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del trabajo en CMU. Le agradezco.

Reconozco financiamiento de Carnegie Mellon University a través del CAPD y del

Departamento de Energı́a de los Estados Unidos de América, la oficina de investigación
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Abstract

Nonlinear discrete optimization problems arise in many different disciplines, given the

modeling versatility associated with nonlinear constraints and discrete decision variables.

In Process Systems Engineering, such problems appear in applications ranging from optimal

process design and synthesis, process planning, scheduling, and control, and molecular

design. Albeit their many applications that arise from its universal modeling capabilities,

finding optimal solutions to these optimization problems is a challenging task, given the

computational complexity associated with their solution. The design of novel algorithms

and the correct modeling of these problems arise among the different ways to overcome

this complexity. In particular, tackling these problems with the correct combination of

mathematical modeling and solution procedure is an efficient strategy to address them. The

objective of this Thesis is to propose new solutions and modeling methods for nonlinear

discrete optimization problems, which lead to improvements with respect to the existing

solution approaches.

We initially pose the discrete nonlinear optimization problems in the context of Math-

ematical Programming. The problems that we consider solving here can be classified

as Mixed-Integer Nonlinear Programming (MINLP) problems. In Chapter 2 we provide

a review on the different solution algorithms and existing software to deterministically

solve a subclass of MINLP problems called convex MINLP. Among those algorithms, we

consider the Outer-approximation (OA) method, which decomposes the MINLP into a

Mixed-Integer Nonlinear Programming (MILP) problem and a Nonlinear Programming

(NLP) problem. We perform a large computational study comparing the performance of
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more than sixteen different software implementations, solvers, by solving over 350 convex

MINLP problems from benchmark library MINLPLib. This large study allowed us to

identify how the different solvers perform based on features from the problem to be solved.

Chapter 3 presents the implementation of the feasibility pump algorithm in the commer-

cial MINLP solver DICOPT. This algorithm is being used as a preprocessing step to enhance

the solver’s capabilities to find feasible solutions early in the search for the optimal solutions.

The approach described and implemented in this chapter improved the solver performance

becoming the default setting for DICOPT when solving convex MINLP problems.

In Chapter 4 we propose a new algorithm for convex MINLP, the Center-cut algorithm.

Using a decomposition of the problem similar to OA, this algorithm relies on finding the

Chebyshev center of the linear approximation of the nonlinear constraints. Although this

algorithm is deterministic, in the sense that we provide convergence guarantees for it, it

behaved remarkably well in finding feasible solutions quickly.

Chapter 5 presents the derivation of scaled quadratic underestimators for convex func-

tions and their usage in an OA framework, denoted Outer-approximation with quadratic

cuts (OA-QCUT). Using those quadratic underestimators, the decomposition in OA then

requires the solution of a Mixed-Integer Quadratically Constrained Programming (MIQCP)

problem, which more closely underestimates the nonlinearities in convex MINLP problems,

achieving a reduction in iterations when solving these problems.

Chapter 6 then presents another modification of OA, where auxiliary Mixed-Integer

Quadratic Programming (MIQP) problems are solved at each iteration of OA. These auxil-

iary MIQP problems minimize a quadratic distance metric to the best-found solution in the

algorithm while guaranteeing an improvement in the estimated objective function, hence

stabilizing the OA method. These methods are successful at reducing the total number of

iterations in OA at the expense of the solution of the auxiliary problem, which we prove
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needs not be solved to optimality, leading to performance improvements of the OA method

when solving convex MINLP.

Chapter 7 generalizes the concepts of Chapter 6 by showing that the auxiliary mixed-

integer problem can have any regularization objective function. We prove the convergence

guarantees of this method and show its equivalence of integrating a trust-region constraint

in OA. This method is denoted Regularized Outer-approximation (ROA). We implemented

these algorithms as part of the open-source Mixed-integer nonlinear decomposition toolbox

for Pyomo - MindtPy and tested them extensively with all convex MINLP problems in the

library MINLPLib. The results suggest an improvement of the existing OA and LP/NLP

methods by using regularization.

Chapter 8 tackles the more efficient solution of convex MINLP problems from a different

perspective, its modeling. Having identified that one of the primary sources of convex

MINLP problems is problems that enforce nonlinear constraints given a discrete choice,

we consider a higher level modeling alternative known as Generalized Disjunctive Pro-

gramming (GDP). The GDP modeling framework uses logical variables and disjunctions to

represent these nonlinear discrete optimization problems, which later can be transformed

into MINLP problems via reformulations. One of the reformulations is the Hull reformu-

lation (HR), which derives a higher dimensional description of the disjunctive set whose

projection into the space of the original variables yields its convex hull. For GDP prob-

lems with convex constraints, the HR requires implementing the perspective of the convex

functions. This function is non-differentiable at zero, leading to computational challenging

MINLP problems and motivating approximation schemes to this problem. We derive a

new representation of these problems by modeling convex constraints in GDP problems

using conic sets. The reformulation of these problems results in a Mixed-Integer Conic

Programming (MICP) problem, which can be efficiently tackled using solvers that take
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advantage of the conic structure of the problems. In particular, the HR of these conic GDP

problems can be described exactly using conic inequalities allowing the use of these tight

problem formulations while avoiding the approximation of the perspective function. We

performed a large computational study with over 400 convex GDP problems, of which

200 were derived from Process Systems Engineering and Machine Learning applications.

Our results indicate how the proper modeling of the disjunctive constraints allows for

specialized algorithms to solve them, hence leading to performance improvements.

Chapter 9 also considers the formulation of constrained optimization problems for better

solution performance. Contrary to the previous chapters, the solution methods intended to

be used here rely on quantum computing. Discrete optimization using quantum comput-

ing requires a reformulation into Quadratic Unconstrained Binary Optimization (QUBO)

problems. This chapter considers the Maximum k Coloring Subgraph (MkCS) problem, a

problem arising from Graph Theory and with applications in science and engineering. We

propose a nonlinear formulation of this problem involving bilinear equality constraints,

whose QUBO reformulation is more amenable to quantum algorithms. We show the

difference between the formulation through a large computational study involving the

reformulation and solution of these problems using Quantum Annealing. The nonlinear

formulation behaved better than the linear formulation in terms of the QUBO problem size,

both in terms of the original problem and its embedded version for the existing Quantum

Annealing hardware, and in solution time, proving an advantage of the proposed nonlinear

formulation.

Chapter 10 considers the Vehicle Routing Problem with Time Windows (VRPTW) and

its QUBO reformulation for solving it via quantum algorithms. We study three different

formulations of the discrete problem, a route-based, a sequence-based, and an arc-based

formulation, and compare them in terms of metrics relevant to the solution of the problem
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through QUBO methods. The route-based formulation was amenable to preprocessing

using classical computing methods. In contrast, the sequence- and arc-based formulations

showed better asymptotic behavior in terms of problem size when considering larger in-

stances, motivating a combination of the formulations to take better advantage of quantum

computing algorithms to solve these routing problems. We implement and simulate the

solution via quantum algorithms of the sequence-based formulation of an instance inspired

by the Maritime Inventory Routing Problem (MIRP), which is small enough to simulate

classically and large enough to make it practically hard to perform a complete enumeration

of its solutions. This study allowed us to observe a trade-off between different quantum

algorithms implementable in existing gate-based quantum computers. The Variational

Quantum Eigensolver (VQE) was preferable when the access to the quantum computer

is limited, and the Quantum Approximate Optimization Algorithm (QAOA) was favored

when more samples from the quantum circuit can be obtained. Moreover, we consider

a continuous version of the sequence-based formulation and apply an Alternating Direc-

tion Method of Multipliers (ADMM) decomposition heuristic method relying on QUBO

subproblem solution, showing the potential of decomposition methods based on QUBO

solving as an interesting future research avenue.

Finally, we conclude with Chapter A in the Appendix, where we formulate the minor-

embedding problem as an Integer Programming (IP) problem and solve it directly using

existing solvers and through a tailored decomposition algorithm. This problem appears

in the precompilation step required for existing Quantum Annealers to solve arbitrary

QUBO problems. This IP formulation allows for solutions to the problems with optimality

guarantees, contrary to the heuristic methods used in practice to address this problem,

given its complexity.

The results in this Thesis show how the study of the mathematical structure of discrete

ABSTRACT

ix



nonlinear optimization problems leads to their more efficient solution. We consider incorpo-

rating these improvements through problem formulation or solution algorithm design, with

a clear focus on decomposition techniques. We anticipate our results to motivate further

research in nonlinear discrete optimization, with a strong focus on applications in Process

Systems Engineering. Moreover, we show how the techniques traditionally applied to

classical solution methods can be adapted to take advantage of unconventional computing

approaches, such as quantum computing, to better solve these problems.

Thesis supervisor: Ignacio E. Grossmann Epper

Title: Rudolph R. and Florence Dean University Professor of Chemical Engineering
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Resumen

Los problemas de optimización discreta no lineal surgen en muchas disciplinas, dada

la versatilidad de modelado asociada con las restricciones no lineales y las variables de

decisión discretas. En Ingenierı́a de Sistemas de Procesos, estos problemas aparecen en

aplicaciones que van desde el diseño y sı́ntesis óptimos de procesos, la planeacion y control

de procesos y el diseño molecular. A pesar de sus muchas aplicaciones, que surgen a

partir de sus capacidades de modelamiento universal, encontrar soluciones óptimas a estos

problemas de optimización es una tarea desafiante, dada la complejidad computacional

asociada con su solución. El diseño de algoritmos novedosos y el correcto modelado

de estos problemas surgen entre las diferentes formas de superar esta complejidad. En

particular, abordar estos problemas con la combinación correcta de modelos matemáticos y

procedimientos de solución es una estrategia eficaz para abordarlos. El objetivo de esta Tesis

es proponer nuevas soluciones y métodos de modelado para problemas de optimización

discretos no lineales, que conduzcan a mejoras con respecto a los enfoques de solución

existentes.

Inicialmente planteamos los problemas de optimización discreta no lineal en el contexto

de la Programación Matemática. Los problemas que consideramos resolver aquı́ se pueden

clasificar como problemas de programación mixto entero no lineal (Mixed-Integer Nonlinear

Programming MINLP). En el Capı́tulo 2 proporcionamos una revisión de los diferentes al-

goritmos de solución y el software existente para resolver determinı́sticamente una subclase

de problemas MINLP llamados MINLP convexos. Los problemas MINLP convexos tienen

la cualidad de que sus restricciones no lineales son convexas, lo que da lugar a algoritmos
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de solución eficientes. Entre esos algoritmos, consideramos el método de aproximación

externa (Outer Approximation OA), que descompone el MINLP en un problema de pro-

gramación no lineal de enteros mixtos (Mixed-Integer Linear Programming MILP) y un

problema de programación no lineal (Nonlinear Programming NLP). Realizamos un gran

estudio computacional comparando el rendimiento de más de dieciséis implementaciones

de software diferentes, solvers, resolviendo más de 350 problemas MINLP convexos de

la biblioteca de referencia MINLPLib. Este gran estudio nos permitió identificar cómo se

desempeñan los diferentes solucionadores en función de las caracterı́sticas del problema a

resolver.

El Capı́tulo 3 presenta la implementación del algoritmo de bomba de factibilidad en

el solver comercial para MINLP, DICOPT. Este algoritmo se utiliza como un paso de pre-

procesamiento para mejorar las capacidades del solver encontrando soluciones factibles

al principio de la búsqueda de las soluciones óptimas. El enfoque descrito e implemen-

tado en este capı́tulo mejoró el rendimiento del solver convirtiéndose en la configuración

predeterminada para DICOPT al resolver problemas de MINLP convexos.

En el Capı́tulo 4 proponemos un nuevo algoritmo para MINLP convexo, el algoritmo de

corte central. Usando una descomposición del problema similar a OA, este algoritmo se

basa en encontrar el centro de Chebyshev de la aproximación lineal de las restricciones no

lineales. Aunque este algoritmo es determinı́stico, en el sentido de que le damos garantı́as

de convergencia, se comportó notablemente bien en la búsqueda rápida de soluciones

factibles.

El Capı́tulo 5 presenta la derivación de subestimadores cuadráticos escalados para fun-

ciones convexas y su uso en el método de OA, denotado por aproximación externa con cortes

cuadráticos (OA-QCUT). Usando esos subestimadores cuadráticos, la descomposición en

OA luego requiere la solución de un problema de programación mixto entero con restric-
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ciones cuadráticas (Mixed-Integer Quadratically Contstrained Programming MIQCP), que

subestima más de cerca las no linealidades en los problemas convexos MINLP, logrando

una reducción en las iteraciones al resolver estos problemas.

El Capı́tulo 6 luego presenta otra modificación de OA, donde problemas auxiliares de

programación mixta etnera cuadrática (Mixed-Integer Quadratic Programming MIQP)

se resuelven en cada iteración de OA. Estos problemas auxiliares MIQP minimizan una

métrica de distancia cuadrática a la mejor solución encontrada en el algoritmo al tiempo

que garantizan una mejora en la función objetivo estimada, estabilizando ası́ el método OA.

Estos métodos tienen éxito en reducir el número total de iteraciones en OA a expensas de la

solución del problema auxiliar, que demostramos no necesita ser resuelto de manera óptima,

lo que lleva a mejoras en el rendimiento del método OA al resolver MINLP convexos.

El Capı́tulo 7 generaliza los conceptos del Capı́tulo 6 mostrando que el problema auxiliar

de mixto entero puede tener cualquier función objetivo de regularización. Demostramos

las garantı́as de convergencia de este método y mostramos su equivalencia de integrar

una restricción de región de confianza en OA. Este método se denomina Aproximación

externa regularizada (ROA). Implementamos estos algoritmos como parte del código abierto

Mixed-integer nonlinear decomposition toolbox for Pyomo - MindtPy y fueron probados

extensamente con todos los problemas de MINLP convexos en la biblioteca MINLPLib. Los

resultados sugieren una mejora de los métodos de OA y LP/NLP existentes mediante el

uso de la regularización.

El Capı́tulo 8 aborda la solución más eficiente de problemas convexos MINLP desde

una perspectiva diferente, su modelado. Habiendo identificado que una de las principales

fuentes de problemas convexos del MINLP son los problemas que imponen restricciones

no lineales dada una elección discreta, consideramos una alternativa de modelado de nivel

superior conocida como Programación Disyuntiva Generalizada (Generalized Disjunctive
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Programming GDP). El marco de modelado de GDP utiliza variables lógicas y disyunciones

para representar estos problemas de optimización discretos no lineales, que luego pueden

transformarse en problemas MINLP mediante reformulaciones. Una de las reformula-

ciones es la reformulación de casco (Hull Reformulation HR), que deriva una descripción

multi-dimensional del conjunto disyuntivo cuya proyección en el espacio de las variables

originales produce su casco convexo. Para problemas de GDP con restricciones convexas,

la HR requiere implementar la perspectiva de las funciones convexas. Esta función no es

diferenciable en cero, lo que genera problemas computacionales desafiantes para MINLP y

motiva esquemas de aproximación a este problema. Derivamos una nueva representación

de estos problemas modelando restricciones convexas en problemas de GDP usando con-

juntos cónicos. La reformulación de estos problemas da como resultado un problema de

programación mixta entera cónica (Mixed-Integer Conic Programming MICP), que se puede

abordar de manera eficiente utilizando solucionadores que aprovechan la estructura cónica

de los problemas. En particular, la HR de estos problemas GDP cónicos se puede describir

exactamente utilizando desigualdades cónicas, lo que permite el uso de estas formulaciones

evitando la aproximación de la función de perspectiva. Realizamos un gran estudio com-

putacional con más de 400 problemas de GDP convexo, de los cuales 200 se derivaron de

aplicaciones de Ingenierı́a de Sistemas de Procesos y Aprendizaje dem Máquinas (Machine

Learning ML). Nuestros resultados indican cómo el modelado adecuado de las restricciones

disyuntivas permite que algoritmos especializados las resuelvan, lo que conduce a mejoras

en el rendimiento.

El Capı́tulo 9 también considera la formulación de problemas de optimización restringi-

dos para un mejor rendimiento en su solución. A diferencia de los capı́tulos anteriores, los

métodos de solución que se pretenden utilizar aquı́ se basan en la computación cuántica.

La optimización discreta mediante la computación cuántica requiere una reformulación en
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problemas de optimización binaria cuadrática sin restricciones (Quadratic Unconstrained

Binary Optimization QUBO). Este capı́tulo considera el problema del subgrafo de color

máximo de k (Maximum k Coloring Subgraph MkCS), un problema que surge de la teorı́a

de grafos y con aplicaciones en ciencia e ingenierı́a. Proponemos una formulación no lineal

de este problema que involucra restricciones de igualdad bilineales, cuya reformulación

QUBO es más tratable por algoritmos cuánticos. Mostramos la diferencia entre diferences

formulaciones a través de un gran estudio computacional que involucró la reformulación y

solución de estos problemas utilizando al algoritmo de temple cuántico (Quantum Anneal-

ing). La formulación no lineal se comportó mejor que la formulación lineal en términos del

tamaño del problema QUBO, tanto en términos del problema original y su versión embebida

para el hardware de recocido cuántico existente, y en el tiempo de solución, demostrando

una ventaja de la propuesta formulación no lineal.

El Capı́tulo 10 considera el problema de enrutamiento de vehı́culos con ventanas de

tiempo (Vehicle Routing Problem with Time Windows VRPTW) y su reformulación QUBO

para resolverlo mediante algoritmos cuánticos. Estudiamos tres formulaciones diferentes

del problema discreto, una formulación basada en ruta, una basada en secuencia y una

basada en arco, y las comparamos en términos de métricas relevantes para la solución del

problema a través de métodos QUBO. La formulación basada en rutas fue susceptible de

preprocesamiento utilizando métodos informáticos clásicos. Por el contrario, las formula-

ciones basadas en secuencias y arcos mostraron un mejor comportamiento asintótico en

términos de tamaño del problema al considerar instancias más grandes, lo que motiva una

combinación de las formulaciones para aprovechar mejor los algoritmos de computación

cuántica para resolver estos problemas de enrutamiento. Implementamos y simulamos

la solución a través de algoritmos cuánticos de la formulación basada en secuencia de

una instancia inspirada en el Problema de enrutamiento de inventario marı́timo (Maritime
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Inventory Routing Problem MIRP), que es lo suficientemente pequeño para simular de

manera clásica y lo suficientemente grande como para que sea prácticamente difı́cil realizar

una enumeración completa de sus soluciones. Este estudio nos permitió observar una con-

trapartida entre diferentes algoritmos cuánticos implementables en computadoras cuánticas

existentes basadas en compuertas (gates). El Eigensolver variacional cuántico (Variational

Quantum Eigensolver VQE) es ventajoso cuando el acceso a la computadora cuántica es

limitado y el algoritmo de optimización aproximada cuántica (Quantum Approximate

Optimization Algorithm QAOA) fue favorable cuando se pueden obtener más muestras

del circuito cuántico. Además, consideramos una versión continua de la formulación

basada en secuencia y aplicamos un método heurı́stico de descomposición, el Método de

dirección alterna de multiplicadores (Alternating Direction Method of Multipliers ADMM)

que se basa en la solución del subproblema QUBO, mostrando el potencial de los métodos

de descomposición basados en la resolución de QUBO como una interesante avenida de

investigación futura.

Finalmente, concluimos con el Capı́tulo A en el Apéndice, donde formulamos el problema

de embedido (Embedding) como un problema de Programación Entera (Integer Program-

ming IP) y lo resolvemos directamente usando solvers existentes y mediante un algoritmo

de descomposición especializado. Este problema aparece en el proceso de precompilación

requerido por los equipos de temple cuántico (Quantum Annealers) existentes para resolver

problemas arbitrarios de QUBO. Esta formulación de IP permite solucionar los problemas

con garantı́as de optimalidad, contrario a los métodos heurı́sticos utilizados en la práctica

para abordar este problema, dada su complejidad.

Los resultados de esta Tesis muestran cómo el estudio de la estructura matemática de

problemas de optimización discretos no lineales conduce a su solución más eficiente. Con-

sideramos incorporar estas mejoras mediante la formulación de problemas o el diseño de

xvi
RESUMEN



algoritmos de solución, con un claro enfoque en las técnicas de descomposición. Antici-

pamos que nuestros resultados motiven más investigaciones en optimización discreta no

lineal, con un fuerte enfoque en aplicaciones en Ingenierı́a de Sistemas de Procesos. Además,

mostramos cómo las técnicas aplicadas tradicionalmente a los métodos de solución clásicos

se pueden adaptar para aprovechar los enfoques computacionales no convencionales, como

la computación cuántica, para resolver mejor estos problemas.

Director de tesis: Ignacio E. Grossmann Epper

Tı́tulo: Rudolph R. and Florence Dean University Professor of Chemical Engineering
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Chapter 1

Introduction

In this chapter, we elaborate on the main challenges addressed by this work, describe the

literature relevant to nonlinear discrete optimization modeling and solution methods, and

summarize the remaining chapters of the dissertation.

1.1 Main Challenges and Goals

This dissertation covers several algorithmic and formulation approaches to discrete non-

linear optimization problems. In terms of the algorithmic approaches to address these

challenging optimization problems, we rely on the concept of problem decomposition.

Loosely speaking, the fact that the problems in consideration belong to the NP-Hard class

means that for a given problem size S , it might be computationally more efficient to solve

n subproblems of size S/n repeatedly than to solve the original problem once. This per-

formance advantage can be exploited further when the subproblems have a mathematical

structure that can be exploited to achieve faster solutions. This decomposition approach

and iterative subproblem solution appear in all the methods proposed herein. Whether

when considering the decomposition of nonlinear discrete problems in linear discrete and

nonlinear continuous subproblems or when separating a quadratic unconstrained binary

optimization, the problem in the iterative sampling of a quantum system to determine the

values of the discrete variables connected to a classical continuous optimization procedure

to maximize the objective function.
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1.1 MAIN CHALLENGES AND GOALS

The challenge when solving these problems is choosing how this decomposition will

be performed, particularly considering that the resulting subproblems have to be solved

efficiently, besides guaranteeing or at least directing its convergence to the optimal solution

of the problem. Moreover, the formulation of the discrete nonlinear optimization problems

allows the problem structure to be more exposed to the solution methods, yielding better

performance. The correct match between model formulation and solution method allows

tackling these optimization problems practically.

This work aims to develop new techniques and tools to address these challenges. Specific

goals of this Thesis are as follows:

1. Present a solver benchmark for convex MINLP problems, including recommendations

based on problem characteristics for most performant solution technique.

2. Implement the feasibility pump algorithm in the commercial solver DICOPT, enhanc-

ing the solver’s capabilities to address convex MINLP problems.

3. Propose the Center-cut algorithm, a deterministic solution method for convex MINLP

problems with good performance at finding a feasible solution to these problems.

4. Extend the Outer-approximation method for convex MINLP problems to consider

scaled quadratic cuts to define a Mixed-Integer Quadratically Constrained Program-

ming (MIQCP) problem as the mater problem of this method.

5. Propose the use of auxiliary Mixed-Integer regularization subproblems to enhance the

stability of the Outer-approximation method for convex MINLP, ultimately leading to

improving time and iteration performance of the method.

6. Propose a nonlinear formulation of the Maximum k coloring subgraph problem

in order for its QUBO formulation to be a better fit to be solved using Quantum

Annealing.

7. Evaluate different formulations of the Vehicle Routing Problem with Time Windows

2
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(VRPTW) to be more efficiently solved via variational algorithms on quantum com-

puters.

1.2 Background

The objective of this Thesis is to present solution methods to nonlinear discrete optimization

problems. These optimization problems are of particular interest to the Process Systems

Engineering (PSE) discipline, which is defined by Pistikopoulos et al. [1] as follows:

Process Systems Engineering (PSE) is the scientific discipline of integrating

scales and components describing the behavior of a physicochemical system via

mathematical modeling, data analytics, design, optimization, and control.

Given the inherent nonlinearity of physicochemical systems and the ubiquitous usage

of logical conditions in optimization [2] usually through discrete variables, nonlinear

discrete optimization arises as the ideal tool to tackle problems in PSE. In order to solve

these optimization problems, the paradigm of Mathematical Programming is used. In

Mathematical Programming, an optimization problem is written as the maximization or

minimization of an objective subject to constraints, all in terms of values that can be modified

to search for an optimal solution, i.e., variables. Mathematical Programming problems can

be classified by the nature of their objectives, constraints, and variables.

Optimization problems whose objectives and constraints can be represented by algebraic

linear and nonlinear functions of both continuous and discrete variables are commonly re-

ferred to as Mixed-Integer Nonlinear Programming (MINLP) problems. MINLP is a highly

versatile modeling paradigm, allowing even Universal Turing Machines to be encoded via

a Minsky’s register machine [3]. Its broad modeling capabilties lead to a wide variety of

real-world optimization problems that can be modeled as MINLP in PSE [4–6], e.g., process
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flowsheet superstructure [7], equipment design [8–10], production planning [11, 12], process

scheduling [13, 14], process control [15], and process synthesis [16, 17]. Moreover, there

are several applications of MINLP beyond PSE, such as finance and portfolio optimiza-

tion [18], other branches of engineering [19], cancer treatment planning [20], computational

biology [21], and network design [22]. In fact, ”most industrial processes can be modeled as

MINLP,” according to to Liberti [23].

Mixed-Integer Nonlinear Programming problems can be classified as NP-Hard prob-

lems [24]. The many applications of this modeling paradigm motivate the study of solution

procedures even if they do not accept polynomial-time algorithms. This means that for the

remainder of this Thesis, when we denote that we aim to solve these problems efficiently,

we mean it in a practical sense. Moreover, the work included in this Thesis will endeavor to

find the provably optimal solution to these optimization problems in a reasonable amount

of time. Considering this, some of the algorithms proposed in this Thesis will be used as

heuristic methods, in the sense that they will be used to generate good quality solutions

quickly and to have the algorithms stop without global optimality certificates. This is the

case for the feasibility pump and the Center-cut algorithms for convex MINLP problems and

quantum annealing and variational quantum optimization for Quadratic Unconstrained

Binary Optimization (QUBO) problems. This Thesis covers both algorithms and math-

ematical representation of the problems, called formulations, to efficiently address them.

These techniques are applied to produce speedups with respect to the existing solution

approaches.

A particular class of MINLP problems is where the constraints are convex functions.

Although it is non-convex because of the nature of the discrete variables, this problem is

known as convex MINLP [25, 26]. This class of MINLP is a subject of interest given the

many applications that it can represent and the challenging algorithmic requirements that

4
CHAPTER 1. INTRODUCTION



1.2 BACKGROUND

need to be tackled to address their problems. For a review on convex MINLP, refer to

Chapter 2 in this Thesis.

Among the solution techniques for convex MINLP, several have been adapted from the

Mixed-Integer Linear Programming (MILP), including Branch & Bound [27] and Benders De-

composition [28]. In contrast, others generalize the solutions methods for convex continuous

Nonlinear Programming (NLP) problems, such as the Extended Cutting Plane methods [29].

A particularly successful approach to convex MINLP is the outer-approximation (OA)

method proposed by Duran and Grossmann [30], where an iterative solution of a convex

NLP and an MILP subproblem is performed. The MILP is derived through first-order

Taylor approximations, or gradient-based linearizations of the nonlinear constraints at the

NLP solutions, and the NLPs arise from the problems appearing when fixing the values of

the discrete variables at the MILP solution [25, 30]. Many of the current commercial tools to

solve convex MINLP rely on the OA method [26].

In continuous convex programming, solutions methods have also been derived by gener-

alizing Linear Programming (LP) notions and techniques. One of the most successful ones

has been the proposal of convex optimization problems as problems defined over cones, or

Conic Programming (CP) problems [31]. CP is a numerically stable alternative for convex

programming [31], given that it exploits properties of the conic sets. Convex Programming

problems described via algebraic convex nonlinear constraints of the form f (x) ≤ 0 can be

equivalently posed as linear transformation of the variables belonging to convex sets K ,

i.e., Ax−b ∈ K [31, 32]. A generalization of CP where some variables are required to take

discrete values is Mixed-Integer Conic Programming (MICP). MICP problems are highly

expressible and can represent a wide range of optimization problem [33]. Many of these

applications have been gathered in the problem library CBLib [34].

The automatic identification and translation of the two equivalent descriptions of convex
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sets is a crucial feature for algorithmic solution software, solvers, development. This is since

the description of problems using algebraic constraints is more natural for practitioners.

However, the conic description of the problem allows taking advantage of mathematical

properties such as conic duality for more stable solution procedures. Generic solvers have

been designed to tackle CP problems, e.g., MOSEK [35], ECOS [36], and Hypatia [37]. This

translation is not trivial [38–40]. However, it has been achieved for the quadratic case

allowing for solution methods based on conic programming to be used for these problems.

An alternative to translating practical optimization problems into CP is via Disciplined

Convex Programming (DCP) [41], where strict rules of function definitions guarantee the

problem’s convexity and perform the translation such that they can be solved through

generic conic solvers.

In the mixed-integer setting, solvers have been designed to take as input the MICP prob-

lem taking advantage of this form of the optimization problem structure, e.g., Mosek [35],

and Pajarito [42–44]. Even for solvers that do not necessarily consider the conic repre-

sentation of convex problems, identifying such structures leads to improvements in its

performance, such as in SCIP [45, 46] and BARON [47]. There is a significant poten-

tial for MINLP solvers to perform automatic reformulations once they identify correct

structures [48]. An example of the automatic identification of conic structures is Mixed-

Integer Quadratically-constrained Quadratic Programming (MIQCQP) problems can now

be tackled through Mixed-Integer Second-Order Conic Programming (MISOCP) methods

in commercial solvers such as Knitro [49], Xpress [50], Gurobi [51], and CPLEX [52].

The discrete nature of the integer variables in mixed-integer programming problems

has been exploited to derive efficient solution methods for these problems. In particular,

deriving sets of extra inequalities, cutting planes or cuts, has allowed a considerable speedup

in the solution of these problems, see [53]. One of the key disciplines for deriving such cut-
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ting planes is Disjunctive Programming, which considers the optimization over disjunctive

sets such as the one given by the domain of the discrete variables. In the convex nonlinear

setting, the conic structure has been exploited to derive special cutting planes for MICP

solution methods [54–56]. A source of these problems are those driven by indicator variables,

that activate or deactivate sets of constraints [48], see a review by Bonami et al. [57].

Generalized Disjunctive Programming (GDP) was proposed by Grossmann and Lee

[58] as an intuitive way of describing the logic behind applications. In this setting, sets of

constraints are activated with logical variables linked to each other by logical constraints,

including disjunctions. This mathematical description of the problem can be tackled directly

by logic-based optimization methods [59], which generalize mixed-integer solution methods

to the logical domain. Another way of solving these problems is through reformulations

into mixed-integer programs, where the logical variables are mapped to binary or indicator

variables. Depending on the linearity of the constraints within the GDP, the reformulations

can yield an MILP or MINLP problem. The two most common reformulations are: the

Big-M reformulations, where a large coefficient is added to make the constraints redundant

in the case their associated indicator variable is inactive; and the Hull Reformulation (HR),

where using Disjunctive Programming theory, a set of constraints in an extended space

are derived such that their projection onto the space of the original variables is the convex

hull of the disjunctive sets. These two reformulations yield different mixed-integer models,

which can be characterized by size and tightness. The tightness of a mixed-integer model

is measured through the difference of the optimal solution of the problem, ignoring the

discrete constraints, known as the continuous relaxation, and the original problem optimal

solution [60]. The Big-M and Hull reformulations offer a tradeoff between tightness and

problem size. The HR is the tightest possible model, while the Big-M formulation does

not require any additional continuous variables and constraints. Both the model size and
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tightness are relevant to the efficiency of solution methods of mixed-integer programs [61].

For convex GDPs, the HR requires modeling the perspective function of the convex

functions in the disjunctions, which can be complex for nonlinear functions given its non-

differentiability at 0 [61, 62]. Perspective functions arise in formulations of convex MINLP

since they are, in general, part of the reformulation of disjunctive programs. Moreover,

the MINLP formulations involving the perspective function can be used either directly in

tight formulations of convex disjunctive programs, either in the original variable space [57,

63] or in a higher dimensional space [58, 64], or indirectly through the generation of

valid cutting-planes [65, 66]. A recent computational study shows the positive impact

of perspective cuts in the MINLP framwork [46]. The importance of this perspective

formulations and the challenges associated with their implementation have motivated its

study, where customized versions have been derived for special cases [48, 63, 67] or the

proposal of ε-approximations for general convex functions [62, 64].

This dissertation presents a series of algorithms to tackle optimization problems using

the Turing model and the von Neumann computing architecture [68]. Compared to novel

unconventional computing architectures, Turing models of computation get the name of

classical or conventional computing. In contrast, unconventional computing methods [69]

deviate from the usage of the von Neumann architecture for performing computations.

These unconventional methods aim to tackle shortcomings of classical computing, such as

its limited capability to solve problems requiring a high level of parallelism [70] and the

objective of facing NP problems more efficiently, without claiming to overcome the barriers

given by the complexity NP class. Among the unconventional computing approaches, we

consider the use of Quantum computing. Quantum computing denotes the use of phenom-

ena explained through quantum mechanics, such as entanglement and superposition, to

perform computation, where the fundamental unit of computation is the quantum bit, or
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qubit. These phenomena cannot be efficiently simulated with Turing machines, showing

the potential of Quantum Computing to perform certain operations more efficiently [71].

Algorithms have been designed to work on quantum computers, quantum algorithms, with

the goal of obtaining speedups compared to classical algorithms. Several examples of quan-

tum algorithms with provable speedup with respect to the best-known classical algorithms

have been found, e.g., Shor’s algorithm for integer factorizaton [72] and Grover’s algorithm

for unstructured search [73]. The implementation of these quantum algorithms is done

through a series of quantum operators, or quantum gates, applied in sequence to a set of

qubits. This sequence of gates followed by measurements of the qubits is denoted as a

circuit. For an comprenhensive references in Quantum Computing, we refer the reader to

the books by Rieffel and Polak [71] and Nielsen and Chuang [74].

Quantum algorithms have been developed to address convex optimization problems,

such as linear programs (LP) and semidefinite programs (SDP). Convex optimization prob-

lems are a sub-class of continuous optimization where the decision variables are continuous,

and the objective and feasible region described by the constraints are convex [75]. In gen-

eral, solution algorithms for convex optimization problems require the iterative solution of

systems of linear equations, akin to Newton methods. Interior-point methods are funda-

mental since these require a polynomial number of iterations with respect to the input size.

Quantum algorithms for linear algebra, whose most prominent example is the HHL method

from Harrow, Hassidim, and Lloyd [76], yield approximate solutions to linear systems of

equations. Thus, quantum algorithms for convex problems are mainly based on exploiting

these quantum methods for linear algebra as subroutines in interior-point methods [77, 78].

The class of discrete optimization problems has also been studied from a Quantum Com-

puting perspective. The fundamental challenge in discrete optimization is the combinatorial

growth in the solution space. For instance, consider a problem with n binary (e.g., 0 or
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1) decision variables. The solution is one of 2n possible combinations, and so brute-force

enumeration quickly becomes impractical as n increases. Meanwhile, the state of n qubits is

described mathematically as a vector in a complex Hilbert space with dimension 2n. This

vast search space and the peculiar properties of Quantum Computing, including entan-

glement, superposition, and (destructive) interference, have inspired the development of

algorithms for performing optimization on quantum computers. These algorithms are

usually applied to Quadratic Unconstrained Binary Optimization (QUBO) problems, a

particular discrete optimization problem with 0-1 binary variables, and a quadratic, i.e.,

degree two polynomial, function of these variables as an objective. This class of prob-

lems has a well-known correspondence with the Ising model in physics, which describes

ferromagnetism in statistical mechanics and phase transitions occurring in these systems.

Many classic combinatorial optimization problems can be formulated as a QUBO or Ising

model [79]. The energy function or Hamiltonian of an Ising model of n spins has a direct

extension to a quantum mechanical Hamiltonian of n qubits. Consequently, a minimum

energy state of n qubits can be used to give a solution to the original QUBO.

The Quantum Adiabatic Algorithm was one of the first quantum algorithms suggested

for discrete optimization [80]. This algorithm is inspired by the quantum adiabatic theorem,

which states conditions under which a system’s energy ranking is preserved as it evolves

according to the time-dependent Schrödinger equation. These conditions typically include

the assumption that the evolution is ”slow enough,” depending on a gap condition on the

spectrum of the time-dependent Hamiltonian[81]. In the Quantum Adiabatic Algorithm,

an optimization problem is formulated as an Ising model. The Hamiltonian of this Ising

model is called the final or driver Hamiltonian. Meanwhile, a quantum system described

by a different Hamiltonian is prepared in its known lowest energy state; this Hamiltonian is

called the initial or mixing Hamiltonian. By slowly interpolating between the initial and
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final Hamiltonians, the quantum system evolves in a quasi-steady state fashion, always

approximating the lowest energy state of the interpolated Hamiltonian. More precisely,

the adiabatic theorem may be applied to assert that there is a high (arbitrarily close to one)

probability that the quantum system is in the lowest energy state at each instant in time.

In particular, the quantum system at the final time has a high probability of predicting the

solution of the original optimization problem.

The ideas behind the Quantum Adiabatic Algorithm have since been generalized to a

new model of Quantum Computing called Adiabatic Quantum Computing [81]. Adiabatic

Quantum Computing is a computational model that relies on quantum mechanical pro-

cesses happening under the assumption of adiabaticity. It serves as an idealized framework

to perform algorithm analysis but cannot be implemented directly in practice. These theo-

retical advances, as well as the original hope that the Quantum Adiabatic Algorithm might

yield speedups for hard combinatorial problems, has led to the analog implementation of

the method in a non-ideal setting of finite temperature and an open environment, in an

algorithm known as quantum annealing[82]. In terms of optimization algorithms, quantum

annealing is a meta-heuristic for solving QUBO problems [83]. The specialized devices for

running quantum annealing are called Quantum Annealers. These devices have been built

using superconducting electronics to represent the qubits, while the quadratic and linear

interactions included in the energy function are implemented using external magnetic fields.

The best-known Quantum Annealers are produced by D-Wave systems, with up to 5000

qubits [84].

This general body of theory has also inspired algorithms intended to be implemented

on gate-based quantum computers. In general, a quantum algorithm for solving discrete

optimization problems on gate-based computers can be summarized in the following steps:

1. Map the optimization problem to a QUBO problem or an Ising problem
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2. Assign the logical identity of each binary variable in the QUBO or spin variable in the

Ising model to a qubit in a system

3. Apply a sequence of gates to set the system in a complete superposition state, equiva-

lent to the lowest energy state of the Mixing Hamiltonian

4. Apply a sequence of gates, or circuit, such that the probability of the outcome mea-

surement is the optimal solution of the problem is maximized

5. Measure the state by reading the qubits, which will output a set of values for each

qubit optimistically being the optimal solution to the optimization problem

6. Repeat this procedure several times and return the best-found solution

The main challenge in the design of the algorithm is in the definition of the circuit that

maximizes the probability of obtaining the optimal solution, given that these operators of

gates are matrices of complex numbers of dimension 2n×2n. Classically simulating these

systems becomes increasingly expensive given the dimensionality explosion of the problem,

while the quantum computer performs this calculation naturally. This procedure needs to

be repeated several times given the probabilistic nature of the quantum systems, motivating

its repeated measurements or shots to bound the found solutions.

The first among these is the Quantum Approximate Optimization Algorithm [85] (QAOA).

Once again, this method applies to QUBO problems represented as Ising models. This

method approximates the evolution of the system in the Quantum Adiabatic Algorithm

with a discrete sequence of quantum gates; the specific approximation is a ”Trotterization”

of the evolution. The quantum gates are parameterized and must be tuned or optimized

so that the algorithm produces a quantum state with a high probability of being in the

lowest energy state and consequently to yield a solution to the optimization problem. This

algorithm is also an approximation algorithm, in the sense that performance guarantees can

be theoretically derived in the form of a guaranteed solution quality to be obtained when
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applied to a well-defined family of problems [86]. In some cases, the optimal parameter

settings of the quantum gates can be determined through careful analysis of the problem.

In general, the approach is to embed the quantum algorithm in a classical optimization loop

to search for the gate parameters.

This general structure characterizes the current wave of hybrid quantum-classical al-

gorithms, the prototype of which is the variational quantum eigensolver [87] (VQE). The

variational quantum eigensolver uses a parameterized quantum circuit to evaluate the

system’s energy when applied to an Ising model. The energy of the system is then min-

imized with respect to the circuit parameters. This optimization problem is continuous

but typically stochastic due to the noise in evaluating the energy. While the form of the

parameterized circuit might be inspired by the circuit used in the quantum approximate

optimization algorithm, there is more freedom to develop heuristic circuit structures that

might be more efficient in implementing specific hardware architectures.

Nonlinear discrete optimization is a challenging computational task requiring novel

approaches from the solution algorithm and the problem formulation to be practically

solved. These optimization problems arise in PSE and in other disciplines, motivating the

efforts to solve them efficiently. In this dissertation, we aim to provide several different

approaches to tackle these problems.

1.3 Dissertation Overview

The following subsections provide summaries of their respective chapters.
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Chapter 2. A review and comparison of solvers for convex MINLP

Chapter 2 first reviews the deterministic software for solving convex MINLP problems as

well as a comprehensive comparison of a large selection of commonly available solvers.

Solvers are broadly classified into two large groups, those based on Branch & Bound and

those based on MILP Decomposition Techniques. As a test set, we have used all MINLP

instances classified as convex in the problem library MINLPLib [88], resulting in a solver

benchmark against 335 instances. A summary of the most common methods for solving

convex MINLP problems is given to highlight the differences between the solvers better. To

show how the solvers perform on problems with different properties, we have divided the

test set into subsets based on the continuous relaxation gap, the degree of nonlinearity, and

the relative number of discrete variables. The results also provide guidelines on how well

suited a specific solver or method is for particular types of MINLP problems.

Chapter 3. Feasibility Pump implementation in DICOPT

In Chapter 3, we discuss the implementation of the feasibility pump algorithm in the

commercial solver DICOPT. The solver DICOPT is based on the Outer-approximation

algorithm used for solving MINLP problems. This algorithm is very effective for solving

some types of convex MINLPs. However, it has been observed that DICOPT has difficulties

solving instances in which some of the nonlinear constraints are so restrictive that nonlinear

subproblems generated by the algorithm are infeasible. This problem is addressed in this

paper with a feasibility pump algorithm, which modifies the objective function to find

feasible solutions efficiently. It has been implemented as a preprocessing algorithm, which

is used to initialize both the incumbent and the mixed-integer linear relaxation of OA.

Computational comparisons with previous versions of DICOPT on a set of convex MINLPs

demonstrate the effectiveness of the proposed algorithm in terms of solution quality and
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solution time.

Chapter 4. Center-cut Algorithm for Convex MINLP

Chapter 4 introduces the Center-cut algorithm for convex MINLP problems. This algorithm

can either be used as a primal heuristic or as a deterministic solution technique. Like

several other algorithms for convex MINLP, the Center-cut algorithm constructs a linear

approximation of the original problem. The main idea of the algorithm is to use the

linear approximation differently to find feasible solutions within a few iterations. The

algorithm chooses trial solutions as the center of the current linear outer approximation of

the nonlinear constraints, making the trial solutions more likely to satisfy the constraints.

The ability to find feasible solutions using few iterations makes the algorithm well suited

as a primal heuristic, and we prove that the algorithm finds the optimal solution within

a finite number of iterations. Numerical results show that the algorithm obtains feasible

solutions quickly and is able to obtain good solutions.

Chapter 5. Outer-approximation with Quadratic Cuts

Chapter 5 presents the use of scaled quadratic cuts based on scaling the second-order

Taylor expansion terms for the Outer-approximation (OA) and Partial Surrogate Cuts (PSC)

decomposition methods for solving convex MINLP problems. The scaled quadratic cut is

proved to be a stricter and tighter underestimation for convex nonlinear functions compared

to classical supporting hyperplanes, which results in the improvement of OA and PSC-

based solution methods. We integrate scaled quadratic cuts strategy with multi-generation

cuts for both OA and PSC and develop six types of MINLP solution methods. These cuts

are incorporated in the master problem of the decomposition methods leading to an MIQCP

problem. Numerical results of benchmark MINLP problems demonstrate the effectiveness
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of the proposed solution methods with scaled quadratic cuts.

Chapter 6. Use of Regularization and Second-Order Information for Outer-

approximation

Chapter 6 presents two new methods for solving convex MINLP problems based on the OA

method. The first method is inspired by the level method and uses a regularization tech-

nique to reduce the step size when choosing new integer combinations. The second method

combines ideas from both the level method and the sequential quadratic programming

technique and uses a second-order approximation of the Lagrangean when choosing the

new integer combinations. The main idea behind the methods is to choose the integer com-

bination more carefully at each iteration to obtain the optimal solution in fewer iterations

than the original Outer-approximation method. We prove rigorously that both methods

will find and verify the optimal solution in a finite number of iterations. Furthermore, we

present a numerical comparison of the methods based on 109 test problems to illustrate

their advantages.

Chapter 7. Alternative Regularizations for Outer-approximation

In Chapter 7, we extend the regularization framework from Kronqvist, Bernal, and Gross-

mann [89] presented in Chapter 6 by incorporating several new regularization functions

and develop a regularized single-tree search method for solving convex MINLP problems.

We propose a set of regularization functions based on distance-metrics and Lagrangean

approximations, used in the projection problem for finding new integer combinations to

be used within the Outer-approximation (OA) method. The new approach, called Reg-

ularized Outer-approximation (ROA), has been implemented as part of the open-source

Mixed-integer nonlinear decomposition toolbox for Pyomo - MindtPy. We compare the OA
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method with seven regularization function alternatives for ROA. Moreover, we extend the

LP/NLP Branch & Bound method proposed by Quesada and Grossmann [90] to include

regularization in an algorithm denoted RLP/NLP. We provide convergence guarantees

for both ROA and RLP/NLP. Finally, we perform an extensive computational experiment

by considering all convex MINLP problems in the benchmark library MINLPLib. The

computational results show clear advantages of using regularization in combination with

the OA method.

Chapter 8. Easily Solvable Convex MINLP Derived from Generalized Disjunctive

Programming using Cones

Chapter 8 presents a different approach to solving convex MINLP problems more efficiently.

Instead of tackling the solution algorithm, this chapter covers the formulations of the

convex MINLP problems. Through Generalized Disjunctive Programming (GDP), we

model different application problems involving the disjunction over convex sets. These

GDP problems can be reformulated into MINLP through the Big-M and Hull Reformulation

(HR). If the constraints in the disjunctions are nonlinear, the HR involves modeling the

perspective function, a function that is non-differentiable at a solution with binary variables

being equal to zero. By representing the convex inequalities as conic sets, we propose a

conic GDP problem, which can be reformulated into a Mixed-Integer Conic Programming

(MICP) problem. These problems can be directly tackled by solvers that take advantage of

the conic structure of the problem, yielding more efficient and stable performance than the

solvers based on gradients. We introduce the reformulation into MICP problems through

the Big-M and HR reformulation. With the particularity that both these MICP problems

are representable using the same cones as the original GDP and avoiding the numerical

difficulties associated with HR’s perspective function. We solve 425 GDP problems classified
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into two groups: those with quadratic constraints and those with exponential constraints.

The problems originated from PSE applications, Machine Learning (ML) problems, and

randomly generated instances. Our results prove that the conic representation of convex

GDP problems allows an exact reformulation through HR, which results in a more efficiently

solvable problem given the potential usage of conic programming-based solvers.

Chapter 9. Characterization of QUBO Reformulations for the Maximum k-

colorable Subgraph Problem

Chapter 9 considers the maximum k-colorable subgraph (MkCS) problem, a constrained

combinatorial optimization (COPT) problem, and presents two formulations, a linear

and a nonlinear formulation, for this problem. The nonlinear formulation is a better

fit for addressing it through quantum annealing after a reformulation into Quadratic

Unconstrained Binary Optimization (QUBO). Quantum devices can be used to solve COPT

problems thanks to penalty methods to embed the COPT problem’s constraints in its

objective to obtain a QUBO reformulation of the COPT. However, the particular way

this penalty is carried out affects the value of the penalty parameters and the number of

additional binary variables that are needed to obtain the desired QUBO reformulation. In

turn, these factors substantially affect the ability of quantum computers to efficiently solve

these constrained COPT problems.

The MkCS problem arises in channel assignment in spectrum sharing networks, VLSI

design, human genetic research, and cybersecurity. We derive two QUBO reformulations

for the MkCS problem and fully characterize the range of the penalty parameters used in

the QUBO reformulations. Furthermore, the nonlinear formulation needs not introduce

additional binary variables when reformulating it into a QUBO. To illustrate the benefits

of obtaining and characterizing these QUBO reformulations, we benchmark the different
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QUBO reformulations of the MkCS problem by performing numerical tests on D-Wave’s

quantum annealing devices. The results presented in this chapter show the advantages of

the nonlinear formulation when addressing the problem through Quantum Annealing.

Chapter 10. Formulating and Solving Routing Problems on Quantum Computers

The determination of vehicle routes fulfilling connectivity, time, and operational constraints

is a well-studied combinatorial optimization problem. The NP-hard complexity of vehicle

routing problems has promoted the adoption of tailored exact approaches, metaheuristics,

and metaheuristics on classical computing devices. The ongoing evolution of Quantum

Computing hardware and the recent advances of quantum algorithms, i.e., VQE and QAOA,

for mathematical programming, make decision-making for routing problems an avenue of

research worthwhile to be explored on quantum devices. In Chapter 10, we propose several

mathematical formulations for inventory routing cast as vehicle routing with time windows

and comment on their strengths and weaknesses. The optimization models are compared

from a Quantum Computing perspective, specifically with metrics to evaluate the difficulty

in solving the underlying quadratic unconstrained binary optimization problems. Finally,

the solutions obtained on simulated quantum devices demonstrate the relative benefits of

different algorithms and their robustness when put into practice.

Chapter 11. Conclusions

Chapter 11 concludes this Thesis, providing a critical review, a listing of the most rele-

vant contributions, achievements, and results, as well as a discussion of future research

directions.
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Appendix A. Integer Programming Techniques for Minor-Embedding in Quan-

tum Annealers

A significant limitation of current generations of quantum annealers is the sparse connec-

tivity of manufactured qubits in the hardware graph. This technological limitation has

generated considerable interest, motivating efforts to design efficient and adroit minor-

embedding procedures that bypass sparsity constraints. In Appendix A, starting from a

previous equational formulation by Dridi, Alghassi, and Tayur [91], we propose integer

programming (IP) techniques for solving the minor-embedding problem. The first approach

involves a direct translation from the previous equational formulation to IP, while the

second decomposes the problem into an assignment master problem and fiber condition

checking subproblems. The proposed methods can detect instance infeasibility and pro-

vide bounds on solution quality, capabilities not offered by currently employed heuristic

methods. We demonstrate the efficacy of our methods with an extensive computational

assessment involving three families of random graphs of varying sizes and densities. The

direct translation as a monolithic IP model can be solved with existing commercial solvers

yielding valid minor-embeddings, but it is outperformed, overall, by the decomposition

approach. Our results demonstrate the promise of our methods for the studied benchmarks,

highlighting the advantages of using IP technology for minor-embedding problems.

1.4 Notation

During this Thesis, we use a similar notation to the one used by Ben-Tal and Nemirovski

[31] and Alizadeh and Goldfarb [92]. We use lower case boldface letters, e.g., x,c, to denote

column vector, and uppercase boldface letters, e.g., A,X, to denote matrices. Sets are

denoted with uppercase calligraphic letters, e.g., S,K . Subscripted vectors denote xi denote
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the ith block of x. The jth component of the vectors x and xi are indicated as x j and xi j. The

set {1, . . . , J} is represented by the symbol ~J�. Moreover, the subscript ~J� of a vector x

is used to define the set x~J� := {x1, . . . ,xJ}. We use 0 and 1 for the all zeros and all ones

vector, respectively, and 0 and I for the zero and identity matrices, respectively. The vector

e j will be the vector with a single 1 in position j, and its remaining elements being 0. The

dimensions of the matrices and vectors will be clear from the context. We use Rk to denote

the set of real numbers of dimension k, and for set S ⊆ Rk, we use cl(S) and conv(S) to

denote the closure and convex hull of S, respectively.

For concatenated vectors, we use the notation that “,” is row concatenation of vectors

and matrices, and “;” is column concatenation. For vectors, x,y and z, the following are

equivalent. 
x

y

z


= (x>,y>,z>)> = (x;y;z). (1.1)

The projection of a set S⊆Rk onto the vector x ∈ X ⊆Rn, with n≤ k is denoted as projx(S) :=

{x ∈ X : ∃y : (x;y) ∈ S}.

IfA⊆ Rk and B ⊆ Rl we denote their Cartesian product asA×B := {(x;y) : x ∈ A,y ∈ B}.

For A1,A2 ⊆ R
k we define the Minkowski sum of the two sets as A1,A2 = {u + v : u ∈

A1,v ∈ A2}.
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Chapter 2

A review and comparison of solvers for convex

MINLP?

2.1 Introduction

In this chapter, we present a review of deterministic software for solving convex MINLP

problems as well as a comprehensive comparison of a large selection of commonly available

solvers. As a test set, we have used all MINLP instances classified as convex in the problem

library MINLPLib, resulting in a test set of 335 convex MINLP instances. A summary of the

most common methods for solving convex MINLP problems is given to better highlight

the differences between the solvers. To show how the solvers perform on problems with

different properties, we have divided the test set into subsets based on the continuous

relaxation gap, the degree of nonlinearity, and the relative number of discrete variables.

The results also provide guidelines on how well suited a specific solver or method is for

particular types of MINLP problems.

This chapter intends to give an overview of commonly available deterministic solvers

for convex MINLP problems and present a thorough numerical comparison of the most

common solvers. Most optimization solvers are connected to one or more of the well-

established modeling environments for MINLP optimization, such as, AIMMS [93], AMPL

?Published as: Jan Kronqvist, David E Bernal, Andreas Lundell, and Ignacio E Grossmann. “A review and

comparison of solvers for convex MINLP”. Optimization and Engineering 20.2 (2019), pp. 397–455.
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[94], and GAMS [95]. In recent years, there has also been a growing interest in optimization

modeling in Python and Julia [96]; JuMP is a modeling environment for optimization

embedded in Julia [97], and Pyomo is a similar environment in Python [98]. Several MINLP

solvers also offer interfaces to MATLAB, and through OPTI Toolbox, it is also possible to

access several solvers in MATLAB [99].

The solvers considered in the numerical comparison are AlphaECP, Antigone, AOA,

BARON, BONMIN, Couenne, DICOPT, Juniper, KNITRO, LINDO, Minotaur, Muriqui,

Pavito, SBB, SCIP, and SHOT. These were chosen based on criteria like availability, active

development, and support for a file format available in MINLPLib [100]. Some of these

are global solvers and therefore not limited to convex problems. However, most global

solvers have convexity identification techniques or manual strategies that the user can set

to deal with convex problems more efficiently. The convex solvers can also often be used as

heuristic methods without guaranteeing to find the optimal solution for nonconvex MINLP

problems.

In Section 2.2, the convex MINLP problem is defined, and a general overview of the

most common algorithms for such problems is given in Section 2.3. Most solvers in the

comparison utilize one or more of these solution methods, as described in Section 2.4, which

contains a summary of the solvers considered. Section 2.5 describes the benchmark in detail,

and the numerical results are, finally, presented in Section 2.6.

2.2 Convex MINLP problem formulation

A convex MINLP problem can, without loss of generality, be written as

min
x,y∈N∩L∩Y

c>1 x + c>2 y, (P-MINLP)
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where the sets N ,L and Y are given by

N = {x ∈ Rn,y ∈ Rm | g j(x,y) ≤ 0 ∀ j = 1, . . . l},

L = {x ∈ Rn,y ∈ Rm | Ax + By ≤ b},

Y = {y ∈ Zm | y
i
≤ yi ≤ yi ∀ i = 1,2, . . . ,m}.

(2.1)

and L∩Y is assumed to be a compact set. The upper and lower bounds on the integer

variables yi are denoted as yi and y
i
. To ensure convergence of methods such as Outer-

approximation, it is assumed that all the integer variables are bounded either by the

variables bounds or by the linear constraints, since unbounded variables can, e.g., cause

some of the subproblems to be unbounded. Most solvers do not require the variables to be

bounded, however, to avoid such issues some solvers automatically assigns large bounds

to unbounded variables. Generally, problem P-MINLP is considered as convex if all the

nonlinear functions g j are convex in the variables x and the relaxed integer variables y. There

has recently been an interest in nonsmooth convex MINLP, and some solution techniques

have been presented see e.g., [101] and [102]. However, most of the commonly available

solvers only have guaranteed convergence for smooth problems and therefore we limit this

study to problems where the nonlinear functions g j are continuously differentiable.

2.3 Methods

This section describes the most commonly used algorithms for convex MINLP. The methods

described are branch and bound, extended cutting plane, extended supporting hyperplane,

Outer-approximation, generalized Benders decomposition, and LP/NLP-based branch and

bound. This summary is not intended to give an in-depth analysis of the algorithms but to

better exemplify the differences between the solvers. For a more detailed discussion about

the algorithms see, e.g., [103–106].
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2.3.1 Branch and bound

Branch and bound (BB) was first presented as a technique for solving MILP problems by

[107]. A few years later, it was noted by [27] that MINLP problems could be solved with

a similar branch and bound approach, although the paper focused on linear problems.

Solving convex MINLP problems with a BB approach was also studied by [108].

In the basic form, BB solves the MINLP problem by relaxing the integer restrictions of the

original problem and solving continuous (convex) NLP relaxations. Solving a continuous

relaxation of problem P-MINLP results in a solution (xk,yk), which provides a valid lower

bound. Suppose all components of yk take on integer values. In that case, it is also an

optimal solution to the MINLP problem. Otherwise, the continuous relaxation is divided

(branched) into two new NLP subproblems by adding the constraints yi ≤ byk
i c and yi ≥ dyk

i e

to the relaxed problem. The branching variable yi is a variable that takes on a fractional

value and usually chosen based on some criteria, e.g., the variable furthest away from an

integer value. A new lower bound can be obtained by solving the new subproblems (child

nodes). If one of the subproblems returns an integer solution, it also provides a valid upper

bound. The search procedure is often represented by a tree, where the nodes are connected

to their parent node and represent the subproblems. If one of the nodes does not provide an

integer solution, it is branched into two new nodes creating two new subproblems. In case

one of the nodes obtains an optimum worse than the upper bound, or if the subproblem is

infeasible, then the node can be pruned since an optimal solution cannot exist in that part

of the search space. This approach of solving convex NLP problems in each node is often

referred to as NLP-based branch and bound (NLP-BB).

Obtaining a tight continuous relaxation is of great importance within BB to avoid large

search trees. [65] presented a branch and cut method for convex MINLP problems that

uses cutting planes to strengthen the continuous relaxation. Several techniques have been
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proposed for obtaining cuts to strengthen the continuous relaxation for MINLP problems,

e.g., lift-and-project cuts [109–111], Gomory cuts [54, 112], and perspective cuts [66].

Compared to BB techniques for MILP problems, NLP-BB involves computationally more

demanding subproblems; it is often not unusual to explore more than 100,000 nodes for a

modest-sized problem! Techniques to efficiently integrate the NLP solver and not solving

all subproblems to optimality have also been proposed by [113], and [114]. Another BB

approach is to solve LP relaxations in the nodes and construct a polyhedral approximation

of the nonlinear constraints. A polyhedral branch and cut technique, solving LP relaxations

in the nodes, was presented by [115].

Many important details on BB, such as branching strategies, have been left out for brevity.

For more details on BB see, e.g., [116] and [117].

2.3.2 Extended cutting plane

The extended cutting plane (ECP) algorithm was first presented by [118] and can be seen

as an extension of Kelley’s cutting plane method for convex NLP problems presented by

[119]. In its original form, the ECP method is intended for convex MINLP problems. By

some modifications, given the name generalized alpha ECP (GAECP), it can be applied to

pseudoconvex problems as shown by [120].

The ECP algorithm uses linearization of the nonlinear constraints to construct an iter-

atively improving polyhedral outer approximation of the set N . The trial solutions are

obtained by solving the following MILP subproblems,

(xk+1,yk+1) ∈ argmin
x,y∈Nk∩L∩Y

c>1 x + c>2 y, (MILP-k)
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where the set Nk is given by

Nk =

g j(xi,yi) +∇g j(xi,yi)>

x−xi

y−yi

 ≤ 0 ∀i = 1,2 . . .k, j ∈ Ji

 . (2.2)

Here Ji is an index set containing the indices of either the most violated or all violated

constraints in iteration i. Set Nk is, thus, a polyhedral approximation of set N , constructed

by first-order Taylor series expansions of the nonlinear constraints generated at the trial

solutions (xk,yk). The linearizations defining Nk are usually referred to as cutting planes

since they cut off parts of the search space that cannot contain the optimal solution. Due to

convexity, N ⊆Nk and therefore, the solution of problem MILP-k provides a valid lower

bound of problem P-MINLP.

In the first iteration, the set N̂0 can simply be defined as Rn+m. New trial solutions are

then obtained by solving subproblem MILP-k, and the procedure is repeated until a trial

solution satisfies all the constraints within a given tolerance. Once a trial solution satisfies

all nonlinear constraints, it is also the optimal solution since the solution was obtained by

minimizing the objective within a set containing the entire feasible region. For more details

on the ECP algorithm see, e.g., [118] or [120].

2.3.3 Extended supporting hyperplane

The extended supporting hyperplane (ESH) algorithm was presented by [121] as an algo-

rithm for solving convex MINLP problems. The ESH algorithm uses the same technique as

the ECP algorithm for obtaining trial solutions. However, it uses a different technique for

generating the polyhedral outer approximation Nk. It has been observed that the cutting

planes used to construct the polyhedral outer approximation in the ECP algorithm are, in

general, not as tight as possible, see [121]. Using a one-dimensional root search, the ESH

algorithm can obtain supporting hyperplanes to the set N at each iteration and use these to

28
CHAPTER 2. A REVIEW AND COMPARISON OF SOLVERS FOR CONVEX MINLP



2.3 METHODS

construct a polyhedral outer approximation Nk.

First, a strict interior point (xint,yint) is obtained by solving the following convex NLP

problem

min
(x,y)∈L,µ∈R

µ

s.t. g j(x,y) ≤ µ ∀ j = 1,2, . . . , l.

(2.3)

The interior point should preferably be as deep as possible within the interior of N , which

is approximated by minimizing the l∞-norm of the nonlinear constraints.

Similar to the ECP algorithm, the trial solutions
(
xk

MILP,y
k
MILP

)
are obtained by solving

problem MILP-k. These solutions provide a valid lower bound on the optimal solution of

problem P-MINLP. However, they will not be directly used to construct the set Nk as in the

ECP method.

To construct the polyhedral outer approximation, we define a new function F as the

point-wise maximum of the nonlinear constraints, according to

F(x,y) = max
j

{
g j(x,y)

}
. (2.4)

A new sequence of points
(
xk,yk

)
is now defined as

xk = λkxint + (1−λk)xk
MILP,

yk = λkyint + (1−λk)yk
MILP,

(2.5)

where the interpolation parameters λk are chosen such that F(xk,yk) = 0. The interpolation

parameters λk can be obtained by a simple one-dimensional root search. The points
(
xk,yk

)
are now located on the boundary of the feasible region, and linearizing the active nonlinear

constraints at this point results in supporting hyperplanes to the set N . The set Nk is, thus,

constructed according to Eq.(2.2) using the points
(
xk,yk

)
.

The ESH algorithm also uses a preprocessing step to obtain supporting hyperplanes of

the set N by solving linear programming (LP) relaxations. Solving MILP subproblems and
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generating supporting hyperplanes is repeated until a trial solution satisfies all nonlinear

constraints. The tighter polyhedral outer approximation usually gives the ESH algorithm an

advantage over the ECP algorithm. It has been shown in [101] that the ESH algorithm can

also be successfully applied to nonsmooth MINLP problems with pseudoconvex constraint

functions.

2.3.4 Outer-approximation

The Outer-approximation (OA) method was first presented by [122], with additional prop-

erties for convex MINLP problems described in [25]. Some modifications of the OA method

have been presented to handle nonconvex problems more efficiently, see, e.g., [123], and

[124]. For more details on the basic convex approach discussed in this paper, see, e.g.,

[grossmann2002review].

OA is a decomposition technique that obtains the original problem’s optimal solution by

solving a sequence of MILP and NLP subproblems. Like ECP and ESH, OA also constructs

an iteratively improving polyhedral outer approximationNk of the nonlinear feasible region

defined by the set N . However, OA only uses the polyhedral approximation for choosing

the integer combination yk. In contrast, the corresponding continuous variables xk are

chosen by solving a convex NLP subproblem.

In each iteration, the polyhedral outer approximation is used to construct problem MILP-

k, referred to as the MILP master problem. A new integer combination yk is then obtained

by solving problem MILP-k. Once the integer combination yk is obtained, the following

NLP subproblem is formed

(xk,yk) ∈ argmin
(x,y)∈N∩L

c>1 x + c>2 y

s.t. y = yk.

(NLP-fixed)

If problem NLP-fixed is feasible, a valid upper bound can be obtained from the solution
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(xk,yk), and the solution is used to improve the polyhedral approximation according to

Eq. (2.2). The polyhedral outer approximation is updated by either linearizing all constraints

or only the active constraints.

problem NLP-fixed may also be infeasible in some iteration. If yk is an infeasible inte-

ger combination, the corresponding continuous variables can be obtained by solving the

following convex subproblem

(xk,yk,rk) ∈ argmin
(x,y)∈L,r∈R

r

s.t. y = yk,

g j(x,y) ≤ r ∀ j = 1,2, . . . , l,

(NLP-feasibility)

which minimizes the constraint violation with respect to the l∞-norm. The solution to

problem NLP-feasibility does not provide a lower bound. However, using the infeasible

solution (xk,yk) to update the polyhedral outer approximation according to Eq. (2.2), ensures

that the infeasible integer combination yk cannot be obtained again by the MILP master

problem, cf. [25].

The OA algorithm is usually initiated by solving a continuous relaxation of the MINLP

problem, giving an initial lower bound and a solution that can be used to construct the

polyhedral approximation N̂0 [124]. It is also possible to use integer cuts to exclude specific

integer combinations, as suggested by [122]. Solving the MILP master problems MILP-k

provides a lower bound on the optimum. The procedure is repeated until the upper and

lower bound are within a given tolerance.

In general, OA results in tighter polyhedral outer approximations than the ECP algorithm

and may, therefore, require fewer iterations. For a feasible integer combination, OA will,

in general, result in a tighter polyhedral outer approximation than ESH. However, for

an infeasible integer combination, ESH can give a tighter approximation. OA may thus
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require fewer iterations than both ESH and ECP to solve specific problems. However, since

each iteration is somewhat more computationally demanding, the methods are difficult to

compare directly.

2.3.5 Generalized Benders decomposition

Generalized Benders decomposition (GBD) was first presented by [28] and is a generaliza-

tion of Benders decomposition, a partitioning procedure for solving MILP problems [125].

As noted by [90], GBD is closely related to OA, and the main difference is the derivation

of the master problem. In GBD, the master problem is projected onto the space defined

by the integer variables, and the master problem is, thus, only expressed in the integer

variables. Here we will not present the full derivation of GBD but use the same approach as

[grossmann2002review] to derive the master problem. For more details on GBD see, e.g.,

[126] or [106].

Given an integer combination yk, the corresponding continuous variables can be obtained

by solving either one of the problems NLP-fixed or NLP-feasibility. If problem NLP-fixed is

feasible, it provides a valid upper bound, as well as values for the continuous variables xk

and the optimal Lagrangean multipliers λk and µk. A valid cut is then given by

c>1 xk + c>2 y +

l∑
j=1

λk
j∇yg j(xk,yk)>(y−yk) + (µk)>By ≤ α, (2.6)

where ∇y denotes the gradient with respect to the integer variables. Here, α is a new

auxiliary variable used for describing the objective function of the MILP subproblems. Note

that the left-hand side of Eq. (2.6) is a first order Taylor series expansion of the Lagrangean

function of problem NLP-fixed at the point (xk,yk,λk,µk) with respect to the x and y variables,

and that the gradient with respect to the x variables will be zero. The cut in Eq. (2.6) can be

shown to be a surrogate constraint of the linearization in Eq. (2.2) in which the continuous
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variables x are projected out, cf. [90] or [grossmann2002review].

If problem NLP-fixed is infeasible with the integer combination yk, problem NLP-

feasibility is solved to obtain the continuous variables xk as well as the optimal multipliers

λk and µk. A valid cut in the integer space is then given by,

l∑
j=1

λk
j

(
g j(xk,yk) +∇yg j(xk,yk)>(y−yk)

)
+ (µk)>By ≤ 0. (2.7)

For more details on the cuts see, e.g., [90]. The master problem for obtaining new integer

combinations, is then given by,

min
y∈Y,α∈R

α

s.t. c>1 xk + c>2 y +

l∑
j=1

λk
j∇yg j(xk,yk)>(y−yk) + (µk)>By ≤ α ∀k ∈ K f ,

l∑
j=1

λk
j

(
g j(xk,yk) +∇yg j(xk,yk)>(y−yk)

)
,

+ (µk)>By ≤ 0 ∀k ∈ K\K f ,

where K f contains the indices of all iterations where problem NLP-fixed is feasible and the

index set K contains all iterations. Solving the master problem provides a lower bound on

the optimal solution and gives a new integer combination yk+1. The procedure is repeated

until the upper and lower bounds are within the desired tolerance.

Since the cuts obtained by equations (2.6) and (2.7) can be viewed as surrogate cuts of the

linear constraints included in the OA master problem; GBD generates weaker cuts than OA

at each iteration and usually requires more iterations to solve a given problem. However,

the master problems in GBD may be easier to solve since they contain fewer variables than

OA, and only one cut is added in each iteration.

A compromise between OA and GBD has been proposed by [90], where the continuous

variables are classified into linear or nonlinear based on how they are involved in the
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original MINLP problem. By projecting out the nonlinear continuous variables, one can

derive a Lagrangean cut similar to GBD while still retaining the linear constraints involving

continuous variables in the master problem. The given method has been coined as partial

surrogate cuts (PSC). As proved in [90], it results in a tighter linear relaxation compared to

GBD while still only adding one cut per iteration.

2.3.6 LP/NLP-based branch and bound

When solving a convex MINLP problem with either ECP, ESH, GBD, or OA, most of the total

solution time is usually spent on solving the MILP subproblems. The MILP problems are

also quite similar in consecutive iterations since they only differ by a few linear constraints.

To avoid constructing many similar MILP branch and bound trees, [90] presented a method

that integrates OA within BB, called LP/NLP-based branch and bound (LP/NLP-BB). The

main idea is to construct a single branch and bound tree, where the MILP master problem

is dynamically updated.

An initial polyhedral outer approximation is constructed by solving a continuous relax-

ation and linearizing the constraints at the relaxed solution, as in OA. The polyhedral outer

approximation is used to construct the first MILP master problem. The branch and bound

procedure, where an LP relaxation is solved in each node, is initiated. Once an integer

solution is obtained at a given node, the integer combination is used as in OA. If the NLP

problem NLP-fixed with the given integer combination is feasible; it provides an upper

bound, and new linearizations are generated. If it is infeasible, new linearizations can be

obtained by solving the feasibility problem NLP-feasibility.

The new linearizations are then added to all open nodes. The LP relaxation is resolved

for the node that returned the integer combination. The branch and bound procedure

continues normally by solving LP relaxations, giving a more accurate approximation of
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the nonlinear constraints. Here, the search must continue down each node until either

the LP relaxation returns an integer solution that satisfies all nonlinear constraints, the LP

relaxation obtains an objective value worse than the upper bound, or until the LP relaxation

becomes infeasible. As in regular BB, a lower bound is provided by the lowest optimal

solution of the LP relaxations in all open nodes, and the search continues until the upper

and lower bounds are within a given tolerance. The LP/NLP-BB procedure, thus, only

generates a single branch and bound tree and is sometimes referred to as a single-tree OA.

Numerical results have shown that LP/NLP-BB technique can result in significantly

fewer nodes than the total number of nodes explored in the multiple MILP master problems

in OA [122, 127]. Implementations of the LP/NLP-BB algorithm have shown promising

results, cf. [128], [129] or [130].

2.3.7 Solver enhancement techniques

Most solvers are not based on a single algorithm but combine several techniques to improve

their performance. In this section, we briefly describe some preprocessing techniques

and primal heuristics that can be integrated with all the previously mentioned methods to

improve the practical performance. Other important techniques to improve the performance

include various cutting planes as well as different branching rules. For more details on

cutting planes for convex MINLP see, e.g., [104], [131] and [109]. Overviews of branching

rules are given by [132] and [133].

2.3.7.1 Preprocessing

Preprocessing includes various techniques for modifying the problem into a form more

favorable for the actual solver. The preprocessing procedures can result in tighter relax-

ations or reduce the problem size. [104] classified MINLP presolving techniques into two
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significant categories: housekeeping and reformulations. Housekeeping includes bound

tightening and removal of redundant constraints. In contrast, reformulations can include

improving coefficients in the constraints and disaggregation of constraints.

There are two main approaches for tightening the variable bounds, feasibility-based

bound tightening [134, 135], and optimization-based bound tightening [136]. Feasibility-

based bound tightening analyzes the constraints sequentially to improve the variable

bounds. In contrast, optimization-based bound tightening solves a sequence of relaxed

problems. Each variable is maximized and minimized to obtain optimal bounds.

By reformulating the original problem, it is in some cases possible to obtain significantly

tighter relaxations. Within MILP, it is well known that different problem formulations

can result in tighter or weaker continuous relaxations; the uncapacitated facility location

problem is a good example of when disaggregation of some constraints leads to a tighter

continuous relaxation [137]. Similar techniques can also be used to obtain tighter relaxations

for MINLP problems. Some nonlinear constraints can also be disaggregated to obtain a

lifted reformulation of the problem, where the nonlinear constraint is split into several

constraints by introducing new variables. Such lifted reformulations were proposed by

[115], where it was shown that a lifted reformulation results in tighter polyhedral outer

approximations. In a recent paper by [138], it was shown that several MINLP solvers, based

on ECP, ESH, and OA, could be drastically improved by utilizing a reformulation technique

based on lifting. Lifted reformulations of MINLP problems have also been studied by [139],

and [42]. Some further reformulation techniques for MINLP problems are also presented in

[140].
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2.3.7.2 Primal heuristics

Primal heuristics is a common term for algorithms and techniques intended to obtain good

feasible solutions with relatively little computational effort compared to solving the original

problem. The use of primal heuristics began in the field of MILP, and for instance, [141]

claimed that primal heuristics were one of the most important improvements in MILP

solvers within the last decade. In recent years, there has also been an interest in primal

heuristics for MINLP problems. Several algorithms have been proposed for this task. Such

algorithms are, e.g., undercover [142], feasibility pumps [143], rounding heuristics [144],

and the Center-cut algorithm [145]. Another technique for obtaining feasible solutions in

solvers based on ECP, ESH or OA, is to check the alternative solutions in the solution pool

provided by the MILP solver [121]. A detailed summary of several primal heuristics for

MINLP problems is given by [146], and [147].

Finding a good feasible solution to an MINLP problem can improve the performance

of MINLP solvers, as shown by the numerical results in [146] and [148]. Having a good

feasible solution can, e.g., reduce the size of the search tree in BB-based solvers and provide

a tight upper bound. Obtaining a tight upper bound is especially important in solvers based

on the ECP or ESH algorithm because neither of the algorithms will, in their basic form,

obtain a feasible solution before the very last iteration.

2.4 Solvers

This section is intended as an introduction to commonly available MINLP solvers and

to describe their main properties. Most of the solvers are not based on a single “pure”

algorithm, but they combine several techniques and ideas to improve their performance.

On top of this, MINLP solver technology has evolved from the more mature NLP and
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MILP fields, and most MINLP solvers rely heavily on such subsolvers. Among the MILP

solvers, the most recognized commercial solvers are CPLEX [52], Gurobi [149], and XPRESS

[150]. The solvers GLPK [151] and CBC [152], the latter is a part of the COIN-OR initiative

[153], and are among the most recognized open-source solvers for MILP. All of these solvers

implement an arsenal of methods within a branch and cut framework. In the NLP case,

solvers like CONOPT [154], Knitro [155], Mosek [156], and SNOPT [157] are well-known

commercial options, and IPOPT [158] is a well-known open-source solver (also part of the

COIN-OR initiative). There exists more variability in the algorithms behind NLP solvers,

e.g., CONOPT implements a Generalized Reduced Gradient (GRG) method, while IPOPT,

Knitro, and Mosek use an interior-point method, and SNOPT uses a sequential quadratic

programming (SQP) approach; see [159] for a review in NLP.

Besides convexity, some of the solvers mentioned here also require an algebraic for-

mulation of the problem. By analyzing the problem structure and applying different

reformulations, it is possible to obtain tighter relaxations. Furthermore, some of the NLP

solvers also require the nonlinear functions to be twice continuously differentiable to guar-

antee convergence, which in turn imposes additional restrictions on some of the MINLP

solvers.

In this section, we only mention the main features of the solvers, and for more details,

see the references given in the solver sections. A summary of solvers and software for

MINLP problems was previously also given by [88]. The solvers are implemented in various

programming languages, either available as standalone executables or libraries accessible

from algebraic modeling software like GAMS, AMPL, and AIMMS. Other solvers have

been implemented directly in the same programming languages as their modeling systems,

e.g., MATLAB, Python-Pyomo, Julia-JuMP. The solvers used in the numerical comparison

are listed in alphabetical order below.
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2.4.1 AlphaECP

License type: Commercial

Interfaces: GAMS, NEOS

URL: www.gams.com/latest/docs/S_ALPHAECP.html

AlphaECP (Alpha Extended Cutting Plane) is a solver based on the αECP algorithm devel-

oped by T. Westerlund’s research group at bo Akademi University and implemented in

GAMS by T. Lastusilta. Using the GAECP algorithm [120] the solver also has guaranteed

convergence for pseudoconvex MINLP problems. AlphaECP mainly solves a sequence of

MILP subproblems to generate a polyhedral outer approximation through cutting planes.

However, to speed-up convergence, it occasionally solves NLP subproblems with fixed

integer variables as well. To improve the capabilities of handling nonconvex problems, the

algorithm also employs some heuristic techniques described in [160]. An essential feature

of AlphaECP is the technique to initially only solve MILP problems to feasibility [120]. This

often results in a significant reduction in total solution time since fewer MILP subproblems

are solved to optimality. AlphaECP can use all the NLP and MILP subsolvers available in

GAMS.

2.4.2 ANTIGONE

License type: Commercial

Interfaces: GAMS, NEOS

URL: www.gams.com/latest/docs/S_ANTIGONE.html

ANTIGONE (Algorithms for coNTinuous / Integer Global Optimization of Nonlinear

Equations) is a global optimization solver developed by R. Misener and C.A. Floudas

at Princeton University. As a global solver, ANTIGONE is not limited to only convex

problems but can also solve a variety of nonconvex problems. It uses reformulations and
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decomposes nonlinear functions into constant, linear, quadratic, signomial, linear fractional,

exponential, and other general nonconvex terms. Convex relaxations are then generated

for the decomposed nonconvex terms, and the relaxations are solved in a branch and cut

framework [161, 162]. ANTIGONE uses the local solvers CONOPT or SNOPT for finding

feasible solutions and CPLEX for lower bounding MILP relaxations. The solver also uses

both feasibility- and optimality-based bound tightening to reduce the search space and

obtain tighter relaxations.

2.4.3 AOA

License type: Commercial (source code available)

Interfaces: AIMMS

URL: www.aimms.com/english/developers/resources/solvers/aoa

AOA (AIMMS Outer Approximation) is a module implemented in the AIMMS language

[163]. As the name suggests, the solver is based on OA and implements both normal OA

and the LP/NLP-BB methods. The latter is the recommended one for convex problems

and generates linearizations as lazy constraints utilizing MILP solver callbacks. AOA may

use nonlinear preprocessing and a multi-start technique to improve the performance and

its capabilities for solving nonconvex problems. The source code of AOA is included in

AIMMS, so the user can fully customize the algorithm [164]. Since the AOA algorithm

utilizes MILP callbacks, only CPLEX and Gurobi are available as linear subsolvers. For

solving NLP problems CONOPT, IPOPT, Knitro, Minos, and SNOPT can be used.

2.4.4 BARON

License type: Commercial

Interfaces: Standalone; AIMMS, AMPL, GAMS, JuMP, MATLAB, NEOS, Pyomo, YALMIP
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URL: www.minlp.com/baron

BARON (Branch and Reduce Optimization Navigator) is a global MINLP solver developed

by N.V. Sahinidis’s research group [115, 165]. The solver uses a polyhedral branch and

bound technique and solves LP relaxations in the BB nodes. However, BARON also

uses MILP relaxations as described by [166] and [167] and nonlinear relaxations [168].

Nonconvex problems are handled by generating convex underestimators and concave

overestimators combined with a spatial branch and bound technique. The solver utilizes

automatic reformulations and convexity identification to decompose nonconvex functions

into simpler functions with known convex or concave relaxations. The reformulations can

also result in tighter lifted polyhedral outer approximations as shown by [115]. BARON also

uses advanced bound tightening and range reduction techniques to reduce the search space

and uses local search techniques as primal heuristics. BARON includes IPOPT, FilterSD, or

FilterSQP for solving NLP subproblems, and it can also utilize any available NLP solver in

GAMS. Cbc, CPLEX, or Xpress can be used as LP and MILP subsolvers.

2.4.5 BONMIN

License type: Eclipse Public License (EPL 1.0)

Interfaces: Standalone; AMPL, C++, GAMS, JuMP, MATLAB, NEOS, OS, Pyomo, YALMIP

URL: projects.coin-or.org/bonmin

BONMIN (Basic Open-source Nonlinear Mixed Integer Programming) is an open-source

solver for MINLP problems developed by P. Bonami in a collaboration between Carnegie

Mellon University and IBM Research as part of the COIN-OR initiative [129]. The solver

implements several algorithms, and the user can choose between NLP-BB, LP/NLP-BB, OA,

feasibility pump, OA-based branch and cut, and a hybrid approach. Some computational

results and detailed descriptions of the main algorithms are given by [129] and [169]. As
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subsolvers, BONMIN uses IPOPT for NLP and Cbc or CPLEX for MILP problems.

2.4.6 Couenne

License type: Eclipse Public License (EPL 1.0)

Interfaces: Standalone; AMPL, C++, GAMS, JuMP, NEOS, OS, Pyomo

URL: projects.coin-or.org/couenne

Couenne (Convex Over and Under Envelopes for Nonlinear Estimation) is a global open-

source solver for MINLP problems. It was developed as part of the COIN-OR initiative by P.

Belotti in a collaboration between Carnegie Mellon University and IBM Research. The solver

implements an LP-based spatial branch and bound technique as its main algorithm, in

addition to bound reduction techniques and primal heuristics [170, 171]. Couenne features

routines for calculating valid linear outer approximations of nonconvex constraints. It

is currently the only global MINLP solver available in the COIN-OR Optimization Suite.

Couenne uses IPOPT as NLP subsolver, CBC or CPLEX as MILP subsolver and CLP, CPLEX,

Gurobi, SoPlex or Xpress as LP subsolver.

2.4.7 DICOPT

License type: Commercial

Interfaces: GAMS, NEOS

URL: www.gams.com/latest/docs/S_DICOPT.html

DICOPT (Discrete Continuous Optimizer) is a solver based on the OA method, developed

by I.E. Grossmann’s research group at Carnegie Mellon University. The solver implements

the equality relaxation and augmented penalty methods combined with OA [124]. In the

equality relaxation, the nonlinear equality constraints are relaxed as inequalities using the

signs of the corresponding Lagrangean multipliers, given by one of the NLP subproblems.
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The augmented penalty method relaxes the linearizations with slack variables which are

penalized in the objective of the MILP master problem of OA. Both methods are intended

as heuristics for nonconvex MINLP problems. However, if the equality constraints relax

as convex inequalities, the methods become rigorous. A feasibility pump algorithm is

implemented as a primal heuristic to improve the solver’s performance [148]. DICOPT can

use any available MILP and NLP subsolvers available in GAMS.

2.4.8 Juniper

License type: Open-source (MIT)

Interfaces: JuMP

URL: www.github.com/lanl-ansi/juniper.jl

Juniper is an open-source MINLP solver implemented in Julia. It is developed by O. Kröger,

C. Coffrin, H. Hijazi, and H. Nagarajan at Los Alamos National Laboratory. The solver

implements an NLP-BB method with branching heuristics and primal heuristics, such as the

feasibility pump [172]. The solver also uses parallelization capabilities available in Julia to

solve multiple NLP subproblems in parallel. For nonconvex problems, it acts as a heuristic.

It can use any NLP solver available in JuMP for solving subproblems, and it can optionally

use a MIP solver for its feasibility pump.

2.4.9 Knitro

License type: Commercial

Interfaces: AIMMS, AMPL, C++, C#, Fortran, Java, JuMP, GAMS, NEOS, Pyomo, Python,

YALMIP

URL: www.artelys.com/en/optimization-tools/knitro

Knitro is a commercial optimization software currently developed by Artelys [155]. Knitro
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includes several algorithms for dealing with continuous problems, such as interior-point and

active-set algorithms. The solver uses BB techniques for problems with discrete variables,

and the solver has three methods for dealing with MINLP problems. The first method uses

an NLP-BB algorithm, and the second method is based on the LP/NLP-BB algorithm. The

third method, based on a sequential quadratic programming approach, is mainly intended

for problems with expensive function evaluations and can handle MINLP problems where

the discrete variables are not relaxable, e.g., functions given by black-box simulators [173].

By using default settings, the solver will automatically choose which method to use.

2.4.10 LINDO

License type: Commercial

Interfaces: C, C++, Delphi, Excel/What’s Best!, Fortran, Java, JuMP, GAMS, LINGO, MAT-

LAB, NEOS, .NET, Ox, Python, R

URL: www.lindo.com

LINDO is a global solver developed by LINDO Systems Inc. [174]. It includes specific

algorithms for solving LP, quadratic programming (QP), conic programming, semidefinite

programming (SDP), and general NLP problems. For mixed-integer problems, LINDO

uses a branch and cut approach [175]. The solvers deal with nonconvex problems by using

reformulations and convex relaxations within a BB framework. LINDO also performs

preprocessing combined with bound tightening and uses several local search techniques to

find reasonable solutions quickly. Nonsmooth functions such as abs, min, floor, etc., are

dealt with automatically via reformulation techniques. The solver can recognize convex

quadratic, conic, and SDP terms. An option for turning off the global search strategies, i.e.,

for convex problems, is available. To solve general nonlinear problems, LINDO requires

the NLP solver CONOPT. Furthermore, if the solver Mosek is available, it efficiently solves
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conic and SDP problems.

2.4.11 Minotaur

License type: Open-source

Interfaces: Standalone; AMPL, C++

URL: wiki.mcs.anl.gov/minotaur

Minotaur (Mixed-Integer Nonlinear Optimization Toolkit: Algorithms, Underestimators,

and Relaxations) is an open-source toolkit for solving MINLP problems developed in col-

laboration between Argonne National Laboratory, Indian Institute of Technology Bombay,

and the University of Wisconsin-Madison [130]. It implements several different algorithms

in a common framework. Currently, Minotaur has two main approaches for convex MINLP

based on the NLP-BB and LP/NLP-BB algorithms. It also has a global strategy for quadrat-

ically constrained QP. Minotaur implements both a nonlinear presolver and a feasibility

pump heuristic. Minotaur can use both filterSQP and IPOPT as NLP subsolvers and CLP or

CPLEX as LP subsolvers.

2.4.12 Muriqui

License type: Open-source (MIT)

Interfaces: Standalone; AMPL, C++

URL: www.wendelmelo.net/software

Muriqui is an open-source MINLP solver developed by W. Melo, M. Fampa, and F. Raupp,

recently presented by [176]. The solver has several algorithms implemented, e.g., ECP,

ESH, OA, LP/NLP-BB, and NLP-BB, as well as some heuristics approaches [177]. The

solver provides a platform for using the most common algorithms for convex MINLP with

several customizable parameters for the end-user. For solving the resulting MILP and NLP
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subproblems, Muriqui can use CPLEX, Gurobi, Xpress [150], Mosek, Glpk [151], IPOPT,

and Knitro. Muriqui also utilizes callback functionality and lazy constraints in CPLEX and

Gurobi to perform the single-tree search in LP/NLP-BB and the hybrid algorithm.

2.4.13 Pavito

License type: Open-source (MPL 2.0)

Interfaces: JuMP

URL: www.github.com/juliaopt/pavito.jl

Pavito is an open-source solver for convex MINLP implemented in Julia by C. Coey, M.

Lubin, and J.P. Vielma. Its functionality was previously part of the Pajarito solver for conic

MINLP. However, the NLP functionality was recently moved into the Pavito solver [178].

Contrary to the other solvers presented in this chapter, Pajarito uses a conic problem formu-

lation based on a conic Outer-approximation algorithm [42]. Conic MINLP formulations

can be built using the Disciplined Convex Programming (DCP) modeling paradigm, which

may require a reformulation of the test instances. Because of this, Pajarito is left out of the

numerical comparison and only Pavito is included. Pavito is based on an OA algorithm

and can perform a single-tree search similar to LP/NLP-BB by utilizing callbacks to the

MILP subsolver. Pavito can use any MILP and NLP subsolver available in JuMP for solving

subproblems.

2.4.14 SBB

License type: Commercial

Interfaces: GAMS, NEOS

URL: www.gams.com/latest/docs/S_SBB.html

SBB (Simple Branch and Bound) is a solver in GAMS based on NLP-BB, developed by
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ARKI Consulting and Development A/S. SBB is based on a BB method that solves nonlinear

relaxations in NLP problems at each node. For nonconvex MINLP problems, it works

as a heuristic approach without convergence guarantees. For improved robustness, the

solver has functionality for dealing with NLP solver failures by changing either subsolver

or subsolver parameters. The solver also uses primal heuristics through the GAMS Branch-

Cut-and-Heuristic facility [179]. SBB can use any of the available NLP solvers in GAMS for

solving the relaxed subproblems. However, it works best with solvers that take advantage

of a near-optimal starting point such as CONOPT, Minos, and SNOPT.

