
Optimized Quantum Circuit Generation with
SPIRAL

Scott Mionis

CMU-CS-21-114
May 2021

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Franz Franchetti, Chair

Seth Goldstein

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright © 2021 Scott Mionis

Keywords: compilers, Fourier transform, SPIRAL, quantum computing, circuit optimiza-
tion, code generation

Dedicated to whomever finds something of significance in this work and manages to employ it
successfully

iv

Abstract
Quantum computers [55] have been at the bleeding edge of computing tech-

nology for nearly 40 years, and while there are several barriers that prevent their
immediate utility, research in this area continues to progress due to their immense
promise. Specifically, these systems have been theorized to decrease the complexity
of several important problems, most tangibly violating the security of RSA encryp-
tion [56] and possibly the extended Church-Turing thesis [8]. In an effort to harness
the revolutionary potential of these systems, research has largely focused around the
physical construction of at-scale quantum devices. However, the software infras-
tructure that compiles programs for these devices also requires further development
before the benefits of the quantum era can be realized; this area has been traditionally
under-emphasized.

In the near-term, Noisy Intermediate-Scale Quantum (NISQ) devices maintain
only sparse connectivity between qubits, meaning that quantum programs assuming
dense connectivity must be efficiently routed onto the hardware. If done naı̈vely,
this process often requires the compiler to insert an overwhelming number of data
movement operations; these alone can violate the practicability of the program since
quantum states are fragile and degrade rapidly if the critical path is too long. Existing
approaches have made great strides in making this process more efficient, but have
failed to capitalize on relevant advancements in the classical domain and are plagued
by a representation mismatch that limits the scope of program transformations that
can be applied.

In this work, we present a novel approach to compiling more efficient quantum
programs. We capture the input algorithm as a high-level mathematical transform,
and after generating a multitude of architecture-compliant programs directly from
that specification, we apply traditional search techniques to select the best output.
This approach allows us to produce shorter quantum programs as we can lever-
age high-level symmetries of the target transform to perform global rewrites; this
task is nearly impossible given only a program stream. To implement the proposed
framework we leverage SPIRAL [26][24][54], a code generation platform built on
the GAP [57] computer algebra system, and restate quantum computing in terms of
pure linear algebra such that we can treat this seemingly domain-specific problem
as a generic matrix factorization task. We ultimately demonstrate that SPIRAL is
a viable supplemental tool for future quantum software frameworks, and provides
tangible benefits when used to compile symmetric algorithms like the Fourier trans-
form.

vi

Acknowledgments
Thank you to my family and extended family, who may not be the principal ben-

eficiaries of this work but are enthusiastic supporters of it nonetheless. Additional
thanks are due to my research advisors, specifically Dr. Franz Franchetti and Dr.
Seth Goldstein, as well as Dr. Jason Larkin from the Software Engineering Institute
who has advised me on this project. I am additionally indebted to all the faculty and
students of Carnegie Mellon University whom I have had the privilege of interacting
with during my studies.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 The Quantum Optimization Problem . 1
1.1.2 Existing Results . 3
1.1.3 Challenges to Overcoming Deficiencies 4

1.2 Overview . 7
1.3 Contributions . 9
1.4 Organization . 10

2 A Primer on Quantum Information Science 11
2.1 What are Quantum Computers? . 11
2.2 Qubit Fundamentals . 13

2.2.1 One Qubit . 13
2.2.2 Multiple Qubits . 16

2.3 Quantum Circuits . 18
2.3.1 Circuits as Matrix Factorizations . 19
2.3.2 Connectivity . 21

2.4 Problem Formulation . 24
2.4.1 Formalization . 24
2.4.2 General Approach . 24

2.5 Conclusions . 26

3 SPIRAL Quantum Compiler 28
3.1 Approach . 28
3.2 SPIRAL . 29

3.2.1 GAP . 29
3.2.2 Intermediate Representations . 29
3.2.3 Rewriting System . 31

3.3 Quantum Circuit Generation . 31
3.3.1 System Inputs . 32
3.3.2 Formula Breakdown . 33
3.3.3 Formula Rewriting . 40
3.3.4 Global Reordering . 43
3.3.5 Search . 46

ix

3.3.6 Heuristics . 47
3.3.7 System Outputs . 47

3.4 Conclusions . 49

4 Case Study: Quantum Fourier Transform 50
4.1 Why is the QFT important? . 51
4.2 The FFT Butterfly . 51
4.3 Classical-to-Quantum Translation . 54
4.4 QFT Optimization in SPIRAL . 57

4.4.1 General Approach . 58
4.4.2 Static Hypercube Algorithm . 59
4.4.3 Mesh Embedding . 63
4.4.4 Dynamic Hypercube Algorithm . 65
4.4.5 Diagonal Hypercube Algorithm . 68
4.4.6 Non-powers of two . 70

4.5 Conclusions . 71

5 Evaluation 72
5.1 Generalized Connectivity Satisfaction . 72

5.1.1 Results . 73
5.1.2 Analysis . 75

5.2 Quantum Fourier Transform . 77
5.2.1 QFT on mesh architectures . 77
5.2.2 QFT on non-mesh architectures . 79

5.3 Conclusions . 83

6 Conclusions 85
6.1 Overview . 85
6.2 Directions for Future Work . 86

6.2.1 Proof of correctness . 88
6.2.2 Error-correcting Codes . 88

6.3 Closing Remarks . 89

Bibliography 91

x

List of Figures

1.1 Increasing sizes of QFT on a fully-connected architecture [left] and nearest-
neighbor grid [right]. Y-axis scaling differs. Data is from Table 1.1. 3

1.2 Traditional quantum circuit compilation approach (transpilation): input circuit [left],
output circuit [right]. Swap operations are expressed graphically as x-terminated
lines. 5

1.3 Functionally-equivalent QFT circuits transpiled onto a ring architecture. 6
1.4 Proposed generative approach to compiling optimized quantum circuits. 8

2.1 Google’s sycamore quantum computer. Sourced from [10]. 12
2.2 Measurement of φ in |0〉 / |1〉 basis [left], measurement of φ in |+〉 / |−〉 ba-

sis [right]. The flattened circle representation that is displayed assumes real co-
ordinates. 15

2.3 Bloch Sphere in traditional notation [left], Represented as a 3D vector space [right]. 15
2.4 A quantum circuit [left] and its QASM representation [right]. 18
2.5 Various IBM quantum computer connectivity maps. Sourced from [44]. 22
2.6 Expression tree factorizations of transform Mat 25
2.7 Expression tree contraction and simplification. 26

3.1 Breakdown rules in classical SPIRAL. 30
3.2 Control flow graph of QSPIRAL compiler stages. 32
3.3 Breakdown rules for quantum Hadamard transform. 34
3.4 Possible placements for non-terminal QFT on a 4×4 lattice; scattered placement

(e.g. (c)) will be rejected due to connectivity constraints. In this example, k = 4
and N = 16. 35

3.5 Scheduling a QFT transform on adjacent [top] and non-adjacent [bottom] qubits.
Directly stating the bottom operation as a tensor product is problematic. 36

3.6 Decomposition of qCirc and adjacency matrix pruning. 37
3.7 Base rule for qCNOT fails to fire if connectivity for qubits i and j is not met in

adjacency matrix arch. 38
3.8 Full breakdown of a two-transform algorithm; colored objects indicate non-

terminals that are subject to further decomposition. 39
3.9 Subset of QSPIRAL rewrite rules. Equation (3.18) is implemented in Figure 3.11. 40
3.10 Rewrite stage control flow graph. 40
3.11 Reorder object consolidation. 41
3.12 Reorder and Junction resolution in QSPIRAL backend. 42

xi

3.13 Formula rewriting in QSPIRAL: a) expression after Junction and Reorder are
removed, b) expression after tensor contraction, c) expression after rewrite rule
cancellation. 42

3.14 Changing the starting configuration of qubits to minimize reordering cost: old
configuration [top], optimal configuration incurring zero staging cost [bottom]. . 43

3.15 Permuting the starting configuration of an SPL formula. Transform placements
are untouched but staging cost is reduced to 0. 45

3.16 Unparsing QSPIRAL’s symbolic matrix factorization; 4-qubit QFT factoriza-
tion [left] 4-qubit QFT QASM program [right]. 48

3.17 Equivalent matrix expansion of 4-qubit QFT circuit (excluding vector normal-
ization terms) [left] and a 16-point DFT [right]. 48

4.1 8-point radix-2 DIT FFT algorithm. Sourced from [52]. 52
4.2 8-point radix-2 DIF FFT algorithm. Sourced from [52]. 53
4.3 Cooley-Tukey decomposition in sparse matrix form [left], state vector dataflow

representation [right]. Sourced from [25]. 54
4.4 Implementing FFT butterflies with Hadamard gates. Different H placements

yield different butterfly stages. 55
4.5 Implementing a 4-point FFT with Hadamard and controlled rotation gates. 56
4.6 Implementing an 8-point FFT with Hadamard and controlled rotation gates. . . . 56
4.7 Transposing the DIF QFT [left] into the DIT QFT [right]. 56
4.8 Comparison between radix-2 QFT [left] and radix-4 QFT [right]. 57
4.9 4-qubit QFT circuit. 59
4.10 A 16-qubit hypercube. 60
4.11 The 4-qubit planar swap sequence. 61
4.12 A 16-qubit QFT via Cooley-Tukey decomposition. 62
4.13 Modified 16-qubit Cooley-Tukey QFT, with hypercube-informed twiddle schedul-

ing. 62
4.14 Expanded static hypercube QFT decomposition (final bit reversal omitted). . . . 63
4.15 Embedding a 16-qubit hypercube into a 4× 4 mesh topology [top], 32-qubit into

4× 8 mesh [bottom]. 64
4.16 A 16-qubit hypercube embedding after performing a 3-dimensional cube rotation. 65
4.17 A 16-qubit hypercube embedding after performing a 4-dimensional cube rotation. 65
4.18 The 16-qubit dynamic hypercube QFT decomposition (static hypercube with ad-

ditional embedding rotations). 67
4.19 A 64-qubit hypercube. Qubit 0 has 6 neighbors with edges marked in red. 68
4.20 Partitioning of N -qubit hypercubes into rings of N/4-qubit hypercubes. 69
4.21 Division of N -qubit hypercube embedding into 4 N/4 regions. Partial flattening

onto mesh topology [left], high-level view [right]. 69
4.22 Twisted torus handshaking pattern. 70

5.1 Benchmarks for evaluating generalized connectivity satisfaction. 73
5.2 SWAP count on test circuits for three quantum architectures. X-axis is circuit

number, in the order shown by Figure 5.1. 74

xii

5.3 Search space histogram evaluated with respect to SWAP count: athens test cir-
cuit 6 [left], athens test circuit 4 [right]. Circuits resulting from all valid rule
trees are plotted with swap count on the x-axis and circuit count on the y-axis. . . 76

5.4 Naı̈ve scheduling problem for low-level circuit input, with a reordering step be-
tween every gate. 76

5.5 Diagonal hypercube QFT SWAP count evaluation on lattice: 4-32 [left], 4-
64 [right]. Data is from Table 5.1. 77

5.6 Dynamic hypercube QFT SWAP count evaluation on lattice: 4-32 [left], 4-
64 [right]. Data is from Table 5.1. 79

5.7 Chosen non-mesh architectures. Images sourced from Qiskit backend and adapted
from [44]. 80

5.8 Hypercube QFT SWAP count evaluation on non-mesh. Data is from Tables 5.2,
5.3 and 5.4. 81

6.1 Full overview of quantum circuit generation procedure. 87

xiii

List of Tables

1.1 Qiskit QFT gate counts across optimization levels, on mesh architectures. 4
1.2 Qiskit 128-qubit QFT gate counts on a 12× 12 mesh architecture. 4

2.1 Expressing a valid unitary matrix decomposition in Backus-Naur form (BNF) [4]. 24

3.1 Subset of QSPIRAL non-terminals. 32
3.2 QSPIRAL algorithm syntax. 33
3.3 Modified QSPIRAL algorithm syntax, with explicit architecture parameter. . . . 37
3.4 Subset of QSPIRAL’s SPL syntax, excluding size annotations. 38

5.1 Hypercube QFT SWAP count on lattice. 78
5.2 4-qubit QFT SWAP count on non-mesh. 82
5.3 16-qubit QFT SWAP count on non-mesh. 83
5.4 32-qubit QFT SWAP count on non-mesh. 84

xv

Chapter 1

Introduction

1.1 Motivation
Quantum computing has been the subject of intense research in the past decades due to the
unparalleled speedup it promises for certain forms of computation. By leveraging quantum me-
chanics to store large amounts of information in a few particles, called quantum bits or qubits,
quantum computers have the potential to make several classically-difficult problems tractable;
there is even evidence that these devices could violate the extended Church-Turing thesis [8].
Unearthing the full taxonomy of applications benefiting from quantum technology has only just
begun, and immense promise has been shown with the development of algorithms for factoriza-
tion and search [59][30]. However, while this nascent quantum theory is developing rapidly, it
fast outpaces the true capabilities of modern hardware and software infrastructure. The effort to
construct larger and/or noiseless physical devices is the object of much research in the field, and
currently poses a significant physical barrier. However, even if our hardware challenges were
overcome overnight, the existing software toolchains for these devices betray the fact that our
technological deficiency lies not only in the chip itself but also in the languages and compilers
needed to express and run quantum programs.

We analyze the deficiencies of existing infrastructure by first focusing on the tasks which
make quantum compilation difficult. We then present results generated from the leading edge of
existing technology and explain why those results are inadequate. Subsequently, we describe the
challenges researchers face when trying to improve these results, and why a radically different
approach is needed.

1.1.1 The Quantum Optimization Problem

Before discussing the driving factors behind the deficiencies present in existing compilation tech-
nologies, we focus first on what makes the optimization problem itself hard. In general, compil-
ing quantum circuits is non-trivial for the following reasons.

• Connectivity. Unlike classical computers, quantum computers execute a series of opera-
tions that directly modify qubits in-place in the hardware. The performance of quantum
computers is thus directly linked to where these qubits are located in the physical device.

1

This is primarily due to the set of multi-qubit operations, called controlled operations, that
typically operate on two qubits at a time and require the qubits to be physically adjacent in
the device. Adjacency can be achieved by some physical circuit or bus in the chip itself,
but for manufacturing and feasibility reasons, qubits are typically only sparsely connected.
For controlled operations between qubits that are not linked in this manner, data movement
instructions must be inserted by the compiler to dynamically shift values around and meet
this constraint.

• Coherence. Qubits are able to retain massive amounts of information only because they
are kept in specific quantum states; information could be stored, for example, in the spin
of an electron or the polarization of a photon. These states are fragile and extremely
susceptible to environmental interference; unfortunately they degrade rapidly if too many
operations are performed on them. As a result, longer programs typically yield more error-
prone results, and so the critical path of a program must be kept as short as possible.
Quantum operations can also be imperfectly implemented, and these otherwise small errors
can cascade if allowed to accumulate over long operation sequences.

• Complexity. Routing a quantum algorithm efficiently onto hardware, in a manner that
minimizes the number of data movement operations needed while meeting the connectivity
constraints of the hardware, is an NP-complete problem. Specifically, elements of this
problem can be reduced to the maximum common edge subgraph problem [31]. Therefore,
finding circuits with a minimal number of data movement instructions requires developing
effective heuristics for this problem.

These three factors constructively interfere with one another to make the compilation prob-
lem (at least for an optimizing compiler) a distinctly difficult task. The connectivity constraint
introduces structural hazards that require compiler intervention, typically resulting in bloated
code sizes if done inefficiently. The coherence constraint means that if too many data movement
operations are inserted, the quality of the results, or even the practicability of executing the pro-
gram, will suffer. Finally, the complexity constraint implies that inserting these data movement
operations in a minimalistic way is NP-hard.

To motivate the importance of limiting the number of data movement operations, we can
look at architectural statistics for the SWAP operation (the quantum data movement primitive)
on various quantum computers. Google’s Sycamore computer has a SWAP error rate that is
5-6 times higher than the error rate for single-qubit operations [3]. Similar results can be seen
from devices by IBM [48] and IONQ [17]. In addition, SWAP operations are simply more
computationally intensive to implement than single-qubit gates, due both to the nature of the task
and the fact that single-qubit operations can often be performed in parallel. Finally, ignoring the
specifics of the SWAP operation itself, the other operations in the program that actually serve to
forward the computation are often fixed properties of the algorithm; a quantum Fourier transform
(QFT) requires a fixed number of rotation gates and Hadamard gates. Conversely, the number
of SWAP operations typically grows unnecessarily with increasing program size, usually due to
the inadequacies of our connectivity solvers coupled with the sparsity of the hardware. If critical
path is a concern, data movement must be the primary target for minimization.

2

1.1.2 Existing Results
We have elaborated on why the quantum optimization problem is difficult, and why solving it
effectively is important. We now elaborate on the deficiencies of existing approaches.

To show this, the compilation statistics in Figure 1.1 were generated by compiling a series of
Fourier transform circuits onto a nearest-neighbor grid topology with IBM’s Qiskit platform [1].
The data-movement primitive used in these systems is the SWAP operation, which swaps the
values of two adjacent qubits. Given the aforementioned constraints, we would want to have as
few swaps as possible. On a device with full connectivity, no swaps should be necessary at all.

Figure 1.1: Increasing sizes of QFT on a fully-connected architecture [left] and nearest-neighbor
grid [right]. Y-axis scaling differs. Data is from Table 1.1.

As the number of qubits in the circuit increases, and hardware layouts remain sparse with
respect to edges, we can see that the data movement overhead becomes unacceptably large; the
proportion of SWAP operations to actual computational operations becomes untenable. Not only
is the largest portion of runtime dedicated to moving values around, but coherence may become
problematic since the compiler-inserted data movement operations rapidly increase circuit size.
In addition to coherency concerns, SWAP operations also have a high error rate, and so this also
means our results may get progressively worse as the number of qubits scales. As seen further
with the 128-qubit QFT in Table 1.2, this unsavory trend is exponential; this is unsustainable if
the goal is to run even larger algorithms in the future. This problem is, in our view, as limiting
to the growth of quantum technology as the physical constraints barring us from manufacturing
larger devices.

3

Qiskit QFT gate counts on a nearest-neighbor lattice

Qubits Optimization Connectivity SWAP Twiddle H Circuit Depth
8 0 4x2 26 28 8 30

16 0 4x4 123 120 16 66
32 0 6x6 781 496 32 214
64 0 8x8 3893 2016 64 715
8 1 4x2 20 28 8 26

16 1 4x4 132 120 16 67
32 1 6x6 818 496 32 215
64 1 8x8 4156 2016 64 765
8 2 4x2 24 28 8 28

16 2 4x4 156 120 16 81
32 2 6x6 844 496 32 223
64 2 8x8 4149 2016 64 776
8 3 4x2 22 28 8 26

16 3 4x4 143 120 16 68
32 3 6x6 740 496 32 190
64 3 8x8 3406 2016 64 501

Table 1.1: Qiskit QFT gate counts across optimization levels, on mesh architectures.

Qiskit 128-qubit QFT gate counts on a nearest-neighbor lattice

Qubits Optimization Connectivity SWAP Twiddle H Circuit Depth
128 0 12x12 21793 8128 128 2572
128 1 12x12 22059 8128 128 2401
128 2 12x12 20303 8128 128 2241
128 3 12x12 18660 8128 128 1865

Table 1.2: Qiskit 128-qubit QFT gate counts on a 12× 12 mesh architecture.

1.1.3 Challenges to Overcoming Deficiencies

We have analyzed the problem itself and why existing approaches are inadequate. However,
there are several outstanding challenges that prevent immediate progress from being made.

The first challenge in developing better systems is due to the nature of quantum programs.
A significant consideration is that quantum programs are mathematical objects as opposed to
“RAM mutators.” Quantum computers derive their power from the parallel nature of qubits;
each individual qubit state can be written as a 2-dimensional complex vector, the values of which
can be modified and measured. The state of a quantum system at any point in the computation
is determined by the values of these vectors. This is a departure from the classical world, where
the state of a system is a function of register, cache and memory values (or for a turing machine
model, the location of the tape head, the tape contents and the DFA state [63]). This vector
representation seems drastically simpler, but it also poses significant computational problems.

4

The state of an N -qubit system for arbitrary N is represented by a 2N -length complex column
vector. Additionally, since a quantum program is essentially limited to rotating this state vector
in a length-preserving manner (a fact derived in Chapter 2), the effect of an N -qubit quantum
program is succinctly described by a 2N×2N transform matrix that acts on the input state vector.
This clearly aligns with our view of quantum programs as pure mathematical operators, and this
transform matrix can be derived by composing the individual mathematical operators that make
up a quantum program. However, it is unfortunate that the transform matrix is exponentially
large with respect to N .

For even small values of N , this matrix is often too large to compute or store conveniently.
This poses a problem for verification which typically requires expanding and comparing the
transform matrices for the two circuits in question in order to establish equality. This also means
that when compiling a quantum program stream, even though we could in principle derive the
overall 2N × 2N transform matrix, it is almost never practical to do so. The primary side-effect
of this is that it is nearly impossible for the compiler to know exactly what the input program is
computing; this is also a problem faced by many classical compilers for imperative programs.
Compilers in this space are therefore traditionally limited to making local changes on a small
scale, since these are all that can be done safely while making sure that the program remains
functionally equivalent to the input. This makes it difficult to detect more complex semantics-
preserving algorithm rewrites; if the compiler knew what the input algorithm was, it could apply
more ambitious manipulations. The fact that quantum programs operate in the O(2N) vector
space rather than the O(N) qubit space, then, is both the biggest benefit of quantum systems and
a primary contributor to the bottleneck described in the above sections.

This unfortunate reality is exacerbated by the structure of traditional compiler architectures
in this space, particularly by the representations used to define the inputs and outputs of the
system. The most common low-level representation of quantum programs is the quantum circuit,
where individual operations are graphically represented as gates applied to input qubits in a
layout similar to that of a boolean circuit or hardware datapath diagram. This representation fits
because it matches our understanding that a quantum program is simply a feed-forward datapath
that applies linear algebraic operators to the input vector. A common approach, then, is to take
such a circuit as input and have the compiler map it onto the target hardware by inserting SWAP
operations (among other manipulations that are of less consequence in this thesis), as is shown
in Figure 1.2.

Figure 1.2: Traditional quantum circuit compilation approach (transpilation): input circuit [left],
output circuit [right]. Swap operations are expressed graphically as x-terminated lines.

5

The compiler takes in both a circuit definition and a target architecture; the connectivity in-
formation of various hardware locations is typically expressed as a graph. The compiler performs
local, peephole optimizations to try to insert the fewest swap operations possible that still make
the input circuit executable on the target architecture, an approach commonly referred to as “tran-
spilation”. This approach is problematic due to the low-level representation used to express the
input. As stated before, each quantum circuit effectively implements a specific 2N × 2N linear
transformation, but this is a surjective mapping and this transformation is usually implementable
in circuit form in various ways. Figure 1.3 displays Qiskit transpilation results for 4 different
circuits that all implement the same transformation, specifically a 24-point Fourier transform.

Figure 1.3: Functionally-equivalent QFT circuits transpiled onto a ring architecture.

