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research project with Niccolò Dalmasso and Benjamin LeRoy.

I have enjoyed discussions with many faculty members, including Zach Branson, Christopher

Genovese, Edward Kennedy, Jing Lei, Matey Neykov, Nynke Niezink, Rebecca Nugent, Alex

Reinhart, and Cosma Shalizi.

The CMU Statistics & Data Science staff answered my many questions and guaranteed that

my PhD process ran smoothly. Over the years, I have had many helpful conversations with staff

members including Kira Bokalders, Laura Butler, Danielle Hamilton, Christopher Peter Makris,

Mari Alice McShane, Samantha Nielsen, Jessica Paschke, and Margie Smykla. Carl Skipper met

with me multiple times to get me started on the department’s computing resources and to lend me

technology for summer teaching. When my computer was being repaired in winter 2021, he even

met me at my apartment to drop off and later pick up a department loaner computer.

v



My Carnegie Mellon friends made the PhD experience positive and memorable. My wonderful
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Abstract

This thesis develops tools for hypothesis testing and predictive inference in nonasymptotic settings.

The universal likelihood ratio test (LRT) constructs hypothesis tests that are valid in finite samples

and without regularity conditions. We implement the universal LRT to test the population mean

of d-dimensional Gaussian data and to test whether a density satisfies the nonparametric shape

constraint of log-concavity. Conformal predictive inference produces valid prediction sets in finite

samples without model assumptions, in the case where the data are exchangeable. We extend

conformal prediction to the random effects setting.

The LRT based on the asymptotic chi-squared distribution of the log likelihood is one of the

fundamental tools of statistical inference. A recent universal LRT approach based on sample

splitting provides valid hypothesis tests and confidence sets in any setting for which we can compute

the split likelihood ratio statistic (or, more generally, an upper bound on the null maximum

likelihood). This test empowers statisticians to construct tests in settings for which no valid

hypothesis test previously existed. Chapter 1 explains the universal LRT.

In Chapter 2, we consider the simple but fundamental case of testing the population mean of

d-dimensional Gaussian data. This work presents the first in-depth exploration of the size, power,

and relationships between several universal LRT variants. We show that a repeated subsampling

approach is the best choice in terms of size and power. We observe reasonable performance even in

a high-dimensional setting. We illustrate the benefits of the universal LRT through testing a non-

convex doughnut-shaped null hypothesis, where a universal inference procedure can have higher

power than a standard approach.

Chapter 3 investigates the use of universal LRTs to test whether a density is log-concave.

The shape constraint of log-concavity imposes a nonparametric density estimation problem with

favorable convergence properties. We propose and implement several universal LRT variants for

ix



this test. This provides the first test of log-concavity with finite sample validity. We evaluate

the universal LRT to test log-concavity on two-component Gaussian mixture models and on the

Beta family. We find that universal LRTs that convert the d-dimensional testing problem to a

one-dimensional testing problem can have the best performance.

Chapter 4 reviews the method of conformal predictive inference. Conformal prediction methods

construct valid prediction sets in finite samples even when the assumed model is incorrect, under

the assumption that the data are exchangeable. In Chapter 5, we extend the conformal method

so that it is valid with random effects, in which case the data are not exchangeable. We develop

a CDF pooling approach, a single subsampling approach, and a repeated subsampling approach

to construct conformal prediction sets in unsupervised and supervised settings. We compare these

approaches in terms of coverage and average set size. We recommend the repeated subsampling

approach that constructs a conformal set by sampling one observation from each distribution

multiple times. Simulations show that this approach has the best balance between coverage and

average conformal set size.
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Chapter 1

Overview of Universal Likelihood

Ratio Testing

Hypothesis testing is one of the primary tools that statisticians use to draw conclusions in

data-driven investigations. As a few examples, statisticians use hypothesis tests to evaluate the

outcomes of policies, to compare the effectiveness of treatments, and to understand properties of

the distribution from which data arise. For practitioners to trust the results of a hypothesis test,

the test should have guaranteed validity (or at least approximate validity). That is, the probability

of falsely rejecting a null hypothesis (type I error level) should be no more than a pre-specified

value α.

The likelihood ratio test (LRT) provides one common framework for testing statistical

hypotheses. Classical approaches to likelihood ratio testing depend on an asymptotic χ2

approximation to the log likelihood ratio. The statistical literature has repeatedly emphasized

that the asymptotic χ2 approximation may not be valid in small sample settings. Examples

include Bartlett (1937), Lehmann (2012), and Medeiros and Ferrari (2017). Small sample sizes

pose a recurrent problem across biological science research. For instance, researchers have noted

the prevalence of low-powered studies in neuroscience (Button et al., 2013) and the need for clinical

trial designs that account for the small sample sizes common to rare disease and pediatric population

research (Ildstad et al., 2001; McMahon et al., 2016).

The universal inference approach developed by Wasserman et al. (2020) provides a new

likelihood ratio testing framework that addresses situations where the classical LRT is not valid.
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This new LRT relies on sample splitting to construct a test and confidence set that are valid in

finite samples and without regularity conditions. This universal inference method allows one to

construct valid tests in settings for which no hypothesis test with type I error control and finite

sample guarantees previously existed.

First, we review how the classical LRT fits into a parametric hypothesis testing framework.

Suppose we have n independent and identically distributed (iid) observations Y1, . . . , Yn from an

unknown distribution Pθ∗ which belongs to some set of distributions (Pθ : θ ∈ Θ). Each distribution

Pθ has a corresponding density pθ. Assume Θ0 ⊂ Θ. We wish to test the composite null hypothesis

H0 : θ∗ ∈ Θ0. We use the observed data to construct a test statistic Tn and reject H0 if Tn > cα,

where cα must satisfy

sup
θ∗∈Θ0

Pθ∗(Tn > cα) ≤ α.

Consider, for example, the alternative H1 : θ∗ ∈ Θ \ Θ0. Define the likelihood at θ as L(θ) =∏n
i=1 pθ(Yi). The generalized likelihood ratio statistic is L(θ̂) / L(θ̂0), where θ̂ is the maximum

likelihood estimate (MLE) in Θ and θ̂0 is the MLE in Θ0. We reject H0 when 2 log{L(θ̂)/L(θ̂0)} >

cα,d, where cα,d is the upper α quantile of the χ2
d distribution and d = df(Θ) − df(Θ0). This

construction arises from Wilks’ Theorem (Wilks, 1938), which states that 2 log{L(θ̂) / L(θ̂0)} has

an asymptotic χ2
d distribution under certain regularity conditions. This will apply, for instance,

when we have iid data from an exponential family, Θ0 is a subset of Θ, and Θ and Θ0 are linear

subspaces in Euclidean space (Van der Vaart, 2000, Theorem 4.6). We can invert the LRT to

produce an asymptotically valid 100(1− α)% confidence region of the following form:

CLRT
n (α) =

{
θ ∈ Θ : 2 log

{
L(θ̂) / L(θ)

}
≤ cα,d

}
.

We reject H0 if and only if CLRT
n (α) ∩ Θ0 = ∅, which is equivalent to rejecting H0 if and only if

2 log{L(θ̂)/L(θ̂0)} > cα,d. We refer to this testing framework as the classical LRT. Some composite

nulls are irregular, meaning that Wilks’ Theorem does not apply and calculating a threshold can

be hard due to intractable asymptotics.

Wasserman et al. (2020) presented an alternative to the classical LRT that is valid in finite

samples without requiring regularity conditions. Again, in the parametric case, suppose we have n

iid observations Y1, . . . , Yn ∼ Pθ∗ , where Pθ∗ is from a family (Pθ : θ ∈ Θ). Each Pθ has a density

3



denoted by pθ. We denote the dataset by D = {Y1, . . . , Yn}. To implement the test, first partition

the data into D0 and D1. Let θ̂1 be a parameter estimate constructed from D1. The parameter θ̂1

could be the MLE, but any parameter that is fixed given D1 is valid. Certain choices of θ̂1 may be

more efficient. Using the data in D0, the likelihood function is L0(θ) = ΠYi∈D0pθ(Yi). Define the

split LRT statistic as

Tn(θ) = L0(θ̂1)/L0(θ).

The universal confidence set for θ∗ using the split LRT is

Csplit
n (α) = {θ ∈ Θ : Tn(θ) < 1/α}.

Theorem 1.0.1. Csplit
n (α) is a valid 100(1 − α)% confidence set for θ∗. As a consequence (and

equivalently), when testing an arbitrary composite null H0 : θ∗ ∈ Θ0 versus H1 : θ∗ ∈ Θ \ Θ0,

rejecting H0 when Θ0 ∩ Csplit
n (α) = ∅ provides a valid level α hypothesis test. This rule reduces to

rejecting H0 if Tn(θ̂0) ≥ 1/α, where θ̂0 = arg maxθ∈Θ0 L0(θ) is the null MLE.

Theorem 1.0.1 is due to Wasserman et al. (2020). The validity of the universal test does not

depend on large samples or regularity conditions. The proof establishes that Eθ∗ {Tn(θ∗)} ≤ 1

and then invokes Markov’s inequality. See Appendix A for more details. This property on the

expectation makes Tn(θ∗) an e-variable (Grünwald et al., 2020).

The validity of Csplit
n (α) depends on the fact that Eθ∗{Tn(θ∗)} ≤ 1. If we consider multiple test

statistics that each satisfy this condition, then the average of those test statistics will satisfy the

condition as well. Therefore, the average of test statistics Tn(θ∗) across multiple data splits is also

a valid test statistic.

The universal test applies more generally for testing nonparametric classes as well. Suppose F

is some collection of densities, which can be nonparametric. Assume we have n iid observations

Y1, . . . , Yn with some true density f∗. We wish to test H0 : f∗ ∈ F versus H1 : f∗ /∈ F . Again,

we partition the sample into D0 and D1. The likelihood function evaluated on a density f over

the data in D0 is L0(f) =
∏
Yi∈D0

f(Yi). We define f̂0 = arg max
f∈F

L0(f). Let f̂1 be any density
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estimated on D1. Similar to the parametric case, the split LRT statistic is

Tn(f) = L0(f̂1)/L0(f).

Theorem 1.0.2 extends Theorem 1.0.1 to the nonparametric case. The proof of Theorem 1.0.2

(Appendix A) is nearly identical to the proof of Theorem 1.0.1, with some notational changes.

Theorem 1.0.2. When f∗ ∈ F , Csplit
n (α) = {f ∈ F : Tn(f) < 1/α} is a valid 100(1 − α)%

confidence set for f∗. A valid level α hypothesis test of H0 : f∗ ∈ F versus H1 : f∗ /∈ F rejects

H0 if F ∩ Csplit
n (α) = ∅. This hypothesis test is equivalent to rejecting H0 if Tn(f̂0) ≥ 1/α, where

f̂0 = arg max
f∈F

L0(f) is the null MLE.

For nonparametric classes F , it may be difficult to construct the set of densities Csplit
n (α).

Nevertheless, as long as we are able to construct f̂0, it is possible to perform the nonparametric

hypothesis test described in Theorem 1.0.2. In addition, we can easily check whether a given density

f is in Csplit
n (α).

Wasserman et al. (2020) describe numerous settings in which the universal LRT is the first

hypothesis test with finite sample validity, in both parametric and nonparametric settings. For

instance, the universal approach can test the number of components in mixture models (Hartigan,

1985; McLachlan, 1987; Chen et al., 2009; Li and Chen, 2010) or test whether a density satisfies

the shape constraint of log-concavity (Cule et al., 2010b; Axelrod et al., 2019).

Many basic questions remain unanswered about the universal LRT, since its power even in

very simple settings remains unknown. These questions include the following: In settings where

Wilks’ Theorem is valid, how large is Csplit
n (α) relative to CLRT

n (α)? What proportions of data

should we assign to D0 and D1 to maximize the universal test’s power? If we average test statistics

over multiple data splits versus a single data split, by how much does the confidence set shrink?

Chapter 2 addresses these questions when testing the mean of a Gaussian density. In Chapter 3,

we shift to a nonparametric setting, in which we test whether a density belongs to the class of log-

concavity densities. We consider the power of the log-concave universal test across several classes

of underlying densities and multiple universal test statistic variants. Together, these studies offer

insights into the construction of universal tests for both parametric and nonparametric classes.
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Chapter 2

Gaussian Universal Likelihood Ratio

Testing

2.1 Introduction

We first study the universal LRT in the fundamental case of constructing confidence regions (or

hypothesis tests) for the population mean θ∗ ∈ Θ = Rd when Y1, . . . , Yn
iid∼ N(θ∗, Id). In this

setting — where the classical LRT is valid — our results showcase the reasonable performance of

the universal LRT in comparison to the classical approach.

This work provides two main contributions: First, we provide a careful analysis of several

variants of the universal LRT in the Gaussian case. We show that a repeated subsampling approach

is the best choice in terms of size and power. We observe reasonable performance in a high-

dimensional setting, where the expected squared radius of the best universal LRT confidence set is

approximately 3/2 times the squared radius of the set constructed through the classical approach.

Thus, in particular, the power of the universal approaches has the same behavior (in n, d, α) as

the classical approach. Second, we show an example of a hypothesis test on normally distributed

data where universal LRT methods have higher power than classical testing methods. Specifically,

when testing the non-convex “doughnut” null H0 : ‖θ∗‖ ∈ [0.5, 1] versus H1 : ‖θ∗‖ /∈ [0.5, 1] on

N(θ∗, Id) data, a universal LRT approach can have higher power than a standard approach that

uses the classical LRT confidence set. A test of this form could examine, for instance, whether trial

outcomes or biomarker levels are within an acceptable range.
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2.2 Universal LRT Confidence Sets

2.2.1 Classical Test in Normal Setting

Assume Y1, . . . , Yn are d-dimensional iid vectors drawn from N(θ∗, Id) with θ∗ ∈ Θ = Rd. We

denote D = {Y1, . . . , Yn}. Where cα,d is the upper α quantile of the χ2
d distribution, the classical

LRT confidence set for θ∗ is

CLRT
n (α) =

{
θ ∈ Θ : ‖θ −Y‖2 ≤ cα,d/n

}
. (2.1)

See Appendix B.2 for a derivation of (2.1). In this case, CLRT
n (α) is valid in finite samples, since

n‖θ∗−Y‖2 follows a χ2
d distribution. We compare CLRT

n (α) to the split LRT set and several universal

confidence sets that are variants of the split LRT set.

2.2.2 Split, Cross-fit, and Subsampling Sets in Normal Setting

First, we consider two universal LRT variants based on a single split of the data. The validity of

these approaches follows from Theorem 1.0.1. Assume we split the n observations in half, such that

D0 and D1 each contain n/2 observations. Define Y 0 = (2/n)
∑

Yi∈D0
Yi and Y 1 = (2/n)

∑
Yi∈D1

Yi.

Then the confidence set for θ∗ based on the split likelihood ratio is

Csplit
n (α) =

{
θ ∈ Θ : exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 − θ‖2

)
<

1

α

}
=
{
θ ∈ Θ : ‖θ −Y 0‖2 < (4/n) log(1/α) + ‖Y 0 −Y 1‖2

}
. (2.2)

See Appendix B.2 for a derivation of (2.2). Using the same split, we define the cross-fit statistic

as Sn(θ) = {Tn(θ) +T swap
n (θ)}/2, where T swap

n (θ) is computed by switching the roles of D0 and D1.

Then the cross-fit confidence set is a valid 100(1− α)% set given by

CCF
n (α) =

{
θ ∈ Θ :

1

2
exp

(
−n

4
‖Y 0 −Y 1‖2

){
exp

(n
4
‖Y 0 − θ‖2

)
+ exp

(n
4
‖Y 1 − θ‖2

)}
<

1

α

}
.

The split and cross-fit sets have both statistical randomness (due to the random sampling of

observations) and algorithmic randomness (due to the randomness in splitting the sample into

D0 and D1). In contrast, the classical LRT only has statistical randomness, since the test is
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deterministic for a given set of observations. We now consider a repeated subsampling approach.

This universal method attempts to mitigate the algorithmic randomness from the split and cross-fit

LRTs by splitting the observations many times and averaging the test statistics. Algorithm 1 shows

how to compute the subsampling test statistic Tn(θ) at a given θ ∈ Rd.

Algorithm 1 Compute the subsampling test statistic Tn(θ)

Input: n independent d-dimensional observations Y1, . . . , Yn ∼ N(θ∗, Id) (θ∗ unknown),

a value of θ ∈ Rd, number of subsamples B.

Output: The subsampling test statistic Tn(θ).

1: for b = 1, 2, . . . , B do

2: Randomly partition the data into D0,b and D1,b, each containing n/2 values of Yi.

3: Let Y 0,b = (2/n)
∑

Yi∈D0,b
Yi and let Y 1,b = (2/n)

∑
Yi∈D1,b

Yi.

4: Compute Tn,b(θ) = exp
(
−n

4 ‖Y 0,b −Y 1,b‖2 + n
4 ‖Y 0,b − θ‖2

)
.

5: return the subsampling test statistic Tn(θ) = B−1
∑B

b=1 Tn,b(θ).

As noted in Chapter 1, this method is also valid. The 100(1− α)% subsampling confidence set

is

Csubsplit
n (α) =

{
θ ∈ Θ :

1

B

B∑
b=1

exp
(
−n

4
‖Y 0,b −Y 1,b‖2 +

n

4
‖Y 0,b − θ‖2

)
<

1

α

}
.

Figure 2.1 shows coverage regions of the classical LRT, split LRT, cross-fit LRT, and

subsampling LRT (B = 100) from six simulations with θ∗ = (0, 0). We generate 1000 observations

from N(θ∗, I2), and we use this sample for all simulations. Hence, the variation in the split, cross-fit,

and subsampling LRTs across simulations is due to algorithmic randomness.

The coverage regions in Fig. 2.1 suggest several relationships that we will formalize. We see

that the classical LRT provides the smallest confidence regions. This is not surprising since, even

in finite samples, the classical LRT statistic follows a chi square distribution under H0 : θ = θ∗ in

the Gaussian case. The volume of the cross-fit LRT set is less than or equal to the volume of the

split LRT set, although the cross-fit set is not entirely contained within the split set. The split

and cross-fit approaches both use a single split of the data, but there is a notable improvement

from cross-fitting. The subsampling set also has less volume than the split LRT set. Recall that

we construct the subsampling test statistic by performing the split LRT over repeated splits of

the data and then averaging the test statistics Tn,b(θ). While any individual split LRT region is
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Figure 2.1: Coverage regions of classical LRT, subsampling LRT, cross-fit LRT, and split LRT at
α = 0.1. The six simulations use the same 1000 observations from N(θ∗, I2) under θ∗ = (0, 0).

guaranteed to be spherical, the subsampling set is not necessarily a spherical region. For large

B, however, we see that the subsampling region is approximately spherical. Thus, although the

subsampling approach is computationally intensive, this hints that it may be possibly to derive a

formulaic approximation to the limiting subsampling set.

2.2.3 Limit of Subsampling Region

We are particularly interested in the behavior of the subsampling confidence set as B → ∞.

Since limB→∞B
−1
∑B

b=1 Tn,b(θ) = E{Tn(θ) | D}, the limiting subsampling set has no algorithmic

randomness. We see hints of this in Fig. 2.1, where the subsampling set at B = 100 does not

vary much across six simulations on the same data. Theorem 2.2.1 describes conditions for the

convergence of the ratio of E{Tn(θ) | D} to an approximation. We have been suppressing the n

subscript when it is clear we are working with a single dataset with n observations. Theorem 2.2.1

considers a sequence of datasets, so we use the n subscript to index the datasets.

Theorem 2.2.1. Assume we have a sequence of datasets (Dn)n∈2N, where Dn = {Yn1, . . . , Ynn} and

each Yni is an independent observation from N(θ∗, Id). Let D0,n be a sample of n/2 observations
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from Dn, and let D1,n = Dn\D0,n. Define Yn = (1/n)
∑n

i=1 Yni, Y 0,n = (2/n)
∑

Yni∈D0,n
Yni, and

Y 1,n = (2/n)
∑

Yni∈D1,n
Yni. Let c > 0, and let (θn) be a sequence that satisfies ‖Yn − θn‖ ≤ c/

√
n

for all n. Then

E{Tn(θn) | Dn} /

{
exp

(
3n

10
‖Yn − θn‖2

)(
2

5

)d/2}
= 1 + oP (1). (2.3)

In words, the subsampling statistic is approximately given by R(θ)3/5(2/5)d/2 where R(θ) =

L(θ̂)/L(θ) is the classical likelihood ratio statistic.

Appendix B.1 contains a proof of Theorem 2.2.1. The proof relies critically on the finite sample

central limit theorems from Hájek (1960) and Li and Ding (2017) and on the Portmanteau Theorem

proof techniques from Van der Vaart (2000).

Since

E{Tn(θ) | D} ≈ exp

(
3n

10
‖Y − θ‖2

)(
2

5

)d/2
, (2.4)

the subsampling confidence region is approximately

Csubsplit
n (α) =

{
θ ∈ Θ : lim

B→∞

1

B

B∑
b=1

exp
(
−n

4
‖Y 0,b −Y 1,b‖2 +

n

4
‖Y 0,b − θ‖2

)
<

1

α

}

≈

{
θ ∈ Θ : ‖Y − θ‖2 < 10

3n
log

(
(5/2)d/2

α

)}
. (2.5)

Figure 2.2 validates (2.4) as a reasonable approximation. We simulate one sample Y1, . . . , Yn ∼

N(0, Id) at each combination of d ∈ {1, 20} and n ∈ {10, 50, 200}. We consider θ values of the form

θ = c~1. Through B = 100, 000 subsampling simulations at each (d, n, c) combination, we estimate

E{Tn(θ) | D} ≈ 1

B

B∑
b=1

exp
(
−n

4
‖Y 0,b −Y 1,b‖2 +

n

4
‖Y 0,b − θ‖2

)
.

The black dots represent this average at each combination of (d, n, c), and the red curve traces out

exp((3n/10)‖Y − θ‖2)(2/5)d/2 from (2.4). Except for the most difficult setting of (d = 20, n = 10),

the simulated and analytical estimates align well. At α = 0.1, the confidence region includes all

values of θ such that the test statistic is at most 1/0.1. The horizontal dashed black line represents
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Figure 2.2: Analytical (red curve) and simulated (black dots) approximations of the limiting test
statistic limB→∞

1
B

∑B
b=1 Tn,b(θ) at various dimensions d and numbers of observations n. The test

points equal θ = c~1 for various c. The horizontal dashed black line at 1/0.1 is the cutoff for an
α = 0.1 confidence region.

this value. Thus, test statistics constructed from the simulated and analytical approaches would

produce similar confidence regions.

2.3 Comparison of Universal LRT Sets

2.3.1 Optimal Split Proportions

We have been assuming that the universal LRTs place n/2 observations in D0 and n/2 observations

in D1. The statement Eθ∗{Tn(θ∗)} ≤ 1 holds regardless of the proportion of observations in D0

versus D1, though. Let p0 denote the proportion of observations that we place in D0.

Theorem 2.3.1. Let Y1, . . . , Yn ∼ N(θ∗, Id). The splitting proportion that minimizes E[r2{Csplit
n (α)}]

is

p∗0 = 1−

√
d2 + 2d log

(
1
α

)
− d

2 log
(

1
α

) . (2.6)

11
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Figure 2.3: Squared radius of multivariate normal split LRT with varying p0. We simulate
Y1, . . . , Y1000 ∼ N(0, Id) and compute the split LRT region at varying p0. We repeat this simulation
1000 times. At each p0, the circular point is the mean squared radius and the error bar represents
the mean squared radius ± 1.96 standard deviations. Blue points/lines correspond to p∗0. The red
curve is the expected squared radius. (See Theorem 2.3.1 proof in Appendix B.1 for a derivation
of the expected squared radius at p0.)

As d → ∞ for fixed α, the optimal split proportion p∗0 converges to 0.5. See Appendix B.1

for a proof of Theorem 2.3.1 and a derivation of this fact. Alternatively, as α → 0 for fixed d,

the proportion p∗0 converges to 1, suggesting that one should use nearly all data for likelihood

estimation. This is not an issue for reasonable α levels, though. For instance, at d = 1, one would

need to set α < exp(−40) to produce an optimal split proportion p∗0 that exceeds 0.90.

Figure 2.3 shows the average squared radius of the split LRT at p∗0 and at surrounding choices

of p0. The expected squared radius (red curve) is more sensitive to changes in p0 at higher values

of d. That is, use of the optimal p∗0 has a greater effect on the split LRT squared radius in higher

dimensions. In high dimensions, though, p∗0 is close to 0.5. It is thus a reasonable choice to use

p0 = 0.5 in all dimensions. We use p0 = 0.5 for all remaining analyses.

In the cross-fit case, we conjecture that p0 = 0.5 minimizes the expected squared diameter.

Simulations in Appendix B.3 support this claim. Intuitively, since the cross-fit approach uses both

D0 and D1 once for parameter estimation and once for likelihood computation, we should not gain

any efficiency by using unbalanced sets.

12



2.3.2 Split versus Cross-fit Volume

In Fig. 2.1, we see that the cross-fit LRT set volume is less than the split LRT set volume,

but CCF
n (α) is not a subset of Csplit

n (α). Nevertheless, it holds that Volume{CCF
n (α)} ≤

Volume{Csplit
n (α)}.

Theorem 2.3.2. Suppose Y1, . . . , Yn are iid observations from N(θ∗, Id). Split the sample such

that D0 and D1 each contain n/2 observations. Use D0 and D1 to define the split and cross-fit sets.

Then Volume{CCF
n (α)} ≤ Volume{Csplit

n (α)}. Equality holds only when Y 0 = Y 1.

Briefly, the proof of Theorem 2.3.2 constructs a spherical region centered at Y with radius equal

to the split LRT radius. The cross-fit set is a subset of this re-centered split LRT region, so the

volume of the cross-fit LRT set is bounded above by the volume of the split LRT set. If Y 0 = Y 1,

then the split and cross-fit LRT sets are equivalent and have equal volume. The fact that equal

volume holds only when Y 0 = Y 1 relies on the strict convexity of the squared L2 norm and the

exponential function. See Appendix B.1 for a complete proof.

Theorem 2.3.2 proves that the cross-fit LRT approach improves over the split LRT by

constructing provably smaller confidence regions. Out of all universal methods, our simulations

have shown that the subsampling approach tends to produce the smallest sets. Constructing

a subsampling region can be computationally intensive, though, especially when the limiting

subsampling test statistic is intractable. The cross-fit approach may be a reasonable compromise

in settings where repeated subsampling is computationally prohibitive.

2.3.3 Comparative Size in High Dimensions

Figure 2.1 demonstrated the appearance of the four LRT regions in the d = 2 case at α = 0.1.

We observe that the classical LRT and the split LRT produce the smallest and largest confidence

regions, respectively. While the split LRT region’s radius appears to be approximately twice the

classical LRT region’s radius, we consider whether the ratio of their squared radii diverges in high

dimensions or for very small α. We characterize the ratio of squared radii in terms of the expected

ratio. The expected squared radius of Csplit
n (α) is

E[r2{Csplit
n (α)}] = (4/n) log(1/α) + (4/n)d. (2.7)
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Thus, the expected ratio of the split LRT squared radius over the classical LRT radius is

E[r2{Csplit
n (α)}]

r2{CLRT
n (α)}

=
(4/n) log(1/α) + (4/n)d

cα,d/n
=

4 log(1/α) + 4d

cα,d
. (2.8)

For d ≥ 2 and α ≤ 0.17,

4 log(1/α) + 4d

2 log(1/α) + d+ 2
√
d log(1/α)

≤ E[r2{Csplit
n (α)}]

r2{CLRT
n (α)}

≤ 4 log(1/α) + 4d

2 log(1/α) + d− 5
2

. (2.9)

For d = 1 and α ≤ exp
(
−5(1+

√
5)

4

)
,

4 log(1/α) + 4d

2 log(1/α) + d+ 2
√
d log(1/α)

≤ E[r2{Csplit
n (α)}]

r2{CLRT
n (α)}

≤ 4 log(1/α) + 4d

2 log(1/α) + 9− 4
√

5 + 2 log(1/α)
. (2.10)

See Appendix B.2 for derivations of (2.7), (2.9), and (2.10). The derivation of (2.9) relies on

chi square quantile bounds from Theorem A and Proposition 5.1 of Inglot (2010). The derivation

of the upper bound in (2.10) involves a bound from Section 2.1 of Polland (2015). The restrictions

on α and d are necessary for the upper bounds to be valid. The lower bound of both (2.9) and

(2.10) is valid for any d ≥ 1 and α ∈ (0, 1). The upper and lower bounds both converge to 4

as d → ∞. In addition, all bounds converge to 2 as α → 0. Figure 2.4 shows the true value of

E[r2{Csplit
n (α)}] / r2{CLRT

n (α)} as well as the proved lower and upper bounds on this expectation

at d = 10 and d = 100, 000. We observe that the bounds converge to 2 for very small α relative

to the dimension, and we observe that the bounds converge to 4 for high dimensions relative to α.

Interestingly, we see that the expected value of the ratio is not monotone increasing in α.

Furthermore, this ratio of squared radii is less than 4 with probability approximately 1 − α

in high dimensions under a condition on α and d. Theorem 2.3.3 formalizes this result. See

Appendix B.1 for a proof.

Theorem 2.3.3. Assume cα,d + log(α) > d− 2. Let fd(x) be the probability density function of the

χ2
d distribution, and let cα,d be the upper α quantile of the χ2

d distribution. Then

P
[
r2{Csplit

n (α)}/r2{CLRT
n (α)} ≤ 4

]
≥ 1− α− log(1/α)fd(cα,d + log(α))

and P
[
r2{Csplit

n (α)}/r2{CLRT
n (α)} ≤ 4

]
≤ 1− α− log(1/α)fd(cα,d).
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[
r2{Csplit

n (α)}
]
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n (α)}. The

true value equals the ratio from (2.8). The lower and upper bounds correspond to the bounds in
(2.9). Data points correspond to values at α = exp(−10x) for x from 8 to 0 in increments of −0.5.

Figure 2.5 explores the bounds from Theorem 2.3.3. We see that the result from Theorem 2.3.3

is more informative in higher dimensions, where the upper and lower bounds are closer to each

other. Both theoretically and empirically, the ratio of squared radii r2{Csplit
n (α)}/r2{CLRT

n (α)} is

less than 4 with probability slightly below 1− α in higher dimensions.

From (2.5) and (2.7), we can see that

r2{Csubsplit
n (α)}

E[r2{Csplit
n (α)}]

≈ 5

6

{
(d/2) log(5/2) + log(1/α)

d+ log(1/α)

}
. (2.11)

Combining (2.9) and (2.11), r2{Csubsplit
n (α)}/r2{CLRT

n (α)} is approximately 4(5/12) log(5/2) ≈ 3/2

as d → ∞, and the ratio is approximately 2(5/6) = 5/3 as α → 0. Recall that the classical LRT

cutoff is dimension dependent and uses the exact distribution’s quantile, while the universal LRT

cutoff is dimension independent. Regardless, in the extreme cases of d → ∞ or α → 0, we

approximate that the ratio of the classical LRT region’s radius to the subsampling universal LRT

region’s radius is less than 2.

2.3.4 Power

While the universal methods provide conservative confidence regions for θ∗, we establish that the

universal tests can still have high power. Suppose we wish to test H0 : θ∗ = 0 versus H1 : θ∗ 6= 0 at
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Figure 2.5: At each (d, n) combination, we perform 10,000 simulations. In each simulation, we
generate a data sample Y1, . . . , Y1000 ∼ N(0, I2), construct the split and classical LRT confidence
sets, and compute the squared radii. The points represent the proportion of these simulations in
which r2{Csplit

n (α)}/r2{CLRT
n (α)} ≤ 4. The red and blue curves are the lower and upper bounds

on P[r2{Csplit
n (α)} / r2{CLRT

n (α)} ≤ 4] from Theorem 2.3.3 at α = 0.1.

level 1−α. We reject H0 if 0 /∈ Cn(α), where Cn(α) is the confidence set defined by some likelihood

ratio test. The power of the test at θ∗ 6= 0 is Pθ∗{0 /∈ Cn(α)}.

