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Abstract

In the era of precision cosmology, a wide range of cosmological surveys, such as LSST
of Rubin Observatory, DESI, Euclid and Roman Space Telescope will precisely probe the
large-scale structure and expansion history of the universe, shedding light on the nature of
the dark sector. The unprecedented high-quality data from upcoming weak lensing surveys
is expected to reduce the statistical uncertainty in weak lensing measurements compared
to current surveys by roughly an order of magnitude. This will be an opportunity to ex-
plore mysteries in contemporary cosmology, including the apparent tensions between the
early and the late universe as well as the nature of dark energy and dark matter. In the
next generation of weak lensing surveys, the analysis requires a better understanding and
more careful control of systematic uncertainties to avoid their dominating over statistical
uncertainties. Low-level sources of systematic uncertainty that are presently ignored in cur-
rent weak lensing analyses will become significant as the precision of the measurements
increases.

In the first part of the thesis, we studied the systematic bias of weak gravitational lensing
due to the assumption of Gaussian likelihoods. Weak gravitational lensing has been proven
to be a powerful probe to constrain cosmology. The standard approach that converts the
weak lensing measurements into constraints on cosmological parameters is to perform like-
lihood analyses by assuming the underlying likelihood distribution of the shear two-point
statistics is a multivariate Gaussian likelihood function. However, it has been known in
the literature that the likelihood function of weak lensing shear two-point statistics is not
strictly Gaussian. It is therefore important to quantify potential cosmological parameter
biases that may arise due to the assumption of an incorrect likelihood function, so as to de-
termine whether an alternative way of modeling the likelihood function is needed. We study
the significance of non-Gaussianity in the likelihood of weak lensing shear two-point cor-
relation functions using simulated weak lensing data. We find significant non-Gaussianity
in the marginal distributions of the correlation functions, indicating that the multivariate
likelihood distributions are non-Gaussian. In order to estimate the bias in cosmological
parameters due to carrying out the analysis while assuming an incorrect likelihood distri-
bution, we construct likelihood models with both parametric and non-parametric methods
and then infer the posteriors of Ωm and σ8 using the MCMC stochastic sampling method.
To properly assess likelihood models and avoid overfitting, we adopt cross-validation and
perform non-parametric two-samples tests. Based on the results on simulated data and esti-
mates of how the non-Gaussianity scales with survey area, we demonstrate that neglecting
the non-Gaussianity of the likelihood is not a significant source of bias for wide-field imag-
ing surveys such as LSST.

The rest part of the thesis is devoted to the systematic biases for the upcoming near
infrared weak lensing survey. Recently, there have been more studies of the impact of



detector non-idealities on weak lensing. Since Roman Space Telescope will focus on in-
frared imaging, it will use CMOS based near-infrared detectors. Unlike optical CCDs,
near-infrared detectors typically suffer from different detector non-idealities. Among the
systematic effects in these detectors that will be relevant for Roman Space Telescope are the
light polarization effect and the image persistence effect. Persistence is the phenomenon
of retaining a small but non-negligible fraction of the flux in images from the previous
exposures after a reset. This leads to images being contaminated by bright stars in the
previous exposures or during the telescope slews. In our work, we implemented image
simulations, combined with the dithering strategies, to investigate impact of persistence on
weak lensing measurements. Light polarization effect, on the other hand, is the impact of
light polarization of galaxies on weak lensing. Since the efficiency of detectors and the
response of optical devices depend on the polarization of incoming light rays, if the light
from galaxies is linearly polarized, the existing analysis methods that ignore the polariza-
tion information could lead to biases in the weak lensing results.Even though the linear po-
larization of light from galaxies has been observed, polarization-induced systematic errors
have not generally been considered for optical weak lensing analyses. We investigated two
polarization-induced systematic biases: the selection bias in favor of galaxies with specific
orientations and the polarization-dependent PSF uncertainty. The selection bias arises from
the dependence of the transmitted intensity of polarized light on the angle of polarization.
The polarization-dependent PSF, on the other hand, is a result of the polarization-dependent
optical aberrations. We build toy models to obtain for the first time an estimate for both of
these polarization-induced biases and show that both biases are comparable to the Roman
Space Telescope systematics tolerance level, indicating the need for more detailed studies.
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Chapter 1

Introduction

1.1 Contemporary Cosmology

The modern understanding of the universe is built upon a few great progresses both in the-
ory and observation in the past century. In 1910s, Einstein completed his theory of General
Relativity (GR) that generalizes Newtonian gravity and constructed the first model of the
Universe based on the new theory of gravity and spacetime. He introduced the cosmo-
logical constant Λ, which provides repulsive gravity that counters the attractive gravity by
matter to yeild a static solution for the universe.

In 1929, Hubble discovered that galaxies farther away from us are receding at higher
velocities. This discovery implied that the universe is expanding homogeneously, and the
expansion of the universe has been well accepted since then. In 1960s, the discovery of
Cosmic Microwave Background radiation (CMB) provided evidence for the Hot Big Bang
Theory and proved that the universe was dominated by radiation at early times. And in
1970s, the significant discrepancy between the observed galaxy rotation curve and the pre-
dicted one by the gravity of observed matter led to the postulated concept of dark matter.

Since the 2000s, the field of cosmology entered the precision era with the launch of
several cosmological experiments. One of the most important discovery of contemporary
cosmology is that the expansion of the Universe is accelerating. This was first discovered
by determining distance as a function of galaxy redshift using supernova (Riess et al.,
1998; Perlmutter et al., 1999). The accelerated expansion was further confirmed by the
studies of CMB, baryon acoustic oscillation (BAO), galaxy clustering and weak lensing.
The extensive evidence for cosmic acceleration suugested the existence of dark energy that
provides negative pressure to drive the acceleration and revived the concept of cosmological
constant Λ. The flat Λ-Cold Dark Matter (ΛCDM) model has become a widely accepted
model in modern cosmology.
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1.1.1 Metrics and Distances

The Standard Model is built around GR, and the space-time separations in GR between
events are described by a metric. In the 1930s, Robertson and Walker (independently)
showed that there are only three possible spacetime metrics for a universe that is homoge-
neous and isotropic. They can be written

ds2 = −c2dt2 + a2(t)[dχ2 + S2
k(χ)dΩ2], (1.1)

where

Sk(χ) =





sin(χ) k = 1

χ k = 0

sinh(χ) k = −1

(1.2)

In this notation, k is a constant indicating the geometry of the space and a(t) is a
dimensionless scale factor. It is defined so that a(t0) = 1 at the time t0 (usually taken to be
the present) when the curvature radius is R0. χ is the comoving distance defined as

dχ =
dr√

1− kr2
= c

dt

a(t)
(1.3)

In observations, we often measure the angular size of objects, which can then be con-
verted to physical size using the line of sight distance, DA (called angular diameter dis-
tance)

DA(a) = aSk(χ) (1.4)
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1.1.2 Standard Model and Dark Components of the Universe
The explanation of the history of the Universe is derived from the widely accepted Lambda
Cold Dark Matter cosmological model of the big bang cosmology. This standard model,
usually abbreviated as ΛCDM model, is a mathematical model that parametrizes the cos-
mology with only six parameters under the framework of General Relativity and the Fried-
man equation. ΛCDM model assumes that the universe is composed of photons, neutrinos,
ordinary matter, cold dark matter and dark energy, which take the form of a constant energy
density, referred to as the cosmological constant Λ. Though simple, the flat ΛCDM model
has become a most accepted model in modern cosmology. Various cosmological probes
from the larger sample size of supernova, higher resolution CMB data, baryon coustic
oscillation (BAO), galaxy clustering and weak lensing, and massive clusters in X-ray sur-
veys, have shown consistency with the ΛCDM model. Despite the success of ΛCDM, the
recent highest-resolution CMB measurements from the Planck experiment has revealed a
tendency of tension with other low redshift cosmological probes (e.g., Bernal et al. (2016)).

Dark Energy

The cosmological constant was first introduced by Einstein into his theory of General Rela-
tivity in 1917 for cosmological considerations (Einstein, 1917). The cosmological constant
terms provided a repulsive force that countered the attraction by gravity to keep the uni-
verse stable and static. The cosmological constant term was later ignored by physicists for
decades after Hubble discovered that the universe was expanding in 1929.

To determine how different components of the Universe drive the cosmological expan-
sion, we can derive the Friedman equation from Einstein’s field equations and relate the
Hubble parameter with energy densities:

H2(a) =
8πG

3
[ρr(a) + ρm(a) + ρk(a) + ρΛ(a)], (1.5)

where the Hubble parameter is defined as H(a) ≡ ȧ/a, and ρk and ρΛ are the energy
densities of the spatial curvature and cosmological constant with ρΛ = Λc2

8πG
, ρk = −3kc2

a28πG
.

The Friedman equation can be further simplified by defining the equation of states that
relates the pressure p and the mass density p of a perfect fluid:

p = wρc2 (1.6)

The solution of the scale factor for a single perfect fluid is

ρ ∝ a−3(1+w). (1.7)

The case of w = 0 corresponds to a matter-dominated universe, implying that ρm ∝ a−3.
Similarly, a radiation dominated universe has w = 1/3 and thus ρr ∝ a−4. And for
cosmological parameter Λ, w = −1 and ρΛ = const.
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We can also rewrite the Friedman’s acceleration equation using the equation of states:

ä

a
=
−4πG

3
ρ(1 + 3w) (1.8)

It was the supernova experiments that revived the cosmological constant in late 1990s
when two groups of supernova observers independently reported the critical discovery that
the expansion rate of the universe is expanding (Riess et al., 1998; Perlmutter et al., 1999).
In Eq. 1.8, the cosmological constant with w = −1 can drive the accelerated expansion
under the framework of ΛCDM. The observational evidence for the cosmic acceleration
has grown since then. Although a wide range of measurements, including larger supernova
experiments (e.g., Wood-Vasey et al. (2007); Conley et al. (2011)), high-resolution CMB
measurements (e.g., Larson et al. (2011); Planck Collaboration et al. (2014b, 2016, 2018)),
BAO (e.g., Eisenstein et al. (2005); Percival et al. (2010)) and precise measurements of H0

(e.g., Riess et al. (2009); Freedman et al. (2012)) reinforced the cosmic acceleration since
the 2000s, the origin of the acceleration remains mysterious. Inspired by the profound
implications of cosmic acceleration, a number of ambitious surveys, including DESI (DESI
Collaboration et al., 2016), Euclid (Laureijs et al., 2011), Rubin Observatory LSST (Ivezić
et al., 2019), and Roman Space Telescope (Spergel et al., 2015) are planned to shed light
on the origin of cosmic acceleration and determine the properties of dark energy.

Dark Matter

The first evidence for the existence of matter that does not interact with light was pre-
sented in observations of the Coma cluster in the 1930s by Fritz Zwicky (Zwicky, 1937),
who measured the velocities of the Coma member galaxies and determined that they were
moving faster than their combined stellar mass could bind together gravitationally. Further
evidence was announced in the 1970s with Vera Rubin’s measurements of galaxy rotation
curves (Rubin & Ford, 1970), which showed that the total mass of galaxies increased sig-
nificantly with radius even though very little additional stellar mass was present at these
larger radii. More recent imaging of the merging Bullet cluster, in lensing and X-ray pro-
vide another instance of a cluster scale object with apparently non-identical mass and light
distributions (e.g., Clowe et al. (2007)). The inference of large amount of mass from grav-
itational lensing, and the CMB experiment, has left the existence of dark matter as a key
component of the Universe. Extensive observational evidence has now made the existence
of the dark matter component very difficult to dispute.

In addition to the evidence, determining the nature of dark matter has become an out-
standing problem of modern physics. Over the last several decades, an extensive experi-
mental program has sought to determine the cosmological origin, fundamental constituents,
and interaction mechanisms of dark matter. Various collider experiments attempt to directly
detect dark matter particles or indirectly detect dark matter through the products of dark
matter particles (for reviews, see Feng (2010); Boveia & Doglioni (2018)). Despite these
extensive efforts, astrophysical and cosmological observations remain the only empirical
measurement of dark matter. So far, the observational data is well described by a simple,
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non-relativistic, collisionless, cold dark matter model. However, many alternative models
of dark matter predict observable deviations from CDM, which are testable with current
and future experiments. In addition, fundamental properties of dark matter, such as particle
mass, time evolution and coupling to the Standard Model particles, can leave message in
the macroscopic distribution of dark matter (Feng, 2010).

1.2 Weak Lensing

Weak gravitational lensing is a powerful probe of cosmology as as it is sensitive to both
geometry and growth of the structure in the universe (see Weinberg et al. (2013); Kilbinger
(2015); Dodelson (2017) for reviews). Weak gravitational lensing is the deflection of light
by the gravitational field of large-scale structure, which leads to minute distortions of the
observed galaxy images compared to their original shapes in the galaxy source plane. In
the weak regime, lensing introduces small but coherent distortions in the shapes (shear)
and sizes (convergence) of background sources. These distortions contain the information
of the large scale structure between the observer and the source. Measuring the correlation
functions of the galaxy shapes is therefore a way to measure the growth of structure and the
geometry of the Universe (e.g., Bartelmann & Schneider, 2001; Hoekstra & Jain, 2008; Kil-
binger, 2015; Mandelbaum, 2018) and hence a promising avenue to constrain cosmology
(e.g., Huff et al. (2014); Jee et al. (2016); Hildebrandt et al. (2018); Troxel et al. (2018a);
Hikage et al. (2019b)). Despite the potential, weak lensing measurements are also diffi-
cult. Typical weak lensing shear is of order 0.01 compared to intrinsic galaxy ellipticities
of order 0.2. In a lensing survey we need to accurately measure shapes of a large number
of galaxies, while keeping any systematic errors to a level lower than statistical errors. The
signals from weak lensing measurement are subject to a number of systematics originating
from shape measurement errors, noisy photometric redshifts measurements, modeling un-
certainties and astrophysical systematics. Therefore, the biggest challenge of weak lensing
lies in estimating and studying the sources of systematics errors. This is also the main focus
of this dissertation. With the next generation of weak lensing surveys, such as the Legacy
Survey of Space and Time of Rubin Observatory (LSST Ivezić et al. 2019), the Roman
Space Telescope and Euclid, we expect data sets that are both wider and deeper compared
to current surveys in the near future. Though current results are dominated by statistical
uncertainties, the high-quality data from upcoming lensing surveys is expected to reduce
the statistical uncertainty in weak lensing measurements compared to current surveys and
the systematics will become important in the future. It will therefore be crucial to improve
our understanding of various systematic errors in the weak lensing.

1.2.1 Gravitational Lensing

In this section, we summarize the formalism of gravitational lensing under the framework
of General Relativity. We will derive some simple and useful relations of gravitational lens-
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ing that provides intuitive insights to the lensing effect. For more detailed formalism, we
refer the reader to review paper of weak lensing (Bartelmann & Schneider, 2001; Weinberg
et al., 2013; Kilbinger, 2015). The derivation below will follow the notations in Bartelmann
& Schneider (2001).

In general relativity, a point mass with mass M deflects a light ray with impact factor ξ
by an angle of

α̂ =
4GM

c2ξ
. (1.9)

Since Eq. 1.9 is linear in M , this equation can be generalized to an array of lens easily in
the cases where the gravitational field is weak and linearized. Now suppose we have N
points on the lens plane with masses Mi and impact factors ξi. The deflection angle by the
N lenser will be

~̂α =
4G

c2

∑

i

Mi

~ξ − ~ξi
|~ξ − ~ξi|2

. (1.10)

Under the thin lens approximation that the size of the lens is much smaller than the dis-
tances between the source, lens and the observer, we can project the 3-D mass of the lens
onto the 2-D lens plane and define the surface density,

Σ(~ξ) =

∫
ρ(~ξ, z)dz, (1.11)

where ρ is the 3-D mass density. The total deflection of Eq. 1.10 becomes

~̂α =
4G

c2

∫
d2ξ′Σ(~ξ′)

~ξ − ~ξ′
|~ξ − ~ξ′|2

. (1.12)

Figure 1.1 shows the diagram of the lensing system. This figure contains the source and
the lens plane, both perpendicular to the vertical optical axis, indicated by the solid dashed
line. From the diagram, we can relate the angles θ, α and β with the lens equation:

~θDs = ~βDs + ~̂aDds, (1.13)

Or
~β = ~θ − ~α(~θ), (1.14)

with ~α ≡ Dds
Ds
~̂a.

If we define a dimension-less surface density (convergence) with Σ(~ξ):

κ(~θ) ≡ Σ(Dd
~θ)

Σcr

, with Σcr =
c2

4πG

DS

DdDds

, (1.15)

we can rewrite Eq. 1.12 as

~α(~θ) =
1

π

∫
d2θ′κ(~θ′)

~θ − ~θ′
|~θ − ~θ′|2

. (1.16)
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3 Gravitational Light Deflection

In this section, we summarise the theoretical basis for the description of light de-
flection by gravitational fields. Granted the validity of Einstein’s Theory of General
Relativity, light propagates on the null geodesics of the space-time metric. How-
ever, most astrophysically relevant situations permit a much simpler approximate
description of light rays, which is called gravitational lens theory; we first describe
this theory in Sect. 3.1. It is sufficient for the treatment of lensing by galaxy clus-
ters in Sect. 5, where the deflecting mass is localised in a region small compared
to the distance between source and deflector, and between deflector and observer.
In contrast, mass distributions on a cosmic scale cause small light deflections all
along the path from the source to the observer. The magnification and shear effects
resulting therefrom require a more general description, which we shall develop in
Sect. 3.2. In particular, we outline how the gravitational lens approximation derives
from this more general description.

3.1 Gravitational Lens Theory

Observer 

Lens plane 

Source plane 

θ 

β 

ξ 

α̂ 

η 

Dds 

Dd 

Ds 

Fig. 11. Sketch of a typical gravitational lens system.

45

Figure 1.1: Sketch of a typical gravitational lens system (from Bartelmann & Schneider
(2001)).
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It is natural to define another scalar quantity which is commonly called the effective lensing
potential

ψ(~θ) =
1

π

∫
d2θ′κ(~θ′) ln (~θ − ~θ′), (1.17)

so that the deflection vector is the gradient of the lensing potential

~α = ∇θψ (1.18)

and it satisfies the Poisson equation

2κ(~θ) = ∇2
θψ. (1.19)

Given Eq. 1.14 and Eq. 1.18, we can derive the Jacobian matrix of the image distrotion
as

A(~θ) =
∂~β

∂~θ
= δij −

∂αi
∂θj

= δij −
∂2ψ(~θ)

∂θi∂θj
=

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (1.20)

where the convergence κ and the shear components γ1 and γ2 are defined as

κ =
1

2

(
∂2

∂x2
+

∂2

∂y2

)
ψ, (1.21)

γ1 =
1

2

(
∂2

∂x2
− ∂2

∂y2

)
ψ, (1.22)

γ2 =
∂2ψ

∂x∂y
. (1.23)

1.2.2 Cosmic Shear
The formalism in the last section is derived for one single thin lens plane. But in practice,
a source galaxy is sheared by an infinite amount of continuous lens planes before it is
observed by the observer on the earth. This effect is known as cosmic shear. Cosmic
shear is the distortion of images of distant galaxies due to weak gravitational lensing by
the large-scale structure in the Universe. Such images are coherently deformed by the tidal
field of matter inhomogeneities along the line of sight. The idea of making the cosmic shear
measurement was proposed in 1967 (Kristian, 1967), and was finally detected by several
groups in the year of 2000 (e.g., Wittman et al. (2000); Bacon et al. (2000); Van Waerbeke
et al. (2000)).

