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Abstract

In the era of precision cosmology, we will be collecting an unprecedented amount of
data in surveys such as the Rubin Observatory’s Legacy Survey of Space and Time,
and the High Latitude Survey of the Nancy Grace Roman Space Telescope. This
has the potential to vastly increase our understanding of the Universe, and partic-
ularly, dark energy and the accelerated expansion of the Universe. Along with this
opportunity comes great responsibility, particularly in controlling sources of bias.
Therefore, understanding systematic errors has become of the utmost importance in
modern cosmology, especially for probes with faint signals, as is the case with weak
gravitational lensing. This thesis describes my work towards understanding some of
the systematic errors that could contaminate the weak lensing signal and potentially
be the limiting factor in inferring cosmological parameters. In particular, this the-
sis details my work on (a) optimizing the observing strategy of Rubin Observatory’s
survey to mitigate observational weak lensing systematics such as the Point Spread
Function, where we found that weak lensing systematics are mitigated with a higher
number of well-dithered observations of galaxies; and (b) forecasting the effect of pho-
tometric redshift modeling errors on inferences made using the 3x2pt probes of cosmic
shear, clustering, and galaxy-galaxy lensing, where we assess the relative importance
of different photometric redshift error parameters on cosmological measurements of
large-scale structure.
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Chapter 1

Introduction

Cosmology, the science that aims to understand some of the most fundamental ques-
tions about the Universe - its history, its future, and what it is made of - has come
a long way since its beginnings. Modern cosmology started by finding discrepancies
between what was observed and the physical principles that seemed to describe ev-
erything that we experience on Earth. For example, the discovery of the discrepancy
between galaxy rotation curves observed and the theoretical expectations given the
distribution of gas and stars in galaxies led to the discovery of dark matter [Rubin
and Ford, 1970]. More recently, observations of Type Ia Supernovae led to the dis-
covery of the accelerated expansion of the Universe [Riess et al., 1998, Perlmutter
et al., 1999], or dark energy, something that has been independently verified using
a variety of different methods and observations. These experiments and discoveries
have made it clear that what we had known about the components of our Universe
was a negligible fraction of its total energy density. While our understanding has
come a long way since then, there is still a lot more to learn.

Cosmology has become a largely statistical science, with the current priorities
being making extremely precise measurements from observations and using them to
make inferences about fundamental properties of our Universe: for example, the ac-
celerated rate of expansion in the Universe, and the densities of different components
of the Universe. This age of ‘precision cosmology’ has been facilitated thanks to the
vast amount of data that has recently become possible to collect with current and
next generation experiments.

Given these priorities, a lot of the work in cosmology has also focused on studies of
the different sources of bias in measurements and observables. If we are to be able to
use the data that we collect to its full potential, we need to control these systematic
errors to a much deeper extent than ever before. This is particularly true because the
signals that we typically measure are extremely small, and systematic errors, if not
in check, can easily dominate the signal [Albrecht et al., 2006, Weinberg et al., 2013].

This thesis contributes to a better understanding of and mitigation techniques for
some of the systematic errors that could potentially dominate measurements of weak
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gravitational lensing and other probes of dark energy in upcoming surveys.

1.1 Cosmological Background

This section provides a brief introduction to some of the theoretical principles in
modern cosmology, particularly on the geometry of the Universe, the formation of
structure, dark energy, and one of its probes: weak gravitational lensing.

1.1.1 The Geometry and Evolution of the Universe

This subsection is a brief introduction to the theoretical background of the standard
model of cosmology, for more details, consult textbooks such as Dodelson and Schmidt
[2021], Carroll and Ostlie [2017]. According to the standard model of cosmology, our
Universe is expanding at an accelerating rate. In an expanding Universe, the physical
distances between objects increase. The expansion rate can be described by a time-
dependent scale factor, a(t). One way to think about this expansion is that objects
on a coordinate system maintain the same ‘comoving distance’, χ, but the coordinate
system itself is expanding. We can use the time-dependent Hubble parameter to
describe the rate of change in the scale factor:

H(t) ≡ da/dt

a
(1.1)

The Friedmann equations, derived from General Relativity using the Friedmann-
Lemâıtre-Robertson-Walker metric (see Eq. (1.6)), describe the evolution of a(t) in
our Universe as:

H2(t) =
8πG

3

[
ρ(t) +

ρcr − ρ0
a2(t)

]
(1.2)

where G is the gravitational constant, ρ is the total energy density, and ρcr is the
critical density, defined as:

ρcr ≡
3H2

0

8πG
(1.3)

where 0 subscripts describe current time values.
We can define another equation from the Friedmann equation and the Einstein

fluid equations, known as the acceleration equation:

d2a/dt2

a2
= −4πG

3

(
ρ +

3p

c2

)
+ Λc2/3 (1.4)

where p is the pressure, and Λ is the cosmological constant. For a Universe with
an accelerating expansion, the right-hand side of this equation is positive, which can
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only be true for a positive cosmological constant (and a cosmological constant term
that is larger than the total matter term).

The total energy density of the Universe is comprised of the densities of all of its
components: matter, relativistic matter (radiation, neutrinos), a dark energy term,
and a curvature term. We can define a density parameter for each of these com-
ponents as Ωi = ρi/ρcr. These terms have different scalings with a(t). Following
the Friedmann and acceleration equations, we can describe the Hubble parameter in
terms of current-time densities:

H2(t)

H2
0

= Ωrel,0a
−4 + Ωm,0a

−3 + ΩK,0a
−2 + ΩΛ,0 (1.5)

The Friedmann–Lemâıtre–Robertson–Walker metric is a solution to Einstein’s
equations that describes the geometry of a homogenous and isotropic Universe:

ds2 = −c2 dt2 + a2(t)dl2 (1.6)

where dl is a 3-dimensional space metric, in Cartesian coordinates given by [dX2 +
dY 2 + dZ2], and in polar coordinates given by dr2

1−Kr2
+ r2(dθ2 + sin2θdϕ2), where K

is the curvature parameter. We can define an angular diameter distance as the ratio
of an object’s physical size to its angular size dA = x/θ. Such a distance depends on
the geometry of the Universe. In particular, it can take three forms depending on
whether the Universe has flat, spherical, or hyperbolic geometry

dA(χ) =


K−1/2 sin

(
K1/2χ

)
for K > 0 (closed)

χ for K = 0 (flat)
(−K)−1/2 sinh

[
(−K)1/2χ

]
for K < 0 (open)

(1.7)

In a Universe with flat geometry, parallel lines remain parallel, and angles of a
triangle sum up to 180 degrees. In a closed Universe with spherical geometry, parallel
lines converge and cross, the angles of a triangle sum up to more than 180 degrees,
and moving in one direction will take us back to the initial position eventually – this
is similar to the geometry on the surface of the Earth. Finally, in an open Universe
with hyperbolic geometry, parallel lines diverge, and angles of a triangle sum up to
less than 180 degrees, possibly making it the least intuitive.

Observational experiments have found that the Universe is very nearly flat (i.e.,
ΩK = 0.001± 0.002) and the current energy density is dominated by the dark energy
term [Planck Collaboration et al., 2020b].

As the Universe expands, fluctuations in the density of the very early Universe
grew to form the large scale structure of the Universe today. We define a density
contrast δ as:

δ =
ρ− ρ̄

ρ̄
(1.8)

where ρ̄ is the average density.
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Figure 1.1: A sketch of a simple, point-source, gravitational lensing system, repro-
duced here from Bartelmann and Schneider [2001]. The light from an object in the
source plane will be deflected by an angle α̂, and appear to an observer at angle
θ = Dds

Ds
α̂ + β, instead of angle β.

In Section 1.2, we will explore further how correlation functions of the density
contrast are used to probe dark energy.

1.1.2 Gravitational Lensing

When light travels through the Universe, it will be deflected as it passes through
the gravitational potential along the line of sight. This deflection leads to many
observable phenomena. In the strongest regime, several phenomena is observed, for
example, multiple images of the background galaxy would be observed, as arcs of
light around the lens. In special cases, rings of light around the foreground objects,
known as Einstein rings can be observed. In the weak regime, the deflection leads to
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small distortions in the shapes, sizes and fluxes of observed galaxies.
To illustrate the lensing effect, Fig. 1.1, reproduced from Bartelmann and Schnei-

der [2001], shows that for an object in the source plane at distance Ds, the light
moving towards an observer will be deflected by a lens at distance Dd by the deflec-
tion angle α̂. This means that instead of observing the object at angle β, it will be
observed at angle θ = Dds

Ds
α̂ + β. The deflection angle can be derived from General

Relativity as α̂ = 4GM
c2ξ

where ξ is the impact parameter of the light rays. This treat-
ment assumes a point source; for a more complete extended source treatment, see,
e.g., Dodelson [2017].

Cosmic shear is the generalization of weak gravitational lensing to the case where
the source objects are distant galaxies, and the lens objects are the large-scale struc-
ture of the Universe that the light from the source galaxies pass through. The observed
galaxies, in the case, have distorted images according to the distortion matrix:

A =

(
1 − κ− γ1 −γ2

−γ2 1 − κ + γ2

)
, (1.9)

where κ is the convergence, and γ1 and γ2 are the Cartesian shear components.
Fig. 1.2, reproduced here from Kilbinger [2015], illustrates γ1 and γ2. Shear is a
spin-2 field, and therefore is invariant to rotations of factors π rather than 2π. The
convergence, κ, is a measure of the magnification of the source object, and in the
weak regime κ ≪ 1. The shear is related to the density contrast along the line of
sight defined in Section 1.1.1 as the integral over it, weighted by factors of a and fK
as discussed in Section 1.2.1

1.2 Observational Cosmology

This section provides an overview of observational principles in cosmology that are
used to make parameter inferences on dark energy and other fundamental properties
of the Universe.

1.2.1 Probing Dark Energy

Several independent probes have been developed to make measurements used to infer
cosmological parameters. In this thesis, we focus on weak gravitational lensing, but
also provide a brief description of other probes. In modern experiments and surveys,
these probes are combined to make more precise confidence intervals on cosmological
parameters, that are robust to different sources of systematic errors.

Weak gravitational lensing, explained in detail in Section 1.1.2, has become a
powerful probe of dark energy. Weak lensing is particularly useful when the sample
of galaxies studied is separated into redshift bins, and then the correlation between the
shear of pairs of galaxies is taken in combinations of redshift bins (hereafter referred
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Figure 1.2: A range of galaxy orientation as a function of Cartesian shear, γ1, γ2.
This figure is reproduced from Kilbinger [2015]. Due to the fact that the shear is a
spin-2 field, the shear rotation is in the range [0, π].
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to as tomographic bins) [Hu, 1999, Huterer, 2002]. This allows us in particular to
learn more about the growth of structure, by measuring the coherent distortions in
the shapes and sizes of galaxies due to the large scale structure of the Universe, which
we refer to as cosmic shear. For more detailed reviews on weak lensing and cosmic
shear, from which this section follows, see e.g., Kilbinger [2015], Bartelmann and
Schneider [2001], Dodelson [2017].

In images of galaxies, we observe the ‘reduced’ shear, defined as

g =
γ

(1 − κ)
(1.10)

where γ is the shear and κ is the convergence as explained in Section 1.1.2. If we
define ellipticity as

ε =
a− b

a + b
e2iφ (1.11)

where a and b are the semi-major and semi-minor lengths respectively and φ is the
position angle of a galaxy on the sky, then the observed ellipticity is an unbiased esti-
mator of reduced shear, i.e., E[ε] = g, under the assumption that there is no coherent
orientation of galaxies on average (an incorrect assumption, as will be discussed in
Section 1.2.4).

The shear γ can be decomposed into ‘tangential’ shear, defined as γt = −Real(γe−2iϕ)
and ‘cross’ shear, defined as γ× = −Imag(γe−2iϕ), where ϕ is the position angle of the
vector connecting pairs of galaxies. We can then define the two-point shear correlation
functions as:

ξ+(θ) = ⟨γγ∗⟩ (θ) = ⟨γtγt⟩ (θ) + ⟨γ×γ×⟩ (θ)
ξ−(θ) = Real

(
⟨γγ⟩(θ)e−4iϕ

)
= ⟨γtγt⟩ (θ) − ⟨γ×γ×⟩ (θ)

(1.12)

where ∗ denotes the complex conjugate, and the correlation between ⟨γtγ×⟩ = 0 due
to parity symmetry.

Empirically, the shear correlation function can be estimated by cross-correlating
the shear of pairs of galaxies (i, j) in each tomographic bin:

ξ̂±(θ) =

∑
ij wiwj (εt,iεt,j ± ε×,iε×,j)∑

ij wiwj

(1.13)

where w indicates galaxy weights.
The theoretical prediction for the shear correlation functions can be computed

from the Hankel transform of the convergence power spectrum:

ξ±(θ) =
1

2π

∫
dℓℓJ0,4(ℓθ)

[
PE
κ (ℓ) ± PB

κ (ℓ)
]
, (1.14)

where PE
κ is the gradient field mode of the convergence power spectrum, PB

κ is the
curl-field mode, ℓ is the Fourier mode and J is the Bessel function of the first kind. To
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first order, there is no curl-field contribution to the shear correlation functions. The
convergence power spectrum is estimated, for a Fourier mode ℓ, under the Limber,
flat-sky, and small angle approximations [Limber, 1953, Simon, 2007, Kaiser, 1992,
Giannantonio et al., 2012] as:

Pκ(ℓ) =
9

4
Ω2

m

(
H0

c

)4 ∫ χlim

0

dχ
g2(χ)

a2(χ)
Pδ

(
k =

ℓ

fK(χ)
, χ

)
(1.15)

where χlim the limiting comoving distance of the sample, Pδ is the power spectrum of
δ, fK is the comoving angular distance, and g(χ) = fK(χ)

∫∞
χ

dχ′n (χ′) fK(χ′−χ)
fK(χ′)

.
Two other closely related correlation functions are also used to constrain cosmo-

logical parameters: clustering and galaxy-galaxy lensing. Clustering is the correlation
function of pairs of galaxies in tomographic bins, and galaxy-galaxy lensing is the cor-
relation function of the shear of background galaxies with the positions of foreground
galaxies. When cosmic shear, clustering, and galaxy-galaxy lensing are combined,
they are referred to as 3x2pt.

It is important to have independent probes of dark energy, as independent mea-
surements help identify the existence of uncorrected sources of bias in case of dis-
agreement, while providing stronger confidence when these probes agree. It is also
possible to combine multiple probes to have a better constraint on the cosmological
parameters, especially when combining two uncorrelated probes could help mitigate
or break degeneracies in the constraints of each probe separately. Other probes of
dark energy that upcoming surveys will use include Type Ia Supernovae (SNe Ia)
which provided the earliest evidence on the accelerated expansion of the Universe
[Riess et al., 1998, Perlmutter et al., 1999]. The LSST is projected to observe 6-band
light curves of around 400,000 SNe Ia [Ivezić et al., 2019], leading to a significant in-
crease in constraining power than ever before. Baryon Acoustic Oscillations (BAO),
a feature that imprints a small peak in the clustering correlations at a particular
scale due to waves that propagated prior to recombination, can be considered a stan-
dard ruler that probes dark energy [Weinberg et al., 2013, Eisenstein and Hu, 1998].
Measurements of time-delays from strong lensing can also be used to infer the rate
of expansion in the Universe [LSST Science Collaboration et al., 2009]. The Cos-
mic Microwave Background anisotropies are another mature probe that, while not
measured by imaging surveys such as the LSST, it has been measured by Planck
[Planck Collaboration et al., 2020a], and will be measured by CMB-S4 [Abazajian
et al., 2016] and the Simons Observatory [Ade et al., 2019]. For more details on dark
energy probes, see e.g., Mortonson et al. [2013], Albrecht et al. [2006].

1.2.2 Redshift and Photometry

Redshift, z, is the effect where light rays emitted from objects moving away from an
observer will have their wavelengths, λ, stretched out before they reach the observer,
i.e., z = ∆λ/λ. Redshift is related to the scale factor such that 1 + z = 1/a(t).
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Measuring redshift allows us to compute distances to cosmological objects. A precise
measurement of redshift is typically achieved by observing the spectrum, particularly,
shifts in the absorption and emission lines of the spectrum of an object. In modern
imaging surveys, billions of galaxies are observed, however, and taking spectra of
objects is expensive and slow. Therefore, alternative methods to estimate galaxy
redshifts are required.

In photometic surveys, redshifts are obtained by photometry, with a small spectro-
scopic redshift sample obtained from spectroscopic experiments to train and calibrate
photometric redshifts. In photometry, images in several filters are taken, which can
be thought of as an extremely low-resolution spectrum. These images are then used in
either template fitting or machine learning methods to predict the redshift of galaxies
in the sample (see, e.g., [Salvato et al., 2019, Hartley et al., 2020]). For probes such
as weak lensing, which rely on redshift distributions in a small number of bins rather
than point estimates, a model for the true redshift in a number of photometric redshift
bins is estimated. Errors in the models of redshift could lead to errors in computing
correlation functions, which in turn could lead to systematic errors in cosmological
parameter inference, as is studied in detail in Chapter 4.

1.2.3 Stage IV Surveys

The next generation of experiments in cosmology is comprised of several complimen-
tary experiments, known as Stage-IV surveys. In particular, they include imaging
surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time
(LSST; Ivezić et al. [2019]); and spectroscopic surveys, such as the ground-based
Dark Energy Spectroscopic Instrument (DESI; Flaugher and Bebek [2014]) survey.
Some instruments will conduct both imaging and spectroscopic surveys, including
space-based Nancy Grace Roman Space Telescope’s High Latitude Survey [Spergel
et al., 2015], and the Euclid survey [Laureijs et al., 2010]. Other Stage-IV experi-
ments include radio observatories, such as the Square Kilometer Array (SKA; Braun
et al. [2015]); and observatories to detect the CMB radiation, which include the Si-
mons Observatory [Ade et al., 2019], CMB-S4 [Abazajian et al., 2016], and LiteBIRD
[Matsumura et al., 2014]. While the DESI survey has started, the majority of the
other surveys will begin sometime in the 2020s.

Stage-IV surveys are expected to make major improvements on inferences of cos-
mological parameters. A typical metric to measure this improvement is the inverse of
the area of the uncertainty in the equation of state parameters (w0, wa) plane, known
as the Dark Energy Task Force (DETF) Figure of Merit (FoM) [Albrecht et al., 2006].
It has long been forecasted that cosmological inferences using weak gravitational lens-
ing will have a large improvement with Stage IV experiments compared to previous
generations. Fig. 1.3, reproduced here from Albrecht et al. [2006], shows that the
expected improvement (in terms of the DETF FoM) for weak lensing from ground-
based Stage II experiments (which existed in the mid-2000s) to ground-based Stage
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Figure 1.3: The forecasted improvement in the constraining power (in terms of the
DETF Figure of Merit) for different dark energy probes and probe combinations
for ground-based Stage IV experiments over Stage II experiments. This figure is
reproduced from the DETF report [Albrecht et al., 2006]. LST has since been renamed
and refers to the Rubin LSST. Each bar extends from a pessimistic to an optimistic
case.

IV experiments is larger than for any other single probe (although this estimate is not
recent and the actual improvement will depend on the details of each survey). The
DETF also asserted that weak lensing would be the most constraining dark energy
probe, if its systematics were controlled below the level of its statistical uncertainty,
making systematics control, albeit very challenging in most cases, a high priority for
weak lensing.

