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Abstract

This thesis addresses two challenging problems. The first part is focused

on developing algorithms and software for two-stage stochastic mixed-integer

nonlinear programming problems (SMINLPs). The second part is on the long-

term planning of power systems.

Stochastic programming, also known as stochastic optimization, is a math-

ematical framework to model decision-making under uncertainty that has been

widely applied in process systems engineering (PSE). Two-stage stochastic mixed-

integer programming (SMIPs) is a special case of stochastic programming that

considers first and second stage decisions made sequentially with both discrete

and continuous variables. Although there have been algorithmic advances in

linear SMIPs, the decomposition algorithms to address the nonlinear counter-

part, stochastic mixed-integer nonlinear programs (SMINLPs), are few. In Part

I of this thesis, we propose four decomposition algorithms for different classes

of SMINLPs. For SMINLPs with convex nonlinear constraints, mixed-binary

first and second variables, and discrete probability distributions, we propose

an improved L-shaped algorithm that combines strengthened Benders cuts and

Lagrangean cuts. This algorithm has no guarantee of global optimality. To

close the optimality gap, we propose a generalized Benders decomposition-based

branch-and-bound algorithm where the stage two problems are convexified se-

quentially by performing basic steps. For SMINLPs with nonconvex constraints,

mixed-binary first and second variables, and discrete probability distributions,

we propose a generalized Benders decomposition-based branch-and-cut algorithm

where we combine the Benders cuts derived from convexification of the stage two

problems and the Lagrangean cuts. A spatial branch-and-cut algorithm is per-

formed to guarantee convergence to global optimality. Last but not least, a

sample-average approximation-based outer approximation algorithm is proposed

for nonconvex SMINLPs with continuous probability distributions. This algo-
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rithm does internal sampling within an outer approximation framework using

confidence interval estimates.

Part II addresses generation expansion planning of power systems under high

penetration of renewables. We propose a mixed-integer linear programming

(MILP) model that incorporates both the investment decisions on the generating

units, storage units, and transmission lines, and short-term unit commitment de-

cisions to capture the variations of the renewables. To make the large-scale MILP

model tractable, we propose several spatial and temporal aggregation schemes

and adapt the Benders decomposition algorithm and the nested Benders decom-

position algorithm to solve the problem efficiently. We also investigate several

different algorithms to select the representative days. Case studies of the ER-

COT region are provided to demonstrate the capabilities of our approaches.
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Chapter 1

Introduction

This thesis has two major parts. The first part describes algorithms and software for

stochastic mixed-integer nonlinear programming (SMINLP) problems. The focus of the first

part is to propose novel decomposition algorithms that can solve two-stage stochastic mixed-

integer nonlinear programs. The second part deals with capacity expansion planning of

powers systems. The focus of the second part is proposing modeling frameworks, reasonable

simplifications, and solution techniques for long term planning of power systems.

The detailed list of objectives for the two classes of problems is as follows:

I Algorithms and software for stochastic mixed-integer nonlinear programming (SMINLP):

• Propose an improved L-shaped algorithm for two-stage SMINLP with convex

nonlinear constraints and mixed-binary first and second stage variables.

• Propose a generalized Benders decomposition-based algorithm for two-stage SMINLP

with convex nonlinear constraints and mixed-binary first and second stage vari-

ables with finite ϵ convergence.

• Propose a generalized Benders decomposition-based branch and cut algorithm for

two-stage SMINLP with nonconvex nonlinear constraints and mixed-binary first

and second stage variables.
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• Propose an outer approximation-based sample average approximation algorithm

for two-stage SMINLP with continuous probability distribution and nonconvex

nonlinear constraints.

• Formulate a two-stage stochastic programming model for shale gas pad develop-

ment under the uncertainty of natural gas price.

II Long term planning of power systems:

• Propose a mixed-integer linear programming formulation and algorithms for gen-

eration and transmission expansion planning of power systems under high pene-

tration of renewables.

• Propose computational methods for selecting representative days for capacity ex-

pansion planning problems and analyze the theoretical properties of these meth-

ods.

This chapter contains a review of the basic concepts that are dealt with in the rest of the

thesis. Section 1.1 provides an introduction to stochastic programming. The detailed in-

troduction to stochastic programming and its applications in process systems can be found

in chapter 2. Section 1.2 provides an introduction to the energy systems applications ad-

dressed in this thesis, including shale gas development in section 1.2.1 and capacity expansion

planning of power systems in section 1.2.2.

1.1 Introduction to stochastic programming

1.1.1 Stochastic programming and applications in process systems

engineering

Stochastic programming, also known as stochastic optimization (Birge and Louveaux,

2011), is a mathematical framework to model decision-making under uncertainty. The ori-

gin of stochastic programming dates back to the 1950s when George B. Dantzig, commonly

2
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recognized as the father of linear programming, wrote the pioneer paper “Linear Program-

ming under Uncertainty” (Dantzig, 1955). In this pioneering paper, Dantzig described one

of the motivations of developing the stochastic programming modeling framework as “to in-

clude the case of uncertain demands for the problem of optimal allocation of a carrier fleet to

airline routes to meet an anticipated demand distribution”. Another early work on stochas-

tic programming can be found in Beale (1955). From then on, stochastic programming has

evolved into a major area of research for the mathematical programming and operations

research community. A significant number of theoretical and algorithmic developments have

been made by the mathematicians, which are summarized in the classical textbooks (Birge

and Louveaux, 2011; Shapiro et al., 2014). With the increase in the maturity of algorithmic

and computational methods, stochastic programming has been applied to a broad spectrum

of problems (Wallace and Ziemba, 2005) including financial planning, electricity generation,

supply chain management, mitigation of climate change, and pollution control, among many

others.

Process systems engineering (PSE) is an area of chemical engineering that focuses on the

development and application of modeling and computational methods to simulate, design,

control, and optimize processes (Sargent, 2005). Uncertainties are prevalent in the opti-

mization of process systems, such as prices and purity of raw materials, customer demands,

yields of pilot reactors, etc. The marriage of stochastic programming with PSE seems to be a

natural alliance. However, the first application of stochastic programming in PSE took place

a decade after Dantzig wrote his first paper. The earliest paper that we can find is the paper

by Kittrell and Watson (1966) where the authors applied stochastic programming to the

optimal design of proces equipment under uncertain parameters. The reason that prohibited

researchers in PSE to apply stochastic programming is that computational resources were

limited in the early days as stochastic programming models are much more difficult to solve

than their deterministic counterparts. After the 1990s, with the improvement of commercial

mathematical programming software, e.g, solvers like CPLEX (Lima, 2010), and computer

hardware, there is an increasing interest to apply stochastic programming to process systems
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applications. In Figure 1.1, we survey the number of papers with stochastic programming

as the main topic published in four mainstream PSE journals and conferences, Computers

& Chemical Engineering, Computer Aided Chemical Engineering, Industrial & Engineering

Chemistry Research, and AIChE Journal, from 1990 to September 1st, 2020. There is a

significant growth in the number of papers in this surveyed time horizon, with around 30

papers per year after the 2010s.

Figure 1.1: The number of papers published in journals including Computers & Chemical Engi-
neering, Computer Aided Chemical Engineering, Industrial & Engineering Chemistry Research,
and AIChE Journal from 1990 to September 1st 2020. (Data obtained from Web of Science)

The applications of stochastic programming are also widespread in the PSE commu-

nity. In Table 1.1, some highly-cited papers from the four PSE-related journals that apply

stochastic programming are reported. The applications have a very broad temporal scale,

ranging from long-term design and planning problems to short-term scheduling and control

problems. In terms of industrial sectors, the listed papers in Table 1.1 have both traditional

industrial sectors, such as petroleum, natural gas, pharmaceutical, chemical, etc., and new
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Table 1.1: Summary of representative works that use stochastic programming for PSE applications

work application sources of uncertainty

Gupta and Maranas (2003) supply chain planning demand
Kim et al. (2011) biomass supply chain network supply, demands, prices, processing technologies
Guillén-Gosálbez and Grossmann (2009) chemical supply chain life cycle inventory
Gebreslassie et al. (2012) hydrocarbon biorefinery supply chains supply, demand
Liu and Sahinidis (1996) process planning supply, demand
Pistikopoulos and Ierapetritou (1995) process design supply, demand
Acevedo and Pistikopoulos (1998) process synthesis supply, demand
Goel and Grossmann (2004) offshore gas field developments gas reserves
Zeballos et al. (2014) design and planning of supply chain supply, demand
Levis and Papageorgiou (2004) capacity planning in pharmaceutical industry clinical trial outcomes
Karuppiah and Grossmann (2008) synthesis of water networks contaminants concentration, removal efficiency
Colvin and Maravelias (2008) clinical trial planning clinical trial outcomes
Li et al. (2011b) natural gas production network design and operation quality of natural gas
Sand and Engell (2004) real-time scheduling of batch plant processing time, yields, capacity, demand
Liu et al. (2010) polygeneration energy systems design price, demand
Paules IV and Floudas (1992) synthesis of heat-integrated distillation feed composition and flowrate
Chu and You (2013) integrated scheduling and dynamic optimization process uncertainty, e.g., kinetic parameters
Ye et al. (2014) production scheduling of steelmaking demand
Zhang et al. (2016) scheduling of power-intensive processes electricity price
Legg et al. (2012) gas detector placement leak locations, weather conditions
Han and Lee (2012) carbon capture and storage infrastructure design CO2 emissions, product prices, operating costs
Zavala (2014) control of natural gas networks demand
Zeng and Cremaschi (2018) shale gas infrastructure planning production

sectors, such as biofuels, carbon capture, etc. The uncertainties that are considered in those

applications include prices, supply, production profiles, and concentration of raw materials,

demands and prices of final products, process technologies, clinical trial outcomes.

1.1.2 Optimization under Uncertainty

The decision-making process is normally modeled as an optimization problem. A generic

optimization problem is represented in the following succinct form in equation (1.1) where we

have some continuous variables x, to represent the decisions being made (e.g., sizing decision

of a reactor), 0−1 variables y to represent the discrete choices (e.g., select a given reactor or

not), an objective function f to minimize or maximize (e.g., to minimize the total cost), and

some constraints g, h, that the variables have to satisfy (e.g., product specifications, mass
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balances).

min
x,y

f(x, y; θ)

s.t. g(x, y; θ) ≤ 0

h(x, y; θ) = 0

x ∈ Rnx

, y ∈ {0, 1}ny

(1.1)

Variables x are continuous variables with dimension nx, which can take real values. Variables

y are binary variables with dimension ny, which can only take values 0 or 1. Binary variables

are usually used to represent logic relations or choices, e.g., whether to install a given chemical

plant or not. Vector θ represents parameters involved in the optimization problem, such

as product demand, unit costs of some processes. If we assume that those parameters are

known with certainty, problem (1.1) is a deterministic optimization problem. A deterministic

optimization problem can be classified into several categories depending on the forms of f ,

g, h, x, y.

• some of f , g, h, are nonlinear functions. Problem (1.1) is a mixed-integer nonlinear

program (MINLP).

• f , g, h are all linear functions. Problem (1.1) becomes a mixed-integer linear program

(MILP).

• some of f , g, h, are nonlinear functions and there is no y variable, i.e., ny = 0. Problem

(1.1) becomes a nonlinear program (NLP).

• f , g, h, are linear functions and there is no y variable, i.e., ny = 0. Problem (1.1)

becomes a linear program (LP).

The four different mathematical programs, MINLP, MILP, NLP, LP, are chosen depending

on the nature of the problem. For problems in chemical engineering, nonlinear equations

are often used to describe thermodynamic or kinetic behavior. Integer variables can be

used to describe process synthesis problems, e.g., a binary variable can describe whether a
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given distillation column exists or not in a chemical flowsheet. For a detailed treatment of

deterministic optimization methods, we refer to the textbook by Grossmann (2021).

In deterministic optimization models, the parameters θ are assumed to be known. How-

ever, in practice, uncertainties are prevalent in process systems due to inaccurate measure-

ment, forecast error, or lack of information. For example, uncertainties in supply chain

management can arise from future customer demand, potential network disruption, or even

the spread of a pandemic. Failing to consider uncertainties in the decision-making process

may lead to suboptimal or even infeasible solutions. To hedge against the uncertainties in

process systems, several mathematical frameworks have been used by the PSE community

including stochastic programming, chance-constrained programming (Li et al., 2008), and

robust optimization (Lappas and Gounaris, 2016). The three approaches are different in

their degrees of risk aversion and ways of characterizing uncertainties. Stochastic program-

ming (SP) is a risk-neutral approach, which seeks to optimize the expected outcome over a

known probability distribution. Chance-constrained programming can be seen as solving a

stochastic program with some probabilistic constraints, which specify that some constraints

with uncertain parameters are satisfied with a given level of probability. For example, a

chance constraint can specify that a budget/cost that should not exceed a certain threshold.

Chance constrained programming offers modeling flexibility to deal with reliability issues

and have important connections with risk management. Robust optimization is another

risk-averse approach, which seeks to ensure feasibility and optimize the “worst-case” over a

pre-defined uncertainty set. Robust optimization problems typically involve min-max type

of operators. A summary of the three approaches is shown in Table 1.2.

Table 1.2: Summary of stochastic programming, chance-constrained programming, and robust
optimization

method degree of risk aversion characterization of uncertainty
stochastic programming risk neutral probability distribution

chance-constrained programming risk averse probability distribution, risk level
robust optimization worst case scenario uncertainty set

Besides these three approaches, there are a number of mathematical frameworks to model
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decision-making under uncertainty, such as Markov Decision Process (MDP). Powell (2019)

unifies 15 communities in optimization under uncertainty in a single framework. Reviewing

all the 15 approaches is not within the scope of this thesis. Interested readers can refer to

the relevant papers (Powell, 2019, 2016).

1.1.3 Two-stage stochastic mixed-integer programming

Two-stage stochastic mixed-integer programs (SMIPs) is a framework to model decision-

making uncertainty that involves discrete decisions. In this section, we provide a literature

review on the history and recent advances of two-stage SMIPs. The detailed mathematical

formulations and algorithms are reviewed in chapter 2.

Traditional L-shaped method (Van Slyke and Wets, 1969) can only be applied to linear

SMIPs with continuous recourse, but cannot be applied to solve SMIPs with (mixed)-integer

recourse. Applications for SMIPs with integer recourse include stochastic server location

problem (Ntaimo and Sen, 2005), dynamic capacity acquisition and allocation (Ahmed and

Garcia, 2003), stochastic unit commitment problem (Ryan et al., 2013), etc. In the past two

decades, there have been algorithmic developments for solving linear SMIPs with integer

recourse.

A summary of decomposition algorithms for solving SMIPs with different assumptions

on the types of variables and constraints both stage 1 and stage 2 of two-stage stochastic

programs is shown in Table 1.3. The types of variables can be binary variables B, continuous

variables R, and integer variables Z. The functions that define the constraints can be linear

L, convex nonlinear C, and nonconvex nonlinear NC. Since B ⊂ Z, if one algorithm can

solve problems with integer variables in a given stage, only the box for integer variables is

checked in Table 1.3.

The pioneering work is reported by Laporte and Louveaux (1993) who propose integer

cuts for two-stage SMIPs with pure binary first stage variables. Benders decomposition

algorithms that are based parametric cutting plane algorithms have also been proposed

where the parametric cuts, such as disjunctive cuts (Angulo et al., 2016; Qi and Sen, 2017;
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Ntaimo, 2010; Ntaimo and Tanner, 2008; Sen and Sherali, 2006), RLT (Sherali and Zhu,

2006; Sherali and Fraticelli, 2002), Gomory mixed-integer cuts (Gade et al., 2014; Zhang

and Küçükyavuz, 2014), are used to convexify the (mixed)-integer subproblems. Carøe and

Schultz (1999) propose a dual decomposition-based branch and bound algorithm. For a

review of recent advances in SMIPs, we refer to the tutorial by Küçükyavuz and Sen (2017).

Although there have been algorithmic advances in linear SMIPs, the decomposition al-

gorithms to address the nonlinear counterpart, stochastic mixed-integer nonlinear programs

(SMINLPs), are few. For convex SMINLPs (the relaxed nonlinear functions in SMINLPs are

all convex), Mijangos (2015) proposes an algorithm based on Branch-and-Fix Coordination

method (Alonso-Ayuso et al., 2003) for convex problems with 0-1 mixed-integer variables in

the first stage and only continuous variables in the second stage. Atakan and Sen (2018) pro-

pose a progressive hedging-based branch-and-bound algorithm for convex SMINLP, which

works well in the case of pure binary first stage variables and continuous recourse. For

nonconvex SMINLPs (the nonlinear functions in SMINLPs can be nonconvex), the noncon-

vexities in stage 2 are two-fold: first, we have nonlinear nonconvex functions in stage 2;

second, some of the stage 2 variables need to satisfy integrality constraints. Li et al. (2011c)

propose a nonconvex generalized Benders decomposition (NGBD) algorithm for problems

with pure binary first stage variables where they relax the nonconvex functions in stage 2

by their convex relaxations in order to derive valid Benders-like cuts. The convergence of

NGBD relies on using the integer cuts similar to the one proposed by Laporte and Louveaux

(1993). NGBD and its variations have been applied to stochastic pooling problems (Li et al.,

2011a, 2012b), integrated process design and operation problems (Li et al., 2012a), etc.

However, if the first stage variables are mixed-integer, the integer cuts used in Li et al.

(2011c) are no longer applicable. For the more general case where the first stage variables

can be mixed-integer, Ogbe and Li (2018) propose a joint decomposition algorithm where

they reformulate the two-stage problem so that all the nonconvexities are in the first stage.

Therefore, the Benders subproblems in Ogbe and Li (2018) are continuous and convex. The

authors also add Lagrangean cuts to the Benders master problem to tighten the master

9
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Table 1.3: Assumptions made in the SMIP literature cited. B: binary variables , R: continuous
variables, Z: integer variables, linear: L, convex nonlinear: C, nonconvex nonlinear: NC

First stage Second stage
B R Z L C NC B R Z L C NC

Van Slyke and Wets (1969) ! ! ! !

Laporte and Louveaux (1993) ! ! ! ! !

Angulo et al. (2016) ! ! ! ! !

Qi and Sen (2017) ! ! ! ! ! !

Ntaimo (2010) ! ! ! ! ! !

Ntaimo and Tanner (2008) ! ! ! ! ! !

Sen and Sherali (2006) ! ! ! ! !

Sherali and Zhu (2006) ! ! ! ! ! !

Sherali and Fraticelli (2002) ! ! ! ! !

Gade et al. (2014) ! ! ! !

Zhang and Küçükyavuz (2014) ! ! ! !

Carøe and Schultz (1999) ! ! ! ! ! !

Mijangos (2015) ! ! ! ! !

Atakan and Sen (2018) ! ! ! !

Li and Grossmann (2018a) ! ! ! ! ! !

Li and Grossmann (2019b) ! ! ! ! ! !

Li et al. (2011c) ! ! ! ! !

Ogbe and Li (2018) ! ! ! ! ! !

Cao and Zavala (2017) ! ! ! ! ! !

Kannan (2018) ! ! ! ! ! !
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1.2. Energy systems

problem. The advantage of Ogbe and Li (2018) is that explicit spatial branch and bound

can be avoided. However, a large-scale master problem may need to be solved by global

solvers when the number of scenarios is large. Cao and Zavala (2017) propose a perfect

information-based branch and bound algorithm that solves nonconvex SMINLPs to global

optimality. The authors relax the nonanticipativity constraints (NACs) of the two-stage

problem to derive a valid bound at each node of the spatial branch and bound process where

they only need to branch on the first stage variables. Kannan (2018) propose a modified

Lagrangean relaxation-based (MLR) branch and bound algorithm, which is similar to the

algorithm proposed by Carøe and Schultz (1999) except that MLR only dualizes the NACs

corresponding to the continuous first stage variables. Therefore, the Lagrangean subproblems

still have NACs corresponding to integer variables, which are solved by NGBD proposed by

Li et al. (2011c). The authors prove that MLR has finite ϵ-convergence.

1.2 Energy systems

1.2.1 Shale gas pad development

According to the Annual Energy Outlook 2019 published by the EIA (U.S. Energy In-

formation Administration, 2019a), the production of natural gas is expected to grow by 50%

in the next 30 years. The growth in natural gas production supports increasing domestic

consumption, particularly in the industrial and electric power sectors, and higher levels of

natural gas exports. In Figure 1.2, the prediction of the consumption and the production of

dry natural gas in the U.S. is shown under different sensitivity cases. We can observe that

there will likely be an increase in both the production and the consumption of dry natural

gas even in the case of low economic growth and low oil price.

The increase in natural gas production is driven by continued development of lower-cost

shale gas resources. The Annual Energy Outlook 2019 (U.S. Energy Information Administra-

tion, 2019a) shows that dry natural gas production from shale gas and tight oil continues to

grow in both share and absolute volume because of the sheer size of the associated resources,
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Figure 1.2: The prediction of natural gas production and consumption in different sensitivity cases

which extend over nearly 500,000 square miles, and because of improvements in technology

that allow for the development of these resources at lower costs. Shale gas is expected to

account for 90% of U.S. dry natural gas production in 2050.

Despite the significant role that shale gas plays in the energy industry, the shale gas

industry is still young (A.Morris, 2015). Recently, the optimization of shale gas systems has

drawn increasing attention in academia. Many shale gas companies (Markus G. Drouven,

2018) also start to apply optimization models to make better use of their resources. A

common problem that arises in the shale gas industry is the operation of a single shale gas

wellpad as it affects the whole natural gas supply chain. Recently, Ondeck et al. (2019)

proposed an MILP (mixed-integer linear programming) model that considers the economical

development of a shale gas pad and the optimal production of shale gas.

To develop a well for production (Figure 1.3), four operations must take place in the

following order: 1) top setting (TS), 2) horizontal drilling (HZ), 3) hydraulic fracturing

(FRAC), and 4) turning in line (TIL). The first operation, top setting, is the process of

drilling a well down to the selected shale gas formation and properly encasing the well to

prevent the release of gas and other chemicals into the ground surrounding the well bore.

12
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Once the vertical part of the well has been developed, the next step is horizontal drilling (HZ),

which is followed by fracturing (FRAC). Fracturing refers to the injection of a fracturing fluid

into a geologically tight formation under high pressure of up to 70 MPa. Once the fracturing

is complete, the well can be turned in line to release the gas. Based on the desired production,

the entire well or sections of the well can be turned in line. From start to finish, the process of

completing a well can take anywhere from a few weeks to two months, based on the geology

of the subsurface, the length of the well, and the availability of resources.

Ondeck et al. (2019) point out that traditionally, upstream operators complete one op-

eration for all the wells in a single wellpad before moving to the next operation to reduce

the mobilization of their crew and equipment. However, there are several drawbacks for this

type of operating strategy. First, since all the wells are turned in line around the same time,

there is a dramatic increase of natural gas production in this single pad. Therefore, pipelines

with large capacities are needed in order to deliver the natural gas to the customers. Second,

since the wells cannot be turned in line until all the first three operations are completed for

all the wells in the pad, the lateness of turning in line incurs a loss in the net present value

(NPV) compared with the strategy in which some of the wells are turned in line before all

the first three operations are completed for all the three wells. Third, the production of a

typical shale gas well decreases sharply after the first year of turning in line. Therefore, if

all the wells are turned in line around the same time, there will be a period with little gas

production.

From our analysis on the conventional strategy of single pad operations, there is a tradeoff

between avoiding the mobilization costs, and turning the well in line earlier to maximize the

production NPV. In the paper by Ondeck et al. (2019), the authors perform a sensitivity

analysis by varying the mobilization costs. Considering mobilization costs tends to affect

the schedule of the single pad development.

We review the literature related to the optimization of shale gas systems. We first review

the deterministic models. The models that consider uncertainty are relatively few and are

reviewed at the end of this section. The deterministic optimization models for shale gas
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Figure 1.3: The four operations necessary to develop a well to completion: (a) top setting, (b)
horizontal drilling, (c) hydraulic fracturing, and (d) turning in line.

development can be grouped into three levels based on the time scale: design/planning,

scheduling, and operating.

The design/planning models correspond to long term decisions, usually for more than a

decade. The decisions involved in these long-term models usually include the design of shale

gas network, such as the layout of pipelines, and planning decisions such as the number of

wells to drill. The constraints usually include mass/resource balance constraints, network

design constraints, etc. The objective is usually to maximize NPV. Cafaro and Grossmann

(2014) present a mixed-integer nonlinear programming (MINLP) model for the strategic

planning, design, and development of the shale gas supply chain network where they deter-

mine planning decisions such as the number of wells to drill at every location, and design

decisions, such as the size of gas processing plants, the length and diameter of the pipelines

so as to maximize the net present value of the project. Following the work of Cafaro and

Grossmann (2014), Drouven and Grossmann (2016) propose an MINLP model that involves

planning, design, and strategic decisions such as where, when, and how many shale gas wells
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to drill, where to lay out gathering pipelines, as well as which delivery agreements to ar-

range. Guerra et al. (2016) propose an optimization framework for the integration of water

management and shale gas supply chain design. Gao and You (2015b) propose an MINLP

model that addresses the life cycle economic and environmental optimization of shale gas

supply chain network design and operations. Arredondo-Ramírez et al. (2016) use a disjunc-

tive programming-based approach to account for complex logical relationships in the optimal

planning of shale gas exploitation and infrastructure development.

The optimal scheduling of operations for shale gas development considers shorter time

period than in planning/design. The constraints in the scheduling models usually include

sequence of operations, resource availability constraints. The objective can be maximizing

NPV or minimizing environmental impact. Knudsen et al. (2014) formulate an MILP model,

which is solved using Lagrangean decomposition, for shut-in scheduling in large, multi-well

shale-gas systems. Cafaro et al. (2016) propose a continuous time MINLP model and a

discrete time MILP model for planning shale gas well refracture treatments. Cafaro et al.

(2018) propose a continuous time optimization model for planning multiple refracture treat-

ments over the lifespan of a shale gas well. Yang et al. (2014) propose an MILP model that

addresses source water acquisition, waste water production, reuse and recycle, and subse-

quent transportation, storage, and disposal in shale gas production. Ondeck et al. (2019)

consider the scheduling of the four operations in a single wellpad.

At the operational level, decisions are made on a daily to weekly time scale. Forouzanfar

and Reynolds (2014) formulate a continuous optimization model to simultaneously optimize

the number of wells, their locations and controls. Wilson and Durlofsky (2013) develop a

surrogate model to accurately model complex shale gas reservoirs and further use the model

for shale gas field development optimization. Others (Ma et al., 2013; Yu and Sepehrnoori,

2013) have studied the placement of hydraulic fracture stages.

The models for shale gas development that consider uncertainty are relatively few. Drou-

ven et al. (2017) apply two-stage stochastic programming in a moving horizon approach for

optimal shale well development and refracturing planning under exogenous gas price un-
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certainty and endogenous well performance uncertainty. Gao and You (2015a) develop a

two-stage stochastic mixed integer linear fractional programming (SMILFP) model to opti-

mize the levelized cost of energy generated from shale gas under uncertainty of estimated

ultimate recovery (EUR). Guerra et al. (2019) develop a two-stage stochastic model embed-

ded in a moving horizon strategy to dynamically solve the planning of shale well development

and refracturing. Zeng and Cremaschi (2017) propose stochastic programming models to the

artificial lift infrastructure planning for shale gas producing wells.

1.2.2 Generation and transmission expansion planning of power

systems

Generation expansion planning (GEP) of power systems involves determining the optimal

size, location, and construction time of new power generation plants, while minimizing the

total cost over a long-term planning horizon (Conejo et al., 2016b; Koltsaklis and Dagoumas,

2018). There is a growing interest to use mathematical programming models to solve gen-

eration expansion planning problems (Lara et al., 2018; Sadeghi et al., 2017; Oree et al.,

2017). Conventional power units are dispatchable thermal power plants that can provide

stable power output. Due to computational tractability concerns, generation expansion mod-

els can ignore short-term operating decisions. However, with the increased penetration of

renewable generation technologies, such as solar and wind, power systems nowadays need to

be more flexible so as to adjust to the volatile power generation from renewables. In this

case, operations decisions, such as unit commitment, ramping decisions, become important

to assess system feasibility (Ding and Somani, 2010; Koltsaklis and Georgiadis, 2015; Pina

et al., 2013; Poncelet et al., 2014; Shortt and O’Malley, 2010; Flores-Quiroz et al., 2016;

Palmintier and Webster, 2011; Lara et al., 2018; Lohmann and Rebennack, 2017). Due to

the incorporation of short-term operating constraints into the long-term planning problem,

the integrated model is computationally challenging. In order to solve such multi-scale prob-

lem efficiently, Lara et al. (2018) use nested Benders decomposition to solve a GEP model

with unit commitment. Lohmann and Rebennack (Lohmann and Rebennack, 2017) develop
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a tailored Generalized Benders Decomposition algorithm.