2.4.15 SCIP

License type: free for academic use (ZIB academic license); commercial

Interfaces: Standalone; AMPL, C, GAMS, JuMP, MATLAB, NEOS, Java, Pyomo, Python

URL: scip.zib.de

SCIP (Solving Constraint Integer Programs) was originally developed by T. Achterberg

at the Zuse Institute Berlin in cooperation with TU Darmstadt, RWTH Aachen, and the

University of Erlangen-Nürnberg, as a general framework based on branching for constraint

integer and mixed-integer programming using branch-cut-and-price, cf. [180]. The solver

is intended to be modular, and it utilizes plugins to make it easy to modify [181]. SCIP

was extended by [182] to solve convex and nonconvex MINLP problem by utilizing poly-

hedral outer approximations and a spatial branch and bound technique. The solver uses

LP relaxations and cutting planes to provide strong dual bounds while using Constraint

Programming to handle arbitrary (nonlinear) constraints and propagation to tighten do-

mains of variables. A variety of primal heuristics and bound tightening techniques are also

utilized in the solver. SCIP includes SoPlex for solving the LP subproblems and utilizing

CLP, CPLEX, Gurobi, Mosek, or XPress if available. Furthermore, the solver uses IPOPT for
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solving NLP subproblems in the nonlinear strategy.

2.4.16 SHOT

License type: Open-source (EPL 2.0)

Interfaces: Standalone; C++, GAMS

URL: www.github.com/coin-or/shot

SHOT (Supporting Hyperplane Optimization Toolkit) is an open-source solver for convex

MINLP developed by A. Lundell, J. Kronqvist and T. Westerlund at bo Akademi University

[121, 183]. The solver utilizes polyhedral outer approximations, generated mainly by

the ESH method, and iteratively constructs an equivalent MILP problem for its lower

bound. For the upper bound, SHOT utilizes primal heuristics, such as solving fixed NLP

problems. If either CPLEX and Gurobi are used as MILP subsolver, SHOT can use a single-

tree approach similar to the LP/NLP-BB technique. The supporting hyperplanes are then

dynamically added by utilizing callbacks and lazy constraints, enabling the MILP solver to

continue without rebuilding the branch and bound tree. If Cbc is used as MILP subsolver, a

multi-tree strategy is used. The tight integration with the MILP solvers enables SHOT to

fully benefit from their cut generating procedures, advanced node selection, and branching

techniques. SHOT also includes the functionality to solve MIQP subproblems with CPLEX

and Gurobi. The NLP problems are solved with either IPOPT or any of the applicable

solvers in GAMS. A version of SHOT with reduced functionality, e.g., only utilizing the

multi-tree approach, is also available for Wolfram Mathematica [184].

2.4.17 Other MINLP solvers

Besides the solvers mentioned above, there are a few others solvers capable of solving

convex MINLP problems that the authors are aware of. It should be noted that the solvers
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left out of the numerical comparison are not necessarily inferior compared to the other

solvers. These solvers have been left out of the comparison due to one of the following

reasons: not publicly available, not maintained within the last years, or unable to read the

problem formats available in MINLPlib.

bnb is a MATLAB implementation of NLP-BB by K. Kuipers at the University of Groningen.

The solver uses the fmincon routine in MATLAB’s Optimization Toolbox for solving the

integer relaxed subproblems. The MATLAB code for the solver can be downloaded from

www.mathworks.com/matlabcentral/fileexchange/95-bnb.

FICO Xpress-SLP is a solver currently developed by FICO [185] and is available as both

standalone binaries and a FICO Xpress-MOSEL module. The solver has an interface to

Python and can be used in several other programming environments through the BCL

Builder Component Library [185]. Xpress-SLP is a local solver designed for large-scale

nonconvex problems, and global optimality is only guaranteed for convex problems. For

general MINLP problems, the solver uses a mixed-integer successive linear programming

(MISLP) approach. With the MISLP approach, it is, e.g., possible to use an NLP-BB technique

where the NLP subproblem at each node is solved using a successive linear programming

(SLP) technique. For certain types of problems, such as convex MIQP, MIQCQCP, and

MISOCP, the solver detects convexity and automatically reverts to FICO Xpress’s purpose

written solvers. The solver also includes some heuristic approaches for quickly obtaining

solutions. More information about FICO and its solvers can be found at www.fico.com/

en/products/fico-xpress-optimization.

FilMINT is an MINLP solver developed by K. Abhishek, S. Leyffer, and J. Linderoth based

on the NLP/LP-BB algorithm [128]. The solver is built on top of the MILP solver MINTO
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[186] and uses filterSQP [187] for solving NLP relaxations. By utilizing functionality in

MINTO, FilMINT can combine the NLP/LP-BB algorithm with features frequently used by

MILP solvers, such as cut generation procedures, primal heuristics, and enhanced branching

and node selection rules. There is an AMPL interface available for FilMINT, and the solver

can also be used through the NEOS server. For more details, we refer to [128].

fminconset is an implementation of NLP-BB in MATLAB by I. Solberg. The NLP subprob-

lems are solved with MATLAB’s fmincon routine in the Optimization Toolbox. The solver is

available to download from www.mathworks.com/matlabcentral/fileexchange/

96-fminconset.

GAECP (Generalized Alpha Extended Cutting Plane) is a solver based on the GAECP

algorithm [120] developed by T. Westerlund. The solver also uses supporting hyperplanes as

in the ESH algorithm and can guarantee convergence for MINLP problems with nonsmooth

pseudoconvex functions. The solver is described in detail in [188].

MILANO (Mixed-Integer Linear and Nonlinear Optimizer) is a MATLAB-based MINLP

solver developed by H. Y. Benson at Drexel University. There are two versions of the solver

available; one uses an NLP-BB technique, and the other is based on OA. The NLP-BB tech-

nique version uses an interior point NLP solver with warm-starting capabilities described in

[189]. The solver can be downloaded from www.pages.drexel.edu/˜hvb22/milano.

MindtPy (Mixed-Integer Nonlinear Decomposition Toolbox in Pyomo) is an open-source

software framework implemented in Python for Pyomo by the research group of I. Gross-

mann at Carnegie Mellon University. This toolbox implements the ECP, GBD, and OA

algorithms, together with primal heuristics. It relies on Pyomo to handle the result-
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ing MILP and NLP subproblems, allowing any of the solvers compatible with Pyomo

to be used with MindtPy [190]. The toolbox is available in the following repository

www.github.com/bernalde/pyomo/tree/mindtpy.

MINLP BB was developed by S. Leyffer and R. Fletcher as a general solver for MINLP

problems [191]. The solver is based on NLP-BB and uses filterSQP for solving the continuous

relaxations. There are interfaces to AMPL and Fortran. Furthermore, the solver can also be

used in MATLAB through the TOMLAB optimization environment [192]. More information

about the solver is available at wiki.mcs.anl.gov/leyffer.

MINOPT (Mixed Integer Nonlinearl Optimizer) was developed by C.A. Schweiger and

C.A. Floudas as a modelling language for a wide range of optimization problems [193]. For

MINLP problems MINOPT offered several algorithms, such as variants of OA and GBD.

MISQP (Mixed-Integer Sequential Quadratic Programming) is a solver based on a modi-

fied sequential quadratic programming (SQP) algorithm for MINLP problems presented by

[194]. The solver is developed by K. Schittkowski’s research group and the University of

Bayreuth. MISQP is intended for problems where function evaluations may be expensive,

e.g., where some function values are obtained by running a simulation. Unlike some of the

other solvers, MISQP does not need to evaluate functions at fractional values for integer

variables which can be an important property, e.g., for simulation-based optimization tasks.

There is an interface in MATLAB through TOMLAB as well as a standalone Fortran interface.

A more detailed description of the solver is available at tomwiki.com/MISQP.

Finally, there are a few other deterministic solvers that the authors are aware of, capable

of handling convex MINLP problems but mainly focusing on nonconvex MINLP. These
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solvers are: Decogo (DECOmposition-based Global Optimizer; [195]), NOMAD [196], POD

(Piecewise convex relaxation, Outer-approximation, and Dynamic discretization; [197]),

LaGO (Lagrangian Global Optimizer; [198]). For more details on nonconvex MINLP see,

e.g., [199], [136] and [117].

2.5 Benchmark details

The objective of the forthcoming two sections is to compare some of the convex MINLP

solvers mentioned in the previous section by applying them to a comprehensive set of

test problems. There are some benchmarks available in literature, e.g., [121], [200], [160]

and [128]. However, these are limited to only a few of the solvers considered here or

used a smaller set of test problems. The goal here is to give a comprehensive, up-to-date

comparison of both open-source and commercial solvers available in different environments.

The main interest has been to study how the solvers perform on a desktop computer. All

the benchmarks were performed on a Linux-based PC with an Intel Xeon 3.6 GHz processor

with four physical cores (able to process eight threads at once) and 32 GB memory. We have

allowed the solvers to use a maximum of eight threads to replicate a real-world situation to

solve the problems with all the available resources. However, it is worth mentioning that

the solvers and subsolvers utilize parallelism to different extents.

In the comparison, we have included three versions of BONMIN: BONMIN-OA based

on OA, BONMIN-BB based on NLP-BB, and BONMIN-HYB, which is a variant of the

LP/NLP-BB algorithm. We have also included two versions of Minotaur: Minotaur-QG

based on the LP/NLP-BB algorithm and Minotaur-BB based on NLP-BB. Two versions of

Knitro were considered: Knitro-QG based on LP/NLP-BB and Knitro-BB based on NLP-BB.

These different versions of the same solver were included since they represent different
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Table 2.1: The table shows which subsolvers were used with each solver, and on which
platform the solver was run on.

MINLP solver
Subsolvers used

Platform
MILP/LP NLP

AlphaECP 2.10.06 CPLEX 12.8 CONOPT 3.17I GAMS 25.1.2
Antigone 1.1 CPLEX 12.8 CONOPT 3.17I GAMS 25.1.2
AOA CPLEX 12.8 CONOPT 3.14V AIMMS 4.59.4.1
BARON 18.5.8 CPLEX 12.8 CONOPT 3.17I GAMS 25.1.2
BONMIN 1.8 CPLEX 12.8 IPOPT 3.12 GAMS 25.1.2
Couenne 0.5 CLP 1.16 IPOPT 3.12 GAMS 25.1.2
DICOPT 2 CPLEX 12.8 CONOPT 3.17I GAMS 25.1.2
Juniper 0.2.0 CPLEX 12.8 IPOPT 3.12.1 JuMP 0.18.4
Knitro 10.3.0 – – GAMS 25.1.2
Lindo 11.0 CPLEX 12.8 CONOPT 3.17I GAMS 25.1.2
Minotaur 05-21-2018 CPLEX 12.6.3 filterSQP 20010817 –
Muriqui 0.7.01 CPLEX 12.8 IPOPT 3.12.1 –
Pavito 0.1.0 CPLEX 12.8 IPOPT 3.12.1 JuMP 0.18.4
SBB CPLEX 12.8 CONOPT 3.17I GAMS 25.1.2
SCIP 5.0 CPLEX 12.8 IPOPT 3.12 GAMS 25.1.2
SHOT 0.9.3 CPLEX 12.8 CONOPT 3.17I GAMS 25.1.2

approaches for solving the MINLP problems, and their performance varies significantly.

The solvers in the comparison are implemented in and used from different environments

(GAMS, AIMMS, and Julia/JuMP), and the subsolvers available may vary. Where possible,

we have tried to use CONOPT and IPOPT as the NLP solver and CPLEX as the (MI)LP

solver. The linear solver used in IPOPT was MA27 [201] which is the default if available.

The latest version of CPLEX (12.8) was used; the exception is Minotaur, which we only got

working with version 12.6.3. Couenne warns against using another LP solver than CLP,

which we respected since it improved its performance significantly. For Minotaur, filterSQP

was used as an NLP subsolver as it is recommended over IPOPT and overall performed

better. A complete list of solvers and subsolvers used is given in Table 2.1.

The termination criteria used with the solvers is the relative objective gap between the
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upper and lower objective bounds, where we used a tolerance of 0.1% with all the solvers.

Specific solver options were given to ensure that the solvers did not terminate prematurely

due to other built-in termination criteria, avoiding apparent solver failures. These options

are listed in Appendix B.B. Except for these, default settings were used for all solvers.

Furthermore, a wall clock time limit of 900 seconds was also used with all solvers. Even

with the 15-minute time limit per problem, the total running time for the experiments was

more than two weeks.

2.5.1 Problem sets

The problems considered here are from the problem library MINLPLib [88]?, which as of July

2018 consists of 1534 instances. These instances originate from many different sources and

applications, as indicated in the library. Out of the instances, we have chosen all problems

that satisfy the following criteria: classified as convex, containing at least one discrete

variable and some nonlinearity (either in the objective function or in the constraints). We

also excluded the instance meanvarxsc utilizing semicontinuous variables not supported

by all of the solvers. The smallinvSNPr* instances were also excluded since they recently

lost their convex classification in MINLPLib due to rounding errors in the problem format

that made them slightly nonconvex. In total, 335 instances satisfied the given criteria, and

these constitute our master benchmark test set. Some statistics of the problems are available

in Table 2.2.

The problems selected represent various types of optimization problems with different

properties such as the number of variables, number of discrete variables, and number of

nonlinear terms. Some of the problems also represent different formulations of the same

problems, e.g., both big-M and convex hull formulation of disjunctions. Therefore, it is of

?http://www.minlplib.org
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Table 2.2: Statistics of the convex MINLP instances used in the benchmark

objective function type problem count

linear objective 244
quadratic objective 66
general nonlinear objective 25

minimum arithmetic
mean

maximum

number of discrete variables 2 93 1500
number of variables 2 989 107,222

number of constraints 0 1213 108,217
number of nonlinear constraints 0 16 112

number of nonlinear variables 1 132 4521

interest to compare the solvers not only on the entire test set but also on smaller subsets

with specific properties. We have partitioned the test set into groups to represent both

integer and nonlinear properties and compare both the solvers and algorithms for different

problems. The following criteria were used to partition the test problems into subsets:

Continuous relaxation gap. By solving a continuous relaxation of the MINLP problem and

comparing the optimal objective value of the relaxed problem with the actual optimal

objective value, we can determine the continuous relaxation gap. To avoid differences

due to scaling, we use a relative value calculated as

Relative continuous relaxation gap =
|z∗− z̄|

max {|z∗|,0.001}
·100%, (2.8)

where z∗ denotes the optimal objective value, and z̄ denotes the optimum of the

continuous relaxation. The continuous relaxation gap varies significantly for the test

problems: some instances have a gap larger than 1000%, and for some instances, it

is smaller than 1%. Based on the gap, given by Eq. (2.8), we have divided the test

problems into two subsets: problems with a large gap (≥ 50%) and problems with
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a small gap (< 50%). According to this classification, there are 151 problems with a

large gap (average gap 188%) and 184 with a small gap (average gap 7.2%).

Nonlinearity. Some test problems are almost linear with only a few nonlinear terms,

whereas some test problems are nonlinear in each variable. The test problems are here

classified based on the following nonlinearity measure

Degree of nonlinearity =
nnonlin

ntot
·100%, (2.9)

where nnonlin is the number of variables involved in a nonlinear term and ntot is the

total number of variables. The test problems are divided into the following two

categories: problems with high degree of nonlinearity (≥ 50%), and problems with

low degree of nonlinearity (< 50%). The set with high degree of nonlinearity contains

103 problems with an average nonlinearity measure of 89%, while the set with low

degree of nonlinearity contains 232 problems with an average nonlinearity measure

of 14%.

Discrete density. The number of discrete variables also varies significantly in the test

problems. Some problems contain only a few discrete variables, while others contain

only discrete variables. To avoid a division based mainly on the problem size, we

have chosen to divide the problems based on the following measure

Discrete density =
nint + nbin

ntot
·100%. (2.10)

Here nint and nbin are the number of integer and binary variables, and ntot is the total

number of variables. Again the test problems are divided into two subsets: problems

with a high discrete density (≥ 50%) and problems with a low discrete density (< 50%).

The first category contains 120 problems with an average discrete density of 81%, and

the second category contains 215 problems with an average density of 27%.
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A list of the problems in each category is given in Appendix B.A, which also shows the

continuous relaxation gap, degree of nonlinearity, and discrete density for each test problem.

Scatter plots are also presented in Appendix B.A that shows there is little to no correlation

between the problem categories.

2.5.2 Reporting

All the results were analyzed using PAVER [202], a tool for comparing the performance

of optimization solvers and analyzing the quality of the obtained solutions. The reports

generated by PAVER and all the results obtained by the individual solvers are available at

andreaslundell.github.io/minlpbenchmarks. The parameters used for generat-

ing the reports are also available within the reports.

A comment must be made regarding the choice of the parameter gaptol in PAVER,

which was set to the value 1.002 · 10−3 instead of the value used as termination criteria

(1 · 10−3 = 0.1%). The small perturbation is needed due to differences in how the solvers

calculate the relative gap. Some solvers calculate the relative gap by dividing the gap by

the lower bound. In contrast, others divide by the smallest absolute value of either the

upper or lower bound. For example, BARON and ANTIGONE would, without the small

perturbation, seem to terminate prematurely on a large number of instances, and these

would all be marked as failed by PAVER.

PAVER also calculates so-called virtual best and virtual worst solvers. The virtual best

solver is the best (in our graphs the fastest) successful solver selected for each problem

instance. The virtual worst is then the slowest for each instance. These virtual solvers

provide a good comparison for how good or bad an individual solver is compared to all the

solvers.

Since MINLPLib also provides a list of known optimal objective values and upper and
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lower objective bounds, PAVER can compare the obtained solutions by the known bounds

in MINLPLib. PAVER is, thus, also able to calculate the so-called primal gap, i.e., the

difference between the obtained solution and the best-known integer solution, which can

be used to analyze the quality of the obtained solutions. For example, there are cases where

the solver returns the optimal solution. However, it has not been able to verify optimality

within the time limit. PAVER also uses known objective bounds available in MINLPLib to

check whether the solvers obtained correct solutions and bounds for the test problems.

2.6 Results

The results are presented using solution profiles showing the number of individual problems

a solver can solve as a function of time. Note that the profiles do not represent the cumulative

solution time but show how many individual problems the solvers can solve within a

specific time. We have not used performance profiles where the time is normalized with

respect to best solver [204] since these are not necessarily good for comparing several solvers

as noted by [205].

In all solution profiles in this section, we have chosen to divide the solvers into two

categories to make the solution profiles more easily readable. The solvers are divided

into MILP decomposition-based solvers and BB-based solvers. The division is not entirely

straightforward since some of the solvers could fit into both categories. However, the

division is only intended to make it easier to read the results. The solvers classified as

MILP decomposition-based solvers are AlphaECP, AOA, BONMIN-OA, DICOPT, Knitro-

QG, Minotaur-QG, Muriqui, Pavito, and SHOT. Solvers classified as BB-based solvers are

ANTIGONE, BARON, BONMIN-BB, BONMIN-HYB, Couenne, Juniper, Knitro-BB, LINDO,

Minotaur-BB, SBB, and SCIP.
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The time scales are also divided into two parts to better highlight differences between

the solvers. It is linear in the first 10 seconds and logarithmic between 10 and 900 seconds.

In each plot, the solvers in the nonactive group are indicated with thin gray lines, while

the others are as shown in the respective legends. The same line style is used for a specific

solver in all figures. If there are several different strategies used with the same solvers,

different line types (solid, dashed, dotted) are used while the color remains the same. In the

profile’s right margin, the solvers are ranked according to the number of solved problems

(as indicated within parenthesis). The virtual best and virtual worst solvers are shown in

the figures as the top and bottom thick gray lines, and the region between them is shaded.

Figures 2.1 and 2.2 show the solution profiles when applying the solvers on the complete

set of test problems. As mentioned, the solution profiles indicate the number of problems

that the individual solvers have solved as a function of time. A problem is defined as solved

in this set of experiments if the relative objective gap, as calculated by PAVER, is ≤ 0.1002%

(see the note above). To better exemplify the differences between the solvers, the same

data is used for generating Table 2.3 which shows “snapshots” of the solution profile for

different levels of the number of solved problems.

Out of the BB-based solvers, BARON can solve the most instances (306) within the time

limit, followed by SCIP (295) and Minotaur-BB (258). SHOT can solve the most problems

out of the MILP decomposition-based solvers (312), closely followed by AOA (310) and

Muriqui (301). SHOT and AOA are overall the fastest solvers for the test set. The virtual

best solver is able to solve 326 of the problems, while the virtual worst only manages to

solve 39. The virtual best and worst solvers indicate a considerable spread in the solvers’

performance for different problems and highlight the importance of choosing a solver well

suited for the problem type. The virtual best solver also shows that many test problems are

manageable for at least one of the solvers while judging by the virtual worst solver. The
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test set is challenging.
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Figure 2.3: The solution status returned from the solvers.
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Figure 2.4: The number of solutions per solver flagged as failed by PAVER. Most often, the
cause is that the returned solution is not within the bounds provided in MINLPLib.

Figure 2.3 presents statistics regarding the termination of the solvers, e.g., how many

errors and timeouts occurred. These values are as reported by the solver but also include

solver crashes where no solution was returned. PAVER also verifies if the solver runs were
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Figure 2.5: The number of instances in the benchmark where the solvers found a a solution
within 0.1%, 1% and 10% of the best known objective value.
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Figure 2.6: The number of instances in the benchmark where the solvers obtained an
objective gap of 0.1%, 1% and 10%.

completed successfully, e.g., by comparing the objective values returned to known values or

bounds; if there is a discrepancy, these instances are given the status failed. Statistics on

64
CHAPTER 2. A REVIEW AND COMPARISON OF SOLVERS FOR CONVEX MINLP



2.6 RESULTS

instances marked as failed are shown in Figure 2.4.

Figure 2.5 shows the number of problems where the solver was able to obtain a solution

within 0.1% and 1% of the best-known solution, but not necessarily able to verify optimality.

The figure shows that none of the solvers could obtain a solution within 1% of the best-

known solution for all of the problems, given the 900 second time limit. For example,

BARON could obtain a solution within 1% of the optimum for 317 problems. SHOT

obtained such a solution for 320 problems.

The number of instances solved to a relative objective gap, i.e., difference between the

upper and lower objective bound, of 0.1%, 1% and 10%, per solver is shown in Figure 2.6.

By comparing Figures 2.5 and 2.6, it can be observed that some of the solvers can obtain a

solution within 0.1% of the optimum to significantly more problems than they can verify as

optimal. For example, AlphaECP and ANTIGONE seem to be struggling with obtaining a

tight lower bound for some of the problems since they can obtain solutions within 0.1% for

300 (AlphaECP) and 275 (ANTIGONE) problems, while only verifying optimality for 276

and 236 instances respectively. Since ANTIGONE is a global solver without a user-selected

convex strategy, it might fail to recognize some of the problems as convex and generate

weaker relaxations. This would explain the difference between the number of optimal

solutions found and the number of solutions verified as optimal.

Since it may be difficult to draw more detailed conclusions from the results in Figures 2.1

and 2.2, the next sections consider subsets of test problems with specific properties. A

summary of the results for the different subsets is given in Section 2.6.4.

2.6.1 Impact of the continuous relaxation gap

This section considers problems with a large continuous relaxation gap and problems with

a small continuous relaxation gap. Figure 2.7 shows the solution profiles of the solvers for
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MILP decomposition based solvers
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Figure 2.7: The solution profiles for problem instances with a high continuous relaxation
gap as indicated in Appendix B.A.
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MILP decomposition based solvers
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Figure 2.8: The solution profiles for problem instances with a low continuous relaxation
gap as indicated in Appendix B.A.
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the problems with a large gap, and Figure 2.8 shows the solution profiles for those with a

small gap. By comparing the figures, there is a clear difference for the solvers based on a BB

approach. These perform better on the problems with a small gap than those with a large

continuous relaxation gap. For example, BONMIN-BB is one of the most efficient solvers

for problems with a small gap in speed and number of solved problems. At the same time,

it is outperformed by several solvers for problems with a large gap.

The NLP-BB-based solvers, BONMIN-BB, Juniper, Knitro-BB, Minotaur-BB, and SBB,

solve significantly fewer problems with a large gap than the solvers based on either an

ECP, ESH, or OA (AlphaECP, BONMIN-OA, DICOPT, and SHOT). The BB trees may

become larger for problems with a large continuous relaxation gap, and the more expensive

subproblems in each node may make the NLP-BB-based solvers suffer performance-wise.

Using a polyhedral approximation within a BB framework, BARON and SCIP are not

as strongly affected by the relaxation gap; this could partially be due to having simpler

subproblems at each node.

Overall, the MILP decomposition-based solvers seem to be less affected by the continuous

relaxation gap than the BB-based ones. Several of the MILP decomposition-based solvers,

such as AOA and SHOT, are closely integrated with the MILP subsolver (CPLEX in this

case) and rely on it for handling the integer requirements. This close integration enables

the usage of several advanced features from the more mature MILP solvers. In contrast,

NLP-BB-based solvers often need to manage the branching, handling the BB tree, cut

generation, and other techniques on their own. One can expect this advantage to be more

critical for problems that are challenging due to the integer requirements, which is often a

trait of problems with large continuous relaxation gaps. As an example of the impact on the

performance of an MILP decomposition-based solver that handles the integer requirements

itself, consider Minotaur-QG (as it only uses CPLEX as an LP subsolver): The performance
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difference between Minotaur-QG and AOA are significant, even though they utilize the

same basic algorithm.

2.6.2 Impact of nonlinearity

In this section, problem types with a high and low degree of nonlinearity are compared,

and the results are shown in Figures 2.9 and 2.10. Several solvers use linearizations to

approximate the nonlinear functions in some steps of the solution procedure, whereas

solvers using an NLP-BB approach directly treat the nonlinearity in each node of the BB

tree. As expected, most of the solvers utilizing linearizations perform significantly better on

the problems with a low degree of nonlinearity since BONMIN-OA, DICOPT, and SCIP are

among the most efficient solvers in terms of both speed and number of problems solved.

However, for problems with a high degree of nonlinearity, they are outperformed by the

NLP-BB-based solvers BONMIN-BB, Knitro-BB, Minotaur-BB, and SBB.

SHOT and the LP/NLP-BB-based solvers AOA, Minotaur-QG, and Muriqui have quite

similar behavior for both types of problems and perform well in both categories. These

solvers rely on linearizations of the nonlinear constraints. Thus, one would expect them

to be negatively affected by the degree of nonlinearity. However, they all use a relatively

similar single-tree approach where NLP subproblems are solved in some of the nodes,

which may help them cope with a high degree of nonlinearity. The LP/NLP-BB-based

solver Knitro-QG also performs exceptionally well for problems with a high degree of

nonlinearity.

Most affected by the degree of nonlinearity seem to be the NLP-BB-based solvers. For

problems with a high degree of nonlinearity, they performed well, with several of the NLP-

BB-based solvers being among the most efficient ones. Thus, in this case, there seems to be

a clear advantage of directly treating the nonlinearities. However, for the problems with a
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low degree of nonlinearity, the NLP-BB-based solvers did not perform as well compared to

the other solvers.

2.6.3 Impact of discrete density

Finally, we compare how the solvers are affected by the relative number of discrete variables,

i.e., integer, and binary variables. Figures 2.11 and 2.12 show how the solvers perform for

problems with high and low discrete density.

The MILP decomposition-based solvers perform similarly for both types of problems.

No obvious conclusions can be drawn from the results. However, again there is a clear

difference for the NLP-BB-based solvers. Surprisingly, many of these solvers performed

better than the other ones on the high discrete density set of problems. One could expect a

correlation between the discrete density and the continuous relaxation gap. A high discrete

density would result in a high continuous relaxation gap. However, as shown in Figure B.1

in Appendix B.A, there is no correlation between the two for this set of test problems. Thus,

by analyzing the results, there is no clear reason why the NLP-BB-based solvers perform

better for problems with a high discrete density. However, one should keep in mind that

the test set is somewhat limited.

Both BARON and SHOT perform well on both sets of test problems while performing

somewhat better on problems with a low discrete density. The OA approach seems to be

well suited for problems with a low discrete density. DICOPT is one of the most efficient

solvers, and BONMIN-OA also manages to solve a large portion of the problems. AOA and

Muriqui, integrating the LP/NLP-BB method through callbacks and lazy constraints with

the MILP solver, also perform well on both categories.
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MILP decomposition based solvers
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Figure 2.9: The solution profiles for problem instances with a high level of nonlinear
variables as indicated in Appendix B.A.
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MILP decomposition based solvers
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Figure 2.10: The solution profiles for problem instances with a low level of nonlinear
variables as indicated in Appendix B.A.
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MILP decomposition based solvers
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Figure 2.11: The solution profiles for problem instances with a high level of discrete variables
as indicated in Appendix B.A.
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MILP decomposition based solvers
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Figure 2.12: The solution profiles for problem instances with a low level of discrete variables
as indicated in Appendix B.A.
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2.6.4 Summary of the results

The solvers are affected by the continuous relaxation gap, degree of nonlinearity and

discrete density summarized in Table 2.4. The table shows the number of problems solved

within each category and an indicator of how the solvers’ performances were affected by

the specific properties. The performance indicator tries to show how the performance of a

solver is affected by the problem properties with respect to the other solvers. Suppose a

solver clearly performed better in a category with respect to speed and number of solved

problems. In that case, it is indicated by ‘+’, and similarly, ‘–’ indicates that the solver

performed worse for that category of problems. If the performance is similar within both

categories, it is indicated by ‘∼’. Each performance indicator has been chosen by comparing

how a specific solver performed in both the high and low categories with respect to the

other solvers. Note that a ‘–’ sign does not necessarily indicate that the solver performed

poorly; it simply states that the solver did not perform as well as in the other category.

For example, for problems with a low degree of nonlinearity, DICOPT is one of the fastest

solvers. For the problems with a high degree of nonlinearity, DICOPT also performs well,

but not in the other category. This is indicated by a ‘+’ and ‘–’ sign in Table 2.4. That

there are no significant changes for the performance of AOA concerning both categories is

indicated by ‘∼’ sign.

These indicators were obtained by carefully analyzing the performance profiles. They are

not intended as a grade of the solver but to show how it is affected by different problem

properties. The results presented in Table 2.4 indicates that BB-based solvers seem to be more

affected by the problem properties considered here compared to the MILP decomposition-

based solvers. One possible explanation for the differences between the two types of solvers

is that several MILP decomposition-based solvers rely heavily on the MILP subsolver and

benefit from several advanced features from the MILP solver.
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Comparing the global solvers (ANTIGONE, BARON, Couenne, LINDO, and SCIP) with

the convex solvers is not entirely fair since the global solvers can solve a broader class of

problems. In the numerical comparison, one should keep in mind that these global solvers

are intended for different (more general) types of problems. Some of these solvers do not

have a convex option, and thus, they have access to less information about the problem

and might treat it as nonconvex. For example, the performance difference of ANTIGONE

and Couenne compared to BARON and SCIP may be explained with the solvers treating

some of the convex functions as nonconvex, and therefore, generate unnecessarily weak

relaxations. BARON seems to be very efficient at identifying convex problems since it can

deal with the problems in the benchmark set in such an efficient manner. Even if it is a

global solver capable of handling various nonconvex problems, it is also one of the most

efficient solvers for convex problems.

Furthermore, one should not draw any conclusions on how the solvers perform on

nonconvex problems based solely on the results presented in this chapter. For example, the

convex strategies in AOA and SHOT, the two most efficient solvers for this set of problems,

do not necessarily work well for nonconvex problems. There is another strategy in AOA

intended as a heuristic for nonconvex problems. Some of the nonglobal solvers may work

quite well as heuristics for nonconvex problems, of course, without any guarantee of finding

the global or even a feasible solution.

2.7 Conclusions

The comparisons presented in this chapter are mainly intended to help the readers make

informed decisions about which tools to use when dealing with different types of convex

MINLP problems. In the previous sections, we have shown how 16 different solvers
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performed on a test set containing 335 MINLP instances. By comparing the solvers on

MINLP instances with different properties, we noticed significant differences in the solvers’

performance. For example, the solvers based on NLP-BB were strongly affected by both the

continuous relaxation gap and the degree of nonlinearity. Several solvers are based on the

same main algorithms. However, they differ significantly in terms of speed and number

of problems solved. The differences are mainly due to different degrees of preprocessing,

primal heuristics, cut generation procedures, and different strategies used by the solvers.

The performance differences highlight the importance of such techniques for efficient solver

implementation.

For the test set considered here, SHOT and AOA were the overall fastest solvers. Both

solvers are based on a single-tree approach closely integrated with the MILP solver by

utilizing callbacks to add the linearizations as lazy constraints. The results show the benefits

of such a solution technique and support the firm belief in the single-tree approach by [128]

and [104]. The close integration with the MILP solver allows AOA and SHOT to benefit

from different techniques integrated within the MILP solver, such as branching heuristics,

cut generation procedures, and bound tightening.

Overall, several of the solvers performed well on the test set and solved a large portion

of the problems. The most instances any solver could solve within the time limit were

312 instances. By combining all the solvers, we solved 326 of the 335 MINLP problems

to a 0.1% guaranteed optimality gap. However, it should be noted that many of the test

instances are pretty small and straightforward compared to industry-relevant problems. Still

today, real-world problems must often be simplified and reduced in size to obtain tractable

formulations, in the process limiting the practical benefits of MINLP. Thus, to fully benefit

from convex MINLP as a tool for design and decision-making, further algorithmic research

and solver software development is required. We also hope that this chapter encourages
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MINLP users to submit their problems to the instances libraries, e.g., MINLPLib and

www.minlp.org, to benefit both MINLP solver developers and end-users. Finally, we want

to comment on mixed-integer disciplined convex programming (MIDCP). Pajarito is a tool

mainly developed to deal with MICP problems using a disciplined convex programming

(DCP) approach, a different modeling paradigm based on a different problem formulation.

The MIDCP formulation enables Pajarito to utilize lifted problem formulations, resulting in

tighter approximations. Here we have not used the MIDCP problem formulation but the

standard convex MINLP formulation. Reformulating the problems as a MIDCP problem has

been shown beneficial for Pajarito [42]. However, such formulations were not considered

here. At the moment, the solver does not have the functionality to reformulate the problems

automatically.

Finally, we want to share some ideas regarding future work within this field. Compar-

ing the traditional convex MINLP problem formulations and a MIDCP formulation to

investigate the advantages and disadvantages of this modeling framework with respect to

traditional nonlinear modeling could be an exciting contribution to the existing literature.

However, such comparisons did not fit into the scope of this paper.
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Table 2.4: The table shows how the solvers are affected by the problem properties described
in Section 5.1. Suppose a specific solver performs better for one of the categories. In that
case, it is indicated by a ‘+’ sign, and a ‘–’ sign indicates that the solver performs worse
on that specific category. If the solver performs similarly on both categories, it is indicated
by ‘∼’. Furthermore, the number in each row shows the total number of problems that the
solver was able to solve within a relative objective gap of 0.1% within 900 seconds.

Integer relaxation gap Nonlinearity Discrete density
MINLP solver high low high low high low

AlphaECP ∼ 120 ∼ 156 – 71 + 205 ∼ 94 ∼ 182
ANTIGONE + 114 – 122 ∼ 76 ∼ 160 + 97 – 139
AOA ∼ 133 ∼ 177 ∼ 94 ∼ 216 ∼ 110 ∼ 200
BARON ∼ 133 ∼ 173 ∼ 94 ∼ 212 ∼ 107 ∼ 199
BONMIN-BB – 60 + 173 + 90 – 143 + 96 – 137
BONMIN-OA ∼ 125 ∼ 167 – 80 + 212 ∼ 99 ∼ 193
BONMIN-HYB – 82 + 146 – 62 + 166 – 71 + 157
Couenne ∼ 50 ∼ 105 ∼ 70 ∼ 85 ∼ 74 ∼ 81
DICOPT ∼ 122 ∼ 170 – 78 + 214 ∼ 99 ∼ 193
Juniper – 52 + 137 + 75 – 114 ∼ 75 ∼ 114
Knitro-BB – 56 + 167 + 87 – 136 + 94 – 129
Knitro-QG – 43 + 155 + 78 – 120 + 84 – 114
LINDO – 36 + 127 + 76 – 87 + 87 – 76
Minotaur-QG ∼ 120 ∼ 164 ∼ 82 ∼ 202 ∼ 100 ∼ 184
Minotaur-BB – 99 + 159 + 89 – 169 + 102 – 156
Muriqui ∼ 131 ∼ 170 ∼ 87 ∼ 214 ∼ 105 ∼ 196
Pavito – 112 + 161 – 86 + 187 ∼ 91 ∼ 182
SBB – 54 + 169 + 91 – 132 + 90 – 133
SCIP ∼ 124 ∼ 171 – 82 + 213 + 108 – 187
SHOT ∼ 138 ∼ 174 ∼ 92 ∼ 220 – 104 + 208

Number of problems 151 183 103 232 120 215
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Chapter 3

Feasibility Pump implementation in DICOPT?

3.1 Introduction

The capabilities of the algorithms designed to solve mathematical programming problems

are continuously improving. This allows solving increasingly larger and more complex

problems. Efficient solutions of mixed-integer linear programs (MIP) and nonlinear pro-

grams (NLP) enable the solution of mixed-integer nonlinear programs (MINLP). These

problems are of great interest in chemical engineering and many other areas as they com-

bine integer variables (like discrete choices in superstructures or networks) with nonlinear

constraints (for example, posynomial equations in resource allocation for scheduling and

convex reformulations of horizon time constraints in the design of multiproduct batch

processes) [LeLe12, 5, 129, 207, 208]. The general form of an MINLP is

min
x,y

f (x,y),

s.t. g(x,y) ≤ 0,

x ∈ Rnx ,y ∈ Zny ,

(MINLP)

where f : Rnx ×Rny → R is the objective function and at least one of the constraints g :

Rnx ×Rny → Rm or the objective function itself is nonlinear. MINLP models are generally

nonconvex due to the discrete nature of y and possible nonconvexity of f and g. Models in
?Published as: David E. Bernal, Stefan Vigerske, Francisco Trespalacios, and Ignacio E. Grossmann.

“Improving the performance of DICOPT in convex MINLP problems using a feasibility pump”. Optimization

Methods and Software 0.0 (2019), pp. 1–20.
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which f and gi, i = 1, . . . ,m, are convex, are denoted as convex MINLP problems. We denote

by (x∗,y∗) an optimal solution of the MINLP if it exists.

DICOPT (Discrete Continuous Optimizer) is an MINLP solver that has been developed

in 1988. It combines the outer-approximation method [122] with equality relaxation and

augmented penalty [124]. The algorithm decomposes the MINLP into an NLP subproblem

defined by fixing the discrete variables in the MINLP and a MIP approximation defined

by linearizations of the nonlinear functions in the MINLP. The MIP and the NLP are

solved alternately, whereby the MIP approximation provides values for fixing the discrete

variables in the NLP, and the NLP subproblem provides feasible solutions to the MINLP

and cutting planes to improve the MIP approximation. If the MINLP is convex, then this

MIP approximation is a relaxation of the MINLP, thus providing a lower bound to its

optimal value, and the NLP subproblems can be solved to global optimality yielding an

upper bound. By adding additional inequalities to the MIP approximation, one can further

ensure that any fixed values for the discrete variables are evaluated by an NLP at most once.

Therefore, for a convex MINLP, a possible stopping criterion is that the bound defined by

the last MIP approximation exceeds the objective value of the best-found solution [124].

For some problems, DICOPT has difficulty in finding a feasible solution. This mainly

because, by default, and to address nonconvex problems, DICOPT omits linearizations of

nonlinearities from infeasible NLPs into the MIP. Instead, it only excludes the infeasible

fixed integer variables in the MIP and resolves them. Furthermore, even if linearizations

are included for infeasible NLPs, which are valid for convex MINLPs, DICOPT still has

difficulties finding a feasible solution for some problems. This results in slow progress

compared to the case where feasible MINLP solutions are found early in the search.

To quickly find initial feasible solutions for convex MINLPs, an implementation of a

feasibility pump [209, 210] has been incorporated into DICOPT as described in this paper.
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The feasibility pump is similar to the outer-approximation algorithm, but its focus is on

finding feasible solutions. As with outer-approximation, the main idea of the feasibility

pump is to decompose the original MINLP problem into a MIP and an NLP. The MIP

problem yields solutions that satisfy integrality requirements (y ∈ Zny) but may violate

nonlinear constraints, while the solutions of the NLP problems satisfy the constraints

g(x,y) ≤ 0 but may violate integrality requirements. Contrary to outer-approximation, both

MIP and NLP are defined over relaxations of the feasible area of the original MINLP.

By alternately projecting onto the MIP and NLP relaxations, a solution is obtained that is

feasible for both relaxations and thus for the MINLP itself if specific constraint qualifications

are satisfied [210]. The feasibility pump can also be used as a standalone solver for convex

MINLPs by including a bound (cutoff-value) to the objective function, which is set to the

objective value of the best-known solution, reduced by a desired δ-improvement. Applying

this modified feasibility pump repeatedly until the MIP becomes infeasible finds a δ-optimal

solution of a convex MINLP [210]. The drawback of this algorithm is that it may require

many iterations since only a δ-improvement of the objective function is enforced at each

iteration.

In this work, a feasibility pump is added to DICOPT. It is used as an initialization of

the outer-approximation method. In the feasibility pump, improvements in the objective

function are enforced at each iteration. After the method finishes, the cuts that define the

MIP relaxation of the feasibility pump and the best-found solution are passed on to the

outer-approximation method to find better solutions, if any, and prove optimality. The

described extension of DICOPT has been available in GAMS? since version 24.5. We present

computational results of the new method on a set of convex MINLP problems and show

that it outperforms the previous version of DICOPT.

?http://www.gams.com/latest
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This paper is organized as follows. Section 3.2 provides an overview of the outer-

approximation and the feasibility pump algorithms for convex MINLP problems. Sec-

tion 3.3 describes the algorithm proposed in this work. This algorithm uses the feasibility

pump as initialization for the outer-approximation algorithm. An illustrative example and

computational results are presented in Section 3.4.

3.2 Background

In the following, we summarize the outer-approximation algorithm [122], the feasibility

pump algorithm [210], and a hybrid of both algorithms. These algorithms are intended to

solve problems of the form MINLP. The following assumptions are made [122, 211]:

(A1) The set of constraints g(x,y) ≤ 0 includes lower and upper bounds for every integer

variable.

(A2) The constraint functions g(x,y) and the objective function f (x,y) are continuously

differentiable and convex on the set that is defined by the variable bounds (if present,

otherwise R).

(A3) The continuous relaxation of the MINLP obtained by removing the integrality require-

ment y ∈ Zny is bounded.

3.2.1 Outer-approximation algorithm

The outer-approximation algorithm was proposed by Duran and Grossmann in 1986 [122].

In the original version of the algorithm, the starting point was given by some fixed values for

the binary variables y. Viswanathan and Grossmann [124] proposed to solve the continuous

relaxation of the MINLP in the first iteration, which is obtained by relaxing the integrality
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requirement on y,

min
x,y

f (x,y),

s.t. g(x,y) ≤ 0,

x ∈ Rnx ,y ∈ Rny .

(rMINLP)

If rMINLP is infeasible, then MINLP is also infeasible. Otherwise, let (x̄0, ȳ0) be a solution

to rMINLP. If ȳ0 is integral, (x̄0, ȳ0) is an optimal solution to MINLP and the algorithm stops.

If ȳ0 is not integral, a MIP relaxation of MINLP is constructed by linearizing the nonlinear

functions in g(x,y) by first-order Taylor series approximations at (x̄0, ȳ0), which, in the case

of convex functions, provide supporting hyperplanes [124]. Given a set of solutions x̄k,

k = 1, . . . , i−1, the i-th MIP problem generated by the outer-approximation algorithm is as

follows:

min
x,y

α,

s.t. f (x̄k, ȳk) +∇ f (x̄k, ȳk)>

x− x̄k

y− ȳk

 ≤ α, k = 0, . . . , i−1,

gl(x̄k, ȳk) +∇gl(x̄k, ȳk)>

x− x̄k

y− ȳk

 ≤ 0, l ∈ Lk,k = 0, . . . , i−1,

‖y− ȳk‖1 ≥ 1, k ∈Ci,

x ∈ Rnx ,y ∈ Zny ,α ∈ R,

(MIPi)

where Lk ⊆ {1, . . . ,m} is a subset of constraints for which linearizations are included (L0 =

{1, . . . ,m}, typically), and Ci ⊆ {1, . . . , i− 1} is a subset of iterations in which the so-called

no-good cut ‖y− ȳk‖1 is added [212] (discussed below). Note, that due to assumption (A1),

the equation ‖y− ȳk‖1 ≥ 1 can be written in an equivalent linear form, see Appendix 3.B.

MIPi is called the master problem. We denote by (α̂i, x̂i, ŷi) a solution for MIPi, if feasible. Due

to assumption (A2), the optimal value of MIPi yields a lower bound to the optimal value

CHAPTER 3. FEASIBILITY PUMP IMPLEMENTATION IN DICOPT

85



3.2 BACKGROUND

of MINLP, if Ci = ∅ (for now).

The solution of MIPi is used to define the following NLP subproblem of MINLP, obtained

by fixing the integer variables to ŷi:

min
x

f (x, ŷi),

s.t. g(x, ŷi) ≤ 0,

x ∈ Rnx .

(NLPi)

Let ȳi := ŷi and let x̄i be a solution to NLPi, if feasible. Then (x̄i, ȳi) is a feasible point

to MINLP and provides an upper bound on its optimal value. If NLPi is not feasible, then

let (x̄i, s̄i) be a minimal infeasible solution to NLPi, that is, a solution to the NLP

min
x,s

m∑
j=1

s j,

s.t. g(x, ŷi)− s ≤ 0,

x ∈ Rnx ,s ∈ Rm
+ .

(NLP-feasi)

Note that adding linearization of g j(x,y) in (x̄i, ȳi) for those j ∈ {1, . . . ,m} with g j(x̄i, ȳi) > 0

to MIPi will eliminate (x̄i, ȳi) from its feasible set. However, there may exist some other

values of x for which (x, ȳi) is still feasible for MIPi. Therefore, one may, additionally or

alternatively, add the no-good cut ‖y− ŷi‖1 ≥ 1 to MIPi to cut off any point in Rnx × {̂yi}.

Therefore, if only those iterations are included into Ci for which NLPi is infeasible, then the

optimal value of MIPi provides a lower bound to the optimal value of MINLP.

The outer-approximation algorithm is summarized in Algorithm 1. The NLP and MIP

problems are solved alternately until the gap between the bounds given by NLPi and MIPi

is less than the specified tolerance. It has been proved that this algorithm finds an ε-optimal

solution of a convex MINLP or proves that none exist in a finite number of iterations [122].

86
CHAPTER 3. FEASIBILITY PUMP IMPLEMENTATION IN DICOPT



3.2 BACKGROUND

3.2.2 Outer-approximation in DICOPT

Outer-approximation is the main algorithm behind the solver DICOPT [124, 213, 214],

which has been developed in the late 1980s by the research group of I.E. Grossmann at the

Engineering Research Design Center at Carnegie Mellon University. Since then, it has been

available in the commercial algebraic modeling system GAMS. DICOPT solves NLP and

MIP problems using other solvers that are available in GAMS and are specialized to these

problem types.

As DICOPT is also intended as a heuristic for nonconvex MINLPs, the implementation

of the outer-approximation algorithm deviates slightly from Algorithm 1 as described in

Appendix 3.A.

3.2.3 Feasibility pump

The feasibility pump algorithm is a primal heuristic developed by Fischetti, Glover, and

Lodi to quickly find feasible solutions for MIPs where all integer variables are binaries [209].

Extensions and variations of the algorithm have been proposed, including an extension

to general integer variables [215]. Nowadays, many state-of-the-art commercial and non-

commercial MIP solvers feature implementations of the feasibility pump [215]. The first

extension of the feasibility pump algorithm to convex MINLP problems was introduced

by Bonami et al. [210]. Contrary to the original feasibility pump for MIP [209], the convex

MINLP feasibility pump is guaranteed to converge to a feasible solution, if any. Subse-

quently, several authors have proposed extensions to nonconvex MINLPs [216–218], where

the handling of the nonconvex nonlinear constraints poses an additional challenge. The

MINLP solvers BONMIN and Couenne have implemented feasibility pump algorithms as

primal heuristics [210, 216].

The main idea of this algorithm is to decompose the original mixed-integer problem
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into two parts: integer feasibility and constraint feasibility. For convex MINLPs, a MIP is

solved to obtain a solution, which satisfies the integrality constraints on y, but may violate

some of the nonlinear constraints; next, by solving an NLP, a solution is computed that

satisfies the constraints (g(x,y) ≤ 0) but might again violate the integrality constraints on y.

By minimizing the distance between these two types of solutions iteratively, a solution that

is both constraint and integer feasible can be expected. The first iteration of the algorithm

proposed in [210] is the same as in Algorithm 1, where the continuous relaxation rMINLP

of the original MINLP problem is solved. Following this, the next iteration builds a MIP

master problem with the outer-approximation linearization of the nonlinear constraints and

a modified objective function called the Feasibility Outer-approximation:

min
x,y

‖y− ȳi−1‖1,

s.t. gl(x̄k, ȳk) +∇gl(x̄k, ȳk)>

x− x̄k

y− ȳk

 ≤ 0, l ∈ Lk,k = 0, . . . , i−1,

x ∈ Rnx ,y ∈ Zny ,

(FOAi)

where Lk ⊆ {1, . . . ,m} is chosen as in Algorithm 1. The solution to this problem is denoted as

(̂xi, ŷi). In FOAi, the original objective function has been replaced by the `1-distance of y to

ȳi−1. In the first iteration, ȳ0 corresponds to the solution of the continuous relaxation rMINLP

of MINLP. However, in the following iterations, ȳi−1 is given by the solution of the following

nonlinear program for the feasibility pump:

min
x,y

‖y− ŷi−1‖22,

s.t. g(x,y) ≤ 0,

x ∈ Rnx ,y ∈ Rny .

(FP-NLPi)

The solution of this problem is denoted as (x̄i, ȳi). If ȳi ∈ Zny , a feasible solution for MINLP

has been found.
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Bonami et al. [210] have shown on an example that this basic algorithm can cycle

((x̄i−1, ȳi−1) = (x̄i, ȳi)) if certain constraint qualifications are not satisfied. A possibility to

avoid this cycling is to add the cut

(ȳi− ŷi−1)>(y− ȳi) ≥ 0 (3.1)

to FOAi. Since FP-NLPi projects the solution ŷi−1 onto the convex set {y ∈ Rny : ∃x ∈ Rnx :

g(x,y) ≤ 0}, the cut (3.1) outer-approximates the feasible region of MINLP and is violated by

ŷi−1 (unless ȳi = ŷi−1, in which case (x̄i, ȳi) is a feasible solution for MINLP). Thus, adding

it to FOAi avoids revisiting ŷi−1. This algorithm is denoted as enhanced Feasibility Pump

in [210] and has been shown to find a feasible solution to MINLP or prove that none exist in

a finite number of iterations, if assumptions (A1) and (A2) are satisfied.

To find further (and better) feasible solutions, the feasibility pump can be applied itera-

tively, thereby excluding solutions for which the (linearized) objective function has a worse

value than the best-known value. This is achieved by the following modification to FOAi:

min
x,y

‖y− ȳi−1‖1,

s.t. f (x̄k, ȳk) +∇ f (x̄k, ȳk)>

x− x̄k

y− ȳk

 ≤ α, k = 0, . . . , i−1,

gl(x̄k, ȳk) +∇gl(x̄k, ȳk)>

x− x̄k

y− ȳk

 ≤ 0, l ∈ Lk,k = 0, . . . , i−1,

α ≤ ZU −δ,

x ∈ Rnx ,y ∈ Zny ,α ∈ R.

(FP-OAi)

The variable α is initially unbounded (ZU = ∞). When a new incumbent is found, ZU

is updated to the value of the original objective function in the incumbent. The small

positive constant δ ensures that the incumbent becomes infeasible in FP-OAi and enforces
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the search for an improving solution. If MINLP is feasible, (A2) and (A3) are satisfied, and

linear independence constraint qualificiations hold for FP-NLPi at (x̄i, ȳi), then this iterative

algorithm finds a δ-optimal solution.

3.3 Proposed Algorithm

While the main focus of the outer-approximation algorithm is to find the best possible

solution and proving its optimality, the feasibility pump algorithm mostly disregards the

original objective function. It focuses primarily on simultaneously minimizing the violation

of integrality and nonlinear constraints. Therefore, the outer-approximation algorithm may

take longer to find feasible solutions on problems where feasible solutions are challenging

to find. In contrast, the (iterative) feasibility pump algorithm may take longer to find

a (proven) optimal solution on problems with many feasible points. To alleviate and

explore the differences between these algorithms, hybrid algorithms have been designed,

the first being in [210]. In [210], the feasibility pump algorithm is called when the NLP

subproblem NLPi is found to be infeasible.

For DICOPT, we implemented a variation of this hybrid algorithm. Instead of starting

the feasibility pump one or several times within the outer-approximation algorithm, we

run the iterative feasibility pump once before the main outer-approximation loop starts.

Furthermore, we slightly modified the feasibility pump algorithm in the following way.

A drawback of neglecting the original objective function in the feasibility pump algorithm

as stated in Section 3.2.3 is that although it may be successful in finding feasible solutions,

the quality of solutions in terms of the objective function value can be poor [219]. Therefore,

as in [210], after finding a feasible solution by solving FP-NLPi, we try to improve it further

by solving the NLP subproblem obtained from fixing all integer variables in MINLP to the
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values in the solution of FP-NLPi (that is, we solve NLPi with ŷi replaced by ȳi).

Another problem arises from the possibility of repeating the same values in the integer

variables (̂yi−1 = ŷi), either due to cycling or when having several feasible solutions with

the same values in the integer variables. The former is avoided by adding the cut (3.1), if

ȳi , ŷi−1, as proposed by [210]. If, however, ȳi = ŷi−1, then a feasible solution for MINLP

has been found and we can add the no-good cut ‖y− ŷi‖ ≥ 1. With δ > 0, this would not be

necessary to ensure progress in the search for an improving solution. However, we believe

that it might accelerate the search to add this cut. Since the linearization of no-good cuts

may require additional variables if general integer variables are present (see Appendix 3.B),

no-good cuts are by default only added for mixed-binary problems. To summarize, the MIP

projection problem that we solve is the following:

min
x,y

‖y− ȳi−1‖1,

s.t. f (x̄k, ȳk) +∇ f (x̄k, ȳk)>

x− x̄k

y− ȳk

 ≤ α, k = 0, . . . , i−1,

gl(x̄k, ȳk) +∇gl(x̄k, ȳk)>

x− x̄k

y− ȳk

 ≤ 0, l ∈ Lk,k = 0, . . . , i−1,

‖y− ȳk‖1 ≥ 1, k ∈Ci,

(ȳk − ŷk)>(yk − ȳk) ≥ 0, k = 1, . . . , i−1,

α ≤ ZU −δmax(|ZU |,1),

x ∈ Rnx ,y ∈ Zny ,α ∈ R.

(FP-OAi)

Finally, similar to FP-OAi, we add the constraint f (x,y) ≤ ZU −δmax(|ZU |,1) to FP-NLPi in

order to avoid non-improving solutions.

When the feasibility pump terminates, the outer-approximation algorithm is initialized

not only by the best solution that the feasibility pump may have found but also with the
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linearizations, no-good cuts, and cuts (3.1) that have been added to FP-OAi. However,

regarding the cuts (3.1), only those generated before the last incumbent solution has been

found can be used to initialize the outer-approximation algorithm, since later cuts were

generated w.r.t. the additional constraint f (x,y) ≤ ZU −δmax(|ZU |,1), which may cut off an

optimal solution (x∗,y∗) if ZU −δmax(|ZU |,1) < f (x∗,y∗) < ZU .

A general outline of the proposed algorithm is given in Algorithm 2. Up until the Line 27

of Algorithm 2, the algorithm is similar to the Iterated Feasibility Pump (IFP) for MINLP

proposed in [210]. The main differences with the IFP are the optional inclusion of the

no-good cuts and the solution of problem NLPi in Line 19. Therefore, we can argue that

executing lines 1–27 of Algorithm 2 with imax =∞ finds a δ-optimal (δ > 0) solution to MINLP

or proves that none exist if assumptions (A2) and (A3) are satisfied (see Theorem 2 in [210]).

To find an optimal solution (δ = 0), if any exists, no-good cuts need to be also generated if

general integer variables are present. To add these in linear form, Assumption (A1) needs

to be satisfied.

Contrary to the Enhanced Outer-approximation method presented by Bonami et al. [210],

which runs the feasibility pump both as starting procedure and when the NLP subprob-

lem NLPi is infeasible; we employ the feasibility pump algorithm only once and before the

actual Outer-approximation algorithm. This is motivated by the fact that the MIP FP-OAi,

built by the feasibility pump, provides a valid relaxation for the convex MINLP. Therefore,

the feasibility pump does not only provide an initial feasible solution if successful but also,

in any case, an initialization of the MIP relaxation MIPi.

Algorithm 2 has been implemented as part of the solver DICOPT and is available in

GAMS since version 25.1 (an earlier version without cuts (3.1) is available since GAMS 24.5).

Several options were added to enable and adjust the algorithm, summarized in Table 3.1.

As DICOPT is often used for nonconvex MINLPs, see also the discussion in Appendix 3.A,
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Table 3.1: Feasibility pump options in DICOPT

Option Description Default

convex If enabled, then the default values for the following
options are changed to be more appropriate for convex
MINLPs, see also Section 3.2.2: option step is set to 1,
option infeasder is set to 1, and option feaspump
is set to 1

0

feaspump Whether to run the feasibility pump 0
fp iterlimit Major iteration limit (imax) in the feasibility pump 20
fp timelimit Time limit in the feasibility pump ∞

fp sollimit Limit on number of (improving) solutions found by
the feasibility pump

∞

fp stalllimit Limit on the number of consecutive iterations where
no improving solution is found. Only applies after a
first solution has been found.

5

fp cutoffdecr Relative decrease of cutoff value for objective variable
(δ)

0.1

fp acttol Tolerance on when a constraint is found active 10−6

fp projzerotol Tolerance on when to consider the difference ‖ȳi − ŷi‖

as zero
10−4

fp mipgap Optimality tolerance (relative gap) when solving FP-
OAi

0.01

fp transfercuts Whether to transfer cuts from the feasibility pump MIP
to the DICOPT MIP

1

fp integercuts Whether to add no-good cuts to FP-OAi when finding
a new feasible solution

1

fp projcuts Whether to add cuts (3.1) to FP-OAi after solving FP-
NLPi

1

the default values for options convex and feaspump are 0.

3.4 Computational results

In the following, we evaluate the benefits of adding the feasibility pump to DICOPT on a

set of convex MINLPs selected from MINLPLib (version c0f77612, as of 13.3.2018)? [220].

?http://www.minlplib.org
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First, we selected all instances marked as convex, not proven to be infeasible, and having at

least one binary or general integer variable, no semicontinuous or semi-integer variables,

and no special-ordered-sets. This gives a set of 359 instances. Second, we run DICOPT

with the convex option enabled, and the feasibility pump disabled, and removed all

instances for which DICOPT terminated in less than one second. In this remaining set, a

strong dominance of some subsets of instances derived from the same model (substantial

similarity in name) was observed. Therefore, we reduced these subsets to the four largest

instances. This leaves a final set of 80 instances, which have their origin in a wide variety of

applications, ranging from process synthesis flowsheets, facilities layout problems, batch

design with storage, water treatment models, and investment portfolios. The Supplemental

Material from the original paper? provides this list of instances.

For all the experiments, we used a time limit of 1800 seconds and set the GAMS gap

tolerance optcr (relative distance of ZL and ZU) to 10−5. GAMS 25.1.1 was run on a cluster

of Dell PowerEdge M620 blades with 64 GB RAM, Intel Xeon E5-2680 CPUs running at

2.70 GHz, and Linux 4.4.0 (64bit). With this GAMS version, DICOPT uses CPLEX 12.8.0.0

for solving MIPs, and CONOPT 3.17I for solving NLPs. We used PAVER 2 [221] to help in

the evaluation.

3.4.1 Illustrative example

Before evaluating the performance of the new feasibility pump on the complete test set,

we discuss its behavior for a single instance. This instance corresponds to the block layout

design problem with unequal areas. The original problem was proposed by Meller et

al. [222] and was reformulated by Castillo et al. [223] as a convex MINLP. This type of

problem may be applied in piping design problems and process plant layouts. The complete

?https://ndownloader.figstatic.com/files/17135045
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formulation of this model is reported in [223]. The test case selected was the block layout

design problem of 7 departments and an aspect ratio (the maximum permissible ratio

between its longest and shortest dimensions) of 5. The problem involves 211 constraints, 14

of them nonlinear, specifically signomial, and 114 variables, 42 of them binary. This instance

can be found in MINLPLib under the name o7 2?. The authors of the model used several

MINLP solvers to find the optimal solution to this problem, among them DICOPT. DICOPT

performed very poorly because of the linearizations in the initial outer-approximation MIPi

were not helpful, and many nonlinear subproblems NLPi are infeasible [223].

The given instance was tested using different options for DICOPT. The stopping criterion

for all the different options was closing the gap between the objective values of the MIP

master problem and the incumbent solution. The default setting for option infeasder

requires that if the nonlinear subproblem NLPi is infeasible, only a corresponding no-good

cut is added to MIPi. Although rigorous for convex and non-convex MINLPs, this approach

is not very efficient, particularly for this type of problem where “a significant amount of

no-good cuts may be required before a feasible solution is obtained” [223]. For convex

MINLPs, another rigorous approach is to add linearization cuts if the nonlinear subproblem

is infeasible, using the solution of NLP-feasi as a reference point. This can be enabled by

using the option infeasder. Note that the setting of the infeasder option does not

influence the handling of infeasible NLPs within the feasibility pump. A comparison of

DICOPT on instance o7 2 with the feasibility pump and the infeasder option enabled

and disabled is given in Table 3.2.

We notice that DICOPT without feasibility pump and with infeasder disabled cannot

find a feasible solution within 30 minutes. During this time, the solver performed 113 major

iterations. That is, at each iteration, it solved a MIP master problem MIPi and an NLP

?http://www.minlplib.org/o7_2.html
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Table 3.2: Results of the solution of the illustrative example o7 2 for each setting of DICOPT.

DICOPT w/o FP w/o FP w/ FP w/ FP
options w/o infeasder w/ infeasder w/o infeasder w/ infeasder

major iterations 113 7 2 2
feasible solutions found 0 1 5 5
FP iterations 0 0 12 12
FP time [s] 0 0 199.4 200.1
infeasible NLP 112 5 0 0
time to optimal sol. [s] – 676.6 417.3 418.4
solution time [s] > 1800* 915.5 620.9 621.2
final objective value – 116.95 116.95 116.95
*Time limit reached.

subproblem NLPi. All NLP subproblems were infeasible.

Enabling the infeasder option, the problem could be solved in 912 seconds. During

this time, 5 out of the 6 solved NLP subproblems were infeasible. The only feasible solution

found in the 7th iteration was also an optimal solution to the problem. It required another

solution of the MIP to prove its optimality. The feasibility pump allowed the solver to find

four feasible solutions in the first ≈ 200 seconds. After that, a single major iteration was

required to find an optimal solution, which required 217 seconds in both cases with and

without the infeasder option. In that same major iteration, the optimality of the solution

was proven. The results when using the feasibility pump with and without the infeasder

option are the same (except for variations in time measurement) since none of the NLP

subproblems NLPi in the outer-approximation algorithm was infeasible.

These results highlight that enabling the infeasder option can be essential to solving a

problem or finding a feasible solution. Second, the feasibility pump can further improve the

performance by finding feasible solutions early. We obtained a 38% reduction in the time

needed to find an optimal solution to the problem and a 32% reduction in the full solution

time by enabling the feasibility pump. It is also interesting to note that when this problem

96
CHAPTER 3. FEASIBILITY PUMP IMPLEMENTATION IN DICOPT



3.4 COMPUTATIONAL RESULTS

is solved with AlphaECP, it required 897 seconds, with BONMIN 756 seconds, and SCIP

768 seconds.

3.4.2 Feasibility pump alone

In the following, we consider the complete test set of 80 instances. First, we run only

our (iterative) feasibility pump implementation with various settings, that is, without

continuing with the outer-approximation algorithm of DICOPT. In setting “default”, the

feasibility pump is run in its default settings, see Table 3.1, that is, a stall limit of 5 and a

cutoff decrease of δ = 0.1, except that the iteration limit has been disabled (imax =∞). A stall

limit of k iterations stops the feasibility pump if, after a first solution has been found, no

improving solution is found within the subsequent k iterations. In setting “stall10”, we

increased the stall limit to 10. In setting “no cuts (3.1)”, we disabled the addition of cuts (3.1)

to FP-OAi after having solved the NLP projection problem FP-NLPi. Setting “no no-good

cuts” completely disables the addition of no-good cuts when a new feasible solution has

been found (Ci+1 = ∅ in Line 22 of Algorithm 2). Finally, we evaluated three settings that

target to find δ-optimal solutions of the MINLP. For this, setting “findopt” disables the stall

limit and sets the cutoff decrease δ to 10−5. Setting “findopt w/o no-good cuts” also disables

the addition of no-good cuts when a new solution is found. Setting “findopt w/ all no-good

cuts” enables the addition of no-good cuts to problems with general integer variables.

Table 3.3 summarizes the results for all settings. The mean time in Table 3.3 reports the

shifted geometric mean of the runtimes (t1, . . . , t80) of the feasibility pump on all instances,

computed as
∏80

i=1(ti + 1)
1
80 − 1. Figure 3.1 plots the primal gap of all runs for settings

“default”, “stall10”, and “findopt”. As primal gap, we compute the relative distance between

the objective function value of the best solution found by the algorithm and the objective

function value of the best known solution reported in MINLPLib. We can observe that the
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Table 3.3: Results of running feasibility pump alone with different settings. For each setting,
we show the number of instances in which the feasibility pump reaches the time limit,
found a δ-optimal solution (without necessarily proving optimality), found a solution with
primal gap ≤ 10%, found any feasible solution, and the time used, respectively.

setting timeout optimal good sol. feasible mean time [s]

default 4 12 57 77 9.1
stall10 4 14 64 77 11.4
no cuts (3.1) 5 13 55 76 9.6
no no-good cuts 4 13 60 77 9.8

findopt 25 67 74 77 119.0
findopt w/o no-good cuts 42 44 52 77 238.1
findopt w/ all no-good cuts 29 69 74 77 197.1

feasibility pump in default settings finds an optimal solution for 12 instances, reasonable

solutions (< 10% primal gap) for another 45 instances, and some feasible solutions (≥ 10%

primal gap) for another 20 instances. Increasing the stall limit helps on seven of the instances

where previously only bad solutions were found. On instances where good solutions were

already found in default settings, increasing the stall limit affects one instance only, likely

because the cutoff decrease δ cuts off solutions that are only slightly better or optimal.

However, increasing the stall limit also leads to an ≈ 25% increase in mean running time.

By using the “findopt” setting, however, the feasibility pump can find optimal solutions for

many instances where previously a small gap was remaining.

For the runs with stall limit (“default” and “stall10”), the feasibility pump usually termi-

nates either when the MIP approximation FP-OAi becomes infeasible, or the stall limit is

reached. However, in the “findopt” setting, 25 instances terminated when the time limit of

1800 seconds was reached. Thus, the feasibility pump is not suited to prove the optimality

of the found solutions. This justifies the choice of the stall limit as a stopping criterion.

Disabling cuts (3.1) has a slight negative impact on performance. Without this cut, the

feasibility pump fails to find a solution for instance tls7 within the allowed time, which
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then also leads to an increase in the mean time. As noted by [210], cut (3.1) was not

necessary in practice, though adding it is unlikely to have a negative effect. Also, disabling

the no-good cuts has little impact on the performance. The number of instances with

optimal and good solutions increases slightly, but the mean running time also increases

slightly. However, disabling no-good cuts in the ”findopt” setting has a severe impact on

the performance, since, without these cuts, the cutoff decrease δ, which is only 10−5 in this

setting, is the sole responsible for forcing the feasibility pump to look for better feasible

solutions. On instances with general integer variables, no-good cuts are already disabled

by default, which is why there is one instance (second instance in Figure 3.1) where the

”findopt” setting produces a worse solution than ”default”. Hence, enabling no-good cuts

also for instances with general integer variables improves solution quality at the cost of a

considerably increased running time.

3.4.3 DICOPT with feasibility pump

We used DICOPT with the following settings: In the “DICOPT w/ FP” setting, the option

convex was enabled, which also enables the feasibility pump. In the “DICOPT w/o FP”

setting, the option convex was also enabled, but the feasibility pump was disabled. In the

“DICOPT w/ FP w/o OA init” setting, option convex was again enabled, but the transfer

of cuts from the feasibility pump MIP FP-OAi to the outer-approximation MIP MIPi has

been disabled. Additionally, with “FP only” we consider the results from running only

the feasibility pump without stall limit, and cutoff decreases δ = 10−5 (“findopt” setting in

Section 3.4.2).

Table 3.4 summarizes for each setting the number of instances for which the time limit

was reached, a δ-optimal solution was found, optimality was proven, a good solution was

found (primal gap ≤ 10%), and mean running time. Detailed results are given in Tables B.3
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Table 3.4: Results of running DICOPT with different settings.

setting timeout optimal optimal w/ proof good sol. mean time

DICOPT w/ FP 31 58 48 67 137.9
DICOPT w/o FP 31 55 48 62 140.8
FP only 25 67 30 74 119.0
DICOPT w/ FP w/o OA init 31 59 49 68 170.5

and B.4 in the Supplemental Material from the paper?, and performance profiles are shown

in Figures 3.2 and 3.3. The numbers show that adding the feasibility pump to DICOPT leads

to finding optimal solutions to three more instances than before and slightly reducing the

mean running time. Running the feasibility pump alone increases the number of instances

where optimal or good solutions are found. It even decreases the mean running time but

decreases the number of instances where optimality is proven. The best performance in

finding proven optimal solutions can only be expected when combining the feasibility

pump as primal heuristic and Outer-approximation to prove optimality. We also note

that the outer-approximation algorithm in DICOPT is targeted for general MINLPs, which

results in applying linearizations of nonlinear functions and convex, as soft constraints only

cf. Section 3.A. That is, tuning the implementation of the outer-approximation in DICOPT

to work better in the case of a convex MINLP might lead to achieving the best performance

of DICOPT (with feasibility pump) also concerning running time or finding good solutions.

One of the original motivations to add the feasibility pump to DICOPT was to use cuts

from the MIP projection problem FP-OAi to warm-start the outer-approximation MIP MIPi.

As seen from Table 3.4, even though the solution quality does not decrease when disabling

the initialization of MIPi, one can observe that the additional time spent for running the

feasibility pump pays off only if the cuts from FP-OAi are transferred to MIPi.

?https://ndownloader.figstatic.com/files/17135045
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3.5 Conclusions and perspectives

This paper has addressed the solution of convex MINLPs using the commercial solver

DICOPT. A modified iterative feasibility pump algorithm as a preprocessing for DICOPT

has been proposed and implemented. As seen in the illustrative example, DICOPT in default

settings performs poorly when many nonlinear subproblems are infeasible. Solving the

illustrative example using DICOPT with the feasibility pump, better performance in solution

time and solution quality could be achieved. As seen in the results from Section 3.4.2, the

feasibility pump is not efficient in proving optimality, which validates the use of a stall

limit as the criterion when to switch from the feasibility pump to the outer-approximation

algorithm.

Suppose the feasibility pump is used as a primal heuristic only. In that case, the quality of

the found solutions is improved, but the running time of DICOPT is increased considerably.

The performance of DICOPT without the feasibility pump can only be improved with

the cuts from the feasibility pump’s MIP projection problem to initialize the MIP of the

outer-approximation algorithm.

Further work to improve the feasibility pump implementation in DICOPT is motivated

by the following observations. Achterberg and Bethold [219] proposed a modification to the

original algorithm that includes some information about the original objective function in

the objective function of the feasibility pump problems to mitigate the issue of finding poor

feasible solutions in terms of the original objective. Further, currently, the feasibility pump

is only run at the beginning of DICOPT before the main loop of the outer-approximation

algorithm. Executing it only once has been sufficient to find good feasible solutions for

many instances in our test set. However, for some instances, it may be worth investigating

a more extensive integration of the feasibility pump into DICOPT, e.g., allowing it to be also

used when infeasible NLP subproblems are encountered similar to the approach proposed
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by Bonami et al. [129]. Finally, the feasibility pump implementation should be generalized

to nonconvex MINLP problems. Several authors have proposed such extensions [216, 217].

DICOPT itself already has heuristics to deal with nonconvex MINLPs, see Section 3.2.2,

which could be carried over to the feasibility pump implementation.

3.A Implementation details of DICOPT

DICOPT is based on the Outer-approximation algorithm for solving MINLP problems.

Although the Outer-approximation algorithm has a guaranteed convergence for convex

MINLP problems [122], DICOPT implements the methods of equality relaxation and aug-

mented penalty to make it a heuristic method for solving non-convex MINLP problems.

The main differences between the original Outer-approximation and the implementation in

DICOPT are:

• For convex MINLP, ZL and ZU yield valid lower and upper bounds on the optimal

value of MINLP given that NLPi is typically solved to global optimality. Therefore,

closing the gap between these bounds is a stopping criterion that ensures finding

a globally optimal solution in a finite number of iterations. This can be enabled in

DICOPT by setting the option stop to 1. For nonconvex MINLPs, valid lower bounds

and solving NLPi to global optimality are not ensured. Therefore, by default, DICOPT

stops as soon as the upper bound ZU stops improving. Although it is a heuristic, this

stopping criterion has shown that it yields optimal or near-optimal integer solutions

in many cases.

• If the NLP subproblem NLPi is infeasible, DICOPT by default adds only an no-good

cut to eliminate the current fixing y = ŷi from MIPi, but does not add the corresponding

linearizations of nonlinear functions, i.e., Li = ∅ if NLPi is infeasible in Line 29 of
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Algorithm 1. This option is sufficient to avoid revisiting the same solution point while

avoiding adding linearization that are not supporting hyperplanes for nonconvex

MINLPs. However, it also yields slower progress as less information is made available

to the master problem. Thus, when solving a convex MINLP, these valid linearizations

should be added. This can be enabled in DICOPT by setting the option infeasder.

• If the NLP subproblem NLPi is feasible linearizations of nonlinear functions are not

added in their original form to MIPi. Instead, they are added as soft constraints; that

is, violation of these constraints is allowed but penalized in the objective function (by

default, a weight of 1000 times the constraint marginal is used) [124]. Also, in the

context of convex MINLP, the penalty relaxation of linearizations is applied. Note

that the optimal value of the modified master problem still provides a valid lower

bound on the optimal value of MINLP. If the penalty term’s contribution is removed

and termination is still ensured due to the finite number of integer points y to be

enumerated.

• Finally, DICOPT relaxes nonlinear equality constraints to inequalities and adds corre-

sponding linearizations to MIPi. The dual multipliers in the solution of NLPi are used

to decide which direction to relax the inequalities [124]. For a convex MINLP, such

constraints do not appear.

3.B Linearization of no-good cut

For given bounds yL,yU ∈ Zny , yL ≤ yU , on the integer variables y and a point ȳ ∈ Zny , yL ≤

ȳ ≤ yU , consider the no-good cut

‖y− ȳ‖1 ≥ 1. (3.2)
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A linear formulation of (3.2) is easily found if ȳ j ∈ {yL
j ,y

U
j } for every j ∈ J := {1, . . . ,ny}, since

the absolute difference |y j− ȳ j| is reduced to y j− yL
j , if ȳ j = yL

j , and yU
j − y j otherwise. Thus,

for the specific case of binary variables only, i.e., yL
j = 0,yU

j = 1, j ∈ J, (3.2) simplifies to

∑
j∈JL

y j−
∑
j∈JU

(1− y j) ≥ 1.

In the general case, we partition the set J into

JL = { j ∈ J : ȳ j = yL
j },

JU = { j ∈ J : ȳ j = yU
j },

JM = J \ (JL∪ JU).

Using this set partition, the absolute difference of the variables to a given solution can be

expressed as a sum of three terms. Thus, the no-good cut (3.2) can be written as

∑
j∈JL

(y j− yL
j ) +

∑
j∈JU

(yU
j − y j) +

∑
j∈JM

|y j− ȳ j| ≥ 1.

For every j ∈ JM, we introduce a binary variable v j, which determines whether the

variable y j is greater than or less than ȳ j, and a positive continuous variable w j to represent

the value |y j− ȳ j|. This can be expressed using the following disjunctions:
v j = 0

y j ≤ ȳ j

w j = ȳ j− y j


∨


v j = 1

y j ≥ ȳ j

w j = y j− ȳ j


, j ∈ JM.

This disjunction can be reformulated into mixed-integer linear form, which yields the
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following reformulation of (3.2):∑
j∈JL

(y j− yL
j ) +

∑
j∈JU

(yU
j − y j) +

∑
j∈JM

w j ≥ 1,

−w j ≤ y j− ȳ j ≤ w j, j ∈ JM,

w j ≤ y j− ȳ j + M1
j (1− v j), j ∈ JM,

w j ≤ ȳ j− y j + M2
j v j, j ∈ JM,

w j ≥ 0, j ∈ JM,

v j ∈ {0,1}, j ∈ JM.

To avoid weak relaxations, the big-M constants M1
j and M2

j should be chosen as small as

possible and such that

y j− ȳ j + M1
j ≥ w j = ȳ j− y j ∀y j ∈ [yL

j , ȳ j] (case v j = 0→ y j ≤ ȳ j),

ȳ j− y j + M2
j ≥ w j = y j− ȳ j ∀y j ∈ [ȳ j,yU

j ] (case v j = 1→ y j ≥ ȳ j).

Thus, M1
j = 2(ȳ j− yL

j ) and M2
j = 2(yU

j − ȳ j).

Given the addition of extra variables for general no-good cuts, these are added by default

if the original problem has only integer variables between 0 and 1 (binary). The DICOPT

users can enforce the application of the no-good cuts even if the integer variables are not

binary using the option fp integercuts.

3.C Performance Profiles

Figure 3.2 shows performance profiles [204] comparing DICOPT with and without feasibility

pump and the feasibility pump alone. Figure 3.3 shows a performance profile that illustrates

the effect of disabling the initialization of MIPi with the cuts from FP-OAi.

CHAPTER 3. FEASIBILITY PUMP IMPLEMENTATION IN DICOPT

105



3.C PERFORMANCE PROFILES

Algorithm 1 Outer-approximation algorithm.

1: Set ZU =∞, ZL = −∞, i = 0 . Initialization
2: Define gap tolerance ε ≥ 0
3: Solve rMINLP . Solve initial relaxation
4: if rMINLP is infeasible then
5: Set ZL =∞ . MINLP is infeasible
6: else
7: Let (x̄0, ȳ0) be an optimal solution of rMINLP
8: Set ZL = f (x̄0, ȳ0)
9: Set L0 = {1, . . . ,m}, C0 = ∅

10: if ȳ0 ∈ Zny then
11: Set ZU = f (x̄0, ȳ0) and ŷ0 = ȳ0

12: while ZU −ZL > ε do
13: Set i = i + 1
14: Solve MIPi . Solve master problem
15: if MIPi is infeasible then
16: Set ZL =∞ . MINLP is infeasible
17: else
18: Let (α̂i, x̂i, ŷi) be an optimal solution of MIPi

19: Set ZL = α̂i

20: Set ȳi = ŷi and solve NLPi . Solve nonlinear subproblem
21: if NLPi is infeasible then
22: Solve NLP-feasi

23: Let (x̄i, s̄i) be an optimal solution of NLP-feasi

24: Set Ci+1 = Ci∪{i}
25: else
26: Let x̄i be an optimal solution of NLPi

27: Set Ci+1 = Ci

28: Set ZU = min(ZU , f (x̄i, ŷi))
29: Set Li = { j ∈ {1, . . . ,m} : g j(x̄i, ŷi) ≥ 0 and g j is nonlinear}
30: (x̄i, ŷi) is an optimal solution of MINLP, if ZU < ∞, other-

wise MINLP is infeasible
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Algorithm 2 Proposed algorithm.

1: Set ZU =∞, i = 0 . Initialization
2: Define cutoff decrease δ ≥ 0
3: Solve rMINLP . Solve initial relaxation
4: if rMINLP is infeasible then
5: Stop . MINLP is infeasible
6: Let (x̄0, ȳ0) be an optimal solution of rMINLP
7: Set L0 = {1, . . . ,m}, C0 = ∅
8: Set ZL = f (x̄0, ȳ0)
9: if ȳ0 ∈ Zny then

10: Set ZU = f (x̄0, ȳ0) . Optimal solution found
11: Stop
12: Set i = 1
13: Solve FP-OAi . Solve feasibility OA problem
14: while FP-OAi is feasible and i ≤ imax do
15: Let (̂xi, ŷi) be an optimal solution of FP-OAi

16: Solve FP-NLPi . Solve nonlinear feasibility problem
17: Let (x̄i, ȳi) be an optimal solution of FP-NLPi

18: if ‖ȳi− ŷi‖ = 0 then
19: Solve NLPi . Solve nonlinear subproblem
20: Let x̄i be an optimal solution of NLPi

21: Set ZU = min(ZU , f (x̄i, ȳi)) . New incumbent solution
22: Set Ci+1 = Ci∪{i} (if y ∈ {0,1}ny in MINLP)
23: else
24: Set Ci+1 = Ci

25: Set Li = { j ∈ {1, . . . ,m} : g j(x̄i, ȳi) ≥ 0 and g j is nonlinear}
26: Set i = i + 1
27: Solve FP-OAi . Solve feasibility OA problem
28: Solve MINLP using Alg. 1, initialized with incumbent solution

(x̄i, ȳi), if ZU < ∞, and linearizations given by Li, no-good cuts
given by Ci, and cuts (3.1) in the relaxation MIPi.
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Figure 3.1: Primal gap of solutions found by feasibility pump (with different settings) for
all instances in test set, sorted by primal gap of “default” setting.
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Figure 3.2: Performance profile showing the number of instances solved to proven optimal-
ity (left) and where an optimal solution has been found (right), respectively, with respect to
solution time for various DICOPT settings.
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Figure 3.3: Performance profile showing the number of instances solved to proven optimal-
ity with respect to solving time, with and without the initialization of MIPi with the cuts
from the feasibility pump.
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Chapter 4

Center-cut algorithm for convex MINLP?

4.1 Introduction

In this chapter, we present a Center-cut algorithm for convex Mixed-Integer Nonlinear

Programming (MINLP) that can either be used as a primal heuristic or as a deterministic

solution technique. Like several other algorithms for convex MINLP, the Center-cut al-

gorithm constructs a linear approximation of the original problem. The main idea of the

algorithm is to use the linear approximation differently to find feasible solutions within

only a few iterations. The algorithm chooses trial solutions as the center of the current linear

outer approximation of the nonlinear constraints, making the trial solutions more likely to

satisfy the constraints. The ability to find feasible solutions within only a few iterations

makes the algorithm well suited as a primal heuristic, and we prove that the algorithm

finds the optimal solution within a finite number of iterations. Numerical results show that

the algorithm obtains feasible solutions quickly and can obtain good solutions.

There has been a growing interest in so-called primal heuristics in recent years, i.e.,

algorithms intended to obtain good feasible solutions to an optimization problem quickly.

Such algorithms are helpful not only since they can provide a good feasible solution, but

knowing a feasible solution can also significantly improve the performance of solvers, e.g.,

?Published as: Jan Kronqvist, David E Bernal, Andreas Lundell, and Tapio Westerlund. “A center-cut

algorithm for quickly obtaining feasible solutions and solving convex MINLP problems”. Computers & Chemical

Engineering 122 (2019), pp. 105–113.
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[141] claimed that primal heuristics were one of the most crucial improvements for MILP in

the last decade. Several primal heuristics have also been proposed for MINLP problems,

e.g., undercover [142] and feasibility pump [143]. A review of several primal heuristics for

MINLP is given by [146].

Primal heuristics can be a valuable tool, especially for complex MINLP problems, since it

may be the only way to obtain a good solution, and for some applications such as real-time

optimization, it may be of utter importance to quickly obtain a feasible solution. Knowing a

feasible solution can also improve the performance of MINLP solvers as shown in [146] and

[148]. A good feasible solution can significantly reduce the search tree in branch and bound,

and in solvers based on ECP or ESH, it provides a bound on the objective enabling the use

of optimality gap as a stopping criterion. It is also possible to solve pseudoconvex MINLP

problems as a sequence of feasibility problems as in the GAECP algorithm [120].

This chapter describes a new Center-cut algorithm for convex MINLP problems that can

either be used as a primal heuristic or as a deterministic solution technique. The algorithm

was first presented briefly in a conference paper [224]. Here we continue with more details

and rigorous proof that the algorithm will obtain the optimal solution in a finite number

of iterations. Like OA, ECP, or ESH, the Center-cut algorithm also constructs a polyhedral

approximation of the feasible region defined by the nonlinear constraints. However, here

we use the polyhedral approximation differently to enable us to find feasible solutions

within only a few iterations. The main idea of the algorithm is to choose the trial solutions

in the polyhedral approximation center instead of choosing them on the boundary, as with

ECP and ESH. A similar concept for solving NLP problems was proposed by [225]. The

algorithm should be well suited as a primal heuristic. However, it can also be used as a

stand-alone solution technique with guaranteed convergence.
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4.2 Background

A convex MINLP problem can be defined compactly as

min
x,y∈N∩L∩Y

c>1 x + c>2 y (P-MINLP)

where sets N ,L and Y are given by

N = {(x,y) ∈ Rn×Rm | gk(x,y) ≤ 0 ∀k = 1, . . . , l},

L = {(x,y) ∈ Rn×Rm |Ax + By ≤ b},

Y = {y ∈ Zm}.

(4.1)

In equation (4.1) A and B are matrices defining the linear constraints, including variable

bounds. Throughout this chapter we consider the following assumptions to be true:

Assumption 1. The nonlinear functions g1, . . . ,gl are convex and continuously differentiable.

Assumption 2. The intersection L∩Y defines a compact non-empty set, i.e., all variables

must be bounded.

Assumption 3. By fixing the integer variables in the MINLP problem to a feasible integer

combination y, the resulting NLP problem satisfies Slater’s condition, see [226].

These assumptions are needed to rigorously prove that the algorithm converges to the

optimal solution in a finite number of iterations. Similar conditions are also needed to

guarantee convergence of OA and ESH, see [25] and [121]. It should be possible to handle

MINLP problems with nonsmooth convex functions with the algorithm. However, such

problems are not considered here.

One of the critical elements in ECP, ESH, and OA is to construct an iteratively improving

polyhedral approximation of set N . The approximation is obtained by first-order Taylor

series expansions of the nonlinear constraints generated at the trial solutions; at iteration i it
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is given by

N̂i =

gk(x j,y j) +∇gk(x j,y j)>

x−x j

y−y j

 ≤ 0, j = 1, . . . , i, k ∈ K j

 , (4.2)

where K j contains the indices of all nonlinear constraints active at the trial solution (x j,y j),

i.e., all nonlinear constraints such that gk(x j,y j) ≥ 0. Due to convexity, we know that the

polyhedral approximation will contain setN and every point withinN is also a point within

N̂i, i.e., N ⊂ N̂i.

The standard approach for using the polyhedral approximation is to simply replace set

N by N̂i in problem (P-MINLP). The next trial solution can then be obtained by solving the

following MILP problem

(
xi+1,yi+1

)
∈ argmin

(x,y)∈N̂i∩L∩Y

c>1 x + c>2 y. (4.3)

Both ECP and ESH choose the trial solutions by solving problem (4.3), and OA selects

the integer combination by the same approach. However, if we choose the trial solutions

by solving problem (4.3), then we will not obtain a feasible solution before the very last

iteration, see e.g., [121]. By this approach, the trial solutions tend to be selected as points on

the boundary of set N̂i.

In the Center-cut algorithm, we will use the polyhedral approximation differently; instead

of choosing points on the boundary, we will select the trial solutions as points in the center of

the polyhedral approximation. Since we know that the feasible set defined by the nonlinear

constraints is contained somewhere in N̂i, it seems natural to search for a feasible solution

in the center of the set.
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4.3 The Center-cut algorithm

As previously mentioned, the main idea of the center cut algorithm is to choose the trial

solutions as the center of the polyhedral approximation of the feasible set defined by the

nonlinear constraints. There are several definitions of the center of a set, and here we will

use the Chebyshev center. The Chebyshev center is defined as the point furthest from

the boundary in all directions, which is also the center of the largest n-dimensional ball

inscribed in the set [227]. Since set N̂i is a polyhedral set defined by linear inequality

constraints, we can find the Chebyshev center of the set simply by solving the following

Linear Programming (LP) problem.

max
x,y,r

r

s.t. gk(x j,y j) +∇gk(x j,y j)>

x−x j

y−y j

+ r
∥∥∥∇gk(x j,y j)

∥∥∥
2 ≤ 0, j = 1, . . . , i, k ∈ K j,

x ∈ Rn,y ∈ Rm,r ∈ R,
(4.4)

where r is the radius of the inscribed ball. To the authors’ best knowledge, it was first men-

tioned in [228] that the Chebyshev center of a polyhedral set could be obtained by solving

an LP problem. For more details on how to find the Chebyshev center of a polyhedral set

see e.g., [229]. To simplify notation we introduce a new set Bi defined as

Bi =
{
gk(x j,y j) +∇gk(x j,y j)>

x−x j

y−y j

+ r
∥∥∥∇gk(x j,y j)

∥∥∥
2 ≤ 0, j = 1, . . . , i, k ∈ K j

}
, (4.5)

which contains all constraints defining set N̂i. In order to obtain a feasible solution of the

MINLP problem, we also have to take the linear constraints and integer requirements into

consideration. Therefore, a new trial solution will be chosen as the center of the largest ball
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inscribed in set N̂i, with the restrictions that the center has to satisfy all linear constraints

and integer requirements. Hence, the linear constraints and integer restrictions only affect

the center’s location and not directly the radius of the ball. A new trial solution is, thus,

obtained by solving the following MILP problem

(xi+1,yi+1,ri+1) ∈ argmax
(x,y,r)∈Bi∩L∩Y

r. (MILP-i)

Since we are maximizing the radius of the ball inscribed in N̂i, it results in a trial solution

minimizing the left-hand side of the linearized constraints in equation (4.2). Once we have

obtain a new trial solution (xi+1,yi+1) there are two possibilities: either it violates some of

the nonlinear constraints or it is a feasible solution.