Rubin Observatory is an observatory supplied with a wide-field imaging telescope
with an 8-meter mirror, called the Simonyi Survey Telescope. Located in Chile, it
will use the world’s highest resolution camera at around 3.2 Gigapixels (known as
LSSTCam.) Rubin Observatory will carry out the LSST, which will take observa-
tions on the order of 30 seconds each, for a duration of 10 years starting early 2024,
generating around 20 Terabytes of data per night. Rubin will be unique in both the
amount of data it collects and its strategy. While the majority of this thesis focuses
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on the LSST, most of the methodology developed throughout can be applicable to
other experiments, particularly imaging surveys. Additionally, there are many syner-
gies between different Stage-IV surveys, both in data and methodology, for example,
the overlap between the LSST and spectrascopic surveys means that they can provide
a high-quality spectroscopic sample for the LSST’s photometric redshift calibration
and training.

1.2.4 Weak Lensing Systematics

One of the highest priorities in weak gravitational lensing is understanding and miti-
gating systematic errors. There are many potential sources of bias in imaging surveys
that use weak lensing to infer cosmological parameters, be it in the observations taken,
the theoretical methodologies and approximations, or our knowledge of astrophysical
properties. For a recent review on weak lensing systematics, see Mandelbaum [2018].

One major issue, particularly for ground-based surveys, is obtaining images that
can be used to make unbiased inferences of cosmological parameters. As light travels
from distant galaxies towards the telescope, the atmosphere contaminates the light
and leads to blurring of shapes and sizes of observed objects [Chang et al., 2012].
Additionally, optical systems in telescopes may introduce aberrations into images,
such as astigmatism and coma [Jarvis et al., 2008]. Given that precise measurements
of galaxy shapes are needed for measuring cosmic shear, all these effects must be
modeled and corrected, such that they do not induce a bias into cosmic shear [Rowe,
2010]. Telescopes typically observe an extended shape from an observation of a distant
point source due to these effects; this shape is known as the point spread function,
and is typically modeled and corrected for computationally (see, e.g., Piff1 Jarvis
et al. [2021] and previously PSFEx Bertin [2011]). Computational methods to correct
for these effects are imperfect and Chapter 3 describes how to effectively mitigate
these sources of bias further, by making choices in observing strategy that reduce
the additive bias in cosmic shear due to these observational systematics before other
computational methods are used on the collected images.

As described in Section 1.2.2, cosmic shear is measured in tomographic bins,
which requires knowing the true redshift distribution in bins of observed photometric
redshift. Chapter 4 describes in detail the impact of photometric redshift modeling
errors on cosmological inferences by defining a flexible model for photometric redshift
modeling errors and forecasting the bias induced in cosmological parameter inference
due to incorrect photometric redshift modeling.

One might think that galaxies in the universe have orientations that do not follow
a coherent pattern, i.e., that there is a zero average orientation when taking a large
sample of galaxies. Given that the mass in the Universe has structure, the orientation
of galaxies have coherent alignment due to the underlying matter field, known as
Intrinsic Alignment [see, e.g., Kiessling et al., 2015, Troxel and Ishak, 2015, Joachimi

1https://github.com/rmjarvis/Piff
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et al., 2015, Samuroff et al., 2019, Krause et al., 2016, Mandelbaum et al., 2011]. Weak
lensing is concerned with detecting very small coherent distortions in the shapes of
large samples of galaxies, and therefore, the intrinsic alignment effect can mimic and
contaminate the shear signal. A combination of observations and simulations has
been used to measure the effect of intrinsic alignment, which has been observed in
red galaxies on large scales.

When measuring clustering or galaxy-galaxy lensing, knowing the centers of mass
in the Universe is essential. The majority of matter in the Universe is dark, and
therefore the centers of dark matter halos should be used as the positions of mass,
but we observe luminous galaxies. While the centers of galaxies and dark matter
halos are strongly correlated, there exists a bias between them, known as galaxy bias
[Kaiser, 1984, Desjacques et al., 2018, Eriksen and Gaztañaga, 2018]. This bias is
generally dependent on several factors (redshift, mass, scale, etc.) and correcting for
it is needed to get accurate measurements of clustering and galaxy-galaxy lensing,
especially on smaller scales.

There are also other theoretical systematics that could contaminate the signal, for
example, the covariance matrix between the data vectors is needed to make inferences
of cosmological parameters. Computations of the covariance matrix can be computa-
tionally expensive [Dodelson and Schneider, 2013], especially for the large data vectors
that future surveys will obtain. Covariance matrices are cosmology-dependent [Eifler
et al., 2009], but due to the computational expense, analyses typically do not recom-
pute them at every step of the inference procedure (e.g., Markov Chain Monte Carlo).
Using insufficiently accurate covariance matrices could lead to a bias in the inverse
covariance that must be corrected for when making cosmological inferences [Hirata
et al., 2004]. Other sources of theoretical systematics can be inaccuracies in comput-
ing the likelihood function used in inference and inaccuracies due to approximations
such as the Limber approximation.

1.3 Statistical Methods in Cosmology

The following section serves to very briefly define some of the main principles of
statistical astrophysics that will be used throughout the thesis. There are many
references that describe the following principles in greater detail, such as [Wasserman,
2004] and [Casella and Berger, 2002].

1.3.1 Estimating Uncertainties

In the era of precision cosmology, estimating uncertainties is crucial when making
an inference. There are many approaches to estimating uncertainties, and their ap-
propriateness is situational. I list a few common methods here, for more details on
estimating uncertainties, see, e.g., Wall and Jenkins [2003], Wasserman [2004].
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One method of estimating uncertainty empirically from data without making as-
sumptions on its distribution is Bootstrap resampling. Given a sequence of collected
data X1, . . . , Xn, drawn from some unknown distribution P , with θ̂ = f(X1, . . . , Xn)
being some estimator, the variance of θ̂ can be estimated by repeatedly drawing with
replacement new samples from the same data and computing θ̂j = f(X1′, . . . , Xn′)
for j from 1 and m, then the standard error estimator is given by

ŝ =

√√√√ 1

m

m∑
j=1

(
θ̂j − θ̄

)2

, (1.16)

which can be used to construct asymptotic 1-α confidence intervals.
Boostrap resampling is used in e.g., Chapter 3 to estimate the uncertainty in the

additive shear bias using models of PSF residuals.
Another method is the Markov Chain Monte Carlo (MCMC), in which we initialize

a number of ‘walkers’ that iteratively propose jumps to new positions in probability
space to compute a goodness of fit statistic (typically based on the χ2 distribution).
These proposals can be accepted or rejected based on certain criteria that allows
the model to both explore the probability space and have a general preference for
moving towards better fitting parameter values. After a large number of iterations,
it is possible to construct a Bayesian credible interval using the accepted proposals
and sample space (and other statistics).

The Fisher information is another method to estimate confidence intervals that
relies on knowing the likelihood of the data. The Fisher information is defined as:

I(θ) = −E
[
∂2

∂θ2
logpθ(X)

]
(1.17)

where pθ(X) is the likelihood of the data. For X1, . . . , Xn independent and identically-
distributed samples, the Fisher Information can also be defined in terms of the sample
of size n as In(θ) = nI(θ), such that for Xi, the Fisher Information is IXi

(θ) = I(θ).

For θ̂, an estimator of θ that maximizes the log-likelihood, it can be shown by the
Central Limit Theorem that

√
n(θ̂ − θ)

p→ Normal (µ = 0, σ2 = I−1), in other words,

the standard error estimator is given by ŝe = 1/

√
In(θ̂) = 1/

√
nI(θ̂)

We can then define an asymptotic 1-α confidence interval as

Cn =
[
θ̂ − zα/2ŝe, θ̂ + zα/2ŝe

]
(1.18)

where z is the standard Normal distribution, Normal(µ = 0, σ2 = 1).
One particular special property of the the Fisher information method is that it

can be computed using the likelihood function, without needing to collect data; for
this reason it is often used to forecast the uncertainties on parameters in future
cosmological experiments. Fisher information is at the core of the methodology used
in Chapter 4, in which context, it is used to forecast the uncertainties, or constraints,
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on cosmological parameters based on different photometric redshift error models.
Using the Fisher information is much less computationally expensive compared to
using MCMC, whereas the latter can be computationally expensive or prohibitive for
a large number of dimensions.

1.3.2 Density Estimation

In many cases in cosmology, we are interested in understanding the underlying distri-
bution of data, this problem is known as density estimation. The most basic density
estimator is simply a histogram.

The histogram estimator divides n data points into a number of bins of width h,
and can be defined as

p̂(x) =
θ̂j
h

(1.19)

where

θ̂j =
1

n

n∑
i=1

I(Xi ∈ Bj) (1.20)

where I = 1 for the data points i in bin j and I = 0 otherwise.
To assess the performance of the histogram as a density estimator, we can compute

the mean squared error of the histogram estimator, which can be shown (see, e.g.,
Wasserman [2004]) to be decomposed into a bias term and a variance term:

MSE(x) = bias2(x) + Var(x) = Ch2 +
C

nh
. (1.21)

The MSE is optimized for a bin width of h = (C
n

)1/3, where C is a constant. As
can be seen from Eq. (1.21), there exists a trade-off between bias and variance, such
that the estimator has higher bias and lower variance for larger bin width, and vice-
versa. The optimal risk, or expected value of the MSE of the histogram estimator is

R = O
(

1

n

)2/3

(1.22)

Therefore, the estimator improves with more data points, but only at a slow rate of
(1/n)2/3.

Another estimator for which the risk improves more quickly with the number of
data points is the Kernel Density Estimator (KDE). In KDE, the underlying den-
sity distribution is estimated to be the sum of all kernels of the data points; where
a kernel is any positive function centered at each data point that integrates to 1,
typically, a Gaussian or top-hat distribution. Similarly to a histogram, a bandwidth
hyperparameter h exists, and for a Gaussian distribution, this would be the standard
deviation of the kernel.
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We can assess the performance of the KDE in the same way. The MSE of the
KDE can be decomposed as (see, e.g., Wasserman [2004]):

MSE(x) = bias2(x) + Var(x) = C1h
4 +

C2

nh
(1.23)

and is minimized by choosing

h =

(
C1

4nC2

)1/5

, (1.24)

with an optimal risk of

RKDE = O(
1

n
)4/5 < Rhistogram (1.25)

assuming the same number of data points, and optimal choices in histogram width
and KDE bandwidth. In other words, the risk of the KDE goes down faster than the
histogram estimator with more data.

Choosing a histogram width or a KDE bandwidth is an important issue, and
while there are several rules of thumb that typically work for unimodal data, cross
validation can be very useful to select an optimal hyperparameter in general. Cross
validation is described in more detail in the following subsection.

Histograms and KDEs are used extensively throughout this thesis. Notably, in
Chapter 4, KDE is used to create a data-driven model for the distribution of photo-
metric redshift outliers.

1.3.3 Machine Learning Methods

Machine learning has become commonly used in cosmology; this subsection serves to
very briefly define some of the common methods and techniques later used. There are
many references that describe the following machine learning methods in more detail,
including [Bishop, 2006], [Mitchell, 1997], [Hastie et al., 2009]. A further reference
with a focus on code and applications is [VanderPlas, 2016].

Machine learning can be split into supervised learning, unsupervised learning,
and reinforcement learning. Supervised learning, when you have labeled data, is
typically used for making predictions. Supervised learning methods include tree-
based methods, k-Nearest Neighbors, Logistic Regression, Support Vector Machines,
and neural networks.

Unsupervised learning methods, such as k-means and expectation-maximization,
run on unlabaled data and are used for clustering, although dimensionality reduction
methods can also be used for clustering when the data suffers the curse of dimension-
ality, i.e., when distances become less meaningful in very high-dimensional spaces.

One major consideration of machine learning methods is the issue of generalizing
a trained model to new data that it has not observed yet. Using an overly complex
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model with too much training will lead to a model that overfits to the training data, in
other words, the model will learn the noise in the training data, and will not generalize
well. On the other hand, an overly simple model will not be sufficient to learn the
underlying signal in the data. This is known as the bias-variance tradeoff, similarly
to what was discussed in Section 1.3.2, and is why the data is typically separated
into a training set and test set, the latter only used for testing the performance after
training. Beyond separating the training and testing sets, the solution for overfitting is
regularization, which depends on the model, but generally penalizes overly complex
models. In linear regression, this can be an added term to the cost function that
lowers the reward of the model by a factor that corresponds to the number of model
parameters. In tree-based methods, this can be pruning the tree by removing the
deepest leaves and verifying whether there is a non-negligible loss in accuracy on an
independent set. In neural networks, regularization can be in the form of dropout,
which randomly sets a certain number of nodes to zero, and compares the performance
of the model before and after.

Another important consideration is model selection. Machine learning meth-
ods typically involve model hyperparameters, for example, in a k-Nearest Neighbors
method, where we are making predictions about a new data point based on its k
neighbors, the number k is a hyperparameter that must be selected somehow. The
most commonly used method to select hyperparameters and compare models is cross
validation, where the data is partitioned further into a third set, called the valida-
tion set, to compare the performance of models with different hyperparameters on.
Typically, when there is sufficient data, the data is split into around 5 or more par-
titions rather than just 1 more, which usually improves the robustness of the results
of cross-validation.

These methods are used extensively throughout the thesis. For example, cross
validation is used to select the bandwidth of the KDE used to model the photometric
outlier sample in Chapter 4, and tree pruning is used to regularize the decision tree
algorithm in the same Chapter.

1.4 Thesis Outline

A recurring theme in this thesis is that controlling systematic biases and uncertainties
is essential for the next generation of imaging surveys. In this thesis, the main
sources of systematics are (a) observational systematics that can be mitigated by
optimal choices in observing strategy, and (b) systematics due to errors in modeling
photometric redshifts. The following chapters are organized as follows: In Chapter 2,
I summarize the progress that has been made on the Rubin observing strategy and my
contributions to the larger effort from the LSST Dark Energy Science Collaboration
Observing Strategy working group, and introduce some of the trade-offs that exist;
this Chapter describes work extracted from the submitted journal article [Lochner
et al., 2021]. In Chapter 3, I describe my work on optimizing the Rubin LSST
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observing strategy for weak lensing systematics; this Chapter is reproduced from the
published journal article [Almoubayyed et al., 2020]. In Chapter 4, I describe my
work on forecasting the errors in inferring cosmological parameters due to errors in
photometric redshift modeling; this Chapter is a draft of a journal paper not yet
submitted. Finally, in Chapter 5, I present the conclusions of my work and my
outlook of the field in the areas that I studied.
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Chapter 2

Studies of Rubin Observatory
Strategies

The Vera C. Rubin Observatory’s LSST will be a unique survey in many ways, one
of which is its observing strategy. The LSST has a large number of science groups
interested in its upcoming data, and its observing strategy has the potential to affect
major changes in its final product. This chapter is a brief introduction to the LSST
observing strategy, and is mainly adapted from [Lochner et al., 2021] and my contri-
butions therein, and sets the context for the next Chapter, which describes optimizing
the LSST observing strategy for weak lensing systematics in particular.

The Rubin observing strategy has gone through several iterations of improve-
ments. This has typically been done in a cycle where operational simulations [Del-
gado et al., 2014] would be created, describing how the telescope will operate over its
lifespan of 10 years. These would then be assessed based on certain metrics developed
by different science collaborations and working groups, and the conclusions are used
to influence the creation of new sets of operational simulations. Many aspects of
observing strategy, such as the footprint and exposure time, could still change. While
in some cases, the metrics agree on certain aspects, for example, the metrics devel-
oped by the LSST Dark Energy Science Collaboration spanning dark energy probes
all prefer to define an LSST visit as a single 30-second exposure over two 15-second
exposures [Lochner et al., 2021]; in other cases, there will be trade-offs between the
metrics that need to be studied.

One such trade-off exists even for a single probe – weak lensing. My analysis
discussed in Chapter 3 shows that observational weak lensing systematics can be mit-
igated with more visits, given that they are sufficiently dithered. For a fixed visit time,
this means a deeper survey. On the other hand, the statistical constraining power
of weak lensing (and more generally the 3x2pt combined probes) increases with area
more so than depth, which would lead to a shallower survey when optimized. I de-
veloped a metric, based on a 3x2pt DETF FoM emulator developed by Tim Eifler
and Jay Motka and described in [Lochner et al., 2021], in the LSST Metrics Analysis
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Figure 2.1: The 3x2pt Figure of Mertic showing the statistical constraining power of
the 3x2pt probes, and the weak lensing average visits metric, which correlates with
mitigation of observational systematics. Higher metric values correspond to better
systematics mitigation, and is described in more detail in Chatper 3. The two metrics
are evaluated on a set of LSST operational simulations. While the metrics agree in
several cases, trade-offs also arise on many simulations. This figure is reproduced
from Lochner et al. [2021].
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Framework [Jones et al., 2014], alongside developing the weak lensing systematics
metrics discussed in Chapter 3. Fig. 2.1 shows the 3x2pt FoM metric and the weak
lensing average visits systematics metric for a set of operational simulations. The
metric values are normalized to a baseline distribution, and the description of how a
simulation differs from the baseline is listed on the left, with interpretations within.
This figure is reproduced from Lochner et al. [2021]. The Figure shows that the
3x2pt FoM, corresponding to the statistical constraining power of the 3x2pt probes,
improves for both larger survey areas and higher survey depths, but has a stronger
preference towards area. On the other hand, the weak lensing average visits metric
shown, which correlates with better mitigation of weak lensing observational system-
atics, improves with higher number of well-dithered observations, which for constant
exposure time, corresponds to higher depth. In some cases, such as switching a sin-
gle 30-second exposure to two 15-second exposures, the two metrics are impacted in
the same direction (since this switch means that there will be more overhead time
in-between the exposures leading to less depth without a significant impact on area).
On the other hand, increasing the area to a larger footprint has a positive impact
on the FoM and a negative impact on the systematics metric – showing the trade-off
between the metrics.

While studies of observing strategies are still ongoing, and newer simulations are
made, these metrics are implemented such that they can be easily run on newer simu-
lations. As of now, these two metrics have to be computed and compared separately,
and studying the trade-off is still considered future work, which would likely bene-
fit from Rubin commissioning or science verification data. Operational simulations
have so far been optimized such that they are not particularly detrimental to either,
taking into account both that Rubin will likely be systematics-limited, and that the
statistical constraining power of Rubin remains one of its most important products.
Real data will make it clearer whether, and by what degree, systematic errors will be
the limiting factor, and to what level other software methods will be able to mitigate
them.
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Chapter 3

Optimising LSST Observing
Strategy for Weak Lensing
Systematics

This chapter is reproduced from a journal paper of the same title published in Monthly
Notices of the Royal Astronomical Society in Volume 499, Issue 1, in November 2020
[Almoubayyed et al., 2020], on using the observing strategy of the Rubin LSST to
optimize for weak gravitational lensing systematics mitigation.

Original Authors: Husni Almoubayyed, Rachel Mandelbaum, Humna Awan,
Eric Gawiser, R Lynne Jones, Joshua Meyers, J Anthony Tyson, Peter Yoachim,
LSST Dark Energy Science Collaboration

Abstract

The LSST survey will provide unprecedented statistical power for measurements of
dark energy. Consequently, controlling systematic uncertainties is becoming more
important than ever. The LSST observing strategy will affect the statistical uncer-
tainty and systematics control for many science cases; here, we focus on weak lensing
systematics. The fact that the LSST observing strategy involves hundreds of visits to
the same sky area provides new opportunities for systematics mitigation. We explore
these opportunities by testing how different dithering strategies (pointing offsets and
rotational angle of the camera in different exposures) affect additive weak lensing
shear systematics on a baseline operational simulation, using the ρ−statistics formal-
ism. Some dithering strategies improve systematics control at the end of the survey
by a factor of up to ∼ 3 − 4 better than others. We find that a random translational
dithering strategy, applied with random rotational dithering at every filter change, is
the most effective of those strategies tested in this work at averaging down system-
atics. Adopting this dithering algorithm, we explore the effect of varying the area of
the survey footprint, exposure time, number of exposures in a visit, and exposure to
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the Galactic plane. We find that any change that increases the average number of
exposures (in filters relevant to weak lensing) reduces the additive shear systematics.
Some ways to achieve this increase may not be favorable for the weak lensing sta-
tistical constraining power or for other probes, and we explore the relative trade-offs
between these options given constraints on the overall survey parameters.