First, we consider the classical LRT, stated in (2.1). The power of the classical LRT at θ∗ is

Power{CLRT
n (α); θ∗} = Pθ∗

(
‖Y‖2 > cα,d/n

)
≈ Φ

{
d+ n‖θ∗‖2 − cα,d√

2(d+ 2n‖θ∗‖2)

}
. (2.12)

We can find a similar representation for the approximate power of the limiting subsampling LRT

as B →∞:

Power{Csubsplit
n (α); θ∗} ≈ Pθ∗

[
n‖Y‖2 ≥ 10

3
log

{(
5

2

)d/2 1

α

}]

≈ Φ

(
1√

2(d+ 2n‖θ∗‖2)

[
d+ n‖θ∗‖2 − 10

3
log

{(
5

2

)d/2 1

α

}])
. (2.13)

Since n‖Y‖2 ∼ χ2
(
df = d, λ = n‖θ∗‖2

)
, (2.12) and (2.13) use the normal approximation to the

non-central χ2 distribution with a large noncentrality parameter λ (Chun and Shapiro, 2009). See

Appendix B.2 for derivations of (2.12) and (2.13).
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The power of the split LRT is

Power{Csplit
n (α); θ∗} = Pθ∗

{
‖Y 0‖2 ≥ (4/n) log(1/α) + ‖Y 0 −Y 1‖2

}
,

and the power of the cross-fit LRT is

Power{CCF
n (α); θ∗} = Pθ∗

[
exp

(
−n

4
‖Y 0 −Y 1‖2

){
exp

(n
4
‖Y 0‖2

)
+ exp

(n
4
‖Y 1‖2

)}
≥ 2

α

]
.

As n‖θ∗‖2 →∞ for fixed α, the power of the tests approaches 1. Importantly, this shows that

although the universal methods are conservative, they will all have high power for sufficiently large

n or for ‖θ∗‖ sufficiently far from 0. As α→ 0, the power approaches 0.

Figure 2.6 plots the power of the LRTs against ‖θ∗‖2. (Each vector θ∗ has the form c~1.) This

figure uses the standard normal CDF approximation to the non-central χ2 CDF to plot the classical

and subsampling LRT power. We use simulations to approximate the power of the split and cross-

fit LRTs. For a given value of θ∗, we simulate n = 1000 observations Y1, . . . , Yn ∼ N(θ∗, Id). We

construct split LRT and cross-fit LRT confidence sets from this sample. Then we test whether θ = 0

is in each confidence set. We repeat this procedure 5000 times at each θ∗, and each procedure’s

estimated power at θ∗ is the proportion of times that 0 /∈ Cn(α).

As we would expect, the power is higher when θ∗ is farther from 0. In addition, the classical

LRT has the highest power, followed in order by the subsampling LRT, the cross-fit LRT, and

the split LRT. Interestingly, at d = 1 the subsampling and cross-fit LRT have nearly identical

(approximate) power. As d increases, the difference between the subsampling and cross-fit LRT

power increases.

2.4 Example: Hypothesis Testing a Doughnut Null Set

We present an example of a nontrivial testing problem that appears to be beyond the current

reach of our mathematical analysis. Below, a procedure based on universal inference can have

higher power than a more standard intersection approach using the classical, exact confidence set,

motivating the need for further study of the pros and cons of such methods.
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Figure 2.6: Estimated power of classical LRT, limiting subsampling LRT, cross-fit LRT, and split
LRT. We are testing H0 : θ∗ = 0 versus H1 : θ∗ 6= 0 across varying true ‖θ∗‖2. We use the standard
normal CDF approximation for the classical and subsampling LRT power calculations, and we use
simulations to estimate the cross-fit and split LRT power.

Suppose we observe an iid sample Y1, . . . , Yn ∼ N(θ∗, Id), and we wish to test

H0 : ‖θ∗‖ ∈ [0.5, 1.0] versus H1 : ‖θ∗‖ /∈ [0.5, 1.0].

Then Θ0 = {θ ∈ Rd : ‖θ‖ ∈ [0.5, 1.0]} and Θ1 = {θ ∈ Rd : ‖θ‖ /∈ [0.5, 1.0]}. The nonconvex

structure of Θ0 makes it unclear how to construct a valid test based on a limiting distribution.

Nevertheless, we can use alternative methods, including universal inference tools, to construct

valid hypothesis tests for H0 : ‖θ∗‖ ∈ [0.5, 1.0]. We compare three approaches to this test.

Approach 1: Intersect confidence set with Θ0. CLRT
n (α) = {θ ∈ Θ : ‖θ−Y‖2 ≤ cα,d/n} is a level

1 − α confidence set for θ∗, where cα,d is the upper α quantile of the χ2
d distribution. Suppose we

reject H0 if and only if CLRT
n (α)∩Θ0 = ∅. We can see that this test has valid type I error control.

Assume θ∗ ∈ Θ0. Then

Pθ∗
{
CLRT
n (α) ∩Θ0 = ∅

}
≤ Pθ∗

{
θ∗ /∈ CLRT

n (α) ∪ θ∗ /∈ Θ0

}
= Pθ∗

{
θ∗ /∈ CLRT

n (α)
}

= α.
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To implement this test, we need to check whether the intersection CLRT
n (α) ∩ Θ0 is empty. First,

we set θ̂proj to the projection of Y onto Θ0. That is,

θ̂proj =


0.5Y/‖Y‖ : ‖Y‖ < 0.5

Y : ‖Y‖ ∈ [0.5, 1.0]

Y/‖Y‖ : ‖Y‖ > 1.

Now θ̂proj minimizes ‖θ−Y‖2 out of all θ ∈ Θ0. So CLRT
n (α)∩Θ0 = ∅ if and only if θ̂proj /∈ CLRT

n (α).

Approach 2: Subsampled split LRT. To implement the subsampled split LRT, we repeatedly

split the observations into D0,b and D1,b. Let θ̂1,b be any parameter estimated on the data in D1,b.

Let θ̂split
0,b be the MLE under H0 : ‖θ∗‖ ∈ [0.5, 1.0], estimated on the data in D0,b. Table 2.1 presents

the chosen expression for θ̂1,b and the MLE expression for θ̂split
0,b . The subsampled split LRT rejects

H0 if B−1
∑B

b=1 Un,b ≥ 1/α, where

Un,b = L0,b(θ̂1,b) / L0,b(θ̂
split
0,b ) =

∏
Yi∈D0,b

{p
θ̂1,b

(Yi) / pθ̂split
0,b

(Yi)}.

Approach 3: Subsampled hybrid LRT. As an alternative to the split LRT, Wasserman et al.

(2020) establish a test based on the reversed information projection (RIPR); also see Grünwald

et al. (2020). We first define the RIPR, following Definition 4.2 of the PhD thesis by Li (1999). Let

Q be a distribution with density q, and let PΘ be a convex set of densities (or redefine it as its convex

hull). Let DKL(q ‖ p) be the Kullback-Leibler divergence of q from p. The RIPR of q onto PΘ is a

(sub-)density p∗ such that for arbitrary sequences pn in PΘ, DKL(q‖pn)→ infθ∈ΘDKL(q‖pθ) implies

log(pn)→ log(p∗) in L1(Q). Lemma 4.1 of Li (1999) proves that p∗ exists and is unique; further, p∗

satisfies DKL(q ‖ p∗) = infθ∈ΘDKL(q ‖ pθ), and if Y ∼ q, then for all θ ∈ Θ, Eq{pθ(Y )/p∗(Y )} ≤ 1.

Using similar logic to Theorem 1.0.1, Wasserman et al. (2020) apply this property to construct

a split RIPR LRT. Let PΘ0 be the set of all densities in H0 (or its convex hull). Suppose θ̂1 is

a parameter estimate constructed on D1. Then conditioning on D1 fixes the value of θ̂1. Let p∗0

be the RIPR of p
θ̂1

onto PΘ0 . Note that if the true pθ∗ ∈ PΘ0 , then Eθ∗{pθ̂1(Y )/p∗0(Y ) | D1} =
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E
θ̂1
{pθ∗(Y )/p∗0(Y ) | D1} ≤ 1. Then a level α hypothesis test rejects H0 if Rn ≥ 1/α, where

Rn =
∏
Yi∈D0

{p
θ̂1

(Yi) / p
∗
0(Yi)}.

This test is valid because if θ∗ ∈ Θ0, then Pθ∗(Rn ≥ 1/α) ≤ αEθ∗{pθ̂1(Y )/p∗0(Y )} ≤ α. Furthermore,

note that the RIPR test statistic will always exceed the split LRT statistic when the two tests use

the same numerator, since the split LRT denominator maximizes the likelihood under H0 on D0.

Thus, the RIPR test will have higher power than the split LRT. (More generally, one can project

p
|D0|
θ̂1

onto P |D0|
Θ0

, but we omit this discussion for brevity.)

In the doughnut test setting, we let PΘ0 be the set of all convex combinations of N(θ, Id)

densities such that ‖θ‖ ∈ [0.5, 1]. To implement the subsampled hybrid LRT for this test, we also

repeatedly split the observations into D0,b and D1,b. Depending on the value of ‖Y 1,b‖, we take one

of three approaches:

1. If ‖Y 1,b‖ < 0.5, use the split LRT on the bth subsample. We define θ̂1,b and θ̂split
0,b as in

Table 2.1, and the split LRT statistic is Un,b = L0,b(θ̂1,b)/L0,b(θ̂
split
0,b ).

2. If ‖Y 1,b‖ ∈ [0.5, 1], set the bth subsample’s test statistic to 1.

3. If ‖Y 1,b‖ > 1, use the RIPR LRT on the bth subsample. We define θ̂1,b and θ̂RIPR
0,b as in

Table 2.1, and the RIPR statistic is Rn,b = L0,b(θ̂1,b)/L0,b(θ̂
RIPR
0,b ).

Theorem 2.4.1 defines a valid test based on this approach. See Appendix B.1 for a proof.

Theorem 2.4.1. In the doughnut null hypothesis test setting, assume the subsampled test statistics

Un,b = L0,b(θ̂1,b) / L0,b(θ̂
split
0,b ) and Rn,b = L0,b(θ̂1,b)/L0,b(θ̂

RIPR
0,b ), 1 ≤ b ≤ B. A valid level α test

rejects H0 when

1

B

B∑
b=1

{
Un,b1(‖Y 1,b‖ < 0.5) + 1(‖Y 1,b‖ ∈ [0.5, 1]) +Rn,b1(‖Y 1,b‖ > 1)

}
≥ 1/α.

To justify the hybrid approach, recall that the RIPR test will have higher power than the split

LRT when it is possible to implement the RIPR. Based on the construction of θ̂1,b, if ‖Y 1,b‖ > 1,

then ‖θ̂1,b‖ > 1. In this setting, the proof of Theorem 2.4.1 shows that the density pθ, with

θ = θ̂1,b/‖θ̂1,b‖, is the RIPR of θ̂1,b onto PΘ0 . On the other hand, it is unclear how to implement
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the RIPR when ‖Y 1,b‖ < 0.5, in which case ‖θ̂1,b‖ < 0.5. The hybrid approach allows us to use

the RIPR when it is implementable, and it relies on the split LRT to provide a valid test when the

RIPR is not implementable.

Table 2.1: Requirements and choices for the numerator and denominator in a single subsample of
the split LRT and RIPR LRT statistics

Method Split LRT RIPR LRT

Restrictions

on use

None ‖Y 1‖ > 1.

(Computational restriction. RIPR

unknown for ‖Y 1‖ = ‖θ̂1‖ < 0.5.)

Numerator p
θ̂1

, where θ̂1 is any parameter fit on D1. p
θ̂1

, where θ̂1 is any parameter fit

on D1.

Fitted value Choose θ̂1 = Y 1. Choose θ̂1 = Y 1.

Denominator p
θ̂0

, where θ̂0 is the MLE under H0,

constructed from D0.

p∗0 is the RIPR of p
θ̂1

onto PΘ0 .

Fitted value No choices. No choices.

θ̂split
0 =


0.5
(
Y 0/‖Y 0‖

)
: ‖Y 0‖ < 0.5

Y 0 : ‖Y 0‖ ∈ [0.5, 1]

Y 0/‖Y 0‖ : ‖Y 0‖ > 1

Since ‖θ̂1‖ > 1, p∗0 = pθ, where

θ = θ̂RIPR
0 = θ̂1/‖θ̂1‖.

Figure 2.7 shows the simulated power of these three tests of H0 : ‖θ∗‖ ∈ [0.5, 1.0] versus

H1 : ‖θ∗‖ /∈ [0.5, 1.0]. The intersection method and the subsampled hybrid LRT have the highest

power. Interestingly, out of those two methods, the test with higher power varies across dimensions.

When d = 2 or d = 1000, the simulated power of the subsampled hybrid LRT is less than (or equal

to) the power of the standard intersection approach. At the intermediate dimensions of d = 10

and d = 100, the simulated power of the subsampled hybrid LRT is greater than (or equal to) the

power of the standard intersection approach. The latter two cases show that even in the Gaussian

setting, hypothesis tests based on a universal LRT can have higher power than tests based on the

exact confidence set. When ‖θ∗‖ < 0.5, the hybrid test and the split test have approximately the
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Figure 2.7: Estimated power of H0 : ‖θ∗‖ ∈ [0.5, 1.0] versus H1 : ‖θ∗‖ /∈ [0.5, 1.0] using the
intersection, subsampled split LRT, and subsampled hybrid LRT methods. In these simulations,
we set θ∗ = (θ∗1, 0, . . . , 0). The x-axis is the value of θ∗1 = ‖θ∗‖ for each simulation. For each
dimension, the left panel satisfies ‖θ∗‖ < 0.5, and the right panel satisfies ‖θ∗‖ > 1. We set
α = 0.10 and n = 1000, and we perform 1000 simulations at each value of ‖θ∗‖. We subsample
B = 100 times.

same power. When ‖θ∗‖ > 1, the hybrid test has higher power than the split test. We see that the

intersection method always has higher power than the subsampled split LRT. One might consider

whether we could combine the RIPR with the intersection method instead of combining the RIPR

with the split LRT. It is unclear, though, how to construct a valid test from one approach that uses

sample splitting and subsampling (RIPR) and a second approach that uses neither (intersection).

We can provide a partial theoretical justification for Fig. 2.7. For one, it is possible to derive

an exact formula for the power of the intersection approach. Using the fact that n‖Y‖2 follows

a non-central χ2 distribution, we can write the power of the intersection method in terms of the

non-central χ2 CDF. When d = 100 or d = 1000, the hybrid method has no power at ‖θ∗‖ = 0,

though we would expect this case to have the highest power out of ‖θ∗‖ < 0.5. At d = 100 and

‖θ∗‖ = 0, the hybrid method satisfies ‖Y 1,b‖ < 0.5 in most simulations, but the test statistic is too
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small to reject H0. At d = 1000 and ‖θ∗‖ = 0, (n/2)‖Y 1,b‖2 ∼ χ2
d is approximately d (Dasgupta

and Schulman, 2007, Lemma 2). Hence ‖Y 1,b‖ ≈
√

2, which means the hybrid approach selects the

“incorrect” case of ‖Y 1,b‖ > 1. This test also has approximately zero power. See Appendix B.4

for more details. In addition, for any given subsample, the hybrid LRT power is provably greater

than or equal to the split LRT power. This holds because the RIPR test statistic is always larger

than the split test statistic when both tests use the same numerator (Wasserman et al., 2020).

The theoretical justification behind the relative power of the intersection and subsampled hybrid

methods remains an open question, since the power of the latter method is not easily tractable.

2.5 Conclusion

The recent development of the universal LRT provides a hypothesis testing framework that is valid

in finite samples and does not rely on regularity conditions. We have explored the performance of

several universal LRT variants in the simple but fundamental case of testing for the mean θ∗ when

data arise from a N(θ∗, Id) distribution. We have seen that even in high dimensions or for very

small α, the ratio of the radius of the limiting subsampling universal LRT confidence set over an

exact confidence set is less than 2. While the universal method tests the likelihood ratio against a

dimension-independent cutoff, the universal LRT can still exhibit reasonable performance in high

dimensions.

Future research directions may focus on settings where hypothesis tests were previously

intractable or only asymptotically valid. Researchers can apply the universal LRT in any setting

where it is possible to write a likelihood ratio or, more generally, upper bound the maximum

likelihood under the null hypothesis. This allows for the development of valid tests for the number

of components in mixture models and for log-concavity of the underlying density. Additionally,

we have shown proof of concept that the universal LRT can be more powerful than existing valid

tests. In the Gaussian setting, this phenomenon may apply more generally across other tests of

non-convex null parameter spaces. Wasserman et al. (2020) also describe how the universal LRT

can be used to test independence versus conditional independence in a Gaussian setting. Recent

work by Guo and Richardson (2020) also provides a valid test in that setting, but the relative power

of these two approaches is currently unknown.
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Chapter 3

Universal Test for Log-concavity

3.1 Introduction

3.1.1 Log-concavity Definition and Properties

A log-concave density f has the form f = eg for some concave function g. This shape-constrained

class of densities encompasses many common families of densities, such as the normal, uniform,

exponential, logistic, and extreme value densities (e.g., Table 1 of Bagnoli and Bergstrom (2005)).

Furthermore, specifying that the density is log-concave poses a middle ground between assumption-

free density estimation and use of a parametric density family. As noted in Cule et al. (2010b),

log-concave density estimation does not require the choice of a bandwidth, whereas kernel density

estimation in d dimensions requires a d× d bandwidth matrix.

Bagnoli and Bergstrom (2005) describe applications of log-concavity across economics and

reliability theory (or survival modeling). Suppose a survival density function f is defined on (a, b)

and has a survival function (or reliability function) F(x) =
∫ b
x f(t)dt. If f is log-concave, then its

survival function is log-concave as well. The failure rate associated with f is r(x) = f(x)/F(x) =

−F ′(x)/F(x). Corollary 2 of Bagnoli and Bergstrom (2005) states that if f is log-concave on (a, b),

then the failure rate r(x) is monotone increasing on (a, b). Proposition 12 of An (1997) states that

if a survival function F(x) is log-concave, then for any pair of non-negative numbers x1, x2, the

survival function satisfies F(x1 + x2) ≤F(x1)F(x2). This property is called the new-is-better-than-

used property; it implies that the probability that a new unit will survive for time x1 is greater
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than or equal to the probability that at time x2, an existing unit will survive an additional time

x1.

An (1997) describes numerous properties of log-concave densities. As a few examples, log-

concave densities are unimodal, they have at most exponential tails (i.e., f(x) = o(exp(−cx)) for

some c > 0), and all moments of the density exist. Log-concave densities are also closed under

convolution. This means that if X and Y are independent random variables from log-concave

densities, then the density of X + Y is log-concave as well. A unimodal density f is strongly

unimodal if the convolution of f with any unimodal density g is unimodal. Proposition 2 of An

(1997) states that a density f is log-concave if and only if f is strongly unimodal.

Prior to Wasserman et al. (2020), there was no hypothesis test for H0 : f is log-concave versus

H1 : f is not log-concave with finite sample validity. We explore log-concave densities in more

depth and examine universal tests of this hypothesis.

3.1.2 Solving for the Log-concave MLE

Suppose we observe an iid sampleX1, . . . , Xn ∈ Rd from a d-dimensional density f∗, where n ≥ d+1.

Let Fd be the class of all log-concave densities in d dimensions. The log-concave maximum likelihood

estimator is f̂n = arg max
f∈Fd

∑n
i=1 log{f(Xi)}. Theorem 1 of Cule et al. (2010b) states that with

probability 1, f̂n exists and is unique. Importantly, it is not necessary that f∗ ∈ Fd.

The construction of f̂n relies on the concept of a tent function hy : Rd → R. For a given vector

y = (y1, . . . , yn) ∈ Rn and given the sample X1, . . . , Xn, the tent function hy is the least concave

function that satisfies hy(Xi) ≥ yi for i = 1, . . . , n. Let Cn be the convex hull of the observations

X1, . . . , Xn. Consider the objective function

σ(y1, . . . , yn) = − 1

n

n∑
i=1

yi +

∫
Cn

exp{hy(x)}dx.

Theorem 2 of Cule et al. (2010b) states that σ is a convex function, and σ has a unique minimum

at the value y∗ ∈ Rn that satisfies log(f̂n) = hy∗ .

Thus, to find the tent function that defines the log-concave MLE, we need to minimize σ over

y ∈ Rn. σ is a convex function, but σ is not differentiable. Shor’s algorithm (Shor, 2012) uses a

subgradient method to optimize convex, non-differentiable functions (i.e., to find y∗ that minimizes
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σ). This method is guaranteed to converge, but convergence can be slow. Shor’s r-algorithm

involves some computational speed-ups over Shor’s algorithm, and Cule et al. (2010b) use this

algorithm in their implementation. Shor’s r-algorithm is not guaranteed to converge, but Cule

et al. (2010b) state they agree with Kappel and Kuntsevich (2000) that the algorithm is “robust,

efficient, and accurate.” The LogConcDEAD package for log-concave density estimation in arbitrary

dimensions implements this method (Cule et al., 2009).

As an alternative algorithm, the logcondens package implements an active set approach to

solve for the log-concave MLE in one dimension (Dümbgen and Rufibach, 2011). This approach

is based on solving for a vector that satisfies a set of active constraints and then using the tent

function structure to compute the log-concave density associated with that vector. See Section 3.2

of Dümbgen et al. (2007) for more details.

Cule et al. (2010b) formalize the convergence of f̂n. Let DKL(g‖f) be the Kullback-Leibler

divergence of g from f . Define fLC = arg min
f∈Fd

DKL(f∗‖f). Hence, if f∗ ∈ Fd, then fLC = f∗.

Regardless of whether f∗ ∈ Fd, suppose f∗ satisfies the following conditions:
∫
Rd ‖x‖f

∗(x)dx <∞,∫
Rd f

∗ log+(f∗) < ∞ (where log+(x) = max{log(x), 0}), and the support of f∗ contains an open

set. By Lemma 1 of Cule et al. (2010a), there exists some a0 > 0 and b0 ∈ R such that fLC(x) ≤

exp(−a0‖x‖+ b0) for any x ∈ Rd. Theorem 3 of Cule et al. (2010b) states that for any a < a0,

∫
Rd

exp(a‖x‖)|f̂n(x)− fLC(x)|dx→ 0 almost surely.

This means that the integrated difference between f̂n and fLC converges to 0 even when we multiply

the tails by some exponential weight. Furthermore, Theorem 3 states that if fLC is continuous,

then

sup
x∈Rd

{
exp(a‖x‖)|f̂n(x)− fLC(x)|

}
→ 0 almost surely.

In the case where f∗ ∈ Fd, it is possible to describe rates of convergence of the log-concave

MLE in terms of the Hellinger distance. The Hellinger distance is given by

d2
H(f, g) =

∫
Rd

(f1/2 − g1/2)2.
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As stated in Chen et al. (2021) and shown in Kim et al. (2016) and Kur et al. (2019), the rate of

convergence of f̂n to f∗ in Hellinger distance is

sup
f∗∈Fd

E[d2
H(f̂n − f∗)] ≤ Kd ·


n−4/5 d = 1

n−2/(d+1) log(n) d ≥ 2

,

where Kd > 0 depends only on d.

3.2 Tests for Log-concavity

We have noted that the log-concave MLE f̂n has some favorable convergence properties. If one

wishes to use the log-concave MLE as a density estimate, it is helpful to understand whether log-

concavity is a reasonable assumption. To test H0 : f∗ ∈ Fd versus H1 : f∗ /∈ Fd, we describe a

permutation test as developed in Cule et al. (2010b), and we propose several universal tests. The

universal tests are guaranteed to control the type I error at level α, while the permutation test is

not guaranteed to be valid.

3.2.1 Permutation Test

Cule et al. (2010b) describe a permutation test of the hypothesis H0 : f∗ ∈ Fd versus H1 : f∗ /∈ Fd.

Algorithm 2 explains the permutation test.
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Algorithm 2 Permutation test for H0 : f∗ ∈ Fd versus H1 : f∗ /∈ Fd
Input: n iid d-dimensional observations Y1, . . . , Yn, number of shuffles B, significance level α.

Output: Decision of whether to reject H0 : f∗ ∈ Fd.

1: Fit the log-concave MLE f̂n on Y = {Y1, . . . , Yn}.

2: Draw another sample Y∗ = {Y ∗1 , . . . , Y ∗n } from the log-concave MLE f̂n.

3: Compute the test statistic T = supA∈A0
|Pn(A) − P ∗n(A)|, where A0 is the set of all balls

centered at a point in Y ∪ Y∗, Pn(A) is the proportion of Y observations in A, and P ∗n(A) is

the proportion of Y∗ observations in A.

4: for b = 1, 2, . . . , B do

5: ‘Shuffle the stars’ to randomly place n observations from Y ∪ Y∗ into Yb.

6: Place the remaining n observations in Y∗b .

7: Using these new samples, compute T ∗b = supA∈A0
|Pn,b(A)− P ∗n,b(A)|. Pn,b(A) is the

proportion of Yb observations in A, and P ∗n,b(A) is the proportion of Y∗b observations in A.

8: Arrange the test statistics (T ∗1 , T
∗
2 , . . . , T

∗
B) into the order statistics (T ∗(1), T

∗
(2), . . . , T

∗
(B)).

9: return Reject H0 if T > T ∗(d(B+1)(1−α)e).

Intuitively, this test assumes that if H0 is true, the samples Y and Y∗ will be similar, so T will

not be particularly large relative to T ∗1 , . . . , T
∗
B. Alternatively, if H0 is false, the samples Y and Y∗

will be dissimilar, and the converse will hold. This approach is not guaranteed to control the type

I error level. We will observe cases both where the permutation test performs well and where the

permutation test’s false positive rate is much higher than α.

We provide several computational notes on Algorithm 2. Steps 1 and 2 use functions from

the LogConcDEAD library. To perform step 1, we can use the mlelcd function, which estimates

the log-concave MLE density from a sample. To perform step 2, we can use the rlcd function,

which samples from a fitted log-concave density. Where A0 is the set of all balls centered at a

point in Y ∪ Y∗, |Pn(A) − P ∗n(A)| only takes on finitely many values over A ∈ A0. To see this,

consider fixing a point at some value y ∈ Y ∪ Y∗, letting Ar(y) be the sphere of radius r centered

at y, and increasing r from 0 to infinity. As r → ∞, |Pn(Ar(y)) − P ∗n(Ar(y))| only changes when

Ar(y) expands to include an additional observation in Y ∪ Y∗. Hence, it is possible to compute

supA∈A0
|Pn(A) − P ∗n(A)| by considering all sets A centered at some y ∈ Y ∪ Y∗ and with radii
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equal to the distances between the center of A and all other observations. For large n, it may be

necessary to approximate the test statistics T, T ∗1 , T
∗
2 , . . . , T

∗
B by varying the radius of A across a

smaller set of fixed increments. In each of our simulations, we compute the test statistics exactly.

3.2.2 Universal Tests in d Dimensions

Alternatively, we can use universal approaches to test for log-concavity. Theorem 1.0.2 justifies

the universal approach for testing whether the true density is in some potentially nonparametric

class. Recall that the universal LRT provably controls the type I error level in finite samples. To

implement the universal test on a single subsample, we partition the sample {Y1, Y2, . . . , Yn} into

D0 and D1. Let f̂0 be the maximum likelihood log-concave density estimate fit on D0. Let f̂1 be

any density estimate fit on D1. The universal test rejects H0 when

Tn =
∏
Yi∈D0

{f̂1(Yi)/f̂0(Yi)} ≥ 1/α.

Algorithm 3 explains how to compute a subsampled test statistic Tn for the test of H0 : f∗ ∈ Fd
versus H1 : f∗ /∈ Fd. In this case, we reject H0 when B−1

∑B
b=1 Tn,b ≥ 1/α.

Algorithm 3 Compute the subsampling test statistic Tn for H0 : f∗ ∈ Fd versus H1 : f∗ /∈ Fd
Input: n independent d-dimensional observations Y1, . . . , Yn with density f∗,

number of subsamples B, any density estimation approach.

Output: The subsampling test statistic Tn.

1: for b = 1, 2, . . . , B do

2: Randomly partition the data into D0,b and D1,b, each containing n/2 values of Yi.

3: Where L0,b(f) =
∏
Yi∈D0,b

f(Yi), compute f̂0,b = arg max
f∈Fd

L0,b(f).

4: Fit a density f̂1,b on D1,b, using the input density estimation approach.

5: Compute Tn,b = L0,b(f̂1,b)/L0,b(f̂0,b).

6: return the subsampling test statistic Tn = B−1
∑B

b=1 Tn,b.

Both logcondens (d = 1) and LogConcDEAD (d ≥ 1) provide functions to compute the log-

concave MLE f̂0. We have flexibility in the choice of f̂1, which can be any density. We explore

several choices of f̂1.
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Full Oracle

The full oracle approach uses the d-dimensional true density f∗ in the numerator. In Algorithm 3,

the input density estimation approach is to set f̂1,b = f∗. This method is a helpful theoretical

comparison, since it avoids the depletion in power that occurs when f̂1,b does not approximate f∗

well. We would expect the power of this approach to be greater than or equal to the power of any

approach that estimates a numerator density on each subsample D1,b.

Partial Oracle

The partial oracle approach uses a d-dimensional parametric MLE density estimate in the

numerator. Suppose we know (or we guess) that the true density is parameterized by some unknown

real-valued vector θ∗ ∈ Rp such that f∗ = fθ∗ . Let L1,b(fθ) =
∏
Yi∈D1,b

fθ(Yi). In Algorithm 3, the

input density estimation approach is to set f̂1,b = f
θ̂1,b

, where θ̂1,b = arg max
θ∈Rp

L1,b(fθ). If the true

density is from the parametric family (fθ : θ ∈ Rp), we would expect this method to have good

power relative to other density estimation methods.

Fully Nonparametric

The fully nonparametric method uses a d-dimensional kernel density estimate (KDE) in the

numerator. In Algorithm 3, the input density estimation approach is to set f̂1,b to the kernel

density estimate computed on D1,b. Kernel density estimation involves the choice of a bandwidth.

The ks package (Duong, 2021) in R can fit multidimensional KDEs and has several bandwidth

computation procedures. These options include a plug-in bandwidth (Wand and Jones, 1994;

Duong and Hazelton, 2003; Chacón and Duong, 2010), a least squares cross-validated bandwidth

(Bowman, 1984; Rudemo, 1982), and a smoothed cross-validation bandwidth (Jones et al., 1991;

Duong and Hazelton, 2005). We would not expect the fully nonparametric method to have as high

of power as the full oracle method or as the partial oracle method in the parametric case. If we do

not want to make assumptions about the true density, this may be a good choice.

3.2.3 Universal Tests with Dimension Reduction

Suppose we write each random variable Y ∈ Rd with associated density f∗ as Y = (Y (1), . . . , Y (d)).

As noted in An (1997), if the density of Y is log-concave, then the marginal densities of Y (1), . . . , Y (d)
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are all log-concave. In the converse direction, if marginal densities of Y (1), . . . , Y (d) are all log-

concave and Y (1), . . . , Y (d) are all independent, then the density of Y is log-concave. More generally,

Proposition 1(a) of Cule et al. (2010b) uses a result from Prékopa (1973) to deduce the following:

Theorem 3.2.1. If V is a subspace of Rd, PV (y) is the orthogonal projection of y onto V , and f∗

is log-concave, then the marginal density of PV (Y ) is log-concave.

When considering how to test for log-concavity, An (1997) notes that univariate tests for log-

concavity could be used in the multivariate setting. We use these results to develop new universal

tests.

To reduce the data to one dimension, we take one of two approaches.

Dimension Reduction Approach 1: d Single Dimensions

We can represent any d-dimensional observation Yi as Yi = (Y
(1)
i , Y

(2)
i , . . . , Y

(d)
i ). Algorithm 4

describes an approach that computes a test statistic for each of the d dimensions.

Algorithm 4 Compute d single dimension test statistics

Input: n iid d-dimensional observations Y1, . . . , Yn, number of subsamples B.

Output: d test statistics T
(j)
n , j = 1, . . . , d.

1: for j = 1, 2, . . . , d do

2: for b = 1, 2, . . . , B do

3: Randomly partition the n observations {Y (j)
1 , Y

(j)
2 , . . . , Y

(j)
n } such that

D0,b and D1,b each contain n/2 values of Y
(j)
i .

4: Estimate a one-dimensional density f̂1,b on D1,b.

5: Estimate the log-concave MLE f̂0,b on D0,b.

6: Compute the test statistic T
(j)
n = B−1

∑B
b=1

∏
Y

(j)
i ∈D0,b

{f̂1,b(Y
(j)
i )/f̂0,b(Y

(j)
i )}

7: return the test statistics T
(j)
n , j = 1, . . . , d.

