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Abstract
Planetary rovers allow for science investigations in remote environments. They

have traversed many kilometers and made major scientific discoveries. However,
rovers spend a considerable amount of time awaiting instructions from mission con-
trol. The reason is that they are designed for highly supervised data collection, not
for autonomous exploration. The exploration of farther worlds will face increasing
challenges and constraints. Such missions will demand a new approach.

This work advocates Bayesian models as powerful tools for a new paradigm
for robotic explorers. In this approach, the explorer’s description of where to go
is not prescribed by a fixed set of instructions, but instead by a model of what the
explorer believes. This formulation has several benefits. Bayesian models provide
a mathematically grounded framework to reason about uncertainty. They can allow
robots to gain a deeper understanding of the evolving scientific goals guiding the
mission. Furthermore, they can empower scientists by providing explainable results.

To this end, this research develops models that allow for data interpretation by
learning and exploiting structure in the data and the environment. It shows how these
models enable robotic explorers to make intelligent decisions based on instantaneous
information. Ultimately, it demonstrates how science productivity is improved by
measuring science value with information-theoretic variables and by formulating
the exploration problem in terms of Bayesian experimental design.

This work makes several contributions to the field of science-driven robotic ex-
ploration. First, it introduces three different deep generative models for the analysis
of data that enable scientists to quantify and interpret learned statistical dependen-
cies. Then, it presents an adaptive exploration model that leverages contextual infor-
mation from remote data to efficiently extrapolate features from in situ observations,
as well as a corresponding strategy for improving science productivity. Afterward, it
establishes a hierarchical probabilistic structure in which scientists initially describe
their abstract beliefs and hypotheses, and then this belief evolves as the robot makes
raw measurements; additionally, science information gain is efficiently computed
and maximized. Finally, it proposes a comprehensive model for planetary rover ex-
ploration that considers both science productivity and risk.

The presented Bayesian models are validated and evaluated in various science
investigation scenarios that can provably benefit from autonomous robotic explo-
ration. Such scenarios include terrestrial, airless, and Martian surface surveys, as
well as marine biology studies. Emphasis is placed on spectroscopic data, which is
widely used in the natural sciences for composition analysis. Promising results are
shown in simulations and field experiments using the autonomous rover Zoë.
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Chapter 1

Introduction

1.1 Motivation

Rovers are the means to better understanding Mars (Figure 1.1). Over the past two decades,
robots have provided transformative information about the Martian geological present and its
ancient past. With their ability to move around and investigate multiple locations, rovers have
tremendous advantages over static landers. By investigating many sites and correlating observa-
tions, Mars rovers have provided compelling evidence that the planet was once more habitable
than it is today [66]. More missions are scheduled for the near future and they will carry out new
exciting tasks. For instance, NASA’s Perseverance rover is currently caching samples that will
one day be brought back to Earth.

In the next few years, rovers will be critical for studying the Moon. Whether ice exists
in useful amounts is one of the most pressing questions today since ice could eventually be
harvested to sustain human exploration. MoonRanger, a small robot being developed by Carnegie
Mellon University and Astrobotic Technologies, will be the first rover to search for signs of water
at the South Pole of the Moon in 2023 [23]. NASA will follow up these efforts with its more
capable Volatiles Investigating Polar Exploration Rover (VIPER), which will collect about 100
days of data using four different science instruments. Its goal will be to perform more rigorous
and sustained scientific characterization of the ice at the South Pole [130].

Modern rovers may be described as semi-autonomous agents that are designed for data col-
lection [55]. These rovers are guided by scientists directly selecting a strategy that they believe
will lead to greatest discovery and success. The scientists’ instructions are formed from their
expert knowledge of the area and expectations as to where and how to best gather information.
Human scientists continually reinterpret their measurements with a growing contextual knowl-
edge, contrary to existing experimental design formalisms, real missions are characterized by a
frequent reformulation and replanning throughout the investigation [79].

Achieving high levels of productivity for planetary rover operations can be difficult [51].
These missions are limited in bandwidth, delayed due to distance and restricted to just a few
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Figure 1.1: Artist’s concept of Curiosity, the NASA rover deployed on Mars. It first travels to locations of
interest. It then uses its ChemCam instrument together with other devices to investigate the composition
of rocks as scientists try to understand the presence of water on ancient Mars. Image courtesy of NASA
[2].

communication cycles per day. Rovers spend a considerable amount of time awaiting instruc-
tions from ground operators that require substantial effort when interpreting data and planning
commands. For example, a study using data from the Mars Science Laboratory mission revealed
that activity plans were conservative since they completed on average 28% faster than predicted
[50].

A few automated science data collection procedures have been developed as these are a way
to alleviate the aforementioned communications and operations bottleneck [43, 180]. The Au-
tonomous Exploration for Gathering Increased Science (AEGIS) system analyzes rover images
onboard Mars rovers to detect pre-defined science features of interest, enabling targeted instru-
ment data to be acquired immediately with no delays for ground communication [43]. However,
AEGIS pursues static objectives that are fixed at the outset, providing little adaptability as the
knowledge of the field area evolves with incoming data.

The exploration of farther celestial bodies will require more adaptive and sustained auton-
omy. Ocean Worlds such as Europa or Enceladus have become key astrobiology targets because
scientists believe they possess subsurface oceans covered in ice. However, exploring these worlds
will be extremely challenging. It will involve building aquatic robots capable of navigating with
virtually no communication under ice sheets that could be up to 20 kilometers thick [92].

Upcoming deep space missions will demand a new paradigm. Robotic agents designed for
automated data collection will need to evolve into true robotic explorers that are capable of mod-
eling scientific endeavor itself [55]. Envisioning and addressing the next generation of robotic

2



Model Observations

RobotScientist

Bayesian
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Bayesian
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LEARNING
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Figure 1.2: Science-driven robotic exploration as a cycle of two processes: Bayesian inference (learning)
and Bayesian experimental design (planning). The learning step updates a model of what the explorer
believes as new observations occur. The planning step selects new observations that yield the greatest
amount of information according to the current state of the model. Scientists can supervise the over-
all process by defining hypotheses, priors, revisions, and constraints. A robot can continually calculate
navigation plans that optimize scientific discovery.

explorers is what motivates this research.

1.2 Bayesian Model of Exploration

This work advocates Bayesian models as powerful tools for creating the next generation of
science-driven robotic explorers. In this research, the explorer’s description of where to go is
not prescribed by a fixed set of instructions, but instead by a model of what the explorer believes
and that is able to adapt to real-time information. This formulation has several benefits. It al-
lows a robot to gain a deeper understanding of the evolving scientific goals guiding the missions.
Moreover, it can empower scientists by providing explainable results.

This research formulates adaptive robotic exploration as a cycle of two processes: Bayesian
inference and Bayesian experimental design (Figure 1.2). The Bayesian inference step is con-
cerned with how to update the model of what the explorer believes given new observations, which
is learning. The Bayesian experimental design step is focused on selecting new observations that
yield the greatest amount of quantified information given the current state of the model, which is
planning. Scientists can supervise the overall process by defining hypotheses, priors, revisions,
and constraints. In real time, a robot can continually calculate navigation plans that maximize
scientific discovery.

3



(a) In this case the robot begins with little or no prior
knowledge of the explored environment.

(b) The robot identifies, extrapolates, and maps two
mineral signatures (corresponding to Mg carbonate
and Fe olivine) using a Bayesian spatial model.

(c) The robot collects more samples in order to up-
date and refine the mineral map, especially when
mapping Fe olivine.

(d) The rover discovers and maps a third mineral
(Fe/Ca carbonate) in the scene.

Figure 1.3: Conceptual example of an autonomous robotic explorer performing a geologic survey near
Nili Fossae on Mars.

An example that illustrates how a robotic exploration mission can be formulated in terms
of Bayesian inference and Bayesian experimental design serves as a preview of this research.
Imagine a mission where a rover is characterizing and mapping the surface mineralogy of a
location near Nili Fossae on Mars (Figure 1.3). Minerals such as carbonates and olivines have
been found in Nili Fossae, making it a location of high astrobiological interest [173]. Carbonates
are minerals that contain a carbonate ion, and are of interest because they are typically formed
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through the interaction of carbon dioxide and liquid water. This makes carbonate deposits of
interest to astrobiologists who are trying to determine aspects of the ancient environment of Mars.
Olivines are a group of minerals that are associated with volcanic activity. Olivines are silicates
containing varying amounts of magnesium (Mg) and iron (Fe). A process known as hydrothermal
serpentinization produces carbonates in the presence of olivines [16]. In order to identify such
minerals, a Martian rover carries special instruments that are used to analyze the composition
of samples. In adaptive science-driven robotic exploration, the rover not only is able to identify
key minerals in the samples, but its model of the explored environment is updated accordingly.
Spatial models can be especially powerful for exploration since maps are an inherent aspect of
many scientific endeavors [162]. This step corresponds to the Bayesian inference process. After
the model is updated, the rover collects new observations that are linked to minerals that are yet to
be found in the scene. This step corresponds to the Bayesian experimental design process, where
the designed experiment is the path or series of mineral observations that maximize diversity, and
hence information from the explored scene. In summary, these Bayesian steps guide the robot
and allow it to make intelligent decision based on an evolving knowledge of the area throughout
the mission.

1.3 Thesis Statement

Formally, this research advocates the following conclusion:

Bayesian models can enable and improve robotic exploration for science investigations.

Specifically, this work focuses on demonstrating the following statements:
• Bayesian models can enable data interpretation by learning and exploiting structure in the data

and the environment.

• Bayesian models can enable decision making by helping plan intelligent actions based on
current information.

• Bayesian models can improve science productivity as measured by formal principles of infor-
mation theory and Bayesian experimental design.

1.4 Contributions

This research contains significant contributions to the field of science-driven robotic exploration.
In general, it demonstrates how Bayesian models can be used for science data interpretation and
intelligent decision-making; and ultimately for improving science return.

To this end, this work constructs and studies a series of relevant science investigation sce-
narios that can provably benefit from autonomous robotic exploration. These scenarios focus on
terrestrial, airless, and Martian surface surveys with rovers. Additionally, this work addresses
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marine biology studies as they can too be assisted by autonomous robots. Herein we pay special
attention to the construction of spatial models for exploration since maps are an inherent aspect
of many scientific investigations [162]. Emphasis is placed on observations from spectrometers
as they are powerful instruments for estimating the chemical composition of many materials [32].

This research describes three different deep generative models, which combine ideas from
Bayesian models and deep neural networks. The objective is to allow scientists to quantify, visu-
alize and interpret learned statistical dependencies while performing data analysis. We focus on
spectroscopic data that is relevant for the aforementioned scientific scenarios. We start with the
Variational Autoencoder, which is used to learn, extract, and normalize science features. We then
describe the Deep Conditional Gaussian Model, a tool for probabilistic regression that performs
Gaussian parameter estimation for each different input. We apply this model to the problem
of enhancing low-resolution data, also known as super resolution. We then present the Deep
Conditional Dirichlet Model, a similar architecture that instead performs Dirichlet parameter
estimation. It can be used for classification tasks, and more generally, for predicting propor-
tional abundances of mixed classes. Results are shown when applied to the problem of spectral
unmixing.

This work presents a spatial model that leverages contextual information from remote data to
efficiently extrapolate features from robot measurements throughout an explored environment.
It is based on Gaussian process regression, but enhanced in such a way that is able to map and
extrapolate multivariate data, which is latter used to map composition throughout wide areas.
Additionally, an objective function is derived for improving science productivity in exploration.
Many different sampling strategies are compared. These methods are evaluated both in extensive
simulations at diverse locations and field experiments with a rover in Nevada.

This research develops a Bayesian framework in which scientists initially describe their ab-
stract beliefs and hypotheses, then the state of this belief evolves as the robot makes raw mea-
surements. This is possible by constructing a hierarchical probabilistic structure that relates
high-level science representations to measurable data. We call this model the science hypothesis
map. We also derive, efficiently compute, and maximize scientific information gain in the model.
This system is tested in simulations where various science-blind and science-aware path planners
are compared. Results with a rover are also shown.

Finally, this work addresses a comprehensive strategy for planetary rovers that accounts for
science and risk. Most works related to motion planning for rovers focus on either increasing
science productivity or reducing traversability risk; but not both at the same time. We present
a Bayesian framework for the integration of these two tasks. Specifically, one that is able to
quantify information and risk, provide probabilistic guarantees, and design paths accordingly.
This approach is evaluated in a Mars surface simulation study using both science and terrain-
relevant data.
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1.5 Thesis Overview

The organization of this document is as follows.
Chapter 2 Methods of Bayesian Modeling for Analysis, Inference, and Decision-Making

covers concepts that are relevant for this research. It explains definitions and well-established
principles of Bayesian inference, uncertainty quantification, information theory, and Bayesian
experimental design.

Chapter 3 Spectroscopic Data and Analysis Techniques includes a description on spectro-
scopic data, as well as a discussion on corresponding analysis techniques. The objective of this
chapter is to understand how to enable robots to analyze spectroscopic data.

Chapter 4 Scenarios of Science-Driven Robotic Exploration addresses the various science
scenarios, instruments, data sets, and tools that are used in this research. Specifically, this chapter
describes scientific tasks involving diverse geologic surveys, as well as coral reef studies.

Chapter 5 Deep Generative Models for Spectroscopic Data Analysis starts by discussing the
Variational Autoencoder, which is used to learn and normalize science features. It then describes
the Deep Conditional Gaussian Model and shows results when applied to the problem of spectral
super-resolution. It then presents the Deep Conditional Dirichlet Model and demonstrates results
when applied to the problem of spectral unmixing.

Chapter 6 Combining Remote and In Situ Measurements for Adaptive Exploration describes
an active model for efficient wide-area mapping and robotic exploration. To this end, this model
integrates ideas from deep generative models, Gaussian processes, and learning-based composi-
tion analysis.

Chapter 7 The Science Hypothesis Map for Co-Exploration addresses a Bayesian framework
and hierarchical probabilistic structure. This model relates high-level science representations to
measurable data, allowing scientists to initially describe their abstract beliefs and hypotheses,
then enabling the robot to update the state of this belief with new observations.

Chapter 8 Science and Risk-Aware Exploration introduces a framework for planetary rovers
that improves science return while accounting for traversability risk. It describes a probabilistic
risk model that combines geometric and semantic information.

Chapter 9 Conclusions closes this thesis with a summary of this work and a discussion on its
contributions. It also discusses relevant avenues for future research.
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Chapter 2

Methods of Bayesian Modeling for
Analysis, Inference, and Decision-Making

This research focuses on Bayesian models for one important reason: Bayesian models provide a
mathematically grounded framework to reason about knowledge and uncertainty. Consequently,
they can allow robots to gain a deeper understanding of the evolving scientific goals guiding their
missions. This chapter describes useful concepts that serve as the basis for science analysis and
robotic exploration in this research. Specifically, it explains concepts from Bayesian inference,
uncertainty quantification, information theory, and Bayesian experimental design.

2.1 Bayesian Inference

Bayesian inference is a method of statistical inference in which the probability for a hypothesis
is updated as more information from observations becomes available. In this research we are
interested in science hypotheses. An example may be the spatial distribution of minerals in a
region of Mars, as described earlier in Chapter 1. Such hypotheses need to be updated with
scientific observations from instruments. These observations may come in the form of images,
spectroscopic measurements, thermal readings, etc. Ultimately, the goal of this work is to define
the variables and to construct the probability distributions required to formally relate low-level
instrument observations to high-level science hypotheses so the latter can be updated with the
former. To this end, let us cover the following basic definitions in Bayesian inference:
• θ ∈ Θ is the hypothesis or parameter to estimate.

• x ∈ X is the observation or new data.

• p(θ) is known as the prior distribution or prior knowledge. It is the distribution of the hypoth-
esis θ before any data is observed.

• p(x|θ) is known as the likelihood or sampling distribution. It indicates the compatibility of an
observation x given the hypothesis θ.
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• p(x) is known as the marginal likelihood or evidence. It is the distribution of the observation
x, often marginalized over the possible hypotheses, i.e. p(x) =

∫
Θ
p(x|θ)p(θ)dθ.

• p(θ|x) is known as the posterior distribution or posterior knowledge. It is the updated proba-
bility of the hypothesis θ given observation x.

All of these concepts are related to each other in Bayes’ theorem, which is given by:

p(θ|x) =
p(x|θ)p(θ)
p(x)

. (2.1)

2.2 Uncertainty Quantification

Science exploration seeks to discover the unknown. It requires formal procedures to quantify
uncertainty so as to make informed analyses and decisions. In this research we advocate Bayesian
models since they provide a mathematically grounded framework to reason about uncertainty.
But first, it is important to understand what uncertainty is and how to quantify it.

Uncertainty may be classified into two categories: aleatoric and epistemic [95, 98]. Aleatoric
uncertainty is the intrinsic randomness or noise in the data. This could be for example instru-
ment noise, usually resulting in uncertainty that cannot be reduced even if more data were to
be collected. In contrast, epistemic uncertainty accounts for uncertainty in the model and its
parameters. This uncertainty can be explained away given enough data; for example, by gather-
ing information from scientific instruments that complement each other, or by getting data from
unsampled locations. The Bayesian models that we present in this research will address these
two kinds of uncertainty. For instance, our deep generative models (Chapter 3) focus on learning
aleatoric uncertainties in the data, while Gaussian processes (Chapter 4) are typically used to
model and reduce epistemic uncertainty in certain cases. An example of aleatoric and epistemic
uncertainties is shown in Figure 2.1. Note that some data might be redundant and may provide
no additional information. A scientifically relevant example would be to take multiple pictures of
the same rock at the same location under the same conditions, essentially just repeating the same
information. Hence, we point out the notion that some samples are more informative than others;
a robotic explorer would like to select them accordingly. Intuitively, they robot should prioritize
samples that are different to what it has already seen. This idea will be further explained and
formalized when we later discuss information theory and Bayesian experimental design.

Furthermore, there is a distinction between two types of aleatoric uncertainty or noise: ho-
moscedastic and heteroscedastic (Figure 2.2). Essentially, homoscedastic uncertainty refers to
a constant noise function for all inputs, whereas heteroscedastic uncertainty involves variable
noise functions. This distinction is important in this research as some of our Bayesian models
assume homoscedastic uncertainties, while others are able to represent heteroscedastic noise. It is
worth mentioning that both independent and dependent variables, or inputs and outputs, can have
aleatoric uncertainties. Forward uncertainty propagation is the quantification of uncertainties in
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Aleatoric (data) uncertainty

Epistemic (model) uncertainty

Figure 2.1: Example of aleatoric (data) and epistemic (model) uncertainties. In this example, epistemic
uncertainty could be reduced by collecting data in the interval x = (5, 15).
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Figure 2.2: Homoscedastic and heteroscedastic uncertainties. Homoscedasticity refers to a constant noise
function (left), whereas heteroscedasticity means that noise changes for different values of x and y (right).

system outputs propagated from uncertain inputs. A key insight is that the overall uncertainty in
the system response tends to increase where there is a high derivative in the underlying function
(Figure 2.3). Intuitively, this means that even a small amount of noise in the input can consider-
ably change the value of the output, and thus increase the associated uncertainty. This insight will
prove useful we demonstrate how our work on deep generative models (Chapter 5) and Gaussian
processes (Chapter 6) is able to capture this propagation of uncertainties.
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Output Noise: 𝜎! = 0.025

Input Noise: 𝜎" = 1.0

Figure 2.3: Forward uncertainty propagation. This example involves a sigmoid function with constant
Gaussian noise models for x (input) and y (output). The overall uncertainty in the system response in-
creases at points where the function has a large derivative since small changes in the input can produce
large variations in the output.

2.3 Information Theory

Information theory studies the quantification, storage, and communication of information [35].
It is based on probability theory and statistics. In this work we are especially interested in mea-
sures of information and uncertainty for random variables describing scientific hypotheses and
observations. These measures and properties are powerful tools when applied to our Bayesian
models for science exploration. They allow a robotic explorer to quantify information and uncer-
tainty in science hypotheses and observations; they also permit the robot to understand how new
observations will affect the science hypotheses guiding its mission. Next we describe the ones
that are used in this research.

Shannon entropy is the fundamental unit of measure in information theory. It quantifies the
average amount of information I of a probability distribution. It is defined as follows:

H(X) = Ex [I(x)] = −
∑
x∈X

P (x) logb P (x), (2.2)

where b is the logarithm base. When b = 2, entropy (and information) is measured in bits. When
b = e, entropy is measured in natural units (nats). We employ the natural logarithm throughout
this work when calculating Shannon entropy. Note that H(X) ≥ 0 as long as b > 1. A small
entropy value indicates that there is little uncertainty in the distribution; and vice versa, a large
entropy value means that there is high uncertainty. An advantage of using Shannon entropy for
measuring uncertainty is that its value is always a scalar, even for multivariate distributions.

12



The conditional entropy is defined as the expected entropy of X given Y , that is:

H(X|Y ) = EY [H(X|y)] = −
∑
y∈Y

P (y)
∑
x∈X

P (x|y) logP (x|y). (2.3)

Mutual information quantifies how much information is shared between two random vari-
ables. It is defined as follows

MI(X;Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
. (2.4)

Information gain measures the amount of information that can be obtained about one random
variable after observing another. It is defined as the expected reduction in the entropy of X given
Y :

IG(X|Y ) = H(X)−H(X|Y ). (2.5)

It has been shown that information gain and mutual information are equivalent [35]:

IG(X|Y ) = MI(X;Y ). (2.6)

Additionally, we observe that both measures are symmetric and non-negative

IG(X|Y ) = IG(Y |X) = MI(X;Y ) = MI(Y ;X) ≥ 0. (2.7)

The Kullback-Leibler divergence (KLD), also known as information divergence or relative
entropy, quantifies the difference between two probability distributions P (X) and Q(X). It is
defined as follows:

DKL(P (X)||Q(X)) =
∑
x∈X

P (x) log
P (x)

Q(x)
. (2.8)

Note that this measure is not symmetric, i.e., DKL(P (X)||Q(X)) 6= DKL(Q(X)||P (X)). The
Kullback-Leibler divergence is often used to evaluate the difference between the “true” or pos-
terior distribution P (X) and an “arbitrary” or prior distribution Q(X). Assuming that P (X|Y )

is the posterior and P (X) is the prior, we find that information gain is equivalent to the expected
Kullback-Leibler divergence between all possible outcomes for the posterior and the prior

IG(X|Y ) = EY [DKL(P (X|y)||P (X))] . (2.9)

Cross-entropy also measures the difference between two probability distributions P (X) and
Q(X). It is given by:

H(p, q) = −
∑
x∈X

P (x) logQ(x). (2.10)
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Figure 2.4: Differential entropy and Kullback-Leibler divergence for different Gaussian distributions.
Large variances yield large entropies (e.g., q(X)). Note that differential entropy can be negative for small
variances (e.g., p(X)). Similar distributions have a small Kullback-Leibler divergence (left); and vice
versa, dissimilar distributions have a large Kullback-Leibler divergence (right).

Cross-entropy is a smooth function that is commonly used when training neural networks for
classification tasks. It may also be formulated in terms of entropy and the Kullback-Leibler
divergence:

H(p, q) = H(P (X)) +DKL(P (X)||Q(X)). (2.11)

For continuous distributions, Shannon entropy is called differential entropy and replaces sum-
mations with integrations

H(X) = Ex [I(x)] = −
∫
X

p(x) log p(x)dx. (2.12)

The same idea regarding integration applies to all the information measures previously men-
tioned. Note that differential entropy can have negative values. However, information gain, mu-
tual information, and the Kullback-Leibler divergence are always non-negative for continuous
distributions. A relevant example involving Gaussian distributions is shown in Figure 2.4.

Additionally, entropy, mutual information, information gain, and the Kullback-Leibler diver-
gence are additive for independent random variables (discrete and continuous). For instance,

X1 ⊥⊥ X2 ⇒ H(X1, X2) = H(X1) +H(X2). (2.13)

2.4 Bayesian Experimental Design

Bayesian experimental design provides a probabilistic framework for making decisions under
uncertainty [25]. Specifically, it is used to find, or design, the experiment that will be most use-
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ful to explain a hypothesis θ ∈ Θ. This research focuses on science experiments performed by
robotic explorers. Particularly, experimental designs where a robot needs to decide which are
the best new observations to be collected, that is, the ones that will most significantly reduce
the uncertainty of the science hypotheses in the exploration model. The formalism provided by
Bayesian experimental design allows robotic explorers to follow principled methods to select
such science observations that yield the greatest amount of information gain. To this end, we fol-
low the definitions from the seminal work by Lindley [113]. We start by noting that observations
x ∈ X depend on the chosen experiment ε, i.e., p(x) = f(ε).

The amount of information of the prior knowledge p(θ) is quantified using entropy:

H(Θ) = −
∫

Θ

p(θ) log p(θ)dθ. (2.14)

After the experiment has been performed and a value x has been observed, the amount of infor-
mation of the posterior knowledge is quantified using conditional entropy:

H(Θ|x) = −
∫

Θ

p(θ|x) log p(θ|x)dθ. (2.15)

The amount of information provided by the experiment ε when the observation is x, with
prior knowledge p(θ), is given by the reduction in entropy:

g(ε, p(θ), x) = H(Θ)−H(Θ|x). (2.16)

There are multiple possible outcomes for the observation x. Therefore, the average amount of
information provided by the experiment ε, with prior knowledge P (θ), is given by the expected
reduction in entropy:

g(ε, p(θ)) = Ex [H(Θ)−H(Θ|x)] . (2.17)

Note that this expression is equivalent to information gain (see Equation 2.5):

g(ε, p(θ)) = H(Θ)−H(Θ|X). (2.18)

The objective of Bayesian experimental design is to find the optimal experimental design ε?,
which is the one that maximizes information gain:

ε? = arg max
ε
g(ε, p(θ)). (2.19)

Note that the prior knowledge H(Θ) is affected by neither the experiment nor the observations,
so maximizing information gain is the same as minimizing the expected posterior entropy:

ε? = arg min
ε

Ex [H(Θ|x)] . (2.20)
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Chapter 3

Spectroscopic Data and Analysis
Techniques

This work pays special attention to spectroscopic data; a critical element for Earth and planetary
studies. This chapter first explains what spectroscopic data is. It then includes a discussion on
common analysis techniques for spectroscopic data. Understanding spectroscopic data analysis
techniques, as well as their benefits and drawbacks, is important for our research since we want
to enable robotic explorers to process spectroscopic data in a principled and automated manner.

3.1 Spectroscopic Data

Earth and planetary sciences often rely upon the analysis of spectroscopic data. Instruments such
as the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) [128] and the Thermal
Emission Imaging System (THEMIS) [30] have been vital for understanding the geology of
Mars, as well as for studying climate and habitability implications [12]. Another example is the
Moon Mineralogy Mapper (M3) instrument, which produced the first mineralogical map of the
Moon and also found water ice in the polar regions [112]. Therefore, herein we place emphasis
on spectroscopic data.

In general, spectroscopy is a discipline that studies the interaction between matter and elec-
tromagnetic radiation. Spectrometers are instruments that measure different wavelengths of the
electromagnetic spectrum and thus capture more information than can be seen with the eye. By
observing unique patterns in the reflectance and absorption of light throughout the wavelengths
of the electromagnetic spectrum, the chemical composition of an object may be derived, such
as the presence of water or certain minerals [32, 111]. The measured signals are called spectra
and the aforementioned patterns are known as spectral features. Herein we focus on reflectance
spectra, which is the fraction of incident electromagnetic power that is reflected from a surface.

There are many different spectroscopic sensors and techniques, both for remote and in situ
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Figure 3.1: Example of a spectroscopic image. A 3-D representation is shown on the left, while two
reflectance spectra corresponding to two pixels in the image appear on the right.

sensing. We are especially interested in imaging spectroscopy, which is the acquisition of images
where each pixel stores information from many contiguous wavelengths of the electromagnetic
spectrum, instead of just the three bands that comprise the standard RGB color model. Spec-
troscopic images are also known as hyperspectral images or hyperspectral cubes. They contain
much more information that a conventional RGB image, yet a similar spatial structure (Figure
3.1).

