Software Engineering Institute
Carnegie Mellon University

i

DidFail: Coverage and Precision Enhancement

Karan Dwivedi
Hongli Yin
Pranav Bagree
Xiaoxiao Tang
Lori Flynn
William Klieber
William Snavely

July 2017

TECHNICAL REPORT
CMU/SEI-2017-TR-007

CERT Division

[Distribution Statement A] This material has been approved for public release and unlimited
distribution.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Copyright 2017 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the SEI Administrative Agent AFLCMC/PZM 20 Schilling Circle, Bldg
1305, 3rd floor Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVER-
SITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATE-
RIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND
WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGE-
MENT.

[Distribution Statement A] This material has been approved for public release and unlimited distri-
bution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty" statements are included with
all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is required
for any other external and/or commercial use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.
Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.
DM-0004638

Table of Contents

Acknowledgments

Abstract
1 Introduction
2 Motivation
3 Goals
3.1 File System Taint Tracking
3.2 Taint Tracking of Content Providers
3.3 Support for Dynamically Registered BroadcastReceivers (Dynamic Receivers)
3.4 Toggle Computation-Intensive Analysis
4 Implementation
4.1 Taint Tracking of File System
4.2 Tracking Taint of Content Providers
421 Treating All Content Providers as a Single Entity
4.2.2 Improving the Precision of Taint Tracking
4.3 Support for Dynamic Broadcast Receivers
4.4 Toggle for Computation-Intensive Analysis
5 Testing and Results
5.1 Challenges and Future Work
6 Conclusion
References

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

(€ I B w

o0 o O

©

11
13

14
14

16

17

List of Figures

Figure 1.1 Overview of DidFail Phase 1

Figure 1.2 Data Flow Taint Tracking

Figure 4.1 Sources Related to File System

Figure 4.2 Sinks Related to File System

Figure 4.3 FlowDroid Analysis Result for ReadFile.apk

Figure 4.4 FlowDroid Analysis Result for WriteFile.apk

Figure 4.5 DidFail Analysis Result For Example App Set Containing Both WrkiteFile.apk
and ReadFile.apk.

Figure 4.6 Flows in Example App 1 for Content Providers

Figure 4.7 FlowDroid Output for Example App 1 for Content Providers

Figure 4.8 DidFail Output Shows the Data Leakage via Content Providers for Example App 1

Figure 4.9 Flows in Example App 2 for Content Providers

Figure 410 Flows in Example App 2 for Content Providers

Figure 411 Flows in Example App 2 for Content Providers (continued)

Figure 4.12 Flows in Example App 2 for Content Providers

Figure 4.13 Code for App A

Figure 4.14 Code for App B

Figure 4.15 Taint Tracking: Original Manifest File

Figure 4.16 Taint tracking: Modified Manifest File

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

~N~NOoOOoON

10
10
11
11
11
12
12
12
13
13

Acknowledgments

We thank Professor Patrick Tague of Carnegie Mellon University for allowing the graduate
student team from his Mobile Security class (Karan Dwivedi, Hongli Yin, Pranav Bagree, and
Xiaoxiao Tang) to work on this project in the Fall semester of 2015.

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

iii

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Abstract

This report describes recent enhancements to Droid Intent Data Flow Analysis for Information
Leakage (DidFail), the CERT static taint analyzer for sets of Android apps. The enhancements
are new analytical functionality for content providers, file accesses, and dynamic broadcast
receivers. Previously, DidFail did not analyze taint flows involving ContentProvider components;
however, now it analyzes taint flows involving all four types of Android components. The
latest version of DidFail tracks taint flow across file access calls more precisely than it did
in prior versions of the software. DidFail was also modified to handle dynamically declared
BroadcastReceiver components in a fully automated way, by integrating it with a recent version
of FlowDroid and working to fix remaining un-analyzed taint flows. Finally, a new command line
argument optionally disables static field analysis in order to reduce DidFail’s memory usage and
analysis time. These new features make DidFail’s taint tracking more precise (for files) and more
comprehensive for dynamically registered BroadcastReceiver and ContentProvider components.
We implemented the new features and tested them on example apps that we developed and on
real-world apps from different categories in the Google Play app store.

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

vi

1 Introduction

Droid Intent Data Flow Analysis for Information Leakage (DidFail) is a static analyzer that was
developed by the CERT Division of the Software Engineering Institute (SEI) at Carnegie Mellon
University. DidFail detects possible flows of sensitive information in sets of Android apps [1,8].

This technical report describes recent enhancements to the DidFail analyzer, newly developed
test apps, and test results. The enhancements include new analytical functionality for Content
Providers, file accesses, and dynamically registered BroadcastReceivers. Additionally, we merged
the two software branches of the previous release.

Detection of potential taint flows can be used to protect sensitive data, identify leaky apps, and
identify malware. In the terminology for DidFail, a sink is an external-to-the-app resource to
which data is written; a source is an external-to-the-app resource from which data is read. We
say a piece of data is tainted if it originates from a sensitive source. For example, a sensitive
source could be the device ID or GPS location of the device; a sink could be a Short Message
Service (SMS) message to be sent. The goal of DidFail is to find any possible path through
which data flows from a source to a sink, by doing static data flow analysis on a set of Android
apps (Android Package Kits, or APKs).

