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Don’t be afraid to be confused. Try to remain permanently confused.

— George Saunders, The New Mecca

“If you can see a thing whole,” he said, “it seems that it’s always beautiful. Planets, lives. . . But

close up, a world’s all dirt and rocks. And day to day, life’s a hard job, you get tired, you lose the

pattern. You need distance, interval. The way to see how beautiful earth is, is to see it from the

moon.”

— Ursula K. Le Guin, The Dispossessed

To be running breathlessly, but not yet arrived, is itself delightful, a suspended moment of living

hope.

— Anne Carson, Eros the Bittersweet
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Abstract

Machine learning is increasingly involved in high stakes decisions in domains such as healthcare,

criminal justice, and consumer finance. In these settings, ML models often take the form of

Risk Assessment Instruments (RAIs): given covariates such as demographic information and an

individual’s medical/criminal/financial history, the model predicts the likelihood of an adverse

outcome, such as a dangerous medical event, recidivism, or default on a loan. Rather than rendering

an automatic decision, the model produces a “risk score,” which a decision maker may take into

account when deciding whether to prescribe a medical treatment, release a defendant on bail, or

issue a personal loan.

The proliferation of machine learning has raised concerns that learned models may be

discriminatory with respect to sensitive features like race, sex, age, and socioeconomic status. These

concerns have led to an explosion of methods in recent years for developing fair models and auditing

the fairness of existing models. The most widely discussed fairness criteria impose constraints on the

joint distribution of a sensitive feature, a predictor, and an outcome. These “observational” fairness

criteria are inappropriate for RAIs, however. RAIs are not concerned with the observable outcomes

in the training data (“Did patients of this type historically experience serious complications?”),

which are themselves a product of historical treatment decisions. Rather, they are concerned with

the potential outcomes associated with available treatment decisions (“Would patients of this type

experience complications if not treated?”). Because treatments are not assigned at random—doctors

naturally treat the patients they think are at high risk—these are distinct questions.

In this thesis, I consider counterfactual versions of common algorithmic fairness criteria, which

are defined with respect to potential rather than observable outcomes. I develop methods to audit

the fairness of existing predictors and build predictors which satisfy these fairness criteria.

In Chapter 1, I show how the use of observable rather than potential outcomes in algorithmic RAIs

can lead to worse outcomes compared to before the RAI was trained. In Chapter 2, I develop a post-

processing procedure that can render an existing binary predictor fair with respect to counterfactual

equalized odds, while maximizing its counterfactual accuracy. This procedure yields predictors
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whose excess risk and excess unfairness decay at
√
n rates when nuisance parameters are estimated

sufficiently fast. I also provide estimators of the counterfactual risk and error rates of a large class

of (possibly randomized) binary classifiers. These estimators are
√
n-consistent and asymptotically

normal under similar assumptions. I show that the post-processing procedure improves fairness on

both simulated and real data, and that this does not necessarily incur a substantial decrease in

accuracy.

In Chapter 3, I develop a flexible framework for building predictors that are fair and accurate

with respect to either observable or counterfactual outcomes. Within this framework, I propose three

methods: the first minimizes risk subject to fairness constraints, the second minimizes unfairness

subject to risk constraints, and the third incorporates a set of fairness penalty parameters that allow

users to efficiently build large sets of predictors that trace out different paths in fairness-accuracy

space. These methods accommodate users who wish to improve the fairness of an existing model

without sacrificing accuracy, or vice versa. They also allows users to explore the tradeoffs between

fairness and accuracy and between different fairness criteria in their problem, and they provide

flexibility in choosing a predictor with an appealing combination of risk and fairness properties.

These predictors converge to oracle predictors at fast (up to
√
n) rates. This approach substantially

improves both the fairness and accuracy of an existing commercial recidivism predictor, and it yields

many predictors that perform comparably to or better than other fairness methods on an income

prediction task, while allowing users much more flexibility in the final model form.

Chapter 4 briefly considers the (un)fairness of randomized vs. deterministic classifiers.
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Chapter 1

When the Oracle Misleads:

Modeling the Consequences of

Using Observable Rather than

Potential Outcomes in Risk

Assessment Instruments

1.1 Introduction

Machine learning is increasingly widely used to support decision making in domains as diverse as

healthcare, criminal justice, and consumer finance. In particular, predictive models are often used

to estimate the risk of a negative outcome such as death, recidivism, or default on a loan (Kourou

et al., 2015; Caruana et al., 2015; Colubri et al., 2016; Brennan et al., 2009; Khandani et al., 2010).

Scores from these Risk Assessment Instruments (RAIs) are made available to decision makers, such

as doctors, judges, or loan officers, who may take them into account when deciding whether or not

to admit a patient to a hospital, release a defendant on bail, or issue a loan to an applicant.

When the decision maker’s goal is to reduce the risk of the predicted outcome, they are naturally

concerned with potential outcomes, the outcomes that would occur under each available decision.

When these outcomes correspond to an intervention that actually takes place, they are observable;

otherwise, they are counterfactual. (Many authors use “counterfactual outcomes” as a synonym
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for potential outcomes.) RAIs are typically trained on observational data, in which outcomes are

affected by historical decisions, and they are typically designed to predict exclusively observable

outcomes. Hence, these RAIs can only be sensibly understood as predicting the risk of an outcome

under the historical decision process that generated the data; they are not generally appropriate for

helping decision makers decide among different courses of action.

Although RAIs based on potential outcomes have been proposed in the context of medicine

(Schulam and Saria, 2017; Shalit et al., 2017) and recidivism prediction (Mishler, 2019), RAIs

designed to predict observable outcomes are in widespread use. While many of the limitations

of such RAIs have been acknowledged (Chen and Asch, 2017; Veale et al., 2018), and problems

associated with particular RAIs have been investigated (Povyakalo et al., 2013; Lum and Isaac,

2016), there does not appear to be a general mathematical model that provides insight into how and

why such RAIs can lead users astray.

In this work, we aim to fill this gap, showing how RAIs based on observable outcomes can lead

to worse outcomes, i.e., more severe departures from an optimal treatment regime, than before the

RAI was introduced. This has nothing to do with the quality of prediction; it can occur even when

(1) the oracle predictor is available and (2) there is no unmeasured confounding. We describe several

dangerous properties of these RAIs and illustrate their suboptimality with a simple example.

1.2 Setup: RAIs and optimal treatment regimes

We anchor the problem in the context of medicine, but the results generalize to any domain where

estimated risk is used to drive decision making designed to mitigate that risk.

Suppose that at time t = 0 we have random variables drawn from a counterfactual distribution

(U,X,A, Y 0, Y 1, Y ) ∼ Q0, where U ∈ Rp′ is a set of unobserved confounders, X ∈ Rp is a set of

observed covariates, A ∈ {0, 1} is a binary treatment or intervention decision, and Y ∈ {0, 1} is an

outcome, with Y = 1 indicating an adverse event such as patient death. Y 0 and Y 1 denote the

potential outcomes under treatment decisions A = 0, 1. Let P0 denote the marginal distribution of

the observable vector (X,A, Y ) at t = 0. We use Et and Pt to denote expectations and probabilities

at time t, but when these do not change over time we drop the subscript and use E and P.

Now suppose that iid data drawn from P0 is used to construct a predictor s(X) of Y given

X. For example, suppose that s(X) = Ê0[Y |X]. This predictor is made available to decision

makers in the form of an RAI, as a “risk score,” giving rise at time t = 1 to new distributions

(U,X,A, Y 0, Y 1, Y ) ∼ Q1 and (X,A, Y ) ∼ P1. We make the following assumptions at all time

points t:

1. Y = AY 1 + (1−A)Y 0 (Consistency)
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Figure 1.1: Causal graph at time t = 0, with
unobserved confounders U .

Figure 1.2: Causal graph at time t = 1, with
possibly changed treatment decision process.

2. Pt[Pt(0 < πt(X) < 1)] = 1 (Positivity)

3. A ⊥⊥ Y a|X,U , for a ∈ {0, 1} (No confounders beyond X and U)

4. (U,X, Y 0, Y 1)Qt
d
= (U,X, Y 0, Y 1)Qt+1 (Only the treatment and outcome change after the RAI

is introduced.)

5. 0 < Pt(Y 1 < Y 0) < 1 (Treatment sometimes helps and sometimes hurts overall. For example,

hospitalization can expose patients to dangers such as MRSA or medical errors.)

Note that U is not observable by the researchers who construct s(X), but it may include variables

that are available to doctors at the time they render a treatment decision. That is, the treatment

decision process may change in light of the new RAI, but the RAI does not otherwise affect patient

outcomes or the distribution of covariates. Causal graphs representing the change in the decision

process from time 0 to time 1 are given in Figures 1.1 and 1.2.

Given all possible treatment decision functions D = {d : (X,U) 7→ {0, 1}}, it is easy to show

that the optimal treatment regime with respect to the expectation of Y is

dopt(X,U) := arg min
d∈D

E[Y d(X,U)] = 1{E[Y 1|X,U ] < E[Y 0|X,U ]}. (1.1)

where the expectations in this expression do not change over time, as a consequence of Assumption

4. Given that s(X) is not designed as an estimator of dopt, the questions of interest are:

1. When is E1[Y ] ≤ E0[Y ], as desired? That is, when does the RAI make things better, or at

least not worse?

2. How far is E1[Y ] from E1[Y d
opt

], the optimal outcome?

We are also interested in versions of these questions where the quantities are conditional on (X,U).

For example, we wish to know when outcomes get better or worse differentially for patients from

different demographic groups, which could cause the RAI to be considered unfair.
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1.3 RAIs can make things worse

Let πt(X) = Pt(A = 1|X,U) denote the treatment propensity at time t, with Γ(X,U) := π1(X,U)−
π0(X,U), and let µa(X,U) = E[Y |X,U,A = a] denote the outcome regression functions, for a ∈
{0, 1}. µa does not change over time, per assumptions 3 and 4. We have:

∆ := E1[Y ]− E0[Y ] = E
{

Γ(X,U)(µ1(X,U)− µ0(X,U))
}

(1.2)

(See the derivation in the Appendix). It is easy to see that ∆ can be positive, meaning that

more patients die after the introduction of the RAI, and that even if it is negative, outcomes

could worsen for particular strata of (X,U). For example, consider a subpopulation for whom

µ1(X,U) < µ0(X,U) and Γ(X,U) < 0. These could be patients who historically benefited from

hospitalization and were hospitalized at high rates, so that E0[Y |X], their likelihood of death in

the training data, is small. The apparent low risk could prompt doctors to reduce the rate at

which they hospitalize these patients, causing death rates to rise. Of course, if ∆ is positive, then

E1[Y ]− E[Y d
opt

] will be positive as well.

For ease of exposition, we now restrict our attention to a special case of the above scenario,

wherein U = ∅, so that there is no unmeasured confounding, and s(X) = E[Y |X], so we have access

to the MSE-minimal oracle predictor. We suppose that once the RAI is introduced, decisions are

made deterministically according to a threshold rule d(x) = 1{s(X) ≥ θ} for some θ ∈ [0, 1]. That

is, doctors hospitalize patients iff their estimated risk is at or above θ. We illustrate with a toy

example.

1.3.1 Toy example

We assume a single covariate X ∼ Unif(0, 1), representing a marker of disease severity. We let both

the treatment propensity and the risk of non-treatment increase in X, with π0(X) = E[Y 0|X] = X,

and we let the risk of treatment be E[Y 1|X] = (0.7 − X)2. This represents a situation in which

treatment is beneficial on average above a certain level of X but harmful otherwise.

Figure 1.3 (a) shows the two conditional expectations E[Y 0|X],E[Y 1|X]. The optimal treatment

rule here is dopt(X) = 1(X ≥ 0.22), indicated by the dashed line. The rule that is actually

implemented at time t = 1 is d(X) = 1{E0[Y |X] ≥ θ} for the chosen threshold θ. Figure 1.3

(b) shows the mean difference in outcomes ∆ from time 0 to time 1 as a function of θ. (See the

Appendix for a derivation.) This difference is around 1/3, regardless of the θ chosen, indicating that

more patients die as a result of the RAI. (In this scenario, s(X) is bounded in [0, 0.30], so we only

show thresholds in this range.)
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Figure 1.3: (a) Conditional expectations in the toy example. (b) Behavior of ∆ = E1[Y ] − E0[Y ] as a
function of the cutoff θ. (c) and (d) show groups treated at time 1 under d(X) and dopt(X), for two possible
values of θ. The optimal treatment group is {X > 0.22}, in purple. The group treated under d(X) is
{E0[Y |X] ≥ θ}, in green. Red lines indicate groups that are harmed under d(X) as a result of not receiving
or receiving treatment, respectively.

The reason that all values of θ lead to worse outcomes is that θ corresponds to a threshold for

s(X) = E0[Y |X] rather than a threshold for X. In Figure 1.3 (c) and (d), the vertical purple block

represents the optimal treatment group {X ≥ 0.22}, while the overlapping horizontal green block

represents the group {E0[Y |X] ≥ θ} that is actually treated under d(X). Panel (c) shows the effect

of choosing θ = 0.22, the optimal threshold for X: we would fail to provide treatment to the group

{X ≥ 0.67}, indicated in red. This happens to be the group with the highest values of E[Y 0|X], i.e.,

the worst outcomes under no treatment. Conversely, Figure (d) shows the results of selecting the

cutoff such that all those who would receive treatment under dopt(X) also receive treatment under

d(X): we wrongly treat the group E[Y 1|X] > E[Y 0|X], again indicated in red.

These same problems can obviously arise in more complex scenarios, for example when U 6= ∅,
when X is high dimensional, and when the relationship between X and the outcome is complex. In

particular, we identify three properties of s(X) that can give rise to these and other problems.

1.3.2 s(X) doesn’t map nicely to a quantity of interest like E[Y 0|X],

E[Y 1|X], or dopt(X)

Even though it is designed to predict outcomes under a historical treatment decision process, the RAI

could usefully inform a new decision process if it bore some readily apprehensible relationship with a
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potential outcome-based quantity of interest. For example, if s(X) were monotonic in dopt(X), then

doctors might be able to use s(X) to get closer to dopt(X), even without an explicit awareness of this

relationship. In general, however, the relationship between s(X) and any potential outcome-based

quantity can be arbitrarily complex.

1.3.3 Expertise can make things worse

The more skilled doctors are at time t = 0, the worse the system can get at time t = 1. As an

extreme example, if doctors are already behaving according to the optimal policy at time t = 0, then

necessarily, E1[Y ] ≥ E0[Y ]. Alternatively, suppose that there are two medical systems P0 and P∗0
that are identical in their distribution of (X,U, Y 0, Y 1). Imagine that they’re also identical in terms

of A, except that in system P∗0 doctors are more skilled at identifying who needs to be hospitalized:

P∗0
(
A = 1|dopt(X,U) = 1

)
> P0

(
A = 1|dopt(X,U) = 1

)
Then, under a threshold decision rule, we have that E∗0[Y ] < E0[Y ] but E∗1[Y ] > E1[Y ], so, perversely,

people in system P∗0 are better off than people in system P at time 0 and worse off at time 1.

1.3.4 The procedure is unstable under iteration

Imagine that we iterate the process of gathering data from the system, developing a predictor, and

implementing the threshold-based decision rule above. This seems like a plausible occurrence, in

that as RAIs get integrated into more and more systems, necessarily any future data gathered from

those systems will reflect the influence of those tools.

For time points t = 1, 2, . . ., we have

Et[Y |X] = 1{Et−1[Y |X] > θ}E[Y 1|X] + (1− 1{Et−1[Y |X] > θ})E[Y 0|X]

Suppose we have some X for which E0[Y 1|X] < θ,E0[Y 0|X] > t and E[Y(0)|X] > θ. Then we’ll have

the situation depicted in Table 1.1, in which the treatment decision for this stratum just alternates

at different time points. Ideally, as more and more data is gathered from a system, a decision

procedure gets closer and closer to optimal. In this scenario, however, the treatment decision is the

optimal one only at odd time points, while at even time points it’s precisely the opposite.
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Time t Treatment decision E[Yt|X] Et[Y |X] relative to θ
0 Treat with probability π0(X) E0[Y |X] > θ
1 Treat all E[Y 1|X] < θ
2 Treat none E[Y 0|X] > θ
3 Treat all E[Y 1|X] < θ
4 Treat none E[Y 0|X] > θ
. . .

Table 1.1: Treatment decisions and mean outcomes in stratum X over time, under the deterministic
decision rule that treats patients at time t iff Et−1[Y |X] > θ for some threshold θ, and assuming
that E0[Y 1|X] < θ,E0[Y 0|X] > t and E[Y(0)|X] > θ.

1.4 Conclusion

Decision makers choosing among different courses of action are naturally interested in the risk

associated with each option. RAIs are in widespread use in many domains, but they are typically

designed to predict outcomes under the historical decision process that generated the training data,

rather than predicting potential outcomes under the available courses of action. This makes them

generally unsuitable for informing future treatment or intervention decisions that are designed to

reduce risk. Although previous work has proposed using potential outcome-based predictors in

certain contexts, there has been little formal modeling of the consequences of current practice.

Here, we show how RAIs based on observable rather than potential outcomes can plausibly lead to

worse outcomes overall or for specific demographic groups than before their introduction, making

them potentially both dangerous and unfair.

1.A Derivations

1.A.1 Equation (1.2): difference in mean outcome from time 0 to time 1

Recall that we define

πt(X,U) = Et[A|X,U ]

µa(X,U) = E[Y a|X,U ]

for t = 1, 2, . . . and a ∈ {0, 1}. Recall also that, per assumption 4, the distribution of the covariates

(X,U) doesn’t change over time, so functions of (X,U) don’t change either.
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For any time point t, we have

Et[Y ] = Et
{
Et[AY 1 + (1−A)Y 0|X,U ]

}
= Et

{
Et[A|X,U ]Et[Y 1|X,U ] + (1− Et[A|X,U ])Et[Y 0|X,U ]

}
= E

{
Et[A|X,U ]E[Y 1|X,U ] + (1− Et[A|X,U ])E[Y 0|X,U ]

}
= E

{
πt(X,U)µ1(X,U) + (1− πt(X,U))µ0(X,U)

}
where the second equality follows because A ⊥⊥ Y a|X,U and the third equality follows from

assumption 4. With Γ(X,U) := π1(X,U)− π0(X,U), we have:

E1[Y ]− E0[Y ] = E
{
π1(X,U)− π0(X,U))(µ1(X,U)− µ0(X,U))

}
= E

{
Γ(X,U)(µ1(X,U)− µ0(X,U))

}
1.A.2 Calculating ∆ in the toy example

We have U = ∅, X ∼ Unif(0, 1), π0(X) = E[Y 0|X] = X, E[Y 1|X] = (0.7 − X)2, and π1(X) =

1{E0[Y |X] ≥ θ} for some chosen θ. Plugging these into the above yields

∆(θ) = E1[Y ]− E0[Y ] =

∫ (
1{E0[Y |X] ≥ θ} −X

)
((0.7−X)2 −X)dP(X)

=

∫ (
1{E0[AY 1 + (1−A)Y 0|X] ≥ θ} −X

)(
(0.7−X)2 −X

)
dP(X)

=

∫ (
1{π0(X)µ1(X) + (1− π0(X)

)
µ0(X) ≥ θ} −X)

(
(0.7−X)2 −X

)
dP(X)

=

∫ (
1{X(0.7−X)2 + (1−X)X ≥ θ} −X

)(
(0.7−X)2 −X

)
dP(X)

where the second equality follows from the consistency assumption, and the third equality follows

from the no unmeasured confounding assumption and assumption 4. This yields the curve in Figure

1.3(b).
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Chapter 2

Fairness in Risk Assessment

Instruments: Post-Processing to

Achieve Counterfactual Equalized

Odds

2.1 Introduction

Machine learning is increasingly involved in high stakes decisions in domains such as healthcare,

criminal justice, and consumer finance. In these settings, ML models often take the form of

Risk Assessment Instruments (RAIs): given covariates such as demographic information and an

individual’s medical/criminal/financial history, the model predicts the likelihood of an adverse

outcome, such as a dangerous medical event, recidivism, or default on a loan. Rather than rendering

an automatic decision, the model produces a “risk score,” which a decision maker may take into

account when deciding whether to prescribe a medical treatment, release a defendant on bail, or

issue a personal loan.

The proliferation of machine learning has raised concerns that learned models may be

discriminatory with respect to sensitive features like race, sex, age, and socioeconomic status. For

example, there has been vigorous debate about whether a widely used recidivism prediction tool

called COMPAS is biased against black defendants (Angwin et al., 2016; Angwin and Larson, 2016;

Dieterich et al., 2016; Larson and Angwin, 2016; Lowenkamp et al., 2016). Concerns have also been
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raised about risk assessments used to identify high risk medical patients (Obermeyer et al., 2019)

and about common credit scoring algorithms such as FICO (Rice and Swesnik, 2012), among many

others. Collectively, these types of algorithms directly impact a large and growing swath of the

global population.

These concerns have led to an explosion of methods in recent years for developing fair models

and auditing the fairness of existing models. The most widely discussed fairness criteria impose

constraints on the joint distribution of a sensitive feature, an outcome, and a predictor. These

“observational” fairness criteria are inappropriate for RAIs, however. RAIs are not concerned with

the observable outcomes in the training data (“Did patients of this type historically experience serious

complications?”), which are themselves a product of historical treatment decisions. Rather, they

are concerned with the potential outcomes associated with available treatment decisions (“Would

patients of this type experience complications if not treated?”). Because treatments are not assigned

at random—doctors naturally treat the patients they think are at high risk—these are distinct

questions.

Coston et al. (2020) showed how RAIs that are optimized to predict observable rather than

potential outcomes systematically underestimate risk for units that have historically been receptive

to treatment, leading to suboptimal treatment decisions. They further showed how evaluations of

the performance and fairness properties of RAIs with respect to observable outcomes are misleading.

They proposed that RAIs should instead target counterfactual versions of standard performance and

fairness metrics. However, they left open the question of how to develop predictors that satisfy such

fairness notions.

In this paper, we develop a method to generate predictors that satisfy the fairness criterion

approximate counterfactual equalized odds. While many existing methods target observational

fairness criteria (Kamiran and Calders, 2012; Hardt et al., 2016; Calmon et al., 2017; Zafar et al.,

2017; Donini et al., 2018; Narasimhan, 2018; Kim et al., 2019) and various types of causally motivated

fairness (Kilbertus et al., 2017; Kusner et al., 2017; Nabi and Shpitser, 2018; Nabi et al., 2019), no

methods currently exist that target counterfactual versions of standard observable fairness criteria

like equalized odds. Our method post-processes an arbitrary existing predictor, extending previous

post-processing methods (Hardt et al., 2016) to the counterfactual setting.

Our contributions are as follows. We first define approximate counterfactual equalized odds

(§2.2). After discussing related work (§2.3) and motivating the use of equalized odds over other

candidate criteria (§2.4), we present a linear program that produces a loss-optimal post-processed

predictor that satisfies this criterion (§2.5). We provide theoretical results that our post-processed

predictor is consistent in a particular sense at rates that depend on certain nuisance parameters.

We show that our method performs well on both simulated and real data (§2.6).
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2.2 Notation and fairness definitions

A table listing all notational choices can be found in Appendix 2.F.

Let A,D, Y denote a sensitive feature, decision, and outcome, respectively. We consider the

setting in which all three are binary, though most of the definitions below extend readily to continuous

settings. We define the counterfactual quantities of interest via the potential outcomes framework

of (Neyman, 1923; Holland, 1986; Rubin, 2005). Denote by Y 0, Y 1 the potential (equivalently,

“counterfactual”) outcomes Y D=0, Y D=1. Y di is the outcome that would be observed for unit i

if, possibly contrary to fact, the decision were set to Di = d. We refer to the two levels of the

sensitive feature A as the two “groups,” and we use “treatment” and “intervention” synonymously

with “decision.” Let S be any random variable that takes values in {0, 1}.
In most RAI settings, one of the decision options is a natural baseline corresponding to “no

intervention” (D = 0). Examples include the risk of recidivism if a defendant is released pretrial, or

the risk of neglect or abuse if a child welfare call is not screened in for further investigation. Many

or most RAIs do not generate a separate risk score for the outcome associated with intervention. In

the case of child welfare, for example, call screeners must screen in any case in which a child is in

apparent danger of neglect or abuse, regardless of the chances that a subsequent intervention will

successfully prevent that neglect or abuse.

Denote the observational and counterfactual false positive rates of S for group a by FPR(S, a) =

P(S = 1 | Y = 0, A = a) and cFPR(S, a) = P(S = 1 | Y 0 = 0, A = a). For example, cFPR(S, 0)

could represent the chance of being falsely labeled high-risk, among those black defendants who

would not actually go on to recidivate if released pretrial, while cFPR(S, 1) could represent the

corresponding error rate for white defendants who would not recidivate if released pretrial. Let FNR,

cFNR, TPR, and cTPR denote the corresponding observational and counterfactual false negative

and true positive rates.

Definition 2.2.1. A predictor S satisfies observational equalized odds (oEO) with respect to A and

Y if S ⊥⊥ A | Y . It satisfies counterfactual equalized odds (cEO) if S ⊥⊥ A | Y 0.

When A, Y , and S are all binary, equalized odds is equivalent to requiring that the corresponding

false positive and false negative rates be equal for the two levels of A. Our post-processed predictor

will target a relaxation of this criterion, defined below.
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Definition 2.2.2. The counterfactual error rate differences for a predictor S are the differences ∆+

and ∆− in the cFPR and cFNR for the two groups A = 0, A = 1, defined as follows:

∆+(S) = cFPR(S, 0)− cFPR(S, 1)

∆−(S) = cFNR(S, 0)− cFNR(S, 1)

Definition 2.2.3. When A, Y , and S are all binary, S satisfies approximate counterfactual equalized

odds with fairness constraints ε+, ε− ∈ [0, 1] if

|∆+(S)| ≤ ε+

|∆−(S)| ≤ ε−

In general, a fairness-constrained predictor would not outperform an optimal unconstrained

predictor, and in some cases, satisfying cEO exactly might degrade performance to the point that

the RAI is no longer useful. This relaxation of cEO allows RAI designers to negotiate this tradeoff.

This is similar in spirit to notions of approximate fairness that appear throughout the literature

(Kearns et al., 2017; Donini et al., 2018; Menon and Williamson, 2018).

2.3 Related work

2.3.1 Observational and counterfactual fairness

Equalized odds is one of several popular fairness criteria that impose constraints on the joint

distribution of (A, Y, S) (Barocas et al., 2018). These criteria appear under a variety of names.

Equalized odds is known more generally as separation, a term which covers settings in which these

variables are not necessarily binary. The other two popular criteria in this class are independence

(S ⊥⊥ A) and sufficiency (Y ⊥⊥ A | S). Independence also manifests as demographic parity, statistical

parity, and group fairness. Sufficiency is equivalent to calibration or predictive parity when all three

variables are binary. Variants of all three criteria may be defined for example by conditioning on

additional variables.

The counterfactual versions of these criteria simply replace Y with the potential outcome Y 0

that is of interest (Coston et al., 2020). Note that these definitions cannot accommodate more than

one potential outcome, such as the vector (Y 0, Y 1), because only one of these outcomes is observed

for each unit. This is the “fundamental problem of causal inference” (Holland, 1986).
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Except in highly constrained, unrealistic conditions, these three criteria are pairwise unsatisfiable,

regardless of whether they are defined with respect to Y or Y 0 (Kleinberg et al., 2017; Chouldechova,

2017; Barocas et al., 2018)∗. We must therefore choose and justify which criterion we wish to target.

