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Abstract

The thesis presents a reflection and a case study of fairness notions in machine learning.
I review commonly used fairness notions and reflect on the subtleties with respect to the
role played by causality in fairness analysis. Then focusing on the Equalized Odds notion of
fairness, I consider the theoretical attainability of Equalized Odds and, furthermore, if it is
attainable, the optimality of the prediction performance under various settings. In particular,
for prediction performed by a deterministic function of input features, I give the conditions
under which Equalized Odds can hold true; if the stochastic prediction is acceptable, I show
that under mild assumptions, fair predictors can always be derived. For classification tasks, I
further prove that compared to enforcing fairness by post-processing, one can further benefit
from exploiting all available features during training and get potentially better prediction
performance while remaining fair.
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Chapter 1

Introduction

With the widespread of the utilization of machine learning models in our daily life, researchers have
been thinking about the potential social consequences of the prediction/decision made by algorithms. To
date, there is ample evidence that machine learning models have resulted in discrimination against certain
groups of individuals under many circumstances, for instance, the discrimination in ad delivery when
searching for names that can be predictive of the race of individual [75]; the gender discrimination in
job-related ads push [22]; stereotypes associated with gender in word embeddings [9]; the bias against
certain ethnic groups in the assessment of recidivism risk [3, 8]; the violation of antidiscriminatin law
(e.g., Title VII of the 1964 Civil Rights Act) emerged in data mining [6].

In the effort of enforcing fairness in machine learning, various notions as well as techniques to
regulate discrimination under different scenarios have been proposed in the literature. There are multiple
different perspectives of fairness analysis: in terms of the type of relation between variables that is
encoded in the fairness criterion, there are associative notions of fairness that characterize correlation
or dependence between variables (e.g., Demographic Parity [25], Equalized Odds [32], Predictive Rate
Parity [23, 14, 84]) and causal notions of fairness that characterize causal relation between variables
(e.g., Counterfactual Fairness [48], No Unresolved Discrimination [42], Path-specific Counterfactual
Fairness [12, 83]); in terms of the scope of application, there are group-level fairness notions (e.g.,
Equalized Odds [32], Fairness on Average Causal Effect [41], Equality of Effort [36]) and individual-level
fairness notions (e.g., Individual Fairness [25], Counterfactual Fairness [48], Individual Fairness on
Hindsight [31]); in terms of the technical detail with respect to how discrimination is eliminated or
suppressed, there are pre-processing approaches [10, 25, 86, 87, 51, 17, 99], in-processing approaches
[40, 61, 84, 85, 24, 72, 53, 5, 63], and post-processing approaches [32, 28, 26]; in terms of the time span
within which fairness is considered, the literature also includes fairness analysis in the dynamical setting
[49, 33, 35, 96, 18, 98, 80, 34] other than considering fairness merely with respect to a snapshot of reality.

While there are explications with respect to available choices to quantify discrimination and enforce
fairness in recent survey papers [64, 20, 50, 15, 57, 11, 52, 97, 54] as well as an investigation into
public attitudes towards different notions [67], it is not well addressed whether or not a given notion of
fairness can always be attained, even if with unlimited amount of data. The attainability of a fairness
notion, namely, the existence of the predictor that can score zero violation of fairness in the large sample
limit, is an asymptotic property of the fairness criterion that has important practical implications. It
characterizes a fundemantally different kind of violation of fairness compared to the empirical error
bound of discrimination in finite-sample cases. If we deploy a “fair” prediction system in practice whose
output is actually biased (since fairness is in fact not attainable with the chosen prediction scheme), the
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discrimination would be easily neglected and hard to eliminate.

My thesis proceeds as follows: in Chapter 2 I introduce the notation conventions and present a brief
introduction to causal modeling; in Chapter 3 I review commonly used fairness notions and reflect on the
role played by causality in fairness analysis; in Chapter 4 I extensively discuss the Equalized Odds notion
in terms of the theoretical attainability and, if attainable, the optimality of prediction in various settings; I
summarize with conclusion remarks and future works in Chapter 5.



Chapter 2

Preliminaries

In this chapter, I first present the notation conventions used throughout this thesis in Section 2.1; and then,
I present a brief introduction to causal reasoning in Section 2.2.

2.1 Setup and Notation

I use uppercase letters to refer to variables, lowercase letters to refer to specific values that variables can
take, and calligraphic letters to refer to domains of value. For instance, I denote the protected feature by
A (which may take values a or a’) with domain of value A, additional (observable) features(s) by X, with
domain of value X, ground truth (label) variable by Y and its predictor by Y, with domain of value ).
Throughout the paper, without loss of generality I assume that there is only one protected feature and
one ground truth variable for the purpose of simplifying notation. However, since the protected feature
(e.g., race, sex, ratio of ethnic groups within community) and the ground truth variable (e.g., recidivism,
annual income) can be discrete or continuous, I do not explicitly assume discreteness of the corresponding
variables.! Fairness is also considered in the dynamical setting [49, 33, 35, 96, 18, 98, 80, 34] where
there is a temporal axis for (some) variables. Considering the fact that the technical nuances involved in
the quantification of discrimination (for each time step or in average) does not change the fairness we
would like to enforce in terms of the notions themselves, without further clarification I do not include the
temporal axis into discussion.

2.2 Causal Modeling

Since I will review commonly used causal notions of fairness and discuss subtleties regarding the role
played by causality in fairness analysis, I give a brief introduction to causal modeling and inference in
this section. Another field in the causality study is causal discovery where the primary goal is to recover
the causal relations among variables from the data [73, 74, 13, 68, 90, 91, 89]. Causal discovery is not
directly related to characterization of fairness in machine learning and therefore is not reviewed in this
thesis. Readers that are already familiar with the related topics can feel free to skip the content.

!There might be some technical difficulties for certain fairness notions to be able to apply to different types of variables.
However, this will not impede us from discussing and reflecting on the intuitions and insights behind fairness notions.



2.2.1 Definition and Representation of Causality

For two random variables X and Y, we say that X is a cause of Y if there is a change of distribution for
Y when we apply different interventions on X [73, 60]. We can represent a causal model with a tuple
(U, V, F) such that:
(1) V is aset of observed variables involved in the system of interest;
(2) U is a set of exogenous variables that we cannot directly observe but contains the background
information representing all causes of V' and jointly follows a distribution P(U);
(3) F is a set of functions (also known as structural equations) { f1, f2, ..., fn} Where each f; corre-
sponds to one variable V; € V and is a mapping U UV — V' \ {V;}.
The triplet (U, V, F) is known as the structural causal model (SCM). We can also capture causal relations
among variables via a directed acyclic graph (DAG) G, where nodes (vertices) represent variables and
edges represent functional relations among variables.’

2.2.2 Interventions and Counterfactuals

Following Pearl [60], I use the do(-) operator to denote an intervention, which is a manipulation of the
model such that the value of a variable (or a set of variables) is set to one specific value regardless of the
corresponding structural equation(s). For example, the distribution of Y under the intervention do(X = z)
where X C V, is denoted by P(Y | do(X = x)), which reads “what is the distribution of Y if we
were to force X = x in the population (regardless of the value X takes originally)”. The full knowledge
about the structural equations F is a rather strong assumption, but it also allows us to infer counterfactual
quantities. For example, let O, X C V/, with an observation O = o the counterfactual distribution of Y if
X had taken value z is denoted by P (Yx.(U) | O = o), which reads “what is the distribution of ¥’
had X been set to = given that we actually observe O = 0”. The inference of the counterfactual quantity
P(YXHE(U )] O = 0) involves a three-step procedure (as explained in more detail in Pearl [60]):
(1) Abduction: for a given prior on U, compute the posterior distribution of U given the observation
O =o;
(2) Action: substitute the structural equation that determines the value of X with the intervention
X = x and get modified set of structural equations F o qify;
(3) Prediction: compute the distribution of Y using Fy,oqify and the posterior P(U | O = o).
The identifiability of various causal quantities has been extensively studied [77, 4, 37, 69, 70, 71].

The causal graphs discussed in this thesis are limited to DAGs, and causal models represented by cyclic graphs are beyond
the scope of the discussion.



Chapter 3

A Review and Reflection on Fairness
Notions

In this chapter, when introducing commonly used fairness notions in Section 3.1, I unify the notations
for consistency while keeping the semantics identical to original works when they are proposed in the
literature; and then, I present a reflection on the role played by causality in fairness analysis in Section 3.2.

3.1 Notions of Fairness

In this section, I introduce commonly used fairness notions proposed in the literature. When presenting
the definition of various fairness notions, I unify the notations while keeping the semantics identical to the
original works.

3.1.1 Demographic Parity

Demographic Parity, also known as Statistical Parity, is one of the earliest fairness notions proposed in
the literature [10, 25, 86, 27]. In the context of binary classification () = {0, 1}), Demographic Parity
requires that the ratio of positive decisions among different groups equals to each other:

Va,d e A: PY =1|A=a)=PY =1|A=4d). (3.1)

In general contexts, Demographic Parity is characterized via the independence between the prediction Y
and the protected feature A:
Definition 3.1. Demographic Parity We e say that a predictor Y is fair i in terms of Demographic Parity
with respect to the protected feature A, if Y is independent from A, i.e., Y 1L A

While it is intuitive to characterize fairness through the aforementioned independence, the notion has
significant drawbacks [25]. For instance, whenever the ground truth Y and the protected feature A are
dependent, Demographic Parity would rule out the perfect prediction Y =Y, which would inevitably
introduce substantial loss of utility.

3.1.2 [Equalized Odds

In light of the limitation of Demographic Parity, Hardt et al. (2016) [32] propose Equalized Odds notion
of fairness. In the context of binary classification, Equalized Odds requires that the True Positive Rate
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(TPR) and False Positive Rate (FPR) of each group match the population TPR and FPR respectively:
Vae Aye{0,1}: PY=1|A=aY=y)=PY =1|Y =y). (3.2)

In general contexts, this notion is characterized by stating the conditional independence between the
prediction Y and the protected feature A given the ground truth of the target Y:
Definition 3.2. Equalized Odds We say that a predictor Y is fair in terms of Equalized Odds with
respect to the protected feature A and the outcome Y, if Y is conditionally independent from A given Y,
e, Y1 A|Y.

The intuition behind this group-level fairness notion is that, once we know the true value of the target
(in the hypothetical ideal world), the additional information of the value of the protected feature should
not further alter our prediction results.

3.1.3 Predictive Rate Parity

First proposed by Dieterich et al. (2016) [23], Predictive Rate Parity is another group-level fairness notion,
which is also referred to as calibration, Test Fairness [14] and No Disparate Mistreatment [84]. In the
context of binary classification, Predictive Rate Parity requires that among those whose predicted value is
positive (negative), their probability of actually having a positive label should be the same regardless of
the value of the protected feature:

Vae A,ge{0,1}: PY=1|A=a, Y =9)=PY =1]Y =9). (3.3)

Similar to Equalized Odds, Predictive Rate Parity can also be characterized through the conditional
independence relation among (A, Y, }A/)

Definition 3.3. Predictive Rate Parity We say that a predictor Y is fair in terms of Predictive Rate
Parity with respect to the protected feature A and the outcome Y, if Y is conditionally independent from
A given EA/, ie, Y I A| Y.

