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Abstract

My thesis focuses on developing a cosmological code based on an innovative hydro-
particle-mesh (HPM) algorithm for Efficient and Rapid (HYPER) simulations of gas
and dark matter (He et al., 2021b). HYPER can produce lightcone catalogs of dark
matter halos and full-sky tomographic maps of the lensing convergence, Sunyaev-
Zel’dovich (SZ) effect, and X-ray emission. These simulation products are useful
for testing data analysis pipelines, generating training data for machine learning,
understanding selection and systematic effects, and interpreting astrophysical and
cosmological constraints. I start my thesis by presenting our study on an analytical
model for the average cluster pressure profile, which we use to implement the HYPER
simulation. We first come up with a model for estimating hydrostatic bias in the X-
ray measurement by fitting a power-law to the relation between the “true” halo mass
and X-ray cluster mass in hydrodynamic simulations (IllustrisTNG, BAHAMAS, and
MACSIS). We apply this model to the REXCESS X-ray cluster sample and adjust the
Universal Pressure Profile (UPP) derived from scaled and stacked pressure profiles
(Arnaud et al., 2010) for the hydrostatic mass bias. Our work eventually leads to
an updated model, Debiased Pressure Profile (DPP), for the gas pressure profile of
galaxy clusters (He et al., 2021a). The second part of this thesis introduces HYPER
code in detail, which updates the HPM approach of (Gnedin & Hui, 1998) to expand
the scope of its application from the lower-density intergalactic medium (IGM) to
the higher-density intracluster medium (ICM). In order to achieve high efficiency
and high fidelity for the approximate hydrodynamic solver, the pressure term in the
gas equations of motion is calculated using robust physical models. In particular,
we use the dark matter halo model, ICM pressure profile, and IGM temperature-
density relation to model the gas physics in the IGM and ICM regime, all of which
can be systematically varied for parameter-space studies. We show that the HYPER
simulation results are in good agreement with the halo model expectations. At the
end of this part, we also envision the perspective of use cases for HYPER. I discuss the
application of HYPER simulation in SZ science in the final part of this dissertation.
We present a template for calculating the thermal and kinetic angular power spectra
using the outputs of HYPER simulations, which can be applied to the analyses for
future SZ surveys. We also show a simplified case in which this template is combined
with observation data to constrain cosmological parameters.
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Chapter 1

Introduction

The work presented in this thesis is based on one published paper and one submitted
manuscript under review. The references are as follows:

1. Yizhou He, Philip Mansfield, Markus Michael Rau, Hy Trac, and Nicholas
Battaglia. Debiased Galaxy Cluster Pressure Profiles from X-Ray Observa-
tions and Simulations. The Astrophysical Journal, 908:91, 2021 February 16.
(https://doi.org/10.3847/1538-4357/abd0ff)

This paper is reproduced in Chapter 2.

2. Yizhou He, Hy Trac, and Nickolay Y. Gnedin. A Hydro-Particle-Mesh Code
for Efficient and Rapid Simulations of the Intracluster Medium. The Astrophys-
ical Journal (submitted)

This paper is reproduced in Chapter 3.

“Two things fill the mind with ever new and increasing wonder and awe, the
oftener and the more steadily we reflect on them: the starry heavens above me and
the moral law within me.” A motto by Immanuel Kant, one of the most influential
figures in modern Western philosophy, reveals the eager of exploring the “unknown”
of the universe buried deep in human nature. The “light” radiated outwards from
stars composing proto-galaxies ionize the neutral hydrogen atoms encountered ends
the “Dark Ages” of our universe and open the Epoch of Reionization. The light shed
by stars and galaxies from the vault of heaven also evokes the scientific revolution and
turns a new page for human civilization. During the Renaissance, Nicolaus Copernicus
proposed a heliocentric model of the solar system. His work was defended by Galileo
Galilei and expanded upon by Johannes Kepler. Kepler was the first to devise a
system that correctly described the details of the motion of the planets around the
Sun. In order to explain the motions of the planets, Isaac Newton invents celestial
dynamics and his law of gravitation. People then stepped into a period of rising
prosperity of science.

1
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With the advanced development of theories for cosmological models and observa-
tion techniques, the origin and evolution of our Universe are gradually unveiled by
scientists, from the Big Bang to today and into the future. Before delving into the
scientific specifics of my research, I would like to briefly look back on the “life” of a
photon, as it travels across space and time, from just moments after the big bang to
the human observation instruments.

The light’s journey begins around 13.8 billion years ago, just seconds and minutes
after the big bang and inflation. The Universe was a hot plasma of electrons, protons,
and photons in thermal equilibrium. The light repeatedly bounces off electrons. As
a result, the mean free path of photons was very short, and light can not travel very
far.

As the Universe kept expanding adiabatically, the Universe became cool enough
for the electrons and protons to get together to form neutral atoms. This era, re-
ferred to as the Epoch of Recombination, occurred about 380,000 years after the big
bang at redshift z ' 1100. During this epoch, electrons no longer interact with the
photo, and light is free to travel. The Universe became transparent to photons, which
lead to the emission of the cosmic microwave background (CMB) from the “surface of
last-scattering”. Exquisite measurements of the CMB have been made by the Wilkin-
son Microwave Anisotropy Probe (WMAP) and Planck satellites and ground-based
telescope Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT).
The next-generation observation plan Simons Observatory (SO) is also on the agenda
now. The scientific study of CMB revolutionizes our understanding of cosmology.
It helps establish a working cosmological model and leads to unprecedented precise
determination of many of the cosmological parameters that shape our Universe.

After recombination and decoupling, the Universe became transparent and allow
the light to freely pass through the “dark ages” of the Universe before the light-
producing structures such as stars and galaxies form. As neutral baryons evolve
under the influence of gravitational attraction, initial inhomogeneities in the matter
distribution laid down by inflation get amplified, regions with above-average density
accrete matter and become denser. These regions eventually collapsed under gravity
and ignited nuclear fusion in their cores and leading to the first stars and galaxies
emitting radiation as they burn. Their energy heated the surrounding medium, once
again ionizing the hydrogen in the Universe. These areas were like tiny bubbles
of ionized gas surrounding bright energy sources at first. These bubbles grew and
eventually began to overlap, enabling ionizing radiation to travel farther and farther
through space. Reionization might have started to happen as early as z ∼ 16 and
the Universe ionized by z ∼ 7 − 9. During Reionization, the matter had become
far more spread out due to the ongoing expansion of the Universe. Despite the
neutral hydrogen atoms being reionized, the plasma was much more thin and diffuse,
light across most of the electromagnetic spectrum could travel unimpeded through
the cosmos, and the Universe remained largely transparent. Reionization gradually
ended as the Universe continued to cool and expand.
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After experiencing such a long haul introduced above, photons march to their final
stretch of the journey from the endpoint of Reionization to the human observation
instruments. During this period, photons might traverse the clusters of galaxies and
could once again get scattered by electrons in hot gas trapped in galaxy clusters, which
we refer to as the Sunyaev-Zel’dovich (SZ) effect. The SZ effect from galaxy clusters
provides the most substantial contribution to temperature anisotropies beyond the
damping tail of acoustic peaks in CMB power spectrum (Hu & Dodelson, 2002),
where lies a wealth of information about the evolution of structure in the Universe
and its origin in the early Universe. The SZ effect also offers a unique way to map
the large-scale structure of the Universe as traced by massive clusters of galaxies.
SZ surveys like Plank, ACT and SPT have found hundreds to thousands of galaxy
clusters. Direct measurement of the evolution of the number density of galaxy clusters
by these deep, large-scale SZ surveys provides a unique and powerful observational
tool for cosmology (e.g. Planck Collaboration et al., 2014a, 2016b). An interesting
statistic, the SZ angular power spectrum, is often used to interpret cosmological
constraints (e.g. Lueker et al., 2010; Fowler et al., 2010; Dunkley et al., 2011; Planck
Collaboration et al., 2016a; Bolliet et al., 2018) because of the strong dependence
of its amplitude on σ8, a cosmological parameter describing the normalization of
matter perturbations. The SZ effect has also been combined with other observational
diagnostics of galaxy clusters such as X-ray, weak and strong lensing, and optical
measurements to determine cosmological parameters. One example is that cluster
distances could be determined from the joint analysis of the SZ effect and X-ray
data, which enables interesting constraints on the Hubble constant (e.g. Reese et al.,
2000; Reese, 2004; Bonamente et al., 2006). SZ and X-ray measurements also allow
tight constraints on cluster gas mass fractions which can be used to estimate matter
density of the Universe Ωm. The analysis of various combinations of SZ effect, X-
ray, and lensing observations enable robust constraints on the desired properties of
clusters, which provides critical insights to our understanding of clusters and critical
tests of current models for the formation and evolution of galaxy clusters.

As more advanced cosmological observations are being prepared and ready for
use, precise modeling of the observed structure is required to study the evolution and
history of the large-scale structure in great detail and accurate constraints on the
cosmological parameters. In order to model these observed structures realistically, we
need to resort to numerical simulations capable of resolving and following correctly
the highly non-linear dynamics.

1.1 Physics of the Sunyaev-Zel’dovich effect

The SZ effect is a small spectral distortion of the CMB spectrum caused by the scat-
tering of the CMB photons off the distribution of high energy electrons, was first
proposed in 1970 (Sunyaev & Zeldovich, 1970a). The theoretical foundation of the
SZ effect was laid in discussions of a more general problem of Comptonization of a
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radiation field by passage through ionized gases, where inverse-Compton scattering
is an essential ingredient in the discussion. In this section, I briefly introduce the
fundamental physics behind the SZ effect and the distortion of the CMB spectrum
caused by the hot thermal distribution of electrons provided by the ICM of galaxy
clusters and the Doppler effect coming from scattering with electrons having fast pe-
culiar motions. More details are provided in reviews of the SZ effect (e.g. Birkinshaw,
1999; Carlstrom et al., 2002).

To explain the fundamental physics behind the SZ effect, I start with a case of sin-
gle photon-electron scattering when a low-energy photon is scattered by a high-energy
electron (ε � mec

2), which is found appropriate for the scatterings that happened
in galaxy clusters. The energy and direction of motion of both the photon and the
electron are altered, and the scattering preferentially boosts the energy of the photon.
This is also the reason for the scattering that causes the SZ effect is usually referred
to as inverse-Compton scattering. In this thermal scattering limit, the interaction
cross-section for a CMB photon with an electron can be described using the classical
Thomson cross-section formula. For the collision process in the electron rest frame,
the probability of scattering with angle θ is

p(θ)dθ = p(µ)dµ = (2γ4(1− βµ)3)−1dµ, (1.1)

where the electron velocity is βc, γ = 1/
√

1− β2, and µ = cosθ. The probability of
a scattering to angle θ′ is

φ(µ′;µ)dµ′ =
3

8

(
1 + µ2µ′

2
+

1

2
(1− µ2)(1− µ′2)

)
dµ′, (1.2)

where µ′ = cosθ′, and the change of photon direction causes a frequency shift of the
scattered photon from ν to ν ′ and

ν ′ = ν(1 + βµ′)(1− βµ)−1, (1.3)

according to Chandrasekhar (1950). It’s conventional to express the resulting scat-
tering in terms of the logarithmic frequency shift s = log(ν ′/ν). Then the probability
that a single scattering of the photon causes a frequency shift s from an electron with
speed βc is expressed as

P (s; β) =

∫
p(µ)

dµ′

ds
φ(µ′;µ)dµ

=
3

16γ4β

∫ µ2

µ1

(1 + βµ′)

(
1 + µ2µ′

2
+

1

2
(1− µ2)(1− µ′2)

)
(1− βµ)−3dµ,

(1.4)

where µ′ can be expressed in terms of µ and s that

µ′ =
es(1− βµ)− 1

β
, (1.5)
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and since µ, µ′ are cosine values of real angles, we have

µ1 = −1 if s ≤ 0; else
1− e−s(1 + β)

β
,

µ2 = 1 if s ≥ 0; else
1− e−s(1− β)

β
,

(1.6)

and because µ1 ≤ µ2, we can derive the minimum value of β capable of causing a
frequency shift s that

βmin =
e|s| − 1

e|s| + 1
. (1.7)

Then, we could calculate the distribution of photon frequency shifts caused by scat-
tering by a population of electrons using P (s; β) by averaging over the electron β
distribution. For photons that have been scattered only once, the probability distri-
bution of s, P1(s), is given by

P1(s) =

∫ 1

βmin

pe(β)P (s; β)dβ, (1.8)

where pe(β) is the electron distribution.
More generally, a photon entering the electron distribution may be scattered

multiple times by encounters with the electrons. If the optical depth to scatter-
ing through the electron cloud is τe, then the probability that it is scattered once is
τee
−τe , and in general the probability of N scatterings follows a Poisson distribution

pN = τNe e
−τe/N !, and the full frequency redistribution function from scattering is

P (s) = e−τe(δ(s) + τeP1(s) +
1

2!
τ 2

e P2(s) + . . . ). (1.9)

The redistribution function Pn(s) after n scatterings is given by a repeated convolution

P2(s) =

∫
P1(s1)P1(s− s1)ds1

P3(s) =

∫
P1(s1)P1(s2)P1(s− s1 − s2)ds1ds2

. . .

(1.10)

Finally, we are equipped with all the tools to calculate the form of the scattered
spectrum of the CMB. If every photon in the incident,

I0(ν) =
2hν3

c2(ehν/kBTCMB − 1)
, (1.11)

then the resulting spectrum is given by

I(ν)

ν
=

∫ ∞
0

P (ν, ν0)
I0(ν0)

ν0

dν0, (1.12)
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where P (ν, ν0) is the probability that a scattering occurs from frequency ν0 to ν and
I(ν)/hν is the spectrum in photon number terms. Since P (ν, ν0) = P (s)/ν, the
change in the radiation spectrum at frequency ν is then

∆I(ν) ≡ I(ν)− I0(ν)

=
2h

c2

∫
P (s)(

ν3
0

ehν0/kBTCMB − 1
− ν3

ehν/kBTCMB − 1
)ds.

(1.13)

Eq. (1.13) tells us an important fact that intensity change caused by the Sunyaev-
Zel’dovich effect only depends on intrinsic properties of the scattering medium P (s),
which means it is redshift independent and is, therefore, a remarkably robust indicator
of gas properties at a wide range of redshifts.

1.1.1 Thermal Sunyaev-Zel’dovich effect

This section focuses on the thermal SZ (tSZ) effect caused by the hot thermal dis-
tribution of electrons provided by the ICM of galaxy clusters. CMB photons passing
through the center of a massive cluster have only ∼ 1% probability of interacting
with an energetic ICM electron. The resulting inverse Compton scattering preferen-
tially boosts the energy of the CMB photon by roughly kBTe/mec

2 causing a small
(∼ 0.1− 1mK) distortion in the CMB spectrum.

When the electron scattering medium is optically thin and in the non-relativistic
limit, the scattering process is substantially simplified and could be well described
by the Kompaneets equation (Kompaneets, 1957), which describes the change in
intensity in Eq. (1.13) by a diffusion process. We could then calculate the CMB
spectrum distortion caused by thermal SZ effect by replacing the P (s) in Eq. (1.13)
with the Kompaneets scattering kernel PK(s) (Sunyaev & Zeldovich, 1980a; Bernstein
& Dodelson, 1990), which is in form of Gaussian

PK(s) =
1√
4πy

exp(−(s+ 3y)2

4y
), (1.14)

where y is known as the the Comptonization parameter, expressed as

y =

∫
neσT

kBTe

mec2
dl, (1.15)

ne is the electron number density, σT is the Thomson cross-section, kB is the Boltz-
mann constant, Te is the electron temperature, mec

2 is the electron rest mass energy,
and the integration is along the line of sight.

By adopting the PK(s) in Eq. (1.13), we could then derive the solution for the
tSZ spectral distortion of the CMB expressed as a intensity change at dimensionless
frequency x = hν/kBTCMB expressed as

∆I(ν) = g(x)I0y, (1.16)
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where I0 = 2(kBTCMB)3/(hc)2 and the frequency dependence is given by

g(x) =
x4ex

(ex − 1)2
(xcoth(x/2)− 4). (1.17)

The tSZ effect appears as a decrease in the intensity of the CMB at frequencies
. 218GHz and as an increase at higher frequencies. The temperature change is related
to ∆I by the derivative of the black body radiation with respect to temperature
|dBν/dT |, and is given by

∆TtSZ

TCMB

= f(x)y, f(x) = xcoth(x/2)− 4. (1.18)

In very massive halos, the gas temperature could be around kBTe ∼ 10keV, where
electron velocities are becoming relativistic and small corrections are required for
accurate interpretation of the SZ effect. There has been considerable theoretical
work to include relativistic corrections to the SZ effect (e.g. Wright, 1979; Sunyaev
& Zeldovich, 1980a,b; Rephaeli, 1995; Itoh et al., 1998; Dolgov et al., 2001). All of
these derivations matches well as kBTe ≤ 15keV, appropriate for galaxy clusters as the
cluster mass is expect to scale with the temperature Te ∝ M2/3. For a very massive
cluster with kBTe ∼ 10keV, the relativistic corrections to the SZ effect are expected
to be of order only a few percent in the Rayleigh-Jeans (RJ) portion of the spectrum.

An interesting fact in the SZ survey is that while the CMB suffers cosmological
dimming with redshift, the ratio of the magnitude of the SZ effect to the CMB does
not. The integrated SZ effect signal provides a relatively clean measure of the total
thermal energy of the cluster, integrating over the solid angle of the cluster provides
a sum of all of the electrons in the cluster weighted by the temperature that

YSZ =

∫
∆TdΩ ∝ Ne〈Te〉

D2
A

∝ Mgas〈Te〉
D2

A

, (1.19)

where Ne is the total number of electrons in the clusters, 〈Te〉 is the mean electron
temperature, DA is the angular diameter distance, and Mgas is the total gas mass of
the cluster. The integrated SZ effect flux is simply the temperature-weighted mass of
the cluster divided by D2

A. Notice that angular diameter distance is fairly flat at high
redshift. Also, a cluster of a given mass will be denser and therefore hotter at high
redshift because the universal matter density increases as (1 + z)3 and the signal will
be significant enough to be detected. Therefore, one expects an SZ survey to detect
all clusters above some mass threshold with little dependence on redshift.

1.1.2 Kinetic Sunyaev-Zel’dovich effect

When the scattering medium causing the tSZ effect is moving relative to the Hubble
flow, there will be an additional spectral distortion due to the Doppler effect of the
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cluster bulk velocity on the scattered CMB photons we refer to as the kinetic SZ effect
(kSZ). In the reference frame of the scattering gas, the microwave background radia-
tion appears to be anisotropic, and the effect of the inverse-Compton scattering turns
to slightly re-isotropize the radiation. The radiation field is no longer isotropic when
back in the rest frame of the observer but shows a structure towards the scattering
medium with amplitude proportional to τevlos/c, where vlos is the component of pe-
culiar velocity of the scattering medium along the line of sight (Sunyaev & Zeldovich,
1972; Phillips, 1995).

In the non-relativistic limit, the spectral signature of the kSZ effect is a pure
thermal distortion of magnitude

∆TkSZ

TCMB

= −
∫
σT

c
nevlosdl, (1.20)

when choose the convention where vlos > 0 if the electrons are moving away from the
observer.

Relativistic perturbations also apply to the kSZ effect due to the Lorentz boost
to the electrons provided by the bulk velocity (Sunyaev & Zeldovich, 1980a), and
this perturbation is usually very small. For a very massive cluster (∼ 10keV) moving
at high speed (∼ 1000km/s), the correction is only of order a few percent to the
non-relativistic term.

In conclusion, the tSZ effect depends on random motions of the scattering elec-
trons. It is a small spectral distortion of the CMB of order ∼ 0.1 − 1mK and inde-
pendent of redshift. It has a unique spectral signature with a decrease in the CMB
intensity at frequencies . 218GHz and an increase at higher frequencies. The inte-
grated SZ effect flux is nearly independent of redshift, which implies the capability
of SZ surveys for detecting all clusters above some mass threshold. The kinetic ef-
fect depends on the systematic motion of scattering media. Although the tSZ effect
generally dwarfs the kSZ effect, the distinct frequency signature of the tSZ effect can
be used to separate these two components. The kSZ effect also provides a method
for measuring one component of the peculiar velocity of an object at a large distance
and could place strong constraints on the dynamics of structure formation.

1.2 Numerical Techniques for Cosmological Simu-

lations

Over the last decades, numerical simulations of the Universe on cosmological scales
have been an important tool for advancing our understanding of the evolution and
history of the large-scale structure in the Universe. As modern astronomical surveys
provide enormous amounts of observational data confronting our theories of structure
formation, cosmological simulations have proven very useful in developing data re-
duction and analysis pipelines, understanding systematics and selection effects, and
interpreting cosmological and astrophysical constraints.
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1.2.1 Dark Matter Simulation

Dark matter dominates the Universe over most of the cosmic time of interest for
structure formation. The most favorable model, cold dark matter (CDM) model,
describes the evolution of non-interacting dark matter particles with the collisionless
Boltzmann equation:

df

dt
=
∂f

∂t
+
∂f

∂~r
~v − ∂f

∂~v

∂Φ

∂~r
, (1.21)

coupled to Poisson’s equation:

∇2Φ = 4πG

∫
fd3~v, (1.22)

where f = f(~r,~v, t) is the phase-space distribution function of dark matter, which are
solved in an expanding background Universe dictated by the Friedmann equations.
This set of equations represents a high-dimensional problem and is usually solved
by sampling the phase-space density by a finite number N of tracer particles. The
equations of motion of dark matter particles in comoving coordinates is expressed as

d~x

dt
=
~v

a
(1.23)

and
d~v

dt
+ ~v

ȧ

a
= −∇Φ

a
, (1.24)

where ~v is the proper peculiar velocity and a is the Universe scale factor.
Different approaches are employed to solve the motion of the tracer particles

directly or to solve the Poisson equation. The most direct way to solve the integral
form of Poisson’s equation Φ(~r) = −G

∫
ρ(~r′)/|~r− ~r′|d3~r′ is to sum the contributions

of all the individual particles to the gravitational potential directly. However, this
method has the disadvantage of being computational expensive with complexity ∝
N2. Tree approach (Barnes & Hut, 1986) was proposed to accelerate the direct
summation through approximating the contributions to the gravitational potential
from distant particles by the lowest order terms in a multipole expansion of the mass
distribution at a coarse level of the tree and successfully reduce the computational cost
to ∝ N logN . Fast multipole method (e.g. Greengard & Rokhlin, 1987; Dehnen, 2000;
Zhu, 2017), which calculate the force between two tree nodes rather than between
individual particles and nodes, further improve the computing time to ∝ N .

