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Abstract

Cellular bilayer membranes consist of a diverse array of lipids and proteins. In
many cases, the two constituent leaflets of the membrane are known to differ in their
composition. However, existing theoretical treatments of membranes have mostly
avoided this added level of complexity. In this thesis we use theory and computa-
tional methods to explore the relationship between asymmetry, thermodynamics, and
mechanical properties of lipid bilayer membranes.

We review the experimental evidence for membrane asymmetry in cells and present
an overview of recently developed techniques for creating model asymmetric bilay-
ers. Measurements on these systems have yielded some unexpected results for their
material properties, namely, a relatively high bending stiffness compared to their sym-
metric counterparts. We clarify the distinction between leaflet composition and leaflet
stress as two sources of asymmetry in bilayers and develop a theoretical framework
for analyzing their interplay in determining the meta-stable equilibrium state of the
membrane. We consider the implications for residual stress born by membranes with
externally-imposed zero-curvature constraint, for instance, through periodic bound-
ary conditions during simulations.

We use coarse-grained molecular dynamics simulations of buckled membranes of
MARTINI lipids to show how asymmetry in leaflet tension, or “differential stress”,
can cause a significant increase in bending rigidity of the membrane if this asymmetry
exceeds a certain critical threshold. We use this observation to explain experimental
results and, by inspecting lipid order in the bilayer, attribute stiffening to the forma-
tion of highly-ordered domains in the compressed leaflet of the differentially-stressed
membrane. We investigate the effect of system parameters such as temperature, lipid
type, and size on the stiffening transition and consider their implications. Some pit-
falls of using the buckling method for measuring the bending modulus of asymmetric
membranes are also examined.

We investigate the role of cholesterol in bilayer asymmetry and, using a simple
theoretical model, argue that the relatively rapid flip-flop rate of cholesterol does not
necessarily eliminate differential stress. In fact, we show that there are circumstances
where addition of cholesterol to the system can generate stress asymmetry. We present
evidence from simulations supporting our claim and address conflicting claims from
other works on the matter.

Finally, we take a closer look at the coexistence of ordered and disordered phases
in the compressed leaflet of an asymmetric bilayer. We use a Hidden Markov Model
to classify phases and discuss barrier-crossing issues pertaining to the formation of
the ordered phase.
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Chapter 1

Introduction

After introducing biological lipid membranes and their constituent molecules and the
foundations of molecular dynamics simulations in this chapter, we spend the next
chapter to establish the experimental evidence for ubiquitousness of asymmetry in
lipid bilayers and its unexpected effect on their bending rigidity, and provide a theoret-
ical framework for analyzing curvature elastic properties of asymmetric membranes.
In chapter 3 simulations are used to explain the stiffening phenomenon observed in
the experiments and the effect of system parameters such as temperature and size
on this phenomenon are evaluated. Chapter 4 addresses concerns about the possibil-
ity that presence of rapidly flip-flopping species such as cholesterol in lipid bilayers
can invalidate our proposed mechanism for stiffening of asymmetric bilayers. Finally,
chapter 5 takes a closer look at the proposed coexistence of fluid and gel phases in
the compressed leaflet of stiffened asymmetric membranes.

1.1 Biological background

Biological lipid membranes form the boundary of eukaryotic cells and divide them into
compartments with specialized functionality called organelles. Their main building
blocks are hundreds of different types of lipids and a large array of embedded proteins
[1]. Here we will focus on phospholipids and cholesterol due to their relevance to our
work.

1.1.1 Phospholipids

Phospholipids are amphiphilic molecules consisting of a hydrophilic polar head group
containing a phosphate group and two hydrophobic hydrocarbon tails. The tails are
usually fatty acids and can differ in length, normally containing between 14 and 24
carbon atoms. The tails can have one or more double bonds (they are then called
“unsaturated”), or none (“saturated”) [2,3]. The amphiphilic nature of phospholipids
causes them to self-assemble into structures such as bilayers and micelles, depending
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Figure 1.1: Chemical structure of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC).

on the shape of the lipid, specifically the relative sizes of its head and tail portions
[4, 5].

Under physiological conditions, lipid membranes are typically found in a fluid (or
liquid-crystalline) phase, where the hydrocarbon chains are conformationally disor-
dered. In lower temperatures they can enter a variety of more ordered phases, such
as the gel phase, in which lipids are packed much more densely and have much lower
rates of diffusion [11, 12]. At the same temperature, lipids with saturated tails tend
to form more ordered bilayers compared to lipids with tails containing unsaturated
double bonds [6].

Combining various fatty acids with different length and level of saturation with
head-groups that differ in size, polarity, and charge leads to a diverse array of phos-
pholipids which can form bilayers, having an equally diverse range of physical proper-
ties [2] (for instance, the ratio of the size of head-group compared to the hydrophobic
tail strongly affects the preferred, or “spontanous”, curvature of a monolayer leaflet
made from that lipid [4]), although not all lipid species are equally abundant in bio-
logical systems that interest us, as will be discussed in more detail in section 2.1.

Fig. 1.1 shows the chemical structure of 1-palmitoyl-2-oleoylphosphatidylcholine1

(POPC), an example of a phospholipid.

1.1.2 Cholesterol

In addition to phospholipids, the lipid bilayers in many animal plasma membranes
contain large amounts of cholesterol (as much as 50%) [7–10]. Cholesterol is a
sterol, containing a rigid ring structure, to which a single polar hydroxyl group and
a short non-polar hydrocarbon chain are attached. The cholesterol molecules orient
themselves in the bilayer with their hydroxyl group close to the polar head groups
of adjacent phospholipid molecules [2]. Cholesterol modulates the properties of lipid
bilayers. For example, addition of cholesterol to the membrane tends to stiffen it [2,3].
It is also known that adding cholesterol to a binary mixture of lipids can lead to
emergence of coexisting liquid phases known as “liquid ordered” (Lo) and “liquid
disordered” (Ld) [13–15]. Fig. 1.2 shows the chemical structure of cholesterol.

1This naming convention identifies the lipid’s two acyl chains as belonging to palmitic and oleic
acid and the head-group as choline.
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Figure 1.2: Chemical structure cholesterol.

1.2 Molecular dynamics simulations

Computer simulations are an invaluable tool for obtaining qualitative and quantitative
insights about the physical behaviour of heterogeneous systems, such as biomolecules
or their assemblies [20]. They complement both experiment and theory by allowing
us to compare theoretical predictions with results of virtual experiments that are not
feasible in reality.

In molecular dynamics (MD) simulations we numerically integrate the classical
equations of motion for a set of particles representing our system over a period of
time. The resulting time series is called a trajectory, which can be analyzed in order
to extract relevant information [22]. Assuming ergodicity holds, for a system in
equilibrium the time average of an observable over the trajectory can be taken as a
stand-in for its ensemble average [29].

The natural ensemble of MD simulations is the constant-energy, constant-volume
microcanonical ensemble. In order to sample from constant-temperature or constant-
pressure ensembles, we generally need to add additional variables, known as extended
degrees of freedom, to our system to create a “thermostat” or a “barostat”. These
constructs model the external environment and regulate the time-averaged values of
temperature and pressure [16–18,21,23,27].

The interactions between the particles representing our system in an MD simula-
tions are described by a force field (FF). There exists a wide variety of FFs which can
be categorized based on their level of resolution. The highest-resolution models are
atomistic (or all-atom) models in which every atom is represented with a correspond-
ing particle. Although available computational power has increased significantly since
the days of the first MD simulation of a biomolecule nearly four decades ago [24], the
simulation time-scales and length-scales necessary for investigating many biological
phenomena of interest are still not readily accessible. A solution to this problem is
using coarse-grained (CG) models in which multiple atoms are combined into a single
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particle while the important physics of the system is preserved [19,25,26,28,30,31].

1.3 MARTINI Model

The MARTINI force field [38,39] is a coarse-grained model designed to be computa-
tionally fast and applicable to a broad range of biomolecular systems. It has been
shown that it can accurately reproduce many structural, dynamic, and thermody-
namic properties of a variety of systems and state points [35–38].

On average the MARTINI model maps four heavy atoms to one interaction center,
with an exception for ring-like molecules, like cholesterol, which are mapped with a
higher resolution of up to two heavy atoms to one bead to satisfy the geometric
specificity of small ring-like fragments or molecules. MARTINI is an explicit-solvent
model with water beads that each correspond to four water molecules.

The model consists of four main types of beads: polar (P), non-polar (N), ap-
olar (C), and charged (Q), with each type having subtypes distinguished by their
hydrogen-bonding capabilities and degree of polarity. The mass of the beads is 72
amu (equal to four water molecules) for all beads except those in ring structures for
which the mass is 45 amu.

In this project we worked with the MARTINI representations of the following four
glycero-phosphocholine-lipids specifically: DLPC (1,2-dilauroyl-sn-glycero-3-phospho-
choline), which has two fully saturated C12 chains; DPPC (dipalmitoyl-sn-glycero-
3-phosphocholine), which has two fully saturated C16 chains; POPC (1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphocholine), which has a saturated C16 sn1 -chain and a
singly (cis-)unsaturated C18 sn2 -chain; and finally DLiPC (dilinoleoyl-sn-glycero-3-
phosphocholine), a lipid with two doubly (cis-)unsaturated C18 chains2. Since MAR-
TINI cannot properly distinguish between 16 or 18 carbons, the latter lipid is typically
referred to as DIPC in the MARTINI lipidome, and we will do so, too.

Some of our simulations also contain additional cholesterol. While this lipid has
been part of the original MARTINI suite [38], its parametrization was known to
have numerical stability issues (due to the rigid ring structure) and exhibited several
physical shortcomings; for instance, it failed to preserve fluidity of liquid-ordered do-
mains [40,45]. These issues were successfully addressed in a recent reparametrization
by Melo et al. [42]. Unfortunately, their new force field relies on virtual sites, which
are not supported in the present version of GROMACS-LS [43, 44] (the package we
use to calculate the lateral stress profile—see below). We hence employed a revi-
sion of the Melo force field, created by Ingólfsson [41], which strives to capture the
improvements achieved in Ref. [42] without the need for virtual sites.

2In these names the prefix “cis” refers to the configuration of the unsaturated (double) bond,
indicating that both hydrogens are on the same side of the hydrocarbon chain. The prefix “sn” (for
stereospecific numbering) specifies stereoisomers of chiral molecules, i.e. molecules that cannot be
superposed on their mirror image by a combination of rotations and translations.
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DLPC DPPC POPC DIPC Cholesterol

Figure 1.3: The four phospholipids used in our simulations, together with the choles-
terol model. The different bead colors represent: choline group (blue); phosphate
group (magenta); glycerol backbone (yellow); C4H8 hydrocarbon repeat with single
bonds (light gray); C4H6 hydrocarbon repeat with a cis double bond (dark gray). In
the cholesterol figure, the small white beads are smaller versions of the hydrocarbon
beads, the gray bead is slightly more polar, and the orange bead is the hydroxyl
group.

Fig. 1.3 illustrates the four phospholipids we use, together with the cholesterol
model.

1.4 Basic theory

For length scales a few times larger than the thickness of a membrane, lipid bilayers
can be effectively modeled as continuum elastic sheets and a simple continuum theory
called the Helfrich theory can be used to describe them [145]. According to this theory
the membrane’s shape is governed by the energy functional

E [S] =

∫
S

dA
{1

2
κ(K −K0)2 + κ̄KG

}
, (1.1)

where K = c1 + c2 is the total curvature (sum of the two principal curvatures), K0 is
the spontaneous bilayer curvature, and κ is the bilayer bending modulus. KG = c1c2

and κ̄ are Gaussian curvature and Gaussian curvature modulus, respectively. A typ-
ical value for bending modulus of a fluid bilayer is ≈ 20kBT [32]. The Helfrich
Hamiltonian can be made more complex by adding more terms related to other mem-
brane observables, such as lipid tilt [33]. However, on large enough scales they act
as merely minor corrections to the overall bending physics and would hence not be
necessary for our current project.

Another important elastic parameter of membranes is the area expansion modulus,
which relates the square of area strain and the energetic cost resulting from that strain

Estretch =
1

2
KA

(A− A0)2

A0

, (1.2)
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where Estretch is the stretching energy of the elastic surface, A is the area, A0 is the
equilibrium area, and KA is the area expansion modulus, with a typical value of
≈ 240mN/m for fluid bilayers of common phospholipids [34,114].
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Chapter 2

Nature of asymmetry

2.1 Membrane asymmetry in real cells

It has long been suspected that many biological lipid membranes have leaflets with
differing compositions, supported by experiments on plasma membranes (PM) of
animal red blood cells (RBCs) going back for as long as half a century [60, 61, 71,
72]. (It is however worth mentioning that membrane asymmetry can exists even if
the two leaflets are identical, for example, through a difference between the solute
concentrations in either side of the bilayer.)

Recently, modern mass spectroscopy techniques were used to comprehensively
measure the lipid components of the two PM leaflets in human RBCs [53,55], broadly
confirming classical estimates of PM asymmetry, showing headgroup asymmetry with
an outer (exoplasmic) leaflet primarily comprising the choline-headgroup phospho-
lipids phosphatidylcholine (PC) and sphingomyelin (SM) and an inner (cytoplasmic)
leaflet with greater quantities of phosphatidylethanolamine (PE) and the charged
lipids phosphatidylserine (PS) and phosphatidylinositol (PI). Moreover, lipidomics
shows interleaflet differences in acyl chain structure, with inner leaflet lipids being
about twice as unsaturated compared to the outer leaflet lipids [50, 53]. Lorent
et al.observed that the PM asymmetry is also reflected in the lipid-accessible sur-
face area of single-pass protein transmembrane domains (TMDs), with the TMD
regions being relatively thinner in the exoplasmic leaflet [53]. In addition to the late
secretory and endocytic membranes, bioinformatics analysis of the shape of TMDs
suggests asymmetry of PM is ubiquitous in eukaryotic organisms [53]. This leads to
the conclusion that membrane asymmetry plays a fundamental role in the function
of eukaryotic cells.

The most abundant single component of the PM is cholesterol at about 40 mol%,
and therefore understanding interleaflet distribution of cholesterol is of utmost im-
portance. However, existing evidence on cholesterol distribution spans a range of
possible outcomes, from 80% of cholesterol residing in the inner leaflet to 90% in the
outer leaflet [48, 52,69].
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It is important to note that bilayers with asymmetric composition are not in a
state of thermodynamic equilibrium [46]. If left undisturbed, they will approach the
higher-entropy symmetric state through spontaneous movements of lipids between
the leaflets, called “flip-flops”. For most lipid species flip-flops happen on time-scales
much longer than time-scales (hours or days [119]) of relevant biological processes,
although cholesterol is an exception to this, as its flip-flop rate is believed to be in
the microsecond range [65–68]. Evidently, living cells are not in equilibrium and their
membranes’ asymmetric composition is maintained through active processes involving
energy-consuming enzymes such as flippases, which are transporters that move lipids
from the exoplasmic to the cytosolic face, and floppases, which transport in the reverse
direction [47]. There also exist scramblases, which act as passive catalysts that relax
asymmetry at a rate much faster than that of spontaneous flip-flops [49,57].

The ubiquity of membrane asymmetry in cells, and the required energy for its
active maintenance, demonstrates its important functional role. Examples [50] of
phenomena where active maintenance or relaxation of membrane asymmetry plays
an essential part include maintenance and pruning of neuronal connections [51, 58],
muscle development [70], mammalian fertilization [62], and immune signaling [54,56,
59,63].

2.2 Experiments

Until very recently it was essentially impossible to artificially create well-controlled
asymmetric model membranes, in which the consequences of asymmetry could be
explored while sidestepping many of the confounding factors present in living systems.
But this has changed with the advent of multiple preparation techniques.

In the phase transfer protocol [87,89,93,97] the vesicles are essentially assembled
“one monolayer at a time”: we start with a water-in-oil emulsion with one type
of lipid forming monolayers around water droplets that are then pushed through a
second water-oil interface with another type of lipid, making vesicles with two different
type of lipids in either of their leaflets. Fig. 2.1 shows a schematic of generating a
Giant Unilamellar Vesicle (GUV) with asymmetric lipid composition using the phase
transfer protocol [84].

Another method for generating asymmetric model membranes is the lipid exchange
protocol [77–80], in which lipids on the outside of a vesicle are partially replaced
by other ones that are loaded into a soluble exchange agent, typically methyl-β-
cyclodextrin.

The most recently developed method is the hemifusion protocol [85], in which
asymmetry is achieved through the hemifusion of giant unilamellar vesicles and a
supported lipid bilayer, leading to the lipid exchange of the fused outer leaflets me-
diated by lipid diffusion.

Even though no mechanism exists to also maintain this asymmetry, the beyond-
hours time scale for decay ensures that many consequences of asymmetry can still be
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studied, provided the experiments can be done quickly enough.

With the advent of these new model systems, much focus has been devoted to op-
timizing these protocols, examining biological questions enabled by these techniques
(such as the impact of asymmetry on protein function [91], protein sorting [98], di-
rectional peptide insertion [99], and inter-leaflet coupling of domains [88, 94]), and
exploring novel applications (such as using the phase transfer protocol for cargo com-
partmentalization [82,83] and in synthetic biology [76,86,95,96,100,101]).

Less emphasis has been placed on probing the materials properties of these sys-
tems, even though the broken up-down symmetry could have profound consequences
for them. Indeed, recent biophysical investigations have found that basic thermody-
namic and mechanical properties of asymmetric membranes can also be strongly af-
fected in unexpected and posssibly consequential ways. For instance, Eicher et al. [81]
found that the main phase transition in asymmetric membranes is unusual and de-
pends on how the asymmetry is oriented relative to the curvature of the asymmetric
liposome. And several studies have found that the bending rigidity of asymmetric
vesicle can be much larger than the näıvely expected average of the two cognate sym-
metric membranes: Elani et al. [84] generated asymmetric GUVs with DOPC in one
leaflet and POPC in the other leaflet using phase transfer and found them to be about
150% stiffer than their symmetric counterparts. Karamdad et al. [90] used a microflu-
idic technique based on phase transfer to create asymmetric POPC-DOPC GUVs and
found them to be about 50% stiffer than symmetric GUVs with an equal 50:50 compo-
sition of POPC and DOPC in both leaflets. In both experiments the bending rigidity
was measured using fluctuation analysis. A similar experiment by Chiarot et al. [92],
in which they measured bending rigidity of asymmetric DMPC-DOPC GUVs us-
ing micropipette aspiration techniques, produced similar results (asymmetric bilayers
about 50% stiffer than symmetric counterparts).