3.2 Analysis Techniques

The analysis of spectroscopic data may be a laborious task and often requires the expertise and
intuition of scientists, as well as some knowledge of the specific context in which the spectra was
measured. This analysis becomes increasingly hard on new planets or environments. Therefore,
adequate processing and analysis methods are necessary to obtain meaningful and efficient re-
sults. There are many different types of spectroscopic analysis methods, depending on the task at
hand and the required or desired level of complexity. Understanding these spectroscopic analysis
techniques, as well as their benefits and drawbacks, is important for our research since we want
to enable robotic explorers to process spectroscopic data in a principled and automated manner.

Spectral analysis can be performed by focusing on relevant features (Figure 3.2). In this
context, spectroscopists tend to use the absorption bands of spectra as characteristic features
for material identification [32, 104]. Spectral absorption feature have basic elements such as
position, depth, and width. These elements have been used to construct expert systems for simple
shape matching [105]. More sophisticated methods perform a complete shape matching of the
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Absorption feature

Figure 3.2: Example of a spectral absorption feature in the infrared wavelengths.

absorption features using a least squares criterion in conjunction with encoded expert knowledge,
most notably the Tetracorder system [33]. Finally, some techniques attempt to model the features
by fitting functions such as Gaussian, Lorentzian, or Voight curves to spectral signals [15]. In
general, these methods usually require more effort to implement and are highly sensitive to noise,
but their results and way of operation are better in terms of scientific interpretability.

Another approach to spectral analysis is to look at the whole spectrum and compare it to spec-
tra of known materials. A very popular method involves comparing pairs of spectra (x,y) using
distance metrics. Probably the most common distance is the Spectral Angle Mapper (SAM),
which is a direct analog of the cosine distance function or the normalized cross-correlation oper-
ation [104]:

SAM(x,y) = cos−1

(
x · y

||x||2||y||2

)
. (3.1)

Other examples of distance metrics within this context are the Spectral Information Divergence
(SID), a symmetric variation of the Kullblack-Leibler divergence that treats spectra as probability
vectors [26]:

SID(x,y) = DKL(x||y) +DKL(y||x); (3.2)

as well as the Hamming distance, which involves encoding spectra as binary signals [117]. Full
spectral analysis methods are relatively simple to automate and are more robust to the presence
of noise, but they tend to lose physical interpretability.

The aforementioned strategies may not be very useful when dealing with mixtures of differ-
ent materials, which is a common problem as it is often difficult to find pure materials in the
environment. These pure constituents are called endmembers. The computation of the fractional
abundance of each endmember is known as spectral unmixing. In general, there are two different
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models: linear and nonlinear. Linear models assume that a spectrum x can be represented as a
linear combination of its endmembers:

x = Er, (3.3)

whereE = [e1, e2, . . . , en] is a spectral library consisting of n endmembers, and r = [r1, r2, . . . , rn]

is the vector of mixing ratios, or fractional abundances, and the variable to solve in the linear
equation. This linear equation can be solved by using the least squares method, which minimizes
the following expression:

min
r
||Er − x||22 (3.4)

There are three main techniques for linear unmixing using the least squares method:

• Unconstrained least squares: solves the equation for r using normal least squares without any
constraints on r.

• Non-negative least squares: solves the equation for r with ri ≥ 0,∀ri
• Fully-constrained least squares: solves the equation for r with ri ≥ 0,∀ri and

∑n
i=1 ri = 1.

However, linear models may be too simplistic in some situtations. There exist more complex
nonlinear models for spectral unmixing [32, 109, 111]. These assume that a spectrum x can be
represented as nonlinear function of the endmembers and their fractional abundances:

x = f(E, r) (3.5)

Nonlinear mixing models may consist of operations ranging from polynomial functions to so-
phisticated neural networks. They may also be based on radiative transfer and light scattering
models that are more physically grounded [69, 70]. Nonlinear models may be capable of fitting
the data with more accuracy, but have the drawback of potential overfitting, even when using a
small number of model parameters.

In principle, many image processing, machine learning, and computer vision tools can be ap-
plied to spectroscopic images. Algorithms ranging from Gaussian Classifiers and K-means [171]
to Deep Neural Networks [139] have been applied to these. An important thing to underscore
is that spectroscopic images may be very large files, therefore dimensionality reduction can be
used to get meaningful results with reasonable computational resources. Since there is a high
correlation between adjacent channels, methods such as Principal Component Analysis (PCA)
are common for spectral dimensionality reduction [109, 111]. Another strategy consists in tak-
ing advantage of the existing high correlation between neighboring pixels. In standard RGB
images, superpixel algorithms are popular for finding features and reducing processing complex-
ity. They have also been used for various spectroscopic data analysis tasks [40, 45, 163]. Figure
3.3 shows an example of the Simple Linear Iterative Clustering (SLIC) superpixel algorithm [1]
when applied to a spectroscopic image.
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(a) RGB channels. (b) Spectral superpixel segmentation using SLIC. Visual-
ization is on a false RGB image.

Figure 3.3: Example of the superpixel segmentation of a spectroscopic image using SLIC [1].

Table 3.1: Summarized comparison of the spectral analysis techniques.

Strategy Simplicity Physical Interpretability Data fitting
Linear mixing High High Potential underfitting

Nonlinear mixing Low Low Potential overfitting
Absorption feature analysis Low High Potential overfitting

Full spectral analysis High Low Potential underfitting

In conclusion, there are multiple strategies for the analysis of spectroscopic data. A simple
and compact taxonomy can be described as having full spectral vs. spectral feature analysis tech-
niques, as well as having linear vs. non linear spectral unmixing methods (Table 3.1). Among
them, there is an overall trade-off between computational simplicity (both in terms of implemen-
tation and data processing), physical interpretability, and accuracy. Additionally, given the high
dimensionality of spectroscopic data, preprocessing and dimensionality reduction techniques can
be quite useful. Our presented Bayesian models, especially the ones described in Chapter 5, ad-
dress many of the aforementioned aspects of spectroscopic data analysis.
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Chapter 4

Scenarios of Science-Driven Robotic
Exploration

The thesis statement (Chapter 1) is supported with evidence from scientifically relevant scenar-
ios that can provably benefit from autonomous robotic exploration. This is shown in extensive
simulations, and in certain instances, in field experiments with the robotic platform Zoë. Overall,
we focus on geologic investigations as they currently are a major component of planetary robotic
exploration. We present three different geologic scenarios: terrestrial exploration in Nevada,
studies of airless planetary bodies, and Martian surveys. In addition to our geologic exploration
scenarios, we recognize that other science endeavors can benefit from autonomous robotic ex-
ploration. Hence, we address marine biology studies via simulations of coral reef investigations,
which may be performed with autonomous underwater vehicles (AUV).

This chapter starts by describing the robotic platform Zoë. Then, it explains the four afore-
mentioned geologic exploration scenarios. Afterward, it discusses the coral reef study simula-
tion. Finally, it includes a summary relating common elements among these science scenarios.

4.1 Robotic Platform Zoë

Zoë is an autonomous astrobiology rover developed by Carnegie Mellon University (Figure 4.1).
It is named after the Greek word for ”life”. It was originally developed to carry out a series of
astrobiology investigations in the Atacama Desert, Chile [175]. Specifically, Zoë was designed
to provide several improvements over its previous generation, the rover Hyperion [176].

The rover has a width of 1.63 m, a length of 2.0 m, and a mass of 198 kg. Zoë has 4
independently driven wheels. Each axle is attached to the chassis by joints that are free to rotate in
two degrees-of-freedom. The rover’s maximum velocity is 0.9 m/s or 3.2 km/h. Zoë is powered
by an array of solar panels that provide, on average, 27% efficiency in converting solar energy.
Additionally, two 1500Whr Li-Polymer batteries charge when there is excess power and are
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Figure 4.1: Zoë is an autonomous astrobiology rover developed by Carnegie Mellon University. The robot
carries various instruments that allow for autonomous science.

drawn down when energy is needed.
Zoë carries a customized and integrated portable spectrometer, an Analytical Spectral De-

vices (ASD) FieldSpec Pro. The instrument has 2151 channels within a spectral range of 350-
2500 nm. It is internal to the rover but connected by a multi-strand fiber-optic line to a 1 foreoptic
mounted on a pan-tilt mechanism. This allows the spectrometer to collect spectra of nearby rocks
and soils, or patches of more distant terrain.

Zoë carries a computer with an Intel i7 processor with a base frequency of 2.8 GHz and 4
cores, as well as 4GB of DDR4 memory. The rover’s software architecture has evolved over the
years. The latest architecture is implemented using the Robot Operating System (ROS) [140].
We pay special attention to the science planner in the architecture (Figure 4.2). The science
planner enables the rover to reason about scientific objectives and make decisions about data
collection. It is the module that contains the Bayesian models and runs the algorithms presented
in this research. The science planner updates the Bayesian models as the rover collects new data
and generates new science plans accordingly.

4.2 Geologic Surveys

Planetary rovers usually focus on performing geologic studies. They are equipped with special
tools to study a diverse collection of dust, soil, and rocks. Furthermore, the record of past water
activity can be found in rocks, minerals, and geologic landforms, particularly in those that can
only form in the presence of water. In turn, water is of great importance for astrobiology since it
is strongly correlated to habitability, biosignature potential, and ultimately life.

Next we describe the three geologic scenarios that are explored in this work: terrestrial sur-

24



Science Planner

System Executive

Navigator Instrument Manager

SpectrometerPan-TiltScience 
Cameras

Vehicle 
Controller

Stereo 
Cameras

science data
science plan

Position 
Estimator

Rover Interface

Telemetry Manager

State Observer

Health Monitor

State (All)

Figure 4.2: Software architecture of the Zoë rover. We emphasize the science planner module, which
allows the rover to reason about science goals and make decisions about data collection. The science
planner contains a model of the environment that updates as new science data is available. Afterward, new
science plans are generated accordingly and sent for execution.

face studies at Cuprite Hills, Nevada, analog studies of airless planetary bodies, and Martian
surface studies at Jezero Crater and Nili Fossae.

4.2.1 Terrestrial Surface Investigations

Cuprite Hills, Nevada is a well-studied region of high mineralogical diversity that is amenable
to remote sensing [161], therefore making it an important test site for spectroscopic algorithms
[168]. In this work we will refer to this as the Cuprite scenario. This scenario involves simulation
studies and field experiments with the Zoë rover.

We used data from three different spectrometers: the Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER) [49], the Airborne Airborne Visible Infrared Imaging
Spectrometer Next Generation (AVIRIS-NG) [68], and the rovers’s ASD Fieldspec Pro (ASD).
ASTER is a low-resolution orbital instrument, AVIRIS-NG is a high-resolution airborne spec-
trometer, and ASD is a high-resolution in situ device. The data consists of reflectance spectra,
representing the fraction of incident light reflected in each wavelength. The AVIRIS-NG spec-
tra was processed with the atmospheric correction approach described in [165]. ASTER and
AVIRIS-NG data products were spatially aligned with manually-selected ground control points.
They were co-registered using a first degree polynomial warping transformation, and then re-
sampled to 15 m/pixel. Figure 4.3 shows an example of a couple of representative spectroscopic
measurements in the scene as seen by ASTER and AVIRIS-NG instruments. Table 4.1 shows the
wavelengths, channels, and resolutions that were used for each instrument.
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Figure 4.3: Example of remote spectroscopic measurements of Cuprite, Nevada, as seen by ASTER and
AVIRIS-NG.

Table 4.1: Measurement and instrument specifications

Used Average
Instrument Source Wavelengths Channels Resolution

ASTER Spacebourne 2.0 - 2.5 µm 5 80 nm
AVIRIS-NG Airborne 2.0 - 2.5 µm 85 5 nm

ASD Rover 2.0 - 2.5 µm 500 1 nm

4.2.2 Airless Surface Investigations

Toolbox for Research and Exploration (TREX) is a NASA project that aims to develop tools and
research methods for exploration of airless surfaces in preparation for human and robotic in situ
resource utilization (ISRU) missions. The TREX project is being led by the Planetary Science
Institute and has several collaborators from other organizations including Carnegie Mellon Uni-
versity. TREX is taking current knowledge of spectral characteristics of candidate materials out
into the field, to test algorithms for sample identification and selection, and to understand how
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Figure 4.4: Synthetic geologic environment prepared by the TREX team for the operations readiness test
in Gascola, Penn Hills, PA. The environment consists of a custom AVIRIS-NG spectroscopic image that
merges three different geologic units: volcanic, fluvial, and marine.

these new tools can help to make future exploration more efficient. Experiments will be con-
ducted at locations on Earth mimicking the fine-grained surface conditions typically found on
the Moon and small bodies such as asteroids [131]. Herein we focus on an operations readiness
test (ORT) performed in preparation for the upcoming field campaign in the Painted Desert, Ari-
zona. In this work we will refer to this as the TREX scenario. This scenario involves simulation
studies and field experiments with the Zoë rover.

The ORT was conducted between 26-30 July 2021 at Gascola, Penn Hills, Pennsylvania. To
this end, the TREX science team prepared a synthetic geologic environment for the Gascola site.
The geologic environment consisted of a synthetic AVIRIS-NG spectroscopic image in which
three different geologic units were merged: volcanic, fluvial, and marine (Figure 4.4). The image
has 640 rows, 620 columns, and 224 spectral channels; its spatial resolution is of approximately
0.2 m/pixel. This image was geographically projected onto the Gascola site. Additionally, we
deployed a drone and collected aerial imagery to better assess the Gascola site, as well as to
generate a traversability map that allowed the rover’s science planner to avoid artificial obstacles
such as logs, power line poles, trees, and mounds (Figure 4.5). Specifically, we defined an
elevation constraint of 200 meters and a slope threshold of 20 degrees.
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(a) RGB photomosaic.
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(c) Traversability map (green areas
are traversable).

Figure 4.5: Drone data products for the test site at Gascola.

(a) Zoë exploring the Gascola site. (b) Fine-grained
mineral samples.
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(c) ASD reflectance spectra of the samples.

Figure 4.6: In situ data collection at Gascola.

The Zoë rover was deployed at this site in order to realistically simulate data collection from
the synthetic geologic environment (Figure 4.6a). Around 20 mineral samples were prepared
by the TREX science team: they contained different fine-grained materials such as feldspars,
kaolinites, and hematites (Figure 4.6b). These samples were placed at specific geographic coor-
dinates according to their associated locations in the synthetic geologic environment. Whenever
the rover reached a particular waypoint, the corresponding sample was measured with manual
assistance. Specifically, the rover collected reflectance spectra of predetermined samples using
its onboard ASD spectrometer (Figure 4.6c).
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Olivines

Carbonates

Figure 4.7: Spectroscopic maps of Martian regions at Jezero Crater (left) and Nili Fossae (right). Mineral-
ogy is estimated by looking at spectral signatures using data from the orbital instrument CRISM (center).
Cream tones represent carbonates, whereas cyan indicates olivine presence.

4.2.3 Martian Surface Investigations

The Mars scenario focuses on spectroscopic investigations and mineral mapping tasks at two
locations of interest on Mars: Jezero Crater and Nili Fossae (Figure 4.7). This scenario involves
simulation studies and it uses real or synthetic data from four different spectrometers.

• The Mars Express High-Resolution Stereo Camera (HRSC) instrument [91]. HRSC has global
coverage of Mars, but its resolution is insufficient for composition analysis. It has an approxi-
mate resolution of 50 m/pixel and 4 color channels: blue 440 nm, green 530 nm, red 750 nm,
and infrared 970 nm. HRSC image h5270 0000 is used for both sites.

• The Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer
for Mars (CRISM) instrument [128]. CRISM is an imaging spectrometer that provides high-
resolution spectra (6.5 nm/channel) in a wide spectral range (436 - 3897 nm) at a spatial
resolution of 18-36 m/pixel; unfortunately, it does not have a global coverage. The follow-
ing CRISM images are used in this study (Figure 4.7): HRL000040FF (Jezero Crater), and
FRT00003E12 (Nili Fossae).

• The Mars 2020 Perseverance rover MastCam-Z instrument [7]. MastCam-Z is a multispectral,
stereoscopic imager. It also allows for mineral identification in the visible and near-infrared
wavelengths (400 - 1100 nm). MastCam-Z consists of 2 cameras (left and right) with a total
of 20 bandpass filters (channels). We simulate measurements by convolving CRISM data with
the spectral response profile of MastCam-Z.

• The Mars 2020 Perseverance rover SuperCam instrument suite [177]. SuperCam provides a
number of versatile sensing techniques that can be used at long distance as well as within
robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), Raman
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Figure 4.8: A mineral (Fe olivine) as measured by three Mars instruments: CRISM, MastCam-Z, and
HRSC. Their channels and respective bandwidths are shown.

and luminescence spectroscopies, and visible and infrared reflectance spectroscopy. Addi-
tionally, a remote micro-imager (RMI) provides high-resolution color context imaging, and
a microphone can be used as a complementary tool. Herein we focus on the infrared spec-
trometer which operates with 256 channels in the 1300-2600 nm spectral range. We simulate
measurements by convolving CRISM data with the spectral response profile of SuperCam.

The HRSC and CRISM products were spatially aligned with manually-selected ground con-
trol points. They were co-registered using a first degree polynomial warping transformation, and
then resampled to 36 m/pixel. CRISM data was preprocessed and ratioed using the standard
procedure in [173]. Afterwards, the empirical line method [155] was used to find the correspon-
dence between the HRSC and CRISM reflectance values. MastCam-Z and SuperCam spectra
were estimated by convolving their spectral response profiles with CRISM data. For MastCam-
Z, a subset of 12 channels were used since 8 of the filters either overlap (i.e. too redundant)
or have very wide bandwidths. The relationship between the instruments’ different wavelengths
and bandwidths are shown in an example of this curated data set in the 400-110 nm range (Figure
4.8).

This study relies on the CRISM spectral library for mineral classification [173]. The CRISM
spectral library contains many of the minerals that have been identified on Mars. Herein we
focus on carbonates since they have been found on both sites and are of scientific interest due to
their fossil preservation properties [85, 173]. We also consider olivines and silicas. Specifically,
we use the following five minerals: Fe/Ca-carbonate, Mg-carbonate, Fe-olivine, Mg-olivine, and
hydrated silica.

For our work regarding science and risk-aware planning for planetary rovers (Chapter 7), we
focus on Jezero Crater and also employ data from MRO’s High Resolution Imaging Science Ex-
periment (HiRISE) [118]. HiRISE is an instrument that captures high resolution orbital imagery
at 0.25 - 0.30 m/pixel. We also use DEMs that were generated from HiRISE stereo images and
have a resolution of 1 m/pixel, allowing us to infer terrain properties such as slope. Furthermore,

30



we utilize a recent geologic map of Jezero Crater that differentiates between bedrock (low-risk)
and surficial (high-risk) units [158].

4.3 Coral Reef Studies

This scenario focuses on spectroscopic investigations and coral reef mapping tasks. In this work
we will refer to this as the Coral scenario, which involves simulation studies.

In addition to their significance in the marine biome, coral reefs are important to the cultural
and economic lives of hundreds of millions of people around the world [34, 125]. It is incontro-
vertible that many coral reefs are in various stages of decline and may be unable to withstand the
consequences of global climate change [56, 80, 81, 135, 157]. Yet a small fraction of the world’s
reef area has been studied quantitatively (i.e., 0.01-0.1%) as most reef assessments largely rely
on local in-water surveys [78]. Therefore, our current understanding may not be representative
of the reef under study, nor the regional and global reef ecosystem given existing data constraints
[77].

Remote sensing from airborne and spaceborne platforms have proven to be a useful tool for
aspects of reef science [72]. Early applications of remote sensing to coral reef environments
focused on mapping reef geomorphology and ecological zonation [64, 106, 127]. In the past few
decades, much of remote sensing has focused on mapping habitats using qualitative descriptors
comprising various combinations of substrate (e.g., sand, limestone, rubble), benthic functional
type (e.g., coral, algae, seagrass), reef type (e.g., fringing, patch, barrier), and/or location within
the reef system (e.g., slope, flat) [72]. The recent NASA Earth Venture Suborbital-2 (EVS-
2) COral Reef Airborne Laboratory (CORAL) mission focused on reef benthic functional type
discrimination [77]. In this work we use high-resolution airborne data from the CORAL mission.

CORAL mapped portions of the Great Barrier Reef, main Hawaiian Islands, Marianas Is-
lands, and Palau in 2016-2017. We focus on two flight lines from Heron Island, Australia on
17 September 2016 and Kaneohe Bay in Oahu, Hawaii on 6 March 2017 (Figure 4.10). Data
is from the NASA/JPL Portable Remote Imaging SpectroMeter (PRISM) flown on the Tempus
Applied Solutions Gulfstream-IV at 8.5 km altitude. PRISM provided water-leaving reflectance
from 350-1050 nm (246 channels) at approximately 3 nm spectral resolution and approximately
8 m spatial resolution from which benthic reflectance and benthic functional type were derived.
The benthic reflectance calculation used the shallow-water reflectance described by Maritorena
et al. [115]. It was modeled using a linear nonnegative combination of a set of one or more basis
endmembers from a library of bottom reflectances [167]. Here we evaluate benthic reflectance
products since they provide invariance to water column properties; these products have a 420-680
nm spectral range and consist of 92 channels (Figure 4.9).

Benthic functional type corresponds to probabilities associated with coral, algae, and sand
for each seafloor pixel, and was determined by logistic regression using mean reflectance spec-
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Figure 4.9: Benthic reflectance of coral (left), algae (center), and sand (right) as estimated using the
approach by Thompson et al. [167] applied to PRISM data.

tra from an existing spectral library [76, 78]. The focus of CORAL - and thus this work - was
on coral, algae, and sand spectra (4.9). Examples of PRISM-derived benthic composition from
the CORAL mission are shown in Figure 4.10, with each pixel representing the primary ben-
thic functional type (i.e., greatest percentage of one type per pixel, wherein all types sum to one
per pixel). Herein we evaluate PRISM-derived benthic reflectance since it provides invariance
to water column properties. Utilization of in situ measurements of benthic reflectance are pre-
ferred; however, there were no coincident collections of such measurements with overflights un-
der cloud-free conditions. Maps of PRISM-derived benthic composition (i.e., coral, algae, and
sand) are used to validate our mapping/sampling results, serving as “ground truth”. Note that
PRISM-derived products were validated by an extensive field collection as part of the CORAL
mission and is not the focus herein (e.g., Thompson et al. [167]). For example, PRISM-derived
benthic composition maps were validated by 10 m x 10 m photomosaics collected in the field
at random. In each 10 m x 10 m plot approximately 500-1000 digital photographs were taken,
mosaicked using structure-from-motion techniques (Agisoft Metashape) to provide a single or-
thomosaic, and then analyzed using coral reef science standard point-count methods to provide
proportional benthic composition for benthic functional types.

We also use Level 2 surface reflectance products from the orbital instrument Landsat-8 (Fig-
ure 4.10). Landsat-8 provides global-scale coverage, but at coarser spatial and spectral resolu-
tion, serving as our source of remote data. We use the first four channels, which provide lim-
ited information in the visible wavelengths as compared to PRISM data. For Kaneohe Bay, we
use image LC08 L2SP 064045 20170306 20200905 02 T1, which was collected on the same
day as the corresponding CORAL flight line (6 March 2017). For Heron Island, we use image
LC08 L2SP 091076 20161026 20200905 02 T1; due to cloud coverage issues, we had to use
an image that was collected on a different day (26 October 2016).
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Figure 4.10: Remote sensing data used for the coral studies. Landsat 8 data provides global-scale coverage
but at coarse spatial and spectral resolutions that are often insufficient for benthic cover analysis. PRISM
is an airborne imaging spectrometer with finer spatial and spectral resolution that was used by the CORAL
mission to discriminate benthic functional types. The CORAL mission focused on three benthic functional
types: coral (red), algae (green), and sand (blue). Abundance maps were estimated by Thompson et al.
[167] and validated by the CORAL mission with photomosaics collected in the field.

4.4 Summary

This chapter has presented four scientifically relevant scenarios that can provably benefit from
autonomous robotic exploration: a) a terrestrial geology scenario; b) an airless surface geology
scenario; c) a Martian geology scenario; and d) a marine biology scenario. These scenarios for
science-driven robotic exploration were used to develop and test the proposed Bayesian models
in this research. It is worth noting that these scenarios share many elements in common. All
of them rely on spectroscopic data for analysis and interpretation. However, each scenario uses
a different combination of orbital, aerial, and surface data. A summary of this information is
shown in Table 4.2.
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Table 4.2: Science scenarios and relevant information.

Scenario
Name

Scientific
Discipline

Spatial
Domain Sites Orbital

Data
Aerial
Data

Ground
Data

Field
Experiments

Cuprite Geology Terrestrial Cuprite Hills, NV ASTER AVIRIS-NG ASD Yes

TREX Geology Airless Bodies Gascola, PA -
AVIRIS-NG

Drone Imagery ASD Yes

Mars Geology Martian
Nili Fossae

Jezero Crater

HRSC
CRISM
HiRISE

- - No

Coral Biology Marine
Heron Island
Kaneohe Bay Landsat-8 PRISM - No
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Chapter 5

Deep Generative Models for Spectroscopic
Data Analysis

5.1 Introduction

Earth and planetary sciences often rely upon the analysis of spectroscopic data. Spectrometers
measure different wavelengths of the electromagnetic spectrum and thus capture more informa-
tion than can be seen with the eye. A more detailed explanation regarding spectroscopic data
can be found in Chapter 3. A key insight is that spectra contain spectral features that are used
for composition analysis [32]. The detection of spectral features often requires high resolu-
tion spectroscopic measurements [32] as low-resolution spectra may sometimes lose valuable
information (Figure 5.1). Unfortunately, high resolution spectra are often scarce, whereas low
resolution spectra are usually easier to obtain [88, 184]. Another important problem is that spec-
tra often contain mixtures of several components; therefore, estimating the correct combination
of endmembers and their respective fractional abundances can be a challenging task.

Our research addresses three main aspects of spectroscopic data analysis: spectral features,
spectral resolution, and mixtures of endmembers. To this end, we rely on the power of Bayesian
models combined with deep learning, also known as deep generative models. We are interested
not only in achieving high performance, but also in helping scientists make informed and ana-
lytical decisions. We start by looking at the problem of spectral feature extraction with the help
of Variational Autoencoders, popular neural networks for density estimation and dimensionality
reduction. Afterward, we focus on the problem of learning and exploiting the relationships be-
tween different spectrometers. To this end, we introduce the Deep Conditional Gaussian Model,
an architecture that performs Gaussian parameter estimation for each different input, providing
a practical tool for probabilistic regression [21]. Particularly, we show how it can be used to
enhance low-resolution data; a task also known as super-resolution. Finally, we focus on the
problem of spectral composition analysis by presenting the Deep Conditional Dirichlet Model, a
neural network that learns a Dirichlet parametrization for each spectrum. Dirichlet density esti-
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Figure 5.1: Shortwave infrared spectra from two different phyllosilicate minerals as measured by both
low (red) and high (blue) resolution instruments. Low resolution measurements fail to capture important
spectral features required for mineral identification.

mation allows for spectral classification, and more generally, for spectral endmember unmixing.
In this research we develop and evaluate the aforementioned deep generative models. To

this end, we use data from three of the science scenarios described in Chapter 3: Cuprite, Mars,
and Coral. Furthermore, we show how these generative models provide both mathematically-
grounded and human-interpretable results, making them compelling spectroscopic analysis tools.
The structure of this chapter is as follows. We start by explaining our work with Variational
Autoencoders for spectral feature extraction. We then describe the Deep Conditional Gaussian
Model regression and its applications to probabilistic regression and super-resolution. Finally,
we discuss the Deep Conditional Dirichlet Model and its applications to spectral classification
and endmember unmixing.