2.3.2 Other causal fairness criteria

The counterfactual fairness criteria just described consider potential outcomes with respect to a

decision D. There is a distinct set of causally motivated fairness criteria that consider counterfactuals

of the sensitive feature, or a proxy for the sensitive feature. They characterize a decision or prediction

as fair if the sensitive feature or proxy does not “cause” the decision or prediction, either directly

or along a prohibited pathway (Kilbertus et al., 2017; Kusner et al., 2017; Nabi and Shpitser, 2018;

Zhang and Bareinboim, 2018; Nabi et al., 2019; Wang et al., 2019). There is some controversy over

whether it is meaningful to discuss a counterfactual of a feature like race or gender (VanderWeele

and Robinson, 2014; Glymour and Glymour, 2014; Hu and Kohler-Hausmann, 2020). Additionally,

satisfying these metrics typically precludes use of most of the features that go into risk assessment,

like prior history, which is not tenable in practice (Coston et al., 2020). Finally, it is not clear

that counterfactuals of the sensitive feature are useful or appropriate to consider in the context of

risk assessment. For example, in the child welfare setting, workers are compelled to screen in calls

whenever a child is in danger of neglect or abuse. While it is important to ensure that risk is assessed

accurately for different groups, it would be inappropriate to make screen-in decisions based on what

a child’s risk of neglect or abuse would be if they had been of a different race their whole life, even

if such an assessment were possible.

2.3.3 Ways of achieving fairness

There are three broad approaches to developing fair models: (1) preprocessing the input data to

remove bias (Kamiran and Calders, 2012; Calmon et al., 2017), (2) constraining the learning process

(aka “in-processing”) (Zafar et al., 2017; Donini et al., 2018; Narasimhan, 2018), and (3) post-

processing a model to satisfy fairness constraints (Hardt et al., 2016; Kim et al., 2019).

Our approach belongs to class (3). We refer to the predictor that our method returns equivalently

as a “post-processed” or “derived” predictor. Each approach has advantages and disadvantages.

Many widely used RAIs are proprietary tools developed by for-profit companies, so they are not

amenable to internal tinkering. Developing new, fair(er) RAIs would be costly and perhaps infeasible

from a policy perspective. The advantage of post-processing in this setting is that it can be applied

to models that are already in use. The predictor that our method returns requires access at runtime

∗See (Imai and Jiang, 2020) for a set of sufficient conditions under which these unsatisfiability results disappear.
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only to the sensitive feature and the output of the existing predictor, so in principle, it could easily

be incorporated into existing risk assessment pipelines.

In particular, our approach extends the work of Hardt et al. (2016), who proposed a method

to post-process binary predictors to satisfy observational equalized odds (oEO) while minimizing

loss with respect to observable Y . Their post-processed predictor is the solution to a simple linear

program. We adapt their method to the counterfactual setting, in which the fairness criterion is

approximate cEO and the loss function is weighted classification error with respect to Y 0. Because

Y 0 is not observable when D 6= 0, we require tools from causal inference to solve this problem.

Hardt et al.’s analysis treats the joint distribution of (A,S, Y ) as known and frames post-processing

primarily as an optimization problem. We build on their results by not making this assumption and

treating post-processing as a statistical estimation problem.

2.3.4 Why equalized odds?

When evaluating a predictive system, it seems natural to focus on its real-world impact rather

than its outputs per se. One desirable property of a decision process is the avoidance of disparate

impact. Disparate impact is a legal doctrine enshrined in U.S. law that prohibits practices which

have an unjustifiable adverse impact on people who share a protected characteristic, regardless of

discriminatory intent. By way of shorthand, we will say that if D 6⊥⊥ A | Y 0, then the system exhibits

discriminatory disparate impact†. In recidivism prediction, for example, this could mean that black

defendants (A = 0) who would not recidivate if released (Y 0 = 0) are more likely to be detained

pretrial (D = 1) than white defendants who would not recidivate if released (A = 1, Y 0 = 0).

In the context of RAIs, decision makers typically have wide latitude in how they interpret and act

on the risk scores, so constraining the RAI does not enforce fairness with respect to their decisions.

However, if decision makers, after the introduction of the RAI, make their decisions only on the

basis of the RAI scores and other variables U which are independent of the RAI and A given Y 0,

then counterfactual equalized odds will imply D ⊥⊥ A | Y 0. That is, let D = f(S,U) represent the

function f describing the decision process after the RAI S is introduced. If cEO is satisfied and

U ⊥⊥ (S,A) | Y 0, then it follows that D ⊥⊥ A | Y 0. Even if U 6⊥⊥ (S,A) | Y 0, it is easy to see that

if the conditional independence statement nearly holds, or if f depends primarily on S rather than

U , then discriminatory disparate impact can be small.

No such guarantees hold for predictors satisfying either independence or sufficiency. Choulde-

chova (2017) in particular showed how predictors which satisfy sufficiency (predictive parity) are

likely to yield decisions such that D 6⊥⊥ A | Y ; these arguments are unchanged when we substitute Y 0

†Some authors use “disparate impact” to refer to the criterion S ⊥⊥ A, i.e. independence (Zafar et al., 2017).
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for Y . Though there is no consensus about how to quantify fairness, this is at least one consideration

in favor of equalized odds.

2.4 Motivating Example

Having motivated equalized odds over predictive parity or independence, we now motivate the use

of counterfactual rather than observational equalized odds.

Consider a school district that assigns tutors to students who are believed to be at risk of academic

failure. The school district wishes to develop a RAI, S, to better identify students who need tutors

while ensuring that this resource is allocated fairly across two levels of the sensitive feature A. Let

D ∈ {0, 1} represent the decision to assign (1) or not assign (0) a tutor, and let Y ∈ {0, 1} represent

academic success (0) or failure (1).

A cEO predictor S satisfies P(S | Y 0, A) = P(S | Y 0), while an oEO predictor S satisfies

P(S | Y,A) = P(S | Y ). Divergence in these predictors is driven by the extent to which Y 6= Y 0 in

the training data. In order to parameterize this divergence, we introduce the following definitions.

Definition 2.4.1. The need rate for group a is P(Y 0 = 1 | A = a), the probability that a student

from group a would fail without a tutor.

Definition 2.4.2. The opportunity rate for group a is P(D = 1 | Y 0 = 1, A = a), the probability

that a student in group a who needs a tutor receives one.

Definition 2.4.3. The intervention strength for group a is P(Y 1 = 0 | Y 0 = 1, A = a), the

probability that a student in group a who would fail without a tutor would succeed with a tutor.

We simulate a simple data generating process in which we allow the intervention strength to

vary, while constraining it to be equal for the two groups. We fix all other parts of the distribution.

In particular, we set P(A = 1) = 0.7, set the need rates to 0.4 and 0.2 for groups 0 and 1, and set

the opportunity rates to 0.6 and 0.4. We set the probabilities that a tutor is assigned when it is not

needed to P(D = 1 | Y 0 = 0, A = 0) = 0.3 and P(D = 1 | Y 0 = 0, A = 1) = 0.2. This represents

a scenario in which the minority group has greater need, perhaps due to socioeconomic factors or

prior educational opportunities, and also is likelier than the majority group to receive resources at

baseline (prior to the development of the RAI). Finally, we set P(Y 1 = 0 | Y 0 = 0) = 1, meaning

that tutoring never increases the risk of failure.

We consider a hypothetical oEO predictor S with fixed false positive rate P(S = 1 | Y = 0, A) =

P(S = 1 | Y = 0) = 0.1 and false negative rate P(S = 0 | Y = 1, A) = P(S = 0 | Y ) = 0.2. We

assume S ⊥⊥ Y 0 | A, Y , as would be the case for example when S is a high quality predictor of
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Y . Figure 2.1 shows the cTPRs (counterfactual true positive rates) for this predictor as a function

of intervention strength, relative to the baseline opportunity rates for the two groups. When the

intervention has no effect (strength 0), the cTPRs are equal because Y ≡ Y 0, so the cTPR and TPR

are identical. (Of course, a strength of 0 means the tutoring is worthless.) For all strength values

> 0, the cTPR of the minority group is lower than for the majority group. The difference in error

rates increases as intervention strength increases. A cEO predictor avoids this problem by design:

the cTPRs for the two groups are constrained to be equal.

This example makes it clear that oEO predictors in general will not prevent discriminatory

disparate impact, whereas, as discussed in section 2.3.4, counterfactual EO predictors have at least

the potential to mitigate or avoid it.

This example also illustrates how oEO predictors can reduce rates of appropriate intervention.

For example, suppose that decision makers, after the introduction of the RAI, set D ≡ S, i.e. they

assign tutors precisely to students whom the RAI labels as high risk. Then, for any intervention

strength > 0.5, the opportunity rate for the minority group decreases below baseline: the RAI harms

the minority group.

2.5 An optimal fair derived predictor

Having motivated counterfactual equalized odds, we now develop a method to generate predictors

which satisfy it.

2.5.1 Estimand

We expand our notation in order to fully describe our problem setting. Consider a random vector

Z = (A,X,D, S, Y ) ∼ P, where in addition to the binary sensitive feature A, decision D, and

outcome Y , we have covariates X ∈ Rp and a previously trained binary predictor S ∈ {0, 1}. We

require only that S is observable; we do not require access to its inputs or internal structure. S

in practice could represent a RAI that is already in use, such as a recidivism prediction tool. The

covariates X may or may not overlap with the inputs to S. Their role in the analysis is to render

counterfactual quantities identifiable.

Our target is a derived predictor that satisfies approximate cEO. As in the case of observable

equalized odds considered by Hardt et al. (2016), we achieve this by randomly flipping S with

probabilities that depend only on S and A. Consider a column vector θ = (θ0,0, θ0,1, θ1,0, θ1,1) ∈
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Figure 2.1: Counterfactual true positive rates (cTPRs; solid lines) for a RAI satisfying observational
equalized odds (oEO), as a function of the intervention strength P(Y 1 = 0 | Y 0 = 1). Dashed
lines indicate opportunity rates P(D = 1 | Y 0 = 0) prior to the development of the RAI. The more
effective the tutoring (the higher the intervention strength), the worse the RAI is at identifying
students who need it, and the greater the disparity in its performance between the minority and the
majority group. When tutoring is more effective, the RAI may reduce the appropriate assignment
of tutors below the baseline opportunity rates.

17



[0, 1]4. We define an associated derived predictor Sθ:

Sθ ∼ Bern(θA,S)

where θA,S =
∑

a,s∈{0,1}

1{A = a, S = s}θa,s

In other words, the θa,0 parameters represent conditional probabilities that S flips, while the θa,1

parameters represent conditional probabilities that S doesn’t flip. Notice that for θ̃ = (0, 1, 0, 1), we

have Sθ̃ = S: the derived predictor is equal to the input predictor.

Our target is a loss-optimal fair predictor Sθ∗ , where the fairness criterion is approximate cEO.

The loss function we consider is weighted classification error. For fixed θ, denote the loss‡ by

Loss(Sθ;w
+, w−) = w+P(Y 0 = 0, Sθ = 1) + w−P(Y 0 = 1, Sθ = 0), where w+, w− are chosen by

the user to capture the relative importance of false positives and false negatives. (We will generally

suppress the dependence of Loss on w+, w−.) The estimand is

θ∗ ∈ arg min
θ

Loss(Sθ)

subject to θ ∈ [0, 1]4

|∆+(Sθ)| ≤ ε+

|∆−(Sθ)| ≤ ε−

where ∆+,∆− are given above in Definition 2.2.2, and the fairness constraints ε+, ε− ∈ [0, 1] are

chosen by the user. Setting both these constraint parameters to 0 requires cEO to be satisfied

exactly, while setting them to 1 allows Sθ∗ to be arbitrarily unfair. Setting ε− to 0 regardless of ε+

forces Sθ∗ to satisfy counterfactual equal opportunity ; see Hardt et al. (2016) for the observational

definition of this criterion.

Remark 1. The full vector Z is required only to estimate the parameter θ∗ that defines the optimal

fair derived predictor. Once θ∗ has been estimated, the resulting derived predictor requires access

at runtime only to the sensitive feature A and the input predictor S.

Since our estimands involve counterfactual quantities, distributional assumptions are required in

order to equate them to observable quantities.

‡We refer to this quantity as “loss” instead of the conventional “risk” in order to avoid confusion between risk
assessment and the error rate of a predictor.
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2.5.2 Identification

In this subsection we show that the counterfactual error rates and loss can be identified under

standard causal inference assumptions. All the quantities to be identified can be written in terms

of the loss and the counterfactual error rates of the input predictor S. For ease of notation, we first

define two nuisance parameters that appear in the estimand and associated estimators, namely the

outcome regression and propensity score function. We generally suppress the arguments of these

functions in subsequent usage for the sake of conciseness.

µ0(A,X, S) = E[Y | A,X, S,D = 0]

π(A,X, S) = P(D = 1 | A,X, S)

We make the following standard “no unmeasured confounding”-type causal inference assumptions:

A1. (Consistency) Y = DY 1 + (1−D)Y 0

A2. (Positivity) ∃δ ∈ (0, 1) s.t. P(π(A,X, S) ≤ 1− δ) = 1

A3. (Ignorability) Y 0 ⊥⊥ D | A,X, S

The consistency assumption means that the outcome observed for each individual is precisely

the potential outcome corresponding to the treatment received. This implies that one person’s

treatment assignment does not affect another person’s outcomes, meaning, for example, that an

individual’s recidivism behavior does not depend on whether other individuals are detained or

released. The positivity or overlap assumption requires that within strata of (A,X, S) of measure

> 0, individuals have some chance of receiving no intervention. Finally, the ignorability or no

unmeasured confounding assumption requires that within strata of (A,X, S), the treatment D

is essentially random with respect to Y 0. Satisfying ignorability assumptions typically requires

collecting a rich enough set of deconfounding covariates. In the present case, even if X is low

dimensional, the ignorability assumption is plausible if the input predictor S substantially drives

decision making, or if it happens to be an accurate (if not necessarily fair) predictor of Y 0.

Before giving the identifying expressions for Loss(Sθ) and the error rate differences ∆+,∆−, we

give identifying expressions for the error rates of the input predictor S, which themselves appear in

the expressions for ∆+,∆−.
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Proposition 1. Under assumptions A1-A3, the counterfactual error rates of the input predictor S

are identified as follows:

cFPR(S, a) =
E[S(1− µ0)1{A = a}]
E[(1− µ0)1{A = a}]

cFNR(S, a) =
E[(1− S)µ01{A = a}]

E[µ01{A = a}]

Proofs of propositions are given in Appendix 2.A. We now define several quantities that appear

in the identifying expressions for Loss(Sθ),∆
+, and ∆−:

βa,s = E
[
1{A = a, S = s}

(
w+ − (w+ + w−)µ0

)]
, for a, s ∈ {0, 1}

β = (β0,0, β0,1, β1,0, β1,1)

β+ = (1− cFPR(S, 0), cFPR(S, 0), cFPR(S, 1)− 1, − cFPR(S, 1))

β− = (− cFNR(S, 0), cFNR(S, 0)− 1, cFNR(S, 1), 1− cFNR(S, 1))

Proposition 2. Under assumptions A1-A3, the loss and error rates of the derived predictor Sθ are

identified as:

Loss(Sθ) = θTβ + w−E[µ0]

∆+(Sθ) = θTβ+

∆−(Sθ) = θTβ−

Since the term w−E[µ0] in the loss is fixed, we can drop it without changing the minimizer of

the loss. We can therefore rewrite the estimand as

θ∗ ∈ arg min
θ

θTβ

subject to θ ∈ [0, 1]4

|θTβ+| ≤ ε+

|θTβ−| ≤ ε−

(2.1)

In other words, the optimal fair derived predictor is the solution to a linear program (LP). We refer

to this as the “true LP” since it defines the estimand. We now define an estimator θ̂ as the solution

to an “estimated LP.”
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2.5.3 Estimation

An estimator for θ∗ is derived by computing estimates β̂, β̂+, β̂− of the true LP coefficients and then

solving the resulting estimated LP:

θ̂ ∈ arg min
θ

θT β̂

subject to θ ∈ [0, 1]4

|θT β̂+| ≤ ε+

|θT β̂−| ≤ ε−

Any solution θ̂ suffices. How should β, β+, β− be estimated? Before proposing a specific set

of estimators, we first show that Sθ̂ approaches optimal behavior at rates that depend on the

performance of these estimators§. We define two quantities of interest: the loss gap and the excess

unfairness, and give accompanying theorems. Proofs of all theorems are given in Appendix 2.B.

Following standard usage, we say that an estimator ψ̂ of a parameter ψ is consistent at rate f(n)

for some real-valued function f(n) if ‖ψ̂ − ψ‖ = OP(1/f(n)) for a suitable norm ‖ · ‖. For example,

if f(n) =
√
n, then we say ψ̂ converges at

√
n rates. We say that an estimator converges faster

than f(n) if ‖ψ̂ − ψ‖ = oP(1/f(n)). When ψ ∈ Rk for some k, the norm we are interested in is

the Euclidean norm defined by ‖ψ‖2 = ψTψ. When ψ is a function of the random variable Z, the

relevant norm is the L2 norm with respect to P, i.e., ‖ψ‖2 =
∫
ψ2dP(z).

Definition 2.5.1. The loss gap is Loss(Sθ̂)− Loss(Sθ∗), the difference in loss between the derived

predictor and the optimal derived predictor.

We use the term loss gap rather than excess loss to acknowledge that the loss of Sθ̂ can be less

than the loss of Sθ∗ , if θ̂ falls outside the true constraints. Of course, this can only occur if Sθ̂

violates the true fairness constraints, which can happen because the constraints are estimated.

Theorem 2.1. (Loss gap.) Suppose that β̂, β̂+, and β̂− are all consistent at rate f(n). Under

Assumptions A1-A3:

Loss(Sθ̂)− Loss(Sθ∗) = OP(1/f(n))

Definition 2.5.2. The excess unfairness of Sθ̂ in the cFPR is

UF+(Sθ) := max{| cFPR(Sθ̂, 0)− cFPR(Sθ̂, 1)| − ε+, 0},
§We ignore optimization error, since this is a function of the number of optimization iterations and can be made

arbitrarily small (Boyd and Vandenberghe, 2004).
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and the excess unfairness of Sθ̂ in the cFNR is

UF−(Sθ) := max{| cFNR(Sθ̂, 0)− cFNR(Sθ̂, 1)| − ε−, 0}

Since the estimated constraints should fluctuate around the true constraints, it’s possible for Sθ̂

to have error rate differences that are smaller than ε+, ε−, which motivates bounding these quantities

below by 0.

Theorem 2.2. (Excess unfairness.) Suppose that β̂, β̂+, and β̂− are all consistent at rate f(n).

Under assumptions A1-A3:

max
{

UF+(Sθ̂),UF−(Sθ̂)
}

= OP(1/f(n))

Remark 2. (The behavior of θ̂ vs. Sθ̂). Without assumptions about how the loss and fairness

of Sθ̂ depend on θ̂, there is no guarantee about the rate at which θ̂ will approach θ∗. This is not a

concern, however, since the object of interest is not θ∗ per se but a predictor that behaves like Sθ∗ .

Arguably the simplest estimators for β, β+, β− involve plugging an estimate of the regression

function µ0 into the identifying expressions in Proposition 1 and then computing empirical means in

place of expectations. We propose instead using doubly robust, influence function-based estimators,

which yield faster rates of convergence than plugin estimators in general nonparametric settings

(van der Vaart, 2002; Tsiatis, 2006).

For ease of notation, let

φ =
1−D
1− π (Y − µ0) + µ0

denote the uncentered efficient influence function for E(Y 0), and let φ̂ denote an estimate constructed

from estimates µ̂0 and π̂ (Bickel et al., 1993; Hahn, 1998; van der Laan and Robins, 2003; Kennedy,

2016). Both these nuisance functions can be estimated with arbitrary nonparametric learners. To

minimize the use of indices, let Pn(f(Z)) = n−1
∑n
i=1 f(Zi) denote the sample average of any

function of Z. The doubly robust estimators for individual coefficients are:

β̂a,s = Pn[1{A = a, S = s}(w+ − (w+ + w−)φ̂)] (2.2)

ĉFPR(S, a) =
Pn[1{A = a}S(1− φ̂)]

Pn[1{A = a}(1− φ̂)]
(2.3)

ĉFNR(S, a) =
Pn[1{A = a}(1− S)φ̂]

Pn[1{A = a}φ̂]
(2.4)
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These estimates are assembled into the corresponding vectors β̂, β̂+, β̂−.

In order to obtain optimal convergence rates, it is generally necessary to estimate the nuisance

functions µ̂0 and π̂ on one sample and then compute the sample mean Pn on an independent sample

conditional on those estimates. To obtain full sample size efficiency, one can swap the folds, repeat

the procedure, and average the results, an approach that is popularly called cross-fitting (Bickel and

Ritov, 1988; Robins et al., 2008; Zheng and van der Laan, Mark, 2010; Chernozhukov et al., 2018).

A k-fold version of cross-fitting with k > 2 is also possible. If µ̂0 and π̂ are assumed to be sufficiently

“well-behaved,” i.e. if they belong to Donsker classes, then no such sample splitting is necessary.

We prefer to avoid this assumption and utilize sample splitting. See Appendix 2.C for a schematic

of the sample splitting procedure.

The next theorem captures the double robustness property: under this sample splitting

procedure, the coefficient estimators converge at a rate determined by the product of rates for

the nuisance parameter estimators. One additional mild assumption is required.

A4. (Bounded propensity estimator)

∃γ ∈ (0, 1) s.t. P(π̂(A,X, S) ≤ 1− γ) = 1

Assumption A4 is the empirical analogue of the positivity assumption (A2). It can be trivially

satisfied by truncating π̂ at 1− δ, the positivity threshold in assumption A2.

Theorem 2.3. (Double robustness.) Suppose that ‖µ̂0 − µ0‖‖π̂ − π‖ = OP(g(n)) for some function

g(n). Under assumptions A1-A4:

‖β̂ − β‖ = OP

(
max

{
g(n), n−1/2

})
and the same result holds for ‖β̂+ − β+‖ and ‖β̂− − β−‖.

Corollary 2.3.1. If ‖µ̂0 − µ0‖‖π̂ − π‖ = OP(n−1/2), then ‖β̂ − β‖ = OP(n−1/2), and likewise for

‖β̂+ − β+‖ and ‖β̂− − β−‖.

The corollary shows that it is possible to obtain
√
n convergence, the fastest rate attainable in

general nonparametric settings, even when the nuisance parameters are estimated at slower than
√
n rates. The condition of Corollary 2.3.1 can be satisfied under relatively weak and nonparametric

smoothness or sparsity assumptions (Györfi et al., 2002; Raskutti et al., 2011). For example, let

d = p + 2 be the dimension of (A,X, S). If µ0 and π are in Hölder classes with smoothness index

s > d/2, then there exist nonparametric estimators µ̂0 and π̂ such that ‖µ̂0 − µ‖ = oP(n−1/4) and
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‖π̂−π‖ = oP(n−1/4), in which case the product of the rates would be oP(n−1/2), which is faster than

OP(n−1/2).

By contrast, a plugin version of β̂ would converge at a rate of
√
n or the rate for ‖µ̂0 − µ0‖,

whichever is slower, and likewise for plugin versions of β̂+ and β̂−. Since
√
n rates are generally

unattainable in nonparametric regression, this means that plugin estimators would converge at slower

than
√
n rates, which, per Theorems 2.1 and 2.2, would result in slower convergence in the loss gap

and excess unfairness.

2.5.4 Estimating performance of the derived predictor

Once θ̂ has been computed, it is of interest to check both Loss(Sθ̂) and the error rate differences

∆+(Sθ̂), ∆−(Sθ̂) of the resulting derived predictor Sθ̂, for example to understand the performance

“cost” of fairness and to check whether the procedure successfully controlled the error rate differences.

These estimates should be computed on a test set that is independent of the sample used to

estimate θ̂. Within the test set, the same sample splitting considerations apply: unless they are

assumed to belong to Donsker classes, the nuisance parameters µ̂0 and π̂ should be estimated on

separate folds from the folds used to compute the relevant sample means Pn.

Since the estimators below are conditional on a fixed θ̂, they can in fact be applied to any fixed

parameter value θ ∈ [0, 1]4. We define two additional quantities of interest.

Definition 2.5.3. The loss change for a derived predictor Sθ relative to an input predictor S is

Γ(Sθ) = Loss(Sθ)− Loss(S).

We refer to a loss change rather than an increase in loss because it is possible for Sθ to have

smaller loss that S. This is not a typical expectation: in fair prediction problems, the set of fair

classifiers is necessarily smaller than the set of fair and unfair classifiers, so there is a fairness-accuracy

tradeoff. In the RAI setting, however, since predictors are typically trained to predict observable

outcomes, their performance may be arbitrarily bad with respect to the potential outcome Y 0. It

is therefore not implausible than a derived fair predictor could have higher accuracy than the input

predictor.

Definition 2.5.4. The predictive change for a derived predictor Sθ relative to an input predictor

S is P(Sθ̂ 6= S).

The predictive change is the proportion of input predictions that the post-processed predictor

flips, which gives a measure of the effect of post-processing.

Once again, we propose using doubly robust estimators. These estimators are essentially identical

to the estimators of the LP coefficients used in the previous section. Here, however, we are interested
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in properties of these estimators, rather than properties of our derived predictor Sθ̂. In particular,

we are interested in deriving confidence intervals, in addition to guaranteeing rates of convergence.

The estimators are

L̂oss(Sθ) = θT β̂ + w−Pn(φ̂) (loss)

Γ̂(Sθ) = (θ − θ̃)T β̂ (loss change)

ĉFPR(Sθ, a) = θa,0

(
1− ĉFPR(S, a)

)
+ θa,1ĉFPR(S, a) (cFPR)

ĉFNR(Sθ, a) = (1− θa,0)
(

ĉFNR(S, a)
)

+ θa,1

(
1− ĉFNR(S, a)

)
(cFNR)

∆̂+(Sθ) = θT β̂+ (error rate difference in cFPR)

∆̂−(Sθ) = θT β̂− (error rates difference in cFNR)

where recall θ̃ = (0, 1, 0, 1), so that Sθ̃ = S (i.e., the derived predictor is simply the input

predictor). Note that the loss estimator adds back in the portion of the loss that doesn’t depend on

θ and that we consequently removed from the LP in (2.1).

The predictive change does not involve counterfactual quantities, so it can be straightforwardly

estimated with a plugin estimator: P̂(Sθ̂ 6= S) = Pn
{
P
(
Sθ̂ 6= S|A,S

)}
=

Pn

 ∑
a∈{0,1}

[θa,01{A = a, S = 0}+ (1− θa,1)1{A = a, S = 1}]


Since this is a sample average, it is asymptotically normal, and confidence intervals can be derived

via the central limit theorem. In order to obtain asymptotic normality for the remaining estimators,

we require an additional rate assumption on the nuisance parameter estimators:

A5. (Nuisance estimator rates).