3.1 Introduction

Gravitational lensing, the deflection of light paths due to the presence of a nearby
mass, or weak lensing (WL) in the weak regime, has become one of the most sensitive
probes of cosmological parameters [Weinberg et al., 2013]. In contrast to strong
lensing, WL is a statistical effect measured from very small but coherent effects on
a large number of galaxies. Therefore, future large surveys of galaxies provide an
opportunity for significant improvement: the report of the Dark Energy Task Force1

shows that Stage IV experiments, such as the Vera C. Rubin Observatory Legacy
Survey of Space and Time (LSST), will provide an improvement of 5–8 times over
Stage II surveys with respect to the Dark Energy Task Force figure of merit (FoM).
The FoM is the reciprocal of the area enclosing the 95% confidence set contours in
the w0, wa plane, where w0 is the present value of the dark energy equation of state
parameter, and wa determines its dependence on scale factor, defining the dark energy
equation of the state w = w0 + wa(1 + a). This improvement comes from breaking
degeneracies using multiple dark energy probes, and is larger than the improvement in
constraining power from each cosmological probe individually [e.g., Zhan and Tyson,
2018].

Given the sizeable statistical power that the LSST provides [LSST Science Col-
laboration et al., 2009, Mandelbaum et al., 2018a, Ivezić et al., 2019], studying and
controlling weak lensing systematic biases is becoming more critical [Mandelbaum,
2018].

One major source of observational systematics for WL is the point-spread function
(PSF), which describes how a point source appears on the observed image. In the
best case, the PSF is diffraction-limited, but in practice for ground-based surveys,
it includes a dominant atmospheric contribution alongside optical aberrations and
detector contributions. While the atmospheric contributions to the PSF shape vary on
short timescales, the CCD detectors have complex PSF shape systematics [Bradshaw
et al., 2018] which are very similar every time a field on the sky is revisited, and thus
do not average down over the course of the survey. Traditionally, the PSF is modelled
empirically using images of stars (e.g., [Bertin, 2011]) and then that model is used to
infer the shapes of galaxies, which are tracers of the coherent weak lensing distortions
(e.g., [Mandelbaum et al., 2015]). It is necessary to use large numbers of stars in each
CCD in order to adequately sample the PSF variations across the focal plane. The

1https://arxiv.org/abs/astro-ph/0609591
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shapes of brighter stars may be contaminated by flux-dependent detector effects; this
is known as the “brighter-fatter effect” [BFE; Antilogus et al., 2014], which causes
flux-dependent PSF model systematics, must be corrected in pixel processing and
could be additionally mitigated via careful observing strategy choices that reduce the
impact of the brighter-fatter effect in the final coadded image.

PSF modelling is imperfect in practice, and errors in modelling the PSF lead to
systematic biases on the cosmic shear signal, which is the two-point correlation func-
tion of the shear field produced by the large-scale structure (LSS) of the Universe;
see, for example, Paulin-Henriksson et al. [2008] and Rowe [2010] for the formalism
describing how PSF modelling errors propagate into the measured cosmic shear sig-
nals. A bias in the PSF model shapes would translate to a very significant additive
bias in the shear power spectrum (e.g., [Paulin-Henriksson et al., 2008] and [Jarvis
et al., 2016]). While analyses of previous large-area surveys of galaxies must improve
PSF modelling and interpolation algorithms to reduce the impact of PSF modelling
errors on weak lensing measurements, the LSST survey provides an additional new
option for systematics control: optimising the observing strategy.

The main LSST survey is a Wide Fast Deep (WFD) survey [Ivezić et al., 2019],
such that the majority of the LSST observing time will be spent carrying out a
wide-area survey that is deep in limiting magnitude with many short observations.
More specifically, the LSST is designed, according to the LSST Science Requirements
Document (SRD) [Ẑeljko Ivezić and the LSST Science Collaboration, 2018], to have
a median of 825 visits across the 18 000 deg2 footprint and across all of the ugrizy
bands. A visit is currently defined in the baseline strategy as two co-added 15-
second exposures with a readout in between. Like previous surveys, LSST will dither
between observations at a given sky location, but unlike previous surveys, the LSST
will have a unique combination of large-scale dithers and a large number of exposures
at each point. Thus, objects can be observed in significantly different positions in
the focal plane due to offsets of telescope pointings (what we will call translational
dithering), and with multiple angles due to offsets of the camera rotational angles
(what we will call rotational dithering). These aspects of the observing strategy
can be used in addition to traditional methods to mitigate weak lensing systematics.
Related studies that explore possible translational dithers to determine how the LSST
observing strategy can be used to reduce systematic errors in measurements of the
large-scale structure have already been conducted ([Carroll et al., 2014], [Awan et al.,
2016], [LSST Science Collaborations et al., 2017]).

In this paper, we study how different aspects of the observing strategy help mit-
igate the additive shear bias, and rank a set of simulated strategies based on their
performance for WL systematics (while the statistical trade-offs are not addressed
here). In Section 3.2, we explain WL and its systematics in more detail; in Sec-
tion 3.3, we present a representative set of LSST survey strategies and separately the
three translational dithering strategies that are studied in this paper, although our
method can be easily applied to new observing strategies in the future as they are
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released. In Section 3.4, we present our methodology, using both a direct effect on
the cosmic shear bias, and simpler statistical tests of uniformity; and in Section 3.5,
we analyze the results, and discuss them in the context of the 2018 call2 for proposals
on optimising the LSST observing strategy for different science cases.

3.2 Background

This section includes background information on weak lensing, the observable quan-
tities that are measured and used to constrain cosmological parameters, and the
observational systematics that can be affected by different choices in observing strat-
egy.

3.2.1 Weak Lensing Measurements

WL is a ubiquitous statistical effect that modifies the light profiles of galaxies as the
light rays from those galaxies pass by other mass along the line of sight before they
are observed. WL by the large-scale structure of the universe distorts the shapes and
sizes of galaxies according to the distortion matrix:

A =

(
1 − κ− γ1 −γ2

−γ2 1 − κ + γ2

)
, (3.1)

where κ is the convergence, a measure of the magnification due to WL, and γ1, γ2
are spin-2 shear, a measure of the shape distortion due to WL [Bartelmann and
Schneider, 2001]. The distortion matrix can be used to transform lensed coordinates
into unlensed coordinates, such that for unlensed and lensed positions on the sky x⃗u

and x⃗l, x⃗u = Ax⃗l [Mandelbaum et al., 2015].
The cosmic shear signal can be measured using shear-shear correlation functions

between pairs of galaxies, as follows:

ξ+(θ) = E[γγ∗](θ) = E[γtγt](θ) + E[γ×γ×](θ), (3.2)

ξ−(θ) = R(E[γγ](θ)e−4iϕ) = E[γtγt](θ) − E[γ×γ×](θ), (3.3)

where t and × are the tangential and cross components of the shear, θ is the angular
separation on the sky, ϕ is the polar angle [Kilbinger, 2015], E[] refers to the expected
value and R() refers to the real component. We only consider ξ+ in our analysis,
because the biases on ξ− are much closer to 0, and so not much work is needed to
mitigate them [Jarvis et al., 2016].

It is clear from the definition of these correlation functions that any bias in the
measured galaxy shears, either multiplicative or additive, will alter the measured

2https://www.lsst.org/call-whitepaper-2018; a full list of the white papers submitted in
response to this call is available at https://www.lsst.org/submitted-whitepaper-2018
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Figure 3.1: The right ascensions and declinations (survey footprint) of 444,867 focal
plane field positions (without translational dithering) for i-band observations in the
entire main WFD survey during the 10-year survey in baseline2018a.

shear correlation functions ξ±. As we present more quantitatively in Section 3.4,
errors in the shape of the PSF model generate additive systematics, while errors in
the size of the PSF model generate both multiplicative and additive biases in the
cosmic shear correlation function.

While multiplicative biases in weak lensing shear are important and need to be
carefully controlled, observing strategy cannot as easily mitigate coherent PSF size
errors of a fixed sign (being a scalar, non-zero mean size errors will not average down
with translationally or rotationally dithered observations), so in this paper we focus on
capturing the impact of observing strategy on PSF model shape errors (and therefore
on additive systematics in WL).

3.2.2 Weak Lensing Systematics

Several sources of systematics can cause multiplicative or additive biases in the cosmic
shear signal. These sources can be either theoretical, astrophysical, or observational.
Theoretical sources of systematics include failure of the Limber approximation, like-
lihood function inaccuracies, and covariance misestimation (e.g., [Sato et al., 2009],
[Dodelson and Schneider, 2013], [Lemos et al., 2017]). Astrophysical systematics in-
clude, for example, intrinsic alignments (e.g., [Kirk et al., 2015], [Kiessling et al.,
2015], [Krause et al., 2016], [Samuroff et al., 2019]), the fact that galaxies are not
oriented randomly throughout the universe even in the absence of lensing. Precise
theoretical models of intrinsic alignments are required to turn WL measurements into
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Figure 3.2: The translational dither patterns that are studied in this paper. These
are, from top to bottom: random, spiral, and hexagonal. The pink points show the
dithered positions, stepped through sequentially according to the gray lines. The
plots are scaled to the size of the FOV of the LSST. These plots are generated using
the Metrics Analysis Framework [MAF; Jones et al., 2014] following the approach
defined in Awan et al. [2016]. Unlike the random strategy, the hexagonal and spiral
strategies are sequential and start to repeat at large numbers of dithers, resulting
in an apparently lower unique pointing density even for the same number of dithers
planned.
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Figure 3.3: Illustration of the effect of dithering: The red circle represents the field of
view of the LSST camera for a single exposure, with its centre indicated by one of the
blue dots (indicating field positions). An object, indicated by the white circle, would
only be imaged at a single position in the focal plane if no translational dithering
is carried out. With random translational dithering around the fixed field positions
(blue dots), the object would be imaged at ∼200 different positions within the focal
plane, corresponding to the total number of visits in the i-band, with centres of those
exposures indicated by the orange dots. The plot was made using the field positions
in the reference observing strategy (baseline2018a), with random dithering applied.

.
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cosmological parameters. Observing strategy cannot impact theoretical systematics,
and the impact of observing strategy on astrophysical systematics is accounted for
using statistical forecasting. We, therefore, focus on the impact of observing strategy
on observational systematics. The remainder of this subsection is dedicated to pro-
viding background on observational systematics, and their effect on the cosmic shear
signal.

When an observatory measures an image of a point source, it observes an extended
and potentially complex light profile, due to the effect of the atmosphere, the optics
(and optical aberrations), the CCD sensors, and the electronics. Atmospheric effects
are mainly due to turbulence and vary stochastically with time and spatially across
the focal plane (e.g., [Chang et al., 2012]). The effects of telescope optics include not
only the obscured Airy diffraction pattern, but also aberrations that can be expressed
in the form of Zernike polynomials such as coma and astigmatism (e.g., [Jarvis et al.,
2008], [Roodman et al., 2014]). Finally, detector effects (such as the ones due to
charge transport asymmetry) are not stochastic; they remain the same when a field
is revisited, and contribute to the PSF shape integrated over all visits unless removed
by correction in pixel processing and camera rotation during observing. Most of
these effects, when combined, can be described using a PSF. The galaxy images are
convolved with the PSF, which must be modelled carefully to remove the effect of the
PSF and recover unbiased weak lensing shear estimates.

Most PSF modelling techniques use images of stars as an effective PSF at their
observed positions, and interpolate to get a PSF model that can be evaluated at any
point within the focal plane. Other techniques model optical aberrations physically
and are usually more appropriate for optics-limited space telescopes. The LSST PSF
modelling strategy may incorporate elements of both methods [Mandelbaum, 2018].
While methods to correct for the impact of the PSF on the galaxy shapes expect PSF
modelling to be carried out perfectly, in practice no PSF modelling method is perfect
[Kitching et al., 2013]. Reasons for PSF model insufficiency include the low density
of stars, interpolation techniques that do not fully describe the physical processes
governing the variation of the PSF across the focal plane, and detector effects such
as the brighter-fatter effect [Antilogus et al., 2014], wherein the PSF measured from
bright stars appears larger than it actually is. The physical origin of this effect
is that the electrons in a pixel spill out to neighboring pixels due to electrostatic
repulsion, violating the linear relationship between electron counts and exposure time
expected for CCDs. Source galaxies used in WL studies are typically faint, so a
PSF model inferred from bright stars without correction for the brighter-fatter effect
misrepresents the actual PSF. Current methods to correct for the brighter-fatter
effect, such as the one demonstrated using the Hyper Suprime-Cam (HSC; [Aihara
et al., 2018]) survey data in [Mandelbaum et al., 2018b] are not exact, so some residual
brighter-fatter effect may still be expected to contaminate PSF models. Additionally,
when the accumulated charge is transferred across the CCD pixels during readout,
some amount of charge is lost in the process; this effect is known as charge transfer
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inefficiency [CTI; Rhodes et al., 2010]. This effect introduces a residual signal along
the charge transfer direction, altering the perceived shapes of stars and galaxies.
While BFE is a larger effect than CTI for most LSSTCam CCDs3, their relative
magnitude on Rubin Observatory CCDs after applying software corrections is still
being studied.

PSF modelling imperfections can often imprint a coherent PSF shape bias in a
specific direction in the plane of the camera. Simulations of LSST observing using lab-
oratory measurements on LSST CCDs reveal multiple PSF shape systematics which
can only partially be removed in pixel processing [Bradshaw et al., 2018]. Observing
strategy can, therefore, be an effective way to average down this bias significantly in
addition to what can be gained with improved software for PSF modelling or for re-
moving detector effects in the initial pixel processing steps. Examples of systematics
with coherent special directions include radially-oriented residuals within the focal
plane due to PSF modelling errors, as has been observed in e.g., Jarvis et al. [2016]
and Bosch et al. [2018]. Residuals associated with the orientation of the camera focal
plane due to CCD fixed-frame distortions and differential chromatic refraction effects
are discussed in LSST Science Collaborations et al. [2017]: these systematics were
found to be optimally suppressed for observing strategies with uniform distributions
(over the range [0, π] radians) of parallactic angle and the angle between the +y cam-
era direction and the North (referred to as rotSkyPos). We extend this analysis to the
direction of CCD charge transfer, which would be horizontal or vertical, to account
for physical effects such as the brighter-fatter effect and charge transfer inefficiency,
which could result in an additive shear systematic error.

3.3 LSST Observing Strategy

In this section, we describe the tools used for simulating and analyzing LSST observ-
ing strategies, and describe the survey simulations that are used for our analysis.

3.3.1 LSST Operations Simulator (OpSim)

The LSST cadence and observing strategy have not yet been decided [LSST Science
Collaborations et al., 2017]4. The LSST Operations Simulator (OpSim5; [Delgado
et al., 2014]) can be used to simulate the effects of survey strategies on survey param-
eters. OpSim combines science program requirements, telescope design mechanics,
and modelling of environmental conditions to provide a framework for operational
simulations which return the parameters of the survey that do not specifically require
image simulations, such as exposure positions, airmass values, the position of the
moon at each exposure and filter change.

3Aaron Roodman, private communication, Aug 9th, 2020.
4https://github.com/LSSTScienceCollaborations/ObservingStrategy
5https://www.lsst.org/category/operations-simulation
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Table 3.1: Summary of the observing strategies (OpSim runs) that are used in this
paper.

Strategy Description

baseline2018a LSST official baseline strategy
pontus 2002 24,700 deg2 footprint (instead of 18,000 as in baseline2018a)
kraken 2042 1×30s visits (instead of 2×15s as in baseline2018a)

pontus 2489 1×20s visits in grizy and 1×40s in u
(instead of 2×15s visits as in baseline2018a)

colossus 2664 considers the Galactic plane part of the WFD survey
(spends more time on it than baseline2018a)

3.3.2 Metrics Analysis Framework (MAF)

The Metrics Analysis Framework (MAF6; [Jones et al., 2014]) is a tool to assess the
impact of observing strategy on particular science cases. MAF is an object-oriented
analysis framework that facilitates implementation of metrics that use the output
of operational simulations (e.g., OpSim runs) to consistently generate metrics. Two
weak lensing-related metrics are already included in MAF, as described in Section 9.3
of LSST Science Collaborations et al. [2017]: those are the AngularSpread7 metric
and KuiperMetric. These metrics measure the uniformity of the distribution of the
rotational angle of the camera. They quantify how well a certain observing strategy
averages down the additive shear systematics induced by non-uniformity of parallactic
angle and rotational sky position.

A metric from the present work is incorporated into MAF8; this metric is dis-
cussed in Section 3.5.2. This metric should be sufficient, under some assumptions,
to represent the information from the full analysis of the additive bias on the cosmic
shear for a given dithering strategy, and can be used to compare different observing
strategy choices once a dithering strategy is set.

3.3.3 Survey Strategies Studied

An official OpSim reference simulated survey, baseline2018a9 assigns field positions
covering the 18,000 deg2 of sky in declinations ranging between −62◦ and +2◦, with
at least 825 visits per field across all of the six ugrizy filters. In addition to the main
WFD survey, baseline2018a schedules other science proposals (mini-surveys): the
Galactic plane, 5 deep drilling fields (DDFs), the north ecliptic spur, and the south

6https://www.lsst.org/scientists/simulations/maf
7https://github.com/LSST-nonproject/sims_maf_contrib/blob/master/mafContrib/

angularSpread.py
8https://github.com/lsst/sims_maf/blob/master/python/lsst/sims/maf/metrics/

weakLensingSystematicsMetric.py
9http://astro-lsst-01.astro.washington.edu:8080, http://ls.st/doc-28382
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celestial pole. Fig. 3.1 shows the focal plane centres in baseline2018a without taking
into account dithering.

Four other OpSim strategies that were made available as a part of the call for
observing strategy white papers by the LSST Project in 2018 to the LSST science
community to help define the observing strategy, are also studied in this paper. We
selected these strategies among those provided by the Project as representative ex-
amples of simulations that exhibit features of particular relevance to weak lensing
systematics mitigation. These features are: a large area (pontus 2002), shorter visits
(pontus 2049), single-exposure visits (kraken 2042). The baseline strategy defines
a visit as two 15-second exposures with a readout in-between, which we refer to as
2×15s; we will refer to a single-exposure 30-second visit as 1×30s. A noteworthy
category of strategies is rolling cadence strategies. These focus on a limited band of
declination for a period of time, and then move on to other declination bands, leading
to a shorter interval between repeated visits for the declination band that is being
observed at any given time. These strategies are particularly of interest for transient
science, due to the better sampling of light curves. Due to the lack of rolling strategy
OpSim runs that are comparable with the ones selected for investigation in this paper,
we are not including rolling cadence strategies in this work. Table 3.1 summarises
the strategies considered in this work.

Observing strategy simulations have also been generated using tools other than
OpSim, and have been studied and ranked along with other strategies in Lochner
et al. [2018]; in particular, these are the feature-based strategy slair [Naghib et al.,
2019], and ALT Sched [Rothchild et al., 2019]. However, we excluded these strategies
from this work because (a) they did not provide new information that influences
our results, and (b) they use dramatically different algorithms than OpSim, which
complicates interpretation of the results. Some beneficial aspects of the algorithmic
changes of these runs have been incorporated in later OpSim development.