Transmission expansion planning (TEP) refers to installing new transmission lines or

expanding the capacities of existing transmission lines in a power system. Bahiense et al.

(2001) propose a mixed integer disjunctive model for transmission network expansion. (Al-

guacil et al., 2003) propose an MILP model that considers losses and guarantees convergence

to optimality for the TEP. Zhang et al. (2013) propose an improved model that includes

a linear representation of reactive power, off-nominal bus voltage magnitudes and network

losses. For a more detailed review of of TEP models and algorithms, we refer the readers to

the review papers (Hemmati et al., 2013; Ude et al., 2019).

GEP and TEP are generally solved as two independent optimization problems since the

market agents addressing these two problems are different. GEP pertains to producers, while

TEP pertains to a regulated planner. However, the significant penetration of renewables into

power systems may lead to their concentration in remote areas not well connected to the

load demand (Koltsaklis and Dagoumas, 2018). Therefore, installing renewables in those

remote areas could compromise transmission expansion. The recognition of transmission’s

interaction with generation expansion has motivated the development of co-optimization

methods to consider the tradeoffs between generation and transmission expansion (Krishnan

et al., 2016). Several works have been reported to simultaneously optimize generation and

transmission expansion planning (GTEP) (Pozo et al., 2012; Aghaei et al., 2014). We refer

to Table 1 of the review paper (Koltsaklis and Dagoumas, 2018) for a long list of works. See

also the review paper (Gacitua et al., 2018).

A number of related works consider uncertainties in the planning problem using two-

stage or multistage stochastic programming (Lara et al., 2019; O’Neill et al., 2013; Liu et al.,

2017b), robust optimization (Mejía-Giraldo and McCalley, 2013; Baringo and Baringo, 2017).

(Le Cadre et al., 2015; Pozo et al., 2012) apply game theory or multi-level optimization to

characterize the interaction of the participants in the markets.
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Figure 1.4: Overview of this thesis

1.3 Overview of the thesis

Figure 1.4 shows a graphic overview of the topics in Chapters 1-10. The following sub-

sections provide an abstract of all the chapters.

Chapter 2

In chapter 2, we review the basic concepts and recent advances of a risk-neutral mathe-

matical framework called “stochastic programming” and its applications in solving process

systems engineering problems under uncertainty. This review intends to provide both a tuto-

rial for beginners without prior experience and a high-level overview of the current state-of-

the-art developments for experts in process systems engineering and stochastic programming.
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The mathematical formulations and algorithms for two-stage and multistage stochastic pro-

gramming are reviewed with illustrative examples from process industries. The differences

between stochastic programming under exogenous uncertainty and endogenous uncertainties

are discussed. The concepts and several data-driven methods for generating scenario trees

are also reviewed.

Chapter 3

In chapter 3, we propose an improved L-shaped method to solve large-scale two-stage

convex 0-1 mixed-integer nonlinear stochastic programs with mixed-integer variables in both

first and second stage decisions and with relatively complete recourse. To address the dif-

ficulties in solving large problems, we propose a Benders-like decomposition algorithm that

includes both (strengthened) Benders cuts and Lagrangean cuts in the Benders master prob-

lem. The proposed algorithm is applied to solve a batch plant design problem under demand

uncertainty, and a planning problem under demand and price uncertainty. It is shown that

the proposed algorithm outperforms the commercial solvers, DICOPT, SBB, Alpha-ECP,

and BARON, when the deterministic equivalent problems involve a large number of scenar-

ios. Also, although the proposed algorithm cannot close the duality gap, it is proved that it

can yield a lower bound that is at least as tight as the one from Lagrangean decomposition.

Chapter 4

In chapter 4, we propose a generalized Benders decomposition-based branch and bound

algorithm, GBDBAB, to solve two-stage convex mixed-binary nonlinear stochastic programs

with mixed-binary variables in both first and second-stage decisions. In order to construct

the convex hull of the MINLP subproblem for each scenario in closed-form, we first represent

each MINLP subproblem as a generalized disjunctive program (GDP) in conjunctive normal

form (CNF). Second, we apply basic steps to convert the CNF of the MINLP subproblem

into disjunctive normal form (DNF) to obtain the convex hull of the MINLP subproblem. We

prove that GBD is able to converge for the problems with pure binary variables given that the
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convex hull of each subproblem is constructed in closed-form. However, for problems with

mixed-binary first and second-stage variables, we propose an algorithm, GBDBAB, where we

may have to branch and bound on the continuous first-stage variables to obtain an optimal

solution. We prove that the algorithm GBDBAB can converge to ϵ-optimality in a finite

number of steps. Since constructing the convex hull can be expensive, we propose a sequential

convexification scheme that progressively applies basic steps to the CNF. Computational

results on a problem with quadratic constraints, a constrained layout problem, and a planning

problem, demonstrate the effectiveness of the algorithm.

Chapter 5

In chapter 5, we propose a generalized Benders decomposition-based branch and cut

algorithm for solving two-stage stochastic mixed-integer nonlinear programs (SMINLPs) with

mixed binary first and second stage variables. At a high level, the proposed decomposition

algorithm performs spatial branch and bound search on the first stage variables. Each node

in the branch and bound search is solved with a Benders-like decomposition algorithm where

both Lagrangean cuts and Benders cuts are included in the Benders master problem. The

Lagrangean cuts are derived from Lagrangean decomposition. The Benders cuts are derived

from the Benders subproblems, which are convexified by cutting planes, such as rank-one lift-

and-project cuts. We prove that the proposed algorithm converges in the limit. We apply

the proposed algorithm to a stochastic pooling problem, a crude selection problem, and

a storage design problem. The performance of the proposed algorithm is compared with a

Lagrangean decomposition-based branch and bound algorithm and solving the corresponding

deterministic equivalent with the solvers including BARON, ANTIGONE, and SCIP.

Chapter 6

In chapter 6, we propose a sample average approximation-based outer-approximation

algorithm (SAAOA) that can address nonconvex two-stage stochastic programs (SP) with

any continuous or discrete probability distributions. Previous work has considered this ap-
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proach for convex two-stage SP (Wei and Realff, 2004). The SAAOA algorithm does inter-

nal sampling within a nonconvex outer-approximation algorithm where we iterate between

a mixed-integer linear programming (MILP) master problem and a nonconvex nonlinear

programming (NLP) subproblem. We prove that the optimal solutions and optimal value

obtained by the SAAOA algorithm converge to the optimal solutions and the optimal value

of the true SP problem as the sample size goes to infinity. The convergence rate is also given

to estimate the sample size. Since the theoretical sample size estimate is too conservative

in practice, we propose an SAAOA algorithm with confidence intervals for the upper bound

and the lower bound at each iteration of the SAAOA algorithm. Two policies are proposed

to update the sample sizes dynamically within the SAAOA algorithm with confidence in-

tervals. The proposed algorithm works well for the special case of pure binary first stage

variables and continuous stage two variables since in this case the nonconvex NLPs can be

solved for each scenario independently. The proposed algorithm is tested with a stochastic

pooling problem and is shown to outperform the external sampling approach where large

scale MINLPs need to be solved.

Chapter 7

In chapter 7, we study shale gas pad development under natural gas price uncertainty. We

optimize the sequence of operations, gas curtailment and storage on a single pad to maximize

the net present value (NPV). The optimization problem is formulated as a mixed-integer

linear programming (MILP) model, which is similar to the one proposed by Ondeck et al.

Ondeck et al. (2019). We investigate how natural gas price uncertainty affects the operation

strategy in the pad development. Both two-stage and multi-stage stochastic programming

are used as the mathematical framework to hedge against uncertainty. Our case study shows

that there is value in using stochastic programming when the price variance is high. However,

when the variance of the price is low, solving the stochastic programming problems does not

create additional value compared with solving the deterministic problem.
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Chapter 8

Chapter 8 is focused on generation transmission expansion planning of power systems.

With the increasing penetration of renewable generating units, especially in remote areas

not well connected with load demand, there is growing interest to co-optimize generation

and transmission expansion planning (GTEP) in power systems. Due to the volatility in

renewable generation, a planner needs to include the operating decisions into the planning

model to guarantee feasibility. However, solving the GTEP problem with hourly operating

decisions throughout the planning horizon is computationally intractable. Therefore, we

propose several spatial and temporal simplifications to the problem. Built on the generation

expansion planning (GEP) formulation of Lara et al. (2018), we propose a mixed-integer

linear programming formulation for the GTEP problem. Three different formulations, i.e.,

a big-M formulation, a hull formulation, and an alternative big-M formulation, are reported

for transmission expansion. We theoretically compare the tightness of the LP relaxations

of the three formulations. The proposed MILP GTEP model typically involves millions or

tens of millions of variables, which makes the model not directly solvable by the commercial

solvers. To address this computational challenge, we propose a nested Benders decomposition

algorithm and a tailored Benders decomposition algorithm that exploit the structure of the

GTEP problem. Using a case study from Electric Reliability Council of Texas (ERCOT),

we are able to show that the proposed tailored Benders decomposition outperforms the

nested Benders decomposition. The coordination in the optimal generation and transmission

expansion decisions from the ERCOT study implies that there is additional value in solving

GEP and TEP simultaneously.

Chapter 9

Capacity expansion planning (CEP) of power systems determines the optimal future

generation mix and/or transmission lines. Due to the increasing penetration of renewables,

CEP has to capture the hourly variations of renewable generator outputs and load demand.

Since CEP problems typically involve planning horizons of several years, solving the fullspace
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models where the operating decisions corresponding to all the days is intractable. Therefore,

some “representative days” are selected as a surrogate to the fullspace model. We present an

input-based and a cost-based approach in combination with the k-means and the k-medoids

clustering algorithms for representative day selection. The mathematical properties of the

proposed algorithms are analyzed, including an approach to calculate the “optimality gap” of

the investment decisions obtained from the representative day model to the fullspace model,

and the relationship between the clustering error and the optimality gap. To capture the

extreme events, two novel approaches, i.e., a “load shedding cost” approach and a “highest

cost” approach, are proposed to identify the “extreme days”. We conclude with a case study

based on the Electric Reliability Council of Texas (ERCOT) region, which compares the

different approaches and the effects of adding the extreme days.

Chapter 10

Chapter 10 provides a critical review of the work in this thesis, along with a summary of

its contributions and suggestions for future work.
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Chapter 2

A Review of Stochastic Programming

Methods for Optimization of Process

Systems under Uncertainty

2.1 Two-stage stochastic programming

Two-stage stochastic programming is a special case of stochastic programming. In this

section, we describe the mathematical formulations, algorithms and illustrative examples for

two-stage stochastic programming.

2.1.1 Two-stage stochastic mixed integer linear programs

For simplicity of presentation, we fist consider stochastic MILP problems.

2.1.1.1 Mathematical formulation

In stochastic programming, it is assumed that the probability distributions of the un-

certain parameters are known a priori. The uncertainties are usually characterized by some

discrete realizations of the uncertain parameters as an approximation to the real probability
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distribution. For example, the realizations of the demand for a product can have three dif-

ferent values which represent high, medium, and low demand, respectively. Each realization

is defined as a scenario. The objective of stochastic programming is to optimize the expected

value of an objective function (e.g., the expected cost) over all the scenarios.

Figure 2.1: Two-stage problem: conceptual representation (left); scenario tree (right) where x
represents the first stage decisions, yω represents the stage two decisions for scenario ω. τω, hω
represent the probability and the uncertain right hand side of scenario ω, respectively.

A special case of stochastic programming is two-stage stochastic programming (Figure

2.1). Specifically, stage one decisions are made ‘here and now’ at the beginning of the

period, and are then followed by the resolution of uncertainty. Stage two decisions, or

recourse decisions, are taken ‘wait and see’ as corrective action at the end of the period. One

common type of two-stage stochastic program is mixed-integer linear program presented in

(2.1). Ω is the set of scenarios. τω is the probability of scenario ω. x represent the first-

stage decisions. yω represent the second-stage decisions in scenario ω. The uncertainties are

reflected in the matrices (vectors), Wω, hω, Tω shown in Equation (2.1). In the literature,

Wω is called the “recourse matrix”; Tω is called the “technology matrix”. On the right of

Figure 2.1, an example of a “scenario tree” that has three scenarios with uncertain hω is

used to represent the realizations of uncertainties on the right hand side.

For problem (2.1), both the first and the second stage decisions are mixed-binary. Let

I = {1, 2, · · · , n} be the index set of all the first stage variables. I1 ⊆ I is the subset for

indices of the binary first stage variables. Let J = {1, 2, · · · ,m} be the index set of all

the second stage variables. J1 ⊆ J is the subset for the indices of the binary second stage
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variables. xub is a vector that represents the upper bound of all the first stage variables. yubω
is a vector that represents the upper bound of all the second stage variables. The problem

described by (2.1) is a two-stage stochastic mixed-integer linear program (TS-MILP). If both

J1 and I1 are empty sets, (2.1) reduces to a two-stage stochastic linear programming problem

(TS-LP). (2.1) is often referred to as the deterministic equivalent or the extensive form of

the two-stage stochastic program since (2.1) can be solved in the same way as if we were

solving a deterministic optimization problem.

min c⊤x+
∑
ω∈Ω

τωd
⊤
ω yω

s.t. Ax ≤ b

Wωyω ≤ hω − Tωx ∀ω ∈ Ω

x ∈ X, X =
{
x : xi ∈ {0, 1},∀i ∈ I1, 0 ≤ x ≤ xub

}
yω ∈ Yω ∀ω ∈ Ω, Yω =

{
yω : yωj ∈ {0, 1},∀j ∈ J1, 0 ≤ yω ≤ yubω

}
(2.1)

2.1.1.2 Process network problem

To show how two-stage stochastic programming can be applied to a process systems en-

gineering problem, we provide a process network design problem under demand uncertainty.

Through this example, we also aim to show that the solutions obtained from a stochastic pro-

gram can be different from solving a deterministic problem where the uncertain parameters

are fixed at their expected value.

Consider producing a chemical C which can be manufactured with either process 2 or

process 3, both of which use chemical B as raw material. B can be purchased from another

company and/or manufactured with process 1 which uses A as a raw material. The demand

for chemical C, denoted as d, is the source of uncertainty. The superstructure of the process

network is shown in Figure 2.2, which outlines all the possible alternatives to install this

chemical plant. The alternatives include (1) All three processes are selected. (2) A true

subset of the three processes are selected. (3) None of the three processes are selected.

Following the time realization framework described in Figure 2.1, the problem is for-

mulated as a two-stage stochastic program. The chemical plant has to be first installed
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Figure 2.2: Superstructure for the process network problem.

before the demand for the product is realized and the plant starts production. Therefore,

the first-stage decisions are investment decisions on the three processes, which include binary

variables Yi to denote whether process i is selected and continuous variables CAPi to denote

the capacity of process i for i = 1, 2, 3. We assume that after the plant is installed, the de-

mand for the product is realized. Based on the realizations of the demand, different recourse

actions on how to operate the installed plant can be taken, i.e., the second-stage decisions

are the material flows. We denote the scenarios as ω and explicitly state the dependency of

the second-stage decision on them by presenting them as functions of ω.

Variables PA(ω), PB(ω) represent the purchase amount of chemical A and B, respec-

tively. Other material flows for chemical B and C are shown in the superstructure in Figure

2.2. The MILP formulation is shown as follows.

max −
(
10Y1 + 15Y2 + 20Y3 + CAP1 + 1.5CAP2 + 2CAP3

)
+ E

d(ω)∼P

[
− 4.5PA(ω)− 9.5PB(ω)− 0.5PA(ω)− 0.5B2(ω)− 0.5B3(ω) + 25C2(ω) + 25C3(ω)

]
(2.2a)

s.t. CAP1 ≤ U · Y1, CAP2 ≤ U · Y2, CAP3 ≤ U · Y3, Y2 + Y3 ≤ 1 (2.2b)

PA(ω) ≤ CAP1, B2(ω) ≤ CAP2, B3(ω) ≤ CAP3 ∀ω (2.2c)

B1(ω) = 0.9PA(ω), C2(ω) = 0.82B2(ω), C3(ω) = 0.95B3(ω) ∀ω (2.2d)

B1(ω) + PB(ω) = B2(ω) +B3(ω) ∀ω (2.2e)
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C2(ω) + C3(ω) ≤ d(ω) ∀ω (2.2f)

Yi ∈ {0, 1} ∀i ∈ {1, 2, 3} (2.2g)

The objective is maximizing the expected profit, which includes the expected income

obtained from selling the final product (25C2(ω) + 25C3(ω)), minus the total cost that

includes the fixed (10Y1+15Y2+20Y3) and variable (CAP1+1.5CAP2+2CAP3) investment

costs in stage one, the expected cost to purchase chemical A and B in different scenarios

(4.5PA(ω)+9.5PB(ω)), the expected operating cost (0.5PA(ω)+0.5B2(ω)+0.5B3), which

is proportional to the amount of input to each process, i.e., PA(ω), B2(ω), B3(ω).

Suppose we have a 3-scenario problem where the the demands d(ω) take values d(ω1) = 8,

d(ω2) = 10, d(ω3) = 12, with probabilities τ(ω1) = 0.25, τ(ω2) = 0.5, τ(ω3) = 0.25,

respectively. The optimal first-stage decisions are to select processes 1 and 3 with capacities

11.70 and 12.63, respectively, which is shown in Figure 2.3(I). Note that the first-stage

decisions are made “here-and-now” and thus are the same for all three scenarios. However,

different second-stage decisions are taken for different scenarios as shown in Figure 2.3(II).

When the demand is low d(ω1) = 8, processes 1 and 3 are not operating at their full capacity.

For d(ω2) = 10, process 1 is operating at full capacity but process 3 is not. For d(ω3) = 12,

both installed processes are operating at full capacity. The chemical A produced by process

1 is not able to satisfy the requirement of process 3. Therefore, additional chemical B needs

to be purchased from other vendors when the demand is high. The expected profit of the

stochastic program is 117.22. This optimal value of the stochastic program is called the value

of the recourse problem (RP) in the literature (Birge and Louveaux, 2011) (RP=117.22).

Other than using stochastic programming, an alternative approach is to solve the deter-

ministic model where the demand is fixed at its mean value, i.e., set d = 10. The optimal

solution for this deterministic model is selecting processes 1 and 3 with capacities being 11.70,

and 10.52, respectively as shown in Figure 2.3(III). The only difference from the stochastic

solution is that the capacity of process 3 becomes lower. The reason is that the deterministic

model is “unaware” of the high demand scenario and therefore makes the capacity of process
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Figure 2.3: (I) represents the optimal first stage decisions of the two stage stochastic program.
(II) describes the optimal stage one decisions and the stage two decisions under scenarios ω1, ω2,
ω3. (III) represents the optimal design decisions of the deterministic model.

3 to be just enough to satisfy d = 10. However, if we use the deterministic solution for

d = 12, it will result in lost sales. We can fix the first stage solutions to the optimal solu-

tions and evaluate how it performs in the three scenarios by solving each stage two problem

separately. An expected profit of 114.20 is obtained. This value is called the expected result

of using the expected solution (EEV).
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One quantitative metric to evaluate the additional value created by stochastic program-

ming compared with solving the deterministic model at mean value is a concept called the

value of the stochastic solution (VSS) (Birge and Louveaux, 2011). If the problem is a

maximization problem, VSS is defined as,

V SS = RP − EEV (2.3)

Therefore, the value of the stochastic solution is 117.22 − 114.20 = 3.02 for the process

network problem.

2.1.1.3 Classical decomposition algorithms

One option to solve the stochastic MILP problems described by (2.1) is to solve the deter-

ministic equivalent problem (2.1) directly using commercial solvers like CPLEX , GUROBI.

However, solving (2.1) directly can be prohibitive when the number of scenarios is large

because the computational time can grow exponentially with the number of scenarios. Due

to the difficulties in solving the deterministic equivalent problem, decomposition algorithms

such as Lagrangean decomposition (Guignard, 2003; Oliveira et al., 2013) and Benders de-

composition (Laporte and Louveaux, 1993; Van Slyke and Wets, 1969) can be applied to

solve problem (2.1) more effectively.

A high-level view of the ideas behind Benders decomposition and Lagrangean decomposi-

tion is shown in Figure 2.4. The figure shows the structures of the constraint matrices where

the columns correspond to the variables and the rows correspond to the constraints. Both

decomposition algorithms take advantage of the “almost” block-diagonal structure shown in

Figure 2.4.

Benders decomposition (Laporte and Louveaux, 1993; Van Slyke and Wets, 1969), also

referred to as L-shaped method in stochastic programming literature, views the first stage

variables as “complicating variables” in the sense that if the first stage variables x are fixed

the rest of problem (2.1) has a block-diagonal structure that can be decomposed by scenario

and solved independently. A schematic view of the “complicating variable” idea behind

Benders decomposition is shown in Figure 2.4. Mathematically, the Benders decomposition
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algorithm starts by defining a master problem with only the first-stage decisions. After the

master problem is solved, the first-stage decisions are fixed at the optimal solution of the

master problem. Then the deterministic equivalent problem can be decomposed into |Ω|

subproblems where |Ω| denotes the cardinality of the set of scenarios. The subproblems can

be solved in parallel and valid inequalities of x can be derived and added to the Benders

master problem. The master problem is solved again and the algorithm iterates until the

upper bound and the lower bound converge. The lower bound is the optimal value of the

Benders master problem. The upper bound is obtained by updating the best feasible solution.

Benders decomposition is able to converge in a finite number of steps when the second-stage

decisions are all continuous and the second stage constraints are linear.

Figure 2.4: Schematic view of Benders decomposition (left; variables x are “complicating vari-
ables”), Lagrangean decomposition (right; the NACs are “complicating constraints”).

Lagrangean decomposition reformulates problem (2.1) by making a copy of the first-stage

decisions for each scenario and adding non-anticipativity constraints (NACs) to ensure that

the first-stage decisions made for all the scenarios are the same. For example, in a three-

scenario problem, three copies of the x variables, xω1 , xω2 , xω3 , are made. NACs including

xω1 = xω2 , xω1 = xω3 are added to guarantee the first-stage decisions are the same for all three

scenarios. A schematic view of Lagrangean decomposition is also shown in Figure 2.4. After

this reformulation, the NACs are then dualized so that the deterministic equivalent problem

is decomposed into scenarios that can be solved in parallel. The Lagrangean multipliers can
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be updated using the subgradient method or the cutting plane method (Oliveira et al., 2013).

A lower bound can be obtained at each iteration of Lagrangean decomposition which is the

summation of the optimal value of the Lagrangean subproblems. However, the upper bound

procedure of Lagrangean decomposition is in general a heuristic. Therefore, Lagrangean

decomposition is not guaranteed to converge even for the problems with continuous recourse.

There is usually a “duality gap” between the upper and the lower bound.

Although neither Benders nor Lagrangean decomposition is able to solve (2.1) with in-

teger recourse variables to optimality with their classical form, recent developments have

been made that can solve (2.1) to optimality by extending these two methods. A discussion

of these recent advances can be too technical and we refer interested readers to the review

papers, Torres et al. (2019); Küçükyavuz and Sen (2017), for details.

As for software implementations, the CPLEX solver has an implementation of the Ben-

ders decomposition algorithm Bonami et al. (2020a), which can be accessed through most

modeling platforms, such as GAMS, C, C++, Pyomo (Hart et al., 2017), Python, etc. DSP

(Kim and Zavala, 2018) is a Lagrangean decomposition-based solver for two-stage stochas-

tic mixed-integer programs, which provides interfaces that can read models expressed in C

code and the SMPS format (Gassmann and Schweitzer, 2001). DSP can also read models

expressed in JuMP (Lubin and Dunning, 2015).

2.1.2 Two-stage stochastic mixed-integer nonlinear programs

Most SP algorithms and applications investigated by the Operations Research (OR)

community are (mixed-integer) linear problems as in Equation (2.1). However, chemical

engineering applications can involve significant nonlinearities. Examples include the mass

balance equations for the splitters and mixers in a flowsheet, the MESH equations in dis-

tillation column design, the Arrhenius equation in reactor modeling. Therefore, developing

stochastic programming models and algorithms for (mixed-integer) nonlinear problems is

of great interest to chemical engineers doing PSE research. As a matter of fact, the PSE
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community has been the main driver of developing algorithms to efficiently solve stochastic

MINLPs (Li et al., 2011c; Cao and Zavala, 2019; Li and Grossmann, 2019a).

2.1.2.1 Mathematical formulation

The mathematical formulation of a general two-stage stochastic mixed-integer nonlinear

program is shown in (2.4).

min f0(x) +
∑
ω∈Ω

τωf1(x, yω; θω)

s.t. g0(x) ≤ 0

g1(x, yω; θω) ≤ 0 ∀ω ∈ Ω

x ∈ X, X =
{
x : xi ∈ {0, 1},∀i ∈ I1, 0 ≤ x ≤ xub

}
yω ∈ Yω, ∀ω ∈ Ω, Yω =

{
yω : yωj ∈ {0, 1}, ∀j ∈ J1, 0 ≤ yω ≤ yubω

}
(2.4)

Problem (2.4) is an extension of (2.1) by considering nonlinear objective and nonlinear

constraints. Functions f0, f1, g0, g1 in (2.4) are nonlinear functions. f1 and g1 are functions

of the first-stage decisions x, the second-stage decisions yω and the uncertain parameters θω
for scenario ω. Due to the nonlinear objective and the nonlinear constraints, (2.4) is more

difficult to solve than (2.1). We will review the algorithms to solve (2.4) in subsection 2.1.2.3.

2.1.2.2 Stochastic pooling problem example

We provide an example of the stochastic pooling problem presented in Li and Grossmann

(2019a). Pooling problem arises in applications include wastewater treatment (Karuppiah

and Grossmann, 2008), crude oil refinery planning (Yang and Barton, 2016), and natural

gas networks planning (Li et al., 2011b). Solving the pooling problem to optimality is of

great interest due to potential savings in the order of tens of millions of dollars. In a pooling

problem, flow streams from different sources are mixed in some intermediate tanks (pools)

and blended again in the terminal points. At the pools and the terminals, the quality of a
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mixture is given as the weighted average of the qualities of the flow streams that go into

them.

The pooling problem involves both design decisions and operating decisions. The design

decisions are which feed i and which pool l to select from the superstructure shown in Figure

2.5(A), and the sizing decisions for the selected feed tanks and pools. The second-stage

decisions are the mass flow rates of different streams, and the split fractions. The operator

has to operate the feeds and the pools to satisfy the quality specifications at the product

terminals j (see Figure 2.5(A) ). In this problem, we also consider purchasing the feeds using

three different types of contracts, i.e., fixed price, discount after a certain amount, and bulk

discount.

Before the design decisions are made, several sources of uncertainties can arise at the

operating level including quality of the feed streams, prices of the feeds and products, de-

mands for the products. For this illustrative example, we only consider uncertainty in the

demands of the products. The demands for the three products can take low, medium, and

high values and are assumed to vary simultaneously, i.e., there are three scenarios in this

problem with probabilities 0.3, 0.4, 0.3, respectively. The actual delivered products have

to be less than or equal to the demands. The objective is to maximize the expected total

profit. The mathematical formulation of this problem has been reported in Li and Gross-

mann (2019a). To make this chapter self-contained, we include the mathematical formulation

in the supplementary material.

The deterministic equivalent of the stochastic pooling problem with three scenarios is

solved to optimality. The optimal first-stage decisions are to select feeds i1, i2, i5, pools l1,

and l4. The optimal capacities of the selected feeds and pools are shown in Figure 2.5(B).

Recall that in two-stage stochastic programming, after the first-stage decisions are made,

the uncertain demands are realized. In different scenarios, different recourse actions can be

taken depending on the realization of the demand. The mass flow rates of all the streams

in the high and the low demand scenarios can be seen in Figure 2.5(C). When the demand

is low, the feed tanks and the pools are not operating at their full capacities. When the
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Figure 2.5: Stochastic pooling problem. (A) is the superstructure of the pooling problem. (B)
is the optimal first-stage decisions for the pooling example. (C) represents the optimal mass flow
rates in the low-demand scenario (left) and the high-demand scenario (right).

demand is high, the feed tanks and pools are operating at their full capacities. Recall that

the production of each product can be less than or equal to the demand. In the high-demand

scenario, the production of product j1 is even lower than that in the low-demand scenario.