This is surprising for at least two reasons. First, leaflet asymmetry obviously
affects a bilayer’s spontaneous curvature; but this only enters the curvature energy at
the linear level, whereas the bending rigidity multiplies the square of the curvature
and hence involves qualitatively different physics. And second, if asymmetry does
not change the bending rigidity of an individual leaflet from the value it would have
in a symmetric membrane, then it is hard to see why the rigidity of an asymmetric
membrane would not be the average rigidity of the two corresponding symmetric
bilayers.

It is of note that Elani et al. [84] also conducted control experiments, comparing
stiffness of symmetric bilayers made using their phase transfer method with those
made using the standard method of electroformation, and found no difference in their
bending rigidities. This is crucial in dispelling the possibility of the observed stiffening
being attributed to artifacts of the vesicle preparation method, such as entrapment
of trace amounts of oil in the hydrophobic core of the bilayers. We will revisit the
results of these experiments in section 3.3.
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Figure 2.1: Schematic of asymmetric GUV preparation via phase transfer. Water
droplets are encased in a monolayer of type A lipids in a water-in-oil emulsion, which
is then added to a water-oil column with type B lipids dissolved in the oil phase and
assembled as a monolayer at the interface. Gravity lowers the droplets through the
column, enveloping them by a second monolayer, forming asymmetric GUVs with
lipid A in the inner leaflet and lipid B in the outer leaflet. Figure reproduced from
Ref. [84] with permission from the Royal Society of Chemistry.

2.3 Theory

In this section we present a general review of the connection between bilayer asymme-
try, spontaneous curvature, and differential stress. Bilayer asymmetry can manifest in
two independent observables: leaflet composition and leaflet stress. Both give rise to
characteristic spontaneous curvatures, and the interplay between bending moments
and lateral stresses determine the overall spontaneous curvature of the bilayer and

10



describe its elastic properties. This subject has been discussed in a number of pub-
lications in the past [102, 115–117, 120], however, we wish to revisit the key ideas,
because some of the implications appear to not have been explicitly spelled out.

2.3.1 Leaflet composition

Consider a compositionally asymmetric membrane whose two leaflets are character-
ized by monolayer bending rigidities κm+ and κm− and spontaneous curvatures Km+

and Km−. We will use the subscript “m” to indicate monolayer observables and labels
“+” and “−” for the upper and lower leaflet, respectively. The same sign conven-
tion is used for bilayer quantities and the upper leaflet. In all following discussions
we ignore the Gaussian curvature contribution, which merely contributes an overall
constant as long as the topology stays the same.

If we impose a weak curvature K, permit the two leaflets to slide past each other
and ensure that they are individually without tension, then the energy density can
be written as the sum of two bending terms:

e0(K) =
1

2
κm+(K −Km+)2 +

1

2
κm−(K +Km−)2 . (2.1)

The first term captures the upper leaflet, the second term the lower one, and the
swapped sign of Km− allows for the fact that the lower leaflet curvature is flipped
with respect to the upper one.

We can find the spontaneous materials curvature of the bilayer K0b by minimizing
this energy density. This curvature, at which the net bending stress vanishes, and
which is hence identified with the subscript “b”, is the rigidity-weighted difference of
the two spontaneous leaflet curvatures:

∂e0(K)

∂K

∣∣∣∣
K=K0b

= 0 ⇒ K0b =
κm+Km+ − κm−Km−

κm+ + κm−
. (2.2)

Using this, the bending energy density can be rewritten as

e0(K) = const. +
1

2
κ(K −K0b)2 , (2.3)

where the bilayer curvature modulus is the sum of the monolayer curvature moduli,
κ = κm+ + κm−, and the constant can be absorbed into the net tension.

Since Km+ and Km− can be large, this can be true for K0b, too. As a numerical
example, let us look at the membrane parameters reported in Table 2.1, which are
determined from atomistic simulations.

For an asymmetric DOPC-POPC membrane, we get K0b ≈ −0.017 nm−1 or a
curvature radius of R0,b = 2|K−1

0b | ≈ 120 nm, a typical size for a large unilamellar
vesicle (LUV) or many intracellular transport vesicles. But if we take an asymmetric
DOPC-DOPE membrane, we get K0b ≈ 0.1 nm−1; a sphere with this curvature would
have a radius of R0,b = 2|K−1

0b | ≈ 20 nm, typical for small unilamellar vesicles (SUV)
or synaptic vesicles.
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lipid T [K] κm [pN nm] Km [nm−1] d [nm]
DOPC 298 59 −0.0714 2.737
POPC 303 66 −0.0317 2.752
DOPE 298 59 −0.2703 2.996

Table 2.1: Material parameters for some typical
lipid systems, determined from atomistic simulations
[123]. The length d is the distance between the aver-
age C2 carbon position in the leaflets and is a mea-
sure of the hydrophobic thickness of the bilayer.

2.3.2 Leaflet stress

Even if the bilayer satisfies K = K0b, it is generally not in an equilibrium state, since
the underlying asymmetric lipid distribution can relax into a symmetric one through
lipid flip-flops between the two leaflets. However, given the relatively long time scales
associated with this process (times between many hours and many days have been
repeatedly measured for not-too-short lipids in unsupported membranes [64]), on time
scales much shorter than the typical flip-flop time, the asymmetric distribution can
be treated as a metastable equilibrium.

But in that case, other metastable states made possible by the slow flip-flop rate
must also be considered—chiefly among them differentially stressed states in which
the mechanical tensions Σ± in the two leaflets are unequal [105, 112, 115, 122]. The
easiest situation to consider, and to which we will restrict our analysis here, is one in
which the two leaflets individually exhibit a nonzero tension that is equal in magnitude
but opposite in sign such that the net bilayer tension Σ = Σ+ + Σ− vanishes. In such
a bilayer, one layer is subject to tensile stress (positive tension), and the other one is
subject to compressive stress (negative tension).

Differentially stressed membranes can relax by bending, similar to bimetallic
strips. We will assume that this happens as illustrated in Fig. 2.2; specifically, we
demand that the two leaflets share a common midplane before and after a change
in curvature. Assume therefore that at some particular spontaneous curvature K0s

the differential area strain vanishes (hence the additional subscript “s”). Notice that
unlike K0b, which by Eqn. (2.2) is a material parameter, K0s instead characterizes
the lipid packing in the two leaflets, which is likely set by whatever kinetics process
creates the bilayer.

From the parallel surface theorem [103, 104], the area element dA± of a parallel
surface at a normal distance z± from the bilayer midplane above or bellow an area
element dA with curvature K is given by

dA± = dA
(
1± z±K

)
+O(z2

±). (2.4)

If dA±0 is the area element of the respective planes at curvature K0s where the area
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shape−driven stress dominates

area−driven stress dominates

relax

relax

introduce lipid curvature

introduce differential stress

shape−driven bending
(curvature stress relaxed)

area−driven bending
(differential stress relaxed)

Figure 2.2: Illustration of the interplay between a spontaneous curvature K0b driven
by lipid shape and a spontaneous curvature K0s driven by area strain. An initially flat
and relaxed membrane can be asymmetrically stressed either by a leaflet imbalance
of lipid shape, or a leaflet imbalance in the area density. Such membranes relax by
assuming a shape- or area-driven spontaneous curvature. When both effects occur
simultaneously (see right hand side), the resulting spontaneous curvature K0 arises
as the balances expressed in Eqn. (2.9), which can include an asymmetric, flat, and
differentially stressed membrane as a special case.

strain from lipid packing is relaxed, changing the curvature from K0s to K creates a
local differential area strain

γ±(K) =
dA±(K)− dA±0

dA±0

= ±(K −K0s)z± +O(z2
±) (2.5)

in leaflet reference surfaces a distance z± away from the bilayer midplane. But since
individual leaflets can slide, the physically meaningful strain is not the local one,
but the one distributed over the whole membrane. This yields a non-local curvature
elastic energy density that has been included in numerous membrane models [106–
108,111,118,121]

enl =
1

2
KA,m+γ

2
+(K̄) +

1

2
KA,m−γ

2
−(K̄) (2.6a)

=
1

2
κnl(K̄ −K0s)

2 , (2.6b)

which quadratically penalizes the deviation of the surface-averaged curvature

K̄ =
1

A

∫
S

dA K (2.6c)

from the differential stress curvature K0s with the non-local bending rigidity1

κnl = KA,m+z
2
+ +KA,m−z

2
− . (2.6d)

1A similar non-local bending rigidity κ′ is defined in Refs. [111,118], however with a curious extra
factor of π, so that we have κnl = πκ′.
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Making the additional simplifying assumption that z+ = z− ≡ z0 and defining the
bilayer area expansion modulus as KA = KA,m+ +KA,m−, we have

κnl ≈ KAz
2
0 . (2.7)

Choosing z± to be the surfaces at which bending and stretching deformations de-
couple (called the neutral surfaces [109]), then—by definition—the associated elastic
energy (2.6b) of stretching or compression simply adds to the curvature energy from
Eqn. (2.1). Up to a constant, which can be subsumed in the net tension, this leads
to the total energy density

etot(K, K̄) =
1

2
κ(K −K0b)2 +

1

2
κnl(K̄ −K0s)

2 . (2.8a)

These are two quadratic curvature terms, a local and a nonlocal one, for which K0b

and K0s are the respective spontaneous curvatures. The first term is traditionally
referred to as the “spontaneous curvature model” [145], and the second as the “area
difference elasticity” model [111]. These are usually viewed as two alternative models
for describing curvature elasticity in the presence of an asymmetry that prefers a
nonzero bilayer curvature. It is worth noting, however, that not only do these two
models describe conceptually very different origins of such an asymmetry, they also
describe different elastic energies: bending versus stretching. Therefore it is legitimate
to write the total elastic energy as their sum.

For simplicity, we limit ourselves to constant mean curvature surfaces (such as
planes, spheres, cylinders, or unduloids), for which K ≡ K̄, and again calculate the
overall curvature at which the energy is minimized. We get

∂etot(K,K)

∂K

∣∣∣∣
K=K?

0

= 0 ⇒ K?
0 =

κK0b + κnlK0s

κ+ κnl

. (2.9)

A new spontaneous curvature, K?
0 , once again arises as a weighted mean—this time

of the curvatures associated with optimal bending, K0b, and optimal stretching, K0s,
for which κ and κnl are the respective weighting factors.2

In the balance condition (2.9) the stretching penalty is expected to be the domi-
nant term, because bending is the softer degree of freedom, and so we should expect
κ/κnl to be small. Indeed, the polymer brush model [114] tells us that a reasonable
approximation for the bending rigidity of a bilayer is κ ≈ KAd

2
h/24, where dh is the

hydrophobic thickness of the bilayer, which is typically about 2/3 of its total width
d. Since furthermore z0 ≈ dh/2 [110,127] and κnl ≈ KAz

2
0 , we find κ/κnl ≈ 1/6.

2Incidentally, up to a constant the energy has the form 1
2C(K − K?

0 )2 with some “effective”
bending rigidity C = κ + κnl. This is not surprising, since Eqn. (2.8a) essentially describes two
springs in parallel. However, C should not be interpreted as a local bending rigidity, since the
derivation relied on constant mean curvature surfaces in order to trivially combine the local and the
non-local bending part.
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Despite being energy minimized, the curvature-relaxed state from Eqn. (2.9) with
K = K?

0 exhibits a differential strain γ± = ±(K?
0 −K0s)z± and a concomitant differ-

ential stress

Σ± = KA,m±γ± ≈ ±
κ

2z0

K0b −K0s

1 + κ/κnl

. (2.10)

This stress vanishes only in the special case where K0s = K0b. But other scenarios are
also possible: for instance, a flat membrane in which the differential stress exactly
cancels the bending moment induced by the spontaneous curvature K0b; in other
words, an asymmetric bilayer that nevertheless has zero net spontaneous curvature:
K?

0 = 0. From Eqn. (2.9) this implies K0s = −(κ/κnl)K0b and therefore

Σ±(K?
0 = 0) = ±κK0b

2z0

. (2.11)

The physical meaning of the sign can be understood as follows: if from a spontaneous
curvature point of view we have K0b > 0, so that the upper leaflet “wants” to be
convex, it also needs to be under a positive tension to pull it back into a flat state.
Using the previously discussed numbers, an asymmetric DOPC-POPC membrane
in such a state would then end up with a noticeable differential stress of |Σ±| ≈
0.8 mN/m, while for a DOPC-DOPE membrane we get |Σ±| ≈ 4 mN/m, which is a
very large value.

Of course, these two particular states of stress just discussed are simply special
cases in a continuum of states that can be parametrized byK0s, or (as long asK0b 6= 0)
by the dimensionless stress-curvature parameter αsc defined as

αsc :=
1−K0s/K0b

1 + κ/κnl

, (2.12)

which labels states harbouring the differential stress

Σ±(αsc) = ±αsc ×
κK0b

2z0

. (2.13)

The two previously mentioned cases correspond to αsc = 0, a membrane that assumes
its “materials-based” curvature K0b and is free of differential stress, and αsc = 1, a
flat membrane that exhibits differential stress, respectively. Since αsc can vary con-
tinuously, asymmetric membranes really constitute (at least) a one-parameter family
of metastable states, and for this reason they are insufficiently characterized by their
compositional asymmetry alone. In other words, there is no particular value for the
differential stress (say, zero) that is the “right” one, unless there is some independent
argument that would permit reducing this one-parameter family of legitimate states
to that special case.
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2.3.3 Residual stress

The interplay between asymmetry and tension in lipid bilayers gives rise to another
intriguing issue, recently identified in simulations [124,125]: the state point at which
the areas per lipid in each leaflet of an asymmetric membrane agree with those in
their tensionless symmetric counterparts need not coincide with the point where the
differential stress vanishes. This is of practical relevance: if one wishes to simulate
asymmetric membranes whose leaflets are individually tensionless (recall: a possible
choice, even though not the only valid one), then it is insufficient to match the specific
lipid areas in each leaflet to those in the cognate symmetric bilayers. (Ref. [124]
proposes a method to correct for this, if zero tension is indeed what one wants.) Here
we will attempt to rationalize this empirical finding within the framework developed
in the preceding sections.

Taking the specific area from simulations of a flat symmetric membrane is equiv-
alent to imposing K0s = 0; but the bending torque that arises in the asymmetric case
induces a nonzero spontaneous bilayer curvature and associated differential stress,
given by Eqns. (2.9) and (2.10), respectively (while setting K0s = 0 in both equa-
tions). However, for such a membrane to be spontaneously flat, it would need to
be subject to the slightly larger differential stress from Eqn. (2.11). The difference
between these two is

∆Σ± = Σ±(K?
0 = 0)− Σ±(K0s = 0) (2.14a)

= ±κK0b

2z0

1

1 + κnl/κ
. (2.14b)

In other words, forcing the membrane to be planar requires this much more differential
stress. Of course, we cannot “summon” additional intrinsic stress; but spanning a
membrane patch into a simulation box amounts to externally imposing the negative
of this differential stress via the applied periodic boundary conditions. This results
in the observed residual differential stress of

Σ
(res)
± = −∆Σ± = ∓κK0b

2z0

1

1 + κnl/κ
≈ ∓κK0b

14z0

, (2.15)

where in the last step we used the previously discussed estimate κnl/κ ≈ 6.

Notice that Σ
(res)
± and K0b strive to bend the membrane in the same direction.

Hence, the sign of a membrane’s residual differential stress conforms to what we
would expect based on its spontaneous curvature. But its magnitude does not: it
is smaller than the torque couple associated stress ∓κK0b/2z0 by the sizable factor
(1+κnl/κ). This shows that the residual differential stress does not merely embody a
bilayer’s spontaneous materials curvature but instead reflects a more subtle balance
between bending and stretching—as quantified by the difference between K?

0 and
K0s. Notice in particular that it incorporates a specific choice of boundary- and
initial conditions (namely: a simulation box and K0s = 0).
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The first moment of the stress profile, the torque density T [115] can be calculated
from the stress profile as:

T =

∫ +···

−···
dz σ0(z) z , (2.16)

which, in the absence of both net and differential stress, is connected to the bilayer’s
spontaneous materials curvature K0b (see Eqn. (2.2)) [33,115,128,150]:

κK0b = −T if Σ± = 0 . (2.17)

If we wanted to calculate κK0b as the first moment of the stress profile belonging
to the area-matched membrane, using Eqns. (2.16) and (2.17), we encounter the
slight complication that this system has differential stress and so Eqn. (2.17) does
not strictly apply, as there are now two physical sources of spontaneous curvature.
However, we can self-consistently correct for that. If we denote the actual stress
profile by σ(z) and assume that the residual stress Σ

(res)
± acts approximately evenly

over the thickness dm± of each leaflet, then the profile with the residual differential
stress removed is given by

σ0(z) = σ(z)−

 Σ
(res)
+ /dm+ 0 < z < dm+

Σ
(res)
− /dm− dm+ < z < 0

. (2.18)

Combining this “de-stressing” correction with Eqns. (2.16), (2.17), and (2.15) then
leads to

Σ
(res)
± = ± T

2z0(1 + κnl/κ) + d/2
≈ ± T

15.5 z0

, (2.19)

where the torque density T is the first moment of the actual stress profile σ(z) (i. e.,
the one that has a differential stress) and d = dm++dm− is the bilayer thickness. Also,
since the neutral surface can typically be found one-third of the distance along the
hydrocarbon chain from the polar head group [127], meaning z0 ≈ 2

3
dm, we estimated

d = 2dm ≈ 3z0 in the last step. Had we alternatively assumed that the residual
stress localizes at the neutral surface, and accordingly subtracted Σ

(res)
± δ(z∓ z0) from

each bare leaflet stress, the extra term “+d/2” in the denominator of Eqn. (2.19)
would have been replaced by “+z0”, and the numerical value in the last expression
then drops from 15.5 to 15. The precise functional form of the residual stress is
dictated by the z-dependence of the area expansion moduli KA,m±(z) [126], but our
two limiting cases (entirely even vs. delta-localized) yield fairly similar results. In
fact, the change with respect to Eqn. (2.15) is minor: simply replacing κK0b with
−T gives an answer only about 10% too big. This is almost certainly less than the
error incurred by empirical estimates such as κnl/κ ≈ 6 or d = 3z0.

