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Abstract

The impacts of climate change will exacerbate humanitarian crises at a global level, and there is an

urgent need to eliminate greenhouse gas (GHG) emissions from the power system infrastructure.

While deploying clean energy resources in the current grid will help in decarbonization, variable

and uncertain availability of solar and wind resources will introduce additional challenges in the

operation of a grid. Thus to achieve a reliable clean electricity transition it is important to think

about how renewable energy resources can be increased in the grid while minimizing potential

challenges. This dissertation begins by examining the reliability contribution of incorporation of

large solar photovoltaic (PV), onshore wind, and offshore wind generators for the case of New York

Independent System Operator (NYISO) using a method called Effective Load Carrying Capability

(ELCC). ELCC quantifies the reliability benefit of adding generators with certain nameplate ca-

pacity on top of the existing base fleet of generators. We define five different future scenarios to

account for potential pathways in energy transition of the base fleet through 2030. In these future

scenarios, we then add the generator of interest to assess its contribution to the grid and repeat the

process for multiple nameplate capacities for offshore wind, onshore wind, and solar power across

the entire footprint of New York. We conclude that, from a reliability perspective choosing offshore

wind generators irrespective of size (capacity) is more worthwhile as compared to onshore wind

farms for serving high demand periods as median capacity contributions (ELCC values) of offshore

is 20 times greater than solar generators. Furthermore, analyses using our scenarios indicate that

addition of solar generators in a base fleet with abundance of onshore and offshore wind generators

contributes towards increasing system reliability and vice-versa. Thus, the diversification of future

base fleet is necessary to meet demand shortfalls effectively.
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Next, we reconstruct proxies of temperature-driven hourly electricity demand data to investigate the

response of electricity demand to the variability of temperature over multiple decades to understand

the change in peak load. Investments in power system capacity expansion projects are based on

understanding of accurate, region-specific peak demand requirements. Balancing Authorities of

the US report hourly demand records only from 2015. This constrains the scope of analysis to

understand change in demand only to five or six years. Electricity use is strongly influenced by

temperature and as the grid is designed to handle maximum load days, which tend to be the hottest

days in many areas, the increasing intensity of extreme heat days will require additional investments

in peak generation capacity, transmission, or storage. Along with changing demand, the scope to

analyze the generating capacity gap after adding variable solar and wind resources is also limited,

as demand data corresponding to hourly solar radiation and wind speed records are unavailable.

Thus, there is a need to reconstruct demand data based on observed historical temperature, rather

than forecast demand based on simulated future temperature records from climate change models.

We attempt to fit various advanced machine learning models to understand the best choice for

reconstruction based on performance on the validation set. We conclude that a ”one-model fits all”

approach as suggested in existing literature performs poorly. We also find that within the largest

balancing authorities, ranked in the order of size and maximum demand consumption, Tennessee

Valley Authority, Midcontinent Independent System Operator, and Electricity Reliability Council

of Texas are most sensitive to temperature changes with the coefficient of variation of 20 largest

demand hours (representative of peak demand) ranging between 15 - 19%.

In Chapter 4, we underscore the need for assessing grid reliability while accounting for long-term

inter-annual variability in supply as well as demand side. We enlist the limitations of chapter 2 result

because of unavailability of long-term consistent demand records. Thus, we propose to conduct

reliability analysis of three different Balancing Authorities, that is ISO-NE, CA-ISO, and ERCOT

to account for spatial heterogeneity which influences temperature, and also use hourly reconstructed

demand proxies from Chapter 3 in conjunction with synchronous solar, onshore wind, and offshore

wind capacity factors over four decades. We find that ELCC values for offshore wind generators

vary significantly across years and has a coefficient of variation value that is 3 times larger than the

coefficient of variation value of ELCCs from solar generators over 40 years between 1980 - 2019.
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We conclude that because offshore wind ELCC contributions are significantly large in east and

west coast, ISO-NE and CA-ISO should include more offshore wind irrespective of large variability.

Whereas ERCOT witnessed the largest capacity contributions from solar generators, which is also

less sensitive to interannual variability effects of weather variables. Thus, it is worthwhile to provide

capital subsidies for solar generators in Texas.
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Chapter 1

Introduction

1.1 Changes in power system reliability by including renewable

energy generators

Renewable energy resources like onshore wind, offshore wind, and solar energy are increasingly

being used as the primary tools to reduce greenhouse gas (GHG) emissions as a part of the large

decarbonization effort for power systems. These technologies are diffusing into the existing grid

at an unprecedented rate all around the world (IEA, 2020). Even the U.S. is set to experience

tremendous growth in renewable energy, especially offshore wind power, with the goal to make the

power system cleaner and carbon-pollution free (AEO 2021). In 2020, U.S. solar energy capacity

had increased by 25%, and wind capacity increased by 48.3%, that is, an additional 9.8 GW and

14.3 GW of new generator capacity, respectively (EIA, 2021). The U.S. Department of Energy’s

(DOE) Annual Energy Outlook 2021 (AEO 2021) expects that electricity generation mixes across

the U.S. will change rapidly, with renewable energy being the fastest-growing source through 2050

due to competitive capital costs and federal tax credits.

Although renewable energy resources are growing faster than other dispatchable sources of energy,

the uncertainty associated with their hourly availability introduces integration challenges. Assessing

the reliability of solar and wind generators as they become integrated in the future, while considering

5



multiple future grid transition scenarios is of particular importance as it will guide the planning

process of power systems (Martinot, 2016; Bistline et al., 2020). Power system reliability is defined

as the ability to meet demand at all times even during times of unplanned outages (NREL, 2016).

Many studies exist around the assessment of power system reliability, but to comprehensively assess

the value of adding solar, onshore wind, and offshore wind generators, appropriate methods need to

be used to account for the natural variability of solar and wind resources along with related storage

and outage issues in the future grid (Castro and Ferreira, 2001; Ibanez and Milligan, 2014). The

analysis of capacity contributions of power systems has largely been deterministic in nature even

though solar and wind energy resources have variable distributions. There is a need to analyze

future reliability of power systems stochastically. Hence, instead of a deterministic approach, a

probabilistic way of thinking about the time-series distribution of renewable energy resources is

required to assess reliability (Keane et al., 2010; Castro and Ferreira, 2001; Bromley-Dulfano,

Florez, and M. T. Craig, 2021).

Established methods for assessing the reliability of adding large solar and wind generators to the

power system have used the metric known as ”Capacity Credit”. Capacity credit (also known as the

capacity value) of a solar or wind generator is the indicator of capacity contributions. There are two

distinct methods for quantifying capacity credit of any generator: chronological and probabilistic.

The chronological method of capacity credit quantification leverages a specific time period (such

as high risk peak load hours) to quantify the contribution of wind and solar generators towards

meeting demand. On the other hand, the probabilistic method accounts for variability of solar and

wind resources, along with transmission and generator outages. Hence, the probabilistic method

is more appropriate for our study. Effective Load Carrying Capability (or ELCC) is known to be

an important metric for quantifying the capacity credit of a generator added to the existing base

fleet (Beiter et al., 2020; Boccard, 2009; Ibanez and Milligan, 2014. Broadly, ELCC measures the

amount of generating capacity (in MW) of a conventional generator that can be replaced by a

specific renewable energy generator without compromising system reliability (Garrido, 2019).

Although ELCC is an important metric to comprehensively characterize several uncertainties and

produce accurate reliability contributions from any variable renewable energy (VRE) generator of

interest, studies using ELCC as a criterion have been fairly limited. This may be due to the complex
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modeling and computing requirements, as well as lack of granular data sources required for a hourly

reliability assessment. The literature around the use of ELCC and even the quantification of

reliability contributions for renewable generators to the US grid generally has been fairly restricted

to a single energy source assessment under constrained scenarios.

Moreover, no studies exist describing comprehensive reliability contributions from offshore wind

farms in the US. Assessing the contribution of these offshore wind generators in the east coast

states under multiple energy transition pathways is critical because by 2030 the state of New York

will complete the development of 3 GW of offshore wind capacity (AWEA fact sheet 2019) and is

planning to expand it to 9 GW by 2040. Moreover, states like Massachusetts, Connecticut, and

Rhode Island will add 8 GW of offshore wind generating capacity by 2035(New England, 2019).

Thus, there is a need to evaluate the capacity contributions of adding new generators to the

existing base fleet for multiple scenarios representing 2030 by leveraging a probabilistic approach,

while focusing on integrating a new clean energy source – offshore wind, which has been ignored in

existing literature surrounding probabilistic reliability assessment.

1.2 Importance of multidecadal high frequency temperature-driven

demand data

Reliability assessment of renewable energy generators is not only dependent upon supply side

variability, but is also affected by demand side variability. Electricity demand is influenced by the

variability of temperature (Thornton, Hoskins, and Scaife, 2016; H. C. Bloomfield et al., 2016;

Auffhammer, Baylis, and Hausman, 2017). The degree of variability differs between different time

scales. Hourly electricity demand is affected by human behavior. Currently, hourly demand data

from all Balancing Authorities (BAs) of the U.S. is only reported between July 2015 - mid 2020

(Tyler H. Ruggles and Farnham, 2020), effectively forcing any reliability-based study to develop

assumptions about trends in historical hourly demand time series. This imposes limits on reliability

assessment studies, constraining them to a couple of years, or requires researchers to make very

broad generalizations about fixed hourly demand over multiple years or decades. Such assumptions
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can lead to inaccurate reliability assessments and unrevealed system risks.

Existing studies have used linear regression models (H. C. Bloomfield et al., 2016; Hannah C.

Bloomfield, D. J. Brayshaw, and Charlton-Perez, 2020; Bloomfield et al., 2018; Thornton, Hoskins,

and Scaife, 2016; Auffhammer, Baylis, and Hausman, 2017; Fonseca et al., 2019; Kumler et al.,

2019) to estimate hourly demand based on hourly air temperature, Heating and Cooling Degree

Days (HDD & CDD), and some form of categorical variables (fixed effects). H. C. Bloomfield et al.,

2016 develops 36 years (1980 -2015) of mutually consistent demand and wind power reconstructions

using historical temperature and wind speed records from the NASA MERRA database (MERRA-

2 2020), but uses a simple linear regression model to estimate the trends in hourly demand for over

three decades. In a related study, Coker et al., 2020 used reanalysis data to reconstruct electricity

demand between 1976 - 2016 using linear regression models to understand the temperature driven

uncertainty in the capacity market of Great Britain. All of these studies leveraging hourly and

daily aggregated temperature data from reanalysis and climate models, respectively, have utilized

multiple linear regression models. The relationship between temperature and demand is non-linear

in nature (Hor, Watson, and Majithia, 2005; De Felice, Alessandri, and Catalano, 2015; Valor,

Meneu, and Caselles, 2001), but all existing studies attempting to reconstruct hourly demand data,

by trying to fit a linear regression model (sometimes even with the use of splines) to estimate

the functional relationship between hourly load and temperature. This undermines the actual

non-linear relationship. There is a need to test robust deep learning models against traditional

linear regression models to successfully capture the relationship between non-linear variables (here

load and temperature), and also prove that these data-driven methods actually have the ability to

perform well with large datasets.

Once the best method for reconstruction of weather-driven hourly demand proxies has been estab-

lished, these proxies can be used to truly understand the complexity of integrating high offshore

wind, onshore wind, and solar in the power system by analyzing the change in peak demand hours

over a multidecadal time frame. But there are several shortcomings to these regression methods

when applied to multidecadal time-frames, which undermines the trends in hourly demand peaks

that are driven by temperature. Thus, appropriate data-driven methods need to be employed to

closely model the dependency of demand on surface temperature and reconstruct hourly load data.
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Existing studies have constructed the de-trended electricity demand in various parts of the world,

but the basis of these analyses has been for short time periods (2-5 years) with broad datasets, often

measuring the aggregated effects on a daily basis. Hence, to answer the questions around demand

variability under the influence of changing temperature, first, there is a need to systematically

study the relationship between hourly and load and temperature within contiguous US. Then

robust regression-based reconstruction processes should be applied to develop hourly temperature-

driven electricity demand proxies by leveraging historical temperature records from the NASA

MERRA reanalysis dataset to successfully avoid any simulation-driven uncertainty from climate

change models. Moreover, for an inclusive analysis, this process of reconstructing demand proxies

should be repeated against all Balancing Authorities of the US to demand and temperature for four

decades to account for spatial heterogeneity, system design, and electricity consumption patterns.

1.3 Inter-annual variability impacts on renewable energy reliabil-

ity for long-term systems planning

Capacity expansion plans for power systems using renewable energy generators are often created to

serve customers reliably over multiple decades. These plans, if not carefully devised, could lead to

future system failures and power outages (Ahmad, 2021) and an increase in associated social and

economic costs (Bryce et al., 2018). A renewable-intensive grid is highly dependent on atmospheric

variables and their characteristics. The availability of resources contributing towards the generation

of renewable energy, like solar irradiance, onshore wind, and offshore wind vary from one location

to another. These resources do not only vary spatially, but also temporally on multiple time scales.

As atmospheric processes change Hannah Bloomfield, D. Brayshaw, and Charlton-Perez, 2020,

renewable energy resources will implicitly become more variable, which will then directly affect

the operation of power systems that are reliant on utility-scale solar energy or wind energy farms.

Thus, to successfully plan a robust clean electric grid, the reliability benefits from investing in wind

and solar power should be studied for a longer time frame.

Established literature quantifies year-to-year variation (Interannual Variability or IAV) in atmo-
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spheric variables like solar irradiance (Davy and Troccoli, 2012; Fedorov, 2019) and wind speed

(Pryor, Shepherd, and Barthelmie, 2018; McVicar et al., 2012; Zeng et al., 2019; Jung, Taubert,

and Schindler, 2019). Challenges for operating a grid with highly intermittent solar and wind

energy resources is not solely based on supply-side variability, but also temperature response of

demand. Studies of the effect on power systems due to temperature changes also have gained

some recognition (Ruijven, De Cian, and Wing, 2019; Yalew et al., 2020; Maia-Silva, Kumar, and

Nateghi, 2020). But, the assessment of weather influencing electricity demand and clean energy

resources over multiple decades, and its effect on power system reliability, or the grid’s ability to

meet demand at all times have only started gaining some momentum (Collins et al., 2018; Bryce

et al., 2018), although still limited to a handful of papers.

Several studies including Zeyringer et al., 2018; Coker et al., 2020; H. C. Bloomfield et al., 2016;

Bloomfield et al., 2018; Collins et al., 2018 have conducted some form of reliability assessment for

power systems in Europe under high renewable energy penetration scenarios using retrospective

supply and demand side data for several decades. These studies have underscored the need of a

multi-decade reliability assessment perspective for building robust energy markets, power systems

and also for transporting electricity. But, equivalent reliability assessments for North America have

been limited. Related studies in the context of US either focus on relatively smaller time scales

(Kumler et al., 2019), or account for only supply side impacts due to interannual variability of

atmospheric variables, while ignoring demand side changes (Shaner et al., 2018; Rinaldi et al.,

2021).

To truly analyze the change in reliability contributions from including new renewable energy gen-

erators to existing base fleet, the variability in solar and wind energy needs to be considered in

tandem with the response of hourly demand due to temperature changes over multiple decades.

It is also imperative to jointly consider impacts due to temperature-driven forced outages on the

power output from existing generators. A high-frequency analysis of effective capacity value addi-

tion from new solar, onshore wind, and offshore wind generators towards meeting excess demand,

while considering combined interactions of power output from existing generators along with de-

mand changes in a probabilistic fashion, has been missing from the energy systems literature for

the US.
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1.4 Research overview

Our proposed research contributes to the understanding of system reliability given two increas-

ingly important trends: increasing renewable penetrations and inter-annual variability impacts on

weather variables (solar, wind, temperature - which affects demand).

This thesis has three main research objectives, which are analyzed and addressed in Chapter 2,

Chapter 3, and Chapter 4. We specifically want to answer the questions around the following

objectives:

• Understand the reliability contributions from adding new renewable energy generators under

different energy transition scenarios for 2030 for the US east coast (Chapter 2)

1. What is the contribution of offshore wind farms towards future grid reliability during

periods of higher demand under multiple energy transition pathways?

2. How do the reliability contributions from offshore wind farms in New York compare to

other renewable energy generators like utility scale solar PV and onshore wind farms for

same and different nameplate capacities?

• Characterize the response of variability of temperature on demand for the contiguous US by

reconstructing hourly proxies of weather-dependent temperature and analyze peak demand

changes (Chapter 3)

1. What has been the effect of the long-term interannual variability of temperature on the

electricity demand for different Balancing Authorities of the US?

2. What is the distribution of 20 largest demand hours for large Balancing Authorities?

3. Which Balancing Authorities are most sensitive to temperature changes?

• Examine the change in reliability contributions from new solar PV, onshore wind, and offshore

wind generators over a multidecadal time frame due to interannual variability impacts of

temperature and other atmospheric variables contributing to clean energy production
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1. What is the effect of inter-annual variability of solar and wind resources over a mul-

tidecadal time scale on the grid reliability of Independent System Operator of New

England (ISO-NE), Electricity Reliability Council of Texas (ERCOT), and California

Independent System Operator(CAISO), while contributing towards meeting peak de-

mand as a response function of interannual variability of temperature?

2. How sensitive are ELCC estimates when observed demand is used instead of weather-

driven hourly demand proxies? Are the trends in variation of reliability contributions

broadly captured while using demand proxies?

1.5 Dissertation Structure

This dissertation document contains three research chapters, addressing the research objectives

outlined above. Initial analysis from chapter 3 was accepted as a paper in this year’s International

Conference of Machine Learning (ICML’21), and was also presented as a poster. We are currently

in the process of preparing all chapters for submission to peer-reviewed journals.

We begin by quantifying the reliability contributions to meet annual unmet demand hours by

including more offshore wind generators in the US east coast in Chapter 2. This chapter compre-

hensively tests the reliability benefits of offshore wind generators across multiple energy transition

pathways representative of the 2030 base fleet. Furthermore, we also compare the relative capac-

ity contributions from offshore wind farms against solar and onshore wind generators of similar

nameplate capacities.

In Chapter 3, we present a detailed analysis of reconstruction methods of temperature-driven de-

mand proxies for 40 years (1980 - 2019), and analyze them to determine which Balancing Authorities

will likely face more challenges due to variable temperature, and will thus need careful planning to

make the infrastructure more resilient while being able to reliably deliver electricity.

In Chapter 4, we investigate the plausible changes in reliability from solar and wind generators for

three systematically and geographically different Balancing Authorities using multidecadal hourly
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solar irradiance, and wind speed data along with synchronous weather-driven temperature proxies

developed in Chapter 3. This study is aimed at helping policymakers develop an understanding

of the necessary comprehensive multidecadal reliability studies for planning robust power system

expansion using renewable energy technologies. And lastly, Chapter 5 presents a summary and

describes the overall conclusions and research contributions from the previous studies that are

included in this dissertation.
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Chapter 2

Stochastic Effective Load Carrying

Capability (ELCC) values for the case

of New York with varying levels of

offshore wind energy penetration
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Abstract

Several US states are trying to mitigate climate change impacts by including more renewable energy

in their power systems. This process is further aided by the falling prices of solar and wind energy.

One technology that will play a critical role in this decarbonization process is offshore wind energy.

Many offshore wind farms are being planned from Maine to Maryland in the waters off of the

Atlantic coast, and are expected to be fully commissioned by 2030. But as stakeholders involved

in planning the decarbonization pathways are determining ways to integrate these generators in

the existing grid smoothly, the question of system adequacy or ability to meet demand at all

times, arises. This paper explores the contribution of new renewable energy generators in multiple

future scenarios that represent the likely transitions we will witness by 2030, using a metric called

Effective Load Carrying Capability (ELCC). ELCC measures how much additional load can be

satisfied by the inclusion of a new generator. We define multiple energy transition scenarios for

2030 using a case study of the New York Independent System Operator (NY-ISO) and determine

ELCC values for offshore wind turbines to compare them with onshore wind turbines and solar

photovoltaics (PVs). Our results show that offshore wind generators will meet hourly demand

shortfalls across all scenarios by providing 20 times more contribution than onshore wind and solar

PV generators, with the maximum contribution in the case of a system with very large natural gas

capacity, followed by a system with large solar power penetration. Overall, larger median offshore

wind ELCC values indicate greater reliability against electricity shortages as compared to solar PVs

and onshore wind farms even after considering spatial heterogeneity of wind resource availability.

These results from our scenario-based analyses will help stakeholders make informed decisions to

choose optimal renewable energy pathways while making the grid less carbon-intensive.

2.1 Introduction

With the impending threat of climate change and a revolution in renewable energy research and

development, efforts are being focused on developing and optimizing how clean energy resources

can be added to the existing grid without compromising its reliability. Along with solar energy,
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and onshore wind energy, there is a recent push towards developing more wind farms in oceans, i.e.,

offshore wind energy, to harness the consistently available larger wind speeds than the land-based

wind farms. The addition of offshore wind farms into the grid will also help diversify the energy

portfolio and increase grid resiliency.

East coast states in the US are aggressively seeking bids to develop large offshore wind farms. For

example, New York has already committed to developing 3 GW of offshore wind by 2030 (AWEA

fact sheet 2019) and 9 GW by 2040, which is a 50%, and 350% increase respectively, of the current

installed wind capacity of about 2 GW. Additionally, NY-ISO also expects to integrate 6 GW of

solar power by 2040 (Operator, 2019). Other east coast states like Massachusetts, Connecticut,

and Rhode Island are planning to add 8 GW of generating capacity from offshore wind farms in the

next decade to the Independent System Operator of New England (ISO-NE) (New England, 2019).

By 2035 most of these east coast states aim to meet 40% of electricity generation using renewable

energy (as per their Renewable Portfolio Standards or RPS). Currently, these states are starting

out with small RPS goals for offshore wind carve outs – like Maryland which aims to achieve 10%

electricity generation from offshore wind by 2025, and is expected to amplify the offshore wind

generation even further by 2030 (M.Cleveland, 2020)

Many studies have examined offshore wind energy resource and economic potential in different

contexts. Dvorak et al., 2013 analyzed the temporal availability of strong offshore wind resources

(i.e., gross capacity factor > 45% ) and compared this availability to the duration of peak demand

periods between 2006-2010. They concluded that the best US locations to generate electricity during

peak demand are the offshore areas along Maine to Maryland. Kempton et al., 2007 examined the

potential offshore wind resources in the Mid-Atlantic Bight Area (MAB) of the US to satisfy

electricity demand in coastal states from Massachusetts to North Carolina. A study by Lawrence

Berkeley National Lab (Mills, Millstein, et al., 2018) leveraged the Locational Marginal Prices

(LMPs) for years between 2007 -2016 and found that the price of offshore wind energy varies

significantly in the range of $40/MWh to $110/MWh, and is highest along the shore of New

York, Massachusetts, Rhode Island, and Connecticut. Notably, as indicated by the literature, the

potential of developing offshore wind generators is enormous in the east coast of the US and is also

cost-competitive with other conventional and renewable sources of energy.
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But, in the US, offshore wind farms are still in the development phase, and we can only expect the

large (> 1GW) offshore wind farms to become operational after 2025. As the federal agencies and

stakeholders strategize plans to smoothly integrate offshore wind in the existing grid, it is crucial to

analyze the value of introducing a new generator. This can be accomplished by critically assessing

the addition of offshore wind energy generators and the positive changes brought about in the

reliability of the power system with existing solar and onshore wind plants. The recent example

of rolling blackouts by CAISO (CAISO, 2020) as it struggled to meet electricity demand under

an ongoing heatwave underscored the need for reliability analyses. But along with the need for

diversification, it is important to analyze the value of adding offshore wind generators due to its

large CAPEX (capital expenditure) costs compared to other renewable energy counterparts (solar

and onshore wind).

Prior studies assessing power system reliability under large scale renewable energy penetration have

used the metric of ’capacity credit’ (also known as capacity value) to characterize the impacts of a

new generator in the system. Capacity credit for a generator (expressed in MW) is defined as the

amount of conventional generating capacity that the generator of interest can replace without com-

promising the system’s overall reliability, that is, the ability to meet demand at all times (Garrido,

2019). Thus, capacity credit is the contribution that a given generator makes to overall system

adequacy (Ensslin et al., 2008). There are two methods of calculating capacity credit – chrono-

logical and probabilistic. The probabilistic method is considered most effective in accounting for

solar and wind variability in addition to transmission and generator outages as joint distributions.

Chronological ELCC method inherently uses a definite time period (such as peak demand hours)

to quantify the contribution of solar and wind generation towards meeting demand. Thus, it fails

to consider interactions of large renewable energy penetration and ’peak net demand’. Effective

Load Carrying Capability (ELCC) is regarded as a robust metric to determine the capacity credit

of a power system (Boccard, 2009; Beiter et al., 2020; Ibanez and Milligan, 2014). ELCC is the

magnitude of the additional load that a power system can supply with the particular generator of

interest without a net change in reliability (Milligan and Porter, 2008).

ELCC method has been used to determine the robustness of adding new renewable energy gen-

erators and their contribution to meet demand (Keane et al., 2010; Ibanez and Milligan, 2014;
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Bothwell and Pavlak, 2015; Kumler et al., 2019; Zhao, U.-J. Oh, and Choi, 2019; Mills and Ro-

driguez, 2020; U. Oh et al., 2018). Examples of applying the ELCC method to solar and onshore

wind studies include Perez et al., 2006 which uses demand data from 39 utilities to calculate the

ELCC in the years 2002-2003. It also examines the capacity value of installing solar PV cells in

different orientations that capture varying solar irradiance levels. In Denholm et al., 2020, the au-

thors determined the capacity value of adding utility-scale battery stored energy to satisfy demand

in FRCC and NY-ISO using the ELCC method and found that the contribution of solar PV with

4-hour storage units at a 10% grid penetration rate can support peak demand. Furthermore, Perez

et al., 2006 calculated the ELCC of adding solar PV cells in a fleet for the reference year 2006

using satellite observations for irradiance and static historical demand data from then-recent years

2002 and 2003 to analyze the relationship between penetration levels and geometrical configuration

of the PV. Furthermore, an NREL study (Keane et al., 2010) looked at assessing the Irish power

system by calculating the value of adding onshore wind energy generators to meet demand given a

target reliability level and evaluated the reliability by considering wind power as a negative load.

They concluded that between 1999-2008, the capacity value of adding wind generators varied by

35% for the Irish Power system.

