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"To be patient toward all that is unsolved in your heart and to try to love the questions themselves

like locked rooms and like books that are written in a very foreign tongue. Do not now seek the

answers, which cannot be given you because you would not be able to live them. And the point is, to

live everything. Live the questions now. Perhaps you will then gradually, without noticing it, live

along some distant day into the answer." —Rainer Maria Rilke
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Abstract

Chemical product design is the problem of identifying chemical compounds that satisfy a set of

previously identified functional properties for a specific application. Throughout the industrial

era, chemical product design has played an increasingly important societal role by addressing the

growing demand for better products. Naturally, product design has become a focal area for chemical

scientists and engineers. This thesis develops new methodologies for chemical product design

problems where the design targets are physical properties. We address at problems with dynamic

design targets and stationary design targets separately.

For design applications with stationary property targets, we rely on algebraic optimization

models to efficiently locate optimal compounds from the vast chemical design space. In particular,

we exploit efficient mixed-integer linear programming (MILP) models and solve for optimal pure

chemical components for a specific application: identifying better cooling fluids for electronic

equipment. We use group contribution (GC) methods as the major property estimation tool along

with additional accurate property models. We derive a metric to measure the cooling performance

of a two-phase cooling system consisting of micro-channel heat sinks. Additionally, we carry out a

sensitivity analysis on property predictions to assess the effect of prediction uncertainty on the final

design outcome.

To extend the coolant design space to include silicon containing structures, we develop a new GC
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method capable of property prediction for organosilicon compounds. Along the way, we propose

a functional group selection method that deterministically decomposes each molecular structure

into the smallest number of non-overlapping functional groups while ensuring each group holds a

maximum amount of information. The group selection method is applied to construct GC models

to predict eight pure component properties. Utilizing the new GC models, we are able to identify

organosilicon cooling fluids with considerably improved heat transfer properties.

As for design application with time-varying targets, or functionalities that are difficult to model

via algebraic expressions, we leverage the state-of-art derivative-free optimization (DFO) methods

to solve for a diverse span of candidate chemicals. We assess DFO algorithms and demonstrate the

viability of DFO in a polymer configuration design example. Our computational results suggest that

a collection of derivative-free algorithms can successfully search the chemical design space and

identify good solutions with high computational efficiency.

Whether the candidate compounds can be put into production depends on their likelihood to

be synthesized. We investigate contemporary synthetic planning methodologies and provide an

overview on retrosynthesis frameworks. We address potential challenges and opportunities facing

automated synthetic planning.

Lastly, we summarize the major contributions from this work and offer future research directions.

vii
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Chapter 1

Introduction

1.1 Motivation

The chemical industry has long been one of the fastest growing sectors in the economy [1]. Ranging

from consumer products, pharmaceuticals, and commodity chemicals to oil and gas, the chemical

industry produces materials that constitute “the world of things”, supporting every aspect of our

lives. Chemical companies are always on the lookout for new opportunities to accommodate shifts in

market trends and meet consumers’ desire for improved products. Consequently, an ever-increasing

number of chemicals are added to the chemical design space. As of March 2021, more than 178

million unique chemicals have been registered to the Chemical Abstracts Service (CAS) [2].

Chemical product design is the process of translating desirable functional criteria into an array

of suitable products for a specific application [3]. In this process, one first needs to understand

customers’ wants and needs from an application and translate their desire into a list of quantifiable

design targets. The design targets of a product provide specifications on its properties, such as

physical, chemical, mechanical, and environmental. The next step is to discover product alternatives

that satisfy the desired product specifications. After solving the problem of “what to make”, the last
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step in chemical product design is to solve “how to make it” by developing processes to manufacture

and test the products [4]. The problem of “what to make” differentiates chemical product design

from chemical process design. The latter deals with a known product, usually commodity chemical,

and the goal is to optimize the manufacturing process efficiency to gain a competitive edge in the

market. Conversely, the former often focuses on searching for novel/unknown products for a certain

application. This problem attempts to locate desirable products from the chemical space by relying

on the relationship between the products’ properties and their chemical structures. Therefore, good

understanding of the property-structure relationship is essential to any chemical product design

activity.

The conventional approach to chemical product design relies on a series of trial-and-error

experiments. In other words, new products are synthesized using high throughput screening by

varying previous formulations or finding structural analogues of existing compounds. Unfortunately,

this conventional approach often limits the chemical search space to what can be synthesized and

tested based on prior knowledge and experience, which inevitably overlooks structurally novel

compounds that could be performing better than existing ones.

Today, computer-based material design approaches have emerged as an attractive alternative

to the traditional synthesize-and-test methodology. Among these approaches, computer-aided

molecular design (CAMD) is a well-studied problem for designing single chemicals but also serves

as the foundation for more complex material design tasks. CAMD relies on physicochemical

prediction models and algorithmic frameworks to efficiently explore the diverse chemical design

space and identify suitable chemical structures that meet design targets. In CAMD, molecular

structures form by combining submolecular functional groups, followed by a screening step to

select structures that meet design constraints. The CAMD approach builds on methodologies

that solve two problems: the “forward problem” relies on semi-empirical quantitative structure-

1.1. MOTIVATION 2
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property relationships (QSPRs) to predict properties given molecular structures, while the “backward

problem" chooses optimal molecules from the space of theoretically possible chemical structures

given target properties. These two problems represent different sides of the CAMD puzzle and

have attracted significant attention, especially in the context of specific applications, including the

design of alternative refrigerants [5–7], heat transfer fluids [8–10], extraction solvents [11–13],

polymer repeating units [14–16], mixtures [17–23], reaction solvents [24–27], ionic liquids [28–31],

and pharmaceutical solvents [32, 33]. Several works [34–36] review the development, milestones,

applications, and challenges of CAMD.

Most of the CAMD applications have utilized QSPRs or semi-empirical models to connect the

chemical design space to the space of properties. Group contribution (GC) based methods are among

the most commonly used QSPRs to estimate the physicochemical properties of putative structures.

GC methods build upon the group additivity principle and work under one key assumption: a

molecule’s properties can be estimated by the number of occurrences of sub-molecular structures

called groups. Joback and Reid [37] proposed a GC method that includes functional transformations

of otherwise linear group contribution summations. Constantinou and Gani [38] provided another

extension to the general form of GC models, which introduces multiple levels of groups to better

capture the proximity effects. Later, Marrero and Gani [39, 40] proposed one of the most commonly-

used GC methods in CAMD, the GC+ method, that utilizes a three-level group contribution model

to cover proximity effects and structural features at the molecular scale. Efforts to improve GC

methods accuracy include the introduction of connectivity indices [41, 42] and group interaction

terms [43–47].

GC methods link molecular structures to property values via an occurrence vector that represents

the frequency of appearances of each group. Each molecular structure is broken down into a set

of sub-molecular functional groups to characterize the molecular properties. For example, we can

1.1. MOTIVATION 3
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think of acetic acid being formed by connecting 1 −CH3 group to 1 −COOH group. The molecular

composition of acetic acid can be represented using an occurrence vector, = = [1, 1], where each

element stands for the frequency of occurrences of −CH3 and −COOH, respectively. Following the

additive assumption of GC methods, physical properties of acetic acid can be estimated using

% =
∑
8

28=8

where =8 is the 8th element in the occurrence vector, and 28 represents the contribution of group i to

the overall property value. The contributions are obtained through regression on experimental data.

The set of functional groups from the GC methods now become features to describe the chemical

design space. Using these features, the CAMD problem is now transformed from searches in the vast

space of molecular structures into a search over a much smaller set of groups, the combinations of

which meet the design targets. This problem can then be translated into mathematical formulations

and solved using modern combinatorial optimization techniques.

1.2 Challenges with existing QSPR and CAMD frameworks

There are a few challenges facing the current QSPR and CAMD frameworks.

• QSPRs, being a family of semi-empirical models, sometimes lack the ability to model complex

properties to a satisfactory degree. Examples include physical properties from the quantum

level, rheological properties, and properties with time-varying behavior. Advancements in

computational modeling have enabled the development of more accurate property estimation

simulators. These property simulators facilitate the incorporation of more sophisticated design

targets into CAMD. However, combining property simulators with algebraic optimization

solvers can be a challenging task for CAMD.

1.2. CHALLENGES WITH EXISTING QSPR AND CAMD FRAMEWORKS 4



CHAPTER 1. INTRODUCTION

• GC methods use a set of previously selected functional groups as prediction variables to

regress the GC coefficients, i.e., the contributions. Combining these groups forms a diverse

span of molecular structures in the chemical design space. The number of all possible

combinations determines the size of the design space CAMD is modeled upon. Consequently,

organic families that cannot be modeled using the GC methods reside outside of the feasible

CAMD design region. Organosilicon compounds is one of such organic families that current

GC models are unable to provide reliable predictions to. Therefore despite their wide use in

commercial products, organosilicon compounds are usually excluded from CAMD studies.

• CAMD approaches often rank candidate molecules via a metric which is a composite of

several design target properties. As property values estimated by GC methods come with

a degree of uncertainty, these uncertainties propagate into the objective function, adding a

considerable layer of propagated uncertainty to the final performance ranking. Often times,

it is not straightforward to determine whether the increase in performance predicted for a

candidate compound is due to better design or an artifact of prediction uncertainties.

• Candidate molecules identified from the CAMDproblem often have completely novel chemical

structures. Therefore, identifying reaction paths to synthesize candidate molecules from a set

of commercially available reactants is essential in solving the question of “how to make it”

in chemical product design. The problem of decomposing target molecules into a number

of feasible precursors is called retrosynthesis. This problem serves as a critical final step in

chemical product design to put design compounds into manufacturing. Yet, how to directly

incorporate manufacturability as a screening step in CAMD is an open question.

1.2. CHALLENGES WITH EXISTING QSPR AND CAMD FRAMEWORKS 5



CHAPTER 1. INTRODUCTION

1.3 Research problem statement

This work focuses on chemical product design problems where the design targets are physical

properties. We aim to offer solution approaches to design problems with 1) time-varying property

targets and 2) fixed property targets. For problems with dynamic property targets, we propose

methodologies to track the time series behavior of physical properties and utilize black-box

optimization solvers to efficiently identify suitable solutions [48]. For problems with stationary

targets, we focus on a specific design application: electronics cooling fluids [10]. We rely on

CAMD and GC models to search for optimal coolants in the chemical design space. The CAMD

approach used in this work follows a decomposition scheme that solves for molecular compositions

and structures in a sequential manner to reduce computational requirements. In situations where the

design targets cannot be predicted using existing GC models, we provide a systematic methodology

to build property prediction models from experimental measurements. Once a set of candidate

coolants are identified, we execute an uncertainty analysis step to account for the effect of prediction

uncertainties on the final design outcomes. Finally, we explore the manufacturability of candidate

compounds and provide a review on contemporary retrosynthesis approaches.

1.4 Thesis outline

This thesis is organized as follows:

In chapter 2, we introduce the electronics coolant design problem. Our goal is to design cooling

fluids that have better heat transfer performance than the industrial coolant HFE7200. In this work,

we rely on a CAMD framework, AMODEO [49], and group contribution methods to solve for

optimal coolants. We derive a metric to rank the performance of candidate solutions and carry

out a sensitivity analysis to assess the effect of prediction uncertainties on the final performance

1.3. RESEARCH PROBLEM STATEMENT 6
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improvement. As a result of this work, we identify a number of novel cooling fluids that fall into

four organic families.

Chapter 3 extends the work of coolant design to organosilicon compounds. We develop a group

contribution model that enables prediction of eight pure component properties for silicon-containing

structures. The GC models are based on a deterministic functional group selection method we

developed. The proposed GC models are subsequently embedded in the AMODEO framework

to design organosilicon coolants systems. The candidate compounds demonstrate superior heat

transfer performance compared to HFE7200 and non-organosilicon coolants.

In chapter 4, we look at a chemical product design problem with dynamic property targets.

We aim to identify optimal polymer melt mixtures that match a moving rheological target during

polymerization reaction. We propose to incorporate derivative-free optimization into the design

framework. Doing so facilitates the exploitation of property prediction simulators to generate

accurate property models and search the complete design space to increase solution diversity.

To have a better understanding of manufacturability test, in Chapter 5, we provide a review on

retrosynthesis strategies to break target molecules into precursors. We focus on how data driven

models and machine learning techniques contribute to the field. We go back to the coolant design

problem and assess the manufacturability of candidate coolants via the synthetic accessibility score

(SAScore) [50].

Finally in Chapter 6, we provide conclusions of this thesis and offer future research directions.

1.4. THESIS OUTLINE 7
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Chapter 2

Design of electronics cooling fluids

2.1 Introduction

The design trend of miniaturized electronics has resulted in a significant decrease in transistor

size and an increase in power density. As the demand for high performance electronic devices

continues to increase, the heat flux generation of many electronic chips has already exceeded their

predetermined value [51], creating serious technical challenges in electronic cooling. The increasing

need to find robust thermal management solutions is driving the growth of the electronic cooling

industry. The market size of thermal management technologies is expected to reach $18 billion

by 2024 [52]. Consequently, manufacturers and researchers are focusing on the development of

advanced heat removal techniques and effective coolants to meet the ever-increasing cooling needs

that traditional cooling approaches fail to satisfy.

Based on the working fluids utilized, traditional cooling techniques can be classified into

several categories, including air cooling, liquid cooling, and refrigerant cooling. Air is the primary

coolant because it is easy to reproduce and operate. Being cost-effective and highly reliable, forced

convection of air is widely used in CPU cooling, while natural convection is commonly used in
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low heat flux applications. Liquid cooling emerged in the early 1970s and became the preferred

method for high-flux heat removal. Liquid cooling can be characterized by either a single-phase or

two-phase cooling system [53]. Single-phase liquid cooling utilizes natural or forced convection and

relies on liquid heat capacity. Two-phase cooling uses fluids that evaporate at lower temperatures

(50oC − 120oC). Since the heat of vaporization is orders of magnitude higher than liquid heat

capacity, two-phase cooling systems can achieve high heat flux while maintaining a safe operating

temperature.

Murshed and Nieto de Castro [54] reviewed both traditional and emerging techniques and fluids

for electronic cooling. Among all emerging cooling techniques, microchannel-based cooling systems

have a much higher heat transfer performance than any traditional heat exchanger. Microchannel

heat sinks significantly minimize the package size and can be adapted to on-chip integration. Thus,

they are one of the most promising thermal management solutions to high heat generating electronic

devices. Figure 2.1 shows a simplified version of a microchannel cooling system. From direct

contact with the working fluid, the modified surface fins receive heat from the electronic device

through conduction and emit heat to the coolant reservoir. As rising chip temperature generates

more heat flux, nucleate boiling of the coolant takes place near the surface fins, which in turn draws

more liquid to the surface as bubbles continue to depart. The combined action of heat conduction,

latent heat absorption, and forced convection leads to significant cooling effects, allows sufficient

heat dissipation, and maintains the chip temperature below the maximum junction temperature.

A variety of fluids are employed in a number of cooling systems. Common industrial coolants in

the 20Cℎ Century were fully halogenated chlorofluorocarbons (CFCs). CFCs have a boiling point

range from −30oC to 24oC, suitable for a variety of two-phase cooling applications. However, CFCs

are banned by the Montreal Protocol [55] due to their ability to destroy the ozone layer. On the other

hand, water is used in many cooling applications because of its exceptional heat transfer capabilities

2.1. INTRODUCTION 9
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Figure 2.1: Schematic of a microchannel heat sink

and low viscosity. However, the use of water is not permissible in closed loop cooling systems due

to its high freezing point and expansion upon freezing. Common microchannel cooling fluids are

hydrofluorocarbons (HFCs) and hydrofluoroethers (HFEs) [56]. Although carbon-based refrigerants

remain safe and stable when in contact with electronic circuits, greenhouse gases like HFCs have

very long atmospheric lifetimes. A recent global agreement signed in Kigali [57] has limited the

consumption and production of HFCs due to their high global warming potential (GWP). HFEs have

short atmospheric lifetimes and low GWP but unfortunately have low thermal conductivity and low

specific heat [58]. Their performance is also limited by low surface tension. Therefore, it is crucial

to seek more efficient and environmentally benign cooling fluids for utilization in microchannel

systems.

Computer-aided molecular design (CAMD) has been used to design alternative refrigerants

and heat transfer fluids in a number of studies [5, 7, 59–63]. These works utilize enumeration

methods or mixed-integer nonlinear programming (MINLP) techniques to solve CAMD problems.

The development of physiochemical models is a substantial intellectual contribution to these works.

These models are suitable for the specific application and are complemented with an algorithmic

framework for searching molecules with desired properties.

2.1. INTRODUCTION 10
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In our work, we develop an optimizationmodel for designing cooling fluids to identify compounds

that have optimal thermal and environmental performance. We solve this model using a recently

developed CAMD solution methodology that utilizes mixed-integer linear programming (MILP)

techniques and a decomposition framework for fast computation [49]. Additionally, we derive a heat

transfer performance metric for microchannel-based systems and execute an uncertainty analysis of

the performance criterion. Specifically, we provide a detailed analysis of the candidate molecules

that includes explicit models for biodegradability, toxicity characteristics, and kinetic stability. To

solve the problem of finding ideal fluids in microchannel cooling systems, we match a set of property

targets that are specifically based on properties of existing industrial cooling fluids. We set objectives

for minimizing environmental impact and search for novel compounds with superior heat transfer

performance.

The remainder of this chapter is structured as follows. In Section 2, we provide background

information, including a review of CAMD and the molecular design framework we utilize. In

Section 3, we present the formulation of the general design problem based on property constraints

and environmental impact. In Section 4, we propose our model for the design of electronic cooling

fluids by specifying property prediction methods and performance metrics. In Section 5, we discuss

the results and analyze the most promising candidate molecules.

2.2 CAMD framework

Computer-aided molecular design is used in many applications to identify promising molecules that

satisfy predefined properties [8, 11, 25, 59, 61, 64–72]. The traditional molecular design approach

assumes a molecular structure and solves the forward calculation problem, with the goal to predict

properties from the pre-identified molecular structures. CAMD is the reverse problem–its objective

is to determine molecular structures that meet the desired property targets. This approach expands
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the molecular search space by considering a large diversity of structures and relies heavily on the

availability of property estimation models. Group contribution (GC) methods [37, 38, 40, 61, 73,

74] are widely used to estimate physical properties and are suitable for the CAMD approach. The

GC methods are mostly based on the assumption that key molecular properties satisfy the group

additivity principle. The CAMD problem can be formulated as an optimization problem where

the design variables model the molecular structure and the constraints utilize GC-like methods to

enforce requirements on physical properties.

From a set of property targets, CAMD will find a combination of molecular substructures that

compose a molecule and satisfy the specified properties. To address the combinatorial challenge

associated with searching the vast space of molecular structures, Samudra and Sahinidis [49]

propose a decomposition scheme in which they determine the solutions to molecular compositions

and the structures separately. The complex CAMD problem contains three simpler subproblems that

provide a solution pool with increasing property prediction accuracy and finer structure resolution.

The series of subproblems are automated and implemented into a software, Automated Molecular

Design Using Optimization (AMODEO), which can handle a variety of design problems. Figure 2.2

presents an overview of the framework. The following subsections briefly introduce each subproblem

of the framework.

2.2.1 Property estimation models

Group contribution methods are a class of quantitative structure property relationships (QSPRs).

A molecule is a collection of groups, where each group has a property-dependent contribution.

Properties are estimated by adding the product of the number of occurrences to the contribution of

each group in a molecule.

Constantinou and Gani [38] model molecules as a collection of groups in different orders.
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Figure 2.2: CAMD framework
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The first-order groups are typically non-overlapping chemical subgroups that compose a molecule.

First-order estimation is a method that uses only first-order groups for property estimation. The

higher-order groups are combinations of first-order groups, and by capturing the proximity effects

of first-order groups, they provide corrections to first-order estimations. Furthermore, each property

is a function of additive contributions of individual groups. Functions are chosen to closely match

experimental data.

Gani et. al. [41, 42] extended theGCmethod by using connectivity indices to predict contributions

of groups absent in the original GC model. This expanded method is known as the GC+ method,

which involves 182 first-order, 122 second-order, and 66 third-order groups. These functional groups

increase prediction accuracy in the GC+ method. We use the GC+ method as the main property

prediction model in our approach.

2.2.2 Composition design

Composition design seeks diverse molecular compositions that match relaxed design targets. The

GC+ method predicts key molecular properties through using only first-order groups as building

blocks. This problem can be formulated as follows:

min
=

0 (2.1)

s.t. ?!: ≤ 5

(∑
8∈�

28:=8

)
≤ ?*: , ∀: ∈  (2.2)

B1(=) ≤ 0 (2.3)

B2(=) = 0 (2.4)

= ∈ Z# (2.5)
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In the above model, � is the set of first-order groups that contains a total number of # groups.

28: is the contribution of the 8Cℎ group for the estimation of the : Cℎ property. =8 is the number

of occurrences of group 8. Each property falls in the range [?!
:
, ?*

:
], for a set of  properties.

This stage includes structural constraints to enforce acyclic tree structures of the molecules. Rings

or multiring clusters are treated as fictitious super-nodes in the tree. We ensure the acyclic tree

condition by allowing exactly + − 1 acyclic bonds between + groups, rings, and multi-ring clusters.

B1(=) ≤ 0 and B2(=) = 0 summarize a set of structural constraints [7, 66].

We apply a relaxation on the property bounds [?!
:
, ?*

:
] to account for first-order estimation

error. Using the relaxed property bounds, the nonlinear property constraints are transformed into

linear constraints due to the monotonic nature of the GC+ model. The upper and lower bounds

after inversion of 5 , c: and ^: , can be calculated directly from 5 −1. The nonlinear constraint

?!
:
≤ ?: ≤ ?*: in the property space, ?: , is equivalent to the linear constraint in the 5 −1(?: ) space

as shown below:

^: ≤
∑
8∈�

2:8 =8 ≤ c: (2.6)

^: = 5 −1(?!: ), c: = 5 −1(?*: ) (2.7)

Property constraints imposed by design targets are enforced by this outer-linearization representation

in this stage. By exploiting linearity in the space of functional groups, we can formulate an MILP

model to identify all feasible molecular compositions.