Although looks similar to Equalized Odds, Predictive Rate Parity and Equalized Odds are actually
incompatible. It is shown independently by Kleinberg et al. [45] and Chouldechova [14] that both
conditions can not be attained at the same time except in very special cases, e.g., Y and A are independent
orY perfectly predict Y with no prediction error.

3.1.4 No Direct/Indirect Discrimination

Previous fairness notions (Demographic Parity, Equalized Odds, and Predictive Rate Parity) are based on
associative relations among variables. Going beyond these observational criteria, it is desirable if we can
further capture the structure of the data generating process by making use of causal modeling.

In the legislation literature, the discrimination is commonly divided into two categories: direct
discrimination (e.g., rejecting a well-qualified loan applicator only because of his/her race) and indirect
discrimination (e.g., refusing service to areas with certain Zip code). The motivation behind detecting
indirect discrimination is that: among the non-protected attributes X, there is a set of attrites whose usage
may still remain (potentially) unjustified although they are not the protected feature itself, i.e., redlining
attributes . In the language of causal reasoning, given a causal graph, we can start from the node for the
protected feature and trace along the paths all the way to the node of interest by following the arrowheads
in the graph. Therefore, we can characterize direct and indirect discrimination as different path-specific
causal effects with respect to the protected feature [60, 93, 94, 92, 95, 59, 88]:
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Definition 3.4. No Direct Discrimination Let us denote 7, as the path set that contains only the direct
path from the protected feature A to the predictor Y ie, A—Y.We say that a predictor Y is fair in
terms of No Direct Discrimination with respect to the protected feature A and the path set 74, if for any
a,a’ € Aandq € ) the mg-specific causal effect of the change in A from a to @’ on Y = 1 satisfies:

P(Y =g |do(A=dl|s,)) - P(Y =§|do(A=a)) =0. (3.4)

Definition 3.5. No Indirect Discrimination Let us denote 7; as the path set that contains all causal
paths from the protected feature A to the predictor Y which go though redlining attributes R, i.e., each
path within the set 7; includes at least one node from R. We say that a predictor Y is fair in terms of No
Indirect Discrimination with respect to the protected feature A and the path set 7;, if for any a,a’ € A
and § € ) the 7;-specific causal effect of the change in A from a to a’ on Y = 7 satisfies:

P(Y =g |do(A=dl|)) — P(Y =4 | do(A=a)) =0. (3.5)

Motivated by the idea of capturing discrimination through different types of causal effects of the
protected feature on the predictor, similar notions are also proposed by Kilbertus et al. (2017) [42] to
further distinguish different types of attributes that are decendants of the protected feature. In particular, for
attributes that are influenced by the protected feature A in a manner that we deem as non-discriminatory,
i.e., resolving variables, the path-specific causal effects of A on Y through these attributes are “resolved’:
for attributes that are influence by A in a unjustifiable way, i.e., proxy variables, the path-specific causal
effects of AonY through these attributes are “‘unresolved”:

Definition 3.6. No Unresolved Discrimination We say that a predictor Y is fair in terms of No Unre-
solved Discrimination, if each path from A to Y is blocked by a resolving variable in the corresponding
causal graph.

Definition 3.7. No Proxy Discrimination We say that a predictor Y is fair in terms of No Proxy
Discrimination with respect to a proxy R, if for any r,7’ € R and § € :

P(Y =g |do(R=71)) = P(Y =3 |do(R=1")). (3.6)

Similar to related notions like “explanatory feature” [39], “readlining attribute” [95], and “admissible
variables” [66], the notion of “resolving variable” and “proxy variable” are just decendants of A with
different user-specified characteristics. Compared to No Indirect Discrimination, although No Proxy
Discrimination is also capturing indirect discrimination through proxy variables, i.e., redlining attributes,
the intervention based on the proxy variable is conceptually easier to parse compared to the intervention
on the protected feature itself — especially considering the fact that the protected feature, e.g., gender or
race, is a deeply rooted personal property and it is impossible to perform a randomized trial [78].

3.1.5 Counterfactual Fairness

So far, the causal notions of fairness (No Direct/Indirect Discrimination, No Unresolved Discrimination,
No Proxy Discrimination) are quantifying the discrimination on the group level. Counterfactual Fairness
proposed by Kusner et al. (2017), compared to previous ones, is more fine-grained since it captures
individual-level notion of fairness.

The canonical individual-level fairness notion is Individual Fairness proposed by Dwork et al. (2012).
The intuition behind Individual Fairness is that we want similar predicted outcome for similar individuals
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(in terms of the user-specified similarity metric). While Individual Fairness is general enough to be appli-
cable in various practical scenarios, the specification of the similarity metric is not often straightforward.
Counterfactual Fairness, on the other hand, approaches the individual-level fairness problem from a
different angle. In particular, the intuition behind Counterfactual Fairness is that a decision is fair towards
an individual if the decision remains the same in the actual world (the current reality) and a counterfactual
world (the hypothetical world where this individual had a different demographic property):

Definition 3.8. Counterfactual Fairness Given a causal model (U, V,F) where V' consists of all
features V' := { A, X'}, we say that a predictor Y is fair in terms of Counterfactual Fairness with respect
to the protected feature A, if for any a,a’ € A,z € X,y € Y the following holds true:

P(YacaU)=g|A=0,X =2) = P(Yac w(U) =3 | A=a,X = z). (3.7)

3.1.6 Path-specific Counterfactual Fairness

First introduced by Chiappa [12], the Path-specific Counterfactual Fairness notion, as indicated by the
name, shares the similar intuition with Counterfactual Fairness and captures the difference in decision
between the actual world and a counterfactual world. Different from Counterfactual Fairness, more fine-
grained causal effects are utilized by Path-specific Counterfactual Fairness — path-specific counterfactual
effects, i.e., the counterfactual causal effects (that compare the factual world with the counterfactual
world) are characterized only through unfair paths. Wu et al. (2019) [83] uses the abbreviated term PC
Fairness to denote a unified formula for various causal notions of fairness:

Definition 3.9. Path-specific Counterfactual Fairness (PC Fairness) Given a causal model (U, V, F)
and a factual observation O = o, where V' consists of all features V := {4, X} and O C {4, X, Y}, we
say that a predictor Y is fair in terms of Path-specific Counterfactual Fairness (PC Fairness) with respect
to the protected feature A and the path set 7, if for any a,a’ € A, € ) the m-specific counterfactual
causal effect of the change in A from a to a’ on Y = 1 satisfies (let 7 denote the set containing all other
paths in the graph that are not elements of ):

P(}/}A<—aﬂ7r,A<—a\7’r(U) =y ’ 0= O) - P(}/}A(—Q(U) =y ’ 0= 0) =0. (3.8)

For different configurations of the observation O = o and the path set of interest 7w, PC Fairness can
capture different types of causal effect, which results in various flavors of fairness notions. For example,
if 7 consists of all paths in the graph and O = {A, X}, this configuration of PC Fairness reduces to
Counterfactual Fairness.

3.2 Subtlety: The Role of Causality in Fairness Analysis

In Section 3.1 I presented multiple commonly used fairness notions in the literature, many of which
leverage the power of causal reasoning. In light of this, it is necessary and important to reflect on the
subtleties regarding the role of causality in fairness analysis. In particular, I argue that we should always
perform sanity checks to make sure that we are quantifying the discrimination in the way that best fulfills
the intuition behind the fairness notion.

3.2.1 Causal Modeling on the Object of Interest

It is widely recognized in the fairness literature that we can leverage the power of causal reasoning to
help us better understand how discrimination propagates through the data generating process [42, 48,
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~

Y Y
(a) The data generating process (b) The data generating process (c) The data generating process
for the ground truth YV for the classifier/regressor Y’ for the inference output Y*

Figure 3.1: The comparison between the causal graphs that represent different data generating processes
for the ground truth Y, the prediction result via regression Y, and the prediction result via
inference Y*.

65, 95, 59, 88, 50, 12, 83]. While the assumption of the availability of additional information about
the data generating process, e.g., a causal graph, is in general acceptable, we should think twice before
directly assuming that the prediction variable Y shares the exactly same causal graph with the ground
truth variable Y.!

Let us consider a simple example of the performance of basketball players where there are four
variables: the gender of the player (A), the height of the player (B), the player’s position (C'), the total
points scored by the player in this season (Y'). Suppose that the data generating process with respect to the
ground truth, i.e., the relation among the measured variables A, B, C, and Y, can be described by Figure
3.1a: the gender is a cause of the height; the height determines the position of the player on court; the
position determines the total points that the player scores in the season.? The task is to come up with the
prediction (17) for the total points of this season (Y') based on the information available (the gender A, the
height B, and the position C): Y = f(A,B,C) where f : A x B x C — ) is a classification/regression
algorithm. In this case, the prediction result itself can be viewed as a random variable. If we were to draw
a graph that represents the how Y is generated from (A, B, C'), we will have a data generating process as
shown in Figure 3.1b. The reason of the extra arrows in Figure 3.1b compared to Figure 3.1a is that the
classification/regression algorithm, regardless of the loss function and the optimization techniques, treats
available variables merely as input features, which does not really respect the original data generating
process in Figure 3.1a. However, if for example we use a generative model and perform an probabilistic
inference task on the outcome where we follow the underlying data generating process, the inference
result Y* can share the causal graph with the ground truth variable Y .3 The data generating process for
the prediction result via inference Y* (Figure 3.1c) is only different (in terms of the causal graph) from its
counterpart for the ground truth variable Y (Figure 3.1a) up to a substitution of the outcome variable.

As we can see in the previous example, when performing causal reasoning in fairness analysis we
should always be aware of the object of interest, i.e., the variable whose data generating process is
subject to fairness consideration. When we directly assume that the causal graph can be shared by the
ground truth and the prediction, there could be a mismatch between the causal model (based on which
the discrimination is quantified) and the object (whose data generating process is in fact not described
by this model). If there is a mismatch between the causal model and the object of interest, the result of
discrimination quantification could be unpredictable and therefore is hardly justifiable.

"For the tasks like prediction, the output Yis usually generated by a classification or regression algorithm in the literature.

2This is a simplified model with a very limited number of variables involved for the purpose of illustration.

3Usually, we need stronger assumptions regarding the underlying data generating process in order to perform the inference
tasks, e.g., the availability of a structural equation model (SCM) instead of only the causal graph.
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3.2.2 Causal Modeling with the Intended Semantics

When we mention causal modeling in the fairness analysis, there are several potential candidates in terms
of which causal model we are referring to. For instance, a causal model that describes “the data generating
process for the ground truth” could be interpreted with multiple different semantics: the causal model
recovered from the data at hand through causal discovery (i.e., the model that corresponds to the current
reality), the external knowledge from experts or just an assumption on the data generating process (i.e., the
model that we assume with professional knowledge to be able to describe the current reality), the relations
among variables in the hypethetical ideal world where there is no discrimination (i.e., the model that
corresponds to the ideal reality which currently is not the case), and so on. Among these various possible
interpretations, it is not always self-explainable from the fairness notions themselves regarding which
interpretation really corresponds to the causal model presented to us, if without further clarifications.
Therefore in practice, we should not only keep in mind the intuition behind the fairness notions, but also
make sure that the semantics of the causal model we are using truly matches the type of the intended task.