However, the productions of j2 and j3 are higher in the high-demand scenario than those in

the low-demand scenario. The results also indicate that the optimal capacity is not enough

to meet the high demand. The reason is that if one were to fully satisfy the high demand,

a great part of the capacity would be left idle in the low-demand scenario. On the other

hand, if the capacity were designed to be just enough to satisfy the low demand, there would

be significant lost sales in the high-demand and the medium-demand scenarios. Stochastic
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programming is a “risk-neutral” approach to achieve the highest expected profit, which bal-

ances the trade-off between lost sales and idle capacity.

2.1.2.3 Algorithms for solving stochastic MINLP

As we discussed in subsection 2.1.1.3, the classical decomposition algorithms, such as

Benders decomposition and Lagrangean decomposition, cannot be readily applied to solve

stochastic MINLPs. The challenges to solve stochastic MINLP problems are two-fold: the

nonlinear functions in stage two can be nonconvex; second, some of the stage two variables

need to satisfy integrality constraints, which also makes the stage two problem nonconvex.

Due to its wide application in process systems, researchers from the PSE community have

been developing algorithms for solving problem (2.4). Most of the algorithms are based on

the classical decomposition algorithms including Lagrangean decomposition, and general-

ized Benders decomposition (GBD) (Geoffrion, 1972) which is an extension of the Benders

decomposition (BD) algorithm to convex nonlinear problems.

For convex stochastic MINLP, where the nonlinear feasible region of the continuous re-

laxation is convex, Li and Grossmann (2018b) propose an improved L-shaped method where

the Benders subproblems are convexified by rank-one lift-and-project, and Lagrangean cuts

are added to tighten the Benders master problem. Li and Grossmann (2019b) further pro-

pose a generalized Benders decomposition-based branch and bound algorithm with finite

ϵ-convergence for convex stochastic MINLPs with mixed-binary first and second stage vari-

ables.

For nonconvex stochastic MINLP, where the nonlinear functions in the stochastic MINLPs

can be nonconvex, the pioneering work is done by Li et al. (2011c) who propose a nonconvex

generalized Benders decomposition algorithm, which can solve two-stage nonconvex MINLPs

with pure binary variables in a finite number of iterations. For the more general case where

the first stage variables can be mixed-integer, Ogbe and Li (2018) propose a joint decompo-

sition algorithm. A perfect information-based branch and bound algorithm that solves non-
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separable nonconvex stochastic MINLPs to global optimality is proposed by Cao and Zavala

(2019). Kannan (2018) propose a modified Lagrangean relaxation-based (MLR) branch and

bound algorithm, and they prove that MLR has finite ϵ-convergence. A generalized Ben-

ders decomposition-based branch and cut algorithm for nonconvex stochastic MINLPs with

mixed-binary first and second stage variables is proposed by Li and Grossmann (2019a). Li

et al. (2020a) propose a sample average approximation based outer approximation algorithm

for stochastic MINLPs with continuous probability distributions.

2.2 Multistage stochastic programming

In two-stage stochastic programming, it is assumed that the uncertainties are realized

only once after the first-stage decisions are made. However, most practical problems involve

a sequence of decisions reacting to outcomes that evolve over time. A generalization of

two-stage stochastic programming to the sequential realization of uncertainties is called

“multistage stochastic programming”. The time horizon is discretized into “stages” where

each stage has the realizations of uncertainties at the current stage.

Figure 2.6: Illustration of a scenario tree with 3 stages, 4 scenarios, 7 nodes.

A scenario tree similar to Figure 2.1 for a multistage problem is shown in Figure 2.6.

The scenario tree has 3 stages. In stage two, there are two different realizations of uncertain

parameters and therefore two nodes. Each of the two nodes can have different stage two

decisions depending on the realization of information until stage two. After the stage two

decisions are made, there are two different realizations of uncertain parameters at stage
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three for each node in stage two. Therefore, there are four nodes in total at stage three. The

stage three decisions depend both on stage one, stage two decisions and the history of the

uncertain parameters. A scenario in the multistage setting is a “path” from the root node

of the scenario tree to the leaf node of the scenario tree, which corresponds to a full history

of realization of uncertainty parameters until stage three. It is easy to see that there are 4

scenarios in Figure 2.6, represented using ω1, ω2, ω3, ω4. The 7 nodes in the scenario tree

are numbered sequentially with notation n1-n7.

It is worth pointing out that in some PSE applications, there are two types of decisions,

i.e., the strategic decisions, e.g., the installation of chemical processes and the operational

decisions, e.g., material flow rates. The uncertainties can arise from both strategic and oper-

ational decision-making processes. A scenario tree that combines the two types of decisions

and uncertainties can be found in Escudero and Monge (2018).

2.2.1 Mathematical formulation

The general multistage stochastic programming formulation is given as follows (Birge

and Louveaux, 2011):

min c⊤1 x1 + Eξ[2,H]|ξ[1,1] [min c⊤2 (ξ2)x2(ξ2) + ...+ Eξ[H:H]|ξ[1:H−1]
[min c⊤H(ξH)xH(ξH)]] (2.5a)

s.t. W1x1 ≤ h1 (2.5b)

T2(ξ2)x1 +W2x2(ξ2) ≤ h2(ξ2) (2.5c)

... (2.5d)

TH(ξH)xH−1(ξH−1) +WHxH(ξH) ≤ hH(ξH) (2.5e)

x1 ∈ X1;xt(ξt) ∈ Xt, t = 2, ..., H; (2.5f)

where we have H stages. For simplicity, we assume all the constraints and the objective

function are linear. Suppose the data (ξ2, . . . , ξH) is uncertain and evolves according to a

known stochastic process. We use ξt to denote the random data vector in stage t and ξt to

denote a specific realization. The parameters ct, Tt, Wt, ht are functions of ξt. Similarly, we

use ξ[t,t′] to denote the sequence of random data vectors corresponding to stages t through
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t′ and ξ[t,t′] to denote a specific realization of this sequence of random vectors. The decision

dynamics is as follows: in stage t, we first observe the data realization ξt and then take an

action xt depending on the previous stage decision xt−1 and the observed data ξt to optimize

the expected future cost. Eξ[t,H]|ξ[1,t−1]
denotes the expectation operation in stage t with

respect to the conditional distribution of ξ[t,H] given realization ξ[1,t−1] in stage t − 1. The

constraints at stage t are defined for all the possible realizations of the stochastic process

(ξ2, . . . , ξt) until stage t. Set Xt denotes the domain of variables xt, which can be continuous

or (mixed)-integer. Equation (2.5) can represent the deterministic equivalent of any multi-

stage mixed-integer linear stochastic programs with discrete or continuous distributions.

For problems with discrete distributions, we can use the following node-based formula-

tion,

min
xn

{∑
n∈N

τnc
⊤
nxn : Tnxa(n) +Wnxn ≤ hn, xn ∈ Xn,∀n ∈ N

}
(2.6)

where set N denotes the set of nodes in the scenario tree. The decisions at node n is denoted

as xn. We use a(n) to denote the ancestor nodes of node n. For example, in the scenario

tree shown in Figure 2.6, the ancestor nodes of n4 are n2 and n1, i.e., a(n4) = {n2, n1}. τn is

the probability of node n. The probability of a non-leaf node equals to the summation of the

probabilities of its child nodes. For example, in Figure 2.6, τn2 = τn4 + τn5 . The decisions at

a given node n, xn, is dependent on the decision made at its ancestor nodes xa(n) and the

realizations of the uncertain parameters until node n, which is reflected in Tn, Wn, and hn.

An alternative way to write the deterministic equivalent of the node-based formulation

is the following recursive formulations where set C(n) denotes all the child nodes of a node

n. Parameter qnm denotes the transition probability from node n to its child node m. For

example, in Figure 2.6, if nodes n4, n5 have equal probability, the transition probabilities

from node n2 to n4 and n5 are both 0.5.

min
x∈X1

c⊤1 x1 + ∑
m∈C(1)

q1mQm(x1) : W1x1 ≤ h1

 (2.7)
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where for each node n ∈ N\{1}, the cost-to-go function Qn is defined as

Qn(xa(n)) =

 min
xn∈Xn

c⊤nxn +
∑

m∈C(n)

qnmQm(xn) : Wnxn ≤ hn − Tnxa(n)

 (2.8)

For the terminal condition t = H, the set C(n) is be empty.

2.2.2 Multistage process network problem

To provide an illustrative example for multistage stochastic programming, the two-stage

process network design problem in subsection 2.1.1.2 is extended to a three-stage problem.

Stage one decisions are the same as those in 2.1.1.2, i.e., the selection of the three processes

and the capacities of the selected processes. After the design decisions at stage one are made,

the demand in stage two are realized. Besides the operating decisions on the installed plant,

the decisions at stage two include capacity expansion decisions on the installed processes.

We assume that the expanded capacity will be available at stage three. After the stage two

decisions are made, the demand at stage three is realized. The stage three decisions only

include the operating decisions, i.e., the material flow rates. The objective is to maximize

the expected total profit over all the scenarios.

The scenario tree is assumed to have two realizations per stage, which has the same

structure as the scenario tree in Figure 2.6. We use dn to denote the realization of demand

at node n. The demand at stage two is assumed be take two different values, dn2 = 8,

dn3 = 12. The two child nodes, n4 and n5, of node n2, are assumed to take values dn5 = 8,

dn6 = 10, whereas, the two child nodes, n6 and n7, of node n3, are assumed to take higher

values, i.e., dn6 = 12, dn7 = 14. The four scenarios are assumed to have equal probabilities.

The optimal solutions of multistage stochastic process network design problem corre-

sponding to nodes n2, . . . , n7 are shown in Figure 2.7. The material flow rates at each node

are shown in red. The installed capacities at the previous stage are shown in blue italics. At

stage one, process 1 and 3 are selected and can be used in stage two. At stage two, when

the demand is low, i.e., dn2 = 8, processes 1 and 3 are not operating at full capacity. When

the demand is high i.e., dn3 = 12, both process 1 and process 3 are operating at full capac-
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Figure 2.7: Optimal solutions of the stochastic process network design problem corresponding to
nodes n2, . . . , n7. The material flow rates at each node are shown in red. The installed capacities
are shown in blue italics.

ity. Process 3 is expanded at stage two when the high demand is observed. The expanded

capacity can be used in stage three at nodes n6 and n7. The stage three decisions are the

material flow rates of different chemicals. At node n4, n5, and n6, the installed process 1

and 3 are able to satisfy the demand. At node n7, due to the limited capacity of process 1,

additional chemical B needs to be purchased.
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2.2.3 Algorithms for multistage stochastic (mixed-integer) linear

programs

The number of scenarios of a multistage stochastic program grows exponentially with

the number of stages. For example, suppose we have 3 different realizations of uncertain

parameters at each stage, the number of scenarios for a problem with H stages is 3H−1.

Therefore, special decomposition algorithms are usually applied to solve multistage stochastic

programming problems. Most of the algorithms for multistage stochastic programs are based

on classical Benders and Lagrangean decomposition algorithms.

An extension of Benders decomposition to multistage stochastic linear programs is called

“nested Benders decomposition” (Birge, 1985b). The idea is to apply Benders decomposition

recursively to the multistage problem. Nested Benders decomposition has a “forward pass”

step and a “backward pass” step. In the forward pass step, feasible solutions are generated

by sequentially solving the root node of the scenario tree all the way to the leaf nodes of

the scenario tree. Problem (2.8) for node n is solved “locally” in the forward pass with

the value of xa(n) fixed from the solution of its parent node and the expected cost to go

function Qm(xn) approximated by some cutting planes generated from the backward pass.

In the backward pass, the problems are solved sequentially from the leaf nodes to the root

node. Cutting planes are generated in the backward pass to refine the approximations for

the cost-to-go functions Qm(xn).

Although the nested Benders decomposition algorithm can decompose the fullspace prob-

lem by nodes, it still has to solve an exponential number of leaf nodes. An algorithm that

avoids solving an exponential number of nodes is the stochastic dual dynamical program-

ming (SDDP) algorithm (Pereira and Pinto, 1991). One caveat to apply SDDP is that the

underlying stochastic process has to be stagewise-independent, i.e., the realizations of ξt do

not dependent on the history ξ[1,t−1]. The idea of SDDP is that the cutting plane can be

shared among the nodes under the stagewise-independence assumption and thus avoiding

solving an exponential number of nodes. An extension of SDDP that can solve multistage

stochastic mixed-integer linear program is the stochastic dynamic dual integer programming
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(SDDiP) algorithm proposed by Zou et al. (2019). Besides the standard Benders cuts, the

authors propose to use other families of cutting planes including Lagrangean cuts, integer

cuts, and strengthened Benders cuts. Applications of SDDiP have been reported in Escudero

et al. (2020); Zou et al. (2018b); Lara et al. (2019).

Lagrangean decomposition can be adapted to solve multistage stochastic programs in a

similar way to two-stage by duplicating the variables such that each scenario has its own copy

of variables at each stage and adding nonanticipativity constraints (NACs). The scenario

tree in Figure 2.6 can be expressed in an alternative form shown in Figure 2.8 (Ruszczyński,

1997). The node in the first stage in Figure 2.6 is duplicated for each scenario ω and NACs

(shown in red in Figure 2.8) are added to guarantee that the first stages decisions are the

same for all the scenarios. Each node in stage two in Figure 2.6 is duplicated once and NACs

are added to guarantee that the scenarios with the same parent node in Figure 2.6 have the

same second-stage decisions. With the alternative scenario tree, Lagrangean decomposition

dualizes the NACs and solves each scenario independently.

Figure 2.8: An alternative form of the scenario tree with 3 stages, 4 scenarios

One major difference between nested Benders decomposition and Lagrangean decom-

position is that nested Benders decomposition decomposes the fullspace problem by nodes,

whereas Lagrangean decomposition decompose the fullspace problem by scenarios. A discus-

sion of the trade-offs are not within the scope of this thesis and can be found in Torres et al.

(2019). Moreover, a recent review on main types of decomposition algorithms for two-stage

and multistage stochastic mixed integer linear optimization can be found in Escudero et al.

(2017).
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As for software packages for multi-stage stochastic programs, SDDP.jl (Dowson and

Kapelevich, 2020) is an implementation of the SDDP algorithm in Julia that is built on

the JuMP modeling tools (Lubin and Dunning, 2015). MSPPy (Ding et al., 2019) is an

implementation of the SDDP/SDDiP algorithm in Python. PySP (Watson et al., 2012) is

an implementation of the progressive hedging algorithm (Rockafellar and Wets, 1991), an

algorithm that can be seen as an augmented Lagrangean decomposition, in Pyomo (Hart

et al., 2017).

2.3 Multistage stochastic programming under endoge-

nous uncertainty

In the stochastic programming models that we have discussed in the last few sections, the

underlying stochastic processes are independent of the decisions. This type of uncertainty

is called “exogenous” uncertainty. Another type of uncertainty that is decision-dependent

is called “endogenous” uncertainties. There two distinct types of endogenous uncertainties

commonly denoted as Type 1 and Type 2 in the literature (Goel and Grossmann, 2006).

In the case of Type 1 endogenous uncertainties, decisions influence the parameter real-

izations by altering the underlying probability distributions for the uncertain parameters.

A simple example of this may be an oil company’s decision to flood the market in order to

force a competitor out of business. Here the uncertainty is no longer strictly exogenous, as

the decision will make lower oil-price realizations more probable. Type 1 endogenous has

not been widely studied.

In the case of Type 2 endogenous uncertainties, decisions influence the parameter real-

izations by affecting the time at which we observe these realizations. This refers specifically

to technical parameters, such as oilfield size, for which the true values cannot be determined

until a particular investment decision is made. The modeling framework and algorithm for

stochastic programming with Type 2 endogenous uncertainty are first proposed by Goel and

Grossmann (2006). Since then, this approach has been adopted by the PSE community
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to address problems in a wide range of applications including oil and gas field planning

(Goel and Grossmann, 2004), synthesis of process networks (Tarhan and Grossmann, 2008),

pharmaceutical industry (Colvin and Maravelias, 2008; Christian and Cremaschi, 2015), etc.

Figure 2.9: Illustration of the scenario tree of a stochastic programming problem under endogenous
uncertainty with 3 stages, 4 scenarios, 2 uncertain parameters θ1, θ2.

Here, we describe the modeling framework proposed by Goel and Grossmann (2006).

Figure 2.9 shows a scenario tree for a three-stage problem with two endogenous uncertain

parameters, θ1, θ2. Both parameters are assumed to have two realizations, i.e., θ1 ∈ {θ̂L1 , θ̂H1 },

θ2 ∈ {θ̂L2 , θ̂H2 }. We consider the combinations of the two realizations for θ1 and θ2. There are

four scenarios in total with realizations, {θ̂L1 , θ̂L2 }, {θ̂L1 , θ̂H2 }, {θ̂H1 , θ̂L2 }, {θ̂H1 , θ̂H2 }, respectively.

The scenario tree in Figure 2.9 is a scenario-based representation, i.e., the decisions are

duplicated for each scenario and NACs are added. However, the way that the NACs are

added in Figure 2.9 is different than that in Figure 2.8 because the realizations of the

uncertain parameters are decision-dependent. In stage one, since the decisions have not

been made to reveal the values of the uncertain parameters, “initial NACs” are added to

guarantee that the first-stage decisions are the same for all the scenarios. The initial NACs

are represented using solid red lines in Figure 2.9. For stage two and three, the NACs are

added conditionally, depending on whether the corresponding decisions are made in order

to reveal the uncertain parameters. These NACs are called ”conditional NACs”, which are

shown in Figure 2.9 as dashed blue lines.

To provide a concrete example, suppose θ1 and θ2 are the sizes of two undeveloped oil

fields, o1 and o2, respectively, the decisions to reveal the sizes are the drilling of oil field 1
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and 2. We use binary variable bot to denote whether oil field o is drilled at stage t. At t = 1,

since no oil fields have been drilled before t = 1 and no information regarding the size of the

oil fields has been obtained, the decisions for all the four scenarios are the same, i.e., we need

to add the initial NACs. At t = 1, if the operator decides to drill o1, then the realization of

θ1 will be known before stage 2. At stage two, the scenarios with θ1 = θ̂L1 and the scenarios

with θ1 = θ̂H1 can be distinguished. Conditional NACs will only be added for the scenario

pairs (ω1, ω2), and (ω3, ω4). On the other hand, if the operator decides not to drill any oil

fields at t = 1, the four scenarios are still indistinguishable at the beginning of stage two, all

the conditional NACs at stage two have to be enforced.

2.3.1 Mathematical formulation

The mathematical formulation for the multistage stochastic programming problem under

endogenous uncertainty is,

min
∑
ω∈Ω

τω
∑
t∈T

c⊤t,ωxt,ω (2.9a)

s.t.
t∑

t′=1

At′,t,ωxt′,ω ≤ bt,ω ∀t ∈ T , ω ∈ Ω (2.9b)

x1,ω = x1,ω′ , ∀(ω, ω′) ∈ SPF (2.9c)[
Yt,ω,ω′

xt+1,ω = xt+1,ω′

]
∨
[
¬Yt,ω,ω′

]
∀(ω, ω′) ∈ SPN , t ∈ T (2.9d)

Yt,ω,ω′ ⇔ F (x1,ω, . . . , xt,ω) ∀(ω, ω′) ∈ SPN , t ∈ T (2.9e)

xt,ω ∈ Xt, ∀t ∈ T , ω ∈ Ω (2.9f)

Yt,ω,ω′ ∈ {True, False} ∀(ω, ω′) ∈ SPN , t ∈ T (2.9g)

where xt,ω denotes the decisions made at stage t in scenario ω. Yt,ω,ω′ is a boolean variable that

equals to True if the two scenarios ω and ω′ are indistinguishable at stage t. The objective

function (2.9a) is to minimize the expected cost. Equation (2.9b) represents constraints that
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govern decisions xt,ω and link decisions across time periods. The initial NACs are expressed

in equation (2.9c), where set SPF represents the set of scenario pairs to enforce the initial

NACs. The scenario pairs for the initial NACs can be written similar to the NACs in the

exogenous case. Equation (2.9d) represents the conditional NACs where set SPN represents

the scenario pairs that differ in the realization of only one endogenous parameter (Goel

and Grossmann, 2004). If the two scenarios ω and ω′ are indistinguishable at stage t, i.e.,

Yt,ω,ω′ = True, NACs are added for the decisions in the next time period. Otherwise, no

NACs are added. The value of the boolean variable is determined by the decisions made at

and prior to time t, which is expressed in a general form in equation (2.9e). In the oil field

example, the expression F (x1,ω, . . . , xt,ω) is to determine whether a given oil field has been

developed based on the drilling decisions. Equations (2.9f) and (2.9g) specify the domain of

variables xt,ω and Yt,ω,ω′ .

We acknowledge that the mathematical formulation in (2.9) is a succinct form for ease of

explanation. For a more detailed and rigorous formulation, we refer the readers to the paper

by Apap and Grossmann (2017). See also Hellemo et al. (2018) for a nonlinear modelling

approach.

2.3.2 Multistage process network design under endogenous uncer-

tainty

To provide an illustrative example for multistage stochastic programming under endoge-

nous uncertainty, the two-stage process network design problem in subsection 2.1.1.2 is

modified to a three-stage problem where the uncertainty is assumed to come from the yield

of process 1 and the demand is assumed to be deterministic. In practice, process 1 can be

a new technology that has never been installed before. Once process 1 is installed, its yield

will be realized in the next stage. Therefore, the time of realization is decision-dependent.

We assume that there are two realizations of the yield of process 1, i.e., two scenarios, being

0.9, and 0.8 with equal probability, which is denoted as Yield(ω1) = 0.9, Yield(ω2) = 0.8,

τ(ω1) = 0.5, τ(ω2) = 0.5
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Figure 2.10: Optimal solution of the three-stage process network problem under endogenous un-
certainty.

For this problem, stage one decisions are the same as those in subsection 2.1.1.2, i.e.,

the selection of the three processes and the capacities of the selected processes. At stage

two, besides the operating decisions on the installed plant, the capacity of the processes that

have been installed at stage one can be expanded; the processes that have not been installed

at stage one can also be selected and installed at stage two. The installed and expanded

processes will be available at stage three. The stage three decisions only include the operating

decisions, i.e., the material flow rates. The objective is to maximize the expected total profit

over all the scenarios.

Three cases can happen for the realization of the yield uncertainty:

1. Process 1 is selected at stage one. The uncertainty of the yield is realized at stage two.

Only the initial NACs are active.
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2. Process 1 is selected at stage two. The uncertainty of the yield is realized at stage

three. The initial NACs and the NACs for stage two decisions are active.

3. Process 1 is never selected. The uncertainty of the yield is never realized. The initial

NACs and the NACs for stage two and stage three decisions are active.

The optimal solution is shown in Figure 2.10. Processes 1 and 3 are selected at stage one.

The yield of process 1 is realized at stage two. The capacity of process 1 installed at stage one

is chosen such that it is only able to produce enough chemical B if the yield is high. On the

other hand, if the yield of process 1 is low, additional chemical B needs to be purchased at

stage two. Since the two scenarios can be distinguished at stage two, additional capacity for

process 1 is added in the high-yield scenario such that enough chemical B can be produced

by process 1 when the demand is increased to 14 at stage three. For the low-yield scenario,

it is not profitable to produce chemical B from process 1. Therefore, no capacity for process

1 is added in stage two. The inadequacy of chemical B is resolved by purchasing from other

suppliers.

In order to see the value of the stochastic solution, we solve a deterministic problem with

the yield fixed at mean value, i.e., 0.85. The optimal solution of the deterministic model

is to select processes 1 and 3 as well. However, the capacity of process 1 at stage one is

12.38 instead of 11.70 as in the stochastic model. This capacity is chosen such that enough

chemical B can be produced at stage two when the yield is 0.85. This capacity is suboptimal

if the actual yield can be 0.8 or 0.9.

2.3.3 Algorithms for solving stochastic programming under en-

dogenous uncertainty

Solving stochastic programs under endogenous uncertainties can be even more challenging

than solving the stochastic programs under exogenous uncertainties because of the additional

binary variables involved in reformulating the disjunctions in the conditional NACs (2.9d).

To reduce the number of redundant NACs, scenario pair reduction techniques have been
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proposed Goel and Grossmann (2006); Boland et al. (2016); Apap and Grossmann (2017).

However, even with a reduced number of scenario pairs, the deterministic equivalent (2.9) of

problems with a large number of scenarios is still intractable. Goel and Grossmann (2006)

propose a Lagrangean decomposition-based branch and bound algorithm that dualizes the

initial NACs and relax the conditional NACs. To satisfy the NACs, the authors propose to

branch on the logical variables Yt,ω,ω′ , and the variables involved in the constraints that are

dualized. The Lagrangean decomposition-based algorithm is able to provide both feasible

solutions and a lower bound for the stochastic programs. Colvin and Maravelias (2008)

propose a branch and cut algorithm where necessary non-anticipativity constraints that are

unlikely to be active are removed from the initial formulation and only added if they are

violated within the search tree.

Others have proposed heuristic algorithms that can quickly obtain feasible solutions to

(2.9). Christian and Cremaschi (2015) apply a knapsack decomposition algorithm (KDA)

to the pharmaceutical R&D pipeline management problem. Zeng et al. (2018) extend the

KDA algorithm to a generalized knapsack-problem based decomposition algorithm (GKDA).

Apap and Grossmann (2017) propose a sequential decomposition algorithm for stochastic

programs under both exogenous and endogenous uncertainties.

2.4 Data driven scenario tree generation

The crucial assumption in stochastic programming is that a scenario tree is given to

characterize the probability distribution of the underlying stochastic process. The values and

probabilities in the scenario tree affect the optimal solutions obtained from the stochastic

programs. A poor scenario-generation method can spoil the result of the whole optimization

model. In this section, we review the concepts and algorithms of scenario tree generation.

Note that the notations used here are for exogenous uncertainty. The concepts and methods

can be easily extended to problems with endogenous uncertainty.

The sources of data for generating scenarios can come from historical data, time-series

model, or expert knowledge (Kaut, 2011). Historical data represents reliable past infor-
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mation but can generalize poorly in the future. Statistical or time-series models such as

autoregressive integrated moving average (ARIMA), hidden Markov model (HMM), might

generalize well in the future but usually need to be fit by data. Expert knowledge is useful in

certain applications. For example, the prediction of oil price needs expertise in geopolitics.

In practice, usually, a combination of all the three approaches is used, i.e., estimate the

distribution from historical data, then use a mathematical model and/or expert knowledge

to adjust the distribution to the current situation.

A good scenario tree should capture the distributions of the random variables at each

time period and the inter-temporal dependencies. The distributions at each time period

can be characterized by the marginal distributions of all the variables, or more succinctly

by their means and higher-order moments. Furthermore, the dependence of the variables is

usually measured by their correlations. The inter-temporal dependencies describe how the

realizations in the previous time periods affect the distributions at the current period. These

dependencies are typically modeled by time-series models.

The time series models are inherently continuous probability distributions of the random

variables. A scenario tree can be seen as a discrete approximation of a time-series model.

The quality of a scenario tree generation method can be evaluated by the stability and the

error of this approximation. The stability measures the deviation of the optimal solutions

if the generation method is applied multiple times to generate the scenario trees. The error

measures the suboptimality in the objective value resulted from the discrete approximation.

The quantitative descriptions of the stability and error in scenario tree generation can be

found in Kaut and Wallace (2003).

2.4.1 Sampling-based scenario generation methods

A common way to generate scenario trees is to generate i.i.d. (independent and identically

distributed) samples from the “true” distribution through a simulation. For example, in

the case of two-stage stochastic programming, we represent “true” stochastic programming
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problem succinctly as,

z∗ = min
x

E
θ∼P

f(x; θ) (2.10)

where x is the first stage variables, P denotes the “true” distribution, θ denotes the random

variables. The stage two problem is contained implicitly in function f . Solving (2.10) with a

continuous distribution directly is usually computationally intractable due to the integration

over the continuous distribution. Suppose we can generate N i.i.d. samples, θ1, . . . , θN
from P, (2.10) can be approximated by the following sample average approximation (SAA)

problem (Shapiro et al., 2014),

zN = min
x

1

N

N∑
i=1

f(x; θi) (2.11)

where the true distribution P is approximated by the empirical distribution of the N i.i.d.

samples. It can be proved that as N → ∞, the optimal value and solutions of (2.11)

converge to the optimal value and solutions of (2.10) under some mild assumptions (Shapiro

et al., 2014). However, generating an infinite number of samples is impractical. Sample

size estimates for finite error have been developed (Shapiro et al., 2014; Kleywegt et al.,

2002) for different types of two-stage stochastic programs. These estimates are usually too

conservative for real-world problems. A practical implementation of the sample average

approximation is proposed by Kleywegt et al. (2002).

