (u) ≤

1

dmin(G)
, if u 6= v

1

dmin(G)
+

1

2t
, if u = v.

(A.32)

This claim follows straightforwardly by induction. In the base case t = 0, the claim is obvious. If the claim
holds true for a given t ∈ N, then for u 6= v,

q(t+1)
v (u) =

1

2

∑
w 6=u

q(t)
v (w, u) +

1

2
q(t)
v (u)

≤ 1

2dmin(G)

∑
w 6=u

q(t)
v (w) +

1

2dmin(G)

≤ 1

dmin(G)
,

(A.33)

where the last inequality holds because q
(t)
v is a probability distribution (i.e. the sum of its entries is equal

to 1). Similarly, if u = v, then

q(t+1)
v (v) =

1

2

∑
w 6=v

q(t)
v (w, v) +

1

2
q(t)
v (v)

≤ 1

2dmin(G)

∑
w 6=u

q(t)
v (w) +

1

2dmin(G)
+

1

2t+1

≤ 1

dmin(G)
+

1

2t+1
,

and the claim (A.32) is shown. The upper bound on h(t0)(K0) for K0 = kj follows straightforwardly:

h(t0)(K0) ≤
j∑
i=0

q(t0)
v (u(j)) ≤

j

dmin(G)
+

1

2t0
≤ K0

dmin(G)2
+

1

2t0
,

where the last inequality follows since vol(S) ≥ |S| · dmin(G) for any set S ⊆ V .

Proof of Lemma 11. We have already established the first upper bound in (A.21), in the proof of
Lemma 10. Then, noting that from (A.32),

pv(u) = α

∞∑
t=0

(1− α)tq(t)
v (u) ≤

α

∞∑
t=0

(1− α)t
(1

dmin(G)
+

1

2t

)
=

1

dmin(G)
+

2α

1− α
if u = v

α

∞∑
t=0

(1− α)t
1

dmin(G)
=

1

dmin(G)
if u 6= v,

(A.34)

the second upper bound in (A.21) follows similarly to the proof of the equivalent upper bound in Lemma 10.

105

Proof of Lemma 12. The result of the Lemma follows obviously from (A.23), once we show (A.25)-(A.26).
We begin by showing (A.25). Inspecting the representation (A.24), we see that for any distribution q and
knot point kj , the right derivative of hq can always be upper bounded,

h′q(kj) ≤
q(u(j+1))

deg(u(j+1);G)
.

We have chosen K0 = kj so that v 6= u(j+1), and so (A.32) implies that h′q(kj) ≤ 1/(dmin(G)2), for either

q = q
(t)
v or q = pv.

On the other hand, the inequality (A.26) follows immediately from the representation (A.24), since for any
K0 ∈ [0,m], taking j so that 2m−K0 ∈ [kj , kj+1),

h′(2m−K0) ≥ −
π(u(j+1))

deg(u(j+1);G)
≥ − dmax(G)

dmin(G) · vol(G)
.

A.1.4 Proof of Proposition 1

To prove Proposition 1, we will upgrade from an upper bound on the total variation distance between q
(t)
v and

π to the desired uniform upper bound. The total variation distance between distributions q and p is

TV(q, p) :=
1

2

∑
u∈v

∣∣q(u)− p(u)
∣∣

It follows from the representation (A.24) that

TV(q, π) = max
S⊆V

{
q(S)− π(S)

}
= max
j=1,...,n

{
q(Sj)− π(Sj)

}
= max
k∈[0,2m]

hq(k),

so that Theorem 22 gives an upper bound on TV(q
(t)
v , π). We can then use the following result to upgrade

to a uniform upper bound.

Lemma 13. For any t ∈ N,

max
u∈V

{π(u)− q(t+1)
v (u)

π(u)

}
≤ 2 · TV(q

(t)
v , π)

s(G)
.

The proof of Proposition 1 is then straightforward.

Proof of Proposition 1. Put t∗ = 8/(Ψ(G)2) ln(4/s(G)) + 4. We will use Theorem 22 to show that

TV(q
(t∗)
v , π) ≤ 1/4. This will in turn imply (Montenegro [2002] pg. 13) that for τ∗ = t∗ log2(8/s(G)),

TV(q(τ∗)
v , π) ≤ 1

8
s(G),

and applying Lemma 13 gives

max
u∈V

{π(u)− q(τ∗+1)
v (u)

π(u)

}
≤ 1

4
.

Taking maximum over all v ∈ V , we conclude that τ∞(G) ≤ τ∗ + 1, which implies the claim of Proposi-
tion 1.

106

It remains to show that TV(q
(t∗)
v , π) ≤ 1/4. Choosing t0 = 4 in the statement of Theorem 22, we have

that

TV(q(t∗)
v , π) ≤ 1

16
+
dmax(G)

dmin(G)2
+

1

2s(G)

(
1− Ψ(G)2

8

)t∗−4

≤ 1

8
+

1

2s(G)

(
1− Ψ(G)2

8

)t∗−4

≤ 1

8
+

1

2s(G)
exp
(
−Ψ(G)2

8
(t∗ − 4)

)
=

1

4
,

where the middle inequality follows by assumption.

Proof of Lemma 13. We proceed by induction. In the base case t = 0, we have that

max
u∈V

{π(u)− q(t+1)
v (u)

π(u)

}
≤ 1 ≤ 2(1− π(v)) ≤ 2

TV(q
(0)
v , π)

s(G)
,

, where the second inequality follows since π(v) ≤ dmax(G)/(2m) ≤ dmax(G)/dmin(G)2 ≤ 1/16.

To prove the inductive step, the key observation is the following equivalence (see equation (16) of [Morris
and Peres, 2005]):

π(u)− q(t+1)
v (u)

π(u)
=
∑
w∈V

(
π(w)− q(t)

v (w)
)
·
(q(1)

w (u)− π(u)

π(u)

)
=
∑
w 6=u

(
π(w)− q(t)

v (w)
)
·
(q(1)

w (u)− π(u)

π(u)

)
+
(
π(u)− q(t)

v (u)
)
·
(q(1)

u (u)− π(u)

π(u)

)
(A.35)

We separately upper bound each term on the right hand side of (A.35). The sum over all w 6= u can be

related to the TV distance between q
(t)
v and π using Hölder’s inequality,∑

w 6=u

(
π(w)− q(t)

v (w)
)
·
(q(1)

w (u)− π(u)

π(u)

)
≤ 2TV(q(t)

v , π) ·max
w 6=u

∣∣∣q(1)
w (u)− π(u)

π(u)

∣∣∣
≤ 2TV(q(t)

v , π) ·max

{
1,max
w 6=u

q
(1)
w (u)

π(u)

}
≤ 2TV(q(t)

v , π) · m

dmin(G)2
=

TV(q
(t)
v , π)

s(G)
.

On the other hand, the second term on the right hand side of (A.35) satisfies

(
π(u)− q(t)

v (u)
)
·
(q(1)

u (u)− π(u)

π(u)

)
≤
(
π(u)− q(t)

v (u)
)
·
(1/2− π(u)

π(u)

)
≤ π(u)− q(t)

v (u)

2π(u)
,

so that we obtain the recurrence relation

π(u)− q(t+1)
v (u)

π(u)
≤ TV(q

(t)
v , π)

s(G)
+
π(u)− q(t)

v (u)

2π(u)
.

Then by the inductive hypothesis
(
π(u)−q(t)

v (u)
)
/
(
2π(u)

)
≤ TV(q

(t−1)
v , π)/s(G), and consequentially

π(u)− q(t+1)
v (u)

π(u)
≤ TV(q

(t)
v , π)

s(G)
+

TV(q
(t−1)
v , π)

s(G)
≤ 2

TV(q
(t)
v , π)

s(G)
.

This completes the proof of Lemma 13.

107

A.1.5 Spectral partitioning properties of PPR

The following theorem is the main result of Section A.1.5. It relates the normalized cut of the sweep sets
Φ(Sβ ;G) to the normalized cut of a candidate cluster C ⊆ V , when pv is properly initialized within C.

Theorem 24 (c.f. Theorem 6 of Andersen et al. [2006]). Suppose that

dmax(G) ≤ vol(C;G) ≤ max
{2

3
vol(G); vol(G)− dmax(G)

}
(A.36)

and

max
{

288Φ(C;G) · ln
(36

s(G)

)
, 72Φ(C;G) +

dmax(G)

dmin(G)2

}
<

1

18
. (A.37)

Set α = 36 ·Φ(C;G). The following statement holds: there exists a set Cg ⊆ C of large volume, vol(Cg;G) ≥
5/6 · vol(C;G), such that for any v ∈ Cg, the minimum normalized cut of the sweep sets of pv satisfies

min
β∈(0,1)

Φ(Sβ,v;G) < 72

√
Φ(C;G) · ln

(36

s(G)

)
. (A.38)

A few remarks:

• Theorem 24 is similar to Theorem 6 of Andersen et al. [2006], but crucially the above bound depends on
log
(
1/s(G)

)
rather than logm. In the case where dmin(G)2 � vol(G) and thus s(G) � 1, this amounts

to replacing a factor of O(logm) by a factor of O(1), and therefore allows us to obtain meaningful
results in the limit as m→∞.

• For simplicity, we have chosen to state Theorem 24 with respect to a specific choice of α = 36 ·Φ(C;G),
but if α ≈ 36 · Φ(C;G) then the Theorem will still hold up to constant factors.

It follows from Markov’s inequality (see Theorem 4 of Andersen et al. [2006]) that there exists a set Cg ⊆ C
of volume vol(Cg;G) ≥ 5/6 · vol(C;G) such that for any v ∈ Cg,

pv(C) ≥ 1− 6Φ(C;G)

α
. (A.39)

The claim of Theorem 24 is a consequence of (A.39) along with Theorem 23, as we now demonstrate.

Proof of Theorem 24. From (A.39), the upper bound in (A.36), and the choice of α = 36·Φ(C;G),

pv(C)− π(C) ≥ 1

3
− 6Φ(C;G)

α
=

1

6
. (A.40)

Now, put

t∗ =
1

648Φ(C;G)
, φ2

∗ =
8

t∗
· ln
(36

s(G)

)
,

and note that by (A.37) φ2
∗ ∈ [0, 1]. It therefore follows from (A.40) and Theorem 23 that either

1

6
≤ pv(C)− π(C) ≤ 1

18
+ 72Φ(C;G) +

dmax(G)

dmin(G)2
+

1

2s(G)
·
(

1− φ2
∗

8

)t∗
, (A.41)

or minβ∈(0,1) Φ(Sβ,v;G) ≤ φ2
∗. But by (A.37)

72Φ(C;G) +
dmax(G)

dmin(G)2
<

1

18
,

108

and we have chosen φ∗ precisely so that

1

2s(G)
·
(

1− φ2
∗

8

)t∗
≤ 1

2s(G)
exp
(
−φ

2
∗t∗
8

)
≤ 1

18
.

Thus the inequality (A.41) cannot hold, and so it must be that minβ∈(0,1) Φ(Sβ,v;G) ≤ φ2
∗. This is exactly

the claim of the theorem.

A.2 Sample-to-population bounds

In this appendix, we prove Propositions 2 and 3, by establishing high-probability finite-sample bounds on
various functionals of the random graph Gn,r: cut, volume, and normalized cut (A.2.2), minimum and
maximum degree, and local spread (A.2.3), and conductance (A.2.4). To establish these results, we will use
several different concentration inequalities, and we begin by reviewing these in (A.2.1). Throughout, we
denote the empirical probability of a set S ⊆ Rd as Pn(S) =

∑n
i=1 1{xi ∈ S}/n, and the conditional (on

being in C) empirical probability as P̃n =
∑n
i=1 1{xi ∈ (S ∩C)}/ñ, where ñ = |C[X]| is the number of sample

points that are in C. For a probability measure Q, we also write

dmin(Q) := inf
x∈supp(Q)

degP,r(x), and dmax(Q) := sup
x∈supp(Q)

degP,r(x). (A.42)

A.2.1 Review: concentration inequalities

We use Bernstein’s inequality to control the deviations of the empirical probability of S.

Lemma 14 (Bernstein’s Inequality.). Fix δ ∈ (0, 1). For any measurable S ⊆ Rd, each of the inequalities,

(1− δ)P(S) ≤ Pn(S) and Pn(S) ≤ (1 + δ)P(S),

hold with probability at least 1− exp
{
−nδ2P(S)/(2 + 2δ)

}
≤ 1− exp

{
−nδ2P(S)/4

}
.

Many graph functionals are order-2 U-statistics, and we use Bernstein’s inequality to control the deviations of
these functionals from their expectations. Recall that Un is an order-2 U-statistic with kernel ϕ : Rd×Rd → R
if

Un =
1

n(n− 1)

n∑
i=1

∑
j 6=i

ϕ(xi, xj).

We write ‖ϕ‖∞ = supx,y |ϕ(x, y)|.

Lemma 15 (Bernstein’s Inequality for Order-2 U-statistics.). Fix δ ∈ (0, 1). Assume ‖ϕ‖∞ ≤ 1. Then each
of the inequalities,

(1− δ)EUn ≤ Un and Un ≤ (1 + δ)EUn,
hold with probability at least 1− exp{−nδ2EUn/(4 + 4δ/3)} ≤ 1− exp{−nδ2EUn/6}.

Finally, we use Lemma 16—a combination of Bernstein’s inequality and a union bound—to upper and lower
bound dmax(Gn,r) and dmin(Gn,r). For measurable sets S1, . . . ,SM , we denote pmin := minm=1,...,M P(Am),
and likewise let pmax := maxm=1,...,M P(Am)

Lemma 16 (Bernstein’s inequality + union bound.). Fix δ ∈ (0, 1). For any measurable S1, . . . ,SM ⊆ Rd,
each of the inequalities

(1− δ)pmin ≤ min
m=1,...,M

Pn(Am), and max
m=1,...,M

Pn(Am) ≤ (1 + δ)pmax

hold with probability at least 1−M exp{−nδ2pmin/(2 + 2δ)} ≥ 1−M exp{−nδ2pmin/4}.

109

A.2.2 Sample-to-population: normalized cut

In this subsection we establish (2.17). For a set S ⊆ Rd, both cutn,r(S[X]) and voln,r(S[X]) are order-2
U-statistics:

cutn,r(S[X]) =

n∑
i=1

∑
j 6=i

1{‖xi − xj‖ ≤ r} · 1{xi ∈ S} · 1{xj 6∈ S},

and

voln,r(S[X]) =

n∑
i=1

∑
j 6=i

1{‖xi − xj‖ ≤ r} · 1{xi ∈ S}.

Therefore with probability at least 1− exp{−nδ2cutP,r(S)/4},

1

n(n− 1)
cutn,r(S[X]) ≤ (1 + δ)cutP,r(S),

and likewise with probability at least 1− exp{−nδ2volP,r(S)/4} − exp{−nδ2volP,r(Sc)/4},

(1− δ)volP,r(S) ≤ 1

n(n− 1)
voln,r(S[X]), and (1− δ)volP,r(Sc) ≤

1

n(n− 1)
voln,r(Sc[X])

Consequently, for any δ ∈ (0, 1/3),

Φn,r(C[X]) ≤ 1 + δ

1− δ
· cutP,r(C)

min{volP,r(C), volP,r(Cc)}
=

1 + δ

1− δ
· ΦP,r(C) ≤ (1 + 3δ) · ΦP,r(C)

with probability at least 1−3 exp{−nδ2cutP,r(C)/4}. This establishes (2.17) upon taking b1 := 3cutP,r(C)/4.

A.2.3 Sample-to-population: local spread

In this subsection we establish (2.19). To ease the notational burden, let G̃n,r := Gn,r
[
C[X]

]
. Conditional

on ñ, it follows from Lemma 16 that with probability at least 1− ñ exp{−(ñ− 1)δ2dmin(P̃)/4},

(1− δ) · dmin(P̃) ≤ 1

ñ− 1
dmin(G̃n,r), (A.43)

Likewise it follows from Lemma 15 that with probability at least 1− exp{−ñδ2volP̃,r(C)/6},

(1− δ) · volP̃,r(C) ≤
1

ñ(ñ− 1)
vol(G̃n,r).

Finally, it follows from Lemma 14 that with probability at least 1− exp{−nδ2P(C)/4}

ñ ≥ (1− δ) · n · P(C), (A.44)

and therefore by (2.18), (ñ− 1)/ñ ≥ 1− δ. Consequently for any δ ∈ (0, 1/3),

sn,r(C[X]) =
dmin(G̃n,r)

2

vol(G̃n,r)
=
ñ− 1

ñ
·

1
(ñ−1)2 dmin(G̃n,r)

2

1
ñ(ñ−1)vol(G̃n,r)

≥ (1− δ)3

(1 + δ)
· dmin(P̃)2

volP̃,r(C)
≥ (1− 4δ) · sP,r(C).

with probability at least 1−n exp{−nP(C) ·δ2dmin(P̃)/9}−exp{−nP(C)δ2 ·volP̃,r(C)/14}−exp{−nδ2P(C)/4}.
This establishes (2.19) upon taking b2 := P(C) · dmin(P̃)/14.

110

A.2.4 Sample-to-population: conductance

In this section we establish (2.21). As mentioned in our main text, the proof of (2.21) relies on a high-
probability upper bound of the ∞-transportation distance between P and Pn, from [Garćıa Trillos and
Slepcev, 2015]. We begin by reviewing this upper bound, which we restate in Theorem 25. Subsequently in
Proposition 18, we relate the ∞-transportation distance between two measures Q1 and Q2 to the difference
of their conductances. Together these results will imply (2.21).

Review: ∞-transportation distance and transportation maps. We give a brief review of some of
the main ideas regarding ∞-transportation distance, and transportation maps. This discussion is largely
taken from [Garćıa Trillos and Slepcev, 2015, Garćıa Trillos et al., 2016], and the reader should consult these
works for more detail.

For two measures Q1 and Q2 on a domain D, the ∞-transportation distance ∆∞(Q1,Q2) is

∆∞(Q1,Q2) := inf
γ

{
esssupγ

{
|x− y| : (x, y) ∈ D ×D

}
: γ ∈ Γ(Q1,Q2)

}
where Γ(Q1,Q2) is the set of all couplings of Q1 and Q2, that is the set of all probability measures on D×D
for which the marginal distribution in the first variable is Q1, and the marginal distribution in the second
variable is Q2.

Suppose Q1 is absolutely continuous with respect to the Lebesgue measure. Then ∆∞(Q1,Q2) can be more
simply defined in terms of push-forward measures and transportation maps. For a Borel map T : D → D,
the push-forward of Q1 by T is T]Q1, defined for Borel sets U as

T]Q1(U) = Q1(T−1(U)).

A transportation map from Q1 to Q2 is a Borel map T for which T]Q1 = Q2. Transportation maps satisfy
two important properties. First, the transportation distance can be formulated in terms of transportation
maps:

∆∞(Q1,Q2) = inf
T
‖Id− T‖L∞(Q1)

where Id : D → D is the identity mapping, and the infimum is over transportation maps T from Q1 to Q2.
Second, they result in the following change of variables formula; if T]Q1 = Q2, then for any g ∈ L1(Q2),∫

g(y) dQ2(y) =

∫
g(T (x)) dQ1(x). (A.45)

∞-transportation distance between empirical and population measures. We now review the rel-
evant upper bound on ∆∞(P,Pn), which holds under the following mild regularity conditions.

(A1) The distribution P has density g : D → (0,∞) such that there exist gmin ≤ 1 ≤ gmax for which

(∀x ∈ D) gmin ≤ g(x) ≤ gmax.

(A2) The distribution P is defined on a bounded, connected, open domain D ⊆ Rd. If d ≥ 2 then additionally
D has Lipschitz boundary.

When d = 1, it follows from Proposition 6.2 of Dudley [1968] that ∆∞(P,Pn) ≤ B5‖F − Fn‖∞ for some
positive constant B5, and in turn from the DKW inequality that

∆∞(P,Pn) ≤ B5

√
ln(2n/B2)

n
(A.46)

with probability at least 1−B2/n.

When d ≥ 2, Garćıa Trillos and Slepcev [2015] derive an upper bound on the transportation distance
∆∞(P,Pn).

111

Theorem 25 (Theorem 1.1 of Garćıa Trillos and Slepcev [2015]). Suppose P satisfies (A1) and (A2). Then,
there exists positive constants B2 and B5 that do not depend on n, such that with probability at least 1−B2/n:

∆∞(P,Pn) ≤ B5 ·

ln(n)3/4

n1/2
, if d = 2,

ln(n)1/d

n1/d
, if d ≥ 3.

Assuming the candidate cluster C and conditional distribution P̃ satisfy (A1) and (A2), then (A.46) (d = 1) or

Theorem 25 (d ≥ 2) apply to ∆∞(P̃, P̃n); we will use these upper bounds on ∆∞(P̃, P̃n) to show (2.21).

Lower bound on conductance using transportation maps. Let Q1 and Q2 be probability measures,
with Q1 absolutely continuous with respect to Lebesgue measure, and let T be a transportation map from Q1

to Q2. We write ∆T (Q1,Q2) := ‖Id− T‖L∞(Q1). To facilitate easy comparison between the conductances of
two arbitrary distributions, let Ψr(Q) := ΨQ,r(supp(Q)) for a distribution Q. In the following Proposition,
we lower bound Ψr(Q2) by Ψr(Q1), plus an error term that depends on ∆(Q1,Q2).

Proposition 18. Let Q1 be a probability measure that admits a density g with respect to ν(·), let Q2 be an
arbitrary probability measure, and let T be a transportation map from Q1 to Q2. Suppose ∆T (Q1,Q2) ≤
r/(4(d− 1)). It follows that

Ψr(Q2) ≥ Ψr(Q1) ·
(

1− 2B6∆T (Q1,Q2)(
1−Ψr(Q1)

)
·
(
dmin(Q2)

)2)− B6∆T (Q1,Q2)(
1−Ψr(Q1)

)
·
(
dmin(Q2)

)2 , (A.47)

where B6 := 2dνdr
d−1 ·maxx∈Rd{g(x)} is a positive constant that does not depend on Q2.

We note that the lower bound can also be stated with respect to the∞-optimal transport distance ∆∞(Q1,Q2).

Proof of Proposition 18. Throughout this proof, we will write ∆12 = ∆T (Q1,Q2), and �volQ,r(R) =
min

{
volQ,r

(
R
)
, volQ,r

(
Rc
)}

for conciseness. Naturally, the proof of Proposition 18 involves using the trans-
portation map T to relate cutQ2,r(·) to cutQ1,r(·), and likewise volQ2,r(·) to volQ1,r(·). Define the remainder

term R
(∆)
ε,Q1

(x) =
∫

1{ε ≤ ‖x− y‖ ≤ ε+ ∆} dQ1(y) for any ε,∆ > 0. Then for any set S ⊆ supp(Q2), we have
that

cutQ2,r(S) =

∫∫
1{‖x− y‖ ≤ r} · 1{x ∈ S} · 1{y ∈ Sc} dQ2(y) dQ2(x)

(i)
=

∫∫
1{‖T (x)− T (y)‖ ≤ r} · 1{x ∈ T−1(S)} · 1{y ∈ T−1(S)c} dQ1(y) dQ1(x)

(ii)

≥
∫∫

1{‖x− y‖ ≤ r − 2∆12} · 1{x ∈ T−1(S)} · 1{y ∈ T−1(Sc)} dQ1(y) dQ1(x)

= cutQ1,r

(
T−1(S)

)
−
∫
R

(2∆12)
r−2∆12,Q1

(x) dQ1(x) (A.48)

where (i) follows from the change of variables formula (A.45), and (ii) follows from the triangle inequality.
Similar reasoning implies that

volQ2,r(S) ≤ volQ1,r

(
T−1(S)

)
+

∫
R

(2∆12)
r,Q1

(x) dQ1(x). (A.49)

For any x ∈ Rd, the remainder terms can be upper bounded: since ∆12 ≥ 0,

R
(2∆12)
r−2∆12,Q1

(x) ≤ νdrd
{

1−
(

1− 2∆12

r

)d}
· max
x∈Rd
{g(x)} ≤ 2dνdr

d−1 · max
x∈Rd
{g(x)}︸ ︷︷ ︸

=B6

·∆12,

112

if 0 ≤ ∆12 ≤ r/(4(d− 1)),

R
(2∆12)
r,Q1

(x) ≤ νdrd
{(

1 +
2∆12

r

)d
− 1
}
· max
x∈Rd
{g(x)} ≤ 2B6 ·∆12.

Plugging these bounds on the remainder terms back into (A.48) and (A.49) respectively, we see that

ΦQ2,r(S) ≥
cutQ1,r

(
T−1(S)

)
−B6∆12

�volQ1,r(T
−1(S)) + 2B6∆12

= ΦQ1,r(T
−1(S)) ·

(
�volQ1,r(T

−1(S))
�volQ1,r(T

−1(S)) + 2B6∆12

)
− B6∆12

�volQ1,r(T
−1(S)) + 2B6∆12

(A.49)

≥ ΦQ1,r(T
−1(S)) ·

(
�volQ2,r(S)− 2B6∆12

�volQ2,r(S)

)
− B6∆12

�volQ2,r(S)
.

We would like to conclude by taking an infimum over S on both sides, but in order to ensure that the
remainder term is small we must specially handle the case where �volQ2,r(S) is small. Let

Lr(Q1,Q2) =
{
S ⊆ supp(Q2) : �volQ2,r(S) ≥ (1−Ψr(Q1)) · dmin(Q2)2

}
.

On the one hand, taking an infimum over all sets S ∈ Lr(Q1,Q2), we have that

inf
S:S∈Lr(Q1,Q2)

ΦQ2,r(S) ≥ Ψr(Q1) ·
(

1− 2B6∆12

(1−Ψr(Q1)) · dmin(Q2)2

)
− B6∆12

(1−Ψr(Q1)) · dmin(Q2)2

On the other hand, we claim that

Φr,Q2(R) ≥ Ψr(Q1), for any R 6∈ L(Q1,Q2). (A.50)

To derive (A.50), suppose that R ⊆ supp(Q2) and R 6∈ L(Q1,Q2). Without loss of generality, we shall
assume that volQ2,r(R) ≤ (1 − Ψr(Q1)) · dmin(Q2)2 (otherwise we can work with respect to Rc.) Then, for
all x ∈ R,∫

1{‖x− y‖ ≤ r} ·1{y ∈ Rc} dQ2(y) ≥ degQ2,r(x)−Q2(R) ≥ degQ2,r(x)− volQ2,r(R)

dmin(Q2)
≥ dmin(Q2) ·Ψr(Q2),

whence integrating over all x ∈ R and dividing by volQ2,r(R) yields (A.50). This completes the proof of
Proposition 18.

Putting the pieces together. First, we note that

Ψr(P̃) = ΨP̃,r(supp(P̃)) = ΨP,r(C), and Ψr(P̃n) = ΨP̃n,r(supp(P̃n)) = Ψn,r(C[X]),

so that we may apply Proposition 18 to get a lower bound on Ψn,r(C[X]) in terms of ΨP,r(C), ∆∞(P̃, P̃n), and

dmin(P̃n). We now use the bounds we have derived on transportation distance and minimum degree. From
the derivations in Section A.2.4, it follows with probability at least 1− (n+ 1) exp{−nb2/16} that,

dmin(P̃n) =
1

ñ

(
dmin(G̃n,r) + 1

)
≥ 1√

2
dmin(P̃).

On the other hand, taking

b6 :=
1

2B6
Ψr(P̃) · (1−Ψr(P̃)) · dmin(P̃)2, and B1 := B5

(
min

{ b6

2Ψr(P̃)
, b6,

r

4(d− 1)

})−1

,

113

by (A.46) (if d = 1) or Theorem 25 (if d ≥ 2) along with (2.20), we have that

∆∞(P̃, P̃n) ≤ B5
(log n)pd

min{n1/2, n1/d}
≤ min

{ b6

2Ψr(P̃)
, b6,

r

4(d− 1)

}
· δ

with probability at least 1−B2/n. Therefore by Proposition 18,

Ψr(P̃n) ≥ Ψr(P̃) ·
(

1− 2B6∆∞(P̃n, P̃)(
1−Ψr(P̃)

)
·
(
dmin(P̃n)

)2)− B6∆∞(P̃n, P̃N)(
1−Ψr(P̃)

)
·
(
dmin(P̃n)

)2 ≥ Ψr(P̃)(1− 2δ)

with probability at least 1−B2/n−(n+1) exp{−nb2/16}, establishing (2.21) upon taking b3 := b2/16.

A.3 Population functionals for density clusters

In this appendix, we prove Lemma 2 (in Section A.3.4), Proposition 4 (in Section A.3.5), and Proposition 5 (in
Section A.3.6), by establishing bounds on the population-level local spread, normalized cut, and conductance
of a thickened density cluster Cλ,σ. In these proofs, we make use of some estimates on the volume of spherical
caps (in Section A.3.1); some isoperimetric inequalities (in Section A.3.2), and some reverse isoperimetric
inequalities (given in Section A.3.3). Finally, in Section A.3.7, for the hard case distribution P defined
in (2.32) and L defined in (2.33), establish bounds on the population-level normalized cut ΦP,r(L) and local
spread sP,r(X); these will be useful in the proof of Theorem 5. Throughout, we write νd := ν(B(0, 1)) for
the Lebesgue measure of a d-dimensional unit ball.

A.3.1 Balls, Spherical Caps, and Associated Estimates

In this section, we derive lower bounds on the volume of the intersection between two balls in Rd, and
the volume of a spherical cap. Results of this type are well-known, but since we could not find exactly the
statements we desire, for completeness we also supply proofs. We use the notation B(x, r) for a ball of radius
r centered at x ∈ Rd, and capr(h) for a spherical cap of height r and radius r. Recall that the Lebesgue
measure of a spherical cap is

ν
(
capr(h)

)
=

1

2
νdr

dI1−a

(
d+ 1

2
;

1

2

)
where a = (r − h)2/r2, and

I1−a(z, w) =
Γ(z + w)

Γ(z)Γ(w)

∫ 1−a

0

uz−1(1− u)w−1du.

is the cumulative distribution function of a Beta(z, w) distribution, evaluated at 1 − a. (Here Γ(·) is the
gamma function).

Lemma 17. For any x, y ∈ Rd and r > 0, it holds that

ν
(
B(x, r) ∩B(y, r)

)
≥ νdrd

(
1− ‖x− y‖

r

√
d+ 2

2π

)
. (A.51)

For any x, y ∈ Rd and r, σ > 0 such that ‖x− y‖ ≤ σ, it holds that,

ν
(
B(x, r) ∩B(y, σ)

)
≥ 1

2
νdr

d

(
1− r

σ

√
d+ 2

2π

)
. (A.52)

Lemma 18. For any 0 < h ≤ r, and a = 1− (2rh− h2)/r2,

ν
(
capr(h)

)
≥ 1

2
νdr

d
(
1− 2

√
a ·
√
d+ 2

2π

)
114

An immediate implication of (A.52) is that for any x ∈ Cλ,σ,

ν
(
B(x, r) ∩ Cλ,σ

)
≥ 1

2
νdr

d

(
1− r

σ

√
d+ 2

2π

)
. (A.53)

Proof of Lemma 17. First, we prove (A.51). The intersection B(x, r)∩B(y, r) consists of two symmetric

spherical caps, each with height h = r − ‖x−y‖2 . As a result, by Lemma 18 we have

ν
(
B(x, r) ∩B(y, r)

)
≥ νdrd

(
1− 2

√
a ·
√
d+ 2

2π

)
where a = ‖x− y‖2/(4r2), and the claim follows.

Next we prove (A.52). Assume that ‖x− y‖ = σ, as otherwise if 0 ≤ ‖x− y‖ < σ the volume of the overlap

will only be larger. Then B(x, r) ∩B(y, σ) contains a spherical cap of radius r and height h = r − r2

2σ , from
Lemma 18 we deduce

ν
(
B(x, r) ∩B(y, σ)

)
≥ 1

2
νdr

d

(
1− 2

√
a ·
√
d+ 2

2π

)
for a = (r − h)2/r2 = r2/(4σ2), and the claim follows.

Proof of Lemma 18. For any 0 ≤ a ≤ 1, we have that∫ 1−a

0

u(d−1)/2(1− u)−1/2du =

∫ 1

0

u(d−1)/2(1− u)−1/2du−
∫ 1

1−a
u(d−1)/2(1− u)−1/2du.

The first integral is simply ∫ 1

0

u(d−1)/2(1− u)−1/2du =
Γ
(
d+1

2

)
Γ
(

1
2

)
Γ
(
d
2 + 1

) ,

whereas for all u ∈ [0, 1] and d ≥ 1, the second integral can be upper bounded as follows:∫ 1

1−a
u(d−1)/2(1− u)−1/2du ≤

∫ 1

1−a
(1− u)−1/2du =

∫ a

0

u−1/2du = 2
√
a.

As a result,

ν
(
capr(h)

)
≥ 1

2
νdr

d

(
1− 2

√
a

Γ(d2 + 1)

Γ(d+1
2)Γ(1

2)

)
≥ 1

2
νdr

d

(
1− 2

√
a ·
√
d+ 2

2π

)
.

A.3.2 Isoperimetric inequalities

Dyer et al. [1991] establish the following isoperimetric inequality for convex sets.

Lemma 19 (Isoperimetry of a convex set.). For any partition (R1,R2,R3) of a convex set K ⊆ Rd, it holds
that

ν(Ω3) ≥ 2
dist(R1,R2)

diam(K)
min(ν(R1), ν(R2)).

Abbasi-Yadkori [2016] points out that if S is the image of a convex set under a Lipschitz measure-preserving
mapping g : Rd → Rd, a similar inequality can be obtained.

115

Corollary 3 (Isoperimetry of Lipschitz embeddings of convex sets.). Suppose S is the image of a convex
set K under a mapping g : Rd → Rd such that

‖g(x)− g(y)‖ ≤ L · ‖x− y‖, for all x, y ∈ K, and det(∇g(x)) = 1 for all x ∈ K.

Then for any partition (Ω1,Ω2,Ω3) of S,

ν(Ω3) ≥ 2
dist(Ω1,Ω2)

diam(K)L
min(ν(Ω1), ν(Ω2)).

A.3.3 Reverse isoperimetric inequalities

For any set C ⊆ Rd and σ > 0, let Cσ := {x : dist(x, C) ≤ σ}. We begin with an upper bound on the volume
of Cσ+δ as compared to Cσ.

Lemma 20. For any bounded set C ⊆ Rd and σ, δ > 0, it holds that

ν(Cσ+δ) ≤ ν(Cσ) ·
(

1 +
δ

σ

)d
. (A.54)

Lemma 20 is a reverse isoperimetric inequality. To see this, note that if δ ≤ σ/d then
(
1 + δ/σ

)d ≤
1 + d · δ/(σ − dδ), and we deduce from (A.54) that

ν(Cσ+δ \ Cσ) = ν(Cσ+δ)− ν(Cδ) ≤
dδ

σ − dδ
· ν(Cσ). (A.55)

We use (A.55) along with Assumption (A4) to derive a density-weighted reverse isoperimetric inequal-
ity.

Lemma 21. Let Cλ,σ satisfy Assumption (A1) and (A4) for some θ, γ and λσ. Then for any 0 < r ≤ σ/d,
it holds that

P
(
Cλ,σ+r \ Cλ,σ

)
≤
(

1 +
dr

σ − dr

)
· dr
σ
·
(
λσ − θ

rγ

γ + 1

)
· ν(Cλ,σ). (A.56)

Proof of Lemma 20. Fix δ′ > 0, and take ε = δ + δ′. We will show that

ν(Cσ+ε) ≤ ν(Cσ) ·
(

1 +
ε

σ

)d
, (A.57)

whence taking a limit as δ′ → 0 yields the claim.

To show (A.57), we need to construct a particular disjoint covering A1(σ+ ε), . . . ,AN (σ+ ε) of Cσ+δ. To do
so, we first take a finite set of points x1, . . . , xN such that the net B(x1, σ+ ε), . . . , B(xN , σ+ ε) covers Cσ+δ.
Note that such a covering exists for some finite N = N(ε) because Cσ+δ is bounded, and the closure of Cσ+δ

is thus a compact subset of ∪x∈CB(x, σ + ε). Defining A1(s), . . . ,AN (s) for a given s > 0 to be

A1(s) := B(x1, s), and Aj+1(s) := B(xj+1, s) \
j⋃
i=1

B(xi, s) for j = 1, . . . , N − 1,

we have that A1(σ + ε), . . . ,AN (σ + ε) is a disjoint covering of Cσ+δ, and so ν(Cσ+δ) ≤
∑N
j=1 ν

(
Aj(σ +

ε)
)
.

We claim that for all j = 1, . . . , N , the function s 7→ ν
(
Aj(s)

)
/ν
(
B(xj , s)

)
is monotonically non-increasing

in s. Once this claim is verified, it follows that

ν(Aj(σ+ε)) = ν
(
B(xj , σ+ε)

)
·
ν
(
Aj(σ + ε)

)
ν
(
B(xj , σ + ε)

) ≤ (1+
ε

σ

)d
·ν
(
B(xj , σ)

)
·
ν
(
Aj(σ)

)
ν
(
B(xj , σ)

) =
(

1+
ε

σ

)d
·ν
(
Aj(σ)

116

and summing over j, we see that

ν(Cσ+δ) ≤
N∑
j=1

ν
(
Aj(σ + ε)

)
≤
(

1 +
ε

σ

)d
·
N∑
j=1

ν
(
Aj(σ)

)
≤
(

1 +
ε

σ

)d
ν(Cσ).

The last inequality follows since A1(σ), . . . ,AN (σ) are disjoint subsets of the closure of Cσ.

It remains to verify that x 7→ ν
(
Aj(s)

)
/ν
(
B(xj , s)

)
is monotonically non-increasing. For any 0 < s < t and

j = 1, . . . , N , suppose x ∈ Aj(T)− {xj}, meaning x ∈ B(0, t) and x 6∈ B(xi − xj , t) for any i = 1, . . . , j − 1.
Thus (s/t)x ∈ B(0, s), and

‖(s/t)x− (xi − xj)‖ ≥ ‖x− (xi − xj)‖ − ‖x− (s/t)x‖ > t− (1− s/t)‖x‖ ≥ t− (1− s/t)t = s,

or in other words (s/t)x 6∈ B(xi − xj , s) for any i = 1, . . . , j − 1. Consequently,(
Aj(t)− {xj}

)
⊂ t

s
·
(
Aj(s)− {xj}

)
,

and applying ν(·) to both sides yields the claim.

Proof of Lemma 21. Fix k ∈ N. To establish (A.56), we partition Cλ,σ+r \Cλ,σ into thin tubes T1, . . . , Tk,
with the jth tube Tj defined as Tj := Cλ,σ+jr/k \ Cλ,σ+(j−1)r/k. We upper bound the Lebesgue measure of
each tube Tj using (A.55):1

ν(Tj) ≤
dr/k

σ − dr/k
ν(Cλ,σ+(j−1)r/k) ≤ dr/k

σ − dr/k
ν(Cλ,σ+r) ≤

(
1 +

dr

σ − dr

)
· dr/k

σ − dr/k
· ν(Cλ,σ),

and the maximum density within each tube using (A4):

max
x∈Tj

f(x) ≤ λσ − θ
(j − 1

k
r
)γ

;

combining these upper bounds, we see that

P
(
Cλ,σ+r \ Cλ,σ

)
=

k∑
j=1

P(Tj) ≤
(

1 +
dr

σ − dr

)
· dr/k

σ − dr/k
· ν(Cλ,σ) ·

(k−1∑
j=0

λσ − θrγ
(j
k

)γ)
. (A.58)

Treating the sum in the previous expression as a Riemann sum of a non-increasing function evaluated at
0, . . . , k − 1 gives the upper bound

k−1∑
j=0

λσ − θrγ
(j
k

)γ
≤ λσ +

∫ k−1

0

(
λσ − θrγ

(x
k

)γ)
dx ≤ kλσ + (k − 1)

θrγ

γ + 1

(k − 1

k

)γ
,

and plugging back in to (A.58), we obtain

P
(
Cλ,σ+r \ Cλ,σ

)
≤
(

1 +
dr

σ − dr

)
· dr

σ − dr/k
ν(Cλ,σ) ·

(
λ− θrγ

γ + 1
·
(k − 1

k

)γ+1
)
.