In the basketball player example, if we were to quantify the discrimination hidden within the current
data, we need to refer to Figure 3.1a and at the same time make sure that it reflects the relation among
variables within the current data at hand. If we decide that there is historical discrimination in the data
and we want to see how the distribution of Y would have been like were there no discrimination, we need
to refer to a graph that corresponds to a hypothetical ideal world (which may not necessarily be the same
as Figure 3.1a). A mismatch between the intended task and the causal model with correct scope can easily
introduce unforeseenable new discriminations into the system/data.

3.2.3 Potential Modifications to Previous Causal Notions of Fairness

Multiple causal notions of fairness have been proposed in the literature [93, 42, 48, 95, 59, 88, 41, 12, 83,
66]. However, in light of the frequently neglected subtleties that I discussed in Section 3.2.1 and Section
3.2.2, we might need to modify causal fairness notions to remedy the mismatch between the intended
task (which type of discrimination we would like to quantify) and the object or semantic of interest, so
that the intuition behind the notion can be properly expressed. Here for the purpose of illustration, I
present the modified versions of No Direct/Indirect Discrimination (Definition 3.4 and Definition 3.5),
Counterfactual Fairness (Definition 3.8), and Path-specific Counterfactual Fairness (Definition 3.9) that I
reviewed in Section 3.1:

Definition 3.10. No Direct Discrimination (modified) Given the causal graph that describes the data
generating process of the current reality, let us denote 74 as the path set that contains only the direct path
from the protected feature A to the outcome Y, i.e., A — Y. We say that the outcome Y is fair in terms of
No Direct Discrimination with respect to the protected feature A and the path set 7y, if for any a,a’ € A
and y € ) the m4-specific causal effect of the change in A from a to o’ on Y = y satisfies:

P(Y =y|do(A=d|z,)) —P(Y =y|do(A=a))=0. (3.9)

Definition 3.11. No Indirect Discrimination (modified) Given the causal graph that describes the data
generating process of the current reality, let us denote 7; as the path set that contains all causal paths from
the protected feature A to the outcome Y which go though redlining attributes R, i.e., each path within
the set 7; includes at least one node from R. We say that the outcome Y is fair in terms of No Indirect
Discrimination with respect to the protected feature A and the path set 7;, if for any a,a’ € Aandy € Y
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the 7r;-specific causal effect of the change in A from a to o’ on Y = y satisfies:
P(Y =y|do(A=d|;)) — P(Y =y|do(A=a))=0. (3.10)

Definition 3.12. Counterfactual Fairness (modified) Given a causal model (U, V, F) that describes the
data generating process of the current reality, where V' consists of all features V := { A, X'}, we say that
the outcome Y is fair in terms of Counterfactual Fairness with respect to the protected feature A, if for
any a,a’ € A,z € X,y € ) the following holds true:

PYacaU)=y|A=a,X=2)=PYaca(U)=y|A=0aX =2). (3.11)

Definition 3.13. Path-specific Counterfactual Fairness (modified) Given a causal model (U, V, F)
that describes the data generating process of the current reality and a factual observation O = o, where V'
consists of all features V := {A, X} and O C {A, X, Y}, we say that the outcome Y is fair in terms of
Path-specific Counterfactual Fairness (PC Fairness) with respect to the protected feature A and the path
set r, if for any a,a’ € A,y € Y the w-specific counterfactual causal effect of the change in A from a to
a’ on'Y = y satisfies (let ™ denote the set containing all other paths in the graph that are not elements of
m):

P(YA<—a’|7r,A<—a\7‘r(U) =y|O0= 0) - P(YAea(U) =y| 0= 0) =0. (3.12)

Compared to the original notions (Definition 3.4, 3.5, 3.8, 3.9), the modified causal notions (Defintion
3.10, 3.11, 3.12, 3.13) are quantifying discrimination with respect to the outcome variable Y instead of
the prediction Y, using the data generating process behind Y with respect to the current reality. This
seemingly trivial modification is more than just exchanges of variables. In practical applications, when
we assume the availability (either via a educated guess or from the expertise knowledge) of a causal graph
that characterizes underlying properties of the data, we are referring to the data generating process with
respect to the outcome variable Y, instead of the predictor Y . Furthermore, even if we can draw the causal
graph for predictions as illustrated in Figure 3.1b (for prediction via classification/regression) and Figure
3.1c (for prediction via inference), we will still need to make sure that we pair up the object of interest
and the technical detail of the corresponding analyzing scheme (e.g., path-based criterion, or causal effect
estimation that involves additional information/assumption on the functional class).

Let us revisit the basketball player performance example in Section 3.2.1. Suppose that a practitioner
would like to audit fairness with respect to the prediction and at the same time understand the source of
discrimination, and that the practitioner thinks that a causal notion of fairness could be very handy. Let’s
say, for example, the practitioner picks Counterfactual Fairness (Definition 3.8, which is the original
notion proposed by Kusner et al., 2017 [48]) since this causal notion is with respect to Y. There are
multiple strategies a practitioner might choose to audit fairness, and for each one of them it is possible to
have a mismatch between the mission (which kind of fairness we really would like to capture) and the
means (how exactly fairness audit is carried out):

Strategy (1) The practitioner makes an educated guess regarding how attributes could relate to each other
in the data set and draws the causal graph Figure 3.1a. Considering the task is to audit
fairness on Y, the practitioner directly exchanges the variable Y in the graph to Y and draws
the graph shown in Figure 3.2a. The practitioner then proceeds to the fairness audit via
Counterfactual Fairness (Definition 3.8) without knowing the detail regarding how Y is
computed (which is the output of a regressor).

11



(a) Strategy 1 & 2 (b) Strategy 3 (c) Strategy 4

Figure 3.2: The comparison between graphs that the practitioner draws in different strategies.

Strategy (2) The practitioner utilizes the exactly same strategy to audit fairness as in Strategy (1), without
knowing the detail regarding how Y is computed (which is in fact output of a inference
model shown as in Figure 3.1c¢).

Strategy (3) The practitioner first pictures an idealized fair world where both the height B and the position
C are causes of the total points scored by the player Y. Then the practitioner realizes that
the task is to audit fairness on Y and draws the graph shown in Figure 3.2b. The practitioner
proceeds to the fairness audit via Counterfactual Fairness (Definition 3.8) without knowing
the detail regarding how Y is computed (which is the output of a regressor).

Strategy (4) The practitioner notices that Y is the output of a regression algorithm and draws the causal
graph that corresponds the data generating process of Y as shown in Figure 3.2c. The
practitioner then proceeds to the fairness audit via Counterfactual Fairness (Definition 3.8)
with respect to Y (which is the output of a regressor).

For Strategy 1, there is a mismatch between the object of interest ()7) and the corresponding data
generating process (it should be the graph shown in Figure 3.1b, instead of the one shown in Figure 3.2a.
For Strategy 2, there seems to be no mismatch between the object of interest (}A/) and the corresponding
data generating process in terms of the causal graph, since Figure 3.2a happens to be identical to Figure
3.1c (except for the asterisk symbol in Figure 3.1c). Although the causal graphs agree with each other, the
details of causal modeling (e.g., functional classes in the SCM) may differ across the algorithm builder
(who generates Y) and the practitioner (who audits fairness on Y'), which may still incur a mismatch
between the object of interest and the corresponding data generating process. For Strategy 3, there is a
mismatch of the causal modeling both in terms of the intended semantics (using the graph which reflects
the hypothetical ideal world) and the object of interest (substituting Y with Y without justification). For
Strategy 4, there seems to be no mismatch since Figure 3.2c¢ is identical to Figure 3.1b. However, while
there is no significant difference in terms of technical treatments when estimating causal effects on Y and
Y (if we were to draw a causal graph for the regression output), only the data generating process behind
Y reflects what happens in the real world. After all, one of the strongest motivations behind the usage of a
causal notion is the insight into the data generating process behind the outcome Y in the current reality,
but this purpose does not seem to be well-served if we consider the data generating process behind the
prediction Y.

As we can see from different possible strategies in this example, there are subtleties involved in
enforcing/auditing causal notions of fairness. Neglecting these subtleties may result in mismatches
between the mission and the means. Unfortunately, the precautions against these negligence are often
not well packed into the causal notions of fairness themselves in current literature. To some extent, the
causal notions of fairness with respect to Y (unintentionally) invites the negligence of subtleties discussed
in Section 3.2.1 and Section 3.2.2. In fact, it is not uncommon to see (variants of) the aforementioned
Strategy (1) utilized in current literature [42, 48, 95, 12, 83]. Therefore, thinking twice before enforcing a
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fairness notion and making sure that the intuition behind the notion is fulfilled in a sensible and justifiable
way, are always desirable.
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Chapter 4

Attainability and Optimality:
An Extensive Discussion on Equalized Odds

In this chapter, I focus on one particular fairness notion, namely, Equalized Odds proposed by Hardt et al.
(2016) [32], discussing the attainability of Equalized Odds and, furthermore, if attainable, the optimality
of performance among fair predictors. The analysis on the theoretical attainability is a fundementally
different type of fairness audit compared to error bounds in the finite sample cases. Actually, as we can
see in this chapter, Equalized Odds is not always attainable for regression and even for classification
tasks, if we use deterministic prediction functions. Throughout the chapter, I focus on the implication and
illustration of the results and defer all the proofs to Appendix A. The research presented in this chapter is
based on a joint work with Kun Zhang and I am the primary contributor.

4.1 Motivation

In the algorithmic fairness literature, the phenomenon of the “tradeoff between fairness and accuracy”
for the prediction has been widely observed and discussed [38, 64, 27, 14, 7, 16, 45, 56, 1, 53, 81, 5, 79].
However, only when we assume/know that the data does not contain discrimination can we really justify
the practice of enforcing fairness and accuracy at the same time for the prediction result. After all, if ¥
contains discrimination, enforcing the prediction Y to be close to Y (even if with fairness regularization) is
not desirable. Actually as we shall see in this chapter, even if the data does not contain any discrimination,
the utilization of the data for prediction can still introduce new discriminations, for instance, the theoretical
unattainability of fairness with a particular prediction scheme.

The attainability of Equalized Odds, namely, the existence of the predictor that can score zero violation
of fairness in the large sample limit, is an asymptotic property of the fairness criterion that has important
practical implications. It characterizes a completely different kind of violation of fairness compared to
the empirical error bound of discrimination in finite-sample cases. In practice, although one can always
audit violation of Equalized Odds via the empirical quantification, because of the finite sample size one
cannot expect the empirical fairness violation to be exactly zero. The absolute magnitude of the empirical
fairness violation is often not informative enough since it is not clear how small an empirical fairness
violation is small enough such that the prediction result can be deemed as “fair”, i.e., the fairness notion of
interest will be attained with zero violation in the large sample limit. Therefore it is desirable to develop
prediction schemes that come with theoretical guarantees with respect to the method itself so that the
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fairness notion is proved to be attainable in the large sample limit.

4.2 Equalized Odds in Regression

Various regularization terms have also been proposed to suppress discrimination when predicting a
continuous target [7, 87, 53, 63]. However, whether or not one can always achieve 0-discrimination for
regression, even if with an unlimited amount of data, is not clear. In this section I first consider a simple
setup with linearly correlated continuous data as a witnessing observation that Equalized Odds is not
always attainable. Then I consider more general cases where regression is performed by a deterministic
prediction function and derive the condition under which Equalized Odds can hold true. Finally, when
stochastic prediction is utilized, I show that under mild assumptions one can always find a non-trivial fair
predictor, i.e., Equalized Odds is guaranteed to be (non-trivially) attainable.!