To test Eqns. (2.15) or (2.19), one would have to measure both the residual dif-

ferential stress Σ
(res)
± as well as either the spontaneous materials curvature K0b or
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the torque density T . Luckily, all of these are reported—over a range of sponta-
neous bilayer curvatures—in a recent paper by Miettinen and Lipowsky [125]: For
their “lollipop-like” model of GM1, their Fig. 5 shows that κK0b ≈ 0.15φ pN for a
membrane that contains a fraction φ of GM1 lipids only in its upper leaflet (hence
giving the membrane a positive spontaneous curvature). Estimating z0 ≈ 1.5 nm
from their Fig. 1, our Eqn. (2.19) then predicts residual single leaflet tensions of

Σ
(res)
± ≈ ∓0.0065φmN/m, or a difference between these of −0.013φmN/m. For com-

parison, their Fig. 3 reports about −0.016φmN/m for this difference, which agrees
fairly well with our estimate.

A slightly different analysis regarding residual differential stress has been proposed
in a recent, as of yet unpublished work by Pastor et al., which we will summarize and
discuss here. Pastor et al. argue that an asymmetric bilayer under periodic boundary
conditions (PBC) is required to be flat, i. e., have zero (mean) curvature, but does not
necessarily have zero differential stress curvature K0s (they also posit that residual

differential stress Σ
(res)
± as calculated via the measured stress profile should in fact

be the required differential stress to force the bilayer to be flat, not its negative).
From Eqn. (2.5) and Eqn. (2.10) the intrinsic differential stress of a curvature-relaxed
asymmetric membrane would be

Σ∗± = KA,m±γ±(K?
0) ≈ ±KA,m±(K?

0 −K0s)z0. (2.20)

When the bilayer bends toward a different curvature K, the differential stress becomes
Σ±(K), i. e., an additional differential stress, ∆Σ±(K) = Σ±(K)−Σ∗±, to the intrinsic
differential stress would be needed. The imposition of PBC sets K = 0 and thus, the
required additional differential stress, which is the measured residual differential stress
would be

Σ
(res)
± = Σ±(K = 0)− Σ∗± ≈ ∓

κnlK
?
0

2z0

= ∓κK0b + κnlK0s

2z0(1 + κnl/κ)
. (2.21)

For an area-balanced asymmetric bilayer (K0s = 0) it reduces to an expression that
is larger by a factor of κnl/κ ≈ 6 compared to our result.

The torque density of stress-free monolayers can be written as

T± = ±
∫ +···

0

dz σ0(±z) z = −κm±Km± (2.22)

where the second equality is the analogue of Eqn. (2.17) for a monolayer. Removing
residual stress from the observed stress profile, calculating the torque density, and
using Eqn. (2.2) we get

κm+Km+ − κm−Km− = −T + Σ
(res)
+

d

2
. (2.23)

Using Eqn. (2.22) this can be rearranged as

Σ
(res)
+ =

T − (T+ − T−)

d/2
. (2.24)
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We use data from our simulations of symmetric MARTINI DLPC and POPC
bilayers and an area-balanced, asymmetric DLPC-POPC bilayer in 300 K to calculate
torque densities and differential stress in Eqn. (2.24). We found T = 8.26(24) pN for
the torque density for the area-balanced DLPC-POPC bilayer, T+ = −9.20(10) pN
and T− = −3.93(11) pN for torque density of stress-free monolayers of POPC and

DLPC respectively, and we have Σ
(res)
+ = 5.68(8) mN/m. Using these values and

Eqn. (2.24) we find the estimate for the value of bilayer thickness as d ≈ 2.4 nm,
which is reasonably close to typical values for thickness of a MARTINI bilayer.

While the line of argument from Pastor et al. seems more valid to us in hindsight,
and their conclusions are supported by results from simulations accompanying their
work, the relatively good agreement of results from simulations by Miettinen and
Lipowsky [125] and our initial equation for residual stress is somewhat puzzling.
Alas, we are unable to better resolve this confusing situation at this juncture.

2.4 Simulating asymmetric membranes

Using a more coarse-grained model reduces the computational load of our simulations,
allowing us to reach length and time scales necessary for investigating phenomena
of interest. Even when the use of a more fine-grained model is computationally
feasible, however, it would still be preferable to utilize a model that is merely as
detailed as necessary to capture the complexity of the physical phenomenon under
consideration; This would enable us to find the physical essence of the connection
between microscopic attributes of the constituent units of our system and its larger
scale behavior in the clearest possible fashion. In the case of simulating asymmetric
membranes, while many aspects of asymmetry, such as large scale shape deformations,
do not depend on fine chemical details of the lipids, we need a model with high
enough resolution to be able to represent a meaningful difference between membrane
components.

A highly coarse-grained implicit solvent model that has been widely used to study
bilayer elastic phenomena is the Cooke model [129,130], in which a lipid is represented
by three beads: one acting as the headgroup and two representing the tail region. This
strongly coarse grained lipid model has a significantly higher flip-flop rate compared to
real systems, which would not be a problem if we were only interested in equilibrium
properties. However, we need a model with a lower flip-flop rate in order to be able
to study metastable but relatively long-lived states of bilayers with compositional or
stress asymmetry. A four-bead version of the Cooke model with suppressed flip-flop
rates has recently been introduced [131], but since this model was not available at
the time of our research, we chose the MARTINI coarse grained model (1.3) to use
in our simulations.

While the flip-flop rate for regular phospholipids in MARTINI model is low enough
to let us adequately sample metastable asymmetric states of interest for systems
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consisting these species, it also maintains the benefit of having a flip-flop rate for
cholesterol that is orders of magnitude faster, therefore allowing us to investigate the
important role of this abundant component of membranes.
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Chapter 3

Differential stress induced
stiffening transition

This chapter starts with descriptions of the methods for calculating various observ-
ables such as membrane rigidity and order parameters from simulations. This is
followed by results from simulations describing the phenomenon of stiffening due to
differential stress, and explanation for experiments measuring asymmetric vesicles
rigidity based on this phenomenon. We then present results of simulations probing
the effect of system parameters such as temperature and size on the stiffening tran-
sition, and finish the chapter by addressing the symmetry braking that occurs in
asymmetric buckled membranes. A glossary containing definitions of some the sym-
bols used in this chapter (and the rest of thesis) is available at the end of the thesis
7.

3.1 Methods

3.1.1 Buckling

The two most common methods for measuring the bending rigidity of lipid bilayers
from simulations are fluctuation analysis [132–144] and buckling [73, 75, 148]. The
former makes use of theories relating various elastic moduli to the power spectra of
observables such as membrane undulation, lipid orientation fluctuation, and lipid tilt
fluctuation.

Our attempt at finding the bending rigidity of asymmetrically stressed membranes
using regular fluctuation analysis did not achieve the needed precision, which is why
we chose to use the buckling method.

In this method, we set up an anisotropic cuboid simulation box with a dimension
Lx along which we then buckle the membrane (Fig. 3.1 shows the schematic shape of
a buckled surface). This length exceeds both the box and membrane width Ly (which
is fixed, otherwise the fluid bilayer would expand in the y-direction and relax the
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Figure 3.1: Schematic shape of a buckled surface.

pressure in the x-direction, flattening the buckle) as well as the box height Lz (which
adjusts to the external pressure in order to maintain the constant pressure of the
solvent) by a factor of around 6 (deemed appropriate based on previous experience
with similar simulations). We first determine the zero-tension relaxed rest length L
of the membrane by creating constant pressure conditions along the x-direction and
measuring the corresponding expectation value of the box length: L = 〈Lx〉Σ=0. We
then buckle the membrane along x by imposing a fixed box-length Lx < L, which
corresponds to a dimensionless buckling strain

γ =
L− Lx
L

. (3.1)

The force fx(γ) per unit length along the x-direction (the so-called “stress-strain-
relation”) is measured from

fx(γ) =
[
Px(γ)− Pz

]
Lz , (3.2)

where Px and Pz are the pressure in the x and z-direction, respectively. Assuming
quadratic curvature elasticity in accordance with the Helfrich Hamiltonian, fx(γ) can
be expressed as a series expansion in γ [148]:

fx(γ) = κ

(
2π

L

)2{
1 +

1

2
γ +

9

32
γ2 +

21

128
γ3 + · · ·

}
. (3.3)

Here we have ignored negligible fluctuation corrections due to thermal membrane un-
dulations. (While asymmetry between the leaflets by itself does not affect the validity
of this equation for describing a bilayer, the potential effect of lateral hetrogeneity
has been briefly addressed in Sec. 3.8.) Once membranes exhibit a sufficiently large
stress-asymmetry between the leaflets, we found it necessary to extend this theory
to permit for curvature softening, as previously used by Diggins et al. to quantita-
tively model the significant deviations from conventional curvature elasticity found in
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gel-phase membranes [75]. Briefly, the quadratic curvature elastic energy density of
1
2
κK2 (where K is the total curvature, i. e. the sum of the two principal curvatures)

is replaced by the softened expression

e(K) = κ`−2
[√

1 +K2`2 − 1
]
, (3.4)

where the new material parameter ` is a cross-over length that indicates below which
curvature radius softening sets in. This empirical functional has the properties that
(i) it reduces to the original quadratic theory in the limit `→ 0; (ii) it has a negative
quartic contribution −1

8
(κ`2)K4 that promotes softening; and (iii) its post-quartic

terms render the complete functional bounded below—in fact, convex. The modified
stress-strain relation for Eqn. (3.4) is [75]

fx(γ, δ) =κ

(
2π

L

)2{
1 +

1

2

(
1− 3δ2

)
γ (3.5)

+
3

32

(
3− 14δ2 + 31δ4

)
γ2

+
1

128

(
21− 129δ2 + 447δ4 − 779δ6

)
γ3 + · · ·

}
,

where δ = 2π`/L is a dimensionless smallness (or “softening”) parameter: δ → 0
implies `→ 0 and reduces this more complicated expression to the simpler one from
Eqn. (3.3). We always used Eqn. (3.5) to fit the stress-strain-relation measured in our
simulations (using the parameters κ and δ); finding δ = 0 within error bars indicates
that the membrane exhibits conventional curvature elasticity. Eqn. (3.5) works well
as long as the buckling strains are not too large. For larger γ values it becomes
necessary to use more expansion terms (as calculated in [146]) to get reasonably
accurate results.

The width-to-length ratio of the buckles was chosen such that Ly is small enough
for the undulations along the y-direction to be negligible, and the relaxed length L is
not too large, since a larger L leads to heightened fluctuations along the x-direction,
as well as making the value of our “signal”, the force fx, more noisy. We also require
that L is not too small, since ` is a size-independent materiel parameter and reducing
L increases the softening parameter δ. Fig. 3.2 shows the stress-strain relation for a
few select values of δ.

It is worth noting that, with hindsight about the emergence of macroscopic lateral
elastic heterogeneities (see 3.5) in asymmetrically stressed membranes, it becomes
more clear why the absence of a theory for the fluctuation spectrum in the presence
of differential stress makes using that method unfeasible for the purpose of our work,
while in a buckling analysis the emergence of stiffer domains can be dealt with more
adequately, using ideas such as curvature softening. Some aspects of the effect of
asymmetry on buckling analysis are examined more thoroughly in the coming sections.
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Figure 3.2: Force per unit length fx as a function of buckling strain γ for different
values of curvature softening parameter δ.

3.1.2 Stress profile

Using the GROMACS-LS package [43, 44] we can calculate the lateral stress profile
σ0(z) of a bilayer spanned in the xy-plane. In our simulations we use the suggested
sampling frequency by the package developers and repeat each simulation 20 times
to be able to perform statistical abalysis on the results and determine error values.

This stress is defined as

σ0(z) = Pzz(z)− 1

2

[
Pxx(z) + Pyy(z)

]
, (3.6)

where the Pii(z) are the diagonal components of the local pressure tensor in a thin slice
at position z. For reasons of mechanical stability Pzz(z) must actually be constant
[149], which is a good first test for correctness and convergence. To avoid fluctuation
blurring of σ0(z), it is best to simulate small membranes with only O(100) lipids [148].

The tension per leaflet, Σ±, is the integral of σ0(z) over the respective leaflet,
ranging from the bilayer midplane into the bulk water phase. Since σ0(z) rapidly
decays to zero for z values outside the membrane, the precise location of the outer
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Figure 3.3: Stress profile of a POPC bilayer. z = 0 is the average position of the end
beads of the lipids in the two leaflets. The red points are the discrete data points
calculated by GROMACS-LS and the blue line a cubic spline to the data points.

boundary is immaterial, provided it is sufficiently far away from the membrane:

Σ± =

∫ +···

0

dz σ0(±z) , (3.7)

where z = 0 marks the location of the midplane. Notice that for asymmetric mem-
branes the latter need not coincide with the z-coordinate of the membrane’s center
of mass, which is the location to which GROMACS-LS shifts the membrane if one
chooses to center it. We use the average z position of all tail beads as the location
of the midplane. The integral itself can be easily done numerically by a Gaussian
quadrature [153] of the local stresses calculated by GROMACS-LS for each individ-
ual z-bin.

Fig. 3.3 shows the calculated stress profile corresponding to a symmetric bilayer
with 80 MARTINI POPC lipids in either leaflet. Notice the relatively large peak in
lateral tension roughly at position of the lipid backbone where there is the equiva-
lent of a hydrophilic-hydrophobic interface and the bilayer is being pulled together.
Consequently, both the tails and the heads of the lipids are now being compressed,
resulting in negative tension in the tail and upper head regions. If the membrane
is not subject to a net lateral tension, the net total stress (the integral over σ0(z))
vanishes. One might be surprised by the very large (hundreds of bars) values of the
the stresses, but considering typical values for the oil-water surface tension (∼ 50
mN/m) [151] and the fact that the hydrophilic to hydrophobic environment transi-
tion occurs over a region with ∼ 1 nm in width, the pressure we expect at the peak
is indeed ∼ (50 mN/m)÷ (1 nm) = 500 bar [152].
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3.1.3 Order parameters

Order parameters are quantitative measures of local or global order. Here we intro-
duce two such measures that were utilized in this project. Another order parameter
that is commonly used in analyzing lipid bilayers is the lipid acyl chain order param-
eter SCH which is calculated based on the angle between C-H bonds in the lipid tails
and a reference surface [155, 156]. Given that we do not use atomistic models, this
method of measuring order is not applicable to our simulation data.

Orientational order parameter

A standard measure for assessing the degree of lipid orientational order is the so-
called P2 order parameter. This quantity, which we only calculate for flat bilayers, is
defined as

P2 = 〈P2(cosϑi)〉 =
1

2

(
3
〈
cos2 ϑi

〉
− 1
)
, (3.8)

where P2(x) is the second Legendre polynomial, and ϑi is the angle between the
orientation of a lipid i and the average membrane normal, which is the z-direction for
our simulations. The average is taken over all lipids in a membrane, or all lipids in one
of the leaflets. A MARTINI lipid’s orientation is defined through the vector pointing
from the midpoint between the two tail-endbeads to the choline head bead. Larger
values of P2 indicate stronger lipid alignment; P2 = 1 indicates perfect alignment,
P2 = 0 signals completely random directions, and P2 = −1

2
occurs when lipids align

perpendicularly to the chosen axis.

Hexatic order parameter

The hexatic order parameter Ψ6 of a two-dimensional planar collection of points
(think of particle coordinates on a flat surface) measures the extent to which the
points’ positional distribution exhibits a local six-fold rotational symmetry. The
value of the hexatic order parameter for a given particle k at position rk is obtained
by first calculating the complex local bond orientational parameter

ψ6(rk) :=
1

6

6∑
l=1

exp{6iθkl} , (3.9)

where θkl is the angle which the direction between particles k and l makes with
some arbitrarily defined direction (say, the x-axis), and the sum extends over the
6 nearest neighbors of particle k, which we can efficiently find using the routine
spatial.cKDTree from SciPy [154]. The hexatic order parameter is then obtained
by averaging the modulus of the bond orientational parameter,

Ψ6 := 〈|ψ6(rk)|〉 , (3.10)
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where the average may be over the whole system, or over time, or over both—
depending on whether one wishes Ψ6 to be resolved in time or space.

Interestingly, calculating the hexatic order parameter of a membrane from the
centers of mass (CMs) of lipids gives a very low value. Lipids do not sit on a par-
ticularly well defined triangular lattice. However, individual lipid tails do. Hence,
for each lipid we define two points, the CMs for each of its two tails, and use these
coordinates to calculate the hexatic order parameter.

We also use the hexatic order parameter to analyze order in non-flat bilayers. To
calculate Ψ6 for lipids in a buckled membrane, we proceed in three steps:

1. Construct the midsurface of the membrane, which we assume to have strict
translational symmetry along the buckle’s y-direction; in other words, it can
be written as a function h(x) that only depends on the horizontal coordinate
x. This assumes the buckle does not have “overhangs”, but we never employ
strains large enough for that to happen. Each point on the midsurface has two
coordinates (s, y), where s is the arc-length along the buckled surface (measured
from some reference point) and y determines the position along the buckle’s
width.