The above inequality holds for any k ∈ N, and taking the limit of the right hand side as k → ∞ yields the
claim.

1Note that C must be bounded, since the density f(x) ≥ λσ for all x ∈ C.

117

A.3.4 Proof of Lemma 2

The population-level local spread of Cλ,σ is

sP,r(Cλ,σ) =

(
dmin(P̃)

)2
volP̃,r(Cλ, σ)

where we recall that P̃(S) =
P(S∩Cλ,σ)
P(Cλ,σ) for Borel sets S, and dmin(P̃) := minx∈Cλ,σ{degP̃,r(x)}2. To lower

bound sP,r(Cλ,σ), we first lower bound dmin(P̃), and then upper bound volP̃,r(Cλ, σ). Using the lower bound

f(x) ≥ λσ for all x ∈ Cλ,σ stipulated in (A3), we deduce that

dmin(P̃) = min
x∈Cλ,σ

{∫
1{‖x− y‖ ≤ r} dP̃(y)

}
≥ λσ

P(Cλ,σ)
· min
x∈Cλ,σ

{∫
Cλ,σ

1{‖x− y‖ ≤ r} dy
}

≥ λσ
P(Cλ,σ)

· 1

2
νdr

d ·
(

1− r

σ

√
d+ 2

2π

)
,

where the final inequality follows from Lemma 17.

On the other hand, using the upper bound f(x) ≤ Λσ for all x ∈ Cλ,σ, we deduce that

volP̃,r(Cλ,σ) =

∫∫
1{‖x− y‖ ≤ r} dP̃(y) dP̃(x)

≤ Λ2
σ

P(Cλ,σ)2
·
∫
Cλ,σ

∫
Cλ,σ

1{‖x− y‖ ≤ r} dy dx

≤ Λ2
σ

P(Cλ,σ)2
· νdrd · ν(Cλ,σ)

≤ Λ2
σ

P(Cλ,σ)2
· ν2
dr
d ·
(ρ

2

)d
;

the final inequality follows from (A5), which implies that ν(Cλ,σ) = ν(K) ≤ νd(ρ/2)d. The claim of Lemma 2
follows.

A.3.5 Proof of Proposition 4

By Assumption (A6), we have that ΦP,r(Cλ,σ) = cutP,r(Cλ,σ)/volP,r(Cλ,σ), and to prove Proposition 4 we
must therefore upper bound cutP,r(Cλ,σ) and lower bound volP,r(Cλ,σ).

Let Cλ,σ+r = {x : dist(x, Cλ) ≤ σ + r}. We upper bound cutP,r(Cλ,σ) in terms of the probability mass of
Cλ,σ+r \ Cλ,σ:

cutP,r(Cλ,σ) =

∫∫
1{‖x− y‖ ≤ r} · 1{x ∈ Cλ,σ} · 1{y 6∈ Cλ,σ} dP(y) dP(x)

≤
∫∫

1{‖x− y‖ ≤ r} · 1{x ∈ Cλ,σ} · 1{y ∈ Cλ,σ+r \ Cλ,σ} dP(y) dP(x)

≤ λνdrd · P
(
Cλ,σ+r \ Cλ,σ

)
.

On the other hand, using the lower bound f(x) ≥ λσ for all x ∈ Cλ,σ, we lower bound cutP,r(Cλ,σ) in terms

118

of the Lebesgue measure of Cλ,σ:

volP,r(Cλ,σ) =

∫∫
1{‖x− y‖ ≤ r} · 1{x ∈ Cλ,σ} dP(y) dP(x)

≥ λ2
σ ·
∫∫

1{‖x− y‖ ≤ r} · 1{x, y ∈ Cλ,σ} dy dy

≥ λ2
σ ·

1

2
νdr

d ·
(

1− r

σ

√
d+ 2

2π

)
· ν(Cλ,σ).

The claim of Proposition 4 follows upon using Lemma 21 to upper bound P
(
Cλ,σ+r \ Cλ,σ

)
.

A.3.6 Proof of Proposition 5

The following Lemma lower bounds the population-level uniform conductance Ψν,r(Cλ,σ).

Lemma 22. Suppose Cλ,σ satisfies Assumption (A5) with respect to some ρ ∈ (0,∞) and L ∈ [1,∞). For

any 0 < r ≤ σ ·
√

2π/(d+ 2), it holds that

Ψν,r(Cλ,σ) ≥
(

1− r

4ρL

)
·
(

1− r

σ

√
d+ 2

2π

)2

·
√

2π

36
· r

ρL
√
d+ 2

. (A.59)

Noting that ΨP,r(Cλ,σ) ≥ Ψν,r(Cλ,σ) · λ2
σ/Λ

2
σ, Proposition 5 follows from (A.59).

Proof of Lemma 22. For ease of notation, throughout this proof we write ν̃ for the uniform probability
measure over Cλ,σ, put `νdr

d := minx∈Cλ,σ ν(B(x, r) ∩ Cσ) and a := r/(2ρL).

Let S be an arbitrary measurable subset of Cλ,σ, and let R = Cλ,σ \S. For a given δ ∈ (0, 1), let the δ-interior
of S be

Sδ := {x ∈ S : ν
(
B(x, r) ∩R

)
≤ `δνdrd};

define Rδ likewise, and let Bδ = Cλ,σ \ (Sδ ∪ Rδ) consist of the remaining boundary points. As is standard
(see for example Dyer et al. [1991], Lovász and Simonovits [1990]), the proof of Lemma 22 uses several
inequalities to lower bound the normalized cut Φν̃,r(S).

• Bounds on cut and volume. We can lower bound cutν̃,r(S) as follows:

ν(Cλ,σ)2 · cutν̃,r(S) =

∫
S

∫
R

1(‖x− y‖ ≤ r) dy dx

=
1

2

(∫
S

∫
R

1(‖x− y‖ ≤ r) dy dx+

∫
R

∫
S

1(‖x− y‖ ≤ r) dy dx
)

≥ 1

2
δ`νdr

d · ν(Bδ).

We can upper bound volν̃,r(S) as follows:

ν(Cλ,σ)2 · volν̃,r(S) =

∫
Cλ,σ

∫
S

1(‖x− y‖ ≤ r) dy dx ≤ νdrdν(S)

and likewise for volν̃,r(S). Therefore,

Φν̃,r(S) ≥ δ` · ν(Bδ)
2 ·min{ν(S), ν(R)}

. (A.60)

119

• Isoperimetric inequality. Applying Corollary 3, we have that

ν(Bδ) ≥ 2 · dist(Sδ,Rδ)
ρL

·min
{
ν(Sδ), ν(Rδ)

}
. (A.61)

• Lebesgue measure of δ-interiors. Suppose ν(Sδ) ≤ (1− a) · ν(S) or ν(Rδ) ≤ (1− a) · ν(R). Then
ν(Bδ) ≥ a ·min{ν(S), ν(R)}, and combined with (A.60) we have that Φν̃,r(S) ≥ δa`/2. Otherwise,

min
{
ν(Sδ), ν(Rδ)

}
≥ (1− a) ·min

{
ν(S), ν(R)

}
. (A.62)

• Distance between δ-interiors. For any x ∈ Sδ and y ∈ Rδ, we have that

ν
(
B(x, r) ∩B(y, r)

)
= ν

(
B(x, r) ∩B(y, r) ∩R

)
+ ν
(
B(x, r) ∩B(y, r) ∩ S

)
+ ν
(
B(x, r) ∩B(y, r) ∩ Ccλ,σ

)
≤ ν

(
B(x, r) ∩R

)
+ ν
(
B(y, r) ∩ S

)
+ ν
(
B(x, r) ∩ Ccλ,σ

)
≤
(
2`δ + (1− `)

)
· νdrd.

It follows from (A.51) that

‖x− y‖ ≥ r

νdrd
·
(
νdr

d − ν
(
B(x, r) ∩B(y, r)

))
·
√

2π

d+ 2
≥ r · ` · (1− 2δ) ·

√
2π

d+ 2
,

and taking the infimum over all x ∈ Sδ and y ∈ Rδ, we have

dist(Sδ,Rδ) ≥ r · ` · (1− 2δ) ·
√

2π

d+ 2
. (A.63)

Combining (A.60)-(A.63) and taking δ = 1/3 implies that

Φν̃,r(S) ≥ min

{
(1− a) · r

ρL
· `

2

9
·
√

2π

d+ 2
,
a`

6

}
and the claim follows from (A.53), which implies that ` ≥ 1/2 · (1− r/σ)

√
2π/(d+ 2).

A.3.7 Population functionals, hard case

Let P be the hard case distribution over rectangular domain X , defined as in (2.32), and L the lower half of
X . Suppose r ∈ (0, σ/2). Then the population normalized cut ΦP,r(L) is upper bounded,

ΦP,r(L) ≤ 8

3
· r
ρ
. (A.64)

and the population local spread sP,r(X) is lower bounded,

sP,r(X) ≥ πr2ε2

2ρσ
(A.65)

Proof of (A.64). Noting that volP,r(L) = volP,r(X \ L), it suffices to upper bound cutP,r(L) and lower
bound volP,r(L). Note that for any x = (x1, x2) ∈ L, if x2 ≤ −r the ball B(x, r) and the set X \ L are
disjoint. As a result,

cutP,r(L) ≤ P
({
x ∈ X : x2 ∈ (−r, 0)

})
· dmax(P) ≤ r

2ρ
· πr

2

2σρ
.

120

On the other hand, noting that degP,r(x) ≥ πr2

2σρ for all x ∈ C(1) such that dist(x, ∂C(1)) > r, we have

volP,r(L) ≥ P
({
x ∈ C(1) ∩ L : dist(x, ∂C(1)) > r

})
· πr

2

2σρ

=
(σ − 2r)(ρ− r)

2σρ
· πr

2

2σρ

≥ 3

16
· πr

2

2σρ

where the last inequality follows since r ≤ 1
4σ ≤

1
4ρ.

Proof of (A.65). The statement follows since

dmin(P) ≥ πr2

2
·min
x∈X

f(x) =
πr2

2
· ε
ρσ
,

and

volP,r(X) ≤ dmax(P) ≤ πr2

2σρ
.

A.4 Proof of Major Theorems

We now prove the three major theorems of our paper: Theorem 3 (in Section A.4.1), Theorem 4, and

Theorem 5. Throughout, we use the notation ñ = |C[X]| and G̃n,r = Gn,r
[
C[X]

]
as defined above.

A.4.1 Proof of Theorem 3

We begin by recalling some probabilistic estimates needed for the proof of Theorem 3, along with the
probability with which they hold.

Probabilistic estimates. Throughout the proof of Theorem 3, we will assume (i) that the inequali-
ties (2.17)-(2.21) are satisfied; (ii) that the volume of C[X] is upper and lower bounded,

(1− δ) · volP,r(C) ≤
1

n(n− 1)
voln,r(C[X]) ≤ (1 + δ) · volP,r(C); (A.66)

(iii) that the number of sample points in C is lower bounded,

ñ ≥ (1− δ) · n · P(C) (2.18)
=⇒ ñ− 1 ≥ (1− δ)2 · n · P(C); (A.67)

and finally (iv) that the minimum and maximum degree of G̃n,r are lower and upper bounded respec-
tively,

1

ñ− 1
dmin(G̃n,r) ≥ (1− δ) · dmin(P̃), and

1

ñ− 1
dmax(G̃n,r) ≤ (1 + δ) · dmax(P̃). (A.68)

By Propositions 2 and 3, and Lemmas 14-16, these inequalities are satisfied with probability at least 1 −
B2/n− 4 exp{−b1δ2n} − (2n+ 2) exp{−b2δ2n} − (n+ 1) exp{−b3n}.

Proof of Theorem 3. We use Lemma 1 to upper bound ∆(Ĉ, C[X]). In order to do so, we must verify that

the tuning parameters α and (L,U) satisfy the condition (2.12) of this lemma, i.e. that α ≤ 1/
(
2τ∞(G̃n,r)

)

121

and U ≤ 1/
(
5voln,r(C[X])

)
. In order to verify the upper bound on α, we will use Proposition 18 to upper

bound τ∞(G̃n,r), which we may validly apply because

dmax(G̃n,r)(
dmin(G̃n,r)

)2 ≤ (1 + δ)

(1− δ)2
· dmax(P̃)

(ñ− 1) ·
(
dmin(P̃)

)2 ≤ (1 + δ)

(1− δ)4
· dmax(P̃)

nP(C)
(
dmin(P̃)

)2 ≤ 1

16
.

The last inequality in the above follows by taking B3 := 16 · dmax(P̃)/
(
dmin(P̃)

)2
in (2.25).

Therefore by Proposition 18, along with inequalities (2.19) and (2.21) and the initialization conditions (2.22)

and (2.23), we have that α ≤ 1/45∧1/
(
2τ∞(G̃n,r)

)
. On the other hand, by the upper bound on voln,r(C[X])

given in (A.66) and the initialization condition (2.22), we have that U ≤ 1/
(
5voln,r(C[X])

)
. In summary, we

have confirmed that the condition (2.12) is satisfied.

Invoking Lemma 1, we conclude that there exists a set C[X]g ⊂ C[X] of volume at least voln,r(C[X]g) ≥
voln,r(C[X])/2, such that for any β ∈ (L,U),

voln,r(Sβ,v M C[X]) ≤ 60 · Φn,r(C[X])

αL
≤ 60

(1 + 2δ)

(1− 4δ)2
· Φn,r(C[X])

αP,r(C, δ)
· n(n− 1)volP,r(C)

Noting that Ĉ = Sβ,v for some β ∈ (L,U), the claimed upper bound (2.26) on ∆(Ĉ, C[X]) then follows from
the upper bound (2.17) on Φn,r(C[X]) and the upper bound on volP,r(C) in (A.66).

A.4.2 Proof of Theorem 4

From Theorem 3, we have with probability 1 − B2/n − 4 exp{−b1δ2n} − (2n + 2) exp{−b2δ2n} − (n +
1) exp{−b3n}, there exists a set Cλ,σ[X]g ⊂ Cλ,σ[X] of volume at least voln,r(Cλ,σ[X]g) ≥ voln,r(Cλ,σ[X])/2,
such that

∆(Ĉ, Cλ,σ[X])

voln,r(Cλ,σ[X])
≤ 60 · (1 + 3δ)(1 + 2δ)

(1− 4δ)2(1− 2δ)
· ΦP,r(Cλ,σ)

αP,r(Cλ,σ, δ)

≤ 780

ln(2)
· (1 + 3δ)(1 + 2δ)

(1− 4δ)2(1− 2δ)
· ΦP,r(Cλ,σ)

ΨP,r(Cλ,σ)2
· ln2

(8

(1− 3δ)sP,r(C)

)
The claimed upper bound (2.31) on ∆(Ĉ, Cλ,σ[X]) then follows from the bounds (2.28)-(2.30) on the
population-level local spread, normalized cut, and conductance of Cλ,σ, noting that the condition r ≤ σ/(4d)

implies that (1− r/(4ρL)) ≥ 1− 1/16 and 1− r/σ ·
√

(d+ 2)/(2π) ≥ 1− 1/
√

32, and taking

C1,δ :=
898560

π · ln(2) · (1− 1/16)2 · (1− 1/
√

32)4
· (1 + 3δ)(1 + 2δ)

(1− 4δ)2(1− 2δ)
, and C2,δ :=

36

(1− 1/
√

32)
· 1

1− 3δ
.

A.4.3 Proof of Theorem 5

We start by defining some constants, to make our proof statements easier to digest. Put

C3,δ :=
72(1 + δ)

(1− δ)
√

8/3 + 8δ, C4,δ :=
72

(1− 3δ)π
,

B1,δ := 768 · (1 + 3δ) · ln
(
C4,δ

ρσ

r2ε2

)
, B2,δ :=

(1 + δ)2

(1− δ)2
· ρσ
r2ε2

B4 := 1 +
12σρ

r2
+

2ρ

r
, b4 := b8 ∧ cutP,r(L) ∧ dmin(P)/14 ∧ volP,r(L ∩ C(1)),

b8 := volP,r(X)/4 ∧ εr2

4ρσ
∧ πr3

8σρ2
.

122

To prove Theorem 5, we use Theorem 24, Proposition 2 and (A.64) to show that the cluster estimate Ĉ must
have a small normalized cut. On the other hand, in Lemma 23 we establish that any set Z ⊆ X which is
close to C(1)[X]—meaning voln,r(Z M C(1)[X]) is small—has a large normalized cut.

Lemma 23. Fix δ ∈ (0, 1). With probability at least 1−B4 exp{−nδ2b8}, the following statement holds:

Φn,r(Z) ≥ (1− δ)2

2(1 + δ)π

(
1− 2

σρ

(1− δ)r2n2
voln,r(Z M C(1)[X])

)
ε2r

σ
, for all Z ⊆ X. (A.69)

We therefore conclude that voln,r(Ĉ M C(1)[X]) must be large. In the remainder of this, we detail the
probabilistic estimates used in the proof of Theorem 5, and then give a formal proof of Theorem 5 and then
of Lemma 23.

Probabilistic estimates. In addition to (A.69), we will assume (i) that the graph normalized cut of L
and local spread of X are respectively upper and lower bounded,

Φn,r(L[X]) ≤ (1 + 3δ) · ΦP,r(L), and sn,r(X) ≥ (1− 3δ) · sP,r(X);

(ii) that the graph volume of L is upper and lower bounded,

(1− δ)volP,r(L) ≤ 1

n(n− 1)
voln,r(L[X]) ≤ (1 + δ)volP,r(L);

(iii) that the graph volumes of L ∩ C(1) and C(1) are respectively lower and upper bounded,

(1− δ)volP,r(L∩ C(1)) ≤ 1

n(n− 1)
voln,r(L[X] ∩ C(1)[X]) and

1

n(n− 1)
voln,r(C(1)[X]) ≤ (1 + δ)volP,r(C(1));

(A.70)
(iv) that the graph volume of X is lower bounded,

1

n(n− 1)
voln,r(X) ≥ (1− δ)volP,r(X);

and finally (v) that the maximum degree of Gn,r is upper bounded,

1

n− 1
dmax(Gn,r) ≤ (1 + δ)dmax(P).

It follows from Lemma 23, Propositions 2 and 3, and Lemmas 14 and 16 that these estimates are together sat-
isfied with probability at least 1−B4 exp{−nδ2b8}−3 exp{−nδ2cutP,r(L)}−(2n+2) exp{−nδ2 ·dmin(P)/14}−
5 exp{−nδ2volP,r(L ∩ C(1))} ≥ 1− (B4 + 2n+ 10) exp{−nδ2b4}.

Proof of Theorem 5. As mentioned, we would like to use Theorem 24 to upper bound Φn,r(Ĉ), and so
we first verify that the conditions of Theorem 24 are met. In particular, we have each of the following.

• Recall that n ≥ 8 · (1 + δ)/(1− δ) (2.34) and that volP,r(L) ≥ 3/16 · πr2/(2σρ) (as shown in the proof
of (A.64)). It is additionally clear that dmax(P) ≤ πr2/(2ρσ), and consequently,

dmax(Gn,r) ≤ (n− 1) · (1 + δ)dmax(P) ≤ 1

3
n2(1− δ)volP,r(L) ≤ 1

3
voln,r(L[X]). (A.71)

Therefore the lower bound in condition (A.36) is satisfied.

123

• Note that δ ∈ (0, 1/7) implies (1− δ)/(1 + δ) > 3/4, and additionally that volP,r(L) ≤ volP,r(X)/2. It
follows that

voln,r(X) ≥ n(n−1)(1−δ)volP,r(X) ≥ 2n(n−1)(1−δ)volP,r(L) ≥ 2
(1− δ)
(1 + δ)

voln,r(L[X]) ≥ 3

2
voln,r(L[X]).

(A.72)
Therefore the upper bound in condition (A.36) is satisfied.

• By (A.64), the normalized cut of L satisfies the following lower bound,

Φn,r(L[X]) ≤ (1 + 3δ) · ΦP,r(L) ≤ (8/3 + 8δ) · r
ρ
, (A.73)

and by (A.65) the local spread of X satisfies the following upper bound,

sn,r(X) ≥ (1− 3δ) · sP,r(X) ≥ (1− 3δ) · πr
2

2ρσ
. (A.74)

The constants B1,δ and B2,δ in assumption (2.34) are chosen so that condition (A.37) is satisfied.

As a result, we may apply Theorem 24, and deduce the following: there exists a set L[X]g ⊂ L of large
volume, voln,r(L[X]g) ≥ 5/6 · voln,r(L[X]), such that for any seed node v ∈ L[X]g, the normalized cut of

the PPR cluster estimate Φn,r(Ĉ) satisfies the following upper bound:

Φn,r(Ĉ) < 72

√
Φn,r(L[X]) · ln

(36

sn,r(X)

)
≤ 72

√
(8/3 + 8δ) · r

ρ
· ln
(72ρσ

(1− 3δ)πr2ε2

)
.

Combined with Lemma 23, this implies

(1− δ)2

2(1 + δ)π

(
1− 2

σρ

(1− δ)r2n2
voln,r(Ĉ M C(1)[X])

)
ε2r

σ
≤ 72

√
(8/3 + 8δ) · r

ρ
· ln
(72ρσ

(1− 3δ)πr2ε2

)
, (A.75)

and solving for voln,r(Ĉ M C(1)[X]) yields (2.35).

We conclude by observing that the set L[X]g must have significant overlap with C(1)[X]. In particular,

voln,r(L[X]g ∩ C(1)[X]) ≥ voln,r
(
(L ∩ C(1))[X]

)
− 1

6
voln,r

(
L[X]

)
(i)

≥ n(n− 1) ·
(

(1− δ)− 1

2
(1 + δ)

)
volP,r(L ∩ C(1))

(ii)

≥ n(n− 1) · 1

7
volP,r(L ∩ C(1))

(iii)

≥ 1

8
voln,r(L ∩ C(1))

where in (i) we have used volP,r(L) ≤ 3volP,r(C(1)), and in (ii) and (iii) we have used δ ∈ (0, 1/7).

Proof of Lemma 23. To lower bound the normalized cut Φn,r(Z), it suffices to lower bound cutn,r(Z)
and upper bound voln,r(Z). A crude upper bound on the volume is simply

voln,r(Z) ≤ voln,r(Gn,r)
(i)

≤ (1 + δ)volP,r(X)n(n− 1) ≤ (1 + δ)
πr2

ρσ
n2 (A.76)

where by Lemma 15, inequality (i) holds with probability at least 1 − exp
{
−nδ2volP,r(X)/4

}
. This crude

upper bound will suffice for our purposes.

124

We turn to lower bounding cutn,r(Z), which is considerably more involved. We will approximate the cut of
Z by discretizing the space X into bins, relate the cut of Z to the boundary of the binned set Z, and then
lower bound the size of the boundary of Z.

Let (k1, k2) for k1 ∈
[

6σ
r

]
, k2 ∈

[
2ρ
r

]
be the upper right corner of the cube

Q(k1,k2) =

[
−3σ

2
+

(k1 − 1)

2
r,−3σ

2
+
k1

2
r

]
×
[
−ρ

2
+

(k2 − 1)

2
r,−ρ

2
+
k2

2
r

]
and let Q =

{
Q(k1,k2) : k1 ∈

[
6σ
r

]
, k2 ∈

[
2ρ
r

]}
be the collection of such cubes. For a set Z ⊂ X we define the

binned set Z ⊂ Q as follows

Z :=

{
Q ∈ Q : Pn(Z ∩Q) ≥ 1

2
Pn(Q)

}
,

and we let

∂Z :=

{
Q(k1,k2) ∈ Z : ∃(`1, `2) ∈

[3σ

r

]
×
[ρ
r

]
such that Q(`1,`2) 6∈ sZ, ‖k − `‖1 = 1

}
.

be the boundary set of Z in Q. Intuitively, every point xi ∈ Z in the boundary set of Z will have many
edges to X \ Z. Formally, letting Qmin := minQ∈Q Pn(Q), we have

cutn,r(Z) ≥ cutn,r(Z ∩
{
xi ∈ Z

}
) ≥ 1

4

∣∣∂Z∣∣Q2
min, (A.77)

where the last inequality follows since for every cube Qk ∈ ∂Z, there exists a cube Q` 6∈ Z such that
‖i − j‖1 ≤ 1, and since each cube has side length r/2, this implies that for every xi ∈ Qk and xj ∈ Q` the
edge (xi, xj) belongs to Gn,r.

Now we move on lower bounding the size of the boundary
∣∣∂ sZ∣∣. To do so, we divide X into slices

horizontally. Let Rk =
{

(x1, x2) ∈ X : x2 ∈
[
−ρ2 + (k−1)

2 r,−ρ2 + k
2 r
]}

be the kth horizontal slice, and

sRk =
{
Q(k1,k) ∈ Q : k1 ∈ [6σ

r]
}

be the binned version of Rk. For each k, either

1. sRk ∩ sZ = ∅, in which case

voln,r

((
Z M C(1)[X]

)
∩Rk

)
≥ 1

2
voln,r(C(1)[X] ∩Rk), or

2. sRk ∩ sZ = sRk, in which case

voln,r

((
Z M C [X]

)
∩Rk

)
≥ 1

2
voln,r(C(2)[X] ∩Rk), or

3. sRk ∩ ∂ sZ 6= ∅.

Let N(R) be the number of slices for which sRk ∩ ∂ sZ 6= ∅. By the cases elucidated above, letting

Rmin := min
k

{
voln,r(C(1)[X] ∩Rk) ∧ voln,r(C(2)[X] ∩Rk)

}
we obtain the following lower bound on the volume of the symmetric set difference,

voln,r(Z M C(1)[X]) ≥ 1

2
Rmin

[
2ρ

r
−N(R)

]
⇐⇒ N(R) ≥ 2

(ρ
r
− voln,r(Z M C(1)[X])

Rmin

)
(A.78)

125

Finally note that
∣∣∂ sZ∣∣ ≥ N(R). Therefore combining (A.77) and (A.78), we have that

cutn,r(Z) ≥ 1

4
N(R)Q2

min

≥ 1

2

(
ρ

r
− voln,r(Z M C(1)[X])

Rmin

)
Q2

min (A.79)

for all Z ⊂ X.

It remains to lower bound the random quantities Rmin and Qmin. To do so, we first lower bound the expected
probability of any cell Q,

min
Q∈Q

P(Q) ≥ εr2

ρσ
. (A.80)

and the expected volume of C(1)[X] ∩Rk and C(2)[X] ∩Rk,

volP,r(C(1) ∩Rk) = volP,r(C(2) ∩Rk) ≥ πr3

2σρ2
for all k. (A.81)

Since Qmin and Rmin are obtained by taking the minimum of functionals over a fixed number of sets in n,
they concentrate tightly around their means. Specifically, note that the total number of cubes is

∣∣Q∣∣ = 12σρ
r2 ,

and the total number of horizontal slices is 2ρ
r . Along with (A.80) and (A.81), by Lemma 16

Qmin ≥ (1− δ)εr
2

ρσ
and Rmin ≥ (1− δ) πr

3

2σρ2
,

with probability at least 1− 12σρ
r2 exp

{
−nδ

2εr2n
4ρσ

}
− 2ρ

r exp
{
−nδ

2πr3

8σρ2

}
. Combining these lower bounds with

(A.76) and (A.79), we obtain

Φn,r(Z) ≥ (1− δ)2

2(1 + δ)π

(
1− 2

σρ

(1− δ)r2n2
voln,r(Z M C(1)[X])

)
ε2r

σ
,

for all Z ⊆ X.

A.5 Additional results: aPPR and Consistency of PPR

In this appendix, we prove two additional results regarding PPR remarked upon in our main text. In
Section A.5.1, we show that clustering using the aPPR vector satisfies an equivalent guarantee to Theo-
rem 3. In Section A.5.2, we show that the PPR vector can perfectly distinguish two distinct density clusters
Cλ, C′λ.

A.5.1 Generic cluster recovery with aPPR

Our formal claim regarding cluster recovery with aPPR is contained in Corollary 4.

Corollary 4. Consider instead of Algorithm 1 using the approximate PPR vector from Andersen et al. [2006]
satisfying (2.2), and forming the corresponding cluster estimate Ĉ in the same manner. Then provided we
take

ε =
1

25(1 + δ)n(n− 1)volP,r(C)
, (A.82)

under the assumptions of Theorem 3 the upper bound on symmetric set difference in (2.26) still holds.

126

Proof of Corollary 4. Note that the choice of ε in (A.82) implies ε ≤ 1/
(
25voln,r(C[X])

)
with probability

at least 1− exp
{
−nδ2volP,r(C)

}
. The proof of Corollary 4 is then identical to that of Theorem 3, except one

uses Corollary 2 rather than Lemma 1 to relate the symmetric set difference to the graph normalized cut
and mixing time.

A.5.2 Perfectly distinguishing two density clusters

As mentioned in our main text, the symmetric set difference does not measure whether Ĉ can (perfectly)
distinguish any two distinct clusters Cλ, C′λ ∈ Cf (λ). We therefore also study a second notion of cluster
estimation, first introduced by Hartigan [1981].

Definition A.5.1. For an estimator Ĉ ⊆ X and distinct clusters Cλ, C′λ ∈ Cf (λ), we say Ĉ separates Cλ
from C′λ if

Cλ[X] ⊆ Ĉ and Ĉ ∩ C′λ[X] = ∅. (A.83)

The bound on symmetric set difference (2.31) does not imply (A.83), which requires a uniform bound over
the PPR vector pv. As an example, suppose that we were able to show that for all C′ ∈ Cf (λ), C′ 6= C, and
each u ∈ C, u′ ∈ C′,

pv(u
′)

deg(u′;G)
≤ 1

10
· 1

n(n− 1)volP,r(Cλ,σ)
<

1

5
· 1

n(n− 1)volP,r(Cλ,σ)
≤ pv(u)

deg(u;G)
. (A.84)

Then, any (L,U) satisfying (2.22) and any sweep cut Sβ for β ∈ (L,U) would fulfill both conditions laid

out in (A.83). In Theorem 26, we show that a sufficiently small upper bound on ∆(Ĉ, Cλ,σ[X]) ensures that
with high probability the uniform bound (A.84) is satisfied, and hence implies that Ĉ will separate Cλ from
C′λ. In what follows, put

c1,δ :=
(1− δ)5

4
·min

{(3

8(1 + δ)
− 1

5

)
,

1

10

}
and note that if δ ∈ (0, 7/8) then c1,δ > 0. (In fact, we will have to take δ ∈ (0, 1/4) in order to use
Propositions 2 and 3). Additionally, denote P′ for the conditional distribution of a sample point given that
it falls in C′λ,σ, i.e. P′(S) := P(S ∩ C′λ,σ)/P(C′λ,σ), and G′n,r := Gn,r[C′λ,σ] for the subgraph of Gn,r induced
by C′λ,σ.

Theorem 26. For any δ ∈ (0, 1/4) any n ∈ N such that

1

n
≤ δ ·

4P(C′λ,σ)

3
(A.85)

and otherwise under the same conditions as Theorem 3, the following statement holds with probability at least
1−B2/n−4 exp{−b1δ2n}− (n+2) exp{−b3n}−3(n+3) exp{−b7δ2n}: there exists a set Cλ,σ[X]g ⊆ Cλ,σ[X]
of large volume, voln,r(Cλ,σ[X]g) ≥ voln,r(Cλ,σ[X])/2, such that if Algorithm 1 is δ-well-initialized and run
with any seed node v ∈ Cλ,σ[X]g, and moreover

κP,r(Cλ,σ, δ) ≤ c1,δ ·
min

{
P(Cλ,σ)2 · dmin(P̃)2,P(C′λ,σ)2 · dmin(P′)2

}
volP,r(Cλ,σ)

(A.86)

then the PPR estimated cluster Ĉ satisfies (A.83).

Before we prove Theorem 26, we make a few brief remarks:

• In one sense, Theroem 26 is a strong result: if the density clusters Cλ, C′λ satisfies the requirement (A.86),
and we are willing to ignore the behavior of the algorithm in low-density regions, Theorem 26 guarantees
that PPR will perfectly distinguish the candidate cluster Cλ from C′λ.

127

• On the other hand, unfortunately the requirement (A.86) is rather restrictive. Suppose the density
cluster Cλ,σ satisfies (A3). Then from the following chain of inequalities,

∆(Ĉ, Cλ,σ[X])

voln,r(Cλ,σ[X])

(Thm. 3)

≤ κP,r(C, δ)
(A.86)

≤ c1,δ ·
P(Cλ,σ)2 · dmin(P̃)2

volP,r(Cλ,σ)

(A3)

≤ c1,δ ·
Λσ
λσ
νdr

d,

we see that in order for (A.86) to be met, it is necessary that ∆(Ĉ, Cλ,σ[X])/voln,r(Cλ,σ[X]) be on the
order of rd. In plain terms, we are able to recover a density cluster Cλ in the strong sense of (A.83)
only when we can guarantee the volume of the symmetric set difference will be very small. This strong
condition is the price we pay in order to obtain the uniform bound in (A.84).

• The proof of Theorem 26 relies heavily on Lemma 7. This lemma—or more accurately, the equa-
tion (A.32) used in the proof of the lemma—can be thought of as a smoothness result for the PPR
vector, showing that the mass of pv(·) cannot be overly concentrated at any one vertex u ∈ V . How-
ever, (A.32) is a somewhat crude bound. By plugging a stronger result on the smoothness of pv(·) in
to the proof of Lemma 7, we could improve the uniform bounds of the lemma, and in turn show that
the conclusion of Theorem 26 holds under weaker conditions than (A.86).

Now we recall some probabilistic estimates before proceeding to the proof of Theorem 26.

Probabilistic estimates. As in the proof of Theorem 3, we will assume that the inequalities (2.17)-(2.21)
and (A.66)-(A.68) are satisfied. We will additionally assume that

n′ ≥ (1− δ) · n · P(C′λ,σ)
(A.85)
=⇒ n′ − 1 ≥ (1− δ)2 · n · P(C′λ,σ) (A.87)

and that
1

n′ − 1
dmin(G′n,r) ≥ (1− δ) · dmin(P′). (A.88)

By Propositions 2-3 and Lemmas 14-16, these inequalities hold with probability at least 1 − B2/n −
4 exp{−b1δ2n} − (n+ 1) exp{−b3n} − (3n+ 3) exp{−b7δ2n}, taking b7 := b2 ∧ P(C′λ,σ) · dmin(P′)/9.

Proof of Theorem 26. We have already verified in the proof of Theorem 3 that α ≤ 1/(2τ∞(G̃n,r)),
and we may therefore apply Lemma 7, which gives an upper bound on pv(u) for all u ∈ Cλ,σ[X]o and a
lower bound on pv(u

′) for all pv(u
′) for all u′ ∈ C′λ,σ[X]o. These bounds are useful because r ≤ σ, which

implies that Cλ[X] ⊆ Cλ,σ[X]o and likewise that C ′λ[X] ⊆ C′λ,σ[X]o. We will show that these bounds in turn
imply (A.84), from which the claim of the theorem follows.

We begin with the lower bound in (A.84). From (in order) Lemma 7, our assorted probabilistic estimates,
and the assumed lower bound (A.86) on κP,r(C, δ), we have that for all u ∈ Cλ[X],

pv(u)

degn,r(u)
≥ 3

8voln,r(C[X])
− 2

Φn,r(Cλ,σ[X])

dmin(G̃n,r)2α

≥ 1

n(n− 1)

(
3

8(1 + δ)volP,r(Cλ,σ)
− 4 · n(n− 1)

(ñ− 1)2
· κP,r(Cλ,σ, δ)

(1− δ)dmin(P̃)2

)
≥ 1

n(n− 1)

(
3

8(1 + δ)volP,r(Cλ,σ)
− 4 · κP,r(Cλ,σ, δ)

(1− δ)5P(C)2dmin(P̃)2

)
≥ 1

5n2volP,r(Cλ,σ)
.

128

An equivalent derivation implies the upper bound in (A.84): for all u′ ∈ C′λ[X],

pv(u
′)

degn,r(u
′)
≤ 2

Φn,r(Cλ,σ[X])

dmin(G′n,r)
2α

≤ 4 · 1

(n′ − 1)2
· κ(Cλ,σ, δ)

(1− δ)dmin(P′)2

≤ 4
κ(Cλ,σ, δ)

n2(1− δ)5P(C′λ,σ)2dmin(P′)2
≤ 1

10n2volP,r(Cλ,σ)
,

completing the proof of Theorem 26.

A.6 Experimental Details

Finally, we detail the settings of our experiments, and include an additional figure.

A.6.1 Experimental settings for Figure 2.2

Let Rσ,ρ = [−σ/2, σ/2] × [−ρ/2, ρ/2] be the two-dimensional rectangle of width σ and height ρ, centered
at the origin. We sample n = 8000 points according to the density function fρ,σ,λ, defined over domain
X = [−1, 1]2 and parameterized by ρ, σ and λ as follows:

fρ,σ,λ(x) :=

λ, if x ∈ Rσ,ρ − (−.5, 0) or x ∈ Rσ,ρ + (−.5, 0)

4− 2λρσ

1− 2ρσ
, if x ∈ X , x 6∈ Rσ,ρ − (−.5, 0) and x 6∈ Rσ,ρ + (−.5, 0).

(A.89)

Then θ := λ − 4−2λρσ
1−2ρσ measures the difference in density between the density clusters and the rest of the

domain. The first column displays n = 8000 points sampled from three different parameterizations of
fρ,σ,λ:

ρ = .913, σ = .25, (λ− θ)/λ = .25 (top panel)

ρ = .25, σ =, (λ− θ)/λ = .05 (middle panel)

ρ = .5, σ = .25, (λ− θ)/λ = .12 (bottom panel.)

In each of the first, second, and third rows, we fix two parameters and vary the third. In the first row, we
fix σ = .25, (λ − θ)/λ = .25, and vary ρ from .25 to 2. In the second row, we fix ρ = 1.8, (λ − θ)/λ = .05,
and vary σ from .1 to .2 In the third row, we fix ρ = .5, σ = .25 and vary (λ − θ)/λ from .1 to .25. In the
first and third rows, we take r = σ/8; in the second row, where we vary σ, we take r = .1/8.

A.6.2 Experimental settings for Figure 2.3

To form each of the three rows in Figure 2.3, n = 800 points are independently sampled following a ’two
moons plus Gaussian noise model’. Formally, the (respective) generative models for the data are

Z ∼ Bern(1/2), θ ∼ Unif(0, π) (A.90)

X(Z, θ) =

{
µ1 + (r cos(θ), r sin(θ)) + σε, if Z = 1

µ2 + (r cos(θ),−r sin(θ)) + σε, if Z = 0
(A.91)

where

µ1 = (−.5, 0), µ2 = (0, 0), ε ∼ N(0, I2) (row 1)

µ1 = (−.5,−.07), µ2 = (0, .07), ε ∼ N(0, I2) (row 2)

µ1 = (−.5,−.125), µ2 = (0, .125), ε ∼ N(0, I2) (row 3)

129

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(d)

Figure A.1: True density (column 1), PPR (column 2), minimum normalized cut (column 3) and estimated density
(column 4) clusters for two-moons with 10 dimensional noise. Seed node for PPR denoted by a black cross.

for Id the d× d identity matrix. In all cases σ = .07. In each case λ is taken as small as possible such that
there exist exactly two distinct density clusters, which we call Cλ and C′λ; r is taken as small as possible
so that each vertex has at least 2 neighbors. The first column consists of the empirical density clusters
Cλ[X] and C′λ[X] for a particular threshold λ of the density function; the second column shows the PPR
plus minimum normalized sweep cut cluster, with hyperparameter α and all sweep cuts considered; the third
column shows the global minimum normalized cut, computed according to the algorithm of Bresson et al.
[2012]; and the last column shows a cut of the density cluster tree estimator of Chaudhuri and Dasgupta
[2010].

Performance of PPR with high-dimensional noise. Figure A.1 is similar to Figure 2.3 of the main
text, but with parameters

µ1 = (−.5,−.025), µ2 = (0, .025), ε ∼ N(0, I10).

The gray dots in (a) (as in the left-hand column of Figure 2.3 in the main text) represent observations in
low-density regions. While the PPR sweep cut (b) has relatively high symmetric set difference with the
chosen density cut, it still recovers separates Cλ[X] and C′λ[X], in the sense of Definition A.5.1.