In Sect. 1.2.1 we define the convergence of the lens plane as the normalized surface
density. We can extend the formalism to the case of cosmic shear by defining the effective
convergence summing over all the source planes behind a given lens plane

κeff (~θ, zL) =
∑

s

κs =
4πGDd

c2
Σ(~θ, zL)

∫ ∞

zL

Dds(zs)

Ds(zs)
p(zs)dzs, (1.24)
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where p(zs) is the source density. Summing over zL, we obtain the total effective conver-
gence which corresponds to the signal of cosmic shear:

κeff (~θ) =

∫
g(χ)δ(χ)dχ, (1.25)

g(χ) =
3ΩmH

2
0

2c2a(χ)

∫
p(χ′)

Sk(χ)Sk(χ
′ − χ)

Sk(χ′)
dχ′, (1.26)

where the kernel g(χ) is the lensing efficiency. As with the analogue of a classical lens, the
lens is most efficient when positioned approximately mid-way between the observer and
the source. As shown in Eq. 1.25, the cosmic shear signal is determined by the lensing
efficiency which represents the geometry of the lens-source system as well as the matter
density distribution. This allows the cosmic shear to probe both the geometry and growth
of structure of the universe.

1.2.3 Bayesian Inference
The modern cosmology is pretty much built upon observations of the universe to study its
origin and evolution. Especially, cosmology has evolved into a data-rich field in the last
few decades when new telescopes and surveys allowed the production of a large amount of
data. The observed data are used to test the predictions of cosmological theories and lead to
improvement of cosmological models. Such analyses are usually done through statistics, in
particular, Bayesian statistics. Here we outline the key concepts of Bayesian inference. For
reviews of Bayesian inference and its applications to cosmology, please see Trotta (2008);
Padilla et al. (2019).

In the frequentist’s point of view, the probability of an event is simply the number of
times that the event occurs in the limit of an infinite series of measurements. This interpre-
tation is intuitive in the context of coin flip experiments, where the results are random. One
can simply perform the random tosses many times and records the series of head and tails
to estimate the probability of getting each results. The frequentist interpretation of proba-
bility makes less sense in the context of measuring cosmological parameters since there is
only one universe. This problem can be avoided by the Bayesian stance, which views the
probability as a measure of the degree of belief. Under this definition, the probability of
a cosmological parameter is the observer’s degree of confidence in the inferred parameter.
Repetitive measurements on the single universe just improve our degree of belief.

Now suppose we have a column vector of the observed data (e.g., measurement of
shear two-point correlation function or CMB fluctuations) denoted by D. The observation
is based on a specific cosmology with cosmological parameters θ. Given a model M, the
data vector can be predicted from the input parameters θ. In the case of parameter inference,
we would like to obtain the probability distribution of θ given the model and the observed
data. Bayes’ theorem states that,

P (θ|D,M) =
L(D|θ,M)p(θ|M)

p(D|M)
. (1.27)
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In this relation, P (θ|D,M) is called the posterior probability which expresses the condi-
tional probability of the desired parameters. p(θ|M) is called the prior and encodes the
prior knowledge about the model before getting the observed data. p(D|M) is the evi-
dence of the model, which acts as a normalization factor in the relation. The first term,
L(D|θ,M),is called the likelihood and represents the probability of observed data D for a
specific set θ values.

In practice, it is typically very difficult to compute the posterior distribution of the pa-
rameters analytically, and thus numerical tools for estimating the posteriors are essential
in these cases. Techniques including the Markov Chain Monte Carlo (MCMC) (Hastings,
1970; Metropolis et al., 1953) and the Nested Sampling algorithm (Skilling, 2006) have
been approved to be computationally efficient, with publicly available packages imple-
menting the algorithms, such as EMCEE (Foreman-Mackey et al., 2013), MultiNest (Feroz
et al., 2009) and COSMOMC (Lewis & Bridle, 2002).

1.2.4 Systematic Errors

The typical magnitude of the weak lensing shear signal is of order 0.01 compared to in-
trinsic galaxy ellipticities of order 0.2. Thus, one major challenge in a lensing survey is
to accurately measure shapes of a large number of galaxies, while keeping any systematic
errors to a level lower than statistical errors. Note that the term "systematic errors" could
ambiguously mean both systematic biases, which are the biases that can be identified, esti-
mated and removed, and systematic uncertainties, which are the residual uncertainties after
removing biases. A great amount of progress have been accumulated in the past decade to
overcome various challenges. Much effort has been committed to understand observational
systematic effects, such as uncertainties in the measurement of galaxy shapes (e.g., Massey
et al., 2013; Mandelbaum et al., 2015) and photometric redshifts. On the astrophysical side,
major progress has been made in modeling systematic biases that affect the interpretation
of the weak lensing signal, such as the intrinsic alignment of galaxies (e.g., Mandelbaum
et al., 2011; Joachimi et al., 2015; Troxel & Ishak, 2015; Krause et al., 2016), the nonlin-
ear evolution of the dark matter density field (e.g., Takahashi et al., 2012; Heitmann et al.,
2014), and baryonic effects that modify the latter (e.g., Eifler et al., 2015; Mead et al.,
2015; Chisari et al., 2018). For a more detailed review on the technical developments of
weak lensing, from raw images to scientific inferences, one can take Mandelbaum (2018)
for reference.

Currently, we have three weak lensing survey programs running, including the Kilo-
Degree Survey (KiDS), the Hyper Suprime-Cam survey (HSC) and the Dark Energy Sur-
vey (DES). The ongoing surveys are excellent test grounds for the weak lensing system-
atic errors in preparation for the upcoming surveys in 2020s. With the next generation of
weak lensing surveys, such as the Legacy Survey of Space and Time of Rubin Observatory
(LSST Ivezić et al. 2019), the Roman Space Telescope and Euclid, the high-quality data
and the large data volume from these upcoming lensing surveys is expected to reduce the
statistical uncertainty in weak lensing measurements compared to current surveys by an

10



order of magnitude. As the precision of the measurements increases, low-level sources of
systematic biases could become significant compared to the statistical noise. Besides the
dominant systematic effects, such as photometric redshifts and intrinsic alignment, more
efforts should be put on systematic biases that are presently ignored in current weak lens-
ing analyses. In the following three chapters, we will investigate three different sources of
relatively weak systematics biases in the context of future weak lensing surveys.

1.3 Structure of the Thesis

Besides the introduction in the first chapter, the main result of this thesis consists the results
of three research projects.. All together they improve our understanding of systematics in
the field of weak gravitational lensing. In Chapters 2, we focus on the assumption of
Gaussian likelihood function and the resulting systematic bias for weak lensing. Chapters
3 and 4 concentrates on systematics due to the optical and detector effects specifically for
the upcoming Roman Space Telescope. Below I provide a brief summary on what these
projects are about.

In chapter 2, I present our investigation on the non-Gaussian weak lensing likelihood
functions and its impact on the cosmological parameters. We study the significance of
non-Gaussianity in the likelihood of weak lensing shear two-point correlation functions
using simulated weak lensing data (Harnois-Déraps et al., 2018). We find significant non-
Gaussianity in the marginal distributions of the correlation functions, indicating that the
multivariate likelihood distributions are non-Gaussian. In order to estimate the bias in
cosmological parameters due to carrying out the analysis while assuming an incorrect
likelihood distribution, we construct likelihood models with both parametric and non-
parametric methods and then infer the posteriors of Ωm and σ8 using the MCMC stochastic
sampling method. To properly assess likelihood models and avoid overfitting, we adopt
cross-validation and perform non-parametric two-samples tests, including energy distance
(Székely & Rizzo, 2004) and maximum mean discrepancy (Gretton et al., 2012). Based on
the results on simulated data and estimates of how the non-Gaussianity scales with survey
area, we demonstrate that neglecting the non-Gaussianity of the likelihood is not a signifi-
cant source of bias for wide-field galaxy surveys such as LSST. This work is accepted for
publication in MNRAS.

Chapter 3 presents our study of the light polarization effects on Weak Lensing. We in-
vestigated two polarization-induced systematic biases: the selection bias in favor of galax-
ies with specific orientations and the polarization-dependent PSF uncertainty. The selection
bias arises from the dependence of the transmitted intensity of polarized light on the an-
gle of polarization. The polarization-dependent PSF, on the other hand, is a result of the
polarization-dependent optical aberrations. We build toy models to obtain for the first time
an estimate for both of these polarization-induced biases and show that both biases are
comparable to the Roman Space Telescope systematics tolerance level, indicating the need
for more detailed studies. This work is published in Lin et al. (2020), MNRAS, 496, 532.
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Chapter 4 presents our results on the study of the persistence detector effect and the
resulting systematic effect on weak lensing. The Roman Space Telescope will survey the
sky in the near infrared (NIR) band using its specially designed HgCdTe photodiode arrays
called H4RG. For the NIR arrays, charges that are trapped in the photodiodes during earlier
exposure are gradually released into the current exposure, leading to contamination of the
images and errors of the galaxy shapes. This memory effect is called persistence. We use
image simulations that incorporate the persistence to study its impact on galaxy shapes
and weak lensing signal. We analyze the shape errors due to persistence. No significant
correlation between the shape shift by persistence is detected, indicating that persistence
does not introduce coherent shape distortions on galaxies. In the scales of interest, the effect
of persistence is about two orders of magnitude lower than the Roman Space Telescope
additive shear error budget, indicating that the persistence is expected to be a weak effect
on weak lensing for Roman Space Telescope given the current design. The work presented
in this chapter, at the time of writing, is in preparation for submission. The content is
subject to further changes before it is submitted for publication.

Finally, a summary of the conclusions and the outlook is presented in Chapter 5.
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Chapter 2

Non-Gaussianity in the Weak Lensing
Correlation Function Likelihood

2.1 Abstract

We study the significance of non-Gaussianity in the likelihood of weak lensing shear two-
point correlation functions, detecting significantly non-zero skewness and kurtosis in one-
dimensional marginal distributions of shear two-point correlation functions in simulated
weak lensing data. We examine the implications in the context of future surveys, in par-
ticular LSST, with derivations of how the non-Gaussianity scales with survey area. We
show that there is no significant bias in one-dimensional posteriors of Ωm and σ8 due to the
non-Gaussian likelihood distributions of shear correlations functions using the mock data
(100 deg2). We also present a systematic approach to constructing approximate multivari-
ate likelihoods with one-dimensional parametric functions by assuming independence or
more flexible non-parametric multivariate methods after decorrelating the data points using
principal component analysis (PCA). While the use of PCA does not modify the non-
Gaussianity of the multivariate likelihood, we find empirically that the one-dimensional
marginal sampling distributions of the PCA components exhibit less skewness and kurto-
sis than the original shear correlation functions. Modeling the likelihood with marginal
parametric functions based on the assumption of independence between PCA components
thus gives a lower limit for the biases. We further demonstrate that the difference in cos-
mological parameter constraints between the multivariate Gaussian likelihood model and
more complex non-Gaussian likelihood models would be even smaller for an LSST-like
survey. In addition, the PCA approach automatically serves as a data compression method,
enabling the retention of the majority of the cosmological information while reducing the
dimensionality of the data vector by a factor of ∼5.
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2.2 Introduction
Weak gravitational lensing is the deflection of light by the gravitational field of large-scale
structure, which leads to minute distortions of the observed galaxy images compared to
their original shapes in the galaxy source plane. Measuring the correlation functions of
the galaxy shapes is therefore a way to measure the growth of structure and the geometry
of the Universe (e.g., Bartelmann & Schneider, 2001; Hoekstra & Jain, 2008; Kilbinger,
2015; Mandelbaum, 2018) and hence a promising avenue to constrain cosmology (Huff
et al., 2014; Jee et al., 2016; Hildebrandt et al., 2018; Troxel et al., 2018a; Hikage et al.,
2019b).

With the next generation of weak lensing surveys, such as the Large Synoptic Survey
Telescope (LSST1; Ivezić et al. 2019), the Wide-Field Infrared Survey Telescope (WFIRST2)
and Euclid3, we expect data sets that are both wider and deeper compared to current sur-
veys (e.g. KiDS4, DES5, HSC6) in the near future. The high-quality data from upcoming
lensing surveys is expected to reduce the statistical uncertainty in weak lensing measure-
ments compared to current surveys by an order of magnitude. In order to fully exploit the
cosmological constraining power of weak lensing surveys, much effort has been committed
to understand observational systematic effects, such as uncertainties in the measurement of
galaxy shapes (e.g., Massey et al., 2013; Mandelbaum et al., 2015) and photometric red-
shifts. On the astrophysical side, major progress has been made in modeling systematics
that affect the interpretation of the weak lensing signal, such as the intrinsic alignment
of galaxies (e.g., Mandelbaum et al., 2011; Joachimi et al., 2015; Troxel & Ishak, 2015;
Krause et al., 2016), the nonlinear evolution of the dark matter density field (e.g., Taka-
hashi et al., 2012; Heitmann et al., 2014), and baryonic effects that modify the latter (e.g.,
Eifler et al., 2015; Mead et al., 2015; Chisari et al., 2018).

However, inaccuracies in the last step of the analysis, the inference of cosmological pa-
rameters from measurements of observables such as ξ± and some model for the likelihood
function, are less well-explored in the weak lensing community. Uncertainties related to
parameter space sampling, discrepancy metrics, and the likelihood of the summary statis-
tics itself are important aspects of the cosmological interpretation that can lead to potential
biases in the analysis.

While likelihood-free approaches such as Approximate Bayesian Computation (e.g.,
Akeret et al., 2015; Peel et al., 2017) are beginning to emerge as a tool for cosmological
inference, most analyses still assume a likelihood function to transition from observations
to cosmological parameters. Among the possible choices, the multivariate Gaussian likeli-
hood function is the simplest and most commonly used.

Even though the Cosmic Microwave Background (CMB) temperature field is close to

1http://www.lsst.org/lsst
2https://wfirst.gsfc.nasa.gov
3http://sci.esa.int/euclid/
4http://kids.strw.leidenuniv.nl
5https://www.darkenergysurvey.org
6http://hsc.mtk.nao.ac.jp/ssp/
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a Gaussian and the non-Gaussian features in CMB power spectra are small, the CMB data
analyses (Hinshaw et al., 2013; Planck Collaboration et al., 2014a, 2016) have made some
progress beyond this simple Gaussian assumption.

They use second-order statistics to capture the cosmological information in the under-
lying temperature and polarization field, which are (very close to) Gaussian. For idealized
CMB observations (full-sky, isotropic beam, spatially uniform noise) the empirical power
spectra of the underlying Gaussian temperature and polarization fields has a Wishart dis-
tribution given the model power spectra. At sufficiently high `, the likelihood function
of power spectra approaches a multivariate Gaussian following the Central Limit Theo-
rem. When going beyond the idealized case, the inclusion of potentially non-Gaussian
foreground distributions such as galactic dust emission, Cosmic Infrared Background, and
radio point sources breaks the initial assumption that the measured field is Gaussian and
consequently breaks the conclusion that the likelihood of the power spectra beyond a certain
` is well-approximated by a multivariate Gaussian. As further detailed in Planck Collabo-
ration et al. (2016), the Planck analysis masks foreground contaminants and assumes that
the non-Gaussian features are subdominant outside of the masked regions.

The situation is different for weak lensing. Due to non-linear structure evolution at
late times, the shear field itself is non-Gaussian, which invalidates the premise of the CMB
argument. Nevertheless, weak lensing analyses have assumed a multivariate Gaussian like-
lihood function to be the underlying distribution of shear two-point statistics (Fu et al.,
2008; Semboloni et al., 2011; Huff et al., 2014; Hildebrandt et al., 2016; Troxel et al.,
2018a). In these analyses, the non-Gaussianity of the shear field enters only via non-linear
matter density power spectra (Takahashi et al., 2012; Heitmann et al., 2014) that are used to
model the observed two-point statistics and via so-called non-Gaussian covariances, which
indicate that a non-vanishing four-point function is included in the covariance computation.

Non-Gaussian shear covariances due to non-linear clustering have been studied in Takada
& Jain (2009); Sato et al. (2009, 2011b); Harnois-Déraps & van Waerbeke (2015). These
studies use the multivariate Gaussian shear likelihood with the contribution of covariance
from non-Gaussian fields included. The impact on cosmological constraints depends on
the scales considered and on depth and area of the survey. Computing non-Gaussian covari-
ances is essential in cosmic shear analyses, and most recent cosmic shear measurements
have opted for different strategies, such as analytical computation of Gaussian and non-
Gaussian covariances (e.g., Jee et al., 2016; Hildebrandt et al., 2017; Krause et al., 2017),
or for covariance estimated through numerical simulations (e.g. Heymans et al., 2013). For
future surveys, several studies indicate the high computational costs of a brute-force nu-
merical simulations approach (Dodelson & Schneider, 2013; Taylor & Joachimi, 2014),
which led to the development of new covariance estimators (Joachimi, 2017; Friedrich &
Eifler, 2018). For cosmic shear, Barreira et al. (2018) have shown that the Gaussian co-
variance plus Super Sample Covariance terms are sufficient, both of which can be easily
implemented analytically.

When going beyond the Gaussian likelihood function for the convergence power spec-
trum, previous studies have considered a lognormal distribution and the copula method
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for describing the non-Gaussian distribution (Taruya et al., 2002; Hilbert et al., 2011; Sato
et al., 2011a, 2010). In configuration space, Hartlap et al. (2009) revisited the assumption
of Gaussianity for the two-point correlation function and tested the non-Gaussianity with
independent component analysis (ICA). The authors measure the distribution of the corre-
lation function in 9600 realizations of ray-tracing simulations resembling the Chandra Deep
Field South lensing analysis and perform three full likelihood analyses: using ICA, a stan-
dard multivariate Gaussian with a ray-tracing covariance, and with a Gaussian covariance.
This paper triggered several attempts to build analytical expressions for the likelihood func-
tion of the shear two-point correlation function that improve over the standard Multivariate
Gaussian approximation. For example, Schneider & Hartlap (2009) have shown that two-
point correlation functions of Gaussian fields cannot take arbitrary values since this would
violate the constraint of non-negativity of power spectrum. As a consequence the sampling
distribution of the correlation functions cannot be an exact multivariate Gaussian. Keitel &
Schneider (2011) employ Fourier mode expansion and characteristic functions of a Gaus-
sian random field to derive an analytical expression for the likelihood function of its uni-
and bi-variate correlation functions. In Wilking & Schneider (2013); Wilking et al. (2015),
the authors transform the correlation functions such that a quasi-Gaussian approximation
of the likelihood function is justified and tested its performance with simulations. A recent
paper by Sellentin & Heavens (2018) explored the high-order correlations between the data
points of the CFHTLenS cosmic shear correlation functions in search for non-Gaussianity.
In Sellentin et al. (2018), the authors measure the skewed distributions of weak lensing
shear correlation functions in simulations and follow the CMB literature in developing an
analytical expression for the correlation function likelihood.

It is well-established in the literature that the sampling distribution of shear two-point
correlation functions is not strictly Gaussian. Despite this, the Gaussian likelihood model
is still the standard in weak lensing likelihood analysis for current surveys. If the likelihood
is not Gaussian, then analysing the data with a Gaussian assumption could bias the cosmo-
logical parameter constraints. It is therefore important to quantify potential cosmological
parameter biases that may arise due to un-modeled aspects of the likelihood function, so
as to determine whether an alternative way of modeling the likelihood function is needed.
This effect was discussed in the literature (e.g. Hartlap et al. 2009; Sellentin et al. 2018;
Taylor et al. 2019), but agreement on whether the Gaussian approximation cause a signif-
icant bias for cosmological weak lensing analyses has not yet been reached. It is difficult
to fully demonstrate the impact of the non-Gaussian likelihood on cosmological parame-
ter constraints. Part of the difficulty comes from the dimensionality of the problem, with
reconstructing in detail the full high-dimensional non-Gaussian likelihood currently being
an unsolved problem. In this work, we do not address the full problem, but make some ad-
vance upon previous work by modelling the non-Gaussian likelihood with a large ensemble
of weak lensing simulations, and further estimate the biases on cosmological parameters.