For each of the input circuits in Figure 1.3, the compiler has successfully mapped it onto the
target architecture. However, mapping a specific circuit onto an architecture is fundamentally
not the problem that we want the compiler to solve. For example, if we were to transpile circuits
A, C or D from Figure 1.3, we would much rather receive circuit B’s result than our own. What
the user actually wants the compiler to find is the most efficient circuit, that when run on the
target architecture, produces the same result as the input circuit. Notice that this search problem
is completely agnostic to the input circuit besides using it to determine the 2N × 2N transform
that the output has to implement. Unfortunately, as we have stated above that reconstructing
this 2N × 2N transform is impossible, in order to achieve this goal with the traditional transpiler
paradigm we would have to find an efficient way of searching over the space of circuits that
implement the desired transform using only the single gate-level implementation we are afforded.

6

We can show that this is nearly impossible.
Some circuits (like circuits A, B and C from Figure 1.3) are related to one another by a

semantics-preserving reordering of operations. Conceivably, this fraction of the overall circuit
space could be reconstructed even if only given a single circuit that implements the desired
transform. More generally, however, we realize that global manipulations of signal processing
algorithms, such as the transformation of the DFT algorithm into the more efficient FFT algo-
rithm, rely on group-theoretic arguments [18] and are extremely difficult to derive when simply
manipulating a compiled program stream. A concrete example of this is the transposition of a
decimation-in-time FFT into a decimation-in-frequency FFT [52], as shown by circuits A and D
in Figure 1.3. We cannot recognize and apply these symmetries without first knowing what we
are trying to compute, and hence using circuit representation artificially constrains the space of
output circuits that we can reasonably generate. Conveying this in familiar classical terminology,
we quite simply seek to express the input program in a declarative language as opposed to an im-
perative one, and hence leverage higher-level scheduling techniques without being constrained
by any specific implementation.

In the next section we propose a novel approach that starts with a high-level algorithm de-
scription (a symbolic representation of the elusive 2N × 2N transform matrix) and constructively
forms a program to efficiently execute it on the target hardware. This allows us to apply high-
level global manipulations, and enables the efficient evaluation of a much larger space of circuits
that achieve the desired transform rather than just ones related to the input by local permutations
or simplifications.

1.2 Overview
This thesis addresses the aforementioned motivations by proposing a new approach for compiling
and optimizing quantum circuits. Specifically, we will apply a generative approach. We previ-
ously recognized the need to shift our focus away from compiling individual circuits and towards
treating the transform itself as a first-class design constraint; the task at hand is to find the best
circuit that implements a specified input transform on the given architecture. We will intuitively
cast this as a generic search problem, illuminating the fact that this problem lives completely
within the realm of traditional computer science. Before our approach will become apparent,
however, the questions remain of how to internally capture and represent the inconveniently-
large 2N × 2N transform matrix, and how to efficiently generate the entire space of possible
circuits from such an abstract functional description.

With respect to the first problem, we notice that there are very few useful quantum algorithms
currently, many of which reuse kernels like the Fourier transform. We can thus capture these
algorithms symbolically, and represent nearly any useful quantum algorithm as a composition of
these symbolic transforms. An example of these might be the QFT(n) for an n-qubit Fourier
transform, or the QHT(n) for an n-qubit Hadamard transform. By capturing generalized input
in terms of higher-level objects, we can leverage an additional layer of abstraction to allow us
more latitude in applying complex rewrites.

The second problem (i.e. how best to generate a space of quantum circuits from an ab-
stract definition) leads directly into our proposed compiler design as shown in Figure 1.4. Our

7

system will enable an efficient global search over a heuristically-pruned subset of all possible
circuit implementations of the desired transformation. We will take, as input, both the symbolic
representation of the target algorithm as expressed as a high-level transform and hardware spec-
ifications including the connectivity graph of the target device. We will then generate and search
over the space of circuits that implement this transformation on the target hardware and choose
the best with respect to some cost measure, probably including the number of swaps.

Figure 1.4: Proposed generative approach to compiling optimized quantum circuits.

To inform how it is possible to decompose a high-level specification into a quantum circuit,
we first cover the foundational mathematics of quantum computing with a particular interest in
framing them with traditional linear algebra. Specifically, we are able to establish, as stated
before, that the state of an N -qubit system is a 2N -length complex column vector and that a
quantum program is a linear transformation that acts on this vector. We also show that quantum
gates are small unitary matrices that can be combined by the matrix product when applied in
series and by the tensor product when applied in parallel. Applied to our problem, this means
that any given quantum circuit is just a sparse factorization of some overall transform matrix,
written purely in terms of the tensor and matrix products of quantum gates. Generating a quantum
circuit from a high-level symbolic transform is then just a matrix factorization problem, and we
will leverage a computer algebra system to solve exactly this.

We structure this factorization problem further by introducing the concept of breakdown
rules. We will decompose our input algorithm by applying a series of divide-and-conquer de-
composition rules to break it into smaller transforms until the entire expression is ultimately
written in terms of quantum gates. By searching over all such sequences of decomposition rules
we effectively search over all circuit representations of the input. Since optimizing the hardware
locations of various qubits is critical to both minimizing swaps and ensuring we meet the con-
nectivity requirements of the architecture, we will also need to search over various partitions of
the connectivity graph at each breakdown stage, expressing an overall transform executing on
connectivity graph G as a composition of smaller transforms executing on subsets of G. Since
we know, as we decompose the algorithm, both a high-level specification of the transform and the

8

connectivity information, we can use these to inform heuristics regarding both the partitioning of
these qubits and which breakdown rules we should try. Given this circuit generation framework,
we can then apply any of the myriad search techniques such as dynamic programming [6] to find
an optimal or heuristically-optimal circuit and output our result.

We implement the aforementioned system with the SPIRAL [24] framework, a code gener-
ation system that applies roughly the same methodology as described to successfully optimize
linear transforms for classical architectures. Based on the GAP [57] computer algebra system,
SPIRAL is built to manipulate key mathematical operators such as the matrix product and tensor
product, and its focus on computational group theory provides advanced algorithm rewriting ca-
pabilities. We successfully implement a backtracking search procedure to perform the proposed
rule-based decomposition.

An added benefit of the SPIRAL system is its past success in optimizing the fast Fourier
transform (FFT) for classical architectures. Since the quantum Fourier transform (QFT) is sim-
ply the FFT implemented in quantum circuitry, and is itself an extremely important kernel in
the quantum domain, we can leverage both SPIRAL’s advanced library of decomposition rules
and existing parallel FFT literature in order to construct several effective QFT decomposition
heuristics. By taking a structured approach to the problem, recognizing and taking advantage of
patterns as opposed to treating the QFT as an arbitrary series of gates, we show tangible savings
on SWAP operations when compared with other compilation approaches. The methodology we
employ to integrate these heuristics can be extended to include any other relevant algorithms and
heuristics. Throughout this work, we stress that there are direct parallels between quantum and
classical algorithms, meaning that research in the two domains should arguably be interchange-
able to some degree.

We end with an analysis of our system, and notes regarding directions for future work. Be-
yond simply porting classical SPIRAL’s decomposition and heuristics libraries over to the quan-
tum domain, there are several areas such as circuit verification and error correction in which
this system could be uniquely valuable. We believe this work strongly motivates developing ap-
proaches similar to ours in order to effectively compile high-level algorithms for the quantum
hardware of the future.

1.3 Contributions
The contributions of this thesis include

• A formalization of optimizing quantum circuits with respect to critical path, written in
terms of traditional linear algebra constructs and classical computer science terminology

• The description and implementation of a novel compilation framework for generating op-
timized quantum circuits

• A case study of optimizing Fourier transforms for quantum architectures
• The description and implementation of novel heuristics for implementing Fourier trans-

forms on quantum architectures
• A qualitative and quantitative evaluation of the proposed system
The primary claim argued by this thesis is that a quantum compilation approach that intends

9

to solve the data movement problem in a scalable manner should benefit from taking high-level
algorithm symmetries into account, and that this approach can be heavily informed by existing
literature in the classical domain. While we focus on the Fourier transform in this work, and
thus only substantiate this claim for a specific algorithm, we expect that our approach can extend
to a broader set of quantum kernels. The eventual goal of any such system must be to eliminate
the exponential domination of data movement operations shown in Figure 1.1.

1.4 Organization
Chapter 2 provides relevant background material regarding quantum computation and explains
the mathematics behind quantum circuits. We frame the quantum optimization problem in terms
of traditional computer science constructs and linear algebra, discarding much of the quantum-
specific terminology and notation typically used in the field; this is done in order to illuminate
the similarities between this research area and the others we draw from in order to inform our
approach. Chapter 3 provides an overview of our SPIRAL implementation, in which we de-
scribe relevant specifics regarding both the general SPIRAL framework and the formalization
of quantum circuits as linear transforms subject to sparse decomposition. Chapter 4 discusses
a particular algorithm in detail, the quantum Fourier transform, and proposes a technique for
efficiently mapping this algorithm onto quantum architectures. Chapter 5 discusses our results
and how they further motivate our approach. We conclude with Chapter 6, in which we present
concluding remarks and provide a road map for future work.

10

Chapter 2

A Primer on Quantum Information Science

This chapter presents background material on quantum information science with a specific focus
on quantum computing. Much of the traditional terminology and notation is discarded in favor
of generic linear algebra, which allows us to draw clearer parallels to classical techniques in
later chapters. First, Section 2.1 gives a brief introduction to quantum computing and why it is
currently a promising field of study. Section 2.2 defines the primitives comprising a quantum
system and details the basic principles regarding their behavior. Then, Section 2.3 describes
quantum circuits and the gates that construct them, briefly exploring the hardware architecture
of quantum computers, and how these constraints relate to the general approach presented in the
introductory chapter. The optimization problem is formalized in terms of traditional computer
science constructs in Section 2.4, where a general approach is outlined. Conclusions are drawn
in Section 2.5, after which Chapter 3 discusses the SPIRAL implementation of a solver for the
problem we outline.

2.1 What are Quantum Computers?

Quantum computers were conceived in the early 1980’s and are widely credited to Richard Feyn-
man [22], Paul Benioff [7] and Yuri Manin [41]. Behind the invention was the desire to leverage
the intricate quantum-mechanical states of particles in order to store and compute on massive
amounts of information. Specific requirements regarding the practicability and utility of quan-
tum computers as real devices were not outlined until later [16].

A quantum computer is powered by quantum bits, or qubits. These qubits store information
in quantum states, similarly to how classical bits can be represented by groups of electrons or
numerous other physical processes [36]. At the quantum level, however, these states can repre-
sent more information than can binary counters. Due to the principle of superposition [58], the
quantum nature of these states leads to an exponential relationship between the number of qubits
and the amount of information that can be stored and computed on. By constructing complex
physical devices to manipulate and read these states, we are able to perform potentially amazing
computational feats, such as factor large integers in polynomial time with Shor’s algorithm [59].

In a major departure from the traditional von Neumann model [9], quantum computers per-
form all operations directly on these qubits, something that is referred to as in-place computa-

11

tion [34]. This means that instead of shuffling data around in memory and reading the results
of execution units, quantum computers are directly manipulating the qubit particles themselves
by subjecting them to various processes. Hence, if these qubit particles must interact with other
qubits in the system, their physical location becomes very important. To capture this, we tra-
ditionally express quantum programs as circuits, representing the fact that quantum programs
are feed-forward datapaths that apply successive mathematical operations, or gates, to the input
qubits. In this sense, these computers share design principles with systolic [39][40] and spatial
dataflow architectures [53]. These operations can alternatively be viewed as ordered instruc-
tions in the quantum assembly (QASM) language [14], which is simply a text serialization of the
circuit representation.

There is ongoing research into the complexity classes that define quantum computers and
the relationship they have with the classical P/NP distinctions. There are several algorithms in
existence that show a polynomial speedup when run on quantum computers versus their classical
brethren [50]; these speedups are possible due to the exponential increase in the amount of data
we can represent with qubits when compared against that possible with classical bits. Potentially
more exciting, however, is the possibility of classically-intractable problems becoming feasible
on a quantum computer, a possibility that has attracted large-scale research in the field [3] and
has driven the development of devices such as the one shown in Figure 2.1. If found to be true,
this would violate the extended Church-Turing thesis.

Figure 2.1: Google’s sycamore quantum computer. Sourced from [10].

The construction of these devices is immensely difficult. The computers themselves must be
isolated from their environment; this is needed in order to protect qubits from being affected by
anything other than the specific laser pulses or other physical processes that are used to imple-
ment quantum operations. As a result, building larger systems with more qubits, and investigat-

12

ing which particles make the most stable and resilient qubits, has required immense engineering
effort. Luckily, great progress has been made on both the hardware and software sides of quan-
tum computer development, and major corporations have consistently revealed larger quantum
computers with successively greater utility. However, as stated in the first chapter, something
must change in order to achieve the level of scaling necessary to make these devices truly useful.
Specifically, we may require radically different approaches to software compilation in order to
support the necessary scaling of our algorithms to the hopefully immense quantum computers of
the future.

In order to construct an approach that could satisfy this need we will draw inspiration from
the classical domain. In order to do so we must first translate the mathematics into a format that
lends itself well to drawing these parallels.

2.2 Qubit Fundamentals
Quantum computation is a relatively new field of study within the broader area of computer sci-
ence because it concerns the architecture and algorithms for a radically different computational
model. While truly understanding the physics warrants further study, the principles dictating how
to compute with these quantum bits lie more purely in the field of traditional computer science.

2.2.1 One Qubit
Qubits can be described by a dual-state system. A qubit can be in one of two orthogonal states,
whether that be the up/down spin of an electron or the vertical/horizontal polarization of light.
The expressiveness of a qubit comes from the principle of superposition, which implies that
besides being in one state or the other, that a qubit can additionally be in-between these two
states. Specifically, it can be in each of the two states with some amplitude. Let us call two
such states |0〉 and |1〉 and the overall qubit state |φ〉. |φ〉 is traditionally defined by this set of
equations.

|φ〉 = α |0〉+ β |1〉where α2 + β2 = 1 and α, β ∈ C (2.1)

But we can also define any number of orthogonal states

|−〉 =
1√
2
|0〉 − 1√

2
|1〉 (2.2)

|+〉 =
1√
2
|0〉+

1√
2
|1〉 (2.3)

and then express the same |φ〉 in terms of those states.

|φ〉 = γ |+〉+ ω |−〉where γ2 + ω2 = 1 and γ, ω ∈ C (2.4)

13

We can change the states that |φ〉 is written in terms of by translating the amplitudes.

α =
γ√
2

+
ω√
2

(2.5)

β =
γ√
2
− ω√

2
(2.6)

These equations merely define the mutable state of a qubit, but to actually read out these
values we must measure. Measurement is defined with respect to a set of orthogonal states, i.e.
a |0〉 / |1〉 measurement operator or a |+〉 / |−〉 measurement operator, each of which return a
|0〉 / |1〉 or |+〉 / |−〉 judgement respectively. Measuring a quantum state is non-deterministic; the
classical probability with which the measurement operator will output a judgement is equivalent
to the squared amplitude of that state. For example, measuring the |φ〉 qubit state defined by
Equation (2.1) with a |0〉 / |1〉 measurement gate will return |0〉 with probability α2 and |1〉 with
probability β2. Measuring it with a |+〉 / |−〉 measurement gate will return |+〉 with probability
γ2 and |−〉 with probability ω2. Measurement is also destructive, and the qubit state itself is
modified by the measurement operator. Specifically, the qubit collapses into a state described by
an amplitude of 1 on the state which was read and 0 on the state which was not; in other words,
the qubit becomes exactly what was measured.

The notation used above, commonly referred to as Dirac notation [15], constitutes primarily
what is used in quantum computing literature. This notation, in our rudimentary opinion, unnec-
essarily obfuscates the simplicity of the mathematics for the immediate purposes of this thesis.
Therefore, we will now present these topics in terms of linear algebra; this is more representative
of SPIRAL’s internal treatment. Partially rephrasing the above, we can represent a qubit as a
2-dimensional complex vector.

φ =

[
α
β

]
where ||φ|| = 1 and α, β ∈ C (2.7)

It is plain to see that this vector representation can be written in terms of any two orthonormal
bases in this space. In fact, |0〉 and |1〉 are commonly written as [1, 0]T and [0, 1]T respectively,
from which other bases like |+〉 and |−〉 can be derived.

φ = α |0〉+ β |1〉 = α

[
1
0

]
+ β

[
0
1

]
(2.8)

φ = γ |+〉+ ω |−〉 = γ

[
1√
2
1√
2

]
+ ω

[
1√
2
−1√
2

]
(2.9)

The magnitudes assigned to these bases are directly the amplitudes associated with the cor-
responding states. Measurement probabilities, therefore, are simply derived by projecting the φ
vector onto the measurement bases and taking the magnitude squared of the resulting projections,
as shown in Figure 2.2. The destructive nature of measurement is also captured by this, since
measurement itself is a projection operation onto the measured basis vector.

14

Figure 2.2: Measurement of φ in |0〉 / |1〉 basis [left], measurement of φ in |+〉 / |−〉 basis [right].
The flattened circle representation that is displayed assumes real coordinates.

There remains an apparent inconsistency with our formulation, namely that the qubit state
vector φ is 4-dimensional, with 2 real dimensions and 2 complex dimensions. However, one may
note that qubit states are traditionally charted on a 3-dimensional sphere called the Bloch Sphere,
as shown in Figure 2.3.

Figure 2.3: Bloch Sphere in traditional notation [left], Represented as a 3D vector space [right].

We must then reconcile our 4-dimensional vector space with this apparent 3-dimensional
representation. The key lies in the fact that we need only represent distinguishable qubit states,
where the only method we have of distinguishing two qubit states is the measurement operator.
Recall that the measurement operator is a projection operator, and that the classical probability
of reading a value is the magnitude squared of the projection onto that basis. Given a qubit state
φ and a set of basis vectors X, Y

Prob(X) = |X · φ|2 (2.10)
Prob(Y) = |Y · φ|2 (2.11)

15

Multiplying φ by a global phase term ξ where |ξ| = 1 we get

Prob(X) = |X · ξφ|2 = |X · φ|2 (2.12)
Prob(Y) = |Y · ξφ|2 = |Y · φ|2 (2.13)

Therefore the probability of measurement with respect to arbitrary basis vectors X, Y is
exactly the same for qubit state vectors φ and ξφ. Therefore we can represent our 4-dimensional
qubit state φ in three dimensions by performing the following transformation, leveraging this
property to convert Equation (2.15) to Equation (2.16).

φ =

[
a
b

]
where a, b ∈ C (2.14)

φ =

[
cejθ

dejω

]
where c, d ∈ R (2.15)

φ ≡ e−jθ
[
cejθ

dejω

]
where c, d ∈ R (2.16)

φ ≡
[

c
dej(ω−θ)

]
where c, d ∈ R (2.17)

φ ≡
[
a
b

]
where a ∈ R, b ∈ C (2.18)

It is worth noting that φ is still a 4-dimensional vector. However, one of the complex dimen-
sions is aliased out due to the limitations of measurement. Vectors with no observable difference
are therefore treated as equivalent, and no downstream operations in any quantum program can
make this difference become apparent at a later stage.

2.2.2 Multiple Qubits
For a generalized number of qubits N , we can express the state of the system with a 2N -length
complex column vector with unit norm. This joint state vector, denoted in the following formulas
as ΦN , can be constructed via the Kronecker product of individual qubit states. We can construct
higher-dimensional bases from taking the Kronecker product of single-qubit bases.

[
1
0

]
⊗
[
1
0

]
=

1
0
0
0

 [
1
0

]
⊗
[
0
1

]
=

0
1
0
0

 (2.19)

[
0
1

]
⊗
[
1
0

]
=

0
0
1
0

 [
0
1

]
⊗
[
0
1

]
=

0
0
0
1

 (2.20)

16

And hence we can simply express a multi-qubit system as a complex vector in a 2N -dimensional
space

Φ2 =

a
b
c
d

where a, b, c, d ∈ C Φ3 =

a
b
c
d
e
f
g
h

where a, b, c, d, e, f, g, h ∈ C (2.21)

albeit remembering from before that global phase is not distinguishable by a measurement
device.

It is worth noting in this context the concept of quantum entanglement, not because it is
particularly important for our particular work, but rather because viewing it in a linear-algebraic
context does much to dispel confusion regarding the important and infamous topic. Central to
this topic is the Bell [5] state, or EPR (Einstein Podolsky Rosen) [20] pair, which resembles the
following.

Bell =

1√
2

0
0
1√
2

 (2.22)

Unlike other multi-qubit states, this cannot be factored into a tensor product of individual
qubit states. The proof of this is fairly trivial [51]. Assume, for instance, there were two arbitrary
single-qubit states α and β such that α⊗ β = Bell.

α =

[
α1

α2

]
β =

[
β1
β2

]
Bell = α⊗ β =

α0β0
α0β1
α1β0
α1β1

 =

1√
2

0
0
1√
2

 (2.23)

The system of equations used to solve for the elements of α and β have no solution. This
is the formal definition of entanglement. For our purposes, “spooky action at a distance” is an
algebraic result.

The primary takeaway from the above mathematics is that at any point in the quantum pro-
gram, the complete state of the system can be expressed by a 2N -length column vector. Since the
only operations that can be performed on these state vectors are rotations, we can view quantum
computers as devices that efficiently affect linear (unitary) transforms on the joint state vector
representing the quantum properties of qubits. By taking a linear-algebraic approach, we need
not worry about the specific laser pulses used to implement these transforms, and can treat quan-
tum computers as mechanically complex (but theoretically simple) accelerators for implementing
linear transform algorithms.

17

2.3 Quantum Circuits
While the theoretical underpinnings of classical algorithms can be traced to the Turing machine
or lambda calculus [11] models, quantum algorithms are typically expressed as circuits, reflect-
ing the fact that a quantum program is essentially a feed-forward datapath. Following from this
representation, the fundamental building blocks of a quantum circuit are referred to as quantum
gates. Gates comprise the set of atomic operations that a quantum architecture can perform, sim-
ilarly to how an instruction set architecture (ISA) bridges the gap between classical hardware and
software. While the set of supported or basis gates varies from chip to chip, there is still a canon-
ical set of operations in the literature. Gates that operate on a single qubit can be represented by
a 2× 2 unitary matrix, and specialized 4× 4 multi-qubit gates are discussed in section 2.3.2. For
example, the Hadamard (H) gate performs a Walsh-Hadamard transform on a single-qubit state
vector, an X gate reverses the elements and a Z gate negates the second vector component.

H =
1√
2

[
1 1
1 −1

]
, X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
(2.24)

Single-qubit gates implement a variety of rotations around a qubit’s 3-dimensional vector
space, and hence can be rewritten as special cases of a generic rotation matrix. An arbitrary
qubit state vector can be altered by any rotation transformation that preserves unit length (i.e. a
unitary matrix); this constraint is owed to the fact that vector magnitudes equate to probabilities.

GRot(θ, φ, λ) =

[
cos(θ/2) −eiλ sin(θ/2)
eiφ sin(θ/2) ei(λ+θ) cos(θ/2)

]
(2.25)

Circuits are typically expressed graphically, in a manner similar to a hardware datapath. Cir-
cuits can also be expressed in QASM format and executed on a variety of platforms, but QASM
is simply a text serialization of the circuit diagram as seen in Figure 2.4.