We reject H0 : f∗ ∈ Fd if at least one of the d test statistics T
(1)
n , . . . , T

(d)
n exceeds d/α. This

rejection rule has valid type I error control because under H0,

P(T (1)
n ≥ d/α ∪ T (2)

n ≥ d/α ∪ · · · ∪ T (d)
n ≥ d/α) ≤

d∑
j=1

P(T (j)
n ≥ d/α) ≤ d(α/d) = α.
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Dimension Reduction Approach 2: Random Projections

We can also construct one-dimensional densities by projecting the data onto a vector draw uniformly

from the unit sphere. Algorithm 5 shows how to compute the random projection test statistic Tn.

Algorithm 5 Compute the random projection test statistic Tn
Input: n iid d-dimensional observations Y1, . . . , Yn, number of subsamples B,

number of random projections nproj.

Output: The random projection test statistic Tn.

1: for k = 1, 2, . . . , nproj do

2: Draw a vector V uniformly from the d-dimensional unit sphere. To obtain V ,

draw X ∼ N(0, Id) and set V = X/‖X‖.

3: Project each Y observation onto V . The projection of Yi is PV (Yi) = Y T
i V .

4: for b = 1, 2, . . . , B do

5: Randomly partition the PV (Yi) observations such that

D0,b and D1,b each contain n/2 values of PV (Yi).

6: Estimate a one-dimensional density f̂1,b on D1,b.

7: Estimate the log-concave MLE f̂0,b on D0,b.

8: Compute the test statistic Tn,k = B−1
∑B

b=1

∏
PV (Yi)∈D0,b

{f̂1,b(PV (Yi))/f̂0,b(PV (Yi))}

9: return the random projection test statistic Tn = n−1
proj

∑nproj

k=1 Tn,k.

Tn is an average of B · nproj test statistics that are each e-variables. Hence, Tn is also an

e-variable. A valid level 1− α test rejects H0 if Tn ≥ 1/α.

In both dimension reduction approaches, we fit some one-dimensional density f̂1,b on D1. We

consider two density estimation methods.

Density Estimation Method 1: Partial Oracle

This approach uses parametric knowledge about the underlying density. The numerator f̂1,b is the

parametric MLE fit on D1,b.
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Density Estimation Method 2: Fully Nonparametric

This approach does not use any prior knowledge about the underlying density. Instead, we use

kernel density estimation (e.g., ks package with plug-in bandwidth) to fit f̂1,b.

Thus, for the universal LRTs with dimension reduction, we consider four total combinations of

two dimension reduction approaches and two density estimation methods.

3.3 Example 1: Testing Log-concavity of Normal Mixture

3.3.1 Setup

Suppose φd is the N(0, Id) density. Cule et al. (2010b) note that for π ∈ (0, 1), the normal location

mixture f(x) = πφd(x) + (1 − π)φd(x − µ) is log-concave only when ‖µ‖ ≤ 2. As some intuition

for the one-dimensional case, log-concave densities are unimodal and have at most exponential

tails. That is, f(x) = o(exp(−cx)) for some c > 0 (An, 1997). A one-dimensional mixture of two

Gaussians with means µ1, µ2 and standard deviations σ1, σ2 is unimodal if |µ2−µ1| ≤ 2 min{σ1, σ2}

(Sitek, 2016). We explore how the validity and power of the tests varies over ‖µ‖. We use π = 0.5

in all analyses.

3.3.2 Visualizing Log-concave MLEs

We begin by visualizing the log-concave MLEs of several samples from two-component Gaussian

mixtures. The underlying density is

f∗(x) = 0.5φd(x) + 0.5φd(x− µ).

These simulations help us to see the log-concave MLE outputs for both small and large sample

sizes and for both log-concave (‖µ‖ ≤ 2) and not log-concave (‖µ‖ > 2) true densities.

In the one-dimensional setting, we compute the log-concave MLEs f̂n on samples {x1, . . . , xn}.

Figures 3.1 and 3.2 show the true and log-concave MLE densities for samples with n = 50 and

n = 5000, respectively. These simulations use both the LogConcDEAD and logcondens packages.

logcondens only works in one dimension but is much faster than LogConcDEAD. Visually, we see

that these two packages produce approximately the same densities. Furthermore, we include values
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of n−1
∑n

i=1 log(f∗(xi)) on the true density plots and n−1
∑n

i=1 log(f̂n(xi)) on the log-concave MLE

plots. The log likelihood is approximately the same for the two density estimation methods.

When ‖µ‖ = 0 or ‖µ‖ = 2, the true density is log-concave. As we increase from n = 50

to n = 5000, the log-concave MLE becomes a better approximation to the true density. We

see this improvement both visually and numerically. That is, n−1
∑n

i=1 log(f̂n(xi)) is closer to

n−1
∑n

i=1 log(f∗(xi)) for larger n. When ‖µ‖ = 4, the underlying density is not log-concave. The

log-concave MLE at ‖µ‖ = 4 and n = 5000 seems to have normal tails, but it is nearly uniform in

the middle.
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Figure 3.1: Density plots from fitting log-concave MLE on n = 50 observations. Tick marks
represent the observations. The true density is the Normal mixture f∗(x) = 0.5φ1(x)+0.5φ1(x−µ).
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Figure 3.2: Density plots from fitting log-concave MLE on n = 5000 observations. The true density
is the Normal mixture f∗(x) = 0.5φ1(x) + 0.5φ1(x− µ).

We observe similar behavior in the two-dimensional setting. In two dimensions, we use µ =

(−‖µ‖, 0). Figures 3.3 and 3.4 show two-dimensional contour plots for the true and log-concave

MLEs with n = 50 and n = 500. In Figure 3.3, we can clearly see that the support of the log-concave

MLE is the convex hull of the observed sample. For ‖µ‖ = 0 and ‖µ‖ = 2, the true density and

log-concave MLE have more similar appearances when n = 500. In addition, n−1
∑n

i=1 log(f̂n(xi))

is closer to n−1
∑n

i=1 log(f∗(xi)) for larger n. When ‖µ‖ = 4, the log-concave MLE density is nearly

flat in the center of the density.
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Figure 3.3: Contour plots from fitting log-concave MLE on n = 50 observations. Points represent
the 50 observations. The true density is the Normal mixture f∗(x) = 0.5φ2(x) + 0.5φ2(x− µ).
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Figure 3.4: Contour plots from fitting log-concave MLE on n = 500 observations. The true density
is the Normal mixture f∗(x) = 0.5φ2(x) + 0.5φ2(x− µ).

3.3.3 Permutation Test is Not Always Valid

To test H0 : f∗ ∈ Fd versus H1 : f∗ /∈ Fd, we start by considering the permutation test. Cule

et al. (2010b) simulate this test in the d = 2 case, using the underlying density f∗(x) = 0.5φd(x) +

0.5φd(x − µ). For ‖µ‖ ≤ 2 (when H0 is true), they find that the test is valid but conservative.

Setting α = 0.05, the rejection proportion at n = 200 is 0.015, and the rejection proportion at
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n = 1000 is 0.005. At ‖µ‖ = 4 (when H0 is false), the test has high power for large n. The rejection

proportion at n = 200 is 0.475, and the rejection proportion at n = 1000 is 0.995.

We now simulate this test for 1 ≤ d ≤ 5 and n = 100. We set µ = (µ1, 0, . . . , 0), so that

‖µ‖ = ‖µ1‖. We use a significance level of α = 0.10. Each point represents the proportion of times

we reject H0 over 200 simulations. We shuffle B = 99 times, which is the same choice of B as in

Cule et al. (2010b). Figure 3.5 shows that the test is valid at d = 1 and d = 2 and approximately

valid at d = 3. Alternatively, at d = 4 and d = 5, this test rejects H0 at proportions much higher

than α, even when the underlying density is log-concave (‖µ‖ ≤ 2).
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Figure 3.5: Rejection proportions for test of H0 : f∗ is log-concave versus H1 : f∗ is not log-
concave, using the permutation test implementation from Cule et al. (2010b). We set α = 0.10 and
n = 100, and we perform 200 simulations at each combination of (d, ‖µ‖). The test permutes the
observations B = 99 times.

We consider whether these results still hold with a larger sample size. Figure 3.6 repeats these

simulations at n = 250. Compared to the n = 100 setting, this setting has slightly higher power

at ‖µ‖ = 4 and ‖µ‖ = 5 when d = 1 or d = 2. We still see that the rejection proportion is much

higher than 0.10 for ‖µ‖ ≤ 2 at d = 4 and d = 5.
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Figure 3.6: Rejection proportions for test of H0 : f∗ is log-concave versus H1 : f∗ is not log-
concave, using the permutation test implementation from Cule et al. (2010b). We set α = 0.10 and
n = 250, and we perform 200 simulations at each combination of (d, ‖µ‖). The test permutes the
observations B = 99 times.

Next, we consider whether the results hold if we increase B, the number of times that we shuffle

the sample. In Figure 3.7, we show the results of simulations at B ∈ {100, 200, 300, 400, 500} on

n = 100 observations. Each row corresponds to the same set of simulations performed at five values

of B. Looking across each row, we do not see an effect as B increases from 100 to 500. In these

analyses, the lack of validity at d = 4 and d = 5 remains as we increase n or increase B.
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Figure 3.7: Rejection proportions for test of H0 : f∗ is log-concave versus H1 : f∗ is not log-concave,
using the permutation test implementation from Cule et al. (2010b). We set α = 0.10 and n = 100,
and we perform 200 simulations at each combination of (B, d, ‖µ‖).

Recall that the test statistic is T = supA∈A0
|Pn(A)−P ∗n(A)|, and the test statistic on a shuffled

sample is T ∗b = supA∈A0
|Pn,b(A)−P ∗n,b(A)|. Both P and P ∗ are proportions (out of n observations),

so T and T ∗b can only take on finitely many values. We consider whether the conservativeness of the

test (e.g., d = 1) or the lack of validity of test (e.g., d = 5) is due to this discrete nature. Figure 3.8

plots the distribution of shuffled test statistics T ∗b across eight simulations. The left panels consider

the d = 1 case at all combinations of ‖µ‖ ∈ {0, 2} and B ∈ {100, 500}. We see that “bunching”

of the quantiles is not responsible for the test being conservative in this case. (For instance, if the
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90th percentile were equal to the 99th percentile, then it would make sense for the method to be

conservative at α = 0.10.) Instead, the 0.90, 0.95, and 0.99 quantiles (dashed blue lines) are all

distinct, and the original test statistic (solid black line) is less than each of these values. We also

consider the behavior in the d = 5 case (right panels). Again, these three quantiles are all distinct.

In this case, though, the original test statistic is in the far right tail of the distribution of shuffled

data test statistics.
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Figure 3.8: Distribution of T ∗n,b across eight simulations. The dashed blue lines correspond to the
quantiles of the distribution of shuffled data test statistics. The solid black lines correspond to the
original test statistics in each simulation.
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3.3.4 Full Oracle has Inadequate Power

We compare the permutation test to the full oracle universal test. Again, we set µ = (µ1, 0, . . . , 0).

Figure 3.9 shows the power for d ∈ {1, 2, 3, 4} on n = 100 observations. For the universal test,

we subsample B = 100 times. Each point is the rejection proportion over 200 simulations. For

some ‖µ‖ values when d = 1, the full oracle test has higher power than the permutation test. For

most (d, ‖µ‖) combinations, though, the full oracle test has lower power than the permutation test.

Unlike the permutation test, the universal test is valid for d ≥ 4.
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Figure 3.9: Rejection proportions for test of H0 : f∗ is log-concave versus H1 : f∗ is not log-concave.
The universal approach uses the true density in the numerator.

From Figure 3.9, we can see that as d increases, we need larger ‖µ‖ for the test to have power.

Figure 3.10 formalizes this relationship, by exploring how ‖µ‖ needs to grow with d to maintain

power of approximately 0.90. For each value of d, we vary ‖µ‖ in increments of 1 and estimate the

power through 200 simulations. We choose the value of ‖µ‖ with power closest to 0.90. If none of

the ‖µ‖ values have power in the range of [0.88, 0.92] at a given d, then we use finer-grained values

of ‖µ‖. From the best fit curve, it appears that ‖µ‖ needs to grow at an exponential rate in d to
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maintain the same power. Thus, while the full oracle approach offers an improvement in validity

over the permutation test, the power becomes substantially worse in higher dimensions.
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Figure 3.10: For test of H0 : f∗ is log-concave versus H1 : f∗ is not log-concave, how does ‖µ‖
grow with d to maintain power of 0.90? Universal test with true density numerator and B = 100
subsamples on n = 100 observations.

3.3.5 Superior Performance of Dimension Reduction Approaches

We have seen that the partial oracle universal LRT requires ‖µ‖ to grow exponentially to maintain

power as d increases. We turn to the dimension reduction universal LRT approaches, and we find

that they produce higher power for smaller ‖µ‖ values.

We implement all four combinations of the two dimension reduction approaches and two density

estimation methods (partial oracle and fully nonparametric). We compare them to three d-

dimensional approaches: the permutation test, the full oracle test, and the partial oracle test.

The full oracle d-dimensional approach uses the split LRT with the true density in the numerator

and the d-dimensional log-concave MLE in the denominator. The partial oracle d-dimensional

approach uses the split LRT with a two component Gaussian mixture in the numerator and the

d-dimensional log-concave MLE in the denominator. We fit the Gaussian mixture using the EM

algorithm, as implemented in the mclust package (Scrucca et al., 2016).

Figures 3.11 and 3.12 compare the four dimension reduction approaches and the d-dimensional

approaches. The six universal approaches subsample at B = 100. The random projection

approaches set nproj = 100. The permutation test uses B = 99 permutations to determine the

significance level of the original test statistic. Both figures use the normal location model f∗(x) =
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0.5φd(x) + 0.5φd(x− µ) as the underlying model. However, Figure 3.11 uses µ = −(‖µ‖, 0, . . . , 0),

while Figure 3.12 uses µ = −(‖µ‖d−1/2, ‖µ‖d−1/2, . . . , ‖µ‖d−1/2).

There are several key takeaways from Figures 3.11 and 3.12. The universal approaches that fit

one-dimensional densities (d single dimensions and random projections) have higher power than the

universal approaches that fit d-dimensional densities. (When d = 1, the “Partial oracle, d single

dims,” “Partial oracle, d-dim,” and “Partial oracle, random projections” approaches are the same.)

The permutation test is not always valid, especially for d ≥ 4.
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Figure 3.11: Power of tests of H0 : f∗ is log-concave versus H1 : f∗ is not log-concave. µ vector for
second component is µ = −(‖µ‖, 0, . . . , 0).
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Figure 3.12: Power of tests of H0 : f∗ is log-concave versus H1 : f∗ is not log-concave. µ vector for
second component is µ = −(‖µ‖d−1/2, ‖µ‖d−1/2, . . . , ‖µ‖d−1/2).

To compare the four universal approaches that fit one-dimensional densities, we consider

Figures 3.13 and 3.14, which zoom in on a smaller range of ‖µ‖ values for those four methods. In

both Figure 3.13 and 3.14, for a given dimension reduction approach (d single dimensions or random

projections), the partial oracle approach has slightly higher power than the fully nonparametric

approach. (That is, the dark blue curve has higher power than the dark red curve, and the light

blue curve has higher power than the light red curve.) For a given density estimation approach, the

dimension reduction approach with higher power changes based on the setting. When d = 1, the

two partial oracle methods are equivalent, and the two fully nonparametric methods are equivalent.

When µ = −(‖µ‖, 0, . . . , 0) (Figure 3.13), the d single dimensions approach has higher power than

the random projections approach. (That is, dark blue has higher power than light blue, and dark

red has higher power than light red.) This makes sense because a single dimension contains all of

the signal. When µ = −(‖µ‖d−1/2, ‖µ‖d−1/2, . . . , ‖µ‖d−1/2) (Figure 3.14), the random projections

approach has higher power than the d single dimensions approach. (That is, light blue has higher

power than dark blue, and light red has higher power than dark red.) This makes sense because all

directions have some evidence against H0, and there are exist linear combinations of the coordinates
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that have higher power than any individual dimension. The random projection methods (as well as

the d-dimensional methods and the permutation test) have approximately the same power in the

two settings, but the d single dimensions approach has higher power in the µ = −(‖µ‖, 0, . . . , 0)

setting.
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Figure 3.13: Power of four dimension-reduced tests of H0 : f∗ is log-concave versus H1 : f∗ is not
log-concave. µ vector for second component is µ = −(‖µ‖, 0, . . . , 0).
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Figure 3.14: Power of four dimension-reduced tests of H0 : f∗ is log-concave versus H1 : f∗ is not
log-concave. µ vector for second component is µ = −(‖µ‖d−1/2, ‖µ‖d−1/2, . . . , ‖µ‖d−1/2).

3.4 Example 2: Testing Log-concavity of Beta Density

3.4.1 Setup

In the one-dimensional normal mixture case, we saw that the full oracle universal test sometimes had

higher power than the permutation test. We consider whether this holds in another one-dimensional

setting.

The Beta(α, β) density has the form

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, x ∈ (0, 1),

where α > 0 and β > 0 are shape parameters.

46



As noted in Cule et al. (2010b), Beta(α, β) is log-concave if α ≥ 1 and β ≥ 1. We can see this

in a quick derivation:

∂2

∂x2
log f(x;α, β) =

∂2

∂x2

[
log

(
Γ(α+ β)

Γ(α)Γ(β)

)
+ (α− 1) log(x) + (β − 1) log(1− x)

]
=

∂

∂x

[
α− 1

x
+

1− β
1− x

]
=

1− α
x2

+
1− β

(1− x)2
.

This second derivative is less than or equal to 0 for all x ∈ (0, 1) only if both α ≥ 1 and β ≥ 1.

The Beta(α, β) distribution is hence log-concave when α ≥ 1 and β ≥ 1. This means that tests of

H0 : f∗ is log-concave versus H1 : f∗ is not log-concave should reject H0 if α < 1 or β < 1.

3.4.2 Visualizing Log-concave MLEs

In general, it is non-trivial to solve for the limiting log-concave function fLC = arg min
f∈Fd

DKL(f∗‖f).

We try to determine fLC in a few specific cases. In Figure 3.15, we consider two choices of shape

parameters (α, β) such that the Beta(α, β) densities are not log-concave. On the left panels, we plot

the Beta densities. For the right panels, we simulate 100,000 observations from the corresponding

Beta(α, β) density, we fit the log-concave MLE on the sample using logcondens, and we plot this

log-concave MLE density. Thus, the right panels should be good approximations to fLC in these

two settings.
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Figure 3.15: Two non-log-concave Beta densities and their corresponding log-concave MLEs, as
estimated over n = 100, 000 observations.

In the first setting (α = 0.5, β = 0.5), it appears that the log-concave MLE is the Unif(0, 1)

density. We consider the second setting (α = 0.5, β = 1) in more depth. The density in row 2,

column 2 looks similar to an exponential density, but x can only take on values between 0 and 1.

The truncated exponential density is given by

f(x;λ, b) =
λ exp(−λx)

1− exp(−λb)
, 0 < x ≤ b.

In this setting, we can try to fit a truncated exponential density with b = 1. In Figure 3.16, we see

that a truncated exponential density with λ = 2.18 and b = 1 provides a good fit for the log-concave

MLE.
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Figure 3.16: Log-concave MLE for Beta(0.5, 1) density (black solid) and truncated exponential
density with λ = 2.18 and b = 1 (red dashed).

We can also see that the truncated exponential density is log-concave:

∂2

∂x2
log f(x;λ, b) =

∂2

∂x2
[log(λ)− λx− log(1− exp(−λb))]

=
∂

∂x
[−λ]

= 0.

3.4.3 Method Comparison

Figure 3.17 shows examples of both log-concave and not log-concave Beta densities. We use similar

α and β parameters in the simulations where we test for log-concavity. This shows that our

simulations are capturing a variety of Beta density shapes.
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Figure 3.17: Beta densities across a variety of α and β parameters.

We now implement the full oracle LRT (universal), partial oracle LRT (universal), fully

nonparametric LRT (universal), and permutation test. The full oracle LRT uses the true density

in the numerator. The partial oracle LRT uses the knowledge that the true density comes from the

Beta family. We use the fitdist function in the fitdistrplus library to find the MLE for α and

β on D1 computationally (Delignette-Muller and Dutang, 2015). Then the numerator of the partial

oracle LRT uses this Beta MLE density. The fully nonparametric approach fits a kernel density

estimate on D1. In particular, we use the kde1d function from the kde1d library, and we restrict the

support of the KDE to [0, 1] (Nagler and Vatter, 2020). This restriction is particularly important

in the Beta family case, since some of the non-log-concave Beta densities assign high probability to

observations near 0 or 1. (See Figure 3.17.) The numerator of the fully nonparametric approach

uses the KDE.

Figure 3.18 compares the four tests of H0 : f∗ is log-concave versus H1 : f∗ is not log-concave.

We set n = 100, and we perform 200 simulations to determine each rejection proportion. The

universal methods subsample at B = 100, and the permutation test uses B = 99 shuffles. In the

first panel, β = 0.5, so the density is not log-concave for any choice of α. In the second and third

panels, β = 1 and β = 2. In these cases, the density is log-concave only when α ≥ 1 as well.
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We observe that the permutation test is valid in all settings, but the three universal tests often

have higher power. As expected, out of the universal tests, the full oracle approach has the highest

power, followed by the partial oracle approach and then the fully nonparametric approach. When

β = 0.5, all of the universal LRTs have power greater than or equal to the permutation test. When

β ∈ {1, 2}, the universal approaches have higher power for some values of α. Again, we see that

even when the permutation test is valid, it is possible for universal LRTs to have higher power.
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Figure 3.18: Rejection proportions for four tests of H0 : f∗ is log-concave versus H1 : f∗ is not
log-concave, on Beta(α, β) density.

3.5 Theoretical Power of Log-concave Universal Tests

Through simulations, we have shown that the universal LRTs can have high power in tests of

H0 : f∗ ∈ Fd versus H1 : f∗ /∈ Fd. We now prove a theoretical result that provides conditions

under which the power of the universal tests converges to 1. First, we review or introduce some

notation. Let f̂1,n be an estimate of f∗, fit on D1,n. Let f̂0,n = arg max
f∈Fd

∑
Yi∈D0,n

log(f(Yi)). In

words, f̂0,n is the log-concave MLE fit on D0,n. The universal test statistic is

Tn =
∏

Yi∈D0,n

f̂1,n(Yi)

f̂0,n(Yi)
.
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We reject H0 if Tn ≥ 1/α. Let

fLC = arg min
f∈Fd

DKL(f∗‖f) = arg min
f∈Fd

∫
Rd
f∗(x) log

(
f∗(x)

f(x)

)
dx.

If f∗ ∈ Fd, then fLC = f∗. We write the empirical KL divergence between f∗ and f̂1,n, evaluated

on D0,n as

D̂KL(f∗‖f̂1,n) =
1

|D0,n|
∑

Yi∈D0,n

log

(
f∗(Yi)

f̂1,n(Yi)

)
.

Then we can also see that f̂0,n = arg min
f∈Fd

D̂KL(f∗‖f).

When f∗ /∈ Fd, Theorem 3.5.1 establishes conditions under which the power of the universal

test converges to 1 as n→∞.

Theorem 3.5.1. We make five assumptions:

1. Suppose each f̂1,n ∈ C, where C is some (potentially nonparametric) class of functions that

satisfies supf∈C |D̂KL(f∗‖f)−DKL(f∗‖f)| = OP (n−β1) for some β1 > 0.

2. DKL(f∗‖f̂1,n) = OP (n−β2) for some 0 < β2 ≤ 1/2.

3.
∫
Rd ‖x‖f

∗(x)dx <∞.

Suppose there is some set A with P (A) = 1 (e.g., the support of fLC or its interior) that satisfies

the following:

4. For some ` > 0, infx∈A f
LC(x) ≥ `.

5. supx∈A |f̂0,n(x)− fLC(x)| a.s.→ 0.

Then limn→∞ PH0(Tn ≥ 1/α) = 1.

We discuss several conjectures that might allow us to refine these assumptions. Assumption 4

may follow immediately from Lemma 3(b) of Cule et al. (2010a) if A is a compact and convex set.

Suppose X1, X2, . . . is an iid sequence with density f∗, the support E is the smallest closed set with∫
E f
∗ = 1, and conv(S) is the convex hull of some compact subset S of the interior of E. Under our

assumption 3, Lemma 3(b) states that there is a constant c > 0 such that, with probability one,

lim inf
n→∞

inf
x∈conv(S)

f̂0,n(x) ≥ c.
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Assumption 5 may hold if fLC is continuous over A. Under our assumption 3, as well as∫
Rd f

∗ log+(f∗) < ∞, int(E) 6= ∅, and continuity of fLC, Theorem 3 of Cule et al. (2010b) states

that supx∈Rd exp(a‖x‖)|f̂0,n(x)− fLC(x)| → 0 almost surely as n→∞. Under assumption 4, it is

impossible for fLC to be continuous over Rd. However, outside of A, the tails of f̂0,n and fLC are

both 0.

We provide a proof sketch to show how these five assumptions lead to the result. The full proof

appears in Appendix C.

Proof sketch. We begin by separating Tn into a product of three components:

Tn =

 ∏
Yi∈D0,n

f̂1,n(Yi)

f∗(Yi)

︸ ︷︷ ︸
C1,n

 ∏
Yi∈D0,n

f∗(Yi)

fLC(Yi)

︸ ︷︷ ︸
C2,n

 ∏
Yi∈D0,n

fLC(Yi)

f̂0,n(Yi)

︸ ︷︷ ︸
C3,n

.

Define ε as

ε = ‖(fLC)1/2 − (f∗)1/2‖2 =

[∫ (
(fLC)1/2 − (f∗)1/2

)2
dµ

]1/2

.

This choice of ε arises from Lemma 1 of Wong et al. (1995). We see that

P(Tn < 1/α)

≤ P
(
C2,n < exp

(n
8
ε2
)
∪ C1,n <

1

α
exp

(
− n

16
ε2
)
∪ C3,n < exp

(
− n

16
ε2
))

≤ P
(
C2,n < exp

(n
8
ε2
))

+ P
(
C1,n <

1

α
exp

(
− n

16
ε2
))

+ P
(
C3,n < exp

(
− n

16
ε2
))

.

We want to show that these three probabilities converge to 0.

Using Lemma 1 of Wong et al. (1995), we show that

P
(
C2,n < exp

(n
8
ε2
))
≤ exp

(
−n

8
ε2
)
.

So limn→∞ P
(
C2,n < exp

(
(n/8)ε2

))
= 0.

For the second probability, we use assumptions 1 and 2 to show that log(C1,n) = OP (n1−β),

where β = min{β1, β2} ∈ (0, 1/2]. This implies that limn→∞ P(C1,n < (1/α) exp(−(n/16)ε2)) = 0.
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For the third probability, we use Markov’s inequality to derive

P
(
C3,n < exp

(
− n

16
ε2
))
≤ 8

ε2
E

 2

n

∑
Yi∈D0,n

log

(
f̂0,n(Yi)

fLC(Yi)

) .
Let δ > 0. Using ` from assumption 4, fix γ > 0 such that γ < `(exp(δ) − 1). Note that this

implies log((γ + `)/`) < δ. We derive

E

 2

n

∑
Yi∈D0,n

log

(
f̂0,n(Yi)

fLC(Yi)

) < E

 2

n

∑
Yi∈D0,n

log(γ + fLC(Yi))

− E

 2

n

∑
Yi∈D0,n

log(fLC(Yi))

+

E

 2

n

∑
Yi∈D0,n

log(f̂0,n(Yi))I

(
sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

) .
We consider the difference of the first two expectations. The function g(x) = log(γ + x)− log(x)

is a decreasing function, so g(x) is maximized at the smallest x. By assumption 4, we know that

with probability 1, fLC(Yi) ≥ `. This tells us that

E

 2

n

∑
Yi∈D0,n

log(γ + fLC(Yi))

− E

 2

n

∑
Yi∈D0,n

log(fLC(Yi))

 ≤ log(γ + `)− log(`) < δ.

By Lemma 3(a) of Cule et al. (2010a), assumption 3 implies that for some u > 0,

lim supn→∞ supx∈Rd f̂0,n(x) ≤ u with probability 1. Using reverse Fatou’s Lemma for conditional

expectations, we determine

lim sup
n→∞

E

 2

n

∑
Yi∈D0,n

log(f̂0,n(Yi))I

(
sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

)
≤ uP

(
sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

)
with probability 1.

Finally, by assumption 5, limn→∞ P
(

supx∈A |f̂0,n(x)− fLC(x)| ≥ γ
)
→ 0. So with probability 1,

for arbitrary δ > 0,

lim
n→∞

E

 2

n

∑
Yi∈D0,n

log

(
f̂0,n(Yi)

fLC(Yi)

) < δ.

We conclude that limn→∞ P
(
C3,n < exp

(
− n

16ε
2
))

= 0. Therefore, limn→∞ P(Tn < 1/α) = 0.
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3.6 Conclusion

We have implemented and evaluated several universal LRTs to test for log-concavity. These

methods include a full oracle (true density) approach, a partial oracle (parametric) approach, a

fully nonparametric approach, and several LRTs that reduce the d-dimensional test to a set of

one-dimensional tests. We compare these tests to a permutation test that is not guaranteed to be

valid. In one dimension, the universal tests can have higher power than the permutation test. In

higher dimensions, we have seen that the permutation test can falsely reject H0 at a rate much

higher than α. In contrast, the universal tests are still valid in higher dimensions. As seen in the

Gaussian mixture case, the dimension reduction universal approaches can have notably stronger

performance than the universal tests that work with d-dimensional densities.
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Part II

Conformal Prediction
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Chapter 4

Overview of Conformal Prediction

4.1 Introduction

Predictive modeling helps statisticians to forecast new outcomes given previous outcomes and, in

the supervised case, relevant predictor variables. Given a sample of data, statisticians may want to

predict a new outcome such as the temperature for a given day, the traffic on a stretch of highway,

or the level of antibodies following the administration of a vaccine. While a single point prediction

gives the most likely outcome according to some model, the single prediction does not capture

our level of confidence in the outcome. An alternative approach is to associate a probability to

some set of predicted outcomes. A valid 100(1− α)% prediction set contains the new observation

(unsupervised) or the outcome associated with a new observation (supervised) with probability of

at least 1 − α. The goal of conformal predictive inference (often called conformal prediction or

conformal inference) is to construct valid prediction sets under the assumption that the data are

iid, or at least exchangeable. Notably, conformal methods do not require knowledge about the form

of the underlying density or model, and the prediction sets are valid in finite samples.

Suppose (X1, Y1), . . . , (Xn, Yn) are n iid pairs of observations from a distribution P . In set-

valued, supervised prediction, we want to find a set-valued function C such that

P (Y ∈ C(X;α)) ≥ 1− α (4.1)

where 1 − α is the user-specified confidence level and (X,Y ) denote a new pair drawn from P .

(We should really write Pn+1(Y ∈ C(X;α)) ≥ 1 − α since the randomness is over Y and the
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training data. We have suppressed the superscript n + 1 for notational simplicity.) Vovk et al.

(2005) created the method of conformal prediction to construct C such that (4.1) holds for all

distributions P . In other words, conformal methods yield distribution-free prediction sets. Lei

et al. (2013) connect conformal prediction to minimax density estimation, and Lei and Wasserman

(2014) connect conformal prediction to minimax nonparametric regression.

Key early references on conformal prediction include Vovk et al. (2005) and Shafer and

Vovk (2008). The literature on conformal prediction is quickly growing in several overlapping

directions. Developments on conformal prediction include connections to traditional statistical

methods, extensions to flexible settings, and implementations that are computationally efficient.

Work in these directions includes interpolations between marginal and conditional coverage (Lei

and Wasserman, 2014), extensions to multiclass set-valued classification (Sadinle et al., 2018), valid

discretizations of conformal methods (Chen et al., 2018), anti-conservative bounds on coverage,

methods for variable importance, and computationally efficient sample-splitting methods (Lei et al.,

2018). Many open problems remain in extending conformal methods to new contexts.

4.2 The Unsupervised Case

Let Y1, . . . , Yn ∈ Rd be iid observations from a distribution P where Yi ∈ Y, and let Yn+1 denote a

new draw from P . The goal of conformal prediction is to construct a set C(α) based on the training

data Y1, . . . , Yn such that P (Yn+1 ∈ C(α)) ≥ 1−α for every distribution P . When d = 1, Theorem

4.2.1 provides one valid construction based on order statistics. For a proof, see Appendix D.