4.2.1 Unattainability of Equalized Odds in Linear Non-Gaussian Regression

Recall that in this section I consider the bias that results from data utilization of the prediction scheme,
any possible bias introduced by the data generating procedure itself is beyond the scope of the discussion.
Let us start with the specific linear, non-Gaussian situation where the data is generated as follows (H is
not measured in the dataset):

X =qgA+Ex, H=bA+ Ey, Y =cX +dH + Ey, (4.1)

where (A, Ex, Epg, Ey) are mutually 1ndependent and q, b, ¢, d are constants.

Let us denote E := Ey + dFEy and let Y be a linear combination of A and X, ie., Y =aA + 68X =
(a + ¢B)A + BEx, with linear coefficients « and 3, where 3 # 0. In Theorem 4.1, I present the general
result in linear non-Gaussian cases, where one cannot achieve the conditional independence between Y
and A given Y.

Theorem 4.1. (Unattainability of Equalized Odds in the Linear Non-Gaussian Case)

Assume that X has a causal influence on Y, i.e., ¢ # 0 in Equation 4.1, and that A and Y are not
independent, i.e., qc + bd # 0. Assume pg, and pg are positive on R. Let fi :=logpa, fo :=logpg,,
and f3 := logpg. Further assume that fo and f3 are third-order differentiable. Then if at most one of
Ex and E is Gaussian, Y is always conditionally dependent on A given'Y .

From Theorem 4.1, we can see that if at most one of Exy and E is Gaussian, then any linear
combination of A and X with non-zero coefficients will not be conditionally independent from A given
Y, meaning that it is impossible to (non-trivially) achieve Equalized Odds with a linear model in the linear
non-Gaussian case. If both F'x and E are Gaussian (A is not necessarily Gaussian), then one can easily
find the constraints on « and /3 such that Y is conditionally independent from A given Y, as stated in the
following corollary.

Corollary 4.2. Suppose that both Ex and E are Gaussian, with variances J%X and 0’%, respectively.

(The protected feature A is not necessarily Gaussian.) Then YA | Y if and only if

2 2
«a bdc'aEX—q-aE

Z = . 4.2
B CQ-U%X—FO'QE (4.2)

"Here by “non-trivial” predictors I am referring to predictors that perform better than a random guess or a constant output.
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4.2.2 Regression with Deterministic Prediction

We have seen that in the linear non-Gaussian case, any non-zero linear combination of the feature (which is
a deterministic prediction function of the input feature) will not satisfy Equalized Odds. One may naturally
wonder, instead of only considering linear models, whether or not Equalized Odds can be achieved in
general regression cases. It is therefore desirable to derive the condition under which Equalized Odds can
hold true for regression with deterministic prediction functions.

Theorem 4.3. (Condition to Achieve Equalized Odds for Regression with Deterministic Prediction)
Assume that the protected feature A and the continuous target variable Y are dependent and that their
Jjoint probability density p(A,Y") is positive for every combination of possible values of A and Y . Further
assume that Y is not fully determined by A, and that there are additional features X that are not
independent of Y. Let the prediction Y be characterized by a deterministic function f : A x X — ).
Equalized Odds holds true if and only if the following condition is satisfied (6(-) is the delta function):

vy7g S y) \V/CL, CL/ S Aua’ 7é (l/ : Q(a’?/,?j) = Q(alvya g)u
where Q(a,y,§) 2 /X 5(9 - F(a,2))pxiay (@la, y)de.

In special cases when X 1L A | Y and f is a function of only X (e.g., a linear function with 0
coefficient for A), this condition is always satisfied. In general cases, however, this condition specifies a
rather strong constraint on the relation between the conditional probability density px; ay(z | a,y) and
the function f. Because of the integration over the product of ¢(-) function and px|ay (7 | a,y), the
aforementioned condition requires f to “pick out” certain z’s (for any given § € ) and a € A) such that
the sum of the corresponding conditional probability density values stays the same. Generally speaking, if
the way f “picks out” x is not strictly coupled with the conditional probability density px|ay (z | a,¥),
the condition specified in Theorem 4.3 would be violated, i.e., Equalized Odds cannot hold true. In order
to further illustrate this constraint, let us consider a special case where variables are linear correlated
with Gaussian exogenous terms (i.e., EFx and £ = Fy + dEy in Equation 4.1 are Gaussian). Here,
the conditional distribution of X given A and that of Y given A are both Gaussian. Let Y = f(A, X)
be a linear function of (A X) with linear coefficients o and non-zero /3. Then for any given value of
(Y, A) we have X = (Y — aA) /3. Therefore 6 (9 — f(a,z)) does not equal to 0 only on the singleton

set{z | f(a,z) =9} = {(y — wa)/B}. We have
Q(a,y,9) = pX\AY(yT | a,y).

Then the aforementioned constraint requires that

J—aa J—aa
px|ay ( 3 la,y) = pX|AY(T | d',y). (4.3)

Since the conditional distribution of X given A = a, i.e., N'(qa, Ug() and that of Y given A = a, i. e

N ((ge + bd)a, Po%k + 0% ), are both Gaussian, we have py|ay (z | a,y) = \/2770'2 exp{ 125;14 }
2 020'2 9
where fiqy = ga + m(y — (gc + bd)a ), Oay =(1- ﬁ)ax-
Then the Equation 4.3 hold true if and only if the absolute distance between
function of a (for any fixed y and ¢), which yields the following relation:

2 2
a_bdc-aEX—q-aE

B 2. 2 2
15} c-op, tog

9=04 gnd [ay is DOt a

)
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which is the exact relation between « and 3 derived from a different perspective in Corollary 4.2.

As we can see in this example, in order to achieve Equalized Odds, the coefficients of linear function
f(A, X) = aA + BX have to satisfy a very specific relation. In more general cases, for example
with linear non-Gaussian data, as we have seen in Theorem 4.1, Equalized Odds is not attainable with
deterministic linear regression. This indicates the general restrictiveness of the aforementioned constraint
on the relation between px |4y (2 | a,y) and the deterministic function f, i.e., Equalized Odds cannot
hold true. Actually as we will see in Theorem 4.5, similar phenomena also occur for classification with
deterministic predictors.

4.2.3 Regression with Stochastic Prediction

In light of the unattainability of Equalized Odds for prediction with deterministic functions of A and X, it
is important to ask whether Equalized Odds can be attainable with stochastic prediction, where the output
given input features is no longer a single value. As we shall see in Theorem 4.4, with stochastic prediction
functions, under mild assumptions one can always find a non-trivial predictor Y that satisfies Equalized
Odds, even if both the target Y and the protected feature A are continuous.?

Theorem 4.4. (Attainability of Equalized Odds for Regression with Stochastic Prediction)

Let A, X, and 'Y be continuous variables with domain of value A, X, and Y, respectively. Assume that
their joint distribution is fixed and known. Further assumeY LAY L X, andY J X | A. Without loss
of generality let the conditional probability density px| ay (x| a,y) be non-negative and finite. Then there

exists Y with domain of value Y whose distribution is fully determined by Py|a (7| a,x), such that Y is

not independent from (A, X) but Y1 A | Y, i.e., the Equalized Odds is non-trivially attainable.

From Theorem 4.4 we can see that with stochastic prediction, one can guarantee the attainability of
Equalized Odds for regression under rather mild assumptions. It would then be desirable to construct
general, nonlinear prediction models to produce a stochastic prediction (i.e., with a certain type of
randomness in the prediction). One possible way follows the framework of Generative Adversarial
Networks (GANs) [30]: I use random standard Gaussian noise F, in addition to A and X, as input,
such that the output will have a specific type of randomness. The parameters involved are learned by
minimizing prediction error and enforcing Equalized Odds on the “randomized” output, as a function of
A, X, and F, at the same time. Given the loss function £, a class of function F, and a fairness penalty G,
I propose the following objective function for fitting an Equalized Odds model with stochastic prediction:

1}1112 E[L(f(A,X,E),Y) +\G(f(A,X,E),AY)]. (4.4)
€

The first term measures the prediction error, for instance the mean squared error for regression. The
second term is the fairness penalty that imposes Equalized Odds. I use the kernel measure of conditional

dependence [29] between Y and A given Y as the fairness penalty term. The hyperparameter A reflects
the trade-off between accuracy and fairness.

4.3 Equalized Odds in Classification

In this section, I consider the attainability of Equalized Odds for binary classifiers (with a deterministic or
stochastic prediction function), and furthermore, if attainable, the optimality of performance of various
computational procedures under the fairness criterion.

’In this chapter, I use Y to denote Equalized Odds predictors to distinguish from (not necessarily fair) predictors Y.
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4.3.1 Classification with Deterministic Prediction

I begin with considering cases when classification is performed by a deterministic function of the input.
Similar to the previous analysis for regression tasks with deterministic prediction functions in Section
4.2.2, 1 derive the conditions under which Equalized Odds can possibly hold true for classification with
deterministic prediction functions.

Theorem 4.5. (Condition to Achieve Equalized Odds for Classification with Deterministic Prediction)
Assume that the protected feature A andY are dependent and that their joint probability P(A,Y) (for
discrete A) or joint probability density p(A,Y") (for continuous A) is positive for every combination of
possible values of A and Y. Further assume that Y is not fully determined by A, and that there are
additional features X that are not independent of Y. Let the output of the classifier Y be a deterministic
Sfunction f : Ax X — Y. Let SE?) ={a|3Ir e Xst fla,x) =7y}, and Sg?‘)a =A{z| fla,z) = gy}.
Equalized Odds is attained if and only if the following conditions hold true (for continuous X, replace

summation with integration accordingly):
(i) Vjey: SV =4,
(i) Vg €Y, Va,a' € A: ersg‘) Pxjay (@ | a,y) = ZIES@‘) Pxjay(z | a',y)
a X|a!

Condition (i) says that within each class determined by the classification function f, A should be able
to take all possible values in .A4. While condition (i) is already rather restrictive, condition (ii) specifies
an even stronger constraint on the relation between Px |4y (z|a,y) (orp x|4y (zla, y) for continuous X)

and the set S%)a (which is determined by the function f). Generally speaking, in order to score a better
classification accuracy, one would like to make P};‘ 4. x (Ula, z) as close as possible to Py 4 x (yla, z), and
if the set S%)a and Px|4y (|a, y) are not strictly coupled, condition (ii) would be violated, i.e., Equalized
Odds cannot be attained. For better illustration I present concrete examples where those conditions can or

cannot be satisfied. For the purpose of simplifying the notation, let us consider cases when A, X, and Y’
are binary, and the joint probability of (A, Y") is specified as following:

P(A=0,Y =0)=0.2,
P(A=0,Y =1) =04,
(4.5)
P(A=1,Y =0)=0.3,
P(A=1Y =1)=0.1.