2. Project the center of mass (CM) of each individual lipid tail onto the midsurface,
which for each lipid yields the coordinate pair (sk, yk).

3. Calculate Ψ6 from the resulting set of (intrinsically flat) 2d coordinates.

For the first step, we fit a cubic smoothing spline (using interpolate.splrep from
the SciPy package [154], with an empirically determined smoothing parameter of
s = 10) to the coordinate pairs (x, z) of the CMs of lipid tails, which gives us the
function h(x) describing the estimated midsurface of the leaflet. To ensure that the
slope of the spline function matches that of a periodic buckle at the two box ends,
we copy half a buckle and attach the data to either side of our box.

The second step involves the projection onto the curved surface h(x). This is tech-
nically difficult, but fortunately it suffices to get a good approximate solution, exploit-
ing the fact that the CMs of all lipid tails are already fairly close to the midsurface. If
the Cartesian coordinates of a CM are (x, y, z), we first project them vertically down
onto the midsurface, giving the first estimate (x, y, h(x)). This is not yet accurate
enough, though, because the vertical distance between CM and surface is comparable
to the distance between lipids, and hence comparable to the local length scale that
affects the order parameter calculation. To work out the next order correction, we con-
struct the tangent plane to the surface at the location x and project the coordinates
of the CM onto that plane, instead of vertically down. Fig. 3.4 shows the geometry of
approximately projecting a CM coordinate some distance away from the buckle onto
the tangent plane erected at the CM’s x-coordinate. We see that s/(z−h(x)) = cosα,
∆x/s = sinα and h′(x) = tanα. Using sinα cosα = tanα/(1 + tan2 α), this yields
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Figure 3.4: Projecting a point away from the buckle onto its surface.

the improved horizontal position

x′ = x+ ∆x = x+
h′(x)

1 + [h′(x)]2
[
z − h(x)

]
. (3.11)

Knowing h(x), we find the arc length s corresponding to the horizontal position x′

by numerically integrating

s(x′) =

∫ x′

x0

dx
√

1 + [h′(x)]2 , (3.12)

where x0 is a pre-chosen reference point (e.g. the absolute minimum of the buckle).
The previous two steps have resulted in the two-dimensional coordinates (s(x′k), yk)

for the CMs of all lipid tails, from which the hexatic order parameter is then readily
calculated using Eqn. (3.10).

3.1.4 Specific heat

We calculate the isobaric specific heat cP for membranes (in the flat state) as a
common means to probe for phase transitions. Recall that cP is defined as the rate of
change of enthalpy H = E +PV with respect to temperature T at constant pressure
P per total number of particles N , which in our case is the total number of beads:

cP =
1

N

(∂H
∂T

)
P

(3.13)
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The classical fluctuation-response theorem teaches that cP is proportional to the
enthalpy fluctuations:

cP
kB

=
σ2
H

N(kBT )2
, (3.14)

where kBT is the Boltzmann constant and σ2
H = 〈H2〉 − 〈H〉2 is the variance of the

enthalpy.
Two small comments are in order. First, even though we simulate our aqueous

membrane systems at fixed pressure, their tiny compressibility renders the difference
between the isobaric and isochoric specific heat negligible—we find (cP − cV )/kB ∼
O(10−4). And second, it is well known that the Berendsen thermostat does not
precisely reproduce the canonical ensemble, since it suppresses fluctuations in the
kinetic energy [157]. For us this matters only insofar as the value of cP calculated
via Eqn. (3.14) will miss part of its kinetic contribution (we found it to be about
0.75 kB too small). However, the impact on the configurational degrees of freedom
vanishes like 1/N , and so the thus calculated cP is still an excellent indicator for
phase transitions, which are driven by the potential contribution to the Hamiltonian.

3.1.5 Simulation details

We employed GROMACS 5.1 [158] and GROMACS 2018.1 for our simulations. We
used a time step of δt = 20 fs and a 1.4 nm Verlet cutoff neighbor list updated every
10 steps. Cutoffs for Lennard-Jones and Coulomb interactions were set to 1.2 nm,
and the relative dielectric constant was set to εr = 15. A Berendsen thermostat [159]
was used with a time constant τT = 1 ps to fix the simulation temperature. If we
needed constant pressure conditions along some coordinate direction i, we used a
Berendsen barostat [159] with reference pressure Pi = 1 bar, time constant τP = 3 ps,
and isothermal compressibility κT = 3× 10−5 Pa.

There are two points worth elaborating regarding our choices for simulation pa-
rameters: The first point involves the use of a Berendsen thermostat and barostat.
These algorithms do not reproduce the correct thermodynamic ensemble, but their
use was still relatively common at the time of the start of this project. Berendsen
algorithms suppress fluctuations in kinetic degrees of freedom [157], while their im-
pact on configurational degrees of freedom rapidly vanishes for systems consisting of
N ∼ 100 or higher particles, and thus their effect on phase behaviour of the systems,
which is what we are interested in and which is driven by potential contributions,
is insignificant. While we did not expect major changes for quantities that do not
explicitly analyze fluctuations, we checked the robustness of our results by perform-
ing control simulations using the Parinello-Rahman barostat and the velocity-rescale
thermostat, which lead to qualitatively and quantitatively similar results. The other
point is related to the fact that the rigidity for MARTINI DLPC determined in
our work is almost 6 kBT (or 20%) larger than the rigidity for MARTINI DMPC in
Ref. [148]. While the relevant bead-parameters of the DLPC lipid in the updated
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Table 3.1: Simulated systems and results for measured observables. Buckle length
L, number of lipids in overfilled (N>) and underfilled (N<) leaflet, asymmetry, lipid
order parameter in overfilled (P2,<) and underfilled (P2,>) leaflet, tension Σ+ in the
upper leaflet, bending rigidity κ, cross-over length ` in the curvature-softened energy
density (3.4) and corresponding softening parameter δ = 2π`/L. In all simulations
the box width is Ly = 8 nm.

leaflets L [nm] N>/N< δn [%] cp/kB P2,> P2,< Σ+ [mN/m] κ [kBT ] ` [nm]
DLPC/DLPC 41.39± 0.02 580/580 0 0.85± 0.02 0.699(1) 0.699(1) 0.07± 0.07 34.8± 1.1 2.0± 0.8
POPC/POPC 45.03± 0.02 580/580 0 n.d. n.d. n.d. 0.03± 0.07 34.4± 1.3 2.6± 0.9
DLPC/POPC 40.60± 0.03 568/522 4.22 n.d. n.d. n.d. −5.68± 0.08 34.1± 0.9 1.7± 0.7
DLPC/POPC 40.02± 0.01 540/530 0.93 n.d. n.d. n.d. −0.03± 0.06 32.9± 0.4 1.1± 0.4
DLPC/DLPC 39.50± 0.01 580/552 2.47 0.84± 0.01 0.715(1) 0.683(1) −5.64± 0.08 33.6± 0.7 1.5± 0.7
DLPC/DLPC 40.17± 0.01 580/544 3.20 0.83± 0.01 0.718(1) 0.678(1) −6.97± 0.07 34.5± 0.7 2.0± 0.5
DLPC/DLPC 39.91± 0.01 580/536 3.94 0.84± 0.01 0.722(1) 0.672(1) −8.46± 0.08 44.1± 0.3 6.7± 0.2
DLPC/DLPC 39.50± 0.01 580/522 5.26 0.87± 0.01 0.729(1) 0.663(1) −11.18± 0.09 47.0± 0.5 5.5± 0.1
DLPC/DLPC 37.38± 0.21 580/515 5.94 8.68± 4.63 0.765(6) 0.686(5) −12.59± 0.06 47.0± 0.8 5.4± 0.1
DLPC/DLPC 33.93± 0.10 580/463 11.22 1.23± 0.31 0.853(1) 0.625(1) −13.93± 0.09 50.2± 0.6 4.6± 0.1

martini 2.1 force field (used in our simulations) is identical to the DMPC lipid in the
martini 2.0 forcefield (used in Ref. [148]), we used a cutoff value for Coulomb and for
Lennard-Jones interaction that is longer than the recommended value of 1.1 nm for
simulations using a Verlet neighbor list [160]. This will have implications on the order
parameter, gel-phase transition temperature, and the elastic moduli. However, since
we do not need absolute numbers and do not compare to experimentally measured
bending rigidities or gel transition temperatures, this discrepancy does not affect our
conclusions.

3.2 The stiffening transition

We begin by measuring the bending rigidity κ of symmetric DLPC and POPC bi-
layers that are tensionless and hence, due to their symmetry, also free of differential
stress. Our results indicate that both membranes have basically the same value of κ
within error bars (34.8±1.1 kBT and 34.4±1.3 kBT respectively) and show only weak
(albeit statistically significant) signs of curvature softening (with curvature softenning
parameter δ of 0.05(2) and 0.06(2) respectively). See Tab. 3.1 for all measurement
results. GROMACS 5.1 was used for simulations discussed in this section.

Next, we investigate an asymmetric membrane in which one leaflet is pure DLPC
and the other one pure POPC and first choose the specific lipid areas in each leaflet
to match those in simulations of their cognate symmetric tensionless system (DLPC:
a` = 0.5709(3) nm2; POPC: a` = 0.6212(3) nm2). This results in a quite sizable
residual differential tension ΣDLPC ≈ −5.7 mN/m that puts the DLPC leaflet under
compression. Nevertheless, the resulting asymmetric membrane has a bending rigidity
of 34.1(9) kBT that does not differ statistically significantly from the two pure cases
(34.8(11) kBT and 34.4(13) kBT , for pure DLPC and POPC respectively) and (more
generally relevant) from their average. To test whether the sizable differential stress
creates any artifacts, we also performed a simulation for a system in which this stress
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was relaxed by reducing the overabundance of DLPC lipids, resulting in a system with
the differential stress ΣDLPC,0 ≈ −0.03(6) mN/m. We found its curvature rigidity to
be κ = 32.9(4) kBT , which again agrees with the pure systems within statistics.

Having investigated stress-free compositional asymmetry, we now explore the op-
posite case: a compositionally symmetric DLPC membrane in which the number of
lipids differs between the two leaflets, thus rendering them stress-wise asymmetric.
As a measure of number asymmetry we use the relative excess δn, defined as

δn :=
N> −N<

N> +N<

, (3.15)

where N> and N< are the number of lipids in the more or less populated leaflet,
respectively. This measures the percentage by which each leaflet is over- or underfilled
compared to the balanced average.

Our simulation results, summarized in Tab. 3.1 and illustrated in Fig. 3.5, show
that for an asymmetry up to about δn = 3.2% the rigidity does not significantly differ
from that of a stress-balanced bilayer, nor does it show any more curvature softening.
(Observe that the differential stress at that point, about ±8 mN/m, is larger than the
stress of our asymmetric area balanced DLPC-POPC system.) However, for larger
lipid number asymmetry there is a noticeable and sudden rise of κ, which increases
by almost 50% at the largest asymmetry we tested, δn = 11.2%. Near the transition,
the fit to Eqn. (3.5), which is nonlinear in the curvature softening parameter δ, ex-
hibits metastable minima (indicated as open symbols in Fig. 3.5). Together with the
stable solutions, they support the scenario of a discontinuous stiffening transition,
as illustrated by the drawn curve (an empirical guide to the eye, for which we have
no descriptive theory). This transition is accompanied by a significant (and equally
abrupt) increase in curvature softening, i. e. a jump to larger values of δ, leading to
a length ` that is comparable to bilayer thickness, about 2.5 times larger than in the
stress-balanced case. Remarkably, the sudden increase in curvature rigidity is not
accompanied by jumps in the lipid order parameters P2,> and P2,< in the over- and
under-filled leaflets, respectively. Instead, P2,> increases continuously (but slowly)
up to about 5% asymmetry, while P2,< decreases by a comparable amount. Only at
around 6% do these order parameters change more dramatically. The latter is driven
by the gel transition, which is easily recognized by its strong signal in the specific
heat, see Fig. 3.5a. However, by then the bilayer stiffening transition has long since
happened.

3.2.1 Compositional asymmetry alone does not stiffen mem-
branes

We find that a compositionally asymmetric DLPC-POPC membrane with sufficiently
small differential stress is no stiffer than (the average of) its two symmetric counter-
parts, DLPC-DLPC and POPC-POPC. Granted, a single example for the absence
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of stiffening does not rule it out for all conceivable cases. But it must be recalled
that this is the expected outcome: as long as the two leaflets can freely slide, and
their individual structure matches that of their symmetric bilayer counterparts, basic
elasticity considerations demand that leaflet rigidities simply add. Hence, the burden
of proof lies with any claim of stiffening, and our particular negative result merely
establishes the expected baseline.

One might worry that our two lipids were elastically too similar to begin with, but
the experimentally observed increase in bending modulus (factor∼ 2.5, or about 150%
stiffer) is much bigger than the disparity between the moduli of the two individual
lipids (factor ∼ 1.3, or about 30% stiffer) [84, 90], and so it is unlikely that this is a
major factor. In contrast, the two leaflets might influence each other more directly
via their free energy of adhesion, which depends on their area per lipid. Since our
two coarse-garined lipids differ by about 9% in that regard, this effect would be even
slightly bigger than what the experimental difference between the lipids used in the
stiffening studies [84,90] (POPC and DOPC) would be—with DOPC having an area
about 6% larger (68.3± 1.5 Å2 and 72.4± 0.5 Å2 respectively), when measured by the
same technique [164].

3.2.2 Differential stress can stiffen membranes

What we instead find is that differential stress, if large enough, increases a bilayer’s
curvature modulus. Before addressing the origin of this effect, let us first rule out
an incorrect attempt at a geometric explanation: could it be that the buckle of a
differentially stressed membrane assumes some potentially asymmetric shape that
strains the leaflets differently, thereby giving rise to a nonzero additional stretching
contribution to the overall energy? The answer is no, because buckling does not
globally strain the leaflets at all. To see why, let us calculate the membrane area A±
of the upper and lower leaflet (taken for instance at their neutral surfaces ±z±), using
the parallel surface theorem [103,104]:

A± =

∫
dA
{

1± z±K + z2
±KG

}
(3.16a)

= Amid ± z±
∫

dA K + z2
±

∫
dA KG , (3.16b)

where the integral is taken over the buckle’s midplane, which has area Amid, and where
KG is the Gaussian curvature. By the Gauss-Bonnet theorem [104], the integral over
KG is a topological invariant and hence coincides with its value for the unbuckled
membrane, for which KG = 0; hence this term vanishes. And the integral over K
can be rewritten to an excellent approximation by assuming that the buckle only
significantly curves along the buckling direction, not perpendicularly to it. This is
ensured in simulations by making the transverse direction Ly much smaller than the
buckle’s length L, with Ly being about 6 times smaller than L in our simulations,

33



Since the buckling threshold scales inversely with the square of the buckle’s length,
see Eqns. (3.3) or (3.5), the force at which the y-direction would buckle is bigger
than the membrane’s x-buckling threshold by a factor of (L/Ly)

2. It is hence easy
to ensure that the membrane will be flat along the y-direction. Therefore, we can
describe the buckle by a single function ψ(s), the angle against the horizontal as a
function of arc length s. The curvature can then be expressed as K = −∂ψ(s)/∂s,
and so we can simplify Eqn. (3.16b) to

A± = Amid ∓ z±Ly
∫ L

0

ds
∂ψ(s)

∂s
(3.16c)

= Amid ∓ z±Ly
[
ψ(L)− ψ(0)

]
(3.16d)

= Amid , (3.16e)

where in the last step we exploited periodic boundary conditions: ψ(0) = ψ(L). We
hence see that in fact any leaflet reference surface (not just the neutral surface) keeps
its area when buckled under periodic boundary conditions. Notice that this does
not even require the buckle’s geometry to be the solution of some shape equation;
any shape will do. The two additions in Eqn. (3.16b) both vanish identically—
for (different) topological reasons. Evidently, this same argument also shows that
the buckling protocol is insensitive to the spontaneous bilayer curvature: this only
contributes a linear term in K to the energy density, which then vanishes under
periodic boundary conditions.

3.2.3 Stressed leaflets differ elastically from unstressed ones

While our simulations clearly show that differential stress can stiffen a bilayer, the
data by themselves do not yet offer an explanation for this observation. However,
based on our collective findings, our hypothesis is that a stress-induced change in the
elastic properties of the individual leaflets lies at the heart of the phenomenon. Recall
that a major puzzle of the experimental results was the apparent “lack of additivity”
[84]: the rigidity of an asymmetric membrane is not the average of the corresponding
two symmetric parent membranes. And yet, our own theoretical analysis always
assumed additivity—see Eqns. (2.1) and (2.6a). This is no contradiction, though,
because the differential stress generally present in asymmetric bilayers puts each of
their leaflets into a thermodynamic state that differs from its counterpart in a stress-
free symmetric bilayer. This of course also affects the leaflet rigidities, but it is
unfortunately difficult to anticipate the magnitude of this change from measurements
performed on symmetric membranes: the higher lipid density in the compressed leaflet
cannot be recreated by laterally compressing a symmetric membrane, since it would
relax the area strain via buckling; and while the lower lipid density in the expanded
leaflet can in principle be produced by applying tension to a symmetric membrane,
it is then difficult to measure its rigidity (for instance because tension would strongly
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Figure 3.6: Area per lipid (left) and bending rigidity (right) of Cooke lipid bilayers
for different temperatures as a function of w′c, a measure of attractive interaction
strength. Figure reproduced from Ref. [129].

suppress bending modes in a flicker spectroscopy experiment). This observation shows
that additivity might well hold, but we do not know what leaflet-rigidities we actually
have to add.