5.2 Related Work

In the past decade, deep learning [62] has achieved impressive results in a myriad of tasks. Some
examples include: accurate image recognition for hundreds of diverse classes such as cars and
cats [103], learning how to transfer artistic styles in paintings [57], and Atari game playing that
surpasses human experts [124]. Despite their remarkable results, deep neural networks typically
work as black boxes. In contrast, scientists require formal, transparent and interpretable meth-
ods for systematic analysis. In other words, scientists need to know how much to trust their
tools. Recent efforts have tried to alleviate this problem by trying to quantify uncertainty in deep
learning models. Gal and Ghahramami [53] use Monte Carlo dropout as a strategy to perform
Bayesian approximations by randomly disabling network nodes during training and prediction.
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The resulting empirical distribution is then used to obtain a mean value and a confidence measure
in terms of the distributional variance. Kendall and Gal extend this idea and use Monte Carlo
dropout to approximate epistemic and aleatoric uncertainties in neural networks [95]. Deep
ensembles are another approach for generating distributions through empirical approximations
[108]. They consist of multiple networks trained with different random initializations, working in
a similar fashion to ensemble learning methods such as random forests. One major drawback of
these random-based uncertainty quantification methods is that their results may be inconsistent
or unstable if too few iterations are used. Another inconvenience is that deep neural networks
often require substantial computational resources for training; consequently, randomized trials
and ensembles are much more expensive to train. Furthermore, science exploration in remote
environments usually operates with limited amounts of data, hence such approaches would most
likely lead to overfitting.

Restricted Boltzmann machines, deep belief networks, and deep Bayesian networks are prob-
abilistic graphical models structured in layers [75]. They have played an important role in the
foundational work leading to deep learning as we know it today [151]. They are easy to formu-
late, but difficult for performing exact inference. Hence, inference approximations are usually
required. They have fallen out of favor as networks have become deeper and more complex.

Deep generative models are an alternative for more transparent and interpretable deep learn-
ing architectures. They combine ideas from density estimation and deep learning. They usually
have Bayesian representations in just a subset of the layers comprising the architecture, making
them more scalable. Deep generative models have recently achieved impressive results, espe-
cially in tasks focused on unsupervised learning and data generation [86]. In general, there are
two learning approaches for deep generative models depending on whether they optimize a like-
lihood function or not.

There are deep generative models for which the likelihood is not explicitly defined [181]. The
main ones are generative adversarial networks (GANs) and Variational Autoencoders (VAEs).
GANs consist of two neural networks contesting with each other in order to learn how to pro-
duce data, usually from a simple Gaussian random generator [61]. Despite their encouraging
results in image generation, the density estimation process is highly opaque: it does not allow
calculation of the likelihood of observed data, nor visualization of the learned statistical depen-
dencies. Additionally, GANs are notoriously famous for being difficult to train. VAEs [97], also
known as Deep Latent Gaussian Models (DLGMs) [145], are easier to train and have a more
transparent probabilistic representation. This representation is learned by first encoding a data
set into a latent space and then decoding it back into its original state. VAEs usually assume that
latent variables are normally-distributed. The latent representation typically has a much lower
dimensionality than the input and output spaces, hence VAEs are popular for dimensionality
reduction and feature extraction. It is also possible to use VAEs to build conditional models
connecting different types of inputs and outputs: they have been used for spectral unmixing
[14, 136], and for the reconstruction of high resolution spectroscopic measurements from syn-
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thetic low resolution data [18]. Although their probabilistic model is somewhat more tractable,
it is usually impossible to compute the likelihood function analytically. That is why VAEs rely
on variational approximations for training, hence their name. Additionally, the interpretation of
the learned statistical dependencies is often difficult because they lie in a hidden representation.

There are deep generative models that are explicitly driven by likelihood functions. An exam-
ple are normalizing flows [144], which also work with latent representations. They use change
of variable transformations in order to generate complex models from simple probability dis-
tributions. In practice, they do not work well on high dimensional spaces, and the likelihood
evaluation of data is dependent on how invertible and tractable these series of transformations
are. Autoregressive networks are a family of algorithms that have gained notable popularity
for image generation [172] and super resolution [38] tasks. This is because they are scalable,
relatively simple to train, and allow computation of log-likelihoods. They work by defining an
arbitrary sequence of pixels and learning a series of conditional distributions in the output layer.
Consequently, they are unable to show correlations between any pair of non-sequential pixels.
We are especially interested in architectures that learn less constrained probability representa-
tions in the output layer. Gaussian output layers have been explored in the literature, where
neural networks predict both a mean and a variance for each target [174, 178]. Another relevant
example involves Dirichlet prior networks for classification tasks [114].

In summary, deep generative models have achieved remarkable results in various tasks, but
have made little progress in producing probabilistic models that directly address uncertainty
quantification and interpretability.

5.3 Variational Autoencoder

5.3.1 Model and Architecture

Many channels and wavelengths in spectra are strongly correlated, especially adjacent ones.
This allows for dimensionality reduction techniques that learn a set of representative features that
efficiently compress and capture most of the information in spectra. We formulate the problem as
follows. High-resolution spectra y ∈ Y ⊂ Rn need to be converted into a set of low-dimensional
features z ∈ Z ⊂ Rd, such that d << n. In this research we rely on the Variational Autoencoder
(VAE) to achieve this task.

The VAE is a deep learning architecture that performs non-linear dimensionality reduction
[97, 145]. The VAE is composed of two networks: an encoder that extracts features from high-
resolution data, and a decoder that uses these learned features to reconstruct data back as ŷ ≈ y
(Figure 5.2). The encoder of the VAE produces a latent feature representation parametrized by a
conditional Gaussian distribution, that is:

z|y ∼ Nn (µz(y),Σz(y)) , (5.1)
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Figure 5.2: The architecture of the Variational Autoencoder (VAE). The input is a high-resolution spec-
trum y ∈ Y that is encoded into a low-dimensional Gaussian distribution z|y ∼ Nn (µZ(y),ΣZ(y)).
Afterward, points are sampled from this distribution, passed through the decoder, and reconstructed back
as ŷ ∈ Y .
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Figure 5.3: VAE vs. PCA feature representation. VAE decorrelates and normalizes features. PCA also
decorralates features, but it does not perform normalization.

where µz ∈ Rd is the mean and Σz ∈ Rd×d is the covariance. Furthermore, this representation
uses a standard multivariate normal distribution as a prior, i.e., z ∼ Nd(0, Id). This operation
effectively decorrelates and normalizes features. Moreover, VAEs tend to spread information
across the latent dimensions in a uniform manner while filtering noise. This yields an advantage
against other feature extraction methods such as Principal Component Analysis (PCA) (Figure
5.3).

VAEs are often called unsupervised learning methods because they do not require labeled
data for training. Strictly speaking, they are self-supervised learning methods as they use the
same data as regression targets. Regardless, they offer a significant advantage over approaches
that rely on manually-engineered features, which tend to be domain-specific, arbitrary, and labo-
rious. Let us denote this data set as D = {xi}Ni=1. VAEs are trained using variational Bayesian
methods, which are approximations for complex statistical models. In this particular case, it is

39



Table 5.1: Architecture of the VAE employed for spectral feature extraction and reconstruction.

Layer Type Activation Function Number of Units
input - - n

encoder 1 fully-connected rectified linear unit (2/3)× (n+ d)
encoder 2 fully-connected rectified linear unit (1/3)× (n+ d)

mean fully-connected linear d
log-variance fully-connected linear d

decoder 1 fully-connected rectified linear unit (1/3)× (n+ d)
decoder 2 fully-connected rectified linear unit (2/3)× (n+ d)

output fully-connected sigmoid n

usually not possible to perform exact inference over the latent variables Z. VAEs approximate
the posterior distribution by sampling features from the conditional distribution p(z|y). These
sampled features are then passed through the decoder and reconstructed as ŷ. Our specific model
uses the conventional loss function for training VAEs, given by:

L =
∑
y∈D

[
||y − ŷ||22 + λDKL (Nn (µz(y),Σz(y)) || Nd(0, Id))

]
. (5.2)

This function adds two different loss terms: a) the reconstruction error between the predicted
target and its true value; and b) a Kullback-Leibler divergence penalization of the latent space
with respect to a standard unit Gaussian. This results in a trade-off between reconstructing data
accurately and learning meaningful features; such trade-off is tuned with the parameter λ.

The specific architecture we employ to process spectra is quite simple. It consists of a series
of sequential layers as specified in Table 5.1. The number of units of each layer depends on the
input size n and the latent dimension d. Note that the variance layer operates in log-space to
improve numerical stability.

5.3.2 Experiments and Results

For each science scenario, we employed a data set that consists of 3000 spectra sampled from
high-resolution imagery. Specifically, CRISM spectra for the Mars scenario, AVIRIS-NG spectra
for the Cuprite scenario, and PRISM spectra for the Coral scenario. More details can be found in
Chapter 3. First, we performed a preprocessing step on the data to preserve spectral features and
reduce the impact of misguiding factors such as albedo and noise. Concretely, each spectrum
was scaled in the range [0,1] with min-max normalization. In each data set, 1000 spectra were
used for the training set, 1000 for the validation set, and 1000 for the test set. The 3000 spectra
were sampled using the k-means++ approach [4] to ensure they were diverse and representative.
To avoid overfitting, we employed early stopping during training, which is a popular approach in
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deep learning [62]. It consists in selecting the neural network weights that minimize the loss of
the validation set while training (using the training set). Other approaches, such as k-fold cross-
validation, are excellent to avoid overfitting, but are typically too expensive to use with neural
networks. A 2.9 GHz Intel Quad-Core i7 laptop without a graphics processing unit (GPU) was
used for training and testing.

In these experiments we compared two feature extraction algorithms: PCA and VAE. Each
of these two models learned how to convert high-resolution spectra into a set of features, or
dimensions in the latent space. Afterwards, the models were used to reconstruct spectra from
features. In this experiment we observe how error changes as a function of number of features
ranging from 1 to 12 for the Mars and Cuprite data sets; and ranging from 1 to 7 for the Coral
data set (Figure 5.4). Reconstruction errors are similar for the training, validation, and test sets,
suggesting a good generalization. VAE, a non-linear model, can compress data better than linear
PCA in all cases since the reconstruction error is smaller and has a smaller variance. As one
would expect, average error (for both PCA and VAE) tends to decrease as more features are used
since less information is lost in the compression process. Consequently, the difference between
PCA and VAE tends to reduce with higher dimensions. In those cases, PCA may be more ap-
pealing since it is much faster to train and apply, at least from an implementation standpoint.
However, a disadvantage of PCA is that the first dimensions (features) learn most of the infor-
mation while the last dimensions essentially learn just noise. In contrast, VAE tends to spread
information evenly across the latent dimensions while filtering noise. Regarding the different
scenarios, Mars/CRISM is the most noisy data set, followed by Cuprite/AVIRIS-NG. Cuprite
is the scenario with the most spectral diversity, hence reconstruction errors tend to have larger
variances.

Finally, examples of spectral reconstructions using only 3 features are shown in Figure 5.5.
Overall, they seem quite accurate despite only using 3 dimensions in the latent space. Previous
results are confirmed (Figure 5.4): Mars/CRISM data has more noise, whereas Coral/PRISM
data has virtually no noise. It is worth noting that the VAE filters some of the noise in the data,
especially for Mars and Cuprite spectra.

5.4 Deep Conditional Gaussian Model

5.4.1 Model and Architecture

The DCGM learns a conditional probability model that uses low resolution measurements in
order to infer high resolution spectra [21]. Let x ∈ X ⊂ Rm and y ∈ Y ⊂ Rn denote the low
and high resolution spectra, respectively. We define the conditional probabilistic relationship
between X and Y as pθ(y|x). It is modeled using deep learning, where the network’s weights
are defined as θ. This model assumes that the conditional probability can be approximated with a
multivariate Gaussian distribution, hence the name Deep Conditional Gaussian Model. Formally,
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Mars Scenario: CRISM spectra
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Cuprite Scenario: AVIRIS-NG spectra
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Coral Scenario: PRISM spectra

1 2 3 4 5 6 7
dimensions

0.0

0.1

0.2

0.3

0.4

0.5

av
er

ag
e 

rm
se

training set
PCA
VAE

1 2 3 4 5 6 7
dimensions

0.0

0.1

0.2

0.3

0.4

0.5

av
er

ag
e 

rm
se

validation set
PCA
VAE

1 2 3 4 5 6 7
dimensions

0.0

0.1

0.2

0.3

0.4

0.5

av
er

ag
e 

rm
se

test set
PCA
VAE

Figure 5.4: Reconstruction error as a function of feature dimension for the Mars, Cuprite, and Coral
scenarios. Results show the average error plus-minus one standard deviation for each of the three sets:
training (left), validation (center), and test (right). The Variational Autoencoder (VAE) performs better
than principal component analysis (PCA) since its reconstruction error has a smaller mean and variance.
All differences are statistically significant using a p-value of 0.05. Nonetheless, this difference in perfor-
mance decreases as more dimensions are used in the feature space. Reconstruction errors are similar for
the three sets, suggesting a good generalization.
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Mars Scenario: CRISM spectra
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Cuprite Scenario: AVIRIS-NG spectra
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Coral Scenario: PRISM spectra
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Figure 5.5: Reconstructed spectra using a VAE with 3 features or dimensions. Examples for the Mars,
Cuprite, and Coral scenarios are shown. In all cases, the reconstructions are able to capture spectral shapes
and features. Furthermore, VAE reconstructions reduce noise in the data, which is especially visible for
the Mars scenario.

this means that:
y|x ∼ Nn(µy(x),Σy(x)) (5.3)

where µy ∈ Rn is the mean vector, and Σy ∈ Rn×n is the covariance matrix. Note that both µy

and Σy ∈ Rn×n change as a function of x. The probability density function is given by:

pθ(y|x) =
exp

(
−1

2

(
y − µy(x)

)T
Σ−1

y (x)
(
y − µy(x)

))√
(2π)n det (Σy(x))

. (5.4)

43



We rely on the well-known maximum likelihood estimation (MLE) method in order to esti-
mate the parameters of the statistical model, that is, to tune the network’s weights θ. The training
data set consists of pairs of inputs and ground-truth outputs: D =

{
(xi,yi

?
)
}N
i=1

. The network
will try to maximize the following cumulative log-likelihood function:

L(θ|D) =
∑

(x,y?∈D)

log pθ(y
?|x). (5.5)

Most deep learning frameworks work by minimizing a loss function L. We can easily adapt MLE
by defining a negative log-likelihood (NLL) loss function as follows:

L = −L(θ|D) (5.6)

The log-likelihood function for a multivariate Gaussian distribution is given by:

log pθ(y|x) = log

exp
(
−1

2

(
y − µy(x)

)T
Σ−1

y (x)
(
y − µy(x)

))√
(2π)n det (Σy(x))

 (5.7)

= −1

2

(
y − µy(x)

)T
Σ−1

y (x)
(
y − µy(x)

)
− 1

2
log {(2π)n det (Σy(x))} . (5.8)

After analyzing Equation 5.8, one can observe a few interesting things. The first term is
essentially the Mahalanobis distance

MD(y) =
√

(y − µy)TΣ−1
y (y − µy). (5.9)

It is similar to the Euclidean distance, but scaled by the values in Σy in order to measure distances
in terms of standard deviations from the mean. We desire to minimize this distance by reducing
the difference between the predictionµy and the real value y?, which is equivalent to a regression
task. However, large values in Σy will achieve the same result. Hence, the second term in
Equation 5.8 serves as a regularization for Σy. As a matter of fact, this term is almost identical
to the differential entropy of the Gaussian distribution, an information-theoretic metric used to
quantify the uncertainty of the prediction [35]:

H(y) =
1

2
log {(2π)n det (Σy)}+

n

2
. (5.10)

One can observe that the only difference is the presence of the constant offset n
2
. Note that the

entropy is not defined by µy, but rather by the volume of the covariance, which is given by
det (Σy). This means that entropy increases as a function of the volume of the covariance.

We conclude that the model minimizes a Mahalanobis distance loss by approximating µy

to y? as closely as possible, i.e. regression. Simultaneously, the model minimizes an entropy
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Figure 5.6: The architecture of the Deep Conditional Gaussian Model, based on an efficient Cholesky
decomposition, is shown on the left. The input of the network is an available measurement x ∈ X ⊂ Rm.
The output is the probabilistic prediction of the associated unavailable measurement y ∈ Y ⊂ Rn. This
network learns the conditional probability function pθ(y|x) = N (µy(x),Σy(x)), where µy ∈ Rn and
Σy ∈ Rn×n. For efficiency, it operates with the Cholesky decomposition of Σ−1

y , represented as C1 and
C2. An example with y ∈ R2 is shown on the right.

function reflecting the model’s confidence in its predictions, where accurate predictions should
result in small covariances Σy and vice versa.

The DCGM draws inspiration from the VAE [97] and the DLGM [145], but differs in impor-
tant ways. VAEs and DLGMs learn a probabilistic representation in a latent space by encoding
data into a mean and a covariance. DCGMs, however, have a probabilistic representation that
lies in the output layer (Figure 5.6). This enables our method to use an analytical likelihood
function that allows for exact MLE, as opposed to VAEs and DLGMs, which require to learn via
variational approximations.

VAEs typically work with diagonal covariances. DLGMs learn full covariance matrices by
using a rank-1 approximation, which is just a slight improvement over a diagonal covariance
[145]. We instead use a full-rank estimation that yields significantly better results, as will be
shown later on. Additionally, Gaussian distributions in the output layer have been explored by
other authors, but using either isotropic [38] or diagonal matrices [174].

Defining Σy as a full covariance matrix involves some practical challenges. First of all, Σy

is a matrix of size n× n, which could significantly increase the overall size of the output and the
network. The network must also ensure Σy is always a symmetric positive definite matrix. The
covariance matrix should also be numerically stable, since Equation 5.8 requires calculation of
both its inverse and its determinant.

In order to face these challenges, we rely on the fact that the covariance can be represented
with a Cholesky decomposition given by Σy = LLT , where L is a lower triangular matrix.
Numerical advantages related to this decomposition result in substantial computational simplifi-
cations. In order to avoid computing the inverse of the covariance matrix (first term of Equation
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5.8), the model directly learns its Cholesky decomposition:

Σ−1
y = CCT . (5.11)

Then, the determinant of the covariance matrix (which appears in the second term of Equation
5.8) can be easily calculated with just the main diagonal of the decomposition

det (Σy) =

(
n∏
i=1

C[i, i]

)−2

. (5.12)

For training and numerical stability purposes, the model splits the Cholesky decomposition
C into two parts: its main diagonal C1 ∈ Rn

>0, and the rest of the elements C2 ∈ Rn(n−1)/2.
Figure 5.6 shows the corresponding architecture of the DCGM. The rationale is that C1 must
include positive numbers exclusively, and thus ensure both Σy and Σ−1

y are truly positive definite.
Furthermore, using a small threshold λ > 0 can add numerical stability.

The network can be pre-trained by fixing all of the values in C2 to 0. Once training conver-
gence is achieved, the model will learn a conditional probabilistic representation where all the
channels in the output are considered to be independent. This translates into a µy that gives ac-
curate maximum a posteriori predictions, and also a diagonal covariance matrix Σy that captures
uncertainty in each channel individually. Then the network can be fine-tuned by “unfreezing”
C2, allowing it to also learn correlations between channels.

5.4.2 Experiments and Results

Experimental Setting

We conducted two different sets of experiments in order to evaluate the DCGM.
Experiments with Synthetic Data: The mapping function between x and y was known in

advance, as well as the noise functions of x and y. For evaluation and visualization purposes, x
and y were 1-D, i.e. x ∈ R,y ∈ R. We used Gaussian noise models for both x and y. Here
the DCGM was implemented with the following network parameters (see Figure 5.6): one input
layer, three sequential hidden layers (fully connected), and two output layers (one for µy and one
for Σy). The Cholesky decomposition trick was not used since this is a 1-D problem. We used
a dropout of 0.5 for all the hidden layers. The hidden layers used a rectified linear unit (ReLU)
activation function, whereas µy and Σy used a sigmoid activation.

Experiments with Real Data: Real spectroscopic data was used for x and y, i.e. x ∈
Rm,y ∈ Rn. This was a more complex experiment since the mapping and noise functions
were multidimensional and not known a priori. Specifically, we focused on the Cuprite scenario
and used ASTER for low-resolution measurements and AVIRIS-NG for high-resolution spectra.
Here the DCGM was implemented with the following network parameters (see Figure 5.6): one

46



input layer, two sequential hidden layers, and then three parallel convolutional decoders for µy,
C1, and C2. We used a dropout of 0.7 for all the hidden layers. The hidden layers and C1 used
a rectified linear unit (ReLU) activation function, whereas µy andC1 used a sigmoid activation.

In both experiments, we used a batch size of 4 and the Adam optimizer [96], with NLL
as the loss function. The DCGMs were implemented in Keras [29]. We used early stopping
to select the parameters that worked best with respect to the validation set in order to avoid
overfitting. Overall, there was a good generalization. A 2.9 GHz Intel Quad-Core i7 laptop
without a graphics processing unit (GPU) was sufficient to train the DCGM in both cases.

The DCGM was compared against four probabilistic baselines that are also based on Gaus-
sian distributions (Figure 5.7).

• Gaussian (G): It concatenates the available and unavailable measurements, x and y respec-
tively, and assumes both follow one Gaussian distribution, i.e. p(x,y) = Nm+n(µ,Σ), where

µ =

[
µx

µy

]
, Σ =

[
Σxx Σxy

Σyx Σyy

]
. (5.13)

MLE is performed by simply computing the joint population mean and covariance. Finally,
the conditional mean µy(x) = µy|x and covariance Σy(x) = Σy|x are predicted using the
standard formulas for conditional multivariate Gaussians [41]

µy|x = µy + ΣyxΣ−1
xx (x− µx) , (5.14)

Σy|x = Σyy −ΣyxΣ−1
xxΣxy. (5.15)

• Gaussian Mixture Model (GMM): It concatenates x and y and learns a standard GMM for
the joint distribution

p(x,y) =
K∑
i=1

wiNm+n(µi,Σi). (5.16)

The conditional distribution also has the form of a GMM:

p(y|x) =
K∑
i=1

w̄iNn(µiy|x,Σ
i
y|x) (5.17)

The parameters of each Gaussian component µiy|x,Σ
i
y|x are given as in Equations 5.14 and

5.15, respectively. The conditional weights w̄i are updated using Bayes’s theorem

w̄i =
wi p(x|µiy|x,Σ

i
y|x)∑K

j=1w
j p(x|µjy|x,Σ

j
y|x)

. (5.18)

In our two experiments, we used 10-fold cross validation to estimate an adequate number of
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Figure 5.7: 1-D example of the three baselines. The Gaussian predictor (black), defined by a single mean
and a large variance, is most likely to underfit the data. The GMM (red) consists of multiple Gaussian
distributions, and is likely to overfit the data. The Unimodal GMM is a combination of the previous
baselines: it computes a single mean and variance that are biased toward the components of the GMM
with larger weights.

mixtures.

• Unimodal Gaussian Mixture Model (UGMM): This method is a combination of the previous
baselines. It estimates the overall mean µy|x and covariance Σy|x of the conditional GMM,
which are given by

µy|x =
K∑
i=1

wiµiy|x, (5.19)

Σy|x =
K∑
i=1

wi
[
Σi

y|x + µiy|xµ
i
y|x

T
]
− µy|xµy|x

T . (5.20)

• Variational Encoder (VE): The spectral reconstruction method by Candela et al. that uses a
modified VAE to predict high-resolution spectra from low-resolution inputs [18].

For Experiment #2, spherical, diagonal, and full covariance matrices were learned and tested
for each of the previous algorithms. The differences between these covariances are illustrated in
Figure 5.8.

We evaluated the performance of all these methods with the two following metrics that mea-
sure how well a model fits the data:
• Root mean squared error (RMSE): a measure of accuracy that computes differences between

data and maximum a posteriori predictions.
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Figure 5.8: 2-D example of spherical (left), diagonal (center), and full (right) covariance matrices. Co-
variances (red dotted lines) that are too simple may underfit the data (blue dots).

• Negative log-likelihood (NLL): a measure of how probable the data are with respect to the
learned model, defined as the negative of the log-likelihood (Equation 5.5).

Experiments and Results using Synthetic Data

We started by conducting an experiment where a simple ground-truth model was known a priori.
1-D inputs were used to predict 1-D outputs. We designed this simple experiment for illustration
purposes as it is easy to show how the ground-truth model look likes. In this experiment there
was heteroscedastic uncertainty (noise) in the output and no uncertainty in the input. We com-
pared the ground-truth model against DCGM and the four baselines methods that were described
earlier. Since the input and output dimensions were 1-D, we trained a deep regression method
instead of using a VE. It had the same architecture as the DCGM but without the variance output
layer so it would perform non-probabilistic regression. From the ground-truth model we sampled
1000 data points for the training set, 1000 data points for the validation set, and 1000 data points
for the test set. We used early stopping during training to avoid overfitting.

We show both a qualitative (Figure 5.9) and quantitative analysis of the results (Table 5.2).
The Gaussian method is too simple and predicts a linear mean function and a constant variance.
GMM does a better job, but it overfits the data. UGM is smoother than GMM and performs
better when approximating the model from a visual perspective. Deep learning regression does
a remarkable job when predicting the underlying function, but is unable to quantify uncertainty.
DCGM has a slightly better performance in terms of regression, and more interestingly, is now
able to learn the underlying noise function in the data.

We conducted a second experiment that was quite similar to the first one. It involved the
same mapping function and output noise model, but the main difference was that it added het-
eroscedastic noise to the input as well. This forward propagation of uncertainty resulted in a
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Figure 5.9: Experiment with synthetic 1-D data and heteroscedastic noise in the output. The objective is
to learn, from the data, the underlying sigmoid function together with the noise model. Mean and noise
predictions are shown for: Gaussian model, GMM, U-GMM, deep regression, DCGM, and ground truth.
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Table 5.2: Experiments results for synthetic 1-D data set with heteroscedastic noise in the output. Results
show the average performance plus-minus one standard deviation.

Metric Gaussian GMM UGMM Regression DCGM Ground Truth
RMSE 4.069± 2.077 20.994± 12.198 1.687± 1.845 1.684 ± 1.840 1.683 ± 1.849 1.681 ± 1.842
NLL 2.938± 0.433 1.876± 1.201 1.870± 1.103 - 1.823 ± 1.179 1.819 ± 1.179

Table 5.3: Experiments results for synthetic 1-D data set with heteroscedastic noise in both the input and
output. Results show the average performance plus-minus one standard deviation.

Metric Gaussian GMM UGMM Regression DCGM Ground Truth
RMSE 4.266± 2.684 11.264± 6.689 2.576± 2.670 2.552 ± 2.683 2.536 ± 2.689 2.558 ± 2.720
NLL 3.036± 0.574 2.359 ± 1.132 2.494± 1.140 - 2.479± 1.491 2.507 ± 1.674

more complex noise model. In some cases, the overall ground-truth noise looked similar to the
output noise. In other cases, it looked completely different. Qualitative results for the test set
are shown in Figure 5.10, while quantitative performances appear in Table 5.3. In general, all
methods perform worse than in the previous experiment because they have to learn a more com-
plex and noisy underlying model. Again, we see that the Gaussian approach underfits the data.
It is again clear that GMM overfits the data. UGMM is smoother and does a better job than
GMM at learning the noise model from a visual perspective. Deep regression approximates the
sigmoid function not as well as before, but still gets quite close; however, it is unable to model
uncertainty. DCGM outperforms regression by a slight amount, and besides, it is able to capture
the propagated aleatoric uncertainty in the data.

Experiments and Results using Real Data

We performed an experiment that involved the reconstruction (super resolution) of high-resolution
spectroscopic data. The experiment focused on data of Cuprite, Nevada. Specifically, low-
resolution ASTER data were used to infer high-resolution AVIRIS-NG spectra. More details can
be found in Chapter 3. We performed a series of preprocessing operations on the data that seek
to preserve spectral features [32] and reduce the impact of misguiding factors such as albedo
and noise. Each spectrum was first scaled in the range [0,1] with min-max normalization. Af-
terwards, we applied the MNF transformation to add noise robustness [63]. The used data set
consists of over 6 × 106 spectra recorded by each instrument. However, most of them are re-
dundant and can lead to overfitting due to strong correlations between neighboring locations.
Moreover, there are a few dozen mineral classes at Cuprite with imbalanced instances [161].
We solved these issues by first building a more balanced data set with the help of the mineral
classification algorithm Tetracorder [33]. We then eliminated spatially redundant measurements
by randomly sampling 10,000 spectra from the scene. We divided them into three sets: training
(5,000), validation (2,500), and test (2,500). The test set was sampled from the south region of
Cuprite, whereas the other two sets from the north region.
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Figure 5.10: Experiment with synthetic 1-D data and heteroscedastic noises both in the input and output.
The objective is to learn, from the data, the same underlying sigmoid function as in the previous exper-
iment, but together with a more complex noise model resulting from forward uncertainty propagation.
Mean and noise predictions are shown for: Gaussian model, GMM, U-GMM, deep regression, DCGM,
and ground truth.
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Table 5.4: Average model performance (smaller is better). The asterisk indicates cases where paired t-tests
(p > 0.05) are not statistically significant.