‖µ̂0 − µ0‖ = oP(1),

‖π̂ − π‖ = oP(1),

‖µ̂0 − µ0‖‖π̂ − π‖ = oP(1/
√
n)

Assumption A5 states that µ̂0 and π̂ are consistent for µ0 and π, and that the product of their

errors is smaller than 1/
√
n. As described above, this assumption can be satisfied under sparsity or

smoothness conditions on µ0 and π.
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Theorem 2.4. (Asymptotic normality.) Fix θ ∈ [0, 1]4. Under assumptions A1-A5:

√
n
(

L̂oss(Sθ)− Loss(Sθ)
)
 N (0, var (fθ))

√
n
(

Γ̂− Γ
)
 N

(
0, var

(
fθ − fθ̃

))
√
n
(

ĉFPR(Sθ, a)− cFPR(Sθ, a)
)
 N (0, var (ga))

√
n
(

ĉFNR(Sθ, a)− cFNR(Sθ, a)
)
 N (0, var (ha))

√
n
(

∆̂+ −∆+

)
 N (0, var(g0 − g1))

√
n
(

∆̂− −∆−
)
 N (0, var(h0 − h1))

where

fθ = (w+ − (w+ + w−)φ)θA,S + w−φ

ga = (θa,1 − θa,0)
1{A = a}(1− φ)(S − cFPR(S, a))

E[1{A = a}(1− φ)]

ha = (θa,1 − θa,0)
1{A = a}φ(S − cFNR(S, 0))

E[1{A = a}φ]

and recall

θA,S =
∑

a,s∈0,1

θa,s1{A = a, S = s}

and the estimators L̂oss, Γ̂, ĉFPR, ĉFNR, ∆̂+, ∆̂− attain the nonparametric efficiency bound,

meaning that no other estimator has smaller asymptotic variance.

Corollary 2.4.1. Given a consistent estimator for var(fθ), an asymptotically valid 95% confidence

interval for Loss(Sθ) is given by L̂oss(Sθ) ± 1.96 · v̂ar(fθ)/
√
n. An asymptotically valid test of the

hypothesis Loss(Sθ) = C for any C consists of evaluating whether C is in the confidence interval.

Analogous results hold for Γ, cFPR, cFNR,∆+,∆+.
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Perhaps the most natural estimators for these variances are the sample variances of f̂θ, ĝa, ĥa,-

ĝ0 − ĝ1, and ĥ0 − ĥ1, where these quantities are defined by the following:

f̂θ = (w+ − (w+ + w−)φ̂)θA,S + w−φ̂

ĝa = (θa,1 − θa,0)
1{A = a}(1− φ̂)(S − ĉFPR(Sθ, a))

Pn[1{A = a}(1− φ̂)]−1

ĥa = (θa,1 − θa,0)
1{A = a}φ̂(S − ĉFNR(Sθ, 0))

Pn[1{A = a}φ̂]−1

The quantities fθ, ga, and ha are the efficient influence functions for the loss and error rates.

2.6 Results

There is no previous method designed to achieve counterfactual equalized odds or related fairness

criteria that we can compare our method to. We instead compare our method to an approach that

uses plugin estimators for the LP coefficients, in order to illustrate the advantages of the doubly

robust estimators.

2.6.1 Simulations

We use one set of simulations to illustrate Theorems 2.1-2.3 and another set to explore fairness-

performance tradeoffs. We use equal misclassification weights w+ = w− = 1, so that false positives

and false negatives contribute equally to the loss. Simulations illustrating Theorem 2.4 can be found

in Appendix 2.E.

Each estimation procedure was run 500 times for each sample size n ∈ {100, 200, 500, 1000, 5000, 20000}.
Since µ0 is known here, the “true” loss and fairness values were computed on a separate validation

set of size 500,000, using plugin estimators with the true µ0. These values showed negligible variation

over many repetitions.

Setup

First, we define a pre-RAI data generating process. Using this data, we train a predictor S to

predict observable outcomes Y , mirroring how RAIs are typically constructed in practice. We then

define a post-RAI data generating process, which only differs in that the predictor S now affects the

decisions D. This emulates the way RAIs are intended to work in practice; for example, a criminal

defendant labeled high-risk (S = 1) be a RAI might be less likely to be released pre-trial (D = 0)

than they would have been prior to the introduction of the RAI. The data generating process is
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designed to meet assumptions A1-A3, with π(D | A,X, S) upper bounded at 0.975. It is described

fully in Appendix 2.D.

Theorems 2.1-2.3

To simulate the estimation of the LP coefficient vectors at a particular rate, we add random noise

ε of magnitude oP(1/n1/4) to the nuisance parameters µ0 and π¶. As described above, in general

nonparametric settings, regression functions cannot be estimated at
√
n rates, but they can be

estimated at n−1/4 rates under relatively weak assumptions (van der Vaart, 2002).

Figure 2.2 shows Loss(Sθ̂) and the excess unfairness values UF+(Sθ̂), UF−(Sθ̂) for the post-

processed predictor Sθ̂ with fairness constraints ε+ = 0.10, ε− = 0.20. As expected, when doubly

robust estimators are used, the loss and excess unfairness values converge at
√
n rates to Loss(Sθ∗),

the loss of the optimal derived predictor ,and 0, respectively. When plugin estimators are used, the

rates are slower than
√
n.

Fairness-performance tradeoffs

Figure 2.3 shows the loss change Γ(Sθ∗) = Loss(Sθ∗) − Loss(S) for each point in a grid of fairness

constraints ε+, ε−. Here, S is the Bayes-optimal predictor of Y 0 in our data generating scenario,

meaning S(A,X) = E[Y 0 | A,X]. Since any derived predictor necessarily has greater loss than the

Bayes-optimal predictor, we refer to the loss change here equivalently as the performance cost.

In the data generating process used in the previous section, the Bayes-optimal predictor has

absolute error rate differences of only 0.05 (∆+) and 0.04 (∆−), which leaves little room to illustrate

the potential cost of fairness. For these simulations, therefore, we alter the data generating process

slightly. (See Appendix 2.D). This results in a Bayes-optimal predictor with absolute error rate

differences of 0.23 (∆+) and 0.40 (∆−) and a loss of 0.24, which are plausible values for a real

predictor.

As expected, when ε+ ≥ ∆+(S) or ε− ≥ ∆−(S), the performance cost is 0: the input predictor

already falls satisfies the fairness constraints, so our method simply returns the input predictor.

As the tolerances tighten towards 0, the performance declines, though never substantially. For

ε+ = ε− = 0, when the derived predictor is constrained to satisfy exact cEO, the loss increases by

0.10, to 0.34. The different values for ∆+(S) and ∆−(S) in the input predictor are reflected in the

differing costs of satisfying fairness along the two axes: the cost of controlling ∆+(Sθ) are lower than

the costs of controlling ∆−(Sθ).

¶The noise is added on the logit scale to ensure that µ̂0, π̂ remain in [0, 1], and π̂ is again truncated to 0.975.
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Figure 2.2: (Illustration of Theorems 2.1-2.3). Loss L(Sθ̂) and excess unfairness values
UF+(Sθ̂),UF−(Sθ̂) for the derived predictor Sθ̂ for samples of size 100 to 20,000. Each vertical
line represents a mean ±1 sd over 500 simulations. Orange horizontal lines represent the loss of
the optimal derived predictor Sθ∗ (top left panel) or 0. The top row represents our doubly robust
(DR) procedure and shows that the loss and excess unfairness converge to their target values. The
bottom two rows represent values from the DR procedure or a plugin (PI) procedure, transformed
by ψ(Sθ̂) 7→

√
n(ψ(Sθ̂) − ψ(Sθ∗)), where ψ is Loss or UF+ or UF−, as appropriate. These rows

illustrate that
√
n-convergence is only guaranteed for θ̂DR: the scaled values for θ̂DR do not grow in

n, while the scaled values for θ̂PI begin to diverge.
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Figure 2.3: (Fairness-performance tradeoffs). Loss change Γ(θ∗) = Loss(Sθ∗) − Loss(S) for the
Bayes-optimal input predictor S(A,X) = E[Y 0 | A,X] and θ∗ corresponding to different fairness
constraints ε+, ε−. The black area represents fairness constraints that are looser than the error rate
differences of the input predictor (∆+(S) = 0.24, ∆−(S) = 0.40), which incur no performance cost.
The highest performance cost (0.10) occurs when the error rates differences are both constrained to
be 0, meaning the derived predictor Sθ∗ satisfies cEO exactly.
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Woodworth et al. (2017) showed that post-processing can result in predictors with poor

performance, but it is unclear how likely this is to be a problem in practice. While the fairness-

accuracy tradeoff naturally depends on the data generating process, our example illustrates that

fairness can in some cases be achieved without substantial performance costs.

2.6.2 COMPAS data

We illustrate our method on the COMPAS recidivism dataset gathered by ProPublica (Angwin

et al., 2016; Larson et al., 2016). COMPAS refers to a collection of tools designed to assess the

risk of recidivism. The dataset comprises public arrest records, criminal records, and COMPAS

RAI scores from Broward County, Florida, spanning 2013–2016. After filtering the data in the same

manner as Larson et al. (2016) and restricting to defendants who are labeled African-American

(A = 0) or Caucasian (A = 1), we are left with data for 5278 individuals (3175 African-American,

2103 Caucasian).

We utilize the COMPAS scores for general, as opposed to violent, recidivism. The scores are

given in risk deciles. Since our method operates on a binary input predictor S, we follow ProPublica

and set scores of 1-4 to S = 0 (“low risk”) and scores of 5-10 to S = 1 (“high risk”). The outcome

Y is recidivism within a two-year time period. (See Larson et al. (2016) for how recidivism is

operationalized.) ProPublica’s analysis focuses on the use of COMPAS to inform pretrial release

decisions. The dataset includes dates in and out of jail but does not indicate whether defendants

were released pretrial, so we set the treatment D to 0 if defendants left jail within three days of

being arrested, and 1 otherwise. This yields 3645 released individuals (2158 African-American, 1487

Caucasian) and 1633 incarcerated individuals (1017 African-American, 616 Caucasian). Note that

this threshold is somewhat arbitrary. Florida state law generally requires individuals to be brought

before a judge for a bail hearing within 48 hours of arrest, but it may take time for individuals to

post bail if they are required and able to do so.

The covariates X consist of gender (coded male or female), age (coded categorically for < 25,

between 25 and 45, and > 45), the number of prior crimes, and charge degree (misdemeanor

or felony). Without consulting with domain experts, it is difficult to assess the plausibility of

the positivity and ignorability assumptions given these covariates. Hence we intend our analysis

primarily to be illustrative of our method, and we resist drawing strong substantive conclusions

about COMPAS.

We weight false positives and false negatives equally, i.e. we set w+ = w− = 1. We randomly

split the data into training and test sets of equal size. For ε ∈ {0, 0.01, 0.05, 0.10, 0.20, . . . , 0.90, 1},
we set the fairness constraints to ε+ = ε− = ε, compute the corresponding estimate θ̂ on the training
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set, and estimate properties of the post-processed predictor Sθ̂ on the test set. We also estimate

properties of the binarized COMPAS score S on the test set. We use random forests to estimate

both the propensity scores π̂ and the outcome regression µ̂0. To reduce the variance of the estimates,

we employ 5-fold cross-fitting: within the train set, we compute five estimates θ̂j , j = 1, . . . 5, using

four folds at a time to estimate the nuisance parameters and the held-out fold to compute θ̂j . Then

θ̂ := 1
5

∑
j θ̂j . We utilize the test set in an analogous fashion for the remaining estimators.

Table 2.1 contains estimates and confidence intervals for COMPAS and for the post-processed

predictor corresponding to fairness constraints of ε+ = ε− = 0.05. The loss for COMPAS is 0.36, and

the differences in the cFPR and cFNR are -0.24 and 0.16, respectively. The signs of these differences

are consistent with what ProPublica found in their analysis with respect to observable Y : the false

positive rates are higher for African-American defendants, while the false negative rates are higher

for Caucasian defendants. The post-processing procedure successfully shrinks these differences to

-0.05 and -0.03, which fall within the target range of [−0.05, 0.05]. This reduction corresponds to

flipping 9% of the COMPAS scores, and it incurs an increase in risk of only 0.03.

The value of θ̂ corresponding to Sθ̂ here is (0, 0.91, 0.23, 1). The 0 and the 1 indicate that Sθ̂ does

not change the COMPAS scores for African-American defendants who receive a “low-risk” score or

Caucasian defendants who receive a “high-risk” score. The scores for high-risk African-American

defendants are flipped to low-risk 1− 0.91 = 9% of the time, while the scores for low-risk Caucasian

defendants are flipped to high-risk 23% of the time. This has the effect of increasing the false positive

rate and decreasing the false negative rate for Caucasians, while moving the rates in the opposite

directions for African-Americans.

Figure 2.4 shows the loss, error rate differences, and predictive change for fairness constraints

ranging from 0 (requiring no gap in error rates) to 1 (imposing no fairness constraints). Each

constraint induces an estimate θ̂ and a corresponding post-processed predictor Sθ̂. The estimated

fairness gaps fall along or within the lines y = ±x, indicating that each Sθ̂ satisfies its target

constraints. At the most stringent setting of 0, the loss for Sθ̂ is approximately 0.40, which compares

favorably with the estimated baseline loss of 0.36 for COMPAS. This Sθ̂ flips slightly less than 20%

of the scores.

For ε > 0.24, the fairness constraints are essentially no longer active, since COMPAS itself

satisfies these constraints. Indeed, as expected, the θ̂ values for ε > 0.24 are all essentially [0, 1, 0, 1],

meaning that Sθ̂ = S, and the estimated risk and fairness values all fall close to the estimated values

for COMPAS. (There is still some variation in the estimated values due to randomness in the k-fold

cross-fitting procedure.)
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Figure 2.4: Convergence of the estimated loss L̂oss(Sθ̂), predictive change P̂(Sθ̂ 6= S), and error

rate differences ∆̂+(Sθ̂), ∆̂
−(Sθ̂), for post-processed versions of the binarized COMPAS predictor.

Fairness constraints are set to ε+ = ε− = ε over a range of values ε. Vertical lines are 95% CIs.
Horizontal orange lines indicate the reference values for COMPAS, or 0 in the case of predictive
change. The dashed blue lines y = x and y = −x, mark the target fairness constraints.

These results illustrate that our approach performs as intended on a real dataset: if these data

were indeed generated from a distribution satisfying the identifying assumptions, then our post-

processed predictor would satisfy approximate counterfactual equalized odds while incurring little

cost in performance.

2.6.3 Child welfare data

Cost-sensitive loss functions can drive θ̂ to a trivial classifier that always predicts one class. We

illustrate this phenomenon on a dataset representing calls to a child-welfare hotline in Allegheny

County, Pennsylvania. The data comprises over 30,000 calls and contains over 1,000 features. The

features describe allegations made in the call, assessments of risk made by hotline workers, and

features pertaining to individuals associated with the call. Workers must decide whether to screen

in a call, which means opening an investigation into the allegations. The baseline decision D = 0

is to screen out, meaning no investigation takes place. The outcome Y is re-referral to the hotline

within a six month period. For further details about the child welfare setting and this dataset in

particular, see Chouldechova et al. (2018) and Coston et al. (2020).

Unlike the COMPAS dataset, this dataset does not include a previously trained predictor. We

therefore first build a predictor S that predicts Y 0, and then we post-process S. In this setting,
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Table 2.1: Estimates and 95% confidence intervals for the loss Loss, loss change Γ, error rates cFPR
and cFNR for groups 0 and 1, error rate differences ∆+,∆−, and predictive change P(Sθ̂ 6= S) for
the binarized COMPAS predictor S and the post-processed predictor Sθ̂, with ε+ and ε− set to 0.05.

S Sθ̂

L̂oss(·) 0.36 (0.32, 0.41) 0.39 (0.35, 0.42)

Γ̂(·) – 0.03 (0.01, 0.04)

ĉFPR(·, 0) 0.43 (0.36, 0.49) 0.39 (0.33, 0.45)

ĉFPR(·, 1) 0.24 (0.18, 0.31) 0.42 (0.37, 0.47)

ĉFNR(·, 0) 0.30 (0.25, 0.35) 0.36 (0.31, 0.40)

ĉFNR(·, 1) 0.53 (0.46, 0.60) 0.41 (0.35, 0.46)

∆̂+(·) -0.24 (-0.32, -0.15) -0.05 (-0.12, 0.02)

∆̂−(·) 0.18 (0.09, 0.28) -0.03 (-0.10, 0.05)

P̂(· 6= S) – 0.09 (0.09, 0.09)

we have reason to believe that the identification assumptions in section 2.5.2 are plausible, once

cases with the highest propensity for screen-in are removed; see Coston et al. (2020). (RAIs are not

necessary or useful for cases that are already guaranteed to be screened in.) In order to accomplish

this filtering, we first build a propensity score model using random forests on roughly one third of

the data. The model appears well-calibrated, so we filter out the approximately 20% of the cases

with estimated propensity scores greater than 0.99. Note that downstream results did not change

substantially when these cases were left in.

We then train a classification random forest S to predict Y conditional on A,X,D = 0, using the

same third of the data. Under the identifying assumptions, Y |X,A,D = 0 is equal in distribution to

Y 0|A,X, so S is indeed an estimate of the target Y 0. Following recommended usage in this setting,

we set the classification threshold to capture the top 25% riskiest cases (Chouldechova et al., 2018).

The predictor S has estimated error rate differences and 95% confidence intervals of ∆̂+ =

−0.02 ± 0.01 and ∆̂− = 0.09 ± 0.08. It is unsurprising that these differences are small, given that

rereferral rates are similar for Black (0.24) and White (0.27) cases. See Chouldechova (2017) for an

examination of the relationship between base rates and error rates.

In order to have nontrivial (active) fairness constraints, we set ε+ = ε− = 0.01. Figure 2.5 shows

the value of θ̂ over a range of cost ratios w+/w− and w−/w+. When false positives are weighted more

than 1.5 times as heavily as false negatives, post-processing returns classifiers that are very close to

the simple majority classifier S(0,0,0,0) ≡ 0. When false negatives are weighted more than 2 times as

heavily as false positives, post-processing returns the simple minority classifier S(1,1,1,1) ≡ 1. Since

the input classifier is approximately fair, between those ranges, post-processing returns classifiers
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Figure 2.5: Cost-sensitive post-processing for the child welfare predictor over a range of cost ratios,
with fairness constraints ε+ = ε− = 0.01. Each column represents a single θ̂, with the four
components θa,s for a, s ∈ {0, 1}, in rows. False positives are weighted between 1.25 and 3 times as
heavily as false negatives to the left of the dashed line, and vice versa to the right. Extreme cost
ratios push the post-processed classifier to a trivial classifier that always predicts 0 (to the left of
the orange lines) or 1 (to the right). Between these, post-processing essentially returns the input
predictor.

that are very close to the input classifier S = S(0,1,0,1), with only the fourth component θ̂1,1 deviating

slightly from 1.

This behavior is expected. Note that a simple majority or minority classifier always satisfies

counterfactual equalized odds, since the error rate differences are 0. Since the post-processed

predictor only has access at runtime to two binary features, as either false positives or false negatives

become sufficiently important, one of these simple classifiers will at some point become the lowest

risk option. This is possible in principle when w+ and w− are equal, but it is guaranteed as their

ratio grows.

Since this dataset did not include a pretrained predictor of Y 0, it would be preferable to adopt

an in-processing approach, i.e. to train a predictor that satisfies the desired fairness constraints in a

single stage, rather than training an unconstrained predictor and then post-processing it. We pursue

this task in ongoing work.
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2.7 Discussion and conclusion

In this paper we considered fairness in risk assessment instruments (RAIs), which are naturally

concerned with potential outcomes rather than strictly observable outcomes. We defined the

fairness criterion approximate counterfactual equalized odds (approximate cEO), which allows users

to negotiate the tradeoff between fairness and performance. We argued that this fairness criterion

is likelier than other candidate criteria to reduce discriminatory disparate impact, which we defined

as D 6⊥⊥ A | Y 0.

We presented a method to post-process an existing binary predictor to satisfy approximate

cEO using doubly robust estimators, and we showed that our method has favorable convergence

properties. Our rate results translate readily to the post-processing setting of (Hardt et al., 2016),

in which the outcome of interest is the observable Y and the fairness criterion is (approximate)

observational equalized odds.

Once it is constructed, the post-processed predictor requires access at runtime only to the

sensitive feature and the input predictor, making it relatively feasible to implement on top of existing

RAIs. A predictor trained from scratch would be constrained by the set of covariates available in

deployment, whereas the post-processing approach allows researchers to devise a set of suitable

deconfounding covariates and then collect an appropriate dataset on a one-time basis.

In closing, we note that from our perspective, notions of fairness in predictive systems ought to

be subordinate to notions of fairness grounded in the actual decisions or events that those systems

inform, and the impact that those decisions have on people’s lives. Though little is currently known

about how decision makers respond to RAIs, there is some evidence that judges do not have much

faith in recidivism predictions and that RAIs can have little impact on decisions (Jonnson, 2018;

Stevenson, 2018). As RAIs and the general public’s understanding of how they function co-evolve,

it is likely that the ways in which decision makers respond to them will evolve as well.

Nevertheless, it seems plausible that some fairness criteria for RAIs are likelier than others to

lead to increased (un)fairness with respect to decisions and outcomes. While this is ultimately

an empirical question, we believe that this kind of consideration ought to ground discussions of

fairness in RAIs and predictive systems generally. As long as there are domains involving high

stakes decisions that we do not wish to fully automate, RAIs will remain relevant, and so will the

task of ensuring that they lead to a society that is more fair, not less.
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2.A Proofs of propositions

For convenience, we restate our three assumptions.

1. (Consistency) Y = DY 1 + (1−D)Y 0

2. (Positivity) ∃δ ∈ (0, 1) : P(π(A,X, S) ≤ 1− δ) = 1

3. (Ignorability) Y 0 ⊥⊥ D | A,X, S

Proof of Proposition 1 (Identification of error rates for input predictor S)

cFPR(S, a) = P(S = 1 | Y 0 = 0, A = a)

=
P(S = 1, Y 0 = 0, A = a)

P(Y 0 = 0, A = a)

=
E[S(1− Y 0)1{A = a}]
E[(1− Y 0)1{A = a}]

=
E[S(1− E[Y 0 | A,X, S,D = 0)]1{A = a}
E[(1− E[Y 0 | A,X, S,D = 0])1{A = a}]

=
E[S(1− µ0)1{A = a}]
E[(1− µ0)1{A = a}]

cFNR(S, a) = P(S = 0 | Y 0 = 1, A = a)

=
P(S = 0, Y 0 = 1, A = a)

P(Y 0 = 1, A = a)

=
E[(1− S)Y 01{A = a}]

E[Y 01{A = a}]

=
E[(1− S)E[Y 0 | A,X, S,D = 0]1{A = a}

E[E[Y 0 | A,X, S,D = 0]1{A = a}]

=
E[(1− S)µ01{A = a}]

E[µ01{A = a}]

The fourth equality in both derivations uses iterated expectation as well as positivity and ignorability,

and the fifth equality uses consistency.
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Proof of Proposition 2 (Identification of the loss and fairness constraints)

Considering just the first component of the loss, we have:

(w+)P(Sθ = 1, Y 0 = 0) = (w+)E[Sθ(1− Y 0)]

= (w+)E[E[Sθ(1− Y 0)|A,S,X]]

= (w+)E
{
E[Sθ|A,S](1− E[Y 0|A,X, S])

}
= (w+)E

{
θA,S(1− E[Y 0|A,X, S,D = 0])

}
= (w+)E {θA,S(1− µ0)}

where the third equality uses that Sθ only depends on (A,S), the fourth uses the definition of θA,S

and ignorability, and the fifth uses consistency. Similar reasoning shows that (w−)P(S = 0, Y 0 =

1) = (w−)E {(1− θA,S)µ0}. Combining these, we have

Loss(Sθ) : = w+P(S = 1, Y 0 = 0) + w−P(S = 0, Y 0 = 1)

= E[θA,S(w+ − (w+ + w−)µ0)] + (w−)E[µ0]

= θTβ + (w−)E[µ0]

We turn now to the fairness constraints. The error rates of the derived predictor Sθ depend on the

error rates on the input predictor S as follows. Beginning with cFPR(Sθ, a), we have:

P(Sθ = 1 | Y 0 = 0, A = a) =∑
s∈{0,1}

P(Sθ = 1 | Y 0 = 0, A = a, S = s)P(S = s | Y 0 = 0, A = a)

=
∑

s∈{0,1}

P(Sθ = 1 | A = a, S = s)P(S = s | Y 0 = 0, A = a)

= θa,0(1− cFPR(S, a)) + θa,1 cFPR(S, a)

where the first equality simply involves conditioning on S, and the second equality uses that Sθ ⊥⊥
Y 0 | A,S. In other words, the false positive rate of Sθ depends only on θ and the false positive rate

of the input predictor S. For the cFNR, by similar reasoning, we have:

P(Sθ = 0 | Y 0 = 1, A = a) =

1− θa,0(cFNR(S, a)) + θa,1(cFNR(S, a)− 1)
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The identification statements in the proposition follow by simply substituting in the expressions for

cFPR(S, a), cFNR(S, a) from Proposition 1 and rearranging.

2.B Proofs of Theorems

2.B.1 Theorem 1 (Loss gap)

We first introduce a lemma used in the proof of the theorem. The lemma gives sufficient conditions

under which the optimal value of an estimated convex program converges at a particular rate f(n)

to the optimal value of the target convex program. It is a adaptation of Theorem 3.5 in Shapiro

(1991) that follows immediately from Theorems 2.1 and 3.4 in that same paper.

Lemma 2.4.1. (Shapiro, 1991) Let Θ be a compact subset of Rk. Let C(Θ) denote the set of

continuous real-valued functions on Θ, with L = C(Θ) × . . . × C(Θ) the r-dimensional Cartesian

product. Let ψ(θ) = (ψ0, . . . , ψr) ∈ L be a vector of convex functions. Consider the quantity α∗

defined as the solution to the following convex optimization program:

α∗ = min
θ∈Θ

ψ0(θ)

subject to ψj(θ) ≤ 0, j = 1, . . . , r

Assume that Slater’s condition holds, so that there is some θ ∈ Θ for which the inequalities are

satisfied and non-affine inequalities are strictly satisfied, i.e. ψj(θ) < 0 if ψj is non-affine. Now

consider a sequence of approximating programs, for n = 1, 2, . . .:

α̂n = min
θ∈Θ

ψ̂0n(θ)

subject to ψ̂jn(θ) ≤ 0, j = 1, . . . , r

with ψ̂n(θ) :=
(
ψ̂0n, . . . , ψ̂rn

)
∈ L . Assume that f(n)(ψ̂n−ψ) converges in distribution to a random

element W ∈ L for some real-valued function f(n). Then:

f(n)(α̂n − α0) L

for a particular random variable L. It follows that α̂n − α0 = OP(1/f(n)).
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Proof of theorem

We expand the loss by introducing the term β̂T θ̂, which is the quantity that is minimized in the

course of computing θ̂. We proceed by splitting the loss into two terms and showing that each of

those terms is OP(1/f(n)).