Even though ELCC is a powerful tool to understand the contribution of individual generators to

meet demand shortfall, it has been used within a limited scope. The existing studies are either

very outdated to help draw out insights for future grid planning or analyze the effect of integrating

a singular technology into the existing grid. To address these concerns, a comprehensive scenario-

based approach is used towards understanding the potential pathways in which energy systems

could evolve and then assess the ELCC of adding three different renewable energy generators to

multiple these base generator fleet scenarios.

Additionally, unlike conventional sources, and reliability studies based on solar and onshore wind

energy, the ELCC method has been rarely used to capture the value of adding these offshore wind

generators. The handful of studies that used ELCC for assessing the reliability of offshore wind

in the US includes a recent NREL study (Beiter et al., 2020). The authors used NREL’s WIND

toolkit data and demand data from Independent System Operators (ISOs) in the northeast region

of the US to calculate ELCC for varying levels of offshore wind penetration (0, 2, and 7 GW) in
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the year 2024, and determined the capacity credit or capacity value of adding these new generators

to the existing base fleet. They concluded that the value of adding offshore wind generators (at 7

GW penetration level in New York Independent System Operator or NY-ISO) to the entire base

fleet was in the range of 14.5 % - 28.3 % to meet 100 peak hours of electricity demand.

However, all these studies focus on historic data describing old base fleet, or evaluate the ELCC

of a singular energy source. Furthermore, the study also did not consider the evolving dynamics

of the grid due to retirements and the addition of new generators, or even temperature dependent

forced outage rates (FORs) of the conventional generators. They solely based their analysis on

onshore wind and solar energy as the Variable Renewable Energy sources (VREs) and a single

study based on offshore wind for a reference year of 2024. However, considerable uncertainty

about reliability surrounds broad decarbonization decisions about generating assets as we try to

understand the implications of introducing these VRE generators in the future grid. Through our

study, we propose to numerically quantify the contribution of offshore wind farms, onshore wind

farms, and utility-scale solar PVs towards 2030 grid reliability during periods of higher demand. We

also want to fill the above identified research gap by determining the optimal choice between all the

renewable energy sources mentioned above by comparing the offshore wind turbine generators with

other renewable energy sources across different nameplate capacities and multiple energy transition

scenarios.

As New York state is expected to include 17GW of offshore wind by 2030, our research quantifies the

ELCC of VRE generators to be added across multiple scenarios of future generating base fleet for

the case of NY-ISO balancing authority region. These scenarios are developed by using data from

the NY-ISO interconnection queue and EIA Form 860 generator status, as we aim to measure the

grid’s reliability under different decarbonization pathways. We construct multiple scenarios of solar

and wind energy penetration (both onshore and offshore wind) and establish a direct relationship

between the value of including additional VRE generators and the variability of renewable energy

resources on an hourly basis.
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2.2 Methods

To assess the reliability contribution of offshore wind energy generators in the future for the NY-ISO

region, we calculate the ELCC of adding a range of these generators and compare their contribution

to scenarios where we add solar and onshore wind farms across New York. We first present how

we calculate ELCC, then discuss how we develop scenarios for future generator base fleets. These

diverse base fleets allow us to represent multiple energy transition pathways which could be realized

by 2030. We focus our analysis on offshore wind generators because this technology is mostly still

in the planning stage for the US. The US has no offshore wind farm in operation except for the

relatively small 30MW offshore wind farm at Block Island (Block Island Wind Farm 2021).

2.2.1 Data

Generally, ELCC methods used in the existing literature (Keane et al., 2010; Bothwell and Pavlak,

2015) have leveraged some form of an observed meteorological dataset. However, we plan to derive

results from a continuous and comprehensive dataset, without having to do any imputations to

account for missing values. Hence, we chose to use a reanalysis dataset. As the name suggests,

reanalysis data is the “re-analyzed” version of observed weather variable data generated using

forecasting and data analysis methods (Keeley, 2021; Reanalysis Data n.d.). Reanalysis datasets

are created to develop consistent records of the observed states, which otherwise have many gaps

due to the method in which data is collected and stored (Keeley, 2021; Reanalysis Data n.d.). The

NASA MERRA (Modern-Era Retrospective Analysis for Research and Applications)(MERRA-2

2020) data is a collection of robust reanalysis datasets for multiple climatological variables over

an extensive period. Variables like wind speed (both eastern and northward component) at 2m,

10m, and 50m above the sea level, specific humidity, surface incoming shortwave flux, pressure, and

temperature at 2m were collected from the MERRA database for the years 2015-2019. This period

is of particular interest because of the concurrent availability of publicly available cleaned hourly

electricity demand data for the balancing authority governing the state of New York, NY-ISO.

The first step towards calculating the ELCC of a given renewable energy generator is to extract
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the atmospheric variables from the MERRA database and convert them to their corresponding

energy generation output using the NREL ”System Advisor Model” or SAM (Blair et al., 2014).

Researchers at NREL have designed SAM to facilitate the decision-making process for renewable

energy systems by providing a platform to convert resources like solar irradiance and wind speed to

their corresponding energy output, i.e., solar and wind energy (System Advisor Model 2020). The

process of conversion of weather resources to energy variables is:

• The first step is to use the extracted MERRA weather data as input in SAM to simulate

hourly AC generation from solar and wind resources for a particular year, location, and

generator design (plant nameplate capacity and type as onshore and offshore wind farms use

different turbines).

• The AC generation profiles are then normalized to derive the corresponding hourly capacity

factors (CFs).

• Lastly, for the VRE generator of interest, whose effectiveness we want to quantify by deter-

mining the ELCC, its nameplate capacity is multiplied by the capacity factor derived in step

2 to derive the generator’s hourly AC power.

Based on the VRE of interest, additional parameters are specified in SAM. These parameters are

described below under each generator type.

2.2.2 Wind profiles

For wind power profiles, a power law in SAM is used to extrapolate wind speeds to a typical turbine

hub height. The estimated wind speed is then categorized under different onshore wind turbine

classes as suggested in IEC 61400 (IEC 61400 2021), and power is quantified using SAM. For

offshore wind, a particular wind turbine from the SAM database is used – the Senvion 6.2 MW

turbine. We chose Senvion from the pool of available offshore wind turbines in the SAM database

because it best represents the current scenario of the only operable offshore wind (Block Island

Wind Farm) in the US.
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Equation (2.1) represents the Power Law:

v2 = v1 ∗ (h2/h1)
α (2.1)

Where v2 is the wind speed at height h2, v1 is the wind speed at height h1, and α is the wind shear

constant which depends on the terrain (whether land or water, mountainous or flat land), and also

varies by turbine height, season, and wind speed. As a hueristic, 1/7 is often used when all factors

influencing the wind shear constant value are unavailable.

2.2.3 Solar profile

To simulate power generated by solar PVs, the Direct Normal Irradiance (DNI) and Diffuse Hori-

zontal Irradiance (DHI) are determined using the Direct Insolation Simulation Code (DISC) model

developed by (Maxwell, 1987; W. Holmgren et al., 2021; W. F. Holmgren, Hansen, and Mikofski,

2018). DNI is the amount of solar radiation received per unit area by any surface that is always

held normal to direct sun’s rays. At the same time, DHI is the amount of radiation received per

unit area by any surface not directly in the sun’s path but by scattered molecules and particles in

the atmosphere. The SAM model then uses these two factors as inputs to quantify solar power.

Table 4.1 enlists other factors that was chosen for the conversion of solar irradiance to power in

SAM.

Generator Parameter Value

Nameplate Capacity 1MW
Azimuth 180°
Axis Type Fixed @ Latitude Angle
DC:AC Ratio 1.1
Inverter Efficiency 96%

Table 2.1: Parameters for solar generation in NREL System Advisor Model (SAM)
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2.2.4 Effective Load Carrying Capability Method

To quantify the ELCC of any generator, we first start by calculating the system reliability of the

base fleet against the demand profile and use the Loss of Load Hours (LOLH) value to define

reliability. LOLH is defined as the sum of hours on an annual basis when the load in a system

exceeds the available capacity. NERC deems a fleet to be reliable only if it has a LOLH value of

2.4/year NERC, 2019, which means that in a year, the system is only allowed to have a demand

shortfall for 2.4 hours cumulative or one outage day in 10 years. The steps towards quantifying

ELCC of any generator are enlisted below:

1. First, we collect required data inputs for the system of interest, which includes generator

location, nameplate capacity, FORs, and MERRA reanalysis data for hourly solar and wind

profiles.

2. Next, we calculate the system’s original reliability (in terms of LOLH), and compare it against

the target reliability value of 2.4 LOLH/year.

3. If the system is under-reliable, i.e., the system LOLH value >2.4/year, thermal generators of

50MW is incrementally added to adjust the fleet composition until the base reliability matches

our target reliability. If the system is over-reliable, i.e., the fleet LOLH <2.4/year, then the

ELCC calculator changes the fleet composition by eliminating older thermal generators from

the fleet. Older thermal generators are eliminated to compensate for systems with overbuilt

capacity that generates invalid ELCC estimates.

4. Lastly, we include the renewable generator of choice with storage, and determine the system’s

new reliability (LOLH value), and then incrementally add a constant load until the system

with the added generator achieves the target reliability.

The ELCC of the generator is the amount of additional load which was added for adjusting the

system reliability after including the VRE generator of interest to match the target reliability of 2.4

LOLH/year. The ELCC value represents the ability of the generator included on top of the base

fleet to serve additional demand. For example, if we add a 100 MW offshore wind generator on top
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of any of the base fleet scenarios described below in section 4.3.6, and find the ELCC as 30%, it

would mean that 30 MW of the offshore wind generator will be the effective contribution to meet

any demand shortfall. By definition, ELCC values have units of power, but we report them as a

percentage of the added generator’s nameplate capacity. For example, we report a 25 MW ELCC

for a 100 MW wind generator as 25%.

We repeat this process of quantifying the reliability of an additional VRE generator over a base

fleet for each grid cell using a dimension of 50x60 km within the state of New York and its adjacent

offshore area to account for spatial heterogeneity in wind and solar resources.

2.2.5 Scenario Development

Offshore wind farms in the US are in various stages of the project process, with many still being

planned. Several offshore wind farms are expected to be fully operational by 2030. Hence, to

represent a range of future base fleet of generators over which additional offshore wind farms could

be added, we developed and tested multiple scenarios. Together, all these scenarios capture various

pathways that the NY-ISO grid could evolve.

We first extract the details of base generator fleet from the EIA Form 860 which reports the type,

nameplate capacity, and location (latitude and longitude) of all current generators within a state.

We included all planned retirements as stated in the EIA 860 form, and we included planned

generators from interconnection queue data. While interconnection queue records only report the

county and do not report the specific coordinates of the planned generator (since they haven’t

been constructed), we assumed the centroid of the county to represent the generator location.

This was used to determine the temperature dependent FORs for conventional generators, and

also determine the hourly solar and wind availability for renewable generators. Additionally, to

construct these scenarios, we analyzed several state renewable energy mandates, federal regulations,

and RPS). Moreover, the interconnection queue data indicated considerable additions of large solar

PVs, onshore wind, offshore wind generators and some natural gas generators. But, there were

no significant planned capacity additions for Nuclear, Flywheels, Hydroelectric Pumped Storage,

Landfill Gas, Municipal Solid Waste, Biomass, and Petroleum plants. Thus, the nameplate capacity
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(minus any planned retirements) of these fuel sources was held constant for all scenarios described

below. It was also assumed that all coal power plants retire and the future grid of NY-ISO is

coal-plant free. Each scenario under consideration is described below.

1. Current Scenario (CS): This scenario represents the current fleet of the existing generators

in the EIA 860 2019 database. No new generators from the interconnection queue are added

in this scenario. Hence, it can be representative of the case where none of the planned

generators from the interconnection queue are commissioned by 2030, and coal power plants

are still functioning.

2. High Offshore Wind Scenario (HOF): This is a scenario for 2030 where new generators

from the interconnection queue are added to satisfy the current Renewable Portfolio Standards

(RPS) set by the state of New York. In this case, we ensure that the RPS mandates for

solar energy, onshore wind energy, and offshore wind energy are met along with including

additional offshore wind farms, i.e., making 100% of offshore wind capacity (17GW) in the

interconnection queue operable. This scenario represents the case where along with meeting

state renewable energy RPS, all offshore wind farms in the queue are actually commissioned

by 2030. We also retire all coal power plants, along with very old natural gas steam turbines,

and natural gas combined cycle plants ( 16GW of natural gas retired). This scenario leads

to a base fleet system where the total available generating capacity is 52GW The base fleet

also includes existing 4.6GW of Hydroelectric, 5.7GW of Nuclear, and 3.8GW of Petroleum

based power plants.

3. High Onshore Wind Scenario (HON): This is a high onshore wind penetration scenario,

where everything remains the same as the HOF Scenario, but 100% of onshore wind capacity

in the interconnection queue, that will be commissioned by 2030 is approved and offshore wind

capacity is reduced to meet 2030 RPS standards. Hence, we add 5.90GW of new onshore

wind turbines to NY-ISO and reduce offshore wind capacity to 4.028GW (to ensure onshore

wind is larger in capacity as well as meet the offshore RPS standard), while solar capacity

remains same as HOF (6 GW).

4. High Solar Scenario (HS): This is a high solar scenario, where everything remains the
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same as the HOF Scenario case, but 100% of solar capacity in the interconnection queue is

approved and both onshore wind and offshore wind capacity is reduced to meet 2030 RPS

standards. Thus, we add 9.45GW of solar capacity to the base fleet system which includes

5.34GW of onshore wind capacity and 4.028GW of offshore wind capacity.

5. High Natural Gas Scenario (HNG): This is a high natural gas use scenario, where

everything remains the same as the Reference case and only some natural gas plants retire,

while meeting 2030 RPS standards.

Table 2.2: Summary table of capacities of each type of generator in each of the base fleet scenar-
ios described in section 4.3.6. Capacity of generators such as Nuclear (5.70GW), Hydroelectric
Pumped Storage (4.7GW), Flywheels (0.06GW), Landfill Gas (0.12GW), Municipal Solid Waste
(0.3GW), and Petroleum Liquids (3.9GW) are aggregated under ’Others’ and are held constant for
all scenarios after planned retirements were removed. All values are in GWs.

Scenario Scenario Scenario Scenario Scenario
Generator Capacity CS HOF HON HS HNG
Offshore wind 0 17.09 4.02 4.02 4.02
Onshore wind 1.99 3.35 5.91 3.35 3.35
Natural Gas 25.8 12.7 12.7 12.7 25.8
Coal 1.4 0 0 0 0
Solar 0.48 6.0 6.0 9.45 6.0
Others (held constant) 14.78 14.78 14.78 14.78 14.78
Total (GW) 45.7 53.92 43.41 44.3 53.95

By 2030, three types of generators will be added to the base fleet in the NY-ISO region, that is,

offshore wind turbine, onshore wind turbine, and solar PV. While using the scenarios in the ELCC

calculator, we ensured that we determine reasonable capacity of new renewable energy generators

mentioned above (step 4 in section 4.3.5) that will be added to the system. We used minimum,

maximum, and average values of nameplate capacity of these planned generators from the NY-ISO

interconnection queue data to estimate the size (nameplate capacity) of generators for which we

want to quantify its ELCC value. Additionally, to understand the relative contribution of each

type of renewable energy generator to the New York grid by 2030, we compare generators of the

same nameplate capacity.
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2.3 Results

The observed peak load in 2019 in the NY-ISO region was 30.4GW. We found that, although for

all scenarios the base fleet nameplate capacity is greater than the plausible peak demand (a base

generator fleet is always planned for capacity that is greater than projected load to be functional

during unexpected demand surges), some scenarios are more ‘under-reliable’ as compared to others.

As explained in section 4.3.6, generator fleets are under-reliable when they have a LOLH value of

greater than 2.4, which means that for more than 2.4 hours in a year, the fleet capacity is unable

to meet hourly demand. The implications of system LOLH being > 2.4/year is that even though

the total available nameplate capacity of the base fleet is greater than the demand, the system is

under-reliable. This is because at certain hours the actual generating capacity, due to FORs, and

variance in CFs of renewable energy generators was lower than demand. This is why a ELCC based

high-frequency hourly analysis is important to understand the actual contribution of any generator

to system reliability.

2.3.1 Spatial heterogeneity of ELCCs for all VREs

To quantify ELCC for each possible location within the NY-ISO region, we repeatedly ran the

ELCC model for each grid cell within New York state. Through this process, we quantified a range

of possible ELCC values to account for spatial and temporal variability in the availability of wind

(onshore and offshore) and solar resources, which influences CFs through each hour of 2019 (as

shown in Figure 2.1). The ELCC values are reported as percentages and can be interpreted as

the fraction of the nameplate capacity of the VRE added that will be effective towards serving

additional demand.

Geographically, the onshore and offshore wind ELCC values for all scenarios vary between 0 -

43% and 0 - 64%, respectively, whereas for solar, the ELCC values are modest and have smaller

variability in regards to spatial distribution, ranging from 0% to 12%. The difference between 25th

and 75th percentile (colored box) of wind ELCCs is considerably larger as compared to the solar

ELCC range because wind resources have a relatively larger spatial heterogeneity and wind CFs are
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(a) 50MW solar generator

(b) 50MW offshore wind generator

(c) 50MW onshore wind generator

Figure 2.1: Distribution of ELCC value of VRE generators over current fleet (Scenario CS in section
4.3.6).
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not limited to only hours with sunshine. The narrow distribution of solar ELCCs indicated by its

smaller box plots hint towards the nearly uniform distribution of solar irradiance across mainland

New York.

Broadly, the difference in ELCC values across space can be directly attributed to the change in

capacity factors across grid cells for both solar and wind resources. In the offshore area surrounding

the New York state, the wind capacity factors become larger as we go up north towards the north-

eastern states (coast of Massachusetts, New Hampshire, Maine). They also increase across the

longitude, that is, going further away from the coast. Whereas, median solar capacity factors

across mainland of New York state remains fairly constant and deviates only by small amounts.

Any large change in solar ELCC values across New York is driven by the time correspondence

of large capacity factor available in some grid cells during certain hours of the day to the unmet

demand hours.

2.3.2 Analysis of additional VRE generators over base fleet scenarios

Figure 2.2: Box plot distribution of ELCC for solar, onshore wind, and offshore wind generators
added to five scenarios described in section 4.3.6 for the NY-ISO region using multiple nameplate
capacities.
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Focusing on the effective contribution of adding VRE generators over the base fleet scenarios

(described in 4.3.6), Figure 2.2 shows that the range of solar ELCC values is limited to a maximum

value of 12% across all five scenarios, and its median ELCC is significantly lower ( approximately

20 times) than the median ELCC of offshore wind generators. We can attribute the lower range to

the small CFs of solar PVs, limited availability of solar radiation, and coincidence in availability of

intense offshore wind speeds with the demand shortfalls. CFs for solar power are > 0 only during

day-time hours, whereas offshore wind CFs are greater than 0 for almost all hours in a day. the

standard deviation of solar ELCC values range between 1 and 2 , which means they remain similar.

That is why the range of ELCC values of solar generators is significantly small as compared to its

wind counterpart.

Conversely, as represented in Figure 2.2, median onshore ELCCs range between 3% to 8% and

median offshore ELCCs vary between 3% to 34%. Moreover, comparing the median ELCC value

for offshore and onshore wind generators, across each nameplate capacity (50 to 2000MW), we find

that the contribution of offshore wind generators to meet demand shortfall is at least 6 times

greater than onshore wind turbines in every scenario that is defined in section 4.3.6. In fact, the

median ELCC value for offshore wind is always larger than onshore wind turbines and solar PVs.

We attribute this finding to two key characteristics of offshore wind farms:

1. The availability of offshore wind through all hours in a day, which is coincident with demand

peaks, and

2. The hub height and larger rotor diameter of the turbines placed offshore which helps in

accessing better wind resources as compared to their land-based counterparts. Over mainland

NY, maximum nameplate capacity of the turbines used (in accordance to IEC standards) was

1.5MW, whereas in offshore areas we have used the 6.2MW Senvion turbine.

Furthermore, when comparing each type of generator against itself, we see that as the nameplate

capacity increases from 50MW to 2000MW, the ELCC values decrease. This is because the system

becomes over reliable for certain hours when the best renewable energy resources are available but

cannot meet electricity shortfalls in other hours. Hence, the marginal contribution from smaller
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VRE generators is more significant than bigger VRE generators. Therefore, the maximum contri-

bution towards meeting excess demand is by any generator of size 50MW or 100MW (depending on

the scenario). But this conclusion is based on our assumption of fixed demand across all scenarios

in 2030. However, in reality, the hourly demand can increase or decrease by 2030 in NY-ISO de-

pending on the actual realization of the electrification process in various sectors and the inclusion of

stringent energy efficiency measures, eventually leading to different demand shortfalls on an hourly

basis (hence different LOLH).

2.3.3 Comparison of ELCC estimates under 2030 base fleet scenarios against

Current fleet scenario

Figure 2.3: Distribution of ELCC values for solar, onshore wind turbine, and offshore wind turbine
generators of nameplate capacities 50MW - 500MW for all four scenarios relative to the Current
Scenario of generator fleet from EIA 860, 2019 described in section 4.3.6. Note, only three nameplate
capacities have been represented here as larger capacities have relatively low relevance in under-
standing subtle nuances in variation of ELCC values since the ELCC values for VRE generators
decrease with increasing capacity.

We compare the relative increase or decrease in ELCC values for each VRE generator type under
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2030 base fleet scenarios relative to the Current Scenario from 2019. The results derived through this

comparison will help stakeholders to think strategically about planning a diversified grid portfolio

in the future capable of handling unexpected outages. Figure 2.3 shows that the distribution of

ELCC values changes as base fleet changes under different considerations of 2030 energy transition

scenarios (described in 4.3.6). The fractional values of ELCC (denoted by position of box plot

as we are considering ELCC ratio of each scenario relative to the current generator fleet) for all

three VRE generators is largest in the ’High Natural Gas’ scenario. However, the High Natural

Gas scenario was very similar to current fleet (Current Scenario in 4.3.6) with similar Natural Gas

capacity, which justified the median (50th percentile) ELCC value of High Natural Gas scenario

close to 1.

Moreover, comparing other fractional ELCC values for each scenario and generator type, we can

conclude that solar and wind (both onshore and offshore) generators are complementary to each

other. The 50th percentile of ELCC values for onshore and offshore wind generators across all

nameplate capacities, is greater in High Solar scenario by 15% to 34% points against High Onshore

and High Offshore scenario. We attribute the larger reliability contributions of wind generators

to unmet demand during evening hours in a High Solar scenario, when solar generators become

unavailable and excess demand is satisfied by offshore and onshore wind turbines. Similarly, 50th

percentile of relative ELCC for solar generators are greater in High Offshore (light blue) and High

Onshore (wheat) scenarios as the electricity shortfall not met by offshore and onshore wind resources

in daytime hours are met by solar PVs. Thus, maintaining the diversity in base fleet composition

against the VRE generator which is being added over it will be helpful in boosting the ELCC values

and ensuring system reliability at a higher level than the cumulative reliability provided by a single

VRE resource added in excess to the system.

2.4 Discussions

To understand the reliability value of adding large offshore wind energy farms to the grid, we

conducted a comprehensive analysis of the NY-ISO grid by constructing multiple base fleet scenarios

representative of 2030 grid transitions. We found that on average the median ELCCs of offshore
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wind generators was 200% larger when compared against onshore wind and solar PV generators

across all 2030 scenarios. But both onshore and offshore wind generators contributing to NY-

ISO showed greater variability in ELCCs than solar generators due to the spatial heterogeneity in

availability of wind resources. Gridded points which indicated large hourly offshore and onshore

wind CFs also resulted in larger ELCC values in every scenario. Thus, there is a strong correlation

between wind ELCCs and CFs. On the other hand, solar ELCCs showed a narrow distribution

with the standard deviation varying between 1 to 3 around the mean solar ELCC.

Additionally, the large ELCCs of offshore wind in all five scenarios suggest that offshore wind

farm development in the Atlantic coast of the US will lead to greatest reliability benefits by 2030

compared to onshore wind and solar PV, and thus there is significant value in adding more offshore

wind in the grid. But there are several important considerations that needs to be accounted for

while integrating this resource. First, as indicated in the Results section 2.3.1, wind ELCCs have

a larger distribution ranging between 5-64% for offshore, and 3-42% for onshore depending on the

largest available wind capacity factor. This indicates the relative location of offshore and onshore

wind farms will determine their reliability contribution towards system adequacy as we consider

fixed FORs for VREs. On the other hand, solar ELCCs are agnostic to spatial distribution of

radiation as the solar irradiance value (and consequently CFs) have nearly similar magnitude over

the entire state of New York.

Second, in addition to spatial variability, we quantified the sensitivity of ELCCs across four different

scenarios and for the nameplate capacity of the added VRE over each base fleet scenario. The

change in composition of base fleet across the four scenarios representing 2030 grid mix indicated

the largest effect on the ELCC values varying the median ELCC of solar PV between -50% to +10%

relative to the median solar ELCC in current fleet. Similarly, for onshore wind the median ELCC

value varied in the range of -50% to 0% between all four scenarios relative to current fleet, and -95%

to +6.25% for offshore ELCCs. The largest reduction of offshore wind ELCCs was noted in High

Offshore scenario. We attribute the significant reduction of offshore wind ELCCs to the already

saturated base fleet with offshore wind farms in HOF scenario, which produces hourly electricity

with greater coincidence leaving demand shortfalls unmet when these wind farms are incapable

of producing electricity. This is in tandem to the case of adding more solar generators to the HS
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scenario. As all solar generators generate electricity at the same time, the fleet with additional solar

generator is able to prevent day-time demand shortages, but becomes less reliable during evenings,

when demand peaks in certain areas of a late afternoon peaking system, especially in summers.

Thus, a diversified portfolio of generators helps in enhancing the contribution of individual VREs

to meet system adequacy.

Third, when we tested the sensitivity of the ELCC values of all three VRE generator against

increasing nameplate capacities and found that as nameplate capacity increases from 50MW to

2000MW, the ELCC values for all three VRE generators, solar PVs, onshore wind farms, and

offshore wind farms decrease. But the reduction is ELCC values against increase in generator

capacity is not uniform, and does not follow a singular trend. The change is caused due to the

same reason stated above, i.e., saturating the grid with a single source of renewable energy implies

generating excess electricity at certain hours when best resources are available, while enlarging the

capacity gap in other hours when the resource is unable to generate adequate electricity.