130

Appendix B

Chapter 3 Appendix

B.1 Preliminaries

In the appendix, we provide complete proofs of all results. Our main theorems (Theorems 6-10) all follow
the same general proof strategy of first establishing bounds in the fixed-design setup. In Section B.2, we
establish (estimation or testing) error bounds which hold for any graph G; these bounds are stated with

respect to (functionals of) the graph G, and allow us to upper bound the error of f̂ and ϕ̂ conditional on
the design {X1, . . . , Xn} = {x1, . . . , xn}. In Sections B.3, B.4, B.5, and B.6 we develop all the necessary
probabilistic estimates on these functionals, for the particular random neighborhood graph G = Gn,r. It
is in these sections where we invoke our various assumptions on the distribution P and regression function
f0. In Section B.7, we prove our main theorems and some other results. In Section B.8, we state a few
concentration bounds that we use repeatedly in our proofs.

Pointwise evaluation of Sobolev functions. First, however, as promised in our main text we clarify
what is meant by pointwise evaluation of the regression function f0. Strictly speaking, each f ∈ H1(X) is
really an equivalence class, defined only up to sets of Lebesgue measure 0. In order to make sense of the
evaluation x 7→ f(x), one must therefore pick a representative f? ∈ f . When d = 1, this is resolved in
a standard way—since H1(X) embeds continuously into C0(X), there exists a continuous version of every
f ∈ H1(X), and we take this continuous version as the representative f?. On the other hand, when d ≥ 2,
the Sobolev space H1(X) does not continuously embed into C0(X), and we must choose representatives in
a different manner. In this case we let f? be the precise representative [Evans and Gariepy, 2015], defined
pointwise at points x ∈ X as

f?(x) =

 lim
ε→0

1

ν(B(x, ε))

∫
B(x,ε)

f(z)dz, if the limit exists,

0, otherwise.

Note that when d = 1, the precise representative of any f ∈ H1(X) is continuous.

Now we explain why the particular choice of representative is not crucial, using the notion of a Lebesgue
point. Recall that for a locally Lebesgue integrable function f , a given point x ∈ X is a Lebesgue point of f
if the limit of 1/(ν(B(x, ε)))

∫
B(x,ε)

f(x)dx as ε→ 0 exists, and satisfies

lim
ε→0

1

ν
(
B(x, ε)

) ∫
B(x,ε)

f(x)dx = f(x).

131

Let E denote the set of Lebesgue points of f . By the Lebesgue differentiation theorem [Evans and Gariepy,
2015], if f ∈ L1(X) then almost every x ∈ X is a Lebesgue point, ν(X \E) = 0. Since f0 ∈ H1(X) ⊆ L1(X),
we can conclude that any function g0 ∈ f0 disagrees with the precise representative f?0 only on a set of
Lebesgue measure 0. Moreover, since we always assume the design distribution P has a continuous density,
with probability 1 it holds that g0(Xi) = f?0 (Xi) for all i = 1, . . . , n. This justifies the notation f0(Xi) used
in the main text.

B.2 Graph-dependent error bounds

In this section, we adopt the fixed design perspective; or equivalently, condition on Xi = xi for i = 1, . . . , n.
Let G =

(
[n],W

)
be a fixed graph on {1, . . . , n} with Laplacian matrix L = D −W . The randomness thus

all comes from the responses
Yi = f0(xi) + εi (B.1)

where the noise variables εi are independent N(0, 1). In the rest of this section, we will mildly abuse notation
and write f0 = (f0(x1), . . . , f0(xn)) ∈ Rn. We will also write Y = (Y1, . . . , Yn).

Recall (3.2) and (3.3): the Laplacian smoothing estimator of f0 on G is

f̂ := argmin
f∈Rn

{ n∑
i=1

(Yi − fi)2 + ρ · f>Lf

}
= (ρL + I)−1Y.

and the Laplacian smoothing test statistic is

T̂ :=
1

n
‖f̂‖22.

We note that in this section, many of the derivations involved in upper bounding the estimation error of f̂ are
similar to those of Sadhanala et al. [2016a], with the difference being that we seek bounds in high probability
rather than in expectation. We keep the work here self-contained for purposes of completeness.

B.2.1 Error bounds for linear smoothers

Let S ∈ Rn×n be a fixed square, symmetric matrix, and let

qf := SY

be a linear estimator of f0. In Lemma 24 we upper bound the error 1
n‖ qf−f0‖22 as a function of the eigenvalues

of S. Let λ(S) = (λ1(S), . . . , λn(S)) ∈ Rn denote these eigenvalues, and let vk(S) denote the corresponding
unit-norm eigenvectors, so that S =

∑n
k=1 λk(S) · vk(S)vk(S)>. Denote Zk = vk(S)>ε, and observe that

Z = (Z1, . . . , Zn) ∼ N(0, I).

Lemma 24. Let qf = SY for a square, symmetric matrix, S ∈ Rn×n. Then

Pf0
(

1

n

∥∥ qf − f0

∥∥2

2
≥ 10

n

∥∥λ(S)
∥∥2

2
+

2

n

∥∥(S − I)f0

∥∥2

2

)
≤ 1− exp

(
−
∥∥λ(S)

∥∥2

2

)
Here we have written Pf0(·) for the probability law under the regression “function” f0 ∈ Rn.

In Lemma 25, we upper bound the error of a test involving the statistic ‖ qf‖22 = Y>S2Y. We will require that
S be a contraction, meaning that it has operator norm no greater than 1, ‖Sv‖2 ≤ ‖v‖2 for all v ∈ Rn.

132

Lemma 25. Let qT = Y>S2Y for a square, symmetric matrix S ∈ Rn×n. Suppose S is a contraction.
Define the threshold qtα to be

qtα := ‖λ(S)‖22 +

√
2

α
‖λ(S)‖24. (B.2)

It holds that:

• Type I error.
P0

(
qT > qtα

)
≤ α. (B.3)

• Type II error. Under the further assumption

f>0 S
2f0 ≥

(
2

√
2

α
+ 2b

)
· ‖λ(S)‖24, (B.4)

then

Pf0
(
qT ≤ qtα

)
≤ 1

b2
+

16

b‖λ(S)‖24
. (B.5)

Proof of Lemma 24. The expectation Ef0 [qf] = Sf0, and by the triangle inequality,

1

n

∥∥ qf − f0

∥∥2

2
≤ 2

n

(∥∥ qf − Ef0 [qf]
∥∥2

2
+
∥∥Ef0 [qf]− f0

∥∥2

2

)
=

2

n

(∥∥Sε∥∥2

2
+
∥∥(S − I)f0

∥∥2

2

)
.

Writing ‖Sε‖22 =
∑n
k=1 λk(S)2Z2

k , the claim follows from the result of Laurent and Massart [2000] on
concentration of χ2-random variables, which for completeness we restate in Lemma 37. To be explicit,
taking t = ‖λ(S)‖22 in Lemma 37 completes the proof of Lemma 24.

Proof of Lemma 25. We compute the mean and variance of T as a function of f0, then apply Chebyshev’s
inequality.

Mean. We make use of the eigendecomposition S =
∑n
k=1 λk(S) · vk(S)vk(S)> to obtain

qT = f>0 S
2f0 + 2f>0 S

2ε+ ε>S2ε

= f>0 S
2f0 + 2f>0 S

2ε+

n∑
k=1

(
λk(S)

)2
(ε>vk(S))2

= f>0 S
2f0 + 2f>0 S

2ε+

n∑
k=1

(
λk(S)

)2
Z2
k ,

(B.6)

implying

Ef0
[
qT
]

= f>0 S
2f0 +

n∑
k=1

(
λk(S)

)2
. (B.7)

Variance. We start from (B.6). Recalling that Var(Z2
k) = 2, it follows from the Cauchy-Schwarz inequality

that

Varf0
[
qT
]
≤ 8f>0 S

4f0 + 4

n∑
k=1

(
λk(S)

)4
. (B.8)

Bounding Type I and Type II error. The upper bound (B.3) on Type I error follows immediately from (B.7),
(B.8), and Chebyshev’s inequality.

133

We now establish the upper bound (B.5) on Type II error. From assumption (B.4), we see that f>0 S
2f>0 −qtα ≤

0. As a result,

Pf0
(
qT ≤ qtα

)
= Pf0

(
qT − Ef0

[
qT
]
≤ qtα − Ef0

[
qT
])

≤ Pf0
(∣∣∣ qT − Ef0

[
qT
]∣∣∣ ≥ ∣∣∣qtα − Ef0

[
qT
]∣∣∣)

≤
Varf0

[
qT
](

qtα − Ef0
[
qT
])2 ,

where the last line follows from Chebyshev’s inequality. Plugging in the expressions (B.7) and (B.8) for the

mean and variance of qT , as well as the definition of qtα in (B.2), we obtain that

Pf0
(
qT ≤ qtα

)
≤ 4‖λ(S)‖44(

f>0 S
2f0 −

√
2/α‖λ(S)‖24

)2 +
8f>0 S

4f0(
f>0 S

2f0 −
√

2/α‖λ(S)‖24
)2 . (B.9)

We now use the assumed lower bound f>0 S
2f0 ≥ (2

√
2/α + 2b)‖λ(S)‖24 to separately upper bound each of

the two terms on the right hand side of (B.9). It follows immediately that

4‖λ(S)‖44(
f>0 S

2f0 −
√

2/α‖λ(S)‖24
)2 ≤ 1

b2
, (B.10)

giving a sufficient upper bound on the first term. Now we upper bound the second term,

8f>0 S
4f0(

f>0 S
2f0 −

√
2/α‖λ(S)‖24

)2 ≤ 32f>0 S
4f0(

f>0 S
2f0

)2 ≤ 16

b‖λ(S)‖24
f>0 S

4f0

f>0 S
2f0
≤ 16

b‖λ(S)‖24
, (B.11)

where the final inequality is satisfied because S is a contraction. Plugging (B.10) and (B.11) back into (B.9)
then gives the desired result.

B.2.2 Analysis of Laplacian smoothing

Upper bounds on the mean squared error of f̂ , and Type I and Type II error of T̂ , follow from setting
S = (ρL + I)−1 in Lemmas 24 and 25. We give these results in Lemma 26 and 27, and prove them
immediately. Recall that λ1, . . . , λn are the n eigenvalues of L (sorted in ascending order).

Lemma 26. For any ρ > 0,

1

n

∥∥f̂ − f0

∥∥2

2
≤ 2ρ

n

(
f>0 Lf0

)
+

10

n

n∑
k=1

1(
ρλk + 1

)2 , (B.12)

with probability at least 1− exp
(
−
∑n
k=1

(
ρλk + 1

)−2
)

.

Recall that

t̂α :=
1

n

n∑
k=1

1(
ρλk + 1

)2 +
1

n

√√√√ 2

α

n∑
k=1

1(
ρλk + 1

)4 .
Lemma 27. For any ρ > 0 and any b ≥ 1, it holds that:

• Type I error.

P0

(
T̂ > t̂α

)
≤ α. (B.13)

134

• Type II error. If

1

n
‖f0‖22 ≥

2ρ

n

(
f>0 Lf0

)
+

2
√

2/α+ 2b

n

(
n∑
k=1

1

(ρλk + 1)4

)1/2

, (B.14)

then

Pf0
(
T̂ (G) ≤ t̂α

)
≤ 1

b2
+

16

b

(
n∑
k=1

1

(ρλk + 1)4

)−1/2

. (B.15)

Proof of Lemma 26. Let Ŝ = (I + ρL)−1, the estimator f̂ = ŜY , and

∥∥λ(Ŝ)
∥∥2

2
=

n∑
k=1

1(
1 + ρλk

)2 .
We deduce the following upper bound on the bias term,∥∥(Ŝ − I)f0

∥∥2

2
= f>0 L1/2L−1/2

(
Ŝ − I

)2
L−1/2L1/2f0

≤ f>0 Lf0 · λn
(
L−1/2

(
Ŝ − I

)2
L−1/2

)
= f>0 Lf0 · max

k∈[n]

{
1

λk

(
1− 1

ρλk + 1

)2
}

≤ f>0 Lf0 · ρ.

In the above, we have written L−1/2 for the square root of the pseudoinverse of L, the maximum is over all
indices k such that λk > 0, and the last inequality follows from the basic algebraic identity 1−1/(1+x)2 ≤ 2x
for any x > 0. The claim of the Lemma then follows from Lemma 24.

Proof of Lemma 27. Let Ŝ := (I + ρL)−1, so that T̂ = 1
nY>Ŝ2Y. Note that Ŝ is a contraction, so that

we may invoke Lemma 25. The bound on Type I error (B.13) follows immediately from (B.3). To establish

the bound on Type II error, we must lower bound f>0 Ŝ
2f0. We first note that by assumption (B.14),

f>0 Ŝ
2f0 =

∥∥f0

∥∥2

2
− f>0 (I − Ŝ2)f0

≥ 2ρ
(
f>0 Lf0

)
− f>0

(
I − Ŝ2

)
f0 +

(
2

√
2

α
+ 2b

)
·

(
n∑
k=1

1

(ρλk + 1)4

)−1/2

.

Upper bounding f>0
(
I − Ŝ2

)
f0 as follows:

f>0

(
I − Ŝ2

)
f0 = f>0 L1/2L−1/2

(
I − Ŝ2

)
L−1/2L1/2f0

≤ f>0 Lf0 · λn
(

L−1/2
(
I − Ŝ2

)
L−1/2

)
= f>0 Lf0 ·max

k

{
1

λk

(
1− 1

(ρλk + 1)2

)}
≤ f>0 Lf0 · 2ρ,

—where in the above the maximum is over all indices k such that λk > 0—we deduce that

f>0 Ŝ
2f0 ≥

(
2

√
2

α
+ 2b

)
·
(n∑
k=1

1

(ρλk + 1)4

)−1/2

.

The upper bound on Type II error (B.15) then follows from Lemma 25.

135

B.3 Neighborhood graph Sobolev semi-norm

In this section, we prove Lemma 3, which states an upper bound on f>Lf that holds when f is bounded in
Sobolev norm. We also establish stronger bounds in the case when f has a bounded Lipschitz constant; this
latter result justifies one of our remarks after Theorem 6.

Throughout this proof, we will assume that f ∈ H1(X) has zero-mean, meaning
∫
X f(x) dx = 0. This

is without loss of generality—assuming for the moment that (3.14) holds for zero-mean functions, for any
f ∈ H1(X), taking a =

∫
X f(x) dx and g = f − a, we have that

f>Lf = g>Lg ≤ C2

δ
n2rd+2|g|2H1(X) =

C2

δ
n2rd+2|f |2H1(X).

Now, for any zero-mean function f ∈ H1(X) it follows by the Poincare inequality (see Section 5.8, Theorem
1 of Evans [2010]) that ‖f‖2H1(X) ≤ C8|f |2H1(X), for some constant C8 that does not depend on f . Therefore,
to prove Lemma 3, it suffices to show that

E
[
f>Lf

]
≤ Cn2rd+2‖f‖2H1(X),

since the high-probability upper bound then follows immediately by Markov’s inequality. (Recall that L is
positive semi-definite, and therefore f>Lf is a non-negative random variable).

Since

f>Lf =
1

2

n∑
i,j=1

(
f(Xi)− f(Xj)

)2
Wij ,

it follows that

E
[
f>Lf

]
=
n(n− 1)

2
E
[(
f(X ′)− f(X)

)2

K

(
‖X ′ −X‖

r

)]
, (B.16)

where X and X ′ are random variables independently drawn from P .

Now, take Ω to be an arbitrary bounded open set such that B(x, c0) ⊆ Ω for all x ∈ X . For the remainder
of this proof, we will assume that (i) f ∈ H1(Ω) and additionally (ii) ‖f‖H1(Ω) ≤ C5‖f‖H1(X) for a constant
C5 that does not depend on f . This is without loss of generality, since by Theorem 1 in Chapter 5.4 of Evans
[2010] there exists an extension operator E : H1(X)→ H1(Ω) for which the extension Ef satisfies both (i)
and (ii). Additionally, we will assume f ∈ C∞(Ω). Again, this is without loss of generality, as C∞(Ω) is
dense in H1(Ω) and the expectation on the right hand side of (B.16) is continuous in H1(Ω). The reason
for dealing with a smooth extension f ∈ C∞(Ω) is so that we can make sense of the following equality for
any x and x′ in X :

f(x′)− f(x) =

∫ 1

0

∇f
(
x+ t(x′ − x)

)>
(x′ − x) dt. (B.17)

Obviously

E
[(
f(X ′)− f(X)

)2
K

(
‖X ′ −X‖

r

)]
≤ p2

max

∫
X

∫
X

(
f(x′)− f(x)

)2
K

(
‖x′ − x‖

r

)
dx′ dx, (B.18)

so that it remains now to bound the double integral. Replacing difference by integrated derivative as in

136

(B.17), we obtain∫
X

∫
X

(
f(x′)− f(x)

)2
K

(
‖x′ − x‖

r

)
dx′ dx =

∫
X

∫
X

[∫ 1

0

∇f
(
x+ t(x′ − x)

)>
(x′ − x) dt

]2

K

(
‖x′ − x‖

r

)
dx′ dx

(i)

≤
∫
X

∫
X

∫ 1

0

[
∇f
(
x+ t(x′ − x)

)>
(x′ − x)

]2

K

(
‖x′ − x‖

r

)
dt dx′ dx

(ii)

≤ rd+2

∫
X

∫
B(0,1)

∫ 1

0

[
∇f
(
x+ trz

)>
z

]2

K
(
‖z‖
)
dt dz dx

(iii)

≤ rd+2

∫
Ω

∫
B(0,1)

∫ 1

0

[
∇f
(
x̃
)>
z
]2
K
(
‖z‖
)
dt dz dx̃, (B.19)

where (i) follows by Jensen’s inequality, (ii) follows by substituting z = (x′ − x)/r and (K1), and (iii) by
exchanging integrals, substituting x̃ = x+ trz, and noting that x ∈ X implies that x̃ ∈ Ω.

Now, writing
(
∇f(x̃)>z

)2
=
(∑d

i=1 zif
(ei)(x)

)2
, expanding the square and integrating, we have that for any

x̃ ∈ X , ∫
B(0,1)

[
∇f
(
x̃
)>
z
]2
K
(
‖z‖
)
dz =

d∑
i,j=1

f (ei)(x̃)f (ej)(x̃)

∫
Rd
zizjK(‖z‖) dz

=

d∑
i=1

(
f (ei)(x̃)

)2 ∫
B(0,1)

z2
iK
(
‖z‖
)
dz

= σK‖∇f(x̃)‖2,

where the last equality follows from the rotational symmetry of K(‖z‖). Plugging back into (B.19), we
obtain ∫

X

∫
X

(
f(x′)− f(x)

)2
K

(
‖x′ − x‖

r

)
dx′ dx ≤ rd+2σK‖f‖2H1(Ω) ≤ C5r

d+2σK‖f‖2H1(X),

proving the claim of Lemma 3 upon taking C2 := C8C5σKp
2
max in the statement of the lemma.

B.3.1 Stronger bounds under Lipschitz assumption

Suppose f satisfies |f(x′)−f(x)| ≤M‖x−x‖ for all x, x′ ∈ X . Then we can strengthen the high probability
bound in Lemma 3 from 1 − δ to 1 − δ2/n, at the cost of only a constant factor in the upper bound on
f>Lf .

Proposition 19. Let r ≥ C0(log n/n)1/d. For any f such that |f(x′)− f(x)| ≤M‖x− x‖ for all x, x′ ∈ X ,
with probability at least 1− Cδ2/n it holds that

f>Lf ≤
(

1

δ
+ C2

)
n2rd+2M2.

Proof of Proposition 19. We will prove Proposition 19 using Chebyshev’s inequality, so the key step is
to upper bound the variance of f>Lf . Putting ∆ij := K(‖Xi−Xj‖/r) · (f(Xi)− f(Xj))

2, we can write the
variance of f>Lf as a sum of covariances,

Var
[
f>Lf

]
=

1

4

n∑
i,j=1

n∑
`,m=1

Cov
[
∆ij , ∆`m

]
.

Clearly Cov
[
∆ij , ∆`m

]
depends on the cardinality of I := {i, j, k, `}; we divide into cases, and upper bound

the covariance in each case.

137

∣∣I∣∣ = 4. In this case ∆ij and ∆`m are independent, and Cov
[
∆ij , ∆`m

]
= 0.∣∣I∣∣ = 3. Taking i = ` without loss of generality, and noting that the expectation of ∆ij and ∆im is non-negative,

we have

Cov
[
∆ij , ∆im

]
≤ E

[
∆ij∆im

]
=

∫
X

∫
X

∫
X

(
f(z)− f(x)

)2(
f(x′)− f(x)

)2
K

(
‖x′ − x‖

r

)
K

(
‖z − x‖

r

)
p(z)p(x′)p(x) dz dx′ dx

≤ p3
maxM

4r4

∫
X

∫
X

∫
X
K

(
‖x′ − x‖

r

)
K

(
‖z − x‖

r

)
dz dx′ dx

≤ p3
maxM

4r4+2d.

∣∣I∣∣ = 2. Taking i = ` and j = m without loss of generality, we have

Var
[
∆ij

]
≤ E

[
∆2
ij

]
≤
∫
X

∫
X

(
f(x′)− f(x)

)4[
K

(
‖x′ − x‖

r

)]2

p(x′)p(x) dx′ dx

≤ p2
maxM

4r4K(0)

∫
X

∫
X
K

(
‖x′ − x‖

r

)
dx′ dx

≤ p2
maxM

4r4+dK(0).

∣∣I∣∣ = 1. In this case ∆ij = ∆`m = 0.

Therefore
Var
[
f>Lf

]
≤ n3p3

maxM
4r4+2d + n2p2

maxM
4r4+dK(0) ≤ CM4n3r4+2d,

where the latter inequality follows since nrd � 1. For any δ > 0, it follows from Chebyshev’s inequality
that

P
(∣∣∣f>Lf − E

[
f>Lf

]∣∣∣ ≥ M2

δ
n2rd+2

)
≤ C δ

2

n
,

and since we have already upper bounded E
[
f>Lf

]
≤ C2M

2n2rd+2, the proposition follows.

Note that the bound on Var[∆ij] follows as long as we can control ‖∇f‖L4(X); this implies the Lipschitz
assumption—which gives us control of ‖∇f‖L∞(X)—can be weakened. However, the Sobolev assumption—
which gives us control only over ‖∇f‖L2(X)—will not do the job.

B.4 Bounds on neighborhood graph eigenvalues

In this section, we prove Lemma 4, following the lead of Burago et al. [2014], Garćıa Trillos et al. [2019a],
Calder and Garćıa Trillos [2019], who establish similar results with respect to a manifold without boundary.
To prove this lemma, in Theorem 27 we give estimates on the difference between eigenvalues of the graph
Laplacian L and eigenvalues of the weighted Laplace-Beltrami operator ∆P . We recall ∆P is defined as

∆P f(x) := − 1

p(x)
div
(
p2∇f

)
(x).

To avoid confusion, in this section we write λk(Gn,r) for the kth smallest eigenvalue of the graph Laplacian
matrix L and λk(∆P) for the kth smallest eigenvalue of ∆P

1. Some other notation: throughout this section,

1Under the assumptions (P1) and (P2), the operator ∆P has a discrete spectrum; see Garćıa Trillos and Slepčev [2018a] for
more details.

138

we will write A,A0, A1, . . . and a, a0, a1, . . . for constants which may depend on X , d, K, and p, but do not
depend on n; we keep track of all such constants explicitly in our proofs. We let LK denote the Lipschitz
constant of the kernel K. Finally, for notational ease we set θ and δ̃ to be the following (small) positive
numbers:

δ̃ := max

{
n−1/d,min

{
1

2d+3A0
,

1

A3
,
K(1)

8LKA0
,

1

8 max{A1, A}c0

}
r

}
, and θ :=

1

8 max{A1, A}
. (B.20)

We note that each of δ̃, θ and δ̃/r are of at most constant order.

Theorem 27. For any ` ∈ N such that

1−A

(
r
√
λ`(∆P) + θ + δ̃

)
≥ 1

2
(B.21)

with probability at least 1−A0n exp(−a0nθ
2δ̃d), it holds that

aλk(Gn,r) ≤ nrd+2λk(∆P) ≤ Aλk(Gn,r), for all 1 ≤ k ≤ ` (B.22)

Before moving forward to the proofs of Lemma 4 and Theorem 27, it is worth being clear about the differ-
ences between Theorem 27 and the results of Burago et al. [2014], Garćıa Trillos et al. [2019a], Calder and
Garćıa Trillos [2019]. First of all, the reason we cannot directly use the results of these works in the proof of
Lemma 4 is that they all assume the domain X is without boundary, whereas for our results in Section 3.4
we instead assume X has a (Lipschitz smooth) boundary. Fortunately, in this setting the high-level strategy
shared by Burago et al. [2014], Garćıa Trillos et al. [2019a], Calder and Garćıa Trillos [2019] can still be
used—indeed we follow it closely, as we summarize in Section B.4.1. However, many calculations need to
be redone, in order to account for points x which are on or sufficiently close to the boundary of X . For
completeness and ease of reading, we provide a self-contained proof of Theorem 27, but we comment where
appropriate on connections between the technical results we use in this proof, and those derived in Burago
et al. [2014], Garćıa Trillos et al. [2019a], Calder and Garćıa Trillos [2019].

On the other hand, we should also point out that unlike the results of Burago et al. [2014], Garćıa Trillos
et al. [2019a], Calder and Garćıa Trillos [2019], Theorem 27 does not imply that λk(Gn,r) is a consistent
estimate of λk(∆P), i.e. it does not imply that |(nrd+2)−1λk(Gn,r) − λk(∆P)| → 0 as n → ∞, r → 0. The
key difficulty in proving consistency when X has a boundary can be summarized as follows: while at points
x ∈ X satisfying B(x, r) ⊆ X , the graph Laplacian L is a reasonable approximation of the operator ∆P ,
at points x near the boundary L is known to approximate a different operator altogether [Belkin et al.,
2012]. This is reminiscent of the boundary effects present in the analysis of kernel smoothing. We believe
a more subtle analysis might imply convergence of eigenvalues in this setting. However, the conclusion of
Theorem 27—that λk(Gn,r)/(nr

d+2λk(∆P)) is bounded above and below by constants that do not depend
on k—suffices for our purposes.

The bulk of the remainder of this section is devoted to the proof of Theorem 27. First, however, we show
that under our regularity conditions on p and X , Lemma 4 is a simple consequence of Theorem 27. The link
between the two is Weyl’s Law.

Proposition 20 (Weyl’s Law). Suppose the density p and the domain X satisfy (P1) and (P2). Then there
exist constants a2 and A2 such that

a2k
2/d ≤ λk(∆P) ≤ A2k

2/d for all k ∈ N, k > 1. (B.23)

See Lemma 28 of Dunlop et al. [2020] for a proof that (P1) and (P2) imply Weyl’s Law.

139

Proof of Lemma 4. Put

`? =

⌊((
1/(2A)− (θ + δ̃)

)
rA

1/2
2

)d⌋
.

Let us verify that λ`?(∆P) satisfies the condition (B.21) of Theorem 27. Setting c0 := 1/(21/d4A
1/2
2), the

assumed upper bound on the radius r ≤ c0 guarantees that `? ≥ 2. Therefore, by Proposition 20 we have
that √

λ`?(∆P) ≤ A1/2
2 `

1/d
? ≤ 1

r

(
1

2A
− (θ + δ̃)

)
.

Rearranging the above inequality shows that condition (B.21) is satisfied.

It is therefore the case that the inequalities in (B.22) hold with probability at least 1−A0n exp(−a0nθ
2δ̃d).

Together, (B.22) and (B.23) imply the following bounds on the graph Laplacian eigenvalues:

a

A2
nrd+2k2/d ≤ λk(Gn,r) ≤

A

a2
nrd+2k2/d for all 2 ≤ k ≤ `?.

It remains to bound λk(Gn,r) for those indices k which are greater than `?. On the one hand, since the
eigenvalues are sorted in ascending order, we can use the lower bound on λ`?(Gn,r) that we have just
derived:

λk(Gn,r) ≥ λ`?(Gn,r) ≥
a2

A
nrd+2`

2/d
? ≥ a2

64A3A2
nrd.

On the other hand, for any graph G the maximum eigenvalue of the Laplacian is upper bounded by twice
the maximum degree [Chung, 1997]. Writing Dmax(Gn,r) for the maximum degree of Gn,r, it is thus a
consequence of Lemma 40 that

λk(Gn,r) ≤ 2Dmax(Gn,r) ≤ 4pmaxnr
d,

with probability at least 1− 2n exp
(
−nrdpmin/(3K(0)2)

)
. In sum, we have shown that with probability at

least 1−A0n exp(−a0nθ
2δ̃d)− 2n exp

(
−nrdpmin/(3K(0)2)

)
,

min

{
a2

A
nrd+2k2/d,

a2

A364A3
nrd
}
≤ λk(Gn,r) ≤ min

{
A2

a
nr2+dk2/d, 4pmaxnr

d

}
for all 2 ≤ k ≤ n.

Lemma 4 then follows upon setting

C1 := max{2A0, 4}, c1 := min

{
pmin

3K(0)2
,
θ2δ̃

r

}

C3 := max

{
A2

a
, 4pmax

}
, c3 := min

{
a2

A
,

a2

A364A3

}
.

in the statement of that Lemma.

B.4.1 Proof of Theorem 27

In this section we prove Theorem 27, following closely the approach of Burago et al. [2014], Garćıa Trillos
et al. [2019a], Calder and Garćıa Trillos [2019]. As in these works, we relate λk(∆P) and λk(Gn,r) by means
of the Dirichlet energies

br(u) :=
1

n2rd+2
u>Lu

140

and

D2(f) :=

{∫
X ‖∇f(x)‖2p2(x) dx if f ∈ H1(X)

∞ otherwise,

Let us pause briefly to motivate the relevance of br(u) and D2(f). In the following discussion, recall that for
a function u : {X1, . . . , Xn} → R, the empirical norm is defined as ‖u‖2n := 1

n

∑n
i=1(u(Xi))

2, and the class
L2(Pn) consists of those u ∈ Rn for which ‖u‖n <∞. Similarly, for a function f : X → R, the L2(P) norm
of f is

‖f‖2P :=

∫
X

∣∣f(x)
∣∣2p(x) dx,

and the class L2(P) consists of those f for which ‖f‖P < ∞. Now, suppose one could show the following
two results:

(1) an upper bound of br(u) by D2

(
I(u)

)
for an appropriate choice of interpolating map I : L2(Pn) →

L2(X), and vice versa an upper bound of D2(f) by br(P(f)) for an appropriate choice of discretization
map P : L2(X)→ L2(Pn),

(2) that I and P were near-isometries, meaning ‖I(u)‖P ≈ ‖u‖n and ‖P(f)‖P ≈ ‖f‖n.

Then, by using the variational characterization of eigenvalues λk(∆P) and λk(Gn,r)—i.e. the Courant-Fischer
Theorem—one could obtain estimates on the error

∣∣nrd+2λk(∆P)− λk(Gn,r)
∣∣.

We will momentarily define particular maps Ĩ and P̃, and establish that they satisfy both (1) and (2). In order

to define these maps, we must first introduce a particular probability measure P̃n that, with high probability,
is close in transportation distance to both Pn and P . This estimate on the transportation distance—which
we now give—will be the workhorse that allows us to relate br to D2, and ‖ · ‖n to ‖ · ‖P .

Transportation distance between Pn and P . For a measure µ defined on X and map T : X → X , let
T]µ denote the push-forward of µ by T , i.e the measure for which(

T]µ
)
(U) := µ

(
T−1(U)

)
for any Borel subset U ⊆ X . Suppose T]µ = Pn; then the map T is referred to as transportation map
between µ and Pn. The ∞-transportation distance between µ and Pn is then

d∞(µ, Pn) := inf
T :T]µ=Pn

‖T − Id‖L∞(µ) (B.24)

where Id(x) = x is the identity mapping.

Calder and Garćıa Trillos [2019] take X to be a smooth submanifold of Rd without boundary, i.e. they

assume X satisfies (P3). In this setting, they exhibit an absolutely continuous measure P̃n with density p̃n
that with high probability is close to Pn in transportation distance, and for which ‖p− p̃n‖L∞ is also small.
In Proposition 21, we adapt this result to the setting of full-dimensional manifolds with boundary.

Proposition 21. Suppose X satisfies (P1) and p satisfies (P2). Then with probability at least 1−A0n exp
{
−a0nθ

2δ̃d
}

,

the following statement holds: there exists a probability measure P̃n with density p̃n such that:

d∞(P̃n, Pn) ≤ A0δ̃ (B.25)

and
‖p̃n − p‖∞ ≤ A0

(
δ̃ + θ

)
. (B.26)

For the rest of this section, we let P̃n be a probability measure with density p̃n, that satisfies the conclusions
of Proposition 21. Additionally we denote by T̃n an optimal transport map between P̃n and Pn, meaning a
transportation map which achieves the infimum in (B.24). Finally, we write U1, . . . , Un for the preimages of

X1, . . . , Xn under T̃n, meaning Ui = T̃−1
n (Xi).

141

Interpolation and discretization maps. The discretization map P̃ : L2(X) → L2(Pn) is given by
averaging over the cells U1, . . . , Un, (

P̃f
)
(Xi) := n ·

∫
Ui

f(x)p̃n(x) dx.

On the other hand, the interpolation map Ĩ : L2(Pn) → L2(X) is defined as Ĩu := Λr−2A0δ̃
(P̃?u). Here,

P̃? = u ◦ T̃ is the adjoint of P̃, i.e.

(
P̃?u

)
(x) =

n∑
j=1

u(xi)1{x ∈ Ui}

and Λr−2A0δ̃
is a kernel smoothing operator, defined with respect to a carefully chosen kernel ψ. To be

precise, for any h > 0,

Λh(f) :=
1

hdτh(x)

∫
X
ηh(x′, x)f(x′) dx′, ηh(x′, x) := ψ

(
‖x′ − x‖

r

)
where ψ(t) := (1/σK)

∫∞
t
sK(s) ds and τh(x) := (1/hd)

∫
X ηh(x′, x) dx′ is a normalizing constant.

Propositions 22 and 23 establish our claims regarding P̃ and Ĩ: first, that they approximately preserve
the Dirichlet energies br and D2, and second that they are near-isometries for functions u ∈ L2(Pn) (or
f ∈ L2(P)) of small Dirichlet energy br(u) (or D2(f)).

Proposition 22 (cf. Proposition 4.1 of Calder and Garćıa Trillos [2019]). With probability at least

1−A0n exp(−a0nθ
2δ̃d), we have the following.

(1) For every u ∈ L2(Pn),

σKD2(Ĩu) ≤ A8

(
1 +A1(θ + δ̃)

)
·
(

1 +A3
δ̃

r

)
br(u). (B.27)

(2) For every f ∈ L2(X),

br(P̃f) ≤
(

1 +A1(θ + δ̃)
)
·
(

1 +A9
δ̃

r

)
·
(C5p

2
max

p2
min

)
· σKD2(f). (B.28)

Proposition 23 (cf. Proposition 4.2 of Calder and Garćıa Trillos [2019]). With probability at least

1−A0n exp(−a0nθ
2δ̃d), we have the following.

(1) For every f ∈ L2(X), ∣∣∣‖f‖2P − ‖P̃f‖2n∣∣∣ ≤ A5r‖f‖P
√
D2(f) +A1

(
θ + δ̃

)
‖f‖2P . (B.29)

(2) For every u ∈ L2(Pn), ∣∣∣‖Ĩu‖2P − ‖u‖2n∣∣∣ ≤ A6r‖u‖n
√
br(u) +A7

(
θ + δ̃

)
‖u‖2n. (B.30)

We will devote most of the rest of this section to the proofs of Propositions 21, 22, and 23. First, however,
we use these propositions to prove Theorem 27.

142

Proof of Theorem 27. Throughout this proof, we assume that inequalities (B.27)-(B.30) are satisfied.
We take A and a to be positive constants such that

1

a
≥ 2
(

1 +A1(θ + δ̃)
)(

1 +A9
δ̃

r

)(C5p
2
max

p2
min

)
, and A ≥ max

{
A1, A5,

1√
a
A6, A7, 2A8

(
1 +A1(θ + δ̃)

)(
1 +A3

δ̃

r

)}
.

Let k be any number in 1, . . . , `. We start with the upper bound in (B.22), proceeding as in Proposition 4.4
of Burago et al. [2014]. Let f1, . . . , fk denote the first k eigenfunctions of ∆P and set W := span{f1, . . . , fk},
so that by the Courant-Fischer principle D2(f) ≤ λk(∆P)‖f‖2P for every f ∈W . As a result, by Part (1) of
Proposition 23 we have that for any f ∈W ,∥∥P̃f∥∥2

n
≥
(

1−A5r
√
λk(∆P)−A1(θ + δ̃)

)
‖f‖2P ≥

1

2
‖f‖2P ,

where the second inequality follows by assumption (B.21).

Therefore P̃ is injective over W , and P̃W has dimension `. This means we can invoke the Courant-Fischer
Theorem, along with Proposition 22, and conclude that

λk(Gn,r)

nrd+2
≤ max
u∈P̃W
u 6=0

br(u)

‖u‖2n

= max
f∈W
f 6=0

br(P̃f)∥∥P̃f∥∥2

n

≤ 2
(

1 +A1(θ + δ̃)
)
·
(

1 +A9
δ̃

r

)
·
(C5p

2
max

p2
min

)
σKλk(∆P),

establishing the lower bound in (B.22).

The upper bound follows from essentially parallel reasoning. Recalling that v1, . . . , vk denote the first k
eigenvectors of L, set U := span{v1, . . . , vk}, so that nrd+2br(u) ≤ λk(Gn,r)‖u‖2n. By Proposition 23, Part
(2), we have that for every u ∈ U ,∥∥Ĩu∥∥2

P
≥ ‖u‖2n −A6r‖u‖n

√
br(u)−A7

(
θ + δ̃

)
‖u‖2n

≥ ‖u‖2n −A6r‖u‖2n

√
λk(Gn,r)

nrd+2
−A7

(
θ + δ̃

)
‖u‖2n

≥ ‖u‖2n −A6r‖u‖2n

√
1

a
λk(∆P)−A7

(
θ + δ̃

)
‖u‖2n

≥ 1

2
‖u‖2n,

where the second to last inequality follows from the lower bound aλk(Gn,r) ≤ nrd+2λk(∆P) that we just
derived, and the last inequality from assumption (B.21).

Therefore Ĩ is injective over U , ĨU has dimension k, and by Proposition 22 we conclude that

λk(∆P) ≤ max
u∈U

D2(Ĩu)

‖u‖2P

≤ 2A8

(
1 +A1(θ + δ̃)

)(
1 +A3

δ̃

r

)
max
u∈U

br(u)

‖u‖2n

≤ 2A8

(
1 +A1(θ + δ̃)

)(
1 +A3

δ̃

r

)
λk(Gn,r)

nrd+2
,

establishing the upper bound in (B.22).

143

Organization of this section. The rest of this section will be devoted to proving Propositions 21, 22
and 23. To prove the latter two propositions, it will help to introduce the intermediate energies

Ẽr(f, η, V) :=
1

rd+2

∫
V

∫
X

(
f(x′)− f(x)

)2
η

(
‖x′ − x‖

r

)
p̃n(x′)p̃n(x) dx′ dx

and

Er(f, η, V) :=
1

rd+2

∫
V

∫
X

(
f(x′)− f(x)

)2
η

(
‖x′ − x‖

r

)
p(x′)p(x) dx′ dx.

Here η : [0,∞)→ [0,∞) is an arbitrary kernel, and V ⊆ X is a measurable set. We will abbreviate Ẽr(f, η,X)

as Ẽr(f, η) and Ẽr(f,K) = Ẽr(f) (and likewise with Er.)

The proof of Proposition 21 is given in Section B.4.2. In Section B.4.3, we establish relationships between the
(non-random) functionals Er(f) and D2(f), as well as providing estimates on some assorted integrals. In Sec-

tion B.4.4, we establish relationships between the stochastic functionals Ẽr(f) and Er(f), between Ẽr
(
Ĩ(u)

)
and br

(
u
)
, and between Ẽr

(
f
)

and br
(
P̃f
)
. Finally, in Section B.4.5 we use these various relationships to

prove Propositions 22 and 23.