2.2.3 Structure generation

Each resulting composition that is obtained through composition design may correspond to a

number of distinct isomers with different properties. The structure design problem identifies unique
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structures for all feasible compositions and adds higher-order corrections to property prediction. We

use a graphical representation of molecules to generate all possible distinct tree graphs representing

unique isomers. For each set of functional groups and their frequency determined in composition

design, we generate all possible planar graphs where the nodes and edges represent the functional

groups and chemical bonds, respectively. Each molecular graph is described by an adjacency matrix

to capture all the necessary bond information, the entries of which are binary variables representing

the presence of bonds between nodes. Isomeric structures have distinct connectivity relationships,

thus characterized by unique adjacency matrices. Higher-order groups are identified by traversing

adjacency matrices to account for property differences in isomeric structures. To determine the

molecular structures, we solve an optimization problem with binary variables in the adjacency

matrix. In this problem, a feasible molecular structure must satisfy the following constraints:

1. Each node must satisfy the valency constraint for the corresponding group.

2. The adjacency matrix must preserve symmetry.

3. The graph must be completely connected.

Interested readers can refer to [49] for a detailed explanation. We solve the MILP repeatedly and

add cuts to obtain unique and feasible isomeric structures. We then convert the resulting molecules

to simplified molecular line entry specification (SMILES) strings [75], which enables the use of

other external computational chemistry tools.

2.2.4 Extended design

This stage accounts for properties that group contribution methods are unable to predict. We

incorporatemore accurate and complex property predictionmodels to complement group contribution

methods and allow for further screening. The choice of property estimation models are application-

dependent, such as empirical correlations, complex performance metrics, or simulation-based
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estimates. With the facilitation of SMILES strings, many external property estimation models can

be adopted to further refine the solution pool.

2.3 Design targets

When selecting working fluids, it is crucial to study the various properties that affect the safety,

stability, and efficiency of the cooling loop. Improving the cooling mechanism can increase the

heat transfer efficiency of the cooling device. However, the choice of heat-transfer medium greatly

affects the overall efficiency. New cooling fluids must have good thermo-physical properties to

obtain high heat transfer coefficients. To guarantee that the newly identified liquids exhibit better

heat transfer characteristics than the existing industrial coolants, the properties of a hydrofluoroether

compound, HFE 7200, are used as the basis to develop property constraints. All property values are

evaluated at 298K. The desired characteristics of an ideal replacement are:

• Heat conductivity (:): Heat transfer occurs at a higher rate across fluids with high thermal

conductivity. Thus, high heat conductivity is critical.

• Latent heat of vaporization (ℎE): Fluids with high enthalpy of vaporization can absorb more

heat during phase change and are desirable in two-phase cooling systems.

• Boiling point ()1): According to the International Technology Roadmap for Semiconduc-

tors[51], the maximum junction temperature must fall below 85oC. Therefore, the boiling

point needs to fall in a narrow range between ambient temperature and 85oC to allow phase

change.

• Viscosity (`): Fluids with low viscosity flow faster throughout the channels, increasing the

rate of convective heat transfer. Hence, a low viscosity is desirable.

• Flash point () 5 ): The fluids need to have high flash point and high auto-ignition temperature

to achieve thermal stability.
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Table 2.1: Property targets used in the design

Property Target Range

Viscosity at 300 K ` ≤0.0025 Pas
Boiling Point 320 K≤ )1 ≤370 K
Melting Point )< ≤273 K

Latent Heat of Vaporization �E ≥ 35 kJ/mol

Additionally, the working fluids must exhibit low corrosivity to metal and polymeric materials,

minimal environmental effects, and minimal toxicity. Table 2.1 lists the property targets in this

model. Metrics used to estimate toxicity, safety, and environmental impact will be discussed in later

sections.

Here, the flash point is used as a ranking criterion instead of a property constraint. Flash point

is the lowest temperature at which a volatile compound forms sufficient vapor to ignite into air.

Compounds with higher volatility tend to have higher vapor pressure at a given temperature, which

corresponds to a lower boiling point. Therefore, there is a trade-off between maintaining a low

boiling point and a high flash point. Compounds that satisfy the property targets listed in Table 2.1

are screened and ranked according to their flash points to produce the final solution pool. As the

main molecular design algorithm does not guarantee synthesizability of the resulting molecules,

Chapter 5 addresses synthesizability questions separately.

2.4 Property models and performance metric

2.4.1 Physical properties

Most of the key physical properties used in the composition design are calculated using the GC+

methods as described by Marrero and Gani [39]. These properties include: melting point ()<),
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boiling point ()1), critical temperature ()2), critical pressure (%2), critical volume (+2), standard

enthalpy of vaporization at 298 K (�E), surface tension (f), and liquid viscosity at 300 K ([;).

Properties that are unavailable through the GC+ methods are calculated in the extended design,

which include gas and liquid density(d6, d;), heat conductivity (:), gas phase viscosity ([6), and

flash point () 5 ).

It is necessary to account for flash point estimation in the design in order to guarantee a safe

operating condition. The Catoire and Naudet correlation [76] is used to calculate the flash point:

) 5 = 1.447)10.79686�E
0.16845=�

−0.05948 (2.8)

where )1 is the boiling point, �E is standard enthalpy of vaporization at 298 K, and =� is the number

of carbon atoms in a molecule.

The accentric factor, l, is determined by the Ambrose and Walton coefficient [77] by defining

reduced temperatures )1A = )1/)2 and )A = )/)2 calculated at 298 K:

U = − ln
%2

1.013
− 5.97214 + 6.09648

)1A
(2.9)

+ 1.28862 ln)1A − 0.169347)6
1A (2.10)

V = 15.2518 − 15.6875
)1A

− 13.4721 ln)1A + 0.43577)1A6 (2.11)

l =
U

V
(2.12)

We calculate the liquid density of each molecule with the accentric factor using the Gunn-Yamada
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method [78] as follows,

" =

#∑
8=1

=8"8 (2.13)

�10 = 0.33593 − 0.33953)A + 1.51941)A2 (2.14)

− 2.02512)A3 + 1.11422)A4 (2.15)

�20 = 0.29607 − 0.09045)A − 0.04842)A2 (2.16)

+; =
')2

%2
(0.292 − 0.0967l)�10 (1 − l�20) (2.17)

d; =
"

+;
(2.18)

and gas density is calculated by the cubic equation-of-state.

The heat conductivity is calculated at 298 K using the Sato-Reidel correlation [77]:

: =
1.1051
"0.5

[
3 + 20(1 − )A)2/3

3 + 20(1 − )1A)2/3

]
(2.19)

Gas phase viscosity can be determined by the Lee et al. correlation of hydrocarbon gas

viscosity [79]:

[6 = 10−4 exp(-d.6 ) (2.20)

 =
(9.379 + 0.01607"F))1.5

209.2 + 19.26"F + )
(2.21)

- = 3.448 + 986.4
)
+ 0.01009"F (2.22)

. = 2.447 − 0.2224- (2.23)

In the extended design, we include estimation of environmental impact by exporting solutions to

the Estimation Program Interface (EPI) Suite developed by the U.S. EPA [80]. The EPI Suite contains
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several built-in algorithms that are able to estimate a compound’s environmental fate, including

biodegradability, lethal concentration (LC50), and atmospheric oxidation. Candidate molecules

are exported to the estimation tool box as SMILES strings. A compound’s biodegradability is

estimated using the BioWin software provided by the EPI Suite. A compound is classified as readily

degradable if the predicted probability of biodegradation is greater than 0.5. For the compounds

that are not readily degradable, the primary and ultimate degradation time are estimated using

Models 3 and 4 in BioWin. Henry’s LC50 values and atmospheric reaction rate are used to measure

the feasibility of candidate molecules. Although no constraints are posed on these environmental

properties, estimation values are used for additional screening of the candidate molecules.

2.4.2 Performance metric

A two-phase micro-channel cooling device, where microchannel flow requires small coolant charge

and easy installation, still tends to produce large pressure drop that is associated with small hydraulic

diameter. Large pressure oscillation indicates that phase transition happens in the early section

of the channel, which prevents the uniform flow of coolant along the fairly long channel. For the

coolant to evaporate and absorb more heat along the later sections, it requires a balance between heat

transfer and pressure drop. Therefore, apart from the above-mentioned physical property constraints,

another criterion needs to be satisfied: the fluids must have high heat transfer coefficient and mitigate

channel pressure drop. The ratio of heat transfer coefficient per unit pressure drop (HT/PD) is then

used as a performance metric.

In a two-phase flow system, the measured pressure drop has three components: frictional,

contractional, and accelerational pressure change. The frictional pressure drop in a boiling channel

makes substantial contributions to the combined impact from contraction and acceleration, and

comprises more than 80% of the total pressure drop. A previous study [81] shows that two-phase
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flow patterns can be modeled by the separated flow model where each phase formulates separate

mass, momentum, and energy balance. The development of the Lockhart and Martinelli frictional

pressure drop correlation was based on the separated flow model where a frictional pressure drop

multiplier was used [82]: (Δ% 5
Δ/

)
)%
= q2

!

(Δ% 5
Δ/

)
!

(2.24)

where
(Δ% 5
Δ/

)
)%

and
(Δ% 5
Δ/

)
!
represent frictional pressure drop from two-phase flow pattern and

liquid-phase only flow pattern, respectively. The two-phase frictional multiplier q! can be used as a

representation of two-phase frictional pressure drop. The multiplier provides a dimensionless ratio

of the two-phase frictional pressure drop to the liquid-phase only frictional pressure drop, and can

be correlated in terms of the Lockhart-Martinelli parameter - as shown in the following equation,

q2
! = 1 + �

-
+ 1
-2 (2.25)

Here, the parameter � measures the interaction between two phases, which is the net result of the

interactions between liquid inertia, liquid viscous force, and surface tension [83]. For a two-phase

laminar flow, the parameter � is a function of the Reynolds ('4) and Weber (,) numbers

� = 2.16'40.047,40.60 (2.26)

'4 =
�3ℎ

[;
(2.27)

,4 =
E;�

23ℎ
f

(2.28)

where G is mass velocity, 3ℎ is hydraulic diameter, [; is viscosity of saturated liquid, E; is specific

volume of saturated liquid (E; = 1/d;), and f is surface tension.

Drastic property changes occur in a boiling micro-channel. Therefore, Lee and Mudawar [84]
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incorporated two dimensionless numbers: the boiling number, �>, and the liquid Weber number,

,4, to capture how property variation affects two-phase heat transfer coefficient. The two-phase

heat transfer coefficient, ℎC ?, can be calculated as

ℎC ? = 436.48�>0.522,40.351-0.665ℎB?, 5 (2.29)

�> =
@”
��E

(2.30)

where @” is heat flux through the heat sink base area, �E is enthalpy of vaporization, and ℎB?, 5 is

the single phase liquid heat transfer coefficient, defined as a function of Nusselt number as well

as liquid heat conductivity, ℎB?, 5 = #D:
3ℎ

. The Nusselt number is a function of the ratio of channel

depth to width, dependent only on the geometry of the channel.

At the same flow states, the Lockhart-Martinelli parameter - can be correlated to

- =

( [;
[6

)0.5 (1 − G4
G4

)0.5 ( d6
d;

)0.5
(2.31)

where G4 is the thermodynamic equilibrium quality, which is assumed to be a constant in the regime.

For a given mass velocity (G), channel diameter (3ℎ), and heat flux (@”), parameters that affect

the performance metric are related to physical properties of the compounds. The metric HT/PD can

be calculated as

�)/%� =
ℎC ?

q2
!

=
�>0.522,40.351-0.665:

1 + �
-
+ 1
-2

(2.32)

This performance metric can be generalized and adapted to micro-channel based cooling systems

with various sizes. A robustness margin is required to account for the differences in channel

geometry as well as other hardware properties as shown in Eq. (27). With the uncertainty margin, a

robust optimization model can be formulated where maximization on the performance criterion
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is sought against uncertainties in the cooling systems. The performance metric calculated using

Eq. (30) can be used as the nominal value. In this work, we consider a fixed cooling system with

constant micro-channel geometry. Therefore, the dominating factors in estimating heat transfer

coefficient involve only physical properties of the cooling fluids. A higher value in the performance

metric corresponds to better heat transfer characteristics exhibited by the fluids. This metric is used

to rank the cooling performance of all candidate molecules.

2.5 Results and analysis

The goal of this work is to find replacements for the current cooling fluids. Nonfunctional groups

such as −CH3 and −CH2− are allowed to repeat up to 10 times each. Chlorine, phenol, amine, and

amide functional group are excluded from the design because of low biodegradability [85]. Due to

concerns about toxicity, organic bromine and iodine compounds are not permitted in the design.

Organosilicon compounds are also excluded from the design as no accurate group contribution

model is presently available to predict their physical properties.

In this work, we generate molecules by combining functional groups that permit either single or

double bonds between groups. We allow up to two double bonds to be present in each molecule.

The maximum number of functional groups in a molecule is limited to 15 [73]. Property constraints

eliminate the feasibility of most of the functional group combinations. A 10% relaxation is applied

to the physical property bounds to allow for first-order estimation error, since the GC+ method

rarely exceeds an average error of 10% in first-order property estimation. In eight seconds, 308

compositions were identified. For these compositions, 944 structures were generated in 1308

seconds.

After ranking the candidates with our performance metric, we found that 96.5% of the candidate

compounds have better performance than the base fluid HFE 7200. Upon further inspection, we
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found that 86% of the candidate molecules were fluorinated compounds, indicating that fluorinated

compounds outperform the other classes of compounds.

2.5.1 Uncertainty analysis

The GC+ method contains a set of : independent property prediction models each of which has

an estimation error. The set of properties are used in the calculation of the performance metric

�)/%� = 5 (%1, %2, ...%: ). Property estimation errors are therefore entered in the calculation,

determining the propagated error in the performance metric. A robust optimization model can

be formulated to account for prediction uncertainties where optimization on the design targets is

sought against property estimation errors from the GC models. In this work, we explore the impact

of prediction uncertainties in a post-hoc analysis. Let 4%8 represent the estimation error of the 8Cℎ

property, %8. The propagation of error can be calculated in the same way as [86],

4 5 =

√(
m 5

m%1

)2
42
%1
+

(
m 5

m%2

)2
42
%2
+ ... +

(
m 5

m%:

)2
42
%:

(2.33)

where m 5 /m%8 is the local sensitivity, which is calculated by the partial derivative of the function 5

with respect to %8. Following this formula, we calculate the propagated error of the performance

metric for all candidate molecules. In order to examine whether the change in performance metric

surpasses the noise range, we plot the performance metric versus prediction uncertainty in Figure 2.3.

91.8% of candidate molecules have an increase in the performance metric of more than 100%,

doubling the cooling performance of HFE 7200, while the corresponding propagated error is

lower than 20%. This observation suggests that methodology developed in our work enables the

identification of high performance coolants with reliable property estimation, and the proposed

performance metric is a valid ranking criterion. For candidates with higher than 20% propagated

error, more detailed analysis is required to identify whether the propagated error has a positive
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Figure 2.3: Heat transfer performance of all candidate molecules is shown in blue. The prediction uncertainty
on the performance is shown in green. 84.5% of candidate molecules have a prediction uncertainty under

20%.

or negative impact on the true performance. In the following sections, analysis is carried out

on candidates with propagated error lower than 20%, corresponding to a total of 797 candidate

compounds. At this point, all resulting compounds have a significant increase in the predicted

performance metric compared with HFE 7200.

2.5.2 Organic families

Further screening is placed on the chemical and thermal stability of the candidate molecules,

which eliminates structures consisting of epoxide, peroxide, alkene, and oxygen-fluorine bond.

Aromatic compounds are removed from the solution pool because of toxicity concerns. As for
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Figure 2.4: Heat transfer performance of the four organic families versus their flash points.

the fluorinated compounds in the presence of unsaturated carbons, we only keep structures with

conjugated double bonds and more substituted carbon atoms to ensure stability. We identify four

organic families with previous industrial applications. These organic families are: hydrofluoroethers

(HFEs), hydrofluoroolefins (HFOs), esters, and hydrofluocarbons (HFCs).

Figure 2.4 plots the heat transfer per unit pressure drop metric versus the flash point of candidates

from these four families. All compounds have better performance than HFE 7200. The estimated

flash points of these compounds are below 300K except for one molecule, while HFE7200 is

known to be non-flammable. We postulate that these compounds should be used with proper safety

measures. Operation settings should be specified in the context of their application.

In order to determine whether the resulting molecules can be synthesized from a set of possible
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compounds, we search for existing reaction templates on SciFinder [87] for each candidate molecule

and the functional groups that appear in the structure. We are able to identify existing reaction

templates for compounds that share similar structures to the candidate molecules, which is discussed

in later sections.

Organofluorine compounds

The fluorine atom has the highest electronegativity of all elements[88], resulting in significant

dipole moment in the carbon-fluorine bond and making the C − F bond one of the strongest single

bonds in organic compounds. As a result, organofluorine compounds usually possess high thermal

and chemical stability. The C − F bond is relatively short, compared to the bonds of carbon with

other halogens. The short bond length, together with the small Van der Waals radius of fluorine

substituent, leads to zero steric strain in polyfluorinated compounds, further advancing their thermal

stability. A total of 297 fluorinated structures are identified and fall into four organic families: HFEs,

HFOs, HFCs, and fluoro-esters. HFEs, HFOs, and HFCs are common heat transfer fluids in the

cooling industry. Although less commonly used, fluorinated esters in cooling applications are useful

as dielectric fluids in electronic devices and as heat transfer agents. A total of 16 HFCs appeared in

the final solution, most of which are novel compounds and their application in the cooling industry

has yet to be reported. Further inspection of these HFCs reveals that they exhibit moderate to low

performance. Therefore, this work does not give detailed analysis of HFCs or their global warming

potential.

For better illustration purpose, a random selection of ten fluorinated molecules as well as

their performances are summarized in Table 2.2. Figure 2.5 presents explicit illustrations of their

molecular structures.
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(a) Mol 1 (b) Mol 2 (c) Mol 3 (d) Mol 4

(e) Mol 5 (f) Mol 6 (g) Mol 7

(h) Mol 8 (i) Mol 9 (j) Mol 10

Figure 2.5: Molecular structures of ten randomly selected fluorinated molecules
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Table 2.2: Ten randomly selected fluorinated candidates

Organic Solution Canonical Flash Metric
Family No. SMILES Point(K) (10−4)
HFE 1 FCCOC(CC(F)(F)F)(F)F 282.1 1.31
HFO 2 C=CC(CCC(F)(F)F)(F)F 253.0 1.70
HFE 3 CCOC(C(C(F)(F)F)C)(F)F 276.7 5.07

Segregated HFE 4 COCC(C(F)(F)F)C(F)(F)C 267.9 1.77
HFE 5 CC(COC(C(F)(F)F)(F)C)(F)F 276.7 1.33
HFO 6 CC(=C)C(CC(F)(F)F)(F)F 252.3 1.33
HFO 7 CCC(=CF)CC 264.4 1.33
HFO 8 C=CC(CC(C(F)(F)F)(F)F)C 266.0 1.33
HFE 9 CC(C(OC(C(F)(F)F)(F)F)(F)F)(F)F 270.1 1.39

Fluoro ester 10 COC(=O)C(C(F)(F)F)(F)F 269.6 2.29

Oxygenated compounds

Oxygenated compounds usually have a low boiling point due to the dipole-dipole interactions

created by the polarized C − O bond. Branched chain structures in these compounds, which reduce

intermolecular forces, can also lead to low boiling point. Low boiling point invariably causes

low flash point as these properties exhibit a linear relationship. One possible way to suppress

flammability would involve the addition of water, as oxygenated compounds are usually miscible with

water. If safety is of major concern, adding a small amount of water would suppress flammability

and make these compounds safer.

The oxygenated compounds fall into two organic families: HFEs and fluorinated esters. Per-

fluorinated and partially-fluorinated ether compounds comprise the majority of the candidates

and generally have good performance than the other organic groups. The top 15 best performing

molecules are all stemming from theHFE family which contains a total of 179 compounds. Compared

with HFCs, HFEs have zero ozone depletion potential and low global warming potential [89, 90],

allowing them to be used as drop-in replacements.
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Among all the candidates within the HFE family, we observed a few fluorinated molecules with

branched structure exhibited promising performance. Additionally, most of the resulting HFEs are a

special type–segregated HFEs–where an oxygen atom separates the fluorinated carbons from the

non-fluorinated carbons. Segregated HFEs are known to have even lower environmental impact

than ordinary HFEs [91].

In addition to segregated HFEs, we also identified compounds with dioxy groups which are

separated by an alkylene group. Although no prior application with these candidate molecules

has been reported, several reaction paths have been proposed and patented[92–94] to synthesize

hydrofluoroethers with the dioxy groups, suggesting that these compounds can be manufactured.

These molecules are identified as novel compounds and can potentially be commercialized as the

next generation of cooling fluids.

Fluorinated esters have previously been used as solvents in industrial applications. Our work

identifies 46 esters, all of which are in the range of C3-C5. Since lighter esters correspond to lower

flash points, application of such coolants would require proper safety apparatus, which might increase

the operating costs. Among all the identified fluorinated esters, molecules have better performance

where an ester group separates fluorinated carbons from non-fluorinated carbons. The fluorinated

ester presented in Table 2.2 illustrates this special structure. Further experimental validation is

necessary to determine whether fluorinated esters are good replacements, as the application of

fluorinated ester in the cooling industry has yet to be reported.

Non-oxygenated compounds

Our work identifies non-oxygenated compounds, including hydrofluoroolefins (HFOs), HFCs, and

non-fluorinated aliphatics. HFOs have zero ozone depletion potentials and low global warming

potentials. They are the fourth generation refrigerants replacing HFCs. This work identified 46
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HFOs, all of which exhibit moderate to low performance. Their flash points invariably are below

273 K.

We also identified seven straight chain and branched non-fluorinated aliphatic hydrocarbons.

These compounds show moderate to good performance, but they are ultimately insufficient due to

their combustible nature. Although aliphatics are predicted to have better performance than HFE

7200, they are not ideal replacements due to safety concerns and their environmental impact.