Spherical Covariance Matrix
Metric G GMM UGMM VE DCGM
RMSE 0.0938? 0.0685 0.0616 0.0510 0.0479
NLL -79.6 -158.5 -129.2 - -144.3

Diagonal Covariance Matrix
Metric G GMM UGMM VE DCGM
RMSE 0.0938? 0.0602 0.0565 0.0479 0.0458
NLL -95.1 -174.7 -149.6 - -162.2

Full Covariance Matrix
Metric G GMM UGMM VE DCGM
RMSE 0.0566 0.0538 0.0509 0.0490 0.0447
NLL -272.8 -308.5 -282.8 - -297.3

The average performance of the different methods is shown in Table 5.4. Simpler covariance
matrices lead to a deterioration in performance because they ignore valuable information. The
DCGM has the best performance in terms of RMSE because of its superior maximum a poste-
riori predictions. This is consistent across different types of covariance matrices. GMM is the
best in terms of NLL, probably because such low resolution inputs produce highly ambiguous
relationships that are best modeled with a multimodal distribution (which needs to be tuned with
the “right” number of components). However, DCGM still outperforms the other unimodal dis-
tributions. VE performs well in terms of RMSE, whereas its NLL is conventionally not defined.
VE is consistent because of two reasons: it explicitly uses a RMSE loss function and its prior is
a (spherical) standard Gaussian distribution. G, GMM, and UGMM perform poorly in terms of
RMSE when using spherical and diagonal covariance matrices; but work well otherwise, espe-
cially GMM and UGMM because of the number of components they use. As expected, GMM is
multimodal and thus outperforms UGMM in terms of NLL, but has more unstable maximum a
posteriori predictions that result in a higher RMSE.

Let us discuss the potential of the DCGM as an analysis tool for geologists and spectro-
scopists via its human-interpretable results. We show how the DCGM uses ASTER to infer
AVIRIS-NG spectra of two common mineral mixtures at Cuprite: mica with calcite and kaoli-
nite with alunite (Figure 5.11). There are clear differences between both instruments in terms
of resolution, but also regarding offsets and noise. The predictions are highly accurate since
the ground truth spectra are well within the error bars. But more importantly, the covariance
matrices contain useful information about the mineral and spectral features. For instance, there
are high covariances near the main diagonal, which is to be expected because adjacent channels
are strongly correlated. In the first mineral mixture, mica has a characteristic absorption feature
around 2.2 µm, whereas calcite around 2.35 µm. Many fractional abundances are possible, re-
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Figure 5.11: ASTER observations (top) being used to infer AVIRIS-NG measurements (middle) and their
associated covariance matrices (bottom). This example shows two mineral mixtures at Cuprite: mica with
calcite (left), and alunite with kaolinite (right).

sulting in features and wavelengths with high variances. Since this is a common mineral mixture,
the features are strongly correlated. In the alunite and kaolinite mixture, both constituent miner-
als have broader and more complex features with overlapping wavelengths. The identification of
these minerals, as well as the estimation of relative abundances, involves looking at subfeatures,
hence the more complex correlations in the covariance matrix.

All these notions are common for a scientist during the analysis and interpretation of spectro-
scopic data, and are certainly visible in the model. In summary, the DCGM not only has accurate
predictions, but also provides human-comprehensible explanations regarding correlated features
and feasible alternatives.
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5.5 Deep Conditional Dirichlet Model

5.5.1 Model and Architecture

The Dirichlet distribution is commonly used to model likelihoods over mixtures of components,
and more generally over discrete probability distributions. It is often called “a distribution over
distributions”. The domain can viewed as the probabilities associated toK categories c1, · · · , cK ,
where the categories may be classes, components, etc. Formally, its support is r ∈ R ⊂ RK ,
with

∑K
k=1 rk = 1, rk ∈ (0, 1),∀r ∈ R; where R takes the shape of an open standard (K − 1)

simplex. The Dirichlet distribution has a probability density function given by:

p (r1, · · · , rK |α1, · · · , αK) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

rαk−1
k , (5.21)

where Γ is the gamma function. The Dirichlet distribution is defined by the concentration pa-
rameters α1, · · · , αK > 0. A larger αk means that category ck is more likely, and vice versa. The
mean and variance are given by:

E[Rk] =
αk∑K
k=1 αk

(5.22)

V[Rk] =

αk∑K
k=1 αk

(
1− αk∑K

k=1 αk

)
∑K

k=1 αk + 1
(5.23)

Formally, we model the relationship between mixing ratios and spectra as a probabilistic
conditional distribution pθ(r|y) where

r|y ∼ Dir(αθ(y)). (5.24)

The weights of the neural network are given by θ, and y ∈ Y ⊂ Rn are high-resolution spectra.
An illustration of the DCDM architecture is shown in Figure 5.12.

The DCDM directly maximizes a cumulative log-likelihood function where the training data
set D = {(yi, ri)}Ni=1 consists of pairs of inputs y (inputs) and ground-truth mixing ratios r
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Figure 5.12: The architecture of the Deep Conditional Dirichlet Model (DCDM) is shown on the left.
The network receives a spectrum y ∈ Y as the input. The network then predicts the values of α, the
concentration parameters of the Dirichlet distribution. These values are used to infer the mixing ratios r
for the components c1, · · · , cK . An example with three components (K = 3) is shown on the right.

(outputs). The log-likelihood function for a Dirichlet distribution is given by:

L(θ|D) =
∑

(y,r∈D)

log pθ(r|y) (5.25)

=
∑

(y,r∈D)

log

(
Γ(
∑K

k=1 αk(y))∏K
k=1 Γ(αk(y))

K∏
k=1

r
αk(y)−1
k

)
(5.26)

=
∑

(y,r∈D)

[
log Γ

(
K∑
k=1

αk(y)

)
−

K∑
k=1

log Γ (αk(y)) +
K∑
k=1

(αk(y)− 1) log rk

]
.

(5.27)

The first two terms control the magnitude of α, serving as regularizers. The last term measures
the difference between the predicted and true mixing ratios in a similar way as cross-entropy.

Mixing ratios with values close to 0 or 1 lead to unstable likelihood values. Hence, we
recommend to use a small threshold to avoid these situations. Furthermore, for training and
numerical stability, we recommend to add a second term to the NLL loss function L. Specifically,
one term that measures the error between the predicted and true mixing ratios:

L = −L(θ|D) + λ
∑
y,r∈D

DKL(r||r̂(y)), (5.28)

where λ > 0 is a tuning parameter and r̂(y) is the predicted mean of the learned Dirichlet
distribution.
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5.5.2 Experiments and Results

Experimental Setting

We conducted two different sets of experiments in order to evaluate the DCDM.
Experiments with Synthetic Data: The mapping function between y and r was known in

advance, as well as the noise functions of y and r. For evaluation and visualization purposes,
y ∈ R2, and r belonged to the standard 1 simplex (the Dirichlet model turn into a simpler Beta
distribution). We used Dirichlet noise models for both y and r, although other noise models
for y would have been possible as well. Here the DCGM was implemented with the following
network parameters (see Figure 5.12): one input layer, three sequential hidden layers, one layer
for α ∈ R2, and one layer for the output r. All the layers were fully-connected. We used
a dropout of 0.5 for all hidden layers. The hidden layers used a rectified linear unit (ReLU)
activation function. The layer for α used a modified sigmoid function with an output between 0
and 100. The output layer for α used a softmax activation function, ensuring that mixing ratios
are inside a simplex. We used NLL as the loss function.

Experiments with Real Data: Real spectroscopic data was used for y ∈ Rn, while ex-
tensively validated mixing ratios were used for r. This was a more complex experiment since
the mapping and noise functions were multidimensional and not known a priori. Specifically,
we focused on the Coral scenario, thus we used PRISM high-resolution spectra and their cor-
responding mixing ratios estimated during the CORAL mission for coral, algae, and sand. The
DCDM architecture was essentially the same as the one we used for the experiment with syn-
thetic data, but with an input of 92 spectral channels and an output of 3 endmembers. In order
to achieve numerical stability, we used the modified NLL loss function shown in Equation 5.28
with λ = 0.1.

In both experiments, we used a batch size of 4 and the Adam optimizer [96]. The DCGMs
were implemented in Keras [29]. We used a batch size of 4 and the Adam optimizer [96]. The
DCGM was implemented in Keras [29]. We used early stopping to select the parameters that
worked best with respect to the validation set in order to avoid overfitting. Overall, there was a
good generalization. A 2.9 GHz Intel Quad-Core i7 laptop without a graphics processing unit
(GPU) was sufficient to train the DCGM in both cases.

The DCDM was compared against the following methods for classification or unmixing.

• Classification model: It assumes that endmembers cannot be mixed together. Here we specif-
ically use a logistic regression classifier.

• Linear mixing model: It assumes that mixtures between endmembers can be represented with
a linear modal. We focus on three common methods for linear unmixing: least squares (LS),
non-negative least squares (NNLS), and fully-constrained least squared (FCLS). More details
can be found in Chapter 2.

• Deep learning regression: A neural network that learns how to unmix endmembers using a
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Table 5.5: Experiment results for linear unmixing model. Results show the average performance plus-
minus one standard deviation.

Metric Classification Least Squares Regression Discrete DCDM Monte Carlo
RMSE (×10−2) 19.26± 10.98 5.178± 4.080 5.058 ± 4.141 5.227 ± 4.204 5.067 ± 4.136 5.178 ± 4.080

ACC 0.9360 0.9357 0.9355 0.9356 0.9357 0.9358
KLD (×10−2) 48.71± 3.441 1.261± 1.700 1.221 ± 1.691 1.301 ± 1.793 1.227 ± 1.693 1.261 ± 1.700
NLL (×10−1) - - - -1.365 ± 0.844 -1.403 ± 0.794 -1.380 ± 0.843

loss function based on the Kullback-Leibler divergence between the true and predicted mixing
ratios. It has the same architecture as the DCDM, with the exception that is does not have a
layer learning α parameters.

• Discrete Dirichlet model: The input space is discretized into regular intervals, and then
Dirichlet parameter estimation is performed on each interval. 10-fold cross validation is used
to estimate an adequate discretization of the input space.

We evaluated the performance of all these methods with the two four following metrics that
measure how well a model fits the data:
• Root mean squared error (RMSE): a measure of accuracy that computes differences between

data and maximum a posteriori predictions.

• Classification accuracy (ACC): a measure that selects the ground-truth mixing ratio with the
highest value as the correct class to be predicted.

• Kullback-Leibler Divergence (KLD): a measure that treats true and predicted mixing ratios
as probability distributions.

• Negative log-likelihood (NLL): a measure of how probable the data are with respect to the
learned model, defined as the negative of the log-likelihood (Equation 5.27).

Experiments and Results using Synthetic Data

We started by conducting an experiment where a linear mixing model is known a priori. 2-
D inputs were used to predict mixing ratios between 2 different components. We designed this
simple experiment for illustration purposes as it is easy to show how the ground-truth model look
likes. Each dimension in the input was directly related to each endmember. In this experiment
there was heteroscedastic uncertainty (noise) in both the input and the output; these uncertainties
were modeled as Dirichlet noise functions. Despite using a simple ground-truth model, it was
still difficult to perform exact inference; hence we used results from Monte Carlo approximations
for comparison. We compared this ground truth model against DCDM and the other methods that
were described earlier. Since the mixing model is linear by design, LS, NNLS, and FCLS had the
same performance; hence we only show results for LS. From the ground-truth model we sampled
1000 data points for the training set, 1000 data points for the validation set, and 1000 data points
for the test set. We used early stopping during training to avoid overfitting.
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Table 5.6: Experiment results for nonlinear unmixing model. Results show the average performance
plus-minus one standard deviation.

Metric Classification Linear Regression Discrete DCDM Monte Carlo
RMSE (×10−2) 12.85± 10.73 28.31± 12.89 3.938 ± 4.201 4.088 ± 4.394 3.955 ± 4.190 4.013 ± 4.374

ACC 0.9577 0.6281 0.9573 0.9562 0.9574 0.9563
KLD (×10−2) 42.68± 39.69 26.07± 15.67 1.018 ± 1.761 1.098 ± 1.916 1.025 ± 1.739 1.070 ± 1.963
NLL (×10−1) - - - -1.890 ± 1.229 -1.921 ± 1.171 -1.911 ± 1.263

Qualitative results for the test set are shown in Figure 5.13, while the corresponding quanti-
tative performances appear in Table 5.5. The classification method is the best method in terms of
classification accuracy, but the worst method with respect to the other metrics. This is because
it fails to capture mixtures between endmembers. Least squares and deep learning regression
achieve almost the same classification accuracy while doing a great job at predicting mixing ra-
tios, but they are unable to learn the aleatoric noise in the data. The discrete Dirichlet model
learns uncertainties, hence NLL can be computed; but it overfits the data so it has a somewhat
worse performance in terms of the other metrics. DCDM not only models uncertainty, but is also
more similar to the Monte Carlo approximation and achieves the lowest NLL scores overall. In
terms of the other metrics, it is slightly outperformed by deep learning regression. This is most
likely due to the regularization term in the log-likelihood (Equation 5.27). Note that the Monte
Carlo method is not always the winner since it is an approximation of the ground truth model.
It is also possible that the other methods learned biases present in the pseudo-random number
generation process.

We conducted a second experiment that was quite similar to the previous one. The main
difference was that it involved a nonlinear mixing model where the first component had a stronger
presence. Qualitative results for the test set are shown in Figure 5.13, while the corresponding
quantitative performances appear in Table 5.5. The results are similar to ones from the previous
experiment. Overall, we confirm that DCDM adapts well to nonlinear models while learning the
corresponding noise in the data. The most noticeable difference is that linear unmixing performs
poorly, as would be expected for nonlinear models. One interesting fact is that classification is
biased toward the first component as it is more dominant, representing a common scenario when
using unbalanced data sets.

Experiments and Results using Real Data

We carried out an experiment that involved the spectral classification and unmixing of real data.
The experiment focused on data from the CORAL mission. More details can be found in Chapter
3. We employed a data set that consists of 3000 spectra sampled from both PRISM flight lines
(Heron Island and Kaneohe Bay), together with their respective mixing ratios of coral, algae, and
sand. We performed a preprocessing step on the data to preserve spectral features and reduce the
impact of misguiding factors such as albedo and noise. Concretely, each spectrum was scaled in
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Figure 5.13: Experiment results for linear mixing model. The model consists of 2-D inputs that are used
to unmix 2 components. Different methods use data to learn the mean and the variance of the model.
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Figure 5.14: Experiment results for nonlinear mixing model. The model consists of 2-D inputs that are
used to unmix 2 components. Different methods use data to learn the mean and the variance of the model.
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Table 5.7: Experiment results using data from the Coral scenario. Results show the average performance
plus-minus one standard deviation.

Metric Classification LS NNLS FCLS Regression DCDM
RMSE 0.263± 0.161 0.352± 0.519 0.464 ± 0.630 0.521 ± 0.875 0.105 ± 0.088 0.091 ± 0.086
ACC 0.747 0.539 0.489 0.346 0.923 0.936
KLD 0.119± 0.174 0.163± 0.195 0.243 ± 0.301 0.962 ± 0.797 0.031 ± 0.048 0.027 ± 0.055
NLL - - - - - 0.193 ± 0.674

the range [0,1] with min-max normalization. 1000 spectra were used for the training set, 1000
for the validation set, and 1000 for the test set. The 3000 spectra were sampled using the k-
means++ approach [4] to ensure that both their spectra and fractional abundances are diverse and
representative. To avoid overfitting, we employed early stopping during training.

We compared the spectral unmixing performance of the aforementioned methods for spectral
classification and unmixing. Given that the ground truth model was not known a priori, we
are unable to provide the associated results. Additionally, we did not use the discrete Dirichlet
model because of the high dimensionality of the data (92 channels). However, we employed and
compared three different least squares methods. The associated quantitative results are shown in
Table 5.7. Linear unmixing improves as more constraints are enforced, but at the cost of losing
physical meaning (e.g., negative fractional abundances are impossible in practice). Interestingly,
classification outperforms all the linear unmixing methods. Deep learning regression performs
even better while still providing valid and consistent solutions because of its softmax output
layer. These results suggest that the underlying model is strongly nonlinear. Another possible
explanation is that linear methods are susceptible to the quality of the endmember extraction
process, as well as to variability within classes. Finally, DCDM is the best method overall, with
the particular benefit that NLL can be computed.

Let us discuss the potential of the DCDM as an analysis tool for marine biologists and spec-
troscopists via its human-interpretable results. To this end, we show how DCDM is using PRISM
spectra to infer the corresponding fractional abundances of coral, algae, and sand (Figures 5.15
and 5.16). First, the DCDM seems to be accurate since true values lie inside the confidence inter-
vals. When one endmember is essentially found in a pure state (Figure 5.15), predictions tend to
reflect this with high confidence. More importantly, when spectra are mixed (Figure 5.16), pre-
dictions and their respective confidence vary accordingly. it is worth noting that this decreased
confidence is also possible due to the effects of other endmembers besides coral, algae, and sand.
These results indicate that DCDM is a more general tool than conventional classification. This
is further confirmed by looking at predictions in the form of abundance maps (Figure 5.17). We
see that conventional classification does a great job when dealing with pure spectra, but it often
biases its predictions and fails to correctly estimate the abundances in mixed spectra. In contrast,
the DCGM succeeds at predicting such varied abundances.
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Figure 5.15: DCDM predictions of pure spectra. Spectra (top) are used to estimate the abundance (bottom)
of coral (red), algae (green), and sand (blue). The DCDM performs accurate predictions and shows the
confidence it has on them. The ground truth abundances are shown as white points. 95% confidence
intervals were approximated via Monte Carlo sampling and appear as colored regions. These spectra are
almost pure so predictions tend to be close to the corners with high confidence, resembling conventional
classification tasks.
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Figure 5.16: DCDM predictions of mixed spectra. Spectra (top) are used to estimate the abundance
(bottom) of coral (red), algae (green), and sand (blue). The DCDM performs accurate predictions and
shows the confidence it has on them. The ground truth abundances are shown as white points. 95%
confidence intervals were approximated via Monte Carlo sampling and appear as colored regions. These
spectra are mixed so predictions and confidences tend to be varied.
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(a) Coral reef map produced during the CORAL mission. It serves as the ground
truth in this work. Pure pixels appear as intense red, green and blue tones. Mixed
pixels are shown as combinations of these three colors.
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(b) Coral reef map as predicted by the DCGM. The map shows the mean of the
learned Dirichlet distribution for each point. It resembles the ground truth and
succeeds at mapping mixtures.
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(c) Coral reef map generated via classification. It fails to model mixtures by
biasing its predictions, resulting in more intense tones.

Figure 5.17: Coral, algae, and sand abundance maps of Heron Island, Australia.
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5.6 Discussion and Conclusion

This chapter presents three deep generative models for scientific data analysis, with a special
focus on spectroscopic data. It starts by presenting a version of the VAE that is used for learning
spectral features, and consequently for dimensionality reduction. It then presents the DCGM,
which can be used for probabilistic regression; and the DCDM, which can be used for classi-
fication, and more generally, unmixing. The DCGM and DCDM truly perform log-likelihood
estimation, as opposed to the VAE and many other deep generative models, which rely on ap-
proximations. Furthermore, the DCGM and DCDM allow for the immediate visualization and
interpretation of learned statistical dependencies.

Regarding the VAE, we observe that its nonlinear structure allows for richer feature repre-
sentations when compared to linear methods such as PCA, especially when just a few number of
features are extracted. It is worth noting that the VAE has a tendency to spread information across
features in a uniform manner while filtering noise, whereas PCA first extracts features containing
most of the information and then tends to learn increasing amounts of noise. This normalization
process of the latent space of the VAE will result especially useful when we combine remote and
in situ data in Chapter 5.

Our experiments reveal that DCGM and DCDM excel at making point predictions, like deep
learning methods usually do. And more importantly, they learn models that can capture and
show complex propagations of aleatoric uncertainties in the data. Both quantitative and qualita-
tive results suggest that the DCGM and DCDM show promise as scientific analysis tools. Addi-
tionally, despite using unimodal distributions, they generate accurate and often better predictions
than multimodal distributions, such as GMMs, which are prone to overfitting. Note that for the
DCDM there is an important distinction between the number of endmembers (dimensionality of
the Dirichlet distribution) and the number of probabilistic mixtures, for instance, of a Dirichlet
mixture model.

We believe there are many interesting applications for the deep generative models presented
in this work. For instance, they could be used for NASA’s Earth Surface Mineral Dust Source
Investigation (EMIT), whose goal will be to study the role of atmospheric dust in Earth’s cli-
mate using an imaging spectrometer onboard the International Space Station [65]. Specifically,
we could learn and visualize mineralogical and spectroscopic correlations between visible short-
wave and thermal infrared measurements. The methods presented here also have direct applica-
bility and benefit to NASA’s upcoming mission Surface Biology and Geology (SBG) Designated
Observable [129]. The mission will use visible to shortwave infrared imaging spectroscopy and
multispectral or hyperspectral thermal infrared imagery to address terrestrial and aquatic ecosys-
tems and other elements of biodiversity, geology, volcanoes, and the water cycle.
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Chapter 6

Combining Remote and In Situ
Measurements for Adaptive Exploration

6.1 Introduction

The study of planetary surfaces has been made possible through the analysis of data collected
by spacecraft and orbiters. For example, the instruments carried by the Mars Reconnaissance
Orbiter (MRO) have been crucial in the mapping of landforms, minerals, and ice of Mars [186].
Despite the fact that these instruments provide useful information, factors such as sparsity, res-
olution, and noise leave uncertainty in the analysis of relatively low-resolution (10s of meters)
remote sensing from orbit. For more definitive results, robotic explorers, such as Curiosity and
ExoMars, are needed to collect high resolution, in situ measurements. Nonetheless, rovers face
many operational challenges and constraints [50], so it is important to identify locations that
maximize information value.

Remote sensing from airborne and spaceborne platforms have proven to be a useful tool for
aspects of reef science [72]. Early applications of remote sensing to coral reef environments
focused on mapping reef geomorphology and ecological zonation [64, 106, 127]. In the past
few decades, much of remote sensing has focused on mapping habitats using qualitative de-
scriptors comprising various combinations of substrate (e.g., sand, limestone, rubble), benthic
functional type (e.g., coral, algae, seagrass), reef type (e.g., fringing, patch, barrier), and/or loca-
tion within the reef system (e.g., slope, flat) [72]. The recent NASA Earth Venture Suborbital-2
(EVS-2) COral Reef Airborne Laboratory (CORAL) mission focused on reef benthic functional
type discrimination [77]. CORAL remote spectroscopic mapping was shown to be informative
but lacked global and temporal coverage. Moreover, current remote sensing methods give only
indirect information about reef condition, making in situ data critical.

Complete coverage of remote areas, while capturing relevant science features, can be achieved
only through combination of remote sensing and in situ. Local observations are limited to a
small area, but when they are combined with remote sensing, these observations can be put into

67



a broader context and extrapolated out to other regions. In situ samples tend to be scarce; there-
fore, it is important to select samples that refine the accuracy and resolution of remote sensing
by adapting to the current state of knowledge of the environment.

In a few words, the motivation of this work is to develop an approach for wide-area mapping
and optimal sampling. To this end, this research applies new techniques in orbital data analysis,
probabilistic modeling for mapping, and decision theory for sample selection. Specifically, this
chapter describes a machine learning model that actively combines remote and in situ measure-
ments in order to efficiently map wide-areas via the extraction and and extrapolation of relevant
science features. This chapter also develops automatic mission and path planning that can be ex-
ecuted by robotic explorers to refine and validate such maps. Finally, this chapter demonstrates
the feasibility and performance of our approach via spectroscopic investigations. Simulation re-
sults are shown for the Cuprite, Mars, and Coral scenarios (more details appear in Chapter 4).
Additionally, field experiments were conducted at Cuprite with the rover Zoë.

6.2 Related Work

Currently most works regarding adaptive exploration in robotics fail to exploit the power of
remote sensing; consequently, they focus on mapping simple quantities such as salinity, temper-
ature, altimetry, or dissolved oxygen measurements [11, 46, 159]. High-quality seafloor map-
ping has been achieved through the collection of in situ hyperspectral measurements and stereo
imagery [13], but only at local scales through dense sampling. Recent efforts have developed
robotic exploration models with high-level science objectives [3, 17]. However, they work with
highly discretized models and fail to exploit valuable information that is available from remote
sensing data.

Information from remote sensing data can be a powerful tool for extrapolation and wide-scale
coverage. Fossum et al. [48] use remote sea-surface temperature images to infer spatial patterns
in the evolution of oceanographic conditions. Rao et al. [141] and Shields et al. [153] combine
remote bathymetry with in situ imagery for benthic habitat mapping. Thompson et al. present a
linear model that combines remote and in situ measurements for spatio-spectral mapping, but at
the cost of downsampling high-resolution data and thus losing valuable information [166]. Foil
and Wettergreen [47] and Thompson et al. [168] effectively utilize contextual information for
surface classifications with spectroscopic data.

Gaussian process (GP) regression has been widely used in spatial statistics [36, 142]. GPs
also provide a onvenient framework for adaptive sampling [102]. Hence, GPs have been very
popular for robotic exploration; applications include binary terrain classification [162], ocean
temperature mapping [10, 11] and plant phenotyping [107]. However, most work regarding GPs
(especially for AUVs) involves mapping scalar fields [11, 46, 159]. In contrast, the objective of
this work is to map more complex science features.
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(a) The mapping process starts with poor predic-
tions.

(b) The mineral map improves as more in situ sam-
ples are collected and extrapolated.

Figure 6.1: Example of active robotic exploration for mineral mapping.

Feature extraction approaches have been used for non-scalar benthic habitat mapping. Rao
et al. use a deep learning architecture that does not allow for adaptive sampling [141]. Shields
et al. use a similar deep learning approach, but they have recently taken some first steps toward
enabling adaptive sampling by quantifying model uncertainty through numerical approximations
[153].

6.3 Probabilistic Mapping Model

This chapter describes an approach to spectral feature and composition mapping over large ar-
eas. To this end, it combines two different types of spectral measurements: low-resolution (or
multispectral) remote data x ∈ X ⊂ Rm, and high-resolution (or hyperspectral) in situ data
y ∈ Y ⊂ Rn. Remote spectra are available beforehand for many spatial locations l ∈ L ⊂ R2

(latitude and longitude), but in general their spectral resolution does not permit composition
analysis. In contrast, in situ spectra tend to have a spectral resolution that is sufficient for compo-
sition analysis, but unfortunately only a scarce number of samples can be collected by a robotic
explorer such as a rover or an AUV. The objective not only is to extrapolate in situ samples over
large areas with the assistance of remote sensing, but also to construct maps that can easily adapt
and improve with new information. A relevant example involving mineral mapping is shown in
Figure 6.1.

This approach consists of two main steps: spectroscopic mapping and composition map-
ping (Figure 6.2). First, remote sensing is used as a prior to extrapolate high-resolution in situ
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Figure 6.2: Pipeline for spectroscopic and composition mapping. First, high-resolution spectra are col-
lected by the robotic explorer. Then, features are extracted and extrapolated to generate feature maps.
Afterward, spectroscopic maps are reconstructed from these feature maps. Finally, predicted spectra are
used to estimate composition.

spectral measurements over large areas. Then, predicted high-resolution spectra is employed for
composition analysis. These steps are decoupled to allow for alternative composition analysis
techniques. Specifically, both spectroscopic and composition mapping are achieved by com-
bining different probabilistic machine learning algorithms. GP regression is used to spatially
extrapolate in situ measurements. However, the objective is to perform spectroscopic mapping ,
i.e., map non-scalar data. This problem is solved with feature extraction techniques, which re-
duce the dimensionality of spectra by deriving a subset of non-redundant features. Once spectra
are reconstructed from extrapolated features, this approach employs learning-based methods to
estimate composition from spectra. The rest of this section describes spectral feature extraction,
Gaussian process regression, and learning-based composition analysis in more detail.