For the majority of the analysis, we made cuts on the dust-corrected minimum
co-added depth. The cut at the end of the 10th year of the survey (Y10) excludes
regions with depth shallower than point-source magnitude i = 26 mag, corresponding
to ‘gold sample’ galaxies with extended-source magnitude i < 25.3 mag, based on
an approximate conversion between the magnitudes, following the DESC Science
Requirements Document [Mandelbaum et al., 2018a]. At the end of the first year
of the survey (Y1), the cut excludes regions shallower than point-source magnitude
i = 24.5 mag, assuming the survey limiting magnitude shifts by 2.5 times the base-
10 logarithm of the observing time. A more detailed depth optimization would be
valuable for future work. In addition, we made cuts based on extinction, considering
only areas with values of reddening E(B−V ) < 0.2. This cut eliminates areas of high
extinction and high dust uncertainties [Schlafly and Finkbeiner, 2011]; practically,
this cuts out the majority of the Galactic equator. More quantitatively, applied on
baseline2018a, it reduces the area of the 10-year survey from 18,040 to 14,695 deg2;
after that, a co-added depth cut of i > 26 mag only slightly reduces it further to
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Figure 3.4: A summary of the angles mentioned in this paper. rSP and rTP refer
to rotSkyPos and rotTelPos respectively. The figure indicates the right ascension
and declination axes defined in the equatorial coordinate system indicated by the
blue grid. The green grid corresponds to the horizontal coordinate system (with the
Zenith being aligned with the altitude). Up is the +y direction in a single exposure,
and therefore, what we refer to as axis-parallel models are perpendicular (or parallel)
to Up, while radial models are radial in the plane of the figure. Radial is defined as
purely pointing towards the centre and changing with radius. Finally, the parallactic
angle q is the angle between rTP and rSP. The figure also illustrates e1 = |e|cos(2ϑ)
and e2 = |e|sin(2ϑ), where |e| = (a2 − b2)/(a2 + b2). Here a is the semimajor axis,
b is the semiminor axis, and ϑ is the angle between the semimajor axis and the +α
direction in the equatorial coordinate system.

14,691 square degrees.

3.3.4 Dithering

We use two types of dithering in this paper. First, we incorporate translational
dithering per visit into the strategies, and apply it to each field position, using one
of three different translational dithering patterns: hexagonal, random, and spiral, all
shown in Fig. 3.2. It is possible to use different dithering timescales (e.g., per-night
dithering), and the impact on changing the timescale on our results will be discussed in
this paper. The result of random dithering, as an example, is illustrated in Fig. 3.3.
Random dithering in particular refers to choosing a number of offsets at random
(constrained within the size of the FOV), and applying them to the undithered field
position. Dithering algorithms are used as implemented in MAF.

Secondly, we apply rotational dithering at random between [−90, 90] degrees at
every filter change, to satisfy the physical restriction that the camera can only rotate
within that range due to the camera’s cable wraps. Filter changes also require a reset
on the camera angle, and take four times as long as a rotational dither, so using filter
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changes as an opportunity to dither rotationally reduces overheads compared to an
approach that considers separate filter changes and rotational dithers 10. The camera
naturally rotates on small scales when tracking the sky, but we ignore this slewing.
The reason behind this is that a more accurate rotational dithering algorithm needs
to be used during the operation of the telescope (or when running the simulation)
rather than afterwards in post-processing, so the limits on camera rotation angle are
respected. Therefore, ignoring this additional slewing is necessarily more conservative
than otherwise. A more sophisticated rotational dithering algorithm (e.g., one that
aims to homogenise the imaging quality throughout the sky, taking into account see-
ing, airmass, etc.) can be implemented in the future, but this cannot be retroactively
implemented within OpSim runs, and so it is beyond the scope of this paper.

3.4 Method

To define metrics for weak lensing additive systematic biases, we start by modelling
the positions of a large number (here we use 100,000) stars randomly sampled within
the usable area. We define the usable area as being the WFD area for the observing
strategy in question, after placing a cut based on the co-added depth and extinction,
as described in Section 3.3.3. The distributions of properties of individual visits
in the i-band and co-added properties for these stars are then used for a variety
of systematics tests described in the subsections below. We define toy models for
the true and estimated PSF size and shape within a single exposure as a function of
position within the focal plane as described in Subsections 3.4.1 and 3.4.2. We present
a formalism for combining them in Subsection 3.4.3. We then propagate the effects of
PSF systematics onto two-point correlation functions used to constrain cosmological
parameters in Subsection 3.4.4.

Since observational weak lensing additive shear systematics are associated with
special directions (typically, though not always, in single exposures), we can test
whether specific special directions are being imaged uniformly when considering all
exposures. The following subsections detail specific spatial patterns associated with
particular sources of systematic uncertainty, and the uniformity tests that we use to
rank three different dithering strategies and five observing strategy simulations with
regard to how well they average down certain systematics.

Fig. 3.4 summarises the angles referred to in the subsections below.

3.4.1 Axis-parallel model

Several detector non-idealities induce systematics in the shear signal. The brighter-
fatter effect can be correlated with the charge-transfer direction, leaving PSF model
shape errors due to residual brighter-fatter effect along this direction ([Mandelbaum,

10https://github.com/lsst-pst/survey_strategy/blob/master/Constraints.md
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Figure 3.5: The radial (top) and horizontal (bottom) toy models for the PSF model
shape errors due to PSF modelling imperfections and residual CCD charge transfer
biases as explained in Sections 3.4.1 and 3.4.2. The orientations of the line segments
represent the shear angle at their positions with respect to the centre of the focal
plane, and their lengths represent the magnitude of the shear. The magnitudes of
the shears are chosen such that the average residual ellipticity (apart from inner 80%
excluded areas – see text for details) matches the values described in Sections 3.4.1
and 3.4.2.
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2018]); for example, this can be a purely horizontal or vertical residual. In addition,
CTI also leave a residual along the charge transfer direction, i.e. leaving a horizontal
or vertical residual in the image plane (see e.g., [Massey et al., 2010]). Translational
dithering will not average down this systematic bias (the residuals will look the same
after any translational dithering). We therefore test the impact of a combination of
translational and rotational dithers.

Bradshaw et al. [2018] suggest that more realistic LSST-specific residual due to
CCD effects will be a combination of vertical and horizontal (due to the combination
of BFE, CTI, and CCD output amplifier response); therefore, our horizontal-only
model is necessarily more conservative than this combination of effects.

For a statistical uniformity test, we use a Kuiper test [Kuiper, 1960] to compare
the distribution of charge transfer angles with respect to the centre of the focal plane
for each star against a uniform distribution. In particular, for each dithered posi-
tion, the Kuiper test returns a D-statistic, defined as the distance between (a) the
empirical distribution function of angles between +x and the lines connecting a set
of observed stars to the centre of the focal plane and (b) a specific reference cumula-
tive distribution function (in our case the uniform cumulative distribution function).
To more quantitatively forecast the effect on cosmological observables, we use a toy
model of completely horizontal PSF model residuals (before rotational dithering),
with |ePSF| =

√
e21 + e22 = 0.05, and the difference between the true and estimated

PSF model, ∆e = êPSF − ePSF = 0.0015. The horizontal model is illustrated in the
bottom panel of Fig. 3.5. At each dither position or centre of the focal plane for each
exposure, we find all simulated stars visible in that exposure and apply this toy model
for the PSF shape and PSF model shape residual in that exposure.

It should be noted that what we refer to as rotSkyPos in Fig. 3.4 is the angle
that is relevant to the systematics that we are concerned about (and the one that we
should isotropise to average down the axis-parallel systematics), since this is the angle
that is between Up in the focal plane (a reference angle defined in the focal plane
coordinate system) and North (the reference angle for the orientation of galaxies on
the sky). rotSkyPos and rotTelPos (the latter defined as the angle between up in the
focal plane and zenith) are related via the parallactic angle, which has been studied
in the context of other systematics (e.g., differential chromatic refraction) in LSST
Science Collaborations et al. [2017].

3.4.2 Radial model

It has been empirically observed in previous surveys (e.g., HSC) that errors aris-
ing from imperfect PSF modelling using the current state-of-the-art PSF modelling
algorithms, such as PSFEx [Bertin, 2011], exhibit radial patterns that significantly
increase near the edges of the focal plane (as can be seen in, e.g., Fig. 9 in [Jarvis
et al., 2016] and Fig. 9 in [Aihara et al., 2018]). These may arise due to difficulty in
modelling the complex and strongly-varying optical PSF component in those regions.
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While newer PSF modelling algorithms (e.g., Piff11) are under development and may
improve upon the current state of the art, they are not yet sufficiently well demon-
strated, and radial PSF residuals are likely to persist with any method at some level
since real PSFs typically have a strong radial component at the edges of the focal
plane. Hence, it is worth investigating the impact of observing strategy on radial PSF
model shape errors near the edge of the focal plane. The special direction associated
with additive systematics due to this type of PSF modelling error, therefore, points
towards the centre of the focal plane. Thus, assuring the uniformity of the distribution
of angles between the line connecting the observed objects to their respective centres
of focal planes in individual exposures and +x (perpendicular to the ‘up’ direction in
Figure 3.4) is needed to reduce systematic uncertainties through observing strategy.
For a statistical uniformity test, we use the Kuiper test to assess the uniformity of
the distribution after dithering. To measure the effect on cosmic shear, we use a toy
model that assumes a perfect PSF model for stars that are within 80% of the radius
of the FOV; outside of that range, the radial PSF model shape and its error are set
to E[∆eradial] = 0.005 with E[eradial] = 0.08, where ∆e = êPSF, radial − ePSF, radial is the
difference between the true and estimated PSF model. This toy model is illustrated
in the top panel of Fig. 3.5.

3.4.3 Averaging Across Exposures

Due to the combination of rotational and translational dithering, every star will be
imaged from many positions within the focal plane with different orientations for
the PSF model shape residuals, which will allow us to effectively average down the
residual ellipticities. Given that the shape and size of a star or a galaxy are defined
by second moments of the light profile, we first convert our toy PSF model shapes
and residual ellipticities to second moments. The residuals are defined as:

δe1 = êPSF1 − ePSF1 , δe2 = êPSF2 − ePSF2 . (3.4)

The shape and size of an object are, by definition:

e1 =
Mxx −Myy

TrM
, (3.5)

e2 =
2Mxy

TrM
, (3.6)

where TrM = Mxx +Myy is the trace of M . Using Equations (3.5) and (3.6), we get:

M =
TrM

2

[
1 + e1 e2
e2 1 − e1

]
. (3.7)

11https://github.com/rmjarvis/Piff
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In a coadded image constructed based on the weighted mean of image intensities
in individual exposures, the intensity and hence the second moments add linearly.
The weight function in the coaddition typically relates to factors such as the sky
background noise, and does not generally correlate with the PSF shape. This allows
us to assume that all epochs get the same weight in our toy model. Hence, assuming
no astrometric errors, we take the arithmetic mean of each matrix element Mij to get

E[M ] = N−1
∑N

l=1Mij,l for all exposures l at a certain sky location, and then we can
go back to ellipticity space using equations (3.5) and (3.6).

The size parameter TrM can be an arbitrary number, as it does not affect the
values of the ellipticities throughout the process described here.

3.4.4 Effect on Cosmological Measurements

We use the ρ-statistics, as in Rowe [2010] and Jarvis et al. [2016], to propagate the
ellipticity and size residuals due to the PSF modelling errors. The ρ statistics are
defined as

ρ1(θ) = E[δe∗PSF(x) δePSF(x + θ)],
ρ2(θ) = E[e∗PSF(x) δePSF(x + θ)],

ρ3(θ) = E[

(
e∗PSF

δTPSF

TPSF

)
(x)

(
ePSF

δTPSF

TPSF

)
(x + θ)],

ρ4(θ) = E[δe∗PSF(x)

(
ePSF

δTPSF

TPSF

)
(x + θ)],

ρ5(θ) = E[e∗PSF(x)

(
ePSF

δTPSF

TPSF

)
(x + θ)],

(3.8)

where TPSF = TrM is the PSF model trace, and δTPSF is the error in the PSF model
trace.

These ρ-statistics are correlation functions of different combinations of PSF model
shapes, shape residuals, and size residuals, defined because they can be directly related
to the total additive bias on the cosmic shear. Given the ρ statistics, the bias in the
cosmic shear signal is of the order:

δξ+(θ) = 2E
[
TPSF

Tgal

δTPSF

TPSF

]
ξ+(θ)

+ E
[
TPSF

Tgal

]2
ρ1(θ) − 2αE

[
TPSF

Tgal

]
ρ2(θ)

+ E
[
TPSF

Tgal

]2
ρ3(θ) + E

[
TPSF

Tgal

]2
ρ4(θ)

− 2αE
[
TPSF

Tgal

]
ρ5(θ),

(3.9)
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where Tgal is the true galaxy trace, and α measures the leakage of the PSF shape into
the galaxy shapes, which we take as 0.01, consistent with the current state-of-the-art
methods [Troxel et al., 2018]. We assume there are no PSF model size errors, which
allows us to drop the terms containing ρ3, ρ4 and ρ5, after checking empirically that
for a typical value of δTPSF

TPSF
= 0.001, and under the assumption that they do not

correlate strongly with PSF shape or PSF model shape errors, including those three
terms changes the value of δξ+ by less than 2%.

We use a sample of galaxies from the COSMOS catalog12 [Mandelbaum et al.,
2015] with limiting i-band magnitude of 25.2, which is input to GalSim13 [Rowe
et al., 2015] to calculate the ratio E [TPSF/Tgal] as follows: first, for every galaxy in
COSMOS, we use GalSim to simulate a parametric model of it using Sersic profiles as
described in Mandelbaum et al. [2015] of it. We then calculate its adaptive moments
(weighted second moments for which the weight function is an elliptical Gaussian that
is iteratively adjusted to match the moments of the objects being measured). We also
draw a FWHM value for the PSF from a log-normal distribution with a median of
0.6 arcsec and standard deviation of 0.1 arcsec. These are the best-fit parameters of
the distribution of PSF FWHM values measured at the Cerro Pachón site using a
Differential Image Motion Monitor and corrected using an outer scale parameter of
30 m.14 To make the model more realistic, we shift it from a wavelength of 500 nm
(that is provided in the LSST SRD) to 800 nm (corresponding to the i-band that we
are working in), assuming a power-law wavelength dependence for the PSF FWHM,
with an index of −0.2. We then add 10% to the PSF FWHM to account for non-
atmospheric PSF effects (10% of the atmospheric contribution is the upper limit for
the non-atmospheric contribution to the PSF size as specified in the LSST SRD).
We use GalSim to draw a Kolmogorov profile with this FWHM and calculate its
adaptive moments. We then evaluate the trace of the PSF-convolved galaxy image
and of the PSF image from their moments, and evaluate the ratio TPSF/Tgal. We also
apply a resolution factor minimum cut, defined as 1 − TPSF

TPSF+Tgal
at 0.1, to exclude

galaxies that are too small to be resolved compared to stars. Finally, the list of trace
ratios that passes the resolution factor cut is arithmetically averaged, giving a value
of 2.10 with a population standard deviation of 1.95 due to a long right-side tail of
the distribution of ratios. This is close to that found by [Jarvis et al., 2016] which
was 2.42. Given the broad distribution of galaxy sizes in real galaxy samples, the
difference between these numbers represents a modest shift towards smaller galaxy
size expected in LSST analysis compared to the DES analysis in [Jarvis et al., 2016].

12https://github.com/GalSim-developers/GalSim/wiki/RealGalaxy-Data
13https://github.com/GalSim-developers/GalSim
14https://www.lsst.org/scientists/publications/science-requirements-document
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Figure 3.6: Distributions of the D-statistic from the Kuiper test for the four cases of the
radial model with translational dithering applied at Y1 (a) and Y10 (b), and the horizontal
model with both translational and rotational dithering applied at Y1 (c) and Y10 (d). Each
value of the D-statistic comes from comparing the distribution of angles pointing from a
single star to the dithered focal plane which observe it to a uniform distribution. For each
of the three translational dithering strategies, the plots show the histograms and kernel
density estimators of the D-statistic distributions. In (c), the distribution of D-statistics is
not smooth due to two reasons: this distribution is made up of a small number of samples;
and unlike the case in (a), the dithering timescale is once per filter change, which leads to a
lot of the angle distributions looking almost the same, and the Kuiper test cannot distinguish
one of them being more uniform than the other (especially that the multimodal behavior
appears for D values larger than 0.5, where the Kuiper test is indicting that the distribution
is very far from being uniform. At Y1, the random dithering strategy strongly outperforms
the other strategies in the case of the radial model, and has average performance in the case
of the horizontal model). At Y10, the random dithering strategy is outperformed by the
hexagonal strategy in the case of the radial model, but the differences between all dithering
strategies at Y10 are relatively small. An illustrative plot of two distributions contributing
to the D-statistics shown here is presented in Fig. 3.7.
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Figure 3.7: Illustration of two of the distributions that contribute to our evaluations
of the D-statistics. These distributions are of the angles between +x and the lines
from centres of the focal plane to an observed star. These plots correspond to the case
of the hexagonal dithering at Y10, applied on the radial model. Left: 5th percentile
(corresponding to a D-statistic of 0.06), right: 95th percentile (corresponding to a
D-statistic of 0.23). A line corresponding to a uniform distribution has also been
overplotted. It can be seen that the plot on the left is much closer to a uniform
distribution than the one on the right.
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3.5 Results

First, we present results from the comparison of different dithering strategies applied
to the baseline strategy, baseline2018a. We then choose the best dithering strategy
and use it for the rest of this section as we explore the importance of other observ-
ing strategy choices, such as varying exposure time and area coverage. In studying
dithering strategies, we start with a statistical uniformity test, and then present the
full analysis (i.e., the effect on cosmic shear). When studying other observing strat-
egy choices, we present the full analysis, then describe a simple proxy metric that
provides a consistent estimation of the performance rankings of different strategies.
We have made this metric available via MAF.

3.5.1 Dithering Strategies

Previous metrics in LSST Science Collaborations et al. [2017] discussed in Section 3.3.2
do not show significant differences between different dither patterns, but rather in-
dicate that rotational dithering is helpful in beating down systematics related to the
parallactic angle.

In this subsection, we consider statistical tests as well as the bias induced in the
cosmic shear signal due to the discussed systematics, contrasting different combina-
tions of translational and rotational dithering, extending the previous work to models
of other additive WL systematics.

In all cases, we study the dithering on a per-visit timescale. Given that on average
the LSST is designed to return to the same field position twice per night, choosing a
per-night dithering strategy will, on average, multiply the additive bias on the cosmic
shear by 2. Choosing a different timescale will, in general, multiply the additive
bias on the cosmic shear by a constant factor, without affecting the relative rankings
between the strategies we consider.

Statistical Tests of Uniformity

Fig 3.6 shows the values of the D-statistic from the Kuiper test described in Sec-
tion 3.4.2, computed using Astropy [Price-Whelan et al., 2018] for 100,000 stars in
the (RA, Dec) field described in Section 3.4. The sample distributions used in the
Kuiper test come from each star, where we compile a distribution of angles between
the lines from the stars to all the centres of focal plane that can observe this star and
the +x axis. The result is presented for all dithering strategies, for both the radial and
horizontal toy models for systematics, and at both Y1 and Y10. D-statistics closer to
0 correspond to the distribution of angles being closer to uniform. Given that these
angles are used to define coordinate systems for galaxy shapes, and that ellipticities
are spin-2 quantities, the results are shown modulo 180 degrees. We use angle distri-
butions rather than ellipticities here due to their interpretability. It is important to
note, however, that given our simple models, there is a one-to-one mapping between
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these two quantities. At Y1, random dithering provides the best systematics miti-
gation out of the three dithering strategies considered here, particularly in the case
of the radial model. At Y10, random dithering has moderate performance compared
to hexagonal and spiral dithering. This Kuiper test is less discriminating in later
years (i.e., Y10), where the D-statistic values have shifted closer to 0 compared to
Y1. It is also less discriminating than a full analysis that computes the additive bias
on the cosmic shear, since the latter involves computing the shear bias to the second
power. The Kuiper test does, however, preserve the ranking of the performance of the
dithering patterns. Fig. 3.7 shows illustrative plots of two of the angle distributions
(specifically, in the case of hexagonal dithering applied to the radial model at Y10).
The figure compares distributions at the 5th percentile and 95th percentile of the
D-statistics values, to illustrate their difference in uniformity.