Application APK

APK Transformer

Figure 1.1: Overview of DidFail Phase 1

DidFail works using two phases, the first of which is shown in Figure 1.1.

In Phase 1, each APK is fed into the APK Transformer, a tool that annotates intent-related
function calls with information that uniquely identifies individual cases where intents are used

in the application. Once completed, the transformed APK is passed to two other tools: Flow-
Droid [7] and Epicc [11].

The FlowDroid tool performs static taint tracking in Android applications. Given a set of method
signatures that correspond to taint sources and sinks, FlowDroid conservatively propagates taint
from sources in the application and reports all flows from sensitive sources to sinks. Sources
include function calls that access sensitive information in Android, such as getLatitude() and
getSimSerialNumber (). Sinks include function calls that exfiltrate information, such as Log.d

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

and FileQutputStream.write. In addition, reads from received intents are treated as sources
and writes to intents are treated as sinks. One example of output from FlowDroid might identify
that an application reads contact information from a source, then sends it as part of an intent.
Another example of output might identify that an application reads information from an intent,
then sends it via SMS message.

Epice [11] performs static analysis to map out inter-component communication within an An-
droid application. While this analysis is mainly used to understand how parts of a single
application work together, it can also discover which portions of the application are externally
accessible via either explicit or implicit intents. While FlowDroid is useful for understanding
flows within an application, Epicc reveals the interfaces that can be used for an application to
communicate with other applications.

Phase 1 of DidFail can be performed on one application at a time. Once completed, it does not
need to be run again.

In Phase 2, DidFail combines the Phase 1 output of multiple applications to determine how
specific apps in a set can interact. DidFail analyzes data flows between apps that can occur
through intents, files, and static fields, eventually discovering and reporting potential full taint
flows. A full taint flow is a data flow from an external source to an external sink that goes
through at least one Android app.

Component 1 Component 2
FlowDroid - FlowDroid
;4 \ Sink
FlowDroid /4- FlowDroid
¢ !

FlowDroid TaintFlows

\ FlowDroid
® = Epicce >/ - cEpicc»>

Figure 1.2: Data Flow Taint Tracking

Android has a powerful and complex communication system for sending data between apps.
Simpler static analyses do not analyze taint flows across multiple apps. Malicious apps could
take advantage of this to avoid detection despite using sensitive information from apps with
data leaks. Alternatively, they may launder the data (to avoid detection) by sending sensitive
information to a colluding app first instead of directly leaking it off the phone.

ICCTA [9], like DidFail, performs analysis of flows of sensitive data in Android app sets. How-
ever, ICCTA analyzes a set of apps monolithically in one step, as opposed to the two-phase
DidFail analysis.

One goal of the ongoing DidFail work is to eventually provide app stores, security vendors, and
security researchers with a practical technique and tool to determine if unwanted taint flows
could occur [6]. For practical use, the technique must work quickly and precisely; it must also
perform a comprehensive analysis.

Using DidFail’s two-phase analysis approach would allow a security vendor or app store to
respond quickly (within 1 second or so in typical cases) to user requests to install a new app.
Although the first phase of the analysis is the most time-consuming part, it can be pre-computed
for all apps in an app store. For instance, an app store could respond by providing the app
if no problematic taint flows could happen. It could respond with policy-compliant options if
adding the new app “as is” to the current app set would enable a policy-violating taint flow.
The DidFail enhancements described in this report are intended to make progress toward this
goal, not to complete it.

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

2 Motivation

Android’s permission system is an important feature of its security. For versions of the Android
operating system prior to Android Marshmallow, Android restricts users to an all-or-nothing
approach to permissions that are used by an application. The Android market is highly frag-
mented: except for Android phones sold directly by Google (e.g., Nexus and Pixel), there is no
assurance from Google that an Android phone will receive any security or other updates to its
operating system. As of January 9, 2017, only 30% of currently used Android smartphones use
Android Marshmallow OS or later [3] and thus have more control over their per-app permis-
sions. For the other 70% of Android systems, users who wish to install an app must first agree
to grant all permissions that it requests. Even for the 30% of users with greater permissions
controls, many will simply approve all requested permissions; others may try to be cautious with
permissions but still grant some that allow unwanted taint flow. This results in untrusted apps
with permissions to access sensitive data or communications channels such as location, device
ID, contacts, and network communications access [2].

One assumption made by many Android users is that an app that lacks a permission to access
a resource cannot access that resource in any way. In reality, the Android operating system
enforces a permission requirement by checking if the app has the permission when the app
requests a particular resource. An app with permission to access the resource can access it
freely. However, the Android permission model does not enforce permissions when sensitive
data is communicated between applications. Thus, sensitive information can be leaked from an
Android phone. Apps can collude with other apps and share access that only one of the apps
has permission for. Unknown to the Android user, sensitive data could be exfiltrated to the
Internet, if an app with permission to communicate with the Internet intercepts data from a
leaky app that handles sensitive data.