2.5.3 Toxicity estimation

We estimated !�50 values by using the EPA’s Toxicity Estimation Software Tool (TEST) version

5.1 [95] via a single multi-linear model. The chemical hazard classification category from the OPP

(Office of Pesticide Programs) determines the level of hazard. Among all 944 candidate molecules,

69.3% of them are predicted to be in Category IV (non-toxic), 30.5% are predicted to be in Category

III (slightly irritating), and 2 compounds are predicted to be Category II (moderately toxic). As

an example, predicted LC50 values of the 10 fluorinated compounds from Table 2.2 are shown

in Table 2.3. All ten molecules fall into category IV (not hazardous), suggesting safe operating

conditions.

2.5.4 Kinetic stability

It is crucial to have kinetically stable fluids in the cooling system to guarantee that the coolants are

not subject to chemical transformation. The highest occupied molecular orbital (HOMO)–lowest

occupied molecular orbital (LUMO) energy gap is one of the most common indicators of kinetic

stability. A high HOMO–LUMO gap indicates that a molecule has high kinetic stability and low

chemical reactivity. We used the B3LYP method to optimize molecular geometry, and the 6-31G*

basis set for frequency calculations. This choice results in high accuracy of the extensively tested

2.5. RESULTS AND ANALYSIS 32



CHAPTER 2. DESIGN OF ELECTRONICS COOLING FLUIDS

Table 2.3: 96-h log LC50 value

Solution No. 96-h log(LC50) Safety
1 3.60 Category IV
2 4.28 Category IV
3 3.52 Category IV
4 3.11 Category IV
5 3.76 Category IV
6 4.32 Category IV
7 4.03 Category IV
8 4.43 Category IV
9 4.13 Category IV
10 3.05 Category IV

DFT methods [96]. We calculated the HOMO–LUMO gaps of the 10 fluorinated candidates from

Table 2.2 using Gaussian 09W (G09) [97] as well as Jaguar from Schrodinger [98] to provide

further validation. The HOMO–LUMO gap in units of Hartrees of the 10 fluorinated candidates

are shown in Table 2.4. Both molecular modeling software lead to similar results. G09 identified

that the ninth molecule, a hydrofluoroether compound, has the highest HOMO-LUMO gap. This

HFE molecule, with a linear structure and only one non-fluorinated carbon, was among the most

promising candidates. The best molecule identified by Jaguar is molecule 1. This HFE molecule

is predicted to exhibit both satisfying heat transfer performance and low toxicity. The careful

investigation of both HFE molecules will bring great benefits to the cooling industry. Future work

could investigate using redox potential as another indicator of chemical stability.
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Table 2.4: HOMO-LUMO gap of 10 fluorinated candidates using the B3LYP method and 6-31G* basis set

Solution No.
Software G09 Jaguar

1 0.3680 0.39123
2 0.2675 0.28233
3 0.3609 0.38825
4 0.3389 0.27338
5 0.3600 0.35581
6 0.2634 0.2734
7 0.2661 0.26593
8 0.2693 0.2793
9 0.3853 0.38015
10 0.2572 0.25155
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Chapter 3

Functional group selection method for GC

models

3.1 Introduction

In this chapter, we continue the design of coolants for electronics cooling systems. Efficient

removal of high heat flux from a compact area has received great attention to cope with the uprising

miniaturization trend of electronic devices. One of the most effective cooling schemes is the

microchannel-based system where evaporation of cooling fluids removes high heat flux while

maintaining a safe operating temperature [54]. Existing commercial coolants such as Novec fluid

HFE7100 and HFE7200 [99] are limited in their ability to remove high heat flux from compact

spaces [58, 100]. Therefore, interest emerges in developing new cooling fluids with high heat removal

capability. This problem is a perfect application area for CAMD and has been studied extensively in

the past three decades [5, 7, 9, 10, 62, 63, 65, 101]. Organosilicon compounds generally demonstrate

high heat conductivity, high electrical insulation, and low viscosity. These traits have motivated
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us to consider organosilicon compounds as part of the set of candidate replacements for existing

coolants.

In our past approaches to coolant design [49], we relied extensively on GC+[102] to identify

potential molecular designs. We studied microchannel cooling regimes and identified a number of

promising coolants that are environmentally friendly, safe to operate, and more heat transfer efficient

than HFE7200 [10]. Unfortunately, GC+[102] was built with only 42 measurements involving

organosilicon compounds; most Si groups were involved in no more than two measurements for most

properties of interest, which makes use of this GC+ model unreliable for silicon-based structures.

Warrier et al.[65] studied organosilicon coolants by developing group contribution models using 44

compounds from DIPPR 801[103]. New groups were defined to represent silicon substructures,

while the majority of functional groups and their contributions remained the same as in the GC+

model. This model is limited by the small number of organosilicon measurements used and may

favor other types of compounds that are present in larger numbers in the dataset used. In general,

organosilicon compounds are usually excluded from CAMD studies, despite their wide use in

commercial products.

To facilitate a reliable CAMD study that allows for silicon compounds, in this paper, we develop

a GC model using data sets containing 747 measurements from organosilicon compounds. The first

step to develop a GC model is to determine a set of functional groups that are chemically important

substructures that correlate well with the property values. The individual group contributions are

obtained by fitting experimental data to the property model, where the numbers of group occurrences

are the predictor variables. In the GC literature, functional groups are often limited to UNIFAC

groups[104] in order to facilitate utilization of packages for calculating phase equilibrium and

mixture properties [105–107]. To improve predictive accuracy, more recent works are not limited

to UNIFAC groups [61, 108–110]. Once selected, certain functional groups can be formed by
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combining smaller-sized elementary groups. Common fragments in functional groups can lead to

more than one way to decompose a molecular structure and a non-unique molecular model. For

example, group —CH2C(= O)— can form by combining —CH2— and > C = O. If all three of

these groups are utilized in a GC method, this would result in different representations of the same

molecule and different property prediction values. Another challenge in the development of GC

methods is how to develop property models that perform well on a set of unseen data while avoiding

unnecessary model complexity that could lead to overfitting. This is important for properties for

which there do not exist large amounts of measurements.

To address the above challenges, we propose a new method for developing a GC model. We

propose a functional group selection method that deterministically decomposes each molecular

structure into the smallest set of non-overlapping functional groups. Each resulting functional group

is structurally simple but holds maximum information in a well-defined sense. This method serves

as a consistent means to deconstruct molecules into substructures, hence avoiding model building

bias. We then use the identified functional groups to build group contribution models that enable

property estimation of organosilicon compounds.

We select the optimal property model by minimizing an information criterion, thus preventing

overfitting, reducing root mean squared error over the training data, and increasing generalization.

The black-box modeling tool ALAMO [111] is used in regression to minimize the Bayesian

Information Criterion (BIC). The resulting models are subject to a test set to demonstrate their

predictive power. We then apply the GC models to the coolant design problem that motivated this

work.

The remainder of this chapter is structured as follows. Section 3.2 proposes our functional group

selection algorithm and variable selection process using ALAMO. Section 3.3 details the results

of parameter estimation using the proposed GC method. Section 3.4 presents the coolant design
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problem and detailed solution analysis.

3.2 Proposed group contribution methodology

3.2.1 Background

CAMD is the problem of identifying molecular structures that satisfy a set of predefined property

targets. To formulate a CAMD problem, one needs to specify a collection of building blocks

representing sub-molecular descriptors, various property models that correlate these descriptors

to properties, and a set of property targets to match. Property models are essential in any CAMD

approach as they enable the prediction of molecular properties from structural descriptors that

quantify molecular structures. The quality of molecular descriptors determines how much chemical

information the descriptors can convey and subsequently be exploited by the overall CAMD approach.

Therefore, the property models used in CAMD can influence the solution quality and validity, and

the numerical solution techniques used.

Many property models relate structures to properties with various degrees of accuracy. Models

based on atom-level ab initio quantum mechanics are highly accurate but computationally intensive.

On the other hand, empirical models based on molecular mechanics provide fast but rough property

estimation. In the middle ground of these two approaches, semi-empirical models are based on

statistical regression that fits proposed models to experimental property values. They are usually

easy to implement and provide property estimates with an acceptable accuracy level in reasonable

time.

Group contribution methods are a class of semi-empirical methods frequently used for property

estimation in CAMD. The property of the molecule can be expressed as a function of each group’s
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frequency in the molecule:

5 (%) =
∑
8

28=8 (3.1)

Equation (3.1) shows a typical group contribution model, where % is the property value to be

determined, 28 is the contribution of group 8 to the property, and =8 is the frequency of occurrence

of group 8 in the molecule. The contribution parameters 28 and the transformation function 5 are

obtained through regression on experimental property values.

Marrero and Gani proposed a three-level GC model where groups are divided into first-order and

higher-order groups. In the Marrero-Gani (MG) model, the first-order groups are non-overlapping

substructures that compose a molecule, whereas overlapping higher-order groups can capture the

proximity effects. The property model consisting of both compositional terms (first-order) and

structural terms (higher-order) has the following form

5 (%) =
∑
8∈�

28=8 + F
∑
8∈(

28=8 + I
∑
8∈)

28=8 (3.2)

where � is the set of first-order groups, ( represents the set of second-order groups, and ) is the

set of third-order groups. In[102], the MG model was updated to involve 220 first-order, 130

second-order, and 74 third-order groups.

In this work, we build a new GC model using the same functional group base as in [102] with

the addition of the following nine first-order groups for organosilicon compounds: SiH3, SiH2, SiH,

Si, SiOH, SiO, cSi, cSiH, cSiH2 (cSi represents a Si group in a cyclic structure). The next section

will introduce the functional group selection method that determines groups from the group base

that result in the GC model. The following target properties are investigated: normal boiling point

()1), normal melting point ()<), critical temperature ()2), critical pressure (%2), critical volume (+2),

enthalpy of vaporization at 298K (�E0?), surface tension at 298K and atmospheric pressure (f),
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Figure 3.1: Graphical representation of a molecule

and dynamic viscosity at 298K and atmospheric pressure (`).

3.2.2 Functional group selection method

When selecting functional groups, we assume that large groups with a higher sum of atomic weights

hold more information about the molecular structure than smaller groups. Therefore, we will

select the functional groups following the rule of thumb that larger/heavier groups take priority

over smaller/lighter groups. This assumption is made for mathematical convenience to facilitate

calculations and will be shown to provide good results. For each molecular structure in the data set,

the group selection method starts with identifying all first-order groups from the group base that

appear in the molecular structure and recording each group’s number of occurrences. The molecular

structure is then delineated as a hydrogen-suppressed graph where non-hydrogen atoms become

vertices and bonds become edges. Each atom is assigned a unique number. Multi-covalent bonds

are not distinguished from single bonds. Figure 3.1 gives a representation of a molecule in terms

of its molecular structure and its corresponding hydrogen-suppressed graph. Using the numbered

atoms, we construct a matrix where each column corresponds to a numbered atom and each row

corresponds to an occurring first-order group. The (8, 9) value of the matrix equals 1 if group 8

covers atom number 9 in the hydrogen-suppressed graph; it is 0 otherwise.

The molecular structure in Figure 3.1 corresponds to an atomic occurrence matrix, as shown in
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Figure 3.2: Atomic occurrence matrix of a molecule

Figure 3.2. We would like to select functional groups from the list of occurring groups such that the

chosen groups are non-overlapping substructures that compose the molecule. The non-overlapping

requirement can be satisfied by ensuring each atom in the hydrogen-suppressed graph is covered

exactly once. This constraint serves as a checkpoint on the atomic balance and molecular weight

balance. Therefore, given a molecular structure and its atomic occurrence matrix with dimension

 × " , we need to select a subset of rows such that the summation of each column equals 1. This
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problem can be formulated as the following mixed-integer linear program (MILP):

max F1U − F2

 ∑
8=1

=8G8

s.t. U ≥ G8;8, 8 = 1, ...,  
 ∑
8=1

I8 9G8 = 1, 9 = 1, ..., "

G8 ∈ {0, 1}

In this model, the binary variable G8 denotes the selection of group 8 in the occurring group list, the

corresponding descriptor frequency is represented by =8, and I8 9 denotes the (8, 9) entry from the

atomic occurrence matrix. An auxiliary variable U is introduced to identify the largest individual

group. The size of each group is indicated by ;8. In this formulation, we aim to identify the smallest

set of functional groups from a molecular structure where each group pertains as much information as

possible. The objective function is a weighted sum of two optimization goals: minimize the number

of functional groups in a set and maximize the size of each selected group. Using scalars F1 and F2,

this formulation reduces the two-objective to a single-objective optimization problem. If a functional

group exists alongside its fragments, the objective function ensures the group itself is selected

instead of the substructure fragments. The weights F1 > F2 > 0 are tunable hyperaparamters

that determine how we prioritize selecting bigger groups over minimizing the number of selected

functional groups. Varying F1 and F2 will lead to a number of optimal solutions that form a Pareto

frontier. For any given choice of F1 and F2, this formulation produces a unique selection of groups

generated by a specific solver. In this study, F1 and F2 are empirically set to be 5 and 1, respectively.

The constraint set ensures that the largest group is identified while maintaining that non-overlapping

descriptors have complete atom coverage. We use CPLEX 12.9 [112] to solve the MILP and obtain

a unique set of groups for each molecule. The example shown in Figure 3.2 results in the final group
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Property f (P)
Boiling point (K) exp()1/)10)
Melting point (K) log()</)<0)

Critical temperature (K) exp()2/)20)
Critical pressure (bar) 1/

√
%2/%20 − %21

Critical volume (cc/mol) +2 −+20
Enthalpy of vaporization (kJ/mol) �E0? − �E0?0

Surface tension (N/m) f − f0
Dynamic viscosity (mPa s) log(`/`0)

Table 3.1: Transformation function for each property

set [3 (−CH3), 1 (> C <), 1 (−CH2−), 1 (−CH3O), 1 (−CH2COO−)].

3.2.3 Property model and data pre-processing

The property estimation models 5 (%) have the following form

5 (%) =
∑
8∈�

28=8 +
∑
8∈(

28=8 +
∑
8∈)

28=8 (3.3)

where first-order groups are determined using the group selection method and higher-order groups

are subsequently determined by using first-order groups as building blocks. The left-hand side

5 (%) is a function of the target property P that provides good extrapolation over a wide range of

experimental data. The function 5 (%) is determined through the monotonic transformation of data

to minimize variance and reduce skewness in the data distribution. The eventual transformation

functions are selected from a list of potential functions including linear, log G, exp G,
√
G, 3√G, and 1

G
.

The target properties and their corresponding transformation functions are listed in Table 3.1.

To estimate property model parameters, we collect experimental data of pure components from

various organic families from the following databases: DIPPR801[103], Knovel[113], and the

EPI suite[80]. For substances with multiple experimental measurement entries, we utilize the
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measurement average. Table 3.2 details each property data set in terms of the number of components

in each organic family. Each property data set is subject to the corresponding transformation function

in Table 3.1, followed by an outlier detection procedure to filter out data points with a z-score higher

than two in the transformed data distribution. Structures with complex ring structures tend to exhibit

steric hindrance, adding nonlinear features to properties that we cannot accurately capture using

linearly additive GC methods. Therefore, any components with more than three ring structures are

eliminated from the data set. As a result, the proposed GC models are most suitable for molecules

with no more than two ring structures. Post-processed experimental data is split into ten consecutive

folds for cross-validation. Each fold is used once as the test set while the remaining nine folds form

the training set. Repeated training and test data split follows a stratified manner. In other words,

property data is partitioned into subgroups in advance based on how many standard deviations a

data point resides from the mean. Training and test split occur in each subgroup where 9/10 of

the population fall into the training set while the rest belong to the test set. Cross-validation is

carried out to determine the optimal universal parameters )10, )<0, )20, %20, +20, �E0?0, f0, `0 in

the transformation functions, as shown in Table 3.3. Values are chosen to minimize the average

cross-validation error between the estimated and true property values.
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Organic family Tb Tm Tc Pc Vc Hvap 2 -

Hydrocarbons
CnHm

1459 636 287 287 287 547 217 63

Oxygenated
CnHmOx

2724 1540 273 273 273 730 700 236

Nitrogenated
CnHmNx

837 471 74 73 73 287 135 43

Sulfur containing
CnHmSx

199 116 31 31 31 81 56 7

Halogen
Fluorinated CnHmFx
Chlorinated CnHmClx
Brominated CnHmBrx
Iodinated CnHmIx

135
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160
46
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9
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5
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38

13
91
46
26

12
31
10
0

Silicon containing
CnHmSix

269 92 59 55 62 128 36 46

Polyatomic functional groups 2262 2035 73 73 74 462 279 66
Total 8445 5280 860 852 852 2473 1599 514

Table 3.2: Number of measurements by organic family used in parameter estimation of different properties

3.2.
PRO

PO
SED

G
RO

U
P
CO

N
TR

IB
U
TIO

N
M
ETH

O
D
O
LO

G
Y

45



CHAPTER 3. FUNCTIONAL GROUP SELECTION METHOD FOR GC MODELS

Constant Value
)10 (K) 295.51
)<0 (K) 233.90
)20 (K) 295.51
%20 (bar) 2.63

%21 (bar−0.5) 0.17
+20 (cc/mol) 57.34
�E0?0 (kJ/mol) 13.49
f0 (N/m) 19.97
`0 (mPa s) 1.38E-2

Table 3.3: Universal constants used in the property transformation functions

3.2.4 Parameter estimation

Parameter estimation is carried out via regression on the training data set for each property of interest.

Using (3.3), we fit the transformed target properties to a linear function of group occurrences. The

determination of contribution coefficients (28’s) in the property model is carried out by the model

selection tool ALAMO [111] (Automated Learning of Algebraic Models). ALAMO learns algebraic

functions by building a low-complexity surrogate model through best subset selection on regressors.

Several model fitness metrics can be employed to balance the bias-variance trade-off. In this work,

the Bayesian information criterion (BIC) is used as the optimization objective to find a balance

between the goodness of fit and overfitting:

��� =

∑#
<=1(%< − %̂<)2

f̂2 + : log (#) (3.4)

In this equation, # is the number of data points in the training set, : denotes the number of

non-zero regressors, and %< and %̂< respectively represent the actual and predicted property value

for measurement <. f̂2 is an estimation of the residual variance calculated by ALAMO. ALAMO

assigns a contribution coefficient to each functional group by minimizing BIC. Groups with non-zero
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coefficients end up participating in the GC model.

3.3 Validation of derived GC method

As in (3.4), in this section, we will use %< and %̂< to represent, respectively, the experimentally

measured property values and the values predicted with the derived GC models at the <Cℎ

measurement point. The property mean will be represented with %. In order to quantify the goodness

of fit of the developed GC models, we will adopt the following metrics: R-squared ('2), root mean

squared error (RMSE), average absolute deviation (AAD), and average relative deviation (ARE%).

These metrics are defined as:

'2 = 1 −
∑#
<=1

(
%< − %̂<

)2∑#
<=1

(
%< − %

)2 (3.5)

'"(� =

√∑#
<=1

(
%̂< − %<

)2

#
(3.6)

��� =

#∑
<=1

|%< − %̂< |
#

(3.7)

�'�% =
1
#

#∑
<=1

|%< − %̂< |
%<

× 100 (3.8)

'2 measures to what extent the observed variation in the dependent variable can be explained by the

model’s inputs. An '2 value of 1 indicates perfect fitting accuracy. RMSE measures how far away

the data is around the line of best fit. AAD measures the average distance between the true values

and predicted values. ARE% expresses the average of the absolute error of the predictions with

respect to the true values in percentage.

We use 411 functional groups to compose the functional group base, including both first-order
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and higher-order groups, to consider the complete set of molecular structures. The group selection

procedure decomposes molecular structures into a subset of the 411 groups, after which ALAMO

determines the final set of “best groups” through best subset selection. Eventually, a total of 315

functional groups are selected to model all target properties. To achieve optimal fitting results,

we use the full data set to build the property models. Table 3.4 presents the fitting status of the

final property models using the full data set. The model size indicates the number of parameters

involved in each GC model. A parity plot of each target property is provided in the Appendix.

Most property models achieving a satisfactory correlation coefficient '2 proves the viability of the

proposed GC method for its predictive power. Visual observation on the parity plots indicates good

model fitting status where most of the data are fitted to an adequate degree of accuracy. The residual

error plot of each property is also provided in the Appendix. All histograms exhibit Gaussian bell

shape curves, suggesting evenly distributed deviations of training data about the regression line.

The spikes around 0 indicate that the proposed GC models perfectly fit property values. Further

analysis shows that most of the presently tested compounds deviated by no more than one RMSE

to the true value. Promising model performance is further corroborated by low ARE% values for

most target properties. ARE%s are relatively high for melting point and viscosity. Difficulty in

melting point modeling is mainly due to the strength of the crystal lattice, which is primarily a

function of intermolecular forces, molecular symmetry, and conformational degrees of freedom of a

molecule [114], all of which are not explicitly modeled in the proposed linearly additive GC method.

On the other hand, dynamic viscosity suffers from a small data size. Therefore, extra care should be

taken when using GC models for these two properties. A complete list of participant functional

groups and their group contribution coefficients are provided in the supplementary material.

This work aims to develop reliable models with good predictive power. Therefore, it is vitally

essential to subject the model to an unseen data set. For this purpose, we performed 10-fold

3.3. VALIDATION OF DERIVED GC METHOD 48



CHAPTER 3. FUNCTIONAL GROUP SELECTION METHOD FOR GC MODELS

Property R2 ARE% AAD RMSE Model size
)1 (K) 0.96 2.65 11.64 15.69 226
)< (K) 0.90 7.19 22.26 26.94 186
)2 (K) 0.96 2.02 12.38 20.31 222
%2 (bar) 0.95 4.09 1.53 2.48 136

+2 (cc/mol) 0.99 3.10 11.05 17.45 148
�E0? (kJ/mol) 0.95 5.79 3.02 4.31 163
f (N/m) 0.89 5.48 1.62 2.15 165
` (mPa s) 0.91 31.05 0.45 0.78 181

Table 3.4: Fitting metrics of the proposed GC model on the full data set

cross-validation, where 1/10 of the data was taken out as a test set while the remaining was used as

the training set to fit the property models. Fitted property models were evaluated on the test set.