Figure 2.4: A quantum circuit [left] and its QASM representation [right].

For this section, and for the rest of the thesis, we assume that all measurement operations are
done at the end of the circuit. Besides usually being the case, the principle of deferred measure-
ment [50] additionally allows us to convert an arbitrary program with intermediate measurements

18

into one with measurements at the end. Otherwise, in the case where intermediate measurements
were taken, the state of a quantum system would cease to be a simple vector, or pure state.
Rather, we would have to classify a quantum state as a mixed state, where the system takes on
one of several state vectors, each with classical probability. This is not immediately relevant to
the problem we are trying to solve, and thus the situation is not considered by this thesis.

2.3.1 Circuits as Matrix Factorizations
While graphical (circuit) and program stream (QASM) representations are valuable, quantum
circuits are best expressed as pure mathematical objects. We show that functionally, a quantum
circuit on N qubits implements a 2N × 2N unitary transformation on the input joint state vector.
We also show that an implementation of this transform in circuit form is just one of many possible
matrix factorizations, where the overall transform is expressed in terms of basis gates.

Starting with the application of gates in series, we can see that this corresponds to the matrix
product of the gates. Consider the 3-gate circuit

which, progressing through the stages, can be expressed by the following series of unitary
transformations.

φ =

[
a
b

]
(2.26)

Hφ =
1√
2

[
1 1
1 −1

] [
a
b

]
(2.27)

XHφ =

[
0 1
1 0

]
1√
2

[
1 1
1 −1

] [
a
b

]
(2.28)

HXHφ =
1√
2

[
1 1
1 −1

] [
0 1
1 0

]
1√
2

[
1 1
1 −1

] [
a
b

]
(2.29)

HXHφ =

[
1 0
0 −1

] [
a
b

]
= Zφ (2.30)

In this example, if the Z gate were supported on the target device, we could rewrite the
overall transform as a single-qubit circuit containing a single Z gate. This is a trivial example,
but it shows that the same global transform can have numerous circuit implementations which
directly correspond to matrix factorizations of that transform.

Additionally, applying two gates in parallel corresponds to applying the tensor product of
these gates to the joint state vector. To see this, assume a 2-qubit circuit with arbitrary gates
applied in parallel. We will denote the upper gate U and the lower gate K.

We show below that applying U to qubit 0 and K to qubit 1 is equivalent to applying U ⊗K
to the joint state vector of qubits 0 and 1.

19

U =

[
u0 u1
u2 u3

]
K =

[
k0 k1
k2 k3

]
(2.31)

1
0
0
0

 =

[
1
0

]
⊗
[
1
0

]
=⇒

(
U ·
[
1
0

])
⊗
(
K ·

[
1
0

])
=

[
u0
u2

]
⊗
[
k0
k2

]
=

u0k0
u0k2
u2k0
u2k2

 (2.32)

0
1
0
0

 =

[
1
0

]
⊗
[
0
1

]
=⇒

(
U ·
[
1
0

])
⊗
(
K ·

[
0
1

])
=

[
u0
u2

]
⊗
[
k1
k3

]
=

u0k1
u0k3
u2k1
u2k3

 (2.33)

0
0
1
0

 =

[
0
1

]
⊗
[
1
0

]
=⇒

(
U ·
[
0
1

])
⊗
(
K ·

[
1
0

])
=

[
u1
u3

]
⊗
[
k0
k2

]
=

u1k0
u1k2
u3k0
u3k2

 (2.34)

0
0
0
1

 =

[
0
1

]
⊗
[
0
1

]
=⇒

(
U ·
[
0
1

])
⊗
(
K ·

[
0
1

])
=

[
u1
u3

]
⊗
[
k1
k3

]
=

u1k1
u1k1
u3k3
u3k3

 (2.35)

=⇒

u0k0 u0k1 u1k0 u1k1
u0k2 u0k3 u1k2 u1k3
u2k0 u2k1 u3k0 u3k3
u2k2 u2k3 u3k2 u3k3

 = U ⊗K (2.36)

Using the matrix and tensor product identities, this means that a quantum circuit can be fully
reduced to a single, unitary transformation in a 2N -dimensional complex vector space. A specific
circuit implementing this transform is just a sparse factorization written in terms of quantum
gates and the identity operator.

20

Phrased in this way, quantum circuit generation lies completely in the realm of traditional
linear algebra. For example, a 4 × 4 Walsh-Hadamard transform is commonly decomposed as
such.

1√
2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 =
1√
2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 1√
2

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 (2.37)

H4 = (H2 ⊗ I2)(I2 ⊗ H2) = (H2 ⊗ H2) (2.38)

Where H2 is the 2 × 2 Hadamard matrix, H4 is the 4 × 4 Hadamard matrix, and I2 is the
2×2 identity matrix. Viewing this mathematical deconstruction in terms of quantum computing,
Equation (2.38) directly gives us a circuit implementation of the desired transform. Specifically,
it implies that a 4-qubit Hadamard transform can be implemented by applying a 2× 2 Hadamard
gate to each input qubit. Additionally, the Cooley-Tukey decomposition rule for the discrete
Fourier transform (DFT) [25] also directly yields a recipe for generating a quantum circuit.

DFTn = (DFTk ⊗ Im)Tn
m(Ik ⊗DFTm)Lnk ;n = km

Where T nm is a diagonal matrix of twiddle factors and Lnk is a stride permutation. As will
be shown later, twiddle factors directly correspond to controlled rotation gates, and permutation
matrices directly correspond to a sequence of data movement gates, or SWAP gates. Because a
quantum circuit is simply a graphical representation of a mathematical decomposition, SPIRAL,
or any other computer algebra system, is uniquely predisposed to search over these decompo-
sitions, as it robustly does so already for a variety of functions. This mathematical notation
captures a quantum program much more effectively than the program stream model of QASM,
and is in our view the most general representation available.

We now constrain this equality between circuits and matrix factorizations by introducing
the concept of connectivity. If a multi-qubit operation cannot be factored into individual 2 × 2
operations, this transform inherently requires communication between the operand qubits. Due
to the in-place nature of quantum computing these values must be physically adjacent in the
computer itself, meaning that any circuit that does not meet this constraint is invalid.

2.3.2 Connectivity

Besides single-qubit gates, there additionally exist multi-qubit gates that act on the joint state
vector directly rather than being decomposable into independent and parallel operations. This
may have been inferred already, as the Bell state would be impossible to construct without them.
These gates take the form of controlled gates, where a controlling qubit toggles the application
of a single-qubit gate to another. The CNOT gate (or ControlledX gate) is one such example,
where the rotation being applied is that characterized by the X gate. Generically we can write
these 2-qubit gates as such.

21

U =

[
u0 u1
u2 u3

]
, ControlledU =

1 0 0 0
0 1 0 0
0 0 u0 u1
0 0 u2 u3

 or

1 0 0 0
0 u0 0 u1
0 0 1 0
0 u2 0 u3

 (2.39)

The leftmost definition of ControlledU has qubit 0 controlling and the other with qubit 1
controlling. It is worth noting that measurement and the destructive effects accompanying it
are not applied here. Rather, these gates can simply be seen as unitary transformations that are
applied to a two-qubit joint state vector, and which happen to not be factorable into the tensor
product of individual 2× 2 matrices. These gates are extremely important for nearly all relevant
quantum algorithms, as without them it is impossible to do any multi-qubit computation that isn’t
simply parallel computation on individual qubits.

However, inherent physical limitations necessitate the qubits being operated on to be physi-
cally connected in the hardware architecture, meaning the hardware locations these qubit values
are stored in must be linked by circuits or buses in the chip itself. Due to hardware constraints,
cost and manufacturing limitations not being the least of which, these hardware locations are typ-
ically only sparsely connected, meaning that qubit values often have to be dynamically moved
around in order to satisfy the connectivity constraints of each gate in the circuit. Connectivity
maps for various IBM devices are shown in Figure 2.5.

Figure 2.5: Various IBM quantum computer connectivity maps. Sourced from [44].

For readers familiar with the backend of a traditional compiler and with the x86 architecture,
these connectivity constraints can be viewed similarly to how the div instruction requires certain

22

operands to be in particular registers. Similarly to how classical compilers will insert register-to-
register moves to meet these requirements, quantum compilers will also insert swaps to ensure
connectivity is met.

Since quantum programs are better viewed as mathematical objects than a sequence of im-
perative instructions, however, we internally consider data movement to be a specific class of
permutation matrix that permutes the logical-to-physical mapping of values to hardware loca-
tions. This is augmented by the fact that there are additional limitations in the quantum world;
the no-cloning theorem [66] means that qubit values cannot be duplicated or saved, implying that
somehow capturing a qubit value and storing it in memory like a stack location is quite impos-
sible. This is a big reason why the data movement primitive in quantum systems is the SWAP
operation and not a copy or move operation. Despite these differences, however, the concepts
are ultimately the same.

SWAP implements a permutation matrix that swaps the elements of a joint state vector.

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (2.40)

Noticeably, this operation can be decomposed 2 different ways

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.41)

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (2.42)

Which, in circuit form, correspond to two different series of CNOT gates. In fact, any higher-
level mathematical object can be expressed purely in terms of controlled gates and single-qubit
gates.

We can now reconcile this nomenclature with the overall goal stated in the introductory chap-
ter. We initially expressed our desire to treat quantum circuits as sparse matrix factorizations, and
thus be able to generate circuits that implement a higher-level transform simply by performing
matrix decompositions. We have seen in this section that it is possible; every quantum circuit
(excluding those with intermediate measurements) can be written as a sparse factorization of an
overall 2N × 2N transform. We have also seen that traditional divide-and-conquer rules from
the classical domain, such as those used to decompose the Fourier or Hadamard transforms, are
exactly recipes for creating quantum circuits. We also know that not all matrix factorizations are
valid circuits for a given architecture, and thus in the next section we will have to remember the
relevant connectivity information as we recursively deconstruct the input. We will next use these
concepts to formalize a generic search problem and propose a method for solving it.

23

2.4 Problem Formulation
We have derived the basics regarding quantum circuits, their formulation as mathematical ob-
jects (namely high-dimensional unitary transformations), and the constraints imposed by the
hardware. Now we formalize the optimization problem before applying SPIRAL as a solver in
Chapter 3.

2.4.1 Formalization
We now formalize the quantum optimization problem as

circuitopt(Mat) = arg min
m ∈ Factorizations(Mat)

Cost(m)

Where Mat is the desired 2N×2N transform matrix, and Factorizations is an operator on this
matrix that returns a set of valid decomposition into the tensor and matrix product of quantum
gates. It is valid to express such a decomposition as an expression tree, the language we use to
denote this being expressed in Table 2.1.

〈basic gate〉1 ::= H
X
Z
Y
I
...

〈cnot〉2 ::= CNOT 1 # qubit 1 controls qubit 0
CNOT 0 # qubit 0 controls qubit 1

〈circuit〉n ::= 〈circuit〉n ∗ 〈circuit〉n
〈circuit〉k ⊗ 〈circuit〉m where n = mk
〈cnot〉2 where n = 2
〈basic gate〉1 where n = 1

Table 2.1: Expressing a valid unitary matrix decomposition in Backus-Naur form (BNF) [4].

Finally, given a complete set of factorizations (and hence a complete set of circuit imple-
mentations), we want to find the best one with respect to some cost measure. To minimize
data-movement instructions, Cost would simply be the number of SWAP gates in the circuit.

2.4.2 General Approach
While SPIRAL is an extremely useful framework for enacting the proposed circuit generation
procedure, the procedure itself is not inherently tied to the SPIRAL system. Therefore, we
present a general approach before describing implementation details in the next chapter.

The first major phase will be a decomposition phase, or breakdown phase, that directly im-
plements the Factorization procedure outlined above. We will start with a high-level, symbolic

24

representation of the desired transform (or a composition of transforms), and by recursively ap-
plying a series of divide-and-conquer decomposition rules, we will construct a sparse factoriza-
tion that uniquely maps to a circuit implementation of the desired transform. This factorization
can be written as an expression tree, as shown in Figure 2.6.

Figure 2.6: Expression tree factorizations of transform Mat .

An example of such a decomposition rule is the Cooley-Tukey rule for FFTs. This rule breaks
a large DFT object into two smaller DFT objects, which can then be recursively decomposed.
The rule terminates when all DFTs are of size 2, which is when we hit a base case that equates
the DFT(2) to the Hadamard gate H. Notice that the span of possible factorizations (i.e. the
space of possible expression trees) is immense. Even just Cooley-Tukey can be applied several
different ways.

The recipe for forming a particular expression tree is a specific sequence of rule applications,
which we will call a rule tree. Our task is to search over all rule trees that decompose the
input; this equates to searching over all decompositions of the input, and thus, all circuits that
implement the input.

Some rule trees are invalid; rules may fail if connectivity is not met for the controlled op-
erations we attempt to place. In this case we can backtrack to the last applied rule. In order
to detect this case we must remember the subset of qubits we are acting on in each recursive
subproblem. This approach is directly inspired by backtracking proof search in an area like con-
structive logic [29], in which a context is generally kept. This also allows us to employ heuristics
at a rule-by-rule granularity, and since we have both algorithmic and architectural information,
we should be able to make intelligent decisions to prune unpromising rule trees early on in the
search procedure. By enumerating all valid rule trees in our search space, we also enumerate all
possible factorizations, and hence all valid circuits for the target architecture.

Once we have a procedure capable of forming all valid expression trees (or at least a relevant
subset of expression trees), we should be able to simplify these expression trees by condensing
branches and cancelling leaves. This constitutes the local, peephole simplifications that make up
the larger part of existing compilation approaches, and is displayed in Figure 2.7.

The group of all such simplified expressions forms a space over which we wish to minimize
the number of SWAP gates. We will search over a heuristically-pruned subset of all possible rule

25

Figure 2.7: Expression tree contraction and simplification.

trees to find the one that, when applied to the input, yields the cheapest circuit representation
after applying our simplification rules. Treating the rule tree as the x variable and the other
compilation stages as a projection operator F that takes this x and maps it to a specific point in
the circuit space, we can treat this search problem quite generically.

xopt = arg min
x

Cost(F(x))

We can apply any of the myriad minimization methods that have been studied by computer
scientists to solve this problem.

These circuit decompositions exhibit the subformula property in the sense that branches of
these expression trees that are linked by matrix multiplications are themselves valid subcircuits;
this means we can evaluate the cost of various subtrees and use this feedback to inform which
rules we try. SPIRAL will leverage this property by applying a dynamic programming search
to solve this problem. We also have access to both the connectivity graph and the symbolic
algorithm representation at each decision point in the breakdown process, and can use these to
inform possible heuristics. These methods are enumerated and described in the next chapter.

2.5 Conclusions
In this chapter we summarized the fundamental principles governing the construction and ex-
ecution of quantum programs. We showed that the building block of quantum computers, the
qubit, can be written as a 2-dimensional complex vector, and that the state of an N -qubit system
can be written as a 2N -dimensional complex vector. Therefore, we derived that every quantum
circuit (excluding those with intermediary measurement gates) directly implements a 2N × 2N

linear transform on that state vector, and that this transform matrix is simply the tensor product of
parallel quantum gates and the matrix product of sequential ones. We also established that there
is typically a very large space of quantum circuits that implement the same 2N × 2N transform.

Given this, we concretely formalized our proposed approach. Instead of starting with a circuit
and having to derive the transform from it, a process which is computationally infeasible for
large N , we propose starting with a symbolic representation of the transform, from which we

26

can derive a host of circuits. We can do this by factoring the symbolic input into a sparse matrix
representation that can be written purely in terms of quantum gates; this decomposition can be
written as an expression tree. Given a set of rules that govern how to decompose symbolic objects
into gates, we can try breaking down the input in many different ways and enforce connectivity
by constraining the applicability of certain rules. We can then search over these rule trees to find
the one that yields the best circuit. For this, we leverage SPIRAL.

27

Chapter 3

SPIRAL Quantum Compiler

This chapter outlines the primary contribution of this thesis: a novel framework for generating
optimized quantum circuits. Section 3.1 revisits the generalized approach presented in the pre-
vious chapter in order to refine the requirements that the SPIRAL implementation must meet.
Section 3.2 then gives a brief overview of the SPIRAL system, its capabilities, and the core fea-
tures which are leveraged in the quantum compiler. Section 3.3 gives an overview of the quantum
compiler and code generator, showing in detail how we construct and search over quantum cir-
cuits with recursive breakdown rules and an extensive rewriting system. Conclusions are drawn
in Section 3.4. We further discuss algorithm-specific heuristics in Chapter 4.

3.1 Approach
We now revisit the general approach outlined in the previous chapter and refine it further to
reflect SPIRAL’s implementation.

circuitopt(Mat) = arg min
m ∈ Factorizations(Mat)

Cost(m)

To solve the variant of the problem that is posed above, there are a few outstanding require-
ments. First, we must construct a system that efficiently implements Factorizations; in principle,
this system would be able to construct all non-trivially unique factorizations of the input matrix.
Additionally, we must be able to do so without expanding Mat itself since this matrix is expo-
nentially large with respect to the number of qubits; this implies that Mat must be expressed
symbolically. These considerations suggest a top-down rules-based approach; algorithmic de-
compositions, especially those based on group-theoretic symmetries like FFT decompositions,
are nearly impossible to discover and employ when simply inspecting a pre-compiled program
stream that cannot be expanded. Additionally, since the space of Factorizations(Mat) expres-
sions is far too large to expect decent search performance, Factorizations should be intelligent
enough to prune obviously suboptimal factorizations by using the symbolic Mat definition, and
the transforms it breaks down into, to choose decent heuristics. Critically, the architecture of
the target device is also provided as input, and so it can also be used to inform these heuristics,
specifically to ensure we are finding a reasonably optimized placement of the desired algorithm

28

on the target hardware.
Next, we must ensure that our search procedure is efficient. The Cost operator should be

lightweight, and ideally it should grow at most asymptotically with respect to the circuit depth;
this would approximately be the cost of linearly scanning the circuit for swap operations, not
taking into account the complexity of scanning the nested contents of a tensor operator itself.

Finally, we should leverage well-studied search techniques like dynamic programming to
efficiently evaluate and select circuitopt. We will, in the rest of this chapter, enumerate the
features of SPIRAL that allow us to implement the aforementioned system.

3.2 SPIRAL
SPIRAL [26] is a program generation system for linear transforms and other functions, and
has been successful in producing extremely high performance code for a variety of hardware
architectures. SPIRAL takes in a high-level algorithm specification, and along with other archi-
tectural and microarchitectural parameters, outputs optimized code in a variety of languages and
for a variety of accelerated architectures [46]. SPIRAL has been developed at Carnegie Mel-
lon University over the past 20 years alongside industry partners; it has been both the subject
of numerous successful publications and has found commercial use for generating vendor math
libraries. It is built on the GAP [57] computer algebra system, and thus has the advantage of
leveraging both a large library of algebraic objects and native support for computational group
theory.

3.2.1 GAP
GAP is a system for computational discrete algebra, particularly emphasizing group theory. GAP
consists of a programming language, a large library of algebraic objects that can be accessed in
the language and a massive array of functions that implement important mathematical opera-
tions. The GAP language is interpreted, can be compiled, and despite having control structures
very similar to those of Pascal [65], it supports a variety of operators inspired by more func-
tional languages. Through a variety of modular packages, functions and library objects which
are mostly written in the GAP language, advanced mathematical capabilities are provided for a
wide variety of tasks including computing the properties of groups, constructing graphs, solving
polynomials and factoring prime numbers. SPIRAL is built on the GAP system and leverages
the basic capabilities it provides to construct a code generation framework.

3.2.2 Intermediate Representations
SPIRAL compiles an input by transitioning through several internal representations that progres-
sively lower to hardware assembly, similarly to a traditional compiler. The top-level input to
SPIRAL is a linear transform, as expressed by a symbolic object called a non-terminal. Mathe-
matically, any linear transform can be expressed succinctly as the following

x 7−→Mx (3.1)

29

Where x is the input vector and M is a fixed matrix implementing the desired transform. In
the quantum case we will discuss in the next section, every M is square.

The question remains of how best to map this computation onto the target hardware. Directly
computing this matrix, without applying any optimizations that may result from the sparsity of
the matrix, will require O(n2) many operations. However, most algorithms of this nature are
not randomized, but rather exhibit symmetry that can be leveraged to reformulate this computa-
tion into a cheaper alternative. The most famous example of this transformation is theO(n log n)
FFT algorithm that implements the otherwiseO(n2) DFT. Additionally, these reformulations can
be expressed as a factorization of M into a product of sparse matrices. This sparse matrix for-
mula is represented in a lower-level syntax called Signal Processing Language, or SPL [67]. The
decomposition of non-terminal M into the sparse formula expressed in SPL is achieved through
a recursive rule-based procedure, similar in motivation to proof search in a logical language like
Prolog [12]. Each rule in this system, called a breakdown rule, is a divide-and-conquer algorithm
that breaks a non-terminal into smaller and smaller pieces until the formula is finally expressed
purely in terms of SPL objects. The most famous example of such a rule is the Cooley-Tukey
FFT rule discussed previously, and others are shown in Figure 3.1. The motivation behind this
transformation is that each sparse operation in the SPL language can be treated as a separate
computational kernel which can be mapped to a variety of vector architectures or hardware ac-
celerators. In this manner, SPIRAL has reduced a high-level operation into a sequence of small
kernels that can be more efficiently implemented. In the quantum world, each SPL object is a
quantum gate or operation, but this transformation serves the same underlying purpose.

There is much latitude in deciding which SPL formula is the optimal representation of M for
the target hardware. It may be the case that certain kernels are easier to compute than others.
Therefore, in order to find the cheapest SPL representation for our target, we must perform a
search over all ways of translating the matrix M into an SPL formula. If we call a specific way
of decomposing M a rule tree, or rather a partial ordering of rule applications, this problem
equates to searching over all rule trees. SPIRAL natively implements a dynamic programming
search procedure that efficiently performs this search with respect to some cost measure, and
hence is able to find the best low-level representation for a high-level transform. Heuristics play
a large role in limiting the number of rule trees that SPIRAL has to search over.

DFTmn 7−→ (DFTm ⊗ In)Dm,n(Im ⊗DFTn)Lnmm (3.2)
DFTn 7−→ XnRDFTn (3.3)

WHTn 7−→ WHTm ⊗WHTn (3.4)
MDDFTn1×...×nk 7−→ MDDFTn1×...×nr ⊗MDDFTnr+1×...×nk (3.5)

MDDFTn 7−→ DFTn (3.6)
Haarn 7−→ Ln2 (In/2 ⊗DFT2) (3.7)

(3.8)

Figure 3.1: Breakdown rules in classical SPIRAL.

30

SPIRAL then implements a backend compiler to reduce the SPL language into code for the
target hardware, often progressing through a series of further intermediate representations. For
the quantum application that we will discuss in the next section, the target language will be
QASM, and we will similarly perform a series of simplification passes to ultimately reduce our
SPL expression into a directly executable assembly file.