Proof. The loss gap can be expanded as follows:

Loss(Sθ̂)− Loss(Sθ∗) = βT θ̂ − βT θ∗

=
(
βT θ̂ − β̂T θ̂

)
︸ ︷︷ ︸

(1)

+
(
β̂T θ̂ − βT θ∗

)
︸ ︷︷ ︸

(2)

For term (1), we have

θ̂T
(
β − β̂

)
≤ ‖θ̂‖‖β − β̂‖

≤ 2‖β − β̂‖

= OP(1/f(n))

where the first line uses Cauchy-Schwarz, the second line follows from the fact that θ̂ ∈ [0, 1]4, and

the third line follows by assumption. For term (2), we rely on Lemma 2.4.1. Note that we can write

Loss(Sθ∗) = min
θ∈Θ

ψ0(θ)

subject to ψj(θ) ≤ 0, j = 1, . . . , 4

L̂oss(Sθ̂) = min
θ∈Θ

ψ̂0(θ)

subject to ψ̂j(θ) ≤ 0, j = 1, . . . , 4

with Θ = [0, 1]4, and ψ(θ) = (ψ0(θ), . . . , ψ4(θ)) defined by

ψ(θ) = (Loss, ∆+ − ε+, −∆+ − ε+, ∆− − ε−, −∆− − ε−)

ψ̂(θ) = (L̂oss, ∆̂+ − ε+, −∆̂+ − ε+, ∆̂− − ε−, −∆̂− − ε−)

where for brevity we omit the argument Sθ to Loss and the error rate differences ∆+,∆−. Since

these are linear programs, Slater’s condition is satisfied. (The LPs are always feasible, since (0, 0, 0, 0)

and (1, 1, 1, 1) are always solutions.) By assumption, each of the estimators in ψ̂(θ) converges at

rate f(n), so f(n)
(
ψ̂(θ)− ψ(θ)

)
converges to some (unknown) random variable. (We rule out
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pathological cases in which this does not happen.) Per Lemma 2.4.1, it follows that β̂T θ̂ − βT θ∗ =

L̂oss(Sθ̂)− Loss(Sθ∗) = OP(1/f(n)).

The sum of the two terms in the loss gap is therefore also OP(1/f(n)).

2.B.2 Theorem 2 (Excess unfairness)

The proof relies on the following lemma, as well as the convergence of the estimated LP coefficient

vectors β̂+, β̂−. When β̂+, β̂− are close to β+, β−, the excess unfairness must be small for any

θ ∈ Θ = [0, 1]4, including of course θ̂.

Lemma 2.4.2. Let ξ,W be constant vectors and ξ̂n, Ŵn be random vectors, with ‖ξ − ξ̂n‖ =

OP(1/f(n)) for some real-valued f(n). If, for all M > 0, P(‖W − Ŵn‖ > M) ≤ P(‖ξ − ξ̂n‖ > CM)

for some constant C, then ‖W − Ŵn‖ = OP(1/f(n)).

Proof. For any ε > 0, there exists some Mε > 0 such that P(f(n)‖ξ − ξ̂n‖ > Mε) < ε for all n large

enough. Set M = Mε/C. Then P(f(n)‖W − Ŵn‖ > M) < ε for all n large enough.

Proof of theorem

Proof. We have

P
(
UF+(Sθ̂) > δ or UF−(Sθ̂) > δ

)
≤ P

(
|θTβ+| − |θT β̂+| > δ or |θTβ−| − |θT β̂−| > δ

for some θ ∈ [0, 1]4
)

≤ P
(
|θTβ+ − θT β̂+| > δ or |θTβ− − θT β̂−| > δ

for some θ ∈ [0, 1]4
)

≤ P
(
‖θ‖ · ‖β̂+ − β+‖ > δ or ‖θ‖ · ‖β̂− − β−‖ > δ

for some θ ∈ [0, 1]4
)

≤ P
(

2‖β̂+ − β+‖ > δ or 2‖β̂− − β−‖ > δ
)

≤ P
(

2‖β̂+ − β+‖ > δ
)

+ P
(

2‖β̂− − β−‖ > δ
)

= P
(
‖β̂+ − β+‖ > δ/2

)
+ P

(
‖β̂− − β−‖ > δ/2

)
where the third inequality uses Cauchy-Schwartz, the fourth uses that θ ∈ [0, 1]4 =⇒ ‖θ‖ ≤ 2, and

the fifth uses the union bound. (The norm here is the Euclidean norm.) The reasoning in the first
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inequality is as follows: if UF+(Sθ̂) > δ, then |θ̂Tβ+|− |θ̂T β̂+| > δ, since θ̂T β̂+ ≤ ε+ by construction.

A necessary condition, then, is that |θTβ+| − |θT β̂+| > δ for some θ ∈ [0, 1]4.

It follows from Lemma 2.4.2 that

max
{

UF+(Sθ̂),UF−(Sθ̂)
}

= OP(1/f(n))

2.B.3 Theorem 2.3 (Double robustness.)

In this proof and the proof of Theorem 2.4, for any function f : Z 7→ R, we let P(f) =
∫
f(z)dP(z)

denote the expected value of the random variable f(Z) conditional on the function f . For example,

P(φ̂) =
∫
φ̂(z)dP(z) is the expected value of φ̂(Z) conditional on φ̂. We use the notation a . b to

denote that a ≤ Cb for some constant C > 0 that does not depend on n.

The proofs of each of these theorems utilize the following two lemmas.

Lemma 2.4.3. Let W be a function of (at most) A,X, S such that ‖W‖ ≤ M < ∞ for some M .

Then, under assumption A2 (positivity),

P
(
W (φ̂− φ)

)
. ‖µ0 − µ̂0‖‖π̂ − π‖

Proof.

P
(
W (φ̂− φ)

)
= P

(
W

(
1−D
1− π̂ (Y − µ̂0) + µ̂0 −

1−D
1− π (Y − µ0)− µ0

))
= P

(
W

(
1−D
1− π̂ (µ0 − µ̂0) + µ̂0 −

1−D
1− π (µ0 − µ0)− µ0

))
= P

(
W

(
1− π
1− π̂ (µ0 − µ̂0) + µ̂0 − µ0

))
= P

(
W

(
(µ0 − µ̂0)(π̂ − π)

1− π

))
≤ 1

δ
P(W (µ0 − µ̂0)(π̂ − π))

≤ 1

δ
‖W‖‖µ0 − µ̂0‖‖π̂ − π‖

. ‖µ0 − µ̂0‖‖π̂ − π‖

where the second and third lines use iterated expectation, conditioning on (A,X, S); the fifth line

uses Assumption A2 (positivity); and the sixth line uses the Cauchy-Schwarz inequality.

The next lemma is a restatement of Lemma 2 in Kennedy et al. (2020).
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Lemma 2.4.4. (Kennedy, 2020)

(Pn − P)(φ̂− φ) = OP

(
‖φ̂− φ‖√

n

)

It follows immediately from Lemma 2.4.3 that

(Pn − P)(φ̂− φ) = OP

(‖µ0 − µ̂0‖‖π̂ − π‖√
n

)

Proof of the theorem

We assume throughout that ‖φ̂−φ‖ = OP(1), meaning φ̂ does not diverge from φ. Recall that in the

statement of the theorem, g(n) is the convergence rate of ‖µ0− µ̂0‖‖π̂−π‖, i.e. ‖µ0− µ̂0‖‖π̂−π‖ =

OP(g(n)).

Proof. Note that for a fixed length vector v ∈ Rk:

‖v̂ − v‖ = OP(f(n)) ⇐⇒ v̂j − vj = OP(f(n)), j = 1, . . . k

where the norm on the left is the Euclidean norm. It therefore suffices to show that the rate result

in the theorem holds for each component of β̂, β̂+, β̂−.

It is straightforward to show that the identification results in Propositions 1 and 2 hold when µ0

is replaced by φ. Starting with β̂a,s, a component of β̂, we have the following, by simple addition

and subtraction of measures:

β̂a,s − βa,s = (Pn − P)
{

1{A = a, S = s}(w+ − (w+ + w−)φ)
}

+

(Pn − P)
{

(w− − w+)(φ̂− φ)
}

+

P
{

(w− − w+)(φ̂− φ)
}

The first term is OP(1/
√
n) by the central limit theorem. The second term is OP(g(n)/

√
n) by

Lemmas 2.4.3 and 2.4.4. The third term is OP(g(n)) by Lemma 2.4.3. Thus

β̂a,s − βa,s = OP

(
max{n−1/2, g(n)}

)
and the result therefore holds for ‖β̂ − β‖.

We now turn to β̂+ and β̂−. It suffices to show that the rate result holds for ĉFPR(S, a) and

ĉFNR(S, a), a ∈ {0, 1}. For notational convenience, let γa = (1−φ)1{A = a} and γ̂a = (1−φ̂)1{A =
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a}. We have

ĉFPR(S, a)− cFPR(S, a) =
Pn[Sγ̂a]

Pn[γ̂a]
− E[Sγa]

E[γa]

=
Pn[Sγ̂a]P[γa]− P[Sγa]Pn[γ̂a]

Pn[γ̂a]P[γa]

=
P[γa]

(
Pn[Sγ̂a]− P[Sγa]

)
− P[Sγa]

(
Pn[γ̂a]− P[γa]

)
Pn[γ̂a]P[γa]

= Pn[γ̂a]−1
{

(Pn[Sγ̂a]− P[Sγa])︸ ︷︷ ︸
(1)

− cFPR(S, a) (Pn[γ̂a]− P[γa])︸ ︷︷ ︸
(2)

}
(2.5)

The two terms can be expanded as follows:

(1) = (Pn − P)Sγa + (Pn − P)(S(γ̂a − γa)) + P(S(γ̂a − γa))

(2) = (Pn − P)γa + (Pn − P)(γ̂a − γa) + P(γ̂a − γa)

Once again, in both these expressions the first term is OP(1/
√
n) by the central limit theorem, the

second term is OP(g(n)/
√
n) by Lemma 2.4.4, and the third term is OP(g(n)). Under assumption

A4 (bounded propensity estimator), Pn[γ̂a]−1 is bounded a.s., and cFPR(S, a) is always bounded in

[0, 1]. Therefore, we can rewrite (2.5) as

(Pn − P)
{
Pn[γ̂a]−1

(
S − cFPR(S, a)

)
γa

}
+OP(g(n)) (2.6)

This expression is OP(max{n−1/2, g(n)} and therefore so is ‖β̂+ − β+‖. The result for ĉFNR(S, a),

and consequently for ‖β̂− − β−‖, follows by identical reasoning, with γa redefined as φ1{A = a} so

that cFNR(S, a) = E[(1− S)γa]/E[γa].

2.B.4 Theorem 2.4 (asymptotic normality)

For ease of reference, we reiterate the following quantities defined in the theorem.

fθ = (w+ − (w+ + w−)φ)θA,S + w−φ

ga = (θa,1 − θa,0)
1{A = a}(1− φ)(S − cFPR(S, a))

E[1{A = a}(1− φ)]

ha = (θa,1 − θa,0)
1{A = a}φ(S − cFNR(S, 0))

E[1{A = a}φ]

Define f̂θ, ĝa, ĥa analogously, substituting φ̂, ĉFPR, ĉFNR for φ, cFPR, cFNR.
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We first prove the statements for the loss Loss and loss change Γ. Note that Loss(Sθ) = E[fθ]

and L̂oss(Sθ) = Pn[f̂θ]. By simple addition and subtraction of measures, we have

L̂oss(Sθ)− Loss(Sθ) = (Pn − P)fθ + (Pn − P)(f̂θ − fθ) + P(f̂θ − fθ)

Under assumption A5 (nuisance parameter rates), the second term in this sum is oP(1/
√
n) by

Lemma 2.4.4, and the third term is oP(1/
√
n) by Lemma 2.4.3. We can therefore write

L̂oss(Sθ)− Loss(Sθ) = (Pn − P)fθ + oP(1/
√
n)

By equivalent reasoning,

Γ̂(θ, S)− Γ(θ, S) = (Pn − P)(fθ − fθ̃) + oP(1/
√
n)

Therefore, by the central limit theorem,

√
n
(

L̂oss(Sθ)− Loss(Sθ)
)
 N (0, var (fθ))

√
n
(

Γ̂− Γ
)
 N

(
0, var

(
fθ − fθ̃

))
as claimed.

The reasoning for the fairness estimators is virtually identical. From equation (2.6) and

Assumption A5 (nuisance parameter rates), we have

ĉFPR(S, a)− cFPR(S, a) = (Pn − P)ga + oP(1/
√
n)

By equivalent reasoning,

ĉFNR(S, a)− cFNR(S, a) = (Pn − P)ha + oP(1/
√
n)

ĉFPR(S, a)− cFPR(S, a) = (Pn − P)(g0 − g1) + oP(1/
√
n)

ĉFPR(S, a)− cFPR(S, a) = (Pn − P)(h0 − h1) + oP(1/
√
n)

The results follow immediately from the central limit theorem.
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2.C Sample splitting

A training sample, Dtrain, is used to estimate θ̂, while a separate sample Dtest is used to estimate

the risk and fairness properties of the derived predictor Sθ̂ conditional on θ̂. Within each sample,

separate folds are used to estimate the nuisance parameters µ0 and π̂ and the target parameters.

The following schematic illustrates this procedure. k-fold cross fitting can be used within each

sample to recover full sample size efficiency. For convenience, we assume that each of the four

samples is of size n, though our results require only that each sample is O(n).

Dtrain

Dnuis
train Dtarget

train︸ ︷︷ ︸
µ̂0, π̂

︸ ︷︷ ︸
θ̂

Dtest

Dnuis
test Dtarget

test︸ ︷︷ ︸
µ̂0, π̂

︸ ︷︷ ︸
Properties of Sθ̂

2.D Simulations: data generating process

The data generating process used in section 2.6.1 to illustrate Theorems 1 and 2 is as follows, for

data Z = (A,X, S,D, Y 0, Y 1, Y ).

P(A = 1) = 0.3

X | A ∼ N(A ∗ (1,−0.8, 4, 2)T , I4)

Ppre(D = 1 | A,X) = min{0.975, expit((A,X)T (0.2,−1, 1,−1, 1))}

Ppost(D = 1 | A,X, S) = min{0.975, expit((A,X, S)T (0.2,−1, 1,−1, 1, 1))}

P(Y 0 = 1 | A,X) = expit((A,X)T (−5, 2,−3, 4,−5))

P(Y 1 = 1 | A,X) = expit((A,X)T (1,−2, 3,−4, 5))

Y = (1−D)Y 0 +DY 1

where I4 denotes the 4 × 4 identity matrix and N denotes a Gaussian distribution. The predictor

S(A,X) is trained using random forests. The pre-RAI decision making process doesn’t depend on

S; the post-RAI process does.

For the simulations used in section 2.6.1 to illustrate fairness-performance tradeoffs, the

distribution is identical except that P(Y 0 = 1 | A,X) = expit((A,X)T (−4, 0.4, 0.6, 0.8,−1)).
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2.E Asymptotic normality of doubly robust estimators

To illustrate Theorem 2.4, an additional set of simulations was run using the same data generating

process described above. First, θ was randomly set to (0.74, 1.0, 0, 0.8). (Note that solutions to a

linear program with a compact feasible set must occur at an extreme point of the set, so the presence

of 0 and/or 1 in θ̂ and θ∗ is virtually guaranteed.) The “true” risk Loss(Sθ), risk change Γ(Sθ),

and error rate differences ∆+(Sθ),∆
−(Sθ) were again computed on a separate validation set of size

500,000, using plugin estimators with the true µ0. For conciseness, we omit results for ĉFPR and

ĉFNR.

Figures 2.6 and 2.7 illustrate results for plugin vs. doubly robust estimators of these quantities,

for samples of size 100 to 20,000. Each vertical line represents a mean ±1 sd over 500 simulations.

Orange horizontal lines represent the true parameter values (top rows in each figure) or 0. The top

row represents shows that the doubly robust (DR) estimators converge to their target values. The

bottom two rows represent values from the DR estimator or a plugin (PI) estimator, transformed by

ψ(Sθ̂) 7→
√
n(ψ̂ − ψ), where ψ̂, ψ are the relevant estimator and parameter for that column. These

rows illustrate that
√
n-convergence is only guaranteed for θ̂DR: the scaled values for θ̂DR do not

grow in n, while the scaled values for θ̂SR begin to diverge (at least for Γ̂ and ∆̂−).

Table 2.2 contains coverage results of 95% confidence intervals for the error rates, error rate

differences, loss, and loss change for the same arbitrary Sθ. The CIs were constructed using

sample variances. To ensure that they did not exceed the bounds of the possible parameter values

(i.e. [0, 1] for the loss and error rates, [−1, 1] for the error rate differences and loss change),

the CIs were constructed using the Delta method, via the transformations ψ̂ 7→ logit(ψ̂), for

ψ̂ ∈ {ĉFPR, ĉFNR, L̂oss}, or ψ̂ 7→ logit((ψ̂ + 1)/2), for ψ̂ ∈ {∆̂+, ∆̂−, Γ̂}. Nominal coverage

is achieved for various quantities at various sample sizes, but since the coverage guarantees are

asymptotic, it is not surprising that it is not achieved everywhere. Interestingly, the median coverage

rate in the table is 0.95.

A separate set of CIs was computed without using the Delta method; those results did not differ

substantially and are therefore omitted here.
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Figure 2.6: Doubly robust (DR) vs. plugin (PI) estimates of the loss and loss change for an arbitrary
derived predictor Sθ, with θ = (0.74, 1.0, 0, 0.8), for samples of size 100 to 20,000.

100 200 500 1000 5000 20000

L̂oss(Sθ) 0.98 0.92 0.87 0.84 0.84 0.85

Γ̂(Sθ) 1.00 0.99 0.93 0.94 0.71 0.78

ĉFPR(Sθ, 0) 0.99 0.98 0.98 0.96 0.94 0.95

ĉFPR(Sθ, 1) 0.90 0.89 0.93 0.95 0.96 0.57

ĉFNR(Sθ, 0) 0.99 0.99 0.98 0.99 0.92 0.93

ĉFNR(Sθ, 1) 0.99 0.99 0.99 1.00 0.98 0.71

∆̂+(Sθ) 0.98 0.98 0.97 0.99 0.97 0.92

∆̂−(Sθ) 0.99 1.00 0.99 0.99 0.94 0.94

Table 2.2: 95% CI coverage at sample sizes ranging from 100 to 20, 000 for the loss, loss change,
error rates, and error rate differences, for an arbitrary derived predictor Sθ with parameter θ =
(0.74, 1.0, 0, 0.8). Coverage varies by estimator and sample size, though the median coverage is 95%.
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Figure 2.7: Doubly robust (DR) vs. plugin (PI) estimates of the error rate differences for an arbitrary
derived predictor Sθ, with θ = (0.74, 1.0, 0, 0.8), for samples of size 100 to 20,000.
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2.F Notation

Input data

Z = (A,X,D, S, Y ) ∼ P Sensitive feature A, covariates X, deci-
sion (treatment, intervention) D, input
predictor S, outcome Y

Derived predictor

Sθ ∼ Bern(θA,S) Predictor derived from S

θa,s = P(Sθ = 1 | A = a, S = s) Conditional probability that defines Sθ

θA,S =
∑
a,s∈{0,1} 1{A = a, S = s}θa,s RV that takes value θa,s with probability

P(A = a, S = s)

θ = (θ0,0, θ0,1, θ1,0, θ1,1)T Optimization parameter

θ̃ = (0, 1, 0, 1) The value such that Sθ̃ = S

Nuisance parameters

π = π(A,X, S) = P(D = 1 | A,X, S) Propensity score for the decision

µ0 = µ0(A,X, S,D) = E[Y | A,X, S,D = 0] Outcome regression

φ = 1−D
1−π (Y − µ0) + µ0 Uncentered influence function for E[Y 0]

Loss parameters

w+, w− Weights on the false positive and false
negative rates

βa,s = E[1{A = a, S = s}(w+ − (w+ + w−)µ0)] A coefficient in the loss, for a, s ∈ {0, 1}
β = (β0,0, β0,1, β1,0, β1,1)T Vector of loss coefficients

Loss(Sθ) = w+P(Sθ = 1, Y 0 = 0) + w−P(Sθ = 0, Y 0 = 1) Loss of Sθ, equivalent to θTβ+w−E[µ0]

Γ(Sθ) loss change Loss(Sθ)− Loss(S)

Fairness parameters

cFPR(Sθ, a) = P(Sθ = 1 | Y 0 = 0, A = a) Counterfactual FPR for Sθ for group a

cFNR(Sθ, a) = P(Sθ = 0 | Y 0 = 1, A = a) Counterfactual FNR for Sθ for group a

β+ = (1 − cFPR(S, 0), cFPR(S, 0), cFPR(S, 1) − 1,-
− cFPR(S, 1)) Coefficients for the fairness constraints

β− = (− cFNR(S, 0), cFNR(S, 0) − 1, cFNR(S, 1), 1 −
cFNR(S, 1))

∆+(Sθ) = θTβ+ = cFPR(Sθ, 0)− cFPR(Sθ, 1) Error rate differences of the predictor Sθ
in the cFPR

∆−(Sθ) = θTβ− = cFNR(Sθ, 0)− cFNR(Sθ) Error rate differences of the predictor Sθ
in the cFNR

ε+, ε− Fairness constraints on ∆+ and ∆−

UF+(Sθ) = max(| ∆+(Sθ) | − ε+, 0) Excess unfairness in the cFPR

UF−(Sθ) = max(| ∆−(Sθ) | − ε−, 0) Excess unfairness in the cFNR

Optimal fair derived predictor

arg minθ Loss(Sθ) s.t. |∆+(Sθ)| ≤ ε+, |∆−(Sθ)| ≤ ε− Parameter defining the optimal fair
derived predictor Sθ∗
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Chapter 3

Least Squares for Observable and

Counterfactual Fairness

3.1 Introduction

Classification and regression models are increasingly widely used to inform or render decisions in

domains such as healthcare, criminal justice, education, hiring, and consumer finance. Given the

high-stakes nature of such decisions, it is important to ensure that these models are both accurate,

to maximize their overall benefits and minimize their overall harms; and fair, so that the benefits

and harms do not accrue disproportionately to already (under)privileged groups. In recent years,

there have been many well-publicized cases of algorithmic systems whose performance varies over

sensitive features such as race and gender in ways that appear to harm marginalized populations

(Angwin and Larson, 2016; Buolamwini and Gebru, 2018; Obermeyer et al., 2019).

In response to concerns such as these, the algorithmic fairness community has developed a wide

array of methods for removing or minimizing unfairness in models. In some cases, the most accurate

models under consideration do not satisfy a chosen fairness criterion, so there is a fairness-accuracy

tradeoff (Friedler et al., 2019; Menon and Williamson, 2018; Zhao and Gordon, 2019). Many methods

therefore aim to maximize predictive accuracy subject to a bound on some quantitative unfairness

criterion (Zafar et al., 2017; Donini et al., 2018; Woodworth et al., 2017). Some methods adopt a

complementary perspective, seeking to minimize unfairness subject to an accuracy constraint (Zafar

et al., 2017; Coston et al., 2021). Many strict versions of fairness criteria are pairwise unsatisfiable in

real-world settings, so there may also be fairness-fairness tradeoffs (Chouldechova, 2017; Kleinberg

et al., 2017; Kim et al., 2020).
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In many cases, however, the tradeoffs are small to nonexistent: model fairness can be increased

with minimal loss of accuracy, or vice versa (Dutta et al., 2020; Coston et al., 2021; Rodolfa et al.,

2021). Recently there has been growing interest in characterizing these tradeoffs both theoretically

and empirically for specific problems and specific classes of models (Berk et al., 2017; Kim et al.,

2020; Liu and Vicente, 2021). However, current methods for illuminating these tradeoffs are designed

to handle observable accuracy and fairness criteria, i.e. criteria that depend on observable outcomes.

They do not address counterfactual criteria, which depend on counterfactual outcomes and which are

relevant to many settings in which algorithms are used to support decision making. Additionally,

they do not readily accommodate users who wish to improve the fairness and/or accuracy of an

existing benchmark model rather than exploring the fairness-accuracy space.

We propose Least Squares for Fairness (LS-Fair), a simple and flexible framework that builds

predictors as weighted combinations of basis functions that are chosen by the user. Within this

framework, we develop three methods: (1) minimizing risk subject to fairness constraints, (2)

minimizing unfairness subject to a risk constraint, and (3) efficiently generating a large class of

unfairness-penalized predictors. The weights in method (3) have a closed-form expression that

varies smoothly over a vector of unfairness penalty parameters, allowing users to trace out paths

in fairness-accuracy space. It is computationally extremely fast to compute and evaluate thousands

or even tens of thousands of models of this form. These methods accommodate users who wish to

improve the fairness of an existing model without sacrificing accuracy, or vice versa, or who wish to

understand fairness-accuracy and fairness-fairness tradeoffs in their problem.

Our contributions are as follows. We develop a simple, flexible, and computationally efficient

framework that enables users to build and evaluate a large set of models that represent different

fairness-accuracy and fairness-fairness tradeoffs (Sections 3.3–3.5). This framework allows users to

target specific fairness and accuracy constraints as well as to explore the fairness-accuracy space.

Our approach accommodates a range of both observable and counterfactual performance and fairness

criteria. It collapses the distinction between in-processing and post-processing, enabling users to

combine previously trained and newly trained predictors. We analyze the convergence rate of

our estimators and provide a finite-sample performance guarantee. We illustrate our method on

simulated data (Section 3.6) and on real data. Our method substantially improves both the fairness

and accuracy of the COMPAS recidivism predictor (Section 3.7), and it yields many predictors that

perform comparably to or better than other fairness methods on an income prediction task, while

allowing users much more flexibility in the final model form (Section 3.8).
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3.2 Background and Related Work

We use the terms “predictor” and “model” interchangeably to refer to any mapping from covariates

to outputs that is intended to estimate an unknown quantity, whether that quantity is an unobserved

label or an as-yet unrealized outcome. We use “accuracy” or “risk” to refer to any measure that

tracks how well a predictor estimates the target quantity, such as mean-squared error or 0-1 error,

and “performance” to refer to a model’s joint accuracy and fairness characteristics.

3.2.1 Ways of achieving fairness

The fairness literature generally distinguishes three approaches for developing fair predictors. Pre-

processing approaches transform the input data to remove bias (Calmon et al., 2017; Feldman et al.,

2015; Kamiran and Calders, 2012; Zemel, 2013). In-processing or in-training approaches enforce

fairness via constraints or regularization terms during the learning process (Donini et al., 2018;

Kamishima et al., 2012; Woodworth et al., 2017; Zafar et al., 2017). Post-processing approaches

learn functions to map the outputs of existing predictors to new outputs (Hardt et al., 2016; Pleiss

et al., 2017; Kim et al., 2019). Our approach enables users to combine previously existing predictors

with newly trained predictors or other basis functions, essentially collapsing the distinction between

in-processing and post-processing.

3.2.2 Observational and Counterfactual Fairness

Many popular fairness criteria place restrictions on the joint distribution of predictions, outcomes,

and a sensitive feature. For example, the criterion of independence, also known as statistical parity

or demographic parity, requires that the predictions be independent of the sensitive feature (Calders

et al., 2009; Barocas et al., 2018), while separation or equalized odds requires that they be independent

conditional on the outcome (Hardt et al., 2016). Criteria that are sensitive to the outcome may be

defined with respect to observable or potential (aka “counterfactual”) outcomes. Counterfactual

versions of these criteria are appropriate in risk assessment settings, i.e. settings in which the

model is meant to estimate the risk of an adverse outcome absent an intervention (Coston et al.,

2020). In these settings, the potential outcomes of interest are the outcomes that would occur if,

possibly counterfactually, a decision variable were set to some baseline level (Neyman, 1923; Holland,

1986). Examples arise in areas such as healthcare, where doctors must predict who would develop

complications without further treatment; criminal justice, where judges must predict who would

recidivate if released pretrial; and consumer finance, where banks must predict who would default

if issued a loan.
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A distinct set of causal fairness criteria consider counterfactuals with respect to the sensitive

feature rather than with respect to a decision variable (Kilbertus et al., 2017; Kusner et al., 2017;

Nabi and Shpitser, 2018; Zhang and Bareinboim, 2018; Nabi et al., 2019; Wang et al., 2019). These

criteria consider questions like ”what would the risk prediction be if the defendant had been of a

different race their whole life?” rather than ”what would the outcome be if this person were released

pretrial?” We do not consider these criteria here; see (Mishler et al., 2021), Section 3.2 for further

discussion.