But our analysis has several limitations, introduced due to the choice of technology associated with

the VRE generators. Wind turbine specifications that have been used in our study are limited to a

hub height of 90m and a rotor diameter of 140m. Any further change in turbine specifications will

change the wind CFs in both onshore and offshore areas, thus changing the wind ELCC values.

As planning agents seek to utilize state-of-the-art turbines in some planned offshore wind farms,

the ELCC value of offshore wind in New York could become more significant. Additionally, our

analysis considered PV panels of fixed axis type for solar generators, but axis-tracking solar PVs

will contribute more towards system reliability. This is because the latter type will reorient itself

with solar irradiance and contribute more towards generating electricity. Another critical aspect of

planning decisions related to VREs is its dependency on capital costs or CAPEX. Future work could

expand upon this analysis and derive the ratio of CAPEX against ELCC, i.e., $/ELCC value of

each renewable energy generator, to understand the trade-offs of incorporating large VREs, which

increase system reliability against their costs.

Additionally, there could be a significant effect on the ELCC values as more electric vehicles are

included in the system and the load curve changes due to charging patterns. Moreover, electricity
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demand is also subjected to large variability due to its dependence on temperature, which is poorly

captured by the hourly records for a single year. Thus, as climate change impacts global air

temperature variation, future reliability analysis should capture demand variability over a longer

time frame to understand the difference in contributions by the solar and wind generators.

Despite all the caveats listed above, our ELCC modeling framework will help stakeholders develop

efficient renewable energy integration strategies while successfully transitioning away from conven-

tional sources of energy and preventing risks related to system inadequacy. Our results indicate

that integrating more offshore wind in the future grid will prove beneficial under all circumstances

and make the grid resilient to disruptions due to variability in the availability of wind and solar

resources. The results also suggest that in order to develop a robust grid, it is helpful to include

more offshore renewable energy generators while ensuring diversity of generator fleet. Solar power

and offshore wind power complement each other as they have significant contributions towards

meeting excess load at different times. As stakeholders discuss sustainable pathways for the decar-

bonization of the US power system and tackle climate change, comprehensive studies that combine

various risks associated with grid reliability will help decision-makers carefully assess challenges

with system adequacy.
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Chapter 3

Analysis of electricity demand

response to multidecadal interannual

variability of temperature using

machine learning methods to better

support technological and policy

developments for the power systems

of the US
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3.1 Abstract

Long-term planning of a robust power system requires the understanding of changing demand

patterns. However, electricity demand is highly weather-sensitive and has inherent variability

separate from intensifying effects due to climate change. Thus, the supply side variation from

renewable resources, juxtaposed with variability in demand, will introduce additional challenges

in the power system planning process. Unfortunately, understanding the influence of long-term

(multiple decades) temperature variability on demand is not possible as long-term hourly electricity

demand records are unavailable. This paper informs power system infrastructure planning by

assessing the effects of hourly temperature variability and its impact on the demand in different

Balancing Authorities (BAs) of the US, by reconstructing demand records using machine and deep

learning-based regression models for four decades. We find that within the top 10 largest balancing

authorities, ranked in the order of maximum demand, Tennessee Valley Authority, Midcontinent

Independent System Operator, and Electricity Reliability Council of Texas are most sensitive to

temperature changes with the coefficient of variation of 20 largest demand hours ranging between

15 - 19%.

3.2 Keywords

BA: Balancing Authority

LSTM: Long Short Term Memory

PLR: Piecewise Linear Regression

MISO: Midcontinent Independent System Operator, Inc.

NY-ISO: New York Independent System Operator ISO-NE: ISO New England

PJM: PJM Interconnection, LLC

ERCOT: Electric Reliability Council of Texas, Inc.

TVA: Tennessee Valley Authority

CA-ISO: California Independent System Operator

SWPP: Southwest Power Pool
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3.3 Introduction

As federal and state policies mandate integrating higher levels of variable low-carbon energy re-

sources into the existing grid, these mandates will open up new avenues to tackle the global issue of

climate change (Hostick et al., 2012). Thus, to create a more sustainable grid, issues around energy

and climate security must be considered in tandem, rather than separately, as one will influence

the other. For systematic grid planning, it is important to develop policies and frameworks that

ensure that the power system has enough capacity to meet electricity demand at all times using

solar and wind resources. But, the addition of renewable energy resources in the grid will introduce

additional variability and uncertainty due to their natural dependency on atmospheric processes.

Moreover, electricity demand also depends on various factors including socio-economic variables,

market design, technology advancements, and weather (Kumar et al., 2020). In fact, the seasonality

of temperature is a key driver of variable demand (Coker et al., 2020). Hence, along with ensuring

supply-side security to generate enough power, it has become increasingly necessary to assess the

demand-side variability to understand power system reliability in a granular way.

Electricity demand is highly weather-sensitive and exhibits cyclicity. During the summer months,

electricity demand peaks in the afternoon as businesses and households utilize significant energy

for cooling requirements. Whereas in winter months, the peak of electricity consumption occurs in

the evening. Similarly, within each day, depending on human behavior and temperature, electricity

consumption changes by the hour but remains more or less similar across days, as human behavior

is reasonably stable (Hodge, 2020). Furthermore, within a week consumers have different sched-

ule during weekdays against weekends as commercial offices are closed, which influences demand

patterns during different days of the week. Hence, the electricity demand shows a cyclic pattern

across daily, weekly, and seasonal timescales. Most importantly, it is critical to understand the

influence of weather on above mentioned electricity demand patterns at hourly resolution because

it influences the actual decision to dispatch resources in a power system (Fonseca et al., 2019).
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Peak demand as a response to temperature shows variation, i.e., the peak demand in summer is

not representative of the peak electricity demand in the winter months, both in magnitude as well

as timing due to difference in human consumption pattern. Additionally, variability in weather (air

temperature) has a compounding effect on the cyclic nature of electricity demand. As temperature

increases, electricity demand can be expected to increase to meet cooling needs, and thus change

the nature of peak load (Maia-Silva, Kumar, and Nateghi, 2020; Yalew et al., 2020). In regions with

high electrified heating, low temperatures also increase demand (Bessec and Fouquau, 2008). This

change is further exacerbated as the earth continues to warm, and thus daily, weekly, and seasonal

patterns in electricity demand will be altered due to the additional temperature gradients introduced

by climate change. By assessing the spatial and long-term temporal variability of temperature over

the mainland US, we can differentiate the effects of natural variability and climate change-related

effects on temperature over electricity demand, especially because the effects due to the former are

lesser-known to researchers.

Hourly demand data across multiple decades is useful to determine reliability of renewable energy

systems i.e., if sufficient solar and wind resources are available during high load periods. In ad-

dition to using long time series of load data to capture the complexities involved with planning

a cleaner grid, it is also extremely useful to understand the subtle changes in electricity demand

as a response function of change in economy, as it is rapidly electrified (sectors like residential,

transportation, and commercial sectors increasingly use more electricity). Unfortunately, hourly

historical demand records spanning multiple decades is missing from the Balancing Authorities

(BA) database, although spatially aggregated country-wide historical demand records available.

A BA is an organization in the US responsible for maintaining electricity balance within its area

of operation, and there are a total of 66 BAs governing different regions of the US. Differences

in sectoral coverage of these BAs account for difference in energy policy and regulations, weather

variation as well as consumption patterns. Thus, there is a need to conduct analysis of variation

in demand at BA level rather than at a national scale.

Databases reporting hourly weather variables like solar irradiance and wind speed have massive

historical records spanning multiple decades, especially ’Reanalysis’ datasets. A reanalysis dataset,

as the name suggests, is the reanalyzed version of weather data, generated using data analysis
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methods to develop consistent records of the observed conditions, which otherwise has gaps due

to techniques in which data is collected and stored. It is a robust collection of past observations

of hourly wind and solar profiles for every region around the world gridded at a specific scale

depending on the source. These datasets can be utilized to construct hourly wind and solar energy

capacities to determine effective reliability contributions to a grid. But to compare the reliability

contributions of these solar and wind generators against the demand, hourly historical records of

electricity demand spanning across multiple decades is required, which is missing from the database

maintained by all the BAs of the US. In Chapter 2, the ELCC analysis was constrained to five

years between 2016-2019 because of lack of consistent hourly demand data. Additionally, data from

publicly available climate models (Bukovsky and Mearns, 2020) either lack spatial granularity or

temporal granularity, or both, unless customized using downscaling techniques (requires large and

expensive compute resources). This creates a need to reconstruct granular demand data with a

focus to understand how inter annual variability of temperature has been affecting the electricity

demand on an hourly basis.

Despite the rich literature in understanding the response of electricity demand to changes in tem-

perature, granular level assessment of hourly demand variability for the case of the contiguous US

has not been attempted. But in the European context, several use cases of reconstructed electricity

demand have appeared in literature, including but not limited to practices to analyze sensitiv-

ity of power systems to meteorological changes, uncertainty in electricity market, identification of

Targeted Circulation Types (Thornton, Hoskins, and Scaife, 2016; H. C. Bloomfield et al., 2016;

Hannah C. Bloomfield, D. J. Brayshaw, and Charlton-Perez, 2020; Coker et al., 2020). These

studies have been particularly important for reconstructing past load using statistical methods

to comprehensively characterize the impact of climate change, and variability of meteorological

resources on the reliability of European power system with high wind penetration.

In one study, H. C. Bloomfield et al., 2016 used reanalysis data to understand the true climate

sensitivity of Great Britain’s power system, which is dominated by wind energy, by re-constructing

36 years of mutually consistent aggregated demand data (using Multiple-Linear Regression anal-

ysis with fixed effects to account for exogenous variables). This data was used to determine the

residual (unmet) demand by differencing the available wind capacity in the system over the 36
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year timeline to determine how much load was required to serve with conventional generators. In

an extended study, Bloomfield et al., 2018 conducted a similar analysis with Generalized Additive

Models (GAMs) for the power system of Great Britain to understand the effect of inter-annual

variability (IAV) of temperature on total annual energy curtailment, and peak residual load. Ad-

ditionally, reconstructions of electricity load has also been Hannah C. Bloomfield, D. J. Brayshaw,

and Charlton-Perez, 2020 reconstructed electricity demand data (with heating and cooling degree

days as additional predictors to the original model described in H. C. Bloomfield et al., 2016) for

each country in the European subcontinent, to identify a new set of Targeted Circulation Types

(TCTs). Moreover, Hannah Bloomfield, D. Brayshaw, and Charlton-Perez, 2020 also released the

back-forecasted hourly electricity demand data publicly (developed using ERA5) as an attempt

to enable researchers to understand country-level variability of solar and wind power resources in

conjunction with demand.

Coker et al., 2020 used a reanalysis dataset to reconstruct electricity data between 1979-2016 using

linear regression models, and used the reconstructed data to understand the uncertainty in capacity

market of Great Britain. Thornton, Hoskins, and Scaife, 2016 reconstructed 38 years of electricity

demand and 16 years of natural gas demand to explicitly model the relationship between demand

and temperature on an annual, seasonal, and monthly basis to identify the weather dependencies for

the case of the UK. To make the analysis robust, they removed any non-temperature driven demand

variability and purely regressed demand on temperature to check for climate related variability. The

authors found strong negative correlation between temperature and demand as well as temperature

and gas supply, and also identified that this correlation inflated during winter.

Although simple regression methods which have been widely adopted in the studies above would

help in predicting the weather dependent electricity demand changes, conventional linear/multivariate

linear regression methods lack the ability to generalize due to their limited ability to model non-

linear relationships as well as to work with larger dataset. The non-linear relationship between

temperature and load has been widely discussed in the existing literature (Hor, Watson, and Ma-

jithia, 2005; De Felice, Alessandri, and Catalano, 2015; Valor, Meneu, and Caselles, 2001). It is

thus imperative to ensure the model architecture adopted for predicting temperature dependent

demand changes has the capability to generalize to any region which shows significant temperature
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in with minimal adjustments.

For the U.S. mainland, multiple studies have focused on assessing the long term IAV of wind

speeds(Krakauer and D. S. Cohan, 2017; X. Li et al., 2010; Pryor, Shepherd, and Barthelmie,

2018), and solar radiation, i.e., variability in renewable energy resources independent of their con-

nection to demand, but none in conjunction with long-term electricity demand. Other US based

studies (Shaner et al., 2018; Rinaldi et al., 2021) attempted to quantify the capacity gap in so-

lar/wind energy during high demand spells over multiple decades (approximately 30 years) and

used demand data from a representative year due to lack of historical demand records. Shaner

et al., 2018 looked at analyzing 36 years of global hourly weather data between 1980 – 2015 to

quantify variability of solar and wind resources as a function of time and location and estimate

the gaps with electricity demand data. Here they used a single year (2015) of hourly electricity

demand data, in absence of historical records and replicated it 36 times to compare against avail-

able solar and wind capacity.Rinaldi et al., 2021 also used hourly demand data from a single year

(2018) to compare against available wind and solar power resources over 39 years for California

and WECC Interconnect to find the gap in available resources and load. Even though these papers

delineates representations of how IAV in renewable energy resources will affect grid planning, it

fails to consider the variability in demand that will be induced due to temperature. Replicating

a representative year’s demand data for the length of period of study due to the unavailability

of consistent hourly load data fails to capture the uncertainty in grid reliability as a response of

variability in demand over multiple decades.

Moreover, a few studies also discussed the use of Piecewise Linear Regression (PLR) to forecast

future demand using temperature from climate models and fixed effects (accounting for socio-

economic factors) (Carreño et al., 2020; Fonseca et al., 2019). They model the future variability

of wind and solar resources synchronously with future demand, and capture future variability in

temperature induced by climate change. Fonseca et al., 2019 in particular forecasted electricity

demand between 2055-2065 and 2089-2099 using temperature derived from climate models and

assessed the impact of wind and solar power variability for the Tennessee Valley Association. These

papers serve as a good example to develop insights about methods to forecast demand in the US, but

the use of climate models for temperature records in place of reanalysis/observed temperature data
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fail to account for the response of demand on IAV of temperature. Additionally, the climate data

used was downscaled statistically, whereas publicly available climate models (such as NARCAAP

and NA-CORDEX) require computational and time expensive refinements to derive hourly values

of atmospheric variables, making the process to become more cumbersome.

In a related study, Auffhammer, Baylis, and Hausman, 2017 constructed a dataset of aggregated

daily demand values of temperature response function to understand the change in load patterns

in the future under the effect of climate change. The study used linear regression models, which

inflates the sum of squared errors due to linearity assumption while modeling the relationship

between temperature and demand. Temperature and demand follow a ’curved’ relationship and

can be best approximated using non-linear regression methods. Additionally, the study implicitly

incorporated uncertainty from climate models which biases the daily constructed demand estimates.

To conclude, existing studies based on Europe have used regression based reconstruction techniques

to create long time-series of historical demand data records, to ultimately understand the deep

variability being induced in a grid due to inclusion of wind and solar resources along with changing

demand, but the same has not been attempted for the US. To our best knowledge there does not

exist any paper that has attempted to reconstruct electricity demand or even assess the hourly

interannual variability of temperature over multiple decades and its effect on observed electricity

demand data. Additionally, the methods applied to reconstruct demand in all existing papers

(multiple linear regression) could be easily replaced by a PLR model and more sophisticated deep

learning methods like Long Short Term Memory (LSTM) model. LSTM based neural networks are

considered robust formulations to work with long multi-variate time series data. They are known

to increase generalizability and accuracy of predictions by reducing model bias (Hochreiter and

Schmidhuber, 1997).

Until now, the existing body of literature in the US has primarily focused on modeling the temper-

ature response of aggregated electricity demand distribution over a few years by leveraging daily or

monthly aggregated load values. Thus, to fill this research gap, in this paper we propose to quantify

the change in electricity demand, especially hourly and seasonal peak load due to weather variation

at a granular(hourly) level. Moreover, we use a multidecadal time frame to successfully capture
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the load response under long-term interannual temperature variability for the contiguous US and

thus identify the change in variance and mean of peak demand for the largest demand hours. Iden-

tifying these changing demand patterns is imperative to construct a robust power system. It will

help planning agents to determine capacity gaps in a heavy renewable system and create reliable

resource reserves for continuous electricity supply. Using historical observed hourly temperature

records in place of projected climate change-based temperature estimates at a dis-aggregated time

scale will make our estimations more robust. In all, this paper analyzes the uncertainty imbibed in

the weather-sensitive portion of electricity demand by reconstructing four decades of temperature-

driven hourly demand proxies, which will aid in identifying which BAs in the US have been the

most sensitive interannual variability of temperature in the past. Thus, it will help stakeholders

identify and strategize plans to make these systems more robust, as climate change will make air

temperature more variable, eventually making electricity demand uncertain and increasing costs

to operate a grid (Bryce et al., 2018). Moreover, it will also support planning agents to reduce

the burden of economic and social costs due to outages influenced by climate-sensitive portions of

electricity demand under extreme temperatures.

3.4 Methods

3.4.1 Area of study

Within the contiguous US, we chose to focus on assessing the weather sensitivity of electricity

demand at the BA level (Figure 3.1) rather than state or national level because a BA is responsible

for maintaining the reliability of regional power systems for commercial purposes. A specific BA is

responsible for maintaining the balance of electricity supply and demand for a state or a group of

states. Moreover, there is a need to reconstruct the hourly demand proxies for all BAs individually

to account for spatial heterogeneity that influences temperature as well as complex electricity

demand patterns and their end consumers. Furthermore, since this is a regression based problem

with the predictor space containing thousands of records, we aim to control for compute time

and space to ensure resourcefulness by proposing models that are computationally efficient yet
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sophisticated to recognize the complexity in relationship between load and weather.

Figure 3.1: Map of the US delineating boundaries of major Balancing Authorities

3.4.2 Data

To simulate the effect of weather on electricity demand, our models while training used all of

available publicly reported high-frequency hourly demand records (reported in MW per hour) from

each BA between mid 2015-2019 (Tyler H. Ruggles and Farnham, 2020) with hourly temperature

instances from NASA MERRA reanalysis dataset (Bosilovich, Lucchesi, and Suarez, 2015). The

full names of all balancing authorities is available in the Supplementary Information section (Table

B.1). Reanalysis data is generated using data analysis methods to develop consistent records of

the observed conditions, which otherwise has gaps due to techniques in which data is collected and

stored. To account for unobserved factors affecting the electricity demand, we feature-engineered

fixed effect coefficients for each hour of the day, different days of the week, different months, and

annual long term trends (as used in Fonseca et al., 2019). This enabled our models to control for

changes in load due to socio-economic factors and human behavior. We use statsmodels, scikit-

learn , and PyTorch to implement our models in python programming language, and since PyTorch

does not have the required capability to work with data other than float and integer values, the
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categorical variables were encoded in their respective sine and cosine formulation and used as

predictors. Additionally, in the LSTM, the hourly electricity demand is based on a fixed-length

sequence of hourly inputs (described in Section 3.4.4).

Even while assessing the impact of IAV of temperature variation on spatially and temporally dif-

ferentiated hourly electricity demand data, we used observed hourly temperature records between

1980 - 2019 from the MERRA reanalaysis database as opposed to future temperature records

from climate models, as we wanted to prevent the leakage of additional bias from uncertainty

in Global/Regional Climate Models. Moreover, climate change models only report robust daily

and monthly aggregated weather variables, and necessitates further downscaling process to extract

hourly variables from these aggregated versions. Our aim in this study was to assess the influence

of observed temperature dependent variability on electricity demand over multiple decades on an

hourly basis to support planning agents in analyzing capacity gaps in power systems and also help

in identifying the systems (BAs) that historically have been at most risk to variability in air tem-

perature. Thus, we use available historical temperature records to train our models, and also for

deriving the temperature-driven demand proxies.

3.4.3 Data Cleaning and Pre-processing

From the BA database for hourly electricity demand, any entity in the state of Alaska as well as

in Canada were removed to make the dataset representative of contiguous US. Furthermore, data

from HIFLD Control Areas n.d. was used to determine the coordinates of the largest population

center in each BA, and the specific coordinates were used to extract corresponding hourly temper-

ature data from MERRA. We implicitly assume homogeneous weather conditions within the entire

geographical footprint of each BA, and thus use a single coordinate from the MERRA gridded data

to extract hourly temperature for each year between 1980 - 2019 for training and reconstruction

of demand proxies. The temperature records in MERRA are reported in Kelvin scale. Thus, we

appropriately treated the data to scale the temperature records to °Celsius scale.

Additionally, the preliminary values of hourly electricity demand were considerably larger than

its hourly temperature counterpart, as well as the sine and cosine encodings of the fixed effects
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variables. This necessitated normalization of the dependent and predictor variables in a minimum-

maximum format (Kramer, 2016 function ’MinMaxScaler’), to ensure that the model fit doesn’t

bias itself towards large values of any predictor (Mohsin, Hamdan, and Bakar, 2013).

3.4.4 Model Selection

We first mathematically formulate the relationship between dependent variable ( hourly electricity

demand) and the predictors (hourly temperature and the exogenous variables describing the fixed

effects) by fitting multiple machine and deep learning based models that are generalizable to all

BAs. We narrow down to two structurally different models to understand the impact of temperature

change on electricity demand, a variant of linear regression model for greater interpretability of

predictors, i.e., the multi-variate Piecewise Linear Regression or PLR (as suggested in H. C.

Bloomfield et al., 2016; Carreño et al., 2020; Fonseca et al., 2019). PLR is an enhanced version of

linear regression, which has the capability to model different trends in different subsets of the data.

This model determines the relationship between the response variable, and predictors for different

ranges of input variables. That is, in different sub-regions of the predictor space may contain

distinct linear relationships. PLR is also known as segmented linear regression, as it fits different

linear formulations to different segments of the input variable. But, a Piecewise Linear Regression

follows the same assumptions as Linear Regression models, and thus, it may fail generalize in the

case of large dataset, as used in this study.

To overcome these shortcomings, we extend existing methods proposed in literature to include a

second model which is capable of recognizing sequential inputs to capture long-term dependencies

in predictor space and has the ability to to capture the underlying relationship between predictors

and the dependent variable even for very large datasets. An existing deep learning model capable

of performing the above mentioned functionalities is the Long Short Term Memory (LSTM) net-

work. LSTM have been documented to perform significantly better than other machine learning

methods due to their ability of capturing non-linear relationships and flexibility of working with

significantly large datasets while accounting for long-term dependencies between the dependent

and of the input variables. LSTM algorithm (Hochreiter and Schmidhuber, 1997) is the upgraded
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version of the classic Recurrent Neural Networks, applied to many time series based analysis for

its ability to efficiently model sequential data. Each LSTM layer contains several LSTM units

(which depends on the length of sequence of inputs being fed into the network), and each unit con-

tains a framework called as - ’gating mechanism’ (Sorkun, İNCEL, and Paoli, 2020) which helps to

deal with vanishing and exploding gradients efficiently during back-propagation of training process.

This gating mechanism consists of an input gate, output gate, and forget gate, which ultimately

feeds into a cell state (Ch,t). The cell state Ch,t learns how much information needs to be retained

from previous time steps and what information should be passed on to the next time step (t) and

hidden layer (h). In Figure 3.2, we describe the proposed LSTM architecture used for training

the model. The structure of this neural network was arrived at after validating the performance

of the best set of hyper-parameters (explained in Appenix A.2, Section B.2). As LSTM structure

expects sequences of input, either of fixed or variable length, the optimal length of input variables

is also treated as a hyper-parameter. For the case of time series based regression of temperature

response of hourly demand data, a fixed sequence length is more appropriate. We selected 24 as

the fixed sequence length (after multiple experiments with values between 12-36 against valida-

tion) to denote that a reconstructed proxy of temperature-driven hourly electricity demand value

depends on input records in the past 24 hours. The sequence length parameter is an empirical

choice that researchers need to make based on domain knowledge, but can also be considered as a

hyper-parameter. Hence, the dependent(hourly demand) variable at any time t can be described

as a function of fixed sequences (of length 24) of temperature and corresponding fixed effect (FE)

as shown in Equation (3.1)

demandt = f(temperaturet−23..t, FEt−23...t)

(3.1)

The LSTM network in Figure 3.2 has two initial inputs, that is the cell state (Ct,h and hidden state

(ht,h). These are initialized with zeros. The cell state and the hidden state are parts of every LSTM
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unit, which helps the unit to ascertain how much information from previous time step should be

remembered, and what information should be passed on to the next time step (Hochreiter and

Schmidhuber, 1997). While both cell state (Ct,h) and hidden state (ht,h) are responsible for storing

necessary information to be passed on to future time steps, Ct,h is an attribute of long-term memory

capability, that stores information of not necessarily immediate previous time steps. While ht,h is

the memory capability that passes information from immediate previous events and overwrites at

every step.

Figure 3.2: Final architecture of the LSTM model after experimenting with several hyper-
parameters and testing their performance against validation set. We propose a stacked-LSTM
model with 2 layers, and dropout regularization with probability of 0.2.

3.4.5 Model validation

A critical component of the model selection process is the model validation, which helped us deter-

mine the best performing model and appropriate hyper-parameters to use. We used a combination

of scale dependent and percentage error metrics to validate our models against observed data from

all BAs of the US, located in geographically diverse regions to account for diverse weather regimes,

complex electricity consumption patterns, and end use sectors (results from validation process

included in Appendix 5.4, Table 4.1). The three criteria used to measure model performance were:

1. Root Mean Squared Error (RMSE): The RMSE is an absolute measure, that squares the
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deviation from the mean, to prevent the positive and negative deviations from cancelling

each other. This is a scale dependent criteria, and is formulated as:

RMSE =

√
1

n
Σn
i=1

(
yj − ŷj

)2
where yj is the observed variable and ŷj is the estimated form of the dependent variable

2. Adjusted coefficient of determination (R2) The adjusted R2 value indicates how much varia-

tion in the dependent variable can be explained by the predictors in the model.

3. Mean Absolute Percentage Error (MAPE): The MAPE is a percentage based error metric

which measures the relative forecasting error from regression models in % points.

MAPE = (
1

n
)

n∑
i=1

∣∣∣∣yj − ŷj
yj

∣∣∣∣
where yj is the observed variable and ŷj is the estimated form of the dependent variable

These evaluation metrics individually are widely used to evaluate regression models. We use a

combination of three different criteria to ensure a comprehensive validation process while choosing

between the LSTM and PLR model.