Then in the special case when X Il A | Y, Equalized Odds can hold true if f is a function of only X. For
example, if f = 1{X = 1}, one can quickly verify that P(Y = 1| A=a,Y =0)=P(X =1|Y =0)
andthat P(Y =1| A=a,Y=1)=P(X =1|Y =1) (fora € {0,1}), i.e., Equalized Odds holds
true. If X )L A | Y, let us compare the following two cases:

P(X=1|A=0,Y =0)=0.3,
P(X=1|A=1,Y =0)=0.7,

(4.6)
P(X=1|A=0,Y =1)=0.38,
P(X=1|A=1,Y=1)=0.2;
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P(X=1|A=0,Y =0) =04,
P(X=1|A=1,Y=0)=07,
P(X=1|A=0,Y =1) =06,
PX=1|A=1Y=1)=02.

4.7)

Here, the joint distribution of (A,Y") is specified the same as in Equation 4.5. In Equation 4.6, the
conditional probability of X is crafted sothat P(X =0| A=0,Y =0)=P(X =1]A=1,Y =0)
and P(X =0|A=0,Y=1)=P(X=1|A=1Y =1). Then if we choose f = 1{A = X} (or
flip the prediction, let f = 1 — 1{A = X}) to exploit this property, we can have a predictor that satisfies
Equalized Odds. One can quickly verify this: P(Y =1 | A=0,Y =0)=P(X =0|A=0,Y =
0)=06=PX=1|A=1LY=0)=PY=1|4A=1Y =0), andP( =1A=0Y =
)=P(X=0|A=0,Y=1)=02=PX=1|A=1,Y=1)=PY =1|A=1Y =1).
However, there is no obvious reason to believe that the conditional probability of X given A and Y should
satisfy such “crafted” property in general cases. In the case shown in Equation 4.7, one cannot find an f
that satisfies conditions (i) and (ii) in Theorem 4.5, and therefore in this case there is no deterministic
prediction function that satisfies Equalized Odds.

4.3.2 Classification with Stochastic Prediction

In this subsection, I consider cases when stochastic prediction is acceptable, namely, the classifier
would output class labels with certain probabilities. Among different categories of approaches to derive
a fair classifier, recent efforts to impose Equalized Odds in the pre-processing manner [51, 99, 76]
approach the problem from a representation learning perspective, where the main focus is to learn fair
representations that at the same time preserve sufficient information from the original data. Therefore, I
omit pre-processing approaches from the discussion and focus on post-processing and in-processing fair
classifiers.

I first derive the relation between positive rates (TPR and FPR) of binary classifiers before and after
the post-processing step, i.e., }Afopt (the unconstrainedly optimized classifier) and )~fpost (the fair classifier
derived by post-processing ﬁ,pt), and show that under mild assumptions, one can always derive a non-
trivial Equalized-Odds ffpost via a post-processing step. Then, from the ROC feasible area perspective,
I prove that post-processing approaches are actually equivalent to in-processing approaches but with
additional “pseudo” constraints enforced. Therefore, using the same loss function, post-processing
approaches can perform no better than in-processing approaches.

The Post-processing Step

The post-processing step of a predictor Y (here I drop the subscript when there is no ambiguity) only
utilizes the information in the joint distribution (A,Y, }7) A fair predictor lz,ost derived via a post-
processing step, for instance, with the shifted decision boundary [28], the derived predictor [32], or the
(monotonic) joint loss optimization over decoupled classifiers [26], is then fully specified by a (possibly
randomized) function of (A, Y) This implies the conditional 1ndependence Yoost LY | A, Y. Then if we

denote the positive rates of Y as P, (1]a, ), positive rates of ¥ as P ¥ AY(l]a y), we can factorize

YAy
the positive rates under this conditional independence: , where B((zy =PY =1|A=aY =j).
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Figure 4.1: ROC feasible area illustrations for binary classifiers with stochastic prediction functions.

Therefore, post-processing an existing predictor boils down to optimizing parameters (for discrete A) or

().

functions (for continuous A) B,

The ROC Feasible Area

On the Receiver Operator Characteristic (ROC) plane, a two-dimensional plane with horizontal axis
denoting FPR and vertical axis denoting TPR, the performance of any binary predictor Y (not necessarily
a fair one) with a certain value of protected feature A = a corresponds to a point %(f/) = (FPR, TPR) on
the plane. Denote each coordinate according to the value of Y as %y(f/):

~

Ya(Y) = ('YaO(Y)a 'Yal(y)) = (P}A/|Ay(1‘aa 0), Pf/|Ay(1|aa 1)) (4.8)
Further denote the corresponding convex hull of Y on the ROC plane as Ca(l?) using vertices:

Ca(Y) := Conv{(0,0),7(Y),7.(1 - Y), (1,1)}, (4.9)

and then, as already stated in Hardt et al. [32], the (FPR, TPR) pair corresponding to a post-processing
predictor falls within (including the boundary of) C, (}7)

Definition 4.6. ROC feasible area The feasible area of a predictor Q(f/), specified by the hypothesis
space of available predictors Y, is the set containing all attainable (FPR, TPR) pairs by the predictor on
the ROC plane satisfying Equalized Odds.

Hardt et al. [32] proposed that the post-processing fair predictor can be derived by solving a linear
programming problem. However, it is not given whether this problem always has a non-trivial solution.
Following Hardt al el. [32], I analyze the relation between the (FPR, TPR) pair of predictors on the ROC
plane and formally establish the existence of the non-trivial Equalized-Odds predictor. As I show in
Theorem 4.7, under mild assumptions an Equalized-Odds predictor Y05 derived via post-processing Y
always has non-empty ROC feasible area.

Theorem 4.7. (Attainability of Equalized Odds for Classification with Stochastic Prediction)

Assume that the feature X is not independent from Y, and that Yisa function of A and X. Then for
binary classification, if Yisa non-trivial predictor for Y, there is always at least one non-trivial predictor
Y05t derived by post-processing Y that can attain Equalized Odds, i.e., Q)( post) # (.
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Figure 4.2: The comparison between ROC feasible areas: Q(}jn) for the in-processing fair classifier,
Q(Ypost) for the post-processing fair classifier, (Y,p) for the unconstrainedly optimized
classifier, and Q(Y;) for the in-processing fair classifier with “pseudo” constraints.

Here ﬁost is a possibly randomized function of only A and Y, trading off TPR with FPR across
groups with different value of protected feature. From the Figure 4.1a and Figure 4.1b we can also see that
Q(%ost), the ROC feasible area of }7post, is the intersection of Qa(f/) indicating that although Equalized
Odds is attained, the performance of ffpost is no better and often worse than the weakest performance
across different groups, which is obviously suboptimal.

4.3.3 Optimality of Performance among Classifiers that Satisfy Equalized Odds

In this subsection I discuss the optimality of performance of fair classifiers derived via in-processing and
post-processing approaches. Let us consider a more general setting for the post-processing approach,
where the optimal predictor to be post-processed is stochastic (while most previous approaches use
deterministic predictors). The derivation of the in-processing fair predictor 1~fin and the unconstrained
statistical optimal predictor ffopt take the following forms, respectively:

in  E[L(Yn,Y
min [L( )

st Ppay@lay) =Py (@ y) 4.10)
where Yi, ~ Bernoulli(f(A, X)),

in  E[L(Yo,Y
min [£(Yopt, Y)]

N (4.11)
where  Yop ~ Bernoulli( f(4, X)).

It is natural to wonder, now that one can always directly solve for Yin from Equation 4.10, how it is
related to ffpost, which is derived by post-processing the }/}Opt solved from Equation 4.11? Interestingly,
although lN/in and }7post are solved separately using different constrained optimization schemes, one can
draw a connection between them by utilizing }Z,pt as a bridge and reason about the relation between their

ROC feasible areas Q(f/m) and Q(Ypost), as I summarize in the following theorem.
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Theorem 4.8. Equivalence between ROC feasible areas
Let Q(f/pm) denote the ROC feasible area specified by the constraints enforced on 17,)(,3,. Then Q(f’pos,) is
identical to the ROC feasible area Q(XN/;Z) that is specified by the following set of constraints:
(i) constraints enforced on §7,-n s
(ii) additional “pseudo” constraints: Ya € A, ﬁé%) = ﬁc(f{), ﬁc%) = 6((1?, where
D) =S v PV =1|A=a, X =2)P(X =2 | A=a,Y =y, Vop = §)).

As we can see in Figure 4.2a and Figure 4.2b, if the additional “pseudo” constraints are introduced
when optimizing 17;: we have Q(?m) D Q(?post) = 9(171:;) Therefore, with the same objective function
and fairness constraint, the fair classifier derived from an in-processing approach always outperforms (or
performs equally well with) the one derived from a post-processing approach.

4.3.4 Equalized Odds Experiments

In this section, I provide numerical results of enforcing Equalized Odds in various settings. I first
present illustrations of unattained Equalized Odds with deterministic regression. Then, to demonstrate the
benefit of stochastic prediction with respect to imposing fairness, I present the results for regression with
stochastic prediction on both simulated data and the real-world Communities and Crime data set. Finally
for classification tasks I compare the performance of several existing methods in the literature on multiple
real-world data sets. The description of the data set as well as the data processing procedure can be found
at the end of this subsection.

Regression Tasks

The regression experiments consist of two base models, namely, a linear regression model and a neural
network model, each of which appears in the form of both deterministic and stochastic prediction. For
the neural network model, following Mary et al. [53] [ use a simple regressor for the experiments: two
hidden layers (with the same number of neurons ranging from 30 to 100 for each layer, depending on
the size of the data set) with SELUs nonlinearity [44]. The network is optimized by minimizing the
MSE loss combined with the A\-weighted fairness penalty term, using the Adam optimizer [43]. I use
the kernel measure of conditional dependence (KMCD) [29] as the fairness penalty term (for stochastic
prediction), and the weight A ranges from {272,271 ... 2!4}. The range of the absolute value of A may
differ for different experiment setups since the relative value difference between the MSE loss and the
KMCD measure. The learning rate is chosen from {10=%,107°, 1076} (smaller learning rate is preferable
especially for larger values of A, i.e., more emphasis on the fairness penalty), and the batch size is chosen
from {64, 128,256}. As I have stated in Section 4.2.3, for stochastic prediction, a random sample from
the standard Gaussian distribution is concatenated to each batch of data, and the input dimension of the
model changes accordingly. The random sample to concatenate is redrawn each time the data point is
seen by the model.

In the experiments on the simulated data, for linear cases, the data is generated as stated in Equation
4.1, with non-Gaussian distributed exogenous terms (E'x, Ep, and Ey ). Figure 4.3a and Figure 4.3b
correspond to different distributions for the noise terms, specifically, the Laplace distribution and uniform
distribution, respectively. I use linear regression with the Equalized Correlations constraint [82], a weaker
notion of Equalized Odds for linearly correlated data, as the predictor. For nonlinear cases, the data is
generated using a similar scheme but with nonlinear transformations involved and Gaussian distributed
exogenous terms. I use a neural network regressor with an Equalized Odds regularization term [53] to
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perform nonlinear fair regression. As we can see in Figure 4.3c and Figure 4.3d, for nonlinear regression
tasks, Equalized Odds may not be attained even if every exogenous term is Gaussian distributed. In
fact, according to the kernel-based conditional independence (KCI) test [91] (with the null hypothesis
Y1 A | V), the p-value is smaller than 0.05 in all four examples, which indicates that Equalized Odds
does not hold true.