Nevertheless, it seems highly plausible that, all else being equal, membranes with
a smaller area per lipid are stiffer than those with a larger one. But if this dependency
were linear, then it would cancel in a differentially stressed membrane, in which to a
very good approximation the area strains are simply opposite in sign. However, there
are good reasons to believe that for dense systems the relation is not linear. Recall
that for an ideal gas the isothermal bulk modulus KT = −V (∂P/∂V )T is proportional
to the density, but in the liquid phase of a van der Waals gas it grows much more
strongly with density (in fact, it diverges at the maximal “close-packing” density).
The same physics reappears in fluid lipid bilayers: polymer brush theory [114] shows
that the lateral leaflet pressure Π is proportional to 1/a3

` , where a` is the specific
lipid area; hence KA = −a`(∂Π/∂a`)T = 3Π shows the same strong increase with
compression.

In simulations, a clean way to reduce the area per lipid is to artificially increase
the cohesive energy between lipids. This can be done quite easily in coarse-grained
lipid models in which this cohesion is one of the few tuning parameters. For instance,
doing exactly this in the coarse-grained Cooke model [129, 130, 161] shows that the
curvature rigidity of fluid Cooke-membranes scales approximately exponentially with
the lipid area density (Fig. 3.6 shows how strengthening the attractive potential in the
Cooke model increases bending rigidity linearly while it decreases area per lipid ex-
ponentially). Hence, the stiffening of the compressed leaflet overwhelms the softening
of the expanded one, leading to an overall rigidity increase of differentially stressed
membranes.
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3.2.4 The link between stiffening and the gel transition

That a bilayer’s curvature rigidity strongly increases with lipid density is particularly
vivid in gel phase membranes, whose lipid density is typically about 30% higher than
that of fluid phases, but whose rigidity is easily an order of magnitude larger [163,165,
166]. Curiously, gel phases also exhibit much stronger curvature softening than fluid
phases (` ≈ 14 nm for MARTINI DMPC [75]); in fact, the modified curvature energy
density in Eqn. (3.4) that allows for softening, together with its stress-strain relation
(3.5), was originally developed by Diggins et al. to describe gel phases [75]. These
authors also noticed that for coarse-grained models (such as MARTINI) κgel/κfluid is
not quite as large as seen in experiments—provided both phases are extrapolated to
the transition temperature [162]. This mirrors our finding that the rigidity increase
driven by differential stress (about 50%) is likewise not as large as the one that is
experimentally observed (about 150%). Considering that coarse-grained models are
typically designed to get the properties of fluid phases right, this discrepancy is not
overly disturbing.

While the increase in membrane rigidity upon entering the gel phase is well estab-
lished, our data nevertheless shows the stiffening transition does not coincide with a
complete conversion of the compressed leaflet into gel phase. However, we can visu-
ally identify small transient gel regions in the compressed leaflet after the stiffening
transition. These patches appear to prefer the vicinity of a buckle’s inflection points,
not its turning points. A more in-depth look at the microscopic description of the
transition is presented in 3.5.

If transient gel or gel-like domains prefer the vicinity of inflection points, this would
bias a buckle’s shape to be flatter in these regions than expected for classical Euler
elastica. Diggins et al. [75] captured precisely this feature in their curvature-softened
buckling theory, where it shows up as an increase in ` or δ. This still leaves open
the question whether in the present case it arises as a consequence of a “biphasic”
membrane (as just described), or a “monophasic” membrane comprising a material
with a fairly nonlinear elastic response (as Diggins et al. [75] concluded for pure gel
phases). In Sec. 3.5 we use an analysis based on hexatic order parameter of lipid
tails to shed more light onto this question. All the same, any flattening of the buckle
near its inflection points (irrespective of the cause), and the associated non-Eulerian
stress-strain response, prevents the fit from misreading the still soft turning points
(or “hinges”) as being representative of the entire membrane’s rigidity.

Even more fundamentally, how a single-leaflet gel transitions takes place in such
strongly differentially stressed bilayers is likely very subtle due to the competition
between the two leaflets: upon increasing the asymmetry, the depleted one ever more
strongly tries to compress the overfilled one, until the latter finally gives in; but when
that happens, the concomitant reduction in area of the depleted leaflet also reduces
its driving force for this very transition. In other words, it is not sufficient to picture
the gel transition of the compressed leaflet as being driven by a fixed imposed stress.
A more refined analysis of this scenario will be presented in chapter 5.
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3.2.5 Localizing the stiffening transition

In this section we elaborate more on how we calculate the values for bending rigidity
κ and the curvature softening parameter δ from our simulation data, and explain
the method we use to identify the asymmetry value at which the stiffening transition
happens.

The stress strain relation depends parametrically on the curvature rigidity κ and
the curvature softening parameter δ. It is linear in the former, but nonlinear in the
latter. In our analysis, we scan the value of δ and do a linear regression on κ, which
leads to a δ-dependent value of κ as well as the fit’s reduced chi-squared,

χ2
ν(δ) := min

κ

1

ν

N∑
i=1

(
fx,i − fx(γi; {κ, δ})

δfx,i

)2

, (3.17)

where fx,i and δfx,i are the stresses and their uncertainties measured at the N strains
γi, and ν is the number of degrees of freedom, equal to the number of observations
minus the number of fitting parameters, amounting to N − 1 in this case.

Since the regression of the stress-strain relation is nonlinear in δ, it can lead to
multiple solutions that (at least locally) minimize the chi-squared. This is illustrated
in Fig. 3.7. Typically, χ2

ν(δ) has two minima: one at a low value of δ and a low
corresponding κ (i. e., a “normal” membrane with hardly any curvature softening) and
one at a larger value of δ and an elevated κ (i. e., a stiffened membrane that noticeably
softens upon bending). For low enough asymmetry δn, the χ2

ν(δ) minimum at small
δ is the global minimum, but as δn increases, the curvature-softened minimum drops
down, until it becomes the global minimum, leading to a discontinuous transition into
a stiffened state.

We define the stiffening transition to be the point where these two minima have
the same height. But instead of monitoring where the height difference vanishes, we
found it more consistent when comparing different δn to look at the asymmetry at
which the ratio becomes one. The reason is that the overall quality of the fit (and
hence magnitude of χ2

ν) depends on the system under study: for systems close to the
stiffening transition the fit works less well (because of transient ordered domains, as
we will explain in Sec. 3.5), and so the χ2

ν values are large for either δ; in contrast,
away from the transition the fits work much better and the χ2

ν values are small. To
compare the δ± values across different δn, we found it advantageous to consider the
ratio of χ2

ν values, for which the disparity in fitting quality cancels out. We hence
define the stiffening transition to happen when

r(δn) :=
χ2
ν(δ+)

χ2
ν(δ−)

' 1 , (3.18)

where δ− and δ+ are the smaller and larger δ-values, both calculated for a system at
asymmetry δn.

37



0. 1 0. 2 0. 3 0. 4

γ

30

35

40

45

50

F
x
[p

N
]

0. 4 0. 8 1. 2

δ

4

8

12

χ
2 ν

δ−
δ+

Figure 3.7: Measured buckling force Fx = Lyfx as a function of buckling strain γ,
together with two fits of the stress strain relation from Eqn. (3.5), for the case of
MARTINI DLPC at T = 300 K and δn = 3.20%. The two different fits correspond to
the two minima of the reduced χ2

ν as a function of softening parameter δ (see inset):
a global one (at δ−, blue) and a local one (at δ+, red).

Since these simulations are computationally expensive (for each system and each
value of δn, a number of buckles with different values of γ need to be simulated), it is
not practical to produce many data points in the vicinity of δnc to pin down its precise
value. We instead estimate it by linearly extrapolating from the two asymmetries δn1

and δn2 nearest to 1, according to

δnc = δn1 +
1− r(δn1)

r(δn2)− r(δn1)
(δn2 − δn1) . (3.19)

We can estimate the error by bootstrapping the stress-strain fits for the two asym-
metries, which gives the uncertainties on the ratios r(δni), from which we get the
uncertainty of the extrapolation by an error propagation on Eqn. (3.19). Fig. 3.8
shows the χ2

ν as a function of δ for the two closest simulations to the transition, with
error estimates in the second and third columns, and the line extrapolating to find
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the critical δn in the first column, for MARTINI DLPC bilayers simulated at four
different temperatures.

3.2.6 Stress-strain plots

Fig. 3.9 shows the plots of buckling force Fx = Lyfx as a function of buckling strain
γ, together with fit(s) of the stress strain relation for MARTINI DLPC at T = 300 K
and various values of δ. The inset of the plots shows the reduced χ2

ν as a function of
softening parameter δ. It can be clearly seen how increasing the asymmetry gradually
makes the fit with the higher value of the stiffening parameter δ become more stable
until the minimum associated with it in the χ2

ν graph passes the minimum with the
smaller stiffening parameter as the the asymmetry crosses the critical threshold.

3.3 Revisiting experiments

The experimental results of Elani et al. [84] suggest that compositionally asymmetric
membranes are more rigid than their symmetric counterparts, while we instead ar-
gue that differential stress lies at the core of stiffening. But Elani et al. did not aim
for differential stress; they expressly aimed for compositional asymmetry, and this
is what the phase transfer protocol is supposed to produce. Moreover, Elani et al.
were quite conscious of the possibility that the phase transfer protocol might generate
undesired artifacts, and so they devised a control experiment in which they created
symmetric membranes via the more elaborate layer-by-layer process—finding them
to be elastically indistinguishable from symmetric membranes made by conventional
electroformation. To explain why this negative outcome does not exclude the possi-
bility of differential stress, we now discuss a scenario in which asymmetry is in fact a
prerequisite for the phase transfer protocol to engender differential stress.

Consider, therefore, a compositionally asymmetric bilayer vesicle that is built by
joining two individual leaflets, each initially present as a monolayer at an oil water
interface [82,83,87,89,93,97]. We will assume that the area per lipid in these mono-
layers is determined by some equilibrium condition (say, the equilibrium spreading
pressure set by the chemical potential of lipids in the oil phase) and given by asj

(where j ∈ {+,−} labels the leaflets). The vesicle’s initial area is then given by
Ai = Njasj (for both j). The crucial point is that the monolayer areas per lipid need
not coincide with those in a stress-free leaflet of a lipid bilayer, a0j, and therefore each
leaflet harbors energy due to tangential stress, given by

Estretch =
1

2
KA,m+

(Ai −N+a0+)2

N+a0+

+
1

2
KA,m−

(Ai −N−a0−)2

N−a0−
. (3.20)

The vesicle can lower this energy, and hence eliminate the net stress Σ, by changing
its initial area Ai to some final area Af. The energy minimization condition Σ =
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Figure 3.8: Plots of χ2
ν as a function of δ for two closest values of δn to the transition

(second and third columns), and the extrapolation for finding δnc (first column), for
MARTINI DLPC bilayers simulated at four different temperatures.
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Figure 3.9: Stress-strain plots for DLPC at 300 K simulated at different number
asymmetry values δn.
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∂Estretch/∂Af = 0 then leads to

Ai

Af

= α+
as+

a0+

+ α−
as−

a0−
, (3.21)

where we defined αj = KA,mj/(KA,m+ + KA,m−). Eqn. (3.21) fixes the equilibrium
areas per lipid, a∗j = Af/Nj, from which we can subsequently calculate the area strain
γ± in each leaflet:

γ± =
a∗±
a0±
− 1 = α∓

as±/a0± − as∓/a0∓

α+ as+/a0+ + α−as−/a0−
. (3.22)

Since Σ± = KA,m±γ±, we readily verify that Σ+ + Σ− = 0. Moreover, with a fairly
good approximation α+ = α− = 1/2, which permits the further simplification

γ± = ± r − 1

r + 1
with r =

as+/a0+

as−/a0−
, (3.23)

showing that at this level even the strains add to zero.

Notice now that the two ratios asj/a0j quantify the extent to which the area per
lipid differs between a monolayer and a single stress-free leaflet in a bilayer. This ratio
depends on the lipid composition of the leaflet (and the experimental conditions for
the respective monolayers), and so the ratio r of these two ratios generally differs from
1 when asymmetric membranes are created in a layer-by-layer process. Eqn. (3.23)
then explains how the two leaflets inherit a nonzero area strain and a differential stress,
even after the net stress has relaxed. However, if we create a symmetric membrane by
this layer-by-layer process, the two ratios asj/a0j will be identical, implying r = 1 and
γ± = 0. This shows that even though the phase transfer protocol starts out with two
monolayers, neither of which need reproduce the correct area per lipid for a bilayer,
the symmetric control experiment actually restores the stress balance. If stiffening
really results from differential stress, symmetric vesicles produced in this way would
not show stiffening—in agreement with the actual observation [84].

There is another observation which suggests that at least some differential stress
ought to have been present in the vesicles of Elani et al.: recall from our discussion
in 2.3.1 that an asymmetric DOPC-POPC membrane in the absence of differential
stress should have a spontaneous curvature of K0b ≈ −0.017 nm−1. Since the giant
unilamellar vesicles used in these experiments had radii of about R0 ∼ 20 µm, this
implies a huge reduced spontaneous curvature |R0K0b| ∼ 300 � 1, which in turn
indicates that these vesicles should have a very high tendency to tubulate. The fact
that this was not observed suggests a differential stress which compensates the huge
materials-based spontaneous curvature. As we have shown following Eqn. (2.11),
the overall spontaneous curvature K?

0 gets reduced to zero when a tension of about
0.8 mN/m is present.
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T [K] 290 297.5 300 301.5 302.5 310

δnc gel 3.46 3.82 5.36 6.30 none

∆ δnc ±0.59 ±0.22 ±1.30 ±1.76

Table 3.2: Estimated critical asymmetry δnc and its statistical uncertainty ∆ δnc

for simulated MARTINI DLPC bilayers at different temperatures. For 290 K the
membrane entered a gel phase already at zero differential stress, and for 310 K we
never observed stiffening.

3.4 The effect of temperature and lipid type

In the previous section we analyzed stiffening driven by differential stress for a
MARTINI DLPC membrane at 300 K, showing that beyond a critical asymmetry
of δnc ≈ 3.8% the membrane enters a phase in which the bending rigidity is signifi-
cantly larger than at smaller asymmetries. To see how the location of this transition
depends on the temperature of the system, we here extend the analysis to a range of
temperatures around the original state point T = 300 K. The results are summarized
in Table 3.2 and displayed in Fig. 3.13. GROMACS 2018.1 was used for simulations
discussed in this section. The underlying stress-strain curves and fits for the addi-
tional temperatures of 297.5 K, 301.5 K, and 302.5 K can be found in Fig. 3.10,
Fig. 3.11, and Fig. 3.12, respectively.

We determine the membrane rigidity for asymmetries up to δn = 6.5%. Within a
temperature range of several degrees around the previously studied case we again find
stiffening—characterized both by a discontinuous increase in bending rigidity κ and
a concomitant increase in the curvature softening parameter δ. Importantly, as the
temperature grows, the critical asymmetry δnc required to enter the stiffened phase
increases as well. This effect is very strong: within a window of about 5 K the critical
asymmetry grows by about 3 percentage points, with the data suggesting that the
slope of ∂δnc/∂T also increases with temperature (notice, though, that we have no
model to explain the functional form of δnc(T )).

The bilayer asymmetry δnc is accompanied by a differential stress between the
two leaflets. Within a simple empirical model we can estimate its magnitude: if the
upper and lower leaflets contain N+ and N− lipids, which in equilibrium have specific
area a, then the elastic energy of the bilayer as a function of its area A is

E =
1

2
KA,m

(A−N+a)2

N+a
+

1

2
KA,m

(A−N−a)2

N−a
, (3.24)

where KA,m is the monolayer expansion modulus (at equilibrium area). The condition
∂E/∂A = 0 yields the resting area at zero net tension, namely a times the harmonic
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Figure 3.10: Stress-strain plots for DLPC at 297.5 K simulated at different number
asymmetry values δn.
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Figure 3.11: Stress-strain plots for DLPC at 301.5 K simulated at different number
asymmetry values δn.

mean of N+ and N−, from which we get the tension in each leaflet:

Σ± = ∓KA,m δn . (3.25)

For many lipid bilayers KA,m = 1
2
KA is about 120 mN/m [114]. A change in δn by

one percentage point therefore increases the leaflet tensions by about 1 mN/m. For
comparison, the rupture tension of membranes comprising lipids with up to one double
bond in the tails is about 10 mN/m, with significantly smaller values as the degree
of unsaturation increases [167]. We suspect that this also limits the leaflet tension
that differentially stressed membranes can maintain, even though—in contrast to a
tense membrane—a differentially stressed one need not rupture as a whole. Instead,
we expect that a defect opens up in the tense leaflet that will permit lipids from the
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Figure 3.12: Stress-strain plots for DLPC at 302.5 K simulated at different number
asymmetry values δn.

overcrowded leaflet to flip through, thereby lowering the differential stress, until the
local defect closes up.

Assuming that the achievable differential stress is indeed limited to about 10 mN/m,
and remembering that (from Fig. 3.13) each mN/m translates to a temperature change
of about 1 K, we expect the temperature range within which a stiffening transition
can be observed to be no more than about 10 K. We caution the reader, though, that
our data are based on MARTINI level simulations under conditions of very significant
differential stress, i. e., conditions for which this CG force field has not been parame-
terized or validated. It is hence conceivable that the temperature window for which
stiffening happens in experiment is somewhat different. However, that increasing
temperatures require an increasing asymmetry to drive stiffening strikes us as robust.
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Figure 3.13: Estimated critical asymmetry δnc of MARTINI DLPC membranes as a
function of temperature; data from Tab. 3.2.

Compared to disordered fluid phases, a membrane’s curvature rigidity is larger for
ordered lipid phases [169,173,177], in particular for gel phases [163,165,166,168,171].
This suggests a connection between the stiffening transition and the main phase
transition; but if so, the relation is subtle. We have shown that increasing differential
stress will ultimately drive a DLPC membrane across a phase transition (presumably
induced by the forced reduction in area per lipid of the compressed leaflet, which
makes it increasingly gel-like), but a complete transition to the gel phase requires a
higher asymmetry than the one at which the stiffening transition occurs.