Bias Induced in Cosmic Shear

To compute the bias in the cosmic shear, we use the formalism in Section 3.4.4, using
TreeCorr ([Jarvis et al., 2004], [Jarvis, 2015]) to compute the correlation functions
between 0.01 and 10 degrees in 26 logarithmically spaced bins. Fig. 3.8 shows the
additive bias in the cosmic shear after Y1 and Y10 for the three translational dithering
strategies applied to baseline2018a. The absolute magnitude of the curves depends
on the specific numbers in our toy models, and thus only the relative ordering of the
curves is meaningful. These plots are consistent with the results from the simpler
statistical tests in Fig. 3.6.

Random dithering is the best-performing dither pattern for all cases except for the
horizontal model at Y1. Awan et al. [2016] also found that random dithering leads
to the best performance when quantifying the effect of dithering strategies on large-
scale structure systematics. For these reasons, we choose the random translational
dithering strategy in the following subsections.

3.5.2 Other Aspects of Observing Strategy

We now focus our attention on how other aspects of observing strategy affect weak
lensing additive systematics, adopting random dithering applied to all OpSim runs
that we consider in this work, summarised in Table 3.1.

Effect on Cosmic Shear

Fig. 3.9 shows the additive bias on the cosmic shear signal for the survey strategies
studied. As mentioned before, only the relative ranking of strategies is meaningful.
The plot shows that the larger-area strategy (pontus 2002) performs much worse than
the baseline; strategies that spend more time in the Galactic plane (colossus 2664)
perform slightly worse; the strategy with 30-second single visits (kraken 2042) does
slightly better than the baseline 2×15s; and the strategy with 20-second single visits
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(a) Radial model – translational dithering: Y 1 (b) Radial model – translational dithering: Y 10

(c) Horizontal model – translational + rotational
dithering: Y 1

(d) Horizontal model – translational + rotational
dithering: Y 10

Figure 3.8: Comparison between the additive systematic bias in the cosmic shear
signal after propagating the PSF model residuals using the radial and horizontal
models as indicated, and the formalism in Section 3.4.4, for the three translational
dithering strategies described in Fig. 3.2. These dithering strategies are applied to the
baseline2018a reference OpSim run. The plots provide a ranking of the patterns for
Y1 and Y10; the random dithering strategy outperforms the other options except for
the case of the horizontal model at Y1. The plots show 300 realizations obtained by
bootstrapping the results for the stars used to calculate the correlation functions, to
show the scatter. Note that the vertical axes span different ranges in different panels,
and in particular, for example, (a) shows that random strategy mitigates weak lensing
additive systematics by a factor of 2–3, while in (d) the differences across all strategies
tiny.
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Figure 3.9: A comparison of the additive systematic biases in the cosmic shear signal
for the strategies in Table 3.1 at Y1 and Y10 of the survey. These biases were obtained
using the systematic error propagation formula in Section 3.4.4, for the toy model with
radial residuals from Section 3.4. The relative magnitudes of these curves provides a
meaningful ranking of the strategies, with lower systematic bias being preferred, while
the absolute magnitude is arbitrary. Note that the scales spanned by the vertical axes
on the two panels are different.
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pontus 2489 performs significantly better than the baseline. Physical reasoning for
these results is provided below. It would be expected for a rolling cadence strat-
egy that begins rolling during the first year of the survey to perform better than
baseline2018a during Y1 due to its focusing on a smaller area within this year, and
to perform similarly well to baseline2018a at Y10 assuming that the rolling cadence
strategy is gently rolling and assures similar survey uniformity across the footprint
by the end of the survey.

Counts Metric15

We again use a Kuiper test as a metric for ranking the observing strategies. However,
since the dithering strategy we apply is the same for each OpSim run, only the
number of observations will be different for the different strategies (and any other
effects related to the distribution of angles pointing from the objects to the centres of
focal planes will on average be the same for all the strategies). Therefore, we initially
defined the metric here as the average number of observations for a set of objects
randomly distributed in RA and Dec, observed in the i-band. We further developed
this metric to be easily run within MAF, and therefore some development choices,
such as replacing the 100,000 random positions with a sparse HEALPix16 [Górski
et al., 2005] grid, have been adopted. Empirical checks show that a HEALPix grid
with as few as 5,000 cells (equivalent to a HEALPix Nside specification of 32) yields
consistent results with 100,000 randomly-sampled objects from a uniform distribution.
While this is sufficient for the counts metric, a HEALPix grid of 5,000 cells is not
sufficient for the full correlation function-based analysis because (a) the number of
objects is not sufficient to measure precise small-scale correlations, and (b) gridded
input data, when used as an input to tree-based correlation function estimators such
as TreeCorr, may induce spurious features in the correlation function. The counts
metric is plotted as a function of observing strategy in Fig. 3.10, which provides
consistent results with Fig. 3.9. This metric also explains why some strategies perform
better: additive WL systematics, such as the ones studied here, average down with
the number of exposures, since more exposures lead to the distribution of angles
pointing towards the centre of the focal plane becoming more uniform, given that the
same dithering strategy is adopted. pontus 2002 covers a larger area in the same
amount of time, so each object is observed fewer times on average. colossus 2664

spends more time in the Galactic plane, which is not used in the weak lensing analysis
due to the high extinction, reducing the time available for the WFD survey in the
areas that pass our cut and again lowering the average number of observations for
each object. kraken 2042 makes single 30-second observations rather than two 15-
second observations, eliminating the read-out time in between, allowing for more

15https://github.com/lsst/sims_maf/blob/master/python/lsst/sims/maf/metrics/

weakLensingSystematicsMetric.py
16https://healpix.sourceforge.io
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Year baseline2018a c 2664 k 2042 p 2489 p 2002 Pearson-r

1 1 1.00 0.96 0.82 1.42 -0.84
10 1 1.00 0.99 0.99 1.46 -0.64

Table 3.2: the relative magnitude of the cosmic shear bias normalised to the
baseline2018a strategy, based on a χ2 fit; lower numbers correspond to better perfor-
mance. To demonstrate the usefulness of our proxy metric, the Pearson r-correlation
coefficient is also reported between the proxy metric values and the best-fit numbers
in the table. This relation is stronger at Y1, while it eventually gets saturated at Y10
for runs with more than 230 average i-band visits, when the observed distribution of
the pointing from objects to focal plane centres gets sufficiently sampled

time to observe the same area, and thus providing a larger number of observations.
pontus 2489 makes single 20-second observations in most bands, which allows for
even more observations.

Table 3.2 shows the relative magnitudes of the cosmic shear bias normalised to
the baseline2018a strategy, based on a χ2 fit; as well as the correlation coefficient
between the metric values and the χ2 fits. We see strong (negative) correlation at Y1,
and moderate (negative) correlation at Y10. The reason is that at Y10, once E[N ]i ∼
225 visits, the distribution of angles between the line connecting the star locations to
focal plane centres and +x is sufficiently sampled, making for a rotationally uniform
distribution. In conclusion, this simple proxy metric can be used at Y1 to clearly
rank the different strategies, while it can be used in Y10 to detect particularly bad
strategies for WL systematics, such as pontus 2002 (although this strategy does not
meet LSST SRD requirements for median number of visits).

The weak lensing analysis in general will use multiple bands, not just i-band; the
choice of bands used is driven by PSF modelling adequacy and signal-to-noise ratio
considerations, and will most likely include r, i, and z. Studies of strategies that have
a different distribution of time spent observing in each filter (e.g., for strategies that
spend more time on i vs. r, or vice versa) should take into account that while the
metric allows for using different filters or combinations thereof, results from different
filters may not be directly comparable with the metric results in this paper. The
metric will also not be robust if different strategies use different dithering algorithms
– in those cases, using a Kuiper test in the way described in Section 3.5.1 would be
necessary for a fair comparison.

3.6 Conclusion

The LSST will provide new opportunities for weak lensing and dark energy science in
general. The LSST observing strategy will affect these science cases in different ways.
Thus, exploring the impacts for individual science cases is essential to optimising
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Figure 3.10: The average number of i-band exposures for observing strategies de-
scribed in Table 3.1 normalized to baseline2018a at each milestone. This metric
provides a simple way to rank the performance of different observing strategy choices
– with higher number of exposures corresponding to better performance. The link
between this metric and the error on cosmic shear is demonstrated in Table 3.2.
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the observing strategy. The LSST also provides new opportunities for systematics
mitigation due to its unique dithering (in scale and number) and observing strategies.

We used models of additive cosmic shear systematics and simulated how they are
affected by dithering and other observing strategy considerations, such as variations
in area and exposure time, using several LSST operational simulations. Using a
formalism to propagate these models into additive shear bias, as well as simpler
metrics, we conclude that additive cosmic shear systematics will average down best
with (a) random translational dithering (applied in addition to random rotational
dithering at every filter change), and (b) with higher numbers of visits in the WFD
survey area. These results are not necessarily the same for other science cases (or
even for WL statistical constraining power), and will eventually be used in conjunction
with how the observing strategy affects other science cases to recommend an optimal
observing strategy for the LSST.

The study in this paper has only considered WL cosmic shear systematics. There
is a depth-area tradeoff between cosmic shear systematics and WL statistical con-
straining power, where it was found in Lochner et al. [2018] that the WL constraining
power favors survey strategies with larger areas, since the change in area has a larger
effect than the loss of the average number of visits (and consequently, assuming the
same visit duration, the loss in depth). A full exploration of the tradeoff between
the impact of observing strategy on the statistical constraining power for cosmology
versus for systematics mitigation is an important part of future work.
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Chapter 4

Impact of Photometric Redshift
Errors on Rubin LSST 3x2pt
Analysis

This Chapter is a draft of a journal paper being prepared for submission.

4.1 Introduction

One major goal of the next generation of astronomical imaging surveys (such as the
Vera C. Rubin Observatory Legacy Survey of Space and Time, hereafter LSST; LSST
Science Collaboration et al. 2009, Ivezić et al. 2019) is to increase our understanding of
dark energy [Weinberg et al., 2013]. These surveys use a variety of methods to probe
dark energy, such as: weak gravitational lensing, galaxy clustering, supernovae, and
baryon acoustic oscillations. Dark energy analyses using these probes as applied to
imaging data will rely on accurate and well-characterized photometric redshifts [e.g.,
Ma et al., 2006, Bernstein and Huterer, 2010].

In this work, we focus on three observable correlations that probe the large-scale
structure of the Universe and that rely on galaxy redshift distributions in redshift
bins (hereafter referred to as tomographic bins), rather than on point estimates of
photometric redshifts. These correlation functions involve the position of galaxies,
and their shear, or the observed shape distortion due to the effect of gravitational
lensing, the deflection of light arriving from distant galaxies as it passes through the
large-scale structure of the Universe [for a review, see Kilbinger, 2015]. These three
observables are (a) the galaxy two-point correlation function (‘galaxy clustering’),
(b) the shear-shear correlation function, which reveals the correlation between the
shapes of galaxies due to weak gravitational lensing by the large-scale structure of
the Universe, and (c) the cross-correlation between the source galaxy shapes and lens
(foreground) galaxy positions, or ‘galaxy-galaxy lensing’. Joint analysis of large-scale
structure using these three two-point correlations is referred to as ‘3x2pt’ analysis

50



[e.g., DES Collaboration et al., 2021, Heymans et al., 2021].

Separating the distribution of galaxies into tomographic bins allows more informa-
tion on the growth of structure in the Universe to be extracted from the measurements
[e.g., Hu, 2002, Huterer, 2002, Benabed and van Waerbeke, 2004, Bernstein and Jain,
2004, Takada and White, 2004]. This is particularly helpful in providing significantly
more information about dark energy by using these correlation functions in each red-
shift bin and across different redshift bins, than would be extracted when considering
the correlation functions of the galaxy sample overall.

Future imaging surveys will enable measurements of cosmological parameters at
unprecedented statistical precision, and therefore, require tighter control of system-
atic biases and uncertainties than in past surveys [e.g., Weinberg et al., 2013, Mandel-
baum, 2018]. The focus of this work is photometric redshift uncertainties, which have
been explored in the context of weak lensing and/or 3x2pt analysis in the past [e.g.,
Ma et al., 2006, Bernstein and Huterer, 2010, Hearin et al., 2012, Cunha et al., 2014,
Mandelbaum et al., 2018a, Schaan et al., 2020]. Previous studies have often used
somewhat realistic photo-z error models with simplified single probe analysis without
accounting for some of the key systematic uncertainties for weak lensing (e.g., Ma
et al. 2006), or used overly simplistic photo-z error models with more complete 3x2pt
analysis including many sources of systematic uncertainty (such as a two-parameter
photo-z error model with constant redshift bias and variance error parameters, and
no outlier error model, as in Mandelbaum et al. 2018a). Since photometric redshift
uncertainties can be degenerate with other sources of systematic uncertainty in weak
lensing [e.g., Stölzner et al., 2021], there is a strong motivation to consider require-
ments on a more complex photometric redshift error model in the context of a full
3x2pt analysis with other key sources of systematic uncertainty.

In this paper, we create a 15-parameter photo-z model, with one bias, one vari-
ance and one outlier parameter in each of five source redshift bins. We also use a full
3x2pt analysis and include parameters to marginalize over other sources of system-
atic uncertainty, such as intrinsic alignments [for reviews, see Joachimi et al., 2015,
Kirk et al., 2015, Kiessling et al., 2015, Troxel and Ishak, 2015] and galaxy bias [for
a review, see Desjacques et al., 2018]. Using this more complex and realistic model
for photo-z errors, we study the effect of assuming incorrect photo-z errors on cos-
mological parameters. This allows us to (a) derive greater understanding of which
redshift bins and photo-z uncertainty parameters are most important in determining
the constraints on cosmological parameters, and (b) set requirements on the minimum
knowledge of photo-z bias, variance, and outliers such that they are not a dominant
factor in the cosmological parameters error budget. While we carry out an analy-
sis for an LSST-like survey setup, the methodology we use for this purpose is easily
transferrable to other survey setups. Our results should help guide and prioritize ef-
forts on obtaining more accurate photo-z models through collection of representative
spectroscopic redshift samples [e.g., Newman et al., 2015, Masters et al., 2017] and
other means.
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In Section 4.2, we describe the theoretical background for the concepts used
throughout this paper. In Section 4.3, we explain the methodology used to cre-
ate the photometric redshift error model, carrying out the Fisher information matrix
forecast, and using conditional entropy to assess the importance of different photo-
metric redshift error parameters. In Section 4.4, we present the results obtained from
the forecast and feature importance method. Finally, in Section 4.5, we summarize
our findings and discuss future work.

4.2 Background

In this section, we describe the three observable quantities that are the inputs to
a 3x2pt analysis. We also provide background on photometric redshifts and their
importance to the measurement and interpretation of 3x2pt correlation functions.

4.2.1 3x2pt Measurements

We consider three two-point correlation functions in this subsection. These correlation
functions are computed in different tomographic bin pairs, providing information
about the growth of structure in the Universe, and thus, about dark energy. We
refer to the three following correlation functions combined as ‘3x2pt’. For recent
treatments of 3x2pt analyses, see, e.g., Krause et al. 2021, and for more details on
the individual probes, see e.g., Kilbinger 2015.

Galaxy clustering is the two-dimensional angular auto-correlation function be-
tween the positions of lens galaxies in each of the ten lens sample redshift bins, after
taking into account galaxy bias, or the ratio of the overdensities between the observed
positions of galaxies and the underlying dark matter overdensities, which is explained
in more detail in 4.3.2).

Galaxy-galaxy lensing is the correlation function between the shape distortions of
the galaxies in the source sample, and the positions of the foreground galaxies that
cause this distortion, represented by the position of galaxies in the lens sample bias.
While galaxy-galaxy lensing is empirically computed using cross correlation functions
from observed galaxies, we can compute the galaxy-galaxy lensing theoretically by
convolving the matter power spectrum with the product of two transfer functions
that trace the matter density in the lens sample galaxies and that of the shear for
galaxies in the source sample.

The light we observe from distant galaxies gets deflected by the large-scale struc-
ture of the Universe. The shapes of the galaxies as observed are consequently sheared
(among other changes to their size and flux). This effect is known as weak gravita-
tional lensing, and is a subtle effect that must be measured statistically. Lensing of
galaxies by the large-scale structure of the Universe is known as cosmic shear, and
is empirically measured as the correlation function between the shapes of pairs of
galaxies in the source sample.
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4.2.2 Photometric Redshifts

In imaging surveys like LSST the distance, or redshift, of galaxies is determined by
mapping the measured photometry in broad filters to the redshift of the galaxy. This
can either be done using empirical techniques or template fitting techniques [for a
review, see Salvato et al., 2019]. Empirical redshift estimation uses a training, or
calibration, dataset assembled from spatially overlapping spectroscopic, or multiband
photometric surveys that provide accurate redshift information. The mapping be-
tween photometry and redshift is then determined by fitting a flexible model and
applied to the full photometric dataset. Template fitting uses models for the Spectral
Energy Distribution (SED) of galaxies

Both methods produce uncertain redshifts since their estimates are based on a
limited number of broad photometric bands. Besides the intrinsic error due to the re-
duced redshift information in the photometry compared with that in the full spectrum,
which can be quantified, photometric redshift estimators are also subject to sources
of systematic bias and model misspecification. An example includes degeneracies
between SED type and the redshift of galaxies, or line-of-sight selection functions in
spectroscopic training samples [e.g., Hartley et al., 2020]. These sources of systematic
bias imprint characteristic error modes into the shape of the sample redshift distribu-
tion of the galaxy sample. As shown in Section 4.2.1, the sample redshift distribution
enters the modelling of two point statistics through the one point density along the
line-of-sight. Biases in the redshift distribution induced by inaccurate photometric
error estimates therefore propagate into biased model predictions and, as a result,
into biased cosmological parameter estimates.

4.3 Method

In this section, we describe the key methods used in this work for creating a photo-
metric redshift model, Fisher forecasting, and including ingredients such as simulated
data vectors and covariances. We also describe the methods used to identify which
aspects of the photometric redshift error model most impact cosmological parameter
estimates.

4.3.1 Photometric Redshift Error Model

We consider the lens sample and the source sample separately. In the following
subsections, we describe our models for both, but this paper focuses on exploring
the impact of uncertainties in the source redshift distribution1. In general, for the
source sample, we use a Gaussian ‘core’ distribution with separate redshift-dependent
parameters for its bias and variance in each tomographic bin; while outliers are defined

1In some cases, for example DES Collaboration et al. [2021], the lens sample is defined such that
it has smaller and better-understood photometric redshift uncertainties.
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Figure 4.1: The redshift distributions of the lens samples in 10 equally-spaced tomo-
graphic bins, following the Gaussian photometric redshift error model in Section 4.3.1.

Parameter Fiducial Value Prior σ
Ωm 0.3156 0.2
σ8 0.831 0.14
w0 -1 0.8
wa 0 2
h 0.6727 0.063
ns 0.9645 0.08
Ωb 0.049 0.006

Table 4.1: The fiducial value and prior standard deviation assumed in the Fisher
information matrix for the seven cosmological parameters.
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empirically using a photo-z catalog sample. In both cases of the lens and the source
samples, we use the i+r-band effective number density as a function of redshift2 that
was used in the DESC Science Requirements Document [SRD; Mandelbaum et al.,
2018a], which was forecasted using the WeakLensingDeblending image simulation
package [Sanchez et al., 2021, David Kirby, 2014], and has an effective integrated
number density for the entire sample of 26.94 arcmin−2.

