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Abstract

A series of computational tools were employed with the primary goal of under-
standing layered transition metal oxide materials as lithium ion battery cathodes. As
nearly all of the data within this thesis was generated from density functional theory
(DFT), we begin with an analysis of the uncertainty of DFT with respect to the choice
of exchange correlation functional through the development of a prediction confidence
metric and the propagation of error through the Debye-Grüneisen model for lattice vi-
brations. The prediction confidence metric is applied to the study of transition metal
ordering in layered Ni-Mn-Co (NMC) oxide cathodes and enables us to rationalize the
disagreement with experimentally seen phases. For the purpose of accelerating the
computational predictions of these materials, we then train a neural network poten-
tial for the prediction of energy and forces using atom centered symmetry functions
as the featurization. The success of this highly accurate machine learning potential
is seen through its ability to recreate the thermodynamic properties with an added
error that is below the error of the underlying DFT itself. We then predict the open
circuit voltage for a series of NMC compositions as well as the lattice dynamics during
cycling that have been linked to degradation of the cathode. We then quickly explore
a promising machine learning algorithm that is beyond the fingerprint based methods
conventionally used. Finally, we dive deeper into the mechanism of another avenue
of degradation in the release of highly reactive singlet oxygen seen in NMC, as well
as Li-air and Na-air batteries. We provide a unified picture for the mechanism, effect
of electrolyte properties, and onset potential for this singlet oxygen release.
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Chapter 1

Introduction

The core of the thesis is a collection of methods for studying materials using first
principles methods. These techniques could in principle be applied to a range of
applications but are specifically applied to the applications of lithium-ion battery
cathodes. The main goal of the methods used in the thesis is twofold. First is to
provide a rigorous understanding of uncertainty at all levels, and best practices for
model selection. And second is to increase the speed of computational predictions
while increasing the error by an insignificant amount. To this end, a range of computer
aided and machine learning techniques are employed, including shallow learning in
the form of multivariate linear regression, and Bayesian statistics, and deep learning
in the form of neural network potentials.

These two goals interplay throughout the work. Much of the work relies on calcu-
lations from density functional theory, which although well accepted has inherent un-
certainty. Additionally, although DFT provides reasonable computational efficiency,
when trying to search a large collection of materials as is done in binary or ternary
phase search, or when trying to model large cells with hundreds of atoms, the cost of
DFT could be prohibiting. To accelerate this, a more computationally efficient model
can be trained at the cost of accuracy in the prediction with respect to the DFT. An
understanding of the significance of the added error of this model on the predictions
requires an understanding of the uncertainty of the DFT prediction itself.

In parallel, beyond their widespread use in consumer electronics, advances in
lithium-ion battery technology show promise for the electrification of nearly all ground
transportation. These electric vehicles, in conjunction with the constant increase in
reliability and decrease in cost for renewable electricity, could enable the decarboniza-
tion of the transportation sector, a major contributor to global emissions. To reach
a larger market share of electric vehicles, including long-haul trucking, an increase
in capacity, cycle life, and energy density, accompanied by a decrease in cost is re-
quired. The most promising Li-ion cathode today is the layered form of Ni-Mn-Co
(NMC) oxides with the formula LiNix Mny Co1–x –y O2. While dominating the mar-
ket share of electric vehicles [1], recent concerns regarding the cost and availability
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of Co [2] have pushed the materials towards higher Ni content. While bringing in-
creased reversible capacity and lower cost over the high Co alternatives, a series of
tradeoffs exist including decreased cycle life. Understanding trends in performance
over the ternary phase space requires expensive experimentation. And the conven-
tional performance based testing of cycling the battery over a set voltage range limits
the understanding of what the material looks like at any given point during the ex-
perimentation. Structural changes accompany the changing lithium content which
contributes to degradation. In LiNiO2 as well as high-Ni NMC, the rapid change in
the layer separation cause cracking in the materials and lost capacity [3]. And recent
experiment has found at high states of charge the release of the highly reactive singlet
spin state of molecular which is believed to evolve from the lattice oxygen of NMC
[4]. The computational tools used here seek to further both the understanding and
the speed at which new insight can be gained for these materials.

1.1 Overview of Thesis and Contributions

The goal of this thesis is to develop a set of tools based on first principles computa-
tion for the accurate and computationally efficient predictions and understanding of
layered transition metal oxides in the context of lithium ion batteries. The purpose of
these computational techniques is to understand the performance, structural changes,
and degradation in layered transition metal cathode materials as a function of transi-
tion metal composition, and to enable uncertainty quantification in these predictions.
We briefly preview the contributions of this thesis.

1.1.1 Uncertainty Quantification

Density functional theory is enabled vast progress in computational materials science,
quantum chemistry, and solid state physics. Despite this success, a comprehensive and
quantitative understanding of the uncertainty in the predictions remains a challenge.
This is even more crucial when the predictions of density functional theory are passed
through physics based models that may be highly sensitive to these errors. Within this
thesis, a quantitative metric for prediction confidence based on an ensemble approach
for the exchange correlation potential is introduced. This prediction confidence is
discussed in the use case of the prediction of magnetic ground states.

The propagation of uncertainty through thermodynamic modeling is also explored.
We employ the Debye-Grüneisen model for the prediction of the vibrational contri-
butions to various thermodynamic properties, specifically the energy, at finite tem-
perature. The ensemble approach used ensures proper treatment of the statistical
dependence of the correlated errors of density functional theory. From our results, we
discuss the sensitivity of the derived properties to the underlying error in the energy
inputs of the model.
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1.1.2 Voltage Prediction

In the context of batteries, the most fundamental and useful prediction that can be
made for a battery it that of the open circuit voltage. This represents a prediction
of how much energy can be extracted, how consistent the voltage is over the oper-
ating range, and how much capacity can be extracted when cycling to certain cutoff
voltages. In real operation, the range over which the battery is cycled controls the
long term performance of the cathode. A theoretical mapping of battery voltage to
lithium amount of lithium in the battery can enable insight into the mechanism for
worse cycling performance when using higher cutoff voltages. Previous predictions
of this voltage curve have been done on a case by case basis with models that are
specialized to only a single cathode composition. Therefore the systematic compar-
ison across many cathode compositions was previously not possible. In this thesis,
we present a method for the generation of these open circuit voltages for any NMC
cathode composition using Monte Carlo simulations and an advanced neural network
potential for the accurate prediction of energy and forces.

1.1.3 Battery Degradation

Beyond the ideal open circuit voltage, the prediction of structural changes can aid
in the insight of degradation mechanisms that occur at high states of charge in these
cathode materials. Most specifically, the rapid lattice contraction for high-Ni NMC
leads to cracking and increases surface reactivity. The accurate machine learning
potential can accurately predict this lattice contraction as well as explore the effect
of Co and Mn compositions in trying to mitigate it.

A parallel degradation mechanism that also occurs at when charging these cath-
odes to high potentials is the release of highly reactive molecular oxygen in the excited
singlet spin state. The decay to the spin triplet ground state is forbidden by spin tran-
sition rules and therefore will instead react with and ultimately degrade the battery
electrolyte The search for mechanism for the appearance of this oxygen become more
intriguing with the appearance in Li-air and Na-air battery technologies. Within this
thesis, we elucidate this mechanism for singlet oxygen production, therefore unify-
ing a degradation mechanism shared by these three important battery technologies.
Additionally, our analysis is able to rationalize all experiments on the observation of
singlet within these fields.

1.2 Organization of Thesis

The organization of this thesis is as follows. We begin in Chapter 2 with a discussion
of the methods used within this work. We start by discussing the theory of DFT and
various approaches to the largest approximation, the exchange correlation functional.
We then discuss the mathematical framework of featurizing materials using atom
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centered symmetry functions to train a neural network on the prediction of energy
and forces. We close with a derivation of the Debye model as well as the corrections
used here for more accurate predictions of thermodynamic properties.

Chapter 3 dives into the uncertainty of density functional theory. We utilize
the Bayesian Estimation Functional with van der Waals correction (BEEF-vdw) to
understand the confidence in ground state predictions over various configurations of
a material and to understand the sensitivity of DFT error in the predictions of the
Debye model.

In Chapter 4, we introduce the material space of NMC cathodes and discuss why
Ni,Mn, and Co have emerged as the choice of transition metals to be used. The
properties of this material space are explored first with a search of the transition
metal ordering followed by the prediction of open circuit voltage and lattice variations
during cycling with the use of a machine learning potential discussed in this chapter.
We also test the predictions of thermodynamic properties from this machine learning
potential and related it to the results of Chapter 3.

In Chapter 5, we quickly discuss the field of machine learning potentials with a
review of the many current methods used today. We discuss in more detail covariant
convolutional neural networks and the extension of a molecular network architecture
of this kind to the prediction of energy and forces on periodic systems.

The mystery of singlet oxygen production is explored in Chapter 6 were with
the use of theory for kinetics, we present an understanding of the mechanism and
influence of electrolyte on the production of singlet oxygen in Li-air, Na-air, and
NMC batteries. Insight is then drawn from this analysis to explain experimental
observations.

We close with a conclusion of the work in Chapter 7 and an outlook in Chapter 8.
We discuss the current state of Ni-rich NMC as well as the possibilities and limitations
for commercialization. We also present a discussion of the many opportunities in
computational battery research the machine learning potential presented in this thesis
can provide. And finally, we look to the future of machine learning potentials with
a discussion of the possibilities advanced architectures present and insight into data
generation for training depending on the desired use of the potential.
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Chapter 2

Methods

This chapter describes the most integral methods used in this thesis. We first begin
with a discussion of Density Functional Theory (DFT), a well tested computational
technique to predict the properties of material given only the atomic identities and
positions. We briefly move through the reformulation of the intractable full many-
body problem to the more easily applied set of Kohn-Sham equations which can be
solved self consistently for the electron density and energy. We also discuss the most
important approximation of Density Functional Theory, the exchange-correlation po-
tential, and some of the most successful and most used approximations to this func-
tional. Next, is a discussion of the application of machine learning methods which
can be trained on the outputs of DFT in order to provide a surrogate model that
is an order of magnitudes faster, with negligible loss of accuracy. We focus on a
featurizing to the input materials using a set of atom centered Gaussian symmetry
functions suggested by Behler and Parinello. We end the chapter with a discussion of
the Debye-Grüneisen Model for the prediction of the vibrational properties of materi-
als. This approximation of the phonons within a material is able to generate accurate
results with respect to experiment as we will see later and only requires a set of en-
ergy calculations over various volumes. We first present the original Debye model for
elastic medium and then move on the discuss corrections to this model including a
scaling factor to account for the variation in transverse and longitudinal velocities,
and the use and approximations of the Grüneisen parameter.

2.1 Density Functional Theory

The energetics and dynamics of atomic nuclei and their accompanying electrons can
be well described by the non-relativistic Schrodinger equation.

ĤΨ = i
∂

∂t
Ψ (2.1)

where Ψ is the many-body wavefunction and Ĥ is the time-dependent Hamiltonian

5



of the system containing M nuclei and N electrons and is given by

Ĥ = −
N∑
i=1

~2

2me

∇2
i −

M∑
A=1

~2

2MA

∇2
A −

N∑
i=1

M∑
A=1

1

4πε0

q2
eZA
riA

+
N∑
i=1

N∑
j>i

1

4πε0

q2
e

rij
+

M∑
A=1

M∑
B>A

1

4πε0

q2
eZAZB
RAB

. (2.2)

Here the indices i and j run over all electrons in the system and A and B de-
note all nuclei in the system. The first two terms of this Hamiltonian describe the
kinetic energy of the electrons and the nuclei, while the remaining terms are the elec-
trostatic interactions of the electrons and nuclei, the electrons with other electrons,
and nuclei with other nuclei. Given the relatively large difference in mass between
the electrons and nuclei, the nuclei will move much slower than the election and the
Born-Oppenheimer approximation can be made wherein the positions of the nuclei are
assumed stationary. The properties of a material or molecule can then be understood
as a series of electronic structure solutions for fixed ionic positions by solving the
electron only time-independent Schrodinger equation HeΨ = EeΨ. The Hamiltonian
is then reduced to

Ĥe = −
N∑
i=1

~2

2me

∇2
i −

N∑
i=1

M∑
A=1

1

4πε0

q2
eZA
riA

+
N∑
i=1

N∑
j>i

1

4πε0

q2
e

rij
. (2.3)

The total energy of the system is now the sum Etot = Ee + En where the nuclear
energy En is given by the electrostatic nuclear interaction energy. Additionally, as
this Hamiltonian is uniquely defined for the external potential generated by the ions,
the ground state of the system must also be uniquely determined by this external
potential. In practice, solving for this ground state and the corresponding electronic
wavefunctions of a many-electron system in an external potential is intractable and
an alternative approach is needed.

2.1.1 Kohn-Sham Equations

In 1964 Hohenberg and Kohn were able to successfully reduce the dimensionality
of the problem from 3N dimensions to just 3 dimensions by mapping the problem
of finding a many-body wavefunction to that of solving for the electron density of
the interacting electron system.[5] They showed that the external potential vext is
determined uniquely up to a constant by the ground state density of the electrons
n0(r). Thus, since the external potential determines the Hamiltonian and the ground
state, all physical observables, most importantly the energy, of the ground state
can in principle be determined given the ground state electronic density. They also
proved that there exists a universal functional of the energy E[n] that is valid for any
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external potential, vext. Therefore, for a given external potential, the ground state
of the system is determined by the absolute minimum of this functional minimizing
over all wavefunctions with density n(r):

E0[n] = min
Ψ→n(r

〈Ψ|Ĥ|Ψ〉 = min
n(r)

E[n(r)] (2.4)

This means that all that is needed to understand the ground state electronic
structure of any atoms, molecule, crystal, or material is the identity and positions of
the ions in that material in order to calculate the external potential felt by the atoms.
This universal functional can be broken into two terms to separate parts, one that is
universal to all systems and one that depends on the external potential.

E[n(r)] = F [n(r] +

∫
vext(r)n(r)dr (2.5)

This universal functional, F [n(r)] is not explicitly known but is defined as the
minimum of the kinetic energy and electron-electron interaction energy over all wave-
functions of density n(r):

F [n(r)] = min
Ψ→n(r)

〈Ψ|T̂ + V̂ee|Ψ〉 (2.6)

While this gives an exact description of the system, and seemingly the problem
of minimizing over a 3N-dimensional wavefunction Ψ has been transformed to the
much easier minimization over 3-dimensional electron density, the problem of finding
the universal functional F [n(r)] itself requires solving the 3N-dimensional problem
to be avoided. In most real implementations of density functional theory, the Kohn-
Sham approach is used by replacing the original many-body problem with a fictitious
system of non-interacting electrons in an effective potential. This effective potential
must then be constructed in such a way so that it ensures the fictitious non-interacting
and the real interacting system have the same ground-state density.

In an approach similar to this, Hartree proposed in 1928 a set of self-consistent
single-particle equations in an attempt to approximate a system of interacting elec-
trons [6]. This was done by assuming that every electron was moving in an effective
single-particle potential given by interactions with a nucleus of atomic number Z and
the potential due to the average electron density n(r)

vH = − 1

4πε0

qeZ

|r|
+

∫
1

4πε0

qen(r′)

|r − r′|
dr′ (2.7)

The ground state of the system can then be found by self-consistently solving the
set of single-particle Schrodinger-like equations that are obtained from the variational
principle when trying to miniumize Hartre’s approximation to the energy:{

~2

2m
∇2 + vH(r)

}
ψi(r) = εiψi(r) (2.8)
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n(r) =
N∑
i

|ψi(r)|2 (2.9)

While this approximation works well, it is unfortunately not exact. Drawing
inspiration from this, we return to the Kohn-Sham formalization of the problem in
an attempt to recreate the exactness of the Hohenberg and Kohn’s original work, we
can then rewrite Eq. 2.6 in terms of the non-interacting system.

F [n(r)] ≡ T0[n(r)] +
1

2

∫
1

4πε0

q2
en(r)n(r′)

|r − r′|
drdr′ + Exc (2.10)

where the first two terms in this equation are the kinetic energy of the non-
interacting system and the Hartree potential. The last term is the so called exchange-
correlation energy which is defined in this equation as the remaining quantum mechan-
ical energy difference between the exact functional F [n(r)] of the interacting system
and the known Hartree-like treatment of the fictitious non-interacting system. The
value of the exchange correlation-energy functional is not known exactly and the ac-
curacy of the density functional method thus depends largely on the approximation
used for this term. The full energy to now minimize is given by

E = T0[n(r)] +

∫
vext(r)n(r)dr +

1

2

∫ ∫
n(r)n(r′)

|r − r′|
drdr′ + Exc[n(r)] (2.11)

Rewriting the exchange-correlation energy as Exc[n(r)] =
∫
n(r)εxcdr, the varia-

tional principle leads to the Kohn-Sham Equations[7] that are solved self consistently:{
1

2
∇2 + vext(r) +

∫
n(r′)

|r − r′|
+
δεxc)

δn

}
ψi(r) = εiψi(r) (2.12)

n(r) =
N∑
i

|ψi(r)|2 E =
N∑
i

εi (2.13)

This can be easily expanded to spin-polarized calculations by solving for the spin
up and spin down Kohn-Sham wavefunctions separately and simultaneously.

{
1

2
∇2 + V (r) +

∑
α

∫
nαα(r′)

|r − r′|
+
δεxc
δn

}(
φ

(+)
i (r)

φ
(−)
i (r)

)
= εi

(
φ

(+)
i (r)

φ
(−)
i (r)

)
(2.14)

nαβ(r) =
N∑
i

(r)φ∗αi φ
β
i (r) (2.15)

where α, and β can be + or -. If the system is assumed to have collinear spin, the
magnetization is given by [8]

Mspin =

∫
(n(+)(r)− n(−)(r))dr (2.16)
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2.1.2 Exchange Correlation Functionals

The discussion so far has focused on reformulating the unsolvable many-electron prob-
lem into a seemingly more approachable formulation in terms of electron density. For
stationary solutions to the full non-relativistic Schrodinger equation, this Kohn-Sham
formalism has remained exact within the Born-Oppenheimer approximation. This is
done, however, only by defining the exchange-correlation energy to be the univer-
sal function which includes all extra physics not already included, and that properly
corrects the kinetic energy from that of the non-interacting fictitious system to that
of the real many-electron system to be modeled. A series of approximations to this
exchange-correlation functional have enabled predictions of reasonable accuracy at
computationally viable costs.

In the original work of Kohn and Sham, this exchange-correlation functional was
assumed to have a quasi-local form. This approximation, which is now know as the
local density approximation (LDA), estimates the exchange-correlation at every point
to be that of a homogeneous electron gas (HEG) of the same density. Given εHEGxc is
the exchange-correlation energy per electron in a HEG of density n,

ELDA
xc [n(r)] =

∫
n(r)εHEGxc [n(r)]dr (2.17)

While )εHEGxc [n(r)] is unique, several parameterizations of LDA have been pro-
posed.[9, 10, 11, 12] This first approximation, despite its simplicity, has had remark-
able success in many systems. It is able to predict ionization energies of atoms, disso-
ciation energies of molecules, and cohesive energy of solids in many cases within 10%
error. Additionally, it can predict geometries within 1% error.[13] It is especially ac-
curate for elemental metals, as the nearly-free electrons within these materials largely
resemble a slowly varying electron gas, where LDA is most applicable.

A more accurate estimation of the exchange-correlation energy depends on the
gradient of electron density and is known as the generalized gradient approximation
(GGA). The exchange-correlation energy is now approximated as

EGGA
x (n,∇n) =

∫
εxc[n,∇n]dr (2.18)

The freedom in the mathematical implementation of the gradient dependence
has led to many versions of GGA with some notable versions including PBE[14],
RPBE[15], and PW91 [16]. While GGA functionals have improved performance in
predicting the properties of materials with more localized electrons including transi-
tion metal complexes, surfaces, and interfaces, the approximation for the exchange-
correlation functional still assumes a quasi-local form. Further improvement of the
energy and structure predictions can be made when adding an explicit non-local van
der Waals density function (vdW-DF) kernel for the correlation energy.

Enl
c =

1

2

∫
r′n(r)φ(r, r′)n(r)drdr′ (2.19)
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The full correlation energy is now given by

Ec[n] = E0
c [n] + Enl

c [n] (2.20)

Several non-local kernels have been developed with various success including DF
[17] DF2 [18] vdW-DF-cx [19], and optPBE-vdW[20]. This addition of non-local
correlation is important trying to accurately describe the interactions between layers
of the layered transition metal oxide materials within this thesis [21].