DidFail addresses this problem by providing a way to detect potential taint flows in app sets.
The latest DidFail enhancements are described in the rest of this report.

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

3 Goals

3.1 File System Taint Tracking

The previous version of DidFail did not report taint flows through the file system, although it did
use the file system as a source and a sink (i.e., as endpoints for detected potential taint flows).
DidFail uses FlowDroid, which considers the whole file system as a single element in the data
flow. FlowDroid does not track which file is written to or read from, resulting in false positives
(if all writes are considered to taint all reads) or false negatives (if no writes are considered to
taint any reads). The current version of DidFail improves taint flow tracking through the file
system to solve this problem.

3.2 Taint Tracking of Content Providers

The previous version of DidFail did not support taint tracking through Content Providers. Thus,
if a malicious flow results in unintended data leakage by passing data via one or more Content
Providers, DidFail did not detect the flow at all. Content Providers are one of four types
of Android components, and are used by apps for storing and retrieving data. The Android
operating system has its own Content Providers, which can be used by apps. Furthermore,
Content Providers can also be custom, i.e., application developers can create their own Content
Providers as part of their application. The previous version of DidFail did taint flow analysis
for data flows involving the other three Android components, but not for Content Providers.
Content Providers are an integral part of the Android ecosystem and it is important to track
taint flows involving them. We added support for taint tracking through Content Providers.

3.3 Support for Dynamically Registered BroadcastReceivers (Dynamic Re-
ceivers)

The previous version of DidFail did not provide full support for dynamically registered Broad-
castReceivers (also known as “dynamic receivers”). An app can declare the broadcasts it wishes
to receive statically in its manifest or dynamically with the registerReceiver () method. Dy-
namically registered receivers do not appear in the manifest, but they do appear in the output
of Epicc. An entry starts with the line Type: Android.content.BroadcastReceiver. An app
can un-register a dynamically registered receiver (and thereby stop it from receiving broadcasts)
by calling the Context.unregisterReceiver () method.

DidFail does not consider calls to unregisterReceiver(); thus, if a receiver cannot be live
when a tainted broadcast is sent, DidFail can produce a false alarm. DidFail handles dynamically
registered BroadcastReceivers by adding a dummy static declaration of the BroadcastReceiver to
the manifest file, so that FlowDroid can analyze it. In previous versions of DidFail, this dummy
declaration needed to be manually added after analysis of the code showed a BroadcastReceiver
was dynamically registered.

The current version of DidFail automates this process and eliminates the need for manual edits.

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

3.4 Toggle Computation-Intensive Analysis

Static field support was added to DidFail in 2015 [1]. While this feature makes it possible to
identify information leaks involving data flows through static fields, it leads to higher memory
usage and longer analysis times. As a result, in previously-performed experimental tests, 66 out
of 100 test apps which otherwise could be analyzed by DidFail either timed out or ran out of
heap space [1].

The current version of DidFail adds a toggle to optionally skip static field-related analysis, which
lowers memory usage and shortens analysis times.

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

4 Implementation

This section details our implementation of the DidFail enhancements outlined in Section 3.

4.1 Taint Tracking of File System

One of our goals is to enhance the DidFail to track taint flows that flow through the file system.
Consider the following two scenarios of taint flow through the file system:

e Scenario 1 involves two apps, WriteFile.apk and ReadFile.apk. WriteFile.apk reads
location information and writes it to a file named file.txt on the smartphone’s SD card.
ReadFile.apk reads another file named file2.txt and sends it out through SMS.

e Scenario 2 involves two apps, WriteFile.apk and ReadSameFile.apk. WriteFile.apk reads
location information and writes it to a file named file.txt on the smartphone’s SD card.
ReadSameFile.apk reads the location data from the same file and sends it out via SMS.

The previous version of DidFail could not distinguish between Scenario 1 and Scenario 2, leading
to either false positives (if all writes taint all reads) or false negatives (if writes never taint reads).
Our DidFail enhancement solves this problem by distinguishing between these two scenarios.

We modified both of the DidFail phases to make data flow analysis through files more precise.
In Phase 1, we first identify the file-system-related APIs that are potential sources and sinks, as
shown in Figure 4.1 and Figure 4.2. When DidFail finds a sink or source, we first determine if
the sink or source is on the list of APIs related to the file system. If so, we try to extract the file
path and add it to the FlowDroid output. We currently handle cases precisely only if the file
path is a compile-time constant. We also modified the Phase 2 code to make it compatible with
the more precise file-level taint flow tracking. We now chain taint flows in different components
by identifying whether any two apps have read or write operations on the same file.

io.BufferedReader: java.lang.String readLine()> —> _SOURCE_
io.BufferedReader: int read()> -> _SOURCE_

io.InputStream: int read(byte[])> —> _SOURCE_
io.InputStream: int read(bytell,int,int)> -> _SOURCE_
io.InputStream: int read()> —> _SOURCE_

io.FileInputStream: int read(bytell,int,int)> -> _SOURCE_
io.FileInputStream: int read()> -> _SOURCE_