3.2.3 Rewriting System
SPIRAL contains an extensive multi-stage rewriting system [27] for simplifying SPL formulas;
this is one such pass that helps convert the SPL formula into real code. This phase applies a
series of semantics-preserving identities such as distributing multiplication across addition, can-
celling inverse matrices and other local modifications. Nearly any rule involving local variable
substitution can be simplistically framed as a rewrite rule, which the SPIRAL rewrite engine will
then attempt to apply, along with any other chosen rules, wherever applicable.

In our work, we leverage this system to implement a circuit simplification pass that runs
after the breakdown stage, both removing a few compiler internals and applying quantum gate
identities such as H · H = I (which captures the fact that the Hadamard gate is its own inverse).
Translating between different sets of basis gates can also be done through this system.

3.3 Quantum Circuit Generation
Now that we have covered the general architecture of the SPIRAL system, we detail how to
leverage this program generation infrastructure to solve the problem formalized in the previous
chapter. We elaborate on the architecture of the SPIRAL quantum compiler, which we will
often refer to as “QSPIRAL” for brevity. We show that a generative and rule-based approach,
coupled with the full power of the GAP computer algebra system, lends itself extremely well to
generating optimized quantum circuits. In fact, the quantum system itself is implemented as a
modular package that can be attached to the open-sourced SPIRAL framework, and the existing
classical framework almost exactly provides the tools we need to compile quantum circuits.

QSPIRAL takes, as input, a high-level symbolic representation of the algorithm and an
adjacency matrix describing the hardware connectivity map (Section 3.3.1). Then, QSPIRAL
searches over all rule trees in the search space, trying out the various ways of decomposing the
input algorithm into low-level circuits that will run on the target architecture. To evaluate the cost
of a specific rule tree (i.e. the cost of the circuit it produces), we first apply it to the input to ob-
tain an SPL expression (Section 3.2.2), and then convert this SPL expression to QASM with the
backend rewrite system (Section 3.2.3). The resulting QASM code can then be evaluated based
on the number of SWAP operations it contains. This forms a generic minimization problem; the
search procedure will attempt to find the best rule tree, and the circuit this rule tree produces
becomes the compiler output. This solution is not necessarily unique, and the output selected
will depend heavily on the heuristics used to traverse the space of rule trees. Examples of these
heuristics for a specific algorithm are provided in Chapter 4, but these are useless without a gen-
eralized system within which they can be applied. QSPIRAL is such a system, and is described
in this section.

31

Figure 3.2: Control flow graph of QSPIRAL compiler stages.

We will discuss the various phases of the compiler (Figure 3.2) in sequence, starting with the
system inputs, detailing the breakdown phase, and then describing the internal workings of the
rewrite phase. Finally, we describe the search procedure, and how the tight integration of these
steps can enable advanced search techniques.

3.3.1 System Inputs
The primary input to QSPIRAL is a high-level representation of the desired algorithm. An al-
gorithm in QSPIRAL, like in classical SPIRAL, is a transform non-terminal that symbolically
represents a linear transform. We can capture important quantum kernels as symbols in our
domain-specific input syntax, eliminating the need to accept arbitrary 2N × 2N matrices as input
(which would be impractical). A subset of these symbols is shown in Table 3.1.

qHT(n) Walsh-Hadamard transform on n qubits
qXT(n) Pauli X matrix on n qubits
qYT(n) Pauli Y matrix on n qubits
qFT(n) quantum Fourier transform on n qubits
qReord(`, n) Permutation ` applied on n qubits

Table 3.1: Subset of QSPIRAL non-terminals.

With this notation we have succeeded in allowing the user to compile certain operators, but
practical quantum circuits rarely perform a single transform on all qubits in the system; Shor’s
algorithm, for example, includes the QFT alongside other transformations. Therefore, we need
a way to form larger composite algorithms from these non-terminals. Our solution is an ad-
ditional non-terminal called qCirc, which represents several chained non-terminals applied to
different portions of the input vector. The qCirc object is itself a non-terminal, and hence can be
recursively instantiated as shown in Table 3.2.

The index list construct indicates which logical qubits are affected by the non terminal
in question. These indices are entirely arbitrary with respect to the initial logical-to-physical
mapping; the programmer does not care about the physical location of qubit index k as long that
qubit undergoes the intended operations. However, due to connectivity requirements and the cost
of swapping values, the hardware very much cares about the physical location of qubit index k.

32

non terminal ::= qCirc(n, 〈op list〉)
| qHT(n)
| qFT(n)
...

op list ::= [〈index list〉, 〈non terminal〉] :: 〈op list〉
[]

index list ::= [〈nat〉] :: 〈index list〉
[〈nat〉]

nat ::= n where n ∈ N

Table 3.2: QSPIRAL algorithm syntax.

Ideally, QSPIRAL would automatically put qubit index k in the best hardware location, given
the operations it has to undergo and the other qubits it has to communicate with. Determining a
good starting configuration is done in the global reordering phase of the rewrite system (Section
3.3.4).

Also provided as input is the connectivity map of the target hardware, as expressed in an
N ×N adjacency matrix. While other representations are available, such as Compressed Sparse
Row (CSR) representation [21], the qubit adjacency matrix scales with N rather than 2N and
therefore the uncompressed representation does not cause a memory bottleneck in our system.
Additionally, since matrix multiplication is efficiently implemented in GAP, the adjacency matrix
representation allows simple path-finding techniques (e.g. analyzing the powers of the adjacency
matrix) to be used internally, which proves useful in several situations. The top-level QSPIRAL
input, usually a qCirc object, is tagged with this adjacency information, and hence it is available
throughout the entire decomposition process. As we subdivide our formula in the breakdown
phase, this adjacency matrix gets smaller, effectively yielding a monotonically non-increasing
problem size.

3.3.2 Formula Breakdown

After a quantum algorithm is captured in the high-level syntax, the breakdown phase decomposes
our target object through a series of divide-and-conquer decomposition rules. In this section
we describe rule trees and how they can be used to convert the symbolic input into an SPL
expression. The resulting SPL expression is almost a quantum circuit, but in addition to quantum
gates it also contains a few compiler internals, and thus further compilation is needed. This is
achieved by the rewrite phase described in the next section, which finally converts SPL into
QASM.

Given a QSPIRAL non-terminal, we can search through our internal library of decomposition
rules to find those that are applicable. Rules of this nature, as mentioned before, are similar to
the Cooley-Tukey rule for Fourier transforms; they break a larger non-terminal into the matrix
and tensor product of smaller ones. When a non-terminal is sufficiently small it can be converted
into an SPL object. Once all non-terminals have been reduced to SPL objects, the breakdown is
complete. At each step, there are usually many rules that can be applied, thus leading to several

33

different ways of reducing the input; each such sequence of rules is called a rule tree. An example
of the breakdown rules for the Hadamard transform is shown in Figure 3.3.

qHTn 7−→ qHTk⊗ qHTm;m = nk (3.9)
qHT1 7−→ H (3.10)

Figure 3.3: Breakdown rules for quantum Hadamard transform.

In this trivial decomposition scheme, a Hadamard transform can be decomposed into the ten-
sor product of smaller Hadamard transforms, and eventually all Hadamard transforms of size 1
can be terminated as a single H quantum gate. This approach transfers directly from classical
SPIRAL; the space of circuits that implement a transform matrix is exactly the set of decomposi-
tions of the matrix into compositions of basis gates. We can draw parallels between the quantum
and classical domains; Equation (3.9) is almost directly taken from SPIRAL’s pre-existing library
of sparse factorization rules.

While a large subset of the decomposition rules used in classical SPIRAL are immediately
applicable to the quantum domain by virtue of being expressed in the same mathematical lan-
guage, additional decomposition rules must be inserted to handle our custom qCirc transform
object. Recall that this object represents the application of various non-terminals to different
logical qubits, and since quantum computers execute in-place, this object can be decomposed in
many different ways. Specifically, each of the non-terminals in the argument list should be ap-
plied to its specified logical qubits, but these logical qubits can be located in any set of hardware
locations. We can effectively compute each of these non-terminals on any subset of hardware
locations in the device by inserting the proper data movement operations. These different place-
ments reflect the wealth of scheduling options available, and our breakdown system must allow
us to explore these options such that we can search over them. This means that the breakdown
rules for the qCirc object concern not simply algorithmic decompositions but the partitioning of
hardware qubits, a process we call embedding. In order to understand this process for complex
algorithms, let us first focus on embedding a single non-terminal.

Starting with a single transform, let us analyze the task of embedding this transform onto a
quantum device. If this transform computes on k qubits, and the device has a total ofN hardware
qubits, this transform can be executed in-place on any subgroup of k qubits in the device. There
are loosely N !

(N−k)! choices for this, not considering that in most cases, the size-k subgroup has to
be connected. Various placements of these logical qubits for a given transformation are shown
in Figure 3.4.

The breakdown system should allow us to apply various rules to rewrite the transform in
terms of any of these arrangements, thereby allowing us to search over these arrangements by
enumerating the various rule trees. For readers familiar with classical compiler internals, this
logical-to-physical mapping could be viewed as a register allocation, with logical qubits being
temporary values and hardware locations being registers. We are, in essence, choosing a register
allocation on which to compute our non-terminal. Since quantum computers execute in-place,
the performance of this non-terminal will be better or worse depending on which registers its

34

Figure 3.4: Possible placements for non-terminal QFT on a 4 × 4 lattice; scattered placement (
e.g. (c)) will be rejected due to connectivity constraints. In this example, k = 4 and N = 16.

operands are placed in.
As stated in the introductory chapter, the primary measure of performance used in this work

is the amount of data movement needed, so the performance is purely determined by the physical
positioning of the input values with respect to the other qubits they might need to communicate
with. The cost then (in our case, the number of SWAP instructions) of any arrangement is
twofold; the execution cost is the cost of executing the desired transform in-place on the chosen
hardware locations, and the staging cost is the cost of moving the desired operand qubits into
and out of those hardware locations. In the classical register allocation analogy, the performance
of each assembly instruction would be better or worse depending on which registers its operands
are placed in (execution cost), and microarchitectural limits placed on which register-to-register
moves are allowed in the ISA mean that there are varying costs of actually getting the desired
temporaries into those registers to start with (staging cost). This dichotomy between execution
and staging costs is a primary example of how circuit optimization is a balancing act between
local and global optimization; minimizing execution cost may require moving logical qubits into
physical locations that are impractical given their starting positions. For now, we assume some
arbitrary initial mapping and optimize this further in the global reordering phase.

Given a breakdown system that allows us to write an embedded transform in terms of any
valid arrangement of qubits, it is now necessary to delve into how one such arrangement can
be expressed in the target SPL language; this language, you may recall, represents a sparse
matrix factorization of the input. Luckily, sequences of swap operations can simply be written as
permutation matrices (a fact we showed in Chapter 2), meaning that we can write this breakdown
rule similarly to the following.

Embed(N,L, T) 7−→ RL
N Apply(T, L)R−LN ; for any valid RL

N (3.11)

Where N is the total number of hardware qubits, L is the ordered list of logical operand
qubits (where |L| = k) and T is the transform we wish to apply to the qubits in L. RL

N is any

35

N ×N permutation matrix that rearranges the qubits in L and R−LN simply restores the original
ordering by undoing this permutation. Since permutation matrices are ultimately decomposed
into SWAP gates, the RL

N matrix has the effect of putting the logical qubits in L anywhere we
want in the N -qubit architecture. We can write this formula in terms of any logical-to-physical
mapping by simply writing it in terms of a different RL

N matrix. If RL
N = I(N), or rather the

N -qubit identity matrix, we would incur a staging cost of 0.
Now that we have effectively chosen which hardware qubits we want to execute T on by

virtue of selecting an RL
N matrix, we would like to continue the breakdown by applying the T

decomposition rules as shown in Figure 3.3 for the case of T = qHT. To do this, we must
unwrap the Apply(T, L) operator, ideally representing it as a tensor product of the symbolic T
matrix with the identity operator. This is slightly problematic, however, if the RL

N matrix places
the input qubits in hardware locations that are not adjacent in the canonical state vector ordering,
as shown in Figure 3.5. In this case, it is difficult to express the operation as a single tensor
product, and hence it is an issue if we wish to maintain the invariant that, at every breakdown
stage, our formula remains a valid matrix factorization of the input.

Figure 3.5: Scheduling a QFT transform on adjacent [top] and non-adjacent [bottom] qubits.
Directly stating the bottom operation as a tensor product is problematic.

To handle this we introduce an additional matrix, JLN , that freely reorders the state vector
and places the qubits in L in adjacent vector indices such that we can express the application of
T succinctly as a tensor product; we arbitrarily choose the top k indices (i.e. 0, . . . , (k − 1)).
This permutation matrix is a compiler internal and will be fully removed once decomposition is
complete, but it allows us to flatten the representation as shown.

Embed(N,L, T) 7−→ RL
NJ

L
N(T ⊗ I(N − |L|))J−LN R−LN ; for any valid RL

N (3.12)

We will not decompose RL
N or JLN any further because these objects will be compiled out in

the rewrite system; JLN will get removed completely and RL
N will be simplified and eventually

converted to sequences of SWAP gates. For now, however, we can continue to break down T into
an SPL formula consisting of quantum gates, having made the high-level scheduling decision of
what hardware qubits T is computed on.

For multiple transforms that need to be embedded in sequence, we can simply take the matrix
product of the embedding of each one, as follows.

36

Circuit(N, [[L1, T1], [L2, T2]]) 7−→ Embed(N,L1, T1) Embed(N,L2, T2) (3.13)

Now that we have discussed how to partition qubits with breakdown rules, we can reconcile
the above approach with our qCirc syntax. We modify our high-level syntax with an additional
qEmbed object, and explicitly tag our non-terminals with the arch adjacency matrix (Table 3.3).

non terminal ::= qCirc(n, arch, 〈op list〉)
qEmbed(n, arch, [〈index list〉, 〈non terminal〉])
| qHT(n, arch)
| qFT(n, arch)
| qCNOT(n, i, j, arch)
...

op list ::= [〈index list〉, 〈non terminal〉] :: 〈op list〉
[]

index list ::= [〈nat〉] :: 〈index list〉
[〈nat〉]

nat ::= n where n ∈ N

Table 3.3: Modified QSPIRAL algorithm syntax, with explicit architecture parameter.

Like before, we decompose our high-level qCirc input into the matrix product of qEmbed
objects for each of the non-terminals in the argument list. Note that the embed step will prune
the arch matrix such that the embedded non-terminal is operating over only a subset of the total
qubits; the rows and columns of this smaller adjacency matrix will be renamed appropriately to
match the input ordering of the qubits, as shown in Figure 3.6.

Figure 3.6: Decomposition of qCirc and adjacency matrix pruning.

By propagating relevant connectivity information throughout the process, we are be able to
enforce that all rule trees are valid with respect to architecture connectivity. Specifically, we

37

qCNOT(n, i, j, arch) 7→ Tensor(I(i),CNOT(i, j), I((n− 1)− j)); if hasedge(i, j, arch)

Figure 3.7: Base rule for qCNOT fails to fire if connectivity for qubits i and j is not met in
adjacency matrix arch.

enforce that each rule application does not violate connectivity; if there are no valid options at a
particular breakdown step, then the current rule tree is invalid and we must backtrack to the last
applied rule. An example of a rule that fails to simplify if connectivity is violated is the qCNOT
rule shown in Figure 3.7. The qCNOT is a simple transform that can be implemented with a
single controlled rotation (e.g. a CNOT gate).

We additionally capture the RL
N and JLN matrices as SPL objects, denoted Reorder and

Junction respectively. An SPL formula is therefore a fully-decomposed algorithm written com-
pletely in terms of quantum gates and these two compiler internals, as shown in Table 3.4. A
complete decomposition of a formula using these primitives is shown in Figure 3.8.

spl formula ::= Tensor(〈spl object〉, 〈spl object〉)
〈spl formula〉 ∗ 〈spl formula〉

spl object ::= Reorder(〈idx list〉, arch, 〈dir〉)
Junction(〈idx list〉, arch, 〈dir〉)
| H
| X
| SWAP(i, j)
...

idx list ::= [〈nat〉] :: 〈index list〉
[〈nat〉]

dir ::= 1 # forward
−1 # backward

Table 3.4: Subset of QSPIRAL’s SPL syntax, excluding size annotations.

One question that may remain is why we include theR−LN permutation at all, since it will often
be wasteful to return to our arbitrary starting positions if there is no reason to do so. This is done
for several reasons. First, disallowing side-effects means we can search over the decomposition
of each non-terminal in the top-level qCirc argument list independently, and only combine them
in the rewrite phase. This simplifies both the breakdown system and the dynamic programming
search procedure we will discuss later. Next, the R−LN is likely to cancel with the next forward
RL
N permutation, in which case we pay no price for this simplicity. Finally, as seen in the global

rewrite phase described later, maintaining a single, global context at the top level allows us to
heuristically determine the optimal global context and change the starting configuration; this will
cancel these reorderings in most cases.

To summarize, we have formalized the instruction scheduling problem as a matrix factoriza-
tion problem, and provided a mechanism by which we can explore various hardware permuta-

38

Figure 3.8: Full breakdown of a two-transform algorithm; colored objects indicate non-terminals
that are subject to further decomposition.

39

tions leveraging the SPIRAL breakdown system. The resulting SPL expression is then passed
into the rewrite phase to convert it into QASM code.

3.3.3 Formula Rewriting
Once the decomposition phase is complete, an SPL formula undergoes a series of simplification
and rewriting steps in order to reduce the representation to executable QASM. These steps are
intended to eliminate the remaining compiler objects and perform any peephole simplifications
that are applicable. To implement this phase, we make heavy use of SPIRAL’s existing rewrite
rule framework. We can apply a series of semantics-preserving identities to the SPL expression
in order to eliminate extra gates. Among these rules are single-qubit gate cancellation rules,
tensor flattening rules and object contraction rules, as shown in Figure 3.9.

CNOTijCNOTij 7→ I2|i−j| (3.14)
H2H2 7→ I2 (3.15)

H2X2H2 7→ Z2 (3.16)
Tensor(l1, ..., lk,Tensor(r1, ..., rn)) 7→ Tensor(l1, ..., lk, r1, ..., rn) (3.17)

Reorder(l1, n, arch) Reorder(l2, n, arch) 7→ Reorder(l3, n, arch) (3.18)

Figure 3.9: Subset of QSPIRAL rewrite rules. Equation (3.18) is implemented in Figure 3.11.

The general layout of the rewriting phase is shown in Figure 3.10. The global reordering
phase is described separately in the next section, as it is a completely self-contained module.

Figure 3.10: Rewrite stage control flow graph.

First, Reorder objects can be condensed. During the breakdown process shown in Figure
3.8, Reorder objects are intentionally left on the outside of module boundaries, meaning they
can easily be consolidated (they are directly composed with the matrix multiply operator, and are
adjacent in the SPL formula) to provide more effective transitions between the logical-to-physical
mappings preferred by the adjacent algorithm stages. This process is shown in Figure 3.11. A

40

seemingly inefficient forward permutation may be globally optimal if it cancels efficiently with
the backwards permutation of the preceding transform.

Once all Reorder objects are consolidated, they can be converted to sequences of SWAP
gates. The task of generating the minimum number of swaps needed to achieve a given permu-
tation is a well-studied group-theoretic problem [19], and since each Reorder object is tagged
with the architecture adjacency matrix (and additionally, since we restore the global ordering at
module boundaries, all cancellable Reorder objects are operating on the same adjacency matrix),
we can directly generate a connectivity-compliant set of swaps to replace each Reorder.

Figure 3.11: Reorder object consolidation.

After terminating Reorder objects, the only remaining non-gate compiler internal is the
Junction construct. It was impossible to eliminate these objects while black-box non-terminals
still existed in the formula, but at this point the rest of the circuit has been fully decomposed;
individual gates can easily be rescheduled to run on different qubits in the vector. Therefore,
we can eliminate these extra permutations by linearly scanning the circuit and untwisting qubit
indices whenever a Junction is found. We do this recursively, in case there are multiple layers
of embedded objects. This process is shown in Figure 3.12.

At this point we are left with a valid quantum circuit expressed purely in terms of symbolic
matrices that equate to basis gates. However, it is still very possible that gate cancellations can
be made. Our rewrite rules will handle these cancellations by simplifying the matrix product
of individual gates. However, the task still remains of rewriting the circuit formula such that
all potentially cancellable gates are adjacent. To do this, we sweep backwards through our SPL
formula and sift symbolic matrices leftwards through tensor contraction. Afterwards we can
pattern-match and apply semantics-perserving rewrite rules to simplify our formula. This imple-
ments the expression tree simplification discussed in Chapter 2.

The final tensor expression directly represents a simplified circuit instantiation of the desired
transform. This mathematical expression uniquely maps to a quantum circuit as seen in Figure
3.13, and can be evaluated based on the number of SWAP operations.

41

Figure 3.12: Reorder and Junction resolution in QSPIRAL backend.

Figure 3.13: Formula rewriting in QSPIRAL: a) expression after Junction and Reorder are
removed, b) expression after tensor contraction, c) expression after rewrite rule cancellation.

42

3.3.4 Global Reordering
Revisiting the two types of cost for data-movement explored in the previous sections (execution
and staging cost), we can see that this dichotomy directly reflects the need to balance local
with global optimization. Execution cost concerns only the cost of executing a transform on the
chosen hardware locations, and staging cost concerns the data movement necessary to prepare
the desired qubit placement; staging costs, by definition, rely on the starting configuration of the
qubits. While we assumed in the previous section that there is a fixed starting assignment of
logical qubits to hardware locations, we should actually be able to permute this ordering in order
to give us the lowest staging cost. Ideally, if all the logical qubits were already in the desired
hardware locations, staging cost would be 0. Rewriting our circuit in terms of a different starting
configuration is trivial; all that is required is to change the top-level Reorder objects by writing
them with respect to this new ordering. Finding the optimal configuration is not necessarily so
trivial.

Given a single transform this task is simple; whatever logical-to-physical mapping we chose
to execute the transform on during the breakdown phase can directly become the starting con-
figuration. This means the staging cost becomes 0 and execution cost will dominate the overall
cost measure, as shown in Figure 3.14. For an algorithm composed of multiple transforms this
is more complex, however, since the same logical qubit could be wanted in several different
hardware locations throughout the algorithm.

Figure 3.14: Changing the starting configuration of qubits to minimize reordering cost: old
configuration [top], optimal configuration incurring zero staging cost [bottom].

Implementing this in a naı̈ve manner, we could simply try recompiling the algorithm for
all starting configurations of qubits. This corresponds to recompiling the algorithm on all N !
row/column permutations of the input adjacency matrix. Intuitively, this brute-force approach
rapidly becomes infeasible. Therefore, a heuristic approach is needed; to implement such an
approach, we leverage the as-of-yet unreduced Reorder objects to tell us which transform kernels
want certain logical qubits in which orientations.

Scanning the SPL formula and inspecting the Reorder objects in the expression, we can
compute for each logical qubit index the affinity it has for a given hardware location. This can
simply take the form of a sum, and then we could greedily assign a logical qubit index to the
hardware location it is most often swapped to (i.e. the location it has the greatest affinity for).