Still, the findings in Fig. 3.13 indicate that as the temperature T increases, and
with it the distance to the main phase transition Tm, increasingly large asymmetries
are required to trigger the stiffening transition—or, conversely, ever smaller ones
are needed as we approach the gel transition from above. Below the gel transition
itself stiffening would then be present without any asymmetry, and so we expect the
stiffening transition only to be observable for T > Tm. This then also implies that
the temperature window of about 10 K mentioned above begins at Tm, and hence we
expect that a stiffening transition only occurs within 10 K above a membrane’s main
phase transition (at least when based on our MARTINI data).

Increasing the temperature generally increases a membrane’s area per lipid and
decreases its lipid order. But the same effect on a membrane’s fluidity can also be
achieved by adding double bonds to the tails, i. e., increasing the degree of tail un-
saturation, or by decreasing lipid tail length [11]. Consider two lipids for comparison:
DLPC (di-12:0 phosphatidyl choline), which we have investigated so far, and POPC
(16:0-18:1 phosphatidyl choline), which has longer tails but also a cis double bond in
its sn2 chain. The longer tails would raise the melting temperature, while the dou-
ble bond lowers it, and it turns out that in this case both effects compensate: both
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DLPC and POPC undergo their main phase transition at approximately the same
temperature, −1 ◦C for DLPC [174] and −2.5 ◦C for POPC [170].

Recall, though, that the transition temperatures for MARTINI lipids need not
coincide with those of their real counterparts, and they are also not very precisely
known. Rodgers et al. [172] find that MARTINI-DLPC transitions at 274 K, which is
actually fairly close to the expected value. However, the authors suspect hysteresis
effects that are difficult to pinpoint, which may be up to 20 K. In our own simulations
(in elongated boxes, to avoid artifacts due to “strutting”) we find that MARTINI-
DLPC at 290 K is soundly in the gel phase, and even our simulations at 297.5 K can
be pushed into a gel phase in which it is at least metastable. We wish to emphasize,
though, that the more recently recommended shorter cutoff of 1.1 nm for non-bon-
ded interactions in the MARTINI model [160] reduces the overall cohesion and hence
lowers the main phase transition temperature. We hence do not wish to put too much
significance onto the absolute value of the temperature; what matters more is that
we are close to but above the phase transition.

To the best of our knowledge, the transition temperature for MARTINI-POPC
has not been determined. We find that at 300 K the lipid is in the fluid phase, which
is expected. Moreover, we observe that an asymmetric MARTINI-POPC membrane
does not enter a stiffened phase, at least up to δn = 6.52% (the largest asymmetry we
studied), suggesting that it is more fluid than MARTINI DLPC. However, for the two
largest studied asymmetries (δn = 4.98% and 6.52%), we observe the characteristic
double-minimum structure in χ2

ν(δ); and the minimum at large δ, even though still
metastable, has come down close enough that we expect a transition to occur shortly
above the highest asymmetry we studied. Extrapolating from the two last points
we estimate the stiffening transition to occur at δnc = (6.86 ± 0.56)%. Fig. 3.14
shows stress-strain plots for simulations of MARTINI POPC bilayers with different
asymmetry values at 300 K.

3.5 Interplay of order and curvature

Symmetric, flat, tensionless membranes transition into a gel phase at some well-
defined temperature, but for asymmetric membranes we expect several differences.
We will leave a more detailed analysis of the underlying physics to future work,
but without going into details, it is clear that the overfilled leaflet is more likely to
gel, because the reduced area per lipid already places it into a state of higher lipid
order. But then, this leaflet is unlikely to transition “in on go”, since its overall
area is tightly coupled to the area of the apposing underfilled leaflet. In other words,
the compressed leaflet’s lateral boundary condition is not one of constant stress but
contains aspects of both a constant stress and a constant strain ensemble. As such, we
should expect to find finite domains of higher order, at least at sufficient asymmetry.
This is indeed true, as Fig. 3.15 shows: the compressed leaflet in a differentially
stressed flat membrane strip can develop an ordered domain (which connects across
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Figure 3.14: Stress-strain plots for POPC at 300 K simulated at different number
asymmetry values δn.

the short dimension), but this domain need not grow to cover the entire leaflet.

Now recall that buckling breaks a bilayer’s translational symmetry by creating
curvature gradients, and that a high degree of lipid order is more likely to occur in
the flat regions surrounding a buckle’s inflection point than in the curved regions
where it turns (especially the “inside” bends). This suggests that finite domains of
higher lipid order, created by the asymmetry, are driven towards a buckles’ inflection
points, due to shape gradients. As a result, we get buckled membranes that are likely
stiffer in their inflection regions than their turning regions, which will render the
resulting buckle more “pointy” compared to classical Euler buckles. This is precisely
the scenario captured by the theory for curvature softening we used [75].

In order to quantitatively examine this scenario, we have measured the average
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Figure 3.15: Typical snapshot of the location of lipid tails in the compressed leaflet of a
differentially stressed but flat MARTINI-DLPC membrane (T = 300 K, δn = 5.94%).
The greyscale represents hexatic order parameter, ranging from white to black for
values of HOP from 0 to 1. The ordered band visible on the left side does not grow
to encompass the whole leaflet, even though its overall width slightly fluctuates.

hexatic order parameter Ψ6(s, t) of lipid tails, by some suitable binning resolved along
the arc length s of the buckle and the time t, as described in Sec. 3.1.3. Once the mem-
brane has transitioned into a stiffened phase, we indeed observe well-defined “bands”
of more highly ordered lipids in the compressed leaflet, which invariably start at and
then hover near an inflection point—see Fig. 3.16. At stronger asymmetry, or lower
temperature, they are more likely to appear and, if so, are also wider. Particularly
wide bands might link the two inflection points via the outer (and hence less curved)
turning point. Ultimately, the entire compressed side can be ordered.

The emergence of these ordered domains shows distinct characteristics of a first
order transition, just as the stiffening transition does. Most visibly, if an initially
disordered leaflet develops an ordered band, it grows to its equilibrium width fairly
rapidly, but it may take quite a while for the growth to start—as one would expect
for a nucleation process that requires a barrier to be crossed. This is most noticeable
for asymmetries in the vicinity of the stiffening transition, for which the width of the
band also shows more pronounced fluctuations. For instance, Fig. 3.17 shows the time
series of the hexatic order parameter Ψ6(t), averaged over the entire compressed leaflet
of a buckled DLPC membrane, for three independent simulations at T = 301.5 K and
asymmetry δn = 5.45%, always at the buckling strain γ = 13%. The fairly rapid
transition into the more ordered phase is readily visible, but the waiting times for
that transition are very different.

To get more statistics, we simulated this system 24 times: 8 times while holding it
at 301.5 K, 8 times in which the simulation had been preceded by a 300 ns successive
warm-up starting at the lower temperature 300 K, and 8 times in which the simulation
had been preceded by a 300 ns successive cool-down starting at the higher temperature
303 K. The order parameter Ψ6 for the compressed leaflet, averaged over the entire
leaflet as well as over time, takes values between about 0.44 and 0.55 (which hardly
depend on the temperature history). This scatter does not happen because all these
order parameters can stably occur, but because Ψ6 is a linear combination of the two
order parameter values that corresponds to states with and without an ordered band,
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Figure 3.16: a) Side-view of a MARTINI-DLPC buckle (T = 300 K, δn = 3.94,
γ = 15%) that exhibits an ordered domain in the compressed (upper) leaflet near the
right inflection point. b) Location of upper-leaflet lipid tails in the (s, y) coordinate
system of the upper leaflet’s reference surface, with the ordered band (corresponding
to Ψ6 & 0.45) clearly visible in the right half. (This is the buckled analog of Fig. 3.15.)
c) Hexatic order parameter Ψ6(s) as a function of arc length s, averaged over y and
simulation time of ∆t = 1600 ns.

weighted by the fraction of time the system spends in each state (see again Fig. 3.17).
If we further plot the average buckling force Fx = Lyfx against Ψ6, we arrive at a
linear relation—as seen in Fig. 3.18. This indicates that the buckling stress, too, is
a linear combination of the stresses belonging to states with and without an ordered
band, and the state with a band resists buckling more strongly.

In the vicinity of the stiffening transition the ordered bands may require a long
time to form—“long” at least compared to our overall simulation time. Considering
that near the transition we expect the system to fluctuate back and forth between
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Figure 3.17: Three representative time series of the hexatic order parameter Ψ6(t), av-
eraged over the compressed leaflet of a differentially stressed MARTINI-DLPC buckle
(T = 301.5 K, δn = 5.45, γ = 13%), obtained in three independent simulations. The
transitions mark the emergence of an ordered band and take a comparatively short
time to complete, while the waiting times up to a transition shows a wide distribution.

banded and non-banded states, with long waiting times between transitions, it is im-
possible to sample the two states (with their two different buckling stresses) with their
correct statistical weight (at least without resorting to additional sampling tricks).
For that reason, the stress-strain relation near the stiffening transition shows a lot of
data scatter and is much more difficult to fit than buckles well below the transition
(which are readily fit with low values for κ and δ) or well above (which are readily fit
with high values for κ and δ). While this makes a prediction for the precise location
of the stiffening transition difficult, the fact that it exists is uncontroversial.

Let us illustrate the first order nature of this leaflet ordering transition with one
final example. We observed that one of the simulated DLPC buckles (T = 297.5 K,
δn = 3%, γ = 10%), underwent a transition in which it lost its buckling amplitude.
Inspection revealed that the entire compressed leaflet turned into a gel phase, which
reduced the buckle’s contour length L close enough to Lx such that the strain γ
vanished, and with it the net buckling stress. However, subsequently relaxing the
constraint of fixed Lx and simulating this particular configuration instead under zero
lateral tension along the x-direction did not trigger a re-melting of this membrane.
This is of note, because this very system had previously been simulated as a flat
bilayer at zero tension, set up in a fluid phase, in order to calibrate the reference
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Figure 3.18: Average hexatic order parameter of all lipids in all frames of trajectories
of multiple simulations of DLPC at T = 301.5 K with δn = 5.45 buckled with γ = 13%
plotted against the average pressure force Fx of that buckle in the x-direction. Red
(“hot”) points are from simulations initiated at T = 303 K and gradually cooled down
in steps of 0.1 K, blue (“cold”) points are from simulations initiated at T = 300 K
and gradually heated.

length Lx needed to calculate the strain after buckling. Hence, the system can exist
in two different states of different area—a fluid membrane and one where the upper
leaflet has gelled—that are separated by a sizable free energy barrier.

3.6 Finite size effects

To evaluate the impact of finite size effects on our stiffening simulations, we simulated
the DLPC system at T = 300 K with δn = 3.20 at two different system sizes: with
25% more and 25% fewer lipids than the previously studied system (which contained
580 lipids in its upper leaflet). Since we keep the buckle’s width the same, this results
in a ±25% change in the relaxed length of the bilayer, and a corresponding change
in the radii of curvature.

Recall that at this asymmetry our original system did not exhibit stiffening (it only
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set in at δnc = 3.82%, see Tab. 3.2). We observe that the smaller and larger systems do
not experience stiffening either, but their distance from the transition point changes:
while the small system moves even farther from the transition (no double minimum
structure in χ2

ν(δ) visible, unlike in the mid-sized system), the big system moves
closer to the transition, in the sense that the minimum in χ2

ν(δ) corresponding to the
stiffened phase drops down so far that it is close to becoming the more stable phase.

We propose that this trend manifests the balance between lipid ordering and
membrane curvature: the lipid number asymmetry in the bilayer increases the density
of the compressed leaflet and moves it closer to an ordering transition, while the
curvature we impose in the buckle used to measure the associated stiffening acts
against lipid ordering. However, larger buckles have more extended flat regions near
their inflection points, which seems conducive to the formation of an ordered phase
in the compressed leaflet of the membrane (in the form of a “stripe”, see Fig. 3.16),
and so the suppression of order is weaker in bigger systems.

This result implies that the bare numbers we quote for the stiffening transition
are system size dependent. More precisely, the observed trend, and the rationale
for it, indicates that these number are upper bounds for δn, in the sense that the
transition in the limit of ever smaller curvatures will move to smaller asymmetries.
This is important for assessing the relevance of our proposed stiffening scenario for
actual experimental systems: the giant unilamellar vesicles (GUVs) in which stiffening
has originally been observed [84, 90, 92] are several orders of magnitude larger than
the systems we study, and hence exhibit curvatures that are smaller by that same
factor. It is therefore conceivable that substantially smaller asymmetries suffice to
trigger stiffening in such macroscopic systems, compared to values such as δnc ∼ 4%
which we find in our much smaller and much more highly curved buckles. And while
number asymmetries of that magnitude appear to be within the range of what can be
experimentally achieved if one explicitly sets out to do so, we remind the reader that
the actual stress asymmetries arising in the original experiments [84,90,92] were likely
ancillary—artifacts resulting from an incomplete cancellation of errors (see Sec. 3.3).

3.7 Broken mirror symmetry

One interesting aspect of the stiffening transition is that we almost never observe an
ordered band at both inflection points of a buckle (see e.g. Fig. 3.16a). This asymmetry
is particularly visible once bands become wider (i. e., at larger asymmetries), because
it may visibly affect the shape of the buckle by expanding the stiffer region around
the banded inflection point and shortening the softer region around the non-banded
inflection point—in other words, by breaking a buckle’s mirror symmetry with respect
to a vertical plane that cuts through the maximum. For a buckle at the state point
T = 297.5 K, δn = 4.50%, and γ = 23%, this is illustrated in Fig. 3.19a: it “leans”
slightly to the left, in accord with the fact that an ordered domain exists around the
right inflection point.
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Figure 3.19: a) side-view of a MARTINI DLPC membrane (at T = 297.5 K, δn = 4.50,
γ = 23%) which exhibits an ordered domain in the compressed (upper) leaflet near
the right inflection point. The observed shape asymmetry does not merely reflect an
expedient choice of snapshot but holds up under a statistical analysis, at p < 10−12.
b) shape parameters describing the geometry of buckle with broken mirror symmetry.

To ascertain that the observed small asymmetry is significant, and not just a
particularly large fluctuation in a suggestively chosen simulation snapshot, we define
the order parameter φ = (Lx2 − Lx1)/Lx, using the notation described in Fig. 3.19b;
its value is nonzero if mirror symmetry is broken. (Lx1 and Lx2 were found by fitting
a cubic spline to the buckle and calculating the horizontal distance between the
minimum and the maximum of the curve, taking periodic boundary conditions into
account.) For the system illustrated in Fig. 3.19a we find φ = 0.058 ± 0.008, and a
(one-sided) significance test shows that φ > 0 at p = 2× 10−13. For a second system
(T = 297.5 K, δn = 4.98%, and γ = 20%) we find φ = 0.083±0.007, which is positive
at p = 10−32. This analysis shows that while the observed asymmetry is not large, it
is systematically present.

That domains preferentially form at one inflection point, and then break a buckle’s
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mirror symmetry, is quite remarkable, because it is not expected within the theoretical
model we have used so far—that of a bilayer capable of curvature softening [75]. One
consequence of that model’s analytical shape equation (with or without curvature
softening) is that the local curvature is an even function of the buckle’s angle with
respect to the horizontal (see Eqn. (S8) in the supporting information of Ref. [75]),
which immediately implies mirror symmetry.1 Spontaneous symmetry breaking there-
fore needs an additional bistability in the free energy. In our case this is most likely
provided by the phase behavior of the asymmetric membrane, which—as we have
pointed out above—permits coexistence between a soft disordered and a stiff ordered
phase (the “band”), separated by a free energy barrier. Notice that the coupling to
the membrane geometry provides an additional positive feedback mechanism: if one
inflection point develops a band and stiffens, its flat region extends at the expense of
the flat region around the other inflection point, thus making it less likely for that
second inflection point to also transition into a more ordered phase.

In practical terms, a broken mirror symmetry renders our analytical model for a
buckle’s stress-strain relation fx(γ) incomplete. While it captures a key idiosyncrasy
of curvature localization—the non-monotonic behavior of fx(γ)—the geometric shape
underlying this prediction is incorrect. However, we believe this to be less problematic
than it might seem at first, because we aim to predict the energy (or its derivative,
the stress), not the shape. Recall that in all functional minimization problems a linear
deviation in the function is only associated with a quadratic deviation of the func-
tional’s value, provided we are “close enough” to the minimum. This is for instance
the reason why the Rayleigh-Ritz variational approach for estimating a Hamiltonian’s
ground state energy is often remarkably good, even if the associated estimate for the
ground state wave function is not very reliable.

The more important lesson here is that differential stress does not stiffen a mem-
brane by homogeneously changing its properties, or at least those of its compressed
leaflet. Instead, beyond a critical asymmetry we find finite domains in the compressed
leaflet, whose size increases with asymmetry, and which have a higher lipid order and
a higher rigidity. The membrane hence becomes a composite material, and observables
such as its bending modulus should be viewed as effective parameters that capture
its properties over scales larger than the composite’s granularity. If both inflection
points were to form ordered bands, our extended theory for buckling already captures
the effective nature of the problem, and the curvature softening parameter δ becomes
a measure for how strongly the localized stiffening affects the global response. If
instead such a band only forms at one inflection point, the symmetry breaks and we
must develop more refined theories. This is not our goal in the present work; but in
order to illustrate the basic idea, we give an explicit example in the the next section
for how buckling of such a composite sheet leads to an effective bending modulus that
arises as a (typically nontrivial) average of the two pure-phase rigidities.

1I would like to thank Zach McDargh for this elegant argument.
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δn γ κ(δn) κ1 κ2

4.50% 23% 43.23± 1.02 38.28± 0.99 47.04± 1.16

4.98% 20% 44.84± 0.80 39.46± 0.80 50.11± 0.99

Table 3.3: Membrane curvature moduli (measured in units of kBT ) for two types of
DLPC buckles at T = 297.5 K that exhibit a broken mirror symmetry. κ(δn): the net
rigidity of the full buckle, measured at this asymmetry δn; κ1: the rigidity inferred
for the shorter (and less ordered) half-buckle via an analyis of the buckle’s broken
mirror symmetry and Eqn. (3.31); κ2: the rigidity inferred for the longer (and more
ordered) half-buckle via the κ2-analogue of Eqn. (3.31).