.10.Reader: int read()> —> _SOURCE_

.i0.Reader: int read(char[])> —> _SOURCE_

.1o0.Reader: int read(char[],int,int)> => _SOURCE_
.10.Reader: int read(java.nio.CharBuffer)> —> _SOURCE_

Figure 4.1: Sources Related to File System

.OQutputStream: write(byte | -
i0.0utputStream: void write(byte[],int,int)> —> _SINK_
i0.0utputStream: void write(int)> —> _SINK_

i0.FileOutputStream: void write(byte[])> —> _SINK_
.FileOutputStream: void write(bytel[],int,int)> —=> _SINK_
.FileOutputStream: void write(int)> —> _SINK_

MWriter: void write(char[])> —> _SINK_

.Writer: void write(char[],int,int)> —> _SINK_

Writer: void write(int)> —> _SINK_

.Writer: void write(java.lang.String)> —> _SINK_
.Writer: void write(java.lang.String,int,int)> —> _SINK_

Figure 4.2: Sinks Related to File System

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

method="&1t;android.telephony.SmsManager: void sendTextMessage(java.lang.
String, java. lang.String, java. lang.String,android.app.PendingIntent,android.app.
PendingIntent)é>"
is—file="0"

></ >

< meth 1t;java.io.BufferedReader: java.lang.String readLine()>"
in="onClic
is—file=
filepath="/file.txt"
></ >
>

Figure 4.3: FlowDroid Analysis Result for ReadFile.apk

<java.io.FileOutputStream: void write(byte[])é&g

filepath="/file.txt"
>
method="&1t;android. location.Location: double getlLongitude()>"
in="getMyLocation"
is-file="0"
></ >

< method="&1t;android. location.Location: double getlLatitude()>"
in="getMyLocation"
is-file="0"

></ >

< method="&1t;android. location.LocationManager: android.location.Location

getLastKnownLocation(java.lang.String)
in="getMyLocation"
is-file=
>

Figure 4.4: FlowDroid Analysis Result for WriteFile.apk

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

To verify the integrity of our implementation, we tested the enhancement with our example
apps, WriteFile.apk and ReadFile.apk. The modified Phase 1 of DidFail changes the previous
output of FlowDroid by adding two values, is-file and filepath, as shown in Figure 4.3 and
Figure 4.4.

e The value is-file refers to whether this source or sink is related to the file system.
e The value filepath refers to the file path used by this source or sink.

In Figure 4.3, the file file.txt is used as a source via a call to readLine (). In Figure 4.4, the
same file is used as a sink via a call to write. DidFail recognizes the inter-app taint flow, as
shown in Figure 4.5.

Figure 4.5 shows five sources (including read from a location) and one sink (write to SMS), but
no file-related sources or sinks for that taint flow. Figure 4.3 shows a read from location then
write to file. Figure 4.4 shows a read from a file and then write to an SMS. Although the output
from Phase 2 does not print flow information involving files, it still includes it in the analysis.
This test shows that our implementation works and tracks file system taint more precisely than
the previous version of DidFail.

i 'Sink: <android.telephony.SmsManager: void sendTextMessage(java.lang.String,java.lang.
String, java.lang.String,android.app.PendingIntent,android.app.PendingIntent)>": ###

['Src: <android.os.Bundle: java.lang.String getString(java.lang.String)>',

'Src: <android.location.Location: double getLongitude()>',

'Src: <android. location.lLocation: double getLatitude()>',

'Src: <android.location.LocationManager: android.location.Location getLastKnownLocation(
java.lang.String)>"',

'Src: <android.telephony.] .String getDeviceId()>']

Figure 4.5: DidFail Analysis Result For Example App Set Containing Both WriteFile.apk and Read-
File.apk.

4.2 Tracking Taint of Content Providers

To improve support for Content Providers, we added the relevant methods of the ContentRe-
solver class in Android to the file SourcesAndSinks.txt. This file is used by FlowDroid. It
contains a list of methods with an extra annotation marking each method as either a source or
a sink. This helps FlowDroid to generate intra-app flows. The methods we added are as follows:

e ContentResolver.query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder)

e ContentResolver.insert(Uri uri, ContentValues[] values)

e ContentResolver.update(Uri uri, ContentValues values, String where,
String[] selectionArgs)

e ContentResolver.delete(Uri uri, String where, String[] selectionArgs)

See the Android developer website [4] for a detailed description of these methods. To test this
approach, we developed two example apps with different complexities. Each app defines its own
Content Providers and has data flows that pass through them. We followed an incremental
development approach. First, we added support by treating all Content Providers as a mono-
lithic entity. Next, we added precision to our tracking mechanism by separating taints for each
Content Provider. The two example apps test the two incremental development stages.

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

4.2.1 Treating All Content Providers as a Single Entity

The first example app consists of three components:

e A Content Provider that holds a list of text messages along with their sender information

in a database.

e A Broadcast Receiver that listens for incoming text messages on the phone and inserts

them into the Content Provider.

e A main Activity that reads one of the messages from the Content Provider and exfiltrates
it out of the phone to a different recipient than the original sender of the text message.