This paper is structured as follows: In Sect. 4.4, we describe the details of our simulated
weak lensing data. In Sect. 2.4, after showing how the data vectors are modeled theoret-
ically, we describe the likelihood analysis and likelihood models. Section 2.5 expands on
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the systematic approach of assessing the performance of likelihood models and data com-
pression. In Sect. 2.6, we show the results for non-Gaussianity of weak lensing observables
and the impact on cosmological parameter estimates. Section 2.7 contains our discussion
and conclusions.

2.3 Simulations
The simulated (mock) weak lensing data that are used in this paper are based on the Scinet
LIght Cone Simulations7 (Harnois-Déraps & van Waerbeke, 2015; Harnois-Déraps et al.,
2018, SLICS hereafter), which are specifically tailored for statistical studies of weak lens-
ing analyses. They consist of a series of lines-of-sight (LOS) of 100 deg2 each, con-
structed by ray-tracing in their own independent realization. In the simulations, no masks
are applied, and hence the patches are 10 by 10 deg2. The underlying N -body simula-
tions evolved 15363 dark matter particles in a box length of 505 h−1Mpc, and produced
18 mass planes between redshift 0.0 and 3.0, which are then converted into shear maps
using the Born approximation. We used 932 such independent realizations in which the
initial random seeds changed prior to the N -body run, with the assumed cosmology fixed
to that of WMAP9+SN+BAO flat ΛCDM cosmology (Hinshaw et al., 2013): Ωm = 0.2905,
ΩΛ = 0.7095, Ωb = 0.0473, h = 0.6898, σ8 = 0.826 and ns = 0.969.

The mock galaxy catalogues are then created in a way that is meant to reproduce the
redshift distributions of weak lensing source galaxies in LSST (Chang et al., 2013):

n(z) ∝ zα exp

[
−
(
z

z0

)β]
, (2.1)

with {α, β, z0} = {1.21, 1.0, 0.5}, assuming a source number density of 26 gal/arcmin2.
The mocks are split in 10 tomographic redshift bins ni(z), each containing the same number
of galaxies. These distributions are further smoothed by a Gaussian kernel of width σ =
(1 + z)σz and σz = 0.02. For the detailed redshift distributions of the 10 LSST-like source
bins, see Fig. A1 in Harnois-Déraps et al. (2018).

Besides the cosmological shear γ (see Sect. 2.4.1), the observed ellipticity εobs includes
the intrinsic shapes of galaxies εint through the shear addition formula:

εobs =
γ + εint

1 + γε∗int

. (2.2)

In the above expression, shear and ellipticities are written as complex variables, and the
εobs

1/2 components are recovered from the real and imaginary parts respectively. The two
components of the intrinsic galaxy shapes are each drawn from a Gaussian distribution
with zero mean, a standard deviation of 0.29 inspired by the KiDS-450 (Hildebrandt et al.,
2016) data, and the constraint that |εint|2 ≤ 1.

7https://slics.roe.ac.uk/

17



In our analysis, we measure the non-Gaussian shapes of the likelihood function of shear
correlation functions with the SLICS simulation, and then use them to estimate the param-
eter biases for large weak lensing surveys such as LSST. Due to the differences in sur-
vey areas, different sources of uncertainty dominate: the 100 deg2 SLICS simulations are
shape-noise dominated while LSST data will be cosmic-variance dominated. Therefore, in
this work we sometimes switch off the intrinsic shape noise in order to separately under-
stand the contributions of cosmic variance and shape noise to the shape of the likelihood
function. For all results that are presented, we refer to the results as ‘without shape noise’
or ‘with shape noise’.

2.4 Method

2.4.1 Cosmic shear correlation function data vector
The weak lensing effect is mathematically approximated as a linear transformation that
maps the unlensed location to the lensed location. The transformation matrix A, which
connects the shape of a source with the observed images, can be written as

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (2.3)

where κ is the convergence and γ1, γ2 are the two components of the spin-two shear γ =
γ1 + iγ2 in Cartesian coordinates. Conventionally the coordinate system is rotated so that
the separation vector is parallel to the x-axis. The shear components are decomposed into
the tangential direction (γt) and the cross direction (γ×) in the rotated coordinates:

γt = −Re(γe−2iφ), γ× = −Im(γe−2iφ), (2.4)

where φ is the polar angle of the separation vector of the two galaxies. From the shear
components we can write the two shear correlation functions as a function of angular sep-
aration

ξij±(θ) =
〈
γitγ

j
t

〉
(θ)±

〈
γi×γ

j
×
〉

(θ). (2.5)

Here i and j are indices of tomographic redshift bins, and the angle brackets refer to en-
semble average. The correlation functions are computed from the SLICS simulations with
the package TREECORR8 (Jarvis et al., 2004).

The angular bins for measuring shear correlation functions initially divide the scales
from 0.32 to 400 arcmin into logarithmically spaced bins of width ∆(lnθ) = 0.23; however,
we further apply angular selections to minimize the impact of known limitations in the
simulations (Harnois-Déraps & van Waerbeke, 2015). We require θ > 0.8 arcmin for ξ+,
to avoid resolution effects in the simulations at small scales. Since ξ− is more sensitive
to small-scale uncertainties, we apply a more aggressive constraint: θ > 6.5 arcmin. We

8https://github.com/rmjarvis/TreeCorr

18



also require θ < 160 arcmin for ξ+ to avoid scales with significant power loss due to the
box size. On the other hand, ξ− is less affected by the box size effect within 400 arcmin;
therefore we do not introduce extra constraints on the large scale for ξ−.

These scales are similar to those used in the recent KiDS-450 cosmic shear analysis
by Hildebrandt et al. (2017), and presume that the analysis has separately accounted for
uncertainties at small scales due to baryon feedback, modeling of the non-linear power
spectrum and of the intrinsic alignments of galaxies9. Modeling these uncertainties at the
precision required by LSST will be challenging. In the recent DES analysis (Troxel et al.,
2017) conservative scale cuts were implemented in order to avoid biases due to imperfect
modeling of said astrophysical effects. For this paper, we assume an optimistic scenario in
which the LSST weak lensing measurement pipeline includes these small angular scales.

The complete data vector is the concatenation of all ξ+ and ξ− values across all tomo-
graphic bins and θ bins. Each simulated realization has 55 correlation functions, each with
42 angular bins (24 for ξ+ and 18 for ξ−).

The estimator of the data covariance from the many simulation ensemble is defined as

Ĉij =
1

ν

Ns∑

k

(ξijk − ξ̄ij)(ξijk − ξ̄ij)T , (2.6)

where i and j indicate the tomographic redshift bins, ξk is the data vector of the k-th
realization, ξ̄ is the mean data vector across all simulated realizations, and ν = Ns − 1
is the number of degrees of freedom given that the mean is estimated from the data. If
the number of data-points, Nd, exceeds the number of realizations, Ns, we can neither
ensure that the data covariance matrix is positive definite nor control the error in the data
covariance matrix and its inverse. Therefore, we rebinned the data vector to reduce the
number of points from 2310 to 770 by combining the angular bins in groups of three. Our
final θ binning was chosen such that Ns = 932, Nd = 770 and hence Nd < Ns.

An illustration of the data vector for a particular set of tomographic bins, the diagonal
covariance matrix elements, and a comparison with analytic theory predictions is given in
Fig. 2.1. The theoretical predictions are based on the HALOFIT method (Takahashi et al.,
2012), which models the nonlinear power spectrum with a fitting function. The HALOFIT
model agrees well in general with the measurements from the simulations on the scales
of interest, but there are still percent-level errors compared to the simulations (Harnois-
Déraps & van Waerbeke, 2015). The finite box effect of the simulations also introduces
power drops with respect to the theoretical predictions (Harnois-Déraps & van Waerbeke,
2015). The mismatch between the simulations and the theory will be compensated by a
correction factor

ξijtheory(θ)/
〈
ξijmock(θ)

〉
. (2.7)

The correction factor above is not intended to fix these or other limitations of the simula-
tions (which have some simplifications compared to reality, e.g., lack of baryonic physics).

9Note that these effects could contribute to the level of non-Gaussianity in the data, but that is beyond the
scope of this paper.
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Rather, the correction is applied in order to assure that any bias we observe in our likeli-
hood analysis comes from the covariance instead of the very small but nonzero intrinsic
mismatch between the simulations and the theory. Note that the correction factor is applied
before the computation of the covariance, skewness and kurtosis, and is therefore included
in these estimators.

2.4.2 Modeling of observables

For the simulated likelihood analyses in Sect. 2.6 we employ the COSMOLIKE analysis and
forecasting software package10. COSMOLIKE has been used in several forecasts exploring
joint analyses of multiple cosmological probes (Eifler et al., 2014; Krause & Eifler, 2017;
Schaan et al., 2017) and systematics mitigation strategies, such as the impact of baryons
and intrinsic alignment (Eifler et al., 2015; Krause et al., 2016). On the observational side,
the code was used in a weak lensing analysis of Sloan Digital Sky Data (Huff et al., 2014),
the analysis of DES science verification data (Becker et al., 2016) and the recent DES Year
1 analysis (Krause et al., 2017; Troxel et al., 2018a; Abbott et al., 2018).

We compute the linear power spectrum of the best fitting flat ΛCDM cosmology for
WMAP9 + BAO + SN (Hinshaw et al., 2013) using the Eisenstein & Hu (1999) transfer
function and model the non-linear evolution of the density field as described in Takahashi
et al. (2012). From the density power spectrum Pδ(k, z), we compute the shear power
spectrum using the Limber and the flat sky approximations as

Cij
κκ(l) =

9H4
0

2

4c4

∫ χh

0

dχ
gi(χ)gj(χ)

a2(χ)

(
l

fK(χ)
, χ

)
, (2.8)

with l being the 2D wave vector perpendicular to the line of sight, χ denoting the comov-
ing coordinate, χh is the comoving distance to the horizon, a(χ) is the scale factor, and
fK(χ) the comoving angular diameter distance (throughout set to χ since we assume a flat
Universe). The lens efficiency gi is defined as an integral over the redshift distribution of
source galaxies n(χ(z)) in the ith tomographic interval

gi(χ) =

∫ χh

χ

dχ′ni(χ′)
fK(χ′ − χ)

fK(χ′)
. (2.9)

We compute the cosmic shear two-point functions ξ± using the flat-sky approximation

ξij±(θ) =

∫
dl l

2π
J0/4(lθ)Cij

κκ(l) , (2.10)

with Jn(x) the n-th order Bessel function of the first kind.

10www.cosmolike.info
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Figure 2.1: Correlation functions ξ+ (top) and ξ− (bottom) for the auto-correlation of the
first tomographic bin (z1, z2) = (1, 1) of our mocks with shape noise and theoretical predic-
tions from COSMOLIKE. The solid black curve shows the average and the 16% and 84%
percentiles of the 932 mock realizations due to cosmic variance only. The adopted θ ranges
for ξ± are shown by the vertical dashed lines, which were chosen due to limitations in the
simulations as described in the text. The mismatch between the two curves is captured by
the ratio ξijtheory(θ)/

〈
ξijmock(θ)

〉
.
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2.4.3 Likelihood functions and data covariance matrix

From Bayes’ theorem, we can compute the posterior distribution of the cosmological pa-
rameters. In the standard likelihood analysis, the likelihood function is parametrized as a
multivariate Gaussian function

L(~ξ | ~π) ∝ exp[−1

2
(~ξ − ~ξπ)TC−1(~ξ − ~ξπ)], (2.11)

where ~ξ, ~π and C denote the data vector, cosmological parameters and the covariance
matrix respectively. The covariance matrix is fixed throughout the analysis.

Analytically computed covariance matrices are noise-free and can be factorized or in-
verted without complications. However, our covariance matrix estimated from numerical
simulations is inherently noisy, and the noise level is affected by the number of realizations
(Ns = 932 in our case) and the size of the data vector (Nd = 770).

To compute the likelihood function in the form of Eq. (2.11), we need the inverse co-
variance matrix Ψ, also called precision matrix. An unbiased estimator of the precision
matrix is given by (Anderson, 2003; Hartlap et al., 2007; Taylor et al., 2013)

Ψ̂ =
ν −Nd − 1

ν
(Ĉ)−1 (2.12)

in the case that the noise is Gaussian-distributed and the data points are statistically inde-
pendent with ν = Ns − 1.

If the observed data is drawn from a multivariate Gaussian, Sellentin & Heavens (2016)
show that after marginalizing over the noisy covariance matrix, the likelihood measured
from the simulation realizations follows a multivariate t-distribution rather than a multi-
variate Gaussian. An earlier correction proposed by Hartlap et al. (2007) uses the unbiased
inverse covariance matrix and keeps the multivariate Gaussian distribution to construct
the likelihood function when the underlying distribution is Gaussian and the covariance is
noisy. Thus, the Hartlap’s correction method leads to

L(~ξ | ~π) ∝ exp[−1

2
(~ξ − ~ξπ)T Ψ̂(~ξ − ~ξπ)]. (2.13)

The Sellentin-Heavens likelihood shows improvement over Hartlap’s correction in terms
of parameter inference with the marginalization over noise in covariance matrices. But it
is still unclear how to extend the t-distributed likelihood function to cases where the under-
lying distribution of the data is non-Gaussian. In this paper, we adopt Eq. (2.12) instead,
since it is easier to apply to near-Gaussian distributions. Since we quantify the differ-
ence between the Gaussian likelihood and the non-Gaussian likelihood through bias in
cosmological parameter space, the bias depends more on the asymmetry of the likelihood
distributions and thus is less sensitive to the difference between these two methods.

22



2.4.4 PCA transformation
For the shear correlation functions ξ±, the multivariate Gaussian likelihood function with
the form described in Eq. (2.11) is the most commonly used likelihood model in the liter-
ature. Since it is not trivial to build robust multivariate non-Gaussian likelihood functions,
we perform the principal component analysis (PCA) transformations first on the data vector
to remove the correlation between the data points. PCA is an orthogonal transformation that
transforms data points into coordinates without the linear correlations. It can be described
as:

Λ̂ = QT ĈQ (2.14)

with columns of the transformation matrix Q containing the eigenvectors of the covariance
matrix Ĉ estimated from the simulations. After the PCA transformation, the matrix Λ̂ is
diagonal and the diagonal elements are the eigenvalues of the covariance matrix Ĉ. The
new coordinates are usually referred to as principal components, and the components are
sorted according to decreasing variance. In addition, PCA automatically concentrates the
information into a smaller number of principal components. For instance, Harnois-Déraps
& Pen (2013) studied the noisy covariance matrix of the matter power spectrum and found
that the information content of the leading principal components remains stable as they
raised the noise level by reducing the number of measurements from 200 to only 4.

Note that in Eq. (2.14) we use the covariance instead of its inverse in the PCA. It may
sound counterintuitive that the data points with the highest variance, i.e. the highest un-
certainty, contain more information. However, the principal components with highest vari-
ance are also those with the largest signal-to-noise ratio in our data (this was also found
in Harnois-Déraps & Pen (2013)), and thus contain more information. To quantify the in-
formation content on the training data contained in the first N components, we perform a
Markov Chain Monte Carlo (MCMC) analysis on the mock data with different numbers
of principal components, and define the information content as the square root of the de-
terminant of the inverse parameter covariance (Fisher matrix) of Ωm and σ8,

√
det(F) .

Other parameters are fixed throughout the MCMC and a flat prior that limits parameters in
the ranges 0.05<Ωm<0.6 and 0.5<σ8<1.1 is assumed. Figure 2.2 demonstrates the relation
between the information content retained and the number of principal components used. It
shows that if we apply data compression such that we have 80% fewer data points, we lose
only 23% of the information content.

2.4.5 Multivariate likelihood models
After the PCA transformation, the data points are linearly uncorrelated. We next continue
to use parametric and non-parametric functions to describe the likelihood distributions in
the PCA space.

In this paper we consider the following likelihood models for the PCA coordinates:

• Gaussian function
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Figure 2.2: Information content of the training data versus number of principal compo-
nents used in data analysis: the square root of the determinant of the inverse parameter
covariance (Ωm and σ8 only), i.e. the Fisher information matrix, quantifies the amount of
retained information about the cosmological parameters. In the plot, the metric is normal-
ized by the total information content (770 components). By keeping only 20% of the data
points (the red vertical line), we lose 23% of information.
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• non-Gaussian Edgeworth function

• k-nearest neighbors

• spectral series

Here we describe the two parametric and the two non-parametric models listed above.
The performance and results of the models are covered in more details in Sects. 2.5 and
2.6.

Under the assumption that the underlying likelihood function measured in simulations
is close to a multivariate Gaussian function, we approximate the multivariate likelihood
function in the PCA coordinates as a product of parametric “marginal distribution func-
tions”. The independence of PCA components is a strong assumption, but it is the as-
sumption that the standard multivariate Gaussian likelihood makes. The product of one-
dimensional Gaussian distributions of PCA components is identical to the multivariate
Gaussian likelihood.

The Edgeworth function is a Gaussian function multiplied by correction terms con-
structed by its cumulants. It serves as an improvement upon the Gaussian likelihood. In
this paper, we adopt Petrov’s formula of the Edgeworth expansion (Blinnikov & Moessner,
1998; Petrov, 1962) and the coefficients in the expansion are fixed by the cumulants of the
simulation data. In the case where the standard deviation σ=1, the first four terms in the
expansion are

Edgeworth(x) =
1√
2π

exp

[
−(∆x)2

2

]

· [1 +
κ3

3!
He3 (∆x) +

κ4

4!
He4 (∆x)

+
10κ2

3

6!
He6 (∆x) + · · · ],

(2.15)

where Hen(x) are Hermite polynomials given by

Hen(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2, (2.16)

∆x = x−µ and κn are cumulants. Moments and cumulants are two different sets of quan-
tities that can summarize a distribution. Cumulants arise naturally from Fourier transfor-
mation. In the Fourier transformation, the probability density function f(x) is transformed
into

f̃(k) =

∫ ∞

−∞
eikxf(x) dx. (2.17)

The cumulants are then defined as the coefficients of the power series expansion

ln f̃(k) =
∞∑

n=1

κn
(ik)n

n!
. (2.18)
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Since the Edgeworth function is not guaranteed to be positive and could have oscil-
latory behavior, one should be careful with anomalies (negative probabilities) and avoid
its use in strongly non-Gaussian cases. In our case, we do not find negative possibilities
when modeling the marginal distributions of PCs with the Edgeworth expansion. We show
in Fig. 2.3 an example of the marginal one-dimensional distributions of ξ+ and the two
parametric models.

In addition to these parametric models, we also model the likelihoods more generally
by estimating the high-dimensional density ratio β(x) = f(x)/g(x) non-parametrically.
Unlike the parametric methods that approximate the multivariate distributions as products
of marginal distributions, our non-parametric methods do not assume independence. In our
case, we take g(x) to be the Gaussian model. Once β(x) is fitted, we can sample from
the estimated density f(x) by importance sampling with g(x) as the proposal distribution.
In this paper, the density ratio is estimated by non-parametric methods based on the k-
nearest-neighbors kernel density estimator (Lincheng & Zhijun, 1985) and the Spectral
Series estimators. The k-nearest-neighbors estimator (knn) approximates the density at a
point by a kernel smoothing applied to the k nearest neighbors of that point, and the Spectral
Series estimator (Izbicki et al., 2014) combines orthogonal series expansion and adaptively
chosen bases to construct non-parametric likelihood functions. Let {ψi} be an orthonormal
basis with respect to the data distribution; then the density estimator for spectral analysis
has the form

β(x) =
∑

αiψi(x). (2.19)

In low-dimensional non-parametric curve estimation, the basis is fixed to the usual choices,
such as a Fourier basis. In the Spectral Series method, the basis is driven by data so as
to capture the intrinsic dimensionality of the data (Izbicki et al., 2014). With the den-
sity ratio, we are improving the Gaussian likelihood model using non-parametric methods.
This is different from measuring the high-dimensional density with non-parametric mod-
els directly. Since the non-parametric models have more degrees of freedom compared to
parametric models and make no assumption on the likelihood distributions, including the
non-parametric methods make our list of models more complete.