6.3.1 Spectral Feature Extraction

In situ spectroscopic measurements tend to have a high resolution, which may lead to the curse
of dimensionality. However, many of these channels and wavelengths are highly correlated,
allowing for the application of dimensionality reduction techniques. To this end, this approach
uses a variational autoencoder (VAE) [97, 145], a neural network that converts a set of high-
resolution observations y ∈ Y ⊂ Rn into a set of lower dimensional features z ∈ Z ⊂ Rd,
where d << n. More details can be found in Chapter 5. Note that automated feature extraction
requires the exact same input size. Nonetheless, it is possible to generalize and scale these
algorithms to data from similar spectrometers via resampling or interpolation; this is shown later
in the experimental results validating this approach.

It is important to mention that feature extraction ignores spatial information and neighbor-
ing context; it only considers individual spectra. The Location Guided Autoencoder (LGA) by
Yamada et al. considers spatial autocorrelations by assuming that spatial information is known a
priori and by making a simple modification to regular VAEs, potentially improving performance
[182]. However, for generalization purposes, spectral features are assumed to be learned from
spectral libraries that may not necessarily contain the corresponding spatial information in ad-
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vance. The next section describes how our approach models and learns spatial autocorrelation
between spectra in an adaptive manner using GPs.

6.3.2 Gaussian Processes for Spatio-Spectral Regression

This approach relies on GPs [142] for spatio-spectral regression, that is, for learning the spatial
distribution of spectra throughout the scene. GPs are a powerful technique for extrapolation, as
well as for the refinement of maps as new data is collected. GPs are typically used for map-
ping scalar values, but spectroscopic mapping involves multivariate regression. This challenge is
overcome by using GP regression to learn the distribution of low-dimensional features Z instead.
Moreover, dimensionality reduction with VAEs uncorrelates the learned feature representation.
This property simplifies the problem substantially by allowing for the utilization of a small num-
ber of i = 1, 2, . . . , d independent GPs.

We next provide a brief explanation regarding the specific elements of our GP regression
model. If needed, extensive and canonical documentation can be found in [142]. Formally,
we define an input vector that concatenates spatial coordinates and remote measurements as
v = (l,x) ∈ V ⊂ R2+m. This formulation is based on the work by Thompson [162]. We
assume there exists a latent function f i : R2+m → R that maps an input v to each feature zi:

zi = f i(v) + εi. (6.1)

Each GP learns a distribution over the values that f i can take. A GP is defined by a prior mean
µi and covariance function Ki

θ, that is:

f i(v) ∼ GP(µi(v), Ki
θ(v,v

′)). (6.2)

We assume that the prior mean is zero because of the way features are normalized by the VAE.
For the covariance matrix, we rely on the widely used squared exponential kernel. Similarly as
Thompson [162], we define an anisotropic kernel that distinguishes between spatial and spectral
dimensions as follows:

Ki
θ(v,v

′) = θi0 exp

(
−||l− l

′||22
2(θil)

2
− ||x− x

′||22
2(θix)

2

)
, (6.3)

where θi = (θi0, θ
i
l , θ

i
x) are the kernel hyperparameters for each GP. Once all of these variables

are specified, the posterior (or predictive) distribution of f i can be computed given a training set
consisting of pairs of inputs and featuresD = {(vi, zi)}iN . The posterior distribution is defined
by a posterior mean µ̂i and posterior covariance Σ̂i as follows:

f i(v|D) ∼ GP(µ̂i(v|D), Σ̂i(v,v′|D)). (6.4)
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Figure 6.3: Noise modeling in Gaussian processes. GPs typically learn one constant noise value for the
output, but this sometimes underfits the data (left). GPs that account for input noise tend to better fit the
data [119] (right).

Here we use the GP variant for noisy observations [142]. Therefore, we include a hyperpa-
rameter representing the standard deviation of the output (feature) noise σinoise,out. It is worth not-
ing that this noise is assumed to be homoscedastic (constant). Modeling of the overall aleatoric
uncertainty can be improved by taking into account the input noise too. For this we use the
method by McHutchon and Rasmussen [119], which adds and learns an input noise hyperparam-
eter σinoise,in. This method works with a homoscedastic input noise model and uses first-order
Taylor expansions to model the process of forward uncertainty propagation from σinoise,in and
σinoise,out. Noise modeling is improved with this approach that learns both the input and output
noise in the data (Figure 6.3). Finally, all the GP hyperparameters are estimated by maximizing
the log-likelihood of the observed data [142]. This function is typically optimized with gradient
descent techniques. We specifically use the L-BFGS-B algorithm [126] since it handles simple
bound constraints on variables.

6.3.3 Learning-Based Spectral Composition Analysis

In this work we explore different learning-based methods for composition analysis and apply
them to separate scenarios. We especially focus on probabilistic methods. For the Cuprite sce-
nario, we use a logistic regression classifier to estimate mineralogy; it was trained with scarce
data from the USGS spectral library version 7 [100]. For the Mars scenario, a Gaussian classifier
is trained using scarce data from the CRISM spectral library [173]. For the Coral scenario, there
is plenty of labeled data. Hence, we employed the Deep Conditional Dirichlet Model (DCDM)
to perform spectral unmixing (Chapter 5). More details regarding these composition analysis
methods are provided in the sections describing the experiments and results for each of the three
scenarios.
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Figure 6.4: The active mapping model. It combines spatial coordinates, remote and in situ spectra. It
integrates feature extraction, Gaussian process regression, and learning-based composition analysis.

6.3.4 Integrated Model

The overall model integrates feature extraction, GP regression, and learning-based composition
analysis (Figure 6.4). The whole learning process, as in recursive Bayesian estimation, consists
of two steps: update and prediction [170] (Figure 6.5). In the update step, the learning model
is improved when the robot collects in situ measurements (Figure 6.5a). The d independent
GPs are updated using the features that are extracted with the encoder of the VAE, along with
the associated spatial coordinates and remote measurements. In the prediction step, the model
uses this new knowledge to better reconstruct the scene (Figure 6.5b). First, the GPs predict
the features of each point in the map using a normal distribution Then, these features are passed
through the decoder of the VAE and reconstructed as high resolution spectra. Finally, predicted
spectra are used to estimate composition via classification or spectral unmixing.

6.4 Informative Exploration

The robotic explorer aims to collecting the most meaningful science measurements, that is,
the ones that better explain and reconstruct the entire scene. In Bayesian experimental design,
information-driven action selection can be formulated as the minimization of posterior entropy,
which measures the uncertainty of a set of variables of interestA after collecting new information
B [25, 35, 102].

The uncertainty of the model throughout the scene is quantified using differential entropy
[35], which is given by [102]:

H(A|B) =
1

2
log
{

(2πe)|A|
∣∣∣Σ̂(A|B)

∣∣∣} . (6.5)

Entropy computation (Equation 6.5) becomes expensive as the cardinality of A increases, specif-
ically the calculation of |Σ̂(A|B)|. To address challenge, we minimize the upper bound on the
entropy instead, that is:

H(A|B) ≤ Ĥ(A|B). (6.6)
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Figure 6.5: Learning process of the active mapping model. As in recursive Bayesian estimation, it consists
of two steps: update and prediction [170].

An upper bound can be easily constructed with just the main diagonal of the predicted covariance
matrix. A corollary of Hadamard’s inequality [67] states that if Σ̂(A|B) is a positive-semidefinite
matrix, then its determinant is bounded by the product of its main diagonal:

∣∣∣Σ̂(A|B)
∣∣∣ ≤ |A|∏

j=1

σ̂j(A|B)2. (6.7)
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Consequently, the following bound is derived:

Ĥ(A|B) =
1

2
log

(2πe)|A|
|A|∏
j=1

σ̂j(A|B)2

 (6.8)

=

|A|∑
j=1

1

2
log
{

(2πe) σ̂j(A|B)2
}
, (6.9)

which is equivalent to assuming that all points in A are conditionally independent given B. This
procedure simplifies computation substantially because it avoids calculating the full covariance
matrix, as well as its determinant. Furthermore, this upper bound does not accumulate error as it
is renewed every time the GP is updated.

In this work, the random variable of interest is the spatial distribution of features throughout
a map, which we assume is composed of a large, yet finite set of points M = {v1, . . . ,vp}.
The new information is given by in situ coordinates and measurements collected by the robot,
i.e. P = {[l1,y1], . . . , [lk,yk]}. Since the overall model consists of d independent GPs, the
posterior entropy of the map is additive across features [35]. Then, the upper bound is given by
the following expression:

Ĥ(M|P) =
d∑
i=1

 |M|∑
j=1

1

2
log
{

(2πe) σ̂ij(M|P)2
}

=
d∑
i=1

|M|∑
j=1

1

2
log σ̂ij(M|P)2 +

d|M|
2

log 2πe. (6.10)

where σ̂ij(M|P)2 is the predicted variance of each feature zi in every point of the map. This
entropy bound is used to compute and represent the uncertainty in the map given a robot’s path
(Figure 6.6).

This research formulates exploration as an optimization problem where the robot’s path
should minimize the posterior entropy of the map, or more precisely, its upper bound:

min
P

Ĥ(M|P)

s.t. Cost(P) ≤ Budget
(6.11)

There are many informative path planning algorithms that could be used to solve this type of op-
timization problem, each with its own advantages and drawbacks. There are methods that assume
independence between sampling locations, which is usually an oversimplification in informative
exploration scenarios [27, 183]. There are also near-optimal greedy algorithms that work well
on Gaussian processes [102, 107]. Other approaches may be computationally intensive, but po-
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(a) The model starts with high uncertainty throughout
the map.
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(b) Uncertainty decreases as the robot collects samples.
Information is extrapolated as a function of spectral and
spatial similarity in remote sensing data.

Figure 6.6: Visualization of model uncertainty in terms of differential entropy. Light/yellow tones indicate
high uncertainty areas, whereas dark blue tones denote low uncertainty.

tentially closer to optimality, such as branch and bound (B&B) techniques for both discrete [10]
and continuous [83] space representations. Finally, we are especially interested in Monte Carlo
tree search (MCTS) planners that have been applied to geologic exploration scenarios [3, 99].

6.5 Cuprite Scenario

The feasibility and performance of our high-level autonomy approach were demonstrated via
spectroscopic investigations at Cuprite, Nevada [20, 169]. More details regarding the Cuprite
scenario can be found in Chapter 4.

6.5.1 Experimental Setting

The experiments were designed to evaluate the performance of both the learning and exploration
strategies in terms of science productivity. We first perform a thorough analysis in simulations,
and then show field results with the rover. Zoë. In the simulation experiments, the ASTER
instrument provided low-resolution remote measurements, whereas AVIRIS-NG spectra were
proxy for in situ measurements. In the field experiments, remote data also came from ASTER,
but the rover collected in situ spectra with an onboard ASD instrument. Since ASD samples were
sparse, AVIRIS-NG served as the ground truth for validation purposes.

The exploration space was represented as an 8-connected grid using a pixel step size of 2,
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where each pixel has a resolution of 15 meters. We focused on three subregions of Cuprite that
are mineralogically diverse and relatively traversable, and called them A, B, and C. Both the
VAE and the GPs were trained with a subset of the data that was withheld from the experiments.
The VAE learned how to extract d − 6 features from AVIRIS-NG spectra. We found this value
to work well in practice. Then, the model consisted of 6 independent GPs that were pre-trained
with the same data set, and later fine-tuned online in order to better adapt to the incoming flow
of data. A logistic regression classifier was used for composition analysis. It was trained using
data from the USGS spectral library version 7 [100] in order to identify three dominant minerals
in the selected subregions: alunite, kaolinite, and opal (also known as hydrated silica).

Three informative path planning algorithms were compared in this study:
• Random: It sequentially samples a random neighboring location until the sampling budget is

exhausted. It corresponds to an uninformed sampling strategy. This is a science-blind baseline.

• Greedy: It makes the locally optimal choice using a one-step lookahead. This is a myopic
exploration strategy.

• MCTS: A Monte Carlo tree-search planner that creates a long term strategy by planning ahead
for possible observations in the future. The planner was implemented by Kodgule et al. [99]
using a four-step lookahaead. This is a non-myopic path planner.

Three metrics were used to evaluate the performance of the planners. For normalization
purposes, we compute the averages with respect to the total number of points in the map.
• Entropy: It is a measure of uncertainty in the model. It is directly minimized by the planners

(Equation 6.11) and is calculated without a ground truth.

• Error: It is a measure of the spectral reconstruction error of the scene in terms of root mean
squared error (RMSE). It should be indirectly minimized by the planners since it requires a
ground truth for comparison.

• Kullback-Leibler divergence: It is a smooth function that measures the difference between
the true and predicted class probabilities (Equation 2.8). It should be indirectly minimized by
the planners.

6.5.2 Simulation Experiments and Results

Three hundred different traverses were simulated using random starting locations. Starting lo-
cations were evenly spaced throughout each subregion; end goals were not specified to allow
for more freedom during exploration. We imposed a constraint of 20 samples per traverse. We
defined a constraint of 20 samples per traverse. Additionally, a digital elevation model (DEM)
from ASTER was used to apply a slope constraint of 18◦.

Training and simulation were performed using a laptop computer with an Intel i7 processor
(2.9 GHz quadcore) and 16GB of memory. Each waypoint was computed within just a few
seconds or minutes, depending on the complexity of the path planner.
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Figure 6.7: Scatter plots of average reconstruction error vs. entropy for the three sites: A (left), B (center),
and C (right). In all cases, there is a strong correlation as measured by the Pearson correlation coefficient.

We first calculated the correlation between entropy and reconstruction error throughout the
simulations. The three sites present high Pearson correlation coefficients, (0.862, 0.903, 0.919)
respectively, indicating there exists a strong positive correlation (Figure 6.7). This suggests that
entropy is a suitable objective function for reconstructing spectra in the scene. We also see
high correlation coefficients for the three sites (0.769, 0.886, 0.874) comparing entropy and the
Kullback-Leibler divergence (Figure 6.8). These coefficients are slightly lower, probably due
to the additional step between spectral prediction and composition analysis. Regardless, these
results reaffirm the convenience of using entropy to guide exploration.

We then evaluated the performance of the different planners. In all cases, entropy, recon-
struction error, and the Kullback-Leibler divergence show decreasing trends as more samples are
collected (Figures 6.9, 6.10, and 6.11). It is clear that Random is the worst planner. We compare
Greedy (myopic) against MCTS (non-myopic) via paired t-tests (Figures 6.12 and 6.13). Results
indicate that MCTS is not necessarily better at the beginning, but it outperforms Greedy in the
long term. Overall, we confirm that algorithms with farther planning horizons tend to perform
better as they exploit more information from the model.

6.5.3 Field Experiments and Results

The rover Zoë performed a series of autonomous traverses in the field in order to validate the
simulation results. In general, computation time was not an issue. Depending on the complexity
of each path planner, the planning process for each waypoint took just a few seconds or minutes
to run.

The rover carried an ASD Fieldspec Pro spectrometer with a 1◦ foreoptic mounted on a
pan-tilt mechanism. Each measurement consisted in a panorama that acquired and averaged
16 spectra, moving the pan-tilt actuator in a 5 × 5 m raster pattern. The spectrometer was
calibrated for each panorama using an onboard white reference. Panoramas were monitored
both automatically and manually; whenever faulty (e.g. there was a shadow on the calibration
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Figure 6.8: Scatter plots of average Kullback-Leibler divergence vs. entropy for the three sites: A (left),
B (center), and C (right). In all cases, there is a strong correlation as measured by the Pearson correlation
coefficient.
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Figure 6.9: Plots and 1-sigma error bars for entropy as a function of collected samples per traverse. Results
are shown for the three sites: A (left), B (center), and C (right). Smaller is better.
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Figure 6.10: Plots and 1-sigma error bars for reconstruction error as a function of collected samples per
traverse. Results are shown for the three sites: A (left), B (center), and C (right). Smaller is better.

target), they were recalibrated and retaken. The ASD spectra were interpolated and downsampled
so they would have the same resolution as AVIRIS-NG. This was done in order to use the same
models from the simulated experiment.
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Figure 6.11: Plots and 1-sigma error bars for Kullback-Leibler divergence as a function of collected
samples per traverse. Results are shown for the three sites: A (left), B (center), and C (right). Smaller is
better.
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Figure 6.12: Paired entropy t-tests between the Greedy and MCTS planners. Results are shown for the
three sites: A (left), B (center), and C (right). Points below the threshold indicate that MCTS performs
better with a 95% confidence.
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Figure 6.13: Paired reconstruction error t-tests between the Greedy and MCTS planners. Results are
shown for the three sites: A (left), B (center), and C (right). Points below the threshold indicate that
MCTS performs better with a 95% confidence.
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Figure 6.14: Paired reconstruction error t-tests between the Greedy and MCTS planners. Results are
shown for the three sites: A (left), B (center), and C (right). Points below the threshold indicate that
MCTS performs better with a 95% confidence.

Zoë used GPS localization to save its geographic coordinates whenever it collected an ASD
panorama. Zoë used a planar homography to convert from geographic coordinates (latitude and
longitude) to map pixel coordinates (row and column), enabling the spatial registration of in situ
and remote spectra, respectively. Inherent GPS error was negligible since the used spectroscopic
maps have a resolution of 15 m/pixel. The rover considered that it had reached a waypoint
whenever it was less than 5 m away from it.

Safe rover navigation was one main challenge. The terrain was not always traversable at
Cuprite. As in the simulations, we used the ASTER DEM to try to enforce a slope constraint
of 18◦. It proved somewhat useful, but not sufficient because of the poor DEM resolution (15
m/pixel). Human supervision and manual overriding were occasionally required for risk and
obstacle avoidance.

As opposed to the simulation studies, Zoë was unable to execute hundreds of traverses; in-
stead, it generated and traversed three paths, each one running a different planner. This process
was repeated at the three different sites.

We shows a few ASD spectra that were collected by Zoë at Cuprite, as well as ASTER and
AVIRIS-NG measurements that correspond to the same geographic coordinates (Figure 6.15).
The ASD and AVIRIS-NG spectra align well, showing that the latter is an adequate validation
source. Additionally, maximum a posteriori predictions of the model not only are accurate, they
also remove some of the noise in the ASD measurements.

The rover traverses at the three sites in Cuprite are illustrated in Figures 6.16, 6.17, and
6.18; along with their respective entropy, reconstruction error, and Kullback-Leibler divergence
plots. The plots are not as smooth as the ones from the simulations because they correspond to
a single trial. While entropy is monotonic, this is not always true for reconstruction error nor
Kullback-Leibler divergence. Reasons include in situ measurement noise, slight underfitting or
overfitting of the model, and small differences between ASD and AVIRIS-NG spectra (Figure
6.15). Nevertheless, they all show decreasing trends. Overall, we observe that the non-myopic
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Figure 6.15: Examples of spectroscopic measurements from the field experiment at Cuprite, Nevada.
These plots correspond to three distinctive minerals in the scenes: alunite (left), opal (center), and kaolinite
(right).
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Figure 6.16: Results from the field experiment with the rover Zoë at site A: traversed paths, entropy,
reconstruction error, and Kullback-Leibler divergence.
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Figure 6.17: Results from the field experiment with the rover Zoë at site B: traversed paths, entropy,
reconstruction error, and Kullback-Leibler divergence.

MCTS planner has the best performance in most cases, followed by the greedy planner.

Finally, we include a visual representation of the active learning process during the traverse
where Zoë was running MCTS at site A (Figure 6.19). At first, when just one sample has been
collected, the performance of spatio-spectral regression is quite poor. There is still plenty of
uncertainty in the map, especially in places that are significantly different to the sampled location.
After the rover has collected diverse samples, we observe that the model’s predictions resemble
the AVIRIS-NG ground truth even at unsampled locations, that the mineral map has improved,
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Figure 6.18: Results from the field experiment with the rover Zoë at site C: traversed paths, entropy,
reconstruction error, and Kullback-Leibler divergence.

and that entropy has decreased substantially throughout the map.

6.6 Mars Scenario

Our approach was further validated in a simulation study that involved spectroscopic investiga-
tions on Mars [19]. More details regarding the Mars scenario can be found in Chapter 4.

6.6.1 Experiments

The HRSC instrument provided low-resolution remote measurements, whereas CRISM spectra
were proxy for in situ MastCam-Z measurements. Three hundred rover traverses were simulated
at each of the two sites. For each site, we selected a 3× 3 km mineralogically diverse subregion.
The exploration space was represented as an 8-connected grid with a step size of 150 meters
(3 pixels). Starting locations were evenly spaced throughout each subregion; end goals are not
specified to allow for more freedom during exploration. We imposed a constraint of 20 samples
per traverse. In this study, both the VAE and the GPs were trained with a subset of the data that
was withheld from the experiments. L2 normalization was applied to both HRSC and MastCam-
Z spectra to allow the model to focus on spectral features rather than albedo values. The VAE
learned how to extract d = 3 features from MastCam-Z spectra. We found this value to work
well in practice. Then, the model consisted of 3 independent GPs that were pre-trained with the
same data set, and later fine-tuned online in order to better adapt to the incoming flow of data.
A Gaussian classifier was used for composition analysis, consisting of a uniform prior distribu-
tion, 5 means corresponding to the 5 selected minerals from the CRISM spectral library (Fe/Ca-
carbonate, Mg-carbonate, Fe-olivine, Mg-olivine, and hydrated silica), and isotropic (spherical)
covariances Σ = (0.02)2I3. For validation, we assumed that the ground truth classes are given
by the output of the Gaussian classifier when applied to simulated MastCam-Z spectra, which
is also assumed to be the ground truth in situ spectra. Training and simulation were performed
using a laptop computer with an Intel i7 processor (2.9 GHz quadcore) and 16GB of memory.
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Entropy Map (nats) Mineral Map

(a) At the beginning of the rover traverse, entropy is high and the model’s spectral and mineral predictions are poor.

Entropy Map (nats) Mineral Map

(b) By collecting and extrapolating in situ samples, the robot reduces entropy in the map and improves the model’s
spectral and mineral predictions.

Figure 6.19: Evolution of entropy, spectral reconstruction, and mineral mapping at site A while running
MCTS. Confidence bounds were approximated via Monte Carlo sampling.

Each waypoint was computed within just a few seconds or minutes, depending on the complexity
of the path planner.

Three informative path planning algorithms were compared in this study:

• Random: It sequentially samples a random neighboring location until the sampling budget is
exhausted. It corresponds to an uninformed sampling strategy. This is a science-blind baseline.

• Greedy: It makes the locally optimal choice using a one-step lookahead. It resembles oppor-
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Figure 6.20: Scatter plots of average reconstruction error vs. entropy for the two sites: Jezero Crater (left)
and Nili Fossae (right). In all cases, there is a strong correlation as measured by the Pearson correlation
coefficient.

tunistic observations that are sometimes performed by Mars rovers. This is a myopic explo-
ration strategy.

• MCTS: A Monte Carlo tree-search planner that creates a long term strategy by planning ahead
for possible observations in the future. The planner was implemented by Kodgule et al. [99]
using a four-step lookahaead. This is a non-myopic path planner.

Three metrics were used to evaluate the performance of the planners. For normalization
purposes, we compute the averages with respect to the total number of points in the map.
• Entropy: It is a measure of uncertainty in the model. It is directly minimized by the planners

(Equation 6.11) and is calculated without a ground truth.

• Error: It is a measure of the spectral reconstruction error of the scene in terms of root mean
squared error (RMSE). It should be indirectly minimized by the planners since it requires a
ground truth for comparison.

• Kullback-Leibler divergence: It is a smooth function that measures the difference between
the true and predicted class probabilities (Equation 2.8). It should be indirectly minimized by
the planners.

6.6.2 Results

An example of a rover traverse at Nili Fossae together with its corresponding mineral mapping
process is shown in Figure 1.3 (Chapter 1). Mineral signatures are successfully identified and
extrapolated throughout the entire scene. Just a few samples (20) are sufficient to map the min-
eralogy of most of the 3× 3 km area.
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Figure 6.21: Scatter plots of average Kullback-Leibler divergence vs. entropy for the two sites: Jezero
Crater (left) and Nili Fossae (right). In all cases, there is a strong correlation as measured by the Pearson
correlation coefficient.

We first calculated the correlation between entropy and reconstruction error throughout the
simulations (Figure 6.20). The Pearson correlation coefficients are 0.885 and 0.826 for Jezero
Crater and Nili Fossae, respectively. These values indicate a positive correlation between HRSC
and CRISM data, and confirm that entropy is a suitable objective function for spectroscopic
mapping. We see a similar results when calculating the correlation between entropy and the
Kullback-Leibler divergence (Figure 6.21). The two sites also have high correlation coefficients
(0.825, 0.788). These coefficients are slightly lower, probably due to the additional step between
spectral prediction and composition analysis. Regardless, these results reaffirm the convenience
of using entropy to guide exploration.

We then evaluated the performance of the three planners (Figure 6.22).In all cases, entropy,
reconstruction error, and KLD show decreasing trends as more samples are collected. Error and
divergence converge faster than entropy. It is clear that Random is the worst planner. MCTS,
the algorithm with the farthest planning horizon, performs best at the end. Note that Greedy
outperforms MCTS during the first few samples; this is to be expected because Greedy selects
points that immediately provide high rewards, whereas MCTS computes a long-term strategy.

We include a visual representation of the active learning process during a traverse at Nili
Fossae while running MCTS (Figure 6.23). Specifically, we show evolution of the entropy, re-
construction error, and Kullback-Leibler divergence (KLD) maps. At first, when just one sample
has been collected, the performance of is quite poor. There is still plenty of uncertainty in the
map, especially in places that are significantly different to the sampled location. After the rover
has collected diverse samples, we observe that entropy, error, and KLD have decreased substan-
tially throughout the map.
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Figure 6.22: Performance plots and 1-sigma error bars for Jezero Crater (left column) and Nili Fossae
(right column). Average entropy (top row), reconstruction error (middle row), and KLD (bottom row) as a
function of collected samples per traverse. All results have a statistically significant difference (α = 0.05).

87



Entropy Map (nats) Error Map (rmse) KLD Map (nats)

(a) At the beginning of the traverse entropy, error, and KLD are high throughout the map.

Entropy Map (nats) Error Map (rmse) KLD Map (nats)

(b) By collecting and extrapolating in situ samples, entropy is reduced in the map and the model’s spectral
and class predictions improve.

Figure 6.23: Evolution of entropy, spectral reconstruction, and Kullback-Leibler divergence (KLD) at Nili
Fossae while running MCTS.

6.7 Coral Scenario

The presented approach was further explored and tested in a simulation study that involved spec-
troscopic investigations for coral reef mapping [22]. More details regarding the Coral scenario
can be found in Chapter 4.

6.7.1 Experiments

The Landsat-8 instrument provided low-resolution remote measurements, whereas PRISM spec-
tra were proxy for in situ measurements due to high quality and resolution (both spectral and
spatial). In this experiment, we used a VAE for feature extraction and the DCDM for spectral
unmixing (coral, algae, and sand) because of their superior results. The data set that was used
for training was withheld from this experiment. Min-max normalization was applied to both
Landsat-8 and PRISM spectra to allow the model to focus on spectral features rather than albedo
values. The VAE learned how to extract d = 3 features from PRISM spectra. We found this
value to work well in practice.

For Heron Island, we focused on a 6 × 3 km subregion that is diverse in terms of benthic
cover; for Kaneohe Bay, we focused on a smaller subregion of size 1.5 × 1.5 km (Figure 6.27).
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Figure 6.24: An example of a simulated traverse at Kaneohe Bay. Coral reef maps are shown on the
top, while entropy maps appear on the bottom. Signatures are successfully identified and extrapolated
throughout the scene. The map is refined as more samples are collected. A few samples (20) are sufficient
to map the benthic cover of most of the 1.5 x 1.5 km area.