There are several advantages to the SAA method. It is easy to implement if it is possible

to sample from the true distribution. It also has very good asymptotic and finite convergence

properties. However, SAA can have poor performance and stability if a small number of sam-

ples are used, especially for probability distributions with large variances. More importantly,

we have to know the “true” distribution to sample from.

2.4.2 Property matching methods

The idea behind the property matching methods is to construct the scenario trees in such

a way that some given properties of the “true distribution” are matched. The properties

are, for example, the moments of the marginal distributions and covariances/correlations.
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Høyland and Wallace (2001) propose a nonlinear programming approach to matching the

moments of the scenario tree to those estimated from a dataset or a continuous distribution.

The unknowns in the nonlinear programming problem are the probabilities and values of the

scenarios with the number of scenarios fixed.

However, with the moments alone, the matching problem is usually under-specified, es-

pecially if the number of realizations in the scenario tree is large, i.e., the scenario tree is able

to match the moments perfectly and there are still some degrees of freedom left. To address

the under-specification issue, Calfa et al. (2014) propose to match both the moments and the

cumulative distribution function (CDF) of the empirical distribution that are derived from

real-world data. For example, in Figure 2.11, the blue dots represent the empirical CDF

constructed from some production yield data. Since the empirical distribution is discontin-

uous and difficult to match in an optimization problem, Calfa et al. (2014) propose to fit a

Generalized Logistic Function (GLF) with the data points of the empirical distribution.

GLF (x) = β0 +
β1 − β0(

1 + β2e−β3x
)1/β4

(2.12)

When fitting the GLF to the empirical CDF data, the GLF can be simplified by setting

β0 = 0 and β1 = 1 as these parameters correspond to the lower and upper asymptotes,

respectively. The empirical CDF in Figure 2.11 can be approximated by the red GLF curve

with β2 = 9.5587 × 107, β3 = 22.2792, β4 = 2.3810. The NLP formulation that aims to

Figure 2.11: Distribution of the historical data for the production yield of facility P1 (Calfa et al.,
2014).
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match the moments, the covariances, and the distribution calculated from data is,

min
x, p

zL
2

DMP =
∑
i∈I

∑
k∈K

wi,k(mi,k − Mi,k)
2 +

∑
(i, i′)∈I
i<i′

wi,i′(ci,i′ − Ci,i′)
2 +

∑
i∈I

N∑
j=1

ωi,jδ
2
i,j (2.13a)

s.t.
N∑

j=1

pj = 1 (2.13b)

mi,1 =
N∑

j=1

xi,jpj ∀ i ∈ I (2.13c)

mi,k =
N∑

j=1

(xi,j −mi,1)
kpj ∀ i ∈ I, k > 1 (2.13d)

ci,i′ =
N∑

j=1

(xi,j −mi,1)(xi′,j −mi′,1)pj ∀ (i, i′) ∈ I, i < i′ (2.13e)

xi,j ∈ [xLB
i,j , xUB

i,j ] ∀ i ∈ I, j = 1, . . . , N (2.13f)

pj ∈ [0, 1] ∀ j = 1, . . . , N (2.13g)

ÊCDF (xi,j)−
j∑

j′=1

pj′ = δi,j ∀ i ∈ I, j = 1, . . . , N (2.13h)

xi,j ≤ xi,j+1 ∀ i ∈ I, j = 1, . . . , N − 1 (2.13i)

where the entries of the uncertain parameters are indexed by i ∈ I. For example, if the

uncertainties are the yields of some processes, I will be the set of these processes. N denotes

the number of outcomes per node at the second stage, j ∈ J = {1, 2, . . . , N} denotes the

branches (outcomes) from the root node, and k ∈ K = {1, 2, 3, 4} is the index of the first

four moments. The decision variables are the uncertain parameters of the stochastic pro-

gramming problem, xi,j, and their corresponding probabilities, pj. The moments calculated

from the tree are denoted by variables mi,k and the ones calculated from the data are denoted

by parameters Mi,k. The covariances calculated between entity i and i′ from the tree and

the data are denoted by ci,i′ and Ci,i′ , respectively. Variables δi,j represent the deviations

with respect to the empirical CDF data, which in turn are approximated by, for example,

the GLF and is represented by the expression ÊCDF (xi,j). In addition to minimizing the

weighted square errors from matching (co-)moments, the sum of squares of the deviations

δi,j is also minimized with given weights ωi,j that can be chosen relative to the weights for
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the term involving the moments.

Problem (2.13) minimizes the weighted Euclidean distance of the moments, covariances,

and distribution from the scenario tree to those calculated from the data. Problem (2.13) is

a nonconvex NLP because the variables x, m, and p are involved in the bilinear and trilinear

terms in Equations (2.13d) and (2.13e). If the empirical CDF is not considered, problem

(2.13) reduces to the standard moment matching NLP problem proposed by Høyland and

Wallace (2001).

2.5 Conclusions

We have provided an overview of stochastic programming in process systems engineer-

ing. The applications of stochastic programming are widespread, from the traditional petro-

chemical, pharmaceutical industry to carbon capture, energy storage. There are two major

types of uncertainties that can be modeled using stochastic programming, exogenous un-

certainty, which is the most commonly one considered, and endogenous uncertainty where

realizations of the uncertainties depend on the decisions taken. Depending on the time

discretization and the realizations of uncertainties, two-stage or multistage stochastic pro-

gramming can be used to solve the problem under exogenous uncertainty. We have pro-

vided the mathematical formulations and algorithms for solving two-stage and multistage

stochastic mixed-integer linear/nonlinear programming problems. Endogenous uncertainty

is decision-dependent. Therefore, the scenario tree representation and the mathematical

formulation of multistage stochastic programming under endogenous uncertainty differ from

those of stochastic programming under exogenous uncertainty. To provide an intuitive view

of the modeling framework, some process network design problems and a pooling problem

are used as illustrative examples. Finally, we discussed how the scenario trees in stochastic

programming can be generated from time-series models or historical data.

Despite the advances in applying stochastic programming in process systems, several

challenges exist for its broader applications. First, it is often difficult to convince practition-

ers without any mathematical programming background to adopt stochastic programming
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methods in their problems. To that end, more tutorials and textbooks for practitioners

rather than mathematicians need to be developed. Also, simulation can be used to ver-

ify the advantages of using stochastic programming. Second, the types of problems that

can be solved efficiently are still limited. A utopia problem would be multistage stochastic

mixed-integer nonlinear programming under both exogenous and endogenous uncertainty

with an arbitrary probability distribution that can be stagewise dependent. The current

algorithmic development and computational resources are still far from solving the utopia

problem efficiently. The major challenge for algorithm development remains to be handling

nonconvexity. Third, risk measures can be better integrated into stochastic programming,

such as the ones used in chance-constrained programming. Other risk measures, such as

Expected CVaR (conditional value at risk) (Pflug and Pichler, 2016), stochastic dominance

(SD) (Ruszczyński, 2010), can also be used. Fourth, the connections of stochastic program-

ming with the other 14 communities of decision-making under uncertainty (Powell, 2016)

can be better established. Last but not least, generating a scenario tree that has a low error

in practice requires high fidelity historical data and better forecast methods. The recent

popularity and advances in data science and machine learning bring opportunities towards

this direction.
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Chapter 3

An Improved L-shaped Method for

Two-stage Convex 0-1 Mixed Integer

Nonlinear Stochastic Programs

3.1 The improved L-shaped algorithm

In problem (2.1), only linear constraints are included. In this chapter, we extend (2.1)

by considering convex nonlinear constraints and 0-1 mixed-integer variables in both first and

second stage. The deterministic equivalent of the two-stage stochastic program we address

in this chapter is defined as (P ) given by equation (3.1a)-(3.1f).

(P ) : min z = cTx+
∑
ω∈Ω

τωd
T
ωyω (3.1a)

s.t. A0x ≥ b0, g0(x) ≤ 0 (3.1b)

A1,ωx+ g1,ω(yω) ≤ b1,ω ∀ω ∈ Ω (3.1c)

g2,ω(yω) ≤ b2,ω ∀ω ∈ Ω (3.1d)

x ∈ X, X =
{
x : xi ∈ {0, 1},∀i ∈ I1, 0 ≤ x ≤ xub

}
(3.1e)
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yω ∈ Y ∀ω ∈ Ω, Y =
{
y : yj ∈ {0, 1},∀j ∈ J1, 0 ≤ y ≤ yub

}
(3.1f)

Here, x represents the first stage decisions. yω represents the second stage decisions in

scenario ω. g0, g1,ω, g2,ω, are convex functions. Both the first and the second stage decisions

are mixed-integer. Let I = {1, · · · , n} be the index set of all the first stage variables. I1 ⊆ I

is the subset for indices of the binary first stage variables. Let J = {1, · · · ,m} be the index

set of all the second stage variables. J1 ⊆ J is the subset for the indices of the binary

second stage variables. xub is a vector that represents the upper bound of all the first stage

variables. yub is a vector that represents the upper bound of all the second stage variables.

In this chapter, we assume problem (P ) has relatively complete recourse. Solving (P ) with

a large number of scenarios directly using mixed-integer nonlinear programming (MINLP)

solvers is prohibitive since the computational time grows exponentially with the number of

scenarios. In order to solve problem (P ) more efficiently, we propose an improved L-shaped

method that is based on Benders decomposition (Van Slyke and Wets, 1969). As discussed in

the introduction section, the basic idea of Benders decomposition is to decompose (P ) into a

Benders master problem which only contains first stage decisions and Benders subproblems

each of which only contains second stage decisions for a given scenario. In this chapter, we

add both (strengtened) Benders cuts and Lagrangean cuts to the Benders master problem

to tighten the relaxation.

We first define the Benders master problem (MBk), with both Lagrangean cuts (3.2c),

Benders cuts (3.2d), and strengthened Benders cuts (3.2e) for a given set of iterations k ∈ K.

zkMB is the objective of the Benders master problem at iteration k. z∗kSL,ω is the optimal

value of the Lagrangean subproblem (SLk
ω). z∗kSB,ω and z∗k+SSB,ω are the optimal values of

the Benders subproblem (SBk
ω) and strengthened Benders subproblem (SSBk+

ω ). All the

subproblems are defined next. Note that (3.2e) and (3.2d) are the same type of cuts, i.e.,

(3.2e) is a strengthened version of (3.2d). Only one of (3.2e) and (3.2d) are included in the

Benders master problem. x̃k represents the optimal solution to the Bender master problem
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in iteration k.

(MBk) : min zkMB =
∑
ω

ηω (3.2a)

s.t. A0x ≥ b0, g0(x) ≤ 0 (3.2b)

ηω ≥ z∗kSL,ω − µk
ωx ∀ω ∈ Ω, k ∈ K (3.2c)

ηω ≥ z∗kSB,ω + (λkω)
T (x− x̃k) + τωc

Tx ∀ω ∈ Ω, k ∈ K (3.2d)

ηω ≥ z∗k+SSB,ω + (λkω)
T (x− x̃k) + τωc

Tx ∀ω ∈ Ω, k ∈ K (3.2e)

x ∈ X (3.2f)

Next, we show how the valid inequalities (3.2c), (3.2d) and (3.2e) can be derived.

Lagrangean cuts. The deterministic equivalent problem (P ) can be reformulated by

duplicating the first stage decisions x for each scenario ω and adding nonanticipativity con-

straints (NACs), xω1 = xω2, xω1 = xω3, · · · , xω1 = xω|Ω|, to guarantee that all the first stage

decisions made for all the scenarios are the same. The NACs can be dualized by multiplying

πω to the constraints, xω1 = xω+1, ω = ω1, ω2, · · · , ω|Ω|−1. Then, the deterministic equivalent

problem can be decomposed into |Ω| scenarios. Each subproblem is defined as a Lagrangean

subproblem (SLk
ω) for iteration k:

(SLk
ω) : min zkSL,ω = τω(c

Txω + dTωyω) + µk
ωxω (3.3a)

s.t. A0xω ≥ b0, g0(xω) ≤ 0 (3.3b)

A1,ωxω + g1,ω(yω) ≤ b1,ω (3.3c)

g2,ω(yω) ≤ b2,ω (3.3d)

xω ∈ X (3.3e)

yω ∈ Y (3.3f)
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where µk
ω1 =

ω|Ω|−1∑
ω=ω1

πk
ω, µk

ω+1 = −πk
ω, ω = ω1, ω2, · · · , ω|Ω|−1. Each Lagrangean subproblem

(SLk
ω) is solved to optimality. The optimal value of the subproblem ω at iteration k is

defined as z∗kSL,ω. ηω ≥ z∗kSL,ω − µk
ωx is a valid inequality for the Benders master problem

defined as a Lagrangean cut. The proof of the validity of the Lagrangean cuts is shown in

proposition 1 in Appendix A. A similar proof can be found in Ogbe (2016). After solving the

Lagrangean subproblems at each iteration k, the multipliers of the Lagrangean subproblems

can be updated using the subgradient method (Oliveira et al., 2013), which is described in

Appendix B. After adding the Lagrangean cuts to the Benders master problem, the lower

bound obtained by solving the Benders master problem is at least as tight as the lower bound

that can be obtained by using Lagrangean decomposition. The proof is shown in proposition

2 in Appendix A.

Benders cuts. Assume the solution to the Benders master problem at iteration k is x̃k,

x is fixed at x̃k for the relaxation of the deterministic equivalent problem (RP ). (RP ) can be

decomposed into |Ω| subproblems. Each subproblem is defined as the Benders subproblem

(SBk
ω):

(SBk
ω) : min zkSB,ω = τωd

T
ωyω (3.4a)

s.t. x = x̃k (3.4b)

A1,ωx+ g1,ω(yω) ≤ 0 (3.4c)

g2,ω(yω) ≤ b2,ω (3.4d)

0 ≤ yω ≤ yub (3.4e)

According to Geoffrion (1972), a Benders cut can be generated at iteration k:
ηω ≥ τωd

T
ω ỹ

k
ω + (λkω)

T (x− x̃k) + (χk
ω)

T (g1,ω(ỹ
k
ω)− b1,ω + A1,ωx̃

k)

+ (νkω)
T (g2,ω(ỹ

k
ω)− b2,ω) + ψk

ωl(0− ỹkω) + ψk
ωu(ỹ

k
ω − yub) + τωc

Tx

= z∗kSB,ω + (λkω)
T (x− x̃k) + τωc

Tx

(3.5a)

where λkω, χk
ω, ν

k
ω, ψ

k
ωl, ψ

k
ωu, are the optimal dual multipliers for constraints (3.4b)-(3.4e) at

iteration k. z∗kSB,ω is the optimal value of (SBk
ω). ỹkω is the optimal solution of (SBk

ω).
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Strengthened Benders cuts. The strengthened Benders subproblem is defined as

follows:

(SSBk−
ω ) : min zkSSB,ω = τωd

T
ωyω (3.6a)

s.t. x = x̃k (3.6b)

A1,ωx+ g1,ω(yω) ≤ 0 (3.6c)

g2,ω(yω) ≤ b2,ω (3.6d)

0 ≤ yω ≤ yub (3.6e)

(αjk′

1ω )
Tx+ (αjk′

2ω )
Tyω ≤ βjk′

ω ∀j ∈ Jk′

1ω, k
′ ≤ k − 1 (3.6f)

where (3.6f) are the valid inequalities that have been derived before the kth iteration. In the

first iteration, (SSBk−
ω ) reduces to SBk

ω. The minus sign in the notation of (SSBk−
ω ) means

that the valid inequalities for iteration k have not been derived. Later on, we will denote

the strengthened Benders subproblem in iteration k that includes the valid inequalities of

iteration k as (SSBk+
ω ). As (SSBk−

ω ) is a relaxation of the convex MINLP, some (ỹkω)j,

j ∈ J1, may be fractional. However, the second stage variables (yω)j, j ∈ J1 have to satisfy

the binary constraints. Therefore, the following disjunctions hold for each j ∈ J1, which

means that the binary second stage variables can be either 0 or 1.

A0x ≥ b0, g0(x) ≤ 0

A1,ωx+ g1,ω(yω) ≤ b1,ω

g2,ω(yω) ≤ b2,ω

0 ≤ yω ≤ yub

(yω)j = 1


∨



A0x ≥ b0, g0(x) ≤ 0

A1,ωx+ g1,ω(yω) ≤ b1,ω

g2,ω(yω) ≤ b2,ω

0 ≤ yω ≤ yub

(yω)j = 0


∀j ∈ J1 (3.7)

From the disjunctions, valid inequalities called lift-and-project cuts can be derived, which

were first proposed by Balas et al. (1993) in the MILP setting and extended to convex MINLP

by Stubbs and Mehrotra (1999). In order to derive the lift-and-project cuts, in each iteration

k for each scenario ω, the minimum distance problem (MDjk
ω ) is solved for all j ∈ Jk

1ω where
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Jk
1ω is the index set that includes the indices of all the fractional (ỹkω)j, j ∈ J1. The objective

function is any norm of the difference between (x, yω) and the fractional solution (x̃k, ỹkω).

(ud, vdω) is the disaggregated variable for disjunct d. γd, d = 1, 2, are variables between 0 and

1 that represent the weight of each disjunct. From Ceria and Soares (1999), (3.8b)-(3.8i) is

the convex hull representation of the disjunction that enforces that the binary variable (yω)j

should be either 0 or 1.

(MDjk
ω ) : min ||(x, yω)− (x̃k, ỹkω)|| (3.8a)

s.t. x =
∑
d=1,2

ud, yω =
∑
d=1,2

vdω (3.8b)

γ1 + γ2 = 1, γ1, γ2 ≥ 0 (3.8c)

0 ≤ vdω ≤ yubγd, 0 ≤ ud ≤ xubγd d = 1, 2 (3.8d)

A0u
d ≥ b0γd, γdg0(u

d/γd) ≤ 0 d = 1, 2 (3.8e)

A1,ωu
d + γdg1,ω(v

d
ω/γd) ≤ b1,ωγd d = 1, 2 (3.8f)

γdg2,ω(v
d
ω/γd) ≤ 0 d = 1, 2 (3.8g)

(v1ω)j = 0 (3.8h)

(v2ω)j = γ2 (3.8i)

Let (x̄jk∗ω , ȳjk∗ω ) be the optimal solution of (MDjk
ω ). Stubbs and Mehrotra (1999) proved that

(ξjkω )T

 x− x̄jk∗ω

yω − ȳjk∗ω

 ≥ 0 is a valid inequality for the fullspace problem (P ) where ξjkω is one

subgradient of the objective function evaluated at the optimal solution of (MDjk
ω ). The cut

is able to cut off the fractional solution (x̃k, ỹkω), if the optimal distance is strictly greater

than 0.

For the 2-norm, ξjkω = 2

x̄jk∗ω − x̃k

ȳjk∗ω − ỹkω

. The appropriate subgradient for the 1-norm and

the ∞−norm can be found in the work of Stubbs and Mehrotra (1999).
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The nonlinear lift-and-project cuts can be expensive since they require to solve an NLP for

each fractional binary variable for each scenario in each iteration k. Inspired by the work of

Zhu and Kuno (2006) and Kılınç et al. (2017) who outer-approximate the convex nonlinear

functions to avoid solving the NLPs, we outer-approximate the nonlinear constraints and

solve the cut generating linear program (CGLP jk
ω ) instead of (MDjk

ω ).

(CGLP jk
ω ) : min ||(x, yω)− (x̃k, ỹkω)|| (3.9a)

s.t. x =
∑
d=1,2

ud, yω =
∑
d=1,2

vdω (3.9b)

γ1 + γ2 = 1 (3.9c)

0 ≤ vdω ≤ yubγd, 0 ≤ ud ≤ xubγd d = 1, 2 (3.9d)

A0u
d ≥ b0γd, γdg0(x

l) +∇g0(xl)T
(
ud − xlγd

)
≤ 0 d = 1, 2, l ∈ L (3.9e)

A1,ωu
d + γdg1,ω(y

l
ω) +∇g1,ω(ylω)T

(
vdω − ylωγd

)
≤ b1,ωγd d = 1, 2, l ∈ L (3.9f)

γdg2,ω(y
l
ω) +∇g2,ω(ylω)T

(
vdω − ylωγd

)
≤ 0 d = 1, 2, l ∈ L (3.9g)

(v1ω)j = 0 (3.9h)

(v2ω)j = γ2 (3.9i)

where (xl, ylω) are the points that we choose to outer-approximate the nonlinear constraints.

L is the index set of such points. Note that in order to solve an LP instead of an NLP for

the cut generating process, we can only use the 1-norm or the ∞-norm in the objective of

(CGLP jk
ω ). The lift-and-project cuts derived by solving (CGLP jk

ω ) are weaker than those

derived by solving (MDjk
ω ), since the feasible region of (CGLP jk

ω ) is a relaxation of the

feasible region of (MDjk
ω ). So there is a tradeoff between computational efficiency and the

tightness of the cuts that are derived. For the problems that we investigate, (CGLP jk
ω ) is

able to provide good computational results, which will be discussed in section 4. For the

derivation of the lift-and-project cuts based the solution of (CGLP jk
ω ), we refer to the work of
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Kılınç et al. (2017). Here, we simply denote the lift-and-project cut derived from (CGLP jk
ω )

as:

(αjk
1ω)

Tx+ (αjk
2ω)

Tyω ≤ βjk
ω (3.10)

The lift-and-project cuts that are obtained by solving (MDjk
ω ) or (CGLP jk

ω ) are added to the

Benders subproblem (SBk
ω). The strengthened Benders subproblem with the lift-and-project

cuts that are derived in iteration k is defined as (SSBk+
ω ) where the plus sign simply means

that the newly derived cuts are included:

(SSBk+
ω ) : min zkSSB,ω = τωd

T
ωyω (3.11a)

s.t. x = x̃k (3.11b)

A1,ωx+ g1,ω(yω) ≤ 0 (3.11c)

g2,ω(yω) ≤ b2,ω (3.11d)

0 ≤ yω ≤ yub (3.11e)

(αjk′

1ω )
Tx+ (αjk′

2ω )
Tyω ≤ βjk′

ω ∀j ∈ Jk′

1ω, k
′ ≤ k (3.11f)

where (3.11f) are the lift-and-project cuts that are derived until iteration k for scenario ω. A

strengthened Benders cut can be derived by solving the strengthened Benders subproblem

in the same way that we derive the Benders cuts:

ηω ≥ z∗k+SSB,ω + (λkω)
T (x− x̃k) + τωc

Tx (3.12)

Note that we slightly abuse notation here: λkω is used to represent the optimal dual

variable for both the Benders subproblem (SBk
ω) and the strengthened Benders subproblem

(SSBk+
ω ).

Upper bounding procedure. After the Benders master problem is solved at iteration k,

x in problem (P ) is fixed at x̃k. The rest of the problem can be decomposed into |Ω| scenarios.

A feasible solution to the deterministic equivalent problem can be obtained by solving the

upper bound subproblems (UBk
ω) defined by (3.13a)-(3.13d). Let z∗kUB,ω be the optimal value
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of (UBk
ω). An upper bound of (P ) can be obtained by calculating cT x̃k +

∑
ω∈Ω z

∗k
UB,ω.

(UBk
ω) : min zkUB,ω = τωd

T
ωyω (3.13a)

s.t. g1,ω(yω) ≤ b1,ω − A1,ωx̃
k (3.13b)

g2,ω(yω) ≤ b2,ω (3.13c)

yω ∈ Y (3.13d)

The steps of the improved L-shaped method are outlined in Figure 3.1. The lower bound

is initialized to −∞. The upper bound is initialized with the optimal value obtained by

solving the stochastic program with the first stage decisions fixed at the optimal solution of

the expected value problem (EEV ) (Birge and Louveaux, 2011). The Lagrangean multipliers

are initialized to 0. At each iteration, the Lagrangean subproblems, the Benders master

problems, the strengthened Benders subproblems, the cut generating linear program, the

strengthened Benders subproblem with the newly generated cuts, and the upper bound

subproblems are solved sequentially. The optimal solution of the Benders master problem is

used to initialize the strengthened Benders subproblems, the cut generating linear programs,

the strengthened Benders subproblems with the newly generated cuts and the upper bound

subproblems. Valid inequalities for the Benders master problem can be derived by solving the

Lagrangean subproblems, the strengthened Benders subproblems with the newly generated

cuts. The algorithm iterates until the relative optimality gap is within a given tolerance ϵ.

However, for problems with good NLP relaxations where the Benders cuts are tight, we

can just solve the Benders subproblems without generating the lift-and-project cuts. Note

that in each iteration, we can add either Benders cuts or strengthened Benders cuts to the

master problem, but not both, because the strengthened Benders cuts are derived from the

subproblems (SSBk+
ω ) which have tighter relaxations than the Benders subproblems SBk

ω.

Therefore, the strengthened Benders cuts dominate the Benders cuts.

The proposed algorithm

The steps of the improved L-shaped method are outlined below:
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1. Initialization

Set µ0
ω = 0 for all ω ∈ Ω, k = 0, LB = −∞, UB = EEV (expected result of using the

expected value problem solution).

Go to Step 2.

2. Lagrangean subproblem

For fixed µk
ω, solve each Lagrangean subproblem SLk

ω in parallel. The optimal solution is

x̂kω, ŷ
k
ω, z

∗k
SL,ω. Add the Lagrangean cuts, ηω ≥ z∗kSL,ω − µk

ωx, to the Benders master problem.

If
∑

ω∈Ω z
∗k
SL,ω ≥ LB, set LB =

∑
ω∈Ω z

∗k
SL,ω.

Update µk
ω → µk+1

ω using the subgradient method shown in Appendix B.

Go to Step 3.

3. Benders master problem

Solve the Benders master problem. Obtain the optimal solution x̃k and z∗kMB.

If z∗kMB ≥ LB, set LB = z∗kMB.

Go to Step 4.

4. Strengthened Benders subproblem

Fix x = x̃k. Solve each strengthened Benders subproblem SSBk−
ω in parallel. Obtain the

optimal primal solution ỹkω, z
∗k−
SSB,ω and the optimal dual variable λkω.

If there is any fractional variable (ỹkω)j, j ∈ J1, denote the index set of fractional variables

as Jk
1ω for all ω ∈ Ω and go to Step 5.

Otherwise, add the strengthened Benders cuts, ηω ≥ z∗k−SSB,ω + (λkω)
T (x− x̃k) + τωc

Tx, to the

Benders master problem and go to Step 7.

5. Cut generating linear program

Solve in parallel the cut generating linear programs (CGLP jk
ω ) for all ω ∈ Ω, j ∈ Jk

1ω. Ob-

tain the lift-and-project cuts, (αjk′

1ω )
Tx+(αjk′

2ω )
Tyω ≤ βjk′

ω , and add them to the strengthened

Benders subproblem (SSBk−
ω ). The subproblem with the newly generated lift-and-project

cuts is defined as (SSBk+
ω ).

Go to Step 6.

6. Strengthened Benders subproblem
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Solve the strengthened Benders subproblem (SSBk+
ω ) in parallel. Obtain the optimal primal

objective value z∗k+SSB,ω and optimal dual variable λkω.

Add the strengthened Benders cuts, ηω ≥ z∗k+SSB,ω + (λkω)
T (x − x̃k) + τωc

Tx, to the Benders

master problem and go to Step 7.

7. Upper bound subproblem

Fix x = x̃k in each upper bound subproblem and solve them in parallel. Obtain the optimal

solution to the upper bound subproblem ȳkω, z
∗k
UB,ω.

If cT x̃k +
∑

ω∈Ω z
∗k
UB,ω ≤ UB, set UB = cT x̃k +

∑
ω∈Ω z

∗k
UB,ω.

8. Optimality check

If UB ≤ (1 + ϵ)LB, stop.

Else set k = k + 1 and include in K; go back to Step 2.

Although the algorithm can always yield a lower bound that is at least as tight as

using Lagrangean decomposition, it still does not have theoretical guarantee of convergence.