2.4.6 Skewness and Kurtosis
We examine particular departures from Gaussianity of the shear two-point correlation func-
tion by calculating higher moments of the distributions: skewness and kurtosis. The skew-
ness can be quantified as the normalized expectation value of the third central moment

Skew[X] =
E [(X − µ)3]

σ3
(2.20)

and it measures the asymmetry of the distribution. Increasing the number of samples Ns

does not reduce the skewness, but rather reduces the uncertainty of the skewness estimate,
so repeated measurements would not remove the non-Gaussianity. Gaussian functions are
symmetric; their skewness is zero. The distribution of shear correlation functions, however,
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is not perfectly symmetric. In Appendix 2.8.1 we derive for Gaussian fields the general
expressions for the third moment of the likelihood of the shear correlation functions, from
which the skewness can be predicted. Following the same derivation in Appendix 2.8.1,
the nth moment scales as 1/fn−1

sky in general. Besides cosmic variance, the effect of shape
noise can also be included in this framework. We show that for the scales much smaller
than the survey size, the third moment decreases with the survey size as f−2

sky and hence
the skewness as defined in Eq. (2.20) decreases as fsky

−1/2 (σ ∝ fsky
−1/2). As the scale

θ approaches the survey window size, the third moment rises faster than σ3 and thus the
skewness will increase. This trend is consistent with expectations from the Central Limit
Theorem, which explains a decreasing skewness from an increase in survey area through
the fact that the number of modes that are averaged over within given bin increases.

Besides the skewness, the asymmetry in the distribution is also captured by the mean-
mode difference. In Appendix 2.9, we limit the possible range of the mean-mode difference
by assuming a unimodal distribution. For larger surveys, the mean-mode difference in
terms of σ also follows the same scaling relation as the skewness, (ξ̃ − ξ)/σ ∝ fsky

−1/2.
Additionally, we measure the kurtosis of the likelihood function as a metric for the level

of non-Gaussianity. The kurtosis is defined as:

Kurt[X] =
E [(X − µ)4]

σ4
− 3 (2.21)

measures the symmetric outliers of the distribution. Since the fourth moment of the stan-
dard normal distribution equals 3, the kurtosis (or more precisely, the excess kurtosis) is
defined as the normalized fourth moment minus 3.

2.5 Likelihood model assessment
The goal of this section is to introduce the statistical tools that we use to construct and as-
sess the one-dimensional and multidimensional likelihood models in PCA coordinates. To
properly compare different likelihood models and avoid overfitting, we use 10-fold cross-
validation. That is, the 932 realizations are partitioned into 10 non-overlapping subsets.
For each experiment, 9 of the subsets are used to compute the mean and covariance of the
Gaussian model or used to train the non-parametric models, while the remaining subset is
used for testing. After the models are built, we draw samples from the models (90 real-
izations for each sample) and compare these samples to the test samples using different
two-sample tests and distance metrics. This process is then repeated 10 times with each of
the 10 data sets used once as the testing data.

In order to quantify the performance of the one-dimensional models for the likelihood
of the data in PCA space, we perform cross-validation as described above with univari-
ate Kolmogorov-Smirnov (KS) tests. The two-sample KS test statistic is the maximum
distance between two empirical cumulative distribution functions. The p-value of the two-
sample KS test statistic is defined under the null hypothesis that the two samples are drawn
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where Hn(x) are Hermite polynomials, �x = x � µ and n

are cumulants. Moments and cumulants are two different sets of
quantities that can summarize a distribution. Cumulants arise nat-
urally from Fourier transformation. In the Fourier transformation,
the probability density function f(x) is transformed into
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The cumulants are then defined as the coefficients of the power
series expansion

ln f̃(k) =
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n
(ik)n

n!
. (16)

Since the Edgeworth function is not guaranteed to be posi-
tive and could have oscillatory behavior, one should be careful with
anomalies (negative probability or wavy curves) and avoid its use
in strongly non-Gaussian cases. We show in Fig. 3 an example of
the marginal one-dimensional distributions of ⇠+ and the two para-
metric models.

In addition to these, we also consider nonparametric like-
lihood models based on the k-nearest-neighbors kernel den-
sity estimator (Lincheng & Zhijun 1985), which approximates
the density at a point by a kernel smoother applied to the k
nearest neighbors of that point, and the Spectral Series esti-
mators (Izbicki et al. 2014), which combines orthogonal se-
ries expansion and adaptively chosen bases to construct non-
parametric likelihood functions.
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3.6 Skewness and Kurtosis

We examine particular departures from Gaussianity of the shear
two-point correlation function by calculating higher moments of
the distributions: skewness and kurtosis. The skewness can be
quantified as the normalized expectation value of the third central
moment

Skew[X] =
E
⇥
(X � µ)3

⇤

�3
(17)

and it measures the asymmetry of the distribution. Gaussian func-
tions are symmetric; their skewness is zero. The distribution of
shear correlation functions, however, is not perfectly symmetric.
In Appendix A1 we derive for Gaussian fields the general expres-
sions for the third moment of the likelihood of the shear correlation
functions, from which the skewness can be predicted. Besides cos-
mic variance, the effect of shape noise can also be included in this
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Figure 3. Example of the non-Gaussian distribution of(⇠22+ �µ)/� ⇠22+ at
✓ = 159 arcmin in the mock weak lensing data with shape noise. This figure
exhibits the low-level non-Gaussianity, and in particular the nonzero skew-
ness, in the mock weak lensing data. If the distribution is skewed, the mean
of the distribution deviates from the peak of the distribution, which could
lead to parameter biases if this feature of the likelihood is not adequately
modeled.

framework. We show that for the scales much smaller than the sur-
vey size, the third moment decreases with the survey size as f�2

sky

and hence the skewness as defined in Eq. (17) decreases as fsky
�1/2

(since � / fsky
�1/2). As the scale ✓ approaches the survey window

size, the third moment rises faster than the �3 and thus the skew-
ness will increase. This trend is consistent with expectations from
the Central Limit Theorem, which explains a decreasing skewness
from an increase in survey area through the fact that the number of
modes that are averaged over within given bin increases.

Besides the skewness, the asymmetry in the distribution is also
captured by the mean-mode difference. In Appendix B, we limit
the possible range of the mean-mode difference by assuming a uni-
modal distribution. For larger surveys, the mean-mode difference in
terms of � also follows the same scaling relation as the skewness,
(⇠̃ � ⇠)/� / fsky

�1/2.
Additionally, the kurtosis, defined as:

Kurt[X] =
E
⇥
(X � µ)4

⇤

�4
� 3 (18)

measures the symmetric outliers of the distribution. Since the fourth
moment of the standard normal distribution equals to three, the kur-
tosis (or more precisely, the excess kurtosis) is defined as the nor-
malized fourth moment subtracted by 3.

4 LIKELIHOOD MODEL ASSESSMENT

The goal of this section is to introduce the statistical tools that we
use to construct and assess the one-dimensional and multidimen-
sional likelihood models in PCA coordinates. To properly compare
different likelihood models and avoid overfitting, we use 10-fold
cross-validation. That is, the 932 realizations are partitioned into 10
non-overlapping subsets. For each experiment, 9 of the subsets are
used to compute the mean and covariance of the Gaussian model or
used to train the non-parametric models, while the remaining sub-
set is used for testing. After the models are built, we draw samples

MNRAS 000, 000–000 (0000)

Figure 2.3: Example of the non-Gaussian distribution of ξ22
+ at θ = 159 arcmin in the mock

weak lensing data with shape noise. This figure exhibits the low-level non-Gaussianity,
and in particular the nonzero skewness, in the mock weak lensing data. If the distribution
is skewed, the mean of the distribution deviates from the peak of the distribution (mode),
which could lead to parameter biases if this feature of the likelihood is not adequately
modeled.
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from the same distribution. We take p<0.05 of this KS statistic as an indication that the null
hypothesis is rejected and that the two sets of samples are not likely to have been drawn
from the same distribution.

Besides tests on univariate distributions, we assess how close samples from the mul-
tivariate models are to test samples, using two (non-parametric) multivariate test statis-
tics: the maximum mean discrepancy (MMD; Gretton et al. 2012) and the energy distance
(ED; Székely & Rizzo 2004; Baringhaus & Franz 2004). The energy distance is a statistical
distance between two probability distributions. It is defined as the square root of

D2(p, q) = 2E‖X − Y ‖ − E‖X −X ′‖ − E‖Y − Y ′‖ (2.22)

where E is the expectation value, X , Y , X ′, and Y ′ are independent random vectors, the
distribution of X and X ′ is p, and the distribution of Y and Y ′ is q. Here we use the
Euclidean metric (and a sample estimate of the above expression). The maximum mean
discrepancy can then be seen as a generalization of the energy distance to reproducing
kernel Hilbert spaces. More specifically, we use a Gaussian kernelKh(x, y) with bandwidth
h to measure the similarity between two vectors x and y, and we define our MMD test
statistic as the MMD sample estimate:

T =
1

m2

m∑

i=1

n∑

j=1

Kh(Xi, Xj)−
2

mn

m∑

i=1

n∑

j=1

Kh(Xi, Yj)

+
1

n2

n∑

i=1

n∑

j=1

Kh(Yi, Yj).

(2.23)

where X1, . . . , Xm ∼ p and Y1, . . . , Yn ∼ q.
The two test statistics above provide quantitative distance measures between samples

drawn from two sampling distributions of weak lensing correlations functions p and q. In
the case of weak lensing analysis, X and Y in the above notations are multivariate shear
correlation function data vectors drawn from the hold-out simulation data or the trained
models. These test statistics or distance metrics11 are invariant to orthogonal transforma-
tions (such as a PCA rotation) and often used for comparing higher-dimensional data.

2.6 Results

2.6.1 Biases due to non-Gaussian distributions of ξ±
In the previous sections, we introduced the approach of building and assessing the likeli-
hood distributions. Here we apply the tools to examine the biases due to non-Gaussianity
in distributions of the shear correlation functions ξ±.

11We use the publicly available R packages “kernlab” and “energy”. We implement MMD with the Gaus-
sian kernel and determine the bandwidth by the median heuristic method, i.e. h2 = median(‖Xi −Xj‖2).
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Figure 2.4: The top two rows show the skewness and kurtosis of ξ+ in tomographic bins
(z1, z2)=(3,3), (3,5), (3,10), (5,5) and (10,10) for data without shape noise (left column)
and data with shape noise (right column). The curves for data without shape noise ex-
hibit strong non-zero skewness and kurtosis and demonstrate particular departures from
Gaussianity in the marginal distributions. At lower redshift, the skewness and kurtosis are
more significant. The non-Gaussianity is not as strongly detected in data with shape noise.
That is because the mock data is dominated by shape noise in most of the scales that we
consider. Only at scales around 100 arcmin does the data with shape noise start to show
comparable non-Gaussianity as data without shape noise. The bottom two rows are nor-
malized histograms of skewness and kurtosis of 1-D distributions of the 770 data points
before and after PCA transformation. We divide the principal components into the ones we
use (40 components for noise-free data and 150 components for noisy data) and the ones
we discard. The level of skewness and kurtosis of the principal components used for our
analysis is below that for the ξ± values, and is distributed around zero.
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Figure 2.5: One-dimensional maximum likelihood estimates of Ωm and σ8 for data with-
out shape noise (upper panels) and data with shape noise (lower panels). Besides the
estimates based on the 932 realizations of correlation functions in the different simula-
tion realizations (blue), the line in orange shows the parameter estimates of ten thousand
Gaussian-distributed samples with the same mean and covariance matrix as the simula-
tion realizations. By comparing the two histograms, we can estimate the impact of the
Gaussian likelihood assumption with respect to parameter inference. The p-values of two-
sample statistics, including the independent T-test and the KS-test, and the deviations of
the mean values from the true point (red dotted line) are listed at the upper left corner of
each panel. None of the statistics is below the threshold p-value of 5%, meaning that, for
all cases, there is no significant difference between the two distributions and that there is
no significant parameter bias due to the Gaussian likelihood assumption.
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If the likelihood function of ξ± is a multivariate Gaussian function, then its marginal
distributions are Gaussian by construction. However, we detect non-Gaussianity in the
marginal distributions of ξ± for many values of θ and tomographic bins. The finding that
the likelihood of ξ± is skewed was previously discussed in Sellentin & Heavens (2018).
They use CFHTLenS Clone simulations for the tomographic analysis of the CFHTLenS
data that provide 1656 semi-independent simulations for the 210 data points of CFHTLenS.
For a specific data point at θ = 35 arcmin, they found that the most likely lensing amplitude
is about 5% below the mean, so the distribution is ‘left-skewed’.

In Fig. 2.4 we show the non-zero skewness and kurtosis of the 1-D distributions of ξ±
in selected tomographic bins, and of PCA coordinates, for data with and without shape
noise. For the shape noise-free data, the skewness and kurtosis both decrease as redshift
increases. The magnitude of non-Gaussianity shown in the skewness and kurtosis is statis-
tically significant and peaks roughly at θ = 20 arcmin. It is difficult to gain insight into the
θ− dependence of the skewness of the shear 2PCF, since the latter is an integral over the
C(l) values with highly oscillating filter functions J0/4.

Most of the scales that we consider are dominated by the shape noise, which strongly
suppresses the skewness and kurtosis. At scales around 100 arcmin, the skewness and the
kurtosis start to reach a comparable level as in the shape noise-free case, since the shape
noise is relatively less important at large scales. Note that these results for skewness and
kurtosis of the marginal 1D likelihoods of ξ± values do not fully represent the level of non-
Gaussianity in the multivariate observable space, since the ξ± values are highly correlated
across θ and redshift bins.

Compared to ξ±, the sampling distribution of the data in PCA space has far less signif-
icant skewness and kurtosis. The PCA components are linear combinations of ξ± values.
During the transformation, a large number of the ξ± data points are added with positive
and negative weights. As a result the linear combination then has reduced skewness and is
closer to Gaussian. This is shown in the last two rows of Fig. 2.4, which compares the level
of skewness and kurtosis in the marginal 1D distribution of ξ and in PCA components. We
again note that the multivariate sampling distribution is not affected by the PCA transfor-
mation, the marginal distributions can change due to rotations and the resulting marginal
likelihoods depend on the specific forms of rotations. After the PCA rotation, we find that
the 1-D likelihoods empirically become more Gaussian, as illustrated in the last two rows
of Fig. 2.4.

To estimate the biases in cosmological parameter due to the non-Gaussianity in distri-
butions of ξ±, we apply the maximum likelihood method. Maximum likelihood estimation
provides an intuitive way of estimating the biases in cosmological parameters due to a
failure to model the non-Gaussian distributions of weak lensing two point functions. In
this method, we compute the maximum likelihood estimate of cosmological parameters of
each realization in the mocks with the Gaussian covariance. Given our 932 simulations,
this yields 932 MLEs in cosmological parameter space. Limited by the number of realiza-
tions, we perform the maximum likelihood estimation for individual parameters, either Ωm

or σ8 (separately), with the other parameters fixed to their true values in the simulations.
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To avoid a bias due to a small mismatch between the mocks and the theoretical prediction
(see Fig. 2.1), the elements of data vectors for each simulation realization are rescaled by
ratios ξijtheory-fid(θ)/

〈
ξijmock(θ)

〉
.

In order to estimate the impact of incorrect likelihood models, we also perform the
maximum likelihood estimation on 10,000 Gaussian-distributed samples of two-point cor-
relation functions. We first model the likelihood distributions of the simulation realizations
with a multivariate Gaussian, and then draw samples from them. The samples share the
same mean value and covariance matrix as the mocks but follow a multivariate Gaussian
distribution. Hence the difference between the 1-D parameter estimates of the two sets
of samples (mocks and Gaussian samples) comes solely from the incorrect assumption of
likelihood functions.

We show in Fig. 2.5 the 1-D parameter estimates of Ωm and σ8 for the mock data
and the 10,000 Gaussian samples with and without shape noise. In finding the maximum
likelihood estimates, only one parameter (Ωm or σ8) is explored at a time. To compare the
1-D distributions, we consider two statistical tests: the independent T-test and the KS-test.
The T-test determines whether there is a significant difference between the mean values of
two samples. Judging from the high p-values of the T-test for all the four cases in Fig. 2.5,
we do not see significant shifts between the average values of the two sets of samples. This
indicates that the mean values of 1-D parameter posteriors are not affected by the non-
Gaussian marginal distributions of shear correlation functions that we observe in the mock
data. In addition, we find that the mean values in the four panels are located around the
fiducial values of parameters (Ωm = 0.2905 and σ8 = 0.826). The deviations from the true
value with respect to the uncertainties are listed in Fig. 2.5.

Besides the T-test, we also report the p-values of the two-sample KS-test. The p-values
of the KS statistics are all above the 5% threshold, meaning that we do not detect significant
difference between the 1-D distributions of parameters of the two samples. With the T-test
we learn that the average cosmological parameters are not shifted by the non-Gaussian
features of likelihoods in the mocks. The KS-test results suggest that the 1-D distributions
of parameters are neither skewed nor distorted in other ways significantly by failure to
model the left-skewed marginal distributions of shear correlation functions.

2.6.2 Modeling the distributions of principal components

In this subsection, we show results of attempts to model the likelihood function of PCA
components.

When we perform KS tests of the univariate Gaussian and Edgeworth models on the
training data set, all of the PCA components have p-values that are approximately uni-
formly distributed between 0 and 1 as shown in the bottom row of Fig. 2.6. This means
that both of the parametric models have good univariate fitting performance on the 90%
training data for data with and without shape noise. When we perform KS tests for these
models against the testing data (top row of Fig. 2.6), however, the p-values concentrate
around 0 for higher principal components for all the parametric models we consider, in-
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cluding Gaussian, Edgeworth function to the second order and Edgeworth function to the
fourth order. This indicates that neither one of the models generalizes well to hold-out data
for the computed low-variance principal components as a result of the PCA decomposi-
tion. Including the components that are mostly dominated by noise would overfit the data.
In addition, Fig. 2.6 shows that the Gaussian model fits decently to the leading principal
components of the current data. We could not noticeably improve the fitting performance
by using more complicated models such as the 1-D Edgeworth function, but we can avoid
overfitting by adopting the PCA framework and discarding the high-order principal com-
ponents with additional benefit of data compression. Note that the KS test statistic is the
largest difference between the two empirical CDFs. The KS-statistics take on discrete val-
ues, since the empirical CDFs are discrete due to the finite number of samples.

An analysis of variances also shows that the first 40 components capture over 99.9% of
the variance of the training data without intrinsic shape noise, whereas the corresponding
number of components for data with shape noise is 400.

Figure 2.7 shows the multivariate performance of different likelihood models including
parametric models (Gaussian, Edgeworth to the 2nd order, Edgeworth to the 4th order) and
non-parametric models (k-nearest-neighbor and Spectral Series) for data with shape noise.
The lower the statistics (that is, the smaller the distance between samples from the model
and samples from the test sets), the higher the performance. The last column of Fig. 2.7
shows the null distribution of the test statistics, and tells us what distance values to expect
if two samples or sets (with 93 realizations each) were drawn from the true distribution
of the data. We estimated this distribution by repeatedly resampling the unmodeled data
without replacement, and then in each fold computing distances between these samples and
the hold-out sample.

For the data without shape noise, models based on 40 components give good perfor-
mance on hold-out data, whereas we need around 150 components in the presence of shape
noise as seen in Fig. 2.7 for similar performance. We do not see significant differences
in performance between the multivariate Gaussian model and the other parametric or non-
parametric methods. The estimated null distribution in the last column of Fig. 2.7 indicates
that the MMD statistic is powerful enough to discriminate between models for our data set.
There is a significant difference betweeen the MMD statistics of models and the real data,
implying that there is still some room for improvement. But improving the models would
require an order-of-magnitude increase in the number of realizations, which is currently
beyond our reach. Hence, our conclusion is that given the current number of realizations
and inherent data noise, more complex multi-dimensional likelihood models do not seem
to improve upon a simple Gaussian likelihood model typical of an LSST-like survey.