2.2 Machine Learning Potentials

The tremendous success density functional theory has enabled computational predic-
tions in high-throughput studies with the potential of accelerating material discovery
for a wide range of applications, including in energy materials [22], thermoelectrics
[23], electrocatalysts [24], topological insulators [25], magnetic materials [26], and so-
lar materials [27]. Unfortunately, the computational requirements of DFT limit the
size of and/or the number of materials that can be reasonably screened. To over-
come this, advancements in machine learning (ML) techniques can be leveraged to
create surrogate models for the predictions generated with density functional theory
in the form of a machine learning potentials. While machine learning has been wildly
successful in its ability to learn complex patterns from datasets, the issue of inter-
pretability remains an issue in its application to the physical sciences. Its application
to learning the DFT mapping of atomic structure to energy, however, may not require
as much interpretability. The use of DFT is so widespread that in many cases, it is
used as a black box with no easily extractable understanding can be derived explicitly
from the inner workings. That is to say in replacing DFT with a computationally
cheaper calculator of the same predictions of DFT, one looses very little in interpret-
ing how DFT got to that answer and in some cases of model choice, may even gain
understand (such as understanding the magnetic coupling of spins). This section will
be dedicated to a summary of the theory and methods related to the type of neural
network machine learning potentials used within this thesis.

2.2.1 Atom Centered Symmetry Functions

We focus on atom centered symmetry functions fed to artificial neural networks.
These atom centered symmetry functions are used as they present a good trade-off
between computational efficiency and accuracy [28] and have previously been shown
to accurately describe many-component layered transition metal oxide systems [29].
There has been widespread success in using feed-forward neural networks to rep-
resent potential energy surfaces (PES) of various materials. For low dimensional
potential energy surfaces, a naive implementation directly from atomic coordinates
or explicit degrees of freedom can be achieved [30]. As the number of degrees of free-
dom increases, this becomes computationally prohibitively expensive as each degree
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of freedom represents an input node to the neural network. Additionally, the neural
network size and architecture cannot be changed once trained and therefore has to
be retrained if the system size of the material to be predicted changes. To overcome
this, it is useful to decompose the energy into a sum of contributions from each atom
and train a series of neural networks for each atom’s energy contribution.

E(r) =
∑
i

Ei(ri) (2.21)

Several physics requirements must also be satisfied for training the neural networks
to represent the energy. The energy of the input material is invariant to rotations
and translations within the coordinate system used to describe the positions of the
atoms. Additionally, the energy is also invariant to the labeling of the atoms. The
model for the potential energy surface should therefore also be invariant to these
rotations, translations, and permutations. To do this, a set of functions are used to
map the coordinates of the atoms to a description of the chemical environment that
is invariant to these symmetries. The descriptors used in this thesis are the atom
centered symmetry functions suggested by Behler and Parrinello [31, 32] given by

G2
i =

∑
j 6=i

e−η(rij−rs)2/r2
cfc(rij) (2.22)

and

G4
i = 21−ζ

∑
j 6=i

∑
k 6=j

(1 + λ cos θijk)
ζe−η(r2

ij+r
2
jk+r2

ik)/r2
c × fc(rij)fc(rjk)fc(rik) (2.23)

where

f(rij) =

 0.5

[
cos

(
πrij
rc

)
+ 1

]
rij ≤ rc

0 otherwise

The two-body interactions of an atom i with all other atoms j within a cutoff dis-
tance, rc is captured by the first symmetry function used, G2

i , while the G4
i symmetry

function captures the three-body interactions of i with all j and k such that all of
the atomic separations rij, rik, and rjk are less than the cutoff distance and where
θijk is the angle formed by rij and rik. The parameters η and ζ are used to tune
the distance and angle at which the symmetry function is largest and therefore will
tune the focus of the symmetry functions to various interaction lengths and angles.
The final tunable parameter, λ has a typical value of ∓1 as these values correspond
to a maximum in the symmetry function at 0◦ for λ = 1 and 180◦ for λ = −1. To
create a more robust description of the material space of interest, a collection of these
symmetry functions with various η, ζ, and λ can be used in combination as inputs
to generate a robust feature vector for each energy neural net. Within this thesis,
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the values of λ = ±1 and ζ=4 will be used as these values are shown to describe the
angular distribution well. We can then use a collection of η values to represent the
spacial component of interaction in the system.

The symmetry functions are then fed to a neural network (NN) consisting of
several layers. Each layer and then comprised of several nodes, each with a numerical
value. The input layer is given by the numerical values of each symmetry function
used as the description of the atomic environment of the material. The node values,
yji of node i in layer j after the input layer is then computed as:

yji = f ji

(
bji +

∑
k

aj−1,j
ki · yj−1

k

)
(2.24)

where k is summed over all nodes from the previous layer, yj−1
k is the value of node

k of the previous layer, aj−1,j
ki is a learnable weight between node k of the previous

layer and the current node i of the current layer j, and bji is learnable bias for layer
j. Finally, f ji is an activation function that introduces a nonlinearity to the neural
network and within this thesis, a sigmoid is used as the activation function

f(x) =
1

1 + e−x
. (2.25)

A schematic of the neural network architecture can be seen in Fig 2.1 to demon-
strate the prediction of the energy from atom i in a single material with N atoms,
and M descriptor functions. The full model for this material’s energy is then a collec-
tion of neural networks summed up. As mentioned previously, the prediction of the
final energy must be invariant to the labeling of atoms, therefore, instead of training
a neural network for each atom in the system, one NN is trained for every atomic
species in the system.

The learnable weights and biases are trained to minimize the loss function given
by the sum of squared errors between the predicted energy Êj and the target energy
Ej:

L =
1

2M

M∑
j=1

(
Êj
Nj

− Ej
Nj

)2

. (2.26)

The final component of a machine learning potentials is the prediction of forces as
they are necessary to accurately describe the positions and distortion of atoms under
various conditions. These force on each atom can be easily calculated by taking the
derivative of the predicted energy with respect to the position of the atom. As the
descriptors are analytical functions of the atomic positions, this can be done easily
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Figure 2.1: Schematic of the artificial neural network to predict the enery of atom i
using Behler-Parinello symmetry functions as input.
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using the chain rule:

Fk,α = − ∂E

∂Rk,α

= −
N∑
i=1

∂Ei
∂Rk,α

(2.27)

= −
N∑
i=1

Mi∑
j=1

∂Ei
∂Gi,j

∂Gi,j

∂Rk,α

. (2.28)

Finally, force training requires modification of the loss function to balance the
weighting of the error in the prediction of energy with the error in the prediction of
forces. We, therefore, redefine the loss function used to train the neural network as

L =
1

2M

M∑
j=1

( Êj
Nj

− Ej
Nj

)2

+
α

3Nj

3∑
k=1

Nj∑
in=1

(F̂ik − Fik)2

 , (2.29)

where Êj and Ej are the predicted and reference energy of the jth data point, F̂ik
and Fik are the predicted and reference force on atom i of the jth data point in the
k direction, and α is the force coefficient that sets the relative weighting between the
force and energy sum of squared errors. Unfortunately in the application of training
a machine learning potential based on these atom center symmetry functions on both
energy and forces, there is an inherent trade-off. Increasing the force coefficient will
increase the accuracy of the potential in recreating forces at the cost of a decrease in
energy prediction accuracy.

2.3 Debye-Grüneisen Model

Density functional theory can be useful for the prediction of ground state zero tem-
perature energy of materials. In many cases, however, finite temperature effects due
to vibrations of the lattice play a large role in the energy, phase stability, volume
expansion, heat capacity, and more of a material. Most methods to calculate the
vibrational properties such a with finite-difference [33], or with density functional
perturbation theory [34] are too computationally expensive for high-throughput cal-
culations and a more approachable approximation is needed. The Debye-Grüneisen
model provides a computationally efficient way to compute approximate theses vi-
brational effects and has been applied to a large range of materials including oxides,
metals, nitrides, carbides, fluorides, and sulfides [35, 36, 37, 38]

2.3.1 Original Debye Model

The vibrational properties of materials can be understood through the collective
vibration of atoms within a crystal in the form of quantized excitations known as
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phonons. The Debye model assumes a linear dispersion relation for these phonons
ω = vs|~q| where vs is the speed of sound in the material.

As these phonons are merely vibrations within the material, they cannot have in-
finite frequency and are bound by the size of the lattice, and they additionally cannot
have infinite energy E = ~ω. A cutoff frequency called the Debye frequency ωD and
cutoff wavevector qd = ωd/vs can be used to approximate the limits of these vibra-
tions. The values of these cutoffs can be computed by approximating the material as
a cubic crystal of size length L = (V )1/3. Therefore the wave-vectors take the form of

q =
2πn

L
(2.30)

where n is an positive, non-zero integer. Therefore in reciprocal space, each
wavevector ~q has a volume of (

2π

L

)3

=

(
8π3

V

)
(2.31)

Given the cutoff wavevector qD, the total number of modes N, where n is the
number of primitive cells in the material, confined within a sphere of radius qD [39].

N =

(
4

3
πq3

D

)
/

(
8π3

V

)
(2.32)

This then leads to the value of the Debye frequency

ωD = vs

(
6π2N

V

)1/3

(2.33)

It is also helpful to define the Debye temperature, ΘD, above which, all of all
modes will begin to be excited,

kBΘd = ~ωD (2.34)

Combining Equations 2.33 and 2.34 and restricting ourselves to only one primitive
cell, we then have

ΘD = (
6π2

V
)1/3~vs

kB
(2.35)

The density of states for each polarization type is then given as

g(w) =
dN

dω
=

V ω2

2π2v3
s

(2.36)

Assuming a constant velocity for all directions, we multiply the contribution for a
single polarization by three to get the total contribution to the internal energy from
vibrations[39]
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U = 3

∫
~ωD(ω)g(ω)

(
n(ω) +

1

2

)
dω = 3

∫ ωD

0

V ω2

2π2v3
s

[
~ω

e~ω/kBT − 1
+

~ω
2

]
dω

(2.37)

where we have made the substitution for the expected number of particles from
Bose-Einstein statistics nw. We can also break the energy into the contribution
from the second term, the zero point-energy, U0, and the first term which is the
temperature-dependent vibrational energy. Making the substitution x = ~ω/kBT
and xD ≡ ΘD/T the temperature-dependent energy can be written

U − U0 = 9NkBT

(
T

ΘD

)3 ∫
x3

ex − 1
dx = 3kBTD(ΘD/T ) (2.38)

Where for notational convenience, we have used the Depye function D(x) =
3
x3

∫ x
0

z3dz
ez−1

. The zero point energy can be represented as

U0 =
9

8
kBθD. (2.39)

From this internal energy, we have a full thermodynamic potential and can then
compute all relevant quantities of interest. We start by computing the isochoric heat
capacity as

CV =
∂U

∂T
= 9NkB

(
T

TD

)∫ xD

0

x4ex

(ex − 1)
. (2.40)

To ultimately reach an expression for the free energy, we need to next compute

the entropy which is given by the relation Cv = T
∂S

∂T
and thus

S =

∫ T

0

CV
T ′
dT ′ = 3kB

[
4

3
D(ΘD/T )− ln(1− e−ΘD/T )

]
. (2.41)

The last thermodynamic potential to be derived here will be the vibrational
Helmholtz free energy as this will be the starting point for the application of the
Debye model later. The expression for this is given by

F = U − TS = −kBT
[
D(ΘD/T )− 3ln(1− e−ΘD/T )

]
+

9

8
kBθD. (2.42)

The Helmholtz free energy can be numerically calculated for any temperature and
any volume and added to the zero temperature static energy at that volume calculated
from DFT. Before this can be done, the tabulation of the Debye temperature requires
an approximation for the speed of sound in the material. For the moment, we can
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assume that the excitations in all directions within the material have a constant speed
of sound which can be given by the Bulk modulus and density as

vs =
√
B/ρ. (2.43)

To then give

ΘD = (6π2)1/3V 1/6 ~
kB

(
B

M

)1/2

(2.44)

The Debye Temperature can now be calculated easily from first-principles calcu-
lations as it is in the form of easily computable quantities, the equilibrium volume V ,
and the bulk modulus B. These two quantities are easily extracted from utilizing the
energy-volume equation of state curves fit to DFT data. The equilibrium volume is
simply given from the energy minimum in the energy-volume curve. The bulk mod-
ulus on the other hand is given by the curvature of the energy-volume fit. The bulk
modulus is defined in terms of the volume change as the pressure is varied

B = −V ∂P
∂V

(2.45)

We rewrite the pressure,

P = −∂E
∂V

(2.46)

and insert this into the original definition of bulk modulus to get

B = V
∂2E

∂V 2
. (2.47)

This simple formalism thus only requires enough single point energy calculations
required to give a sufficient energy-volume curve. From there, all possible thermo-
dynamic quantities can be computed. We apply this method first in Chapter 3 to
understand the sensitivity of the DFT error on the prediction results, and then later
to cathode materials in Chapter 4. The approach taken, which ultimately seeks to
predict the Gibbs Free energy and is described in more detail in Chapter 3, is to
compute the Helmholtz free energy at a collection of temperatures and then compute
the Gibbs energy from the Legendre transform G = F + PV.

2.3.2 Anharmonic Corrections

We will now discuss some corrections to the expression of the Debye temperature
that provides an even more accurate and flexible description of materials. Firstly,
the approximation for the speed of sound used leads to Debye temperatures much
larger than experimentally measured. [35] This can be corrected by multiplying by
an empirical scaling factor that accounts for the difference in the speed of sound in the
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transverse and longitudinal directions that are present even for an isotropic medium.
The average speed in the material can be expressed in an averaged way in terms of
the longitudinal and transverse speeds as[40]

v =

[
1

3

[
2

v3
t

]
+

[
1

v3
l

]]1/3

(2.48)

where vt =
√
S/ρ and vl =

√
Y/ρ. Here S and Y are the shear and longitudinal

(Young’s) moduli respectively. In an isotropic medium, these two moduli can be
written in terms of the Poisson ratio, ν, and the bulk modulus, B, as [41]

Y =
3(1− ν)

1 + ν
B (2.49)

S =
3(1− 2ν)

2(1 + ν)
B (2.50)

We now obtain a new form of Equation 2.43 multiplied by a scaling factor, s, that

modifies the approximated speed of sound in the materials v = s(ν)

√
B

ρ
where

s(ν) =

(
1

3

[(
1 + ν

3(1− ν)

)3/2

+ 2

(
2(1 + ν)

3(1− 2ν)

)3/2
])−1/3

. (2.51)

When the Poisson ration is not known a value of s=0.617 has been suggested [35].
Anharmonic effects in the vibrations of the lattice can then be accounted for in the
form of the Grüneisen parameter given by[35]

γ = −∂lnΘD

∂lnV
(2.52)

Put simply, this parameter describes the effect of changing the lattice volume has
on the vibrational properties of the material. The value of the Grüneisen parameter
can found by plugging in the expression for the Debye temperature in Equation 2.44
to yield

γ = −1

6
− 1

2

∂lnB

∂lnV
= −1

6
− 1

2
B′ (2.53)

where B′ is the dimensionless derivative of the bulk modulus with respect to the
pressure. This expression assumes that both the transverse and longitudinal modes
will be equally excited and each type of mode will vary in the same way with respect
to volume. This is of course valid at high temperature, above the Debye temperature,
where all of the modes are excited. At low temperatures, this expression for γ has

been shown to be too large by an additive factor of about
1

3
[42]. Therefore, the lower

temperature Grüneisen parameter can be approximated as
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γ = −1

3
− 1

2
B′ (2.54)

The volume dependence finally enters into the Debye temperature through the
relation [35] ΘD/Θ

0
D = (V/V0)γ and the final expression for the Debey temperature

is

ΘD = s(6π2)1/3V
1/6

0

~
kB

(
B

M

)1/2(
V0

V

)γ
(2.55)

In summary, we have now have an approximation for the Debye temperature that
takes into account the variation in transverse and longitudinal sound speeds. It also
accounts for the changing vibrational properties as the volume of the material changes
from the zero temperature volume, as will happen for most material when going to
finite temperatures of interest. The approximation still relies on the assumption of
isotropic interaction in the material. Therefore if a material varies largely in different
crystallographic directions, or has significant contributions to the vibrational proper-
ties that derive to two distinct bonding types (such as molecular crystals that have
strong covalent bonding at short range, and weaker van der Waals interaction in the
intermolecular binding. Additionally, corrections to the free energy from electronic
entropy could play a role in metallic materials where there is a large density of states
at the Fermi level. This could contribute largely to the heat capacity and ultimately
the Gibbs free energy. With these warnings in mind, as well as the use of benchmarks
to experimental data to ensure agreement for similar systems, the Debye-Grüneisen
model presents a highly valuable contribution to computational studies where vibra-
tional properties are commonly ignored.
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Chapter 3

Uncertainty Quantification in
Density Functional Theory

Much of this thesis relies on predictions either directly from Density Functional The-
ory or from models that are trained on Density Functional Theory. To understand
these predictions and to understand the relative uncertainty of a model trained on
DFT (which can be quantified rather easily) with the uncertainty of the underlying
DFT itself (which is not straightforward), we employ an empirical method of uncer-
tainty estimation. We then propagate the uncertainty estimate from the DFT energy
calculations to derived properties including thermodynamics predictions.

As mentioned previously, Density Functional Theory has been largely successful
in first-principles predictions of materials and their properties and as a result, it is at
the core of computational materials design and discovery. Although there are many
variations in the practical implementations to improve numerical stability and con-
vergence through projection onto wavefunction basis sets or to save computational
time through the approximate treatment of core electrons through pseudo-potentials,
it has been demonstrated that the exchange-correlation functional is the leading cause
of error across many implementations for well-converged DFT calculations with suf-
ficient parameters related to the numerical precision of the calculation.[43] The Gen-
eralized Gradient Approximation described earlier, represents a balance of computa-
tional efficiency and accuracy, but given the mathematical freedom of implementing
the gradient dependency, a range of GGA-level functionals have emerged, with some
more successful for certain use cases than for others [44]. Additionally, two schools
of thought exist for the selection and development of exchange-correlation function-
als. The first is the reductionist approach in which the functional is crafted to obey
known asymptotic and limiting conditions. The contrast to this is a purely empirical
approach where some are all of these physics-based limiting conditions are relaxed
and a functional is trained on experimental or more accurate theoretical data. There-
fore, for every prediction made with DFT, the question emerges: What would the
prediction be if a different functional were used? Naively, this could be answered by
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repeating the calculation for a selection of GGA-level functionals. This approach,
however, would be computationally expensive and as there is no systematic way to
pick the collection of functionals to be tested, this method would not guarantee accu-
rate results, especially in the case that a GGA-level treatment of the problem is not
sufficient.

Previous studies have attempted to quantify the uncertainty of DFT through
statistical and/or regression analyses of DFT predictions over large sets of data.[45,
46, 47] Through these studies, the error in density functional theory has been shown
to be a combination of both systematic bias and random error.[45, 46, 47] If we
take the empirical approach to exchange-correlation energy selection and view the
functional merely as a mathematical model approximating reality, we can understand
the selection in the context of the bias-variance trade-off. This is the tension between
contributions to the expected model error due to systematic error (the bias) and
random error (the variance). Within the field of machine learning, ensemble methods
have been successfully used to reduce the variance at the cost of slightly increasing
the bias of each individual model in the ensemble with respect to the best alternative.
In relation to DFT, however, this bias can be quantified from comparison to a data
set assumed to be ground truth and relayed as error bars on the prediction. We
will discuss a particular class of ensemble methods that are derived from Bayesian
Statistics known as Bayesian Error Estimation Functionals.

3.1 Bayesian Error Estimation Functional

When fitting a model M to some underlying data D, we can say there is a probability
distribution that a prediction of that model will give a value y at some input point
x given by P (y|x,D,M). If we use a Bayesian ensemble of models, we can average
over all of the ensembles:

P (y|x,D) =
∑
M

P (y|x,M,D)P (M |D) (3.1)

In order to evaluate this expression, we must understand the probability that a
model is a true representation of reality given the data, P (M |D). Conventionally,
when a model is fit, the parameters of the model, θ are adjusted so as to minimize the
least-squares cost function between the predicted values ỹ(θ) and the target values y.

C(θ)
1

2

∑
i

(ỹ(θ)i − yi)2 (3.2)

This represents the belief that the lower the cost square error is, the more likely
the model represents reality and the lowest value then maximizes the likelihood of
estimation. The can be more formally derived if the errors of the between the model
and reality are assumed to have a Gaussian distribution and the maximum to this
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Gaussian likelihood for the prediction can be easily shown to be equivalent to mini-
mizing the sum of squared error. Depending on the data set used to train the model
and the shape of the squared error curve within the parameter space of θ, there could
exist models with nominally higher squared error for the data on which the model
is trained, but that have reasonable and likely differing predictions on unseen data.
It is then useful to sample near the minimum of the squared error well in order to
systematically probe the set of reasonable models. In this way, the sensitivity of the
predictions made by the fit model can be tested with respect to parameter variations.
A useful approximation of the model probability in Eq. 3.1 inspired by statistical
mechanics is given then by

P (M(θ)|D) ∼ e−
C(θ)
T (3.3)

where C(θ) is the cost function of the model given by least squares and T is
some tunable temperature to control how much of the model phase space is sam-
pled. The method was first applied to the fitting of interatomic potentials [48] and
latter extended to models for the exchange-correlation potential in DFT at the GGA
level [49, 50]. Within these works, an empirical model was fit to the underlying data
through the conventional minimization of the cost function. The effective temper-
ature to sample parameter space was then tuned such that the standard deviation
of the spread of the predictions matched the error of the model with respect to the
underlying data. In this way, the accuracy of the fit model is linked to the variance
in the ensemble. When implemented for DFT, the fit model for exchange-correlation
potential would provide a fully self-consistent calculation of the electron density and
corresponding total energy. The ensemble of predictions can then be computed ef-
ficiently by evaluating the energy non-self-consistently using the converged electron
density from the best-fit model. Extensions of this work have applied this method to
higher-order methods of DFT such as the addition of van der Waals forces [51], and
meta-GGA where higher gradients of the density are used [52]. Others alternatives
for error estimation have tried to address the question of the likelihood of statistical
bias in the estimation of error [53] through system-focused reparametrization [54],
machine learning [55], and the creation of more specialized functionals [56].