Theorem 4.2.1. We define a prediction interval C(α) = [Y(r), Y(s)], where r = b(n+ 1)(α/2)c and

s = d(n+ 1)(1− α/2)e. Then for every distribution P , P (Yn+1 ∈ C(α)) ≥ 1− α. This interval is

bounded if n ≥ 2/α− 1.

The validity of Theorem 4.2.1 relies on the exchangeability of the original sample’s order

statistics. Alternative valid constructions rely on the exchangeability of conformal residuals

constructed from the sample. For any u ∈ Y, let A(u) = (Y1, . . . , Yn, u), which can be thought of

as the training data augmented with a guess that Yn+1 = u. Define the residual (or nonconformity

score) Ri(u) = φ(Yi,A(u)) where φ : Rd → R is any function that is invariant under permutations

of the elements of A(u). We wish to test the hypothesis H0 : Yn+1 = u. The set of all u for which
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we do not reject H0 at level 1−α will provide the 100(1−α)% prediction set. Assuming Yn+1 = u,

we define

π(u) =
1

n+ 1

n+1∑
i=1

I(Ri(u) ≥ Rn+1(u)) (4.2)

which is the p-value for testing this hypothesis. Intuitively, the p-value for a given u is small if the

residuals of most of Y1, . . . , Yn are smaller than the residual of u (i.e., the p-value is small if Yn+1 = u

does not “conform” to the original sample). π(u) is a valid p-value because under H0, π(u) follows

a super-uniform distribution over t ∈ [0, 1]. That is, P (π(u) ≤ t) = P (π(u) ≤ bt(n+ 1)c/(n+ 1)) ≤

bt(n+ 1)c/(n+ 1) ≤ t. Often P is a continuous distribution and P (φ(Yi,A(u)) = φ(Yj ,A(u))) = 0

for i 6= j. In this case, π(u) is uniformly distributed over the set {1/(n+ 1), 2/(n+ 1), . . . , 1}.

We invert the test by defining

C(α) = {u : π(u) ≥ α}. (4.3)

Theorem 4.2.2. For C(α) as given above, P (Yn+1 ∈ C(α)) ≥ 1− α for every distribution P .

For a proof, see Vovk et al. (2005). There is great flexibility in the choice of nonconformity

score φ. Every choice leads to a prediction set with valid coverage, but different choices may lead

to smaller or larger sets. Thus, the choice of φ can affect the efficiency of the prediction set but

not its validity; see Lei et al. (2013).

As an example, let Ri(u) = |Yi − Y (u)| where Y (u) = (u +
∑n

i=1 Yi)/(n + 1) is the mean of

the augmented data. Then π(u) = (n + 1)−1
∑n+1

i=1 I
(
|Yi − Y (u)| ≥ |u − Y (u)|

)
. Another useful

nonconformity score is Ri(u) = 1/p̂u(Yi) where p̂u is a density estimator based on the augmented

data. Lei et al. (2013) showed that this choice is minimax optimal when some conditions hold.

4.3 The Supervised Case

In this case the data are (X1, Y1), . . . , (Xn, Yn) ∼ P . Let (X,Y ) ∼ P be a new observation. We

then want a set C(x;α) such that P (Y ∈ C(X;α)) ≥ 1 − α for all P . In the supervised setting,

the conformal set now depends on the Xi s as well. As one possibility, fix (x, y) and let m̂(x,y)

be a regression estimator based on the augmented data (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) with
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(Xn+1, Yn+1) = (x, y). Let

C(x;α) =
{
y : π(x, y) ≥ α

}
where

π(x, y) =
1

n+ 1

n+1∑
i=1

I(Ri(x, y) ≥ Rn+1(x, y))

and Ri(x, y) = |Yi − m̂(x,y)(Xi)|. Then infP P (Yn+1 ∈ C(Xn+1;α)) ≥ 1− α.

A second useful choice of conformal residual is Ri(x, y) = 1/p̂(Xi, Yi) where p̂ is a joint density

estimate based on the augmented data. See Lei et al. (2013) for more details.

4.4 Distribution-Free Prediction from Working Models

It is possible to get distribution-free prediction from a relevant parametric model, even when the

model is wrong. We will describe this idea in the unsupervised setting, but the same principle holds

for the supervised case.

Let Q = (Qθ : θ ∈ Θ) denote a parametric model. Let Y1, . . . , Yn ∼ P , where we do not assume

that the true distribution P is in Q. We can use the model to construct a conformal residual. For

example, we could use Ri(u) = 1/q̂
θ̂(u)

(Yi) where θ̂(u) is the maximum likelihood estimate based

on the augmented sample (Y1, . . . , Yn, u). Now let C(α) denote the conformal set constructed from

the Ri s. If we draw another Y ∼ P , it follows from Theorem 4.2.2 that P (Y ∈ C(α)) ≥ 1− α for

every P . This is true even though P may not be in the model. However, the size of C(α) is smaller

if P is in, or close to, Q.

4.5 Predicting a Batch of Observations

The coverage condition in (4.1) refers to the problem of predicting a single observation. Suppose we

want to predict a new batch of observations D = {Y ′1 , . . . , Y ′m}. What coverage guarantee should

we require? There are several possibilities:

1. Batch Coverage: find C such that P (D ∈ C) ≥ 1− α.

2. Marginal Coverage: find C so that P (Y ′i ∈ C) ≥ 1− α for i = 1, . . . ,m.
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3. Probabilistic Coverage: find C so that for ε > 0 and γ > 0,

P

(
1

m

m∑
i=1

I(Y ′i ∈ C) ≥ 1− α− ε

)
≥ 1− γ.

The first requires a simultaneous prediction set for all of the future observations. This seems too

strong since, when m is large, this will require a huge, high-dimensional prediction set. The second

requires correct marginal coverage on each new observation. The third requires that the proportion

of observations trapped in the prediction set is at least 1 − α − ε with high probability. In fact,

by Hoeffding’s inequality, marginal coverage implies probabilistic coverage if m ≥ log(1/γ)/(2ε2).

Hence, we focus on marginal coverage.

4.6 Simulation Example

We consider an example of conformal prediction in an unsupervised setting. Suppose we observe

a sample of n = 10, 000 iid observations {Y1, . . . , Yn} from a two-dimensional mixture of five

Gaussians, given by

0.2N((−0.5,−0.5), I2) + 0.2N((−0.5, 0.5), I2) + 0.2N((0.5,−0.5), I2) +

0.2N((0.5, 0.5), I2) + 0.2N((0, 0), I2).

When we obtain this data sample, we do not know the true underlying density. Figure 4.1 plots

the sample as a two-dimensional hexagonal heatmap.
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Figure 4.1: Sample of 10,000 iid observations from a mixture of five two-dimensional Normal
distributions.

We use conformal prediction methods to construct a valid prediction set for new observations

from this distribution. For any value u ∈ R2, suppose we wish to test H0 : Yn+1 = u to determine

whether u lies within a 100(1 − α)% conformal prediction set. Using one suggestion noted in

Section 4.2, we fit a kernel density estimator p̂u on the augmented sample {Y1, . . . , Yn, u}. We

compute residuals Ri(u) = 1/p̂u(Yi), i = 1, . . . , n + 1. Then we compute the p-value π(u) from

(4.2). As stated in (4.3), we include u in the conformal set C(α) if π(u) ≥ α.

Under the marginal coverage property, for a new sample {Y ′1 , . . . , Y ′m} drawn from the same

distribution, each observation should satisfy P (Y ′i ∈ C) ≥ 1 − α, i = 1, . . . ,m. We test this

by drawing m = 1000 new observations from this five component Gaussian mixture. We check

whether each of these observations are in C(α) for α = 0.1. Figure 4.2 plots the new sample,

with each observation colored by whether it is contained within the 90% conformal prediction

set. In alignment with the theoretical coverage, the conformal set contains 903 out of 1000 new

observations.
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Figure 4.2: New sample of 1000 iid observations from the same distribution as Figure 4.1. 90.3%
of these observations are contained within the 90% conformal prediction set.

63



Chapter 5

Distribution-Free Prediction Sets with

Random Effects

5.1 Introduction

A fundamental assumption of the usual conformal method is that the data are iid (or, at least,

exchangeable). We extend conformal methods to the following random effects models where the iid

assumption fails. Let P1, P2, . . . , Pk ∼ Π be random distributions drawn from Π and let

Dj = {(Xj1, Yj1), . . . , (Xjnj , Yjnj )}

be nj iid observations drawn from Pj for j = 1, . . . , k. It is helpful to imagine that we have k

subjects and Dj represents nj observations on subject j.

There are two tasks to consider:

1. Task 1: Predicting an observation on a new subject. Let Pk+1 ∼ Π denote a new draw from

Π (a new subject) and let (X,Y ) ∼ Pk+1. The goal is to construct a prediction set for Y

using X and the training data D1, . . . ,Dk.

2. Task 2: Predicting a new observation on one of the current subjects. Let (X,Y ) denote a

new draw from one of the distributions Pj . We want a prediction for Y based on X and the

training data.
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In Task 1, we have to deal with the complication that we have never observed any data from

the future distribution Pk+1. Task 2 allows us to use the observed data on subject j, as well as

familiar tools such as shrinkage and borrowing strength.

A familiar example of a parametric random effects working model is Yij = β0j + β1jXij + εij

where εij ∼ N(0, σ2). Recall that Pj denotes the true underlying distribution of (X,Y ) for group

j. Suppose this random effects model represents the true relationship between X and Y , and

suppose X ∼ N(0, 1). Then drawing (Xj , Yj) ∼ Pj amounts to drawing Xj ∼ N(0, 1) and Yj ∼

N(β0j +β1jXj , σ
2). Furthermore, suppose that Pβ represents the distribution of (β0j , β1j) over the

full population. Then drawing a distribution Pj ∼ Π reduces to drawing (β0j , β1j) ∼ Pβ. As noted

in Section 4.4, conformal prediction sets that use an incorrect parametric working model will still

have valid coverage.

5.1.1 Related Work

The literature on random effects models is vast. Most of the work focuses on estimation. Laird and

Ware (1982) provide foundational work on the structure and estimation of random effects models

for repeated-measures data. The authors note that random effects allow researchers to model both

within- and between-subject variation, often using parameters that have natural interpretations.

For instance, random effects models frequently are defined by within-subject and across-subject

means and variances (DerSimonian and Laird, 1986). We incorporate this conceptualization in

our simulations. Random effects models have been used for prediction by some researchers in

parametric settings (Calvin and Sedransk, 1991; Booth and Hobert, 1998; Schofield et al., 2015).

Claggett et al. (2014) develop methods for inference on the quantiles of study-level parameters

without distributional assumptions on these parameters. Thus, random effects researchers have

developed some approaches for inference and prediction in parametric settings and for inference

without distributional assumptions. To the best of our knowledge, there are no papers on valid

distribution-free prediction for random effects models.

5.1.2 Chapter Outline

Section 5.2 presents our new methods for unsupervised and supervised conformal prediction sets in

the random effects setting. Section 5.3 contains simulation studies for Tasks 1 and 2. Section 5.4
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implements our supervised prediction methods on data from a sleep deprivation study. Section 5.5

provides concluding remarks. Appendix E contains proofs.

5.2 Prediction for Random Effects Models

In Sections 4.2 and 4.3, we showed prediction set methods that are valid under minimal assumptions.

In the one-dimensional unsupervised case, the order statistic approach is valid under the assumption

that the data are exchangeable. This method is a simple construction that does not require data

augmentation or the choice of a nonconformity score. Alternatively, the residual approach relies

on the exchangeability of the residuals; this condition holds for any permutation-invariant φ when

the underlying data are exchangeable. The residual method affords more flexibility through the

construction of a nonconformity score, and it extends beyond the one-dimensional unsupervised

setting. To construct prediction sets for a new observation on a new subject (Task 1), we use

methods based on the original sample’s order statistics in the unsupervised setting, and we use the

residual method in the supervised setting. To construct prediction sets for a new observation on an

existing subject (Task 2), we use the residual method. In the Task 2 setting, the residual method

allows us to implement a nonconformity score based on a shrinkage estimator.

5.2.1 Unsupervised Prediction for a New Distribution

We start with the unsupervised version. Recall that the data come in groups D1, . . . ,Dk and each

group has iid data

Dj = {Yj1, . . . , Yjnj} ∼ Pj

where P1, . . . , Pk ∼ Π. Assuming a new distribution Pk+1 ∼ Π and Y ∼ Pk+1, we want a prediction

region for Y .

Method 0: Double Conformal

We note that there are two levels of randomness in this set-up. At the level of group j, we have

independent observations from a distribution Pj . At the distribution level, each distribution is

sampled from a larger superpopulation Π. If we draw a single new observation Yi from a new

distribution, we say that Yi is a draw from Π, where Π =
∫
PΠ(dP ). A “double conformal”
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method is one natural approach that incorporates this hierarchical structure. This method first

uses conformal prediction within each group and then uses those results to construct a conformal

prediction set across groups.

At the group level, let Cj = [`j , uj ] be the 100(1−α/2)% prediction set obtained by applying the

method in Theorem 4.2.1 at level α/2 to group j, j = 1, . . . , k. Thus, we have constructed a sample

of k lower bounds {`1, . . . , `k} and k upper bounds {u1, . . . , uk}. Using the order statistics from

those samples, we set Cdbl(α) = [`(r), u(s)], where r = b(k + 1)(α/4)c and s = d(k + 1)(1− α/4)e.

Theorem 5.2.1. For Cdbl(α) as defined above, Π(Y ∈ Cdbl(α)) ≥ 1 − α. This set is bounded if

k ≥ 4/α− 1 and each nj ≥ 4/α− 1.

By Theorem 5.2.1, Cdbl(α) is a valid 100(1− α)% prediction set for a new observation Y from

a new group. For a proof, see Appendix E. While this method is valid, our results show that this

method overcovers. Thus, we turn to several methods that are better choices.

Method 1: Pooling CDFs

As one approach, we construct an empirical CDF within each group. We average these CDFs across

groups, and we determine the prediction set bounds based on the quantiles of the average of CDFs.

This method is asymptotically valid as k →∞.

Formally, for any group j, the empirical CDF is defined as

F̂j(t) =
1

nj

nj∑
i=1

I(Yji ≤ t).

We set

q̂k(α) = inf

t ∈ R :
1

k

k∑
j=1

F̂j(t) ≥ α

 .

Then CpoolCDF(α) = [q̂k(α/2), q̂k(1− α/2)]. For a proof of Theorem 5.2.2, see Appendix E.

Theorem 5.2.2. Assume that F : R → [0, 1], defined as F (t) = Π(Y ≤ t), is strictly increasing.

For CpoolCDF(α) as defined above, Π(Y ∈ CpoolCDF(α))→ 1− α as k →∞.
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Method 2: Subsampling Once

Draw one observation randomly from each group. For instance, Y1 can equal any element in D1 =

{Y11, Y12, . . . , Y1n1} with probability 1/n1. Then the data consist of k iid observations Y1, Y2, . . . , Yk

from Π(·) =
∫
P (·)dΠ(P ). We define a prediction set

Csub(α) = [Y(r), Y(s)],

where r = b(k+ 1)(α/2)c and s = d(k+ 1)(1−α/2)e. This method has exact 100(1−α)% coverage

since the k observations in the subsample are k iid observations from Π. The validity of this method

follows from Theorem 4.2.1.

Method 3: Repeated Subsampling

We now modify Method 2 to incorporate B subsamples of a single observation from each of the k

groups. (Again, each subsample now contains k iid observations.) Gupta et al. (2020) developed

the method of constructing conformal prediction sets through repeated subsampling in the case of

exchangeable data. Suppose Y b
(1), Y

b
(2), . . . , Y

b
(k) are the ordered observations from the bth subsample.

Conformal prediction is implicitly testing H0 : Yk+1 = u versus H1 : Yk+1 6= u, and the level 1− α

conformal prediction set is the set of values at which we would not reject H0 under the given

construction. Thus, within the bth subsample, the p-value at u ∈ R is

πb(u) = inf{α : u /∈ [Y b
(r), Y

b
(s)]},

where r = b(k + 1)(α/2)c and s = d(k + 1)(1− α/2)e.

We define a prediction set

Crep(α) =

{
u :

1

B

B∑
b=1

πb(u) ≥ α

}
.

Theorem 5.2.3. For Crep(α) as defined above, Π(Y ∈ Crep(α)) ≥ 1− 2α.

Theorem 5.2.3 holds because 2
B

∑B
b=1 πb(u) (double the test statistic) is a valid p-value for the

stated test (Rüschendorf, 1982; Meng, 1994; Barber et al., 2021; Vovk and Wang, 2020). In practice,
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however, Crep(α) has close to 100(1 − α)% coverage. The guaranteed level 1 − 2α coverage and

empirical level 1−α coverage is analogous to the coverage of the jackknife+ method (Barber et al.,

2021), which constructs conformal sets through leave-one-out prediction.

5.2.2 Supervised Prediction for a New Distribution

In the supervised setting, each group D1, . . . ,Dk has iid data

Dj = {(Xj1, Yj1), . . . , (Xjnj , Yjnj )} ∼ Pj

where P1, . . . , Pk ∼ Π. Suppose we have a new distribution Pk+1 ∼ Π and (X,Y ) ∼ Pk+1. Assuming

that we only observe X = x, we want a prediction region for Y = y.

Method 1: Pooling CDFs

Similar to the unsupervised setting, we consider a method that averages empirical CDFs across

groups. We first consider a method that is asymptotically valid as k →∞, regardless of the choice

of model. Let [k] = {1, . . . , k}. We start by pooling the observations from some strict subset

k0 ⊂ [k] of the k groups to fit a model µ̂(X) as an estimator of E[Y | X]. We use the remaining

groups to fit the residuals Rji = |Yji − µ̂(Xji)|, j ∈ [k]\k0, i = 1, . . . , nj . Now for each j ∈ [k]\k0,

we define group j’s empirical CDF of the residuals

F̂j(t) =
1

nj

nj∑
i=1

I(Rji ≤ t).

We define

q̂k(α) = inf

t ∈ R :
1

|[k]\k0|
∑

j∈[k]\k0

F̂j(t) ≥ α

 .

The 1− α conformal prediction set is CpoolCDF(x;α) = [µ̂(x)− q̂k(1− α), µ̂(x) + q̂k(1− α)]. For a

proof of Theorem 5.2.4, see Appendix E.

Theorem 5.2.4. Fit a model µ̂(X) as an estimator of E[Y | X] using the observations in groups

k0 ⊂ [k]. (Hence, this model stays fixed as k grows.) For (X,Y ) ∼ Π, assume Π(|Y − µ̂(X)| ≤ t)

is strictly increasing in t. Then Π(Y ∈ CpoolCDF(X;α))
p→ 1− α as k →∞.
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Under stronger parametric assumptions, we consider a second asymptotically valid approach

(k → ∞) that does not require sample splitting. Suppose (X,Y ) arise from a parametric model

Y = µ(X; θ) + ε, where µ(·) is known, θ is unknown, and ε has a zero-mean distribution. We pool

all of the m =
∑k

j=1 nj observations to fit θ̂, using the true parametric model µ(·). Thus, at any

X, our point prediction is Ŷ = µ(X; θ̂). We have the following residuals under the true θ and the

estimated θ̂:

Rji(θ) = |µ(Xji; θ)− Yji|

Rji(θ̂) =
∣∣∣µ(Xji; θ̂)− Yji

∣∣∣ .
The empirical CDFs of these residuals are

F̂j,θ(t) =
1

nj

nj∑
i=1

I(Rji(θ) ≤ t)

F̂
j,θ̂

(t) =
1

nj

nj∑
i=1

I(Rji(θ̂) ≤ t).

Averaging the F̂
j,θ̂

values, we obtain a sample quantile

q̂k(θ̂;α) = inf

t ∈ R :
1

k

k∑
j=1

F̂
j;θ̂

(t) ≥ α

 .

Under the parametric assumptions in Theorem 5.2.5 (proved in Appendix E), Cparam(x;α) =

[µ(x; θ̂)− q̂k(1− α), µ(x; θ̂) + q̂k(1− α)] is an asymptotically valid prediction set as k →∞.

Theorem 5.2.5. Suppose (X,Y ) arises from a parametric model Y = µ(X; θ) + ε, where µ(·) is

known, θ is unknown, and ε has a zero-mean distribution. Assume Π(Y − µ(X; θ) ≤ t) is strictly

increasing in t. Assume the true θ satisfies

1

k

k∑
j=1

sup
t
|F̂
j,θ̂

(t)− F̂j,θ(t)|
p→ 0

as k → ∞, and assume that for δ > 0, limk→∞Π(|µ(X; θ) − µ(X; θ̂)| > δ) = 0. For Cparam(x;α)

as defined above, limk→∞Π(Y ∈ Cparam(X;α)) = 1− α.
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Method 2: Subsampling Once

For the single subsample method, we randomly select one observation from each of the k groups.

This creates a sample of k pairs of iid observations (X,Y ). Suppose that we now have a new

observation (Xk+1, Yk+1) ∼ Pk+1, but we only observe Xk+1. Letting Xk+1 = x, we have an

augmented X sample (X1, . . . , Xk, Xk+1). For each possible y, we test H0 : Yk+1 = y at a 1 − α

confidence level using the following procedure: Assume Yk+1 = y, giving an augmented Y sample of

(Y1, . . . , Yk, Yk+1). Using the sample augmented with (x, y) as training data, fit a model µ̂(x,y)(X)

as an estimator of E[Y | X]. Then compute nonconformity scores Ri(x, y) = |µ̂(x,y)(Xi) − Yi|,

i = 1, . . . , k+ 1. The p-value for the test of H0 : Yk+1 = y is π(x, y) = (k+ 1)−1
∑k+1

i=1 I(Ri(x, y) ≥

Rk+1(x, y)). The 1 − α conformal prediction set is Csub(x;α) = {y ∈ R : π(x, y) ≥ α}. Since the

subsample of k observations is an iid sample, this method is justified by Section 4.3.

Method 3: Repeated Subsampling

We modify the supervised subsampling method to incorporate B subsamples of a single observation

from each of the k groups. For the bth subsample, (X1b, Y1b), . . . , (Xkb, Ykb) contains one observed

pair from each of the k groups. Suppose Xk+1 = x is a new observed covariate from a new group.

Conformal prediction is implicitly testing H0 : Yk+1 = y versus H1 : Yk+1 6= y, and the level

1−α conformal prediction set is the set of values at which we would not reject H0 under the given

construction. Using the bth subsample augmented with (x, y), we construct residuals Rb,i(x, y) in the

same manner as the previous method. Then πb(x, y) = (k + 1)−1
∑k+1

i=1 I(Rb,i(x, y) ≥ Rb,k+1(x, y))

is a valid p-value for the stated test. We construct πb(x, y) for B subsamples. We define a conformal

prediction set

Crep(x;α) =

{
y :

1

B

B∑
b=1

πb(x, y) ≥ α

}
.

Theorem 5.2.6. For Crep(x;α) as defined above, Π(Y ∈ Crep(X;α)) ≥ 1− 2α.

Similar to Theorem 5.2.3 in the unsupervised case, Theorem 5.2.6 is true because (2/B)
∑B

b=1 πb(x, y)

is a valid p-value for the stated test. As in the unsupervised case, Crep(x;α) has empirical coverage

of approximately 1− α.
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5.2.3 Unsupervised Prediction for an Observed Group

Task 2 considers the question of predicting a new observation on an existing subject rather than on

a future subject. We assume without loss of generality that we wish to predict a new observation

from subject 1. We explore two methods for creating conformal prediction sets to capture the

new observation in the unsupervised setting. The first method is a standard conformal procedure

using subject 1’s data. The second method “borrows” information from other subjects to obtain a

shrinkage estimator of the mean of subject 1’s data. Then it performs conformal prediction using

this shrinkage estimator. The validity of either method follows from the usual theory described in

Section 4.2, but we expect that using a shrinkage estimator will lead to smaller prediction sets.

Method 1: Isolate Single Group

For the first method, we only use subject 1’s data to construct a 1−α conformal prediction set. We

propose a new value of y, and we wish to test H0 : Y1,n1+1 = y at a 1− α confidence level. Letting

Y1,n1+1 = y, we have an augmented data vector (Y1,1, . . . , Y1,n1 , Y1,n1+1) for subject 1. We define

Y 1 = 1
n1+1

∑n1+1
i=1 Y1,i. Then we calculate nonconformity scores Ri =

∣∣Y1,i − Y 1

∣∣, i = 1, . . . , n1 + 1.

The p-value for the test of H0 : Y1,n1+1 = y is π(y) = 1
n1+1

∑n1+1
i=1 I(Ri ≥ Rn1+1). We invert this

test to obtain a 1− α conformal prediction set C isolate(α) = {y : π(y) ≥ α}.

Method 2: James-Stein Shrinkage

The second method uses all data from D1, . . . ,Dk and performs shrinkage to predict a new

observation from subject 1. Again, we construct a 1 − α conformal prediction set for a new

observation from subject 1. In this method, however, we use data from all subjects. We propose

a new value of y, and we wish to test H0 : Y1,n1+1 = y at a 1 − α confidence level. We define

Y 1 = 1
n1+1

∑n1+1
i=1 Y1,i. Then for j = 2, . . . , k, we define Y j = 1

nj

∑nj
i=1 Yj,i. We also estimate σ̂2

1 as

the sample variance of (Y1,1, . . . , Y1,n1 , Y1,n1+1) and ν = 1
k

∑k
j=1 Y j .

Now in place of Y 1 in the nonconformity scores, we use the James-Stein shrinkage estimator:

Ỹ1 =

1−
(k − 2)

σ̂2
1
n1∑

j(Y j − ν)2


+

(Y 1 − ν) + ν,
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where (x)+ = max(x, 0). The rest of the procedure mirrors Method 1. We calculate nonconformity

scores Ri = |Y1,i − Ỹ1|, i = 1, . . . , n1 + 1. For the proposed value of y, we obtain a p-value π(y) =

1
n1+1

∑n1+1
i=1 I(Ri ≥ Rn1+1). The 1− α conformal prediction set is Cshrinkage(α) = {y : π(y) ≥ α}.

5.3 Simulations

We present simulations on the unsupervised and supervised methods for predicting a new

observation from a new group, as well as the unsupervised methods for predicting a new observation

from an observed group.

5.3.1 The Unsupervised Case

We begin by generating data from k distributions. We draw θ1, . . . , θk ∼ N(µ, τ2), with µ = 0 and

τ2 = 1. Then we simulate Yj1, . . . , Yjnj ∼ N(θj , 1). We allow the number of observations per group

(nj) to equal 40, 100, and 1000. We vary the number of groups (k) from 20 to 100 in increments of

5 and from 200 to 1000 in increments of 100. We construct prediction sets following the procedures

from Section 5.2.1. The repeated subsampling sets (Method 3) use B = 100 subsamples. Each

simulation generates a data sample, draws a new Y from a new distribution, constructs prediction

sets C(α), determines the size of each prediction set, and checks whether Y ∈ C(α). We set α = 0.1,

and we perform 1000 simulations at each combination of k and nj .

Figure 5.1 displays the empirical coverage of Method 0 (double conformal), Method 1 (CDF

pooling), Method 2 (subsampling once), and Method 3 (repeated subsampling) from Section 5.2.1.

The coverage is the proportion of simulations for which Y ∈ C(α). The double conformal method

consistently overcovers, with coverage close to 1. The CDF pooling method undercovers at small

values of k (e.g., k ≤ 35) but has approximately 1−α coverage for larger k. Single subsampling tends

to overcover for small k and has approximately 1− α coverage for large k. Repeated subsampling

sometimes overcovers for small k and has coverage of about 1− α for large k. Across simulations,

the number of observations per group does not appear to affect the relationship between coverage

and number of groups.
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Figure 5.1: Coverage of unsupervised prediction sets for a new group’s observation.

Figure 5.2 shows the average prediction interval lengths. For small k, the pooling method has the

smallest intervals, the single subsampling and repeated subsampling methods have the next largest

intervals (mostly on par), and double conformal has the largest intervals. For large k, repeated

subsampling has the smallest intervals, followed by pooling and then single subsampling. Figure

5.2b excludes the length of the double conformal intervals. For k ≥ 200 and n ∈ {40, 100, 1000},

the double conformal intervals have average lengths between 7.8 and 8.6. In this case, it is difficult

to distinguish between the pooling, single subsample, and repeated subsample lengths on a scale

that includes the double conformal lengths.

We recommend the repeated subsampling method. This method has guaranteed coverage at

level 1 − 2α, but in practice it tends to cover at level 1 − α. Furthermore, its prediction sets are

about the same size as the single subsample method for small k. For large k, its prediction sets are

often smaller than both the pooling and the single subsample methods.
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Figure 5.2: Average unsupervised prediction interval length for a new group’s observation.

The examples in Figures 5.1 and 5.2 have considered cases with balanced numbers of

observations in each group. We now consider a highly unbalanced case: one group has 200

times as many observations as each of the other groups, and the between-group variation exceeds

the within-group variation by two orders of magnitude. We take Yij ∼ N(θj , σ
2 = 0.1) where

θj ∼ N(0, τ2 = 10), n1 = 1000, and nj = 5 for 2 ≤ j ≤ k. We let k vary from 20 to 100 in

increments of 5. Figure 5.3 shows that the CDF pooling method undercovers by about 0.05 at

most, while the single subsample and repeated subsample methods typically have at least nominal

coverage. The CDF pooling method produces the smallest prediction sets, and the single and

repeated subsampling methods have similar average prediction set lengths. Thus, the behavior we

observe in this highly unbalanced case is similar to the balanced case.
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Figure 5.3: In this unbalanced setting, one group has 1000 observations, and the remaining k − 1
groups have 5 observations. Intervals constructed at level α = 0.1.

5.3.2 The Supervised Case

Now the data consist of k groups where Dj = {(Xj1, Yj1), . . . , (Xjnj , Yjnj )}, j = 1, . . . , k. For

(X,Y ) from a new distribution, we are given X, and we want to predict Y . For each simulation,

we generate data from k distributions. We draw

θ1, . . . , θk ∼ N(µ, τ2)

Xj1, . . . , Xjnj ∼ N(0, 1)

εj1, . . . , εjnj ∼ N(0, 1).

We let Yj` = θjXj` + εj`, j = 1, . . . , k, ` = 1, . . . , nj .

Now we draw a new X ∼ N(0, 1), θk+1 ∼ N(µ, τ2), and response Y ∼ N(θk+1X, 1). Treating

θk+1 and Y as unknown, we wish to predict Y from the observed X = x. We construct prediction

sets following the procedures from Section 5.2.2. For the CDF pooling method (Method 1), we

use the approach justified by Theorem 5.2.4. We pool the observations from k0 = bk/2c groups

to fit a one-parameter linear regression model µ̂(X) = θ̂X. Then we use the remaining groups for

quantile estimation. For the subsampling methods (Methods 2 and 3), we fit µ̂(x,y)(X; θ̂) = θ̂X

using subsamples of one observation per group, augmented with (x, y). (Recall that x is the new

observed value, and y is a hypothesized value.) For Method 3, we use B = 100 subsamples.
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We let the number of observations per group (nj) equal 20, 100, and 1000. We vary the number

of groups (k) from 20 to 100 in increments of 5 and from 200 to 1000 in increments of 100. To draw

the θ parameters, we try µ = 0, τ2 = 1 and µ = 1, τ2 = 0.1. The first pair of parameters represents

a case where the relationships between X and Y may be quite different across groups. The second

pair of parameters is a case where the groups have similar trends that relate X and Y . We perform

1000 simulations at each combination of k, nj , and (µ, τ2). We set α = 0.1. Each simulation

generates a data sample, draws a new (X,Y ) from a new distribution, constructs prediction sets

C(X;α), determines the size of each prediction set, and checks whether Y ∈ C(X;α).

Figure 5.4 shows the coverage of the supervised methods in these two settings. The coverage is

the proportion of simulations for which Y ∈ C(X;α). At both (µ = 0, τ2 = 1) and (µ = 1, τ2 = 0.1),

all three methods have coverage close to 1−α for all n and k. For small k, the repeated subsample

method often overcovers by up to 0.05. The pooling method undercovers more often than the other

two methods.

Figure 5.5 shows the average length of the prediction sets from these supervised methods. In

almost all cases, the pooling intervals are the smallest, followed by the single subsampling intervals,

and the repeated subsampling intervals are the largest. Overall, the single subsampling method

appears to be the best choice in this setting. The single subsampling method has coverage of

approximately 1 − α even for small k. In addition, this method produces smaller prediction sets

than the repeated subsampling method, which also has coverage at or above 1− α for small k.