The number of components that retains 99.9% of the variance is just an estimate. In
order to find the optimal number of components to use, we apply our multivariate testing
framework to a k-dimensional Gaussian likelihood model for different candidate values of
k. Figure 2.8 indicates that we can further reduce the dimension of the model to 150 for
data with shape noise without oversmoothing or “underfitting” the data. For data without
shape noise, we can reduce the dimensionality to 40, the same as for our previous 99.9%
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Figure 2.6: KS-test statistics for each PCA dimension on testing and training data. The
first five columns show the p-value against the data drawn from the trained models and
the upper panel of the last column shows the p-value of training data against testing data.
All models have uniformly distributed p-value for training data, showing good univariate
fitting performance. The models fail to generalize to testing data for higher-order PCA
dimensions. The coarseness of the points is due to the smaller number of data points in the
test set.
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variance estimate.

2.6.3 Biases due to non-Gaussian distributions of principal compo-
nents

In Sect. 2.6.1, the maximum likelihood method was used to directly estimate cosmological
parameter biases due to the non-Gaussian likelihood function of weak lensing shear corre-
lation functions. This method of estimating the level of parameter biases when using the
Gaussian likelihood approximation suggested that those biases are subdominant to statisti-
cal uncertainties in the mocks. In this subsection, we consider the multivariate PCA models
that we have built and assessed in Section 2.6.2 and estimate parameter biases by compar-
ing the MCMC chains of different models with EMCEE 12 (Foreman-Mackey et al., 2013)
MCMC sampler. The MCMC chains only explore Ωm and σ8 with the other parameters
fixed, and we use flat priors for Ωm and σ8 with range 0.05<Ωm<0.6 and 0.5<σ8<1.1. In
the MCMC sampling, we assume a constant covariance estimated from the simulations at
the fiducial cosmology, regardless of the changes in Ωm and σ8.

Figures 2.9 and 2.10 show contour plots of posteriors for the cosmological parameter
constraints derived from the mock data with shape noise. The posteriors are re-centered
to the true value as a result of the rescaling by the ratio in Eq. (2.7). Fig. 2.9 compares
the performance of models with different numbers of principal components and shows the
effect of data compression. The 20% difference in the contour areas is due to information
loss in data compression. Note that the model with all 770 PCA components and 1-D Gaus-
sian distributions is strictly identical to the standard multivariate Gaussian likelihood of ξ±.
Hence the contour labeled as G770 in Figure 2.9 is also what we expect from the stan-
dard Gaussian likelihood analysis. Figure 2.10, on the other hand, compares Gaussian and
non-Gaussian Edgeworth models in the PCA coordinates to demonstrate any biases due to
non-Gaussian likelihood functions. Consistent with the results of the maximum likelihood
estimation, no significant difference is found between the contours of the Gaussian model
and the Edgeworth model for the mock data with shape noise.

2.7 Conclusions and Discussions
It is well known that the multivariate likelihood function of weak lensing shear correlation
functions is not a Gaussian. Approximating the likelihood with a Gaussian should intro-
duce associated biases in recovered cosmological parameters; however, whether this would
cause significant biases for weak lensing shear correlation functions for upcoming lens-
ing surveys and invalidate the mainstream multivariate Gaussian likelihood assumption has
not yet been established. In this paper, we make further advances towards answering this
question by modeling and testing non-Gaussian likelihood functions with simulated weak
lensing data, and estimating the resulting biases on cosmological parameters.

12https://github.com/dfm/emcee
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Figure 2.7: Box plots of test statistics for multivariate two-sample tests of different models
on hold-out data (10 folds) with shape noise. The statistics are distance metrics of the two
multivariate two sample tests (ED and MMD). Smaller statistics mean better agreement
between the samples drawn from the trained model and the testing data set. All models
are roughly equivalent in generalization performance, but we need to include many more
dimensions (150 components are needed for data with shape noise) than in the noiseless
case where 40 components are sufficient. The boxes show the range between the first and
the third quartile, with the median labeled by the central bar in the boxes, the variability
outside the upper and lower quartiles labeled by the vertical lines, and outliers as individual
dots. The estimated null distribution is depicted in the final column; this represents the
distribution of test statistics under the assumption that the estimated model is correct. For
MMD we see that our observed statistics are outside the range of the null distribution. This
means that the MMD statistic is discriminatory enough for our data set. It also implies that
improving the likelihood models is possible, but leveraging the advantages of more flexible
models may require much larger amounts of data.
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Figure 2.10: Parameter constraints for the Gaussian and the Edgeworth model with 150
components on the shape-noisy mock data. This figure compares the Gaussian model and
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No significant difference is found between the posteriors of the cosmological parameters
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We have measured the level of non-Gaussianity of shear correlation function likeli-
hoods in weak lensing simulations and suggest avenues to improve corresponding cosmic
shear likelihood analyses. The simulations are based on 100 deg2 lines-of-sight with the
same source redshift distribution and number density as expected for LSST. A systematic
approach to constructing the likelihood models was used, and biases in the parameter space
(Ωm, σ8) due to the assumption of a multivariate Gaussian likelihood model were assessed.

We explored the non-Gaussianity in univariate distributions of our data vectors and find
detectable non-Gaussianity in the marginal 1D likelihoods of shear correlation functions in
θ and redshift bins. Even though the marginal distributions of ξ± provide hints on the non-
Gaussianity, the linear transformation of PCA reduces the level of skewness and kurtosis
in the principal components significantly.

Besides the tests on marginal 1D likelihoods, we use maximum likelihood estimation
and 2-D MCMC likelihood analyses with multivariate likelihood models to estimate the
parameter biases due to the skewed likelihood distributions of shear correlation functions.
In both analyses, we do not observe significant parameter biases in terms of Ωm and σ8 due
to the Gaussian likelihood assumption in our data. Note that the results of the Edgeworth
likelihood model provide a lower limit on the bias due to non-Gaussian likelihood functions
for the 100 deg2 simulations since this model is built from marginal Edgeworth corrections
of simple Gaussian functions in the PCA space based on the assumption of independence
of PCs and the marginal distributions of PCA components exhibit small skewness and kur-
tosis. The multivariate non-parametric models that are not sensitive to coordinate rotations
provide more general constraints on the bias, but their performance in terms of predicting
hold-out data does not exceed that of the Edgeworth model given our data. We are not
asserting that this is the final conclusion for the parameter biases due to the uncertainty of
likelihoods. Measuring the high-dimensional likelihoods is extremely difficult. It is likely
that our likelihood models, especially the non-parametric models, would benefit from or-
ders of magnitude of increase in the number of simulation realizations. However, given the
currently available number of simulation realizations, our results show no significant biases
using the standard multivariate Gaussian likelihood.

In Appendices 2.8.1 and 2.9 we show that the skewness and the (mode−mean)/σ of
shear correlation functions decrease with the survey area as f−1/2

sky . The non-Gaussianity
of the likelihood and the resulting cosmological parameter biases would therefore be even
smaller for large surveys such as LSST. The scaling relation is derived by assuming that the
shear fields are Gaussian, corresponding to larger scales. Future work should explore the
relative contributions of the non-linear growth (non-Gaussian field) to the non-Gaussianity
in likelihoods.

Therefore, given the small bias measured from the current simulations, we do not expect
noticeable biases due to the non-Gaussian distribution of the weak lensing shear correla-
tion function for future generation of large-scale structure observations. A multivariate
Gaussian likelihood will continue to be a valid approximation in cosmic shear analyses.

In addition to our findings on the Gaussian approximation to the likelihood function,
PCA poses a straightforward avenue to solving some of the practical problems related to
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covariance matrices. Several practical challenges for debiasing the covariance matrix of the
weak lensing observables from simulations have been featured in the literature (Schneider
et al., 2011; Dodelson & Schneider, 2013; Taylor & Joachimi, 2014; Blot et al., 2016), all
of which are connected to the large number of data points expected in future cosmic shear
surveys.

One way to address the problem is to identify a more efficient observable and hence
compress the cosmological information into fewer data points. We have shown that the as-
sumption of a multivariate Gaussian in PCA coordinates is valid for the mock data and that
PCA ranks the data points efficiently as a function of signal-to-noise. This allows us to re-
duce the dimensionality of the data vector by throwing out modes with low signal-to-noise,
which in turn alleviates some of the pressing problems related to covariance inversion.

Data compression approaches have been suggested in the past, such as MOPED (Heav-
ens et al., 2000, 2017) and COSEBIs (Schneider et al., 2010); it remains to be seen if the
likelihood function of these summary statistics is closer to a Gaussian than, e.g. for the
shear two-point correlation function. Using PCA, we have been able to reduce the number
of dimensions from 770 to 40 for data without shape noise and from 770 to 150 for data
with shape noise with acceptable loss in cosmological information.

In brief, our conclusions are itemized as follows:

1. We find significant non-Gaussianity in the marginal distributions of the correlation
functions, indicating that the multivariate likelihood distributions are non-Gaussian.

2. We estimate the bias in cosmological parameters induced by ignoring the non-Gaussianity
of the likelihood with maximum likelihood estimation assuming a Gaussian likeli-
hood, and do not detect strong biases in Ωm and σ8 in our simulated data.

3. Since the (mode−mean)/σ of shear correlation functions scales with the survey
area as f−1/2

sky under the assumption that the fields are Gaussian and that the angular
power spectra follow a gamma distribution, we expect the bias due to assuming a
Gaussian likelihood to be smaller for LSST than for these small-area mock catalogs.

4. Fully reconstructing high-dimensional distributions directly from simulations is very
difficult, requiring simulation volumes well beyond those presently available for this
study. Our results based on the described set of simulated data suggest that neglecting
the non-Gaussianity of the likelihood for shear-shear correlations is not a significant
source of bias for ongoing surveys or even future ones such as LSST.

While the simulated weak lensing data implies that the impact of non-Gaussianity is
negligible in current and future cosmic shear surveys, it is an open question if this re-
sult is stable for different redshift distributions, different survey parameters, and different
cosmologies. In Eifler et al. (2009) they show that the covariance and hence the likeli-
hood is cosmology-dependent and that the strength of this effect depends on the specific
properties of the survey. It is also unclear if some of the systematics that affect shear
observables can introduce non-Gaussianity (e.g., as foregrounds do in case of the CMB),
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which could warrant further mitigation strategies. Finally, it will be interesting to explore
the non-Gaussianity of the likelihood function for the multi-probe analysis case, e.g., when
including galaxy clustering, galaxy-galaxy lensing, and perhaps even higher-order statistics
of auto and cross observables of clustering and shear. A multi-probe simulation with even
more realizations is required for the joint data vector.
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2.8 Third Central Moment

2.8.1 Convergence

Here we derive the expression for the third central moment of the (tomographic) cross-
correlation function of two convergence maps denoted by X and Y . Similar calculations
have also been done by Keitel & Schneider (2011). We use a different notation that is easier
to generalize for cross-correlations and restrict ourselves to computing the third central
moment, though calculations can be extended straightforwardly but tediously to higher
moments. We show here how skewness is affected by fsky, a relation we used in Sect. 2.4.6
in the main text.

For simplicity, we will work in the flat-sky approximation. We will also assume that
the fields are Gaussian and ignore the non-Gaussian terms, though we will indicate where
the non-Gaussian terms should enter. Using simulations, we have already shown that at the
small scales, where the non-Gaussian terms are most important, the impact of non-Gaussian
likelihood is small.

The cross-correlation function of two fields can be written as

XY (~θ) =
1

AW (~θ)

∫
d2~θ′W (~θ′ + ~θ)W (~θ′)1(~θ′)2(~θ′ + ~θ) (2.24)

where κ1 belongs to field X and κ2 to field Y . W (~θ) is the survey window function. We
have assumed that the noise and the κi have zero mean and are also uncorrelated with each
other on all scales. The normalization factor is the integral over window functions

AW (~θ) =

∫
d2~θ′W (~θ′ + ~θ)W (~θ′) =

∫
d2~̀

(2π)2
e−i~̀·~θW̃ (~̀)W̃ (−~̀) =

∫
d~̀`

2π
J0(`θ)W̃ (`)W̃ (−`)

(2.25)

The third central moment (S3) of the correlation function is given as

S3(ξ̂κ1κ2(
~θi)ξ̂κ3κ4(

~θj)ξ̂κ5κ6(
~θl)) =

(
ξ̂κ1κ2(

~θi)− ξ̂κ1κ2(~θi)
)(

ξ̂κ3κ4(
~θj)− ξ̂κ3κ4(~θj)

)(
ξ̂κ5κ6(

~θl)− ξ̂κ5κ6(~θl)
)

(2.26)

= κ1κ2(
~θi)κ3κ4(

~θj)κ5κ6(
~θl) + 2κ1κ2(

~θi)κ3κ4(
~θj)κ5κ6(

~θl)

−
{
κ1κ2(

~θi)Cov(κ3κ4(
~θj),κ5κ6 (~θl)) + perms

}
(2.27)

where κ1, κ3, κ5 belong to field X and κ2, κ4, κ6 belong to Y . S3 is a function of three
θ variables and is therefore a third-order tensor. The ‘perms’ denotes permutations over
combinations of (12, 34, 56), where one combination gives ξ and other two give covariance.
So there are 6 permutations in the last term of Eq. (2.27) (or 3 terms if the symmetry of
covariance is considered). We use κ1κ2κ3κ4κ5κ6ijl as short-hand for the first term on the
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right hand side in Eq. (2.27), which we would like to simplify:

κ1κ2κ3κ4κ5κ6ij =
1

AW (~θi)AW (~θj)AW (~θl)

∫
d2~θ

∫
d2~θ′

∫
d2~θ′′κ1(~θ)κ2(~θ + ~θi)κ3(~θ′)κ4(~θ′ + ~θj)κ5(~θ′′)κ6(~θ′′ + ~θl)

W (~θ)W (~θ′)W (~θ + ~θi)W (~θ′ + ~θj)W (~θ′′)W (~θ′′ + ~θl) (2.28)

Writing the κi in terms of its Fourier space counterpart κ̃i, we get

κ1κ2κ3κ4κ5κ6ij =
1

AW (~θi)AW (~θj)AW (~θl)

∫
d2~θ

∫
d2~θ′

∫
d2~θ′′

∫∫∫∫ 6∏

n=1

[
d2~̀

n

(2π)2

]∫∫∫∫ 6∏

m=1

[
d2~qm
(2π)2

W̃ (~qm)

]

× ei(~̀1−~q1)·~θei(
~̀
2−~q2)·(~θ+~ri)ei(

~̀
3−~q3)·~θ′ei(

~̀
4−~q4)·(~θ′+~θj)ei(

~̀
5−~q5)·~θ′′ei(

~̀
6−~q6)·(~θ′′+~θl)

(2.29)

× κ̃1(~̀1)κ̃2(~̀2)κ̃3(~̀3)κ̃4(~̀4)κ̃5(~̀5)κ̃6(~̀6)

κ1κ2κ3κ4κ5κ6ij =
1

AW (~θi)AW (~θj)AW (~θl)

∫∫
d2~̀

1

(2π)2

d2~̀
3

(2π)2

d2~̀
5

(2π)2

∫∫∫∫ 4∏

m=1

[
d2~qm
(2π)2

W̃ (~qm)

]
e−i(~̀1−~q1)·~θie−i(~̀3−~q3)·~θje−i(~̀5−~q5)·~θj

× κ̃1(~̀1)κ̃2(−~̀1 + ~q1 + ~q2)κ̃3(~̀3)κ̃4(−~̀3 + ~q3 + ~q4)κ5(~̀5)κ̃6(−~̀5 + ~q5 + ~q6).
(2.30)

We have integrated over d2~θ, d2~θ′, d2~θ′′ and then over d2~̀
2, d2~̀

4, d2~̀
6 to obtain the last

expression.
We now expand the six-point function into two separable parts: the connected or non-

Gaussian component κ̃1κ̃2κ̃3κ̃4κ5κ6
′ and the Gaussian component, which using Wick’s

theorem can be expanded as the sum of the product of two-point functions:

κ1κ2κ3κ4κ5κ6ij =
1

AW (~θi)AW (~θj)AW (~θl)

∫∫
d2~̀

1

(2π)2

d2~̀
3

(2π)2

d2~̀
5

(2π)2

∫∫∫∫ 6∏

m=1

[
d2~qm
(2π)2

W̃ (~qm)

]
e−i(~̀1−~q1)·~θie−i(~̀3−~q3)·~θje−i(~̀5−~q5)·~θl

[κ̃1κ̃2κ̃3κ̃4κ5κ̃6
′ + κ̃1κ̃2κ̃3κ̃4κ̃5κ̃6 + all perms] (2.31)

where the ‘all perms’ now denote all possible combinations over (1, 2, 3, 4, 5, 6). Note
that a similar expansion is also required for four-point functions in the covariance terms
in Eq. (2.27) (see for example Singh et al. 2017 for a covariance expansion in similar
notation). Simplifying, the auto-correlation terms from the same theta bin, e.g. κ1κ2, cancel
out and we are left with the permutations that contain only cross-correlation terms involving
at most one κi from each ~θj bins (there are 4C1 × 2C1 = 8 such permutations). Thus we
have

S3 =
1

AW (~θi)AW (~θj)AW (~θl)

∫∫
d2~̀

1

(2π)2

d2~̀
3

(2π)2

d2~̀
5

(2π)2

∫∫∫∫ 6∏

m=1

[
d2~qm
(2π)2

W̃ (~qm)

]
e−i(~̀1−~q1)·~θie−i(~̀3−~q3)·~θje−i(~̀5−~q5)·~θl

[κ̃1κ̃2κ̃3κ̃4κ̃5κ̃6
′ + κ̃1κ̃3κ̃2κ̃5κ̃4κ̃6 + all cross perms] (2.32)
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To further simplify the expressions, we will assume that the scales of interest are smaller
than the survey window size and ignore the coupling between the window function and the
power spectra. Within this assumption, the window function integrals can be carried out
without the power spectra to finally give

S3 =
AW (~θi − ~θj + ~θk)

AW (~θi)AW (~θj)AW (~θl)

∫∫
d2~̀

(2π)2
e−i~̀·(~θi−~θj+~θl) [C13(`)C25(`)C46(`) + all cross perms]

(2.33)

S3 =
AW (~θi − ~θj + ~θk)

AW (~θi)AW (~θj)AW (~θl)

∫
d~̀`

2π
J0(`θi)J0(`θj)J0(`θl)

[
2CXY (`)3 + 6CXX(`)CY Y (`)CXY (`)

]

(2.34)

where in the second equation we have used the fact that odd-odd combinations such as ‘13’
give the auto-correlation of fieldX ,CXX , even-even combinations give the auto-correlation
of Y ,CY Y and the even-odd combinations give the cross-correlationCXY . SinceAW scales
with the fraction of sky covered by a survey, fsky, Eq. (2.34) suggests that the third central
moment scales as f−2

sky . Thus for any given scale that is well within the survey window size,
the third central moment of the convergence correlation function decreases faster than the
covariance as the survey area increases. However, as the scale θ approaches the size of
survey, the area factor in the normalization approaches zero, i.e. AW (θ) → 0 for large θ
and S3 will increase. S3 rises faster than covariance, S2 and thus the skewness increases at
large scales. This is consistent with the expectation from the central limit theorem as large
scales have fewer modes within the survey and we expect them to be more skewed.