In Figure 4.4 I compare deterministic and stochastic regression on simulated linear non-Gaussian
data. Panel (a) illustrates the trade-off between fairness in terms of the kernel measure of conditional
dependence (KMCD) and prediction error in terms of the mean squared error (MSE) for different values
of the hyperparameter A. Panel (b) summarizes the p-value outputs of the KCI test. Note that in (b), the
green boxes are not visible since p-values in the deterministic prediction case are always close to 0. The
distribution of the p-value outputs clearly indicate that stochastic prediction often achieve Equalized Odds
(the test fails to reject the null quite often), while deterministic prediction may not (the test rejects the
null almost all the time). For panel (c) and (d), I fix the training sample size at 200 while the sample
size for testing ranges from 100 to 3000.> The purpose is to see whether the prediction can remain fair
with more and more new testing data. A practical example of the scenario would be an automated hiring
system to aid recruitment (each future applicant is a new data point for the system as long as the system is
deployed and keeps running). As we can see in panel (d), while the p-value for deterministic prediction is
always close to 0 (invisible green box, which indicates violated Equalized Odds), the p-value for stochastic
prediction spreads over [0, 1] if the test set sample size is not too big compared to the training data.

In the experiments on the real-world data, I perform 20 random splits of Communities and Crime
data into training (80%) and testing (20%) sets, and present the testing performance for deterministic and
stochastic prediction models (for the linear regressor as well as the neural network regressor) in Figure 4.5.
Compare panel (b) and panel (d), we can see that unlike the nonlinear stochastic prediction (the neural
network predictor in panel (d)), the distribution of p-value outputs for stochastic prediction with a linear
base model does not dominate its deterministic counterpart. This is not surprising since for stochastic
prediction with a linear model, the prediction is in essence produced by a deterministic linear model and
an additive noise. Therefore, if the deterministic part of the linear model does not satisfy Equalized Odds,
adding an independent noise will not help impose fairness. In situations where the protected feature is not
available when testing, it is desirable to exclude the protected feature from the attributes when performing
prediction. To this end, during the training process, the input to the regression model does not include the
protected feature, and the protected feature is only used to compute the fairness penalty. The related result
on the Communities and Crime data set is summarized in Figure 4.6.

Classification Tasks

In Figure 4.7, I compare the performance under Equalized Odds of multiple methods proposed in the
literature. Hardt et al. [32] propose a post-processing approach where the prediction is randomized to
minimize violation of fairness; Zafar et al. [84] use a covariance proxy measure as the regularization
term when optimizing classification accuracy; Agarwal et al. [1] take the reductions approach and reduce
fair classification into solving a sequence of cost-sensitive classification problems; Rezaei et al. [62]
minimize the worst-case log loss using an approximated regularization term; Baharlouei et al. [5] propose
to use Rényi correlation as the regularization term to account for nonlinear dependence between variables.

3Considering the fact that the computational cost for KCI test p-value increases dramatically with large sample size, I use

linearly correlated data with relatively small sample size for training and consider increasingly large test sets in the repetitive
experiments (with fixed hyperparameter \).
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To measure the violation of the fairness criterion, I use Equalized Odds (EOdds) violation, defined as
MaXycy q,0/c A ‘Pf,'AY(l\a, y)— P}~,|Ay(l\a’, Y) | Following Agarwal et al. [1], I pick 0.01 as the default
violation bound that the EOdds violation does not exceed (if practically achievable for the method) during
training. For each method I plot the testing accuracy versus the violation of Equalized Odds.

In Figure 4.7, I compare the performance under Equalized Odds of multiple methods proposed in the
literature. Although a probabilistic classification model is used for across each method (logistic regression
here), if an algorithm outputs the class label where the prediction likelihood is maximized, the prediction
is in essence deterministic. Therefore, although here we are considering finite data cases, we can still
anticipate a lower level of fairness violation with stochastic prediction. This is validated by the numerical
experiment: while the post-processing approach [32] does not score the lowest test error, the violation of
Equalized Odds is the lowest compared to other approaches.

Description of Data Sets

(1) Communities and Crime: The UCI Communities and Crime data set contains 122 features for
1994 records.* The regression task is to predict the number of violent crimes per population for US
cities given various census information of the corresponding communities. The data is preprocessed
following Mary et al. [53], and the (continuous) protected feature is the ratio of African-American
people in the population.

(2) Adult [46]: The UCI Adult data set contains 14 features for 45,222 individuals (32,561 samples for
training and 12,661 samples for testing).’> The census information includes gender, marital status,
education, capital gain, etc. The classification task is to predict whether a person’s annual income
exceeds 50,000 USD. I use the provided testing set for evaluations and present the result with
gender and race (consider white and black people only) set as the protected feature respectively.

(3) Bank [58]: The UCI Bank Marketing data set is related with marketing campaigns of a banking
institution, containing 16 features of 45,211 individuals.® The assigned classification task is to
predict if a client will subscribe (yes/no) to a term deposit. The original data set is very unbalanced
with only 4,667 positives out of 45,211 samples. Therefore, I combine “yes” points with randomly
subsampled “no” points and perform experiments on the down-sampled data set with 10,000 data
points. The protected feature is the marital status of the client.

(4) COMPAS [3]: The COMPAS data set contains records of over 11,000 defendants from Broward
County, Florida, whose risk (of recidivism) was assessed using the COMPAS tool. Each record
contains multiple features of the defendant, including demographic information, prior convictions,
degree of charge, and the ground truth for recidivism within two years. Following Zafar et al.
[84] and Nabi et al. [59], I consider the subset consisting of African-Americans and Caucasians
defendants. The features I use include age, gender, race, number of priors, and degree of charges.
The task is to predict the recidivism of the defendant and I choose race as the protected feature.

(5) German Credit: The UCI German Credit data contains 20 features (7 numerical, 13 categorical)
describing the social and economical status of 1,000 customers.” The prediction task is to classify
people as good or bad credit risks. I use the provided numerical version of the data and choose

*https://archive.ics.uci.edu/ml/datasets/communities+and+crime
Shttp://archive.ics.uci.edu/ml/datasets/Adult
*https://archive.ics.uci.edu/ml/datasets/bank+marketing
"https://archive.ics.uci.edu/ml/datasets/statlog+ (german+credit+data)
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Figure 4.3: Illustration of unattainable Equalized Odds for regression with deterministic prediction. Panel
(a)-(b): Linear regression on the data generated with linear transformations and non-Gaussian
distributed exogenous terms (following Laplace, Uniform distribution respectively). Panel (c)-
(d): Nonlinear regression with a neural net regressor [53] on the data generated with nonlinear

transformations and Gaussian exogenous terms.

We can observe obvious dependencies

between Y and A on a small interval of Y. This indicates the conditional dependency between
Y and A given Y, i.e., the Equalized Odds is not achieved.
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Figure 4.5: Results for regression with deterministic and stochastic prediction functions on the Commu-
nities and Crime data set. The base model could be a linear regressor or a neural network
regressor, and the stochastic prediction is achieved by introducing an independent noise input
sampled from a standard Gaussian distribution.
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Figure 4.6: Results for regression with deterministic and stochastic prediction functions on the Commu-
nities and Crime data set (the protected feature is not included as an attribute). The base
model could be a linear regressor or a neural network regressor, and the stochastic prediction
is achieved by introducing an independent noise input sampled from a standard Gaussian
distribution.
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Figure 4.7: Results for classification with Equalized Odds criterion.
gender as the protected feature.

4.4 Summary

In this chapter I focus on Equalized Odds and consider the attainability of fairness, and furthermore, if it
is attainable, the optimality of the prediction performance under various settings. I present theoretical
guarantee that under mild assumptions, one can always find a non-trivial stochastic predictor that satisfies
Equalized Odds in the large sample limit, while in general fairness is not attainable with a deterministic
predictor. Therefore I propose a stochastic prediction scheme that has the distribution-free theoretical
guarantee of fairness attainability.

For classification, while randomization can ensure group level of fairness, there is still some inherent
shortcoming of the criterion that we should pay attention to. For example, in the FICO case study in Hardt
et al. [32], for a specific client from certain demographic group, the decision of approve/deny the loan
actually comes in two folds: if his/her credit score is above (below) the upper (lower) threshold, the bank
approve (deny) the application for sure; if the score falls in the interval between two thresholds, the bank
would flip a coin to make a decision. Then we can imagine the following situation when a client whose
credit score falls within the interval between the upper and lower thresholds goes to a bank to apply a
loan. He/she can ask (if conditions permit) the bank to run the model multiple times until the decision is
approval. This would make the randomization that was built into the system for the sake of fairness no
longer effective. The system in fact only has one fixed threshold (i.e., the original lower threshold), which
is in essence a deterministic predictor (therefore in general, does not satisty Equalized Odds).

As we can see from the extensive discussion with respect to enforcing the Equalized Odds notion, it is
always preferrable to develop prediction schemes that come with theoretical guarantees on the fairness
attainability, so that one can better regulate the way that information is utilized to perform prediction
(under the assumption that the data at hand is “clean”). That being said, before picking a fairness notion
we should also be aware of the potential negative social impact of enforcing such notion, since the choice
of fairness notion largely depends on the question at hand and there is no one-size-fits-all solution.
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Chapter 5

Conclusion and Future Work

In this thesis, I present a reflection and a case study on fairness notions in machine learning. Considering
the often neglected subtleties regarding the role played by causality in fairness analysis, I propose necessary
modifications to previous causal notions of fairness. I extensively discuss the Equalized Odds notion
of fairness to illustrate the importance of theoretical attainability of the fairness notion. In particular, I
consider the attainability of Equalized Odds and, furthermore, if it is attainable, the optimality of the
prediction performance under various settings. I present theoretical guarantee that under mild assumptions,
one can always find a non-trivial stochastic predictor that satisfies Equalized Odds in the large sample
limit, while in general fairness is not attainable with a deterministic predictor.

The future works naturally span across different types of fairness considerations. If we are interested
in quantifying discrimination within the data at hand, it is desirable to develop methods to evaluate and
guarantee the effectiveness of fairness pursuit with respect to the underlying data generating process,
especially for the potential correction (going beyond detection) of the data to eliminate discriminations
within the data. If we are willing to assume that the data at hand is not biased, a thorough understanding
of the fairness notion of interest (e.g., the one that is, or will be, deployed in real world) calls for analysis
with respect to attainability and optimality, which, if carefully characterized, is very informative and
helpful both in terms of theoretical rigorousness and practical significance (e.g., the development of better
learning strategies that come with theoretical guarantees). If we consider fairness from a broader scope,
the potential unification of the findings from fairness audits conducted in separated but highly-related
scenarios (e.g., school admission, loan application, occupational outlook, etc.) would be very helpful to
identify potential ways to systematically promote fairness from a wider scope.
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Appendix A

Proof for Theorems

A.1 Proof for Theorem 4.1

To prove the unattainability of Equalized Odds in regression, we will need the following lemma, which
provides a way to characterize conditional independence/dependence with conditional or joint distribu-
tions.

Lemma A.1. Variables Vi and V5 are conditionally independent given variable V3 if and only if there
exist functions h(vy, vs) and g(ve,vs) such that

pV1,V2|V3(v172}2 | '1)3) = h(vlvv3) : g(UQ,Ug). (Al)

Proof. First, if V] and V5 are conditionally independent given variable V3, then Equation A.1 holds:
PV Va|va (U1, 02 | 03) = Puy|vs (01 | v3) - prgpvg (v2 | v3).