Mesh-based methods were also employed to solve the differential form of Poisson’s
equation in Fourier space, k2Φ̃(~k) = −4πGρ̃(~k), through fast Fourier transform-based
methods, leading to the so-called particle-mesh method (Hockney & Eastwood, 1981).
The complexity of the force calculation via a fast Fourier transform is only ∝ N logN ,
where N is the number of mesh cells. For a more accurate force solver for the inho-
mogeneous systems, adaptive-mesh-refinement schemes (Kravtsov et al., 1997) was

9



proposed combining the particle-mesh method with a set of nested grids of increasing
resolution adapted according to the particle density.

In order to achieve high efficiency and higher fidelity, most modern simulations now
implement hybrid solvers combining direct summation-based techniques for short-
range forces and Fourier transform-based methods for long-range forces. Typical
hybrid schemes are the particle-particle plus particle-mesh method (Efstathiou et al.,
1985) and the tree-particle-mesh method (Bode & Ostriker, 2003) where the direct
summation for short-range interactions is approximated by a tree-like method.

1.2.2 Hydrodynamical Simulation

Though dark matter and dark energy dominate the energy budget of the Universe,
the visible components of large structures (e.g. galaxies, galaxy clusters) are consist
of baryons. Hydrodynamical simulations, which also simulate the baryons mainly
comprised of gas, mostly hydrogen and helium, are crucial to making predictions for
the visible Universe. Astrophysical gases in cosmological simulations can typically be
described as an ideal fluid. Therefore, the evolution of the fluid is usually described by
solving the set of hydrodynamic equations: the Euler equation, continuity equation,
and the first law of thermodynamics, expressed in the form of Lagrangian formulation
as

d~v

dt
= −∇P

ρ
−∇Φ, (1.25)

dρ

dt
= −ρ∇ · ~v, (1.26)

and
du

dt
= −P

ρ
∇ · ~v. (1.27)

Equation of state assuming ideal gas P = (γ − 1)ρu relates the pressure P to the
internal energy u and closes the hydrodynamic equations above.

Numerical techniques of hydrodynamical simulations can be classified into two
main types:

1. Lagrangian Methods: assumes an observer that follows an individual fluid par-
cel, with its own properties like density, as it moves through space and time,
Smoothed Particle Hydrodynamics (SPH) is one of the most widely used mesh-
free Lagrangian techniques (e.g. Gingold & Monaghan, 1977; Springel, 2010a;
Price, 2012) for approximating the continuum dynamics of fluids through the
use of sampling particles, following the equations of motion derived from the
hydrodynamical equations.

2. Eulerian Methods: focuses on specific locations in space through which the
fluid flows as time passes, modern implementations of Eulerian methods employ
parabolic interpolation, known as the piecewise parabolic method (e.g. Colella
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& Woodward, 1984; Woodward, 1986). Adaptive-mesh-refinement schemes (e.g.
Klein et al., 1994; Bryan & Norman, 1995) which reduce the mesh size based
on some refinement criterion were also applied to cosmological simulations of
large dynamic range.

In addition to traditional methods for hydrodynamical simulations, a new type
of scheme, referred to as the arbitrary Lagrangian-Eulerian methods (e.g. Springel,
2010b; Hopkins, 2015), recently has been realized through a Voronoi tessellation of
a set of discrete mesh-generating points where the mesh continuously deforms and
changes its topology as the points are allowed to move freely. This new type of simu-
lation has been successfully applied to astrophysical and galaxy formation problems.

In order to make predictions for the large structures what observational efforts
to detect in the Universe, hydrodynamical equations also have to be complemented
by various astrophysical processes like gas cooling, star formation, feedback from
active galactic nuclei, magnetic fields, and other physics. In practice, hydrodynamical
simulations implement most of these processes employing effective, so-called sub-
resolution models, which are necessary due to the limited numerical resolution of
simulations. A more detailed review of baryonic physics implemented in simulation
is given by Vogelsberger et al. (2020).

1.2.3 Rapid Simulation Methods

Nowadays, the effective volumes of modern surveys keep growing, and achieving the
science goals of these surveys requires numerical simulations of exceptionally large
volumes - both for correctly capturing the statistics of the rare objects and for com-
puting the covariance matrices between the observables. Simulations in spatial vol-
umes comparable to the surveys in size are generally too expensive to make many
large-scale mock observations and explore both astrophysical and cosmological pa-
rameter space. In the face of increasing demand for multiple realizations of simulated
mock catalogs for comparison with the large-scale structure observations, fast approx-
imate approaches for dark matter simulations based on semi-numerical methods and
lagrangian perturbation theory have been developed.

A fast algorithm, PTHALOS (Scoccimarro & Sheth, 2002), has been used to gen-
erate realistic non-Gaussian galaxy distributions. PTHALOS generate the large-scale
dark matter distribution using second-order lagrangian perturbation theory (2LPT)
to determine the masses and positions of virialized halo centers and then distribute
particles around the halo centers with realistic density profiles. It shows the capability
of generating realistic galaxy distributions in a very small fraction of the time it takes
for methods that require N-body simulations of gravitational clustering. PINOC-
CHIO (Monaco et al., 2002) adopt a new idea for identifying dark matter halos in
a given numerical realization of the linear density field in a hierarchical universe. In
PINOCCHIO, mass elements are assumed to have collapsed after undergoing orbit
crossing. Such points are then grouped into halos using an algorithm that mimics
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the hierarchical growth of structure through accretion and mergers. The Zel’dovich
approximation is used to compute the Eulerian positions of halos at a given time.
Some points that have undergone orbit crossing are also assigned to the network of
filaments and sheets that connects the halos. It has been shown that the predictions
of the PINOCCHIO code are very accurate when compared with the results of large
N-body simulations but only requires negligible computer time as compared with
performing a numerical N-body simulation.

Recently, a new N-body method, COLA (Tassev et al., 2013), was proposed for
solving Large Scale Structure (LSS) in a frame that is comoving with observers follow-
ing trajectories calculated in LPT. The analytic calculation from 2LPT governs the
large-scale displacement, and the PM is only used to solve for the “residual” small-
scale displacement that affects the formation of haloes. COLA has been used for
cheaply generating large ensembles of accurate mock halo catalogs required to study
galaxy clustering and weak lensing, which are essential for performing detailed error
analysis for ongoing and future surveys of LSS. FastPM (Feng et al., 2016a), a new
implementation of an approximate PM N-body solver as the up-and-comer modifies
the standard kick and drift factors such that it agrees with Zel’dovich solution on
large scales and guarantee zero error for large scales even for very few time steps.

Though we have seen significant progress in various approaches aiming to speed up
dark matter only N-body simulations, there is still a notable lack of fast approximate
hydro simulation methods. Previously, Gnedin & Hui (1998) used the particle-mesh
(PM) solver for dark matter dynamics and allowed for the additional gas pressure
force to approximate hydrodynamics. Their hydro-particle-mesh (HPM) algorithm
substantially relies on the existence of a tight temperate-density relation in the in-
tergalactic medium (IGM) and has been successfully used to model the high-redshift
Lyman alpha forest with moderate precision (McDonald et al., 2002).

However, the tight correlation between the gas density and temperature in the low-
density IGM breaks down in denser regions. Yet, it is possible to extend the range
of validity of HPM-like techniques further. My thesis mainly focuses on developing
a fast approximate method for modeling hydrodynamics in the high-density ICM,
which can be implemented through building a mapping relation based on empirical
or simulated ICM pressure profiles (e.g. Arnaud et al., 2010; Battaglia et al., 2012; He
et al., 2021a) between the gas temperature or pressure and some properties of cosmic
gas that can be captured by, say, a simple PM solver. The gas physics can then be
modeled very efficiently in both the IGM and the ICM regime, which together fill
most of the spatial volume in a fast hydro simulation.
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1.3 Thesis Outline

Our discussions of developing the cosmological HYPER code based on an innovative
HPM algorithm and using HYPER to study cosmology with the SZ effect consist of
three parts. In Chapter 2, we construct a model for the estimation of hydrostatic mass
bias by combining results from X-ray observations with cosmological simulations. We
also come up with an analytical model for the average cluster pressure profile by
applying our finds for hydrostatic mass bias to the REXCESS X-ray cluster sample.
In Chapter 3, I introduce our implementation of the HYPER code in detail. I describe
how we achieve high efficiency and high fidelity for the approximate hydrodynamics
solver using the dark matter halo model, ICM pressure profile, and IGM temperature-
density relation. I show that the HYPER simulation results are in good agreement
with the halo model expectations for the density, temperature, and pressure radial
profiles. Simulated galaxy cluster scaling relations for Sunyaev-Zel’dovich and X-ray
observables are also found in good agreement with mean predictions, with scatter
comparable to that found in hydrodynamic simulations. I emphasize one crucial
strength of HYPER: it allows for systematically varying the ICM and IGM models to
study different baryonic physics and effects. I also bring out some perspectives of the
use cases for HYPER simulation and discuss the future code development extensions
in this chapter. I discuss the application of HYPER in SZ science in Chapter 4. A
template is proposed for calculating the thermal and kinetic SZ angular power spectra
using the outputs of HYPER simulations. I also show that this template can be used
for constraining cosmological parameters in the analyses of future SZ surveys. In
Chapter 5, I discuss some general conclusions and avenues that remain for future
work.
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Chapter 2

Debiased Galaxy Cluster Pressure
Profiles from X-ray Observations
and Simulations

2.1 Introduction

Galaxy clusters are formed by the gravitational collapse of large overdensities and
are accompanied by a complex interplay of gravity and baryonic processes. They are
ideal probes to study dark energy and the evolution of large scale structure (e.g. Voit,
2005; Allen et al., 2011), and their abundance is sensitive to cosmology, meaning that
accurate measurements of the cluster mass function and its evolution can provide
meaningful cosmological constraints and further our understanding of cosmology in
upcoming cluster surveys.

Galaxy clusters have deep gravitational potential wells, and the potential energy
of material falling into clusters leads to shock-heating of the gas. This hot, ionized
gas emits X-rays through bremsstrahlung radiation, making clusters of galaxies the
most common, bright, extended extragalactic X-ray sources. It also makes X-ray
observation one of the most attractive methods to detect and characterize galaxy
clusters. Due to tight X-ray observable-mass relations, the X-ray temperature TX, gas
mass Mg, YX = TXMg and X-ray luminosity LX inferred from X-ray spectroscopy, have
been used as robust mass proxies of galaxy clusters (e.g. Arnaud et al., 2007). The
ACT and the Planck collaborations (e.g. Hasselfield et al., 2013; Planck Collaboration
et al., 2016c; Hilton et al., 2018) have been used stacked pressure profiles of the
Intracluster Medium (ICM) in galaxy clusters (Arnaud et al., 2010; see also, Nagai
et al., 2007a), modeled on X-ray measurements, to interpret survey data of the SZ
effect (Sunyaev & Zeldovich, 1970b), represented as a distortion in the spectrum of
the cosmic microwave background (CMB) due to relic CMB photons inverse Compton
scattering off energetic electrons in the galaxy clusters.

When estimating cluster masses from X-ray measurements of density and temper-
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ature profiles of the ICM, clusters are generally assumed to be in a dynamical state
of hydrostatic equilibrium. However, in the hierarchical structure formation model,
galaxy clusters are dynamically active systems and are not in exact hydrostatic equi-
librium. Both the latest observations (e.g. Bautz et al., 2009; George et al., 2009;
Reiprich et al., 2009; Hoshino et al., 2010; Kawaharada et al., 2010; Urban et al.,
2011; Simionescu et al., 2011; Hitomi Collaboration et al., 2018; Siegel et al., 2018)
and numerical simulations (e.g. Evrard, 1990; Rasia et al., 2004; Lau et al., 2009;
Battaglia et al., 2012; Nelson et al., 2012; Lau et al., 2013; Nelson et al., 2014; Gupta
et al., 2017) find non-thermal gas processes like virialized bulk motions and turbulent
gas flows, generated primarily by mergers and accretion during cluster formation, lead
to non-trivial pressure support especially in the outskirt of galaxy clusters. Analyt-
ical models have also been developed to describe the non-thermal pressure support
in intracluster gas and found that it was in excellent agreement with high resolution
cosmological hydrodynamic simulations (e.g. Shi & Komatsu, 2014; Shi et al., 2015).

Recent work suggests that neglecting the existence of non-thermal pressure in
X-ray observations causes systematic underestimation of the hydrostatic masses of
galaxy clusters and is a major source of bias in the inferred hydrostatic masses.
This is referred to as hydrostatic mass bias. Studies have shown that correcting
the absence of non-thermal pressure in hydrostatic equilibrium will help mitigate the
tension between cluster mass estimates from weak lensing surveys and from X-ray
surface brightness and SZ observations (e.g. Shi et al., 2016).

Hydrostatic mass bias has often been assumed to be a constant, parameterized
in terms of b = 1 −MX/SZ/MWL where MX/SZ refers to hydrostatic masses obtained
from X-ray or SZ observation andMWL refers to results of weak-lensing measurements.
Observations giva a range of biases b = 5 − 30% (e.g. von der Linden et al., 2014;
Hoekstra et al., 2015; Simet et al., 2015; Simet et al., 2016; Battaglia et al., 2016;
Smith et al., 2016; Penna-Lima et al., 2017; Sereno et al., 2017; Medezinski et al.,
2018). Numerical simulations (e.g. Nagai et al., 2007b; Battaglia et al., 2012; Kay
et al., 2012; Rasia et al., 2012; Le Brun et al., 2014) also point to typical mass biases
around b=0.20. That hydrostatic bias could depend on cluster mass was not proposed
until recently (e.g. Rasia et al., 2012): Henson et al. (2017) find that mass bias climbs
from 0.20 to 0.40 as cluster masses increase from M500c = 1014 to 1015h−1M�. Barnes
et al. (2020) introduced the Mock-X analysis framework, a multi-wavelength tool
that generates synthetic images from cosmological simulations and derives directly
observable and reconstructed properties from these images via observational methods,
and applied this framework to explore hydrostatic mass bias for the IllustrisTNG (e.g.
Pillepich et al., 2018a; Nelson et al., 2018; Naiman et al., 2018; Marinacci et al., 2018;
Springel et al., 2018), BAHAMAS (McCarthy et al., 2017a), and MACSIS (Barnes
et al., 2017) simulations. They find hydrostatic bias recovered from synthetic X-
ray images which shows a significantly stronger mass dependence, increasing from
b = 0.0 at 1014M� to b = 0.2 at 2× 1015M�. Both studies claim that the key factor
causing this mass dependence is the increase in dense, cold gas in cluster outskirts as
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mass increases. The quadratic dependence of X-ray emission on density causes this
cool gas to lower mass estimates for the most massive clusters. Carefully treating
hydrostatic mass bias in the recalibration of the ICM pressure models derived from
X-ray observation is crucial for better interpreting the angular power spectrum of the
thermal SZ signal, reducing systematic uncertainties in cosmological parameters.

This chapter is organized as follows. In Section 3.3, we begin by introducing
an analytical approach for correcting hydrostatic mass bias in clusters based on the
“true” simulated mass and the X-ray mass of clusters drawn from the IllustrisTNG,
BAHAMAS and MACSIS simulations. We then discuss how to apply this model to
the best-fit Generalized Navarro–Frenk–White (GNFW; Zhao, 1996) ICM pressure
profiles measured in X-ray surveys. In Section 3.4, we apply the correction discussed in
Section 3.3 to the X-ray measurements of cluster masses and the GNFW fit correction
to the scaled pressure profiles of the REXCESS cluster sample (Böhringer et al., 2007).
We use the corrected characteristic pressures and masses of the REXCESS sample
to modify the Universal Pressure Profile (UPP), which gives us a new model for
cluster pressures: the Debiased Pressure Profile (DPP). We use the DPP to study
the power-law relation between the integrated Compton parameter and cluster mass.
We also calculate the thermal Sunyaev-Zeldovich (tSZ) angular power spectrum with
the DPP, and compare with Planck, ACT, and SPT measurements of the tSZ power
spectrum. In Section 2.4, we conclude our findings for the mass bias of clusters in the
REXCESS sample, the self-similarity of both the new pressure model and the Y −M
relation, and the change in amplitude of the tSZ angular power spectrum we get based
on the new pressure model. In the end, we also bring up the remaining questions and
possible directions for future work. We adopt the following cosmological parameters:
Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.045, h = 0.7, ns = 0.96, σ8 = 0.8 in this chapter.

2.2 Methods

2.2.1 MTrue
500c v.s. MX−ray

500c of Mock-X

For a spherically symmetrical cluster, hydrostatic equilibrium occurs when the the
force of gravity exerted on gas in the cluster is balanced by the gradient of gas pressure:

dP (r)

dr
= −ρgas(r)

GM(< r)

r2
, (2.1)

with the gravitational constant, G, enclosed mass profile, M(< r), gas pressure profile,
P (r), and gas density profile, ρgas(r), all with respect to the distance r from the center
of the cluster. A combination of X-ray observations like XMM−Newton, CHANDRA
and analysis technique taking into account projection and PSF effects have achieved
high resolution measurements of the radial electron density profiles, ne(r), and the
radial temperature profiles, T (r), of galaxy clusters (e.g. Vikhlinin et al., 2006; Cros-
ton et al., 2008), which can be used to determine the radial electron pressure profile,
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Figure 2.1: Normalized “true” masses (MTrue
500c /M0) vs. X-ray masses (MX−ray

500c /M0)
for clusters from the IllustrisTNG (red), BAHAMAS (blue), and MACSIS (green)
simulations are shown by a scatter plot. The power-law regression described in sec-
tion 2.2.1 (solid black line) and the corresponding 68% scatter (gray shaded region),
defined by regression parameter σ, is plotted over the cluster data. This fiducial ap-
proach – based on iterative clipping – is consistent with an alternative fit which does
not perform clipping but uses a truncated t-distribution to account for outliers (solid
orange line). Outlier removal has a modest but statistically significant effect on fit
results, as shown by a fit which did not account for outliers (solid purple line), but fail-
ing to account for mass selection effects (dashed black line) results in a substantially
different power-law index.

Pe(r), by assuming an ideal gas equation of state, Pe(r) = kBne(r)T (r). Given the
electron pressure, the gas thermal pressure Pth is defined by Pth(r) = Pe(r)µe/µ where
µ is the mean mass per gas particle, and µe is the mean mass per electron.
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Figure 2.2: Marginalized (1D and 2D) joint posterior probability distributions of
the regression model parameters. The dark and light contours show 68% and 95%
confidence level respectively.

In addition to the thermal motion of the gas, other sources of gas pressure -
including viralized bulk motion, turbulence, cosmic rays, and magnetic fields - also
provide non-trivial pressure support (e.g. Ensslin et al., 1997; Churazov et al., 2008;
Brüggen & Vazza, 2015). For realistic equilibrium systems, the gas pressure, P ,
in Eq. 2.1 is replaced by P = Pth + Pnth, where Pnth refers to any non-thermal
pressure acting on the intracluster gas. X-ray-measured cluster masses are derived
from the assumption of hydrostatic equilibrium with only thermal gas pressure, which
means that the contribution of non-thermal pressure can cause X-ray measurements
to underestimate cluster masses systematically.
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Numerical simulations provide a vital resource for characterizing the mass bias as
the properties of simulated galaxy clusters are known exactly. Barnes et al. (2020)
developed the Mock-X analysis framework, which can generate synthetic X-ray im-
ages and derives halo properties (e.g. gas density and temperature profiles) via ob-
servational methods, which can be used to derive hydrostatic mass in mock X-ray
observations. Hydrostatic mass bias is equal to the ratio of the hydrostatic mass to
the “true” (overdensity) mass of simulated clusters identified through SUBFIND (e.g.
Springel et al., 2001; Dolag et al., 2009) in simulations. Studies (e.g. Henson et al.,
2017; Barnes et al., 2020) also point out that the bias of hydrostatic mass estimated
with density and temperature profiles derived from the spectroscopic analysis show
a much stronger mass-dependence than those estimated from the true mass-weighted
temperature profiles. These simulated spectroscopic temperatures emulate the obser-
vational procedure for measuring X-ray temperatures and thus we compare against
them in this analysis.

A number of the aforementioned numerical studies have measured MX−ray
500c /MTrue

500c .
However, observationally, one only has access to MX−ray

500c . This means that we must
invert these relations to give MTrue

500c /M
X−ray
500c as a function of MX−ray

500c (a deceptively
complex task). Here, M500c is the “overdensity mass” and corresponds to the mass
within a spherical boundary which has an average density equal to 500 times the
critical density, ρcrit.

In this work, we present an efficient approach to estimate the true cluster mass by
utilizing both the X-ray and “true” masses of simulated clusters, MTrue

500c from Barnes
et al. (2020). We adopt a power-law model for the scaling relation between MTrue

500c

and MX−ray
500c . This is a linear model in logarithmic scale. For convenience, we denote

SX = ln(MX−ray
500c /M0),

SM = ln(MTrue
500c /M0), (2.2)

with M0 = 3 × 1014M�. For fixed SX, we assume a linear relation between SM and
SX where the error, ε, follows a Gaussian distribution:

SM = aSX + b+ ε, (2.3)

ε ∼ Norm(0, σ2), (2.4)

where a, b, σ are free parameters.
We notice that clusters drawn from simulations are selected in terms of a certain

mass threshold, which means we also need to consider this selection effect in our
model when fitted to simulation data. For given SX and SM of a simulated cluster,
we use a truncated normal distribution to model the likelihood

p(SM|SX, ST, ~θ) =
A(SX, ST, θ)√

2πσ2
exp

[
(aSX + b− SM)2

2σ2

]
, (2.5)

where ~θ = (a, b, σ) denotes the free parameters. ST is the truncation parameter
defined by ST = log(MT

500c/M0) and MT
500c is the mass threshold for a given simulated
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cluster sample. A(ST, SX, ~θ) is the normalization factor for a normal distribution,
Norm(aSX + b, σ2), truncated with a lower bound ST:

A(ST, SM, ~θ) =

[
1− Φ

(
ST − aSX − b

σ

)]−1

, (2.6)

where Φ denotes the cumulative distribution function (CDF) of standard normal. We
set

a, b ∼ U(−5, 5) (2.7)

σ ∼ U(0, 5) (2.8)

as priors, where U denotes the uniform distribution. We can then write out the
posterior for the parameters

p(~θ|D) ∝ p(a)p(b)p(σ)
∏
α

[
Nα∏
i=1

p(SiM,α|SiX,α, ST,α, ~θ)

]
, (2.9)

where D = {D1, D2, D3} is a data vector of log-scaled masses of simulated cluster
sample drawn from IllustrisTNG, BAHAMAS and MACSIS simulations denoted by
α = 1, 2, 3, and Dα = {(SiM,α, S

i
X,α), i = 1, . . . Nα}. Each simulation uses a different

ST,α. Mass thresholds, MT
500c, are set to be 1014M� for IllustrisTNG and BAHAMAS,

and 4×1014M� for MACSIS. Details about these simulations can be found in Barnes
et al. (2020).