B.4.2 Proof of Proposition 21

We start by defining the density p̃n, which will be piecewise constant over a particular partition Q of X .
Specifically, for each Q in Q and every x ∈ Q, we set

p̃n(x) :=
Pn(Q)

vol(Q)
, (B.31)

where vol(·) denotes the Lebesgue measure. Then P̃n(U) =
∫
U
p̃n(x) dx.

We now construct the partition Q, in progressive degrees of generality on the domain X .

• In the special case of the unit cube X = (0, 1)d, the partition will simply be a collection of cubes,

Q =
{
Qk : k ∈ [δ̃−1]d

}
,

where Qk = δ̃
(

[k1 − 1, k1]⊗ · · · ⊗ [kd − 1, kd]
)

and we assume without loss of generality that δ̃−1 ∈ N.

• If X is an open, connected set with smooth boundary, then by Proposition 3.2 of Garćıa Trillos and
Slepčev [2015], there exist a finite number N(X) ∈ N of disjoint polytopes which cover X . Moreover,
letting Uj denote the intersection of the jth of these polytopes with sX , this proposition establishes
that for each j there exists a bi-Lipschitz homeomorphism Φj : Uj → [0, 1]d. We take the collection

Q =

{
Φ−1
j (Qk) : j = 1, . . . , N(X) and k ∈ [δ̃−1]d

}
to be our partition. Denote by LΦ the maximum of the bi-Lipschitz constants of Φ1, . . . ,ΦN(X).

• Finally, in the general case where X is an open, connected set with Lipschitz boundary, then there
exists a bi-Lipschitz homeomorphism Ψ between X and a smooth, open, connected set with Lipschitz
boundary. Letting Φj and Q̃j,k be as before, we take the collection

Q =

{
Q̃j,k =

(
Ψ−1 ◦ Φ−1

j

)
(Qk) : j = 1, . . . , N(X) and k ∈ [δ̃−1]d

}
to be our partition. Denote by LΨ the bi-Lipschitz constant of Ψ.

144

Let us record a few facts which hold for all Q̃j,k ∈ Q, and which follow from the bi-Lipschitz properties of
Φj and Ψ: first that

diam(Q̃j,k) ≤ LΨ LΦδ̃, (B.32)

and second that

vol(Q̃j,k) ≥
(

1

LΨLΦ

)d
δ̃d. (B.33)

We now use these facts to show that P̃n satisfies the claims of Proposition 21. On the one hand for every
Q ∈ Q, letting N(Q) denote the number of design points {X1, . . . , Xk} which fall in Q, we have

P̃n(Q) =

∫
Q

p̃n(x) dx = Pn(Q) =
N(Q)

n
.

Moreover, ignoring those cells for which N(Q) = 0 (since P̃n(Q) = 0 for such Q, and so they do not contribute
to the essential supremum in (B.24)), appropriately dividing each remaining cell Q ∈ Q into N(Q) subsets
S1, . . . , SN(Q) of equal volume, and mapping each S` to a different design point Xi ∈ Q, we can exhibit a

transport map T from P̃n to Pn for which

‖T − Id‖L∞(P̃n) ≤ max
Q∈Q

diam(Q) ≤ LΨ LΦδ̃.

On the other hand, applying the triangle inequality we have that for x ∈ Q̃j,k

|p̃n(x)− p(x)| ≤
∣∣∣∣Pn(Q̃j,k)− P (Q̃j,k)

vol(Q̃j,k)

∣∣∣∣+
1

vol(Q̃j,k)

∫
Q̃j,k

|p(x′)− p(x)| dx,

and using the Lipschitz property of p we find that

‖p̃n − p‖L∞ ≤ max
j,k

∣∣∣∣Pn(Q̃j,k)− P (Q̃j,k)

vol(Q̃j,k)

∣∣∣∣+ LpLΦLΨδ̃. (B.34)

From Hoeffding’s inequality and a union bound, we obtain that

P
(∣∣Pn(Q̃)− P (Q̃)

∣∣ ≤ θP (Q̃) ∀Q̃ ∈ Q
)
≥ 1− 2](Q) · exp

{
−θ

2nmin{P (Q̃)}
3

}
≥ 1− 2N(X)

δ̃d
· exp

{
− θ

2npminδ̃
d

3
(
LΨLΦ

)d}.
Noting that by assumption P (Q̃) ≤ pmaxvol(Q̃) and δ̃−d ≤ n, the claim follows upon plugging back into
(B.34), and setting

a0 :=
1

3
(
LΨLΦ

)d and A0 := max
{

2N(X), LpLΨLΦ, LΨLΦ

}
in the statement of the proposition.

B.4.3 Non-random functionals and integrals

Let us start by making the following observation, which we make use of repeatedly in this section. Let
η : [0,∞) → [0,∞) be an otherwise arbitrary function. As a consequence of (P1), there exist constants c0
and a3 which depend on X , such that for any 0 < ε ≤ c0 it holds that∫

B(x,ε)∩X
η

(
‖x′ − x‖

ε

)
dx′ ≥ a3 ·

∫
B(x,ε)

η

(
‖x′ − x‖

ε

)
dx′ (B.35)

145

As a special case: when η(x) = 1, this implies vol
(
B(x, ε) ∩ X

)
≥ a3νdε

d for any 0 < ε ≤ c0.

We have already upper bounded Er(f) by (a constant times) D2(f) in the proof of Lemma 3. In Lemma 28,
we establish the reverse inequality.

Lemma 28 (cf. Lemma 9 of Garćıa Trillos et al. [2019a], Lemma 5.5 of Burago et al. [2014]).
For any f ∈ L2(X), and any 0 < h ≤ c0, it holds that

σKD2(Λhf) ≤ A8Eh(f).

To prove Lemma 28, we require upper and lower bounds on τh(x), as well as an upper bound on the gradient
of τh. The lower bound here—τh(x) ≥ a3—is quite a bit a looser than what can be shown when X has no
boundary. The same is the case regarding the upper bound of the size of the gradient ‖∇τh(x)‖. However,
the bounds as stated here will be sufficient for our purposes.

Lemma 29. For any 0 < h ≤ c0, for all x ∈ X it holds that

a3 ≤ τh(x) ≤ 1.

and

‖∇τh(x)‖ ≤ 1√
dσKh

.

Finally, to prove part (2) of Proposition 23, we require Lemma 30, which gives an estimate on the error
Λhf − f in ‖ · ‖2P norm.

Lemma 30 (c.f Lemma 8 of Garćıa Trillos et al. [2019a], Lemma 5.4 of Burago et al. [2014]).
For any 0 < h ≤ c0, ∥∥Λhf

∥∥2

P
≤ pmax

a3pmin

∥∥f∥∥2

P
, (B.36)

and ∥∥Λhf − f
∥∥2

P
≤ 1

a3σKpmin
h2Eh(f), (B.37)

for all f ∈ L2(X).

Proof of Lemma 28. For any a ∈ R, Λhf satisfies the identity

Λhf(x) = a+
1

hdτh(x)

∫
X
ηh(x′, x)

(
f(x′)− a

)
dx′,

and by differentiating with respect to x, we obtain(
∇Λhf

)
(x) =

1

hdτh(x)

∫
X

(
∇ηh(x′, ·)

)
(x)
(
f(x′)− a

)
dx′ +∇

(
1

τh

)
(x) · 1

hd

∫
X
ηh(x′, x)

(
f(x′)− a

)
dx′

Plugging in a = f(x), we get ∇Λhf(x) = J1(x)/τh(x) + J2(x) for

J1(x) :=
1

hd

∫
X

(
∇ηh(x′, ·)

)
(x)
(
f(x′)− f(x)

)
dx′, J2(x) := ∇

(
1

τh

)
(x) · 1

hd

∫
X
ηh(x′, x)

(
f(x′)− f(x)

)
dx′.

To upper bound
∥∥J1(x)

∥∥2
, we first compute the gradient of ηh(x′, ·),(

∇ηh(x′, ·)
)
(x) =

1

h
ψ′
(
‖x′ − x‖

h

)
(x− x′)
‖x′ − x‖

=
1

σKh2
K

(
‖x′ − x‖

h

)
(x′ − x),

146

and additionally note that ‖J1(x)‖2 = supw
(
〈J1(x), w〉

)2
where the supremum is over unit norm vector.

Taking w to be a unit norm vector which achieves this supremum, we have that

∥∥J1(x)
∥∥2

=
1

σ2
Kh

4+2d

[∫
X

(
f(x′)− f(x)

)
K

(
‖x′ − x‖

h

)
(x′ − x)>w dx′

]2

≤ 1

σ2
Kh

4+2d

[∫
X
K

(
‖x′ − x‖

h

)(
(x′ − x)>w

)2
dx′
][∫

X
K

(
‖x′ − x‖

h

)(
f(x′)− f(x)

)2
dx′
]
.

By a change of variables, we obtain∫
X
K

(
‖x′ − x‖

h

)(
(x′ − x)>w

)2
dx′ ≤ hd+2

∫
X
K
(
‖z‖
)(
z>w

)2
dz ≤ σKhd+2,

with the resulting upper bound

∥∥J1(x)
∥∥2 ≤ 1

σKh2+d

∫
X
K

(
‖x′ − x‖

h

)(
f(x′)− f(x)

)2
dx′.

To upper bound
∥∥J2(x)

∥∥2
, we use the Cauchy-Schwarz inequality along with the observation ηh(x′, x) ≤

1
σK
K
(
‖x′ − x‖/h

)
to deduce

∥∥J2(x)
∥∥2 ≤

∥∥∥∇(1

τh

)
(x)
∥∥∥2 1

h2d

[∫
X
ηh(x′, x) dx′

]
·
[∫
X
ηh(x′, x)

(
f(x′)− f(x)

)2
dx′
]

=
∥∥∥∇(1

τh

)
(x)
∥∥∥2 τh(x)

hd

∫
X
ηh(x′, x)

(
f(x′)− f(x)

)2
dx′

≤
∥∥∥∇(1

τh

)
(x)
∥∥∥2 τh(x)

σKhd

∫
X
K

(
‖x′ − x‖

h

)(
f(x′)− f(x)

)2
dx′

≤ 1

da2
3σ

2
Kh

2+d

∫
X
K

(
‖x′ − x‖

h

)(
f(x′)− f(x)

)2
dx′,

where the last inequality follows from the estimates on τh and ∇τh provided in Lemma 29. Combining our

bounds on
∥∥J1(x)

∥∥2
and

∥∥J2(x)
∥∥2

along with the lower bound on τh(x) in Lemma 29 and integrating over
X , we have

σKD2(Λhf) = σK

∫
X

∥∥∥∥(∇Λhf)(x)

∥∥∥∥2

p2(x) dx

≤ 2σK

∫
X

(∥∥J1(x)
∥∥2

τ2
h(x)

+
∥∥J2(x)

∥∥2

)
p2(x) dx

≤
(

1

a2
3

+
1

da2
3σK

)
2

hd+2

∫
X

∫
X
K

(
‖x′ − x‖

h

)(
f(x′)− f(x)

)2
p2(x) dx′ dx

≤ 2
(

1 +
Lph

pmin

)(1

a2
3

+
1

da2
3σK

)
Eh(f),

and taking A8 := 2
(

1 +
Lpc0
pmin

)(
1
a23

+ 1
da23σK

)
completes the proof of Lemma 28.

147

Proof of Lemma 29. We first establish our estimates of τh(x), and then upper bound ‖∇τh(x)‖. Using
(B.35), we have that

τh(x) =
1

hd

∫
X∩B(x,h)

ψ

(
‖x′ − x‖

h

)
dx′

≥ a3

hd

∫
B(x,h)

ψ

(
‖x′ − x‖

h

)
dx′

= a3

∫
B(0,1)

ψ(‖z‖) dz,

and it follows from similar reasoning that τh(x) ≤
∫
B(0,1)

ψ(‖z‖) dz.

We will now show that
∫
B(0,1)

ψ(‖z‖) dz = 1, from which we derive the estimates a3 ≤ τh(x) ≤ 1. To see

the identity, note that on the one hand, by converting to polar coordinates and integrating by parts we
obtain ∫

B(0,1)

ψ
(
‖z‖
)
dz = dνd

∫ 1

0

ψ(t)td−1 dt = −νd
∫ 1

0

ψ′(t)td dt =
νd
σK

∫ 1

0

td+1K(t) dt;

on the other hand, again converting to polar coordinates, we have

σK =
1

d

∫
Rd
‖x‖2K(‖x‖) dx = νd

∫ 1

0

td+1K(t) dt,

and so
∫
B(0,1)

ψ(‖z‖) dz = 1.

Now we upper bound ‖∇τh(x)‖2. Exchanging derivative and integral, we have

∇τh(x) =
1

hd

∫
X

(
∇ηh(x′, ·)

)
(x) dx′ =

1

σKhd+2

∫
X
K

(
‖x′ − x‖

h

)
(x′ − x) dx′,

whence by the Cauchy-Schwarz inequality,

‖∇τh(x)‖2 ≤ 1

σ2
Kh

2d+4

[∫
X
K

(
‖x′ − x‖

h

)
dx′
][∫

X
K

(
‖x′ − x‖

h

)
‖x′ − x‖2 dx′,

]
≤ 1

dσKh2
,

concluding the proof of Lemma 29.

We remark that while ∇τ(x) = 0 when B(x, r) ∈ X , near the boundary the upper bound we derived by
using Cauchy-Schwarz appears tight.

Proof of Lemma 30. By Jensen’s inequality and Lemma 29,∣∣∣Λhf(x)
∣∣∣2 ≤ 1

hdτh(x)

∫
X
ηh(x′, x)

[
f(x′)

]2
dx′

≤ 1

a3hdpmin

∫
X
ηh(x′, x)

[
f(x′)

]2
p(x′) dx′.

148

Then, integrating over x, and recalling that
∫
B(0,1)

ψ(‖z‖) = 1 as shown in the proof of Lemma 29, we

have ∥∥Λhf
∥∥2

P
≤ 1

a3hdpmin

∫
X

∫
X
ηh(x′, x)

[
f(x′)

]2
p(x′)p(x) dx′ dx

≤ pmax

a3hdpmin

∫
X

[
f(x′)

]2
p(x′)

(∫
X
ηh(x′, x) dx

)
dx′

≤ pmax

a3pmin

∫
X

[
f(x′)

]2
p(x′)

(∫
B(0,1)

ψ(‖z‖) dz
)
dx′

=
pmax

a3pmin
‖f‖2P .

To establish (B.37), noting that Λha = a for any a ∈ R, we have that

∣∣Λrf(x)− f(x)
∣∣2 =

[
1

hdτh(x)

∫
X
ηh(x′, x)

(
f(x′)− f(x)

)
dx′
]2

≤ 1

h2dτ2
h(x)

[∫
X
ηh(x′, x) dx′

]
·
[∫
X
ηh(x′, x)

(
f(x′)− f(x)

)2
dx′
]

=
1

hdτh(x)

∫
X
ηh(x′, x)

(
f(x′)− f(x)

)2
dx′.

≤ 1

hdτh(x)pmin

∫
X
ηh(x′, x)

(
f(x′)− f(x)

)2
p(x′) dx′.

From here, we can use the lower bound τh(x) ≥ a3 stated in Lemma 29, as well as the upper bound
ηh(x′, x) ≤ (1/σK)K(‖x′ − x‖/h), to deduce

∣∣Λrf(x)− f(x)
∣∣2 ≤ 1

hda3σKpmin

∫
X
K

(
‖x′ − x‖

h

)(
f(x′)− f(x)

)2
p(x′) dx′.

Then integrating over X with respect to p yields (B.37).

B.4.4 Random functionals

We will use Lemma 31 in the proof of Proposition 23.

Lemma 31 (cf. Lemma 3.4 of Burago et al. [2014]). Let U ⊆ X be a measurable subset such that

vol(U) > 0, and diam(U) ≤ 2A0δ̃. Then, letting a = (P̃n(U))−1 ·
∫
U
f(x)p̃n(x) dx be the average of f over

U , it holds that ∫
U

∣∣∣f(x)− a
∣∣∣2p̃n(x) dx ≤ A3r

2Ẽr(f, U).

Now we relate Ẽr(f) and Er(f). Some standard calculations show that for A1 := 3A0/pmin,(
1−A1(θ + δ̃)

)
Er(f) ≤ Ẽr(f) ≤

(
1 +A1(θ + δ̃)

)
Er(f), (B.38)

as well as implying that the norms ‖f‖P and ‖f‖n satisfy(
1−A1(θ + δ̃)

)
‖f‖2P ≤ ‖f‖2P̃n ≤

(
1 +A1(θ + δ̃)

)
‖f‖2P . (B.39)

Lemma 32 relates the graph Sobolev semi-norm br(P̃f) to the non-local energy Ẽr(f).

149

Lemma 32 (cf. Lemma 13 of Garćıa Trillos et al. [2019a], Lemma 4.3 of Burago et al. [2014]).
For any f ∈ L2(X),

br(P̃f) ≤
(

1 +A9
δ̃

r

)
Ẽr+2A0δ̃

(f).

In Lemma 33, we establish the reverse of Lemma 32.

Lemma 33 (cf. Lemma 14 of Garćıa Trillos et al. [2019a]). For any u ∈ L2(Pn),

Ẽr−2A0δ̃

(
P̃?u

)
≤
(

1 +A3
δ̃

r

)
br(u).

Proof of Lemma 31. A symmetrization argument implies that∫
U

∣∣∣f(x)− a
∣∣∣2p̃n(x) dx =

1

2P̃n(U)

∫
U

∫
U

∣∣f(x′)− f(x)
∣∣2p̃n(x′)p̃n(x) dx′ dx (B.40)

Now, since x′ and x belong to U , we have that ‖x′ − x‖ ≤ 2A0δ̃. Set V = B(x, r) ∩ B(x′, r), and note that

B(x, r − 2A0δ̃) ⊆ V . Moreover, r − 2A0δ̃ ≤ r ≤ c0 by assumption. Therefore by (B.35),

vol
(
V ∩ X

)
≥ vol

(
B(x, r − 2A0δ̃) ∩ X

)
≥ a3νd(r − 2A0δ̃)

d ≥ a3νd
2d

rd

where the last inequality follows since δ̃ ≤ 1
4A0

r. Using the triangle inequality∣∣f(x′)− f(x)
∣∣2 ≤ 2

(∣∣f(x′)− f(z)
∣∣2 +

∣∣f(z)− f(x)
∣∣2)

we have that for any x and x′ in U ,∣∣f(x′)− f(x)
∣∣2 ≤ 2

vol(V ∩ X)

∫
V ∩X

∣∣f(x′)− f(z)
∣∣2 +

∣∣f(z)− f(x)
∣∣2 dz

≤ 2d+1

a3νdrd

∫
V ∩X

∣∣f(x′)− f(z)
∣∣2 +

∣∣f(z)− f(x)
∣∣2 dz

≤ 2d+2

K(1)a3νdrdpmin

(
F (x′) + F (x)

)
, (B.41)

where in the last inequality we set

F (x) :=

∫
X
K

(
‖z − x‖

r

)(
f(z)− f(x)

)2
p̃n(x) dx,

and use the facts that p̃n(x) ≥ pmin/2, that K(‖z − x‖/r) ≥ K(1) for all z ∈ B(x, r).

Plugging the upper bound (B.41) back into (B.40), we have that∫
U

∣∣∣f(x)− a
∣∣∣2p̃n(x) dx ≤ 2d+2

K(1)a3νdrd

∫
U

F (x)p̃n(x) dx

=
2d+2

K(1)a3νd
r2Ẽr(f, U),

and Lemma 31 follows by taking A3 := 2d+2/(K(1)a3νd).

150

Proof of Lemma 32. Recalling that
(
P̃f
)
(Xi) = n ·

∫
Ui
f(x)p̃n(x) dx, by Jensen’s inequality,((

P̃f
)
(Xi)−

(
P̃f
)
(Xj)

)2

≤ n2 ·
∫
Ui

∫
Uj

(
f(x′)− f(x)

)2
p̃n(x′)p̃n(x) dx′ dx.

Additionally, the non-increasing and Lipschitz properties of K imply that for any x ∈ Ui and x′ ∈ Uj ,

K

(
‖Xi −Xj‖

r

)
≤ K

((‖x′ − x‖ − 2A0δ̃
)

+

r

)
≤ K

(
‖x′ − x‖
r + 2A0δ̃

)
+

2LKA0δ̃

r
1
{
‖x′ − x‖ ≤ r + 2A0δ̃

}
.

As a result, the graph Dirichlet energy is upper bounded as follows:

br(P̃f) =
1

n2rd+2

n∑
i,j=1

((
P̃f
)
(Xi)−

(
P̃ f
)
(Xj)

)2

K

(
‖Xi −Xj‖

r

)

≤ 1

rd+2

n∑
i,j=1

∫
Ui

∫
Uj

(
f(x′)− f(x)

)2
p̃n(x′)p̃n(x)K

(
‖Xi −Xj‖

r

)
dx′ dx

≤ 1

rd+2

n∑
i,j=1

∫
Ui

∫
Uj

(
f(x′)− f(x)

)2
p̃n(x′)p̃n(x)

[
K

(
‖x′ − x‖
r + 2A0δ̃

)
+

2LKA0δ̃

r
1
{
‖x′ − x‖ ≤ r + 2δ̃

}]
dx′ dx

=
(

1 + 2A0
δ̃

r

)d+2
[
Ẽr+2A0δ̃

(f) +
2LKA0δ̃

r
Ẽr+2A0δ̃

(f ; 1[0,1])

]
,

for 1[0,1](t) = 1{0 ≤ t ≤ 1}. But by assumption Ẽr+2A0δ̃
(f ; 1[0,1]) ≤ 1/(K(1))Ẽr+2A0δ̃

(f), and so we
obtain

br(P̃f) ≤
(

1 + 2A0
δ̃

r

)d+2(
1 +

2LKA0δ̃

rK(1)

)
Ẽr+2A0δ̃

(f);

the Lemma follows upon choosing A9 := A0(2d+4 + 4LK
K(1)).

Proof of Lemma 33. For brevity, we write r̃ := r − 2A0δ̃. We begin by expanding the energy Ẽr̃
(
P̃?u

)
as a double sum of double integrals,

Ẽr̃
(
P̃?u

)
=

1

r̃d+2

n∑
i=1

n∑
j=1

∫
Ui

∫
Uj

(
u(Xi)− u(Xj)

)2

K

(
‖x′ − x‖

r̃

)
p̃n(x′)p̃n(x) dx′ dx.

We next use the Lipschitz property of the kernel K—in particular that for x ∈ Ui and x′ ∈ Uj ,

K

(
‖x′ − x‖

r̃

)
≤ K

(
‖Xi −Xj‖

r

)
+

2A0LK δ̃

r̃
· 1
{
‖x′ − x‖

r̃
≤ 1

}
,

—to conclude that

Ẽr̃
(
P̃?u

)
≤ 1

n2r̃d+2

n∑
i=1

n∑
j=1

(
u(Xi)− u(Xj)

)2

K

(
‖Xi −Xj‖

r

)
+

2A0LK δ̃

r̃
Ẽr̃(P̃?u,1[0,1]

)
≤
(

1 + 2d+2A0
δ̃

r

)
br(u) +

2A0LK δ̃

r̃
Ẽr̃(P̃?u,1[0,1]

)
≤
(

1 + 2d+2A0
δ̃

r

)
br(u) +

4A0LK δ̃

K(1)r
Ẽr̃(P̃?u

)
.

151

In other words,

Ẽr̃
(
P̃?u

)
≤
(

1− 4A0LK δ̃

K(1)r

)−1(
1 + 2d+2A0

δ̃

r

)
br(u)

≤
(

1 +
δ̃

r

(8A0LK
K(1)

+ 2d+3
))

br(u),

where the second inequality follows from the algebraic identities (1 − t)−1 ≤ (1 + 2t) for any 0 < t < 1/2
and (1 + s)(1 + t) < 1 + 2s + t for any 0 < t < 1 and s > 0. The Lemma follows upon choosing A3 :=
8A0LK
K(1) + 2d+3.

B.4.5 Proof of Propositions 22 and 23

Proof of Proposition 22. Part (1) of Proposition 22 follows from

σKD2(Λr−2A0δ̃
P̃?u)

(i)

≤ A8Er−2A0δ̃
(P̃?u)

(ii)

≤ A8

(
1 +A1(θ + δ̃)

)
Ẽr−2A0δ̃

(P̃?u)

(iii)

≤ A8

(
1 +A1(θ + δ̃)

)
·
(

1 +A3
δ̃

r

)
br(u),

where (i) follows from Lemma 28, (ii) follows from (B.38), and (iii) follows from Lemma 33.

Part (2) of Proposition 22 follows from

br(P̃f)
(iv)

≤
(

1 +A9
δ̃

r

)
Ẽr+2A0δ̃

(f)

(v)

≤
(

1 +A1(θ + δ̃)
)(

1 +A9
δ̃

r

)
Er+2A0δ̃

(f)

(vi)

≤
(

1 +A1(θ + δ̃)
)
·
(

1 +A9
δ̃

r

)
·
(C5p

2
max

p2
min

)
· σKD2(f),

where (iv) follows from Lemma 32, (v) follows from (B.38), and (vi) follows from the proof of Lemma 3.

Proof of Proposition 23. Proof of (1). We begin by upper bounding
∥∥P̃f∥∥

n
. By the Cauchy-Schwarz

inequality and the bound on ‖p̃n − p‖∞ in (B.26),∣∣∣P̃f(Xi)
∣∣∣2 = n2

∣∣∣∫
Ui

f(x)p̃n(x) dx
∣∣∣2

≤ n
∫
Ui

∣∣f(x)
∣∣2p̃n(x) dx

≤ n
(

1 +A1(θ + δ̃)
)[∫

Ui

∣∣f(x)
∣∣2p(x) dx+A1(θ + δ̃)

∫
Ui

∣∣f(x)
∣∣2p(x) dx

]
,

and summing over i = 1, . . . , n, we obtain

∥∥P̃f∥∥2

n
≤
(

1 +A1(θ + δ̃)

)∥∥f∥∥2

P
. (B.42)

152

Now, noticing that
∥∥P̃f∥∥

n
=
∥∥P̃ ?P̃ f∥∥

P̃n
, we can use the upper bound (B.42) to show that∣∣∣∥∥P̃f∥∥2

n
−
∥∥f∥∥2

P

∣∣∣ ≤ ∣∣∣∥∥P̃f∥∥2

n
−
∥∥f∥∥2

P̃n

∣∣∣+
∣∣∣∥∥f∥∥2

P̃n
−
∥∥f∥∥2

P

∣∣∣
(i)

≤
∣∣∣∥∥P̃f∥∥2

n
−
∥∥f∥∥2

P̃n

∣∣∣+A1(θ + δ̃)
∥∥f∥∥2

P
(B.43)

(ii)

≤ 2

√
1 +A1(θ + δ̃)

∣∣∣∥∥P̃f∥∥
n
−
∥∥f∥∥

P̃n

∣∣∣ · ∥∥f∥∥
P

+A1(θ + δ̃)
∥∥f∥∥2

P

≤ 2

√
1 +A1(θ + δ̃)

∥∥P̃?P̃f − f∥∥
P̃n
·
∥∥f∥∥

P
+A1(θ + δ̃)

∥∥f∥∥2

P
, (B.44)

where (i) follows from (B.39) and (ii) follows from (B.39) and (B.42).

It remains to upper bound
∥∥P̃?P̃f − f∥∥2

P̃n
. Noting that P̃?P̃f is piecewise constant over the cells Ui, we

have ∥∥P̃?P̃f − f∥∥2

P̃n
=

n∑
i=1

∫
Ui

(
f(x)− n ·

∫
Ui

f(x′)p̃n(x′) dx′
)2

p̃n(x) dx.

From Lemma 31, we have that for each i = 1, . . . , n,∫
Ui

(
f(x)− n ·

∫
Ui

f(x′)p̃n(x′) dx′
)2

p̃n(x) dx ≤ A3r
2Ẽr(f, Ui).

Summing up over i on both sides of the inequality gives

∥∥P̃?P̃f − f∥∥2

P̃n
≤ A3r

2Ẽr(f,X) ≤ A3

(
1 +A1(θ + δ̃)

)
·
(C5p

2
max

p2
min

)
· σKr2D2(f),

where the latter inequality follows from the proof of Proposition 22, Part (2). Then Proposition 23, Part (1)
follows by plugging this inequality into (B.44) and taking

A5 := 2
√
A3

(
1 +A1(θ + δ̃)

)(√C5pmax

pmin

)
·
√
σK .

Proof of (2). By the triangle inequality and (B.39),∣∣∣‖Ĩu‖2P − ‖u‖2n∣∣∣ ≤ ∣∣∣‖Ĩu‖2P − ‖Ĩu‖2P̃n∣∣∣+
∣∣∣‖Ĩu‖2

P̃n
− ‖u‖2n

∣∣∣
≤ A1(θ + δ̃)‖Ĩu‖2

P̃n
+
∣∣∣‖Ĩu‖2

P̃n
− ‖u‖2n

∣∣∣
= A1(θ + δ̃)‖Ĩu‖2

P̃n
+
(
‖Ĩu‖P̃n + ‖u‖n

)
·
∣∣∣‖Ĩu‖P̃n − ‖u‖n∣∣∣ (B.45)

To upper bound the second term in the above expression, we first note that ‖u‖n = ‖P̃?u‖P̃n , and thus∣∣∣‖Ĩu‖P̃n − ‖u‖n∣∣∣ =
∣∣∣‖Ĩu‖P̃n − ‖P̃?u‖P̃n∣∣∣

(iii)

≤ ‖Λr̃P̃?u− P̃?u‖P̃n
(iv)

≤ r̃

√
1

a3σKpmin
Er̃(P̃?u)

(v)

≤ r̃

√
1 +A1(θ + δ̃)

a3σKpmin

(
1 +A3

δ̃

r

)
br(u), (B.46)

153

where (iii) follows by the triangle inequality, (iv) follows from Lemma 30, and (v) follows from (B.38) and
Lemma 33. On the other hand, by (B.39) and Lemma 30,

‖Ĩu‖2
P̃n
≤
(

1 +A1(θ + δ̃)
)
‖Ĩu‖2P

≤ pmax

a3pmin
·
(

1 +A1(θ + δ̃)
)
‖P̃?u‖2P

≤ pmax

a3pmin
·
(

1 +A1(θ + δ̃)
)2

‖P̃?u‖2
P̃n

=
pmax

a3pmin
·
(

1 +A1(θ + δ̃)
)2

‖u‖2n.

Plugging this estimate along with (B.46) back into (B.45), we obtain part (2) of Proposition 23, upon
choosing

A6 :=

(
3

√
2pmax

pmin
+ 1

)√
4

a3σKpmin
, A7 := 4A1

pmax

a3pmin
.

B.5 Bound on the empirical norm

In Lemma 34, we lower bound ‖f0‖2n by (a constant times) the L2(X) norm of f .

Lemma 34. Fix δ ∈ (0, 1) Suppose P satisfies (P2). If f ∈ H1(X ,M) is lower bounded in L2(X) norm,

‖f‖L2(X) ≥
C6M

δ
·max

{
n−1/2, n−1/d

}
. (B.47)

Then with probability at least 1− 5δ,

‖f‖2n ≥ δ · E
[
‖f‖2n

]
. (B.48)

Proof of Lemma 34. In this proof, we will find it more convenient to deal with the parameterization
b = 1/δ. To establish (B.48), it is sufficient to show that

E
[
‖f‖4n

]
≤
(

1 +
1

b2

)
·
(
E
[
‖f‖2n

])2
;

then (B.48) follows from the Paley-Zygmund inequality (Lemma 38). Since p ≤ pmax is uniformly bounded,
we can relate E

[
‖f‖4n

]
to the L4(X)-norm,

E
[
‖f‖4n

]
=

(n− 1)

n

(
E
[
‖f‖2n

])2

+
E
[(
f(X1)

)4]
n

≤
(
E
[
‖f‖2n

])2

+ pmax

‖f‖4L4(X)

n
.

We will use the Sobolev inequalities as a tool to show that ‖f‖4L4(X)/n ≤
(
E[‖f‖2n]

)2
/(b2pmax), whence the

claim of the Lemma is shown. The nature of the inequalities we use depend on the value of d. In particular,
we will use the following relationships between norms: for any f ∈ H1(X ;M),

supx∈X |f(x)|, d = 1

‖f‖Lq(X), d = 2, for all 0 < q <∞
‖f‖Lq(X), d ≥ 3, for all 0 < q ≤ 2d/(d− 2)

 ≤ C7 ·M.

(See Theorem 6 in Section 5.6.3 of Evans [2010] for a complete statement and proof of the various Sobolev
inequalities.)

154

As a result, we divide our analysis into three cases: (i) the case where d < 2, (ii) the case where d > 2, and
(iii) the borderline case d = 2.

Case 1: d < 2. The L4(X)-norm of f can be bounded in terms of the L2(X) norm,

‖f‖4L4(X) ≤
(

sup
x∈X
|f(x)|

)2

·
∫
X

[f(x)]2 dx ≤ C2
7M

2 · ‖f‖2L2(X).

Since by assumption

‖f‖2L2(X) ≥ C
2
6 · b2 ·M2 · 1

n
,

we have

pmax

‖f‖4L4(X)

n
≤ C2

7M
2pmax ·

‖f‖2L2(X)

n
≤ C7pmax

C2
6b

2
‖f‖4L2(X) ≤

(
E
[
‖f‖2n

])2
b2

,

where the last inequality follows by taking C6 ≥ C7

√
pmax/pmin.

Case 2: d > 2. Let θ = 2 − d/2 and q = 2d/(d − 2). Noting that 4 = 2θ + (1 − θ)q, Lyapunov’s inequality
implies

‖f‖4L4(X) ≤ ‖f‖
2θ
L2(X) · ‖f‖

(1−θ)q
Lq(X) ≤ ‖f‖

4
L2(X) ·

(
C7‖f‖H1(X)

‖f‖L2(X)

)d
.

By assumption, ‖f‖L2(X) ≥ C6b‖f‖H1(X)n
−1/d, and therefore

pmax

‖f‖4L4(X)

n
≤ ‖f‖4L2(X)pmax ·

(
C7‖f‖H1(X)

n1/d‖f‖L2(X)

)d
≤
Cd7pmax‖f‖4L2(X)

Cd6 b
d

≤
(
E
[
‖f‖2n

])2
b2

.

where the last inequality follows by taking C6 ≥ C7(pmax/pmin)1/d, and keeping in mind that d > 2 and
b ≥ 1.

Case 3: d = 2. Fix t ∈ (1/2, 1), and suppose that

‖f‖L2(X) ≥
C6M

δ
· n−t/2. (B.49)

Putting q = 2/(1 − t), we have that ‖f‖Lq(X) ≤ C7 ·M , and it follows from derivations similar to those in

Case 2 that ‖f‖4L4(X)/n ≤
(
E[‖f‖2n]

)2
/(b2pmax) when C6 ≥ C7

√
pmax/pmin.

Now, suppose f ∈ L4(X) satisfies (B.49) only when t = 1. For each k = 1, 2, . . . let fk := n1/(2k)f , so that
each fk satisfies (B.49) with respect to t = 1−1/k. Clearly ‖fk−f‖L4(X) → 0 as k →∞, and therefore

1

n
‖f‖4L4(X) =

1

n
lim
k→∞

‖fk‖4L4(X) ≤
1

b2pmax
lim
k→∞

(
E[‖fk‖2n]

)2
=

1

b2pmax

(
E[‖f‖2n]

)2
.

This establishes the claim when d = 2, and completes the proof of Lemma 34.

B.6 Graph functionals under the manifold hypothesis

In this section, we restate a few results of Garćıa Trillos et al. [2019a], Calder and Garćıa Trillos [2019], which
are analogous to Lemmas 3 and 4 but cover the case where X is an m-dimensional submanifold without
boundary. As such, the results in this section will hold under the assumption (P3). We refer to Garćıa Trillos
et al. [2019a], Calder and Garćıa Trillos [2019] for the proofs of these results.

Proposition 24 follows from Lemma 5 of Garćıa Trillos et al. [2019a] and Markov’s inequality.

155

Proposition 24. For any f ∈ H1(X), with probability at least 1− δ,

f>Lf ≤ C

δ
n2rm+2|f |2H1(X).

In Proposition 25, it is assumed that r, δ̃ and θ satisfy the following smallness conditions.

(S1)

n−1/m < δ̃ ≤ 1

4
r and C(θ + δ̃) ≤ 1

2
pmin and C4

(
log(n)/n

)1/m ≤ r ≤ min{c4, 1}.

Proposition 25 (c.f Theorem 2.4 of Calder and Garćıa Trillos [2019]). With probability at least

1− Cn exp(−cnθ2δ̃m), the following statement holds. For any k ∈ N such that√
λk(∆P)r + C(θ + δ̃) ≤ 1

2
,

it holds that

nrm+2λk(∆P)

(
1−C

(
r(
√
λk(∆P)+1)+

δ̃

r
+θ
))
≤ λk(Gn,r) ≤ nrm+2λk(∆P)

(
1+C

(
r(
√
λk(∆P)+1)+

δ̃

r
+θ
))

.

Proposition 26 follows from Lemma 3.1 of Calder and Garćıa Trillos [2019], along with a union bound.

Proposition 26. With probability at least 1− 2Cn exp(−cpmaxnr
m), it holds that

Dmax(Gn,r) ≤ Cnrm.

Finally, we note that a Weyl’s Law holds for Riemmanian manifolds without boundary, i.e.

λk(∆P) � k2/m.

Put Bn,r(k) := min{nrm+2k2/m, nrm}. Following parallel steps to the proof of Lemma 4, one can derive
from Propositions 25 and 26, and Weyl’s Law, that with probability at least 1− Cn exp(−cnrm),

cBn,r(k) ≤ λk ≤ CBn,r(k), for all 2 ≤ k ≤ n. (B.50)

B.7 Proofs of main results

We are now in a position to prove Theorems 6-10, as well as a few other claims from our main text. In
Section B.7.1 we prove all of our results regarding estimation and in Section B.7.2 we prove all of our results
regarding testing; in Section B.7.3, Lemmas 35 and 36, we provide some useful estimates on a particular
pair of sums that appear repeatedly in our proofs. Throughout, it will be convenient for us to deal with the
normalization ρ̃ := ρnrd+2. We note that in each of our Theorems, the prescribed choice of ρ will always
result in ρ̃ ≤ 1.

B.7.1 Proof of estimation results

Proof of Theorem 6. We have shown that the inequalities (3.14) and (3.15) are satisfied with probability
at least 1−δ−C1n exp(−c1nrd), and throughout this proof we take as granted that both of these inequalities
hold.

156

Now, set ρ̃ = M−4/(2+d)n−2/(2+d) as prescribed in Theorem 6, and note that ρ̃−d/2 ≤ n is implied by the
assumption M ≤ n1/d. Therefore from (3.15) and Lemma 35, it follows that

n∑
k=1

(
1

ρλk + 1

)2

≥ 1 +
1

C2
3

n∑
k=2

(
1

ρ̃k2/d + 1

)2

≥ 1

8C2
3

ρ̃−d/2.

As a result, by Lemma 26 along with (3.14) and (3.15), with probability at least 1− δ−C1n exp(−c1nrd)−
exp(−ρ̃−d/2/8C2

3) it holds that,

‖f̂ − f0‖2n ≤
C2

δ
ρ̃M2 +

10

n
+

10

n

n∑
k=2

(
1

c3ρ̃min{k2/d, r−2}+ 1

)2

≤ C2

δ
ρ̃M2 +

10

n
+

10

nc23

n∑
k=2

(
1

ρ̃k2/d + 1

)2

+
10r4

c23ρ̃
2
. (B.51)

The first term on the right hand side of (B.51) is a bias term, while the second, third, and fourth terms
each contribute to the variance. Of these, under our assumptions the third term dominates, as we show
momentarily. First, we use Lemma 35 to get an upper bound on this variance term,

n∑
k=2

(
1

ρ̃k2/d + 1

)2

≤ 4ρ̃−d/2.