We then let h(vs) := [ h(v1,v3)dvy and §(v3) := [ g(va, v3)dvs. Take the integral of Equation A.1 w.r.t.
vy and vy, we have:

Pvajvs (V2 | v3) = h(vs) - g(v2, v3),
Pvipvs (1 | v3) = g(vs) - h(v1,vs3),

respectively. Bearing in mind Equation A.1, one can see that the product of the two equations above is
pVQ\VS(W | v3) 'pvl\vg(vl | v3)

= h(vs) - g(va,v3) - G(vs) - h(va, v3)

= h(v3) - §(v3) - Py va|vs (V1,02 | v3).

Take the integral of the equation above w.r.t. v and vy gives ﬁ(vg) - g(v3) = 1. The above equation then
reduces to

Pvalvs (V2 [ v3) - pyajvs (V1 | v3) = vy vapvs (V1,02 | v3).

That is, V1 and V5 are conditionally independent given V3. O
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Now we are ready to prove the unattainability of Equalized Odds in linear non-Gaussian regression.
Recall that the data is generated as follows (H is not measured in the dataset):

X :qA+EX,
H =bA+ FEy, (A.2)
Y =cX +dH + By,

where (A, Ex, Ey, Ey) are mutually independent and ¢, b, ¢, d are constants.

Theorem. (Unattainability of Equalized Odds in the Linear Non-Gaussian Case)

Assume that X has a causal influence on Y, i.e., ¢ # 0 in Equation A.2, and that A and Y are not
independent, i.e., qc + bd # 0. Assume pg, and pg are positive on R. Let fi :=logpa, fo :=1logpg,,
and f3 := logpg. Further assume that fo and f3 are third-order differentiable. Then if at most one of
Ex and E is Gaussian, Y is always conditionally dependent on A given'Y .

Proof. According to Equation A.2, we have

A 1 0 0 A
Y |=| a+qg8 58 0| | Ex |. (A3)
Y qgc+bd ¢ 1 E

The determinant of the above linear transformation is 3, which relates the probability density function of
the variables on the LHS and that of the variables on the RHS of the equation. Therefore, according to
Equation A.3, we can rewrite the joint probability density function by making use of the Jacobian deter-
minant and factor the joint density into marginal density functions (A, Ex, F are mutually independent
according to the data generating process). Further let

. a+gqB e

Q= , T:=bd— —, and ¢:= —. (A4)
p 5]

Then we have Ex = %S/; —aA,E=Y —7A — 517, and

o

pA,fij(aa 9, y)

= pa,Bx. (0 ez, €)/|f]

= ’;‘pA(a)pEX(ez)pE(e)

= ’;‘m(a)pEX (;t — aa)pp(y — fa — ¢j).

On its support, the log-density can be written as
J=logp, v y(a,9,y)

=logpa(a) +logpe, (-9 — aa)

|

+log pe(y — Fa — ¢j) — log|B| (A.5)
~ fi(a) + f2<;@ ~ Ga)
+ faly — 7a— &) — log|Bl-
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According to Lemma A.1, A 1l Y | Y if and only if p , ?‘Y(a, ¥ | y) is a product of a function of a and y

and a function of ¢ and y. p , ¢ (@, 9, y) is further a product of the above function and a function of only
y. This property, under the conditions in Theorem 4.1, is equivalent to the constraint

0%J
— = (A.6)
0AJY
According to Equation A.5, we have
oJ 1 1
= (50— aa) — & fily — Fa — &),
and therefore )
0°J ¢ 1
Sui = —%-f”(ﬁg)—&a) + i f(y — Fa— &), (A7)
Combining Equations A.6 and A.7 gives
~~ ol ~ ~ Q " 1. ~
re- faly —ra—cj) = 5 - fo (50— da). (A.8)
g p
Further taking the partial derivative of both sides of the above equation w.r.t. y yields
re- f'(y — fa —ég) = 0. (A9)

There are three possible situations where the above equation holds:

(i) ¢ = 0, which is equivalent to ¢ = 0 and contradicts with the theorem assumption.

(ii) 7 = 0. Then according to Equation A.8, we have % . fé’(%y — @a) = 0, implies either & = 0 or
) (%gj — aa) = 0. If the latter is the case, then f5 is a linear function and, accordingly, exp( f2) is
not integrable and does not correspond to any valid density function. If the former is true, i.e., @ = 0,
then according to Equation A.4, we have &« = —¢q/3, which further implies ¥ = bd — % = bd + qc.
Therefore, in this situation, bd + qc = 0, which again contradicts with the theorem assumption.

(iii) f{"(y —7a—¢y) = 0. Thatis, f3 is a quadratic function with a nonzero coefficient for the quadratic
term (otherwise f3 does not correspond to the logarithm of any valid density function). Thus F
follows a Gaussian distribution.

Only situation (iii) is possible, i.e., 7¢ # 0 and E follows a Gaussian distribution. This further tells us that
the RHS of Equation A.8 is a nonzero constant. Hence f5 is a quadratic function and Ex also follows a
Gaussian distribution. Therefore if A 1L Y | Y were to be true, then E'y and E are both Gaussian. Its
contrapositive gives the conclusion of this theorem. O

Corollary A.2. Suppose that both Ex and E are Gaussian, with variances J%X and 0125, respectively.

(The protected feature A is not necessarily Gaussian.) Then YA | Y if and only if

2 2
a_de'O-EX_q'O-E

rae 2. 2 2
15} ct-op, o

(A.10)

Proof. Under the condition that Ex and E are Gaussian, their log-density functions are third-order

differentiable. Then according to the proof of Theorem 4.1, the Equalized Odds condition A Il Y | Y is

equivalent to Equation A.8, which, together with Equation A.4 as well as the fact that f) = — 021 and
Ex

1"

V= —é, yields Equation A.10. -
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A.2 Proof for Theorem 4.3

Theorem. (Condition to Achieve Equalized Odds for Regression with Deterministic Prediction)
Assume that the protected feature A and the continuous target variable Y are dependent and that their
joint probability density p(A,Y') is positive for every combination of possible values of A andY . Further
assume that Y is not fully determined by A, and that there are additional features X that are not
independent of Y. Let the prediction Y be characterized by a deterministic function f : A X X — ).
Equalized Odds holds true if and only if the following condition is satisfied (6(-) is the delta function):

vy?@ S ya vaa al S A7a 7é a/ : Q(a7 Y, g) = Q(aluyag)v
where Q(a,y,§) 2 /X 5(3— f(a,2))px|ay (zla, y)de.

Proof. Without loss of generality, let us assume that A and X are continuous. By Lemma A.1, the
Equalized Odds criterion can be written into terms of the conditional probability density functions:

Vy,5 €Y, a € A py 4y (0la,y) = Py, (9ly) (A.11)

Since Y = f (A, X) where f is a deterministic function of (A, X), f is an injective mapping from
A x X to Y. One can derive the joint probability density of (Y, A, X, Y") by making use of the change of
variables. Define the mapping # ; as following:

\%4 V+ f(A X)
A A
Hel x | = X ’
Y Y
where V' is a constant 0 whose probability density function is d(v). Notice that H is bijective:
Y Y - f(A X)
_1 A _ A
&, X | X ’
Y Y
with the Jacobian matrix
1 -oL 9
0A 0X
~1v _ |0 1 0 0
T, ) = 0 0 1 0
0 0 0 1

Therefore by making use of the change of variable technique, we have:
pf/AXy(?Q, a,r,y) = pvaxy (v, a,z, Z/)’J(HEIN
=6(9 — f(a,2))paxy(a,z,y).
Expand the LHS of Equation A.11, we have:
oy 0le) = [ b Grala,p)da
= [ 8=t 0)pxav (ela )io
= Q(a’7 y? :g)’
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Since Equalized Odds holds true if and only if Equation A.11 holds true, the LHS of the equation

does not involve a (as in RHS of the equation), i.e., Q(a, y, §) does not change with a. Then, rewrite the
RHS of Equation A.11, we have:

e (019) = | by l0.w)py (aly)do
= [ Qe iy (el

= Qla,y.9) /A papy (aly)da
= Q(a7 Y, 3))

Therefore, Equalized Odds implies the condition that Q(a, y, ) = Q(d’,y, §). On the other hand, it
is easy to see that when the aforementioned condition holds true, Equation A.11 holds true, i.e., Equalized
Odds holds true. [

A.3 Proof for Theorem 4.4

In order to prove Theorem 4.4, we need the following results from functional analysis (a fuller treatment
can be found, for example, in [55, 19]):
Lemma A.3. Let S be a set and € = (€, ||-||) a Banach space. For a function f : S — &, we define the

supremum norm by || f || := sup||f(s)||, and the space of bounded functions by B(S,&) :=={f : S —
seS
E | lIflleo < o0}. Then B(S,E) is a Banach space with the supremum norm.

Definition A.4 (Extreme Point). If IC is a non-empty convex subset of a vector space, a point = € K is
called an extreme point of K if whenever x = Az + (1 — A\)zg with 0 < A < 1 and x1,z2 € K, then
r =T = X9.

Theorem A.5 (Krein-Milman Theorem [47]). Let K be a non-empty compact subset of a locally convex
Hausdorff topological vector space. Then the set of extreme points of K is not empty. If K is also convex,
then IC is the closed convex hull of its extreme points.

It is a known result in finite-dimensional linear programming (see, for example, [21]) that if the
specified feasible region X (which is the intersection of a finite number of half spaces) is non-empty, then
the set of extreme points is not empty and finite, and the set of extreme directions is empty if and only
if IC is bounded. If K is unbounded, the set of extreme directions is not empty and finite. Furthermore,
a point is in X if and only if it can be represented as a convex combination of the extreme points plus
a non-negative linear combination of extreme directions (if there is any). Theorem A.5 extends this
result to infinite dimensional vector spaces, allowing us to establish the existence of extreme points,
and therefore a non-empty feasible region for certain infinite-dimensional linear programming problems.
Note that in order to prove attainability of Equalized Odds, it is sufficient to show that the corresponding
infinite-dimensional linear programming problem yields a non-empty feasible region. The establishment
of duality is relatively complicated for infinite-dimensional linear programming [2] and is beyond the
scope of the discussion.

Theorem. (Attainability of Equalized Odds for Regression with Stochastic Prediction)
Let A, X, and 'Y be continuous variables with domain of value A, X, and Y, respectively. Assume that
their joint distribution is fixed and known. Further assumeY LAY L X, andY J X | A. Without loss
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of generality let the conditional probability density px|ay (¥ | a,y) be non-negative and finite. Then there
exists Y with domain of value ) whose distribution is fully determined by Pyia X(yj | a,x), such thatY is

not independent from (A, X') but Y1 A | Y, i.e., the Equalized Odds is non-trivially attainable.

Proof. Letus denote h: A x X x Y — R as the fixed function satisfying h(a, r,y) = pxjay (7 | a,y).
We want to show that there exists a function f : A x X x ) — R characterizing the conditional probability
density f(a,z,9) = Pya (7 | a, ) that satisfies the following conditions:

(i) Vae A,z € X 5 € y, f(a,x,7y) is non-negative and finite;
(i) YVa e A,x € X, fy a,x gj)dtzl;
(iii) let Q(a,y,7) : fX axy h(a,z,y)dx,
and then Vy, 5 € YV, a,d’ € A,a # d',Q(a,y,7) = Q(d,y,7);
(iv) the function f(a, z,§) cannot be written into a function of only .