We focus our attention on the implementation of these so called Bayesian Error
Estimation Functionals (BEEF) that includes the addition of van der Waals non
local corrections (BEEF-vdW) [51]. In this case, the gradient dependence is imposed
through the introduction of an enhancement factor, F [n,∇n] that is a function of the

gradient of the density and a change of variables: s =
|∇n|
2kFn

where kF = (3π2n)−1/3

is the local Fermi wave vector. The exchange energy is now approximated as

EGGA
x (n,∇n) =

∫
εx(n)Fx[s(n,∇n)]dr (3.4)

εGGAx (n,∇n) = εx(n)Fx[s(n,∇n)] (3.5)
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In the case of BEEF-vdW, another change of variables is made to restrict to the
domain from -1 to 1

t(s) =
2s2

4 + s2
, − 1 ≤ t ≤ 1. (3.6)

The enhancement factor is then written in terms of Legendre polynomials Bm[t(s)]

FGGA
x =

∑
m

amBm[t(s)] (3.7)

so that the exchange energy is then given by

EGGA−x[n,∇n] =
∑
m

∫
εUEGx Bm[t(s)]dr (3.8)

=
∑
m

amE
GGA−x
m [n,∇n] (3.9)

The correlation functional used is a linear combination of the GGA Perdew-Burke-
Ernzerhof (PBE) functional [14] and Perdew-Wang LDA [12]. Non local correlation
is accounted for using the vdW-DF2 [18] kernel. Thus the full exchange-correlation
functional used is give by [51]

Exc =
Mx−1∑
m=0

amE
GGA−x
m + αcE

LDA−c + (1− αc)EPBE−c + Enl−c (3.10)

Just as in the previous work, these coefficients are trained to reproduce the train-
ing data. This includes molecular formation energies, molecular reaction energies,
non-covalent interaction energies, solid-state properties such as cohesive energies and
lattice constants, and energies for chemisorption on solid surfaces all collected from
experiment and highly accurate levels of theory. The coefficients α and ai in Eq. 3.8
can then be varied as given by Eq. 3.3 and evaluated non-self-consistently with the
spread tuned to match the error of the best fit functional with respect to the training
data. This assumption of non-self-consistent evaluation is well supported by the sim-
ilarity of the converged BEEF-vdW with other converged densities at the GGA level
as seen in by plotting the density of states for a sample material in Fig. 3.1. Fur-
thermore, the error estimation of BEEF-vdW has been shown to bound other general
gradient approximation functionals for the prediction of mechanical properties [57],
magnetic ground states[58], vibrational properties[59, 60, 61], and reaction enthalpies
for hydrocarbons [62, 63] demonstrating it’s ability to intelligently sample physically
reasonable parameters.

With this ensemble of functionals, not only do we have a quantitative metric
for uncertainty through the correspondence of the standard deviation to the error
bars on the prediction, but we now have a systematic way to sample GGA space
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Figure 3.1: The total density of states ferromagnetically aligned LiFePO4F as cal-
culated by BEEF-vdW, PBE, RPBE, and PBEsol. [Reprinted with permission from
Ref. [58]. Copyright 2017 American Physics Society]
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and understand the sensitivity of predictions on the choice of exchange-correlation
functional. We will now talk about one way to use this ensemble to compute a
quantitative metric of prediction confidence in DFT.

3.2 Prediction Confidence

The purpose of this section is to introduce a prediction confidence metric and demon-
strate its usefulness through the application towards a problem intrinsic to physics
directly related to the exchange-correlation energy: the magnetic properties of mate-
rials arising from the exchange energy of between electrons of magnetic ions.

Given the self-consistent nature of DFT, a collection of metastable states can be
reached [64] and often these various metastable states are search to understand which
of the states is the true ground state. We can predict this ground state by calculating
the energy of each configuration of the system, Ω, using DFT and finding the lowest
energy

EGS = min
Ω

[E(Ω)] (3.11)

Although the energies of these various states may be very close, the states may
be qualitative very different, such as adsorption site in surface catalysis, the relative
orientation of spins in magnetic materials, or crystal structure and orderings atoms
within a material for a given composition. When using a single functional, we again
can wonder about the change in the prediction with the functional choice. Here we use
the ensemble of energetic predictions of BEEF-vdW to define a prediction confidence
as the normalized number of functionals that agree with the predicted of the ground
state configuration, ΩGS

c =
1

Nens

Nens∑
i

∏
j

Θ(EΩj ,i − EΩGS ,i) (3.12)

In this equation we iterate over all functionals, i, and all other configurations,
j, Nens is the number of ensemble functionals and Θ(x) is the Heaviside step func-
tion. For most cases, the distribution of energies are well described by Gaussian
distributions and therefore this confidence value can be expressed as

c ≈
∏
j

∫ ∞
0

dx√
2πσ2

j

e
−

(x−µj)2

2σ2
j (3.13)

It should be noted, that although this confidence value is based on a probability-
like treatment of the errors, it makes no prediction of physical probabilities like that
of statistical mechanics. Instead, it is a measure of agreement in computations at a
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given level of approximation and therefore is loosely related to the probability that a
prediction is correct.

We will now look more closely at the prediction of magnetic ground states, which
provides a simple yet useful test case for using this prediction confidence given the
origin of magnetism in materials. In Chapter 2, we discussed briefly how the formalism
of DFT can be extended to collinear spin-polarized systems. In this treatment, the
total magnetization of the system can be computed by integrating the difference in
spin up and spin down densities to giving the z-projection of the spin-only magnetic
moment. Additionally, from this simple spin-density functional theory formalism, a
Stoner model for ferromagnetism can be derived[65, 66, 67, 68]

E+ = ε− I n
+ − n−

n
, E− = ε+ I

n+ − n−

n
(3.14)

where ε is the energy of the unpolarized electrons and I is the exchange energy,
the value of which determines whether or not there is spontaneous polarization in
the system. Thus, the accuracy of the description of the exchange energy, which is
sampled by BEEF-vdW, will determine the magnetic properties of the material.

We benchmark the accuracy of BEEF-vdW in Table 3.1 and find good agreement
with respect to a collection of other functionals and experiment. The notable ex-
ception, however, is a systematic overestimation of the magnitude of the magnetic
moment for Cr, which is well known to have an incommiserate spin-density wave
ground state [74, 70]. The agreement on the magnitude of the magnetic moments
between functionals is likely due to the similarity of the converged density over all
the functionals. The density of states predicted from DFT with various functionals
shown in Fig. 3.1 demonstrates this well and supports the assumption of evaluating
the energies of the BEEF-vdW ensemble non-self consistently, as we will do later.

To utilize the prediction confidence metric, we explored the magnetic ordering of a
collection of materials, testing the ferromagnetic (FM) and antiferromagnetic (AFM)
configurations for each material using DFT with the BEEF-vdW functional as well
as a range of other GGA functionals in order to probe the ground state spin arrange-
ments. This collection of materials spans a range of crystal structures, complexity,
elements, and origin of magnetism. In the case of LaMnO3 and CuCr2O4, lattice
distortions play a large role [75, 76]. The elemental state of Ni and Fe demonstrate
a more basic direct exchange ferromagnetic nature [77], while antiferromagnetism
(AFM) due to superexchange is seen in the orderings in the oxides tested: FePO4,
LaMnO3, and CuCr2O4. For each material tested, the lattice constants and internal
atomic positions were optimized by relaxing to a max force of 0.01 eV/ Å. A graph-
ical representation of the confidence value can be seen for Cr in Fig. 3.2. In this
figure, the ensemble of energy differences between a nonmagnetic low spin state and
the antiferromagnetic state are shown. The shaded region shows the area under the
probability distribution curve that sums up all functionals that agree in the prediction
that the AFM is more stable.
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Table 3.1: Table reproduced from Ref. [58] showing both the predicted and experi-
mentally measured magnetic moment per magnetic ion, µB. Both the olivine (o) and
quartz (q) polymorphs are included for LiFePO4. In the case of CuCr2O4, with two
magnetic species, the total magnetic moment is given. Experimental references are
from (a) Ref.[69], (b) Ref. [70], (c) Ref. [71], (d) Ref. [72], and (e) Ref. [73]

Fe Cr Ni
FePO4-q
FePO4-o

LaMnO3 CuCr2O4

BEEF 2.33 1.62 0.61
4.29
4.03

3.89 5.00

PBE 2.13 1.23 0.60
4.31
4.00

3.85 5.00

RPBE 2.21 1.77 0.61
4.33
4.02

3.89 5.00

PBEsol 2.01 0.74 0.58
4.30
3.97

3.77 5.00

Expt. 2.22a 0.62b 0.61a
4.53c

4.02d
3.70e 0.39a
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Figure 3.2: The ensemble of energy difference predictions to determine the magnetic
ground state of Cr is shown. The c-value for the prediction of AFM as the ground state
is shown as the shaded region. Additionally, the normal distribution with ensemble
mean and standard deviation is also shown and in good agreement with raw data.
[Reprinted with permission from Ref. [58]. Copyright 2017 American Physics Society]
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We see in Table 3.2, for most materials tested, both good agreement with experi-
ment and high prediction confidence. This high prediction confidence is echoed by the
agreement over the other GGA functionals tested in the sign of ∆E = EFM −EAFM .
In the case of Cr, however, we see low prediction confidence. This is likely due to
the ground state, which was mentioned previously to be a spin density wave and
thus is pointing to a deficiency of the treatment of Cr at the level of GGA. Interest-
ingly, extensions of DFT beyond the semi-local approximation have been suggested
as necessary to properly describe Cr or any spin density wave material [78].

Another interesting problem is the ambiguity of AFM orderings. Many materials
exhibit multiple length scales over which magnetic alignment or anti-alignment can
occur leading to multiple possible AFM states. Many studies, however only investi-
gate the energy difference between FM and a single possible AFM state. While this
can determine whether or not the material is FM, in the case that the material is
predicted to not be FM, it does not determine the kind of AFM configuration present.
We look at two materials with applications as next-generation cathode materials with
high capacity. The materials LiFePO4F and NaFePO4F have been predicted to cy-
cle up to two alkali ions Li2FePO4F and Na2FePO4F. In a previous first-principles
study of these materials and the corresponding magnetic ground state, Ramzan et
al. found disagreement between the GGA level PBE functional and PBE with an on-
site Hubbard U (PBE+U) correction of U=0.95eV and J=0.95eV [83]. Additionally,
there was no description for the exact AFM ordering being tested. These materials
which have an tetragonal conventional cell, have three distinct interaction lengths
over which the Fe atoms could magnetically orient. To further explore this disagree-
ment, we repeated the magnetic ground state procedure described above for testing
the confidence in the prediction of the magnetic ground over all other possible mag-
netic configurations. We tested both FM and AFM coupling over the three smallest
interaction lengths of the Fe atoms leading to eight total spin states tested for each.
We also are able to create an isolated c-value testing the confidence that the coupling
is AFM in each particular length scale. The results for these predictions are seen in
Tab. 3.3. In the case of LiFePO4 and NaFePO4F, where there was previously seen
agreement between PBE and PB+U, we see also predict a high confidence value when
considering all states versus the one predicted by the main BEEF-vdW functional to
be the ground state. For Li2FePO4F and and Na2FePO4F, however, we recreate the
uncertainty of the predictions with a c-value of 0.614 and 0.6795 respectively. This
again points to a possible deficiency in the treatment of these systems at the level of
GGA, and suggests the need for semi-empirical Hubbard corrections in these materi-

1Ref. [79]
2Ref. [70] This is a difference between nonmagentic (NM) and AFM
3Ref. [80]
4Ref. [71]
5Ref. [81]
6Ref. [73] The AFM state is A-type
7Ref. [82] This is a difference between two AFM states.
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Table 3.2: Predictions for the magnetic ground state and magnetic energy difference
EFM − EAFM of various materials reproduced from Ref [58] the standard deviation,
σ, and mean, µ, fro the BEEF-vdW ensemble is given along with the c-value incor-
porating all magnetic states, as well as the c-value derived from a Gaussian fit of the
ensemble.]

Material BEEF-vdW PBE RPBE PBEsol exp c-value
Approx.
c-value

Fe
BCC
Im3̄m

−0.51± 0.20 -0.34 -0.48 -0.41 FM 1 0.997 0.994

Cr
BCC
Im3̄m

0.06± 0.18 0.03 0.06 0.01 AFM 3 0.630 0.631

Ni
FCC
Fm3̄m

−0.07± 0.03 -0.06 -0.06 -0.06 FM 3 0.998 0.997

FePO4

α-quartz
P3121

0.02± 0.01 0.02 -0.01 0.00 AFM 4 0.952 0.962

FePO4

olivine
Pnma

0.03± 0.011 0.03 0.02 0.05 AFM 5 0.999 0.998

LaMnO3

perovskite
Pbnm

−0.07± 0.02 -0.25 -0.11 -0.05 FM 6 0.994 0.998

CuCr2O4

spinel
I41/amd

−0.10± 0.06 -0.07 -0.11 -0.05 AFM1 7 0.965 0.969
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Table 3.3: The c-values for testing the hypothesis that the magnetic ordering is AFM
over the selected length scale in the material. The last row for each material is the
c-value testing the prediction of the most stable AFM ordering compared to all eight
magnetic orderings tested. Also shown are the results from [83] for PBE and PBE+U
with an onsite Hubbard correction of U=0.95eV and J=0.95eV. The lengths given
are the distances between Fe atoms in the FM structure and approximate the lengths
between Fe atoms in the different AFM structures.

Material Interaction Length (Å) c-value PBE PBE+U

LiFePO4F

3.0
5.8
6.4
all

0.777
0.996
0.555
0.914 AFM AFM

Li2FePO4F

3.0
5.8
6.6
all

0.00
0.216
0.785
0.6145 FM AFM

NaFePO4F

3.6
5.9
6.7
all

1.00
1.00
0.500
0.812 AFM AFM

Na2FePO4F

3.5
6.0
6.9
all

0.122
0.733
0.096
0.6795 FM AFM

als. This is unsurprising as the well studied un-fluorinated analog of these materials
LiFePO4, has been shown to require a U correction to properly capture the charge
localization that leads to the phase separation seen experimentally [84].

This concept of confidence value has been used to understand the prediction con-
fidence for predictions in catalysis [85], surface phase diagrams [86], design principles
for 2D functional materials [87], and Li ordering in battery electrodes [88, 89].

We close with a quick discussion of the limitation of this method of uncertainty
quantification. A well-known puzzle in catalysis is the systematic failure of DFT
at all levels to predict the correct adsorption site of CO intermediate on PT 111
surfaces [90]. DFT predictions systematically predict the incorrect favorability of the
adsorbate to prefer the hollow site over the top site. Even with the addition of vdW
corrections or when moving to a higher level of theory with mGGA, the problem

31



remains [91]. A quick analysis with the BEEF-vdW functional provides a c-value for
the incorrect prediction of 0.86, which while not overwhelmingly high, supports the
widespread inability of DFT to correctly describe the system. Recently it was shown
that by using the density converged with an on-site Hubbard-U correction for self-
interactions with the PBE functional (PBE+U), evaluated non-self-consistently with
the PBE functional, the correct site could be predicted [92]. This suggests that the
error in the predicted electron density and not in the exchange-correlation function
is the core of this puzzle. Unfortunately, the ensemble error estimation presented
here as well as many other schemes for uncertainty quantification currently cannot
quantify the uncertainty in the electron density itself.

In summary, we show a rigorous way of applying the ensemble of energy predic-
tions generated by the BEEF-vdW functional to understand the level of certainty in
the qualitative prediction of ground state configuration for materials. While many
cases gave high prediction confidence and good agreement with experiment, which
highlight the success of DFT at the GGA level, we saw notable cases were the dis-
agreement illuminated by this confidence value suggested a fundamental limitation
to the treatment of the problem. This method of uncertainty quantification takes the
understanding of error bars to a level where we can understand not only a numerical
uncertainty but answer the question: If another functional was chosen at the GGA
level for this problem, would the science that is predicted change?

3.3 Uncertainty Quantification in Thermodynamic

Predictions

We now move to another application of uncertainty quantification from DFT. Here
we attempt to understand how the error propagates through physical models that
use DFT and input. The energies from DFT represent zero temperature predictions.
For many materials, however, finite temperature properties play a large role. In
particular, the vibrational properties of crystals can contribute largely to the entropy
and free energy and therefore change the predicted stability of structural phases.
The Debye-Grüneisen model detailed in Chapter 2 can provide relatively accurate
predictions of these vibrational properties by taking the simple approximations of the
original Deybe model and adding corrections in the form of a scaling factor for sound
velocities and the Grüneisen parameter for anharmonic effects. We use this model
as a test of the sensitivity of exchange-correlation functional on the predicted finite
temperature properties of crystals.

Conventional methods of understanding the propagation of uncertainty through
a physics based model assume simple distributions for the uncertainty that are then
propagated forward [93]. This assumes, however, that the error from a functional in
the prediction of one energy of a material is independent of the error in the prediction
of the energy of the same material at for example a different volume. It is well
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Figure 3.3: Schematic representing the procedure to calculate thermodynamic prop-
erties from the Debye model: First, an E-V curve (a) is fit and the free energies at
different temperatures are calculated (b). The red line consists of the minimum of
free energy at each temperature, from which the Gibbs energy (c), the volume (d),
the bulk modulus (e), and vibrational entropy (f) are then computed. [Reproduced
from Ref [59], with the permission of AIP Publishing, Copyright 2019]

understood, however, that the errors for the prediction of very similar materials or
different compositions in various configurations with DFT are correlated. As the
prediction of thermodynamic properties ultimately relates to not only the energy at
a given volume, but how the energy changes with respect to volume, and therefore
energy differences, this correlated error then becomes an important factor in the
propagation of error in thermodynamic modeling. In our approach, by utilizing the
ensemble of energies from the BEEF-vdW functional as the statistical data generation
step, we can continue to correlate the predictions from each functional at every stage
in the process. This thus allows for proper treatment of the statistical dependence
of the predictions and the correlated error of DFT. As this correlated error usually
results in error cancellation, neglecting the statistical dependence will result in an
over prediction of uncertainty.

3.3.1 Application of the Debye-Grüneisen Model

The energy of the material at various volumes around the minimum volume is pre-
dicted using DFT. From these energies, a Vinet equation of state is fit [94]. From
this, the equilibrium volume, V 0, the bulk modulus, BO, and the derivative of the
bulk modulus with respect to pressure, B′ can be extracted. As discussed in the
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Methods Section from Equation 2.55 for the Debye temperature and Equation 2.42
for the vibrational contribution to the free energy, all vibrational propertied can be
computed under the Debye-Grüneisen approximation using only these quantities. The
Helmholtz free energy binding curves are then computed at various temperatures as
seen in Fig. 3.3 (b). From each of these curves, the minimum volume is extracted.
When calculated the Gibbs energy,

G(P = 0, T ) = min
V
F (V, T ) + PV (3.15)

the pressure effect is small enough to ignore. We, therefore, approximate the
Gibbs energy as that of zero pressure

G(P = 0, T ) = min
V
F (V, T ) (3.16)

From here, all thermodynamic properties of interest can be derived, including the
entropy, S = −dG

dT
, the enthalpy, H = G + TS, the isobaric specific heat, Cp = dH

dT
,

and the volumetric thermal expansion coefficient, α = 1
V
dV0

dT
. In these cases, finite

difference is used for all derivatives of with respect to T.
This was process was performed for a collection of materials including Mg, Ca,

Al, Li, GaAs, NiO, Li2O, and Al2O3 [59]. For each material, each property was
predicted using a collection of GGA level functionals self consistently, as well as
the full collection of BEEF-vdW functionals non-self-consistently. We highlight the
results for Li in Fig. 3.4 as it not only provides an interesting case for understanding
the sensitivity of errors but is relevant to the prediction of battery properties later.
For Li, as well as all other materials tested, we see rather good agreement in the
prediction of Gibbs energy, with variations on the order of 0.01 eV/atom, although
the variation increased with temperature. We also see very good agreement between
functionals as well as with experiments in the prediction of heat capacity, CP . When
predicting higher-order quantities, such as Bulk modulus, and thermal expansion
coefficient, we see significantly more error. For the thermal expansion coefficient,
however, we see that although the majority of the data is very close to the mean,
some outliers exist extremely far away. This is highlighted by plotting the log of the
BEEF-vdW probability density for the thermal expansion coefficient in 3.4 so the
few outliers can be seen clearly. This suggests that for most reasonable exchange-
correlation functionals, a similar α is predicted, while a functional that is just slightly
worse than average will have a huge error. We also see a systematic overestimation
of the thermal expansion of Li for all GGA functionals tested. This could be due to
both the anisotropy in the bulk properties of lithium and the inelastic behavior of
lithium due to its softness.