In case the trial solution (xi+1,yi+1) violates some of the nonlinear constraints, then we can

improve the polyhedral approximation by generating cutting planes according to

gk
(
xi+1,yi+1

)
+∇gk

(
xi+1,yi+1

)> x−xi+1

y−yi+1

 ≤ 0 ∀k ∈ Ki+1, (4.6)

where Ki+1 is the index set of all active and violated constraints. The new cutting planes

will exclude the solution (xi+1,yi+1) from the search space, see e.g., [120]. The new cutting

planes are added to the polyhedral approximation, and we denote the new approximation

as N̂i+1. The accumulation of cutting planes improves the polyhedral approximation of set

N . In the next iteration, we solve subproblem (MILP-i) updated with new cuts to obtain a

new trial solution.

Now, in case the trial solution (xi+1,yi+1) is feasible, it may still not be the best possible

one with the integer combination given by yi+1. Therefore, we will fix the integer variables

in the original MINLP problem to the values given by yi+1, resulting in the following convex
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NLP problem

(xi+1,yi+1) ∈ argmin
(x,y)∈N∩L∩Y

c>1 x + c>2 y

s.t. y = yi+1.

(NLP-fixed)

By solving problem (NLP-fixed) we obtain the optimal solution for this specific integer

combination. However, the obtained solution may still not be the optimal one to the original

MINLP problem. In order to obtain better solutions, we will therefore, generate an objective

cut according to

c>1 x + c>2 y ≤ c>1 xi+1 + c>2 yi+1, (4.7)

where (xi+1,yi+1) is the solution obtained by solving subproblem (NLP-fixed). The cut ob-

tained by equation (4.7) will exclude all solutions that have a worse objective function value

than the obtained feasible solution, and will thus reduce the search space. To obtain better

solutions, we include the objective cut in the polyhedral approximation N̂i+1. Subproblem

(MILP-i), by which we choose the new trial solutions, will then contain the objective cut

given by equation (4.7) in the following form

c>1 x + c>2 y + r ‖(c1;c2)‖2 ≤ c>1 xi+1 + c>2 yi+1, (4.8)

forcing the next inscribed ball to also take the objective cut into consideration. As long as we

obtain solutions of subproblems (MILP-i) with ri > 0, it is clear that the constraint given by

equation (4.8) will force the trial solutions to have a strictly lower objective function value

than the obtained feasible solution. Thus, the objective cut will force the algorithm to search

for better solutions. Once an objective cut has been added to the polyhedral approximation

N̂i it will no longer be an outer approximation of setN . However, we know that the optimal

solution will not be excluded from the search space due to convexity. The search space can

be further reduced by generating cutting planes for all nonlinear constraints active at the

feasible solution (xi+1,yi+1) according to equation (4.6).

CHAPTER 4. CENTER-CUT ALGORITHM FOR CONVEX MINLP

117



4.3 THE CENTER-CUT ALGORITHM

In each iteration, the radius of the ball inscribed in N̂i is reduced since sets N̂i shrink

due to adding cuts. Later, we prove that the cuts added in each iteration force the radius

to converge to zero. If the radius of the largest ball inscribed in N̂i is zero, set N̂i has an

empty interior, thus verifying that the optimal solution has been found. In case the original

MINLP problem is infeasible, the radius will converge to zero without finding any feasible

solution. The convergence properties are discussed in more detail in Section 4.5.

The Center-cut algorithm is summarized as a pseudo-code in Algorithm 3. In the algo-

rithm, we use the radius as an optimality measure since a smaller radius will ensure better

solutions. However, to guarantee that the best found solution is optimal, we must continue

until the radius is reduced to zero.

Algorithm 3 Pseudo-code of the Center-cut algorithm

Specify a tolerance δ ≥ 0.
1. Initialization.

1.1 Set B1 = Rn+m, set iteration counter i = 1.
1.2 Solve problem (MILP-i) to obtain (x1,y1) and r1.

2. While ri > δ.
2.a If (xi,yi) satisfies all nonlinear constraints:

* Solve problem (NLP-fixed) to obtain the optimal so-
lution with the given integer solution and store the
solution as (xi,yi).

* Construct cutting planes for any active constraint ac-
cording to equation (4.6) and the objective cut accord-
ing to equation (4.7).

* Generate set Bi+1 by adding the new cuts to Bi
2.b If (xi,yi) does not satisfies all nonlinear constraints:

* Obtain cutting planes for all violated constraints ac-
cording to equation (4.6).

* Generate set Bi+1 by adding all cutting planes to Bi
2.c Solve problem (MILP-i) to obtain (xi+1,yi+1,ri+1). and set

i = i + 1.
3. Return the best found feasible solution (xi,yi).

Note that if the original MINLP problem has a convex nonlinear objective function, we

can simply replace the left-hand side of the objective cut in equation (4.7) by a linearization
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of the objective. There is, therefore, no need to reformulate the problem to obtain a linear

objective function.

In the next section, we apply the Center-cut algorithm to an illustrative example with

two variables to give a geometric interpretation of the algorithm.

4.4 Illustrative example

For MINLP problems with only two variables, the Center-cut algorithm chooses the trial

solutions by inscribing the largest possible circle in N̂i, such that the center of the circle

satisfies all linear constraints and integer requirements. To illustrate the basics of the

Center-cut algorithm, consider the following simple MINLP problem,

min −3x− y

s.t. x2 + y2 ≤ 25,

x2 + (5− y)2 ≤ 36,

(6− x)2 + y2 ≤ 36,

0 ≤ x ≤ 10, 0 ≤ y ≤ 10,

x ∈ R, y ∈ Z.

(Ex 1)

The MINLP problem (Ex 1) is illustrated in Figure 4.1. Application of the Center-cut

algorithm (Algorithm 3) to the illustrative example problem (Ex 1) gives the following

iterations which are also depicted in Figure 4.2. In the first iteration, we have no cutting

planes approximating set N and the radius is therefore not limited, and any solution

satisfying the linear constraints and integer requirement can be chosen. In the second

iteration, we obtain a solution where the circle center satisfies all constraints. The solution

is improved by solving problem (NLP-fixed). In iteration two, we generate an objective cut
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according to equation (4.7) and a cutting plane for the second nonlinear constraint. The

optimal solution is obtained in iteration 4, but we need an additional iteration to verify

optimality. In iteration 5, we find that the largest inscribed circle has a radius of zero,

proving that the optimal solution has been found. As a comparison, it takes nine iterations

with the basic ECP algorithm to find a feasible solution and three iterations with OA.

Figure 4.1: The figure to the left shows the feasible regions defined by the nonlinear
constraint of problem (Ex 1). The second figure shows the feasible region defined by the
constraints, contours of the objective function and the optimal solution. The horizontal
lines correspond to integer values of the integer variable y.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Figure 4.2: Applying the Center-cut algorithm to problem (Ex 1) results in five iterations,
and the first four iterations are shown in the figures.The figures show the feasible region
defined by the nonlinear constraints and the region defined by sets N̂i. The circular dot
represents the center of the inscribed circle and the dashed curves represent the circle. The
solution obtained by solving subproblem (NLP-fixed) is shown by the squared dot. The
horizontal lines correspond to integer values of the integer variable y.

In the next section, we describe why the radius of the inscribed ball can be used as
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an optimality measure, and we prove that the Center-cut algorithm will find an optimal

solution to the MINLP problem in a finite number of iterations.

4.5 Proof of convergence

Here we focus on the convergence properties of the Center-cut algorithm. We show that the

radius of the inscribed ball converges to zero. From there, we can show that the algorithm

will converge to the optimal solution of a convex MINLP problem.

To prove that the radius of the inscribed balls will converge to zero, we need some

properties presented in Lemma 4.5.1.

Lemma 4.5.1. In the Center-cut algorithm, in iteration i the radius ri of ball inscribed in N̂i

will be bounded by distance between the current center
(
xi,yi

)
and any previously obtained

center
(
xi−l,yi−l

)
according to

ri ≤
∥∥∥(xi−xi−l;yi−yi−l)

∥∥∥
2 ,

where 0 < l < i.

Proof. At iteration i− l, we generate cuts according to equation (4.6) and if we obtain a

feasible solution we also add an objective cut according to equation (4.7). These cuts

will either exclude the center
(
xi−l,yi−l

)
from set N̂i−l+1 or result in a cut which passes

through it. The center
(
xi−l,yi−l

)
is, thus, either outside N̂i−l+1 or on the boundary of N̂i−l+1.

Therefore, the radius ri cannot be greater than the distance from the current center
(
xi,yi

)
to

the previously obtained center
(
xi−l,yi−l

)
, otherwise parts of the ball would be outside of

N̂i−l+1. �

By using the bounds on the radius given by Lemma 4.5.1, it is possible to prove that the

radius converges to zero as described by the following theorem.
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Theorem 4.5.1. In the Center-cut algorithm, the radii ri of the inscribed balls converge to

zero when i→∞.

Proof. Assume that the algorithm does not stop and an infinite sequence of centers
{
xi,yi

}∞
i=1

is obtained. Due to Assumption 2, all of the centers in the sequence belong to a compact

subset of Rn+m. According to the Bolzano-Weirstrass theorem, the sequence must contain

at least one convergent subsequence
{
xi j ,yi j

}∞
i j=1

. The convergent subsequence also forms a

Cauchy sequence with the following property

lim
j→∞

∥∥∥(xi j −xi j−1;yi j −yi j−1)
∥∥∥

2 = 0.

Note that Lemma 4.5.1 is true for any two centers and, thus, limi→∞ ri = 0. �

To prove that the algorithm obtains the optimal solution in a finite number of iterations,

we need some other properties presented in Lemma 4.5.2, regarding the geometry of the

feasible region. The proof of Lemma 4.5.2 follows from Slater’s condition, but for the sake

of completeness, we have included the proof. Here we denote the optimal value of the

objective function of the MINLP problem as z∗.

Lemma 4.5.2. For any ε > 0, ∃ r > 0, (xc,yc) ∈ N ∩L∩Y such that Br(xc,yc) ⊂ N∗, where

N∗ =
{
(x,y) | c>1 y + c>2 x ≤ z∗+ ε, gk(x,y) ≤ 0 ∀ k

}
, (4.9)

Br(xc,yc) =
{
(x,y)

∣∣∣ ∥∥∥(xc−x;yc−y)
∥∥∥

2 ≤ r
}
. (4.10)

Proof. Note that z∗ is given by z∗ = c>1 x∗ + c>2 y∗, where (x∗,y∗) is an optimal solution of the

MINLP problem. The optimal solution strictly satisfies the restriction on the objective

function

c>1 x∗+ c>2 y∗ < z∗+ ε.

However, the optimal solution might be located on the boundary of set N∗. Therefore it

cannot be used as the center of the ball Br. By Assumption 3, the nonlinear constraints
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satisfy Slater’s condition even if the integer variables are fixed to y∗, i.e., ∃ x̄ : Ax̄ + By∗ ≤

b, gk(x̄,y∗) < 0 ∀ k. Next, a new point is define as

x̂ = αx∗+ (1−α)x̄, (4.11)

where α ∈ [0,1) is an interpolation parameter. Now, a value for α is chosen such that

(̂x,y∗) strictly satisfies all constraints in set N∗. If c>1 (x̄− x∗) < ε, it is sufficient to choose

α = 0 to strictly satisfy the objective constraint in N∗. Otherwise α can be chosen as α =(
ε
2 + c>1 (x∗− x̄)

) /
c>1 (x∗− x̄) < 1, which results in

c>1 x̂ + c>2 y∗ = z∗+
ε

2
.

Since x̂ was chosen as an interpolation between two points, with the same integer combi-

nation and both satisfy all the constraints, it is clear that (̂x,y∗) will satisfy all constraints.

Furthermore, since (x̄,y∗) strictly satisfies the nonlinear constraints and α < 1 we get

gk (̂x,y∗) < 0 ∀ k.

The point (̂x,y∗) is, thus, located within the interior of set N∗, and therefore it is possible to

put a ball with a nonzero radius at (̂x,y∗) such that the entire ball is contained in set N∗. �

Now, we have all the intermediate results needed for proving that the optimal solution is

obtained in a finite number of iterations.

Theorem 4.5.2. The Center-cut algorithm obtains the optimal solution of problem

(P-MINLP) in a finite number of iterations.

Proof. As before the optimal solution of the MINLP problem is denoted as (x∗,y∗) and the

optimal objective value as z∗. Then, ∃ε > 0, such that N∗ ∩L∩Y only contains optimal

values for the integer variables y, where N∗ is given by equation (4.9). Lemma 4.5.2 states
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that a ball with radius r∗ > 0 can be inscribed in set N∗, such that the center satisfies all

constraints.

As long as the algorithm has not obtained the optimal solution, the entire set N∗ will

be contained within N̂i, i.e., N∗ ⊂ N̂i. This is true because all the cutting planes added

according to equation (4.6) are overestimating the feasible region defined by the nonlinear

constraints. As long as N∗ ⊂ N̂i, the radius of the inscribed balls will be greater or equal

to r∗. Theorem 4.5.2 states that the radius of the inscribed balls converges to zero, and

therefore there exists a finite integer p such that

∀i ≥ p ri < r∗.

The only way to reduce the radius below r∗ is to generate an objective cut according to

equation (4.7) stricter than the objective cut in N∗. Such an objective cut must be generated

in iteration p at a feasible solution (xp,yp) such that c>1 xp + c>2 yp < z∗+ ε. In the beginning, ε

was chosen such that N∗∩L∩Y only contains the optimal integer combination, i.e., yp = y∗.

Furthermore, the variables in iteration p will be chosen by solving subproblem (NLP-fixed)

with the integer variables fixed as y∗, and the subproblem will then return an optimal

solution for the continuous variables, i.e., (xp,yp) = (x∗,y∗). The optimal solution of the

MINLP problem was, thus, obtained in iteration p. �

From the proof of Theorem 4.5.2, it follows that the optimal solution will be obtained

once the radius of the inscribed ball is reduced below a particular value. Furthermore, if

the radius is reduced to zero, it verifies the optimality of the best-found solution. In the

algorithm, we, therefore, use the radius as an optimality measure and termination criterion.

For rigorously verifying optimality, the radius needs to be reduced to zero; however, in

practice, it is often sufficient to stop once the radius is reduced to a given tolerance δ.

This section has proven that the algorithm will find the optimal solution to any convex
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MINLP problem satisfying Assumptions 1, 2, and 3. The following section deals with some

details regarding the implementation of the algorithm.

4.6 Implementing the algorithm

In previous sections, we have described the basics of the Center-cut algorithm. To test

the functional performance of the Center-cut algorithm, we implemented it in Matlab

2017a and used Ipopt 3.12.7 [158] and Gurobi 7.5.2 as subsolvers for the NLP and MILP

subproblems, respectively. We have also used OPTI Toolbox [99] to read the test problems.

When implementing the Center-cut algorithm, it is possible to incorporate some tricks and

features from other algorithms and solvers; next, we describe some of these that can easily

be exploited.

First, when solving an MINLP problem with the Center-cut algorithm, it is unnecessary

to solve every single MILP subproblem to optimality. It is sufficient to obtain a feasible

solution, such that the inscribed ball has a radius strictly greater than zero. This is an

essential detail since solvers such as CPLEX or Gurobi can quickly find several feasible

solutions to an MILP problem. Often, the majority of the solution time is spent on proving

optimality. The MILP subproblems are also by far the most time-consuming part of the

Center-cut algorithm. By stopping the MILP solver after a specific number of found feasible

solutions, it is often possible to significantly reduce the solution time while still obtaining

reasonable solutions of the mixed-integer subproblems. This can be done with Gurobi by

using the solution limit parameter. In implementing the Center-cut algorithm, we simply

start with the solution limit parameter set to 2 and increase the solution limit parameter by

one each time the radius of the inscribed ball is less than 0.001 and the solution was not

reported as optimal. We also use a second test for increasing the solution limit, where the
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solution limit is increased if the radius is less than half the radius in the previous iteration

and the solution was not optimal. When choosing the solution limit by this technique, we

start with a low solution limit and gradually increase it during the iterations to obtain good

solutions to the subproblems. When using this technique, one must be careful with the

termination criterion. The search should not be terminated unless the MILP subproblem

was solved to optimality in the last iteration. A similar approach for speeding up the MILP

subproblems and consequently speeding up the MINLP solution procedure is also used

with the GAECP algorithm, see [120].

It might also be possible to speed up the algorithm by solving additional NLP subprob-

lems in some cases. Even if the trial solution (xi,yi) obtained by solving subproblem (MILP-i)

does not satisfy the nonlinear constraints, yi may still be a feasible integer combination. It

might, therefore, be possible to obtain a feasible solution by fixing the integer variables

to yi and solving subproblem (NLP-fixed). This situation is illustrated in iteration 3 in

Figure 4.2, where it would have been possible to obtain a feasible solution by solving an

NLP subproblem. By solving such NLP problems, it may be possible to obtain feasible

solutions more frequently. However, the additional NLP problems may also take some time

to solve. In implementing the Center-cut algorithm, we try to fix the integer variables and

solve subproblem (NLP-fixed) in every third iteration. A similar technique is used in both

the GAMS solver AlphaECP [230] and in the SHOT solver [121]. The NLP problems with

fixed integers may be infeasible in some iterations; however, in this case, Ipopt returns a

solution that minimizes the constraint violation with the specific integer combination. By

adding cuts according to equation (4.6) at the infeasible solution returned by Ipopt, we can

exclude the infeasible integer combination from the search space. For details on such cuts,

see [25]. In implementing the Center-cut algorithm, we use this technique for generating

cuts when the NLP solver cannot find a feasible solution.
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In the implementation, we have used the Center-cut algorithm as described in Algorithm 3

together with the additional features described here. With the NLP solver Ipopt, we have

used the default settings for all parameters. With Gurobi, we have used the solution limit

strategy as described earlier. For the other parameters, we have used default settings.

4.7 Numerical results

To test the functional performance of the Center-cut algorithm, we considered some convex

MINLP test problems taken from the library MINLPLib2 [231]. We have used a standard

desktop computer with an Intel i7 processor and 16GB of RAM for the tests.

First, we have chosen 8 test problems from MINLPLib 2 that represent several types of

MINLP problems, such as some facility layout problems [232], retrofit planning problems

[233] and trim loss problems [234]. The largest of these problems contains 1500 binary

variables, 1500 continuous variables, and 1821 constraints. These specific problems were

chosen since they are known to be challenging to solve. We have applied the Center-cut

implementation to the test problems, and the results are shown in Table 4.1. The table

shows the time and number of iterations needed to find a feasible solution, a second feasible

solution, a solution within 5% of the best-known solution, a solution within 1% of the best-

known solution, and the quality of the best found solution. Besides the settings described

in the previous section, we have used a time limit of 1800 seconds.

To get a reference point for evaluating the performance, we have used the feasibility

pump (FP) available in the state-of-the-art solver DICOPT in GAMS [214] on the same

problems. As previously mentioned, the feasibility pump is a primal heuristic intended

for quickly finding good solutions. The results obtained with the feasibility pump are

shown in Table 4.2. With the feasibility pump, we have used CONOPT and Gurobi as
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Figure 4.3: The lines show the number of problems that the Center-cut implementation,
feasibility pump, and OA can find a solution to as a function of running time. The lines do
not correspond to the cumulative solution time but show how many of the problems the
algorithms can obtain a solution to within a specific time. The number in the parenthesis
shows the total number of problems where a solution was obtained.

subsolvers, and we have used the following parameters to make sure we can obtain a

solution within 1% of the optimal solution: fp cutoffdecr = 0.01, fp timelimit = 1800,

fp stalllimit = 10000 and fp sollimit = 10000. We used Conopt as an NLP subsolver

with the feasibility pump since it resulted in significantly better performance compared to

using Ipopt, see Figure 4.4. Note that this is not intended directly as a comparison. The

feasibility pump in DICOPT and the Matlab implementation of the Center-cut algorithm are

difficult to compare in terms of solution time directly due to the different implementation

environments. The Matlab implementation is quite simple and mainly intended as a proof

of concept and shows the Center-cut algorithm’s potential.

Table 4.1 shows that the Center-cut implementation can find a feasible solution to all of

128
CHAPTER 4. CENTER-CUT ALGORITHM FOR CONVEX MINLP



4.7 NUMERICAL RESULTS

the eight problems within less than 3 seconds. Furthermore, we can find good solutions to

all of the problems except tls7, where the best-obtained solution is still far from the best-

known solution. However, it should be noted that these are complex problems, and tls7

is one of the few convex MINLP problems in MINLPLib2 that are still considered unsolved.

The feasibility pump struggles with some of the problems. It is not able to find any solution

for two of the problems. The feasibility pump is quicker at obtaining solutions of problems

gams01 and o7 ar2 1. However, for the other problems, the Center-cut implementation

seems to be more efficient.

To further test the Center-cut implementation, we applied it to 295 test problems from

MINLPLib2. In this test set, we chose all convex problems from MINLPLib2 containing

at least one discrete variable. We removed the instances where the only nonlinearity was

due to a quadratic objective function. Convex problems where the only nonlinear term is a

quadratic objective can be solved efficiently directly with Gurobi. For such problems, the

Center-cut algorithm is not necessarily a good choice, and therefore, we removed these

test problems. The results obtained with the Center-cut implementation are presented in

Figure 4.3. We have applied the feasibility pump to the test problems to get a reference

point to evaluate the results. We have also used a basic implementation of OA, described in

[89], to show the time needed to obtain a feasible solution with OA.

Figure 4.3 shows the number of problems that the Center-cut implementation can find

a feasible solution to as a function of time. The figure is not based on the cumulative

solution time. One of the lines represents the number of problems the algorithm can obtain

a solution to within that specific time. The figure shows that the Center-cut implementation

can find feasible solutions to these problems quickly. 250 test problems can find a feasible

solution by running Center-cut implementation for less than 1 second. Furthermore, the

implementation requires less than 10 seconds to find a feasible solution to 291 of the 295
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test problems. There is only one problem (tls12) where the implementation fails to find a

feasible solution. Compared with the feasibility pump, the Center-cut can find a feasible

solution for more problems in 0.1 s, and the overall performance is similar. Within the given

time limit, the Center-cut can find feasible solutions for all but one of the test instances.

At the same time, the feasibility pump is not able to find any feasible solution to five of

the instances. The figure also shows that OA is significantly slower at obtaining feasible

solutions.

Finding a solution within 1% of the best-known solution requires more time. By running

the Center-cut implementation for 10 seconds, finding a solution within the 1% tolerance

for 236 of the test problems is possible. Within the given time limit, we managed to find

a solution within the tolerance for 290 test problems. The feasibility pump is faster at

obtaining solutions within the 1% tolerance for the easier test problems, partially due to

a more efficient implementation. For the instances requiring more than 3 seconds, the

feasibility pump and Center-cut performance are pretty similar. However, the feasibility

pump fails to find a solution within the tolerance for 17 test problems in the end. In contrast,

the Center-cut implementation only fails on 5 of the problems.

To show that the test problems considered here are not trivial, we have also solved them

with the solvers BARON, DICOPT, and SBB in GAMS, and results are presented in the

Appendix. To get a more comprehensive comparison between the feasibility pump and

the Center-cut algorithm, we have also compared them in terms of the total number of

iterations needed; the result is shown in Figure 4.4. However, the results are very similar to

the comparison in solution time, and, therefore, the comparison based on iterations is only

included in the Appendix.

The numerical results are mainly intended as a proof of concept and show the potential

of the Center-cut algorithm. The results are promising and show that the simple Matlab
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implementation of the Center-cut algorithm is actually on par with the feasibility pump in

the state-of-the-art solver DICOPT.

The numerical results have shown that the Center-cut algorithm may be well suited as a

primal heuristic. For the test problems, we quickly found feasible solutions to almost all of

the 295 test problems. Furthermore, we are also able to obtain solutions of good quality.

4.8 Conclusions

In this chapter, we have given a detailed presentation of the Center-cut algorithm for convex

MINLP. We have proven that the algorithm finds the optimal solution in a finite number

of iterations. The algorithm uses a different approach to obtain trial solutions that should

quickly obtain feasible solutions, and the numerical results verified this. The ability to

quickly obtain feasible solutions makes the algorithm well suited as a primal heuristic.

However, it can also be used as a deterministic solution technique. With the Center-cut

algorithm, we do not directly obtain a lower bound as in ESH or ECP. Therefore it could be

efficient to combine these algorithms in a solver to obtain both a lower and upper bound.

4.A Detailed Performance Results

Section 4.7 mentions that the feasibility pump in DICOPT performed better when using

CONOPT instead of Ipopt as NLP subsolver. Figure 4.4 shows a clear difference between

using the two subsolvers. However, we have been informed that an issue in the imple-

mentation could partially cause the difference, and it should be fixed in the next GAMS

release.

To show that the test problems are not trivial to solve, we have also tried to solve them

using the solvers BARON, DICOPT, and SBB in GAMS. With these solvers, we have used
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Figure 4.4: The lines show the number of problems that the Center-cut implementation,
feasibility pump, and the solvers BARON, DICOPT, and SBB can find a solution to as a
function of running time. The lines do not correspond to the cumulative solution time.
However, they show how many individual problems the solvers can solve within the given
time. The number in the parenthesis shows the total number of problems where a solution
was obtained.

Gurobi and CONOPT as subsolvers. We have used default settings, except that we have

changed the iteration limit to prevent the solvers from terminating prematurely. Also, if

the solver has a convex strategy, then the strategy was activated. The results obtained with

these solvers are shown in Figure 4.4, together with the results obtained by the Center-cut

implementation and the feasibility pump. The Center-cut implementation can obtain a

solution within 1% of the optimum for eight problems more than BARON. However, one

should keep in mind that BARON, DICOPT, and SBB also obtain bounds on the optimum.

Such optimality guarantees are provided by neither the Center-cut algorithm nor by the

feasibility pump.

Section 4.7 mentions that it is difficult to compare the Center-cut implementation and the
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feasibility pump in terms of solution time. This is partially true as they are implemented

in different environments that can affect the solution time. To avoid differences due to

the implementations, the algorithms are also compared based on the total number of

iterations in Figure 4.5. The total number of iterations includes all iterations performed

by the MILP and NLP subsolver. The total number of iterations is comparable between

the algorithms since both solve similar MILP and NLP subproblems. However, the MILP

subproblems in the feasibility pump will, in general, contain more variables and constraints

than those in the Center-cut algorithm. An iteration in the feasibility pump may, therefore,

be computationally more demanding than a Center-cut iteration.
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Table 4.1: The table shows the results obtained with the Center-cut implementation. The
sign * indicates that no such solution was obtained within the time limit of 1800 seconds.

Results obtained by the Center-cut implementation
Name of MINLP problem flay06h gams01 ibs2 o7 ar2 1
Time / iterations to find a a feasible
solution.

0.2 s / 2 0.3 s / 2 0.9 s / 4 0.6 s / 4

Time / iterations to find a second
feas. sol.

* 0.7 s / 4 5.9 s / 10 2.0 s / 6

Time / iterations to find a sol.
within 5% of opt.

0.2 s / 2 12 s / 23 91 s / 124 34 s / 12

Time / iterations to find a sol.
within 1% of opt.

0.2 s / 2 139 s / 23 143 s / 146 60 s / 15

Sub-optimality of best-found solu-
tion.

0% 0.5% 1% 0%

Number of variables / discrete vari-
ables / constraints

567 / 60 /
694

146 / 110 /
1269

3011 /
1500 /
1822

113 / 42 /
270

Name of MINLP problem rsyn0815m04hstockcycle tls6 tls7
Time / iterations to find a feasible
solution.

0.2 s / 2 0.1 s / 1 0.7 s / 9 2.5 s / 14

Time / iterations to find a second
feas. sol.

1.3 s / 3 0.7 s / 2 13 s / 36 5.0 s / 26

Time / iterations to find a sol.
within 5% of opt.

8.8 s / 17 35 s / 102 830 s / 159 *

Time / iterations to find a sol.
within 1% of opt.

9.4 s / 19 122 s / 184 * *

Sub-optimality of best-found solu-
tion.

0.5% 0.5% 3% 33%

Number of variables / discrete vari-
ables / constraints

1797 / 367
/ 3191

481 / 432 /
98

216 / 179 /
155

346 / 296 /
155
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Table 4.2: The table shows the results obtained with the feasibility pump in DICOPT. The
sign * indicates that no such solution was obtained within the time limit of 1800 seconds.

Results obtained by the feasibility pump in DICOPT
Name of MINLP problem flay06h gams01 ibs2 o7 ar2 1
Time / iterations to find a feasible
solution.

0.2 s / 1 0.3 s / 1 * 0.8 s / 4

Time / iterations to find a second
feas. sol.

0.3 s / 2 0.7 s / 2 * 0.9 s / 5

Time / iterations to find a sol.
within 5%.

0.4 s / 3 8.3 s / 21 * 5.5 s / 11

Time / iterations to find a sol.
within 1% of opt.

0.6 s / 5 37 s / 45 * 28 s / 13

Sub-optimality of best-found solu-
tion.

0% 0% ∞ 0%

Number of variables / discrete vari-
ables / constraints

567 / 60 /
694

146 / 110 /
1269

3011 /
1500 /
1822

113 / 42 /
270

Name of MINLP problem rsyn0815m04hstockcycle tls6 tls7
Time / iterations to find a feasible
solution.

2.7 s / 1 0.1 s / 1 166 s / 48 *

Time / iterations to find a second
feas. sol.

3.9 s / 3 0.2 s / 2 * *

Time / iterations to find a sol.
within 5% of opt.

5.7 s / 10 4.7 s / 51 * *

Time / iterations to find a sol.
within 1% of opt.

9.1 s / 14 226 s / 295 * *

Sub-optimality of best-found solu-
tion.

0% 1% 12% ∞

Number of variables / discrete vari-
ables / constraints

1797 / 367
/ 3191

481 / 432 /
98

216 / 179 /
155

346 / 296 /
155
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Chapter 5

Outer-approximation with quadratic cuts?

5.1 Introduction

The applications of Mixed-Integer Nonlinear Programming (MINLP) models in Process

Systems Engineering (PSE) are pervasive. The MINLP models are usually used to formulate

problems such as synthesis, production planning, batch scheduling, operations optimization,

and optimal control, among others [60, 236, 237]. The nature of the functions involved in

optimization in PSE motivated the development of solution methods for generalized and

specialized MINLP models. Convex MINLP models are of particular interest since their

continuous relaxation gives rise to convex problems with a unique optimum value.

The most common methods for solving convex MINLP problems include decomposition

methods, such as Outer-approximation (OA), Generalized Benders Decomposition (GBD),

and Extended Cutting Planes (ECP), and Branch and Bound (B&B) methods. Methods for

nonconvex MINLP problems include primarily spatial B&B methods [238]. Reviews at

MINLP methods can be found in [104, 105, 200].
?Published as: Lijie Su, Lixin Tang, David E Bernal, and Ignacio E Grossmann. “Improved quadratic cuts

for convex mixed-integer nonlinear programs”. Computers & Chemical Engineering 109 (2018), pp. 77–95.
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A general form of an MINLP is as follows,

min
x,y

Z = f (x,y),

s.t. g(x,y) ≤ 0,

Ax + Ey ≤ b,

x ∈ X ⊆ Rn,y ∈ Y ⊆ Zp,

(MINLP)

where f : Rn×Rp→ R is the objective function which may be nonlinear, and g : Rn×Rp→ Rm

are the nonlinear inequality constraints. The matrices A and E are the coefficient matrices

of the continuous and discrete variables in the linear constraints, respectively, and the

vector b is the right-hand side of the linear inequalities. The sets X and Y are compact

and bounded subsets of the n-dimensional Euclidean space and the p-dimensional integer

lattice, respectively. The optimal solution to problem MINLP, if it exists, is denoted by (x,y).

The discrete nature of the y variables makes the MINLP problems nonconvex, but a

usual classification of MINLP models is based on the convexity of the objective function

f (x,y) and constraints g(x,y). If the objective function and the constraints are all convex, the

MINLP can be classified as convex; otherwise, it would be classified as nonconvex.

This chapter addresses the solution of convex MINLP models based on OA and PSC

methods using scaled quadratic cuts that underestimate the convex nonlinear functions.

The paper is organized as follows. In Section 5.2, we present a brief background in MINLP

solution methods, with a special focus on the OA and the PSC methods and the multi-

generation cut strategy. Section 5.3 presents a motivation for this work, where a quadratic

approximation to nonlinear functions can approximate more accurately the MINLP. Sec-

tion 5.4 presents the quadratic approximation cuts and introduces the scaled quadratic cuts,

which are proven to be valid underestimators for general convex nonlinear functions that

appear in the objective function and the constraints. In Section 5.5 we present six improved
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MINLP methods based on the scaled quadratic cuts, including the multi-generation strate-

gies and PSC methods. Section 5.6 presents the numerical experiments of applying the

proposed improvements to 44 benchmark MINLP problems and comparing their perfor-

mances among them and with existing MINLP solvers. Finally, we give some conclusions

for the improved OA and PSC methods with the proposed quadratic cuts.

5.2 Background

In the following section, we summarize different solution methods for MINLP, namely,

Outer-approximation (OA) method, Partial Surrogate Cut (PCS) method, and multi-

generation cuts strategy. The following assumptions are made:

1. The function f : Rn ×Rp → R and vector functions g : Rn ×Rp → Rm are twice con-

tinuously differentiable convex functions, in which there is at least one nonlinear

function.

2. x and y represent the continuous and discrete variables, respectively. The set X is a

nonempty compact convex set, and the set Y is finite.

3. All NLP subproblems with fixed discrete variables of MINLP satisfy a constraint

qualification [159].

These assumptions are required for the OA method and the nonlinear B&B to guarantee

that problem MINLP and all its subproblems and relaxations are solved correctly [25, 30].

Here, the discrete variables y can be regarded as {0,1} binary variables. General bounded

discrete variables can always be expressed in terms of binary variables.
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5.2.1 MINLP solution methods

The general solution methods for convex MINLP problems are classified into two cat-

egories according to the structure of the algorithmic procedure. The first category of

MINLP methods are the decomposition methods, which includes OA [30], GBD [28], and

PSC [90]. The second category of MINLP methods are based on B&B [108] including

LP/NLP based B&B [90, 114, 169]. The convex MINLP solution methods are used within

global optimization algorithms for finding the globally optimal solution to nonconvex

MINLP problems [238–241]. These methods rely on the convex relaxation of the nonconvex

functions present in the problem, as in the αBB method [242]. In addition, ECP methods

avoid the solution of NLP subproblems by solving a master MILP problem generated

similarly as in the OA method but using the solution of the relaxed MILP problem as the

following linearization point [29].

The idea of decomposition methods for convex MINLP is to decompose an MINLP

into an NLP with fixed discrete variables and an MILP based on constructing cumulative

relaxation cuts of nonlinear functions, which are the underestimators of the convex nonlinear

functions. The NLP subproblem of an MINLP in minimization problems yields an upper

bound assuming a feasible solution exists. The problem for fixed integer variables yk is as

follows,

min
x

Zk
UB = f (x,yk),

s.t. g(x,yk) ≤ 0,

Ax + Eyk ≤ b,

x ∈ X ⊆ Rn.

(NLP(yk))

Let xk be the solution to the NLP(yk) problem, if feasible. Note that the solution (xk,yk) is

a feasible solution to problem MINLP. The MILP problem based on relaxation cuts of the

nonlinear functions is called the master problem Mk shown later in this chapter and yields
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a lower bound for minimization problems. By successively solving the NLP and the MILP

in an iterative cycle, upper and lower bounds of the objective function are obtained, and

the procedure is stopped when the bounds lie within a given tolerance. The differences

in the decomposition methods lie in the MILP master problem, especially in the process

of generating the relaxation cuts, which also determine the problem size of MILP and the

predicted lower bounds for the MINLP. The detailed information of the master problem for

OA and PSC is given in the following sections referred to as Mk
OA and Mk

PS C respectively.

5.2.2 Outer-approximation method

The OA method is a decomposition method proposed by Duran and Grossmann [30] for

solving MINLP problems. In this method, the master problem is constructed with the

accumulated linear cuts on the optimal solutions of NLP subproblems through the first-

order Taylor series expansion of nonlinear functions. The master problem is given by the

following MILP:

min
x,y,η

Zk
LB,OA = η

s.t. η ≥ f (xk,yk) +∇ f (xk,yk)>

x−xk

y−yk

 , k ∈ K,

g(xk,yk) +∇g(xk,yk)>

x−xk

y−yk

 ≤ 0, k ∈ K

Ax + Ey ≤ b,

x ∈ X ⊆ Rn,y ∈ Y ⊆ Zp,η ∈ R.

(Mk
OA)

The solutions of the MILP are non-decreasing lower bounds of the MINLP. From a

geometric point of view, an OA cut is a tangent line passing through one active nonlinear

function in the MINLP problem. For the first iteration of the OA method, Viswanathan

and Grossmann [124] proposed that the first linearizations of the problem be generated
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based on the solution of the relaxed MINLP, in which the integer variables are treated as

continuous,

min
x,y

ZLB = f (x,y),

s.t. g(x,y) ≤ 0,

Ax + Ey ≤ b,

x ∈ X ⊆ Rn,y ∈ Y ⊆ Rp.

(rMINLP)

In case that the optimal solution of this problem satisfies the integrality constraints, no

iterations are required as then the solution is found. In the case that problem rMINLP is

infeasible and unbounded, the same can be assured for the original MINLP problem [124].

When fixing the integer variables yk, there is a possibility that the NLP(yk) problem be-

comes infeasible. However, the values of the continuous variables x can still be used to

generate valid linearizations if the functions are convex [90]. Furthermore, Fletcher and

Leyffer [25] proposed to solve the following feasibility NLP subproblem after finding an

infeasible NLP(yk) to minimize the violation of the constraints,

min
x,s

m∑
i=1

si,

s.t. g(x,yk) ≤ s,

Ax + Eyk ≤ b,

x ∈ X ⊆ Rn,s ∈ Rm
+ .

(F(yk))

5.2.3 Partial Surrogate Cuts method

Another decomposition method is the PSC method, proposed by Quesada and Grossmann

[90]. In this method, the main idea is to partition the continuous variables into linear and

nonlinear according to their presence in linear and nonlinear terms, respectively. This
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allows us to rewrite problem MINLP as follows,

min
x,y

Z = f (v,w,y),

s.t. g(v,w,y) ≤ 0,

A1v + A2w + Ey ≤ b,v

w

 = x ∈ X ⊆ Rn,y ∈ Y ⊆ Zp,

(P)

where v are the nonlinear and w are the linear continuous variables, respectively. The

coefficient matrix of the continuous variables in the linear constraints is also partitioned

into A1 and A2 according to the linear and nonlinear continuous variables, respectively.

This partition allows building a Lagrangean cut by projecting out the nonlinear terms.

Introducing a real variable η representing the linearized objective, the cut is as follows,

η ≥ f (vk,w,y) +

 λ
k

−µk


> g(v,w,y) 0

0 A1


 1

v−vk

 , (5.1)

where λk are the Lagrange multipliers of the nonlinear constraints including the nonlinear

continuous variables v, µk are the Lagrange multipliers of the linear constraints including

nonlinear continuous variables v, both obtained from the solution of problem rMINLP at

the first iteration k = 1 and problem NLP(yk) at iteration k ≥ 2.

Contrary to OA, the linearizations based on the projection onto the nonlinear terms are

not valid when the solution of problem NLP(yk) is infeasible, in which case the following

infeasibility cut is applied from the dual information of the nonlinear subproblem, λ
k

−µk


> g(v,w,y) 0

0 A1


 1

v−vk

 ≤ 0. (5.2)
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With these cuts, the master problem of the PSC method is as follows,

min
x,y,η

Zk
LB,PS C = η

s.t. η ≥ f (vk,w,y) +

 λ
k

−µk


> g(vk,w,y) 0

0 A1


 1

v−vk

 , k ∈ KF ,

 λ
k

−µk


> g(vk,w,y) 0

0 A1


 1

v−vk

 ≤ 0, k ∈ KI

Ax + Ey ≤ b,v

w

 = x ∈ X ⊆ Rn,y ∈ Y ⊆ Zp,η ∈ R,

(Mk
PS C)

where KF and KI are the set of iterations where problem NLP(yk) is feasible and infeasible,

respectively.

The PSC method combines the OA and the GBD methods, where cuts are derived

from gradient-based linearizations like in OA and the KKT conditions like in GBD. The

relationship between the lower bounds in minimization MINLP problems for each method

is as follows

Zk
LB,GBD ≤ Zk

LB,PS C ≤ Zk
LB,OA (5.3)

The size of the master problem from OA is larger than the one in the PSC method,

although it provides stronger lower bounds. This tradeoff between the methods allows to

choose among them depending on the problem, e.g., if problem Mk
OA becomes too large to

handle, the PSC method can become advantageous at the cost of having to perform more

iterations to find the optimal solution of the MINLP problem [243].
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5.2.4 Multi-generation cuts

The original OA, GBD, and PSC methods generate a single cut per iteration for the cor-

responding master problem Mk. Su, Tang, and Grossmann [243] propose adding several

cuts at every iteration. This can be achieved using the solution pool of the MILP solver,

such as CPLEX[52] while solving the master problem Mk and solving a subproblem NLP(yk)

for each feasible solution in the solution pool. Given |S | feasible solutions of the master

problem Mk, we solve for each s ∈ {1, . . . , |S |} a subproblem NLP(yk). The solution to each

problem, (xk,s,yk,s) , is a valid point for generating linearizations for a convex MINLP.

The OA cuts generated at the kth iteration are as follows,

η ≥ f (xk,s,yk,s) +∇ f (xk,s,yk,s)>

x−xk,s

y−yk,s

 , k ∈ K, s ∈ S ,

g(xk,s,yk,s) +∇g(xk,s,yk,s)>

x−xk,s

y−yk,s

 ≤ 0, k ∈ K, s ∈ S .

(5.4)

In a similar fashion, multiple cuts can be generated for the PSC method as follows,

η ≥ f (vk,s,w,y) +

 λ
k,s

−µk,s


> g(vk,s,w,y) 0

0 A1


 1

v−vk,s

 , k ∈ KF , s ∈ S ,

 λ
k,s

−µk,s


> g(vk,s,w,y) 0

0 A1


 1

v−vk,s

 ≤ 0, k ∈ KI , s ∈ S .

(5.5)

The multi-generation cuts (MC) procedure strengthens the approximation of the master

problem, and therefore the lower bound in minimization MINLP problems can be improved.

This approach can reduce the number of iterations of decomposition algorithms such as OA

and PSC. Even though the iterations can be more time-consuming, the total computational

time can decrease using this procedure [243].

CHAPTER 5. OUTER-APPROXIMATION WITH QUADRATIC CUTS

145



5.3 MOTIVATION

5.3 Motivation

Quadratic approximations have been proposed for MINLP decomposition methods and

B&B methods. grossmann2002review and Fletcher and Leyffer [25] discussed the quadratic

master problem of decomposition methods. Based on the Hessian of the Lagrange function

with respect to continuous and discrete variables, the master problem is constructed with

a quadratic objective function and linear constraints, which results in a Mixed-Integer

Quadratic Programming (MIQP) master problem.

Recently, MILP solvers like CPLEX and Gurobi have expanded their capabilities to solve

MIQP and Mixed-Integer Quadratically Constrained Programming (MIQCP) problems [244].

The crucial factor of MIQCP solvability is the Hessian matrix. Convex MIQCP problems,

which have a positive semi-definite (PSD) Hessian matrix, can be solved to optimality as

one special convex MINLP with traditionally MILP solvers, e.g., CPLEX.

Buchheim and Trieu [245] presented a quadratic Outer-approximation scheme for convex

integer nonlinear programming problems, which are problems with an unconstrained

convex nonlinear objective function with only integer variables. Leyffer [114] integrated the

Sequential Quadratic Programming (SQP) algorithm in the branch and bound method.

In the MINLP decomposition methods with quadratic approximation cuts, the master

problem is a MIQCP. If the objective function and constraints in MIQCP are convex, the

MIQCP optimization problem is convex. If the MIQCP can be transformed into Mixed

Integer Second Order Cone Programming (MISOCP), it can be efficiently solved using

Second Order Cone Programming (SOCP) solution techniques [92]. Alternatively, Berthold,

Heinz, and Vigerske [246] presented a global solution framework based on constraint

integer programming used as a basis for the SCIP solver, which is aimed at the solution of

MIQCP problems with general Hessian matrix [180].

If the quadratic cuts based on Taylor’s second-order expansion term are introduced into
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the decomposition of MINLP methods, the objective function can be better approximated

than the general linear master problem. However, the quadratic Taylor expansion does not

provide a rigorous lower bound for general nonlinear functions. Hence, the OA and PSC

with an MIQCP master problem are not guaranteed to converge to the optimal solution

of the MINLP. In this chapter, we show that the quadratic approach for the OA and PSC

method can be made rigorous by scaling the quadratic terms in scaled quadratic cuts, and

in that way, help to accelerate the solution process.

We replace the tangent cuts of the master problem with scaled quadratic cuts that un-

derestimate the convex nonlinear functions. These scaled quadratic cuts allow us to use

second-order derivative information and still ensure that we underestimate the nonlinear

functions with an approximation at most as nonlinear as the second-order expansion. In

combination with the strategy of multi-generation cut, we present the strategy of multi-

generation quadratic cuts and hybrid cuts for OA and PSC for solving convex MINLP

problems. Numerical experiments demonstrate the performance of the improved OA and

PSC method.

5.4 Quadratic approximation cuts

In this section, we show the Taylor series truncated at the second-order and a scalar α can be

used to build quadratic cuts (QCUT) that are tight valid underestimators for the nonlinear

functions.

5.4.1 Quadratic approximation of nonlinear functions

According to Taylor’s theorem, any function f : Rn → R of the class Cn+1 on the open

convex set B containing the point x0 ∈ R
n can be written as an expansion around x0 using a
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polynomial whose coefficients depend in the derivatives of the function in that point [247,

Section 2.7]. The first-order expansion can be defined using the gradient of the function at

the expansion point ∇ f (x0) as follows,

T1(x) = f (x0) +∇ f (x0)>[x−x0]. (5.6)

When we expand a nonlinear function with second-order terms of the Taylor series, we

obtain the quadratic approximation of the function,

T2(x) = f (x0) +∇ f (x0)>[x−x0] +
1
2

[x−x0]>∇2 f (x0)[x−x0], (5.7)

where ∇2 f (x0) denotes denotes the Hessian matrix of the function f evaluated at the point

x0.

(a) f (x) = ex,0 ≤ x ≤ 2, x0 = 1 (b) f (x) = x ln x,1 ≤ x ≤ 3.5, x0 = 2

Figure 5.1: Comparisons of the first- and second-order Taylor series expansions of convex
one dimensional functions

The deviation between the nonlinear function and the second-order expansion is smaller

than the deviation between the nonlinear function and its first-order expansion. We can

then state the following proposition, which can be trivially proved.

Proposition 5.4.1. If a convex nonlinear function is expanded in one fixed point, the second-

order Taylor expansion of the function must be greater than or equal to the first-order Taylor

expansion at any point.
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From the geometric point of view, the curve of second-order Taylor expansion must lie

over the tangent line of the first-order expansion and provides a better approximation.

However, the second-order expansion is not always a valid underestimation of a nonlinear

function, as is the case of the first-order expansion, as shown in Figure 5.1.

5.4.2 Scaled quadratic approximation

In order to globally underestimate a convex nonlinear function by a quadratic cut, we

expand the second-order expansion with a scaled coefficient α ∈ R+ such that

T (x,α) = f (x0) +∇ f (x0)>[x−x0] +
α

2
[x−x0]>∇2 f (x0)[x−x0]. (5.8)

T (x,α) with 0 ≤ α ≤ 1 corresponds to an approximation that lies between the supporting

hyperplane and the quadratic expansion, which still is a quadratic approximation with

a larger radius of curvature at x0. On the other hand, for the range of α ≥ 1, T (x,α) is an

overestimation of the second-order Taylor expansion.

For the convex functions considered in Figure 5.1, we add scaled quadratic cuts as shown

in Figure 5.2. We can notice how the scaled second-order expansion lies between the first-

and second-order expansions when α is between 0 and 1, while when α ≥ 1, it lies above the

second-order approximation.

Therefore, if the coefficient α satisfies certain conditions, it can yield quadratic approxi-

mations that underestimate the convex nonlinear functions. The following propositions

provide theoretical guarantees for valid underestimation of scaled quadratic cut, assuming

that the variables are bounded.

Proposition 5.4.2. Let f : Rn→ R define a general convex twice continuously differentiable

nonlinear function f (x), in terms of the n-dimensional variable x bounded as x ∈ [xl,xu],

where xl, xu are finite bounds, and α be scaled coefficient for a quadratic approximation as

CHAPTER 5. OUTER-APPROXIMATION WITH QUADRATIC CUTS

149



5.4 QUADRATIC APPROXIMATION CUTS

(a) f (x) = ex,0 ≤ x ≤ 2, x0 = 1 (b) f (x) = x ln x,1 ≤ x ≤ 3.5, x0 = 2

Figure 5.2: Comparisons of the scaled second-order Taylor series expansions with different
values of α of convex one dimensional functions

in Eq. (5.8). If we calculate the scalar α in Eq. (5.8) as follows,

α

2
= min

x∈F

f (x)− f (x0)−∇ f (x0)>[x−x0]
[x−x0]>∇2 f (x0)[x−x0]

, (5.9)

where F = {x : xl ≤ x ≤ xu} \ {x0} and that no element of the Hessian ∇2 f (x0)i j is equal to zero,

then the scaled second-order approximation T (x,α) is a valid underestimator of the function

f (x).

Proof. The necessary condition to prove in this proposition is the following.

f (x) ≥ T (x,α),∀x ∈ F = {x : xl ≤ x ≤ xu}. (5.10)

If we define the function g(x) as the difference between the original function and the scaled

approximation, we have the following condition to prove.

g(x) = f (x)−T (x,α) ≥ 0,∀x ∈ F = {x : xl ≥ x ≤ xu}. (5.11)

Substituting T (x,α) as in Eq.(5.8) we obtain the following condition:

f (x)− f (x0)−∇ f (x0)>[x−x0]−
α

2
[x−x0]>∇2 f (x0)[x−x0] ≥ 0. (5.12)
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Given the fact that f (0) is convex, we can rearrange (5.12) as follows:

α

2
≤

f (x)− f (x0)−∇ f (x0)>[x−x0]
[x−x0]>∇2 f (x0)[x−x0]

,∀x , x0,∇
2 f (x0)i j , 0, i, j ∈ 1, . . . ,n. (5.13)

Since the term in the denominator is greater or equal than zero it does not change the

inequality sign and we can exclude the expansion point from the domain of the inequality.

Then, minimizing the obtained expression over the selected domain we obtain

min
x∈F={x:xl≤x≤xu}\{x0}

∇2 f (x0)i j,0, i, j∈1,...,n

{
f (x)− f (x0)−∇ f (x0)>[x−x0]

[x−x0]>∇2 f (x0)[x−x0]

}
≤

f (x)− f (x0)−∇ f (x0)>[x−x0]
[x−x0]>∇2 f (x0)[x−x0]

(5.14)

which yields the expression in Eq. (5.9). �

Given the fact that the function f (x) is convex, the term [x−x0]>∇2 f (x0)[x−x0] is greater

or equal than zero, and therefore the function g(x) is monotonic decreasing with respect to

α. This means that minimizing the value of the scalar α maximizes the difference between

f (x) and T (x,α).

Having a convex f (x) does not mean that the function defining α is convex itself. There-

fore, finding its minimum is not trivial. However, the following observation can avoid

solving this nonconvex optimization problem for a particular class of convex MINLP

problems. In particular, if we assume that the maximum of the difference between these

functions g(x) as in Eq. (5.11) lies at one of the vertices, the function defining α is coordinate-

wise monotonic, i.e., nondecreasing or nonincreasing in each variable independently. This

special case implies that the minimum α can be found using the following equation,

α

2
= min

xv∈V

f (xv)− f (x0)−∇ f (x0)>(xv−x0)
(xv−x0)>∇2 f (x0)(xv−x0)

,∀xv , x0,∇
2 f (x0)i j , 0, i, j ∈ 1, . . . ,n, (5.15)

where xv denotes the vertices in setV = (xl
1, x

u
1)× · · ·× (xl

n, x
u
n). The minimum for the expres-

sion can then be found by enumeration instead of solving the nonconvex optimization

problem in Eq. (5.9) as seen in Figure 5.3.
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(a) f (x) = ex,0 ≤ x ≤ 2, x0 = 1 (b) f (x) = x ln x,1 ≤ x ≤ 3.5, x0 = 2

Figure 5.3: Function calculating the scalar α for convex one dimensional functions

Although this condition of coordinate-wise monotonicity in α is stronger than the condi-

tion of function f (x) being convex, the problems used in this work satisfy that the minimum

α is indeed at a vertex, see Appendix 5.A for more details.

In summary, based on Proposition 5.4.2 we generate the quadratic underestimations of

convex nonlinear functions for MINLP problems to accelerate the convergence of the OA

and PSC algorithms.

5.4.3 Scaled quadratic cuts for Outer-approximation

We generate the scaled quadratic cuts in the master problem of OA as follows.

η ≥ f (xk,yk) +∇ f (xk,yk)>

x−xk

y−yk

+
αk

2

x−xk

y−yk


>

∇2 f (xk,yk)

x−xk

y−yk

 , k ∈ K,

g(xk,yk) +∇g(xk,yk)>

x−xk

y−yk

+
βk

2

x−xk

y−yk


>

∇2g(xk,yk)

x−xk

y−yk

 ,≤ 0, k ∈ K,

(5.16)

where αk is the scale coefficient for the objective function, and βk is a the scale vector for

the constraint functions vector at the kth iteration of OA. The scalar αk and vector βk are
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calculated based on Eq. (5.9).

The master problem then becomes the following MIQCP problem:

min
x,y,η

Zk
LB,OA−QCUT = η

s.t. η ≥ f (xk,yk) +∇ f (xk,yk)>

x−xk

y−yk

+
αk

2

x−xk

y−yk


>

∇2 f (xk,yk)

x−xk

y−yk

 , k ∈ K,

g(xk,yk) +∇g(xk,yk)>

x−xk

y−yk

+
βk

2

x−xk

y−yk


>

∇2g(xk,yk)

x−xk

y−yk

 ,≤ 0, k ∈ K,

Ax + Ey ≤ b,

x ∈ X ⊆ Rn,y ∈ Y ⊆ Zp,η ∈ R.

(Mk
OA−QCUT )

To illustrate our approach we tackle the solution of the following example problem,

min
x1,x2

f (x1, x2) = x4
1 + 3,

s.t. g1(x1, x2) = 20− x2
1− x2

2 ≥ 0,

g2(x1, x2) = 5 + (x1−1)2− x2 ≤ 0,

g3(x1, x2) = 15
√

x1− x2 ≤ 0,

0 ≤ x1 ≤ 3,0 ≤ x2 ≤ 30,

x1 ∈ R, x2 ∈ Z.

(Ex)

The master problems for OA are derived at the point x0 = (1,15). Figure 5.4 provides the

geometric illustration of the nonlinear objective function and feasible region with scaled

quadratic cuts.
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Problem Mk
OA for this example becomes:

min
x1,x2,η

η

s.t. η ≥ T f (x1, x2,0) = 4x1,

Tg1(x1, x2,0) = 21−2x1− x2 ≥ 0,

Tg2(x1, x2,0) = 5− x2 ≤ 0,

Tg3(x1, x2,0) = 15/2(x1 + 1)− x2 ≤ 0,

0 ≤ x1 ≤ 3,0 ≤ x2 ≤ 30,

x1 ∈ R, x2 ∈ Z,η ∈ R.

(5.17)

In Figure 5.4(a) we can see that the scaled quadratic cut with α = 0.5 is an underestimation

of the nonlinear function. Figure 5.4(b) is the illustration of the scaled quadratic cuts for

each of the nonlinear constraints. The scaled quadratic problem is as follows,

min
x1,x2,η

η

s.t. η ≥ T f (x1, x2,0.5) = 4x1 + 0.5
12
2

(x1−1)2,

Tg1(x1, x2,1) = 21−2x1− x2− (x1−1)2 ≥ 0,

Tg2(x1, x2,1) = 5− x2 + 2(x1−1)2 ≤ 0,

Tg3(x1, x2,0.536) = 15/2(x1 + 1)− x2 + 0.536
15
8

(x1−2)2 ≤ 0,

0 ≤ x1 ≤ 3,0 ≤ x2 ≤ 30,

x1 ∈ R, x2 ∈ Z,η ∈ R.

(5.18)

Note that for every nonlinear constraint, the scalar α is calculated via Eq. (5.15). Therefore

a different value is obtained for each constraint. For the quadratic constraints g1 and

g2, the value is one, and for the third constraint, it is 0.536. The scaled quadratic cuts

underestimate the objective function and overestimate the convex feasible region. Based

on Propositions 5.4.1, the scaled second-order expansion of a general convex nonlinear
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function is closer to the nonlinear function than its first-order Taylor expansion for a fixed

expanded point, while Proposition 5.4.2 guarantees the validity of the relaxation. Therefore,

the lower bound of the master problem with scaled quadratic cuts is tighter than one with

linear cuts.

(a) Objective function (b) Constraints

Figure 5.4: Geometrical representation of scaled quadratic cuts of the master problem of
OA for problem Ex

With scaled quadratic cuts, the master problem of OA becomes a MIQCP with linear

objective function and quadratic constraints.

Proposition 5.4.3. The convex MINLP problem MINLP has the same optimal solution

(x∗,y∗) as the following problem

min
x,y,η

Zk
LB,OA−QCUT = η

s.t. η ≥ f (xk,yk) +∇ f (xk,yk)>

x−xk

y−yk

+
αk

2

x−xk

y−yk


>

∇2 f (xk,yk)

x−xk

y−yk

 , k ∈ K∗,

g(xk,yk) +∇g(xk,yk)>

x−xk

y−yk

+
βk

2

x−xk

y−yk


>

∇2g(xk,yk)

x−xk

y−yk

 ,≤ 0, k ∈ K∗,

Ax + Ey ≤ b,

x ∈ X ⊆ Rn,y ∈ Y ⊆ Zp,η ∈ R,

(MIQCP)
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where K∗ is the index set of optimal solutions to the problems NLP(yk) for all yk which are

feasible for the original problem MINLP. All the previous optimal solutions to NLP(yk) are

considered and its corresponding cuts are accumulated.

Proof. Since the generated scaled cuts do not cut off the feasible solutions of the convex

nonlinear discrete problem, from Proposition 5.4.2, using the convergence theorem for

OA [25, 30] this Proposition can be trivially proved. �

Since the Hessian matrices of functions f and g are positive semi-definite in all points

(xk,yk), the master problem MIQCP is convex.

In the implementation of the algorithm, we solve a relaxation of problem MIQCP, prob-

lem Mk
OA−QCUT with k ∈ K ⊆ K∗. The solution of problem Mk

OA−QCUT corresponds to a lower

bound of the optimal solution of MINLP.

Since the scaled quadratic cuts in Mk
OA−QCUT are accumulated as the OA main iterations

proceed. The master problem can be solved to obtain a nondecreasing sequence of lower

bounds. Therefore, we develop an expansion of OA with scaled quadratic cuts, OA-

QCUT. Note that if the original MINLP problem MINLP has quadratic objective and/or

constraints, problem Mk
OA−QCUT will represent exactly the original problem in the first

iteration. Therefore it will be solved by solving once the master problem.

The OA-QCUT method is also a decomposition method for convex MINLP problems,

whose difference with the general OA is that the master problem is a MIQCP.

5.5 Improved MINLP methods with quadratic cuts

In Su, Tang, and Grossmann [243], effective computational strategies for MINLP methods

are presented, including multi-generation cuts and hybrid cuts for OA, GBD, and PSC.

Several improved MINLP methods are presented below for convex MINLP problems based

156
CHAPTER 5. OUTER-APPROXIMATION WITH QUADRATIC CUTS



5.5 IMPROVED MINLP METHODS WITH QUADRATIC CUTS

on integrating the scaled quadratic cuts with the strategies of multi-generation cuts and

PSC.

5.5.1 Multi-generation quadratic cuts for OA (OA-MQCUT)

The OA method with scaled quadratic cuts inherits the computational difficulties of the

master problem in the original OA method regarding the accumulation of generated cuts,

which can be even more challenging given that the problem now is an MIQCP. The strategy

of multi-generation cuts for OA aims to decrease the computational effort of the MILP

master problem by merging solution of multiple MILP problems. Therefore, we try to

integrate multi-generation cuts (MCUT) with scaled quadratic cuts for OA, generating

multiple quadratic cuts by parallel solutions of NLP subproblems in one main iteration.

Suppose the number of multi-generation cuts is |S |. The equations of multi-generation

scaled quadratic cuts are as follows,

η ≥ f (xk,s,yk,s) +∇ f (xk,s,yk,s)>

x−xk,s

y−yk,s

+
αk

2

x−xk,s

y−yk,s


>

∇2 f (xk,s,yk,s)

x−xk,s

y−yk,s

 , k ∈ K, s ∈ S ,

g(xk,s,yk,s) +∇g(xk,s,yk,s)>

x−xk,s

y−yk,s

+
βk

2

x−xk,s

y−yk,s


>

∇2g(xk,s,yk,s)

x−xk,s

y−yk,s

 ,≤ 0, k ∈ K, s ∈ S .

(5.19)

Here, we can simplify the calculation of the scaling coefficients. Assume at the kth

iteration, we obtain the scaling coefficients vector (αk,s,βk,s). The scaling coefficients of

iteration k + 1 are initialized as,

αk+1 = min
s∈S
{αk,s}

βk+1 = min
s∈S
{βk,s}.

(5.20)

We can then use Proposition 5.4.2 to compute the scaling coefficients or use this subop-

timal value for the coefficients as long as the cuts using them are valid. This leads to the
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scaling coefficients vector αk+1,βk+1 to yield a monotonic decreasing sequence.

The main steps of multi-generation quadratic cuts are described in the following algo-

rithm:

Algorithm 4 Outer-approximation multi-quadratic cut (OA-
MQCUT) algorithm.

1: Set ZUB =∞, ZLB = −∞, k = 0, specify |S | . Initialization
2: Define gap tolerance ε ≥ 0
3: Solve rMINLP . Solve continuous relaxation
4: if rMINLP is infeasible then
5: Set ZLB =∞ . rMINLP and MINLP are infeasible
6: else
7: Let (x0,y0) be an optimal solution of rMINLP
8: Set ZLB = f (x0,y0)
9: Derive scaled quadratic cuts at (x0,y0) following Eq.5.16 to set

up problem Mk
OA−QCUT .

10: while ZUB−ZLB > ε do
11: Solve problem Mk

OA−QCUT . Solve master problem
12: if Mk

OA−QCUT is infeasible then
13: Set ZL =∞ . Mk

OA−QCUT is infeasible
14: else
15: Let (ηk,s,xk,s,yk,s) be the solutions of Mk

OA−QCUT
16: Set ZLB = mins∈S η

k,s

17: Set ()xk,yk) = xk,s′ ,yk,s′ with s′ = argmins∈S η
k,s

18: Solve NLP(yk) for every yk,s . Solve nonlinear subproblems
19: if NLP(yk) is infeasible then
20: Solve F(yk)
21: else
22: Let xk,s be an optimal solution of NLP(yk) with yk,s

23: Set ZUB = min(ZUB, f (xk,s,yk,s)
24: Update scaling coefficients αk,s, βk,s according to Eq. (5.9)

and Eq. (5.20)
25: Set k = k + 1
26: (xk,yk) is an optimal solution of problem MINLP, if ZUB <∞, oth-

erwise problem MINLP is infeasible
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5.5.2 Hybrid linear and quadratic cuts for OA (OA-HCUT) with multi-

generation strategy (OA-MHCUT)

Considering the computational complexity of MIQCP, we develop hybrid linear and scaled

quadratic cuts (HCUT) for OA based on a multi-generation strategy. We separate the OA

solution process into two stages by iteration number. The main steps are as follows.

(Stage 1) In the first stage, multi-generation linear supporting cuts are constructed and

accumulated into the MILP master problem, which is MCUT-OA [243] until the

specified limit of iterations is reached.

(Stage 2) In the second stage, multi-generation scaled quadratic cuts are constructed and

accumulated in the master problem, which changes the master problem from MILP

into MIQCP. This is OA-MQCUT proposed in Section 5.5.1. The solution process

terminates when the termination conditions of the OA method are satisfied.

The specified iteration number of the first stage is problem-dependent, which is influ-

enced by the computational complexities of the generated MILP and MIQCP. Suppose the

generated MIQCP requires more solution time than the generated MILP. In that case, we

can set larger values for the specified iteration number in the first stage. A single first linear

approximation can provide a good point for generating strong quadratic cuts; therefore, in

this approach, we set the value of iterations in the first stage as 1.

We can extend the hybrid cuts strategy, like generating multi-generation scaled linear

cuts in the first stage, generating multi-generation quadratic cuts in the second stage. The

cuts generated at the first iterations, since they are distant from the optimal solution, are

dominated by those generated in the following iterations. To avoid generating quadratic

cuts that are inefficient, we start with linear approximations for the first iterations, and we

use the quadratic cuts as we get closer to the optimal solution. Moreover, we can divide the

solution process into multiple stages and generate different kinds of cuts in any given stage.
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5.5.3 Partial surrogate quadratic and multi-generation cuts

Partial surrogate cuts are one type of cuts between OA cuts and GBD cuts, which are

derived from projecting on the nonlinear variables and applying KKT conditions [90, 243].

Since the PSC includes continuous nonlinear variables, we can extend it to scaled quadratic

cuts as follows,

η ≥ f (vk,wk,yk)+

 λ
k

−µk


> g(vk,wk,yk) 0

0 A1


 1

v−vk

+
αk

2

 1

v−vk


>

∇2L(vk)

 1

v−vk

 , k ∈ K, (5.21)

where L is the projection of the Lagrange function in the nonlinear continuous variable

space v, i.e.,

L(v) = projvL(v,w,y)

= projv
(

f (v,w,y) +λ>g(v,w,y) +µ>(A1v + A2w + Ey−b)
) (5.22)

Eq. (5.21) can be derived from the procedure of PSC cuts with the second-order expansion

of nonlinear functions [90].

The scalar are computed in a equivalent manner as in Eq. (5.15), as follows,

α

2
= min

(vv,wv,yv)∈V

f (vv,wv,yv)− f (vk,wk,yk)−λkg(vk,wk,yk) +µkA1(vv−vk)
(vv−vk)>∇2L(vk)(vv−vk)

,

vv , vk,∇2L(vk)i j , 0, i, j ∈ 1, . . . , |v|,
(5.23)

Eqs. (5.21) and (5.23) define the Partial Surrogate Quadratic Cuts (PSQC), which are an

underestimation for convex nonlinear functions based on Proposition 5.4.2.

Furthermore, if the calculated scalar α based on Eq. (5.23) is greater than 1, we set it to 1.

This since we want to avoid overestimating the second-order approximation.

We develop the PSC-QCUT method based on the PSC method using scaled quadratic

cuts in Eq. (5.21). Compared to the OA cuts, PSC cuts are not as tight for the relaxation of

nonlinear constraints [243]. The advantage of PSC is generating fewer cuts than OA for an
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iteration. These advantages generally are inherited from PSC to PSC-QCUT, which may

reduce the computational time of solving the master problem MIQCP.

We integrate the multi-generation strategy with PSQC, leading to the Partial Surrogate

Multi-generation Quadratic Cuts (PSC-MQCUT) generating multiple cuts in a single itera-

tion as follows,

η ≥ f (vk,s,wk,s,yk,s) +

 λ
k,s

−µk,s


> g(vk,s,wk,s,yk,s) 0

0 A1


 1

v−vk,s


+
αk,s

2

 1

v−vk,s


>

∇2L(vk,s)

 1

v−vk,s

 , k ∈ K, s ∈ S ,

(5.24)

5.5.4 Proposed MINLP solution methods

In summary, we develop six improved MINLP methods, OA-QCUT, OA-MQCUT,

OA-HCUT, OA-MHCUT, PSC-QCUT, and PSC-MQCUT, integrating the proposed scaled

quadratic cuts with multi-generation of linear and quadratic cuts for OA and PSC.

5.6 Numerical Experiments

We solve 44 convex MINLP benchmark problems with the proposed methods of OA-QCUT,

OA-MQCUT, OA-HCUT, OA-MHCUT, PSC-QCUT, PSC-MQCUT. These problems vary in

size and number of nonlinear functions. Furthermore, the computational performance is

compared with OA and PSC and with the MINLP solvers DICOPT, BONMIN, SBB, and

SCIP.

We implement the benchmark MINLP test problems in GAMS 24.8.2 [248]. The operating

system is Windows 7, with an Intel Core 2 Duo processor, a CPU of 3.4 GHz, and 16 GB

of RAM. The solutions of the NLP problems are obtained using the solvers CONOPT
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3.17C [154] and IPOPT 3.12 [158], and the solutions of the MILP/MIQCP problems are

obtained using CPLEX 12.7.0.0 [52]. Three stopping criteria for the proposed methods and

solvers are used. The first one is if the objective of the last MIP master problem is greater

than the best NLP solution found, namely a “crossover” occurred due to the use of integer

cuts, see Duran and Grossmann [30] and Viswanathan and Grossmann [124]; the second

one is the maximum number of iterations; the third one is the maximum solution CPU

time. The major iteration limit is 500, and the maximum CPU solution time is 3600 seconds.

The CPU solution time only includes the time used to solve the master problem and the

subproblems. It does not include the time calculating the values of the scale parameters α

and β. These parameters were calculated using Eq. (5.15), which resulted in the same values

as solving the problem stated in Eq. (5.9). None of the methods required considerable time

compared to the overall MILP and NLP solution times.

The MINLP test problems are classified into three groups: 7 simple problems, 15 problems

with special structure, and 22 medium/large scale problems [60].

5.6.1 Simple MINLP problems

The seven simple MINLP problems are tested taken from the MINLPLib problem library?.

Five problems were partly also used by Duran and Grossmann [30]. In the problems

Synthes*, the nonlinear terms are exponential or logarithmic functions of only continuous

variables, which are separable from the discrete variables. Problem Gkocis has a nonlinear

objective function, and the problem Alan has only one nonlinear constraint. The problem

Ex1223b has discrete variables involved in the nonlinear functions, while the problem

St e14 is an equivalent transformation of the Ex1223b problem. Here, we expand the

nonlinear terms of Ex1223b with discrete variables to first-order and all nonlinear terms to
?http://www.gamsworld.org/minlp/minlplib.htm accessed in January 2017
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Table 5.1: Computational results of DICOPT, OA, OA-QCUT, and OA-MQCUT for small
MINLP problems

DICOPT OA* OA-QCUT OA-MQCUT

Problems Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) αmin

Synthes1 4 0.8 5 2.0 3 1.5 3 1.3 0.41
Synthes2 7 0.5 3 0.9 3 0.8 3 1.1 0.46
Synthes3 11 0.6 7 3.0 3 1.2 2 0.8 0.58
Gkocis 3 0.4 3 1.2 2 0.7 2 0.8 1.0
Alan 5 0.4 5 2.6 3 1.1 2 0.9 1.0
Ex1223b 7 0.4 4 4.5 3 1.0 3 1.0 1.0
St e14 6 0.5 6 5.3 2 0.8 2 0.7 0.99

* This denotes an implementation of OA directly in GAMS

second-order using the Taylor series expansion.

The number of variables and constraints for the seven problems are shown in Table 8 of

Appendix 2 in [249]. The computational results of DICOPT and implementations of OA,

OA-QCUT, and OA-MQCUT are listed in Table 5.1. The initial scalar vector α is computed

based on Eq.(5.15), and updated by Eq. (5.20). We find that the scalars α are near 0.5 for the

first three problems and almost 1 for the last four problems. All solution methods were able

to obtain the optimal solutions for all seven simple problems. For the simpler problems,

fewer iterations and shorter CPU times were required by OA-QCUT and OA-MQCUT

than OA with linear cuts. OA-QCUT requires fewer iterations than DICOPT, although it

generally requires slightly longer CPU times.

For the same problem set, the computational results of OA with hybrid cuts (OA-HCUT)

and multi-generation hybrid cuts (OA-MHCUT) and GAMS implementations of PSC, PSC-

QCUT, PSC-MQCUT are shown in Table 5.2. For OA-HCUT, we obtain linear cuts in the

first iteration and then quadratic cuts in the following iterations.
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Table 5.2: Computational results of OA-HCUT, OA-MHCUT, PSC, PSC-QCUT, PSC-MQCUT
for small MINLPs

OA-HCUT OA-MHCUT PSC PSC-QCUT PSC-MQCUT

Problems Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s)

Synthes1 3 1.0 2 0.9 4 2.2 3 1.7 3 1.3
Synthes2 3 1.0 2 0.8 6 2.8 5 3.0 3 1.3
Synthes3 3 1.3 4 2.0 12 6.4 5 2.5 2 1.0
Gkocis 2 1.1 2 1.0 3 1.3 3 1.6 3 1.7
Alan 3 1.0 2 0.8 5 2.7 4 2.2 3 2.1
Ex1223b 4 1.4 3 1.5 6 2.8 6 3.2 3 1.5
St e14 2 1.0 2 1.1 6 3.0 4 2.9 3 1.9

Although the scaled quadratic cuts are generated at the second iteration of the OA-HCUT

method, OA-HCUT requires either fewer iterations or shorter solution times than OA for

six problems in this comparison. OA-MHCUT was even more efficient than OA-HCUT,

except for the Synthes3 and St e14 problems.

PSC-QCUT performs better than PSC, with fewer iterations and smaller CPU times on

five problems, and same iterations on the other two problems. PSC-MQCUT generally

requires fewer iterations and shorter CPU times than PSC-QCUT in the simple MINLP

instances, except for the Gkocis problem.

5.6.2 MINLP with special structure

The set of Constrained Layout (CLay*) and Security Layout (SLay*) problems? is special

since all the MINLPs in it have quadratic nonlinear constraints. The chosen instances

were the ones that reformulated the disjunctions using the Big-M method [60]. Since the

constraints are quadratic, the scaling coefficients (α,β) are set to 1. The computational results

for these instances are shown in Table 5.3.
?http://egon.cheme.cmu.edu/ibm/page.htm accessed in January 2017
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Since the quadratic cut is equal to the quadratic function in this problem set, OA-QCUT

and OA-MQCUT terminate at the first normal main iteration after the initial one. As

expected, OA and DICOPT require more iterations to obtain the optimal solutions than

OA-QCUT and OA-MQCUT. OA-QCUT performs better than OA-MQCUT on CPU times

for all CLay* problems, but OA-MQCUT performs better than OA-QCUT on CPU times for

71% problems of SLay*. SLay* instances are MIQPs, which makes the generated master

problem for OA-MQCUT one with a single quadratic constraint, less than the quadratic

constraints of the CLay* instances. That is the reason that OA-MQCUT performs better on

these instances. We also solve these instances directly using CPLEX, which results with

smallest CPU times among all methods.

Note that we obtain the OA cuts for the first master problems of PSCs and the following

iteration when the NLP subproblem is infeasible. Although the iteration numbers of OA-

HCUT and OA-MHCUT are the same as with OA-QCUT, the CPU times of OA-MHCUT are

generally longer than OA-HCUT except for the problems CLay43, Slay08, and SLay10.

Because of the structure of the CLay* and SLay* instances, the master problems of OA-

MHCUT generates more quadratic cuts than the master problems of OA-HCUT. OA-HCUT

requires longer solution time than OA-QCUT for 80% of the problems in reported in

Table 5.3.

There are infeasible subproblems for the CLay* and SLay* instances, which generate

the infeasible cuts in the PSC-QCUT method. These cuts are similar to those generated

by OA-QCUT. This fact allows the PSC-QCUT and PSC-MQCUT to solve the compared

instances in only 3 or 2 iterations. Since PSC-MQCUT generated more scaled quadratic cuts

in the master problems than PSC-QCUT, PSC-MQCUT requires longer solution times than

PSC-QCUT, except for 3 SLay* instances.

The nonlinear constraints or objective function of CLay* and SLay* instances are all
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quadratic, which would mean that a quadratic approximation would be exact. The nonlinear

constraints in the CLay* instances ensured that the feasible region between two variables

was a circle. One specific case was a circle of radius 6 and centered on the point (x1, x2) =

(15,10). A constraint of the form,

62 ≤ (x1−15)2 + (x2−10)2, (5.25)

would be exactly approximable using a secon-order Taylor series expansion around any

point of the domain.

To illustrate the effect of scaling, we present the previous constraint as two separate

constraints with respecto to x2 and with squared-root terms,

g1(x1, x2) : x2 ≤ 10 +
√

(x1−15)2−62,

g2(x1, x2) : x2 ≥ 10−
√

(x1−15)2−62,

(5.26)

Assuming that we have an expansion point at x0 = 11 and x0 = 20, the linear supporting

planes derived from the first-order approximation will be as follows,

Tg1,1(x1, x2,0) : x2 ≤ 10 +
√

20 +

√
20(x1−11)

5
,

Tg2,1(x1, x2,0) : x2 ≥ 10−
√

20−

√
20(x1−11)

5
,

Tg1,2(x1, x2,0) : x2 ≤ 10 +
√

11−
5
√

11(x1−20)
11

,

Tg2,2(x1, x2,0) : x2 ≥ 10−
√

11 +
5
√

11(x1−20)
11

,

(5.27)

On the other hand, after determining the minimum for every constraint such that every
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cut is a valid underestimator we obtain the following quadratic cuts.

Tg1,1(x1, x2,0.556) : x2 ≤ 10 +
√

20 +

√
20(x1−11)

5
−

0.556
2

9
√

20(x1−1)2

100
,

Tg2,1(x1, x2,0.556) : x2 ≥ 10−
√

20−

√
20(x1−11)

5
+

0.556
2

9
√

20(x1−1)2

100
,

Tg1,2(x1, x2,0.394) : x2 ≤ 10 +
√

11−
5
√

11(x1−20)
11

−
0.394

2
36
√

11(x1−1)2

121
,

Tg2,2(x1, x2,0.394) : x2 ≥ 10−
√

11 +
5
√

11(x1−20)
11

+
0.394

2
36
√

11(x1−1)2

121
,

(5.28)

We show in Figure 5.5 the difference between the scaled quadratic cuts and the linear

cuts for this problem.

Figure 5.5: Illustration of feasible region of a circular constraints with linear cuts and scaled
quadratic cuts

The quadratic approximation of the feasible region in this example is tighter compared

with the linear approximation as seen in Figure 5.5. This observation gives intuition around

why OA-QCUT performs better than the original OA in the CLay* and SLay* instances.
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5.6.3 Medium scale MINLP problems

22 MINLP problems with medium scale are tested in this subsection, obtained from [60].

Aiming at general convex MINLP problems with all kinds of nonlinear functions, by

definition if convex the Hessian matrices expanding the nonlinear functions of MINLP

satisfy Positive Semi-Definiteness (PSD). Based on Eq. (5.9), the value of α is computed for

each problem in order to guarantee the optimal solutions. For the Batch* instances, we

constructed the first master problems of PSC, PSC-QCUT, and PSC-MQCUT using PSC

and PSC-QCUT cuts, respectively. For other problems in this subsection, we used the OA

cuts for the first master problems of PSC, PSC-QCUT, and PSC-MQCUT. The initial PSC

cuts of the Batch* problems are valid in the hybrid solution method, but the initial PSC

cuts of other problems in this subsection lead to many infeasible NLP subproblems. This

behavior can be explained based on the Batch* models, which are mostly linear except for

a single constraint and the objective function, conditions exploited by the PSC cuts. The

computational results of all approaches considered in this work for these instances appear

in Table 5.4

Note that OA-QCUT and OA-MQCUT require only two to four iterations. However,

the CPU solution times are not shorter than DICOPT for Batch problems since these

involve mostly linear constraints. This trend is reversed for the Csched problems except

for Csched1a. DICOPT failed to solve two of the Farm Layout (FLay*), and OA fails on

one FLay* instance, but OA-QCUT and OA-MQCUT solved all FLay* instances. In all the

instances except from Batch08, where the value of the αmin is equal to 0.85, αmin is equal

to 1. This means that the nonlinear functions were underestimated by the second-order

expansions for this set of test problems.

We know that the general PSC cuts are not tighter than the general OA cuts. The scaled

quadratic PSC cuts are also looser than the scaled quadratic OA cut. When α of OA-QCUT
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is equal to 1 for the problems in Table 5.4, it should also be 1 for PSC-QCUT. For this

problem set, OA-HCUT performs better on iterations than OA except for two problems

with the same iterations but worse than OA-QCUT for 50% of the instances. The number of

iterations for OA-MHCUT is smaller than that of OA-HCUT for 50% instances, but longer

solution times are required for 64% of the problems. The PSC with quadratic cuts is better

on iterations than PSC with linear cuts for 59% of the problems, especially for the csched2a

and csched2 instances. PSC-MQCUT needs a longer CPU time than PSC-QCUT for 50%

instances. One issue noticed was that the PSC cuts for the FLay instances are very weak,

which lead the three PSC methods to fail after surpassing the given maximum iteration

limit.

We can observe the behavior of the proposed approaches in the performance profile in Fig-

ure [fig:qcoa.performance˙proposed]. One can notice that improved solution techniques,

e.g., scaled quadratic cuts and multi-generation of cuts, yields a benefit vs. the traditional

OA and PSC methods. The best performant proposed alternative for the evaluated instances

is OA-QCUT, followed closely by OA-HCUT and OA-MQCUT. These methods, together

with OA, were able to solve all the problems in the testes set of instances in less than

one hour. In general, we observe that the PSC approaches dominate across the instances

solvable in less than 10 seconds, mainly since these instances are primarily linear that

satisfy the problem structure that motivates the PSC methods with a portion of continuous

variables interacting linearly in the constraints. This difference reverses for larger and more

challenging instances, where OA can solve more instances than PSC in general.

5.6.4 Comparison with MINLP solvers

We also solve the 44 test problems with the BONMIN implementation of Outer-

approximation, B-OA 1.8 [169], SBB [250] and SCIP 3.2 [180], which are OA, Branch
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Figure 5.6: Absolute performance profiles for scaled quadratic approaches presented in this
chapter.

& Bound or Constraint Programming-based MINLP solvers. This comparison gives

an idea of how the proposed methods perform compared to available MINLP solvers.

Although CPLEX was only able to solve the MINLP with special structure, we included

CPLEX compared to other solvers. The performance profile, including the best and worst

performant alternatives of OA and PSC, together with the commercial solvers, is shown in

Figure 5.7.

We note that OA-QCUT and OA-MQCUT solve all the tested instances in the time limit,

with OA-QCUT being more efficient for the section above 50% of the solved instances

than OA-MQCUT, while the rest is comparable. Both OA-QCUT and OA-MQCUT are

better than OA according to this performance profile. SCIP continuously outperforms

all methods until about 75% of the total problems. The performance profile shows that

although the first solved problems are solved more efficiently by DICOPT, SBB, and SCIP,

the proposed methods could solve more instances given the time limit. Finally, CPLEX
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has outstanding performance for those problems that are MIQCP instances, solving these

instances as efficiently as SCIP, but fails to solve all the other instances solving only 15 of

the total 44 test problems.
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Figure 5.7: Absolute performance profiles for scaled quadratic approaches presented in this
chapter compared to MINLP solvers.

DICOPT, SBB, and SCIP outperform OA-HCUT for the first 40% of the problems solved,

and SCIP remains the most efficient solver until about 75% of the instances. OA-HCUT

performs better than all other compared methods for the last 25% of the instances.

Comparing the performance of OA with the hybrid methods(OA-HCUT and OA-

MHCUT) against the quadratic OA (OA-QCUT and OA-MQCUT), we notice that the

hybrid approach was slightly less efficient than the quadratic only approach. This result

can be supported by the fact that an essential part of the tested instances has quadratic

objective and constraints, which were exactly approximated by the quadratic cuts. The idea

behind the hybrid approach is that a quadratic approximation is not required for the initial

iterations. Therefore, it would be enough to use the linear approximation instead, making
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the master problem easier to solve.

The performances of PSC-QCUT and PSC-MQCUT are similar; occasionally, PSC-MQCUT

outperforms PSC-QCUT, and both are better than the general PSC method.

5.7 Conclusions

This chapter has proposed scaled quadratic cuts for MINLP decomposition methods, namely

OA and PSC. Based on the theoretical analysis, we derived the conditions that ensure that

the scaled quadratic cuts can strictly underestimate a convex function. We designed the

scaled quadratic cuts based on these observations for OA and PSC methods, which can

obtain the optimal solutions for the convex MINLP problems. Integrating the strategies

of scaled quadratic cuts, multi-generation cuts, and linear cuts, we propose six improved

MINLP methods: OA-QCUT, OA-MQCUT, OA-HCUT, OA-MHCUT, PSC-QCUT, and

PSC-MQCUT. Numerical experiments show that OA with scaled quadratic cuts and multi-

generation cuts can solve all the tested MINLP benchmark problems. Besides, they require

fewer iterations and shorter CPU solution times than OA, especially for MINLP problems

with quadratic and highly nonlinear constraints, where the linear approximation is poor.

PSC-QCUT and PSC-MQCUT similarly require fewer iterations and shorter CPU solution

times than PSC.

After comparing the performance of each one of the six proposed MINLP methods,

we can conclude that integrating second-order scaled underestimators to the nonlinear

constraints can improve the performance of the two decomposition algorithms, OA and

PSC. The OA method appeared to outperform the PSC method in the tested instances,

showing that at least for these instances, the tradeoff between smaller but more MILP

master problems solved is not preferable. The multi-generation cut strategy was beneficial
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to improve the performance of each decomposition algorithm. However, it was less efficient

in the compared tested instances than adding a single quadratic constraint [243]. Using the

hybrid linear-quadratic OA method (OA-HCUT) was less efficient than using quadratic cuts

from the beginning, which resulted in fewer iterations and a smaller difference between

solving MILP and MIQCP problems for the tested instances. The most efficient proposed

MINLP method was the OA-QCUT, which, compared to other implementations of the OA

method such as DICOPT and BONMIN, shows that the quadratic cuts can improve the

overall efficiency of the method. Future work will aim to solve the general nonconvex

MINLP problems using OA and PSC with scaled quadratic cuts.

5.A On vertex and non-vertex solutions for α

As mentioned in Section 5.4.2, in order to obtain a valid underestimator for a convex function

using the scaled second-order Taylor series expansion the scalar α has to be calculated using

Eq. (5.9) or solving the following equivalent NLP problem,

min
x
α = 2

f (x)− f (x0)−∇ f (x0)>[x−x0]
[x−x0]>∇2 f (x0)[x−x0]

s.t. x ∈ F = {x : x ≤ xl ≤ xu} \ {x0},

(5.29)

at the expansion point x0 such that no element of the Hessian ∇2 f (x0)i j is equal to zero.

In this chapter, instead of solving the previous NLP problem to global optimality, we used

Eq. (5.15) which assumes the minimum of the function to lie at the vertices. The stronger

condition over the function defining α is component-wise monotonicity. The condition of

the component-wise monotonicity can be ensured if none of the components of the gradient

change their sign in the feasible set,

∇

(
f (x)− f (x0)−∇ f (x0)>[x−x0]

[x−x0]>∇2 f (x0)[x−x0]

)
same sign

s.t. x ∈ F = {x : xl ≤ x ≤ xu} \ {x0}.

(5.30)
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Let the scalar multiplying the quadratic term in the second-order expansion of the convex

function f (x) at the expansion point x0 be defined as in Eq. (5.9) or as in Eq. (5.29). In order

to satisfy this condition, we propose the following proposition.

Proposition 5.A.1. The value of the scalar α in the definition of the scaled quadratic cut can

be calculated using Eq. (5.15) and guarantee that T (x,α) is an underestimator of function

f (x) if the function satisfies the following condition,

2∇2 f (x0)[x−x0]
(

f (x)− f (x0)−∇ f (x0)>[x−x0]
)
,(

[x−x0]>∇2 f (x0)[x−x0]
)
[∇ f (x)−∇ f (x0)],

(5.31)

for all x ∈ F = {x ∈ Rn : xl ≤ x ≤ xu} \ {x0}, where xl and xu are the lower and upper bounds of

x, respectively.

Proof. The function defining α is the quotient of two convex functions, which is not necessar-

ily convex. This means that its minimum will not necessarily lie at one of the vertices of the

hyper-box defined by the bounds of x. However, if the function is component-wise mono-

tonic, since we are minimizing the function α, we can assure that its minimum will lie at one

of the vertices. A component-wise monotonic function is a function that is nonincreasing or

nondecreasing in each variable independently.

Calculating the gradient of the previous function we obtain the following expression,

2∇2 f (x0)[x−x0]
(
f (x)− f (x0)−∇ f (x0)>[x−x0]

)
([x−x0]>∇2 f (x0)[x−x0])2 −(

[x−x0]>∇2 f (x0)[x−x0]
)
[∇ f (x)−∇ f (x0)]

([x−x0]>∇2 f (x0)[x−x0])2 , same sign

s.t. x ∈ F = {x : xl ≤ x ≤ xu} \ {x0}.

(5.32)

Since the function f (x) is a convex function, the term [x− x0]>∇2 f (x0)[x− x0]) is non-

negative, therefore the denominator will be non-negative which avoids sign changes of all

the components of the gradient. Since the function f (x) is twice differentiable, then both
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the function and its gradient are continuous, which implies that the two terms under the

assumption of component-wise monotonicity can never be equal. This is the condition

given in Eq. (5.31), proving the given proposition. �

The condition of component-wise monotonicity of the function defining α is stronger

than requiring the function f (x) to be convex, and it is strongly dependent of the expansion

point x0. Although the nonlinear functions involved in the test instances did satisfy this

condition, e.g., quadratic constraints satisfy it trivially, it is not the general case.