An intuitive explanation is that there is a duality gap if the Lagrangean cuts alone are

added to the Benders master problem. While the strengthened Benders cuts are tighter

than the Benders cuts as rank-one lift-and-project cuts are added to convexify the MINLP

subproblems, the strengthened Benders subproblems are rank-one lift-and-project closure

but not the convex hull of the original convex MINLP subproblems. The rank-one lift-and-

project cuts can close a significant portion of the integrality gap for the original convex

MINLP subproblems, but they do not have theoretical guarantee to close the integrality

gap. Therefore, while combining Lagrangean cuts and strengthened Benders cuts can make

the relative optimality gap smaller than both the duality gap and the integrality gap, the

proposed algorithm does not have guarantee to close the optimality gap.
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1. Initialization
k = 0, LB = −∞, UB = EEV, µ0

ω = 0

2. Lagrangean subproblem
Solve SLk

ω; update LB.
Update µk

ω → µk+1
ω

3. Benders master problem
Solve MBk; update LB

4. Strengthened Benders subproblem
Solve SSBk−

ω in parallel

5. Cut generating linear program
Solve CGLP jk

ω in parallel

6. Strengthened Benders subproblem
Solve SSBk+

ω in parallel

k = k + 1

No StopYes

z∗kSL, µ
k
ω

z∗k−SSB, λ
k
ω

7. Upper bound subproblem
Solve UBk

ω in parallel; update UB

8. Optimality check
UB ≤ (1 + ϵ)LB?

αjk
ω , β

jk
ω

ỹkω

z∗k+SSB, λ
k
ω

x̃k

x̃k

x̃k

x̃k

Figure 3.1: Algorithmic flow(solid line) and information flow(dotted line) of the improved L-shaped
method
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3.2 Motivating examples

3.2.1 Optimal Design of Multi-product Batch Plant under De-

mand Uncertainty

Indices

i = products

j = stages

k = possible integer values for number of processing units

ω = scenarios

Parameters

Qiω = Demand of product i in scenario ω (kg)

Sij = Size factor for product i in processing stage j (L/kg)

tij = Processing time for product i in processing stage j (hours)

H = Fixed production horizon time (hours)

αi = Cost coefficient for purchasing unit in processing stage j ($)

βj = Cost exponent for the volume of processing unit in stage j

λj = Fixed cost of using one unit in stage j

δ = Penalty cost for exceeding production horizon ($/hour)

pω = Probability of scenario ω

V L
j = minimum volume of the processing units in stage j

V U
j = maximum volume of the processing units in stage j

First stage decisions

Vj = Size of processing unit s for stage j

vj = Nature logarithm of Vj
NF

j = Number of processing units purchased for stage j

nF
j = Natural logarithm of NF

j

Y F
kj = Binary variable. Equals 1 if NF

j = k

Second stage decisions
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Biω = Batch size of product i in scenario ω

biω = Natural logarithm of Biω

TLiω = Cycle time of product i in scenario ω

tliω = Natural logarithm of TLiω

NS
jω = Number of processing units that are operating in stage j in scenario ω

nS
jω = Natural logarithm of NS

jω

Y S
kjω = Binary variable. Equals 1 if NS

jω = k

3.2.1.1 Problem statement

We study a multi-product multi-stage batch plant (Figure 3.2) under demand uncertainty,

which is an extension of the work of Grossmann and Sargent (1979). Every product has to

be processed through all the stages. It is assumed that in each stage there can be multiple

processing units with equal volume. The number and the volume of the processing units

purchased have to be decided before the demand for each product is known. After the

demand of each product is realized, operating decisions including the number of processing

units actually used and the batch size of each product have to be made. We assume the batch

sizes for any given product are the same. Not all the processing units purchased have to be

used, i.e., processing units can be idle when the demand is low. There will be a fixed cost

for using one processing unit, so one should try to use as few processing units as possible.

One should also try to complete all the processing tasks within a given time horizon and

there is a penalty cost for exceeding the time horizon to meet the demands. This problem

can be formulated as a two-stage stochastic program where the first stage decisions are the

number and volume of the processing units. The second stage decisions are the batch size of

each product, the actual number of processing units used in each stage, and the cycle time

of each product.
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Q1

Q2

Products Batches Processing units in each stage (e.g. mixing, reaction, etc.)

!"# = %&''( !"% = #)#*( !"& = #+#,( !", = %%,'( !"+ = #--#( !") = #*',(

Figure 3.2: A multi-product multi-stage batch plant for two products with corresponding demands
Q1 and Q2

3.2.1.2 Mathematical formulation

Constraints (3.14)-(3.15) determine the number of processing units purchased. Y F
kj is the

binary variable which equals to one when the number of processing units purchased at stage

j, NF
j , equals to k.∑

k

Y F
kj = 1 ∀j (3.14)

NF
j =

∑
k

kY F
kj ∀j (3.15)

The volume of any processing unit has to lie within V L and V U .

V L
j ≤ Vj ≤ V U

j ∀j (3.16)

Constraint (3.17) enforces the batch size in any scenario times a size factor cannot exceed

the volume of the processing unit purchased in stage j.

Vj ≥ SijBiω ∀i, j, ω (3.17)

NS
jω denotes the number of processing units operating in stage j in scenario ω. The binary

variable Y S
kjω is used to guarantee the integrality of NS

jω (constraint (3.18) and (3.19)). The

number of units that is operating in any scenario ω should be less than or equal to the

number of units purchased, which is enforced by constraint (3.20).∑
k

Y S
kjω = 1 ∀j, ω (3.18)
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NS
jω =

∑
k

kY S
kjω ∀j, ω (3.19)

NS
jω ≤ NF

j ∀j, ω (3.20)

The number of operating processing units times the cycle time should be greater or equal

to any processing time tij.

NS
jωTLiω ≥ tij ∀i, j, ω (3.21)

The demand for product i in scenario ω is given by Qiω and the batch size is Biω.

Therefore, the number of batches is given by Qiω

Biω
. The time consumed on producing product

i equal the number of batches of product i times its cycle time. The summation over the

processing time of all products should be less than or equal to the given time horizon plus

slack variable Lω representing the lateness in scenario ω.∑
i

QiωTLiω

Biω

≤ H + Lω ∀ω (3.22)

The total cost includes the investment of processing units, the fixed and variable costs of

operating the processing units, and the lateness penalty. As the variable cost of operating

the processing units is a constant that is proportional to the demand, it is not included in

the objective.

cost =
∑
j

αjN
F
j V

βj

j +
∑
ω

pω

(∑
j

λjN
S
jω + δLω

)
(3.23)

The formulation, which includes constraints (3.14)-(3.23), is a nonconvex MINLP. How-

ever, according to Kocis and Grossmann (1988), this model can be reformulated as a con-

vex MINLP by considering exponential transformations of variables Vj, NF
j , Biω, TLiω and

rewriting constraint (3.15)-(3.17), (3.19)-(3.23) as (3.24)-(3.31).

nF
j =

∑
k

ln(k)Y F
kj ∀j (3.24)

ln(V L) ≤ vj ≤ ln(V U) ∀j (3.25)
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vj ≥ ln(Sij) + biω ∀i, j, ω (3.26)

nS
jω =

∑
k

ln(k)Y S
kjω ∀j, ω (3.27)

nS
jω ≤ nF

j ∀j, ω (3.28)

nS
jω + tliω ≥ ln(tij) ∀i, j, ω (3.29)

∑
i

Qi,ω exp(tliω − biω) ≤ H + Lω ∀ω (3.30)

This leads to the following convex MINLP:

min cost =
∑
j

αj exp(nF
j + βjvj) +

∑
ω

pω

(∑
j

λj exp(nS
jω) + δLω

)
(3.31)

s.t. (3.14), (3.18), (3.24)− (3.30)

3.2.1.3 Case study

We study a batch plant with 6 stages, 5 products. Each stage can have at most 4

processing units. We assume that there are 3 scenarios, where the demand of each product

can be high, medium, or low with probability of 25%, 50%, 25% respectively. The high

and low demand are +10% and -10% away from the mean. The problem is first solved in

deterministic equivalent form in GAMS using DICOPT on the 12 processors of an Intel Xeon

(2.67GHz) machine with 64 GB RAM. The model has 96 binary variables, 64 continuous

variables, 316 constraints. The minimum cost is 423.5(103$). The NLP relaxation of this

problem is 408.4(103$). The number and volume of each processing units purchased in each

stage is shown in Figure 3.2. The number of processing units that are operating in each

stage in each scenario is shown in Table 3.1, where ω1, ω2, ω3 correspond to high, medium

and low demand respectively. One can see that the recourse decisions of each scenario are
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different. When the demand is low, one fewer processing unit is used in stages j2 and j4.

Table 3.1: Optimal number of processing units in each stage in each scenario

Stage j1 j2 j3 j4 j5 j6

NS
jω1 3 3 4 3 2 2

NS
jω2 3 2 4 3 2 2

NS
jω3 3 2 4 2 2 2

However, if we solve the expected value problem with the demand of all products fixed

at their mean values, the number of units purchased at each stage is 3, 2, 4, 3, 2, 2, respec-

tively. Compared to the stochastic solution, the number of units at stage j2 decreases from

3 to 2. Therefore, with the expected value solution, the high demand cannot be satisfied

without an extension of the time horizon. The expected value solution has an expected cost

of 433.4(103$). The value of stochastic solution (V SS) (Birge and Louveaux, 2011) of this

problem is 9.9(103$).

3.2.2 Planning under demand uncertainty

Indices

i = process

j = chemical

s = production scheme

r = supplier

p = plant

c = customer

ω = scenario

Sets

I(j) = index set of processes that consume chemical j
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O(j) = index set of processes that produce chemical j

R(j) = index set of suppliers that provide chemical j

PS(i) = index set of production schemes for process i

JM(i, s) = index set of main products for production scheme s of process i

L(i, s) = index set of chemicals involved in production scheme s of process i that are not

main product for which the input-output relationship with the main product is linear

L̄(i, s) = index set of chemicals involved in production scheme s of process i that are not

main product for which the input-output relationship with the main product is logarithmic

Parameters

QU
pi = maximum capacity of process i in plant p

µijs = material balance coefficients for chemical j for production scheme s for process i

ρijs = relative maximum production rate of main product j, j ∈ JM(i, s), for production

scheme s for continuous flexible process i referenced to a base scheme s̄

Hi = maximum time for which process i is available for production

Dcjω = demand of chemical j from customer c in scenario ω

αC
i = fixed cost for installation of process i

βC
i = variable cost for installation of process i

βS
rj = price for purchase of chemical j from supplier r

βRP
rp = variable cost for transporting chemical from supplier r to plant p

αRP
rp = fixed cost for transporting chemical from supplier r to plant p

αPC
pc = fixed cost for transporting chemical from plant p to customer c

βPC
pc = variable cost for transporting chemical from plant p to customer c

δis = unit operating cost for production scheme s for process i

ϕcjω = penalty cost for not satisfying demand from customer c for chemical j in scenario ω

PUU
rpj = maximum amount of chemical j transported from supplier r to plant j

FU
pcj = maximum amount of chemical j transported from plant j to customer c

τω = probability of scenario ω

First stage decisions
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xpi = binary variable (1 if process i is installed in plant p)

Qpi = capacity of process i in plant p

Second stage decisions

PUrpjω = purchase amount of chemical j of plant p from supplier r in scenario ω

yRrpω = binary variable (1 if a chemical is transported from supplier r to plant p in scenario

ω)

Fpcjω = amount of chemical j transported from plant p to customer c in scenario ω

yCpcω = binary variable (1 if a chemical is transported from plant p to customer c in scenario

ω)

Tpijsω = length of time assigned to the production of main product j for production scheme

s of process i in plant p in scenario ω

θpijsω = amount of main product j, j ∈ JM(i, s), produced from production scheme s of

process i in plant p in scenario ω. The mathematical definition is shown in constraint (3.36)

Wpijsω = amount of chemical j produced from production scheme s of process i in plant p

in scenario ω

Scjω = slack variable for not satisfying the demand of chemical j from customer c in scenario

ω

3.2.2.1 Problem statement

We study a supply chain where raw materials are purchased from suppliers to manufacture

products and deliver them to customers as shown in Figure 3.3. Each plant consists of a

processing network with several processes interconnected in a finite number of ways. The

processes can be dedicated or flexible (Norton and Grossmann, 1994). A flexible process can

have multiple production schemes where these schemes can be different in raw materials,

products or combination of both. A dedicated process has fixed recipe of raw materials and

products, i.e., only one scheme. We assume all the processes considered in this chapter are

continuous. Therefore, process capacity can be expressed as production rate. There is a

fixed and a variable cost associated with the installation of each process. The demands of
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customers are regarded as uncertain parameters, which will be realized after the investment

decisions are made. If the manufacturer fails to satisfy the customer demands, extra products

can be purchased from other manufacturers and there is a penalty cost for the extra products

purchased. This penalty cost can be regarded as the market prices of the products. In this

problem, we assume that the prices of the products are another source of uncertainty, which

will be realized after the first stage decisions are made. The second stage decisions include

the purchase and transportation of raw materials, the production amount in each scheme

of each process in each plant, the delivery of products to customers and the purchase of

products from other manufacturers. Note that there is a fixed cost for the transportation

link between a supplier and a plant or a plant and a customer. Therefore, both the first

stage and second stage variables are mixed-integer.

Figure 3.3: Suppliers, Plants, and Customers in Supply Chain

3.2.2.2 Mathematical formulation

The constraints for the investment decisions for each process i in each plant p are as

follows:

Qpi ≤ QU
pixpi ∀p, i (3.32)

where xpi are binary variables to denote whether process i in plant p is installed. Constraint

(3.32) forces the capacity to zero if xpi is zero.
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Constraint (3.33) represents the mass balance for each chemical j in a given plant p. The

sum of purchases of raw materials from all suppliers, plus the the sum of output of chemical

j from all processes, should be equal to the sum of delivery of j to all potential customers,

plus the sum of consumption of j from all processes.∑
r∈R(j)

PUrpjω +
∑

i∈O(j)

∑
s∈PS(i)

Wpijsω =
∑
c

Fpcjω +
∑
i∈I(j)

∑
s∈PS(i)

Wpijsω ∀p, j, ω (3.33)

The maximum production rate of a main product j for production scheme s is propor-

tional to the capacity of the plant for a reference scheme s̄. For s̄, ρijs̄, j ∈ JM(i, s̄) equals

to 1. The amount produced can be calculated by the production rate times the production

time.

Wpijsω = ρijsQpiTpijsω ∀p, i, s ∈ PS(i), j ∈ JM(i, s), ω (3.34)

For each process i, the total production time has to be less than the available time of

that process.∑
s∈PS(i)

∑
j∈JM(i,s)

Tpijsω ≤ Hi ∀p, i, ω (3.35)

Note that constraint (3.34) is nonlinear since it includes the bilinear term QpiTpijsω. To

linearize it, we define new variable θpijsω in (3.36) and rewrite (3.34)-(3.35) as (3.37)-(3.38).

θpijsω = QpiTpijsω ∀p, i, j ∈ JM(i, s), s ∈ PS(i), ω (3.36)

∑
s∈PS(i)

∑
j∈JM(i,s)

θpijsω ≤ HiQpi ∀p, i, ω (3.37)

Wpijsω = ρijsθpijsω ∀p, i, s, s ∈ PS(i), j ∈ JM(i, s), ω (3.38)

Constraint (3.39) and (3.40) specifies the input-output relationship between the main

product and other chemicals involved in scheme s of process i. Note that for some of

the processing schemes, the input-output relationship is linear while in others it can be

logarithmic. The physical meaning of the logarithmic relationship is that in some of the
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processes, the larger the input material flowrate, the less efficient those schemes become to

produce products.

Wpijsω = µijsWpij′sω ∀p, i, j ∈ L(i, s), j′ ∈ JM(i, s), s ∈ PS(i), ω (3.39)

ln(1 +Wpijsω) = µijsWpij′sω ∀p, i, j ∈ L̄(i, s), j′ ∈ JM(i, s), s ∈ PS(i), ω (3.40)

Note that constraint (3.40) is a nonlinear equality which is nonconvex. This equality is

relaxed to constraint (3.41) which is convex as pointed out by Kocis and Grossmann (1987).

In the optimal solution of the problem, constraint (3.41) is always active because the optimal

solution will always tend to make as much product as possible.

ln(1 +Wpijsω) ≥ µijsWpij′sω ∀p, i, j ∈ L̄(i, s), j′ ∈ JM(i, s), s ∈ PS(i), ω (3.41)

Binary variable yRrpω denotes whether a transportation link is established between supplier

r and plant p, which will force the corresponding purchase amount to zero if the link is not

established. Constraint (3.43) serves the same purpose for transportation between plants

and customers.

PUrpjω ≤ PUU
rpjy

R
rpω ∀j, r, r ∈ R(j), p, ω (3.42)

Fpcjω ≤ FU
pcjy

C
pcω ∀j, p, c, ω (3.43)

The demand of customer c for chemical j, Dcjω, must be satisfied by the total flow from

all the plants to customer c plus the slack variable, Scjω, which represents extra purchase of

j from other companies if we fail to produce enough to satisfy the demand.∑
p

Fpcjω + Scjω = Dcjω ∀c, j, ω (3.44)

The objective is to minimize the expected cost, which includes the investment cost,

transportation cost, production cost, cost of purchasing raw materials, and penalty cost for
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not satisfying the demand.

min Cost =
∑
p

∑
i

(βC
i Qpi + αC

i xpi) +
∑
ω

τω

(∑
p

∑
i

∑
s∈PS(i)

δis
∑

j∈JM(i,s)

ρijsθpijsω

+
∑
p

∑
j

∑
r∈R(j)

(βS
rj + βRP

rp )PUrpjω +
∑
r

∑
p

αRP
rp y

R
rpω

+
∑
p

∑
c

αPC
pc y

C
pcω +

∑
p

∑
c

∑
j

βPC
pc Fpcjω

+
∑
c

∑
j

ϕcjωScjω

)
s.t. (3.32)− (3.33), (3.37)− (3.39), (3.41)− (3.44)

(3.45)

3.2.2.3 Case study

We study a supply chain where we have 4 suppliers, 3 plants, 4 customers as in Figure 3.3.

Each plant has the same process network superstructure as shown in Figure 3.4, which is from

Norton and Grossmann (1994). As an example, process I1 is a dedicated continuous process

producing chemical J3 from chemicals J1 and J6. Process I2 is a flexible continuous process

with two production schemes. Scheme S1 for process I2 produces chemical J3 from chemical

J1, while scheme S2 produces chemical J4 from chemicals J1 and J6. The input-output

relationships for processes I1, I2, I3 are linear. The input-output relationships between

chemicals J3 and J5 for scheme S1 and between chemical J4 and chemical J5 for scheme S2

in process I4 are logarithmic. No processes are initially installed.

Figure 3.4: Process network for case study
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We assume that there are 3 scenarios where the demands of each product can be high,

medium or low with probabilities of 25%, 50%, 25%, respectively. The high and low de-

mands are +30% and -30% away from the mean. The convex MINLP problem is solved in

deterministic equivalent form in GAMS using DICOPT on the 12 processors of an Intel Xeon

(2.67GHz) machine with 64 GB RAM. The model for 3 scenarios has 84 binary variables,

2158 continuous variables, 2167 constraints. The optimal solution yields a minimum cost of

1509.3(106$). The investment decisions for each of the three plants are shown in Table 3.2.

The transportation links in three scenarios are shown in Figure 3.5. It is easy to see different

recourse decisions are made in the three scenarios.

Table 3.2: Optimal capacity of each process in each plant

Qpi (million lb/yr) I1 I2 I3 I4
P1 150.0 0 0 4.9
P2 95.4 95.6 0 5.9
P3 57.5 36.1 0 5.5

Figure 3.5: Optimal solution for transportation links

To illustrate the capacity and material flows of process networks, the optimal configura-

tion and mass flows of plant 1 in scenario 1 is shown in Figure 3.6. In this process network,

processes I1 and I4 are installed. Raw material J1 is purchased from the suppliers and used

as feedstock for I1.S1. Chemical J3 is produced by I1.S1. Part of J3 is delivered to cus-

tomers directly, while the rest is used as feedstock for I4.S1. Chemical J4 is purchased as raw

material and used as feedstock for I4.S2. Chemical J5 is produced by I4.S1 and I4.S2 and
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delivered to customers. Chemical J6 is produced by I4.S1 and I4.S2 and used as feedstock

for I1.S1.

Figure 3.6: Optimal material flows for plant 1 in scenario 1

3.3 Computational results

In order to test the proposed algorithm, the two proposed examples are solved with

increasing number of scenarios. For the batch plant design problem under demand uncer-

tainty, the scenarios are constructed by assuming the demands of all the products can be

high, medium or low. We also assume that some of the product demands are independent

of all the other product demands while some of the products demands vary simultaneously.

For example, in the 81-scenario case, we assume that the demands of product i1, i2, and

i3 are independent of the demands of all the other products while the demands of product

i4 and i5 vary simultaneously. So there are 34 = 81 scenarios. For the planning problem

under demand and price uncertainty, we have two products C3 and C5. In the 3-scenario

problem, we assume that the demands of product C3 and C5 vary simultaneously and they

can be high, medium, or low. In the problems with 9, 27, and 81 scenarios, we assume that

the demands and the prices of all the products can be high, medium, or low. The demands

are always assumed to be independent of the prices. The prices of the two products C3

and C5 vary simultaneously in the problem with 9 and 27 scenarios but they are assumed

to be independent of each other in the 81-scenario problem. The demands of C3 and C5

are assumed to vary simultaneously in the 9-scenario problem but they are assumed to be

independent of each other in the problems with 27 and 81 scenarios. Note that in practice
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the discrete probability distribution can be constructed using historical data. If the compu-

tational resources are limited, the number of scenarios can be reduced using sample average

approximation Kleywegt et al. (2002).

The deterministic equivalent of both the batch plant design problem and the planning

problem with different number of scenarios are first solved using different convex MINLP

solvers including DICOPT, AlphaECP, SBB, and BARON on the 12 processors of an Intel

Xeon (2.67GHz) machine with 64 GB RAM. The time limit is set to 50,000 seconds. The

size of the deterministic equivalent problems, the wall time that the solvers require to solve

the problems, the upper bound, the lower bound, the expected result of using the expected

value problem solution (EEV), and value of stochastic solution(VSS) are shown in Tables

3.3 and 3.4. It easy to see that the sizes of the problem can grow very quickly with the

number of scenarios. SBB, Alpha-ECP, and DICOPT cannot obtain a feasible solution to

the deterministic equivalent problems for the 243-scenario batch or the 81-scenario planning

problem. Although BARON can obtain feasible solutions to the two large problems, the

relative optimality gap is large, i.e., 5.9% and 22.3%, respectively.

Table 3.3: Computational statistics of the deterministic equivalent of the batch plant design problem

Number of scenarios 3 27 81 243
Binary variables 96 672 1,968 5,856

Continuous variables 64 472 1,390 4,144
Constraints 316 2,158 6,424 19,222

Wall time(s) by BARON 2 210 50,000 50, 000∗

Wall time(s) by SBB 4 99 9,602 50, 000∗

Wall time(s) by Alpha-ECP 7 1,551 50, 000∗ 50, 000∗

Wall time(s) by DICOPT 1 35 503 50, 000∗

NLP relaxation (103$) 408.4 394.5 391.7 391.0
Best upper bound (103$) 423.5 415.9 413.6 435.0
Best lower bound (103$) 423.5 415.9 413.6 410.9
Relative Optimality gap 0.0% 0.0% 0.0% 5.9%

EEV (103$) 433.4 421.8 418.8 418.2
VSS (103$) 9.9 5.9 5.2 -

∗No feasible solution found in 50,000 secs time limit.
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Table 3.4: Computational statistics of the deterministic equivalent of the planning problem

Number of scenarios 3 9 27 81
Binary variables 84 228 660 1,956

Continuous variables 2,158 6,424 19,222 57,616
Constraints 2,167 6,451 19,303 57,859

Wall time(s) by BARON 188 50,000 50, 000 50, 000
Wall time(s) by SBB 50, 000∗ 50, 000∗ 50, 000∗ 50, 000∗

Wall time(s) by Alpha-ECP 462 50, 000 50, 000∗ 50, 000∗

Wall time(s) by DICOPT 24 44, 150 50, 000∗ 50, 000∗

NLP-relaxation (106$) 1309.4 1309.2 1297.2 1297.2
Best upper bound (106$) 1509.3 1508.8 1500.4 1770.7
Best lower bound (106$) 1509.3 1508.8 1468.1 1448.0
Relative optimality gap 0.0% 0.0% 2.2% 22.3%

EEV (106$) 1703.1 1702.6 1698.5 1698.5
VSS (106$) 193.8 193.8 198.1 -

Since the deterministic equivalent problems with a large number of scenarios are in-

tractable, we implement different decomposition algorithms in GAMS. For the batch plant

design problem, we have a tight NLP relaxation (see Table 3.3). The effects of the lift-and-

project cuts are not significant in terms of tightening the Benders subproblems. Therefore,

for the batch plant design problem, we just solve the Benders subproblem without gener-

ating the lift-and-project cuts. Lagrangean decomposition and progressive hedging are also

implemented. The multipliers of the Lagrangean decomposition algorithm are updated by

the subgradient method shown in Appendix B. The ρ parameter in the progressive hedging

algorithm is updated dynamically using the heuristic proposed by Watson and Woodruff

(2011). In the progressive hedging algorithm, the lower bounds can be derived by neglecting

the quadratic terms in the objective of the progressive hedging subproblems and solving sub-

problems similar to the Lagrangean subproblems, which are proved to be valid lower bounds

by Gade et al. (2016). The upper bounds of both the Lagrangean decomposition and the

progressive hedging algorithm are derived by the nearest scenario heuristic, i.e., at each it-

eration, after the Lagrangean (progressive hedging) subproblems are solved to optimality,
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we take the weighted sum average of the first stage decisions, find the scenario whose first

stage decisions are the closest to the weighted sum average, fix the first stage decisions at

the first stage decisions of this scenario, and solve the upper bound subproblems in parallel

to obtain a feasible solution.

All the problems are solved using the 12 processors of an Intel Xeon (2.67GHz) machine

with 64 GB RAM. All the MINLP subproblems are solved using DICOPT and all the NLP

subproblems are solved using CONOPT. All the subproblems are solved in parallel using

Grid GAMS (Bussieck et al., 2009). It is observed that the Lagrangean multipliers are close

to convergence after the first 30 iterations. A similar trend hold for the progressive hedging

algorithm. Therefore, we stop adding Lagrangean cuts after 30 iterations but keep adding

Benders cuts until the lower bounds of the problem fail to improve for 10 iterations. The

computational results of the decomposition algorithms for the batch problem are shown in

Tables 3.5-3.8. L+B represents the algorithm with both Lagrangean cuts and Benders cuts

in the Benders master problem. L represents the algorithm with only Lagrangean cuts in the

Benders master problem. B represents the algorithm with only Benders cuts in the Benders

master problem. LD represents the Lagrangean decomposition algorithm. PH represents

the progressive hedging algorithm. The decomposition algorithms are all able to solve the

problems within the time limit. For the batch problem with different number of scenarios, the

proposed algorithm with both Lagrangean and Benders cuts can provide solutions with the

smallest optimality gap. The lower bounds of the proposed algorithm are always tighter than

the lower bounds given by LD and PH. In some cases, for example, the 3-scenario problem,

LD or PH can give better feasible solutions than the proposed algorithm. However, in most

cases (problems with 27, 81, and 243 scenarios), the best feasible solutions are given by the

proposed algorithm. This comes at the expense of longer computational times. The CPU

times of the subproblems and the master problems are also shown in Tables 3.5-3.8. Note

that the CPU time of the Lagrangean subproblems is the summation of the CPU times of

all the Lagrangean subproblems that are solved in parallel on multiple processors. Each

Lagrangean subproblem is solved on only one processor. Therefore, the summation of the
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CPU times of all the Lagrangean subproblems can be greater than the wall time. An example

can be found in Table 3.6.

Table 3.5: Computational results of solving the 3-scenario batch plant design problem with different
decomposition algorithms

3 scenario L+B L B LD PH
Upper bound (103$) 423.7 433.4 423.6 423.5 423.5
Lower bound (103$) 423.3 422.7 421.6 419.5 408.4

Relative optimality gap 0.09% 2.51% 0.46% 0.96% 3.70%
Wall time (s) 53 27 26 13 42

Upper bound subproblem (s) 32 11 25 6 9
Lagrangean subproblem (s) 38 37 - 21 24

Benders subproblem (s) 1 - 1 - -
Benders master problem (s) 10 3 5 - -

Progressive hedging (s) - - - - 49

Table 3.6: Computational results of solving the 27-scenario batch plant design problem with dif-
ferent decomposition algorithms

27 scenario L+B L B LD PH
Upper bound (103$) 415.9 421.8 415.9 416.2 416.1
Lower bound (103$) 413.7 404.7 413.6 403.6 404.2

Relative optimality gap 0.53% 4.21% 0.56% 3.12% 2.96%
Wall time (s) 228 66 110 37 56

Upper bound subproblem (s) 43 22 43 13 15
Lagrangean subproblem (s) 370 359 - 310 317

Benders subproblem (s) 7 - 7 - -
Benders master problem (s) 134 15 52 - -

Progressive hedging (s) - - - - 334

The sizes of subproblems are shown in Table 3.9. The size of the Benders master problem

corresponds to the size of the 243-scenario problem at the last iteration (59th iteration in this

case). Each subproblem is comparatively easier to solve than the deterministic equivalent

problems.