Viscosity was not subject to cross-validation due to the small data size. Table 3.5 summarizes the

cross-validation results; each statistical metric is associated with a 95% confidence interval obtained

through multiple cross-validation calculations—most properties under investigation exhibit high '2

and &2 on both training and cross-validation sets. The small difference between the two metrics is

clear proof of the reliability of the present GC model for its predictive power. It is worth noticing

that most of the GC models can be expressed using models with less than 200 variables, as shown in

theModel Size column in Table 3.4. This observation demonstrates the proposed method’s ability to

identify a small predictive model.
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Property Training R2 Training AAD Test R2 (Q2) Test AAD
)1 (K) 0.96 (±0.05E-2) 11.68 (±6.22E-2) 0.95 (±6.33E-2) 11.47 (±0.57)
)< (K) 0.90 (±0.04E-2) 22.31 (±5.71E-2) 0.88 ±0.56E-2) 21.80 (±0.55)
)2 (K) 0.97 (±0.12E-2) 12.14 (±0.11) 0.79 (±5.92E-2) 29.03 (±5.65)
%2 (bar) 0.95 (±0.33E-2) 1.59 (±2.06E-2) 0.93 (±0.04) 1.54 (±0.20)

+2 (cc/mol) 0.99 (±0.02E-2) 10.79 (±0.11) 0.98 (±0.54E-2) 13.17 (±1.06)
�E0? (kJ/mol) 0.93 (±0.15E-2) 3.17 (±2.52E-2) 0.90 (±0.02) 3.25 (±0.24)
f (N/m) 0.88 (±0.14E-2) 1.66 (±0.92E-2) 0.85 (±0.02) 1.62 (±8.78E-2)

Table 3.5: Cross-validation results
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Figure 3.3: AMODEO framework

3.4 Coolant design

This section addresses the problem of designing coolants for electronic devices. We will incorporate

the new GC method into the AMODEO CAMD methodology [49]. AMODEO utilizes a decom-

position scheme that allows efficient exploration and optimization in the chemical design space

in a computationally efficient manner. As Figure 3.3 shows, AMODEO first solves for molecular

compositions. This is done by identifying all feasible combinations of first-order groups that match

the design targets without establishing chemical bonds between groups to form a complete molecular

structure. At this stage, target property ranges are widened in order to compensate for prediction

errors in the GC method used. The subsequent structure design stage adds chemical bonds to each

feasible composition to identify unique structures and differentiate among isomers. This stage

includes higher-order groups as correction terms to property estimation. Finally, the extended design

stage incorporates additional property models that are not available through GC to further refine the

solution pool.

The design objective for the problem at hand is to identify organosilicon cooling liquids that

enhance the heat removal performance in a microchannel two-phase cooling system. We seek

replacement coolants with better heat transfer properties than the commercial coolant Novec
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Boiling point 320 K ≤ )1 ≤ 370 K
Melting point )< ≤ 273 K

Latent heat of vaporization �E0? ≥ 35 KJ/mol
Dynamic viscosity at 298 K ` ≤ 0.0025 Pa s

Table 3.6: Property targets used in the design

HFE7200 and develop a set of property targets listed in Table 3.6. This set of design targets was

identified in our previous work [10]. In a two-phase cooling system, coolant vaporizes to absorb

sufficient heat from the electronics to maintain a chip temperature below 85°C [51]. Low viscosity

allows fluids to flow throughout the microchannel with less resistance to enhance convective heat

transfer. Our design targets reflect these desired characteristics.

Once property targets have been identified, we widen property target intervals by 15% in order

to compensate for estimation errors from the GC model. Widening bounds allows us to identify

structures that reside in the vicinity of design targets. The effect of prediction errors will be further

examined using uncertainty analysis on the derived molecules.

The metric developed in Chapter 2 is used here to evaluate the performance of microchannel

two-phase cooling fluids:
�)

%�
= 5 (�E0?, f, `, )2A8, %2A8, )1) (3.9)

The metric is formulated as the ratio of heat transfer coefficient (�)) and pressure drop (%�) to

maximize heat transfer rate while minimizing pressure drop across microchannels to guarantee

phase change occurs throughout the cooling system.

We limit the chemical design space to solely contain organosilicon compounds. AMODEO

identified 656 compositions in the composition design stage. For these compositions, 3568

organosilicon structures were generated and subsequently subjected to the extended design stage for

further screening. All structures identified at this stage surpass the heat transfer performance of
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Novec HFE7200.

To assess the effect of prediction uncertainty on the cooling performance, an error propagation

analysis is carried out in the same way as in Ku [86] using local sensitivities with respect to all

properties. The prediction uncertainty is calculated as follows:

4 5 =

√(
m 5

m?1

)2
42
?1 +

(
m 5

m?2

)2
42
?2 + ... +

(
m 5

m?^

)2
42
?^ (3.10)

Here, we take partial derivatives of the performance metric function 5 with respect to each target

property ? 9 ( 9 = 1, . . . , ^) involved in the expression and use AAD to represent the estimation error

of each property. Using this formula, we calculate the propagated error of the performance metric

for all candidate molecules.

Figure 3.4 shows the cooling performance of the candidate molecules (blue area) compared

with HFE7200 (red dot). The majority of the resulting compounds have a drastic improvement in

heat transfer performance. One of the top-performing compounds achieved a 1500% enhancement

in cooling performance compared to the base material. The result from the error propagation is

presented in the same plot using green shades to quantify the range of uncertainty of the predicted

performance improvement. The range of uncertainty is insignificant compared to the actual

performance improvement. This observation suggests that we have identified a pool of organosilicon

cooling liquids with performance exceeding one of the market’s fluids.

In the extended design step, we carry out an investigation on the operational safety and dielectric

properties of the identified candidate coolants. New cooling fluids should exhibit a flash point at least

higher than room temperature and low toxicity to ensure a safe operating environment. Using the

flash point estimation model from Catoire and Naudet [76], we find that 85% of the candidate liquids

have flash points higher than 300K. Toxicity was estimated using the EPA’s Toxicity Estimation
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Figure 3.4: Heat transfer performance of candidate molecules is shown in blue. The prediction uncertainty on
the performance metric of each compound is shown in green.
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Software Tool (TEST), version 5.1 [95]. We use a multilinear single model to predict 96-hour lethal

concentration (!�50). Using the chemical hazard classification category from the OPP (Office of

Pesticide Programs), we find that 83.85% of the candidates fall into category IV (not hazardous),

while the remaining 16.15% of the candidate coolants fall into category III (harmful if inhaled).

The results from both investigations demonstrate that the oragnosilicon compounds identified are

very likely to result in safe operating conditions.

Even for non-direct-to-chip cooling systems, such as the microchannel cooling system addressed

in this study, it is desirable for cooling fluids to possess low dielectric constants in order to maintain

electrical resistivity over an extended period of time and minimize potential damage to electronic

equipment. Following Kirkwood [115], we evaluate the dielectric constants of our top-10 candidates

with the best heat transfer performance. We assume that the refractive indices of all candidate

molecules fall within the typical range 1.33-1.50, and utilize the Lorentz-Lorenz equation to calculate

molar polarizabilities. Dipole moments are obtained using the B3LYP/6-31+g(d,p) method in

Gaussian09 [116]. The dielectric constants of the top-10 molecules range from 1.67 to 2.23, lower

than the reported dielectric constant of HFE 7200 [117]. This preliminary analysis suggests that

our identified coolants demonstrate good electrical resistivity, adding more confidence to their

operational safety. Therefore, they should be considered seriously by industry.

Finally, we compare the performance of organosilicon compounds to non-silicon structures

identified from Chapter 2. Figure 3.5 plots the heat transfer performance versus flash point of both

silicon containing and non-silicon containing candidates. In general, the addition of a silicon group

not only enhances the heat transfer efficiency but also improves the operational safety by providing

a higher flash point. Additionally, the toxicity estimation of silicon containing structures yields a

higher percentage of benign compounds compared to the candidate coolants from Chapter 2, as

summarized in Table 3.7. These observations further consolidate that organosilicons can be an ideal

3.4. COOLANT DESIGN 55



CHAPTER 3. FUNCTIONAL GROUP SELECTION METHOD FOR GC MODELS

Organic family Category I Category II Category III Category IV
Organosilicons 0% 0% 16.2% 83.8%

Non-organosilicons 0% 0.2% 30.5% 69.3%

Table 3.7: Comparison of LC50 values between organosilicons and non-silicon containing compounds

replacement of current commercial cooling fluids.
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Figure 3.5: Comparison between organosilicon coolant and non-organosilicon coolants. Organosilicons
generally have higher flash points and higher heat transfer efficiency compared to non-silicon containing

structures.
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Chapter 4

Derivative-free optimization for chemical

product design

4.1 Introduction

Computer-aided molecular design (CAMD) aims to efficiently explore the diverse chemical design

space and identify suitable chemical structures with desirable properties. Efficient search algorithms

and accurate property prediction models are the two key components in CAMD frameworks. While

search based on algorithms can generate molecular structures from a small set of submolecular

building blocks, most CAMD problems utilize optimization techniques and are formulated as mixed-

integer nonlinear programming (MINLP) models to explore the complete molecular design space.

The complexity of property prediction models together with the vast continuous/discrete molecular

solution space can lead to MINLPs with high degree of nonlinearity. These problems are difficult to

solve using standard MINLP solvers even for design spaces containing small molecules. Several

methodologies have been developed to couple decomposition techniques with MINLP formulations
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to solve the complex molecular design problems as a series of relatively easier sub-problems [49].

Harper et al.[60] proposed a structured multi-level generate and test approach where the complexity

of property prediction models increases at each stage. A decomposition scheme is utilized in [12, 20]

to solve the solvent mixture and crystallization solvent design problem. Samudra and Sahinidis [49]

have developed a decomposition scheme that demonstrates high computational efficiency when

solving CAMD problems with many functional groups. Austin et al. [118] provide a review of

CAMD frameworks and solution methods.

Applications of derivative-free optimization (DFO) algorithms in CAMD appeared as early

as Venkatasubramanian et al. [15, 119], who used genetic algorithms (GAs) to design polymers

and fuel additives. Other chemical product design applications utilizing GAs can be found in

integrated solvent and process design [120], ionic liquid design [121], and solvent design [30, 122,

123]. Marcoulaki and Kokossis utilized simulated annealing to solve the solvent design problem for

liquid/liquid extraction processes [124, 125]. Gebreslassie and Diwekar studied the solvent selection

problem using ant colony optimization method [126]. A CAMD approach is proposed in [127]

for the optimal design of absorbents for adsoprtion of natural gas fracking waste and is solved

using efficient ant colony optimization method. All these papers utilize stochastic DFO algorithms.

Although stochastic search procedures can be used as a fast means to generate candidate solutions,

the recent work of Rios and Sahinidis [128] suggests that deterministic algorithms perform better

in practice for a large collection of problems. Additionally, each of these papers utilized a single

DFO approach. Recently, Austin et al. [129] utilized many DFO methods to efficiently search the

vast space of solvent designs based on the key observation that the number of degrees of freedom

is very small in the space of properties important to the application and that, once the degrees of

freedom are fixed, numerical simulation/optimization determines values for all other variables. A

portfolio (i.e. collection) of DFO algorithms was used to solve the problem. Using a portfolio of
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DFO algorithms can increase the possibility of identifying good solutions. The idea of using a

portfolio of DFO algorithms has otherwise remained unexplored in chemical product design.

As more reliable and accurate property simulation models become available, employing property

simulators in product design will enable engineers to account more accurately for the effect of

design variables on product characteristics that might otherwise be difficult or impractical to

measure. For example, Monte Carlo simulation is widely used to estimate thermal conductivity

and polymeric properties [130], computational fluid dynamic models have been used to accurately

represent industrial processes [131], and density functional theory finds increasing applications

in the prediction of complex material behavior [132]. While combining these simulators with

algebraic optimization solvers is a formidable task, DFO can naturally integrate with complex

simulators at a minimal effort from the design engineer. Thus, there exist vast opportunities for the

use derivative-free optimization in chemical product design practice.

This chapter provides a short survey on recent developments of derivative-free optimization

algorithms and their applications. We aim to show why applications in this area of research are

pertinent and why researchers ought to fill the gap in the literature concerning the use of portfolios

of DFO algorithms in chemical product design problems. We describe algorithmic approaches

for solving DFO models, prior reviews in literature, and a variety of available software for DFO

algorithms. We also provide a case study in order to demonstrate the application of a portfolio of

DFO solvers in chemical product design.

4.2 Derivative-free optimization

In derivative-free optimization, algorithms seek optimal solutions of an optimization problem where

the objective function and/or constraints are not necessarily algebraically available. DFO algorithms

search the domain of independent variables, evaluate the objective function at one or several points,
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interpret the results based on a wide variety of approaches, and choose one or more new points

for evaluation or terminate if a convergence criterion was reached or a time limit exceeded. The

objective function and constraints can be computed through a call to a closed-source or very complex

code that is treated as a black box. Thus, the literature on derivative-free optimization often uses the

term optimization over black box interchangeably with derivative-free optimization. The closely

related term simulation optimization (SO) is typically reserved for derivative-free optimization when

noise or variability exists in the simulation outputs [133].

Many DFO algorithms exist and can be classified into the following categories:

• Model-based or direct. Model-based algorithms fit a surrogate model to the objective values

collected over the space of independent variables. This surrogate model provides derivative

approximations and guides the search. These methods are suitable for computationally

expensive applications, as a way to deduce the underlying relationships between the input

variables and the objective function without carrying out expensive simulations. The

theoretical development of model-based algorithms revolves around the choice of surrogate

models to estimate the unknown underlying models as well as the criteria used to determine

the next sampling point. A review of model-based box-constrainted DFO problems can be

found in Forrester et al. [134]. Direct search algorithms search a set of points around a

current trial point, and use the information collected in order to determine search directions.

These methods are popular for their simplicity and flexibility. Under certain assumptions on

smoothness and differentiability, convergence to a stationary point is guaranteed [135–137].

Kolda et al.[137] provided extensive review on direct-search methods for derivative-free

optimization.

• Local or global. Local search algorithms search in the vicinity of a current trial solution, while

attempting to find a direction with improved objective value within a local subspace. Direct
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search methods that are local in nature include mesh adaptive direct search (MADS) [138],

Nelder-Mead simplex based algoritm [139] and pattern search method [136, 137]. Model-

based local search method include trust-region methods [140] and implicit filtering [141].

These algorithms aim to identify a point of local optimality. Major disadvantages of local

direct search are the high dependency on the initial point, large number of function evaluations

and likelihood of getting trapped in local optima. Multi-start approaches can be used to

increase the probability to converge to global optimum. On the other hand, global algorithms

refer to methods that do not require a starting point. These algorithms explore the entire search

domain in ways that balance local refinement with global exploration. Popular direct search

methods in the context of global-search include the DIRECT algorithm [142] and multilevel

coordinate search [143]. Global model-based search algorithms aim to construct surrogate

models for the entire search space. With more function evaluations, global search algorithms

can refine the search domain by examining many areas of the feasible region. Both local

search and global search can converge to a local stationary point under certain assumptions

but global optimality is not guaranteed unless the search is “dense” [135, 143, 144].

• Deterministic or stochastic. When they have the same starting point, deterministic algorithms

will follow a fixed set of operations, evaluate the same set of sample points, and arrive at the

same final solution. These algorithms include several variants of the MADS algorithm [138,

145], implicit filtering [146], and branching-based algorithms such as SNOBFIT [147].

Stochastic algorithms add randomness to the search, often following a probability distribution

that chooses a new solution over the previous one. These methods include algorithms such

as CMA-ES [148], particle swarm algorithms, and GAs. Because they lack a deterministic

termination criterion, stochastic algorithms may require a large number of evaluations.

The review by Rios and Sahinidis [128] and the textbook by Conn et al. [149] provide more
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details on the theory behind derivative-free optimization. The recent increased interest in the DFO

field is largely due to advances in related software implementations. Rios and Sahinidis [128]

provide a systematic comparison of software implementations on a large collection of test problems.

The authors found that no single solver is sufficient to solve all problems. Additionally, all solvers can

provide the best solution possible for at least some of the problems tested. Austin et al. [19] recently

studied the chemical mixture design problem using derivative-free optimization, and cross-compared

27 DFO solvers on a proposed decomposition formulation. The authors concluded that a portfolio

of DFO algorithms is efficient at solving mixture design problems. Among the solvers tested, global

model-based methods provided better solutions. Findings from these two papers suggest that using

a set of solvers can lead to better solutions in comparison to using a single solver. Recently, the

use of a portfolio of DFO solvers has found considerable success in engineering design [150] and

algorithm tuning [151].

To encourage more applications of a portfolio of DFO solvers in the CAMD field, we will

demonstrate how this approach can be used in a product design problem. In the following section,

we introduce a polymer design problem involving a black-box simulator. We use a portfolio of DFO

algorithms to search the multi-dimensional design space and identify polymeric configurations that

can match a target rheological behavior.

4.3 Design of polymer structure and flow

Every commercially available plastic object goes through the melting stage during manufacturing to

be shaped into the final product. Polymer melts are entangled macromolecules that exhibit time-

dependent viscoelastic behavior. It is important to analyze and quantify the dynamic viscoelastic

behavior in order to control the rheology of the polymeric materials within certain range for smooth

process operation. Normally, an oscillatory test is carried out to measure the complete rheological
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responses of a polymer melt. This process applies a sinusoidal stress at different frequencies to a

polymer melt and creates deformation, after which the material relaxes in response to the external

stimuli. The resulting strain is measured during the relaxation response.

The rheology of polymers melt is very sensitive to the polymeric configuration and structure. For

example, heavier polymers (higher molecular weight) correspond to higher viscosity, and branching

structures affect the elasticity of the polymer melt. In this section, we are interested in the following

problem: Given a polymer melt and a quantitative prediction of its rheological behavior, identify all

feasible polymer melt architectures of which the rheological time-dependency resembles that of the

given target melt.

The motion of a polymer molecule is assumed to follow a tube model which restricts the

movement of a polymer within a virtual tube formed by the surrounding entangled polymers. We

use a black-box simulator to calculate the rheological responses of the polymer melts using the

extended tube model [152, 153]. We consider the following design variables for each component

in the polymer blends: mole fraction, weight-averaged mass and polydispersity index (PDI). We

focus on binary polymer blends with star structure and lognormal arm length distribution. A total of

six input variables are fed into the simulator to calculate the transient response in strong shear and

extension of the input test materials. The goal of this case study is to search the design space in order

to identify a combination of polymer properties that leads to rheological behavior similar to that

of the target polymer melt. Since rheological computation is carried out in a black-box operation,

which is considered computationally expensive, derivative-free optimization is a suitable method to

solve this problem.

The target rheological response is simulated for a low density polyethylene (LDPE) blend with

fixed material properties and polymer structures listed in Table 4.1. The rheological responses of

the target polymer melt are shown in Figure 4.1. �′ is the shear storage modulus that measures the
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Entanglement time 1.15E-7 seconds
Temperature 463.15 K

Mass of a monomer 42.08 atomic units
Number of monomers in an entanglement length 128

Mass-density of the polymer 723.28 kg/m3

Number of components 2
Dynamic dilation exponent 1

Number of polymers in each component 2000
Polymer type Star with 3 arms

Arm length distribution Lognormal

Table 4.1: Material properties and polymer structures used in the simulation

Configuration Component 1 Component 2
Mole fraction 0.3 0.7

Polydispersity index 1.8 2.5
Weight-averaged mass 25000 30000

Table 4.2: Polymer configurations of the target binary LDPE blend

stored energy due to elasticity, and �′′ is the loss modulus that measures the dissipated energy due to

viscosity. Polymer configurations of each component in the target blend are presented in Table 4.2.

Physical properties listed in Table 4.1 are treated as fixed parameters, while we search in each

variable space as shown in Table 4.2 to identify a set of polymer configurations of which the newly

simulated rheological responses match those of the target response curves.

We assume that the given polymer melts exhibit linear viscoelasticity, i.e., there exists a linear

relationship between stress and strain at any given time. Rheological curves therefore are evaluated

at the same set of angular frequencies. Complex modulus is used to quantify the overall resistance

to deformation of a material upon oscillations. It is calculated as a composite of the rheological

responses �′ and �′′

�∗ =
√
�′2 + �′′2 (4.1)

In order to fit the target rheological responses, we seek to identify values for the simulator inputs
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Figure 4.1: Target rheological responses
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that minimize the sum of squared error between the complex moduli of the desired and simulated

rheological responses. We optimize simultaneously for both responses as they are equally important

to guarantee solution consistency. Additionally, our model satisfies the mass balance constraint and

physical bounds on all input variables. We experimented with more than 20 DFO solvers. Here, we

describe results with the following 11 solvers that performed better than other solvers:

• ASA

• CMAES

• HOPSPACK

• MCS

• NOMAD

• PSWARM

• SID-PSM

• SNOBFIT

• TOMLAB/GLCCLUSTER

• TOMLAB/MULTIMIN

• TOMLAB/LGO

These solvers can handle continuous problems with box-bounded constraints. The theoretical

underpinnings and algorithmic descriptions for each solver can be found in their user manuals [143,

147, 148, 154–159].

Some DFO solvers, including CMAES, NOMAD, SID-PSM, and SNOBFIT, utilize the provided

starting point to initialize the search process. Other solvers, such as MCS, discard the starting point

or rely on one of the bounds. In order to evaluate these solvers for their ability to perform a thorough

search of the design space independent of the quality of the starting point, the initial values were

chosen to be far away from the configurations that gave the target rheological curves.
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Figure 4.2: Comparison of rheological behavior of the identified polymer configurations

Upon termination, many DFO codes are not guaranteed to provide a local optimum, even though

some of the underlying algorithms do so in theory. Thus, by using a collection of DFO solvers, we

are increasing the likelihood of identifying good solutions.

A maximum of 1500 function evaluations was imposed on each DFO solver. For each solver, we

report the number of function evaluations required to reach a solution with a 2.83 GHz processor.