3.5 Results

3.5.1 Model performance

Before reconstructing the hourly demand data to analyze the effect of long-term temperature vari-

ability on electricity demand, we extensively tested our models to determine the optimal hyper-

parameters, and choose the best model for further analysis. We found that the LSTM model

performed significantly better than the PLR model for all three evaluation criteria across all the

BAs (Table 3.1).The Root Mean Squared Error (RMSE) values of the reconstructed demand esti-

mates from validation set using the LSTM model for all BAs was relative lower than the RMSE
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values from the PLR model. This was also true for coefficient of determination values for esti-

mates derived using both models. The LSTM model resulted in significantly large R2 values for

all BAs than the PLR model, indicating that the formulation of predictors in LSTM model could

explain significantly large variance in the dependent variable (hourly demand) as compared to PLR

model. We attribute the optimal performance of LSTM model to the ease at which deep learning

models capture complex relationships between dependent variable and associated predictors, in

this case, hourly electricity demand and hourly temperature plus cyclic time variables capturing

human behavior. Along with learning complex non-linear relationships between dependent variable

and predictors, LSTM models can account for long-sequential inputs without necessarily treating

any auto-correlation related effects and are known to produce reliable results for tasks related to

multivariate time series analysis (Waheeb and Ghazali, 2020; Z. Chen et al., 2021).

Table 3.1 shows the validation process results for both models against three criteria, that is, RMSE,

MAPE, and R2 with their optimal hyper-parameter setting for each BA.

Table 3.1: Results from the validation process for LSTM and PLR models by splitting trainable
data in 80:20 ratio (train vs. validation set) with their optimal hyper-parameter setting for each
BA. Note, during the model selection process, multiple hyper-parameter changes were made to
derive the most optimal set, but the table shows only the best results obtained.

BA Demandmax RMSELSTM R2
LSTM MAPELSTM RMSEPLR R2

PLR MAPEPLR

AEC 1211 98.273 46.91% 12.65% 222.25 negative 46.80%

AECI 5279 505.47 18.04% 16.06% 484.09 negative 21.30%

AVA 2376 145.74 70.28% 8.26% 169.26 46.80% 11.12%

AZPS 7558 376.21 85.14% 7.66% 462.62 70.70% 9.51%

BANC 4763 227.19 74.44% 7.17% 233.24 68.05% 7.73%

BPAT 10943 606.50 55.77% 6.82% 642.25 44.66% 8.12%

CHPD 591 175.54 negative 74.76% 1363106 negative 100659%

CA-ISO 49899 2720.84 67.89% 8.05% 2809.90 51.60% 7.63%

CPLE 14416 1055.42 57.55% 11.46% 1077.93 9.61% 13.24%

CPLW 1182 82.19 52.41% 10.48% 84.08 negative 12.52%

DOPD 397 27.84 53.20% 11.84% 113211 negative 22238%

DUK 21608 1541.07 59.71% 9.95% 1639.58 20.98% 12.44%

52



EPE 1985 89.06 86.41% 7.02% 109.59 76.06% 9.08%

ERCOT 74533 4496.45 75.12% 9.09% 5540 50.72% 12.76%

FMPP 3677 219.76 79.90% 11.80% 255.38 71.75% 9.17%

FPC 12443 781.16 76.19% 9.92% 828.77 69.58% 10.73%

FPL 24991 1425.00 83.18% 7.75% 1401.05 82.52% 7.85%

GCPD 858 80.60 negative 11.57% 75.855 negative 13.42%

GVL 452 25.71 80.07% 8.45% 28.52 75.56% 10.39%

HST 115 7.91 75.75% 9.99% 7.85 74.90% 10.73%

IID 1081 103.92 49.27% 16.92% 121.173 48.22% 26.74%

IPCO 3700 236.59 65.00% 9.74% 233.45 53.90% 10.29%

ISO-NE 25763 1524.35 65.62% 7.69% 2019.52 negative 36.25%

JEA 3080 206.95 67.61% 10.29% 220.24 51.11% 10.47%

LDPW 7059 468.76 61.23% 9.38% 470.741 29.77% 8.61%

LGEE 6920 500.92 60.00% 9.58% 540.391 8.90% 10.94%

MISO 119733 5618.12 79.20% 5.68% 5916.84 62.42% 6.24%

NEVP 8603 379.53 83.21% 5.84% 490.29 73.29% 9.11%

NSB 108 7.48 72.09% 11.48% 7.89 64.39% 12.83%

NWMT 1961 127.32 31.38% 7.66% 120.56 24.48% 8.44%

NY-ISO 32076 1663.55 75.92% 7.66% 1838.33 55.88% 7.97%

PACE 8907 479.90 65.43% 9.89% 382.40 61.57% 5.10%

PACW 4037 354.08 45.45% 12.26% 359.96 negative 15.48%

PGE 4023 241.42 66.15% 7.48% 236.26 55.07% 7.79%

PJM 152890 9338.01 63.54% 7.81% 9940.74 19.87% 8.98%

PNM 2608 124.36 78.60% 6.27% 138.47 55.83% 6.08%

PSCO 9640 625.73 48.68% 7.11% 454.11 35.39% 7.65%

PSEI 5504 314.05 74.05% 6.86% 364.89 55.70% 8.52%

SC 5117 366.59 65.82% 9.60% 410.58 6.90% 10.51%

SCEG 4807 266.23 77.98% 7.25% 310.44 57.63% 8.97%

SCL 1870 84.21 80.68% 5.74% 96.75 71.80% 6.48%
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SOCO 45745 3007.49 68.83% 8.83% 3934.04 17.78% 13.91%

SRP 7243 368.00 85.01% 7.83% 438.80 77.04% 10.37%

SWPP 51524 3131.18 53.87% 7.82% 3647.36 32.39% 10.60%

TAL 621 41.84 69.50% 9.75% 42.20 58.35% 10.94%

TEC 4413 292.25 73.16% 9.13% 293.19 71.30% 9.38%

TEPC 3664 232.64 50.29% 13.44% 237.67 59.99% 10.73%

TIDC 653 36.95 74.45% 8.69% 40.36 66.63% 10.63%

TPWR 998 51.31 76.15% 6.84% 63.66 54.95% 8.77%

TVA 32511 2423.53 53.55% 10.46% 2630.08 5.22% 13.10%

WACM 4433 242.72 40.39% 6.55% 221.77 38.58% 6.03%

WALC 1919 130.80 38.12% 9.47% 149.12 33.90% 12.45%

WAUW 168 12.96 15.98% 11.17% 11.74 14.36% 11.81%

Although the LSTM model performed optimally to reconstruct the hourly trends in electricity

demand based on weather variability for most BAs, a handful of BAs located in the Northwestern

region of the US, in the state of Washington, and a few BAs in the state of Florida, showed no

discernible temperature-demand relationship. Figure 1 represents some of these BAs which had no

defined relationship correlating air temperature and hourly demand. These BAs also had R2 value

less than 50%, which implied that significant amount of variance in dependent variable could not

be explained by our choice of predictor set.

For example, the Public Utility District No. 1 of Chelan County (BA acronym: CHPD), Public

Utility District No. 2 of Grant County, Washington (BA acronym: GCPD), etc. showed R2

values in the range of 2-10% during the validation process, even after considerable hyper-parameter

tuning and changes in model architecture of the LSTM network. This indicated that BAs which

showed significant asymmetry in the temperature-demand relationship have other dominant factors

affecting the hourly load. For all analyses, we took care to eliminate any BA that did not show a

relatively smooth temperature-load relationship.
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(a) Public Utility of Grant County, Washington
(GCPD) (b) Pacific Cooperation West (PACW)

Figure 3.3: Examples of balancing Authorities showing asymmetrical Temperature-demand rela-
tionship, which implies that factors other than temperature significantly influence hourly electricity
consumption in these regions.

Table 3.2: Balancing Authorities ranked in descending order of maximum hourly consumption in
the period between 2015 - 2019 (observed data)

BA Maximum hourly demand in MW R2
LSTM validation

PJM Interconnection, LLC (PJM) 152890 63.54%
Midcontinent Independent System Operator, Inc. (MISO) 119733 79.20%

Electric Reliability Council of Texas, Inc. (ERCOT) 74533 75.12%
Southwest Power Pool (SWPP) 51524 53.87%

California Independent System Operator (CA-ISO) 49899 69.89%
Southern Company Services, Inc. - Trans (SOCO) 45745 68.33%

Tennessee Valley Authority (TVA) 32511 66.38%
New York Independent System Operator (NY-ISO) 32076 75.92%

ISO New England (ISO-NE) 25763 65.62%
Florida Power & Light Co. (FPL) 24991 83.18%

Duke Energy Carolinas (DUK) 21608 59.71%
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3.5.2 Peak demand changes in reconstructed data

Inter annual weather variability significantly influences two components of electricity demand. First,

sub-daily or hourly variation in temperature influences change in peak and shoulder loads, and sec-

ond, IAV of temperature across multiple decades modulates variation in median electricity demand.

Peak load assessment is critical in designing a system capable of handling unexpected demand

surges, and creating contingency reserves.

We start by comparing the 20 largest peak temperature-driven demand hour proxies between 2015 -

2019 to the twenty largest peak hourly observed demand for the same time period. We find that the

temperature-driven demand proxies estimated by both the LSTM and PLR models underestimate

the range of demand outliers (or anomalous demand hours). This is because regression based

methods are robust at capturing the general trend of data-distribution of dependent variable around

the average values, but fails to understand the trend of outliers and more importantly the predictor

set used for isolating the temperature dependency of electricity demand is only able to explain up

to 85% of the variance in dependent variable (as per our R2 validation results). Among PLR and

LSTM, LSTM model was still substantially better than PLR model to recognize the outliers hourly

demand records. But,to make the comparison of 20 largest demand records homogeneous and

identify the most sensitive BA, we compare the reconstructed proxies of temperature-driven hourly

demand created for 2015 - 2019 to proxies in our test set for 1980 - 2014, instead of comparing 20

largest observed demand hours to reconstructed proxies from 1980 - 2014. Thus, we reconstructed

load data for the entire range of available weather data, i.e., 1980 - 2019, using the LSTM model

to create a consistent dataset of the weather-sensitive portion of hourly demand.

Figure 3.5 shows the top 20 demand hours for each year of reconstructed demand as a response to

temperature function for the eight largest balancing authorities (Table 4.1), and Figure 3.6 presents

the corresponding auto-correlated 24 temperature values that were used to estimate the top twenty

demand hours in each of the eight BAs. We show the auto-correlated temperature rather than

corresponding hourly incident temperature for each of the top demand values in Figure 3.5 because

the LSTM model leveraged sequential input. At any nth hour the estimated electricity demand

was quantified using n - 24 length of predictors. Moreover, we analyze the variability of twenty
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(a) MISO (b) ERCOT

Figure 3.4: Hourly temperature-load relationship of Midcontient Independent System Operator
and Electricity Reliability Council of Texas

largest demand hours in each year of reconstruction because annual peaks in power system drives

the capacity planning process as it quantifies peak demand across a wider horizon in comparison

to daily peaks (Auffhammer, Baylis, and Hausman, 2017).

Overall, for the case of both summer and winter peaking systems, the extent variation of demand

hours is driven by extreme temperatures. To corroborate this hypothesis, we compare the distribu-

tion of top twenty reconstructed demand hours and the associated temperatures which estimated

it (Figure 3.6). We find that all large BAs show a positive correlation biggest demand hours and

temperature, except for ERCOT, which shows negative non-linear correlation. The right tail of the

temperature-load curve (Figure 3.4 a) indicates a high-degree of positive correlation between higher

temperatures leading to higher demand, which the model failed to recognize only for ERCOT. We

attribute this behavior to a noisy temperature-demand relationship for the case of ERCOT, as

shown in Figure 3.4 (b), which both the LSTM model and Piecewise Linear Regression model

failed to recognize.

We use coefficient of variation (CV) to compare the deviation of 20 largest demand values over the

reconstruction timeline to account for difference in magnitude of electricity consumption in each

BA. CV is the normalized form of standard deviation and is estimated as the ratio of the standard

deviation of variable of interest in a given period to its average value. Comparing the deviation of

20 largest demand hours within each BA and across all years, we find that largest variability across
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all years is observed in Southern Company Services Inc. (SOCO) with CV varying between 18%

- 20%. However, SOCO presents significant variability of 20 largest demand records only in 2005

and 2011 corresponding to hotter days in June, August and September (Figure 3.6). Tennessee

Valley Authority (TVA) with coefficient of variation of about 17%. The largest variability in peak

demand hours are not consistent for TVA, as the reconstructed demand proxies indicates a large

dispersion of top 20 demand hours only for 1980 through 1984.

Figure 3.5 also indicated that Midcontient independent System Operator (MISO), and California

Independent System Operator (CA-ISO) for every year of proxy demand reconstruction, also showed

inconsistent deviation of 20 largest demand values, and resulted in a coefficient of variation value of

17% and 16% respectively. This was followed by Southwest Power Pool (SWPP) with a coefficient

of variation value of 15% (Figure 3.7). In contrast, among the 10 largest balancing authorities

ranked in the order of largest hourly power consumption, PJM Interconnection and New York

System Operator (NY-ISO) present lower coefficient of variation of 8% and 9% respectively implying

smaller changes in peak demand requirements over year under the influence of changing temperature

changes.

Similarly, we also analyzed the spread of 20 largest temperature-driven demand proxies for all the

BAs (plots of 20 largest demand included in Appendix A.2, Figures B.1, B.2, B.3, and B.4) of the

US after removing any BA which showed R2 values <= 50%. BAs in the south-western region

like Arizona Public Service Company (AZPS) and Nevada Power Company (NEVP), and BAs

in southern states of the US, like City of Tallahassee (TAL), Duke Energy Florida, Inc. (FPC)

show very large spread of 20 largest demand hours across 1980 - 2019, leading to coefficient of

variation value of about 28%. Several smaller sized balancing authorities like the Salt River Project

Agricultural Improvement and Power District (SRP; located in the state of Arizona), Utilities

Commission of New Smyrna Beach (NSB; located in the state of Florida), Turlock Irrigation District

(TIDC; located in the state of California) also indicated significantly large coefficient of variation

values of 30%, 29%, and 27% respectively. Comparing these to their corresponding temperature

values (Figure 3.6), we find that for all above BAs summer time temperature in months between

May - September influence the 20 largest demand hours.
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(a) PJM Interconnection, LLC (PJM) (b) Midcontinent ISO (MISO)

(c) Electric Reliability Council of Texas (ERCOT) (d) Southwest Power Pool (SWPP)

(e) California Independent System Operator (CISO) (f) Southern Company Services, Inc. (SOCO)

(g) Tennessee Valley Authority (TVA)
(h) New York Independent System Operator (NY-
ISO)

Figure 3.5: Hourly reconstructed demand values exceeding 99th percentile of hourly observed de-
mand between 2015 - 2019 for each year of reconstruction (1980 -2014) segregated by months
(colored) for the largest BAs of the US.
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(a) PJM Interconnection, LLC (PJM) (b) Midcontinent ISO (MISO)

(c) Electric Reliability Council of Texas (ERCOT) (d) Southwest Power Pool (SWPP)

(e) California Independent System Operator (CA-
ISO) (f) Southern Company Services, Inc. (SOCO)

(g) Tennessee Valley Authority (TVA)
(h) New York Independent System Operator (NY-
ISO)

Figure 3.6: Auto-correlated hourly temperatures corresponding to the 20 largest reconstructed
demand values in Figure 3.5, segregated by months (colored) for the largest BAs of the US.
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Figure 3.7: Heatmap representing coefficient of variation values for the top twenty reconstructed
temperature-driven demand proxies for balancing authorities in the US. Amongst the top 10 largest
BAs, we find the greatest year-to-year variability occurring in ERCOT, followed by CA-ISO, TVA,
SOCO, and DUK.

Conversely, for the case of TVA, NY-ISO, and also Independent System Operator of New England

(ISO-NE), colder days in December, January and March significantly drives the largest demand,

as shown in Figure 3.6. For these systems, the right and left tail of the temperature-load curve

drives peak demand, and thus if climate change amplifies the inter-annual variability in both and

summer winter months, these BAs will become more vulnerable to system outages.

In all, the BAs like SOCO, TVA, MISO, CA-ISO, SWPP, etc., which show large deviations of 20

large demand hours, and thus, these balancing authorities will be at a higher risk to variability

in hourly weather patterns. Smaller sized BAs with large CV are also at risk, but the problem

is more pronounced in larger BAs because these entities serve geographically diverse areas, with

different socio-economic status, and also different energy policies. In particular, greater risk of

weather variability will introduce additional challenges in managing CA-ISO and MISO because of

its very large solar and wind energy footprint.
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Figure 3.8: Distribution of annual load factors between 1980 - 2019 for all BAs considered in
this study. Tennessee Valley Authority (TVA) has the largest interquartile range among the top
10 largest BAs, indicating large difference in year-to-year change in annual load factors. While,
Midcontinent Independent System Operator (MISO) and Electricity Reliability Council of Texas
(ERCOT) have moderate interquartile ranges, rest of the top 10 large BAs show very small changes
in load factors

3.5.3 Change in Load Factor

Load factor is defined as the ratio of average demand over a specific period to the peak demand

in that period. Load factors are used to measure the change in electricity consumption over time.

Large load factors indicate that the mean electricity demand is similar to peak hourly demand, and

the system capacity built for generation is being utilized efficiently. Smaller load factors indicate

that peak demand in the system are very large as compared to average demand and are limited

to certain hours of the time frame under consideration. We analyze the change in annual load

factors between 40 years of our study. The distribution of annual load factors across 1980 - 2019

are represented as box plots for all BAs in Figure 3.8.

Larger interquartile ranges in box plots shown in Figure 3.8 implies large changes in annual load

factors indicating that the temperature-driven demand peaks are large for certain years versus other

in comparison to average temperature-driven demand. This implies that in BAs like TVA, MISO,

and ERCOT with change in temperature, the consumption and eventually utilization of generating

capacity will differ significantly between years. With large changes in peaks and mean consumption

62



due to temperature, deploying strategies such as Demand Response and Peak shaving will become

increasingly difficult.

In contrast, for moderately sized BAs, like NEVP and SC, the distribution of year-to year change in

load factor is even larger implying that the consumption of electricity in these BAs differ significantly

from peak demand across the 40 years being studied. Even though, NEVP and SC govern smaller

regions, grid management with the integration of Electric Vehicles (which is considered as variable

load) in the future will likely be disruptive as these BAs already indicate variable peak demand

requirements due to temperature changes.

3.6 Discussion

In this paper, we utilize high frequency hourly weather data from MERRA and observed demand

from all BAs of the US, coupled with human behavior based fixed effects to reconstruct a dataset

that represents the climate-sensitive portion of hourly load for four decades between. Reliance on

climate models implicitly imbibes uncertainty in the analysis and also requires costly downscaling

process which limits the use of climate model for large scale country-wide analysis. Thus, we base

our analysis on historical temperature records to conduct a fine-scaled quantification of change

in peak and median electricity demand patterns due to natural variability of temperature across

contiguous US. Since we use present-day (2015 -2019) hourly demand to train our models, we

implicitly include the representation of modern-day energy efficiency measures, technologies, and

consumption patterns in our modeling efforts.

Through the modeling process, we demonstrate the efficacy of machine and deep learning models

to quantify the sensitivity of electricity demand due to weather variability ( natural variability of

temperature from historical records) by generating reconstructions of high-intensity hourly demand

data. We showed that modern neural network based LSTM models outperform traditional machine

learning method of multi-variate linear regression as used in existing studies (Auffhammer, Baylis,

and Hausman, 2017; Bloomfield et al., 2018; Hannah C. Bloomfield, D. J. Brayshaw, and Charlton-

Perez, 2020; Fonseca et al., 2019). Additionally, we also show that, due to differences in geography
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and time, it is recommended to train and validate data-driven models for each BA.

Our initial validation process included a comparison of reconstructed peak temperature-driven

hourly demand proxies between mid 2015 - 2019 to the corresponding 20 largest observed demand

peaks data for each Balancing Authority. We found that both, LSTM and Piecewise Linear Regres-

sion models significantly underestimates the demand anomalies or the peak demand outliers in each

year of validation. While, existing patterns in outliers from 20 largest temperature-driven demand

proxies of some BAs (like AZPS, TVA, NEVP, etc.) were captured accurately, in other balancing

authorities the LSTM model performed marginally to capture outliers. This can be attributed to

the noisy data points in temperature-load relationship which introduces bias in our estimates.

Overall, we find that 18% of all BAs (total 66) do not indicate a smooth temperature-load curve,

which implies that additional socio-economic factors and changes in demographics affect electricity

consumption patterns. Examples of such BAs include the Associated Electric Cooperative, Inc.

(AECI) in the midwest; Public Utility District No. 1 of Chelan County (CHPD), PUD No. 1 of

Douglas County (DOPD), Public Utility District No. 2 of Grant County, Washington (GCPD) in

the pacific northwest; Western Area Power Administration - Rocky Mountain Region (WACM),

Western Area Power Administration - Rocky Mountain Region (WALC), and Western Area Power

Administration - Upper Great Plains West (WAUW) and a few others. We eliminated these BAs

before performing further analysis as they also showed very small R2 values during the validation

process.

While analyzing annual peak demand changes in large BAs it was found that almost all large BAs

react to summer-time temperatures except for the case of TVA, NY-ISO, and ISO-NE. We further

also explored changes in 20 largest temperature-driven demand proxies between years, and within

each year of reconstruction (1980 - 2019). BAs like MISO and SWPP showed indicated significant

CV of the 20 largest demand proxies, 13% and 16% respectively. Even though the coefficient of

variation values are less than 20% for large BAs, even small CV values implies bigger risks. This

is because BAs like MISO, PJM, ERCOT, SWPP, govern states with cumulative large energy

consumption and even small changes in temperature-driven demand variability can stress the grid

infrastructure. This is more concerning for the case of MISO which governs states like Iowa, North
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Dakota, South Dakota and others, which largely rely on wind energy (also intermittent in nature).

Future amplifications in natural variability of temperature due to climate change induced effects

would make the capacity gaps wider for hours during the day when wind production is limited.

Furthermore, calibrating the impact on moderately sized BAs we found that, demand variability is

more prominent in SOCO, followed by TVA and CA-ISO. All three systems are summer peaking,

and like MISO, managing CA-ISO will be increasingly harder with more changes climate sensitive

portion of electricity demand as CA-ISO is heavily dependent on solar power production.

Several caveats pertain to our analysis. First, while reconstructing hourly demand data for each

BA, we used the coordinates of the largest population center under the governing BA of interest to

extract matching hourly temperature data. For example, we chose the location of Nashville for the

Tennessee Valley Authority (TVA) to train the models and reconstruct the hourly demand data.

This implicitly biases our model towards a single weather zone in a BA, and estimates demand

according to that weather zone. But in reality, a BA may have several weather zones, and a

handful of large BAs (like ERCOT and ISO-NE) also report zonal electricity demand. Future work

could use temperature from multiple weather zones to scale and reconstruct electricity demand for

the BAs which report zonal electricity consumption.

From the validation experiments, we found that the use of LSTM model for reconstructing temperature-

driven demand proxies resulted in fairly robust estimates for large BAs. While, for the case of small

and mid-sized BAs like PACW, WAUW, WALC, WACM, CHPD, GCPD, NWMT, IID, DOPD,

AEC, AECI, etc. both models failed to characterize the change in hourly demand due to tempera-

ture changes leading to R2 values of less than 50% implying the predictor space could not capture

most of the variance in dependent variable. This indicates that further validation experiments are

required with a larger subset of weather-related predictors which includes Heating and Cooling

degree days (Tyler H Ruggles and Caldeira, 2022) and humidity (Fonseca et al., 2019).

Second, since we aimed to reconstruct multidecadal hourly demand values rather than estimating

aggregated values of daily or monthly load without biasing our estimates by including simulations

from climate change models, we used historical temperature data. This also helped in isolating

the effects of natural variability of temperature against climate change induced variability due to
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anthropogenic forcings. But, should there be a case where robust hourly air temperature records

from downscaled climate models are available, the proposed LSTM model architecture can be used

to determine the sensitivity of hourly electricity demand under the impact of different trajectories

of climate change.

We ignore any factor other than temperature to model the effects of weather on electricity de-

mand, assuming extreme air temperature drives the large peak demand requirements in the US

power system. Future analysis could integrate the impact of air humidity on electricity demand

to determine if BAs in different regions of the US resulted in lower/higher reconstructed hourly

demand values. M. Craig et al., 2021 found that the impact of humidity on electricity demand in

states of Mississippi and Alabama (BAs governing these states are TVA, AEC, and SOCO) is more

pronounced as compared to southeastern states. The results from a BA level study which includes

humidity would likely show qualitatively similar results to the ones we discuss in this paper as the

model predictors might explain significant variance in the BAs which were filtered out.

Despite these limitations, our results offer insights into the impact of natural variability of weather

on the BAs of the US. They are particularly useful in delineating the weather sensitive BAs based

on historical reference hourly temperature and identify which BAs would face additional challenges

while integrating intermittent renewable energy resources like solar and wind energy. Understanding

weather-driven variability is crucial to build a power system that enables a high-degree of reliability

contribution towards meeting excess demand at all times.

Additionally, we also use robust deep learning based to generate dataset spanning across 40 years

of the climate-sensitive portion of electricity demand. This dataset will help energy planners and

researchers to understand inter-annual variability based reliability changes in the existing grid,

and thus help them consolidate plans for BAs which requires the most attention. These set of

vulnerable BAs already show serious response to natural variability of temperature. Hence, the

vulnerability will be further magnified under future climate change related impacts. Accounting

for both natural weather variability and climate changes impacts separately in long-term planning

process will help manage investment errors and highlight effective strategies for climate change

adaption and mitigation.
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Chapter 4

Multidecadal assessment of reliability

contributions from renewable energy

sources under deep uncertainty for

ISNE, ERCOT, and CA-ISO

leveraging temperature response of

hourly load
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4.1 Abstract

Balancing Authorities (BAs) in the US are analyzing appropriate strategies to increase renewable

energy capacity in their respective systems, due to the rapidly falling prices of wind and solar

technologies and evolving policies mandating or encouraging more clean energy sources for power

production. But long-term power systems planning studies involving decisions related to capacity

expansion, transmission, and storage, often lead to infrastructure development for multiple decades.

Investment decisions in the present will affect future grid planning processes, and thus it is impor-

tant to create plans that account for uncertainty in power production as well as change in demand,

especially the variability in capacity contributions induced due to changing weather conditions.