The Lens Sample

We divide the lens sample into 10 photometric redshift bins, equally separated be-
tween 0.2 and 1.2 in photometric redshift. We use a Gaussian model in each by
convolving a Gaussian (centered in the middle of each bin with a standard deviation
of 0.03) with the differential overall effective number density. The assumed lens red-
shift distribution is shown in Fig. 4.1. In this study, the lens photometric redshift
parameters are not varied and we do not marginalize over uncertainty in their values.

Bias and Variance of the Source Sample

Our model for the source sample redshift distributions is composed of a paramet-
ric model for a ‘core’ distribution, parametrized by its first two moments, and an
empirically-driven model for the outliers. We assume that the source sample is split
into 5 photometric redshift bins, with equal number of galaxies in each bin, and de-
fine our photometric redshift uncertainty model with free parameters for each bin. As
for the lens sample, here too we use a Gaussian model for the photometric redshift
error distribution in each bin, where we convolve a Gaussian (centered at the center
of the bins with a standard deviation of 0.05) with the differential effective number
density (after separating it into the 5 bins using 5 top-hat functions of width equal
to that of the bins). We use 5 parameters (one per bin) to control the bias of this
distribution, and another set of 5 to control the standard deviation. Both the bias,
δzi, and standard deviation σi are defined such that they are further multiplied by a
(1+z) factor where z here is the redshift at the center of the bin. The direction of the
bias is defined such that in the existence of photo-z bias, the center of the Gaussian
core will be defined as µ = ztrue − δzi(1 + ztrue).

Outliers of the Source Sample

We define the statistical error quantity ∆z as:

∆z =
zphot − z

1 + z
(4.1)

2Available at https://github.com/LSSTDESC/Requirements/blob/master/notebooks/neff/

z_Y10_i+r_Y.dat
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Figure 4.2: This figure shows a comparison between the FlexZBoost photometric
redshift estimation method applied to the CosmoDC2 extragalactic catalog and the
true redshifts of galaxies in that catalog; this catalog is used in the KDE to define
the outlier populations in this work. The top panel shows a histogram of the true
and photometric redshifts for the entire catalog, while the bottom panel shows a
histogram of the outlier populations selected as described in Section 4.3.1. The teal
horizontal lines in the bottom panel define the photometric redshift bin edges. There
are some minor discontinuities at the bin edges, which is justified by the fact that
the variances of the core distribution used to define the outlier population are five
discrete values.
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Figure 4.3: Redshift distribution of the source galaxy sample: The solid curves show
the redshift distributions for the five tomographic redshift samples, including both
the core and outlier redshift distributions. The distributions are normalized such that
the core and outlier rate combined integrate to unity, with the outliers comprising
15 per cent of the population. The core distributions follow the Gaussian model in
Section 4.3.1 and the outlier distributions follow the KDE model in Section 4.3.1.
The dotted lines are the extensions to the core distributions if there were no outliers,
shown to further illustrate the effects of the outliers.
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If a galaxy in the source sample has a ∆z that is outside a factor of 3 of its Interquantile
Range (IQR), we call this galaxy an outlier. We use the IQR as a measure of spread
due to its robustness against outliers. This matches the outlier definition in Schmidt
et al. 2020. Formally, the galaxy is an outlier if

|∆z| > 3 ×
(
CDF−1(0.75) − CDF−1(0.25)

)
/1.349 (4.2)

where CDF is the Cumulative Distribution Function of ∆z inside one tomographic
bin.

In addition, we also mask any outliers within 5 standard deviations of the core
distributions as defined in 4.3.1. This step is in contrast with Schmidt et al. 2020,
and is done due to our findings that for the tomographic bins used in this work,
including anything defined as outliers within the 5σ range would effectively increase
the variance of the core distribution without representing a significant population of
outliers that can occur due to degeneracies between populations in imaging data

Similarly to the cases of bias and variance, we use one parameter per source
redshift bin for the outlier model. These five parameters control the outlier fraction
of the population in each of the 5 bins, fout,i. The shape of the distribution of outliers
in each tomographic bin is modeled using a Kernel Density Estimation (KDE) of the
photo-z estimation method, FlexZBoost [Izbicki and Lee, 2017], using the CosmoDC2
simulated extragalactic galaxy catalog [Korytov et al., 2019], with the same source
binning. Fig. 4.2 shows a 2-dimensional histogram of the FlexZBoost data, as well as
a histogram of the outliers as defined here. The KDE uses a Gaussian kernel and a
bandwidth that we select using a 5-fold grid-search cross-validation of the outliers in
each redshift bin separately, using the log-likelihood as a score metric.

Table 4.2 shows the assumed fiducial values and prior standard deviation for the
15 photo-z parameters. Fig. 4.3 shows the sum of the core model and the KDE fits
of the outliers used for the 5 redshift bins in the source sample. While we use a
parameter in each bin to control the outlier fraction; its default value of 0.15 (i.e.,
15 per cent of the source sample classified as outliers). This 15 per cent value is
consistent with the overall outliers rate found in FlexZBoost, but while the rate of
outliers varies from one redshift bin to the next in FlexZBoost, we use the baseline
15 per cent rate in each bin, as a conservative estimate. An outlier rate of 15 per cent
is also comparable to the average outlier rate in, e.g., the deep sample of the Hyper
Suprime-Cam (HSC) survey dataset in Nishizawa et al. 2020, which varies between
13-20 per cent, but different estimation methods produce different patterns in outlier
fraction as a function of redshift.

4.3.2 3x2pt Data Vectors

We can compute the angular power spectra, Cℓ, for a fourier mode ℓ, between observ-
able A in redshift bin i, and observable B in redshift bin j, across a comoving distance
χ [following e.g., Krause and Eifler, 2017, Krause et al., 2017]:
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Parameter Fiducial Value Prior σ
δz1 0 0.1
δz2 0 0.1
δz3 0 0.1
δz4 0 0.1
δz5 0 0.1
σ1 0.065 0.1
σ2 0.0825 0.1
σ3 0.0975 0.1
σ4 0.1175 0.1
σ5 0.1875 0.1

fout,1 0.15 0.1
fout,2 0.15 0.1
fout,3 0.15 0.1
fout,4 0.15 0.1
fout,5 0.15 0.1

Table 4.2: The fiducial values and priors assumed in the Fisher information matrix
analysis for the 15 photometric redshift error parameters: the biases b, standard de-
viations σ, and outliers, subscripted by the bin number in order of increasing redshift.
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Cij
ℓ,AB(ℓ) =

∫
dχ

qiA(χ)qjB(χ)

χ2
PAB(ℓ/χ, z(χ)) (4.3)

with q being the weight functions for the different observables and P are three-
dimensional non-linear matter power spectra. Equation (4.3) uses the Limber and
flat-sky approximations to write a simple theoretical expression for the data vectors
we use in this analysis.

The combinations (A,B) = (δg, δg), (δg, κ), and (κ, κ) correspond to clustering,
galaxy-galaxy lensing, and shear-shear power spectra, where δg is the galaxy density
contrast and κ is the convergence field. The weight functions for δg and κ for bin i
are given by:

qiδg(χ) = bi
ni
g(z(χ))

n̄i
g

dz

dχ
(4.4)

qiκ(χ) =
3H2

0Ωm

2c2
χ

a(χ)

∫ χh

χ

dχ′n
i
κ (z (χ′)) dz/dχ′

n̄i
κ

χ′ − χ

χ′ (4.5)

where bi is the galaxy bias in bin i, n is the redshift distribution of the source (for κ)
and lens (for g) sample, with n̄ being the integrated number density in the bin. H0

is the Hubble constant, c is the speed of light, and a is the scale factor.
Galaxy clustering power spectra are computed as auto-correlations in the same

bin for each of the ten lens sample bins, resulting in 10 spectra. Cosmic shear is
computed as cross-correlations between the five source redshift bins, resulting in 15
spectra. Galaxy-galaxy lensing is computed in bin combinations where the source bin
is at a higher redshift than the lens bin, resulting in 25 spectra.

We use the Core Cosmology Library [CCL, version 2.1.0; Chisari et al., 2019]
to compute the 3x2pt data vectors including contributions from intrinsic alignments
and galaxy bias, using the Eisenstein and Hu [1998] transfer function due to its
computational efficiency. The 3x2pt data vectors are computed in 20 ℓ bins spanning
20-15000. Bins with ℓ > 3000 are masked for shear-shear correlations, whereas galaxy-
galaxy lensing and clustering have bins with wavenumber k > 0.3 masked (which
effectively masks those two data vectors for values of ℓ larger than 200-900, depending
on the tomographic bin). The total 3x2pt data vector, therefore, has the shape (50,
20), though only a subset of the bins are actually used.

Intrinsic Alignments

Since measuring the shear in lensed galaxies is essential for cosmic shear and galaxy-
galaxy lensing, anything that could mimic or contaminate the shapes of galaxies
contributes to the systematic errors. The shapes of galaxies are not oriented randomly,
but these shapes are rather correlated. We use the term ‘intrinsic alignments’ to refer
to a non-random orientation that is not due to lensing but rather due to physical
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Parameter Contribution Term Fiducial value Prior σ
Amplitude A0 A0 5 3.9

Redshift dependent ηl (1 + z)ηl 0 2.3
High redshift dependent ηh (1 + z)ηh|z > 2 0 0.8

Luminosity dependent β See Sec. 4.3.2 1 1.6

Table 4.3: The four intrinsic alignment parameters, their contribution to the align-
ment amplitude, and their fiducial values and prior standard deviations used in the
Fisher information matrix. The luminosity dependent parameter is explained in more
detail in Sec. 4.3.2.

effects in the environment of the galaxy [for reviews, see Joachimi et al., 2015, Kirk
et al., 2015, Kiessling et al., 2015, Troxel and Ishak, 2015].

We use a 4-parameter model of intrinsic alignments in the Fisher information
matrix. The 4 parameters contribute 4 terms listed with their default values in
Table 4.3: intrinsic alignment amplitude A0, a redshift-dependent intrinsic alignment
term ηl, a redshift-dependent term at high-redshifts ηh, and a luminosity-dependent
term β. The overall intrinsic alignment is the product of the contribution of these 4
terms. This intrinsic alignment model is consistent with the DESC SRD [Mandelbaum
et al., 2018a].

The luminosity-dependent contribution to intrinsic alignments is computed using
the integrated luminosity function following Krause et al. 2016 with the Schecter
luminosity function with parameters from the r-band fit parameters from the GAMA
survey [Loveday et al., 2012] and the B-band fit parameters from the DEEP2 survey
[Faber et al., 2007].

We use uninformative prior standard deviations on each of the parameters from
the DESC SRD [Mandelbaum et al., 2018a]. The main intention behind the priors
is to insure the numerical stability of the Fisher information matrix inversions and
operations, rather than to be informative.

We use CCL’s implementation [Chisari et al., 2019] of the non-linear alignment
model [NLA; Bridle and King, 2007] to calculate the intrinsic alignments contributions
to the 3x2pt data vectors.

Galaxy Bias

While galaxy-galaxy lensing and shear-shear correlations are sensitive to all of the
matter - mainly dark matter - in the Universe, we observe luminous galaxies. The
positions of dark matter halos and luminous galaxies are strongly correlated, but the
discrepancy between their clustering is called galaxy bias [Kaiser, 1984]. We use 10
parameters to describe the linear galaxy bias in each of the 10 lens sample bins. We
use the fiducial values and prior standard deviations consistently with the DESC SRD
[Mandelbaum et al., 2018a] – with the actual values presented in Table 4.4. Use of
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Parameter Term Fiducial value Prior σ
b1 1.38 0.9
b2 1.45 0.9
b3 1.53 0.9
b4 1.61 0.9
b5 1.69 0.9
b6 1.78 0.9
b7 1.86 0.9
b8 1.94 0.9
b9 2.03 0.9
b10 2.12 0.9

Table 4.4: The ten galaxy bias parameters and their fiducial values and prior standard
deviations used in the Fisher information matrix. The ten parameters correspond to
the galaxy biases of the 10 clustering correlation functions in order of increasing
redshift.

a linear galaxy bias is what motivates the relatively strict scale cuts adopted in this
work.

4.3.3 The Covariance Matrix

Given our similar analysis setup, we use the covariance matrix from the 3x2pt DESC
SRD analysis forecast in Mandelbaum et al. [2018a], which was estimated numerically
using CosmoLike [Krause and Eifler, 2017]. The covariance matrix includes both
Gaussian and non-Gaussian contributions, and is ordered by tomographic bin pair
(50 total: 15 for cosmic shear, followed by 25 for galaxy-galaxy lensing, followed by
20 for clustering). The covariances are computed at the same 20 ℓ bins as explained in
Section 4.3.2, leading to a matrix size of 50×20 = 1 000. We also use the covariance
matrix to effectively apply scale cuts: elements that should be masked due to scale
cuts have the corresponding elements in the inverse covariance matrix set to 0. The
scale cuts are described in Sec. 4.3.2.

4.3.4 Fisher Information Matrix

For pθ(X) = p(X|θ), the probability of the random known variable X given an
unknown parameter θ, we define the score function

sθ(X) =
∂logpθ(X)

∂θ
. (4.6)
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The Fisher Information [e.g., Wasserman, 2004, Coe, 2009, Bhandari et al., 2021] is
then defined as the variance of the score function:

I(θ) = E[sθ(X)2] = −E
[
∂2

∂θ2
logpθ(X)

]
(4.7)

For i.i.d. samples X1, . . . , Xn, we can define the Fisher Information in terms of the
overall sample of size n as In(θ) = nI(θ), such that for Xi, the Fisher Information
is I(θ) = IXi

(θ) = IX1(θ). From Eq. (4.7) we can see that the Fisher Information
measures the curvature of the log-likelihood, and given that the curvature of the log-
likelihood quantifies the precision of the estimator, the Fisher Information can be
used as a measure of how well the parameter θ can be estimated.

The standard error of the estimator θ̂ of the parameter θ converges in probability
to a Normal distribution:

√
n(θ̂ − θ)

p→ Normal
(
µ = 0, σ2 = I−1

)
(4.8)

We can define an asymptotic (1-α) confidence interval of the Fisher information as:

θ̂ ± Zα/2ŝe(θ̂) (4.9)

where Z is the standard Normal distribution, and ŝe is the standard error estimator.
The Fisher information, I, can be generalized to a matrix form, I for a vector of
parameters θ.

Furthermore, the Cramer-Rao bound states that the variance of θ̂ derived from
the Fisher matrix is a lower limit, making it a reasonable choice in our goal of putting
a requirement on our knowledge of photo-z errors, such that they do not dominate
the Figure of Merit error budget.

Assuming a Gaussian likelihood function, we can rewrite the Fisher Information
matrix elements as

Ii,j =
∂Cℓ

∂αi

· V · ∂Cℓ

∂αj

(4.10)

where α is the model parameter vector and V is the inverse of the covariance matrix.
The Fisher information matrix we construct is a 36-dimensional matrix. It con-

tains 7 cosmological parameters: the total matter density parameter, Ωm, the power
spectrum normalization parameter, σ8, the baryonic matter density parameter, Ωb,
the dimensionless Hubble parameter, h, the spectral index parameter, ns, and the
dark energy equation of state parameters w0 and wa. The assumed fiducial values
and prior standard deviations of the 7 cosmological parameters are presented in Ta-
ble 4.1. The Fisher matrix also contains 15 parameters for the photometric redshifts
(1 for each of bias, variance, and outlier rate for each source redshift bin); as well as
4 parameters for intrinsic alignments; and 10 parameters for galaxy bias.

To obtain 2-dimensional confidence sets on pairs of model parameters, we first
marginalize over the rest of the parameters (cosmological and systematic). In practice,
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Probe (Ωm, σ8) (w0, wa)
Cosmic Shear 3.2 14.7

Clustering 8.5 5.1
Galaxy-Galaxy Lensing 16.7 21.7

Table 4.5: The increase in the area of the 2σ single probe contours compared to the
3x2pt contours as shown in Fig. 4.5.

we marginalize by inverting the Fisher matrix and selecting the 2× 2 submatrix
corresponding to the pair of parameters of interest, which serves as a covariance
matrix of the two parameters. We can obtain the semi-major and semi-minor axes
(respectively, a and b) along with the orientation (θ) of the confidence ellipse from
the marginalized submatrix [see, e.g., Coe, 2009].

In addition to its use in quantifying minimum expected uncertainties on cosmo-
logical model parameters, the Fisher matrix formalism serves another purpose: quan-
tifying expected biases in cosmological parameters if we make incorrect assumptions
about model parameters (for the purpose of this work, the photo-z error model pa-
rameters). For any specific case of non-fiducial model parameters, we can calculate a
new Cbiased

ℓ , and use it to calculate the bias in cosmological parameters that the new
set of non-fiducial model parameters induces, under the assumption of small, linear
changes in the Cℓ [Huterer et al., 2006, Rau et al., 2017]:

fb = I−1 ·
(
dCℓ

dα
· V · (Cbiased

ℓ − Cℓ)

)
(4.11)

Derivatives used in the computation of the Fisher information matrix were numer-
ically computed using the numdifftools Python library [Brodtkorb and D’Errico, 2019]
using a step size of 0.01 in most cases, which was found to lead to stable derivatives
both in our tests and in other studies such as [Bhandari et al., 2021].

Information from priors is added to the Fisher information matrix by adding
the inverse variance, 1/σ2, listed in Tables 4.1, 4.2, 4.3, and 4.4 to the diagonal
element of the Fisher information matrix that correspond to the parameter. Priors
on cosmological parameters are weak, but informative, based on previous experiments,
while priors on nuisance parameters are uninformative, used to ensure the numerical
stability of Fisher matrix operations. Priors on cosmological parameters, intrinsic
alignment parameters, and galaxy bias parameters are consistent with the DESC
SRD [Mandelbaum et al., 2018a].