By running the above DFO solvers with a limit of 1500 calls to the simulator, we obtained a set of

‘optimal’ configurations. When fed to the simulator, these configurations produced the rheological

behavior curves that are shown in Figure 4.2. Clearly, all solves identified polymer configurations

that were able to match the rheological targets very closely.
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Figure 4.3: Performance of DFO solvers: quality of solution versus number of simulations required to
complete the search

Figure 4.3 summarizes the performance of all 11 DFO solvers, including the final objective

values and number of iterations required to reach a solution. All DFO solvers reach a solution within

1500 function evaluations. More specifically, SID-PSMwas able to reach a satisfying solution within

100 function calls. Solvers like PSWARM, SID-PSM, NOMAD and TOMLAB/GLCCLUSTER

were able to fit the target rheological responses even more closely. These solvers demonstrate that a

large design space can be efficiently searched using these algorithms.

We further analyze the final design space to determine the distance from the identified solutions
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to the polymer configurations as shown in Table 4.2. Each subplot of Figure 4.4 corresponds to a

property-algorithm combination. The horizontal and vertical axes of each subplot correspond to the

property values of the two components of the binary blend. Green circles denote the point in property

space that was identified as best by the corresponding DFO algorithm. The red circles correspond

to the configurations that we used to generate the target curves. As seen in this figure, differences

in the search algorithms lead to a dispersive distribution of the identified polymer configurations,

making them also different from the configuration used to generate the target rheological curves.

This observation underscores the importance behind using a portfolio of DFO algorithms, instead

of a single DFO algorithm. Using a portfolio of algorithms not only increases the likelihood of

identifying good solutions but also creates diverse designs. A diverse solution pool is beneficial

when it comes to polymer synthesis as it can potentially increase product diversity while maintaining

similar rheological features. When the target polymeric characteristics are hard to maintain or

expensive to achieve, the identified configurations can act as drop-in replacements of the target

blends, further expanding product variety.
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Figure 4.4: Solution diversity obtained by portfolio of DFO solvers
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Chapter 5

Computer-aided retrosynthesis

5.1 Introduction

Retrosynthesis, a technique for planning a synthesis route backward, reduces a target organic

molecule into a sequence of increasingly simpler precursors along reaction pathways which can

ultimately lead to commercially available starting materials. This inherently complex problem

requires searching in a large space of possible actions to transform the target molecules, either by the

imaginary disconnection of bonds or by converting a functional group into another to match existing

reaction templates. Traditionally, retrosynthesis tasks were largely based on existing knowledge,

experience and intuition from synthetic chemists. The lack of systematic approaches imposed

challenges to the synthesis of complex structures. For example, the synthesis of vitamin B12, a

monumental achievement in organic synthetic chemistry, required the collaborative effort of over

100 chemists for nearly 12 years. As structural complexity increases, recognizing available starting

materials requires search in a reaction space that grows exponentially with the number of reaction

steps. Szymkuć et al. [160] estimated the dimension of the reaction search space is in the order of

1030 − 1050 for long reaction sequences. Computational algorithms can save a tremendous amount
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of time and effort in the search of the enormous number of theoretically possible transformations.

Since 1967 when Nobel Laureate E. J. Corey made the first attempt to use computational tools

for synthesis design [161], computer-aided retrosynthesis has been evolving rapidly. Early works

in retrosynthesis used logic-based synthesis trees where the target molecule is placed at the root

node with branches representing alternative or convergent pathways linking to intermediate reagents.

Johnson’s SYNLMA [162], SYNCHEM from Gelernter [163, 164], and Corey’s LHASA [165]

resulted from some of the early pioneering efforts in this field. These template-based endeavors tend

to be labor-intensive as they require manual encoding of reaction rules. The number of encoded

reactions subsequently determines the size of the reaction search space. More detailed perspectives

on template-based synthetic planning tools can be found in [160, 166–171].

In the past decade, chemists and computer scientists have made significant improvements

in computer-aided retrosynthesis thanks to the rapid and explosive advancement of data-driven

decision-making tools and the establishment of a comprehensive reaction database. Data-driven

models combined with machine learning (ML) techniques can infer latent relationships from

high-dimensional data to extract implicit and potentially meaningful context and have demonstrated

expert-level performance in various applications [172–174]. This compelling progress has become

increasingly attractive in response to the rapid discovery of novel molecules and chemical information,

contributed to template-based synthesis planning, and incubated the development of template-free

synthetic planning tools. For example, in template-based approaches, ML techniques provide the

means in automatic reaction rule extraction [175, 176], template relevance ranking [176], and

candidate reactants scoring [177]. As for template-free methods, natural language processing

models that built for machine translation tasks [178, 179] are adopted to translate product SMILES

strings [180] to reactant SMILES strings [181]. As a result, the number of publications in

retrosynthesis has increased significantly in the past decade (Figure 5.1). These tools have
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enabled various applications, including drug design, novel synthetic route discovery, and design of

biologically active compounds.

This paper is a survey on contemporary retrosynthesis strategies. We review and evaluate

computer-aided retrosynthesis tools developed mainly in the past five years. The review is concise

and approachable for beginners in this topic. Interested readers can refer to [171, 182, 183] for more

detailed reviews. In the following sections, we cover the two dominant approaches to computer-aided

retrosynthesis: template-based and template-free. Lastly, we provide a future outlook and address

potential challenges of the field.

5.2 Retrosynthesis planning

A generic framework for retrosynthesis planning consists of a reaction rule library, a chemical

database with commercially available starting materials, and strategies that select bond disconnection

rules and direct the search toward the chemical database. Corey et al. [161, 166] established the

majority of the framework decades ago. In the past decade, the landscape of retrosynthesis has

changed significantly due to the establishment of large reaction databases and advancement in

data-driven computational tools. Here, we review how ML can improve retrosynthesis performance

from the following aspects: reaction rule extraction and synthesis planning strategies.

5.2.1 Reaction templates

Traditionally, reaction rules are expert-defined and manually encoded. Chematica [160] is one of the

most well-known, commercially available, and manually encoded reaction libraries that cover most of

the known reaction rules. It has demonstrated its ability to design synthetic pathways for high value

medicinally relevant compounds [184, 185]. These design pathways were successfully validated in
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Figure 5.1: Number of publications containing the terms “retrosynthesis” or “synthetic planning.” Source:
Google Scholar, 3/26/2021.
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the laboratory. As the chemical space grows exponentially at an annual rate of 4.4% [186], manually

annotating all existing chemical knowledge becomes a formidable task. A more contemporary

approach to reaction encoding utilizes algorithmic extraction of reaction centers via atom-atom

mapping to identify the correspondence between reactant and product atoms. For a given reaction,

one can identify the set of atoms that change bond connectivities as the reaction centers. Then

the reaction centers and adjacent atoms are algorithmically extracted and generalized to form the

corresponding retrosynthesis template.

In general, the retrosynthesis template of a single-outcome reaction with # candidate precursors

can be depicted by a subgraph rewriting rule [187]

>) → A)1 + A
)
2 + · · · + A

)
# (5.1)

where >) represents the subgraph pattern extracted from the reaction center on the target molecule,

and A)
8
, 8 ∈ 1, 2, . . . , # represents the corresponding subgraph patterns extracted from the 8th

reactant. Iteratively matching templates to a target molecule equals solving a subgraph isomorphism

problem. How far to extend the reaction center to auxiliary atoms highly affects the solution

quality of retrosynthesis prediction. Including more neighboring atoms can improve specificity

and lead to computationally expensive large subgraphs and poorly generalized databases. On

the other hand, including too few neighboring atoms might overlook crucial information, which

can generate inaccurate predictions. Heuristics have been developed to balance specificity and

efficiency [188–190].

After the extraction, reaction centers must be stored in a machine-readable format. The

RDKit [191] reaction SMARTS [192] format is commonly used to encode the reaction core patterns

for both the reactants and product. Figure 5.2 shows an example of encoding the esterification

reaction into the reaction SMARTS string. The reaction centers, as well as atom-atom mapping,
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Figure 5.2: Reaction SMARTS string of an esterification reaction

are explicitly laid out. The above mentioned template generalization rules can be applied to the

reaction template accordingly. This example, and most existing retrosynthesis applications, do not

consider reaction conditions in the templates. Although specifying reaction conditions is crucial to

the prediction outcome, including reaction conditions would add another search layer to the already

enormous reaction search space. Several works attempted to recommend reaction conditions in

forward reaction prediction [193–196]. However, to the best of our knowledge, suggesting suitable

reaction conditions remains a largely open question in retrosynthesis applications.

Whether a reaction template library is used to convert target molecules into candidate reactants,

retrosynthesis strategies can be categorized into template-based and template-free.

5.2.2 Retrosynthesis strategy evaluation

To evaluate the performance of retrosynthesis strategies, we need a common metric to examine if the

ground truth precursors, the actual reactants reported in the template library for the corresponding

target molecule, are among the top-N highest-ranked precursors suggested by the model. The
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Figure 5.3: Template-based modeling to determine a retrosynthetic path for aspirin.

percentage is often referred to as the top-N accuracy.

5.2.3 Template-based models

Template-based strategies match target molecules to the entire template library by solving a

subgraph isomorphism problem to obtain candidate reactants. An example is provided in Figure 5.3.

These approaches usually require exhaustive enumeration through the reaction database, therefore

are complemented with efficient graph-theoretical algorithms [197, 198] and virtual screening

techniques [199].

Precursors not readily purchasable must be recursively expanded until all reactants on the

path are commercially available or maximum depth is reached. To circumvent combinatorial

explosion, scientists have made efforts to limit recursive expansion to the most promising bond

disconnections that lead to easily synthesizable structures. Consequently, several metrics were

developed to quantify the synthesizability of molecular structures. The traditional metric relies on

the length of the resulting SMILES strings and aims to divide molecules into the smallest possible

reactants. Synthetic accessibility score (SA score) utilizes fragment contributions that scale linearly

with commonly synthesizable structural features and penalizes the presence of rare and complex

structural features [50, 200]. Chematica [160] provides a metric that evaluates synthetic difficulty
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as a function of both structural complexity and length of reaction steps, with an extra penalty for

reaction conflicts and protection groups. SCScore [201] is based on the premise that the products

of a reaction should be synthetically more complex than their reactants. Other synthetic scoring

functions include support vector machines-based DRSVM [202] and current complexity [203].

Template-based approaches are useful for their interpretability and ability to provide fully

specified chemical precursors. However, these approaches are computationally demanding and have

limited generalization outside the template library.

5.2.4 Machine learning in template-based models

Research in template-based models has focused on overcoming the high computational cost resulting

from the exhaustive enumeration of reaction templates. To address this challenge, researchers utilize

ML to select only the relevant templates instead of using the full template library. This class of

template-based models is referred to as “focused template application” [182].

Utilizing the most relevant subset of reaction rules alleviates the computational cost of full

library application while preserving chemical interpretability. In the context of focused template

applications, molecules are encoded into Extended-Connectivity Fingerprints (ECFP) [204] to better

exploit the scalability and expressiveness of neural networks. Although training neural networks is

an expensive task, the resulting models can make predictions at virtually no cost.

Segler and Waller [176] proposed one of the first focused-template models. They trained a

neural-symbolic model on molecular fingerprints to score template relevance. This model solves

a multiclass classification problem that categorizes similar templates into sub-groups. Segler et

al. combined this approach with reinforcement learning [205] for fast and robust retrosynthetic

pathway design and reaction prediction. Coley et al. [177] proposed a reaction similarity-based [206,

207] method formulated on the premise that similar reactions tend to produce similar compounds.
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They computed molecular similarities between the target molecule and precedent reactions to rank

templates. This model, known as retrosim [189], demonstrated good prediction accuracy and is

often used as a benchmark. Baylon et al. [208] presented a multiscale neural network reaction

recommendation system to suggest the first retrosynthetic reaction step. This method partitioned the

retrosynthesis problem into two tasks. The first neural network predicted which reaction class can

produce the target molecule. The second neural network, solely trained on the subset of reactions

from the identified reaction group, determined the appropriate transformation to produce the target

molecule. Dai et al. [187] proposed a conditional graph model built on top of graph neural networks

to directly calculate the conditional joint probability of using a specific template and reactant set.

Top-N prediction accuracy of this model outperforms retrosim.

As a template-based method, focused template applications can reduce computational intensity

from the original rule-based approaches while retaining the same level of chemical interpretability.

Yet, this class of models tends to convey the same limitations stemming from the underlying rules.

They cannot predict outside the reaction knowledge base to suggest novel bond disconnections. As a

result, they are rarely used to provide insights outside the scope of general chemistry.

5.2.5 Template-free

Recently, template-free approaches have attracted increasing attention as they avoid the computationally-

expensive subgraph matching problems. These approaches utilize text representation of molecules

(SMILES or InChI [209]) to cast the retrosynthesis problem as a sequence-to-sequence (seq-2-seq)

prediction problem. Transforming target molecules to reactants becomes a translation task that

converts the SMILES string of a product to that of reactants. This process no longer involves

atom-atom mapping to identify reaction centers.

The idea of combining chemistry with natural language processing was first proposed by Cadeddu
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et al. [210]. Several studies have since explored the use of seq-2-seq models in de novo molecular

design [210–214] and forward reaction prediction problems [215–218]. These works used recurrent

neural networks (RNNs) to learn the SMILES string’s sequential relationships to regenerate SMILES

as output. In the context of retrosynthesis, Liu et al. [181] reported a seq-2-seq architecture which

involves two RNNs for target molecules and reactants and a beam search procedure to limit the

number of candidates at each retrosynthesis step. They compared the top-N prediction accuracy to a

template-based expert system on the test data set. Although the seq-2-seq model did not significantly

benefit prediction accuracy, the model demonstrated several advantages over the rule-based baseline

model. First, the seq-2-seq model can implicitly learn both the reaction rules and candidate ranking

metrics, which avoid using stand-alone reaction complexity ranking metrics as in template-based

approaches. Second, the seq-2-seq model is easier to scale up than rule-based approaches. The

efficiency of template-based approaches depends on the number of reactions stored in the database

since every rule needs to be applied to match the target molecules. At the same time, the efficiency

of seq-2-seq model is primarily dependent on the width of beam search. Lastly, the seq-2-seq model

can learn a latent environment of molecules and propose fundamentally novel bond disconnections.

Adopting template-free models is still relatively new in retrosynthesis. Recent development

involves machine translation techniques [219, 220] that have yet to show significant improvement in

prediction accuracy over template-based approaches. One common shortcoming of template-free

approaches that needs to be addressed is the output of invalid SMILES strings. Further improvement

is expected to enhance chemical interpretability and allow the prediction of multi-outcome/multi-step

reactions.
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5.3 Outlook

ML techniques have contributed to multiple steps in the retrosynthetic planning framework by

providing efficient and better means to learn from the rich history of chemistry. However, as a

data-driven model, the performance of the ML method largely depends on the data quality. Curating

and maintaining a reliable database is challenging, but having access to open-source data with

standardized representation and consistent quality would accelerate the development and offer

a fair comparison baseline for various methodologies. ML models often suffer from a lack of

interpretability. Naturally, template-free strategies are more prone to the lack of interpretability.

These approaches, trained on text sequences, can neglect significant chemistry meaning behind

bond disconnection, which sometimes can lead to infeasible suggestions. Methods to improve ML

interpretability can be a potential solution to this challenge.

For any in silico design process, suggested synthesis routes should be validated experimentally to

determine the true performance of computer-aided retrosynthesis. High-throughput and parallelized

experimentation are commonly used for rapid data generation and experimental validation. Yet, the

absence of experimental conditions in retrosynthesis data imposes further constraints on experimental

planning. Recent developments exist in automated design of experiments (DoE) and self-optimization

utilizes ML algorithms to optimize and identify feasible reaction conditions [221, 222]. Combining

automated DoE tools with robotic experimental instruments can facilitate retrosynthesis design

validation.

Improvements in our ability to manufacture chemical compounds can bring tremendous social and

technological impact. Computer-aided synthesis planning, automatic laboratories, and automated

material design tools are the key players in achieving a closed-loop automatic material discovery

paradigm. Fueled by digitalization trends, artificial intelligence is anticipated to be a fundamental

building block in establishing an automated chemical synthesis system, offering valuable assistance
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in material discovery and eventually serving as a future robo-chemist [223]. As retrosynthesis

techniques mature, we are likely to witness their integration within techniques for automatic

computer-aided molecular design [36], wherein retrosynthesis-based metrics can be used to expedite

the search by screening for manufacturability and even cost effectiveness.

5.4 Case study: Manufacturability test for electronic coolants

Here, we propose to incorporate a manufacturability test in the molecular design framework. We go

back to the electronic coolant design problem reported in Chapter 2 and Chapter 3 and examine

the candidate coolants for their ease of synthesis. Upon inspecting the newly discovered coolants,

we find that most of the candidate molecules are novel structures with no previously reported

application in the coolant industry. Instead of explicitly planning out synthetic routes for the

candidate coolants, we are interested in knowing the likelihood of synthesizing these structures from

existing synthetic knowledge, based on the assumption that similar compounds can be produced

via similar reactions. Synthetic accessibility score (SAscore) [50] is one of the commonly used

metrics to determine the ease of synthesis of a target molecule. It relies on molecular fragment

contributions and structural complexity penalty to assign a score ranging from 1 to 10 to a molecular

structure. Higher scores indicate compounds easier to synthesize. Molecular fragment contributions

represent the frequency of appearance of structural features observed from already synthesized

molecules. Complex structural features such as rings and isomers are assigned a complexity penalty.

Both fragment contributions and complexity penalties are obtained by training on one million past

synthesized molecules from PubChem (https://pubchem.ncbi.nlm.nih.gov), thus capturing historical

synthetic knowledge.

We calculate the SAscore for both organosilicon and non-organosilicon candidates. Figure 5.4

illustrates the distribution of their SAscores. Organosilicon candidates correspond to SAscores
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Figure 5.4: SAscore distribution of organosilicon coolants and non-organosilicon coolants

ranging from 2.77 to 5.79 with a median of 4.25, while the SAscore of non-organosilicons ranges

from 1.26 to 4.83 with a median of 3.40. This comparison suggests that the addition of a silicon

group can potentially decrease the synthesis barrier, leading to more accessible designs. Compounds

with SAscore greater than 5 are more likely to be synthesized from a set of commercially available

compounds, thus worth experimental validation.

Finally, we rank the performance of all candidate compounds taking into account their manufac-

turability. Figure 5.5 presents the heat transfer efficiency versus the SAScore for both organosilicons

and non-organosilicon compounds. Candidate coolants in the upper right corner of this figure
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Figure 5.5: Compared to non-organosilicon compounds, organosilicon candidates exhibit higher heat transfer
efficiency and higher synthetic accessibility.

exhibit satisfactory cooling performance and are predicted to be easier to synthesize. We maximize
�)
%�
× SAscore to identify the best performing coolants with the highest SAscore. Table 5.1 presents

the top-10 coolants following this ranking metric. All of the top-10 best performing coolants are

organosilicon compounds. This observation further supports organosilicons as ideal replacements

of current commercial cooling fluids. Their properties should be subject to thorough experimental

validation.
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Canonical SMILES[75] HT/PD SAscore Flash point (K) Toxicity category
CCO[Si]C(C)CC 2.17E-3 4.93 304.39 Category III

COC(C)OC(C)[Si]C 1.95E-3 5.09 325.56 Category IV
COC(C)[Si]C(C)OC 1.94E-3 5.12 323.95 Category IV
CCC[Si]C(C)OC 2.02E-3 5.00 316.93 Category IV
COCCC(C)[Si]C 2.13E-3 4.49 308.39 Category IV
COCC(OC)[Si]C 1.90E-3 4.90 313.46 Category IV
COC[Si]C(C)OC 1.78E-3 5.11 322.02 Category IV
COC(C)OC[Si]C 1.77E-3 5.01 323.90 Category IV
CO[Si]C(C)OC 1.79E-3 5.17 302.93 Category IV
COC(C)O[Si]C 1.80E-3 5.11 304.87 Category IV

Table 5.1: Top ten molecules that are heat transfer efficient and relatively easy to synthesize
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Chapter 6

Conclusions and future directions

6.1 Summary of contributions

Chapter 2 presents a framework for single-component design problems where the design targets

are constant. We introduced the problem of electronic cooling fluid design and described a

computer-aided molecular design approach. This approach allows us to discover molecules with

desirable property values that can be used as drop-in replacements of industrial cooling fluids.

We focused on a two-phase cooling system—microchannel heat sinks—and developed a metric

to rank the performance of the candidate molecules. We also included metrics on environment

and safety to further analyze these molecules. We conducted a kinetic stability test to guarantee

that the candidate molecules are not subject to potential chemical transformation. Following this

methodology, we are able to identify a solution pool of candidate molecules that have better cooling

performance than the industrial cooling fluid HFE 7200. Among all candidate molecules, we

identified four organic families with previous industrial applications. These families of compounds

suggest promising directions for developing safe, biodegradable, low ozone depleting, and low-

global-warming-potential coolants. Additionally, certain molecules posses superior heat transfer
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properties and can potentially serve as an additive to boost thermal performance. The predicted

performance of many candidate molecules motivates future analysis of their mixture properties.

In Chapter 3, we expanded the search area for superior electronic cooling fluids to include

organosilicon compounds. Despite their wide encounter in a broad range of commercial applications,

silicon containing structures are usually excluded from computer-aided molecular design applications

due to the lack of reliable property prediction models. We aimed to develop reliable property

estimation models to include organosilicon compounds in the design space. To do so, we proposed a

new group selection method in the development of group contribution models. This method provides

an effective way to automatically decompose molecular structures into subgroups consistently.

After the functional group selection procedure, our methodology relies on ALAMO, a model

selection framework, to build property models for eight target properties. The identified property

models enable property estimation of a variety of organic compounds, including organosilicon

structures. We performed cross-validation to examine the reliability of the proposed model. Both

the training and test results demonstrate that our proposed method has good predictive power. The

small model size indicates that this method can select property models that balance judiciously

between overfitting and goodness of fit. We then applied the GC models to a coolant design problem

to discover electronics cooling fluids containing silicon substructures. We are able to identify a

solution pool of organosilicon compounds with better cooling performance than the commercial

coolant HFE7200. A sensitivity analysis of the performance metric attests to the strength of

the candidate molecules. Comparison to our previously identified non-organosilicon compounds

suggested significant potential advantages of silicon containing cooling fluids.