We note that the IllustrisTNG, BAHAMAS, and MACSIS simulations adopt dif-
ferent numerical methods or subgrid physics, which may introduce differences in the
derived cluster profiles and systematics in the mass estimation of the mock X-ray
observation. This will be accounted in the intrinsic scatter in our regression model
for the relation of MTrue

500c v.s. MX−ray
500c since the fit is performed on all simulations

simultaneously.
We explore the parameter space by Markov Chain Monte Carlo (MCMC), us-

ing emcee (Foreman-Mackey et al., 2013) for the sampling. We discard the initial
steps suggested by the integrated autocorrelation time (Foreman-Mackey et al., 2019),
which estimate the number of steps that are needed before the chain “forgets” where
it started. This step ensures the samples well ”burnt-in”. Regression results for the
linear model and uncertainty are reported in Table 2.1.

A small fraction, ∼9%, of simulated clusters have abnormally high or abnormally
low MTrue

500c /MX−ray
500c , suggesting ratios outside the observed range (e.g. Miyatake et al.,

2019). Most cases appear in low-mass clusters, and may be due to the numerical
noise when resolving the X-ray mass of simulated clusters from synthetic images.
The steep slope of the mass function causes these unreliable low-mass data points to
significantly influence the mean MTrue

500c at high MX−ray
500c . In addition to the numerical

noise, merging events, or certain AGN activities in the unrelaxed clusters could lead

20



to a less spherical cluster. The thermodynamic profiles and corresponding X-ray
mass of these less regular clusters will be recovered with more systematic uncertainty
because clusters’ profiles and masses are derived assuming spherical symmetry in the
Mock-X analysis (Barnes et al., 2020), which could also result in an extreme value
of MTrue

500c /MX−ray
500c . For a more concrete conclusion, detailed studies are required for

these peculiar cluster samples with abnormal values of MTrue
500c /MX−ray

500c in the future
work.

To mitigate the effect introduced by the simulated clusters with extreme values
of MTrue

500c /MX−ray
500c , we iteratively remove outlier clusters falling outside the 2σ region

of the regression results until the prediction for MTrue
500c derived from the linear model

for MTrue
500c v.s. MX−ray

500c converges to 1% agreement with the previous iteration. This
is performed for clusters within the X-ray mass range MX−ray

500c = 1014 − 1015M�. To
test the impact of this method for removing outliers, we also used a truncated t-
distribution (e.g. Pfanzagl & Sheynin, 1996) to model the uncertainty, ε, which is
another approach to alleviate the effect of outlier samples.

In Figure 2.1, we plot SM v.s. SX for the IllustrisTNG, BAHAMAS, and MACSIS
cluster samples. We also show the regression results for the linear relation between
log-scaled “true” and X-ray masses, considering both truncation effects and the in-
fluence of outlier clusters. The intrinsic scatter in our linear model is determined by
the parameter σ. We find the slope parameter a = 1.079 is greater than 1, which
indicates the ratio of MTrue

500c to MX−ray
500c is mass-dependent, and hydrostatic mass bias

increases with cluster mass. We also plot the regression results for the linear relation
by modeling the uncertainty, ε, with a truncated t-distribution. For comparison, we
also show regression results without removing outlier clusters and without modeling
truncation effects. In Figure 2.2, we plot marginalized (1D and 2D) joint poste-
rior probability distributions of the regression model parameters to directly compare
regression results of different fitting methods in parameter space.

The alternative fit for MTrue
500c v.s. MX−ray

500c , which does not perform clipping but
uses a truncated t-distribution to account for outliers, is in good agreement with
the results of iterative 2σ clipping methods. Regression results of the two methods
find similar values for the slope parameter and the discrepancy between MTrue

500c for
1014M� < MX−ray

500c < 1015M� is at the ∼ 1% level. Comparing with the fit which
did not account for outliers, we find outlier removal has a modest but statistically
significant effect on fit results. We also find failing to account for mass selection
effects results in a bad fit to the simulation data and a substantially different power-
law index.

2.2.2 Hydrostatic Bias for Pressure Models

When we fit an analytical model like a GNFW profile to the radial pressure profile of
a galaxy cluster, a common approach taken is to normalize the pressure and radius by
the characteristic pressure P500c and radius R500c, both of which can be directly com-
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Model pa-
rameters

a b σ

iterative
clipping

1.079
±0.003

0.074
±0.002

0.191
±0.001

t-
distribution

1.070
±0.004

0.067
±0.003

0.201
±0.002

no clipping 1.080
±0.005

-0.011
±0.005

0.332
±0.003

Table 2.1: Best-fitting parameters for Eq. 2.3 for the cluster data from the Illus-
trisTNG, BAHAMAS, and MAC-SIS simulations. Each row shows a different method
for accounting for outlier clusters.

puted at a given cluster mass. If the mass of galaxy clusters in X-ray measurements
suffers from hydrostatic bias, the characteristic pressure and radius will as well. For
convenience, we define a new variable for the hydrostatic mass bias,

BM = MTrue
500c /M

X−ray
500c , (2.10)

then the radius bias, BR, and pressure bias, BP, can be obtained from scaling relations,
although the latter relies on the assumption of a specific model for the pressure profile.
For a spherical cluster, R500c ∝M

1/3
500c, so hydrostatic bias for cluster radius is defined

by

BR = B
1/3
M . (2.11)

If we assume that pressure follows a GNFW profile given by P (r) = P500c(M500c, z)P(x)
(Nagai et al., 2007a), where x = r/R500c and

P500c(M500c, z) =1.65× 10−3h(z)8/3

×
[

M500c

3× 1014M�

]2/3

h2
70 keV cm−3, (2.12)

P(x) is the scaled profile, with the form

P(x) =
P0

(c500x)γ [1 + (c500x)α](β−γ)/α
, (2.13)

where c500 is the concentration, P0 is the normalization parameter, and the parameters
α, β, γ determine the power-law slopes of different region of the cluster. Since P500c ∝
M

2/3
500c according to Eq. 2.12, the pressure bias is

BP = B
2/3
M . (2.14)
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The bias parameters BR and BP can be used to debias GNFW fits to X-ray measure-
ments of thermal pressure profiles by rescaling c500 and P0 with the following bias
correction factors:

c500 = cbias
500 ×BR, (2.15)

P0 = P bias
0 /BP. (2.16)

We note that radius and pressure biases have a one-to-one relation with BM, so
uncertainty in BM can be converted to BR and BP by

σlnBR
= σlnBM

/3, σlnBP
= 2σlnBM

/3. (2.17)

2.3 Results

2.3.1 Mass Adjustment of the REXCESS Sample

We apply our linear model for SM vs. SX to the hydrostatic X-ray masses of the
REXCESS cluster sample to estimate the true masses of these clusters. REXCESS is
a representative sample of local clusters at redshifts 0.0 < z < 0.2 which spans a mass
range of 1014M� < M500c < 1015M� (Arnaud et al., 2010). REXCESS clusters are
drawn from the REFLEX catalog and were studied in-depth by the XMM −Newton
Large Programme. A description of the REFLEX sample and of XMM − Newton
observation details can be found in Böhringer et al. (2007). We correct the hydrostatic
mass of 31 local clusters from the REXCESS sample measured by X-ray observation,

MTrue
500c /M0 = eb × (MX−ray

500c /M0)a, (2.18)

where a and b are the regression parameters for the linear model reported in Table
2.1. We find that the X-ray measured hydrostatic masses of clusters in the REXCESS
sample are underestimated by approximately 7% on average. The bias climbs from
0% to 15% as cluster X-ray mass increases from 1014M� to 1015M�.

The regression parameter σ is the intrinsic scatter in SM = ln(MTrue
500c /M0) and can

be used to characterize the uncertainty in the corrected mass of REXCESS clusters
at a given predicted MTrue

500c :

σMTrue
500c
'MTrue

500c σ. (2.19)

With the first order approximation, this scatter yields significant uncertainties for
individual objects, around ≈20%, for corrected cluster masses. σ also defines scatter
in the mass bias BM, radius bias BR, and pressure bias BP in log scale:

σlnBM
= σ, σlnBR

= σ/3, σlnBP
= 2σ/3. (2.20)

These allow us to estimate the modeling uncertainty in the debiased pressure, radius
and mass.
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Figure 2.3: Top: Individual GNFW fits for the scaled pressure profiles of each cluster
in REXCESS sample after R500c and P500c have been corrected for hydrostatic mass
bias (solid green lines) with uncertainty estimated from the scatter in the mass bias
(green semitransparent bands). Also shown are the mean profile (dashed blue line) of
the corrected samples and the best-fitting GNFW profile to the median, P(x) (solid
red line). The best-fitting P(x) of the uncorrected UPP model (dashed black line)
is also plotted for comparison. Bottom: The ratio between P(x) of the UPP model
(dashed black line) and the mean corrected profile of the REXCESS sample (solid red
line) with respect to the corrected P(x) (dashed blue line) are shown. Uncertainty in
the adjusted mean pressure profile (red semitransparent band) is calculated through
the procedure discussed in Section 2.3.2.
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2.3.2 Adjustment of the Universal Pressure Profile

The Universal Pressure Profile (UPP) is a model for ICM thermal pressure profiles
developed by Arnaud et al. (2010) which was calibrated off the REXCESS sample.
For each cluster in the sample, the pressure profile – derived along with the X-ray
measurements of gas density and temperature profiles – is scaled with the charac-
teristic pressure P500c and cluster radius R500c. As discussed in Section 2.2.2, both
R500c and P500c are dimensional rescalings of M500c, which itself is measured from a
M500c − YX relation (Kravtsov et al., 2006; Nagai et al., 2007a; Arnaud et al., 2007)
which was calibrated on biased hydrostatic mass estimates. Note that Arnaud et al.
(2007) itself does not use the REXCESS sample, which could potentially allow selec-
tion bias to creep in. The UPP model is widely used for characterizing cluster masses
in SZ surveys (e.g. Hasselfield et al., 2013; Planck Collaboration et al., 2016c; Hilton
et al., 2018) and is expressed as

P (x,M500c, z) =P500c(M500c, z)

× P(x)

[
M500c

3× 1014h−1
70 M�

]αP(x)

, (2.21)

with variables taking the same meaning as in Section 2.2.2. The empirical term,
(M500c/3× 1014h−1

70 M�)αP(x), reflects the deviation from standard self-similar scaling
with αP(x) = 0.22/(1 + 8x3). A GNFW profile, P(x), is fit against the (geometric)
mean profile of the scaled REXCESS sample.

The hydrostatic bias that we found for M500c in the REXCESS sample is trans-
ferred to the normalization of observed pressure profiles through the resultant changes
in P500c and R500c. For each REXCESS cluster, we use the GNFW pressure profile
provided in Arnaud et al. (2010) and rescale P0, and c500 according to Eq. 2.15 and
2.16 to get the debiased fits for each cluster. We then evaluate the geometric mean
of the scaled profiles, Pm, and fit it with a GNFW model in the log-log plane. We
also estimate the uncertainty in the mean profile by approximating the uncertainty
in each corrected pressure profile via lognormal distributions with variances σlnR and
σlnP . Moreover, we use this uncertainty to define the 68% range for the mean profile
confined by a high profile, Ph, and a low profile, Pl.

We fit new GNFW models to the mean, high and low profiles discussed above,
fixing the outer slope parameter to β = 5.490 as was done in the original UPP model.
In Arnaud et al. (2010), the GNFW model of the UPP is fitted to the observed average
scaled profile in the radial range [0.03–1]R500c, combined with the average simulation
profile beyond R500c which is crucial for determining the outer slope β. In our paper,
the GNFW model is fitted to the debiased observed profiles within R500c, but we lack
information beyond this radius. So we choose to keep β as same as its original value
in the UPP model. The best fitting parameters of the GNFW models for Pm, Ph, and
Pl are reported in Table 2.2.
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GNFW
parameters

P0 c500 α γ

UPP 8.403 1.177 1.051 0.3081
Pm 5.048 1.217 1.192 0.433
Ph 5.159 1.204 1.193 0.433
Pl 4.939 1.232 1.192 0.432

Table 2.2: Parameters for GNFW fits to the mean (Pm), high (Ph; +1σ), and low (Pl;
-1σ) profiles, as well as parameters for the dimensionless pressure profile of the UPP
model.

In the top panel of Figure 2.3, we plot corrected GNFW fits to the debiased pres-
sure profiles for each of the 31 REXCESS clusters. As discussed in Section 2.3.1,
the scatter in BM is significant and introduces non-negligible uncertainty to the de-
biased pressure profiles of the REXCESS sample. We also show the uncertainty in
the debiased pressure profile for each RECXESS cluster considering the uncertainty
as determined by σlnBR

and σlnBP
. We show the geometric mean of these scaled

profiles, the fit to this curve, and the UPP model for comparison. The dispersion in
these scaled pressure profiles is significant in the core both before and after debiasing
regions due to the various dynamical states, including both the cool core and mor-
phologically disturbed clusters of the REXCESS sample (Arnaud et al., 2010). The
mean of the debiased scaled pressure profiles and its GNFW fit, P(x), is lower than
in the original UPP model. In the bottom panel of Figure 2.3, we plot the fractional
difference between both the UPP and the debiased mean scaled profile against our
best fit to the mean scaled profile. We also show uncertainty in the pressure model
with the red semitransparent region.

The UPP is ≈ 5% higher than the mean of the debiased pressure profile in the
center of the cluster and gradually climbs to 20% at R500c, and reaches almost ≈
35% at the outermost outskirts. Only weak scattering is found for the adjusted
scaled pressure profile compared to the uncertainty of scaled pressure profile of each
REXCESS cluster, which is due to the assumption of using Gaussian approximating
the uncertainty of individual profile in logarithmic scale at fixed radii, and uncertainty
of the mean decreases with the growth of the sample size of the REXCESS clusters.

2.3.3 Self-similarity of the Pressure Profile

We also explore whether the REXCESS pressure profiles deviate from self-similarity
by studying their radial variation as a function of mass. To do this, we look for
mass trends in P (x)/P500c in our debiased profiles. We evaluate these profiles at
x = r/R500c = 0.1, 0.2, 0.4, 0.8. This range of radii avoids either too small or too
large values of x. We avoid larger scaled radii because X-ray measurements pressure
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P(x = 0.8) = -0.06±0.06

Figure 2.4: Deviations from self-similarity as a function of mass and radius. Debiased
pressure is plotted against corrected M500c at different scaled radii x = r/R500c: 0.1
(red), 0.2 (orange), 0.4 (green) and 0.8 (blue). The pressure implied by the best-
fitting GNFW pressure profiles at these radii for the 31 clusters in the REXCESS
sample are shown as points. We fit power-laws for each value of x (dashed lines) to
determine the mass dependence of cluster pressures. Error bars show the uncertainty
introduced by the scatter in BM while correcting cluster masses and recalibrating the
GNFW fit of each RECXESS cluster. After debiasing the pressure profiles, we find
no evidence for deviations from self-similarity.
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αP(x) x=0.1 x=0.2 x=0.4 x=0.8
UPP 0.22 0.21 0.15 0.06
DPP 0.12

±0.10
0.08
±0.05

0.01
±0.01

-0.06
±0.06

Table 2.3: Comparison of the best-fitting αP(x) in the UPP and DPP models. Note
that under the DPP model, αP(x) is consistent with zero at all radii.

profiles in REXCESS clusters rarely get beyond R500c (Arnaud et al., 2010).1 We
avoid taking a smaller value of x because the REXCESS sample contains systems with
various dynamical states which can alter the state of gas in the center of the cluster.
Following Arnaud et al. (2010), we fit a power-law of the form P/P500c ∝ M

αP(x)
500c

to each set of points weighted by uncertainties on both cluster masses and pressure
following the orthogonal regression approach, proposed for the analysis when both
the dependent and the independent variables are random. Best fitting results are
represented in Table 2.3.

In Figure 2.4, we show the results of this fit, with different colors representing
different scaled radii and error bars representing uncertainty due to the intrinsic
scatter in BM. We show the best-fit power-laws to each set of points and the values
of their power indices.

Our study of the debiased scaled pressure profiles of the REXCESS cluster sample
finds that αP(x) at all radii are consistent with zero, which means a less significant
deviation from standard self-similarity compare to the UPP model. We can observe
a radial dependence of αP(x) similar to that found in the UPP model. However, this
term in UPP is treated as a second-order deviation term in addition to a constant
modification of the standard self-similarity, αP ∼ 0.12, which can be neglected in first-
order approximation. Based on the discussion above, we see no evidence for deviations
from self-similarity, which would require the mass-dependent term in Eq. 2.21. We
modify the UPP by eliminating the deviation term and get a simplified model for
ICM pressure profiles, Debiased Pressure Profile (DPP) :

PDPP(x,M500c, z) =P500c(M500c, z)× P(x). (2.22)

Here, parameters take on the same meaning as in Pm in Table 2.2.
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Figure 2.5: The spherical volume-integrated Compton parameter, Ysph, vs. mass,
M500c, for the REXCESS sample after correcting for hydrostatic bias (green dots)
and the corresponding best-fit power-law relation (dashed green line). The analytical
Ysph(R500c)−M500c relation derived from the DPP model (solid red line) is also shown.
The biased Ysph(R500c) and M500c (blue dots) and the corresponding best-fit power-law
relation (dashed blue line) from Arnaud et al. (2010) are plotted for comparison.
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2.3.4 Y −M Relation

The spherical volume-integrated Compton parameter, Ysph, of a cluster is the integral
of the gas’s thermal pressure profile over a spherical region and is defined as:

Ysph(R) =
σT

mec2

∫ R

0

4πPe(r)r
2dr, (2.23)

where σT is the Thomson cross-section, me is the electron mass, and Pe is the ther-
mal electron pressure. Since the pressure is directly related to the depth of cluster
gravitation potential, the integrated Compton parameter, Ysph, is closely related to
the mass of the cluster. Studies (e.g. Da Silva et al., 2004; Nagai, 2006) find a low
intrinsic scatter in the relation between integrated Compton parameter and cluster
mass, indicating that the Compton parameter Ysph serves as a good proxy for cluster
mass. The Ysph −M relation was previously modeled with a power-law (Kravtsov
et al., 2006; Nagai et al., 2007a; Arnaud et al., 2007). Accordingly, we parameterize
the Ysph(R500c)−M500c relation as

h(z)−2/3Ysph(R500c) = 10A
[

M500c

3× 1014M�

]α
h
−5/2
70 Mpc2. (2.24)

We fit Eq. 2.24 to the X-ray-measured Compton parameter and the biased X-ray
hydrostatic masses of the REXCESS sample and find that α = 1.790 ± 0.015, and
A = −4.739± 0.003. The Ysph −M relation can be derived from the UPP model by
combining Eq. 2.21 for the UPP and Eq. 2.23 and gives α = 1.787, and A = −4.745.
The analytical calculations based on UPP and direct fits to observation data are
in excellent agreement: both claimed a deviation from the slope predicted by self-
similarity, αs = 5/3, of approximately ∆α = α−αs ≈ 0.12. Notice this deviation ∆α
corresponds to the αP (x) for the pressure model, which is characterized by a function
of cluster mass and radius, however, Arnaud et al. (2010) showed this term can be
approximated by a constant in the calculation of the spherical Compton signal and
only causes a difference of ≤ 1% for clusters in the mass range [1014M�, 1015M�].

However, the hydrostatic masses used for constructing the UPP model are sys-
tematically underestimated, which means that the cluster radii are also biased. In-
tegrating an X-ray-measured pressure profile over a biased volume leads to a biased
Compton signal. We apply the rescaling methods discussed in Section 2.2.2 to the
GNFW fits to scaled pressure profiles and correct the X-ray measured radii of every
REXCESS cluster, and correct the bias in the Compton parameter derived from X-
ray measurements. We also calculate Ysph analytically by integrating our DPP over

1Also note that the R500c values in (Arnaud et al., 2010) are biased low by RX−ray
500c /RTrue

500c ∼ 0.95,
meaning that the profiles extend to smaller radii than reported in the original paper.
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the cluster within the radius r = xR500c

Ysph(xR500c) =
4πσT

3mec2
R3

500cP500c (2.25)

×
∫ x

0

3(x′)2P(x′)

[
M500c

3× 1014h−1
70 M�

]αP(x)

dx′,

then we simplify the integral, getting

h(z)−2/3Ysph(xR500c) = C(x)

[
M500c

3× 1014h−1
70 M�

]α
, (2.26)

where α = 5/3 given by P500cR
3
500c, since αP(x) is set to be 0 in DPP and has no

contribution to α, and

C(x) = 2.925× 10−5I(x)h−1
70 Mpc2,

I(x) =

∫ x

0

3P(x′)(x′)2dx′. (2.27)

We use the value for the parameters P0, c500, α, β, γ of Pm reported in Table 2.2 to
get I(1) = 0.554. Rewriting C(1) to the logarithmic form 10A, we get A = −4.790,
along with α = 5/3, as previously discussed for Ysph − M relation, which agrees
well with the direct fit to the REXCESS sample after correcting for hydrostatic bias:
α = 1.673± 0.014 and A = −4.786± 0.004.

In Figure 2.5, we plot fits for the integrated Compton signal versus cluster mass
after correction for hydrostatic bias and analytical calculated Y −M relation based on
DPP. For comparison, we also plot Y −M relation reported in Arnaud et al. (2010).

The corrected Y −M relation leads to smaller Y values at a given M compared to
the UPP model, which indicates that our Y −M relation predicts a higher mass for
the observed cluster given the same measured Compton signal. The new fit also shows
a negligible difference from analytical results based on DPP. The value of the best-fit
slope is close to the self-similar scaling with a tiny deviation ∆α = 1.673−5/3 = 0.006.