For the purpose of this Thesis, we also investigate the thermodynamic predictions
and associated uncertainties of LiCoO2 in Fig. 3.5. We immediately see better
agreement than Li amongst all functionals and with experiments for the thermal
expansion coefficient. But as in the case of Li, we also see few outliers very far from
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Figure 3.4: Prediction of thermodynamic properties (a) Gibbs energy (b) entropy
(c) isobaric heat capacity (d) bulk modulus (e) volume and (f) volumetric thermal
expansion coefficient for Li using the Debye-Grüneisen Model compared with experi-
mental measurements for Ref.[95, 96, 97, 98, 99]. For each property, the probability
distribution from the BEEF-vdW ensemble is given. In (f), the natural log of the
probability density is shown to demonstrate the extreme outliers. [Reproduced from
Ref [59], with the permission of AIP Publishing, Copyright 2019.]
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Figure 3.5: Prediction of thermodynamic properties (a) Gibbs energy (b) entropy
(c) isobaric heat capacity (d) bulk modulus (e) volume and (f) volumetric thermal
expansion coefficient for LiCoO2 using the Debye-Grüneisen Model compared with
experimental measurements for Ref. [100, 101, 102] cite, cite, cite. For each property,
the probability distribution from the BEEF-vdW ensemble is given. In (f), the natural
log of the probability density is shown to demonstrate the extreme outliers.
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the typical prediction, supporting the high level of sensitivity on the input energies.
Just as with Li, the entropy and heat capacity are well captured with comparison to
experiment for all functionals tested.

3.4 Summary

In this chapter, we explored the uncertainty from the choice of the exchange-correlation
functional and how it can affect DFT predictions. We first discussed a semi-empirical
way to understand DFT uncertainty through the training of an exchange-correlation
functional with respect to experimental and high accuracy quantum chemistry data.
Using Bayesian statistics, this can then generate an ensemble of predictions that are
near the best fit functional in the model parameter space. A framework for un-
derstanding the prediction confidence for ground-state configurations was introduced
and employed using the ensemble of energies from the BEEF-vdW functional. This
framework was applied to magnetic ground states due to the origin of magnetic cou-
pling in the exchange energy of electrons. We found good agreement for systems
previously thought to be well described by DFT and for select interesting cases found
that low prediction confidence may suggest a higher level of theory or semi-empirical
corrections are needed. We then applied the BEEF-vdW ensemble to understand the
variation in Debye model predictions. This method has the added benefit over other
methods of uncertainty quantification in properly treating the correlated errors of a
set of predictions from a single functional, which are treated as independent in other
analyses. We found good agreement with respect to experiment for finite temperature
predictions for most properties of interest in Li and LiCoO2, two materials of interest
to this Thesis. We did, however, see that properties related to higher-order deriva-
tives are more sensitive. This emerges in the prediction of the thermal expansion and
therefore the thermal expansion coefficient could be used to understand how accurate
the energy-volume prediction is when we train a machine learning potential later.
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Chapter 4

Transition Metal Cathodes

This chapter focuses on applying the methods and techniques discussed in Chapters
2 and 3 to battery cathodes. Intercalation cathodes generate usable electrochemical
energy though the reaction with some intercalant, usually an alkali metal with a
small radius and large electropositivity. As a result, the most desirable intercalant
is thus Li. The cathode not only provides a host structure for the lithium-ion to
be inserted but also an electronic state for the lithium’s electron to go to. We can,
therefore, think of this reaction as lowering the chemical potential of the lithium
with respect to what it was in the elemental state. As seen in Fig. 4.1, the lithium-
ion travels through the electrolyte and the electron through the external circuit.
The lithium-ion is then intercalated into the host material, while the electron is
absorbed into the redox couple of the transition metal within the cathode. During
charge, the lithium is then pulled out of the cathode with an applied potential. In
practice this reaction and its reversibility are imperfect. The amount of lithium
extracted and replaced and the potential range over which the battery is cycled can
be varied and controls not only initial capacity and voltage but more importantly
the long term performance. Given the need for electrification of transportation which
requires increasingly higher capacity and cycle life, a detailed atomistic understanding
is needed. When a particular composition is cycled from 3.5 V - 4.2 V, how does that
compare to another composition in the same range? What is the lithium compositions
at each voltage? All of these questions require the use of the computational techniques
explored in this chapter.

The first intercalation electrode LiTiS2 was verified in 1976 [103] and shown to
have a potential of 2V with respect to the Li/Li+ redox couple. Unfortunately, elec-
troplating of metallic lithium at the time, and to this day, presents major issues to the
operation of the battery over multiple cycles. Any replacement of the metallic lithium
with another lithium alloy or intercalation compound leads to undesirably low cell
voltage. In the search for higher potential cathodes, the transition metal should be
coordinated with anions that are both small and largely electronegative. From this
analysis, we are led to oxide materials over sulfides as originally tested. Additionally,
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Figure 4.1: Schematic for a lithium-ion battery. On the left, we have the anode
(denoted by -) which is conventionally graphite. On the right, we show the cathode
(denoted by +) as a layered transition metal oxide. The lithium moves through
the electrolyte from the anode to the cathode during discharge as the electron goes
through the external circuit to provide usable electricity. During charge, an applied
potential moves this process in reverse. The lithium moves out the cathode and back
into the anode.

the metal should be in a high oxidation state to further lower the energy of the lowest
unoccupied state.

In 1980, the layered structure of LiCoO2 was first shown to reversibly cycle lithium
with a cell potential of near 4V [104]. This material, later commercialized in 1991
by Sony, revolutionized the market of rechargeable batteries. This layered structure,
seen in Fig. 4.2 enables high lithium mobility allowing for nearly all of the lithium to
be cycled. In practice, however, only half of the lithium is removed from the struc-
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ture corresponding to a maximum potential of 4.2V and a capacity of only about
135 mAhg−1. The material is shown to have poor capacity retention when more Li
is extracted by cycling up to 4.5V. This has been attributed to a monoclinic phase
transition at Li0.5CoO2 that is accompanied by a large expansion in the layer sepa-
ration [105]. Others have suggested these structural changes are only relevant above
4.5V and that surface reactivity and reconstruction lead to increased impedance and
therefore the poor performance seen [106]. The use of surface coatings has been shown
to improve the performance of LiCoO2 [107]. Interestingly, the use of surface coatings
would address both possible issues by mechanically suppressing the lattice expansion
and contraction as well as stabilizing the surface and preventing the suspected re-
actions with the electrolyte. As an alternative cathode, LiNiO2 in the same layered
form was studied in the early 1990s and shown to have a much larger usable capacity
nearing 200 mAhg−1 and a reversible capacity of about 150 mAhg−1 at the expense of
increased synthesis difficulty due to increased disorder of Li/Ni swapping [108]. This
larger capacity, however, quickly reduces over cycling due to lattice cracking from a
monoclinic distortion near xLi = 0.5 and rapid layer contraction at high states of
charge [109, 110]. Also of note, is the layered LiMnO2 which was successfully syn-
thesized but showed rapid capacity loss directly linked to an irreversible transition to
spinel LiMn2O4 [111].

The success of Co in this layered structure could inspire the use of other transi-
tion metals in the same structure possible beyond the ones already mentioned. The
formation of this layered structure occurs when the M3+ oxidation state of the metal
has an ionic radius that is much smaller than that of Li+ as the bond lengths of the
metal and lithium-oxygen octahedra can then relax independently within the mate-
rial. This occurs in the case of Co, V, Ni and Cr. When the cation is the same size as
Li+, such as in the case of Fe or Sc, the material will then form an ordered structure
where the metal and lithium share each of the layers equally. The lithium is therefore
trapped in the structure and cannot be easily extracted for electrochemical cycling.
The much cheaper and seemingly promising layered LiFeO2 can be synthesized but
show poor electrochemical performance as a result of this [112]. In the desired lay-
ered structure, as the lithium is removed the lattice will become increasingly unstable
which is detrimental to the long-term cycling of these materials as battery electrodes.
The cubic closed packed (ccp) structure of the oxygen anion in the layered structure
is identical to that seen in the spinel structure. In the spinel structure, cations oc-
cupy both the octahedral and tetrahedral sites. Therefore a phase transformation
to this spinel phase or to the rock salt phase would remove usable capacity of the
cathode. To prevent the migration of the transition metals to the Li vacancies driven
by electrostatics, or to tetrahedral sites to form a spinel phase, we look for transition
metals with a high preference to stay in the octahedral site as this will correspond
to a large kinetic barrier to move though the tetrahedral site that is on the way to
the lithium vacancy octahedral site [113] as well as prevent spinel formation. This
preference must also be preserved as the metal oxidizes. Previous calculations of the
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Figure 4.2: The O3 structure of LiNi1–x –yMnx Coy O2 with rhombohedral symmetry
given by the R3̄m space group. The transition metals are shown in green and form
a triangular lattice. The oxygen in red form a cubic close-packed like structure. And
the white show Li or lithium vacancies. These together also form a triangular lattice.
The transition metals and the lithium sites are octahedrally coordinated with the
oxygens leading to stacking of the layers such that they repeat every three layers,
giving the O3 name.
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relative energies of transition metals in the 3+ and 4+ states in the octahedral and
tetrahedral site of the ccp oxygen lattice leave only Co and Ni as candidate transition
metals [113]. In the case of Mn, the 4+ oxidation state present in highly charged,
low lithium content Lix MnO2 is very stable. On the other hand, the 3+ state seen in
lower states of charge and high lithium content will disproportionate quickly to 2+
and 4+ followed by a migration of the Mn2+ to the tetrahedral site to form spinel as
was mentioned previously. While pure LiMnO2 is not viable as a cathode material,
the addition of Mn in a layered material containing Ni, however, will create a more
stable structure. The Ni3+ and Mn3+ are known to charge disproportionate to Ni2+

and Mn4+, giving stability to the structure given the high barrier of Mn4+ to migrate.

It is, therefore, no surprise that the ternary compound LiNi1–x –yMnx Coy O2, was
then studied in 1999 and shown to have improved reversible capacity over LCoO2 and
improved capacity retention over LiNiO2 [114]. This material, commonly abbreviated
NMCXYZ, where X, Y, and Z are the proportions of Ni, Mn, and Co respectively
(e.g. LiNi0.8Mn0.1 Co0.1 O2 is written NMC811), has been remarkably successful in
providing high capacity, high energy density batteries. The most common propor-
tion NMC111 was first synthesized in 2001 [115]. This material emerged as a leading
candidate cathode material as it was the first cathode material to deliver a long
term reversible capacity closer to 200 mAhg−1 and showed remarkably more stabil-
ity against reaction with the electrolyte at Li contents below 20% then LiNiO2 and
LiCoO2 [116]. Today, NMC occupies the majority of the EV market share yet may
still provide the possibility for actionable improvement [1]. The desire to increase in
capacity as well as the socio-economic and supply concerns surrounding Co [2], has
to lead to increased interest in high-Ni containing NMC. This has been reflected in
the development towards the commercialization of high-Ni NMC811. As the nickel
content increases, however, as with pure LiNiO2, we see lower capacity retention [3]
and increased risk of dangerous degradation due to increased O2 evolution and lower
temperature stability [117].

Unfortunately, understanding of trends in degradation and performance with re-
spect to compositions is limited to small experimental searches of the full phase space.
Additionally, suggestions for improvement are largely limited to single compositions
and the solutions for one composition may not apply to the issues of another composi-
tion. What is therefore required is a computationally efficient method to understand
these materials. Before focusing in more detail on the specifics of the limitations of
increased Ni, we turn to understanding the NMC phase space as a whole. It is largely
believed that the material space is a solid solution and arbitrary phases can then be
synthesized. Experimental studies, however, show negative mixing enthalpy [118],
and studies of transition metal ordering of NMC111 have shown at least short-range
ordering [119], both suggesting that NMC is not a disordered solid solution at room
temperature. This is further supported by the very few compositionally phases used
experimentally as seen in Fig. 4.3. Therefore to understand and predict something
as fundamental as the lithium ordering and therefore the open-circuit voltage of the
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Figure 4.3: A catalogue of conventionally used NMC (refered to as NCM here) com-
positions. Not the sparsity in the number of compositions used. [Reproduced from
Argonne National Lab Copyright 2014.]
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battery, the orderings of the transition metals must first be known. It is, therefore,
possible that an unfavorable ordering (or full disordering) of transition metals that
can be entropically stabilized at synthesis temperatures (∼1000K), will be unstable
during cycling. At very low Li content, the transition metals all have a tendency to
migrate to the vacant lithium sites [120] which could be worsened by a less than favor-
able transition metal ordering. The transition metals with then attempt to migrate to
form a more stable transition metal ordering, degrading the material and diminishing
long term capacity. We therefore first seek to understand the extent of this ordering
and predict the stable ordered compositions to guide further investigation of NMC
compounds.

4.1 Cluster Expansion

For the problem at hand of predicting the set of ground-state configurations and
compositions, DFT alone is computationally infeasible. For a fixed lattice size of N,
there would be 3N different materials to screen. While this number is reduced when
considering equivalent states due to symmetries, an alternative approach is needed.
Reduced-order energetic models trained on DFT data such as cluster expansion have
previously been used successfully to describe many materials including transition
metal oxide cathodes. [84, 121, 122, 123, 124, 125] In this method, the energy of
the material is decomposed into series expansion in sets atoms arrangements called
clusters. These clusters could include nearest neighbor, next nearest neighbor, three-
body interactions, etc. The number of occurrences of each of these clusters, each of
which has a learned contribution to the total energy, is counted and the energy can be
approximated. Due to symmetries in the crystal, many of these cluster interactions
are equivalent aiding in the training of the model. The occurrence of each cluster is
accounted for using occupation variables σi,x that take the value of 1 or 0 representing
if species x occupies site i in the lattice or not. The cluster interaction α then carries
a weight of Jα. In the case of the NMC energy model for, an Ising like collinear
spin interaction term can also be included to account for the magnetic moments of
the transition metals. In this case, spin variables taking the value of ±1 represent
spin up or down, and a spin interaction term, Kxy, represents either ferromagnetic or
antiferromagnetic interaction, depending on the sign, between an atom of species x
and an atom of species y. The final model is then

∆Ef =
N∑
i,x

hxσi,x+
∑
〈i,j〉,x,y

Jxy2 σi,xσj,y+
∑

〈i,j,k〉,x,y,z

Jxyz3 σi,xσj,yσk,z+· · ·+
∑
〈i,j〉,x,y

Kxy
~Si,x·~Sj,y

(4.1)
As only the positions of the transition metals are changing, we choose to treat

the oxygen and lithium as a constant background and work on an idealized triangle
lattice that the transition metals occupy. A visualization of the idealized lattice used
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and an enumeration of the unique cluster configurations can be seen in Fig 4.4. We
choose to train the energy model not on the absolute energy of an NMC material
LiNi1–x –yMnx Coy O2, but on the energy difference of the NMC phase mixture with
respect to the pure component end members.

∆Ef = ELiNi1−x−yMnx Coy O2 − xELiNiO2 − yELiMnO2 − (1− x− y)ELiCoO2 (4.2)

The DFT predictions of energy differences should be more accurate due to the
correlated error. Predicting the absolute energy would include the addition of a E0

mathematical bias term to account for the background energy of the lithium and
oxygen lattice that is constant in all of the NMC compositions. The scale of the
energy differences ∆Ef and therefore the learned J and K coefficients are on the
order of 0.1 eV while the E0 term would be on the order of 100 eV leading to a model
that is hugely numerically unstable. Additionally, since we ultimately care about
energy differences to determine favorability of one phase over the other, the errors
of the prediction from cluster expansion of absolute energy of two materials to be
compared could be compounded to provide a worse final prediction.

It should also be noted that the inclusion of every single cluster interaction would
lead to an overdetermined system due to mathematical constraints derived from the
formula for composition and lattice symmetries. A set of schemes exist for choosing
the complete basis set of cluster interactions to remove linear dependencies. The
scheme here is chosen in an attempt to maximize the physical interpretability of the
cluster expansion model. From the formula LiNi1–x –yMnx Coy O2 once the occupancy
of two of the species is known, the third species occupation term is fixed, introducing
the first linear dependence. Next, the triangular lattice has a fixed number of cluster
interactions of each type. For example, there are only 6 total nearest neighbors for
each atom, thus the number of nearest-neighbor interactions between Co and another
Co can be written in terms of the number of Co on the lattice and the number of
Co-Mn and Co-Ni interactions.

NCo =
N∑
i

ni,Co, NCo,X =
N∑
〈i,j〉

ni,Co,j,X (4.3)

NCo,Co = 3NCo −
NCo,Mn +NCo,Ni

2
(4.4)

We, therefore, choose a convention that removes these linear dependencies by
rewriting all the homogeneous n-body interactions in the cluster expansion in terms
of occupation terms and heterogeneous n-body interactions as demonstrated above.
While this may differ from other conventions of cluster expansion, this choice of model
provides a more direct understanding of the relative favorability of interaction when
mixing species.
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(a) In plane cluster interactions from a top view

(b) Out of plane cluster interactions show from side view

Figure 4.4: A cluster interactions considered up to 4 body within a cutoff of 6 Å.
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4.1.1 Training Set

To train the cluster expansion model a data set of 118 DFT calculations is used with
various compositions, cell shapes that generate the same lattice, and cell sizes up
to 120 atoms per cell. The structures were generated using a custom-written code
[126] by randomly iterating through composition space and checking the uniqueness
of cluster interactions for all clusters shown in Fig. 4.4. While this technique may
wrongly classify two structures that are not truly equivalent as the same, it will
guarantee each new structure tested is unique compared to all other structures in the
data set. The lattice constants of layered NMC vary slightly based on composition so
a lattice optimization was performed for each structure. First, the c-direction lattice

constant was strained to an x =
c

c0

= 0.9, 0.95, 1, 1.05, and 1.1. The resulting binding

curve was then fit to an equation of state [127] and the minimum energy c-lattice
constant is found. This is repeated for the a=b lattice constant. The internal atomic
coordinates are then relaxed to a max force of 0.03eV/ Å. The final resulting fully
relaxed energy is then used to train the model.

4.1.2 Model Selection

One of the main advantages of training and using an energetic model as simplistic as
cluster expansion is that only a relatively small DFT training set is needed. This is
in contrast to the conventional wisdom of the computer science and machine learning
community where large data sets are used to allow for splitting into training and
testing data sets to aid in the transferability of the model. We, therefore, need ways
to understand the effect of the cluster expansions complexity and number of terms on
the balance between the bias and variance of the model. We must make the model as
true to the underlying DFT data as possible (low bias) but not overly expressive so
as to overfit and not generalize (low variance). A series of model selection techniques
applicable in particular to small data set model selection are used here.

The most common validation technique used in cluster expansion is leave one out
cross-validation. For a data set of N points, the cluster expansion model is trained
on N-1 points and the error is computed on the left-out data point. This is repeated
for all of the data points and the root mean squared of all of these errors is reported.

Another way to select a model is to weight the model on both the ability to
reproduce the training data and explicitly penalize the model complexity through the
number of parameters. This was first done by Hirotugu Akaike in 1974 in what is
known by the Akaike Information Criterion[128]

AIC = 2k − 2 ln L̂ (4.5)

Here L̂ is the maximum likelihood estimator for the errors and k is the number
of parameters in the model. If we assume the residual errors in the model, δE =
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EDFT −ECU are independent and identically distributed random variables each with
a Gaussian distribution, the likelihood function is then given by

L =
1

σ
√

2π
e−

1
2

∑N
i (δEi−µ)2

(4.6)

The maximum likelihood estimator for the mean, µ, and variance, σ2, can be
found from taking the derivative of this likelihood function with respect to µ and σ
and found to be given by

µ =

∑
δEi
N

(4.7)

σ2 =

∑
(δEi − µ)2

N
(4.8)

Now when the log of this maximum estimator is taken, a simple for emerges due
to cancellation and ignoring constant terms.

ln L̂ = −N
2

ln(2π)− N

2
ln(σ2)− 1

2σ2

N∑
i

(δEi − µ)2 ∼ −N
2

ln(σ2) (4.9)

We have ignored the first term as it is only dependent on the number of training
points, N , and is constant for all models trained. In the second the sum and σ2 can
cancel out to also give a constant term that is ignored. What is left is the log of a
sum of squares like term. For linear regression models, like cluster expansion, the
AIC and leave one out cross-validation will asymptotically choose the same model
as the number of training points increases [129]. In our case, however, we have far
from infinite training points and for small data sets, the AIC has a known tendency
to favor overly complex models and a corrected AIC is suggested [130]

AICc = AIC +
2(k + 1)(k + 2)

N − k − 2
(4.10)

A third and final weighting of model complexity is the Bayesian Information Cri-
terion (BIC). In the formulation of this, it is assumed that within the set of models
exists a true model and that the BIC will pick the true model with probability 1 as
the number of data points tends to infinity [131].