We also note that we have ignored the connected terms, which can be important if the
fields are non-Gaussian. The connected terms have three factors of area, AW in the denom-
inator and a factor of window functions in the numerators. Under the assumption that the
window and the connected terms can be decoupled, the window term in the numerator will
cancel one factor of AW and the connected term will also scale similarly to the Gaussian
term. The decoupling of the window is not well justified in the case of coupling between
large-scale (super-sample) and small-scale modes, but such coupling terms have also been
shown to scale with similar factors of area in the context of super-sample covariance. We
have not tested such scaling for the six-point function in this work.
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2.8.2 Shear
For shear we begin by noting that ξ+ ∝ 〈γXγ∗Y 〉 and ξ− ∝ 〈γXγY 〉. Using these relations
and the expressions from the previous subsection, we get

S3(ξ−) =
AW (~θi − ~θj + ~θk)

AW (~θi)AW (~θj)AW (~θl)

∫
d~̀`

2π
J4(`θi)J4(`θj)J4(`θk)

[
2CXY (`)3 + 6CXX(`)CY Y (`)CXY (`)

]

(2.35)

S3(ξ+) =
AW (~θi − ~θj + ~θk)

AW (~θi)AW (~θj)AW (~θl)

∫
d~̀`

2π

[
2CXY (`)3J0(`θi)J0(`θj)J0(`θk)

]

+ [2CXX(`)CY Y (`)CXY (`)J4(`θi)J4(`θj)J0(`θk) + cyc(i− k) + cyc(j − k)]
(2.36)

where ‘cyc’ denotes the interchanging of order of the Bessel functions for different θ. We
conclude from the equation above that the same scaling with fsky applies to shear as well.

2.9 Difference between mean and mode
Assuming a unimodal distribution for a random variable X , the difference between the
most likely value, mode X̃ , and the mean X in terms of the standard deviation σ has an
upper bound (Johnson & Rogers, 1951)

|X̃ −X|
σ

≤
√

3 (2.37)

In our main analysis using 100 deg2 simulations, we have already shown that the difference
between the mean and mode is much smaller than this bound.

In order to address the question of how this difference scales with the survey area, we
begin by noting that for angular power spectra C`, which follow a gamma distribution with
ν ≈ (2` + 1)fsky degrees of the freedom (see e.g. Percival & Brown, 2006, for a detailed
discussion of the C` likelihood for CMB), the difference between the mean and the mode
is

C̃` − C` ≈ −
2

ν
C` (2.38)

With the variance σ2
C`
≈ 2(C2

` /ν), the difference in terms of σ is

|C̃` − C`|2
σ2
C`

≈ 2

ν
. (2.39)

Here we assume the cosmic variance-dominated regime, but the scaling in the shot noise-
dominated regime is similar since the shot noise also scales as 1/fsky for a fixed number
density of tracers.
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Since the correlation functions, ξ±, are the Hankel transform of C` (in the flat sky
approximation), the difference between the mean and the mode for the correlation functions
is

ξ̃ − ξ =

∫
d` `

2π
Jn(`θ)(C̃` − C`) ≈ −

2

fsky

∫
d` `

2π
Jn(`θ)

C`

2`+ 1
(2.40)

where n = 0 for ξ+ and n = 4 for ξ−.
Since the covariance, C, of ξ scales as 1/fsky, the difference between the mean and the

mode in terms of signal-to-noise ratio scales as

(ξ̃ − ξ)TC−1(ξ̃ − ξ) ∝ 1

fsky
(2.41)

Eq. (2.41) also gives the scaling of the bias in the log likelihood (Gaussian) and the param-
eter covariance with fsky.
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Chapter 3

The Impact of Light Polarization Effects
on Weak Lensing Systematics

3.1 Abstract

A fraction of the light observed from edge-on disk galaxies is polarized due to two physical
effects: selective extinction by dust grains aligned with the magnetic field, and scattering
of the anisotropic starlight field. Since the reflection and transmission coefficients of the
reflecting and refracting surfaces in an optical system depend on the polarization of incom-
ing rays, this optical polarization produces both (a) a selection bias in favor of galaxies
with specific orientations and (b) a polarization-dependent PSF. In this work we build toy
models to obtain for the first time an estimate for the impact of polarization on PSF shapes
and the impact of the selection bias due to the polarization effect on the measurement of
the ellipticity used in shear measurements. In particular, we are interested in determining if
this effect will be significant for WFIRST. We show that the systematic uncertainties in the
ellipticity components are 8× 10−5 and 1.1× 10−4 due to the selection bias and PSF errors
respectively. Compared to the overall requirements on knowledge of the WFIRST PSF el-
lipticity (4.7× 10−4 per component), both of these systematic uncertainties are sufficiently
close to the WFIRST tolerance level that more detailed studies of the polarization effects
or more stringent requirements on polarization-sensitive instrumentation for WFIRST are
required.

3.2 Introduction

Weak gravitational lensing arises due to deflection of light by the gravitational fields of
large-scale structure, leading to tangential shear distortions in galaxy shapes. Measuring the
correlation functions of galaxy shapes is therefore a method by which we can measure the
growth of structure in the Universe (Bartelmann & Schneider, 2001; Massey et al., 2007;
Hoekstra & Jain, 2008; Kilbinger, 2015; Mandelbaum, 2018) and hence a powerful method
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for constraining cosmological parameters (Huff et al., 2014; Jee et al., 2016; Hildebrandt
et al., 2018; Troxel et al., 2018b; Hikage et al., 2019a).

Since weak gravitational shear is only a percent-level signal, weak lensing measure-
ments rely on the use of large galaxy samples to reduce statistical uncertainties. In the
upcoming Stage-IV surveys, including Euclid1 (Laureijs et al., 2011), LSST2 (Ivezić et al.,
2008; LSST Science Collaboration et al., 2009), and WFIRST3 (Spergel et al., 2015), the
statistical uncertainties of the weak lensing measurements are expected to reach sub-percent
level precision. With such small statistical uncertainties, the future of weak lensing analysis
requires a better understanding and more careful control of systematics to avoid systematic
uncertainties dominating over statistical uncertainties. Low-level sources of systematic
uncertainty that are presently ignored in existing weak lensing analyses will become sig-
nificant as the precision of the measurements increases.

Optical gravitational lensing measurements are based on how the light intensity profile
of galaxies is affected by the matter distribution in the Universe. Besides intensity, the ob-
served radiation also includes polarization information (Radhakrishnan, 1989). However,
to the best of our knowledge, the information in polarization has not been considered in op-
tical weak lensing. While the light intensity profile contains the weak lensing information
that we hope to measure, it is possible that the polarization of light could introduce weak
lensing systematic errors if not accounted for.

Many polarization measurements of light from galaxies have been made at radio fre-
quencies (Beck et al., 2002; Beck, 2007; Stil et al., 2009; Akahori et al., 2018). At the radio
frequency, the radiation is dominated by synchrotron emissions. Synchrotron emission is
intrinsically linearly polarized perpendicular to the magnetic field; at long wavelengths,
Faraday rotation changes the polarization angle and provides an additional probe of the
magnetic field structure.

Weak lensing surveys are conducted, however, in the optical and near-infrared (NIR)
wavelengths. The physics behind radio polarization is different from the optical/NIR. Un-
like the radio band which is dominated by synchrotron emissions, the light at the optical and
near infrared frequencies is not itself linearly polarized. Some polarization effects may be
induced through the interactions with dust grains (Mathis, 1990). The optical galactic po-
larization has been studied and measured in Scarrott et al. (1990, 1991); Fendt et al. (1996);
Scarrott et al. (1987); Fendt et al. (1998); Scarrott (1996); Jones (2000). Even though the
linear polarization of light from galaxies has been observed, polarization-induced system-
atic errors have not generally been considered for optical weak lensing analyses.

The overall weak lensing analysis covers many steps from image processing to the in-
ference of cosmological parameter constraints. Different systematic uncertainties enter in
each step. The sheared galaxy image that contains weak lensing information first prop-
agates through the atmosphere (for ground-based observations) and the telescope optics,
and is affected by the Point Spread Function (PSF) of both. The final images are further

1http://sci.esa.int/euclid/
2http://www.lsst.org/lsst
3https://wfirst.gsfc.nasa.gov
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affected by detector non-idealities. The subsequent processes in the weak lensing analy-
sis involve using the final image to construct the shear catalogues and summary statistics
such as two-point correlation functions, and finally inferring the cosmological parameters
using a likelihood analysis. Among all of these steps, the polarization effect influences
how the light rays propagate in the optical system before the final images are realized on
the detectors. Since the s and p-polarized components of light have different reflection
and refraction coefficients at optical surfaces, including the mirrors and the anti-reflection
coating on the detectors, the throughput of the optics and telescope PSF depend on the
polarization of the input light (Breckinridge et al., 2015; Chipman et al., 2015). If the light
from galaxies is linearly polarized, the existing analysis processes that ignore the polariza-
tion information could lead to biases in the weak lensing results. In this paper, we consider
two potential polarization-related systematic errors: galaxy selection biases, and the PSF
modeling errors due to the polarization-dependent PSF. The selection bias arises from the
dependence of the transmitted intensity of polarized light on the angle of polarization. The
polarization-dependent PSF, on the other hand, is a result of the polarization-dependent
optical aberrations.

In Section 3.3, we briefly review polarization effects in optical/NIR galaxy images. Sec-
tions 3.5 and 3.6 describe the assumptions we make and how we construct our toy models
for polarization-related selection and PSF effects respectively. We present our results in
Section 3.7 and conclude in Section ??.

3.3 Optical/NIR Polarization of galaxies

As shown in previous studies on optical polarization, light from distant stars and galax-
ies can be linearly polarized in the optical wavelengths (Fendt et al., 1996; Scarrott et al.,
1987; Fendt et al., 1998). At optical and near infrared frequencies, the linear polarization
of light arises from physical mechanisms including the anisotropic scattering by spherical
dust grains and the selective extinction by aligned dust grains. The alignment was once pro-
posed to be caused by magnetic dissipation – the Davis-Greenstein mechanism (Davis &
Greenstein, 1951) – but is now attributed to precession around the magnetic field combined
with torques from scattering of starlight, which also usually results in alignment of the
long axis of the grains perpendicular to the magnetic field (Andersson et al., 2015). Both
of these mechanisms can have complicated wavelength dependence. The dust scattering
cross section increases toward the blue and peaks in the ultraviolet (Draine, 2003), but the
polarization fraction of the scattered light exhibits a non-monotonic behaviour (Weingart-
ner & Draine, 2001). Polarization by selective extinction by aligned dust grains has long
been known to peak in ∼ V band (e.g. Spitzer, 1978). By observing in four bands across
the 0.9–2.0 µm observer-frame wavelength range, and studying sources across a range of
redshifts, WFIRST will be sensitive to both sources of polarization in multiple regimes.
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3.3.1 Toy Model for Galaxy Polarizations

To simplify the calculation and make an order of magnitude estimation of the polarization
effects, we begin by assuming that only edge-on disk galaxies are observed and that each
edge-on galaxy has fixed polarized fraction p, which specifies the fraction of light from
galaxy that is polarized. Although these assumptions will be relaxed by correction factors
discussed in Sect. 3.3.2, this simplified model provides an easy and intuitive way to describe
the galaxy polarization.

In the case of face-on disc galaxies, the polarization orientation varies with location in
the galaxy, leading to the cancellation of optical polarizations in spiral and circular patterns
(Scarrott et al., 1990; Simmons & Audit, 2000). Thus, for a simple order of magnitude es-
timate of the polarization-dependent selection bias and PSF, we consider only edge-on disc
galaxies in this work. Fendt et al. (1996) reported the polarization of 3 edge-on galaxies,
the optical polarization orientations of which are perpendicular to the major axes. How-
ever, it is also possible that the polarization orientation of an edge-on galaxy is parallel
to the disk plane, as shown in Scarrott et al. (1990) and Scarrott (1996). The diversity
of polarization orientation arises from two competing effects: the selective extinction of
non-spherical dust grains aligned with the galactic magnetic field and the anisotropic scat-
tering. The toroidal magnetic field on the disc plane would generate polarizations parallel
to the major axis for edge-on galaxies (since the grains align perpendicular to the disc and
preferentially absorb that polarization), while the polarization by anisotropic scattering is
perpendicular to the major axes (since the grains are in a radiation field where more light is
coming from directions parallel to than perpendicular to the disc). In Jones et al. (2012), the
authors presented the integrated polarization survey of 70 nearby galaxies and suggested
that the dust scattering is the dominant source of optical polarization. The magnitude of
the polarization-dependence of the PSF is only affected by the polarization level rather
than the polarization orientation, but the polarization orientation has a great impact on the
selection bias. In our toy model, we consider only the polarization orientation that is per-
pendicular to the major axis of the edge-on galaxies. This will provide the upper limit for
the polarization-induced selection bias.

The level of polarization is typically of order of several percent (Sofue et al., 1986;
Scarrott et al., 1990; Draper et al., 1995; Scarrott, 1996; Jones et al., 2012). For edge-
on galaxies, the anisotropic scattering (Jura, 1982) and alignment with the magnetic field
(Fendt et al., 1996; Scarrott et al., 1990) under several µG of interstellar magnetic field both
demonstrate polarization of order of 5%. The integrated polarization level would be less
than the level in polarization maps in Fendt et al. (1996) and Scarrott (1996) due to partial
cancellation of polarization vectors over the galaxy. The integrated polarization levels of
70 galaxies reported by Jones et al. (2012) are mostly below 1% with several above 2%.
Hence, we choose the fraction of polarized light emitted by an edge-on disk galaxy to be
2%.
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3.3.2 Corrections to the toy model
Here we fold in additional factors that were left out in our initial assumptions. We stated
earlier the assumption that our sample consists solely of edge-on spiral galaxies. However,
if we consider randomly-oriented disks, only a subset would be completely edge-on. We
can parameterize the inclination i of the disk galaxies with the convention that i = 0
corresponds to face-on galaxies while i = 90 corresponds to edge-on disk galaxies. The
probability of observing a galaxy within di of an inclination i is

P (i) di = sin i di (3.1)

for i between 0 and 90. This is already normalized, and hence we can calculate the expec-
tation value of the inclination 〈i〉, which gives 1 rad. For face-on disk galaxies, the light we
observe on a whole is unpolarized. If we use the sin2 i law for the dependence of polariza-
tion effect on inclination angle in Simmons & Audit (2000) and Jones et al. (2012), we can
then say that the random inclinations of the disk galaxies results in 〈e1〉 being multiplied
by a factor of f = 0.42.

In addition, only about 50% of galaxies are spiral galaxies, as inferred from the vi-
sual classifications of galaxy morphology in the Great Observatories Origins Deep Survey
(GOODS) fields (Giavalisco et al., 2004; Bundy et al., 2005) into three broad morphology
classes (Ellipticals, Spirals, Peculiar/Irregulars). The 2978 galaxies used in the morphol-
ogy classification by Bundy et al. (2005) are selected from the observations made by HST
and the Advanced Camera for Surveys (ACS) with a magnitude limit in the z850 band
zAB = 22.5.

We take the spiral ratio of 50% as a rough estimate since the morphological composition
is subject to the cosmic variance due to the small size of the GOODS field (0.1 deg2). In ad-
dition, WFIRST will cover different wavelength bands, magnitudes and redshifts compared
with ACS. However, this number will suffice for an order of magnitude estimation.

Hence, we multiply all results by a correction factor of f = 0.21.

3.4 Polarization dependent Optical response and PSF
In this section, we describe the mechanisms that induce the dependence of final image on
polarizations.

3.4.1 Polarization Repsonce Difference
We start by introducing the polarization response difference ∆p. The polarization response
difference ∆p reflects the difference in the detected flux on pixels due to the polarization-
dependent response of the optical system and the detection efficiency along different polar-
ization axes. The choice of coordinates and the axes is arbitrary. Without loss of generality,
we define the x-axis as the axis along which the flux of polarized light is most attenuated.
The polarization angle θ is defined against this axis.
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The polarization response difference ∆p due to the polarization-dependent throughput
has two major sources: the anti-reflective coating of the detector and the fold mirrors. Since
the actual coating model of the detector is not publicly available, we estimate the plausi-
ble levels of polarization-dependent transmission of it by considering the standard single
layer anti-reflective coating. We build the coating model by setting the refractive index of
the substrate to be 3.2 and tuning the refractive index of the coating to reproduce the the
ratio of the peak to the valley in the quantum efficiency curve of the WFIRST Wide-Field
Instrument4. This model predicts ∆p = 0.03 at the corner of the field. WFIRST’s mirrors
use a protected silver coating. A bare silver fold flat would induce fractional polarization
∆p = 0.0014 (0.9 µm) or 0.0017 (1.93 µm)5, but coatings can significantly modify the
reflection coefficients (see, e.g., Harrington & Sueoka 2017 for an analysis in the case of
the Daniel K. Inouye Solar Telescope). The coatings for WFIRST at 45◦ incidence have
∆p ranging from 0.006 at 0.5 µm, decreasing to near zero at 1.1 µm, and then rising again
to 0.005 at 2.4 µm.6 The first fold mirror (F1) is at a 45◦ angle and is expected to dominate
the polarization, since there are much smaller angles of incidence for the second fold and
the tertiary mirror. The filter may contribute too (it is at normal incidence at the center of
the field, but the angle of incidence increases toward the edge), and so we plan to include it
in a more complete model in the future. Our choice of ∆p = 0.05 in Table 4.1 is the sum of
the effects of the anti-reflection coating (0.03) and these three off-axis mirrors (3 × 0.006,
with the recognition that the true effect is smaller at most wavelengths) in the optical design
of the WFIRST Wide-Field Instrument.

We note that linear retardance at the fold flat will result in some conversion of Stokes
U → V ; this phenomenon is an issue for instruments that aim to measure circular polariza-
tion. It is less of a problem here since the mechanism of polarization-dependent sensitivity
(off-axis anti-reflection coating) depends on linear, not circular, polarization.

3.4.2 Polarization-Induced Astigmatism

When light is reflected by an optical device inside a telescope, such as the primary mirror,
the reflected ray gains an extra reflectivity coefficient relative to the ray of incidence:

r =| r | eiφ.

The real part of the coefficient describes the relative amplitude of the reflected light, and
the imaginary part describes the phase change. Both the real part and the imaginary part
depend on the mirror coatings, wavelength, angle of incidence, and the polarization. The

4https://wfirst.gsfc.nasa.gov/science/WFIRST_Reference_Information.html
5This uses the index of refraction model of Johnson & Christy (1972) and the standard Fresnel coefficients

for reflection at an interface (e.g., Born & Wolf, 1999), and we note that ∆p = |Rs−Rp|/(Rs +Rp), where
Rs and Rp are the power reflection coefficients for the two polarizations.

6We thank J. Kruk (private communication) for providing this information, and Harris Corporation for
providing permission to publicly release the models.
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phase change by the reflection is different for s- and p-polarizations. This polarization-
dependent phase change induces the polarization variation as well as wavefront aberrations
to the system. We define the phase shift between the two polarizations as retardance,

δ = δs − δp.
We can estimate the magnitude of the polarization astigmatism by adding the retardance of
each reflection fold.

The WFIRST technology report on polarization7, which is reviewed by the Technol-
ogy Assessment Committee, provides the optical modeling and linear retardance at several
wavelengths. Astigmatisms has two spatial modes, vertical astigmatism (Zernike polyno-
mial Z2

2 ) and oblique astigmatism (Z−2
2 ), which follow ρ2 cos(2φ) and ρ2 sin(2φ) patterns

on the polar plane respectively with polar coordinate ρ and angular coordinate φ. At 950nm,
the linear retardance is 0.005 waves (rms) for vertical astigmatism and 0.006 waves for
oblique astigmatism. For our toy model, we choose 0.005 waves as a conservative estimate
for both vertical and oblique astigmatisms due to the linear retardance of the fast primary
mirror in the Y band of WFIRST. The WFIRST Wide-Field Instrument contains 18 Sen-
sor Chip Assemblies (SCA). The PSF varies as a function of position in the focal plane,
including across each SCA. We use the central PSF for each SCA. In addition to spatial
variation, the PSF is also dependent on polarization. The difference in linear retardance of
0.005 waves between the two polarization directions introduces extra aberrations on top of
the default PSF.

3.5 Selection Bias
In this section, we describe how we use the ingredients in our toy model to estimate how
polarization-related selection biases can affect weak lensing.