Most of the existing fairness literature is concerned with observable fairness criteria and accuracy

measures. To our knowledge, only two papers have developed methods to satisfy the type of

counterfactual criteria described above. Mishler et al. (2021) developed a post-processing method

that maximizes accuracy while satisfying (approximate) counterfactual equalized odds or related

fairness criteria. Their approach takes as input a binary classifier and outputs a randomized binary

classifier. In contrast, our method applies to both classification and regression and it combines

in-processing and post-processing. Coston et al. (2021) developed a method to minimize various

unfairness measures subject to an accuracy constraint. They considered both the observable setting

and a selective labels setting, when the outcome of interest is observed only for a (non-representative)

subset of the population. Although the terminology differs, this is essentially equivalent to the

counterfactual setting that we consider. Their methods outputs a single classification or regression

model, and it is relatively computationally intensive. In contrast to both these methods, our

framework can handle any of the following: (1) minimizing risk subject to fairness constraints,

(2) minimizing unfairness subject to an accuracy constraint, and (3) efficiently producing a large

set of models that vary in their risk and fairness properties. Our methods apply to a large class of

observable and counterfactual accuracy and fairness criteria.

3.2.3 Fairness-accuracy and fairness-fairness tradeoffs

Within a candidate set of models, the most accurate model and the most fair model may not be the

same model, in which case there is a fairness-accuracy tradeoff. The shape of this tradeoff depends

on the model set, the accuracy and fairness criteria, and the distribution of the data (Dutta et al.,

2020). While some papers emphasize the unavoidable existence of such tradeoffs (Corbett-Davies

et al., 2017; Menon and Williamson, 2018; Woodworth et al., 2017; Zhao and Gordon, 2019), other

papers have found that in practical settings they are sometimes so small as to be irrelevant; that is,

relative to a baseline model, it may be possible to substantially improve a given fairness criterion

with little to no decrement in accuracy, or vice versa (Coston et al., 2021; Rodolfa et al., 2021).
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Different fairness criteria may also trade off with one another. In their strictest form, many

fairness criteria are mutually unsatisfiable in real-world conditions (Chouldechova, 2017; Kleinberg

et al., 2017). In practice, many methods make use of continuous-valued relaxations of these criteria,

which may be more or less simultaneously satisfiable, to a degree that again depends on the modeling

choices and data distribution.

Recent work aims to characterize fairness-accuracy and fairness-fairness tradeoffs both theoreti-

cally (Dutta et al., 2020; Kim et al., 2020) and empirically (Berk et al., 2017; Liu and Vicente, 2021).

Like Berk et al. (2017), our penalized predictor method uses fairness regularization terms to trace

out different paths in fairness-accuracy space; however, their results consider observable accuracy

and fairness measures, whereas ours encompass both observable and counterfactual measures. We

also consider a class of fairness criteria that yield closed-form solutions, which avoids the need for

iterative optimization, and we provide theoretical guarantees for our methods.

In some cases, users have clear accuracy or fairness constraints that they wish their models to

satisfy. These constraints might derive from moral, legal, or business considerations. For example,

a business might wish to ensure that a hiring algorithm generates positive recommendations for

roughly equal percentages of male and female applicants in order to avoid potential disparate impact.

Conversely, a business might wish to improve the fairness of an existing model without sacrificing

accuracy (profit). We provide an explicit correspondence between our constrained and penalized

predictors and show how the set of penalized models can be “seeded” with models that target

specific fairness or accuracy constraints.

Our method also makes it easy for users and auditors to understand whether a model in use

could be made more fair without a substantial loss of accuracy, or vice versa. This is useful both for

improving model performance and for understanding whether a particular level of unfairness can be

justified as a type of “business necessity,” or whether fairness can be improved without compromising

accuracy (Coston et al., 2021).

3.3 Setup and Estimands

Our data is of the form Z = (A,X, S,D, Y ) ∼ P, for sensitive feature A ∈ {0, 1}, additional

covariates X ∈ X , previously trained predictor(s) S ∈ S, decision D ∈ D, and outcome or label

Y ∈ [`y, uy] with known bounds `y, uy. If no previously trained predictors are available, then we

have S = ∅. We denote by Y 0
i the potential outcome Y D=0

i , that is, the outcome or label that

would be observed for individual i if, possibly contrary to fact, the decision were set to Di = 0. For

example, Y 0 could indicate whether an individual would recidivate if released pretrial. We assume

that Y 0 also lies in [`y, uy]. In “pure prediction” settings (Kleinberg et al., 2015) where we are
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interested in observational rather than counterfactual fairness, we may have D = ∅. We assume that

Z ⊆ Z ⊂ Rp for compact Z.

Let W = (A,X, S) ∈ W represent the collected covariates. We let Ỹ denote either Y and Y 0 as

appropriate, since we are interested in both observational and counterfactual fairness and accuracy

measures. We refer to Ỹ = Y as the observable setting and Ỹ = Y 0 as the counterfactual setting.

Broadly speaking, we seek functions of the form f : W 7→ [`y, uy] that are both accurate and fair.

Our goals are (1) to enable users to target specific fairness or accuracy constraints, and (2) to trace

out the fairness and accuracy properties of a large set of models, both in order to understand setting-

specific fairness-accuracy and fairness-fairness tradeoffs and in order to maximize the user’s ability

to choose a desirable model.

Remark 3 (Additional notation). We let ‖ · ‖ denote an appropriate L2 norm. That is, for any

random variable f(Z) taking values in R, ‖f(Z)‖ = (
∫

(f(Z))2dP(Z))1/2 denotes the L2(P) norm,

while for a non-random vector v ∈ Rk, ‖v‖ = (
∑k
j=1 v

2
j )1/2 denotes the Euclidean L2 norm. For a

random vector f(Z) taking values in Rk, ‖f(Z)‖ = (
∑k
j=1 ‖f(Z)‖2)1/2.

3.3.1 Accuracy and fairness measures

The accuracy measure we consider is the MSE, E[(f(W )− Ỹ )2]. We consider (un)fairness measures

that can be expressed in the form

unfairness(f(W )) = |E[g(W, Ỹ )f(W )]| (3.1)

where g(W, Ỹ ) is a bounded fairness function that depends only on W and Ỹ . This accommodates

a broad range of measures, including measures described by the following proposition. All proofs

are given in the Appendix.

Proposition 3. Let α0, α1 ∈ R and let h0, h1 be mappings from {0, 1} × Ỹ to {0, 1}. Let

g(W, Ỹ ) = α0
h0(A, Ỹ )

E[h0(A, Ỹ )]
− α1

h1(A, Ỹ )

E[h1(A, Ỹ )]
(3.2)

Then

∣∣∣E[g(W, Ỹ )f(W )]
∣∣∣ =

∣∣∣α0E[f(W )|h0(A, Ỹ ) = 1]− α1E[f(W )|h1(A, Ỹ ) = 1]
∣∣∣ (3.3)

That is, (3.1) is compatible with any fairness measure that can be expressed as a (weighted)

difference of average predictions conditioned on events that are a function of the sensitive feature

and the outcome. We focus in this paper on the following measures, which we refer to equivalently
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as disparities. We first express each in a canonical form, and then we identify the corresponding

functions fairness function g(W, Ỹ ).

Definition 3.3.1. The rate difference (rate-diff) measure is

|E[f(W )|A = 0]− E[f(W )|A = 1]| (3.4)

with fairness function

grate =
1−A

E[1−A]
− A

E[A]
(3.5)

Definition 3.3.2. For Ỹ ∈ {0, 1}, the generalized False Positive Rate Difference (FPR-diff) measure

is

∣∣∣E[f(W )|A = 0, Ỹ = 0]− E[f(W )|A = 1, Ỹ = 0]
∣∣∣ (3.6)

with fairness function

gFPR =
(1− Ỹ )(1−A)

E[(1− Ỹ )(1−A)]
− (1− Ỹ )A

E[(1− Ỹ )A]
(3.7)

Definition 3.3.3. For Ỹ ∈ {0, 1}, the generalized False Negative Rate Difference (FNR-diff)

measure is

∣∣∣E[1− f(W )|A = 0, Ỹ = 1]− E[1− f(W )|A = 1, Ỹ = 1]
∣∣∣ (3.8)

with fairness function

gFNR =
Ỹ A

E[Ỹ A]
− (1− Ỹ )(1−A)

E[Ỹ (1−A)]
(3.9)

These definitions are closely related to common fairness criteria. The criterion of independence,

also known as statistical parity or demographic parity, requires predictions f(W ) to be independent

of the sensitive feature A. The rate-diff measure provides a measure of violations of this criterion

(Calders and Verwer, 2010). Equal opportunity requires the false negative rates to be equal across

the two groups, while equalized odds requires both the false positive and the false negative rates to

be equal (Hardt et al., 2016). FNR-diff therefore measures violations of equal opportunity, while

FPR-diff and FNR-diff together measure violations of equalized odds.
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For continuous-valued predictors, it may be challenging or impossible to attain full (conditional)

independence. Hence it is common to focus only on average conditional predictions (Corbett-Davies

et al., 2017).

3.3.2 Predictor classes

We consider predictors that lie in the linear span of a set of basis functions b = b(W ) =

(b1(W ), . . . bk(W )), where each function bj(W ) maps from W to R. That is, for given b we seek

predictors in the set Fb, where

Fb = {bTβ : β ∈ Rk} (3.10)

We refer to these as “aggregated” predictors (Tsybakov, 2003). The vector b is determined by the

user. It can include for example previously trained predictors, newly trained predictors, or arbitrary

orthogonal basis functions such as trigonometric functions or polynomials. For the majority of

this paper, we consider a regime in which k < n, where n is the sample size, since this simplifies

estimation. Our approach makes it easy for users to search across a range of different bases b. In

our asymptotic analyses, k is allowed to grow with n, but we generally assume that the basis is

eventually fixed, i.e. the set Fb does not change after some n. In practice, users might wish to use

bases of dimension k ≥ n, such as spline bases or kernel basis functions. We consider these and

other possibilities in Appendix 3.E.

Depending on b, the set Fb may be relatively rich. For example, b could be a truncated

orthonormal basis of the space L2(W), in which case Fb could approximate L2 to a degree chosen

by the user.

Assumption 1. Uniformly in n, the eigenvalues of E[bbT ] are bounded above and away from 0.

This assumption asserts that the basis functions b1(W ), . . . bk(W ) are not too collinear. It means

that E[bbT ] is always positive semi-definite. In a regime in which the basis is eventually fixed, this

assumption simply requires that the basis functions are never perfectly collinear.

Assumption 2. Uniformly in n, supw∈W ‖b(w)‖ <∞, where ‖b(w)‖ is the Euclidean L2 norm.

If the dimension of b does not grow to infinity, then this assumption simply requires the norm

‖b(w)‖ to be finite over the covariate space.
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3.3.3 Estimands

We first define two estimands that are solutions to constrained least squares problems. These

estimands represent users who have clear target fairness or accuracy constraints. We then show

that these estimands can be equivalently expressed via penalized least squares problems that admit

closed-form solutions. These solutions are indexed by an unfairness penalty parameter; by varying

this parameter, we may trace out curves in the accuracy-fairness space over Fb.
Suppose that there are t fairness measures that can be expressed via fairness functions gj , j =

1, . . . , t. For a given k-dimensional basis b, define the risk-minimization (risk-min) parameter β∗r

and the unfairness-minimization (unfair-min) parameter β∗u as follows:

β∗r = arg min
β∈Rk

E[(bTβ − Ỹ )2] (3.11)

subject to (E[gjb
Tβ])2 ≤ ε2j , j = 1, . . . t (3.12)

β∗u = arg min
β∈Rk

t∑
j=1

αj(E[gjb
Tβ])2 (3.13)

subject to E[(bTβ − Ỹ )2] ≤ ε (3.14)

for user-chosen constraints εj ≥ 0, ε > 0, and weights αj . That is, β∗r indexes the most accurate

predictor in Fb among those that satisfy t specified fairness constraints, and β∗u indexes the most

fair predictor among that satisfy a specified risk constraint. We constrain ε > 0 because otherwise

we’d be insisting on a risk-free predictor, which is generally impossible; we allow εj = 0 because for

many fairness criteria it is possible to achieve an exactly fair predictor. For example, a constant

predictor will always have a rate difference, FPR difference, and FNR difference of 0.

The risk-minimization problem is always feasible, since the predictor defined by β = 0 always

satisfies the fairness constraints. Under Assumption 1, β∗r is unique, since the objective is strictly

convex. The unfairness-minimization problem may be infeasible, if there is no predictor in Fb whose

risk is less than or equal to ε. This may not be an issue in practice, if ε represents (an estimate

of) the risk of an existing benchmark model. With slight modifications, all our subsequent results

would carry through if this constraint were explicitly expressed with respect to a benchmark model;

for the sake of simplicity, however, we leave it in this form. If the unfairness-minimization problem

is feasible and
∑t
j=1 αjE[gjb]E[gjb]

T is positive definite, then β∗u is unique, since the objective is

strictly convex.

Note that the fairness constraints in the risk-minimization problem can be equivalently written

in linear form, as
∣∣E[gjf(W )]

∣∣ ≤ εj . We choose the squared form for notational consistency with the

penalized form, which is defined as follows.
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For any λ = (λ1, . . . , λr), with all λj ≥ 0, define the penalized-minimization (penalized-min)

estimand β∗λ as

β∗λ = arg min
β∈Rk

E[(bTβ − Ỹ )2] +

t∑
j=1

λj
(
E[gjb

Tβ]
)2

(3.15)

This can be written in an equivalent closed form:

β∗λ =

E[bbT ] +

t∑
j=1

λjE[gjb]E[gjb]
T

−1

E[Ỹ b] (3.16)

Under Assumption 1, by Weyl’s inequality the matrix inverse always exists, since each matrix

E[gjb]E[gjb]
T is positive semi-definite.

We now establish a correspondence between the constrained and penalized forms. Let I denote

the set of active fairness constraints at β∗r , that is, I = {j ∈ {1, . . . , t} : (E[gjb
Tβ∗r ])2 = ε2j}.

Assumption 3. The set of vectors {E[gjb]E[gjb]
Tβ∗r : j ∈ I} is linearly independent.

Assumption 3, which is expected to hold for any basis and set of fairness definitions that would

be used in practice, is the Linear Independence Constraint Qualification, which yields a mapping

from the constrained to the penalized forms (Wachsmuth, 2013).

Proposition 4. Under Assumptions 1 and 3, for any β∗r there exists a unique λ ∈ Rt0+ such that

β∗λ = β∗r .

We will utilize the penalized form to efficiently construct a large set of predictors that vary in

their accuracy and fairness properties. We will see that we can exploit an empirical analogue of

Proposition 4 to “seed” this set with models that target specified fairness constraints.

Proposition 5. Fix λ ∈ Rt0+. Under Assumption 1, β∗λ = β∗r with fairness constraints ε2j =

(E[gjb
Tβ∗λ])2.

Proposition 5 expresses the converse direction of the relationship between β∗r and β∗λ. This will

facilitate interpretation of the corresponding penalized estimators.

An analogous penalized form can be written that corresponds to β∗u, with results that match

Propositions 4 and 5. For estimation purposes, however, we will only be interested in β∗λ, so we do

not develop that here.
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Remark 4. Any β ∈ Rk indexes a predictor bTβ ∈ Fb. Since Y 0 and Y are bounded in [`y, uy],

however, the resulting predictor will be defined by

fβ = [bTβ]
uy
`y

=


`y, bTβ < −`y

bTβ, bTβ ∈ [`y, uy]

uy, bT β̂ > uy

(3.17)

assuming that the bounds `y, uy are known.

Our final estimands consist of the risk and (un)fairness properties of any fixed predictor fβ :

Risk(fβ) = E[(fβ − Ỹ )2] (3.18)

UFj(fβ) = E[gjfβ ], j = 1, . . . t (3.19)

In particular, once we have computed some estimate β̂ of β∗r , β
∗
u, or β∗λ, it is of interest to estimate

the risk and fairness of the resulting predictor fβ̂ .

3.4 Identification

When Ỹ = Y 0, i.e. when the risk and/or fairness functions are defined with respect to potential

rather than observable outcomes, we require assumptions in order to identify these quantities in

terms of the observed data. For ease of notation, we first define three nuisance parameters that

appear in the estimands and associated estimators.

π = π(W ) = P(D = 1 |W )

µ0 = µ0(W ) = E[Y |W,D = 0]

ν0 = ν0(W ) = E[Y 2 |W,D = 0]

π(W ) is the propensity score, while µ0 and ν0 are regressions with respect to the observed outcome

and the squared observed outcome. In a classification setting with Y ∈ {0, 1}, we have Y 2 = Y ,

so ν0 = µ0. We make the following standard “no unmeasured confounding”-type causal inference

assumptions:

Assumption 4 (Consistency). Y = DY 1 + (1−D)Y 0

Assumption 5 (Positivity). ∃δ ∈ (0, 1) s.t. P(π(W ) ≤ 1− δ) = 1

Assumption 6 (Ignorability). Y 0 ⊥⊥ D |W
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We also define the following for convenience:

φ = φ(Z) =
1−D
1− π (Y − µ0) + µ0 (3.20)

φ = φ(Z) =
1−D
1− π (Y 2 − ν0) + ν0 (3.21)

Under the identifying assumptions, these are the uncentered influence functions for E[Y 0] and

E[(Y 0)2], respectively.

Proposition 6. Under the identifying assumptions, the counterfactual risk, FPR-diff, and FNR-diff

for any function f :W 7→ R are identified as follows. We provide two expressions for the risk, which

are used in the risk-min and unfair-min estimators, respectively. We do not include the rate-diff,

since this does not involve outcomes and is therefore trivially identified.

E[(f − Y 0)2] = E[(f − µ0)2] + var(Y 0) (3.22)

= E[f2 − 2fµ0 + ν0] (3.23)

E[gcFPRf(W )] = E
[{

(1− µ0)(1−A)

E[(1− µ0)(1−A)]
− (1− µ0)A

E[(1− µ0)A]

}
f(W )

]
(3.24)

E[gcFNRf(W )] = E
[{

µ0A

E[µ0A]
− (1− µ0(1−A)

E[µ0(1−A)]

}
f(W )

]
(3.25)

These expressions also hold if µ0 is replaced with φ and ν0 is replaced with φ.

Remark 5. Expressions (3.22) and (3.23) show that when estimating the risk-min parameter β∗r ,

we can either minimize an estimate of E[(f−µ0)2] or an estimate of E[f2−2fµ0]; the terms var(Y 0)

and ν0 are constant with respect to f and so drop out of the minimization. The nuisance parameter

ν0 will only be required when we wish to estimate the actual risk of a given predictor, as well as

when estimating the unfair-min parameter β̂u, since that involves a constraint on the actual risk.

Note that ν0 would also not be required to solve unfair-min if the accuracy constraint were defined

with respect to an existing benchmark model, since the two ν0 terms in the constraint would cancel

out.

3.5 Estimation

We require a training set Dtrain, which is used to construct estimates β̂, and a test set Dtest, which

is used to estimate the risk and fairness values of the resulting predictor(s) fβ̂ . If the user wishes

to train new basis predictors, then an additional dataset Dlearn is also required. This is not needed
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if the user is only aggregating arbitrary basis functions, like trigonometric functions, or previously

existing predictors.

In order to obtain fast rates for our estimators, in the counterfactual setting we split Dtrain and

Dtest into separate folds for estimating the nuisance parameters and the target parameters. The

sample splitting scheme is shown in Figure 3.1. For simplicity, we illustrate a single split, but in

practice cross-fitting can be used within each dataset.

Dlearn

Train basis predictors b1(W ), . . . bk(W )

Dtrain

Dnuis
train Dtarget

train

π̂, µ̂0, ν̂0 β̂r, β̂u, β̂λ

Dtest

Dnuis
test Dtarget

test

π̂, µ̂0, ν̂0 Risk & fairness of fβ̂

Figure 3.1: Sample splitting scheme. Dlearn is not needed if the basis functions already exist.
Splitting Dtrain and Dtest is only required in the counterfactual setting, since there are no nuisance
parameters in the observable setting. In practice, cross-fitting may be used within both Dtrain and
Dtest.

We solve empirical versions of the identified minimization problems that define the estimands.

Let φ̂, φ̂ denote estimates of φ and φ constructed from estimates π̂, µ̂0, ν̂0.

For any fixed function f : Z 7→ R, let Pn(f(Z)) = n−1
∑n
i=1 f(Z) and P(f) =

∫
fdP(Z) denote

the sample and true expectations of f , so that for example P(φ) = E[φ] while P(φ̂) = E[φ̂|Dtrain]

or E[φ̂|Dtest] is the expected value of φ̂(Z) once the relevant nuisance function estimate φ̂ has been

constructed. That is, P(φ̂) is a random variable that depends on the nuisance data, while Pn(φ̂) is a

random variable that depends on both the nuisance and target data. We will rely on context to make

it clear whether Dtrain or Dtest is under consideration, with explicit clarification where necessary.

For notational convenience, let ĝj with no arguments denote gj(W,Y ) in the observable setting

and gj(W, φ̂) in the counterfactual setting. That is ĝj = gj in the observable setting, since there is

no nuisance quantity to estimate, but ĝj 6= gj in the counterfactual setting. The occasional use of

ĝj for both settings allows us to concisely state certain conditions and results.

Assumption 7 (Bounded propensity estimator). ∃γ ∈ (0, 1) s.t. P(π̂(A,X, S) ≤ 1− γ) = 1
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Assumption 7 is the empirical analogue of the positivity assumption (5). It can be trivially

satisfied by truncating π̂ at 1− δ, the positivity threshold in Assumption 5.

Assumption 8 (Consistent nuisance estimators). ‖π̂ − π‖ = oP(1) and ‖µ̂0 − µ0‖ = oP(1) and

‖ν̂0 − ν0‖ = oP(1).

This assumption is reasonable if nonparametric methods are used to construct the nuisance

parameter estimates. With slight procedural modifications, this assumption can be relaxed to instead

require consistency in the influence function estimators φ̂ and φ̂; for simplicity, we do not address

this.

3.5.1 Constrained least squares

The risk-min and unfair-min estimators β̂r and β̂u are defined for the observable and counterfactual

settings in Tables 3.1 and 3.2.

Observable (Ỹ = Y ) Counterfactual (Ỹ = Y 0)

β̂r = arg min
β∈Rk

Pn[(bTβ − Y )2]

s.t.
(
Pn[gj(W,Y )bTβ]

)2 ≤ ε2j , j = 1, . . . t

β̂r = arg min
β∈Rk

Pn[(bTβ − φ̂)2]

s.t.
(
Pn[gj(W, φ̂)bTβ]

)2

≤ ε2j , j = 1, . . . t

Table 3.1: Definition of the unfair-min estimator β̂r in the observable and counterfactual settings.

Observable (Ỹ = Y ) Counterfactual (Ỹ = Y 0)

β̂u = arg min
β∈Rk

t∑
j=1

αj
(
Pn[gj(W,Y )bTβ]

)2
s.t. Pn

[
(bTβ − Y )2

]
≤ ε2

β̂u = arg min
β∈Rk

t∑
j=1

αj

(
Pn[gj(W, φ̂)bTβ]

)2

s.t. Pn
[
(bTβ)2 − 2(bTβ)φ̂+ φ̂

]
≤ ε2

Table 3.2: Definition of the risk-min estimator β̂u in the observable and counterfactual settings.

As with the corresponding estimands, the optimization problem that defines β̂r is always feasible,

while the problem that defines β̂u may not be, if there is no predictor in Fb with estimated risk less

than or equal to ε. If Pn[bbT ] is positive definite, then β̂r is unique, since the objective is strictly
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convex. Under Assumption 1, this will hold with probability approaching 1 in n, or with probability

1 if, say, one of the covariates in W is continuously distributed. We next consider the excess risk

and the excess unfairness for the constrained predictors. In the counterfactual setting, we require

assumptions on the rate at which the nuisance parameters are estimated.

Assumption 9 (Nuisance parameter rates).

‖π̂ − π‖‖µ̂0 − µ0‖ = oP(1/
√
n) (3.26)

‖π̂ − π‖‖ν̂0 − ν0‖ = oP(1/
√
n) (3.27)

Definition 3.5.1. The excess risk for β̂r and β̂u is defined as:

P[(bT β̂r − Ỹ )2]− P[(bTβ∗r − Ỹ )2] (risk-min)

P[(bT β̂u − Ỹ )2]− ε2 (unfair-min)

Theorem 3.1 (Excess risk in the constrained setting). Under Assumptions 1–2 for the observable

setting, and Assumptions 1–2 and 4–9 for the counterfactual setting:

P[(bT β̂r − Ỹ )2]− P[(bTβ∗r − Ỹ )2] = OP(1/
√
n) (risk-min)

P[(bT β̂u − Ỹ )2]− ε2 = OP(1/
√
n) (unfair-min)

Definition 3.5.2. The excess unfairness for β̂r and β̂u is defined as:

max
j=1,...,t

{(
(P[gjb

T β̂r])
2 − ε2j

)
+

}
(risk-min)

t∑
j=1

αj

{
(P[gjb

T β̂u])2 − (P[gjb
Tβ∗u])2

}
(unfair-min)

where (x)+ = max{x, 0} denotes the positive part function.

Theorem 3.2 (Excess unfairness in the constrained setting). Under Assumptions 1–2 for the

observable setting, and Assumptions 1–2 and 4–9 for the counterfactual setting:

max
j=1,...,t

{(
(P[gjb

T β̂r])
2 − ε2j

)
+

}
= OP(1/

√
n) (risk-min)

t∑
j=1

αj

{
(P[gjb

T β̂u])2 − (P[gjb
Tβ∗u])2

}
= OP(1/

√
n) (unfair-min)
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As described in Section 3.3, the basis is allowed to grow with n, as long as it is eventually fixed.

These results show that if a user has specific fairness or risk constraints in mind, in the observable

setting, they can generate a predictor in an arbitrarily rich linear space that is asymptotically

guaranteed to meet these constraints, while minimizing the corresponding risk or unfairness. In the

counterfactual setting, they can do the same thing as long as the nuisance parameters are estimated

at fast enough rates.

Of course, any particular estimates β̂r, β̂u may violate their target risk and fairness constraints

by arbitrary amounts. Suppose that β̂r was evaluated on the test set, and one of its estimated

unfairness values was found to exceed the constraint εj by an unacceptable amount. To remedy this,

the user could lower the value of εj and compute a new β̂r under this more stringent constraint.

They could repeat this process until they found a β̂r with acceptable estimated fairness. Since β̂r

is the solution to a quadratic program, however, this is computationally costly, and there is no

guarantee that additional searching will yield improvements. A predictor that is more fair with

respect to one fairness constraint may be more unfair with respect to other constraints, or may

incur unacceptable additional risk. Ideally, the user might wish to treat the fairness constraints as

tuning parameters, selecting a large set of constraint vectors (ε1, . . . , εt) ∈ Rt0+, computing β̂r for

each vector, and comparing the risk and fairness properties of all the resulting predictors. This is

computationally costly, however.