43

In the case where multiple logical indices have a high affinity for the same hardware location,
however, something more complex is needed. Therefore we also tag each Reorder with two
additional fields of metadata that help us make a more educated decision. First, we include the
list of indices that are affected by the embedded transform. The reason for this is the following:
despite Reorder being a size N permutation, N being the total number of qubits, the embedded
transform only cares about the k qubits that are actually computed on, and k is frequently less
than N . This permutation is agnostic to the hardware locations of the other N − k qubits as long
as they do not conflict with the locations of the k affected ones. Therefore, we should not take the
positions of the other N − k qubits into account when calculating affinities. As a second field of
metadata, we also include a weight parameter that roughly correlates to the expected execution
cost of the embedded transform. This allows more important transforms to dominate the affinity
calculation. Using this, we can calculate affinities by taking a weighted sum across all Reorders
and greedily constructing a starting configuration. This starting configuration is not guaranteed
to be optimal, but it is more representative of the desired data placement, and so it is likely to
greatly reduce the staging costs.

As stated above, once this new starting configuration is chosen, the only change to the SPL
formula would be restating the top-level Reorder objects in terms of the new starting configura-
tion. This can be done by applying the dataflow simplification seen in Figure 3.11. We then make
sure to output a vector representing the permuted starting ordering such that the qubit indices can
be reordered classically.

This process, shown in Figure 3.15, can introduce seemingly spurious swaps at the end of the
circuit; such an unlucky case can happen if the final transform in the circuit requires a reordering
that does not align exactly with the chosen global reordering. In this case, it is fairly simple
to remove trailing swaps and output a vector representing the output ordering of the circuit,
which now may be slightly different than the input ordering. This is also trivial to account for
classically.

The global reordering phase is the final module in the QSPIRAL compiler that is needed;
we now have described the complete compilation path from high-level specification to quantum
circuit. In the next section, we will delve into the search procedure and how QSPIRAL selects
the optimal output.

44

Figure 3.15: Permuting the starting configuration of an SPL formula. Transform placements are
untouched but staging cost is reduced to 0.

45

3.3.5 Search
We now amend the optimization problem expressed in Section 2.4.1 by concretely instantiat-
ing the Factorizations operator with the aforementioned QSPIRAL stages. Recall the original
problem formulation.

circuitopt(Mat) = arg min
m ∈ Factorizations(Mat)

Cost(m)

In order to implement the Factorizations operator, we searched over all possible rule trees.
Given one such rule tree, we generated a factorization by applying the rule tree to the input
in the breakdown phase, and then rewriting the resulting expression in the rewrite and global
reordering phases. We evaluate the cost on the final circuit output, which is the result of the
rewriting phase. Instantiating these operators as Breakdown and Rewrite respectively, we get
the following minimization problem.

rtopt(circ, arch) = arg min
rt

Cost(Rewrite(Breakdown(rt, circ, arch)))

Where circ is the high-level algorithm input, arch is the hardware adjacency matrix, and rt is
the rule tree that decomposes circ into a gate-level expression. Breakdown applies the rule tree
rt to circ as described in Section 3.3.2, making sure to comply with the connectivity expressed in
arch. Rewrite simplifies the SPL expression as described in Sections 3.3.3 and 3.3.4, converting
the representation to a quantum circuit that can be expressed as QASM. Finally Cost is provided
by the user, and in our case is the number of SWAP gates in the final circuit.

Viewed more simply, the rule tree rt is the varying parameter, and the following operator
simply projects this onto the space of values which we are trying to minimize.

fun rt 7→ Cost(Rewrite(Breakdown(rt, circ, arch)))

This can be phrased as the following generic minimization problem, denoting the above func-
tion as F.

rtopt = arg min
rt

F(rt)

This problem is a reasonably standard formulation, on which any number of traditional search
techniques can be applied. Intuitively, the bounds on rt are such that rt must be a valid rule tree.
After finding the optimal rule tree rtopt, the final output circuit is the final value of the following
expression.

Rewrite(Breakdown(rtopt, circ, arch))

We solve this problem in QSPIRAL by performing a dynamic programming search to try nu-
merous relevant rule trees, using heuristics to determine which paths to try and storing the results
of subexpressions in a hashtable. We can then find the heuristically-best rule tree fairly effi-
ciently; this memoization approach works quite well due to the nature of the breakdown phase,
since we often end up decomposing the same formulas repeatedly, and can exploit parallelism
due to the independent nature of the transform subexpressions.

46

3.3.6 Heuristics

Fine-tuning the approach described above, there are several optimizations that can be used to
meet our efficiency goal. These are needed because it would be computationally expensive to try
every possible hardware placement for each non-terminal in our algorithm. Specifically, when
asked to decompose a qEmbed object, we should not search over every N -qubit permutation as
this rapidly gives us too many rule trees to search over. We can eliminate likely-to-be inefficient
mappings in several ways.

First, an unstructured search over all permutations is wasteful given our knowledge of the
high-level transform. Since we embed transforms from the top-down, we have access to the
highest-level description of the embedded algorithm, meaning we should be able to make in-
telligent decisions if we take the symmetry of the algorithm into account. A fixed embedding
technique for the QFT is shown in later sections, but this can be done for any transform. A partic-
ularly efficient example concerns embedding a QHT, or the quantum Hadamard transform; since
Hadamard transforms decompose into independent H gates, we can simply omit the reorder step
entirely.

Additionally, since we take into account only the positions of the affected qubits in the global
reordering stage, we need search only over arrangements of the k qubits the transform is applied
to, and assign an arbitrary or pass-through ordering for the rest. This, as mentioned earlier,
reduces the possible N ! reorderings to only N !

(N−k)! reorderings.
We can also apply an optimization we call group scheduling. The key recognition behind

this is that breaking a qCirc object into separate qEmbed objects for each transform could be
wasteful if the preferred hardware arrangements for the transforms end up not conflicting. We
can thus greedily attempt to schedule several transforms with the same hardware arrangement,
and if breakdown fails due to a failure to meet connectivity requirements, we can then split the
transforms up and try again until it succeeds. While this approach creates more work for larger
transforms that are likely to always prefer their own reorderings, it can be efficient for long series
of small transforms, as it reduces the number of objects we have to decompose.

Finally, every breakdown rule in SPIRAL is predicated on an arbitrary is applicable premise.
By changing how is applicable is determined, one could implement fixed decision procedures to
speed up the search or limit the possible span of rule trees. This approach is directly inspired by
the field of constructive logic [42], where techniques like sequent calculus [29], inversion [45]
and focusing [2] are used to lend speed and determinism to various methods of proof search.

3.3.7 System Outputs

The output of QSPIRAL is twofold. First, a fully simplified factorization of the input algorithm
is provided which consists of the tensor and matrix product of symbolic matrices; this is the
expression tree formulation presented in Chapter 2. Additionally, the backend QASM unparser
can transform this mathematical representation into a program stream that can be loaded into
most quantum circuit toolkits, as shown in Figure 3.16. It is worth noting that the QASM program
stream is the same or similar to the format that is commonly used as input to existing toolkits. It
should be apparent that most, if not all of our transformations would be impossible starting from
such a reduced representation.

47

Figure 3.16: Unparsing QSPIRAL’s symbolic matrix factorization; 4-qubit QFT factoriza-
tion [left] 4-qubit QFT QASM program [right].

Along with the QASM code is a vector indicating the global reordering chosen for the circuit,
allowing the user to know the input and output permutation of qubits. These can be reordered
classically by simply measuring different qubits.

To solidify our view of quantum circuits as simply being matrix factorizations of the desired
transform, we can expand out the 2N ×2N transform matrix in SPIRAL for suitably small values
of N . Quantum gates in QSPIRAL are expressed as symbolic matrices, and so by substituting in
their definition, GAP can reconstruct the target transform matrix. As indicated by Figure 3.17,
this is same transform matrix that is specified by the high-level algorithm syntax, accounting for
a possible permutation introduced in the global reordering phase.

Figure 3.17: Equivalent matrix expansion of 4-qubit QFT circuit (excluding vector normalization
terms) [left] and a 16-point DFT [right].

48

This approach works for generic circuits, but the true benefits to be had are when compiling
algorithms that have high-level symmetries. Thus, we take advantage of large bodies of Fourier
transform literature in the next section to present a series of proposed scheduling heuristics for
the quantum Fourier transform algorithm, and implement these in QSPIRAL.

3.4 Conclusions
In this chapter we outlined the complete QSPIRAL quantum code generator, a framework that
effectively expresses and searches over a large space of circuits that compute the desired algo-
rithm in order to find the best one with respect to some cost measure. We assume, due to reasons
stated in the introductory chapter, that this cost measure contains the number of SWAP gates in
some context, as much of the proposed framework implements a heuristic for efficiently placing
operations in a manner that minimizes data movement.

QSPIRAL is a general compiler. This means that in the case that the desired circuit is not
one that can easily be expressed by a high-level algorithmic symbol, we still accept gate-level
input in the form of non-terminals that trivially decompose into the intended gates. This is a
practical requirement, but providing gate-level input essentially bypasses most of the compiler
stages since there are no global rewrites or special decomposition rules to try. Luckily, most
useful algorithms will be able to leverage, at least partially, the high-level symbols we supply.

In the next section we take a particular look at one of these symbolic algorithms, the quantum
Fourier transform, and showcase the applicability of classical FFT literature towards informing
QFT circuit construction. This algorithm is an immensely important kernel and was an intuitive
choice for study given SPIRAL’s past successes with optimizing the FFT algorithm for classical
architectures. We will present a series of breakdown heuristics that leverage the structure of the
architecture to efficiently implement this algorithm in the QSPIRAL framework.

49

Chapter 4

Case Study: Quantum Fourier Transform

In Chapter 3 we discussed the SPIRAL implementation of a solver for the generalized optimiza-
tion problem formalized in Chapter 2. Understandably, the real test for this system lies in its
ability to generate effective circuits for important quantum algorithms. While our compilation
approach must be general in order to allow arbitrary input programs, the current space of useful
quantum algorithms is rather limited, meaning that we can study the structure of important quan-
tum algorithms in order to implement effective compilation heuristics for them. This approach
is not new. In fact, it is exactly what is done in classical SPIRAL to optimize known algorithms
for various hardware architectures. Applying these techniques is novel in the quantum domain,
however, because other frameworks do not have access to high-level algorithmic information at
decomposition time.

One such quantum algorithm is Shor’s algorithm [59] for integer factorization. In addition
to smaller circuit elements, this algorithm relies heavily on the quantum Fourier transform, an
implementation of the discrete Fourier transform in the quantum domain. This algorithm is of
particular interest in this work because classical SPIRAL was originally built to optimize the FFT
algorithm, and so the necessary intrinsics are already built-in. QSPIRAL is unique in being able
to recognize that it is compiling a QFT kernel and hence can apply the high-level algorithmic
manipulations described in this section. We intend for these heuristics to reduce the number
of rule trees by both informing how we decompose the QFT and limiting our search over the
hardware locations we want to compute it on.

In Section 4.1, we first motivate why the QFT is an important quantum algorithm. Section
4.2 provides a brief overview of the dataflow pattern of the FFT algorithm, and we directly relate
this to the implementation of the QFT circuit in Section 4.3. In Section 4.4, we draw both from
SPIRAL and parallel FFT research to develop heuristic algorithms for the quantum domain, an
effort that has not yet widely been explored. By taking inspiration from existing FFT literature
we are able to construct effective heuristics to make QFT optimization tractable in QSPIRAL
and produce efficient results when compared to existing toolkits. Conclusions are drawn in
Section 4.5; while we make very loose claims pertaining to optimality, we show that structured
approaches taking advantage of algorithm symmetry can be a powerful tool.

50

4.1 Why is the QFT important?
We begin by motivating the quantum Fourier transform, or QFT, as a useful quantum algorithm.
This algorithm simply computes a DFT on the joint state vector; an N -qubit QFT equates to a
2N -point DFT.

The quantum Fourier transform was first described by Umesh Vazirani and Ethan Bernstein
in 1993 [8], but found one of its first practical applications in 1994 with the advent of Shor’s
algorithm for factoring large numbers in polynomial time [59]. Shor’s algorithm is inspired
heavily by one proposed by Simon [61], but specifically leverages the QFT in order to power
the period-finding portion of the circuit. Shor’s algorithm is immensely important because it
suggests that quantum computers could break the assumed-difficult problem at the core of RSA
public-key encryption [56].

The QFT has since found uses in other algorithms, specifically as the driving kernel behind
the quantum phase estimation circuit [43]. From these important applications, it is clear that the
Fourier transform is an immensely important operator in the quantum world as well as in the
classical one. Being able to run this algorithm efficiently on quantum hardware is therefore of
importance.

4.2 The FFT Butterfly
The fast Fourier transform is an O(n log n) algorithm to compute the typically O(n2) discrete
Fourier transform. The derivation of this algorithm leverages group-theoretic symmetries. As a
brief overview, we can derive the algorithm as follows, starting with an N -point DFT.

X[k] =
N−1∑
n=0

x[n]W nk
N ;WN = e−j2π/N (4.1)

We can split this summation into even and odd components.

X[k] =
∑
neven

x[n]W nk
N +

∑
nodd

x[n]W nk
N (4.2)

X[k] =

(N/2)−1∑
r=0

x[2r]W 2rk
N +

(N/2)−1∑
r=0

x[2r + 1]W
(2r+1)k
N (4.3)

With some simplification we can rewrite this as two separate DFT computations of size N/2,
with one multiplied by a twiddle factor W k

N .

X[k] =

(N/2)−1∑
r=0

x[2r]W 2rk
N/2 +W k

N

(N/2)−1∑
r=0

x[2r + 1]W 2rk
N/2 (4.4)

51

Figure 4.1: 8-point radix-2 DIT FFT algorithm. Sourced from [52].

Repeating this decomposition, we get the radix-2 decimation-in-time (DIT) FFT algorithm.
The signal flow diagram of this algorithm is commonly expressed in terms of butterfly structures,
as shown in Figure 4.1.

We can also derive a decimation-in-frequency version of this algorithm, which will ultimately
result in the transpose of the above. We begin with the standard definition of the DFT.

X[k] =
N−1∑
n=0

x[n]W nk
N (4.5)

Dividing the time series in half, and merging summations, yields the following.

X[k] =

(N/2)−1∑
n=0

x[n]W nk
N +

N−1∑
n=N/2

x[n]W nk
N (4.6)

X[k] =

(N/2)−1∑
n=0

x[n]W nk
N +W

(N/2)k
N

(N/2)−1∑
n=0

x[n+ (N/2)]W nk
N (4.7)

X[k] =

(N/2)−1∑
n=0

(x[n] + (−1)kx[n+ (N/2)])W nk
N (4.8)

For k = 2r, or k even, we get the following expression.

52

X[k] =

(N/2)−1∑
n=0

(x[n] + (−1)2rx[n+ (N/2)])W n2r
N (4.9)

X[k] =

(N/2)−1∑
n=0

(x[n] + x[n+ (N/2)])W nr
N/2 (4.10)

This is the N/2 point DFT of x[n] + x[n + (N/2)]. Doing the same for the odd coefficients
(k = 2r + 1) we get the following.

X[k] =

(N/2)−1∑
n=0

(x[n] + (−1)2r+1x[n+ (N/2)])W
n(2r+1)
N (4.11)

X[k] =

(N/2)−1∑
n=0

(x[n]− x[n+ (N/2)])W n
NW

nr
N/2 (4.12)

This is the N/2 point DFT of (x[n] − x[n + (N/2)])W n
N . Continuing to decompose in

this fashion we get the transpose of the original signal flow graph. Hence, the DIF and DIT
algorithms are simply transposes of one another. This relationship, as well as many others, holds
in the quantum domain as well as in the classical one.

Figure 4.2: 8-point radix-2 DIF FFT algorithm. Sourced from [52].

The butterfly structures shown in Figure 4.2 are data transfers; in an optimized implementa-
tion of this algorithm, minimizing the communication cost between these streams is one of the
key considerations. In a dataflow processor this would require scheduling relevant instructions

53

close together, and in a multicore system this would require the efficient mapping and reduction
of various threads. The complex exponentials W k

N , or twiddle factors, pose no problem as they
can simply be applied locally via scalar multiplication.

The linear algebraic form of the decomposition we described above is the Cooley-Tukey [13]
rule, as follows.

DFTn = (DFTk ⊗ Im)Tn
m(Ik ⊗DFTm)Lnk ;n = km (4.13)

This rule expresses the butterfly topology in matrix form, and is showcased in Figure 4.3. By
varying the values of k andm we can construct a variety of different decomposition schemes that
correspond to algorithms beyond the standard radix-2.

Figure 4.3: Cooley-Tukey decomposition in sparse matrix form [left], state vector dataflow rep-
resentation [right]. Sourced from [25].

We can see that this existing formulation almost exactly suggests a way to construct a quan-
tum circuit for this task, indicating that a QFT circuit effectively applies the aforementioned
butterfly patterns to the state vector. We will derive this in the next section.

4.3 Classical-to-Quantum Translation
The building blocks of a QFT circuit are the same as its classical counterpart; the circuit is
constructed of butterfly structures and twiddle factors. Interestingly, whereas the performance
bottleneck in the classical realm is our ability to effectively implement the communication re-
quirements of the butterfly structures, these can be implemented directly by a Hadamard gate and
require no cross-qubit communication.

H =
1√
2

DFT2 =
1√
2

[
1 1
1 −1

]
(4.14)

Besides potentially the scaling factor (which is required to preserve vector length), the Hadamard
gate is exactly the 2 × 2 DFT matrix, which is commonly known as the butterfly matrix. The

54

Figure 4.4: Implementing FFT butterflies with Hadamard gates. Different H placements yield
different butterfly stages.

effect this gate has on the input vector is identical to the butterfly pattern needed to implement
the various stages of the FFT algorithm, as shown in Figure 4.4.

Applying twiddle factors is a controlled operation, specifically a controlled rotation by a
factor of π.

Twiddle(k) =

[
1 0

0 e
jπ
k

]
(4.15)

Controlled Twiddle(k) =

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e
jπ
k

 (4.16)

This means that the primary challenge in optimizing the QFT lies in satisfying the connec-
tivity costs of the twiddle factor applications. In this sense, this is reversed from the classical
domain, wherein the main bottleneck to performance was the communication cost of the but-
terfly network. We show in Figures 4.5 and 4.6 that the diagonal twiddle matrix Tn

m in the
Cooley-Tukey algorithm can directly be implemented with controlled rotation gates; these stages
are the primary target for optimization.

Just as the DIF and DIT butterfly networks are transposes of eachother in the classical do-
main, they can be transposed in the quantum domain as well (Figure 4.7). This is because the
operation the quantum gates apply to the state vector is exactly the classical FFT butterfly, and
thus the same symmetries apply.

Despite these similarities, while there are large bodies of FFT research pertaining to the
development and implementation of various algorithms on parallel and vector machines, very
little of this literature has been ported over the quantum realm. A significant barrier to this has

55

Figure 4.5: Implementing a 4-point FFT with Hadamard and controlled rotation gates.

Figure 4.6: Implementing an 8-point FFT with Hadamard and controlled rotation gates.

Figure 4.7: Transposing the DIF QFT [left] into the DIT QFT [right].

56

been the accessibility of quantum notation; parallels between the classical and quantum FFT do
not become apparent until the circuit optimization problem has been restated in terms of pure
linear algebra, as is done in Chapter 2. However, now that we have done so, we can leverage
SPIRAL’s library of FFT algorithms in order to provide valid circuit decomposition rules [25].
A trivial example of this is expanding our quantum circuit search beyond the radix-2 algorithm;
the radix-4 algorithm suggests an alternative approach to scheduling individual quantum gates.

Figure 4.8: Comparison between radix-2 QFT [left] and radix-4 QFT [right].

In Figure 4.8, we show the exploration of various gate scheduling options by employing the
Cooley-Tukey decomposition discussed in previous chapters (i.e. by varying k and m). Since
QSPIRAL manipulates the QFT in terms of a high-level representation, and treats the object as
more than an arbitrary string of gates, this and other decomposition identities can be applied.

4.4 QFT Optimization in SPIRAL
Now that we have provided a recipe for translating classical FFT structures into quantum-applicable
algorithms, we leverage the well-studied parallel FFT to inform hardware mapping heuristics.
Specifically, we will leverage the symmetries of a hypercube to inform how we partition and
schedule qubits in our QFT decomposition. Our ability to apply these and any future QFT-
specific heuristics we owe to the high-level approach taken in this thesis; if the input QFT circuit
were represented as a flattened string of gates we would not be able to recognize and apply
any of these algorithm-specific techniques. We will show that taking a structured and geomet-
ric approach to this problem has the potential to garner massive benefits over the traditionally-
unstructured search procedure.

Hypercubes are popular in the classical FFT domain for several reasons. First, they are sparse
architectures that require a maximum of log n edge traversals to reach any node in the graph.
Additionally, the symmetry of the radix-4 FFT lends itself well to a division of the algorithm
into planar sections, which a cube inherently does. These same reasons transfer to the quantum

57

domain. However, there is another reason why hypercubes are worth studying in a quantum-
specific context. One of the most popular quantum topologies is a nearest-neighbor connected
mesh, as exemplified by Google’s Sycamore architecture [3]; this is due both to manufacturing
concerns regarding higher-dimensional layouts and a consensus that mesh architectures could be
useful for implementing the error-corrected qubits of the future [38]. While a mesh is certainly no
hypercube, embedding a hypercube into a mesh is a well-studied problem, and so these heuristics
end up relying primarily on known classical techniques that need only be adapted to a quantum
environment.

In this section we present a general guide to our approach, and following from that, we
discuss a simple algorithm that operates on qubits arranged directly in a hypercube. However,
since quantum architectures are rarely built in the shape of a perfect hypercube, we then ex-
pand this algorithm to generalized topologies by performing an embedding of the hypercube
onto the given qubit architecture (most commonly a mesh) and factoring our original algorithm
onto this architecture. As we progress through the various QFT butterfly stages, this embedding
will change to minimize edge costs, ensuring we only ever compute on qubits that are optimally
located in a centralized cluster. Finally, we present a third heuristic, following from our general
approach, that leverages a repeating diagonal handshaking pattern that can be scaled to larger hy-
percubes. We show in the next section that in leveraging these placement heuristics, QSPIRAL
can often generate cheaper QFT circuits than can existing frameworks. We make no major opti-
mality claims with respect to these heuristics; we simply to intend motivate the further pursuit of
algorithm-specific heuristics in this space, and to show that our high-level algorithmic approach
allows these heuristics to be applied.

4.4.1 General Approach
To inform the steps taken in the rest of this section, we begin by outlining our general approach
towards developing the heuristics presented in this chapter.

We begin by selecting an algorithm, and from our knowledge of the dataflow patterns and
symmetries of this algorithm, we select an optimized graph structure on which we would want to
compute this algorithm. This graph can be any idealized qubit architecture that lends itself well
towards computing the algorithm in question, and (as is at least the case for the Fourier transform)
should often be directly informed by existing literature in the areas of parallel and scientific com-
puting. The optimal qubit connectivity graph for any algorithm is trivially a fully-connected one,
which is not immediately helpful since qubit architectures are rarely fully-connected. Therefore,
we constrain our choice to graphs that are sparse enough to resemble real quantum architectures.
Exact sparsity requirements are not formalized in this thesis, but since several aspects of com-
puting in the classical domain (network topologies, bus interconnects, etc...) also value sparsity,
it is our expectation that much of this research has already been done in classical literature to
determine geometrically-inspired sparse graphs on which various algorithms can be efficiently
computed. Once we select such an idealized qubit geometry, we can then develop a protocol
for executing the desired algorithm directly on this geometry, a protocol that is also likely to be
heavily inspired by existing literature in the classical domain.