Then plugging this upper bound back into (B.51), we have that

‖f̂ − f0‖2n ≤
C2

δ
ρ̃M2 +

10

n
+

40ρ̃−d/2

c23n
+

10r4

c23ρ̃
2

=

(
C2

δ
+

40

c23

)
M2d/(2+d)n−2/(2+d) +

10

n
+

10

c23
r4M8/(2+d)n4/(2+d)

≤
(
C2

δ
+

50

c23

)
M2d/(2+d)n−2/(2+d),

with the last inequality following from (R1) and the assumption M ≥ n−1/2. This completes the proof of
Theorem 6.

Proof of Theorem 7. We first establish that f̂ achieves nearly-optimal rates when d = 4, and then
establish the claimed sub-optimal rates when d > 4.

Nearly-optimal rates when d = 4.

Continuing on from (B.51), from Lemma 35 we have that

‖f̂ − f0‖2n ≤
C2

δ
ρ̃M2 +

10

n
+

10

nc23ρ̃
2

+
10 log n

nc23ρ̃
2

+
10r4

c23ρ̃
2
.

Setting r = (C0 log(n)/n)1/4, we obtain

‖f̂ − f0‖2n ≤
C2

δ
ρ̃M2 +

10

n
+

10

nc23ρ̃
2

+
10 log n

nc23ρ̃
2

+
10C0 log n

nc23ρ̃
2

,

and choosing ρ̃ = M−2/3(log n/n)1/3 yields

‖f̂ − f0‖2n ≤
(
C2

δ
+

20

c23
+

10C0

c23

)
M4/3

(
log n

n

)1/3

+
10

n
.

157

Suboptimal rates when d > 4.

Once again continuing on from (B.51), from Lemma 35 we have that

‖f̂ − f0‖2n ≤
C2

δ
ρ̃M2 +

10

n
+

10

nc23ρ̃
d/2

+
10

n4/dρ̃2c23
+

10r4

ρ̃2c23
.

Setting r = (C0 log n/n)1/d, we obtain

‖f̂ − f0‖2n ≤
C2

δ
ρ̃M2 +

10

n
+

10

nρ̃d/2c23
+

10

n4/dρ̃2c23
+

10C
4/d
0 (log n)4/d

n4/dρ̃2c23
,

and choosing ρ̃ = M−2/3n−4/(3d) yields

‖f̂ − f0‖2n ≤
(
C2

δ
+

10

c23
+

10C
4/d
0

c23

)
M4/3

(
log n

n1/3

)4/d

+
10

c
d/2
3

Md/3n−1/3 +
10

n
.

Bounds on L2(X) error under Lipschitz assumption. Let V1, . . . , Vn denote the Voronoi tesselation

of X with respect to X1, . . . , Xn. Extend f̂ over X by taking it piecewise constant over the Voronoi cells,
i.e.

f̂(x) :=

n∑
i=1

f̂i · 1{x ∈ Vi}.

Note that we are abusing notation slightly by also using f̂ to refer to this extension.

In Proposition 27, we establish that the out-of-sample error ‖f̂ − f0‖L2(X) will not be too much larger than

the in-sample error ‖f̂ − f0‖n.

Proposition 27. Suppose f0 satisfies |f0(x′) − f0(x)| ≤ M‖x′ − x‖ for all x′, x ∈ X . Then for all n
sufficiently large, with probability at least 1− δ it holds that

‖f̂ − f0‖2L2(X) ≤ C log(1/δ)

(
log(n) · ‖f̂ − f0‖2n +M2

(log n

n

)2/d
)
.

Note that n−2/d � n−2/(2+d). Therefore Proposition 27 together with Theorem 6 implies that with high
probability, f̂ achieves the nearly-optimal (up to a factor of log n) estimation rates out-of-sample error—that

is, ‖f̂ − f0‖2L2(X) ≤ C log(n)M2d/(2+d)n−2/(2+d)—as long as M ≤ Cn1/d. This justifies one of our remarks
after Theorem 6.

Proof of Proposition 27. Suppose x ∈ Vi, so that we can upper bound the pointwise squared error
|f̂(x)− f(x)|2 using the triangle inequality:(

f̂(x)− f0(x)
)2

=
(
f̂(Xi)− f0(x)

)2 ≤ 2
(
f̂(Xi)− f0(Xi)

)2
+ 2
(
f0(Xi)− f0(x)

)2
.

Integrating both sides of the inequality, we have∫
X

(
f̂(x)− f0(x)

)2
dx ≤ 2

n∑
i=1

∫
Vi

(
f̂(Xi)− f0(Xi)

)2

dx+ 2

n∑
i=1

∫
Vi

(
f0(Xi)− f0(x)

)2

dx

= 2

n∑
i=1

vol(Vi)
(
f̂(Xi)− f0(Xi)

)2

+ 2

n∑
i=1

∫
Vi

(
f0(Xi)− f0(x)

)2

dx,

158

and so by invoking the Lipschitz property of f0, we obtain

‖f̂ − f‖2L2(X) ≤ 2

n∑
i=1

vol(Vi)
(
f̂(Xi)− f0(Xi)

)2

+ 2M2
n∑
i=1

(
diam(Vi)

)2

. (B.52)

Here we have written diam(V) for the diameter of a set V .

Now we will use some results of Chaudhuri and Dasgupta [2010] regarding uniform concentration of empirical
counts, to upper bound diam(Vi) Set

εn :=

(
2Co log(1/δ)d log n

νdpmina3n

)1/d

,

where Co is a constant given in Lemma 16 of Chaudhuri and Dasgupta [2010]. Note that for n sufficiently
large, εn ≤ c0, and therefore by (B.35) we have that for every x ∈ X , P (B(x, εn)) ≥ 2Co log(1/δ)d logn

n .
Consequently, by Lemma 16 of Chaudhuri and Dasgupta [2010] it holds that with probability at least
1− δ,

for all x ∈ X , B(x, εn) ∩ {X1, . . . , Xn} 6= ∅. (B.53)

But if (B.53) is true, it must also be true that for each i = 1, . . . , n and for every x ∈ Vi, the distance
‖x − Xi‖ ≤ εn. Thus by the triangle inequality, maxi=1,...,n diam(Vi) ≤ 2εn. Plugging back in to (B.52),

and using the upper bound volume vol(Vi) ≤ νd
(
diam(Vi)

)d
, we obtain the desired upper bound on ‖f̂ −

f‖2L2(X).

Proof of Theorem 9. The proof of Theorem 9 follows exactly the same steps as the proof of Theorem 6,
replacing the references to Lemma 3 and 4 by references to Proposition 24 and (B.50), and the ambient
dimension d by the intrinsic dimension m.

B.7.2 Proofs of testing results

Proof of Theorem 8. Let δ = 1/b. Recall that we have shown that the inequalities (3.14) and (3.15) are
satisfied with probability at least 1− 1/b−C1n exp(−c1nrd), and throughout this proof we take as granted
that both of these inequalities hold.

Now, we would like to invoke Lemma 27, and in order to do so, we must show that the inequality (B.14)
is satisfied with respect to G = Gn,r. First, we upper bound the right hand side of this inequality. Setting
ρ̃ = M−8/(4+d)n−4/(4+d) as prescribed by Theorem 8, it follows from (3.14) and (3.15) that

2ρ

n

(
f>0 Lf0

)
+

2
√

2/α+ 2b

n

(n∑
k=1

1

(ρλk + 1)4

)1/2

≤ C2bρ̃M
2 +

2
√

2/α+ 2b

n

[
1 +

1

c23

(n∑
k=2

1

(ρ̃k2/d + 1)4

)1/2

+
r4n1/2

c23ρ̃
2

]

≤ C2bρ̃M
2 +

2
√

2/α+ 2b

n

(
1 +

√
2

c23
ρ̃−d/4 +

r4n1/2

c23ρ̃
2

)
≤
(
C2 + 2 +

2
√

2

c23
+

2

c23

)
·
(√ 2

α
+ b
)
·M2d/(4+d)n−4/(4+d).

The second inequality in the above is justified by Lemma 36, keeping in mind that M ≤ Mmax(d) implies
that ρ̃−d/2 ≤ n. The third inequality follows from the upper bound on r assumed in (R2) as well as the fact
that M ≥ n−1/2.

Next we lower bound the left hand side of the inequality (B.14)—i.e. we lower bound the empirical norm
‖f0‖2n—using Lemma 34. Recall that by assumption, M ≤ Mmax(d). Therefore, taking C ≥ C6 in (3.11)
implies that the lower bound on ‖f‖L2(X) in (B.47) is satisfied. As a result, it follows from (B.48) that

‖f‖2n ≥
E[‖f‖2n]

b
≥ pmin

b
‖f‖2L2(X) ≥ C

(√ 1

α
+ b
)
M2d/(4+d)n−4/(4+d),

159

with probability at least 1 − 5/b. Taking C ≥ C2 + 2 + (2
√

2)/c23 + 2/c23 in (3.11) thus implies (B.14), and
we may therefore use Lemma 27 to upper bound the type II error the Laplacian smoothing test ϕ̂. Observe
that by (3.15) and the lower bound in Lemma 36,

n∑
k=1

(
1

ρλk + 1

)4

≥ 1 +
1

C4
3

n∑
k=2

(
1

ρ̃k2/d + 1

)4

≥ 1

32C4
3

ρ̃−d/2.

We conclude that

Pf0
(
T̂ ≤ t̂α

)
≤ 6

b
+

1

b2
+

16

b

(
n∑
k=1

1

(ρλk + 1)4

)−1/2

+ C1n exp(−c1nrd)

≤ 7

b
+

64
√

2

b
C2

3 ρ̃
d/4 + C1n exp(−c1nrd),

establishing the claim of Theorem 8.

Proof of Theorem 10. The proof of Theorem 10 follows exactly the same steps as the proof of Theorem 8,
replacing the references to Lemma 3 and 4 by references to Propositions 24 and (B.50), and the ambient
dimension d by the intrinsic dimension m.

Proof of (3.12). When ρ = 0, the Laplacian smoother f̂ = Y, the test statistic T̂ = 1
n‖Y‖

2
2, and the

threshold t̂α = 1 + n−1/2
√

2/α. The expectation of T̂ is

E
[
T̂
]

= E
[
f2

0 (X)
]

+ 1 ≥ pmin‖f0‖2L2(X) + 1.

When f0 ∈ L4(X ,M), the variance can be upper bounded

Var
[
T̂
]
≤ 1

n

(
3 + pmaxM

4 + pmax‖f0‖2L2(X)

)
.

Now, let us assume that

‖f0‖2L2(X) ≥
2
√

2/α+ 2b

pmin
n−1/2,

so that E[T̂]− t̂α ≥ E[f2
0 (X)]/2. Hence, by Chebyshev’s inequality

Pf0
(
T̂ ≤ t̂α

)
≤ 4

Varf0
[
T̂
]

E[f2
0 (X)]2

≤ 4

n
·

3 + pmax

(
M4 + ‖f0‖2L2(X)

)
p2

min‖f0‖4L2(X)

≤ 1

b2

(
3 +

4bpmax

pminn1/2
+ pmaxM

4
)
.

B.7.3 Two convenient estimates

The following Lemmas provides convenient upper and lower bounds on our estimation variance term (Lemma 35)
and testing variance term (Lemma 36).

Lemma 35. For any t > 0 such that 1 ≤ t−d/2 ≤ n,

1

8
t−d/2 − 1 ≤

n∑
k=2

(
1

tk2/d + 1

)2

≤ t−d/2 +

3t−d/2, if d < 4
1
t2 log n, if d = 4

1
t2n

1−4/d, if d > 4.

160

Lemma 36. Suppose d ≤ 4. Then for any t > 0 such that 1 ≤ t−d/2 ≤ n,

1

32
t−d/2 − 1 ≤

n∑
k=2

(
1

tk2/d + 1

)4

≤ 2t−d/2.

Proof of Lemma 35. We begin by proving the upper bounds. Treating the sum over k as a Riemann
sum of a non-increasing function, we have that

n∑
k=2

(
1

tk2/d + 1

)2

≤
∫ n

1

(
1

tx2/d + 1

)2

dx ≤ t−d/2 +

∫ n

t−d/2

(
1

tx2/d + 1

)2

dx ≤ t−d/2 +
1

t2

∫ n

t−d/2
x−4/d dx.

The various upper bounds (for d < 4, d = 4, and d > 4) then follow upon computing the integral.

For the lower bound, we simply recognize that for each k = 2, . . . , n such that k ≤
⌊
t−d/2

⌋
, it holds that

1/(tk2/d + 1)2 ≥ 1/4, and there are at least min
{⌊
t−d/2

⌋
− 1, n− 1

}
> 1

2 t
−d/2 − 1 such values of k.

Proof of Lemma 36. The upper bound follows similarly to that of Lemma 35:

n∑
k=1

(
1

tk2/d + 1

)4

≤ t−d/2 +
1

t4

n∑
k=t−d/2+1

1

k8/d
≤ t−d/2 +

1

t4

∫ n

t−d/2
x−8/d dx ≤ 2t−d/2.

The lower bound follows from the same logic as we used to derive the lower bound in Lemma 35.

B.8 Concentration inequalities

Lemma 37. Let ξ1, . . . , ξN be independent N(0, 1) random variables, and let U :=
∑N
k=1 ak(ξ2

k − 1). Then
for any t > 0,

P
[
U ≥ 2‖a‖2

√
t+ 2‖a‖∞t

]
≤ exp(−t).

In particular if ak = 1 for each k = 1, . . . , N , then

P
[
U ≥ 2

√
Nt+ 2t

]
≤ exp(−t).

The proof of Lemma 34 relies on (a variant of) the Paley-Zygmund Inequality.

Lemma 38. Let f satisfy the following moment inequality for some b ≥ 1:

E
[
‖f‖4n

]
≤
(

1 +
1

b2

)
·
(
E
[
‖f‖2n

])2

. (B.54)

Then,

P
[
‖f‖2n ≥

1

b
E
[
‖f‖2n

]]
≥ 1− 5

b
. (B.55)

Proof. Let Z be a non-negative random variable such that E(Zq) <∞. The Paley-Zygmund inequality says
that for all 0 ≤ λ ≤ 1,

P(Z > λE(Zp)) ≥
[
(1− λp) E(Zp)

(E(Zq))p/q

] q
q−p

. (B.56)

161

Applying (B.56) with Z = ‖f‖2n, p = 1, q = 2 and λ = 1
b , by assumption (B.54) we have

P
(
‖f‖2n >

1

b
E[‖f‖2n]

)
≥
(

1− 1

b

)2

·
(
E[‖f‖2n]

)2
E[‖f‖4n]

≥

(
1− 2

b

)
(

1 + 1
b2

) ≥ 1− 5

b
.

Let Z1, . . . , Zn be independently distributed and bounded random variables, such that E[Zi] = µi. Let
Sn = Z1 + . . . + Zn and µ = µ1 + . . . + µn. The multiplicative form of Hoeffding’s inequality gives sharp
bounds when µ� 1.

Lemma 39 (Hoeffding’s Inequality, multiplicative form). Suppose Zi are independent random variables,
which satisfy Zi ∈ [0, B] for i = 1, . . . , n. For any 0 < δ < 1, it holds that

P
(∣∣∣Sn − µ∣∣∣ ≥ δµ) ≤ 2 exp

(
− δ

2µ

3B2

)
.

We use Lemma 39, along with properties of the kernel K and density p, to upper bound the maximum degree
in our neighborhood graph, which we denote by Dmax(Gn,r) := maxi=1,...,nDii.

Lemma 40. Under the conditions of Lemma 4,

Dmax(Gn,r) ≤ 2pmaxnr
d,

with probability at least 1− 2n exp
(
−nrda3pmin/(3[K(0)]2)

)
.

Proof of Lemma 40. Fix x ∈ X , and set

Dn,r(x) :=

n∑
i=1

K

(
‖Xi − x‖

r

)
;

note that Dn,r(Xi) is just the degree of Xi in Gn,r. By Hoeffding’s inequality

P
(∣∣∣Dn,r(x)− E

[
Dn,r(x)

]∣∣∣ ≥ δE[Dn,r(x)
])
≤ 2 exp

(
−
δ2E

[
Dn,r(x)

]
3[K(0)]2

)
. (B.57)

Now we lower bound E[Dn,r(x)] using the boundedness of the density p, and the fact that X has Lipschitz
boundary:

E
[
Dn,r(x)

]
= n

∫
X
K

(
‖x′ − x‖

r

)
p(x) dx

≥ npmin

∫
X
K

(
‖x′ − x‖

r

)
dx

≥ npmina3

∫
X
K

(
‖x′ − x‖

r

)
dx

≥ nrdpmin,

with the second inequality following from (B.35), and the final inequality from the normalization
∫
Rd K(‖z‖) dz =

1. Similar derivations yield the upper bound

E
[
Dn,r(x)

]
≤ nrdpmax,

162

and plugging these bounds in to (B.57), we determine that

P
(
Dn,r(x) ≥ (1 + δ)nrdpmax

)
≤ 2 exp

(
−δ

2nrda0pmin

3[K(0)]2

)
.

Applying a union bound, we get that

P
(

max
i=1,...,n

Dn,r(Xi) ≥ (1 + δ)nrdpmax

)
≤ 2n exp

(
−δ

2nrda0pmin

3[K(0)]2

)
,

and taking δ = 1 gives the claimed upper bound.

163

Appendix C

Chapter 4 Appendix

C.1 Graph-dependent error bounds

In this section, we adopt the fixed design perspective; or equivalently, condition on Xi = xi for i = 1, . . . , n.
Let G =

(
[n],W

)
be a fixed graph on {1, . . . , n} with Laplacian matrix L =

∑n
k=1 λkvkv

>
k ; the eigenvectors

have unit empirical norm, ‖vk‖2n = 1. The randomness thus all comes from the responses

Yi = f0(xi) + wi (C.1)

where the noise variables wi are independent N(0, 1). In the rest of this section, we will mildly abuse notation
and write f0 = (f0(x1), . . . , f0(xn)) ∈ Rn. We will also write Y = (Y1, . . . , Yn).

C.1.1 Upper bound on Estimation Error of Laplacian Eigenmaps

Lemma 41. For any integer s > 0, and any integer 0 ≤ K ≤ n, the Laplacian eigenmaps estimator f̂
of (4.5) satisfies

‖f̂ − f0‖2n ≤
〈Lsf0, f0〉n
λsK+1

+
5K

n
; (C.2)

this is guaranteed if K = 0, and otherwise holds with probability at least 1− exp(−K) if 1 ≤ K ≤ n.

Proof (of Lemma 41). By the triangle inequality,

‖f̂ − f0‖2n ≤ 2
(
‖Ef̂ − f0‖2n + ‖f̂ − Ef̂‖2n

)
. (C.3)

The first term in (C.3) (approximation error) is non-random, since the design is fixed. The expectation

Ef̂ =
∑K
k=1〈vk, f0〉nvk, so that

‖Ef̂ − f0‖2n =
∥∥∥ n∑
k=K+1

〈vk, f0〉nvk
∥∥∥2

n
=

n∑
k=K+1

〈vk, f0〉2n.

In the above, the last equality relies on the fact that vk are orthonormal in L2(Pn). Using the fact that the
eigenvalues are in increasing order, we obtain

n∑
k=K+1

〈vk, f0〉2n ≤
1

λsK+1

n∑
k=K+1

λsk〈vk, f0〉2n ≤
〈Lsf0, f0〉n
λsK+1

.

164

If K = 0, f̂ = Ef̂ = 0, and the second term in (C.3) is 0. Otherwise the second in (C.3) (estimation error) is

random. Observe that 〈vk, ε〉n
d
= Zk/

√
n, where (Z1, . . . , Zn) ∼ N(0, In×n). Again using the orthonormality

of the eigenvectors vk, we have

‖f̂ − Ef̂‖2n =

K∑
k=1

〈vk, ε〉2n
d
=

1

n

K∑
k=1

Z2
k .

Thus ‖f̂ −Ef̂‖2n is equal to 1/n times a χ2 distribution with K degrees of freedom. Consequently, it follows
from a result of [Laurent and Massart, 2000] that

P
(
‖f̂ − Ef̂‖2n ≥

K

n
+ 2

√
K

n

√
t+

2t

n

)
≤ exp(−t).

Setting t = K completes the proof of the lemma.

C.1.2 Upper bound on Testing Error of Laplacian Eigenmaps

Let T̂ =
∑K
k=1〈Y, vk〉2n, and let ϕ = 1{T̂ ≥ ta}. In the following Lemma, we upper bound the Type I and

Type II error of the test ϕ.

Lemma 42. Suppose we observe (Y1, x1), . . . , (Yn, xn) according to (C.1).

• If f0 = 0, then E0[ϕ] ≤ a.

• Suppose f0 6= 0 satisfies

‖f0‖2n ≥
〈Lsf0, f0〉n
λsK+1

+

√
2K

n

[
2

√
1

a
+

√
2

b
+

32

bn

]
, (C.4)

for some s ∈ N \ {0}. Then Ef0 [1− φ] ≤ b.

Proof (of Lemma 42). We first compute the expectation and variance of T̂ , then apply Chebyshev’s
inequality to upper bound the Type I and Type II error.

Expectation. Recall that T̂ =
∑K
k=1〈Y, vk〉2n. Expanding the square gives

E[T̂] =

K∑
k=1

E[〈Y, vk〉2n] =

K∑
k=1

〈f0, vk〉2n + E[2〈f0, vk〉n〈ε, vk〉n + 〈ε, vk〉2n] =
K

n
+

K∑
k=1

〈f0, vk〉2n.

Thus E[T̂]− ta =
∑K
k=1〈f0, vk〉2n −

√
2K/n ·

√
1/a. Furthermore, it is a consequence of (C.4) that

K∑
k=1

〈f0, vk〉2n −
√

2K

n

√
1/a ≥ ‖f0‖2n −

〈Lsf0, f0〉n
λsK+1

−
√

2K

n

√
1/a ≥

√
2K

n

[√
1

a
+

√
2

b
+

32

bn

]
. (C.5)

Variance. Recall from the proof of Lemma 41 that 〈ε, vk〉n
d
= Zk/

√
n for (Z1, . . . , Zn) ∼ N(0, In×n). Ex-

panding the square, and recalling that Cov[Z,Z2] = 0 for Gaussian random variables, we have that

Var
[
〈Y, vk〉2n

]
= Var

[
2

n
〈f0, vk〉nZk +

2

n2
Z2
k

]
=

4〈f0, vk〉2n
n

+
2

n2
.

Moreover, since Cov[Z2
k , Z

2
`] = 0 for each k = 1, . . . ,K, we see that

Var
[
T̂
]

=

K∑
k=1

Var
[
〈Y, vk〉2n

]
=

2K

n2
+

K∑
k=1

4〈f0, vk〉2n
n

.

165

Bounds on Type I and Type II error. The upper bound on Type I error follows immediately from Cheby-
shev’s inequality.

The upper bound on Type II error also follows from Chebyshev’s inequality. We observe that (C.4) implies

Ef0 [T̂] = ta, and apply Chebyshev’s inequality to deduce

Pf0
(
T̂ < ta

)
≤ Pf0

(
|T̂ − Ef0 [T̂]|2 > |Ef0 [T̂]− ta|2

)
≤

Var
[
T̂
][

Ef0 [T̂]− ta
]2 =

2K/n2 + 4/n
∑K
k=1〈f0, vk〉2n[

Ef0 [T̂]− ta
]2 .

Thus we have upper bounded the Type II error by the sum of two terms, each of which are no more than
1/(2b), as we now show. For the first term, after noting that (C.5) implies Ef0 [T̂]− ta ≥

√
2K/n ·

√
2/b, the

upper bound follows:
2K/n2[

Ef0 [T̂]− ta
]2 ≤ b

2
.

On the other hand, for the second term we use (C.5) in two ways: first to conclude that Ef0 [T̂] − ta ≥
1/2 ·

∑K
k=1〈f0, vk〉2n, and second to obtain

4
∑K
k=1〈f0, vk〉2n

n
[
Ef0 [T̂]− ta

]2 ≤ 4
∑K
k=1〈f0, vk〉2n

n
(∑K

k=1〈f0, vk〉2n/2
)2 ≤ 16

n
∑K
k=1〈f0, vk〉2n

≤ b

2
.

C.2 Analysis of Spectral Series Estimator

In this section we prove Proposition 6. As mentioned in our main text, this proof relies on three facts: (i)
a continuous embedding of Hs

0(X) into Hs(X), (ii) the Weyl’s Law asymptotic scaling λk(∆P) � k2/d, and

(iii) a local Weyl’s Law scaling
∑K
k=1

(
ψk(x)

)2
. K. (Recall that (λk(∆P), ψk) are defined to be solutions

to (4.7)). We record the precise results we need in the following three lemmas.

The first result follows immediately from Lemma 17 of Dunlop et al. [2020]. Recall the spectral Sobolev
class Hs(X) defined in (4.8). Equip Hs(X) with the norm

‖f‖2Hs(X) :=

∞∑
k=1

[
〈f, ψk〉P

]2 · [λk(∆P)]2.

Lemma 43 (cf. Lemma 17 of Dunlop et al. [2020]). Suppose Model 4.2.1, and additionally that p ∈ C∞(X)
and ∂X ∈ C1,1. Then for any s ∈ N, we have Hs

0(X) ⊆ Hs(X). Moreover, there exists a constant C such
that for any f ∈ Hs

0(X) we have
‖f‖Hs(X) ≤ C‖f‖Hs(X). (C.6)

The particular version of Weyl’s Law we use is also due to Dunlop et al. [2020].

Lemma 44 (cf. Lemma 28 of Dunlop et al. [2020]). Suppose Model 4.2.1. Then there exist positive constants
c and C such that for all k ≥ 2,

ck2/d ≤ λk(∆P) ≤ Ck2/d. (C.7)

As we discuss in our main text, the asymptotic scaling λk(∆P) � k2/d also plays a key role in our analysis
of Laplacian eigenmaps. We point out that although Lemma 28 of Dunlop et al. [2020] assumes p ∈ C∞(X)
and ∂X ∈ C1,1, the proof uses only the hypotheses of Model 4.2.1: that p is bounded away from 0 and ∞,
and that ∂X is Lipschitz.

Finally, we need a local version of Weyl’s Law, due to Hörmander [2007].

166

Lemma 45 (cf. Theorem 17.5.3 of Hörmander [2007]). Suppose Model 4.2.1, and additionally that p ∈
C∞(X) and ∂X ∈ C1,1. Then there exists a positive constant C such that for all K ∈ N \ 0,

sup
x∈X

{ K∑
k=1

(
ψk(x)

)2} ≤ CK. (C.8)

Translated into our notation, Theorem 17.5.3 of Hörmander [2007] says that

sup
x∈X

{ ∑
k:λk(∆P)≤λK(∆P)

(
ψk(x)

)2} ≤ C[λK(∆P)
]d/2

,

and from here (C.8) follows from (C.7). Hörmander [2007] proves the result only when ∂X ∈ C∞, but the
proof goes through unchanged when ∂X ∈ C1, since ∂X ∈ C1 is sufficient to apply the relevant Sobolev
embedding theorem (Lemma 17.5.2 of Hörmander [2007]) that is the key to proving Lemma 45.

We note that the assumptions p ∈ C∞(X) and ∂X ∈ C1,1 used in Lemmas 43 and 45 can likely be removed.
This would allow us to remove the same assumptions in the statement of Proposition 6. Since this does not
change the main point of the proposition, we do not pursue the details further.

Proof (of Proposition 6). We decompose risk into squared bias and variance,

E‖f̃ − f0‖2P = E‖E[f̃]− f0‖2P + E‖f̃ − E[f̃]‖2P . (C.9)

Then some standard arguments (which we give below) give the following upper bound:

E‖f̃ − f0‖2P ≤
‖f0‖2Hs(X)[
λK+1(∆P)

]s +
K

n
+

1

n
E
[
(f0(X))2 ·

K∑
k=1

(ψk(X))2
]
. (C.10)

The claim of the proposition follows from (C.10) and Lemmas 43-45, upon taking K =
⌊
(M2n)d/(2s+d)

⌋
.

(Here we use the convention
∑0
k=1 ck = 0 for any sequence (ck).)

The upper bound (C.10) is to be compared with (4.24), which gives upper bounds on the (design-dependent)
squared bias and variance of Laplacian eigenmaps. We see (4.24) has terms analogous to the first two terms
on the right hand side of (C.10), but not the third. The relevance of this third term to L2 estimation
problems is discussed by Birgé [2008].

Proof (of (C.10)). Since {ψk} are an orthonormal basis of L2(P), and f0 ∈ Hs
0(X) ⊆ L2(P), we have

f0 =
∑∞
k=1〈f0, ψk〉Pψk in L2(P). This allows us to expand the squared bias in terms of squared Fourier

coefficients of f0, and gives the following upper bound,

‖f0 − Ef̃‖2P =

∞∑
k=K+1

〈f0, ψk〉2 ≤
1

λK+1(∆P)s

∞∑
k=K+1

λk+1(∆P)s〈f0, ψk〉2 ≤
‖f0‖Hs[

λK+1(∆P)
]s .

On the other hand, the variance term can be written as the sum of the variance of each empirical Fourier
coefficient,

E‖f̃ − E[f̃]‖2P =

K∑
k=1

Var
[
〈Y, ψk〉n

]
(C.11)

Then from the law of total variance,

Var
[
〈Y, ψk〉n

]
= Var

[
E[〈Y, ψk〉n|X

]
+ E

[
Var[〈Y, ψk〉n|X

]
= Var

[
〈f0, ψk〉n

]
+

1

n
E
[
‖ψk‖2n

]
.

167

Finally, E‖ψk‖2n = ‖ψk‖2P = 1,

Var
[
〈f0, ψk〉n

]
=

1

n
Var
[
f0(X)ψk(X)

]
≤ 1

n
E
[(
f0(X)ψk(X)

)2]
,

and plugging back into (C.11) yields the claim.

C.3 Graph Sobolev semi-norm, flat Euclidean domain

In this section we prove Proposition 8. The proposition will follow from several intermediate results.

1. In Section C.3.1, we show that

〈Lsn,εf, f〉n ≤
1

δ
〈LsP,εf, f〉P +

Cε2

δnε2+d
M2. (C.12)

with probability at least 1− 2δ.

We term the first term on the right hand side the non-local Sobolev semi-norm, as it is a kernelized
approximation to the Sobolev semi-norm 〈∆s

P f, f〉P . The second term on the right hand side is a pure
bias term, which as we will see is negligible compared to the non-local Sobolev semi-norm as long as
ε� n−1/(2(s−1+d)).

2. In Section C.3.2, we show that when x is sufficiently in the interior of X , then LkP,εf(x) is a good

approximation to ∆k
P f(x), as long as f ∈ Hs(X) and p ∈ Cs−1(X) for some s ≥ 2k + 1.

3. In Section C.3.3, we show that when x is sufficiently near the boundary of X , then LkP,εf(x) is close
to 0, as long as f ∈ Hs

0(X) for some s > 2k.

4. In Section C.3.4, we use the results of the preceding two sections to show that if f ∈ Hs
0(X ;M) and

p ∈ Cs−1(X), there exists a constant C which does not depend on f such that

〈LsP,εf, f〉P ≤ CM2. (C.13)

Finally, in Section C.3.5 we provide some assorted estimates used in Sections C.3.1.

Proof (of Proposition 8). Proposition 8 follows immediately from (C.12) and (C.13).

One note regarding notation: suppose a function g ∈ H`(U), where ` ∈ N and U is an open set. Let V be
another open set, compactly contained within U . Then we will use the notation g ∈ H`(V) to mean that
the restriction g|V of g to V belongs to H`(V).

C.3.1 Decomposition of graph Sobolev semi-norm

In Lemma 46, we decompose the graph Sobolev semi-norm (a V-statistic) into an unbiased estimate of the
non-local Sobolev semi-norm (a U-statistic), and a pure bias term. We establish that the pure bias term will
be small (in expectation) relative to the U-statistic whenever ε is sufficiently small.

Lemma 46. For any f ∈ L2(X), the graph Sobolev semi-norm satisfies

〈Lsn,εf, f〉n = U (s)
n,ε(f) +B(s)

n,ε(f), (C.14)

such that E[U
(s)
n,ε(f)] = (n− s− 1)!/n! · 〈LsP,εf, f〉P . If additionally f ∈ H1(X ;M) and ε ≥ n−1/d, then the

bias term B
(s)
n,ε(f) satisfies

E
[
|B(s)
n,ε(f)|

]
≤ Cε2

δnε2+d
M2. (C.15)

Then C.12 follows immediately from Lemma 46, by Markov’s inequality.

168

Proof (of Lemma 46). We begin by introducing some notation. We will use bold notation j = (j1, . . . , js)
for a vector of indices where ji ∈ [n] for each i. We write [n]s for the collection of all such vectors, and (n)s

for the subset of such vectors with no repeated indices. Finally, we write Dif for a kernelized difference
operator,

Dif(x) :=
(
f(x)− f(Xi)

)
η

(
‖Xi − x‖

ε

)
,

and we let Djf(x) :=
(
Dj1 ◦ · · · ◦Djsf

)
(x).

With this notation in hand, it is easy to represent 〈Lsn,εf, f〉n as the sum of a U-statistic and a bias
term,

〈Lsn,εf, f〉n =
1

n

n∑
i=1

Lsn,εf(Xi) · f(Xi)

=
1

ns+1εs(d+2)

∑
ij∈(n)s+1

Djf(Xi) · f(Xi)︸ ︷︷ ︸
=:U

(s)
n,ε(f)

+
1

ns+1εs(d+2)

∑
ij∈

[n]s+1\(n)s+1

Djf(Xi) · f(Xi)

︸ ︷︷ ︸
=:B

(s)
n,ε(f)

When the indices of ij are all distinct, it follows straightforwardly from the law of iterated expectation
that

E[Djf(Xi) · f(Xi)] = εs(d+2)E[LsP,εf(Xi) · f(Xi)] = 〈LsP,εf, f〉P ,

which in turn implies E[U
(s)
n,ε(f)] = (n− s− 1)!/n! · 〈LsP,εf, f〉P .

It remains to show (C.15). By adding and subtracting f(Xj1), we obtain by symmetry that∑
ij∈

[n]s+1\(n)s+1

Djf(Xi) · f(Xi) =
1

2
·

∑
ij∈

[n]s+1\(n)s+1

Djf(Xi) ·
(
f(Xi)− f(Xj1)

)
,

and consequently

E
[∑

ij∈
[n]s+1\(n)s+1

Djf(Xi) · f(Xi)
]
≤ 1

2
·

∑
ij∈

[n]s+1\(n)s+1

E
[∣∣Djf(Xi)

∣∣ · ∣∣f(Xi)− f(Xj1)
∣∣].

In Lemma 51, we show that if f ∈ H1(X ;M), then for any ij ∈ [n]s+1 which contains a total of k+1 distinct
indices,

E
[∣∣Djf(Xi)

∣∣ · ∣∣f(Xi)− f(Xj1)
∣∣] ≤ C1ε

2+kdM2.

This shows us that the expectation of |Bsn,ε(f)| can bounded from above by the sum over several different
terms, as follows:

E
[
|Bsn,ε(f)|

]
≤ C1

ε2

nε2s
M2

∑
ij∈

[n]s+1\(n)s+1

1

(nεd)s
ε(|ij|−1)d

≤ C1
ε2

nε2s
M2

s−1∑
k=1

(nεd)k

(nεd)s
n.

Finally, we note that by assumption nεd ≥ 1, so that in the above sum the factor of (nεd)k is largest when
k = s− 1. We conclude that

E
[
|Bsn,ε(f)|

]
≤ C1(s− 1)

ε2

nε2s+d
M2,

which is the desired result.

169

C.3.2 Approximation error of non-local Laplacian

In this section, we establish the convergence LkP,εf → σkη∆k
P f as ε → 0. More precisely, we give an upper

bound on the squared difference between LkP,εf and σkη∆k
P f as a function of ε. The bound holds for all

x ∈ Xkε, and f ∈ Hs(X), as long as s ≥ 2k + 1.

Lemma 47. Assume Model 4.2.1. Let s ∈ N \ {0, 1}, suppose that f ∈ Hs(X ;M), and if s > 1 suppose that
p ∈ Cs−1(X). Let LP,ε be define with respect to a kernel η that satisfies (K1). Then there exist constants
C1 and C2 that do not depend on f , such that each of the following statements hold.

• If s is odd and k = (s− 1)/2, then

‖LkP,εf −∆k
P f‖L2(Xkε) ≤ C1Mε (C.16)

• If s is even and k = (s− 2)/2, then

‖LkP,εf −∆k
P f‖L2(Xkε) ≤ C2Mε2. (C.17)

We remark that when k = 1 and f ∈ C3(X) or C4(X), statements of this kind are well known, and indeed
stronger results—with L∞(X) norm replacing L2(X) norm—hold. When dealing with the iterated Laplacian,
and functions f which are regular only in the Sobolev sense, the proof is somewhat more lengthy, but the
spirit of the result is largely the same.

Proof (of Lemma 47). Throughout this proof, we shall assume that f and p are smooth functions,
meaning they belong to C∞(X). This is without loss of generality, since C∞(X) is dense in both Hs(X) and
Cs−1(X), and since both sides of the inequalities (C.16) and (C.17) are continuous with respect to ‖ · ‖Hs(X)

and ‖ · ‖Cs−1(X) norms.

We will actually prove a more general set of statements than contained in Lemma 47, more general in the
sense that they give estimates for all k, rather than simply the particular choices of k given above. In
particular, we will prove that the following two statements hold for any s ∈ N and any k ∈ N \ {0}.

• If k ≥ s/2, then for every x ∈ Xkε,
LkP,εf(x) = gs(x)εs−2k (C.18)

for a function gs that satisfies
‖gs‖L2(Xkε) ≤ C‖p‖

k
Cq(X)M (C.19)

where q = 1 if s = 0 or s = 1, and otherwise q = s− 1.

• If k < s/2, then for every x ∈ Xkε,

LkP,εf(x) = σkη ·∆k
P f(x) +

b(s−1)/2c−k∑
j=1

g2(j+k)(x)ε2j + gs(x)εs−2k. (C.20)

for functions gj that satisfy
‖gj‖Hs−j(Xkε) ≤ C‖p‖

k
Cs−1(X)M. (C.21)

In the statement above, recall that H0(Xkε) = L2(Xkε). Additionally, note that we may speak of the
pointwise behavior of derivatives of f because we have assumed that f is a smooth function. Observe
that (C.16) follows upon taking k = b(s− 1)/2c in (C.20), whence we have(

LkP,εf(x)− σkη∆k
P f(x)

)2
= ε2

(
gs(x)

)2

170

for some gs ∈ L2(Xkε, C ·M · ‖p‖Cs−1(X)), and integrating over Xkε gives the desired result. (C.17) follows
from (C.20) in an identical fashion.

It thus remains establish (C.20), and (C.18) which is an important part of proving (C.20). We will do so by
induction on k. Note that throughout, we will let gj refer to functions which may change from line to line,
but which always satisfy (C.21).

Proof of (C.18) and (C.20), base case.

We begin with the base case, where k = 1. Again, we point out that although desired result is known when
s = 3 or s = 4, and f is regular in the Hölder sense, we require estimates for all s ∈ N when f is regular in
the Sobolev sense.

When s = 0, the inequality (C.18) is implied by Lemma 49. When s ≥ 1, we proceed using Taylor expansion.
For any x ∈ Xε, we have that B(x, ε) ⊆ X . Thus for any x′ ∈ B(x, ε), we may take an order s Taylor
expansion of f around x′ = x, and an order q Taylor expansion of p around x′ = x, where q = 1 if s = 1,
and otherwise q = s − 1. (See Section C.8.2 for a review of the notation we use for Taylor expansions, as
well as some properties that we make use of shortly.) This allows us to express LP,εf(x) as the sum of three
terms,

LP,εf(x) =
1

εd+2

s−1∑
j1=1

q−1∑
j2=0

1

j1!j2!

∫
X

(
dj1x f

)
(x′ − x)

(
dj2x p

)
(x′ − x)η

(
‖x′ − x‖

ε

)
dx′ +

1

εd+2

s−1∑
j=1

1

j!

∫
X

(
djxf

)
(x′ − x)rqx′(x; p)η

(
‖x′ − x‖

ε

)
dx′ +

1

εd+2

∫
X
rjx′(x; f)η

(
‖x′ − x‖

ε

)
dP (x′).

Here we have adopted the convention that
∑0
j=1 = 0.