Two counterexamples are given where the minimum of the does not lie in one of the

vertices, which results in an approximation which does not underestimate the function in

the whole domain. The first example has the following function in f : R→ R

f (x) = b−
√

(r2− (x−a)2)), (5.33)

where a, b, and r are scalar coefficients and the function f (x) describes a semicircle off

radoius r and center (a,b). The given function is defined if the variables x has bounds

x ∈ [a − r,a + r]. Given an expansion point x0, we obtain the following expression for

calculating α,

α

2
= min

x∈F={x:xl≤x≤xu}\{x0}

b−
√

(r2− (x−a)2))−b−
√

(r2− (x0−a)2))− x−a√
r2−(x0−a)2

(x− x0)

r2

(r2−(x0−a)2)3/2 (x− x0)2
. (5.34)

Given an example of a semicircle of radius r = 3 and center in (5,5) , we obtain a plot of

the function defining α in Figure 5.8.

Following Eq. (5.15), the value of α should be 1.33 corresponding to the value at the

vertex x = a + r = 8. In case we set α = 1, we would obtain the second-order approximation,

but the minimum of the given function is neither in the vertex nor when α = 1.

The minimum of the given function can be analytically found and it appears at the point

x∗ = 2a− x0, corresponding to α = 0.89 in this case. Figure 5.9 shows the original function
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Figure 5.8: Scalar α for function f (x) = 5−
√

(9− (x−5)2)) according to Eq. (5.34).

with its first- and second-order Taylor series approximations.

Note that the only Taylor approximations that are valid underestimators in Figure 5.9

are the first-order and the scaled second-order using the minimum alpha, as proposed in

Proposition 5.4.2. This can be confirmed in Figure 5.10, where the difference between the

function and its approximation is shown. In case the approximation is an underestimator,

the difference is positive for the entire feasible region.

The second example is the following convex function in R2,

f (x1, x2) = x4
1 + x4

2, (5.35)

with variables douns x1 ∈ [0.3,5], x2 ∈ [0.5,7] and expansion point (4.9,4.9).

The first-order Taylor series approximation of this function is

T1(x1, x2) = −
17294403

5000
+

117649
250

(x1 + x2). (5.36)
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Figure 5.9: f (x) = 5−
√

(9− (x−5)2)) and its first-order, second-order, scaled second-order
with the scalar α calculated from the minimum at the vertices and the scaled second-order
with the minimum scalar αmin.

Its scaled second-order Taylor series approximation is defined as,

T (x1, x2,α) =−
17294403

5000
+

117649
250

(x1 + x2)+

α

((
x1

7203
50
−

352947
500

)(
x1−

49
10

)
+

(
x2

7203
50
−

352947
500

)(
x2−

49
10

))
.

(5.37)

The function defining the scalar α is as follows,

α

2
= min

x∈F={x:xl≤x≤xu}\{x0}

x4
1 + x4

2 + 17294403
5000 − 117649

250 (x1 + x2)(
x1

7203
50 −

352947
500

) (
x1−

49
10

)
+

(
x2

7203
50 −

352947
500

) (
x2−

49
10

) . (5.38)

According to the methodology proposed, α according to Eq. 5.15 should be the minimum

among the vertices of the function. In this case, the values for each vertex are presented in

Table 5.5.

According to Eq. 5.15, the value for α should be 0.5281, corresponding to vertex (vv
1, x

v
2) =

(0.3,0.5).
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Figure 5.10: Difference between f (x) = 5−
√

(9− (x−5)2)) and and the different order Taylor
series approximations.

(a) f (x1, x2) and T (x1, x2,0.528) (b) f (x1, x2)−T (x1, x2,0.528)

Figure 5.11: f (x1, x2) = x4
1 + x4

2 and scaled second-order Taylor series approximation with
alpha = 0.528, x0 = (4.9,4.9)

As seen in Figure 5.11, the scaled second order approximation is not a valid underestima-

tor for the function f (x1, x2) = x4
1 + x4

2. Note that at the point (x1, x2) = (0.3,4.9) the difference
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Table 5.5: Values of α the scalar in the vertices of the the function f (x1, x2) = x4
1 + x4

2 defined
over [0.3,5]× [0.5,7] and expanded at point (4.9,4.9).

Variable Vertex 1 Vertex 2 Vertex 3 Vertex 4

x1 0.3 0.3 5 5
x2 0.5 7 0.5 7
α 0.5281 0.6582 0.536 1.316

between these two functions is -21.43, violating the condition in Eq. 5.10. This happens

since the minimum of the function defining α does not lie in a vertex, as seen in Figure 5.12.

Figure 5.12: Scalar α for function in Eq. 5.35 according to Eq. 5.38.

The function in Figure 5.12 is not coordinate-wise monotonic, so its minimum lies at the

point (0.3,4.9) a combination of the Taylor expansion point and a vertex, where α = 0.521.

If we calculate the scaled second-order Taylor series approximation using the minimum

value of α we obtain a valid underestimator of the convex function f (x) as Proposition 5.4.2

indicates shown in Figure 5.13.
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(a) f (x1, x2) and T (x1, x2,0.521) (b) f (x1, x2)−T (x1, x2,0.521)

Figure 5.13: f (x1, x2) = x4
1 + x4

2 and scaled second-order Taylor series approximation with
alpha = 0.521, x0 = (4.9,4.9)

An interesting observation is that all the minima for the scalar α that d not correspond

to vertices, appear at combinations of the expansion point and the vertices. Therefore, we

conjecture that given some conditions on the function f (x) we can find its minimum at the

setW = (xl
1, x01, xu

1)× · · ·× (xl
n, x0n, xu

n).

5.B Test problems statistics

The problem statistics for the test problems of the Section 5.6 are listed in Table 8, Table

9 and Table 10 respectively. Note that Eqns and Vars are the abbreviations for number of

equations and variables, respectively. DVars represents the number of discrete variables.

NZ represent the number of non-zero coefficients. NNZ is the number of nonlinear matrix

entries in the problem Jacobian.

Table 5.6: Problem statistics for convex MINLP solved in Chapter 5.

Problems Eqns Vars DVars NZ NNZ

Synthes1 7 7 3 23 6
Synthes2 15 12 5 49 8
Synthes3 24 18 8 91 12
Gkocis 9 12 3 28 2
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Table 5.6: Problem statistics for convex MINLP solved in Chapter 5.

Problems Eqns Vars DVars NZ NNZ

Alan 8 9 4 24 3
Ex1223b 10 8 4 32 17
St e14 14 12 4 40 17
Clay42 93 53 32 319 64
Clay43 109 58 36 375 96
Clay44 125 62 40 431 128
Clay45 141 66 44 487 160
Clay52 138 82 50 483 80
Clay53 158 88 55 553 120
Clay54 178 92 60 623 160
Clay55 198 97 65 693 200
Slay04 55 45 24 189 8
Slay05 91 71 40 311 10
Slay06 136 103 60 463 12
Slay07 190 141 84 645 14
Slay08 253 185 112 857 16
Slay09 325 235 144 1099 18
Slay10 406 291 180 1371 20
Batch03 20 20 9 53 10
Batch06 74 47 24 191 22
Batch08 218 102 60 547 40
Batch10 1020 279 129 2866 49
Batch12 1512 407 203 4256 59
Batch15 1782 446 203 5069 62
Batch20 2328 559 251 6664 67
Csched1a 23 29 15 78 7
Csched1 20 77 63 174 8
Csched2a 138 233 140 622 57
Csched2 138 401 308 958 58
Flay02 12 15 4 39 2
Flay03 25 27 12 87 3
Flay04 43 43 24 155 4
Flay05 66 63 40 243 5
Flay06 94 87 60 351 6
Proc 21a 62 48 21 205 15
Proc 21b 113 69 42 328 15
Proc 31a 102 77 41 371 31
Proc 31b 235 128 82 678 31
Proc 36a 122 92 46 431 36
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Table 5.6: Problem statistics for convex MINLP solved in Chapter 5.

Problems Eqns Vars DVars NZ NNZ

Proc 36b 217 138 92 661 36
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Chapter 6

Use of Regularization and Second-Order

Information for Outer-approximation?

6.1 Introduction

Mixed-integer nonlinear programming (MINLP) is a class of optimization problems con-

taining both integer and continuous variables as well as nonlinear functions. The integer

variables make it possible to incorporate logic relations and discrete quantities in the mathe-

matical model. Together with linear and nonlinear constraints, MINLP becomes a powerful

framework for modeling real-world optimization problems, and thus, there is a vast number

of applications in areas such as engineering, computational chemistry, and finance [4, 117].

MINLP problems are by definition non-convex; however, they are still commonly classified

as either convex or non-convex. An MINLP problem is considered as convex if an integer

relaxation results in a convex nonlinear programming (NLP) problem [251]. Convexity is

a desirable property since it enables the direct use of several decomposition techniques

for solving the problem. Such decomposition techniques are, e.g., Outer-approximation

(OA) [30], extended cutting plane (ECP) [118], extended supporting hyperplane (ESH) [121],

generalized Benders decomposition (GBD) [28], and branch and bound (BB) techniques [27].

?Published as: Jan Kronqvist, David E Bernal, and Ignacio E Grossmann. “Using regularization and

second order information in outer approximation for convex MINLP”. Mathematical Programming 180.1 (2020),

pp. 285–310.
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For reviews of MINLP methods and applications see [5, 104, 129, 251]. Even if there are

several methods available for solving convex MINLP problems, it is still a challenging type

of optimization problems as shown in the solver benchmark in [121].

Methods such as OA, ECP, ESH, and GBD all generate an iteratively improving linear

approximation of the MINLP problem, where the nonlinear functions are underestimated

by first-order Taylor series expansions. The linear approximation is a mixed-integer linear

programming (MILP) problem and is often referred to as the MILP-master problem. All

these methods iteratively choose the integer trial solutions as the minimizer of the MILP-

master problem. Choosing the iterative solutions as the minimizer of a linear approximation

is similar to the approach used in Kelley’s method [119], which is an algorithm intended

for convex NLP problems. It is known that Kelley’s method is not efficient at handling

nonlinearities and it has a poor complexity bound, see, e.g., [252]. Kelley’s method is

sometimes even referred to as unstable since the iterative solutions tend to make large

jumps in the search space [253]. Since methods such as ECP, ESH, GBD, and OA choose the

iterative integer solutions in the same manner as Kelley’s method, they could also suffer

from the same instability. Several techniques to reduce the instability of Kelley’s method

have successfully been used for NLP problems, e.g., regularization to reduce the step size or

the concept of a trust region [254].

Due to the non-convex nature of MINLP problems, it is not trivial to use regularization of

the step size or a trust region when solving such problems, since the integer requirements

may cause solutions to be far apart in the search space. However, recently there has

been interest in the idea of using regularization for solving convex MINLP problems, e.g.,

using quadratic stabilization with Benders decomposition was proposed in [255] and using

regularization combined with a cutting plane method was presented in [256].

Here we present an approach for introducing stabilization in the subproblems for choos-
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ing the integer combination in OA. The stabilization technique is inspired by the regulariza-

tion used in the level method for NLP, see [257, 258], and therefore, the method is referred to

as Level-based Outer-approximation (L-OA). By modifying the L-OA method it is possible

to include second order information in the subproblems of choosing the integer combina-

tion, and we refer to this method as Quadratic Outer-approximation (Q-OA). In Q-OA we

use a second order Taylor series expansion for the Lagrangean function as the objective

in the subproblems for finding a new integer combination. A similar quadratic approach

was presented in [25]. However, the level constraint used in the level method provides a

more robust way of enforcing an improvement and avoiding cycling. Furthermore, the

level constraint forces the solutions to be chosen as an interpolation between the minimizer

of the Lagrangean approximation and the minimizer of the linear approximation in the

MILP-master problem. The proposed methods are motivated by the strong convergence

properties of the level method compared to Kelley’s, and recent advances in software for

solving MILP and mixed-integer quadratic programming (MIQP) problems.

The proposed methods are intended to accelerate the convergence of OA by choosing

the integer combinations more carefully, using either a regularization technique or second-

order information. Due to the regularization and the use of second-order derivatives, the

proposed methods should be better suited for handling nonlinearities compared to OA.

However, each iteration in L-OA and Q-OA will also be more complex than an iteration in

OA. For MINLP problems with only a few nonlinear terms, there might not be significant

improvements by the proposed methods. The methods are, thus, mainly intended for

problems with moderate to high degree of nonlinearity. We begin with a brief review of OA

in Section 6.2, and from there we continue by presenting the basics of L-OA and Q-OA in

Sections 6.3 and 6.4. In Section 6.5, it is proven that the convergence properties of OA still

hold with the modifications in the proposed methods. Finally, in Section 6.6 we present a

CHAPTER 6. USE OF REGULARIZATION AND SECOND-ORDER INFORMATION FOR
OUTER-APPROXIMATION 187



6.2 BACKGROUND

numerical comparison of Q-OA, L-OA, and OA, based on test problems from the problem

library MINLib2 [203].

6.2 Background

The MINLP problems considered here can be written as follows,

min
x,y

f (x,y)

s.t. g j(x,y) ≤ 0 ∀ j = 1, . . . l,

Ax + By ≤ b,

x ∈ Rn, y ∈ Zm.

(MINLP)

In order to guarantee global convergence, we need to assume some properties of the

nonlinear functions. Throughout this chapter we rely on the following assumptions:

Assumption 1. The nonlinear functions f ,g1, . . . ,gl : Rn ×Rm → R are convex and continu-

ously differentiable.

Assumption 2. The linear constraints define a nonempty compact set.

Assumption 3. For each feasible integer combination y, an integer combination such that

there exist x variables for which the problem is feasible, a constraint qualification

holds, e.g., Slater’s condition [226].

These are the typical assumptions needed for rigorously proving convergence of OA, see [25,

30]. OA can be generalized to be applicable to non-differentiable problems, see, e.g., [259],

although such problems are not considered here.

We begin by briefly presenting the main steps of the Outer-approximation method. As

previously mentioned, the method uses a linear approximation of the MINLP problem to

obtain trial solutions for the integer variables. Once an integer combination is obtained, the

corresponding continuous variables can be determined by solving a continuous optimiza-
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tion problem. The previously obtained trial solutions
{
(xi,yi)

}k

i=0
are used to construct the

linear approximation of the MINLP problem. At iteration k, the next integer combination

yk+1 is obtained by solving the following MILP subproblem

min
x,y,µ

µ

s.t. f (xi,yi) +∇ f (xi,yi)T

x−xi

y−yi

 ≤ µ ∀i = 1, . . . ,k,

g j(xi,yi) +∇g j(xi,yi)T

x−xi

y−yi

 ≤ 0 ∀i = 1, . . .k,∀ j ∈ Ii,

Ax + By ≤ b,

x ∈ Rn, y ∈ Zm,µ ∈ R.

(OA-master)

Here Ii are index sets containing the indexes of the nonlinear constraint active at the trial

solution (xi,yi) [25]. Due to convexity, we know that the feasible set is overestimated and

that the objective will be underestimated, see, e.g., [30] and Lemma 6.5.1 in Section 6.5.

The optimum of problem OA-master, thus, provides a valid lower bound to the MINLP

problem, which is referred to as LBk+1. Once the new integer combination yk+1 is ob-

tained, the corresponding x variables can be obtained by solving the following convex NLP

subproblem,

min
x

f (x,yk+1)

s.t. g j(x,yk+1) ≤ 0 ∀ j = 1, . . . l,

Ax + Byk+1 ≤ b,

x ∈ Rn.

(NLP-I)

If problem NLP-I is feasible and solved to optimality, we obtain xk+1 and furthermore,

the optimum provides a valid upper bound UBk+1 to the MINLP problem. Otherwise, if

the NLP problem is infeasible we need a different approach to obtain the x variables and
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this can be done, for example, by solving a feasibility problem. The feasibility problem

minimizes the constraint violation with the current choice of y variables, e.g., using the `∞

norm, and it can be defined as,

min
x,r

r

s.t. g j(x,yk+1) ≤ r ∀ j = 1, . . . l,

Ax + Byk+1 ≤ b,

x ∈ Rn, r ∈ R+.

(NLP-f)

By solving problem NLP-f the continuous variables xk+1 are obtained. However, in this

case, (xk+1,yk+1) is not a feasible solution, and thus, no upper bound is obtained at this

iteration. The feasibility problem always satisfies Slater’s condition and due to the convexity

assumption, we know that the feasibility problem is always feasible and tractable.

In case the difference between the upper and lower bound is not within the desired

tolerance, we improve the linear approximation by adding new linearizations to prob-

lem OA-master. These linearizations are often referred to as cutting planes or supporting

hyperplanes, and they are given by,

f (xk+1,yk+1) +∇ f (xk+1,yk+1)T

x−xk+1

y−yk+1

 ≤ µ,
g j(xk+1,yk+1) +∇g j(xk+1,yk+1)T

x−xk+1

y−yk+1

 ≤ 0 ∀ j ∈ Ik+1.

(6.1)

Due to convexity, the cuts will not exclude any feasible solution from the search space [227].

Adding these cuts to the MILP subproblem ensures that the integer combination yk+1 will not

be obtained in a consecutive iteration unless it is the optimal integer solution. Convergence

can be ensured since each iteration will either result in a new integer combination or verify
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optimality. For more details of OA see [25, 30, 124]. The basic steps of OA are summarized

as a pseudo-code in Algorithm 5.

Algorithm 5 An algorithm summarizing the basic steps of the
Outer-approximation method

Define accepted optimality gap ε ≥ 0.
1. Initialization.

1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relax-
ation of the MINLP problem.

1.2 Generate cuts at x̃, ỹ according to (6.1) and construct prob-
lems OA-master.

1.3 Set iteration counter k = 1, UB0 = inf and LB0 = − inf.
2. Repeat until UBk−1−LBk−1 ≤ ε.

2.1 Solve problem OA-master to obtain yk and LBk

2.4 Solve problem NLP-I with integer variables fixed as yk to
obtain xk.

2.4.1 If problem NLP-I is infeasible, obtain xk by solving
feasibility problem NLP-f and set UBk = UBk−1.

2.5 Generate cuts at xk,yk according to (6.1) and add these to
problems OA-master.

2.6 If xk,yk is feasible, set UBk = min{ f (xk,yk),UBk−1}.
2.7 Increase iteration counter, k = k + 1

3 Return the best found solution.

Here we have not considered the integer cuts used in [30], since these are not needed

for convex problems. To get a better understanding of OA and to highlight the differences

compared to the other methods, consider the following simple example

minimize −6x− y

s.t. 0.3(x−8)2 + 0.04(y−6)4 + 0.1e2xy−4 ≤ 56

1/x + 1/y− x0.5y0.5 ≤ −4

2x−5y ≤ −1

1 ≤ x ≤ 20, 1 ≤ y ≤ 20, x ∈ R, y ∈ Z.

(Ex 1)

The basic features of problem Ex 1 are illustrated in Figure 6.2, showing the constraints,

objective, and the optimal solution.
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Figure 6.1: The figure to the left shows the feasible regions of the constraints in problem Ex
1. The second figure shows the integer relaxed feasible region, contours of the objective and
the optimal solution.

Later, we use the same example to illustrate the differences between the original OA

and the proposed methods. To make the results comparable, we will use the starting

point, x0 = 5.29, y0 = 3 with all the methods. Instead of solving the relaxed problem in the

initialization step in Algorithm 5, we simply use (x0,y0) as a starting point. OA required 7

iterations to solve this problem, of which the first six iterations are shown in Figure 6.2. For

this specific problem, the first four iterations all result in infeasible solutions where one of

the nonlinear constraints are violated. The optimal solution is obtained in iteration five, but

verifying optimality requires two additional iterations.

Next, we will show how ideas from the level method can be combined with OA to obtain

a stabilized approach for choosing new integer combinations.

6.3 Level-based OA

The level method was originally presented in [257], as a method for solving non-smooth

NLP problems. Like OA, the level method also constructs a linear approximation of the
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Figure 6.2: The figures show the feasible region defined by the nonlinear constraints in dark
gray, and the light gray areas show the outer approximation obtained by the generated cuts.
The squared dots represent the solutions obtained from the MILP subproblem and diamond
shaped dots represent the solutions obtained by one of the NLP subproblems. The dot in
the first figure shows the starting point (x0,y0).

original optimization problem. However, the trial solutions are not chosen as the minimizer

of the linear approximation. Instead, the trial solutions are obtained by projecting the

current solution onto a specific level set of the linearly approximated objective function. For

more details see [252, 258]. Here we will use a similar approach combined with OA, which

we show is equivalent to adding specific trust regions to the problems OA-master in the

original OA.

Here we assume that a feasible solution to the MINLP problem x̄, ȳ is known. Such a

solution can for example be obtained by first preforming some original OA iterations or

by using a specific procedure such as the feasibility pump [143]. An upper bound to the
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MINLP problem is, thus, given by f (x̄, ȳ) and cuts at x̄, ȳ can be generated according to (6.1)

to form problem OA-master. A valid lower bound LB1 can be obtained by solving the linear

subproblem OA-master, and thus, the bounds for the optimal objective f ∗ are given by

LB1 ≤ f ∗ ≤ f (x̄, ȳ).

From the bounds of the optimal objective we can in each iteration k estimate a value of

the optimal objective according to,

f̂ ∗k = (1−α) f (x̄, ȳ) +αLBk, (6.2)

where α ∈ (0,1] and x̄, ȳ is chosen as the best found feasible solution, similarly as in the level

method. The lower bound LBk is obtained as in the original OA, by solving problem OA-

master. In Eq. (6.2) α is a parameter which represents how much the linear approximation

of the MINLP problem is trusted. Setting α close to one results in an estimated optimum

f̂ ∗k close to the lower bound, while setting it close to zero results in an estimated optimum

close to the best incumbent solution. The next integer solution yk+1 can now be obtained

by projecting x̄, ȳ onto the f̂ ∗k level set of the linearly approximated objective function. The

projection is performed by solving the following MIQP problem,

min
x,y,µ

∥∥∥∥∥∥∥∥∥∥
x− x̄

y− ȳ

∥∥∥∥∥∥∥∥∥∥
2

s.t. µ ≤ f̂ ∗k

f (xi,yi) +∇ f (xi,yi)T

x−xi

y−yi

 ≤ µ ∀i = 1, . . . ,k,

g j(xi,yi) +∇g j(xi,yi)T

x−xi

y−yi

 ≤ 0 ∀i = 1, . . .k,∀ j ∈ Ii,

Ax + By ≤ b,

x ∈ Rn, y ∈ Zm,µ ∈ R,

(MIQP-Proj)
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where ‖·‖ is the Euclidean norm. The MIQP problem should contain all the supporting

hyperplanes and cutting planes present in problem OA-master, which was solved to obtain

the lower bound. The objective function of problem MIQP-Proj introduces a regularization

to each iteration, by penalizing the change from the best known solution (the step size). The

next integer solution yk+1 is thereby chosen as a point as close as possible to the best known

feasible solution which reduces the linearly approximated objective to at most f̂ ∗k . Since

f̂ ∗k is calculated according to (6.2) there always exists a solution to the MIQP problem, e.g.,

the minimizer of problem OA-master will satisfy all the constraints. Once the new integer

combination is obtained, the corresponding continuous variables can be determined using

the same technique as described in the previous section. We summarize the Level-based

Outer-approximation as a pseudo-code in Algorithm 6.

The regularization will not only reduce the step size between the iterative solutions, but it

will also try to keep the trial solutions close to the best known solution and simultaneously

close to the feasible set. This gives an advantage over the original OA, especially, in early

iterations where the linear MILP-master problems might only provide a poor approximation

which can result in trial solutions far from the feasible set.

The main difference of L-OA compared to OA is the two-step procedure for obtaining

the new integer combination, which involves both the solution of an MILP and an MIQP

subproblem. This increases the complexity of each iteration. However, as we will prove later

the MIQP need not to be solved to optimality. Basically, any feasible solution to the MIQP

will be sufficient for ensuring convergence. The computational aspects are described in

more detail in Section 6.6 and convergence of both L-OA and Q-OA is proved in Section 6.5.

To obtain a geometrical understanding of how L-OA differs from the original OA, we

again consider problem Ex 1. Here we use the same starting point as before and we set

the level parameter as α = 0.4. To solve the problem with these parameters L-OA requires
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Algorithm 6 An algorithm summarizing the basic steps of Level-
based Outer-approximation (L-OA) method

Define accepted optimality gap ε ≥ 0 and choose the parameter α ∈
(0,1].

1. Initialization.
1.1 Obtain a feasible solution x̄, ȳ, either by OA or by any other

technique.
1.2 Generate cuts at x̄, ȳ according to (6.1) and construct prob-

lems OA-master and (MIQP-Proj).
1.3 Set iteration counter k = 1, and LB0 = − inf.

2. Repeat until f (x̄, ȳ)−LBk−1 ≤ ε.
2.1 Solve problem OA-master to obtain LBk

2.2 Calculate the estimated optimal value f̂ ∗k according to (6.2).
2.3 Solve problem MIQP-Proj to obtain yk

2.4 Solve problem NLP-I with integer variables fixed as yk to
obtain xk.

2.4.1 If problem NLP-I is infeasible, obtain xk by solving
feasibility problem NLP-f.

2.5 Generate cuts at xk,yk according to (6.1) and add these to
problems OA-master and (MIQP-Proj).

2.6 If xk,yk is feasible and f (xk,yk) ≤ f (x̄, ȳ), set x̄, ȳ = xk,yk.
2.7 Increase iteration counter, k = k + 1

3 Return x̄, ȳ as the optimal solution.

Figure 6.3: The figure illustrates the first three iterations needed to solve problem Ex 1 with
the L-OA method. The dashed circles represent the contours of the objective function in the
MIQP subproblems and the red line shows the level constraint given by µ ≤ f̂ ∗k . The circular
dots represent the best-found solution so far, the squared dots represent the solutions
obtained from the MIQP subproblem and diamond shaped dots represent the solutions
obtained by one of the NLP subproblems.
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four iterations. The three first iterations are shown in Figure 6.3. In the fourth iteration, we

are able to verify optimality directly after solving the MILP subproblem since we obtain

LB4 = f (x̄, ȳ).

As mentioned earlier, L-OA will find similar integer solutions as adding specific trust

regions to the MILP subproblems in the original OA. This property is further described in

Theorem 6.3.1.

Theorem 6.3.1. The procedure of solving problems OA-master and (MIQP-Proj) will result

in a solution equivalent to adding the trust region constraint∥∥∥∥∥∥∥∥∥∥
x− x̄

y− ȳ

∥∥∥∥∥∥∥∥∥∥
2

≤ rk, (6.3)

to problem OA-master in the original OA, where rk is chosen as the optimum of prob-

lem MIQP-Proj.

Proof. First, assume that there exists a unique solution to problem MIQP-Proj, and denote

the minimizer as xMIQP,yMIQP,µMIQP. As stated the radius of the trust region constraint is

chosen as

rk =

∥∥∥∥∥∥∥∥∥∥
xMIQP− x̄

yMIQP− ȳ

∥∥∥∥∥∥∥∥∥∥
2

(6.4)

Adding the trust region constraint given by Eq. (6.3) with radius rk to problem OA-master

gives the solution xMILP,yMILP,µMILP. Now, assume this solution is not the same as the

MIQP solution. Since the MIQP solution is assumed to be unique and not equal to the MILP

solution, it follows that,

rk >

∥∥∥∥∥∥∥∥∥∥
xMILP− x̄

yMILP− ȳ

∥∥∥∥∥∥∥∥∥∥
2

. (6.5)

Furthermore, since OA-master minimizes µwe get µMILP ≤ µMIQP ≤ f̂ ∗k . This leads to a contra-

diction since xMILP,yMILP,µMILP would then define a feasible solution to problem MIQP-Proj
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with an objective strictly lower than the solution obtained by solving the minimization

problem.

Next, we consider the case where there is not a unique optimal solution to problem MIQP-

Proj, but multiple optimal solutions. As before, we assume that xMILP,yMILP,µMILP is not

an optimal solution to problem MIQP-Proj. However, Eq. (6.5) must still hold with strict

inequality, since the MILP solution satisfies the trust region constraint given by Eq. (6.3) and

it is not an optimal solution to problem MIQP-Proj. This leads to the same contradiction

as in the case of a unique solution, and therefore, the MILP solution must be an optimal

solution to problem MIQP-Proj. �

Note that there are no practical implications that follow from Theorem 6.3.1 because the

radius of the trust region resulting in similar solutions cannot be determined in advance.

However, the theorem proves that the procedure used in L-OA can be viewed as a technique

of using a trust region with OA. Next, we show that it is possible to use a similar approach

as L-OA to incorporate second order information in the task of obtaining the integer

combinations.

6.4 Quadratic Outer-approximation

In order to obtain better integer solutions, it would be desirable to use information re-

garding the curvature of the constraints and objective in the task of choosing the integer

combinations. We propose a technique where second-order information is incorporated by

minimizing a second order Taylor series expansion of the Lagrangean function, which was

also suggested in [25]. By using the Lagrangean it is possible to include curvature of both

the constraints and objective while keeping the constraints of the subproblems linear.
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Here we define the Lagrangean function L : Rn×Rm×Rl→ R as

L(x,y,λ) = f (x,y) +

l∑
j=1

λ jg j(x,y), (6.6)

where λ j ≥ 0 is the Lagrange multiplier of the j-th nonlinear constraint. We do not include

the linear constraints in the Lagrangean, since these are handled directly in the subproblems.

The Lagrangean is frequently used in NLP techniques and has the following important

properties

Properties 1. If all nonlinear functions f ,g1, . . . ,g j in problem MINLP are convex, then for

nonnegative multipliers the Lagrangean defined in Eq. (6.6) will be a convex function

in the x,y variables, see, e.g., [227, 260].

Properties 2. Strong duality holds for convex optimization problems that satisfy Slater’s

condition; i.e., there exists valid multipliers such that the minimum of the Lagrangean

is equal to the minimum of the original problem [227].

Since the MINLP problems are non-convex by nature, we cannot expect strong duality

to hold. However, the first property is important since it will ensure that the subproblem

we use for finding the integer combinations will be tractable. We do not want to directly

minimize the Lagrangean, because, that problem is basically as difficult as the original

problem. Therefore, we will use a second order approximation of the Lagrangean, which is

given by

L(x̄, ȳ, λ̄) +∇x,yL(x̄, ȳ, λ̄)T

∆x

∆y

+
1
2

∆x

∆y


T

∇2
x,yL(x̄, ȳ, λ̄)

∆x

∆y

 , (6.7)

where ∇x,yL is the gradient of the Lagrangean with respect to x,y and ∇2
x,y denotes the

Hessian matrix. To make the notation more compact we have introduced the ∆-variables

that are given by ∆x = x− x̄ and ∆y = y− ȳ. Due to Property 1, we know that that the

Hessian ∇2
x,y will be positive semidefinite for all λ ≥ 0. For small changes in the ∆-variables
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Eq. (6.7) should give a good approximation, although the approximation does not under-

or overestimate the real Lagrangean function.

The natural approach of using the quadratic approximation in OA would be to replace

the linear objective of the MILP-master problem with the quadratic function given by

Eq. (6.7). However, this approach will not guarantee convergence on its own, because,

unlike the original OA the quadratic master problem will not always result in new integer

combinations. Since the second order approximation does not necessarily underestimate

the Lagrangean, it is possible that the approximation point x̄, ȳ is the optimum of the

approximation even if it is not the optimal solution to the original problem, and thus, the

approach could stagnate at non-optimal solutions. To avoid this, the method presented

in [25] uses an ε improvement strategy, where the next solution must reduce the linearly

approximated objective by a small ε-value. The ε improvement is enforced by the following

constraints

µ ≤ f (x̄, ȳ)− ε

f (xi,yi) +∇ f (xi,yi)T

x−xi

y−yi

 ≤ µ ∀i = 1, . . . ,k,
(6.8)

where x̄, ȳ is the best found solution. With this approach ε must be chosen smaller than

the desired optimality gap. Thus, it will only result in a small reduction requirement.

Therefore, the Quadratic Outer-approximation method in [25] will rely heavily on the

second order approximation of the Lagrangean. In case the approximation point x̄, ȳ

with the corresponding multipliers λ̄ is not the optimal solution to the MINLP, then the

Lagrangean might not give a good approximation of the original problem and this might

cause slow convergence. Due to the discrete nature of MINLP problems, it is possible that

only the optimal integer combination with the corresponding continuous variables will

result in the optimal set of active constraints and nonzero multipliers.
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In this case, we use a different approach, which combines information from both the

linear approximation with the quadratic approximation of the Lagrangean, to make sure the

proposed method does not stagnate at non-optimal solutions. By using the same approach

as in L-OA, an estimate of the optimal objective f̂ ∗k can be calculated according to Eq. (6.2).

The estimated optimum can further be used to construct the following reduction constraint,

µ ≤ f̂ ∗k

f (xi,yi) +∇ f (xi,yi)T

x−xi

y−yi

 ≤ µ ∀i = 1, . . . ,k.
(6.9)

As long as f̂ ∗k is calculated using the same technique as in L-OA there will always exist a

solution that satisfies the reduction constraints in Eq. (6.9). Furthermore, since f̂ ∗k is chosen

as an interpolation between the upper and lower bound it will usually result in a stricter

reduction constraint. We will construct the master problem by minimizing the quadratic

approximation of the Lagrangean with the reduction constraint given by Eq. (6.9), the

accumulated cuts given by Eq. (6.1) and all linear constraints from the MINLP problem. The

new integer combination yk+1 is, thus, obtained by solving the following MIQP problem,
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min
x,y,µ

∇x,yL(x̄, ȳ, λ̄)T

∆x

∆y

+
1
2

∆x

∆y


T

∇2
x,yL(x̄, ȳ, λ̄)

∆x

∆y


s.t. µ ≤ f̂ ∗k

f (xi,yi) +∇ f (xi,yi)T

x−xi

y−yi

 ≤ µ ∀i = 1, . . . ,k

g j(xi,yi) +∇g j(xi,yi)T

x−xi

y−yi

 ≤ 0 ∀i = 1, . . .k,∀ j ∈ Ii,

Ax + By ≤ b,

x ∈ Rn, y ∈ Zm,µ ∈ R,

(QOA-master)

where ∆x = x− x̄ and ∆y = y− ȳ. As in L-OA x̄, ȳ is chosen as the best found feasible solution

and λ̄ are the corresponding Lagrangean multipliers obtained by solving problem NLP-I.

The NLP subproblem with fixed integer variables will provide both the x variables and the

multipliers λ. If the NLP subproblem is infeasible we solve the problem NLP-f, from which

we obtain the corresponding multipliers. As mentioned before ∇2
x,y is positive semidefinite

due to the convexity of the nonlinear functions; therefore, the MIQP problem can be solved

efficiently with software such as Gurobi[51] or CPLEX[52].

Once the next integer solution has been obtained, the continuous variables are determined

as in OA or L-OA, and more cuts are generated according to Eq. (6.1). The lower bound

is updated in each iteration as in L-OA by solving problem OA-master. The Quadratic

Outer-approximation method is summarized as a pseudocode in Algorithm 7.

As in L-OA, each iteration includes both an MILP and an MIQP subproblem. We will

show later that it is sufficient to merely obtain a feasible solution to the MIQP, which can

reduce the computational complexity of both the L-OA and Q-OA method. Section 6.5

proves the method’s convergence to the optimal solution in a finite number of iterations,
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Algorithm 7 An algorithm summarizing the basic steps of the
Quadratic Outer-approximation (Q-OA) method

Define accepted optimality gap ε ≥ 0 and choose the parameter α ∈
]0,1].

1. Initialization.
1.1 Obtain a feasible solution x̄, ȳ and the multipliers λ̄ , either

by OA or by any other technique.
1.2 Generate cuts at x̄, ȳ according to (6.1) and construct prob-

lems OA-master and (QOA-master).
1.3 Set iteration counter k = 1, and LB0 = − inf.

2. Repeat until f (x̄, ȳ)−LBk−1 ≤ ε.
2.1 Solve problem OA-master to obtain LBk

2.2 Calculate the estimated optimal value f̂ ∗k according to (6.2).
2.3 Solve problem QOA-master to obtain yk

2.4 Solve problem NLP-I with integer variables fixed as yk to
obtain xk and λk.

2.4.1 If problem NLP-I is infeasible, obtain xk by solving
feasibility problem NLP-f.

2.5 Generate cuts at xk,yk according to (6.1) and add these to
problems OA-master and (QOA-master).

2.6 If xk,yk is feasible and f (xk,yk) ≤ f (x̄, ȳ), set x̄, ȳ, λ̄ =

xk,yk,λk.
2.7 Increase iteration counter, k = k + 1

3 Return x̄, ȳ as the optimal solution.

and Section 6.6 discusses the computational aspect more in detail.

The technique used for obtaining the integer combinations in Q-OA actually results in an

interpolation between the minimizer of the linear approximation in problem OA-master and

the minimizer of the Lagrangean approximation, where α in Eq. (6.2) is the interpolation

parameter. Setting α = 1 will force the solution of problem QOA-master to the minimizer of

problem OA-master, and setting α close to zero will allow the solution to be close to the

minimizer of the Lagrangean approximation. The Q-OA method will, therefore, be less

sensitive to the accuracy of the Lagrangean approximation, compared to the method in [25].

In the next section, we prove that finite convergence of Q-OA can still be guaranteed even if

the Hessian of the Lagrangean is only estimated as long as it remains positive semidefinite.
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Figure 6.4: The figures illustrate the first two iterations needed to solve problem Ex 1
with the Q-OA method. The dashed ellipses represent the contours of the approximated
Lagrangean used as the objective in the MIQP subproblem and the red line shows the level
constraint given by µ ≤ f̂ ∗k . The circular dots represent the best found solution so far, the
squared dots represent the solutions obtained from the MIQP subproblem and diamond
shaped dots represent the solutions obtained by one of the NLP subproblems.

To provide a geometric interpretation of the method and to show how it differs from

OA and L-OA, we apply the method to the illustrative test problem Ex 1. We use the

same starting point (x0,y0) as before and we set the level parameter as α = 0.5. To solve the

problem with these parameters Q-OA requires three iterations. The first two iterations are

shown are shown in Figure 6.4. In the third iteration, we are able to verify optimality after

only solving the MILP subproblem, since we obtain LB3 = f (x̄, ȳ). From the figure, note that

the reduction constraint given by Eq. (6.9), prevents the algorithm form taking a too short

step in the first iteration and the optimal solution is actually obtained in the first iteration.

If the trial solution had only been chosen as the minimizer of the Lagrangean relaxation, it

would have resulted in less progress per iteration. It should also be noted that not a single

infeasible integer combination was encountered.
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6.5 Convergence properties

Proving finite convergence of L-OA and Q-OA can be done similarly as for the original

OA, and some of the results from [25, 30] are directly applicable. Finite convergence can

be proven as follows. We show that an infeasible integer combination obtained by L-OA

or Q-OA will be cut off by the cuts generated according to Eq. (6.1) and therefore, this

integer combination cannot be obtained in any future iteration. Next, we prove that a

specific integer combination cannot be obtained twice with either method unless optimality

is proven. The methods, therefore, obtain new integer combinations at each iteration, and

since there are only a finite number of such combinations, the methods will converge in a

finite number of iterations.

Convexity of the nonlinear functions is crucial since it ensures that no feasible integer

solution is cut off by the cuts generated by L-OA or Q-OA and that problem OA-master

gives a valid lower bound, as is stated in Lemma 6.5.1. The lemma and a proof is also found

in [25].

Lemma 6.5.1. Solving problem OA-master yields a valid lower bound to the optimum of

the MINLP problem.

Proof. From the first order convexity condition we know that for any convex differentiable

function φ(x,y),

φ(x,y) ≥ φ(x0,y0) +∇φ(x0,y0)T

x−x0

y−y0

 ∀(x,y), (x0,y0) ∈ Dφ,

where Dφ is the domain in which the function is convex. Therefore the feasible region of the

problem MINLP will be overestimated and the objective function will be underestimated at

each iteration. �
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In Theorem6.5.1, we prove that L-OA and Q-OA always find new integer combinations

as long as optimality is not guaranteed, which requires some intermediate results given in

the following two lemmas.

Lemma 6.5.2. An infeasible integer combination yk, i.e., an integer combination such that

problem NLP-I is infeasible, will be cut off by the cuts generated in L-OA and Q-OA.

Proof. It is proved in [25], that solving the feasibility problem and adding cuts for the active

constraints will cut off yk from the search space. For more details see [25, Lemma 1, page

331]. �

Lemma 6.5.3. If the lower bound is not equal to the upper bound, then there exists a solution

to the MIQP subproblems in L-OA and Q-OA.

Proof. Due to convexity, the linearly approximated problem OA-master is always feasible if

the MINLP problem is feasible. The MIQP subproblem in both L-OA and Q-OA contains the

same constraints as problem OA-master and the reduction constraint. Since f̂ ∗k is calculated

according to Eq. (6.2), the solution to problem OA-master is a feasible solution to the MIQP

subproblem. If problem OA-master is infeasible, the search will be terminated since it

verifies that the MINLP is infeasible. �

Theorem 6.5.1. If the lower bound is not equal to the upper bound, then the MIQP subprob-

lems in L-OA and Q-OA will give a new integer combination.

Proof. By Lemma 6.5.2, we know that any infeasible integer combination that has been

found is cut off from the search space by the cuts added to the subproblems. Since the

upper and lower bound are not equal, we know that the estimated optimum will be smaller

than the upper bound, i.e., f̂ ∗k < f (x̄, ȳ). This is obviously true for all feasible solutions found
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so far, which we denote as x̂i, ŷi, and the following relation is obtained,

f̂ ∗k < f (x̄, ȳ) ≤ f (̂xi, ŷi) ∀i. (6.10)

At all the obtained feasible solutions x̂i, ŷi the methods generate the following linearizations

of the objective,

f (̂xi, ŷi) +∇ f (̂xi, ŷi)T

x− x̂i

y− ŷi

 ≤ µ. (6.11)

In both the MIQP subproblem in L-OA and in Q-OA, we have the reduction constraint

µ ≤ f̂ ∗k , and from Eq. (6.11) it follows that the next solution must satisfy,

∇ f (̂xi, ŷi)T

x− x̂i

y− ŷi

 < 0 ∀i. (6.12)

Now, assume that one of the feasible solutions x̃, ỹ ∈ {̂xi, ŷi} can be perturbed in the x-variables

by ∆x such that it satisfies all constraints of the MIQP subproblem and the property given

by Eq. (6.12). Since x̃ was obtained by solving problem NLP-I, it must satisfy the KKT-

conditions,

∇x f (̃x, ỹ) +

l∑
j=1

λ j∇xg j(̃x, ỹ) + ATγ = 0

g j(̃x, ỹ) ≤ 0 ∀ j = 1, . . . , l

Ax̃ + Bỹ ≤ b

λ,γ ≥ 0

λ jg j(̃x, ỹ) = 0 ∀ j = 1, . . . , l

(Ax̃ + Bỹ−b)◦γ = 0,

(6.13)

where ∇x is the gradient with respect to x-variables, and γ are the multipliers of the lin-

ear constraints. At the solution x̃, ỹ, the methods will generate the following supporting

hyperplanes,
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g j(̃x, ỹ) +∇g j(̃x, ỹ)T

x− x̃

y− ỹ

 ≤ 0 ∀ j | λ j , 0. (6.14)

Since these are all active constraints, the constant on the left-hand side must be zero, i.e.,

g j(̃x, ỹ) = 0. The perturbation ∆x must satisfy Eq. (6.14), which can be written as ,

λ j∇xg j(̃x, ỹ)T ∆x ≤ 0 ∀ j = 1, . . . , l. (6.15)

The same is also true for the linear constraints. For all active linear constraints ∆x cannot

increase the value of the left hand side. This condition can be summed over all linear

constraints by the multipliers γ as

γT A∆x ≤ 0. (6.16)

The perturbation also has to satisfy the reduction stated in Eq. (6.12), which yields,

∇x f (̃x, ỹ)T ∆x < 0. (6.17)

Adding all inequalities from Eq. (6.15), (6.16) and (6.17) results in the following strict

inequality,

∇x f (̃x, ỹ)T ∆x +

l∑
j=1

λ j∇xg j(̃x, ỹ)T ∆x +γT A∆x < 0. (6.18)

However, taking the inner product of ∆x and both sides of the first KKT condition results in

the following equality

∇x f (̃x, ỹ)T ∆x +

l∑
j=1

λ j∇xg j(̃x, ỹ)T ∆x +γT A∆x = 0, (6.19)

which leads to a contradiction. Therefore, there cannot exist a ∆x that satisfies all constraints

of the MIQP subproblems without a change in the y-variables. As stated in Lemma 6.5.3,

there always exists a solution to the MIQP subproblems as long as the lower bound is not

equal to the upper bound. Solving the MIQP subproblem will, therefore, result in a new

integer combination different from all previously obtained solutions. �
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Note that, no assumptions were made in Theorem 6.5.1 regarding optimality of the MIQP

subproblem. Therefore, the theorem is true for any solution that satisfies all constraints of

the MIQP subproblem, optimal or not. Furthermore, Theorem 6.5.1 holds even if we make

an arbitrary change to the objective function in the MIQP subproblems. An estimate of the

Hessian in Q-OA will, therefore, be sufficient for Theorem 6.5.1 to hold. The next theorem

summarizes the convergence properties.

Theorem 6.5.2. Both L-OA and Q-OA will terminate after a finite number of iterations,

either by verifying optimality of the best-found solution or proving that the MINLP problem

is infeasible.

Proof. From Lemma 6.5.1, it is clear that solving problem OA-master will either provide

a valid lower bound or prove infeasibility. Furthermore, the proof of Lemma 6.5.1 also

establishes that no feasible solution will be excluded from the search space. According to

Theorem 6.5.1, both L-OA and Q-OA will find new integer combinations at each iteration

as long as the gap between the upper and lower bound is not equal to zero. Since the linear

constraints are assumed to give rise to a compact set, it is clear that there can only exist a

finite number of different integer combinations, and thus, both methods must terminate

after a finite number of iterations. �

Hence, we have proved that both proposed methods converge to a global optimal solution

in a finite number of iterations. In the next section, we present a numerical comparison of

the proposed methods and compare the results to the original OA method.

6.6 Computational results

In this section, we discuss our computational experiments and the obtained results. To

compare the practical performance of the methods, we have implemented the original OA as
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well as L-OA and Q-OA. The main advantage of L-OA and Q-OA compared to the original

OA, is the ability to handle highly nonlinear MINLP problems more efficiently. L-OA is

more conservative when choosing the trial solutions, and tries to stay close to the best

found feasible solution, which should reduce the number of infeasible integer combinations

obtained. In Q-OA we are also able to incorporate second order information when choosing

new integer combinations. Hence, the new integer combination is chosen with information

regarding the curvature around the current solution. From the test problems, we observed

a significant reduction in the number of iterations with both L-OA and Q-OA compared to

the original OA.

Problem set 1 contains 358 instances and the list the provided in Appendix. Problem set 2

derives from the Problem set 1 by filtering on the following conditions.

To test and compare the methods, 358 MINLP problems are selected from the MINLPlib2

(rev. 373, as of 2017-11-07)? [231].

To test and compare the methods we have implemented them and applied them to convex

MINLP problems obtained from MINLPlib2 (rev. 373, as of 2017-11-07)? [231]. This set

was chosen since it contains a large variety of different test problems originating from both

practical applications as well as theoretical test problems. As mentioned earlier both L-OA

and Q-OA are intended for problems with high to medium degrees of non-linearity, and

therefore, we used the following criteria for choosing the test problems

1. Classified as convex.

2. Having at least one discrete variable.

3. Having at least one continuous variable.

?http://www.gamsworld.org/minlp/minlplib2/html/index.html
?http://www.gamsworld.org/minlp/minlplib2/html/index.html
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4. Satisfying the following inequality

nnonlin

n + m
> 0.5, (6.20)

where nnonlin is the number of variables present in some nonlinear term and m + n is the

total number of discrete and continuous variables. There are in total 109 convex MINLP

problems in MINLPlib2 (rev. 373, as of 2017-11-07) that satisfy the given criteria. These

problems originate from several applications such as process synthesis, facility layout

problems, batch design with storage, portfolio optimization and MINLP test problems. The

test instances have between 7 and 4530 variables and 0 to 1822 constraints. More details of

the test instances are provided in the supplemental material.

Next, we describe some details regarding the implementation of the methods and the

computational results are presented below.

6.6.1 Implementation details

The implementation of the methods compared here was made in MATLAB using Gurobi

7.5.1[51] as subsolver for the MILP/MIQP subproblems and IPOPT 3.12.7 [158] for the NLP

subproblems. Furthermore, we use some functionality from OPTI Toolbox [99] to read the

test problems.

Both L-OA and Q-OA require a feasible starting solution, and to obtain such a solution

we start by performing a few original OA iterations. Once a feasible solution is obtained,

we switch to either L-OA or Q-OA. The level parameter α was set to 0.5 with both methods

in the comparison.

According to Theorem 6.5.1, it is not necessary to find the optimal solution for the MIQP

subproblems, and any feasible solution for these problems is sufficient for guaranteeing that

both L-OA and Q-OA converge to the global optimum. This is an important property, since
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solvers such as Gurobi or CPLEX are often able to quickly find several feasible solutions,

and quite often the majority of the solution time is spent proving optimality. We use a

strategy of stopping the solver once a certain number of feasible solutions have been found,

and specifically, we stop after 10 solutions have been found. This is simply done by setting

the SolutionLimit parameter to 10. Using this approach, we hope to ensure that we obtain a

good solution to the MIQP problem, while significantly reducing the total solution time.

For the MIQP subproblems, we always have a feasible solution available, the solution to

the MILP subproblem OA-master, and providing this as a starting solution to Gurobi also

improved the performance. For the MILP subproblems, we used the default settings in

Gurobi, and we also used the default settings for IPOPT.

The NLP subproblem NLP-I is always convex for these test problems. However, for

some specific test problems we encountered some difficulties where the solver failed to find

the optimal solution. Such difficulties could, for example, be caused by a specific integer

combination not satisfying the constraint qualifications. These issues were not frequent

and they only occurred for a few test problem in the entire MINLPLib2. To deal with such

issues we chose a simple approach; if the NLP subproblem NLP-I is feasible but the NLP

solver fails, we generate cutting planes for all violated constraints at the solution given by

the MILP subproblem OA-master according to Eq. (6.1). These cuts will exclude the current

solution to subproblem OA-master from the search space [120], and thus prevent cycling.

Adding these cuts is equivalent to performing an iteration of the ECP method. From the

convergence properties of the ECP method, we know that adding these cuts will eventually

result in a new integer combination or verify optimality of an obtained solution.

Since the problems we consider are all convex, the Hessian of the Lagrangean is always

positive semidefinite. However, due to numerical accuracy we did encounter a few cases

where the Hessian was not strictly positive semidefinite, i.e., the smallest eigenvalue was
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not positive but in the range of −10−9. To make sure that the MIQP subproblems are convex,

we slightly modify the diagonal elements of the Hessian. For each row i of the Hessian

which contains a nonzero element, we modify the diagonal by

∇2
x,yL(i, i) := ∇2

x,yL(i, i) + |λmin|, (6.21)

where λmin is chosen as the smallest eigenvalue of the Hessian. This modification guarantees

that all eigenvalues are positive [261], and thus, ensures convexity of the MIQP subproblem.

The modification of the Hessian is only done in case one of the eigenvalues are negative.

As termination criteria, we used both an absolute optimality tolerance ε and a relative

optimality tolerance εrel. The search is, thus terminated if either

f (x̄, ȳ)−LB ≤ ε or
f (x̄, ȳ)−LB
| f (x̄, ȳ)|+ 10−10 ≤ εrel

are satisfied. Here LB denotes the current lower bound. These can be considered as the

standard termination criteria for MINLP problems.

All tests were performed on an Intel Core i7 2.93GHz CPU desktop with 16GB of RAM

running Windows 7. As termination criteria, we set the tolerances ε = 10−5 and εrel = 10−3,

and a time limit of 900s.

6.6.2 Illustrative examples

In this section, we present more detailed results of two particular instances of the selected

test set. These instances were chosen such that they could exemplify the results shown in

the following section. The selected instances are cvxnonsep nsig40? and ibs2?. The

first instance was proposed by Kronqvist et al. [262], it contains 20 integer variables and

20 continuous variables, a linear objective and a signomial constraint. This seemingly

?http://www.gamsworld.org/minlp/minlplib2/html/cvxnonsep_nsig40.html
?http://www.gamsworld.org/minlp/minlplib2/html/ibs2.html
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simple problem is designed to be challenging for methods such as OA and ECP due to a

highly nonlinear constraint. The second instance has 1500 binary variables, 1510 continuous

variables, a linear objective, and 1821 constraints, of which 10 are nonlinear including

square and logarithm operators. This problem represents a particular challenge for the OA

method given its combinatorial complexity and the fact that most of its variables, discrete

and continuous, are involved in a nonlinear fashion in the constraints.

To illustrate how the methods differ for these problems, we show the upper and lower

bounds obtained by each method. Figures 6.5 and 6.6 show the progress of the bounds

as a function of time for problems cvxnonsep nsig40 and ibs2, respectively. From the

figures, it can be observed that Q-OA is able to improve the upper bound more quickly

than the other methods. This is usually the case and is explained by that fact that Q-OA

utilizes more information when choosing the integer combinations than the other methods.

Especially for the instance ibs2, there was a clear advantage of incorporating information

from the second order derivatives, and Q-OA clearly performs better than L-OA.

From the results presented in the bounds profiles and in Table 6.1, we notice how in-

cluding the level regularization can improve the performance of the OA method while

solving convex MINLPs. For the instance cvxnonsep nsig40 we notice a reduction in

time of 59% and 66% using the L-OA and the Q-OA method, respectively. Although the

new methods require the solution of an MIQP subproblem in each iteration, the extra time

invested in finding the next integer combination is compensated with a reduction in both

iterations and time.

For the instance ibs2, OA is unable to close the optimality gap under 0.1% within the

time limit of 900 seconds even though it performs 431 iterations. When solving the problem

with L-OA the upper bound initially diminishes faster in terms of both time and iterations

compared to OA, but the MIQP subproblems become hard to solve resulting in only 41
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Figure 6.5: Bound profiles for instance cvxnonsep nsig40 against time. The figure
shows the upper bound (UB) and lower bound (LB) obtained by the OA, L-OA, and Q-OA
methods.

Table 6.1: Detailed results of the illustrative examples while solving them with the OA,
L-OA, and Q-OA methods

Instance
Solution
method Time [s] Iterations

NLP
time [s]

MILP
time [s]

MIQP
time [s]

Infeasible
NLPs

Optimality
Gap

cvxnonsep nsig40
OA 360.86 663 31.69 328.13 0 1 0.00098

L-OA 147.87 201 9.84 55.35 82.37 0 0.000999
Q-OA 121.55 144 6.65 38.68 75.99 0 0.000913

ibs2
OA 900* 431 152.86 747.14 0 6 0.005368

L-OA 900* 41 40.16 17.98 841.86 6 0.1093
Q-OA 103.89 16 48.60 6.469 48.68 2 0.000997

*Time limit.
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Figure 6.6: Bound profiles for instance ibs2 against time. The figure shows the upper
bound (UB) and lower bound (LB) obtained by the OA, L-OA, and Q-OA methods.
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iterations before hitting the time limit. When utilizing second order information with the

Q-OA method, the problem is solved within an optimality gap of 0.1% in 104 seconds and

just after 16 iterations while only encountering 2 infeasible NLP subproblems. Note that,

for both illustrative examples the methods are all able to obtain a tight lower bound already

in the first iteration, which is not generally the case. Usually, the lower bounds can also

vary significantly between the methods.

6.6.3 Numerical results

Having observed the improvement in performance of the proposed methods compared to

OA in the illustrative examples, we considered the whole test set defined at the beginning of

this section. In order to compare the performance of the methods, we have used performance

profiles [204] both in terms of solution time and iterations in Figures 6.7 and 6.8, respectively.

The profiles show the number of problems solved against the respective performance ratio

threshold τ. A data point at each plot represents the number of instances that each method

solved within a factor τ of the best solver.

Figure 6.7 shows how the Q-OA method is superior to both L-OA and OA for the selected

test set in terms of solution time. The figure shows that Q-OA solves most instances to the

desired optimality gap, and it solves the problems in the least amount of time. L-OA has

initially the worst performance of the 3 methods for τ ≤ 3, but in the end, the performance

is similar to that of OA without reaching the number of solved instances by Q-OA. It is

also worth mentioning, that all the instances that remained unsolved with Q-OA are also

unsolved with both OA and L-OA. Q-OA is thus able to solve all the problems solved with

the other methods and some additional problems.

The performance profiles in terms of iterations in Figure 6.8 show a clear advantage of

Q-OA compared to the other 2 methods. Considering iterations L-OA also performs better
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Figure 6.7: Time performance profiles for test problems using second-oder regularization
methods in OA.
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Figure 6.8: Iterations performance profiles for test problems using second-oder regulariza-
tion methods in OA.
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Table 6.2: Number of instances solved and comparison in solution time and iterations of
OA, L-OA, and Q-OA.

Method
Instances
solved

Less time
than OA

Fewer iterations
than OA

Less time
than L-OA

Fewer iterations
than L-OA

Less time
than Q-OA

Fewer iterations
than Q-OA

OA 94 / 109 - - 61 / 94 23 / 94 38 / 94 3 / 94
L-OA 95 / 109 34 / 95 57 / 95 - - 9 / 94 2 / 94
Q-OA 96 / 109 57 / 96 80 / 96 86 / 96 84 / 96 - -

than OA, and the profiles show a clear reduction in terms of iterations for both L-OA and

Q-OA.

Given that the performance profiles show the results without distinguishing the indi-

vidual instances, we include Table 6.2, which shows a direct comparison of the methods

in terms of solution time and iterations. Note that Q-OA is able to solve 1 and 2 instances

more than L-OA and OA, respectively.

None of the methods were able to find a solution within 0.1% of optimality gap for 13

instances in the test set. When comparing the proposed methods to OA, we see that L-OA

is able to reduce the solution time in 36% of the instances and the iterations in 60%, while

Q-OA reduced the time in 59% of the instances and the iterations in 83%. From the results,

it was also noticed that the benefits of Q-OA are more apparent for the more challenging

instances. By comparing the two proposed methods we see that Q-OA solves 90% of the

instances in less time and 87.5% of the instances in fewer iterations than L-OA. Detailed

solution information for all instances and methods can be found in the supplemental

material.

An interesting result is that the proposed methods significantly decreased the number

of infeasible NLP subproblems found while solving the selected problems. Using OA we

obtained 877 infeasible NLP subproblems, while using L-OA and Q-OA we only obtained

259 and 257, respectively. This can be explained by the fact that the integer combinations

are chosen closer in the search space to the best feasible solution, and information about the
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curvature is utilized with the proposed methods. Choosing an integer combination close to

a feasible solution also results in trial solutions close to the feasible region, which resulted

in fewer infeasible trial solutions.

The solutions reported here were obtained using the level parameter α = 0.5. We per-

formed several tests varying the value of α, which resulted in significant changes for

individual instances but rather insignificant when considering the whole test set. Overall,

α = 0.5 gave us the best results for this set of test problems.

6.7 Conclusions and future work

We have presented two new methods for solving convex MINLP problems, based on a

regularization technique and a second order approximation of the Lagrangean. We have

proven that both methods converge to the global optimal solution in a finite number of

iterations, and shown that the proofs hold even if the MIQP subproblem is only solved ap-

proximately. Both methods are mainly intended for problems with moderate to high degrees

of nonlinearity, and for such problems, both methods performed better than the original

OA method. The new method called Q-OA required significantly fewer iteration than the

original OA, and there was also a clear advantage in the solution time. The advantage is

due to the fact that more information is utilized when choosing the integer combinations.

The method L-OA uses a regularization technique which we showed is equivalent to using

a trust region. The regularization prevents large jumps between iterations and tries to keep

the trial solutions close to the feasible region, and for the test problems, it gave an advantage

over the original OA. For the test problems, Q-OA performed better than the other methods,

both with respect to the number of iteration and time. Furthermore, using Q-OA we were

able to solve a larger percentage of the test problems within the time limit.
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As future work we plan to implement the methods in a more efficient and flexible

framework, e.g., within an MINLP solver like DICOPT[105] or as part of a Toolkit in an

optimization modeling software such as Pyomo or JuliaOpt. It could also be worth to

investigate a dynamic update of the level parameter α. For example, it could be possible

to adjust the parameter based on the current optimality gap. Another idea would be to

investigate if the concepts used within L-OA and Q-OA could be effectively integrated

within the framework of the NLP/LP based branch and bound algorithm presented in [90].
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Chapter 7

Alternative Regularizations for

Outer-approximation

7.1 Introduction

Optimization problems whose objective and constraints can be represented by algebraic

linear and nonlinear functions of both continuous and discrete variables are commonly

referred to as mixed-integer nonlinear programs (MINLP). MINLP is a highly versatile

modeling paradigm, allowing even Universal Turing Machines to be encoded via a Minsky’s

register machine [3]. There is a large variety of practical applications and optimization tasks

that can be modeled using MINLP, see e.g., [6, 60, 106, 251].

Although MINLPs are non-convex optimization problems because of some variables’

discreteness, the term convex MINLP is used to denote problems where the feasible region

described by the constraints and the objective function are convex [26]. Convex MINLP

problems are an important class of problems, as the convex properties can be exploited

to derive efficient decomposition algorithms. These decomposition algorithms rely on

the solution of different subproblems derived from the original MINLP. Among these

decomposition algorithms for MINLP, we have Branch & Bound (B&B) [27], Generalized

Benders Decomposition [28], Outer-approximation (OA) [30], Partial Surrogate Cuts [90],

Extended Cutting Plane (ECP) [118], Feasibility Pump [143, 263] Extended Supported Hy-

perplanes (ESH) [121], and the center-cut [145] method. Moreover, the OA method has been
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extended in several pieces of work, such as the single-tree OA [90], Quadratic-cuts OA [235],

conic-based OA [44], Decomposition-based OA [264], and Proximal OA [265] methods.

Most of these methods exploit the properties of convex MINLP to derive linearizations of

the nonlinear constraints based on their gradients. These linearizations are equivalent to

first-order Taylor expansions of the nonlinear inequalities. They define a linear region that

overestimates the problem’s nonlinear feasible region because of the convexity property.

OA has proven to be one of the most efficient algorithms for convex MINLP [26], and

several state-of-the-art solvers build upon the OA method. Recent benchmarks [26, 266]

have also shown good performance with so-called singe-tree search methods based on

an OA approach. Single-tree methods only constructs a single B&B tree where the linear

relaxation is dynamically updated, and these are implemented in several state-of-the-art

solvers,e.g., AOA [163], BARON [47], BONMIN [129], FilMint [128], SHOT [266], and

Pajarito [44].

Methods such as OA, ECP, and ESH all rely on the successive solution of MILP relaxations

for solving convex MINLP problems. Given that each MILP relaxation problem is solved

via a B&B seach tree, these methods are known as multi-tree methods [44, 266]. With

these methods, the linear relaxation is used in the same fashion as in Kelley’s cutting

plane method [119], i.e., to derive the following trial solutions for either all variables or

only the integer variables. Kelley’s method, relying on the iterative solution on linear

programming (LP) problems arising from the gradient-based linearizations at previous

minimizers, is known to be unstable given its large jumps in the search space [253]. It has

been proven that Kelley’s cutting plane method has a poor complexity bound and is also

not practically efficient at handling nonlinearities, see, e.g., [252]. Stabilization techniques

through regularization of the step-size and trust-region approaches [254, 267] have been

proposed to tackle this shortcoming. In the continuous setting, the level bundle method [257,
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258] has proven to work well in stabilizing cutting-plane methods for nonsmooth problems.

This method derives the following trial solutions by projecting the current solution (or

stabilization center) onto a specific level of the linearly approximated objective function.

Directly using a trust-region or regularization for convex MINLP is nontrivial as neighbor-

ing solutions can be far apart in the search space due to the discrete space. For nonsmooth

convex MINLP Oliveira [256] proposed a regularized algorithm based on the ECP method.

Combining OA and bundle methods, Delfino and Oliveira [268] derived a method for

nonsmooth convex MINLP. Kronqvist, Bernal, and Grossmann [89] showed that using

ideas from the level method makes it possible to integrate regularization and second-order

derivatives in an OA framework efficiently. Using a second-order Taylor approximation of

the Lagrangean within a level-based OA, the Q-OA method [89] significantly reduced the

number of iterations for highly nonlinear convex MINLP problems.

In this paper, we build upon the work by Kronqvist, Bernal, and Grossmann [89] and

present a general regularization framework for OA. We refer to the new method as Reg-

ularized Outer-approximation (ROA), which enables different regularization functions

to be used while guaranteeing global convergence. We propose a set of regularization

functions based on both distance metrics and the Lagrangean. The motivation behind the

Lagrangean-based regularization functions is to incorporate more information from both

the objective and constraint function.

Moreover, there has been a recent interest in algorithm developers for MINLP in solving

these problems in a Branch & Cut scheme. First proposed by Quesada and Grossmann

[90] in a method called LP/NLP B&B, the OA linearizations are added at every incumbent

solution found while solving a single MILP problem using a B&B procedure. This method

addresses a key weakness of the multi-tree methods, where MILP problems solved in each

iteration are similar to one another, requiring repeated search effort. This method has been
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further improved on several fronts. Leyffer [114] integrate it to a Sequential Quadratic

Programming (SQP) for the NLP problems, Tawarmalani and Sahinidis [269] derive a

Brnach & Cut algorithm based on polyhedral relaxations of non-convex functions for global

optimization to implemente the global solver BARON, which was later improved upon

by Khajavirad and Sahinidis [47] who incorporate techniques to derive valid linearizations

for non-convex constraints, and Coey, Lubin, and Vielma [44] take advantage of conic

programming techniques to provide certificates for convex mixed-integer programs. This

idea, denoted as single-tree approach, has been implemented by several MINLP solvers such

as BONMIN [129], FilMint [128], AOA [163], SHOT [266], Pajarito [44], and BARON [47].

We also integrate the regularization framework with the single-tree search algorithm in a

method we denominate as regularized LP/NLP (RLP/NLP).

7.1.1 Contributions and outline

In this paper, we propose a general framework for integrating regularization mixed-integer

subproblems in the OA method in the multi-tree and single-tree setting for solving convex

MINLP problems. We prove that these methods are guaranteed to converge to the optimal

solution of MINLP problems, regardless of the choice of regularization function. Seven

different regularization functions are proposed as objectives in this work, three of them

coming from distance metrics to the incumbent solutions, and the other four with approxi-

mations of the Lagrangean function around the best-found solution. We implemented these

methods in the open-source Mixed-integer nonlinear decomposition toolbox for Pyomo

- MindtPy [190], making the methods readily available. With this implementation, we

perform a comprenhensive computational study by solving all convex MINLP problems

available in the benchmark library MINLPLib [100].

The remaining chapter is organized as follows. In Section 7.2 we provide the neces-
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sary background on the OA and LP/NLP methods.Section 7.3 introduces the Regularized

Outer-approximation (ROA) method and proposes the norm-based objective functions

for the regularization subproblem. Next, we introduce four objective functions obtained

through approximations of the Lagrangean function in Section 7.4. We provide a conver-

gence analysis of the proposed methods in Section 7.5. The single-tree extension of the

regularization method as the Regularization LP/NLP Branch & Bound (RLP/NLP) method

and its implementation are presented in Section 7.6. Finally, the computational results of

the methods’ benchmarking in presented in Section 7.7.

7.2 Background

The MINLP problems considered in this paper are of the form,

min
x,y

f (x,y)

s.t. g j(x,y) ≤ 0 ∀ j = 1, . . . , l,

Ax + By ≤ b,

x ∈ Rn, y ∈ Zm.

(MINLP)

Later in the algorithms, the (nonlinear) objective function is transformed into a constraint

by the epigraph formulation, f (x,y) ≤ µ, where the continuous variable µ represents the

objective value. To guarantee global convergence for OA-type algorithms typically requires

convexity assumptions, a bounded search space, and some form of constraint qualifica-

tion for problem MINLP [25, 30, 129]. Throughout this paper, we rely on the following

assumptions:

Assumption 1. The nonlinear functions f ,g1, . . . ,gl : Rn ×Rm → R are convex and continu-

ously differentiable.

Assumption 2. The linear constraints define a nonempty compact set.
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Assumption 3. For each feasible integer combination y, an integer combination such that

there exist x variables for which the problem is feasible, a constraint qualification

holds, e.g., Slater’s condition [226].

We begin by presenting the Outer-approximation method’s main steps, on which the

other algorithms build upon. The OA method uses a linear approximation (or relaxation) of

the MINLP problem to obtain trial solutions for the integer variables and derives improving

lower bounds on the optimal objective value. The linear approximation at each iteration is

refined by using the previously obtained trial solutions
{
(xi,yi)

}k

i=0
as expansion points for

first-order Taylor approximations of the nonlinear constraints

f (xk,yk) +∇ f (xk,yk)>

x−xk

y−yk

 ≤ µ,
g j(xk,yk) +∇g j(xk,yk)>

x−xk

y−yk

 ≤ 0 ∀ j ∈ Ik,

(7.1)

forming a polyhedral outer approximation of the feasible set of problem MINLP. The

linear inequality constraints in (7.1) are often referred to as cuts, as they refine the outer

approximation by cutting off infeasible parts of the search space.

Using an accumulation of cuts given by (7.1) over k iterations, an approximation of the

nonlinear constraints, the next integer combination yk+1 is obtained by solving the following
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MILP problem

min
x,y,µ

µ

s.t. f (xi,yi) +∇ f (xi,yi)>

x−xi

y−yi

 ≤ µ ∀i = 1, . . . ,k,

g j(xi,yi) +∇g j(xi,yi)>

x−xi

y−yi

 ≤ 0 ∀i = 1, . . .k,∀ j ∈ Ii,

Ax + By ≤ b,

x ∈ Rn, y ∈ Zm,µ ∈ R,

(OA-MILP)

which is often referred to as the master problem. Here Ii are index sets containing the

indices of the nonlinear constraint active at the trial solution (xi,yi) [25]. From the convexity

assumption, it is clear that the feasible set is overestimated and that the objective function

will be underestimated, see, e.g., [30]. Therefore, the optimum of problem OA-MILP

provides a valid lower bound (LB) to the MINLP problem, referred to as LBk+1, and the

minimizer gives a new integer combination yk+1. Next, the corresponding continuous

variables xk+1 are determined by solving the following convex NLP subproblem,

min
x

f (x,yk+1)

s.t. g j(x,yk+1) ≤ 0 ∀ j = 1, . . . l,

Ax + Byk+1 ≤ b,

x ∈ Rn,

(NLP-I)

which is the original MINLP problem with all the integer variables fixed. In case prob-

lem NLP-I is feasible, then xk+1 is given by the minimizer and f (xk+1,yk+1) gives a valid

upper bound (UB) UBk+1 to the MINLP problem. If problem NLP-I is infeasible, then the cur-

rent integer combination is infeasible for all feasible values of the continuous variables.This
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situation can be handled by solving a feasibility problem, that typically minimizes a norm

of the constraint violation s with the current choice of y variables as follows,

min
x,r

‖s‖p

s.t. g j(x,yk+1) ≤ s j ∀ j = 1, . . . l,

Ax + Byk+1 ≤ b,

x ∈ Rn, s ∈ Rl
+.

(NLP-f)

Common choices of the norm for the constraint violations are the `∞ and the `1

norms.Solving the feasibility problems yields the values of the continuous variables xk+1.

Notice that in this case (xk+1,yk+1) is not a feasible solution; therefore, it does not provide an

UB on the optimal objective. Problem NLP-f always satisfies Slater’s condition, and due to

Assumptions 1 and 2, it is always feasible and tractable.

In case the difference between the UB and LB is not within the desired tolerance, the

procedure is repeated in the next iteration, and the outer approximation in problem OA-

MILP is improved by including new cuts. With the new cuts, the master problem returns a

new integer combination and an improved LB. Due to convexity, the cuts will not exclude

any feasible solutions from the search space [227]. However, the cuts are sufficient to ensure

that the integer combination yk+1 will not be obtained in a consecutive iteration unless it

is the optimal integer solution. Due to Assumption 2, the search space only contains a

finite number of different integer combinations. Finite convergence follows from the fact

that each iteration either finds a new integer combination or verifies optimality. For more

details of OA, see [25, 30, 124]. In the Appendix, the pseudo-code presented in Algorithm 10

summarizes the OA algorithm’s main steps.

Every iteration of the OA algorithm solves a new MILP problem OA-MILP. Note that

the master problem solved in iteration k only differs from the one in iteration k − 1 by

the cuts added in that iteration. Solving each one of the MILP master problems can be
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computationally challenging. To avoid solving a large number of similar MILP problems,

Quesada and Grossmann [90] proposed the LP/NLP-based B&B algorithm that combines

OA and B&B. The LP/NLP-based B&B algorithm dynamically updates the master problem

and only builds a single B&B tree. Each node, or leaf, of the search tree forms a continuous

linear programming (LP) problem where the integer variables are relaxed as continuous,

and the cuts in (7.1) are used to approximate the nonlinear constraints. Integer solutions

are obtained through branching on the LP problems. Once an integer solution is found in

the search tree, it is used as a new integer combination in the OA algorithm resulting in

new cuts by solving the corresponding NLP subproblem. The best-found feasible solution

to the original problem is known as the incumbent solution. It provides the UB used in

the search tree. The new cuts, derived from the new integer combination, are added to all

open nodes of the B&B tree, and the linear B&B procedure continues with an improved

approximation of the nonlinear constraints. Nodes are pruned as usual in a B&B method:

if it becomes infeasible or its objective value exceeds the current UB. The LP/NLP-based

B&B technique is also known in the literature as single-tree OA [44, 266] to differentiate it

from the traditional OA methods, where each problem OA-MILP is solved individually

and sequentially through its own B&B tree, hence the name multi-tree OA.

The main steps in the LP/NLP B&B are outlined in Algorithm 11 in the Appendix.

We consider the following illustrative example to highlight the features of the presented
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Figure 7.1: Left: Feasible region of problem Ex 1. Right: integer relaxed feasible region,
optimal solution of the problem (?), initialization point (_), and the contours of the objective.

methods and show how they differ from OA.

minimize x− y/4.5 + 2

s.t. x2/20 + y ≤ 20

(x−1)2/40− y ≤ −4

0.275y1.5−10(x + 0.1)0.5 ≤ 0

0 ≤ x ≤ 20, 0 ≤ y ≤ 20, x ∈ R, y ∈ Z.

(Ex 1)

The basic features of problem Ex 1 are illustrated in Figure 7.1, showing the constraints,

objective, and the optimal solution (x?,y?) = (0.65625,10).

We use the feasible point, (x0,y0) = (1,4), as the starting point for all the methods instead

of solving the continuous relaxation. OA requires five iterations to solve this problem, of

which the first four iterations are shown in Figure 7.2. In this specific problem, the first

iteration results in an infeasible solution. The optimal solution is obtained in iteration four,

and verifying optimality requires an additional iteration.
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Figure 7.2: Progress of OA in problem Ex 1, with each figure being an iteration. The
feasible region defined by the nonlinear constraints (dark gray), the outer approximation
obtained by the generated cuts (light gray), the MILP master problem solution (�), and NLP
subproblem solution (�) are included.

7.3 Regularized Outer-approximation

The level-based OA (L-OA) method was presented by Kronqvist, Bernal, and Grossmann

[89], where the authors used a squared `2-regularization to the subproblem of obtaining

new integer assignments. It was shown in the paper that the regularization technique

is equivalent to adding a trust region, given by squared `2-norm, with a center at the

incumbent solution. We give a brief overview of the L-OA algorithm since the other

regularization techniques in this paper are also based on this framework. For more details,

we refer to [89].

At iteration k, the master problem OA-MILP is solved to obtain a LB LBk on the optimal

objective value. Given an incumbent solution (x̄, ȳ) and the UB resulting from f (x̄, ȳ), we

estimate the optimal objective value of the MINLP problem f? = f (x?,y?) as

f̂?k = (1−α) f (x̄, ȳ) +αLBk, (7.2)

where α ∈ (0,1]. The estimated optimum f̂?k is chosen as an interpolation between the

UB and LB, where α is the interpolation parameter representing how much the linear

approximation, i.e., the master problem, is trusted. For the continuous setting, within

the level method proposed by Lemaréchal, Nemirovskii, and Nesterov [257], a value of
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α = 1−
√

2/2 ≈ 0.29 is found to be optimal. The proof does not generalize for the mixed-

integer case, meaning that an ideal value for α is not known a-priori. As in [89], in this work

we use α = 0.5. The next integer assignment yk+1 is now determined by projecting x̄, ȳ onto

the f̂?k level set of the linearly approximated objective function intersected with the current

outer approximation of the feasible set. The projected solution is obtained as the minimizer

of the following MIP problem,

min
x,y,µ

φh
x̄,ȳ(x,y)

s.t. µ ≤ f̂?k

f (xi,yi) +∇ f (xi,yi)>

x−xi

y−yi

 ≤ µ ∀i = 1, . . . ,k,

g j(xi,yi) +∇g j(xi,yi)>

x−xi

y−yi

 ≤ 0 ∀i = 1, . . . ,k,∀ j ∈ Ii,

Ax + By ≤ b,

x ∈ Rn, y ∈ Zm,µ ∈ R,

(MIP-Proj)

where φh
x̄,ȳ : Rn×Rm→ R is a convex regularization function represent by the symbol h. The

L-OA algorithm in [89] use the regularization function

φ
`2

2
x̄,ȳ(x,y) :=

∥∥∥∥∥∥∥∥∥∥
x− x̄

y− ȳ

∥∥∥∥∥∥∥∥∥∥
2

2

, (7.3)

and the authors mention that the convergence guarantees of the algorithm are independent

of the choice of objective function in MIP-Proj. The regularization problem MIP-Proj

must contain all the cuts accumulated in problem OA-MILP to ensure convergence. The

regularization role is to favor solutions close to the incumbent solution with regards to a

specific metric. The new integer assignment yk+1 is chosen as a point as close as possible

to the incumbent solution, such that the linearly approximated objective is reduced to at
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most f̂?k . By construction, the regularization problem MIP-Proj is always feasible, e.g., the

minimizer of problem OA-MILP will satisfy all the constraints, and it is used to derive

the next integer assignment yk+1. Once the new integer combination is obtained, the

corresponding continuous variables can be determined using the same technique as in

the OA method. The difference between the L-OA and OA methods is how the new

integer assignments are obtained. Otherwise, both methods use the same techniques for

determining the continuous variables and improving the outer approximation of the feasible

set.

Since finite convergence of L-OA holds for any objective function in the regularization

problem [89], other regularization techniques can easily be incorporated into the L-OA

framework. A general framework based on the L-OA concept, where the regularization

function is not specified, is summarized as a pseudo-code in Algorithm 8. We refer to this

algorithm as Regularized Outer-approximation (ROA).

Two alternative regularization functions that fits directly into the L-OA are

φ`1
x̄,ȳ(x,y) :=

∥∥∥∥∥∥∥∥∥∥
x− x̄

y− ȳ

∥∥∥∥∥∥∥∥∥∥
1

, (7.4)

φ`∞x̄,ȳ(x,y) :=

∥∥∥∥∥∥∥∥∥∥
x− x̄

y− ȳ

∥∥∥∥∥∥∥∥∥∥
∞

. (7.5)

A benefit of using a regularization based on either the `1-norm or `∞-norm is that the

regularization problem can be encoded as a MILP problem. We define for the remaining of

the paper the L-OA approach from [89] as ROA-`2
2, and the proposed linear regularization

approaches that use (7.4) and (7.5) as regularization functions as ROA-`1 and ROA-`∞,

respectively.

As shown in [89], L-OA finds the same integer solutions as the master problems in OA

with specific trust-region constraints. In fact, the equivalence to a trust region still holds
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Algorithm 8 An algorithm summarizing the Regularized Outer-
approximation (ROA) method.

Define accepted optimality gap ε ≥ 0, the regularization function φh
x̄,ȳ,

and choose the parameter α ∈ (0,1].
1. Initialization.

1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relax-
ation of the MINLP problem.

1.2 Generate cuts at x̃, ỹ according to (7.1) and construct prob-
lems OA-MILP.

1.3 Set iteration counter k = 1, UB0 =∞ and LB0 = −∞.
2. Repeat until UBk−1−LBk−1 ≤ ε.

2.1 Solve problem OA-MILP to obtain yk and LBk.
2.2 If a feasible solution x̄, ȳ has been found, calculate the

estimated optimal value f̂?k according to (7.2) and solve
problem MIP-Proj to update yk.

2.3 Solve problem NLP-I with integer variables fixed as yk to
obtain xk.

2.3.1 If problem NLP-I is feasible, set UBk =

min{ f (xk,yk),UBk−1}.
2.3.1.1 If f (xk,yk) ≤ f (x̄, ȳ), set x̄, ȳ = xk,yk.

2.3.2 If problem NLP-I is infeasible, obtain xk by solving
feasibility problem NLP-f and set UBk = UBk−1.

2.4 Generate cuts at xk,yk according to (7.1) and add these to
problems OA-MILP and MIP-Proj.

2.5 (Optional) Generate no-good cuts at yk and add these to
problems OA-MILP.

2.5 Increase iteration counter, k = k + 1,
3. Return x̄, ȳ as the optimal solution x?,y?.

with the regularization given by any p-norm. This property is stated in Theorem 7.3.1. The

proof uses the same argumentation as in [89] but is included for the sake of completeness.

Theorem 7.3.1. With the regularization given by a p-norm, the procedure of solving prob-

lems OA-MILP and MIP-Proj in ROA results in solution equivalent to adding the trust

region constraint ∥∥∥∥∥∥∥∥∥∥
x− x̄

y− ȳ

∥∥∥∥∥∥∥∥∥∥
p

≤ rk (7.6)

to problem OA-MILP in OA, where rk is chosen as the optimum of problem MIP-Proj.
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Proof. As mentioned earlier, MIP-Proj is always feasible and and we denote the minimizer

by xMIP-Proj,yMIP-Proj,µMIP-Proj. The radius of the equivalent trust region constraint is then

given by

rk =

∥∥∥∥∥∥∥∥∥∥
xMIP-Proj− x̄

yMIP-Proj− ȳ

∥∥∥∥∥∥∥∥∥∥
p

(7.7)

Solving problem OA-MILP, with the trust region constraint, gives the solution

xMILP,yMILP,µMILP. Now, assume this solution is not an optimal solution to problem MIP-

Proj. Since xMILP,yMILP,µMILP is not an optimal solution, it follows that

rk >

∥∥∥∥∥∥∥∥∥∥
xMILP− x̄

yMILP− ȳ

∥∥∥∥∥∥∥∥∥∥
p

. (7.8)

Since OA-MILP minimizes µ, we know that µMILP ≤ µMIP-Proj ≤ f̂?k . This leads to a contra-

diction since xMILP,yMILP,µMILP is a feasible solution to problem MIP-Proj with an objective

value strictly lower than the solution obtained by solving the minimization problem. There-

fore, the solution to problem OA-MILP, with the trust-region constraint, must also be an

optimal solution to problem MIP-Proj. � �

Depending on which function φh
x̄,ȳ is used in the ROA method, we obtain different variants

of the algorithm. These variants are denoted as ROA-h, e.g., we refer to ROA-`1 when (7.4)

is used as the objective for the regularization problem. Next, we illustrate the difference

between these variants with example Ex 1.

For example Ex 1, the three level regularization norms presented here; ROA-`2
2, ROA-`1,

and ROA-`∞; converge to the optimal solution in three iterations. Thanks to the regular-

ization, all three approaches find the optimal solution in the first iteration as observed in

Figure 7.3. Although the simple example does not show this behavior, the regularization ob-

jective’s choice might affect which integer combination gets chosen to solve problem NLP-I.
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Figure 7.3: First iteration of ROA for problem Ex 1 with the three level norms presented in
this work. The format from Figure 7.2 is used here, with the additional features that the
regularization objective contours, the regularization problem solution (N), the incumbent
solution (�), and the level constraint (7.2) with α = 0.5 (red line) are included. Left: ROA-`2

2.
Center: ROA-`1. Right: ROA-`∞.

In every case, the regularization tries to keep this integer combination close to the incumbent

solution. Moreover, the choice of the objective may impact the computational time required

to solve the regularization problem. As mentioned above, choosing the squared `2 norm as

in L-OA [89] leads to the regularization problem becoming an MIQP. On the other hand,

the `1 and `∞ norms in the objectives can be modeled using linear inequalities and auxiliary

variables, as presented in the Appendix, leading to MILP regularization subproblems. For

all approaches, it takes two more iterations to close the LB.

In the next section, we present two new regularization strategies that also fit within the

ROA framework and incorporate information from the Lagrangean function.

7.4 Lagrangean based regularization

To take advantage of second-order derivatives for selecting the new integer assignment

yk+1, Kronqvist, Bernal, and Grossmann [89] proposed a technique they refer to as Quadratic

Outer-approximation (Q-OA). Instead of a regularization function, Q-OA uses a second-
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order Taylor series expansion of the Lagrangean function as the objective function in MIP-

Proj. Thus, the new integer assignment is chosen by minimizing a quadratic approximation

of the Lagrangean within an outer approximation of the feasible set subject to a level

constraint, i.e., µ ≤ f̂?k . Except for the level constraint, there is an apparent similarity with

the sequential quadratic programming (SQP) approach [270].

The Lagrangean function L : Rn×Rm×Rk→ R associated with the MINLP problem can

be written as

L(x,y,λ) = f (x,y) +λ>g̃(x,y), (7.9)

where g̃ :Rn×Rm→Rk contains all the constraints in the form g̃(x,y)≤ 0, linear and nonlinear.

From the fixed NLP problem giving the incumbent solution (x̄, ȳ), the corresponding dual

variable λ̄ is also obtained. Now, by defining the regularization function φh
x̄,ȳ as

φL2
x̄,ȳ(x,y) := ∇x,yL(x̄, ȳ, λ̄)>

x− x̄
y− ȳ

+
1
2

x− x̄
y− ȳ

>∇2
x,yL(x̄, ȳ, λ̄)

x− x̄
y− ȳ

 , (7.10)

the ROA method in Algorithm 8 will result in the Q-OA algorithm. Note that φh
x̄,ȳ in (7.10)

can be considered a regularizer with a stabilization center at the minimizer of the quadratic

approximation of the Lagrangean. In case the Hessian of the Lagrangean is not positive

definite (only positive semidefinite), the stabilization center may not be a unique point but

a subspace.

Remark 7.4.1. With the integer variables fixed as ȳ, the point (x̄, ȳ, λ̄) is a stationary point

of the Lagrangean and, therefore, all partial derivatives corresponding to the continuous

variables will be zero in ∇x,yL(x̄, ȳ, λ̄). This follows directly from the KKT conditions of the

NLP problem NLP-I.

Next, we derive two new regularization functions based on the Lagrangean that can be

directly implemented in Algorithm 8. Using the Hessian of the Lagragian, we can define a
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norm as ∥∥∥∥∥∥∥∥∥∥
x

y

∥∥∥∥∥∥∥∥∥∥
L(x̄,ȳ,λ̄)

:=

√√√√√√√√x− x̄

y− ȳ


>

∇2
x,yL(x̄, ȳ, λ̄)

x− x̄

y− ȳ

, (7.11)

which is a proper norm if in the Hessian is positive definite or a semi norm if the Hessian

is positive semidefinite [271]. Based on this (semi) norm, we define a new regularization

function as

φ∇
2L

x̄,ȳ (x,y) :=

∥∥∥∥∥∥∥x
y

∥∥∥∥∥∥∥
2

L(x̄,ȳ,λ̄)

=

x− x̄
y− ȳ

>∇2
x,yL(x̄, ȳ, λ̄)

x− x̄
y− ȳ

 . (7.12)

This regularization function’s motivation is to favor search directions in which the La-

grangean has a locally linear behavior. This regularization, therefore, favors regions of the

search space where the outer approximation is expected to be more accurate. In case the

Hessian has at least one zero eigenvalue, the trust-region will be unbounded in directions

in which the quadratic approximation of the Lagrangean changes linearly.

There are situations in which the Hessian is not known or too expensive to compute.

One of the simplest approximations of the Hessian is a scaled identity matrix ρI. The

BFGS algorithm [272], for example, uses the scaled identity as the first estimate of the

Hessian of the Lagrangean. Using this trivial approximation of the Hessian in the quadratic

approximation of the Lagrangean, gives us the following regularization function

φ
L1/`

2
2

x̄,ȳ (x,y) := ∇x,yL(x̄, ȳ, λ̄)>
x− x̄
y− ȳ

+ρ

x− x̄
y− ȳ

> I

x− x̄
y− ȳ

 , (7.13)

where ρ ∈ R+ is a scaling factor. This gives a regularization function with a stabilization

center shifted in the direction of the negative gradient of the Lagrangean. Since the gradient

is zero for all the continuous variables, the stabilization center is only shifted for the discrete

variables. The stabilization center (xc,yc) can easily be determined from the stationary
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conditions of the regularization function, and is given byxc

yc

 =

x̄ȳ
− ∇x,yL(x̄, ȳ, λ̄)

2ρ
. (7.14)

Depending on the magnitude of both ∇x,yL(x̄, ȳ, λ̄) and ρ, the stabilization center might be

far from the incumbent solution and even outside of the variable bounds. However, we can

directly control how far from the incumbent solution the stabilization center lies by scaling

ρ. By selecting ρ as

ρ =

∥∥∥∥∥∥∇x,yL(x̄, ȳ, λ̄)
2d

∥∥∥∥∥∥
2
, (7.15)

the euclidean distance between the stabilization center and the incumbent solution becomes

d. We can, thus, use the parameter d to determine how far the stabilization center is shifted.

If we completely remove the quadratic term from the Lagrangean approximation, we are

left with the linear approximation function

φL1
x̄,ȳ(x,y) := ∇x,yL(x̄, ȳ, λ̄)>

x− x̄
y− ȳ

 . (7.16)

Note that function (7.16) will not result in a regularization in ROA! However, since

the linear approximation function combines the gradients of both the constraints and the

objective, it could provide a direction more favorable for finding feasible solutions. Based

on the computational results in Section 7.7, we observe that using (7.16) as the objective

function in the regularization subproblem is not advantageous compared to the other

approaches presented in this paper; supporting the use of a regularizer.