Forty-nine different starting locations were evenly spaced throughout each subregion; end goals
were not specified. In total, 343 traverses were simulated at each site. Additionally, we imposed
a constraint of 20 samples per traverse. An example of a simulated traverse at Kaneohe Bay
together with its corresponding coral reef mapping process is shown in Figure 6.24.

Training and simulation were performed using a laptop computer with an Intel i7 processor
(2.9 GHz quadcore) and 16GB of memory. Each waypoint was computed within just a few
seconds or minutes, depending on the complexity of the path planner.

Four automated sampling approaches were compared in this study (Figure 6.25).

• Random Sampling: It is a baseline that does not quantify nor use information from the model
whatsoever, hence poorer performance is to be expected. In order to generate trajectories
that are somewhat smooth, random sampling occured inside a fixed radius at each step. Two
different random algorithms were used (Figure 6.26):

Random Uniform (RU): It samples from a uniform distribution inside the radius.

Random Edge (RE): It samples from a uniform distribution along the perimeter of the
circular region.

• Bayesian Experimental Design: It consists of two greedy heuristics that achieve near-optimal
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Figure 6.25: Four sampling strategies for coral reef mapping: random sampling, Bayesian experimental
design, Monte Carlo tree search, and ergodic optimal control. Random sampling is the simplest approach
since it ignores how useful future samples might be. Bayesian experimental design provides a probabilistic
framework for identifying the most informative samples and planning paths accordingly. Monte Carlo tree
search combines random sampling with a tree search that focuses on the most promising actions. Ergodic
optimal control not only selects informative samples, but also generates smooth trajectories that can be
suitable for boats or AUVs.

results in Gaussian processes [102]. Both rely on a local-window sampling approach, similarly
to the previous random sampling methods.

Maximum entropy (ME): It selects the point with the largest individual entropy. ME
sampling is relatively fast to execute, but it tends to select outliers.

Maximum Information Gain (MIG): An improved strategy that selects the point with
the largest information gain. MIG sampling is more expensive since it requires com-
putation of an expectation, but it tends to outperform ME sampling by selecting more
representative samples.

• MCTS: A Monte Carlo tree-search planner that creates a long term strategy by planning ahead
for possible observations in the future. The planner was implemented by Kodgule et al. [99]
using a four-step lookahaead. It performs a grid-search, as opposed to the previous sampling
methods that rely on local windows.

• Ergodic Optimal Control: Ergodic theory is a framework for studying the statistical proper-
ties of dynamical systems and stochastic processes [138]. Ergodic optimal control leverages
such concepts to derive sampling trajectories that are both smooth and informative. Regard-
ing smoothness, our GP-based formulation is a continuous model with the inherent benefit of
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Figure 6.26: Visualization of the random sampling strategies. Random uniform selects any point inside
a local region defined by a fixed radius r. Random edge selects any point along the region?s perimeter,
potentially increasing traversed distance and coverage..

allowing samples anywhere. Regarding informativeness, the key idea behind ergodic optimal
control is to compute trajectories such that the amount of time spent in a region is propor-
tional to the expected information gain in that region. Based on the work by Edelson [42], we
examined two algorithms specifically designed for information gathering:

Spectral Multi-scale Coverage (SMC): Proposed by Mathew and Mezić [116], SMC
provides distinct benefit of balancing exploration and exploitation. Additionally, it pro-
duces trajectories that are distinctly smooth. Formally, the objective function is designed
to maximize the rate of decay of an ergodicity metric that measures the difference be-
tween the time-averaged behavior of the trajectory and the uncertainty of the model in
terms of entropy. An informative trajectory will visit high-entropy regions frequently and
low-entropy regions occasionally. The model is updated after collecting a sample and a
new trajectory is computed at every step to produce a path.

Projection-based Trajectory Optimization (PTO): Proposed by Miller and Murphy
[121], PTO directly optimizes ergodicity over the entire trajectory. SMC, on the other
hand, improves the rate of change of ergodicity over a single step. PTO tends to generate
trajectories that collect even more informative samples than SMC, but at the expense of
less smoothness, more total traversed distance, and little control on step size.

Furthermore, we compared these automated sampling methods against two additional ap-
proaches: an optimal bound in which every pixel in the scene is sampled (ultimately thousands
of points), and a sampling strategy that consists of the coordinates from which actual samples
were collected by scuba divers during the CORAL field campaign (Figure 6.27).

Three metrics were used to evaluate performance in terms of science return. For normaliza-
tion purposes, we compute the averages with respect to the total number of points in the map.

91



PRISM-Derived Benthic Cover

(a) Ground truth abundance maps estimated by Thompson et al. [167] and validated during the CORAL
mission.

CORAL Mission Sampling Strategy

Samples: 29
Spectral error (RMSE): 0.05
Unmixing error (KLD): 0.42

Samples: 13
Spectral error (RMSE): 0.07
Unmixing error (KLD): 0.52

(b) Predicted abundances using our model along with the sampling strategy followed during the CORAL
mission.

Samples: 20
Spectral error (RMSE): 0.03
Unmixing error (KLD): 0.27

Samples: 20
Spectral error (RMSE): 0.03
Unmixing error (KLD): 0.33

Optimal Sampling Strategy

(c) Predicted abundances using paths generated by two optimal sampling strategies. In this example, the
optimal sampling strategies produce more accurate maps both as a function of spectral reconstruction error
(RMSE) and unmixing error (KLD).

Figure 6.27: Experimental setting for the simulation study. A subregion of 6 x 3 km in Heron Island is
shown on the left, whereas a region of 1.5 x 1.5 km in Kaneohe Bay appears on the right. White asterisks
indicate samples.

92



• Entropy: It is a measure of uncertainty in the model. It is directly minimized by the planners
(Equation 6.11) and is calculated without a ground truth.

• Error: It is a measure of the spectral reconstruction error of the scene in terms of root mean
squared error (RMSE). It should be indirectly minimized by the planners since it requires a
ground truth for comparison.

• Kullback-Leibler divergence: It is a smooth function that measures the difference between
the true and predicted class probabilities (Equation 2.8). It should be indirectly minimized by
the planners.

Additionally, used three cost metrics: total computation time, total traversed distance, and
roughness of the traverse. The latter two are directly related to energy and time consumption.
The roughness cost quantifies sudden turns along the trajectory, where perfectly straight paths
receive a score of 0 degrees. Roughness is based on the smoothness scores for robots proposed
by Hidalgo-Paniagua et al. [74] and Guillén Ruiz et al. [150].

6.7.2 Results

We first calculated the correlation between metrics throughout the simulations. There are high
Pearson correlation coefficients between reconstruction error (RMSE) and model uncertainty
(entropy) (Figure 6.28); tthey are 0.881 and 0.948 for Heron Island and Kaneohe Bay, respec-
tively. These values indicate a positive correlation between Landsat and PRISM data; they also
confirm that entropy is a suitable objective function for spectral mapping. A similar result is ob-
served when comparing KLD with entropy (Figure 6.29). The correlation coefficients for Heron
Island and Kaneohe Bay are of 0.937 and 0.836, respectively. This demonstrates that entropy is
also quite useful for building accurate abundance maps.

The science performance plots of the different sampling strategies are shown in Figure 6.30,
whereas the associated costs appear in Table 6.1. Note that Table 6.1 does not include cost re-
sults for the scuba diving strategy. This is because optimal sampling strategies generate paths,
whereas the scuba diving samples were collected throughout multiple days, sometimes by more
than one person; hence comparisons may not be fair. In all cases, entropy, reconstruction error,
and KLD show decreasing trends that approach the optimal bound as more samples are collected.
Random sampling strategies perform worst overall since they lack the ability to identify the most
informative samples. Random edge is better than random uniform, apparently because it cov-
ers more distance. However, long traverses are not enough to achieve good performance since
random edge is outperformed by the rest of the sampling algorithms. The greedy strategies, max-
imum entropy and maximum information gain, do better than random sampling. As expected,
information gain is a more useful reward than bare entropy. Non-greedy approaches perform
best since they look farther. PTO has the best performance scores, but at the cost of significantly
longer traverses that cannot be controlled nor bounded. MCTS has similar performance scores
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Figure 6.28: Spectral reconstruction error (RMSE) vs. model uncertainty (entropy). Results for Heron
Island are shown on the left, while results for Kaneohe Bay appear on the right. Both variables are
strongly correlated according to Pearson’s correlation coefficient.

Figure 6.29: Unmixing error (KLD) vs. model uncertainty (entropy). Results for Heron Island are shown
on the left, while results for Kaneohe Bay appear on the right. Both variables are strongly correlated
according to Pearson’s correlation coefficient.

with much more reasonable traverses, but with expensive computation times. SMC seems like an
intermediate alternative with the appeal of having the smallest roughness scores overall. Inter-
estingly, the divers’ strategy tends to score somewhere in between the random methods and the
intelligent algorithms in terms of mapping accuracy. This seems reasonable since the divers did
not formulate sample selection in terms of entropy, let alone optimized it directly; nonetheless,
they were certainly executing a more intelligent strategy than mere random sampling. Another
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Table 6.1: Associated costs for each sampling algorithm in terms of computation time, traversed distance,
and smoothness. Seven sampling strategies are evaluated: random uniform (RU), random edge (RE),
maximum entropy (ME), maximum information gain (MIG), Monte Carlo tree search (MCTS), Spec-
tral Multi-scale Coverage (SMC) and Projection-based Trajectory Optimization (PTO). Results show the
average performance plus-minus one standard deviation for 49 simulated traverses per strategy per site.

Metric Site RU RE ME MIG MCTS SMC PTO

Time 
(seconds)

Heron 
Island 36.58 ± 1.24 33.35 ± 2.14 30.16 ± 3.61 40.38 ± 1.24 454.6 ± 35.4 38.45 ± 0.59 43.63 ± 0.34

Kaneohe 
Bay 22.07 ± 0.71 21.45 ± 0.09 19.56 ± 1.31 25.29 ± 0.85 350.0 ± 29.1 23.38 ± 0.44 27.51 ± 0.05

Distance 
(km)

Heron 
Island 7.12 ± 0.65 10.62 ± 0.03 8.70 ± 0.39 9.68 ± 0.46 10.18 ± 0.33 9.25 ± 0.11 12.96 ± 1.46

Kaneohe 
Bay 2.47 ± 0.19 3.69 ± 0.10 2.95 ± 0.47 3.31 ± 0.32 3.51 ± 0.08 3.2 ± 0.02 4.95 ± 0.46

Roughness 
(degrees)

Heron 
Island 56.0 ± 13.5 55.4 ± 12.3 25.4 ± 8.7 24.7 ± 9.1 15.9 ± 6.3 7.7 ± 1.8 21.9 ± 7.8

Kaneohe 
Bay

55.3 ± 10.5 53.6 ± 10.5 35.7 ± 11.7 29.3 ± 12.1 31.3 ± 9.0 8.6 ± 1.7 21.7 ± 4.7

observation is that divers prioritized sampling corals during the field campaign, whereas most of
our automated sampling strategies favor benthic diversity.

6.8 Discussion and Conclusion

This chapter presents an approach to wide-area mapping and optimal robotic sampling. Through
combination of remote sensing and in situ data, our method achieves wide-scale coverage by ex-
trapolating relevant spectral features and by adapting to new information. This is done through
a probabilistic machine learning model that integrates spectral feature extraction, spatio-spectral
Gaussian process regression, and learning-based composition analysis. Furthermore, our ap-
proach identifies and quantifies the most valuable samples by utilizing well-defined principles
of decision theory, information theory, and Bayesian experimental design for sample selection.
Finally, various sampling techniques are applied and compared. Specifically, random sampling,
greedy heuristics, Monte Carlo tree search, and in some instances ergodic optimal control.

Our studies and experiments demonstrate that the combination of these machine learning
methods, together with remote sensing, enable a robotic explorer to leverage a few in situ sam-
ples by extrapolating their features to many locations in large areas. Consistent results from the
Cuprite, Mars, and Coral experiments suggest a good generalization of our approach. Regarding
decision theory for informative sample selection, our results indicate that probabilistic model-
ing leads to substantial benefits. Concretely, we observe that entropy is strongly correlated to
spectral reconstruction error, as well as to composition mapping error; indicating that entropy is
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Figure 6.30: Average model uncertainty (entropy, top row), spectral reconstruction error (RMSE, middle
row), and unmixing accuracy (KLD, bottom row) as a function of samples.
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a suitable objective function for efficient wide-area mapping. We evaluate various state-of-the-
art sampling strategies and conclude that they can accommodate diverse needs and constraints.
Greedy approaches are fast and achieve decent results. If computation time is not an issue, we
recommend MCTS since it is non-myopic. In the Coral scenario experiments, PTO has the best
mapping accuracy, but at the expense of very long traverses that are hard to bound. SMC appears
to be a well-balanced method: it has a competitive performance with fast computation times,
its traversal distances are straightforward to control, and it generates the smoothest trajectories
overall, potentially resulting in significant energy and time savings.

The results from the field experiment with the rover Zoë demonstrate the viability of our
approach in a real exploration scenario using a robotic platform. Important lessons were learned,
especially those related to processes that tend to be oversimplified in simulations, such as in situ
data collection and safe terrain navigation.
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Chapter 7

The Science Hypothesis Map for
Co-Exploration

7.1 Introduction

Modern planetary robotic exploration is guided by scientists specifying the waypoints on a path
that they believe will best address the investigation questions. The path is formed from expert
knowledge of the site and expectations about where to gather mission-critical information. Sci-
entists reinterpret their measurements with growing contextual knowledge of the environment,
so real exploration is characterized by a frequent reformulation and replanning throughout the
mission lifetime [79]. Replanning occurs on large strategic scales, bypassing or favoring geo-
graphic locales, as well as local tactical scales, lingering at an anomalous feature for additional
measurements [44, 164]. However, many exploration scenarios occur under low bandwidth and
high latency communications, leaving limited opportunities to revise the exploration plan.

This chapter presents an approach to overcome the communication bottleneck in robotic ex-
ploration, where the command to the remote explorer is based on an evolving model of what the
scientist initially believes, rather than a single prescribed route, enabling the robot to take more
adaptive and efficient actions based on real-time information, improving the rate and productivity
of discovery. It introduces the science hypothesis map, a spatial probabilistic structure in which
scientists communicate their belief about the world and in which the belief state evolves as the
robotic explorer collects information. Next, it describes information gain-based path planning
strategies that can be integrated with the science hypothesis map to optimize the rate and pro-
ductivity of discovery. Finally, it demonstrates the application of these methods to a simulated
geologic mapping problem of a well-studied site: Cuprite Hills, Nevada.
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Table 7.1: Examples of simplified Science Traceability Matrices.

Investigation objectives Physical properties Measurements

Map geologic formation pro-
cesses in a region

Abundance of key mineral
classes (quartz, kaolinite,
calcite, etc.)

Surface reflectance, 350-2500
nm, at 10 nm spectral resolution
and >300 SNR

Map water quality in a river Salinity of the water Water conductivity in µS/cm

Map air quality in a city
Abundance of particles such as
carbon monoxide, sulfur diox-
ide, etc.

Particle concentration in µg/m3

7.2 Related Work

In general, scientists define their exploration questions in terms of abstract concepts far removed
from the raw sensor data available to a robot. It is usually unfeasible to encode this rich, abstract
knowledge in a direct way that enables true robotic understanding. However, it is often possible
to construct simpler hierarchical probabilistic models relating these representations to measur-
able data. Conventions for mission design show ways of quantifying these relationships. For
example, NASA missions represent the relationship between abstract investigation objectives
and raw measurements with a Science Traceability Matrix (STM). This is done through a tri-
partite division into investigation objectives, physical properties, and instrument measurements.
Some examples of Science Traceability Matrices for geologic, oceanographic [11], and pollution
mapping are shown in Table 7.1.

A few deployed robots can perform automatic science data analysis [11, 28, 44, 180], how-
ever they do not use science hypotheses as an integral part of their reasoning. Instead, they pursue
static objectives that are fixed at the outset. These simplified tasks, such as mapping scalar fields
(e.g., ocean temperature [11]), or detecting transient features (dust devils on Mars [24]), are
defined long in advance. Some robots have used Bayesian networks for tasks such as mineral
classification [54], or meteorite identification [137], but they also operate under predefined static
objectives that ignore the evolution of the robot’s overall knowledge of a scene throughout the
mission. Researchers have only recently begun to investigate Bayesian experimental for robotic
exploration, and consequently build probabilistic graphical models connecting high-level con-
cepts with low-level observations [3, 59]. However, these approaches have not investigated the
influence of the scientist’s prior knowledge of a scene during exploration, which is critical in
realistic scenarios. They have also not integrated nor compared state-of-the-art informative path
planners with their systems.
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7.3 Probabilistic Mapping Model

7.3.1 Science Hypothesis Map

The science hypothesis map extends the idea of a Science Traceability Matrix to a probabilistic
model with spatial extent, granting robustness under uncertainty. It is also a framework for cal-
culating the information that collected measurements, directly interpretable by the robot, provide
with respect to the fundamental investigation objective. Specifically, the science hypothesis map
has the following hierarchical components (Figure 7.1):

• For simplicity, the map is partitioned into k independent, predefined spatial regions, labeled as
R : {r1, . . . , rk}.

• The investigation objectives estimate abstract properties which are themselves unknowns, la-
beled as H : {h1, . . . , hl}. Each region can be explained by an investigation objective with
probability PR(H).

• Physical properties, labeled as Y : {y1, . . . , ym}, have unique associations with the investiga-
tion objectives, given by PR(Y |H).

• The robot collects n sensor measurements, labeled as Z : {z1, . . . , zn}. These measurements
could be noisy or dependent on observing conditions, so there is an indirect association be-
tween Z and Y given by PR(Z|Y ).

For mapping simplification purposes, the explored environment is partitioned into disjoint
regions, each associated with its own independent conditional distributions relating investigation
objectives, physical properties, and measurements (Figure 7.1).

Geological Hypothesis Map

Investigation 

Objectives

l

Physical 

Properties

m

Measurements

n

𝑟1
H Y Z

Predefined Regions 

𝑟2

𝑟𝑘

⋯

Figure 7.1: Plate notation of the science hypothesis map. Each spatial region r ∈ R has an independent
hierarchical conditional distribution of investigation objectives h ∈ H , physical properties y ∈ Y , and
measurements z ∈ Z.
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7.3.2 Bayesian Inference

The next step is to use the previous probabilistic model to infer the corresponding investigation
objective H for each region r ∈ R, given a measurement Z. In other words, the goal is to find a
closed-form expression for PR(H|Z) in terms of the known conditional distributions PR(Y |H)

and PR(Z|Y ).
First, the joint probability model of H , Y , and Z for each region in R can be decomposed

using the chain rule:
PR(H, Y, Z) = PR(H)PR(Y |H)PR(Z|Y ). (7.1)

Integrating over variables:

PR(H,Z) = PR(H)
∑
Y

PR(Y |H)PR(Z|Y ), (7.2)

PR(Z) =
∑
H

PR(H)
∑
Y

PR(Y |H)PR(Z|Y ). (7.3)

From the definition of conditional probability:

PR(H|Z) =
PR(H,Z)

PR(Z)
. (7.4)

Finally, we get the desired closed-form solution:

PR(H|Z) ∝ PR(H)
∑
Y

PR(Y |H)PR(Z|Y ). (7.5)

This is equivalent to performing Bayesian inference, with Pr(h) being the prior probability or ini-
tial belief of the explaining investigation objective of a region, given by the scientist in advance,
and Pr(h|z) the posterior probability or updated belief.

7.3.3 Geologic Model

Often planetary exploration, including surface exploration of Mars, the Moon, and other plane-
tary bodies, involves mapping surface mineralogy to infer geologic composition, structure, ori-
gins, and ages. This work considers a geologic exploration model in which (Figure 7.2):

• The investigation objectives H are geologic classes defining different ages and formation pro-
cesses. An example would be a hydrothermal formation.

• The physical properties Y are minerals, distinctive chemical compositions that diagnose the
geologic formation conditions of rocks. For example, hydrothermal formations are character-
ized by the presence of minerals such as chlorites and serpentines.

• The measurements Z, reflectance spectra, representing the fraction of incident light reflected
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Figure 7.2: Visual example of the relation between geologic classes, minerals and reflectance spectrum
measurements. Elaborated with information from the United States Geologic Survey (USGS) [31].

in each wavelength from the visible to shortwave infrared. Many minerals’ molecular com-
pounds have distinctive features in this range due to their distinctive chemical structure [32].

7.4 Informative Exploration

This work focuses on the specific class of path planning where a mobile agent must explore
an environment by planning an information-optimal path to reach a prescribed end-of-day goal
location, optimally balancing navigation and resource costs against meaningful science measure-
ments. During the mission, the robotic explorer collects a sequence of n measurements in a path
P = {x1,x2, . . . ,xn}, where spatial coordinates are denoted as x ∈ X ⊂ R2. The correspond-
ing possible combinations of the n spectrum measurements is denoted as Zn.

The robot aims to optimize information gain, which is equivalent to mutual information. It is
a classical objective function for information-driven action selection [9, 113]. Specifically, it is
defined as the expected reduction in uncertainty after collecting new information, measured with
Shannon entropy. The Shannon entropy of an independent region r is:

IR(H) = −
∑
H

PR(H) logPR(H). (7.6)

The expected entropy of the posterior distribution given n measurements is:

IR(H|Zn) = −
∑
Zn

PR(Zn)
∑
H

PR(H|Zn) logPR(H|Zn). (7.7)
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From Equations 7.6 and 7.7, the information gain for each region can be calculated as:

IGR(H|Zn) = IR(H)− IR(H|Zn). (7.8)

Information gain is additive across independent variables. Then, the objective function for the
whole map can be represented as the sum of regions’ information gains:

IG(R|Zn) =
∑
R

IGR(H|Zn). (7.9)

A real time application may face the problem of calculating information gain efficiently. In
this case, the sum over all possible sequences of n measurements has exponentially many terms,
as given by:

|Zn| =
(
m+ n− 1

n

)
. (7.10)

It can be noticed that m, the total number of possible different minerals, is constant. Therefore,
the combinatorial explosion when calculating the expectancy over alternatives (Equations 7.7
and 7.8) is due to the number of measurements n.

While information gain can be estimated with Markov chain Monte Carlo approximations
[152], here the distributions P (Z) and P (H|Z) are not known a priori. An alternative is to
perform Monte Carlo integration [8], with the possibility of using simple sampling strategies.
But another problem arises: the approximation accuracy deteriorates as n increases. However,
given the problem formulation in this work, there is a more robust and efficient approximation
for large n. Information gain is a function that as long as Z and H are not independent, and the
observations are conditionally independent given H , the following holds:

lim
n→∞

IGR(H|Zn) = IR(H). (7.11)

as shown by Haussler and Opper [71]. Since information gain (Equations 7.7 and 7.8) is calcu-
lated by marginalizing Y (equation 7.5), these properties hold true.

This means that it is plausible to fit a curve to the first few data points (i.e., a small number of
measurements n), which are simpler to calculate or approximate, specifically, a monotonically
increasing curve that converges to a maximum. In this work, a generalized logistic function
(GLF) is used, also known as Richard’s curve, which is a generalization of the sigmoid curve
[146]. Specifically, the used GLF is parametrized as follows:

GLF (n; a, b, c) = a
(
1− e−bn

)−c
, (7.12)

where a, b, c are the hyperparameters that need to be estimated. Therefore, at least three points
are required for fitting.

An example is shown for the information gain calculation for a Bayesian network with 30
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Figure 7.3: Information gain calculation using three different methods: direct, Monte Carlo integration,
and GLF fitting.

investigation objectives and 20 physical properties (Figure 7.3). It uses nonlinear least squares
fitting to find a suitable GLF approximation. It also shows a Monte Carlo approach, as well as
the true information gain values. It can be easily observed that the accuracy of the Monte Carlo
method deteriorates for large n, but not for the GLF method. In this example, only the first 6
Monte Carlo points are used for the GLF fit. All Monte Carlo approximations are calculated with
10, 000 random points each by performing importance sampling. The proposal distribution is a
uniform distribution over all possible combinations of Zn, where points are sampled with the
method by Smith and Tromble [156]. The goodness of fit statistics for 0 ≤ n ≤ 15 are: R2 =

0.9999 and RMSE = 0.0092, showing that the function can predict IGr for many samples.

Finally, this work formulates the path planning objective as maximization of information
gain subject to a fixed resource budget (time, energy, etc.) that the robot can travel before finally
reaching a desired end-of-day goal. Implicitly, x1 = xstart and xn = xend. The optimization
problem is:

max
Zn

IG(R|Zn)

s.t. Cost(Zn) ≤ Budget
(7.13)

Information gain is submodular. In this context, it means that sampling the same region repeat-
edly leads to diminishing expected returns. From the objective function in equation 7.9 and
the submodularity of information gain, there is a resulting exploitation vs. exploration trade-
off that translates to taking many samples from a few highly-rewarding regions, or to visiting
as many different regions as possible. The science hypothesis map integrated with this formu-
lation in equation 7.13 can accommodate many different path planning strategies. There exist
straightforward methods that use mixed integer linear programming (MILP) to generate optimal
informative paths, but only when the rewards between sampled points are independent [183].
There is a family of algorithms that use the submodular property of information gain to pro-
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duce near-optimal solutions [101, 154]. There are also some Monte Carlo tree search (MCTS)
methods for informative path planning [3]. Other approaches may be computationally intensive,
but potentially closer to optimality, such as using branch and bound (B&B) techniques for both
discrete [10] and continuous [83] space representations.

7.5 Cuprite Scenario

The science hypothesis map for geologic exploration was first validated in a simulation study
based on the Cuprite scenario. This section first discusses the model that was constructed for
Cuprite; it then describes the experiments that were conducted as well as the respective results.

7.5.1 Geologic Model

We next explain the procedure that was followed to train the hierarchical probabilistic model for
the Cuprite scenario, i.e., learn the association between geologic classes and minerals, P (Y |H),
and the relationship between minerals and reflectance spectrum measurements, P (Z|Y ). The
different elements of the science hypothesis map are shown in Figure 7.4. Geologic classesH and
minerals Y are based on expert-drawn geologic and mineral maps by Swayze et al. [161], which
make a rough segmentation of the whole Cuprite site into regions. These maps are adjusted with
manual control points so that they align on a per-pixel basis. Each independent geologic class
label and mineral are assigned a different value, illustrated as arbitrary false colors. These maps
provide a ground-truth interpretation for each pixel in the scene. Note that each unit generally
contains many minerals in different proportions. These proportions are used to train a conditional
probability table of minerals given geologic classes, i.e., P (Y |H). This table consists of 32
geologic classes and 20 minerals. The training set uses up to 2000 random samples from every
predefined region. These datasets are withheld from the analysis that follows.

Representative reflectance spectra of some key minerals in Cuprite are also shown in Figure
7.4. In situ measurements performed by a robot with a spectrometer are simulated using an air-
borne instrument. Specifically, data from the Next Generation Airborne Visible Infrared Imaging
Spectrometer (AVIRIS-NG) [68]. It assigns a unique reflectance spectrum measurement to every
location (pixel) in the scene. AVIRIS-NG mapped the area at high spatial resolution (3.9 m per
pixel) with radiance measurements from 380-2510 nm, also with a high spectral resolution (5.0
nm per channel). The data was acquired during overflights in 2014 and converted from measured
at-sensor radiance to surface reflectance using the procedure described by [166].

A Gaussian Mixture Model (GMM) is used as a simple but effective probabilistic classifier
that predicts the corresponding mineral from a spectrum measurement. The model is trained
using a held-out training set of locations from each mineral class. Since the used AVIRIS dataset
has a very high resolution, its dimensionality is reduced to 20 dimensions with Principal Compo-
nent Analysis (PCA). Then, a mean and covariance matrix is fit to each class using the shrinkage
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Figure 7.4: Cuprite, NV. Left: geologic classes H . Center: minerals Y and their abundances. Right:
Representative reflectance spectra Z of some key minerals. Each pixel is associated with a full spectrum.
Geologic classes and mineral abundances are based on the work by Swayze et al. [161].

estimator described in [82]. The shrinkage estimator treats the actual covariance as a linear com-
bination of the sample covariance, and a regularized version consisting of the diagonal elements
only. A closed form solution to the leave-one-out cross validation (LOOCV) likelihood allows
efficient computation of the optimal linear combination. The end result is a probability density
for every combination of mineral and spectrum in the image.