The taint flow in this app (text received by the broadcast receiver — Content Provider —
Read message and exfiltrate out) passes through the Content Provider. Our initial development
efforts focused on marking this flow as tainted so that it is reported in DidFail’'s output. A

visual representation of the flow is shown in Figure 4.6.

Incoming
SMS Insert

ST Ty

Broadcast
Receiver

Query
Results

e

utgoing
SMS

Figure 4.6: Flows in Example App 1 for Content Providers

Once the relevant sources and sinks are listed in the file SourcesAndSinks.txt, flows that
involve them appear in the FlowDroid output as shown in Figure 4.7. We made a slight change
in FlowDroid to mark the flows related to the Content Provider with another attribute called
contentprovider and set its value to true. DidFail makes use of this attribute during Phase 2

while processing these new flows.

During Phase 2, DidFail processes and connects these new flows; when appropriate, it marks
them as tainted. After making changes to DidFail’s Phase 2, we observed that DidFail can now
connect the first source (receipt of the text message) and the final sink (exfiltrated SMS) as one

flow through Content Providers, as shown in Figure 4.8.

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

<flow>
<sink method="<android.content.ContentResolver: android.net.Uri
insert(android.net.Uri,android.content.ContentValues)>" contentprovider="true"
<source method="Stmt($rl := @parameter0: android.content.Context)"
component="com.example.karan.contentleaker. MyReceiver" in="onReceive"/>

</flow>

<flow>
<sink method="<android.telephony. SmsManager: void
sendTextMessage(java.lang.String,java.lang.String,java.lang.String,android.app. P¢
<source method="<android.content. ContentResolver: android.database.Cursor
query(android.net.Uri,java.lang. String[],java.lang.String,java.lang.String[],java.la
in="getSMS" contentprovider="true"/>

(PR S S S S R DI S S S P S U TS S,

Figure 4.7: FlowDroid Output for Example App 1 for Content Providers

##¢ 'Sink: =<android.telephony.SmsManager: void

sendTextMessage (java.lang.String, java.lang.String, java.lang.String,;
tent,android.app.PendingIntent)=': ###

['Src: <android.database.Cursor: java.lang.String getString(int)=']

Figure 4.8: DidFail Output Shows the Data Leakage via Content Providers for Example App 1

4.2.2 Improving the Precision of Taint Tracking

After we had a basic version of taint tracking working for Content Providers, we improved its
precision. The previous example with Fzample App 1 does track taints; however, it couples all
Content Providers together into one entity. This implies that all flows are treated as if they are
going to or coming from a single Content Provider. In real-world apps, however, this is rarely the
case. To separate taints associated with each Content Provider, we uniquely mark each Content
Provider with an identifier. The simplest form of a unique identifier that comes to mind for
Content Providers is their content Uniform Resource Identifier (URI). Every Content Provider
that is defined and implemented in Android is required to have a unique content URI. We added
code to find the URI of a Content Provider when either of the Content Provider-related methods
are found in the code. For example, if a method inserts data from an SMS into the Content
Provider using a query method call, it will use the URI as the first parameter. We backtrack
and find the URI if it is declared in the current function. Specifically, if the URI’s declaration
is something like

URI myuri = uri.parse("content://a/short/uri");

then our parsing code extracts out the declared URI "content://a/short/uri" and includes it
along with the flow information in FlowDroid’s output. We then use this additional information
in Phase 2 of DidFail, combining Content Provider-related flows only if they have the same URI.
In cases where our parsing code cannot find the URI (if it is not declared as above in the same
function as a ContentResolver call such as query()), we use a fixed 64-byte string as the URI.
This makes the Phase 2 code work irrespective of whether the URI was found in Phase 1. In
the worst case, all taints of the Content Providers whose URIs are not found will be combined
into one entity, similar to our initial implementation.

We developed another version of our example app with an additional Content Provider and Ac-
tivity. This new Content Provider stores Global System for Mobile Communications (GSM)
location information and the time at which the location was obtained. The newly added
Activity has a method that obtains the current coordinates of the phone and inserts them
into the Content Provider along with the time information. Another method in the same
Activity reads location information from the Content Provider and logs it using the Log.d

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

10

Log
Location

Query Content

provider 2

Log.d

Figure 4.9: Flows in Example App 2 for Content Providers

method. This effectively introduces a flow of sensitive information from reading the loca-
tion to logging it via Log.d, with the Content Provider used for intermediate storage of the
tainted data. These additional flows are shown in Figure 4.9. We see that the attribute called
cpuri is added to the flows involving Content Providers. In Figure 4.10 and Figure 4.11,
cpuri=content://com.example.karan.SMSProvider/sms is for the SMS Content Provider and

cpuri=content://com.example.karan.LOCProvider/loc is for the Location Content Provider.