BIC = ln (N)k − 2 ln L̂ (4.11)

Every combination of cluster interactions was tested including all the testing of all
2-body spin interaction. The magnetic moment on the Co atoms converged to a small
magnitude and therefore models that both include and do not include Co spin are
also test. The results of each of these 4 model selection techniques, seen in Fig 4.5, all
chose the same 42 parameter model with next-nearest-neighbor spin, not including
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Figure 4.5: Results for the four model selection techniques, (a) leave one out cross
validation root mean squared error (RMSE), (b) the Akaike information criterion
(AIC), (c) the the corrected Akaike information criterion (AICc), and (d) the Bayesian
information critereon (BIC). [Reprinted from Ref [132], Copyright IOP Publishing
2020]

Co spin, 4 body interaction, and out-of-plane next nearest neighbor interaction. This
model gave a leave on out root mean squared error (RMSE) of 0.023/eV per formula
unit (5.8 meV/atom).

4.1.3 Prediction of Transition Metal Ordering

From our final selected model out of all possible cluster expansion models, we can then
predict the ordering of the transition metal cations in the lattice. The layered NMC
phase space is largely accepted as a solid solution for most compositions, except high
Mn which is unstable and will form spinel. This range is approximately above 40%
Mn content at zero Ni content and approximately above 50% Mn content at zero Co
content [133]. Both computational and experimental studies have shown, however,
that there is ordering due to a negative mixing enthalpy of the transition metal
cations. Therefore we attempt to understand the ordered solution NMC space and
what intermediate phases exist. To do this, Metropolis Monte Carlo simulations we
performed in order to calculate the change in Gibbs energy given by G = U−TS+PV .
We ignore the PV terms since the volume changes are very small between end members
and the mixed states. At every Monte Carlo step, a random swap of transition metals
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or spin was chosen and the energy of the new and old states are then compared. The
probability of accepting a swap is then given by

P1→2 = min[1, e
−∆E
kBT ] (4.12)

The swap is accepted if this probability is greater than a random number between
zero and one. For the ordered phases, the configurational entropy of cation orderings
is ignored. The spin configurational entropy is assumed to be fully disordered as the
simulation is performed well above the transition temperature for magnetic ordering
in these materials [134]. To test this assumption, thermodynamic integration of the
isochoric heat capacity was performed. From the fluctuation-dissipation theorem, the
heat capacity can be computed as

〈H2〉 − 〈H〉2 = kBT
2CV (4.13)

and from this, the entropy is given by

S =

∫ T

0

CV dT
′

T ′
(4.14)

The prediction of entropy from this thermodynamic integration was within 10%
of theoretical full spin entropy given by

S = NkB[xNi + xMn] ln(2) (4.15)

Each Monte Carlo simulation started with a simulated annealing procedure to
improve the convergence of the ordering. Starting from 1500K, the temperature was
lowered by 150K until it reached 0K. Each temperature was run for 100 steps per
lattice site. Then the temperature was raised to 298K, equilibrated for 100 steps per
lattice site and a final sampling period of 100 steps per lattice site was performed. To
simulate the possibly of a disordered phase that could be entropically stabilized at
high temperatures, random swaps were always accepted and the energy was averaged
over 5000 steps. The Gibbs energy per formula unit was then computed using the
full configurational and spin entropy

G = 〈H〉 − kBT ([xNi + xMn] ln(2)− xNi lnxNi − xMn lnxMn − xCo lnxCo) (4.16)

This procedure for the ordered and disordered phases was repeated for every com-
position in the fixed lattice size. Multiple lattice sizes were tested ranging from 5x5
to 10x10 to sample a range of orderings and compositions and a comparison of the
energies for the ordered and disordered phases is seen in Fig. 4.6. The material
is predicted to be disordered for nearly all compositions at 1700K, supporting the
experimental ability to synthesize arbitrary compositions and quench to room tem-
perature, locking in the disordered cations in the transition metal layer. At room
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Figure 4.6: The prediction of energy as a function of composition for a one-
dimensional slice of the total phase space. The ordered phases are given as blue
dots and the disordered phases as a pink line. The large energy difference between
the ordered and disordered phases demonstrates a large tendency for ordering. The
multiple blue dots at a given composition are the energies of the ordered phases with
different supercell sizes that were sampled. Reproduced from Ref [132], with the
permission of IOP Publishing.
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Figure 4.7: exp shown in red x from Ref. [135] disordered phases shown in dark red
and ordered phases shown in blue. Computational data taken from Ref [132]. The
high-Mn region determined to be unstable in the layered structure is blocked out.

temperature, the majority of the compositions are ordered however, as seen in Fig.
4.7. The predicted ordered phases, however, different from the common experimen-
tally used compositions. Some well known experimental phases such as NMC6222
and NMC442 for example do not appear as predicted order phases but are near com-
positions that are predicted. This could suggest that these phases, which have nice
proportions in synthesis, are used because they are close to the real stable phase and
have convenient proportions for synthesis. On the other hand, given the error in DFT
calculations, how confident are we that it is the experiment that is slightly off and not
the prediction? In particular, NMC111 does not appear as a predicted order stable
phase, but has been directly synthesized and measured to have at least local ordering
[119].

To understand the sensitivity of the prediction on the exchange-correlation poten-
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Figure 4.8: The prediction of ordered and disordered phases and the associated con-
fidence value (c-value) are shown in blue and dark red respectively. Again high-Mn
region is blocked out and the experimental phases from Ref. [135] are shown. [Re-
produced from Ref [132], with the permission of IOP Publishing Copyright 2020]
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tial approximation, we again utilized the BEEF-vdW ensemble of models. The model
was fit for each of the 2000 functionals tested and the Monte Carlo simulations were
repeated for both the ordered and disordered phases. For each functional, the convex
hull was predicted. We employ a modified c-value for the prediction confidence of a
phase being on the hull by counting the number of times each composition is predicted
to occur and divide by the number of total hulls. The prediction of ordered phases
and the region of disorder is now accompanied by a prediction confidence plotted in
Fig 4.8. We can say very confidently that the majority of the phases are in ordered at
room temperature as was predicted for the single functional. Not only do we recover
the prediction of NMC11, but we also see a clustering of high confidence predictions
for phases near but not exactly on the experimentally used phases, providing evidence
for the possibility that the experimentally known phases are near but not perfectly
on the most stable intermediate compositional phases. Some notable phases that are
local peaks in the prediction confidence are NMC432 (c-value = 0.40) near the exper-
imentally used phase NMC532, NMC22-3-2 (c-value=0.20) near the experimentally
used NMC811 phase, and NMC 17-6-4 (c-value=0.16) near the experimentally used
phase NMC622. The nominally low c-value of these phases is likely due to phases of
the very similar compositions predicted as stable. If the confidence that some phase
within a composition circle was computed, the prediction confidence would likely be
much high as all of the prediction probability in that region would be counted.

Our final results suggest that given the complexity of the ternary phases search
versus binary phase search were cluster expansion has been successful, and the small
energy difference between two phases of very close composition, the prediction of
stable orderings cannot be done with high confidence. These energy differences are
too small for the uncertainty within DFT with respect to GGA functional choice
and are worsened by the introduction of model uncertainty when training the cluster
expansion and statistical noise from the Monte Carlo simulations.

We can, however, look at the type of ordering that is predicted in these materials
by looking at the radial distribution functions (rdf) of the transition metals, which
is the normalized occurrence of transition metals of the same species as a function
of their distance. We plot the rdf for NMC111 and NMC811 using a supercell size
of 18x18x12 and 20x20x12 formula units respectively in Fig. 4.9. When the rdf
of each of the transition metals is compared to that of the all transition metal rdf,
we can understand the tendency for mixing. In NMC111 seen in Fig. 4.9(a), there
is a decrease in the prominence of like same species nearest-neighbor interactions
(∼2.8 Å), demonstrating that to first order, the transition metals will mix. For both
materials, we see a tendency for next nearest neighbor separation of Mn atoms (∼5.6
Å). In NMC811 seen in Fig. 4.9(b), we see that the Co-Co nearest neighbor interaction
occurs at a higher rate than if the materials were disordered. The Ni atoms, on the
other hand, appear to order similar to that of a disordered material suggesting that
at such a high composition of Ni, the Ni atoms exist as a background for Co and Mn
to mix within. In both cases, the ordering appears to vanish at larger distances of
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Figure 4.9: Radial Distribution Functions (rdf) for (a) NMC111 and (b) NMC811.
For reference, the rdf for the all transition metals, which would represent a disordered
phase in the supercells used are shown in (c) and (d). The comparision shows local
ordering with less long ordering beyond 10 Å.

approximately 10 Å.

So far, we have limited ourselves to studying the fully lithiated NMC phases. To
understand the ordering in the corresponding delithiated phase, Ni1–x –yMnx Coy O2,
this method was repeated. Using 72 DFT data points as training, the same model
was fit and all phases were found to have a positive but small enthalpy of mixing. We
assume that the stable orderings in the material are kinetically stabilized especially
if the material is not cycled to a fully delithiated state. We, therefore, can assume
that the ∆Ef ≈ 0 and energy of the fully delithiated NMC phase is the same as the
energy of the mixture of the pure phases.
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4.1.4 Prediction of Average Voltage

An immediate prediction we can get from the cluster expansion model is the average
voltage for any phase of NMC. The average voltage is given from the change in Gibbs
free energy of the intercalation reaction

V =
−∆Gf

e
(4.17)

where the change in Gibbs energy of the reaction is

∆G = GLiNMC −GNMC −GLi (4.18)

Since we have predicted energy difference and assume the energy of the delithiated
state is the same as the energy of a mixture of the pure compounds, we can modify
Eq. 4.18 to include the experimental average voltages for each of the 3 pure materials
to improve the accuracy of the prediction seen in Fig. 4.10.

V =
−∆GLiNMC

F
+ xVNi + yVMn + zVCo (4.19)

From this analysis, we are still left with a series of questions. We find that the
average voltage is largely constant over the NMC range suggesting that there is little
to no trade-off in this metric when decreasing Co content and increasing Ni content.
But the average voltage does not entirely describe the operational voltage of the
cathode. It is desirable to have a flat voltage curve as that provides a constant
discharge potential over the majority of the battery’s capacity. However, a battery
could have the same average voltage with a voltage profile that is much less constant.
A prediction of the Li-vacancy ordering and energy at every state of Li content is
therefore needed to compute the operational open-circuit voltage (OCV). This would
require either a cluster expansion in the Li lattice for every NMC of interest or a
very complex cluster expansion that can simultaneously account for transition metal
ordering and Li-vacancy ordering. Unfortunately, both would require significantly
more DFT data as training, and while possible, the amount of data required could
be unfeasible.

Additionally, we find that at the fully lithiated state there is a strong tendency for
ordering. At no lithiation, on the other hand, there is positive mixing enthalpy which
could be partially responsible for the structural rearrangement seen at high states of
charge. We want to understand the lithium content (and corresponding cell potential)
at which the mixing becomes energetically unfavorable and leads to instability, and
therefore what materials might handle higher states of charge.

Finally, the vibrational properties and the contribution to the Gibbs energy of
these materials has been ignored. How much would these predictions change if the
vibrational energy was included? The Debye model was shown to work well for
LiCoO2, but repeating for an extensive number of NMC phases would be expensive
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Figure 4.10: Predicted average voltage over all compositions of NMC. [Reproduced
from Ref [132], with the permission of IOP Publishing, Copyright 2019]]
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with DFT and impossible with cluster expansion, given that lack of atomic position
dependence. All of the questions require a more capable model that is just as accurate
or more that Cluster expansion but can account for the position of all atoms in an
intelligent way.

4.2 Atom Centered Symmetry Functions

In this section, we utilize the atom centered symmetry functions suggested by Behler
and Parrinello fed to an artificial neural network (BPNN) described in Chapter 2.2.1.
As mentioned previously, these functions map the chemical environments of each
atom to a single value that is invariant to rotations and translations of the material,
as well as permutations of the atom labeling. The exact choice of optimal values for
the hyper-parameters of these symmetries functions is in general unknown and picked
by hand. To mediate the art of hyper-parameter selection, Bayesian optimization is
employed for a fixed model complexity of two G2 functions describing two-body inter-
action (Eq. 2.22) and two G4 functions describing three-body interactions (Eq. 2.23).
For each unique functional form, there will an input node to the neural network for
every possible two-body interaction for G2 and every possible three-body interaction
for G4, thus for the model complexity chosen, there will be 40 input nodes to each
neural network to be trained. This model complexity was chosen to match the model
complexity of the cluster expansion used previously and provides a good trade-off of
computational efficiency with high accuracy as we will see later.

Not only does this machine learning potential provide improved accuracy, but it
also provides increased versatility. The direct treatment of all species in the system
allows for the prediction of lithium ordering beyond the transition metal ordering
already discussed. The explicit position dependence of the symmetry functions and
ultimate the predicted energy allows for the prediction of binding curves, equilibrium
lattice constants, and forces And the generality of the potential could allow for an effi-
cient and accurate prediction of structural transitions as a function of lithium content
as we will explore later. These structural predictions are available at speeds thousands
of times faster than DFT and with an implementation much easier than constructing
a cluster expansion for each structural phase. We will utilize this improved function-
ality to reproduce experimental results of lattice contraction and demonstrate a fast
way to predict the open circuit voltage for an arbitrary NMC composition, something
that has previously only been done on a composition to composition basis due to
computational costs and with less accuracy than the results presented here.

To accomplish these tasks, we use all available data from the generation of the
cluster expansion data set including the lattice constant optimization and the relax-
ation steps. This includes the fully lithiated LiNiMnCoO2 in the O3 structure as
well as the fully delithiated NiMnCoO2 in the O1 structure. A collection of struc-
tures in the O3 phase with partial lithium content 0 < z < 1 was also added. These
new structures were generated in the same way as previously discussed where the
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Figure 4.11: Dragonfly optimization. Reproduced from Ref [136], with the permission
of AIP Publishing, Copyright 2019]

uniqueness of the structure was determined by the cluster interactions up to 6 Å. For
the lithium vacancy structures, the interactions of Li were also added to the cluster
interactions including transition metal-lithium interactions. Additionally, just as be-
fore, the lattice constants were optimized and the final atomic positions relaxed. All
possible data from this process was kept. The data set of 12,962 points was then
broken into a train, test, and validation set with an 80%, 10%, 10% split.

4.2.1 Hyperparameter Selection

The functional form of the atom centered symmetry functions described in Chapter
2 leaves a set of hyperparameters to be tuned for the best description of the system.
One way to do this would be by way of guess and check, selecting a variety of guesses
for the values, and comparing the errors of the predictions. Since we have chosen to
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fix the model complexity, picking the model with the lowest RMSE is the same as
using the Akaike information criterion that was previously employed. In this case,
however, we have a continuous space of model parameters and cannot exhaustively
search the whole space. A naive approach such a grid search would be expensive
to sample a grid small enough to ensure optimum values. Instead, use the Bayesian
optimization approach implemented in the Dragonfly package [137]. This approach
begins by randomly sampling the phase space to begin to build a set of models for the
value to be optimized as a function of the hyperparameters to search. It then utilizes
a collection of acquisition functions that determine the next value of the function to
evaluate. The Dragonfly implementation is unique in its combination of a collection of
acquisition functions that employ various exploration versus exploitation tendencies.
These acquisition functions include Gaussian process upper confidence bound (GP-
UCB) [138, 139], Thompson sampling [140], expected improvement [141], and top-two
expected improvement [142].

We optimized the hyper-parameters of the four unique functional forms of the
symmetry functions used here. The resulting BPNN was then trained on the energy
only of the training set to a stopping criterion of 1 meV/atom. The target function to
optimize was then the energy RMS prediction accuracy of the trained BPNN on the
test set. The results of this optimization are shown in Fig. 4.11 and give a root mean
square error (RMSE) of 3.81 meV/atom on the test set. As the stopping criterion for
each Bayesian optimization experiment was to train to 1 meV/atom RMSE on the
training set, the model was likely overtrained slightly and therefore our search will
pick a model with less tendency to overfit to the training data and provide the most
generalizability to the test set.

We then use the best hyper-parameters from the energy only training to then
select the force parameter that balances the training of forces and energy. This is
done by training multiple models with force parameters ranging from 0.00001 to 0.01.
For each model, the neural network was trained on the training set until it produced
the best energy RMSE on the test set. The final model was then selected to have the
lowest force RMSE from all of these models with similar energy RMSE of the energy
only model. The best force parameter tested was α = 0.001 and gave a final energy
RMSE of 2.15 meV/atom and a force RMSE of 0.142 eV/ Åon the test set seen in Fig.
4.12. To validate this hyper-parameter selection process which is likely biased to the
test data set, we predicted the force and energy of the holdout validation set giving
an RMSE 3.69 meV/atom and 0.129 eV/ Åfor energy and force respectively. We
have finally arrived at a model with better RMSE error than the leave one out cross-
validation of the cluster expansion, but that also includes Li-vacancies and atomic
positions dependencies.
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61



Figure 4.13: Debye-Grüneisen model prediction from the BPNN trained in this chap-
ter compared to the full DFT predictions from Figure 3.5 This thermodynamic predc-
tions include (a) Gibbs energy (b) entropy (c) isobaric heat capacity (d) bulk modulus
(e) volume and (f) volumetric thermal expansion coefficient for LiCoO2.

4.2.2 Thermodynamic Properties

To test the accuracy of the machine learning potential trained, we feed the energy ver-
sus volume predictions to a Debye-Grüneisen model in the same procedure discussed
in Chapter 3 for the case of LiCoO2. The same vibrational and elastic properties of
Gibbs energy, entropy, bulk modulus, and thermal expansion were again predicted
in the range of 0 to 900K. The comparison of the results versus the previous full
DFT results is seen in Figure 4.13. Comparing to the DFT calculations over various
functionals, we see that the BPNN does not deviate any more than any full DFT
prediction deviates from the prediction of others. That is the added error of the
BPNN in producing the DFT on which it was trained is not larger than the inherent
uncertainty of the DFT prediction itself and for most properties is hard to visually
pick out as it overlaps with all other predictions from DFT. We even see fair agree-
ment of the BPNN in the prediction of the thermal expansion coefficient, which was
previously discussed to have the largest tail and therefore the most sensitivity in the
accuracy of the input energy predictions.

We next attempt to push to limits of the machine learning potential in an attempt
to recreate the phonon spectrum in the harmonic approximation for LiCoO2. Within
the harmonic approximation, the phonons are assumed to be non-interacting plane
waves that are eigenvectors, e, of the dynamical matrix, D(q), with wavevector q.
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ω2(q)e((q)) = D(q)e(q) (4.20)

The dynamical matrix is defined in terms of the harmonic force constants deter-
mined by the second derivative of the energy with respect to the position of atom i
in the α direction and atom j in the β direction.

φi,jα,β =
∂2E

∂uαi u
β
j

(4.21)

The dynamical matrix is then the mass reduced Fourier transform of these force
constants, summing over all unit cell n.

Di,j
α,β =

1√
MiMj

∑
n

φi,jα,βe−iq·rn (4.22)

The force coefficients are computed using finite difference as implemented in
phonopy [143] using the energy predicted from the BPNN calculator. This showed
improved results versus using the forces predicted analytically from the BPNN for
one of the derivatives in the calculation of the force constants. The predicted spec-
trum, shown in Fig. 4.14, shows rather unrealistic looking dispersion curves as the
prediction required accurate computation of the second derivative of energy. The
neural network on the other hand was only trained on the first derivative of energy
and energy itself leading to a large error in the force constants. This is in contrast
to the results of the Debye model which only requires smooth binding curves and
therefore gives much better results.

The poor recreation of the phonon spectrum is likely due to two main factors.
Firstly, given a perfect calculator, the occurrence of imaginary frequencies would
indicate that the material structure is not dynamically stable. Therefore, the machine
learning potential may incorrectly believe that the structure would be more stable if it
were to deviate from the experimentally seen O3 structure. The addition of DFT data
with LiCoO2 in some other metastable structures may aid in the calculator learning
the absolute stability of the O3 structure.