We find no evidence for a power-law index of the Ysph − M500c relation which
deviates from the predictions of self-similarity, which is consistent with a small de-
viation from standard self-similarity of the Ysph-mass scaling relation in Gupta et al.
(2017). The disappearance of the deviation from self-similarity is mainly due to the
dependence of hydrostatic bias on cluster mass. We find changes in the spherical
Compton signal of clusters in the REXCESS sample after adjusting for hydrostatic
bias are much less significant, < 2% compared to the correction of cluster masses,
which means the shift in cluster masses is the key factor for the modification on the
power-law index of the Y −M relation. Notice that the relation of MTrue

500c vs. MX−ray
500c

for the REXCESS sample we derived yields BM ∝M'0.08, equal to the shift of cluster
mass after correction. To a great extent, this explains the variation – around 0.12 –
of the power-law index of the Y −M relation after adjusting for hydrostatic bias.
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The slope of the Y −M relation being consistent with the standard self-similar
model after adjusting for hydrostatic bias indicates that the studies that claim de-
viations from self-similarity in mass scaling relation like LX −M and YX −M (e.g.
Allen et al., 2003; Arnaud et al., 2007) may need to be revised as their results are also
affected by similar X-ray mass biases. Additionally, the existence of self-similarity in
the mass independence of out pressure model and the Y-M relation makes us more
confident in extrapolating out the DPP model to higher redshifts in the calculation of
thermal SZ power spectrum by assuming a self-similarity in the redshift dependence
according to the standard self-similar model. We also note that the REXCESS sam-
ple has a limited mass range. Further confirmation of self-similarity in the Y −M
relation requires joint work of simulations and further observations with extended
mass range.

2.3.5 Thermal SZ Angular Power Spectrum

The tSZ power spectrum is a powerful probe of cosmology and can provide promising
constraints on cosmological parameters: C` ∝ σ7−9

8 (e.g. Komatsu & Seljak, 2002;
Shaw et al., 2010; Trac et al., 2011). Since clusters are the dominant source of tSZ
anisotropies, due to the number density of clusters and the gas thermal pressure
profile, the tSZ power spectrum can be adequately modeled by an approach referred
to as the halo formalism (e.g. Cole & Kaiser, 1988; Komatsu & Kitayama, 1999).

The tSZ angular power spectrum at a multipole moment, `, for the one-halo term
is given by

CtSZ
` = f 2(ν)

∫
z

dV

dz

∫
M

dn(M, z)

dM
|ỹ`(M, z)|2dMdz, (2.28)

where f(ν) = x coth(x/2) − 4 is the spectral dependence with x = hν/(kBTCMB).
Integration over redshift and mass are carried out from z = 0.0 to z = 6.0 and from
M = 1010M� to M = 1016M� respectively. For the differential halo mass function
dn(M, z)/dM , we adopt the fitting function from Tinker et al. (2008) based on N-
body simulations.

Following Komatsu & Seljak (2002), the 2D Fourier transform of the projected
Compton y-parameter, ỹ`(M, z) is given by

ỹ`(M, z) =
4πrs

`2
s

σT

mec2

∫
x2Pe(x)

sin(`x/`s)

`x/`s

dx, (2.29)

with the limber approximation (Limber, 1953), which is used to relate the angular
correlation function to the corresponding three-dimensional spatial clustering in an
approximate way and to avoid spherical Bessel function calculations, where x = r/rs

is a scaled dimensionless radius, rs is characteristic radius for a NFW profile defined
by R500c/c500c, and we use average halo concentrations, c500c, calibrated as a function
of cluster mass and redshift from Diemer & Kravtsov (2015). The corresponding
angular wave number `s = dA/rs, where dA(z) is the proper angular-diameter distance
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Figure 2.6: Predictions for the one-halo term of the tSZ power spectrum calculated
with the UPP model (red line) and the DPP model (blue line). The tSZ power
spectrum calculated with Equation 3.49 integrated from z = 0.0 to z = 1.0 based on
the DPP model is plotted for comparison (dashed blue line). Planck 2015 analysis of
the tSZ power spectrum(black dots) with error bars due to uncertainties of foreground
contamination and statistical errors. ACT (orange dot with error bar), and SPT
(green dot with error bar) values correspond to ` = 3000 are also shown, but they
have been shifted in the plot for clarity. All tSZ data are rescaled to 146GHz for
direct comparison, the uncertainty of the tSZ power spectrum (blue semitransparent
band) is due to the uncertainty in the pressure profile used for the integral.
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at redshift z. Pe(x) is the electron pressure we’ve discussed about Section 2.2.1. The
integral is carried out within a spherical region with radius R ∼ 4R500c.

In Figure 2.6, we compare the measured tSZ power spectrum to the one-halo term
predicted by the UPP and DPP models. Our predictions for the tSZ spectrum are
made by assuming the fiducial parameters Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.045, h =
0.7, ns = 0.96, σ8 = 0.8. We use measurements of the tSZ power spectrum from
the analysis of ACT (Dunkley et al., 2013), SPT (George et al., 2015), and Planck
(Planck Collaboration et al., 2016a), all rescaled to 146 GHz, at which f 2(ν) = 1,
for direct comparison. The uncertainties in the Planck 2015 data points account for
statistical and systematic errors, as well as modeling uncertainties associated with
correcting for foreground contamination.

The tSZ power spectrum derived from the original UPP model predicts much
higher values than observational data while our DPP model leads to the tSZ power
spectrum matches the tSZ data of Planck within 1 − σ uncertainty for multipoles
100 ≤ ` ≤ 1300. However, the tSZ power spectrum calculated with our DPP model
still shows a significant tension with ACT and SPT data at ` = 3000. Our work shows
adjusting ICM pressure profiles for hydrostatic bias due to non-thermal pressure has
a significant effect on lowering the amplitude of the power spectrum by 30-40%. This
is in agreement with other work studying the change in the shape of the tSZ power
spectrum after including the effect of non-thermal pressure (e.g. Shaw et al., 2010;
Battaglia et al., 2010; Trac et al., 2011; Battaglia et al., 2012).

In the analytical calculation of the tSZ power spectrum, we extrapolate our pres-
sure model to redshifts as high as z = 6.0, even though our pressure model is built on
simulation data from a low redshift snapshot (z = 0.1). However, we show in Figure
2.6 that galaxy clusters of redshift z ≥ 1.0 will not significantly affect our calculation
of the tSZ power spectrum at ` ≤ 1300. The tSZ power spectrum at ` ≥ 3000 shows
it is more sensitive to the high redshift clusters, which may indicate that redshift
dependence could potentially lower the tension between our calculation of the tSZ
power spectrum and high-multipole observations.

2.4 Discussion and Conclusions

In this chapter, we presented a simulation-based model to characterize the relation
between the “true” masses and the X-ray-estimated hydrostatic masses of galaxy
clusters. We use X-ray masses measured from synthetic images of simulated clusters
drawn from the IllustrisTNG, the BAHAMAS, and the MACSIS simulations (Barnes
et al., 2020) to fit a power-law relation for MTrue

500c v.s. MX−ray
500c . We then use this

model to correct the X-ray measured hydrostatic masses for the 31 clusters in the
REXCESS sample:

1. We find that X-ray-measured hydrostatic masses underestimate masses of the
clusters in the REXCESS sample by around 7% on average and that the bias
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increases with mass from ≈ 0% at MX−ray
500c = 1014M� to ≈ 15% at MX−ray

500c =
1015M�, showing the same significant mass dependence as the simulation results.

2. The significant scatter in simulation results has been incorporated into our
model. This scatter also induces non-negligible uncertainties in the corrected
of masses of individual REXCESS clusters, around ±20%.

In this work, we assume mass bias does not or only weakly depends on the redshift.
The REXCESS sample spans a redshift range of 0 < z < 0.2 and our correction is
based only on z = 0.1 snapshots. To study the dependence of mass bias on redshift,
one could look into more snapshots of the simulations we used. As we mention
in Section 2.3.2, the dynamical states of different of RECXESS clusters could vary
significantly, which could also be considered a selection criterion in addition to the
cluster mass. Furthering modeling may be improved by accounting for dynamical
state when correcting X-ray-measured hydrostatic masses.

We discussed how the mass bias we found transfers to other X-ray observables.
Scaling relations between cluster mass, radius, and characteristic pressure (R ∝M1/3,
P ∝ M2/3), enable a convenient correction of GNFW fits to scaled pressure profiles,
through the modification of the P0 and c500 parameters.

We adjusted the universal galaxy cluster pressure profile for hydrostatic mass bias
through recalibrating the scaled pressure profiles of each cluster in the REXCESS
samples used to construct the UPP model:

1. In our updated pressure model, DPP, pressures are 5% lower than the UPP
model in the inner region of the clusters, and 15% lower at R500c.

2. We achieve a good agreement on a small value of αP in the respective study
of pressure model and Ysph −M relation, which implies standard self-similarity
still stands for the scaling relation of the adjusted universal pressure model and
the Ysph −M relation.

3. An analytical calculation of the thermal SZ angular power spectrum derived
from DPP is consistent with the analysis of Planck thermal SZ survey data
without requiring extreme cosmological parameters.

Many avenues remain for future work on this topic. Our analysis is restricted to
late times, meaning that we do not explore the redshift dependence of hydrostatic
mass bias. Analysis that incorporates redshift evolution would likely lead to more
accurate cosmological constraints from the tSZ power spectrum. Similar to the UPP,
our DPP does not differentiate between relaxed and unrelaxed clusters or cool core
and non-cool-core clusters. The impact of hydrostatic mass bias on these clusters
sub-categories has not yet been determined. Lastly, we note that even our corrected
fit cannot simultaneously match the ` = 3000 tSZ power spectrum measurements
from ACT and SPT. This discrepancy remains an open question.
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Chapter 3

A Hydro-Particle-Mesh Code for
Efficient and Rapid Simulations of
the Intracluster Medium

3.1 Introduction

Cosmological simulations have greatly improved our understanding of the formation
and evolution of the cosmic structures throughout our universe and are widely used to
interpret observations and design new instruments and surveys. N-body simulations
of gravitational dynamics make detailed and reliable predictions for the distributions
of dark matter, which forms the backbone of structure formation, and dark energy
responsible for the accelerated expansion of the universe (e.g. Springel et al., 2005;
Boylan-Kolchin et al., 2009; Klypin et al., 2011; Angulo et al., 2012; Skillman et al.,
2014; Klypin et al., 2016; Ishiyama et al., 2021). Hydrodynamic simulations, which
model the coupled evolution of dark matter and cosmic gas (e.g. Iannuzzi & Dolag,
2012; Vogelsberger et al., 2014; Khandai et al., 2015; Schaye et al., 2015; Feng et al.,
2016b; Dolag et al., 2016; Dubois et al., 2016; Kaviraj et al., 2017; McCarthy et al.,
2017b; Barnes et al., 2017; Tremmel et al., 2017; Pillepich et al., 2018b; Davé et al.,
2019), are also able to predict many directly observable properties of cosmic gas and
galaxies.

Understanding the large scale structure of our universe requires two parts: (i) an
accurate solution to the equations of motion for the dark matter and (ii) physically
reasonable approximations for the behavior of baryonic components of the universe.
Together, these two components build the foundation of the modern observational
cosmology. Dark matter N-body simulations have achieved significant progress in de-
veloping the understanding of the structure of dark matter halos (e.g. Navarro et al.,
1996, 1997, 2004) and their clustering (e.g. Springel et al., 2006; Tinker et al., 2008;
Watson et al., 2013; Bocquet et al., 2016). They were instrumental in establishing
the ΛCDM cosmological model as the dominant paradigm for the nature of both dark
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matter and dark energy, but suffer from the fundamental limitation of being incapable
of providing any direct prediction for the baryonic component. Thus, the hydrody-
namic simulations that also simulate the baryons that form the visible components
in our universe are crucial for interpretation and calibration of the results of observa-
tional data. A detailed review of the modern hydrodynamic simulations studying the
properties, growth and evolution of galaxies is given in Vogelsberger et al. (2020).

Hydrodynamic simulations are generally preferred for solving the non-linear physics
of structure formation and predicting the survey observable dependence on cosmolog-
ical parameters. However, the effective volumes of modern surveys keep growing, and
achieving the science goals of these surveys requires numerical simulations of excep-
tionally large volumes - both for correctly capturing the statistics of the rare objects
and for computing the covariance matrices between the observables. Simulations in
spatial volumes comparable to the surveys in size are generally too expensive to make
many large-scale mock observations and explore both astrophysical and cosmological
parameter space. In the face of increasing demand for multiple realizations of simu-
lated mock catalogs for comparison with the large-scale structure observations, fast
approximate approaches for dark matter simulations based on semi-numerical meth-
ods and lagrangian perturbation theory have been developed. For example, PTHA-
LOS (Scoccimarro & Sheth, 2002) has been used for efficiently generating mock galaxy
distributions, PINOCCHIO (Monaco et al., 2002) is capable of accurately predicting
formation and evolution of individual dark matter halos, COLA (Tassev et al., 2013)
and FastPM (Feng et al., 2016a) can be used for cheaply generating large ensembles
of accurate mocks that properly account for non-linear evolution. These fast ap-
proximate methods have shown their ability to reduce computational complexity and
required computational resources by orders of magnitude without sacrificing accuracy
on large scales.

Though we have seen significant progress in various approaches aiming to speed up
dark matter only N-body simulations, there is still a notable lack of fast approximate
hydro simulation methods. Previously, Gnedin & Hui (1998) used the particle-mesh
(PM) solver for dark matter dynamics and allowed for the additional gas pressure
force to approximate hydrodynamics. Their hydro-particle-mesh (HPM) algorithm
substantially relies on the existence of a tight temperate-density relation in the in-
tergalactic medium (IGM) and has been successfully used to model the high-redshift
Lyman alpha forest with moderate precision (McDonald et al., 2002). However, the
tight correlation between the gas density and temperature in the low density IGM
breaks down in denser regions. Yet, it is possible to extend the range of validity of
HPM-like techniques further. For example, in order to model the intracluster medium
(ICM) of galaxy clusters we can adopt empirical or simulated ICM pressure profiles
(e.g. Arnaud et al., 2010; Battaglia et al., 2012; He et al., 2021a) and build a mapping
relation between the gas temperature or pressure and some properties of cosmic gas
that can be captured by, say, a simple PM solver. Such an approach will allow to im-
plement a fast approximate method for modeling hydrodynamics in the high-density
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ICM; the gas physics can then be modeled very efficiently in both the IGM and the
ICM regime, which together fill most of the spatial volume in a fast hydro simulation.

This chapter introduces an innovative hydro-particle-mesh code for efficient and
rapid (HYPER) simulations of gas and dark matter. HPM simulations take ap-
proximately two to three times as long to run as PM simulations and are orders of
magnitude faster than expensive hydrodynamic simulations. HYPER allows one to
systematically vary the ICM and IGM models to study different baryonic physics and
effects. We organize this chapter as follows: Section 3.2 discusses the model for ra-
dial profiles of dark matter and gas in the ICM. Section 3.3 briefly reviews the HPM
algorithm in the IGM, then describes the implementation of the HPM for the ICM
regime, including how to modify the PM code to calculate the designed HPM fields
and infer the gas temperature and pressure from the local field information using a
pre-computed mapping derived from a given ICM model. In Section 3.4 we evaluate
our new fast hydro simulation performance by comparing the radial profiles, the inte-
grated halo quantities, and the statistical quantities of the tSZ effect in our simulation
to the predictions of the ICM model we use to implement the HPM algorithm. In
Section 3.5 we conclude with our findings for the output of a HYPER simulation, and
at the end, we also bring out some perspective of use cases and the future extensions
of this work.

3.2 Models

This section introduces our approach for constructing an analytical model for the
radial profiles of different components in galaxy clusters, under the assumption of
hydrostatic equilibrium. It is based on thoroughly studied modeling work on dark
matter distribution and gas pressure support. We also briefly introduce the analytical
relation used by the HPM algorithm (Gnedin & Hui, 1998) to simulate gas thermal
properties in the IGM.

3.2.1 Halo Model

As a model for the mass distribution in a dark matter halo of a galaxy cluster we
adopt a universal NFW density profile (Navarro et al., 1997)

ρm(r) ' ρs
r
rs

(1 + r
rs

)2
, (3.1)

where rs is the scale radius and ρs is the scale density. These two variables can be
specified by the halo concentration as

rs = R500c/c500c (3.2)

and

ρs =
500ρcrit(z)c3

500c

3 [ln(1 + c500c)− c500c/(1 + c500c)]
, (3.3)
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where R500c defines the radius of a spherical overdensity region with average density
500 times of the critical density ρcrit(z). The total mass of the overdensity region can
be used to define the halo mass as M500c = 4π

3
500ρcrit(z)R

3
500c. The halo concentration

c500c has been calibrated as a function of cluster mass and redshift (e.g. Diemer &
Kravtsov, 2015). Thus given the halo mass and redshift, we can specify the halo
density profile of dark matter. The total mass enclosed within the radius r then has
an analytical expression

M(r) =

∫ r

0

4πx2ρm(x)dx

= 4πρsr
3
s

[
ln

(
r + rs

rs

)
− r

r + rs

]
.

(3.4)

We use the NFW profile to approximate the total matter distribution, considering
that dark matter dominates the mass contribution to the halo. The error on the
total mass profile is mainly caused by the difference between the gas density profile
and the NFW profile, which is generally considered to be a goof approximation to
the dark matter distribution of halos. Though the deviation of the normalized gas
density profile from the NFW model may not be negligible, the difference between
the total matter density of halos and the NFW profile is much less significant since
gas is subdominant in the total matter distribution. The difference between the total
matter density profile and the NFW model decreases by a factor of the baryonic
fraction fb ∼ 0.15 compare to the gas density profile and should be much less than
unity. Thus a lot of analytical work choose to model the total matter density profile
with the NFW model, so that ρm(r) = ρdm(r) + ρgas(r) ' ρNFW(r) (e.g. Olamaie
et al., 2012; Shi & Komatsu, 2014). X-ray and lensing studies have also shown that
NFW profiles can generally provide adequate descriptions of the mass distribution
of cluster halos (e.g. Mandelbaum et al., 2006; Schmidt & Allen, 2007; Morandi &
Limousin, 2012).

3.2.2 ICM Model

We construct an analytical model of the ICM based on the assumption of hydrostatic
equilibrium and models for describing the gas pressure of galaxy clusters. The gas
thermal pressure profile has been widely studied by both hydrodynamic simulations
and SZ and X-ray observations. In most of these studies, the thermal pressure of gas
generally follows an analytical form

Pth(M, r) = P500c(M, z)P(r/R500c)f(M)g(z), (3.5)

where P500c is the pressure scale derived from the self similar scaling relation

P500c = 1.65× 10−3E(z)8/3 ×
(

M500c

3×1014M�

)2/3

, (3.6)

39



where E(z) = H(z)/H0 and P(x = r/R500c) is a generalized NFW (GNFW) model
(e.g. Nagai et al., 2007a),

P(x) =
P0

(c500x)γ[1 + (c500x)α]
β−γ
α

. (3.7)

Parameters P0, c500, α, β, γ are normally fitted to the observed or simulated scaled
pressure profiles.

The ICM gas pressure profile modelled with only the GNFW term assumes a
simple self-similar behavior (e.g. Kaiser, 1986; Voit, 2005). However, several numerical
and observational works (e.g. Arnaud et al., 2010; Gupta et al., 2017) claimed to
observe a deviation from the self-similar scaling relation in the gas pressure, which
we denote by the additional terms f(M), g(z) in Eq. 3.5. We adopt power-law forms
for these terms, f(M) = (M/M?)

αP and g(z) = E(z)cP , where M? is a chosen constant
referred to as the characteristic cluster mass. However, the dependence on halo mass
and redshift of the gas pressure model needs further study, as the studies on these
deviation terms with numerical simulations and observations have not reached the
final agreement.

In this work, we adopt the debiased pressure profile (DPP) from a recent study
of the gas pressure model of the galaxy clusters (He et al., 2021a), which adjusted
the Universal Pressure Profile (UPP) (Arnaud et al., 2010) for hydrostatic mass bias
in X-ray observation. The DPP model strictly follows the GNFW model and get
rid of the terms describe the deviation from f(M) and g(z) for the gas thermal
pressure Pth(r). The GNFW parameters P0, c500, α, β, γ of the pressure model are
[5.048,1.217,1.192,5.490,0.433].

Further studies of the cluster outskirts with the latest cosmological simulations
(e.g. Shaw et al., 2010; Nelson et al., 2012; Battaglia et al., 2012; Lau et al., 2013; Nel-
son et al., 2014; Gupta et al., 2017) and the observations of galaxy clusters (e.g. Bautz
et al., 2009; George et al., 2009; Reiprich et al., 2009; Hoshino et al., 2010; Kawa-
harada et al., 2010; Urban et al., 2011; Simionescu et al., 2011) showed existence of
the non-thermal pressure support, which is non-negligible particularly in the outskirt
of galaxy clusters. The non-thermal pressure is mainly due to the non-thermal gas
processes like virialized bulk motions and turbulent gas flows, which are primarily
generated by mergers and accretion during the cluster formation. Then the total
pressure of gas Ptot(r) should consist of both thermal and non-thermal contributions,
modeled by

Ptot(r) = Pth(r) + Pnth(r)

= fthPtot(r) + fnthPtot(r)
(3.8)

where fth(r) and fnth(r) are ratios of the thermal and nonthermal terms to the total
pressure.

Studying the sample of 65 galaxy clusters from a high resolution hydrodynamic
cosmological simulation, Nelson et al. (2014) characterized the non-thermal pressure
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fraction profile fnth(r), and found it was universal across redshift and cluster mass
of the studied 65 galaxy clusters. When scaling the cluster radii with respect to the
mean matter density of the universe, the thermal fraction we mentioned above can
be then expressed as

fth(r) = 1− fnth(r) = A

{
1 + exp

[
−
(
r/R200m

B

)γ]}
, (3.9)

with the best fitted parameters A = 0.452, B = 0.841, γ = 1.628.
Then based on the assumption of the cluster dynamical state being in hydrostatic

equilibrium,
dPtot(r)

dr
= −ρgas(r)

GM(r)

r2
, (3.10)

we are able to predict the gas density profile from analytic models for the enclosed
mass function of halo M(r), the gas thermal pressure profile Pth(r) and the gas
thermal fraction fth(r) as

ρgas(r) = − r

GM(r)

fth(r)dPth(r)
dr
− Pth(r)dfth(r)

dr

f 2
th(r)

. (3.11)

The gas temperature profile of the cluster is derived by the ideal gas equation of state,

Tgas(r) =
µPth(r)

kBρgas(r)
, (3.12)

where µ is the mean mass per gas particle and kB is the Boltzmann constant.
We emphasize that the analytical models we choose for both the thermal and

non-thermal pressure of the gas in this work are only presented as an example, not
some hard-coded choice. In HYPER, the hydro part that drives the gas particles
hydrodynamics can be constructed based on general models for the gas pressure. Thus
we can systematically vary the pressure profiles and study different ICM models with
HYPER.