Similarly to the level-based approaches, we use the following notation for the regular-

ization methods derived using the Lagrangean: The Q-OA method presented in [89] is

presented as ROA-L2. We denote ROA-L1 the method using the first-order approximation

of the Lagrangean as in (7.16), and following that notation the regularization methods

involving (7.12) and (7.13) are denoted ROA-∇2L and ROA-L1/`
2
2, respectively.
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Next, we illustrate the differences between these regularization functions derived from

the Lagrangean in ROA with example Ex 1. In Figure 7.4 we observe the first three iterations

of the ROA methods with objective functions for problem MIP-Proj given by the second-

order Taylor approximation, the Hessian of the Lagrangean based norm, and the first-order

Taylor approximations of the Lagrangean function. Notice that the second-order Taylor

approximation of the Lagrangean, proposed initially as Q-OA in [89], has a regularization

objective equivalent to the sum of the two other methods presented in Figure 7.4. This can

be observed as the contours of the regularization objective in the ROA-L2 method have

a stabilization center (sometimes beyond the domain of the figure) specified by the ROA-

∇2Lwith a shift given by ROA-L1 corresponding objective in the direction of the discrete

variable. This observation corresponds with Remark 7.4.1. Moreover, the gradient of the

Lagrangean switches from pointing up or down depending on whether the incumbent

solution is below or above the optimal solution, respectively. Although all the methods

shown in Figure 7.4 can find the optimal solution following an infeasible first iteration, the

number of iterations required to close the gap between UB and LB and guarantee optimality

varies. It takes ROA-L2 five iterations, ROA-∇2L six iterations, and ROA-L1 seven iterations

to guarantee the optimality of the solution, after finding the optimal solution in the last

iteration for the first method and in the second-to-last iteration for the other two methods.

The progress of the ROA-L1/`
2
2 method is shown in Figure 7.5. This Figure exemplifies

how the `2
2 norm stabilization center is shifted from the incumbent solution in the direction

of the gradient of the Lagrangean. This distance of the shifting is given by parameter

d, equal to one in this example. It can be seen from the smallest contour, representing

a regularization objective of zero, on which the incumbent solution lies. In terms of the

number of iterations, ROA-L1/`
2
2 is the most efficient method among all the ones presented

here at solving problem Ex 1, finding the optimal solution on its first iteration and closing
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the gap between UB and LB in three iterations.
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Figure 7.4: First three iterations (from left to right) for proposed Lagrangean-based regular-
ization methods for problem Ex 1. The format from Figure 7.3 is used here. Top: ROA-L2.
Center: ROA-∇2L. Bottom: ROA-L1.
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Figure 7.5: First two iteration of ROA-L1/`
2
2 for problem Ex 1. The format from Figure 7.3 is

used here, considering the scaling factor ρ such that the shifting of the stabilization center is
d = 1.

7.5 Convergence properties

The convergence proof of the L-OA algorithm presented in [89] is entirely independent of

the objective function of the regularization problem MIP-Proj. Therefore, finite convergence

of ROA, for any function φh
x̄,ȳ, directly follows from the convergence proofs of L-OA. For

completeness, we outline the main convergence property of ROA. For more details, we

refer the reader to [89, Section 5].

From the start, we assumed that all the nonlinear functions are convex (Assumption

1). This assumption is crucial since it ensures that the ROA methods’ cuts do not cut

off any feasible integer solution and that the master problem OA-MILP gives a valid LB.

For a complete proof that the master problem OA-MILP gives a valid LB, see [25, 30, 89].

With all the ROA methods, the regularization problem will be feasible in each iteration.

The feasibility of the regularization problem is given by the fact that the constraints in

the regularization problem MIP-Proj are the same as in OA-MILP, besides the reduction
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constraint controlled by the confidence parameter α, for more details, see [89, Lemma 4]. As

stated in [89, Lemma 3], it is clear that each infeasible integer combination obtained in the

search will be excluded from the search space by the generated cuts. An essential property

of the ROA methods is that, as long as the UB and LB of the optimal objective function

are different, the regularization problem will provide a new integer combination in each

iteration. This property is formally stated in the following theorem.

Theorem 7.5.1. If the lower bound is not equal to the upper bound, then the minimizer of

regularization subproblem MIP-Proj provides a new integer combination.

Proof. By [89, Lemma 3], it is clear that each infeasible integer combination encountered

will be excluded from the search space by the cuts generated in the ROA algorithm. As

proven in [89, Theorem 5], all feasible integer combinations found by the ROA algorithm

will also be excluded from the search space as long as there is a gap between the upper and

lower bound. � �

The main convergence property of ROA is summarized in the following theorem.

Theorem 7.5.2. The ROA algorithm will terminate after a finite number of iterations, either

by proving the best-found solution’s optimality or by verifying that the MINLP problem is

infeasible.

Proof. By Theorem 7.5.1, it is clear that problem MIP-Proj will in each iteration find a new,

previously unexplored integer assignment, as long as the UB is not equal to the LB. As stated

in [89, Lemma 1], the LB is valid in each iteration of the algorithm. Due to Assumption 2,

the search space only contains a finite number of different integer assignments. Therefore,

the algorithm must terminate after a finite number of iterations with either the UB equal to

the LB or by proving infeasibility by the master problem being infeasible. � �

For more details and a complete convergence proof, we refer the reader to [89, Section 5].
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7.6 Regularization in LP/NLP Branch & Bound algorithm

Solvers based on a single-tree search or LP/NLP-based B&B algorithms have shown out-

standing performance in recent benchmarks [26, 266]. A natural extension of the regular-

ization framework from the previous section is, thus, the integration of regularization in

LP/NLP-based B&B. This is also suggested in the conclusions and future work section

of [89].

To introduce regularization into the LP/NLP-based B&B framework, we use the regular-

ization problem MIP-Proj for each node in the search tree where an integer feasible solution

is found. The regularization problem intends to choose new integer combinations close

to the incumbent solution. To ensure convergence, it is also necessary to generate cuts at

the nodes’ variable values in the search tree with integer feasible solutions. Otherwise, an

infeasible integer combination encountered in the search tree might not be excluded as the

regularization might result in a different integer combination. Except for these two modi-

fications, the algorithm follows the same procedure as the standard LP/NLP-based B&B

algorithm. The regularized LP/NLP-based B&B algorithm is summarized as a pseudo-code

in Algorithm 9. We denote all the algorithms implementing regularization approaches on

the LP/NLP-based B&B method as RLP/NLP. Similarly to ROA, depending on the objective

function used in the regularization subproblem, φh
x̄,ȳ(x,y), we denominate the approach as

RLP/NLP-h, e.g., the single-tree approach using (7.5) is denoted RLP/NLP-`∞.

A significant difference compared to ROA is that the optimum of the linear approxi-

mation OA-MILP is not available during the search. This is an important detail and is

described further in the following remark.

Remark 7.6.1. During the B&B tree search, the minimum of the current linear approxima-

tion OA-MILP is not known. Only a lower bound to problem OA-MILP is available, and all
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integer feasible solutions to OA-MILP may have a larger objective function value. Using the

available LB to calculate the estimated optimum f̂?k may, therefore, result in an infeasible

level constraint, i.e., there does not exist an integer feasible solutions to problem OA-MILP

with an objective value less than or equal to f̂?k . In such a situation, the regularization

problem MIP-Proj will also be infeasible.

In case the regularization is infeasible, the RLP/NLP algorithm continues by using the

integer combination obtained at the current node. Note that each integer feasible node

of the search tree involves a possibly expensive regularization problem. Therefore, to be

competitive, the additional regularization problem must significantly reduce the number of

integer combinations explored. As shown in [89] the regularization can lead to a drastic

reduction of iterations and explored integer combinations.

Since f̂?k is not necessarily a valid LB to the current linear approximation OA-MILP, the

convergence proofs from the previous section do not hold. However, the convergence can

still be guaranteed as cuts are generated for each node’s variable values with an integer

feasible solution. Therefore, the convergence is guaranteed due to the convergence of the

ECP algorithm, see [128] for details of a single-tree ECP algorithm.

7.7 Computational results

This section introduces our implementation details of the seven ROA methods and analyzes

their performance through benchmark tests. The OA method is selected as the baseline.

As a general observation, we notice that the regularization methods are able to handle

highly nonlinear convex MINLP problems more efficiently than OA. This aligns well

with the observations of the two regularization methods in [89]. Using regularization

methods induces a more careful choice of the integer combination to be evaluated, having
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that trial solution to lie preferably close to the best found feasible solution. In general,

these regularization methods favor the choice of the next integer combination close to

an stabilization center. This center is constructed using the incumbent solution and the

curvature of the constraints, using information from the Lagrangean of the problem or a

p-norm. The choice of the new integer solution comes at the expense of solving a mixed-

integer regularization subproblem. This extra step might become exorbitant for mostly

linear instances, where tight outer-approximations of the nonlinear feasible region can be

obtained with only a few gradient-based cuts.

To test the performance of the proposed methods, we use test instances from the problem

library MINLPLib? [100]. There are 456 convex problems in MINLPLib, from which we

select the 358 instances that have at least one discrete variable and at least one continuous

variable. We denote the 358-instances set as Problem Set 1. Compared to the OA method,

ROA methods use regularization to keep the trial solutions close to the incumbent solution

and the feasible set. Favouring solutions close to the incumbent, also favours areas close

to a linearization point, i.e., areas where the outer approximation is accurate. In theory

regularization-based methods lead to a higher efficiency gain with respect to OA in highly

nonlinear instances. This has been corroborated experimentally [89]. Therefore, we establish

Problem Set 2 with highly nonlinear instances selected from Problem Set 1 according to the

following criterion:
nnonlin

n + m
> 0.4, (7.17)

where nnonlin is the number of variables present in some nonlinear term, and m + n is the

total number of discrete and continuous variables. There are in total 122 convex MINLP

problems in MINLPLib that satisfy (7.17). The instances in Problem Set 1 have between 2 to

4530 variables and 0 to 5329 constraints, while the instances in Problem Set 2 range from 6

?Retrieved on Jul. 15 2019 from http://www.minlplib.org/

248
CHAPTER 7. ALTERNATIVE REGULARIZATIONS FOR OUTER-APPROXIMATION

http://www.minlplib.org/


7.7 COMPUTATIONAL RESULTS

to 4530 variables and 0 to 4650 constraints.

7.7.1 Implementation details

The OA methods and seven ROA methods are implemented as part of the Mixed-integer

nonlinear decomposition toolbox for Pyomo - MindtPy [190]. This toolbox presents an

open-source? implementation of several solution techniques for MINLP based on problem

decomposition. Through a Python implementation relying on the algebraic modeling

language Pyomo [273], MindtPy can easily access a wide range of solvers to address the

subproblems arising from the decomposition. The methods implemented in MindtPy for

the solution of convex MINLP include OA [30] and ECP [118]. These are complemented

with other decomposition methods such as the feasibility pump [143, 263] and the center

cut algorithm [145]. Besides, MindtPy includes an implementation of the LB/NLP B&B

method [90]. Its flexible framework allows users to easily tailor the algorithm to fit their

particular application i.e., by using different initialization procedures, feasibility norms,

cutting planes generators, and call-back procedures.

For the results presented herein, we use CPLEX 20.1.0.0 [52] as the solver for the

MILP/MIQP subproblems and IPOPT 3.12 [158] for the NLP subproblems using the Harwell

Subroutine Library (HSL) MA27 [274] as a solver for linear systems. The level parameter

in ROA methods is set to α = 0.5 for all approaches. Moreover, for ROA-L1/`
2
2 we use as

shifting radius d = 1. We implement the multi-tree and single-tree approaches, described in

Algorithms 8 and 9 respectively. We consider the zero tolerance for checking if a constraint

is active as 10−8; hence we set the IPOPT parameter constr viol tol to that value.

According to Theorem 7.5.2, it is not necessary to solve the regularization subproblems

to optimality. As noted in [89], any feasible solution for the regularization problems is

?https://pyomo.readthedocs.io/en/stable/contributed_packages/mindtpy.html
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sufficient to guarantee the convergence of the ROA methods. These regularization problems

are of the same size as the master OA-MILP, and solving them might be a limiting factor in

ROA, as observed by [89] previously. The performance was improved by not solving the

regularization problem to optimality, by using the setting the MIP solution limit parameter,

mip limits solutions, to 10. If CPLEX uses multiple threads, the number of MIP

solutions found by CPLEX might slightly greater than the mip limits solutions given

that if the limit is reached, the nodes being processed in other threads will not be interrupted.

CPLEX will stop after all the current working threads are completed.

Since the problems we consider are all convex, the Hessian of the Lagrangean is always

positive semidefinite, and the regularization subproblems are always convex. However,

due to numerical accuracy, the regularization problem ended up nonconvex for a few

cases, e.g., the smallest eigenvalue of the Hessian was slightly negative. Therefore, we

set the optimalitytarget parameter to 3 to enable CPLEX to solve nonconvex MIQPs

in the ROA-L2 and ROA-∇2L methods. Another approach to deal with the nonconvexi-

ties induced by numerical accuracy is to add small perturbations to the diagonal of the

Hessian [89].

The solution procedure is initialized by solving the continuous relaxation of prob-

lem MINLP, which provides a valid LB of the optimal objective function. In each iteration k,

the problem OA-MILP is initialized with the NLP subproblem solution in iteration k−1.

Since the solution of OA-MILP is feasible to the problem MIP-Proj, we use its optimal value

to initialize the regularization subproblems. Along this line, as problem NLP-I is solved for

the integer combination of the regularization problem, we use the solution to MIP-Proj to

initialize the nonlinear subproblems. All the other settings in MindtPy, CPLEX, and IPOPT

are the same as the default.

As termination criteria, we use the standard criteria of both an absolute optimality
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tolerance ε and a relative optimality tolerance εrel. The search is, thus terminated if either

f (x̄, ȳ)−LB ≤ ε or
f (x̄, ȳ)−LB
| f (x̄, ȳ)|+ 10−10 ≤ εrel

are satisfied. All tests ran on an Intel® Xeon® CPU (24 cores) 2.67 GHz server with 128GB

of RAM running Ubuntu. For the termination criteria, we set the tolerances ε = 10−5 and

εrel = 10−3, and a time limit of 900s. The multi-tree results are run with up to 8 threads, while

the single-tree results are run with a single thread.

The LP/NLP-based B&B algorithm can be implemented through so-called call-backs to

the MILP solver in the B&B process, both for solving the continuous nonlinear subproblems

and adding new cuts to the LP problems in the B&B search. The initialization procedure is

the same as in traditional OA to set up the first master problem. For each feasible integer

solution ŷ found in the B&B process, it is checked whether that specific integer combination

has been found earlier in the search, i.e., ŷ ∈ {yi|i = 1, . . . ,k−1}. If ŷ < {yi|i = 1, . . . ,k−1}, then

the xk variables can be obtained by solving NLP-I using that integer combination. If NLP-I

is infeasible, the feasibility problem NLP-f is solved to determine the continuous variables.

Cuts are generated according to (7.1) and added to all open nodes in the search tree, and

practically implemented as lazy constraints. If ŷ ∈ {yi|i = 1, . . . ,k−1}, then there is no need to

again solve NLP-I as the cuts already added for this integer combination is sufficient for the

linear approximation to be tight for this integer combination [129]. This situation can, for

example, occur if two different feasible solutions of the original problem only differ in the

values of the continuous variables. This situation can be avoided by adding no-good cuts at

every found solution [263].

7.7.2 Detailed examples

We first present detailed results for six particular instances of the selected test set. These

problems were chosen to illustrate in detail the advantage of the ROA methods. The
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selected instances are cvxnonsep normcon20?, cvxnonsep psig40?, nvs11?, nvs12?,

slay08m?, and smallinvDAXr1b150-165? .

The statistics of these instances and their solution details are presented in Table 7.1.

slay08m corresponds to the Big-M formulation of a safety layout problem, introduced

in [275]. This instance is a Mixed-binary Quadratically Constrained Program (MBQP).

cvxnonsep normcon20 and cvxnonsep psig40 are numerical instances proposed

by Kronqvist, Lundell, and Westerlund [262]. The first one considers a single norm-2

constraint of 10 integer and 10 continuous variables. The second one minimizes a signomial

function in terms of integer and continuous variables, making them a Mixed-integer

Quadratically Constrained Program (MIQCP) and a general MINLP, respectively. The

cvxnonsep instances are designed to be particularly difficult for OA type methods. nvs11

and nvs12 instances proposed by Gupta and Ravindran [108] that have been widely used

for benchmarking MINLP solver, see e.g., [276]. They contain only integer variables,

and quadratic constraints and objective function; making them Integer Quadratically

Constrained Quadratic Programs (IQCQP). smallinvDAXr1b150-165 models an

Extension of the Markovitz Mean-Variance-Optimization model by constraints for small

investors. These problems belong to MIQCP.

To illustrate how the methods differ for these problems, we first show the upper and

lower bounds obtained by each method in Figures 7.6 and 7.7. Each figure shows the

percentage gap with the known optimal solution with respect to time and iterations. These

plots have a semi-log vertical axis, where the values within [−εrel, εrel] are presented in a

?http://www.minlplib.org/cvxnonsep_normcon20.html
?http://www.minlplib.org/cvxnonsep_psig40.html
?http://www.minlplib.org/nvs11.html
?http://www.minlplib.org/nvs12.html
?http://www.minlplib.org/slay08m.html
?http://www.minlplib.org/smallinvDAXr1b150-165.html
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linear scale, while values beyond that are presented in a logarithmic scale.

Figure 7.6 shows the progress of the bounds as a function of time and iterations for

problem cvxnonsep psig40 in the multi-tree setting. We observe that the UB is quickly

reduced to the optimal solution by the regularization methods compared to OA, except for

ROA-L1 corresponding to the previous observation that the gradient of the Lagrangean

does not provide a stabilization center, hence performing worse than the other methods.

This was the only approach unable to converge within the time limit in the multi-tree setting.

The LB is then improved to reach convergence within the specified optimality tolerances.

When observing the bounds progress with respect to the iterations, the difference is even

more drastic, showing the positive effect of regularization for this problem.

The bounds profiles for all the presented methods through a single-tree implementation

when solving problem cvxnonsep normcon20 are presented in Figure 7.7. Contrary to

problem cvxnonsep psig40, the optimal solution is found by all methods in the first

iteration, leaving the remaining of the task to improve the LB until the gap is within the

specified tolerance. Although the regularization problems address the UB improvement

part of OA directly by providing integer combinations close to stabilization centers defined

by the incumbent solutions, we see that they also favor the more efficient convergence of

the LB. This effect is best observed in the bounds plot against the number of NLPs solved,

considered for the single-tree as a measure of iterations. The regularization methods require

only a fraction of the NLP subproblems to obtain a LB within the optimality tolerance. This

difference is not as prominent in terms of computational time. However, for this problem,

the most efficient regularization method ROA-`∞ reduces the run time by approximately a

third.

Table 7.1 presents a more detailed view of the results for the different examples. Here

we notice that, although the ROA method spends extra time to solve the regularization
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problem, this eventually leads to a reduction in the total solution time compared to OA.

Instance cvxnonsep normcon20 shows a positive effect of the regularization methods,

where the number of infeasible NLP problems is drastically reduced from 175 and 20

in the multi-tree and single-tree cases, respectively, to zero in all regularization cases.

This leads to an advantage of the regularization methods against OA for this instance.

A similar situation happens with instances nvs11 and nvs12, where all regularization

methods reduce the number of infeasible NLPs compared to OA, with the exception of

ROA-L1. This supports the notion that the gradient of the Lagrangean does not define a

stabilization center in the regularization objective; therefore, it is not a regularization per se.

Moreover, using the gradient of the Lagrangean as a regularization objective (7.16) fails to

converge to the optimal solution of examples slay08m and smallinvDAXr1b150-165

in the single-tree implementation and of cvxnonsep psig40 in the both single- and multi-

tree implementations. However, OA converged in a little under 8 minutes. This highlights

the advantages of flexible implementation that allow these different approaches to be simply

activated or deactivated.

As a general observation, the regularization methods reduce the respective number of

iterations (number of NLP subproblems) required for convergence compared to the case

without a regularization. The time spent in solving those mixed-integer subproblems leads

to reducing the total algorithm time in most cases. These methods also tend to more quickly

find the optimal solutions, having a practical effect if the time limit exceeds the time required

to solve the problems. Besides, finding reasonable feasible solutions early in the search

leads to tighter linearizations to the polyhedral approximation of the continuously relaxed

nonlinear feasible region, leading to a better LB and faster convergence of the methods.
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7.7.3 Numerical results

Based on the ROA method’s good performance in the previous section, we perform a

benchmark on Problem Set 1 and Problem Set 2. The software Paver 2 [202] is used to analyze

the performance of the different methods proposed in this work. We decide to present

our results in the form of absolute performance profiles, as seen in Figures 7.8, 7.9, 7.10

and 7.11. These plots show the total number of instances found to be solved within 0.1% of

the known optimal solution of the problem against a measure of algorithmic effort, either

solution time or iterations. Two extra lines are included in these figures, where the “Virtual

best” and “Virtual worst” alternatives are included. These cases are constructed with the

best and worst solver for each instance, respectively. Notice that we define iterations in the

single-tree context as the number of NLP-I problems solved.

Figures 7.8 and 7.9 show the performance of the multi-tree implementation of the different

methods for the highly nonlinear instances, defined according to (7.17). In general, the

regularization methods achieve a better performance in terms of solution time and iterations

than OA. For simple examples, highlighted on the left side of the profiles and given by

instances solvable in less than 10 seconds or requiring fewer than ten iterations, OA seems

to outperform most of the regularization methods, except for ROA-L2. This method, called

Q-OA in [89] performs almost as the Virtual best solver in terms of iterations, demonstrating

the value of incorporating the constraint curvature information in the regularization via

the second-order Taylor approximation of the Lagrangean. In terms of solution time, the

advantages of this approach are reduced given the complexity associated with obtaining

the Hessian of the Lagrangean and, more importantly, addressing an MIQP regularization

problem. Toward the end of the time limit, the other regularization methods catch up to

the performance of ROA-L2, with ROA-∇2L being able to solve 104 problems, the most

among all the methods, after 15 minutes. Note that the worst method is ROA-L1, which, as
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mentioned above, is not an actual regularization method given that its projection objective

function does not induce a stabilization center. Traditional OA can solve 93 of the 122

problems to 0.1% of the optimal solution in the Problem Set 2 within 900 seconds.

When considering all convex MINLP in MINLPLib, Problem Set 1, the gap between

regularization-based methods and OA reduces, mainly since most of these instances have

low nonlinearity. Some alternatives of regularization methods solve more instances than

OA, with ROA-`1 solving 303 out of the 358 instances within the time limit, 11 more than OA.

The performance profiles for the instances in Problem Set 1 are included in the Appendix in

Figures 7.12 and 7.13.

The performance profiles for the Problem Set 2 of RLP/NLP are shown in Figures 7.10

and 7.11. In terms of NLP subproblems solved, the OA method is almost equivalent

to the virtual worst, demonstrating that the regularization approaches lead to a more

meaningful solution of NLP problems in the solution procedure. This observation is not

directly translated into the time profiles, considering that solving an extra mixed-integer

program for every incumbent solution in the tree is an expensive step, although justifiable

with reducing iterations. Considering Problem set 2, the most successful approach is

RLP/NLP-`2
2 being able to solve 111 instances, 12 more than OA.

When considering Problem Set 1, the single-tree implementation of RLP/NLP-L2 solves

the least number of instances within the time limit. This contrasts with the good per-

formance this regularization had for the multi-tree implementation. Both in multi-tree

and single-tree, when considering all the convex MINLP instances from MINLPLib, the

most successful regularization type was `1. This demonstrates the potential that linearly

representable regularizations have in terms of performance.

Out of Problem Set 2, 76 problems out of 122 could be solved by all methods, and 12 could

not be solved using the multi-tree methods. All single-tree methods were able to solve 96 of
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Table 7.2: Details for each method infeasible subproblems when solving Problem Set 1 (358
instances).

ROA RLP/NLP

Regularization
method

# of instances with
infeasible NLP-I

Fraction of
infeasible NLP-I

# of instances
with infeasible NLP-I

Fraction of
infeasible NLP-I

# of instances with
infeasible MIP-Proj

Fraction of
infeasible MIP-Proj

None 80 2376/13656=17.4% 90 2825/24113=11.7% - -
`2

2 73 1350/6420=21.0% 78 1452/6415=22.6% 290 2486/6006=41.4%
`1 73 1488/6926=21.5% 82 1432/7295=19.6% 293 3028/7482=40.5%
`∞ 70 1615/8699=18.6% 77 1870/7478=25.0% 289 2697/7262=37.1%
L2 72 1456/5283=27.6% 80 883/4852=18.2% 282 2105/4419=47.6%
∇2L 73 1451/5499=26.4% 78 891/5111=17.4% 278 2221/4740=46.9%
L1/`

2
2 69 1435/6347=22.6% 80 926/5342=17.3% 278 2086/4878=42.8%

L1 79 1722/15190=11.3% 86 883/6090=14.5% 259 2371/5636=42.1%

these instances, and none could solve 10 of those instances. For the whole test set, Problem

Set 1, 249 instances of 358 were solved by all methods, and 48 were not solved by any in the

multi-tree implementation. The single-tree methods were slightly more successful, with 258

instances being solved by all and 46 by none.

As similarly found in [89], the number of infeasible NLP-I problems encountered di-

minished when using regularization methods. Both in the multi- and single-tree imple-

mentations, the regularization approaches were able to solve fewer instances requiring the

solution of problem NLP-f compared to OA.

An exciting finding of Table 7.2 is that the fraction of problems NLP-I that were infeasible

was larger for the regularization methods! This result was surprising given the hypothesis

that choosing an integer combination close to a feasible solution results in trial solutions

close to the feasible region, resulting in fewer infeasible trial solutions. The explanation for

this behavior has to do with the total number of NLP-I problems solved by each method.

Being the OA iterations less time-consuming more could be performed within the time limit.

This would set the denominator in the fraction to be large, making the fraction smaller

than for the other methods. This is not a measure to be considered independently from

the previous results. The fewer iterations a problem requires to converge, the fewer NLP-I

problem it needs to solve. Therefore, the large number of solved NLPs indicates inefficient
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methods, although it would decrease the fraction of infeasible subproblems encountered.

This can be observed with ROA-L1, whose fraction of infeasible NLPs is the lowest among

all the tested methods. However, it was the weakest alternative considered in this chapter.

For the single-tree implementation, we observed that Remark 7.6.1 often appeared in

practice, with three-quarters of the instances presenting at some point infeasible MIP-Proj

problems. These infeasible problems arise from the weak LB coming from the B&B tree,

leading to an average of 40% of all MIP-Proj problems being infeasible in the single-tree

setting.

7.8 Conclusions and future work

This chapter presents a new solution framework for multi-tree and single-tree Outer-

approximation based on regularizations for solving convex MINLP problems. We present

seven different regularization methods for OA through this framework, including two

that were presented earlier in [89]. These regularizations can be classified into two groups:

those based on distance minimization around an incumbent solution, and those based

on approximations of the Lagrangean function around that incumbent solution. The

regularization approach relies on the solution of an auxiliary mixed-integer program, which,

based on the objective function’s choice, can be a mixed-integer linear program or a mixed-

integer quadratic program. We show that the convergence proofs from [89] directly applies

to these methods as well, thus, guaranteeing convergence to the optimal solution. Moreover,

the regularization ideas are integrated with the LP/NLP Branch & Bound method [90]

leading to a single-tree regularization algorithm for convex MINLP. The implementation of

these methods was done on top of the Mixed-Integer Decomposition Toolbox for Pyomo -

MindtPy [190] in open-source code. We evaluated these approaches experimentally and
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compared them to OA by solving a large set of convex MINLP problems. We observed

that the regularization approaches are especially well-fitted for highly nonlinear problems,

achieving performance improvements compared to OA. This confirms the hypothesis

that staying close to the feasible solutions ensures the integer combinations found by the

linearizations to stay close to the convex set defined by the nonlinear constraints. For almost

linear instances, the benefits of the regularization technique are sometimes lost due to the

cost of solving auxiliary projection problem, which also aligns well with the results in [89].

However, our results demonstrate that using linearly representable regularizations do

improve the average performance for all the convex MINLP instances at the benchmarking

library MINLPLib, including the highly linear ones.

As future work, we consider an interesting avenue to perform updates in the Hessian of

the Lagrangean estimate. As in the BFGS algorithm [272], the Hessian of the Lagrangean

needs not to be computed exactly, and its approximation can be iteratively refined with

the first estimate of it being a scaled identity matrix. This technique has proved extremely

useful in trust-region methods for continuous NLP problems, such as Sequential Quadratic

Programming (SQP) [267, 277]. Moreover, the two extra parameters introduced in the regu-

larization methods α and d have been maintained constant throughout these experiments.

These hyperparameters represent a trade-off between how trustworthy the incumbent

solution is compared to the optimal solution and how much exploration far from that

incumbent solution is required. One can imagine a dynamic update policy for these param-

eters, balancing the incumbent solutions’ exploration and exploitation as a future research

direction.
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7.A Algorithmic description of OA and LP/NLP Branch & Bound

This section presents the algorithmic description of the Outer-approximation method [25,

30], in Algorithm 10, and the LP/NLP Branch & Bound method [90, 129], in Algorithm 11.

7.B Reformulation of Norms 1 and∞ using Linear Programming

This section shows the valid reformulations of optimization problems with norms 1 and

infinity in the objective function using auxiliary variables and linear constraints. This

reformulation is exact in the sense that they preserve the local and global optima from the

original problem [278]. These reformulations are particularly interesting since they allow

the regularization problem MIP-Proj to be written as Mixed-Integer Linear Programming

(MILP) problems, instead of Mixed-Integer Quadratic Programming (MIQP) problems, as

in the work byKronqvist, Bernal, and Grossmann [89]. The manurity of MILP solution

methods compared to MIQP allows these problems to be more quickly solvable in practice.

The norm-1 of a vector v ∈ V ⊆ RN whose components might be negative or positive,

`1(v) = ‖v‖1 =
∑N

i=1 |vi| can be reformulated in the case that this term appears in the objective

function with a set of linear constraints. Through the addition of 2N non-negative slack

variables s+,s− ∈ RN
+ , and N linear equality constraints the following reformulation is valid:

min
v

‖v‖1

s.t. v ∈ V ⊆ RN
⇔

min
v,s+,s−

N∑
i=1

s+
i + s−i

s.t. s+− s− = v

v ∈ V ⊆ RN , s+ ∈ RN
+ , s− ∈ RN

+

(7.18)

This reformulation is applied to the regularization problem MIP-Proj when considering

the `1 regularization function as in (7.4), resulting in problem MIP-Proj-`1. It can also be

potentially applied to the feasibility NLP problem NLP-f.
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min
x,y,µ,s+,s−

n+m∑
j=1

s+
j + s−j

s.t. s+
j − s−j = x j− x̄ j ∀ j = {1, . . . ,n}

s+
n+ j− s−n+ j = y j− ȳ j ∀ j = {1, . . . ,m}

µ ≤ f̂?k

f (xi,yi) +∇ f (xi,yi)>

x−xi

y−yi

 ≤ µ ∀i = 1, . . . ,k,

g j(xi,yi) +∇g j(xi,yi)>

x−xi

y−yi

 ≤ 0 ∀i = 1, . . .k,∀ j ∈ Ii,

Ax + By ≤ b,

x ∈ Rn, y ∈ Zm, µ ∈ R, s+,s− ∈ Rn+m
+

(MIP-Proj-`1)

The norm-∞ of a vector v ∈ V ⊆ RN whose components might be negative or positive,

`∞(v) = ‖v‖∞ = maxi={1,...,N} |vi| can be reformulated in the case that this term appears in the

objective function with a set of linear constraints. Through the addition of one non-negative

slack variable s ∈ R+, and 2N linear inequality constraints, the following reformulation is

valid:

min
v

‖v‖∞

s.t. v ∈ V ⊆ RN
⇔

min
v,s

s

s.t. s ≥ v

s ≥ −v

v ∈ V ⊆ RN , s ∈ R+

(7.19)

This is the usual choice for reformulating problem NLP-f, and can also be used to

reformulate problem MIP-Proj with `∞ regularization objective function, as in (7.5). This
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last problem formulation is:

min
x,y,µ,s

s

s.t. s ≥ x j− x̄ j ∀ j = {1, . . . ,n}

s ≥ x̄ j− x j ∀ j = {1, . . . ,n}

s ≥ y j− ȳ j ∀ j = {1, . . . ,m}

s ≥ ȳ j− y j ∀ j = {1, . . . ,m}

µ ≤ f̂?k

f (xi,yi) +∇ f (xi,yi)>

x−xi

y−yi

 ≤ µ ∀i = 1, . . . ,k,

g j(xi,yi) +∇g j(xi,yi)>

x−xi

y−yi

 ≤ 0 ∀i = 1, . . .k,∀ j ∈ Ii,

Ax + By ≤ b,

x ∈ Rn, y ∈ Zm, µ ∈ R, s ∈ R+

(MIP-Proj-`∞)

7.C Performance profiles for Problem Set 1

In this section of the Appendix, we present the performance profiles for the multi-tree

and single-tree implementation of the methods included in this chapter when solving

all 358 convex MINLP problems in Problem Set 1. Figures 7.12 and 7.13 include the

time and iteration performance profiles for the multi-tree implementation, respectively.

Figures 7.14 and 7.15 include the time and iteration performance profiles for the single-tree

implementation, respectively. Notice that we define iterations in the single-tree context as

the number of NLP-I problems solved.
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Algorithm 9 An algorithm summarizing the regularized
LP/NLP (RLP/NLP) method.

Define accepted optimality gap ε ≥ 0 and choose the parameter α ∈
(0,1].

1. Initialization.
1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relax-

ation of the MINLP problem.
1.2 Generate cuts at x̃, ỹ according to (7.1) and construct prob-

lems OA-MILP.
1.3 Set node counter k = 1, UB0 =∞ and LB0 = −∞.

2. Begin B&B search for problem OA-MILP and continue until
UBk−1−LBk−1 ≤ ε.

2.1 If a new solution x̂, ŷ is found, then generate cuts at x̂, ŷ,
set yk = ŷ and update LBk according to current B&B tree.
Add the new cuts to open nodes of the B&B tree and to
problem MIP-Proj.

2.2 If a feasible solution has been found or provided
2.2.1 Calculate the estimated optimal value f̂?k according

to (7.2).
2.2.2 Solve problem MIP-Proj to update yk. If the regular-

ization problem is infeasible, keep yk unchanged.
2.3 Solve problem NLP-I with integer variables fixed as yk to

obtain xk and λk.
2.3.1 If problem NLP-I is feasible, set UBk =

min{ f (xk,yk),UBk−1}.
2.3.1.1 If f (xk,yk) ≤ f (x̄, ȳ), set x̄, ȳ, λ̄ = xk,yk,λk.

2.3.2 If problem NLP-I is infeasible, obtain xk by solving
feasibility problem NLP-f.

2.4 Generate cuts at xk,yk according to (7.1) and add these to
problem MIP-Proj, and add these as global lazy constraints
to the B&B tree.

2.5 (Optional) Generate no-good cuts at yk and add these as
global lazy constraints to the B&B tree of problem OA-
MILP.

2.6 Increase node counter, k = k + 1
3 Return x̄, ȳ as the optimal solution x?,y?.
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Figure 7.6: Bound profiles for instance cvxnonsep psig40 against (a) solution time and
(b) iterations using the multi-tree ROA method as described in Algorithm 8. The figure
shows the upper and lower bounds obtained by the different regularization methods.
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Figure 7.10: Time performance profile for highly nonlinear instances for single-tree
RLP/NLP methods as described in Algorithm 9.
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Figure 7.11: Iteration performance profile for highly nonlinear instances for single-tree
RLP/NLP methods as described in Algorithm 9.
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Algorithm 10 An algorithm summarizing the Outer-
approximation method.

Define accepted optimality gap ε ≥ 0.
1. Initialization.

1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relax-
ation of the MINLP problem.

1.2 Generate cuts at x̃, ỹ according to (7.1) and construct prob-
lem OA-MILP.

1.3 Set iteration counter k = 1, UB0 =∞ and LB0 = −∞.
2. Repeat until UBk−1−LBk−1 ≤ ε.

2.1 Solve problem OA-MILP to obtain yk and LBk

2.2 Solve problem NLP-I with integer variables fixed as yk to
obtain xk.

2.2.1 If problem NLP-I is feasible, set UBk =

min{ f (xk,yk),UBk−1}.
2.2.2 If problem NLP-I is infeasible, obtain xk by solving

feasibility problem NLP-f and set UBk = UBk−1.
2.3 Generate cuts at xk,yk according to (7.1) and add these to

problem OA-MILP.
2.4 (Optional) Generate no-good cuts at yk and add these to

problems OA-MILP.
2.5 Increase iteration counter, k = k + 1

3. Return the best found solution.
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Algorithm 11 An algorithm summarizing the LP/NLP based
Branch & Bound algorithm.

Define accepted optimality gap ε ≥ 0 and choose the parameter α ∈
(0,1].

1. Initialization.
1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relax-

ation of the MINLP problem.
1.2 Generate cuts at x̃, ỹ according to (7.1) and construct prob-

lems OA-MILP.
1.3 Set node counter k = 1, UB0 =∞ and LB0 = −∞.

2. Begin Branch & Bound for problem OA-MILP and terminate
until UBk−1−LBk−1 ≤ ε.

2.1 If a new incumbent integer solution x̂, ŷ is found, check if
ŷ ∈ {yi|i = 1, . . . ,k−1}.

2.1.1 if ŷ ∈ {yi|i = 1, . . . ,k − 1}, then skip this iteration and
continue the Branch & Bound process.

2.1.2 if ŷ < {yi|i = 1, . . . ,k− 1}, set yk = ŷ and set LBk to the
lower bound of current B&B tree.

2.2 Solve problem NLP-I with integer variables fixed as yk to
obtain xk.

2.2.1 If problem NLP-I is feasible, set UBk =

min{ f (xk,yk),UBk−1}.
2.2.2 If problem NLP-I is infeasible, obtain xk by solving

feasibility problem NLP-f and set UBk = UBk−1.
2.3 Generate cuts at xk,yk according to (7.1) and add these as

global lazy constraints to the B&B tree of problem OA-
MILP.

2.4 (Optional) Generate no-good cuts at yk and add these as
global lazy constraints to the B&B tree of problem OA-
MILP.

2.5 Increase node counter, k = k + 1.
3 Return the best found solution.
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Figure 7.12: Time performance profile for multi-tree ROA method as described in Algo-
rithm 8.
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Figure 7.13: Iteration performance profile for multi-tree ROA method as described in
Algorithm 8.
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Figure 7.14: Time performance profile for single-tree RLP/NLP methods as described in
Algorithm 9.
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Figure 7.15: Iteration performance profile single-tree RLP/NLP methods as described in
Algorithm 9
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Chapter 8

Easily Solvable Convex MINLP Derived from

Generalized Disjunctive Programming using

Cones

8.1 Introduction

Mathematical Programming is an approach to solving optimization problems by casting

their characteristics into a set of mathematical equations that include objectives that need

to be optimized, subject to constraints that need to be satisfied, by modifying the values

of the variables. The nature of the objectives, constraints, and variables allow the different

mathematical programs to be classified. When nonlinear algebraic inequalities describe

the constraints and objectives, and the variables are allowed to take either continuous or

discrete values, the mathematical program becomes a Mixed-Integer Nonlinear Program-

ming (MINLP) problem. MINLP is a problem class of great interest, both theoretical [24]

and practical [60, 251]. In particular, MINLP problems formulations allow modeling a wide

range of applications. Most industrial problems can be modeled using MINLP [23], many

of those concerning the Process Systems Engineering (PSE) community. Different applica-

tions of MINLP within PSE include process control, process design, process operation, and

molecular dynamics [4].

A particular class of MINLP problems is where the constraints are convex functions.
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Although it is non-convex because of the nature of the discrete variables, this problem

is known as convex MINLP [25, 26]. This class of MINLP is a subject of interest given

the many applications that it can represent and the challenging algorithmic requirements

that need to be tackled to address their problems. For a review on convex MINLP, refer

to Kronqvist et al. [26].

Among the solution techniques for convex MINLP, several have been adapted from the

Mixed-Integer Linear Programming (MILP), including Branch & Bound [27] and Benders

Decomposition [28];. In contrast, others generalize the solutions methods for convex contin-

uous Nonlinear Programming (NLP) problems, such as the Extended Cutting Plane meth-

ods [29]. A particularly successful approach to convex MINLP is the outer-approximation

(OA) method proposed by Duran and Grossmann [30], where an iterative solution of a con-

vex NLP and an MILP subproblems is performed. The MILP is derived through first-order

Taylor approximations, or gradient-based linearizations, of the nonlinear constraints at the

NLP solutions, and the NLPs stem from the problems appearing when fixing the values of

the discrete variables at the MILP solution [25, 30]. Many of the current commercial tools to

solve convex MINLP rely on the OA method [26].

In continuous convex programming, solutions methods have also been derived by gener-

alizing Linear Programming (LP) notions and techniques. One of the most successful ones

has been the proposal of convex optimization problems as problems defined over cones, or

Conic Programming (CP) problems [31]. CP is a numerically stable alternative for convex

programming [31], given that it exploits properties of the conic sets. Convex Programming

problems described via algebraic convex nonlinear constraints of the form f (x) ≤ 0 can be

equivalently posed as linear transformation of the variables belonging to convex sets K ,

i.e., Ax−b ∈ K [31, 32]. A generalization of CP where some variables are required to take

discrete values is Mixed-Integer Conic Programming (MICP). MICP problems are highly
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expressible and can represent a wide range of optimization problem [33]. Many of these

applications have been gathered in the problem library CBLib [34].

The automatic identification and translation of the two equivalent descriptions of convex

sets is a crucial feature for algorithmic solution software, solvers, development. This is since

the description of problems using algebraic constraints is more natural for practitioners.

However, the conic description of the problem allows taking advantage of mathematical

properties such as conic duality for more stable solution procedures. Generic solvers have

been designed to tackle CP problems, e.g., MOSEK [35], ECOS [36], and Hypatia [37]. This

translation is not trivial [38–40]. However, it has been achieved for the quadratic case

allowing for solution methods based on conic programming to be used for these problems.

An alternative to translating practical optimization problems into CP is via Disciplined

Convex Programming (DCP) [41], where strict rules of function definitions guarantee the

problem’s convexity and perform the translation such that they can be solved through

generic conic solvers.

In the mixed-integer setting, solvers have been designed to take as input the MICP prob-

lem taking advantage of this form of the optimization problem structure, e.g., Mosek [35],

and Pajarito [42–44]. Even for solvers that do not necessarily consider the conic repre-

sentation of convex problems, identifying such structures leads to improvements in its

performance, such as in SCIP [45, 46] and BARON [47]. There is a significant poten-

tial for MINLP solvers to perform automatic reformulations once they identify correct

structures [48]. An example of the automatic identification of conic structures is Mixed-

Integer Quadratically-constrained Quadratic Programming (MIQCQP) problems can now

be tackled through Mixed-Integer Second-Order Conic Programming (MISOCP) methods

in commercial solvers such as Knitro [49], Xpress [50], Gurobi [51], and CPLEX [52].

The discrete nature of the integer variables in mixed-integer programming problems
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has been exploited to derive efficient solution methods for these problems. In particular,

deriving sets of extra inequalities, cutting planes or cuts, has allowed a considerable speedup

in the solution of these problems, see [53]. One of the key disciplines for deriving such cut-

ting planes is Disjunctive Programming, which considers the optimization over disjunctive

sets such as the one given by the domain of the discrete variables. In the convex nonlinear

setting, the conic structure has been exploited to derive special cutting planes for MICP

solution methods [54–56]. A source of these problems are those driven by indicator variables,

that activate or deactivate sets of constraints [48], see a review by Bonami et al. [57].

Generalized Disjunctive Programming (GDP) was proposed by Grossmann and Lee

[58] as an intuitive way of describing the logic behind applications. In this setting, sets of

constraints are activated with logical variables linked to each other by logical constraints,

including disjunctions. This mathematical description of the problem can be tackled directly

by logic-based optimization methods [59], which generalize mixed-integer solution methods

to the logical domain. Another way of solving these problems is through reformulations

into mixed-integer programs, where the logical variables are mapped to binary or indicator

variables. Depending on the linearity of the constraints within the GDP, the reformulations

can yield a MILP or MINLP problem. The two most common reformulations are: the Big-M

reformulations, where a large coefficient is added to make the constraints redundant in

the case their associated indicator variable is inactive; and the Hull Reformulation (HR),

where using Disjunctive Programming theory, a set of constraints in an extended space

are derived such that their projection onto the space of the original variables is the convex

hull of the disjunctive sets. These two reformulations yield different mixed-integer models,

which can be characterized by size and tightness. The tightness of a mixed-integer model

is measured through the difference of the optimal solution of the problem, ignoring the

discrete constraints, known as the continuous relaxation, and the original problem’s optimal
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solution [60]. The Big-M and Hull reformulations offer a tradeoff between tightness and

problem size. The HR is the tightest possible model, while the Big-M formulation does

not require any additional continuous variables and constraints. Both the model size and

tightness are relevant to the efficiency of solution methods of mixed-integer programs [61].

For convex GDPs, the HR requires modeling the perspective function of the convex

functions in the disjunctions, which can be complex for nonlinear functions given its non-

differentiability at 0 [61, 62]. Perspective functions arise in formulations of convex MINLP

since they are in general part of the reformulation of disjunctive programs. Moreover,

the MINLP formulations involving the perspective function can be used either directly in

tight formulations of convex disjunctive programs, either in the original variable space [57,

63] or in a higher dimensional space [58, 64] , or indirectly through the generation of

valid cutting-planes [65, 66]. A recent computational study shows the positive impact

of perspective cuts in the MINLP framework [46]. The importance of this perspective

formulations and the challenges associated with their implementation have motivated its

study, where customized versions have been derived for special cases [48, 63, 67] or the

proposal of ε-approximations for general convex functions [62, 64].

8.1.1 Contribution and outline

Below we list the contributions of this chapter. We propose the formulation of convex

Generalized Disjunctive Programming (GDP) problems using conic inequalities leading to

conic GDP problems. We then show the reformulation of conic GDPs into Mixed-Integer

Conic Programming (MICP) problems through both the Big-M and Hull Reformulations.

These reformulations have the advantage that they are representable using the same cones as

the original conic GDP. In the case of HR, they require no approximation of the perspective

function. Moreover, the MICP problems derived can be solved by specialized conic solvers
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and offer a natural extended formulation amenable to both conic and gradient-based solvers.

We present the closed-form of several convex functions and their respective perspectives in

terms of conic sets, allowing users to formulate their conic GDP problems easily. We finally

implement a large set of conic GDP examples and solve them via the traditional and conic

mixed-integer reformulations. These examples include applications from Process Systems

Engineering, Machine learning, and randomly generated instances. Our results show that

the conic structure can be exploited to obtain solutions to these challenging MICP problems

more efficiently.

The remaining of this chapter is organized as follows. Sectin 8.2 presents the necessary

background for this work, including details on cones, the perspective function, Disjunctive

Programming, and Generalized Disjunctive Programming. Section 8.3 introduces conic

Generalized Disjunctive Programming, with its relevant reformulations into MICP prob-

lems. We show our computational results in Section 8.4, where the different instances are

presented separately in two groups: those representable by quadratic cones and those by

exponential cones. Finally, we conclude this chapter with the lessons learned, discussion,

and future research directions stemming from this work in Section 8.5.

8.2 Background

In this chapter, we are concerned with convex Mixed-Integer Nonlinear Programming

(MINLP) problems. A convex MINLP problem is defined as

min
x,y

f (x,y)

s.t. g(x,y) ≤ 0,

yl ≤ y ≤ yu,

x ∈ Rnx
+ , y ∈ Zny ,

(MINLP)
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where the objective function f : Rnx+ny → R∪{∞} is convex and the constraints g : Rnx+ny →

(R∪{∞})J define a convex set F = {x ∈ Rnx
+ ,y ∈ Rny |g(x,y) ≤ 0}. Although it is not necessary,

we will consider that each constraint, g j(x,y) for j ∈ {1, . . . , J} = ~J�, is a convex function. We

consider bounded integer variables y. Without loss of generality, we will assume that the

objective function is linear, which can be achieved through the epigraph reformulation [26].

Notice that, although the continuous relaxation of the feasible region F is convex, the

original convex MINLP feasible region is non-convex given the discrete nature of variables

y.

8.2.1 Cones

For a thorough discussion about convex optimization and conic programming, we refer the

reader to [31]. The following definitions are required for the remainder of the chapter.

The set K ⊆ Rk is a cone if ∀(z,λ) ∈ K ×R+,λz ∈ K . The dual cone of K ⊆ Rk is

K∗ =
{
u ∈ Rk : uT z ≥ 0,∀z ∈ K

}
, (8.1)

and it is self-dual if K =K∗. The cone is pointed if K ∩ (−K) = {0}. A cone is proper if it is

closed, convex, pointed, and with non-empty interior. If K is proper, then its dual K∗ is

proper too. K induces a partial order on Rk:

x <K y ⇐⇒ x−y ∈ K , (8.2)

which allows us to define a conic inequality as

Ax <K b, (8.3)

where A ∈ Rm×k, b ∈ Rm, and K a cone.

When using a cone that represents the Cartesian product of others, i.e., K =Kn1 × · · ·×Knr

with each coneKni ⊆ R
ni , its corresponding vectors and matrices are partitioned conformally,
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i.e.,

x = (x1; . . . ;xr) where xi ∈ R
ni ,

y = (y1; . . . ;yr) where yi ∈ R
ni ,

c = (c1; . . . ;cr) where ci ∈ R
ni ,

A = (A1; . . . ;Ar) where A ∈ Rm×ni .

(8.4)

Furthermore, if each cone Kni ⊆ R
ni is proper, then K is proper too.

A Conic Programming (CP) problem is then defined as:

min
x

c>x

s.t. Ax = b,

x ∈ K ⊆ Rk.

(CP)

Examples of proper cones are:

• The non-negative orthant

Rk
+ =

{
z ∈ Rk : z ≥ 0

}
. (8.5)

• The positive semi-definite cone

Sk
+ =

{
Z ∈ Rk×k : Z = ZT ,λmin(Z) ≥ 0

}
, (8.6)

where λmin(Z) denotes the smallest eigenvalue of Z.

• The second-order cone, Euclidean norm cone, or Lorentz cone

Qk =

z ∈ Rk : z1 ≥

√√√ k∑
i=2

z2
i

 . (8.7)

• The exponential cone [279]

Kexp = cl
{
(z1,z2,z3) ∈ R3 : z1 ≥ z2ez3/z2 ,z1 ≥ 0,z2 > 0

}
=

{
(z1,z2,z3) ∈ R3 : z1 ≥ z2ez3/z2 ,z1 ≥ 0,z2 > 0

}⋃
R+×{0}× (−R+)

=
{
(z1,z2,z3) ∈ R3 : z1 ≥ z2ez3/z2 ,z2 ≥ 0

}
.

(8.8)
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Of these cones, the only one not being self-dual or symmetric is the exponential cone.

Other cones that are useful in practice are

• The rotated second-order cone or Euclidean norm-squared cone

Qk
r =

z ∈ Rk : 2z1z2 ≥

√√√ k∑
i=3

z2
i ,z1,z2 ≥ 0

 , (8.9)

This cone can be written as a rotation of the second-order cone, i.e., z ∈Qk ⇐⇒ Rkz ∈Qk
r

with Rk :=



√
2/2

√
2/2 0

√
2/2 −

√
2/2 0

0 0 Ik−2


, or by a linear transformation of the second-order

cone, i.e., Qk
r =

{
z ∈ Rk : (z1 + z2,z1, . . . ,zk) ∈ Qk+1

}
.

• The power cone, with l < k,
∑

i∈~l�αi = 1,

P
α1,...,αn
k =

z ∈ Rk :
l∏

i=1

zαi
i ≥

√√√ k∑
i=l+1

z2
i , zi ≥ 0 i ∈ ~l�

 . (8.10)

This cone can be decomposed using a second-order cone and l−1 three-dimensional

power cones

Pα3 =
{
(z1,z2,z3) ∈ R3 : zα1 z1−α

2 ≥ |z3|, z1,z2 ≥ 0
}
, (8.11)

through l−1 additional variables (u,v1, . . . ,vl−2),

z ∈ Pα1,...,αn
k ⇐⇒



(u,zl+1, . . . ,zk) ∈ Qk−l+1,

(z1,v1,u) ∈ Pα1
3 ,

(zi,vi,vi−1) ∈ Pᾱi
3 , i = 2, . . . , l−1,

(zl−1,zl,vl−2) ∈ Pᾱl−1
3 ,

(8.12)

where ᾱi = αi/(αi + · · ·+αn) for i = 2, . . . , l−1. Pα3 can be represented using linear and

exponential cone constraints, i.e., limα→0(z1,z2,z2 +αz3) ∈ Pα3 = (z1,z2,z3) ∈ Kexp
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Most, if not all, applications-related convex optimization problems can be represented by

conic extended formulations using the these standard cones [35], i.e., in problem CP, the

cone K is a product K1× · · ·×Kr, where each Ki is one of the recognized cones mentioned

above. Equivalent conic formulations for more exotic convex sets using unique cones can

be formulated with potential advantages for improved solution performance [37].

As mentioned in the introduction, an alternative to a convex optimization problem’s alge-

braic description as in problem MINLP is the following Mixed-Integer Conic Programming

(MICP) problem:

min
z,y

cT z

s.t. Az + By = b,

yl ≤ y ≤ yu,

z ∈ K ⊆ Rk, y ∈ Zny ,

(MICP)

where K is a closed convex cone.

Without loss of generality, integer variables need not be restricted to cones, given that

corresponding continuous variables can be introduced via equality constraints. Notice that

for an arbitrary convex function f : Rk→ R∪{∞}, one can define a closed convex cone using

its recession,

K f = cl{(z,λ, t) : λ f (z/λ) = f̃ (z,λ) ≤ t,λ > 0}, (8.13)

where the function f̃ (z,λ) is the perspective function of function f (z), and whose algebraic

representation is a central piece of this work. Closed convex cones can also be defined as

the recession of convex sets. On the other hand, a conic constraint is equivalent to a convex

inequality,

Ax <K b ⇐⇒ g(x) ≤ 0, (8.14)

for appropriately chosen smooth convex functions g(x) [54, 280].
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We can therefore reformulate problem MINLP in the following parsimonious manner [42]:

min
x,y,s~J�
x f ,y f ,t f ,
x~J�,y~J�

t f

s.t. x = xf ,y = yf ,

((xf ;yf),1, t f ) ∈ K f ,

x = xj,y = yj,(
(xj;yj),1, s j

)
∈ Kg j , s j ∈ R+, j ∈ ~J�,

yl ≤ y ≤ yu,

x ∈ Rnx
+ , y ∈ Zny ,

(8.15)

where copies of the original variables x and y are introduced for the objective function

and each constraints, xf ,yf ,xj,yj, j ∈ ~J�, such that each belongs to the recession cone of

each constraint defined as in (8.13). Each conic set requires the introduction of an epigraph

variable t and a recession variable λ. The epigraph variable from the objective function,

t f , is used in the new objective, and the ones corresponding to the constraints are set as

non-negative slack variables s j. The recession variables λ in (8.13) are fixed to one in all

cases.

Notice that problem 8.15 is in MICP form with K = Rnx+J
+ ×K f ×Kg1 × · · · ×KgJ . As men-

tioned above, the case when K =K1× · · · ×Kr where each Ki is a recognized cone is more

useful from practical purposes. Lubin et al. [42] showed that all the convex MINLP instances

at the benchmark library MINLPLib [100] could be represented with these recognized cones.
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8.2.2 Perspective function

For a convex function h(x) : Rn→ R∪{∞} its perspective function h̃(x,λ) : Rn+1→ R∪{∞} is

defined as

h̃(x,λ) =


λh(x/λ) if λ > 0

∞ otherwise
(8.16)

The perspective of a convex function is convex, but not closed. Hence, consider the

closure of the perspective function (cl̃h)(x,λ) defined as

(
cl h̃

)
(x,λ) =



λh(x/λ) if λ > 0

h′∞(x) if λ = 0

∞ otherwise

, (8.17)

where h′∞(x) is the recession function of function h(x)[281, Section B Proposition 2.2.2], and

which in general does not have a closed-form.

The closure of the perspective function of a convex function is relevant for convex MINLP

on two ends. On the one hand, it appears when describing the closure of the convex

hull of disjunctive sets. On the other hand, as seen above, it can be used to define closed

convex cones K , that determine the feasible region of conic programs. Relying on amenable

properties of convex cones, conic programs can be addressed with specialized algorithms

allowing for more efficient solution methods.

The closure of the perspective function presents a challenge when implementing it for

nonlinear optimization models, given that it is not defined at λ = 0. Modeling this function

becomes necessary when writing the convex hull of the union of convex sets, as seen

below. This difficulty has been addressed by several authors in the literature through

ε-approximations. The first proposal was made by Lee and Grossmann [64], where(
cl h̃

)
(x,λ) ≈ (λ+ε)h

( x
λ+ε

)
. (8.18)
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This approximation is exact when ε→ 0. However, it requires values for ε, which are small

enough to become numerically challenging when implemented in a solution algorithm.

Furman, Sawaya, and Grossmann [62] propose another approximation for the perspective

function such that

(
cl h̃

)
(x,λ) ≈ ((1−ε)λ+ε)h

(
x

(1−ε)λ+ε

)
−εh(0)(1−λ), (8.19)

which is exact for values of λ = 0 and λ = 1, is convex for h(x) convex, and is exact when

ε→ 0 as long as h(0) is defined. Using this approximation in the set describing the system of

equations of the closed convex hull of a disjunctive set also has properties that are beneficial

for mathematical programming.

This approximation is used in software implementations when reformulating a disjunc-

tive set using its hull relaxation [59, 282]. Notice that even with its desirable properties, the

approximation introduces some error for values ε > 0; hence it is desirable to circumvent its

usage. As shown in [61] and the Section 8.4 below, using a conic constraint to model the

perspective function allows for a more efficient solution of convex MINLP problems.

8.2.3 Disjunctive Programming

Optimization over disjunctive sets is denoted as Disjunctive Programming [2, 283]. A dis-

junctive set is given by the system of inequalities joined by logical operators of conjunction

(∧, “and”) and disjunction (∨, “or”). These sets are non-convex and represent usually the

union of convex sets. The main reference on Disjunctive Programming is the book by Balas

[2].

Consider the following disjunctive set

C =

x ∈ Rn : x ∈
∨
i∈I

Ci

 =
⋃
i∈I

{
x ∈ Rn : x ∈ Ci

}
, (8.20)
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where |I| is finite. Each set defined as Ci := {x ∈ Rn|hi(x) ≤ 0} is a convex, bounded, and

non-empty set defined by a vector valued function hi : Rn → (R∪{∞})Ji . Notice that is it

sufficient for Ci to be convex that each component of hi, hi j, j ∈ {1, · · · , Ji}, is a proper closed

convex function, although it is not a necessary condition.

Ceria and Soares [284] characterize the closure of the convex hull of C, cl conv(C), with

the following result.

Theorem 8.2.1. [284] Let Ci = {x ∈ Rn|hi(x) ≤ 0} , ∅, assume that each component of hi, hi~Ji�,

is a proper closed convex function, and let

H =



x =
∑
i∈I

vi,

∑
i∈I

λi = 1,

(
cl h̃i

)
(vi,λi) ≤ 0, i ∈ I,

vi ∈ R
n, i ∈ I,

λi ∈ R+, i ∈ I



. (8.21)

Then cl conv(
⋃

i∈ICi) = projx(H).

Proof. See [284, Theorem 1] and [57, Theorem 1]. �

Theorem 8.2.1 provides a description of cl conv(C) in a higher dimensional space, an

extended formulation. This Theorem generalizes the result by [2, 283, 285, 286] where all the

convex sets Ci are polyhedral. Even though the extended formulations induce growth in

the size of the optimization problem, some of them have shown to be amenable for MINLP

solution algorithms [42, 269, 287, 288].

A similar formulation was derived by Stubbs and Mehrotra [65] in the context of a

Branch-and-cut method for Mixed-binary convex programs. These authors notice that the
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extended formulation might not be computationally practical, hence they derive linear

inequalities or cuts from this formulation to be later integrated into the solution procedure.

Similar ideas have been explored in the literature [66]. In particular cases, the dimension

of the extended formulation can be reduced to the original size of the problem, e.g., when

there are only two terms in the disjunction, i.e., |I| = 2, and one of the convex sets Ci is a

point [61]. A description in the original space of variables has also been given for the case

when one set C1 is a box and the constraints defining the other C2 is defined by the same

bounds as the box and nonlinear constraints being isotone [63]. This has been extended

even further by Bonami et al. [57] with complementary disjunctions. In other words the

activation of one disjunction implies that the other one is deactivated, in the case that the

functions that define each set h{1,2} are isotone and share the same indices on which they are

non-decreasing. The last two cases present the formulation in the original space of variables

by paying a prize of exponentially many constraints required to represent cl conv(C).

In the case that Ci is compact, its recession cone is the origin, i.e., Ci∞ = {x ∈ Rn|h′i∞(x) ≤

0} = {0} [281, Section A, Proposition 2.2.3]. This fact, together with (8.17) and Theorem 8.2.1,

forces that for a compact Ci, a value of λi = 0 implies vi = 0. This fact has been used to

propose mixed-integer programming formulations for expressing the disjunctive choice

between convex sets, by setting the interpolation variables to be binary λi ∈ {0,1}, i ∈ I [64,

289], i.e.,

H{0,1} =



x =
∑
i∈I

vi,

∑
i∈I

λi = 1,

(
cl h̃i

)
(vi,λi) ≤ 0, i ∈ I,

vi ∈ R
n, i ∈ I,

λi ∈ {0,1}, i ∈ I



. (8.22)
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An interesting observation is that using the approximation of the closure of the per-

spective function from Furman, Sawaya, and Grossmann [62], for any value of ε ∈ (0,1),

projx(H{0,1}) = Cwhen hi(0) is defined ∀i ∈ I and

{
x ∈ Rn : hi(x)−hi(0) ≤ 0

}
= {0},∀i ∈ I (8.23)

see [62, Proposition 1].

The condition on (8.23) is required to ensure that if λi = 1, then vi′ = 0,∀i′ ∈ I \ {i}. This

condition is not valid in general for a disjunctive set C, but it is sufficient to have a bounded

range on x ∈ Ci, i ∈ I. Moreover, when these conditions are satisfied, C ⊆ projx(H) using the

approximation in (8.19) for ε ∈ (0,1), with cl convC = projx(H) in the limit when ε→ 0[62,

Proposition 3].

8.2.4 Generalized Disjunctive Programming

The framework of Generalized Disjunctive Programming (GDP) was introduced by Raman

and Grossmann [290]. This modeling paradigm extends the usual mathematical program-

ming paradigm by allowing Boolean variables, logical constraints, and disjunctions to

appear in the optimization problem formulation. We define a GDP as follows:
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min
x,Y

f (x)

s.t. g(x) ≤ 0

∨
i∈Dk


Yik

hik(x) ≤ 0

 , k ∈ K

Yi∈Dk Yik, k ∈ K

Ω(Y) = True

xl ≤ x ≤ xu

x ∈ Rn

Yik ∈ {False,True}, k ∈ K, i ∈ Dk,

(GDP)

where constraints g(x) ≤ 0 are called global constraints, the set K represents the possible

disjunctions in the problem, and each element i of the set Dk represents a disjunctive

term, also called disjunct, in that disjunction. In the disjunction k ∈ K, each disjunct i ∈ Dk

has a set of constraints hik(x) ≤ 0 which are activated when a Boolean variable associated

with the disjunct is equals to True, i.e., Yik = True. Each disjunct may contain a different

number of constraints Ji, i.e., hik(x) = (hik1(x), . . . ,hikJi(x)) = (hik~Ji�(x)). These constraints

define set Cik = {x ∈ Rn|hik(x) ≤ 0}, to which the point x belongs to when the disjunct is active,

i.e., Yik = True. The disjuncts within the disjunction are related through an inclusive-or

operator ∨, which means that at least one Boolean variable in every disjunction, Yik,k ∈ K,

is set to True. Each disjunction defines a disjunctive set, like the ones introduced in the

previous section. Ω(Y) represent logical propositions in terms of the Boolean variables Y.

These logical constraints can be written in Conjunctive Normal Form (CNF), i.e., Ω(Y) =∧
t∈~T�

[∨
Yik∈Rt (Yik)

∨
Yik∈Qt (¬Yik)

∨]
where for each logical clause t ∈ ~T�, the subset Rt ⊆Y are

non-negated Boolean variables and the subset Qt ⊆ Y are the negated Boolean variables. We
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assume that the exclusive-or operators among the Boolean variables for each disjunction

k ∈ K, i.e., Yi∈Dk Yik, are included in Ω(Y) = True [233, 291]. It has been proved that GDP is

equivalent to Disjunctive programming in the case that the constraints are linear [292] and

convex [293].

Besides offering a more intuitive modeling paradigm of discrete problems through dis-

junctions, a GDP model can be used to inform computational solution tools, i.e., solvers, of

the original problem’s underlying structure, thus leading to improved solving performance.

The tailored solution methods for GDP are usually based on generalizing algorithms for

MINLP, where the optimization problems are decomposed, so the discrete variables are

fixed and allow to solve the problem only in terms of the continuous variables. Different

methods are used to select the combination of these discrete variables, including branching

across the different values the discrete variables can take, i.e., Branch & Bound (B&B), or

solving a linear approximation of the original problem [26]. For GDP algorithms, contrary

to the case in MINLP, these Nonlinear Programming (NLP) subproblems only include the

constraints that concern the logical variable combinations. We encounter the Logic-based

Branch & Bound (LBB) and the Logic-based Outer-approximation (LOA) among these

tailored algorithms. For more information on general GDP algorithms, refer to [59].

Another route to solve these problems is through the reformulation to Mixed-integer

problems, where binary variables y ∈ {0,1}
∑

k∈K |Dk | are added to the problem in exchange of

the Boolean variables and constraints within the disjunction are enforced subject to the

binary variables’ value. Notice that these reformulations yield problems of the form MINLP.

The logical propositions Ω(Y) = True can be easily reformulated as a set of linear inequality

constraints, Oy ≤ o, in terms of the binary variables [290, 291, 294]. In the case that Ω(Y)

is written in CNF, this reformulation is simply
∑

yik∈Rt yik +
∑

yik∈Qt (1− yik) ≥ 1, t ∈ ~T�. An

example is the exclusive-or constraint Yi∈Dk Yik reformulated as a partitioning constraint
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∑
i∈Dk yik = 1,k ∈ K. These approaches take advantage of the more mature Mixed-integer

solvers available commercially.

The Big-M reformulation is among the best-known reformulation for GDP problems.

In this case, each disjunction’s constraints are relaxed by adding a large term, M, if its

corresponding binary variable is equal to zero. The formulation of the Big-M reformulation

is as follows:

min
x,y

f (x)

s.t. g(x) ≤ 0

hik j(x) ≤ Mik j(1− yik), k ∈ K, i ∈ Dk, j ∈ ~Ji�,∑
i∈Dk

yik = 1, k ∈ K

Oy ≤ o

xl ≤ x ≤ xu

x ∈ Rn

yik ∈ {0,1}, k ∈ K, i ∈ Dk,

(Big-M)

where the coefficient Mik j has to be large enough to guarantee the enforcement of the original

GDP logic, i.e., yik = 1→ hik(x) ≤ 0, but small enough to avoid numerical problem related to

solving accuracy [60]. This can be accomplished by setting Mik j = maxx∈{x:hik≤0} hik j(x), j ∈ ~Ji�.

Although traditionally used, the Big-M reformulation is well-known for its weak continuous

relaxation gap, i.e., the difference in the optimal objective function when solving the problem

considering yik ∈ [0,1] ⊂ R,k ∈ K, i ∈ Dk compared to the original problem’s optimal objective;

even with the tightest values for the M coefficients. This is particularly important for

solution methods based on B&B, where this continuous relaxation gives the first node in

the search tree.

Another valid transformation of problem GDP into a mixed-integer problem is the Hull
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Reformulation (HR). This reformulation uses the same mapping of Boolean into binary

variables as in Big-M. On the other hand, it introduces copies of the x variables, vik for

each disjunct k ∈ K, i ∈ Dk and uses the closure of the perspective function to enforce the

constraints when their corresponding binary variable is active. The formulation for the HR

of a GDP is as follows:

min
x,v,y

f (x)

s.t. g(x) ≤ 0

x =
∑
i∈Dk

vik, k ∈ K

(
cl h̃ik

)
(vik,yik) ≤ 0, k ∈ K, i ∈ Dk∑

i∈Dk

yik = 1, k ∈ K

Oy ≤ o

xlyik ≤ vik ≤ xuyik

x ∈ Rn

vik ∈ R
n, k ∈ K, i ∈ Dk

yik ∈ {0,1}, k ∈ K, i ∈ Dk.

(HR)

The problem formulation HR is derived by replacing each disjunction with setH{0,1} (8.22),

presented in Section 8.2.3. Notice that in order to guarantee the validity of the formulation,

the condition on (8.23) is enforced implicitly by having the bounds over x included in each

disjunct, leading to constraint xlyik ≤ vik ≤ xuyik.

In general, for GDP, no convexity assumptions are made for the functions f ,g,hik or the

sets within the disjunctions Ci. This means that the continuous relaxation of either Big-

M or HR might not have convex feasible regions. We refer the interested reader to the

review by Ruiz and Grossmann [295] that covers the techniques to solve these challenging
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optimization problems.

In order to use the theory from Conic Programming and Disjunctive programming,

covered in Sections 8.2.1 and 8.2.3, respectively, we assume here that functions f ,g,hik are

convex, hence the sets Ci are convex too. These are known as convex GDP problems [296].

For a literature review on GDP, we refer the reader to the chapter by Grossmann and

Ruiz [291].

8.3 Conic Generalized Disjunctive Programming

The first step towards defining easily solvable convex MINLP problems via conic program-

ming is to define a GDP with conic constraints. As mentioned in Section 8.2.1, we can use

the tautological reformulation in (8.13) to write any convex GDP of form GDP as follows:

min
x,Y

f (x)

s.t. g(x) ≤ 0

∨
i∈Dk


Yik

Aikx <Kik bik

 , k ∈ K

Ω(Y) = True

xl ≤ x ≤ xu

x ∈ Rn

Yik ∈ {False,True}, k ∈ K, i ∈ Dk.

(GDP-Cone)

Since the objective function f (x) and the global constraints g(x) ≤ 0 are convex we can

reformulate them to a conic program via (8.13) as in problem 8.15. The sets defined within

each disjunct

Pik :=
{
x ∈ Rn : Aikx <Kik bik

}
(8.24)
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are convex sets, where for every disjunct Aik ∈ R
mi×n, bik ∈ R

mi , and Kik is a proper cone.

Although the derivation of specific solution algorithms for problem GDP-Cone is a subject

of active research, we focus on the reformulation of the given problem into Mixed-integer

Programming problems. These convex GDP problems can be reformulated into a convex

MINLP problem, which in turn can be written down as a MICP problem.

The first trivial reformulation is the Big-M reformulation, which yield the following

problem:

min
x,y

f (x)

s.t. g(x) ≤ 0

Aikx <Kik bik + Mik(1− yik), k ∈ K, i ∈ Dk,∑
i∈Dk

yik ≤ 1, k ∈ K

Oy ≤ o

xl ≤ x ≤ xu

x ∈ Rn

yik ∈ {0,1}, k ∈ K, i ∈ Dk,

(Big-M-Cone)

To derive the Hull Reformulation of GDP-Cone, we need to characterize the convex hull

of the disjunctive set (8.20) in the case that each convex and bounded set is defined using

cones as in 8.24.

Theorem 8.3.1. [56] Let Pi =
{
x ∈ Rn : Aix <Ki bi

}
for i ∈ I, where Ai ∈ R

mi×n, bi ∈ R
mi , and Ki

is a proper cone, and let
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P =



x =
∑
i∈I

vi,

∑
i∈I

λi = 1,

Aivi <Ki λibi, i ∈ I,

vi ∈ R
n, i ∈ I,

λi ∈ R+, i ∈ I



. (8.25)

Then conv(
⋃

i∈IPi) ⊆ projx(P) and:

1. if Pi , ∅,∀i ∈ I, then projx(P) ⊆ cl conv(
⋃

i∈IPi)

2. if Pi = Si +W,∀i ∈ I, where Si, i ∈ I is a closed, bounded, convex, non-empty set and

W is a convex closed set, then

conv

⋃
i∈I

Pi

 = projx(P) = cl conv

⋃
i∈I

Pi

 .
Proof. See [31, Proposition 2.3.5]. �

Using the characterization of the convex hull of the union of convex sets defined by cones,

we can define the Hull Reformulation of the GDP-Cone as follows:
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The formulation for the HR of a GDP is as follows:

min
x,v,y

f (x)

s.t. g(x) ≤ 0

x =
∑
i∈Dk

vik, k ∈ K

Aikvik <Kik yikbik, k ∈ K, i ∈ Dk∑
i∈Dk

yik = 1, k ∈ K

Oy ≤ o

xlyik ≤ vik ≤ xuyik

x ∈ Rn

vik ∈ R
n, k ∈ K, i ∈ Dk

yik ∈ {0,1}, k ∈ K, i ∈ Dk.

(HR-Cone)

This problem is of the form of MICP, and more notably uses the same cones within

the disjunctions, Kik in the extended formulation. Contrary to problem HR, problem HR-

Cone does not require an approximation of the perspective function. Considering the HR

reformulation as an optimization problem defined over convex cones allows exploiting the

tight continuous relaxation of these problems while efficiently addressing the perspective

reformulation’s exact form.

To show several functions that appear in the normal context of convex MINLP can be

reformulated as the standard cones described in Section 8.2.1, as well as their perspective

function, we include Table 8.1. The conic representations at Table 8.1 are not unique and are

given as a practical guide for implementing convex constraints using cones. Notice that

applying the perspective reformulation, we recover the results found by several authors on

stronger formulations for convex constraints activated through indicator variables. Such
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examples include the epigraph of quadratic functions [48] and the epigraph of power

functions with positive rational exponents [297]. The conic reformulation gives a natural

and systematic procedure to perform extended reformulations [42], which have proved to

be helpful in solution methods for mixed-integer convex programs [63, 269].

To use the HR reformulation of GDP using conic constraints, it suffices to perform the

take the perspective on its cones, i.e., for variables z defined over the cone K its perspective

becomes (y z
y ) ∈ K . This has a considerable advantage, given that the HR reformulation is

representable in the same cones like the ones used within the disjunctions.

8.4 Computational results

The computational results in this chapter include the comparison of different mixed-integer

reformulations of GDP problems. The sources of these GDP problems are applications in

Process Systems Engineering (PSE) and Machine Learning (ML), besides some randomly

generated instances to benchmark the different solution methods. Each different reformula-

tion was tackled using MINLP solvers. All the problems were implemented in the General

Algebraic Modeling Software GAMS [248] 28.2. The solvers used for this comparison are

BARON [269] 19.7, CPLEX [52] 12.9, and KNITRO [49] 11.1 for convex MINLP. We also use

as a MICP solver MOSEK [35] 9.0.98, using two different algorithms implemented within it

for solving relaxations of the conic problems, either an interior-point solution or through

an outer-approximation approach (MSK IPAR MIO CONIC OUTER APPROXIMATION set as

MSK OFF or MSK ON), denoted MOSEK-IP and MOSEK-OA, respectively. Given the sophis-

tication of these solvers, the effects of the different problem formulations can be shadowed

by the use of heuristics within them. To better observe the performance difference given by

the problem formulation, we use the Simple Branch & Bound SBB [300] implementation
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in GAMS and solve the respective continuous subproblems using gradient-based interior-

point NLP solver KNITRO [49] 11.1, and MOSEK [35] 9.0.98 for the conic subproblems.

All experiments were run on a single thread of an Intel® Xeon® CPU (24 cores) 2.67 GHz

server with 128GB of RAM running Ubuntu. The termination criteria were a time limit

of 3600 seconds or a relative optimality gap of εrel = 10−5. Unless otherwise stated, the

conic reformulation of the constraints was written explicitly, meaning that the auxiliary

variables required by the reformulation were introduced to the problem directly. This is a

weakness identified in the conic programming interface in GAMS, where the conic structure

identification is not made automatically. The definition of the cones, although trivial, had to

be done manually.

For all these GDP problems, the Big-M and HR reformulations are presented. When

neccesary, the conic representations for both cases, i.e., Big-M-Cone and HR-Cone, are

presented separately from the algebraic description, i.e., Big-M and HR. The algebraic

description of the HR included the ε-approximation (8.19) proposed in [62] to avoid

numerical difficulties, denoted HR-ε. We use the recommended value of ε = 10−4 for

all the cases presented herein. We also implemented the perspective function directly

and used the ε-approximation (8.18). However, the results proved that, in general, the

numerical challenges associated with the perspective function were better handled using the

approximation in (8.19). Hence, we do not include the results of the direct implementation

of the perspective function or the approximation given by (8.18), and only present those

from using the approximation in (8.19) in this chapter. However, the interested reader can

find the complete results in the online repository.

The mixed-integer Big-M and Hull reformulations of some of these instances are present

in the benchmarking libraries MINLPLib [100] and MINLP.org [301]. They have been widely

used for MINLP solver benchmarks [26, 62, 129, 263]. This applies in particular for the
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PSE applications, Constrained Layout (CLay*), Process Networks (proc*), and Retrofit

Synthesis instances (RSyn* and Syn*). This motivates the study on these well-known

instances.

Moreover, there has been recent interest from the Machine Learning (ML) community in

using rigorous methods for non-convex optimization, contrary to heuristics based on convex

relaxations. Even considering the performance cost of the rigorous methods, the optimal

solution to the original non-convex optimization problem is informative and valuable within

an ML framework [302]. Finding the optimal values of the parameters of a probability

distribution such that a likelihood estimator is maximized, i.e., training, is known as

Expectation-Maximization (EM) in ML [303]. When the data labels are incomplete, the

general problem can be stated as learning from weakly labeled data [304]. While performing

the training, the assignment of the labels is naturally representable through disjunctions,

giving rise to mixed-integer programs. For example, there has been a recent interest

in tackling the clustering problem using mixed-integer programming [302]. Optimally

guaranteed solutions to a problem similar to 8.29 leads to better results measured by the

performance of the ML model arising from the clustering compared to local-optimization

approaches to the EM problem. The ML instances on k-mean clustering (kClus*) and

logistic regression (LogReg*) are inspired on problems proposed in the literature but are

randomly generated for this chapter.

The following results are presented in two subsections, one considering “quadratic”

problems that can be formulated using second-order and rotated second-order cones, and

the second one with problems modeled through the exponential cone. Each formulation

includes linear constraints, which can be managed by both gradient-based and conic mixed-

integer convex programming solvers. All the results from this chapter are available in an

302
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open-access repository?.

It is worth mentioning that we report the nodes required by each solver. The definition of

a node might vary for every solver, and a detailed description of each case is not widely

available. To better control these reports, we compare SBB as a central manager for the

branching procedures. In this last procedure, we can guarantee that each node is the

solution to a continuous convex optimization problem.

8.4.1 Quadratic problems

The three families of instances presented herein are the Constrained Layout problem, a

k-mean clustering optimization problem, and randomly generated instances. All these prob-

lems share the characteristic that the constraints within the disjunctions are representable

via second-order and rotated second-order cones.

The mixed-integer reformulations of these problems were implemented as in Big-M

and HR, both the HR-ε and HR-Cone. Notice that in the case of second-order cone, the

explicit definition of the cone can be replaced by the inequality [48]

x2− ty ≤ 0 ⇐⇒ ||(2x,y− t)||2 ≤ y + t, (8.26)

that avoids the variable multiplication ty and improves the performance of gradient-based

solvers like IPOPT and KNITRO. When implementing this alternative to the exact represen-

tation of the perspective function, it improves the performance of KNITRO slightly, at the

expense of a significant decrease in BARON’s performance. Therefore, the implementation

results are left out of this chapter, although they are included in the repository for reference.

The examples in this section had constraints in their disjunctions directly identified as a

cone by MOSEK in the GAMS interface. This might not be the general case, with the cones

?https://github.com/bernalde/conic_disjunctive
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Figure 8.1: Schematics of Constrained Layout Problem

needing to be explicitly written for MOSEK to process them. This allowed the Big-M in-

stances to be written in their algebraic form. Simultaneously, the HR reformulation required

the explicit introduction of additional constraints for the conic form to be accepted by the

GAMS-MOSEK interface. CPLEX, on the other hand, can identify and transform certain

general quadratic constraints into general and rotated second-order cones automatically.

Below we present the examples considered as convex quadratic GDPs.

8.4.1.1 Constrained layout problem

The constrained layout problem is concerned with the minimization of the connection costs

among non-overlapping rectangular units. These units need to be packed within a set of

fixed circles. Figure 8.1 illustrates the constrained layout problem. It can be formulated as

the following convex GDP [233]:
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min
δx,δy,x,y,W,Y

∑
i, j∈N

ci j(δxi j +δyi j)

s.t. δxi j ≥ xi− x j i, j ∈ N, i < j

δxi j ≥ x j− xi i, j ∈ N, i < j

δyi j ≥ yi− y j i, j ∈ N, i < j

δyi j ≥ y j− yi i, j ∈ N, i < j
Y1

i j

xi + Li/2 ≤ x j−L j/2

∨


Y2
i j

x j + L j/2 ≤ xi−Li/2


∨


Y3

i j

yi + Hi/2 ≤ y j−H j/2

∨


Y4
i j

y j + H j/2 ≤ yi−Hi/2

 i, j ∈ N, i < j

∨
t∈T



Wit

(xi + Li/2− xct)2 + (yi + Hi/2− yct)2 ≤ r2
t

(xi + Li/2− xct)2 + (yi−Hi/2− yct)2 ≤ r2
t

(xi−Li/2− xct)2 + (yi + Hi/2− yct)2 ≤ r2
t

(xi−Li/2− xct)2 + (yi−Hi/2− yct)2 ≤ r2
t


i ∈ N

Y1
i jYY2

i jYY3
i jYY4

i j i, j ∈ N, i < j

Y
t∈T

Wit i ∈ N

0 ≤ xi ≤ xu
i i ∈ N

0 ≤ yi ≤ yu
i i ∈ N

δxi j, δyi j ∈ R+ i, j ∈ N, i < j

xi,yi ∈ R i ∈ N

Y1
i j,Y

2
i j,Y

3
i j,Y

4
i j ∈ {False,True} i, j ∈ N, i < j

Wit ∈ {False,True} i ∈ N, t ∈ T

, (8.27)
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where the coordinate centers of each rectangle i ∈ N are represented through variables xi,yi,

the distance between two rectangles i, j ∈ N, i < j is given by variables δxi j and δyi j, and ci j

is the cost associated with it. The first disjunction allows for the non-overlapping of the

rectangles, while the second one ensures that each rectangle is inside of one of the circles

t ∈ T , whose radius is given by rt and center specified by coordinates (xct,yct).

The constraints in the second disjunction are representable through a quadratic cone as

follows:

(xi±Li/2− xct)2 + (yi±Hi/2− yct)2 ≤ r2
t

⇐⇒ (rt, xi±Li/2− xct,yi±Hi/2− yct) ∈ Q3.

(8.28)

Seven different problem instances are defined through the variation of the number of

circular areas to fit in the rectangle |T | and the number of possible rectangles N, which each

instance being denoted CLay|T||N|.

8.4.1.2 k-means clustering

The k-means clustering problem is an optimization problem that appears in unsupervised

learning. This problem minimizes the total distance of a set of points to the center of k

clusters, varying the center’s position and the assignment of which center determines the

distance to each point. This problem is solved usually through heuristics, although these

approaches do not guarantee the quality of the solution.

Recently, Papageorgiou and Trespalacios [305] proposed a GDP formulation for the
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k-mean clustering problem, also used in [306]. The problem formulation reads as follows:

min
c,d,Y

∑
i∈N

di

s.t. ck−1,1 ≤ ck,1, k ∈ {2, . . . , |K|}

∨
k∈K


Yik

di ≥
∑
j∈D

(pi j− ck j)2

 , i ∈ N,k ∈ K

Yk∈K Yik, i ∈ N

d ∈ R|N|+

c ∈ R|K|×|D|

Yik ∈ {False,True}, i ∈ N,k ∈ K,

(8.29)

where N is the set of points given in |D| dimensions, whose coordinates are given by

p ∈ R|N|×|D|. The variables are the center coordinates c, and the squared distances of each

point to its closest center are denoted by d. The first constraint is a symmetry-breaking

constraint. An arbitrary increasing ordering in the first dimension is taken for the centers.

The disjunctions determine with which center k will the distance to point i be computed,

given that Yik = True.

The constraint for each disjunction i ∈ N,k ∈ K is naturally representable as a rotated

second-order cone

di ≥
∑
j∈D

(pi j− ck j)2 ⇐⇒ (0.5,di, pi1− ck1, . . . , pi|D|− ck|D|) ∈ Q
2+|D|
r . (8.30)

We vary the number of clusters |K| ∈ {3,5}, the number of given points |N | ∈ {10,20}, and

the dimensions of those points |D| ∈ {2,3,5} leading to instance kClus |K| |N| |D| x. x

in this case denotes one of the random instances generated. For this problem, we include 10

instances for each case varying the point coordinates pi j ∈ U[0,1], i ∈ N,k ∈ K.
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8.4.1.3 Random examples

We generate random quadratic GDP problems to test further the reformulations proposed

in this chapter. The random quadratic GDP problems are of the form,

min
x,Y

c>x

s.t.
∨
i∈Dk


Yik∑

j∈~n�

(
a
′

i jkx2
j + a

′′

i jkx j
)
+ a

′′′

ik ≤ 1

 , k ∈ K

Yi∈Dk Yik, k ∈ K

xl ≤ x ≤ xu

x ∈ Rn

Yik ∈ {False,True}, k ∈ K, i ∈ Dk,

(SOCP-rand-GDP)

where the upper and lower bounds of variables x, xl and xu, are set at -100 and 100,

respectively.

The constraint in each disjunct is representable as a rotated second-order cone,∑
j∈~n�

(
a
′

i jkx2
j + a

′′

i jkx j
)
+ a

′′′

ik ≤ 1

⇐⇒


(
0.5, t,

√
a′i jkx j, . . . ,

√
a′inkxn

)
∈ Qn+2

r

t +
∑

j∈D a
′′

i jkx j + a
′′′

ik ≤ 1

,

(8.31)

The different random instances were generated by varying the number of disjunctions

|K| ∈ {5,10}, the number of disjunctive terms at each disjunction |Dk| ∈ {5,10}, and the di-

mensions of the x variables n ∈ {5,10} leading to instance socp random |K| |Dk| n x. x

denotes the index of the random variable generated. 10 instances are generated for each case

varying the parameters within bounds [l,u] by sampling the random uniform distributions

U[l,b] as follows: a
′

i jk ∈ U[0.01,1],a
′′

i jk ∈ U[−1,1],a
′′′

ik ∈ U[−1,1],c j ∈ U[−1000,1000], i ∈ Dk,k ∈

308
CHAPTER 8. EASILY SOLVABLE CONVEX MINLP DERIVED FROM GENERALIZED DISJUNCTIVE

PROGRAMMING USING CONES



8.4 COMPUTATIONAL RESULTS

K, j ∈ ~n�. We also include instances socp random 2 2 2 x, that represent the illustrative

example in [305].

Notice that the k-Mean clustering formulation is a particular case of these randomly

generated GDPs. In particular, if we set a′ = 1,a′′ = 2p,a′′′ = p>p,c = 1 we recover the k-Mean

clustering problem.

8.4.1.4 Results

We generate a total of 217 GDP problems, which are transformed through a Big-M and HR,

this last using both HR-ε and HR-Cone. The main results are presented in Table 8.2, where

the solution times and nodes for the Big-M, HR, and HR-Cone reformulations using

different commercial solvers are included. Consider that the HR-ε formulation introduces

non-linearities in the formulation, preventing CPLEX and MOSEK from addressing it.

In general, we can observe that CPLEX applied to the Big-M reformulation has the best

performance for the CLay* and kClus* instances when considering runtime. BARON

applied to the same Big-M formulation returns the optimal solution with the least number

of explored nodes for the constrained layout problems. This shows how the mature solvers

for mixed-integer programming have implemented useful heuristics to work with Big-M

formulation; the ubiquity of these formulations among practitioners motivates their devel-

opment of techniques to work with these problems efficiently. An example is that CPLEX

identifies the Big-M formulation and internally treats its constraints through specialized

branching rules derived from indicator constraints [52]?.

When comparing only the Big-M formulation solution, BARON solves all the problems

with the least number of nodes for all instances. This corresponds to the main focus

of BARON on solving more “meaningful” nodes for the problem. However, it might

?IBM documentation
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incur a performance cost [47]. This observation also appears when comparing all the HR

formulation results, where BARON required the fewest number of nodes. This applied to

the HR-ε and the HR-Cone formulations.

In terms of runtime, when comparing the HR formulations, we observe that CPLEX is

the most performing solver for the CLay* instances, while MOSEK-IP is the one for the

kClus* and socp random* problems. Notice that either of these solvers could be applied

to the HR-ε formulation, proving that using a conic formulation of the HR problem opens

the possibility of using solvers that can better exploit the problem structure. Even for

general nonlinear solvers, such as BARON, the use of the conic reformulation provides a

performance improvement, given that the lifted reformulation can be exploited for tighter

relaxations within the solver [269]. On the other hand, solvers based on nonlinear B&B,

where each node is solved with a general NLP algorithm such as interior-point methods,

such as KNITRO, can worsen their performance when using the conic reformulation. The

non-differentiability of the cones, together with the larger subproblem sizes, can cause

such a negative impact. This can be alleviated by taking advantage of the conic structure,

something that KNITRO has implemented as part of their presolve capabilities [49]?.

A better view of the general performance of the different solvers is given in Figures 8.2

and 8.3. These figures present performance profiles accounting for the number of problems

solved to a given gap of the optimal solution (0.1% in this case) within a time or node

limit. In general, as seen in Figure 8.3, the performance concerning nodes is superior for all

solvers when using the HR, except for BARON. This is expected given the tightness of this

formulation. Moreover, in terms of solution time, both algorithms used in MOSEK improve

their performance when using a HR compared to the Big-M case. This shows that when

modeling disjunctive conic programs, the Hull reformulation is preferable for this solver.

?KNITRO v11 presentation
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Figure 8.2: Time performance profile for quadratic instances using the different GDP
reformulations and commercial solvers.

The other solvers worsen their performance when using the extended formulations in terms

of solution time.