In this chapter, we assessed the reliability contributions from solar, onshore wind, and offshore

wind generators for three large BAs, and found that for the BA governing Texas, Electricity Reli-

ability Council of Texas (ERCOT), solar generators provide large reliability across all 40 years as

compared to onshore and offshore wind generators, and is significantly less sensitive to changing

weather. This is because ERCOT already has substantial contributions from onshore wind farms

and our ELCC results from Chapter 2, proved the need for diversification of generators. On the

other hand, offshore wind farms will provide greater reliability contributions in ISO-New England

(ISO-NE) and California Independent System Operator (CA-ISO), but offshore wind capacity fac-

tors is very sensitive to inter-annual variability impacts of wind speed, with its effective reliability

contribution value changing by approximately 40% between 1980 -2019 for both cases.

4.2 Introduction

The North American Electricity Reliability Corporation (NERC) (Council, 2020) concluded in

their recent long term reliability assessment study for 2021 - 2030 that there is an increased risk

associated with large penetration of solar and wind power resources for large Balancing Authorities

(BAs) which includes most parts of Western Interconnect, ERCOT (Electricity Reliability Council

of Texas), PJM, and MISO (Mid-west Independent System Operator). While these BAs are known

to already have large dependency on renewable energy resources (ERCOT relies on approximately
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20% onshore wind generation), BAs governing large population centers like Boston (ISO-NE) and

major cities in California (CA-ISO) may experience reliability challenges as more wind and solar

power is added into the grid.

Stakeholders involved in the grid planning process conduct system reliability assessments while

considering uncertainties to ensure the continuous reliability of electricity supplies. But these

reliability assessments are largely based on available hourly demand and weather data, and are

thus constrained to a small time-frame which is not sufficient to account for variability in the

resource supply (solar radiation and wind speeds) as well as uncertainty in hourly load. The

process of robust long-term planning of a grid system requires accounting for changes in electricity

consumption while determining the optimal size of generators to be added to the system. Thus,

there is a growing need to understand reliability of power systems over a longer time scale while

taking into account the impact of interannual variability (IAV) of temperature on demand as well

as interannual variability of resources like solar and wind. Hence, along with assessing variable

supply of solar and wind power (from both onshore and offshore counterparts), we need to assess

reliability in conjunction with demand as a response function of changing temperature.

However, the hourly electricity demand data needed for conducting long-term analyses of reliability

for a grid is unavailable. Currently, the Balancing Authorities of the US report hourly demand data

on public platforms only for the past five years, that is, hourly demand requirements between July

2015 - October 2020 (Tyler H. Ruggles and Farnham, 2020). Any annual reliability assessments

based on this dataset will be constrained to an effective time scale between 2016 to 2020. Previously,

in Chapter 3, we investigated appropriate methods to reconstruct proxies of temperature-driven

hourly demand data using regression methods. Our proposed method of using deep learning models

resulted in relatively robust multidecadal- estimations of hourly demand as compared to previously

attempted methods in the literature. We also explored the difference in year to year variation pf 20

largest demand hours, and determined which Balancing Authorities showed significant sensitivity

on demand-side due to historical weather changes. This was done to aid planning agents in the

process of building reliable power systems.

Thus, to effectively plan a grid with new generators (both conventional and renewable energy-
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based) of varying nameplate capacity, it is imperative to understand the requirements of the grid

over the long term while taking into account seasonality of demand and supply.

Wu et al., 2018 studied the variability in resources which contributes to the generation of renewable

energy, and found that terrestrial near surface wind speed for North America and Central Asia

decreased with a linear trend of -0.11 ms−1 per decade, with second most significant decreases

have occurred in parts of Europe, East Asia, and South Asia with mean linear trend of -0.08 ms−1

per decade. Zeng et al., 2019 found that large decadal-scale variations of near-surface wind are

determined by internal-decadal ocean-atmosphere oscillations. They also estimated that for the

case of the contiguous US, variability in wind speed has aided in growing wind power production.

Over the last few decades, the change in mean annual wind speed in North America has changed

the potential of wind energy generation by ± 2% . These changes in near surface wind speed can

alter the available high intensity wind resources for wind power production and thus perturb the

reliability estimates reliant on which long-term power system infrastructure are planned.

Researchers, stakeholders involved with the energy industry, and utility company managers have

always been interested in understanding the impact of change in weather variables on reliability

contributions from power systems. But the body of literature specifically trying to understand

the effect of interannual variability in solar irradiance, wind speed, and temperature on long-term

power system planning and analysis have only started to grow. Auffhammer, Baylis, and Hausman,

2017 in their study cited the need to understand the impact of long-term temperature changes on

peak summer demand across the state of California to strategize capital investments in energy

infrastructure. Maia-Silva, Kumar, and Nateghi, 2020 and Yalew et al., 2020 also underscore the

need to include temperature variability in long-term planning studies for the grid. Bryce et al., 2018

in their latest study highlighted the economic impact of ignoring interannual variability of solar

power in Hawaii by analyzing records from 15 years. Moreover, studies by Hannah Bloomfield, D.

Brayshaw, and Charlton-Perez, 2020; Bloomfield et al., 2018; Coker et al., 2020 focused on assess-

ing the sensitivity of the European power system to weather variables have used back-forecasted

electricity demand for multiple decades to assess the power system performance.

A handful of studies (Slusarewicz and Daniel S Cohan, 2018; Kumler et al., 2019) have attempted
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to analyze the solar and wind power complementarity towards satisfying peak demands while

considering their interannual variability over a relatively short time frame of less than ten years.

Contrary to these studies based on the US power system setting, studies evaluating European

power system reliability studies are increasingly accounting for multidecadal interannual variability

(Thornton, Hoskins, and Scaife, 2016; Collins et al., 2018; Coker et al., 2020; Zeyringer et al.,

2018), etc. In fact, Coker et al., 2020 underscored the necessity to account for supply and demand

side interannual variability for successful energy market design in the UK. Collins et al., 2018 also

used an economic model to optimize for power system reliability for the European subcontinent,

i.e. meeting demand at an hourly resolution using existing base fleet generators, but this analysis

doesn’t capture the reliability benefits from new generators that maybe added to the base fleet in

future.

Studies related to characterization of weather variables that impact grid planning remain con-

strained to a handful of papers. Although substantial progress has been made to understand how

much solar or wind energy is available at a certain region over a specific period, a comprehensive

analysis of variability of these variables over time and over geographical conditions and its im-

pact on grid reliability in the context of contiguous US remains vague. Thus, this paper aims to

help stakeholders involved in the grid planning process to think about reliability assessments from

adding new solar and wind energy generators over a multidecadal time frame.

However, related studies for the case of the US either focus on smaller time scales Kumler et al.,

2019 as explained above, or account for either supply side interannual variability of solar or wind

and ignore demand side variation Shaner et al., 2018; Rinaldi et al., 2021. A comprehensive study

assessing the reliability of the US grid while accounting for both IAV of renewable energy supply

and demand over a multidecadal time-frame has been missing from the literature.

The definition of a reliability metric also varies among the existing studies. A complete analysis of

weather-driven interannual variability impacts on power systems involves carefully incorporating

variability in solar and wind capacity factors influencing new VREs for offshore and onshore loca-

tions separately, considering the combined interactions of temperature-driven demand variability

and effects due to weather-driven forced outage rates on existing base fleet of conventional genera-
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tors. The combined interactions from all factors can be probabilistically modeled to derive effective

reliability contributions from the new solar and wind generators. A probabilistic analysis of relia-

bility contributions from the addition of extra renewable energy generators can be completed using

the Effective Load Carrying Capability (ELCC) metric as utilized in Bromley-Dulfano, Florez, and

M. T. Craig, 2021; Keane et al., 2010; Madaeni, Sioshansi, and Denholm, 2012 and Chapter 2.

The goal of this project is to fill the research gap of accounting for variability while assessing

reliability contribution from adding new renewable energy generators over a multi-decade time

frame while also incorporating effects of electricity demand uncertainty. We thus propose to fill

this gap by analyzing the effect interannual variability weather variables affecting both production

and demand side of power system across multiple decades.

Thus, we aim to study the change in reliability contributions from new solar, onshore wind and

offshore wind energy resources over a 40-year time scale for ISO-NE (Independent System Opera-

tor of New England), ERCOT (Electricity Reliability Council of Texas), and CA-ISO (California

Independent System Operator) in a probabilistic fashion by trying to incorporate several sources

of uncertainties.

4.3 Methods

In order to successfully answer the identified research gap, we use proxies of weather driven hourly

demand reconstructed in Chapter 3 for the 1980 - 2019 timeline, for all three BAs, and derive the

change in effective reliability contributions of adding new offshore wind, onshore wind, and solar

generators into the grid. The aim of this study is to conduct a robust analysis to understand the

change in capacity contributions of a system of diverse fleet of generators while taking into account

the multidecadal interannual variability of weather variables while synchronously accounting for

demand as a response function of interannual variability of temperature. To accurately isolate the

effects of weather-related changes on the reliability contributions, we hold all other factors, such as

the grid composition and electricity interchanges, constant from 2019.

For a comprehensive analysis, we also conduct a sensitivity analysis on our final variability measures
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for the three BAs, by utilizing observed demand data between 2016 - 2019 (ignoring 2015, as BAs

hourly demand only from 2nd July 2015, which is an inappropriate input to quantify annual target

reliability), and comparing the newly derived reliability estimates against the ELCC estimates

derived from using weather-driven demand proxies (reconstructed hourly demand; Chapter 3).

Our goal here is two fold, that is, we aim to analyze the difference in overall median ELCC values

in reconstructed demand and observed demand case, and also compare the difference in deviation of

ELCC values from the mean in both cases. The former criteria would indicate if we are over/under

estimating capacity contributions from the variable renewable energy generators (VREs) while

using the proxies of demand data, whereas the latter criteria would indicate if our models capture

the trend in variability of reliability contributions accurately.

To simulate the effect of weather on the reliability contributions from additional renewable energy

generators included in the base fleet, our model uses multiple decades of high frequency hourly

demand data and spatially differentiated temperature data for individual Balancing Authorities of

interest.

4.3.1 Area of study

Our analysis focuses on three different Balancing Authorities, ISO-NE, CA-ISO, and ERCOT.

Together these three BAs accounts for approximately 26% of the cumulative 2019 electricity con-

sumption of the U.S. Moreover, these BAs are located in geographically diverse locations, which

makes the study comprehensive to understand the impact of ignoring long-term effect of weather

variability across multiple spatially heterogeneous locations, in temperature response of demand

patterns on the grid reliability.

We choose these three balancing authorities for in this paper over other Independent System Oper-

ators because ISO-NE, ERCOT, and CA-ISO are geographically and systematically diverse. While

ISO-NE governs multiple states (Massachusetts, Connecticut, Rhode Island, Vermont, New Hamp-

shire, & Maine), ERCOT and CA-ISO individually serve the states of Texas and California re-

spectively. Additionally, the geographical diversity in these three choices ensures that we account

for spatial heterogeneity of temperature which will influence demand, as well as renewable energy
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mandates which is largely dependent on the political sentiment in each region.

4.3.2 Data Sources

Existing studies (Keane et al., 2010; Bothwell and Pavlak, 2015) for determining reliability using the

ELCC metric have used datasets containing observed meteorological values. However, as indicated

in Chapter 2, we leverage the NASA MERRA reanalysis dataset (MERRA-2 2020) as it is free

from any missing values, and thus eliminates the need for imputations (which otherwise introduces

another layer of uncertainty in quantifying stochastic reliability contributions from renewable energy

generators). Reanalysis datasets are created to develop consistent records of the observed states,

which otherwise have many gaps due to the method in which data is collected and stored (Keeley,

2021; Reanalysis Data n.d.). The NASA MERRA (Modern-Era Retrospective Analysis for Research

and Applications)(MERRA-2 2020) data reports multiple climatological variables over an extensive

period. Variables like wind speed (both eastern and northward component) at 2m, 10m, and 50m

above the sea level, specific humidity, surface incoming shortwave flux, pressure, and temperature

at 2m were extracted from the MERRA database for the years 1980 - 2019. We choose the four

decades between 1980 - 2019 for our study to conduct a complete analysis leveraging all available

data points, while using concurrent reconstructed hourly demand values, which are approximations

or proxies of temperature driven hourly load.

After, we extract the atmospheric variables from the MERRA database have, we use a python

script to call the NREL ”System Advisor Model” (SAM) module (Blair et al., 2014) and convert

the variables to their corresponding energy generation output. Researchers at NREL have designed

SAM to facilitate the decision-making process for renewable energy systems by providing a plat-

form to convert resources like solar irradiance and wind speed to their corresponding solar and

wind energy output at specific locations (System Advisor Model 2020). The process of conversion

of weather variables to corresponding energy outputs begins with extracting MERRA weather data

to be fed as inputs in SAM and simulate hourly AC generation from solar and wind resources for a

particular year, location, and generator design (plant nameplate capacity and type as onshore and

offshore wind farms use different turbines). Next, the AC generation profiles are then normalized
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to derive the corresponding hourly capacity factors (CFs). Lastly, for the renewable energy gener-

ator of interest, whose effectiveness we want to quantify by determining the ELCC, its nameplate

capacity is multiplied by the capacity factor derived in step 2 to derive the generator’s hourly AC

power.

Based on the choice of generator, that is, either solar, onshore wind, or offshore wind, additional

parameters are specified in SAM. These parameters are described below under each generator type.

4.3.3 Wind profiles

For wind power profiles, a power law in SAM is used to extrapolate wind speeds to a typical turbine

hub height. The estimated wind speed is then categorized under different onshore wind turbine

classes as suggested in IEC 61400 (IEC 61400 2021), and power is quantified using SAM. For

offshore wind, a particular wind turbine from the SAM database is used – the Senvion 6.2 MW

turbine. We chose Senvion from the pool of available offshore wind turbines in the SAM database

because it best represents the current scenario of an operating offshore wind (Block Island Wind

Farm) in the US.

Equation (4.1) represents the Power Law:

v2 = v1 ∗ (h2/h1)
α (4.1)

Where v2 is the wind speed at height h2, v1 is the wind speed at height h1, and α is the wind shear

constant which depends on the terrain (whether land or water, mountainous or flat land), and also

varies by turbine height, season, and wind speed. As a hueristic, 1/7 is often used when all factors

influencing the wind shear constant value are unavailable.
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4.3.4 Solar profile

To simulate power generated by solar PVs, the Direct Normal Irradiance (DNI) and Diffuse Hori-

zontal Irradiance (DHI) are determined using the Direct Insolation Simulation Code (DISC) model

developed by (Maxwell, 1987; W. Holmgren et al., 2021; W. F. Holmgren, Hansen, and Mikofski,

2018). DNI is the amount of solar radiation received per unit area by any surface that is always

held normal to direct sun’s rays. At the same time, DHI is the amount of radiation received per

unit area by any surface not directly in the sun’s path but by scattered molecules and particles in

the atmosphere. The SAM model then uses these two factors as inputs to quantify solar power.

In Table 4.1, we enlist some parameters that was chosen for the conversion of solar irradiance to

solar power in SAM.

Table 4.1: Parameters for solar generation in SAM; same as Chapter 2

Generator Parameter Value

Nameplate Capacity 1MW
Azimuth 180°

Axis Type Fixed @ Latitude Angle
DC:AC Ratio 1.1

Inverter Efficiency 96%

4.3.5 Effective Load Carrying Capability Method

To quantify the ELCC of any generator, we follow the method used in Bromley-Dulfano, Florez,

and M. T. Craig, 2021, and modify it to include necessary functionalities required for quanti-

fying capacity contributions of offshore wind generators. For conducting an analysis, hinged on

determining the ELCC of a renewable energy generator, first an appropriate metric to define the

system reliability of the base fleet against the hourly load profile needs to be established. Similar

to Bromley-Dulfano, Florez, and M. T. Craig, 2021, we use Loss of Load Hours (LOLH) metric to

define system reliability. LOLH is defined as the sum of hours on an annual basis when the load in

a system exceeds the available generating capacity. NERC defines system reliability as by LOLH

value, and according to their standards a fleet is reliable if it has a LOLH value of 2.4/year NERC,

2019. It means means that annually, the system in consideration is only allowed to have demand
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shortfall for 2.4 hours cumulative or one outage day in 10 years.

After the metric to define reliability has been established, for quantifying the ELCC of any genera-

tor, we first collect required data inputs for the system of interest, which includes generator location,

nameplate capacity, FORs, and MERRA reanalysis data for hourly solar and wind profiles. Next,

we calculate the system’s original reliability (in terms of LOLH), and compare it against the target

reliability value of 2.4 LOLH/year (as defined by NERC). If the system is under-reliable, i.e., the

system LOLH value >2.4/year, thermal generators of 50MW is incrementally added to adjust the

fleet composition until the base reliability matches our target reliability. Otherwise, if the system is

over-reliable, i.e., the fleet LOLH <2.4/year, then the ELCC calculator changes the fleet composi-

tion by eliminating older thermal generators from the fleet. Older thermal generators are eliminated

to compensate for systems with overbuilt capacity that generates invalid ELCC estimates. Lastly,

we include the renewable generator of choice (in this paper a 100-MW solar, onshore wind, or

offshore wind generator) with storage, and determine the system’s new reliability (LOLH value),

and then incrementally add a constant load until the system with the added generator achieves

the target reliability. Note, while quantifying the system reliability, we also use a probabilistic

method to account for outages (planned and unexpected) in the generating fleet. As described in

Bromley-Dulfano, Florez, and M. T. Craig, 2021, we use temperature-dependent Forced Outage

Rates (FORs), instead of fixed outage rates to capture the failure in resource adequacy from con-

ventional and renewable energy generators comprehensively, and ultimately determine the LOLH

of the fleet.

The ELCC of any generator is the amount of additional load which was added for adjusting the

system reliability after including the solar, onshore wind, offshore wind generator to match the

system target reliability of 2.4 LOLH/year. The ELCC value quantifies the ability of the new

generator added to the base fleet to serve excess demand. By definition, ELCC values have units

of power, but in the method prescribed in this paper, it is reported as a percentage of the added

generator’s nameplate capacity. For example, we report a 25-MW ELCC for a 100-MW wind

generator as 25%.The ELCC values are always integers, as Bromley-Dulfano, Florez, and M. T.

Craig, 2021 round off the excess load added/removed to match the system reliability with target

reliability. This process of quantifying the reliability of an additional VRE generator over a base
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fleet is repeated for each grid cell using a dimension of 50x60 km within the area governed by ISO-

NE, CA-ISO, and ERCOT, and also the adjacent offshore area to account for spatial heterogeneity

in solar, onshore, and offshore wind resources.

4.3.6 Base Generator Fleet and Storage Fleet

We determine the capacity of the base generator fleet for ISO-NE, CA-ISO, and ERCOT from the

Form EIA-860 from the Energy Information Agency (U. EIA, 2015). To delineate the impact of

interannual variability of renewable energy sources as well as air temperature, we use the active

2019 generator fleet composition in each BA across the time frame of analysis (1980 - 2019), so

that the final ELCC quantification is representative of changes only in availability of wind and solar

resources, and the temperature response of hourly demand.

The interconnection queue data indicated the addition of wind and solar generators in the capacity

range of 50 - 1500-MW for ISO-NE, CA-ISO, and ERCOT. But in chapter 1 we found that with

increasing capacity, ELCC contributions do not proportionally change, as large capacity of a single

renewable energy resource does not benefit the power system, rather diversity does. Thus, while

assessing the interannual variability impacts on the capacity contributions of solar, onshore wind,

and offshore wind generators, we only use the case of new addition of 100-MW generators.

4.3.7 Total Interchange

The total interchange of hourly electricity demand for each of the three BAs in our case study was

roughly 2% of of the hourly electricity demand. Thus, to better isolate the effect of interannual

variability of weather variables on the reliability contributions from new VRE generator additions,

we hold the total interchange exchanges from 2019 constant for all 40 years of study (1980 - 2019)

for the case of all Balancing Authorities considered in this study.
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4.3.8 Metrics

The method described in Section 4.3.5, quantifies ELCC values as % points of capacity contribu-

tions. If we are assessing how reliable a newly added 100-MW offshore wind farm will be towards

meeting unmet hourly demand hours or demand shortfalls, and the estimated the ELCC value to be

30%, it means the new 100-MW onshore wind farm will only effectively contribute 30-MW capacity

towards meeting demand shortfall. ELCC values always range between 0 to 100%, although 100%

capacity contribution from VRE is unrealistic due to intermittent resource availability, and system

down-time, which we factor in as outages.

Furthermore, we are interested in studying the characteristics of the VRE generators from each of

the 40 annual years of capacity contribution profiles (Nyears = 40; 1980 - 2019) for each balancing

authority across its entire footprint. Selecting a single gridded cell to determine the interannual

variability impacts on ELCC values of any VRE generator would explicitly ignore the impact of

geographical diversity of wind and solar resources. As this analysis is aimed to help stakeholders and

planning agents involved with power system capacity expansion planning process, to make informed

decisions about renewable energy investments, it is important to understand which regions within a

BA will contribute optimally to system reliability if a 100-MW VRE generator is constructed there.

Hence, while quantifying the change in ELCCs we also measure the influence spatial heterogeneity

in ELCC values for a specific generator within each BA by repeating the reliability calculations for

each grid cell. Furthermore, for measuring the variability of reliability or ELCC values across all

40 years for each VRE generator type and each BA, we use the metric of Coefficient of Variation

or CV.

CV =
σ

µ
(4.2)

CV (Equation (4.2)) is the normalized form of standard deviation, that is, it is the ratio of the

standard deviation of the variable of interest in a specific period to the variable’s mean value

quantified over that same period. It helps in measuring the spread of the variable of interest

around its mean. It is dimension and unit-less. Hence it is an appropriate metric to understand
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the impact of interannual variability on the reliability contributions (ELCC values) of newly added

VRE generators.

We use the Coefficient of Variation (CV) to understand the distribution of ELCC values around the

mean ELCC across all 40 years, for a particular generator type and BA of interest. Large CV values

indicate greater level of dispersion of ELCC values, which eventually translates to higher degree

of uncertainty in reliability contributions from a particular VRE generator when used in a long-

term power system infrastructure project. Conversely, smaller CV values assert robust capacity

contribution from that generator.

4.4 Results

We analyze each BA separately to isolate the difference in geographic positioning, energy policy

and regulations, as well as consumption patterns, and thus the results are split into five sections.

The first section (Section 4.4.1) broadly describes the statistical measures of ELCC values for

all three generators in each BA. The next three sections, Section 4.4.2, 4.4.3, and 4.4.4 analyzes

the impact of weather IAV on production and demand side of power systems in ISO-NE, CA-

ISO, and ERCOT respectively, by drawing out conclusions based off Coefficient of Variation or

(CVinter) in reliability contributions from solar and wind generators of 100-MW. The fourth section,

Section 4.4.6, discusses how sensitive the reliability contributions are to hourly demand values,

while holding all other variables such as total interchange, renewable energy contributions, base

fleet composition, forced outage rates, etc., constant. This section shows how much weather IAV

affects the power systems and the provides information to understand the significance of peak load

hours in ELCC calculations, and how annual hourly risks (unmet demand hours) influences the

reliability contributions in conjunction with change in weather variables.

We study the spread of reliability contribution from a 100-MW generator across the entire territory

governed by ISO-NE, CA-ISO, and ERCOT. In Chapter 2, we showed wind generators, i.e, offshore

wind and onshore wind generators are subjected to greater variation in ELCC values as wind

capacity factor vary from one gridded location to another. Thus, a single CV estimate for ELCC
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in this paper must be interpreted with caution, as the variability in capacity contributions from a

generator implicitly captures geographical diversity of reliability contributions from wind and solar

generators. To better isolate the geographical diversity in ELCC values, we also analyze the CV

of median ELCCs (CV50) and CV of 99th percentile of ELCCs (CV99) for every case. We focus on

studying the change in 50th and 99th percentile of ELCC values for all renewable energy generator

types and BAs because the 50th percentile (median ELCC) indicates the most favorably occurring

ELCC value across the entire region governed by a particular BA, and 99th percentile indicates the

best or the optimal ELCC value for the generator of interest within the BA’s footprint for a specific

year. Large changes in the 99th percentile of ELCC value will help us understand the impact of

changing climate on maximum reliability contributions from any VRE generator.

4.4.1 Change in absolute reliability benefits of VRE generators

In Table 4.2, we describe the range of year-to-year change in 25th percentile, median (50th per-

centile), 75th percentile, and max ELCC values for 1980 - 2019, obtained for new solar, onshore

wind, and offshore wind generator of 100-MW added to the base fleet of each BA. Comparing the

absolute maximum ELCC % points for ISO-NE, we can conclude that offshore wind generators

will provide more capacity contributions than solar and onshore wind. Solar generators provide the

least reliability benefits for the case of ISO-NE, and this can be attributed to relatively low intensity

solar radiation in the US east coast leading to small solar capacity factors and better alignment of

offshore resource availability to peak demand requirements, which makes offshore wind a favorable

choice. The range of maximum ELCC values for each year between 1980 - 2019 for ISO-NE shows

us a significant difference in onshore wind because contributions because of citing a hypothetical

onshore wind generator Cape Cod, MA. This specific grid cell extends the range of ELCCs. In

reality, Cape Cod being a small peninsular extension of Massachusetts into the Atlantic Ocean,

can be considered an offshore region. But, analyzing the range of median (50th percentile) ELCC

value across 1980 - 2019 for each generator from Table 4.2, it can be concluded that within the

area governed by ISO-NE, the largest variability in absolute ELCC values is seen for the case of

offshore wind generator (7 - 45%), followed by onshore wind (0 - 7%), and then solar (5 - 11%). If

this grid cell describing Cape Cod is ignored, the range of maximum ELCC value from adding a
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new onshore wind generator of 100-MW is limited to 2 - 8%.

Table 4.2: Statistical measures describing the range of year-to-year changes in absolute ELCC
values for each generator within the entire footprint of the three Balancing Authorities across the
40-year study period (1980 - 2019). Note, ELCC values are in % points and are always integers,
but some upper bounds are float type in nature because we subset onshore or offshore area grid
cells whose count result in odd numbers, leading to float values.