However, whatever graph is ultimately chosen, these heuristics are not broadly useful if they
can only be applied for that specific idealized architecture; this would imply that a separate

58

algorithm must be hard-coded for each new qubit layout. Therefore, we must have a protocol for
factoring our ideal algorithm onto an arbitrary real qubit topology that does not necessarily match
the architecture we assumed. We generalize our original algorithm, then, by lowering our ideal
architecture to the real one; specifically, we perform an embedding of our idealized graph onto
the real qubit topology. Once we have performed this embedding, we can then generally apply
our original algorithm by treating each original step as an abstract operation, and translating
these manipulations of the ideal graph into series of manipulations that achieve the same goal
on the non-idealized real architecture; the less similar these two graphs, the larger incurred cost
we would typically assume. For example, certain swaps on the ideal graph may require two
or more swaps on the real architecture; similarly, neighboring qubits in the ideal graph may
require data movement to become so in the real architecture. Translating these abstract operations
into physical gates must be done to minimize the additional translation cost incurred by the
embedding.

In our specific case, we develop heuristics for the quantum Fourier transform, and select
the hypercube as an idealized structure on which to compute this algorithm. We leverage the
Cooley-Tukey algorithm to develop a protocol for executing the QFT on a perfect hypercube
(Section 4.4.2), perform an embedding of our idealized hypercube onto an arbitrary topology
(Section 4.4.3) and provide a methodology for factoring our original hypercubic algorithm onto
this non-ideal embedding (Section 4.4.4). Since a nearest-neighbor mesh is both a common
quantum architecture and convenient layout on which to perform our hypercube embedding, we
often assume our real architecture to be so in the following formalization. However, the approach
presented can be generalized to any real architecture, and our embedding algorithm will lower
the hypercube graph to any arbitrary geometry with the proper number of qubits. We repeat this
process for an additional protocol in Section 4.4.5; this serves to illuminate the immensity of the
design space and the wealth of additional research that this area could productively absorb.

4.4.2 Static Hypercube Algorithm
Let us start by assuming a hypercubic arrangment of qubits. We know by the structure of the
FFT algorithm that qubit 0 will need to control the rotation of (i.e. twiddle to) every other qubit
in the system with a higher index than itself. This pattern extends to all qubits, as seen in Figure
4.9, which displays a 4-qubit QFT circuit on a fully-connected architecture.

Figure 4.9: 4-qubit QFT circuit.

The structure of the algorithm introduces a natural dependency relation between a qubit and
all preceding qubits; qubit k must be rotated by qubits [0, . . . , k − 1]. Reordering these twiddle

59

rotations is possible (due to the commutativity of diagonal matrix multiplication) as long as a
qubit has been fully rotated before the Hadamard gate (i.e. the butterfly matrix) is applied; a
qubit must also only rotate other qubits in the system after the butterfly has been applied to it.
Permuting the gate schedule past these barriers changes the mathematical meaning of the circuit.
We do not directly face these concerns, as we are not modifying a low-level circuit definition,
but we do have to keep them in mind as we develop our decomposition technique.

Figure 4.10: A 16-qubit hypercube.

Following the schedule suggested by the radix-2 DIF algorithm, on the architecture shown in
Figure 4.10, we would first apply a Hadamard gate to qubit 0 and then proceed to rotate all other
qubits in ascending order. However, the data movement required to handshake qubit 0 with all
other qubits in the hypercube is very large. We must move qubit 0 adjacent to each of these qubits
before we can apply the rotation, and so we are paying non-negligible data movement costs when
we handshake with qubits across a diagonal. Specifically, handshaking qubit 0 with qubits 3, 5,
6, 9, 10 and 12 require traversing the diagonal of a 2-cube, 7, 11, 13 and 14 require traversing
the diagonal of a 3-cube, and 15 requires traversing the full-dimensional diagonal of the 4-cube.
Doing this sequentially for every qubit is very inefficient, seeing as qubit 0 will most likely be
much closer to these qubits in the future after further permutations have taken place. Our goal is
to design a permutation strategy that handshakes all necessary qubits in an acceptable order, but
that minimizes the cost we pay for communication across these high-dimensional diagonals.

Deriving such a strategy, let us start with the [0, 1, 2, 3] plane. Since 0 requires no rotation, we
can directly apply the butterfly matrix to qubit 0 (a process we will call progressing for brevity),
and twiddle to adjacent qubits 1, 2, 4 and 8. Since 1 need only be rotated by 0, we can then
progress 1 and twiddle from 1 to qubits 5, 3 and 9. We have performed all possible twiddles
from the current configuration, and so we swap qubits 0 and 1. Now we can twiddle from qubit
1 to qubits 8, 4 and 2, and from qubit 0 to 5, 9 and 3. Qubit 2 can now be progressed, and we
twiddle from qubit 2 to qubits 3, 6 and 10. We finish progressing the qubits in the plane by
progressing qubit 3 and twiddling from qubit 3 to qubits 7 and 11. This sequence continues in
the following fashion.

60

1) 2⇐ swap⇒ 3

2) 2 = twiddle⇒ 7, 11

3) 3 = twiddle⇒ 6, 10

4) 0⇐ swap⇒ 2, 1⇐ swap⇒ 3

5) 0 = twiddle⇒ 7, 11

6) 1 = twiddle⇒ 6, 10

7) 2 = twiddle⇒ 5, 9

8) 3 = twiddle⇒ 4, 8

9) 0⇐ swap⇒ 1

10) 2⇐ swap⇒ 3

11) 0 = twiddle⇒ 6, 10

12) 1 = twiddle⇒ 7, 11

13) 2 = twiddle⇒ 4, 8

14) 3 = twiddle⇒ 5, 9

This somewhat lengthy description of the swap sequence shown in Figure 4.11 has achieved
the complete handshaking of plane [0, 1, 2, 3] with planes [4, 5, 6, 7] and [8, 9, 10, 11].

Figure 4.11: The 4-qubit planar swap sequence.

To complete the algorithm, we can repeat this same process to handshake plane [4, 5, 6, 7]
with plane [12, 13, 14, 15], ignoring the backwards edges to plane [0, 1, 2, 3]. If we then swap
planes [0, 1, 2, 3] and [4, 5, 6, 7] and repeat our planar swap sequence, we complete all necessary
outbound rotations from cube [0, 1, 2, 3, 4, 5, 6, 7] to cube [8, 9, 10, 11, 12, 13, 14, 15]. To finish,
we can apply this algorithm recursively to perform an 8-qubit QFT on cube [8, . . . , 15]. This
yields a total of 35 swaps, which is cheaper than the upwards of 50 swaps needed to implement
the direct radix-2. While the above sequence seems arbitrary, it actually follows directly from a
particular decomposition of the FFT algorithm.

Inspecting closer, we recognize this sequence of operations corresponds quite closely with
the Cooley-Tukey decomposition algorithm. Specifically, we can build up this circuit by first
applying Cooley-Tukey to perform an even split at every iteration, and then modifying the order
of the rotation gates in order to match the edges present in the hypercube. The original Cooley-
Tukey circuit is shown in Figure 4.12, and the modified schedule is shown in Figure 4.13.

61

Figure 4.12: A 16-qubit QFT via Cooley-Tukey decomposition.

Figure 4.13: Modified 16-qubit Cooley-Tukey QFT, with hypercube-informed twiddle schedul-
ing.

62

Figure 4.13 is no different than Figure 4.12; the only modification made was in adapting the
gate schedule to take advantage of hypercubic neighbors in each position. Additionally, almost
all of the swaps we described result directly from the final bit reversal of the output (a bit reversal
in the quantum domain is simply a reversal of the qubit ordering). However, notice that on the
diagonals of Figure 4.13 that some rotations are performed not strictly along hypercubic edges.
By fully expanding these diagonals, as shown in Figure 4.14, we reach exactly the protocol
described.

Figure 4.14: Expanded static hypercube QFT decomposition (final bit reversal omitted).

However, as stated before, quantum devices are rarely built in perfect hypercubes, meaning
that this algorithm will rarely achieve the ideal 35 swaps for a 16-qubit QFT. In order to translate
this heuristic algorithm into one usable for arbitrary or mesh topologies, we must perform an
embedding of the hypercube onto our topology.

4.4.3 Mesh Embedding
Given the geometrically-inspired algorithm from the previous section, we now face the task of
embedding the assumed hypercube onto an arbitrary input topology.

Inspecting the first plane in the hypercube, specifically the hardware locations [0, 1, 2, 3], we
notice that these qubits must control rotations to all other qubits in the system. This in turn
suggests that these qubits should be clustered together in an area of the architecture that allows
them to minimize the distance to all other qubits in the circuit. In other words, we attempt to
place these 4 qubits in the center cluster of our architecture. Interestingly, searching for the
center cluster of a graph can be made more efficient if the graph is chordal (which, interestingly,
is useful for unrelated reasons in classical register allocation), but no such considerations are
typically made when designing quantum hardware.

After the center plane is placed, increasing indices of qubits are placed around it in groups
of 4, meaning we place one plane at a time. These additional qubits are placed to minimize their
distance to any hypercubic neighbors that are already mapped in the architecture. For example,
in placing the second plane consisting of qubits [4, 5, 6, 7], we will be simultaneously minimizing
4’s distance to [0, 5, 6], 5’s distance to [4, 1, 7], 6’s distance to [2, 4, 7], and 7’s distance to [5, 3, 6].
On a tie, we treat lower-dimensional edges as more important, meaning we successively build up

63

a centralized cluster in the architecture and avoid the edges of the connectivity graph wherever
possible.

Figure 4.15: Embedding a 16-qubit hypercube into a 4 × 4 mesh topology [top], 32-qubit into
4× 8 mesh [bottom].

For large architectures this placement algorithm becomes computationally intensive. Luckily,
we can speed up the process by precomputing this embedding and storing it in a hashtable with
the archictecture as the hash key. This is acceptable to us since hardware architectures change
very slowly when compared to software algorithms. Additionally, if this needs to be further
optimized in the future, this algorithm is a small black-box module which could be accelerated
independently of the rest of the system. Regardless, once we have embedded the hypercube into
the architecture, we have directly solved for the hardware locations that we wish to compute the
QFT on and no longer need to search blindly over all other permutations.

Notice, however, that this embedding should arguably change throughout the stages of the
QFT. Take as an example a swap performed between qubits 4 and 5 in the 4 × 4 16-qubit mesh
in Figure 4.15. In the static hypercube algorithm we perform this swap assuming that it is cheap
since 4 and 5 are neighbors in the hypercube. However, when this cube is flattened into a mesh,
this no longer is the case. Ideally, if we wanted to take advantage of the hypercubic edges
extending from plane [4, 5, 6, 7], we would prefer the embedding to look like that shown in Figure
4.16.

Viewing the mesh embedding as a flattened version of the 16-qubit 4-cube, this new layout
corresponds to a rotation of the original cube. Specifically, we have reflected across the third
dimension, or rather the dimension in which qubits 0/4 and 8/12 share an edge.

When we finish with all qubits [0, . . . , 7] and wish to call our procedure recursively to imple-
ment an 8-qubit QFT on qubits [8, . . . , 15], we similarly want to rotate our mapping to put these

64

Figure 4.16: A 16-qubit hypercube embedding after performing a 3-dimensional cube rotation.

outermost qubits in the center of the mesh. At this stage in the algorithm we are done computing
on the inner cube qubits [0, . . . , 7] and so we can rotate these qubits to the outside of the mesh
without a need to ever recall them to the center. The ideal layout is shown in Figure 4.17.

Figure 4.17: A 16-qubit hypercube embedding after performing a 4-dimensional cube rotation.

Extending these arguments, this means that we should continually rotate our hypercube em-
bedding such that we never compute on non-centered qubits. This logic generalizes reasonably
to non-mesh topologies since our embedding algorithm is agnostic to the input architecture. We
will incorporate these rotations to form the dynamic hypercube algorithm that we discuss in the
next section.

4.4.4 Dynamic Hypercube Algorithm
Following from aforementioned motivation we now modify the static hypercube algorithm by
rotating the hypercube embedding throughout various stages of the QFT. The goal of these rota-
tions is to make sure that we never compute on non-centered qubits. For an N qubit QFT, this
means that we want the N/2-qubit hypercube that we are currently computing on to be centered.
This extends to the N/4 hypercube within that, the N/8 hypercube within that, and so on. Since
these rotations are not free we do not want to perform the same rotation twice, meaning that we
want to finish computing on the currently-centered N/2, N/4, N/8, ..., 4-sized substructure be-
fore swapping it out of the center. By doing this properly, we achieve our goal of slowly pushing
completed qubits farther from the center, leaving us with a monotonically non-increasing central
cluster of relevant qubits.

Walking through the proposed algorithm, let us start with the 16-qubit mesh embedding
shown in Figure 4.15.

65

We can apply the swap sequence shown in Figure 4.11 to the [0, 1, 2, 3] plane, handshaking
the qubits in plane [0, 1, 2, 3] with those in planes [4, 5, 6, 7] and [8, 9, 10, 11] in the process. In the
static algorithm we would repeat this process directly on the [4, 5, 6, 7] plane, but we understand
this is inefficient since the [4, 5, 6, 7] plane is not centered. Instead we perform a rotation on our
mesh embedding to move these qubits and their neighbors into the center, and only then do we
apply this swap sequence. This rotation is along dimension 3 (3 = log28), and in the physical
circuit, takes place after the 8-qubit diagonal.

Applying the swap sequence shown in Figure 4.11 to qubits [4, 5, 6, 7], we are able to hand-
shake with plane [12, 13, 14, 15]. We do not handshake with plane [0, 1, 2, 3] since those rotations
are not needed in the QFT algorithm.

Continuing, we notice that we need to rotate from plane [0, . . . , 3] to plane [12, . . . , 15] and
from plane [4, . . . , 7] to plane [8, . . . , 11]. To achieve this, we swap the [0, 1, 2, 3] plane with the
[4, 5, 6, 7] plane; this is not a rotation like before, but rather is just a permutation resulting from
the Cooley-Tukey algorithm.

We can now twiddle from plane [0, 1, 2, 3] to plane [12, 13, 14, 15] with the same sequence
of 6 swaps. To finish computing on our inner cube qubits [0, . . . , 7], we must re-rotate along
dimension 3 (3 = log28) to handshake plane [4, 5, 6, 7] with plane [8, 9, 10, 11].

66

To conclude, we perform a rotation along dimension 4 (4 = log216, occurring after the 16-
qubit diagonal) before calling this procedure recursively to implement an 8-qubit QFT on the
now-centered outer cube qubits [8, . . . , 15].

The procedure outlined above is exactly that presented in the static algorithm, except with
the addition of several rotations to slowly shift hypercubic substructures in and out of the center.
Specifically, in terms of QFT stages, we rotate along the log2(N)th dimension immediately after
the N -qubit twiddle diagonal. The resulting circuit is shown in Figure 4.18.

Figure 4.18: The 16-qubit dynamic hypercube QFT decomposition (static hypercube with addi-
tional embedding rotations).

67

In the 16-qubit example, All hypercubic edges extending from the center plane manifest as
real edges in the mesh architecture. As the number of qubits increases this is no longer the case.
Consider a 64-qubit QFT executed on a mesh; in the 64-qubit hypercube shown in Figure 4.19,
qubit 0 should have edges extending to qubits 1, 2, 4, 8, 16 and 32, ordered canonically.

Figure 4.19: A 64-qubit hypercube. Qubit 0 has 6 neighbors with edges marked in red.

To handshake qubit 0 with all its hypercubic neighbors, then, we must do the following:

• 0 = twiddle⇒ 1

• 0 = twiddle⇒ 2

• 0 = twiddle⇒ 4

• 0 = twiddle⇒ 8

• 0 = twiddle⇒ 16

• 0 = twiddle⇒ 32

However, despite qubit 0 being neighbors with all these qubits in the hypercube, it will actu-
ally only be neighbors with qubits [1, 2, 4, 8] since we can have at most 4 neighbors in the mesh.
To implement these non-ideal edges we must temporarily bring qubit 0 out of the center to com-
plete a tour on which qubit 0 is able to handshake with qubits 16 and 32. To do this, we compute
the powers of the adjacency matrix in order to find the shortest path(s) from qubit 0 to qubits 16
and 32. After merging these paths in a manner identical to Reorder object cancellation, we ob-
tain the optimal swap sequence that implements both of these compound edges at once. If there
are multiple shortest paths, we try all combinations. In reality, this sequence can be expressed in
SPIRAL as a subcircuit, and our solver will automatically implement this procedure.

4.4.5 Diagonal Hypercube Algorithm
Through developing the last two heuristics we have built up a series of useful abstractions for
implementing efficient hypercubic QFT circuits. In this last heuristic, we similarly map an ideal-
ized algorithm onto a real architecture, but start with a different algorithm than the one presented

68

in Section 4.4.2. Specifically, we leverage the ring or torus structure of a hypercube (Figure
4.20), and attempt to copy a successful low-dimensional technique into higher dimensions. In
lower dimensions this approach actually garners some improvement over the dynamic hypercube
method presented above.

Given a ring of hypercubic structures labeled a, b, c, d, our goal is to twiddle all qubits in
structure a to those in structures [b, c, d], all qubits in structure b to those in structures [c, d], and
then call our algorithm recursively on the c, d substructure. Partitioning various hypercubes into
ring topologies is seen below.

Figure 4.20: Partitioning of N -qubit hypercubes into rings of N/4-qubit hypercubes.

Recall that we are still embedding this hypercube onto a flattened graph. Therefore, structure
a is the centermostN/4-qubit hypercube, [a, b] is the centermostN/2-qubit hypercube, and [c, d]
is the outermost N/2-qubit hypercube. We will try to perform this operation in such a manner
as to never have the same N/4-qubit hypercube occupy the center twice, and we must end with
[c, d] in the center N/2 positions before making our recursive call. With the standard ordering,
however, we notice some unfortunate properties when embedding our architecture onto a mesh
in Figure 4.21.

Figure 4.21: Division of N -qubit hypercube embedding into 4 N/4 regions. Partial flattening
onto mesh topology [left], high-level view [right].

After twiddling from a to b and c, we must twiddle from structure a to structure d, which
is separated from the center along the highest-dimensional diagonal. The most effective place

69

to put d is in b’s position, since that will provide the shortest distance between the qubits in a
and the qubits in d. However swapping b out of the center is not desirable, because the next
N/4-sized substructure to occupy the middle must be b due to the constraints on twiddle gate
ordering. We can get around this by simply starting with substructure b on the diagonal, as
shown in Figure 4.22.

Figure 4.22: Twisted torus handshaking pattern.

With b on the diagonal, a can twiddle to the centermost d and c groups. We can then pull b
into its proper location, untwisting the ring, and twiddle from a to b. Since a is now completely
computed on, we can move b into the center and push a to the diagonal location. Now, we can
twiddle from b to groups d and c, before shifting c into the central location and implementing a
recursive N/2-sized QFT on the centered c and d groups.

We can leverage this pattern to implement a variant of the QFT heuristics previously pro-
posed. We will perform the same hypercube embedding as done in the previous sections, except
permuting the starting ordering such that the b and d qubits are swapped. We then can scale this
simple a, b, c, d handshaking pattern to larger hypercubes. The complete sequence is shown in
Figure 4.22.

While this heuristic is less directly inspired by Cooley-Tukey than the previous algorithm,
it showcases the wealth of options available in determining the optimal placement patterns of
algorithms for various architectures. Of note is that these problems lie completely in the realm of
theoretical computer science, and not much of the problem requires any knowledge of quantum
computing. This last point suggests that there are large bodies of classical literature that could
directly inspire more heuristics like the three shown in this thesis.

4.4.6 Non-powers of two
The heuristics above assumed a power-of-two number of qubits. While making similar assump-
tions is not unusual in this space (radix-2, for example, requires a power-of-two-point transform),
the above approach can be expanded.

For a QFT on a N qubits where log2N /∈ Z, QSPIRAL can decompose the QFT with other
rules until one of the subcomponents is a power of two, in which case the hypercubic heuristics
can be applied to only that subproblem. Since we search over all decompositions, this equates
to finding the largest section of k qubits we can apply these heuristics to, applying our mesh
embedding on the substructure represented by these k qubits. The other N − k qubits can then
be decomposed regularly, most likely according to the Cooley-Tukey rule.

70

It is important to note that this concerns qubit counts that are not powers of two. A QFT will
always implement a power-of-two point transform, since anN -qubit QFT implements a 2N -point
DFT on the state vector.

4.5 Conclusions
In this chapter we outlined several possible heuristics for generating quantum Fourier transform
circuits in the QSPIRAL framework. We were able to draw parallels between classical FFT
literature and QFT circuitry, a process that required pattern matching between the classic signal
flow diagrams of FFT algorithms and the effect that QFT circuits have on the input state vector.
This allowed us to leverage large bodies of FFT literature in order to inspire our heuristics; we
specifically chose a hypercube heuristic, and outlined the various ways these could inform how
we decompose the input.

These heuristics fit seamlessly into the general QSPIRAL framework discussed in the pre-
vious chapter. If we decide to fire a specific heuristic based on the metadata we have available,
we can partition the qubits according to the hypercube embedding and then apply either the dy-
namic or diagonal handshaking patterns discussed above. For qubit counts that are powers of
two, this greatly accelerates the decomposition process as we do not need to search over any
other decomposition rules for that symbol.

These heuristics make no claim to optimality; they are intended to exemplify our proposed
compilation approach. Since QSPIRAL captures high-level information about the algorithm,
there is no reason to treat a QFT as an arbitrary string of gates as do other frameworks. We
have high-level metadata to work from, and thus we can implement a wide variety of mapping
algorithms and fire each one when appropriate. If no heuristics apply, then QSPIRAL can simply
backtrack to trying a search over rules such as Cooley-Tukey decomposition. A similar approach
is taken by SPIRAL in the classical domain, and we believe it can be successful in the quantum
domain. We indeed show a reasonable degree of success in the next chapter, in which we present
and analyze our results.

71

Chapter 5

Evaluation

This chapter discusses the qualitative and quantitative evaluation of the QSPIRAL system. Specif-
ically, we endeavour show the following key points.

• Competitive results on general circuits. QSPIRAL is able to produce competitive cir-
cuits, evaluated with respect to data movement costs, when invoked on gate-level test pro-
grams. To show this, we evaluate QSPIRAL on a series of benchmarks and provide a
qualitative analysis of its performance.

• Advantages on high-level input. QSPIRAL, by leveraging the high-level symmetries
of symbolic transforms, is often able to more effectively schedule these transforms on
hardware. We show promising results for the QFT in particular. We also analyze the
deficiencies of these results and where future work is needed.

In Section 5.1 we discuss the generalization of QSPIRAL to arbitrary inputs, and argue that
while QSPIRAL accepts gate-level input, it is not our intended use case. In Section 5.2 we
evaluate QSPIRAL’s ability to generate QFT circuits from a high-level description, showing that
we are able to produce results that are superior or comparable to those produced by Qiskit in
a number of cases; we evaluate the performance of our heuristics on both mesh and non-mesh
architectures. Conclusions are then drawn in Section 5.3.