Of the total 217 instances, the solver that solved the most instances to within 0.1% of

the best-known solution was MOSEK-IP with 191, both using the Big-M and HR-Cone

formulations. The alternative that solved the fewest instances was KNITRO applied to the

HR-Cone formulation, solving only 160.

8.4.2 Exponential problems

As examples of problems representable using the exponential cone Kexp, we present four

families of problems: Process networks, Retrofit Synthesis Problems, Logistic Regression,
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Figure 8.3: Node performance profile for quadratic instances using the different GDP
reformulations and commercial solvers.
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Figure 8.4: Schematic of process networks with 8 possible processes [307]

and randomly generated instances. The GAMS-MOSEK interface does not directly identify

the exponential cone; therefore, we include algebraic and extended conic formulations, Big-

M and Big-M-Cone respectively for Big-M. HR and HR-Cone are also tested for these

problems, denoted as HR-ε using the approximation in (8.19) and HR-Cone formulation

through the extended formulation required by MOSEK for the exponential cones to be

correctly identified. Contrary to the previous section, the solver CPLEX was not used

for these experiments since it has no capabilities to handle general nonlinear constraints

beyond quadratics or exponential cones.

8.4.2.1 Process Networks

In the process network problem, we seek to maximize the profit from a process by deciding

the equipment to be installed to fabricate some valuable product subject to material flows

between the equipment pieces. The total cost is computed from the cost of raw materials

and equipment subtracted from the product’s sales. Alternative equipment pieces might

induce a trade-off in terms of cost and production, defining the problem’s constraints. This

classical problem in process design usually considers complex models describing each
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equipment piece. For this simplified case [293, 308], we assume input-output correlations

for each equipment described by an exponential function. This is a simplification that still

accounts for the non-linearity inherent to chemical processes. Figure 8.4 illustrates the

superstructure for a process with potentially eight units presented by [307]. The problem

can be modeled through the following convex GDP:

min
c,x,Y

∑
k∈K

ck +
∑
j∈J

p jx j

s.t.
∑
j∈J

r jnx j ≤ 0, n ∈ N

∨
i∈Dk



Yik∑
j∈Jik

di jk(ex j/ti jk −1)−
∑
j∈Jik

si jkx j ≤ 0

ck = γik


, k ∈ K

Yi∈Dk Yik, k ∈ K

Ω(Y) = True

ck, x j ∈ R+, j ∈ Jik, i ∈ Dk,k ∈ K

Yik ∈ {False,True}, i ∈ Dk,k ∈ K.

(Proc)

In problem Proc, ck is the cost associated to the equipment chosen in disjunction k ∈ K.

The flow quantity x j is defined for each possible stream j ∈ J, with an associated profit.

The global mass balances are described for each node in the process n ∈ N by the linear

constraint
∑

j∈J r jnx j ≤ 0, where r jn is the coefficient of the mass balance for flow j. Each

disjunction k ∈ K presents the choice between i ∈ Dk equipment alternatives. When choosing

each alternative (Yik = True) the corresponding input-output constraint in terms of the flows

j ∈ Jik and parameters di jk, ti jk, si jk is active, and the cost associated to that disjunction ck

takes the value γik. The topology of the superstructure and extra logical constraints are

included in Ω(Y) = True.
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Using Figure 8.4 as an example, there are two disjunctions k ∈ {A,B}, where for the first

one the set in the disjuncts DA = {1,2}, such that either equipment 1 (Y1A) or equipment 2

(Y2A) is chosen. Similarly DB = {6,7}.

An interesting alternative is where the sets Dk yield a single element, and there is a

Disjunction for every equipment piece. This yields the following formulation:

min
c,x,Y

∑
k∈K

ck +
∑
j∈J

p jx j

s.t.
∑
j∈J

r jnx j ≤ 0, n ∈ N



Yk∑
j∈Jk

d jk(ex j/t jk −1)−
∑
j∈Jk

s jkx j ≤ 0

ck = γk


∨


¬Yk

x j = 0, j ∈ Jk

ck = 0


, k ∈ K

Ω(Y) = True

ck, x j ∈ R+, j ∈ Jk,k ∈ K

Yk ∈ {False,True}, k ∈ K.

(Procb)

This case allows several pieces of equipment to be built within each alternative as long as

the objective is maximized. The fact that it represents the disjunction of a convex set and a

single point means that the HR formulation will yield the convex hull of the union of these

sets without requiring an extended formulation [48, Corollary 1].

The exponential input-output constraint can be formulated in conic form as follows:

∑
j∈J

d j(ex j/t j −1)−
∑
j∈J

s jx j ≤ 0 ⇐⇒


∑

j∈J d ju j−
∑

j∈J s jx j ≤ 0,

(t ju j + 1, t j, x j) ∈ Kexp

(8.32)

We include 5 variants of the process problem with |K| ∈ {21,31,36,48,100} possible units.

The first four cases are taken from [233, 293, 296]. The last case was generated for this
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chapter, given that commercial solvers can trivially solve the smaller cases. The instances

are denoted process|K| or process|K|b when implementing problems Proc and Procb,

respectively. For the new instance, the parameters are chosen from the uniform distributions

di jk ∈ U[1,1.2], ti jk ∈ U[1,1.3], si jk ∈ U[0.8,1.2],γik ∈ U[2,3]

8.4.2.2 Simultaneous Retrofit and Synthesis problems

A generalization of the process network problem is the simultaneous retrofit and synthesis

problem. In this problem, there is an existing process network that needs to be upgraded.

To do so, one can consider either installing new equipment or improving the existing one.

The potential of this process is to be maximized given a budget constraint. This problem

was first proposed by Jackson and Grossmann [309] and its GDP implementation was done

by Sawaya [233]. In the synthesis problem, the problem is equivalent to Proc with an extra

index for the time periods when the problem is considered. The retrofit synthesis problem

contains additional linear constraints and disjunctions to represent the conditions associated

with retrofitting the existing process units. The complete formulation is available in [62].

The instances solved here are parametric to the number of synthesis processes |S | ∈

{5,10,15,30,40}, the number of retrofit units |R| ∈ {8} and the number of time periods consid-

ered |T | ∈ 1,2,3,4, leading to instances Syn|S|M|T| and RSyn|R||S|M|T|.

8.4.2.3 Logistic Regression

Logistic regression is a training technique for binary classification. In this training task,

given a set of D-dimensional points pi ∈ R
D, i ∈ I we will assign a binary classifier y ∈ {0,1} to

each point in the case that they lie above or below a hyperline given by θ>p. This line needs

to be determined such that the logistic cost function is minimized. The logistic cost function

log(1/(1 + e−θ
>p+θ0)) can be interpreted as the probability of a point belonging to the class
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given by y = 1. This problem can be modeled as a GDP by encoding the binary classifier y

in a Boolean variable Y and writing the constraints within the disjunctions as follows:

min
θ,t

∑
i∈I

ti

s.t.


Yi

ti ≥ log
(
1 + e−θ

>p+θ0
)

θ>p ≥ 0


∨


¬Yi

ti ≥ log
(
1 + eθ

>p+θ0
)

θ>p ≤ 0


, i ∈ I

Ω(Y) = True

ti ∈ R+, i ∈ I

θ0 ∈ R

θ j ∈ R, j ∈ ~D�

Yk ∈ {False,True}, i ∈ I,

(LogReg)

where the logical constraints Ω(Y) = True can enforce symmetry-breaking constraints to

help in the solution process or other additional constraints related to the regression task.

The logistic regression constraint can be expressed as the following conic inequality:

t ≥ log
(
1 + eθ

>p+θ0
)
⇐⇒



u + v ≤ 1,

x = θ>p + θ0,

(v,1,−t) ∈ Kexp,

(v,1, x− t) ∈ Kexp,

(8.33)

and equivalently for the complementary disjunction.

In the examples presented herein, we generate ten random instances for each one of the

following settings. We set the value of the points’ dimensions within D ∈ {2,5,10}, |I| = 20,

and we choose to generate 2 clusters of normally distributed points being at a Mahalanobis
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distance, i.e., a distance metric between points and distributions, such that the points are

at most σ ∈ {1,2} standard deviations away from the center of the distributions. This is

computed via an inverse χ-squared distribution with D degrees of freedom computed at

probabilities {0.68,0.95} corresponding to Mahalanobis distances of σ ∈ {1,2} in the one-

dimensional case. This distance is then divided in 2
√

D, such that we place the centers of the

distributions at opposite corners of the D-dimensional hypercube. As mentioned in [302],

a natural advantage of the mathematical programming approach to the training tasks in

ML, compared to the heuristics, is that additional constraints can be enforced through the

problem formulation. In this case, within Ω(Y) = True, we force the split between the data

points to be within 45% and 55% and also force the farthest two points in the set from the

origin to belong to opposite classes as a symmetry breaking constraint. Instances generated

by this method are denominated LogReg D |I| σ x.
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8.4.2.4 Random examples

Besides the applications-related instances listed above, we generate random instances

whose disjunctive constraints can be represented using Kexp. The form of these GDP is:

min
x,Y,z

c>x

s.t.
∨
i∈Dk


Yik

a
′

ik exp
∑
j∈~n�

a
′′′′

i jkx j ≤ a
′′

ikz + a
′′′

ik

 , k ∈ K

Yi∈Dk Yik, k ∈ K

xl ≤ x ≤ xu

z ≤ zu

x ∈ Rn

z ∈ R

Yik ∈ {False,True}, k ∈ K, i ∈ Dk,

(EXP-rand-GDP)

where the upper and lower bounds of variables x, xl and xu, are set at 0 and 10, respectively.

An upper bound for z is given by

zu = max
i∈Dk ,k∈K

a
′

ik exp
∑

j∈~n� a
′′′′

i jkxl
j−a

′′′

ik

(a′′ik)2

 . (8.34)

The exponential constraint can be written equivalently as a logarithmic constraint and in

a conic form as follows:

a
′

ik exp
∑
j∈~n�

a
′′′′

i jkx j ≤ a
′′

ikz + a
′′′

ik

⇐⇒ log(a
′

ik) +
∑
j∈~n�

a
′′′′

i jkx j ≤ log(a
′′

ikz + a
′′′

ik )

⇐⇒


a
′

ikvik ≤ a
′′

ikz + a
′′′

ik(
vik,1,

∑
j∈~n� a

′′′′

i jkx j
)
∈ Kexp.

(8.35)
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The generation of the random exponential GDPs use the same parameters as the ran-

dom quadratic GDPs, i.e., |K| ∈ {5,10},Dk ∈ {5,10}, and n ∈ 5,10. Ten instances, denoted

exp random |K| |Dk| n x, are generated for each combination, besides a simple case

with exp random 2 2 2 x and the extra parameters are drawn from uniform distributions

as a
′

ik ∈ U[0.01,1],a
′′

ik ∈ U[0.01,1],a
′′′

ik ∈ U[0.01,1],a
′′′′

i jk ∈ U[0.01,1],c j ∈ U[−1,−0.01], i ∈ Dk,k ∈

K, j ∈ ~n�.

8.4.2.5 Results

We solve 208 GDP instances that are representable through the exponential cone. These

instances are transformed through Big-M and HR. Since the exponential cone is not auto-

matically identified through the constraints defining them, the explicit description of the

cone was required, giving rise to two different versions of each reformulation. The Big-M

results are summarized in Table 8.3 and the HR results are included in Table 8.4.

Depending on the family of instances, a given combination of solver and reformulation

was the best in runtime. For the LogReg* and RSyn* instances, MOSEK-OA was the best

solver when applied to the HR-Cone formulation. The other algorithm for MOSEK, MOSEK-

IP, was the best performance solver for the proc* instances, with the outstanding solution

of the proc 100 problems in less than 5 seconds when most other approaches could not

solve it within the 1-hour time limit. The closest non-conic approach was BARON applied

to the original Big-M formulation. A ≈ 80x and 6x speedup was obtained with instances

proc 100 and proc 100b, respectively. BARON applied to the Big-M formulation was

the best among all solvers for the Syn* instances. This approach was the fastest for the

exp random* instances, with a pretty similar performance achieved when applied to the

Big-M-Cone formulation. This was not the case in general, where the conic formulation of

the Big-M problem led to considerable performance degradation for BARON when solving
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the LogReg* and Syn* instances. When considering the Big-M-Cone formulation, we see

that both KNITRO and MOSEK-IP time out for most instances.

When considering the HR, using a conic formulation severely affected the performance

of BARON and KNITRO. This was a sign of the challenges that gradient-based methods

encounter when facing exponential constraints such as the ones appearing in the conic

reformulation. As an example, in instance RSyn0805M02, the HR-Cone formulation led to

KNITRO failing to evaluate the gradients at every B&B node, given function overloads by

the evaluation of exponential functions. BARON could not find a solution to this problem

either, while a solver that takes advantage of the exponential cone such as MOSEK solved

the problem in 2 seconds.

As with the quadratic instances, the most efficient solver in terms of nodes explored to

find the optimal solution is BARON, both in the Big-M and HR.

As with the quadratic instances, performance profiles are presented in Figures 8.5 and 8.6

for the exponential instances. In the time performance profile in Figure 8.5, we observe a

clear dominance of both MOSEK algorithms applied to the HR-Cone formulation, particu-

larly within the first seconds. Towards the end of the time limit, BARON applied to both

the Big-M and HR formulations solves more instances to optimality. BARON applied to the

HR-ε approximation can solve all the exponential problems within the time limit. Except

for BARON, all solvers improve their performance when comparing the Big-M and HR

formulations. Having mentioned that, both BARON and KNITRO have difficulties when

solving the HR-Cone formulation, with the extreme case of BARON failing for all instances.

When observing the node performance profile for the exponential instances in Figure 8.6,

the HR formulations require fewer nodes than the Big-M formulations, except for BARON.

BARON proves that it generates strong relaxation nodes, requiring fewer to solve the

problems, clearly dominating in this sense the other solvers. A similar observation was
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Figure 8.5: Time performance profile for exponential instances using the different GDP
reformulations and commercial solvers.

made regarding the quadratic instances.

8.4.3 Controlling the Branch & Bound search

The implementations of modern solvers include an arsenal of heuristic methods to tackle

more efficiently the challenging optimization problems at hand. Although this leads to

performance improvements, it shades the effect of better formulations when solving the

optimization problems. To that end, we consider using the Simple Branch& Bound (SBB)

implementation in GAMS and solve the subproblems using both KNITRO and MOSEK.

These subproblems are continuous optimization problems, while SBB manages the discrete

variables’ exploration. We present below two performance profiles in Figures 8.7 and 8.8
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Figure 8.6: Node performance profile for exponential instances using the different GDP
reformulations and commercial solvers.
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for all the problems solved in this chapter, mainly including results of SBB-KNITRO and

SBB-MOSEK.

In Figure 8.7 we observe the performance profiles of the SBB implementation against the

number of continuous convex subproblems solved. The first observation is that the HR

tight formulation allows a more efficient exploration of the subproblems solves than the

Big-M formulation. The conic formulation of HR affects the performance of KNITRO when

addressing the subproblems, leading to poor performance in this case. Moreover, given

the same branching rules, the Big-M and HR formulations require approximately the same

number of subproblems solved using the original or the extended formulations arising from

the conic description of the problems. This is an expected result given that the extended

formulation does not require additional binary variables.

Although the number of solved subproblems is similar, the time required to solve them

varies depending on the chosen solver, as observed in Figure 8.8. In this figure, we include

the time performance profiles for the SBB alternatives. For reference, we include the best

commercial alternative to each reformulation. This corresponds to BARON for the Big-

M and HR-ε and MOSEK-IP for the HR-Cone formulations. The solver that solved the

most instances was BARON applied to the Big-M formulation, solving 393 out of the

425 problems, followed by MOSEK-IP applied to the HR-Cone formulation solving 390

problems. In general, MOSEK is more efficient at solving the convex subproblems compared

to KNITRO. The difference is more exacerbated in the HR formulation. An interesting

observation is that the gap in time performance between SBB and the best alternative is

smaller for HR-ε than for HR-Cone. This indicates that the efficient exploitation of the

conic constraints, in this case from MOSEK, can yield considerable performance advantages

together with a tight reformulation of disjunctive constraints.
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Figure 8.7: Solved subproblems performance profile for all instances using the different
GDP reformulations and solvers through SBB.
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Figure 8.8: Time performance profile for all instances using the different GDP reformulations
and solvers through SBB. We include the best performing commercial solver results for each
reformulation.
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8.5 Conclusions, discussion and future work

This work presents the formulation of convex Generalized Disjunctive Programming (GDP)

problems using conic sets. The convex GDP problem can be solved through a reformulation

into convex Mixed-Integer Nonlinear Programming (MINLP) problems. Two of those

reformulations are covered in this chapter, the Big-M and Hull Reformulations. The Hull

reformulation of a convex GDP problem requires implementing a perspective function,

whose algebraic form is challenging for gradient-based nonlinear optimization solvers.

We present the Big-M and Hull reformulations into Mixed-Integer Conic Programming

(MICP) problems through the conic formulation of the problem. The MICP problems

can be efficiently tackled using specialized conic solvers, which take advantage of the

properties of the conic programs. We provide a guide to reformulate common convex

constraints through conic programming. If those constraints appear inside disjunctions, we

also provide a conic representation of its perspective, allowing the exact representation of

the Hull reformulation.

These reformulations were tested using a large set of convex GDP problems stemming

from Process Systems Engineering, Machine Learning, and randomly generated instances.

These instances were classified as quadratic and exponential and solved through different

reformulation alternatives and solvers. Our results show how the conic reformulation gives

a systematic and natural extended formulation of the convex MINLP problems stemming

from GDP. These can be exploited by solvers, allowing a more efficient solution to these

problems. Among the tested approaches, we identified that BARON solving the Big-M

formulation and MOSEK solving the HR-Conic formulation, either with IP or OA, were the

best solvers to tackle these convex GDP reformulated problems. In general, we show how

the conic representation of convex constraints within disjunctions can result in an exact and

more efficiently solvable mixed-integer representation of a convex GDP.
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The results in this paper also point to specific existing improvement opportunities. In

the first place, the automatic reformulation of the convex constraints into cones is a task

worth pursuing. Previous success in the quadratic case allows commercial solvers such as

CPLEX or Gurobi to automatically detect conic structures and address those more efficiently.

An extension of these routines to exponential cones is therefore of interest. Modeling

extensions that allow for disjunctive programming are the natural place to include these

automatic reformulations. Approaches have been made at the modeling language level,

e.g., in GAMS [282] Pyomo [59] ?, and Julia ?. These could also be made at the solver

level, with indicator constraints such as in CPLEX [52] and MOSEK [35]. These techniques

have also shown potential for the global optimization of non-convex GDP or MINLP [310],

motivating further research into it.

Interesting future directions are the exploration of conic formulations in more advanced

reformulations of GDPs, such as intermediate Big-M / Hull formulations [306] and basic

steps reformulations [293]. Moreover, conic programming tools can be used in more

advanced solution methods of GDP than the recasting of the problem into MINLP. Examples

of those methods are Lagrangean decomposition based on the disjunctive structure of the

problem [305] or logic-based algorithms [59]. The use of conic programming has already

shown the potential speedup for mixed-integer programming solutions [44], and expanding

those findings to GDP is of great interest.

?https://pyomo.readthedocs.io/en/latest/modeling_extensions/gdp/
?https://github.com/rdeits/ConditionalJuMP.jl
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Chapter 9

Characterization of QUBO Reformulations for

the Maximum k-colorable Subgraph Problem?

9.1 Introduction

Quantum computing (QC) harnesses the properties of physical systems described by

quantum mechanics (e.g., subatomic particles) to perform computations in a fundamentally

different way than classical computing [312]. It is widely established that QC can, in the

future, revolutionize the way we perform and think about computation and be the backbone

of thrilling new technologies and products [312–314].

In particular, QC has the potential to radically transform our capability to solve difficult

optimization problems for which no traditional numerical or theoretical efficient solution

algorithms are known to exist [315]. This is particularly the case for combinatorial optimization

(COPT) problems; that is, optimization problems that are formulated with the use of discrete

(e.g., binary) decision variables [53]. A large number of COPT problems are known to be

NP-Hard [see, e.g., 316]; that is, there is no known polynomial-time algorithm that can be

used to solve them. A very representative problem in this class of COPT NP-Hard problems

is the Ising model [see, e.g., 317–319]. Since its inception, the Ising model has been used to

?Preprint available as: Rodolfo Quintero, David E. Bernal, Tamás Terlaky, and Luis F Zuluaga.

“Characterization of QUBO reformulations for the maximum k-colorable subgraph problem”. arXiv preprint

arXiv:2101.09462 (2021).
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address problems arising in different physical systems (e.g., magnetism, lattice gas, spin

glasses), as well as in neuroscience and socio-economics.

The Ising model belongs to the class of quadratically unconstrained binary optimization

(QUBO) problems [see,e.g., 320]. Moreover, both quantum annealing devices [see, e.g.,

79, 321, 322], and algorithms (such as the quantum approximate optimization algorithm

(QAOA)) for gate-based quantum computers [see, e.g., 323, 324] are able to address the

solution of QUBO problems. This allows the use of quantum technology to solve problems

such as the Ising model and the max-cut problem, which has a natural QUBO reformula-

tion [see, e.g., 85, 325]. Moreover, quantum technology can be used to solve a broader class

of constrained COPT problems that do not have a natural QUBO reformulation. This is due

to the fact that penalization methods can be used to embed the COPT problem’s constraints

in its objective to obtain a QUBO reformulation of the problem.

For some COPT feasibility problems (i.e., without an objective) that can be formulated us-

ing linear equality constraints, the desired QUBO reformulation can be obtained using any

positive penalty parameter (to penalize the constraints’ violations). For example, consider

the QUBO reformulations of the number partitioning problem [79, 326], the graph isomor-

phism problem [327], the exact cover problem [79], and some planning problems [328], to

name a few. However, when the COPT problem formulation requires (or uses) nonlinear

constraints and/or an objective function, the desired QUBO reformulation is only guaran-

teed to be obtained for values of the penalty parameter(s) that are larger than a known, and

potentially large, lower bound. For example, consider the QUBO reformulations for the

maximum clique problem [79], the traveling salesman problem [79, 326], and the minimax

matching problem [79]. Worst, in some cases, the desired QUBO reformulation is only guar-

anteed to be obtained for an unknown large enough value of the penalty parameter(s). For

example, consider the QUBO reformulations of the job shop scheduling problem [329], the
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de-conflicting optimal trajectories problem [330], the traveling salesman problem with time

windows [331], and some of the problems discussed in [332]. Additionally, when the COPT

problem formulation requires (or uses) linear inequality constraints, a potentially large

number of auxiliary (i.e., slack) binary variables need to be introduced to obtain the desired

QUBO reformulation. For example, consider the maximum clique QUBO reformulation

provided in [79], and the COPT problems considered in [333].

The fact that large (or unknowingly large) penalty parameters, and additional binary

variables might be needed to obtain the desired QUBO reformulation can hinder the ability

of quantum computers to more efficiently solve COPT problems [see, e.g., 333–335]. As the

results in [336] highlight, this efficiency is key towards the goal of using noisy intermediate-

scale quantum (NISQ) devices to solve COPT problems more efficiently than with classical

computers. Not surprisingly, recent articles look beyond obtaining QUBO reformulations

of COPT problems such as the graph isomorphism problem as well as tree and cycle

elimination problems, to look for improved QUBO reformulations of these problems for

NISQ devices [see, e.g., 327, 335, 337–339]. That is, QUBO reformulations that are tailored

to be more efficiently used in NISQ devices.

Along these lines, we consider an important COPT problem; namely, the maximum k-

colorable subgraph (MkCS) problem [see, e.g., 340], in which the aim is to find an induced

k-colorable subgraph with maximum cardinality in a given graph. This problem arises in

channel assignment in spectrum sharing networks (e.g., Wi-Fi or cellular) [341, 342], VLSI

design [343], human genetic research [343, 344], telecommunications [345], and cybersecu-

rity [346].

We derive two QUBO reformulations of the MkCS problem. The first one is obtained

from the standard formulation of the MkCS problem in which all the constraints are linear,

except for the binary variable constraints. This QUBO reformulation is an improved version
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of the QUBO reformulation that would be obtained by using the QUBO reformulation

approach of Lasserre [347] for this “linear” formulation of the MkCS. The reason for this is

that we characterize the minimum penalization coefficients that can be used to guarantee

that the desired QUBO problem, obtained by penalizing the problem’s linear constraints

violations, is indeed equivalent to the original problem. Furthermore, we characterize the

equivalence of the QUBO reformulation not only in terms of the objective value, but also

in terms of the optimal solution obtained from this QUBO reformulation. In particular,

we find that when the minimal values of the penalization coefficients are used, the QUBO

reformulation is equivalent to the MkCS in terms of the problems’ objectives, but not in

terms of the problems’ optimal solutions. However, we show that in this case, the QUBO

reformulation’s optimal solution can be used, in a simple way, to obtain the MkCS problem’s

optimal solution. In what follows, we will refer to this QUBO reformulation of the MkCS

problem as the linear-based QUBO reformulation.

The second QUBO reformulation of the MkCS problem is obtained from a formulation

of the MkCS problem in which all the linear constraints are first formulated as nonlinear

equality constraints. Analogous to the results obtained for the linear-based QUBO reformu-

lation of the MkCS problem, we derive a nonlinear-based QUBO reformulation of the MkCS

problem. Then, we characterize the minimum penalizations coefficients that can be used

to guarantee that the desired nonlinear-based QUBO problem, obtained by penalizing the

problem’s linear constraints violations, is indeed equivalent to the original problem. Fur-

thermore, we characterize the equivalence of the nonlinear-based QUBO reformulation not

only in terms of the objective value, but also in terms of the optimal solution obtained from

this nonlinear-based QUBO reformulation. In particular, we find that when the minimal

values of the penalization coefficients are used, the nonlinear-based QUBO reformulation

is equivalent to the MkCS in terms of the problems’ objectives, but not in terms of the
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problems’ optimal solutions. However, we show that in this case, the nonlinear-based

QUBO reformulation’s optimal solution can be used, in a simple way, to obtain the MkCS

problem’s optimal solution. This latter result extends the work done in characterizations of

QUBO reformulations of the stable set problem [348–350], which is equivalent to the MkCS

problem when k = 1. The nonlinear-based QUBO reformulation of the MkCS problem is a

substantial improvement over the linear-based QUBO reformulation of the MkCS problem,

in significant part, because the former QUBO does not need the addition of any auxiliary

(i.e., slack) binary variables beyond the ones that define the original problem’s formulation.

To illustrate the benefits of obtaining and characterizing these QUBO reformulations,

we benchmark different QUBO reformulations of the MkCS problem using a quantum

annealing device, and in particular, we look at how embedding requirements and theoretical

and numerical convergence rates change depending on the QUBO reformulation being

used, as well as the parameters with which is used.

The rest of the chapter is organized as follows. In Section 9.2, we present some relevant

discussion to motivate our work, as well as results about QUBO reformulations for COPT

problems. In Section 9.3, we formally present the MkCS problem and two associated QUBO

reformulations. The first one, in Section 9.3.1, is based on a “linear” (modulo the binary

variable constraints) formulation of the MkCS problem. The second one, in Section 9.3.2, is

based on a “nonlinear” (beyond the binary variable constraints) formulation of the MkCS

problem. In Section 9.4, we benchmark these two QUBO reformulation by performing

numerical tests on D-Wave’s quantum annealing devices. We also illustrate the numerical

power gained by using the latest D-Wave’s quantum annealing devices. In Section 9.5, we

finish with some concluding remarks.
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9.2 Preliminaries

Formally, given a set of n binary decision variables x ∈ {0,1}n (or x ∈ {−1,1}n) when appro-

priate), a vector f ∈ Rn, and a matrix Q ∈ §n, where §n is the set of symmetric matrices in

Rn×n, a quadratically unconstrained binary optimization (QUBO) problem is the problem of

finding [see, e.g., 320, 350]:

z∗ = min x>Qx + f>x

s.t. x ∈ {0,1}n.
(QUBO)

It is well-known that the Ising model belongs to the class of QUBO problems (using {−1,1}

binary variables) [see, e.g., 79, 335]. Moreover, other distinguished NP-Hard COPT prob-

lems can be naturally formulated, or easily reformulated as a QUBO problem. Foremost

among this type of problems is the max-cut problem [see, e.g., 351], which arises in multiple

important applications in science and engineering [see, e.g., 352, Sec. 6]. Given an undi-

rected Graph G(V,E), the aim in the max-cut problem is to find a subset of nodes (or cut)

S ⊆ V , such that the cardinality of the set of edges in E between the nodes in S and S c := V \S

is maximized. The max-cut problem can be naturally formulated (disregarding objective

constants) as a QUBO problem (using {−1,1} binary variables) by letting Q = A, f = 0, where

A ∈ RV×V is the node-to-node adjacency matrix of G(V,E), or by setting Q = −diag(Ae) + 2A

and f = 0 (using {0,1} binary variables).

Thanks to the QUBO reformulation of the max-cut problem, the ability of quantum

computers to solve the max-cut problem has been widely studied in the literature. For

example, consider the use QAOA algorithms in [323, 324, 353], and of quantum annealing

devices in [325, 354] to solve instances of the max-cut problem. Furthermore, QUBO

reformulations can be obtained for a broader class of COPT problems that do not have

a natural QUBO reformulation. This is done by using penalization methods to embed

the COPT problem’s constraints in its objective [see, e.g., 79, 326–330, 332, 333, 335, to
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name just a few]. This approach clearly broadens the class of COPT problems that can be

addressed with NISQ devices. However, the efficacy of NISQ devices to solve this broader

class of COPT problems can be highly affected by the way in which the corresponding

QUBO reformulation is obtained. This is because the performance of NISQ devices is

highly affected by the number of qubits and the coefficients that are required to encode a

QUBO [see, e.g., 327, 335, 337].

To illustrate this fact, consider the problem of obtaining a QUBO reformulation for the

maximum clique problem. Given an undirected Graph G(V,E), the aim in the maximum

clique problem is to find the set of nodes S ⊆ V with the highest cardinality such that the

graph induced by S is a clique; that is, a complete subgraph [see, e.g., 355]. The cardinality

of the largest induced clique of G is referred to as the clique number χ(G). Lucas [79, Sec.

2.3] obtains a QUBO reformulation for the maximum clique problem by first noticing that

G(V,E) contains a clique of size K ∈ {2, . . . , |V |} (i.e., w.l.o.g. assume |E| ≥ 1) if and only if

there is x ∈ {0,1}|V | such that
∑|V |

i=1 xi = K, and
∑

(i, j)∈E xix j = 1
2 K(K − 1). Thus, the maximum

clique problem can be formulated as χ(G) = max{K ∈ {2, . . . , |V |} :
∑|V |

i=1 xi = K,
∑

(i, j)∈E xix j =

1
2 K(K −1),x ∈ {0,1}|V |}. Furthermore, Lucas [79, Sec. 2.3] shows that this latter problem can

be reformulated as the following QUBO.

χ(G) = min −
∑|V |

i=1 xi + (∆+ 2)
(
1−

∑∆
k=2 yk

)2
+ (∆+ 2)

(∑∆
k=2 kyk −

∑|V |
i=1 xi

)2
+

1
2

(∑∆
k=2 kyk

) (
−1 +

∑∆
k=2 kyk

)
−

∑
(i, j)∈E xix j

s.t. x ∈ {0,1}|V |,yk ∈ {0,1},k = 2, . . . ,∆,

(9.1)

where ∆ is the degree of G(V,E), and the auxiliary variable yk = 1 if χ(G) = k and yk = 0

otherwise for k = 2, . . . ,∆. Note that the QUBO problem (9.1) uses |V |+ ∆ logical qubits

and coefficients [333, Section 1.2] that belong to the range [−2∆(∆ + 2),2∆3 + 3∆(∆− 1) + 4]

(after disregarding constant terms and appropriately replacing xi→ x2
i , i = 1, . . . , |V |, yk→ y2

k ,

k = 2, . . . ,∆ in the objective of (9.1) to make it a homogenous quadratic). The performance
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of NISQ devices on solving QUBO problems is negatively affected by the use of a larger

number of logical qubits and larger coefficients [see, e.g., 327, 332, 333, 335, 337]. In

this context, it is natural to ask if there are improved [see, e.g., 327, 335, 337–339] QUBO

reformulation for the maximum clique problem. For example, notice that by slightly

changing the definition and number of the auxiliary variables in (9.1), the range of the

coefficients used in (9.1) can be substantially reduced. Namely, let y ∈ {0,1}∆ be defined by∑∆
k=1 yk = K if χ(G) = K for K ∈ {1, . . . ,∆}. Then the maximum clique problem is equivalent to:

χ(G) = min −
∑|V |

i=1 xi + (∆+ 2)
(∑∆

k=1 yk −
∑|V |

i=1 xi
)2

+

1
2

(∑∆
k=1 yk

) (
−1 +

∑∆
k=1 yk

)
−

∑
(i, j)∈E xix j

s.t. x ∈ {0,1}|V |,y ∈ {0,1}∆.

(9.2)

Note that the QUBO problem (9.2) uses coefficients that belong to a much smaller range

[−2(∆+ 2),4(∆+ 2) + 1] than the range of coefficients used in the QUBO problem (9.1) (after

disregarding constant terms and appropriately replacing xi→ x2
i , i = 1, . . . , |V |, yk→ y2

k , k =

1, . . . ,∆ in the objective of (9.1) to make it an homogenous quadratic). However, a much

better QUBO formulation for the maximum clique problem can be obtained by using the fact

that χ(G) = α(Gc) [see, e.g., 355], where for a graph G(V,E), Gc = G(V,Ec) is the complement

of G, and α(G) stands for the stable set number of the graph G [see, e.g., 348]; that is, the size

of the largest cardinality set S ⊆ V , such that there are no edges between the nodes in S .

This fact can be used to show that (see, e.g., [327, Thm. 6] or [355, Thm. 2.3], among others)

χ(G) = α(Gc) = min

−
|V |∑
i=1

xi + 2
∑

(i, j)<E

xix j : x ∈ {0,1}|V |
 (9.3)

Note that the QUBO problem (9.3) uses |V | logical qubits and coefficients that belong to the

range {−1,2}. Thus, in terms of number of logical qubits and range of the coefficients used

in the QUBO reformulation, (9.3) improves both (9.2) and (9.1). It is worth pointing out that

the QUBO reformulation (9.3) has been stated in numerous articles [see, e.g., 349, 355–357,
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to name a few]. Moreover, it is well known that the range of the coefficients in (9.3) can be

further reduced to {−1,1}. Namely, it has been proved (or stated) in numerous articles [see,

e.g., 320, 326, 348–350, 358] that

χ(G) = α(Gc) = min

−
|V |∑
i=1

xi +
∑

(i, j)<E

xix j : x ∈ {0,1}|V |
 (9.4)

There is, however, a caveat in the QUBO reformulation (9.4). For any x ∈ Rn, let supp(x) =

{i ∈ {1, . . . ,n} : xi , 0}. Unlike for (9.1)–(9.3), given x∗ ∈ argmin{(9.4)}, supp(x∗) might not be

a clique on G (nor an independent set in Gc). That is, while the QUBO problems (9.1)–

(9.3) are equivalent to the maximum clique problem in terms of both objective value and

(loosely speaking) optimal solution, in general, the QUBO problem (9.4) is equivalent to

the maximum clique problem only in terms of objective value. This important topic will be

revisited and discussed in detail in Section 9.3.2.

Along these lines, in what follows, we consider the problem of obtaining not only a

QUBO reformulation, but improved QUBO reformulation of a keystone COPT problem;

namely, the maximum k-colorable subgraph (MkCS) problem [see, e.g., 340].

9.3 The k-subgraph coloring problem

Let k ≥ 1 colors and a Graph G(V,E) on n vertices be given. A subgraphH of G is k-colorable

if we can assign to each vertex ofH a color such that no two adjacent vertices inH have

the same color. The maximum k-colorable subgraph problem (MkCS) aims at finding a

k-colorable subgraph H of G with maximum cardinality. To model this problem, notice

that any k-coloring of a subgraph of G can be encoded in the following way. For any i ∈ [n]
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(where for any t ∈ N, [t] := {1, . . . , t}) and r ∈ [k], let

xir =


1, if vertex i ∈ [n] is colored with color r ∈ [k],

0, otherwise.
(9.5)

Then, x ∈ {0,1}n×k defines a k-coloring of a subgraph of G if and only

xir + x jr ≤ 1, for all (i, j) ∈ E,r ∈ [k],∑
r∈[k]

xir ≤ 1, for all i ∈ [n]. (9.6)

Then, the MkCS can be formulated as [see, e.g., 340]:

αk(G) := maxx∈{0,1}n×k
∑

i∈[n],r∈[k] xir

s.t. xir + x jr ≤ 1, for all (i, j) ∈ E,r ∈ [k],∑
r∈[k] xir ≤ 1, for all i ∈ [n].

(9.7)

The MkCS problem falls into the class of NP-complete problems [359]. Moreover, even

approximating this problem is known to be NP-hard [360]. For k = 1, the MkCS is equivalent

to the maximum stable set problem (i.e., α1(G) = α(G)) that has been widely and thoroughly

studied in the literature; and in particular, in the quantum computing literature [see, e.g.,

326, 356, 358]. The cases k = 2, which is also referred to as the maximum bipartite subgraph

problem, and k > 2 are considered significantly less in the literature [see 340, for details].

However, as mentioned earlier, the MkCS problem arises in channel assignment in spectrum

sharing networks (e.g., Wi-Fi or cellular) [341, 342], VLSI design [343], human genetic

research [343, 344], telecommunications [345], and cybersecurity [346]. Thus, a range of

approaches have been studied in the literature to address the solution of the MkCS problem,

for example, using semidefintie optimization techniques [see, e.g., 340, 361] or integer

programming techniques [see, e.g., 327, 362, 363].
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Next, we obtain and characterize QUBO reformulations for the MkCS problem that allow

to address its solution using quantum technology. Before presenting these results, let

us mention some additional facts about the MkCS problem that will be relevant to the

discussion in what follows.

Notice that a MkCS H of G(V,E) can be recovered from any x∗ ∈ argmax{αk(G)}; that is,

H := G(VH ,EH), where VH = {i ∈ [n] : x∗ir > 0 for some r ∈ [k]}, EH := {(i, j) ∈ E : i, j ∈ VH}, and

the coloring of the vertices is obtained by coloring vertex i ∈ VH with color r ∈ [k] if and

only if x∗ir = 1. Furthermore, given x̃ ∈ {0,1}n×k, it is very simple to obtain a feasible solution

x′ ∈ {0,1}n×k for the MkCS problem by sequentially dropping color r′ ∈ [k] from vertex

i′ ∈ [n]; that is, setting x̃i′r′ = 0, if x̃i′r′ = 1 and there exists (i′, j) ∈ E such that x̃i′r′ + x̃ jr′ > 1 or∑
r,r′ x̃i′r ≥ 1. This simple fact is formally stated in Algorithm 12, in a particular form that

will be helpful in stating some of the QUBO characterization results that follow.

Algorithm 12 MkCS feasibility

1: Input k ≥ 1, G(V,E), |V | = n, x ∈ {0,1}n×k

2: for i ∈ [n], (i, j) ∈ E, r ∈ [k] do
3: if xir + x jr > 1 then
4: xir → 0
5: for i ∈ [n], r ∈ [k] do
6: if xir = 1 and

∑
p,r∈[k] xip ≥ 1 then

7: xir → 0
8: Output x′ := x a feasible solution for the MkSC problem

9.3.1 Linear-based QUBO reformulation

Based on the formulation (9.7) of the MkCS problem in which all the constraints, except

for the binary variable constraints are linear, we can derive and characterize a linear-based

QUBO reformulation for the MkCS problem. For that purpose, let us first introduce some

notation.
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Given k ≥ 1, a Graph G(V,E) on n vertices, and x ∈ {0,1}n×k, s ∈ {0,1}|E|×k, t ∈ {0,1}n, let

H0(x) =
∑

i∈[n],r∈[k]

x2
ir, (9.8)

and

Hl
1(x,s) =

∑
(i, j)∈E,r∈[k]

(
xir + x jr + si jr −1

)2
, (9.9a)

Hl
2(x, t) =

∑
i∈[n]

∑
r∈[k]

xir + ti−1

2

. (9.9b)

Furthermore, we define the following simple mappings. Given x ∈ {0,1}n×k and i′ ∈ [n],r′ ∈ [k],

let the mapping Xi′r′(x) : {0,1}n×k→ {0,1}n×k be defined by

xir→


0 if i = i′,r = r′

xir otherwise
, i ∈ [n],r ∈ [k]. (9.10)

Note that Xi′r′(x) is a generalization of the mapping used on proofs regarding QUBO

reformulations of the stable set number problem (i.e., M1CS) [see, e.g., 320, 348–350, 358].

Here, however, to deal with the general case k > 1, we need an additional mapping.
Given p = {0,1}, s ∈ {0,1}|E|×k, t ∈ {0,1}n, and (i′, j′) ∈ E, r′ ∈ [k], let the mappingMp

i′ j′,r′(s, t) :
{0,1}|E|×k+n→ {0,1}|E|×k+n be defined by

si jr→


1− si′ jr′ if i = i′, j , j′,r = r′

(1− si′ jr′)p if i = i′, j = j′,r = r′

si jr otherwise
, (i, j) ∈ E,r ∈ [k], (9.11a)

ti→

 1− p if i = i′,
ti otherwise

, i ∈ [n]. (9.11b)

With these definitions in hand, we can now obtain the desired linear-based QUBO

reformulation of the MkCS problem. For any c1,c2 > 0 define the QUBO problem:

Ql
c1,c2

(k,G) := max Hl
c1,c2

(x,s, t) := H0(x)− c1Hl
1(x,s)− c2Hl

2(x, t)

s.t. x ∈ {0,1}n×k,s ∈ {0,1}|E|×k, t ∈ {0,1}n.

(9.12)
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Theorem 9.3.1 (linear-based QUBO reformulation of MkCS problem). Let k ≥ 1 and a

Graph G(V,E) on n vertices be given. Then, for any c1 > 1,c2 > 1, Ql
c1,c2

(k,G) = αk(G), and if

x̃ ∈ argmaxx{Ql
c1,c2

(k,G)} then x̃ ∈ argmax{αk(G)}.

Proof. First, notice that x̃ is well defined and Ql
c1,c2

(k,G) is attained as (9.12) is defined over a

compact feasible set. Also, notice that for any c1,c2 > 0 and any feasible solution x′ ∈ {0,1}n×k

for the MkCS problem (9.7) with objective value z(x′) :=
∑

i∈[n],r∈[k] xir, one can construct a

feasible solution for (9.12); that is, x = x′, si jr = 1−x′ir −x′jr, for all (i, j) ∈ E,r ∈ [k], and ti = 1−∑
r∈[k] x′ir, with objective value Hl

c1,c2
(x,s, t) = z(x′). Thus, if c1,c2 > 0, the QUBO problem (9.12)

is a relaxation of (9.7), and consequently Ql
c1,c2

(k,G) ≥ αk(G). Thus, to prove the result, it

is enough to show that when c1,c2 > 1, one has that x̃ is a feasible solution for (9.7). By

contradiction, assume this is not the case and let c1,c2 > 1, (̃s,̃ t) := argmax(s,t){Ql
c1,c2

(k,G)}.

Then either: (1) there is at least an (i′, j′) ∈ E and r′ ∈ [k] such that x̃i′r′ + x̃ j′r′ > 1; or (2) there

is at least an i′ ∈ [n] and r′ ∈ [k] such that x̃i′r′ = 1 and
∑

r,r′∈[k] x̃i′r ≥ 1.

For case (1), consider the feasible solution (x,s0, t0) ∈ {0,1}n×k+|E|×k+n for (9.12) obtained

from (̃x, s̃,̃ t) by letting (x,s, t) = (Xi′r′ (̃x),M0
i′ j′,r′ (̃s,̃ t)) (cf., (9.10), (9.11)). It then follows

from (9.8), (9.10), and the fact that x̃i′r′ = 1 that

H0(x) = H0(̃x)−1. (9.13)

Also, from (9.9a), (9.10), (9.11a), and the fact that x̃i′r′ = x̃ j′r′ = 1, it follows that −Hl
1(x,s0) =

−Hl
1(̃x, s̃) +

∑
(i′, j, j′)∈E 4x̃ jr′ s̃i′ jr′ + (1 + s̃i′ j′r′)2. Thus,

−Hl
1(x,s0) ≥ −Hl

1(̃x, s̃) + 1. (9.14)

Further, from (9.9b), (9.10), (9.11b), and the fact that x̃i′r′ = 1, it follows that −Hl
2(x, t0) =

−Hl
2(̃x,̃ t) + 2̃ti′

∑
r,r′∈[k] x̃i′r + t̃2

i′ . Thus,

−Hl
2(x, t0) ≥ −Hl

2(̃x,̃ t). (9.15)

CHAPTER 9. CHARACTERIZATION OF QUBO REFORMULATIONS FOR THE MAXIMUM
K-COLORABLE SUBGRAPH PROBLEM 345



9.3 THE k-SUBGRAPH COLORING PROBLEM

Using (9.13), (9.14), (9.15), it follows that Hl
c1,c2

(x,s0, t0) ≥ Hl
c1,c2

(̃x, s̃,̃ t)−1 + c1 > Hl
c1,c2

(̃x, s̃,̃ t) =

Ql
c1,c2

(k,G), which contradicts the optimality of (̃x, s̃,̃ t) for (9.12).

We proceed analogously for case (2). Consider the feasible solution (x,s, t) ∈ {0,1}n×k+|E|×k+n

for (9.12) obtained from (̃x, s̃,̃ t) by letting (x,s1, t1) = (Xi′r′ (̃x),M1
i′,r′ (̃s,̃ t)) (cf., (9.10), (9.11)).

It then follows from (9.8), (9.10), and the fact that x̃i′r′ = 1 that (9.13) holds. Also,

from (9.9a), (9.10), (9.11a), and the fact that x̃i′r′ = 1, it follows that −Hl
1(x,s1) =

−Hl
1(̃x, s̃) +

∑
(i′, j)∈E 4x̃ jr′ s̃i′ jr′ . Thus,

−Hl
1(x,s1) ≥ −Hl

1(̃x, s̃). (9.16)

Further, from (9.9b), (9.10), (9.11b), and the fact that x̃i′r′ = 1,
∑

r,r′∈[k] x̃ j′r ≥ 1, it follows that

−Hl
2(x, t1) = −Hl

2(̃x,̃ t) + 2(
∑

r,r′∈[k] x̃i′r)(1 + t̃i′) + t̃2
i′ −1. Thus,

−Hl
2(x, t1) ≥ −Hl

2(̃x, s̃) + 1. (9.17)

Using (9.13), (9.16), (9.17), it follows that Hl
c1,c2

(x,s1, t1) ≥ Hl
c1,c2

(̃x, s̃,̃ t)−1 + c2 > Hl
c1,c2

(̃x, s̃,̃ t) =

Ql
c1,c2

(k,G), which contradicts the optimality of (̃x, s̃,̃ t) for (9.12).

Therefore x̃ satisfies that there is no (i′, j′) ∈ E and r′ ∈ [k] such that x̃i′r′ + x̃ j′r′ > 1, or i′ ∈ [n]

and r′ ∈ [k] such that
∑

r∈[k] x̃i′r > 1. Therefore x̃ is a feasible solution of (9.7), which finishes

the proof. �

It is worth to mention that, loosely speaking, the general form of the QUBO reformula-

tion (9.12) for the MkCS problem can be obtained by using the recent results of Lasserre

[347, Thm. 2.2]. Namely, one can use this result after reformulating the MkCS problem

constraints as equality constraints using the approach described in [347, Sec. 2.3]. Then,

after reformulating the problem using {1,−1} binary variables (instead of {0,1} binary vari-

ables), [347, Thm. 2.2] can be used to obtain a QUBO reformulation of the MkCS problem.

However, this reformulation would require the use a penalty parameter with a value larger
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than nk (cf., with the values of c1,c2 in Theorem 9.3.1), and require the use of more auxiliary

(i.e., slack) binary variables than the ones used in Theorem 9.3.1. Thus, Theorem 9.3.1

provides an improved QUBO reformulation of the MkCS problem than the one that would

be obtained using [347, Thm. 2.2].

Later, in Section 9.3.3, we will further characterize the QUBO reformulation (9.12) for the

MkCS. Next, however, we derive and characterize a QUBO reformulation for the MkCS in

which no auxiliary (i.e., slack) binary variables are needed.

9.3.2 Nonlinear QUBO reformulation

Next, we obtain an improved QUBO reformulation for the MkCS problem in terms of the

number of binary decision variables required in the QUBO reformulation, when compared

with the one provided and characterized in Section 9.3.1. For this purpose, first notice that

for any x ∈ {0,1}n×k, the linear constraints in (9.6) are equivalent to the nonlinear constraints

xir x jr = 0, for all (i, j) ∈ E,r ∈ [k],

xir xip = 0, for all i ∈ [n], (r, p , r) ∈ [k]× [k].
(9.18)

Then, consistent with (9.18), given k ≥ 1, a Graph G(V,E) on n vertices, and x ∈ {0,1}n×k, let

Hn
1(x) =

∑
(i, j)∈E,r∈[k]

xir x jr, (9.19a)

Hn
2(x) =

∑
i∈[n]

 ∑
r∈[k],p,r∈[k]

xir xip

 . (9.19b)

With these definitions in hand we can now obtain the desired nonlinear-based QUBO refor-

mulation of the MkCS problem. For any c1,c2 > 0 define the QUBO problem:

Qn
c1,c2

(k,G) := max Hn
c1,c2

(x) := H0(x)− c1Hn
1(x)− c2Hn

2(x)

s.t. x ∈ {0,1}n×k.

(9.20)

CHAPTER 9. CHARACTERIZATION OF QUBO REFORMULATIONS FOR THE MAXIMUM
K-COLORABLE SUBGRAPH PROBLEM 347



9.3 THE k-SUBGRAPH COLORING PROBLEM

Theorem 9.3.2 (nonlinear-based QUBO reformulation of MkCS problem). Let k ≥ 1 and a

Graph G(V,E) on n vertices be given. Then, for any c1 > 1,c2 > 1, Qn
c1,c2

(k,G) = αk(G), and if

x̃ ∈ argmax{Qn
c1,c2

(k,G)} then x̃ ∈ argmax{αk(G)}.

Proof. The proof is mostly analogous to the proof of Theorem 9.3.1. First, notice that x̃

is well defined and Qn
c1,c2

(k,G) is attained as (9.20) is defined over a compact feasible set.

Also, notice that for any c1,c2 > 0 and any feasible solution x′ ∈ {0,1}n×k for the MkCS

problem (9.7) with objective value z(x′) :=
∑

i∈[n],r∈[k] xir, one hast that x′ is a feasible solution

of (9.20) with objective value Hn
c1,c2

(x) = z(x′) (i.e., x′ satisfies (9.18)). Thus, if c1,c2 > 0, the

QUBO problem (9.20) is a relaxation of (9.7), and consequently Qn
c1,c2

(k,G) ≥ αk(G). Thus,

to prove the result, it is enough to show that when c1,c2 > 1, one has that x̃ is a feasible

solution for (9.7). By contradiction, assume this is not the case and let c1,c2 > 1. Then

either: (1) there is at least an (i′, j′) ∈ E and r′ ∈ [k] such that x̃i′r′ + x̃ j′r′ > 1; or (2) there is

at least an i′ ∈ [n] and r′ ∈ [k] such that x̃i′r′ = 1 and
∑

r,r′∈[k] x̃i′r ≥ 1. Notice that in either

case x̃i′r′ = 1. Now consider the feasible solution x ∈ {0,1}n×k for (9.20) obtained from x̃ by

letting x = Xi′r′ (̃x) (cf., (9.10)). Notice that from (9.8), (9.10), and the fact that x̃i′r′ = 1 one

has that (9.13) holds. Also, from (9.19a), (9.10), and the fact that x̃i′r′ = 1, it follows that

−Hn
1(x) = −Hn

1 (̃x) +
∑

(i′, j, j′)∈E x̃ jr′ + x̃ j′r′ . Thus,

−Hn
1(x) ≥ −Hn

1 (̃x) + x̃ j′r′ . (9.21)

Further, from (9.19b), (9.10), and the fact that x̃i′r′ = 1, it follows that

−Hn
2(x) = −Hn

2 (̃x) +
∑

r,r′∈[k]

xi′r. (9.22)

Using (9.13), (9.21), (9.22), it follows that

Hn
c1,c2

(x) ≥ Hn
c1,c2

(̃x)−1 + c1 x̃ j′r′ + c2

∑
r,r′∈[k]

xi′r. (9.23)
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In case (1), we have that x̃ j′r′ = 1. Thus, from (9.23), we have that Hn
c1,c2

(x) ≥ Hn
c1,c2

(̃x)−1+c1 >

Hn
c1,c2

(̃x) = Qn
c1,c2

(k,G), which contradicts the optimality of x̃ for (9.20). Analogously, in case

(2), we have that
∑

r,r′∈[k] x̃ j′r ≥ 1. Thus, from (9.23), we have that Hn
c1,c2

(x) ≥ Hn
c1,c2

(̃x)−1+c2 >

Hn
c1,c2

(̃x) = Qn
c1,c2

(k,G), which contradicts the optimality of x̃ for (9.20).

Therefore x̃ satisfies that there is no (i′, j′) ∈ E and r′ ∈ [k] such that x̃i′r′ + x̃ j′r′ > 1, or i′ ∈ [n]

and r′ ∈ [k] such that
∑

r∈[k] x̃i′r > 1. Therefore x̃ is a feasible solution of (9.7), which finishes

the proof. �

Next, we show that the value of the penalty parameters c1,c2 in the definition of Qn
c1,c2

(k,G)

in (9.20) can be further reduced to the values c1 = c2 = 1 (indeed, more generally to c1 = 1,

c2 ≥ 1, or c1 ≥ 1, c2 = 1), while still being able to obtain an optimal solution for the MkCS

problem for G(V,E) by solving the QUBO problem Qn
1,1(k,G). In this case, Qn

1,1(k,G) and

αk(G) are equivalent in terms of their optimal objective value, but not necessarily in terms

of their optimal solutions. That is, the optimal solution x̃ := argmax(Qn
1,1(k,G)) might not

necessarily be a feasible solution for the MkCS problem, which hinders the possibility of

constructing a MkCS setH for G(V,E). However, as we formally show in the next corollary,

the Qn
1,1(k,G) optimal solution x̃ can be simply modified to obtain an optimal solution for

the MkCS problem.

Corollary 9.3.1 (unit-penalty nonlinear-based QUBO formulation of MkCS problem). Let

k ≥ 1 and a Graph G(V,E) on n vertices and c1,c2 ≥ 0 be given, and let x̃ := argmax{Qn
c1,c2

(k,G)}

(recall (9.20)). If c1 = 1, c2 ≥ 1 or c1 ≥ 1, c2 = 1, then Qn
c1,c2

(k,G) = αk(G). Furthermore,

x′ ∈ argmax{αk(G)}, where x′ ∈ {0,1}n×k is the output obtained when k, G(V,E), |V |, x = x̃ is

used as input in Algorithm 12.

Proof. The result follows from the proof of Theorem 9.3.2 and Algorithm 12. More specifi-

cally, in the case c1 = 1, c2 ≥ 1, notice that Algorithm 12, step (4), is equivalent to applying
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the mapping Xir(·) (recall (9.10)) to the current solution x in the Algorithm when xir = x jr = 1

for some (i, j) ∈ E, r ∈ [k]. Thus, it follows from (9.23) that the value of Hn
c1,c2

= Hn
1,c2

(x)

can only increase or stay equal after Algorithm 12, step (4). Similarly, in the case c1 ≥ 1,

c2 = 1, notice that Algorithm 12, step (7), is equivalent to applying the mapping Xir(·)

(recall (9.10)) to the current solution x in the Algorithm when xir = 1,
∑

p,r∈[k] xip ≥ 1 for

some i ∈ [n], r ∈ [k]. Thus, it follows from (9.23) that the value Hn
c1,c2

(x) = Hn
c1,1

(x) can

only increase of stay equal after Algorithm 12, step (7). Thus, in both cases, at the end

of Algorithm 12 one obtains a feasible solution x′ for the MkCS problem with objective

Hn
c1,c2

(x′) ≥ Hn
c1,c2

(̃x) = Qn
c1,c2

(k,G). Since Qn
c1,c2

(k,G) ≥ αk(G) (see beginning of proof of Theo-

rem 9.3.2), it follows that Qn
c1,c2

(k,G) = αk(G), and x′ ∈ argmax{αk(G))}. �

In light of Theorem 9.3.2 and Corollary 9.3.1, it is natural to consider what happens if in

the QUBO problem (9.20) one considers penalty parameters 0 < c1,c2 < 1.

Proposition 9.3.1. Let k ≥ 1 and c1,c2 > 0 be given. If c1 < 1 or c2 < 1 and k ≥ 1, then there

exists a Graph G(V,E) such that Qn
c1,c2

(k,G) > αk(G).

Proof. First, consider the case in which 0 < c1 < 1, and let G(V,E) is a clique of k + 1 vertices.

Clearly αk(G) = k. Now, for all i ∈ [k + 1], r ∈ [k], let

xir =


1 i = r, i ≤ k,

1 i = k + 1,r = k,

0 otherwise.

Then, Qn
c1,c2

(k,G) ≥ Hn
c1,c2

(x) = (k +1)−c1 > k = αk(G). Now, consider the case in which 0 < c2 <

1, and let G(V,E) be the graph on k + 1 vertices obtained by taking a clique in k + 1 vertices

and adding a vertex k + 2 and edge (k + 1,k + 2). That is, V = [k + 2], and E = {(i, j) : 1 ≤ i < j ≤
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k + 1}∪ {(k + 1,k + 2)}. Clearly αk(G) = k + 1. Now let

xir =



1 i = r, i ≤ k

1 i = k + 2,r = k

1 i = k + 2,r = k−1

0 otherwise

, for all i ∈ [k + 2],r ∈ [k].

Then, Qn
c1,c2

(k,G) ≥ Hn
c1,c2

(x) = (k + 2)− c2 > k + 1 = αk(G). �

Remark 9.3.1. Theorem 9.3.2 together with Corollary 9.3.1 and Proposition 9.3.1 fully

characterize the QUBO problem (9.20) as a means to obtain a QUBO reformulation of the

MkCS problem. In short, for any c1,c2 ≥ 1, solving the nonlinear-based QUBO problem (9.20)

is equivalent to solving the MkCS problem with the caveat that if either c1 = 1 or c2 = 1, the

simple Algorithm 12 might need to be applied to the optimal solution of (9.20) in order

to obtain an optimal solution for the MkCS problem. On the other hand, if 0 < c1 < 1 or

0 < c2 < 1, solving the nonlinear-based QUBO problem (9.20) is not guaranteed to provide

the objective value or the solution to the MkCS problem.

As illustrated in Section 9.4, the full characterization provided in this section (see sum-

mary in Remark 9.3.1) gives the freedom to fine-tune the QUBO reformulation of the MkCS

problem to make the best use of quantum tools in addressing the solution of this problem.

In finishing this section, recall that the MkCS problem is equivalent to the stable set

problem when k = 1. Thus the QUBO reformulation results [see, e.g., 320, 326, 327, 348–350,

355, 358] for the stable set problem of the form

α(G) = max


n∑

i=1

x2
i − c1

∑
(i, j)∈E

xix j : x ∈ {0,1}n
 , (9.24)

for a given Graph G(V,E) on n vertices and c1 ≥ 1 follow from Theorem 9.3.2 and Corol-

lary 9.3.1. In particular, Corollary 9.3.1 implies results in which c1 is set to one in (9.24).
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However, Corollary 9.3.1 brings up a fact that, to the best of our knowledge, has been

ignored in the literature; namely, that when c1 is set to one in (9.24), the support of the

optimal solution of (9.24) might not necessarily correspond to a stable set of the Graph

G(V,E). However, an optimal solution for the stable set problem can be obtained from the

optimal solution of (9.24) by applying Algorithm 12 (see Corollary 9.3.1).

9.3.3 Linear-based QUBO reformulation revisited

After the results in Section 9.3.2, which provide a full characterization of the QUBO prob-

lem (9.20) to reformulate the MkCS problem, it is natural to consider if a similar full charac-

terization of the QUBO problem (9.12) can be obtained. Indeed, it is not difficult to see that

analogous results (with analogous proofs that are not included in the interest of brevity), to

Corollary 9.3.1 and Proposition 9.3.1 can be obtained for the QUBO problem (9.12).

Corollary 9.3.2 (unit-penalty linear-based QUBO formulation of MkCS problem). Let k ≥ 1

and a Graph G(V,E) on n vertices and c1,c2 ≥ 0 be given, and let x̃ := argmaxx{Ql
c1,c2

(k,G)}

(recall (9.12)). If c1 = 1, c2 ≥ 1 or c1 ≥ 1, c2 = 1, then Ql
c1,c2

(k,G) = αk(G). Furthermore,

x′ ∈ argmax{αk(G)}, where x′ ∈ {0,1}n×k is the output obtained when k, G(V,E), |V |, x = x̃ is

used as input in Algorithm 12.

Proposition 9.3.2. Let k ≥ 1 and c1,c2 > 0 be given. If c1 < 1 or c2 < 1 and k ≥ 1, then there

exists a Graph G(V,E) such that Ql
c1,c2

(k,G) > αk(G).

9.4 Benchmarking

To illustrate the benefits of the fully characterized QUBO reformulations presented in

Section 9.3, we next benchmark the linear-based (Section 9.3.1) and nonlinear-based (Sec-

tion 9.3.2) QUBO reformulations of the MkCS problem when solving them with a quantum
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annealer. For this purpose, we present results pertaining the minimum gap [see, e.g., 364],

related to the convergence rate of (an ideal) adiabatic quantum algorithm (AQC), embed-

ding [see, e.g., 333] into the available quantum annealing hardware, and time-to-solution

(TTS) [see, e.g., 365] when performing the quantum annealing.

The embedding and TTS benchmarking results are obtained using D-Wave’s quantum

annealers?. Specifically, we report the different results obtained when using two different

D-Wave processors: 2000QTM and Advantage 1.1TM. The main difference between these

two processors is the number of available qubits and their connectivity within the processor.

The 2000QTM processor has 2048 possible qubits (of which 2041 were available) connected

in a Chimera connectivity graph, designed as a grid of 16×16 cells of K4,4 bipartite graphs

connected in a nearest-neighbor fashion by means of non-planar edges, where each qubit is

connected to at most 6 neighbors [366]. The Advantage 1.1TM processor counts with 5640

qubits (5510 available) following a Pegasus connectivity graph, defined as three layers of

16×16 cells of K4,4 bipartite graphs with additional connections within and among the cells,

providing an increased connectivity for each qubit to maximum 15 neighbors [84].

Each QUBO reformulation proposed here is thus used to solve the MkCS problem in a

D-Wave quantum annealer. These numerical experiments are similar in nature to those

carried out in [327, 337–339] to compare different QUBO formulations of various COPT

problems.

To generate instances G(V,E) for the numerical tests, given the number of nodes |V | = n,

we generate instances with randomly defined edge set E, using Erdős-Rényi graphs G(n, p)

with probabilities p = 0.25,0.5,0.75 (i.e., with different levels of sparsity). In what follows,

for the purpose of brevity, we will sometimes refer to the linear-based QUBO reformulation

(Section 9.3.1) as L-QUBO, and to the nonlinear-based QUBO reformulation (Section 9.3.2) as

?https://www.dwavesys.com/
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N-QUBO. All the classical computations are done using an Ubuntu Machine with processor

Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, 94Gb of RAM, and 20 cores.

9.4.1 Quantum Annealing

Before presenting the benchmarking results, we provide a very brief high level discussion

about the ideal version of the quantum annealing algorithm run by D-Wave’s quantum

annealer; that is, an AQC algorithm [following 367, 368]. For additional details, the reader is

directed to [80, 369, 370, among many others]. The fact that complex COPT problems (such

as the MkCS problem considered here) can be reformulated as QUBO problems, means

that finding the optimal solution of the problem can be regarded as finding or sampling

low-energy states from an Ising spin model HamiltonianH f that is constructed from the

QUBO formulation (i.e., using [367, Eq. (14)]). For that purpose, a simple HamiltonianHi

with an easily prepared ground (low-energy) state is prepared (i.e., using [367, Eq. (12)]).

Then, by constructing an adequate interpolation [see, e.g., 367, Eq. (1)] between theHi and

H f Hamiltonians, the system can be set to slowly evolve (so that the adiabatic theorem [cf.,

80] is satisfied) from the ground state ofHi to a state that will yield the desired low-energy

state ofH f with high probability. In particular, here we construct the interpolation:

H(s) =
A(s)

2
Hi +

B(s)
2
H f , (9.25)

where s ∈ [0,1] is the adimensional (or reduced) time s = t
T with t denoting time and T

denoting the computation time, A(s) is the tunneling energy curve, and B(s) is the prob-

lem’s Hamiltonian energy curve, for all s ∈ [0,1]. The specifications of A(s) and B(s) for

both the D-Wave 2000QTM and Advantage 1.1TM processors can be found in D-Wave’s

documentation [368].
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9.4.2 Minimum Gap

Now we consider the evolution of the AQC algorithm under (9.25). It is known that the

minimum gap; that is, the minimum energy gap between the lowest two energy levels during

the evolution of the AQC algorithm determines the time of the computation [see, e.g., 371,

372]. Such energy levels correspond with the eigenvalues Em(s) of the eigenstates m; s〉 of

the HamiltonianH(s), where m ∈ {0,1, . . . ,2n−1} in an n qubit system, and are given by [see,

367]:

H(s)|m; s〉 = Em(s)|m; s〉, (9.26)

with E0(s) ≤ E1(s) ≤ · · · ≤ E2n−1. Thus, the minimum gap, denoted by ∆min, is given by [see,

367]:

∆min = min
s∈[0,1]

{E1(s)−E0(s)}. (9.27)

The minimum gap ∆min provides a lower bound on the AQC computation time that is

inversely proportional to ∆2
min [see, 367, Eq. (9)]; that is, the larger ∆min, the faster the AQC

algorithm is expected to converge to the ground state of the HamiltonianH f [see, e.g., 370].

Here, we use the exact diagonalization of the instantaneous time-dependent Hamiltonian

H(s) to compute ∆min. Although this methodology is well known to require a prohibitive

amount of computation due to the need to diagonalize matrices of size 2n×2n for a system

with n qubits; it is suitable for the illustrative numerical tests performed here (for less

computationally expensive ways to approximately compute ∆min, we refer the readers

to [372]).

In particular, to obtain the minimum gap results presented next, we begin by calculating,

for a number of finite values of s ∈ [0,1] (see details below), the HamiltonianH(s) in (9.25)

for particular instances of the L-QUBO (resp. N-QUBO) formulation of the MkCS problem.

Then, we verify which eigenvalues ofH(s) correspond to different states in the annealing
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process. Two states are considered different if at the end of the annealing, their energy

difference is more than a given ε. Here, we use ε = 1 GHz. Finally, we approximately

compute the minimum difference along the annealing scaled time s of the two smallest

eigenvalues corresponding to different states (the ground state and the first excited state).

The approximation comes from the fact that the minimum in (9.27) is computed over a

finite set of values of s ∈ [0,1]. Specifically, given the monotonic behavior of A(s) and B(s),

we observe that ∆min is attained at a value s ∈ [0,1] that is close to the value of s ∈ [0,1] in

which the maximum of the minimum eigenvalue is attained. Moreover, for the instances

considered here, the minimum eigenvalue is concave on s ∈ [0,1], allowing us to more

efficiently sample the domain [0,1] in search for the value of ∆min. Namely, we first consider

a coarse discretization of the domain [0,1] (taking only 10 equally spaced elements of the

set) and then determine the three points whose middle point would be larger than both its

neighbors. This interval contains the values of s ∈ [0,1] in which both the maximum value

of the smallest eigenvalue, and ∆min is attained. We sample this interval by computing 10

points between each of these points (including them) to refine the approximation to the

value s∗ in which the minimization in (9.27) is attained. This procedure only requires 44

computations of the eigenvalues of the HamiltonianH(s).

9.4.2.1 Minimum Gap Results

Next, we compare the minimum gap (∆min) resulting when using the L-QUBO reformulation

and the N-QUBO reformulations for the MkCS problem with varying penalty parameters

(i.e., c1, c2) on small instances of the MkCS problem.

In particular, Figures 9.1 and 9.2 compare the ∆min obtained from the L-QUBO (9.12) and

N-QUBO (9.20) for instances of the MkCS problem in which k = 1, where the underlying

graphs are randomly selected G(5,0.25) and G(5,0.75) graphs. These bar plots, as well

356
CHAPTER 9. CHARACTERIZATION OF QUBO REFORMULATIONS FOR THE MAXIMUM

K-COLORABLE SUBGRAPH PROBLEM



9.4 BENCHMARKING

Figure 9.1: Mingap: k = 1, G(5,0.25). Figure 9.2: Mingap: k = 1, G(5,0.75).

as the remaining ones in this section, provide information about the distribution of ∆min.

Specifically, each bar is obtained by computing ∆min on 100 randomly generated graphs

G(5, p), p ∈ {0.25,0.50,0.75}, for different values of the penalization parameters. The tick line,

represents the median of ∆min, the black diamond represents ∆min, the average of ∆min, the

bar encompasses the values within the 25% and 75% quantiles of ∆min’s distribution, and

the dotted interval encompasses the values within the 0% and 100% of ∆min’s distribution.

From Figures 9.1 and 9.2, it follows that the N-QUBO results in higher ∆min than the

L-QUBO; therefore, in theory, the N-QUBO Hamiltonian should converge faster to a low

energy state than the L-QUBO Hamiltonian. We can state this more formally by performing

a simple hypothesis test. Let ∆
a
min(k, p,c1,c2) (resp. µ∆a

min
(k, p,c1,c2)) be the average (resp.

mean) of the minimum gap for the a-QUBO formulation of the MkCS instance from G(5, p)

graphs, and penalty parameters c1, c2. Then, consider the hypothesis test:

Ho : µ∆L
min

(1, p,1, ·) ≥ µ∆N
min

(1, p,1, ·)−δ∆
N
min(1, p,1, ·)

Ha : µ∆L
min

(1, p,1, ·) < µ∆N
min

(1, p,1, ·)−δ∆
N
min(1, p,1, ·),

(9.28)

where δ ∈ [0,100%]. That is, in (9.28) we are statistically comparing the left-most bars of the

N-QUBO subplot and the L-QUBO subplot of Figures 9.1 and 9.2 (for brevity, the results for
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the case p = 0.50 have not bee plotted), under the null hypothesis that the L-QUBO provides

a higher mean ∆min. Then, for any p ∈ {0.25,0.50,0.75} one gets that the null hypothesis

Ho in (9.28) can be rejected with 95% confidence for values of δ up to 2%. Thus, loosely

speaking, the N-QUBO results in values of ∆min that on average are 2% higher than the ones

obtained by the L-QUBO, when using penalty parameter c1 = 1.

One advantage of having the full characterization of the penalty constants, for which

the QUBO formulations (9.12) and (9.20) become reformulations of the MkCS problem, is

that we can investigate what are the trade-offs of increasing such penalty values from their

minimum ones. Intuitively, one might expect that ∆min increases (faster convergence) as

the values of the penalty parameters c1,c2 increase. This reasoning stem from the fact that

higher penalty parameters increase the suboptimality of infeasible solutions of the original

problem in its associated QUBO reformulation. However, from Figures 9.1 (left) and 9.2

(left) it follows that ∆min remains fairly unchanged as the penalty parameter c1 increases.

More formally, consider a similar hypothesis test to the one considered in (9.28).

Ho : µ∆N
min

(1, p,c1, ·) ≥ µ∆N
min

(1, p,1, ·) +δ∆
N
min(1, p,1, ·)

Ha : µ∆N
min

(1, p,c1, ·) < µ∆N
min

(1, p,1, ·) +δ∆
N
min(1, p,1, ·).

(9.29)

Then, for any p ∈ {0.25,0.50,0.75)},c1 ∈ {2,5}, one gets that the null hypothesis Ho in (9.28)

can be rejected with 95% confidence for values of δ less than 1%. Thus, loosely speaking,

the N-QUBO with penalty parameter c1 = 1 results in values of ∆min that on average are not

1% lower than the ones obtained by the N-QUBO with higher penalty parameters c1 ∈ {2,5}.

It is clearly interesting to investigate how the characteristics above look when considering

higher values of k. Due to the complexity of the exact diagonalization procedure used

to compute ∆min, we limit to the study of the case k = 2 for the N-QUBO reformulation,

considering penalty parameters constants c1 ∈ {1,2,5}, and c2 ∈ {1,2,5}.

Much like in the case when k = 1, from Figures 9.3 and 9.4 it follows that ∆min barely
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Figure 9.3: Mingap: k = 2, G(5,0.25). Figure 9.4: Mingap: k = 2, G(5,0.75).

increases as the penalty parameters c1,c2 increase, in comparison to the value of ∆min when

the penalty parameters are set to c1 = c2 = 1. Statistically, things are a bit different. Formally,

consider a similar hypothesis test to the one considered in (9.29).

Ho : µ∆N
min

(2, p,c1,c2) ≥ µ∆N
min

(2, p,1,1) +δ∆
N
min(2, p,1,1)

Ha : µ∆N
min

(2, p,c1,c2) < µ∆N
min

(2, p,1,1) +δ∆
N
min(2, p,1,1).

(9.30)

Table 9.1 shows the minimum value of δ in (9.30) for which the null hypothesis Ho in (9.29)

can be rejected with a 95% confidence level. Loosely speaking, the value of δ indicates

the percentage by which the value of ∆min(2, p,1,1) must be higher in order to reject the

hypothesis that larger penalty parameters (i.e., larger than c1 = c2 = 1) result in a larger

mean value of ∆min.

Overall, there is a recognizable pattern in Table 9.1. Namely, it is clear that the sparser

the underlying graph (i.e., lower probability p) used to construct the instance of the MkCS

problem, the smaller the effect of increasing penalty parameters is on increasing the mean

of ∆min (i.e., accelerating convergence of an AQC algorithm). This is intuitively expected,

given that sparsity in the underlying graph results in a lower number of penalty terms

in the N-QUBO (9.20). In particular, notice that a significant increase in the mean of ∆min,

for sparse underlying graphs (i.e., p = 0.25), only arises when the penalty parameters are
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δ

(c1,c2) p = 0.25 p = 0.50 p = 0.75 Ho

(1,2) -5% 8% 12% Reject
(1,5) -5% 5% 11% Reject
(2,1) 1% 4% 1% Reject
(2,2) 1% 12% 7% Reject
(2,5) 1% 13% 6% Reject
(5,1) 1% 2% 0% Reject
(5,2) 4% 15% 11% Reject
(5,5) 11% 22% 13% Reject

Table 9.1: Hypothesis test (9.30) for different parameters with 95% confidence.

increased from c1 = c2 = 1 to c1 = c2 = 5. In contrast, for non-sparse underlying graphs (i.e.,

p = 0.75), increases in the penalty constants above c1 = c2 = 1 bring increases in the mean

of ∆min of about 10% in most cases. In Section 9.4.4, we will analyze how these increases

in the mean of ∆min affect the convergence to a solution in D-Wave’s quantum annealing

devices. Before doing this analysis, we first consider the differences in terms of embedding

requirements between the N-QUBO and L-QUBO formulation.

9.4.3 Embedding

Current NISQ devices have a low number of qubits available with restricted connectivity.

Given this, the number of qubits required to embed [see, e.g., 333] a QUBO reformulation of

a given COPT problem in a quantum device is a very important benchmark to compare

the benefits of different QUBO reformulations of a COPT problem [see, e.g., 335, 337–339].

Next, to benchmark the N-QUBO (9.20) versus the L-QUBO (9.12) reformulation of the

MkCS problem, we use the number of qubits needed to embed the QUBO reformulation

in both a 2048 qubits Chimera connectivity graph (for D-Wave’s 2000QTM processor), and

a 5640 qubits Pegasus connectivity graph (for D-Wave’s Advantage 1.1TM processor). For

this purpose, we use D-Wave’s embedding algorithm [see, e.g., 373, 374, for a discussion of
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different embedding algorithms].

Figure 9.5: Embeding: k = 1, G(n,0.25). Figure 9.6: Embedding: k = 1, G(n,0.25).

Note that for a Graph G(V,E) with n nodes, the number of binary variables required to

formulate the L-QUBO for the associated MkCS problem is k(n + |E|+ 1), while kn binary

variables are needed to formulate the associated N-QUBO. Not surprisingly, the N-QUBO

would require less number of qubits than the L-QUBO when these QUBOs are embedded

into D-Wave’s quantum annealers. The following results show how the increased number of

binary variables required by the L-QUBO affects the difference between the qubits required

to embed both QUBO formulations.

In Figures 9.5-9.12, the number of average qubits required by both the L-QUBO and

the N-QUBO formulations are plotted for values of k ∈ {1,2,5}, graphs G(n, p) for values of

n ∈ [5,50], p ∈ {0.25,0.50,0.75}, and D-Wave’s 2000QTM and Advantage 1.1TM processors. The

average is computed over five (5) random graphs G(n, p) generated for each combination

of n, p values, as well as ten (10) runs of D-Wave’s embedding algorithm. The bars plotted

with each point in the graph represent the values within one standard deviation of the

average value.

From all Figures 9.5-9.12, it is clear that in terms of embedding requirements, the N-QUBO
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Figure 9.7: Embeding: k = 1, G(n,0.75). Figure 9.8: Embedding: k = 1, G(n,0.75).

Figure 9.9: Embeding: k = 2, G(n,0.50). Figure 9.10: Embedding: k = 2, G(n,0.50).

formulation is substantially better than the L-QUBO formulation. This is true not only in

terms of the average qubits required to embed each QUBO, but the volatility of the number

of qubits required to embed each QUBO. In Figure 9.5, in which sparse graphs (i.e., p = 0.25)

are used for the case k = 1, both QUBO formulations can be embedded, for graphs with up

to n = 50, in D-Wave’s 2000QTM processor. However, in Figure 9.7, where dense graphs (i.e.,

p = 0.75) are considered, now the L-QUBO can be embedded only for graphs with up to

n = 40. From Figures 9.9 and 9.11 it is clear that as k and p increase, this trend of being able
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to embed larger problems in terms of number of nodes n continues to be evidenced even

more. Even using the more powerful Advantage 1.1TM processor, Figure 9.12 shows that for

sparse graphs (i.e., p = 0.25) and k = 5, the L-QUBO can only be embedded for graphs with

up to n = 40, while it seems that the N-QUBO can be embedded for graphs with up to n = 80

(i.e., the double number of nodes).

Figure 9.11: Embeding: k = 5, G(n,0.25). Figure 9.12: Embedding: k = 5, G(n,0.25).

By pairwise comparing Figures 9.5, 9.7, 9.9, 9.11, versus Figures 9.6, 9.8, 9.10, 9.12, one can

see the advantages of the Advantage 1.1TM processor versus the 2000QTM processor. The

effect of having a larger number of qubits clearly means that larger instances of the L-QUBO

can be embedded in the Advantage 1.1TM processor than in the 2000QTM processor. Also

evident are the effects of the improved connectivity between qubits in the Advantage 1.1TM

processor. Namely, it is clear that the Advantage 1.1TM processor is able to embed QUBO

problems using a substantially lower number of qubits than in the 2000QTM processor.

For example, from Figures 9.7 and 9.8, it takes about 800 qubits to embed the N-QUBO of

graphs with 50 nodes in the 2000QTM processor, while it takes about half the number of

qubits (about 400) to embed the N-QUBO of graphs with 50 nodes in the Advantage 1.1TM

processor. The pairwise comparison between Figures 9.5, 9.7, 9.9, 9.11, and Figures 9.6, 9.8,
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9.10, 9.12, also shows how the added connectivity in the Advantage 1.1TM processor clearly

lowers the volatility of the number of qubits required to embed a QUBO using D-Wave’s

embedding algorithm.

9.4.4 Time-To-Solution

We now finish our numerical tests by comparing (mirroring some of the tests in Sec-

tions 9.4.2.1 and 9.4.3) the time-to-solution (TTS) required, by both D-Wave’s quantum

annealer processors, when using the N-QUBO and L-QUBO reformulation of the MkCS,

with penalty parameters c1 ∈ {1,2,5},ce ∈ {1,2,5}, for values k = 2, on random graphs G(n, p)

for n ∈ [5,50], p ∈ {0.25,0.75} (similar results were obtained for k ∈ {1,5}, and p = 0.50 but

are not presented for brevity). Besides benchmarking the N-QUBO versus the L-QUBO

reformulation of the MkCS, these tests will be used to analyze the effect of the value of

penalization constants in the TTS, and the effect in the TTS of using the more powerful

Advantage 1.1TM processor.

Figure 9.13: TTS: k = 2, G(n,0.25), c1 = c2 =

1.
Figure 9.14: TTS: k = 2, G(n,0.25), c5 = c2 =

5.

TTS is a common benchmark used to evaluate the performance of quantum annealers and

is defined as the expected time required to find a ground state of the desired Hamiltonian
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with a level of confidence α, which is set to 95% in our tests. Formally [see, e.g., 365],

TTS = trun
ln(1−α)
ln(1− p)

, (9.31)

where trun, fixed to 20µs in our tests, is the running time elapsed in a single run of the

quantum annealer, and p is the probability of finding the ground state of the desired

Hamiltonian. In our tests, p is estimated by running the quantum annealer 1000 times.

Figure 9.15: TTS: k = 2, G(n,0.25), c1 = c2 =

1.
Figure 9.16: TTS: k = 2, G(n,0.25), c5 = c2 =

5.

From Figures 9.13-9.20, it is clear that regardless of the quantum annealing processor,

penalty parameters, or sparsity of the graph, the N-QUBO reformulation of the MkCS

problem performs substantially better than the associated L-QUBO reformulation in terms

of TTS. For example, note that from Figure 9.15 it follows that for sparse graphs (i.e.,

p = 0.25), the N-QUBO results in TTS values that are between three (3) orders of magnitude

faster, for small graphs, and one (1) order of magnitude faster, for larger graphs, than the

associate TTS values for the L-QUBO.

From Figure 9.17 it is clear that when considering non-sparse graphs (i.e., p = 0.75) in

the 2000QTM processor, the advantages of the N-QUBO over the L-QUBO in terms of TTS

only increase. In particular, notice that while a trun of 20µs is enough to find the optimal

CHAPTER 9. CHARACTERIZATION OF QUBO REFORMULATIONS FOR THE MAXIMUM
K-COLORABLE SUBGRAPH PROBLEM 365



9.4 BENCHMARKING

Figure 9.17: TTS: k = 2, G(n,0.75), c1 = c2 =

1.
Figure 9.18: TTS: k = 2, G(n,0.75), c5 = c2 =

5.

solution with some small probability for instances of the MkCS problem with underlying

graphs of up to n = 50 nodes. In contrast, once the number of nodes of the underlying graph

goes beyond n = 25, with the L-QUBO the quantum annealer is unable to find an optimal

solution in all 1000 runs of 20µs.

Figure 9.19: TTS: k = 2, G(n,0.75), c1 = c2 =

1.
Figure 9.20: TTS: k = 2, G(n,0.75), c5 = c2 =

5.

Not surprisingly, pairwise comparing Figures 9.13, 9.17, with Figures 9.15, 9.19, the

advantages of the Advantage 1.1TM processor over the 2000QTM processor in terms of TTS
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are clear. For the L-QUBO the newer processor finds solutions for much larger instances of

the MkCS problem. For the N-QUBO, the rate of increase of the TTS as the size of the MkCS

problem increases is about one order of magnitude lower in the newer processor.

We can also use the results presented in this question to study whether the conclusions

made in Section 9.4.2.1, particularly in Table 9.1, reflect on the actual TTS time when

using a quantum annealer. Note that from Table 9.1 it was expected that for instances

of the MkCS problem with k = 2 and underlying graphs G(n,0.25), increasing the penalty

constants from c1 = c2 = 1 to c1 = c2 = 5 would result in a faster convergence. However, by

comparing Figures 9.13 and 9.14, as well as Figures 9.15 and 9.16, it follows that increasing

the penalty constants in this way is actually counterproductive for both quantum annealing

processors in terms of TTS (i.e., in Figures 9.14 and 9.16, the “slope” at which the TTS

increases with the number of nodes is higher. Also, from Table 9.1 it was expected that for

instances of the MkCS problem with k = 2 and underlying graphs G(n,0.75), the increase

in the penalty constants from c1 = c2 = 1 to c1 = c2 = 5 would have an even slightly higher

benefit in terms of speed of convergence (compared with G(n,0.25) graphs). However, by

comparing Figures 9.17 and 9.18, as well as Figures 9.19 and 9.20, it follows that increasing

the penalty constants in this way does not produce discernible improvements for the

quantum annealing processors in terms of TTS. Most likely, this means that any theoretical

advantages in terms of convergence obtained by increasing the value of penalty constants

is off-set by the precision problems that using larger penalty parameters brings for the

quantum annealing processors in practice. The fact that being able to use penalty parameters

close to one (1) is beneficial for quantum annealers is discussed, for example, in [333]. This

shows the importance of being able to fully characterize the range of penalty constants that

result in a QUBO being a reformulation of a COPT problem.

CHAPTER 9. CHARACTERIZATION OF QUBO REFORMULATIONS FOR THE MAXIMUM
K-COLORABLE SUBGRAPH PROBLEM 367



9.5 CONCLUDING REMARKS

9.5 Concluding remarks

In this chapter, we consider a particularly important combinatorial optimization (COPT)

problem; namely, the maximum k-colorable subgraph (MkCS) problem, in which the aim

is to find an induced k-colorable subgraph with maximum cardinality in a given graph.

This problem arises in channel assignment in spectrum sharing networks (e.g., Wi-Fi or

cellular), VLSI design, human genetic research, cybersecurity, cryptography, and schedul-

ing. We derive two QUBO reformulations for the MkCS problem; a linear-based QUBO

reformulation (Theorem 9.3.1) and a nonlinear-based QUBO reformulation (Theorem 9.3.2).

Furthermore, we fully characterize the range of the penalty parameters that can be used in

the QUBO reformulation. In the case of the linear-based QUBO reformulation, this analysis

shows that Theorem 9.3.1 provides a better QUBO reformulation for the MkCS problem

than the one that could be obtained using the QUBO reformulation techniques recently

introduced by Lasserre [347]. In the case of the nonlinear-based QUBO reformulation, this

analysis shows that Theorem 9.3.2 provides a better QUBO reformulation for the MkCS

problem than the one that could be obtained using the well-known QUBO reformulation

techniques introduced by Lucas [79]. Our proofs bring forward a fact that is overlooked

in related articles. Namely, that when minimal penalty parameters are used in QUBO

reformulations, the equivalence in terms of objective value between a problem and its

associated QUBO reformulation does not necessarily mean that the optimal solution of the

QUBO reformulation provides a feasible, optimal solution for the original problem. This

is shown to be the case for the MkCS problem in Corollaries 9.3.1 and 9.3.2. Given that

for k = 1 the MkCS problem is equivalent to the stable set problem, we show (see end of

Section 9.3.2) that this issue applies to the well-known QUBO reformulation of the stable

set problem (9.24). However, we show that this issue can be be simply addressed by using

the greedy Algorithm 12 (for general instances of the MkCS problem).
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We finish in Section 9.4 by illustrating the advantages of the nonlinear-based QUBO

reformulation over the linear-based QUBO reformulation in terms of embedding require-

ments, convergence rate, and time-to-solution when the QUBO reformulations are used to

solve the MkCS problem in a quantum annealing device. The experiments also illustrate

the importance of having a full characterization of the penalty parameters that ensure the

proposed QUBOs are indeed reformulations of the original problem. For example, we

explore the potential theoretical and practical gains of using higher penalty parameters

than the minimum ones required for the QUBO to become a reformulation of the MkCS

problem. Our results show that although there are some theoretical benefits of using larger

than minimal penalty parameters, they do not translate to a faster convergence to a solution

of the problem on a quantum annealing computing device.

Our results contribute to recent literature that beyond obtaining QUBO reformulations

of COPT problems such as the graph isomorphism problem as well as tree and cycle

elimination problems, look for improved QUBO reformulations of these problems for NISQ

devices [see, e.g., 327, 335, 337–339]. That is, QUBO reformulations that are tailored to be

more efficiently used in NISQ devices.
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Chapter 10

Formulating and Solving Routing Problems

on Quantum Computers

10.1 Introduction

Routing problems encompass a wide range of problems in logistics and operations research.

These problems are generally concerned with the optimal management of a fleet of vehicles,

e.g., how should each vehicle be dispatched in order to satisfy some goal, while minimizing

time or maximizing profit. There are many variants and specifications of the problem to

certain settings [376]. Typical solution approaches to VRPTW on classical computing devices

include mathematical formulations involving discrete variables. Consequently, classical

methods tend to have worst-case solution times that scale exponentially with the number

of decision variables (the 0-1 integer programming feasibility problem is NP-complete [377,

§I.5, Prop. 6.6]).

For specific applications, tailored exact approaches, matheuristics, and metaheuristics

need to be devised with the aim of obtaining solutions with good quality at a reasonable

computational effort. For example, we are motivated by the maritime inventory routing

problem (MIRP) [378], in which inventory levels of a product must be tracked. This is a

?Published as: Stuart Harwood, Claudio Gambella, Dimitar Trenev, Andrea Simonetto, David E Bernal,

and Donny Greenberg. “Formulating and Solving Routing Problems on Quantum Computers”. IEEE

Transactions on Quantum Engineering 2 (2021), pp. 1–17.
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characteristic of commodity and bulk (e.g., oil, gas, iron ore, and grain) shipping, which in

2017 accounted for over 75of world seaborne trade measured in ton-miles [379, Fig. 1.4].

Recent work in [380] indicates the limits of some of these classical methods for the MIRP.