For the planning problem, it is shown in Table 3.4 that the NLP relaxation is weaker.

Therefore, using the lift-and-project cuts to tighten the Benders subproblem should be effec-
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Table 3.7: Computational results of solving the 81-scenario batch plant design problem with dif-
ferent decomposition algorithms

81 scenario L+B L B LD PH
Upper bound (103$) 413.6 418.8 413.6 413.8 413.8
Lower bound (103$) 411.4 402.9 411.3 402.6 403.2

Relative optimality gap 0.55% 3.96% 0.56% 2.78% 2.64%
Wall time (s) 574 146 352 86 129

Upper bound subproblem (s) 137 72 132 42 41
Lagrangean subproblem (s) 1015 1002 - 1018 913

Benders subproblem (s) 21 - 19 - -
Benders master problem (s) 319 32 183 - -

Progressive hedging (s) - - - - 967

Table 3.8: Computational results of solving the 243-scenario batch plant design problem with
different decomposition algorithms

243 scenario L+B L B LD PH
Upper bound (103$) 413.1 418.2 413.1 413.1 413.3
Lower bound (103$) 410.8 402.5 410.8 402.4 402.9

Relative optimality gap 0.55% 3.89% 0.56% 2.68% 2.58%
Wall time (s) 1962 490 609 270 376

Upper bound subproblem (s) 416 208 412 129 127
Lagrangean subproblem (s) 2557 2522 - 2657 2508

Benders subproblem (s) 64 - 56 - -
Benders master problem (s) 1132 153 1310 - -

Progressive hedging (s) - - - - 2621

Table 3.9: Size of each subproblem for the batch plant design problem

Binary variables Continuous variables Constraints
Benders master problem 24 16 21,895
Upper bound subproblem 24 54 116

Benders subproblem 0 78 116
Lagrangean subproblem 48 30 104

tive. Different decomposition algorithms are implemented and the computational results are

shown in Tables 3.10-3.13. SB+L represents the algorithm with both strengthened Benders
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cuts and Lagrangean cuts in the Benders master problem. SB represents the algorithm with

only strengthened Benders cuts in the Benders master problem. Besides that, L, L+B, LD,

and PH are also implemented as in the batch problem. All the decomposition algorithms are

able to solve the planning problem within the time limit. Among all the algorithms, SB+L

gives the smallest relative optimality gap in most cases. The algorithm with strengthened

Benders cuts can give tighter optimality gap than the algorithm use Benders cuts. It can

be observed that in most cases the strengthened Benders cuts can close the optimality gap

of the algorithm that uses Benders cuts by more than one half. The algorithms that use

strengthened Benders cuts or Lagrangean cuts always yield a tighter lower bound than the

Lagrangean decomposition or the progressive hedging algorithm. SB+L uses less time than

SB in all the cases because adding Lagrangean cuts reduces the number of iterations to con-

verge. The computational time of SB+L is significantly higher than L+B, since we have to

solve a large number of cut generating linear programs. It is shown in Tables 3.10-3.13 that

the CPU time of the cut generating linear programs is small compared to other subproblems.

Therefore, the significant increase in wall time is due to the data overhead of GAMS. If we

can implement SB+L in languages like C++, we could expect the wall time to be much

smaller. Note that in some cases, LD is able to give good feasible solutions. However, the

lower bound of LD is weaker than SB+L. In practice, if the decision-maker is not limited

by computational resources, our proposed algorithm, SB+L, can provide the tightest lower

bound and good feasible solutions. Otherwise, the decision-maker can also use Lagrangean

decomposition to obtain good feasible solutions.
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Table 3.10: Computational results of solving the 3-scenario planning problem with different de-
composition algorithms

3 scenario SB+L L SB L+B B LD PH
Upper bound (106$) 1523.0 1703.1 1515.3 1537.4 1516.6 1532.8 1703.1
Lower bound (106$) 1477.7 1472.1 1470.7 1472.4 1438.4 1471.9 1452.9

Relative optimality gap 3.07% 15.69% 3.03% 4.42% 5.44% 4.14% 17.22%
Wall time (s) 404 76 408 100 68 66 1384

Upper bound subproblem (s) 65 17 87 39 66 9 8
Lagrangean subproblem (s) 175 108 - 102 - 119 103

Benders subproblem (s) - - - 6 7 - -
Benders master problem (s) 35 6 30 15 18 - -

Cut generating linear program (s) 112 - 156 - - - -
Strengthened Benders subproblem (s) 54 - 73 - - - -

Progressive Hedging (s) - - - - - - 1770

Table 3.11: Computational results of solving the 9-scenario planning problem with different de-
composition algorithms

9 scenario SB+L L SB L+B B LD PH
Upper bound (106$) 1514.7 1702.6 1512.4 1528.6 1517.5 1545.5 1702.6
Lower bound (106$) 1473.2 1439.3 1470.8 1456.5 1438.3 1438.0 1440.5

Relative optimality gap 2.82% 18.30% 2.83% 4.95% 5.51% 7.48% 18.19%
Wall time (s) 771 135 942 220 123 111 1695

Upper bound subproblem (s) 197 52 271 111 210 27 25
Lagrangean subproblem (s) 695 446 - 471 - 427 308

Benders subproblem (s) - - - 20 37 - -
Benders master problem (s) 62 7 96 57 51 - -

Cut generating linear program (s) 394 - 506 - - - -
Strengthened Benders subproblem (s) 174 - 243 - - - -

Progressive Hedging (s) - - - - - - 4377

The sizes of the subproblems and the master problem of the SB+L algorithm for the

planning problem are shown in Table 3.14. The size of the Benders master problem and the

strengthened Benders subproblem is the size of the 81-scenario problem in the last iteration

(iteration 92). Note that the strengthened Benders subproblem can have as many as 2,208

more constraints than the Benders subproblem in the last iteration. Those correspond to

the rank-one lift-and-project cuts that are generated.
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Table 3.12: Computational results of solving the 27-scenario planning problem with different de-
composition algorithms

27 scenario SB+L L SB L+B B LD PH
Upper bound (106$) 1504.4 1698.5 1509.7 1516.0 1557.8 1509.0 1521.7
Lower bound (106$) 1462.0 1422.2 1460.4 1441.7 1418.5 1420.7 1425.3

Relative optimality gap 2.90% 19.43% 3.38% 5.16% 9.82% 6.22% 6.76%
Wall time (s) 2115 234 2434 1448 156 209 2593

Upper bound subproblem (s) 577 5 757 27423 121 99 93
Lagrangean subproblem (s) 2114 2141 - 2123 - 2047 1384

Benders subproblem (s) - - - 67 24 - -
Benders master problem (s) 167 23 204 156 68 - -

Cut generating linear program (s) 959 - 1311 - - - -
Strengthened Benders subproblem (s) 404 - 584 - - - -

Progressive Hedging (s) - - - - - - 18827

Table 3.13: Computational results of solving the 81-scenario planning problem with different de-
composition algorithms

81 scenario SB+L L SB L+B B LD PH
Upper bound (106$) 1502.8 1698.5 1505.5 1512.7 1553.1 1509.3 1507.2
Lower bound (106$) 1461.2 1418.5 1460.4 1441.5 1419.0 1416.7 1423.7

Relative optimality gap 2.85% 19.74% 3.09% 4.94% 9.45% 6.53% 5.87%
Wall time (s) 5986 555 10437 1239 729 348 4912

Upper bound subproblem (s) 1155 21 1690 1476 1589 260 362
Lagrangean subproblem (s) 8835 10100 - 10476 - 8164 5227

Benders subproblem (s) - - - 222 138 - -
Benders master problem (s) 372 80 604 570 443 - -

Cut generating linear program (s) 2412 - 3506 - - - -
Strengthened Benders subproblem (s) 975 - 2597 - - - -

Progressive Hedging (s) - - - - - - 125690

3.4 Conclusions

In this chapter, we have proposed an improved L-shaped method that can solve two-stage

convex 0-1 mixed-integer nonlinear stochastic programs with mixed-integer variables in both

first and second stage effectively. The proposed algorithm is a Benders-like decomposition

algorithm that includes (strengthened) Benders cuts and Lagrangean cuts in the Benders
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Table 3.14: Size of each subproblem for the planning problem

Binary variables Continuous variables Constraints
Benders master problem 12 28 9,907
Upper bound subproblem 24 748 763

Benders subproblem 0 772 763
Strengthened Benders subproblem 0 772 2,971

Cut generating linear program 0 2,387 4,639
Lagrangean subproblem 36 736 739

master problem. The Benders cuts are derived by solving the Benders subproblems, which

are the NLP relaxations of the subproblems for each scenario after the first stage decisions

are fixed at the optimal solution of the Benders master problem. The strengthened Benders

cut are derived by adding rank-one lift-and-project cuts to the Benders subproblem. The

Lagrangean cuts are derived by solving the Lagrangean subproblems whose multipliers are

updated by a new subgradient method.

Different decomposition algorithms including SB+L, L, SB, L+B, B, LD, PH are imple-

mented and tested using the planning problem under demand and price uncertainty, and the

batch plant design problem under demand uncertainty. It is shown that the combination of

Lagrangean cuts and strengthened Benders cuts is able to provide the tightest lower bound

among all the decomposition algorithms that we test although it requires more time than al-

gorithms like LD. The proposed algorithm can be used as an effective computational strategy

to solve problems of the same type in PSE applications. However, computational results on

more examples would be desirable to show the performance of the algorithm. Moreover, the

proposed algorithm is not guaranteed to close the optimality gap of the problems due to the

duality gap of the Lagrangean cuts and the integrality gap of the strengthened Benders cuts.

Therefore, a more rigorous algorithm that has finite convergence would also be desirable.
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Chapter 4

A Finite ϵ-convergence Algorithm for

Two-Stage Stochastic Convex

Nonlinear Programs with

Mixed-Binary First and Second-Stage

Variables

In this chapter, we propose a GBD-based algorithm that can solve two-stage convex

mixed-binary nonlinear stochastic programs with mixed-binary first and second-stage vari-

ables with finite ϵ-convergence. This work is inspired by Sherali and Zhu Sherali and Zhu

(2006) who propose a Benders decomposition algorithm to solve two-stage mixed-binary lin-

ear stochastic programs having mixed-binary first and second-stage variables. The authors

use reformulation linearization technique (RLT) to convexify the original MILP subproblems.

However, the algorithm proposed by Sherali and Zhu Sherali and Zhu (2006) cannot be

applied to convex nonlinear problems directly. Due to recent advances in generalized disjunc-

tive programming (GDP), especially the work of Ruiz and Grossmann Ruiz and Grossmann

(2012), we now have a procedure to obtain the convex hull of the feasible region of a convex
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MINLP. By adapting the convexification scheme proposed in Ruiz and Grossmann (2012)

to two-stage stochastic programs, we are able to develop a GBD-based algorithm with finite

ϵ-convergence. The proof of convergence is more general and different than the convergence

proof by Sherali and Zhu Sherali and Zhu (2006). We also propose a sequential convexifi-

cation scheme to reduce the sizes of the subproblems. To the best of our knowledge, the

proposed algorithm is the first GBD-based algorithm for this type of problem.

4.1 Background

In this section, we provide some background on disjunctive convex programming and

basic steps used in Ruiz and Grossmann (2012) to construct the convex hull of the MINLP

subproblem in closed-form.

A convex set C can be defined as C={x ∈ IRn|ϕ(x) ≤ 0}, where ϕ(x) : IRn → IR1 is a

convex function. Given a collection of sets such that Cj={x ∈ IRn|ϕj(x) ≤ 0}, j ∈ M , the

union of the convex sets, which is an elementary disjunctive set, is defined as:

H = ∪
j∈M

Cj = {x ∈ IRn| ∨
j∈M

ϕj(x) ≤ 0} (4.1)

and the intersection of convex sets can be expressed as:

P = ∩
j∈M

Cj = {x ∈ IRn| ∧
j∈M

ϕj(x) ≤ 0} (4.2)

A disjunctive set can be expressed in different forms. Two extreme cases are the conjunctive

normal form (CNF) and the disjunctive normal form (DNF). The CNF is the intersection of

some elementary disjunctive sets:

FCNF = ∩
i∈T
Hi (4.3)

where each Hi is an elementary disjunctive set. The DNF is the union of some convex sets:

FDNF = ∪
i∈D

Pi (4.4)

where each set Pi is a convex set defined by convex functions ϕj, j ∈ Mi. Pi can also be

represented in a more succinct form Pi = {x ∈ IRn|gi(x) ≤ 0}, where gi(x): IRn → IRm.
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A regular form (RF) between the CNF and DNF can be represented as:

FRF = ∩
k∈K

Sk (4.5)

where Sk = ∪i∈Dk
Pi. Each Sk is called a disjunction, which is over some convex sets Pi,

i ∈ Dk. Each Pi, i ∈ Dk, is an element of disjunction k and is called a disjunct. Balas Balas

(1985) proposes an operation called basic step, which when applied to the regular form can

reduce the number of conjuncts by one in the linear case. The basic step is extended by

Ruiz and Grossmann Ruiz and Grossmann (2012) to convex nonlinear case. Here, we rewrite

Theorem 2.1 in Ruiz and Grossmann (2012), which is an extension of the theorem in Balas

Balas (1985) to show how a CNF can be transformed into a DNF.

Theorem 1. Let FRF be a disjunctive set in regular form. Then FRF can be brought to

DNF by |K|− 1 recursive applications of the following basic step which preserves regularity:

For some r, s ∈ K, bring Sr ∩ Ss to DNF by replacing it with:

Srs =
⋃

i∈Dr,j∈Ds

(Pi ∩ Pj)

Theorem 1 will be used to construct the convex hull the MINLP subproblem in our

proposed algorithm.

4.2 Overview of basic ideas

The goal of this chapter is to design a decomposition algorithm that has finite ϵ-convergence

for two-stage convex mixed-binary nonlinear stochastic programs with mixed-binary first

and second-stage variables. While GBD cannot be applied to problems with mixed-binary

recourse directly, it has finite ϵ-convergence for problems with convex constraints and con-

tinuous recourse variables as proved by Geoffrion Geoffrion (1972). Therefore, we propose to

construct the convex hull for the integer-constrained subproblems by applying basic steps so

that GBD can be applied to solve the relaxed problem. However, the relaxed problem is not

equivalent to the original problem if we have mixed-binary first-stage variables. Therefore,

we first prove that the relaxed problem is equivalent to the original full-space problem for

the special case of pure binary first-stage variables. Based on the theoretical results of the
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problems with pure binary variables, we propose a GBD-based branch and bound algorithm

for the general problems with mixed-binary first and second-stage variables where we may

branch on the continuous first-stage variables. The details of the algorithm are described in

section 4.3.

Constructing the convex hull by applying all the possible basic steps for each subproblem

can be expensive, especially when we have a large number of binary variables in the second

stage. Therefore, in section 4.4, we describe a sequential convexification scheme, which is a

more limited way for convexifying the subproblem to avoid applying all the basic steps when

certain sufficient conditions are satisfied. Computational results of the proposed GBDBAB

algorithm are shown in section 4.5 with one small illustrative example and two process

systems engineering applications.

4.3 GBD-based branch and bound algorithm

In this chapter, we consider two-stage convex mixed-binary nonlinear stochastic programs

with mixed-binary first and second-stage variables. The problem is formally defined by

(4.6a)-(4.6e).

(P ) min cTx+
∑
ω∈Ω

τωd
T
ωyω (4.6a)

A0x ≥ b0, g0(x) ≤ 0 (4.6b)
A1,ωx+ g1,ω(yω) ≤ b1,ω ∀ω ∈ Ω (4.6c)

x ∈ X, X =
{
x : xi ∈ {0, 1},∀i ∈ I1, 0 ≤ x ≤ xub

}
(4.6d)

yω ∈ Y ∀ω ∈ Ω, Y =
{
y : yj ∈ {0, 1},∀j ∈ J1, 0 ≤ y ≤ yub

}
(4.6e)

Here, x represents the first-stage decisions. yω represents the second-stage decisions in

scenario ω. g0, g1,ω, are smooth convex functions. Note that the convex functions in-

clude linear functions. Both the first and the second-stage decisions are mixed-binary. Let

I = {1, 2, · · · , n} be the index set of all the first-stage variables. Set I1 ⊆ I is the subset for

indices of the binary first-stage variables. Let J = {1, 2, · · · ,m} be the index set of all the

second-stage variables. Set J1 ⊆ J is the subset for the indices of the binary second-stage
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variables. Vector xub represents the upper bound of all the first-stage variables. Vector yub

represents the upper bound of all the second-stage variables. In this chapter, we make the

following assumptions about the problem (P ). The readers will see that these assumptions

are used to prove the convergence of the proposed algorithm.

Assumption 1. Problem (P ) has relatively complete recourse, i.e., any solution x that

satisfies the first stage constraints has feasible recourse decisions in the second stage.

Assumption 2. The feasible region of (P ) is compact.

Assumption 3. xub and yub are finite, i.e., both the first and the second-stage decisions are

bounded.

As (P ) has mixed-binary recourse, generalized Benders decomposition (GBD) (Geoffrion,

1972) cannot be applied to solve it directly as in the case of convex continuous recourse.

Therefore, we construct convex relaxations of (P ) so that GBD can be applied to solve the

problem.

We first define the set,

Sω =
{
(x, yω|A1,ωx+ g1,ω(yω) ≤ b1,ω, yω ∈ Y, 0 ≤ x ≤ xub

}
(4.7)

where the second stage constraints and the upper and lower bound constraints for the first-

stage decisions are included for each scenario ω. The full-space problem with (x, yω) in the

convex hull of Sω for all ω ∈ Ω is defined as (PC):

(PC) min cTx+
∑
ω∈Ω

τωd
T
ωyω (4.8a)

A0x ≥ b0, g0(x) ≤ 0 (4.8b)

x ∈ X (4.8c)

(x, yω) ∈ conv(Sω) ∀ω ∈ Ω (4.8d)

Since the integrality constraints in the second stage are relaxed, (PC) is a relaxation of

(P ). Specifically, conv(Sω) can be characterized by applying the hierarchy of relaxations for
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nonlinear convex generalized disjunctive programs proposed by Ruiz and Grossmann (2012).

As a subset of the second-stage variables yω are binary, i.e., (yω)j ∈ {0, 1}, ∀j ∈ J1, the set

Sω is equivalent to the disjunctions in (4.9).
A1,ωx+ g1,ω(yω) ≤ b1,ω

0 ≤ x ≤ xub

0 ≤ yω ≤ yub

(yω)j = 1

 ∨


A1,ωx+ g1,ω(yω) ≤ b1,ω

0 ≤ x ≤ xub

0 ≤ yω ≤ yub

(yω)j = 0

 ∀j ∈ J1 (4.9)

We represent (4.9) as S1
ωj ∪ S0

ωj, ∀j ∈ J1. Here, we slightly abuse notation and call equation

(4.9) a conjunctive normal form (CNF) representation of Sω where Sω is represented as a

conjunction over the disjunctions, i.e., Sω = ∩j∈J1(S
1
ωj ∪S0

ωj). Note that the exact definition

of CNF is shown in (4.3). The hull relaxation of the CNF (4.9), denoted by h-rel
(
∩j∈J1

(S1
ωj ∪ S0

ωj)
)
, is equivalent to ∩j∈J1conv(S

1
ωj ∪ S0

ωj). We know that ∩j∈J1conv(S
1
ωj ∪ S0

ωj) ⊆

conv(∩j∈J1S
1
ωj∪S0

ωj) = conv(Sω). Therefore, the hull relaxation of the CNF is a relaxation of

conv(Sω). In order to construct conv(Sω), we apply the basic step proposed by Balas (1985)

to the CNF (4.9). Based on the Theorem 1, the CNF can be converted to the following DNF

shown in (4.10),

∨r∈R


A1,ωx+ g1,ω(yω) ≤ b1,ω

0 ≤ x ≤ xub

0 ≤ yω ≤ yub

(yω)j = erj ∀j ∈ J1

 (4.10)

where R is the set that corresponds to all the possible combinations of the binary variables

(yω)j, ∀j ∈ J1. For each r ∈ R, erj can be either zero or one. There are 2|J1| components in

the set R. Ceria and Soares (1999) proved that the convex hull of the DNF (4.10) can be

expressed as the projection of a higher dimensional convex set where (x, yω) has to satisfy
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the following constraints:

x =
∑
r∈R

urω

yω =
∑
r∈R

vrω∑
r∈R

γrω = 1, 0 ≤ γrω ≤ 1, ∀r ∈ R

A1,ωu
r
ω + γrωg1,ω(v

r
ω/γ

r
ω) ≤ b1,ωγ

r
ω, ∀r ∈ R

0 ≤ urω ≤ xubγrω, ∀r ∈ R

0 ≤ vrω ≤ yubγrω, ∀r ∈ R

(vω)j = erjγ
r
ω ∀j ∈ J1, r ∈ R

(4.11)

where the perspective function of g1,ω, γrωg1,ω(vrω/γrω), has to be used. According to Ruiz and

Grossmann (2012), (x, yω) is in conv(Sω) if and only if it satisfies the constraints in (4.11).

Since the perspective function of g1,ω used in (4.11) can give rise to numerical difficulties at

γrω = 0, the approximation proposed by Furman et al. (2016) is used in our implementation,

γrωg1,ω(v
r
ω/γ

r
ω) ≈

(
(1− κ)γrω + κ

)
g1,ω

( vrω
(1− κ)γrω + κ

)
− κg1,ω(0)(1− γrω) (4.12)

where κ is a small number like 10−5. We should note that this approximation is exact at

γrω = 0 and γrω = 1. As we are able to construct conv(Sω) for all ω ∈ Ω in closed-form, GBD

can be applied to solve (PC) to ϵ-optimality.

We briefly describe how GBD can be used to solve (PC), the reader can refer to Geoffrion

(1972) for details. The basic idea of GBD is to decompose (P ) into a Benders master

problem which only contains first-stage decisions and Benders subproblems each of which

only contains second-stage decisions for a given scenario.

We first define the Benders master problem (MBh) at iteration h of the GBD algorithm.

Equation (4.13c) are Benders cuts that are generated up until iteration h, which are derived

by solving the Benders subproblems (SBh
ω). Benders master problem is a relaxation of (PC)

projected on the x space. Therefore, a lower bound of (PC) is obtained by solving the
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MINLP Benders master problem:

(MBh) : min zhMB =
∑
ω

ηω (4.13a)

s.t. A0x ≥ b0, g0(x) ≤ 0 (4.13b)

ηω ≥ z∗h
′

SB,ω + (λh
′

ω )
T (x− x̃h

′
) + τωc

Tx ∀ω ∈ Ω, h′ ≤ h (4.13c)

x ∈ X, ηω ∈ IR1, ∀ω ∈ Ω (4.13d)

Assume that the solution to the Benders master problem at iteration h is x̃h, x is fixed at

x̃h in (PC). The rest of the problem can be decomposed into Benders subproblems (SBh
ω).

(SBh
ω) : min zhSB,ω = τωd

T
ωyω (4.14a)

s.t. x = x̃h (4.14b)

(x, yω) ∈ conv(Sω) (4.14c)

A Benders cut can be generated at iteration h:

ηω ≥ z∗hSB,ω + (λhω)
T (x− x̃h) + τωc

Tx (4.15)

where λhω are the optimal dual multipliers for constraints (4.14b), z∗hSB,ω is the optimal ob-

jective value of (SBh
ω). A feasible solution to (PC) is obtained at the optimal solution of

the Benders subproblem. After solving the Benders subproblems at iteration h, GBD will

add the newly generated Benders cuts to the Benders master problem and keep iterating

between the Benders master problem and the Benders subproblems until (PC) is solved to

ϵ-optimality.

Although GBD can be applied to solve (PC), for the problem with both binary and

continuous first-stage variables, Sherali and Zhu (2006) showed that in the MILP setting

(PC) is not always equivalent to (P ), since for fixed first stage decision x̄, the extreme

points of conv(Sω) ∩ {(x, y) : x = x̄} will not always have binary values for yj, ∀j ∈ J1. As

convex MINLP is a generalization of MILP, it is straightforward to show that (PC) is not

always equivalent to (P ).
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However, it is also shown in Sherali and Zhu (2006) that in the MILP setting, under

the restriction of pure binary first-stage variables, (PC) and (P ) are equivalent. Therefore,

before we consider the proposed GBD-based algorithm to solve problem (P ) with both binary

and continuous first-stage variables, the equivalence of (P ) and the corresponding (PC) with

pure binary first-stage variables is proved in Proposition 1. The convergence of the GBD-

based algorithm for the problem with mixed-binary first-stage variables will be proved later

based on Proposition 1 and Corollary 1.

Proposition 1. Consider a special case of (P ) where the first-stage variables are all binary.

We assume that in the corresponding problem (PC), the convex hull of Sω is expressed in

the form of (4.11). Then (P ) and (PC) are equivalent in the sense that they have the same

optimal objective value and the optimal solution of (P ) can always be obtained based on the

optimal solution of (PC).

Proof. Note that (PC) is a relaxation of (P ). Hence the optimal objective value of (PC)

should be less than or equal to (P ). Let (x∗, y∗ω1
, y∗ω2

, · · · , y∗ω|Ω|
) be the optimal solution of

(PC). Now if we select any scenario ω, we have (x∗, y∗ω) ∈ conv(Sω). For this scenario ω,

we have x∗ =
∑

r∈R u
r∗
ω and y∗ω =

∑
r∈R v

r∗
ω . As we have assumed that x are pure binary

variables and we have 0 ≤ ur∗ω ≤ eγr∗ω , for any (x∗)i = 1, we must have (ur∗ω )i = γr∗ω , otherwise∑
r∈R(u

r∗
ω )i will not sum up to 1. For any (x∗)i = 0, (ur∗ω )i must be zero for all r. Therefore,

for all γr∗ω > 0, we have ur∗ω /γr∗ω = x∗. Furthermore, for all γr∗ω > 0, dTvr∗ω /γr∗ω = dTy∗ω.

Otherwise, there must exist r′ and r′′ such that dTvr′∗ω /γr
′∗

ω > dTy∗ω and dTvr′′∗ω /γr
′′∗

ω < dTy∗ω.

Then vr′′∗ω /γr
′′∗

ω satisfies all the constraints of (PC) and leads to a lower objective value than

y∗ω, which contradicts with the fact that y∗ω is the optimal solution. Therefore, we can select

any γr∗ω > 0, and let yω = vr∗ω /γr∗ω to construct a feasible solution that yields the same cost in

the objective as y∗ω. We can follow the same procedure to construct the optimal solution of

every scenario ω ∈ Ω. Note that the solution that we construct satisfies all the constraints

of (P ) and yields the same objective value as the optimal solution to (PC). In that sense,

(PC) and (P ) are equivalent.

The following theorem can be proved based on Proposition 1.
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Theorem 2. GBD can be applied to obtain the ϵ-optimal solution of problem (P ) with pure

binary first-stage variables by solving its relaxation (PC).

Proof. As we have assumed that the feasible region of (P ) is nonempty compact and the

problem has relatively complete recourse, conv(Sω) is nonempty compact convex set for any

fixed x, s.t. x ∈ X, A0x ≥ b0, g0(x) ≤ 0, for every ω ∈ Ω. It follows directly from Theorem

2.5 of Geoffrion (1972) that GBD has finite ϵ-convergence when applied to solve (PC). It is

proved in Proposition 1 that (P ) and (PC) are equivalent for the problem with pure binary

first-stage variables. Therefore, GBD can be applied to obtain the ϵ-optimal solution of

problem (P ) with pure binary first-stage variables by solving its relaxation (PC).

Now we go back to focus on the problem (P ) with both binary and continuous first-stage

variables. A corollary can be derived based on Proposition 1.

Corollary 1. For (PC) with both binary and continuous first-stage variables, if the optimal

first-stage variables x∗ to (PC) are all at their upper or lower bound, i.e., (x∗)i = 0 or

(x∗)i = (xub)i, ∀i ∈ I, then (PC) and its corresponding (P) are equivalent in the sense that

they have the same optimal objective value.

Proof. The proof is similar to the case where we have pure binary first-stage variables. As

(x∗)i = 0 or (x∗)i = (xub)i, ∀i, we must have ur∗ω /γrω = x∗ for all γr∗ω > 0. Therefore, we can

construct a feasible solution to (P ) by letting yω = vr∗ω /γr∗ω where γr∗ω > 0 for all ω ∈ Ω. The

feasible solution yields the same objective value as the optimal solution to (PC).