Treating Z as a discrete variable simplifies information gain calculations. Consequently, the
classification output of the GMM classifier is treated as a categorical answer. Figure 7.5 shows
the corresponding confusion matrix from a held-out validation set to infer its probability of error
on any future measurement. It has an overall accuracy of 57.15%, with a min/max class accuracy
of 12.50% and 98.95%, respectively. Although it is a classifier with a relatively low accuracy,
its confusion matrix acts as a conditional probability table that compensates the noise in the
measurement process which could cause the estimated mineral Z to differ from the true physical
variable Y . The used training and validation sets each use up to 1000 samples from every mineral
type. These datasets are withheld from the analysis that follows.

Finally, information gain was computed using GLF-based approximations. Specifically, we
fitted a GLF to each disjoint spatial region as a function of its prior distribution (initial hypothe-
sis). Similarly to the example described in Section 7.4, the GLF fitting process used Monte Carlo
approximations for the first 5 measurements n.

7.5.2 Experiments and Results

Bayes Learning

This group of experiments evaluated the model’s ability to predict and recover the true geologic
class of a region (with a specific age, formation process, etc.) from high-resolution AVIRIS spec-
tral measurements with the Bayesian update. For each of the 32 regions, 200 random sampling
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Figure 7.5: Empirical conditional probability table relating actual to estimated minerals for each of 20
possible mineral types in the Cuprite scene.

sequences were generated and averaged. Non-training points were sampled without replacement,
simulating an exhaustive exploration with no budget constraints.

To evaluate the model’s ability to recover the true geologic class of each region, this ex-
periment tracked two fundamental variables: the posterior probability of the correct geologic
class, and the updated entropy (Figure 7.6). As more and more measurements are collected,
the updated probability of the true underlying geologic class should ideally converge to 1, and
consequently, the entropy should converge to 0. These convergence rates depend on the prior dis-
tribution, therefore, different initial conditions were tested through three representative scenarios,
explained next.

Starting with an accurate prior: To represent a situation where the scientist has a relatively
accurate initial belief, a value of 50% was assigned to the prior probability of the correct geologic
class, while the remaining probability mass is distributed to alternatives. This prior allows ample
margin for converging to either a correct or incorrect answer. Most beliefs converge to the right
answer with few samples, while entropies reduce significantly. The three exceptions with poor
outcomes correspond to the smallest regions trained with the fewest data points.

Starting with complete uncertainty: In this case, a situation of complete uncertainty was rep-
resented with a uniform prior over geologic class labels. Despite the more challenging situation,
most beliefs still show significant improvement. As expected, there is more variance and an
overall slower convergence rate.

Starting with an inaccurate prior: Finally, this part represents a situation where the scientist’s
initial beliefs are actually incorrect. For that, a prior probability of 50% was assigned to an
incorrect unit: the most similar geologic class according to the Hellinger distance for probability
distributions – a challenging error to correct. The remaining probability mass is distributed
uniformly. There is an even slower improvement with a higher variance. But in most cases the
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Figure 7.6: Posterior probability of the correct class (top row) and posterior entropy (bottom row), starting
with an accurate prior (left column, green medians), under complete uncertainty (center column, blue
medians), and an inaccurate prior (right column, red medians). Each data point in the box and whisker
plots corresponds to one of the 32 different regions.

model still recovers.
This results indicate that the model is able to recover the true geologic class most of the times

as spectral measurements are collected, even under misleading initial conditions.

Path Planning

This group of experiments integrated the science hypothesis map with different information gain-
driven path planners. It compares their performance in order to evaluate the potential benefits
in science yield when using information gain-based planning over conventional science-blind
planners.

The whole Cuprite region was divided into three sites with the same area: A, B, and C. For
simplicity, each site is treated as a 2D discrete graph that is formed by an 8-connected rectangular
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grid, with locations spaced at 50 pixels (200 m). The full map has a size of 2555 × 2268 pixels
(10.22× 9.07 km). For each site, 200 different pairs of random start and end points were gener-
ated, located at the East and West edges of the map. The cost function was directly proportional
to the path length, and the assigned budget permitted up to 1.5 times the shortest path length,
allowing sufficient budget to explore alternative regions. All simulated traverses and regions had
the same initial conditions: a prior probability of 40% assigned to both the correct geologic class
and the most similar unit according to the Hellinger distance, while the remaining probability
mass was distributed to alternatives. This represented a challenging scenario where the scientist
is equally inclined toward two similar options.

As a control case, this work evaluates three science-blind planners that ignore information
gain.

• Direct (D): A path planner that selects the sequence of waypoints that minimizes the total path
length with Dijkstra’s algorithm [39].

• Random(R): A path planner that sequentially selects a set of random neighboring waypoints
that do not violate the budget on path length.

• Max-N (M): A path planner that maximizes the number of visited nodes using a classic re-
cursive greedy approach for orienteering [27]. Since there may be multiple valid solutions, it
performs a random permutation of the waypoints’ ids in order to avoid biased paths (e.g. paths
that prioritize going to the left).

Against these, this work compares three science-aware planners that incorporate measure-
ments’ information gain.

• Greedy (G): A path planner that adds at each step the neighboring waypoint that maximizes
the objective function, this without exceeding the budget.

• Branch and bound (B): A path planner as a nonmyopic alternative. It selects a sequence of
waypoints using the algorithm described by Binney and Sukhatme [10]. In this particular case,
implementing a three-step calculation look ahead.

• pSPIEL (P): A planner that combines submodular orienteering algorithms by Singh et al.
[154] with this work’s information gain objective function.

Additionally, these planners updated the hypotheses and paths every time a new measurement
was collected, this with the goal to simulate an explorer that adapts its path dynamically with each
new observation (Figure 7.7).

We computed the average scores per traverse of three simple but useful metrics: path length,
number of collected measurements, and number of explored regions (Table 7.2). As expected, the
Direct planner minimizes the first two metrics, whereas the Max-N planner maximizes them. The
rest of the planners have an intermediate performance, with the Random and Greedy planners
getting similar scores, and the pSPIEL planner achieving the second best performance overall.
Nonetheless, all the science-aware planners explore more regions than any of the science-blind
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Figure 7.7: Example paths from the 6 planners. The start is on the upper left, and the end on the lower
right. Paths can differ notably from one another depending on the planning algorithm.

Table 7.2: Average scores for three relevant path planning metrics: path length, collected measurements,
and explored regions.

Site Metric D R M G B P

A
Path length (m) 3937 5582 6129 5639 5815 5817

Collected measurements 15.99 23.24 27.67 23.43 24.94 26.74
Explored regions 5.32 5.95 6.03 7.71 8.20 8.77

B
Path length (m) 3789 5430 5892 5368 5511 5608

Collected measurements 13.34 19.88 23.66 18.82 20.44 22.51
Explored regions 5.62 6.32 6.38 8.05 8.83 9.65

C
Path length (m) 4045 5798 6285 5468 5937 5974

Collected measurements 12.29 18.77 21.67 17.49 20.31 21.32
Explored regions 3.94 4.38 4.49 5.24 5.53 5.88

planners, apparently favoring exploration over exploitation in this scenario.

The performance of the planners is measured from an information-theoretic perspective with
the following variables: the evolution of the posterior probability and its entropy. The evaluation
of a path across the map is done by simply adding the corresponding updated region’s metrics,
where a poor performance in a region penalizes the global score, and vice versa. These scores
have a high variance because they strongly depend on the assigned path length budget. Therefore,
the scores are normalized using feature scaling with respect to the best and worst planners for
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Figure 7.8: Comparison of planners based on their ability to recover correct geologic classes (top row)
and the final entropy (bottom row) per traverse using a normalized score. The green dots are the means.

each given pair of start-end locations. The resulting scaled scores for prediction accuracy and
entropy are shown in Figure 7.8. On the other hand, Table 7.3 shows a set of paired t-tests
comparing the performance among planners for both metrics with their raw unnormalized scores.

These results demonstrate a couple of things. The science-blind planners have a performance
more or less proportional to the number of measurements, being Max-N the best. However,
that is not necessarily true when these are compared to the science-aware planners: they tend
to achieve superior scores in both of the information-theoretic metrics, even when some of them
spend less budget or collect less measurements in average (e.g. Greedy vs. Random and Max-N).

This shows that there are more meaningful science measurements than others, and balancing
them adequately leads to higher science productivity. For instance, the nonmyopic planners
(B&B and pSPIEL) outperform the Greedy method since it only has a one-step look ahead.
pSPIEL is the best overall method because it analyzes and weights all reachable regions using an
approximation graph, favoring the ones with the highest expected rewards. On the other hand,
the B&B method is limited by a three-step calculation horizon.
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Table 7.3: Paired t-tests between planners’ performance using a significance level of 5%. In most cases,
there is a statistically significant difference (Y/N) in both inference (first entries) and entropy (last entries).

Site A B C
Planner D R M G B P D R M G B P D R M G B P

D - Y, Y Y, Y Y, Y Y, Y Y, Y - N, Y N, Y Y, Y Y, Y Y, Y - Y, Y Y, Y Y, Y Y, Y Y, Y
R - - Y, Y Y, Y Y, Y Y, Y - - N, N Y, Y Y, Y Y, Y - - N, Y Y, Y Y, Y Y, Y
M - - - Y, Y Y, Y Y, Y - - - Y, Y Y, Y Y, Y - - - N, N Y, Y Y, Y
G - - - - Y, Y Y, Y - - - - N, Y Y, Y - - - - Y, Y Y, Y
B - - - - - N, Y - - - - - Y, Y - - - - - Y, Y
P - - - - - - - - - - - - - - - - - -

7.6 TREX Scenario

The science hypothesis map for geologic exploration was further validated using the TREX sce-
nario. More details about this scenario can be found in Chapter 4. Both simulation and field
experiments were conducted. This section first discusses the model that was constructed for the
TREX studies. Afterwards, it describes the results from the simulation and field experiments.

7.6.1 Geologic Model

The TREX science team specified 10 geologic origins (investigation objectives) and 502 min-
erals (physical properties) for the model. The geologic origins are: lacustrine/marine, evapor-
itic/playa, metamorphic/hydrothermal, hydrothermal, pedogenic/diagenic/weathering, igneous,
biogenic, ambiguous, ice, and manmade. The mineral list was derived from the USGS spectral
library [31] and it included minerals that can be detected in the 1 µm and 2µm spectral bands. The
science team elaborated a simple table relating minerals to geologic origins. The table consisted
of binary values (zeros and ones). In order to construct the probability distribution P (Y |H), we
normalized the table and used additive (Laplace) smoothing to avoid numerical issues such as
zero division errors.

The Tetracorder algorithm [33] was used to estimate mineralogy from reflectance spectra.
After analyzing a spectrum, Tetracorder returns three results for each mineral in the USGS spec-
tral library: goodness of fit, spectral feature depth, and the product fit × depth. All of these
variables have a value between zero and one, where a higher value indicates a stronger mineral
match. For our model we used fit × depth and treated it as the probability distribution P (Z|M).
Additionally, Tetracorder returns these three values for each spectral band or “group”. Our anal-
ysis focused on the spectral groups 1 and 2 that correspond to the 1 µm and 2µm spectral bands,
respectively.

A subset of the science team did not have access to the whole synthetic geologic environment,
just to the corresponding AVIRIS-NG image. Their objective was to perform a preliminary
analysis based on contextual remote sensing data and provide an initial hypothesis regarding the
geologic origins of the site. This prior, or initial hypothesis, is shown in Figure 7.9.
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Figure 7.9: Initial hypothesis regarding geologic origins in the synthetic environment (left). This figure
shows the three ground truth geologic origins: lacustrine/marine for the marine unit, hydrothermal for the
fluvial unit, and pedogenic for the volcanic unit (right). The levels of confidence in the prior are somewhat
low.

A simple neural network (multilayer perceptron) was trained in order to approximate infor-
mation gain in a much faster manner. The reason for this choice is simple: the TREX science
model suffers from a combinatorial explosion because of its 502 different minerals. For instance,
the computation of information gain for a number of samples n = 5 requires the evaluation of
more than 270 billion different outcomes. Furthermore, preliminary Monte Carlo approxima-
tions performed poorly. The used neural network learned how to predict the three parameters
of the GLF described in Equation 7.12. These parameters were used to define a GLF, and then
the GLF was used to estimate information gain. The neural network was trained with 10,000
different priors that were sampled uniformly from a 10-D simplex because the science model
consists of 10 geologic origins. Examples of GLF and information gain predictions for different
priors are shown in Figure 7.10.

7.6.2 Experiments and Results

The experiments consisted of simulations and a complementary field experiment where Zoë was
deployed for validation purposes.
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Figure 7.10: Information gain approximation with a neural network for the TREX scenario. A non-
informative is shown on the left while an informative prior appears on the right. On average, samples
produce more information gain when starting with a non-informative prior.

Simulation Experiments

The exploration space was represented as an 8-connected grid with a spacing of 10 m between
nodes. A slope constraint of 20◦ and an elevation threshold of 200 m were enforced by not
including the corresponding nodes in the graph. Since it is a small and somewhat constrained
environment, 50 pairs of start and end locations were randomly selected so that they were all
roughly at the same distance (100-120 m). In addition, we defined a distance budget of 2 times
the shortest path length to allow for exploration flexibility,

Four informative path planning algorithms were compared in this study (Figure 7.11). They
were all modified so that they could handle distance budgets and end goals.
• Direct: A path that minimizes traverse cost using Dijkstra’s algorithm [39].

• Random: It sequentially samples a random neighboring location until the budget is exhausted.
It serves as a baseline and corresponds to an uninformed sampling strategy. This is a science-
blind baseline.

• Greedy: It makes the locally optimal choice using a one-step lookahead. This is a myopic
exploration strategy.

• MCTS: A Monte Carlo tree-search planner that creates a long term strategy by planning ahead
for possible observations in the future. The planner adapted the MCTS implementation by
Kodgule et al. [99] using a four-step lookahaead. This is a non-myopic path planner.

Three metrics were used to evaluate the performance of the planners in terms of science
return:
• Number of Samples: a count of samples collected during a traverse.

• Entropy: a measure of uncertainty in the model. It is directly minimized by the planners
(Equation 7.6) and is calculated without a ground truth. For normalization purposes, we com-
pute the average with respect to the total number of points in the map.

• Kullback-Leibler divergence (KLD): a smooth function that measures the difference be-
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Figure 7.11: Example paths from the 4 planners in the synthetic geologic environment. Paths can differ
notably from one another depending on the planning algorithm.

tween the true and predicted class probabilities (Equation 2.8). It should be indirectly mini-
mized by the planners.

Additionally, the total traversed distance per traverse was calculated (in meters) as a cost metric.

The results from the simulation experiments appear in Figure 7.12. This figure shows box
plots of the aforementioned performance metrics: number of samples, entropy, KLD, and dis-
tance. It also includes paired t-tests between planners. Results indicate that smart planners tend
to perform better than simpler planners, but only by a modest amount in some cases. This can
be attributed to the fact that the synthetic geologic environment is very simple as it only consists
of 3 units. Consequently, many planners can learn most of the map very quickly and their per-
formances converge accordingly. Furthermore, Random and Greedy do not have a statistically
significant difference in terms of collected number of samples, entropy, nor KLD. Myopic plan-
ning can only decide between neighbors where most of them have the same information gain
as they are usually contained inside the same unit, essentially becoming equivalent to a random
strategy. In contrast, MCTS does a better job since it has a longer planning horizon that makes
it more likely to consider other units. In terms of traversed distance, it is evident that the Direct
planner always follows the shortest paths as permitted by the traversability map. It is interesting
to observe that Greedy and MCTS basically traverse the same distance. This underscores the
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Figure 7.12: Path planners’ results from the TREX simulation experiment. Left column: box plots of
number of samples, entropy, Kullback-Leibler divergence (KLD), and distance per traverse. Right col-
umn: corresponding paired t-tests between planners, white indicates a statistically significant difference
(α = 0.05). Smarter planners tend to outperform simple strategies, although these differences are modest
because of the relatively small exploration environment consisting of only 3 units.
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Figure 7.13: Autonomous rover traverse at the Gascola site. Left: RGB drone imagery. Right: synthetic
geologic environment prepared for the site.

importance of efficiency as planners that use similar resources, in this case distance, may not
necessarily yield the same results in terms of science productivity.

Field Experiments

Zoë, the rover, was deployed between 26-30 July 2021 at the Gascola site near Pittsburgh, PA.
More details about the TREX scenario can be found in Chapter 4. The field experiment con-
sisted of an operations readiness test for an upcoming field campaign in Arizona. Therefore, the
Gascola test had a more limited scope. The objective was to emulate data collection with the
rover under more realistic conditions as opposed to the AVIRIS-NG simulations. To this end,
the TREX science team prepared about 20 mineral samples that contained different fine-grained
materials. These samples were placed at specific geographic coordinates according to their asso-
ciated locations in the synthetic geologic environment. Whenever the rover reached a particular
waypoint, ASD spectra from the corresponding sample was measured with manual assistance.

Most of the time was devoted to robot teleoperation exercises for the science team. Such
efforts focused on exploring the marine and volcanic units of the synthetic geologic environ-
ment. The remaining unit (fluvial) was explored using autonomous rover science and navigation.
The respective rover path is shown in Figure 7.13. Seven samples were collected during the tra-
verse, which was generated using the MCTS planner running on board the rover. Results from
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Figure 7.14: Results from the autonomous rover traverse at the Gascola site. Tetracorder detected minerals
supporting the initial hypothesis that the fluvial unit may have a hydrothermal origin, which originally had
a 50% confidence. The model updated accordingly and the corresponding confidence increased to 88%.
At the same time, the models’ entropy decreased.

119



this single path are limited but quite promising (Figure 7.14). First of all, this is the first time
that Tetracorder [33], the state-of-the art in automated spectral composition analysis, has ever
been successfully deployed on any rover. It is important to mention that the rover was not ex-
empt from challenges that are common during field spectra collection such as calibration issues,
varying light conditions due to sudden cloud coverage, and sample targeting difficulties (even
though this process was assisted manually). However, Tetracorder was able to produce plausi-
ble and consistent results many times when analyzing in situ spectra in real time. During the
autonomous traverse, Tetracorder detected minerals such as feldspars, hematites, and kaolinites.
These specific minerals support the initial hypothesis that the fluvial unit may have a hydrother-
mal origin, which originally had a 50% confidence. The model updated accordingly and the
corresponding confidence increased to 88%. At the same time, the models’ entropy decreased.
Overall, these results are encouraging since they support the feasibility of our approach under
more realistic conditions.

7.7 Discussion and Conclusion

This chapter develops a Bayesian framework in which scientists initially describe their abstract
beliefs and hypotheses, and then the state of this belief evolves as the robot makes raw mea-
surements. This work constructs a spatial and hierarchical probabilistic structure that relates
high-level science representations to measurable data. We call this model the science hypothesis
map. Moreover, scientific information gain is derived from the model and efficiently computed.
Finally, robotic exploration is formulated as an informative path planning problem, allowing for
the maximization of scientific information gain.

We highlight several key findings of this simulation study based on the Cuprite scenario.
First, the experiments demonstrate that the science hypothesis map is a sound mathematical
framework for describing exploration for specific well-defined objectives. The probabilistic
model can infer geologic class with a high accuracy under diverse challenging situations. In
the case of robotic path planning, path planners that exploit information gain better reduce un-
certainty over the investigation objectives. Not surprisingly, non-myopic planning outperforms
myopic and science-blind alternatives.

Results from the TREX scenario further validate our approach. In simulations, we see simi-
lar trends in a different environment for a more general geologic model that was provided by an
actual team of planetary scientists. Results from the ORT field experiment were limited in scope
but are quite promising since they demonstrate the feasibility of our approach under real-life con-
ditions with a rover. Overall, it is encouraging to observe how ideas from the science hypothesis
map are starting to be adopted by researchers in the planetary science community. Additionally,
this is the first time that Tetracorder [33], the state-of-the art in automated spectral composition
analysis, has ever been successfully deployed on any rover.

120



A more surprising finding is the strength of the statistical link between measured spectra,
the corresponding mineral types, and the geologic classes. This is not a foregone conclusion
because geologists form this classification from many other features such as local morphology,
elevation, the wide-area geographic three-dimensional structure of different strata, and domain
knowledge. It is striking that reflectance spectra, drawn independently and randomly from each
unit, so strongly predict geologic classes.
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Chapter 8

Science and Risk-Aware Exploration

8.1 Introduction

Planetary rovers have science goals to complete, such as reaching specific locations, sampling
rocks, and sending data back to Earth. Nevertheless, safe exploration is of the utmost impor-
tance. A relevant example involves the Mars Exploration Rovers (MER) Spirit and Opportunity.
Although both rovers landed on Mars in early 2004, Spirit became stuck in a sand dune in 2009
and ceased communications in 2010, while careful operation allowed Opportunity to exceed its
original mission plan until 2018.

Most of the work related to rover motion planning focuses on either increasing science pro-
ductivity or reducing traversability risk; but not both simultaneously. In practice, these issues
are sometimes addressed in conjunction by just oversimplifying one of them. This particular
work proposes and describes a comprehensive technique for the holistic integration of both sci-
ence and risk. Specifically, a Bayesian framework that is able to simultaneously quantify science
value and risk, provide probabilistic guarantees, and design paths accordingly. In other words, a
method that addresses how to reduce risk while still performing relevant science investigations.

This chapter is structured as follows. First, it discusses state-of-the art planning methods for
science-aware planning. Then, it describes current approaches for risk-aware planning for rovers,
mainly focusing on geometric and slip-based models and planners. Afterward, it introduces
our planning framework that combines science productivity with probabilistic risk constraints.
Finally, it includes results from a simulation study involving rover sample collection at Jezero
Crater, Mars. These results show that risk is not only bounded but also reduced by a significant
amount while slightly affecting science productivity.
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8.2 Related Work

8.2.1 Science-Aware Planning

Herein we pay special attention to science-aware planners that utilize well-defined principles
from information theory and statistical learning for decision-making. Bayesian experimental de-
sign [25] is a framework from which an optimal experimental design (in this case a series of mea-
surements in a rover path) may be derived by maximizing the expected value of an information-
theoretic utility function. Examples of these utility functions include Shannon entropy, mutual
information, and Kullback-Leibler divergence [35]. A more detailed explanation of these utility
functions can be found in Chapter 2.

There exist several planning algorithms for information gathering that use Bayesian exper-
imental design at varying degrees, each with its own advantages and drawbacks. There are
methods that assume independence between sampling locations, which is usually an oversimpli-
fication in informative exploration scenarios [27, 183]. Krause et al. [102] and Singh et al. [154]
use submodular optimization techniques based on near-optimal greedy algorithms and demon-
strate that they tend to work well on Gaussian processes. Thompson et al. [166] rely on a greedy
graph-based approach for sampling the most representative spectra in a scene. Other approaches
may be computationally intensive, but potentially closer to optimality, such as branch and bound
(B&B) techniques; existing graph-based [10] and sampling-based [83] versions. There are Monte
Carlo tree search (MCTS) planners that have been applied to geologic exploration scenarios since
they can use long planning horizons, but results are not deterministic and may vary considerably
if too few iterations are used [3, 99]. Gautam et al. [58] propose a multi-heuristic A* planner
that employs an entropy reward together with a simple distance cost; they explore this trade-off
using Pareto optimization via genetic algorithms. Miller et al. [121, 122] combine ergodicity
theory and optimal control to derive smooth trajectories (paths) that spend a proportional amount
of time in areas according to their potential information utility.

All of the previous algorithms use science-related information for information gathering, but
they either ignore or use very simple cost functions and constraints. Additionally, they inherently
fail to evaluate and address risk in navigation.

8.2.2 Risk-Aware Planning

The navigation systems equipped on current Mars rover missions such as MER and Mars Science
Laboratory (MSL) detect and avoid local geometric hazards using the grid-based estimation of
surface traversability applied to local terrain (GESTALT) algorithm [60]. For path planning,
they rely on the D* algorithm [160]. Although these methods have enabled autonomous rover
operations, avoiding specific geometry is not enough to guarantee safety. Both MER and MSL
missions have experienced hazardous conditions due to sand dunes, which are often detected
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as geometrically benign. These hazards can create adverse conditions such as wheel slip and
sinkage. Excessive slip in terrain with little traction can cause rovers to become entrapped.

More recent navigation systems [52] account for slip since it is one major concerning issue
during rover operations [133, 134]. Simulation studies have been conducted to estimate the ter-
ramechanical properties of Mars rovers [93, 185], but in practice it is often necessary to perform
validation through empirical studies [5, 6]. Wheel slippage is usually difficult to estimate, espe-
cially for terrains with loose material. Slip for planetary rovers has been modeled as a function
of two different terrain properties: slope and type (e.g. sand dunes, bedrock, etc.) [5, 89, 123].
In other words, slip has been modeled using geometric and semantic information. Especially
pertinent is the Bayesian model by Cunningham et al. [37] as they train Gaussian processes to
predict slip as a function of both terrain type and slope using data from the Curiosity rover.

Risk-aware planning algorithms for planetary rovers typically rely on digital elevation mod-
els (DEMs) and imagery (orbital and in situ) for estimating slope and terrain types, respectively
[133, 134]. Inotsume et al. [90] present a Bayesian framework that is based on rapidly-exploring
random trees (RRT*) [94], allowing users to define slip-based risk thresholds and generate paths
accordingly. Mizuno et al. [123] also use an RRT* planner, but they model and propagate slip un-
certainty with a particle filter. Ono et al. [132] first segment and classify terrain from both orbital
and in situ imagery using the deep learning algorithm SPOC [149], and then use this labeled data
together with DEMs to identify obstacles and traversability costs; paths are computed afterwards
by applying a rapidly-exploring random graph (RRG) in conjunction with A*. Hedrick et al. [73]
utilize a similar terrain-aware planner; however, it updates its terrain-type map given new in situ
information by using belief propagation in Markov Random Fields, with possible replanning if
needed.

All of the previous planners are inherently science-blind since they do not to evaluate sci-
entific information and importance, let alone exploit it. They have a lot of unfulfilled potential
as there is plenty of scientific value in terrain understanding, which they only use to address
traversability. It has been shown that morphology is strongly correlated to mineral composition
[17, 168, 173]. Mineralogy contains valuable information about water, habitability, and biosig-
nature potential [12, 173].

8.3 Approach

This section describes a framework for planetary rovers that consists of two Bayesian models.
One model addresses science information, while the other model focuses on traversability risk.
They are both constructed using orbital data of Jezero Crater, the Martian landing site for the
Perseverance rover. More information regarding the Mars scenario and data sets can be found in
Chapter 4.
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Figure 8.1: Jezero Crater orbital data used for the science model.

8.3.1 Science Model

This work emulates autonomous sample collection efforts performed by a rover at Jezero Crater.
Throughout this research we have discussed various models for science. Herein we focus on
the model described in Chapter 6, which combines remote and in situ data for efficient map-
ping and exploration. Similarly to current Mars investigations, we assume that there is access
to high-quality orbital data. CRISM data is employed for science analysis (Figure 8.1), which
has a resolution of 36 m/pixel. It serves as the source of remote data, and is also used to gener-
ate synthetic measurements from the SuperCam suite of instruments. Specifically, the infrared
spectrometer sensitive to 256 channels in the 1300-2600 nm spectral range. A Variational Au-
toencoder (VAE) with three latent dimensions is used for feature extraction (more information
can be found in Chapter 5). Hence, the science model consists of three independent Gaussian
processes. For simplicity, the science model does not perform explicit composition analysis, but
rather performs spectroscopic mapping.