The ongoing evolution of quantum computing hardware and the recent advances of quan-

tum algorithms for mathematical programming make decision-making for routing problems

an avenue of research worthwhile to be explored on quantum devices. So far, quantum

algorithms for mathematical optimization have often focused on quadratic unconstrained

binary optimization problems (QUBOs) [326, 381], expressed in the form

min
x

x>Mx (10.1)

s.t. x ∈ {0,1}n ,

where M is a n×n real matrix. To achieve a representation on quantum devices, the QUBO

can be transformed into an Ising model with Hamiltonian constituted as a summation of

weighted tensor products of Z Pauli operators, i.e., Z =

1 0

0 −1

, by mapping the binary

variables x to spin variables y ∈ {−1,1}, i.e., x =
y+1

2 . Equality constraints can also be added

to the QUBO formulation by casting them as a quadratic penalization of the objective func-

tion [382, 383]. One of the goal of our work is then to introduce formulations of the routing

problem that are amenable to emerging quantum hardware and quantum algorithms, which

can provide fast heuristics for quadratic unconstrained binary optimization problems.

Gate-based quantum computers provide a particularly alluring setting to develop and

propose new algorithms. Variational algorithms such as the quantum approximate op-

timization algorithm (QAOA) [85] and variational quantum eigensolver (VQE) [87] can

be implemented on current gate-based devices. The idea behind quantum variational

algorithms is to use quantum devices to efficiently sample from large parameterized distri-

butions by executing shallow parameterized quantum circuits. In an optimization setting,

372
CHAPTER 10. FORMULATING AND SOLVING ROUTING PROBLEMS ON QUANTUM COMPUTERS



10.1 INTRODUCTION

when solving QUBO problems, the quantum device is used to efficiently calculate a utility

function (e.g., the expectation value or conditional value at risk [381]) of the cost Hamil-

tonian for a particular parameterized quantum state. A classical optimization algorithm

is used to optimize the given utility function over the rotation parameters. Provided that

the parameterized circuit, also called ansatz, represents states close to the Hamiltonian

ground state, variational algorithms can obtain heuristic solutions of reasonable quality on

current quantum devices. There are several reasons to motivate the adoption of quantum

algorithms in solving QUBOs. First, variational algorithms like VQE and QAOA are not

known to be classically simulatable [384]. Second, some encouraging results in terms of

performance advantage have been documented for QAOA with respect to the classical

Goemans-Williamson limit [353], for Grover Adaptive Search with respect to a classical

unstructured search [385], and for quantum semidefinite programming relaxations for

QUBO problems [386].

Decision making in practical optimization problems often involves modeling continuous

variables and inequality constraints with mixed binary optimization (MBO) [387]. A recent

contribution to solving MBO on current quantum devices in given by non-convex variants

of the alternating direction method of multipliers (ADMM). Specifically, ADMM works by

alternatively optimizing an augmented Lagrangian function over QUBO and continuous

subproblems. The QUBO can be solved on quantum devices via quantum algorithms such

as QAOA and VQE. Conditions of convergence to stationary points have been investigated,

and ADMM has been shown to achieve satisfactory levels of solution quality [388].

An alternative framework to the work presented here is given by (quantum) annealing

algorithms. Even if we do not discuss these approaches here, the interested reader can find

studies in the works of e.g. [389–392] and [393, 394] for examples in vehicle routing. Exam-

ples of devices exploiting physical effects to solve the Ising problem include machines based
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on nano-magnet arrays [395], electronic oscillators [396], optical parametric oscillators [397],

and superconducting-based quantum annealers [398, 399]. Further, these physical effects

have also inspired new algorithms like simulated bifurcation [400]. Heuristics like this and

simulated annealing have also been accelerated via implementation on application-specific

integrated circuits [401].

The contributions of this work are the following:

• We introduce mathematical optimization models for VRPTW suitable for state-of-art

gate-based quantum algorithms.

• We investigate the modeling capabilities of the VRPTW formulations with respect to

constraints and objectives arising in practical applications.

• We compare the VRPTW formulations from a quantum computing perspective, specif-

ically with metrics to evaluate the difficulty in solving the underlying QUBOs.

• We test the formulations on simulated quantum devices, and draw insights on the

current capabilities of quantum computing approaches for routing problems.

Given that the quantum algorithms proposed here for VRPTW are not bound to a specific

quantum QUBO solver, our framework is flexible for future improvements. This is especially

appealing, given the wealth of studies and results in this direction.

The remaining of the chapter is organized as follows. Section 10.2 introduces the formal-

ization of the VRPTW that we consider, as well as how that form might be specialized when

considering a MIRP via different mathematical formulations. The VRPTW formulations are

inspired from those available in the operations research literature and introduced here to

obtain QUBO representations suitable for quantum algorithms. Previous work on quantum-

inspired algorithms applied to logistics problems have focused on the traveling salesman

problem [326, 402, 403] or the related capacitated vehicle routing problem [393, 394]. Fur-

thermore, we are not aware of any work that brings VRPTW approaches together and
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compares them in the context of quantum algorithms (although see [404] for a comparison

of different formulations in a classical setting).

In 10.3, we discuss how to cast and solve such formulations on quantum devices, via

reformulations to QUBOs or a mixed-binary optimization (MBO) problem. For many of the

formulations, this is through a reformulation as a QUBO, which enables the direct appli-

cation of quantum algorithms like VQE and QAOA. However, one formulation involves

continuous variables and inequality constraints; consequently a specialized decomposition

method that results in QUBO subproblems is discussed in 10.3.3. The development of

this method is instructive for handling inequality constraints and continuous variables

that might arise in an extension of the other formulations. Section 10.4 compares the for-

mulations along different dimensions. In particular, the strengths and weaknesses of the

formulations in modeling VRPTW and MIRP are discussed in 10.4.2, while the difficulty

for solving the formulations is evaluated in 10.4.3 and 10.4.4 via the number of variables,

density of the QUBO matrix, and number of solutions. Section 10.4.5 includes numerical

results obtained from solving a VRPTW instance with the outlined quantum algorithms.

Finally, conclusions and remarks are drawn in 10.5.

Notation. Throughout this work we use the following notation. Sets are denoted with

uppercase calligraphic letters (e.g.,A). Matrices are denoted with uppercase bold letters

(e.g., M), while vectors are lowercase bold letters (e.g., v) For a vector v, Diag (v) denotes a

square matrix with v on its diagonal and zeros elsewhere.

10.2 Mathematical formulations for VRPTW

In this section, we describe the VRPTW at hand and specify the different mathematical

formulations. An instance of VRPTW is formulated on a graph with nodes N ∪{d} and
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directed edges/arcsA. Each node i ∈ N represents a customer, associated with which are a

demand level qi and time window [ai,bi]: qi represents the amount of product that must be

delivered (qi < 0) or picked up (qi > 0) after time ai and before time bi. The “depot” node

d serves as departure and destination node for all vehicles v ∈ V. In some situations, the

depot node may be considered a physical node corresponding to, for instance, a warehouse,

from which all vehicles start their routes fully loaded, and at which all vehicles must finish

their routes. In the maritime setting, this is less common, and the depot typically serves

as an artificial “source” or “sink” node, depending on the formulation. We note that the

formulations discussed in this work could be seamlessly extended to the case in which

starting and ending nodes for the vehicle routes are not coincident in the depot. Customers

with product to pick up (qi > 0) are considered suppliers; this feature is critical to handling

maritime shipping problems. We allow a vehicle to arrive early (i.e., before ai) and wait at

a customer location, but not to arrive late (i.e., after bi). Each customer is serviced exactly

once (i.e., the demand cannot be split among different vehicles.). Each arc (i, j) ∈ A has an

associated cost ci, j and travel time ti, j. Typically, the cost for traveling from node i to j is

the distance between the nodes. The vehicles are homogeneous (i.e., they have the same

capacity, travel speed, cost to operate, etc.). Each vehicle has capacity (maximum load

size) Q, and leaves the depot with an initial loading Q0. When the depot corresponds to

a warehouse we might assume Q0 = Q, otherwise in the maritime setting (where some of

the nodes are suppliers) Q0 = 0. If it is ever needed, it is assumed that the depot has an

infinite time window [0,+∞]. The objective of the VRPTW is to minimize the total cost of

transportation while servicing each customer in the given time windows.

In 10.2.1, we describe some key features of the MIRP, and how these manifest in the

data of the VRPTW described above. A comprehensive overview of MIRP and a review

of the literature can be found in [378]. In the following subsections, we describe four
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different mathematical formulations of VRPTW: route-based, arc-based, sequence-based,

and sequence-based with continuous time. Since our goal is to target QUBO subproblems,

these formulations have primarily or exclusively binary variables and linear or quadratic

equality constraints. The exception is the sequence-based formulation with continuous

time in 10.2.5, which involves inequality constraints and continuous variables. These

formulations have different levels of faithfulness in modeling VRPTW, and we discuss

extensions that could make formulations more accurately capture the VRPTW setting.

10.2.1 Key features of MIRP

The MIRP is often characterized by travel times that are relatively long compared to the

time windows of the nodes. These long travel times mean that fairly long time horizons

must be considered in order to get the benefit of optimizing logistics. Further, there are

often multiple supply points in addition to multiple demand points/customers. These

supply points are often terminals producing a commodity like natural gas, and since they

often have limited storage capacity, they must also be serviced, and inventory picked up, in

certain time intervals. This is why demand levels qi are signed. Another characteristic of

maritime shipping, in particular in liquefied natural gas shipping, is that vessels/vehicles

typically fully load at supply points and fully unload at demand points. Therefore a typical

route of a vessel alternates between supply points and demand points. Combined with

the assumption of a homogeneous fleet of vessels, this means that the capacity Q and the

demand levels qi are all equal in magnitude. Consequently, the constraints on vehicle

capacity are less important. It is instead more important to enforce the alternating sequence

of supply and demand points. This is easily achieved by restricting the arcs in A so that

there are only arcs between a supply and demand node or vice-versa. Combined with the

long travel times, narrow time windows, and long time horizons, the graph can be quite
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sparse, as we can a priori remove arcs that would have the vessel arriving at the node after

the time window ends.

10.2.2 Route-based formulation

In the route-based VRPTW formulation, the decisions to be made are whether routes

are traveled or not. A route is a sequence of nodes (i1, i2, . . . , iP) satisfying the following

constraints (for some route-specific positive integer P). A route begins and ends at the

depot: i1 = iP = d. Each segment is a valid arc: (ip, ip+1) ∈ A, for all 1 ≤ p ≤ P−1. For each

feasible route, the running sum of the product delivered/picked up must be physically

possible: 0 ≤ Q0 +
∑p

j=2qi j ≤ Q, for all p ≤ P−1 (i.e., at each stop the amount loaded on the

vehicle must be non-negative and less than the vehicle’s capacity). The arrival time at node

ip must be before the time window ends. If we let Ti1 = 0, then the effective arrival time

at node ip+1 is given by Tip+1 = max
{
aip+1 ,Tip + tip,ip+1

}
for all 1 ≤ p ≤ P− 1. Then we require

Tip ≤ bip for all p.

We index the set of routes by the set R. If route r ∈ R has node sequence (i1, i2, . . . , iP), then

it has cost cr =
∑P−1

p=1cip,ip+1 . Finally, we define δi,r to be a constant with value 1 if route r

visits customer i ∈ N (i.e., one of the nodes in the sequence defining the route is i), and zero

otherwise.
We introduce variable xr which has value 1 if a vehicle travels route r; otherwise it has

value 0, and we stack the variables xr as x = {xr}r∈R. As a mathematical program, the VRPTW
becomes

min
x

∑
r∈R

cr xr (10.2a)

s.t.
∑
r∈R

δi,r xr = 1,∀i ∈ N , (10.2b)

xr ∈ {0,1} ,∀r ∈ R. (10.2c)

The equality constraint enforces the requirement that all customer nodes are visited by
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exactly one vehicle. A constraint on the number of vehicles available can be enforced by

making sure that the number of outgoing arcs from the depot d equals the number of

available vehicles |V|. If necessary, the only nodes directly connected to the depot can be

thought of as “dummy” nodes, and essentially keep track of whether a vehicle is used or

not.

Problem (10.2) may also be recognized as a set partitioning problem/exact covering

problem, a classic problem in discrete optimization; see for instance [405], and [403, §4.1].

The number of routes |R| can, in general, be extremely large. If travel from any node to any

other node is possible, then the number of routes is |N|!, although the allowed arcs and

constraints on a route described above will limit this. In classical computing approaches,

this formulation is best handled by a column generation method (e.g., [405]). Here, we will

consider R to be given. The instances that we will consider are either small enough that the

routes can be exhaustively enumerated, or else we will use heuristics to generate a set of

routes.

10.2.3 Arc-based formulation

We now consider a discrete-time arc-based formulation of the VRPTW. In this case, the range

of time instants in which the vehicles can perform their routes is represented by discrete set

T . Each node’s time window encloses at least one time point in T : T ∩ [ai,bi] , ∅.

We introduce a variable xi,s, j,t which has value 1 if a vehicle travels from node i at time s

to node j at time t; otherwise it has value 0.
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As a mathematical program, the VRPTW becomes

min
x

∑
i,s, j,t

ci, jxi,s, j,t (10.3a)

s.t.
∑
i,s,t

xi,s, j,t = 1, ∀ j ∈ N , (10.3b)∑
j,t

x j,t,i,s =
∑

j,t

xi,s, j,t, ∀(i, s) ∈ N ×T (10.3c)

xi,s, j,t = 0, ∀(i, s, j, t) : t < [a j,b j], (10.3d)

xi,s, j,t = 0, ∀(i, s, j, t) : s < [ai,bi], (10.3e)

xi,s, j,t = 0, ∀(i, s, j, t) : (i, j) <A, (10.3f)

xi,s, j,t = 0, ∀(i, s, j, t) : s + ti, j > t, (10.3g)

xi,s, j,t ∈ {0,1} , ∀(i, s, j, t). (10.3h)

Constraints (10.3b) ensure that each node (besides the depot d) is visited exactly once over

all vehicles. Constraints (10.3c) ensure continuity of routes through the graph: if a vehicle

enters node i at time s, then it must leave node i at that time. Note that we do not enforce

this for the depot d, otherwise the vehicles could not get started. Constraints (10.3d) ensure

that a vehicle arrives in a node during its time window. Constraints (10.3e) are implied

by (10.3c) and (10.3b), but explicitly, a vehicle must leave a node during its time window.

Constraints (10.3f) ensure that vehicles obey the allowed travel arcs. Constraints (10.3g)

ensure that vehicles do not travel back in time. Note that we do not enforce the timing

“exactly” (i.e., we allow xi,s, j,t with s + ti, j strictly less than t); this models the situation when

a vehicle arrives early and waits.

Note that capacity constraints on the vehicles have not been enforced in this formulation.

To do so, we could modify the formulation by adding an index v ∈ V to track the vehicles

used. Constraint (10.3b) would be modified to make sure that each node is visited exactly

once over all vehicles:
∑

v,i,s,t xv,i,s, j,t = 1 for each j ∈ N . Meanwhile Constraint (10.3c) would

be modified to enforce continuity of routes for each vehicle:
∑

j,t xv, j,t,i,s =
∑

j,t xv,i,s, j,t, for each

(v, i, s) ∈ V×N ×T . The other constraints are modified similarly. Then, capacity constraints
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can be enforced with

0 ≤ Q0 +
∑

i,s, j,u:u≤t

q jxv,i,s, j,u ≤ Q, ∀(v, t) ∈ V×T

(the cumulative loaded product up to time t must be nonnegative and less than the vehicle’s

capacity). This is similar to the constraint on routes from 10.2.2. This prevents an initially

empty vehicle with capacity 2 from visiting three supply nodes with demand level 1

each, and then two nodes with demand level −1 each; while the sum of the loadings

is 1, the capacity of the vehicle was exceeded at its third stop. However, as described

in 10.2, the capacity constraints are less important for practically modeling MIRP. Hence,

in the numerical tests, we leave these constraints out. Furthermore, we will see that this

formulation will typically be the largest in terms of number of variables, and adding an

index to track specific vehicles will only exacerbate that.

10.2.4 Sequence-based formulation

We describe a discrete sequence-based formulation for VRPTW. We introduce a variable

xv,p,i which has value 1 if vehicle v visits node i at position p in its sequence; otherwise it has

value 0. This makes a discretization of the time horizon unnecessary to model the VRPTW

routes.

We assume that the depot is “absorbing”: if a vehicle returns to the depot, it must remain

there. Consequently, the arc (d,d) is in the arc set A. Each vehicle can make a maximum

number of stops P: this bound can be determined from capacity limitations, by application

requirements, or simply by the number of customers. Since each vehicle starts and ends at

the depot, P−2 is the maximum number of non-depot nodes that each vehicle can visit.
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As a math program, the VRPTW becomes

min
x

∑
v

∑
p<P

∑
(i, j)∈A

ci, jxv,p,ixv,p+1, j (10.4a)

s.t.
∑
v∈V

P∑
p=1

xv,p,i = 1, ∀i ∈ N , (10.4b)∑
i∈N∪{d}

xv,p,i = 1, ∀v ∈ V, p ∈ {1, . . . ,P} , (10.4c)

xv,p,ixv,p+1, j = 0, ∀v ∈ V, p ∈ {1, . . . ,P−1} , (i, j) <A, (10.4d)

xv,p,d xv,p+1, j = 0, ∀v ∈ V, p ∈ {2, . . . ,P−1} , j , d, (10.4e)

xv,1,d = 1, ∀v ∈ V, (10.4f)

xv,P,d = 1, ∀v ∈ V, (10.4g)

xv,1,i = 0, ∀v ∈ V, i ∈ N , (10.4h)

xv,P,i = 0, ∀v ∈ V, i ∈ N , (10.4i)

xv,2, j = 0, ∀v ∈ V, (d, j) <A, (10.4j)

xv,P−1, j = 0, ∀v ∈ V, ( j,d) <A, (10.4k)

xv,p,i ∈ {0,1} , ∀(v, p, i)

Constraints (10.4b) ensure that each node is visited exactly once over all vehicles and

sequence positions (besides the depot node d). Constraints (10.4c) ensure that each vehicle

uses each position p in the sequence once. Constraints (10.4d) ensure that only allowed

edges are traversed. Constraints (10.4e) ensure that once a vehicle returns to the depot,

it remains there (i.e., it does not visit other nodes). Constraints (10.4f) and (10.4g) ensure

that all vehicles start and end at the depot, respectively. Constraints (10.4h) and (10.4j)

are merely a consequence of the assumption that all vehicles start at the depot. Note that

constraints (10.4h) are implied by constraints (10.4c) and (10.4f), while constraints (10.4h)

come from constraints (10.4d) and (10.4f). Finally, Constraints (10.4i) and (10.4k) are a

consequence of the assumption that all vehicles end at the depot.

Capacity constraints on the vehicles are not directly enforced in this formulation either, in

the general case. If all nodes i ∈ N have the same level of demand, capacity constraints can
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be enforced by choosing P appropriately. Capacity constraints can also be handled more

exactly by adding the constraints

0 ≤ Q0 +

p∑
r=2

∑
i

qixv,r,i ≤ Q, ∀(v, p) ∈ V×{1, . . . ,P−1} .

However, as discussed before, capacity constraints are less important in the maritime setting,

so this modeling feature is not included in the numerical testing.

Note that timing constraints have not been addressed explicitly in this formulation. In

many problems, the time windows of the nodes are fairly narrow compared to the travel

times between nodes and overall time horizon of the problem. Consequently, we can

conservatively enforce the time windows by removing arcs from the graph that do not

satisfy application-specific assumptions. Specifically, if the end of the time window of node

i plus the travel time ti, j is greater than the end of the time window of node j, then that arc

is removed. This corresponds to assuming that the vehicles always arrive at a node at the

end of its time window. Thus, the set of arcs A used in this formulation may have to be

different from the one used in the other formulations. For some problems, this may be too

restrictive, which motivates the formulation of the following section.

10.2.5 Sequence-based formulation with continuous time

We here consider a sequencing-based formulation of the VRPTW with continuous variables

to track the arrival time at each node. This makes it possible to seamlessly enforce time

windows, unlike the formulation with binary decision only, described in 10.2.4.
As in the discrete sequence-based formulation, we define a variable xv,p,i which has value

1 if vehicle v visits node i at position p in its sequence; otherwise it has value 0. Further,
we introduce a variable si ∈ R which equals the time when a vehicle arrives at node i , d.
The arrival time of each vehicle v to the destination node d is the duration of route v, and is
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associated with variable sv
d. As a math program, the VRPTW becomes

min
x,s

∑
v

∑
p<P

∑
(i, j)∈A

ci, jxv,p,ixv,p+1, j (10.5a)

s.t.
∑
v∈V

P∑
p=1

xv,p,i = 1, ∀i ∈ N , (10.5b)∑
i∈N∪{d}

xv,p,i = 1, ∀v ∈ V, p ∈ {1, . . . ,P} , (10.5c)

xv,p,ixv,p+1, j = 0, ∀v ∈ V, p ∈ {1, . . . ,P−1} , (i, j) <A, (10.5d)

xv,p,d xv,p+1, j = 0, ∀v ∈ V, p ∈ {2, . . . ,P−1} , j , d, (10.5e)

xv,1,d = 1, ∀v ∈ V, (10.5f)

xv,P,d = 1, ∀v ∈ V, (10.5g)

xv,1,i = 0, ∀v ∈ V, i ∈ N , (10.5h)

xv,P,i = 0, ∀v ∈ V, i ∈ N , (10.5i)

xv,2, j = 0, ∀v ∈ V, (d, j) <A, (10.5j)

xv,P−1, j = 0, ∀v ∈ V, ( j,d) <A, (10.5k)

si ≥
∑
v∈V

∑
p<P

∑
j:( j,i)∈A

(s j + t j,i)xv,p, jxv,p+1,i, ∀i ∈ N , (10.5l)

sv
d ≥

∑
p<P

∑
j:( j,d)∈A

(s j + t j,d)xv,p, jxv,p+1,d, ∀v ∈ V, (10.5m)

ai ≤ si ≤ bi, ∀i ∈ N , (10.5n)

xv,p,i ∈ {0,1} , ∀(v, p, i),

si ∈ R, ∀i ∈ N .

All constraints pertaining only to the binary variables xv,p,i are shared with the sequence-

based formulation discussed in 10.2.4. Constraints (10.5n) enforce the time window con-

straints explicitly. Constraints (10.5l) define the arrival times at nodes i ∈ N and can be

justified as follows. Constraints (10.5b) and the fact that the x variables are binary, imply that

for each i there is exactly one index (vi, pi) such that xvi,pi,i = 1. Using this, constraints (10.5l)

can be viewed as si ≥
∑

j:( j,i)∈A(s j + t j,i)xvi,pi−1, j ∀ i ∈ N . By constraint (10.5c), there is exactly

one index j′ such that xvi,pi−1, j′ = 1. Consequently, constraints (10.5l) enforce that the arrival

time at each node i must be greater than or equal to the arrival time at the previously visited
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node plus the travel time. Similar reasoning can be done to derive constraints (10.5m): the

only difference is that the arrival time to the depot depends on the vehicle v. Model 10.5

reads as a MBO problem, given the presence of both binary and continuous decision vari-

ables. The presence of constraints (10.5l) and (10.5m) makes the continuous relaxation of

the problem non convex. As in the arc-based formulation, enforcing arrival times with an

inequality rather than equality permits the possibility that a vehicle arrives early and waits.

Modeling the arrival times with continuous decision variables allows for an alternative

formulation, with the aim of minimizing routes duration, without modifying the constraints

set. This is achieved by switching objective (10.5a) with:

min
x,s

∑
v

sv
d (10.6)

Routes duration is a typical metric to evaluate vehicle routes in VRPTW.

10.3 Solving the routing problems on Quantum Computers

In this section, we discuss the reformulations needed to express the VRPTW formulations

in a form suitable for quantum algorithms. In Sections 10.3.1 and 10.3.2, most of the formu-

lations are cast into 10.1, which is a standard form for a QUBO, and enables the application

of quantum algorithms such as VQE and QAOA. Due to the presence of continuous arrival

times, the MBO formulation presented in 10.2.5 needs a different representation on quantum

devices, which is discussed in 10.3.3.

10.3.1 Route and arc-based formulations as QUBO

Both problems (10.2) and (10.3) have the common form

min
x

{
c>x : Ax = b,x ∈ {0,1}n

}
, (10.7)
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for some real vectors b, c and real matrix A. The challenge is to construct a matrix M so

that the QUBO standard form in 10.1 is equivalent to the binary linear program (10.7).

Specifically, we would like our matrix to encode the quadratic penalty (or energy) function

H : x 7→ c>x +ρ‖Ax−b‖2

for a real constant ρ > 0, to be determined. This transformation is an exact penalty re-

formulation of (10.7), and it is consistent with the general suggestion for binary linear

programs from [403, §3], as well as the transformation specific to the set partitioning

problem from [403, §4.1].

The term ‖Ax−b‖2 expands to x>A>Ax−2b>Ax + b>b. Consequently, to obtain a QUBO,

we set M = ρA>A+ρDiag
(
−2A>b

)
+Diag (c). The constant term ‖b‖2 must be saved to match

the original objective value.

The main challenge is finding the right value of ρ so that the minimization of H is

equivalent to (10.7). The general reasoning is as follows. Looking at the data of the

constraints of problems (10.2) and (10.3), and considering that the variables are binary,

the smallest value that the penalty terms can take for an infeasible solution is ρ (when

‖Ax−b‖2 = 1). Thus, ρ needs to be big enough to overwhelm any decrease in the original

objective by moving to an infeasible point. Imagine flipping each variable from 0 to 1 or

vice versa depending on the sign of ci; we can upper bound that change in objective by∑
i |ci|. Thus, ρ >

∑
i |ci| suffices. For the route-based formulation (10.2), this is established in

more detail in Appendix 10.B.

10.3.2 Sequence-based formulation as QUBO

The sequence-based formulation (10.4) differs from the route- and arc-based formulations

since it has bilinear equality constraints. To devise the QUBO reformulation, express the
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linear equality constraints (10.4b) and (10.4c) as Ax = b. Similarly, along with the bilinear

equality constraints (10.4d) and (10.4e), these are turned into a penalty term

w : x 7→ ‖Ax−b‖2 +
∑

v

∑
p<P

∑
(i, j)<A

xv,p,ixv,p+1, j +
∑

v

P−1∑
p=2

∑
j: j,d

xv,p,d xv,p+1, j.

Consequently, an exact penalty reformulation of (10.4) is

min
x

∑
v

∑
p<P

∑
(i, j)∈A

ci, jxv,p,ixv,p+1, j +ρw(x)

s.t. (10.4f), (10.4g),

(10.4h), (10.4i),

(10.4j), (10.4k),

xv,p,i ∈ {0,1} , ∀(v, p, i).

(10.8)

where the constraints (10.4f) to (10.4k) merely fix the values of certain variables.

For penalty parameter ρ sufficiently large, the solutions of (10.4) and (10.8) coincide.

Looking at the specifics of the constraints and considering that the variables are binary,

the smallest value that the penalty term ρw(x) can take for an infeasible solution is ρ (for

w(x) = 1). Thus, ρ needs to be big enough to overwhelm any decrease in the original

objective by moving to an infeasible point. Imagine flipping each bilinear term from 0 to 1

or vice versa depending on the sign of ci, j; we can upper bound that change in objective by∑
v
∑

p
∑

(i, j)∈A

∣∣∣ci, j
∣∣∣ = P |V|

∑
(i, j)∈A

∣∣∣ci, j
∣∣∣. Thus

ρ > P |V|
∑

(i, j)∈A

∣∣∣ci, j
∣∣∣

suffices. As in 10.3.1, let M̃ = ρA>A +ρDiag
(
−2A>b

)
. We can add the other bilinear terms

from the objective and penalty to get an objective in the form x>Mx, as desired for a QUBO.
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10.3.3 VRPTW via ADMM-based heuristic

In order to extend the range of mathematical formulations solvable on quantum near-term

devices via variational-based approaches, [388] proposed a multi-block ADMM operator-

splitting procedure. This iterative algorithm devises a decomposition for a specific class of

MBOs into:

• a QUBO subproblem to be solved by a QUBO solver oracle (or, on near-term quantum

devices by quantum algorithms such as VQE or QAOA).

• a convex constrained subproblem, which can be efficiently solved with classical

optimization solvers [75].

The solutions obtained in each ADMM iteration are evaluated with a merit function, which

evaluates the trade-offs between feasibility and optimality. The authors devised conditions

for the MBO to converge via ADMM to stationary points of a soft-constrained reformulation

of the problem. In particular, the set of MBO constraints needs to have a continuous convex

relaxation, which is not the case for the sequence-based formulation with continuous

time. This motivates the adoption of a strategy to reformulate the continuous subproblem

with convex approximations. In particular, in our case the continuous subproblems are

non-convex and they will be solved via a sequential convex approximation as follows.

Consider the cubic, non-convex constraints (10.5l)-(10.5m) of the sequence-based formu-

lation with continuous times, namely:

si ≥
∑
v∈V

∑
p<P

∑
j:( j,i)∈A

(s j + t j,i)xv,p, jxv,p+1,i, ∀i ∈ N ,

sv
d ≥

∑
p<P

∑
j:( j,d)∈A

(s j + t j,d)xv,p, jxv,p+1,d, ∀v ∈ V

The idea is to deal with them in the continuous problem of the ADMM framework by

using sequential convex programming, see [406, 407]. In particular, since we are splitting the

problem onto the binary variables, we introduce continuous variable uv,p, j ∈ [0,1] for each
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three-indexed binary variable xv,p, j, and set uv,p, j = xv,p, j. Then, in the continuous problem

of the ADMM, where the constraints (10.5l)-(10.5m) will become

si ≥
∑
v∈V

∑
p<P

∑
j:( j,i)∈A

(s j + t j,i)uv,p, juv,p+1,i, ∀i ∈ N ,

sv
d ≥

∑
p<P

∑
j:( j,d)∈A

(s j + t j,d)uv,p, juv,p+1,d, ∀v ∈ V

Such constraints can be compactly written as

g(t,u) ≤ 0. (10.9)

Function g is not convex, since cubic in (t,u), but one can always use sequential convex

programming approach to solve the continuous problem of the ADMM.

By using this strategy, the continuous problems of ADMM converge to a local stationary

point and the overall ADMM strategy will remain an heuristic in general, but with the

advantage that it limits the introduction of auxiliary binary decision variables in the QUBO

subproblems and makes the solution of MBO on quantum devices a computationally

tractable task.

10.4 Comparison of formulations

We are now ready to showcase the different formulations on simulated quantum hardware

and compare their numerical properties and performance.

Firstly, we describe in 10.4.1 two examples that will serve as benchmarks to compare

the mathematical formulations from a quantum computing perspective. We then report

a summary of the qualitative modeling differences of the formulations in 10.4.2. Finally,

quantitative comparisons are presented in Sections 10.4.3, 10.4.4, and 10.4.5 and are meant

to: (i) demonstrate the inherent difficulty in finding routes with good solution quality at
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a reasonable computational effort, even on classical devices; and (ii) report the solution

metrics obtained with the quantum state-of-art solution approaches on quantum devices.

10.4.1 Example definitions

10.4.1.1 MIRP with varying time horizon

We define an example inspired by the MIRP setting with a varying time horizon. The

example is a modification of instance LR1 2 DR1 3 VC2 V6a in Group 1 of the MIRPLIB

library [378]. This example involves two supply ports and three demand ports; the objective

is to minimize travel costs while visiting each port frequently enough to remove or replenish

its inventory. One characteristic of this example is that we can vary the time horizon of the

problem; thus we can effectively make the problem as large, in terms of number of nodes

|N|, as we want. See 10.A for its data, interpretation as a VRPTW, and the specific steps

required to obtain the various formulations from 10.2.

10.4.1.2 Small VRPTW

We define a small 3-customer example, originally from [405], with data reported in Fig-

ure 10.1.

The instance has 11 valid routes, which define the feasibility set R for the route-based

formulation (10.2): (d,1,d), (d,2,d), (d,3,d), (d,1,2,d), (d,1,3,d), (d,2,1,d), (d,2,3,d), (d,3,1,d),

(d,1,2,3,d), (d,2,1,3,d), (d,2,3,1,d). Routes (d,1,2,3,d) and (d,2,3,1,d) are optimal for the

minimization of distance, with cost equal to five. In order to define the arc-based formula-

tion (10.3), we need to define the discrete time points T . We use the starting and ending

points of the time windows {0,1,2,4,7}. This happens to exclude the optimal route/se-

quence (d,2,3,1,d), which would require another time point t ≥ 8 to allow the vehicle to

return to the depot. For more complicated examples, it is often not viable to enumerate
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exhaustively the set of time periods to consider. For the sequence-based formulation, we

make the assumption mentioned in 10.2.4 that vehicles arrive at the end of a node’s time

window. This means that we have to prune the set of arcs; consequently the only valid arcs

from node 1 are (1,d), and similarly the only valid arcs from node 3 are (3,d).

Figure 10.1: The small example VRPTW. Arc costs ci, j equal the travel time ti, j. This is a
nearly fully-connected graph; however, travel from node 3 to node 2 is not allowed because
the time window of node 2 ends before the time window of node 3 begins. The vehicles
leave depot d fully loaded at their capacity Q = 6. Recall the sign convention for qi; qi is
negative for demand that must be delivered and depletes the product on a vehicle.

10.4.2 Qualitative comparisons

Each of the VRPTW formulations considered in 10.2 has different strengths and weaknesses

in terms of modeling, which are summarized in Table 10.1. Most of these characteristics have

been discussed previously. For instance, the sequence-based formulation models timing

discretely, since it effectively assumes that vehicles arrive at the end of a time window.

We remark that in MIRPs, the constraints on vehicle capacity are not necessarily a strict
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requirement. This is because a demand node is often visited right after a supplier. Only

the route-based formulation, as given, models the constraints on the vehicle capacities in

full generality; the other formulations must be extended along the lines discussed in 10.2.3

and 10.2.4.

Another characteristic to consider is whether the formulations can handle inhomogeneous

vehicles. The sequence-based and its continuous-time variant naturally can, since their

variables are already indexed by vehicle v; transportation time or cost, for instance, could

depend on the type of vehicle being used.

Finally, as mentioned in 10.2.5, the total duration of the routes taken is a common

alternative objective used in VRPTW. The sequence-based formulation with continuous

time can handle this, as can the route-based formulation by defining the cost of a route as

the time that the vehicle arrives back at the depot. While the other formulations can take

the arc costs ci, j to equal the arc travel time, this does not account for time spent waiting at

a node.

Table 10.1: Qualitative characteristics of VRPTW formulations

Formulation Route-based Arc-based Sequence-based
Sequence-based
with continuous

time
Models timing Continuously Discretely Discretely Continuously
Models capacity Yes No No No
Can handle inhomo-
geneous vehicles

No No Yes Yes

Can handle routes
duration objective

Yes No No Yes
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10.4.3 Solution-free metrics

As a first step in comparing the different VRPTW formulations, we examine the resulting

QUBO problems, as introduced earlier in 10.3. The size and sparsity of the QUBO problem

are the main resources needed to represent the problem on a quantum computer. Indeed,

the number of qubits needed to represent the binary decision variables is equal to the

dimension of the QUBO matrix M, while the sparsity of the matrix serves as a proxy for the

computational complexity of the problem. For example, when using a variational algorithm,

such as VQE, the number of non-zero entries in the matrix corresponds to the number

of different Pauli strings (or observables) used in the estimation of the Hamiltonian’s

expectation value. Another useful metric related to sparsity is the degree of connectivity

of the QUBO problem, specifically the maximum number of non-zero entries per row (or

column) of the matrix.

We now compare the formulations described in 10.2, for the MIRP example with varying

size introduced in 10.4.1.1. As mentioned, we can increase the time horizon of the problem,

and subsequently obtain QUBOs of increasing size and complexity for each formulation.

Table 10.2: QUBO problem size and connectivity for different time horizons of the MIRP
example.

hhhhhhhhhhhhhhhhhFormulation
Time horizon

25 50 75 100 125 150 175 200

(10.2)
size 49 687 2315 3937 5839 7608 9517 11219
connectivity 19 369 1283 2198 3142 4271 5462 6746

(10.4)
size 280 1106 2632 4676 7504 10647 14896 20048
connectivity 56 127 196 259 328 388 460 527

(10.3)
size 582 2194 5372 9584 15473 21302 30903 37858
connectivity 62 143 276 379 495 559 681 773

Table 10.2 shows the growth with the time horizon of the size and the degree of con-
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nectivity of QUBOs for the route-based, sequence-based, and arc-based formulations. As

discussed in 10.2.5, the sequence-based formulation with continuous time is not directly

expressed with a QUBO, but rather it is an MBO. However, the metrics for the discrete

sequence-based formulation in 10.2 are highly informative for the effort required to solve

MBO on quantum devices via ADMM. In particular, the QUBO subproblems of the ADMM

heuristic for MBO have the same size of the sequence-based QUBO: this is because MBO

and the sequence-based formulation (10.4) share the same combinatorial structure (i.e.,

same binary variables and constraints involving binary variables). The connectivity of the

first QUBO subproblem of ADMM in MBO differs from that of the sequence-based QUBO

by a constant term.

As expected, all formulations grow steadily with the time horizon, with the route-based

formulation generating the smallest, but also densest, QUBO problems. This is due to the

heuristics in the route-generation pre-processing, ensuring the construction only of viable

routes which do not violate any of the problem (time-window) constraints. This suggests

that when one is restricted in the number of qubits one can use, the route-based formulation

may prove advantageous over the sequence- and arc-based ones, as its size is controlled

by the classically-computed route-generation process. On the other hand, if the number

of circuit executions or qubit connectivity is an issue, using the arc- or sequence-based

formulation may be preferable.

Finally, 10.2 presents the size, number of observables, and density metrics for the

sequence-based and arc-based formulations. For reference we also plot quadratic (i.e.,

c2T 2
H) and cubic (i.e., c3T 3

H) functions of the time horizon TH . It is evident from the plots

that the size of the QUBO grows as O(T 2
H), and the computational complexity (i.e., number

of observables or non-zero entries in the QUBO matrix) as O(T 3
H). While in this particular

case, the arc-based formulation is approximately twice as big in size, this distinction is not
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enough to choose one formulation over the other, and the two formulations can be thought

of equivalent (with respect to the metrics in question) for all practical purposes.

25 50 75 100 125 150 175

size
density
observables
quadratic
cubic

25 50 75 100 125 150 175

size
density
observables
quadratic
cubic

Figure 10.2: Metrics for the sequence-based (left) and arc-based (right) formulations plotted
against quadratic and cubic curves (scaled by a constant factor). It is clear that the size
(i.e., number of decision variables or qubits) grows as O(T 2

H), while the observables (i.e.,
non-zero correlations or Pauli strings) grows as O(T 3

H).

10.4.4 Solution-based metrics

The comparison between the different formulations can also be made in terms of the quality

and quantity of feasible solutions. This is meant to describe the landscape of solutions on

which the QUBO quantum solvers conduct their search for ground states.

In this section, we obtain such statistics for the route-, arc-, and sequence-based formula-

tions of the MIRP example with varying sizes described in 10.4.1.1 using the commercial

branch-and-bound solver CPLEX [52]. In particular, we have enumerated feasible solutions

via CPLEX’s populating routines and measured their quality via their fractional difference

with the optimal solution, commonly known as optimality gap, computed as:

gap =
sol−opt
opt + ε

% (10.10)

where sol denotes the objective value of the solution, opt the optimal solution value, and ε
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denotes a tolerance value to avoid undefined division in case that opt = 0. For these results,

we consider ε = 10−10.

We consider the MIRP example with time horizons 15, 20, and 25; the resulting problems

are (for the most part) small enough to permit enumeration of all possible feasible solutions.

We limit the characterization of the feasible solutions up to 50% optimality gap. In the

unconstrained reformulation of the problem, a feasible solution beyond certain optimality

gap would be indistinguishable, in terms of the objective function, from infeasible solutions

of the original problem.

The results in Figure 10.3 show that the arc-based formulation provides many more

feasible solutions to the same problem, followed by the sequence-based formulation. Even

for these small instances, we were unable to compute all feasible solutions for the arc-

formulation. The number of feasible solutions with the arc-based formulation for the

smallest instance, with a time horizon of 15, exceeded 10 million and required more than

100Gb of RAM and several hours of computation. Consider that the number of binary

variables for these instances makes a complete enumeration impossible in a practical amount

of time.

We observe that the route- and sequence-based formulations with the shortest time

horizon report all solutions being equivalent in terms of the objective function to the global

optimal solution. For the larger time horizons, there is more diversity in the feasible

solutions in terms of the objective values. As Table 10.2 reports, the arc- and sequence-based

formulations require a larger number of variables leading to a considerably larger number

of feasible solutions compared to the route-based formulation, although many of which do

not have good objective function values.

Variational algorithms, such as VQE and QAOA, are not guaranteed to converge to

globally optimal solutions and might get stuck in locally optimal solutions [326]. For
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Figure 10.3: Cumulative number of feasible solutions (scaled by total number of con-
figurations) within a certain percentage gap of the optimal solution for the route- and
sequence-based formulations of the MIRP example with different time horizons. All opti-
mal solutions are captured by an optimality gap equal to 0, while all feasible solutions are
captured by an optimality gap equal to +∞. Solutions with gap of < 0.01% are considered
as optimal.

instance, when using algorithms prone to converge to locally optimal solutions, a preferable

formulation is one where the local optimal solutions have small gaps to global optimality.

For the case with time-horizon equal to 25, only two solutions of the sequence-based

formulation are optimal, while 5536 are within 0.02% of optimality, 5792 are within 0.5% of

optimality, and a total of 110882 exist. A different situation happens for the route-based

formulation, where the total number of feasible solutions is 1008, of which 544 are within 1%

optimality gap, and 10 are found to be optimal. A similar situation happens with the time-
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horizon equal to 20, where a larger fraction of the feasible solutions of the sequence-based

formulation is beyond the 50% optimality gap compared to the route-based formulation.

This is better observed in Figure 10.4 where the fraction of the feasible solutions found is

plotted with respect to its optimality gap.

Figure 10.4: Fraction of feasible solutions within a certain percentage gap of the optimal
solution for the route- and sequence-based formulations of the MIRP example with different
time horizons. The plot suggests that the route-based formulation tends to have a higher
density of near-optimal feasible solutions. Feasible solutions are reported as (feas) and
solutions with gap of < 0.01% are reported as optimal (opt).
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10.4.5 Numerical experiments

In this section, we solve the small VRPTW example from 10.4.1.2 using the IBM Q quan-

tum simulators and devices accessed through the open-source programming framework

Qiskit [408, 409]. We focus the discussion on the sequence-based formulations since their

size is small enough to analyze classically, yet large enough to provide some insights of

the algorithm performance. This VRPTW instance requires 16 qubits to be represented as a

QUBO.

10.4.5.1 Sequence-based formulation

For the discrete sequence-based formulation (10.4), we consider both the variational quan-

tum eigensolver (VQE) with a standard hardware-efficient ansatz (RY) based on single-qubit

rotations and two-qubit entangling gates [410] (see 10.5 for a representation of the varia-

tional form), as well as the quantum approximate optimization algorithm (QAOA), where

the parameterization of the circuit is constructed by the alternate application of the cost

Hamiltonian and a mixing operator [411, 412]. For the classical optimization part, we

consider two well-known gradient-free optimization algorithms: the simultaneous pertur-

bation stochastic approximation (SPSA) optimizer [413], and constrained optimization by

linear approximation (COBYLA) [414]. In the cases of both SPSA and COBYLA, the maxi-

mum number of function evaluations is set to 1000. We use the different ansatz/optimizer

combinations (e.g., RY/SPSA, etc.), subsequently referred to as QUBO solvers, to directly

solve the QUBO reformulation.

The sequence-based formulation for the small VRPTW example results in 16 decision

variables. Out of the 216 = 65536 possible configurations, 2 are optimal, and another 2 are

feasible (i.e., satisfy all constraints) but sub-optimal. We report our experimental results

using two related metrics. The first is the single-shot probability of success, ps, of an
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Figure 10.5: Representation of the RY ansatz with two qubits and an entanglement depth of
one.

experiment, which is defined as the probability to obtain an optimal configuration when

taking a single measurement of the quantum state obtained after running a given solver.

Because simulating the full state-vector output of a quantum circuit is expensive (even

with 16 qubits), this probability is approximated by taking 8192 independent measurement

simulations and counting the number of optimal outputs. The second metric is the global

probability of success, Ps, of a QUBO solver, which is used to account for the innate

randomness in the underlying algorithm (e.g., the initial value for the parameters, when

running the classical optimizer), and is approximated by running that given solver 250

times and counting the number of times we estimate a non-zero single-shot probability of

success.

Table 10.3: Success probabilities of different solvers.

XXXXXXXXXXXSolver
Metric

average ps Ps average p f P f

RY/SPSA 2% 60
250 = 24% 4% 128

250 = 51.2%
RY/Cobyla 12% 33

250 = 13.2% 25% 68
250 = 27.2%

QAOA/SPSA 0.003% 62
250 = 24.8% 0.06% 90

250 = 32%
QAOA/Cobyla 0.02% 108

250 = 43.2% 0.04% 143
250 = 57.2%

Table 10.3 reports these two metrics, as well as the values p f and P f , which are defined

similarly, but only require sampling of feasible, and possibly sub-optimal, configurations

(since we have twice as many feasible as we have optimal configurations, p f ≈ 2ps). We
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should note that these results are obtained for the shallowest possible quantum circuits

(depth 1 for the RY ansatz and p = 1 for QAOA), which means we are optimizing functions

of 32 real-valued parameters in the case of VQE/RY, and 2 real-valued parameters in the

case of QAOA.

Interestingly, while RY-based solvers produce the highest single-shot probability of

success, their global success probability is lower than that of the QAOA-based solvers. This

can be explained with the fact that while the RY ansatz can really narrow down on the

optimal state (in the case of RY/COBYLA, the probability of success averaged over the

runs where it was estimated to be non-zero was over 90%). Consequently, the optimizer

has trouble performing the minimization in a 32-dimensional space, and often gets stuck in

regions corresponding to states that have almost no overlap with an optimal configuration.

To better understand how the probability of sampling an optimal configuration depends

on the number of shots, one can rely on the estimate

p(N) ≈ Ps

(
1−

(
1−

ps

Ps

)N
)
.

In the above formula, N is the number of shots, and ps
Ps

is the average single-shot probability

of success, when this average is taken only over the runs where Ps , 0 (i.e., when the

optimizer has succeeded to converge to a state that has a sufficiently large overlap with an

optimal configuration).

The p(N) computed for the different solvers are presented in 10.6. Also included is the

corresponding function for uniform random sampling (in this case, Ps = 1, since we always

have a non-zero probability of sampling an optimal configuration ps = 2
216 ≈ 0.003%). Again,

it is evident that the “best” choice of solver depends on the number of samples one is willing

and able to take. For a single sample, the best performing solver is RY/COBYLA, which is

quickly overtaken by RY/SPSA. When the number of sampling shots increases, the fact that

of the QAOA circuit is not ”flexible” enough to represent a state that overlaps with only
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a few of the possible configurations becomes a strength, and the QAOA/COBYLA solver

performs better.

Figure 10.6: Expected probability of successfully measuring an optimal solution as a function
of circuit evaluations or shots. These are the number of evaluations given an optimized
circuit, that is, after the optimization phase.

10.4.5.2 Sequence-based formulation with continuous time

The sequence-based formulation with continuous time needs 16 qubits for the QUBO

subproblems to be solved via the ADMM heuristics. This is because the size of the QUBOs

is the same as the QUBO reformulation of the discrete sequence-based model (10.4). The

numerical results reported here are referred to the 2-block implementation of ADMM with

hyperparameters ρ = 1001 and β = 1000: this ensures ADMM to terminate in a finite number

of iterations, in case the continuous subproblem is convex (see [388] for a detailed discussion

on the ADMM implementation and convergence properties). The QUBO subproblems of

the ADMM heuristic are solved with VQE and QAOA as quantum solvers, and COBYLA

as classical optimizer. The continuous subproblems are solved via the sequential quadratic

programming algorithm described in 10.3.3. Preliminary computations conducted with
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COBYLA as continuous ADMM solver showed that the linear approximations performed

therein resulted in a considerable increase of the computational time.

We have here tested both the minimum-distance and minimum-time VRPTW formula-

tions described in 10.2.5. We have evaluated the MBO solutions via the following metrics:

• Probability of success, Ps, of ADMM. This is expressed as the percentage of ADMM

runs that deliver an optimal solution for the problem. Note that the source of random-

ness of ADMM lies in the QUBO, which is solved via quantum algorithms.

• Probability of feasible solutions, P f , found by ADMM. The two probabilities of success

Ps and P f are analogous to those introduced to evaluate QUBO solvers in 10.4.5.1.

• Number of iterations I for ADMM convergence.

• Percentage qopt of QUBOs solved to optimality by the QUBO solver.

All metrics are obtained as average results over 3 runs of ADMM on the QasmSimulator

backend available in Qiskit Aer. The two QUBO solvers tested for ADMM are VQE and

QAOA with COBYLA as internal classical solver. Preliminary computations with the SPSA

optimizer resulted in extremely slow ADMM convergence. For VQE, we chose the same

ansatz tested for the QUBO formulations of 10.4.5.1, since the underlying combinatorial

structure of the optimization problem is very similar.

The min-distance formulation turns out to be very efficiently solved by ADMM. As can

be observed in 10.4, all three ADMM runs deliver a feasible and optimal route. Choosing

VQE as QUBO solver results in a quicker convergence. Solving QUBOs in an exact fashion

is not a guarantee for boosting ADMM convergence. Rather, a certain degree of inexactness

in ADMM is beneficial for the overall solution quality [388, 415]. This point is particularly

important since current computations on quantum devices are inevitably affected by errors

and noise.

The min-time formulation is solved to optimality by ADMM with VQE as QUBO solver.
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Table 10.4: Metrics obtained for the min-distance MBO via ADMM.

QUBO solver Ps P f I qopt

QAOA 100.00% 100.00% 54 19.38%
VQE 100.00% 100.00% 32 10.42%

For QAOA, 10.5 reports the metric obtained with 2 choices of circuit depth p = 1,3. A larger

depth for the variational form helps ADMM converge in fewer iterations, and the success

rates Ps and P f of ADMM with QAOA is 1/3 in both cases. Specifically, in one simulation

ADMM finds the feasible and optimal route with traveled time 6 displayed in 10.7(a).

Figure 10.7: (a) and (b) Solutions found by the ADMM runs. Optimal solution for mini-
mization of route duration is displayed on the left. The vehicle visits nodes 2 and 3 and
waits one unit of time at node 3. At time 4, the vehicle leaves node 3 for visiting the
remaining customer at node 1 and then reaches the depot at time 6. Infeasible solution for
minimization of route duration is reported on the right. The vehicle visits node 3 and heads
to node 2 at time 4. The infeasible arc for node 2 time windows is displayed with a dashed
line. Finally, the vehicle visits the customer at node 1 and reaches the depot at time 7.

The other two ADMM runs with the QAOA QUBO solver deliver the route shown

in 10.7(b), with infeasible arc connecting node 3 and 2. Future research work could explore

the impact of choosing different mixing Hamiltonian function into the QAOA algorithm, to
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aid the search for feasible routes.

QUBO solver Ps P f I qopt

QAOA, p = 1 33.33% 33.33% 50 18.87%
QAOA, p = 3 33.33% 33.33% 44 26.46%

VQE 100.00% 100.00% 31 17.57%

Table 10.5: Metrics obtained for the min-time MBO via ADMM.

For both VQE and QAOA as QUBO solvers, ADMM exhibits convergence in a finite

number of iterations, thanks to the sequential convex programming solver.

10.5 Conclusions

Size, sparsity, connectivity, model faithfulness, and difficulty to find optimal, or even fea-

sible, solutions are all characteristics of a vehicle routing problem that depend heavily

on the specific instances of interest and their mathematical formulation. Here, we have

provided insights into these characteristics for the VRPTW. In particular, we have investi-

gated these characteristics for four mathematical formulations amenable to being solved on

current quantum hardware. Motivated by the MIRP, we have assessed metrics that indicate

hardware requirements of tens of thousands of logical qubits to solve real-world business

problems. As indicated in [6], this approximate threshold is also where it can be difficult

to obtain good-quality solutions with reasonable computational effort on modern classical

hardware.

We are tempted to ask the question: “Which formulation is best?” Naturally, there are

tradeoffs, but each offers lessons to be learned. Since the number of qubits available on

hardware will be limited in the near term, preprocessing heuristics, like those used in

the route-based formulation, are needed to reduce the size of the problem. The route

generation heuristics help make the route-based formulation the most compact one. Good
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preprocessing also seems to influence the higher density of near-optimal solutions of the

route-based formulation, observed in Fig. 4. However, the route-based formulation has

unfavorable sparsity and connectivity characteristics, which are also important metrics to

consider for near-term hardware. This suggests using the route generation heuristics to

reduce the size of the arc- or sequence-based formulations. It would be interesting to see if

this helps reshape the solution landscape for these formulations as well.

The “best” QUBO solver depends on the number of samples one is willing to take from the

optimized circuit. VQE and QAOA represent two extremes of the tradeoff between having a

flexible ansatz that can represent the optimal solution and having a small enough number of

parameters to facilitate the convergence of the classical optimizer to a high-quality solution.

In our experiments, with a large enough number of samples, the QAOA/COBYLA solver

had the highest probability of sampling an optimal configuration. Meanwhile, when the

number of samples was limited, using VQE yielded a larger success probability.

For the sequence-based formulation with continuous time, the simulations with the

sequential convex programming solver have shown the practical convergence of the ADMM

heuristic to solutions with a large probability to be feasible and optimal. Furthermore, it has

been shown that solving the QUBO subproblems on quantum devices at proven optimality

is not a necessary condition to ensure the quality of the ADMM solutions. A certain degree

of inexactness is tolerated by the ADMM algorithm, and this is a promising feature to

handle the inherent noise affecting the quantum algorithms on real devices.

Future work could extend the sequence-based with continuous time formulation to

handle the vehicle capacity constraints and evaluate the quality of the ADMM solutions

obtained.
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10.A Construction of the MIRP example

The example MIRP introduced in 10.4.1.1 is a modification of instance LR1 2 DR1 3 VC2 V6a

in Group 1 of the MIRPLIB library [378]. Here, we describe its data, interpretation as a

VRPTW, and any specific steps required to obtain the various formulations from 10.2.

10.A.1 Description of the example MIRP

In this example, we have two supply ports S1 and S2 and three demand ports D1, D2, D3.

Each supply port produces a good but has some limited amount of storage space for it.

Similarly, each demand port consumes this good, and has limited inventory of it. Different

ports have different port fees as well. The port data for this example is reported in Table 10.6.

The port fees have units of e.g. dollars, while initial inventory and capacity have units

of volume, and production and consumption rate have units of volume per time. The

distances between the ports are given in Table 10.7.

Table 10.6: Port data for MIRP example

Port S1 S2 D1 D2 D3
Initial Inventory, I0

j 220 270 221 215 175
Storage Capacity, IC

j 376 420 374 403 300
Production (Consumption) rate, I∆

j 47 42 -34 -31 -25
Port fee 30 85 60 82 94

A fleet of vessels is available; these vessels all have the same capacity of Q = 300 (volume

units) and speed of 665 (distance per time, e.g. km/day). The travel cost per unit distance

for these vessels is 0.09 (e.g. dollars per km). We assume that the time horizon of interest

begins at t = 0. We allow the end of the time horizon TH to vary.
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Table 10.7: Distances between ports for MIRP example (distance are symmetric)

S1 S2 D1 D2 D3
S1 0 212.34 5305.34 5484.21 5459.31
S2 0 5496.06 5674.36 5655.55
D1 0 181.69 380.30
D2 0 386.66
D3 0

10.A.2 Interpretation as a VRPTW

The MIRP from 10.A.1 makes no mention of time windows or demand levels. In order to

put this problem in the formalism of a VRPTW, we need to convert each port into a series of

nodes with a fixed demand level and time window. To do this, we make the assumption

that the vessels fully load at a supply port, travel to a demand port, and fully unload before

returning to a supply port again. This can be a restrictive assumption for some applications;

however, in this problem, each port has enough storage capacity to load or unload a full

vessel, and so it is unnecessary to consider partial unloading of a vessel. And as mentioned

in 10.2, this assumption is reasonable in some situations like liquefied natural gas shipping.

To begin specifying the nodes, consider a supply port j. Its initial level of inventory (at

t = 0), is I0
j ; at time t, the inventory is I j(t) = I0

j + t · I∆
j . At time ta when I j(ta) = Q, there is

enough inventory to fully load a vessel. At time tb when I j(tb) = IC
j , the port runs out of

storage space. These times define the first time window during which the port must be

visited. Now, assuming that the port has been visited p times already, the inventory level

at time t is given by I0
j + t · I∆

j − p ·Q. The first time that the inventory reaches level Q again

defines the beginning of the the (p + 1)th time window. The time at which the inventory

reaches the capacity IC
j defines the end of the (p + 1)th time window. The result is that we

define nodes indexed by port and number of previous visits; node ( j, p) corresponding to
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supply port j that has been visited p times already has demand level q( j,p) = Q and time

window [a( j,p),b( j,p)] where

a( j,p) = (Q + pQ− I0
j )/I

∆
j ,

b( j,p) = (IC
j + pQ− I0

j )/I
∆
j .

For demand ports, the definitions are similar; the inventory level at time t after the port

has been visited p times already is I0
j + t · I∆

j + p ·Q. The beginning of the time windows are

defined by the times at which the inventory level reaches IC
j −Q, at which point there is

enough space to accept a full vessel to unload. The end of the time windows are defined

by the times at which the inventory level reaches zero. Then node ( j, p) corresponding to

demand port j that has been visited p times already has demand level q( j,p) = −Q and time

window [a( j,p),b( j,p)] where

a( j,p) = (IC
j −Q− pQ− I0

j )/I
∆
j ,

b( j,p) = (0− pQ− I0
j )/I

∆
j .

Note that we must have IC
j ≥ Q or else the time window is nonsensical (a( j,p) > b( j,p)) and

when IC
j = Q (as is the case for port D3) the time window is degenerate.

For a given time horizon, we construct nodes for each port until the time windows are no

longer a subset of the time horizon; that is, all nodes have b( j,p) ≤ TH .

To finish specifying the VRPTW, we need the arc data. We define arcs between any supply

node and any demand node, and vice versa. This enforces the assumption that vessels do

not travel directly between supply ports, or directly between demand ports. The travel time

for an arc is simply the distance between the corresponding ports (see Table 10.7) divided

by the vessel speed (665). The cost of the arc is the distance between the ports times the

cost per unit distance (0.09), plus the port fee of the destination port (see Table 10.6). The

original instance LR1 2 DR1 3 VC2 V6a includes time for loading and unloading vessels at

the ports. For simplicity we ignore this feature, although we could include it by modifying

CHAPTER 10. FORMULATING AND SOLVING ROUTING PROBLEMS ON QUANTUM COMPUTERS

409



10.A CONSTRUCTION OF THE MIRP EXAMPLE

the travel times by adding in the loading/unloading time at the destination port. Note this

might make the travel times asymmetric.

Not all of the arcs defined this way are physically reasonable due to the timing. We

remove arcs (( j, p), ( j′, p′)) where a( j,p) + t(( j,p),( j′,p′)) > b( j′,p′); that is, the beginning of the time

window of the origin node plus the travel time is greater than the end of the time window

of the destination node.

The depot node in this problem is a dummy node, serving as an artificial source and

sink for the vessels. Consequently, we assume that the initial loading Q0 of the vessels is

zero. In general, the number of vessels, their initial positions, and initial state (empty or

full) are controlled through the specification of the entry arcs, which have the depot as their

origin. The procedure for a general MIRP is as follows. For every vessel v we add a dummy

node dumv with time window [0,+∞]. If the vessel is initially empty, the dummy node

has demand level qdumv = 0; an arc from the depot to this dummy node is added, and then

arcs from the dummy node to all supply nodes are added. If the vessel is initially fully

loaded, the dummy node has demand level qdumv = Q (to reflect the fact that this vessel

visited a supply node sometime before the time horizon started); an arc from the depot to

this dummy node is added, and then arcs from the dummy node to all demand nodes are

added. The travel times from the dummy node could reflect the geographic position of the

vessel, for instance, that it is in the middle of the ocean. To finish specifying the network,

we add exit arcs from any node (including the dummy ones) back to the depot at zero travel

time and zero cost.

However, the original instance LR1 2 DR1 3 VC2 V6a does not specify the initial states of

the vessels, and so we are less constrained in defining the entry arcs. Furthermore, because

of how the arc- and sequence-based formulations handle the capacity constraints, adding

these dummy nodes might not be necessary. Consequently, the handling of entry arcs is
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formulation-specific and discussed in the following subsection.

10.A.3 Details for each formulation

In this subsection, we go over any formulation-specific details required to handle the MIRP-

as-VRPTW from the previous subsection. As mentioned, this includes the handling of entry

arcs.

10.A.3.1 Route-based formulation

First, we specify the entry arcs for the formulation. Since vehicle capacity constraints

are enforced through the definition of an allowed route, we must add dummy nodes as

discussed in 10.A.2. We add entry arcs from the depot directly to any supply node with end

of time window less than 14. Meanwhile, for every demand node with end of time window

less than 14, we first add a dummy node with demand level Q. Then, we add arcs from the

depot to this dummy node and then from the dummy node to the demand node (both with

zero travel time and cost). This enforces the vessel to be fully loaded before it arrives at the

demand node. The result is a set of seven vessels.

To finish specifying the route-based formulation, we need to define the set of routes R.

For this problem, we use a randomized greedy solution heuristic to propose routes. The

core of this routine is given in Algorithm 13. This routine takes a scaling factor S and

functions ftime and fnode that together assign a cost to visiting a node with a particular arrival

time. The scaling factor S controls the amount of exploration/randomization that takes

place, while ftime and fnode can be used to control the timing aspect of routes and which
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nodes the routes tend to favor visiting. Here, we set

ftime : t 7→


0, t ≤ 10

100t, t > 10

fnode : i 7→


0, i ∈ N

(TH/6) ·1500, i = d

This is intended to assign a high cost to routes that arrive at nodes later, thus promoting the

generation of routes that greedily visit each node as early as possible, while simultaneously

(through the action of fnode) discouraging early exit back to the depot.

The ultimate set of routes R is the unique set of routes generated by Algorithm 13 for

increasing levels of randomization. Specifically, we run Algorithm 13 once for S = 10−4,

bTHc times for S = 1, and b10THc times for S = +∞. For S = +∞, the sampling at Step 15 in

Algorithm 13 is from a uniform distribution over the valid proposed nodes.

10.A.3.2 Arc-based formulation

The additional data that we need to specify the arc-based formulation is the set of time

periods T . There are many options for determining this set; in general, we must balance

detail and how finely we can model the timing of events, with how large the problem

becomes. For this particular example, we choose the time periods to equal the set of integer

time points that fall within any node’s time window (besides the depot and any dummy

node, which have infinite time windows), plus the initial time point t = 0. For this example,

each node’s time window contains at least one integer time point, and so this gives us at

least a little flexibility in the timing of the arrival of vessels at a node. Further, this leads to

some economy in the number of time points, since an integer time point might fall in the

time window of multiple nodes.
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Algorithm 13 Randomized greedy solution heuristic for route
generation
Require: S ≥ 0, ftime : [0,TH]→ R, fnode :N ∪{d} → R

1: Initialize proposed routes: RP = ∅
2: Initialize unvisited nodes: NU =N

3: for v ∈ V do
4: Initialize route and current arrival time: i1 = d, tr = 0.
5: for p = 2,3,4, . . . do
6: Construct costs for proposed next nodes:
7: for i ∈ NU ∪{d} do
8: if (ip−1, i) <A then
9: continue

10: ti
r = max

{
ai, tr + tip−1,i

}
11: if ti

r > bi then
12: continue
13: else
14: fi = cip−1,i + ftime(ti

r) + fnode(i)

15: Sample next node according to softmax of negative costs:

ip ∼ P(i|ip−1) ≡
exp(− fi/S )∑
j exp(− f j/S )

.

16: Update route and arrival time: r← (d, i2, i3, . . . , ip), tr ← tip
r

17: if ip = d then
18: End building route; break iteration over p
19: Update proposed routes: RP←RP∪{r}
20: Update set of unvisited nodes by removing those visited by

route r = (d, i2, i3, . . . , iP−1,d): NU ←NU −{i2, i3, . . . , iP−1}
return RP

Some care is required. Port D3 has degenerate time windows; however they happen to

fall at integer time points. Changing the initial inventory level so that it is not an integer

multiple of the consumption rate would affect this.

The arc-based formulation does not explicitly enforce capacity constraints (in this example

vessel capacity is essentially enforced through the arcs, which only allow a vessel to visit

an alternating sequence of supply and demand nodes). Consequently, the dummy nodes

for enforcing the initial conditions of vessels are unnecessary. We add entry arcs from the

depot directly to any supply node or demand node with end of time window less than 14.
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As in the path-based formulation, this results in seven vessels being available.

10.A.3.3 Sequence-based formulation

To specify the sequence-based formulation, we need a maximum number of stops P for each

vehicle. Given the length of the time horizon TH , we estimate this based on the shortest

travel time (5305.34/665 ≈ 8). Thus, we set P = bTH/8c+ 2.

As in the arc-based formulation, dummy nodes for enforcing the initial conditions of

vessels are unnecessary. We add entry arcs from the depot directly to any supply node or

demand node with end of time window less than 14.

The sequence-based formulation does not directly enforce timing constraints. As men-

tioned, we enforce them in a conservative way by pruning the arc set: for any arc (besides

an entry arc from the depot), if the end of the time window of the origin node plus the travel

time is greater than the end of the time window of the destination node, then that arc is

removed. We essentially enforce timing constraints by assuming that vessels always arrive

at the end of a node’s time window. Something similar could be done by assuming that

vessels always arrive at the beginning of a node’s time window.

10.B Proof of sufficiently large penalty value

In this section, we establish in detail a value of the penalty parameter that is sufficient to

make the route-based formulation (10.2) equivalent to minimizing the energy function

H : x 7→
∑

r

cr xr +ρ
∑

i

(1−
∑

rδi,r xr)2.

Proposition 10.B.1. Assume ρ satisfies

ρ >
∑

r

|cr | .
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Then x∗ is a solution of min {H(x) : x ∈ {0,1}n} and problem (10.2) is feasible, if and only if x∗

solves problem (10.2) (where n = |R|).

Proof. If x∗ solves (10.2), then it is feasible, so the penalty term is zero:
∑

i(1−
∑

rδi,r x∗r )2 = 0.

Assume for a contradiction that there is an x† ∈ {0,1}n with H(x†) < H(x∗), or

∑
r

cr x†r +ρ
∑

i

(1−
∑

rδi,r x†r )2 <
∑

r

cr x∗r . (10.11)

If x† is feasible in (10.2), then the penalty term is zero, and so
∑

r cr x†r <
∑

r cr x∗r which

contradicts the optimality of x∗; thus, we must have that x† is infeasible in (10.2). Since x†r

and δi,r are {0,1}-valued for all r and i, the smallest value that ρ
∑

i(1−
∑

rδi,r x†r )2 can take

is ρ (since it is infeasible, it cannot be zero). Meanwhile, by the (generalization of) the

Cauchy-Schwarz inequality, −
∑

r cr(x†r − x∗r ) ≤ ‖c‖∗
∥∥∥x†−x∗

∥∥∥ for any norm ‖·‖ and its dual

norm ‖·‖∗. In particular, using the infinity-norm, we have −
∑

r cr(x†r − x∗r ) ≤ ‖c‖1 · 1. Using

ρ ≤ ρ
∑

i(1−
∑

rδi,r x†r )2 and −‖c‖1 ≤
∑

r cr(x†r − x∗r ) and plugging into (10.11), we have

−‖c‖1 +ρ < 0,

but upon rearranging and using the definition of the one-norm, we see this contradicts the

assumption that ρ >
∑

r |cr |. Thus x∗ ∈ argminx H(x).

Conversely, assume that x† solves minx H(x), and that problem (10.2) is feasible. We have

minx H(x) must be less than or equal to the minimum objective value of (10.2); H(x) equals

the objective of (10.2) on the feasible set of (10.2), and the minimization of H is over a

superset of the feasible set of (10.2), so the minimum must be less. Thus, we just need to

establish that x† is feasible for (10.2). So, assume for a contradiction that x† is not feasible.

By assumption, there exists x∗ feasible in (10.2). Since x† minimizes H, we have

∑
r

cr x†r +ρ
∑

i

(1−
∑

rδi,r x†r )2 ≤
∑

r

cr x∗r .
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We can proceed exactly as before to obtain −‖c‖1 +ρ ≤ 0, which still contradicts the assump-

tion that ρ >
∑

r |cr |. Therefore x† is feasible in (10.2), and thus optimal. �
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Chapter 11

Conclusion

11.1 Summary of this Thesis

This section summarizes the significant accomplishments and findings from each chapter

in the Thesis.

11.1.1 Chapter 2: a review and comparison of solvers for convex MINLP

In Chapter 2, we have completed an overview of the available software tools, or solvers,

that have been developed to solve convex Mixed-Integer Nonlinear Programming (MINLP)

problems. Moreover, we have performed a large computational study by testing these

solvers with MINLP benchmark library MINLPLib [100], through the evaluation of 355

problems. These problems stemmed from a diverse set of sources, showing the versatility of

convex MINLP as a modeling paradigm. Our results indicate the advances that have been

made in practically solving these problems, and the difficulties that still exist when facing

these challenging nonlinear discrete optimization problems. Through an initial classification

of solver technologies, like those based on Branch & Bound techniques and those relying

on Mixed-Integer Linear Programming based Decomposition, we were able to identify the

overall advantages and disadvantages of these complementary methods. A key finding

was that there is no dominant solver at this moment and not even a dominant solution

technique, demonstrating the necessity of counting with an arsenal of algorithmic methods

to tackle these optimization problems. Moreover, we provided a set of recommendations
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for both problem modelers and solver developers to match the best solution strategies for

problems with specific characteristics. Observing the solver performance concerning the

problem’s continuous relaxation gap, nonlinearity, and discrete density, pointing us towards

the strengths and weaknesses of these solution techniques. Moreover, we acknowledge

that the benchmarking of MINLP solvers needs to be performed objectively. Therefore, it

is required to use comparison methods that generalize the solvers’ performance beyond

the chosen instances. We notice that implementing methods similar to the ones presented

by Smith-Miles et al. [416] is desirable to achieve this goal.

We observed that there is still a gap between those problems that are practically solvable

and what can be modeled through MINLP. Having identified this gap motivates us to keep

developing solution methods and better modeling techniques for MINLP, thus motivating

the remaining work presented in this Thesis.

11.1.2 Chapter 3: Feasibility Pump implementation in DICOPT

In Chapter 3, we present the implementation of the Feasibility pump algorithm for MINLP

[143] in the commercial solver DICOPT [124]. The feasibility pump algorithm relies on the

minimization of the constraints violation. This is achieved by iteratively minimizing the

discreteness violation through a continuous problem subject to the nonlinear constraints

and the nonlinear constraint violation by solving a linear discrete-valued problem. This

chapter presents the difference between algorithms and solvers by showing a detailed

description of the implementation details of a well-known algorithm in a commercial solver

for MINLP. This difference allowed us to propose improvements to the original algorithm

to adapt to the existing solver infrastructure. We proposed a new algorithm based on the

integration of two existing algorithms, outer-approximation (OA) [122] and the iterative

feasibility pump [143], both designed to provide guaranteed optimal solutions to convex
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MINLP problems but with different features. We leverage the efficiency at finding optimal

solutions from the feasibility pump to use is as a preprocessing step for the solver DICOPT,

which implements the OA algorithm.

Obtaining a feasible solution early in the solution process through the feasibility pump

benefits the DICOPT’s performance on several fronts. It first provides a potentially feasible

solution to the OA method to start its iterations. Secondly, it offers a valid linear relaxation

of the nonlinear feasible set by initializing it with linear cuts found during the feasibility

pump iterations. The hypothesis that the outer-approximation cuts generated while using

the feasibility pump were useful for DICOPT was confirmed. It was verified that passing

solution cuts to DICOPT reduced the computational time of the algorithm compared

to simply using the best feasible solution as initialization. The proposed algorithm has

shown better performance than DICOPT without the feasibility pump regarding solution

quality, and has similar performance regarding efficiency and stability. Both advantages are

necessary to improve the default performance of DICOPT, shown through experiments by

solving 80 convex MINLP instances from MINLPlib. We propose a set of recommended

settings that become the default in the commercial solver DICOPT when addressing convex

MINLP problems through a set of computational tests.

11.1.3 Chapter 4: Center cut algorithm

Chapter 4 present another solution method for convex MINLP problems. This method

uses the Chebyshev center of the region defined by the linear constraints to determine a

trial solution for the discrete variables, or integer combination. The optimization problem

of finding the Chebyshev center of a polyhedron, which corresponds to the center of the

largest possible ball that fits within a linearly constrained region, can be written as a Linear

Programming (LP) problem. We enforce the discrete variables in the original problem to
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take integer values, resulting in an MILP problem. This integer combination is then fixed

to solve a continuous Nonlinear Programming (NLP) problem, with the hypothesis that

by using the center of the linear approximation, the corresponding integer combination is

more likely to be a feasible solution of the convex MINLP problem. The solutions of the

fixed NLP subproblem allow refining the linear Outer-approximation, which also considers

the improvement of the objective function to reduce the volume of the linear relaxation

region. The radius of the largest ball within the linear relaxation, whose center is the

Chevishev center, is the convergence indicator for this method, which is guaranteed to tend

to zero with increasing iterations. The iterative solution between the MILP that determines

the Chebyshev center and the fixed NLPs problem results in an algorithm with global

convergence guarantees for convex MINLP problems.

Besides deriving a convergent method that can be used as a deterministic solver for

convex MINLP, we completed an implementation of this method. We experimented with it

extensively using the problem library MINLPLib. Our implementation and computational

results have shown this algorithm to be a very efficient procedure to find good quality

feasible solutions to convex MINLP problems. Its performance is comparable to the Fea-

sibility pump implementation in DICOPT described in Chapter 3. Furthermore, either of

these methods performs better in finding good quality feasible solutions than the other

depending on the instance, with both showing an advantage compared to commercial

solvers. These results motivate implementing both of these methods in a flexible solver,

intending to be available when addressing these convex discrete optimization problems.

11.1.4 Chapter 5: Outer-approximation with Quadratic Cuts

Chapter 5 introduces the concept of quadratic cuts for the Outer-approximation (OA)

method for solving convex MINLP problems. This approach generalizes OA by allowing
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quadratic inequalities, instead of linear, to be iteratively added to a driver Mixed-Integer

Quadtratically Constrained Programming (MIQCP) problem. The development of this

approach is largely motivated by the possibility of an efficient solution of MIQCP problems

from commercial MILP solvers, and the observation that for many MINLP problems the

quality of the relaxation given by linear approximations is low. The relaxation derived

by this method, by definition, dominates the linear gradient-based relaxation from OA.

To guarantee the validity of the relaxation, we construct a scaled second-order Taylor

approximation of the nonlinear constraints. The scaling factor of the quadratic term is a

coefficient multiplying the quadratic term in the Taylor expansion. We propose rigorous

methods to find such a scaling factor and show that under certain technical conditions on

the nonlinear functions, it can be computed by evaluating a function at its vertices.

We then apply this method by generating a single or multiple different quadratic in-

equalities in an approach we denote multi-cut, at each OA iteration. Moreover, we extend

another Decomposition method for MINLP, the Partial Surrogate Cuts (PSC) [90] method,

with the scaled quadratic cuts and the multi-cut strategy. We also explore the dynamic

application of linear and quadratic cuts in OA and PSC, leading to a hybrid method. The

motivation is that the linear approximations might be used for early iterations, where the

incumbent solutions are still far from the optimum. The quadratic inequalities that yield

expensive MIQCP problems can be used at later iterations when the points where these

approximations are generated are near the optimal solution.

The combination of single- and multi-cut, hybrid and purely quadratic relaxations, and

OA and PSC resulted in six new optimization methods for convex MINLP. Although the

use of PSC might reduce the size of the mixed-integer subproblems, the weaker relaxation

it yields results in a larger number of iterations, which for our results ultimately lead to

higher computational times. Along these same lines, the use of quadratic inequalities
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results in more expensive iterations. However, the quality of the relaxation is such that

the total number of iterations is reduced. To alleviate this issue, deriving multiple cuts at

each iteration, derived from the different solutions found while solving the mixed-integer

problems, results in an overall reduction in the time required to solve these problems. The

factors listed above lead to the most efficient method compared in this chapter being OA

with multiple quadratic cuts derived at each iteration.

11.1.5 Chapter 6: Use of Regularization and Second-Order Information for

Outer-approximation

Chapter 6 proposes another extension to the Outer-approximation method. Though a

generalization of the level-based method proposed by Lemaréchal, Nemirovskii, and Nes-

terov [257], the OA method is enhanced through the solution of an auxiliary Mixed-Integer

Quadratic Programming (MIQP) problem at every iteration. This problem contains the

same constraints as the driver mixed-integer problem in OA with an additional constraint.

This extra constraint forces the solution of the MIQP to be above a certain level of the

objective function, estimated through interpolation of the optimal objective bounds and

controlled through a trust hyperparameter. This problem also has a different objective func-

tion, which minimizes the squared `2−distance to the incumbent solution. The objective

function is similar to one of the modified objectives in the feasibility pump as described in

Chapter 3, and the solution of this problem defines the integer combination to solve the

NLP subproblems as in the Center-cut algorithm presented in Chapter 4.

An interesting fact about this method is that we prove it to be equivalent to using a

trust-region constraint in the mixed-integer subproblem of OA, allowing the developments

on trust-region methods for continuous optimization [267] to be explored within for MINLP.

Alternatively, we have proved that this method is guaranteed to converge in a finite number
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of iterations. The auxiliary MIQP problem is guaranteed to provide new integer combina-

tions as long as the algorithm has not converged. More interestingly is that the convergence

guarantees of this method do not rely on the solution to optimality of the MIQP problem,

and that the solution of the MILP subproblem is also feasible for the auxiliary problem.

As in the previous chapter, the second-order information is exploited to improve the

performance of this method. For this particular case, we consider the second-order Taylor

approximation at the optimal solution of the NLP problems of the Lagrangean function

as the objective to the auxiliary MIQP problem. The second-order approximation of the

Lagrangean as an objective informs the auxiliary MIQP problem about the curvature of the

constraints and allows a practically efficient implementation given the availability of the

Hessian of the Lagrangean from the NLP subproblems.

These two approaches were able to reduce the number of total iterations compared to

the OA method. Having a convex region defined by the nonlinear constraints motivates

the idea of stabilizing the OA method by exploring the neighborhood of the best-found

solution. This hypothesis is supported by the results included in this chapter. The more

expensive iterations requiring the suboptimal solution of the MIQP auxiliary problems

result in an overall reduction in the solution time for the convex MINLP problems.

11.1.6 Chapter 7: Alternative Regularizations for Outer-approximation

Chapter 7 presents a general framework for regularization in the Outer-approximation

method, generalizing the two algorithms proposed in Chapter 6. The key observation for

this chapter is that the convergence guarantees of the second-order regularization methods

do not rely on the chosen objective for the auxiliary MIQP problem. This observation

allows the objective to be chosen such that it can be representable with linear constraints,

for example, opening up the possibility of implementing other regularization options. In
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terms of the distance to the incumbent solution, we propose using the `1 and `∞ norms,

which are representable with linear constraints. Furthermore, we consider alternatives to

the second-order Taylor series approximation of the Lagrangean, such as the first-order

Taylor approximation, the Hessian of the Lagrangian, and a quasi-Newton approximation

of the Lagrangian function.

We also extend the regularization methods to the LP/NLP Branch & Bound algorithm

proposed by Quesada and Grossmann [90]. This extension allows for a single MILP driver

problem to be solved in what is known in the literature as single-tree approach in contrast to

the traditional OA or multi-tree approach that involves the solution og a sequence of MILP

subproblems. At each incumbent solution of the driver MILP Branch & Bound tree, the

regularization mixed-integer problem and its corresponding NLP subproblem are solved.

Complementary to this, the implementation has been made widely available through the

Mixed-integer nonlinear decomposition toolbox for Pyomo - MindtPy [190].

This open-source and flexible implementation allowed us to perform a large compu-

tational study comparing seven different objectives alternatives for the regularization

problem, both in the multi- and single-tree settings showing the potential of regularization

techniques in convex MINLP.

We observed increased stability in the OA method when considering the regularization

approach, as long as the objective function was indeed a regularizer. Moreover, the flexibility

in the objective function of the regularizer allows for it to be chosen as a linear representable

function, taking advantage of the more mature solution methods of MILP compared to

MIQP. The case of the linear approximation of the Lagrangean is an example of an invalid

regularizer where the method’s performance was compromised, even if the regularization

subproblem was an MILP.
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11.1.7 Chapter 8: Easily Solvable Convex MINLP Derived from Generalized

Disjunctive Programming using Cones

Chapter 8 offers a different approach toward the solution of convex MINLP problems.

Instead of advancing the state-of-the-art solution algorithms for these problems, it tackles

the formulation of the problems. In particular, a large subset of convex MINLP prob-

lems arises from disjunctive constraints, where a set of nonlinear constraints are enforced

or relaxed based on a discrete choice. An amenable representation of such problems is

Generalized Disjunctive Programming (GDP), where the discrete choices are represented

through logical variables, and the sets of constraints are included inside of disjunctions.

This modeling framework extends Disjunctive Programming (DP), the optimization over

disjunctive sets, by allowing logical propositions between the logical variables and global

constraints outside of the disjunctions to be considered. The relationship between GDP and

DP allows for the reformulation of GDP into a Mixed-Integer Programming problem, where

linearity depends on the GDP constraints’ linearity. These reformulations introduce a binary

variable for each logical variable and enforce the constraints in the disjunctions through

algebraic constraints involving those binary variables. Two transformations are considered

between GDP and MINLP, the Big-M and the Hull Reformulation (HR). There is a trade-off

between these two transformations in terms of the number of continuous variables in the

resulting MINLP and how close, or tight, the solution of the MINLP continuous relaxation

is from the original problem optimal solution. In the case of the HR, the MINLP involves

the perspective of the functions in the disjunctions. In the case that these functions are

nonlinear, its perspective becomes non-differentiable at points where the binary variables

are equal to zero, making its optimization challenging and motivating the derivation of

approximations of the perspective function [62].

When considering a convex GDP, contrary to the traditional algebraic representation
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through inequality constraints, we represent the convex sets in its disjunctions through

cones. The optimization over cones, or Conic Programming (CP), uses these convex sets’

features, such as conic duality, to derive efficient and stable algorithms. We propose

the formulation of convex GDP problems as conic GDP problems, whose mixed-integer

reformulation is also representable via the same cones. The resulting Mixed-Integer Conic

Programming (MICP) problems were solved using different solvers and compared against

the MINLP reformulations stemming from the algebraic representation of the convex GDP

problems. The conic formulation of convex MINLP allows for a natural and systematic

lifted reformulation of the problem that benefits OA methods. An interesting observation

is that the perspective function could be represented exactly through conic sets, avoiding

approximations required in the nonlinear HR.

To test the effects of the conic formulation, we implemented a large set of convex GDP

instances. These instances included optimization problems relevant to Chemical Engineer-

ing, such as the constrained safety layout problem, the optimal process network design,

and the synthesis and retrofit process sytneshsis problems. We were also able to use these

formulations to tackle problems relevant to Machine Learning, such as k-mean clustering

problems and logistic regression problems, and randomly generated instances that were

representable using quadratic and exponential cones. This exact formulation of the tight

mixed-integer HR of disjunctive sets allows the problems to be solved more efficiently

through solvers that exploit the conic structure.

11.1.8 Chapter 9: Characterization of QUBO Reformulations for the Maximum

k-colorable Subgraph Problem

Chapter 9 is the first chapter in this Thesis that covers the reformulation of a constrained

Integer Programming problem as a Quadratic Unconstrained Binary Optimization (QUBO)
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problem. The reformulation of optimization problems as QUBO is of interest given the one-

to-one mapping between QUBO and the transverse field Ising model. This particular model

is relevant in this Thesis since it is the framework where Quantum Computing approaches

can tackle combinatorial optimization problems. In particular, the Ising model is mapped to

the energy function, or Hamiltonian, of a Quantum system. This system is defined by a set of

quantum bits, or qubits, whose final state represents a binary variable in the QUBO problem.

The algorithms executed in Quantum Computers designed for combinatorial optimization

aim to minimize this energy function, and hence the original QUBO problem. Among

those algorithms, we see results in this Thesis corresponding to Quantum Annealing (QA)

implemented in tailored hardware to run this algorithm, known as Quantum Annealers, and

the Quantum Optimization Approximation Algorithm (QAOA) and Variational Quantum

Eigensolver (VQE) algorithms implementable in Gate-based Quantum Computers.

The problem at hand is the maximum k-colorable subgraph (MkCS) problem, a problem

from graph theory. Given a graph, we need to find the largest subgraph such that k

different colors are assigned to each non-adjacent node in it. This problem is a challenging

combinatorial NP-complete optimization problem with many applications in Science and

Engineering. This problem can be posed as a Binary Linear Program with inequality

constraints. One constraint represents the non-adjacency of same-colored nodes. The

second one is the requirement of coloring each node with at most one color. The usual

transformation of Binary Linearly constrained problems into QUBO entails adding slack

variables to transform the inequality constraints into equalities, followed by penalizing

the constraints in the objective function. The penalization of the constraints is particularly

important in the reformulation of problems into QUBO. Large values tend to affect the

precision at which the Quantum Computers can represent problems. Simultaneously,

these penalization factors need to be large enough to effectively represent the existence of
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constraints in an unconstrained problem, i.e., that the objective function corresponding to a

solution that violates a constraint is larger than the optimal feasible solution.

In the case of the MkCS, we first derive the tightest bounds for the penalization factors

of each constraint that yield a valid reformulation of the problem. We then propose a

nonlinear formulation of the MkCS, which would be more challenging to solve using

classical methods given the introduction of bilinear equality constraints. However, for

QUBOs, it yields a smaller problem given that slack variables are no longer required to

reformulate the problem. We also derive tight values for the multipliers in this nonlinear

formulation. Both these formulations are benchmarked using Quantum Annealing. In

the first place, we characterize the minimum gap of each formulation, which represents the

difference between the two smallest eigenvalues of a Hamiltonian along its time evolution.

This term represents the success of finding the optimal solution in the theoretical ideal limit

of Quantum Annealing, the Quantum Adiabatic Algorithm, where for larger values of the

minimum gap, the required time to perform an adiabatic evolution decreases, hence making

the optimization problem more likely to succeed. We continue the study by comparing

the minor-embedding of the resulting QUBO formulations into two Quantum Annealing

chips available from the company D-Wave. Given the physical difficulties of setting up

controllable quantum systems, the chips that can encode the minimization of the energy of

an Ising model can only represent a model defined over a not fully-connected graph, whose

nodes are quantum bits, or qubits, and whose edges are possible connections, or couplers.

An NP-Hard graph-theoretical operation called minor-embedding has to be performed to

encode an arbitrary QUBO into these chips. The original QUBOs are reformulated in a way

that they can be solved in the Quantum Annealers. Finally, we run the minor-embedded

QUBOs on the Quantum Annealer and compare a metric of success of this algorithm know

as Time-to-solution (TTS), which denotes the expected time to obtain the optimal solution of
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a Hamiltonian minimization with a determined confidence percentage.

This comparison is made for a large population of randomly generated graphs, varying

their size and density while considering different values for the colors k and the penalty

factors. Our results show that the nonlinear reformulation of the MkCS problem is superior

to the linear reformulation according to all the metrics that we compared against each

other. In terms of the minimum gap, comparing a limited set of results product of the

computational complexity of this calculation, we reject the null hypothesis that the linear

reformulation yields a larger minimum gap than the nonlinear reformulation up to a

2% with a 95% confidence. Loosely speaking, this means that the minimum gap for

the nonlinear formulation is 2% higher than the linear formulation, proving a potential

advantage og the Adiabatic Quantum Algorithm framework. In terms of embedding,

the smaller and sparser QUBOs that result from the nonlinear formulation allow solving

problems of the same size requiring only a fraction of the qubits. More importantly, given

the current limitation in the size of the chips, the nonlinear formulation could be embedded

for problem sizes for which it is impossible to embed the linear reformulation. In terms

of TTS, the nonlinear reformulation yields orders of magnitude improvements compared

to the linear reformulation. This even in the cases where the linear reformulation was

solvable. For the problem sizes where the instances could not even be embedded, the

nonlinear reformulation resulted in the only way to solve these problems directly using the

existing Quantum Annealers. This observation supports our main conclusion. The correct

reformulations of combinatorial optimization problems are necessary to efficiently exploit

unconventional computing methods.
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11.1.9 Chapter 10: Formulating and Solving Routing Problems on Quantum

Computers

Similarly to Chapter 9, Chapter 10 presents the different formulations of a constrained

optimization problem as a QUBO and evaluates their performance in terms of metric

relevant from a Quantum Computing perspective. This chapter presents different Vehicle

Routing Problem with Time Windows (VRPTW) formulations, motivated by the industrially

relevant Maritime Inventory Routing Problem (MIRP). This problem minimizes the cost of

a set of vehicles visiting a set of customers within predefined time intervals, or windows,

traveling through a pre-specified graph delivering or picking up product at each customer

subject to inventory constraints and satisfying all the customer demands. Three different

formulations are proposed to be solved directly as a QUBO, a Route-based formulation, an

Arc-based formulation. Each formulation was compared against each other in terms of the

resulting QUBO scaling with respect to the growth in the inputs, e.g., the time horizon, its

solution landscape, i.e., the feasible solutions’ objective function distribution, and numerical

simulation of the quantum algorithms. Moreover, the sequence-based formulation was

extended to include continuous variables and then tackled using an Alternating Direction

Method of Multipliers (ADMM) heurstic [388], which relies on subproblems solutions via

Quantum methods. This problem was tackled through QUBO solution algorithms that are

implementable in Gate-based Quantum computers. In particular, the algorithms chosen

are variational algorithms, i.e., algorithms where a set, or circuit, of quantum operators,

or gates, are parametrized by a set of continuous values, or rotation angles. An objective

function, e.g., the expectation value of the energy of the Hamiltonian, is efficiently evaluated

by executing the circuit on a quantum computer. A classical optimizer can then variate

the rotation angles to optimize the given objective. This parametrized circuit, or ansatz, is

designed so that its states represent the least-energy states of the Hamiltonian with high
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accuracy.