3.2.3 IGM Model

In the low-density IGM regime, where the local density is less than the mean density
of the universe that ρm/ρ̄m . 10, shock-heating is not important, and the gas physics
is set by different processes than in the ICM regime in Gnedin & Hui (1998).

Hui & Gnedin (1997) proposed a semi-analytical method to predict the temperature-
density relation for any given cosmology and reionization history, using the Zel’dovich
approximation. They find a tight correlation (to better than 10%) between the gas
density and temperature (and hence pressure as well), well described by a power-law,

T = T0∆γ−1, (3.13)
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where T0(z) is a function of redshift only and is of order of 104K, ∆ is the relative
gas density, ∆ = ρgas/ρ̄gas, and γ is between 1 and 1.62.

Both T0 and γ are found evolving with time. Hui & Gnedin (1997) derived an-
alytical approximations to the temperature-density relation in a scenario when the
universe reionizes rapidly, which is often considered a suitable approximation for low
redshift evolution of γ and T0.

3.3 Methods

0 125 250 375 500
X [Mpc/h]

0

125

250

375

500

Y 
[M

pc
/h

]

dm

0 125 250 375 500
X [Mpc/h]

gas

0 2 4
log10 ( / )

5

6

7

8

lo
g 1

0(
T[

k]
)

Figure 3.1: Visualization of dark matter and gas in the HYPER simulation at z =
0.0. The simulation box size is 500 Mpc/h per side with a thickness of 20 Mpc/h.
Left: Shown is a projection of the dark matter density field. The cosmic large-scale
structures like massive collapsed halos, elongated filaments and near-empty voids
in the HYPER simulation can be easily identified in the thin slice. Right: The
projection of gas density field is shown to have a strong correlation with the dark
matter distribution. In this slice, brightness indicates the projected mass density
and color hue visualizes the mean projected temperature (dull-red to brilliant-yellow
indicating cold to hot, as shown by the color bar aside).

In this section we introduce our further development of the HPM algorithm, which
has already shown its potential for being an efficient and accurate alternative to full
hydrodynamic simulations for simulating the low column density Lyman-alpha forest
(Gnedin & Hui, 1998), by expanding it from the IGM regime to the high-density ICM
with the help of the analytical ICM model discussed in Section 3.2.
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3.3.1 Particle-Mesh

The PM solver, which laid the foundation of the HPM algorithm, is widely used
for tracking the evolution of collisionless dark matter (e.g. Hockney & Eastwood,
1981). We start with introducing a PM code developed by Trac & Pen (2004), which
demonstrates how we resolve the evolution of collisionless dark matter particles in our
HPM algorithm. This PM code has been adapted for solving Newton’s equations of
motion for dark matter particles in a Friedman-Robertson-Walker (FRW) universe.
In the expanding FRW background, we use comoving coordinates ~xc = ~x/a, where
the scale factor a is governed by the Friedman equation

da

dt
= aH0(Ωma

−3 + ΩΛ)1/2, (3.14)

assuming a spatially flat background. And to preserve the time-invariant conservation
form of the Euler fluid equations, we take a new variable

dτ =
dt

a2
, (3.15)

for the time coordinate (e.g. Doroshkevich et al., 1980; Gnedin, 1995; Martel &
Shapiro, 1998; Pen, 1998; Trac & Pen, 2004).

The time-dependence of the cosmological expansion remains only in the gravita-
tional source term,

∇2Φ = 4πaG(ρm − ρ̄m). (3.16)

Here the matter density is per comoving volume d3~xc = a−3d3~x, and is related to the
proper mass density by ρm = a3ρp

m. The dynamical equations of dark matter particle
under the spatial and time coordinate transformations are

d~xc

dτ
= ~v, (3.17)

d~v

dτ
= −~∇Φ, (3.18)

where code quantities velocity ~v and gravitational potential Φ are related to the
corresponding physical proper quantities by ~v = a~vp, Φ = a2Φp.

The PM solver solves the equation of motion for the dark matter particles treating
the gravitational force as a field and approximating it on a uniform mesh. We firstly
use the ”Cloud-in-a-Cell” (CIC) scheme (Hockney & Eastwood, 1981) to deposit
mass, including both the dark matter and gas, to the mesh to create the density field,
then calculate the gravitational potential Φ by solving the Poisson’s equation, with
the Fast Fourier Transform. In Fourier space, the modified Poisson’s equation of the
continuous system is expressed as

Φ̃(~k) =
4πaGρ̃m(~k)

k2
, (3.19)
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For the PM solver in our HPM algorithm, the Green function is obtained from directly
transforming the finite-difference approximation of the Laplacian in the Poisson’s
equation,

Φ̃(~k) =
4πaGρ̃m(~k)(∆l

2
)2

sin2(∆lkx
2

) + sin2(∆lky
2

) + sin2(∆lkz
2

)
, (3.20)

where ∆l = L/N is the length of unit grid cell, L is the length of simulation box, and
N is the number of mesh cells per side. When calculating the force field, differential
operators, such as the gradient∇, are replaced by the finite difference approximations.
Potential and accelerations at particle positions are obtained by interpolating on the
array of mesh-defined values.

We adopt the kick-drift-kick (KDK) leapfrog integrator also used for GADGET-2
(Springel, 2005) in our simulation, updating the position and velocity for each particle
with the time evolution operator U(∆τ) = K(∆τ

2
)D(∆τ)K(∆τ

2
). The kick and drift

operators, K and D, are defined as

K(∆τ) =

{
~xi → ~xi
~vi → ~vi + ~ai∆τ

(3.21)

D(∆τ) =

{
~xi → ~xi + ~vi∆τ
~vi → ~vi

(3.22)

where the acceleration ~ai is interpolated for each particle from the acceleration field
on the grid.

3.3.2 Hydro-Particle-Mesh

In a hydro simulation, the main difference between dark matter and gas, dynamically,
is that the latter is subject to pressure forces in addition to the gravity. Our HPM
method is designed by modifying the dark matter only PM algorithm to also solve
the dynamical equation for gas particles,

d~vgas

dτ
= −∇Φ− ∇P

ρgas

, (3.23)

which, in addition to the gravitational force, also includes the pressure force−∇P/ρgas.
The comoving gas pressure P is related to the proper pressure Pp by P = a5Pp.

The pressure force on gas particles is inferred from HPM variables calculated and
saved for each gas particle interpolated to the particle positions on HPM fields and
a mapping relation derived from the gas model of ICM and IGM we have already
discussed in Section 3.2.2 and 3.2.3. We will show how to select the HPM fields
in Section 3.3.3 and how to construct the mapping relationship in detail in Section
3.3.4. We calculate the gravitational force −∇Φ following the same procedure as for
the original PM code described above. The pressure force −∇P/ρgas is calculated
by depositing the particle pressure to the mesh, applying the finite difference, and
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finally interpolating it back to the particles in the simulation. Specific details of the
implementation of the gas pressure calculation with the constructed mapping relation
between the gas particle thermal properties and the HPM variables is discussed in
Section 3.3.4.

Notice that we are no longer adopting a single component model to reduce com-
putational cost as in the original HPM. As explained by Gnedin & Hui (1998), in the
IGM regime the gas pressure is dynamically subdominant on large scales; hence, if
one is only interested in modeling the baryonic component, one can treat the part of
the gravitational force acting on baryons from the dark matter as if the dark matter
followed the baryons. However, in the high-density ICM regime, pressure and gravity
are comparable quantities, dark matter distribution can not be accurately approxi-
mated by the distribution of baryons, and the difference between the two components
can not be neglected when solving for the evolution of baryons. Hence, this difference
between the IGM and the ICM requires one to track gas and dark matter particles
separately.

The results in this chapter are drawn from a HPM simulation of box whose per
side length L = 500h−1Mpc with periodic boundary conditions and equal numbers
of dark matter and gas particles Ndm = Ngas = 10243, and the mesh size is set to
be Nmesh = 40963. The simulation runs from start point z = 100 to z = 0 while the
hydro part for gas particle is turned on at z = 6 takes ∼ 4500 CPU hours in total.
In the simulation, we adopt a “concordance” ΛCDM model (Ωm = 0.3, ΩΛ = 0.7,
Ωb = 0.045, h = 0.7 and σ8 = 0.8).

3.3.3 HPM Variables and Fields

For the ICM model we have discussed in Section 3.2.2, if the halo mass M and the
distance of the gas to the halo center r are specified, one can derive the gas thermal
properties from these two variables,

X = X(M, r), (3.24)

where X refers to the gas thermal quantities like temperature T or pressure P . How-
ever, in the HPM algorithm, the halo mass and the displacement of gas particles with
respective to the halo center are not directly available (without adding on-the-fly
halo finding), and evaluating the gas properties in the ICM region after specifying
the halo it resides in will also enforce unwanted spherical symmetry. Our goal is
to avoid mapping the gas temperature or pressure directly from the halo mass and
the gas particle displacement in the halo. Instead of identifying the halo where gas
resides and locating the gas particle with respective to the halo center, we choose to
use designed HPM variables and fields that could more accurately reflect the local
environment information of simulated particles. The HPM variables interpolated to
the position of gas particles with the HPM fields should also show enough connection
to the halo mass and radius when assuming an ideal spherical symmetry scheme,
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so that we can use them to build a pre-computed mapping for inference of the gas
thermal properties based on the ICM model. Since it requires two variables M and r
to calculate the thermal quantities of the gas in the ICM model, the number of HPM
fields used for calculating the HPM variables as alternative to halo variables M and
r should also be at least 2 to break the degeneracy.

According to the description above, the HPM fields chosen should satisfy two
conditions to keep our HPM algorithm efficient enough: (a) the calculation of the
HPM fields in the HPM method should be efficient enough, and (b) derivation of
HPM variables in the adopted ICM model should be simple, preferably with analytical
expressions as a function of halo mass and radius.

In HYPER, we adopt the matter density and a new field, the scalar force, to be
our HPM variables for the inference of gas thermal properties. We choose the matter
density because this quantity is readily available, since it is used to solve the Poisson’s
equation and is saved for each particle in the simulation. For the other HPM variable,
the scalar force, we create a new variable based on the idea that originates from the
gravitational force calculation. Recall, that the gravitational force (per unit mass) is
defined by

~fg(~x) =

∫
Gρm(~x′)(~x′ − ~x)

|~x′ − ~x|3
d3~x′ = Gρm(~x)⊗ ~x

|~x|3
, (3.25)

where G is the gravitational constant, ⊗ denotes the operation of convolution. For
the newly designed scalar force (per unit mass) variable we simply replace ~x

|~x|3 in the

convolution with 1
|~x|2 . The new variable shares the same units as the gravitational

force, but is a scalar instead,

fscalar(~x) = Gρm(~x)⊗ 1

|~x|2
. (3.26)

The scalar force fscalar satisfies the requirements for the HPM variables. Thus we can
quickly implement it in the PM solver, since the Fourier transform of 1

|~x|2 is

∫
1

|~x|2
ei~x·

~kd3~x =
2π2

k
(3.27)

and

f̃scalar(~k) =
2π2Gρ̃m(~k)

k
, (3.28)

which can be solved directly analogous to computation of the gravitational potential
with the PM solver described in Section 3.3.2. And in the halo model, we can calculate
the radial profile of the scalar force by using the NFW profile for the matter density
of the halo convolved with 1

|~x|2 . For the scalar force of a halo at radius |~x| = r, we
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can can rewrite the integral in the spherical coordinates, so that

fscalar(r) =

∫
GρNFW(~x′)× 1

|~x− ~x′|2
d3~x′

=

∫ ∞
0

GρNFW(r′)

∫ π

0

2π(r′)2dθ

(r′)2 + x2 − 2r′x cos θ
dr′

=
2πGrs

x

[∫ r

0

ρs

(1 + r′/rs)2
ln

(
r′ + r

r − r′

)
dr′+∫ ∞

r

ρs

(1 + r′/rs)2
ln

(
r′ + r

r′ − r

)
dr′
]

=
2πGρsrs ln(r/rs)

1− (r/rs)2
.

(3.29)

Thus, for the given halo mass and radius we can calculate the scalar force with
Eq. 3.29, which will facilitate our construction of the mapping relation between the
HPM variables and the gas thermal properties in Section 3.3.4.

Other candidates for the HPM variables that have been considered are gas density
or gravitational acceleration, since they are also computed by HPM code. However, if
the gas density is one of the fields determining the gas temperature and pressure, then
there is no way to prevent artificial numerical fragmentation when the local Jeans’
length becomes too small (Truelove et al., 1997) with the fixed spatial resolution of
the uniform PM grid. With using the total mass density as the HPM variable, such
numerical artifacts are greatly suppressed.

For another candidate, the gravitational acceleration mentioned above is similar to
the matter density since dark matter also dominates the source of gravitational force.
Thus, this quantity is also very stable against numerical fragmentation. However,
the gravitational acceleration is significantly affected by finite mesh resolution and is
underestimated in the center regions of simulated halos. The finite resolution effect
in the simulation results in a nonmonotonic profile of the gravitational acceleration.
The nonmonotonicity leads to multiple solutions if the gravitational acceleration is
used to predict the thermal properties of gas particles in simulated halos, while we
find that the scalar force is not subject to the nonmonotonicity problem. We have
also considered using the gravitational potential as one of the HPM variable, whose
radial profiles of simulated halos are also monotonic. However, the gravitational
potential suffers from the dynamic range being too narrow, and it has large-scale
contributions that bias the local environment. After experimentation we found that
using the gravitational potential is less optimal than the scalar force.
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Figure 3.2: Mapping relation from the HPM variables matter density, ρm, and the
scalar force, fscalar, discussed in Section 3.3.3, to the gas temperature (left) and pres-
sure (right). Both panels show that the HPM variables have a significant correlation
with the target mapped quantities, though the mapping relation for the gas temper-
ature has a more complicated pattern in the top right corner due to the nonmono-
tonicity of the temperature profile in the core region of halos in the ICM model.

3.3.4 HPM Table

With the HPM variables discussed in Section 3.3.3, matter density and scalar force,
we aim to construct a mapping relation between the gas thermal properties and
these designed halo variables. This mapping relation plays a crucial role in efficiently
modelling the properties of gas in the HPM method for both the IGM and the ICM,
and is referred to as the HPM table.

Construction of the HPM table in the low-density IGM regions where ρm/ρ̄m . 10
and in the high-density ICM region where ρm/ρ̄m � 10 in the simulation follows very
different rules due to the dissimilar behavior of the gas in these two regimes. In the
low-density IGM regime, the gas thermal properties can be very easily characterized
through a power-law temperature-density relation mentioned in Section 3.2.3 with
just one of the HPM variables, the matter density ρm. In the high density regime, the
tight correlation between the gas density and the gas pressure breaks down, and we are
no longer able to describe the density-temperature relation by a power-law. However,
with the help of the ICM model which introduces a mapping relation between the
gas thermal properties and halo information, M and r, we can construct a bridge
between the HPM variables and the halo information and a mapping relation from
the halo variables to the gas thermal properties.

We construct a probabilistic relation between the gas thermal properties, like
temperature or pressure, and the designed HPM variables using a Bayesian analysis.
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Given the HPM variables for a gas particle ρm and fscalar, its average temperature or
pressure can be estimated using a Monte Carlo approach:

< X|ρm, fscalar > =

∫
X(M, r)p(M, r|ρm, fscalar)dMdr

=

∫
X(M, r)p(ρm, fscalar|M, r)p(M, r)dMdr∫

p(ρm, fscalar|M, r)p(M, r)dMdr

'

∑
M,r∼p(M,r)

X(M, r)p(ρm, fscalar|M, r)∑
M,r∼p(M,r)

p(ρm, fscalar|M, r)
,

(3.30)

and X(M, r) is the gas pressure or temperature defined by the ICM model discussed
in Section 3.2.2.

In the continuous limit this mapping is deterministic, since p(ρ, f |M, r) should be
modelled as

p(ρ, f |M, r) = δ(ρ− ρm(M, r))δ(f − fscalar(M, r)), (3.31)

where ρm(M, r) and fscalar(M, r) are obtained from the ICM model with Eq. 3.1 and
Eq. 3.29. In HYPER, we consider a discretized sampling method for our temperature
estimation scheme, where we use a top-hat function to approximate p(ρm, fscalar|M, r)

p(ρm, fscalar|M, r) = Π
( x
H

)
,

x =

√(
log

ρm

ρm(M, r)

)2

+

(
log

fscalar

fscalar(M, r)

)2 (3.32)

where H defines the width of the top-hat function. We note that in the limit of a
vanishing width of the top hat, we recover the aforementioned deterministic relation.

For the prior distribution for M, r, we decompose the distribution as

p(M, r) = p(M)p(r|M) , (3.33)

where the prior for mass p(M) and the conditional p(r|M) are given as

p(M) ∝M
dn

dM

p(r|M) ∝ r2ρNFW(M, r)

M
.

(3.34)

Here dn
dM

is the halo mass function and ρNFW(M, r) is the halo density function de-
fined by the NFW model. Since we cannot directly sample from p(M, r) without an
on-the-fly halo finder, we apply the importance sampling, which is a general technique
in statistics for estimating properties of a particular distribution while only having
samples generated from a different distribution than the distribution of interest, for
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estimation of temperature or pressure, where M, r are sampled from a uniform distri-
bution on a logarithmic scale. We denote this covering distribution as pS(M, r). We
can then re-weight the sampled points as

< X|ρm, fscalar >'

∑
M,r∼pS(M,r)

X(M, r)p(ρm, fscalar|M, r) p(M,r)
pS(M,r)∑

M,r∼pS(M,r)

p(ρm, fscalar|M, r) p(M,r)
pS(M,r)

. (3.35)

According to the analysis above, the procedure for building the HPM table consists
of two steps:

1. Building a two dimensional halo table, by imposing a grid whose columns and
rows represent designed halo masses Mi and radii rj, where Mi and rj are uni-
formly spaced within the mass and radius ranges on a logarithmic scale. This
step simulates the process of sampling M, r from a uniform distribution on a
logarithmic scale. For each element in the ICM table, we can calculate the
HPM variables, matter density ρm and scalar force fscalar. Then we specify
ρ̂

(i,j)
m = ρm(Mi, rj), f̂

(i,j)
scalar = fscalar(Mi, rj).

2. Building the HPM table via HPM variables, a two dimensional table whose
columns and rows represent the designed HPM variables ρ

(k)
m and f

(l)
scalar, by

traversing through the halo table we’ve built and looking into the designed
distance between (ρ

(k)
m , f

(l)
scalar) and (ρ̂

(i,j)
m , f̂

(i,j)
scalar) defined in Eq. 3.32, we could

relate the sampled points (Mi, rj) that would contribute to the estimator of
the thermal quantities defined by Eq. 3.35 corresponds to the mesh grid point
(ρ

(k)
m , f

(l)
scalar) in the HPM table.

As mentioned above, we infer temperature and other thermal properties of the
gas particles in simulation from a mapping relation between HPM variables and the
thermal properties of gas particles we are interested in by

X = X(ρm, fscalar). (3.36)

For the intermediate region between the IGM and the ICM model we adopt a log-
linear interpolation along the density axis of the HPM table.

In Figure 3.2 we plot the HPM tables, which show the mapping relation between
the HPM variables, the matter density ρm and the scalar force fscalar, and the gas
temperature and pressure. In both panels of the plot, we see a vertical band along the
axis of the scalar force at ρm/ρ̄m ∼ 10 that separates the HPM table into the IGM and
the ICM parts. We find the HPM table for the gas pressure generally follows a trend
of larger pressure for particles with higher density and larger scalar force. However,
the mapping relation for the gas temperature has a more complicated pattern in the
top right region of the HPM table, where particles with high density and large scalar
force are found. These particles are more likely to reside in the halo centers, where
the temperature profile is not necessarily monotonic.
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3.3.5 Smoothing and Clumping Effects
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Figure 3.3: Halo profiles of the HPM variables, matter density (left) and the scalar
force (right), of halo mass bin centered at 3 × 1014M� at redshift z = 0.0. Also
shown is the resolution limit of the simulation (thin green band), where the simulated
radial profiles of the HPM variables systematically deviate from the adopted ICM
model. The volume weighted profiles of both the mass density and the scalar force of
simulated halos (solid blue lines) are in good agreement with the NFW profile of the
ICM model (solid black lines), except in the inner core, where they suffer from the
limited resolution of the simulation. The mass weighted profiles (solid red lines) are
greater than the ICM model at larger radii, and agree better with the adjusted ICM
model described in the text (dashed black lines). The scatter of the volume weighted
mass density profile (thin blue band) shows less dependence on the radius than the
mass weighted one (thin red band).

In the HPM simulation, due to the finite resolution of the mesh and the finite
number of particles, the simulation results in the highest density regions like the inner
cores of simulated halos suffer from a smoothing effect, which leads to underestimating
output quantities of the simulation like the density and the scalar force. In addition,
few of the simulated halos are completely relaxed (especially in the outskirts) or
perfectly spherical, which violates the spherical symmetry assumption in the ICM
model. We refer to the asymmetry and inhomogeneity in the distribution of particles
in the outskirt region of simulated halos as the clumping effect. Both the smoothing
effect and the clumping effect will cause the deviation of the simulated profiles for
the HPM variables from the ICM model prediction. The smoothing effect will lead
to an underestimation of simulated HPM variables calculated for the gas particles in
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the halo inner region, while the clumping effect in the outer region will lead to an
overestimation.

In Figure 3.3 we show the comparison between the radial profiles of HPM variables,
the matter density and the scalar force, and their ICM model predictions calculated
for gas particles of simulated halos within the halo mass bin centered at 3× 1014M�
at redshift z = 0. In both panels the simulation results tend to underestimate the
HPM variables from the ICM model in the inner core region due to the smoothing
effect of the finite numerical resolution of the simulation. Outside the core the volume
weighted matter density profile is in good agreement with the NFW profile. We also
find that the mass weighted profiles are significantly higher than the volume weighted
ones, which indicates that the clumping effect in the outer regions of simulated halos
is non-negligible.