3.5.1 Defining a Galaxy Population
We begin by assuming that the galaxy angles are intrinsically uniformly distributed, and
that galaxy magnitudes follow a distribution P (m). To define P (m), we use a simulated
WFIRST photometry catalog based on CANDELS8. Fig. 3.1 shows the distribution of mag-
nitudes in the J band. We then fit a rising exponential N ∝ 10am using magnitude cuts at
18 and 24 for each band to avoid the fall-off of counts near the depth limit.

The fitting curve is also shown in Fig. 3.1. The normalization of the number counts is
arbitrary. It is the slope a that affects the selection bias, since it determines what fraction
of the sample is sufficiently close to the boundary that it can be affected by polarization-
dependent selection effects. For the magnitude distribution in the J band, the fitting within
18 < m < 24 yields a = 0.36.

7https://wfirst.gsfc.nasa.gov/science/sdt_public/wps/references/
PIAACMCstatus20161116.pdf

8https://github.com/WFIRST-HLS-Cosmology/Docs/wiki/Home-Wiki
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Figure 3.1: This figure shows the histogram of WFIRST magnitudes P (m) in J band (blue)
and fitting curve (orange) of the simulated magnitude distribution to the exponential model
N ∝ 10am with a = 0.36. The fits are valid within the magnitude range 18 < m < 24.
The vertical normalization of the number counts is arbitrary. The WFIRST photometry
magnitudes for the four bands are simulated based on CANDELS catalogues. The dashed
lines show magnitude cuts for the fits.

Additional corrections to the simplified toy model, for example to account for the dis-
tribution of galaxy inclination angles and the fraction of spiral galaxies, were introduced in
Sect. 3.3.2.

3.5.2 Effect of Polarization on Magnitude
Following the definitions of p and ∆p in Sect. 3.4, we express the modification of the
magnitude m of a galaxy due to polarization effect via the following equation:

m′ = m− 2.5 log10[(1− p) + p
√

1 + (b2 − 1) cos2 θ], (3.2)

where the bias factor b is defined as b = (1−∆p)/(1 + ∆p).
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Since magnitude is logarithmically related to flux, the bias factor results in a linear shift
in magnitude. Hence, the term inside the logarithm represents the factor by which the flux
is reduced, and has a maximal value of 1. Since p represents the fraction of light that is
polarized, (1 − p) corresponds to the unpolarized light. The square root term corresponds
to the reduction in flux after the component of the flux of light polarized along the x-axis is
multiplied by a factor of b, which ranges from 0 to 1. The logarithm term is negative, and
hence m′ is greater than m, i.e. the object appears fainter due to the polarization-dependent
attenuation of light.

3.5.3 Magnitude Cut

We assume that galaxies are selected by imposing a magnitude cutmcut on the galaxies such
that galaxies fainter than the cut are filtered away. While this is not correct in detail (Zuntz
et al., 2018; Mandelbaum et al., 2018), it is sufficient for an order-of-magnitude estimate.
The consequence of modifying galaxy magnitudes m to the polarization angle-dependent
m′ is that galaxies with magnitudes near this cut could be moved to the other side of the cut.
Since m′ is a function of angle, the resultant population of galaxies that remain after the
cut will no longer have uniformly distributed angles, violating a basic assumption in weak
lensing and inducing a selection bias since an unlensed population would not have some
nonzero mean ensemble shear estimate (Hirata et al., 2004; Mandelbaum et al., 2005).

We first consider the case where there is no selection bias, so b = 1. If we consider
galaxies with a fixed polarization angle θ, their magnitudesm should follow the distribution
P (m). Hence, when we apply the magnitude cuts to the galaxy population, we can write
the probability of a remaining galaxy having the polarization angle θ as:

P (θ) ∝ P (mlow < m < mhigh) =

∫ mhigh

mlow

P (m) dm. (3.3)

The polarization-dependent response makes P (θ) more complicated because m′ is a func-
tion of θ:

P (θ) ∝ P (mlow < m′ < mhigh) =

∫ mhigh+2.5 log10(c)

mlow+2.5 log10(c)

P (m) dm, (3.4)

where c = (1− p) + p
√

1 + (b2 − 1) cos2 θ.

3.5.4 Selection bias estimation process

We can write the expectation value of the galaxy orientation after making the cut as:

〈θ〉 =

∫ π
0
θP (θ) dθ∫ π

0
P (θ)dθ

. (3.5)
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Parameter p ∆p |e| a
Value 0.02 0.05 0.92 0.36

Table 3.1: Choice of variables for the toy model. The variables p, ∆p, |e|, and a are the
polarization fraction, the difference of response of polarization orientations, the absolute
value of ellipticity and the slope of the fitted magnitude distribution. The polarization
fraction is relevant to all polarization effects, including the selection bias and the PSF
errors. The other variables, ∆p, |e| and a, are specific to the selection bias.

Note that π < θ < 2π is degenerate with 0 < θ < π for the polarization angle. Substituting
Eq. (3.4) gives us:

〈θ〉 =
1

A

∫ π

0

θ

∫ mhigh+2.5 log10(c)

mlow+2.5 log10(c)

P (m) dm dθ, (3.6)

where A is the normalization factor,

A =

∫ π

0

∫ mhigh+2.5 log10(c)

mlow+2.5 log10(c)

P (m) dm dθ. (3.7)

As a sanity check, for the case when c = 1, i.e. the case with no polarization-dependent
selection effect, the inner integral evaluates to a constant k and the normalization factor is
kπ. Hence, we obtain 〈θ〉 = π

2
as expected for a uniform distribution of angles from 0 to π.

To quantify the effect of the selection bias on weak lensing measurements, we relate
it to the two-component ellipticity e = (e1, e2), which is an observable quantity used to
construct ensemble shear estimates. Making an arbitrary choice of axis with no loss of
generality, we present results for the first component 〈e1〉.

〈e1〉 = 〈|e| cos(2θ)〉

=
|e|
A

∫ π

0

cos(2θ)

∫ mhigh+2.5 log10(c)

mlow+2.5 log10(c)

P (m) dm dθ.
(3.8)

3.5.5 Parameters in the simplified toy model
We obtain an upper bound on the selection bias by choosing pessimistic conditions. The
parameters that need to be specified and our values used are listed in Table 4.1.

In our analysis, we choose the polarization polarization to be 2% and estimate ∆p to
be 5% along the attenuated polarization axis. We choose the absolute value of ellipticity
|e| of edge-on disk galaxies to be 0.92 based on the edge-on disk galaxy samples from the
SDSS dataset (Kautsch et al., 2006). The ellipticity is defined based on the second moments
of galaxy image light profile throughout the paper (3.11). The magnitude of ellipticity is

58



therefore |e| = (1 − b2/a2)/(1 + b2/a2) with major and minor axes a and b instead of
|e| = 1 − b/a used in Kautsch et al. (2006). The quoted value above of the ellipticity
of edge-on disk galaxies has taken into account the change of definition. As mentioned
in Sect. 3.5.1, P (m) is obtained from the WFIRST simulated photometry catalog based
on CANDELS. To do the experiment, we select galaxies with signal-to-noise ratio within
18 < S/N < 200. This leads to the magnitude cuts (mlow,mhigh) = (21.6, 24.2) in
the J-band (Spergel et al., 2015), where we obtained a fit to the exponential magnitude
distribution N ∝ 10am with a = 0.36.

3.6 PSF Errors

In this section, we describe how we use the polarization-induced aberrations introduced in
Sect. 3.4.2 to simulate the PSF errors for WFIRST.

3.6.1 Image Simulation with Galsim

In this work, we use GALSIM9 (Rowe et al., 2015) version 1.6.1 and the WFIRST module
(Kannawadi et al., 2016) of GALSIM to simulate the polarization-dependent PSF effect for
WFIRST. GALSIM is a package for simulating images of stars and galaxies. It can simu-
late galaxies from different galaxy models and also generate optical PSFs from parametric
models. In particular, GALSIM has a module especially designed for the image simulations
for WFIRST. With GALSIM, we simulate the PSFs for WFIRST observations for different
bandpasses and Sensor Chip Assemblies (SCAs). Besides the default WFIRST aberrations,
additional aberration (astigmatism) can be applied to test the polarization effect on PSFs.

3.6.2 PSF shape measurement

In order to estimate the impact of polarization on PSF errors, we measure the sizes and
shapes of WFIRST PSFs with both default and polarization-dependent aberrations by con-
sidering the image of a point star. The moments of the star image are measured using the
hsm.FindAdaptiveMom routine in GALSIM, which calculates the adaptive moments
introduced by Bernstein & Jarvis (2002) and Hirata & Seljak (2003). This routine fits the
2-D image I(x) with an elliptical Gaussian by iteratively minimizing the squared error

SE =

∫ ∥∥∥I(x)− Ae− 1
2

(x−µ)TM−1(x−µ)
∥∥∥

2

d2x. (3.9)

9https://github.com/GalSim-developers/GalSim
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The best-fit µ and M are the weighted coordinates of the centroid and moments

µ =

∫
xI(x)ω(x) d2x∫
I(x)ω(x) d2x

and

Mij =
2
∫

(x− µ)i(x− µ)jI(x)ω(x) d2x∫
I(x)ω(x) d2x

, (3.10)

with the elliptic Gaussian weight function ω(x) that minimizes the squared error.
The ellipticity components and the adaptive size σ of the PSF are then defined in terms

of the second moments:

e1 =
Mxx −Myy

Mxx + Myy

,

e2 =
2Mxy

Mxx + Myy

, and

σ =
4
√

detM. (3.11)

Please note that the ensemble average of this definition of ellipticity based on the second
moments of the light profile, when applied to galaxies, is not an unbiased estimator of
the weak lensing shear. For nearly round objects, 〈e〉 ≈ 2〈γ〉. The requirements on our
knowledge of PSF model ellipticity include the proper conversion factors to account for
how systematic uncertainty in PSF model ellipticity (for this ellipticity definition) affects
estimates of ensemble weak lensing shears for galaxies.

In the image simulation, we oversample the image below the WFIRST pixel scale (0.11
arcsec/pix) and down to 0.01 arcsec/pix to obtain convergent adaptive moments and adap-
tive sizes. The detector non-idealities, including the reciprocity failure, non-linearity and
interpixel capacitance etc., are not included. We only consider the extra aberrations of PSFs
due to polarization.

3.7 Results

In this section, we present the estimated polarization-induced systematic biases using the
toy model described in Sect. 3.5 and Sect. 3.6. We show the results for both the selection
bias and the PSF errors.

3.7.1 Selection bias

Assuming an exponential magnitude distribution, we can calculate the expected mean
selection bias in the shear. Given our fit for the exponential magnitude distribution in
Sect. 3.5.1, we can substitute into Eq. (3.8) and simplify the expression. We first evaluate
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the inner integral,

P (θ) ∝
∫ mhigh+2.5 log10(c)

mlow+2.5 log10(c)

P (m) dm

∝ [(1− p) + p
√

1 + (b2 − 1) cos2 θ]2.5a.

(3.12)

Going back to Eq. (3.8),

〈e1〉 = 〈|e| cos(2θ)〉

=
|e|
∫ π

0
(cos 2θ)[(1− p) + p

√
1 + (b2 − 1) cos2 θ]2.5adθ∫ π

0
[(1− p) + p

√
1 + (b2 − 1) cos2 θ]2.5adθ

.
(3.13)

This gives 〈e1〉 = 0 when the bias parameter is 1, as expected. For a given set of variables
p and ∆p, we compute this integral numerically to determine the selection bias due to
polarized light profiles of edge-on disk galaxies. We note that the prefactor involving the
magnitude cuts in Eq. (3.12) gets cancelled in Eq. (3.13), indicating that the expected shear
component of the toy model does not depend on the magnitude cuts. In addition, the bright
end limit of the magnitude cut contributes less than 10% to the total selection effect. Setting
the lower limit of the magnitude cut to negative infinity is not expected to make significant
difference for the order of magnitude test.

Using Eq. (3.13) and |e| = 0.92, we vary p and ∆p and numerically evaluate the in-
tegral, giving us the results in Fig. 3.2. The additional correction factors, including the
galactic inclination angle and the fraction of spiral galaxies, discussed in Sect. 3.3.2, are
taken into account in this figure. For the values listed in Table 4.1 of p and ∆p, we obtain
the estimate of 〈e1〉 = 8× 10−5. This is represented by the white point in Fig. 3.2.

3.7.2 PSF size and shape errors
To estimate the effect of light polarizations on PSF, we run the image simulation we de-
scribe in Sect. 3.6. In Fig. 3.3 we show the changes in ePSF

1 , ePSF
2 , and the adaptive size σ

due to the extra polarization-induced aberration measured across the 18 SCAs.
Table 3.2 shows the PSF errors in the Y band across the SCAs with all the factors

above taken into consideration. The effect of the extra aberrations depends on the PSF of
the SCAs, which is related to the positions of SCAs in the field of view. 10 For the WFIRST
HLS weak lensing survey, the tolerance on the relative error of trace of the second moments
of the PSFs (δtr(M)/tr(M) = 2(δσ)/σ) is 9.3× 10−4 and the required knowledge of PSF
ellipticity is 4.7 × 10−4 per component (Spergel et al., 2015; Kannawadi et al., 2016).
Even though the estimated PSF errors, including the error of the trace and the error of
PSF ellipticity components, are within the WFIRST tolerance, the polarization-induced
PSF errors alone could account for around 20% of the error budget, indicating that more
investigations into polarization-related PSFs beyond this simple toy model are required.

10Please see the WFIRST observatory reference information at https://wfirst.gsfc.nasa.gov/

61

https://wfirst.gsfc.nasa.gov/science/WFIRST_Reference_Information.html
https://wfirst.gsfc.nasa.gov/science/WFIRST_Reference_Information.html


Figure 3.2: The expected ensemble mean shear 〈e1〉 component due to the selection bias for
various choices of variables p and ∆p. In the ideal case without a polarization-dependent
optical response, 〈e1〉 should be zero. At our choice of parameter in Table 4.1 (the white
dot at the bottom left corner), the bias in 〈e1〉 is ∼ 8× 10−5.

PSF error (×10−4)
Selection bias (×10−4) WFIRST tolerance (×10−4)

worst mean best
Size Bias δtr(M)/tr(M) 2.0 -0.75 -0.067 - 9.3

Ellipticity Bias δe1 -1.1 -0.48 0.024 0.8 4.7

Table 3.2: This table summarizes the estimates of systematic errors due to polarization
effects in our toy model. The columns show the (worst, mean, best) PSF errors due to
extra polarization-induced vertical astigmatism among SCAs in Y band, the selection bias,
compared to the WFIRST tolerance in the last column.
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Figure 3.3: Changes in PSF ellipticities ePSF
1 and ePSF

2 and the fractional change in the
adaptive size 2(δσ)/σ due to the extra 0.005 oblique and vertical astigmatism on top of
WFIRST PSF models in the Y band. The dots show the changes in each SCA, and the
average offset across 18 SCAs is labelled by the solid horizontal lines. The 2% linear
polarization and the additional factors in Sect. 3.3.2 are taken into account. The shaded
regions are beyond the WFIRST tolerance on the ellipticity components (first two rows)
and the tolerance on the relative error of trace of the second moments of the PSFs (the
third row). The polarization-induced PSF errors could account for around 20% of the error
budget. 63
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3.8 Discussion

In this work, we constructed a toy model to estimate the magnitude of polarization-driven
systematic errors in the context of optical/NIR weak lensing surveys for the first time in
the literature. We propose a simple toy model to make order of magnitude estimates for
both selection bias and PSF errors due to the polarization effects. The selection bias due
to the polarization-dependent optical efficiency can lead to a spurious mean shear estimate
of |〈e1〉| ≈ 8 × 10−5. For the PSF model error, our image simulations with GALSIM in
the WFIRST Y band give PSF model size and shape biases of δtr(M)/tr(M) = 2.0 ×
10−4 and δePSF

1 = 1.1 × 10−4, compared to the WFIRST requirements on the entire PSF
δtr(M)/tr(M) = 9.3× 10−4 and δePSF

1/2 = 4.7× 10−4.
There are several caveats to our toy model. The purpose of this work is to give a rough

estimate of the polarization effects on weak lensing measurements, including the selection
bias and PSF errors. Hence we adopt a simplified galaxy selection by magnitude cuts only,
and use a power-law model for the galaxy number counts. We also make assumptions about
the light polarization of galaxies, the dependence on galaxy inclination angle, the orienta-
tion of polarizations and the dependence of polarization fraction on rest frame wavelength.
Some assumptions help to simplify the estimation, and some are unfortunately necessary
due to the limited number of optical/NIR observations of polarizations available and/or due
to what information about the WFIRST instrumentation vendors have released.

For WFIRST, the key priority will be to obtain enough measurements on both the tele-
scope/instrument and the source galaxies to remove biases associated with polarization.
The polarized detector response at non-normal incidence can be measured in the laboratory
with a representative detector, and we are in discussions with the WFIRST Project Office
about the best way to implement this measurement. We are also having discussions about
what relevant information on the optics can be released. Given how faint the galaxies are,
a promising way to obtain the required information on the galaxies is from WFIRST it-
self. In the WFIRST supernova deep fields, the same set of galaxies in a 5 deg2 area are
observed at ∼ 144 epochs over 2 years (Spergel et al., 2015). In the Spergel et al. (2015)
deep field strategy, the aggregate S/N for a typical lensing source (AB=24.5) is 250, and at
3 galaxies per arcmin2 per redshift bin, there would be 54,000 galaxies per bin in a super-
nova deep field.11 The supernova fields are located near the Ecliptic poles. When observing
the supernova fields, the telescope roll angle is adjusted to point its solar array toward the
Sun for power. The roll angle would therefore go through a cycle every year. If there is
a polarization-dependent throughput and the galaxies are polarized then we expect to see
their magnitudes vary sinusoidally with a period of 6 months and a phase that corresponds

science/WFIRST_Reference_Information.html for the arrangement of SCAs and the field of
view layout.

11This calculation uses the WFIRST Exposure Time Calculator (Hirata et al., 2012), following Hounsell
et al. (2018), but updating with the current WFIRST Phase B throughput table, although this makes only a
small difference.
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to their position angle. The amplitude of this variation12 is ≈ ∆p × p. WFIRST will not
measure this for any one galaxy, but if f∆pp is really ∼ 0.00021 (where f = 0.21 is the
suppression factor in §3.3.2), then the idealized aggregate S/N ratio on the measurement of
the polarization effect is

1√
2
× 0.00021× 250×

√
5.4× 104 = 8.6. (3.14)

An advantage of this is that it directly measures the combination ∆p × p that is of di-
rect interest, even without depending in the detailed model for instrument polarization ∆p.
Future work should consider how to make this measurement practical, particularly when
incorporating large-scale flat field uncertainties and dithering strategies.

In this paper, the biases due to polarization-dependent throughput and PSF are both
estimated with WFIRST-specific parameters. The polarization biases for surveys with dif-
ferent optical design, targeted wavelength and point spread function would be different.
In addition, most weak lensing surveys to date are ground-based and thus subject to at-
mospheric turbulence. It is nontrivial to infer the impact of polarization effect for other
surveys without tailored analysis. But for WFIRST, both of the polarization-induced errors
are comparable to the WFIRST tolerance. We thus recommend more complete studies on
polarization-induced systematic uncertainties of weak lensing measurements.