We can draw several conclusions based on the obtained results. Preprocessing techniques

used to generate and trim the route-based formulation successfully reduced the problem

size, a significant limitation of the existing quantum hardware. On the other hand, this

formulation was the least sparse, which is also affected by another quantum hardware

limitation. Taking advantage of the different formulations is a way to avoid the hurdles

that each has, e.g., the route-based preprocessing techniques could be applied to reduce the

size of sparser problem representations, such as the arc- or sequence-based formulations.

The results from this chapter also shed light on the different quantum algorithms to

address QUBO problems. We identify a trade-off between those algorithms that require a

larger number of ansatz parameters, hence requiring few iterations to represent the optimal

solution of the problems and those with few parameters that can be efficiently optimized

classically. The two extremes of this trade-off are represented by QAOA, with the fewest

parameters and therefore being desirable to take many circuit samples, and VQE with the

most flexible ansatz, being the best fit given a limited sampling budget.

Finally, the results for the ADMM algorithm show the potential of developing and using

hybrid algorithms where subproblems are QUBO. In this case, we can enforce constraints or

solve problems over variable domains that are hard to represent using quantum computers,

such as continuous variables. We can do this while taking advantage of the quantum

methods to efficiently address these subproblems.

11.1.10 Chapter A: Integer Programming Techniques for Minor-Embedding in

Quantum Annealers

The results in Chapter A in the Appendix are slightly out-of-scope in this Thesis. We include

this chapter as an appendix since it covers a relevant problem for one of the Quantum
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Computing technologies used in this Thesis. This chapter discusses the solution to the

minor-embedding problem using Integer Programing Techniques. As mentioned above, the

minor-embedding problem is a graph-theoretical problem relevant to Quantum Annealers.

The current quantum computers do not offer full connectivity among their qubits. Therefore,

when trying to implement algorithms or problems that involve arbitrary connectivity among

qubits, a pre-compilation step needs to be completed. For the case of Quantum Annealing,

the D-Wave devices offer a chip architecture, called chimera and pegasus, which consists

of cells of 4 × 4 bipartite graphs interconnected among them. Although designed to be

as connected as possible, these chip topologies are still relatively sparse. For instance, to

implement a problem that requires higher connectivity than the chip, the minor-embedding

process must be performed. This procedure requires representing a variable in two or

more qubits and forcing those qubits to hold the same value during the problem’s solution.

The duplicated qubits need to be connected between each other in the chip and need to

implement the variable interactions of the original problem. In practice, this problem

is solved heuristically, yielding potentially suboptimal solutions. Determining a success

metric or objective function for the minor-embedding problem is not well defined, but there

exist several alternatives that are desirable, e.g., embeddings that require the fewest number

of qubits in order to take the most advantage of the size-limited chips.

We formulated the minor-embedding problems using an Integer Linear Programming

(ILP) problem. This problem encoded all the embedding requirements as constraints and

the desired properties in the objective function. The resulting ILP problem was solved using

commercial solvers directly, on an monolithic approach, and through a tailored decompo-

sition algorithm, which allowed solving problems that were challenging for the heuristic

methods. Moreover, we could obtain embeddings to application problems in Engineer-

ing, such as the minimum Spanning tree for vehicle communication and Protein Folding
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problems. The decomposition approach was more efficient at finding feasible solutions

to this problem but closing the optimality gap for these problems was more efficiently

achieved using the monolithic method. A considerable limitation of this approach was the

scalability of the methods. Finding optimal solutions to the embedding problem via Integer

Programming techniques is limited by the size of the problem, with the largest problem

solved in our work having 81 qubits and requiring one hour of computation. Given that

the embedding problem is a pre-compilation step using that large amount of time is not

acceptable for the given application. Furthermore, the latest generation D-Wave Quantum

Annealers, with the pegasus architecture, has more than 50000 qubits, leading to substantial

running times and exposing a weakness of this method.

11.2 Research contributions

The major original research contributions of this Thesis are the following:

1. Provided a classification and benchmark of the solution codes, solvers, for convex

Mixed-Integer Nonlinear Programming (MINLP) problems by gathering and solving

the largest MINLP problem library publicly available.

2. Proposed a novel heuristic method for convex MINLP, modifying the feasibility

pump algorithm [143], and implemented it in the commercial solver DICOPT [214]

improving the solver’s performance with this problem class. The implementation

became the default option when solving convex MINLP problems with this solver.

3. Introduced a new deterministic solution method for convex MINLP problems based

on the Chebyshev center denominated the Center-cut algorithm. This method proved

to be very efficient for finding feasible solutions to highly nonlinear convex MINLP

problems.
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4. Extended the Outer-approximation (OA) method by proposing the scaled quadratic

cuts, which derive a Mixed-Integer Quadratically Contrained (MIQCP) master prob-

lem through the guaranteed valid quadratic approximation of the nonlinear con-

straints. This extension generalizes the single-iteration convergence property of OA

for Mixed-Integer Linear Programming (MILP) problems to MIQCP problems.

5. Introduced the concept of Regularized Outer-approximation, which by means of the

solution of an auxiliary mixed-integer problem at every iteration, stabilizes the con-

vergence of OA. This method is guaranteed to converge to the global optimal solution

of convex MINLP problems and has shown its improved performance compared to

OA.

6. Proposed the formulation of convex Generalized Disjunctive Programming (GDP)

problems using conic sets, allowing for conic programming methods to be used for the

efficient solution of convex GDP programs through the reformulation to Mixed-Integer

Conic Programming (MICP) problems. This conic reformulation avoids approximat-

ing the non-differentiable perspective function and enables the solution of these

problems through an extended formulation using specialized conic programming

solvers.

7. Implemented 425 examples of convex GDP problems as conic GDP problems. These

instances, which showed improved computational performance compared to non-

conic formulations, included over two hundred applications-related instances relevant

to Process Systems Engineering (PSE) and Machine learning (ML).

8. Proposed a nonlinear formulation of the Maximum k Colorable Subset (MkCS) prob-

lem, which once transformed into a Quadratic Unconstrained Binary Optimization

(QUBO) problem improves over the classical linear formulation in metrics relevant to

the solution of the problem via QuantumAnnealing such as minimum gap, embedding
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size, and time-to-solution.

9. Evaluated and compared three different discrete formulations of the Vehicle Routing

Problem with Time Windows (VRPTW) with applications in Maritime Inventory

Routing Problems (MIRP) for its solution through their QUBO reformulation and their

solution via variational algorithms for Gate-based Quantum Computers. A route-

based formulation allows for classical preprocessing which benefits the representation

of the VRPTW as a QUBO. Sequence- and arc-based formulations show favorable

characteristics, such as sparse QUBO representation, which are desirable for solving

larger instances where classical methods struggle. This study also provided a clear

picture among the trade-offs of variational quantum algorithms in gate-based circuits,

with QAOA being the least flexible in terms of problem representation but the easiest

to optimize given a large budget on quantum circuit evaluation, while VQE proving to

the the most succesful algorithm in this comparison with a limited number of circuit

evaluations.

10. Proposed Integer Programming based formulation of the minor-embedding problem,

relevant to the compilation of Quantum Annealing problems, obtaining a solution

method with solution quality guarantees which are advantageous in some instances

compared to the traditionally used heuristic methods.

11.3 Papers produced from this dissertation

1. Jan Kronqvist, David E Bernal, Andreas Lundell, and Ignacio E Grossmann. “A

review and comparison of solvers for convex MINLP”. Optimization and Engineering

20.2 (2019), pp. 397–455.

2. David E Bernal, Stefan Vigerske, Francisco Trespalacios, and Ignacio E Grossmann.
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“Improving the performance of DICOPT in convex MINLP problems using a feasibility

pump”. Optimization Methods and Software 35.1 (2020), pp. 171–190.

3. Jan Kronqvist, David E Bernal, Andreas Lundell, and Tapio Westerlund. “A center-

cut algorithm for quickly obtaining feasible solutions and solving convex MINLP

problems”. Computers & Chemical Engineering 122 (2019), pp. 105–113.

4. Lijie Su, Lixin Tang, David E Bernal, and Ignacio E Grossmann. “Improved quadratic

cuts for convex mixed-integer nonlinear programs”. Computers & Chemical Engineering

109 (2018), pp. 77–95.

5. Jan Kronqvist, David E Bernal, and Ignacio E Grossmann. “Using regularization and

second order information in outer approximation for convex MINLP”. Mathematical

Programming 180.1 (2020), pp. 285–310.

6. Stuart Harwood, Claudio Gambella, Dimitar Trenev, Andrea Simonetto, David E

Bernal, and Donny Greenberg. “Formulating and Solving Routing Problems on

Quantum Computers”. IEEE Transactions on Quantum Engineering 2 (2021), pp. 1–17.

Preprints published from this dissertation

1. Rodolfo Quintero, David E. Bernal, Tamás Terlaky, and Luis F Zuluaga. “Character-

ization of QUBO reformulations for the maximum k-colorable subgraph problem”.

arXiv preprint arXiv:2101.09462 (2021)

2. David E Bernal, Sridhar Tayur, and Davide Venturelli. “Quantum Integer Program-

ming (QuIP) 47-779: Lecture Notes”. arXiv preprint arXiv:2012.11382 (2020)

11.3.1 Collaborations

This dissertation has benefited from external collaborations. The works below are products

of these collaborations, for which we were privileged to serve as secondary contributors.

1. Qi Chen, Emma S Johnson, David E Bernal, Romeo Valentin, Sunjeev Kale, Johnny
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Bates, John D Siirola, and Ignacio E Grossmann. “Pyomo. GDP: an ecosystem for

logic based modeling and optimization development”. Optimization and Engineering

(2021), pp. 1–36.

2. Can Li, David E Bernal, Kevin C Furman, Marco A Duran, and Ignacio E Grossmann.

“Sample average approximation for stochastic nonconvex mixed integer nonlinear

programming via outer-approximation”. Optimization and Engineering (2020), pp. 1–29.

3. Haokun Yang, David E Bernal, Robert E Franzoi, Faramroze G Engineer, Kysang

Kwon, Sechan Lee, and Ignacio E Grossmann. “Integration of crude-oil schedul-

ing and refinery planning by Lagrangean Decomposition”. Computers & Chemical

Engineering 138 (2020), p. 106812.

4. Cristiana L Lara, David E Bernal, Can Li, and Ignacio E Grossmann. “Global optimiza-

tion algorithm for multi-period design and planning of centralized and distributed

manufacturing networks”. Computers & Chemical Engineering 127 (2019), pp. 295–310.

11.3.2 Conference proceedings papers

This dissertation has also resulted in several conference proceeding papers. We provide the

listing below for the reader’s convenience, as some are not otherwise reflected in this thesis

document.

1. David E Bernal, Kyle EC Booth, Raouf Dridi, Hedayat Alghassi, Sridhar Tayur, and

Davide Venturelli. “Integer programming techniques for minor-embedding in quan-

tum annealers”. In: International Conference on Integration of Constraint Programming,

Artificial Intelligence, and Operations Research. Springer. 2020, pp. 112–129.

2. David E Bernal, Qi Chen, Felicity Gong, and Ignacio E Grossmann. “Mixed-integer

nonlinear decomposition toolbox for Pyomo (MindtPy)”. In: Computer Aided Chemical

Engineering. Vol. 44. Elsevier, 2018, pp. 895–900.
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3. Lijie Su, Lixin Tang, David E Bernal, Ignacio E Grossmann, and Bowen Wang. “In-

tegrated scheduling of on-line blending and distribution of oil products in refinery

operation”. In: Computer Aided Chemical Engineering. Vol. 44. Elsevier, 2018, pp. 1213–

1218.

11.4 Thesis limitations and Future research directions

11.4.1 Sustainable Solver Benchmarks for MINLP

A limitation of the work on Chapter 2 is given by the problems that were tested. There

was a clear dominance of certain families of problems, which bias the conclusions made by

studying solver performance over this set of problems. Moreover, the development of novel

algorithms and their efficient implementation in solvers have made a considerable portion

of the problems in the library trivially solvable. This was observed through the Virtual best

solver, which considers the best solver for each different problem results in 95% of the total

instances being solvable within 15 minutes in a standard desktop. Simultaneously, some

instances in the library were challenging, to the point they haven’t yet been solved. An effort

similar to MIPLib2017 [419], where a data-driven approach was taken to determine the

problem benchmark for MILP solvers, should be followed for the MINLP problem libraries.

The first step is gathering those instances, for which efforts such as MINLP.org[301] and

MINLPLib[88] are crucial.

A second limitation is that the accelerated algorithm development requires the constant

update of the solver comparison. The original paper of this chapter, [26], was published

in 2018. Since then, more than 50 instances have been added to the problem library. All

solvers have released a new version, and new solvers have been introduced as MINLP

solvers. One interesting case is that traditionally MILP solvers CPLEX[52], Gurobi [51], and
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Xpress [185] have extended the problem classes that they can address into MINLP. Develop-

ing an automated, reliable, representative, up-to-date, informative, and replicable solver

benchmark is of great interest to the community and should be pursued. Efforts similar to

the ones carried by Prof. Hans Mittelmann at Arizona State University[420] on constant

solver benchmarking should be followed to track the development of solver technology in

convex MINLP. The first steps towards this goal have been made the Grossmann’s group

Pyomo MINLP Benchmarking Tools in GitHub repository?.

11.4.2 Development of Mixed-Integer Nonlinear Decomposition Toolbox

Many of the algorithmic developments presented in this Thesis entail the Decomposition

of MINLP problems and the solution of existing subproblems using solvers specialized

for such subproblems, such as MILP, NLP, or QUBO. Simultaneously, several of the algo-

rithms presented in this Thesis have been implemented on experimental code, not allowing

other users to use them directly. With that motivation, we started the Mixed-integer

nonlinear decomposition toolbox for Pyomo - MindtPy [190]. This toolbox presents an

open-source? implementation of several decomposition methods for MINLP, including

Outer-approximation [30], Exteded Cutting Planes[29], LP/NLP Branch & Bound [90], and

Generalized Benders Decomposition[28]. It also has implementations of the regularization

methods presented in Chapters 6 and 7 and the feasibility pump in a similar way as it was

implemented in DICOPT, as discussed in Chapter 3. Still missing is the implementation

of several other methods presented in this Thesis, such as the Center-cut algorithm[145],

the Partial Surrogate Cuts method [90], the Scaled Quadratic cuts OA [235], the Extended

Supported Hyperplane [121].

?https://github.com/grossmann-group/pyomo-MINLP-benchmarking
?https://pyomo.readthedocs.io/en/stable/contributed_packages/mindtpy.html
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Although MindtPy already counts with a battery of implemented methods, several

other proposals have been made for MINLP solving based on Pyomo and Python, such

as DIOR[195], GALINI[421], CORAMIN[422], and Decogo[264]. A current opportunity

is identifying if these libraries can be merged into a single centralized MINLP solution

Toolbox.

11.4.3 Estimating the Scaling Factor for the Quadratic Cut in Outer-

approximation

The limitation of the approach presented in Chapter 5 lies in the computation of the scaling

factor for the second-order Taylor series approximation of the constraints. In the Thesis,

we propose a method that finds the scaling factor that provides the tightest quadratic

relaxation at the expense of solving a low-dimensional non-convex optimization problem

for each constraint at each iteration. Moreover, we require information on the Hessian of

the constraints. This step might become prohibitive for the algorithm. Simultaneously,

given some assumptions on the nonlinear constraints, we could derive a more efficient

procedure to find the scaling factor. In some instances, the value of the scaling parameter

can be derived analytically, as in the case where the original problem is an MIQCP problem

where the scaling parameter equals one, and the problem would be solved in a single

iteration using our approach. Efficiently estimating a non-trivial lower bound on the scaling

parameter would be a step in the right direction of incorporating valid quadratic cuts in

OA without requiring the expensive optimization required to estimate that parameter. The

optimization problem to obtain the scaling parameter is the ratio between a convex function

and a convex quadratic function, hence using methods from fractional programming[423]

might lead to an efficient estimation of this scaling parameter.
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11.4.4 Extension of the convex MINLP methods to non-convex MINLP

The first part of this Thesis presents a set of approaches to tackle convex MINLP problems.

Many of these methods might fail to return a feasible solution when the Assumption on

convexity from the objective and constraints fails. There is a lot of potential in extending

some of the proposed ideas for solving non-convex MINLP problems. A first approach has

been taken in this direction by implementing the heuristic strategies of DICOPT [124] for

non-convex MINLP: equality relaxation, augmented penalty, and stopping on worsening,

in MindtPy. We have experimented with generalizing some of the heuristic techniques

implemented in DICOPT for non-convex problems, described in Section 3.2.2. This first

approach entails the softening of the constraints through the augmented penalty method in

the feasibility pump mentioned in Chapter 3.

The Outer-approximation extensions for non-convex problems [240] have also been

implemented in MindtPy, using the library MC++[424] to derive valid under- and over-

estimators of non-convex functions. This implementation is still in its infancy, and it is an

exciting path forward to improving the methods presented in this Thesis.

11.4.5 Generalization of convex MINLP methods to Conic Programming

Recently, the Outer-approximation (OA) method was generalized for Mixed-integer Conic

Programming (MICP) problems [44]. Properties of the conic programs were used to

strengthen the OA method, allowing efficient, efficient solutions of MICP problems via

an OA algorithm. Given the positive experience observed in this Thesis on modeling

convex discrete nonlinear optimization using cones, a natural next step is exploring the

use of the OA extensions proposed herein to solve MICP problems. Particularly interest-

ing approaches are the ones relying on convex quadratic objectives and cuts such as the

ones presented in Chapters 5 and 6, which as seen in Chapter 8 can be formulated using
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second-order and rotated second-order cones.

11.4.6 Automatic identification of Exponential cones

An evident limitation of using Conic Programming tools for convex optimization is the

requirements of performing a translation between the algebraic inequalities into conic sets.

This issue can be alleviated through Disciplined Convex Programming (DCP)[41] with

would leave the user the task of writing down the constraints as an easily translatable

input to cones. Unfortunately, this is not the most straightforward alternative for users

who might be unfamiliar with the conic sets-based formulation paradigm of the DCP

approach. Although Table 1 in Chapter8 provides a set of translations, it would be desirable

if a computer performed this translation automatically. This has already been successfully

implemented in the case of quadratic constraints being transformed into second-order cones;

hence its extension for exponential constraints is worth exploring in the future. rencent

proposals on optimization model transformations, e.g., the Bridges from MatOptInterface in

JuMP[97] and the transformations in Pyomo[273] seem to be the right tools to design these

transformations.

11.4.7 Heuristic methods for Generalized Disjunctive Programming

Chapters 3 and 4 show how knowledge of the original problem mathematical structure

can lead to the design of efficient heuristic methods. Moreover, given the increasingly

challenging nonlinear discrete optimization problems that need to be solved, heuristic

methods can enable the practical solution of these problems.

The solution methods for GDP problems either rely on the reformulation of the problems

into MINLP, as seen in Chapter 8, or on logic-based approaches, with algorithms that

explore the discrete feasible space of the logical variables followed by the solution of NLP
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subproblems with only the relevant constraints included in the optimization problem [59].

The recent development of Discrete-Steepest Descent Algorithms (D-SDA) as a heuristic

for MINLP [9, 10, 425] shows the potential of techniques based on exploration of the discrete

lattice based on discrete convex analysis tools, see e.g., [426]. Using a similar algorithm as

a heuristic but considering the disjunctive nature naturally expressed on a GDP problem

allows for an efficient solution for these optimization problems. Preliminary results seem to

confirm this hypothesis, leading to an exciting development for GDP solution methods.

11.4.8 Decomposition Methods for Quantum Optimization

As observed from the results in Chapters 9 and 10, the study of formulations for different

constrained optimization problems is an area of research interest. These formulations need

to be designed such that they avoid the limitations posed by the existing quantum hardware.

As observed in this Thesis, one key limiting fact of the existing Quantum devices is their size.

A way to circumvent the limitations posed by the reduced hardware size is decomposition

methods. Problem decomposition, as approached in the first chapters of the Thesis when

applied to convex MINLP problems, aims to break down the optimization into smaller

subproblems that can be solved more efficiently using specialized means. Instead of relying

on efficient MILP or NLP solvers, an interesting future line of research is one where the

specialized means are quantum computers in hybrid quantum-classical algorithms. These

decomposition methods could exploit the optimization problems’ mathematical structure

and harness parallelization and specialization when solving the original problem’s par-

titions. By solving different optimization subproblems with specialized tools, separately

treating the complexity that arises from nonlinearity and discreteness, for example, more

complex discrete nonlinear optimization problems can be tackled using unconventional

computing methods. This would allow us to take advantage of the potential speedups
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that unconventional computational paradigms can provide (e.g., Quantum Computing)

when solving combinatorial quadratic problems[427]. Notably, few nonlinear discrete opti-

mization problems can be represented in a small enough QUBO to fit the current hardware.

Nevertheless, by strategically partitioning general MINLP problems, subproblems with

combinatorial quadratic structure can be posed and efficiently solved using these unconven-

tional computational paradigms within a decomposition solution framework. Moreover,

the use of Lagrangean and Benders based-decomposition schemes [428, 429], tailored for

problems with complicating constraints and variables respectively, for solving MINLP prob-

lems using quantum computers is an interesting avenue for future research. Even though

the existing technology limits current Quantum Computing hardware, the same modeling

paradigm for combinatorial optimization, based on the Ising spin model, can interface with

other unconventional computational methods such as Coherent Ising[430] and Simulated

Bifurcation Machines[400]. Combining expertise in modeling and algorithmic design would

allow future researchers to address complex discrete nonlinear problems from practical

application, even without requiring the development of large-scale fault-tolerant quantum

computers.
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Appendix A

Integer Programming Techniques for Minor

Embedding in Quantum Annealers?

A.1 Introduction

Graph minor theory (GMT), the central theme of this work, is prominent across many fields.

In quantum computing, GMT is employed to extend the scope of problems that can be

represented on current quantum annealing hardware [431, 432]. Mapping a dense problem

(logical) graph Y to a sparse (target) graph X can be achieved by constructing connected

subgraphs of the target graph X from the high degree logical vertices y. The resulting

mapping is called a minor-embedding of Y inside X.

Numerous heuristics for finding minor-embeddings have been proposed [433–435]. While

these approaches are generally fast, they do not provide guarantees on the quality of the

produced minor-embeddings nor can they prove the nonexistence of a minor-embedding for

infeasible problems. An approach that attempts to address these shortcomings was recently

introduced in Dridi, Alghassi, and Tayur [91]. This approach uses tools from algebraic

geometry and produces an equational formulation (as opposed to a purely combinatorial

?Published as: David E Bernal, Kyle EC Booth, Raouf Dridi, Hedayat Alghassi, Sridhar Tayur, and

Davide Venturelli. “Integer programming techniques for minor-embedding in quantum annealers”. In:

International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research.

Springer. 2020, pp. 112–129.
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approach) to the minor-embedding problem.

In this chapter, starting from this equational formulation, we propose integer program-

ming (IP) techniques for tackling the embedding problem. Our proposed approaches differ

from the computationally demanding Groebner bases computation used previously and are

aimed at more efficiently computing embeddings while retaining the interesting properties

that arise from the equational formulation of the problem. Our first approach, detailed in

Section A.3, directly translates the previous equational formulation to IP, while our second

approach decomposes the problem into an assignment master problem and fiber condition

checking subproblems, as described in Section A.4. The proposed methods are able to detect

instance infeasibility and provide bounds on solution quality, capabilities not offered by

currently employed heuristic methods. While recent work uses an approach with integer

programming to address the embedding problem based on templates specific to D-Wave

quantum annealers [436], the techniques we present in this chapter are hardware agnostic.

We conduct an extensive empirical analysis involving a benchmark consisting of three

different families of random graphs in Section A.5. There we present our results on an

illustrative and challenging case for heuristics, which motivates the use of IP over Com-

putational Algebraic Geometry (CAG) methods in random structured and unstructured

graphs, and in applications for quantum annealing. The results of the experiments indicate

that, while the IP-based methods are slower than currently employed heuristics when-

ever the heuristics are able to find an embedding, the IP methods provide infeasibility

proofs and quality guarantees which the heuristics are unable to provide. Furthermore,

comparing the monolithic IP against the decomposition, our experiments suggest that the

decomposition results in a more efficient way to find concise embeddings. Depending

on the tested instances the decomposition approach does not perform as efficiently as the

monolithic IP approach in providing optimality or infeasibility guarantees, especially seen
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in the illustrative example and small structured graphs. We provide concluding remarks in

Section A.6.

Notations. All graphs considered in this chapter are simple and undirected. We use

V(X) and E(X) to denote the vertex and edge sets of a graph X, respectively. We also

define n = |V(X)|, and m = |V(Y)|. Finally, given a vector v, v denotes the concatenation

v = (v1, · · · ,v|v|).

A.2 The equational model for embedding

Let X be a fixed target graph. A minor-embedding of the graph Y inside X, is a map φ from

V(Y) to the set of connected subtrees of X, that satisfies the following condition: for each

(y1,y2) ∈ E(Y), there exists at least one edge in E(X) connecting the two subtrees φ(y1) and

φ(y2). The condition that each vertex model φ(y) is a connected subtree of X can be relaxed

into φ(y) is a connected subgraph. In the literature, there is another but equivalent definition

of minor-embedding in terms of deleting and collapsing the edges of X. This follows from

the fact that, given a minor-embedding φ, the graph Y can be recovered from X by collapsing

each set φ(y) (into the vertex y) and ignoring (deleting) all vertices of X that are not part

of any of the subtrees φ(y). For the sake of a simple and clean terminology, we shall use

the term embedding instead of minor-embedding throughout the remainder of the chapter.

Suppose φ is an embedding of the graph Y inside the graph X. The subgraph of X given by

φ(Y) := ∪y∈V(Y)φ(y) is called a Y minor in GMT. In the context of quantum computations, it

represents what the quantum processor sees since it does not distinguish between qubits

representing different nodes of the logical graph or qubits representing the same node in the

logical graph, fibers. In practice, quantum annealers use a strong ferromagnetic coefficient

to enforce these replicated values to be equal, i.e., acting as a single qubit.
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The hardware configuration of the D-Wave quantum annealers is described as a graph

known as Chimera graph. The Chimera graph, CL,M,N , is a grid of M × N cells of KL,L

biclique graphs connected in a nearest-neighbor fashion by means of non-planar edges [366].

Figure A.1 presents the working graph of the D-Wave 2000Q Quantum Annealer located at

NASA Ames Research Center. Specific heuristics for finding embedding inside Chimera

graphs were developed in [435, 437–439] besides of the general embedding heuristics

referenced above. A new generation of quantum annealers is in development, the D-Wave

Advantage, using the Pegasus topology with increased connectivity [440] (Figure A.1, right).

The Pegasus graph, PL,M,N,O, is composed of O layers of M×N grids of KL,L biclique graphs

with additional edges within and among cells. The Pegasus topology has the number of

layers fixed, O = 3, with K4,4 cells, i.e. L = 4, with 4 additional edges each.

Figure A.1: Cross representation of D-Wave Systems 2000Q processor working graph corresponding
to an incomplete Chimera graph C4,16,16 (left and center) and Pegasus graph P4,2,2,3 (right).

In the equational approach, embedding the logical graph Y inside the target graph X, is

represented by a surjective map π : X→ Y , which goes in the opposite direction of the map

φ : Y → X, introduced earlier such that: π−1(y) = φ(y). The map π is required to be surjective

to guarantee that all logical qubits are embedded. In geometry, the subgraph π−1(y) is called

the fiber at y of the projection π, and the mapping π : X→ Y is a fiber-bundle. We can write:

π(xi) =
∑

j:y j∈V(Y)

αi jy j, ∀xi ∈ V(X) (A.1)
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where αi j are binary coefficients. For this map to be well-defined we impose:

∑
j:y j∈V(Y)

αi j ≤ 1 ∀xi ∈V(X), (A.2)

that is, at most one αi j is non-zero for each vertex in the graph X. The unique non zero

αi j (if any) represents whether the physical qubit xi embeds y j, i.e., φ(y j) = xi. When all the

coefficients αi j are zero, we get π(xi) = 0 indicating that the physical qubit is not used. In

other words, while the domain of definition of π is V(X), its support is only a subset of V(X).

The other conditions included in the definition of the embedding φ (e.g., the connectivity of

the fibers) and the desired properties of such an embedding (e.g., the size of the fibers) can

similarly be translated into equational form.

A.3 IP reformulation of polynomial equations

We tackle the problem of determining the mapping π using integer programming (IP). IP

is a mathematical optimization technique used for problems modeled as a set of decision

variables taking on integer values, constrained by linear constraints and looking to optimize

a linear objective function. The standard solution approach to IP models is branch-and-

bound tree search. Indeed, due to their many practical applications, the computational

capabilities of modern IP solvers have increased tremendously in recent years [441]. These IP

solvers are capable of proving instance infeasibility, and providing certificates of optimality

and bounds on solution quality.

In our first approach, the previously proposed polynomial equations [91] are reformulated

such that they represent the original logic and are representable in the IP formalism (i.e.,

linear constraints involving integer variables).
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A.3.1 Constraints

Consider the mapping π given by Eqn. (A.1). In this section, we present the IP formulation

of the polynomial conditions, from Dridi, Alghassi, and Tayur [91], that the coefficients αi j ∈

{0,1} ∀xi ∈ V(X),∀y j ∈ V(Y) need to satisfy for π to be a valid embedding. This constitutes

the first contribution of the chapter. Note that, with a slight abuse of notation, our IP

approaches redefine αi j as a binary decision variable equal to 1 if xi belongs to the vertex

model of y j, and 0 otherwise.

1. Minimum and maximum size. These constraints ensure that the total number of qubits is

bounded within the number of variables in the original problem and the total number of

qubits n.

m ≤
∑

i:xi∈V(X)

∑
j:y j∈V(Y)

αi j ≤ n. (A.3)

2. Well-definition of the map π. This is captured by Eq. (A.2).

3. Fiber size constraint. This constraint on the size of the vertex models |φ(y j)|, known as fiber

size, is given by:

1 ≤
∑

i:xi∈V(X)

αi j ≤ k ∀y j ∈ V(Y). (A.4)

where k is the desired maximum size of each fiber π−1(y j). The lower bound ensures that all

the logical variables are embedded i.e., the map π is a surjection on the set V(X). We also

include the following constraint:

1 ≥ αi1 j +αi2 j ∀xi1 , xi2 ∈ V(X),mind(xi1 , xi2) > k,∀y j ∈ V(Y). (A.5)

This additional refinement excludes pairs xi1 and xi2 from being in the fiber π−1(y j) whenever

their distance, d(xi1 , xi2), is larger than k, the desired maximum size of the fiber.
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4. Fiber condition. We require that each fiber to be a connected subtree of X:

∀xi1 , xi2 ∈ π
−1(y j) : αi1 j +αi2 j +

 ∑
ck(xi1 ,xi2 )∈Ck(xi1 ,xi2 )

(
γck , j

)
−1

 ≤ 2. (A.6)

The binary variable γck , j takes a value of 1 if a fiber ck(xi1 , xi2) is used in the vertex model of

y j, and 0 otherwise. Here ck(xi1 , xi2) is a fiber of size ≤ k connecting the two physical qubits

xi1 and xi2 , and int(ck(xi1 , xi2)) = ck(xi1 , xi2)\{xi1 , xi2}. We also write Ck(xi1 , xi2) to denote the

set of all fibers of size ≤ k connecting xi1 and xi2 . This condition implies the existence of a

unique fiber connecting the pair and completely contained in π−1(y j). This automatically

implies that π−1(y j) is connected. The binary γck , j can be defined using the following IP

representable constraints: for all ck(xi1 , xi2) ∈Ck(xi1 , xi2) and for all y j ∈ V(Y):

γck , j =
∏

`:x`∈int(ck(xi1 ,xi2 ))

α` j⇔


γck , j ≤ α` j ∀x` ∈ int(ck(xi1 , xi2))

γck , j ≥ 1− (k−1) +
∑
`:x`∈int(ck(xi1 ,xi2 ))α` j

(A.7)

The constraint in Eq. (A.6) does not exclude the cases where 2 variables in the source

graph (y j1 ,y j2) ∈ E(Y) are mapped to 4 different qubits in a fiber {xi1 , · · · , xi4}, where the

vertex models are intercalated, i.e. φ(y j1) = {xi1 , xi3},φ(y j2) = {xi2 , xi4}. The following constraint

ensures that if two nodes in the target graph are in the vertex model of the same logical

variable, and are not neighbors in the target graph, then one of the fibers joining them has

to be active.

αi1 j +αi2 j−
∑

ck(xi1 ,xi2 )∈Ck(xi1 ,xi2 )

(
γck , j

)
≤ 1 ∀y j ∈ V(Y)

∀(xi1 , xi2) ∈ V(X), (xi1 , xi2) < E(X),mind(xi1 , xi2) ≤ k

(A.8)

5. Pullback condition. We require that for each edge (y j1 ,yi2) in E(Y), there exists at least

one edge in E(X) connecting the fibers π−1(y j1) and π−1(yi2). The way we guarantee this is

by requiring that the quadratic form of the logical graph y vanishes modulo the (pullback

along π of the) quadratic form of the graph X. The details of this are in [91]. The resulting
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constraint can be written as

1 ≤
∑

i1,i2:(xi1 ,xi2 )∈E(X)

(
δ‖i1i2 j1 j2

+δ⊥i1i2 j1 j2

)
∀(y j1 ,y j2) ∈ E(Y), (A.9)

where we have introduced the binaries δ‖i1i2 j1 j2
and δ⊥i1i2 j1 j2

for all (xi1 , xi2) ∈ E(X) and all

(y j1 ,y j2) ∈ E(Y): The binary variable δ‖i1i2 j1 j2
is one if xi1 and xi2 are edges of the vertex-models

φ(y j1),φ(y j2) respectively, and the binary variable δ⊥i1i2 j1 j2
is one if xi2 and xi1 are edges of the

vertex-models φ(y j1),φ(y j2) respectively. This conditions are equivalent to δ‖i1i2 j1 j2
= αi1 j1αi2 j2

and δ⊥i1i2 j1 j2
= αi1 j2αi2 j1 . We can then represent these new variables using linear inequalities

as follows: ∀(xi1 , xi2) ∈ E(X),∀(y j1 ,y j2) ∈ E(Y):

δ‖i1i2 j1 j2
= αi1 j1αi2 j2 ⇔


δ‖i1i2 j1 j2

≤ αi1 j1

δ‖i1i2 j1 j2
≤ αi2 j2

δ‖i1i2 j1 j2
≥ αi1 j1 +αi2 j2 −1

and equivalently for δ⊥i1i2 j1 j2
. Both variables cannot be one for a single combination of

(i1i2 j1 j2) simultaneously. This leads to the following constraint.

δ‖i1i2 j1 j2
+δ⊥i1i2 j1 j2 ≤ 1 ∀(xi1 , xi2) ∈ E(X),∀(y j1 ,y j2) ∈ E(Y). (A.10)

A.3.2 Complete IP model

The feasible region of the IP formulation is defined by:

F =
{
(α,γ,δ‖,δ⊥)|(α,γ,δ‖,δ⊥) ∈ ((A.2)∩ · · ·∩ (A.10))

}
. (A.11)

A constant objective function can be set for this problem such that any solution that lies

within the feasible region defined in Eq. (A.11) optimizes it.

Embedding size. Another choice is given by the embedding size: Given the limitations on the

available quantum annealing hardware in the size of available qubits, a desired property

of an embedding is to have a small qubit footprint. The objective function in this case is

encoded as

min
∑

i:xi∈V(X)

∑
y j∈V(Y)

αi j s.t. (α,γ,δ‖,δ⊥) ∈ F. (A.12)
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Other objective functions such as fiber size minimization, minimal fiber size dispersion,

small difference between a variable degree and fiber size, and available edges in the

embedding are also IP representable and can be implemented within this framework.

A.4 Decomposition approach

Implementing all the constraints at once in the IP formulation leads to a model which is

often intractable in practice. The fiber conditions require many constraints to be enforced,

and only a small fraction of these are active in optimal solutions. We investigate the

application of a decomposition approach which iterates between a qubit assignment master

problem and fiber condition checking subproblems. The strategy adds strengthened ‘no-

good’ constraints (i.e., cuts) to the master problem when they are found to be violated.

Such an approach bears resemblance to decomposition techniques used for scheduling and

routing problems, such as classical and logic-based Benders decomposition and branch-

and-check [28, 429, 442].

A.4.1 Master Problem

In the master problem, we relax the fiber conditions, permitting a node in the logical graph

to be mapped in multiple parts of the target graph without being connected. For our

master problem, we introduce a new binary decision variable, zexey ∀ex ∈ E(X),∀ey ∈ E(Y),

to track the embedding of problem edges in the target graph edges. The variable takes on

a value of 1 if if edge ex = (xi1 , xi2) : ex ∈ E(X) is mapped through the embedding in edge

ey = (y j1 ,y j2) : ey ∈ E(Y), and 0 otherwise. For modeling purposes, we also denote ex,1 =

xi1 ,ex,2 = xi2 ,ey,1 = y j1 , and ey,2 = y j2 . This master problem formulation includes previously

expressed mapping constraints, Eq. (A.2), and size constraints in Eq. (A.4), in addition to
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constraints (A.13) through (A.15) as follows:

Assignment of edges. Each edge in the source graph has to be assigned to an edge in the

target graph. ∑
ex∈E(X)

zexey = 1 ∀ey ∈ E(Y). (A.13)

Linking constraints. To link the assigned qubit values to the zexey variables, we use the

following set of constraints ∀ex ∈ E(X),∀ey ∈ E(Y):

zexey ≤ αex,1ex,2 zexey ≤ αey,1ey,2 . (A.14)

Together, these constraints ensure that a problem edge can only be assigned to an edge

in the target graph if the pair of nodes involved in that edge take on the required values,

which are aggregated in the following constraint

2 · zexey ≤ αex,1ex,2 +αey,1ey,2 ∀ex ∈ E(X),∀ey ∈ E(Y). (A.15)

Subproblem relaxation. Although the constraints above already represent the assignment
problem to be modeled in the master problem, we can include a relaxation of the subproblem
to help guide to master problem towards feasible solutions. This requires the addition of
another set of binary variables, w j that track whether vertex model φ(y j) has a size greater
than one. Then, ∀y j ∈ V(Y): ∑

i:xi∈V(X)

αi j−n ·w j ≤ 1, (A.16a)

n(1−αi j) +
∑

`:(xi,x`)∈E(X)

α` j +
∑

`:(x`,xi)∈E(X)

α` j ≥ w j ∀xi ∈ V(X). (A.16b)

This constraints ensure that the variable w j is one if the node y j is mapped to more than one

node xi. Eqs. (A.13)-(A.16), together with the cuts generated by the subproblems, define the

master problem.

A.4.2 Subproblems

The subproblem validates if there exist vertices in the embedding belonging to the same

vertex model φ(y j) which are not connected in the target graph. If this is the case, it returns
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a constraint that either: i) encourages connectivity in future iterations, or ii) removes

occurrences of the disconnected vertex models from the graph. For each vertex model with

more than one vertex on the embedding, it checks at each vertex on the target graph that

belongs to that vertex model. If that vertex does not contain an edge that connects it to

another vertex of that vertex model, then the checking procedure returns disconnected.

A.4.3 Cuts

If a particular vertex model is found to be disconnected in the solution, we add a constraint

to remove the current solution and prevent future solutions from having the same discon-

nectivity. Let the set of disconnected vertices in the source graph be denoted as ĵ : y ĵ ∈ Ŷ .

Let the set of vertices in the target graph that belong to this vertex model, y ĵ, in the current

incumbent solution, be represented as the vertex model φ(y ĵ) ⊆ X. Let the set of vertices

that are adjacent to any vertex in φ(y ĵ), but are not assigned value y ĵ, be denoted φ′(y ĵ). The

constraint generated in the current iteration for disconnected qubit y ĵ is then given by:|φ(y ĵ)| −
∑

i:xi∈φ(y ĵ)

αî j

+
∑

i:xi∈φ′(y ĵ)

αî j ≥ 1. (A.17)

This removes the current infeasible solution from the search space and requires the master

problem to: i) include at least one fewer vertex with this vertex model (bracketed term), or

ii) include at least one more vertex with this vertex model, among the set of vertices that

could improve connectivity (non-bracketed term).

Notice that we reformulated the pullback condition from the Eq. (A.9) in terms of δ‖ and

δ⊥ into the variables zexey and its corresponding constraints, while the fiber condition is

relaxed with the subproblem and cut generation procedure.

Following the intuition in [433], where the heuristic method tries to obtain embeddings

with a small qubit footprint, the default objective function implemented in the master
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problem is to minimize size. This objective leads the master problem to return compact

assignments of variables. In the case that the feasibility objective is considered within this

approach, the optimization procedure is stopped when the first feasible solution is found.

A.5 Results

The model in Section A.3 was implemented using the Python-package Pyomo [273], which

interfaces with several solvers, including open-source and commercial solvers. The de-

composition approach, presented in Section A.4, is implemented in C++ and uses the

CPLEX 12.9 solver [52]. Our approaches are compared with the D-Wave default heurestic

minorminer, introduced in [433]?. Unless otherwise stated, the monolithic IP method

assumes a value of maximum fiber size k = 3, which is justified for the structured random

graphs given their construction. This provides the monolithic method with an advantage

with respect to the decomposition method given that the infeasibility proofs are contingent

on the value of k. The results below were obtained using a laptop running Ubuntu 18.04

with an Intel Core i7-6820HQ CPU @ 2.7GHz with 8 threads and 16 GB of RAM.

A.5.1 Illustrative Example

This example is taken from [91], where a K4,4 bipartite graph is connected through a single

edge to a structured 4 nodes graph and is embedded in a C4,1,2 chimera graph as seen in

Figure A.2. This embedding is challenging for heuristic methods that search vertex models

outside of the blocks [91]. The embedding with the minimal size is given when one of the

nodes in the 4-node block is embedded in a chain of length 2, resulting in an embedding of

length 13. The heuristic implemented in minorminer fails 50% of the times tried (1000),

?github.com/dwavesystems/minorminer
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(a) Source graph (b) Minimal size embedding

Figure A.2: Source graph of illustrative example [91] and its minimal size embedding in C4,1,2. Grey
nodes and edges represent unused nodes and edges in embedding, but present at the target graph.
Bold edges represent edges in chains .

in the sense that it is not able to find a valid embedding in half of the experiments. We

consider solving this problem using the CAG approach proposed in [91], by computing

the Groebner basis of the polynomial ideal. When using the software Maple 2017 [443],

which includes Faugère’s algorithm [444, 445], the Groebner basis computation is unable to

find a solution after 5 hours of computation before it runs out of memory. We apply our IP

approach and include the open-source solvers GLPK 4.61 [446] and CBC 2.9.6 [447], and the

commercial solvers Gurobi 8.1 [51] and CPLEX 12.9 [52]. Here we set a time limit of one

minute per each run.

The open-source solvers fail to provide feasible solutions within the time limit when there

is a constant objective function. CBC can find a solution when we consider the embedding

size minimization as an objective, showing how the including an objective function can be

beneficial for the IP solvers. In that case, the solver is unable to guarantee the optimality

solution, although it finds the optimal solution, and it provides an optimality gap of 8.3%.

The commercial solvers, on the other hand, can provide both feasible and optimal solutions

in under a minute of computation. In particular, Gurobi takes 1.3 seconds to find a feasible

solution and 31.2 seconds to find and prove the optimality of the solution while CPLEX

takes 3.5 seconds and 9.4 seconds in the same tasks, respectively. As expected, the time

required to provide a feasible solution is less than that to give optimality guarantees. Based
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on the better results obtained using CPLEX compared to Gurobi, we only present the results

using this solver in the remaining of the chapter. Apart from it, the decomposition approach

can provide feasible solutions more efficiently, and with higher quality compared to the

other approaches. In this case, it only took 0.4 seconds for the decomposition approach to

provide a feasible solution which was nearly optimal, with a 7% optimality gap, and to find

a provable optimal solution it required 46.5 seconds. These results suggest that the usage of

commercial solvers is required for solving these challenging IP problems, and therefore the

results presented in the remaining of this chapter correspond to these solvers.

A.5.2 Random Graphs

1. Random structured graphs. Here we generalize the example above. We consider the

bipartite graph K4,4(pinter) parametrized by pinter, which is the probability of the existence

of edges between the two partitions. We randomly choose ζ edges, which we contract

into nodes (each edge into a single node). This graph is then connected (attached) to a

complete K4,4 bipartite graph by 4 edges chosen with a probability pintra. By construction,

the resulting graph is a subgraph of C4,1,2, and its size is m + ζ. It is the smallest minor of the

corresponding graph without contraction. The example of Section A.5.1 is obtained with

ζ = 1 (and m = 12).

Fixing pinter = pintra = 0.5, for each value of of contracted edges ζ ∈ {0, · · · ,3}, we generated

10 random graphs. These random graphs were embedded in a C4,1,2 graph with a time limit

of 300 seconds. Figure A.3a gives the runtimes for the monolithic IP and the decomposition

methods solved using CPLEX. This figure also shows the boxplots for the 1000 runs of

minorminer. For this case, given the way the random structured graphs are constructed,

we see that the longest fiber will be at most of size 3, which we encode for the monolithic

IP approach using the parameter k = 3. Notice that this observation biases the results
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in favor of the monolithic IP approach with respect to the decomposition approach. For

finding a feasible solution, the decomposition approach is more efficient than the monolithic

IP approach. When ζ = 0, where finding a feasible embedding is practically finding the

minimally sized embedding, there is no difference in time performance between the cases of

embedding size minimization and finding a feasible solution. For ζ > 0, the embedding size

minimization becomes more expensive, in particular for the decomposition approach. The

monolithic IP and the decomposition approaches were able to find smaller or equally sized

embeddings for 33 and 30 cases out of the 40 experiments, respectively. When the objective

function is the size minimization, this number increased for all instances in all cases and is

strictly better in 22 cases for the monolithic IP and 21 cases for the decomposition approach.

Notice that the monolithic IP approach was able to find an embedding for one instance

which was smaller than any of the 1000 runs of the heuristic method.

Larger instances of random structures graphs can be generated by combining two graphs

like the ones described above, and include the edges appearing in a C4,2,2 graph between

the cells with probability pintra. As before, we generated 10 random instances with values of

ζ ∈ {0, · · · ,3}. The time performance of the different methods is shown in Figure A.3a. Out

of the 40 instances the monolithic IP and the decomposition method are still able to find

embeddings as succinct as the median heuristic behavior in 17 and 23 instances when trying

to find a feasible solution, and in 20 and 17 instances when trying to minimize the size of

the embedding, respectively. As in the previous case, the monolithic IP approach is able to

find smaller embeddings than any of the 1000 runs of the heuristic method, although for

this family of instances this happens for two cases.

Figure A.3b shows a comparison of the embedding median sizes obtained by the heuristic

method versus the ones obtained for the IP methods. The size of the makers represents

the heuristic failure rate fraction, computed from the 1000 runs of the heuristic method for
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each instance. Both the monolithic and the decomposition approaches (different colors) and

the feasibility and size minimization objectives (different markers) are represented in this

figure. In total, out of the 80 structured instances, the heuristic failed more than 50% for

47 instances, more than 80% for 12 instances, and more than 90% for 3 instances. These

instances appear on the right size of Figure A.3b. For those instances, the IP approaches

were able to find a feasible solution in less than 20 seconds, and only for 19, 7, and 2

instances, respectively, the optimal solution could not be guaranteed within the time limit.

For high failure rate problems (> 50% failure rate) for the heuristic, our methods find a

feasible solution in under 20 seconds and prove optimality in more than half of the instances

in less than 5 minutes. Notice that most of the runs corresponding to finding a feasible

embedding (circles) are above the diagonal line, indicating a larger embedding size for the

IP methods compared to the heuristic embeddings, while size minimization runs (triangles)

lie on the diagonal or below it.

2. Erdös-Rényi graphs. These graphs are parametrized by the number of nodes ν and the

probability of an edge existing between each pair of nodes p. We consider a set of 10 random

instances for each combination of ν ∈ {5,6, · · · ,16} and p ∈ {0.3,0.5,0.7}. Each of this graphs is

embedded in different sizes of Chimera, C4,1,1,C4,2,1,C4,3,1, and C4,2,2, and Pegasus, P4,1,1,1

andP4,2,2,3. We set the time limit to 60 seconds. In the trivially infeasible case where ν > n our

methods could almost immediately identify the infeasibility, contrary to the minorminer

heuristic. The conclusion is that the runtime for the monolithic IP methods increases with

the size of the target and source graphs, the density of the source graph given by p, and

when the objective function is to minimize the embedding sizes.

In this experiment, we considered 2160 instances. In 1100 of them, the heuristic method

could not find any feasible embedding after 1000 runs. Expectedly, the number of infeasible

embeddings significantly drops when using the Pegasus graph. In 94% of these cases, at
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(a) Embedding time (b) Embedding size

Figure A.3: Embedding time and size comparison for different embedding methods for structured
random graphs in C4,1,2 and C4,2,2 with respect to median behavior of minorminer. Values beyond
the red lines represent embeddings where the heuristic median performance (right) or the IP methods
(top) failed to return an embedding.

least one of the IP methods does not time out, meaning that the methods could prove the

infeasibility of the embedding or find a feasible embedding. This proves that the methods

proposed in this work are valid for providing guarantees of embeddability of graph minors

in cases where the current heuristics are unable to answer this satifiability question.

We complete our benchmark of random graphs embedding larger problems. In this

case we, consider 5 random instances for each combination of ν ∈ {10,15, · · · ,35} and p ∈

{0.1,0.3,0.5,0.7} embedded into C4,4,4, where the longest fiber size was increased to k = 5.

We observe that for these instances, the only IP solver that does not run out time is CPLEX

implementing either the monolithic IP or the decomposition approach with the feasible

solution objective.

Figure A.4 presents the embedding size and time comparison for the small random

APPENDIX A. INTEGER PROGRAMMING TECHNIQUES FOR MINOR-EMBEDDING IN QUANTUM
ANNEALERS 461



A.5 RESULTS

graph experiments. For this test-case, in 60% of the instances, the decomposition approach

yielded embeddings with sizes equal or smaller than the median of the ones returned by the

heuristic, when looking for a feasible solution, and in 90% of the instances when minimizing

the embedding size. The monolithic IP approach was more efficient to declare infeasibility

in non-trivial cases (m < n) than the decomposition approach, Figures A.4a and A.4b, as

the values below the diagonal with large heuristic failure fractions and longer runtimes.

When compared to the minimal size found after the 1000 runs of the heuristic method,

the monolithic IP methods are still able to find smaller embeddings for around 5% of the

cases. The comparison in Figure A.4 highlights that the sizes of the embeddings found by

the decomposition approach are in most cases as small or smaller than the monolithic IP

approach. In terms of the computational time, we observe that those instances that were

challenging for the heuristic (large markers) are more easily solved by the decomposition

approach, especially when minimizing the size of the embedding. The remaining instances

appear to be solved more efficiently using the monolithic IP approach. The larger and

more challenging instances lead to different results. Out of the 120 instances solved, the

decomposition approach behaves better than the monolithic IP approaches, obtaining

equally good or better embedding than the median heuristic behavior in 30% of the cases,

compared to around 10% for the monolithic IP approaches. The solution requires larger

fibers, which affected directly the formulation size of the monolithic case making it more

challenging to solve. Only for one instance, a smaller embedding than any of the observed

heuristic solutions is obtained, in this case by the decomposition approach.

A.5.3 Applications

1. Gadgets. It has been shown in [448], that all the cubic gadgets can be embedded in a

single cell of either Chimera of Pegasus graphs, but three of the quartic gadgets required
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(a) Feasibility: Time (b) Minimize size: Size (c) Minimize size: Time

Figure A.4: Embedding size and time comparison for Erdös-Rényi graphs (ν ∈ {5,6, · · · ,16}, p ∈
{0.3,0.5,0.7}) given different objectives. Values beyond the red lines represent embedding where the
decomposition (right) or the monolithic IP methods (top) failed to return an embedding or went
over the time limit.

more than a single Chimera cell. The three gadgets were K6− e, Double K4, and K6. We find

more efficient embeddings for several of the gadgets, namely K5 (with 2 and 1 auxiliary

variables), K6, and K6 − e compared to [448]. The embeddings found can be guaranteed

to be the minimal size within a few seconds of computation. For the case of the quartic

gadgets, all but one (double K4) could be embedded in a single Chimera cell, in which case

our method could provide infeasibility guarantees in less than 10 seconds.

2. Spanning tree. An example of an application is the communication of vehicles/agents

with a central control station that can be disrupted in a particular area and can be routed

through ∆ agents/vehicles. Finding the communication routing of the vehicles that min-

imizes the distance, is equivalent to finding the minimum spanning tree with bounded

degree ∆. Rieffel et al. [449] propose three different formulations of this problem that can be

embedded in a quantum annealer. Given the graph defined by the agents/vehicles S = (V,E),

the distances among them might change but not the graph itself. At the same time, the

degree of the spanning tree ∆ is fixed by the communication equipment. We generate 80
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instances with graphs S with 4 vertices and between 3 and 5 edges. When reformulating

the problems as QUBOs, we obtain instances where the target graph ranges in size between

19 and 29 nodes, and with 35 to 70 edges. The resulting QUBOs were embedded using the

decomposition approach and compared to the heuristic in minorminer. We obtain smaller

(or equally sized) embeddings than the median length of the heuristic in 12.5% (15%) of the

instances in 5 minutes of computational time (compared to 1000 runs of the heuristic).

3. Protein folding. Perdomo-Ortiz et al. [450] encode the different configuration of the

amino acids in a protein in terms of a QUBO representing the overall energy of the system.

Minimizing this QUBO with respect to the different number of bonds between amino-acids

would yield the protein’s least-energy configuration. [450] shows not only the encoding of

the problem as a QUBO, but also provides a custom algorithm to embed it in the D-Wave

One chip, which has hardware described by a faulty C4,4,4 graph. The largest instance solved

in this chapter involved embedding a QUBO of 19 variables in a target graph of 127 qubits.

The resulting embedding involved 81 qubits with the largest vertex model of length 5, being

at the time the largest problem embedded and solved in D-Wave’s quantum annealers. We

highlight two qualities of our approach: 1) we are not making any assumption about the

source or target graphs, allowing us to work with faulty Chimera graphs as targets; and

2) we can exploit the fact of having an existing embedding to initialize our procedures,

allowing us to solve our IP problems more efficiently. Initializing with the embedding

provided by Perdomo-Ortiz et al. [450] while restricting the k = 5 in the monolithic IP

approach, we find an embedding of length 77 (4.9% qubit footprint reduction) within an

hour of computation. Allowing larger fibers, we find an embedding of size 74 (8.6% qubit

footprint reduction) with a fiber of size 6. These embeddings are not guaranteed to be

optimal, but in both cases improve those previously found.
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A.6 Conclusions

Integer programming (IP) approaches are proposed to solve the graph minor-embedding

problem. Specifically, we develop a monolithic IP derived from the polynomial equations

presented in Dridi, Alghassi, and Tayur [91], and a decomposition approach, both of which

are capable of identifying infeasible instances and providing bounds on solution quality.

These approaches are also agnostic of the source and target graphs. Both approaches

were implemented and tested using a range of different source graphs with various sizes,

densities, and structures. The target graphs used follow the architecture of the chips

in D-Wave’s current and future quantum annealers. Although slower overall than the

currently-employed heuristic method [433], the proposed methods prove to be a viable

solution approach for highly structured source graphs, where the heuristic fails with a

higher probability.

The results presented in this chapter highlight the more general approaches to minor-

embedding using IP. Another way of obtaining better performance is by reducing the search

space by imposing certain limitations to the embedding, e.g. by allowing only certain

topologies for the vertex models or by fixing certain embedding characteristics, like maxi-

mum fiber size. Initial attempts to include these approximations show a promising decrease

in the computation time with an acceptable trade-off in quality. Our formulation and results

are a baseline for future methods that can work at application-scale. A promising future

direction is to use symmetries and the invariant formulation as previously suggested [91].

Finally, applications in gadget embeddings, spanning tree problems, and protein folding

demonstrate the advantages of our approaches.
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Crash course on Groebner bases

For completeness, we include the following introductory material adopted from [91, 451].

First, the notations: We write Q[x0, . . . , xn−1] for the ring of polynomials in x0, . . . , xn−1 with

rational coefficients. Let S be a set of polynomials f ∈ Q[x0, . . . , xn−1]. LetV(S ) denotes the

algebraic variety defined by the polynomials f ∈ S , that is, the set of common zeros of the

equations f = 0, f ∈ S. The system S generates an ideal I by taking all linear combinations

overQ[x0, . . . , xn−1] of all polynomials in S; we haveV(S) =V(I). The ideal I reveals the hid-

den polynomials that are the consequence of the generating polynomials in S. For instance,

if one of the hidden polynomials is the constant polynomial 1 (i.e., 1 ∈ I), then the system

S is inconsistent (because 1 , 0). To be precise, the set of all hidden polynomials is given

by the so-called radical ideal
√
I, which is defined by

√
I = {g ∈ Q[x1, . . . , xn]|∃r ∈ N : gr ∈ I}.

We have I(V(I)) =
√
I. Of course, the radical ideal

√
I is infinite. Luckily, thanks to a

prominent technical result (i.e., Dickson’s lemma), it has a finite generating set i.e., a Groebner

basis B, which one might take to be a triangularization of the ideal
√
I. The computation

of Groebner bases generalizes Gaussian elimination in linear systems. We also continue

to haveV(S) =V(I) =V(
√
I) =V(B). Instead of giving the technical definition of what a

Groebner basis is (which can be found in [452] and in many other textbooks) let us give

an example (for simplicity, we use the term “Groebner bases” to refer to reduced Groebner

bases, which is, technically what we are working with):

Example A..1. Consider the system by

S = {x2 + y2 + z2−4, x2 + 2y2−5, xz−1}.

We want to solve S. One way to do so is to compute a Groebner basis for S. In Figure A.5,

the output of cell number 4 gives a Groebner basis of S. We can see that the initial system

has been triangulized: The last equation contains only the variable z, whilst the second has
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an additional variable, and so on. The variable z is said to be eliminated with respect to

the rest of the variables. When computing the Groebner basis, the underlying algorithm

(Buchberger’s algorithm) uses the ordering x > y > z (called lexicographical ordering) for the

computing of two internal calculations: cross-multiplications and Euclidean divisions. The

program tries to isolate z first, then z and y, and finally x,y, and z (all variables). Different

orderings yield different Groebner bases.

Figure A.5: Jupyter notebook for computing Groebner bases using Python package sympy. More
efficient algorithms exist (e.g., [444, 445]).

The mathematical power of Groebner bases doesn’t stop at solving systems of algebraic

equations. The applicability of Groebner bases goes well beyond this: it gives necessary

and sufficient conditions for the existence of solutions. For instance, if the ideal represents a

system of algebraic equations and these equations are (algebraically) dependent on certain

parameters, then the intersection (A.23) gives all necessary and sufficient conditions for the

existence of solutions. The following embedding example makes this more concrete. The
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example also illustrates the original equational approach [91].

Example A..2. Consider the two graphs in Figure A.6. We would like to determine all

embeddings π : X→ Y . In this case, well-definition equations (I) are given by

α1,1α1,2, α1,1α1,3, α1,2α1,3, (A.18)

α2,1α2,2, α2,1α2,3, α2,2α2,3, (A.19)

α3,1α3,2, α3,1α3,3, α3,2α3,3, (A.20)

α4,1α4,2, α4,1α4,3, α4,2α4,3, (A.21)

α5,1α5,2, α5,1α5,3, α5,2α5,3, (A.22)

and

α1,1 +α1,2 +α1,3−β1, α2,1 +α2,2 +α2,3−β2, α3,1 +α3,2 +α3,3−β3,

α4,1 +α4,2 +α4,3−β4, α5,1 +α5,2 +α5,3−β5.

Figure A.6: The set of all fiber bundles π : X→ Y defines an algebraic variety. This variety is
given by the Groebner basis (A.23).
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The pullback condition reads

−1 +α4,1α5,2 +α3,1α4,2 +α1,1α2,2 +α3,2α4,1 +α1,2α2,1 +α1,2α4,1 +α2,2α3,1 +α1,1α4,2 +α2,1α3,2 +α4,2α5,1,

−1 +α3,3α4,1 +α1,3α2,1 +α2,3α3,1 +α4,1α5,3 +α1,3α4,1 +α1,1α2,3 +α4,3α5,1 +α2,1α3,3 +α3,1α4,3 +α1,1α4,3,

−1 +α3,3α4,2 +α1,2α2,3 +α1,2α4,3 +α1,3α2,2 +α1,3α4,2 +α2,3α3,2 +α2,2α3,3 +α4,2α5,3 +α3,2α4,3 +α4,3α5,2.

Finally, the connected fiber condition is given by

−α1,1α2,1α5,1,−α1,1α3,1α5,1,−α1,2α2,2α5,2,−α1,2α3,2α5,2,−α1,3α2,3α5,3,−α1,3α3,3α5,3

−α2,1α3,1α5,1,−α2,1α4,1α5,1,−α2,2α3,2α5,2,−α2,2α4,2α5,2,−α2,3α3,3α5,3,−α2,3α4,3α5,3,

α2,1α5,1,α2,2α5,2,α2,3α5,3.

The reduced Groebner basis of the resulted system (computed using the ordering α � β ) is

given by

B =
{
β1−1,β2−1,β3−1,β4−1,β2

i −βi, α
2
i j−αi j,

α1,2α1,3,α1,2α3,2,α1,3α3,3,α2,2α2,3,α2,2α4,2,α2,2α5,2,α2,3α4,3,α2,3α5,3,α3,2α3,3,α4,2α4,3,

α4,2α5,3,α4,3α5,2,α5,2α5,3,α4,2α5,2−α5,2,α4,2β5−α5,2,α4,3α5,3−α5,3,

...

−α2,2α5,3−α3,2α5,3 +α1,2β5 +α2,2β5 +α3,2β5 +α3,3β5 +α5,2 +α5,3−β5 } .

In particular, the intersection B∩Q[β] = (β1−1,β2−1,β3−1,β4−1,β5
2−β5) gives the two Y

minors (i.e., subgraphs Xβ) inside X. The remainder of B gives the explicit expressions of

the corresponding mappings.

This feature of Groebner bases can be made more precise as follows:

Theorem A..1. Let I ⊂ Q[x0, . . . , xn−1] be an ideal, and let B be a reduced Groebnber basis

of Iwith respect to the lex order x0 � . . . � xn−1. Then, for every 0 ≤ l ≤ n−1, the set

B∩Q[xl, . . . , xn−1] (A.23)
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is a Groebner basis of the ideal I∩Q[xl, . . . , xn−1].

Let us conclude by explaining how the number of solutions of an algebraic systems

I ⊂ Q[x0, · · · , xn−1] can be read from the Groebner basis. This is done using staircase diagrams,

as follows. To each polynomial in Iwe assign a point in the Euclidean space En given by

the exponents of its leading term (with respect to the given monomial order). The key idea

is given by the following proposition:

Proposition A..1. The ideal I ⊂ Q[x0, · · · , xn−1] is zero dimensional if and only if the number

of points under the shaded region of its staircase is finite, and this number is equal to the

dimension of the quotient Q[x0, · · · , xn−1]/I, that is, the number of zeros of I.
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Other Appendices

B.A Problem Classification for Convex MINLP Review

The following table contains the problem names and their classifications with regards to the

different benchmark sets in Section B.A. Correlation between the categories are shown in

Figure B.1.

Relaxation Nonlinearity Discreteness
Instance name gap cat. measure cat. measure cat.

alan 0.89 % low 38 % low 50 % high
ball mk2 10 – high 100 % high 100 % high
ball mk2 30 – high 100 % high 100 % high
ball mk3 10 – high 100 % high 100 % high
ball mk3 20 – high 100 % high 100 % high
ball mk3 30 – high 100 % high 100 % high
ball mk4 05 – high 100 % high 100 % high
ball mk4 10 – high 100 % high 100 % high
ball mk4 15 – high 100 % high 100 % high
batch 9.2 % low 48 % low 52 % high
batch0812 5.6 % low 40 % low 60 % high
batchdes 3.9 % low 53 % high 47 % low
batchs101006m 4.5 % low 18 % low 46 % low
batchs121208m 3.1 % low 15 % low 50 % high
batchs151208m 2.8 % low 14 % low 46 % low
batchs201210m 1.7 % low 12 % low 45 % low
clay0203h 100 % high 20 % low 20 % low
clay0203m 100 % high 20 % low 60 % high
clay0204h 100 % high 15 % low 20 % low
clay0204m 100 % high 15 % low 62 % high
clay0205h 100 % high 12 % low 19 % low
clay0205m 100 % high 13 % low 63 % high
clay0303h 100 % high 27 % low 21 % low
clay0303m 100 % high 18 % low 64 % high
clay0304h 100 % high 20 % low 20 % low
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Relaxation Nonlinearity Discreteness
Instance name gap cat. measure cat. measure cat.

clay0304m 100 % high 14 % low 64 % high
clay0305h 100 % high 16 % low 20 % low
clay0305m 100 % high 12 % low 65 % high
cvxnonsep normcon20 0.34 % low 100 % high 50 % high
cvxnonsep normcon20r 0.34 % low 50 % high 25 % low
cvxnonsep normcon30 0.54 % low 100 % high 50 % high
cvxnonsep normcon30r 0.54 % low 50 % high 25 % low
cvxnonsep normcon40 0.78 % low 100 % high 50 % high
cvxnonsep normcon40r 0.78 % low 50 % high 25 % low
cvxnonsep nsig20 0.16 % low 100 % high 50 % high
cvxnonsep nsig20r 0.16 % low 50 % high 25 % low
cvxnonsep nsig30 0.11 % low 100 % high 50 % high
cvxnonsep nsig30r 0.12 % low 50 % high 25 % low
cvxnonsep nsig40 0.16 % low 100 % high 50 % high
cvxnonsep nsig40r 0.16 % low 50 % high 25 % low
cvxnonsep pcon20 0.55 % low 100 % high 50 % high
cvxnonsep pcon20r 0.55 % low 51 % high 26 % low
cvxnonsep pcon30 0.47 % low 100 % high 50 % high
cvxnonsep pcon30r 0.47 % low 51 % high 25 % low
cvxnonsep pcon40 0.39 % low 100 % high 50 % high
cvxnonsep pcon40r 0.39 % low 51 % high 25 % low
cvxnonsep psig20 0.08 % low 100 % high 50 % high
cvxnonsep psig20r 0.09 % low 50 % high 24 % low
cvxnonsep psig30 0.32 % low 100 % high 50 % high
cvxnonsep psig30r 0.32 % low 50 % high 24 % low
cvxnonsep psig40 0.34 % low 100 % high 50 % high
cvxnonsep psig40r 0.29 % low 50 % high 24 % low
du-opt 1.2 % low 100 % high 65 % high
du-opt5 51 % high 100 % high 65 % high
enpro48pb 6.9 % low 19 % low 60 % high
enpro56pb 15 % low 19 % low 57 % high
ex1223 15 % low 64 % high 36 % low
ex1223a 2.0 % low 43 % low 57 % high
ex1223b 15 % low 100 % high 57 % high
ex4 104 % high 14 % low 69 % high
fac1 0.11 % low 73 % high 27 % low
fac2 23 % low 82 % high 18 % low
fac3 30 % low 82 % high 18 % low
flay02h 25 % low 4.3 % low 8.7 % low
flay02m 25 % low 14 % low 29 % low
flay03h 37 % low 2.5 % low 10 % low
flay03m 37 % low 12 % low 46 % low
flay04h 43 % low 1.7 % low 10 % low
flay04m 43 % low 10 % low 57 % high
flay05h 46 % low 1.3 % low 10 % low

472
APPENDIX B. OTHER APPENDICES



B.A PROBLEM CLASSIFICATION FOR CONVEX MINLP REVIEW

Relaxation Nonlinearity Discreteness
Instance name gap cat. measure cat. measure cat.

flay05m 46 % low 8.1 % low 65 % high
flay06h 48 % low 1.1 % low 11 % low
flay06m 48 % low 7.0 % low 70 % high
fo7 100 % high 12 % low 37 % low
fo7 2 100 % high 12 % low 37 % low
fo7 ar2 1 100 % high 13 % low 38 % low
fo7 ar25 1 100 % high 13 % low 38 % low
fo7 ar3 1 100 % high 13 % low 38 % low
fo7 ar4 1 100 % high 13 % low 38 % low
fo7 ar5 1 100 % high 13 % low 38 % low
fo8 100 % high 11 % low 38 % low
fo8 ar2 1 100 % high 11 % low 39 % low
fo8 ar25 1 100 % high 11 % low 39 % low
fo8 ar3 1 100 % high 11 % low 39 % low
fo8 ar4 1 100 % high 11 % low 39 % low
fo8 ar5 1 100 % high 11 % low 39 % low
fo9 100 % high 10 % low 40 % low
fo9 ar2 1 100 % high 10 % low 40 % low
fo9 ar25 1 100 % high 10 % low 40 % low
fo9 ar3 1 100 % high 10 % low 40 % low
fo9 ar4 1 100 % high 10 % low 40 % low
fo9 ar5 1 100 % high 10 % low 40 % low
gams01 97 % high 22 % low 76 % high
gbd 0.00 % low 25 % low 75 % high
hybriddynamic fixed 10 % low 15 % low 14 % low
ibs2 0.22 % low 100 % high 50 % high
jit1 0.37 % low 48 % low 16 % low
m3 100 % high 23 % low 23 % low
m6 100 % high 14 % low 35 % low
m7 100 % high 12 % low 37 % low
m7 ar2 1 100 % high 13 % low 38 % low
m7 ar25 1 100 % high 13 % low 38 % low
m7 ar3 1 100 % high 13 % low 38 % low
m7 ar4 1 100 % high 13 % low 38 % low
m7 ar5 1 100 % high 13 % low 38 % low
meanvarx 0.41 % low 20 % low 40 % low
netmod dol1 49 % low 0.3 % low 23 % low
netmod dol2 16 % low 0.3 % low 23 % low
netmod kar1 79 % high 0.9 % low 30 % low
netmod kar2 79 % high 0.9 % low 30 % low
no7 ar2 1 100 % high 13 % low 38 % low
no7 ar25 1 100 % high 13 % low 38 % low
no7 ar3 1 100 % high 13 % low 38 % low
no7 ar4 1 100 % high 13 % low 38 % low
no7 ar5 1 100 % high 13 % low 38 % low
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Relaxation Nonlinearity Discreteness
Instance name gap cat. measure cat. measure cat.

nvs03 49 % low 100 % high 100 % high
nvs10 0.74 % low 100 % high 100 % high
nvs11 0.41 % low 100 % high 100 % high
nvs12 0.41 % low 100 % high 100 % high
nvs15 89 % high 100 % high 100 % high
o7 100 % high 12 % low 37 % low
o7 2 100 % high 12 % low 37 % low
o7 ar2 1 100 % high 13 % low 38 % low
o7 ar25 1 100 % high 13 % low 38 % low
o7 ar3 1 100 % high 13 % low 38 % low
o7 ar4 1 100 % high 13 % low 38 % low
o7 ar5 1 100 % high 13 % low 38 % low
o8 ar4 1 100 % high 11 % low 39 % low
o9 ar4 1 100 % high 10 % low 40 % low
portfol buyin 3.9 % low 47 % low 47 % low
portfol card 4.0 % low 47 % low 47 % low
portfol classical050 1 3.2 % low 33 % low 33 % low
portfol classical200 2 13 % low 33 % low 33 % low
portfol roundlot 0.00 % low 47 % low 47 % low
procurement2mot 37 % low 1.5 % low 7.5 % low
ravempb 15 % low 25 % low 48 % low
risk2bpb 1.0 % low 0.6 % low 3.0 % low
rsyn0805h 5.0 % low 2.9 % low 12 % low
rsyn0805m 63 % high 1.8 % low 41 % low
rsyn0805m02h 3.1 % low 2.6 % low 21 % low
rsyn0805m02m 160 % high 1.7 % low 41 % low
rsyn0805m03h 1.7 % low 2.6 % low 21 % low
rsyn0805m03m 104 % high 1.7 % low 41 % low
rsyn0805m04h 0.46 % low 2.6 % low 21 % low
rsyn0805m04m 57 % high 1.7 % low 41 % low
rsyn0810h 3.8 % low 5.2 % low 12 % low
rsyn0810m 72 % high 3.2 % low 40 % low
rsyn0810m02h 4.0 % low 4.6 % low 21 % low
rsyn0810m02m 298 % high 2.9 % low 41 % low
rsyn0810m03h 2.8 % low 4.6 % low 21 % low
rsyn0810m03m 206 % high 2.9 % low 41 % low
rsyn0810m04h 0.93 % low 4.6 % low 21 % low
rsyn0810m04m 113 % high 2.9 % low 41 % low
rsyn0815h 6.7 % low 8.0 % low 12 % low
rsyn0815m 104 % high 5.4 % low 39 % low
rsyn0815m02h 4.2 % low 6.9 % low 21 % low
rsyn0815m02m 277 % high 4.7 % low 40 % low
rsyn0815m03h 3.1 % low 6.9 % low 21 % low
rsyn0815m03m 186 % high 4.7 % low 40 % low
rsyn0815m04h 1.7 % low 6.9 % low 21 % low
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Relaxation Nonlinearity Discreteness
Instance name gap cat. measure cat. measure cat.

rsyn0815m04m 230 % high 4.7 % low 40 % low
rsyn0820h 7.3 % low 10 % low 12 % low
rsyn0820m 239 % high 6.5 % low 39 % low
rsyn0820m02h 1.2 % low 8.2 % low 21 % low
rsyn0820m02m 536 % high 5.5 % low 41 % low
rsyn0820m03h 3.6 % low 8.2 % low 21 % low
rsyn0820m03m 335 % high 5.5 % low 41 % low
rsyn0820m04h 2.4 % low 8.2 % low 21 % low
rsyn0820m04m 380 % high 5.5 % low 41 % low
rsyn0830h 10 % low 12 % low 13 % low
rsyn0830m 380 % high 8.0 % low 38 % low
rsyn0830m02h 6.1 % low 10 % low 21 % low
rsyn0830m02m 674 % high 6.5 % low 40 % low
rsyn0830m03h 3.0 % low 10 % low 21 % low
rsyn0830m03m 470 % high 6.5 % low 40 % low
rsyn0830m04h 2.0 % low 10 % low 21 % low
rsyn0830m04m 392 % high 6.5 % low 40 % low
rsyn0840h 8.2 % low 14 % low 13 % low
rsyn0840m 753 % high 10 % low 37 % low
rsyn0840m02h 5.8 % low 12 % low 21 % low
rsyn0840m02m 876 % high 7.8 % low 40 % low
rsyn0840m03h 2.3 % low 12 % low 21 % low
rsyn0840m03m 266 % high 7.8 % low 40 % low
rsyn0840m04h 2.1 % low 12 % low 21 % low
rsyn0840m04m 508 % high 7.8 % low 40 % low
slay04h 13 % low 5.7 % low 17 % low
slay04m 13 % low 18 % low 55 % high
slay05h 5.9 % low 4.3 % low 17 % low
slay05m 5.9 % low 14 % low 57 % high
slay06h 7.0 % low 3.5 % low 18 % low
slay06m 7.0 % low 12 % low 59 % high
slay07h 4.6 % low 2.9 % low 18 % low
slay07m 4.6 % low 10 % low 60 % high
slay08h 4.9 % low 2.5 % low 18 % low
slay08m 4.9 % low 8.7 % low 61 % high
slay09h 4.3 % low 2.2 % low 18 % low
slay09m 4.3 % low 7.7 % low 62 % high
slay10h 8.1 % low 2.0 % low 18 % low
slay10m 8.1 % low 6.9 % low 62 % high
smallinvDAXr1b010-011 1.8 % low 97 % high 97 % high
smallinvDAXr1b020-022 0.36 % low 97 % high 97 % high
smallinvDAXr1b050-055 0.10 % low 97 % high 97 % high
smallinvDAXr1b100-110 0.04 % low 97 % high 97 % high
smallinvDAXr1b150-165 0.03 % low 97 % high 97 % high
smallinvDAXr1b200-220 0.01 % low 97 % high 97 % high
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Relaxation Nonlinearity Discreteness
Instance name gap cat. measure cat. measure cat.

smallinvDAXr2b010-011 1.8 % low 97 % high 97 % high
smallinvDAXr2b020-022 0.36 % low 97 % high 97 % high
smallinvDAXr2b050-055 0.10 % low 97 % high 97 % high
smallinvDAXr2b100-110 0.04 % low 97 % high 97 % high
smallinvDAXr2b150-165 0.03 % low 97 % high 97 % high
smallinvDAXr2b200-220 0.01 % low 97 % high 97 % high
smallinvDAXr3b010-011 1.8 % low 97 % high 97 % high
smallinvDAXr3b020-022 0.36 % low 97 % high 97 % high
smallinvDAXr3b050-055 0.10 % low 97 % high 97 % high
smallinvDAXr3b100-110 0.04 % low 97 % high 97 % high
smallinvDAXr3b150-165 0.03 % low 97 % high 97 % high
smallinvDAXr3b200-220 0.01 % low 97 % high 97 % high
smallinvDAXr4b010-011 1.8 % low 97 % high 97 % high
smallinvDAXr4b020-022 0.36 % low 97 % high 97 % high
smallinvDAXr4b050-055 0.10 % low 97 % high 97 % high
smallinvDAXr4b100-110 0.04 % low 97 % high 97 % high
smallinvDAXr4b150-165 0.03 % low 97 % high 97 % high
smallinvDAXr4b200-220 0.01 % low 97 % high 97 % high
smallinvDAXr5b010-011 1.8 % low 97 % high 97 % high
smallinvDAXr5b020-022 0.36 % low 97 % high 97 % high
smallinvDAXr5b050-055 0.10 % low 97 % high 97 % high
smallinvDAXr5b100-110 0.04 % low 97 % high 97 % high
smallinvDAXr5b150-165 0.03 % low 97 % high 97 % high
smallinvDAXr5b200-220 0.01 % low 97 % high 97 % high
squfl010-025 51 % high 96 % high 3.8 % low
squfl010-040 43 % low 98 % high 2.4 % low
squfl010-080 49 % low 99 % high 1.2 % low
squfl015-060 58 % high 98 % high 1.6 % low
squfl015-080 57 % high 99 % high 1.2 % low
squfl020-040 53 % high 98 % high 2.4 % low
squfl020-050 57 % high 98 % high 2.0 % low
squfl020-150 59 % high 99 % high 0.7 % low
squfl025-025 60 % high 96 % high 3.8 % low
squfl025-030 60 % high 97 % high 3.2 % low
squfl025-040 61 % high 98 % high 2.4 % low
squfl030-100 66 % high 99 % high 1.0 % low
squfl030-150 63 % high 99 % high 0.7 % low
squfl040-080 65 % high 99 % high 1.2 % low
sssd08-04 62 % high 6.7 % low 73 % high
sssd12-05 61 % high 5.3 % low 79 % high
sssd15-04 62 % high 4.5 % low 82 % high
sssd15-06 65 % high 4.5 % low 82 % high
sssd15-08 63 % high 4.5 % low 82 % high
sssd16-07 63 % high 4.3 % low 83 % high
sssd18-06 63 % high 4.0 % low 84 % high
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Relaxation Nonlinearity Discreteness
Instance name gap cat. measure cat. measure cat.

sssd18-08 67 % high 4.0 % low 84 % high
sssd20-04 63 % high 3.7 % low 85 % high
sssd20-08 62 % high 3.7 % low 85 % high
sssd22-08 62 % high 3.4 % low 86 % high
sssd25-04 64 % high 3.1 % low 88 % high
sssd25-08 61 % high 3.1 % low 88 % high
st e14 15 % low 64 % high 36 % low
st miqp1 15 % low 100 % high 100 % high
st miqp2 382 % high 50 % high 100 % high
st miqp3 0.00 % low 50 % high 100 % high
st miqp4 0.05 % low 50 % high 50 % high
st miqp5 0.00 % low 29 % low 29 % low
st test1 3 ·106 % high 80 % high 100 % high
st test2 9.5 % low 83 % high 100 % high
st test3 24 % low 38 % low 100 % high
st test4 11 % low 33 % low 100 % high
st test5 104 % high 70 % high 100 % high
st test6 30 % low 100 % high 100 % high
st test8 0.00 % low 100 % high 100 % high
st testgr1 0.11 % low 100 % high 100 % high
st testgr3 0.63 % low 100 % high 100 % high
st testph4 3.1 % low 100 % high 100 % high
stockcycle 1.7 % low 10 % low 90 % high
syn05h 0.03 % low 21 % low 12 % low
syn05m 37 % low 15 % low 25 % low
syn05m02h 0.02 % low 17 % low 19 % low
syn05m02m 19 % low 10 % low 33 % low
syn05m03h 0.02 % low 17 % low 19 % low
syn05m03m 20 % low 10 % low 33 % low
syn05m04h 0.01 % low 17 % low 19 % low
syn05m04m 20 % low 10 % low 33 % low
syn10h 0.03 % low 23 % low 13 % low
syn10m 58 % high 17 % low 29 % low
syn10m02h 0.08 % low 19 % low 21 % low
syn10m02m 104 % high 11 % low 36 % low
syn10m03h 0.05 % low 19 % low 21 % low
syn10m03m 103 % high 11 % low 36 % low
syn10m04h 0.04 % low 19 % low 21 % low
syn10m04m 103 % high 11 % low 36 % low
syn15h 0.12 % low 26 % low 12 % low
syn15m 97 % high 20 % low 27 % low
syn15m02h 0.10 % low 21 % low 20 % low
syn15m02m 66 % high 13 % low 35 % low
syn15m03h 0.07 % low 21 % low 20 % low
syn15m03m 74 % high 13 % low 35 % low
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Relaxation Nonlinearity Discreteness
Instance name gap cat. measure cat. measure cat.

syn15m04h 0.06 % low 21 % low 20 % low
syn15m04m 91 % high 13 % low 35 % low
syn20h 0.32 % low 26 % low 13 % low
syn20m 221 % high 22 % low 31 % low
syn20m02h 0.30 % low 21 % low 21 % low
syn20m02m 179 % high 13 % low 38 % low
syn20m03h 0.27 % low 21 % low 21 % low
syn20m03m 178 % high 13 % low 38 % low
syn20m04h 0.20 % low 21 % low 21 % low
syn20m04m 179 % high 13 % low 38 % low
syn30h 6.1 % low 25 % low 13 % low
syn30m 932 % high 20 % low 30 % low
syn30m02h 2.9 % low 20 % low 21 % low
syn30m02m 677 % high 13 % low 38 % low
syn30m03h 2.0 % low 20 % low 21 % low
syn30m03m 593 % high 13 % low 38 % low
syn30m04h 1.6 % low 20 % low 21 % low
syn30m04m 613 % high 13 % low 38 % low
syn40h 17 % low 26 % low 13 % low
syn40m 2608 % high 22 % low 31 % low
syn40m02h 2.4 % low 21 % low 21 % low
syn40m02m 1072 % high 13 % low 38 % low
syn40m03h 5.6 % low 21 % low 21 % low
syn40m03m 1467 % high 13 % low 38 % low
syn40m04h 2.0 % low 21 % low 21 % low
syn40m04m 917 % high 13 % low 38 % low
synthes1 87 % high 33 % low 50 % high
synthes2 101 % high 36 % low 45 % low
synthes3 78 % high 35 % low 47 % low
tls12 98 % high 19 % low 82 % high
tls2 86 % high 16 % low 89 % high
tls4 79 % high 19 % low 85 % high
tls5 89 % high 19 % low 84 % high
tls6 91 % high 20 % low 83 % high
tls7 96 % high 16 % low 86 % high
unitcommit1 1.6 % low 25 % low 75 % high
watercontamination0202 52 % high 3.8 % low 0.0 % low
watercontamination0202r 100 % high 48 % low 3.6 % low
watercontamination0303 64 % high 4.2 % low 0.0 % low
watercontamination0303r 100 % high 48 % low 3.6 % low
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Figure B.1: As can be seen from these scatter plots, there is little to no correlation between
the three categories integer relaxation gap, nonlinearity, and discrete density. Note that
some outliers are missing.
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B.B Solver Options

The options provided to the solvers (and subsolvers) in the benchmark are listed below.

All other settings are the default values as provided by the individual solvers. Note that

we have not tried to fine-tune any of the solvers; however, if there is a convex strategy or

recommended convex parameters, we have used those. We have also modified limits and

other parameters when it is apparent that implementation issues cause, e.g., premature

termination of a solver on some problem instances or numerical instability. For example,

without adding the CONOPT option specified below, DICOPT and SBB fail to solve all the

smallinv-instances in MINLPLib. Therefore, we believe that it is motivated to use these

since this problem occurs in the subsolver.

Name Value Description

General GAMS

MIP CPLEX uses CPLEX as MIP solver
threads 8 max amount of threads
optCR 0.001 relative termination tolerance
optCA 0 absolute termination tolerance
nodLim 108 to avoid premature termination
domLim 108 to avoid premature termination
iterLim 108 to avoid premature termination
resLim 900 time limit

AlphaECP

ECPmaster 1 activates convex strategy
TOLepsg 10−6 constraint tolerance

AOA

IsConvex 1 activates convex strategy
IterationMax 107 maximal number of iterations
RelativeOptimalityTolerance 0.1 relative termination tolerance (in

%)
TimeLimit 900 time limit

BONMIN

bonmin.algorithm B-OA selects the main algorithm
B-HYB
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B-BB
milp solver CPLEX uses CPLEX as MILP solver
bonmin.time limit 900 sets the time limit

Couenne

lp solver Clp uses Clp as LP solver (as recom-
mended in the manual)

DICOPT

convex 1 activates convex strategy
stop 1 convex stopping criterion
maxcycles 108 iteration limit
infeasder 1 add cutting planes from infeasi-

ble NLP (convex recommenda-
tion)

nlpoptfile 1 to use the CONOPT options be-
low

Juniper

fp cpx use CPLEX for the feasibility
pump

processors 8 max number of threads
mip gap 0.001 relative termination tolerance
time-limit 900 time limit

LINDO

USEGOP 0 deactivates global strategy
SPLEX ITRLMT -1 simplex iteration limit
MIP ITRLIM -1 MILP iteration limit

the iteration limits are set as infi-
nite to avoid premature termina-
tion

Minotaur

lp engine OsiCpx use CPLEX as MIP solver
obj gap percent 0.1 relative termination tolerance (in

%)
bnb time limit 900 time limit
threads 8 max amount of threads (does not

seem to have any effect as it only
uses one thread)

Muriqui

MRQ LP NLP BB OA BASED ALG use LP/NLP based algorithm
in assume convexity 1 use convex strategy
in absolute convergence tol 0 absolute termination tolerance
in relative convergence tol 0.001 relative termination tolerance
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in absolute feasibility tol 10−6 constraint tolerance
in integer tol 10−5 integer tolerance
in max time 900 time limit
in milp solver MRQ CPLEX use CPLEX as MIP solver
in nlp solver MRQ IPOPT use IPOPT as NLP solver
in number of threads 8 max amount of threads

Pavito

mip solver CPLEXSolver use CPLEX as MILP solver;
with one thread since multiple
threads are not supported with
callbacks

cont solver IpoptSolver use IPOPT as NLP solver
mip solver drives true let MILP solver manage tree
rel gap 0.001 relative termination tolerance
timeout 900 time limit

SBB

memnodes 5 ·107 to avoid premature termination,
but not too large, since memory
is preallocated

rootsolver CONOPT.1 to use the CONOPT options be-
low

SCIP

constraints/nonlinear/assumeconvex true activates convex strategy

SHOT

Dual.MIP.NumberOfThreads 8 max number of threads
Dual.MIP.Solver 0 use CPLEX as MIP solver
Primal.FixedInteger.Solver 2 to use GAMS NLP solvers
Subsolver.GAMS.NLP.Solver conopt use CONOPT as GAMS NLP

solver
Termination.ObjectiveGap.Absolute 0 absolute termination tolerance
Termination.ObjectiveGap.Relative 0.001 relative termination tolerance
Termination.TimeLimit 900 time limit

CONOPT (GAMS)

RTMAXV 1030 to avoid problems with un-
bounded variables in DICOPT
and SBB
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[244] Christian Bliek1ú, Pierre Bonami, and Andrea Lodi. “Solving mixed-integer

quadratic programming problems with IBM-CPLEX: a progress report”. In:

Proceedings of the twenty-sixth RAMP symposium. 2014, pp. 16–17.

[245] Christoph Buchheim and Long Trieu. “Quadratic outer approximation for convex

integer programming with box constraints”. In: International Symposium on Experi-

mental Algorithms. Springer. 2013, pp. 224–235.

[246] Timo Berthold, Stefan Heinz, and Stefan Vigerske. “Extending a CIP Framework to

Solve MIQCP s”. In: Mixed integer nonlinear programming. Springer, 2012, pp. 427–444.

[247] G.B. Folland. Advanced Calculus. Featured Titles for Advanced Calculus Series. Pren-

tice Hall, 2002.

510
BIBLIOGRAPHY

https://doi.org/10.1016/j.compchemeng.2015.01.015


BIBLIOGRAPHY

[248] Michael R Bussieck and Alex Meeraus. “General algebraic modeling system

(GAMS)”. In: Modeling languages in mathematical optimization. Springer, 2004,

pp. 137–157.

[249] Lijie Su, Lixin Tang, David E. Bernal, and Ignacio E. Grossmann. “Improved

quadratic cuts for convex mixed-integer nonlinear programs”. Computers & Chemical

Engineering 109 (2018), pp. 77–95. DOI: 10.1016/j.compchemeng.2017.10.011.

[250] Michael R Bussieck and Arne Drud. SBB: A new solver for mixed integer nonlinear

programming. GAMS. 2001. URL: https://old.gams.com/presentations/

present_sbb.pdf.

[251] Jon Lee and Sven Leyffer. Mixed Integer Nonlinear Programming. Ed. by Jon Lee and

Sven Leyffer. Vol. 154. Springer Science & Business Media, 2011.

[252] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Vol. 87.

Springer, 2004.

[253] Dick den Hertog, J Kaliski, C Roos, and T Terlaky. “A logarithmic barrier cutting

plane method for convex programming”. Annals of Operations Research 58.2 (1995),

pp. 67–98.

[254] Adil Bagirov, Napsu Karmitsa, and Marko M Mäkelä. Introduction to Nonsmooth
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[425] David A Liñán, David E Bernal, Luis A Ricardez-Sandoval, and Jorge M Gómez.
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