In Chapter 4, we looked into chemical product design problems with time-varying design targets.

Our proposed methodology integrates derivative-free optimization models into computer-aided

chemical design frameworks. We presented an overview of derivative-free optimization algorithms
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and discussed various implementations. This methodology demonstrates successful application to

a chemical product design problem that involves the use of a first-principles simulator to predict

rheological behavior of polymer blends. Our results indicate that a portfolio of DFO solvers is

capable of identifying a diverse set of good solutions despite the complexity of the underlying

chemical design space.

The final step to completely solve a chemical product design problem is figuring out whether

the candidate compounds can be manufactured using readily available materials. This analysis is

referred to as the retrosynthesis problem. In Chapter 5, we provided a review on computer-aided

retrosynthetic strategies to understand the most recent development in the field and answer the

question of manufacturability of the products. We reviewed how machine learning (ML) algorithms

contribute to retrosynthetic strategies that rely on reaction libraries and explainedML based strategies

without the use of reaction libraries. We provided discussion on potential challenges facing this field

and offered our outlook. We then performed a manufacturability test on the previously identified

candidate coolants to assess their ease of synthesis. This work touches upon multiple aspects of the

chemical product design problems, aiming to offer solution strategies to complement existing tools.

In summary, contributions made in this work have expanded the search space of the CAMD

framework and have improved the solution quality and fidelity of product design problems. These

contributions can be used as a stepping stone for future development in this field. In the next section,

we propose several research directions worth exploring.
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6.2 Future research directions

6.2.1 Automated framework for QSPR modeling

As more chemical compounds become available, the amount of chemical information added to

the online data base is growing. The chemical data, however, are not evenly distributed. Some

compounds might have multiple measurements for one property while the same property may

be missing entirely for other compounds. This unevenly distributed data sparsity can hinder the

performance of machine learning-based property prediction models, presenting a challenge to

researchers who may lack extensive experience in machine learning. Therefore, an automated

platform with advanced modeling and bias reducing techniques can be a beneficial tool for the

QSPR community to avoid the time-consuming model building and hyper-parameter tuning process.

The automated framework should include procedures for data cleaning and pre-processing, feature

selection, variable selection and model validation. The workflow should be streamlined so that

existing QSPR models can be updated and retrained with the presence of new data.

In Chapter 3, we present a QSPR modeling framework that automates the process from data

pre-processing to model building and validation. Our proposed functional group selection method

is able to decompose any molecular structure into a subset of sub-molecular descriptors that are

important to the given property data. This framework can serve as the foundation for a broader

QSPR modeling scheme that enables a wide range of physicochemical and environmentally-related

property estimations. Once such a framework becomes available, it can further improve the solution

quality and general applicability of the CAMD approach.
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6.2.2 Product design in process intensification

The design trends of miniaturized devices have significantly decreased system size and increased

power density. In the chemical industry, the miniaturization trend is known as process intensification,

where reduction in system size results in higher process efficiency, lower capital cost and higher

product quality. Process intensification requires a holistic view on the process. From a macroscopic

point of view, process intensification results from the use of smaller equipment or integrated systems,

which reduce the number of steps and enhance the performance of the chemical process. On the

microscopic end, an integrated system with multiple processes running simultaneously requires

molecules to similarly exhibit multiple features at the same time, such as heat transfer properties,

transport properties and liquid-liquid extraction properties. Hence, identifying suitable molecular

structures is crucial to develop a fully intensified process. An interesting application would be to

design compounds (reactants and reaction solvents) for a microreactor.

6.2.3 Closed-loop chemical product design

In the past decade, excitement has been growing around the idea of usingmachine learning algorithms

to create an automated chemical design framework. These works, such as in [212–214, 224, 225],

rely on variational autoencoders (VAEs), a type of deep generative models, to describe the molecular

structures in a latent space. A VAE consists of an encoder that converts the SMILES representation

of a molecule into a real-valued continuous representation in the latent space, and a decoder that

maps a point from the continuous latent space back to SMILES string representation. After training,

the latent space is organized by molecular properties, which allows the use of gradient-based

optimization and new structures to be automatically generated from latent space operation.

Recently, the interest in forming a closed-loop material discovery system has been growing.

Researchers attempt to integrate automated chemical product design frameworks and retrosynthesis
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strategies with automated experimental instruments. Closing the loop requires incorporating inverse

design where the inputs are desired material functionalities and outputs are ideal molecular structures

or mixture formulations. Initial candidates are screened based on certain targets including toxicity,

stability, and the likelihood of synthesis. Promising candidates are then subject to high-throughput

experimentation and virtual screening for further characterization and optimization. Coley et al.

offer detailed analysis on the trends of autonomous chemical discovery and insightful outlook in [226,

227]. This community is beginning to show some success [228–230]. An interesting problem would

be to investigate the application to this area of the optimization methodologies developed in this

thesis.
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Appendix A

Group contribution model statistical
analysis

A.1 Fitting correlation plots and error residual histograms



APPENDIX A. GROUP CONTRIBUTION MODEL STATISTICAL ANALYSIS

Figure A.1.1: Normal boiling point (K) parity plot ('2 = 0.96) and error residual plot. 75.27% of the
compounds deviate by no more than one training RMSE.
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Figure A.1.2: Melting point (K) parity plot ('2 = 0.90) and error residual plot. 64.04% of the compounds
deviate by no more than one training RMSE.
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Figure A.1.3: Critical point (K) parity plot ('2 = 0.96) and error residual plot. 81.94% of the compounds
deviate by no more than one training RMSE.
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Figure A.1.4: Critical pressure (bar) parity plot ('2 = 0.95) and error residual plot. 83.17% of the compounds
deviate by no more than one training RMSE.
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Figure A.1.5: Critical volume (cc/mol) parity plot ('2 = 0.99) and error residual plot. 80.75% of the
compounds deviate by no more than one training RMSE.
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Figure A.1.6: Enthalpy of vaporization at 298 K (kJ/mol) parity plot ('2 = 0.95) and error residual plot.
78.33% of the compounds deviate by no more than one training RMSE.
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Figure A.1.7: Surface tension (N/m) parity plot ('2 = 0.89) and error residual plot. 72.38% of the compounds
deviate by no more than one training RMSE.
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Figure A.1.8: Dynamic viscosity (mPa s) parity plot ('2 = 0.91) and error residual plot. 81.87% of the
compounds deviate by no more than one training RMSE.
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A.2 GC coefficient
First-order GC coefficients are presented in Table A.1. Higher-order GC coefficients are shown
in Table A.2 and A.3. All functional groups are represented using SMARTS strings [192]. For
more information about SMARTS representation, please refer to https://www.daylight.com/
dayhtml/doc/theory/theory.smarts.html
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Table A.1: First-order group contribution coefficients for boiling point ()1), melting point ()<),critical temperature ()2), critical pressure

(%2), critical volume (+2), enthalpy of vaporization (�E0?),surface tension (f), and dynamic viscosity (`)

Groups Tb Tm Tc Pc Vc Hvap at 298K f at 298K ` at 298K
(K) (K) (K) (bar) (cc/mol) (kJ/mol) (N/m) (mPa s)

[CH3x0D1] 1.0209 -0.0531 1.7646 0.0300 43.0805 2.7705 -0.0514 1.4088
[CH2x0D2] 0.3220 0.0121 0.5490 0.0132 56.3625 4.3693 0.2864 0.1549
[CH1x0D3] -0.5899 -0.0096 -0.7440 -0.0024 63.3063 3.0149 -0.4449 -1.2247
[CH0x0D4] -1.3759 0.1463 -1.9683 -0.0217 68.0951 1.8031 1.2498 -2.0937

[CH2x0D1]=[CH1x0D2] 1.3068 -0.1403 2.3223 0.0360 86.3883 4.8931 0.4382 2.2522
[CH1x0D2]=[CH1x0D2] 0.6430 0.0295 1.6912 0.0221 100.1672 7.0035 0.0000 2.9716
[CH2x0D1]=[CH0x0D3] 0.5110 0.0351 1.6019 0.0180 91.3308 5.0483 -3.2278 2.2681
[CH1x0D2]=[CH0x0D3] -0.1037 0.2469 1.0577 0.0055 111.3959 8.4481 -0.0624 1.6678
[CH0x0D3]=[CH0x0D3] -1.0856 0.3411 0.6118 -0.0066 142.3349 5.9021 -1.7767 1.5300

[CH2x0D1]=[CH0x0D2]=[CH1x0D2] 0.0000 -0.4923 2.9679 0.0428 119.3953 0.0000 0.0000 0.0000
[CH2x0D1]=[CH0x0D2]=[CH0x0D3] 0.0000 0.0000 1.7204 0.0271 147.4960 0.0000 0.0000 0.0000

[CH1x0D1]#[CH0x0D2] 1.3459 0.0000 2.3435 0.0213 60.5633 5.6108 4.1718 0.7414
[CH0x0D2]#[CH0x0D2] 0.7216 0.0000 1.6982 0.0062 76.2532 10.4739 2.1019 0.0000

[cH1x2D2] 0.6162 0.0092 1.1269 0.0108 33.3729 3.9910 2.0491 0.6168
[cH0x3D3] 0.3233 0.0690 2.0756 -0.0005 31.1623 5.2344 1.0293 -0.2063
[cH0x2D3] -0.1018 0.0687 0.8095 -0.0005 51.2809 5.1585 -1.8295 -0.5147
[nH0x2D3] 0.4322 0.0170 1.6070 -0.0134 49.0850 14.6145 0.0000 0.0000

[cH0x2D3][CH3x0D1] 0.8830 0.0503 2.5201 0.0264 89.8239 8.1802 0.4577 0.3996
[cH0x2D3][CH2x0D2] 0.1218 0.0635 1.0761 0.0130 105.2433 9.3052 0.3467 -0.7308
[cH0x2D3][CH1x0D3] -0.8251 0.1087 -0.2898 -0.0047 117.6477 9.3730 -2.5452 -0.4773
[cH0x2D3][CH0x0D4] -1.3738 0.2232 -2.1785 -0.0180 129.9231 6.5669 -0.0500 0.0000

[cH0x2D3][CH1x0D2]=[CH2x0D1] 1.2427 -0.0986 3.4328 0.0354 128.3551 12.1534 14.5742 1.1469
[cH0x2D3][CH1x0D2]=[CH1x0D2] 0.8129 0.1407 2.7994 0.0218 140.2713 18.3320 2.0496 1.9704
[cH0x2D3][CH0x0D3]=[CH2x0D1] 0.4571 0.0000 2.1902 0.0207 131.7121 13.2426 0.0000 0.0000
[cH0x2D3][CH0x0D2]#[CH1x0D1] 1.0185 0.0000 3.3867 0.0188 107.7926 0.0000 0.0000 0.0000
[cH0x2D3][CH0x0D2]#[CH0x0D2] 0.7133 0.0000 0.0000 0.0000 0.0000 0.0000 1.5112 0.0000

[OH1x0D1] 1.8490 0.0671 3.4563 0.0039 3.9188 22.3440 7.9289 3.6372
[cH0x2D3][OH1x0D1] 1.5537 0.1861 5.0092 -0.0135 47.4184 24.5300 5.3290 2.6425

[CH0x0D3](=[OH0x0D1])[OH1x0D1] 2.8718 0.2245 5.5594 0.0196 65.4029 37.5219 7.0766 2.7751
[cH0x2D3][CH0x0D3](=[OH0x0D1])[OH1x0D1] 2.8446 0.3660 6.6180 0.0197 116.7487 47.0824 0.0000 0.0000

[CH3x0D1][CH0x0D3]=[OH0x0D1] 1.8562 0.0574 4.5509 0.0351 106.8901 15.4852 5.8323 2.2336
[CH2x0D2][CH0x0D3]=[OH0x0D1] 1.0794 0.1239 2.5647 0.0225 119.7991 15.4571 4.3210 1.6621
[CH1x0D3][CH0x0D3]=[OH0x0D1] 0.1171 0.0873 1.2836 -0.0037 123.4155 12.0399 0.5823 -0.1661
[CH0x0D4][CH0x0D3]=[OH0x0D1] -0.8519 0.2186 -0.1974 -0.0136 138.3349 13.2951 0.0000 -2.4479
[cH0x2D3][CH0x0D3]=[OH0x0D1] 0.7053 0.1379 2.3778 0.0127 110.4739 18.0010 2.2696 0.2189

[CH1x0D2]=[OH0x0D1] 1.7904 0.0577 3.3615 0.0137 38.5980 11.6608 4.8514 1.6201
[cH0x2D3][CH1x0D2]=[OH0x0D1] 1.6111 0.1376 4.9294 0.0198 112.7896 16.6865 10.5416 1.6422

[CH3x0D1][CH0x0D3](=[OH0x0D1])[OH0x0D2] 1.9155 0.0815 3.2748 0.0448 118.3483 16.6749 6.5017 1.7795
[CH2x0D2][CH0x0D3](=[OH0x0D1])[OH0x0D2] 1.2460 0.0000 2.3853 0.0238 137.3421 16.2438 5.8395 0.6173
[CH1x0D3][CH0x0D3](=[OH0x0D1])[OH0x0D2] 0.3353 0.0000 1.0221 0.0136 154.0530 14.5605 4.9780 -0.4352
[CH0x0D4][CH0x0D3](=[OH0x0D1])[OH0x0D2] -0.2597 0.0000 0.0000 0.0000 0.0000 12.6563 5.0868 0.0000

[CH1x0D2](=[OH0x0D1])[OH0x0D2] 1.7406 -0.1239 3.2577 0.0236 69.3584 15.8112 6.4604 1.8932
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Table A.1 continued from previous page

Groups Tb Tm Tc Pc Vc Hvap at 298K f at 298K ` at 298K
(K) (K) (K) (bar) (cc/mol) (kJ/mol) (N/m) (mPa s)

[cH0x2D3][CH0x0D3](=[OH0x0D1])[OH0x0D2] 0.6774 0.1267 2.3274 0.0174 119.6389 20.4784 0.0862 0.5828
[cH0x2D3][OH0x0D2][CH0x0D3]=[OH0x0D1] 0.6385 0.1487 0.0000 0.0000 0.0000 25.7500 0.0000 0.0000

[CH0x0D3](=[OH0x0D1])[OH0x0D2] 0.9080 0.0522 1.7800 0.0231 88.3501 13.6344 4.3380 0.9659
[CH3x0D1][OH0x0D2] 1.3669 -0.0162 2.3453 0.0341 63.2124 7.4327 3.8469 1.6988
[CH2x0D2][OH0x0D2] 0.5205 0.0000 0.8471 0.0162 75.4021 6.8645 1.7706 0.1482
[CH1x0D3][OH0x0D2] -0.4427 0.0000 -0.7761 0.0084 67.7376 5.5508 -0.2370 -1.2992
[CH0x0D4][OH0x0D2] -1.2008 0.1019 -1.6229 -0.0148 95.9725 4.3248 0.9989 -1.9527
[cH0x2D3][OH0x0D2] 0.1072 0.0982 2.1721 -0.0015 69.6025 9.3174 -0.2736 -0.7458
[CH2x0D2][NH2x0D1] 1.7887 0.1091 3.2029 0.0112 105.6172 14.2048 0.9339 2.6669
[CH1x0D3][NH2x0D1] 0.8810 0.1753 1.5988 0.0000 77.4960 12.9276 0.0425 0.5966
[CH0x0D4][NH2x0D1] -0.0115 0.2929 0.0596 -0.0033 106.4155 11.5199 0.3706 -1.7896
[CH3x0D1][NH1x0D2] 1.6855 0.1307 4.3813 0.0137 86.3797 17.2697 8.1869 3.1359
[CH2x0D2][NH1x0D2] 0.8656 0.1797 2.4235 0.0000 107.4312 16.6199 7.9887 0.0000
[CH1x0D3][NH1x0D2] -0.1852 0.1213 0.0000 0.0000 0.0000 16.4021 12.3792 0.0000
[CH3x0D1][NH0x0D3] 0.7574 -0.0335 -0.2248 0.0000 77.3695 0.0000 5.9798 0.0000
[CH2x0D2][NH0x0D3] 0.0000 0.1757 0.0000 0.0000 0.0000 9.3121 2.1737 0.0000
[cH0x2D3][NH2x0D1] 1.8517 0.1931 5.4797 0.0051 76.5962 20.5134 10.7479 1.6341
[cH0x2D3][NH1x0D2] 0.7568 0.1779 0.0000 0.0000 0.0000 29.5825 6.8585 0.0000
[cH0x2D3][NH0x0D3] -0.4030 0.1946 1.0660 -0.0198 154.6316 18.0083 2.1002 -1.3680

[NH2x0D1] 1.6494 0.1245 3.2291 0.0107 39.4253 11.2031 4.5947 2.1962
[CH1x0D2]=[NH0x0D2] 0.9931 0.1422 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[CH2x0D2][CH0x0D2]#[NH0x0D1] 2.6740 0.0000 5.4234 0.0461 124.1950 21.4027 10.1512 1.9785
[CH1x0D3][CH0x0D2]#[NH0x0D1] 1.5603 0.0000 3.4111 0.0246 136.5768 20.0725 10.5487 0.0000
[CH0x0D4][CH0x0D2]#[NH0x0D1] 0.5344 0.2972 1.3497 0.0099 148.5771 15.5945 0.0000 0.0000
[cH0x2D3][CH0x0D2]#[NH0x0D1] 1.7846 0.1980 5.0264 0.0207 114.7926 19.8247 9.3491 1.4100

[CH0x0D2]#[NH0x0D1] 2.1336 0.0543 4.7341 0.0364 65.2455 15.9550 8.3508 2.1870
[NH0x0D2]=[CH0x0D2]=[OH0x0D1] 1.7001 0.0000 2.9126 0.0295 83.1158 8.4493 0.0000 0.0000

[CH2x0D2][N+1H0x0D3](=[OH0x0D1])[O-1H0x0D1] 2.6463 0.0000 5.6742 0.0208 135.5765 0.0000 11.1608 2.4800
[CH1x0D3][N+1H0x0D3](=[OH0x0D1])[O-1H0x0D1] 1.6575 0.0000 4.1088 0.0000 144.4960 0.0000 9.4163 1.3713
[CH0x0D4][N+1H0x0D3](=[OH0x0D1])[O-1H0x0D1] 0.0714 0.3312 0.0000 0.0000 0.0000 0.0000 9.8192 0.0000
[cH0x2D3][N+1H0x0D3](=[OH0x0D1])[O-1H0x0D1] 2.0374 0.1703 6.0600 0.0219 127.1729 0.0000 13.6828 0.0000

[OH0x0D1]=[N+1H0x0D3][O-1H0x0D1] 1.9771 0.0818 4.8845 0.0146 74.8516 0.0000 9.4245 2.4063
[OH0x0D2][NH0x0D2]=[OH0x0D1] 1.3156 0.0000 0.0000 0.0000 0.0000 0.0000 4.3481 0.0000

[OH0x0D2][N+1H0x0D3](=[OH0x0D1])[O-1H0x0D1] 1.8984 0.1331 0.0000 0.0000 0.0000 0.0000 8.8948 0.0000
[OH0x0D1]=[CH1x0D2][NH0x0D3]([CH2x0D2])[CH2x0D2] 2.5533 0.0000 0.0000 0.0000 0.0000 31.2651 0.0000 1.6876

[OH0x0D1]=[CH1x0D2][NH1x0D2][CH2x0D2] 3.9043 0.0000 0.0000 0.0000 0.0000 42.1356 0.0000 0.0000
[OH0x0D1]=[CH0x0D3][NH2x0D1] 3.4570 0.3397 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[OH0x0D1]=[CH0x0D3][NH1x0D2][CH3x0D1] 2.0070 0.2598 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[OH0x0D1]=[CH0x0D3][NH1x0D2][CH2x0D2] 2.5055 0.2603 0.0000 0.0000 0.0000 45.8651 0.0000 0.0000

[OH0x0D1]=[CH0x0D3][NH0x0D3]([CH3x0D1])[CH3x0D1] 3.3948 0.1723 0.0000 0.0000 0.0000 33.4896 0.0000 0.0000
[OH0x0D1]=[CH0x0D3][NH0x0D3]([CH2x0D2])[CH2x0D2] 1.4793 0.2373 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[OH0x0D1]=[CH0x0D3][NH1x0D2][CH0x0D3]=[OH0x0D1] 0.0000 0.4597 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[cH0x2D3][CH0x0D3](=[OH0x0D1])[NH2x0D1] 2.9006 0.4545 0.0000 0.0000 0.0000 51.6468 0.0000 0.0000
[cH0x2D3][NH1x0D2][CH1x0D2]=[OH0x0D1] 3.3128 0.0000 8.7075 0.0239 157.7926 0.0000 0.0000 0.0000
[cH0x2D3][NH0x0D3][CH1x0D2]=[OH0x0D1] 1.6335 0.0000 0.0000 0.0000 0.0000 34.0806 0.0000 0.0000
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Table A.1 continued from previous page

Groups Tb Tm Tc Pc Vc Hvap at 298K f at 298K ` at 298K
(K) (K) (K) (bar) (cc/mol) (kJ/mol) (N/m) (mPa s)

[cH0x2D3][CH0x0D3](=[OH0x0D1])[NH1x0D2] 0.0000 0.2491 0.0000 0.0000 0.0000 40.0991 0.0000 0.0000
[cH0x2D3][NH1x0D2][CH0x0D3]=[OH0x0D1] 1.7945 0.3061 0.0000 0.0000 0.0000 44.2768 0.0000 0.0000
[cH0x2D3][NH0x0D3][CH0x0D3]=[OH0x0D1] 0.7350 0.2646 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[NH1x0D2][CH0x0D3](=[OH0x0D1])[NH1x0D2] 2.6432 0.2957 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[NH2x0D1][CH0x0D3](=[OH0x0D1])[NH1x0D2] 0.0000 0.5009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[NH2x0D1][CH0x0D3](=[OH0x0D1])[NH0x0D3] 0.0000 0.4513 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[NH0x0D3][CH0x0D3](=[OH0x0D1])[NH0x0D3] 0.0000 0.0000 0.0000 0.0000 0.0000 32.0240 0.0000 -0.9508