4.3.5 Decision Tree Parameter Importance

Decision trees [e.g., Bishop, 2006, Mitchell, 1997, Hastie et al., 2009] are a machine
learning method developed for use in regression or classification. Decision trees pre-
dict the value or class of a target Y , given a set of features Xi that can be used to pre-
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Figure 4.4: The 2σ Fisher confidence sets in the (Ωm, σ8) and (w0, wa) planes, before
and after marginalizing over the 15 photo-z parameters for the 3x2pt combined probes
case. Marginalizing over the photo-z parameters increases the area of the confidence
sets, by a factor of 3.5 for the (Ωm, σ8) case and a factor of 2.2 for the (w0, wa) case.
In all cases, the results include marginalization over the remaining 5 cosmological
parameters, as well as the 10 galaxy bias parameters and 4 intrinsic alignments pa-
rameters.
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Figure 4.5: A comparison between the 2σ Fisher confidence sets for the single-probe
cases and for 3x2pt in the (Ωm, σ8) and (w0, wa) planes. Combining the three probes
results in much tighter confidence contours on the cosmological parameters, with the
actual increase in contour size for each case listed in Table 4.5. In all cases, the results
include marginalization over the remaining 34 model parameters.
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Figure 4.6: A comparison between the 3x2pt constraints for the 2-dimensional confi-
dence sets in the (Ωm, σ8) and (w0, wa) spaces for the case with fiducial values assumed
in this paper, and the case with photo-z model found in Graham et al. 2020. The
values used for the photo-z error statistics in both cases are shown in Table 4.6. As
shown, there are changes in both the sizes of the contours, defined at the 2σ level,
and in the center of the inferred posterior (indicated by the arrow) due to different
photo-z error distribution values. Particularly, the bias induced in Ωm, σ8, w0, wa are
−1.1σΩm , 1.0σσ8 ,−0.6σw0 , 0.4σwa respectively, where σα is the standard deviation of
parameter α
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Case Bias
Fiducial model [0, 0, 0, 0, 0]

Graham2020++ [0.0065, 0.001, 0.0007, 0.0016, 0.0014]

Case Standard Deviation
Fiducial model [0.065, 0.0825, 0.0975, 0.1175, 0.1875]

Graham2020++ [0.0241, 0.0147, 0.0144, 0.022, 0.0391]

Case Outlier fraction
Fiducial model [0.15, 0.15, 0.15, 0.15, 0.15]

Graham2020++ [0.1812, 0.0701, 0.0274, 0.0424, 0.379]

Table 4.6: Bias, standard deviation, and outlier fraction rates for the case of our
fiducial model and the findings from Graham et al. [2020]. The Fisher contours for
each case is shown in Fig. 4.6. Standard deviation and bias estimates are computed
for the core distribution after rejecting catastrophic outliers.
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Figure 4.7: The parameter combinations of photo-z bias (top panel), standard devia-
tion (middle panel) and outlier fraction (bottom panel) that were used in the decision
tree algorithm to obtain the feature importance. This figure shows the range of values
that were used The fact that the bias and standard deviation ranges become wider at
higher redshifts is due to the ∝ (1+z) redshift-dependencies of our model parameters
defining the core redshift distributions.
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dict Y . Decision trees work by splitting features, one at a time, into smaller branches,
using a greedy method known as conditional entropy minimization (or equivalently,
information gain maximization). For example, in the case of a continuous variable Xi

that can be positive or negative, one branch created at some decision point might be
Xi < 0 and another might be Xi ≥ 0. Because decision trees use greedy conditional
entropy minimization, they are also widely used to learn the relative importance of
each of the features used in training the decision trees – at each stage, the most im-
portant feature will be the one that minimizes conditional entropy (or maximizes the
information gain), and thus the decision tree will use the more important features
earlier to make splits in decision space.

For a target Y , and features Xi that determine Y , the decision tree decides to
make the next split based on maximizing:

arg max
i

G (Y,Xi) = arg max
i

[H(Y ) −H (Y | Xi)] (4.12)

where G is the information gain, and H is the entropy. The initial entropy of the
target is defined as

H(Y ) = −
∑
y

P (Y = y) log2 P (Y = y), (4.13)

where P is the probability.
We use this methodology to identify the most important photo-z parameters based

on their effect on shifts in cosmological parameters. We create a dataset by sampling
from a 15-dimensional Gaussian to get random realizations of credible photo-z bias,
variance and outlier fraction, and using Eq. (4.11) to calculate the bias in cosmological
parameters as our target column. While the Fisher matrix includes information on
the combined uncertainties in the overall set of parameters, using Eq. (4.11) computes
the 1-dimensional bias, effectively fixing the other parameters.

To avoid overfitting, we use tree-pruning and 2-fold cross validation to verify the
sufficiency of the size of the dataset. We also test for the convergence of the decision
tree results by confirming that the feature importance does not change when we lower
the standard deviation of the Gaussian we sample from by factors of 2, 5 and 10. This
is important due to the fact that Eq. (4.11) is an approximation that is only valid for
small changes.

We use the decision tree regressor implementation for all of training, cross vali-
dation, and feature importance identification using the Gini importance metric from
Scikit-Learn [Pedregosa et al., 2011].

4.3.6 Interpretability Metrics

To interpret the results of the decision tree feature importance, we compare the
results with two illustrative quantities: the change in Cℓ due to changing a photo-z
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parameter in that bin, and the variance change given by the Fisher matrix when
excluding one redshift bin. We choose these quantities because they are key redshift-
dependent factors in Eq. (4.11) and therefore can provide some means to qualitatively
understand the results.

The first quantity is computed using the element-wise difference in the Cℓ after
changing a photo-z parameter by a certain amount (e.g., adding a bias of 0.01(1 + z)
to the core photo-z error distribution in one tomographic bin), normalized by the
original Cℓ, and then the average of the absolute value of this quantity is taken. We
refer to this quantity as the mean absolute fraction error (MAFE):

MAFE =
1

N

N∑
1

∣∣∣∣Cbiased
ℓ − Cℓ

Cℓ

∣∣∣∣ (4.14)

where the summation is taken over the ℓ bins defined in Section 4.3.2. Given that
only some Cℓ change when changing each photo-z error parameter (the ones relevant
to that bin), we only compute this quantity using the Cℓ values that change, ignoring
the ones that do not.

For the second quantity, we define a sensitivity metric, as

SI =
|(I∗−1)ii − (I−1)ii|

(I−1)ii
(4.15)

where i is the index of the cosmological parameter and I∗ is the Fisher information
matrix calculated after removing information from a redshift bin by multiplying the
rows and columns corresponding to the photo-z parameter in the covariance matrix
by a large number (1020).

4.4 Results

In this section, we present the results of our investigations, beginning with under-
standing the impact of our photometric redshift error parametrization on the cos-
mological forecasts. We then move to the investigation of which parameters most
strongly connect to cosmological parameter biases if incorrect assumptions are made,
using decision trees.

4.4.1 Impact of Photo-z Marginalization

We use the Fisher information matrix to infer confidence intervals on sets of cosmo-
logical parameters following the steps in Sec. 4.3.4. Fig. 4.4 shows those 2σ confidence
intervals in the (Ωm, σ8) and (w0, wa) planes, with fixed photometric redshift param-
eters (no marginalization) and after marginalizing over photo-z parameters at their
fiducial values. Both cases include all 3x2pt probes, and marginalization over the rest
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of the parameters in the Fisher matrix (i.e., 5 other additional cosmological parame-
ters, 4 intrinsic alignment parameters, and 10 galaxy bias parameters). As expected,
marginalizing over more parameters increases the size of the confidence intervals, or in
other words, decreases the precision of our inference. In particular, the 2σ confidence
contours increase by a factor of 3.5 for the (Ωm, σ8) case and 2.3 for the (w0, wa) case
after marginalizing over photo-z error parameters. We also compared the results from
the Fisher information matrix in this work to previous work in the DESC SRD, and
found them to be consistent with minor differences due to implementation differences.
For example, the 2-σ (Ωm, σ8) contours have the same orientation and 89% of the size
of that in the DESC SRD, for the case of fixed photo-z error parameters.

4.4.2 Combining Constraints from Probes

Fig. 4.5 compares the confidence intervals for the cases of single probe data vectors,
i.e., the cases of cosmic shear, galaxy-galaxy lensing, and clustering separately; as
well as for the 3x2pt combined probes in the (Ωm, σ8) and (w0, wa) planes, after
marginalizing over the rest of the parameters. Given that these three probes are
covariant, the Fisher information matrix leverages the information in all of them
and leads to a tighter bound on cosmological inference. Additionally, in some cases,
the different orientations of the confidence contours breaks some of the degeneracies
between different parameters leading to better bounds on them, as seen in the (Ωm, σ8)
case. The ratios of the sizes of the 2σ contours for each of the single probes to the
3x2pt contour are shown in Table 4.5. While the size of the confidence contours
becomes 2-4 times larger, Schaan et al. 2020 confirmed that marginalizing over photo-
z outliers in particular is important, as they found that a 5 per cent additive bias on
a fiducial outlier fraction could lead to a 1σ bias in w0 amd wa.

4.4.3 Impact of Incorrect Photo-z Error Models

Assuming values different than the fiducial values in our systematics model parame-
ters will lead to biases in inferred cosmological parameters, as computed by Eq. (4.11).
In addition, the size of the confidence intervals changes, because the derivatives that
go into the Fisher information matrix are evaluated at different values. To illustrate
this effect, we choose a set of values for photo-z error parameters from a realistic
forecast for the LSST that includes calibration with a Euclid sample. In particular,
we choose the ‘LSST Y10 + Euclid 5σ’ case in Fig. 8 of Graham et al. 2020, using the
maximum error statistic in each source bin (as defined here) to input to the Fisher
forecast model. The actual inputted values for the photo-z error parameters are pre-
sented in Table 4.6, while Fig. 4.6 shows the resulting Fisher confidence interval in
the (Ωm, σ8) and (w0, wa) planes. We see that in both cases, assuming an incorrect
photo-z error parameters biases the cosmological parameter inference and modifies
the size of their uncertainties. In particular, the bias in the Ωm, σ8, w0, wa parameters
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are −1.1σΩm , 1.0σσ8 ,−0.6σw0 , 0.4σwa respectively, where σα is the standard deviation
of parameter α. While these induced biases are large, The photo-z parameter val-
ues, in particular the scatter parameters, differ in some cases by amounts larger than
the requirements set on photo-z scatter uncertainty in the DESC SRD, 0.003(1 + z)
Mandelbaum et al. 2018a. The DESC SRD, however, did not consider outliers in its
analysis.

The analysis in this work is carried out for the case of constraining wCDM models.
However, it is also possible to carry out the analysis with fixed w0 = −1 and wa = 0,
in other words, to constrain λCDM models. We find that in the latter case, the 2-σ
(Ωm, σ8) contours are smaller by around 25% to 55% for the single probe cases and
by 75% for the 3x2pt case, with less degenerate orientation. Biases induced in the
(Ωm, σ8) parameters due to an incorrect photo-z error model (as was presented in this
subsection) are generally smaller in the λCDM case in absolute terms.

4.4.4 Parameter Importance

We use the decision tree feature importance method described in Sec. 4.3.5 to un-
derstand the importance of different photo-z error model parameters. In particular,
their ‘importance’ here is defined by the size of the bias they induce in cosmologi-
cal parameter inference when incorrect values for those photo-z parameters are used.
We generate data for the decision tree algorithm to train on by drawing numbers
for photo-z parameters from n-dimensional Gaussians (where n is also the number
of predictive features in the decision tree algorithm, and is typically either 5 for our
initial tests of photo-z bias, scatter, and outliers separately, or 15 for the combined
case). We then use Eq. (4.11) to calculate the target feature in the dataset for each
draw.

In all cases, we carry out statistical tests to ensure the validity of our method.
Eq. (4.11) is a first order approximation that works for a limited range of parameter
deviations. To ensure its validity in the range of parameters we draw from, we use
a convergence test where we lower the standard deviation of the Gaussian we draw
from until we observe convergence in the resulting decision tree. More quantitatively,
we consider the results to have converged when (a) the order of the bin importance
stays the same after lowering the standard deviation by a further factor of 2, 5, and
10, and (b) the relative bin importance does not change by more than 5 per cent.

Additionally, due to the high dimensionality of the data, we carry out a test to
ensure the sufficiency of the number of data points used to build the decision tree.
We do this using 2-fold cross validation, where the order and relative importance has
also similarly converged.

We show the feature importance and the related interpretability figures for the
cosmic shear data vector. This can be generalized to the 3x2pt case as a future
step. Additionally, the feature importance is studied for the bias, variance, and
outlier fraction separately. Another future step is to combine these to find the overall
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feature importance, which requires finding ranges of biases, standard deviations, and
outlier fractions that change the Cℓ comparably.

Cosmic Shear

To learn the relative importance of photo-z error parameters on cosmological param-
eter inference using cosmic shear, we present the results from the decision tree feature
importance, as well as the results from the two interpretability metrics defined in Sec-
tion 4.3.5. To show the range of data points generated with realizations of photo-z
bias, standard deviations, and outlier fractions, from 5-dimensional Gaussians each,
we present each data point used in a parallel coordinate plot, shown in Fig. 4.7.
These data points are used in the decision tree algorithm and pass the tests outlined
in Section 4.4.4.

We show two types of figures to help interpret the decision tree feature importance
results. These plots show the SI and the MAFE described in Section 4.3.6. These
metrics are strictly qualitative, and should be seen as a way to help interpret (but
not quantitatively predict) the results.

To gain information on the relative importance of the impact of a change in
the bias, standard deviation, and outlier fraction in each redshift bin on the Cℓ, we
compute the MAFE. Fig. 4.8 shows the MAFE of the Cℓ due to changes in photo-z
error model parameters. The absolute magnitudes of these quantities depend on the
magnitude of the change in the photo-z error model parameter, and thus only the
order and relative magnitude is meaningful. For the parameters that determine the
core photometric redshift error distribution, we see that the MAFE for the photo-
z bias parameters decreases with redshift, but the MAFE for the photo-z scatter
increases with redshift. The Cℓ values are most affected by the photo-z outlier rates
in the lowest and highest redshift bins, possibly due to the fact that catastrophic
outliers generally connect those two bins.

On the other hand, we can gain information on the sensitivity of each cosmological
parameter to the information in each redshift bin by computing SI as defined in
Section 4.3.6. Fig. 4.9 shows SI for three cosmological parameters (Ωm, σ8, w0) as a
function of redshift bin. While each cosmological parameter is sensitive to different
combination of bins differently, these sensitivities play a qualitative role in explaining
the following the decision tree feature importance results. Generally, the parameters
are sensitive to combinations of low and high redshift bins. A further study of how
dependent these sensitivities are to the photo-z estimation method used could be a
future extension to this work.

We use the decision tree described in Section 4.3.5 to rank the relative importance
of the photo-z error parameters based on their impact on the bias induced in cosmo-
logical parameters. While we use the Gini feature importance method, we verified
that our results are robust with respect to different choices in feature importance
methods. Using Permutation Importance [Breiman, 2001], which measures the loss
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in the score of the decision tree after shuffling each feature, yielded highly consistent
results. We also verified that the correlations between the features are low, making
the Gini feature importance a suitable method. Fig. 4.10 shows the decision tree
feature importance for the impact of the photo-z bias parameters on w0. The figure
shows a similar pattern to the bottom panel of Fig. 4.9, where the first and fourth
redshift bins contribute the most cosmological information in determining w0. The
top panel of Fig. 4.8 also shows a contribution such that unlike Fig. 4.9, it shows that
the first bin is the most important.

A second exmaple in shown in Fig. 4.11, which shows the decision tree feature
importance for the impact of the photo-z standard deviation parameters on the σ8

cosmological parameter. This figure shows a similar pattern to the combination of the
middle panel in Fig. 4.8, showing an increasing importance of photo-z standard devi-
ation parameters with increasing redshift, and the middle panel in Fig. 4.9, showing
that the first and last bins are the most important.

A third example, Fig. 4.12 shows the feature importance results for the impact of
the photo-z outlier fraction error on the Ωm cosmological parameter. Similarly, this
figure also shows a similar pattern to the combination of bottom panel of Fig. 4.8 and
the top panel of Fig. 4.9. In this case, a combination of the photo-z outlier fraction
in the lowest and highest bins contribute the most information to constraining Ωm.

4.5 Conclusion

Controlling systematic biases and uncertainties will be essential in upcoming sur-
veys such as the LSST. Photometric redshifts are one major source of systematics
in upcoming surveys. In this paper, we studied the impact of photometric redshift
modeling errors on cosmological inference.

We created a 36-parameter model incorporating 7 cosmological parameters, 15
photometric redshift parameters, 4 intrinsic alignment parameters, and 10 galaxy bias
parameters, to forecast the uncertainty on cosmological parameters, using simulated
data vectors. We showed that assuming an incorrect model for the photo-z error
parameters could lead to substantial biases and changes in the uncertainty on inferred
cosmological parameters.

Errors in photo-z model parameters have different impacts on different cosmo-
logical parameters. We used conditional entropy minimization to learn the relative
importance of photo-z bias, scatter, and outlier fraction, in different bins, for Ωm, σ8,
and w0, and defined two metrics to help qualitatively guide interpretability: one re-
lated to the change in Cℓ due to the changes in photo-z parameters, and one related
to the sensitivity of the cosmological parameters to the information in each photo-z
bin. We presented examples of decision tree feature importance results and confirmed
that they were consistent with the interpretability metrics. These conclusions showed
that the scatter at high redshifts was more impactful on the σ8 inference, while a com-
bination of low and high redshift bias and outlier fraction errors were more impactful
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Figure 4.8: The mean absolute fractional error (MAFE) for the Cℓ values, as defined
in Section 4.4, when changing photo-z error model parameters by a small amount.
The top panel corresponds to the MAFE when changing the photo-z bias in each
bin by 0.01(1 + z). The middle panel corresponds to the MAFE when changing the
photo-z standard deviation in each bin by 0.005(1+z). The bottom panel corresponds
to the MAFE when changing the photo-z outlier fraction by adding 5 per cent more
outliers in each bin. The magnitude of the MAFE depends on our arbitrary choice of
the photo-z error model parameter change, so only the relative magnitudes between
the different photo-z bins is informative.
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Figure 4.9: The sensitivity metrics, as defined in Section 4.4, for Ωm, σ8, w0, order
from the top towards the bottom panel. The sensitivity metric, SI, is obtained by first
excluding information from one redshift bin by significantly raising the relevant rows
and columns of the covariance matrix, then computing the change in the variance
from the inverse Fisher information matrix. The cosmological parameters shown are
more sensitive to bins with higher SI.
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Figure 4.10: The feature importance obtained from the decision tree algorithm for
the shift in the w0 cosmological parameter due to changes in photo-z bias parameters.
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Figure 4.11: The feature importance obtained from the decision tree algorithm for the
shift in the σ8 cosmological parameter due to changes in photo-z standard deviation
parameters.
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Figure 4.12: The feature importance obtained from the decision tree algorithm for
the shift in the Ω0 cosmological parameter due to changes in photo-z outlier fraction
parameters.
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for Ωm and w0 inference.

While the examples we showed were specifically for a cosmic shear data vector,
and for each of the 5 bias, scatter and outlier fraction photo-z parameters separately,
generalizing to 3x2pt and to a combined 15-parameter case can be an immediate next
step using the same methodology.

When determining the importance of photo-z parameters in different bins, we
studied the forecasted bias induced in cosmological inferences. Another extension
to this work could look at a combination of this bias and the size of the confidence
interval from the Fisher information matrix, or possibly the DETF FoM [Albrecht
et al., 2006].

For the case of clustering, our model only considers auto-correlations in each lens
sample bin. A future study could also include cross-correlations between different
lens sample bins. While these cross-correlations typically have negligable signal, it
was shown in Schaan et al. 2020 that they can still provide useful information on
photo-z errors, as substantial photo-z errors can lead to non-zero correlations between
bins. Alternatives to the photo-z error model used in our work also exist and can
be compared to other models in future studies, such as the 110-parameter model in
Schaan et al. 2020. While this paper uses the FlexZBoost photo-z estimation method
on the CosmoDC2 simulated data to model the outliers, it would be valuable to test
the robustness of the results against other redshift estimation methods by repeating
this investigation with an outlier sample defined using the results of another photo-z
estimation method.
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Chapter 5

Conclusions

The next decade in observational cosmology will be an exciting time that pushes our
understanding of modern cosmology beyond its limits. With that, however, comes
great responsibilities. One major such responsibility, which has been the focus of
this thesis, is controlling systematic errors, so that we are able to use the statistical
constraining power of current and next generation experiments to its fullest.

In Chapter 3, I found that there are always new ways to solve this problem of
controlling systematics. In particular, that surveys such as the LSST opens up new
ways to make this possible. I studied the impact of different aspects of observing
strategy, such as its dithering pattern, the duration of a visit, and the details of the
footprint of the survey, could impact systematic errors. I found that it is possible
to mitigate observational systematics by increasing the number of dithered exposures
of galaxies on average – something that can be achieved in several ways, such as
increasing the depth of the survey, or reducing the exposure time of a single visit.
This issue, however, is complicated by the fact that there are many trade-offs when
optimizing for one aspect and another. As I described in Chapter 2, even within
weak lensing, a trade-off exists between constraining power, which has a stronger
preference towards increasing survey area, and mitigating systematics, which has a
stronger preference towards increase survey depth. It is possible to optimize for both
by decreasing exposure time, but at fixed exposure time, optimizing for one works
against the other. A study of the relative importance of these different aspects, and
how to create an optimal balance in optimizing for both, therefore, is warranted, and
may be possible in the future once commissioning and science verification data is
received, and as systematics mitigation software, such as the PSF modeling package
Piff, become finalized and evaluated.