—<flow>
<sink method="<android.telephony.SmsManager: void
sendTextMessage(java.lang.String,java.lang.String,java.lang.String.
<source method="<android.content.ContentResolver:
android.database.Cursor
query(android.net.Uri,java.lang.String(],java.lang.String,java.lang.¢
in="getSMS" contentprovider="true"
cpuri="content://com.example.karan.SMSProvider/sms"/>
<source method="<android.database.Cursor: java.lang.String
getString(int)=" in="getSMS"/>

</flow>

Figure 4.10: Flows in Example App 2 for Content Providers

-<flow>
<sink method="<android.content.ContentResolver: android.net.Uri
insert(android.net.Uri,android.content.ContentValues)>"
contentprovider="true"
cpuri="content://com.example karan.LOCProvider/loc"/>
<source method="<android.telephony.gsm.GsmCellLocation: int

s

getLac()>" in="getCellLocation"/>

Figure 4.11: Flows in Example App 2 for Content Providers (continued)
The combined changes we made in Phase 1 and Phase 2 enable DidFail to precisely detect these

flows. As we see in the DidFail output shown in Figure 4.12, flows of the SMS Content Provider
are kept separate from those of the Location Content Provider.

4.3 Support for Dynamic Broadcast Receivers

As mentioned in Section 3, FlowDroid does not take dynamic receivers into account. DidFail
therefore cannot directly use FlowDroid to detect taints involving dynamic broadcast receivers.

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

11

N

'Sink: <android.telephony.SmsManager: void
sendTextMessage (java.lang.String, java.lang.String, java.lang.String,android.:
Intent,android.app.PendingIntent)=': ###

['Src: <android.database.Cursor: java.lang.String getString(int)=',

'Src: Stmt($rl := @parameterd: android.content.Context)']
'Sink: <android.util.Leg: int d(java.lang.String, java.lang.Stringl>":
['Src: <android.database.Cursor: java.lang.String getString(int)=',

'Src: <android.telephony.gsm.GsmCelllocation: int getlac()=']

Figure 4.12: Flows in Example App 2 for Content Providers

However, the previous version of DidFail does track taints using a kludge. After a static analysis
identifies a dynamically registered BroadcastReceiver, a static broadcast receiver can be man-
ually added with a declaration in the manifest file. We automated the process of adding that
declaration to the manifest.xml file in the latest version of DidFail.

The example code in Figures 4.13 and 4.14 shows how taint could be propagated via dynamic
broadcast receivers.

this.recvr = new DeviceIDBroadcastAction();
registerReceiver(

this.recvr,

new IntentFilter("DeviceIDBroadcastAction"));

Figure 4.13: Code for App A

TelephonyManager tm = ...;

String tmDevice = tm.getDeviceId(); // A Source
Intent intent = new Intent();
intent.setAction("DeviceIDBroadcastAction");
intent.putExtra("deviceID", tmDevice);
sendBroadcast (intent); // A Sink

Figure 4.14: Code for App B

In Figure 4.13, App A registers the BroadcastReceiver dynamically using registerReceiver ()
and receives broadcast intents. App B has READ PHONE_STATE permission; in Figure 4.14, it
sends deviceID via broadcast intents. If App A is malicious, it can receive intents from App B
that leak this sensitive data. App A would succeed in getting the broadcasts, as it registers the
same Action string to receive the broadcasts. We created three example apps to simulate this
behavior.

e brecvDynamic: Creates a dynamic receiver using registerReceiver() in onCreate() in
MainActivity. Does not have any receiver declarations in manifest.

e multipleBDR: Creates dynamic receivers with different filters. Does not have any broadcast
receiver declarations in manifest.

o multipleBDR-static: Same as multipleBDR but also has a receiver tag in manifest.

The rest of this section provides a high-level overview of the approach we took to solve this
problem. We implemented a Python script that extracts data from Epicc and adds it to manifest
files. Then, we modified Phase 1 of DidFail to run the new Python script before FlowDroid to
detect flows that involve a dynamic broadcast receiver.

The new Python script calls the Epicc parser to get information about any broadcast receivers
that might have been dynamically declared. As described in Section 1, Epicc provides a lot
of information along with data about broadcast receivers. It provides information about sent

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

12

N

N

10

intents, statically declared broadcast receivers, and their various tags. The Epicc output is
parsed by the Python script, which looks for information about broadcast receivers. The script
checks for multiple declarations of broadcast receivers and gathers all of the data in its tags. It
uses this information to create XML broadcast receiver tags for dynamic receivers in the format
required for statically declared receivers.

When Phase 1 of DidFail runs, it generates a manifest file in the output folder. An excerpt of
an original manifest file is shown in Figure 4.15. The new script edits this manifest file, adding
tags to it for dynamic broadcast receivers that can then be used by FlowDroid. An excerpt of
the edited, augmented manifest file is shown in Figure 4.16.

<receiver android:exported="true" android:name="MyBroadcastReceiver">
<intent-filter>
<action android:name="DeviceIDBroadcast">
</action>
</intent-filter>
</receiver>

Figure 4.15: Taint Tracking: Original Manifest File

<receiver android:exported="true" android:name="MyBroadcastReceiver">
<intent-filter>
<action android:name="DevicelIDBroadcast">
</action>
</intent-filter>
</receiver>
<receiver android:exported="true" android:name="DeviceIDBroadcastAction">
<intent-filter>
<action android:name="DeviceIDBroadcastAction"/>
</intent-filter>
</receiver>

Figure 4.16: Taint tracking: Modified Manifest File

Figure 4.15 shows an example of the manifest file generated from Phase 1 of DidFail. We
can see that it has a static receiver declared. This app also has a dynamic receiver de-
clared in its mainActivity class where it creates a receiver that filters for action string
DeviceIDBroadcastAction. Figure 4.16 shows the result after the new Python script parses
Epice’s output and edits the manifest file. We can see that another receiver tag is added to the
manifest file for the dynamic broadcast receiver.