Notice that since we infer the gas pressure or temperature from the HPM variables
calculated for each particle, the offset between the simulation results and the ICM
model would introduce bias to the inference of gas temperature or pressure with the
HPM table and will result in incorrect dynamics in simulation. We must treat the
smoothing and clumping effects carefully when using the HPM variables calculated
for each gas particle to model their thermal properties in the simulation. In Figure
3.4 we plot the temperature profiles of simulated halos within the mass bin centered
at M200c = 3 × 1014M� at redshift z = 0.5, where the temperature of gas particles
are interpolated from the HPM table built with the original ICM model. Ignoring
the smoothing and clumping effects on HPM variables results in underestimating
the temperature of gas particles in the center of the halo and an overestimating it
in the outer region, and the deviation from the ICM model prediction on the gas
temperature could be up to 20%.

The reason for this mismatch is that the smoothing effect in the inner region
of simulated halos suppresses magnitude of the HPM variables to the values below
the ICM model prediction. According to the HPM table we show in Figure 3.2, the
HPM variables have a significantly positive correlation with the temperature. Thus,
underestimating the HPM variables means we are also very likely to underestimate
the inferred temperature simultaneously. Then gas particles that reside in the halo
center are more likely to be assigned a temperature value that is biased low. In
the outer region of simulated halos the clumping effect leads to HPM variables for
a substantial number of particles being higher than the ICM prediction. Due to the
same reason that temperature and HPM variables are positively correlated in the
HPM table, overestimating of the HPM variables leads to the temperature of gas
being too high in the outer region.

To mitigate this inconsistency in the temperature inference caused by the limited
resolution and break down of spherical symmetry, we need to take the smoothing
and clumping effects into account while building the halo table. We first run a dark
matter only simulation and fit a calibration function C(r, ζ) to the ratio of simulated
profiles of HPM variables to their ICM model predictions, which enables us to capture
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Figure 3.4: Top: Stacked temperature profiles of simulated halos (solid lines) and the
scatter (thin bands) for the mass bin centered at 3× 1014M� at redshift z = 0.5. The
profile measured in the simulation using the HPM table built on the original ICM
model (red) underestimates the gas temperature in the inner region and overestimates
the temperature in the outskirts up to 20%. The temperature profile measured in
the simulation that uses the HPM table adjusted for smoothing and clumping effect
(blue) agrees better with the temperature profile of the ICM model (black). Bottom:
Relative difference of simulated profiles with the ICM model and a ±20% region
(dotted black lines)

the differences between the simulation results and the original ICM model. We have
discussed in Section 3.3.3 that the HPM variables are only mildly affected by the
gas distribution, so the profiles of HPM variables derived from the dark matter only
simulation can properly emulate their values in an HPM simulation. We verified
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that the offset between simulated profiles of HPM variables and their ICM model
predictions measured in the dark matter only simulation and HPM simulation were
indeed very similar.

The calibration function measured from a dark matter only simulation can effec-
tively correct the gas temperature or pressure inference in HYPER. We adjust the
calculation with the fitted calibration function when deriving the HPM variables in
the halo table as

ρ̂(i,j)
m = ρm(Mi, rj) ∗ Cρm(rj, ζ),

f̂
(i,j)
scalar = fscalar(Mi, rj) ∗ Cfscalar(rj, ζ),

(3.37)

where ζ refers to any information needed to specify numerical resolution. The HPM
table built with the adjusted halo table more accurately relates the HPM variables
of simulated particles to their thermal properties and better approximates the hy-
drodynamics of gas particles through the ICM model. The profiles of HPM variables
adjusted for the calibration functions are also shown in Figure 3.3. More details about
the calibration functions are presented in Section 3.6.1.

After adjusting the HPM table for the effects mentioned above, we show in Figure
3.4 that the temperature inferred from the adjusted HPM table is in good agreement
with the ICM prediction. We observe a downturn in the radial temperature profile
beyondR200c, which is due to the existence of a substantial amount of low-temperature
IGM gas at the outskirt region of the massive halos.

3.3.6 Artificial Viscosity and Pressure Filtering

Shocks are a generic feature of gas flows. When solving the fluid equations in a
particle-based simulation like SPH, the entropy generation on shocks is captured by
an artificial viscosity term. HYPER is a Lagrangian particle method for the dynamical
evolution of gas similar to SPH, and hence needs an artificial velocity term in the gas
momentum equation:

d~vgas

dτ
= −∇Φ− ∇P

ρgas

− ~avisc. (3.38)

Though we don’t need to resolve the conversion between kinetic energy and thermal
energy in HYPER as the thermal properties of gas are directly inferred from the
HPM table built on the ICM model, we still need to include the artificial viscosity
term to prevent particle interpenetration in shocks. The artificial viscosity in HYPER
removes the part of the kinetic energy that should be converted into heat. Otherwise,
we won’t be able to accurately resolve the motion and distribution of the gas in our
simulation (Section 3.6.2). Many different forms have been suggested for the artificial
viscosity, with the Von Neuman-Richtmyer artificial viscosity being the simplest one:

~avisc =
∇Q
ρgas

(3.39)
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with

Q =

{
αhρgasc|∇ · ~v|+ βh2ρgas|∇ · ~v|2 ∇ · ~v < 0,

0 ∇ · ~v ≥ 0,
(3.40)

where h is the particle smoothing length, proportional to the local mean inter-particle
separation, h ∝ ρ

−1/3
gas ; c is the speed of sound of gas. In this work, α ∼ 0.1, β ∼ 0.05

are found to be the best fit values when calibrating the gas radial profiles and scaling
relations of different integrated quantities of the simulated halos. The viscosity term
we adopt has a similar form as the gas pressure force term ∇P/ρgas, with Q acting
as an excess pressure assigned to gas particles. To integrate the artificial viscosity in
HYPER, we only need to solve the dynamical equation for gas particles 3.23 with the
modified pressure ∇(P +Q)/ρgas.

In our HPM simulation, in addition to adopting the artificial viscosity for gas
particles, we also apply a force filter on the pressure force ∇P/ρgas. This approach
aims to sustain a proper hydrostatic equilibrium in the central core region of simulated
halos, since the interpolated temperature of gas particles in the center of the halos
suffers is not affected as much by the smoothing effect of finite resolution as the gas
density, and that in turn leads to less smoothing of the gas pressure compared to
the gravitational force. Filtering on the small-scale structure of the pressure field will
impose a same degree of smoothing effect on the hydro force as the gravitational force
in the center region of the simulated halos. Filtering also suppresses the numerical
noise introduced by the interpolation of gas temperature from a model-based HPM
table. We filter the gas pressure field in the Fourier space by

P̃ f (~k) = P̃ (~k)f(~k) (3.41)

and the filtered pressure force is given by replacing the gas pressure P in ∇P/ρgas

with the filtered pressure P f . For the specific functional form for the filtering we
adopt the Weibull function

f(~k) = AfL − (AfL − A
f
H) exp[−(AfSk)], (3.42)

where AfH = 1.0 for the high frequency filter. Parameters AfL and AfS are tuned to
match the simulated results with the ICM model predictions: AfL = 0.5, AfS = 10.0.

A combination of the artificial viscosity and filtering on gas pressure helps to
prevent too much gas from being ejected of the halos in our simulation and to ensure
we get a reasonable gas fraction for the simulated halos. Tuning the small scale filter
and artificial viscosity are presented in Section 3.6.2.
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3.4 Results

In this section we compare the results from a HYPER simulation to the predictions
of the ICM model used to implement the HPM mapping relation for gas thermal
properties. Good consistency in the properties of the ICM such as the radial profiles,
scaling relation of integrated halo properties, and measurements of the tSZ effect
implies one can systematically control the ICM physics in HYPER simulation by
varying the ICM model while constructing the HPM mapping relation.

3.4.1 Halo Radial Profiles

We first compare the profiles of matter density and gas thermal properties of simulated
halos to the profiles derived with the ICM model. In Figure 3.5 we show the radial
profiles of matter density and their scatter for the simulated halos whose masses fall
into three mass bin centered at 1014M�, 3 × 1014M�, and 1015M� at redshift z = 0
and z = 0.5. We find that the volume-weighted density profiles agree with the NFW
model well except in the inner region, where they suffer from the smoothing effect due
to the limited resolution of the simulation. The clumping effect in the mass-weighted
density profiles mentioned in Section 3.3.5 leads to an overestimate of the matter
density at the outskirts of halos.

In Figure 3.6 we plot the simulated profiles of gas density, temperature, and
pressure and their scatter for the halos whose masses fall into the mass bin centered
at 3× 1014M� at redshift z = 0 and z = 0.5. We also plot the prediction for the gas
profiles in the ICM model used for implementing the hydro part of the simulation
for comparison, and we also show the ratio of simulated profiles to the ICM model
predictions in the bottom panels. We find that the radial profiles of the gas density,
temperature, and pressure for simulated halos are in about 5% agreement with the
ICM model from 0.1R200c to R200c and remain within 20% even in the inner core and
in halo outskirts up to about 1.5R200c.

In the inner core we observe the smoothing effect due to the limited resolution of
the simulation in the gas density and pressure profiles. An analogous smoothing effect
in the simulated gas temperature profiles in the halo centers is much less significant
because we already account for the numerical resolution effect when constructing the
HPM table.

3.4.2 Integrated Halo Quantities

X-ray observables, such as luminosity, temperature, mass of the ICM, and SZ flux
of galaxy clusters have been proposed and used as proxies for the total cluster mass
(e.g. Voit, 2005). Calibrating relations between cluster mass and these observables
is important for exploiting the full statistical power of the cluster surveys. In this
section we show further comparison between the simulation results and the ICM
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Figure 3.5: Comparison between the simulation results and the ICM model (NFW
profile) for the radial profiles of matter density for halos in mass bins centered at
1014M� (1st row), 3 × 1014M� (2nd raw), and 1015M� (3rd raw) at redshift z = 0
(1st column) and z = 0.5 (2nd colum). In each plot the top panel shows that the
simulated volume weighted matter density profile (blue line) agrees well with the NFW
profile (black line). In contrast, the mass weighted matter density profile (red line)
overestimates the matter density in the outskirt region compared to the standard ICM
model due to the clumping effect. Also shown are the scatter in the simulated matter
density profiles (thin blue/red bands); the bottom panel shows the ratio between the
simulation results and the ICM model and a ±20% region (dotted black lines).
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Figure 3.6: Comparison between the simulation results and the ICM model prediction
for the volume weighted radial profiles of gas density (1st raw) and pressure (3rd
raw) and mass-weighted temperature (2nd raw) for halos in mass bins centered at
3× 1014M� at redshift z = 0 (1st column) and z = 0.5 (2nd column). For each plot,
the top panel shows the simulated halo profile and its scatter (blue line and band),
which is found to be in good agreement with the profile of the ICM model (black
line); the bottom panel shows the ratio between the simulation results and the ICM
model and a ±20% region (dotted black lines).
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Figure 3.7: Gas fraction of simulated halos (dots) compared to the ICM model pre-
diction (dashed lines) at different redshift z = 0 (blue), z = 0.5 (red), and z = 1.0
(green) within a spherical region with the mean overdensity 200 (left) and 500 (right)
times of critical density. The halo gas fractions in the simulation are lower than the
universal baryonic fraction Ωb/Ωm = 0.15 for the adopted cosmology (solid black
line).

model predictions by investigating the integrated quantities of identified halos and
exploring the scaling relation between the SZ effect signal, X-ray observables and halo
masses in the simulation.

In Figure 3.7, we plot the gas fractions of simulated halos enclosed within spheres
with the averaged density of 200 and 500 times the critical density respectively at
different redshifts z = 0, 0.5, 1.0. For comparison, we also plot the gas fraction derived
from the ICM model and the universal baryonic fraction fb = Ωb/Ωm where Ωb and
Ωm are the cosmological parameters set for the simulation. As shown in the plots,
after implementation of gas pressure in solving motion of baryonic components in
the simulation, the gas fraction of simulated halos are substantially lower than the
fraction baryon mass takes of the mass of all the matters in the universe, which means
a considerable portion of gas gets propelled out of the gravitational potential well of
collapsed halos due to existence of gas pressure. Furthermore, we find simulation
results of gas fraction match the prediction derived from analytical models of gas
pressure profiles by assuming hydrostatic equilibrium reasonably well. Scatter in the
results of simulated halos is not negligible, as the dynamical state of different halos
can vary significantly in a real simulation. We observe slightly more scatter inside the
radius encompassing the overdensity of 500 times the critical density, since the inner
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Figure 3.8: Integrated Compton-Y parameter within a spherical region with the mean
overdensity of 200 (left) and 500 (right) times the critical density for simulated halos
(dots) compare with the ICM model prediction (dashed lines) at different redshifts
z = 0 (blue), z = 0.5 (red) and z = 1 (green).

region is more sensitive to the dynamic state of the halos. The failure of simulation
to resolve the inner cores of halos may also contribute to the overall scatter.

In Figure 3.8, we plot the Compton Y -parameter integrated over a spherical vol-
ume,

YR =
σT

mec2

∫ R

0

4πPe(r)r
2dr, (3.43)

for the simulated halos and compare it with the Y −M relation derived from the gas
pressure model for two different mass definitions at different redshifts. The Compton
parameter Y200c and Y500c integrated within a spherical region with the mean over-
density of 200 and 500 times the critical density of simulated halos is consistent with
the Y − M relation derived from the gas pressure model, which is not surprising
since Figure 3.6 shows that the simulated gas pressure profiles agree well with the
analytical pressure model. Scatter in the Y −M scaling relation in the simulation is
smaller than the scatter in gas fractions and other X-ray observables; apparently the
Compton Y signal of simulated halos is less affected by the poorly resolved inner core
region. Our results agree with the conclusion in other studies of the SZ effect (e.g.
Komatsu & Seljak, 2002) that the Compton Y signal is less sensitive to gas physics
in the core of clusters.

In Figure 3.9 we plot the bolometric X-ray luminosity LX,

LX =

∫
Λ(T )n2

gasdV, (3.44)
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Figure 3.9: Integrated X-ray quantities: the bolometric X-ray luminosity (top left),
the spherical Compton-like Yx parameter (top right), the mass-weighted average tem-
perature (bottom left), and the emission-weighted temperature (bottom right) of the
simulated halos (dots) compared with the ICM model prediction (dashed lines) at
different redshifts z = 0 (blue), z = 0.5 (red) and z = 1 (green).

where Λ(T ) ∝
√
T is the cooling function assuming that Bremsstrahlung emission

dominates, and ngas is the gas density. We also plot the emission weighted temperature
Tew

Tew =

∫
Λ(T )n2

gasTdV∫
Λ(T )n2

gasdV
. (3.45)
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Another common X-ray observable is the YX parameter (Kravtsov et al., 2006), pro-
portional to the gas thermal energy as defined by the product of the gas mass and
the spectroscopic X-ray temperature,

YX = MgasTX, (3.46)

where Mgas is the gas mass within the spherical overdensity region of radius R500c

and TX is the spectroscopic X-ray temperature. Finally, we also show in Figure 3.9
the characteristic temperature T500c,

T500c =
µemempc

2

kBσT

Y500c

Mgas

. (3.47)

Scaling relation of the integrated X-ray quantities and halo mass in the simulation
results are in good agreement with the ICM gas model predictions from redshift z = 0
to z = 1. Notice that all these X-ray observables are exclusively defined by the
density and the temperature of the gas in halos. Since we have shown in Figure 3.6
that the radial profiles of both gas density and temperature are in good agreement
with the analytical model, this explains the consistency between the integrated X-ray
quantities of the simulated halos and the ICM model prediction. Simulation results
for the YX−M relation have been shown to have less scatter than the LX−M relation,
which may be due to the anti-correlation between the deviation of Mgas and TX from
the scaling relation prediction, which has been found in X-ray observations (Kravtsov
et al., 2006).

We also look into the scatter about the scaling relation in HYPER simulation,
as it could reflect the information on important dynamical effects. Gupta et al.
(2017) studies the scatter about Y −M relation in the Magneticum simulation and
finds that the scatter σlnY about the mass-observable relations at overdensity 500c
is consistent with the lognormal distribution. We also calculate the distribution of
scatter about the Y500c-M500c relation in HYPER and fit it to a lognormal distribution.
We find that the rms scatter σlnY = 0.094±0.002 is in good agreement with the value
σlnY = 0.088 ± 0.006 from the Magneticum simulation. We show the probability
distributions of scatter about the Y500c-M500c for HYPER and its best lognormal fit,
as well as the best-fit lognormal from the Magneticum simulation in Figure 3.10. We
also measure the scatter about the X-ray observable-mass relation by calculating the
RMS dispersion

σlog10 Y =

√√√√ 1

N

N∑
i=1

[log10(Yi)− log10(Ymodel)]
2 (3.48)

following Barnes et al. (2017), where Yi is the X-ray observables as i runs over all
simulated halos and Ymodel is the corresponding ICM model prediction. We present the
comparison between our measurement for the scatter about LX −M500c, YX −M500c,
and T500c −M500c and the MACSIS simulation results in Table 3.1.
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Figure 3.10: Probability distribution of the scatter about the Y500c-M500c relation
for the HYPER simulation output at redshift z = 0.0 (solid blue line), and its best
lognormal fit (dashed blue line). The lognormal fit to the Magneticum simulation
output at redshift z = 0.0 (dashed red line) is also shown for comparison and agrees
well with the HYPER results.

σlog10Y LX-M500c YX-M500c T500c-M500c

HYPER 0.153 0.083 0.038
MACSIS 0.15

±0.02
0.12
±0.01

0.048
±0.003

Table 3.1: Scatter about the X-ray observable - mass relation for HYPER and MAC-
SIS at redshift z = 0.
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We find the scatter about the scaling relation in HYPER is in general consistent
with the state-of-art full hydro simulations, suggesting that HYPER captures the
important dynamical effects modeled in full simulations. However, to further verify
this point, we need to adopt the ICM model drawn from the full hydro simulations to
construct the HPM table for inferring the gas thermal properties. Studies show that
the ICM physics could also affect the scatter about the scaling relation (e.g. Battaglia
et al., 2012). The excellent agreement on the scatter about the Y500c−M500c relation
between HYPER and Magneticum may result from the ICM gas pressure model
we adopt being similar to that found in the Magneticum simulation, which implies
HYPER adopting current ICM model may properly emulates the ICM physics in
Magneticum simulation and the good match on the scatter is a result of a more fair
comparison. Hence, more detailed comparison for scatter about the observable-mass
relation of HYPER and full hydrodynamic simulations is required in the future study.

3.4.3 Thermal SZ Angular Power Spectrum

The tSZ power spectrum C` is a powerful probe of cosmology and can provide promis-
ing constraints on cosmological parameters, in particular σ8, since C` ∝ σ7−9

8 (e.g.
Komatsu & Seljak, 2002; Shaw et al., 2010; Trac et al., 2011). Because the cluster
signal dominates tSZ anisotropies, we can model the analytical prediction of the tSZ
power spectrum using the standard halo model (e.g. Cole & Kaiser, 1988; Komatsu
& Kitayama, 1999). The tSZ angular power spectrum at a multipole moment ` for
the one-halo term is given by

CtSZ
` = f 2(ν)

∫
z

dV

dz

∫
M

dn(M, z)

dM
|Ỹ`(M, z)|2dMdz, (3.49)

where f(ν) = xν coth(xν/2)− 4 with xν = hν/(kBTCMB) is the spectral shape of the
tSZ signal. Integration over redshift and mass are carried out from z = 0 to z = 5
and from M = 1010M� to M = 1016M� respectively. For the differential halo mass
function dn(M, z)/dM we adopt the fitting function from Tinker et al. (2008) based
on N-body simulations.

Following Komatsu & Seljak (2002), the 2D Fourier transform of the projected
Compton Y -parameter, Ỹ`(M, z) is given in the Limber approximation (Limber, 1953)
as

Ỹ`(M, z) =
4πrs

`2
s

σT

mec2

∫
x2Pe(x)

sin(`x/`s)

`x/`s

dx, (3.50)

where x = r/rs is a scaled dimensionless radius, rs is characteristic radius for a
NFW profile defined as R500c/c500c, and we use the average halo concentration c500c

calibrated as a function of the cluster mass and redshift from Diemer & Kravtsov
(2015). The corresponding angular wave number `s = dA/rs, where dA(z) is the
proper angular-diameter distance at redshift z. Here Pe(r) = Pth(r)µ/µe is the elec-
tron pressure, and µ and µe are the mean mass per gas particle and per electron
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respectively, and Pth(r) is the gas thermal pressure profile of the ICM model we dis-
cuss in Section 3.2. The integral is carried out within a spherical region with radius
R ∼ 4R500c.

In the Limber approximation we can also relate the thermal SZ angular power
spectrum to the 3D thermal pressure power spectrum by

CtSZ
` =

16f 2(ν)π2

(2`+ 1)3

∫ zmax

0

∆tSZ(k, z)|k=`/χχ(z)dχ(z), (3.51)

where zmax = 5, χ(z) is the comoving distance to redshift z, and

∆tSZ(k, z) =

[
〈Pe(z)〉σT

(1 + z)mec2

]2
k3

2π2
Pp(k, z). (3.52)

Here Pp(k, z) = 〈δP (~k, z)δ∗P (~k, z)〉 is the power spectrum of the Fourier transform

δP (~k, z) of the fractional thermal pressure fluctuations δP (~x, z) ≡ Pe(~x, z)/〈Pe(~x, z)〉−
1. We approximate the tSZ power spectrum as a sum over the finite number of
simulation outputs,

CtSZ
` =

16f 2(ν)π2

(2`+ 1)3

∑
i

∆tSZ(`/χi, zi)χi∆χi, (3.53)

and we use the fast Fourier transform to calculate the power spectrum of the gas
pressure field drawn from the simulation snapshots at redshift zi to directly estimate
the thermal SZ angular power spectrum from our simulation output.

In Figure 3.11 we show the tSZ power spectrum measured from the HYPER sim-
ulation, which is calculated with the 3D power spectrum of the gas thermal pressure.
We compare our result to the analytical prediction evaluated with the ICM pressure
model and the halo model assuming the same fiducial cosmological parameters as
adopted by simulation. We also plot the measurements of the tSZ power spectrum
by Planck, which are in good agreement with the analytical calculation of the tSZ
power spectrum derived from DPP in He et al. (2021a). The frequency-dependent
terms are all scaled to f 2(ν) = 1 for direct comparison.