8.3.2 Risk Model

The risk model for rover traversability is the most important element of the work described in
this chapter. This model integrates geometric and semantic information in order to construct a
more comprehensive representation of risk. Specifically, slope and terrain class data are used to
estimate slip probability. Risk is then defined as the probability of exceeding a user-defined slip
threshold. Each of these elements will be described in more detail.
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Geometric and Semantic Information

Geometric information is derived from a digital elevation model (DEM) of Jezero Crater (Figure
8.2a). The DEM was generated using stereo pair images from the HiRISE orbital instrument and
has a resolution of 1 m/pixel. Slope θ0 can be easily calculated using an elevation map (Figure
8.2b). The slope at a point (x, y, z) is computed using the magnitude of the elevation gradient,
which is a function of the derivatives dz

dx
and dz

dy
. Specifically, we use the Sobel image filter

when computing elevation derivatives, similarly to One et al. [134], as it is an isotropic gradient
operator. Then, slope θ0 is given by:

θ0(x, y) = tan−1

√(dz
dx

(x, y)

)2

+

(
dz

dy
(x, y)

)2
 . (8.1)

Geometric data is complemented with semantic information. To this end, we rely on a geo-
logic map of Jezero Crater especially elaborated for the Mars 2020 mission [158]. We focus on
two different terrain classes: bedrock units, which consist of consolidated materials; and surfi-
cial units, which are constituted by unconsolidated materials such as sand and gravel. Bedrock
units tend to be benign and traversable, whereas surficial units are more likely to create adverse
conditions for a rover. The original geologic map defines 14 types of bedrock units and 7 types
of surficial units. Since bedrock units may be partially or totally covered by loose materials,
the geologic map has multiple regions where these two main classes overlap. For simplification
purposes, our work treats all 14 bedrock units as one class. Additionally, we assume that surficial
units with minor and moderate coverage can also be considered as bedrock units. This simplified
geologic map is shown in Figure 8.2c.

Slip Prediction

Slip s, also known as slip ratio, is the relationship between the commanded velocity vref =

(vref,lon, vref,lat) and the actual velocity v = (vlon, vlat). This work considers both longitudinal
slip (in the direction of travel of the robot) and lateral slip (perpendicular to the direction of
travel). Longitudinal slip slon is defined as follows:

slon =

{
1− vlon/vref,lon if vlon ≤ vref,lon

vref,lon/vlon − 1 if vlon > vref,lon
(8.2)

Lateral slip slat is given by:
slat =

vlat
vref,lat

. (8.3)

A positive slip represents a state where the rover moves slower than intended. Absence of slip
means that the rover is moving exactly at the desired velocity. A negative slip indicates that the
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Figure 8.2: Jezero Crater data that was used to build the risk model. Geometric and semantic information
are combined. Geometric information (elevation and slope) is derived from HiRISE data, while semantic
information is based on the geologic map elaborated by Stack et al. [158] for the Mars 2020 mission.

rover is moving faster than the commanded velocity.

Cunningham et al. [37] use Gaussian processes (GPs) to predict slip for the Curiosity rover.
Herein we operate under the simplifying assumption that the same slip prediction model can
be used for other Mars rovers such as Perseverance. Cunningham et al. combine geometric
and semantic information. Specifically, they use GPs to predict longitudinal and lateral slip
separately, that is, they assume independence. Longitudal slip is predicted as a function of pitch
angles θp, while lateral slip is estimated with roll angles θr. Moreover, Cunningham et al. employ
different GPs for each terrain class c ∈ C. That is:

slon,c(θr) ∼ GP(µlon,c(θp), σ
2
lon,c(θr)), (8.4)

slat,c(θp) ∼ GP(µlat,c(θr), σ
2
lat,c(θp)); (8.5)

where µ is the predicted mean and σ is the predicted variance. The learned models for two
classes, bedrock and sand, are shown in Figure 8.3. In this work we assume that all surficial
units have the same slip properties as sand.

Pitch θp and roll θr are calculated as a function of slope θ0 and the rover’s angle of attack α:

θp(θ0, α) = sin−1 (sin(θ0) sin(α)) , (8.6)

θr(θ0, α) = sin−1 (sin(θ0) cos(α)) . (8.7)

While slope is always nonnegative, the angle of attack defines the direction of travel (heading on
slope) and whether pitch and roll angles are either positive or negative.

It is worth noting that this work focuses on global planning, not local navigation. Further-
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Figure 8.3: Slip estimation based on the method by Cunningham et al. [37]. Four different Gaussian
processes are used to predict slip as a function of slope and terrain class. Bedrock units tend to have
smaller slips with smaller variances. Longitudinal slip is often more severe than lateral slip.

more, there is a substantial difference in resolution between CRISM (36 m/pixel) and HiRISE
data (1 m/pixel). Hence, a rover will most likely have different headings (and pitch and roll
angles) on different slopes inside any given 36× 36 m area (Figure 8.4). To account for this, we
fit a categorical distribution to all possible slip scenarios (longitudinal and lateral) within each
CRISM pixel (i, j):

ŝlon(i, j) ∼ Cat (p̂lon(i, j)) , (8.8)

ŝlat(i, j) ∼ Cat (p̂lat(i, j)) ; (8.9)

where the parameters p̂lon(i, j) and p̂lat(i, j) are probability vectors derived from a histogram.
Such histogram is computed as follows. Possible slip values ŝlon(i, j) and ŝlat(i, j) are discretized
between -1 and 1 using a sampling interval of 0.05, every HiRISE pixel inside a given CRISM
pixel is included in the calculation (in total 36× 36 = 1296), and possible angles of attack α are
discretized between 0 and 360 degrees using a sampling interval of 10 degrees.
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Figure 8.4: A CRISM pixel is equivalent to 36 × 36 HiRISE pixels. In terms of global planning, many
different slope, pitch, and roll angles are possible.

Probabilistic Risk Model

This work defines risk for rover traverses in a similar fashion as Inotsume et al. [90]. We start by
defining local safety at a pixel (i, j) as the probability of both lateral and longitudinal slips not
exceeding a threshold sth:

safety(i, j) = p (|ŝlon(i, j)| < sth) p(|ŝlat(i, j)| < sth) . (8.10)

Note that longitudinal and lateral slip are assumed to be independent. Furthermore, we use the
absolute value of slip to avoid situations where the rover’s actual velocity is either too slow or
too fast with respect to the commanded velocity. We then define local risk as the opposite of
local safety, that is:

risk(i, j) = 1− safety(i, j). (8.11)

Examples of how risk changes as a function of sth are shown in Figure 8.5.

We then define the cumulative safety of a path P = (i1, j1), · · · , (ik, jk). For simplicity, we
assume independence between points. Hence, it suffices to multiply local safeties as follows:

safety(P) =
∏

(i,j) ∈ P

safety(i, j). (8.12)

Again, we have that cumulative risk is the opposite of cumulative safety:

risk(P) = 1− safety(P) (8.13)
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(a) Slip threshold of 0.3.
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(b) Slip threshold of 0.4.
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(c) Slip threshold of 0.5.

Figure 8.5: Jezero Crater risk model as a function of slip threshold.

In summary, this formulation allows for the quantification of risk for both specific locations and
rover paths.

8.3.3 Path Planning Formulation

This work formulates science and risk-aware exploration as an optimization problem where the
robot has to minimize model uncertainty (entropy) while respecting local and cumulative risk
thresholds. That is:

min
P

Ĥ(M|P)

s.t. risk(i, j) ≤ δth, ∀(i, j) ∈ P
risk(P) ≤ B

(8.14)

where Ĥ(M|P) is the posterior entropy of the science model (Chapter 6), δth is the local risk
threshold, and B is the total risk budget for a rover traverse P . Moreover, start and end locations
are defined in advance as in many path planning problems.

Dijkstra’s algorithm [39] is employed to ensure that the rover will respect constraints and
reach end goals. To this end, this problem is represented as a graph-search task. The exploration
space is modeled as a graph G = (V , E), where V are the vertices and E are the edges. A trick is
used so risk can be treated as an additive distance function drisk. This is achieved by working in
the negative log-space of safety:

drisk(P) = − log (safety(P))

= −
∑

(x,y) ∈ P

log(safety(x, y)). (8.15)
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(a) Path planning using a Euclidean distance func-
tion. Here the distance budget is 1.10 times the short-
est path length. Dangerous locations such as cliffs
and sand dunes are reachable.
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(b) Path planning using our risk framework. Here
the risk budget is 1.10 times the safest path length.
Paths are constrained to safer locations while provid-
ing margin for exploration.

Figure 8.6: Example of our path planning formulation.

The exploration graph is constructed with edge weights that are given by the average risk between
two adjacent vertices. Additionally, vertices that violate the local risk constraint are not included
in the graph. This modification allows Dijkstra’s algorithm to compute minimal risk paths instead
of conventional shortest distance paths. Safest path lengths between all vertices and the end
goal should be precomputed when employing a traversability budget. This way we make sure
that the robotic explorer reaches the goal from any location without running out of budget. An
example regarding shortest paths and traversability budgets is shown in Figure 8.6. When using
a Euclidean distance function (Figure 8.6a), the robot may visit dangerous locations such as
sand dunes and cliffs unless explicit local constraints are defined and enforced. In contrast,
our risk framework automatically generates safer paths by avoiding such hazardous areas, but it
also provides certain flexibility for assuming small risks so as to accomplish science objectives
(Figure 8.6b).
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8.4 Experiments and Results

8.4.1 Experiments

Two different experiments were conducted in this study. The first experiment was a sensitivity
analysis with the purpose of finding an adequate slip threshold for our risk model. This was done
by observing the behavior of safest paths according to each threshold. Once this threshold value
was found, the second experiment compared Euclidean distance and risk-based budgets during
path planning. This experiment was designed in order to analyze the benefits and drawbacks of
risk-aware planning.

A subregion at Jezero Crater of size 10.8 × 7.2 km was used for both experiments. The
exploration space was represented as an 8-connected grid using a pixel step size of 2, where each
CRISM pixel has a resolution of 36 meters. A local slope constraint of 20◦ was enforced by
not including the corresponding vertices in the graph. Many traverses were simulated in each
experiment. They all started from the actual location where the Perseverance rover landed at
Jezero Crater. For the first experiment, one hundred end locations were randomly selected so
that they were all roughly at the same distance (±10%) from the start location. For the second
experiment, forty end locations were randomly selected in a similar fashion, but also accounting
for minimal-risk path length. Traversability budgets were defined as follows. The safest path
between the start and end locations was generated; then its corresponding distance and risk path
lengths were computed. The distance and risk budget were 1.25 times the shortest and safest
path lengths, respectively. These values were chosen in order to have drisk < 2, which represents
an average risk probability of less than 0.1 at each visited vertex.

Four informative path planning algorithms were compared in this study (Figure 8.7). They
were all modified so that they could handle budgets and end goals.
• Direct: A path that minimizes traverse cost using Dijkstra’s algorithm [39].

• Random: It sequentially samples a random neighboring location until the budget is exhausted.
It serves as a baseline and corresponds to an uninformed sampling strategy. This is a science-
blind baseline.

• Greedy: It makes the locally optimal choice using a one-step lookahead. This is a myopic
exploration strategy.

• MCTS: A Monte Carlo tree-search planner that creates a long term strategy by planning ahead
for possible observations in the future. The planner adapted the MCTS implementation by
Kodgule et al. [99] using a four-step lookahaead. This is a non-myopic path planner.

Three metrics were used to evaluate the performance of the planners in terms of science
return:
• Number of Samples: How many samples were collected during a traverse.

• Entropy: It is a measure of uncertainty in the model. It is directly minimized by the planners
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Figure 8.7: Example paths from the 4 planners at Jezero Crater.

(Equation 6.11) and is calculated without a ground truth. For normalization purposes, we
compute the averages with respect to the total number of points in the map.

• Error: It is a measure of the spectral reconstruction error of the scene in terms of root mean
squared error (RMSE). It should be indirectly minimized by the planners since it requires
a ground truth for comparison. For normalization purposes, we compute the averages with
respect to the total number of points in the map.

Additionally, three cost variables were computed:
• Distance: Total traversed distance, which is calculated in meters.

• Risk-distance: Our custom function for risk that is additive drisk, which is given in Equation
8.15.

• Risk probability: The cumulative probability of risk on a path, which is calculated using
Equation 8.13.

8.4.2 Results

The first experiment was designed as a sensitivity analysis in order to find a suitable slip threshold
sth for our risk model. Safe paths change when using risk models with different thresholds
(Figure 8.8). In this case small slip thresholds tend to produce longer paths; and vice versa, large
slip thresholds often result in more direct paths. Distance, risk, entropy, and error also change
as a function of sth (Figure 8.9). Results confirm that indeed traversed distances tend to increase
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(a) Safest path for sth = 0.2.
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(b) Safest path for sth = 0.4.
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(c) Safest path for sth = 0.6.

Figure 8.8: Results from the sensitivity analysis where safest paths were generated for different risk
models. More conservative slip thresholds lead to longer paths.

when using larger slip thresholds. Risk as measured by drisk is also reduced as a function of sth;
the reason is that the perception of risk increases as the model is more averse to risk. Regarding
science productivity, there is no clear trend. This is probably the consequence of a trade-off
between less available sampling locations and more collected samples due to longer traverses.
Overall, we observe that thresholds between 0.3 and 0.4 seem to offer a good balance between
risk, total traversed distance, and science return. Hence, we selected a slip threshold of 0.35 for
the risk model that was used for the second experiment.

The second experiment was conducted in order to evaluate the performance of the different
path planners. The four planners used a risk budget of 1.25 times the minimal-risk path length
in terms of drisk (Figure 8.7). All planners avoid dangerous areas such as cliffs. They are also
able to reach the end goal through a safe access route. Science-blind planners (i.e., Direct and
Random) take a more direct route toward the goal, while science-aware planners (i.e., Greedy
and MCTS) take an alternative route that favors spectral diversity in the collected samples. Plan-
ners may often perform worse when using a risk budget as opposed to a Euclidean distance-
based budget (Figure 8.10). The reason is that sampling options are generally more constrained.
Nonetheless, there is still enough margin for adaptive exploration that improves science return,
as demonstrated by the superior performance of non-myopic planning over simpler methods such
as myopic and blind planning. Direct paths clearly have the worst science-related performance
overall because they minimize sample collection. We observe that a distance-based budget suc-
cessfully bounds traversed distances (8.11). Smarter planners tend to generate riskier paths as
they prioritize the collection of spectrally diverse samples regardless of the risk. In a similar
fashion, smart planners that employ a risk-based budget are more likely to traverse longer dis-
tances. However, there is a critical difference when using a risk budget: drisk and average p(risk)

are not only bounded, but also significantly reduced. This is ultimately the desired outcome: to
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Figure 8.9: Results from the sensitivity analysis assessing the model’s risk threshold sth. Distance, risk,
entropy, and error change as a function of slip threshold sth. Distance and risk as measured by drisk tend
to decrease with larger thresholds. Entropy and error do not follow a clear trend; differences in most cases
are not statistically significant (p-value > 0.05).

substantially decrease risk while still enabling margin for meaningful scientific decisions. These
results are further confirmed as shown in Figure 8.12. Risk-based exploration leads to longer
traverses in most cases, therefore, more samples are often collected. There is no clear difference
between entropy and error despite having more constrained sampling locations when using a
risk-based budget. Reasons include the collection of a larger number of samples overall, as well
as an efficient and representative sampling from high-risk areas – i.e., dangerous regions can be
well mapped with just a few carefully selected measurements. Additionally, risk-based budgets
always produce paths with a substantially lower risk.
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Figure 8.10: Planner’s performance in terms of science productivity as measured by number of samples,
entropy, and reconstruction error. Results are shown for exploration using either a distance budget or a
risk budget. Smarter planners tend to perform best by collecting more samples and by further reducing
entropy and error given the same allotted budget. Here all differences are statistically significant (p-value
< 0.05).
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Figure 8.11: Planner’s performance in terms of traversability cost as measured by distance, risk-distance
drisk, and average probability of risk. Results are shown for exploration using either a distance budget or
a risk budget. Smart planners tend to assume more risk when using a distance budget and often traverse
longer paths when using a risk budget. Budgets are successful at bounding costs, but risk budgets are
especially effective at reducing risk.
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Figure 8.12: Scatter plots comparing distance against risk-based exploration in terms of science produc-
tivity (left column) and traverse costs (right column). Risk-based exploration leads to longer traverses
in most cases, therefore, more samples are often collected. There is no clear difference between entropy
and error despite having more constrained sampling locations when using a risk-based budget. Reasons
include the collection of a larger number of samples overall, as well as an efficient and representative
sampling from high-risk areas. Additionally, risk-based budgets always produce paths with a substantially
lower risk.
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8.5 Discussion and Conclusion

This chapter presents a Bayesian framework that addresses science productivity and traversability
risk. This work focuses on Mars rover exploration, although the framework has the potential
to be used for other scientific endeavors as well. Scientific information is quantified in terms
of information-theoretic variables and science return is improved using Bayesian experimental
design. This study specifically develops a Mars rover risk model by combing geometric and
semantic information. Probabilistic slip estimation is based on the work by Cunningham et
al. [37], which predicts rover wheel slippage as a function of slope and terrain class. Then,
probability of risk is calculated using ideas from the work by Inotsume et al. [90] for rover path
planning under slip uncertainty. Finally, path planning is formulated as a graph-based shortest
path problem by deriving an equivalent risk metric that allows for the computation of minimal
risk paths.

We describe a Mars simulation study that uses orbital data of Jezero Crater that is relevant
for scientific and terrain analyses. Specifically, CRISM data for science analysis, HIRISE data
for deriving geometric terrain information, and a geologic map produced specifically for the
Mars 2020 mission [158]. Results from the simulation experiments revealed key insights into
our framework. First, that total traversed distances tend to increase as a consequence of a more
constrained exploration. Second, that science return is slightly affected due to less available
sampling options. Third, that despite having more constraints, there is still ample margin for
intelligent decision-making as demonstrated by the superior performance of non-myopic path
planners over blind and greedy methods. And finally, that our framework not only bounds risk,
but also reduces it by a significant amount without substantially affecting science return.
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Chapter 9

Conclusion

This work has advocated a new paradigm for the next generation of science-driven robotic ex-
plorers. In this approach the robot is guided by a model that represents a state of knowledge that
evolves with new information. The presented method consists of two main processes: Bayesian
inference and Bayesian experimental design. Bayesian inference updates the model given new
observations while Bayesian experimental design provides a probabilistic framework for optimal
sampling. Overall, this research has demonstrated that Bayesian modeling can be used for sci-
ence data interpretation and intelligent decision-making, and ultimately for improving science
return.

9.1 Contributions

This research has made significant contributions to the field of science-driven robotic exploration.
It has brought together concepts from Bayesian modeling, Bayesian experimental design, deep
learning, active learning, information theory, and path planning. The key contributions of this
work are as follows.

Scenarios of science-driven robotic exploration. We put together a series of relevant
science investigation scenarios that can provably benefit from autonomous robotic exploration
(Chapter 4). These scenarios consist of terrestrial geologic surveys at Cuprite, Nevada; Martian
surface investigations at Jezero Crater and Nili Fossae; and coral reef studies at Heron Island,
Australia, and Kaneohe Bay, Hawaii. The associated data sets consist of orbital, aerial, and sur-
face data products mainly focused on spectroscopy. These scenarios permit the development and
evaluation of our proposed Bayesian models via extensive simulations, and in some instances,
field experiments with the rover Zoë.

Deep generative models for spectroscopic data analysis. We investigate three different
deep generative models and focus on spectroscopic data interpretation (Chapter 5). The Varia-
tional Autoencoder performs spectral feature extraction. The Deep Conditional Gaussian Model
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allows for probabilistic regression and spectral super-resolution. The Deep Conditional Dirichlet
Model enables classification, and more generally, spectral unmixing. Thorough experimental
results using synthetic and real data indicate that these methods often outperform other Bayesian
and non-Bayesian approaches. But more importantly, they allow for a prompt quantification,
visualization, and interpretation of learned statistical dependencies, resulting in appealing tools
for scientific data analysis.

A model that combines remote and in situ measurements for active exploration. We in-
troduce a spatial model that leverages contextual information from remote data to efficiently ex-
trapolate in situ science features throughout an explored area (Chapter 6). The model is based on
Gaussian process regression [36, 142] and builds upon the work by Thompson [162] for spatio-
spectral modeling. The model is enhanced by using ideas from feature extraction in order to map
and extrapolate multivariate data, which in turn is employed for map composition. Addition-
ally, an optimal sampling framework is derived by formulating exploration as a posterior entropy
minimization problem. Several sampling strategies are compared: random sampling, greedy
heuristics [102], Monte Carlo tree search planning [99], and ergodic optimal control [116, 121].
These methods are evaluated in extensive simulations via the Cuprite, Mars, and Coral scenarios.
Moreover, field experiments are conducted with the rover Zoë in Nevada. Results demonstrate
that reduction of model uncertainty as measured by entropy leads to efficient spectroscopic and
composition mapping. Results also show that science return improves when using sampling
strategies that better exploit the information of the model. Additionally, important lessons were
learned in terms of field robotic operations.

The science hypothesis map, a model for co-exploration. We present a Bayesian frame-
work in which scientists can initially describe their abstract beliefs and hypotheses, and then the
state of this belief evolves as the robot makes raw measurements (Chapter 7). To this end, this
work constructs a spatial and hierarchical probabilistic structure that relates high-level science
concepts to low-level measurable data. We call this model a science hypothesis map. Moreover,
scientific information gain is derived from the model and is efficiently computed. Robotic explo-
ration is formulated as a path planning problem where information gain needs to be maximized.
As proof of concept, this work develops a geologic exploration model that hierarchically links
geology, mineralogy, and spectroscopic measurements at Cuprite, Nevada. Results from the cor-
responding simulation study reveal that: a) the model can infer geology with a high accuracy
under diverse initial conditions; and b) path planners that exploit information gain with farther
planning horizons are better at reducing uncertainty over the investigation objectives.

A model for science and risk-aware exploration. We propose a comprehensive method for
planetary rover exploration that considers both science and risk (Chapter 8). Science value is
addressed using the aforementioned concepts and models. A risk model is constructed by incor-
porating both geometric and semantic information from the terrain. This is particularly important
since rovers often experience hazardous conditions due to geometrically benign surfaces such as
sand dunes. Our approach builds upon the works by Cunningham et al. [37] for probabilistic slip
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estimation and Inotsume et al. [90] for rover path planning under slip uncertainty. Exploration is
formulated as a graph-based orienteering problem subject to a risk budget. Moreover, a custom
risk metric allows for the computation of minimal risk paths that enforce risk constraints at any
location. Results from a realistic Jezero Crater simulation study indicate that risk can be bounded
and substantially reduced without sacrificing too much science productivity.

9.2 Future Work

There are a number of specific improvements to this work. We next provide a summary:

• New science-driven robotic exploration scenarios could be explored in the future beyond the
ones introduced in Chapter 4. Examples include agriculture [107], terrestrial biology [129],
and other marine science endeavors besides coral reef studies [48, 159].

• The deep generative models presented in Chapter 5, specifically the DCGM and DCDM, could
be improved upon by addressing epistemic uncertainty [95] in addition to aleatoric noise.
Dropout [53] and ensemble [108] approaches may help in this endeavor. Other unimodal dis-
tributions could be explored; examples include the Poisson and Gamma distributions. The only
requirement would be to have a tractable way of computing their associated log-likelihood.
Finally, we would like to address probabilistic mixture models and multimodal distributions,
and eventually develop architectures such as the Deep Conditional Gaussian Mixture Model.
A simple approach would be to use a predefined number of mixtures; a more interesting but
difficult method would learn this number of mixtures from the data.

• The active mapping model presented in Chapter 6 could be improved upon. Gaussian pro-
cesses are well known for having scalability constraints, which was not a problem given our
assumption of in situ data scarcity. However, dense in situ sampling will require a more scal-
able model. To this end, there are more scalable Gaussian processes that employ modifications
based on kernel interpolations [179] or deep learning [87]. Additionally, although Gaussian
processes are powerful tools for modeling epistemic uncertainty due to their ability to adapt
to new data, they tend to operate with constant noise models. We would like to expand our
current model so it can capture heteroscedastic uncertainties [110]. Another topic we would
like to address is time modeling: geologic models may evolve very slowly and thus be consid-
ered as time-invariant for simplicity, but that is certainly not the case for coral reefs. We plan
to address this by integrating temporal measurements into the Gaussian processes comprising
our model, a thing that was not possible due to limited temporal sampling during PRISM data
collection. Furthermore, we would like our model to incorporate data from other instruments.
Spectrometers, despite their rich information and undeniable utility, are currently expensive to
acquire and difficult to deploy in the field, especially on board AUVs. Also, spectral analysis
usually requires a certain degree of expert knowledge together with access to special spectral
libraries. Hence, we would like to adapt our models for instruments that may be easier to
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deploy onboard robots, such as cameras. For instance, normal images are easier for people
to understand and label; besides, widely-available computer vision and deep learning models
could be used for automatic analysis. Finally, we intend to conduct experiments in actual coral
reefs with the objective of helping divers or AUVs collect informative samples in real time.

• The science hypothesis map presented in Chapter 7 could be turned into a continuous model
by leveraging methods such as Gaussian processes and Dirichlet distributions [120], allowing
for the mapping of categorical variables in a fast and principled manner. In general, we would
like to reduce the model’s heavy reliance on a spatial discretization set at the outset. Moreover,
we plan to improve the fidelity and realism of both the constraints and the measurement data.
Additionally, we would like to address human-scientist interactions in more detail. Finally, we
are looking forward to deploying this method on the upcoming TREX campaign in the Painted
Desert, Arizona.

• The science and risk-aware model presented in Chapter 8 could be expanded to integrate global
and local risk planning. Specifically, we would like to build adaptive risk models that update
with in situ data [73]. We could achieve this by leveraging contextual information from remote
data in a similar fashion as our science models. Options for achieving this goal include using
Gaussian processes or Markov random fields. Furthermore, we would like to develop a similar
risk model for the rover Zoë.

Finally, there are several promising avenues for future work in science-driven robotic explo-
ration. We discuss three main directions:
1. Multimodal information models. Our proposed models have assumed that the robot carries

one instrument, and that there is essentially one source of remote data. However, this is of-
ten not true in real robotic exploration. For instance, Mars rovers have several instruments
onboard such as cameras, radars, weather stations, and assorted spectrometers (e.g., x-ray, ul-
traviolet, infrared, etc.). The same happens with orbiters: they also carry different instruments
such as laser altimeters and thermal cameras. Hence, we would like to develop new models
that integrate and leverage information from multiple instruments, both remote and in situ.
Ultimately, we would be interested in extending our current methods to produce a framework
that allows scientists to compare the science value of different instruments as measured by
information-theoretic variables.

2. Multi-objective optimization models. This work has formulated science exploration as an
optimization problem where an information-theoretic function is either minimized (entropy)
or maximized (information gain). It has also explored simple (e.g., number of samples, local
slope) and complex constraint functions (i.e., risk budget). Nevertheless, science exploration
often deals with concurrent mission objectives and multiple simultaneous constraints such
as time, energy, and power consumption. Consequently, we would like to formulate multi-
objective optimization models that allow for richer and more realistic exploration scenarios.

3. Multi-agent exploration models. This research has worked under the assumption that sci-
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ence investigations are being conducted by a single robotic explorer. This may be the case for
most planetary rover missions today, but this situation is rapidly changing. For instance, the
Mars 2020 mission is deploying the Mars Helicopter together with the Perseverance rover.
Hook et al. [84] are modeling a network of small rovers for Martian exploration missions. On
Earth we are very interested in having Zoë work closely with other robots such as drones.

9.3 Closing Remarks

This is an exciting time as recent advances in hardware, sensing, and artificial intelligence have
produced robotic technologies that would have seemed like science fiction a few decades ago.
Examples include house-cleaning robots, accessible consumer drones, and self-driving cars. It is
an undeniable fact that robots are becoming part of our daily lives.

This research addresses a much less common application of robotics: scientific exploration.
Robots that perform science can be powerful tools for answering profound questions. What is
beyond Earth? Is life sustainable on other planets? Are we alone in the universe?

This work has ultimately taken firm steps towards enabling the next generation of robotic
explorers “to explore strange new worlds, to seek out new life and new civilizations, and to
boldly go where no one has gone before!” [148].
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