5.1 Generalized Connectivity Satisfaction
To evaluate the QSPIRAL system, we must first show that the framework can be generalized to
compile all inputs. We begin by showing that QSPIRAL produces circuits comparable to Qiskit’s
when invoked on gate-level input; this establishes that QSPIRAL’s rewrite system is capable of
performing peephole optimizations that are similar to those used by Qiskit. Next, we analyze
these results and describe why, despite QSPIRAL’s ability to handle these inputs, that the true
potential of our system is in compiling and leveraging higher-level representations. We showcase
this potential in the next section, and are able to reap significant benefits by leveraging high-level
information.

While benchmarking suites such as QUEKO [62] and VOQC [35] exist, we choose, for a
number of reasons, to form our own limited benchmarks for the purposes of this thesis. First,
in order to more directly compare the modules in QSPIRAL and Qiskit respectively that solve

72

for connectivity, we wanted our benchmarks to consist only of controlled gates for simplicity
(since single-qubit gates have no connectivity constraints). Additionally, for reasons analyzed
in Section 5.1.2, QSPIRAL is relatively inefficient in compiling low-level circuits due to the
lack of high-level symmetries to apply; without proper heuristics, QSPIRAL is not able to prune
the search space effectively enough to give a reasonable execution time on longer gate-level
expressions. Therefore, our benchmarking suite consists primarily of shorter circuits on smaller
architectures, as seen in Figure 5.1. In order to efficiently compile these circuits, an optimized
logical-to-physical mapping must be found, thereby leveraging QSPIRAL’s ability to solve a
generalized form of the connectivity satisfaction problem.

Figure 5.1: Benchmarks for evaluating generalized connectivity satisfaction.

5.1.1 Results
Figure 5.2 shows SWAP counts across various QSPIRAL compilation outputs, measured against
those produced by different Qiskit optimization levels. Since the primary evaluation criterion
in this work is the number of SWAP operations, the test circuits (Figure 5.1) are formulated
as strings of controlled gates on sparse architectures. These circuits were chosen in order to
isolate the particular compilation passes in Qiskit that satisfy connectivity, and compare their
results against QSPIRAL’s solution; since no high-level algorithmic symmetries can be taken
into account, these systems are essentially applying two radically different heuristic algorithms to
solve the same intractable problem. QSPIRAL’s solver is shown to be competitive with Qiskit’s
on these circuits, and we would expect this trend to generalize to a much larger set of benchmarks.

73

Figure 5.2: SWAP count on test circuits for three quantum architectures. X-axis is circuit num-
ber, in the order shown by Figure 5.1.

74

While the CNOT gates that make up these circuits could potentially be cancelled with the
inserted swaps (recall that a SWAP gate can be implemented with 3 CNOT gates), we do not
decompose the SWAP gates any further. This is done in order to more accurately compare the
constraint satisfaction modules in both compilers. We could, however, exclude SWAP from our
set of basis gates and minimize with respect to any of other gates or sets of gates, CNOT in-
cluded; this only requires modifying the cost measure, as the rewrite phase (Section 3.3.3) will
apply our library of gate-cancellation rules to simplify the formula accordingly. Since minimiz-
ing swaps is the primary motivation for this thesis, and there are still several simplification rules
in Qiskit that have not yet been ported over as QSPIRAL rewrite rules, we feel justified in purely
comparing SWAP gates. We believe QSPIRAL should be able to match Qiskit on these circuits
for any cost measure if the large library of Qiskit gate identities were ported into QSPIRAL’s
rewrite system.

However, reimplementing Qiskit in SPIRAL is not the intent of this thesis. We describe in
the next section why these results are not particularly consequential, as the true test of our system
lies in QSPIRAL’s ability to leverage algorithmic information to inform appropriate heuristics.

5.1.2 Analysis

As is clear by now, while QSPIRAL is competitive on our gate-level benchmarks, the system is
not intended to take in programs expressed at that level. Providing input in terms of a linear series
of gates equates to the input that traditional transpilers expect, and is suboptimal for reasons
explained in the previous chapters. The novelty of our approach lies in the fact that we can
leverage high-level algorithm specifications to construct optimized circuits directly; QSPIRAL is
simply a mathematical engine that efficiently decomposes large algorithms into quantum circuit
form. If the input transform consists only of low-level gates, such as a series of qCNOT non-
terminals as shown in Figure 5.1, there are few such symmetries to apply. In this case, one might
often be equivalently better off applying the local search procedure outlined by Qiskit, because
there are essentially no high-level decomposition decisions to make.

There are not no decisions to make, and the results in the previous section are therefore still
reasonably encouraging; QSPIRAL still manages to produce more efficient circuits than can
Qiskit due to its ability to expand the global search space. Consider Figure 5.3, in which we
exhaustively expand the search spaces for some of our test circuits and categorize with respect to
SWAP count; the only heuristic rule employed is the one ensuring that controlled rotation gates
are only mapped onto adjacent hardware qubits.

While gate counts vary wildly across the various possible decompositions, QSPIRAL is still
able to find the most efficient formula and return it. One of the most promising features of
QSPIRAL is its ability to generate a complete search space from the top-down, and intentionally
prune this search space with heuristics; this is in stark contrast to peephole simplification meth-
ods, which cannot access any such search space, and are structurally limited to optimizing over
a localized window. However, since QSPIRAL must then search over this global space, it relies
heavily on having the proper heuristics to make this process tractable. These heuristics do not
necessarily exist with gate-level input since there are few symmetries to apply. Therefore, the
immense size of this search space currently limits QSPIRAL performance on low-level input.

75

Figure 5.3: Search space histogram evaluated with respect to SWAP count: athens test circuit
6 [left], athens test circuit 4 [right]. Circuits resulting from all valid rule trees are plotted with
swap count on the x-axis and circuit count on the y-axis.

Indeed, without any such heuristics, one would be forced to confront an intractable problem
head-on, as shown in Figure 5.4.

Figure 5.4: Naı̈ve scheduling problem for low-level circuit input, with a reordering step between
every gate.

One solution to this would be to introduce randomization, or to simply cap the number of
decompositions we search over at some function of qubit count or circuit depth. In our case,
besides preemptively pruning any reordering that violates connectivity (i.e. mapping a qCNOT
non-terminal onto hardware qubits that do not immediately share an edge), we can apply the

76

qCirc group-scheduling heuristic (Section 3.3.6) to make this problem easier. However, QSPI-
RAL’s factorization framework is still mostly bypassed since the input matrices are already in
sparse form; we have equated circuit generation to sparse matrix decomposition, so many of our
stages now have little to no effect.

The real benefits to be had with this type of system is in compiling algorithms expressed at
a higher level of abstraction. Quantum programs are not, in our view, circuits so much as they
are linear transforms. Shor’s algorithm, for example, makes heavy use of the QFT, and Simon’s
a Walsh-Hadamard transform; both of these are better expressed as mathematical objects than
circuits, since innumerable circuits can be used to implement both. Additionally, there is an
identifiable set of linear transforms that is currently useful in the quantum domain, and arbi-
trary strings of gates rarely lead to any useful computation being done. We can circumvent the
aforementioned complexity problem with high-level input because we only explore reorderings
around functional unit boundaries, and even then only explore reorderings that make geometric
sense given the architecture and the symmetries of the transform. We evaluate our implementa-
tion of one such high-level transform, the QFT, in the next section.

5.2 Quantum Fourier Transform
We now evaluate QSPIRAL’s performance when executed on high-level algorithmic input. Specif-
ically, we have targeted the QFT in this work. Other useful algorithms can be translated into
QSPIRAL with the inclusion of additional decomposition rules and heuristics.

5.2.1 QFT on mesh architectures
The following statistics present QSPIRAL compilation results for the QFT algorithm on mesh
architectures, measured against those from Qiskit on various optimization settings. Nearest-
neighbor mesh architectures are relevant because they are immensely popular in cutting-edge
quantum computers; they are also ideal for our QFT heuristics because hypercube structures
embed well into meshes.

Figure 5.5: Diagonal hypercube QFT SWAP count evaluation on lattice: 4-32 [left], 4-64 [right].
Data is from Table 5.1.

77

Hypercube QFT SWAP count on lattice

Qubits Compiler Optimization Algorithm Connectivity SWAP Count
4 QSPIRAL N/A diagonal 2x2 1
4 QSPIRAL N/A dynamic 2x2 1
4 Qiskit 0 N/A 2x2 2
4 Qiskit 1 N/A 2x2 2
4 Qiskit 2 N/A 2x2 3
4 Qiskit 3 N/A 2x2 2
8 QSPIRAL N/A diagonal 2x4 11
8 QSPIRAL N/A dynamic 2x4 11
8 Qiskit 0 N/A 2x4 26
8 Qiskit 1 N/A 2x4 20
8 Qiskit 2 N/A 2x4 24
8 Qiskit 3 N/A 2x4 22

16 QSPIRAL N/A diagonal 4x4 45
16 QSPIRAL N/A dynamic 4x4 63
16 Qiskit 0 N/A 4x4 123
16 Qiskit 1 N/A 4x4 132
16 Qiskit 2 N/A 4x4 156
16 Qiskit 3 N/A 4x4 143
32 QSPIRAL N/A diagonal 4x8 497
32 QSPIRAL N/A dynamic 4x8 871
32 Qiskit 0 N/A 4x8 649
32 Qiskit 1 N/A 4x8 604
32 Qiskit 2 N/A 4x8 669
32 Qiskit 3 N/A 4x8 616
64 QSPIRAL N/A diagonal 4x8 4769
64 QSPIRAL N/A dynamic 4x8 7735
64 Qiskit 0 N/A 4x8 3893
64 Qiskit 1 N/A 4x8 4156
64 Qiskit 2 N/A 4x8 4149
64 Qiskit 3 N/A 4x8 3406

Table 5.1: Hypercube QFT SWAP count on lattice.

As shown in Figure 5.5, QSPIRAL realizes tangible data-movement savings for QFT sizes
up to 32 qubits. At 64 qubits, results begin to degrade. This is due to the simplicity of our embed-
ding; we assume in our idealized protocol that hypercube edges are cheaper than non-hypercube
edges and implement data movement to ensure we only ever twiddle across a hypercube edge.
For large meshes, however, many qubits are placed on the boundaries of the mesh and their hy-
percube edges become expensive to communicate across, violating our implicit assumption. In
other words, the hypercube embedding degrades as qubits must be placed far from the center.
We believe this bottleneck can be overcome with additional or modified heuristics.

78

Figure 5.6: Dynamic hypercube QFT SWAP count evaluation on lattice: 4-32 [left], 4-64 [right].
Data is from Table 5.1.

As shown in Figure 5.6, the dynamic hypercube algorithm also requires fewer data movement
operations for QFTs up to 16 qubits than does Qiskit on maximum optimization settings. The
dynamic algorithm similarly degrades at larger sizes due to the same issues noted above. It
degrades more rapidly due to the increasing costs of performing the cube rotations needed to
keep the computation localized to the center of the mesh. We believe that this bottleneck can be
addressed by modifying the rotation scheme, as there is commonly no need to rotate the entire
hypercube when a rotation of just the centralized cluster would suffice.

Regardless, we show in these results that there is most likely a place for structured approaches
in the future, and that massive gains can potentially be realized by forming appropriate decom-
position heuristics for various algorithms in a variety of architecture contexts. The eventual goal
of the QSPIRAL system, similar to that of the classical SPIRAL system, is to have a large library
of these heuristics and fire each one when appropriate, on the entire input transform at once or
on various decomposed subformulas; this is necessary because it is exceedingly rare that any one
heuristic performs well in all situations. If no heuristics apply in a given situation, QSPIRAL
can instead apply traditional Cooley-Tukey decomposition.

5.2.2 QFT on non-mesh architectures

We also evaluated our QFT decomposition heuristics on the non-mesh architectures shown in
Figure 5.7, specifically IBM’s athens, guadalupe, toronto, aspen, rochester and manhattan archi-
tectures; these were chosen since they are large departures from mesh architectures, and since
they are IBM devices, it could be expected that Qiskit is built to compile circuits for them ef-
ficiently. We show that, despite these architectures being far from our ideal hypercube, our
heuristics are still able to produce competitive results. Different heuristics could be developed
for these architectures, and would most likely boast vastly better results; the QSPIRAL frame-
work takes architectural information into account, so were these to be developed, they could be
seamlessly integrated into our system.

As shown in Figure 5.8, the algorithms perform similarly to Qiskit on these non-mesh archi-
tectures despite the hypercube embedding being far from optimal. Additionally, our approach
is visibly more deterministic; we get equivalent 16-qubit results on the toronto, manhattan and

79

Figure 5.7: Chosen non-mesh architectures. Images sourced from Qiskit backend and adapted
from [44].

rochester architectures, and equivalent 32-qubit results for the manhattan and rochester archi-
tectures. The same holds for 4-qubit results on the athens, toronto, manhattan and rochester
architectures, and for the guadalupe and aspen architectures. These observations result from
QSPIRAL being able to recognize and leverage the same optimal substructures within in each
architecture. Following from this result, we expect that it could be possible to accelerate our
hypercube embedding process (Section 4.4.3) by scanning an input architecture for substruc-
tures similar to those that QSPIRAL has encountered before; we could then reuse placements
that have already been computed for that substructure. This could be useful if future large archi-
tectures have smaller, recognizable architectures embedded within them, such as the manhattan
architecture containing several instances of the toronto architecture within it.

Despite being within a factor of Qiskit’s performance, however, it is seen that the benefits of
the algorithm are somewhat lost on architectures that depart massively from the assumed mesh
topology. While this is unfortunate, it is not wholly unexpected; classical SPIRAL has many
heuristics for computing algorithms on various hardware architectures, so there is no reason to
believe QSPIRAL could not do the same, and fire the appropriate heuristic based on the algo-
rithmic and adjacency matrix input. In this sense, these results serve not to dissuade further
research in this space, but rather to motivate the expansion of this approach to more and larger
architectures.

It is our expectation that our approach, with further work, will result in much more flexibility
when attempting to tackle the scaling problem shown in Figure 1.1. By utilizing architectural
and algorithmic inputs, we have more information to leverage when compared to existing ap-
proaches, and the benefits we do see prove that this algorithmic information can be useful if
applied appropriately. QSPIRAL, due to its scope, has access to a strictly larger search space.

80

Figure 5.8: Hypercube QFT SWAP count evaluation on non-mesh. Data is from Tables 5.2, 5.3
and 5.4.

81

4-qubit QFT SWAP count on non-mesh

Compiler Optimization Algorithm Connectivity SWAP Count
QSPIRAL N/A diagonal athens 3
QSPIRAL N/A dynamic athens 3

Qiskit 0 N/A athens 6
Qiskit 1 N/A athens 4
Qiskit 2 N/A athens 5
Qiskit 3 N/A athens 5

QSPIRAL N/A diagonal toronto 3
QSPIRAL N/A dynamic toronto 3

Qiskit 0 N/A toronto 5
Qiskit 1 N/A toronto 4
Qiskit 2 N/A toronto 3
Qiskit 3 N/A toronto 3

QSPIRAL N/A diagonal guadalupe 1
QSPIRAL N/A dynamic guadalupe 1

Qiskit 0 N/A guadalupe 6
Qiskit 1 N/A guadalupe 4
Qiskit 2 N/A guadalupe 3
Qiskit 3 N/A guadalupe 5

QSPIRAL N/A diagonal aspen 1
QSPIRAL N/A dynamic aspen 1

Qiskit 0 N/A aspen 5
Qiskit 1 N/A aspen 5
Qiskit 2 N/A aspen 5
Qiskit 3 N/A aspen 4

QSPIRAL N/A diagonal manhattan 3
QSPIRAL N/A dynamic manhattan 3

Qiskit 0 N/A manhattan 6
Qiskit 1 N/A manhattan 5
Qiskit 2 N/A manhattan 4
Qiskit 3 N/A manhattan 5

QSPIRAL N/A diagonal rochester 3
QSPIRAL N/A dynamic rochester 3

Qiskit 0 N/A rochester 5
Qiskit 1 N/A rochester 5
Qiskit 2 N/A rochester 5
Qiskit 3 N/A rochester 5

Table 5.2: 4-qubit QFT SWAP count on non-mesh.

82

16-qubit QFT SWAP count on non-mesh

Compiler Optimization Algorithm Connectivity SWAP Count
QSPIRAL N/A diagonal toronto 223
QSPIRAL N/A dynamic toronto 317

Qiskit 0 N/A toronto 294
Qiskit 1 N/A toronto 241
Qiskit 2 N/A toronto 276
Qiskit 3 N/A toronto 262

QSPIRAL N/A diagonal guadalupe 385
QSPIRAL N/A dynamic guadalupe 615

Qiskit 0 N/A guadalupe 307
Qiskit 1 N/A guadalupe 309
Qiskit 2 N/A guadalupe 276
Qiskit 3 N/A guadalupe 262

QSPIRAL N/A diagonal aspen 133
QSPIRAL N/A dynamic aspen 207

Qiskit 0 N/A aspen 119
Qiskit 1 N/A aspen 240
Qiskit 2 N/A aspen 160
Qiskit 3 N/A aspen 174

QSPIRAL N/A diagonal manhattan 223
QSPIRAL N/A dynamic manhattan 317

Qiskit 0 N/A manhattan 277
Qiskit 1 N/A manhattan 150
Qiskit 2 N/A manhattan 225
Qiskit 3 N/A manhattan 245

QSPIRAL N/A diagonal rochester 223
QSPIRAL N/A dynamic rochester 317

Qiskit 0 N/A rochester 228
Qiskit 1 N/A rochester 221
Qiskit 2 N/A rochester 178
Qiskit 3 N/A rochester 229

Table 5.3: 16-qubit QFT SWAP count on non-mesh.

5.3 Conclusions

In this chapter we evaluate the QSPIRAL system for general inputs, as well as analyze the perfor-
mance gains accrued from running the hypercube QFT heuristics outlined in the previous chapter.
Our goal is not especially to evaluate the particular heuristics themselves, as much as to show
that QSPIRAL is able to empower these heuristics and provides a framework for developing and
employing them. If the approach taken by QSPIRAL is able to provide enough information as to
enable any decent heuristics, that would be a great success in proving the utility of such a design.

83

32-qubit QFT SWAP count on non-mesh

Compiler Optimization Algorithm Connectivity SWAP Count
QSPIRAL N/A diagonal manhattan 1217
QSPIRAL N/A dynamic manhattan 1937

Qiskit 0 N/A manhattan 1532
Qiskit 1 N/A manhattan 1588
Qiskit 2 N/A manhattan 1858
Qiskit 3 N/A manhattan 1171

QSPIRAL N/A diagonal rochester 1217
QSPIRAL N/A dynamic rochester 1937

Qiskit 0 N/A rochester 1286
Qiskit 1 N/A rochester 1331
Qiskit 2 N/A rochester 1103
Qiskit 3 N/A rochester 1281

Table 5.4: 32-qubit QFT SWAP count on non-mesh.

QSPIRAL performs reasonably well on an assortment of gate-level circuits, but as mentioned
before, this is not the primary use case of the system. QSPIRAL is a compilation system that
takes a novel viewpoint, namely that quantum circuits should be generated from a high-level
algorithmic specification rather than handwritten as assembly and compiled.

QSPIRAL performs admirably well in certain cases when asked to decompose the quantum
Fourier transform. Applying our breakdown heuristics, QSPIRAL is able to generate connectivity-
compliant circuits that are significantly more optimized than those produced by Qiskit for various
sizes. The dynamic and diagonal QFT results on meshes consisting of up to 32 qubits are es-
pecially impressive. We would expect this trend to continue; the fact that it does not implies
that past 64 qubits our heuristics are not sufficient due to a degradation of the hypercube em-
bedding. We expect, however, that additional breakdown rules or heuristics could overcome this
challenge. The significant and deterministic improvements we see for smaller QFT sizes should
be motivation for further developing our approach.

On trivially-small circuits, such as the 4-qubit QFT, we clearly see the benefits of apply-
ing algorithm-informed and structured approaches such as those employed in QSPIRAL. Even
though a 4-qubit QFT on a 2 × 2 lattice can be easily implemented with a single swap, this so-
lution is not often found by Qiskit. This is also a strong motivation for further developing our
approach, as it could be unreasonable to expect scalable behavior from these existing approaches
if reliability on smaller problems is still to be desired.

In the next chapter we discuss further work. Due to the encouraging results shown in this
chapter, much of this work concerns expanding and refining our design rather than drastically
modifying the scope of the project. However, there are other areas in this domain that QSPIRAL
could be applied to, and we discuss those as well.

84

Chapter 6

Conclusions

In Section 6.1 we present a general overview of the topics discussed in this thesis. In Section 6.2
we discuss other applications of the QSPIRAL system within the quantum domain. We conclude
with Section 6.3, in which we present closing remarks.

6.1 Overview
This thesis presented a novel approach for generating optimized quantum circuits. As an overview,
we reassessed the quantum optimization problem by doing the following.

1. Discarding domain-specific notation for a more general formulation, and using the afore-
mentioned formulation to draw useful parallels between quantum and classical algorithms

2. Formalizing circuit generation as a sparse matrix factorization task, using recursive rewrite
rules to decompose the input directly from a high-level description instead of making local
changes to a handwritten circuit

3. Casting the entire procedure as a generic search problem, over which we minimize data
movement operations

4. Implementing a solver on an advanced computer algebra system founded solidly in group-
theoretic principles

We started by covering the basic principles of quantum computing using notation that is fa-
miliar to the SPIRAL platform and allows us to more easily leverage relevant literature from
other domains. The primary takeaway was that quantum circuits are simply sparse matrix factor-
izations of some overall 2N × 2N unitary transform, and hence many decompositions and global
rewrites of algorithms like the DFT directly applied to the quantum domain. Intuitively, apply-
ing these decomposition identities in practice required recognizing the characteristic transform
of a circuit. However, we noticed that this transform matrix is impractical to expand from the
circuit definition for large values of N , and therefore, existing approaches are often limited to
making simple local changes to the program stream since those are all that can be done while
ensuring unitary equivalence. In order to address this perceived insufficiency, we attempted to
build a framework that would allow us to achieve tangible improvements by leveraging algorithm
symmetries.

85

What we settled on was a system that takes in a high-level description of the target algorithm
and summarily explores various relevant ways of decomposing this symbolic 2N × 2N transform
into the tensor and matrix product of quantum gates. These decompositions form mathematical
expressions that can be simplified and evaluated based on a generic cost measure, in our case,
the number of swaps. We leveraged a large library of breakdown rules that, when recursively
applied, convert our symbolic input into one of these expressions. Searching over the possible
rule applications equates to searching over algorithm decompositions, and by transitivity, the
valid circuits that implement the transform. We pruned invalid decompositions by enforcing
connectivity was met.

We implemented the aforementioned system (Figure 6.1) in SPIRAL, which utilizes an ex-
tremely similar technique to optimize algorithms for classical architectures. Particular care was
taken to explain how qubits are partitioned at each breakdown step and how in-place computa-
tions can be executed on any subgroup of hardware locations in the overall architecture.