3.8 Two dissimilar half-buckles in series

Here we briefly investigate the effective rigidity of a composite membrane by looking
at the special case of a buckle that comprises two domains of different rigidity, each of
which constitutes exactly half of a buckle. To keep the analytical effort manageable,
we will not use the generalized buckling theory for curvature softening membranes
but restrict to ordinary Euler elastica. Some of the underlying mathematics can be
found in Ref. [148].

Consider therefore a system like the one in Fig. 3.19b. A buckle of total length
L has two consecutive regions, labeled “1” and “2”, where the bending rigidity is κ1

and κ2, respectively. These two regions take up the lengths {L1, L2} along the buckle,
such that L1+L2 = L, as well as the projected lengths {Lx1, Lx2}, with Lx = Lx1+Lx2

being the projected length of the full buckle. We restrict to the special case in which
both regions are half-buckles, which hence share the same amplitude and transmit
the same (horizontal) buckling stress.

Let us define the fractions which these two regions take up along the buckle or
along the projection as

αi =
Li
L

and αxi =
Lxi
Lx

, (3.26)

and the two individual buckling strains as

γi =
Li − Lxi

Li
= 1− αxi

αi
(1− γ) , (3.27)

where γ = (L− Lx)/L is the strain of the entire buckle.
The amplitude of an Euler buckle is given by 2λ

√
m, where λ2 = κ/fx is the ratio

between bending rigidity and buckling stress, and where m ≈ γ− 1
8
γ2− 1

32
γ3−· · · is the

strain-dependent elliptic parameter entering the analytical solution [148]. Since two
half buckles in series which differ in rigidity still share both amplitude and buckling
stress, this gives, to lowest order in the strain,

κ1γ1 = κ2γ2 . (3.28)
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And the equality of stresses implies, again to linear order in the strain [148],

κ1

(
π

L1

)2 (
1 +

1

2
γ1

)
= κ2

(
π

L2

)2 (
1 +

1

2
γ2

)
. (3.29)

We can view Eqns. (3.28) and (3.29) as two equations determining α1 and αx1. The
solutions can be written down analytically, but are fairly complicated. However, in
the limit of weak buckling, γi → 0, they strongly simplify, and we find

α1 = αx1 =
1

1 +
√
κ2/κ1

+O(γ) . (3.30)

And if we interpret the overall stress of the composite buckle as arising from a one-
component system with rigidity κ, we can get its value by insisting that

κ

(
2π

L

)2 (
1 +

1

2
γ
)

= κ1

(
π

L1

)2 (
1 +

1

2
γ1

)
. (3.31)

The presence of an extra factor of 2 on the left hand side reflects the fact that the
effective buckle is a full buckle, while the two individual pieces are only half buckles.
Inserting Eqn. (3.30) now yields (again: for small strain)

κ =

(√
κ1 +

√
κ2

2

)2

, (3.32)

which shows the effective rigidity to be the (delightfully unusual) square-mean-root
average of the individual rigidities. (Due to the power mean inequality, this value lies
between the geometric and the arithmetic mean of the two rigidities.)

Let us test these simple predictions by analyzing buckles which throughout a
simulation trajectory exhibited persistent mirror symmetry breaking. We investigated
two specific cases, both for the system at T = 297.5 K, which is close to the gel
transition and hence likely to produce sizable ordered domains that can strongly
affect the shape of the half-buckle on which they reside. Specifically, we looked at
the systems (δn = 4.50%; γ = 23%) and (δn = 4.98%; γ = 20%), and we have argued
in the previous section that their observed broken mirror symmetry is statistically
highly significant.

Knowing the rigidity of the overall buckle, determined by the means described
in Sec. 3.1.1, we can also quantify the asymmetry of the buckle by measuring the
dimensions of its two half-buckles, as defined in Fig. 3.19b. We then use Eqn. (3.31) to
infer the rigidities κ1 and κ2 of the un-stiffened and stiffened half-buckles, respectively.
The results are shown in Table 3.3.

Since κ1 refers to the un-stiffened part of the buckle, it should be the same between
these two measurements; the (two-sided) p-value for that being the case is very high,
p = 35%. Moreover, we can also compare these κ1 values to the rigidity of this

58



system at the smallest asymmetry we studied, in which it has not yet stiffened,
which is κ(δn = 3.02%) = (36.16 ± 0.99) kBT . The p-values that these agree are
pδn=4.5% = 13% and pδn=4.98% = 1%.

Overall, this asymmetry analysis works remarkably well—better than it likely
should, considering that the underlying theory relies on several simplifications (such
as: the full buckle decomposes into two Eulerian half-buckles, both of which can be
described by a non-curvature stiffened stress strain relation in the limit γ → 0). At
any rate, it supports the notion of stiffened domains that on average lead to a more
rigid “composite” membrane.
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Chapter 4

The role of cholesterol

While the relaxation times for asymmetric lipid compositions are very long for typical
charged or zwitterionic phospholipids, cholesterol is believed to flip-flop several orders
of magnitude faster [65, 187]. Hence, there exists a physiologically relevant time
window within which phospholipids maintain their compositional asymmetry, while
the cholesterol distribution is equilibrated between the leaflets. How does this change
our considerations for spontaneous curvature and differential stress?

A comprehensive discussion of this situation goes beyond the scope of the present
work, since it would require a much more careful treatment of the equation of state of
lipid-cholesterol mixtures, as for instance recently given by Allender et al. [117]. But
there is one important point we wish to emphasize: even if the cholesterol distribution
can relax, this does not automatically imply that any previously existing differential
stress will decay to zero, in contrast to a recent claim by Miettinen and Lipowsky
[125]. This is because stress equilibration is not the thermodynamic condition that
determines the distribution of cholesterol between the leaflets. The correct condition
is equilibration of chemical potential [117], and this will not entail a stress relaxation,
any more than the ability of water to cross a semipermeable membrane between two
different osmolytes will relax the osmotic pressure.

4.1 Theory

Let us illuminate this point with a strongly simplified model. Consider a bilayer
that contains L± lipids of type ± and specific area a± in its ± leaflets, and also
add N± cholesterol molecules of specific area a to these leaflets. Making the rather
crude assumption that lipid areas add, we expect an equilibrium total area A± =
L±a± + N±a for each leaflet. Since generally A+ 6= A−, the membrane will be
differentially stressed even at zero net tension. If the “normal” lipids stay in their
leaflets, but cholesterol flip-flops to equilibrate its chemical potential (subject to the
constraint N+ +N− = N), what is then the equilibrium area A, the final cholesterol
distribution, and the resulting differential stress?
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We propose that, for the purpose of the present argument, the relevant physics
can be captured by an approximate empirical free energy that accounts for the fol-
lowing three major physical effects: (i) the partitioning free energy g± per cholesterol
molecule into the two leaflets; (ii) the elastic energy of leaflet stretching or compres-
sion; and (iii) the entropy of cholesterol’s distribution between the leaflets:

G(A,N+) = −g+N+ − g−N−

+
1

2
KA,m+

(A−A+)2

A+

+
1

2
KA,m−

(A−A−)2

A−
+NkBT

[
ϕ logϕ+ (1− ϕ) log(1− ϕ)

]
, (4.1)

where ϕ = N+/N is the cholesterol fraction in the +-leaflet and the last line is an
entropic term that measures the distribution of cholesterol between the two leaflets
(which is not considered part of g±).

The condition ∂G/∂A = 0 ensures zero net tension and gives the equilibrium
area Aeq = (α+/A+ + α−/A−)−1, where α± = KA,m±/KA. Notice that deriving this
condition involves only the elastic contribution (second line) to the free energy. Upon
inserting it back, this simplifies to

Gelast(A = Aeq, N+) =
1

2
KAα+α−

(A+ −A−)2

α+A− + α−A+

. (4.2)

Since this is proportional to the square of the difference of the original leaflet areas
A±, the elastic part of the free energy by itself is minimized when A+ = A−.

The cholesterol distribution now follows from equilibrating cholesterol’s chemical
potential between the leaflets, which is equivalent to demanding (∂G/∂N+)Aeq,N = 0.
Unfortunately, this expression is very messy; but it simplifies considerably under the
fairly good assumption that KA,m+ = KA,m−, or α+ = α− = 1

2
. Expressing the

cholesterol distribution via its deviation from even, ψ := ϕ − 1
2
, and expanding the

entropy term to linear order around ψ = 0, we find after a short calculation

ψ(∆g,∆A0, T ) =
∆g − φ0KA∆A0/N

4kBT + 2φ0KAa
, (4.3)

with the convenient abbreviations

∆g = g+ − g− , (4.4a)

∆A0 = L+a+ − L−a− , (4.4b)

φ0 = Na/(L+a+ + L−a− +Na) . (4.4c)

These three terms signify, in turn, the partitioning free energy difference per choles-
terol molecule, the leaflet area difference in the absence of cholesterol, and cholesterol’s
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average area fraction in tensionless leaflets. The differential stress associated with this
cholesterol distribution is

Σ± =

(
∂G±
∂A

)
T,Aeq,N

=
1

2
KA
A− −A+

A− +A+

(4.5a)

= ∓φ0KA

(
∆A0

2Na
+ ψ(∆g,∆A0, T )

)
(4.5b)

= ∓1

2
φ0KA

∆A0/Na+ ∆g/2kBT

1 + φ0KAa/2kBT
. (4.5c)

To elucidate the meaning of these predictions, it is instructive to examine two
limiting cases. Let us first look at a situation in which both the partitioning free
energy difference and entropic effects vanish (i. e., ∆g = 0 and T = 0). In this special
case, Eqn. (4.3) simplifies to

ψ(∆g = 0,∆A0, T = 0) = −∆A0

2Na
. (4.6)

The cholesterol asymmetry is proportional to the bare-lipids area difference in the
two leaflets, and it is easy to check that Eqn. (4.6) implies A+ = A−. In other words,
the areas are balanced and, within the framework of our model, the differential stress
vanishes exactly—as either Eqn. (4.5a) or Eqn. (4.5b) readily show.

Notice, though, that a full stress cancellation only occurs if we neglect entropic
effects, because back-filling the expanded leaflet with cholesterol diverted from the
compressed leaflet will imply a deviation from the true free energy minimum. Even if
cholesterol prefers no leaflet over the other, entropic effects will create a partitioning
shift ∆ψ away from the stress free state:

∆ψ = ψ(∆g = 0,∆A0, T )− ψ(∆g = 0,∆A0, T = 0) (4.7a)

=
∆A0 kBT

Nφ0KAa2
+O(T 2) , (4.7b)

or
∆ψ

ψ(∆g = 0,∆A0, T = 0)
= − 2 kBT

φ0KAa
+O(T 2) . (4.8)

This expression is negative, showing that the shift always counteracts the cholesterol
displacement from Eqn. (4.6) that would fully eliminate the differential stress. Hence,
in the presence of entropy, stress cancellation is incomplete, even when ∆g = 0.

In the general case cholesterol will of course prefer one of the two leaflets of an
asymmetric membrane over the other. Let us hence look at the second limiting case,
in which a finite preference ∆g exists, but where the bilayer creation process achieved
∆A0 = 0, i. e., a bilayer which in the absence of cholesterol harbors no differential
stress. Notice that (within our model) this would stay true if we added cholesterol
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evenly to the two leaflets: N/2 molecules to each leaflet, or, ψ = 0. But if we now
permit the cholesterol to flip-flop and find its true free energy minimum, we get

ψ(∆g,∆A0 = 0, T ) =
∆g

4kBT + 2φ0KAa
, (4.9)

showing that if the +-leaflet is preferred by ∆g, then a cholesterol asymmetry propor-
tional to ∆g arises. In other words: the addition of cholesterol may not only fail to
fully balance the stresses, as in the previous case; it may actually create a differential
stress that was not there in the absence of cholesterol. Notice that this is opposed by
two different phenomena: first, the entropy (the first term in the denominator); and
second, the fact that the emerging asymmetry creates new stresses that cost elastic
energy (the second term in the denominator).

To estimate the magnitude of this asymmetry, let us take ∆g ≈ 2 kBT , a recently
determined partitioning free energy difference for cholesterol between a saturated
stearoyl-sphingomyelin bilayer and an unsaturated POPC bilayer [188]. Using fur-
thermore KA ≈ 250 mN/m ≈ 60 kBT/nm2 [114], a ≈ 0.25 nm2 [176], and φ0 = 20%,
this leads to a large partitioning asymmetry of ψ ≈ 36% and, from Eqn. (4.5c), an
associated differential stress of |Σ±| ≈ 10 mN/m for the parameters chosen above—a
very large value. This is most likely outside the regime of validity of our linear ex-
pansions, but it indicates that small partitioning differences can drive large stresses.

We hasten to add that this model has many weaknesses. For instance, we assume
our partitioning free energies g± to be independent of the cholesterol content in each
leaflet. This is incorrect not just because of the obvious role played by the chemi-
cal environment; there is also an elastic effect: even flat membranes have bending
stresses due to nonzero spontaneous curvatures Km±, and since Km± generally de-
pends on the cholesterol mole fraction, this creates another thermodynamic driving
force, as recently emphasized by Allender et al. [117]. An even more subtle issue
is the assumption of area additivity, and the prerequisite of giving meaning to the
notion of specific lipid area. This is fraught with numerous complications, because
the presence of cholesterol in a bilayer changes the conformational ensemble of the
host-phase lipids [185], affecting area per lipid [176,179–182] as well as other material
parameters, such as the spontaneous curvature [117, 175, 185] and the bending rigid-
ity [177,178,183,184,186]. In particular, addition of cholesterol can actually contract
a membrane, leading to a negative partial specific area [176, 181]. To do better, we
need a quantitative understanding of the underlying equations of state, but this is
not the goal of the present work.

Let us now return to the claim by Miettinen and Lipowsky that the presence
of a species with a high flip-flop rate will render the individual leaflets tensionless
[125]. In their simulations, these authors studied an asymmetric membrane containing
POPC in one leaflet, and a mixture of POPC with (two slightly different versions of)
the ganglioside GM1 (the glycosphingolipid monosialotetrahexosylganglioside). Since
POPC has one monounsaturated tail, and GM1 contributed with its saturated tails
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at most up to 25 mol% in one of the leaflets, the partitioning free energy difference ∆g
is likely very small. These simulations hence appear closer to the first limit discussed
above, in which cholesterol fosters an (incomplete) differential stress relaxation (see
Eq. 4.7 and Eq. 4.8). This is indeed what the authors find, even if the stress in
question is slightly more subtle in nature (namely: a residual differential stress).
However, whether cholesterol would also undo a bilayer’s differential stress in the
presence of a noticeable ∆g cannot hence be inferred from these simulations.

4.2 Simulation

In this section we use simulation to address the question whether a rapidly flip-
flopping lipid species, such as in particular cholesterol, will distribute between the
leaflets such as to eliminate any differential stress. The claim made by Miettinen and
Lipowsky [125] contradicts our theory that paints a more complex picture: since the
elastic energy is only one of several contributions to cholesterol’s chemical potential,
it is not the only one that guides its distribution between leaflets. In particular,
we have presented a simple model in the previous section that shows how addition
of cholesterol may not just fail to fully cancel a stress difference but actually create
one—namely, if its free energy of partitioning differs sufficiently strongly between the
leaflets.

To test the latter scenario in simulation, we have prepared a compositionally
asymmetric bilayer of two lipid species with a significant difference in their ability
to solvate cholesterol. One is the fully saturated DPPC, the other one the highly
unsaturated DIPC (see Fig. 1.3). Since cholesterol prefers to partition into saturated
phases [188], we expect it to have a preference for the DPPC side. Fig. 4.1 shows the
results of simulations of symmetric MARTINI DPPC and DIPC bilayers with 30%
cholesterol in each leaflet at 310 K to compare the flip-flop rate of cholesterol in these
systems. These simulations show the flip-flop rate of cholesterol is higher in a DIPC
bilayer compared to a DPPC bilayer.

We started by simulating two symmetric mixed membranes that consisted of
a 4:1 mixture of either DPPC or DIPC with cholesterol. Using the average area
densities obtained this way, we then created an asymmetric membrane with a (4:1)
DPPC+Chol mixture on one side (72 DPPC lipids and 18 cholesterols), and a (4:1)
DIPC+Chol mixture on the other (56 DIPC lipids and 14 cholesterols). Evolving this
system from this initial condition we observed a strong tendency for cholesterol to
re-partition into the DPPC leaflet, with an approximately exponential kinetics char-
acterized by a relaxation time of about 200 ns, as illustrated in Fig. 4.2. After less
than 1 µs the DPPC leaflet holds about 25 cholesterol molecules, i. e. about 80% of
the total cholesterol content. Checking the differential tension at this end point, we
find that it has the value Σ

(res)
± = −3.71(88) mN/m, leaving the DPPC+Chol leaflet

under a noticeable compressive stress.
The key difference to the simulation presented by Miettinen and Lipowsky is our
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Figure 4.1: Fraction of cholesterol molecules in the upper leaflet with a starting
position in the upper (red) or lower (blue) leaflets of symmetric DPPC (left) and DIPC
(right) bilayers as a function of time. The initial state contained 30% cholesterol per
leaflet (108 cholesterol molecules and 252 DPPC or DIPC lipids in each leaflet). The
simulations were conducted at 310 K.

choice of lipid tails: we explicitly set up a situation in which cholesterol experiences
a large differential free energy of partitioning ∆g between the leaflets. This is not
an unphysiological scenario, though. Consider for instance that the outer leaflet of
a cell’s plasma membrane contains all of the membrane’s sphingomyelin, a strong
cholestreol “recruiter”. In fact Allender et al. [117] have estimated that this would
drive almost 3/4 of the plasma membrane’s cholesterol content into that leaflet, were
it not for the elastic cost associated with cholesterol’s change of a leaflet’s spontaneous
curvature, which turns out to counteract the driving force due to solvation. Under
realistic situations the magnitude of this effect will depend on many other factors, and
in a biological context it will of course be different for different membrane systems
inside cells. But for now, our simple counter-example indicates that cholesterol will
not automatically eliminate the differential stress of a membrane.
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Figure 4.2: Number of cholesterol molecules Nchol,± in the upper or lower leaflet of a
DPPC+Chol
DIPC+Chol

bilayer as a function of time. The initial state contained 20% cholesterol
per leaflet in an area-matched asymmetric system. Cholesterol flip-flop leads to a
25:7 redistribution with a relaxation time of about 200 ns. The graph illustrates 20
independent simulations, four of which are singled out in different shades of blue; the
bold red curve is the average over all of them.
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Chapter 5

Phase coexistence

In this chapter we present a rundown of methods we used to take a closer look at
the coexistence between the disordered, fluid phase and the more ordered, gel-like
phase in the compressed leaflet of asymmetrically-stressed bilayers. Furthermore, we
address issues related to the free energy barrier separating the phase coexistence state
from the fluid state, as observed in simulations of coarse-grained MARTINI lipids.