Changing variables to z = (x′ − x)/ε, we can rewrite the above expression as

LP,εf(x) =
1

ε2

s−1∑
j1=1

q−1∑
j2=0

εj1+j2

j1!j2!

∫
dj1x f(z)dj2x p(z)η

(
‖z‖
)
dz +

1

ε2

s−1∑
j=1

εj

j!

∫
djxf(z)rqzh+x(x; p)η

(
‖z‖
)
dz +

1

ε2

∫
rjzh+x(x; f)η

(
‖z‖
)
p(zh+ x) dz

:= G1(x) +G2(x) +G3(x).

We now separately consider each of G1(x), G2(x) and G3(x). We will establish that if s = 1 or s = 2, then
G1(x) = 0, and otherwise if s ≥ 3 that

G1(x) = ση∆P f(x) +

b(s−1)/2c−1∑
j=1

g2(j+1)(x)ε2j + gs(x)εs−2.

On the other hand, we will establish that if s = 1 then G2(x) = 0, and otherwise for s ≥ 2

‖G2‖L2(Xε) ≤ Cε
s−2M‖p‖Cs−1(X); (C.22)

this same estimate will hold for G3 for all s ≥ 1. Together these will imply (C.18) and (C.20).

171

Estimate on G1(x). If s = 1, then s − 1 = 0, and so G1(x) = 0. We may therefore suppose s ≥ 2. Recall
that

G1(x) =

s−1∑
j1=1

q−1∑
j2=0

εj1+j2−2

j1!j2!

∫
B(0,1)

dj1x f(z)dj2x p(z)η(‖z‖) dz︸ ︷︷ ︸
:=gj1,j2 (x)

(C.23)

The nature of gj1,j2(x) depends on the sum j1 +j2. Since dj1x fd
j2
x is an order j1 +j2 (multivariate) monomial,

we have (see Section C.8.2) that whenever j1 + j2 is odd,

gj1,j2(x) =

∫
X
dj1x f(z)dj2x p(z)η(‖z‖) dz = 0.

In particular this is the case when j1 = 1 and j2 = 0. Thus when s = 2, G1(x) = g1,0(x) = 0. On the other
hand if s ≥ 3, then the lowest order terms in (C.23) are those where j1 + j2 = 2, so that either j1 = 1 and
j2 = 1, or j1 = 2 and j2 = 0. We have that

g1,1(x) +
1

2
g2,0(x) =

∫
X
d1
xf(z)d1

xp(z)η(‖z‖) dz +
p(x)

2

∫
X
d2
xf(z)η(‖z‖) dz

=

d∑
i1=1

d∑
i2=1

Dei1 f(x)Dei2p(x)

∫
X
zei1+ei2 η(‖z‖) dz +

p(x)

2

d∑
i1=1

d∑
i2=1

Dei2+ei2 f(x)

∫
X
zei1+ei2 η(‖z‖) dz

=

d∑
i=1

Deif(x)Deip(x)

∫
X
z2η(‖z‖) dz +

p(x)

2

d∑
i=1

D2eif(x)

∫
X
z2η(‖z‖) dz

= ση∆P f(x),

which is the leading term order term. Now it remains only to deal with the higher-order terms, where
j1+j2 > 2, and where it suffices to show that each function gj1,j2 satisfies (C.21) for j = min{j1+j2−2, s−2}.
It is helpful to write gj1,j2 using multi-index notation,

gj1,j2(x) =
∑
|α1|=j1

∑
|α2|=j2

Dα1f(x)Dα2p(x)

∫
B(0,1)

zα1+α2η(‖z‖) dz,

where we note that |
∫
B(0,1)

zα1+α2η(‖z‖) dz| <∞ for all α1, α2, by the assumption that η is Lipschitz on its

support. Finally, by Hölder’s inequality we have that

‖Dα1fDα2p‖Hs−(j+2)(X) ≤ ‖Dα1f‖Hs−(j+2)(X)‖Dα2p‖Cs−(j+2)(X)

≤ ‖Dα1f‖Hs−j1 (X)‖Dα2p‖Cs−(j2+1)(X)

≤M · ‖p‖Cs−1(X),

and summing over all |α1| = j1 and |α2| = j2 establishes that gj1,j2 satisfies (C.21).

Estimate on G2(x). Note immediately that G2(x) = 0 if s = 1. Otherwise if s ≥ 2, then q = s− 1. Recalling
that |rs−1

x+zε(x; p)| ≤ Cεs−1‖p‖Cs−1(X) for any z ∈ B(0, 1), and that djxf(·) is a j-homogeneous function, we
have that

|G2(x)| ≤
s−1∑
j=1

εj−2

j!

∫
B(0,1)

∣∣∣(djxf)(z)∣∣∣ · |rs−1
x+zε(x; p)| · η(‖z‖) dz

≤ Cεs−2‖p‖Cs−1(X)

s−1∑
j=1

1

j!

∫
B(0,1)

∣∣∣(djxf)(z)∣∣∣ · η(‖z‖) dz. (C.24)

172

Furthermore, for each j = 1, . . . , s − 1 convolution of djxf with η only decreases the L2(Xε) norm, mean-
ing ∫

Xε

(∫
B(0,1)

∣∣∣(djxf)(z)∣∣∣ · η(‖z‖) dz
)2

dx ≤
∫
Xε

(∫
B(0,1)

∣∣∣(djxf)(z)∣∣∣2η(‖z‖) dz
)
·
(∫

B(0,1)

η(‖z‖) dz
)
dx

≤
∫
B(0,1)

∫
Xε

[(
djf
)
(x)
]2
η(‖z‖) dx dz

≤ ‖djf‖2L2(Xε).

(C.25)
In the above, we have used both that |djxf(z)| ≤ |djf(x)| for all z ∈ B(0, 1), and that the kernel is normalized
so that

∫
η(‖z‖) dz = 1. Combining this with (C.24), we conclude that∫
Xε
|G2(x)|2 dx ≤ C

(
εs−2‖p‖Cs−1(X)

)2 s−1∑
j=1

∫
Xε

(
1

j!

∫
B(0,1)

∣∣∣(djxf)(z)∣∣∣ · ∣∣∣η(‖z‖)
∣∣∣ dz)2

dx

≤ C
(
εs−2‖p‖Cs−1(X)

)2 s−1∑
j=1

‖dju‖2L2(Xε),

establishing the desired estimate.

Estimate on G3(x). Applying the Cauchy-Schwarz inequality, we deduce a pointwise upper bound on
|G3(x)|2,

|G3(x)|2 ≤
(
pmax

ε2

)2

·
(∫

B(0,1)

∣∣rsx+εz(x;u)
∣∣2η(‖z‖) dz

)
·
(∫

B(0,1)

η(‖z‖) dz
)

≤
(
pmax

ε2

)2 ∫
B(0,1)

∣∣rsx+εz(x;u)
∣∣2η(‖z‖) dz.

Applying this pointwise over all x ∈ Xε and integrating, we obtain∫
Xε
|G3(x)|2 dx ≤

(
pmax

ε2

)2 ∫
Xε

∫
B(0,1)

∣∣rsx+εz(x; f)
∣∣2η(‖z‖) dz dx

=

(
pmax

ε2

)2 ∫
B(0,1)

∫
Xε

∣∣rsx+εz(x; f)
∣∣2η(‖z‖) dx dz

≤
(
pmaxε

s

ε2

)2

‖dsf‖2L2(Xε),

with the last inequality following from (C.74). Noting that pmax = ‖p‖C0(X) ≤ ‖p‖Cs−1(X), we see that this
is a sufficient bound on ‖G3‖L2(Xε).

Proof of (C.18) and (C.20), induction step. We now assume that (C.18) and (C.20) hold for all order up to
some k, and show that they then hold for order k + 1 as well. The proof is relatively straightforward, once
we introduce a bit of notation. Namely, for any `, j ∈ N such that 1 ≤ j ≤ ` ≤, we will use g`j to refer to a
function satisfying

‖g`j‖H`−j(X(k+1)ε) ≤ C‖p‖
k+1
Cq(X)M. (C.26)

Note that g`j(x) = g(s−`)+j(x), so that gsj (x) = gj(x). As before, the functions g`j may change from line
to line, but will always satisfy (C.26). We immediately illustrate the purpose of this notation. Suppose
g ∈ H`(Xkε;C‖p‖kCq(X)M) for some ` ≤ s. If ` ≤ 2, then by the inductive hypothesis, it follows that for any
x ∈ X(k+1)ε

LP,εg(x) = g``(x)ε`−2. (C.27)

173

On the other hand if 2 < ` ≤ s, then by the inductive hypothesis, it follows that for any x ∈ X(k+1)ε,

LP,εg(x) = ση∆P g(x) +

b(`−1)/2c−1∑
j=1

g`2j+2(x)ε2j + g``(x)ε`−2. (C.28)

Proof of (C.18). If s ≤ 2(k + 1), then by the inductive hypothesis it follows that for all x ∈ Xkε, we have
LkP,εf(x) = gs(x)·εs−2k, for some gs ∈ L2(Xkε, C‖p‖kCs−1(X)M). Note that we may know more about LkP f(x)

than simply that it is bounded in L2-norm, but a bound in L2-norm suffices. In particular, from such a
bound along with (C.27) we deduce that for any x ∈ X(k+1)ε,

Lk+1
P,ε f(x) =

(
LP,ε ◦ LkP,εf)(x) = LP,εgs(x)εs−2k = gss(x)εs−2(k+1), (C.29)

establishing (C.18).

Proof of (C.20). If s > 2(k + 1), then by the inductive hypothesis we have that for all x ∈ Xkε,

LkP,εf(x) = σkη∆k
P f(x) +

b(s−1)/2c−k∑
j=1

g2(j+k)(x)ε2j + gs(x)εs−2k.

Thus for any x ∈ X(k+1)ε,

Lk+1
P,ε f(x) =

(
LP,ε ◦ LkP,εf

)
(x) = σkηLP,ε∆

k
P f(x) +

b(s−1)/2c−k∑
j=1

LP,εg2(j+k)(x)ε2j + LP,εgs(x)εs−2k

There are three terms on the right hand side of this equality, and we now analyze each separately.

1. Noting that ∆k
P f ∈ Hs−2k(X ;C‖p‖kCs−1(X)M), we use (C.28) to derive that

LP,ε∆
k
P f(x) = ση∆k+1

P f(x) +

(s−2k−1)/2−∑
j=1

gs−2k
2j+2 (x)ε2j + gs−2k

s−2k(x)εs−2k−2

= ση∆k+1
P f(x) +

(s−1)/2−(k+1)∑
j=1

g2(k+1+j)(x)ε2j + gs(x)εs−2(k+1), (C.30)

where in the second equality we have simply used the fact g`j(x) = g(s−`)+j(x) to rewrite the equation.

2. Suppose j < b(s− 1)/2c − k. Then we use (C.28) to derive that

LP,εg2(j+k)(x) = ση∆P g2(j+k)(x) +

b(s−2j−2k−1)/2c−1∑
i=1

g
s−2(j+k)
2(i+1) (x)ε2i + g

s−2(j+k)
s−2(j+k)(x)εs−2(j+k+1)

= g2(j+k+1)(x) +

b(s−1)/2c−(j+k+1)∑
i=1

g2(i+j+k+1)(x)ε2i + gs(x)εs−2(j+k+1),

where in the second equality we have again used g`j(x) = g(s−`)+j(x), and also written ση∆P f =

g
s−2(j+k)
2 = g2(j+k+1), since the particular dependence on the Laplacian ∆P will not matter. From

here, multiplying by ε2j , we conclude that

ε2jLP,εg2(j+k)(x) = g2(j+k+1)(x)ε2j +

b(s−1)/2c−(j+k+1)∑
i=1

g2(i+j+k+1)(x)ε2(i+j) + gs(x)εs−2(k+1)

= g2(j+k+1)(x)ε2j +

b(s−1)/2c−(k+1)∑
m=1

g2(m+k+1)(x)ε2m + gs(x)εs−2(k+1), (C.31)

174

with the second equality following upon changing variables to m = i+ j.

On the other hand if j = b(s− 1)/2c − k, then the calculation is much simpler,

ε2jLP,εg2(j+k)(x) = g
s−2(j+k)
s−2(j+k)(x)ε2jεs−2(j+k)−2 = gs(x)εs−2(k+1). (C.32)

3. Finally, it follows immediately from (C.28) that

LP,εgs(x)εs−2k = gs(x)εs−2(k+1). (C.33)

Plugging (C.30)-(C.33) back into (C.29) proves the claim.

C.3.3 Boundary behavior of non-local Laplacian

In Lemma 48, we establish that if f is Sobolev smooth of order s > 2k and zero-trace, then near the boundary
of X the non-local Laplacian LkP,εf is close to 0 in the L2-sense.

Lemma 48. Assume Model 4.2.1. Let s, k ∈ N. Suppose that f ∈ Hs
0(X ;M). Then there exist numbers

c, C > 0 that do not depend on M , such that for all ε < c,

‖LkP,εf‖2L2(∂kεX) ≤ Cε
2(s−2k)M2.

Proof (of Lemma 48) Applying Lemma 49, we have that

‖LkP,εf‖2L2(∂kε(X)) ≤
(Cpmax)2

ε4
‖Lk−1

P,ε f‖
2
L2(∂kε(X)) ≤ · · · ≤

(Cpmax)2

ε4k
‖f‖2L2(∂kε(X))

Thus it remains to show that for all ε < c,

‖f‖2L2(∂kε(X)) =

∫
∂kε(X)

(
f(x)

)2
dx ≤ C1ε

2s‖f‖2Hs(X). (C.34)

We will build to (C.34) by a series of intermediate steps, following the same rough structure as the proof of
Theorem 18.1 in Leoni [2017]. For simplicity, we will take k = 1; the exact same proof applies to the general
case upon assuming ε < c/k.

Step 1: Local Patch. To begin, we assume that for some c0 > 0 and a Lipschitz mapping φ : Rd−1 → [−c0, c0],
we have that f ∈ C∞c (Uφ(c0)), where

Uφ(c0) =
{
y ∈ Q(0, c0) : φ(y−d) ≤ yd

}
,

and here Q(0, c0) is the d-dimensional cube of side length c0, centered at 0. We will show that for all
0 < ε < c0, and for the tubular neighborhood Vφ(ε) = {y ∈ Q(0, c0) : φ(y−d) ≤ yd ≤ φ(y−d) + ε}, we have
that ∫

Vφ(ε)

|f(x)|2 dx ≤ Cε2s‖f‖2Hs(Uφ(c0)).

For a given y = (y′, yd) ∈ Vφ(ε), let y0 = (y′, φ(y′)). Taking the Taylor expansion of f(y) around y = y0

because u is compactly supported in Vφ it follows that,

f(y) = f(y0) +

s−1∑
j=1

1

j!
Djedf(y0)

(
yd − φ(y′)

)j
+

1

(s− 1)!

∫ yd

φ(y′)

(1− t)s−1Dsedf(y′, z)
(
yd − z

)s−1
dz =⇒

|f(y)| ≤ Cεs−1

∫ yd

φ(y′)

∣∣Dsedf(y′, z)
∣∣ dz.

175

Consequently, by squaring both sides and applying Cauchy-Schwarz, we have that

|f(y)|2 ≤ Cε2(s−1)

(∫ yd

φ(y′)

∣∣Dsedf(y′, z)
∣∣ dz)2

≤ Cε2s−1

∫ yd

φ(y′)

∣∣Dsedf(y′, z)
∣∣2 dz.

Applying this bound for each y ∈ Vφ(ε), and then integrating, we obtain∫
Vφ(ε)

|f(y)|2 dy ≤
∫
Qd−1(c0)

∫ φ(y′)+ε

φ(y′)

|f(y′, yd)|2 dyd dy′

≤ Cε2s−1

∫
Qd−1(c0)

∫ φ(y′)+ε

φ(y′)

∫ yd

φ(y′)

∣∣Dsedf(y′, z)
∣∣2 dz dyd dy′ (C.35)

where we have written Qd−1(0, c0) for the d−1 dimensional cube of side length c0, centered at 0. Exchanging
the order of the inner two integrals then gives∫ φ(y′)+ε

φ(y′)

∫ yd

φ(y′)

∣∣Dsedf(y′, z)
∣∣2 dz dyd =

∫ φ(y′)+ε

φ(y′)

∫ ε

z

∣∣Dsedf(y′, z)
∣∣2 dyd dz

≤ Cε
∫ φ(y′)+ε

φ(y′)

∣∣Dsedf(y′, z)
∣∣2 dz

≤ Cε
∫ c0

φ(y′)

∣∣Dsedf(y′, z)
∣∣2 dz.

Finally, plugging back into (C.35), we conclude that∫
Vφ(ε)

|f(y)|2 dy ≤ Cε2s

∫
Qd−1(0,c0)

∫ c0

φ(y′)

∣∣Dsedf(y′, z)
∣∣2 dz dy′ ≤ Cε2s|u|2Hs(Uφ(c0)).

Step 2: Rigid motion of local patch. Now, suppose that at a point x0 ∈ ∂X , there exists a rigid motion

T : Rd → Rd for which T (x0) = 0, and a number C0 such that for all ε · C0 ≤ c0,

T
(
QT (x0, c0) ∩ ∂εX

)
⊆ Vφ

(
C0ε

)
and T

(
QT (x0, c0) ∩ X

)
= Uφ(c0).

Here QT (x0, c0)) is a (not necessarily coordinate-axis-aligned) cube of side length c0), centered at x0. Define
v(y) := f(T−1(y)) for y ∈ Uφ(c0). If u ∈ C∞c (X), then v ∈ C∞c (Uφ(c0)), and moreover ‖v‖2Hs(Uφ(c0)) =

‖f‖2Hs(QT (x0,c0)∩X). Therefore, using the upper bound that we derived in Step 1,∫
Vφ(C0·ε)

|v(y)|2 dy ≤ Cε2s‖v‖2Hs(Uφ(c0)),

we conclude that∫
QT (x0,c0)∩∂εX

|f(x)|2 dx =

∫
T (QT (x0,c0))∩∂εX)

|v(y)|2 dy

≤
∫
Vφ(C0·ε)

|v(y)|2 dy

≤ Cε2s‖v‖2Hs(Uφ(c0)) = Cε2s‖f‖2Hs(QT (x0,c0))∩X) ≤ Cε
2s‖f‖2Hs(X).

Step 3: Lipschitz domain. Finally, we deal with the case where X is assumed to be an open, bounded subset

of Rd, with Lipschitz boundary. In this case, at every x0 ∈ ∂X , there exists a rigid motion Tx0
: Rd → Rd

176

such that Tx0(x0) = 0, a number c0(x0), a Lipschitz function φx0 : Rd−1 → [−c0, c0], and a number C0(x0),
such that for all ε · C0(x0) ≤ c0(x0),

T
(
QT (x0, c0(x0)) ∩ ∂εX

)
⊆ Vφ

(
C0(x0) · ε

)
and T

(
QT (x0, c0(x0)) ∩ X

)
= Uφ(c0(x0)).

Therefore for every x0 ∈ ∂X , it follows from the previous step that∫
QTx0

(x0,c0(x0))∩∂εX
|f(x)|2 dx ≤ C(x0)ε2s‖f‖2Hs(X),

where on the right hand side C(x0) is a constant that may depend on x0, but not on u or ε.

We conclude by taking a collection of cubes that covers ∂εX for all ε sufficiently small. First, we note that by
a compactness argument there exists a finite subset of the collection of cubes {QTx0 (x0, c0(x0)/2) : x0 ∈ ∂X}
which covers ∂X , say QTx1 (x1, c0(x1)/2), . . . , QTxN (xN , c0(xN)/2). Then, for any ε ≤ mini=1,...,N c0(xi)/2,
it follows from the triangle inequality that

∂εX ⊆
N⋃
i=1

QTxi (xi, c0(xi)).

As a result, ∫
∂εX
|f(x)|2 ≤

N∑
i=1

∫
QTxi

(xi,c0(xi))∩∂ε(X)

|f(x)|2 ≤ ε2s‖f‖2Hs(X)

N∑
i=1

C0(xi),

which proves the claim of (C.34).

C.3.4 Estimate of non-local Sobolev seminorm

Now, we use the results of the preceding two sections to prove (C.13). We will divide our analysis in two
cases, depending on whether s is odd or even, but before we do this we state some facts that will be applicable
to both cases. First, we recall that LP,ε is self-adjoint in L2(P), meaning 〈LP,εf, g〉P = 〈f, LP,εg〉P for all
f, g ∈ L2(P). We also recall the definition of the Dirichlet energy EP,ε(f ;X),

〈LP,εf, f〉P =
1

εd+2

∫
X

∫
X

(
f(x)− f(x′)

)2
η

(
‖x′ − x‖

ε

)
dP (x′) dP (x) =: EP,ε(f ;X). (C.36)

Finally, we recall a result of Green et al. [2021]: there exist constants c0 and C0 which do not depend on M ,
such that for all ε < c0 and for any f ∈ H1(X ;M),

EP,ε(f ;X) ≤ C0M
2. (C.37)

Case 1: s odd. Suppose s is odd, so that s ≥ 3. Taking k = (s− 1)/2, we use the self-adjointness of LP,ε
to relate the non-local semi-norm 〈LsP,εf, f〉P to a non-local Dirichlet energy,

〈LsP,εf, f〉P = 〈Lk+1
P,ε f, L

k
P,εf〉P = EP,ε(L

k
P,εf ;X).

We now separate this energy into integrals over Xkε and ∂kε(X),

EP,ε(L
k
P,εf ;X) =

1

εd+2

{∫
Xkε

∫
Xkε

(
LkP,εf(x)− LkP,εf(x′)

)2
η

(
‖x′ − x‖

ε

)
dP (x′) dP (x)

+

∫
∂kεX

∫
∂kεX

(
LkP,εf(x)− LkP,εf(x′)

)2
η

(
‖x′ − x‖

ε

)
dP (x′) dP (x)

}
:= EP,ε(L

k
P,εf ;Xkε) + EP,ε(L

k
P,εf ; ∂kεX) (C.38)

177

and upper bound each energy separately. For the first term, we add and substract σkη∆k
P f(x) and σkη∆k

P f(x′)
within the integrand, then use the triangle inequality and the symmetric role played by x and x′ to deduce
that

EP,ε(L
k
P,εf ;Xkε) ≤ 3σ2k

η EP,ε(∆
k
P f ;Xkε)+

2

εd+2

∫
Xkε

∫
Xkε

(
LkP,εf(x)−σkη∆k

P f(x)
)2
η

(
‖x′ − x‖

ε

)
dP (x′) dP (x).

(C.39)
Noticing that ∆k

P f ∈ H1(X ; ‖p‖kCs−1(X)M), we use (C.37) to conclude that EP,ε(∆
k
P f ;Xkε) ≤ C0M

2. On

the other hand, it follows from Assumption (K1) and (C.16) that

2

εd+2

∫
Xkε

∫
Xkε

(
LkP,εf(x)− σkη∆k

P f(x)
)2
η

(
‖x′ − x‖

ε

)
dP (x′) dP (x) ≤ 2pmax

ε2

∫
Xkε

(
LkP,εf(x)− σkη∆k

P f(x)
)2
dP (x)

≤ C1M
2.

Plugging these two bounds into (C.39) gives the desired upper bound on EP,ε(L
k
P,ε;Xkε).

For the second term in (C.38), we apply Lemmas 50 and 48 and conclude that,

EP,ε(L
k
P,εf ; ∂kεX) ≤ 4p2

max

ε2
‖LkP,εf‖L2(∂kεX) ≤ CM2.

Case 2: s even. If s ∈ N is even, s ≥ 2, then letting k = (s−2)/2, the self-adjointness of LP,ε implies

〈LsP,εf, f〉P = ‖Lk+1
P,ε f‖

2
P .

As in the first case, we divide the integral up into the interior region Xkε and the boundary region ∂kεX ,

‖Lk+1
P,ε f‖

2
P ≤ pmax‖Lk+1

P,ε f‖
2
L2(X) ≤ pmax

{∫
Xkε

(
Lk+1
P,ε f(x)

)2
dP (x) +

∫
∂kεX

(
Lk+1
P,ε f(x)

)2
dP (x)

}
, (C.40)

and upper bound each term separately. For the first term, adding and subtracting σkη∆k
P f(x) gives∫

Xkε

(
Lk+1
P,ε f(x)

)2
dP (x) ≤ 2

∫
Xkε

(
LP,ε∆

k
P f(x)

)2
dP (x) + 2

∫
Xkε

(
LP,ε

(
LkP,εf − ση∆k

P f
)
(x)
)2

dP (x)

(i)

≤ CM2 + 2

∫
Xkε

(
LP,ε

(
LkP,εf − ση∆k

P f
)
(x)
)2

dP (x)

(ii)

≤ CM2 +
Cp2

max

ε2
‖LkP,εf − ση∆k

P f‖2L2(Xkε)

(iii)

≤ CM2,

with (i) following from (C.18) since ∆k
P f ∈ H2(X ;M‖p‖lCs−1(X)), (ii) following from Lemma 49, and (iii)

following from (C.17).

Then Lemma 48 shows that the second term in (C.40) satisfies∫
∂kεX

(
Lk+1
P,ε f(x)

)2
dP (x) ≤ CM2.

C.3.5 Assorted integrals

Lemma 49. Assume Model 4.2.1. Suppose f ∈ L2(U ;M) for a Borel set U ⊆ X , and let LP,ε be defined
with respect to a kernel η that satisfies (K1). Then there exists a constant C which does not depend on f or
M such that

‖LP,εf‖L2(U) ≤
2pmax

ε2
‖f‖L2(U) (C.41)

178

Lemma 50. Assume Model 4.2.1. Suppose f ∈ L2(U ;M) for a Borel set U ⊆ X , and let LP,ε be defined
with respect to a kernel η that satisfies (K1). Then there exists a constant C which does not depend on f or
M such that

EP,ε(f ;U) ≤ 4p2
max

ε2
‖f‖2L2(U) (C.42)

Lemma 51. Assume Model 4.2.1. Suppose f ∈ H1(X ;M), and let Dif be defined with respect to a kernel
η that satisfies (K1). Then there exists a constant C which does not depend on f or M , such that for any
i ∈ [n] and j ∈ [n]s,

E
[
|Djf(Xi)| · |f(Xi)− f(Xj1)|

]
≤ Cε2+dkM2,

where k + 1 is the number of distinct indices in ij.

Proof (of Lemma 49). We fix a version of f ∈ L2(U), so that we may speak of its pointwise values.

At a given point x ∈ U , we can upper bound |LP,εf(x)|2 using the Cauchy-Schwarz inequality as fol-
lows,

|LP,εf(x)|2 ≤
(
pmax

ε2+d

)2
(∫

U

(
|f(x′)|+ |f(x)|

)2
η

(
‖x′ − x‖

ε

)
dx′

)2

≤
(
pmax

ε2+d

)2
(∫

U

(
|f(x′)|+ |f(x)|

)2
η

(
‖x′ − x‖

ε

)
dx′ ·

∫
η

(
‖x′ − x‖

ε

)
dx′

)

=
p2

max

ε4+d

∫
U

(
|f(x′)|+ |f(x)|

)2
η

(
‖x′ − x‖

ε

)
dx′.

The equality follows by the assumption
∫
Rd η(‖z‖) dx = 1 in (K1). Integrating over all x ∈ U , it follows from

the triangle inequality that

‖LP,ε‖2L2(U) ≤
2p2

max

ε4+d

∫
U

∫
U

(
|f(x′)|2 + |f(x)|2

)
η

(
‖x′ − x‖

ε

)
dx′ dx

≤ 2p2
max

ε4+d

∫
U

∫
U

(
|f(x′)|2 + |f(x)|2

)
η

(
‖x′ − x‖

ε

)
dx′ dx. (C.43)

Finally, using Fubini’s Theorem we determine that∫
U

∫
U

(
|f(x′)|2+|f(x)|2

)
η

(
‖x′ − x‖

ε

)
dx′ dx = 2

∫
U

∫
U

|f(x)|2η
(
‖x′ − x‖

ε

)
dx ≤ 2εd

∫
U

|f(x)|2 dx = 2εd‖f‖2L2(U),

(C.44)
and by combining (C.43) and (C.44) we conclude that

‖LP,ε‖2L2(U) ≤
4p2

max

ε4
‖f‖2L2(U).

Proof (of Lemma 50). We have

EP,ε(f) =
1

ε2+d

∫
U

∫
U

(
f(x)−f(x′)

)2
η

(
‖x′ − x‖

ε

)
dP (x′) dP (x) ≤ 2p2

max

ε2+d

∫
U

∫
U

(
|f(x)|2+|f(x′)|2

)
η

(
‖x′ − x‖

ε

)
dx′ dx,

and the claim follows from (C.44).

179

Proof (of Lemma 51). Let Gn,ε[Xij] be the subgraph induced by vertices Xi, Xj1 , . . . , Xjs . We make
two observations. First, in order for |Djf(Xi)| · |f(Xi)− f(Xj)| to be non-zero, it must be the case that the
subgraph Gn,ε[Xij] is connected. Second, noting that for any indices i and j,

|Dijf(x)| ≤
(
|Djf(Xi)|+ |Djf(x)|

)
‖η‖∞,

a straightforward inductive argument implies that

|Djf(Xi)| ≤ s‖η‖s∞
∑
j∈ij

|Djsf(Xj)|.

Combining these two observations, we reduce the task to upper bounding the product of two (first-order)
differences,

E
[
|Djf(Xi)||f(Xi)− f(Xj1)|

]
= E

[
|Djf(Xi)||f(Xi)− f(Xj1)| · 1

{
Gn,ε[Xij] is connected.

}]
≤ s‖η‖s∞

∑
j∈ij

E
[
|Djsf(Xj)| · |f(Xi)− f(Xj1)| · 1

{
Gn,ε[Xij] is connected.

}]
≤ s‖η‖s∞

∑
j∈ij

E
[
|f(Xj)− f(Xjs)| · |f(Xi)− f(Xj1)| · 1

{
Gn,ε[Xij] is connected.

}]
Next, from the Cauchy-Schwarz inequality we have that for any j ∈ j,

E
[
|f(Xj)− f(Xjs)| · |f(Xi)− f(Xj1)| · 1

{
Gn,ε[Xij] is connected.

}]
≤
√

E
[
|f(Xj)− f(Xjs)|2 · 1

{
Gn,ε[Xij] is connected.

}]
·
√
E
[
|f(Xj)− f(Xjs)|2 · 1

{
Gn,ε[Xij] is connected.

}]
= E

[
|f(Xj)− f(Xi)|2 · 1

{
Gn,ε[Xij] is connected.

}]
,

with the equality following since each Xi are identically distributed. Marginalizing out the contribution of
all indices in j not equal to i or j gives

E
[
|f(Xj)− f(Xi)|2 · 1

{
Gn,ε[Xij] is connected.

}]
≤
(
(s+ 1)pmaxνdε

d
)|ij\{j∪i}| · E[|f(Xj)− f(Xi)|21{‖Xi −Xj‖ ≤ ε}

]
≤
(
(s+ 1)pmaxνdε

d
)|ij\{j∪i}| · p2

maxνdε
2+dM2 (C.45)

with the second inequality following from the proof of Lemma 1 in Green et al. [2021]. Finally, we notice
that |ij \ {i ∪ j}|+ 1 = k, so that (C.45) gives the desired result.

C.4 Graph Sobolev semi-norm, manifold domain

In this section we prove Proposition 11. Note that when s = 1, the upper bound (4.35) follows immediately
from Lemma 53 and Markov’s inequality.

On the other hand when s = 2 or s = 3, we prove Proposition 11 by first establishing some intermediate
results, many of which are analogous to results we have already shown in the flat Euclidean case. Indeed,
in some ways the proof will be simpler in the manifold setting than in the flat Euclidean case: there is no
boundary, and we do not need to analyze the iterated nonlocal Laplacian LjP,ε for j > 1.

That being said, as mentioned in our main text, in the manifold setting there is some extra error induced by
using Euclidean rather than geodesic distance. We upper bound this error by comparing LP,ε to an alternative

180

nonlocal Laplacian L̃P,ε, which is defined with respect to geodesic distance. Precisely, let dX (x, x′) denote
the geodesic distance between x, x′ ∈ X , and define

L̃P,εf(x) :=

∫
X

(
f(x′)− f(x)

)
η

(
dX (x′, x)

ε

)
p(x′) dx′.

We show the following results, each of which hold under the same assumptions as Proposition 11.

• In Section C.4.1 we show that the graph Sobolev seminorm 〈Lsn,εf, f〉n is upper bounded by the sum
of a nonlocal seminorm and a pure bias term: specifically, with probability at least 1− 2δ,

〈Lsn,εf, f〉n ≤
〈LsP,εf, f〉P

δ
+ C1

ε2

nε2s+m
M2. (C.46)

This upper bound is essentially the same as (C.12), but with the intrinsic dimension m taking the
place of the ambient dimension d. The pure bias term will be of at most constant order when ε &
n−1/(2(s−1)+m).

• In Section C.4.2, we show that the error incurred by using the “wrong” metric is negligible. Precisely,
we find that

‖LP,εf − L̃P,εf‖2L2(X) ≤ C2ε
2|f |2H1(X). (C.47)

• In Section C.4.3, we analyze the approximation error of L̃P,ε. We show that when f ∈ H2(X) and
p ∈ C1(X),

‖L̃P,εf‖2L2(X) ≤ C3‖f‖2H2(X), (C.48)

whereas if f ∈ H3(X) and p ∈ C2(X),

‖L̃P,εf − ση∆P f‖2L2(X) ≤ C3ε
2‖f‖2H3(X). (C.49)

• In Section C.4.4, we use the results of the preceding two sections to show that if f ∈ Hs(X) and
p ∈ Cs−1(X), then

〈LsP,εf, f〉P ≤ C4‖f‖2Hs(X). (C.50)

• In Section C.4.5 we state some technical results used in the previous sections.

We point out that when f is Hölder smooth, results analogous to (C.49) have been established in Calder and
Garćıa Trillos [2019]. When f is Sobolev smooth, our analysis (which relies heavily on Taylor expansions) is
largely similar, except that the remainder term in the relevant Taylor expansion will be bounded in L2(X)
norm rather than L∞(X) norm. This is analogous to the situation in the flat Euclidean model.

Proof (of Proposition 11). Follows immediately from (C.46) and (C.50).

C.4.1 Decomposition of graph Sobolev seminorm

The proof of (C.46) is identical to the proof of (C.12), except substituting the intrinsic dimension m for
ambient dimension d, and using Lemma 55 rather than Lemma 51.

181

C.4.2 Error due to Euclidean Distance

In this section, we prove (C.47). By applying Cauchy-Schwarz we obtain an upper bound on |LP,εf(x) −
L̃P,εf(x)|2:[

LP,εf(x)− L̃P,εf(x)
]2 ≤ p2

max

ε2(2+m)

∫
X

[
f(x′)− f(x)

]2∣∣∣∣η(‖x′ − x‖ε

)
− η
(
dX (x′, x)

ε

)∣∣∣∣ dµ(x′)

·
∫
X

∣∣∣∣η(‖x′ − x‖ε

)
− η
(
dX (x′, x)

ε

)∣∣∣∣ dµ(x′)

=
1

ε2(2+m)
A1(x) ·A2(x) (C.51)

Thus we have upper bounded |LP,εf(x) − L̃P,εf(x)|2 by the product of two terms, each of which we now
suitably bound.

To do so, we will use the following estimates, from Proposition 4 of Garćıa Trillos et al. [2019a]: letting R
denote the reach of X , for all ‖x′ − x‖ ≤ R/2,

‖x′ − x‖ ≤ dX (x′, x) ≤ ‖x′ − x‖+
8

R2
‖x′ − x‖3. (C.52)

Upper bound on A1(x). From here forward we will assume ε < R/2. Consequently η(‖x′ − x‖/ε) ≥
η(dX (x′, x)/ε). Furthermore, letting Lη denote the Lipschitz constant of η, and setting ε̃ := (1 + 27ε2/R2)ε
we have that∣∣∣∣η(‖x′ − x‖ε

)
− η
(
dX (x′, x)

ε

)∣∣∣∣ ≤ Lη8ε2

R2
· 1
{
dX (x′, x) ≤ ε

}
+ ‖η‖∞ · 1{ε < dX (x′, x) ≤ ε̃}.

Thus,

A1(x) ≤ 8Lηε
2

R2

∫
X

[
f(x′)−f(x)

]2
1{‖x′−x‖ ≤ ε} dµ(x′)+‖η‖∞

∫
X

[
f(x′)−f(x)

]2
1
{
ε < dX (x′, x) ≤ ε̃

}
dµ(x′)

Integrating over X , we conclude from Lemma 54 and Lemma 3.3 of [Burago et al., 2014] and that∫
X
A1(x) dµ(x) ≤ 8Lηνmε

2

R2(m+ 2)

(
1 + CmKR2

)
εm+2|f |2H1(X) + C‖η‖∞εm+4|f |2H1(X) =: C5ε

m+4|f |H1(X).

Upper bound on A2(x). Integrating over x′ ∈ X , we see that∫
X

∣∣∣∣η(‖x′ − x‖ε

)
− η
(
dX (x′, x)

ε

)∣∣∣∣ dµ(x′) ≤ 8Lηε
2

R2

∫
X

1
{
dX (x′, x)

}
dµ(x′) + pmax‖η‖∞

∫
X

1
{
ε < dX (x′, x) ≤ ε̃

}
dµ(x′)

=
8Lηε

2

R2
· µ
(
B(x, ε)

)
+ pmax‖η‖∞

[
µ
(
B(x, ε̃)

)
− µ

(
B(x, ε)

)]
.

(C.53)

Equation (1.36) in Garćıa Trillos et al. [2019a] states that∣∣µ(BX (x, ε))− ωmεm
∣∣ ≤ CmKεm+2,

where K is an upper bound on the sectional curvature of X . Plugging this back into (C.53), we conclude
that∫
X

∣∣∣∣η(‖x′ − x‖ε

)
− η
(
dX (x′, x)

ε

)∣∣∣∣ dµ(x′) ≤ 8Lηε
2

R2

[
ωmε

m + CmKεm+2
]

+ ‖η‖∞
[
ωm(ε̃m − εm) + 2CmKεm+2

]
≤ 8Lηε

2

R2

[
ωmε

m +R2CmKεm
]

+ ‖η‖∞εm+2
[27ωm
R2

+ 2CmK
]

=: C6ε
m+2.

182

Putting together the pieces. Plugging our upper bounds on A1(x) and A2(x) back into (C.51), we
deduce that

‖L̃P,εf − LP,εf‖2L2(X) ≤
1

ε2(2+m)

∫
X
A1(x) ·A2(x) dµ(x)

≤ C6

ε(2+m)

∫
X
A1(x) dµ(x)

≤ C5C6ε
2|f |2H1(X),

thus proving the claimed result.

C.4.3 Approximation Error of non-local Laplacian

Fix x ∈ X . We begin with a pointwise estimate of L̃P,εf , facilitated by expressing w(v) = f(expx(v))
and q(v) = p(expx(v)) in normal coordinates, as in [Calder and Garćıa Trillos, 2019]. Letting Jx(v) be the
Jacobian of the exponential map expx : B(0, ε) ⊆ Tx(X)→ BX (x, ε) evaluated at v ∈ Tx(X), we have

L̃P,εf(x) =
1

εm+2

∫
X

(
f(x′)− f(x)

)
η

(
dX (x′, x)

ε

)
dP (x′)

=
1

εm+2

∫
B(0,ε)⊂Tx(X)

(
w(v)− w(0)

)
η

(
‖v‖
ε

)
Jx(v)q(v) dv

=
1

ε2

{∫
B(0,1)

(
w(εv)− w(0)

)
η(‖v‖)q(εv) dv +

∫
B(0,1)

(
w(εv)− w(0)

)
η(‖v‖)q(εv)

(
Jx(εv)− 1

)
dv

}
= A1(x) +A2(x)

Note that w and q have the same smoothness properties as f and p. Moreover, arguing exactly as we did in
the flat Euclidean case, we can show that when f ∈ H2(X) and p ∈ C1(X), then

‖A1‖2L2(X) ≤ C‖f‖
2
H2(X)

whereas if f ∈ H3(X) and p ∈ C2(X) then

‖A1 − ση∆P f‖2L2(X) ≤ C‖f‖
2
H3(X)ε

2.