5.3.3 Unsupervised Prediction for an Observed Group

To construct a conformal prediction set for a new observation from an observed group, we proposed

two approaches. Method 1 constructs a prediction set using only the observations from the

distribution of interest, and Method 2 uses a residual based on the James-Stein shrinkage estimator

to borrow strength across distributions. We compare the results of these methods under two data

generation processes. We draw subject-specific means θ1, . . . , θk ∼ N(0, 1). Then for j = 1, . . . , k,

we generate Yj1, Yj2, . . . , Yjnj ∼ N(θj , σ
2). We consider σ2 = 1 and σ2 = 100. Across all

simulations, we set nj = 20. We vary k from 5 to 1000 in increments of 5. At each choice of

k, we perform 1000 simulations at α = 0.1. Each simulation generates a data sample, draws
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Figure 5.4: Coverage of supervised conformal prediction sets for an outcome from a new group.
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Figure 5.5: Average size of supervised conformal prediction sets for an outcome from a new group.
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another observation Y ∼ N(θ1, σ
2) from subject 1’s distribution, constructs prediction sets C(α)

for subject 1, determines the size of each prediction set, and checks whether Y ∈ C(α).

Figures 5.6 and 5.7 show the results of shrinkage Methods 1 and 2 for predicting a new

observation from subject 1. The left panels use σ2 = 1, and the right panels use σ2 = 100.

The simulations confirm that basing the conformal residuals on a shrinkage estimator can lead to

smaller predictive sets.

• Figure 5.6 shows the empirical coverage of shrinkage Methods 1 and 2 with the coverage level

fixed at 1 − α = 0.9. The coverage is typically about 0.9, and there is no clear difference in

performance between shrinkage Methods 1 and 2.

• Figure 5.7 plots the average size of conformal sets from shrinkage Methods 1 and 2 in both

data set-ups. When σ2 = 1, Methods 1 and 2 produce conformal sets with similar length.

When σ2 = 100, Method 2 consistently produces smaller conformal sets than Method 1. This

shows that shrinkage is especially beneficial when the within-group variance is high, relative

to the between-group variance. There does not appear to be a trend in conformal set size as

the number of groups increases.
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Figure 5.6: Coverage of conformal methods for predicting a new observation from an observed
group. 20 observations per group. Loess smoothing for trend visualization.
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5.4 Data Example

We now consider a data example from a sleep deprivation study (Balkin et al., 2000; Belenky et al.,

2003). This study evaluates 18 commercial vehicle drivers on a series of tests after 0, 1, 2, . . . , 9

nights of restriction to 3 hours of sleep. On each day, each subject takes a series of reaction time

tests, and the experimenters record each subject’s average reaction time. The data are available in

the sleepstudy dataset of R’s lme4 package (Bates et al., 2015).

We restructure the data to fit regressions that predict average sleep-deprived reaction time

(Y ) from number of days of sleep deprivation (X1) and the subject’s baseline (Day 0) average

reaction time under their normal sleep amount (X2). For each individual j, we observe nine triplets

(X1j , X2j , Yj). For the purpose of this demonstration, we treat each (X1j , X2j , Yj) as a random draw

from a subject-specific distribution Pj . (Alternatively, we could treat X1j as fixed, X2j as random,

and Yj as a random draw from Pj,Y |X . These methods are valid as long as the nonconformity

scores are exchangeable, as discussed below.) The variable X1j ranges from 1 to 9 days, and the

baseline time X2j is measured once for each subject j. Across subjects, X2 ranges from 199 to 322

milliseconds, and Y ranges from 194 to 466 milliseconds. Our fitted regression models have the

form Ŷ = β̂1X1 + β̂2X2. We have also considered a model that includes an intercept. This does not

make much of a difference when assessing whether the residuals appear to be exchangeable.
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Suppose we observe (X1, X2) = x on a nineteenth individual, and we want to predict

the associated Y . We construct conformal prediction sets C(X1, X2;α) such that P (Y ∈

C(X1, X2;α)) ≥ 1 − α. We use the constructions from Section 5.2.2, and we use nonconformity

scores of Ri(x, y) = |Yi − Ŷi|. The CDF pooling method (Method 1) uses the process justified by

Theorem 5.2.4. We fit the regression model on the pooled observations of 9 of the 18 individuals, and

we estimate the quantiles from the remaining individuals’ residuals. The one subsample method

(Method 2) randomly selects one observation per individual. We augment the subsample with

(X1, X2, y) for the observed (X1, X2) and some proposed y. We fit the regression model on this

augmented sample of size 19. The repeated subsampling method (Method 3) averages p-values

across B = 100 repetitions of Method 2 using the same (X1, X2, y). Method 1 is asymptotically

valid (k → ∞) if the nonconformity scores are exchangeable across all observations used for

quantile estimation. Methods 2 and 3 are valid if the nonconformity scores are exchangeable for

any subsample of one observation per subject. From visual inspection (not shown), the Method 1

exchangeability assumption may not be met. Several subjects have particularly high or particularly

low absolute residuals on all of their observations. In addition, we only have data on k = 18 subjects.

The Method 2/3 exchangeability assumption seems reasonable, from plots of the absolute residuals

when we fit and evaluate the model on one observation per subject.

Figure 5.8 shows the output and size of the conformal methods at α = 0.10. The left panel

shows the prediction sets at X1 = {1, 5, 9} and at X2 = {200, 230, 260, 290, 320}. For most (X1, X2)

combinations, all three intervals have similar centers. The right panel compares the length of the

three intervals over an expanded set of (X1, X2) combinations. The CDF pooling method produces

the smallest predictions in most cases, but this method is only asymptotically valid (k →∞). The

repeated subsample method has smaller intervals than the single subsample method in about half

of the cases. Favorably, the repeated subsample method has the least variation in interval lengths

across X2 values for a given X1.
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We also consider the estimated coverage of these three methods. The pooling method is only

asymptotically valid (k → ∞) at level 1 − α, the single sample method is valid at level 1 − α

but has more variation, and the repeated subsample method only has guaranteed coverage at

level 1 − 2α. We evaluate coverage by holding out 1 of the 18 individuals, selecting a triplet

(X1, X2, Y ) from the held-out individual, fitting a prediction set C on the remaining 17 subjects,

and checking whether Y ∈ C(X1, X2;α). We perform this procedure 18 × 9 = 162 times, holding

out each of the 9 observations from each of the 18 subjects once. The proportion of simulations in

which Y ∈ C(X1, X2;α) for held-out (X1, X2, Y ) is an estimate of the coverage of these methods.

Method 1 has algorithmic randomness in the individuals selected for model fitting (8 individuals)

versus quantile estimation (9 individuals). Methods 2 and 3 have algorithmic randomness in the

observations selected for each subsample. Thus, we repeat this coverage estimation procedure 1000

times.
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Table 5.1 shows the coverage proportions at α ∈ {0.10, 0.15, 0.20}. For each method, Table 5.1

displays the average coverage, the 2.5th percentile, and the 97.5th percentile over 1000 simulations.

On average, we see that CDF pooling undercovers by about 0.02 to 0.03, and the subsampling

methods overcover by about 0.03 to 0.06. The repeated subsampling method has slightly higher

coverage than the single subsampling method, but repeated subsampling also has lower variation

in coverage. Overall, the repeated subsampling method is the best choice in this setting. This

method achieves coverage of at least 1 − α and has lower variation in set size and coverage than

the other two methods.

Table 5.1: Estimated coverage of conformal intervals on sleep deprivation data. At varying α,
we show the average coverage and (2.5th percentile, 97.5th percentile) coverage intervals of each
method over 1000 simulations.

Method α = 0.10 α = 0.15 α = 0.20

1. CDF Pooling 0.87 (0.84, 0.90) 0.83 (0.80, 0.86) 0.78 (0.75, 0.81)

2. Subsample Once 0.94 (0.92, 0.97) 0.89 (0.86, 0.92) 0.83 (0.80, 0.87)

3. Repeated Subsample 0.95 (0.94, 0.96) 0.91 (0.90, 0.92) 0.84 (0.83, 0.85)

5.5 Conclusion

We have proposed and compared several methods for constructing distribution-free prediction sets

for random effects models. We believe these are the first such methods. We consider a CDF

pooling method that is asymptotically valid as k → ∞, a single subsample method that uses one

observation per group, and a repeated subsample method that repeatedly selects one observation

per group and averages p-values over subsamples. The single subsample method is valid at level

1− α. The repeated subsample method has guaranteed coverage at level 1− 2α but tends to have

coverage of at least 1− α in practice.

Based on our simulations and data example, we recommend the repeated subsample method.

In the unsupervised simulations, this method has coverage close to 1 − α and has the smallest

prediction sets for large k. In the sleep data example, this method has coverage of at least 1 − α

and has more stable size and coverage than the other methods. Pooling CDFs often produces

small prediction sets but is only asymptotically valid. Single subsampling is valid at level 1−α but

requires throwing away most of the data. Repeated subsampling has less algorithmic variation than
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single subsampling, which makes this method more stable and more reproducible. In the supervised

simulations, repeated subsampling is a reasonable choice, but pooling and single subsampling both

produce smaller sets with approximately nominal coverage. It is a curiosity that single subsampling

(which ignores most of the data) produces smaller prediction sets than repeated subsampling in

this case.

The main focus of this chapter has been the prediction of a new observation on a new subject.

In the unsupervised setting, we also considered the problem of predicting a future observation on

an existing subject. Future work may consider alternatives to the James-Stein shrinkage residual

or may incorporate repeated subsampling into the shrinkage approach. In addition, random effects

conformal prediction for an existing subject in the supervised setting remains an open problem.

Space does not permit a thorough investigation of these problems here, but we hope to report more

on this problem in a future paper.
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Appendix A

Proofs from Chapter 1

Theorem 1.0.1. Csplit
n (α) is a valid 100(1 − α)% confidence set for θ∗. As a consequence (and

equivalently), when testing an arbitrary composite null H0 : θ∗ ∈ Θ0 versus H1 : θ∗ ∈ Θ \ Θ0,

rejecting H0 when Θ0 ∩ Csplit
n (α) = ∅ provides a valid level α hypothesis test. This rule reduces to

rejecting H0 if Tn(θ̂0) ≥ 1/α, where θ̂0 = arg maxθ∈Θ0 L0(θ) is the null MLE.

Proof. This result is due to Wasserman et al. (2020). To prove this fact, we show that

Eθ∗ [Tn(θ∗) | D1] ≤ 1. First, we use only the data in D1 to fit a parameter θ̂1. Let M(θ) =

support(Pθ). We see

Eθ∗ [Tn(θ∗) | D1] = Eθ∗
[
L0(θ̂1)

L0(θ∗)

∣∣∣∣∣D1

]
= Eθ∗

 ∏
Yi∈D0

p
θ̂1

(Yi)

pθ∗(Yi)

∣∣∣∣∣D1

 iid
=

∏
Yi∈D0

Eθ∗
[
p
θ̂1

(Yi)

pθ∗(Yi)

∣∣∣∣∣D1

]

=

|D0|∏
i=1

{∫
M(θ∗)

p
θ̂1

(yi)

pθ∗(yi)
pθ∗(yi)dyi

}
=

|D0|∏
i=1

{∫
M(θ∗)

p
θ̂1

(yi)dyi

}
≤
|D0|∏
i=1

{∫
M(θ̂1)

p
θ̂1

(yi)dyi

}
= 1.

Applying Markov’s inequality and the above fact,

Pθ∗
(
θ∗ /∈ Csplit

n (α)
)

= Pθ∗ (Tn(θ∗) ≥ 1/α) ≤ αEθ∗ [Tn(θ∗)] = αEθ∗ [Eθ∗ [Tn(θ∗) | D1]] ≤ α.

This shows that θ∗ ∈ Csplit
n (α) with probability at least 1− α.
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Alternatively, suppose we want to test H0 : θ∗ ∈ Θ0 versus H1 : θ∗ ∈ Θ \ Θ0. We see that

rejecting H0 when Θ0 ∩ Csplit
n (α) = ∅ provides a valid level α hypothesis test. Under H0,

Pθ∗
{

Θ0 ∩ Csplit
n (α) = ∅

}
≤ Pθ∗

{
θ∗ /∈ Θ0 ∩ Csplit

n (α)
}

= Pθ∗
{
θ∗ /∈ Csplit

n (α)
}
≤ α.

We now show that (1) rejecting H0 when Θ0 ∩ Csplit
n (α) = ∅ is equivalent to (2) rejecting H0

when Tn(θ̂0) ≥ 1/α.

(1 ⇒ 2) Suppose Θ0 ∩ Csplit
n (α) = ∅. Then for any θ ∈ Θ0, Tn(θ) ≥ 1/α. Since θ̂0 ∈ Θ0, that

means Tn(θ̂0) ≥ 1/α.

(2 ⇒ 1) Suppose Tn(θ̂0) = L0(θ̂1)/L0(θ̂0) ≥ 1/α. Then for any θ ∈ Θ0, L0(θ̂1)/L0(θ) ≥

L0(θ̂1)/L0(θ̂0) ≥ 1/α. So Θ0 ∩ Csplit
n (α) = ∅.

Theorem 1.0.2. When f∗ ∈ F , Csplit
n (α) = {f ∈ F : Tn(f) < 1/α} is a valid 100(1 − α)%

confidence set for f∗. A valid level α hypothesis test of H0 : f∗ ∈ F versus H1 : f∗ /∈ F rejects

H0 if F ∩ Csplit
n (α) = ∅. This hypothesis test is equivalent to rejecting H0 if Tn(f̂0) ≥ 1/α, where

f̂0 = arg max
f∈F

L0(f) is the null MLE.

Proof. This result is also due to Wasserman et al. (2020). The proof is similar to the proof of

Theorem 1.0.1. First, we use only the data in D1 to fit a density f̂1. Let M∗ be the support of

the distribution P ∗ with density f∗, and let M̂1 be the support of the distribution with density f̂1.

We see

EP ∗ [Tn(f∗) | D1] = EP ∗
[
L0(f̂1)

L0(f∗)

∣∣∣∣∣D1

]
= EP ∗

 ∏
Yi∈D0

f̂1(Yi)

f∗(Yi)

∣∣∣∣∣D1

 iid
=

∏
Yi∈D0

EP ∗
[
f̂1(Yi)

f∗(Yi)

∣∣∣∣∣D1

]

=

|D0|∏
i=1

{∫
M∗

f̂1(yi)

f∗(yi)
f∗(yi)dyi

}
=

|D0|∏
i=1

{∫
M∗

f̂1(yi)dyi

}
≤
|D0|∏
i=1

{∫
M̂1

f̂1(yi)dyi

}
= 1.

Applying Markov’s inequality and the above fact, under H0,

PP ∗
(
f∗ /∈ Csplit

n (α)
)

= PP ∗ (Tn(f∗) ≥ 1/α) ≤ αEP ∗ [Tn(f∗)] = αEP ∗ [EP ∗ [Tn(f∗) | D1]] ≤ α.

The first equality holds under the null assumption that f∗ ∈ F . This shows that under H0,

f∗ ∈ Csplit
n (α) with probability at least 1− α.
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Alternatively, suppose we want to test H0 : f∗ ∈ F versus H1 : f∗ /∈ F . We see that rejecting

H0 when F ∩ Csplit
n (α) = ∅ provides a valid level α hypothesis test. Under H0,

PP ∗
{
F ∩ Csplit

n (α) = ∅
}
≤ PP ∗

{
f∗ /∈ F ∩ Csplit

n (α)
}

= PP ∗
{
f∗ /∈ Csplit

n (α)
}
≤ α.

We now show that (1) rejecting H0 when F ∩ Csplit
n (α) = ∅ is equivalent to (2) rejecting H0

when Tn(f̂0) ≥ 1/α.

(1 ⇒ 2) Suppose F ∩ Csplit
n (α) = ∅. Then for any f ∈ F , Tn(f) ≥ 1/α. Since f̂0 ∈ F , that

means Tn(f̂0) ≥ 1/α.

(2 ⇒ 1) Suppose Tn(f̂0) = L0(f̂1)/L0(f̂0) ≥ 1/α. Then for any f ∈ F , L0(f̂1)/L0(f) ≥

L0(f̂1)/L0(f̂0) ≥ 1/α. So F ∩ Csplit
n (α) = ∅.
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Appendix B

Proofs and Additional Explorations

from Chapter 2

B.1 Proofs of Theorems

Before proving Theorem 2.2.1, we establish Lemma B.0.1 and Lemma B.0.2. We draw heavily

on finite population central limit theorem results from Hájek (1960) and Li and Ding (2017).

Lemma B.0.1 combines key results from these two papers and adapts them to our setting.

Lemma B.0.1. Let (Dn)n∈2N be a sequence of datasets, where Dn = {Yn1, . . . , Ynn} and each Yni

is an independent observation from N(θ∗, Id). Let D0,n be a sample of n/2 observations from Dn.

Define Yn = 1
n

∑n
i=1 Yni and Y 0,n = 2

n

∑
Yni∈D0,n

Yni. As n → ∞,
√
n(Y 0,n − Yn) converges in

distribution to N(0, Id) with probability 1.

Proof. We show a highlight of the proof of Lemma B.0.1, in five steps.

Step 1 (Hájek, 1960): Show that simple random sampling and Poisson sampling approaches

produce the same limiting distributions.

In the notation of Hájek (1960), suppose we have an infinite sequence of simple random sample

experiments indexed by ν. Experiment ν draws a simple random sample of size nν from a population

of size Nν given by {Yν1, . . . , YνNν}. We assume that nν → ∞ and Nν − nν → ∞. In the simple
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random sampling set-up, a subset sk of indices {1, . . . , Nν} is chosen with probability

P (sk) =


(
Nν
nν

)−1
: |sk| = nν

0 : else.

In contrast, in a Poisson sampling approach with mean sample size nν , a subset sk is chosen with

probability

P (sk) =

(
nν
Nν

)k (
1− nν

Nν

)Nν−k
.

We say that each experiment produces a simple random sample (SRS) sn and a Poisson sample

sk such that sn ⊆ sk or sk ⊆ sn. To construct these samples, we take two steps:

(i) Draw k ∼ Binom(Nν , nν/Nν).

(ii) If k = n, choose SRS sn, and set sk = sn.

If k > n, choose SRS sk, and then let sn be an SRS of size n from sk.

If k < n, choose SRS sn, and then let sk be an SRS of size k from sn.

Using the two samples, we define two random variables:

ην =
∑
i∈sn

(Yνi −Y ν) and η∗ν =
∑
i∈sk

(Yνi −Y ν).

We can show that the variance of η∗ν is

Dη∗ν = var(η∗ν) =
nν
Nν

(
1− nν

Nν

) Nν∑
i=1

(Yνi −Y ν)2.

Under the assumption that nν →∞ and N − nν →∞, we can then show that

lim
ν→∞

E[(ην − η∗ν)2]

Dη∗ν
= 0. (B.1)

Remark 2.1 of Hájek (1960) states that (B.1) implies that the limiting distributions of ην/
√
Dη∗ν

and η∗ν/
√
Dη∗ν are the same if they exist, and they exist under the same conditions. To see this,
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we use Chebyshev’s inequality. For ε > 0,

P

(∣∣∣∣∣ ην√
Dη∗ν

− η∗ν√
Dη∗ν

∣∣∣∣∣ > ε

)
≤ 1

ε2
var

(
ην − η∗ν√
Dη∗ν

)
=

1

ε2
E[(ην − η∗ν)2]

Dη∗ν

ν→∞→ 0.

This means that
∣∣ην/√Dη∗ν − η∗ν/√Dη∗ν∣∣ p→ 0. Under this condition, for any distribution W ,

ην/
√
Dη∗ν  W if and only if η∗ν/

√
Dη∗ν  W .

Since η∗ν is a sum of independent random variables, it will be easier to work with η∗ν/Dη
∗
ν than

to work with ην/Dη
∗
ν .

Step 2 (Hájek, 1960): Find conditions such that ην/
√
Dη∗ν  N(0, 1). (We can think of ην

as (n/2)(Y 0,n −Yn) and Dη∗ν as var(
∑n

i=1Bi(Yni −Yn)) for Bi
iid∼ Bernoulli(1/2).)

Theorem 3.1 in Hájek (1960) is the key result for asymptotic normality. We present an

intermediate result from the proof of Theorem 3.1.

Let ξν =
∑

i∈sn,ν Yν,i. (So ην = ξν −nνY ν .) Let Dξν be the variance of ξν . Let Sντ be the subset

of Sν = {1, . . . , Nν} on which the inequality

|Yνi −Y ν | > τ
√
Dξν

holds. Suppose that nν →∞ and Nν − nν →∞. If

lim
ν→∞

∑
i∈Sντ (Yνi −Y ν)2∑
i∈Sν (Yνi −Y ν)2

= 0 for any τ > 0, (B.2)

then ην/
√
Dη∗ν  N(0, 1).

We will show that η∗ν/
√
Dη∗ν  N(0, 1), and then we can appeal to Step 1’s result. η∗ν is the

centered sum of the Poisson sampling terms. We can write η∗ν as

η∗ν =

Nν∑
i=1

ζνi, where ζνi =

 Yνi −Y ν with probabilty nν/Nν

0 with probabilty 1− nν/Nν .

In this setting, Lindeberg’s condition for η∗ν/
√
Dη∗ν  N(0, 1) is for all τ > 0,

lim
ν→∞

1

Dη∗ν

Nν∑
i=1

E
[
(ζνi − E[ζνi])

2 · 1
(
|ζνi − E[ζνi| > τ

√
Dη∗ν

)]
= 0.
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We can show that (B.2) implies that the Lindeberg condition is satisfied. Since Step 1 implies that

the limiting distribution of ην/
√
Dη∗ν must be the same as the limiting distribution of η∗ν/

√
Dη∗ν ,

we conclude that ην/
√
Dη∗ν  N(0, 1).

Step 3: If d = 1, show that ην/
√
Dη∗ν  N(0, 1) implies

√
n(Y 0,n −Yn) N(0, 1).

This is mostly a matter of adapting Step 2’s result to our setting. When nν/Nν = 1/2, ην is

the same random variable as (n/2)(Y 0,n −Yn). Using the formula for Dη∗ν ,

√
n(Y 0,n −Yn)√

1
n

∑n
i=1(Yni −Yn)2

=
(n/2)(Y 0,n −Yn)√
1
4

∑n
i=1(Yni −Yn)2

d
=

ην√
Dη∗ν

 N(0, 1).

In addition,
√

1
n

∑n
i=1(Yni −Yn)2/

√
var(Yni)

p→ 1. Note that var(Yni) = 1 by initial assumption.

By Slutsky’s Theorem,
√
n(Y 0,n −Yn) N(0, 1).

Step 4 (Li and Ding, 2017): If Yn1, . . . , Ynn ∼ N(θ∗, 1), show that the condition of Step 2 is

satisfied with probability 1.

These results come from page 2 of the appendix of Li and Ding (2017). The authors show that

if the Ynis are iid draws from a superpopulation with 2 + ε (ε > 0) absolute moments and nonzero

variance, then (1/n) max1≤i≤n(Yni−Yn)2 ≡ mn/n→ 0 with probability 1. Furthermore, they show

that mn/n→ 0 implies their condition (A2), which is a rewriting of Hájek (1960)’s condition (B.2).

Since N(θ∗, 1) satisfies the superpopulation conditions, condition (B.2) is satisfied with

probability 1. Then following Steps 2 and 3,
√
n(Y 0,n −Yn) N(0, 1).

Step 5 (Hájek, 1960): Extend results to d > 1.

In d dimensions, suppose Yn1, . . . , Ynn ∼ N(θ∗, Id). Remark 3.2 of Hájek (1960) notes that

we can user the Cramér-Wold device to extend the results to the multivariate case. Let Z =

(Z(1), . . . , Z(d)) represent the N(0, Id) distribution. Then for each component, Z(j) ∼ N(0, 1). By

the Cramér-Wold device, we can say that
√
n(Y 0,n − Yn)  Z if and only if for any λ ∈ Rd,∑d

j=1 λ
(j)√n(Y

(j)
0,n −Y

(j)
n ) 

∑d
j=1 λ

(j)Z(j).

For any dimension j, we can think of Y
(j)
n1 , . . . , Y

(j)
nn as draws from a N(θ∗(j), 1) superpopulation.

So the superpopulation conditions from Step 4 are satisfied, which means
√
n(Y

(j)
0,n −Y

(j)
n ) Z(j).

We conclude that
√
n(Y 0,n −Yn) N(0, Id).

Lemma B.0.2. Assume (Dn)n∈2N is a sequence of data sets such that Dn = {Yn1, Yn2, . . . , Ynn}
with observations Ynj

iid∼ N(θ∗, Id). Let D0,n be a sample of n/2 observations from Dn. Define
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Yn = (1/n)
∑n

i=1 Yni and Y 0,n = (2/n)
∑

Yni∈D0,n
Yni. Let c > 0, and let (θn) be a sequence that

satisfies ‖Yn− θn‖ ≤ c/
√
n for all n. Define Xn ≡

√
n(Y 0,n−Yn). Let Z denote a N(0, Id) random

variable. Then

E
[
exp

(
−3

4
XT
nXn +

√
n

2
XT
n

(
Yn − θn

))
| Dn

]
− E

[
exp

(
−3

4
ZTZ +

√
n

2
ZT
(
Yn − θn

))
| Dn

]
= oP (1).

Proof. Since (θn) is chosen such that ‖Yn − θn‖ ≤ c/
√
n, we can re-write θn = Yn + (c/

√
n)vn,

where vn ∈ Rd satisfies ‖vn‖ ≤ 1 for all n.

Define a function f by

f(xn, vn) ≡ exp

(
−3

4
xTnxn −

c

2
xTnvn

)
.

f is clearly a continuous function. We can also show that f is bounded. Define

g(xn, vn) ≡ −3

4
xTnxn −

c

2
xTnvn

so that f(xn, vn) = exp(g(xn, vn)). We can see that

∂

∂xn
g(xn, vn) = −3

2
xn −

c

2
vn

set
= ~0

is solved by xn = −(c/3)vn. Since g(xn, vn) is concave in xn, g(xn, vn) is maximized at xn =

−(c/3)vn for any vn. Since f(xn, vn) = exp(g(xn, vn)), f(xn, vn) is also maximized at this value of

xn for any vn. Under the assumption that ‖vn‖ ≤ 1, we see

f(xn, vn) ≤ exp

(
−3

4

(
− c

3

)2
vTn vn −

c

2

(
− c

3

)
vTn vn

)
= exp

(
− c

2

12
‖vn‖2 +

c2

6
‖vn‖2

)
≤ exp

(
c2

12

)
.

Thus, f(xn, vn) is a continuous and bounded function.

The claim of Lemma B.0.2 is equivalent to E[f(Xn, vn) | Dn] − E[f(Z, vn) | Dn] = oP (1).

The Portmanteau Theorem provides several equivalent definitions of convergence in distribution,

including that Xn  Z if and only if E[h(Xn)]→ E[h(Z)] for every continuous, bounded function
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h. We prove the result on f(Xn, vn) by modifying the Van der Vaart (2000), Chapter 2, proof of

this Portmanteau Theorem result.

Let γ > 0. Fix ε > 0 such that

ε < γ / (3 + 3 exp(c2/12)). (B.3)

Choose a large enough compact rectangle I such that

P(Z /∈ I) < ε. (B.4)

Let B1(0) be the d-dimensional ball of radius 1 centered at 0. By construction, each vn ∈ B1(0).

Since f is continuous and I×B1(0) is compact, f(xn, vn) is uniformly continuous on I×B1(0). We

can thus partition I×B1(0) into J compact regions Ij×Vj where I×B1(0) = ∪Jj=1(Ij×Vj) such that

for any j and for any (xn1, vn1), (xn2, vn2) ∈ Ij × Vj , |f(xn1, vn1) − f(xn2, vn2)| < ε. (For instance

the Ij regions may be rectangles and the Vj regions may be rectangles truncated at the boundaries

of B1(0). These rectangular regions may be appropriately sized such that within a region Ij × Vj ,

d((xn1, vn1), (xn2, vn2)) is small enough that |f(xn1, vn1)− f(xn2, vn2)| < ε.)

Select a point (x′j , v
′
j) from each Ij × Vj . Define

fε(x, v) =
J∑
j=1

f(x′j , v
′
j)1((x, v) ∈ Ij × Vj).

For a given sample Dn, we note that there are
(
n
n/2

)
possible values of Xn, since there are

(
n
n/2

)
possible values of Y 0,n. We denote the sum over all possible values of Xn as

∑
Xn

.
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Note that

|E[f(Xn, vn) | Dn]− E[fε(Xn, vn) | Dn]|

=

∣∣∣∣∣
(
n

n/2

)−1∑
Xn

f(Xn, vn)−
(
n

n/2

)−1∑
Xn

fε(Xn, vn)

∣∣∣∣∣
=

∣∣∣∣∣
(
n

n/2

)−1∑
Xn

[
(f(Xn, vn)− fε(Xn, vn))1(Xn ∈ I) + (f(Xn, vn)− fε(Xn, vn))1(Xn /∈ I)

]∣∣∣∣∣
≤
(
n

n/2

)−1∑
Xn

|f(Xn, vn)− fε(Xn, vn)|1(Xn ∈ I)+

(
n

n/2

)−1∑
Xn

|f(Xn, vn)− fε(Xn, vn)|1(Xn /∈ I)

=

(
n

n/2

)−1∑
Xn

|f(Xn, vn)− fε(Xn, vn)|1(Xn ∈ I, vn ∈ B1(0))+

(
n

n/2

)−1∑
Xn

|f(Xn, vn)− fε(Xn, vn)|1(Xn /∈ I)

<

(
n

n/2

)−1∑
Xn

ε+

(
n

n/2

)−1∑
Xn

|f(Xn, vn)|1(Xn /∈ I)

≤ ε+ exp
(
c2/12

)
P(Xn /∈ I | Dn). (B.5)

Similarly, we show that

∣∣∣E[f(Z, vn) | Dn]− E[fε(Z, vn) | Dn]
∣∣∣

=
∣∣∣E[(f(Z, vn)− fε(Z, vn))1(Z ∈ I) + (f(Z, vn)− fε(Z, vn))1(Z /∈ I)

]∣∣∣
≤ E

[∣∣∣f(Z, vn)− fε(Z, vn)
∣∣∣1(Z ∈ I) | Dn

]
+ E

[∣∣∣f(Z, vn)− fε(Z, vn)
∣∣∣1(Z /∈ I) | Dn

]
= E

[∣∣∣f(Z, vn)− fε(Z, vn)
∣∣∣1(Z ∈ I, vn ∈ B1(0)) | Dn

]
+ E

[∣∣∣f(Z, vn)− fε(Z, vn)
∣∣∣1(Z /∈ I) | Dn

]
< ε+ exp(c2/12)P(Z /∈ I | Dn)

= ε+ exp(c2/12)P(Z /∈ I)

< ε+ ε exp(c2/12). (B.6)
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In addition, we see that

∣∣E [fε(Xn, vn) | Dn]− E [fε(Z, vn) | Dn]
∣∣

=

∣∣∣∣∣
(
n

n/2

)−1∑
Xn

fε(Xn, vn)− E[fε(Z, vn)]

∣∣∣∣∣
=

∣∣∣∣∣∣
(
n

n/2

)−1∑
Xn

J∑
j=1

f(x′j , v
′
j)1((Xn, vn) ∈ Ij × Vj)−

J∑
j=1

f(x′j , v
′
j)P(Z ∈ Ij)1(vn ∈ Vj)

∣∣∣∣∣∣
≤

J∑
j=1

∣∣∣∣∣
(
n

n/2

)−1∑
Xn

f(x′j , v
′
j)1(Xn ∈ Ij)1(vn ∈ Vj)− f(x′j , v

′
j)P(Z ∈ Ij)1(vn ∈ Vj)

∣∣∣∣∣
≤

J∑
j=1

∣∣∣∣∣
(
n

n/2

)−1∑
Xn

f(x′j , v
′
j)1(Xn ∈ Ij)− f(x′j , v

′
j)P(Z ∈ Ij)

∣∣∣∣∣
=

J∑
j=1

∣∣∣∣∣f(x′j , v
′
j)

[(
n

n/2

)−1∑
Xn

1(Xn ∈ Ij)− P(Z ∈ Ij)

]∣∣∣∣∣
≤

J∑
j=1

|P(Xn ∈ Ij | Dn)− P(Z ∈ Ij)| ×
∣∣f(x′j , v

′
j)
∣∣ . (B.7)

For the sequence of datasets (Dn)n∈2N, Lemma B.0.1 establishes that Xn  N(0, Id) with

probability 1. This tells us that with probability 1 over the randomness in sequences (Dn)n∈2N,

limn→∞ P(Xn ∈ I | Dn) = P(Z ∈ I). Since almost sure convergence implies convergence in

probability, for any δ > 0,

lim
n→∞

P
(
|P(Xn ∈ I | Dn)− P(Z ∈ I)| > δ

)
= 0 (B.8)

and lim
n→∞

P
(
|P(Xn ∈ Ij | Dn)− P(Z ∈ Ij)| > δ

)
= 0 for 1 ≤ j ≤ J. (B.9)

The outer probability is over the randomness in the sequences (Dn)n∈2N.
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Now we see

lim
n→∞

P
(∣∣E[f(Xn, vn) | Dn]− E[f(Z, vn) | Dn]

∣∣ > γ)

≤ lim
n→∞

P
(∣∣E[f(Xn, vn) | Dn]− E[fε(Xn, vn) | Dn]

∣∣+∣∣E[fε(Xn, vn) | Dn]− E[fε(Z, vn) | Dn]
∣∣+∣∣E[fε(Z, vn) | Dn]− E[f(Z, vn) | Dn]

∣∣ > γ
)

≤ lim
n→∞

P
(∣∣E[f(Xn, vn) | Dn]− E[fε(Xn, vn) | Dn]

∣∣ > γ/3
)
+

lim
n→∞

P
(∣∣E[fε(Xn, vn) | Dn]− E[fε(Z, vn) | Dn]

∣∣ > γ/3
)
+

lim
n→∞

P
(∣∣E[fε(Z, vn) | Dn]− E[f(Z, vn) | Dn]

∣∣ > γ/3
)

≤ lim
n→∞

P
(
ε+ exp(c2/12)P(Xn /∈ I | Dn) > γ/3

)
+ lim
n→∞

P
(
ε+ ε exp(c2/12) > γ/3)+

lim
n→∞

P

 J∑
j=1

∣∣P(Xn ∈ Ij | Dn)− P(Z ∈ Ij)
∣∣× |f(x′j , v

′
j)| > γ/3

 by (B.5), (B.6), and (B.7)

= lim
n→∞

P
(
ε+ exp(c2/12)P(Xn /∈ I | Dn) > γ/3

)
+

lim
n→∞

P

 J∑
j=1

∣∣P(Xn ∈ Ij | Dn)− P(Z ∈ Ij)
∣∣× |f(x′j , v

′
j)| > γ/3

 by (B.3)

≤ lim
n→∞

P
(
ε+ exp(c2/12) (P(Xn /∈ I | Dn)− P(Z /∈ I)) > γ/3− exp(c2/12)P(Z /∈ I)

)
+

lim
n→∞

J∑
j=1

P
(∣∣P(Xn ∈ Ij | Dn)− P(Z ∈ Ij)

∣∣ > (γ/3)|f(x′j , vj)|−1
)

≤ lim
n→∞

P
(
ε+ exp(c2/12)(P(Xn /∈ I | Dn)− P(Z /∈ I)) > γ/3− ε exp(c2/12)

)
by (B.4) and (B.9)

= lim
n→∞

P
(
P(Xn /∈ I | Dn)− P(Z /∈ I) >

γ − 3ε− 3ε exp(c2/12)

3 exp(c2/12)

)
= 0 by (B.3) and (B.8).