The second possible source of error is due to another deficiency in the dataset. The
calculation of the force constants requires accurate prediction of the energy change
due to moving a single atom small distances away from equilibrium while keeping the
positions of the other atoms fixed. Not only does the absolute energy of this prediction
have to be accurate, but the curvature of the resulting energy curve must be correct.
Thus if the data set includes only structures that are very close to equilibrium, these
slight atomic movements could fall out of the region of highly accurate predictions.
In fact, a previous study using the performing finite-difference on the energy instead
of forces to find the force coefficients found that to reach convergence on the resulting
force coefficients, the input DFT had to be converged to a level of 10−10 eV/atom
[61], orders of magnitude more precise that the input data used here and the accuracy
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Figure 4.14: Computed phonon spectrum for LiCoO2 using the BPNN calculator.
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Figure 4.15: Predicted open circuit voltages for a series of NMC com-
pounds.[Reproduced from Ref [136], with the permission of AIP Publishing, Copyright
2019]

.

of the BPNN model. Thus to improve the predictions in this aspect, the addition of
DFT data from some sample finite-difference phonon calculations for a collection of
NMC phases could be included.

In summary, we see that the prediction of phonons requires a level accuracy and
interpolation in the phase space far beyond what the current BPNN model is capable
of. This is in contrast to using the Debye model which can be reproduced not only
more quickly but with a level of accuracy effectively at the level of the underlying
DFT data.
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4.2.3 Open Circuit Voltage

The most important quantity of a battery cathode is the open-circuit voltage at every
point in the full capacity of the electrode. This determines the total energy of the
battery which is equal to the area under the voltage-capacity curve. The shape of the
curve also determines how desirable the material is as a cathode. While a material
may provide a high potential at high states of charge, what is more important in real
applications is a constant, flat potential.

To measure the open-circuit voltage of a cell experimentally, it is first charged
fully to a set cutoff voltage. The cell is usually cycled a few times to get an estimate
of the total capacity of the cell. For the high fidelity experiment, the cell is then
discharged at a fixed current which is conventionally expressed in terms of a C-rate.
This C-rate provides a normalized measure of the current draw with respect to the
total capacity of the cell. The C-rate is the current of the discharge represented as
the fraction of the current rate in a one hour discharge of the battery. Therefore
a discharge rate of 1C, will discharge the battery in one hour. If the battery is
discharged in 10 hours, then it is only using 1/10 of the current that is used for a
one hour discharge and therefore has a rate of C/10. As this discharge represents a
non-equilibrium process, the experimental rate should be very low and high fidelity
open circuit voltage curves are commonly run over a multiple-day discharge. During
this constant rate discharge, the potential of the cell is constantly measured and
plotted with respect to the total amount of charge passed (the current multiplied by
time elapsed represented as mAh). As the total capacity passed in the experiment is
dependent on the amount of active electrode material, the capacity is divided by the
mass of the discharged active material and represented as gravimetric capacity density
(mAh/g). The experiment is finished when the bottom cutoff voltage is reached and
all of the capacity is used.

As this experiment can require days to complete for a single run, we provide a fast
computational alternative for the prediction of the open-circuit voltage curve. To find
the open-circuit voltage we employ Grand Canonical Monte Carlo simulations where
the chemical potential of Li rather than the number of Li atoms in the system is
fixed. Therefore, we can insert and remove lithium atoms depending on the following
acceptance criteria s given by [144]

Pinsert = min

[
1,

V

Λ3(N + 1)
exp(−β[E2 − E1 − µLi])

]
,

Premove = min

[
1,
NΛ3

V
exp(−β[E2 − E1 + µLi])

]
,

where Λ is the thermal de Broglie wavelength

Λ =
h√

2πmkBT
, (4.23)
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N is the number of lithium already in the material, and V is the volume accessible

to the lithium given by[145] V = Vcell − N
4

3
πr3

Li. Here we use the van der Waals

radius of lithium rLi = 182pm.[146] After every trial of addition or removal, a set of
canonical Monte Carlo steps are performed equal to the number of total possible Li
sites in the lattice to aid in finding the best possible arrangements of lithium ions.

This Grand Canonical Monte Carlo can be used in two ways. The first is to
simulate the discharge of a battery. In this case, the chemical potential is set to that
of lithium in standard crystalline fcc state equal to the Gibbs energy per atom. For
the prediction of the Li free energy, especially when compared to the free energy of
lithium comparing compounds, it has been previously demonstrated that referencing
to a lithium-containing material with known formation energy can improve accuracy
as the error in DFT formation energy are correlated [62]. For this purpose we use LiCl
with a measured formation energy of ∆Hexp

f = −4.231eV [147]. We then compute
the energy of Cl2 and LiCl and find the energy of Li from

ELi = ELiCL −
1

2
ECl2 −∆Hexp

f (4.24)

In this simulation, the lithium will continue to enter into the lattice until all of
the spots are filled and the lattice can no longer be filled. This method is particularly
useful when the final amount of lithium is not known as Li can be added and the
positions relaxed until the chemical potential of Li in the cathode matches that of
elemental lithium and no new moves additions of Li are accepted. For computational
ease, although we know the total number of Lithium sites, we use this method to
quickly simulated the voltage curve for a large range of NMC compositions. This is
done by saving the composition and the energy after the end of the canonical Monte
Carlo steps. From this collection of compositions and energies, a convex hull can then
be constructed and the voltage can be calculated as

V = −
(GLix2MO2 −GLix1MO2 − (x2 − x1)GLi(s))

e(x2 − x1)
(4.25)

The second method involves sweeping over the chemical potential of lithium by
varying the applied potential, U, and expressing the new chemical potential of lithium
as

µLi = µ0
Li − eU (4.26)

The Gibbs energy of the system can be found from integration as

µLi = − ∂G

∂xLi
. (4.27)

We can then find the convex hull and compute the voltage as before. The voltage
can also be computed directly with respect to the Li/Li+ reference from the applied
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potential as U(Li/Li+) = −µLi
qe

. The average number of lithium present sampled over

the simulation at that chemical potential would then represent the lithium content
that corresponds to that open-circuit cell voltage at equilibrium.

This first method was performed for a collection of NMC phases in Fig. 4.15. For
each LiNi1–x –yMnx Coy O2, composition, the transition metal orderings were deter-
mined using the cluster expansion trained previously using Canonical Monte Carlo
as explained above for a supercell that was 5x4 conventional cells large for a total of
240 atoms per supercell. Throughout the Grand Canonical simulation, the transition
metal ordering was fixed. The lattice constants of the fully lithiated material were
optimized using an equation of state fit first to the expansion in the a=b lattice di-
rections and then for the c-lattice constant. The atomic positions were then relaxed
to a max force of 0.25 eV/ Åor 10 relaxation steps. To ensure the minimum lattice
constants were found, the process of lattice optimization and internal atomic position
relaxation were performed. This second step of relaxation improved in finding a rea-
sonable low force configuration compared to always relaxing to the force cutoff and
not limiting to 10 relaxation steps for the first relaxation. All of the lithium atoms are
then removed to simulate the fully charged state. The lattice is then optimized again
twice, this time to a max force of 0.5 eV/ Å. Additionally, to simulate the lattice
contraction and expansion during cycling, the lattice constants are re-optimized after
every Grand Canonical Monte Carlo step. The internal positions are however not
relaxed as the positions of the oxygen atoms would change depending on the current
positions of the Li atoms and therefore create preferential spots for Li to sit.

We find from our result of open-circuit voltage for a collection of NMC materials
that while the prediction of average voltage did not vary largely, the voltage profiles
vary significantly more. We see the biggest slope for the NMC111 compositions with
a continuous decrease in slope as the composition moves along the xCo = xMn line
of the phase space. We also predict different nominal voltages, which is the voltage
at which the majority of the capacity delivers the most constant potentials. We find
that LiCoO2 has the highest nominal voltage as expected, with trends in decreasing
nominal voltage that cannot be quickly explained. For example, LiNiO2 is predicted
to have one of the lowest nominal voltages as do other high Ni content materials
such as NMC811 and NMC90505. But the Co content itself is not the sole descriptor
of nominal voltage. While it does increase in general with increasing Co content,
NMC622 is predicted to have a higher nominal voltage compared to NMC532 with
the same amount of Co. Additionally NMC811 and NMC90505 are predicted to
have almost the same nominal voltage and therefore no trade-off in that aspect when
changing Co content.

To benchmark these results, we compare the prediction from the trained Behler-
Parrinello neural network (BPNN) to that of experimentally measured voltage and
previous computational work. This is done for both LiCoO2 and LiNiO2 in Figure
4.16a. The previous computational works [148, 124] both employed a cluster expan-
sion for the Li-vacancy ordering much like the method described above. A set of DFT
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Figure 4.16: Prediction of open circuit voltage from the BPNN for (a) LiNiO2 com-
pared with recent experiment from Ref, [110] and previous predictions using Cluster
Expansion trained on DFT in Ref. [148], and (b) for LiCoO2 compared with exper-
iment from Ref. [149] and previous predictions using Cluster Expansion trained on
DFT in Ref. [124].
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calculations were used to train the model and Grand Canonical Monte Carlo simu-
lations were performed over a sweep of chemical potentials. We find that although
our supercells were much smaller than those used in the cluster expansion due to the
increased computational cost of our method, we see a better agreement with experi-
ment. In particular, the cluster expansion for LiCoO2 shows a constantly decreasing
voltage near xLi = 1 while both the experiment and the BPNN give a plateau. For
the case of LiNiO2, the machine learning potential is unable to correctly capture the
plateau and then drop at around xLi = 0.3. This flat portion of the curve is associ-
ated with we a structural phase transition from the O3 layered ordering to an H1-3
stacking that will be discussed in more detail later. While the energy difference in this
phase transition that also occurs in LiCoO2, was small enough to ignore, it appears
to be crucial in the case of LiNiO2. The cluster expansion employed separate models
for each of the structural phases of LiNiO2 and therefore has a slight improvement in
the qualitative shape, although does not perfectly recreate the voltage profile.

In the next section, we explore in more detail the structural phase transitions that
occur in LiCoO2 and LiNiO2 during cycling and test the ability of the machine learning
potential to extrapolate to these other structures which have not been explicitly
included in the data. We also use the machine learning potentials ability to predict
the layer separation to probe the lattice contractions that occur at high states of
charge and that have been linked to capacity fading.

4.2.4 Structural Changes During Cycling

The two materials of LiCoO2 and LiNiO2 share similar yet slightly differing structural
evolution during cycling. As mentioned previously they both share the O3 layered
structure in the fully discharged state (xLi = 1). As each material is charged and
Li is removed, they both undergo a transition to monoclinic symmetry. With no
distortions in the monoclinic cell that breaks the R3̄m symmetry, these two lattices
are equivalent as seen in Fig. 4.17. In the case of LiNiO2, the in-plane atomic
spacings in the a and b-lattice directions are distorted slightly. More specifically,
the amon lattice constant is stretched larger than its corresponding value that would
regenerate the O3 structure. In LiCoO2, the monoclinic c-lattice spacing is stretched.
The c-lattice vector for monoclinic cells is given by the vector connecting a lithium
atom to the nearest Li atom in the layer above and is therefore tilted with respect
to the O3 c-lattice constant. The stretching in the monoclinic cell then leads to
shearing in the layers and therefore would cause more mechanical stress than the
monoclinic distortions of LiNiO2. As the lithium content of these two materials is
completely depleted, they will transform into the O1 rhombohedral stacking in which
the transition metals are aligned vertically and there are no shifts in the layers. In
the intermediate at around xLi, a hybrid rhombohedral phase exists known as H1-3.
In this structure, the layers are aligned for one repeated layer and then shifted for
another to create a layering pattering that is six layers large seen in Fig. 4.17(a).
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Figure 4.17: The various structures of LiNiO2. The relation between the H1-1, O3,
and O1 layer stackings are seen in (a). The whole picture shows the H1-3 pattern,
while the dotted line shows the O1 stacking, and the solid line the O3 stacking. The
correspondence between the hexagonal and monoclinic symmetries is seen in (b).
And the phase diagram as measured from a collection of experiments as well as the
predictions in blue from the computational phase modeling studying of Chang et al.
The phase diagram for LiCo2 is largely similar. [Reprinted from Ref. [150]. Copyright
2012, with permission from Elsevier]
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Monoclinic Distortions in LiNiO2

We first look at the predictions of monoclinic distortions in LiNiO2. The origin expan-
sion of the bm lattice constant has been understood through Jahn-Teller distortions
in the transition metal octohedra. [151]. Previous first-principles calculations by
Arroyo y de Dompablo et al. fit a cluster expansion to the ration of am/bm in an
attempt to understand the evolution of the monoclinic distortion as a function of
lithium compositions. We thus use this distortion to test the ability of our machine
learning potential to extrapolate to similar yet differing structural phase spaces than
the one it was trained on. A series of Monte Carlo simulations were performed for
various Li compositions in a 144 atom supercell. At each lithium compositions the all
lattice constants were allowed to relax independently. We then plot the am/bm for our
predictions as well as the previous cluster expansion and experimental observations.
A material with no Jahn-Teller distortions representing the O3 structure would have
an am/bm =

√
3.

We see that we match the nominal degree of distortion closely with respect to the
experiment but do not capture the qualitative shape. Both the experiment and the
cluster expansion show a maximum in the distortion at around xLi = 0.5 and 0.7. In
the work by Arroyo y de Dompablo et al., this was explained by two lithium-vacancy
ordered phases that maximized the Jahn-Teller distortion.

Lattice Contractions at High States of Charge

As the concentration of Ni increases, although the capacity of the cathode increases,
there is a large capacity fade over many cycles. The capacity retention is worsened by
cycling the battery to high cutoff voltages above 4.2V. The mechanism of degradation
has been linked to the phase transition from the H1-3 phase to the O1 phase that is
accompanied by a rapid contraction in the c-lattice layer separation [152]. This lattice
contraction increases in general with increasing Ni content and therefore the capacity
fade will worsen with increased Ni. Another hypothesis is that the surface reactivity
at high states of charge and therefore low Li content. A study of NMC811 proposed
that as the lattice contraction from the structural phase transition was reversible,
as demonstrated by comparing refinement data from pristine and cycled NMC811,
that there was no cracking and this is not the explanation for capacity fade [153].
They saw improved capacity retention when modifying the electrolyte and therefore
suggested that the electrolyte degrades the highly reactive low Li surface. These
competing ideas were unified in a study over a range of high Ni cathode materials by
Ryu et al. [3]. They demonstrated that the lattice contraction was the cause of the
increased reactivity due to the creation of cracks that propagate to the surface and
create channels for the electrolyte to penetrate and react. We attempt to test the
trend of increasing Ni content on the degree of contraction at high states of charge.
to Do this, the H1-3 and O1 phases were simulated with Canonical Monte Carlo
to find the most stable Li ordering. The lattice constants were then optimized and
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Figure 4.19: Prediction of the lattice contractions that occur during the high states
of charge for three NMC compositions all with 90% Ni content.

the internal coordinated fully relaxed with the machine learning potential. A convex
hull of these phases was fit and the c-lattice separation for every point on the hull is
plotted in Fig. 4.19

From this, we predict the contractions are not strictly due to the total amount
of Ni content, but depend secondarily on the composition of Ni and Mn, with equal
proportions of the two given the smallest percent change in the c-lattice constant.
We calculate that the change in lattice constant

∆c =
cmin − cmax

cmax
(4.28)

is the largest for LiNi0.9Mn0.1O2 with ∆c = −6.7% and the smallest for LiNi0.9Mn0.05Co0.05O2

with ∆c = −4.8% which compares to an experimentally seen contraction for this same
composition of ∆c = −5.6% [3]. Overall we find that the high Ni content still domi-
nates the lattice dynamics and there is only a small secondary effect from the relative
composition of Mn and Co.
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4.3 Summary

This chapter was about developing efficient computational tools that enable the un-
derstanding of the ordering, structure, performance, and dynamics of layered transi-
tion metal cathode materials. We first attempted to understand the transition metal
ordering for the fully discharged phase LiNi1–x –yMnx Coy O2 with the use of cluster
expansion trained on DFT data. Model selection techniques were used to select the
best model that balanced accuracy with simplicity. The ordering of the transition
metals was predicted through Monte Carlo simulations using the cluster expansion
as the energy calculator. The resulting convex hull which included simulations of
disordered phases with full configurational entropy was not in complete agreement
with the experimentally studied phases. To understand the sensitivity of this predic-
tion on the errors from DFT and to provide a quantitative metric of confidence for
the predicted stable phases, an ensemble approach was used. The cluster expansion
was retrained for every DFT functional in the ensemble to create an ensemble of
models that each generate a convex hull from Monte Carlo simulation. From this, a
prediction confidence for each phase is computed as the fraction of hulls in the ensem-
ble that predicts the phase to be stable. From this final diagram for the prediction
of phases, we see clustering of probability distribution centered around peaks in the
probability that are very near experimentally seen phase. This leads to the prediction
that a phase near that composition is stable but there is relative uncertainty for the
exact composition of that phase and therefore conclusive predictions of stable phases
are difficult given the combined error of DFT, cluster expansion, and Monte Carlo
simulations.

Next, we trained a machine learning potential on the entire pseudo-quaternary
phase space where both the transition metal compositions and lithium composition
were varied within assuming the same layered structure. The hyperparameters were
optimized using a Bayesian optimization search. We then demonstrated the poten-
tial’s ability to recreate the thermodynamic properties of LiCoO2 using the Debye
model and compared it to the previous prediction from Chapter 3. We found a
negligible added error in terms of thermodynamic properties as this material is well
within the phase space the machine learning potential was trained on. This result
is in contrast to the predicted phonon spectrum within the harmonic approximation.
The calculation of the force constants through the finite-difference of the energy for
atomic displacements lead to imaginary frequencies suggesting either the model was
wrongly mischaracterizing LiCoO2 as dynamically unstable, or deficiencies in the data
which largely only samples near equilibrium. We employed an efficient method using
Monte Carlo to predict the open circuit voltage for a variety of NMC compositions.
This method was benchmarked with respect to experiment and other computational
studies showing good agreement with experiment versus the compared computational
work. We then tested the machine learning potential’s ability to describe the phase
transitions and structural dynamics during cycling. Despite not being trained on the
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monoclinic structure, the nominal value of experimental distortion was reproduced
for LiNiO2. We also predict the lattice distortion of Ni-rich phases to understand
the secondary effect of composition on the lattice contractions linked to degradation.
In all, we show the capabilities and limitations of the machine learning potential
used. The biggest limitation in the prediction of the phonon spectrum, however, can
be avoided through the use of the Debye model, and therefore the machine learning
potential provides a large step towards accurate computational predictions of these
cathode materials at speeds much faster than Density Functional Theory.
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Chapter 5

Advanced Machine Learning
Potentials

The goal of machine learning potentials is to map the identity and coordinates of
a material to some feature space that describes the local environment of each atom
in the material. This featurization can then be fed to a neural network that can be
trained ab initio energy and force data for the material as we saw in the previous
chapter. The ultimate goal is to achieve computational evaluation costs similar to
classical molecular dynamics, with accuracy approaching that of the underlying quan-
tum mechanical ab initio data on which the machine learning potential was trained.
When training these models, the underlying symmetries of the physics and of the
material must be preserved, including the permutation of atom labels, rotation, and
translation of the entire material. The first step in realizing a machine learning ar-
chitecture that obeys these symmetries is to develop featurizations of the material
that are invariant to these symmetries and transformations. Previous architectures
utilizing symmetry invariant descriptors are have shown to be too restrictive and may
lose information and mischaracterize two truly distinct atomic environments as simi-
lar. Additionally, the selection of hyperparameters within these symmetry preserving
features remain challenging to perform in a rigorous, deductive manner.

A more efficient method would entail an algorithm that can learn the featurization
of materials by having an architecture that can describe bonds, bond angles, and
long-range interactions all while preserving the known symmetries of the material
and physics. In this chapter we briefly discuss field of machine learning potentials
that are both fingerprint based and deep learning based, in which the architecture
itself learns the important features, methods.