Therefore it remains only to upper bound A2 in L2(X) norm. To do so, we recall (1.34) of Garćıa Trillos
et al. [2019a]: for any ε < i0 and all x ∈ X , the Jacobian Jx(v) satisfies the upper bound

|Jx(v)− 1| ≤ CmKε2, for all v ∈ B(0, ε) ⊆ Tx(X).

Combining this estimate with the Cauchy-Schwarz inequality, we conclude that

‖A2‖2L2(X) ≤ Cm
2K2

[∫
B(0,1)

(
w(εv)− w(0)

)2
η(‖v‖)q(εv) dv

]
·
[∫

B(0,1)

η(‖v‖)q(εv) dv

]
≤ Cm2K2ση(1 + Lqε)

∫
B(0,1)

(
w(εv)− w(0)

)2
η(‖v‖)q(εv) dv

≤ Cm2K2σ2
η(1 + Lqε)pmaxε

2|f |2H1(X),

with the final inequality following from (3.2) of Burago et al. [2014]. Combining our estimates on A1 and
A2 yields the claim.

C.4.4 Estimate of non-local Sobolev seminorm

In this subsection we establish that the upper bound (C.50) holds when f ∈ Hs(X) and p ∈ Cs−1(X). We
first consider s = 2, and then s = 3.

183

Case 1: s = 2. When s = 2, the triangle inequality implies that

〈LsP,εf, f〉P ≤ 2pmax

(
‖LP,εf − L̃P,ε‖2L2(X) + ‖L̃P,εf‖2L2(X)

)
The first term on the right hand side is upper bounded in (C.47), and the second term is upper bounded
in (C.48). Together these estimates imply the claim.

Case 2: s = 3. When s = 3, the triangle inequality implies that

〈LsP,εf, f〉P = EP,ε(LP,εf ;X) ≤ 3
(
EP,ε(LP,εf − L̃P,εf ;X) + EP,ε(L̃P,εf − ση∆P f ;X) + σ2

ηEP,ε(∆P f ;X)
)

We now upper bound each of the three terms on the right hand side of the above inequality. First, we note
that by Lemma 52 and (C.47),

EP,ε(LP,εf − L̃P,εf ;X) ≤ C

ε2
‖LP,εf − L̃P,εf‖2L2(X) ≤ C|f |

2
H1(X).

An equivalent upper bound on EP,ε(L̃P,εf−ση∆P f ;X) follows from Lemma 52 and (C.49). Finally, we notice
that f ∈ H3(X) and p ∈ C2(X) implies ∆P f ∈ H1(X), and furthermore |∆P f |H1(X) ≤ ‖p‖C2(X) · ‖f‖H3(X).
We conclude from Lemma 53 that

EP,ε(∆P f ;X) ≤ C|∆P f |2H1(X) ≤ C‖f‖
2
H3(X),

where in the final inequality we have absorbed ‖p‖C2(X) into the constant C. Together, these upper bounds
prove the claim.

C.4.5 Integrals

Recall the Dirichlet energy EP,ε(f ;X) = 〈LP,εf, f〉P , defined in (C.36). Now we establish some estimates
on EP,ε(f ;X) under Model 4.2.2, and under various assumptions regarding the regularity of f .

Lemma 52. Suppose Model 4.2.2, and additionally that f ∈ L2(X). Then there exists a constant C such
that

EP,ε(f ;X) ≤ C

ε2
‖f‖2L2(X). (C.54)

Lemma 53. Suppose Model 4.2.2, and additionally that f ∈ H1(X). Then there exist constants c and C
which do not depend on f such that for any 0 < ε < c,

EP,ε(f ;X) ≤ C|f |2H1(X). (C.55)

We use Lemma 54 to help upper bound the error incurred by using ‖ · ‖ rather than dX (·, ·). Recall the
notation ε̃ = (1 + 27ε2/R2)ε, where R is the reach of X .

Lemma 54. Suppose Model 4.2.2, and additionally that f ∈ H1(X). There exist constants c and C such
that for any ε < c,∫

X

∫
X

(
f(x′)− f(x)

)2
1{ε < dX (x′, x) ≤ ε̃} dµ(x′) dµ(x) ≤ Cε4+m‖f‖2H1(X) (C.56)

Finally, we use Lemma 55 to show that the pure bias component of 〈Lsnf, f,〉 n is small in expectation. This
is analogous to Lemma 51, except assuming Model 4.2.2 rather than Model 4.2.1.

184

Lemma 55. Assume Model 4.2.2. Suppose f ∈ H1(X), and let Dif be defined with respect to a kernel η
that satisfies (P5). Then there exists a constant C which does not depend on f or n, such that for any i ∈ [n]
and j ∈ [n]s,

E
[
|Djf(Xi)| · |f(Xi)− f(Xj1)|

]
≤ Cε2+mk · ‖f‖2H1(X),

where k + 1 is the number of distinct indices in ij.

Proof (of Lemmas 52 and 53). Define the non-local energy ẼP,ε with respect to geodesic distance,

ẼP,ε(f ;X) := 〈L̃P,εf, f〉P =

∫
X

∫
X

(
f(x′)− f(x)

)2
η

(
dX (x′, x)

ε

)
dP (x′) dP (x).

From the lower bound in (C.52), it follows that EP,ε(f ;X) ≤ ẼP,ε(f ;X), and from the upper bounds
p(x) ≤ pmax and η(|x|) ≤ ‖η‖∞ · 1{x ∈ [−1, 1]} we further have

ẼP,ε(f ;X) ≤ p2
max‖η‖∞ ·

∫
X

∫
BX (ε)

(
f(x′)− f(x)

)2
dµ(x′) dµ(x).

The estimates (C.54) and (C.55) then respectively follow from (3.1) and Lemma 3.3 of Burago et al.
[2014].

Proof (of Lemma 54). Following exactly the steps of the proof of Lemma 3.3 of Burago et al. [2014], but
replacing all references to a ball of radius r by references to the set difference between balls of radius ε̃ and
ε, we obtain that∫
X

∫
X

(
f(x′)− f(x)

)2
1{ε < dX (x′, x) ≤ ε̃} dµ(x′) dµ(x) ≤ (1 + CmKε2) ·

∫
X

∫
Bm(0,ε̃)

|d1
xf(v)|2 dv dµ(x).

From (2.7) of Burago et al. [2014], we further have∫
X

∫
Bm(0,ε̃)

|d1
xf(v)|2 dv dµ(x) =

νm
2 +m

(ε̃2+m − ε2+m)

∫
X
|d1
xf |2 dµ(x) = 27

νm
(2 +m)R2

ε4+m‖d1f‖2L2(X).

Recalling that ‖d1f‖2L2(X) ≤ ‖f‖
2
H1(X), we see that this implies the claim of Lemma 54.

Proof (of Lemma 55). The proof of Lemma 55 is identical to the proof of Lemma 51, upon substituting
the ambient dimension m for the intrinsic dimension d, and using Lemma 53 rather than Lemma 50 to
establish (C.45).

C.5 Lower bound on empirical norm

In this Section we prove Proposition 10 (in Section C.5.1). We also prove an analogous result when X is a
manifold as in Model 4.2.2 (in Section C.5.2).

C.5.1 Proof of Proposition 10

In this section we establish Proposition 10. As mentioned, the proof of this Proposition follows from the
Gagliardo-Nirenberg interpolation inequality, and a one-sided Bernstein’s inequality (Lemma 60).

Lemma 56 (Gagliardo-Nirenberg inequality). Suppose Model 4.2.1, and that f ∈ Hs(X) for some s ≥ d/4.
Then there exist constants C1 and C2 that do not depend on f , such that

‖f‖L4(X) ≤ C1|f |d/4sHs(X)‖f‖
1−d/(4s)
L2(X) + C2‖f‖L2(X) (C.57)

185

Proof (of Proposition 10). Rearranging (C.57) and raising both sides to the 4th power, we see that

E[f4(X)]

‖f‖4P
≤ C

(‖f‖L4(X)

‖f‖L2(X)

)4

≤ C1

(|f |Hs(X)

‖f‖L2(X)

)d/s
+ C2,

here the constants C1, C2 are not the same as in (C.57). Therefore taking the constant C in assumption (4.30)
to be sufficiently large relative to C1 and C2, we have that

C1

(|f |Hs(X)

‖f‖L2(X)

)d/s
≤ δn

64
,

and consequently
E[f4(X)]

‖f‖4P
≤ δn

8
+ 8C3

2 .

The claim then follows from Lemma 60, upon taking c = 1/(64C3
2) in the statement of Proposition 10.

C.5.2 Proof of Proposition 13

The proof of Proposition 13 follows exactly the same steps as the proof of Proposition 10, upon replacing
Lemma 56 by Lemma 57.

Lemma 57 ((c.f Theorem 3.70 of Aubin [2012])). Suppose Model 4.2.2, and that f ∈ Hs(X) for some
s ≥ m/4. Then there exist constants C1 and C2 that do not depend on f , such that

‖f‖L4(X) ≤ C1|f |m/4sHs(X)‖f‖
1−m/(4s)
L2(X) + C2‖f‖L2(X). (C.58)

C.6 Proof of Main Results

C.6.1 Estimation Results

Proof of Theorem 12. We condition on the event that the design points X1, . . . , Xn satisfy

〈Ln,εf0, f0〉n ≤
C

δ
M2 and λk ≥ min{λk(∆P), ε−2} for all 2 ≤ k ≤ n. (C.59)

Note that by Propositions 7 and 9, these statements are both satisfied with probability at least 1 − δ −
Cn exp{−cnεd}.

Conditional on (C.59), we have from Lemma 41 that for any 0 ≤ K ≤ n,

‖f̂ − f0‖2n ≤ C
{

M2

δ(λK+1(∆P) ∧ ε−2)
+
K

n

}
,

either deterministically (when K = 0), or with probability at least 1 − exp(−K) (when K ≥ 1). Further,
from the bounds ε ≤ c0K−1/d (Assumption (P1)) and λK+1(∆P) ≥ c(K+1)2/d (Weyl’s Law) we can simply
the above expression to the following,

‖f̂ − f0‖2n ≤ C
{
M2

δ
(K + 1)−2/d +

K

n

}
. (C.60)

We now upper bound the right hand side of (C.60), based on the value of K chosen in (P1). When possible

we choose K =
⌊
M2n

⌋d/(2+d)
to balance bias and variance, in which case (C.60) implies

‖f̂ − f0‖2n ≤
C

δ
M2(M2n)−2/(2+d).

186

If M2 < n−1, then we take K = 1, and from (C.60) we get

‖f̂ − f0‖2n ≤
C

nδ
.

Finally if M > n1/d, we take K = n. In this case, we note that f̂(Xi) = Yi for all i = 1, . . . , n, and it
immediately follows that

‖f̂ − f0‖2n =
1

n

n∑
i=1

w2
i ≤ 5,

with probability at least 1− exp(−n). Combining these three separate cases yields the conclusion of Theo-
rem 12.

Proof of Theorem 14. Follows identically to the proof of Theorem 12, except substituting Lsn,ε for Ln,ε,
λsk for λk, and using Proposition 8 rather than Proposition 7 and Assumption (P3) rather than Assump-
tion (P1).

Proof of Theorem 17. Follows identically to the proof of Theorem 12, substituting Lsn,ε for Ln,ε, λ
s
k

for λk, and using Proposition 11 rather than Proposition 7, Proposition 12 rather than Proposition 9, and
Assumption (P6) rather than Assumption (P2).

C.6.2 Testing Results

Proof of Theorem 13. We have already upper bounded the Type I error of ϕ in Lemma 42, and it
remains to upper bound the Type II error. To do so, we condition on the event that the design points
X1, . . . , Xn satisfy,

〈Ln,εf0, f0〉n ≤
C

δ
M2, and λk ≥ min{λk(∆P), ε−2} for all 2 ≤ k ≤ n, (C.61)

as well as that

‖f0‖2n ≥
1

2
‖f0‖2P . (C.62)

Note that by Propositions 7 and 9, both statements in (C.61) are satisfied with probability at least 1− δ −
Cn exp{−cnεd}. Additionally, by Proposition 10 and the assumption in (4.18) that ‖f0‖2P ≥ CM2/(bn2/d),
the one-sided inequality (C.62) follows with probability at least 1− exp{−(cn ∧ 1/b)}. Setting δ = b/3 and
taking n ≥ N to be sufficiently large, the bottom line is that both (C.61) and (C.62) are together satisfied
with probability at least 1− b/2.

Now, to complete the proof of Theorem 13, we would like to invoke Lemma 42, and conclude that conditional
on X1, . . . , Xn satisfying (C.61) and (C.62), our test ϕ will equal 1 with probability at least 1− b/2. To use
Lemma 42, we will need to establish that (C.4) is satisfied, which we now show.

On the one hand, we have that the right hand side of (C.4) is upper bounded,

〈Ln,εf0, f0〉n
λK+1

+

√
2K

n

[
2

√
1

a
+

√
2

b
+

32

bn

]
≤ C

(
M2

bmin{λK+1(∆P), ε−2}
+

√
2K

n

[√
1

a
+

1

b

])
≤ C

(
M2

b
K−2/d +

√
2K

n

[√
1

a
+

1

b

])
with the second inequality following by the assumption ε ≤ K−1/d and Weyl’s Law. On the other hand, we
have that ‖f0‖2n ≥ ‖f0‖2P /2. Consequently, to prove Theorem 13, it remains only to verify that

‖f0‖2P ≥ C
(
M2

b
K−2/d +

√
2K

n

[√
1

a
+

1

b

])
. (C.63)

187

As in the estimation case, we can further upper bound the right hand side of (C.63), depending on the
value of K chosen in (P2). The classical case is K = (M2n)d/(2+d), in which case (C.63) is satisfied as long
as

‖f0‖2P ≥ CM2(M2n)−4/(4+d)

[√
1

a
+

1

b

]
If M2 < n−1, then we take K = 1, and (C.63) is satisfied whenever

‖f0‖2P ≥
C

n

[√
1

a
+

1

b

]
.

Finally if M > n1/d, we take K = n, and (C.63) is satisfied if

‖f0‖2P ≥ C
(
M2

n2/db
+ n−1/2

[√
1

a
+

1

b

])
.

We conclude by observing that (4.18) implies each of these three inequalities, and thus implies (C.63).

Proof of Theorem 15. Follows identically to the proof of Theorem 12, except substituting Lsn,ε for Ln,ε,
λsk for λk, and using Proposition 8 rather than Proposition 7 and Assumption (P4) rather than Assump-
tion (P2).

Proof of Theorem 18. Follows identically to the proof of Theorem 12, except substituting Lsn,ε for Ln,ε,
λsk for λk, and using Proposition 11 rather than Proposition 7, Proposition 12 rather than Proposition 9,
Proposition 13 rather than Proposition 10, and Assumption (P6) rather than Assumption (P2).

Proof of Theorem 16. Note that our choices of K and ε ensure that (C.61) (with Lsn,ε replacing Ln,ε)
and (C.62) are satisfied with probability at least 1 − b/2. Proceeding as in the proof of Theorem 13, we
upper bound the right hand side of (C.4),

〈Ln,εf0, f0〉n
λK+1

+

√
2K

n

[
2

√
1

a
+

√
2

b
+

32

bn

]
≤ C

(
M2

bmin{λK+1(∆P), ε−2}
+

√
2K

n

[√
1

a
+

1

b

])
≤ C

(
M2

b
ε2 +

√
2K

n

[√
1

a
+

1

b

])
.

Unlike in the proof of Theorem 13, we note that in this case ε2 ≤ CλK(∆P) rather than vice versa. From
here, proceeding as in the proof of Theorem 13 gives the claimed result.

C.7 Analysis of kernel smoothing

In this section we prove Lemma 5 (in Section C.7.2) and Lemma 58 (in Section C.7.3). We begin with some
preliminary estimates in Section C.7.1, which will ease the subsequent analysis.

C.7.1 Some preliminary estimates

In certain parts the analysis of this section will overlap with Section C.3, where we upper bounded the
non-local graph-Sobolev seminorm of a function f in terms of the Sobolev norm of f . To see why this should
be, note that for an function f and point x ∈ X , we have

TP,hf(x)− f(x) =
1

dQ,h(x)

∫ (
f(x′)− f(x)

)
ψ

(
‖x′ − x‖

h

)
dQ(x′) =

hd+2

dP,h(x)
LP,hf(x).

188

This expression reflects the known fact that the bias operator of kernel smoothing is equal to the non-local
Laplacian, up to a rescaling by the population degree functional dP,h(x). In the second equality, we are
using the notation LP,hf(x) exactly as defined in (4.28), but with the kernel ψ instead of η. Note that ψ
satisfies all the same assumptions as η, except that of positivity; when ψ is a higher-order kernel it may take
negative values.

Now we provide a lower bound on dP,h(x) that holds uniformly over all x ∈ X . Recall that by assumption
the density p is Lipschitz. Letting Lp denote the Lipschitz constant of p, we have that

dP,h(x) =

∫
ψ

(
‖x′ − x‖

h

)
p(x′) dx′

= hd
∫
ψ(‖z‖)p(hz + x)1

{
hz + x ∈ X

}
dz

≥ hdp(x)

∫
ψ(‖z‖)1

{
hz + x ∈ X

}
dz − Lphd+1‖ψ‖∞νd.

Since by assumption X has Lipschitz boundary, setting c0 to be a sufficiently small constant in (P7), we can
further deduce that

∫
ψ(‖z‖)1{hz + x ∈ X} dz ≥ 1/3, and consequently that

dP,h(x) ≥ p(x)

3
hd ≥ pmin

3
hd for all x ∈ X . (C.64)

C.7.2 Proof of Lemma 5

To begin with, we apply the triangle inequality to upper bound ‖Tn,h qf−f0‖P by the sum of two terms,

‖Tn,h qf − f0‖P ≤ ‖Tn,h(qf − f0)‖P + ‖Tn,hf0 − f0‖P . (C.65)

We proceed by separately upper bounding each term on the right hand side of (C.65). We will show
that

‖Tn,h(qf − f0)‖2P ≤ C‖ qf − f0‖2n (C.66)

and that

‖Tn,hf0 − f0‖2P ≤
C

δ
· h

2

nhd
|f |2H1(X) +

C

δ
‖Th,P f0 − f0‖2P , (C.67)

each with probability at least 1− C exp(−cnhd). Together these will imply the claim.

Proof of (C.66). Fix x ∈ X . By the Cauchy-Schwarz inequality we have

[
Tn,h

(
qf − f0

)
(x)
]2

=

[
1

dn,h(x)2

∫
ψ

(
‖x′ − x‖

h

)
·
(
qf(x′)− f0(x′)

)
dPn(x′)

]2

≤

[
1

d2
n,h(x)

∫ ∣∣∣∣ψ(‖x′ − x‖h

)∣∣∣∣ dPn(x′)

]
·

[∫ ∣∣∣∣ψ(‖x′ − x‖h

)∣∣∣∣ · (qf(x′)− f0(x′)
)2
dPn(x′)

]

=
d+
n,h(x)

|dn,h(x)|
· 1

|dn,h(x)|

[∫ ∣∣∣∣ψ(‖x′ − x‖h

)∣∣∣∣ · (qf(x′)− f0(x′)
)2
dPn(x′)

]
.

In the last line all we have done is written d+
n,h(x) for the degree functional computed with respect to the

kernel |ψ|, recalling that ψ may take negative values so d+
n,h(x) may not be equal to dn,h(x).

189

Now we integrate over x ∈ X to get

‖Tn,h(qf − f0)‖2P =

∫ [
Tn,h

(
qf − f0

)
(x)
]2
dP (x)

≤
∫ ∫

d+
n,h(x)

|dn,h(x)|
· 1

|dn,h(x)|

∣∣∣∣ψ(‖x′ − x‖h

)∣∣∣∣ · (qf(x′)− f0(x′)
)2
dPn(x′) dP (x)

≤ sup
x∈X

d+
n,h(x)

|dn,h(x)|
·
∫ ∫

1

|dn,h(x)|

∣∣∣∣ψ(‖x′ − x‖h

)∣∣∣∣ · (qf(x′)− f0(x′)
)2
dP (x) dPn(x′)

≤ sup
x∈X

d+
n,h(x)d+

P,h(x)

|dn,h(x)|2
· ‖ qf − f0‖2n. (C.68)

Thus we have reduced the problem to showing that the various degree functionals d+
n,h, d

+
P,h and dn,h all put

similar weight on a given point x. We use (C.73), which gives a uniform multiplicative bound on deviations
of the empirical degree around its mean, to conclude that with probability at least 1−C exp{−cnhd},

dn,h(x) ≥ 1

2
dP,h(x) and d+

n,h(x) ≤ 3

2
d+
P,h(x) for all x ∈ X .

Therefore,

sup
x∈X

d+
n,h(x)d+

P,h(x)

|dn,h(x)|2
≤ 6 · sup

x∈X

|d+
P,h(x)|2

|dP,h(x)|2
≤ 36

(
‖ψ‖∞pmaxνd

pmin

)2

with the second inequality following from (C.64). Plugging this back into (C.68) gives the claim.

Proof of (C.67). At a given point x ∈ X , we have

Tn,hf0(x)− f0(x) =
1

dn,h(x)

n∑
i=1

(
f0(Xi)− f0(x)

)
ψ

(
‖Xi − x‖

h

)

=
dP,h(x)

dn,h(x)
· 1

ndP,h(x)

n∑
i=1

(
f0(Xi)− f0(x)

)
ψ

(
‖Xi − x‖

h

)
.

Thus, [
Tn,hf0(x)− f0(x)

]2
=

[
dP,h(x)

dn,h(x)

]2

·
[

1

ndP,h(x)

n∑
i=1

(
f0(Xi)− f0(x)

)
ψ

(
‖Xi − x‖

h

)
︸ ︷︷ ︸

:=L̃n,hf0(x)

]2

(C.69)

In the proof of (C.66) we have already given an upper bound on the ratio of population to empirical degree,
which implies that

sup
x∈X

[
dP,h(x)

dn,h(x)

]2

≤ 4,

with probability at least 1−C exp{−cnhd}. On the other hand, we note that the second term in the product
in (C.69) has expectation

E
[
L̃n,hf0(x)

]
= TP,hf0(x)− f0(x),

and variance

Var
[
L̃n,hf0(x)

]
≤ 1

n(dP,h(x))2
E
[
(f0(X)− f0(x))2 ·

∣∣∣∣ψ(‖X − x‖h

)∣∣∣∣2].

190

Integrating with respect to P gives

E
[∫ (

L̃n,hf0(x)
)2

dP (x)

]
=

∫
E
[(
L̃n,hf0(x)

)2]
dP (x)

≤ ‖TP,hf0 − f0‖2P +
1

n

∫ ∫
1(

dP,h(x)
)2 (f0(x′)− f0(x)

)2 · ∣∣∣∣ψ(‖x′ − x‖h

)∣∣∣∣2 dP (x′) dP (x)

≤ ‖TP,hf0 − f0‖2P +
3h2

pminn
ẼP,h(f0;ψ2).

In the final inequality we have used the lower bound on dP,h(x) from (C.64), and written EP,h(f0;ψ2) for
the non-local Dirichlet energy defined with respect to the kernel ψ2.

Putting the pieces together, we conclude that

‖Tn,hf0(x)− f0(x)‖2P =

∫ (
Tn,hf0(x)− f0(x)

)2
dP (x)

≤ sup
x∈X

[
dP,h(x)

dn,h(x)

]2

·
∫ (

L̃n,hf0(x)
)2

dP (x)

(i)

≤ 4
‖TP,hf0 − f0‖2P

δ
+

12h2

δpminnhd
EP,h(f0;ψ2)

(ii)

≤ 4
‖TP,hf0 − f0‖2P

δ
+

Ch2

δpminnhd
|f0|2H1(X),

with probability at least 1− δ−C exp(−cnhd). In (i) we have used Markov’s inequality, and in (ii) we have
applied the estimate (C.37) to the non-local Dirichlet energy EP,h(f0;ψ2). This establishes (C.67).

C.7.3 Kernel smoothing bias

Lemma 58 gives the necessary upper bounds on the bias of kernel smoothing.

Lemma 58. Suppose Model 4.2.1, and that the kernel smoothing operator TP,h is computed with respect to
a kernel η that satisfies (K1).

• If f0 ∈ H1(X), then there exists a constant C which does not depend on f0 such that

‖TP,hf0 − f0‖2P ≤ Ch2|f |2H1(X).

• If f0 ∈ Hs
0(X), p ∈ Cs−1(X), and η satisfies (K4), then there exists a constant C which does not

depend on f0 such that
‖TP,hf0 − f0‖2P ≤ Ch2s|f |2Hs(X).

We separately prove the first-order (s = 1) and higher-order (s > 1) parts of Lemma 58. In both cases, the
proof will rely heavily on results already established regarding the non-local Laplacian LP,h and non-local
Dirichlet energy EP,h, which we recall are given for a kernel function K by

LP,hf(x) =
1

hd+2

∫ (
f(x′)− f(x)

)
K
(
‖x′ − x‖

h

)
dP (x′),

and EP,h(f ;K) = 〈LP,hf, f〉P , respectively.

191

Proof of Lemma 58, s = 1. Using the conclusions from Section C.7.1, we have that

‖TP,hf − f‖2P ≤
9h4

p2
min

∫ [
LP,hf(x)

]2
dP (x). (C.70)

By the Cauchy-Schwarz inequality, we have that∫ [
LP,hf(x)

]2
dP (x) =

1

h2d+4

∫ [∫ (
f(x′)− f(x)

)
ψ

(
‖x′ − x‖

h

)
dP (x′)

]2

dP (x)

≤ C

hd+4

∫ ∫ (
f(x′)− f(x)

)2 · ∣∣∣∣ψ(‖x′ − x‖h

)∣∣∣∣ dP (x′) dP (x)

=
C

h2
EP,h(f ; |ψ|).

Applying the estimate (C.37) to the non-local Dirichlet energy EP,h(f ; |ψ|) and plugging back into (C.70)
gives the claimed result.

Proof of Lemma 58, s > 1. Proceeding from (C.70), we separate the integral into the portion sufficiently
in the interior of X and that near the boundary, obtaining

‖TP,hf − f‖2P ≤
9pmaxh

4

p2
min

(
‖LP,hf‖2L2(Xh) + ‖LP,hf‖2L2(∂h(X))

)
. (C.71)

In Lemma 48, we established a sufficient upper bound on the second term,

‖LP,hf‖2L2(∂h(X)) ≤ Ch
2(s−2)‖f‖2Hs(X).

Thus it remains to upper bound the first term. Here we recall that at a given x ∈ Xh, we can write

LP,hf(x) =
1

h2

s−1∑
j1=1

q−1∑
j2=0

hj1+j2

j1!j2!

∫
dj1x f(z)dj2x p(z)ψ

(
‖z‖
)
dz +

1

h2

s−1∑
j=1

hj

j!

∫
djxf(z)rqzh+x(x; p)ψ

(
‖z‖
)
dz +

1

h2

∫
rjzh+x(x; f)ψ

(
‖z‖
)
p(zh+ x) dz

= G1(x) +G2(x) +G3(x).

(Here q = s− 1.)

We have already given sufficient upper bounds on ‖Gj‖L2(Xh) for j = 2, 3 in (C.22). Thus it remains only to
upper bound ‖G1‖L2(Xh). Recall the expansion of G1 from (C.23),

G1(x) =

s−1∑
j1=1

q−1∑
j2=0

hj1+j2−2

j1!j2!

∫
B(0,1)

dj1x f(z)dj2x p(z)η(‖z‖) dz︸ ︷︷ ︸
:=gj1,j2 (x)

.

Noting that dj1x · dj2x is a degree-(j1 + j2) multivariate polynomial, and recalling that ψ is an order-s kernel,
we have that ∫

gj1,j2(z)ψ
(
‖z‖
)
dz = 0, for all j1, j2 such that j1 + j2 < s.

192

Otherwise, derivations similar to those used in the proof of Lemma 47 imply that

‖gj1,j2‖L2(Xh) ≤ C‖f‖Hs(X)‖p‖Cs−1(X), for all j1, j2 such that j1 + j2 ≥ s,

from which it follows that
‖G1‖2L2(Xh) ≤ Ch

2(s−2)‖f‖Hs(X)‖p‖Cs−1(X).

Together these upper bounds on ‖Gj‖L2(Xj) for j = 1, 2, 3 imply that

‖LP,hf‖2Xh ≤ Ch
2(s−2)‖f‖2Hs(X),

and plugging this back into (C.71) yields the claim.

C.8 Miscellaneous

Here we give assorted helpful Lemmas used at various points in the above proofs. We also review notation
and relevant facts regarding Taylor expansion.

C.8.1 Concentration Inequalities

Lemma 59 controls the deviation of a chi-squared random variable. It is from Laurent and Massart
[2000].

Lemma 59. Let ξ1, . . . , ξN be independent N(0, 1) random variables, and let U :=
∑N
k=1 ak(ξ2

k − 1). Then
for any t > 0,

P
[
U ≥ 2‖a‖2

√
t+ 2‖a‖∞t

]
≤ exp(−t).

In particular if ak = 1 for each k = 1, . . . , N , then

P
[
U ≥ 2

√
Nt+ 2t

]
≤ exp(−t).

Lemma 60 is an immediate consequence of the one-sided Bernstein’s inequality (14.23) in Wainwright
[2019].

Lemma 60 (One-sided Bernstein’s inequality). Let X,X1, . . . , Xn ∼ P , and f satisfy E[f4(X)] <∞. Then

‖f‖2n ≥
1

2
‖f‖2P ,

with probability at least 1− exp
(
−n/8 · ‖f‖4P /E[f4(X)]

)
.

In the proof of Lemma 5, we require uniform control of the empirical degree functional dn,h(x) over all x ∈ X .
Such a result is available to us because the kernel ψ is Lipschitz on its support, so that the class of functions
{ψ((x − ·)/h) : h ∈ Rd} has finite VC dimension. The precise estimate we use is due to Giné and Guillou
[2002].

Lemma 61 (Uniform bound for empirical degree.). Suppose Model 4.2.1. For a kernel ψ satisfying (K1)
and bandwidth h satisfying (P7), there exist constants c, C, c1 and C1 which do not depend on h or n such
that

P
(

sup
x∈Rd

n ·
∣∣∣dn,h(x)− dP,h(x)

∣∣∣ > t

)
≤ C exp

(
−c t

2

nhd

)
,

for any t ∈ R satisfying

C1

√
nhd log(1/h) ≤ t ≤ c1nhd. (C.72)

193

Now we translate Lemma 61 into a multiplicative bound, which will be more useful for our purposes. Recall
the lower bound on dP,h(x) given in (C.64). By setting C0 to be a sufficiently large constant in (P7), we
can ensure that choosing t = nhdpmin/6 satisfies both the inequalities (C.72). For this choice of t it follows
from (C.64) and Lemma 61 that

sup
x∈Rd

∣∣∣∣dn,h(x)− dP,h(x)

dP,h(x)

∣∣∣∣ ≤ sup
x∈Rd

∣∣∣∣dn,h(x)− dP,h(x)

2t/n

∣∣∣∣ ≤ 1

2
(C.73)

with probability at least 1−C exp(−cnhd). This is the form of the result we use in the proof of Lemma 5.

C.8.2 Taylor expansion

We begin with some notation that allows us to concisely expresss derivatives. For a given z ∈ Rd and
s-times differentiable function f : X → R, we denote

(
dsxf

)
(z) :=

∑
|α|=sD

αf(x)zα. We also write dsf :=∑
|α|=j D

αf . We point out that in the first-order case d1
xf is the differential of f at x ∈ X , while d1f is the

divergence of f .

Let u be a function which is s times continuously differentiable at all x ∈ X , for k ∈ N \ {0}. Suppose that
for some h > 0, x ∈ Xh and x′ ∈ B(x, h). We write the order-s Taylor expansion of u(x′) around x′ = x
as

u(x′) = u(x) +

s−1∑
j=1

1

j!

(
djxu

)
(x′ − x) + rsx′(x;u)

For notational convenience we have adopted the convention that
∑0
j=1 aj = 0. Thus

(
djxf

)
(z) is a degree-j

polynomial—and so a j-homogeneous function—in z, meaning for any t ∈ R,(
djxf

)
(tz) = tj ·

(
djxf

)
(z).

The remainder term rx′ is given by

rsx′(x; f) =
1

(j − 1)!

∫ 1

0

(1− t)j−1
(
dsx+t(x′−x)f

)
(x′ − x) dt,

where we point out that the integral makes sense because x + t(x′ − x) ∈ B(x, h) ⊆ X . We now give
estimates on the remainder term in both sup-norm and L2(Xh) norm, each of which hold for any z ∈ B(0, 1).
In sup-norm, we have that

sup
x∈Xh

|rjx+hz(x; f)| ≤ Chj‖f‖Cj(X),

whereas in L2(Xh) norm we have,∫
Xh

∣∣rjx+thz(x; f)
∣∣2 dx ≤ h2j

∫
Xh

∫ 1

0

|djx+thzf(z)|2 dt dx ≤ h2j‖djf‖2L2(X). (C.74)

In the last inequality

Finally, we recall some facts regarding the interaction between smoothing kernels and polynomials. Let qj(z)
be an arbitrary degree-j (multivariate) polynomial. If η is a radially symmetric kernel and j is odd, then by
symmetry it follows that ∫

B(0,1)

qj(z)η(‖z‖) dz = 0.

On the other hand, if ψ is an order-s kernel for some s > j, then by converting to polar coordinates we can
verify that ∫

B(0,1)

qj(z)η(‖z‖) dz = 0.

194

Appendix D

Chapter 5 Appendix

D.1 Proof of Lemma 6

Let En[·] = E[·|X1, . . . , Xn] denote the expectation operator conditional on X1, . . . , Xn. First we prove the

desired upper bound on En[〈Ln,εf̂LE, f̂LE〉n], and the lower bound on En[〈Ln,εf̂LS, f̂LS〉n].

Upper bounds. We beginn by giving an upper bound on the expected graph Sobolev semi-norm En[〈Lsn,εf̂LE, f̂LE〉n],
in terms of functionals of the graph Gn,ε. This bound will hold for any s ∈ N, and the choice s = 1 will

correspond to En[〈Ln,εf̂LE, f̂LE〉n]. Then we will give estimates on these graph functionals, which will hold
with high probability, and will imply (5.5).

Recall that Y = f0 + w and the spectral decomposition Ln,ε =
∑n
k=1 λkvkv

>
k . From these decompositions,

we can rewrite the graph Sobolev seminorm of f̂LE in terms of that of f0 and w:

〈Lsn,εf̂LE, f̂LE〉n =

K∑
k=1

λk〈vk,Y〉2n =

K∑
k=1

λsk

(
〈vk, f0〉2n + 〈vk,w〉2n + 2〈vk, f0〉n〈vk,w〉n

)
Conditional on X1, . . . , Xn, the graph Sobolev seminorm of the signal f0 is deterministic, and satisfies the
upper bound

∑n
k=1 λ

s
k〈vk, f0〉2n ≤ 〈Lsn,εf0, f0〉2n. On the other hand, the graph seminorm of the noise w is

random, with expectation given by

En
[K∑
k=1

λsk〈vk,w〉2n
]

=

K∑
k=1

λsk · En
[
〈vk,w〉2n

]
=

1

n

K∑
k=1

λsk ≤
K

n
λsK .

Finally, since the noise variables wi are zero-mean, E[〈vk,w〉n] = 0. Thus, as promised, we can upper bound

the conditional expectation of graph semi-norm of f̂LE in terms of graph functionals,

〈Lsn,εf̂LE, f̂LE〉n ≤
(
〈Lsn,εf0, f0〉n +

K

n
λsK

)
. (D.1)

It remains to upper bound these graph functionals. To do so, we recall some estimates from Chapter
3:1

1Note that in the setup of Chapter 5, the Laplacian Ln,ε is defined with a pre-factor of (nεd+2)−1, which is not the case in
the setup of Chapter 3. Multiplying the estimates of Chapter 3 by this prefactor gives (D.2) and (D.3).

195

• Lemma 3. There exist constants c, C,N such that if n ≥ N and ε < c,

〈Ln,εf0, f0〉n ≤ C
|f0|2H1(X)

δ
(D.2)

with probability at least 1− δ.

• Lemma 4. There exist constants N,C, c > 0 such that if n ≥ N and C(log n/n)1/d ≤ ε ≤ c, then

cmin{k2/d, ε−2} ≤ λk ≤ C min{k2/d, ε−2}, for all 2 ≤ k ≤ n, (D.3)

with probability at least 1− Cn exp(−cnεd).

Plugging (D.2)-(D.3) back into (D.1) gives (5.5).

Lower bounds. Again we bound En[〈Lsn,εf̂LS, f̂LS〉n] by graph functionals. Using similar derivations to
the lower bound for Laplacian eigenmaps, we find that

En[〈Lsn,εf̂Ls, f̂LS〉n] =

n∑
k=1

λsk
(1 + ρλk)2

En[〈Y, vk〉2n] =

n∑
k=1

λsk
(1 + ρλk)2

(
〈vk, f0〉2n + En[〈vk,w〉2n]

)
.

Recalling that En[〈vk,w〉2n] = 1/n, and noticing that clearly 〈vk, f0〉2n ≥ 0, we have

En[〈Lsn,εf̂Ls, f̂LS〉n] ≥ 1

n

n∑
k=1

λsk
(1 + ρλk)2

≥ 1

2
min

{
λsn/2,

λsn/2

ρ2λ2
n

}
. (D.4)

Plugging the lower bounds on λk from (D.3) into (D.4), we conclude that with probability at least 1 −
Cn exp(−cnεd),

En
[
〈Lsn,εf̂LS, f̂LS〉n

]
≥ cmin

{
n2s/d ∧ ε−2s,

1

ρ2

(
n(2s−4)/d ∨ ε4−4s

)}
≥ cε−2s min

{
1,
ε4

ρ2

}
;

the last inequality follows because C(log n/n)1/d ≤ ε. Taking s = 1 gives (5.6).

We remark that (D.4) is potentially loose, although it is tight enough to imply (5.6). The potential looseness
is because we have ignored the contributions of 〈f0, vk〉2n for k = 1, . . . , n.

D.2 Laplacian Regularization Out-of-Sample

In this section we build to the proof of Theorem 21. We begin by giving a structural result for qfLS in
Proposition 28, which represents qfLS as a particular two-stage estimator. The first stage returns an estimate
at the design points X1, . . . , Xn−1, which can be cast as the solution obtained by smoothing with respect to
the weighted average of two different Laplacian matrices. The second stage then extends this estimate to Xn

by simple kernel smoothing, with the same kernel η and radius ε used to construct the graph Gn,ε.

To explicitly write the first-stage estimate, we must first define the two Laplacian matrices used in its con-
struction. Let Gn−1,ε be the neighborhood graph defined over X1, . . . , Xn−1, with corresponding Laplacian
matrix Ln−1,ε acting on vectors u ∈ Rn−1 by

(
Ln−1,εu

)
i

:=
1

(n− 1)εd+2

n−1∑
j=1

(ui − uj) · η
(
‖Xi −Xj‖

ε

)

196

We now introduce a second graph, G
(n)
n−1,ε = ({1, . . . , n − 1},W (n)), which is defined over the same set of

vertices as Gn−1,ε, but with a different adjacency matrix W (n) ∈ R(n−1)×(n−1) defined by its entries

W
(n)
ij =

1

dn−1,ε(Xn)
η

(
‖Xi −Xn‖

ε

)
· η
(
‖Xj −Xn‖

ε

)
(D.5)

where dn−1,ε(x) =
∑n−1
i=1 η(‖Xi−x‖/ε) is the degree functional. We see that points i and j are connected in

G
(n)
n−1,ε only if they both within distance ε of Xn. Let L

(n)
n−1,ε be a Laplacian matrix associated with G

(n)
n−1,ε,

defined by its action on vectors u ∈ Rn−1 as

(L
(n)
n−1,εu)i :=

1

εd+2

n−1∑
j=1

(ui − uj)W (n)
ij . (D.6)

We observe that for sufficiently regular functions f—say f ∈ C1(X)—we have that 〈L(n)
(n−1),εf, f〉n−1 = O(1)

as n→∞, confirming that the pre-factor of εd+2 is the “right” scaling of L
(n)
(n−1),ε.

Proposition 28. Recall qfLS is the solution to (5.7).