We have shown that for arbitrary γ > 0,

lim
n→∞

P
(∣∣E[f(Xn, vn) | Dn]− E[f(Z, vn) | Dn]

∣∣ > γ) = 0.

We conclude that E[f(Xn, vn) | Dn]− E[f(Z, vn) | Dn] = oP (1).
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Theorem 2.2.1. Assume we have a sequence of datasets (Dn)n∈2N, where Dn = {Yn1, . . . , Ynn} and

each Yni is an independent observation from N(θ∗, Id). Let D0,n be a sample of n/2 observations

from Dn, and let D1,n = Dn\D0,n. Define Yn = (1/n)
∑n

i=1 Yni, Y 0,n = (2/n)
∑

Yni∈D0,n
Yni, and

Y 1,n = (2/n)
∑

Yni∈D1,n
Yni. Let c > 0, and let (θn) be a sequence that satisfies ‖Yn − θn‖ ≤ c/

√
n

for all n. Then

E{Tn(θn) | Dn} /

{
exp

(
3n

10
‖Yn − θn‖2

)(
2

5

)d/2}
= 1 + oP (1). (2.3)

Proof. Define Xn ≡
√
n(Y 0,n−Yn) and let Z ∼ N(0, Id). In addition, define µn ≡ (

√
n/5)(Yn− θn)

and Ω ≡ (2/5)Id. Then

E[Tn(θn) | Dn] /

{
exp

(
3n

10
‖Yn − θn‖2

)(
2

5

)d/2}

= E
[
exp

(
−n

4
‖Y 0,n −Y 1,n‖2 +

n

4
‖Y 0,n − θn‖2

)
| Dn

]
/

{
exp

(
3n

10
‖Yn − θn‖2

)(
2

5

)d/2}

= E
[
exp

(
−n

4
‖2Y 0,n − 2Yn‖2 +

n

4
‖Y 0,n − θn‖2

)
| Dn

]
exp

(
−3n

10
‖Yn − θn‖2

)(
2

5

)−d/2
= E

[
exp

(
−n‖Y 0,n −Yn‖2 +

n

4
‖Y 0,n −Yn +Yn − θn‖2

)
| Dn

]
exp

(
−3n

10
‖Yn − θn‖2

)(
2

5

)−d/2
= E

[
exp

(
−3n

4
‖Y 0,n −Yn‖2 +

n

2
(Y 0,n −Yn)T (Yn − θn) +

n

4
‖Yn − θn‖2

)
| Dn

]
×

exp

(
−3n

10
‖Yn − θn‖2

)(
2

5

)−d/2
= E

[
exp

(
−3

4
XT
nXn +

√
n

2
XT
n

(
Yn − θn

))
| Dn

]
exp

(
− n

20
‖Yn − θn‖2

)(2

5

)−d/2
= E

[
exp

(
−3

4
XT
nXn +

√
n

2
XT
n

(
Yn − θn

))
| Dn

]
/E
[
exp

(
−3

4
ZTZ +

√
n

2
ZT
(
Yn − θn

))
| Dn

]
(B.10)

= 1 + oP (1). (B.11)
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Step (B.10) holds because

E
[
exp

(
−3

4
ZTZ +

√
n

2
ZT
(
Yn − θn

))
| Dn

]
=

∫
Rd

[
1

(2π)d/2|Id|1/2
exp

(
−1

2
zT z

)
exp

(
−3

4
zT z +

√
n

2
zT
(
Yn − θn

))]
dz

=

∫
Rd

[
1

(2π)d/2
exp

(
−5

4
zT z +

√
n

2
zT
(
Yn − θn

))]
dz

= |Ω|1/2
∫
Rd

[
1

(2π)d/2|Ω|1/2
exp

(
−1

2
(z − µn)TΩ−1(z − µn) +

n

20
‖Yn − θn‖2

)]
dz (B.12)

= exp
( n

20
‖Yn − θn‖2

)
|Ω|1/2

= exp
( n

20
‖Yn − θn‖2

)(2

5

)d/2
.

Step (B.12) uses the following equality:

−5

4
zT z +

√
n

2
zT (Yn − θn)

= −5

4

[
zT z − 2

√
n

5
zT (Yn − θn) +

n

25
(Yn − θn)T (Yn − θn)− n

25
(Yn − θn)T (Yn − θn)

]
= −5

4

(
z −
√
n

5
(Yn − θn)

)T (
z −
√
n

5
(Yn − θn)

)
+

n

20
‖Yn − θn‖2

= −1

2

(
z −
√
n

5
(Yn − θn)

)T (
5

2
Id

)(
z −
√
n

5
(Yn − θn)

)
+

n

20
‖Yn − θn‖2

= −1

2
(z − µn)TΩ−1(z − µn) +

n

20
‖Yn − θn‖2.

To justify step (B.11), note that E
[
exp

(
−3

4Z
TZ +

√
n

2 Z
T
(
Yn − θn

))
| Dn

]
, which equals

exp
(
n
20‖Yn − θn‖

2
) (

2
5

)d/2
, is bounded between (2/5)d/2 and exp(c2/20)(2/5)d/2 under the assump-

tion that ‖Yn − θn‖ ≤ c/
√
n. By Lemma B.0.2,

E
[
exp

(
−3

4
XT
nXn +

√
n

2
XT
n

(
Yn − θn

))
| Dn

]
− E

[
exp

(
−3

4
ZTZ +

√
n

2
ZT
(
Yn − θn

))
| Dn

]
= oP (1).

Combining these two facts, we conclude that

E
[
exp

(
−3

4
XT
nXn +

√
n

2
XT
n

(
Yn − θn

))
| Dn

]
/E
[
exp

(
−3

4
ZTZ +

√
n

2
ZT
(
Yn − θn

))
| Dn

]
= 1 + oP (1).
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Theorem 2.3.1. Let Y1, . . . , Yn ∼ N(θ∗, Id). The splitting proportion that minimizes E[r2{Csplit
n (α)}]

is

p∗0 = 1−

√
d2 + 2d log

(
1
α

)
− d

2 log
(

1
α

) . (2.6)

Proof. Recall that p0 represents the proportion of observations that we place in D0.

We know that

Y 0 ∼ N
(
θ∗, V ar =

1

np0
Id

)
Y 1 ∼ N

(
θ∗, V ar =

1

n(1− p0)
Id

)
.

Since all observations in D0 and D1 are mutually independent, this implies

Y 0 −Y 1 ∼ N
(

0,

(
1

np0
+

1

n(1− p0)

)
Id

)
(B.13)

and, hence,

(
1

np0
+

1

n(1− p0)

)−1/2 (
Y 0 −Y 1

)
∼ N (0, Id) .

We now see

‖Y 0 −Y 1‖2 =

(
1

np0
+

1

n(1− p0)

)∥∥∥∥∥
(

1

np0
+

1

n(1− p0)

)−1/2

(Y 0 −Y 1)

∥∥∥∥∥
2

d
=

(
1

np0
+

1

n(1− p0)

)
χ2
d. (B.14)

When p0 = 1/2, this expression is (4/n)χ2
d, as shown in the derivation of equation 2.7.
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Setting θ̂1 = Y 1, at θ ∈ Rd we construct the test statistic. The derivation of equation 2.2 justifies

the equality of the first and second lines.

Tn(θ) =

∏
Yi∈D0

exp
(
−1

2(Yi − θ̂1)T (Yi − θ̂1)
)

∏
Yi∈D0

exp
(
−1

2(Yi − θ)T (Yi − θ)
)

= exp

 ∑
Yi∈D0

(
−1

2
(Y 0 −Y 1)T (Y 0 −Y 1) +

1

2
(Y 0 − θ)T (Y 0 − θ)

)
= exp

(
−np0

2
‖Y 0 −Y 1‖2 +

np0

2
‖Y 0 − θ‖2

)
.

Using a split proportion of p0, the split LRT confidence set is now

Csplit
n =

{
θ ∈ Θ : exp

(
−np0

2
‖Y 0 −Y 1‖2 +

np0

2
‖Y 0 − θ‖2

)
≤ 1

α

}
=

{
θ ∈ Θ : −np0

2
‖Y 0 −Y 1‖2 +

np0

2
‖Y 0 − θ‖2 ≤ log

(
1

α

)}
=

{
θ ∈ Θ :

np0

2
‖Y 0 − θ‖2 ≤ log

(
1

α

)
+
np0

2
‖Y 0 −Y 1‖2

}
=

{
θ ∈ Θ : ‖Y 0 − θ‖2 ≤

2

np0
log

(
1

α

)
+ ‖Y 0 −Y 1‖2

}
.

The squared radius is thus R2(Csplit
n ) = (2/(np0)) log(1/α)+‖Y 0−Y 1‖2. By (B.14), the expected

squared radius at a given value of p0 is

r(p0) =
2

np0
log

(
1

α

)
+

(
1

np0
+

1

n(1− p0)

)
d.
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We can now minimize this function:

0
set
=

∂

∂p0
r(p0) =

−2

np2
0

log

(
1

α

)
− d

np2
0

+
d

n(1− p0)2

m

0 = −2(1− p0)2 log

(
1

α

)
− d(1− p0)2 + dp2

0

= −2(1− 2p0 + p2
0) log

(
1

α

)
− d(1− 2p0 + p2

0) + dp2
0

= −2 log

(
1

α

)
+ 4p0 log

(
1

α

)
− 2p2

0 log

(
1

α

)
− d+ 2dp0 − dp2

0 + dp2
0

= p2
0

(
−2 log

(
1

α

))
+ p0

(
4 log

(
1

α

)
+ 2d

)
+

(
−2 log

(
1

α

)
− d
)
.

This is now a quadratic expression in p0. Thus, this formula is solved by

p0 =
−4 log

(
1
α

)
− 2d±

√(
4 log

(
1
α

)
+ 2d

)2 − 4
(
−2 log

(
1
α

)) (
−2 log

(
1
α

)
− d
)

2
(
−2 log

(
1
α

))
=

4 log
(

1
α

)
+ 2d±

√
4d2 + 8d log

(
1
α

)
4 log

(
1
α

)
= 1 +

d±
√
d2 + 2d log

(
1
α

)
2 log

(
1
α

) .

We now consider the ± choice. In the + direction, we have

p0 = 1 +
d+

√
d2 + 2d log

(
1
α

)
log
(

1
α

) > 1.

However, in the − direction, we can show that p0 ∈
(

1
2 , 1
)
. We note that

d <

√
d2 + 2d log

(
1

α

)
<

√
d2 + 2d log

(
1

α

)
+

(
log

(
1

α

))2

=

√(
d+ log

(
1

α

))2

= d+ log

(
1

α

)
.
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So

p0 = 1 +
d−

√
d2 + 2d log

(
1
α

)
2 log

(
1
α

) < 1 +
d− d

2 log
(

1
α

) = 1

and

p0 = 1 +
d−

√
d2 + 2d log

(
1
α

)
2 log

(
1
α

) > 1 +
d− d− log

(
1
α

)
2 log

(
1
α

) = 1− 1

2
=

1

2
.

This means that

p∗0 = 1−

√
d2 + 2d log

(
1
α

)
− d

2 log
(

1
α

)
optimizes r(p0), and p∗0 ∈

(
1
2 , 1
)
. Furthermore, this optimum must be a minimum, since for any

p0 ∈ (0, 1),
∂2

∂p2
0

r(p0) =
4

np3
0

log

(
1

α

)
+

2d

np3
0

+
2d

n(1− p0)3
> 0.

We can use L’Hôpital’s Rule to show that p∗0 → 1
2 as d→∞:

lim
d→∞

p∗0 = 1− lim
d→∞

√
d2 + 2d log

(
1
α

)
− d

2 log
(

1
α

)
= 1− lim

d→∞

√
1 + (2/d) log (1/α)− 1

(2/d) log(1/α)

= 1− lim
d→∞

1
2 (1 + (2/d) log(1/α))−1/2 (−2/d2) log(1/α)

(−2/d2) log(1/α)

= 1− 1

2
lim
d→∞

(1 + (2/d) log(1/α))−1/2

=
1

2
.

We conclude that as d→∞ for fixed α, the optimal choice of p∗0 → 0.5.

Theorem 2.3.2. Suppose Y1, . . . , Yn are iid observations from N(θ∗, Id). Split the sample such

that D0 and D1 each contain n/2 observations. Use D0 and D1 to define the split and cross-fit sets.

Then Volume{CCF
n (α)} ≤ Volume{Csplit

n (α)}. Equality holds only when Y 0 = Y 1.
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Proof. Let θ ∈ CCF
n (α). Then

exp
(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y − θ‖2

)
= exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4

∥∥∥∥1

2
(Y 0 − θ) +

1

2
(Y 1 − θ)

∥∥∥∥2
)

≤ exp
(
−n

4
‖Y 0 −Y 1‖2 +

n

8
‖Y 0 − θ‖2 +

n

8
‖Y 1 − θ‖2

)
(B.15)

= exp
(
−n

8
‖Y 0 −Y 1‖2 +

n

8
‖Y 0 − θ‖2 −

n

8
‖Y 0 −Y 1‖2 +

n

8
‖Y 1 − θ‖2

)
≤ 1

2

[
exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 − θ‖2

)
+ exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 1 − θ‖2

)]
(B.16)

<
1

α
.

Line (B.15) holds because ‖ · ‖2 is convex. Line (B.16) holds because exp(·) is convex. Thus,

CCF
n (α) ⊆

{
θ ∈ Θ : ‖Y − θ‖2 < 4

n log( 1
α) + ‖Y 0 −Y 1‖2

}
, which has the same volume as Csplit

n (α) ={
θ ∈ Θ : ‖Y 0 − θ‖2 < 4

n log
(

1
α

)
+ ‖Y 0 −Y 1‖2

}
. Hence, V ol

(
CCF
n (α)

)
≤ V ol

(
Csplit
n (α)

)
.

Furthermore, since ‖ · ‖2 and exp(·) are strictly convex, equality holds in (B.15) and (B.16) only

when Y 0 = Y 1. If Y 0 = Y 1, then CCF
n (α) =

{
θ ∈ Θ : ‖Y − θ‖2 ≤ 4

n log( 1
α) + ‖Y 0 −Y 1‖2

}
, which

means V ol
(
CCF
n (α)

)
= V ol

(
Csplit
n (α)

)
.

Theorem 2.3.3. Assume cα,d + log(α) > d− 2. Let fd(x) be the probability density function of the

χ2
d distribution, and let cα,d be the upper α quantile of the χ2

d distribution. Then

P
[
r2{Csplit

n (α)}/r2{CLRT
n (α)} ≤ 4

]
≥ 1− α− log(1/α)fd(cα,d + log(α))

and P
[
r2{Csplit

n (α)}/r2{CLRT
n (α)} ≤ 4

]
≤ 1− α− log(1/α)fd(cα,d).

Proof. We use the fact that r2(Csplit
n (α)) = 4

n log(1/α) + ‖Y 0 −Y 1‖2. As established in the proof

of Theorem 2.3.1 and the derivation of equation 2.7, we know that ‖Y 0 − Y 1‖2
d
= (4/n)χ2

d. Let
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X ∼ χ2
d. Note that log(α) < 0. Then

P
(
r2(Csplit

n (α)) / r2(CLRT
n (α)) ≤ 4

)
= P

(
r2(Csplit

n (α)) ≤ 4

n
cα,d

)
= P

(
4

n
log(1/α) +

4

n
X ≤ 4

n
cα,d

)
= P (log(1/α) +X ≤ cα,d)

= P(X ≤ cα,d + log(α))

= P(X ≤ cα,d)− P(cα,d + log(α) ≤ X ≤ cα,d)

= 1− α− P(cα,d + log(α) ≤ X ≤ cα,d).

Now we need to bound P(cα,d + log(α) ≤ X ≤ cα,d). Under the assumed conditions, we show

that the χ2
d pdf is decreasing on [cα,d + log(α), cα,d]. Let fd(x) be the χ2

d pdf. The following five

statements are equivalent:

0 >
∂

∂x
fd(x)

0 >
1

2d/2 Γ(d/2)

[(
d

2
− 1

)
xd/2−2e−x/2 + xd/2−1

(
−1

2
e−x/2

)]
xd/2−1

(
1

2
e−x/2

)
>

(
d

2
− 1

)
xd/2−2e−x/2

x

2
>
d

2
− 1

x > d− 2

By our initial assumption, cα,d + log(α) > d − 2. Thus, fd(x) is decreasing on [cα,d + log(α), cα,d].

Since the interval has length log(1/α),

log(1/α)fd(cα,d) ≤ P(cα,d + log(α) ≤ X ≤ cα,d) ≤ log(1/α)fd(cα,d + log(α)).

The bounds on P
(
r2(Csplit

n (α)) / r2(CLRT
n (α)) ≤ 4

)
follow immediately.

Before proving Theorem 2.4.1, we establish Lemma B.0.3 and Lemma B.0.4.
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Lemma B.0.3. Assume the doughnut null test setting. Let PΘ0 be the set of all convex

combinations of N(θ, Id) densities such that ‖θ‖ ∈ [0.5, 1]. When ‖Y 1‖ > 1 and θ̂1 = Y 1, the

RIPR of p
θ̂1

onto PΘ0 is p
θ̂1/‖θ̂1‖.

Proof. Suppose ‖Y 1‖ > 1. Defining θ̂1 = Y 1 as in Table 2.1, ‖θ̂1‖ > 1. The RIPR of θ̂1 onto the

convex set PΘ0 minimizes DKL(p
θ̂1
‖p0) out of all densities p0 ∈ PΘ0 . Suppose p0 ∈ PΘ0 . Then

we can write p0 as a mixture of N(θk, Id) densities. We write p0 =
∑K

k=1wkpθk , where K ∈ N,∑K
k=1wk = 1, and for each k = 1, . . . ,K, 0 < wk < 1 and ‖θk‖ ∈ [0.5, 1]. Note that p

θ̂1/‖θ̂1‖ ∈

P0. To prove that DKL(p
θ̂1
‖ p

θ̂1/‖θ̂1‖) = infp0∈PΘ0
DKL(p

θ̂1
‖ p0), we show DKL(p

θ̂1
‖ p

θ̂1/‖θ̂1‖) ≤

DKL(p
θ̂1
‖
∑K

k=1wkpθk).

DKL

(
p
θ̂1

∣∣∣∣∣∣ K∑
k=1

wkpθk

)
−DKL

(
p
θ̂1
‖ p

θ̂1/‖θ̂1‖

)
=

∫
Rd
p
θ̂1

(y) log

(
p
θ̂1

(y)∑K
k=1wkpθk(y)

)
dy −

∫
Rd
p
θ̂1

(y) log

(
p
θ̂1

(y)

p
θ̂1/‖θ̂1‖(y)

)
dy

=

∫
Rd
p
θ̂1

(y) log

(
p
θ̂1/‖θ̂1‖(y)∑K
k=1wkpθk(y)

)
dy

= −
∫
Rd
p
θ̂1

(y) log

(∑K
k=1wkpθk(y)

p
θ̂1/‖θ̂1‖(y)

)
dy

= −E
θ̂1

[
log

{∑K
k=1wkpθk(y)

p
θ̂1/‖θ̂1‖(y)

}]

≥ − logE
θ̂1

{∑K
k=1wkpθk(y)

p
θ̂1/‖θ̂1‖(y)

}
(B.17)

= − log

[
K∑
k=1

wkEθ̂1

{
pθk(y)

p
θ̂1/‖θ̂1‖(y)

}]

≥ − log

{
K∑
k=1

wk(1)

}
(B.18)

= 0.
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(B.17) holds by Jensen’s inequality. (B.18) holds by the following derivation:

Eθ̂1

{
pθk (y)

pθ̂1/‖θ̂1‖(y)

}

=

∫
Rd

1

(2π)d/2
exp

(
−1

2
‖y − θ̂1‖2

)
exp

(
− 1

2
‖y − θk‖2

)
exp

(
− 1

2
‖y − θ̂1/‖θ̂1‖‖2

)dy
=

∫
Rd

1

(2π)d/2
exp

(
−1

2
‖y − θ̂1‖2 −

1

2
‖y − θ̂1 + θ̂1 − θk‖2 +

1

2
‖y − θ̂1 + θ̂1 − θ̂1/‖θ̂1‖‖2

)
dy

=

∫
Rd

1

(2π)d/2
exp

(
− 1

2
‖y − θ̂1‖2 − (y − θ̂1)

T (θ̂1 − θk)−
1

2
‖θ̂1 − θk‖2 + (y − θ̂1)

T (θ̂1 − θ̂1/‖θ̂1‖)+

1

2
‖θ̂1 − θ̂1/‖θ̂1‖‖2

)
dy

= exp

(
1

2
‖θ̂1 − θ̂1/‖θ̂1‖‖2 −

1

2
‖θ̂1 − θk‖2

)∫
Rd

1

(2π)d/2
exp

(
−1

2
‖y − θ̂1‖2 + (y − θ̂1)

T (θk − θ̂1/‖θ̂1‖)
)
dy

= exp

(
1

2
‖θ̂1 − θ̂1/‖θ̂1‖‖2 −

1

2
‖θ̂1 − θk‖2

)
Eθ̂1

[
exp

{
(y − θ̂1)

T (θk − θ̂1/‖θ̂1‖)
}]

= exp

(
1

2
‖θ̂1 − θ̂1/‖θ̂1‖‖2 −

1

2
‖θ̂1 − θk‖2 − θ̂T1 (θk − θ̂1/‖θ̂1‖)

)
Eθ̂1

[
exp

{
(θk − θ̂1/‖θ̂1‖)T y

}]
= exp

(
1

2
‖θ̂1 − θ̂1/‖θ̂1‖‖2 −

1

2
‖θ̂1 − θk‖2 − θ̂T1 (θk − θ̂1/‖θ̂1‖)

)
exp

{
θ̂T1 (θk − θ̂1/‖θ̂1‖) +

1

2
‖θk − θ̂1/‖θ̂1‖‖2

}
= exp

(
1

2
‖θ̂1 − θ̂1/‖θ̂1‖‖2 −

1

2
‖θ̂1 − θk‖2 +

1

2
‖θk − θ̂1/‖θ̂1‖‖2

)
= exp

(
1

2
‖θ̂1‖2 − θ̂T1 θ̂1/‖θ̂1‖+

1

2
θ̂T1 θ̂1/‖θ̂1‖2 −

1

2
‖θ̂1‖2 + θ̂T1 θk −

1

2
‖θk‖2+

1

2
‖θk‖2 − θTk θ̂1/‖θ̂1‖+

1

2
θ̂T1 θ̂1/‖θ̂1‖2

)
= exp

(
θ̂T1 θ̂1/‖θ̂1‖2 − θ̂T1 θ̂1/‖θ̂1‖ − θTk θ̂1/‖θ̂1‖+ θ̂T1 θk

)
= exp

{
(θ̂1/‖θ̂1‖ − θ̂1)

T (θ̂1/‖θ̂1‖ − θk)
}

≤ exp(0) (B.19)

= 1.

To justify (B.19), note that

(θ̂1/‖θ̂1‖ − θ̂1)T (θ̂1/‖θ̂1‖ − θk) =
∥∥∥θ̂1/‖θ̂1‖ − θ̂1

∥∥∥∥∥∥θ̂1/‖θ̂1‖ − θk
∥∥∥cos(γ),

where γ is the angle between θ̂1/‖θ̂1‖ − θ̂1 and θ̂1/‖θ̂1‖ − θk. Recall that Θ0 has a spherical outer

border, ‖θk‖ ∈ [0.5, 1], ‖θ̂1‖ > 1, and θ̂1/‖θ̂1‖ is on the outer border of Θ0. Thus, γ will always be

between 90◦ and 270◦. (See Fig. B.1.) This implies that (θ̂1/‖θ̂1‖ − θ̂1)T (θ̂1/‖θ̂1‖ − θk) ≤ 0.
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Figure B.1: Lemma B.0.3 companion diagram. The angle between θ̂1/‖θ̂1‖ − θ̂1 and θ̂1/‖θ̂1‖ − θk
must be between 90◦ and 270◦.

Lemma B.0.4. Assume the doughnut null test setting. Let Rn =
∏
Yi∈D0

{p
θ̂1

(Yi)/pθ̂1/‖θ̂1‖(Yi)}. If

θ∗ ∈ Θ0, then Eθ∗{Rn1(‖Y 1‖ > 1) | D1} ≤ 1(‖Y 1‖ > 1).

Proof. If D1 satisfies ‖Y 1‖ ≤ 1, then

Eθ∗{Rn1(‖Y 1‖ > 1) | D1} = 0 = 1(‖Y 1‖ > 1).

Now suppose D1 satisfies ‖Y 1‖ > 1. Then ‖θ̂1‖ > 1, and p
θ̂1/‖θ̂1‖ is the RIPR of p

θ̂1
onto the

convex set of densities PΘ0 , as proved in Lemma B.0.3. Since θ∗ ∈ Θ0, θ̂1 ∈ Θ1, and p
θ̂1/‖θ̂1‖ is the

RIPR of p
θ̂1

onto PΘ0 , we know Eθ∗{pθ̂1(Y )/p
θ̂1/‖θ̂1‖(Y ) | D1} ≤ 1, as explained under Approach 3:

Subsampled hybrid LRT. So

Eθ∗{Rn1(‖Y 1‖ > 1) | D1} = Eθ∗

 ∏
Yi∈D0

{p
θ̂1

(Yi)/pθ̂1/‖θ̂1‖(Yi)} | D1


iid
=

n/2∏
i=1

Eθ∗
{
p
θ̂1

(Yi)/pθ̂1/‖θ̂1‖(Yi) | D1

}
≤ 1

= 1(‖Y 1‖ > 1).
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Theorem 2.4.1. In the doughnut null hypothesis test setting, assume the subsampled test statistics

Un,b = L0,b(θ̂1,b) / L0,b(θ̂
split
0,b ) and Rn,b = L0,b(θ̂1,b)/L0,b(θ̂

RIPR
0,b ), 1 ≤ b ≤ B. A valid level α test

rejects H0 when

1

B

B∑
b=1

{
Un,b1(‖Y 1,b‖ < 0.5) + 1(‖Y 1,b‖ ∈ [0.5, 1]) +Rn,b1(‖Y 1,b‖ > 1)

}
≥ 1/α.

Proof. Assume θ∗ ∈ Θ0. The probability of falsely rejecting H0 is

Pθ∗
[

1

B

B∑
b=1

{
Un,b1(‖Y 1,b‖ < 0.5) + 1(‖Y 1,b‖ ∈ [0.5, 1]) +Rn,b1(‖Y 1,b‖ > 1)

}
≥ 1/α

]

≤ αEθ∗
[

1

B

B∑
b=1

{
Un,b1(‖Y 1,b‖ < 0.5) + 1(‖Y 1,b‖ ∈ [0.5, 1]) +Rn,b1(‖Y 1,b‖ > 1)

}]

≤ αEθ∗
[

1

B

B∑
b=1

{
Tn,b(θ

∗)1(‖Y 1,b‖ < 0.5) + 1(‖Y 1,b‖ ∈ [0.5, 1]) +Rn,b1(‖Y 1,b‖ > 1)
}]

(B.20)

= αEθ∗
{
Tn(θ∗)1(‖Y 1‖ < 0.5) + 1(‖Y 1‖ ∈ [0.5, 1]) +Rn1(‖Y 1‖ > 1)

}
= αEθ∗

[
Eθ∗

{
Tn(θ∗)1(‖Y 1‖ < 0.5) | D1

}]
+ αPθ∗(‖Y 1‖ ∈ [0.5, 1]) + αEθ∗

[
Eθ∗

{
Rn1(‖Y 1‖ > 1) | D1

}]
≤ αEθ∗

[
1(‖Y 1‖ < 0.5)Eθ∗ {Tn(θ∗) | D1}

]
+ αPθ∗(‖Y 1‖ ∈ [0.5, 1]) + αEθ∗{1(‖Y 1‖ > 1)} (B.21)

≤ αEθ∗{1(‖Y 1‖ < 0.5)}+ αPθ∗(‖Y 1‖ ∈ [0.5, 1]) + αPθ∗{1(‖Y 1‖ > 1)} (B.22)

= α
{
Pθ∗(‖Y 1‖ < 0.5) + Pθ∗(‖Y 1‖ ∈ [0.5, 1]) + Pθ∗(‖Y 1‖ > 1)

}
= α.

(B.20) holds because θ̂split
0,b = arg max

θ∈Θ0

L0,b(θ). Since θ∗ ∈ Θ0,

Un,b = L0,b(θ̂1)/L0,b(θ̂
split
0,b ) ≤ L0,b(θ̂1)/L0,b(θ

∗) = Tn,b(θ
∗).

(B.21) holds by Lemma B.0.4. (B.22) holds because Eθ∗{Tn(θ∗) | D1} ≤ 1, as established by

Theorem 1.0.1.
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B.2 Derivations of Equations

Derivation of Equation 2.1. The classical likelihood ratio confidence set for θ∗ ∈ Rd is given

by

CLRT
n (α) =

{
θ ∈ Θ : 2 log

L(Y )

L(θ)
≤ cα,d

}
,

where cα,d is the upper α quantile of the χ2
d distribution. Y is the sample mean of the Yi observations,

and it is also the MLE estimate for θ∗. We re-write this confidence set such that the squared radius

of the set is apparent.