In the next section, we use the closed-form penalized estimators to accomplish something

equivalent to this, with trivial computational cost.

3.5.2 Penalized least squares

In both the observable and counterfactual settings, the estimator β̂λ takes the following equivalent

forms, which mirror the two expressions given for β∗λ:

β̂λ = arg min
β∈Rk

Pn[(bTβ − Y )2] +

t∑
j=1

λj
(
Pn[gjb

Tβ]
)2

(Observable)

=

Pn(bbT ) +

t∑
j=1

λjPn(gjb)Pn(gjb)
T

−1

Pn(bY )

β̂λ = arg min
β∈Rk

Pn[(bTβ − φ̂)2] +

t∑
j=1

λj
(
Pn[ĝjb

Tβ]
)2

(Counterfactual)

=

Pn(bbT ) +

t∑
j=1

λjPn(ĝjb)Pn(ĝjb)
T

−1

Pn(bφ̂)
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assuming that the relevant matrix inverse exists. A sufficient condition for it to exist is that Pn[bbT ]

is positive definite, which, as discussed above, will happen with probability 1 or approaching 1 under

Assumption 1.

The procedure we propose is given in Figure 3.2. The user first chooses a large set of vectors

Λn, which we assume may depend on sample size. They then compute the solution set B̂n = {β̂λ :

λ ∈ Λn}, estimate the risk and fairness properties of each fβ : β ∈ B̂n, and select a predictor with a

favorable performance profile.

1. Pick a large set of vectors Λn ⊂ Rt0+.

2. Compute the solution set B̂n = {β̂λ : λ ∈ Λn}.

3. Compute the estimated risk and fairness properties of each fβ : β ∈ B̂n.

4. Select a predictor fβ with favorable risk and fairness properties.

Figure 3.2: Estimation procedure in the penalized setting.

Propositions 4 and 5 established a correspondence between the constrained and penalized

estimands, so each β̂λ may be regarded either as an estimate of the penalized-minimizer β∗λ or

as an estimate of some risk-minimizer β∗r . The value of the penalized perspective is that Step 2 in

this procedure can be carried out extremely efficiently. Since each matrix Pn(ĝjb)Pn(ĝjb)
T has rank

1, the overall matrix inverse can be computed by computing Pn(bbT )−1 and then applying a series

of simple algebraic operations, per the Sherman-Morrison update formula. This is expressed in the

following proposition.

Proposition 7. Let

λj = (λ1, . . . , λj), so that λt = λ (3.28)

mj = Pn(ĝjb) (3.29)

Q̂0 = Pn(bbT )−1 (3.30)

Q̂1(λ1) = Q̂0 −
λ1Q̂0m1m

T
1 Q̂0

1 + λ1mT
1 Q̂0m1

(3.31)

Q̂j(λj) = Q̂j−1(λj−1)−
λjQ̂j−1(λj−1)mjm

T
j Q̂j−1(λj−1)

1 + λjmT
j Q̂j−1(λj−1)mj

, for j = 2, . . . , t (3.32)

69



Then

β̂λ =

Q̂t(λt)
−1Pn(bφ̂) (Counterfactual)

Q̂t(λt)
−1Pn(bY ) (Observable)

(3.33)

Proposition 7 says that to compute the set B̂n requires only a single matrix inversion, to compute

Q̂0. Each vector mj also only needs to be computed once. The remaining operations are algebraic. In

particular, define an algebraic update as the computation of a matrix Q̂j(λj) for some j ∈ {1, . . . , t},
conditional on the quantity Q̂j−1 having already been computed. We have the following corollary.

Corollary 3.2.1.

Since Q̂0 is a k × k matrix and each mj is a vector of length k, if b is a relatively small basis,

then Q̂0 will be fast to compute, and all the algebraic updates will be fast. In our simulations and

real data analyses, we show that we can get good results with a very small number of basis functions

(e.g. 4 to 6), which yield extremely fast computations.

How should Λn be chosen in Step 1? Since Λn ⊂ Rt0+, one simple possibility is to take a

one-dimensional grid of points between 0 and some arbitrary large number and then construct the

t−dimensional Cartesian product. Since β̂λ is smooth in λ, and since the risk and fairness measures

are smooth in β̂, we can expect that such a grid will enable us to move smoothly around the

fairness-accuracy space, and that we won’t be missing desirable predictors that lie in between the

grid points∗.

Another possibility is to “seed” Λn with values that correspond to a particular β̂r. That is, fix

some constraints εj and compute the corresponding risk-min estimator β̂r. Since the constraints are

affine, Slater’s condition holds, so the duality gap is 0. The associated λ can therefore be computed

by solving the dual of the problem that defines β̂r, and Λn can then be constructed as a grid around

this λ.

The constraints εj that define β̂r are arguably easier to reason about than the penalties λj

that define β̂λ. This “seeding” approach provides a way to ensure that the set {β̂λ : λ ∈ Λn}
includes estimators that in some sense target reasonable constraints, particularly for users with

specific constraints in mind. This approach requires solving just a single constrained optimization

problem, to establish a point of reference in fairness-accuracy space.

The correspondence between the constrained estimand β∗r and the penalized estimand β∗λ holds

also between β̂r and β̂λ, as expressed in the next two propositions, which are empirical versions of

∗The movement won’t be entirely smooth if predictions are truncated to lie in [`y , uy ].
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Propositions 4 and 5. Let In denote the set of active fairness constraints at β̂r, that is, In = {j ∈
{1, . . . , t} : (Pn[ĝjb

T β̂r])
2 = ε2j}, where ĝj denotes gj(W,Y ) or gj(W, φ̂) as appropriate.

Assumption 10. The set of vectors {Pn[ĝjb]Pn[ĝjb]
T β̂r : j ∈ In} is linearly independent.

Assumption 10 is expected to hold with probability 1 for any realistic combination of data

generating process, basis, and fairness functions.

Proposition 8. If β̂r exists, then under assumption 10, there exists a unique λ ∈ Rt0+ such that

β̂λ = β̂r.

Proposition 9. Fix λ ∈ Rt0+. If β̂λ exists, then β̂λ = β̂r with fairness constraint value ε2j =

(Pn[ĝjb
T β̂λ])2.

The procedure we have described allows users to efficiently construct and evaluate a very large

set of models that fall in different points in the fairness-accuracy space. In sections 3.6, 3.7, and

3.8, we show that this procedure enables us to find high-performing models in both observable and

counterfactual settings, with simulated and real data. With minimal searching over possible bases,

we are able to find models that substantially outperform existing models and methods with respect

to both fairness and accuracy.

Remark 6. Since β∗λ is constructed as a penalized equivalent of β∗r , the seeding approach to

constructing Λn that we have described allows users to target particular fairness constraints but

not particular risk constraints. It is straightforward to develop an analogous procedure around a

penalized version of β∗u that allows users to seed Λn with estimators that target particular risk

constraints. In practice, it is not likely to matter much, since the construction of β̂λ should allow

users to flexibly explore the fairness-accuracy space and find an estimator that accommodates their

desired constraints, if one exists in the span of the chosen basis.

Remark 7. An even simpler and plausibly just as effective alternative to computing the collection

{β̂λ : λ ∈ Λn} is to simply define an arbitrary set B ⊂ Rk, perhaps constrained to lie in the simplex

or in an L1 box around the origin. That is, the user could simply evaluate arbitrary sets of basis

weights to see if any of them yields a reasonable predictor. This set could be similarly constructed

as a grid around a particular β̂r or β̂u, if users have specific fairness or accuracy constraints they

wish to target.

Remark 8. β̂λ resembles a ridge regression estimator. In ridge regression and other regularized

estimators, however, the penalty tuning parameter λ is expected to go to 0 as n → ∞. In our

setting, λ serves to enforce fairness rather than to modulate the variance-bias tradeoff, so there is
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no reason for it to shrink with n. Without unfairness penalties, the predictor won’t automatically

get more fair as the data gets larger.

Theoretical results: excess risk and unfairness

We now develop theoretical guarantees for our procedure. Let h(n) denote the rate at which the

product ‖π̂ − π‖‖µ̂0 − µ0‖ grows or converges, and let h(n) denote the rate for ‖π̂ − π‖‖ν̂0 − ν0‖.
That is,

‖π̂ − π‖‖µ̂0 − µ0‖ = OP(h(n)) (3.34)

‖π̂ − π‖‖ν̂0 − ν0‖ = OP(h(n)) (3.35)

Under ideal conditions, Assumption 9 will hold, so that the product of nuisance parameter errors

decay faster than 1/
√
n, but the subsequent results do not require this.

Assumption 11 (Compact superset Λ). For all n, Λn ⊆ Λ ⊂ Rt for some compact set Λ.

Definition 3.5.3. For any λ ∈ Rt0+, the excess risk for β̂λ is

P[(bT β̂λ − Ỹ )2]− P[(bTβ∗λ − Ỹ )2] (3.36)

Theorem 3.3 (Uniform rate for excess risk in the penalized setting). Under Assumptions 1–2 for

the observable setting; and Assumptions 1–2, 4–9, and 11 for the counterfactual setting:

sup
λ∈Λ

{
P
[(
bT β̂λ − Ỹ

)2
]
− P

[(
bTβ∗λ − Ỹ

)2
]}

= OP(
√

1/n) +OP(h(n)) (3.37)

In other words, the excess risk goes to 0 uniformly at
√

1/n or the nuisance rate h(n), whichever

is slower. We have a similar result for the excess unfairness, which is defined as follows.

Definition 3.5.4. For any λ ∈ Rt0+, the excess unfairness for β̂λ is

{
max
j∈1,...,t

(
P
[
gjb

T β̂λ

]
− P

[
gjb

Tβ∗λ
])}

(3.38)

We have defined excess unfairness as the max over j, but it makes little difference if we define it

instead as the sum over j. Note that here we haven’t used the squared unfairness.
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Theorem 3.4 (Uniform rate for excess unfairness in the penalized setting). Under Assumptions

1–2 for the observable setting; and Assumptions 1–2, 4–9, and 11 for the counterfactual setting:

sup
λ∈Λ

{
max
j∈1,...,t

(
P
[
gjb

T β̂λ

]
− P

[
gjb

Tβ∗λ
])}

= OP(
√

1/n) +OP(h(n)) (3.39)

Remark 9. We can obtain similar theoretical results in a regime in which k is allowed to grow to

∞, if we require that supw∈W ‖b(w)‖ = O(
√
k) and that k log(k)/n → 0. The first requirement is

a stronger version of Assumption 2, while the second insists that k not grow too fast in n. Under

these additional requirements, we attain a rate of OP(
√
k/n) +OP(

√
k · h(n)) in Theorems 3.3 and

3.3. These results extend the results of Belloni et al. (2015) to a setting with nuisance parameters

and penalty terms. As illustrated in that paper, these requirements are weak enough to allow the

basis to asymptotically span rich function spaces such as the space of square integrable functions.

3.5.3 Risk and unfairness of a fixed predictor

The risk and unfairness of a fixed predictor fβ are estimated as

R̂isk(fβ) =

Pn[(fβ − Y )2] (Observable)

Pn[f2
β − 2fβφ̂+ φ̂] (Counterfactual)

(3.40)

ÛFj(fβ) =

Pn[gj(W,Y )fβ ] (Observable)

Pn[gj(W, φ̂)fβ ] (Counterfactual)

(3.41)

for j = 1, . . . t.

Theorem 3.5 (Asymptotic normality of risk and unfairness estimators). Consider fairness functions

gj ∈ {grate, gFPR, gFNR}. Under Assumptions 1–2 for the observable setting; and Assumptions 1–2,

4–9, and 11 for the counterfactual setting:

√
n
(

R̂isk(fβ)− Risk(fβ)
)

d−→

N
(
0, var((fβ − Y )2)

)
(Observable)

N
(

0, var(f2
β − 2fβφ+ φ)

)
(Counterfactual)

(3.42)

√
n
(

ÛFj(fβ)−UFj(fβ)
)

d−→

N (0, var(gj(W,Y )fβ)) (Observable)

N
(
0, var

(
P(γ0)−1η0 − P(γ1)−1η1

))
(Counterfactual)

(3.43)
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where, for a ∈ {0, 1},

γa =

(1− φ)1{A = a} (for gFPR)

φ1{A = a} (for gFNR)

(3.44)

ηa = γa

(
fβ −

P[γafβ ]

P[γa]

)
(3.45)

3.6 Simulations

All computations in this and subsequent sections were carried out on a 2013 MacBook Pro with a

2.4 GHz dual-core processor and 8GB of RAM.

3.6.1 Data-generating process

We illustrate the penalized-min procedure with respect to potential outcomes Y 0. As in a real data

setting, each estimator β̂λ is constructed using only observable data, but unlike in a real data setting,

we use the known values of Y 0 to evaluate the resulting predictors. The data generating process is

as follows, for data Z = (A,X,D, Y 0, Y 1, Y ).

P(A = 1) = 0.3

X | A ∼ N
(
A ∗ (1,−0.8, 4, 2)T , I4

)
P(D = 1 | A,X) = min{0.975, expit((A,X)T (0.2,−1, 1,−1, 1))}

P(Y 0 = 1 | A,X,D) = expit((A,X)T (−5, 2,−3, 4,−5))

P(Y 1 = 1 | A,X,D) = expit((A,X)T (1,−2, 3,−4, 5))

Y = (1−D)Y 0 +DY 1

where I4 denotes the 4 × 4 identity matrix. A = 1 represents the minority group. There are no

previously trained predictors; i.e. S = ∅, so the collected covariates consist of W = (A,X). This data

generating process satisfies Assumptions 4–6: the last line expresses the consistency assumption; the

propensity score π(A,X) = P(D = 1 | A,X) is upper bounded at 0.975 to satisfy positivity; and

Y a ⊥⊥ D|W for a ∈ {0, 1}, satisfying ignorability.

The two groups A = 0 and A = 1 differ in the distribution of covariates (Figure 3.3) and decisions

and outcomes (Table 3.3). The minority group experiences a positive decision (D = 1) 18% of the

time, while the majority group experiences it 50% of the time. Outcomes Y 0 and Y 0 are higher for

the minority group, with a larger disparity for potential outcomes than for observable outcomes.
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Figure 3.3: Conditional covariate distributions for the two groups A = 0 and A = 1 in the simulated
data. Curves are kernel density estimates.

A E[D|A] E[Y 0|A] E[Y |A]

0 0.50 0.50 0.67
1 0.18 0.76 0.71

Table 3.3: Distribution of decisions and outcomes for groups A = 0 and A = 1 in the simulated
data.

As a reference point for our method, in Table 3.4 we compute the performance of the

counterfactual Bayes-optimal predictor f(A,X) = E[Y 0|A,X], which is defined in the data-

generating process. All measures are computed using the known values of Y 0 in a dataset of size

50,000. We include both MSE, with is the measure directly targeted by our method, as well as

area under the curve (AUC). The Bayes-optimal predictor is highly accurate, with an MSE of 0.05

and an AUC of 0.98. The MSE of 0.05 is a lower bound on the risk achievable by any predictor.

Unsurprisingly, given the difference in the distribution of outcomes across the two groups, the Bayes-

optimal predictor has a large rate disparity |E[f |A = 0]−E[f |A = 1]|. The differences in generalized

false positive and false negative rates, however, are relatively small.

Model MSE AUC rate-diff FPR-diff FNR-diff

Bayes-optimal 0.05 0.98 0.26 0.07 0.05

Table 3.4: Risk and fairness measures with respect to Y 0 for the Bayes-optimal predictor E[Y 0|A,X]
in the simulated data. The predictor is highly accurate, with low MSE and high AUC. It has a
relatively large rate disparity but small disparities in generalized false positive and false negative
rates.

3.6.2 Base predictors and nuisance models

We now investigate the performance of our method in a counterfactual setting. We randomly

sample three iid datasets of size n = 1000, representing Dlearn,Dnuis
train, and Dtarget

train . We train four

base predictors on Dtrain, with A,X as covariates and Y as the outcome. We train only on data in
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which D = 0: under the ignorability assumption, E[Y |A,X,D = 0] = E[Y 0|A,X], so this results

in predictors which are designed to estimate Y 0. The predictors consist of a random forest, a

gradient boosted (GB) classifier, a Gaussian Naive Bayes model, and a ridge regression, all chosen

for convenience and ease of computation. (In practice, a logistic regression would be a natural

choice for a base predictor. Since the actual regression function E[Y 0|A,X] is logistic, however, we

do not use this model in order to avoid making the problem too easy, and to simulate a real data

setting in which it is unlikely that the true regression function is known up to a finite dimensional

parameter.) In addition to these predictors, we include a mean predictor, which always predicts the

value Pn(Y |D = 0). This plays essentially the same role as an intercept in ordinary linear regression.

We use random forest classifiers to estimate the propensity and outcome models π̂ and µ̂0 on

Dnuis
train. All models were trained with their default tuning parameters using the scikit-learn library

in Python. Predictors β̂λ are computed using Dtarget
train .

After a set of model coefficients B̂n is computed, we estimate the risk of fairness properties of

every fβ : β ∈ B̂n. In order to understand the true range of risk and fairness values that our method

produces, we use a large test set Dtest of size 10,000, and in place of φ̂, the nuisance quantity that

would be required in a real data setting, we use the known values of Y 0 to compute the risk and

fairness estimates. (For comparison purposes, estimates were also computed using µ0 instead of Y 0;

the results were virtually identical.) Since the true Y 0 is used, there is no need to split Dtest into

Dnuis
test and Dtarget

test .

Table 3.5 shows the performance of the base predictors as well as the ordinary (unpenalized) least

squares (OLS) solution, i.e. the predictor fβλ with λ = 0. The OLS predictor is the (estimated)

MSE-minimal aggregation of the five base predictors, computed without regard for fairness. The

OLS weights are [−0.27, 0.09, 0.40,−0.11, 0.94]; each base predictor appears to make a nontrivial

contribution. The MSE of the base predictors ranges from 0.08 to 0.27. The four non-constant

predictors improve substantially on the mean predictor with respect to both MSE and AUC. The

mean predictor necessarily has a value of 0 for all three disparity measures, while the disparity

values of the other base predictors vary between 0.10 and 0.59. As expected, the OLS predictor has

lower MSE than any of the base predictors. The performance of the OLS predictor is similar to the

performance of the Bayes-optimal predictor in Table 3.5: both have a small MSE, a relatively large

rate disparity, and relatively small error rate disparities.
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Model MSE AUC rate-diff FPR-diff FNR-diff

Mean 0.27 0.50 0.00 0.00 0.00
Random Forest 0.09 0.95 0.28 0.21 0.11
GB Classifier 0.08 0.96 0.31 0.22 0.10
Naive Bayes 0.17 0.84 0.52 0.59 0.40
Ridge 0.09 0.98 0.22 0.09 0.10
OLS 0.07 0.98 0.26 0.10 0.08

Table 3.5: Performance of the five base predictors and the ordinary least squares (OLS) predictor
in the simulated data. The OLS weights are [−0.27, 0.09, 0.40,−0.11, 0.94]. The OLS predictor
substantially improves on the MSE of the base predictors. The performance profile of the OLS
predictor is close to the profile of the Bayes-optimal predictor in Table 3.4.

3.6.3 Results: one fairness penalty

We now compute a set of fairness-penalized models, applying a single fairness penalty at a time. Let

Λn,1 = {0, 0.001, 0.01, 1, 10, 20, 50, 100, 500, 1000, 2000}. (3.46)

For each λ ∈ Λn,1, we compute β̂λ for each fairness function g ∈ {grate, gFPR, gFNR}. The value

λ = 0 corresponds in each case to the OLS solution, so this yields a total of (|Λn,1| − 1) ∗ 3 + 1 = 31

models.

The risk and fairness values for each model are plotted in Figure 3.4. The disparity corresponding

to the targeted constraint is represented by a solid line, while the other two disparities and the MSE

are represented by dashed lines. We emphasize that the values in this figure are computed on Dtest,

after the predictors β̂λ are computed on Dtrain.

As expected, as λ increases, the targeted disparity of the resulting predictor generally decreases.

The decrease is monotonic, except at one point: λ = 1 for FPR-diff, which may be a result of

sampling noise. The rate difference decreases from 0.26 to 0.04. The FPR difference decreases from

0.10 to 0, then remains at 0.01. The FNR difference decreases from 0.08 to 0.04. When the rate-diff

is penalized, the decrease in the target disparity is accompanied by a slight increase in MSE, from

0.07 to 0.09, as well as small increases in FPR-diff and FNR-diff. When FPR-diff is penalized, all

three disparities fall together, while the increase in MSE is miniscule, from 0.067 to 0.071. The same

is true when FNR-diff is targeted: the MSE increases from 0.067 to 0.069.

These results illustrate (1) that the penalty term successfully controls the target disparity, (2)

that an increase in fairness need not come at the cost of a substantial decrease in accuracy, and (3)

that a decrease in one disparity need not produce an increase in other disparities. In the second two

panels, the penalized predictors are uniformly more fair than the OLS predictor, with essentially no
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Figure 3.4: Risk and fairness for models subject to one of three penalties, in the simulated data. The
x-axis represents the fairness penalty coefficient λ. The y-axis represents the MSE and the disparity
values of the resulting predictor β̂λ, computed on an independent test set of size 10,000 using the
known values of Y 0. The leftmost point (λ = 0) in each panel corresponds to the OLS solution.
Solid lines indicate the metric that is penalized in training.

change in accuracy. Additionally, in these two panels, even though only one disparity was penalized

at a time, all three disparities decreased as λ increased.

3.6.4 Results: multiple fairness penalties

We now apply all three fairness penalties simultaneously. Define Λ = Λn,1×Λn,1×Λn,1 ⊂ R3
0+. The

collection B̂n = {β̂λ : λ ∈ Λ} now contains |Λn,1|3 = 1331 models. We use the same base predictors

and nuisance predictors as in the previous section. The process of training the predictors, computing

B̂n, and estimating the risk and fairness for each predictor, took less than 10 seconds.

Figure 3.5 plots each of the three disparities against MSE, for each of the 1331 predictors, as well

as the base predictors and the OLS predictor. As expected, the OLS predictor has the smallest MSE.

Fewer than 1331 dots are visible in each panel, due to the fact that many of the models substantially

overlap in fairness-accuracy space. Nevertheless, the models span a wide range of performance

profiles. For all three disparities, models exist that take the disparity to 0, with relatively small

increase in MSE relative to the OLS predictor. For rate-diff and FNR-diff, these models notably

do not appear in Figure 3.4, where the lowest value for these two disparities are 0.04. We only

discover these models by applying multiple penalties simultaneously. All the aggregated predictors

are substantially more accurate than the mean predictor, which has disparities of 0 but the highest

MSE of any model.

Figure 3.6 plots the same 1331 models with respect to each pair of disparities, with color

indicating MSE. This figure illustrates the interplay of three metrics at once, and is of interest

to users who wish to control two disparities simultaneously. For example, users who wish to target
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(counterfactual) equalized odds would be interested in the bottom panel that plots FNR-diff and

FPR-diff.

These views once again reveal a wide range of model behavior. Unsurprisingly, many of the

highest MSE models are close to the origin, but the relationship between MSE and distance to

the origin is far from monotonic. In all three panels, there is a line of models stretching from the

OLS predictor that represent improvements in both disparities with minimal increase in MSE. In

the bottom panel, for example, there are models with FPR-diff close to 0, FNR-diff under 0.05, and

MSE under 0.10. These models approximately satisfy equalized odds, and they represent an increase

in MSE of less than 0.03 relative to the OLS predictor.

In order to examine this more precisely, Table 3.6 shows the performance of the models with the

minimum L2 distance from the origin in the fairness-accuracy space defined by MSE as well as one

to three disparities. For example, the ’MSE + rate-diff’ row represents the model with the smallest

L2 norm in the (MSE, rate-diff) vector. FPR-diff and FNR-diff can be minimized, singly or jointly,

with no increase in MSE relative to the OLS predictor. Rate-diff can be substantially reduced with

relatively small increase in MSE. Perhaps surprisingly, all three disparities can be jointly minimized,

to 0.06 (rate-diff), 0.03 (FPR-diff), and 0.02 (FNR-diff), with only a 0.06 increase in MSE and a

0.02 decrease in AUC relative to the unpenalized OLS predictor.

MSE AUC rate-diff FPR-diff FNR-diff

MSE + rate-diff 0.09 0.95 0.04 0.16 0.10
MSE + FPR-diff 0.07 0.98 0.19 0.00 0.03
MSE + FNR-diff 0.07 0.98 0.18 0.01 0.02
MSE + rate-diff + FPR-diff 0.12 0.90 0.04 0.05 0.09
MSE + rate-diff + FNR-diff 0.10 0.95 0.04 0.16 0.08
MSE + FPR-diff + FNR-diff 0.07 0.98 0.18 0.01 0.02
MSE + rate-diff + FPR-diff + FNR-diff 0.13 0.96 0.06 0.03 0.02

OLS 0.07 0.98 0.26 0.10 0.08

Table 3.6: Performance of the models that minimize the Euclidean norm of MSE and one or more
disparities, in the simulated data. The OLS predictor is included again for reference. All three
disparities can be minimized, singly or jointly, with no impact or a small impact on MSE.

3.7 Results: Recidivism risk prediction

We next illustrate our method on the COMPAS dataset gathered by ProPublica (Angwin and

Larson, 2016; Angwin et al., 2016). The dataset comprises public arrest records, criminal records,

and COMPAS scores from a single county in Florida, spanning 2013–2016. COMPAS is a collection

of tools developed by the company Equivant (formerly Northpointe) designed to assess the risk of
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Figure 3.5: Disparity and MSE values for each of 1331 models in the simulated data. Black ’X’s
represent the base predictors, with the mean predictor at the bottom right of each panel. The red
square is the OLS predictor, and the blue dots are the penalized predictors. Radius lines indicate
distance from the origin. Despite substantial overlap, the predictors span a wide range of fairness
and accuracy values. For each disparity, many models exist which take that disparity to 0, at a
small cost in MSE relative to the OLS predictor.
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Figure 3.6: Pairs of disparity values and MSE values for each of 1331 models in the simulated data.
Black ’X’s represent the base predictors, with the mean predictor at the origin in each panel. The
red square is the OLS predictor, and the dots are the penalized predictors. Radius lines indicate
distance from the origin. Each pair of disparities can be jointly decreased with minimal increase in
MSE relative to the OLS predictor.
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recidivism. We utilize the COMPAS scores for general, as opposed to violent, recidivism. The scores

consist of risk deciles, coded 1-10, which we normalize to the range [0.1, 1]. COMPAS takes as input

up to 137 features (Northpointe, 2015; Rudin et al., 2020), which are unavailable in this dataest. We

utilize just three features as covariates: an indicator for defendant age greater than 45, an indicator

for defendant age less than 25, and the number of prior arrests, ranging from 0 to 29. Previous work

has found that models trained using just these covariates perform similarly to COMPAS (Angelino

et al., 2018).

The sensitive feature is race, restricted to defendants who are coded African-American (n = 3175)

or Caucasian (n = 2013). The decision variable D represent pretrial release, with D = 0 if defendants

are released and D = 1 if they are detained. The outcome of interest Y 0 is rearrest within two years,

should a defendant be released pretrial. Since it difficult to assess the plausibility of the positivity

and ignorability assumptions without consulting with domain experts, we conducted analyses in

both the counterfactual and observable setting. The results and conclusions were largely the same,

so we only include the counterfactual results below.