Although the manifest file was created automatically, we did not automatically recreate the apk
file; instead, we recreated it manually. Future work would be to automate this step. (Note that
signing the apk file should not be important, since the modified apk file will only be analyzed
by DidFail and not actually installed on a phone.)

4.4 Toggle for Computation-Intensive Analysis

We added a new argument to FlowDroid called nostaticSourceSink. If a user specifies this
argument when running DidFail, the first phase will skip all static-field related analysis. This
reduces DidFail’s average memory requirements and analysis time.

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

13

5 Testing and Results

We tested our DidFail enhancements on 10 simple example apps that we developed specifically
for testing. We also tested DidFail on more than 2000 real-world apps that we downloaded from
the Google Play Store; these apps belong to many different Play Store categories.

Tests on taint tracking for file systems verified that our enhancement detects inter-app taint
flows through files. For the example apps, our enhancement precisely identifies the inter-app
taint flow and the file used for data flow between the two apps. From the real-world app set,
we identified over 200 apps that read from or write to file systems. Due to time and resource
constraints, we tested our enhanced analyzer on only 30 of these apps. Among those 30 apps,
our analysis identified eight apps that contain file system-related sources or sinks. The total
number of these sources and sinks is 119. Our implementation did not discover any inter-app
taint flow among the 30 apps. The app set we tested is not comprehensive, so perhaps there are
inter-app taint flows involving the file system in other sets of real-world apps. As of December
2016, 2.6 million apps were available for download from the Google Play store [12]. Also, we
may have missed identifying some file-related taint flows because our method for obtaining the
file path is based on static analysis. Because many apps generate file paths at runtime, the file
paths we obtained might not be comprehensive.

We tested the changes for Content Providers on both our example apps and real-world apps.
The code was correctly able to identify Content Provider URIs and fell back to combining taints
if it was unable to parse the URI. Due to resource constraints, we restricted app size to 10 MB or
less (FlowDroid analysis is especially resource and time-consuming for larger apps). Our initial
analysis of the real-world app set identified 427 apps that were smaller than 10 MB and had
Content Providers defined. We found fewer than 10 apps whose FlowDroid output contained
flows related to Content Providers. Most of the real-world apps we tested that contained a
Content Provider used it for directly reading or writing data, without using an implicit intent.
An app can write to a Content Provider that another app reads from, enabling potential taint
flows between apps, or it can write to a Content Provider that only it accesses [5]. However, the
tests demonstrated that our enhancement identified flows related to Content Providers.

To verify our new functionality for dynamic receiver analysis in the Python script, we tested it on
several example applications and real-world applications. In our tests, the script correctly parsed
the output from Epicc and added the appropriate dynamically registered receivers as static
receiver tags in the manifest file. FlowDroid then used this manifest file to detect taint flows
involving these broadcast receivers. We tested the script on applications containing multiple
dynamic receivers and others containing a single dynamic receiver. We error-tested using apps
without dynamic receivers and verified that the script did not fail when run on these apps. We
also performed manual testing to verify that the changes to the manifest created a functional
manifest. We updated an apk file to include the newly-generated manifest file and verified that
the updated apk file functioned.

5.1 Challenges and Future Work

The core limit to the new file system and Content Provider support is that the URI is hard to
find in all cases unless it is hard-coded in the same function that makes read/write calls to the
file system or Content Provider. In the future, we plan to add DidFail support for determining
the value of dynamically defined URIs (e.g., URIs created by string concatenation or defined in
a caller function) and URIs defined in a different file altogether. Constant propagation could
be employed to find such URIs in the code, as done by the COAL solver [10]. Another current

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

14

limit is that our implementation does not track flows directly between two Content Providers.
For example, a flow in which a method of a Content Provider reads from and writes to another
Content Provider will be missed by our analysis. We plan to add detection of those flows in a
future version of DidFail.

Obtaining sufficient information about dynamic broadcast receivers was one of the biggest chal-
lenges we faced. Epicc does not specify the class that extends the BroadcastReceiver class.
This class name is needed as a parameter for the receiver tag. As a workaround to this chal-
lenge, we obtained the class name from the declaration of static receivers. For cases where no
static receivers were declared, we used random numbers as the class name so they could be
distinguished.

Significant improvements can be made to DidFail’s analysis of dynamically declared receivers
to restrict potential data flows to control paths possible for flows reachable between dynamic
registration and un-registration of a broadcast receiver (if it gets un-registered). DidFail cur-
rently performs a full taint flow analysis only for standard broadcast receivers. It needs further
enhancements to perform analysis involving sticky and ordered broadcasts.