[cH0x2D3][NH1x0D2][CH0x0D3](=[OH0x0D1])[NH2x0D1] 2.3212 0.5448 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[cH0x2D3][NH1x0D2][CH0x0D3](=[OH0x0D1])[NH1x0D2] 0.0000 0.2960 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[NH1x0D2][CH0x0D3]=[OH0x0D1] 2.3010 0.1968 0.0000 0.0000 0.0000 42.2703 0.0000 0.0000
[CH2x0D2][ClH0x0D1] 1.7743 0.0000 3.4505 0.0276 85.5062 10.7916 6.0308 1.6977
[CH1x0D3][ClH0x0D1] 0.8095 -0.0600 1.8140 0.0128 103.1307 8.3682 4.3574 1.5587
[CH0x0D4][ClH0x0D1] -0.3541 0.0000 0.4778 -0.0053 113.4155 8.7238 4.2576 0.0000

[ClH0x0D1][CH1x0D3][ClH0x0D1] 2.0013 0.0000 4.3110 0.0358 135.3222 14.6126 7.0230 2.2385
[ClH0x0D1][CH0x0D4][ClH0x0D1] 1.0687 0.1668 0.0000 0.0000 0.0000 12.9804 -8.6486 0.4664

[ClH0x0D1][CH0x0D4]([ClH0x0D1])[ClH0x0D1] 2.1453 0.0949 4.5589 0.0423 180.5765 16.0026 5.6597 1.2492
[CH2x0D2][FH0x0D1] 1.3507 0.0000 1.7964 0.0237 63.5765 0.0000 0.0000 1.6788
[CH1x0D3][FH0x0D1] 0.3420 0.0000 0.0000 0.0000 0.0000 0.0000 4.4380 0.5803
[CH0x0D4][FH0x0D1] -1.3156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.2197

[FH0x0D1][CH1x0D3][FH0x0D1] 1.1761 -0.1476 1.9331 0.0362 78.5765 9.8427 2.2640 1.8549
[FH0x0D1][CH0x0D4][FH0x0D1] 0.1966 0.0000 0.0000 0.0000 0.0000 0.0000 -2.4649 0.3831

[FH0x0D1][CH0x0D4]([FH0x0D1])[FH0x0D1] 0.8531 -0.1720 1.2714 0.0633 89.3562 1.8400 -5.1415 1.0006
[ClH0x0D1][CH0x0D4]([ClH0x0D1])[FH0x0D1] 1.7090 0.0000 3.1885 0.0471 138.6694 10.2524 1.0874 2.2294

[ClH0x0D1][CH1x0D3][FH0x0D1] 1.5052 0.0000 0.0000 0.0000 0.0000 11.4829 0.0000 0.0000
[ClH0x0D1][CH0x0D4]([FH0x0D1])[FH0x0D1] 1.1702 -0.1481 2.0125 0.0557 128.9877 4.3690 -3.8506 1.6887

[cH0x2D3][ClH0x0D1] 1.1225 0.0944 3.4612 0.0182 86.8873 8.4223 3.6598 0.3107
[cH0x2D3][FH0x0D1] 0.5095 0.0211 1.9835 0.0202 21.7911 4.3153 0.0000 0.2009
[cH0x2D3][IH0x0D1] 1.9620 0.0975 5.8426 0.0122 126.7926 18.6338 9.6053 0.0000
[cH0x2D3][BrH0x0D1] 1.4555 0.1184 4.2858 0.0064 99.0671 12.9514 6.0283 0.8702

[IH0x0D1] 1.9433 0.0000 5.0375 0.0064 79.6921 13.8968 10.2554 0.0000
[BrH0x0D1] 1.6492 0.0308 2.8826 -0.0001 -5.0652 7.0771 7.4055 2.0677
[FH0x0D1] 0.7906 -0.0806 1.2201 0.0237 9.3412 0.3053 -1.1616 1.1491
[ClH0x0D1] 1.2673 -0.0210 2.2944 0.0232 27.2863 5.3904 3.3327 1.3964

[CH1x0D2]=[NH0x0D2][OH1x0D1] 2.5120 0.3450 0.0000 0.0000 0.0000 32.7656 8.2107 0.0000
[CH0x0D3]=[NH0x0D2][OH1x0D1] 1.8329 0.3513 0.0000 0.0000 0.0000 34.2957 8.1246 0.0000

[cH0x2D3][CH1x0D2]=[NH0x0D2][OH1x0D1] 1.8778 0.3021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[OH0x0D2][CH2x0D2][CH2x0D2][OH1x0D1] 2.8056 0.0000 4.9788 0.0241 141.5765 29.0429 13.3068 3.5879
[OH0x0D2][CH1x0D3][CH2x0D2][OH1x0D1] 1.7513 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[OH0x0D2][CH2x0D2][CH1x0D3][OH1x0D1] 1.8949 0.0000 3.7146 0.0000 150.4960 27.1651 9.9982 1.5135

[OH0x0D2][OH1x0D1] 2.4449 0.0000 3.3607 0.0029 35.3204 24.3914 0.0000 0.0000
[CH2x0D2][SH1x0D1] 2.0084 0.0000 3.8059 0.0228 87.6914 14.4928 3.6165 0.0000
[CH1x0D3][SH1x0D1] 1.0049 -0.5248 2.3966 0.0000 110.4960 10.5624 0.0000 0.0000
[CH0x0D4][SH1x0D1] 0.0000 0.0000 0.9278 -0.0105 120.4155 10.0532 0.0000 -1.6073
[cH0x2D3][SH1x0D1] 1.4491 0.1262 4.6595 0.0065 90.7926 0.0000 0.0000 0.0000

[SH1x0D1] 1.7202 -0.0432 3.5086 0.0205 24.4881 10.1020 4.1915 1.9104
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Table A.1 continued from previous page

Groups Tb Tm Tc Pc Vc Hvap at 298K f at 298K ` at 298K
(K) (K) (K) (bar) (cc/mol) (kJ/mol) (N/m) (mPa s)

[CH3x0D1][SH0x0D2] 1.8767 0.0000 0.0000 0.0000 0.0000 12.3916 7.1833 0.0000
[CH2x0D2][SH0x0D2] 1.0728 0.0000 2.5976 0.0130 107.8976 13.0917 5.2000 0.0000
[CH1x0D3][SH0x0D2] 0.2310 0.0000 0.0000 0.0000 0.0000 12.1891 4.1810 0.0000
[CH0x0D4][SH0x0D2] -0.4915 0.0000 0.0344 -0.0224 130.3349 9.6240 5.3277 0.0000
[cH0x2D3][SH0x0D2] 0.5180 0.0628 0.0000 0.0000 0.0000 18.0806 6.1763 0.0000
[SH0x0D3]=[OH0x0D1] 2.4588 0.0000 8.2570 0.0000 83.4960 38.3692 23.0797 1.7514

[OH0x0D1]=[SH0x0D4]=[OH0x0D1] 1.8723 0.1458 7.0692 0.0000 90.6837 45.3086 13.7066 1.5811
[OH0x0D1]=[SH0x0D3]([OH0x0D2])[OH0x0D2] 1.6399 0.0000 3.6344 0.0000 116.7711 21.0188 0.0000 0.0000
[OH0x0D1]=[SH0x0D4](=[OH0x0D1])[OH0x0D2] 1.6178 0.2300 0.0000 0.0000 0.0000 0.0000 14.0974 0.0000

[OH0x0D1]=[SH0x0D4](=[OH0x0D1])([OH0x0D2])[OH0x0D2] 2.3733 0.0000 7.8557 -0.0506 145.6335 29.8071 20.2310 1.7826
[cH0x2D3][SH0x0D3]=[OH0x0D1] 2.0455 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[cH0x2D3][SH0x0D4](=[OH0x0D1])=[OH0x0D1] 1.5360 0.2130 0.0000 0.0000 157.8738 0.0000 8.5923 0.0000
[PH0x0D3] -0.4738 0.0000 10.9652 -0.1525 -157.7788 0.0000 -1.2484 0.0000

[OH0x0D1]=[PH1x0D3]([OH0x0D2])[OH0x0D2] 2.4457 0.0000 0.0000 0.0000 0.0000 0.0000 6.7448 0.0000
[OH0x0D1]=[PH0x0D4]([OH0x0D2])[OH0x0D2] 1.1549 0.0000 0.0000 0.0000 0.0000 25.0003 5.6806 0.0000

[OH0x0D1]=[PH0x0D4]([OH1x0D1])([OH0x0D2])[OH0x0D2] 2.4992 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[OH0x0D1]=[PH0x0D4]([OH0x0D2])([OH0x0D2])[OH0x0D2] 1.0496 0.0000 5.9965 -0.0574 111.8718 22.2173 7.4245 0.0093

[OH0x0D1]=[CH0x0D3]([OH0x0D2])[OH0x0D2] 1.1501 0.1945 2.6609 0.0120 103.6335 19.5655 5.5359 0.8858
[CH1x2D3R1][OH0x2D2][CH2x2D2R1] 2.0276 0.0459 2.9373 0.0069 109.5080 18.3150 12.8550 -0.4357
[CH1x2D3R1][OH0x2D2][CH1x2D3R1] 1.0158 0.0000 0.0000 0.0000 0.0000 12.7562 0.0000 0.0000

[CH2x2D2] 0.5408 0.0136 1.0981 0.0133 42.3168 3.5749 0.7817 0.4763
[CH1x2D3] -0.0205 -0.0152 -1.6243 0.0004 57.8462 4.0151 2.6883 -2.9364
[CH0x2D4] -1.1086 0.1468 0.8868 -0.0247 168.8401 0.6566 0.7796 -1.6425

[CH1x2D2]=[CH1x2D2] 1.0572 0.0404 2.4749 0.0112 66.1367 6.7128 1.2535 4.4515
[CH1x2D2]=[CH0x2D3] 0.2592 0.0539 0.2709 0.0000 23.7975 7.6098 0.7953 2.0831
[CH0x2D3]=[CH0x2D3] -0.5034 0.1041 0.0000 0.0000 0.0000 9.2569 2.6177 0.0000
[CH2x0D1]=[CH0x2D3] 1.0050 0.0919 1.2588 0.0255 49.0672 5.4750 1.4584 3.3981

[NH1x2D2] 1.0420 0.1231 2.3650 -0.0071 37.7420 13.8603 7.4338 2.5918
[NH0x2D3] 0.0817 0.0056 0.4631 -0.0101 34.7550 5.8098 9.3485 -3.6908

[CH1x2D2]=[NH0x2D2] 2.0547 0.1602 0.0000 0.0000 0.0000 37.5213 0.0000 0.0000
[CH0x2D3]=[NH0x2D2] 0.5159 0.1256 0.0000 0.0000 0.0000 11.4548 0.0000 0.0000

[OH0x2D2] 0.7327 0.0192 1.8532 -0.0033 8.1796 4.5964 5.6654 0.6149
[CH0x2D3]=[OH0x0D1] 1.5300 0.1240 5.8435 0.0016 43.4254 17.6058 9.0861 2.8376

[SH0x2D2] 1.4141 0.0841 4.0946 -0.0025 0.0000 9.4319 12.2133 2.3442
[OH0x0D1]=[SH0x2D4]=[OH0x0D1] 4.1787 0.1648 10.6357 0.0007 78.8867 41.3067 12.4015 4.7048

[NH1x0D2] 0.6257 0.0800 0.9570 0.0000 45.3795 7.3125 2.3178 0.3232
[OH0x0D2] 0.2038 -0.0249 0.3172 0.0054 22.5253 2.5643 1.2621 -0.0388
[SH0x0D2] 0.8073 0.0176 2.2179 -0.0070 50.8490 9.6747 4.8577 0.7137

[CH0x0D3]=[OH0x0D1] 0.7605 0.0819 2.2074 0.0106 57.3424 11.5446 3.6517 1.6495
[CH1x0D3][NH0x0D3] -1.3427 0.0000 0.0000 0.0000 0.0000 3.5554 0.0000 0.0000
[SiH0x0D4][OH1x0D1] 0.0000 0.2780 0.0000 0.0000 0.0000 15.6866 0.0000 1.6040

[SiH3x0D1] 1.1997 -0.3646 0.0000 0.0000 0.0000 9.8171 0.0000 0.0000
[SiH2x0D2] 0.0000 -0.4124 0.0000 0.0000 119.2903 0.0000 11.4041 -0.1056
[SiH1x0D3] -0.6618 -0.3523 0.0000 0.0000 0.0000 0.0000 -2.2303 0.0000
[SiH0x0D4] -1.5034 0.1025 -2.6899 -0.0039 137.6096 -0.6034 -1.1885 -2.4286
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Table A.1 continued from previous page

Groups Tb Tm Tc Pc Vc Hvap at 298K f at 298K ` at 298K
(K) (K) (K) (bar) (cc/mol) (kJ/mol) (N/m) (mPa s)

[NH0x0D2]=[NH0x0D2] 1.1493 0.1011 4.6075 0.0000 91.0332 0.0000 0.0000 0.0000
[CH0x2D3]=[NH0x0D2] 0.6432 0.1699 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[CH0x2D3]=[CH1x0D2] 0.3105 0.1256 0.0000 0.0000 0.0000 7.4385 0.0000 0.0000
[NH0x0D2]=[OH0x0D1] 1.3517 0.1415 0.0000 0.0000 0.0000 0.0000 10.1700 0.0000
[CH0x2D3]=[CH0x0D3] -0.5142 0.0000 1.1396 -0.0132 119.8389 8.4568 0.0000 0.0000
[CH0x0D3]=[NH0x0D2] 0.0000 0.1672 0.0000 0.0000 0.0000 0.0000 2.3643 0.0000
[CH0x0D3]=[NH1x0D1] 0.0000 0.1086 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[CH0x0D3]=[SH0x0D1] 1.0637 0.1869 0.0000 0.0000 0.0000 0.0000 5.2608 0.0000

[cH0x2D3][CH0x0D3](=[OH0x0D1])[NH0x0D3] 0.9696 0.3087 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[CH1x0D2](=[OH0x0D1])[NH1x0D2] 3.4871 0.2805 0.0000 0.0000 0.0000 39.9356 18.0396 3.5119
[CH1x0D2](=[OH0x0D1])[CH1x0D3] 1.3656 0.0000 1.0815 0.0250 120.7711 13.2651 0.0000 0.4540
[FH0x0D1][CH0x2D4][FH0x0D1] 0.4790 0.0000 0.0000 0.0000 0.0000 3.5097 -1.8639 0.0000

[SiH0x2D4] -1.7108 0.1131 -2.2644 0.0131 117.2117 -0.7072 -5.8710 0.0000
[SiH1x2D3] -0.7603 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[CH1x3D3] 0.4017 0.0433 0.3972 0.0057 36.4348 3.8776 1.3926 0.1920
[CH0x3D4] -0.5820 0.1171 0.0000 0.0000 0.0000 3.3827 6.1501 -0.4373
[NH0x0D3] -0.5051 0.1016 -0.7838 -0.0066 53.6841 3.2430 0.7996 -0.5209
[SiH0x0D3] -0.5498 -0.3321 -1.1186 0.0172 133.6895 -5.9859 -13.1741 -1.5009
[SiH2x0D1] 1.1191 -0.2814 0.0000 0.0000 84.3370 0.0000 6.6314 0.0000
[oH0x2D2] 0.5655 0.0000 0.9384 -0.0071 0.0000 2.5427 4.4860 0.9354
[sH0x2D2] 1.1252 0.0241 2.2677 0.0013 35.3428 7.1896 5.8715 1.3255
[nH0x2D2] 0.7885 0.0643 2.4502 -0.0061 54.2162 8.3970 5.6065 1.0338
[nH1x2D2] 1.8876 0.2034 4.1252 0.0035 36.0951 22.0347 8.8919 2.0187

[SiH0x0D4][OH0x0D2] 0.0000 0.0000 -2.5348 0.0022 171.3893 0.0000 0.0000 0.0000
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Table A.2: Higher-order group contribution coefficients for boiling point ()1), melting point ()<),critical temperature ()2), critical pressure

(%2), and critical volume (+2)

Groups Tb Tm Tc Pc Vc
(K) (K) (K) (bar) (cc/mol)

[CH1D3]([CH3D1])([CH3D1]) 0.0000 0.0000 -0.1740 0.0000 0.0000
[CH0D4]([CH3D1])([CH3D1])([CH3D1]) 0.0000 0.0000 -0.2111 0.0000 0.0000
[CH1D3]([CH3D1])[CH1D3]([CH3D1]) 0.0964 -0.0367 0.1016 0.0000 0.0000

[CH1D3]([CH3D1])[CH0D4]([CH3D1])([CH3D1]) 0.0758 0.0000 0.1141 0.0000 0.0000
[CH0D4]([CH3D1])([CH3D1])[CH0D4]([CH3D1])([CH3D1]) 0.1112 0.0539 0.0886 0.0000 0.0000

[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][CH0D3,CH1D2]=[CH0D3,CH1D2,CH2D1] 0.0553 0.0231 -0.0942 0.0000 0.0000
[CH3D1][CH0D3,CH1D2]=[CH0D3,CH1D2,CH2D1] 0.0000 -0.1137 -0.4451 0.0000 0.0000
[CH2D2][CH0D3,CH1D2]=[CH0D3,CH1D2,CH2D1] -0.0307 -0.0508 -0.1598 0.0041 0.0000

[CH1D3,CH0D4][CH0D3,CH1D2]=[CH0D3,CH1D2,CH2D1] 0.0000 -0.0389 -0.2313 0.0000 0.0000
[CH1D3,CH0D4][CH1D2]=[OH0D1] -0.3149 0.0000 1.0805 0.0000 0.0000

[CH3D1][CH0D3](=[OH0D1])[CH2D2] 0.2158 0.0000 -0.1691 0.0000 0.0000
[CH3D1][CH0D3](=[OH0D1])[CH1D3,CH0D4] 0.1192 0.0000 0.0935 0.0000 0.0000
[CH1D3,CH0D4][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0634 -0.9457 0.0133 0.0000

[CH0D3](=[OH0D1])[OH0D2][CH0D3](=[OH0D1]) 0.0000 0.0000 -1.5156 0.0000 0.0000
[CH1D3][OH1D1] -0.1589 0.0423 -0.7467 0.0000 0.0000
[CH0D4][OH1D1] -0.3729 -0.0564 -1.1097 0.0000 0.0000

[CH3D1][CH0D3](=[OH0D1])[CH2D2,CH1D3,CH0D4][OH1D1] 0.0000 0.0000 -0.8724 0.0000 0.0000
[NH0D1]#[CH0D2][CH1D3,CH0D4][OH1D1] 0.0000 0.0000 0.9249 0.0000 0.0000

[OH1D1][CH0D4,CH1D3,CH2D2][CH0D3](=[OH0D1])[OH0D2] -0.2763 0.0000 0.0000 0.0000 0.0000
[CH0D4,CH1D3,CH2D2]([OH1D1])[CH0D4,CH1D3,CH2D2]([OH1D1]) 0.3877 0.0000 1.2843 -0.0107 0.0000

[CH0D4,CH1D3,CH2D2]([OH1D1])[CH0D4,CH1D3,CH2D2]([NH0D3,NH1D2,NH2D1]) 0.0000 0.0000 0.4670 0.0085 0.0000
[CH0D4,CH1D3,CH2D2]([NH2D1])[CH0D4,CH1D3,CH2D2]([NH2D1]) 0.0000 0.0000 1.0329 0.0000 0.0000

[CH1D3,CH2D2]([NH1D2])[CH1D3,CH2D2]([NH2D1]) 0.0000 -0.2012 0.1200 0.0000 -32.5114
[CH2D2,CH1D3,CH0D4]([NH2D1,NH1D2,NH0D3])[CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0528 23.6566 0.0000 0.0000
[CH0D3](=[OH0D1])([OH1D1])[CH1D3,CH2D2][CH0D3](=[OH0D1])[OH1D1] -1.5111 0.0000 3.5751 0.0000 0.0000

[CH0D3](=[OH0D1])([OH1D1])[CH1D3,CH2D2][CH1D3,CH2D2][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 3.0777 0.0000 0.0000
[CH1D3,CH2D2]([NH2D1])[CH1D3,CH2D2][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.2478 0.0000 0.0000 0.0000

[CH3D1][OH0D2][CH1D3,CH2D2][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 1.9103 0.0000 0.0000
[SH1D1][CH1D3][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.5676 0.0000 0.0000 0.0000

[CH1D3,CH2D2]([SH1D1])[CH1D3,CH2D2][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 1.9593 0.0000 0.0000
[CH1D3,CH2D2]([CH0D2]#[NH0D1])[CH1D3,CH2D2]([CH0D2]#[NH0D1]) 0.8288 0.0000 2.6936 0.0000 0.0000

[CH1D3,CH2D2]([OH1D1])[CH1D3,CH2D2]([CH0D2]#[NH0D1]) 0.0000 0.0000 1.0406 0.0000 0.0000
[CH1D3,CH2D2]([SH1D1])[CH1D3,CH2D2]([SH1D1]) 0.0000 0.0000 1.8153 0.0000 0.0000

[NH0D1]#[CH0D2][CH1D3,CH2D2][CH0D3](=[OH0D1])[OH0D2] 0.0000 0.0000 0.6872 0.0000 0.0000
[CH1D3,CH2D2]([CH0D3]=[OH0D1])[CH0D3](=[OH0D1])[OH0D2] -0.0665 0.0000 -0.4451 0.0000 0.0000

[CH0D4,CH1D3,CH2D2,CH3D1][OH0D2][CH0D3,CH1D2]=[CH0D3,CH1D2,CH2D1] 0.0000 0.0000 0.0681 0.0000 0.0000
[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][FH0D1] 0.0000 -0.1734 -0.5103 0.0000 0.0000
[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][BrH0D1] -0.1370 -0.0857 -0.2488 0.0000 61.3340
[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][ClH0D1] -0.0565 -0.0982 -0.0815 0.0000 0.0000