2 log
L(Y )

L(θ)
= 2 log

Πn
i=1 exp

(
−1

2(Yi −Y )T (Yi −Y )
)

Πn
i=1 exp

(
−1

2(Yi − θ)T (Yi − θ)
)


= 2 log

(
exp

(
−1

2

n∑
i=1

(Yi −Y )T (Yi −Y ) +
1

2

n∑
i=1

(Yi − θ)T (Yi − θ)

))

= −
n∑
i=1

(Yi −Y )T (Yi −Y ) +
n∑
i=1

(Yi − θ)T (Yi − θ)

=
n∑
i=1

(
−(Yi −Y )T (Yi −Y ) + (Yi −Y +Y − θ)T (Yi −Y +Y − θ)

)
=

n∑
i=1

(
− (Yi −Y )T (Yi −Y ) + (Yi −Y )T (Yi −Y )+

2(Yi −Y )T (Y − θ) + (Y − θ)T (Y − θ)

)
= n‖Y − θ‖2.

The final step holds because the first two terms cancel and the summation over the third term

equals 0. Therefore,

CLRT
n (α) =

{
θ ∈ Θ : ‖θ −Y‖2 ≤ cα,d/n

}
.

Derivation of Equation 2.2. Let θ̂1 = Y 1 be the sample mean of the n/2 observations in D1.

Where L0(θ) =
∏
Yi∈D0

pθ(Yi) and Tn(θ) = L0(θ̂1)/L0(θ), the universal confidence set using the
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split likelihood ratio statistic is

Csplit
n (α) = {θ ∈ Θ : Tn(θ) < 1/α} .

We also re-write this confidence set such that the squared radius of the set is apparent.

Tn(θ) =
ΠYi∈D0 exp

(
− 1

2 (Yi − θ̂1)T (Yi − θ̂1)
)

ΠYi∈D0
exp

(
− 1

2 (Yi − θ)T (Yi − θ)
)

= exp

( ∑
Yi∈D0

(
−1

2
(Yi −Y 1)T (Yi −Y 1) +

1

2
(Yi − θ)T (Yi − θ)

))

= exp

( ∑
Yi∈D0

(
− 1

2
(Yi −Y 0 +Y 0 −Y 1)T (Yi −Y 0 +Y 0 −Y 1)+

1

2
(Yi −Y 0 +Y 0 − θ)T (Yi −Y 0 +Y 0 − θ)

))

= exp

( ∑
Yi∈D0

(
− 1

2

[
(Yi −Y 0)T (Yi −Y 0) + 2(Yi −Y 0)T (Y 0 −Y 1) + (Y 0 −Y 1)T (Y 0 −Y 1)

]
+

1

2

[
(Yi −Y 0)T (Yi −Y 0) + 2(Yi −Y 0)T (Y 0 − θ) + (Y 0 − θ)T (Y 0 − θ)

]))
(B.23)

= exp

( ∑
Yi∈D0

(
−1

2
(Y 0 −Y 1)T (Y 0 −Y 1) +

1

2
(Y 0 − θ)T (Y 0 − θ)

))

= exp
(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 − θ‖2

)
. (B.24)

The first and fourth terms of (B.23) cancel, and the cross-product terms equal 0 upon taking the

summation. (B.24) holds because D0 contains n
2 elements. Therefore,

Csplit
n (α) =

{
θ ∈ Θ : Tn(θ) <

1

α

}
=

{
θ ∈ Θ : exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 − θ‖2

)
<

1

α

}
=

{
θ ∈ Θ : −n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 − θ‖2 < log

(
1

α

)}
=

{
θ ∈ Θ :

n

4
‖Y 0 − θ‖2 < log

(
1

α

)
+
n

4
‖Y 0 −Y 1‖2

}
=

{
θ ∈ Θ : ‖Y 0 − θ‖2 <

4

n
log

(
1

α

)
+ ‖Y 0 −Y 1‖2

}
.
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Derivation of Equation 2.7. We have partitioned D into D0 and D1. Let us rewrite the

observations in these data sets as D0 = {Y0i}n/2i=1 and D1 = {Y1i}n/2i=1. From the presentation of

Csplit
n (α) in (2.2), we see that r2(Csplit

n (α)) = 4
n log(1/α) + ‖Y 0 −Y 1‖2. Note that

‖Y 0 −Y 1‖2 =

∥∥∥∥∥∥ 2

n

n/2∑
i=1

(Y0i − Y1i)

∥∥∥∥∥∥
2

=
4

n

∥∥∥∥∥∥ 1√
n

n/2∑
i=1

(Y0i − Y1i)

∥∥∥∥∥∥
2

d
=

4

n
χ2
d.

To see why the last step holds, note that Y1, . . . , Yn
iid∼ N(θ∗, Id). So for any i, Y0i − Y1i

iid∼ N(0, 2Id).

Then
∑n/2

i=1(Y0i − Y1i)
iid∼ N

(
0, n2 (2Id)

)
, and 1√

n

∑n/2
i=1(Y0i − Y1i)

iid∼ N(0, Id). This implies that

r2(Csplit
n (α))

d
= 4

n log(1/α) + 4
nχ

2
d. Therefore, E[r2(Csplit

n (α))] = 4
n log

(
1
α

)
+ 4

nd.

Derivation of Equation 2.9. From equation 2.8, we know that

E[r2(Csplit
n (α))]

r2(CLRT
n (α))

=
4 log(1/α) + 4d

cα,d
.

For d ≥ 1 and α ∈ (0, 1), Inglot (2010) shows the upper bound

cα,d ≤ d+ 2 log

(
1

α

)
+ 2

√
d log

(
1

α

)
.

Also, for d ≥ 2 and α ≤ 0.17, Inglot (2010) shows the lower bound

cα,d ≥ d+ 2 log

(
1

α

)
− 5

2
.

Combining these facts, we see that for d ≥ 2 and α ≤ 0.17,

4 log(1/α) + 4d

2 log(1/α) + d+ 2
√
d log(1/α)

≤ E[r2(Csplit
n (α))]

r2(CLRT
n (α))

≤ 4 log(1/α) + 4d

2 log(1/α) + d− 5
2

.

Derivation of Equation 2.10. From equation 2.8, we know that

E[r2(Csplit
n (α))]

r2(CLRT
n (α))

=
4 log(1/α) + 4d

cα,d
.
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The lower bound of equation 2.10 is the same as the lower bound from equation 2.9. We consider

the upper bound. Suppose d = 1 and α ≤ exp
(
−5(1+

√
5)

4

)
. Let t = −2 +

√
5 + 2 log(1/α). We will

show that cα,1 ≥ t2 in several steps:

Step 1: Show that t2 + 4t− 2 < 2 log(1/α).

t2 + 4t− 2 =
(
−2 +

√
5 + 2 log(1/α)

)2
+ 4(−2 +

√
5 + 2 log(1/α))− 2

= 4− 4
√

5 + 2 log(1/α) + 5 + 2 log(1/α)− 8 + 4
√

5 + 2 log(1/α)− 2

= 2 log(1/α)− 1

< 2 log(1/α).

Step 2: Show that log(1/α) > t2

2 + 2 log(t) + log(
√

2π). Starting with the result from Step 1,

log(1/α) >
t2

2
+ 2t− 1

≥ t2

2
+ 2(log(t) + 1)− 1 since t ≥ log(t) + 1 for t > 0

=
t2

2
+ 2 log(t) + 1

>
t2

2
+ 2 log(t) + log(

√
2π).

Step 3: Show that t2 − 1 ≥ t. We start by showing that t ≥ 1
2(1 +

√
5) follows from our definitions
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of t and α:

α ≤ exp

(
−5(1 +

√
5)

4

)

⇐⇒ 1

α
≥ exp

(
5(1 +

√
5)

4

)
⇐⇒ 8 log(1/α) ≥ 10(1 +

√
5)

⇐⇒ 20 + 8 log(1/α) ≥ 30 + 10
√

5

⇐⇒ 4(5 + 2 log(1/α)) ≥ 25 + 10
√

5 + 5

⇐⇒ 2
√

5 + 2 log(1/α) ≥ 5 +
√

5

⇐⇒ −4 + 2
√

5 + 2 log(1/α) ≥ 1 +
√

5

⇐⇒ −2 +
√

5 + 2 log(1/α) ≥ 1

2
(1 +

√
5)

⇐⇒ t ≥ 1

2
(1 +

√
5).

The roots of the convex function t2 − t− 1 are at t = (1±
√

5)/2. At t ≥ (1/2)(1 +
√

5), we know

t2 − 1 ≥ t.

Step 4: Show that t2 ≤ cα,1. Starting with the results of steps 2 and 3,

log(t2 − 1)− t2/2− log(
√

2π) ≥ log(t) + 2 log(t) + log(α)

= 3 log(t) + log(α).

Exponentiating,

(
t2 − 1

)
exp

(
−t2/2

)( 1√
2π

)
≥ t3α.

So

(
1

t
− 1

t3

)
exp

(
−t2/2

)( 1√
2π

)
≥ α.
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If Z ∼ N(0, 1) and X = Z2 ∼ χ2
1, then using an inequality on P(Z ≥ t) from Polland (2015),

P(X ≥ t2) = 2P(Z ≥ t) > P(Z ≥ t) ≥
(

1

t
− 1

t3

)
exp

(
−t2/2

)( 1√
2π

)
≥ α.

This implies that cα,1 ≥ t2 = 2 log(1/α) + 9 − 4
√

5 + 2 log(1/α). We conclude that for d = 1 and

α ≤ exp
(
−5(1+

√
5)

4

)
,

4 log(1/α) + 4d

2 log(1/α) + d+ 2
√
d log(1/α)

≤ E[r2(Csplit
n (α))]

r2(CLRT
n (α))

≤ 4 log(1/α) + 4d

2 log(1/α) + 9− 4
√

5 + 2 log(1/α)
.

Derivation of Equation 2.12. The classical LRT set is

CLRT
n (α) =

{
θ ∈ Θ : ‖Y − θ‖2 ≤ cα,d / n

}
,

where cα,d is the upper α quantile of the χ2
d distribution. Suppose we are testing H0 : θ∗ = 0 versus

H1 : θ∗ 6= 0. The power of the classical LRT at the true θ∗ is thus

Power(CLRT
n (α); θ∗) = Pθ∗

(
‖Y‖2 > cα,d/n

)
.

We can express the power function of the classical LRT in terms of the CDF of a noncentral χ2

distribution. Let us denote θ∗ = (θ∗1, . . . , θ
∗
d). We see that

n‖Y‖2 =

∥∥∥∥∥ 1√
n

n∑
i=1

Yi

∥∥∥∥∥
2

=
d∑
j=1

(
1√
n

n∑
i=1

Yij

)2

.

For each dimension j, n−1/2
∑n

i=1 Yij ∼ N(θ∗j
√
n, 1). So this follows a non-central χ2 distribution

given by

n‖Y‖2 d
= χ2

df = d, λ =

d∑
j=1

n(θ∗j )
2

 d
= χ2

(
df = d, λ = n‖θ∗‖2

)
.
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Let Φ(·) represent the standard normal CDF. Suppose X ∼ χ2(df = d, λ = n‖θ∗‖2). As d→∞ or

as λ→∞, it holds that
X − (d+ n‖θ∗‖2)√

2(d+ 2n‖θ∗‖2)
≈ N(0, 1).

See Chun and Shapiro (2009). Using the Normal approximation to the non-central chi-squared

CDF, the power of the classical LRT is

Power(CLRT
n (α); θ∗) = Pθ∗

(
‖Y‖2 > cα,d/n

)
= Pθ∗

(
n‖Y‖2 > cα,d

)
= Pθ∗

(
n‖Y‖2 − d− n‖θ∗‖2√

2(d+ 2n‖θ∗‖2)
>
cα,d − d− n‖θ∗‖2√

2(d+ 2n‖θ∗‖2)

)

≈ 1− Φ

(
cα,d − d− n‖θ∗‖2√

2(d+ 2n‖θ∗‖2)

)

= Φ

(
d+ n‖θ∗‖2 − cα,d√

2(d+ 2n‖θ∗‖2)

)
.

Derivation of Equation 2.13. Using methods from the derivation of equation 2.12, we can find

an approximation to the power of the limiting subsampling LRT as B →∞. From equation 2.4,

Csubsplit
n (α) ≈

{
θ ∈ Θ : ‖Y − θ‖2 < 10

3n
log

((
5

2

)d/2 1

α

)}

So the power of the limit of subsampling LRT for large B is

Power(Csubsplit
n (α); θ∗) ≈ Pθ∗

(
n‖Y‖2 ≥ 10

3
log

((
5

2

)d/2 1

α

))

= Pθ∗
(
n‖Y‖2 − d− n‖θ∗‖2√

2(d+ 2n‖θ∗‖2)
≥

(10/3) log
(
(5/2)d/2(1/α)

)
− d− n‖θ∗‖2√

2(d+ 2n‖θ∗‖2)

)

≈ Φ

(
1√

2(d+ 2n‖θ∗‖2)

(
d+ n‖θ∗‖2 − 10

3
log

((
5

2

)d/2 1

α

)))
.
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B.3 Simulated Cross-fit Sets with Varying p0

In the split LRT case, the optimal split proportion p∗0 (established in Theorem 2.3.1) converges to

0.5 as d→∞. This optimal split proportion minimizes the expected squared radius. Under general

p0, the cross-fit set is defined as

CCF
n (α) =

{
θ ∈ Θ :

1

2

[
exp

(
−np0

2
‖Y 0 −Y 1‖2 +

np0

2
‖Y 0 − θ‖2

)
+

exp

(
−n(1− p0)

2
‖Y 0 −Y 1‖2 +

n(1− p0)

2
‖Y 1 − θ‖2

)]
<

1

α

}
.

Noting the symmetry of the set CCF
n (α), we conjecture that p0 = 0.5 will minimize the expected

squared diameter of the cross-fit set. Figure B.2 presents examples of cross-fit sets at varying p0

on a single sample of 1000 observations simulated from a N(~0, I2) distribution. We see that the

regions with p0 ∈ {0.5, 0.7} have smaller diameters than the regions with p0 ∈ {0.1, 0.3, 0.9}.

p0 = 0.7 p0 = 0.9

p0 = 0.1 p0 = 0.3 p0 = 0.5

−0.2 −0.1 0.0 0.1 −0.2 −0.1 0.0 0.1
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0.0
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−0.1
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C
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e 

2

Cross−fit Regions with Varying p0

Figure B.2: Simulated cross-fit regions at varying p0, using a single data sample.
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B.4 Power of Tests of H0 : ‖θ∗‖ ∈ [0.5, 1]

B.4.1 Exact Formula for Power of Intersection Test

In section 2.4, we present hypothesis tests for H0 : ‖θ∗‖ ∈ [0.5, 1] versus H1 : ‖θ∗‖ /∈ [0.5, 1].

The power of the intersection method that we present is tractable. We derive a formula for the

intersection method’s power at θ∗. From the intersection method’s description, we reject H0 if and

only if CLRT
n (α)∩ (S1\S0.5) = ∅, where CLRT

n (α) =
{
θ ∈ Θ : ‖θ −Y‖2 ≤ cα,d/n

}
. This is equivalent

to rejecting H0 if and only if θ̂proj /∈ CLRT
n (α), where

θ̂proj =


0.5Y/‖Y‖ : ‖Y‖ < 0.5

Y : ‖Y‖ ∈ [0.5, 1.0]

Y/‖Y‖ : ‖Y‖ > 1

.

In Case 2, we have ‖Y‖ ∈ [0.5, 1]. In this setting, it is always true that θ̂proj = Y ∈ CLRT
n (α).

So we will never reject H0 in this case. We consider Case 1 (‖Y‖ < 0.5) and Case 3 (‖Y‖ > 1).

For ‖θ∗‖ /∈ [0.5, 1.0], the power is given by

Power(θ∗) = Pθ∗
(∥∥∥Y/‖Y‖ −Y∥∥∥2

> cα,d/n, ‖Y‖ > 1

)
+

Pθ∗
(∥∥∥0.5Y/‖Y‖ −Y

∥∥∥2
> cα,d/n, ‖Y‖ < 0.5

)
.

We know that n‖Y‖2 ∼ χ2(df = d, λ = n‖θ∗‖2). We will use this fact to write Power(θ∗) in terms

of this non-central χ2 CDF.

Case 1. Note that

∥∥∥0.5Y/‖Y‖ −Y
∥∥∥2

=
Y
T
Y

4‖Y‖2
− 2

Y
T
Y

2‖Y‖
+ ‖Y‖2 =

1

4
− ‖Y‖+ ‖Y‖2 =

(
‖Y‖ − 1

2

)2

.
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Then we write

Pθ∗
(∥∥∥0.5Y/‖Y‖ −Y

∥∥∥2
> cα,d/n, ‖Y‖ < 1/2

)
= Pθ∗

((
‖Y‖ − 1/2

)2
> cα,d/n, ‖Y‖ < 1/2

)
= Pθ∗

(
1/2− ‖Y‖ > (cα,d/n)1/2, ‖Y‖ < 1/2

)
= Pθ∗

(
‖Y‖ < 1/2− (cα,d/n)1/2, ‖Y‖ < 1/2

)
= Pθ∗

(
‖Y‖ < 1/2− (cα,d/n)1/2

)
= 1 (cα,d/n < 1/4)Pθ∗

(
‖Y‖ < 1/2− (cα,d/n)1/2

)
= 1 (n > 4cα,d)Pθ∗

(
‖Y‖2 < 1/4−

√
cα,d/n+ cα,d/n

)
= 1 (n > 4cα,d)Pθ∗

(
n‖Y‖2 < n/4−√ncα,d + cα,d

)
= 1 (n > 4cα,d)Fd,n‖θ∗‖2

(
n/4−√ncα,d + cα,d

)
, (B.25)

where Fd,n‖θ∗‖2 is the non-central χ2(df = d, λ = n‖θ∗‖2) CDF.

Case 3. Note that

∥∥∥Y/‖Y‖ −Y∥∥∥2
=
Y
T
Y

‖Y‖2
− 2

Y
T
Y

‖Y‖
+ ‖Y‖2 = 1− 2‖Y‖+ ‖Y‖2 =

(
‖Y‖ − 1

)2
.
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Then we write

Pθ∗
(∥∥∥Y/‖Y‖ −Y∥∥∥2

> cα,d/n, ‖Y‖ > 1

)
= Pθ∗

((
‖Y‖ − 1

)2
> cα,d/n, ‖Y‖2 > 1

)
= Pθ∗

(
‖Y‖ − 1 > (cα,d/n)1/2, ‖Y‖2 > 1

)
= Pθ∗

(
‖Y‖ > 1 + (cα,d/n)1/2, ‖Y‖2 > 1

)
= Pθ∗

(
‖Y‖2 > 1 + (2/

√
n)c

1/2
α,d + cα,d/n, ‖Y‖2 > 1

)
= Pθ∗

(
‖Y‖2 > 1 + (2/

√
n)c

1/2
α,d + cα,d/n

)
= Pθ∗

(
n‖Y‖2 > n+ 2

√
ncα,d + cα,d

)
= 1− Fd,n‖θ∗‖2(n+ 2

√
ncα,d + cα,d), (B.26)

where Fd,n‖θ∗‖2 is the non-central χ2(df = d, λ = n‖θ∗‖2) CDF.

For a given ‖θ∗‖ /∈ [0.5, 1], our calculation of Power(θ∗) is given by (B.26) + (B.25). That is,

Power(θ∗) = 1− Fd,n‖θ∗‖2(n+ 2
√
ncα,d + cα,d)+

1 (n > 4cα,d)Fd,n‖θ∗‖2
(
n/4−√ncα,d + cα,d

)
.

Figure B.3 compares this calculated power to the simulated power of the intersection method

from Figure 2.7. The points correspond to the simulated power, and the curves trace out the

calculated power. The calculated and simulated powers align.
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Figure B.3: Calculated power of H0 : ‖θ∗‖ ∈ [0.5, 1.0] versus H1 : ‖θ∗‖ /∈ [0.5, 1.0] using the
intersection method. We compare the simulated power to the calculation (B.26) + (B.25). The
points correspond to the simulated power, and the curves trace out the calculated power.

B.4.2 Cases of the Subsampled Hybrid LRT

The subsampled hybrid test of H0 : ‖θ∗‖ ∈ [0.5, 1] versus H1 : ‖θ∗‖ /∈ [0.5, 1] takes one of three

approaches within each repeated subsample:

1. If ‖Y 1,b‖ < 0.5, use the split LRT statistic Un on the bth subsample.

2. If ‖Y 1,b‖ ∈ [0.5, 1], set the bth subsample’s test statistic to 1.

3. If ‖Y 1,b‖ > 1, use the RIPR LRT statistic Rn on the bth subsample.

Figure B.4 shows the proportion of these three cases that make up the hybrid test. We consider

all ‖θ∗‖ values from Fig. 2.7 of the main document, as well as cases where ‖θ∗‖ is within the null

region. At any given value of d and ‖θ∗‖, the three proportions sum to 1. Interestingly, although

‖Y 1,b‖ < 0.5 approximately 95% of the time when ‖θ∗‖ = 0 and d = 100, the hybrid test has

approximately zero power at that choice of parameters. We derive this fact in section B.4.3. In

addition, when d = 1000 we see that ‖Y 1,b‖ > 1 in all simulations, even at θ∗ = 0. In section B.4.4,

we see why this setting has approximately zero power as well.
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Figure B.4: Proportions of three cases that compose the hybrid LRT. We set α = 0.10 and n = 1000,
and we perform 1000 simulations at each value of ‖θ∗‖. We subsample B = 100 times.

B.4.3 Hybrid Power when θ∗ = 0, d = 100, and n = 1000

When θ∗ = 0, d = 100, and n = 1000, Fig. B.4 shows that ‖Y 1,b‖ < 0.5 (case 1) occurs

with probability of approximately 0.95, and ‖Y 1,b‖ ∈ [0.5, 1] (case 2) occurs with probability of

approximately 0.05. At these parameters, the hybrid method has power of approximately 0, as

shown in Fig. 2.7 in the main document. We consider the power of the hybrid method at a single

split of the data:
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Pθ∗=0(Un1(‖Y1‖ < 0.5) + 1(‖Y1‖ ∈ [0.5, 1]) +Rn1(‖Y1‖ > 1) ≥ 1/α)

= Pθ∗=0(‖Y1‖ < 0.5, ‖Y0‖ < 0.5)︸ ︷︷ ︸
A1

Pθ∗=0

(
exp

(
−
n

4
‖Y0 −Y1‖2 +

n

4
‖Y0 − 0.5Y0/‖Y0‖‖2

)
≥

1

α

∣∣∣ ‖Y1‖ < 0.5, ‖Y0‖ < 0.5

)
︸ ︷︷ ︸

A2

+

Pθ∗=0(‖Y1‖ < 0.5, ‖Y0‖ ∈ [0.5, 1])︸ ︷︷ ︸
B1

Pθ∗=0

(
exp

(
−
n

4
‖Y0 −Y1‖2 +

n

4
‖Y0 −Y0‖2

)
≥

1

α

∣∣∣ ‖Y1‖ < 0.5, ‖Y0‖ ∈ [0.5, 1]

)
︸ ︷︷ ︸

B2

+

Pθ∗=0(‖Y1‖ < 0.5, ‖Y0‖ > 1)︸ ︷︷ ︸
C1

Pθ∗=0

(
exp

(
−
n

4
‖Y0 −Y1‖2 +

n

4
‖Y0 −Y0/‖Y0‖‖2

)
≥

1

α

∣∣∣ ‖Y1‖ < 0.5, ‖Y0‖ > 1

)
︸ ︷︷ ︸

C2

+

Pθ∗=0(‖Y1‖ ∈ [0.5, 1])︸ ︷︷ ︸
D1

Pθ∗=0(1 ≥ 1/α | ‖Y1‖ ∈ [0.5, 1])︸ ︷︷ ︸
D2

+

Pθ∗=0(‖Y1‖ > 1)︸ ︷︷ ︸
E1

Pθ∗=0

(
exp

(
−
n

4
‖Y0 −Y1‖2 +

n

4
‖Y0 −Y1/‖Y1‖‖2

)
≥

1

α

∣∣∣ ‖Y1‖ > 1

)
︸ ︷︷ ︸

E2

.

The probabilities B2 and D2 equal 0. In addition,

Pθ∗=0(‖Y 0‖ > 1) = Pθ∗=0(‖Y 1‖ > 1)

= Pθ∗=0

(n
2
‖Y 1‖2 >

n

2

)
= P(χ2

df=100 > 1000/2)

≈ 0.

So C1 and E1 are also approximately 0. That means we only need to consider A1A2. It will be

easier to work with the product of these two probabilities:

A1A2 = Pθ∗=0

(
exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 − 0.5Y 0/‖Y 0‖‖2

)
≥ 1

α
, ‖Y 1‖ < 0.5, ‖Y 0‖ < 0.5

)
≤ Pθ∗=0

(
‖Y 0 −Y 1‖2 < ‖Y 0 − 0.5Y 0/‖Y 0‖‖2, ‖Y 0‖ < 0.5

)
≤ Pθ∗=0(‖Y 0 −Y 1‖2 < 0.25)

= P((4/n)χ2
df=100 < 1/4)

= P(χ2
df=100 < 1000/16)

≈ 0.001.
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This means that at a single split of the data, the power at ‖θ∗‖ = 0, d = 100, and n = 1000 is

Pθ∗=0(Un1(‖Y 1‖ < 0.5) + 1(‖Y 1‖ ∈ [0.5, 1]) +Rn1(‖Y 1‖ > 1) ≥ 1/α) ≤ 0.001.

B.4.4 Hybrid Power when θ∗ = 0, d = 1000, and n = 1000

When θ∗ = 0, d = 1000, and n = 1000, we see that the hybrid method selects case 3 (‖Y 1,b‖ > 1) in

all simulations. This is essentially choosing the wrong case, since ‖θ∗‖ = 0 < 0.5. Numerically, we

can show that the hybrid method will have power of approximately 0 at these parameters. Again,

we consider a single split of the data.

Pθ∗=0(Un1(‖Y 1‖ < 0.5) + 1(‖Y 1‖ ∈ [0.5, 1]) +Rn1(‖Y 1‖ > 1) ≥ 1/α)

= Pθ∗=0(‖Y 1‖ < 0.5)︸ ︷︷ ︸
A1

Pθ∗=0

(
Un ≥ 1/α

∣∣∣ ‖Y 1‖ < 0.5
)

︸ ︷︷ ︸
A2

+

Pθ∗=0(‖Y 1‖ ∈ [0.5, 1])︸ ︷︷ ︸
B1

Pθ∗=0(1 ≥ 1/α | ‖Y 1‖ ∈ [0.5, 1])︸ ︷︷ ︸
B2

+

Pθ∗=0(‖Y 1‖ > 1)︸ ︷︷ ︸
C1

Pθ∗=0

(
exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 −Y 1/‖Y 1‖‖2

)
≥ 1

α

∣∣∣ ‖Y 1‖ > 1

)
︸ ︷︷ ︸

C2

.

The probability B2 equals 0. In addition, A1 is approximately 0 because

Pθ∗=0(‖Y 1‖ < 0.5) = Pθ∗=0

(
(n/2)‖Y 1‖2 < n/8

)
= P(χ2

df=1000 < 1000/8)

≈ 0.
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So the probability of rejecting H0 at this choice of parameters is approximately

C1C2 = Pθ∗=0

(
exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 −Y 1/‖Y 1‖‖2

)
≥ 1

α
, ‖Y 1‖ > 1

)
≤ Pθ∗=0

(
‖Y 0 −Y 1‖2 < ‖Y 0 −Y 1/‖Y 1‖‖2, ‖Y 1‖ > 1

)
= Pθ∗=0

(
‖Y 0‖2 − 2Y

T
0Y 1 + ‖Y 1‖2 < ‖Y 0‖2 − 2Y

T
0Y 1/‖Y 1‖+ 1, ‖Y 1‖ > 1

)
= Pθ∗=0

(
2Y

T
0Y 1(1/‖Y 1‖ − 1) + ‖Y 1‖2 < 1, ‖Y 1‖ > 1

)
= Pθ∗=0

(
2Y

T
0Y 1(1− ‖Y 1‖)/‖Y 1‖ < 1− ‖Y 1‖2, ‖Y 1‖ > 1

)
= Pθ∗=0

(
2Y

T
0Y 1(1− ‖Y 1‖)/‖Y 1‖ < (1− ‖Y 1‖)(1 + ‖Y 1‖), ‖Y 1‖ > 1

)
= Pθ∗=0

(
2Y

T
0Y 1 > ‖Y 1‖(1 + ‖Y 1‖), ‖Y 1‖ > 1

)
≤ Pθ∗=0

(
Y
T
0Y 1 > 1

)
.

Let σ = 1/
√

500. Since Y 0 and Y 1 are averages of 500 N(0, Id) random variables, we see that

Y 0 ∼ N(0, σ2Id) and Y 1 ∼ N(0, σ2Id). Let λ = −d/2 + (1/2)
√
d2 + 4/σ4. (This choice of λ

minimizes E[exp(λY
T
0Y 1)]/ exp(λ) out of λ > 0.) Let ν = σ/(1− σ4λ2)1/2. We derive

Pθ∗=0

(
Y
T

0Y 1 > 1
)

= Pθ∗=0

(
exp

(
λY

T

0Y 1

)
> exp(λ)

)
≤ Eθ∗=0

[
exp

(
λY

T

0Y 1

)]
/ exp(λ)

= exp(−λ)

∫
Rd

∫
Rd

1

(2π)d|σ2Id|
exp

(
− 1

2σ2
‖Y 0‖2 −

1

2σ2
‖Y 1‖2 + λY

T

0Y 1

)
dY 0dY 1

= exp(−λ)

∫
Rd

1

(2π)d/2|σ2Id|1/2
exp

(
− 1

2σ2
‖Y 1‖2

){∫
Rd

1

(2π)d/2|σ2Id|1/2
exp

(
− 1

2σ2
‖Y 0‖2 + λY

T

0Y 1

)
dY 0

}
dY 1

= exp(−λ)

∫
Rd

1

(2π)d/2|σ2Id|1/2
exp

(
− 1

2σ2
‖Y 1‖2

){
E
[
exp((λY 1)TY 0) | Y 1

]}
dY 1

= exp(−λ)

∫
Rd

1

(2π)d/2|σ2Id|1/2
exp

(
− 1

2σ2
‖Y 1‖2

)
exp

(
1

2
λ2σ2‖Y 1‖2

)
dY 1

= exp(−λ)

∫
Rd

1

(2π)d/2|σ2Id|1/2
exp

(
−1

2

(
1

σ2
− σ2λ2

)
‖Y 1‖2

)
dY 1

= exp(−λ)

∫
Rd

1

(2π)d/2|σ2Id|1/2
exp

(
−1

2

(
1− σ4λ2

σ2

)
‖Y 1‖2

)
dY 1

= exp(−λ)

∫
Rd

1

(2π)d/2|σ2Id|1/2
exp

(
− 1

2ν2
‖Y 1‖2

)
dY 1

= exp(−λ)
|ν2Id|1/2

|σ2Id|1/2

∫
Rd

1

(2π)d/2|ν2Id|1/2
exp

(
− 1

2ν2
‖Y 1‖2

)
dY 1
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= exp(−λ)(ν/σ)d

≈ exp(−207)(1.1)1000

≈ 0.

At a single split of the data, the power at ‖θ∗‖ = 0, d = 1000, and n = 1000 is approximately

0 because

Pθ∗=0(Un1(‖Y 1‖ < 0.5) + 1(‖Y 1‖ ∈ [0.5, 1]) +Rn1(‖Y 1‖ > 1) ≥ 1/α)

≈ Pθ∗=0

(
exp

(
−n

4
‖Y 0 −Y 1‖2 +

n

4
‖Y 0 −Y 1/‖Y 1‖‖2

)
≥ 1

α
, ‖Y 1‖ > 1

)
≤ Pθ∗=0

(
Y
T
0Y 1 > 1

)
≈ 0.
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Appendix C

Proofs from Chapter 3

Theorem 3.5.1. We make five assumptions:

1. Suppose each f̂1,n ∈ C, where C is some (potentially nonparametric) class of functions that

satisfies supf∈C |D̂KL(f∗‖f)−DKL(f∗‖f)| = OP (n−β1) for some β1 > 0.

2. DKL(f∗‖f̂1,n) = OP (n−β2) for some 0 < β2 ≤ 1/2.

3.
∫
Rd ‖x‖f

∗(x)dx <∞.