I also studied the effect of photometric redshift modeling errors on comsologi-
cal parameter inference. In Chapter 4, I created a realistic 15-parameter model for
photometric redshift errors with a data-driven realistic outlier model. I developed a
forecasting framework using the Fisher information matrix to measure the impact of
photo-z modeling errors on cosmological parameter inference with 3x2pt analysis. I
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used the decision tree feature importance to show that photo-z parameters in different
redshift bins have different impact on cosmological inference using cosmic shear, and
identified their relative importance of bins for each of the bias, variance, and outlier
fraction separately. Future work may easily extend the parameter importance iden-
tification to the 3x2pt analysis, as the methodology is set up for this case. Another
extension is identifying parameter importance in a combined 15-parameter space of
bias, variance, and outlier parameters, which involves identifying ranges of parameters
that change the data vectors in a comparable way. Regarding the clustering data vec-
tors, I only considered auto-correlations in lens sample bins; a future treatment could
also consider cross-correlations as they might include useful information on photo-z
errors. It would also be useful to test the dependence of the parameter importance
results on the photo-z estimation method used, by repeating the procedure using an
outlier sample modeled after different photo-z estimation methods. Beyond these ex-
tensions, a priority would be to use that information to set requirements on photo-z
errors, and create plans to achieve the required precision. While photo-z modeling
errors are one of the main systematics facing 3x2pt probes, it is important to identify
the impact of other systematics and their relative importance, especially if photo-z
modeling errors requirements are met.

————————————————–
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Padilla, Alejandra M. Muñoz Arancibia, Alvaro Orsi, Sof́ıa A. Cora, and Peter

85



Yoachim. Testing LSST Dither Strategies for Survey Uniformity and Large-scale
Structure Systematics. The Astrophysical Journal, 829(1):50, September 2016. doi:
10.3847/0004-637X/829/1/50.

M. Bartelmann and P. Schneider. Weak gravitational lensing. Physics Reports, 340:
291–472, January 2001. doi: 10.1016/S0370-1573(00)00082-X.

K. Benabed and L. van Waerbeke. Constraining dark energy evolution with grav-
itational lensing by large scale structures. Physical Review D, 70(12):123515–+,
December 2004. doi: 10.1103/PhysRevD.70.123515.

G. Bernstein and B. Jain. Dark Energy Constraints from Weak-Lensing Cross-
Correlation Cosmography. Astrophysical Journal, 600(1):17–25, January 2004. doi:
10.1086/379768.

Gary Bernstein and Dragan Huterer. Catastrophic photometric redshift errors: weak-
lensing survey requirements. Monthly Notices of the Royal Astronomical Society,
401(2):1399–1408, January 2010. doi: 10.1111/j.1365-2966.2009.15748.x.

E. Bertin. Automated Morphometry with SExtractor and PSFEx. In I. N. Evans,
A. Accomazzi, D. J. Mink, and A. H. Rots, editors, Astronomical Data Analy-
sis Software and Systems XX, volume 442 of Astronomical Society of the Pacific
Conference Series, page 435, July 2011.

Naren Bhandari, C. Danielle Leonard, Markus Michael Rau, and Rachel Mandelbaum.
Fisher Matrix Stability. arXiv e-prints, art. arXiv:2101.00298, January 2021.

Christopher Bishop. Pattern Recognition and Machine Learning. Springer, Jan-
uary 2006. URL https://www.microsoft.com/en-us/research/publication/

pattern-recognition-machine-learning/.

James Bosch, Robert Armstrong, Steven Bickerton, Hisanori Furusawa, Hiroyuki
Ikeda, Michitaro Koike, Robert Lupton, Sogo Mineo, Paul Price, Tadafumi Takata,
Masayuki Tanaka, Naoki Yasuda, Yusra AlSayyad, Andrew C. Becker, William
Coulton, Jean Coupon, Jose Garmilla, Song Huang, K. Simon Krughoff, Dustin
Lang, Alexie Leauthaud, Kian-Tat Lim, Nate B. Lust, Lauren A. MacArthur,
Rachel Mand elbaum, Hironao Miyatake, Satoshi Miyazaki, Ryoma Murata,
Surhud More, Yuki Okura, Russell Owen, John D. Swinbank, Michael A. Strauss,
Yoshihiko Yamada, and Hitomi Yamanoi. The Hyper Suprime-Cam software
pipeline. Publications of the Astronomical Society of Japan, 70:S5, Jan 2018. doi:
10.1093/pasj/psx080.

Andrew K. Bradshaw, Craig Lage, and J. Anthony Tyson. Characterization of LSST
CCDs using realistic images, before first light. In Proceedings of the SPIE, volume
10709 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, page 107091L, Jul 2018. doi: 10.1117/12.2314276.

86

https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/


R. Braun, T. Bourke, J. A. Green, E. Keane, and J. Wagg. Advancing Astrophysics
with the Square Kilometre Array. In Advancing Astrophysics with the Square Kilo-
metre Array (AASKA14), page 174, April 2015.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Sarah Bridle and Lindsay King. Dark energy constraints from cosmic shear power
spectra: impact of intrinsic alignments on photometric redshift requirements. New
Journal of Physics, 9(12):444, December 2007. doi: 10.1088/1367-2630/9/12/444.

Per. A. Brodtkorb and John D’Errico. numdifftools, 2019. URL https://

numdifftools.readthedocs.io.

Bradley W. Carroll and Dale A. Ostlie. An Introduction to Modern Astrophysics.
Cambridge University Press, 2 edition, 2017. doi: 10.1017/9781108380980.

Christopher M. Carroll, Eric Gawiser, Peter L. Kurczynski, Rachel A. Bailey, Rahul
Biswas, David Cinabro, Saurabh W. Jha, R. Lynne Jones, K. Simon Krughoff,
Aneesa Sonawalla, and W. Michael Wood-Vasey. Improving the LSST dithering
pattern and cadence for dark energy studies, volume 9149 of Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series, page 91490C. SPIE,
2014. doi: 10.1117/12.2057267.

G. Casella and R.L. Berger. Statistical Inference. Duxbury advanced series in statistics
and decision sciences. Thomson Learning, 2002. ISBN 9780534243128. URL https:

//books.google.com/books?id=lbutQgAACAAJ.

C. Chang, P. J. Marshall, J. G. Jernigan, J. R. Peterson, S. M. Kahn, S. F. Gull,
Y. AlSayyad, Z. Ahmad, J. Bankert, and D. Bard. Atmospheric point spread
function interpolation for weak lensing in short exposure imaging data. Monthly
Notices of the Royal Astronomical Society, 427(3):2572–2587, Dec 2012. doi: 10.
1111/j.1365-2966.2012.22134.x.

Nora Elisa Chisari, David Alonso, Elisabeth Krause, C. Danielle Leonard, Philip Bull,
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manabhan, Cullen Blake, Jonathan Brinkmann, Tamas Budávari, Andrew Con-
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Muñoz Arancibia, Douglas R. Neill, Scott P. Newbry, Jean-Yves Nief, Andrei
Nomerotski, Martin Nordby, Paul O’Connor, John Oliver, Scot S. Olivier, Knut
Olsen, William O’Mullane, Sandra Ortiz, Shawn Osier, Russell E. Owen, Reynald
Pain, Paul E. Palecek, John K. Parejko, James B. Parsons, Nathan M. Pease,
J. Matt Peterson, John R. Peterson, Donald L. Petravick, M. E. Libby Petrick,
Cathy E. Petry, Francesco Pierfederici, Stephen Pietrowicz, Rob Pike, Philip A.
Pinto, Raymond Plante, Stephen Plate, Joel P. Plutchak, Paul A. Price, Michael
Prouza, Veljko Radeka, Jayadev Rajagopal, Andrew P. Rasmussen, Nicolas Reg-
nault, Kevin A. Reil, David J. Reiss, Michael A. Reuter, Stephen T. Ridgway, Vin-

92



cent J. Riot, Steve Ritz, Sean Robinson, William Roby, Aaron Roodman, Wayne
Rosing, Cecille Roucelle, Matthew R. Rumore, Stefano Russo, Abhijit Saha, Benoit
Sassolas, Terry L. Schalk, Pim Schellart, Rafe H. Schindler, Samuel Schmidt, Don-
ald P. Schneider, Michael D. Schneider, William Schoening, German Schumacher,
Megan E. Schwamb, Jacques Sebag, Brian Selvy, Glenn H. Sembroski, Lynn G.
Seppala, Andrew Serio, Eduardo Serrano, Richard A. Shaw, Ian Shipsey, Jonathan
Sick, Nicole Silvestri, Colin T. Slater, J. Allyn Smith, R. Chris Smith, Shahram Sob-
hani, Christine Soldahl, Lisa Storrie-Lombardi, Edward Stover, Michael A. Strauss,
Rachel A. Street, Christopher W. Stubbs, Ian S. Sullivan, Donald Sweeney, John D.
Swinbank, Alexander Szalay, Peter Takacs, Stephen A. Tether, Jon J. Thaler,
John Gregg Thayer, Sandrine Thomas, Adam J. Thornton, Vaikunth Thukral,
Jeffrey Tice, David E. Trilling, Max Turri, Richard Van Berg, Daniel Vanden
Berk, Kurt Vetter, Francoise Virieux, Tomislav Vucina, William Wahl, Lucianne
Walkowicz, Brian Walsh, Christopher W. Walter, Daniel L. Wang, Shin-Yawn
Wang, Michael Warner, Oliver Wiecha, Beth Willman, Scott E. Winters, David
Wittman, Sidney C. Wolff, W. Michael Wood-Vasey, Xiuqin Wu, Bo Xin, Peter
Yoachim, and Hu Zhan. LSST: From Science Drivers to Reference Design and
Anticipated Data Products. Astrophysical Journal, 873(2):111, Mar 2019. doi:
10.3847/1538-4357/ab042c.

Rafael Izbicki and Ann B. Lee. Converting high-dimensional regression to high-
dimensional conditional density estimation. Electronic Journal of Statistics, 11(2):
2800 – 2831, 2017. doi: 10.1214/17-EJS1302. URL https://doi.org/10.1214/

17-EJS1302.

M. Jarvis. TreeCorr: Two-point correlation functions. Astrophysics Source Code
Library, August 2015.

M. Jarvis, G. Bernstein, and B. Jain. The skewness of the aperture mass statistic.
Monthly Notices of the Royal Astronomical Society, 352:338–352, July 2004. doi:
10.1111/j.1365-2966.2004.07926.x.

M. Jarvis, P. Schechter, and B. Jain. Telescope Optics and Weak Lensing: PSF
Patterns due to Low Order Aberrations. arXiv:0810.0027, October 2008.

M. Jarvis, E. Sheldon, J. Zuntz, T. Kacprzak, S. L. Bridle, A. Amara, R. Arm-
strong, M. R. Becker, G. M. Bernstein, C. Bonnett, C. Chang, R. Das, J. P.
Dietrich, A. Drlica-Wagner, T. F. Eifler, C. Gangkofner, D. Gruen, M. Hirsch,
E. M. Huff, B. Jain, S. Kent, D. Kirk, N. MacCrann, P. Melchior, A. A. Plazas,
A. Refregier, B. Rowe, E. S. Rykoff, S. Samuroff, C. Sánchez, E. Suchyta, M. A.
Troxel, V. Vikram, T. Abbott, F. B. Abdalla, S. Allam, J. Annis, A. Benoit-Lévy,
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René J. Laureijs, Ludovic Duvet, Isabel Escudero Sanz, Philippe Gondoin, David H.
Lumb, Tim Oosterbroek, and Gonzalo Saavedra Criado. The Euclid Mission. In
Jr. Oschmann, Jacobus M., Mark C. Clampin, and Howard A. MacEwen, edi-
tors, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter
Wave, volume 7731 of Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, page 77311H, July 2010. doi: 10.1117/12.857123.

Pablo Lemos, Anthony Challinor, and George Efstathiou. The effect of Limber and
flat-sky approximations on galaxy weak lensing. Journal of Cosmology and As-
troparticle Physics, 2017(5):014, May 2017. doi: 10.1088/1475-7516/2017/05/014.

D. Nelson Limber. The Analysis of Counts of the Extragalactic Nebulae in Terms of
a Fluctuating Density Field. Astrophysical Journal, 117:134, January 1953. doi:
10.1086/145672.

M. Lochner, D. M. Scolnic, H. Awan, N. Regnault, P. Gris, R. Mandelbaum, E. Ga-
wiser, H. Almoubayyed, C. N. Setzer, S. Huber, M. L. Graham, R. Hložek,
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Bellido, E. Gaztanaga, D. W. Gerdes, R. A. Gruendl, J. Gschwend, G. Gutierrez,
D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, N. Kuropatkin, M. Lima,
M. A. G. Maia, M. March, J. L. Marshall, P. Martini, P. Melchior, F. Menanteau,
C. J. Miller, R. Miquel, R. L. C. Ogando, A. A. Plazas, E. Sanchez, V. Scarpine,
R. Schindler, M. Schubnell, S. Serrano, I. Sevilla-Noarbe, E. Sheldon, M. Smith,
F. Sobreira, E. Suchyta, G. Tarle, D. Thomas, V. Vikram, and DES Collabora-
tion. Dark Energy Survey Year 1 results: constraints on intrinsic alignments and
their colour dependence from galaxy clustering and weak lensing. Monthly No-
tices of the Royal Astronomical Society, 489(4):5453–5482, November 2019. doi:
10.1093/mnras/stz2197.

Javier Sanchez, Ismael Mendoza, David P. Kirkby, Patricia R. Burchat, and LSST
Dark Energy Science Collaboration. Effects of overlapping sources on cosmic shear
estimation: Statistical sensitivity and pixel-noise bias. Journal of Cosmology and
Astroparticle Physics, 2021(7):043, July 2021. doi: 10.1088/1475-7516/2021/07/
043.

105

+ http://dx.doi.org/10.1111/j.1365-2966.2010.16277.x
+ http://dx.doi.org/10.1111/j.1365-2966.2010.16277.x


Masanori Sato, Takashi Hamana, Ryuichi Takahashi, Masahiro Takada, Naoki
Yoshida, Takahiko Matsubara, and Naoshi Sugiyama. Simulations of Wide-Field
Weak Lensing Surveys. I. Basic Statistics and Non-Gaussian Effects. Astrophysical
Journal, 701(2):945–954, August 2009. doi: 10.1088/0004-637X/701/2/945.

Emmanuel Schaan, Simone Ferraro, and Uros Seljak. Photo-z outlier self-calibration
in weak lensing surveys. Journal of Cosmology and Astroparticle Physics, 2020(12):
001, December 2020. doi: 10.1088/1475-7516/2020/12/001.

Edward F. Schlafly and Douglas P. Finkbeiner. Measuring Reddening with Sloan
Digital Sky Survey Stellar Spectra and Recalibrating SFD. Astrophysical Journal,
737(2):103, August 2011. doi: 10.1088/0004-637X/737/2/103.

S. J. Schmidt, A. I. Malz, J. Y. H. Soo, I. A. Almosallam, M. Brescia, S. Cavuoti,
J. Cohen-Tanugi, A. J. Connolly, J. DeRose, P. E. Freeman, M. L. Graham, K. G.
Iyer, M. J. Jarvis, J. B. Kalmbach, E. Kovacs, A. B. Lee, G. Longo, C. B. Morrison,
J. A. Newman, E. Nourbakhsh, E. Nuss, T. Pospisil, H. Tranin, R. H. Wechsler,
R. Zhou, R. Izbicki, and LSST Dark Energy Science Collaboration. Evaluation of
probabilistic photometric redshift estimation approaches for The Rubin Observa-
tory Legacy Survey of Space and Time (LSST). Monthly Notices of the Royal Astro-
nomical Society, 499(2):1587–1606, December 2020. doi: 10.1093/mnras/staa2799.

P. Simon. How accurate is Limber’s equation? Astronomy and Astrophysics, 473(3):
711–714, October 2007. doi: 10.1051/0004-6361:20066352.

D. Spergel, N. Gehrels, C. Baltay, D. Bennett, J. Breckinridge, M. Donahue,
A. Dressler, B. S. Gaudi, T. Greene, O. Guyon, C. Hirata, J. Kalirai, N. J. Kas-
din, B. Macintosh, W. Moos, S. Perlmutter, M. Postman, B. Rauscher, J. Rhodes,
Y. Wang, D. Weinberg, D. Benford, M. Hudson, W. S. Jeong, Y. Mellier, W. Traub,
T. Yamada, P. Capak, J. Colbert, D. Masters, M. Penny, D. Savransky, D. Stern,
N. Zimmerman, R. Barry, L. Bartusek, K. Carpenter, E. Cheng, D. Content,
F. Dekens, R. Demers, K. Grady, C. Jackson, G. Kuan, J. Kruk, M. Melton, B. Ne-
mati, B. Parvin, I. Poberezhskiy, C. Peddie, J. Ruffa, J. K. Wallace, A. Whipple,
E. Wollack, and F. Zhao. Wide-Field InfrarRed Survey Telescope-Astrophysics
Focused Telescope Assets WFIRST-AFTA 2015 Report. arXiv e-prints, art.
arXiv:1503.03757, March 2015.

B. Stölzner, B. Joachimi, A. Korn, H. Hildebrandt, and A. H. Wright. Self-calibration
and robust propagation of photometric redshift distribution uncertainties in weak
gravitational lensing. Advances in Applied Physics, 650:A148, June 2021. doi:
10.1051/0004-6361/202040130.

Masahiro Takada and Martin White. Tomography of Lensing Cross-Power Spectra.
Astrophysical Journall, 601(1):L1–L4, January 2004. doi: 10.1086/381870.

106



M. A. Troxel and Mustapha Ishak. The intrinsic alignment of galaxies and its impact
on weak gravitational lensing in an era of precision cosmology. Physics Reports,
558:1–59, Feb 2015. doi: 10.1016/j.physrep.2014.11.001.

M. A. Troxel, N. MacCrann, J. Zuntz, T. F. Eifler, E. Krause, S. Dodelson, D. Gruen,
J. Blazek, O. Friedrich, S. Samuroff, J. Prat, L. F. Secco, C. Davis, A. Ferté,
J. DeRose, A. Alarcon, A. Amara, E. Baxter, M. R. Becker, G. M. Bernstein,
S. L. Bridle, R. Cawthon, C. Chang, A. Choi, J. De Vicente, A. Drlica-Wagner,
J. Elvin-Poole, J. Frieman, M. Gatti, W. G. Hartley, K. Honscheid, B. Hoyle, E. M.
Huff, D. Huterer, B. Jain, M. Jarvis, T. Kacprzak, D. Kirk, N. Kokron, C. Krawiec,
O. Lahav, A. R. Liddle, J. Peacock, M. M. Rau, A. Refregier, R. P. Rollins, E. Rozo,
E. S. Rykoff, C. Sánchez, I. Sevilla-Noarbe, E. Sheldon, A. Stebbins, T. N. Varga,
P. Vielzeuf, M. Wang, R. H. Wechsler, B. Yanny, T. M. C. Abbott, F. B. Abdalla,
S. Allam, J. Annis, K. Bechtol, A. Benoit-Lévy, E. Bertin, D. Brooks, E. Buckley-
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