Conditions (i) and (ii) guarantee that f corresponds to a valid conditional probability density for some

Y conditioned on A and X. Condition (iii) is the necessary and sufficient condition for Equalized Odds

to hold true for regression tasks (as we have seen in Theorem 4.3). Condition (iv) guarantees that the
corresponding Y is not independent from (A, X') — otherwise Y will be a trivial prediction.

Through the lens of functional analysis, we view f as a point in the infinite-dimensional vector
space. In order to prove the existence of such a function f, we begin by showing that condition (i)
and (iii) form a set of constraints of an infinite-dimensional linear programming problem, and that the
corresponding feasible region is non-empty. Furthermore, we can always find a point (which is a function)
in the aforementioned feasible region that satisfies condition (iv). Finally, condition (ii) is satisfied by
“normalizing” over §j € ).

To begin with, any function that satisfies condition (i) is a bounded function defined on the set
A x X x ). R with absolute value norm forms a Banach space. By Lemma A.3, the functions that satisfy
condition (i) form a Banach space with the supremum norm F = (F,||||oc). Recall that we assume
h: Ax X xY — Rsatisfying h(a, z,y) = pxjay (z | a,y) (which is fixed and known) is non-negative
and finite. Condition (iii) specifies a set of equality constraints, each of which is characterized with a
linear combination of points f in the space F. Therefore conditions (i) and (iii) form a set of constraints
of an infinite-dimensional linear programming problem (since we focus on the feasible region of such
problem, the exact form of the objective function is omitted). Since for any function f € F that can be
written into a function of the form g : ) — R, f trivially satisfies condition (iii), one can easily construct
a non-empty compact subset O C F such that each point f € /C satisfies conditions (i) and (iii). In other
words, the infinite-dimensional linear programming problem has a non-empty convex feasible region,
which contains K.

We now prove that we can find a point in this feasible region that satisfies condition (iv) by showing
that any point that violates condition (iv) cannot be an extreme point (as defined in Definition A.4) of the
feasible region. We have shown that there is a non-empty compact subset C C F, and that  is a Banach
space, and therefore also a locally convex Hausdorff topological vector space. This also implies that
is closed (since it is a compact subset of a Hausdorff space). By the Krein-Milman Theorem (Theorem
A.5), the set of extreme points for K is non-empty. Notice that for any fy € K that violates condition
(iv), fo can be written into a convex combination of f1 and fo (f1, fo € K, f1 # f) that also violate
condition (iv). For example let f;(a, x,3) = g;(9),7 = 0, 1, 2 (since each f; violates condition (iv)). Let
91(7) = 2+ L(—o0,0)(9) - 90(¥) and g2(7) = 2 - L(0,400)(¥) - go(y) where 1.(-) is the indicator function
(without loss of generahty assume that the corresponding f1, fo € K). Itis easy to verify that f; # f,
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and % fi+ % f2 = fo. Therefore any f that violates condition (iv) cannot be an extreme point of K, which
is closed with a non-empty set of extreme points. In other words, there exist a point f* € F such that f*
is an extreme point of /C (therefore f* is within the feasible region) and that f* satisfies condition (iv).
Finally, for such f* within the feasible region, one can find a unique function f : A x X x ) such that
condition (ii) is satisfied by normalizing over § € ) for each possible combination of (a,x) € A x X:

N -
Vae Az e X, farg) - M
fy (a,z,&)dE’
Therefore, there exists a function f that satisfies conditions (i) to (iv), i.e., Equalized Odds can be
non-trivially attained. 0

A.4 Proof for Theorem 4.5

Theorem. (Condition to Achieve Equalized Odds for Classification with Deterministic Prediction)
Assume that the protected feature A andY are dependent and that their joint probability P(A,Y) (for
discrete A) or joint probability density p(A,Y") (for continuous A) is positive for every combination of
possible values of A and Y. Further assume that Y is not fully determined by Ai\and that there are
additional features X that are not independent of Y. Let the output of the classifier Y be a deterministic
Sfunction f : Ax X — Y. Let S,(f) ={a|3Jr € Xst fla,x) =g}, and Sﬁ?‘)a =A{z| fla,z) = g}.
Equalized Odds is attained if and only if the following conditions hold true (for continuous X, replace
summation with integration accordingly):
(i)vgey: SV =4,
(ii) Vj € Y, Va,a' € A: ZIES%{I Pxjay(z | a,y) = ersg‘)a, Pxjay (x| d',y)
Proof. We begin by considering the case when A and X are discrete (for the purpose of readability). The
Equalized Odds criterion can be written in terms of the conditional probabilities:
Vae Ay, g€V
P}?|Ay(y | avy) - Pf/‘y(f& ‘ y)'
Expand the LHS of Equation A.12:

Py (i | 0.)

(A.12)

=) P viaxy (0 | a2, y)Pxjay (x| a,y),
reX

and bear in mind that ¥ := f(A, X) is a deterministic function of (4, X), we have:
P?‘Axy(ﬁ | a,z,y)
=P(f(AX)=9g|A=0a, X =2Y =y) (A.13)
=P(f(A,X)=9g|A=0a,X =2)€{0,1}.

From Equation A.13 we can see that the conditional probability Py Ay (z | a,y) can contribute to the
summation only when f(a,x) = . We can rewrite the LHS of Equation A.12:

Poay(@lay)= Y Pxay(z|ay) :=QP(a,y).

IES;J‘)a
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Similarly, for the RHS of Equation A.12, we have:

Pf/|y(fg | y)
- Z Z Y|AXY (@ | a,2,y)Pa x|y (a; x| y)
acAzeX
= Z Z Pxjay(z | a,y)Pajy(a | y)
acsy xES(@‘)
= > Q9a,y)Pay(aly).
aESI(Ay)

Since Equalized Odds holds true if and only if Equation A.12 holds true, then the LHS of the equation
does not involve a (as is the case for the RHS), i.e., Q(g) (a,y) does not change with a. Then Equation
A.12 becomes:

QW (a,y)= > QW(a,y)Pay(aly)
a€Sy )

= Q( a,y) Z PA|Y(a|y)7

aESI(f)

which gives condition (i) that 51(4 7 contains all possible values of 4, i.e., A = S (otherw1se Z est® PA‘Y( a |

y) < 1). Since Q¥ (a,y) does not change with a, we have:
Va,a' € A,a #d :
Y Pyayv(@lay)= > Pxuay(|d,y),

(9) (9)
zE€SY Xla ZGSX\a

which gives condition (ii). Therefore, Equalized Odds implies conditions (i) and (ii). On the other hand, it
is easy to see that when conditions (i) and (ii) are satisfied, Equation A.12 holds true, i.e., Equalized Odds
holds true.

When A and X are continuous, one can replace the summation with integration accordingly. O

A.5 Proof for Theorem 4.7

Theorem. (Attainability of Equalized Odds for Classification with Stochastic Prediction)

Assume that the feature X is not independent from Y, and that Y is a function of A and X. Then for
binary classification, if }? is a non-trivial predictor for Y, there is always at least one non-trivial (possibly
randomized) predictor Y, derived by post-processing Y that can attain Equalized Odds:

QYpour) # 0.
Proof. Since Y is a function of (A, X) and X *Y, Y is not conditionally independent from Y given

protected feature A. Furthermore, since Y is a non-trivial estimator of the binary target Y, there exists a
positive constant € > 0, such that (Va € A):

(1]a,1)— P

oiay(1]a,0)| > e (A.14)

|P§7\AY
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Equation A.14 implies that for each value of A, the corresponding true positive rate of the non-trivial
predictor is always strictly larger than its false positive rate'. As illustrated in Figure 4.1a and Figure 4.1b,
the (FPR, TPR) pair of the predictor Y when A = a, i.e., the point ya(Y) on ROC plane, will never fall in
the gray shaded area, and its coordinates are bounded away from the diagonal by at least €. Therefore, the
intersection of all Ca(f/) would always form a parallelogram with non-empty area, which corresponds to
attainable non-trivial post-processing fair predictors }7]305{. O

A.6 Proof for Theorem 4.8

Theorem. (Equivalence between ROC feasible areas) B B
Let Q(Ypo5:) denote the ROC feasible area specified by the constraints enforced on Yp,s. Then Q(Y,oq) is
identical to the ROC feasible area Q(f/”’;) that is specified by the following set of constraints:

(i) constraints enforced on )N/m ;

(ii) additional “pseudo” constraints: Ya € A, /30,0 = ﬁ((l(i), ﬁ&)) = Bé(lll)’ where

9 = ex PUn=1]A=0,X =2)P(X = | A=0a,Y =y, Vop = §)).

Proof. Since the post-processing predictor f@,mt is derived by optimizing over parameters or functions (of
A) BC(L Therefore, considering the fact that P ol ay (Ma, y) = Yay (Ypost), Py N ay (a,y) = vay (Yopr)
we have the relation between 'yay(Ypost) and 'yay(Yopt).

’Yay(Ypost) = BC(LO) y(1— Aopt) + 5(1) ’Yay(i;opt),
(post—llA—a}/opt—O);
(post*llA*aYI)ptfl)

Similarly, consider the relation between positive rates of Y;, and those of }//\:)ptv ie., Py, ay (La,y)

and Py ‘AY(1|a, y), by factorizing P)Z,,\Ay(”a’ y) over X and }A/Opt:
P&any (1la,y) Z Yopt|AY (9]a,y) [Z Vil AX (1a,z) - PX\Ayﬁpl(ﬂaa Y, 9)|- (A.15)
yey reX

Therefore, we have the relation between ’yay(ﬁn) and ’yay(f/opt):

’Yay( n) = /Bay) Yay(1 — Opt) + 6ay ’Yay(Yom)

=Y Prpax (U] a,0)Py g (] a,9,0),
TEX

Z Y \AX 1 | CL,IE)PX‘AY}’}OW(IE | CL,y,l).
TeEX

(A.16)

If there is more than one variable in X in Equation A.16, one can expand the summation if needed; if
some variables are continuous, one may also substitute the summation with integration accordingly.

'If the TPR of the predictor is always smaller than its FPR, one can simply flip the prediction (since the target is binary) and
then Equation A.14 holds true.
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From Equation A.16, 5&?} and ﬁt(nl,) depend on the value of Y

BY) = P(Yin=1|A=0a,Y =y, Yop = 1),

BO =P(Yn=1]A=0a,Y =y, Yo = 0).

(A.17)

Apart from Equalized Odds constraints (which are shared by lN/in and }7;,05{), when enforcing additional

“pseudo” constraints 6((1%) = BSS) and 6(%) = 6(1) conditional independence Y;, 1LY | A, }/}Opt is enforced,

al
making ﬁég) and 6((12) no longer depend on Y. This is exactly the inherent constraint Y},os satisfies.

Therefore the stated equivalence between ROC feasible areas €2(Ypost) (specified by the constraints

enforced on 17post) and Q(}Z:) (specified by the constraints enforced on Yj, together with the additional
“pseudo” constraints) hold true. O
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