Suppose there is some set A with P (A) = 1 (e.g., the support of fLC or its interior) that satisfies

the following:

4. For some ` > 0, infx∈A f
LC(x) ≥ `.

5. supx∈A |f̂0,n(x)− fLC(x)| a.s.→ 0.

Then limn→∞ PH0(Tn ≥ 1/α) = 1.

Proof. We begin by separating Tn into a product of three components:

Tn =

 ∏
Yi∈D0,n

f̂1,n(Yi)

f∗(Yi)

︸ ︷︷ ︸
C1,n

 ∏
Yi∈D0,n

f∗(Yi)

fLC(Yi)

︸ ︷︷ ︸
C2,n

 ∏
Yi∈D0,n

fLC(Yi)

f̂0,n(Yi)

︸ ︷︷ ︸
C3,n

.

Define ε as

ε = ‖(fLC)1/2 − (f∗)1/2‖2 =

[∫ (
(fLC)1/2 − (f∗)1/2

)2
dµ

]1/2

.
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We see that

P(Tn < 1/α)

≤ P
(
C2,n < exp

(n
8
ε2
)
∪ C1,n <

1

α
exp

(
− n

16
ε2
)
∪ C3,n < exp

(
− n

16
ε2
))

≤ P
(
C2,n < exp

(n
8
ε2
))

+ P
(
C1,n <

1

α
exp

(
− n

16
ε2
))

+ P
(
C3,n < exp

(
− n

16
ε2
))

.

We want to show that these three probabilities converge to 0.

By Lemma 1 of Wong et al. (1995), we can see

P
(
C2,n < exp

(n
8
ε2
))

= P

 ∏
Yi∈D0,n

f∗(Yi)

fLC(Yi)
< exp

(n
8
ε2
)

= P

 ∏
Yi∈D0,n

fLC(Yi)

f∗(Yi)
> exp

(
−n

8
ε2
)

≤ exp
(
−n

8
ε2
)
.

So limn→∞ P
(
C2,n < exp

(
(n/8)ε2

))
= 0.

For the second probability, we use assumptions 1 and 2 to see that

log(C1,n) = log

 ∏
Yi∈D0,n

f̂1,n(Yi)

f∗(Yi)


=

∑
Yi∈D0,n

log

(
f̂1,n(Yi)

f∗(Yi)

)

= −n
2
· 2

n

∑
Yi∈D0,n

log

(
f∗(Yi)

f̂1,n(Yi)

)

= −n
2
D̂KL(f∗‖f̂1,n)

= −n
2

(
D̂KL(f∗‖f̂1,n)−DKL(f∗‖f̂1,n)

)
− n

2
DKL(f∗‖f̂1,n)

= −n
2
OP (n−β1)− n

2
OP (n−β2)

= OP (n1−β),
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where β = min{β1, β2} ∈ (0, 1/2]. We fix M > 0 such that lim
n→∞

P(| log(C1,n)/n1−β| > M) = 0. We

see that

P(C1,n < (1/α) exp(−(n/16)ε2))

= P(log(C1,n) < log(1/α)− (n/16)ε2)

= P(log(C1,n) < log(1/α)− (n/16)ε2, log(C1,n) ≥ 0) +

P(log(C1,n) < log(1/α)− (n/16)ε2, log(C1,n) < 0)

≤ P(log(1/α)− (n/16)ε2 > 0) + P(−| log(C1,n)| < log(1/α)− (n/16)ε2)

= P(log(1/α)− (n/16)ε2 > 0) + P(| log(C1,n)| > (n/16)ε2 − log(1/α))

= P(log(1/α)− (n/16)ε2 > 0) + P(| log(C1,n)/n1−β| > (nβ/16)ε2 − nβ−1 log(1/α))

= P(log(1/α)− (n/16)ε2 > 0) +

P(| log(C1,n)/n1−β| > (nβ/16)ε2 − nβ−1 log(1/α), (nβ/16)ε2 − nβ−1 log(1/α) > M) +

P(| log(C1,n)/n1−β| > (nβ/16)ε2 − nβ−1 log(1/α), (nβ/16)ε2 − nβ−1 log(1/α) ≤M)

≤ P(log(1/α)− (n/16)ε2 > 0) + P(| log(C1,n)/n1−β| > M) + P((nβ/16)ε2 ≤ nβ−1 log(1/α) +M)

≤ P(log(1/α)− (n/16)ε2 > 0) + P(| log(C1,n)/n1−β| > M) + P((nβ/16)ε2 ≤ log(1/α) +M).

We know that limn→∞ P(log(1/α)− (n/16)ε2 > 0) = 0, limn→∞ P(| log(C1,n)/n1−β| > M) = 0, and

limn→∞ P((nβ/16)ε2 ≤ log(1/α) +M) = 0. We conclude that

lim
n→∞

P(C1,n < (1/α) exp(−(n/16)ε2)) = 0.
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For the third probability, we see that

P
(
C3,n < exp

(
− n

16
ε2
))

= P

log

 ∏
Yi∈D0,n

fLC(Yi)

f̂0,n(Yi)

 < − n

16
ε2


= P

 ∑
Yi∈D0,n

log

(
f̂0,n(Yi)

fLC(Yi)

)
>

n

16
ε2


= P

 2

n

∑
Yi∈D0,n

log

(
f̂0,n(Yi)

fLC(Yi)

)
>

1

8
ε2


≤ 8

ε2
E

 2

n

∑
Yi∈D0,n

log

(
f̂0,n(Yi)

fLC(Yi)

) .
Note that Markov’s inequality applies in the final step because f̂0,n and fLC are both log-concave

densities, and f̂0,n maximizes the likelihood over all log-concave densities on D0,n. This means that

the quantity within the expectation is nonnegative. Using ` from assumption 4, fix γ > 0 such that

γ < `(exp(δ)− 1). Note that this implies log((γ + `)/`) < δ. Then
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E

 2

n

∑
Yi∈D0,n

log

(
f̂0,n(Yi)

fLC(Yi)

)
= E

 2

n

∑
Yi∈D0,n

log(f̂0,n(Yi))

− E

 2

n

∑
Yi∈D0,n

log(fLC(Yi))


= E

 2

n

∑
Yi∈D0,n

log(f̂0,n(Yi))


{
I

(
sup
x∈A
|f̂0,n(x)− fLC(x)| < γ

)
+ I

(
sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

)}−
E

 2

n

∑
Yi∈D0,n

log(fLC(Yi))


= E

 2

n

∑
Yi∈D0,n

log(f̂0,n(Yi)− fLC(Yi) + fLC(Yi))

 I

(
sup
x∈A
|f̂0,n(x)− fLC(x)| < γ

)+

E

 2

n

∑
Yi∈D0,n

log(f̂0,n(Yi))I

(
sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

)− E

 2

n

∑
Yi∈D0,n

log(fLC(Yi))


< E

 2

n

∑
Yi∈D0,n

log(γ + fLC(Yi))

− E

 2

n

∑
Yi∈D0,n

log(fLC(Yi))

+

E

 2

n

∑
Yi∈D0,n

log(f̂0,n(Yi))I

(
sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

) (C.1)

≤ log(γ + `)− log(`) + E

 2

n

∑
Yi∈D0,n

log(f̂0,n(Yi))I

(
sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

) (C.2)

< δ + E

 2

n

∑
Yi∈D0,n

log(f̂0,n(Yi))I

(
sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

) .

Step (C.1) to step (C.2) holds because g(x) = log(γ+x)−log(x) is a decreasing function, so g(x)

is maximized at the smallest x. By assumption 4, we know that with probability 1, fLC(Yi) ≥ `,

so setting x = ` provides an upper bound.

By Lemma 3(a) of Cule et al. (2010a), assumption 3 implies that for some u > 0,

lim supn→∞ supx∈Rd f̂0,n(x) ≤ u with probability 1. Using reverse Fatou’s Lemma for conditional
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expectations in step (C.3), we see

lim sup
n→∞

E

 2

n

∑
Yi∈D0,n

log(f̂0,n(Yi))I

(
sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

)
= lim sup

n→∞
E

 2

n

∑
Yi∈D0,n

log(f̂0,n(Yi))
∣∣∣ sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

P
(

sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

)

≤ lim sup
n→∞

E

[
sup
x∈Rd

(log(f̂0,n(x)))
∣∣∣ sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

]
P
(

sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

)

≤ lim sup
n→∞

E

[
sup
x∈Rd

(f̂0,n(x))
∣∣∣ sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

]
P
(

sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

)

≤ E

[
lim sup
n→∞

sup
x∈Rd

(f̂0,n(x))
∣∣∣ sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

]
P
(

sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

)
(C.3)

≤ uP
(

sup
x∈A
|f̂0,n(x)− fLC(x)| ≥ γ

)
with probability 1.

Finally, by assumption 5, limn→∞ P
(

supx∈A |f̂0,n(x)− fLC(x)| ≥ γ
)
→ 0. So with probability 1,

for arbitrary δ > 0,

lim
n→∞

E

 2

n

∑
Yi∈D0,n

log

(
f̂0,n(Yi)

fLC(Yi)

) < δ.

We conclude that limn→∞ P
(
C3,n < exp

(
− n

16ε
2
))

= 0. Therefore, limn→∞ PH0(Tn < 1/α) = 0.
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Appendix D

Proofs from Chapter 4

We recall Theorem 4.2.1. Let Y1, . . . , Yn be iid observations from a distribution P where Yi ∈ Y,

and let Yn+1 denote a new draw from P . Theorem 4.2.1 considers a construction when Y ⊆ R.

Theorem 4.2.1. We define a prediction interval C(α) = [Y(r), Y(s)], where r = b(n+ 1)(α/2)c and

s = d(n+ 1)(1− α/2)e. Then for every distribution P , P (Yn+1 ∈ C(α)) ≥ 1− α. This interval is

bounded if n ≥ 2/α− 1.

Proof of Theorem 4.2.1. We show that this method produces valid 100(1−α)% prediction intervals.

Furthermore, if n ≥ 2/α−1, we show that the lower and upper bounds of the interval will be finite.

Suppose the data arise from a continuous distribution such that ties occur with probability 0.

(This is helpful for intuition, but the inequalities that follow are valid without this assumption.)

We can define the following n+ 1 intervals:

(−∞, Y(1)]︸ ︷︷ ︸
A0

, (Y(1), Y(2)]︸ ︷︷ ︸
A1

, . . . , (Y(n−1), Y(n)]︸ ︷︷ ︸
An−1

, (Y(n),∞)︸ ︷︷ ︸
An

.

A new observation Yn+1 ∼ P is equally likely to fall in any of those n + 1 intervals.

To see this, consider the augmented sample (Y1, Y2, . . . , Yn, Yn+1) with updated order statistics

(Y ′(1), Y
′

(2), . . . , Y
′

(n), Y
′

(n+1)). The new observation Yn+1 is equally likely to be any of those order
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statistics. That means

P(Yn+1 ∈ A0) = P(Yn+1 ≤ Y(1)) = P(Yn+1 = Y ′(1)) = 1/(n+ 1),

P(Yn+1 ∈ A1) = P(Y(1) < Yn+1 ≤ Y(2)) = P(Yn+1 = Y ′(2)) = 1/(n+ 1),

and so forth. Allowing for ties, for m ∈ {1, . . . , n} we have

P(Yn+1 < Y(m)) ≤
m

n+ 1

P(Yn+1 > Y(m)) ≤
n−m+ 1

n+ 1
.

These inequalities are equalities when P is a continuous distribution.

We construct a prediction interval [Y(r), Y(s)] where r = b(n+1)(α/2)c and s = d(n+1)(1−α/2)e.

We see that

P(Yn+1 /∈ [Y(r), Y(s)]) = P(Yn+1 < Y(r)) + P(Yn+1 > Y(s))

≤ r

n+ 1
+
n− s+ 1

n+ 1

= 1 +
r − s
n+ 1

= 1 +
b(n+ 1)(α/2)c − d(n+ 1)(1− α/2)e

n+ 1

= 1 +
b(n+ 1)(α/2)c − ((n+ 1) + d−(n+ 1)(α/2)e)

n+ 1

=
b(n+ 1)(α/2)c − d−(n+ 1)(α/2)e

n+ 1

=
b(n+ 1)(α/2)c+ b(n+ 1)(α/2)c

n+ 1

≤ (n+ 1)α

n+ 1

= α.

So P(Yn+1 ∈ [Y(r), Y(s)]) ≥ 1− α.
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If n ≥ 2/α − 1, then the lower and upper bounds will both be finite. Under this condition on

n, the lower bound is greater than or equal to Y(1) because

b(n+ 1)(α/2)c ≥ b(2/α) (α/2)c

= 1.

Applying this result, we also see that the upper bound is less than or equal to Y(n) because

d(n+ 1) (1− α/2)e = dn+ 1− (n+ 1)(α/2)e

= n+ 1 + d−(n+ 1)(α/2)e

= n+ 1− b(n+ 1)(α/2)c

≤ n+ 1− 1

= n.
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Appendix E

Proofs from Chapter 5

We recall Theorem 5.2.1. The data come in groups D1, . . . ,Dk and each group has iid data

Dj = {Yj1, . . . , Yjnj} ∼ Pj

where P1, . . . , Pk ∼ Π. Assuming a new distribution Pk+1 ∼ Π and Y ∼ Pk+1, we want a prediction

region for Y .

At the group level, let Cj = [`j , uj ] be the 100(1 − α/2)% prediction set obtained by applying

the method in Theorem 4.2.1 at level α/2 to group j, j = 1, . . . , k. Assume Ck+1 = [`k+1, uk+1] is a

100(1−α/2)% prediction set for group k+1 if we had n observations from Pk+1. At the distribution

level, we want to construct an interval Cdbl(α) such that Π(Ck+1 ⊆ Cdbl(α)) ≥ 1−α/2. Note that

we have constructed a sample of k lower bounds {`1, . . . , `k} and k upper bounds {u1, . . . , uk}. Using

the order statistics from those samples, we set Cdbl(α) = [`(r), u(s)], where r = b(k + 1)(α/4)c and

s = d(k + 1)(1− α/4)e.

Theorem 5.2.1. For Cdbl(α) as defined above, Π(Y ∈ Cdbl(α)) ≥ 1 − α. This set is bounded if

k ≥ 4/α− 1 and each nj ≥ 4/α− 1.

Proof of Theorem 5.2.1. For a new Y ∼ Π, we show that Π(Y ∈ Cdbl(α)) ≥ 1− α. Similar to the

proof of Theorem 4.2.1, we can see that

Π(`k+1 < `(r)) ≤ b(k + 1)(α/4)c 1

k + 1

≤ α/4
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and

Π(uk+1 > u(r)) ≤
k − d(k + 1)(1− α/4)e+ 1

k + 1

≤ α/4.

This implies that

Π(Ck+1 * Cdbl(α)) = Π(`k+1 < `(r) ∪ uk+1 > u(s))

≤ Π(`k+1 < `(r)) + Π(uk+1 > u(s))

≤ α/4 + α/4

= α/2. (E.1)

Let A denote the event that Ck+1 ⊆ Cdbl(α). We can now show the main result:

Π(Y /∈ Cdbl(α)) = Π(Y /∈ Cdbl(α), A) + Π(Y /∈ Cdbl(α), Ac) (E.2)

≤ Π(Y /∈ Ck+1) + Π(Ac) (E.3)

≤ α/2 + α/2 (E.4)

= α.

To get from (E.2) to (E.3), we note that Y /∈ Cdbl(α) and Ck+1 ⊆ Cdbl(α) implies that Y /∈ Ck+1.

The second two terms use the fact that Π(Y /∈ Cdbl(α), Ac) ≤ Π(Ac). To get from (E.3) to (E.4),

the first probability uses the fact that C1, . . . , Ck+1 are 100(1 − α/2)% prediction sets for groups

j = 1, . . . , k + 1. The second probability holds because Π(Ac) = Π(Ck+1 * Cdbl(α)) < α/2 from

(E.1).

Furthermore, we can show that Cdbl(α) is bounded if k ≥ 4/α− 1 and each nj ≥ 4/α− 1. We

use nj observations to construct each 100(1− α/2)% interval Cj , j = 1, . . . , k. Thus, by a similar

argument as Theorem 4.2.1, these k intervals are all bounded if each nj ≥ 4/α − 1. In addition,

since Cdbl(α) uses the b(k+ 1)(α/4)c order statistic of {`1, . . . , `k} and the d(k+ 1)(1−α/4)e order

statistic of {u1, . . . , uk}, Cdbl(α) is bounded if k ≥ 4/α− 1.
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The unsupervised pooling method referenced in Theorem 5.2.2 pools the empirical CDFs

across the k groups. For any group j with observations Yj1, . . . , Yjnj , the empirical CDF is defined

as

F̂j(t) =
1

nj

nj∑
i=1

I(Yji ≤ t).

We set

q̂k(α) = inf

t ∈ R :
1

k

k∑
j=1

F̂j(t) ≥ α

 .

Then CpoolCDF(α) = [q̂k(α/2), q̂k(1− α/2)].

Theorem 5.2.2. Assume that F : R → [0, 1], defined as F (t) = Π(Y ≤ t), is strictly increasing.

For CpoolCDF(α) as defined above, Π(Y ∈ CpoolCDF(α))→ 1− α as k →∞.

Proof. Let Ĝk(t) = (1/k)
∑k

j=1 F̂j(t). That means that for α ∈ (0, 1), the sample quantiles q̂k(α)

and the true quantiles q(α) are

q̂k(α) = inf
{
t ∈ R : Ĝk(t) ≥ α

}
q(α) = inf {t ∈ R : F (t) ≥ α} .

We prove this theorem in three steps:

1. For t ∈ R, Ĝk(t)
p→ F (t) as k →∞.

2. For α ∈ (0, 1), q̂k(α)
p→ q(α) as k →∞.

3. For Y ∼ Π, Π
(
Y ∈ CpoolCDF(α)

)
→ 1− α as k →∞.

Step 1. Fix t ∈ R. We write

Ĝk(t) =
1

k

k∑
j=1

F̂j(t) =
1

k

k∑
j=1

1

nj

nj∑
i=1

I(Yji ≤ t).

We see that EΠ[I(Yji ≤ t)] = F (t), so

EΠ[Ĝk(t)] = F (t).
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In addition, note that the k distributions P1, . . . , Pk are independently drawn from Π. Since F̂j(t)

is bounded between [0, 1], we determine

VarΠ(Ĝk(t)) = VarΠ

1

k

k∑
j=1

F̂j(t)

 =
1

k2

k∑
j=1

VarΠ

(
F̂j(t)

)
≤ 1

k2

k∑
j=1

1

4
=

1

4k
→ 0

as k →∞. We conclude that Ĝk(t)
p→ F (t) as k →∞.

Step 2. Fix α ∈ (0, 1). Let ε > 0 and δ > 0. To show that lim
k→∞

Π (|q̂k(α)− q(α)| > ε) = 0, we

will show that there exists K ∈ N such that for k ≥ K, Π (|q̂k(α)− q(α)| > ε) < δ.

We are assuming that F (t) is strictly increasing. Thus, F (q(α) + ε) − F (q(α)) > 0. Since

Ĝk(t)
p→ F (t) as k →∞, we can fix K1 ∈ N such that for k ≥ K1,

Π
(∣∣∣Ĝk(q(α) + ε)− F (q(α) + ε)

∣∣∣ > F (q(α) + ε)− F (q(α))
)
<
δ

2
.

In addition, F (q(α))− F (q(α)− ε) > 0. We can fix K2 ∈ N such that for k ≥ K2,

Π
(∣∣∣Ĝk(q(α)− ε)− F (q(α)− ε)

∣∣∣ ≥ F (q(α))− F (q(α)− ε)
)
<
δ

2
.

Now let K = max{K1,K2}. Assume k ≥ K.
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From the definition of q̂k(α), it holds that q̂k(α) > q(α) + ε if and only if Ĝk(q(α) + ε) < α. It

also holds that q̂k(α) < q(α)− ε if and only if Ĝk(q(α)− ε) ≥ α. We see

Π (|q̂k(α)− q(α)| > ε) = Π (q̂k(α) > q(α) + ε) + Π(q̂k(α) < q(α)− ε)

= Π
(
Ĝk(q(α) + ε) < α

)
+ Π

(
Ĝk(q(α)− ε) ≥ α

)
= Π

(
Ĝk(q(α) + ε) < F (q(α))

)
+ Π

(
Ĝk(q(α)− ε) ≥ F (q(α))

)
= Π

(
Ĝk(q(α) + ε) < F (q(α) + ε)− (F (q(α) + ε)− F (q(α)))

)
+ Π

(
Ĝk(q(α)− ε) ≥ F (q(α)− ε) + (F (q(α))− F (q(α)− ε))

)
≤ Π

(∣∣∣Ĝk(q(α) + ε)− F (q(α) + ε)
∣∣∣ > F (q(α) + ε)− F (q(α))

)
+ Π

(∣∣∣Ĝk(q(α)− ε)− F (q(α)− ε)
∣∣∣ ≥ F (q(α))− F (q(α)− ε)

)
<
δ

2
+
δ

2

= δ.

We conclude that q̂k(α)
p→ q(α) as k →∞.

Step 3. Since F (t) is a strictly increasing CDF, F is continuous. For Y randomly drawn from

the superpopulation Π, we apply the continuous mapping theorem to see

lim
k→∞

Π
(
Y ∈ CpoolCDF(α)

)
= lim

k→∞

[
F (q̂k(1− α/2))− F (q̂k(α/2))

]
= F (q(1− α/2))− F (q(α/2))

= (1− α/2)− α/2

= 1− α.

We conclude that CpoolCDF(α) is asymptotically valid as k →∞.

We recall the setup for the supervised CDF pooling method referenced in Theorem 5.2.4. Let

[k] = {1, . . . , k}. We start by pooling the observations from some strict subset k0 ⊂ [k] of the k

groups to fit a model µ̂(X) as an estimator of E[Y | X]. We use the remaining groups to fit the

residuals Rji = |Yji − µ̂(Xji)|, j ∈ [k]\k0, i = 1, . . . , nj . Now for each j ∈ [k]\k0, we define group
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j’s empirical CDF of the residuals

F̂j(t) =
1

nj

nj∑
i=1

I(Rji ≤ t).

We define

q̂k(α) = inf

t ∈ R :
1

|[k]\k0|
∑

j∈[k]\k0

F̂j(t) ≥ α

 .

The 1− α conformal prediction set is CpoolCDF(x;α) = [µ̂(x)− q̂k(1− α), µ̂(x) + q̂k(1− α)].

Theorem 5.2.4. Fit a model µ̂(X) as an estimator of E[Y | X] using the observations in groups

k0 ⊂ [k]. (Hence, this model stays fixed as k grows.) For (X,Y ) ∼ Π, assume Π(|Y − µ̂(X)| ≤ t)

is strictly increasing in t. Then Π(Y ∈ CpoolCDF(X;α))
p→ 1− α as k →∞.

Proof. The proof of Theorem 5.2.4 is similar to the proof of Theorem 5.2.2. We explain how to

modify the argument to prove the supervised result. Let Ĝk(t) = (|[k]\k0|)−1∑
j∈[k]\k0

F̂j(t). Let

F (t) = Π(|Y − µ̂(X)| ≤ t). For α ∈ (0, 1), the sample quantiles q̂k(α) and the true quantiles q(α)

are

q̂k(α) = inf
{
t ∈ R : Ĝk(t) ≥ α

}
q(α) = inf {t ∈ R : F (t) ≥ α} .

Similar to Theorem 5.2.2, we prove this theorem in three steps:

1. For t ∈ R, Ĝk(t)
p→ F (t) as k →∞.

2. For α ∈ (0, 1), q̂k(α)
p→ q(α) as k →∞.

3. For (X,Y ) ∼ Π, Π
(
Y ∈ CpoolCDF(X;α)

)
→ 1− α as k →∞.

Step 1. Fix t ∈ R. We write

Ĝk(t) =
1

|[k]\k0|
∑

j∈[k]\k0

F̂j(t) =
1

|[k]\k0|
∑

j∈[k]\k0

1

nj

nj∑
i=1

I(|Yji − µ̂(Xji)| ≤ t).
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Again, we assume that µ̂(·) is fixed, using the observations in the groups indexed by k0. We see

that EΠ[I(|Yji − µ̂(Xji)| ≤ t)] = Π(|Y − µ̂(X)| ≤ t), so

EΠ[Ĝk(t)] = Π(|Y − µ̂(X)| ≤ t).

Since F̂j(t) is bounded between [0, 1], we see

VarΠ(Ĝk(t)) = VarΠ

 1

|[k]\k0|
∑

j∈[k]\k0

F̂j(t)

 =

(
1

|[k]\k0|

)2 ∑
j∈[k]\k0

VarΠ(F̂j(t))

≤ 1

4|[k]\k0|
→ 0

as k →∞. We conclude that Ĝk(t)
p→ F (t) as k →∞.

Step 2. We can show that for α ∈ (0, 1), q̂k(α)
p→ q(α) as k →∞ using the same steps as in the

proof of Theorem 5.2.2. The only modification is that Ĝk(t) and F (t) have different definitions in

the supervised case.

Step 3. Recall that CpoolCDF(x;α) = [µ̂(x)− q̂k(1−α), µ̂(x) + q̂k(1−α)]. For (X,Y ) randomly

drawn from Π, we apply the continuous mapping theorem to see

lim
k→∞

Π
(
Y ∈ CpoolCDF(X;α)

)
= lim

k→∞
Π (|Y − µ̂(X)| ≤ q̂k(1− α))

= Π(|Y − µ̂(X)| ≤ q(1− α))

= 1− α.

We recall the setup for the supervised parametric CDF pooling method referenced in

Theorem 5.2.5. We also introduce some additional parameters for the proof. Suppose (X,Y )

arise from a known parametric model Y = µ(X; θ) + ε, where µ(·) is known, θ is unknown, and

ε has a zero-mean distribution. We pool all of the m =
∑k

j=1 nj observations to fit θ̂, using the

true parametric model µ(·). Thus, at any X, our point prediction is Ŷ = µ(X; θ̂). We have the
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following residuals under the true θ and the estimated θ̂:

Rji(θ) = |µ(Xji; θ)− Yji|

Rji(θ̂) =
∣∣∣µ(Xji; θ̂)− Yji

∣∣∣ .
The empirical CDFs of these residuals are

F̂j,θ(t) =
1

nj

nj∑
i=1

I(Rji(θ) ≤ t)

F̂
j,θ̂

(t) =
1

nj

nj∑
i=1

I(Rji(θ̂) ≤ t).

The true CDF of the residuals is

F (t) = Π(|Y − µ(X; θ)| ≤ t).

We obtain sample quantiles q̂k(θ̂;α) and true quantiles q(α):

q̂k(θ̂;α) = inf

t ∈ R :
1

k

k∑
j=1

F̂
j;θ̂

(t) ≥ α


q(α) = inf {t ∈ R : F (t) ≥ α} .

The 1− α prediction set is Cparam(x;α) = [µ(x; θ̂)− q̂k(1− α), µ(x; θ̂) + q̂k(1− α)].

Theorem 5.2.5. Suppose (X,Y ) arises from a parametric model Y = µ(X; θ) + ε, where µ(·) is

known, θ is unknown, and ε has a zero-mean distribution. Assume Π(Y − µ(X; θ) ≤ t) is strictly

increasing in t. Assume the true θ satisfies

1

k

k∑
j=1

sup
t
|F̂
j,θ̂

(t)− F̂j,θ(t)|
p→ 0

as k → ∞, and assume that for δ > 0, limk→∞Π(|µ(X; θ) − µ(X; θ̂)| > δ) = 0. For Cparam(x;α)

as defined above, limk→∞Π(Y ∈ Cparam(X;α)) = 1− α.
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Proof. The proof of Theorem 5.2.5 is similar to the proof of Theorem 5.2.4. Define

Ĝ
k,θ̂

(t) = (1/k)

k∑
j=1

F̂
j,θ̂

(t)

Ĝk,θ(t) = (1/k)

k∑
j=1

F̂j,θ(t)

F (t) = Π(|Y − µ(X; θ)| ≤ t).

For α ∈ (0, 1), the sample quantiles q̂k(α) and the true quantiles q(α) are

q̂k(θ̂;α) = inf

t ∈ R :
1

k

k∑
j=1

F̂
j;θ̂

(t) ≥ α


q(α) = inf {t ∈ R : F (t) ≥ α} .

Similar to Theorem 5.2.4, we prove this theorem in three steps:

1. For t ∈ R, Ĝ
k,θ̂

(t)
p→ F (t) as k →∞.

2. For α ∈ (0, 1), q̂k(α)
p→ q(α) as k →∞.

3. For (X,Y ) ∼ Π, Π (Y ∈ Cparam(X;α))→ 1− α as k →∞.

Step 1. Fix t ∈ R. By the assumption that (1/k)
∑k

j=1 supt |F̂j,θ̂(t) − F̂j,θ(t)|
p→ 0 as k → ∞, we

know that

|Ĝ
k,θ̂

(t)− Ĝk,θ(t)| ≤
1

k

k∑
j=1

|F̂
j,θ̂

(t)− F̂j,θ(t)|
p→ 0.

Next, we write

Ĝk,θ(t) =
1

k

k∑
j=1

F̂j,θ(t) =
1

k

k∑
j=1

1

nj

nj∑
i=1

I(|Yji − µ(X; θ)| ≤ t).

We see that EΠ[I(|Yji − µ(X; θ)| ≤ t)] = Π(|Y − µ(X; θ)| ≤ t), so

EΠ[Ĝk,θ(t)] = Π(|Y − µ(X; θ)| ≤ t) = F (t).

152



Since F̂j,θ(t) is bounded between [0, 1], we see

VarΠ(Ĝk,θ(t)) = VarΠ

1

k

k∑
j=1

F̂j,θ(t)

 =
1

k2

k∑
j=1

VarΠ

(
F̂j,θ(t)

)
≤ 1

4k
→ 0.

That means that Ĝk,θ(t)
p→ F (t) as k →∞. Combining these two convergence statements,

|Ĝ
k,θ̂

(t)− F (t)| = |Ĝ
k,θ̂

(t)− Ĝk,θ(t) + Ĝk,θ(t)− F (t)| ≤ |Ĝ
k,θ̂

(t)− Ĝk,θ(t)|+ |Ĝk,θ(t)− F (t)| p→ 0.

We conclude that Ĝ
k,θ̂

(t)
p→ F (t) as k →∞.

Step 2. We can show that for α ∈ (0, 1), q̂k(α)
p→ q(α) as k → ∞ using the same steps

as in the proof of Theorem 5.2.2. As modifications, we replace Ĝk(t) with Ĝ
k,θ̂

(t), and we use

F (t) = Π(|Y − µ(X; θ)| ≤ t). In addition, Theorem 5.2.2 uses the fact that F (t) is strictly

increasing. We are assuming that Π(Y − µ(X; θ̂) ≤ t) is strictly increasing, which implies that

F (t) = Π(|Y − µ(X; θ̂)| ≤ t) is strictly increasing.

Step 3. Recall that Cparam(x;α) = [µ(x; θ̂) − q̂k(1 − α), µ(x; θ̂) + q̂k(1 − α)]. We are assuming

that Π(Y − µ(X; θ) ≤ t) is strictly increasing in t, so Π(Y − µ(X; θ) ≤ t) is continuous. We have

also shown that q̂k(α)
p→ q(α), and we are assuming that |µ(X; θ̂) − µ(X; θ)| p→ 0 over Π. For
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(X,Y ) randomly drawn from Π, we apply the continuous mapping theorem to see

lim
k→∞

Π (Y ∈ Cparam(X;α))

= lim
k→∞

Π
(
|Y − µ(X; θ̂)| ≤ q̂k(1− α)

)
= lim

k→∞
Π
(
−q̂k(1− α) ≤ Y − µ(X; θ̂) ≤ q̂k(1− α)

)
= lim

k→∞
Π
(
−q̂k(1− α) + µ(X; θ̂)− µ(X; θ) ≤ Y − µ(X; θ) ≤ q̂k(1− α) + µ(X; θ̂)− µ(X; θ)

)
= lim

k→∞
Π
(
Y − µ(X; θ) ≤ q̂k(1− α) + µ(X; θ̂)− µ(X; θ)

)
−

lim
k→∞

Π
(
Y − µ(X; θ) ≤ −q̂k(1− α) + µ(X; θ̂)− µ(X; θ)

)
= Π (Y − µ(X; θ) ≤ q(1− α))−Π (Y − µ(X; θ) ≤ −q(1− α))

= Π (−q(1− α) ≤ Y − µ(X; θ) ≤ q(1− α))

= Π (|Y − µ(X; θ)| ≤ q(1− α))

= 1− α.
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