[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][CH0D2]#[NH0D1] -0.1677 0.0000 -0.8673 0.0000 0.0000
[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][CH0D3](=[OH0D1])[OH0D2][CH0D4,CH1D3,CH2D3,CH3D1] 0.2660 0.1260 0.2924 0.0000 0.0000

[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][CH1D2](=[OH0D1]) 0.0000 0.0000 0.0000 0.0000 0.0000
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Table A.2 continued from previous page

Groups Tb Tm Tc Pc Vc
(K) (K) (K) (bar) cc/mol

[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.1217 0.4662 0.0000 0.0000
[cH0x2D3][CH1D3,CH2D2][FH0D1,ClH0D1,BrH0D1,IH0D1] 0.0000 0.0536 0.2955 0.0000 0.0000

[cH0x2D3][CH1D3,CH2D2][NH0D3,NH1D2,NH2D1] 0.0000 0.0000 0.1645 0.0000 0.0000
[cH0x2D3][CH1D3,CH2D2][OH0D2] 0.0000 0.0000 0.0666 0.0000 0.0000
[cH0x2D3][CH1D3,CH2D2][OH1D1] 0.0000 0.0314 -0.0042 0.0000 0.0000

[cH0x2D3][CH1D3,CH2D2][CH0D2]#[NH0D1] 0.0000 0.0000 0.4617 0.0000 0.0000
[cH0x2D3][CH1D3,CH2D2][SH1D1] 0.0000 0.0000 0.8773 0.0000 0.0000

[cH0x2D3][CH1D3,CH2D2][CH0D3](=[OH0D1])[OH1D1] -0.5072 0.0000 0.0000 0.0000 0.0000
[cH0x2D3][CH1D3,CH2D2][CH0D3]=[OH0D1] 0.1765 0.0000 0.0000 0.0000 0.0000

[cH0x2D3][CH1D3,CH2D2][OH0D2][CH1D2](=[OH0D1]) 0.0000 0.0000 0.5775 0.0000 0.0000
[cH0x2D3][CH1D3,CH2D2][OH0D2][CH0D3](=[OH0D1]) 0.0000 0.0000 0.5963 0.0000 0.0000
[cH0x2D3][CH1D3,CH2D2][CH0D3](=[OH0D1])[OH0D2] 0.0000 0.0000 0.0000 0.0000 0.0000

[cH0x2D3][CH1D3]([CH3D1])([CH3D1]) 0.0000 0.0000 0.1554 0.0000 0.0000
[cH0x2D3][CH0D4]([CH3D1])([CH3D1])[CH3D1] -0.2861 0.0000 0.6944 0.0000 0.0000
[cH0x2D3][CH0D4]([FH0D1])([FH0D1])[FH0D1] -0.2823 0.1242 0.0000 0.0000 0.0000

[CH0x2D3,CH1x2D2,CH2x2D1]=[CH0x2D3][CH0D3](=[OH0D1]) 0.0000 0.0559 0.0000 0.0000 0.0000
[CH0x2D3,CH1x2D2,CH2x2D1]=[CH0x2D3][CH3D1] 0.0000 0.1075 0.2727 0.0000 0.0000
[CH0x2D3,CH1x2D2,CH2x2D1]=[CH0x2D3][CH2D2] 0.2510 -0.0327 1.4219 0.0000 51.8285
[CH0x2D3,CH1x2D2,CH2x2D1]=[CH0x2D3][ClH0D1] 0.0000 0.1118 0.0000 0.0000 0.0000

[CH1x2D3][CH3D1] -0.2543 -0.0096 0.2864 0.0000 0.0000
[CH1x2D3][CH2D2] 0.0465 -0.0088 0.5813 0.0023 0.0000
[CH1x2D3][CH1D3] 0.0000 0.0000 1.1389 0.0000 0.0000
[CH1x2D3][CH0D4] 0.0000 0.0495 0.0000 0.0000 0.0000

[CH1x2D3][CH1D2]=[CH1D2,CH2D1] 0.0000 0.0000 0.6410 0.0000 0.0000
[CH1x2D3][CH0D3]=[CH1D2,CH2D1] 0.0000 0.0000 0.0000 0.0000 0.0000

[CH1x2D3][ClH0D1] 0.0000 0.1217 0.0000 0.0000 0.0000
[CH1x2D3][OH1D1] -0.1663 0.0000 1.2833 0.0000 0.0000
[CH1x2D3][NH2D1] -0.4026 0.0000 -0.2439 0.0000 0.0000

[CH1x2D3][NH1D2][CH0D4,CH1D3,CH2D2,CH1D3] 0.0000 0.1513 0.0000 0.0000 0.0000
[CH1x2D3][NH0D3][CH0D4,CH1D3,CH2D2,CH1D3] 0.0000 0.0000 0.0000 0.0000 0.0000

[CH1x2D3][SH1D1] 0.0000 0.0000 0.9219 0.0000 0.0000
[CH1x2D3][CH0D2]#[NH0D1] 0.5770 0.0000 0.0000 0.0000 0.0000

[CH1x2D3][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 0.0000 0.0000 0.0000
[CH1x2D3][CH0D3](=[OH0D1]) 0.0000 0.0000 0.0000 0.0000 0.0000

[CH1x2D3][OH0D2] -0.0752 0.0000 -0.2239 0.0292 0.0000
[CH1x2D3][OH0D2][CH0D3](=[OH0D1]) 0.0000 0.0237 1.4211 -0.0274 0.0000

[CH0x2D4][CH3D1] 0.0000 0.0000 -0.5940 0.0101 -16.3626
[CH0x2D4][CH2D2] 0.0560 -0.0407 -0.5812 0.0000 -28.7420
[CH0x2D4][OH1D1] 0.0000 0.0000 -0.7723 0.0000 -36.9198
[NH0x2D3][CH3D1] 0.0000 0.1071 0.4628 0.0000 0.0000
[NH0x2D3][CH2D2] 0.0000 0.0000 -0.3257 0.0000 0.0000

c1(A)c(A)cccc1 -0.1357 -0.0230 -1.5654 -0.0023 -7.7812
c1(A)cc(A)ccc1 0.0409 -0.0020 -1.0978 0.0000 3.3629
c1(A)ccc(A)cc1 0.0706 0.0300 -0.9591 0.0000 0.0000

c1(A)c(A)c(A)ccc1 0.1209 0.0000 1.8460 0.0000 0.0000
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Table A.2 continued from previous page

Groups Tb Tm Tc Pc Vc
(K) (K) (K) (bar) cc/mol

c1(A)c(A)cc(A)cc1 0.0000 -0.0332 1.5505 0.0000 0.0000
c1(A)cc(A)cc(A)c1 -0.1541 0.0000 0.9679 0.0000 0.0000

c1(A)c(A)c(A)c(A)cc1 0.0000 -0.0004 -0.8420 0.0000 29.5423
c1(A)c(A)c(A)cc(A)c1 0.0000 0.0000 -0.9143 0.0000 0.0000
c1(A)c(A)cc(A)c(A)c1 0.0000 0.1265 -1.4690 0.0000 0.0000

n1c(A)cccc1 0.0000 0.0000 -1.2999 0.0000 0.0000
n1cc(A)ccc1 0.0000 -0.0396 -0.6080 0.0000 0.0000
n1ccc(A)cc1 0.0000 0.0361 -0.5734 0.0000 0.0000

n1c(A)cc(A)cc1 0.0000 0.0000 0.0000 0.0000 0.0000
n1c(A)ccc(A)c1 0.0000 0.0000 0.0000 0.0000 0.0000
n1c(A)cccc1(A) 0.0000 0.0000 -0.0169 0.0000 -75.3257
n1cc(A)c(A)cc1 0.0000 0.0000 0.0000 0.0000 0.0000

c1(A)c(A)c(A)c(A)c(A)c1 0.0000 0.0000 -0.6776 0.0000 0.0000
[cH0x2D3][SH0x0D4](=[OH0x0D1])(=[OH0x0D1])[NH2D1] 0.0000 -0.0940 0.0000 0.0000 0.0000

[OH1D1][CH0D3](=[OH0D1])[R0;D2][R0;D2][R0;D2][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 2.5806 0.0000 0.0000
[NH2D1][R0;D2][R0;D2][R0;D2][OH1D1] 0.0000 0.0000 0.6585 0.0000 0.0000
[OH1D1][R0;D2][R0;D2][R0;D2][OH1D1] 0.0000 0.0000 0.0000 0.0000 0.0000

[CH0D2](#[NH0D1])[R0;D2][R0;D2][R0;D2][CH0D2]#[NH0D1] 0.6892 0.0000 2.9863 0.0000 0.0000
[cH0x3D3][CH0x2D3,CH1x2D2]=[CH0x2D3,CH1x2D2] 0.0000 0.0000 -0.4013 0.0139 14.9223

[CH1x3D3] 0.0000 0.0000 0.3988 0.0000 0.0000
[CH0x3D4,CH0x4D4] 0.0000 0.0000 0.0000 0.0000 0.0000

c12ccccc1cccc2 0.2436 0.0000 -0.3165 0.0066 17.0875
c12ccccc1c(A)ccc2 0.0000 0.0000 -0.8537 0.0030 24.1623
c12ccccc1cc(A)cc2 0.0000 0.0000 -0.9097 -0.0060 0.0000

c1cc2ccc3cccc4ccc(c1)c2c34 0.0000 0.0000 1.6062 0.0046 0.0000
c1ccc2ncccc2c1 0.0000 0.0000 0.0261 0.0000 0.0000
c1ccc2cnccc2c1 0.0000 0.0000 0.6580 0.0000 0.0000
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Table A.3: Higher-order group contribution coefficients for enthalpy of vaporization (�E0?),surface tension (f), and dynamic viscosity (`)

Groups Hvap f `

(kJ/mol) (N/m) (mPa s)

[CH1D3]([CH3D1])([CH3D1]) 0.0000 0.0000 -0.1713
[CH0D4]([CH3D1])([CH3D1])([CH3D1]) 0.0000 -1.7519 1.1490
[CH1D3]([CH3D1])[CH1D3]([CH3D1]) 0.0000 0.0000 0.1534

[CH1D3]([CH3D1])[CH0D4]([CH3D1])([CH3D1]) 0.0000 0.0000 0.0000
[CH0D4]([CH3D1])([CH3D1])[CH0D4]([CH3D1])([CH3D1]) 1.1134 0.0000 0.0000

[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][CH0D3,CH1D2]=[CH0D3,CH1D2,CH2D1] 0.0000 0.0000 -3.3332
[CH3D1][CH0D3,CH1D2]=[CH0D3,CH1D2,CH2D1] 0.0000 2.0596 -1.8568
[CH2D2][CH0D3,CH1D2]=[CH0D3,CH1D2,CH2D1] 0.0000 0.0000 -1.5292

[CH1D3,CH0D4][CH0D3,CH1D2]=[CH0D3,CH1D2,CH2D1] 0.0000 0.0000 -0.9851
[CH1D3,CH0D4][CH1D2]=[OH0D1] 0.0000 0.0000 0.4540

[CH3D1][CH0D3](=[OH0D1])[CH2D2] 0.0000 0.0000 -0.9664
[CH3D1][CH0D3](=[OH0D1])[CH1D3,CH0D4] 0.0000 2.7685 -0.3998
[CH1D3,CH0D4][CH0D3](=[OH0D1])[OH1D1] 0.0000 -1.9207 1.0712

[CH0D3](=[OH0D1])[OH0D2][CH0D3](=[OH0D1]) 0.0000 0.0000 -0.3239
[CH1D3][OH1D1] 0.0000 -2.4881 -0.1853
[CH0D4][OH1D1] 0.0000 -5.0447 -1.2027

[CH3D1][CH0D3](=[OH0D1])[CH2D2,CH1D3,CH0D4][OH1D1] 0.0000 0.0000 0.0000
[NH0D1]#[CH0D2][CH1D3,CH0D4][OH1D1] 0.0000 0.0000 0.0000

[OH1D1][CH0D4,CH1D3,CH2D2][CH0D3](=[OH0D1])[OH0D2] 0.0000 0.0000 -0.6981
[CH0D4,CH1D3,CH2D2]([OH1D1])[CH0D4,CH1D3,CH2D2]([OH1D1]) 0.0000 7.2661 -1.3162

[CH0D4,CH1D3,CH2D2]([OH1D1])[CH0D4,CH1D3,CH2D2]([NH0D3,NH1D2,NH2D1]) 0.0000 0.0000 -0.2830
[CH0D4,CH1D3,CH2D2]([NH2D1])[CH0D4,CH1D3,CH2D2]([NH2D1]) 0.0000 19.4354 -0.6231

[CH1D3,CH2D2]([NH1D2])[CH1D3,CH2D2]([NH2D1]) 0.0000 0.0000 0.1859
[CH2D2,CH1D3,CH0D4]([NH2D1,NH1D2,NH0D3])[CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 0.0000
[CH0D3](=[OH0D1])([OH1D1])[CH1D3,CH2D2][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 0.0000

[CH0D3](=[OH0D1])([OH1D1])[CH1D3,CH2D2][CH1D3,CH2D2][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 0.0000
[CH1D3,CH2D2]([NH2D1])[CH1D3,CH2D2][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 0.0000

[CH3D1][OH0D2][CH1D3,CH2D2][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 0.0000
[SH1D1][CH1D3][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 0.0000

[CH1D3,CH2D2]([SH1D1])[CH1D3,CH2D2][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 0.0000
[CH1D3,CH2D2]([CH0D2]#[NH0D1])[CH1D3,CH2D2]([CH0D2]#[NH0D1]) 0.0000 0.0000 0.0000

[CH1D3,CH2D2]([OH1D1])[CH1D3,CH2D2]([CH0D2]#[NH0D1]) 0.0000 0.0000 0.0000
[CH1D3,CH2D2]([SH1D1])[CH1D3,CH2D2]([SH1D1]) 0.0000 0.0000 0.0000

[NH0D1]#[CH0D2][CH1D3,CH2D2][CH0D3](=[OH0D1])[OH0D2] 0.0000 -1.5926 0.0000
[CH1D3,CH2D2]([CH0D3]=[OH0D1])[CH0D3](=[OH0D1])[OH0D2] 0.0000 0.0000 -0.2432

[CH0D4,CH1D3,CH2D2,CH3D1][OH0D2][CH0D3,CH1D2]=[CH0D3,CH1D2,CH2D1] 0.0000 0.0000 -0.8034
[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][FH0D1] 0.0000 0.0000 0.0000
[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][BrH0D1] 0.0000 0.0000 0.0000
[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][ClH0D1] 0.0000 0.0000 -0.7528

[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][CH0D2]#[NH0D1] 0.0000 0.0000 -1.0321
[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][CH0D3](=[OH0D1])[OH0D2][CH0D4,CH1D3,CH2D3,CH3D1] 0.0000 3.1669 -0.8823

[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][CH1D2](=[OH0D1]) 0.0000 0.0000 -0.7092
[CH0D3,CH1D2,CH2D1]=[CH0D3,CH1D2][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 -0.3517
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Table A.3 continued from previous page

Groups Hvap f `

(kJ/mol) (N/m) (mPa s)

[cH0x2D3][CH1D3,CH2D2][FH0D1,ClH0D1,BrH0D1,IH0D1] 0.0000 0.0000 0.0386
[cH0x2D3][CH1D3,CH2D2][NH0D3,NH1D2,NH2D1] 0.0000 0.0000 0.3123

[cH0x2D3][CH1D3,CH2D2][OH0D2] 0.0000 0.0000 0.5741
[cH0x2D3][CH1D3,CH2D2][OH1D1] 0.0000 0.0000 0.1491

[cH0x2D3][CH1D3,CH2D2][CH0D2]#[NH0D1] 0.0000 0.0000 0.4116
[cH0x2D3][CH1D3,CH2D2][SH1D1] 0.0000 0.0000 0.0000

[cH0x2D3][CH1D3,CH2D2][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 0.0000
[cH0x2D3][CH1D3,CH2D2][CH0D3]=[OH0D1] 0.0000 0.0000 0.0000

[cH0x2D3][CH1D3,CH2D2][OH0D2][CH1D2](=[OH0D1]) 0.0000 0.0000 0.0000
[cH0x2D3][CH1D3,CH2D2][OH0D2][CH0D3](=[OH0D1]) 0.0000 0.0000 0.0735
[cH0x2D3][CH1D3,CH2D2][CH0D3](=[OH0D1])[OH0D2] 0.0000 -1.9111 0.0000

[cH0x2D3][CH1D3]([CH3D1])([CH3D1]) 0.0000 0.0000 -1.2098
[cH0x2D3][CH0D4]([CH3D1])([CH3D1])[CH3D1] 0.0000 0.0000 0.0000
[cH0x2D3][CH0D4]([FH0D1])([FH0D1])[FH0D1] 0.0000 0.0000 -0.9025

[CH0x2D3,CH1x2D2,CH2x2D1]=[CH0x2D3][CH0D3](=[OH0D1]) 0.0000 0.0000 0.0000
[CH0x2D3,CH1x2D2,CH2x2D1]=[CH0x2D3][CH3D1] 0.0000 0.0000 2.0830
[CH0x2D3,CH1x2D2,CH2x2D1]=[CH0x2D3][CH2D2] 0.0000 0.0000 -2.4023
[CH0x2D3,CH1x2D2,CH2x2D1]=[CH0x2D3][ClH0D1] -6.8676 0.0000 0.0000

[CH1x2D3][CH3D1] -1.3451 -2.5700 0.6570
[CH1x2D3][CH2D2] 0.0000 -0.3227 1.0140
[CH1x2D3][CH1D3] 0.0000 0.0000 1.9696
[CH1x2D3][CH0D4] 0.0000 -0.0956 0.0000

[CH1x2D3][CH1D2]=[CH1D2,CH2D1] 0.0000 0.0000 -0.0572
[CH1x2D3][CH0D3]=[CH1D2,CH2D1] 0.0000 0.0000 4.5859

[CH1x2D3][ClH0D1] 0.0000 0.0000 0.0000
[CH1x2D3][OH1D1] 0.0000 0.0000 0.0000
[CH1x2D3][NH2D1] 0.0000 0.0000 0.0000

[CH1x2D3][NH1D2][CH0D4,CH1D3,CH2D2,CH1D3] 0.0000 0.0000 2.8657
[CH1x2D3][NH0D3][CH0D4,CH1D3,CH2D2,CH1D3] 0.0000 0.0000 2.9762

[CH1x2D3][SH1D1] 0.0000 0.0000 0.0000
[CH1x2D3][CH0D2]#[NH0D1] 0.0000 0.0000 0.0000

[CH1x2D3][CH0D3](=[OH0D1])[OH1D1] 0.0000 4.2964 0.0000
[CH1x2D3][CH0D3](=[OH0D1]) 0.0000 0.1115 0.0000

[CH1x2D3][OH0D2] 0.0000 -1.6513 1.2453
[CH1x2D3][OH0D2][CH0D3](=[OH0D1]) 3.2105 0.0000 -0.9318

[CH0x2D4][CH3D1] 0.0000 -0.3422 0.2214
[CH0x2D4][CH2D2] 0.0000 -0.2736 0.0260
[CH0x2D4][OH1D1] 0.0000 0.0000 0.0000
[NH0x2D3][CH3D1] 0.0000 0.0000 1.1991
[NH0x2D3][CH2D2] 0.0000 0.0000 1.6961

c1(A)c(A)cccc1 -1.7629 0.0000 0.6324
c1(A)cc(A)ccc1 0.0000 0.0000 1.1548
c1(A)ccc(A)cc1 0.0000 0.0000 0.9462

c1(A)c(A)c(A)ccc1 1.1586 0.0000 -2.7555
c1(A)c(A)cc(A)cc1 0.0000 0.0000 -0.2551
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Table A.3 continued from previous page

Groups Hvap f `

(kJ/mol) (N/m) (mPa s)

c1(A)cc(A)cc(A)c1 0.0000 0.0000 -2.1758
c1(A)c(A)c(A)c(A)cc1 0.0000 0.0000 2.6003
c1(A)c(A)c(A)cc(A)c1 0.0000 0.0000 -0.1700
c1(A)c(A)cc(A)c(A)c1 0.0000 0.0000 -0.0850

n1c(A)cccc1 -2.5737 0.0000 0.1680
n1cc(A)ccc1 0.0000 0.0000 0.2390
n1ccc(A)cc1 0.0000 0.0000 0.2698

n1c(A)cc(A)cc1 0.0000 0.0000 -0.0274
n1c(A)ccc(A)c1 -10.9799 0.0000 0.0000
n1c(A)cccc1(A) 0.0000 0.0000 0.0862
n1cc(A)c(A)cc1 0.0000 7.1924 0.0000

c1(A)c(A)c(A)c(A)c(A)c1 0.0000 0.0000 -0.1699
[cH0x2D3][SH0x0D4](=[OH0x0D1])(=[OH0x0D1])[NH2D1] 0.0000 0.0000 0.0000

[OH1D1][CH0D3](=[OH0D1])[R0;D2][R0;D2][R0;D2][CH0D3](=[OH0D1])[OH1D1] 0.0000 0.0000 0.0000
[NH2D1][R0;D2][R0;D2][R0;D2][OH1D1] 0.0000 11.3703 0.0000
[OH1D1][R0;D2][R0;D2][R0;D2][OH1D1] 0.0000 8.4836 0.0000

[CH0D2](#[NH0D1])[R0;D2][R0;D2][R0;D2][CH0D2]#[NH0D1] 0.0000 10.0574 0.0000
[cH0x3D3][CH0x2D3,CH1x2D2]=[CH0x2D3,CH1x2D2] 0.0000 0.0000 0.0000

[CH1x3D3] 0.0000 0.0000 0.1915
[CH0x3D4,CH0x4D4] 0.0000 0.0000 -0.3811

c12ccccc1cccc2 2.3790 0.0000 0.5562
c12ccccc1c(A)ccc2 0.0000 0.0000 0.5559
c12ccccc1cc(A)cc2 0.0000 0.0000 0.0000

c1cc2ccc3cccc4ccc(c1)c2c34 0.0000 0.0000 0.0000
c1ccc2ncccc2c1 0.0000 0.0000 0.4874
c1ccc2cnccc2c1 0.0000 0.0000 0.0000
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