12Defined as half of the peak-to-valley difference; the root-mean-square is a factor of 1/
√

2 smaller.
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Chapter 4

Image Persistence Effect on Weak
Lensing

4.1 Abstract

The High Latitude Survey of the Roman Space Telescope is expected to measure the posi-
tions and shapes of hundreds of millions of galaxies on an area of 2220 deg2. This will push
the weak lensing science further with its high quality data and unprecedented systematics
control. The Roman Space Telescope will survey the sky in the near infrared (NIR) band
using its specially designed HgCdTe photodiode arrays called H4RG. For the NIR arrays,
charges that are trapped in the photodiodes during earlier exposure are gradually released
into the current exposure, leading to contamination of the images and errors of the galaxy
shapes. This memory effect is called persistence. In this work, we use image simulations
that incorporate the persistence to study its impact on galaxy shapes and weak lensing sig-
nal. We analyze the shape errors due to persistence. No significant correlation between
the shape shift by persistence is detected, indicating that persistence does not introduce
coherent shape distortions on galaxies. In the scales of interest, the effect of persistence is
about two orders of magnitude lower than the Roman Space Telescope additive shear error
budget, indicating that the persistence is expected to be a weak effect on weak lensing for
Roman Space Telescope given the current design.

4.2 Introduction

Weak gravitational lensing arises due to deflection of light by the gravitational fields of
large-scale structure, leading to tangential shear distortions in galaxy shapes. Measuring the
correlation functions of galaxy shapes is therefore a method by which we can measure the
growth of structure in the Universe (Bartelmann & Schneider, 2001; Massey et al., 2007;
Hoekstra & Jain, 2008; Kilbinger, 2015; Mandelbaum, 2018) and hence a powerful method
for constraining cosmological parameters (Huff et al., 2014; Jee et al., 2016; Hildebrandt
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et al., 2018; Troxel et al., 2018b; Hikage et al., 2019a).
Since weak gravitational shear is only a percent-level signal, weak lensing measure-

ments rely on the use of large galaxy samples to reduce statistical uncertainties. In the
upcoming Stage-IV surveys, including Euclid1 (Laureijs et al., 2011), LSST2 (Ivezić et al.,
2008; LSST Science Collaboration et al., 2009), and Roman Space Telescope3 (Spergel
et al., 2015), the statistical uncertainties of the weak lensing measurements are expected
to reach sub-percent level precision. With such small statistical uncertainties, the future of
weak lensing analysis requires a better understanding and more careful control of system-
atics to avoid systematic uncertainties dominating over statistical uncertainties.

In this work, we investigate the new source of weak lensing systematics due to per-
sistence effect of infrared detectors. The Roman Space Telescope will survey the sky in
the near infrared (NIR) band using its specially designed HgCdTe photodiode arrays called
H4RG. For the NIR arrays, charges that are trapped in the photodiodes during earlier ex-
posure are gradually released into the current exposure, leading to contamination of the
images and errors of the galaxy shapes. This persistence signal from previous exposures
would then contaminate the images of galaxies and impact the galaxy shapes.

Smith and Zavodny (Smith et al., 2008a,b) were the first to hypothesize that image per-
sistence is due to traps in the depletion region of the diode. Since that time, the model has
been largely adopted by the community, and much work has been done on characterizing
traps in infrared detectors. Long et al. (2012) provided an initial description of persistence
in the WFC3 detector based on several calibration programs. Persistence is a strong func-
tion of the fluence of the source in the original image. For pixels that were saturated, the
current due to persistence exceeds the dark current for several exposures. Anderson and
Regan (Anderson et al., 2014) used electrical stimulation of the detector to map out the
physical location of traps within each pixel. Illumination tests done by Regan et al. (2012)
provided data supporting the theory that these traps are also at least partially responsible
for reciprocity failure (also known as count rate nonlinearity),though Biesiadzinski et al.
(2011) showed that the traps cannot entirely explain reciprocity failure.

Modeled behavior of image persistence has been used to plan observations and place
operational restrictions on what astronomical sources may be observed, and the ultimate
goal is to model persistence accurately enough so that it may be corrected for in astronom-
ical images. The correction for image persistence of WFC3cam on Hubble (Long et al.,
2012) is based on the power-law decay model with a limited range of time validity, and a
user who suspects image persistence is contaminating their data must request that a per-
sistence map be specifically created for their data, requiring human intervention for each
dataset that must be corrected. WFC3cam users also have access to a MAST tool that warns
of any preceding images that may have left persistence signatures.

Although some efforts have been done on modeling the image persistence effect and
also the correction scheme, no published work so far is dedicated to study the impact of

1http://sci.esa.int/euclid/
2http://www.lsst.org/lsst
3https://wfirst.gsfc.nasa.gov
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image persistence in the context of weak lensing. In this work, we will use image simula-
tions that incorporate the image persistence model to study its impact on galaxy shapes and
weak lensing signal. In Section 4.3, we outline the theory behind image persistence and the
model to be used in the simulations. Section 4.4 describe the key components in the image
simulations. We present our results in Section 4.5 and conclude in Section 4.6.

4.3 Persistence Effect

4.3.1 Theory of trapped charge carriers

Persistence is the effect of an increase in the dark current due to prior illuminatins. For the
near-infrared HgCdTe photodiode detector, the hypothesized mechanism of image persis-
tence involves charge capture and charge emission in the PN junctions (Smith et al., 2008a;
Tulloch et al., 2019; Anderson et al., 2014). As the PN junctions are exposed to radiation
illuminations, the photo-generated charges, including electrons and holes, start to accumu-
late, leading to the reduction of the width of the depletion region. Resetting the device to
a resetting voltage recovers the depletion region, while some charges are still trapped in
defects and are left behind. The trapped charges will be continuously release. The delayed
charge emission would thus contaminate the following exposures. The magnitude of the
persistence effect, usually quantified in terms of charges released per second (e-/s), cor-
relates strongly with the illumination level. As the illumination approaches the saturation
level of the detector, more defects are filled and this effect gets stronger.

4.3.2 Persistence model

Even though the hypothesized mechanism of charge capture is widely accepted to explain
persistence, a proper physical theory to predict the behavior of persistence has not yet
been developed. At the current stage, we rely on empirical models to describe the effect.
An empirical exposure time dependent Fermi model was adopted to model the Hubble
WFC3 IR curve. The persistence effect of H4RG detectors is approximately one order of
magnitude weaker than that of WFC3 around the saturation level, but the Fermi model still
serves as a good fitting law for H4RG persistence. This model follows the mathematical
form:

P (x, t) = A

(
1

e
−(x−x0)

δx + 1

)(
x

x0

)α(
t

1000

)−γ
, (4.1)

with illumination level x, time after reset t and other fitting parameters.
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A x0 δx α γ
0.017 6.0× 104 5.0× 104 0.045 1

Table 4.1: The fitting parameters of the exposure time dependent Fermi model as described
in Eq. 4.1.

Figure 4.1: The curve of the H4RG-lo persistence model with parameters specified in table
4.1. This curve shows the average of persistence current during the entire first 140.25
seconds after reset for various influence levels.
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Figure 4.2: Magnitude distribution of stars and galaxies in an area of 100 deg2. Left: the
magnitude distribution of the simulated Galaxia stars in J band. Right: the simulated J-band
Photometry of Roman Space Telescope used in the galaxy catalog.
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4.4 Simulation
In this work, we use the simulation suite developed by Troxel et al. (2019). The persistence
effect is applied along with other detector effects to test the impact of persistence on galaxy
shapes. We focus on the persistence due to bright stars. Here we highlight the key elements
of the simulation. We refer readers to Troxel et al. (2019) for more details.

4.4.1 Galsim
The image simulations in the work are carried out using the GALSIM4 package Rowe et al.
(2015). GALSIM is a package for simulating images of stars and galaxies. It can simu-
late galaxies from different galaxy models and also generate optical PSFs from parametric
models. In particular, GALSIM has a module especially designed for the image simulations
for Roman Space Telescope (Kannawadi et al., 2016). With GALSIM, we simulate the
images of star and galaxies for different bandpasses and Sensor Chip Assemblies (SCAs).

4.4.2 Galaxy catalog
The input galaxy catalog was generated by using random spatial locations in the 100deg2

sky area with a galaxy number density of 40arcmin−2. The photometric perperties of the
galaxies are drawn from a simulated Roman photometry catalog based on the Cosmic As-
sembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) survey5 (Hemmati
et al., 2019). In figure. 4.2, we illustrate the distribution of photometries of the simulated
photometry catalog in the J-band.

4.4.3 Implementation of persistence effect
We adopted the implementation of the persistence effect in the Roman Space Telescope
module of GALSIM, which follows the model introduced in Sect. 4.3.2. The parameters in
the Fermi model are fitted based on lab characterization of sample H4RG detectors ("FIX
ME", cite source). For pixels with influence below half saturation well, which is equivalent
to 5 × 10−4e−, we choose a linear model instead due to lack of complete measurement of
persistence at low fluence.

4.4.4 simulation steps
Building truth catalogs

Before images are simulated, truth catalogs of objects to be simulated, including stars and
galaxies, are constructed. The position and magnitudes of stars follow the input catalog.

4https://github.com/GalSim-developers/GalSim
5https://github.com/WFIRST-HLS-Cosmology/Docs/wiki/Home-Wiki
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For the galaxy truth catalog, besides the position and photometric properties, each galaxy is
assign an intrinsic ellipticity drawn from a Gaussian distribution G(0, 0.27) with a random
orientation. No additional gravitational shear is applied on top of intrinsic ellipticities.

Image simulation

The image simulation is implemented using the simulation suite developed by Troxel et
al. The simulation suite simulated the star and galaxies in the input catalog and generated
SCA images on 4088× 4088 pixels stamps. Effects including sky background, reciprocity
failure, electron quantization, dark current, nonlinearity, interpixel capacitance and readout
noise are included in the image generation, following the order that each effect physically
occur. Besides these effect, we apply persistence from previous exposures using the model
introduced in Sect. 2.3. Since the persistance decays with the reseting time, in the sim-
ulation process we limit the number of past exposures considered for persistence to 10 to
facilitate the simulation process. For each galaxy, images with and without the persistence
contamination are simulated to identify the impact.

Shape measurement

The shape measurement is done by fitting the galaxy light profile to an exponential model.
The fitting is carried out using the Guassian mixture fitting module NGMIX6 with 6 fitting
parameters, including the positions x, y, the ellipticities e1, e2, the size and the flux. Two
sets of simulations are run with persistence effect included in one and switched off in the
other. The impact on galaxy shapes due to persistence is then captured in the difference of
ellipticities of the two sets of simulations.

4.5 Results

4.5.1 Persistence effect in simulations
To build the intuition about how persistence is going to affect the shapes of galaxy, we
start with showing the image of persistence of bright stars which are the major source
of persistence in the sky. Fig. 4.3 shows the persistence of bright stars with difference
magnitudes at the time of 140s after reset using the model and parameter specified in Eq.
4.1 and Tab. 4.1. At saturating pixels, the persistence current plateaus at around 0.25 e−/s
(Fig. 4.1), leading to persistence signals of several dozens of electrons in a 140s exposure
as at centers of the four panels of Fig. 4.3. The image persistence due to bright stars is
comparable to images of m = 22− 24 galaxies (Fig. 4.3) in terms of brightness. When the
two blend, the shapes of galaxies could be greatly affected. These persistence images also
illustrate the obscuration and the number of struts of the pupil plane. If a galaxy happens to
overlap on top of the radial spike of the persistence, it would introduce directional changes

6https://github.com/esheldon/ngmix
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to the shape, as shown in Fig. 4.4. In Fig. 4.4, we show an image of a magnitude 22 galaxy
and the persistence of a magnitude 7 star to demonstrate the relative contribution of the two
components.

4.5.2 Correlation between shape errors of galaxies

To test whether the persistence effect introduces coherent distortions to galaxy shapes, we
measure the correlation of the shape shift ∆e due to persistence. In the simulation, a total
number of 2.2 million galaxies are simulated, with around 1% of them having ∆|e| ≥
1.0−8 and around 0.5% having ∆|e| ≥ 1.0−4. We use TREECORR7 to measure the two
point correlation functions of ellipticities ∆e1 and ∆e2 (Jarvis et al., 2004). In measuring
the correlation, all the galaxies, no matter affected by persistence or not, are taken into
consideration. The result is shown in Fig. 4.5. The error bars are estimated using the
jackknife method with 20 patches over the area. We do not detect significant coherent
shifts in ellipticities due to persistence of bright starts. Even though there are cases where
strong persistence greatly affect the shapes of galaxies, the total averaging effect is low.
Hence, it is possible to treat the impact of persistence on galaxy shapes as an uncorrelated
noise. To quantify the significance of persistence effect on galaxy shapes, we compute the
correlation functions of the Roman total additive shear systematic error budget (Doré et al.,
2018; Troxel et al., 2019) in the same scale as the comparison baseline. The level of ξ+ of
persistence is at least one order of magnitude lower than the Roman additive shear bias in
the scales considered.

4.6 Conclusions

In this work, we study the impact of image persistence, especially the image persistence of
bright stars, on weak lensing signals in the context of Roman High Latitude Survey. The
images are simulated using the Roman image simulation suite in Troxel et al. (2019) and
the image simulation software GALSIM (Rowe et al., 2015). A total number of 2.2 million
galaxies over an area of 100deg2 are simulated in hundreds of dither positions. In the
simulations, detector effects relevant to Roman Space Telescope are incorporated, but we
put our focus on the persistence effect. An empirical persistence model of the H4RG near-
infrared photodiode detector is applied to model the image persistence of earlier exposures.

The Roman Project has put a lot of efforts into the design of H4RG flight detector in
order to minimize the image persistence. For weak lensing, even though no mitigation
method of persistence is used in our simulations to remove the image persistence effect
from earlier exposures, we do not expect significant impact on galaxy shapes for weak
lensing sciences given the current persistence performance of the detectors. The correlation
functions of ∆|e| due to persistence do not show strong correlation between the galaxies.

7https://github.com/rmjarvis/TreeCorr
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Figure 4.3: Top two rows: images of persistence of stars with different magnitudes taken in
140s exposures after reset. Bottom row: simulated images of m = 22 and m = 24 galaxies
captured by WFIRST in 140s exposures. The images are drawn on 256x256 images stamps
with x and y axes indicating the pixel numbers using the Roman pixel scale. The colors are
in units of electrons with color maps on the right of each panel.74
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Figure 4.4: Illustration of the impact of star persistence on galaxy shapes. In this figure,
a magnitude 22 galaxy and the persistence of a magnitude 7 star are plotted. In this case,
the two objects are located 51 pixels away from each other to illustrate the relative flux and
size of the two components.
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Figure 4.5: The two-point correlaion function ξ+ of the change in galaxy ellipticity due to
persistence effect from previous exposures.
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Figure 4.6: The two-point correlaion function ξ+ of the shear additive bias.
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A comparison against the Roman total additive shear error budget further indicates that the
persistence is a weak effect on weak lensing.

We would like to note that in this work we focus only on the persistence effect of bright
stars. Future work may determine the coherent shape shift due to the persistence during the
telescope slews.
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Chapter 5

Conclusion and Outlook

Weak gravitational lensing is a powerful way to probe the large-scale structure and expan-
sion history of the universe, and thus provides hints to the mysteries of dark matter and dark
energy. Despite the potential, the systematic uncertainty of the weak lensing measurements
must be well controlled so as to extract the lensing effect and to draw credible conclusions
about the nature of dark energy and dark matter. Chapters 2-4 deal with three different
sources of systematics uncertainties. The systematic errors considered in chapters 2-4 are
subdominant sources to the error budget. This dissertation focuses on testing the signifi-
cance of the subdominant systematic uncertainties in the context of weak lensing surveys
in 2020s. In chapter 2, we present our study on the non-Gaussian weak lensing likelihood
functions and its impact on the cosmological parameters. Chapter 3 presents our study of
the light polarization effects on Weak Lensing. Chapter 4 presents our results on the study
of the persistence detector effect and the resulting systematic effect on weak lensing. Here
in this chapter we present our final conclusions and discuss the future outlook.

In chapter 2, we study the impact of non-Gaussianity in the likelihood of weak-lensing
two-point statistics on the inference of two cosmological parameters. By analyzing sim-
ulated data derived from N-body simulations, we show that the standard assumption of a
Gaussian likelihood, despite the true likelihood being non-Gaussian, does not cause sig-
nificant biases in the resulting parameters. This finding suggests that given the currently
available simulation using the simpler Gaussian likelihood for these statistics should suffice
for current surveys as well as for upcoming larger-area surveys like LSST. A multivariate
Gaussian likelihood will continue to be a valid approximation in cosmic shear analyses.
However, this may not be the final conclusion for the parameter biases due to the uncer-
tainty of likelihoods. Measuring the high-dimensional likelihoods is extremely difficult. It
is likely that our likelihood models, especially the non-parametric models, would benefit
from orders of magnitude of increase in the number of simulation realizations. In addition,
it will be interesting to extend the analysis of likelihood non-Gaussianity from the shear-
only analysis to a multi-probe analysis. However, it will become even more difficult to fully
determine the multivariate likelihood distribution as the number of dimensions increases,
and a multi-probe simulation with even more realizations is required to model the likeli-
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hood of the joint data vector. The high computational cost of N-body simulations limits
the number of realizations available. Even in the case of cos- mic shear only tomographic
analysis, reconstructing in detail the full high-dimensional non-Gaussian likelihood is still
an unsolved problem. A potential way to address this problem is through fast simulation
of the 3x2pt correlation functions. This will be achieved either by generating realisations
of random Gaussian fields given the correlated theoretical 3x2pt power spectra or by using
approximated N-body gravity solver to include the non-linear clustering. Both methods
yield larger simulated data sets so as to allow us to precisely characterize and model the
multivariate likelihood distribution of the joint data vector.

In chapter 3, we constructed a toy model to estimate the magnitude of polarization-
driven systematic errors in the context of optical/NIR weak lensing surveys. The light
polarization induces two types of systematic biases: the selection bias in favor of galaxies
with specific orientations and the polarization-dependent PSF uncertainty. We build toy
models to obtain an estimate for both of these polarization-induced biases and show that
both biases are comparable to the Roman systematics tolerance level, indicating the need
for more detailed studies. For future works, we can develop a practical analysis pipeline
beyond the our toy model to remove the biases due to polarization effects. In the toy
model, we make assumptions about the light polarization of galaxies and adopt a simpli-
fied galaxy selection method. It will be interesting to construct a pipeline that considers
realistic galaxy selection criteria , dithering strategies, camera rotation and the wavelength
dependence of the polarization effect. This is going to improve our ability to control the
associated systematic biases in weak lensing measurements. In addition, it is promising
to test the polarization effect in the Roman Space Telescope supernova deep fields. In the
supernova fields, the same set of galaxies are observed repeatedly over a period of time. If
there is a polarization- dependent throughput and the galaxies are polarized then we expect
to see their magnitudes vary sinusoidally with a period of 6 months. This measurement
of the magnitude oscillation will provide us with necessary parameters in modeling the
polarization-induced biases.

In chapter 4, we investigate the new source of weak lensing systematics due to per-
sistence effect of infrared detectors. For the NIR arrays, charges that are trapped in the
photodiodes during earlier exposure are gradually released into the current exposure, lead-
ing to contamination of the images and errors of the galaxy shapes. This persistence signal
from previous exposures would then contaminate the images of galaxies and impact the
galaxy shapes. We use image simulations that incorporate the image persistence model to
study its impact on galaxy shapes and weak lensing signal. In the simulations, detector
effects relevant to Roman Space Telescope are incorporated, but we put our focus on the
persistence effect. An empirical persistence model of the H4RG near-infrared photodiode
detector is applied to model the image persistence of earlier exposures. Even though no
mitigation method of persistence is used in our simulations to remove the image persis-
tence effect from earlier exposures, we do not expect significant impact on galaxy shapes
for weak lensing sciences given the current persistence performance of the detectors. The
correlation functions of ∆|e| due to persistence do not show strong correlation between the
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galaxies. A comparison against the Roman total additive shear error budget further indi-
cates that the persistence is a weak effect on weak lensing. Besides persistence, two other
detector artifacts, including burn-in and count-rate non-linearity, are also directly related
to the charge capture and charge release process of the charge traps in the semiconductor.
Future works can extend the analysis to cover all the effects caused by charge release and
capture. This is going to require detailed understanding of the interaction and correlation
between these three effects and an image simulation scheme that incorporate the physical
effects that happen in parallel.
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