5.1 Review of Current Methods

In the previous chapter, we explored two methods to generate a model for the en-
ergy of a material. The first was a shallow learning method in cluster expansion,
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and later atom centered symmetry functions were used. In both of these cases, the
material was first fingerprinted in some way to generate descriptors for the energy.
These descriptors were then passed to a regressor: multivariate linear regression, or a
feed-forward neural network. A series of fingerprint-based methods exist to generate
machine learning potentials. Based on the original atom centered symmetry functions
passed to neural networks used within this work [32], modified Behler-Parrinello sym-
metry functions have also been used. [154, 155] Additionally, as we saw previously,
the method to select the hyperparameters corresponding to the symmetry function
could not be performed in a systematic way. Another approach involved expanding
the neighborhood in terms of spherical harmonics and using a bispectral analysis of
the neighborhood as the descriptor [156]. These bispectral components have also been
used with linear regression in a method known as a spectral neighbor analysis poten-
tial (SNAP) [157]. The relatively large sensitivity of these spectral components on
the slight changes in the atomic environments lead to the development of the smooth
overlap of atomic potentials (SOAP) method where the density of the atoms are not
treated as delta-functions as done in SNAP, but rather smooth Gaussian functions.
[158]

All of these methods still require the tuning and selection of many hyperparam-
eters or expansion cutoffs. Some suggest well-defined methods to define unique de-
scriptors for a material. More simplistic and computationally efficient descriptors
have also been suggested. For example, the Coulomb matrix uses Coulomb like func-
tion depending on distance and nuclear charge. [159] The overlap matrix uses the
covalent radius of each element to defines a sphere around every atom in a material
and calculates the overlap of these sphere as the descriptor of the system [160] An-
other method generates a graph based on the atomic identities and bonds that are
defined by the covalent radii and Voronoi surfaces of each atom. [161]

Other state-of-the-art methods are deep neural networks that learn underlying
representation automatically but in a more complex way. These include method such
as deepMD [162] and deep tensor [163]. Some attempt to use the atomic gradient
instead of total energy in a method known as gradient-domain machine learning [164]

Lastly, a series of methods exist that utilize convolutional neural networks such as
the continuous-filter convolutional neural network of SchNet [165], and the method we
will focus on in detail in the next section, Covariant Convolutional Neural Networks
[166]

Much attention has been paid to molecular machine learning frameworks and
therefore some architectures are not able to extend to periodic systems. When mov-
ing to crystals a series of complications arrive due to periodic images, ambiguity in
conventional cell choice, and extensively.
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5.2 Covariant Convolutional Neural Networks

While we found tremendous success with the use of BPNN with our system, the
featurization is not perfect. The process of hyperparameter selection is tedious and
required either guess and check or at best many individual models to be trained and
tested with the assistance of Bayesian optimization. This fixed set of fingerprints
may work for the current data set but they may need to be re-selected and optimized
if the data set grows and changes. Particularly if the characteristic interactions in
data drastically change. Additionally, the atomic features are completely invariant
to rotations, therefore, losing information of directionality in the material. If the
prediction of the BPNN was to be extended to vector quantities such as spontaneous
polarization of tensor quantities like those related to nuclear magnetic resonance, this
rotational information would need to be considered. We present here a promising
new approach to atomic featurization that enables not only the automatic learning of
atomic features through convolutions, but also is rotationally covariant and therefore
is intelligent to rather than ignorant of vector and tensor valued physics.

Toward this goal, a class of symmetric equivariant (covariant) neural network
frameworks have been developed. In these methods, the features transform in a
mathematically well-behaved manner such that the symmetry transformation can be
applied before the featurization of the material or to the featurization itself and yield
the same results. This is to say if f(x) is a function that maps an input vector x of
coordinates and chemical identities of the atoms in a material to feature space, and
Tg is some transformation of the material, such as a translation or rotation that will
yield the same energy of the material, then the featurization is covariant if

f(Tg ∗ x) = Tg ∗ f(x) (5.1)

Convolutional Neural Networks (CNNs) for the use of image recognition perfectly
demonstrates this concept. Within CNN models, an input image is transformed to the
brightness of red, green, and blue (RGB) in each of these channels, learnable stencils
are learned that convolve a collection of pixels in order to pick out patterns in the
image and learn the ”pixel environment” of an image. These stencils themselves, are
both translationally equivariant, and given that they are learned, this architecture
automatically learns the features in a systematic way.

Unfortunately, conventional CNNs are not covariant to rotations, which is an im-
portant transformation within physics. To extend this concept, Spherical CNNs were
developed by T. Cohen and R. Kondor [167, 168]. By transforming to a generalized
Fourier Space in which the features and transformation are decomposed in terms of
the irreducible representation of the group of transformations to which the archi-
tecture is covariant, the model can more computationally efficiently evaluated [167].
Additionally, the permutation invariance of the atom labelings has been well stud-
ied in the context of learning material properties in message-passing graph networks
[169].
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Ideally, an architecture would unify translation, rotation, and permutation in-
variance in an architecture that requires little hand-picking of features. The most
promising application of the unification of these concepts to the featurization of ma-
terials, the COvaRiant MOleculaR Artificial Neural neTwork (Cormorant) [166]. This
architecture uses the spherical tensor objects of Clebsh Gordon nets. The method
of connecting and manipulating these tensor objects marries conventional CNN and
message passing graph neural network concepts with two distinct activation types.
The first is vertex activations, Fi, that resemble conventional convolutional neural
networks where each vertex in the CNN first represents a single atom and moving up
in the architecture, the vertex represents a collection of atom in a neighborhood, until
the last level a single vertex represents all atoms in the material. The second kind
of activation is an edge type, Gij. This represents a weighted graph connecting all
vertices of the CNN. The weights of this graph and therefore the value of Gij, depends
on on the values of the vertex activations and with the inclusion of ration invariance
that is absent from other graph neural networks can encode the relative positions of
atoms and angles of interactions as well as distances and chemical identities. The ro-
tational invariance is maintained by expanding the activations to spherical tensors as
Fi =

(
F 0
i , . . . , F

`max
i

)
and Gij =

(
G0
ij, . . . , G

`max
ij

)
, where F `

i ∈ C(2`+1)×n` is a spherical
tensor of order `, and n` is the multiplicity (number of channels) of the tensor.

As with Clebsh Gordon nets, the covariance is maintained with a carefully chosen
non-linearity. that is dictated by the structure and algebraic concepts of the ration
group and thus the Clebsch-Gordan product (CG product), ⊗cg, of two tensors is
chosen and defined as

[A`1 ⊗cg B`2 ]` =

`1+`2⊕
`=|`1−`2|

C`1`2` (A`1 ⊗B`2) (5.2)

where ⊗ denotes a Kronecker product, and C`1`2` are the well known Clebsch-
Gordan coefficients [167].

The activations F s
i at level s are chosen to be

F s
i =

[
F s−1
i ⊕

(
F s−1
i ⊗cg F

s−1
i

)
⊕
(∑

j

Gs
ij ⊗cg F

s−1
j

)]
·W vertex

s,` (5.3)

F s
i =

(
F s−1
i ⊗cg F

s−1
i

)
·W vertex

s,` (5.4)

where ⊕ denotes concatenation and W vertex
s,` is a linear mixing layer that acts on

the multiplicity index.
The edge activations are chosen to have the form of Gs,`

i,j = gs,`ij × Y ` (r̂ij), where
rij is the relative position vector pointing from atom i to atom j. The scalar-valued
edge terms are then given by

gs,`ij = µs (rij)
[(
gs−1,`
ij ⊕

(
F s−1
i · F s−1

j

)
⊕ ηs,` (rij)

)
·W edge

s,`

]
(5.5)
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with µs (rij) a learnable mask function, ηs,` (rij) a learnable set of radial basis

functions, and W edge
s,` a linear layer along the multiplicity index.

The architecture is iterated for s = 0, . . . , smax. Finally, at the last layer of
Cormorant, the ` = 0 component of the output, which represents a rotationally
invariant quantity is used to predict the energy of the material.

We have extended this work which has shown tremendous success in predicting
energy, polarizability, and other quantities for molecules [166] to periodic systems
for the study of crystals including the battery materials here. We have additionally,
add the capability to predict forces as from the negative of the analytical gradient of
the predicted energy with respect to the position of that atom. For molecules, the
algorithm samples over every neighbor j, of atom i. In periodic systems, however,
there exist infinitely many copies of atoms j. To address this, an interaction cutoff
distance is used and the input data is automatically augmented such that only a
single image of atom j appears within the cutoff distance of atom i. We then use the
minimum image convention to calculate the smallest distance between i and j.

Additionally, when moving the periodic systems, the extensively of the architec-
ture must be properly considered. The molecular architecture of Cormorant took
each atom feature vector as an input to a final multi-layer perceptron (MLP) to learn
the mapping from the fingerprints to the property to be predicted. As the MLP is
a nonlinear operation, this architecture with not be extensive by default. For the
crystal system, both an atom-wise MLP on the atom features as seen in the BPNN,
and linear regression with no bias term can be used and are implemented.

To test the ability of architecture to featurize materials, a subset of the data used
in Chapter 4 was used to train an architecture with 12 channels and various number
Clebsch Gordon layers testing both with an output MLP and without and output
MLP. The results of these tests are shown in Table 5.1. We see that surprisingly, the
performance of the overall model is improved when linear regression is performed on
the learning representation of the materials from the CG layers. This suggests that
the automatic pattern recognition of the convolutional neural network is learning
physically significant features on which the energy directly depends.

For the convenience of collecting data and easy transference of the final calculator,
the periodic Cormorant implementation was interfaced with the Atomic Simulation
Environment package. This package not only carries the ASE-database framework
for easy data collection and manipulation but provides a python based calculator for
the Cormorant model. As ASE is already interfaced with a large collection of density
functional theory, molecular dynamics, and machine learning codes, this improves the
ease of use and reproducibility of the code.

This implementation is just the beginning of the possibilities of this architecture.
The rotationally covariant nature of Cormorant could allow for the training of the
stress tensor and therefore ultra-accurate cell shape optimization. It could also have
applications to ferroelectrics by learning the spontaneous polarization of materials.
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Training (eV) Test (eV)
Layers MAE RMSE MAE RMSE

5 0.0028 0.0045 0.0027 0.0045
output MLP 6 0.0026 0.0034 0.0024 0.0035

7 0.0048 0.0063 0.0045 0.0067

5 0.0018 0.0031 0.0018 0.0027
no output MLP 6 0.0019 0.0033 0.0019 0.0029

7 0.0013 0.0017 0.0014 0.0021

Table 5.1: A comparison of training results on a subset of the NMC data from Chap-
ter 4. The use of an output multi-layer perceptron (MLP) was tested versus liner
regression on the learned feature of the convolutional layers.
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Chapter 6

Singlet Oxygen Evolution In
Battery Cathodes

The inadvertent generation of the highly reactive excited spin state of molecular oxy-
gen known as singlet oxygen has emerged as a clear adversary in a range of battery
technologies leading to parasitic current and electrolyte degradation. Having been
observed in Li-air, Na-air, and NMC cathodes, an understanding of the mechanism
of generation could inform electrolyte design on a broad front of battery science.
We present here an analysis of singlet oxygen production from both free super-oxide
anions in solution as well as alkali-superoxide ion pairs through charge disproportion-
ation. Using Marcus theory of kinetics we understand both a mechanism for the direct
production of the singlet excited state as well as the effect of the electrolyte properties
on the reaction rate for both triplet and singlet oxygen production. Through this, we
can rationalize the experimentally seen onset voltage for singlet oxygen production
in each of these chemistries.

The key insight we present is that the cation associated disproportionation reac-
tion commonly investigated in literature will favor triplet ground state triplet oxygen
production. The free superoxide reaction on the other hand will favor singlet produc-
tion due to the much more negative reaction energy. It is therefore the dissociation
reaction and interplay between the cation associated and free superoxide that will
determine singlet oxygen yield. We also provide insight into the decomposition of
lithium carbonate (Li2CO3), a well known residual compound from cathode synthesis.
Through DFT calculations, a mechanism similar to that seen in lithium and sodium
air batteries is understood therefore unifying the understanding of the mechanism for
a common degradation scheme.

6.1 Excited States of Molecular Oxygen

The electron structures of the various state of molecular O2 are determined by the
two electrons in the π∗ anti-bonding molecular orbital. The addition of the quantum
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spin of two electrons creates two energy levels, the singly degenerate spin state with a
total spin quantum number of 0 and the triply degenerate spin state with a total spin
quantum number of 1. In the case of the oxygen molecule, the relativistic interaction
of the spin with the molecular axis angular moment (called the spin-axis interaction)
is large compared to the difference in rotational energy levels of the molecule and
therefore obeys Hund’s rule [170]. Hund’s rule suggests that the electric configuration
with the greatest total spin will be the ground state, correctly predicting the triplet
spin state to be the true ground state of oxygen. Oxygen is therefore unique compared
to other homonuclear diatomic molecules that exist in a spin-singlet ground state.

The two lowest energy levels of oxygen are thus, 3Σ−g , which we refer to as triplet
oxygen, and (1∆g), which we refer to as singlet oxygen and is 0.98 eV higher in
energy [171]. Finally, a second spin-singlet excited state, (1Σ+

g ), exists 1.64 eV about
the ground state [171]. Due to the spin transition rules, forbidding a ∆S = 0, the
transition from singlet to the triplet ground state will rarely occur directly. This leads
to the extremely reactive nature of singlet oxygen, especially with organic molecules
such as the non-aqueous electrolytes used in all of the batteries considered in this
chapter.

The mechanistic understanding within this paper leverages insight from singlet
oxygen production in biology, which has been seen in water in the presence of su-
peroxide (O2

– ) and protons in dimethylsulfoxide (DMSO) [172], and in acetonitrile
(MeCN) with superoxide and ferrocenium cations [173], both of which happen to
be common battery electrolytes. In both of these cases, the disproportionation (also
termed dismutation) of superoxide was proposed as the method of singlet production:
O2

– + O2
– −−→ O2 + O2

2– , and later this mechanism was confirmed [174, 175]. We,
therefore, wish to understand the kinetics of this reaction both with free superoxide
and superoxide in the presence of Li+ in various electrolytes.

6.2 Marcus Theory of Electron Transfer

In the reaction of interest, we assume an outer shell electron transfer occurs between
a donor species and an acceptor species in which no bonds are created or broken. The
rate constant of this reaction, which has some energy barrier, ∆G∗D, is expressed by
the Arrhenius relation:

k = Z exp

(
−∆G∗D

kT

)
(6.1)

where the pre-exponential factor Z is the theoretical number of collisions between
two neutral species in solution and has been previously tabulated to be on the order
of 1011M−1s−1 [176]. The exact value of this pre-exponential factor is not critical
as we will be comparing rate constants of the same reactants. The reaction barrier,
∆G∗D, is determined by the intersection of the potential energy surface (PES) of the
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product and reactants. In the theory of Marcus, these potential energies are assumed
to be harmonic, leading to an expression for the reaction barrier in terms of the
standard free energy change, ∆G0, and the energy to be dissipated for an electron on
the acceptor PES at the equilibrium position of the donor PES, to the equilibrium
position of the acceptor PES. [176] This energy dissipation term is known as the
reorganization energy λ.

∆G∗D =
1

4λ

(
∆G0 + λ

)2
(6.2)

This reorganization energy consists of two terms. The first is the reorganization
of the nuclei between the reactant and the products state and depends on the vibra-
tional properties of the molecules involved. For simplicity, we neglect this term for
this analysis and assume the nuclear positions are constant for both the initial and
final states. The second component of the reorganization energy is the electrostatic
rearrangement of the electrolyte molecules in response to the change in charge of the
molecules being solvated. The electrolyte can be treated as a dielectric medium with
static relative permittivity (dielectric constant), Ds, and optical relative permittivity,
Dop, equal to the index of refraction squared. This dielectric medium is solvating two
spheres of radius a1 and a2 separated by R to give a reorganization energy upon the
transfer of ∆e charge of [176]

λ =
(∆e)2

4πε0

(
1

Dop

− 1

Ds

)(
1

2a1

+
1

2a2

− 1

r

)
(6.3)

Within this work, we assume the two reacting species have a radius of a = 2 Å,
separated by a distance of R = 3.5 Åbased on the distances seen in first-principle
calculations of LiO2 disproportionation reaction in the gas phase [178].

One of the most remarkable predictions of Marcus theory and Eq. 6.2 is the
prediction of an absolute minimum in the reaction barrier as a function of the standard
free energy change. A simple maximization of this equation shows that this maximum
occurs at ∆G0 = −λ. That means that as the reaction becomes increasingly exegetic
and the thermodynamic driving force increases, the rate of the reaction will not
continue to increase but will instead reach a peak and then begin to decrease in what
is known as the inverted region. More interestingly, this means that as the standard
free energy of reaction to the ground state becomes more negative, the reaction rate
of an excited product state could be larger than that of the ground state product
reaction rate. To further illustrate this point, the reaction rate constant, k, is plotted
in Fig. 6.1 for both the production triplet and the first singlet excited state in the
disproportion reaction of superoxide.
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Figure 6.1: The log of the predicted rate of oxygen production in the singlet (dotted
line) and triplet (solid line) spin state as a function of the change in Gibbs energy
for the triplet ground state reaction with a reorganization energy of λ = 1.3eV. Note
the inverted region in both curves, demonstrating that the rate does not continue
to increase as the thermodynamic driving force increases. Thus the rate of singlet
ultimately overtakes the rate of triplet oxygen production at a high driving force.
[Reprinted with permission from [177]. Copyright 2020 American Chemical Society]
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6.3 Solvent Effects on Reaction Energy

We focus on lithium and will later qualitatively extrapolate the result to predictions
for related to reactions involving sodium. For a thorough treatment of the problem, we
consider both the disproportionation reaction of free O2

– and LiO2 ion pair dissolved
in solution. The two reaction energies of interest are

∆G0 = G
(sol)

O2−
2

+G
(sol)
O2
− 2G

(sol)

O−
2

(6.4)

∆G0 = G
(sol)
Li2O2

+G
(sol)
O2
− 2G

(sol)
LiO2

(6.5)

For the first equation, we can use the gas phase molecular oxygen electron affinity
of 0.44 eV [179] and the previously estimated gas-phase reaction enthalpy for the
reaction O2 + 2 e– −−→ O2

2– of 4.77 eV [180]. Since within the Born approximation
of solvation, the solvation energy is proportional to the charge of the species squared,
we assume the solvation energy of O2

2– to be four times that of O2
– . For the second

equation, we use the previously computed gas phase ∆G0 for the full reaction of 0.73
eV [178]. We also estimate the solvation energy of Li2O2 to be approximately 1.37
times that of LiO2 as is supported by previous calculations of the solvation energies
of these species [181] and can be understood by the increase in charge localization of
Li2O2 increasing the solvation energy. To understand the effect of the solvent prop-
erties on these reactions, we approximate the solvation energies of both the product
and reactant species as functions of the Gutmann donor and acceptor number of the
electrolyte. It has been previously shown that the solvation energies of dissolved Li+

and O2
– are linear functions of the donor and acceptor number respectively [182] and

we, therefore, take these fits. We also approximate the solvation energy of the neutral
LiO2 and Li2O2species as a function of the sum of donor and acceptor number as seen
in Fig. 6.2(a-c).

Using these approximations, we evaluated Equations 6.4 and 6.5 as well as the
ultimate reaction rate constant for a series of electrolytes in Table 6.1. We find
that the free superoxide and cation associated superoxide reactions predict different
rate constants that support the kinetic favorabilities of the different spin state of the
oxygen produced. While the Li+ –O2

– ion pair, yields a high rate constant for triplet,
the free O2

– yields the highest rate constant for singlet.
To predict the ultimate reaction rate, ν, for each reaction, the concentration of

reactants is required. The concentration of each of the reactants is determined by
the equilibrium constant of the dissociation reaction of the superoxide with lithium
LiO2 −−→ O2

– + Li+

Keq =
[O−2 ][Li+]

[LiO2]
= exp

−∆Gdis

kT
(6.6)

The change in free energy of this reaction has been calculated previously for
four electrolytes and fit to a linear function of the combined solvation energy of
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Figure 6.2: The linear fits for (a) the solvation energy of Li+ as a function of donor
number of the solvant, (b) the solvation energy of O2

– as a function of acceptor
number of the solvent, (c) the solvation energy of LiO2 as a function of the sum of
donor and acceptor number of the solvent, and (d) The dissoctiation energy of LiO2

into Li+ and O2
– as a function of the combined solvation energies of the free ions.

All numbers are for dimethoxyethane (DME), dimethylsulfoxide (DMSO), acetonitrile
(MeCN), and dimethylacetamide (DMA) taken from Kwabi et. al. in Reference [182].
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O2
– and Li+ as shown in Fig. 6.2(d). The concentration the lithium is controlled

experimentally by the concentration of the lithium salt within the electrolyte, and is
set here to [Li+] = 0.1M. Now, from the reaction rates to produce oxygen in a spin
state s, νLiO2

s = k[LiO2]2 and νO2
−

s = k[O−2 ]2, and Eq. 6.6, we compute the predicted
fraction of singlet oxygen produce as

f1O2
=

νLiO2
1 + ν

O−
2

1

νLiO2
1 + νLiO2

3 + ν
O−

2
1 + ν

O−
2

3

(6.7)

Shown as two limiting cases for the range of reorganization energies seen in battery
electrolytes is the predicted f1O2

for dimethoxyethane (DME) with low reorganization
energy and acetonitrile (MeCN) with high reorganization energy in Fig. 6.3 From this
figure, we see that solvents with high donor and high acceptor are predicted to release
a higher proportion of singlet oxygen. There are three reasons compounding reasons
for this prediction. Firstly, a solvent that is in general highly solvating with both
a high acceptor and high donor number will favor the dissociation of LiO2 into free
ions in solution. This increase in O2

– will then drive the singlet favoring superoxide
disproportionation reaction. Next, the solvation energy of O2

2– will increase with an
increasing acceptor number of the electrolyte solvent. Thus the energy from equation
6.4 will be more negative driving the kinetics farther into the region favoring singlet
production. If the acceptor number is too low, however, the free superoxide reaction
will not occur independently of both the concentration of superoxide and the donor.
This result proposes that the acceptor number is more important than the donor
number which has been used as the sole descriptor in the studying superoxide dispro-
portionation, as even for low donor numbers, we predict an acceptor number at which
singlet oxygen will still be produced. And finally, a highly solvating electrolyte will
slow the triplet favoring cation associated reaction. Looking at eq. 6.5, the solvation
energy of two LiO2 is higher than that of the single Li2O2 produced and thus an
increase in solvation will stabilize the reactants and slow this reaction.