In the future, we also plan to test DidFail on more real-world apps to look for its shortcomings
and improve upon them.

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

15

6 Conclusion

The previous version of DidFail did not support taint tracking through the file system, Content
Providers, or dynamic receivers. It could not detect if a malicious app exfiltrated sensitive data
using a taint flow traversing any of them. Also, the previous release had two separate branches.
The first branch included analysis of static fields and on average required a lot of memory and
longer compute times. The second branch contained other new functionality that on average
performed faster and required less memory.

We added support for Content Providers and granular file system analysis by using a URI as
the identifier for a unique source and/or sink in our taint tracking. We added support for
dynamic broadcast receivers by performing an extra analytical step to find dynamic receivers
and append descriptions of them to the manifest file before the data flow analysis. We also
merged the functionality provided by the two branches of the previous DidFail release. We
added a command line argument to enable users to disable static field analysis, reducing average
memory requirements and analysis time.

With these new features added, DidFail identifies taint flows that it could not previously detect.
Future improvements will build upon the current release of the software.

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

16

References

URLs are valid as of the publication date of this document.

[1]

[10]

[11]

Jonathan Burket, Lori Flynn, Will Klieber, Jonathan Lim, Wei Shen, and William
Snavely. Making DidFail Succeed: Enhancing the CERT Static Taint Analyzer for An-
droid App Sets. Technical Report CMU/SEI-2015-TR-001, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, 2015. http://resources.sei.cmu.edu/library/
asset-view.cfm?Asset]ID=434962.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing inter-
application communication in android. In Proceedings of the 9th international conference
on Mobile systems, applications, and services, pages 239-252. ACM, 2011.

Android Developers. Android developers dashboard platform versions. https://
developer.android.com/about /dashboards/index.html, January 2017.

Android Developers. Android developers package index. https://developer.android.com/
reference /packages.html, January 2017.

Android Developers. Content providers. https://developer.android.com/guide/topics/
providers/content-providers.html, February 2017.

Lori Flynn and William Klieber. An enhanced tool for securing android apps.
https://insights.sei.cmu.edu/sei_blog/2015/03 /an-enhanced-tool-for-securing-android-
apps.html, 2015.

Christian Fritz, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps. In Pro-
ceedings of the 85th ACM SIGPLAN Conference on Programming Language Design and
Implementation, January 2014.

William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. Android taint flow
analysis for app sets. In International Workshop on the State Of the Art in Java Program
analysis (SOAP), 2014.

Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, Steven
Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mcdaniel. IccTA:
Detecting Inter-Component Privacy Leaks in Android Apps. In International Conference
on Software Engineering (ICSE), 2015.

Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick McDaniel.
Composite constant propagation: Application to android inter-component communication
analysis. In Proceedings of the 37th International Conference on Software Engineering-
Volume 1, pages 77-88. IEEE Press, 2015.

Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques
Klein, and Yves Le Traon. Effective inter-component communication mapping in Android
with Epicc: An essential step towards holistic security analysis. In Proceedings of the 22nd
USENIX Security Symposium (USENIX Security 13), pages 543-558, Washington, D.C.,
2013.

Statista. Number of available applications in the google play store from december
2009 to december 2016. https://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/, December 2016.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=434962
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=434962
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://insights.sei.cmu.edu/sei_blog/2015/03/an-enhanced-tool-for-securing-android-apps.html
https://insights.sei.cmu.edu/sei_blog/2015/03/an-enhanced-tool-for-securing-android-apps.html
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES

(Leave Blank) July, 2017 COVERED
Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
DidFail: Coverage and Precision Enhancement FA8721-05-C-0003

6. AUTHOR(S)
Karan Dwivedi, Hongli Yin, Pranav Bagree, Xiaoxiao Tang, Lori Flynn, William Klieber, William Snavely

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2017-TR-007
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AFLCMC/PZE/Hanscom AGENCY REPORT NUMBER
Enterprise Acquisition Division nia
20 Schilling Circle
Building 1305
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 12B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
This report describes recent enhancements to Droid Intent Data Flow Analysis for Information Leakage (DidFail), the CERT static taint
analyzer for sets of Android apps. The enhancements are new analytical functionality for content providers, file accesses, and dynamic
broadcast receivers. Previously, DidFail did not analyze taint flows involving ContentProvider components; however, now it analyzes
taint flows involving all four types of Android components. The latest version of DidFail tracks taint flow across file access calls more
precisely than it did in prior versions of the software. DidFail was also modified to handle dynamically declared BroadcastReceiver com-
ponents in a fully automated way, by integrating it with a recent version of FlowDroid and working to fix remaining unanalyzed taint flows.
Finally, a new command line argument optionally disables static field analysis in order to reduce DidFail's memory usage and analysis
time. These new features make DidFail's taint tracking more precise (for files) and more comprehensive for dynamically declared Broad-
castReceiver and ContentProvider components. We implemented the new features and tested them on example apps that we developed
and on real-world apps from different categories in the Google Play app store.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Android, taint, DidFail, mobile 25

16. PRICE CODE

17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF
REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified uL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

CMU/SEI-2017-TR-007 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

18