Balancing Authority Generator 25th % 50th % 75th % Max

ISO-NE
Onshore 0 - 5 0 - 7 2 - 11 8 - 50

Solar 5 - 10 5 - 11 7 - 11 7 - 13
Offshore 5 - 32.5 7 - 45 9 - 45 11 - 57

CA-ISO
Onshore 0 - 8 3 - 18 10 - 31.25 35 - 77

Solar 2 - 7 3 - 8 5 - 10 7 - 11
Offshore 4 - 49 8 - 66 14 - 74 41 - 80

ERCOT
Onshore 0 - 10 2 - 12.5 5 - 21 13 - 53

Solar 22 - 33 2 - 10 27 - 38 32 - 46
Offshore 0 - 10 25 - 34.5 2 - 17 7 - 27

Similarly, for the case of CA-ISO, the range of ’Max’ ELCC values for each generator indicates

optimal reliability benefits can be extracted from offshore wind farms. Unlike ISO-NE, CA-ISO

has significantly large (5x) solar capacity factors, but the CA-ISO base fleet from 2019 indicated

that it is already saturated with several solar PV plants. As described in Chapter 2, Section 2.3.2,

diversification of generator mix is of utmost necessity to reap the best reliability contributions from

adding more renewable energy generators. Adding a new solar generator of 100-MW to the existing

solar PV plants in the CA-ISO grid would mean generation from these solar PV plants occur during

the same hours. Thus, demand shortfalls during other times of the day will be unmet. Conversely,

offshore wind capacity factors are significantly large throughout all hour of the day, leading to

coincident power production during unmet demand hours. But, like ISO-NE largest variability

due to fluctuations in weather-variable is prominently visible for the reliability contributions from

offshore wind generators.

In ERCOT, inclusion of a 100-MW solar generator leads to largest reliability benefits. The base

fleet of ERCOT already has substantial share of wind power (U. EIA, 2015). Thus, adding more

onshore or offshore wind generators to the base fleet leads to marginal capacity contributions to meet

demand shortfalls, as all wind generators produce electricity concurrently when the intensity of wind

resource is high. In contrast, solar generators have different power production profile throughout
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the day, which makes it an favorable choice for meeting excess demand, when wind resources do

not have adequate intensity to produce power. Thus, the range of median ELCC values across 1980

- 2019 for solar generators is about 5 times greater than onshore wind generators, and 10 times

greater than offshore wind generators. The detailed maps of absolute ELCC values for all three

generators in each balancing authority is available in Appendix B.3, Figures C.1 to C.52.

In order to numerically quantify the variability in ELCC values, we used Coefficient of Variation

metric, and discuss the dispersion of ELCCs for all three VRE generators, across 1980 - 2019 for

each balancing authority in Sections 4.4.2, 4.4.3 and 4.4.4.

4.4.2 Variability of reliability contributions in Independent System Operator

of New England (ISO-NE)

Changing solar and wind resource availability across all 40 years of study, as well as temperature

response of demand showed a pronounced impact on reliability contributions from the addition of

new onshore wind turbines to the base fleet of ISO-NE. As discussed in section 4.4.1, Cape Cod,

Massachusetts shown in Figure 4.1 as gridded cell 41.0 N, -70.625 W, showed the largest onshore

wind farm capacity contribution. We attribute this to larger wind energy potential near the Atlantic

coast.

The spread of ELCC values for a 100-MW onshore wind farm, solar, and offshore wind farm are

shown in Figure 4.2 across all 40 years of studied data. These box plots represent the reliability

contributions of adding the VRE generators listed above to the existing base fleet of generators from

the year 2019 in ISO-NE. Comparing the trends of statistical measures of interannual variability

impacts on reliability benefits of onshore wind generator of 100-MW for all 40 years, we find that

the overall coefficient of variation of ELCC is CVov = 113.9%, the change in median ELCC or CV50

is 53.8%, and CV99 is 38.8%. The difference in CV of overall, 50th percentile, and 99th percentile

ELCC values indicates the importance of isolating the impact of spatial heterogeneity of ELCC

values. CV of overall ELCC values captures the spread of the range of capacity contributions from

a 100-MW onshore wind farm at each gridded location of the MERRA reanalysis dataset describing

the ISO-NE, and thus the year-to-year variability is influenced by including Cape Cod. Removing
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(a) Onshore wind ELCC values for 1980 (b) Onshore wind ELCC values for 2019

Figure 4.1: Geographical diversity of ELCCs of a new 100-MW onshore wind generator included
to the existing base fleet in the area governed by ISO-New England. Gridded cell (41.0 N, -70.625
W) is Cape Cod, a small peninsular region in the state of Massachusetts. This shows the largest
reliability contribution across all 40 years.

this grid cell lowers the CVov of onshore wind to 39.2%.

For 100MW solar generator within ISO-NE, there are modest changes in the capacity contributions

over 40 years, as the CV50 and CV99 value is 16.23% and 12.85%, respectively. This means both 50th

percentile (median) reliability contributions and 99th percentile reliability (largest) contributions

remain moderately small over all years of study. Solar generators have smaller spatial heterogeneity

than onshore wind farms, due to availability of similar solar capacity factors within the footprint of

ISO-NE. Thus, for all 40 years of study (1980 - 2019), comparing all three VRE generators for the

case of ISO-NE against each other from Figure 4.2, we conclude that, reliability benefits offshore

wind generators will witness the largest variability.

4.4.3 Variability of reliability contributions in California Independent System

Operator (CA-ISO)

In Figure 4.3, unlike the case of ISO-NE, we find that land based wind resources in CA-ISO have

relatively larger reliability contributions towards meeting demand shortfalls than ISO-NE.This can

be attributed to larger capacity factors of wind resources in California (Lopez et al., 2021). But,
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(a) capacity contributions of 100-MW onshore wind farm within the ISO-NE footprint

(b) capacity contributions of 100MW solar within the ISO-NE footprint

(c) capacity contributions of 100-MW offshore wind farm within the ISO-NE footprint

Figure 4.2: The impact of IAV of weather variables on ELCC values for a 100-MW VRE generator
in ISO-NE. The onshore wind ELCCs (CVov = 113.84%, CV50 = 53.76%, and CV99 = 38.84%)
showed largest variability across the 40-year timeline followed by offshore wind (CVov = 54.11%,
CV50 = 40.19%, and CV99 = 28.61%). Conversely, variability in solar ELCCs (CVov = 19.93%,
CV50 = 16.22%, and CV99 = 12.85%) was found to be significantly small. Offshore wind generators
will provide the largest reliability contributions for ISO-NE when compared against other VREs.
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within CA-ISO, characterizing the spread of onshore wind ELCC values across multiple years in the

40-year timeline against offshore wind ELCCs using the interquartile ranges (middle 50% ELCCs)

we find robust capacity contributions from offshore generators. The median onshore ELCC value

is approximately 3 times smaller than median offshore ELCC for all 40 years The 50th percentile

of ELCC values for onshore wind vary between 8 - 19%, whereas for offshore wind generators,

the median ELCC across all years vary between approximately 12 -76%. The change in optimal

wind ELCC value that is CV99 of offshore wind and onshore wind is approximately same(16.30%

vs. 16.84%) and significantly smaller than its corresponding CV50 values, implying that if offshore

and onshore wind generators are optimally located within the footprint of CAISO, the effect of

interannual variability of wind capacity factors on reliability contributions will be fairly small.

Solar generators, on the other hand, have a consolidated spread of reliability contributions and

are less sensitive to year-to-year changes in solar capacity factors. Smaller reliability contributions

from solar generators in CA-ISO can be attributed to the characteristics of its base fleet, which is

already saturated with solar generators. Any further addition of solar generator results in marginal

increase in system reliability (thus smaller ELCC values) as all solar PV plants will generate power

during the same periods, leaving demand shortfalls at other hours unsatisfied. Hence, solar ELCC

values have a maximum contribution of 12% across all years.

4.4.4 Variability of reliability contributions in Electricity Reliability Council of

Texas (ERCOT)

In Section 4.4.1, it was found that a new 100-MW solar generator in ERCOT provide 5 times

more median reliability benefits than onshore wind generator of the same nameplate capacity and

offshore wind. The base fleet of ERCOT is saturated with wind generators, resulting in marginal

reliability contributions from addition of any new wind generator (both onshore and offshore).

Figure 4.4 also indicated that the CVov, CV50, and CV99 of ELCC values for the 100-MW solar

generator varied by very small amounts, that is between 37.34%, 25.46%, and 13.63% respectively,

indicating very small variability even with larger reliability contributions. Thus, we can confidently

conclude the solar generators are less sensitive to changes in solar irradiance between the 40-year
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(a) capacity contributions of 100MW onshore wind farm within the CA-ISO footprint

(b) capacity contributions of 100MW solar within the CA-ISO footprint

(c) capacity contributions of 100MW offshore wind farm within the CA-ISO footprint

Figure 4.3: The impact of interannual variability of weather variables on ELCC values for a 100MW
VRE generator, added to the 2019 base fleet of CA-ISO. The onshore wind ELCCs (CVov = 99.48%,
CV50 = 38.89%, and CV99 = 16.30%) showed largest variability across the 40-year timeline followed
by offshore wind (CVov = 68.51%, CV50 = 53%, and CV99 = 16.84%). Conversely, variability in
solar ELCCs (CVov = 37.34%, CV50 = 25.46%, and CV99 = 13.63%) was found to be significantly
small.
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(a) capacity contributions of 100MW onshore wind farm at every gridded location within ERCOT

(b) capacity contributions of 100MW solar generator at every gridded location within ERCOT

(c) capacity contributions of 100MW offshore wind farm at every gridded location within ERCOT

Figure 4.4: Impact of interannual variability of weather variables on ELCC values for a 100MW
VRE generator, added to the 2019 base fleet of ERCOT across all 40 years of study. The onshore
wind ELCCs (CVov = 94.85%, CV50 = 45.38%, and CV99 = 29.05%) showed largest variability
across the 40-year timeline followed by offshore wind (CVov = 72.08%, CV50 = 50.46%, and CV99
= 27.61%). In contrast, variability in solar ELCCs (CVov = 16.29%, CV50 = 8.5%, and CV99 =
7.78%) was found to be considerably small.
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time frame of our study, even when the capacity contribution is large.

Conversely, CV of ELCCs of 100MW onshore wind generators have comparatively large variability

in ERCOT, leading to CVov value of 99.48%, CV50 value of 38.89%, and CV99 value of 16.30%.

This is also true for change in year-to-year ELCC values for offshore wind generator in ERCOT

which had CV values of 72.08%, 50.46%, and 27.61% for CVov, CV50, and CV99, respectively. Thus,

offshore wind generators in ERCOT showed the largest change in reliability benefits across 1980

- 2019 with small capacity contributions, while solar generators had large contributions towards

meeting demand shortfalls with a smaller degree of year-to-year variability.

4.4.5 Comparison across generators

In all three BAs (Figure 4.5), the solar generators indicated smallest changes in reliability contri-

butions across all 40 years of study, even with varying magnitude of ELCCs. For ERCOT, the

50th percentile solar reliability contributions were largest as compared to onshore wind and off-

shore wind, whereas for ISO-NE and CA-ISO reliability contributions from solar generators to meet

excess demand was smallest among other generators. This can be attributed to the difference in

composition of base fleet. ERCOT base fleet is saturated with onshore wind generators, and the

addition of any type of wind generator (onshore or offshore) leads to marginal reliability benefits, as

all wind generators would generate electricity during same hours, leaving unmet demand shortfalls

at other times of the day unattended. But, the 50th percentile solar ELCC value in all three BAs

varied only 8.5% to 26%. In contrast, onshore wind and offshore wind generators showed very large

variability with their median ELCC varying by a factor of greater than 50% (case of ISO-NE and

CA-ISO).

Decomposing the ELCC values spatially. in Figure 4.5, the large spatial distribution of solar ELCC

values in ERCOT can be attributed to the location and size Texas, which receives an abundance of

solar irradiance leading to larger capacity as well. The size of the BAs being studied also plays an

important role in determining the range of ELCC values as more geographically distinct reliability

contributions from generators can be witnessed in BAs which are larger in size as compared to

narrow ranges of ELCC values in each year for small BAs like ISO-NE. In fact, the geographical
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(a) 100MW solar, ERCO
(b) 100MW solar, ISO-NE (c) 100MW solar, CA-ISO

(d) 100MW offshore wind, ER-
COT

(e) 100MW offshore wind, ISO-NE (f) 100MW offshore wind, CA-ISO

Figure 4.5: Spatial heterogeneity of solar and offshore wind ELCC values for the three BAs in 2019.
The geographical footprint of ISO-NE is considerably smaller in size 43% of CA-ISO footprint and
26% of ERCOT footprint, leading to a narrower spread of capacity contribution values for all
generator types across all 40 years.

footprint of ISO-NE is considerably smaller as compared to ERCOT and CA-ISO. Hence, while

broadly comparing ELCCs across balancing authorities for a particular generator type, especially

wind-based generators, care must be taken to understand the limitation on range of ELCC values

for that generator due to differences in size of BAs, which affects the overall distribution of favorable

wind and solar capacity factors.

4.4.6 Validating the change in reliability benefits

In this paper, we leveraged the reconstructed hourly demand proxies by our proposed neural network

architecture (explained in Chapter 3). The neural network model even with robust performance

against traditional multivariate linear regression model could accurately estimate significantly large
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peak demand hours only for some years for our BAs. Since ELCC based reliability benefit calcu-

lations of any VRE generator hinges upon the use of peak load to quantify demand shortfalls and

determine the generator’s capacity contributions, any underestimations of peak load will shift the

ELCC values for that generator. Thus, to check for the robustness of our ELCC estimates, we

validate them using by cross-checking the ELCCs estimated using reconstructed demand proxies to

the ELCCs quantified using observed hourly demand records. We conducted the validation process

by quantifying the difference in coefficient of variation between reconstructed and observed demand

case, and finding the difference in COV overall ELCC values (CVovdiff ), COV of 50th percentile

of ELCC values (CV50diff ), and COV of 99th percentile (CV99diff ) of ELCC values for each VRE

generator within each BA. As observed hourly data for BAs are only available between mid 2015

- 2019, we use the timeline of 2016 - 2019 to validate our estimates. The magnitude of shift in

overall, 50th percentile and 99th percentile of ELCC values from the reconstructed demand case

indicates how robustness our estimates were. It is critical to note that, to isolate the impacts of

demand value while all other inputs (including weather dependent capacity factors for solar and

wind generators, base fleet, temperature dependent forced outage rates, and total interchange) are

held constant.

In all, Figures 4.7, 4.8, and 4.6, indicate that for almost all cases being studied in this paper, the

underestimations of peak demand hours in the reconstructed load profiles lead to undermining of

reliability contributions from solar, offshore wind, and onshore wind generators. But, the general

trends across the effective capacity contributions from different VRE generators for each BA remain

the same. Figure 4.6b, validates our results from section 4.4.4, where we had shown that for the

case of ERCOT, solar generators will have the largest reliability contributions across all forms of

renewable energy generators (median solar ELCC values > median onshore and offshore ELCC

values). This was also true for the case when we replaced reconstructed hourly demand inputs

by observed demand values. In a similar comparison across different BAs for the case of using

reconstructed demand vs. observed demand, we see that the broad trend of capacity contributions

from specific VRE generators remain the same. For example, comparing Figure 4.8c and 4.7c, we

find that larger offshore wind reliability contribution in CA-ISO when compared to ISO-NE remains

true for both reconstructed demand case and observed demand case.
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(a) 100MW onshore generator (b) 100MW solar generator (c) 100MW offshore generator

Figure 4.6: Shift in interquartile range of ELCC values for 100MW VRE generators across all 4
years of available hourly observed demand in ERCOT. We find the difference in CV of ELCCs
while using reconstructed demand against observed demand for onshore wind (CVovdiff = -24.92%,
CV50diff = -1.72%, CV99diff = 16.76%), solar (CVovdiff = 4.44%, CV50diff = 8.66%, CV99diff
= -0.8%), and offshore wind generator (CVovdiff = -32.74%, CV50diff = -17.266%, CV99diff = -
5.77%). The capacity contributions from a 100MW are marginally underestimated even in this
case. Significantly large changes in (CVov for onshore and offshore wind in ERCOT indicates shift
in optimal geographical area for reliability contributions in wind generators. The shift in overall,
50th percentile, and 99th percentile values is greatest for the case of offshore wind generator in
ERCOT.

Figure 4.7b indicates a higher degree of variability in ELCCs of solar generators when observed

hourly demand is used in case of reconstructed hourly demand, with 50th percentile solar ELCC

values being moderately similar to 50th percentile of onshore ELCC values. Moreover, solar gen-

erators in CA-ISO shows largest difference in CV of 99th percentile ELCC (CV99diff = -24.57%)

in comparison to offshore and onshore wind generators. This shows that, in CA-ISO with vary-

ing peak demand, optimal (best) capacity contributions from solar generator will be significantly

affected. Across the 4-year timeline, change in CV of overall ELCC values and 50th percentile

ELCCs is smallest for offshore wind generators (CVovdiff = -0.01%), indicating harmonious effect

of spatial heterogeneity of wind resources in both reconstructed and observed demand case, with

small sensitivity towards peak demand changes (CV99diff = -15.64%).

Figure 4.8c indicates substantial difference in offshore ELCCs derived using reconstructed demand

data and observed demand data, for each year in 2016 to 2019. The median ELCCs for the observed

case is about 2x times greater than in the reconstructed demand case. Solar ELCCs (Figure 4.8b)

also show moderate differences in observed demand vs. reconstructed demand case. Although,

comparing the difference in CV for overall, 50th percentile, and 99th percentile ELCC values for

offshore wind generators, we find that the difference in CV is smallest among other generators.
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(a) 100MW onshore generator (b) 100MW solar generator (c) 100MW offshore generator

Figure 4.7: Shift in interquartile range of ELCC values for 100MW VRE generators across all 4
years of available hourly observed demand in CA-ISO. We find the difference in CV of ELCCs
while using reconstructed demand against observed demand for onshore wind (CVovdiff = -8.2%,
CV50diff = -13.52%, CV99diff = -15.78%), solar (CVovdiff = -2.1%, CV50diff = -7.77%, CV99diff
= -24.57%), and offshore wind generator (CVovdiff = -0.01%, CV50diff = -3.57%, CV99diff = -
15.64%). Negative changes for all three VRE generators indicate that using reconstructed demand,
the capacity contributions from a 100MW are marginally underestimated, but not significantly.
The shift in overall, 50th percentile, and 99th percentile values is greatest for the case of solar
generator in CA-ISO.

(a) 100MW onshore generator (b) 100MW solar generator (c) 100MW offshore generator

Figure 4.8: Shift in interquartile range of ELCC values for 100MW VRE generators across all
4 years of available hourly observed demand in ISO-NE.We find the difference in CV of ELCCs
while using reconstructed demand against observed demand for onshore wind (CVovdiff = -16.01%,
CV50diff = -0.58%, CV99diff = -14.28%), solar (CVovdiff = -23.29%, CV50diff = -15.72%, CV99diff =
-29.99%), and offshore wind generator (CVovdiff = -9.78%, CV50diff = -5.53%, CV99diff = -0.05%).
Although the difference in CV seems moderate, difference between median ELCC for offshore wind
generator is very high (19.0% vs. 39% for the case using reconstructed demand vs. observed
demand, respectively). This indicates for the case of ISO-NE, the underestimated peak demand
from reconstruction efforts in chapter 2, significantly undermines the reliability contributions from
offshore wind generators.

The underestimation in peak demand hours in the reconstructed data may have led to suppressed

quantification of capacity contributions, but the ELCC calculator still effectively captures the

normalized trend of interannual variability impacts on the effective reliability contributions from

offshore wind farms.
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Overall, the interquartile range of ELCC estimates for all three type of VRE generators using

reconstructed demand is in agreement with ELCC values quantified using observed demand, holding

all other inputs and weather-related variables, i.e., the renewable energy capacity factors constant.

4.5 Discussions and Future Work

Our study underlines the need for integrating a perspective to analyze long-term reliability trends

while strategizing electricity sector capacity expansion requirements, especially while adding large

VRE generators. Changes in capacity contributions from any new solar or wind energy generator

due to weather variability is imminent, and will be further exacerbated due to climate change.

Thus, to mitigate any operational challenges in future, we need to combine long-term power system

planning with variability in spatial and temporal representation of solar radiation, wind speed,

and temperature variables. By combining weather-driven variability in the planning process, by

appropriately approximating the supply and demand side changes for several decades, planning

agents and researchers will be able to create a robust renewable energy driven grid system.

Our choice of using the probabilistic Effective Load Carrying Capability method, to determine

the system reliability for each of the 40 years for multiple renewable energy sources, enables us

to capture granular level hourly variability in wind and solar resources across different locations,

whilst also accounting for temperature driven forced outage rates in the base fleet of conventional

generators, total exchange/interchange of hourly electricity, and weather-driven demand changes.

The key insight here for national policymakers attempting to understand ways to achieve long-term

decarbonization pathway is that solar generators are significantly robust to inter-annual variability

impacts in ISO-NE, CAISO, and ERCOT, but reliability contributions of solar generators is large

only in the case of ERCOT. For other two BAs, offshore wind will provide significantly larger

reliability contribution (this is in alignment with our findings from Chapter 1), but is subjected to

larger inter-annual variability impacts.

But there are several pitfalls in our framework and modeling approach. First, in section 4.4.6, we

showed that the reconstructed demand used in determining effective capacity contributions from
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solar, onshore wind, and offshore wind generators are not perfect. Rather, they are approximations

or proxies of weather-driven hourly demand. These proxies underestimate the actual peak demand

requirements, leading to smaller number of hourly risks, and eventually lower ELCC values or

reliability contributions from any VRE generators. To better estimate the effect of interannual

variability on capacity contributions, a robust form of demand reconstructions considering weather

zones (as described in chapter 2 discussions) is necessary. Moreover, the demand reconstructions

were hinged on temperature response from a single gridded cell (largest population center in the BA

of interest) which neglects the full range of possible temperature changes across the geographical

footprint of a BA. Using reconstructions of robust weather-zone normalized hourly demand could

potentially offset any bias introduced in our analysis.

Second, we estimate wind farm capacity contributions using a limited set of turbines described

in System Advisor Model 2020. Specifically, the offshore reliability contributions is hinged on the

characteristics (hub height, and turbine blade size) of a single Senvion 6.2MW turbine. As the

research and development process is expanded to strategize ways to deploy larger offshore wind

turbines, the ELCC values for these wind turbines will be different. Although re-estimating the

ELCC values is possible using the methods proposed in this paper, with minimal changes to the

python ELCC calculator.

Last, we only analyze the case of ISO-NE, CA-ISO, and ERCOT in this paper. But with enough

computing resources, the same models and framework could be expanded to all BAs of the US, to

comprehensively determine the change in reliability contributions of new solar and wind generators.

A large-scale analysis of the entire contiguous US will help stakeholders make informed decisions

about national energy security policies.

Moreover, our analysis fails to take into account detailed inter-regional electricity transfer from

adjacent Independent System Operators to provide necessary exchanges and satisfy demand short-

falls because we held total interchange of electricity constant from 2019. This when addressed will

further perturb the ELCC estimations especially for the case of CAISO, which is a part of the

Western Interconnect. An improvement to this analysis could be based on predicting historical

total interchange of electricity for all 40 years of study by using an auto-correlation based time
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series model like ARIMA and also finding the dependency of electricity exchanges on temperature

changes. Moreover, a detailed analysis considering economic factors may also indicate if it in-

creasing dependency on interchanged electricity during times of highly unreliable renewable energy

generation better than investing in storage and its associated inefficiencies.

Furthermore, we hold the base fleet of generators constant from 2019 and evaluate the change in

reliability benefits from a single VRE generator added to the fleet. But in reality, over 40 years,

multiple renewable energy generators could be added to the base fleet. To make the quantification

of change in reliability benefits from addition of VRE generators more comprehensive, this study

could be extended to include scenarios wherein VRE generators are added incrementally at regular

intervals (after 10 years). This will also help stakeholders understand dynamic change in reliability

benefits from adding multiple VRE generators and possibly diverse generators to the base fleet at

different intervals in time.

In spite of all the listed caveats, this paper robustly captures the granular details of reliability

contributions from offshore, onshore, and solar generators against impacts induced by changing

weather variables.
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Chapter 5

Conclusions and Future Work

97



5.1 Summary

Power system planning agents, researchers, and scholars are actively seeking ways to understand

the challenges associated with integrating more renewable energy into the grid, while striving

to maintain the system reliability. As anthropogenic activities continue to increase greenhouse

gases (GHGs), the impacts from climate change on society and the environment will increase. As

the world decarbonizes its electricity system, the variability and characteristics of atmospheric

conditions such as temperature, solar radiation, and wind speed will make integration of solar,

onshore wind energy, and offshore wind energy introduces new challenges.

The objective of this dissertation was to assess the reliability contributions from adding new vari-

able renewable energy generators to the US grid, under various scenarios that comprehensively

characterize multiple sources of uncertainty related to weather related interannual variability as

well as regulations pertaining to energy transition pathways. Renewable energy sources like solar

and wind energy are a critical tool to decarbonize the power system, and mitigate climate change

impacts. But, due to their variability, complete reliance on using only these energy sources to access

electricity at all hours of the day is challenging. Thus, there was a need to understand how old,

carbon-intensive conventional generating capacity can be replaced by adding new clean sources of

energy without compromising system reliability. This objective was achieved by analyzing the ca-

pacity contributions from solar, onshore wind, and offshore wind energy generators under different

pathways to achieve increasing levels of decarbonization, reconstructing proxies of weather-driven

changes in hourly demand for a multidecadal time frame to mitigate any limitations in reliability

based studies due to lack of publicly available load records, and using these proxies of hourly de-

mand (as a response to changing temperature) along with variable hourly wind speed, and solar

radiation data to estimate probabilistic reliability contributions from the VREs across three large

balancing authorities in the US.