It should be noted that due to the simplicity of the Marcus theory of kinetics and
the assumptions for solvation energies a simple linear functions of electrolyte donor
and acceptor number, these predictions are more qualitative. Additionally, these
predictions can only comment on the relative production of singlet oxygen versus
triplet. The plots in Fig. 6.3 do not comment on the absolute production of oxygen.
In fact in high donor and acceptor number solvent, such as DMSO, the total amount of
oxygen release could be low. This analysis also ignores the effect of singlet quenching.
As superoxide is a well-known quencher of singlet oxygen [183], at high concentrations,
it would both produce and mediate the harmful effects of singlet oxygen and therefore
the amount seen would vary greatly from the theoretical predictions here. Despite the
approximations of this analysis, we rationalize many experimental findings related to
the effect of cations on superoxide disproportionation and singlet oxygen production
as well as explain the onset potentials for singlet oxygen release in batteries.
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Table 6.1: Predicted ∆G0 to form ground state O2 for the free superoxide and
cation associated superoxide reactions from Equations 6.4 and 6.5 respectively and
the corresponding rate constant in various solvants: tetraethylene glycol dimethyl
ether (TEGDME), dimethoxyethane (DME), dimethyl sulfoxide (DMSO), dimethy-
lacetamide (DMA), dimethylformamide (DMF), and acetonitrile (MeCN). The sol-
vent reorganization energy was calculated using Eq. 6.3 using a=2.0 Åand R=3.5
Åfor the radius of each reactant and separation respectively. Data reproduced in part
from Ref [177].

Solvent Reactant ∆G0 (eV) Spin State Rate Constant

TEGDME LiO2 0.10
3Σ−g
1∆g

2.1× 105

1.7× 10−8

O2
– -1.74

3Σ−g
1∆g

2.1× 109

9.1× 109

DME LiO2 0.16
3Σ−g
1∆g

2.2× 104

1.2× 10−9

O2
– -1.71

3Σ−g
1∆g

8.5× 109

4.5× 109

DMSO LiO2 0.30
3Σ−g
1∆g

2.0× 102

5.0× 10−12

O2
– -2.75

3Σ−g
1∆g

4.1× 104

6.3× 109

DMA LiO2 0.23
3Σ−g
1∆g

5.9× 102

6.6× 10−11

O2
– -2.10

3Σ−g
1∆g

2.8× 109

1.4× 1010

MeCN LiO2 0.15
3Σ−g
1∆g

4.2× 102

4.3× 10−10

O2
– -2.71

3Σ−g
1∆g

6.8× 107

2.3× 1010
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(a)

(b)

Figure 6.3: both (1∆g) and the (1Σ+
g ) spin singlet states considered. (a) λ = 1.19

eV to represent DME and (b) λ = 1.62 eV to represent MeCN. [Reprinted with
permission from [177]. Copyright 2020 American Chemical Society]
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6.4 Understanding of Experimental Observation

Experimental investigation of the cation driven disproportionation reaction of super-
oxide compared the rate of singlet production in the presence of Li+ and Na+ [184].
For Na+, they found an increase in the proportion of singlet oxygen with a decrease
in overall oxygen release compared to Li+. This is immediately explained within our
analysis as there would be more dissociation of NaO2 since Na+ is a weaker Lewis acid
than Li+. That is, it has less of a tendency to accept electrons and will form a weaker
bond with the O2

– . The fraction of singlet oxygen would, therefore, increase due to
the increase in O2

– in solution. The dominant reaction, however, would continue to
be the cation associated superoxide reaction. The rate of this for Na however would
be lower than the Li equivalent since Na2O2 is less stable than Li2O2. Another ex-
perimental work on the disproportionation of NaO2 which did not attempt to detect
singlet yields noticed that triplet oxygen was only released for low donating solvents
[185]. As was previously discussed, the high solvating properties of an electrolyte
could stabilize NaO2 and prevent disproportionation, therefore leading to less triplet
oxygen released. While these two experiments on isolated superoxide systems can
give insight, we look to understand the realization of the mechanism within battery
operation.

6.4.1 Lithium Air Batteries

Lithium-air batteries are a promising technology due to their extremely high specific
energy. This technology removes the weight of all intercalation electrodes, using pure
Li-metal as the anode, and the O2 from the air as the cathode. In the discharged
state, the weight of the battery consists only of the lithium metal, the electrolyte, and
the current collectors. The operation of the battery works on the following reaction.

2Li+O2 ⇐⇒ Li2O2 (6.8)

While an exciting concept, in practice, issues related to reversible electrodeposition
of the Li-metal anode as well as passivization of the cathode present challenge to
long term cycling. Additionally, parasite current form side reaction and electrolyte
degradation lead to poor cycling efficiency and cell death. Much of this side-current
and electrolyte decomposition has been linked to the production of singlet oxygen
[186, 187, 188] In fact, singlet has been observed during charge, discharge, and rest
of lithium-air (Li–O2) batteries. [186]

During charge, the largest rate of singlet is observed with an onset potential of
3.5V [186]. This voltage was previously believe to be due to the direction decom-
position during charge Li2O2 −−→ 2 Li+ + O2 + 2 e−. The reversible electrochemical
potential of this reaction to produce ground state O2 is 2.96 V, while as discussed
before, the singlet oxygen state is 0.98 eV above triplet. While this would imply,
the thermodynamic onset to be 3.45V, close to that seen experimentally, there is no
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mechanistic reason for the kinetic preference of singlet over the much more favorable
triplet state and a direct release is improbable. We propose that the onset is due to
the dissolution of LiO2 from the surface. LiO2* −−→ Li+ (sol) + O2

– (sol). Thus the
solvent-mediated disproportionation reaction we propose will then occur. Addition-
ally, the onset of when the LiO2 is controlled by the potential dependent termination
of the surface. Previous computational work has shown that at 3.4 V, the most sta-
ble surface becomes the O-rich3 (1-100) termination [189]. This means that as the
potential raises, the surface is stripped in a way that exposes this new oxygen-rich
surface. The LiO2 can then more easily dissolve in solution and participate in the
solution mediate reactions discussed previously.

In parallel, during dishange, less singlet oxygen is seen and even less during rest
[187]. The mechanism for discharge proceeds through two single-electron steps to
react the Lithiums one by one to adsorbed species on the surface. Li+ +e– +O2* −−→
LiO2* followed by Li+ + e– + LiO2* −−→ Li2O2. For the second step, it is well known
that a solution mediate reaction competes with the surface-mediated reaction. This
reaction is the disproportionation of two Li2O2 2 LiO2 −−→ Li2O2 + O2 Thus this
competing solution reaction, more specifically the free O2

– analog, is the reaction from
which singlet will be released. The competition with the surface-mediated reaction
then accounts for the lower amount of singlet seen.

6.4.2 Sodium Air Batteries

Another promising battery chemistry is that of sodium air. The relative abundance
of Na versus Li as well as the promise to form more stable superoxide makes this
a promising alternative to lithium-air despite its slight decrease in energy density.
Just as with lithium-air, however, singlet oxygen production and it’s corresponding
electrolyte degradation has been seen during charge, discharge and rest [190]. With a
reversible potential of 2.27V, the charge reaction proceeds through NaO2 −−→ Na+ +
O2 + e– . Again from a purely thermodynamic analysis, the singlet excited state
would have a thermodynamic onset of 3.25V. Again, however, there is no kinetic
reason for the preference of singlet during release and therefore this mechanism is
again improbable. Furthermore, singlet is seen from the start of charging and at all
charging potentials as low as 2.27V, suggesting the release of singlet is not direct. We
again propose a change in surface termination leading to the dissolution of O2

– into
solution and the proposed solution mediated process. During discharge the stable
surface is the stoichiometric 100 termination forming perfectly cubic crystal. [191]
At all reasonable charging potential the corners of the surface are decomposed first
due to a lower kinetic barrier of oxidation forming the more oxygen-rich 111 and 110
surface [191]. Just as with the lithium-air system, this leads to the dissolution of
NaO2 and followed by disproportionation. During discharge, just as with lithium, the
rate of singlet lower. And the discharge process Na+ + e– + O2* −−→ NaO2* will
again compete with solution mediated disproportionation. This leads to Na2O2 on
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the surface that is experimentally seen but was previously poorly understood from
the poor thermodynamics of Na2O2 [192, 190].

6.4.3 Nickel Rich Lithium-Ion Batteries

The clear analogies between the Li-air and Na-air batteries lead to the easily under-
standable unification of singlet production within these two systems. The reactions
and chemistry of Li-ion batteries with intercalation rather than an O2 cathode may
appear distinct at first glance. However, singlet oxygen has also been observed in Ni-
rich NMC batteries [4] and in general, electrolyte degradation has been attributed to
oxygen release [193]. This degradation of the organic would likely lead to CO2 release.
The CO2 release seen during operation, however, has complex origins. It was exper-
imentally seen that a majority of the CO2 released during the first cycle of Ni-rich
cathodes can be linked using isotopic tracing to residual Li2CO3 from the synthesis of
the NMC cathode [194]. Due to the tendency of Ni to occupy the Li site, to properly
synthesize Ni-rich cathodes, excess lithium is required [195] and this excess of lithium
leads to residual Li2CO3. The decomposition of Li2CO3 is proposed to occur through
2 Li2CO3 −−→ 4 Li+ + 4 e– + 2 CO2 + O2 with a theoretical reversible potential of 3.82
V that is confirmed experimentally. During this decomposition, however, there is a
mysterious lack of oxygen detected. Later it was experimentally measured, that the
decomposition of Li2CO3 releases predominately singlet oxygen explaining the lack
of detection of molecular oxygen. Therefore, a portion of the singlet oxygen in NMC
could be explained by the decomposition of Li2CO3. The direct release of singlet can
be ruled out similarly as before as thermodynamically the singlet would release at
4.05 V. During the experimental detection during lithium carbonate decomposition,
the release however begins at 3.82 V as expected for ground state O2. To probe the
decomposition mechanism, we performed DFT calculations to understand the steps of
decomposition. Starting from the most stable 001 surface of Li2CO3 seen in 6.4(a-b)
we performed trial removals of O2, or CO2. If the chemical removal of either of these
was not energetically favorable, instead a Li+ and corresponding e– were removed to
simulate the electrochemical oxidation under an applied potential U. The U required
to perform this removal is such that the positive change in free energy of the removal
reaction is balance by the electrostatic interaction of the released electron with the
potential U.

eU = −∆G (6.9)

The results of the decomposition, shown in Fig. 6.4(c) find that after the removal
of five Li+, two CO2 spontaneously release form the surface. What was left on the
surface, was a LiO2 · like moiety. Using a Bader charge analysis [196], the oxidation
states of the oxygen atoms were confirmed to be each -1/2 [177] suggesting that
together they form a O2

– like moiety. This LiO2 can then dissolve from the surface
and participate in the disproportionation reaction previously discussed. This reaction
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Figure 6.4: Calculated reaction pathway (c) for the decomposition of Li2CO3 surface
shown from the side (a) and from above (b). Lithium atoms are shown in purple,
oxygen in red, and carbon in gray. [Reprinted with permission from [177]. Copyright
2020 American Chemical Society]

will produce Li2O2 that will immediately precipitate to the surface. As the redox
potential of Li2O2 is well below the potential at which the Li2CO3 is decomposed,
it will immediately oxidize, leaving behind another adsorbed LiO2 · that can also
eventually participate in disproportionation. A schematic for this full decomposition
and singlet oxygen production mechanism in lithium carbonate as well as in Li-air
seen in Fig. 6.5

This mechanism explains the singlet oxygen release around 3.8V in NMC cath-
odes. There is, however, the release of singlet oxygen seen at higher potentials of
around 4.5V. The release was seen in a variety of NMC chemistries all with different
onset potentials. The onset did however always occur at near 80% state of charge
suggesting a common instability due to destabilization from the missing Li. Addi-
tionally, this onset can be induced in a purely thermal way. Cathodes were charged
to 80% state of charge and then removed from the cell. They were then placed in
an argon environment and heated leading to a detectable release of singlet oxygen.
[4] Therefore the solution mediated mechanism cannot explain this direct release of
lattice oxygen as singlet.
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Figure 6.5: Schematic for the process of singlet oxygen production in Li-air and Li-ion
batteries. Only the free, versus cation associated, superoxide disproportionation step
is shown as that this key reaction in the generation of singlet oxygen. [Reprinted with
permission from [177]. Copyright 2020 American Chemical Society]
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6.5 Summary

Within this chapter, we have presented a unified picture of the evolution of highly
reactive singlet oxygen. Using Marcus theory of kinetics for the disproportionation
reactions, we provided insight into how there is a kinetic driving force for the pro-
duction of the singlet excited state from the reaction of free superoxide. Therefore
the interplay of free superoxide interplay with cation associated superoxide controls
the proportion of singlet released. Through estimations of the solvation properties of
electrolytes as a function of donor and acceptor number based on first-principles cal-
culations, we illuminated the effect of solvent choice on singlet evolution. From this
analysis, we were able to rationalize the experimental observation of Li-air, Na-air,
and residual Li2CO3 in Ni-rich NMC. We proposed a potential-dependent reconstruc-
tion of the surface to set the onset potential for the dissolution of superoxide from the
surface to the electrolyte and therefore the onset of singlet production. This surface
reconstruction is supported by previous first-principles calculations as well as new
calculations for the decomposition of Li2CO3 presented here.
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Chapter 7

Conclusion

The main contributions of this thesis were the development and implementation of
a set of tools to increase the efficiency, speed, and accuracy of predictions of bat-
tery cathodes as well as to improve upon the understanding of uncertainty in these
predictions.

The development of prediction confidence in this thesis enhances the reliability
and interpretability of predictions from density functional theory. This was seen in
its extension to the search for transition metal ordering within the difficult ternary
NMC phase space. This prediction confidence aided in understand the difference
between the predicted stable compositions and the experimentally seen phases and
added believably to the predictions through the ability to assign a numerical measure
of confidence. This method of prediction confidence has already been adopted to
many other problems in the energy storage and conversion further demonstrating its
usefulness.

The propagation of uncertainty of the energies fed into a Debye-Grüneisen Model
treatment of lattice vibrations allowed for a thorough assessment error. We were able
to understand that for many properties, the choice of functional had fortunately little
effect on the resulting predictions. We were able to see that properties that relied on
higher derivatives of the energy have much larger sensitivity to the input error. This
understanding of uncertainty proved of use in assessing the quality of the machine
learning potential trained by demonstrating that a negligible level of model error was
introduced when extracting thermodynamic properties.

The contributions in employing machine learning represent an advancement in
the capabilities of first principles battery modeling by enabling fast optimization
that was previously limited by computational cost. This was demonstrated through
the prediction of open-circuit voltage, thermodynamic properties, and recreation of
structural changes during cycling. The use case in predicting the degree of lattice
contraction as a function of various NMC compositions further demonstrates the
utility of this machine learning potential.

Next-generation machine learning techniques were discussed and the covariant
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convolutional neural network architecture was highlighted.
We also leveraged analytical models of electron transfer kinetics to study dispro-

portionation reactions in batteries. We provide the key insight that free superoxide
rather than cation associated superoxide is responsible for the singlet production.
The effect of electrolyte properties was explored and a mechanism of potential de-
pendence surface reconstruction was proposed that can explain the onset potential
for all experimental observations of singlet oxygen in battery settings.
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Chapter 8

Outlook

8.1 Transition Metal Cathodes

The field of transition metal cathodes is increasingly moving towards higher Ni-
content. Driven by it’s increased initial capacity and the concerns around Co, much
work is being done to understand and prevent the capacity fading of these materi-
als. The most promising extension of this work from NMC is the inclusion of Al. In
layered cathodes, the addition of Al promising as it will increase the intercalation po-
tential, and increases the stability of the structure, suppressing the structural phase
transitions seen in LiNiO2 and high Ni NMC [197]. The addition of Al directly to
LiNiO2, however, comes at the cost of decreased reversible capacity. The framework
presented here, however, presents a road map for how NCA or even NMCA could be
investigated. Even more boldly, the presence of Co at all has been recently questioned
[198], yet the materials space of Ni-Mn-Al has yet to be fully explored. For even more
capacity, the used of lithium-manganese rich materials show promise. These materials
have chemical compositions that are a mixture of Li2MnO3 and the layered LiMO2.
Like the Ni-rich layered cathodes, these materials show rapid capacity fade. And as
they are Mn-rich, the additionally show an irreversible transformation to the spinel
phase. A full computational investigation of these materials is also yet to be per-
formed, presenting another great candidate material space for the methods within
this thesis.

8.2 Behler-Parrinello Neural Networks

The work here using the Behler-Parrinello scheme for atom centered symmetry func-
tions present only the beginning of its application to battery research. The full
capabilities of the current model have yet to be fully exploited. The ability to accu-
rately reproduce the results of the Debye model predictions from DFT, suggests that
a thorough high throughput investigation including the vibrational contribution to
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the Gibbs free energy could be performed with a reasonable computational cost. The
vibrational properties of even the disordered phases could be studied through the use
of special quasirandom structures [199].

A series of data deficiencies were highlighted and the model presented in this the-
sis could be improved even more with the inclusion of single atom displacements from
equilibrium, structure with monoclinic distortions, and even amorphous or structures
from high-temperature ab-initio Monte Carlo. Even further improvements would
come from the inclusion of cathode surface data. Most of the interesting electrochem-
istry happens at surfaces and interfaces between the cathode and the electrolyte. An
accurate treatment of the cathode a various state of charge and it’s explicit interaction
with the electrolyte could provide much-needed insight for electrolyte design.

And finally, while we compare much of our results to previous cluster expansion
results, we believe there is very much still a place for cluster expansion within a
robust computational workflow for battery research. The design loop for the training
and convergence cluster expansion is well understood. The addition of the machine
learning potential within this workflow, however, presents a supplementation rather
than replacement of cluster expansion. The simplicity of the linear fit of cluster
expansion means that simulations on the scale of thousands of atoms over hundreds
of thousands of Monte Carlo steps can be performed. The course grained results
could be passed to the machine learning potential to gain further understanding
of thermodynamic properties, more accurate energy, lattice constants, and surface
effects. The final predictions could either be validated with DFT and/or through
experimentation.

8.3 Beyond Fingerprint Based Learning

Despite the success of the machine learning potential used within this work, there is
much promise in the possibility of a more systematic training and hyperparameter
selection, as well as a more sophisticated fingerprinting of the material. The covariant
convolutional neural network architecture described in Chapter 5 can now predict
the energy and force of crystalline materials with orders of magnitude fewer trained
coefficients and with competitive accuracy. The extension of this architecture to the
direct prediction of vector and tensor quantities is merely a matter of time. It is clear
that machine learning architectures that are not directly fingerprint-based represent
a likely future in machine learning in materials science and are the center of many
studies.

The question of data generation and availability, however, remains an area for
vast improvement. Many other fields of machine learning operate with millions of
data points, allowing for easy bench-marking of the accuracy and transferable of
the machine learning model. In the field of materials science, the limitation in data
availability and relatively high cost of high fidelity data generation requires machine
learning models to be benchmarked to one type of performance metric, while used for
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another possibly different tasks. This is seen clearly in Chapter 4 of this thesis. The
data generated for the machine learning potential consisted of random compositions
and ordering of Li over various NMC compositions. The accuracy of the potential was
benchmarked to how well the potential could recreate the absolute energy of these
materials. The main task this potential was used for, however, was the prediction of
the open-circuit voltage. That is, the potential needed to accurately predict the en-
ergy differences between Li-vacancy ordering to find the most stable ordering at each
composition, and then the energy difference between different lithium compositions.
While this task is related to the one on which it was benchmarked, success in energy
prediction does no guaranteed success in energy differences. Two suggestions can be
made to address this. The first is to include the prediction of the task at hand (open-
circuit voltage and energy differences) into the cost function of the machine learning
training. The second would be to include data from the performance of the task at
hand. While the data included in Chapter 4 was very similar to the procedure to
generate an open-circuit voltage, this was not the case for the prediction of phonons.
In both suggestions, sample procedures for the predictions of these derivative prop-
erties are needed using calculations at the full fidelity of the underlying data. As this
is expensive, some thought needs to be put into how to specifically decide when and
how many of these sample calculations to include, and perhaps, how it can be done
within a closed loop.
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