If the condition of Corollary 1 does not hold, the equivalence of (PC) and (P ) cannot

be guaranteed as we have discussed. In order to understand why (PC) and (P ) are not

equivalent in the general case, we can determine if the proof of Proposition 1 still holds

for the problem with mixed-binary first-stage variables. As we construct the convex hull of

each scenario separately, if we take ur∗ω /γr∗ω for some γr∗ω > 0 for each scenario ω as we did

in Proposition 1 and Corollary 1, it is possible that we fail to obtain a unique first-stage

decision for all the scenarios if some (x∗)i is not at its lower or upper bound. The reason

why this occurs is that for component i of x∗ such that (x)i does not lie at its upper or
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lower bound, there may exist one scenario ω for which we have (x∗)i =
∑

r∈R(u
r∗
ω )i but there

exist r′, r′′ with γr
′∗

ω > 0, γr′′∗ω > 0, (ur′∗ω /γr
′∗

ω )i < (x∗)i , (ur′′∗ω /γr
′′∗

ω )i > (x∗)i. As (ur∗ω /γr∗ω )i,

γr∗ω > 0, is not always equal to (x∗)i, the uniqueness of x obtained by taking ur∗ω /γr∗ω for some

γr∗ω > 0 for each scenario ω cannot be guaranteed. However, if we branch on the continuous

first-stage variables x, for example, by forcing (x)i ≥ x∗i at a given branch-and-bound node

and furthermore in the construction of convex hull (urω)i ≥ (x)∗i γ
r
ω are added, the solution

where (ur
′∗

ω /γr
′∗

ω )i < (x∗)i will be cut off.

Inspired by the work of Sherali and Zhu (2006), we propose a spatial branch-and-bound

algorithm where we branch on the continuous first-stage variables. At each node q of the

branch-and-bound tree. The following problem (PCBABq) is solved,

(PCBABq) min cTx+
∑
ω∈Ω

τωd
T
ωyω (4.16a)

A0x ≥ b0, g0(x) ≤ 0 (4.16b)

xlbq ≤ x ≤ xubq (4.16c)

x ∈ X (4.16d)

(x, yω) ∈ conv(Sq
ω) (4.16e)

Sq
ω =

{
(x, yω|A1,ωx+ g1,ω(yω) ≤ b1,ω, yω ∈ Y, xlbq ≤ x ≤ xubq

}
(4.16f)

Note that the only difference between Sq
ω and Sω is that the first-stage decisions x is con-

strained in [xlbq , x
ub
q ] in Sq

ω. As we assume that problem (P ) has relatively complete recourse,

conv(Sq
ω) is a nonempty compact convex set for any fixed x, s.t. x ∈ X, xlbq ≤ x ≤ xubq ,

A0x ≥ b0, g0(x) ≤ 0, for every ω ∈ Ω. Therefore, at each node q of the branch-and-bound

tree, GBD can be applied to solve (PCBABq) to ϵ-optimality in the same way that we

solve (PC). We denote the optimal objective of (PCBABq) as v(PCBABq). The optimal

solution to (PCBABq) is (x∗q, y∗qω1
, y∗qω2

,· · · , y∗qω|Ω|
). A heuristic algorithm can be applied to

find a feasible solution to problem (P ), while x has to satisfy the upper and lower bound

constraints at node q.
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Heuristic 1: Fix the first-stage decisions at the optimal solution of (PCBABq), x∗q. Solve

the subproblems with integrality constraints in parallel with some MINLP solvers, such as

DICOPT (Viswanathan and Grossmann, 1990), Pajarito (Lubin et al., 2016), SBB (Bussieck

and Drud, 2001), AlphaECP (Westerlund and Lundqvist, 2001). Note that we assume rel-

atively complete recourse. Therefore, a feasible solution to (P ) can be obtained at node q,

which is denoted as (xfq , yfqω1
,yfqω2

,· · · ,yfqω|Ω|
).

We denote the objective of the feasible solution found at node q as V (PCBABq). Note that

v(PCBABq) and V (PCBABq) are valid lower and upper bounds for the original problem

(P ), respectively, if the domain of x is restricted to [xlbq , x
ub
q ]. In the GBD-based branch and

bound algorithm, if V (PCBABq) ≤ v(PCBABq)+ϵ, node q can be fathomed by optimality.

We denote the global lower bound as v, the global upper bound as V . If v(PCBABq) ≥ V ,

node q is fathomed by bound. Otherwise, we select one component of the continuous first-

stage variables to branch on. The following branching rule is used to select one component

of the continuous first stage variable to branch on.

Branching rule A:

At node q, calculate the distance of each component of the optimal continuous first-stage

variables to its bounds at node q.

σi = min{(x∗q)i − (xlbq )i, (x
ub
q )i − (x∗q)i}, ∀i ∈ I\I1 (4.17)

The variable with maximum distance to its bounds is selected to branch on.

p = arg max
i∈I\I1

σi (4.18)

By using Branching rule A, we are able to prove the convergence of the proposed algorithm

later in this section.

The node q is partitioned into two new nodes q1, q2. Constraints (xlbq )p ≤ (x)p ≤ (x∗q)p

and (x∗q)p ≤ (x)p ≤ (xubq )p are added to node q1 and q2 respectively.

The steps of the GBD-based branch-and-bound algorithm are outlined as follows.

Algorithm GBDBAB

Step 0: Initialization Step. Initialize the global upper bound V = +∞, the global lower

bound v = −∞, the iteration counter k = 1, the list of active nodes Lk = {q0}. Set xlbq0 = 0,

105



Chapter 4. A Finite ϵ-convergence Algorithm for Two-Stage Stochastic Convex Nonlinear Programs with
Mixed-binary First and Second-stage Variables

xubq0 = xub. Let ϵ ≥ 0 be a selected optimality tolerance. Use GBD to solve the problem at

the root node q0 to ϵ-optimality. Let v = v(PCBABq0). Apply a heuristic algorithm like

heuristic 1 to obtain a feasible solution to (P ) denoted as (xfq0 , y
f
q0). Let the objective value

of the feasible solution at node q0 be Vq0 . Set V = Vq0 . If V ≤ v + ϵ, stop. Otherwise, go to

step 1.

Step 1: Branching Step. Select the node q in the active node list with the minimum

lower bound v(PCBABq). Branch on first stage variable (x)p according to the Branch-

ing rule A. Create two new nodes q1, q2 and add constraints (xlbq )p ≤ (x)p ≤ (x∗q)p and

(x∗q)p ≤ (x)p ≤ (xubq )p to node q1 and q2 respectively. Let k = k+1. Delete node q in Lk and

add node q1, q2 to Lk. Go to step 2.

Step 2: Bounding Step. Solve the two problems (PCBABq1) and (PCBABq2) using

generalized Benders decomposition to ϵ-optimality respectively. Update the global lower

bound v with v = minq∈Lk
v(PCBABq). A heuristic algorithm is applied to obtain feasible

solutions at node q1 and q2 that yield objective values of V (PCBABq1) and V (PCBABq2)

respectively. Update the global upper bound V if V (PCBABq1) ≤ V or V (PCBABq2) ≤ V .

Go to Step 3.

Step 3: Fathoming Step. For the two new nodes qi, i = 1, 2, fathom the node if

V (PCBABqi) ≤ v(PCBABqi) + ϵ, i = 1, 2. Fathom any node q with v(PCBABq) + ϵ ≥ V .

If the node list Lk becomes empty, stop. Otherwise go to step 1.

In order to prove the finite ϵ-convergence of our proposed GBDBAB algorithm we make

the following assumption.

Assumption 4. ∀ϵ > 0, ∃δϵ > 0, such that for any node q with σi ≤ δϵ, ∀i ∈ I\I1,

V (PCBABq) ≤ v(PCBABq) +ϵ, i.e., the node is fathomed by optimality if σi ≤ δϵ, ∀i ∈

I\I1. Here σi, ∀i ∈ I\I1, is defined in Branching rule A. V (PCBABq) is obtained by

heuristic 1.

As we have assumed that problem (P ) is bounded, the change of the first-stage variables
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can only have finite change of value in the objective. As δϵ → 0, node q can be fathomed by

optimality based on Corollary 1. Therefore, Assumption 4 always holds for problems that

are bounded.

Proposition 2. If Assumption 4 holds, the algorithm GBDBAB has finite ϵ-convergence.

Proof. First we prove that for a given node q and any continuous first-stage variables (x)i in

node q that are constrained in the interval
[
(xlbq )i, (x

ub
q )i
]

where (xubq )i − (xlbq )i ≤ δϵ, variable

i will not be branched on again if branching rule A is used. Assuming that variable i is

branched on again when branching rule A is used, we have σi′ ≤ σi ≤ δϵ, ∀i′ ∈ I\{I1 ∪ i}.

However, by Assumption 4, any node q with σi ≤ δϵ, ∀i ∈ I\I1,is fathomed by optimality.

We reach a contradiction. Therefore, in the worst case, the domain of each continuous first

stage variable will be partitioned into intervals with length δϵ. There will be a finite number

of hyperrectangle partitions for the domain of the continuous first-stage variables [0, xub], i.e.,

a finite number of nodes in the branch-and-bound tree. In each node, GBD can converge in

a finite number of iterations according to Geoffrion (1972). Thus, the algorithm GBDBAB

is able to converge to ϵ-optimum in a finite number of iterations.

Remark. Here, in order to prove the convergence of the algorithm, we assume that the con-

vex hull of Sq
ω is constructed by the hierarchy of relaxations proposed (Ruiz and Grossmann,

2012). If there are only a few binary variables in the second stage, the representation of the

convex hull is tractable. However, if the number of binary variables in the second stage is

large, it is computationally expensive to represent the convex hull since there can be 2|J1|

disjuncts. Therefore, a more limited sequential convexification approach should be applied,

which will be discussed in section 4.4.

Remark. Note that at each branching step, the child nodes generated are restrictions of

their parent node. The Benders cuts in the master problem of the parent node can be by

inherited by the child nodes, which will make the GBD algorithm for the child node require

fewer iterations to converge compared to running it from scratch.
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An illustrative example

The following problem is solved by GBDBAB as an illustrative example.

min x1 + x2 + 3x3 + 3x4 +
∑

ω=ω1,ω2

τω
(
y1ω − 12y2ω + 100y3ω + 3y4ω − 3y5ω

)
(4.19a)

x1 ≤ 4x3, x2 ≤ 2x4, (4.19b)

x1, x2 ≥ 0 x3, x4 ∈ {0, 1} (4.19c)

y1ω ≤ x1, y2ω ≤ x2 ∀ω = ω1, ω2 (4.19d)

(y1ω − 3)2 + (y2ω − 2)2 ≤ 1 + 16(1− y4ω) ∀ω = ω1, ω2 (4.19e)

(y1ω − 1)2 + y22ω ≤ 1 + 16y4ω ∀ω = ω1, ω2 (4.19f)

y21ω + (y2ω − 1)2 ≤ 1 + 16(1− y5ω) ∀ω = ω1, ω2 (4.19g)

(y1ω − 4)2 + (y2ω − 1)2 ≤ 1 + 16y5ω ∀ω = ω1, ω2 (4.19h)

y1ω + y2ω + y3ω ≥ dω ∀ω = ω1, ω2 (4.19i)

y1ω, y2ω, y3ω ≥ 0, y4ω, y5ω ∈ {0, 1} ∀ω = ω1, ω2 (4.19j)

where x1, x2, x3, x4 are the first-stage variables, y1ω, y2ω, y3ω, y4ω, y5ω are the second-stage

variables. Both the first and the second-stage variables are mixed-binary. τω1 = τω2 = 0.5.

dω is the uncertain parameter. dω1 = 1.5, dω2 = 2. Here we describe how this problem can

be solved by GBDBAB. Recall that at each node q of the branch and bound tree, GBD is

applied to solve problem (PCBABq).

For this problem, three nodes are visited in order to solve the problem to a relative

optimality gap within 0.1% (see Figure 4.1). At each node, the lower bound v(PCBABq)

is the lower bound obtained by the GBD algorithm, i.e., the objective value of the Benders

master problem in the last iteration. The upper bound V (PCBABq) is obtained by using

Heuristic 1.
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v(PCBABq), V (PCBABq), the optimal solution at each node are shown in Table 4.1.

The Benders cuts that are generated at all the nodes are shown in Tables B.1-B.3 in Appendix

1. At the root node, 15 iterations are needed for the GBD algorithm to converge. However,

the relative optimality gap of the global upper and lower bound that can be obtained at

the root node is not within 0.1%. Therefore, we select one continuous first stage variable to

branch on according to branching rule A. x1 is branched on and two new nodes 1 and 2 are

created. GBD is applied to solve the problem at nodes 1 and 2, respectively. Both nodes 1

and 2 inherit the Benders cuts of the root node because the problems solved at these two

nodes are restrictions of the root node and the Benders cuts of the root node are still valid.

As a result, only 3 and 2 iterations are needed for the GBD to converge at nodes 1 and 2,

respectively (see Tables B.2, B.3). The upper and the lower bounds of nodes 1 and 2 are

within 0.1% optimality gap. Nodes 1 and 2 can be fathomed by optimality and GBDBAB

terminates. An optimal value of -6.02080 is obtained.

However, if the hull relaxation of the CNF is used, which is a relaxation of conv(Sq
ω),

the lower bound that can be obtained at the root node is -12.5767. The DNF yields a much

tighter lower bound than the CNF at the root node, which shows the impact of applying the

basic step.

0

1 2

𝑥" ≥ 1.00000 𝑥" ≤ 1.00000

Figure 4.1: Branch and bound tree for the illustrative example

4.4 A sequential convexification scheme to solve (PCBABq)

In solving problem (PCBABq), we assume that the convex hulls of Sq
ω, ∀ω ∈ Ω are

constructed by applying the basic steps and converting each GDP from a CNF to a DNF.
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Table 4.1: Optimal solution, upper and lower bound at each node of the BAB tree

Node v(PCBABq) V (PCBABq) x∗1 x∗2 x∗3 x∗4 Branching constraints
0 -6.04451 -5.98613 1.00000 1.03467 1 1 -
1 -6.02092 -6.02072 1.00005 1.00003 1 1 x1 ≥ 1.00000
2 -6.02082 -6.02080 1.00000 1.00000 1 1 x1 ≤ 1.00000

However, the number of disjuncts can be large if we have a large number of binary variables in

the second-stage decisions. The number of variables that are needed to represent the convex

hull grows exponentially with the number of binary variables in the second-stage decisions.

Therefore, we propose a sequential convexification scheme, which progressively applies the

basic steps to the CNF representation of Sq
ω. As we will see later, in some cases, it is not

necessary to convert the CNF to DNF by applying all the basic steps. Namely, in some cases

applying part of but not all the basic steps is sufficient to solve (PCBABq). The partial

application of all the possible basic steps can be regarded as a sequential convexification

scheme to solve (PCBABq), which will be discussed next.

Similarly to (4.9), we define the disjunction that specifies the jth binary variable as

Sq1
ωj ∪ Sq0

ωj, j ∈ J1. The CNF of Sq
ω can be denoted as ∩j∈J1(S

q1
ωj ∪ Sq0

ωj). In the sequential

convexification scheme to solve (PCBABq), we start with the hull relaxation of the CNF, and

progressively apply basic steps to construct tighter relaxations if the problem (PCBABq) is

not solved.

Before we describe the details of the sequential convexification scheme, we first define

some notation. A partial application of basic steps to the CNF ∩j∈J1(S
q1
ωj ∪ Sq0

ωj) can be

represented as Sq
ω = ∩t∈T q

ω

(
∩j∈Dq

ωt
(Sq1

ωj ∪ S
q0
ωj)
)
, where T q

ω is the set of conjuncts, Dq
ωt is the

set of the indices of the binary variables specified by conjunct t. Dq
ωt are disjoint sets and

∪t∈T q
ω
Dq

ωt = J1, i.e., the value of each binary variable j ∈ J1 has to be specified in one and

only one of the conjuncts. For each t ∈ T q
ω, ∩j∈Dq

ωt
(Sq1

ωj ∪ Sq0
ωj) can be represented in DNF

by applying the basic steps, ∩j∈Dq
ωt
(Sq1

ωj ∪ S
q0
ωj) = ∪r∈Rq

ωt
Sq
ωtr. Rq

ωt is the set of disjuncts for

the DNF representation. In each Sq
ωtr, the values of all (yω)j, j ∈ Dq

ωt, are specified to 0 or

1. Note that the dimension of Rq
ωt is 2|D

q
ωt|, which corresponds to all possible combinations
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of the binary variables in Dq
ωt. For the CNF, |T q

ω| = |J1| and |Dq
ωt| = 1. If we apply all the

possible basic steps to convert the CNF to the corresponding DNF, |T q
ω| = 1 and |Dq

ωt| = |J1|.

The hull relaxation of ∩t∈T q
ω
(∪r∈Rq

ωt
Sq
ωtr) is given in (4.20a)-(4.20h),

x =
∑
r∈Rq

ωt

urωt, ∀t ∈ T q
ω (4.20a)

yω =
∑
r∈Rq

ωt

vrωt, ∀t ∈ T q
ω (4.20b)

∑
r∈Rq

ωt

γrωt = 1, ∀t ∈ T q
ω (4.20c)

γrωt ≥ 0, ∀t ∈ T q
ω, r ∈ Rq

ωt (4.20d)

A1,ωu
r
ωt + γrωtg1,ω(v

r
ωt/γ

r
ωt) ≤ b1,ωγ

r
ωt, ∀t ∈ T q

ω, r ∈ Rq
ωt (4.20e)

xlbq γ
r
ωt ≤ urωt ≤ xubq γ

r
ωt, ∀t ∈ T q

ω, r ∈ Rq
ωt (4.20f)

0 ≤ vrωt ≤ yubγrωt, ∀t ∈ T q
ω, r ∈ Rq

ωt (4.20g)

(vrωt)j = (erωt)jγ
r
ωt, ∀t ∈ T q

ω, r ∈ Rq
ωt, j ∈ Dq

ωt (4.20h)

Instead of solving (PCBABq) directly, we can solve a relaxation of (PCBABq) where

(x, yω) ∈ h-rel
(
∩t∈T q

ω
(∪r∈Rq

ωt
Sq
ωtr)
)
. Problem (PCBABq) is solved in iterations where

the number of iteration is denoted by l. In the first iteration, l = 1, the problem with

(x, yω) ∈ h-rel(∩j∈J1(S
q1
ωj ∪ S

q0
ωj), ∀ω ∈ Ω, is solved. We denote the relaxation of (PCBABq)

that is solved at iteration l as (PCBABl
q). The hull relaxation of ∩t∈T q

ω
(∪r∈Rq

ωt
Sq
ωtr) at

iteration l for scenario ω is denoted as h-rel(Sq
ωl). (PCBABl

q) is formally defined by (4.21a)-

(4.21d).

(PCBABl
q) min cTx+

∑
ω∈Ω

τωd
T
ωyω (4.21a)

A0x ≥ b0, g0(x) ≤ 0 (4.21b)

xlbq ≤ x ≤ xubq (4.21c)
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(x, yω) ∈ h-rel(Sq
ωl), ∀ω ∈ Ω (4.21d)

(PCBABl
q) can be solved using GBD to ϵ-optimality in a finite number of steps. The op-

timal value of (PCBABl
q) is denoted as v(PCBABl

q). The optimal solution is denoted as

(xq∗l , y
q∗
lω1
, yq∗lω2

, · · · , yq∗lω|Ω|
). If we can prove that (xq∗l , y

q∗
lω1
, yq∗lω2

, · · · , yq∗lω|Ω|
) satisfies all the con-

straints of (PCBABq), then (xq∗l , y
q∗
lω1
, yq∗lω2

, · · · , yq∗lω|Ω|
) solves (PCBABq). More specifically,

if (xq∗l , y
q∗
lω) ∈ conv(Sq

ω), ∀ω ∈ Ω, (xq∗l , y
q∗
lω1
, yq∗lω2

, · · · , yq∗lω|Ω|
) solves (PCBABq).

However, deciding whether (xq∗l , y
q∗
lω) is in conv(Sq

ω) is not an easy problem as we do not

want to use the closed-form representation of conv(Sq
ω), since this representation could be

expensive when the number of second stage binary variables is large. Here, we provide a

quick way to prove (xq∗l , y
q∗
lω) ∈ conv(Sq

ω) when some conditions are satisfied, which is only a

sufficient condition for (xq∗l , y
q∗
lω) to be in conv(Sq

ω). Note that it is easy to check if a point

is in Sq
ω just by checking if this point satisfies all the constraints that define Sq

ω. Therefore,

the basic idea of this procedure is that if we could find that (xq∗l , y
q∗
lω) can be expressed

as convex combination of some points that are in Sq
ω, then (xq∗l , y

q∗
lω) is in conv(Sq

ω). More

specifically, note that after we solve (PCBABl
q), we also obtain vr∗ωt, γr∗ωt, ∀ω ∈ Ω, t ∈ T q

ω,

r ∈ Rq
ωt, where yq∗lω =

∑
r∈Rq

ωt
vr∗ωt, ∀ω ∈ Ω, t ∈ T q

ω. We can establish a sufficient condition on

(xq∗l , y
q∗
lω) ∈ conv(Sq

ω) by inspecting the values of vr∗ωt, γr∗ωt in Proposition 3.

Proposition 3. For a given scenario ω, if ∃t′ ∈ T q
ω such that (vr∗ωt′/γ

r∗
ωt′)j, ∀r ∈ Rq

ωt′ , γ
r∗
ωt′ >

0, j ∈ J1, are 0 or 1, i.e., vr∗ωt′/γr∗ωt′ satisfy the integrality constraints in Sq
ω, we have (xq∗l , y

q∗
lω) ∈

conv(Sq
ω).

Proof. By construction, (ur∗ωt′/γr∗ωt′ ,vr∗ωt′/γr∗ωt′), ∀r ∈ Rq
ωt′ , γ

r∗
ωt′ > 0 already satisfies the continu-

ous constraints that define Sq
ω. Therefore, (ur∗ωt′/γr∗ωt′ ,vr∗ωt′/γr∗ωt′), ∀r ∈ Rq

ωt′ , γ
r∗
ωt′ > 0 are in Sq

ω.

(xq∗l , y
q∗
lω) can be expressed as convex combination of (ur∗ωt′/γr∗ωt′ , vr∗ωt′/γr∗ωt′), ∀r ∈ Rq

ωt′ , γ
r∗
ωt′ > 0,

i.e., (xq∗l , y
q∗
lω) ∈ conv(Sq

ω).

Note that Proposition 3 is only a sufficient condition for (xq∗l , y
q∗
lω) ∈ conv(Sq

ω). If we can

prove that (xq∗l , y
q∗
lω) ∈ conv(Sq

ω), ∀ω ∈ Ω, (PCBABq) is solved. Otherwise, for the scenarios

where we cannot prove that (xq∗l , y
q∗
lω) ∈ conv(Sq

ω), we apply basic steps by updating T q
ω, Dq

ωt
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to construct tighter relaxations until we are able to prove (xq∗l , y
q∗
lω) ∈ conv(Sq

ω), ∀ω ∈ Ω.

Here, we propose two heuristics on how to apply the basic steps.

Heuristic A Note that in Proposition 3, in order to prove (xq∗l , y
q∗
lω) ∈ conv(Sq

ω) we need

to find one disjunction t′ such that (vr∗ωt′/γ
r∗
ωt′)j, ∀j ∈ J1, γr∗ωt′ > 0, satisfy the integrality

constraints. Therefore, in this heuristic, for a given scenario ω and for each disjunction

t ∈ T q
ω, we first identify the most fractional (vr∗ωt/γr∗ωt)j, ∀r ∈ Rq

ωt, γ
r∗
ωt > 0, j ∈ J1 and denote

it as ft.

ft = max
r∈Rq

ωt,γ
r∗
ωt>0,j∈J1

min{1− (vr∗ωt/γ
r∗
ωt)j, (v

r∗
ωt/γ

r∗
ωt)j} (4.22)

We also denote the index of the most fractional (vr∗ωt/γr∗ωt)j as gt,

gt = arg max
j:r∈Rq

ωt,γ
r∗
ωt>0,j∈J1

min{1− (vr∗ωt/γ
r∗
ωt)j, (v

r∗
ωt/γ

r∗
ωt)j} (4.23)

In the sufficient condition given by Proposition 3, we try to find disjunction t′ such that ft′

is close to zero, i.e., all the (vr∗ωt′/γ
r∗
ωt′)j, ∀j ∈ J1, γr∗ωt′ > 0 satisfy the integrality constraints.

Here, we slightly abuse notation and denote the disjunction t with the least ft as t′,

t′ = arg min
t∈T q

ω

ft (4.24)

If ft′ is close to zero, we can prove (xq∗l , y
q∗
lω) ∈ conv(Sq

ω) by Proposition 3. Otherwise, we

apply a basic step between t′ and the disjunction that specifies gt′ . The idea is to make

the most fractional (vr∗ωt′/γr∗ωt′)j in disjunction t′ satisfy the integrality constraint in the next

iteration.

Remark. For the problem with a large number of binary variables in the second stage,

the sequential convexification scheme could potentially reduce the computational time by

avoiding applying unnecessary basic steps. While the sequential convexification scheme is

less expensive than using the DNF representation directly, solving (PCBABl
q) in the first

iteration with the CNF representation can also be expensive. Therefore, one may start with

the NLP relaxation of Sq0

ω and start using the CNF representation when the lower bound

cannot be improved by the NLP relaxation anymore. In fact, this strategy is used when

we solve the planning problem using GBDBAB with sequential convexification scheme in

section 4.5.
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4.5 Computational results

In this section, computational results of three different problems are presented to demon-

strate the effectiveness of GBDBAB. The tolerance for the relative optimality gap for GBD-

BAB is set to 0.1%. The GBDBAB algorithm to solve the three problems with an increasing

number of scenarios is implemented in JuMP/Julia (Dunning et al., 2017). All the problems

are solved on the 12 processors of an Intel Xeon (2.67GHz) machine with 64 GB RAM.

Depending on the computational efficiency on different problems, different NLP solvers in-

cluding Knitro (Byrd et al., 2006), and IPOPT (Wächter and Biegler, 2006) are used to

solve the NLP subproblems in parallel. The choice of NLP solvers for each problem are dis-

cussed in detail in the subsequent subsections. CPLEX (CPLEX, 2009) is used to solve the

MILP master problems. The corresponding deterministic equivalent formulations (DEFs)

are implemented in GAMS and solved using convex MINLP solvers including DICOPT,

AlphaECP, and SBB.

4.5.1 Computational results of the illustrative example with quadratic

constraints

In section 4.3, an illustrative example with 2 scenarios is solved using GBDBAB. The

convex nonlinear constraints in the model are all quadratic as shown in (4.19e)-(4.19h). dω is

the only uncertain parameter in the problem. In this section, we generate stochastic convex

MINLP problems with an increasing number of scenarios by uniformly sampling dω in the

interval [0, 3]. We assume that all the scenarios are of equal probability. The time limit for all

DEFs of this small problem is set to 10,000 secs. The sizes of the DEFs, the total running time

and the relative optimality gap of each solver are shown in Table 4.2. Although AlphaECP

and DICOPT are able to solve the 20-scenario problem to optimality within 10 secs, the

computational time increases dramatically with the increase in the number of scenarios. For

instance, for the DEF with 300 scenarios, neither SBB nor DICOPT is able to obtain the

optimal solution within the time limit. AlphaECP solves the problem in 917 secs.
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Table 4.2: Computational statistics of the DEFs of the illustrative problem

Scenarios Linear Nonlinear Binary Continuous SBB AlphaECP DICOPT
Constr Constr Var Var sec(gap) sec(gap) sec(gap)

20 62 80 42 62 Timed out(7%) 9 2
60 182 240 122 182 Timed out(234%) 60 10
150 452 600 302 452 Timed out(245%) 254 685
300 902 1200 602 902 Timed out(247%) 917 Timed out(9%)

GBDBAB is also implemented to solve this illustrative problem. Since there are only

two binary variables in the second stage, conv(Sq
ω) can be constructed easily with the DNF

representation. The NLP subproblems are solved using IPOPT in parallel. The upper bound

at each node is obtained by applying Heuristic 1 where the upper bound subproblems are

solved using Pajarito. The total wall time, the wall time corresponding to solving the master

problems, subproblems and upper bound subproblems, and the number of nodes visited are

shown in Table 4.3. In all the cases, only three nodes are visited in order to solve the

problems to optimality due to the tight relaxations given by the DNF representation. It is

easy to observe that the wall time for solving the subproblems is the most significant part

of the total wall time. For the problems with 150 and 300 scenarios, GBDBAB performs

better than using the solvers to solve the DEFs.