• At the design points X1, . . . , Xn−1, the solution qfLS is given by

(qfLS)1:(n−1) :=
(
(qfLS)1, . . . , (qfLS)n−1

)
=

(
In−1 +

ρ(n− 1)

n

[
n− 1

n
Ln,ε +

1

n
L(n)
n,ε

])−1

Y. (D.7)

• At the design point Xn, the solution (qfLS)n is given by

(qfLS)n =
(
Tn,ε(qfLS)1:(n−1)

)
(Xn) :=

1

dn−1,ε(Xn)

n−1∑
i=1

(qfLS)i · η(‖Xi −Xn‖/ε). (D.8)

The proof of Proposition 28 is a matter of some standard linear algebra. We proceed to prove Theorem 21
given Proposition 28, and then return to prove Proposition 28.

D.2.1 Proof of Theorem 21

We begin by mapping out the high-level strategy we will follow to prove Theorem 21.

Strategy. We will use the decomposition in Proposition 28 to upper bound the squared loss
∣∣(qfLS)n −

f0(Xn)
∣∣2. Let Sn and Sn−1 denote the smoother matrices such that (qfLS)1:(n−1) = qSn−1Y and f̂n−1 =

Sn−1Y; explicitly

qSn−1 :=

(
In−1 + ρ

[
(n− 1)

n
Ln−1,ε +

1

n
L

(n)
n−1,ε

])−1

, and Sn−1 :=

(
In + ρLn−1,ε

)−1

.

Now we consider the following decomposition

(qfLS)n − f0(Xn) =

Tn,ε qSn−1Y(Xn)− Tn,ε qSn−1f0(Xn) + Tn,ε qSn−1f0(Xn)− Tn,εSn−1f0(Xn) + Tn,εSn−1f0(Xn)− Tn,εf0(Xn)+

Tn,εf0(Xn)− f0(Xn)

= Tn,ε qSn−1w(Xn)︸ ︷︷ ︸
Term 1

+Tn,ε[(qSn−1 − Sn−1)f0](Xn)︸ ︷︷ ︸
Term 2

+Tn,εSn−1f0(Xn)− Tn,εf0(Xn)︸ ︷︷ ︸
Term 3

+Tn,εf0(Xn)− f0(Xn)︸ ︷︷ ︸
Term 4

.

197

The first of these terms is the contribution of the noise w = (w1, . . . , wn) in the responses Y. The second

of these terms represents the difference between smoothing with qSn−1 and smoothing with Sn−1. The third
of these terms is the bias due to Laplacian regularization. The fourth term is the error inherent to kernel
smoothing of noiseless samples. Now we proceed to upper bound the error induced by each of these terms.
We will find that∣∣(qfLS)n − f0(Xn)

∣∣2 ≤ 4
(C1

δnεd
+ C2ρ

2‖f0‖2L∞(X) +
C3ρ

δ2
|f0|2H1(X) +

C4

δ
· ε2|f0|2H1(X)

)
with probability at least 1−4δ−C exp(−cnεd). From here, plugging in ε = n−1/(2+d) and 0 ≤ ρ ≤ n−2/(2+d)

proves the claim.

Term 1: Noise contribution. Let En denote the expectation conditional on the design pointsX1, . . . , Xn.
For any i, j ∈ {1, . . . , n}, we have

En
[
(qSn−1w)i · (qSn−1w)j

]
= (qS2

n−1)ij .

It is evident that qSn−1 is a contraction in L2(Rn), meaning that

‖qSn−1‖op := sup
u∈Rn
u 6=0

u> qSn−1u

u>u
≤ 1. (D.9)

Let K(x) =
(
η(‖X1 − x‖/ε), . . . , η(‖Xn − x‖/ε)

)
∈ Rn represent the vector of evaluations of the kernel η at

a point x ∈ X . From (D.9), we have

En
[(
Tn,ε qSn−1w(Xn)

)2]
=

1(
dn,ε(Xn))2

n∑
i,j=1

En
[
(qSn−1w)i · (qSn−1w)j

]
=

1

(dn,ε(Xn))2
K>(Xn)

qS2
n−1K(Xn)

≤ 1

(dn,ε(Xn))2
‖qSn−1‖2op · (K(Xn))

>K(Xn)

≤ 1

(dn,ε(Xn))2
· (K(Xn))

>K(Xn)

≤
‖η‖L∞(R)

dn,ε(Xn)
; (D.10)

to obtain the last estimate we have used Holder’s inequality to deduce

(K(Xn))
>K(Xn) =

n∑
i=1

[
η

(
‖Xi −Xn‖

ε

)]2

≤ ‖η‖L∞(R) · dn,ε(Xn).

Using Lemma 61, we can show that there exists a constant N such that for all n ≥ N , with probability at
least 1− C exp

(
−cnεd

)
,

sup
x∈X

∣∣∣∣dn,ε(x)

n
− dP,ε(x;K)

∣∣∣∣ ≤ 1

2
· inf
x∈X

dP,ε(x), (D.11)

where dP,ε(x) = E[dn,ε(x)] =
∫
η(‖z − x‖/ε) dP (x). By assumption, the density p(x) ≥ pmin for all x ∈ X

and X has a C1 boundary ∂X . Thus there exists a positive constant c0 > 0 such that dP,ε(x) ≥ (1/3)pminε
d

for all 0 < ε < c0. Combined with (D.10) and (D.11), this implies

En
[(
Tn,ε qSn−1w(Xn)

)2] ≤ 12
‖η‖L∞(R)

npminεd
.

198

Finally, using Markov’s inequality, we conclude that with probability at least 1− δ − C exp
(
−cnεd

)
(
Tn,ε qSn−1w(Xn)

)2 ≤ 12

δ

‖η‖L∞(R)

npminεd
= C1

1

δnεd
.

Term 2: Perturbation. From the Cauchy-Schwarz inequality, we have that for any u ∈ Rn,

|Tn,εu(Xn)|2 =

∣∣∣∣ 1

dn,ε(Xn)

n∑
i=1

uiη

(
‖xi −Xn‖

ε

)∣∣∣∣2 ≤ 1

dn,ε(Xn)

n∑
i=1

|ui|2η
(
‖xi −Xn‖

ε

)
≤ ‖u‖2∞,

where in the last inequality we write ‖u‖∞ := maxi=1,...,n |ui| for the L∞(Rn) norm. Thus to upper bound

Term 2 we focus our attention on upper bounding ‖(qSn−1 − Sn−1)f0‖∞.

To begin with, we note that

(qSn−1 − Sn−1)f0 = qSn−1(S−1
n−1 − qS

−1
n−1)Sn−1f0 =

ρ

n
qSn−1

(
Ln−1,ε − L(n)

n−1,ε

)
Sn−1f0

and consequently

‖(qSn−1 − Sn−1)f0‖∞ ≤
ρ

n
‖qSn−1‖∞

(
‖Ln−1,εSn−1f0‖∞ + ‖L(n)

n−1,εSn−1f0‖∞
)

≤ ρ

n
‖qSn−1‖∞

(
‖Ln−1,ε‖∞ + ‖L(n)

n−1,ε‖∞
)
‖Sn−1‖∞‖f0‖∞

≤ ρ

n
‖qSn−1‖∞

(
‖Ln−1,ε‖∞ + ‖L(n)

n−1,ε‖∞
)
‖Sn−1‖∞‖f0‖L∞(X) (D.12)

Here we have used that with probability 1, ‖f‖∞ ≤ ‖f‖L∞(X), and we recall that the ∞-operator norm of a

matrix is ‖A‖∞ = max{‖Au‖∞ : ‖u‖∞ = 1}. It remains to give estimates on each of ‖qSn−1‖∞, ‖Sn−1‖∞, ‖Ln−1,ε‖∞
and ‖L(n)

n−1,ε‖∞.

First, we observe that qSn−1 and Sn−1 are contractions in L∞(Rn), meaning that ‖qSn−1‖∞, ‖Sn−1‖∞ ≤ 1.

We establish that Sn−1 is a contraction, and the exact same reasoning will hold with respect to qSn−1 as well.
For any u ∈ Rn, assuming without loss of generality that u1 = ‖u‖∞, we have that

(S−1
n−1u)1 = u1 + (ρLn,εu)1 ≥ u1,

which implies that ‖S−1
n−1u‖∞ ≥ ‖u‖∞. Thus for any u ∈ Rn, we also have that

‖u‖∞ = ‖S−1
n−1Sn−1u‖∞ ≥ ‖Sn−1u‖∞,

demonstrating that Sn−1 is a contraction.

On the other hand, for any v ∈ Rn such that ‖v‖∞ = 1,

‖Ln−1,εv‖∞ = max
i=1,...,n

∣∣∣∣ 1

nεd+2

n∑
j=1

(
vi − vj

)
η

(
‖xi − xj‖

ε

)∣∣∣∣
≤ max
i=1,...,n

2

nεd+2

n∑
j=1

η

(
‖xi − xj‖

ε

)
≤ 2

εd+2
,

199

and

‖L(n)
n−1,εv‖∞ = max

i=1,...,n

∣∣∣∣ 1

εd+2

n∑
j=1

(
v − v

)
W

(u)
n,ij

∣∣∣∣
≤ max
i=1,...,n

2

εd+1

n∑
j=1

|W (u)
n,ij |

≤ 2

εd+2
‖η‖∞,

so that ‖Ln−1,ε‖∞, ‖L(n)
n−1,ε‖∞ ≤ Cε−(d+2). Plugging these estimates back into (D.12), we conclude that

(
Tn,ε(qSn−1 − Sn−1)f0(Xn)

)2 ≤ (‖(qSn−1 − Sn−1)f0‖∞
)2

≤
(
Cρ‖f0‖L∞(X)

nεd+2

)2

= C2ρ
2‖f0‖2L∞(X).

Term 3: Bias. We begin by taking an expectation of Term 3 conditional on the labeled design points
X1, . . . , Xn−1 (which we denote by En−1):

En−1

[(
Tn,εSn−1f0(Xn)− Tn,εf0(Xn)

)2]
= ‖Tn,εSn−1f0 − Tn,εf0‖2P .

In (C.66), we have shown that with probability at least 1− C exp(−cnεd)

‖Tn,ε(u− f0)‖2P ≤ C‖u− f0‖2n, for all u ∈ Rn. (D.13)

Now we can use upper bounds on ‖Sn−1f0 − f0‖2n, the in-sample squared-bias of Laplacian smoothing,
derived in Chapter 3. Combining the proof of Lemma 26 and the statement of Lemma 3, we have that with
probability at least 1− δ,

‖Sn−1f0 − f0‖2n ≤ Cρ · 〈Ln,εf0, f0〉n ≤
Cρ

δ
|f0|2H1(X). (D.14)

Combining (D.13) and (D.14), we have that

En−1

[(
Tn,εSn−1f0(Xn)− Tn,εf0(Xn)

)2]
≤ C3ρ

δ
|f0|2H1(X)

with probability at least 1− δ. Thus it follows from Lemma 62 that with probability at least 1− 2δ,(
Tn,εSn−1f0(Xn)− Tn,εf0(Xn)

)2

≤ C3ρ

δ2
|f0|2H1(X).

Lemma 62. Let Z ≥ 0 and X be random variables, and let 0 ≤ E[Z|X] ≤ a with probability at least 1− δ.
Then

P
(
Z ≥ a

δ

)
≤ 2δ.

Proof. By the law of iterated expectation,

P(Z ≥ a

δ
) = E[P(Z ≥ a

δ
|X)] = E[P(Z ≥ a

δ
|X) ∧ 1].

Since E[Z|X] ≤ a with probability at least 1− δ,

E[P(Z ≥ a

δ
|X) ∧ 1] = E

[(
P(Z ≥ a

δ
|X) ∧ 1

)
· (1{E[Z|X] ≤ a}+ 1{E[Z|X] ≥ a})

]
≤ E

[(
P(Z ≥ a

δ
|X) · (1{E[Z|X] ≤ a}+ E

[
1{E[Z|X] ≥ a})

]
≤ 2δ,

with the last upper bound following from (conditional) Markov’s inequality.

200

Term 4: Noiseless kernel smoothing. We have already derived upper bounds on the error of noiseless
kernel smoothing in Chapter 4. From (C.67) and Lemma 58, we have that

En−1

[(
Tn,εf0(Xn)− f0(Xn)

)2]
= ‖Tn,εf0 − f0‖2P ≤

C

δ
·
(
ε2

nεd
+ ε2

)
|f |2H1(X) ≤

C4

δ
· ε2|f |2H1(X)

with probability at least 1− δ − C exp(−cnεd).

D.2.2 Proof of Proposition 28

In this proof, for convenience we write qf for qfLS. We begin by giving a closed-form expression for qf . This
is stated with respect to the restriction matrix Rn−1 ∈ Rn−1×n and extension-by-zero matrix En ∈ Rn×n−1;
the former maps a vector u ∈ Rn to Rn−1u = (u1, . . . , un−1), and the latter maps u ∈ Rn−1 to Enu = (u, 0).
It is not hard to verify that

qf = (ρLn,ε + EnRn−1)−1EnY. (D.15)

Next, we establish that qf1:(n−1) satisfies (D.7). This is easily done using block matrix inversion. Writ-
ing

Ln,ε =

(
L11 L12

L22 L21

)
, EnRn−1 =

(
In−1 0

0 0

)
, EnY = (Y, 0)

we immediately have
qf =

(
ρ(L11 − L12L

−1
22 L21) + In−1

)−1
Y. (D.16)

Note that L11 = n−1
n Ln−1,ε + 1

nεd+2 diag(K(Xn))—where diag(K(Xn)) ∈ Rn−1×n−1 denotes the diagonal
matrix with entries diag(K(Xn))ii = (K(Xn))i—and furthermore that

L12L
−1
22 L21 =

1

nεd+2dn−1,ε(Xn)
K(Xn)K

>
(Xn).

Consequently,

L11 − L12L
−1
22 L21 =

n− 1

n
Ln−1,ε +

1

n
L

(n)
n−1,ε,

and plugging this back into (D.16) yields (D.7).

On the other hand, we have that at the design point Xn,

qfn = argmin
a

n−1∑
i=1

(qfi − a)2η

(
‖Xi −Xn‖

ε

)
=

1∑n−1
i=1 η(‖Xi −Xn‖/ε)

n−1∑
i=1

qfiη

(
‖Xi −Xn‖

ε

)
, (D.17)

verifying (D.8).

D.3 Proof of Proposition 14

First, we prove (5.14), the upper bound on the in-sample risk of Laplacian eigenmaps. After that we explain
why the corresponding upper bound on the in-sample risk of Laplacian smoothing follows. The proof of (5.14)
will be made easier by two useful lemmas, which we stated in Section D.3.1.

We begin by showing that, with high probability, the eigenvectors v1, v2 respect the cluster structure of
p(n). Denote u1 = (1{Xi ∈ Q1})i∈[n], and likewise u2 = (1{Xi ∈ Q2})i∈[n]. We make the following two
observations:

1. Because ε < r and the kernel η is compactly supported on [0, 1], for each Xi ∈ Q1 and Xj ∈ Q2, it
must be the case that η(‖Xi −Xj‖/ε) = 0.

201

2. Using an elementary concentration argument (stated in Lemma 63) and the triangle inequality, we
deduce that with probability at least 1 − 4/ε exp(−nε/4) there exists a path in Gn,ε between each
Xi, Xj ∈ Q1, and likewise between each Xi, Xj ∈ Q2.

Together these observations imply that with high probability the neighborhood graph Gn,ε consists of exactly
two connected components: one consisting of all design points Xi ∈ Q1, and the other consisting of all design
points Xi ∈ Q2. In other words,

P
(

span{v1, v2} = span{u1, u2}
)
≥ 1− 4/ε exp(−nε/4). (D.18)

Let us condition on the “good” event E that the design points X1, . . . , Xn satisfy (D.21), and therefore that
span{v1, v2} = span{u1, u2}. Consider the empirical mean sYQ := 1

]{Q∪X}
∑
i:Xi∈Q Yi. Since span{v1, v2} =

span{u1, u2}, the estimator f̂ = f̂LE will be piecewise constant on Q1 and Q2, and in fact we have that

f̂ = sYQ1
u1 + sYQ2

u2. (D.19)

Therefore conditional on E ,

‖f̂ − f (n)
0 ‖2n = Pn(Q1) · (sYQ1

− θ)2 + Pn(Q2) · (sYQ2
+ θ)2

and consequently,

E
[
‖f̂ − f (n)

0 ‖2n
∣∣∣E] = E

[
E
[
‖f̂ − f (n)

0 ‖2n
∣∣X1, . . . , Xn

]∣∣∣E] =
1

n
. (D.20)

Now we derive a crude upper bound on ‖f̂ − f (n)
0 ‖n that will suffice to control the error conditional on Ec.

We observe that the empirical norm of f̂ is bounded,

‖f̂‖2n ≤
2

n

n∑
i=1

〈Y, v1〉2nv2
1,i + 〈Y, v2〉2nv2

2,i ≤ 2
(
〈Y, v1〉2n + 〈Y, v2〉2n

)
≤ 4‖Y‖2n.

Noting that E[‖Y‖2n|X1, . . . , Xn] = ‖f0‖2n + 1/n = θ2 + 1/n, we conclude that

E
[
‖f̂ − f0‖2n · 1{Ec}

]
≤ E

[(
2‖f0‖2n + 4(θ2 + 1/n) · 1{Ec}

]
≤ (6θ2 + n−1) · 4ε−1 exp(−nε/4).

Combining this with (D.20) implies (5.14).

As for Laplacian smoothing, it suffices to note that limρ→∞ f̂LS will also satisfy (D.19). Thus all of the

subsequent calculations used to upper bound the mean squared error of f̂ = f̂LE will also apply to f̂ =
limρ→∞ f̂LS.

D.3.1 A Useful Lemma

We introduce some notation: for a positive number m and each i = 0, . . . ,m− 1, let

Qi1 = [i/m, (i+ 1)/m] · (1/2− r), Qi2 = 1/2 + [i/m, (i+ 1)/m] · (1/2− r).

Lemma 63. Suppose (X1, Y1), . . . (Xn, Yn) are sampled according to (5.9), and suppose r ≤ 1/4. We have
that

P
(
]{Qij ∪X} > 0 for all i = 1, . . . ,m− 1 and j = 1, 2

)
≥ 1− 2m exp{−n/2m}. (D.21)

202

Proof (of Lemma 63). For each Qij , we have that P (Qij) = (1/2− r)/m ≥ 1/(2m). Therefore

P
(
]{Qij ∪X} = 0

)
= (1− 1/(2m))n ≤ exp{−n/2m}.

By a union bound,

P
(
]{Qij ∪X} = 0 for any i = 1, . . . ,m− 1 and j = 1, 2

)
≤ 2m exp{−n/2m}.

Let ε = 2/m. Note that by construction, (D.21) implies that any points x and x′ in adjacent intervals Qij
and Qi′j must be connected in Gn,ε. Likewise, it implies that for h = 1/m the degree dn,h(x) > 0 for every
x ∈ Q1 ∪Q2.

D.4 Proof of Proposition 15

First we show (5.15), then (5.16).

D.4.1 Proof of (5.15)

A standard argument using the law of iterated expectation implies the following lower bound on the pointwise
risk in terms of squared-bias and variance-like quantities,

E
[(
f̃(Xi)− f0(Xi)

)2

|Xi = x
]
≥ (n− 1)

n
E
[(
f0(X)− f0(x)

)2

|X ∈ B(x, h′)

]
+ E

[
1

dn,h′(x)

]
.

The variance term can be lower bounded quite simply for any x ∈ X (n); noting that supx p
(n)(x) < 2 and

ν(B(x, h′) ∩ X (n)) ≤ 2h′, it follows by Jensen’s inequality that

E
[

1

dn,h′(x)

]
≥ 1

E[dn,h′(x)]
≥ 1

4nh′
.

On the other hand the squared bias term is quite large for x close to 1/2. Precisely, if h′ ≥ 4r then a simple
calculation implies

E[(f0(X)− f0(x))2|X ∈ B(x, h′)] ≥ θ2

8
for all x ∈ [(1− h′/2)+, 1/2− r].

Combining these lower bounds on variance and squared bias terms and summing over X1, . . . , Xn, we arrive
at the following: if h′ ≤ 4r, then

E
[
‖f̃ − f (n)

0 ‖2n
]

=
1

n

n∑
i=1

E
[
E
[(
f̃(Xi)− f0(Xi)

)2

|Xi

]]
≥ 1

16rn
,

whereas if h′ > 4r then

E
[
‖f̃ − f (n)

0 ‖2n
]

=
1

n

n∑
i=1

E
[
E
[(
f̃(Xi)− f0(Xi)

)2

|Xi

]]
≥ 1

4nh′
+
θ2

8

(n− 1)

n
P (n)

(
[(1− h′/2)+, 1/2− r]

)
≥ 1

4nh′
+
θ2h′

64
.

In the latter case, setting the derivative equal to 0 shows that the right hand side is always at least θ/
√

64n,
and taking the minimum over the two cases then yields (5.15).

203

D.4.2 Proof of (5.16)

We begin by decomposing the risk into conditional bias and variance terms. Let En = E[·|X1, . . . , Xn] denote
expectation conditional on the design points X1, . . . , Xn. Then by the law of iterated expectation, and the
fact that En[w] = 0,

E
[
‖f̃SP − f0‖2n

]
= E

[
‖Enf̃SP − f0‖2n

]
+ E

[
‖f̃SP − Enf̃SP‖2n

]
.

We separately lower bound the expected conditional squared bias and variance terms. To anticipate what
is to come: we will show that the expected conditional variance is equal to K/n; on the other hand we will
show that the expected conditional squared bias is lower bounded,

E
[
‖Enf̃SP − f0‖2n

]
=
K

n
and E

[
‖Enf̃SP − f0‖2n

]
≥ θ2

2601π2K3
, (D.22)

with the lower bound holding so long as K ≤ min{1/(16r), n/(8 log(8n)), (
√

160π/r)2/3}. If K is larger than
this, then the expected conditional variance is lower bounded,

E
[
‖f̃SP − Enf̃SP‖2n

]
≥ min

{
1

16rn
,

1

8 log(8n)
,

(
√

160π)2/3

r2/3n

}
(D.23)

Otherwise (D.22) implies that the in-sample risk is always at least

E
[
‖f̃SP − f0‖2n

]
≥ θ2

2601π2K3
+
K

n
≥ 2

θ1/2

n3/4

1

(2601π2)1/4
.

Along with (D.23), this implies the claim. It remains to show the bounds on conditional bias and vari-
ance.

Conditional variance. The expected conditional variance is exactly equal to K/n, a standard fact that
is verified by the following calculations: first,

‖f̃SP − Enf̃SP‖2n = ‖Φ(Φ>Φ)−1Φ>w‖2n =
1

n
w>Φ(Φ>Φ)−1Φ>w;

thus standard properties of the Gaussian distribution and the trace trick imply

En
[
‖f̃SP − Enf̃SP‖2n

]
=

1

n
tr(Φ(Φ>Φ)−1Φ>) =

K

n
;

and finally by the law of iterated expectation and the independence of the noise (w1, . . . , wn) and the design
points X1, . . . , Xn,

E
[
En
[
‖f̃SP − Enf̃SP‖2n

]
= K/n.

Conditional bias. It takes more work to lower bound the conditional bias. We will first upper bound the
Lipschitz constant of Enf̃SP in terms of the empirical norm ‖Enf̃SP‖n. Then we will use this upper bound

to argue that either Enf̃SP has empirical norm much larger than that of f0, or Enf̃SP is a smooth function,
in the sense of having a small Lipschitz constant. In the former case, the triangle inequality will then imply
that ‖Enf̃SP − f0‖n must be large. In the latter case, the smoothness of Enf̃SP will imply that Enf̃SP must
be far from f0 at many points Xi close to x = 1/2.

The following Lemma gives our upper bound on the Lipschitz constant of ‖Enf̃SP‖n. Here we treat Enf̃SP =∑K
k=1 β̃kφk as a function defined at all x ∈ [0, 1] by extending it in the canonical way. As a function over

[0, 1], clearly Enf̃SP ∈ C∞([0, 1]). Let Σ ∈ RK×K be the covariance matrix of (φ1, . . . , φK), i.e. the matrix

with entries Σk` = 〈φk, φ`,〉 P (n). Let Σ̂ := (Φ>Φ)/n be the empirical covariance matrix. Let IK ∈ RK×K
be the identity matrix.

204

Lemma 64 (Lipschitz regularity of Enf̃SP.). Let f̃n = Enf̃SP. Then

‖f̃n‖2C1(X) ≤ π
2K

3 · ‖Σ1/2Σ̂−1Σ1/2‖op

(1− ‖IK − Σ‖F)
· ‖f̃n‖2n. (D.24)

Moreover, suppose K ≤ 1/(16r) and r ≤ (1− 2−1/2)/2.

• (Matrix perturbation) Then

‖Σ− IK‖F ≤
1

2
. (D.25)

• (Matrix concentration, cf. Hsu et al. [2012]) If additionally n ≥ 8K log(K/δ) for some δ ∈
(0, 1/2), then with probability at least 1− 2δ,

‖Σ1/2Σ̂−1Σ1/2‖op ≤ 5. (D.26)

Therefore, if K ≤ min{1/(16r), n/(8 log(K/δ))}, then with probability at least 1− 2δ,

‖f̃n‖2C1(X) ≤ 10π2K3‖f̃n‖2n. (D.27)

We defer the proof of Lemma 64 until after we complete the proof of (5.16).

Now, if ‖f̃n‖2n ≥ 3
2‖f0‖2n, then by the triangle inequality

‖f̃n − f0‖n ≥ ‖f̃n‖n − ‖f0‖n ≥
√

3

2
· ‖f0‖n =

√
3

2
· θ.

Otherwise ‖f̃n‖2n ≥ 3
2‖f0‖2n. In this case, we show that |f̃n(Xi) − f0(Xi)| must be large (on the order of θ)

for many points Xi which are close to x = 1/2. Let us suppose without loss of generality that f̃n(1/2) ≤ θ/2
and consider points Xi ∈ Q1 close to x = 1/2; otherwise if f̃n(1/2) > θ/2 we could obtain the exact same
bound by considering Xi ∈ Q2. For each point Xi ∈ Q1, by Lemma 64 we have that with probability at
least 1− 2δ,

|f̃n(Xi)− f̃n(1/2)| ≤ CK3/2‖f̃n‖n · |Xi − 1/2| ≤
√

10πK3/2θ · |Xi − 1/2|.

Since f̃n(1/2) ≤ θ/2 and f0(Xi) = θ/2 for all Xi ∈ Q1 it follows that

|f̃n(Xi)− f0(Xi)| ≥ θ −
√

10πK3/2θ · |Xi − 1/2|,

and consequently

|f̃n(Xi)− f0(Xi)| ≥ θ/2, for any Xi ∈ Q1 such that |Xi − 1/2| ≤ 1/(
√

40πK3/2).

This yields a lower bound on ‖f̃n − f0‖n; letting QK :=
[

1
2 −

1√
40πK3/2

, 1
2 − r

]
, we have that

‖f̃n − f0‖n ≥
θ

2
· Pn

(
Qk

)
.

Then as long as K−3/2 ≥
√

160πr, from the multiplicative form of Hoeffding’s inequality (Lemma 15)

P (n)(QK) ≥ 1√
160πK3/2

≥ 2r =⇒ P
(
Pn(QK) ≥ 1√

640πK3/2

)
≥ 1− exp(−nr/4) ≥ 1− 4

n2
.

Putting the pieces together, we conclude that if K ≤ min{1/(8r), n/(8 log(K/δ)), (
√

160π/r)2/3}, then

‖f̃n − f0‖n ≥
θ

51πK3/2
,

with probability at least 1− 2δ − 4n2. Taking δ = 1/8 then implies the claim.

205

Proof of Lemma 64. Proof of (D.24). Recall that f̃n =
∑K
k=1 β̃kφk. Exchanging sum with derivative,

we have that

d

dx
f̃n(x) = −π

K∑
k=1

β̃kk sin(kπx).

Thus taking absolute value and applying the Cauchy-Schwarz inequality gives

|f̃ ′n(x)|2 ≤ π2K2
K∑
k=1

(
sin(kπx)

)2‖β‖22 ≤ π2K3‖β‖22.

On the other hand, we can also relate the empirical norm ‖f̃n‖2n to the `2 norm of β. Specifically,

‖f̃n‖2n = β>Σ̂β ≥ ‖β‖22
‖Σ̂−1‖op

≥ ‖β‖22
‖Σ−1‖op · ‖Σ1/2Σ̂−1Σ1/2‖op

=
‖β‖22‖Σ‖op

‖Σ1/2Σ̂−1Σ1/2‖op

Rearranging, we see that

sup
x∈[0,1]

|f̃ ′n(x)|2 ≤ π2K3

‖Σ‖op
‖Σ1/2Σ̂−1Σ1/2‖op ≤

π2K3

1− ‖IK − Σ‖F
‖Σ1/2Σ̂−1Σ1/2‖op

with the latter inequality following since ‖Σ‖op ≥ ‖IK‖op − ‖IK − Σ‖op ≥ 1− ‖IK − Σ‖F .

Proof of (D.25). We will show that for all 1 ≤ k < ` ≤ K,

(1− 〈φk, φk〉P (n))2 ≤ 32r2, and |〈φk, φ`〉P (n) | ≤ 64r2. (D.28)

This implies ‖I − Σ‖2F ≤ 32K2r2, so that ‖I − Σ‖F ≤ 1/2 so long as K ≤ 1/(16r).

The proof of (D.28) follows from computing some standard integrals. We separate the computation based
on whether k = 1 or k > 1.

Case 1: k = 1. When k = 1, 〈φ1, φ1〉P (n) = 1 and (1 − 〈φ1, φ1〉P (n))2 = 0. Additionally, by symbolic
integration we find that

〈φk, φ`〉P (n) =
−2
√

2

(1− 2r)
· cos(`π/2) sin(`πr)

`π
,

and therefore [
〈φk, φ`〉P (n)

]2 ≤ 8

(1− 2r)2
·
(

sin(`πr)

`π

)2

≤ 8

(1− 2r)2
r2 ≤ 16r2,

where in the second-to-last inequality follows because sin(x)/x ≤ 1, and the last inequality follows by our
assumed upper bound on r.

Case 2: k > 1. When k > 1,

〈φk, φk〉P (n) = 1− 2

(1− 2r)

cos(kπ) sin(2kπr)

kπ
=⇒

[
1− 〈φk, φk〉P (n)

]2 ≤ 4

(1− 2r)2
·
(

sin(2kπr)

kπ

)2

≤ 32r2.

Similarly,

〈φk, φ`〉P (n) = − 4

(1− 2r)

[
cos((k + `)π) sin((k + `)πr)

(k + `)π
+

cos((k − `)π) sin((k − `)πr)
(k − `)π

]

206

and therefore

[
〈φk, φ`〉P (n)

]2 ≤ 16

(1− 2r)2

([
sin((k + `)πr)

(k + `)π

]2

+

[
sin((k − `)πr)

(k − `)π

]2)
≤ 64r2.

Proof of (D.26) Denote Φ(x) = (φ1, . . . , φK(x)) ∈ RK for any x ∈ [0, 1]. Then for any x ∈ [0, 1],

‖Σ−1/2Φ(x)‖ ≤ ‖Σ−1‖1/2op ‖Φ(x)‖2 ≤ ‖Σ−1‖1/2op

√
2K ≤ 2

√
K

with the second-to-last inequality following from (D.25), and the last inequality following since |φk(x)| ≤
√

2
for all k. Thus ‖Σ−1/2Φ(x)‖/

√
K ≤ 2, and (D.26) follows from Theorem 1 of Hsu et al. [2012].

Proof of (D.27). Follows immediately.

D.5 Proof of Proposition 16

To begin with, we show that

1

n
(I + ρ∆)gn = δi =

1

n
(I + ρn2

sLn)sg, in Rn, (D.29)

and therefore
(I + ρsLn)(gn − sg) = ρ(sLn −∆)gn, in Rn. (D.30)

To show (D.29), we must recall a series of facts.

1. Fact 1. The kth eigenpair (λk, vk) of n2
sLn is given by

λk = 2n2(1− cos(πk/n), vk,i = cos(πki/n− πk/2n) = φk(xi), for 1 ≤ k ≤ n.

2. Fact 2. The eigenfunctions φk of ∆ each have unit L2(Pn) norm,

‖φk‖2n = 1, for 1 ≤ k ≤ n.

Thus φ1, . . . , φn form an orthonormal basis of Rn, with respect to the inner product 〈·, ·〉n. For any
u =

∑n
k=1 akφk, v =

∑n
k=1 bkφk, it follows that

〈u, v〉n =

n∑
k=1

akbk = 〈u, v〉P .

3. Fact 3. The function (I + ρ∆)gn is in the span of φ1, . . . , φn. Therefore for any u =
∑n
k=1 akφk, we

have
〈(I + ρ∆)gn, u〉n = 〈(I + ρ∆)gn, u〉P = 〈(I + ρ∆)g, u〉P = u(xi),

the second equality following because (I + ρ∆)gn and u belong to the span of φ1, . . . , φn.

Since φ1, . . . , φn form an orthonormal basis of Rn, Fact 3 implies 〈(I+ρ∆)gn, v〉n = vi for all vectors v ∈ Rn,
which is equivalent to (D.29).

Proceeding from (D.30), multiplying by sL
−1/2
n , squaring and averaging each side gives

‖(sL−1/2
n + ρsL1/2

n)(sg − g)‖2n = ρ2‖sL−1/2
n (sLn −∆)gn‖2n.

207

The left hand side of this equality is exactly the left hand side of (5.28). Thus it remains only to upper
bound the right hand side. To do this, we first observe that because φk are eigenfunctions of both sLn and
∆,

sL−1/2
n (sLn −∆)gn =

n∑
k=1

〈g, φk〉P sL−1/2
n (sLn −∆)φk =

n∑
k=2

〈g, φk〉P
λk − λk(∆P)

λ
1/2
k

φk

Since φ1, . . . , φn are orthonormal with respect to 〈·, ·〉n, in squared norm we have

‖sL−1/2
n (sLn −∆)gn‖2n =

n∑
k=2

〈g, φk〉2P ·
(
λk − λk(∆P)

λ
1/2
k

)2

=

n∑
k=2

(
φk(xi)

)2
(1 + ρλk(∆P))2

·
(
λk − λk(∆P)

λ
1/2
k

)2

≤
n∑
k=2

1

(1 + ρλk(∆P))2
·
(
λk − λk(∆P)

λ
1/2
k

)2

; (D.31)

the latter equality follows from the spectral representation g(x) =
∑
k φn(xi)φn(x)/(1 + ρλk(∆P)).

Taking a Taylor expansion of λk = 2n2
(
1−cos(kπ/n)) around k = 0, we obtain the following estimates,

|λk − λk(∆P)| ≤ C k
4

n2
, and λ

1/2
k ≥ ck, for all 2 ≤ k ≤ n.

Plugging these estimates back into (D.31) gives the upper bound

‖sL−1/2
n (sLn −∆)gn‖2n ≤ C

1

ρ2n4

n∑
k=2

k2 = C
1

ρ2n
,

which proves the claim.

D.6 Proof of Proposition 17

(TODO)

208

	Introduction
	Why Spectral Methods on Neighborhood Graphs?

	Statistical Guarantees for Local Spectral Clustering on Neighborhood Graphs
	PPR clustering
	Worst-case guarantees for PPR clustering
	PPR on a neighborhood graph
	Cluster accuracy
	Population normalized cut, conductance, and local spread
	Main Results
	Related Work
	Organization

	Recovery of a generic cluster with PPR
	PPR cluster recovery: the fixed graph case
	Improved bounds on mixing time
	Sample-to-population results
	Cluster recovery

	Recovery of a density cluster with PPR
	Recovery of well-conditioned density clusters

	Negative result
	Lower bound on symmetric set difference
	Comparison between upper and lower bounds

	Experiments
	Validating theoretical bounds
	Empirical behavior of PPR

	Discussion

	Minimax Optimal Regression over Sobolev Spaces via Laplacian Regularization on Neighborhood Graphs
	Introduction
	Summary of Results
	Background
	Minimax Optimality of Laplacian Smoothing
	Manifold Adaptivity
	Discussion

	Minimax Optimal Regression Over Sobolev Spaces via Laplacian Eigenmaps on Neighborhood Graphs
	Introduction
	Setup and Background
	Nonparametric regression with random design
	Laplacian eigenmaps
	Sobolev Classes
	Minimax Rates and Spectral Series Methods

	Minimax Optimality of Laplacian Eigenmaps
	First-order Sobolev classes
	Higher-order Sobolev classes
	Analysis
	Computational considerations

	Manifold Adaptivity
	Laplacian eigenmaps error rates under the manifold hypothesis

	Out-of-sample error
	Experiments
	Future Work

	Discussion
	Comparison between Laplacian Smoothing and Laplacian Eigenmaps
	Statistical Efficiency
	Computational Efficiency
	Regularity of Estimates

	Graph Laplacian methods and the cluster assumption
	Setup
	Upper bounds on risk of graph Laplacian methods
	Lower bounds on risk of kernel smoothing and least squares
	Experiments

	Equivalent kernel perspective
	Discrete-to-continuum
	Bandwidth of equivalent kernel
	Shape of equivalent kernel
	Predictions based on theoretical findings
	Experiments

	Chapter 2 Appendix
	Fixed graph results
	Misclassification error of clustering with PPR and aPPR
	Uniform bounds on PPR
	Mixedness of lazy random walk and PPR vectors
	Proof of Proposition 1
	Spectral partitioning properties of PPR

	Sample-to-population bounds
	Review: concentration inequalities
	Sample-to-population: normalized cut
	Sample-to-population: local spread
	Sample-to-population: conductance

	Population functionals for density clusters
	Balls, Spherical Caps, and Associated Estimates
	Isoperimetric inequalities
	Reverse isoperimetric inequalities
	Proof of Lemma 2
	Proof of Proposition 4
	Proof of Proposition 5
	Population functionals, hard case

	Proof of Major Theorems
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Additional results: aPPR and Consistency of PPR
	Generic cluster recovery with aPPR
	Perfectly distinguishing two density clusters

	Experimental Details
	Experimental settings for Figure 2.2
	Experimental settings for Figure 2.3

	Chapter 3 Appendix
	Preliminaries
	Graph-dependent error bounds
	Error bounds for linear smoothers
	Analysis of Laplacian smoothing

	Neighborhood graph Sobolev semi-norm
	Stronger bounds under Lipschitz assumption

	Bounds on neighborhood graph eigenvalues
	Proof of Theorem 27
	Proof of Proposition 21
	Non-random functionals and integrals
	Random functionals
	Proof of Propositions 22 and 23

	Bound on the empirical norm
	Graph functionals under the manifold hypothesis
	Proofs of main results
	Proof of estimation results
	Proofs of testing results
	Two convenient estimates

	Concentration inequalities

	Chapter 4 Appendix
	Graph-dependent error bounds
	Upper bound on Estimation Error of Laplacian Eigenmaps
	Upper bound on Testing Error of Laplacian Eigenmaps

	Analysis of Spectral Series Estimator
	Graph Sobolev semi-norm, flat Euclidean domain
	Decomposition of graph Sobolev semi-norm
	Approximation error of non-local Laplacian
	Boundary behavior of non-local Laplacian
	Estimate of non-local Sobolev seminorm
	Assorted integrals

	Graph Sobolev semi-norm, manifold domain
	Decomposition of graph Sobolev seminorm
	Error due to Euclidean Distance
	Approximation Error of non-local Laplacian
	Estimate of non-local Sobolev seminorm
	Integrals

	Lower bound on empirical norm
	Proof of Proposition 10
	Proof of Proposition 13

	Proof of Main Results
	Estimation Results
	Testing Results

	Analysis of kernel smoothing
	Some preliminary estimates
	Proof of Lemma 5
	Kernel smoothing bias

	Miscellaneous
	Concentration Inequalities
	Taylor expansion

	Chapter 5 Appendix
	Proof of Lemma 6
	Laplacian Regularization Out-of-Sample
	Proof of Theorem 21
	Proof of Proposition 28

	Proof of Proposition 14
	A Useful Lemma

	Proof of Proposition 15
	Proof of (5.15)
	Proof of (5.16)

	Proof of Proposition 16
	Proof of Proposition 17