Recognizing that this system enables the application of powerful heuristics, and thus its util-
ity is tied to the effectiveness of those heuristics, we implemented several for the QFT that were
inspired by the classical parallel FFT. While these heuristics are not necessarily optimal, we
showed significant data movement savings for moderately-sized QFT algorithms. Due to these
promising results, we remain confident that expanding our library of heuristics might signifi-
cantly increase our ability to scale algorithms to the potentially massive quantum hardware of
the future.

6.2 Directions for Future Work
While the the general approach described in this thesis promises to be an effective methodology
for framing and solving the quantum circuit optimization problem, there exist several improve-
ments that could make this work more useful.

First, additional algorithms and heuristics should be implemented in QSPIRAL, particularly
for important quantum kernels that aren’t efficiently compiled with existing technologies. Be-
sides the more traditional algorithms, the area of homomorphic encryption [28] could be of
particular interest, especially since the number-theoretic transform (NTT) [37] is essentially a
specialization of the discrete Fourier transform. Mapping these algorithms efficiently onto a
quantum topology requires an analysis of the algorithm and why certain heuristics make it run
quickly on a classical machine. A careful translation can then be done to port various breakdown
rules and mapping strategies into the quantum domain. In this thesis we made an initial effort for
the QFT by selecting an intermediate representation of the connectivity map (i.e. a hypercube)
and lowering this idealized geometry onto a real architecture. We believe this approach warrants
further study; other intermediate mappings besides the hypercube (e.g. butterflies, bus networks
or trees) can be explored to address the inadequacies of our heuristics, and this general approach
can be expanded to other transforms. Additional graph-theoretic methods of lowering these in-
termediate mappings onto real architectures, perhaps in several different stages, could also prove
fruitful. Since many linear transforms share similar dataflow patterns, we expect that expand-
ing this library of data-movement heuristics will be a valuable effort, especially since QSPIRAL
should be able to recognize and reuse the heuristics appropriately. We believe that the formaliza-

86

Figure 6.1: Full overview of quantum circuit generation procedure.

87

tion presented in this thesis does much to expose the quantum optimization problem to outside
influence from other research domains such as parallel computing or graph/network theory, and
that the approach presented could have massive untapped potential.

Additionally, since the current implementation of QSPIRAL is still inefficient in several re-
spects, further profiling can be done to detect and address computational bottlenecks. Specifi-
cally, QSPIRAL could take advantage of further parallelism in order to run more efficiently on
modern hardware. The unfortunate complexity problem detailed in Section 5.1.2 should also be
addressed with further system optimizations.

Besides these expansions or refinements of the QSPIRAL framework, there exist a few addi-
tional areas in which this type of system could be applicable.

6.2.1 Proof of correctness

Proving the correctness of quantum circuits is a difficult task. The most exhaustive check of
circuit correctness requires validating each entry in the 2N × 2N unitary matrix that the circuit
implements. However, expanding this matrix rapidly becomes infeasible as N increases. For
values of N that are too large, circuit correctness can be verified experimentally by simulating
the results repeatedly against a “known good” implementation. However, since measurement
is a stochastic operator, this approach only guarantees with a high likelihood that the circuit is
correct. Additionally, simulating large circuits also rapidly becomes untenable with increasing
N . Besides this, simulation is too computationally expensive to include as an part of the compiler,
which means that it becomes the added responsibility of the user to verify compilation output;
this introduces an unwieldy and undesirable human dependency. Many of these verification
challenges were encountered when developing the work shown in this thesis, particularly in
validating the compilation results for larger circuits.

QSPIRAL promises a more effective way to verify circuit correctness. QSPIRAL starts with
a high-level algorithm as input, which trivially implements itself correctly. Since QSPIRAL
simply breaks down this large algorithm through divide-and-conquer decomposition rules, it
should be possible to verify the correctness of each rule; therefore we would be guaranteed to
have correct output.

Verifying circuit equivalence is a more difficult task, since it is nearly impossible to recon-
struct the higher-level specification from the sparse decomposition. However, if both circuits
were generated using QSPIRAL, it is conceivable that QSPIRAL could emit, alongside the gen-
erated code, a “proof” of the code in the form of the breakdown rule tree used to construct it.
Given two such proofs, checking equivalence would only require verifying that the roots of these
breakdown trees are the same, and that both are valid rule trees. The general idea of providing a
proof alongside a compiled program is directly inspired by similar work in the area of computer
security [49], albeit used here for a drastically different purpose.

6.2.2 Error-correcting Codes

While beyond the immediate scope of this work, there is currently a large effort underway to
replace the NISQ quantum devices explored in this thesis with those supporting large numbers of

88

error-corrected qubits. Conceivably, error-corrected qubits would massively alleviate the concern
of degrading quantum states.

Error-correction has been theoretically achieved by mapping one logical qubit onto several
physical qubits [60]. While duplicating and polling the state in a manner similar to triple mod-
ular redundancy (TMR) techniques [64] is impossible due to the no-cloning theorem, it is not
impossible to spread a single state across multiple physical qubits; by splitting one state across
several real qubits, we can perform measurements and operations between these qubits to de-
tect and correct errors as the circuit progresses, employing schemes inspired by more traditional
error-correcting codes [32]. There is significant ongoing research into determining optimal codes
and the quantum architectures that support them [23].

Reconciling this research with the work contained in this thesis, we believe there could be a
role for SPIRAL to play in compiling circuits in this future era. First, by providing the chosen
error-correcting code as input to QSPIRAL, we should be able to take this into account in the cost
function and still be able to determine the best logical circuit for the specified hardware device.
Alternatively, similarly to how we search over logical-to-physical mappings, QSPIRAL could
conceivably assist in the generation of these codes and construct them alongside the program.
We could possibly form them specifically for the desired architecture and algorithm pairing by
searching over an additional layer of indirection.

6.3 Closing Remarks
The approach presented in this thesis is a novel approach, and to our knowledge this effort has not
been duplicated elsewhere, excepting our previous publication [47]. The primary differentiation
between our work and existing frameworks can be described as follows.

• Approach. Many existing quantum toolkits [1] take a program stream as input and perform
lookahead searches over QASM instructions to minimally satisfy connectivity constraints.
QSPIRAL takes an algorithm specification as input and generates a program implementing
that algorithm. QSPIRAL is constrained by what transform a user specified but not how it
was implemented; this mirrors the dichotomy between declarative and imperative program-
ming languages [33]. QSPIRAL can thus leverage algorithmic information unavailable to
other systems to inform heuristics and decomposition decisions; to other toolkits, a QFT
might simply be an arbitrary string of gates.

• Efficiency. As circuit sizes increase, structured approaches will most likely be necessary
in order to generate reasonable quantum programs. Peephole searches on large and sparse
architectures will most likely perform worse than approaches that can recognize the archi-
tecture and apply known data-movement paradigms.

• Accessibility. QSPIRAL frames the circuit generation problem in terms of traditional
computer science and linear algebra. This, in our opinion, is much more accessible to non-
physicists. Additionally, differing syntax and representation is a barrier preventing many
computing innovations from being transferred from classical to quantum computers.

• Platform. SPIRAL is a popular platform for generating optimized linear algebra libraries.
Especially since so many of its systems directly translate to being useful in the quantum

89

domain, the framework itself is more accessible to signal processing experts and computer
scientists who are likely to make major breakthroughs in this space. Additionally, SPIRAL
implements all stages of the proposed system within the same framework, meaning the
various stages of the compiler can be integrated to enable more intelligent search.

It is our hope that approaches inspired by or similar to the one described in this thesis could
help create quantum compilers that are up to the task of generating efficient code for large devices
when the need arises.

90

Bibliography

[1] H. Abraham et al., “Qiskit: An Open-source Framework for Quantum Computing,” 2019.
doi:10.5281/zenodo.2562110 1.1.2, 6.3

[2] J. Andreoli, “Logic programming with focusing proofs in linear logic,” Journal of Logic
and Computation, 1992. 3.3.6

[3] F. Arute et al., “Quantum Supremacy using a Programmable Superconducting Processor,”
Nature, vol. 574 (2019), pp. 505–510. 1.1.1, 2.1, 4.4

[4] J. W. Backus, “The Syntax and Semantics of the Proposed International Algebraic Lan-
guage of the Zurich ACM-GAMM Conference,” Proceedings of the International Confer-
ence on Information Processing, UNESCO, 1959, pp.125-132. (document), 2.1

[5] J. S. Bell, “On the Einstein Podolsky Rosen Paradox,” Physics vol. 1, no. 3, 1964, pp.
195-290. 2.2.2

[6] R. Bellman, Dynamic programming. Princeton, N.J: Princeton University Press, 2010. 1.2

[7] P. Benioff. “The computer as a physical system: A microscopic quantum mechanical
hamiltonian model of computers as represented by turing machines,” Journal of Statisti-
cal Physics, May 1980. 2.1

[8] E. Bernstein and U. Vazirani, “Quantum Complexity Theory,” SIAM J. Comput., 1997,
pp. 1411–1473. First appeared in ACM STOC 1993. doi:10.1137/S0097539796300921.
(document), 1.1, 4.1

[9] A.W. Burks, H.H. Goldstine and J. von Neumann, “Preliminary discussion of the logical
design of an electronic computing instrument (1946),” in Perspectives on the computer
revolution, Z. W. Pylyshyn and L. J. Bannon, Ed. Norwood, NJ, United States: Ablex
Publishing Corp., 1989, pp. 39-48. 2.1

[10] R. Ceselin, (28 August 2020), Google’s Sycamore processor mounted in a cryostat, recently
used to demonstrate quantum supremacy and the largest quantum chemistry simulation
on a quantum computer[Online image], Phys.org, https://phys.org/news/2020-08-google-
largest-chemical-simulation-quantum.html (document), 2.1

[11] A. Church, “An Unsolvable Problem of Elementary Number Theory,” American Journal of
Mathematics, vol. 58, no. 2, April 1936, pp. 345-363. 2.3

[12] A. Colmerauer and P. Roussel, “The birth of Prolog,” in Conference on the History of
Programming Languages (HOPL-II), Cambridge, MA, USA, April 1993, pp. 37–52. 3.2.2

[13] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Complex

91

Fourier Series,” Mathematics of Computation, 1965, pp. 297-301. doi:10.1090/S0025-
5718-1965-0178586-1. 4.2

[14] A. W. Cross, A. Javadi-Abhari, T. Alexander, N. de Beaudrap, L. S. Bishop, S. Heidel, C.
A. Ryan, J. Smolin, J. M. Gambetta and B. R. Johnson “OpenQASM 3: A broader and
deeper quantum assembly language” [arxiv:2104.14722]. 2.1

[15] P. A. M. Dirac, “A new notation for quantum mechanics,” Mathematical Proceedings
of the Cambridge Philosophical Society, vol. 35, issue 3, July 1939, pp. 416-418.
doi:10.1017/S0305004100021162 2.2.1

[16] D. P. DiVincenzo, “Topics in quantum computers,” arXiv preprint cond-mat/9612126 2.1

[17] L. Egan et al., “Fault-Tolerant Operation of a Quantum Error-Correction Code,” 2021,
arXiv:2009.11482 [quant-ph]. 1.1.1

[18] S. Egner, J. Johnson, D. Padua, M. Püschel and J. Xiong, “Automatic derivation
and implementation of signal processing algorithms,” ACM SIGSAN Bulletin, 2001.
doi:10.1145/511988.511990 1.1.3

[19] S. Egner and M. Püschel, “Solving Puzzles related to Permutation Groups,” Proc. ISSAC,
1998, pp. 186-193. 3.3.3

[20] A. Einstein, B. Podolsky and N. Rosen, “Can Quantum-Mechanical Description of Physical
Reality be Considered Complete?” Physical Review, vol. 47, May 1935, pp. 777-780. 2.2.2

[21] S. C. Eisenstat, M. C. Gursky, M. H. Schultz and A. H. Sherman, “Yale Sparse Matrix
Package,” Yale University, New Haven, CT, 1997 3.3.1

[22] R. P. Feynman, “Simulating physics with computers,” International Journal of Theoretical
Physics, June 1982. 2.1

[23] A. G. Fowler et al., “Surface codes: Towards practical large-scale quantum computation,”
Physical Review A, vol. 86, 2012. doi:10.1103/PhysRevA.86.032324 6.2.2

[24] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson,
M. Püschel, J. C. Hoe and J. M. F. Moura, “SPIRAL: Extreme Performance Portability,”
Proceedings of the IEEE, vol. 106, no. 11, 2018. (document), 1.2

[25] F. Franchetti and M. Püschel, “Fast Fourier Transform,” in Encyclopedia of Parallel Com-
puting, D. A. Padua (Editor). (document), 2.3.1, 4.3, 4.3

[26] F. Franchetti and M. Püschel et al. “Spiral,” in Encyclopedia of Parallel Computing, 2011,
D. A. Padua (Editor). (document), 3.2

[27] F. Franchetti, Y. Voronenko and M. Püschel, “A Rewriting System for the Vectorization of
Signal Transforms,” Proceedings High Performance Computing for Computational Science
(VECPAR) 2006, LNCS 4395, pp. 363-377. 3.2.3

[28] C. Gentry, “Fully homomorphic encryption using ideal lattices,” Symposium on the Theory
of Computing (STOC), 2009, pp. 169-178. 6.2

[29] G. Gentzen, “Untersuchungen über das logische Schließen,” Mathematische Zeitschrift,
39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor, The Collected Pa-
pers of Gerhard Gentzen, pp. 68–131, North-Holland, 1969. 2.4.2, 3.3.6

92

[30] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in 28th Annual
ACM Symposium on the Theory of Computing (STOC), pp. 212-219, 1996. arXiv:quant-
ph/9605043 1.1

[31] G. G. Guerreschi, “Scheduler of quantum circuits based on dynamical pattern improvement
and its application to hardware design,” 2019, arXiv:1912.00035v1 [quant-ph]. 1.1.1

[32] R. W. Hamming, “Error detecting and error correcting codes,” Bell System Technical Jour-
nal, vol. 29, 1950, pp. 147-160. 6.2.2

[33] R. Harper, “There Is Such A Thing As A Declarative Language, and It’s
The World’s Best DSL,” Existential Type. Updated July 22, 2013. [Blog].
Available:https://existentialtype.wordpress.com/2013/07/22/there-is-such-a-thing-as-a-
declarative-language/, Accessed on: July 5, 2021. 6.3

[34] J. D. Hidary, Quantum Computing: And Applied Approach, Gewerbestrasse 11, 6330
Cham, Switzerland: Springer Nature Switzerland AG, 2019. 2.1

[35] K. Hietala et al., “A verified optimizer for Quantum circuits,” Proceedings of the ACM on
Programming Languages, vol. 5, January 2021, article 29, pp 1-29. doi:10.1145/3434318
5.1

[36] D. W. Hillis, “Nuts and Bolts,” In The Pattern On The Stone: The Simple Ideas That Make
Computers Work. New York, NY: Basic Books, 1998, ch. 1. pp. 1-4. 2.1

[37] S. Kim, W. Jung, J. Park and J. Ahn, “Accelerating Number Theoretic Transformations
for Bootstrappable Homomorphic Encryption on GPUs,” In 2020 IEEE International Sym-
posium on Workload Characterization (IISWC). Los Alamitos, CA, USA:IEEE Computer
Society, October 2020, pp. 264-275. 6.2

[38] A. Yu. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics, vol.
303, issue 1, January 2003, pp. 2-30. doi:10.1016/S0003-4916(02)00018-0 4.4

[39] H. T. Kung, “Why Systolic Architectures?” Computer, vol. 15, issue , 1982, pp. 37-26.
doi:10.1109/MC.1982.1653825 2.1

[40] M. S. Lam, A Systolic Array Optimizing Compiler, New York, NY: Springer US, 1989. 2.1

[41] Y. Manin, “Computable and Non-Computable (in Russian),” Sovetskoye Radio, Moscow,
1980. 2.1

[42] P. Martin-Löf, “On the meanings of the logical constants and the justifications of the logical
laws,” Notes for three lectures given in Siena, Italy, 1996, Published in Nordic Journal of
Philosophical Logic, April 1983. 3.3.6

[43] S. McArdle et al., “Quantum computational chemistry,” Rev. Mod. Phys., vol 92, issue 1,
March 2020, doi:10.1103/RevModPhys.92.015003. 4.1

[44] D. McClure and J. Gambetta, “Quantum computation center
opens.” IBM Research Blog. Updated September 18, 2019. [Blog].
Available:https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/,
Accessed on: June 30, 2021. (document), 2.5, 5.7

[45] S. McLaughlin and F. Pfenning, “Imogen: Focusing the polarized inverse method for in-

93

tuitionistic propositional logic,” I.Cervesato, H.Veith and A.Voronkov (Editors), in Pro-
ceedings of the 15th International Conference on Logic for Programming, Artificial Intelli-
gence, and Reasoning (LPAR’08), Doha, Qatar, November 2008, Springer LNCS 5330. pp.
174–181. 3.3.6

[46] P. A. Milder, F. Franchetti, J. C. Hoe and M. Püschel, “Computer Generation of Hardware
for Linear Digital Signal Processing Transforms,” ACM Transactions on Design Automa-
tion of Electronic Systems, Article 15, 2012. 3.2

[47] S. Mionis, F. Franchetti and J. Larkin, “Quantum Circuit Optimization with SPIRAL: A
First Look,” Supercomputing (SC) 2020. 6.3

[48] G. J. Mooney, G. A. L. White, C. D. Hill and L. C. L. Hollenberg, “Whole-device en-
tanglement in a 65-qubit superconducting quantum computer,” 2021, arXiv:2102.11521
[quant-ph]. 1.1.1

[49] G. C. Necula, “Proof-carrying code,” Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, Jan 1997, pp 106-119.
doi:10.1145/263699.263712 6.2.1

[50] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information: 10th An-
niversary Edition. Cambridge, United Kingdom: Cambridge University Press, 2010. 2.1,
2.3

[51] R. O’Donnell, Class Lecture, Topic: “Multi-Qubit Systems.” 15-859BB, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, PA, September, 2018. 2.2.2

[52] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd edition, Upper
Saddle River, NJ 07458: Pearson Higher Education Inc., 1989, pp. 723-741 (document),
1.1.3, 4.1, 4.2

[53] R. Prabhakar et al., “Plasticine: A Reconfigurable Architecture For Parallel Patterns,”
ACM SIGARCH Computer Architecture News, vol. 45, issue 2, May 2017, pp. 389–402.
doi:10.1145/3140659.3080256 2.1

[54] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer, J. Xiong, F.
Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson and N. Rizzolo, “SPIRAL:
Code Generation for DSP Transforms,” Proceedings of the IEEE Special Issue on Program
Generation, Optimization, and Adaptation, vol. 93, no. 2, 2005, pp. 232-275. (document)

[55] E. Reiffel and W. Polak, Quantum Computing: A Gentle Introduction. Cambridge, MA:
MIT Press, 2011. (document)

[56] R.L. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems,” Communications of the ACM, vol. 21, issue 2, Feb 1978.
doi:10.1145/359340.359342 (document), 4.1

[57] Martin Schönert et al. GAP – Groups, Algorithms, and Programming – version 3 release 4
patchlevel 4. Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule,
Aachen, Germany, 1997. (document), 1.2, 3.2

[58] E. Schrödinger, “An undulatory theory of the mechanics of atoms and molecules,” The
Physical Review, vol. 28, no. 6, December 1926. 2.1

94

[59] P. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on
a Quantum Computer,” in Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, 1994. doi:10.1137/S0097539795293172 1.1, 2.1, 4, 4.1

[60] P. Shor, “Scheme for reducing decoherence in quantum computer memory,” Physical Re-
view A, vol. 54, issue 4, 1995. doi:10.1103/PhysRevA.52.R2493 6.2.2

[61] D. R. Simon, “On the power of quantum computation,” in Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, SFCS 1994, Washington, DC, USA, 1994,
IEEE Computer Society, pp. 116-124. 4.1

[62] B. Tan and J. Cong, “Optimality Study of Existing Quantum Computing Layout Synthesis
Tools,” ICCAD ’20: Proceedings of the 39th International Conference on Computer-Aided
Design, November 2020, article 137, pp. 1-9. doi:10.1145/3400302.3415620 5.1

[63] A. M. Turing, “On Computable Numbers, With An Application To The Entscheidungsprob-
lem,” 1936. 1.1.3

[64] J. von Neumann, “PROBABILISTIC LOGICS AND THE SYNTHESIS OF RELIABLE
ORGANISMS FROM UNRELIABLE COMPONENTS,” lectures delivered at the Cali-
fornia Institute of Technology, January 4-15, 1952. Notes by R. S. Pierce, Caltech Eng.
Library, QA.267.V6 6.2.2

[65] N. Wirth, “The Programming Language Pascal,” Acta Informatica, vol. 1, 1971, pp. 35-63.
3.2.1

[66] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299
(1982), pp. 802-803. doi:10.1038/299802a0 2.3.2

[67] J. Xiong, J. Johnson, R. Johnson and D. Padua, “SPL: A language and compiler for DSP
algorithms,” in Proc. of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pp. 298–308, 2001. 3.2.2

95

	1 Introduction
	1.1 Motivation
	1.1.1 The Quantum Optimization Problem
	1.1.2 Existing Results
	1.1.3 Challenges to Overcoming Deficiencies

	1.2 Overview
	1.3 Contributions
	1.4 Organization

	2 A Primer on Quantum Information Science
	2.1 What are Quantum Computers?
	2.2 Qubit Fundamentals
	2.2.1 One Qubit
	2.2.2 Multiple Qubits

	2.3 Quantum Circuits
	2.3.1 Circuits as Matrix Factorizations
	2.3.2 Connectivity

	2.4 Problem Formulation
	2.4.1 Formalization
	2.4.2 General Approach

	2.5 Conclusions

	3 SPIRAL Quantum Compiler
	3.1 Approach
	3.2 SPIRAL
	3.2.1 GAP
	3.2.2 Intermediate Representations
	3.2.3 Rewriting System

	3.3 Quantum Circuit Generation
	3.3.1 System Inputs
	3.3.2 Formula Breakdown
	3.3.3 Formula Rewriting
	3.3.4 Global Reordering
	3.3.5 Search
	3.3.6 Heuristics
	3.3.7 System Outputs

	3.4 Conclusions

	4 Case Study: Quantum Fourier Transform
	4.1 Why is the QFT important?
	4.2 The FFT Butterfly
	4.3 Classical-to-Quantum Translation
	4.4 QFT Optimization in SPIRAL
	4.4.1 General Approach
	4.4.2 Static Hypercube Algorithm
	4.4.3 Mesh Embedding
	4.4.4 Dynamic Hypercube Algorithm
	4.4.5 Diagonal Hypercube Algorithm
	4.4.6 Non-powers of two

	4.5 Conclusions

	5 Evaluation
	5.1 Generalized Connectivity Satisfaction
	5.1.1 Results
	5.1.2 Analysis

	5.2 Quantum Fourier Transform
	5.2.1 QFT on mesh architectures
	5.2.2 QFT on non-mesh architectures

	5.3 Conclusions

	6 Conclusions
	6.1 Overview
	6.2 Directions for Future Work
	6.2.1 Proof of correctness
	6.2.2 Error-correcting Codes

	6.3 Closing Remarks

	Bibliography