We split the data into five datasets, each with approximately 1040 rows: Dlearn, Dnuis
train, Dtarget

train ,

Dnuis
test , and Dtarget

test . As base predictors, we used the four model types from the previous section as

well as a logistic regression. We used random forest classifiers for the nuisance predictors in both

the training and test data. Table 3.7 gives the estimated performance of the five base predictors,

COMPAS, and the OLS predictor, which spans COMPAS and the base predictors. Previous work

found differences in a binarzed version of COMPAS for both observable (Angwin and Larson, 2016)

and counterfactual (Mishler, 2019) false positive vs false negative rates for African-American vs.

Caucasian defendants. Those differences appear here in the generalized error rates. COMPAS also

has a large rate disparity. Perhaps surprisingly, the base predictors all yield smaller disparities than

COMPAS, even though they generally also have smaller MSE.

We compute aggregated models using the same sets of penalty vectors Λn,1 and Λ as in the

previous section. Figure 3.7 shows the result of applying one penalty at a time. Once again, the

targeted disparity can be decreased with a minimal cost in MSE. Here, all three disparities appear

to rise or fall together. Figure 3.8 shows disparities and MSE values for all 1331 models. Most

models fall within a narrow range of MSE values that also includes COMPAS, so the primary value

of aggregation here is in reducing disparities. Nearly all the aggregated models improve on COMPAS

in terms of both risk and fairness. The top row of Figure 3.8 shows that all three disparities can be

individually reduced to 0 with minimal cost in MSE relative to the OLS predictor, and the bottom

row shows that these improvements also extend over pairs of disparities.
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Figure 3.7: Risk and fairness for models subject to one of three penalties, in the COMPAS data.
The x-axis represents the fairness penalty coefficient λ. The y-axis represents the MSE and the
disparity values of the resulting predictor β̂λ, computed on an independent test set of size 10,000
using the known values of Y 0. The leftmost point (λ = 0) in each panel corresponds to the OLS
solution. Solid lines indicate the metric that is penalized in training.
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Figure 3.8: Disparity against MSE (top row) or pairs of disparities colored by MSE (bottom row),
for each of 1331 models in the COMPAS data. The black triangle represents COMPAS, the black
’X’s represent the other base predictors, the red square is the OLS predictor, and the blue dots are
the penalized predictors. Radius lines indicate distance from the origin. Most of the models improve
on COMPAS in terms of both MSE and the relevant disparity. For each disparity, many models
exist which take that disparity to 0, at a small cost in MSE relative to the OLS model.
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MSE rate-diff FPR-diff FNR-diff

Mean 0.26 0.00 0.00 0.00
Random Forest 0.28 0.05 0.03 0.02
Logistic 0.22 0.06 0.06 0.00
GB Classifier 0.23 0.06 0.01 0.05
Ridge 0.22 0.05 0.05 0.00
COMPAS 0.24 0.15 0.15 0.08

OLS 0.22 0.09 0.09 0.05

Table 3.7: Estimated performance of the five base predictors, COMPAS, and the OLS predictor in
the COMPAS dataset. The OLS weights are [0.39, 0.12, 0.79, 0.10,−1.08, 0.93]. The OLS predictor
does not perform substantially better than the base predictors. COMPAS has different false positive
and false negative rates for African-American vs Caucasian defendants, as well as a rate disparity.
The base predictors all have smaller disparities than COMPAS, and generally smaller MSE.

Table 3.8 gives the performance of the models that are closest to the origin in various fairness-

accuracy subspaces. All three disparities can be minimized, jointly or in any combination, while

improving on the MSE relative to COMPAS.

Since the MSE of the mean predictor is only 0.26, and the MSEs of the models in Table 3.8 fall

in the range 0.22–0.23, these results raise the possibility that these are close to the trivial mean

predictor. Figure 3.9 rules this out however; it shows histograms of the model predictions and

calibration curves for the “Best” model (the model that minimizes MSE + rate-diff + FPR-diff +

FNR-diff) vs. COMPAS. Calibration curves were computed on the subset of the data for which

D = 0, i.e. for which Y = Y 0 under Assumption 4. Although the Best model does not produce

predictions lower than 0.28 (vs. 0.10 for COMPAS), the predictions are far from concentrated around

a single point. The Best model appears to be at least as well calibrated as COMPAS.

Model MSE rate-diff FPR-diff FNR-diff

MSE (OLS) 0.22 0.09 0.09 0.05
MSE + rate-diff 0.23 0.02 0.02 0.01
MSE + FPR-diff 0.22 0.03 0.03 0.00
MSE + FNR-diff 0.22 0.04 0.04 0.01
MSE + rate-diff + FPR-diff 0.23 0.02 0.02 0.01
MSE + rate-diff + FNR-diff 0.22 0.03 0.03 0.00
MSE + FPR-diff + FNR-diff 0.22 0.03 0.03 0.00
MSE + rate-diff + FPR-diff + FNR-diff 0.23 0.02 0.02 0.01

COMPAS 0.24 0.15 0.15 0.08

Table 3.8: Performance of the models that minimize the Euclidean norm of MSE and zero to three
disparities, in the COMPAS data. The OLS predictor is included again for reference. All three
disparities can be minimized, singly or jointly, with no impact or a small impact on MSE.
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Figure 3.9: Histograms of predictions and calibration curves for COMPAS and the “Best” model,
which jointly minimizes the Euclidean norm of the MSE and the three disparities. Values were
computed Dtarget

test ; calibration was assessed on the subset of the data with D = 0 (n = 351). The
Best model predictions range from 0.28 to 0.97, vs. 0.10 to 1.0 for COMPAS. The Best model
appears to be at least as well calibrated as COMPAS.

3.8 Results: Income prediction

Finally, we apply our method in the observable setting, using the Adult dataset (Dua and Graff,

2017). This dataset comprises demographic variables derived from the 1994 U.S. Census. We

consider sex as a sensitive feature, coded 0 or 1, and we utilize as covariates a set of indicator

variables indicating age by decade, and a set of indicator variables indicating the number of years

of education. The classification task is to predict whether an individual’s income is over $50K/year,

for example for the purpose of deciding whether to issue a loan.

We randomly split the data into four datasets: Dlearn and Dtrain, consisting of 14,653 and 14,652

rows; and Dtest and Dvalidate, consisting of 9,768 and 9,769 rows. Dvalidate is used to compare the

performance of the selected best models to the fair predictors.

This dataset does not contain any previously trained predictors. We use the same five base

predictor types as in the COMPAS analysis. Additionally, we use Dtrain to train three “fair” models

with other fairness methods: adversarial debiasing (Zhang et al., 2018), reductions (Agarwal et al.,

2018), and a meta-algorithm (Celis et al., 2020). All models were trained using the Python library

aif360, a set of tools that provide access to a range of fairness methods via a consistent interface

(Bellamy et al., 2018). The three chosen methods yield binary classifiers, and they are all designed

to minimize rate-diff in an observable setting with a binary outcome. Since, for a binary classifier
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Ŷ , MSE is equal to classification error P(Ŷ 6= Y ), we may regard these three predictors as the result

of methods that seek to minimize MSE among specific classes of binary predictors.

We construct aggregated predictors using the five base models (“base5”) or using the five base

models and the three fair predictors (“base8”). Table 3.9 gives the performance of the base predictors,

the fair predictors, and the two OLS predictors. Compared to the base predictors, two of the three

fairness methods result in a substantially lower rate-diff, which is the disparity they aim to minimize.

The base predictors and the OLS predictors have lower MSE, higher AUC, and higher disparities

compared to these two fair predictors.

Model MSE AUC rate-diff FPR-diff FNR-diff

Mean 0.18 0.50 0.00 0.00 0.00
Random Forest 0.14 0.81 0.19 0.14 0.24
Logistic 0.14 0.81 0.20 0.14 0.25
GB Classifier 0.14 0.82 0.19 0.13 0.24
Ridge 0.14 0.81 0.17 0.13 0.16

Adversarial 0.21 0.67 0.07 0.00 0.03
Reductions 0.22 0.62 0.01 0.03 0.07
Meta 0.30 0.68 0.18 0.26 0.26

OLS - base5 0.14 0.82 0.19 0.13 0.24
OLS - base8 0.14 0.81 0.20 0.14 0.25

Table 3.9: Estimated performance in the Adult dataset of five base predictors, three “fair”
predictors, and the two OLS predictors, which aggregate only the five base predictors
or all eight predictors. The OLS weights are [0.03, 0.29, 0.65, 0.03, 0.01], for base5, and
[−0.01, 0.26, 0.56, 0.18, 0.04,−0.02,−0.03, 0], for base8. Only two of the three fairness methods
successfully control their targeted disparity, rate-diff. The Meta predictor has a rate-diff which is
comparable to the base predictors which are trained without regard to fairness. The OLS predictors
perform comparably to the base predictors.

We compute aggregated models using the same sets of penalty vectors Λn,1 and Λ as in the

previous two sections. Figure 3.10 shows the result of applying one penalty at a time. Once again,

the targeted disparity can be decreased, though here there is a consistent tradeoff between fairness

and MSE. As in the COMPAS data, all three disparities appear to rise or fall together. Figure 3.8

shows disparities and MSE values for all 1331 models. Fairness-accuracy tradeoffs are most evident

for rate-diff and FPR-diff in the top row of this figure, where only the five base predictors are used.

In the bottom row, where the fair predictors are included as basis functions, the tradeoffs essentially

disappear: all three disparities can be reduced to 0 with virtually no cost in MSE. Plots of two

disparities colored by MSE are included in Appendix 3.F.
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Figure 3.10: Risk and fairness for models subject to one of three penalties, in the Adult data, using
five base predictors. The x-axis represents the fairness penalty coefficient λ. The y-axis represents
the MSE and the disparity values of the resulting predictor β̂λ, computed on an independent test set
of size 10,000 using the known values of Y 0. The leftmost point (λ = 0) in each panel corresponds
to the OLS solution. Solid lines indicate the metric that is penalized in training.
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Figure 3.11: Disparity against MSE for models based on the five base predictors (top row) or the
five base predictors plus the three fair predictors, for each of 1331 models in the Adult data. Black
’X’s represent the base predictors, the red square is the OLS predictor, and the blue dots are the
penalized predictors. Radius lines indicate distance from the origin. For the sake of legibility, the
Meta predictor, which has an MSE of 0.30, is excluded. The row exhibits small but clear fairness-
accuracy tradeoffs for rate-diff and FPR-diff. The bottom row shows that with the inclusion of the
fair predictors, each disparity can be taken to 0 with almost no cost in MSE relative to the OLS
predictor.
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3.8.1 Model validation

Using the performance estimates from the test data, we again select the same seven models that

minimize the distance from the origin in various accuracy-fairness subspaces, for both the base5

and base8 models. Table 3.10 shows the performance estimates, as well as the three fair predictors,

on the validation data. The estimates on the test and validation data differed by no more than

approximately 0.005.

Both the base5 and base8 penalized predictors are substantially more fair than the OLS models,

while incurring very small increases in MSE. The high AUC values confirm that these are accurate

predictors. All the penalized predictors have small disparities compared to the OLS predictors;

this reiterates the result observed in Figure 3.10, in which targeting any single disparity tends to

reduce all three. Explicitly minimizing multiple disparities simultaneously is also not necessarily

more costly in terms of performance than minimizing a single disparity.

The penalized predictors have substantially lower MSE and higher AUC than the fair predictors,

and they are in many cases more fair. The fair predictors achieve values of 0.08, 0.01, and 0.17

for rate-diff the disparity they aim to minimize. The base5 predictors that include rate-diff in their

criteria achieve rate-diffs of 0.04, 0.04, 0.06, and 0.02. The corresponding base8 predictors achieve

rate-diffs of 0.01, 0.03, 0.01, and 0.03.

The base5 results show that our method yields predictors that perform comparably to or better

than existing fairness methods. The base8 results highlight the flexibility of our approach: multiple

predictors can be aggregated, regardless of whether or not they are trained with fairness properties in

mind, with different weights to target different disparities. In this case, including the fair predictors

in the aggregation improves both accuracy and fairness.

Each of the fair prediction methods contains tuning parameters that can be adjusted to return

different predictors, as well as settings that allow them to target different fairness constraints, such

as equalized odds. However, each method can only target a single fairness constraint at once.

Additionally, these methods take substantial time to run. The Meta method took roughly 5 seconds,

the Reductions method ran in approximately 15 seconds, and the Adversarial method, which relies

on neural nets, took roughly a minute. By contrast, we were able to train the base predictors and

compute and evaluate 1331 penalized models in 25 seconds.

The three fair predictors are binary by construction, whereas our method returns continuous

predictors. Of course, these continuous predictors can be treated as binary, either by thresholding

the output (for a deterministic classifier) or by treating the output as a probability and sampling from

a corresponding Bernoulli distribution (for a randomized classifier). It is fast to compute estimates of

the accuracy and fairness values from either of these two binarized classifiers and choose one which
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minimizes the criteria of interest. For example, the base5 models include a model which, when

thresholded at 0.5 to yield a deterministic binary classifier, achieves a classification error of 0.24 and

disparities of 0 (to two digits). This has very slightly higher classification error than the Adversarial

and Reductions predictors, but it exactly achieves equalized odds and demographic parity.

Model MSE AUC rate-diff FPR-diff FNR-diff

base5

MSE (OLS-base5) 0.14 0.82 0.19 0.13 0.24
MSE + rate-diff 0.16 0.73 0.04 0.02 0.10
MSE + FPR-diff 0.15 0.80 0.09 0.06 0.13
MSE + FNR-diff 0.16 0.75 0.10 0.09 0.01
MSE + rate-diff + FPR-diff 0.16 0.73 0.04 0.02 0.10
MSE + rate-diff + FNR-diff 0.16 0.75 0.06 0.05 0.01
MSE + FPR-diff + FNR-diff 0.16 0.75 0.06 0.05 0.01
MSE + rate-diff + FPR-diff + FNR-diff 0.17 0.73 0.02 0.02 0.00

base8

MSE (OLS-base8) 0.14 0.81 0.20 0.14 0.25
MSE + rate-diff 0.15 0.79 0.01 0.03 0.02
MSE + FPR-diff 0.14 0.79 0.06 0.01 0.10
MSE + FNR-diff 0.15 0.79 0.05 0.01 0.01
MSE + rate-diff + FPR-diff 0.15 0.79 0.03 0.00 0.01
MSE + rate-diff + FNR-diff 0.15 0.79 0.01 0.03 0.01
MSE + FPR-diff + FNR-diff 0.15 0.79 0.04 0.00 0.01
MSE + rate-diff + FPR-diff + FNR-diff 0.15 0.79 0.03 0.01 0.01

fair
Adversarial 0.21 0.67 0.08 0.01 0.04
Reductions 0.22 0.62 0.01 0.03 0.06
Meta 0.30 0.68 0.17 0.26 0.24

Table 3.10: Performance of the models that minimize the Euclidean norm of MSE and zero to three
disparities, in the Adult data. Models are selected on the test data and evaluated on the validation
data. The three fair predictors are included for reference. The base5 predictors aggregate the five
base predictors, and the base8 predictors aggregate over all eight predictors. The “MSE” rows
represent the OLS predictors. All three disparities can be minimized, singly or jointly, with only a
small impact on MSE, and a small impact on AUC. Aggregated predictors are more accurate than
the fair predictors, and have comparable or smaller values of rate-diff, the disparity that the fair
predictors aim to minimize.

3.9 Conclusion

We developed a least squares framework for constructing fair predictors. This framework is extremely

flexible, allowing users to combine arbitrary sets of predictors, including previously trained predictors

and newly trained ones, regardless of whether they are designed to satisfy fairness constraints or not.

Our framework can accommodate a wide range of disparities and allows users to minimize multiple

disparities simultaneously. Our framework also accommodates both observable and counterfactual

outcomes.
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Within this framework, we developed three methods. The first two “constrained” methods allow

users to minimize mean squared error subject to explicit fairness constraints, or minimize unfairness

subject to an explicit constraint on the mean squared error. The third “penalized” method allows

users to efficiently construct large sets of predictors and evaluate their risk and fairness properties.

The penalized method enables users to explore fairness-accuracy and fairness-fairness tradeoffs in

their problem setting, and it enables them to find a model with a favorable risk and fairness profile.

Our results show that in many cases, disparities can be substantially reduced with no tangible

increase in error relative to the unpenalized least squares solution.

Although our penalized approach is designed to minimize mean squared error and to penalize

certain classes of disparities, the resulting models can naturally be evaluated with respect to any

accuracy or fairness metric. For example, users might wish to consider only binary classifiers, so

they may wish to evaluate classification error on thresholded versions of the penalized models. The

penalized approach provides a principled way to explore various fairness-accuracy spaces, even if the

fairness and/or accuracy metrics of interest aren’t explicitly represented in the penalized expression.

Finally, the efficiency of our penalized method relies on the particular closed form of the

parameterized predictors, which arises as a result of the mean squared error and the squared fairness

terms. However, any quadratic function that involves a positive definite matrix has a closed form

solution. This form could be preserved under different accuracy metrics and fairness terms by, for

example, adding a regularization term βTMβ for some positive-definite matrix M . This suggests

that our approach could be adapted to explicitly target other accuracy and/or fairness metrics.
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3.A Proof preliminaries

For convenience, we collect all the assumptions that appear in the paper:

1. For all n, E[bbT ] is positive definite. (PSD)

2. Uniformly in n, sup
w∈W

‖b(w)‖ <∞ (Bound on basis)

3. The set {E[gjb]E[gjb]
Tβ∗r : j ∈ I} is linearly independent. (LICQ - estimands)

4. Y = DY 1 + (1−D)Y 0 (Consistency)

5. ∃δ ∈ (0, 1) s.t. P(π(W ) ≤ 1− δ) = 1 (Positivity)

6. Y 0 ⊥⊥ D |W (Ignorability)

7. ∃γ ∈ (0, 1) s.t. P(π̂(A,X, S) ≤ 1− γ) = 1 (Bounded propensity estimator)

8. ‖φ̂− φ‖ = oP(1), and ‖φ̂− φ‖ = oP(1) (Consistent nuisance estimators)

9. ‖π̂ − π‖‖µ̂0 − µ0‖ = oP(1/
√
n) (Nuisance parameter rates)

‖π̂ − π‖‖ν̂0 − ν0‖ = oP(1/
√
n)

10. The set {Pn[ĝjb]Pn[ĝjb]
T β̂r : j ∈ In} is linearly independent. (LICQ - empirical)

11. Λn ⊆ Λ ⊂ Rt for some compact Λ. (Compact Λ)

Recall that for any function f : Z 7→ R, we defined Pn(f) = n−1
∑n
j=1 f =

∫
fdPn(Z) and

P(f) =
∫
fdP(Z) as the sample and true expectations of f , so that for example P(φ̂) = E[φ̂|Dtrain]

or E[φ̂|Dtest] is the expected value of φ̂(Z) once the relevant nuisance function estimate φ̂ has been

constructed.

We state several lemmas that are used in the proofs for the constrained and penalized settings.

The first is a restatement of Lemma 2 in Kennedy et al. (2020).

Lemma 3.5.1. (Kennedy, 2020) Let f̂ : Z 7→ R be a function estimated on a nuisance dataset

Dnuis, and let f : Z 7→ R be another function. Assume var(f̂ − f |Dnuis) <∞. Then

(Pn − P)(f̂ − f) = OP

(
‖f̂ − f‖√

n

)
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Lemma 3.5.2 (Double robustness). Let f :W 7→ Rp for any p be a function with ‖f(W )‖ ≤M <∞
for some M . Under Assumption 5 (positivity),

‖f(W )(φ̂− φ)‖ = OP (‖µ0 − µ̂0‖‖π̂ − π‖) (3.47)

‖f(W )(φ̂− φ)‖ = OP (‖ν0 − ν̂0‖‖π̂ − π‖) (3.48)

It follows immediately that

P
(
f(W )(φ̂− φ)

)
= OP (‖µ0 − µ̂0‖‖π̂ − π‖)

P
(
f(W )(φ̂− φ)

)
= OP (‖ν0 − ν̂0‖‖π̂ − π‖)

Proof.

P
(
f(W )(φ̂− φ)

)
= P

(
f(W )

(
1−D
1− π̂ (Y − µ̂0) + µ̂0 −

1−D
1− π (Y − µ0)− µ0

))
= P

(
f(W )

(
1−D
1− π̂ (µ0 − µ̂0) + µ̂0 −

1−D
1− π (µ0 − µ0)− µ0

))
= P

(
f(W )

(
1− π
1− π̂ (µ0 − µ̂0) + µ̂0 − µ0

))
= P

(
f(W )

(
(µ0 − µ̂0)(π̂ − π)

1− π

))
≤ 1

δ
P(f(W )(µ0 − µ̂0)(π̂ − π))

≤ 1

δ
‖f(W )‖‖µ0 − µ̂0‖‖π̂ − π‖

= OP (‖µ0 − µ̂0‖‖π̂ − π‖)

where the second and third lines use iterated expectation, conditioning on W ; the fifth line uses

Assumption 5 (positivity); and the sixth line uses the Cauchy-Schwarz inequality.

3.B Proof of Theorem 3.5

We prove this theorem first, since the result will be used in the proofs of the other theorems. In

the observable setting, the theorem follows immediately from the central limit theorem, so the

subsequent derivations focus on the counterfactual setting.
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3.B.1 Asymptotic normality of the risk estimator

Pn[f2
β − (2bTβ)φ̂+ φ̂]− P[f2

β − (2bTβ)φ+ φ] = (3.49)

(Pn − P)
{
f2
β − 2fβφ+ φ

}
+ (Pn − P)

{
2fβ(φ− φ̂) + (φ̂− φ)

}
+ P

{
2fβ(φ− φ̂) + (φ̂− φ)

}
(3.50)

The second term is OP(‖µ̂0 − µ0‖‖π̂ − π‖/√n) = oP(1/
√
n) by Lemma 3.5.1, Lemma 3.5.2, and

Assumption 9. The third term is oP(1/
√
n) by Lemma 3.5.2 and Assumption 9. We therefore have

R̂isk(fβ)− Risk(fβ) = (Pn − P)
{
f2
β − 2fβφ+ φ

}
+ oP(1/

√
n) (3.51)

and the result follows by the central limit theorem.

3.B.2 Asymptotic normality of the unfairness estimators

Since grate does not depend on the outcome, we have ĝind = grate, and the result follows immediately

from the central limit theorem. We now prove the result for gFPR in the counterfactual setting. We

have

Pn(ĝjfβ)− P(gjfβ) =

{
Pn[γ̂0fβ ]

Pn[γ̂0]
− Pn[γ̂1fβ ]

Pn[γ̂1]

}
−
{
P[γ0fβ ]

P[γ0]
− P[γ1fβ ]

P[γ1]

}
(3.52)

Considering just the γ̂0 and γ0 terms, we have

Pn[γ̂0fβ ]

Pn[γ̂0]
− P[γ0fβ ]

P[γ0]
=

Pn[γ̂0fβ ]P[γ0]− P[γ0]Pn[γ̂0]

Pn[γ̂0]P[γ0]

=
P[γ0]

(
Pn[γ̂0fβ ]− P[γ0fβ ]

)
− P[γ0fβ ]

(
Pn[γ̂0]− P[γ0]

)
Pn[γ̂0]P[γ0]

= Pn[γ̂0]−1
{

(Pn[γ̂0fβ ]− P[γ0fβ ])︸ ︷︷ ︸
(1)

−P[γ0fβ ]

P[γ0]
(Pn[γ̂0]− P[γ0])︸ ︷︷ ︸

(2)

}
(3.53)

Terms (1) and (2) in (3.53) can be expanded as follows:

(1) = (Pn − P)γ0fβ + (Pn − P)((γ̂0 − γ0)fβ) + P((γ̂0 − γ0)fβ)

(2) = (Pn − P)γ0 + (Pn − P)(γ̂0 − γ0) + P(γ̂0 − γ0)

In both these expressions, the second term is OP(‖φ̂ − φ‖/√n) = oP(1/
√
n) by Lemma 3.5.1

and Assumption 9, and the third term is oP(1/
√
n) by Lemma 3.5.2 and Assumption 9. Under

Assumption 7, Pn[γ̂0]−1 is bounded, while P[γ0fβ ]/P[γ0] is bounded under Assumption 5. Therefore,
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we can rewrite (3.52) as

Pn[γ̂0]−1(Pn − P)

{
γ0

(
fβ −

P[γ0fβ ]

P[γ0]

)}
+ oP(1/

√
n) (3.54)

= Pn[γ̂0]−1(Pn − P)η0 + oP(1/
√
n) (3.55)

We can therefore rewrite Pn(ĝjfβ)− P(gjfβ) as

Pn[γ̂0]−1(Pn − P)η0 + Pn[γ̂1]−1(Pn − P)η1 + oP(1/
√
n) (3.56)

Note that the analysis of term (2) in (3.53) yields that Pn[γ̂0]− P[γ0] = oP(1). Applying the central

limit theorem to the vector (η0, η1), followed the continuous mapping theorem, Slutsky’s theorem,

and the delta method, we have

√
n (Pn(ĝjfβ)− P(gjfβ))

d−→ N
(
0, var

(
P(γ0)−1η0 − P(γ1)−1η1

))
(3.57)

as desired. The result for gFNR follows by identical reasoning.

3.C Proofs for the constrained setting

We state two additional lemmas that are only used in the constrained setting. The first lemma gives

sufficient conditions under which the optimal value of an estimated convex problem converges at a

particular rate to the optimal value of the target convex program. It is a adaptation of Theorem 3.5

in Shapiro (1991) that follows immediately from Theorems 2.1 and 3.4 in that same paper.

Lemma 3.5.3. (Shapiro, 1991) Let Θ be a compact subset of Rk. Let C(Θ) denote the set of

continuous real-valued functions on Θ, with L = C(Θ) × . . . × C(Θ) the r-dimensional Cartesian

product. Let ψ(θ) = (ψ0, . . . , ψr) ∈ L be a vector of convex functions. Consider the quantity α∗

defined as the solution to the following convex optimization program:

α∗ = min
θ∈Θ

ψ0(θ)

subject to ψj(θ) ≤ 0, j = 1, . . . , r

Assume that Slater’s condition holds, so that there is some θ ∈ Θ for which the inequalities are

satisfied and non-affine inequalities are strictly satisfied, i.e. ψj(θ) < 0 if ψj is non-affine. Now
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consider a sequence of approximating programs, for n = 1, 2, . . .:

α̂n = min
θ∈Θ

ψ̂0n(θ)

subject to ψ̂jn(θ) ≤ 0, j = 1, . . . , r

with ψ̂n(θ) :=
(
ψ̂0n, . . . , ψ̂rn

)
∈ L. Assume that f(n)(ψ̂n−ψ) converges in distribution to a random

element W ∈ L for some real-valued function f(n). Then:

f(n)(α̂n − α0) L

for a particular random variable L. It follows that α̂n − α0 = OP(1/f(n)).

3.C.1 Intermediate result

The next lemma applies Lemma 3.5.3 to the risk-min and unfair-min settings. For analytical

purposes, we suppose that for each k, the quantities β∗r , β̂r, β
∗
u, β̂u are constrained to lie in some

(arbitrarily large) compact set Θk ⊆ Rk. Since k 6→ ∞, ultimately Θk is fixed to some set Θ.