The tSZ power spectrum measured with the output of the HYPER simulation is in
good agreement with the analytical prediction calculated with the ICM model, within
∼ 10%. It shows that the HYPER simulation results are consistent with the assumed
ICM model used to implement the hydrodynamics in our simulation not only for
properties of simulated halos, but also for the most widely used statistical measures
of the tSZ effect. According to Eq. 3.49, Compton signals of galaxy clusters dominates
the contribution to the tSZ power spectrum, and we show in Section 3.4.2 that scaling
relation between the Compton Y -parameter and the mass of simulated halos matches
the ICM model derivation very well, which also indicates a good agreement on the
tSZ power spectrum calculation.
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Figure 3.11: Top: tSZ angular power spectrum evaluated with the 3D power spec-
trum of the gas thermal pressure and Eq. 3.53 (red) using the outputs from the
HYPER simulation at different redshifts from z = 0 to z = 5. The HYPER result
agrees within around 10% with the predictions for the tSZ power spectrum calculated
with the ICM pressure model used for constructing the HPM mapping relation, DPP
(He et al., 2021a), and the halo formalism (black line). Planck 2015 analysis (Planck
Collaboration et al., 2016a) of the tSZ power spectrum (gray dots) with error bars
due to uncertainties of foreground contamination and statistical errors is also plotted
for comparison. Bottom: Ratio of the tSZ power spectrum evaluated from the sim-
ulation outputs to the analytical prediction (red line) and ±20% region (dotted black
lines).
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3.5 Conclusion and Discussion

In this chapter we introduce HYPER, a new implementation of a fast approximate
hydro simulation based on an N-body solver. HYPER applies a power-law density-
temperature relation for the gas in the IGM regime of low-density and constructs
a mapping relation between two designed HPM variables and the gas temperature
and pressure in the high-density ICM regime (which based on the adopted ICM gas
pressure model) to simulate the evolution of baryonic matter in an efficient way.

We investigate the properties of gas inside the simulated halos by measuring the
radial profiles of density, temperature, and pressure of the gas for the identified halos
in the simulation. We also present the integrated quantities of observables in the
X-ray and SZ survey and calculate the tSZ angular power spectrum from the sim-
ulation outputs. We emphasize that one of the crucial strength of HYPER is one
can systematically control the gas physics of simulated halos with the adopted ICM
model. We show that

1. the radial profiles of density, temperature and pressure of gas inside the iden-
tified halos in the simulation are in good agreement with the ICM model pre-
dictions within 5% for 0.1R200c − R200c and the deviation is limited to 20% in
the inner core r < 0.1R200c and outer skirt region R200c − 1.5R200c. Mild incon-
sistency found in the inner region might be due to the resolution limit of the
HPM solver.

2. the integrated X-ray and SZ observables of simulated halos are in good agree-
ment with the scaling relations derived from the gas radial profiles of the ICM
model at redshifts from z = 0 to z = 1. The scatter in the relation comes
from two primary sources: the variations in the dynamical states of different
simulated halos and the finite numerical resolution in the inner core of cluster.
The latter may also contribute to the bias of the gas fraction of simulated halos
as compared to the model prediction. The scatter in the simulation results of
different observables is comparable to that in the full hydrodynamic simulation
Magneticum and MACSIS.

3. the tSZ angular power spectrum measured for the HYPER simulation, which is
calculated using the 3D power spectrum of the gas thermal pressure drawn from
the simulation at different redshift snapshots, is in good agreement with the an-
alytical predictions evaluated with the halo model and the ICM model used to
implement the HPM algorithm. Good consistency in the simulation output and
ICM model derivation for properties of the ICM regime includes the cluster ra-
dial profiles, SZ and X-ray observable-mass relation, and statistical quantities of
the tSZ effects indicates HYPER simulation allows us to systematically control
the ICM physics by varying the ICM model implemented in the HPM mapping
relation construction.
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We envision three main use cases for HYPER.

1. HYPER runs orders of magnitude faster than ordinary hydrodynamic simu-
lations. It can be useful for generating a large number of mock catalogs and
creating maps of various physical quantities (like X-Ray, temperature, SZ effect,
etc.) for galaxy clusters. These outputs will help in the development of data
reduction and analysis pipelines, for understanding systematics and selection
effects, and for interpreting cosmological and astrophysical constraints. One
can also envision training a multi-band deep learning model with mock obser-
vations generated by HYPER for the mass estimation and mass distribution
measurement of galaxy clusters.

2. In HYPER we implement the dynamics of baryons via the HPM mapping re-
lation built on the ICM model for the gas profiles. Modifications of the matter
power spectrum due to baryonic physics are one of the major theoretical un-
certainties in cosmological weak lensing measurements. The ability of HYPER
simulations to efficiently model the joint effects and varied cosmological param-
eters is a powerful tool for studying mitigation schemes for baryonic effects in
weak lensing cosmic shear measurements (e.g. Huang et al., 2019).

3. Baryonic physics such as star formation, energetic feedback, and nonthermal
pressure support affect the tSZ angular power spectrum in nontrivial ways (e.g.
Trac et al., 2011). The difference in gas physics is imprinted in the cluster gas
pressure profile. With HYPER one can systematically vary the gas pressure
model of galaxy clusters. For example, one can implement different ICM mod-
els drawn from current state-of-art high resolution hydrodynamic simulations
in a large scale fast hydro simulation of size up to ∼ 1-2 Gpc, which would
be unrealistically expensive for ordinary hydrodynamic simulations. With this
approach one can systematically study how different gas physics influences, for
example, the tSZ angular power spectrum. Moreover, from an inverse perspec-
tive, the efficiency of HYPER also enables us to generate a large number of
mock observations, combined with proper statistic techniques (e.g. Gaussian
Process) allows us to quickly explore parameter space for ICM model and use
observation data of the SZ effect to put constraints on the ICM model; further-
more, it can be used to examine the gas physics implemented in cosmological
simulation.

In future extensions of this work we will focus on improving the finite spatial
resolution of HYPER. One avenue could be adopting an hybrid scheme combining
the multigrid method with the fast Fourier transform (e.g. Kravtsov et al., 1997),
which could eliminate the resolution effect in the high-density ICM regime and sustain
the high computational efficiency throughout the rest of the simulation volume. It
may help solve the problem of overestimating the gas velocity dispersion in the inner
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region of halos. We also plan to study the performance of HYPER compared to other
large-scale state-of-art hydrodynamic simulations like Magneticum, Illustris, etc, by
replacing the ICM pressure model adopted in this work with a simulated ICM pressure
profile drawn from the corresponding hydrodynamic simulation. That would allow a
direct comparison between HYPER and full hydro simulations, and would enable us
to study further the reliability of our new HPM algorithm.

3.6 Supplemental Materials

3.6.1 HPM Variables Adjustment
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Figure 3.12: Ratio of simulated mass-weighted profiles of the HPM variables, ρm (left
panel) and fscalar (right panel), to the theoretical derivation in the ICM model for
mass bins M200c = 1014M� and 3 × 1014M� at redshift z = 0 and z = 0.5 (dashed
colorful lines) and their uncertainties (thin bands). Also shown are the best fits for
the calibration functions C(r, ζ) (solid black line). Fitted calibration functions are
found to be in good agreement with the simulation results, while deviation appears
at large radii where the uncertainties for the simulated radial profiles become great
more significant and data points are less important in the fitting. The bottom panels
show the ratio between the simulation results and the best fits for the calibration
functions and the ±20% band (dotted black lines)

We adopt the form of the Weibull function for the calibration function C(r, ζ)
to characterize the difference between the simulated radial profiles of HPM variables
and their theoretical values in the ICM model:

CY (r, ζ) = ACL − (ACL − ACH) exp[−(ACS (r/ζ))], (3.54)

69



where Y denote the HPM variables ρm and fscalar and ζ = ∆l = L/N is the length
of the grid cell in our simulation. We fit the calibration function to the ratio of the
simulated mass-weighted profiles of ρm and fscalar to the radial profiles derived in
the standard ICM model for two mass bins M200c = 1014M�, 3 × 1014M� at redshift
z = 0.0, 0.5, and importance of the data points in fitting are weighted by the un-
certainties of the radial profiles. The best fit results for the parameters ACH, A

C
L , A

C
S

are [1.80,0.01,0.70] and [1.30,0.48,0.60] for HPM variables ρm and fscalar respectively.
These parameters of the calibration functions may be spatial resolution dependent.

In Figure 3.12 we plot the ratio of simulated radial profiles of ρm and fscalar to
their respective values in the adopted ICM model and its uncertainty. We also show
the best fit results for our calibration function. The fitted calibration functions agree
well with the simulated mean profiles in the inner regions of halos, but show more
deviation as the uncertainties of the simulation results grow in the outskirt region.

3.6.2 Pressure Filtering and Artificial Viscosity Tuning
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Figure 3.13: Left: Simulated gas density profiles as compared to the ICM model
(solid black line) when we apply pressure filters with filter parameters set to AfS = 5
(green), AfS = 10 (blue), and AfS = 15 (red). Simulation results for the gas density
profiles are insensitive to the pressure filter parameter AfS. Ratio between simulated
gas density profile and the ICM model and the ± 20% region are shown in the bottom
panel. Right: Simulated gas density profiles with filter parameters AfL = 0.3 (blue),
AfL = 0.5 (green), and AfL = 0.7 (red) compare to the ICM model (black).

As discussed in Section 3.3.6, we apply a pressure filter on the gas pressure field
in Fourier space to smooth the gas pressure in the inner region of the halos and
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suppress the numerical noise. The pressure filter is in the form of the Weibull function
expressed by Eq. 3.42. We tune the parameters AL and AS, which determine the scale
range and the degree of smoothing at small scales for the pressure filter, to make the
simulated gas density profiles match the ICM profiles.

In Figure 3.13 we compare the simulated gas density profiles with the analytical
derivation in the ICM model after filtering the gas pressure field in Fourier space.
We experiment with using the pressure filters with different combinations of AfS and
AfL. We find that the simulation results are less sensitive to the filter parameter AfS,
and we choose to adopt AfS = 10 for our simulation. We tune the AfL starting from
AfL = 1.0 then gradually decrease to adjust the smoothing effect on the gas pressure
imposed by the filter until we can balance the hydro force and the gravity and get a
proper density profile when AfL = 0.3.
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Figure 3.14: Simulated gas density profile (left) and gas velocity dispersion (right)
and their uncertainties with both pressure filter and artificial viscosity applied in the
simulation (red) as compared to the case with only the pressure filter being applied
(blue). Both cases show good agreements with the ICM model (solid black line).
Their ratio and the ± 20% (left), ± 50% (right) region (dotted black lines) are shown
in the bottom panel.

However, with only the pressure filter, we can obtain a proper density profile
but overestimate the velocity dispersion for gas particles in the simulated halos. By
applying the artificial viscosity, which removes the extra kinetic energy of gas particles
that should have been converted into heat, we can reduce the discrepancy, although
not eliminate it completely. As shown in the right panel of Figure 3.13, smoothing
the gas thermal pressure field avoids an excessive hydro force in the inner region of
the simulated halos and prevents pushing too much gas out of the halo. We also
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find that the artificial viscosity can effectively reduce the gas velocity dispersion and
decreases the non-thermal pressure. Since both pressure filter and artificial viscosity
can mitigate the gas pressure to balance the hydro force and gravity, we can tune
the pressure filter and the artificial viscosity jointly to keep the simulated gas density
profile matching the model derivation and reduce the gas velocity dispersion at the
same time. In this case, we find the pressure filter with slightly larger AfL that
AfL = 0.5 and α ∼ 0.1, β ∼ 0.05 for the parameters of artificial viscosity in Eq. 3.40
work best for our simulation.

In Figure 3.14 we plot the ICM gas profiles with (a) both pressure filter and
artificial viscosity and (b) the pressure filter only. We show that by tuning the
pressure filtering and the artificial viscosity jointly, we can make the gas density
profile match the ICM model and obtain a lower gas velocity dispersion in the halo
outskirt region.

Even with the artificial viscosity included into our simulation, it is still difficult
to match the gas velocity dispersion in the inner region of the simulated halos to
the ICM model. This may be because the finite resolution of the HPM algorithm
limits the ability to accurately resolve the local artificial viscosity exerted on the gas
particles in our simulation, especially in the high-density halo center region where
hundreds even thousands of particles can co-locate in one grid cell. Further studies
are required to explore the reason for the discrepancy and improve the simulation
fidelity. One possible solution to increase the resolution in high-density regions is to
use the adaptive mesh refinement.
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Chapter 4

Templates for Sunyaev-Zel’dovich
Angular Power Spectrum with
HYPER

4.1 Introduction

The Sunyaev-Zel’dovich (SZ) effect imprinted in maps of the cosmic microwave back-
ground (CMB) is a promising probe of the evolution of large-scale structures. CMB
photons are scattered by energetic electrons in the intracluster medium and inter-
galactic medium when passing through the expanding universe, which provides the
most substantial contribution to temperature anisotropies on arcminute scales. Most
recent CMB experiments have achieved unprecedented sensitivity and resolution to
observe the temperature anisotropies in order of ∼ 10µK noise and arcminute beams.
Measurements of the secondary distortions caused by the SZ effect can be used to
study the growth of structure and probe the epoch of reionization.

Different research has been conducted with the measurements of SZ signal includes
direct detection of galaxy clusters, the autocorrelation of temperature fluctuations,
and cross-correlation with large-scale structure from galaxy surveys. In this chapter, I
mainly focus on an interesting statistic, the SZ angular power spectrum, whose ampli-
tude depends strongly on the cosmological parameter σ8, which describes the present
root-mean-square matter fluctuation averaged over a sphere of radius 8h−1Mpc. If
assuming the SZ power scales as C` ∝ (σ8/0.8)α, theoretical calculations find the
effective scaling index αtSZ & 7 (e.g. Seljak et al., 2001; Komatsu & Seljak, 2002) for
the thermal SZ (tSZ) component and αkSZ & 4 (e.g. Vishniac, 1987) for the kinetic SZ
(kSZ) component. Trac et al. (2011) model the SZ effect by post-processing a dark
matter simulation of the large-scale structure of the universe to include gas in dark
matter halos and the filamentary intergalactic medium (IGM), and find 7 . αtSZ . 9,
4.5 . αkSZ . 5.5. Thus, even a measurement with uncertainty up to a factor of two
will result in a better than 15% determination of σ8.
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Currently, two publicly available sets of templates for the frequency-dependent
SZ angular power spectrum have been widely used in the analyses of the SZ surveys.
Komatsu & Seljak (2002) calculate the angular power spectrum of the SZ effect using
an analytical halo model assuming the gas has a polytropic equation of state and is
in hydrostatic equilibrium with an NFW gravitational potential. This template finds
the angular power spectrum scales with the cosmological parameters σ8 and Ωb as
C` ∝ σ7

8(Ωbh)2. Another template is proposed by Trac et al. (2011) constructing SZ
maps for an octant of the sky by tracing through a dark matter simulation processed
to include gas in dark matter halos and the filamentary IGM. This template have
been used by Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT)
groups to constrain cosmological parameter σ8 (e.g. Lueker et al., 2010; Fowler et al.,
2010; Dunkley et al., 2011, ).

However, the template proposed by Komatsu & Seljak (2002) only accounts for
the thermal but not kinetic contributions to the temperature anisotropies. The Sehgal
et al. (2010) template approximates the gas physics in collapsed halos and the filamen-
tary IGM by tracing through a dark matter simulation, which may not be accurate
and flexible enough to model the gas properties and evolution in collapsed objects.
As discussed in Trac et al. (2011), to constrain the reionization epoch through the
kSZ angular power spectrum, we need a better understanding of the nonlinear contri-
bution from collapsed objects in the post-reionization epoch. The HYPER code that
has been discussed in Chapter 3 can be used to model both the thermal and kinetic
contributions to the temperature anisotropies. HYPER also solves the gas equations
of motion using robust thermodynamical models and more properly approximate the
gas evolution in both the lower-density intergalactic medium and the higher-density
intracluster medium. Thus, HYPER can be a perfect candidate for the templates
calculating the SZ angular power spectrum.

In this chapter, I will discuss using the outputs of HYPER simulations to calcu-
late the frequency-dependent SZ temperature anisotropies, with thermal and kinetic
contributions in Section 4.2, study how the amplitude of the SZ angular power spec-
trum scales with the cosmological parameter σ8 in Section 4.3. In Section 4.4, I will
conclude our finds and discuss the future avenue.

4.2 Sunyaev-Zel’dovich Angular Power Spectrum

In this section, I will introduce how to use the simulation output of HYPER to
calculate the tSZ and kSZ angular power spectra. For the calculation, I compare
two different methods for both. For the tSZ and kSZ temperature anisotropies in
the non-relativistic limit, the change in the CMB temperature at frequency ν in the
direction n̂ on the sky is expressed as

∆TSZ(n̂)

TCMB

=
∆TtSZ(n̂)

TCMB

+
∆TkSZ(n̂)

TCMB

= f(ν)y − b (4.1)
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where y is the dimensionless Compton parameter

y =
kBσT

mec2

∫
neTedl, (4.2)

and b is the Doppler parameter

b =
σT

c

∫
nevlosdl, (4.3)

ne, Te are the number density and temperature of the electron distribution, vlos is the
electron velocity along the line of sight and we choose the convention vlos > 0 when
the electrons are moving away from the observer. f(ν) is the frequency dependence
term f(ν) = xν coth(xν/2)−4 with xν = hν/(kBTCMB). The temperature anisotropies
is decomposed into harmonic components by

∆T (n̂)

TCMB

=
∑
`,m

a`mY`m(n̂). (4.4)

The angular power spectrum is then defined as

C` =
1

2`+ 1

∑̀
m=−`

〈a`ma∗`m〉. (4.5)

In this section, I use the HEALPix1 scheme to integrate the electron pressure
and momentum along the line of sight for pixelation of full-sky map of the tSZ and
kSZ signal, then calculate the angular power spectra of the temperature anisotropies
directly from the simulated maps using the software healpy2. In the Limber approx-
imation, we can also relate the tSZ and kSZ angular power spectra to the 3D electron
pressure power spectrum and electron momentum spectrum (e.g. Shao et al., 2011;
Park et al., 2013). The simulation outputs we use for calculating the SZ angular
power spectra are generated by the HYPER simulation with per side length of sim-
ulation box L = 500h−1Mpc with periodic boundary conditions and equal numbers
of dark matter and gas particles Ndm = Ngas = 10243, and the mesh size is set to be
Nmesh = 40963. The simulation runs from start point z = 100 to z = 0, while the
hydro part for gas particle is turned on at z = 6 and adopt the DPP model (He et al.,
2021a) for resolving the hydrodynamics of the simulation. A “concordance” ΛCDM
model (Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.045, h = 0.7 and σ8 = 0.8) is adopted for the
simulation. More details are described in Chapter 3.

1https://healpix.sourceforge.io
2https://healpy.readthedocs.io/en/latest/index.html
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4.2.1 tSZ Angular Power Spectrum

We make full-sky maps of the tSZ effect in Healpix format with a pixel resolution
of 0.4 arcmins (Nside = 8192). For the spherical shell that represents the full-sky
map, particles are subdivided by angular coordinates using the HEALPix scheme
for pixelation of a sphere. The projected electron pressure in each pixel of the shell
is computed and saved. Then the angular power spectrum of the tSZ effect can
be directly calculated from the sky maps using healpy. We also calculate the tSZ
angular power spectrum with the 3D electron pressure power spectrum by

CtSZ
` =

16f 2(ν)π2

(2`+ 1)3

∫
∆tSZ(k, z)|k=`/χχ(z)dχ(z), (4.6)

where χ(z) is the comoving distance to redshift z, and

∆tSZ(k, z) =

[
〈Pe(z)〉σT

(1 + z)mec2

]2
k3

2π2
Pp(k, z). (4.7)

Here Pp(k, z) = 〈δP (~k, z)δ∗P (~k, z)〉 is the power spectrum of the Fourier transform

δP (~k, z) of the fractional thermal pressure fluctuations δP (~x, z) ≡ Pe(~x, z)/〈Pe(~x, z)〉−
1. The Pp(k, z) can be evaluated with output snapshots of HYPER simulation at
different redshifts.

In Figure 4.1, I compare two different methods for calculating the tSZ angular
power spectrum, results directly calculated from the full-sky map and calculated with
the 3D power spectrum of electron pressure field of 0 ≤ z ≤ 1 are found in excellent
agreement for ` & 1000. We find extra power for the tSZ angular power spectrum
calculated from the HEALPix map and disagrees with the Plank analysis (Planck
Collaboration et al., 2016a) at ` . 500. The tSZ angular power spectrum calculated
with the spectrum of electron pressure field agrees very well with the Planck data,
either integrated from z = 0 to z = 1 or to z = 5. We find the contribution from the
tSZ signal of z > 1 to the total thermal power begins to increase at ` & 3000 and
become more significant at ` ∼ 8000. Our calculation still shows a significant tension
with ACT (Choi et al., 2020) and SPT (George et al., 2015; Reichardt et al., 2021)
data at ` = 3000.

The extra power found in the tSZ angular power spectrum calculation is due to
replicating and stacking the simulation box based on periodic boundary conditions
when constructing the light cone for the full-sky map following HEALPix format.
Blaizot et al. (2005) suggests random transformations (e.g. shift, rotation, inversion)
of the underlying simulation box could help in this situation. We find the tSZ signal
at z < 1 contribute ∼80% of the total thermal power at ` = 3000. This is because
large fractions of the power at this scale come from massive halos, which are rare at
high redshift. A more significant contribution from z > 1 at high multiples ` ∼ 8000
shows angular power of small scale is more sensitive to the high redshift clusters. The
tension we find between the tSZ angular power spectrum calculated with the products
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Figure 4.1: Left: the tSZ temperature anisotropies in µK at 280 GHz for a 4◦ × 4◦

sample field from the full-sky map. The map is generated by HEALPix using HYPER
simulation output integrated from z = 0.0 to z = 1.0. At this frequency, the tSZ
signal appears as a temperature increment. The region where temperature anisotropy
& 100µK could sit a massive galaxy cluster. Right: tSZ angular power spectra for
0 ≤ z ≤ 1 calculated with two different methods are compared. Spectrum calculated
from the full-sky map by healpy (red) is in excellent agreement with that calculated
with the spectrum of pressure (blue) for ` & 1000. The excess power shows up for the
tSZ angular power spectrum calculated from the full-sky map at low ` due to the light
cone is constructed by replicating and stacking from the periodic simulation box. The
tSZ angular power spectrum calculated with the power spectrum of electron pressure
integrated to z = 5 is plotted (black), which accounts for most of the total tSZ power
for the scales of interest. Planck 2015 analysis of the tSZ power spectrum (gray dots
with error bar), ACT (green dot with error bar) and SPT (yellow and purple dots
with error bars) values correspond to ` = 3000 are also shown for comparison. ACT
and SPT data are shifted in the plot for clarity. All tSZ data are rescaled to 280 GHz
for direct comparison. In the bottom panel, the ratios of different calculations and
observations to the tSZ angular power spectrum integrated to z = 5 are plotted. The
± 20% region is also shown (dotted lines).
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of HYPER simulation and ACT, SPT data may result from two causes. One possible
reason is that ACT and SPT observations only adopt a limited number of frequency
bands. The tSZ angular power spectrum extracted from the mixed component signal
(e.g. kSZ, clustered CIB, radio point sources, infrared point sources, etc.) could be
under-constrained. The ICM pressure model, DPP, we adopt for HYPER simulation
is studied using X-ray observation and hydrodynamical simulation at low redshift
(z < 0.2). Calibration of the theoretical pressure profiles using a fair sample of
clusters and groups out to higher redshift could potentially lower the tension between
our calculation of the tSZ power spectrum and high-multipole observations.