Chapter 2 presented the characterization of variable renewable energy generators that will be added

in the state of New York, and its adjacent offshore area. Multiple energy transition scenarios for the

base generator fleet were developed by carefully considering the federal and state renewable energy

integration targets as well as details from the Renewable Portfolio Standards (Megan Cleveland,
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2021) to determine appropriate capacity expansion plans using renewable energy and natural gas

resources for the next decade. We found that, broadly, based on the standards and state mandates,

for New York, five different energy scenarios can plausibly characterize the range of futures. These

were the Reference Case scenario representing business as usual grid composition in 2019, High So-

lar, High Onshore Wind, High Offshore Wind, and High Natural Gas scenarios illustrating changes

in future grid composition in New York state. We then deployed the probabilistic ’Effective Load

Carrying Capability’ method to estimate the capacity contributions from including additional solar,

onshore wind, and offshore wind generators of varying capacity levels (50 - 2000MW) to each of

the base fleet scenarios described above, and found that across all scenarios, and generator capac-

ity differences, offshore wind energy is the most reliable resource towards meeting excess demand

requirements in the next decade. Even though ELCC values for offshore wind generators across all

plausible energy transition scenarios have a significantly large distribution (5 - 64%), the median

reliability benefits from adding offshore wind generators is 20x greater than solar generators of

equivalent nameplate capacities.

While Chapter 2 presented a comprehensive representation of reliability benefits from adding more

offshore wind energy into the grid of New York state (governed by the Independent System Operator

of New York), the analysis was based on several assumptions. First, we held hourly demand from

2019 constant for all scenarios, but in the future, electricity demand consumption patterns will

change due to population growth, energy policies, and climate change. These changes will modify

peak demand, which in turn will vary hourly risks, ultimately affecting the ELCC values or capacity

contributions from new generators. Second, while we accounted for total interchange or exchange

of electricity between Balancing Authorities, we ignored the impacts from any transmission-related

outages.

In Chapter 3, we underscored the need of multidecadal hourly demand data to accurately conduct

power system reliability studies. Balancing authorities within the North American region (US &

Canada) report hourly demand data only for the past five years, which limits accessibility to high-

frequency hourly demand data required for conducting long-term reliability assessment of the grid.

Broad assumptions are made to study multidecadal power system reliability, which introduces a

higher-degree of uncertainty in the reliability estimates. Thus, to fill this research gap, in Chapter
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3, we reconstructed 40 years of temperature-driven hourly demand proxies for a subset of Balancing

Authorities (40 out of a total of 66) in the US. This reconstruction was achieved by using a robust

deep learning model, which had the ability to learn long-term dependencies between sequential

input, while being generalizable to create demand proxies for all BAs. The subset of Balancing

Authorities were chosen after carefully checking the relationship between temperature and observed

demand (also used for training) in each one. The 20 largest temperature-driven demand proxies

in each year of reconstruction (between 1980 - 2019) enabled us to carefully examine and deter-

mine which Balancing Authorities were significantly susceptible to changes in weather. Among

the largest Balancing Authorities, the Midcontinent Independent System Operator (MISO), Elec-

tricity Reliability Council of Texas, California Independent System Operator (CA-ISO), Southern

Company Services, Inc. - Trans (SOCO), New York Independent System Operator (NY-ISO), and

Independent System Operator of New England (ISO-NE), showed the largest variability in recon-

structed temperature-driven demand proxies with coefficient of variation values of about 15% .

Even though BAs of moderate and smaller sizes like the Arizona Public Service Company (AZPS),

Nevada Power Company (NEVP), Salt River Project Agricultural Improvement and Power District

(SRP), etc. showed greater variability in their 20 largest reconstructed demand records (coefficient

of variation of about 30%) as compared to large sized BAs, the latter subset, including ERCOT and

SOCO govern geographically diverse areas, and even small variations in peak demand requirements

imply that the overall system is at greater risk to temperature changes. Thus, the scale of social

impact due to power outages will be large in these BAs will be large.

However, validating the reconstructed temperature-driven hourly electricity demand proxies derived

from the LSTM and Piecewise Linear Regression (PLR) models against the observed 20 largest peak

demand for all Balancing Authorities (except for NEVP, AZPS, PJM, & NYISO) between 2015

- 2019, showed that both LSTM and PLR models underestimate the peak demand hours or the

’anomalous’ demand requirements. We term the largest demand as anomalous as the underlying

pattern in these demand outliers are not accurately captured by most machine and deep learning

models leading to underestimated peak demand estimates. Comparatively the PLR model under-

estimates the proxies by a greater degree (500%) than the LSTM model. But the approximations

of temperature-driven hourly demand in each BA is still useful to determine the relative sensitivity
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to interannual variability of weather, and determine which Balancing Authorities require additional

climate change resiliency strategies.

Finally, in Chapter 4, large uncertainties surrounding the availability of solar and wind resources

in geographically diverse locations, and its impact on grid reliability under significant renewable

energy penetration, was quantified for a multidecadal time frame. The variability in solar and

wind energy was combined with synchronously changing variability in temperature-driven hourly

demand, to estimate probabilistic capacity credit of newly added solar, onshore wind, and offshore

wind generators in three systematically different Balancing Authorities. The probabilistic reliabil-

ity assessment was based on determining the Effective Load Carrying Capability of the generator

of interest. The change in ELCC values from the same generator across 40 years (1980 - 2019) was

estimated using the coefficient of variation metric while holding other exogenous variables, such as

the grid composition (or base fleet composition), total amount of electricity interchange, and size of

generator constant across all years. Only weather-dependent variables, that is, the capacity factors

from solar and wind generators of 100 MW, the temperature-driven demand proxies from Chapter

3, and temperature-driven forced outages varied between the years, which helped in isolating the

weather-related impacts from technological and social impacts on reliability contributions.For the

case of CA-ISO and ISO-NE offshore wind generators provided the greatest reliability benefits to-

wards meeting excess demand (20x and 5x greater than solar and onshore wind resources), while for

ERCOT region solar ELCC values were 9x greater than onshore wind and offshore wind generators.

Overall, the study also indicated wind generators on an average will be impacted more (coefficient

of variation of reliability benefits from offshore wind generators on average was 38%) by interannual

variability impacts on supply and demand side than solar resources.

However, since this study was based on the proxied temperature-driven demand values, the median

ELCC values for offshore wind generator in ISO-NE, and solar generators in CA-ISO and ISO-NE

were somewhat underestimated when validated against ELCC values derived using observed data

(Chapter 4, section 4.4.6). A detailed analysis around the use of normalized weather zone based

temperature values to reconstruct the demand proxies may result in better estimates, as in Chapter

3, we had implicitly assumed homogeneous temperature across the entire footprint of a Balancing

Authority, and used a single gridded cell to extract temperature.
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5.2 Policy Implications

The results in this dissertation provide strong evidence for the need to assess the effective relia-

bility benefits by including various types of renewable energy generators under multiple scenarios.

Robust power system infrastructure should be built without comprising on system reliability while

simultaneously managing the combined effects of temperature-driven hourly demand variability and

renewable energy intermittency. Results from Chapter 2 indicated the need to include capacity ex-

pansion plans that encourage more offshore wind energy production in New York while cautioning

policymakers to understand the necessity of grid diversification using different renewable energy

generators. The inclusion of multiple reliable renewable energy generators on the grid helps to ad-

dress social costs associated with power outages and aids economic development by creating more

employment opportunities. Furthermore, even with large spatial heterogeneity in reliability esti-

mates, the capacity contributions from offshore wind energy generators are dependent on the siting

process. These generators will significantly increase system reliability under the energy transition

pathway adopted through 2030.

Planning agents and policymakers require reliable information for system adequacy studies and the

reconstructed electricity demand proxies in Chapter 3 satiates the need for appropriate data sources

to study power systems comprehensively. Moreover, analysis of the reconstructed temperature-

driven load proxies will help grid planners recognize which balancing authorities require additional

support to mitigate impacts due to varying temperatures and help them strategize like Demand

Response and Peak Shaving. Utility companies and grid managers could leverage the multidecadal

hourly reconstructed demand proxies to study the effect of integrating variable generation such as

solar and wind energy farms and electric vehicles to a grid that is already sensitive to temperature

changes. This analysis can aid in making informed investment decisions to tackle climate change, as

anthropogenic factors will make the temperature even more variable, leading to more fluctuations

in peak demand requirements in certain balancing authorities.

Lastly, Chapter 4 implied that the direction of renewable energy integration should not be ho-

mogeneous. Different regions in the US are impacted differently due to interannual variability of

solar radiation, wind speed and temperature-driven demand. While power systems in CA-ISO and
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ISO-NE will greatly benefit from the inclusion of offshore wind energy, ERCOT should include

more solar energy as it has a substantial number of wind energy generators. Overall, capacity

contributions from solar PV plants is less likely to be impacted due to interannual variability of the

solar irradiance, as compared to offshore wind. But reliability benefits from offshore wind genera-

tors on both the east and west coast even with large interannual variability impacts is very large.

Thus, federal agencies could aid in the process of renewable energy integration by providing more

subsidies to wind power projects on the east and west coast, and for solar power projects in Texas.

5.3 Future Work

Limitations with the study presented in this thesis can be dealt by further studying the following

aspects:

1. The analysis from Chapter 2 can be improved to include demand records representative of

year 2030. We held demand from 2019 to be constant to avoid incorporating uncertainty

in demand records by forecasting them from 2019. As population grows, energy efficiency

measures changes, and policies surrounding grid management are altered, the demand would

change, leading to different peak loads and demand shortfalls, eventually changing the ELCC

estimates of future solar, onshore wind, and offshore wind generators added to the base fleet

of NY-ISO.

2. The reconstructed demand proxies in Chapter 3 were based on the broad assumption that

temperature within BAs (both large and small) remain constant throughout the footprint of

the balancing authority. This assumption may hold for BAs covering smaller regions within

certain states, but for larger BAs like PJM, Midcontinent Independent System Operator

(MISO), Independent System Operator of New England (ISO-NE), Southwest Power Pool

(SWPP), etc., which governs multiple states and are spread across geographical areas cov-

ering hundreds of square miles, a single temperature value which drives changes in hourly

demand is not appropriate. Weather-zone differentiated temperature records should be used

to create reconstructed demand proxies rather than hinging on temperature records from a
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single gridded cell representative of the largest population center in a BA.

3. Lastly, in Chapter 4, we assumed a constant base fleet of generators for all 40 years of

analysis between 1980 - 2019, over which our renewable generator of interest was added. In

a real world scenario, the addition of VRE generators will be dynamic as multiple renewable

energy generators could be added incrementally in different points of time during the 40-

year timeline. Thus, the analysis can be improved by including scenarios of base fleet of

generators representative of future energy transition pathways to better understand dynamic

change in reliability benefits from new renewable energy generators as base fleet composition

also changes, while also including multiple renewable energy generators at different intervals.

5.4 Data Contributions and Code

We created 4 decades of temperature-driven hourly demand proxies from research conducted in

Chapter 3 for 40 of 66 Balancing Authorities of the US. These 40 BAs showed a definite temperature-

load relationship and the estimated demand proxies can be considered reliable. Moreover, the code

used in Chapter 2, 3, and 4 is open source. All datasets that have been generated (reconstructed

demand proxies from Chapter 3), along with detailed python scripts and corresponding Readme

is available on https://github.com/reshmighosh/Data-driven-stochastic-reliability-benefit-analysis

(Github).
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Appendix A: Appendix supporting

Chapter 2

A.1 Forced Outage Rates

Forced Outage Rate (FOR) is the probability that a dispatchable or conventional generator will not

be operable and will be incapable of contributing towards fleet capacity due to equipment failure

or unexpected maintenance. FORs are dependent on generator technology type, age, ambient

temperature. The value of FORs for conventional generators are derived from Murphy, Sowell, and

Apt, 2019. The temperature used in this paper is between -15°C to 35°C (inclusive) in increments

of 5°C. To determine the FOR of each type of conventional generator incorporated from EIA

860, 2019 and interconnection queue, we us gridded hourly temperature from MERRA dataset

and the generator technology. Broadly, Murphy, Sowell, and Apt, 2019 classifies the conventional

generators in six different categories, i.e., combined cycle gas, simple cycle gas, diesel, hydroelectric

pumped storage, nuclear, and steam turbine. After classifying the EIA 860 generator data into

these categories, we first obtain the hourly temperature per generator location within the state of

New York, and then assign the FOR dependent on technology and temperature to each generator

whilst grouping the temperature values into the 5°C bins. Table A.1 describes the temperature

dependent FORs used for conventional generator technologies.

On the other hand, renewable energy generators are also known to become inoperable at cer-

tain times of the year, but unlike conventional generators whose operation is highly influenced
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Table A.1: Table describing the temperature dependent FORs for six conventional generator types,
where CC refers to combined cycle, NG is the simple gas cylce, DS refers to diesel based generators,
HS is hydroelectric pumped storage, NU is nuclear, and ST refers to steam turbines.

Temperature in °C CC NG DS HS NU ST

-15 14.9% 19.9% 21.2% 7% 1.9% 13.3%
-10 8.1% 9.9% 17.0% 4.3% 1.8% 11.2%
-5 4.8% 5.1% 13.7% 3.2% 1.7% 9.9%
0 3.3% 3.1% 11.6% 2.7% 1.8% 9.1%
5 2.7% 2.4% 10.6% 2.6% 1.8& 8.6%
10 2.5% 2.2% 10.2% 2.6% 1.9% 8.2%
15 2.8% 2.4% 10.4% 2.7% 2.1% 8.4%
20 3.5% 2.7% 13.6% 2.7% 2.7% 8.6%
25 3.5% 3.1% 13.5% 2.5% 3.7% 9.4%
30 4.1% 3.9% 14.3% 2.9% 6.6% 11.4%
35 7.2% 6.6% 17.5% 8.2% 12.4% 14.0%

Unconditional forced outage rates for all 3.3% 2.8% 10.9% 2.4% 2.6% 9.4%

by temperature, renewable energy generators face outages mostly due to unexpected maintenance

requirements. Thus, we assign a fixed FOR of 5% to offshore wind, onshore wind, and solar PV

generators.

A.2 ELCC Maps

For each gridded data point within the MERRA atmospheric dataset for the region governed by NY-

ISO, we found the ELCC of adding future VRE generators on top of diversified base fleets (based

on 2030 energy transition scenarios) and generated maps. These maps are helpful in recognizing

the spatial pattern of ELCC values for different VRE generators (represented as a consolidated

form of box plot distribution in the main paper). Below we show the distribution of ELCC values

for all scenarios and for each nameplate capacity, in the order:

1. Current Scenario

2. High Offshore wind Scenario

3. High Onshore wind Scenario

4. High Solar Scenario

106



5. High Natural Gas scenario

The maps presented in Figure A.2 - Figure A.15 show the spatial distribution of ELCC values

of new solar, offshore wind, and onshore wind generators under five scenarios representative of

energy transition pathways through 2030. The spatial heterogeneity associated with ELCC values

is driven by capacity factors of solar and wind resources. Areas surrounding the Great Lakes region

have larger wind potential leading to significant reliability benefits from onshore wind generators.

Similarly, some areas in the offshore area adjacent to New York have larger capacity factors leading

to better ELCC values ( 64% In Reference Case) than others. Conversely, solar capacity factors

are have more homogeneous spatial distribution but smaller capacity contributions. In all, it is

generators with higher ELCC values but we greater spatial heterogeneity is preferred over generators

with smaller ELCC values and more homogeneous distribution.
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(a) 50MW solar PV generator (b) 100MW solar PV generator

(c) 250MW solar PV generator (d) 500MW solar PV generator

(e) 1000MW solar PV generator (f) 2000MW solar PV generator

Figure A.1: Geographical distribution of ELCC values for solar generators over the current base
fleet (Reference Case)
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(a) 50MW offshore wind generator (b) 100MW offshore wind generator

(c) 250MW offshore wind generator (d) 500MW offshore wind generator

(e) 1000MW offshore wind generator (f) 2000MW offshore wind generator

Figure A.2: Geographical distribution of ELCC values for offshore wind generators over the current
base fleet (Reference Case).
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(a) 50MW onshore wind generator (b) 100MW onshore wind generator

(c) 250MW onshore wind generator (d) 500MW onshore wind generator

(e) 1000MW onshore wind generator (f) 2000MW onshore wind generator

Figure A.3: Geographical distribution of ELCC values for onshore wind generators over the current
base fleet (Reference Case).
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(a) 50MW solar PV generator (b) 100MW solar PV generator

(c) 250MW solar PV generator (d) 500MW solar PV generator

(e) 1000MW solar PV generator (f) 2000MW solar PV generator

Figure A.4: Geographical distribution of ELCC values for solar generators over a base fleet repre-
senting High Offshore scenario
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(a) 50MW offshore wind generator (b) 100MW offshore wind generator

(c) 250MW offshore wind generator (d) 500MW offshore wind generator

(e) 1000MW offshore wind generator (f) 2000MW offshore wind generator

Figure A.5: Geographical distribution of ELCC values for offshore wind generators over a base fleet
representing High Offshore scenario
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(a) 50MW onshore wind generator (b) 100MW onshore wind generator

(c) 250MW onshore wind generator (d) 500MW onshore wind generator

(e) 1000MW onshore wind generator (f) 2000MW onshore wind generator

Figure A.6: Geographical distribution of ELCC values for onshore wind generators over a base fleet
representing High Offshore scenario
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(a) 50MW solar PV generator (b) 100MW solar PV generator

(c) 250MW solar PV generator (d) 500MW solar PV generator

(e) 1000MW solar PV generator (f) 2000MW solar PV generator

Figure A.7: Geographical distribution of ELCC values for solar generators over a base fleet repre-
senting High Onshore scenario
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(a) 50MW offshore wind generator (b) 100MW offshore wind generator

(c) 250MW offshore wind generator (d) 500MW offshore wind generator

(e) 1000MW offshore wind generator (f) 2000MW offshore wind generator

Figure A.8: Geographical distribution of ELCC values for offshore wind generators over a base fleet
representing High Onshore scenario
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(a) 50MW onshore wind generator (b) 100MW onshore wind generator

(c) 250MW onshore wind generator (d) 500MW onshore wind generator

(e) 1000MW onshore wind generator (f) 2000MW onshore wind generator

Figure A.9: Geographical distribution of ELCC values for onshore wind generators over a base fleet
representing High Onshore scenario
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(a) 50MW solar PV generator (b) 100MW solar PV generator

(c) 250MW solar PV generator (d) 500MW solar PV generator

(e) 1000MW solar PV generator (f) 2000MW solar PV generator

Figure A.10: Geographical distribution of ELCC values for solar generators over a base fleet rep-
resenting the High Solar scenario.
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(a) 50MW offshore wind generator (b) 100MW offshore wind generator

(c) 250MW offshore wind generator (d) 500MW offshore wind generator

(e) 1000MW offshore wind generator (f) 2000MW offshore wind generator

Figure A.11: Geographical distribution of ELCC values for offshore wind generators over a base
fleet representing the High Solar scenario.
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(a) 50MW onshore wind generator (b) 100MW onshore wind generator

(c) 250MW onshore wind generator (d) 500MW onshore wind generator

(e) 1000MW onshore wind generator (f) 2000MW onshore wind generator

Figure A.12: Geographical distribution of ELCC values for onshore wind generators over a base
fleet representing the High Solar scenario.
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(a) 50MW solar PV generator (b) 100MW solar PV generator

(c) 250MW solar PV generator (d) 500MW solar PV generator

(e) 1000MW solar PV generator (f) 2000MW solar PV generator

Figure A.13: Geographical distribution of ELCC values for solar generators over a base fleet rep-
resenting the High Natural Gas scenario.
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(a) 50MW offshore wind generator (b) 100MW offshore wind generator

(c) 250MW offshore wind generator (d) 500MW offshore wind generator

(e) 1000MW offshore wind generator (f) 2000MW offshore wind generator

Figure A.14: Geographical distribution of ELCC values for offshore wind generators over a base
fleet representing the High Natural Gas scenario.
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(a) 50MW onshore wind generator (b) 100MW onshore wind generator

(c) 250MW onshore wind generator (d) 500MW onshore wind generator

(e) 1000MW onshore wind generator (f) 2000MW onshore wind generator

Figure A.15: Geographical distribution of ELCC values for onshore wind generators over a base
fleet representing the High Natural Gas scenario.

122



Appendix B: Appendix supporting

Chapter 3

B.1 Balancing Authority acronyms

The following table denotes Balancing Authority acronyms, their full names, and the state of the

largest population center, whose coordinates we used to extract hourly temperature from MERRA

database. Note, that some of these BAs are not just utilities, but large Independent System

Operators (ISOs) governing multiple states. These 7 ISOs/BAs are:

1. California ISO (CISO), governing the state of CA.

2. New York ISO (NYIS), governing the state of NY.

3. ISO - New England, governing the states of MA, CT, RI, VT, NH, & ME.

4. Electricity Reliability Council of Texas, governing the state of TX.

5. Midcontinent ISO (MISO), governing parts of the states of AR, IL, IN, IA, LA, KY, MI, MN,

MS, MO, ND, SD, TX, and WI)

6. Southwest Power Pool (SPP), governing parts of the states of AR, IA, KS, LA, MN, MO,

MT, NE, NM, ND, SD, OK, TX, WY, and also provides contract services to parts of AZ,

CO, and UT.
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7. PJM governing the states of PA, MD, and NJ, and parts of DE, IL, IN, KY, NC, OH, TN,

VA, WV, and DC.

Note, in total, North America has 9 ISOs, out of which 7 ISOs participate in managing the electricity

requirements of the US, and the other two govern multiple regions in Canada.

Table B.1: Balancing Authorities in the US; their full names and their corresponding acronyms
that is used in main paper

Code Name State

AEC PowerSouth Energy Cooperative AL

AECI Associated Electric Cooperative, Inc. MO

AVA Avista Corporation WA

AZPS Arizona Public Service Company AZ

BANC Balancing Authority of Northern California CA

BPAT Bonneville Power Administration OR

CHPD Public Utility District No. 1 of Chelan County WA

CISO California Independent System Operator CA

CPLE Duke Energy Progress East NC

CPLW Duke Energy Progress West NC

DOPD PUD No. 1 of Douglas County WA

DUK Duke Energy Carolinas NC

ERCO Electric Reliability Council of Texas, Inc. TX

FMPP Florida Municipal Power Pool FL

FPC Duke Energy Florida, Inc. FL

FPL Florida Power & Light Co. FL

GCPD Public Utility District No. 2 of Grant County, Washington WA

GVL Gainesville Regional Utilities FL

HST City of Homestead FL

IID Imperial Irrigation District CA

IPCO Idaho Power Company ID
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ISNE ISO New England MA

JEA JEA FL

LDWP Los Angeles Department of Water and Power CA

LGEE Louisville Gas and Electric Company and Kentucky Utilities Com-

pany

KY

MISO Midcontinent Independent System Operator, Inc. IN, IL,

NEVP Nevada Power Company NV

NSB Utilities Commission of New Smyrna Beach FL

NWMT NorthWestern Corporation MT

NYIS New York Independent System Operator NY

PACE PacifiCorp East OR

PACW PacifiCorp West OR

PGE Portland General Electric Company OR

PJM PJM Interconnection, LLC PA

PNM Public Service Company of New Mexico NM

PSCO Public Service Company of Colorado CO

PSEI Puget Sound Energy, Inc. WA

SC South Carolina Public Service Authority SC

SCEG South Carolina Electric & Gas Company SC

SCL Seattle City Light WA

SOCO Southern Company Services, Inc. - Trans GA

SRP Salt River Project Agricultural Improvement and Power District AZ

SWPP Southwest Power Pool AR

TAL City of Tallahassee FL

TEC Tampa Electric Company FL

TEPC Tucson Electric Power AZ

TIDC Turlock Irrigation District CA

TPWR City of Tacoma, Department of Public Utilities, Light Division WA
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TVA Tennessee Valley Authority TN

WACM Western Area Power Administration - Rocky Mountain Region CO

WALC Western Area Power Administration - Desert Southwest Region AZ

WAUW Western Area Power Administration - Upper Great Plains West MT

B.2 Model Validation

The model validation process included testing both Piecewise Linear Regression (PLR) and LSTM

model on the validation set while testing several model hyper-parameters for each of the 53 BAs.

Our aim was to calibrate both models to achieve best performance on three evaluation metrics

described in the main text, i.e., the Root Mean Squared Error (RMSE) value, the adjusted Co-

efficient of Determination or R2 value, and the Mean Absolute Percentage Error (MAPE) value,

while ensuring that the selected hyper-parameters lead to maximum generalizability in all BAs.

The challenge in this technique is to carefully understand the trade-off between choosing the best

hyper-parameters for a single BA vs. choosing hyper-parameters that lead to optimal performance

of our models for all BAs.

The hyper-parameters that were tuned during this process were the temperature bins in the Piece-

wise Linear Regression model, which helps in preserving the continuity between break-points of the

estimated mathematical function and thus helps in capturing the non-linear relationship between

temperature and electricity demand. These bins were determined by plotting the distribution of

temperature data to understand how it changed. Different bin sizes were tested to derive a gener-

alized form that is applicable to all BAs. The selected temperature bins were:

• < 0

• 0 - 5

• 5 - 10

• 10 - 15
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Hyper-parameter type Value
Number of stacked layers 2
Learning Rate 0.009
Epochs 2500
Optimizer Adam
Dropout probability 0.2
Time taken per epoch 143 sec

Table B.2: Optimal Hyper-parameters chosen for the LSTM model architecture

• 15 - 20

• 20 - 30

• 30 - 45

• > 45

On the other hand, for the LSTM network had more number of hyper-parameters involved due to

its considerable depth and network width. Several We changed the number of stacked LSTM layers

between 2 to 4, and analyzed the performance against the validation set to arrive at the optimal

number of stacked LSTM layers, i.e. 2. Furthermore, we also experimented with regularization

techniques, such as Dropout (Srivastava et al., 2014), i.e., ’dropping’ or ignoring some neurons at

random during the training phase. We experimented with dropout values between 0 - 0.5. We

also experimented with Stochastic Gradient Descent and Adam optimizers while changing the total

number of epochs. Validating our results for the several hyper-parameters using our validation set,

we arrived at the optimal set (Table B.2).

B.3 Top 20 demand hours for all Balancing Authorities

For both summer and winter peaking systems, the extent of building capacity reserves for reliability

is driven by largest demand hours. In Chapter 3, Figure 3.5, we showed the largest 20 demand

hours plotted for the top 8 Balancing Authorities, ranked in their order of amount of electricity

consumption.
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In Figures B.1, B.2, B.3, and B.4, we show the top twenty demand hours for all other Balancing Au-

thorities (after removing the BAs which did not show a smooth temperature and load relationship;

and also resulted in very low validation performance - Table 4.1).
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(a) AEC (b) AVA

(c) AZPS (d) BANC

(e) BPAT (f) CPLE

(g) CPLW (h) DUK

Figure B.1: Hourly temperature values corresponding to the reconstructed top 20 demand hours
between 1980 - 2019 segregated by months (colored) for BAs of the US.