For example, Θ could be given by box constraints defined by the largest and smallest numbers the

machine can represent. Since this is a device for asymptotic analysis, we do not express it in the

actual optimization. Under Assumption 2, it follows that bTβ is uniformly bounded in Θ. (Recall

that in practice, the output of any predictor will be truncated to lie in [`y, uy].)

Per Proposition 6 and Remark 5, we can write the objective function for the risk-min parameter

β∗r equivalently as P[(bTβ)2 − 2(bTβ)φ] in the counterfactual setting (or P[(bTβ)2 − 2(bTβ)Y ] in the

observable setting), since the term P[φ2] (or P[Y 2]) drops out of the minimization. We utilize this

form for analysis.

Denote by ψ0, . . . ψt+1 and ψ̂0, . . . ψ̂t+1 the population and empirical risk and unfairness functions,

each of which is a mapping from Θ to R. For the counterfactual setting, these are given by

ψ0(β) = P[(bTβ)2 − 2(bTβ)φ]

ψj(β) = (P[gjb
Tβ)])2

ψt+1(β) = P[(bTβ)2 − (2bTβ)φ+ φ]

ψ̂0 = Pn[(bTβ)2 − 2(bTβ)φ)]

ψ̂j(β) = (Pn[ĝjb
Tβ])2, j = 1, . . . t

ψt+1(β) = Pn[(bTβ)2 − (2bTβ)φ̂+ φ̂]

(3.58)

The observable setting substitutes Y for φ, Y 2 for φ, and gj for ĝj . Let C(Θ) denote the set of

continuous real-valued functions on Θ, with L(Θ) = C(Θ)× . . .× C(Θ) the Cartesian product (with

suitable dimension). Let ψ•, ψ̂• : Θ 7→ L(Θ) be the vectors of functions that define the population
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and empirical optimization problem, for • ∈ {r, u} That is, for risk-min, define

ψr =
(
ψ0(β), ψ1(β), . . . , ψt(β)

)T
(3.59)

ψ̂r =
(
ψ̂0(β), ψ̂1(β), . . . , ψ̂t(β)

)T
(3.60)

and for unfair-min, define

ψu =

 t∑
j=1

αjψj(β), ψt+1(β)

T

(3.61)

ψ̂u =

 t∑
j=1

αjψ̂j(β), ψ̂t+1(β)

T

(3.62)

The first element in each of ψr and ψu is the objective function, and the remaining elements are the

constraint functions.

Lemma 3.5.4 (Convergence rates of estimated functions). Under Assumptions 1 and 2 for the

observable setting, and Assumptions 1, 4–6 for the counterfactual setting, there exist random

elements Cr, Cu taking values in the appropriate space L(Θ) such that

√
n(ψ̂r − ψr) d−→ Cr (3.63)

√
n(ψ̂u − ψu)

d−→ Cu (3.64)

where the convergence is in L2 norm.

Proof. We will utilize the fact that the class {bTβ : β ∈ Θ} is P-Donsker, since bTβ is parametric

and Lipschitz in β under Assumption 2.

In the observable setting, we have

ψ̂r − ψr = (Pn − P)
(
(bTβ)2 − 2(bTβ)Y, g1b

Tβ, . . . gtb
Tβ
)T

(3.65)

so that the result follows immediately from the central limit theorem and the Donsker condition.

We now turn to the counterfactual setting. First, consider the objective function ψ0.

ψ̂0(β)− ψ0(β) = Pn
{

(bTβ)2 − 2(bTβ)φ̂
}
− P

{
(bTβ)2 − 2(bTβ)φ

}
(3.66)

= (Pn − P)
{

(bTβ)2
}
−
{
Pn(bTβφ̂)− P(bTβφ)

}
(3.67)

= (Pn − P)
{

(bTβ)2 − φ
}

+ (Pn − P)(2(bTβ)(φ− φ̂)) + P(2(bTβ)(φ− φ̂)) (3.68)
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The second term is OP(‖µ̂0 − µ0‖‖π̂ − π‖/√n) = oP(1/
√
n) by Lemma 3.5.1, Lemma 3.5.2, and

Assumption 9. The third term is oP(1/
√
n) by Lemma 3.5.2 and Assumption 9. We therefore have

ψ̂0(β)− ψ0(β) = (Pn − P)
{

(bTβ)2 − φ
}

+ oP(1/
√
n) (3.69)

We now consider the unfairness functions ψj , j = 1, . . . t. We have

ψ̂j(β)− ψj(β) =
{
Pn(ĝjb

Tβ) + P(gjb
Tβ)

}{
Pn(ĝjb

Tβ)− P(gjb
Tβ)

}
(3.70)

=
{
Pn(ĝjb

Tβ) + P(gjb
Tβ)

} (
Pn(γ̂0)−1, Pn(γ̂1)−1

)
(Pn − P)

η0

η1

+ oP(1/
√
n) (3.71)

where the second line follows the derivation in Section 3.B.2, coupled with the fact that Pn(ĝjb
Tβ)+

P(gjb
Tβ) = oP(1). Finally, the analysis of ψt+1 is already given in Section 3.B.1:

ψ̂t+1 − ψt+1 = (Pn − P)
(
(bTβ)2 − 2(bTβ)φ+ φ

)
+ oP(1/

√
n) (3.72)

Suppose we have a single fairness function gj . Combining (3.69), (3.71), and (3.72), we have shown

that ψ̂r − ψr can be written as

ψ̂r − ψr = M(Pn − P)


(bTβ)2 − φ

η0

η1

+

oP(1/
√
n)

oP(1/
√
n)

 , where (3.73)

M =

1 0 0

0
{
Pn(ĝjb

Tβ) + P(gjb
Tβ)

}
Pn(γ̂0)−1 −

{
Pn(ĝjb

Tβ) + P(gjb
Tβ)

}
Pn(γ̂1)−1

 (3.74)

Applying the central limit theorem, Slutsky’s theorem, the continuous mapping theorem, and the

delta method, we have that
√
n(ψ̂r(β)− ψr(β)) converges to a normal distribution for any fixed β.

Under the Donsker condition, this convergence is uniform over β, and
√
n(ψ̂r − ψr) converges to

a Gaussian process. Equivalent reasoning applies in the case of multiple fairness functions, and to
√
n(ψ̂u − ψu).

We now prove Theorems 3.1 and 3.2. The two proofs proceed along similar lines. We will again

utilize the fact that {bTβ : β ∈ Θ} is P-Donsker, so that the empirical process {√n(Pn − P)(bTβ) :

β ∈ Θ} converges to a Gaussian process.
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3.C.2 Proof of Theorem 3.1 (Excess risk in the constrained setting)

Proof. We consider the risk-min problem first. We expand the excess risk by adding and subtracting

the objective function at the solution β̂r:

P
[
(bT β̂r)

2 − 2(bT β̂r)φ̂
]
− P

[
(bTβ∗r )2 − 2(bTβ∗r )φ

]
(3.75)

= P
[
(bT β̂r)

2 − 2(bT β̂r)φ̂
]
− Pn

[
(bT β̂r)

2 − 2(bT β̂r)φ̂
]

+ (3.76)

Pn
[
(bT β̂r)

2 − 2(bT β̂r)φ̂
]
− P

[
(bTβ∗r )2 − 2(bTβ∗r )φ

]
(3.77)

The second term is OP(1/
√
n) by Lemma 3.5.4 and Shapiro’s theorem. The first term is just

ψ0(β̂r)− ψ̂0(β̂r), which is OP(1/
√
n) by (3.69) in the proof of Lemma 3.5.4 coupled with the Donsker

condition. Hence, the excess risk is OP(1/
√
n), as claimed.

We now turn to the unfair-min problem. The excess risk is

P[(bT β̂u)2 − 2(bT β̂u)φ+ φ)]− ε2 (3.78)

≤ P[(bT β̂u)2 − 2(bT β̂u)φ+ φ)]− Pn[(bT β̂u)2 − 2(bT β̂u)φ̂+ φ̂)] (3.79)

= −(Pn − P)
[
(bT β̂u)2 + (2bT β̂u)φ+ φ

]
+ (3.80)

(Pn − P)
[
(2bT β̂u)(φ̂− φ) + (φ̂− φ)

]
+ (3.81)

P
[
(2bT β̂u)(φ̂− φ) + (φ̂− φ)

]
(3.82)

The first term is OP(1/
√
n) by the central limit theorem and the Donsker condition. The second

term is OP(‖φ̂ − φ‖/√n) = oP(1/
√
n) by Lemma 3.5.1, Lemma 3.5.2, and Assumption 8. The last

term is oP(1/
√
n) by Lemma 3.5.2. The excess risk is therefore OP(1/

√
n), as claimed.

3.C.3 Proof of Theorem 3.2 (Excess unfairness in the constrained setting)

Proof. We consider the unfair-min problem first. We expand the excess unfairness by adding and

subtracting the objective function at the solution β̂u:

t∑
j=1

αj(P[gjb
T β̂u])2 −

t∑
j=1

αj(P[gjb
Tβ∗u])2 (3.83)

=

t∑
j=1

αj

{
(P[gjb

T β̂u])2 − (Pn[ĝjb
T β̂u])2

}
+

t∑
j=1

αj

{
(Pn[ĝjb

T β̂u])2 − (P[gjb
Tβ∗u])2

}
(3.84)
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Again, the second term is OP(1/
√
n) by Lemma 3.5.4 and Shapiro’s theorem. The first term is equal

to
∑t
j=1 αj(ψj(β̂)− ψ̂j(β̂)), which is OP(1/

√
n) by (3.71) in the proof of Lemma 3.5.4 coupled with

the Donsker condition. The excess unfairness is therefore OP(1/
√
n), as claimed.

We now turn to the risk-min problem. The excess unfairness for constraint j is

(P[gjb
T β̂u])2 − ε2 (3.85)

≤ (P[gjb
T β̂u])2 − (Pn[ĝjb

T β̂u])2 (3.86)

= OP(1/
√
n) (3.87)

where the last line simply uses the analysis for term (1) from (3.84). The excess unfairness is

therefore OP(1/
√
n), as claimed.

3.D Proofs for the penalized setting

Throughout this section, let

Q̂λ = Pn(bbT ) +

t∑
j=1

λjPn(ĝjb)Pn(ĝjb)
T (3.88)

Qλ = P(bbT ) +

t∑
j=1

λjP(gjb)P(gjb)
T (3.89)

so that

βλ = Q−1
λ P(bỸ ) (3.90)

β̂λ =

Q̂−1
λ Pn(bY ) (Observable)

Q̂−1
λ Pn(bφ̂) (Counterfactual)

(3.91)

Under the assumptions of Theorems 3.3 and 3.4, we prove several preliminary results that are used

in the theorem proofs.

Lemma 3.5.5 (Bounded output). supλ∈Λ ‖β∗λ‖ <∞, and supw∈W,λ∈Λ |b(w)Tβ∗λ| <∞.

Proof. The eigenvalues of λjP(bgj)P(bgj)
T are 0, with multiplicity k−1, and λjP(bgj)

TP(bgj), which

is uniformly bounded above due to Assumptions 2 and 11 and the fact that gj is bounded. By Weyl’s

inequality, this means that the eigenvalues of Qλ are uniformly bounded above and away from 0.

Since Ỹ is also bounded, the claims follow by Cauchy-Schwarz.
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Lemma 3.5.6. (Vector norm with nuisance parameter). Let η(Z) be a bounded function (namely,

φ or gj). Then

‖Pn(bη̂)− P(bη)‖ = OP(
√

1/n) +OP(‖P(η̂ − η)‖) (3.92)

Proof. First, note that

‖P(b(η̂ − η))‖ ≤ ‖
√

P(b2)P((η̂ − η)2)‖ (Cauchy-Schwarz)

≤ ‖
√
P(b)2(P(η̂ − η))2‖ (Jensen’s)

= ‖P(b)P(η̂ − η)‖ (3.93)

= ‖P(b)‖ · ‖P(η̂ − η)‖ (3.94)

= OP (‖P(η̂ − η)‖) (Assumption 2)

Now, expanding 3.92, we have

Pn(bη̂)− P(bη) = (Pn − P)(bη) + (Pn − P)(bη̂ − bη) + P(bη̂ − bη) (3.95)

=⇒ ‖Pn(bη)− P(bη)‖ = OP(
√

1/n) + oP(
√

1/n) + ‖η̂ − η‖ (3.96)

= OP(
√

1/n) +OP(‖P(η̂ − η)‖) (3.97)

Lemma 3.5.7. (Bounded norm for Q̂−1
λ ).

P(‖Q̂−1
λ ‖) ≤ C → 1 for some constant C (3.98)

Proof. This follows from Assumption 1 plus the consistency of Q̂λ for Qλ. It follows that ‖Q̂−1
λ ‖ =

OP(1).

Lemma 3.5.8. Fix a λ ∈ Λ. Then

‖β̂λ − β∗λ‖ =

OP(
√

1/n) (Observable)

OP(
√

1/n) +OP (h(n)) (Counterfactual)

(3.99)
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Proof. In the observable setting, we have

β̂λ − β∗λ = (Q̂−1
λ −Q−1

λ )P(bY ) (3.100)

= Q̂−1
λ (Qλ − Q̂λ)Q−1P(bY ) (3.101)

= Q̂−1
λ (Qλ − Q̂λ)β∗λ (3.102)

= Q̂−1
λ

{
(Pn − P)(bbTβ∗λ) +

t∑
j=1

[
λj(Pn − P)(bgj)P(gjb

Tβ∗λ) + Pn(bgj)(Pn − P)(gjb
Tβ∗λ)

] }
(3.103)

The norm of each term in the braces is OP(1/
√
n) by the central limit theorem. By Lemma 3.5.7,

Q̂−1
λ doesn’t contribute to the rate, so ‖β̂λ − β∗λ‖ = OP(1/

√
n) as claimed.

In the counterfactual setting, we have

β̂λ − β∗λ = Q̂−1
λ Pn(bφ̂)−Q−1

λ P(bφ) (3.104)

= (Q̂−1
λ −Q−1

λ )P(bφ) + Q̂−1
λ (Pn(bφ̂)− P(bφ)) (3.105)

= Q̂−1
λ (Qλ − Q̂λ)Q−1P(bφ) + Q̂−1

λ (Pn(bφ̂)− P(bφ)) (3.106)

= Q̂−1
λ (Qλ − Q̂λ)β∗λ︸ ︷︷ ︸

(1)

+ Q̂−1
λ (Pn(bφ̂)− P(bφ))︸ ︷︷ ︸

(2)

(3.107)

The norm of term (2) in (3.107) is OP(1/
√
n) + OP(h(n)) by Lemma 3.5.2 and Lemma 3.5.7. For

term (1), ignoring the leading Q̂−1
λ for now, we have

(Qλ − Q̂λ)β∗λ = (Pn − P)(bbTβ∗λ)︸ ︷︷ ︸
(a)

+ (3.108)

t∑
j=1

λj
[

(Pn(bĝj)− P(bgj))P(gjb
Tβ∗λ)︸ ︷︷ ︸

(b)

+Pn(bĝj)(Pn(ĝjb
Tβ∗λ)− P(gbTβ∗λ)︸ ︷︷ ︸
(c)

]
(3.109)

The norm of term (a) is OP

(√
1/n

)
by the central limit theorem. Terms (b) and (c) decompose as

follows:

(b) = P(gjb
Tβ∗λ) {(Pn − P)(bgj) + (Pn − P)(b(ĝj − gj)) + P(b(ĝj − gj))} (3.110)

(c) = Pn(bĝj)
{

(Pn − P)(gjb
Tβ∗λ) + (Pn − P)(ĝj − gj)(bTβ∗λ) + P((ĝj − gj)bTβ∗λ)

}
(3.111)

The norms of the first term in braces in each of these two expressions is OP(1/
√
n) by the central

limit theorem. The norm of the second term is oP(1/
√
n) by Lemma 3.5.1 and Assumption 8. The

norm of the third term is OP(1/
√
n)+OP(h(n)) by Lemma 3.5.2. Using Lemma 3.5.7, the consistency
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of Pn(bĝj) for P(bgj), and the boundedness of P(gjb
Tβ∗λ), we have

‖β̂λ − β∗λ‖ = OP(
√

1/n) +OP (h(n)) (3.112)

as claimed.

We now prove the two theorems. We will use the fact that under Assumption β̂λ−β∗λ is Lipschitz

in λ, and Λ is compact, so the set {β̂λ − β∗λ : λ ∈ Λ} is Donsker.

3.D.1 Proof of Theorem 3.3 (Excess risk in the penalized setting)

Fix a λ ∈ Λ. We have

P
[(
bT β̂λ − Ỹ

)2
]
− P

[(
bTβ∗λ − Ỹ

)2
]

= ‖bT β̂λ − Ỹ ‖2 − ‖bTβ∗λ − Ỹ ‖2 (3.113)

=
(
‖bT β̂λ − Ỹ ‖ − ‖bTβ∗λ − Ỹ ‖

)(
‖bT β̂λ − Ỹ ‖+ ‖bTβ∗λ − Ỹ ‖

)
(3.114)

Since β̂λ is consistent for β∗λ, the second factor is OP(1), so we can just consider the first factor.

‖bT β̂λ − Ỹ ‖ − ‖bTβ∗λ − Ỹ ‖ ≤ ‖bT β̂λ − bTβ∗λ‖ (3.115)

= OP

(
‖β̂λ − β∗λ‖

)
(3.116)

= OP(
√

1/n) +OP(h(n)) (3.117)

where the first line uses the reverse triangle inequality, the second line uses Assumption 2, and the

third line uses Lemma 3.5.8. Under the Donsker condition, the convergence is uniform over Λ:

sup
λ∈Λ

{
P
[(
bT β̂λ − Ỹ

)2
]
− P

[(
bTβ∗λ − Ỹ

)2
]}

= OP(
√

1/n) +OP(h(n)) (3.118)
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3.D.2 Proof of Theorem 3.4 (Excess unfairness in the penalized setting)

Fix a λ ∈ Λ. The excess unfairness for gj is

P
[
gjb

T β̂λ

]
− P

[
gjb

Tβ∗λ
]

= P[gjb
T (β̂λ − β∗λ)] (3.119)

≤ P[|gjbT (β̂λ − β∗λ)|] (3.120)

=

√
(P[|gjbT (β̂λ − β∗λ)|])2 (3.121)

≤
√
P[(gjbT (β̂λ − β∗λ))2] (3.122)

= OP

(√
P[(β̂λ − β∗λ)2]

)
(3.123)

= ‖β̂λ − β∗λ‖ (3.124)

= OP(
√

1/n) +OP(h(n)) (3.125)

where the last line uses Lemma 3.5.8. Under the Donsker condition, the convergence is uniform over

Λ:

sup
λ∈Λ

{
max
j∈1,...,t

(
P
[
gjb

T β̂λ

]
− P

[
gjb

Tβ∗λ
])}

= OP(
√

1/n) +OP(h(n)) (3.126)

3.E Bases with dimension k ≥ n

We can generalize our estimators slightly to accommodate case where where k ≥ n, meaning the

dimension of the basis is greater than the sample size, as is the case for example with smoothing

splines or RKHSs. We simply add an appropriate penalty matrix term λ0β
TKβ to the penalized

estimator expression or to the objective function for the constrained estimators, where K is a k× k
smoothing matrix. In the former case, for example, the estimator β̂λ becomes

arg min
β∈Rk

Pn[(bTβ − φ̂)2] + λ0β
TKβ +

t∑
j=1

λj(Pn[ĝjb
Tβ])2 (3.127)

=

Pn(bbT ) + λ0K +

t∑
j=1

λjPn(ĝjb)Pn(ĝjb)
T

−1

Pn(bφ̂) (3.128)

For instance, in a smoothing spline setting, b represents a spline basis, and Kij =
∫
W b

′′

i (w)b
′′

j (w)dw.

In an RKHS, we’d have bi =
∑n
j=1 k(·, wj) and Kij = k(wi, wj). In a ridge setting we’d have K = I.

The penalty term ensures the invertibility of the large matrix in (3.128), and it preserves the fast

computability of a large set of solutions β̂λ.
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This penalty term may also be useful to prevent overfitting even in cases where k < n, if k is

close to n or if the basis is very expressive.

3.F Additional Plots for the Adult data
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Figure 3.12: Pairs of disparities colored by MSE for the base5 predictors (top row) and base8
predictors (bottom row) for the Adult data. Black ’X’s represent the base predictors, the red square
is the OLS predictor, and the blue dots are the penalized predictors. Radius lines indicate distance
from the origin. Inclusion of the three fair predictors, in the base8 models, improves the tradeoffs
relative to the base5 models.
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Chapter 4

On the fairness of randomized vs.

deterministic classifiers

It is common in the fairness literature to consider randomized classifiers, which (implicitly or

explicitly) map each individual to a distribution of outcomes rather than to a single outcome (Dwork

et al., 2011; Hardt et al., 2016; Agarwal et al., 2018). An outcome for an individual in a particular

instance may then be understood as a draw from their distribution. This means, for example, that

a defendant who is run through the same classifier twice may be labeled high-risk in one instance

and low-risk in the other.

There are at least two reasons for considering randomized classifiers, both practical rather than

ethical. The first is that they constitute a larger set of models to search over, since deterministic

classifiers are special cases of randomized classifiers with degenerate output distributions. This

affords a greater opportunity to find a fair model with nontrivial accuracy. The second reason

is that the randomization parameters induce smoothness in various optimization routines. For

example, randomization in Chapter 2 translates into a smooth search over a unit hypercube; without

randomization, it would not be possible in this post-processing setup to achieve counterfactual

equalized odds.

It may seem that this type of randomness is unfair in itself, irrespective of how the classifier

behaves in expectation. Consider a post-processed recidivism predictor that randomly flips the

outputs of COMPAS. Imagine that a binary COMPAS score is computed and then an administrator

reaches into an urn for a marble whose color determines whether the score will be flipped before it
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is delivered to the judge.∗ This procedure seems to violate an intuition that justice should not be

random (although see Harcourt (2008) for a contrary point of view).

We argue, however, that this randomness is not categorically different from other types of

randomness that are inherent in prediction, and that the more fundamental question is about how

to quantify (un)fairness in the first place.

There are numerous sources of randomness or variation that ultimately affect an individual’s risk

prediction, including the choice of covariates to measure, the samples that are collected for training

and testing, the choice of model type (e.g. logistic regression, ridge regression, neural net), and even

the model training procedure. For example, the training of a random forest typically involves random

bootstrap sampling for each tree and random subsampling of features at each node. All these factors

affect the outputs of the resulting predictor, regardless of whether the predictor is deterministic or

random. An individual who is labeled low-risk by a given deterministic predictor may have been

labeled high-risk by a different deterministic predictor that would have been produced by a slight

variation in the training sample.

Even conditional on the data, predictors with a particular performance profile are not generally

unique, as the results of Chapter 3 show. This phenomenon has been observed outside the context

of fairness, where it has been dubbed the “Rashomon effect” (Breiman, 2001; Fisher et al., 2019).

The set of correctly and incorrectly labeled individuals may vary substantially across a set of models

that are otherwise equivalent in their (finite sample) accuracy and fairness properties. Which model

among this set is surfaced and selected may come down to arbitrary factors like which parts of a

parameter space the model builders choose to examine.

We conjecture that most people would say that these sources of randomness are not intrinsically

unfair, or at least that they’re less unfair than the randomness involved in drawing a marble to

determine the final classifier output. Assuming this is true, we further conjecture that the difference

in intuition stems from the accessibility of relevant counterfactuals. In the marble drawing case, the

scenario decomposes into two stages: first a risk prediction is generated, and then it is randomly

flipped, or not. It is easy to imagine the first stage as representing a kind of ground truth from which

the randomized predictor then arbitrarily deviates. Furthermore, the effect of the marble drawing

on each individual is independent, so it is easy to imagine a counterfactual scenario under which an

individual’s outcome would have been different: all else being held constant, the administrator would

simply have had to draw the other color marble. By contrast, it is harder to concretely visualize

how a difference in the training sample might have changed the prediction for a given individual.

The two stage decomposition in the marble drawing scenario is an artifact of the framing,

however, which doesn’t represent how predictions are generated in practice. Regardless of whether

∗This visualization is due to Cosma Shalizi.
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a predictor is deterministic or randomized, a judge will only see one score per defendant. The

possibility that the defendant would have received a different score remains counterfactual in both

cases, even if that counterfactual possibility is easier to conceptualize with the randomized predictor.

Additionally, COMPAS does not represent the ground truth. If the randomized classifier had

the same accuracy as COMPAS, then it would be just as likely to flip an incorrect prediction to a

correct one as the other way around, in which case it is less obvious whether one predictor should

be labeled more fair than the other. If it were more accurate than COMPAS (a possibility discussed

in Chapter 3, under Definition 2.5.3), it would be more likely to flip an incorrect prediction to a

correct one, in which case it could plausibly be labeled more fair than COMPAS.

If the randomness of a randomized classifier is not categorically different from the randomness of

a deterministic classifier, then what else might make the marble drawing scenario unfair? Perhaps

it is unfair only if it degrades the accuracy of the “original” predictions. More generally, perhaps

it is unfair to choose a predictor that is less accurate than another available predictor, insofar as

more people are worse off under the less accurate predictor. Indeed, some authors have asserted

that any reduction in predictive accuracy in order to satisfy criteria like equalized odds is both

suboptimal, with respect to utility, and unfair, with respect to economic notions of unfairness like

taste-based discrimination and legal notions like disparate impact† (Corbett-Davies et al., 2017;

Corbett-Davies and Goel, 2018). These and other authors show how standard fairness constraints

can hurt the utility of the groups they’re intended to protect, which leads them to question the use of

these constraints altogether (Corbett-Davies and Goel, 2018; Hu and Chen, 2020). In place of these

constraints, Corbett-Davies and Goel (2018) advocate estimating risk as accurately as possible and

focusing fairness efforts on downstream policy interventions, while Rudin et al. (2020) emphasize

predictor interpretability and transparency as forms of procedural fairness.

Any time a classifier makes an error–a false positive or false negative–it may lead to harm,

regardless of the source of the error, e.g. whether the classifier is deterministic or randomized. Given

the impossibility of perfect predictors, we are faced with the task of choosing among imperfect ones,

which will end up incorrectly classifying different individuals. While we remain agnostic about how

best to do this in general, we argue that the distinction between randomized and deterministic

predictors is a second order distinction, and that the more fundamental question is about how to

operationalize fairness in the first place. There is the subject of much debate in the algorithmic

fairness community, and there is no consensus at present. Arguably, the majority of work in this

area is concerned with distributional notions of fairness, which are formalized as functionals on

†Although many algorithmic fairness researchers ground their work in legal notions of discrimination like disparate
treatment and disparate impact, it is not entirely clear how these terms map onto quantitative fairness criteria in the
eyes of the law. Some researchers use variants like impact disparity in order to explicitly distinguish the algorithmic
criteria from their motivating legal concepts (Lipton et al., 2018).
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the joint distribution of covariates, predictions, and outcomes. These criteria are insensitive to

predictions at the individual level, and they are “static” in that they do not take into account

how predictions are generated. However, fairness in the colloquial sense seems to be a rich and

multidimensional construct, and algorithmic fairness will ultimately need to reflect this richness.

Distributional fairness criteria will likely have a role to play, alongside other notions of fairness that

emphasize how predictors are developed, how they are put to use, how transparent they are, and the

relationships between those with the power to develop and deploy them and those who are subject

to their predictions.
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