In order to do any analysis on the different phases during their coexistence, it was
first necessary to identify the phase to which each lipid (each lipid tail, to be more
precise) belongs at every point in time. Our first naive idea was to directly use the
value of the hexatic order parameter (HOP) of the lipid tails as indicator of their
phase, identifying tails with HOP greater than a certain threshold as being in the gel
phase.

There are two problems with this approach to identifying phases: Firstly, it is
not clear how to objectively determine the critical threshold value of HOP separating
fluid and gel phases. Secondly, lipid tails that are clearly in the fluid phase, regularly
happen to align relative to adjacent lipid tails in configurations corresponding to high
HOP values. In fact, the HOP values of lipid tails in a leaflet that is unambiguously
in the fluid phase have a distribution that spans the entire possible range of values
between 0 and 1, and the fraction of lipid tails having a HOP value higher than any
allowed arbitrary critical threshold would be non-zero. Fig. 5.1 shows the distribution
of values of HOP of all lipid tails over the entire span of a 1.6 µs simulation of a
symmetric bilayer of MARTINI DLPC lipids at 300 K, which is entirely in the fluid
phase.

Inspired by a paper from Lyman et al. [193], in which the authors successfully
used a hidden Markov model (HMM) to identify the local membrane phase in all-
atom simulations of ternary systems with Lo/Ld phase coexistence, we decided to try
utilizing a similar (but not identical) method. The following section briefly introduces
HMMs and describes how we found them advantageous.
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Figure 5.1: Distribution of hexatic order parameter Ψ6 values of the two tails of 400
MARTINI DLPC lipids of one leaflet of a symmetric bilayer over 800 evenly-spaced
snapshots from a simulation at 300 K lasting 1600 ns in total.

5.1 Hidden Markov model

Initially introduced in the late 1960s [189] and extensively used in the field of bioinfor-
matics [191] among others, a hidden Markov model describes a Markov process with
a set of unobservable (or hidden) states together with a set of observables whose be-
haviour depends on the Markov process. The hidden state of the system at every step
is determined by its hidden state in the previous step through a probability matrix of
transition between states, and the observables, which can be discrete or continuous,
are determined from the hidden state through output (or emission) probabilities [192].

For a given sequence of observables, the most likely values of transition and emis-
sion probabilities are determined using the Baum-Welch algorithm [190]. Once these
probabilities are known, the Viterbi algorithm can be used to determine the most
likely sequence of hidden states corresponding to the observables [194].

While Lyman et al. [193] used the local lipid composition (lipid types of the few
nearest neighbours to each lipid) as the observable, we used the HOP of the individual
lipid tails. Assuming two hidden states (one for the fluid phase and one for the more
ordered, gel-like phase), and assuming Gaussian emission probabilities for the HOP
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Figure 5.2: Position of lipid tails in the compressed leaflet of a MARTINI DLPC
bilayer with asymmetry δn = 3.75% simulated at 297.5 K. Red points represent lipid
tails identified as belonging to the ordered phase using a HMM.

values, we used the implementation of the relevant algorithms in the hmmlearn Python
package to attribute a phase state to each lipid tail at every frame of the trajectories.
Fitting of model parameters using trajectories from simulations where ordered bands
were present lead to identification of lipid tails in the ordered regions as belonging to
a separate phase by the HMM. Fig. 5.2 shows the identification of lipid tails in an
ordered band in the the compressed leaflet as belonging to the more ordered phase
by the HMM in a simulation of MARTINI DLPC lipids with δn = 3.75% at 297.5 K.

We tried adding more observables to our model, using the average HOP of the 3 or
6 nearest points as 1 or 2 additional observable, without any discernible differences in
the results of phase classification. We also considered adding a third hidden state to
our model, hypothesizing that it might identify the points at the boundary between
the ordered and disordered regions; However, this merely resulted in dividing the fluid
phase into two states based on a HOP cutoff whose value depended on the specific
trajectory.

A point worth noting is that while we used Gaussian distributions for emission
probabilities of the hidden Markov model, given the fact that the range of values
for HOP is limited between 0 and 1, beta distributions resemble the shape of the
probability distribution of HOP values in the two phases better. Nonetheless, we
currently do not have a theory predicting these probability distributions. Fig. 5.3
shows the probability distribution of HOP values of the MARTINI DLPC lipid tails
of the compressed leaflet of an asymmetric bilayer with δn = 3.75% simulated at
297.5 K, for the two different phases identified by the HMM.
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Figure 5.3: Distribution of hexatic order parameter Ψ6 values of the MARTINI DLPC
lipid tails of the compressed leaflet of an asymmetric (δn = 3.75%) bilayer at 297.5
K. Blue represents the fluid phase and red represents the gel phase, as identified by
the HMM. Dashed lines show beta distributions fitted to the data.

5.2 Barrier crossing issues

We have argued that increasing differential stress past a critical threshold leads to
stiffening of bilayers as a result of formation of highly-ordered regions in the com-
pressed leaflet. This suggest a first order transition from a state without the existence
of the ordered phase to a state with it, with the latter state having a lower free en-
ergy value past the critical asymmetry. Furthermore, this hints at the existence of a
free energy barrier between the global thermodynamic equilibrium state and the less
favourable local minimum, which needs to be crossed if the system is initially in the
local minimum. Our simulations of MARTINI lipids at temperatures and asymme-
tries where we expect existence of an ordered band to be the favoured state of the
system, supports this idea. Fig. 5.4 shows the fraction of lipid tails in the ordered
phase (as determined by HMM) of the compressed leaflet as a function of time for
5 identical (except the random seed for initial velocities) simulations of asymmetric
MARTINI DLPC bilayers with δn = 4.25% at 297.5 K. While having an ordered band
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Figure 5.4: The fraction of lipid tails in the ordered phase of the compressed leaflet
for 5 simulations of asymmetric MARTINI DLPC bilayers with δn = 4.25% at 297.5
K, as a function of time.

is the favourable state for this system, it took between 300 to 1100 µs for the system
to pass the barrier between the fully fluid state and the phase coexistence state.

It is also worth noting that finite-size effects can significantly affect the free energy
landscape of the system. As an example, it is intuitively clear that a narrower bilayer
strip would facilitate formation of ordered bands by making it easier for them to span
the width of the strip and link via the periodic boundary. We could verify this by
conducting 5 simulations of asymmetric MARTINI DLPC bilayers with δn = 4.25%
at 297.5 K with an increased width of 10 nm (instead of previous value of 8 nm) and
observing that in none of these simulations an ordered band spanning the entire with
of the strip was formed during the 1600 ns run of the simulations.

A more thorough treatment of this first order transition necessitates development
of a theoretical framework for predicting the free energy of these stress asymmetric
systems and such analysis is beyond the preview of this work.
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Chapter 6

Summary and Outlook

An almost ubiquitous feature of biological lipid membranes is asymmetry between
their constituent leaflets. On time scales shorter than lipid flip-flop time, a lipid bi-
layer can exhibit metastable asymmetry due to two distinct sources: one due to lipid
composition of the leaflets, the other due to their lateral stress. Therefore, charac-
terizing a bilayer’s asymmetry through the compositional aspect alone is insufficient.
However, these two asymmetries are not independent, and their interplay can affect
mechanical properties of membranes in unexpected ways. We have proposed a theo-
retical framework for analyzing this interplay and its consequences, such as existence
of residual stress in an asymmetric membrane whose leaflets’ area has been chosen to
match their symmetric counterparts.

Using coarse-grained MD simulations, we have shown that imposing differential
stress onto a lipid bilayer can drive a transition in which the bending modulus discon-
tinuously increases, and propose this as the explanation for observation of increased
rigidity for asymmetric membranes in recent experiments.

A stress imbalance between bilayer leaflets, and its impact on any number of mem-
brane properties, is a matter of practical concern, since recently proposed methods
for creating compositionally asymmetric membranes might inadvertently also render
them differentially stressed. We have explicitly shown how this might happen in the
phase transfer protocol, but it is not difficult to imagine causes for imbalance that
arise in the lipid exchange protocol. In fact, in many cases of practical relevance
a bilayer’s spontaneous materials curvature K0b is so large that macroscopic mem-
brane systems (such as giant unilamellar vesicles, especially deflated ones) should be
unstable against tubulation without a counterbalancing differential stress.

We have also shown that incorporating lipid species that can rapidly transition
between leaflets, such as cholesterol, renders the situation even more complex. One
possibility is that their redistribution expunges differential stress, as recently observed
by Miettinen and Lipowsky, but this is not the generic outcome. The chemical poten-
tial of these molecules may contain contributions that expressly favor their uneven
distribution between leaflets, and so adding them to a stress-balanced membrane
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might actually create differential stress. In the case of cholesterol this can easily hap-
pen when the two leaflets differ in their tail order, as is for instance the case in the
plasma membrane.

Investigating a MARTINI DLPC membrane across a range of temperatures, we
found that the asymmetry at which the transition occurs increases with temperature,
more quickly so for larger temperatures. We attribute the stiffening to the formation
of ordered domains in the compressed leaflet that resemble a gel phase, but cannot
immediately permeate the entire compressed leaflet since the coupling between the
two leaflets imposes a constraint on what area changes are possible. In particular, the
existence of an ordered-disordered coexistence region is not merely a kinetic artifact,
even though the breakup of the ordered phase into smaller subdomains might well be.
If the emergence of local ordered domains in a fluid background drives an increase in
bending rigidity, this implies that (i) membranes close to their main transition can
be very easily driven into the stiffened regime, but also that (ii) no mechanism for
further stiffening is available if the initial symmetric membrane is already in the gel
phase.

Our findings suggest there is a window of temperature above the membrane’s gel
transition point over which a given asymmetry can induce stiffening. We estimated
that range to be on the order of 10 ◦C from our MARTINI DLPC simulations, but
this might be too conservative of an estimate for two independent reasons: Firstly,
we know that the gel transition in atomistic systems affects material properties much
more strongly than what coarse-grained models suggest. For example, the bend-
ing rigidity of gel-phase membranes is thought to be at least an order of magnitude
larger than that of their fluid phase counterparts [163,165,166,168,171]. The MAR-
TINI DLPC gel phase was recently measured to be about 7 times stiffer than the
fluid phase [75], but at a temperature 35 ◦C below the fluid system. Extrapolating
the fluid and gel rigidities to the transition temperature, the difference reduces to a
factor of 3–4 [162], which is less than what is expected for real systems or in atom-
istic simulations. Secondly, we have shown that the critical asymmetries obtained
in our simulations are subject to systematic finite size effects, in that their values
are smaller in bigger systems. Given how much smaller our systems are compared
to those investigated in experiments, this discrepancy between our model predictions
and experimentally relevant scales could have a significant effect on the transition
window. Our buckles are about 40 nm long, while the GUVs studied in Refs. [90,92]
have a diameter between about 40 µm and 110 µm, showing that we need to bridge
about 3 orders of magnitude (we get a similar ratio if we instead compare typical
curvatures). Specifically, if real (and therefore bigger) systems can be driven into a
stiffer phase by smaller asymmetries than the ones our model membranes require,
then the overall temperature range over which this is possible could be substantially
larger.

These two points might explain an otherwise puzzling observation about the ex-
perimental model systems that first reported the phenomenon of asymmetry-induced
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stiffening. The measurements performed in Ref. [84, 90] use POPC and DOPC (1,2-
dioleoyl-sn-glycero-3-phosphocholine), and of those two POPC is the high melting
lipid (Tm ≈ −2.5 ◦C [170]). Since the measurements had been done at approximately
room temperature (22 ◦C for [84], 21 ◦C for [90]) both experiments were approximately
24 ◦C above the gel transition temperature of the high melting lipid. The viable tem-
perature range of 10 ◦C we derived based on our MARTINI DLPC simulations would
hence be too small to explain the effect. A larger range due to finite size effects could
remove this discrepancy.

Also puzzling, but for a different reason, are the stiffening results reported in
Ref. [92], where DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and DOPC
were used. In this case DMPC is the high melting lipid, with a transition tem-
perature of 23.4 ◦C [163]. The experiments were conducted at 22.5 ◦C, nominally a
degree below the gel transition, but the rigidity of a pure DMPC vesicle was re-
ported to be (11.8 ± 1.3) × 10−20 J = (28.9 ± 3.2)kBT , a value entirely compatible
with a fluid phase membrane. The authors correctly point out that the rigidity of
DMPC decreases (within an ≈ 3 ◦C window) upon approaching the main phase tran-
sition from above and is smallest at the transition, an effect known as “anomalous
swelling” [163,195,196]. But their interpretation that this might indicate a coexistence
of fluid- and gel-state lipids at the point of measurement, leading to the formation
of periodic membrane ripples, strikes us as implausible in view of the actual temper-
ature dependence of DMPC’s bending rigidity, which exhibits an abrupt and very
steep increase of the rigidity below the gel transition [163]. It is unclear why the
DMPC phase was so soft, but we suspect that trace contaminations [32] or remnants
of oil from the microfluidic fabrication process have slightly lowered the transition
temperature. Still, in an asymmetric DMPC/DOPC system the DMPC leaflet would
be extremely close to the gel transition, and even a small stress asymmetry (triggered
for example by the mismatch between the equilibrium area per lipid in a monolayer
compared to a bilayer) could induce stiffening.

At any rate, our findings indicate that (i) the gel transition in differentially
stressed membranes is of potentially significant interest for asymmetric membranes,
and that (ii) the matter in which it manifests is more subtle than the all-or-nothing
transition we see for symmetric membranes. We find finite domains of the ordered
phase in the compressed leaflet, which render these systems inhomogeneous compos-
ites. Their elastic behavior can be approximately described by an effective modulus
in cases such as the simple buckles we study, in which these domains give rise to
well localized stripes that give the half-buckles that host them an identifiable rigidity.
But in more complex situations this might not be quite so easy. For instance, in
larger membranes with overall lower curvatures we expect the curvature localization
to flat regions to be less effective, rendering the overall composite less well organized.
Modeling the thermodynamic and elastic properties of such stress-asymmetric sys-
tems will hence require new ideas. But given that their properties conceivably link
readily accessible observables (such as transition temperatures or gel fractions) with
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system properties for which currently no way of measuring them exists (such as the
differential stress), one may hope that a good theory can turn some of the former
observables into proxies for the latter, and thereby deepen our understanding of the
microscopic physics underlying asymmetric membrane thermodynamics. Aside from
developing a theory treating the asymmetry-induced phase transition evidently oc-
curring in these membranes, and looking for evidence of differential stress in model
lipid bilayers using appropriate proxies, replication of results presented in this work
using atomistic models could be another avenue for deepening our understanding of
asymmetric membranes.

75



Chapter 7

Glossary

For the convenience of the reader, this glossary gives a list of the most common
mathematical symbols and notations used in this thesis.

Symbol description

± subscript denoting upper (+) or lower (−) leaflet

α± fraction of membrane expansion modulus due to ±-leaflet, = KA,m±/KA

αsc stress-curvature parameter, Eqn. (2.12)

A± equilibrium area of a mixed (flat) leaflet, Eqn. (4.1)

d total bilayer thickness

dh thickness of a bilayer’s hydrophobic region

δ dimensionless curvature softening parameter

δn number asymmetry, Eqn. (3.15)

δnc stiffening critical asymmetry

g± cholesterol partitioning free energy into ± leaflet, Eqn. (4.1)

∆g cholesterol partitioning difference, = g+ − g−
γ buckling strain, Eqn. (3.1)eq:gamma-pm

γ± monolayer area strain, Eqn. (2.5)

K curvature of bilayer, measured at midplane

KA,m± monolayer area expansion modulus, Eqn. (2.6a)

KA bilayer area expansion modulus, = KA,+ +KA,−
K0b a bilayer’s spontaneous materials curvature, created due to lipid curvature, Eqn. (2.2)

K0s bilayer curvature at which differential stress vanishes, Eqn. (2.5)

K?
0 bilayer curvature at which overall bending and stretching energy is minimized,

Eqn. (2.9)

Km± spontaneous leaflet curvature due to lipids, Eqn. (2.1)

K̄ surface-averaged curvature, Eqn. (2.6c)

κ bilayer curvature modulus, Eqn. (2.3)

κnl nonlocal bilayer curvature modulus, Eqn. (2.7)

κm± monolayer curvature modulus, Eqn. (2.1)
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` curvature crossover length, Eqn. (3.4)

Ψ6 hexatic order parameter, Eqn. (3.10)

χ2
ν reduced chi-squared, Eqn. (3.17)

Σ net bilayer tension, = Σ+ + Σ−
Σ± individual leaflet tension

Σ
(res)
± residual differential stress in an area balanced membrane, Eqn. (2.15)

σ0(z) lateral stress profile, Eqn. (3.6)

T torque density, Eqn. (2.16)

T± monolayer torque density, Eqn. (2.22)

z± distance of upper (+) or lower (−) neutral surface from bilayer midplane

z0 value of z± if we assume z+ ≈ z−
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