4.2.2 kSZ Angular Power Spectrum

The sky maps of the kSZ effect can also be generated in HEALPix format by project-
ing the component of the electron momentum along the line of sight to each pixel of
the full-sky spherical shell, and the kSZ angular power spectrum is calculated from
the sky maps with healpy. If define the electron momentum field of the ionized
medium by

q(~x, z) ≡ (1 + δ(~x, z))~v, (4.8)

where δ(~x, z) = ne(~x, z)/〈ne(z)〉 − 1. We can also calculate the kSZ angular power
spectrum with the 3D electron momentum power spectrum by

CkSZ
` =

8π2

(2`+ 1)3

∫
∆kSZ(k, z)|k=`/χχ(z)dχ(z), (4.9)

and

∆kSZ(k, z) =

[
〈ne(z)〉σT

(1 + z)mec2

]2
k3

2π2
Pq⊥(k, z). (4.10)

Here Pq⊥(k, z) = 〈q̃⊥(~k, z)q̃∗⊥(~k, z)〉, q̃⊥(~k, z) is the the projection of q̃(~k, z) ≡∫
ei
~k·~xq(~x, z)d3~x on the plane perpendicular to the mode vector ~k that q̃⊥(~k, z) =

q̃(~k, z)− k̂[q̃(~k, z) · k̂]. Similar to the calculation of the tSZ angular power spectrum,

we can evaluate the q̃⊥(~k, z) with output snapshots of HYPER simulation at different
redshifts to calculate the kSZ angular power spectrum.

In Figure 4.2, I compare two different methods for calculating the kSZ angular
power spectrum, results calculated from the full-sky map and calculated with the
3D power spectrum of electron momentum field of 0 ≤ z ≤ 1 are found in excellent
agreement for ` & 1000. Extra power is also found for the kSZ angular power spectrum
calculated from the HEALPix map due to replicating and stacking periodic simulation
boxes without random rotations. We find that the contribution from the kSZ signal
of z > 1 is more significant than the tSZ signal. The values for kSZ power at ` = 3000
from ACT (Sievers et al., 2013) and SPT (George et al., 2015; Reichardt et al., 2021)
analysis is also plotted for comparison.
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Figure 4.2: Left: the kSZ temperature anisotropies in µK for a 4◦ × 4◦ sample field
from the full-sky map. The map is generated by HEALPix using HYPER simulation
output integrated from z = 0.0 to z = 1.0. The kSZ signal is a temperature decre-
ment (increment) if the los peculiar velocity is positive (negative). The temperature
anisotropy � 100µK is about an order-of-magnitude smaller than the tSZ signal at
280 GHz. Right: kSZ angular power spectra for 0 ≤ z ≤ 1 calculated with two dif-
ferent methods are compared. Spectrum calculated from the full-sky map by healpy

(red) is in excellent agreement with that calculated with the spectrum of momentum
(blue) for ` & 1000. The excess power shows up for the kSZ angular power spectrum
calculated from the full-sky map at low ` is also due to replicating and stacking of the
periodic simulation box when constructing the light cone. The kSZ angular power
spectrum calculated with the power spectrum of electron momentum integrated to
z = 5 is plotted (black), which accounts for the contribution to the kSZ power in the
post-reionization epoch. ACT (green arrow) and SPT (yellow and purple dots with
error bars) analysis of the kSZ power spectrum correspond to ` = 3000 are also shown
for comparison. ACT and SPT data are shifted in the plot for clarity. In the bottom
panel, the ratios of different calculations and observations to the kSZ angular power
spectrum integrated to z = 5 are plotted. The ± 20% region is also shown (dotted
lines).
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The kSZ angular power spectrum amplitude is found several times smaller than the
tSZ angular power spectrum at 280 GHz. This is not surprising since the temperature
anisotropies of the kSZ effect is also found much less than the tSZ signal. The replica
effect also introduces the excess power in the kSZ signal at low `. In Sehgal et al.
(2010), a simple filter is chosen to suppress the large-scale excess. We find the kSZ
signal at z < 1 contributes &50% of the kinetic power at ` = 3000. This difference
compared to what we find in tSZ angular power spectrum is due to the kSZ signal
from the low-mass halos and the IGM are relatively more important, and the majority
of the kSZ signal is from the high-redshift universe. We also emphasize here that the
kSZ angular power spectrum calculated with the outputs of HYPER simulation only
accounts for the contribution from the post-reionization epoch. Our results need to
be combined with the contribution from the reionization epoch when compare to
the observation data to provide enough information for constraints of cosmological
parameters and the reionization epoch.

4.3 Dependence on cosmological parameter σ8

In order to place constraints on σ8, we first need to study how tSZ, kSZ, SZ angular
power spectra scale with this cosmological parameter. In Trac et al. (2011), a rescaling
method is adopted to avoid running additional simulations. Analytical models for
contribution from halo terms and IGM terms are used to rescale the angular power
spectrum to arbitrary σ8. However, HYPER code is very efficient and allows us to
run different realizations with σ8 being varied. For both tSZ and kSZ angular power
spectra calculation, we vary the σ8 from 0.6 to 1.

Following Trac et al. (2011), we define a scaling amplitude Aq (q = SZ, tSZ, kSZ),
expressed as

Aq =
Cq
` (`, σ8)

Cq
` (`, σ8 = 0.8)

= (
σ8

0.8
)αq (4.11)

to quantify how the SZ templates scale with σ8. For scaling index αq, it can be
calculated through

αq =
d lnAq

d lns
, (4.12)

where s = σ/0.8. Using the outputs of HYPER simulations realized with different
σ8 range from 0.6 to 1.0, we find 7.5 . αtSZ . 8.5 for 0.6 ≤ σ ≤ 1.0 at ` = 3000
which is consistent with the result αtSZ & 7 obtained by Komatsu & Seljak (2002) and
7 . αtSZ . 9 by Trac et al. (2011). For the kSZ component, we find 4.5 . αkSZ . 5.0
which also agrees well with the result in Trac et al. (2011) that 4.5 . αkSZ . 5.5.
The αkSZ we find is much smaller than the tSZ scaling index. Considering the kSZ
power has both linear and nonlinear component contributions and the linear-regime
scale factor for kSZ follows rkSZ = (σ8/0.8)4 (Vishniac, 1987) in an approximation
based on linear perturbation theory that the fluctuation of the peculiar velocity field
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Figure 4.3: Left: tSZ angular power spectra calculated with the 3D power spectrum
of electron pressure field produced by HYPER simulations when adopting different
values of cosmological parameter σ8 for the simulations (colorful solid lines). Planck
2015 analysis of the tSZ power spectrum (gray dots with error bars), ACT (green
arrow) and SPT (yellow and purple dots with error bars) values correspond to ` =
3000 are also shown. All the tSZ data are rescaled to 280 GHz for direct comparison.
Right: kSZ angular power spectra calculated using the 3D power spectrum of electron
momentum field of HYPER outputs when set different σ8 values for the simulations
(colorful solid lines). ACT (green arrow) and SPT (yellow and purple dots with error
bars) values correspond to ` = 3000 are plotted for comparison. ACT and SPT data
are shifted in the plot for clarity.

is related to the linear matter power spectrum as Pvv(k) ∝ P lin
δδ (k) ∝ σ2

8. The weak
variation with σ8 for αkSZ is due to the linear component is generally more dominant
in the kSZ signal.

In order to study how the amplitude of the total SZ angular power spectrum scale
with σ8, we model the total SZ power in the nonrelativistic limit by

CSZ
` = CtSZ

` (ν) + CkSZ
` . (4.13)

By combining the results for the calculation of the tSZ and kSZ angular power spectra,
we find 7 . αSZ . 7.5 at 280 GHz and ` = 3000, which is in good agreement with
the SZ scaling index 6.5 . αSZ . 8 found in Trac et al. (2011). We notice that the
scaling indices αq we calculate with the HYPER simulation outputs span a narrower
range than the results in Trac et al. (2011). This is because they adopt four different
halo gas models while HYPER only uses a fixed ICM pressure model.

In Figure 4.3, we show how our calculation of tSZ and kSZ angular power spectrum
using the output of HYPER simulations vary with the cosmological parameter σ8. In
the figure, we only plot the results of certain σ8 values that are comparable to the
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observation data. For the angular power spectrum, we plot Planck analysis (Planck
Collaboration et al., 2016a) for ` . 1300 which favors σ8 ' 0.8. We also plot ACT
(Choi et al., 2020) and SPT (George et al., 2015; Reichardt et al., 2021) values at
` = 3000 which yields σ8 ∼ 0.75 and σ8 ∼ 0.70 respectively. The kSZ angular
power spectra we show in the figure only accounts for the contribution from the post-
reionization epoch, the ACT (Sievers et al., 2013) and SPT (George et al., 2015;
Reichardt et al., 2021) analysis of kSZ signal plotted here are more proper to be
viewed as upper limits for our calculation.

We then consider a simplified case where we constrain the cosmological parameter
σ8 from the SZ or tSZ angular power alone. For CSZ

` = 5.6 ± 2.0 µK2 at ` = 3000
converted to 280 GHz reported by Lueker et al. (2010) and SZ power of 6.8±2.9 µK2

reported by Dunkley et al. (2011), our template with HYPER simulation implemented
using the DPP model yields σ8 = 0.72+0.03

−0.04 and σ8 = 0.74+0.04
−0.06 respectively. Our

results on σ8 using the SZ angular power reported in Dunkley et al. (2011) agree well
with their constraints of σ8 on SZ emission when using different templates TBO1
(Sehgal et al., 2010) σ8 = 0.74 ± 0.05, TBO2 (Trac et al., 2011) σ8 = 0.78 ± 0.05,
Battaglia (Battaglia et al., 2010) σ8 = 0.77 ± 0.05, and Shaw (Shaw et al., 2010)
σ8 = 0.77±0.05. For tSZ angular power values at ` = 3000 scaled to 280 GHz, we use
data reported by ACT that CtSZ

` = 5.88±0.73 µK2 (Choi et al., 2020) and by SPT that
CtSZ
` = 3.81+0.54

−0.73 µK2 from George et al. (2015) and 3.20 ± 0.50 µK2 from Reichardt
et al. (2021). Our calculation with HYPER simulations favor σ8 = 0.75 ± 0.01 for
ACT data and σ8 = 0.71+0.01

−0.02, 0.70+0.01
−0.02 for SPT data. However, the Planck analysis of

the tSZ power spectrum seems to favor a higher value ' 0.80 for σ8. We see tension
appears among Planck, ACT, and SPT observation data. Studies of the pressure
profiles of galaxy clusters at higher redshift and future observation measuring SZ
angular power spectrum at high multipoles could help to mitigate this tension we
find for different observations.

4.4 Discussion and Conclusions

This chapter introduces a template for calculating the tSZ and kSZ angular power
spectra with HYPER, an innovative HPM code for efficient and rapid simulation for
the gas in dark matter halos and the filamentary IGM. The template we proposed
can be applied to interpret observation data for future SZ surveys. Our template for
the kSZ angular power spectrum can also be combined with the work modeling kSZ
signal during the period of reionization to constrain cosmological parameters and the
reionization epoch.

We take two different methods for the calculation of tSZ and kSZ angular power
spectra. We adopt standard HEALPix format for the simulated maps, where integra-
tion about electron pressure and momentum along the line of sight are conducted for
pixelization of the full-sky maps of tSZ and kSZ signal. Angular power spectra can
be directly calculated from the maps generated by HYPER simulations. Adopting
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the Limber approximation, we also calculate the tSZ and kSZ angular power spectra
with the 3D power spectrum of electron pressure and momentum fields produced by
HYPER simulations. Angular power spectra calculated using HEALPix maps and
3D power spectra produced by HYPER simulations are in excellent agreement for
` & 1000. We find extra power in the spectra calculated using the generated full-sky
map in HEALPix format at low multipole due to replicating and stacking of the pe-
riodic simulation box when constructing the light cone. We see more contribution
from low redshift to the total power for tSZ signal than kSZ signal, which is because
large fractions of the tSZ power come from massive halos while the low-mass halos
and the IGM are relatively more important to the kSZ signal.

We also calculate the dependence of the angular power spectra on cosmological
parameter σ8. HYPER is very efficient and allows us to run different realizations
while varying σ8 values. We study how tSZ, kSZ, SZ angular power spectra scale
with σ8 when assuming a power-law scaling relation C` ∝ (σ8/0.8)α. Our findings
for the scaling index α for tSZ, kSZ, and total SZ angular power spectra at ` = 3000
are all in good agreement with the results in Trac et al. (2011). We find a weaker
variation with σ8 for kSZ angular power at ` = 3000 because the linear component is
generally more dominant in the kSZ signal.

We compare our calculation to the up-to-date observations and discuss a simplified
case where we constrain the cosmological parameter σ8 from the SZ or tSZ angular
power alone. We find significant tension among Planck, ACT, and SPT observation
data. We may require more robust studies of ICM pressure profiles at higher redshift
and analysis from future SZ surveys with higher resolution and more frequency bands
to mitigate this tension.

Many avenues remain for future work on completing the template we proposed for
the SZ angular power spectrum. Our calculation of tSZ and kSZ angular power spec-
tra using the HEALPix maps generated with HYPER simulations find extra power
at ` . 1000. We need to explore different approaches to suppress this large-scale
excess. Methods like simple filtering (Sehgal et al., 2010) and random transforma-
tions (Blaizot et al., 2005) have been discussed could be the potential solutions. We
could also increase the volume of our simulation box though this would make our
template more computationally expensive. We also plan to adopt an ICM pressure
model derived using a fair sample of clusters and groups out to higher redshift in our
HYPER simulations, which may mitigate the tension between our calculation and
the analysis of SZ angular power spectrum at high multipole in current SZ surveys.
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Chapter 5

Conclusions and Future Work

This dissertation introduces a hydro-particle-mesh (HPM) code for efficient and rapid
simulations (HYPER) of gas and dark matter. HYPER simulations are orders of
magnitude faster than expensive hydrodynamic simulations and allow one to system-
atically vary the models for intracluster medium (ICM) and intergalactic medium
(IGM) to study different baryonic physics and effects. HYPER simulations can also
produce lightcone catalogs of dark matter halos and full-sky tomographic maps of the
lensing convergence, Sunyaev-Zel’dovich (SZ) effect, and X-ray emission, which are
useful for testing data analysis pipelines, generating training data for machine learn-
ing, understanding selection and systematic effects, and for interpreting astrophysical
and cosmological constraints. For the science application of HYPER simulation, I
propose a template for calculating the thermal SZ (tSZ) and kinetic SZ (kSZ) angu-
lar power spectra whose amplitudes are very sensitive to the cosmological parameters
σ8 and the latter one can also be used to constrain the epoch of reionization.

For the HPM algorithm of HYPER, dark matter halo model, ICM pressure pro-
file, and IGM temperature-density relation are crucial for achieving high efficiency
and high fidelity for the approximate hydrodynamics solver in both the IGM and the
ICM regime, which together fill most of the spatial volume in a fast hydro simulation.
Chapter 2 focuses on the study of ICM pressure profile, where I thoroughly discuss
our updated analytical model for gas pressure profile of galaxy clusters by combin-
ing results from X-ray observations with cosmological simulations. In this work, we
adjust the universal galaxy cluster pressure profile (UPP) (Arnaud et al., 2010) mod-
eled on the X-ray measurements for the hydrostatic mass bias. Hydrostatic mass
bias is mainly caused by neglecting the existence of non-thermal pressure in X-ray
observations and has long been treated as a constant when being used to interpret
observation data and constrain cosmological parameters (e.g. Planck Collaboration
et al., 2014b; Bolliet et al., 2018). However, the possibility of hydrostatic bias could
depend on cluster mass has been proposed and discussed recently. In Chapter 2, we
presented a simulation-based model to characterize the relation between the “true”
masses and the X-ray-estimated hydrostatic masses of galaxy clusters using the X-ray
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masses measured from synthetic images of simulated clusters drawn from the Illus-
trisTNG, the BAHAMAS, and the MACSIS simulations. We apply this model to the
REXCESS X-ray cluster sample and find X-ray-measured hydrostatic masses under-
estimate masses of the clusters in the REXCESS sample by around 7% on average.
We show that the bias has a significant mass dependence increasing with mass from
≈ 0% at MX−ray

500c = 1014M� to ≈ 15% at MX−ray
500c = 1015M�. We recalibrate the

scaled pressure profiles of each cluster in the REXCESS sample used to construct the
UPP model and propose an updated pressure model, debiased galaxy cluster pres-
sure profile (DPP). Our DPP model is found 5% lower than the UPP model in the
inner region of the clusters and 15% lower at the outskirt. Standard self-similarity
still stands for the scaling relation of the DPP model and the Y −M relation. The
analytical calculation of the tSZ angular power spectrum derived from DPP is con-
sistent with the analysis of Planck thermal SZ survey data without requiring extreme
cosmological parameters.

We adopt the DPP model for the ICM pressure profile used to implement the
HPM algorithm in HYPER code introduced in detail in Chapter 3. HYPER applies
a power-law density-temperature relation for the gas in the IGM regime of low-density.
For the high-density ICM regime, we construct a mapping relation between two de-
signed HPM variables and the gas temperature and pressure based on the adopted
ICM gas pressure model to simulate the evolution of baryonic matter efficiently. We
show that the HYPER simulation results are in good agreement with the halo model
expectations for the density, temperature, and pressure radial profiles. Simulated
galaxy cluster scaling relations for SZ and X-ray observables are also in good agree-
ment with mean predictions, with scatter comparable to that found in hydrodynamic
simulations. The tSZ angular power spectrum measured for the HYPER simulation,
which is calculated using the 3D power spectrum of the gas pressure drawn from the
simulation at different redshift snapshots, is in good agreement with the analytical
predictions evaluated with the halo model and the ICM model used to implement the
HPM algorithm. Good consistency in the simulation output and ICM model deriva-
tion for properties of the ICM regime includes the cluster radial profiles, SZ and X-ray
observable-mass relation, and statistical quantities of the tSZ effects indicate HYPER
simulation allows us to systematically control the ICM physics by varying the ICM
model implemented in the HPM mapping relation construction. We also envision
some main use cases for HYPER: generating mock catalogs and creating maps of
various physical quantities for galaxy clusters, producing training data for a multi-
band deep learning model, studying modifications of the matter power spectrum due
to joint effects of baryonic physics and varied cosmological parameters, systemati-
cally studying how different gas physics influences the tSZ angular power spectrum,
examining the gas physics implemented in the current state-of-art high-resolution
hydrodynamic simulations, etc.

In Chapter 4, we discuss the application of HYPER simulation in SZ science. We
introduce a template for calculating the tSZ and kSZ angular power spectra with
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HYPER simulation products. We calculate the angular power spectra of tSZ and
kSZ signals using two different methods: 1. generate simulated full-sky maps of
tSZ and kSZ effects in standard HEALPix format. We integrate electron pressure
and momentum along the line of sight for pixelization of the HEALPix maps, and
angular power spectra can be directly calculated from the simulated maps. 2. adopt
the Limber approximation and relate the tSZ and kSZ angular power spectra to he
3D power spectrum of electron pressure and momentum field produced by HYPER
simulations. We find two methods lead to excellent agreement in tSZ and kSZ spectra
calculation expect extra power is found in the spectra calculated from HEALPix maps
due to the replica effect. We find more contribution from low redshift to the total
power for tSZ signal than kSZ signal. This difference is caused by the different
importance of the massive halos, low-mass halos, and IGM to tSZ and kSZ signals.
We also run different realizations of HYPER varying the values of the cosmological
parameter σ8 to study the dependence of the angular power spectra on σ8. Our
calculation of the the scaling index α when assuming a power-law scaling relation
C` ∝ (σ8/0.8)α is in good agreement with the results in Komatsu & Seljak (2002),
Shaw et al. (2010) and Trac et al. (2011). We compare our calculation to the up-to-
date observations and present a simplified case where we constrain the σ8 form SZ
angular power spectra.

For the future extension of this work, our study of the DPP model is restricted
to the analysis of simulation results and observation data at low redshift. We need
to explore the redshift dependence of hydrostatic mass bias and the ICM pressure
model of galaxy clusters, which may help mitigate tension between the analytical
calculation and observation data for the tSZ angular power spectrum. We will also
focus on improving the finite spatial resolution of HYPER simulation. We consider
adopting a hybrid scheme combining the multigrid method with the fast Fourier
transform. This approach could eliminate the resolution effect in the high-density
ICM regime and sustain the high computational efficiency throughout the rest of
the simulation volume. Alleviation of the resolution effect may also help reduce the
gas velocity dispersion in the inner region of halos. We plan to adopt simulated
ICM pressure profiles drawn from large-scale state-of-art hydrodynamic simulations
in HYPER, which allows a direct comparison with full hydro simulations and further
examination of the reliability of our new HPM algorithm. We will keep consummating
the template for SZ angular power spectrum with HYPER. We need to pursue proper
methods for suppressing the large-scale excess in the angular power spectra calculated
from HEALPix maps generated using HYPER outputs. We also envision that the
kSZ angular power spectrum for the post-reionization epoch can be combined with the
work modeling kSZ signal during the period of reionization to constrain cosmological
parameters and the reionization epoch.
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