129



(a) EPE (b) FMPP

(c) FPC (d) GVL

(e) HST (f) IPCO

(g) JEA (h) LDWP

Figure B.2: Hourly demand values corresponding to the reconstructed top 20 demand hours between
1980 - 2019 segregated by months (colored) for BAs of the US.
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(a) LGEE (b) NEVP

(c) NSB (d) PACE

(e) PGE (f) PNM

(g) PSEI (h) SC

Figure B.3: Hourly top 20 demand hours between 1980 - 2019 for Balancing Authorities (in alpha-
betical order) of the US.
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(a) SCEG (b) SCL

(c) SRP (d) TAL

(e) TEC (f) TIDC

Figure B.4: Hourly top 20 demand hours between 1980 - 2019 of Balancing Authorities of the US.
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Appendix C: Appendix supporting

Chapter 4

C.1 ELCC Maps for ISO-NE, CAISO, and ERCOT

The geographical distribution of ELCC values of a 100-MW solar, onshore wind, and offshore wind

generator added to every grid cell (50km x 60km) within the footprint of Independent System

Operator of New England (ISO - NE), California - Independent System Operator (CA- ISO), and

Electricity Reliability Council of Texas (ERCOT) have been shown below for each of the 40 years

of study (1980 - 2019).

Within each year, the spatial heterogeneity in ELCC values is directly driven by the change in

capacity factors of solar and wind resources across the longitudes of the BA, that is if we go farther

away from the shore and up north (across latitudes) the wind capacity factors become larger. Solar

capacity factors within the footprint of ISO-NE and CAISO remain fairly constant, but for the

case of ERCOT, which is larger in size and is also located further south from the other two BAs,

the solar irradiance potential increases. The solar capacity factors, which are larger in magnitude

in Texas region, also changes by relatively larger amount across grid cells as compared to ISO-NE

and CAISO.
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(a) ELCC value of 100-MW solar generator in 1980 (b) ELCC value of 100-MW solar generator in 1981

(c) ELCC value of 100-MW solar generator in 1982 (d) ELCC value of 100-MW solar generator in 1983

(e) ELCC value of 100-MW solar generator in 1985 (f) ELCC value of 100-MW solar generator in 1985

Figure C.1: Geographical distribution of ELCC values between 1980 -1985 for a new 100-MW
offshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC value of 100-MW solar generator in 1986 (b) ELCC value of 100-MW solar generator in 1987

(c) ELCC value of 100-MW solar generator in 1988 (d) ELCC value of 100-MW solar generator in 1989

(e) ELCC value of 100-MW solar generator in 1990 (f) ELCC value of 100-MW solar generator in 1991

Figure C.2: Geographical distribution of ELCC values between 1986 -1991 for a new 100-MW
offshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC value of 100-MW solar generator in 1992 (b) ELCC value of 100-MW solar generator in 1993

(c) ELCC value of 100-MW solar generator in 1994 (d) ELCC value of 100-MW solar generator in 1995

(e) ELCC value of 100-MW solar generator in 1996 (f) ELCC value of 100-MW solar generator in 1997

Figure C.3: Geographical distribution of ELCC values between 1992 -1997 for a new 100-MW
offshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC value of 100-MW solar generator in 1998 (b) ELCC value of 100-MW solar generator in 1999

(c) ELCC value of 100-MW solar generator in 2000 (d) ELCC value of 100-MW solar generator in 2001

(e) ELCC value of 100-MW solar generator in 2002 (f) ELCC value of 100-MW solar generator in 2003

Figure C.4: Geographical distribution of ELCC values between 1998 - 2003 for a new 100-MW
offshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC value of 100-MW solar generator in 2004 (b) ELCC value of 100-MW solar generator in 2005

(c) ELCC value of 100-MW solar generator in 2006 (d) ELCC value of 100-MW solar generator in 2007

(e) ELCC value of 100-MW solar generator in 2008 (f) ELCC value of 100-MW solar generator in 2009

Figure C.5: Geographical distribution of ELCC values between 2004 - 2009 for a new 100-MW
offshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC of 100-MW onshore wind generator, 1980 (b) ELCC of 100-MW onshore wind generator, 1981

(c) ELCC of 100-MW onshore wind generator, 1982 (d) ELCC of 100-MW onshore wind generator, 1983

(e) ELCC of 100-MW onshore wind generator, 1984 (f) ELCC of 100-MW onshore wind generator, 1985

Figure C.6: Geographical distribution of ELCC values between 1980 -1985 for a new 100-MW
onshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC of 100-MW onshore wind generator, 1986 (b) ELCC of 100-MW onshore wind generator, 1987

(c) ELCC of 100-MW onshore wind generator, 1988
(d) ELCC of 100-MW onshore wind generator, 1989

(e) ELCC of 100-MW onshore wind generator, 1990 (f) ELCC of 100-MW onshore wind generator, 1991

Figure C.7: Geographical distribution of ELCC values between 1986 -1991 for a new 100-MW
onshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC of 100-MW onshore wind generator, 1992 (b) ELCC of 100-MW onshore wind generator, 1993

(c) ELCC of 100-MW onshore wind generator, 1994
(d) ELCC of 100-MW onshore wind generator, 1995

(e) ELCC of 100-MW onshore wind generator, 1996 (f) ELCC of 100-MW onshore wind generator, 1997

Figure C.8: Geographical distribution of ELCC values between 1992 -1997 for a new 100-MW
onshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC of 100-MW onshore wind generator, 1998 (b) ELCC of 100-MW onshore wind generator, 1999

(c) ELCC of 100-MW onshore wind generator, 2000
(d) ELCC of 100-MW onshore wind generator, 2001

(e) ELCC of 100-MW onshore wind generator, 2002 (f) ELCC of 100-MW onshore wind generator, 2003

Figure C.9: Geographical distribution of ELCC values between 1998 - 2003 for a new 100-MW
onshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC of 100-MW onshore wind generator, 2004 (b) ELCC of 100-MW onshore wind generator, 2005

(c) ELCC of 100-MW onshore wind generator, 2006 (d) ELCC of 100-MW onshore wind generator, 2007

(e) ELCC of 100-MW onshore wind generator, 2008 (f) ELCC of 100-MW onshore wind generator, 2009

Figure C.10: ELCC values between 2004-2009 for a new 100-MW onshore wind generator added
to the existing base fleet of IS0-New England.
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(a) ELCC of 100-MW onshore wind generator, 2010 (b) ELCC of 100-MW onshore wind generator, 2011

(c) ELCC of 100-MW onshore wind generator, 2012 (d) ELCC of 100-MW onshore wind generator, 2013

(e) ELCC of 100-MW onshore wind generator, 2014 (f) ELCC of 100-MW onshore wind generator, 2015

Figure C.11: ELCC values between 2010 - 2014 for a new 100-MW onshore wind generator added
to the existing base fleet from 2019 of ISNE.
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(a) ELCC of 100-MW onshore wind generator, 2016 (b) ELCC of 100-MW onshore wind generator, 2017

(c) ELCC of 100-MW onshore wind generator, 2018 (d) ELCC of 100-MW onshore wind generator, 2019

Figure C.12: Geographical distribution of ELCC values between 2016 - 2019 for a new 100-MW
onshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC of 100-MW offshore wind generator, 1980 (b) ELCC of 100-MW offshore wind generator, 1981

(c) ELCC of 100-MW offshore wind generator, 1982 (d) ELCC of 100-MW offshore wind generator, 1983

(e) ELCC of 100-MW offshore wind generator, 1984 (f) ELCC of 100-MW offshore wind generator, 1985

Figure C.13: Geographical distribution of ELCC values between 1980 -1985 for a new 100-MW
offshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC of 100-MW offshore wind generator, 1986 (b) ELCC of 100-MW offshore wind generator, 1987

(c) ELCC of 100-MW offshore wind generator, 1988 (d) ELCC of 100-MW offshore wind generator, 1989

(e) ELCC of 100-MW offshore wind generator, 1990 (f) ELCC of 100-MW offshore wind generator, 1991

Figure C.14: Geographical distribution of ELCC values between 1986 -1991 for a new 100-MW
offshore wind generator added to the existing base fleet from 2019 of IS0-New England.

147



(a) ELCC of 100-MW offshore wind generator, 1992 (b) ELCC of 100-MW offshore wind generator, 1993

(c) ELCC of 100-MW offshore wind generator, 1994 (d) ELCC of 100-MW offshore wind generator, 1995

(e) ELCC of 100-MW offshore wind generator, 1996 (f) ELCC of 100-MW offshore wind generator, 1997

Figure C.15: Geographical distribution of ELCC values between 1992 -1997 for a new 100-MW
offshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC of 100-MW offshore wind generator, 1998 (b) ELCC of 100-MW offshore wind generator, 1999

(c) ELCC of 100-MW offshore wind generator, 2000 (d) ELCC of 100-MW offshore wind generator, 2001

(e) ELCC of 100-MW offshore wind generator, 2002 (f) ELCC of 100-MW offshore wind generator, 2003

Figure C.16: Geographical distribution of ELCC values between 1998 - 2003 for a new 100-MW
offshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC of 100-MW offshore wind generator, 2004 (b) ELCC of 100-MW offshore wind generator, 2005

(c) ELCC of 100-MW offshore wind generator, 2006 (d) ELCC of 100-MW offshore wind generator, 2007

(e) ELCC of 100-MW offshore wind generator, 2008 (f) ELCC of 100-MW offshore wind generator, 2009

Figure C.17: Geographical distribution of ELCC values between 2004 - 2009 for a new 100-MW
offshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC of 100-MW offshore wind generator, 2010 (b) ELCC of 100-MW offshore wind generator, 2011

(c) ELCC of 100-MW offshore wind generator, 2012 (d) ELCC of 100-MW offshore wind generator, 2013

(e) ELCC of 100-MW offshore wind generator, 2014 (f) ELCC of 100-MW offshore wind generator, 2015

Figure C.18: Geographical distribution of ELCC values between 2010 - 2014 for a new 100-MW
offshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC of 100-MW offshore wind generator, 2016 (b) ELCC of 100-MW offshore wind generator, 2017

(c) ELCC of 100-MW offshore wind generator, 2018 (d) ELCC of 100-MW offshore wind generator, 2019

Figure C.19: Geographical distribution of ELCC values between 2016 - 2019 for a new 100-MW
offshore wind generator added to the existing base fleet from 2019 of IS0-New England.
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(a) ELCC of 100-MW solar generator, 1980 (b) ELCC of 100-MW solar generator, 1981

(c) ELCC of 100-MW solar generator, 1982 (d) ELCC of 100-MW solar generator, 1983

(e) ELCC of 100-MW solar generator, 1984 (f) ELCC of 100-MW solar generator, 1985

Figure C.20: Geographical distribution of ELCC values between 1980 -1985 for a new 100-MW
solar generator added to the existing base fleet from 2019 of CAISO.
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(a) ELCC of 100-MW solar generator, 1986 (b) ELCC of 100-MW solar generator,1987

(c) ELCC of 100-MW solar generator, 1988 (d) ELCC of 100-MW solar generator, 1989

(e) ELCC of 100-MW solar generator, 1990 (f) ELCC of 100-MW solar generator, 1991

Figure C.21: Geographical distribution of ELCC values between 1986 -1991 for a new 100-MW solar
generator added to the existing base fleet from 2019 of California Independent System Operator.
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(a) ELCC of 100-MW solar generator, 1992 (b) ELCC of 100-MW solar generator, 1993

(c) ELCC of 100-MW solar generator, 1994 (d) ELCC of 100-MW solar generator, 1995

(e) ELCC of 100-MW solar generator, 1996 (f) ELCC of 100-MW solar generator, 1997

Figure C.22: Geographical distribution of ELCCs for a new 100-MW solar generator added to the
existing base fleet of California Independent System Operator between 1992 -1997.
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(a) ELCC of 100-MW solar generator, 1998 (b) ELCC of 100-MW solar generator, 1999

(c) ELCC of 100-MW solar generator, 2000
(d) ELCC of 100-MW solar generator, 2001

(e) ELCC value of 100-MW solar generator in 2002 (f) ELCC of 100-MW solar generator, 2003

Figure C.23: Geographical distribution of ELCCs for a new 100-MW solar generator added to the
existing base fleet of California Independent System Operator between 1998 - 2003.
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(a) ELCC of 100-MW solar generator, 2004 (b) ELCC of 100-MW solar generator, 2005

(c) ELCC of 100-MW solar generator, 2006 (d) ELCC of 100-MW solar generator, 2007

(e) ELCC of 100-MW solar generator, 2008 (f) ELCC of 100-MW solar generator, 2009

Figure C.24: Geographical distribution of ELCCs for a new 100-MW solar generator added to the
existing base fleet of California Independent System Operator between 2004 - 2009.
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(a) ELCC of 100-MW solar generator, 2010 (b) ELCC of 100-MW solar generator, 2011

(c) ELCC of 100-MW solar generator, 2012 (d) ELCC of 100-MW solar generator, 2013

(e) ELCC of 100-MW solar generator, 2014 (f) ELCC of 100-MW solar generator, 2015

Figure C.25: Geographical distribution of ELCCs for a new 100-MW solar generator added to the
existing base fleet of California Independent System Operator between 2010 - 2015.

158



(a) ELCC of 100-MW solar generator, 2016 (b) ELCC of 100-MW solar generator, 2017

(c) ELCC of 100-MW solar generator, 2018 (d) ELCC of 100-MW solar generator, 2019

Figure C.26: Geographical distribution of ELCCs for a new 100-MW solar generator added to the
existing base fleet of California Independent System Operator between 2016 - 2019.

159



(a) ELCC of 100-MW onshore wind generator, 1980 (b) ELCC of 100-MW onshore wind generator, 1981

(c) ELCC of 100-MW onshore wind generator, 1982 (d) ELCC of 100-MW onshore wind generator, 1983

(e) ELCC of 100-MW onshore wind generator, 1984 (f) ELCC of 100-MW onshore wind generator, 1985

Figure C.27: Geographical distribution of ELCCs for a new 100-MW onshore wind generator added
to the existing base fleet of California Independent System Operator between 1980-1985.
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(a) ELCC of 100-MW onshore wind generator, 1986 (b) ELCC of 100-MW onshore wind generator, 1987

(c) ELCC of 100-MW onshore wind generator, 1988 (d) ELCC of 100-MW onshore wind generator, 1989

(e) ELCC of 100-MW onshore wind generator, 1990 (f) ELCC of 100-MW onshore wind generator, 1991

Figure C.28: Geographical distribution of ELCCs for a new 100-MW onshore wind generator added
to the existing base fleet of California Independent System Operator between 1986 -1991.
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(a) ELCC of 100-MW onshore wind generator, 1992 (b) ELCC of 100-MW onshore wind generator, 1993

(c) ELCC of 100-MW onshore wind generator, 1994 (d) ELCC of 100-MW onshore wind generator, 1995

(e) ELCC of 100-MW onshore wind generator, 1996 (f) ELCC of 100-MW onshore wind generator, 1997

Figure C.29: Geographical distribution of ELCCs for a new 100-MW onshore wind generator added
to the existing base fleet of California Independent System Operator between 1992 -1997.

162



(a) ELCC of 100-MW onshore wind generator, 1998 (b) ELCC of 100-MW onshore wind generator, 1999

(c) ELCC of 100-MW onshore wind generator, 2000 (d) ELCC of 100-MW onshore wind generator, 2001

(e) ELCC of 100-MW onshore wind generator, 2002 (f) ELCC of 100-MW onshore wind generator, 2003

Figure C.30: Geographical distribution of ELCCs for a new 100-MW onshore wind generator added
to the existing base fleet of California Independent System Operator between 1998 - 2003.
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(a) ELCC of 100-MW onshore wind generator, 2004
(b) ELCC of 100-MW onshore wind generator, 2005

(c) ELCC of 100-MW onshore wind generator, 2006 (d) ELCC of 100-MW onshore wind generator, 2007

(e) ELCC of 100-MW onshore wind generator, 2008 (f) ELCC of 100-MW onshore wind generator, 2009

Figure C.31: Geographical distribution of ELCCs for a new 100-MW solar generator added to the
existing base fleet of California Independent System Operator between 2004 - 2009.

164



(a) ELCC of 100-MW onshore wind generator, 2010 (b) ELCC of 100-MW onshore wind generator, 2011

(c) ELCC of 100-MW onshore wind generator, 2012 (d) ELCC of 100-MW onshore wind generator, 2013

(e) ELCC of 100-MW onshore wind generator, 2014 (f) ELCC of 100-MW onshore wind generator, 2015

Figure C.32: Geographical distribution of ELCCs for a new 100-MW onshore wind generator added
to the existing base fleet of California Independent System Operator between 2010 - 2015.
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(a) ELCC value of 100-MW onshore wind generator
in 2016

(b) ELCC value of 100-MW solar generator in 2017

(c) ELCC value of 100-MW onshore wind generator
in 2018

(d) ELCC of 100-MW onshore wind generator, 2019

Figure C.33: Geographical distribution of ELCCs for a new 100-MW onshore generator added to
the existing base fleet of California Independent System Operator between 2015 - 2019.
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(a) ELCC of 100-MW offshore wind generator, 1980 (b) ELCC of 100-MW offshore wind generator, 1981

(c) ELCC of 100-MW offshore wind generator, 1982 (d) ELCC of 100-MW offshore wind generator, 1983

(e) ELCC of 100-MW offshore wind generator, 1984 (f) ELCC of 100-MW offshore wind generator, 1985

Figure C.34: Geographical distribution of ELCCs for a new 100-MW offshore wind generator added
to the existing base fleet of California Independent System Operator between 1980 -1985.
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(a) ELCC of 100-MW offshore wind generator, 1986 (b) ELCC of 100-MW offshore wind generator, 1987

(c) ELCC of 100-MW offshore wind generator, 1988 (d) ELCC of 100-MW offshore wind generator, 1989

(e) ELCC of 100-MW offshore wind generator, 1990 (f) ELCC of 100-MW offshore wind generator, 1991

Figure C.35: Geographical distribution of ELCCs for a new 100-MW offshore wind generator added
to the existing base fleet of California Independent System Operator between 1986 -1991.
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(a) ELCC of 100-MW offshore wind generator, 1992 (b) ELCC of 100-MW offshore wind generator, 1993

(c) ELCC of 100-MW offshore wind generator, 1994 (d) ELCC of 100-MW offshore wind generator, 1995

(e) ELCC of 100-MW offshore wind generator, 1996 (f) ELCC of 100-MW offshore wind generator, 1997

Figure C.36: Geographical distribution of ELCCs for a new 100-MW offshore wind generator added
to the existing base fleet of California Independent System Operator between 1992 - 1997.
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(a) ELCC of 100-MW offshore wind generator, 1998 (b) ELCC of 100-MW offshore wind generator, 1999

(c) ELCC of 100-MW offshore wind generator, 2000 (d) ELCC of 100-MW offshore wind generator, 2001

(e) ELCC of 100-MW offshore wind generator, 2002 (f) ELCC of 100-MW offshore wind generator, 2003

Figure C.37: Geographical distribution of ELCCs for a new 100-MW offshore wind generator added
to the existing base fleet of California Independent System Operator between 1998 - 2003.
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(a) ELCC of 100-MW offshore wind generator, 2004 (b) ELCC of 100-MW offshore wind generator, 2005

(c) ELCC of 100-MW offshore wind generator, 2006 (d) ELCC of 100-MW offshore wind generator, 2007

(e) ELCC of 100-MW offshore wind generator, 2008 (f) ELCC of 100-MW offshore wind generator, 2009

Figure C.38: Geographical distribution of ELCCs for a new 100-MW offshore wind generator added
to the existing base fleet of California Independent System Operator between 2004 - 2009.
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(a) ELCC of 100-MW offshore wind generator, 2010 (b) ELCC of 100-MW offshore wind generator, 2011

(c) ELCC of 100-MW offshore wind generator, 2012 (d) ELCC of 100-MW offshore wind generator, 2013

(e) ELCC of 100-MW offshore wind generator, 2014 (f) ELCC of 100-MW offshore wind generator, 2015

Figure C.39: Geographical distribution of ELCCs for a new 100-MW offshore wind generator added
to the existing base fleet of California Independent System Operator between 2010-2015.
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(a) ELCC of 100-MW offshore wind generator, 2016 (b) ELCC of 100-MW offshore wind generator, 2017

(c) ELCC of 100-MW offshore wind generator, 2018 (d) ELCC of 100-MW offshore wind generator, 2019

Figure C.40: Geographical distribution of ELCCs for a new 100-MW offshore wind generator added
to the existing base fleet of California Independent System Operator between 2016-2019.
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(a) ELCC of 100-MW solar generator, 1980
(b) ELCC of 100-MW solar generator, 1981

(c) ELCC of 100-MW solar generator, 1982 (d) ELCC of 100-MW solar generator, 1983

(e) ELCC of 100-MW solar generator, 1984 (f) ELCC of 100-MW solar generator, 1985

Figure C.41: Geographical distribution of ELCC values between 1980 -1985 for a new 100-MW solar
generator added to the existing base fleet from 2019 of California Independent System Operator.
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(a) ELCC of 100-MW solar generator, 1986
(b) ELCC of 100-MW solar generator,1987

(c) ELCC of 100-MW solar generator, 1988
(d) ELCC of 100-MW solar generator, 1989

(e) ELCC of 100-MW solar generator, 1990 (f) ELCC of 100-MW solar generator, 1991

Figure C.42: Geographical distribution of ELCC values between 1986 -1991 for a new 100-MW
solar generator added to the existing base fleet from 2019 of ERCOT.
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(a) ELCC of 100-MW solar generator, 1992 (b) ELCC of 100-MW solar generator, 1993

(c) ELCC of 100-MW solar generator, 1994 (d) ELCC of 100-MW solar generator, 1995

(e) ELCC of 100-MW solar generator, 1996 (f) ELCC of 100-MW solar generator, 1997

Figure C.43: Geographical distribution of ELCCs for a new 100-MW solar generator added to the
existing base fleet of California Independent System Operator between 1992 -1997.
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(a) ELCC of 100-MW solar generator, 1998 (b) ELCC of 100-MW solar generator, 1999

(c) ELCC of 100-MW solar generator, 2000 (d) ELCC of 100-MW solar generator, 2001

(e) ELCC value of 100-MW solar generator in 2002 (f) ELCC of 100-MW solar generator, 2003

Figure C.44: Geographical distribution of ELCCs for a new 100-MW solar generator added to the
existing base fleet of California Independent System Operator between 1998 - 2003.
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(a) ELCC of 100-MW solar generator, 2004 (b) ELCC of 100-MW solar generator, 2005

(c) ELCC of 100-MW solar generator, 2006 (d) ELCC of 100-MW solar generator, 2007

(e) ELCC of 100-MW solar generator, 2008 (f) ELCC of 100-MW solar generator, 2009

Figure C.45: Geographical distribution of ELCCs for a new 100-MW solar generator added to the
existing base fleet of California Independent System Operator between 2004 - 2009.
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(a) ELCC of 100-MW solar generator, 2010 (b) ELCC of 100-MW solar generator, 2011

(c) ELCC of 100-MW solar generator, 2012 (d) ELCC of 100-MW solar generator, 2013

(e) ELCC of 100-MW solar generator, 2014 (f) ELCC of 100-MW solar generator, 2015

Figure C.46: Geographical distribution of ELCCs for a new 100-MW solar generator added to the
existing base fleet of ERCOT between 2010 - 2015.
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(a) ELCC of 100-MW solar generator, 2016
(b) ELCC of 100-MW solar generator, 2017

(c) ELCC of 100-MW solar generator, 2018 (d) ELCC of 100-MW solar generator, 2019

Figure C.47: Geographical distribution of ELCCs for a new 100-MW solar generator added to the
existing base fleet of ERCOT between 2016 - 2019.
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(a) ELCC of 100-MW onshore wind generator, 1980 (b) ELCC of 100-MW onshore wind generator, 1981

(c) ELCC of 100-MW onshore wind generator, 1982 (d) ELCC of 100-MW onshore wind generator, 1983

(e) ELCC of 100-MW onshore wind generator, 1984 (f) ELCC of 100-MW onshore wind generator, 1985

Figure C.48: Geographical distribution of ELCCs for a new 100-MW onshore wind generator added
to the existing base fleet of ERCOT between 1980-1985.
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(a) ELCC of 100-MW onshore wind generator, 1986 (b) ELCC of 100-MW onshore wind generator, 1987

(c) ELCC of 100-MW onshore wind generator, 1988 (d) ELCC of 100-MW onshore wind generator, 1989

(e) ELCC of 100-MW onshore wind generator, 1990 (f) ELCC of 100-MW onshore wind generator, 1991

Figure C.49: Geographical distribution of ELCCs for a new 100-MW onshore wind generator added
to the existing base fleet of ERCOT between 1986 -1991.
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(a) ELCC of 100-MW onshore wind generator, 1992 (b) ELCC of 100-MW onshore wind generator, 1993

(c) ELCC of 100-MW onshore wind generator, 1994 (d) ELCC of 100-MW onshore wind generator, 1995

(e) ELCC of 100-MW onshore wind generator, 1996 (f) ELCC of 100-MW onshore wind generator, 1997

Figure C.50: Geographical distribution of ELCCs for a new 100-MW onshore wind generator added
to the existing base fleet of ERCOT between 1992 -1997.
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(a) ELCC of 100-MW onshore wind generator, 1998 (b) ELCC of 100-MW onshore wind generator, 1999

(c) ELCC of 100-MW onshore wind generator, 2000 (d) ELCC of 100-MW onshore wind generator, 2001

(e) ELCC of 100-MW onshore wind generator, 2002 (f) ELCC of 100-MW onshore wind generator, 2003

Figure C.51: Geographical distribution of ELCCs for a new 100-MW onshore wind generator added
to the existing base fleet of ERCOT between 1998 - 2003.
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(a) ELCC of 100-MW onshore wind generator, 2004 (b) ELCC of 100-MW onshore wind generator, 2005

(c) ELCC of 100-MW onshore wind generator, 2006
(d) ELCC of 100-MW onshore wind generator, 2007

(e) ELCC of 100-MW onshore wind generator, 2008 (f) ELCC of 100-MW onshore wind generator, 2009

Figure C.52: Variability of ELCCs between 2004 - 2009 for a new 100-MW onshore wind generator
added to the existing base fleet of ERCOT.
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