Table 4.3: Computational statistics of solving the illustrative problem using GBDBAB

Scenarios Time (s) Master (s) Subproblem (s) UB subproblem (s) Nodes
20 80 3 59 10 3
60 76 3 58 5 3
150 111 10 81 9 3
300 121 11 81 11 3

4.5.2 Computational results of the constrained layout problem

The constrained layout problem under price uncertainty described in Appendix 2 is tested

with 3 rectangles and 2 areas. Since the model is formulated as a GDP, the DEFs of the

model are converted to MINLP with the big-M and the hull reformulation, respectively. The

approach to convert a GDP to the big-M and the hull reformulation can be found in Table
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7 of Grossmann and Trespalacios (2013)). The time limit is set to 10,000 secs. The sizes

of the DEFs with the big-M and the hull reformulation are shown in Table 4.4 and Table

4.5 respectively. Although all the solvers can solve the DEFs with 3 and 9 scenarios within

the time limit, they all fail to obtain the optimal solution for the problems with 36 and 100

scenarios.

Table 4.4: Computational statistics of the big-M reformulation of the constrained layout problem

Scenarios Linear Nonlinear Binary Continuous SBB AlphaECP DICOPT
Constr Constr Var Var sec(gap) sec(gap) sec(gap)

3 54 72 30 36 14 120 3
9 108 216 66 84 4,142 1,478 43
36 351 864 228 300 Timed out(94%) Timed out∗ Timed out(84%)
100 927 2,400 612 812 Timed out(98%) Timed out∗ Timed out(97%)

Table 4.5: Computational statistics of the hull reformulation of the constrained layout problem

Scenarios Linear Nonlinear Binary Continuous SBB AlphaECP DICOPT
Constr Constr Var Var sec(gap) sec(gap) sec(gap)

3 360 72 30 180 38 32 6
9 702 216 66 372 5,626 638 49
36 2,241 864 228 1,236 Timed out(52%) Timed out (46%) Timed out∗

100 5,889 2,400 612 3,284 Timed out(82%) Timed out (67%) Timed out∗

GBDBAB is also implemented to solve the constrained layout problems with an increasing

number of scenarios. In order to obtain conv(Sq
ω), constraint (B.4) and the constraints setting

the upper and lower bound of all the variables are added to each disjunct shown in (B.5).

We further apply basic steps to convert the CNF to DNF and reformulate the DNF with

hull relaxation, which gives us conv(Sq
ω). The NLP subproblems are solved using IPOPT in

parallel. The statistics of GBDBAB to solve these problems are shown in Table 4.6. For

the problems with 3, 36, and 100 scenarios, optimality is proved at the root node. For the

problem with 9 scenarios, 3 nodes are visited in order to prove optimality. Most of the

computational time is still in solving the NLP subproblems.

∗No feasible solution found in 10,000 secs time limit.
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Table 4.6: Computational statistics of solving the constrained layout problem with GBDBAB

Scenarios Time (s) Master (s) Subproblem (s) UB subproblem (s) Nodes
3 137 40 63 8 1
9 276 65 17 17 3
36 444 117 277 20 1
100 537 85 363 39 1

4.5.3 Computational results of the planning problem

The planning problem reported in Li and Grossmann (2018a) is tested with 2 suppliers,

2 plants, 2 customers, and the number of scenarios from 3 to 81. The time limit for solving

the DEFs is set to 50,000 secs. For the 81-scenario problem, none of the solvers is able to

obtain the optimal solution within the time limit.

Table 4.7: Computational statistics of the DEFs of the planning problem

Scenarios Linear Nonlinear Binary Continuous AlphaECP SBB DICOPT
Constr Constr Var Var sec(gap) sec(gap) sec(gap)

3 332 12 32 338 6 49 3
9 980 36 80 998 81 Timed out(2%) 9
27 2,924 108 224 2,978 3,530 Timed out(19%) 96
81 8,756 324 656 8,918 Timed out(2%) Timed out(40%) Timed out(0.2%)

GBDBAB is also applied to solve the planning problem. The NLP subproblems are

solved with Knitro in this case since it behaves best for this problem among the NLP solvers

available in JuMP. GBDBAB is able to solve all the planning problems at the root node.

Sequential convexification scheme with Heuristic A is applied and the maximum and the

minimum number of basic steps that are applied in all the scenarios are shown in the last

column of Table 4.8. In each of the four cases, the number of basic steps needed varies

for different scenarios. For some of the scenarios, we are able to prove the solution (x, yω)

is in conv(Sq0

ω ) by Proposition 3 and therefore no more basic steps need to be applied.

The computational statistics of GBDBAB are shown in Table 4.8. The problems with an

increasing number of scenarios can all be solved to optimality by GBDBAB within 10,000

secs.

Remark. The computational results in this section demonstrate that GBDBAB can out-
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Table 4.8: Computational statistics of solving the planning problem using GBDBAB

Scenarios Time (s) Master (s) Subproblem (s) UB subproblem (s) Basic step (max, min)
3 705 59 491 16 (7,2)
9 1,221 92 861 23 (5,1)
27 1,859 216 1,403 17 (0,0)
81 7,994 1,534 5,091 83 (1,0)

perform the convex MINLP solvers in solving the DEFs with a large number of scenarios.

However, for the first small problem and the planning problem, some of the solvers can ob-

tain solutions to the DEFs with small optimality gaps. The effect of using GBDBAB is most

significant for the constrained layout problem. First of all, it is relatively easy to construct

the convex hull of each subproblem as there are only 3 disjunctions in each subproblem.

Second, since this problem is highly nonlinear, it would take solvers that use linearization

strategies like DICOPT and AlphaECP many iterations to converge. Third, the constrained

layout problem also has poor NLP relaxation. Solvers that are sensitive to the quality of NLP

relaxation of the original problem like SBB would need more iterations to converge. There-

fore, GBDBAB is most effective in solving highly nonlinear problems with poor relaxations

but with small number of binary variables in the second-stage decisions.

4.6 Conclusions

In this chapter, a generalized Benders decomposition-based branch-and-bound algorithm,

GBDBAB, is proposed to solve two-stage convex mixed integer nonlinear stochastic programs

with mixed-binary variables in both first and second-stage decisions. In order to obtain the

convex hull of the mixed-binary nonlinear subproblems in closed-form, each subproblem is

first represented in conjunctive normal form (CNF), and we apply basic steps to transform

CNF to disjunctive normal form (DNF). The convex hull of each subproblem can be rep-

resented by the hull relaxation of the DNF. For the problems with pure binary first-stage

variables, we are able to prove that GBD has finite ϵ-convergence if the convex hull of each

subproblem is constructed in closed-form. For the problems with mixed-binary first-stage
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variables, we also prove that in order to have finite ϵ-convergence, we may need to branch

on the first stage continuous variables. A sequential convexification scheme is proposed to

adaptively apply basic steps for the subproblems with a large number of binary variables.

Three problems with an increasing number of scenarios are solved with GBDBAB to

within 0.1% optimality gap. Convex MINLP solvers including SBB, AlphaECP, and DI-

COPT are used to solve the corresponding DEFs to benchmark the proposed algorithm. It

is shown that the proposed algorithm outperforms the solvers for the problems with a large

number of scenarios. Especially, the algorithm is preferable for highly nonlinear problems

with poor relaxations but with small number of binary variables in the second-stage decisions

like the constrained layout problem.
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Chapter 5

A Generalized Benders

Decomposition-based Branch and Cut

Algorithm for Two-stage Stochastic

Programs with Nonconvex

Constraints and Mixed-binary First

and Second Stage Variables

5.1 Problem Statement

We first define the two-stage stochastic programming problem (P ) that we address in

this chapter,

(P ) min z = cTx+
∑
ω∈Ω

τωd
T
ωyω (5.1a)

A0x ≥ b0, g0(x) ≤ 0 (5.1b)
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A1,ωx+ g1,ω(yω) ≤ b1,ω ∀ω ∈ Ω (5.1c)

x ∈ X, X =
{
x : xi ∈ {0, 1},∀i ∈ I1, 0 ≤ x ≤ xub

}
(5.1d)

yω ∈ Yω ∀ω ∈ Ω, Yω =
{
yω : yωj ∈ {0, 1},∀j ∈ J1, 0 ≤ yω ≤ yubω

}
(5.1e)

Here, x represents the first stage decisions. yω represents the second stage decisions in sce-

nario ω. τω represents the probability of scenario ω. g0, g1,ω, can be smooth nonconvex func-

tions. Both the first and the second stage decisions are mixed-binary. Let I = {1, 2, · · · , n}

be the index set of all the first stage variables. I1 ⊆ I is the subset for indices of the binary

first stage variables. Let J = {1, 2, · · · ,m} be the index set of all the second stage variables.

J1 ⊆ J is the subset for the indices of the binary second stage variables. xub is a vector that

represents the upper bound of all the first stage variables. yubω is a vector that represents the

upper bound of all the second stage variables. We make the following assumptions about

problem (P).

Assumption 5. Problem (P ) has relatively complete recourse, i.e., any solution x that

satisfies the first stage constraints has feasible recourse decisions in the second stage.

Assumption 6. The feasible region of (P ) is compact.

Assumption 7. xub and yub are finite, i.e., both the first and the second stage decisions are

bounded.

5.2 Motivation for a New Algorithm

In this chapter, we address the problem of solving problem (P ), i.e., nonconvex SMINLPs

with mixed-binary first and second stage variables. Up until now, the decomposition algo-

rithms that explicitly consider the nonconvex subproblems are the branch and bound algo-

rithms proposed by Cao and Zavala (2017) and Kannan (2018) where the authors branch on

the first stage variables and derive a valid bound at each node of the branch and bound pro-

cess. The valid bound can come from Lagrangean relaxation or perfect information, which
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can be considered as a special case of Lagrangean relaxation with zero dual multipliers. Cao

and Zavala (2017) and Kannan (2018) prove finite convergence of their algorithms. However,

the branch and bound algorithms tend to have slow convergence computationally, especially

when the number of first stage variables is large, i.e., a large number of nodes need to be

solved in order to prove global optimality. In this chapter, we explore the possibility of doing

branch and cut instead of branch and bound.

The main challenge for doing branch and cut is how we can integrate cutting planes

in the algorithm while still guaranteeing convergence. In the introduction section, we have

reviewed the literature for using Benders-like decomposition to solve linear SMIPs where

parametric cuts are used to convexify the subproblems. For nonconvex SMINLPs, cutting

planes cannot be used directly to convexify the subproblems. However, if we replace the

nonconvex functions in stage 2 by their convex relaxations or MILP relaxations, for example,

we can relax a bilinear term by its McCormick envelope or piecewise McCormick envelope

(Misener et al., 2011), the subproblems will become MILPs or convex MINLPs, which can

be convexified by cutting planes. In principle, if the convexified subproblems are MILPs,

parametric cuttting planes such as Gomory mixed-integer cut (Balas et al., 1996), lift-and-

project cut (Balas et al., 1993), and RLT (Sherali and Adams, 1990) can be used. If the

convexified subproblems become convex MINLPs, rank-one lift-and-project cuts can be used

in the same way as in Li and Grossmann (2018a). In this chapter, only rank-one lift-

and-project cuts for MILP subproblems are implemented. The framework can be easily

extended to other types of cutting planes. Therefore, in order to integrate the cutting planes

into the decomposition algorithm, the idea is to have a generalized Benders decomposition

algorithm where the nonconvex subproblems are first relaxed to MILP problems, and the

MILP problems are convexified by cutting planes to derive valid Benders cuts. However,

this will not guarantee global optimality.

In order to solve the problem to global optimality, we add Lagrangean cuts to the Benders

master problem as well. Lagrangean cuts are proved to be valid for the Benders master

problem (Ogbe and Li, 2018; Li and Grossmann, 2018a). If we add Lagrangean cuts to the
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Benders master problem, the lower bound obtained by the Benders master problem is at

least as tight as using Lagrangean decomposition (see Proposition 2 in Li and Grossmann

(2018a)). Therefore, we propose a generalized Benders decomposition (GBD) based branch

and cut algorithm where we have both Benders cuts and Lagrangean cuts in the Benders

master problem and branch on the first stage variables similar to Kannan (2018). We are

able to prove that the proposed algorithm converges in the limit.

The paper is organized as follows: In section 4, we describe the decomposition algorithm.

In section 5, we prove the convergence of the proposed algorithm. In section 6, we describe

the implementation details. The computational results are given in section 7. We draw the

conclusions in section 8.

5.3 The Proposed Algorithm

5.3.1 Overview of the Proposed Algorithm

The major steps of the proposed algorithm are shown in Figure 5.1. There are two

major components in the proposed algorithm: (1) spatial branch and bound (described by

the rounded rectangles in Figure 5.1). (2) the generalized Benders decomposition-based

algorithm to solve a single node in the branch and bound process (described by the regular

rectangles in Figure 5.1).

At a high level, the algorithm performs spatial branch and bound search on the first

stage variables. We need to specify the node selection rule and branching rule for the spatial

branch and bound algorithm. The details are discussed in subsection 5.3.3.

Note that we only branch on the first stage variables. Therefore, each node in the branch

and bound process has a decomposable structure. We solve each node by the generalized

Benders decomposition-based algorithm described by the regular rectangles in Figure 5.1.

We have two types of valid inequalities, including Benders cuts and Lagrangean cuts in the

Benders master problem. The Lagrangean cuts come from solving the Lagrangean subprob-

lems iteratively. We update the Lagrangean multipliers after each Lagrangean iteration.
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Figure 5.1: Flowchart of the proposed algorithm

Then we add all the Lagrangean cuts to the Benders master problem and start the Benders

iterations. Note that the Benders iterations are independent of the Lagrangean iterations. In

the Benders iterations, we solve the Benders master problem and the Benders subproblems

iteratively. The Benders subproblems are convexified by cutting planes. An upper bound

can be obtained at each Benders iteration using some heuristics. We check some termination

criteria in each Benders iteration. The details of the decomposition algorithm to solve a

single node will be described in subsection 5.3.2.

5.3.2 Decomposition Algorithm to Solve a Single Node

Before we address the branch and bound process, we first describe the decomposition

algorithm to solve a single node since the branching rules of branch and bound process

depend the solutions of the decomposition algorithm.

At a given node q of the branch-and-bound tree, we solve the following problem (Pq)
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using generalized-Benders decomposition with Benders cuts and Lagrangean cuts.

(Pq) min cTx+
∑
ω∈Ω

τωd
T
ωyω (5.2a)

A0x ≥ b0, g0(x) ≤ 0 (5.2b)

A1,ωx+ g1,ω(yω) ≤ b1,ω ∀ω ∈ Ω (5.2c)

x ∈ Xq, Xq =
{
x : xi ∈ {0, 1},∀i ∈ I1, x

lb
q ≤ x ≤ xubq

}
(5.2d)

yω ∈ Yω ∀ω ∈ Ω, Yω =
{
yω : yωj ∈ {0, 1},∀j ∈ J1, 0 ≤ yω ≤ yubω

}
(5.2e)

where xubq and xlbq are the upper and lower bounds for the first-stage decisions at node q,

respectively. The only difference between problem (Pq) and problem (P ) is that we have

branched on the first stage variables x. The domain of x at node q is represented by set Xq.

Before we go to the steps of the proposed decomposition algorithm, we define the sub-

problems that are used in the proposed decomposition algorithm, i.e., the regular rectangles

in Figure 5.1. We have both Benders iterations and Lagrangean iterations, which are solved

separately. We use letter k to denote the Benders iteration number. We use letter l to denote

the Lagrangean iteration number. Note that the Benders iteration number is independent

of the Lagrangean iteration number, which will become clear when we describe the steps of

the decomposition algorithm in Algorithm 1.

Lagrangean subproblems

In order to define the Lagrangean subproblems, problem (Pq) is first reformulated as

(PNACq) by adding nonanticipativity constraints (NACs) in equation (5.3d), where xωi

is used to represent the first stage variables corresponding to the ith scenario. There are

different ways to express NACs. In (5.3d), all the NACs contain xω1 , which is shown to be

advantageous based on the empirical study of Oliveira et al. (2013).

(PNACq) min
∑
ω∈Ω

τω
(
cTxω + dTωyω

)
(5.3a)

A0xω ≥ b0, g0(xω) ≤ 0 (5.3b)
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A1,ωxω + g1,ω(yω) ≤ b1,ω ∀ω ∈ Ω (5.3c)

xω1 = xω2 , xω1 = xω3 , · · · , xω1 = xω|Ω| (5.3d)

xω ∈ Xq, yω ∈ Yω ∀ω ∈ Ω (5.3e)

TheNACs can be dualized by multiplying the constraints, xω1 = xω+1, ω = ω1, ω2, · · · , ω|Ω|−1

by πl
ω. The Lagrangean subproblem at iteration l of Lagrangean decomposition at node q is

defined as follows:

(SLl
ω)

q : min zl,qSL,ω = τω(c
Txω + dTωyω) + µl

ωxω (5.4a)

s.t. A0xω ≥ b0, g0(xω) ≤ 0 (5.4b)

A1,ωxω + g1,ω(yω) ≤ b1,ω (5.4c)

xω ∈ Xq (5.4d)

yω ∈ Yω (5.4e)

where µl
ω1 =

ω|Ω|−1∑
ω=ω1

πl
ω, µl

ω+1 = −πl
ω, ω = ω1, ω2, · · · , ω|Ω|−1. In this chapter, the Lagrangean

multipliers are updated using the subgradient method (Oliveira et al., 2013).

Let z∗l,qSL,ω be the optimal objective value of the Lagrangean subproblem (SLl
ω)

q.
∑

ω z
∗l,q
SL,ω

yields a lower bound of problem (Pq). Lagrangean cuts ηω ≥ z∗l,qSL,ω−µl
ωx can be added to the

Benders master problem after each Lagrangean iteration as proved by Ogbe and Li (2018),

Li and Grossmann (2018a).

Let set L be the set of Lagrangean iteration numbers, i.e., we solve the Lagrangean sub-

problems for |L| iterations. Note that the Lagrangean iterations are separate from the Ben-

ders iterations. The only interaction between Lagrangean and Benders is that Lagrangean

cuts are added to the Benders master problem. We will not start the Benders iterations

until the Lagrangean subproblems are solved for |L| iterations.

Benders master problem
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The Benders master problem at the kth Benders iteration at node q is defined as follows,

(MBk)
q : min zk,qMB =

∑
ω

ηω (5.5a)

s.t. A0x ≥ b0, g0(x) ≤ 0 (5.5b)

ηω ≥ z∗l,qSL,ω − µl
ωx ∀ω ∈ Ω, l ∈ L (5.5c)

ηω ≥ z∗k
′,q

SB,ω + (λk
′

ω )
T (x− x̃k

′
) + τωc

Tx ∀ω ∈ Ω, k′ < k (5.5d)

x ∈ Xq, ηω ∈ IR ∀ω ∈ Ω (5.5e)

where (5.5c) are Lagrangean cuts, (5.5d) are Benders cuts. Note that in each Benders

iteration k, the Lagrangean cuts are added for all Lagrangean iterations l ∈ L for all scenario

ω. The Lagrangean cuts are derived by solving the Lagrangean subproblems as described

before. The Benders cuts are added for all Benders iterations k′ < k, and all scenarios ω ∈ Ω.

The Benders cuts are derived by solving the Benders subproblems, which will be described

next.

Let z∗k,qMB be the optimal objective value of the Benders master problem. z∗k,qMB is a valid

lower bound of problem (Pq). Let x̃k be the optimal solution of problem (MBk)
q.

Benders subproblems

As we have discussed in the introduction section, a valid Benders cut cannot be derived

by simply fixing x at x̃k and solving the rest of the subproblems because of the nonconvexities

in stage 2. The nonconvexities in the second stage lie in the nonconvex functions g1,ω, and

the integrality constraints on some of the yω variables. In order to derive Benders cuts, we

need to have convex relaxations for the second stage constraints. g1,ω(yω) can be relaxed by

some convex function g̃1,ω(yω, tω) where tω are the additional variables that are introduced

for the convex relaxations. Note that the variables tω can be mixed-binary. For example, we

may relax a blinear term by its piecewise McCormick envelope where both continuous and

binary variables need to be introduced. Without loss of generality, we assume that J2 is the

index set where (tω)j, j ∈ J2 are the binary variables in (tω). If (tω) are all continuous, set
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J2 is an empty set.

After g1,ω is convexified with g̃1,ω, the rest of the problem may still have integrality

constraints, i.e., a convex MINLP or an MILP. In order to have a continuous convex relax-

ation, one alternative is to simply relax the integrality constraints. Another alternative is to

use the convexification schemes for convex MINLP/MILP subproblems. MILP subproblems

can be convexified by parametric cuttting planes such as Gomory mixed-integer cut (Balas

et al., 1996), lift-and-project cut (Balas et al., 1993), RLT (Sherali and Adams, 1990). Con-

vex MINLP subproblems can be convexified by rank-one lift-and-project cuts (Kılınç et al.,

2017; Li and Grossmann, 2018a).

In this chapter, only rank-one lift-and-project cuts for MILP subproblems are imple-

mented. Here, we assume that the relaxed constraints g̃1,ω are linear. For lift-and-project

cuts for convex nonlinear constraints, we refer the readers to Li and Grossmann (2018a). To

simplify the notation, we denote the constraints A1,ωx + g̃1,ω(yω, tω) ≤ b1,ω, 0 ≤ y ≤ yub,

xlbq ≤ x ≤ xubq as Ãq


x

yω

tω

 ≥ b̃q. Suppose x̃k is the optimal solution of the Benders master

problem at iteration k. ỹkω, t̃kω is the optimal solution of Benders subproblem before adding

the lift-and-project cuts generated at iteration k. If (ỹkω)j, j ∈ J1 is fractional, rank-one

lift-and-project cuts are generated by solving the following cut generating linear program

(CGLPj)
q (Balas et al., 1993).

(CGLPj)
q min αxx̃k + αyỹkω + αtt̃kω − β (5.6a)

α = uT Ãq − u0ej+n, α = vT Ãq + v0ej+n (5.6b)

β = uT b̃q, β = vT b̃q + v0 (5.6c)

uT e+ vT e+ u0 + v0 = 1 (5.6d)

u, v, u0, v0 ≥ 0 (5.6e)

Note that we can also generate lift-and-project cuts corresponding to the binary variables in
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tω. We only need to change equation (5.6b) to

α = uT Ãq − u0ej+n+m, α = vT Ãq + v0ej+n+m (5.7)

to generate the rank-one cut corresponding to (tω)j, j ∈ J2. The newly generated cuts

are then added to the Benders subproblem (SBk
ω)

q at iteration k for scenario ω defined as

follows,

(SBk
ω)

q : min zkSB,ω = τωd
Tyω (5.8a)

x = x̃k (5.8b)

A1,ωx+ g̃1,ω(yω, tω) ≤ b1,ω (5.8c)

αx
k′cx+ αy

k′cyω + αt
k′ctω ≥ βk′c ∀k′ ≤ k, c ∈ Ck′ (5.8d)

0 ≤ y ≤ yubω (5.8e)

where (5.8d) are the cutting planes that are generated to convexify the subproblem. Set Ck′

represents the set of cuts that are generated at iteration k′. Note that we accumulate the

cuts generated in all iterations k′ ≤ k.

Upper bound procedure

There are multiple ways to obtain a feasible solution to the original problem. A simple

way would be fixing the first stage decisions and solving the upper bound subproblem (UBω)

for each scenario ω separately,

(UBω) : min zUB,ω = τωd
T
ωyω (5.9a)

s.t. g1,ω(yω) ≤ b1,ω − A1,ωx̃ (5.9b)

g2,ω(yω) ≤ b2,ω (5.9c)

yω ∈ Yω (5.9d)

where the value of the first stage decisions is fixed at x̃. The choice of x̃ decides the upper

bound that is obtained from (UBω). Here we propose three heuristics to obtain a “good” x̃.
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• Let x̃ = x̃k, i.e., be the optimal solution that is obtained in the Benders master problem

(MBk)
q at iteration k.

• Let x∗l,qω1 , x
∗l,q
ω2
, · · · , x∗l,qω|Ω|

be the optimal solution for the Lagrangean subproblems (SLl
ω)

q

at iteration l. We define

x∗l,qavg =
∑

ω∈Ω τωx
∗l,q
ω

as the probability weighted average of the optimal first stage solutions over all scenarios.

Then we select scenario ω∗, such that

ω∗ = arg min
ω∈Ω

∑
i∈I

(
(x∗l,q

avg )i−(x∗l,q
ω )i

(xub)i

)2
ω∗ is the scenario where the optimal solution x∗l,qω has the smallest distance with the

weighted average x∗lavg. Note that in calculating the distances all the first stage variables

are scaled by the distances of their original upper and lower bounds (the original lower

bounds are assumed to be zero in problem (P )). We can fix x̃ at x∗l,qω∗ and solve (UBω)

to obtain a feasible solution.

• Randomly select one scenario ω and fix the first stage decisions at the optimal value

of the Lagrangean subproblem corresponding to this scenario, i.e., x∗l,qω .

Remark. The first upper bound procedure obtains good feasible x̃ from Benders decompo-

sition. In the second and the third procedure, the good feasible x̃ comes from the solutions

of the Lagrangean subproblems. Therefore, all the upper bound procedures can be applied

simultaneously.

The steps of the decomposition algorithm to solve a single node

With the definitions of the subproblems, we outline the steps of the decomposition algo-

rithm to solve a single node q in Algorithm 1. The decomposition algorithm is defined as a

solvenode(q) function. First, Lagrangean subproblems (SLl
ω)

q are solved for all Lagrangean

iterations l ∈ L. We add all the Lagrangean cuts (5.5c) to the Benders master problem
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Algorithm 1: Algorithm to solve a single node
1 Function solvenode(q)

/* Lagrangean iterations */
2 for l = 1, 2, · · · , L do
3 for ω = ω1, ω2, · · · , ω|Ω| do
4 Solve Lagrangean subproblems (SLl

ω)
q. Let z∗l,qSL,ω be the optimal

objective value
5 end
6 Update LBq = max(LBq,

∑
ω z

∗l,q
SL,ω).

7 Update UBq using the upper bound procedure.
8 if UBq − LBq ≤ ϵ then
9 return q

10 end
11 Update Lagrangean multipliers µl

ω with the subgradient method
12 end
13 Add Lagrangean cuts (5.5c) to Benders master problem (MB1)

q.
/* Benders iterations */

14 for k = 1, 2, · · · , K do
15 Solve (MBk)

q. Let z∗k,qMB be the optimal objective value of (MBk)
q. Set

LBq = z∗k,qMB

16 for ω = ω1, ω2, · · · , ω|Ω| do
17 Solve Benders subproblems (SBk

ω)
q. Let y∗ω, t∗ω be the optimal value.

18 if there is fractional (y∗ω)j for j ∈ J1, (t∗ω)j for j ∈ J2 then
19 Generate cutting planes (5.8d) by solving (CGLPj)

q and add to
(SBk

ω)
q.

20 Solve (SBk
ω)

q again with the newly generated cutting planes.
21 end
22 Generate Benders cuts (5.5d) and add to Benders master problem

(MBk)
q.

23 end
24 Update UBq with the upper bound procedure.
25 if UBq − LBq ≤ ϵ then
26 return q
27 end
28 end
29 return q.
30 end
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(MB1)
q (the Benders master problem in the first iteration at node q). Then we iteratively

solve the Benders master problem (MBk)
q and the Benders subproblems (SBk

ω)
q with cut-

ting planes. After each Benders iteration, we add Benders cuts (5.5d) to the Benders master

problem. The proposed upper bound procedure can be used to obtain feasible solutions based

on the optimal solutions of the Lagrangean subproblems or the Benders master problem. We

can terminate if the node is solved to optimality. Otherwise, the algorithm terminates by

setting the maximum Lagrangean and Benders iterations to |L| and |K|, respectively. The

decomposition algorithm always returns an upper bound UBq and a lower LBq at node q.

5.3.3 Branch and bound

If we apply the function solvenode(q) described in Algorithm 1 to the rootnode (problem

(P )), we cannot guarantee to solve it to global optimality because of the duality gap. That is

why we need to branch and bound on the first stage decisions as in Carøe and Schultz (1999),

Cao and Zavala (2017), Kannan (2018). The spatial branch and bound corresponds to the

rounded rectangles in Figure 5.1. Most importantly, we need to define the node selection

rule and the branching rule used in the branch and bound process. Let Γ be the set of active

nodes.

Node selection rule

Select node q such that q = arg min
q∈Γ

LBq.

After a node is selected, we branch on one of the first stage variables of this node. The

branching rules are defined according to the bounds of the first stage variables and the

solutions obtained by the proposed decomposition algorithm (Algorithm 1) at this node.

Branching rules

1. Select the first stage variable with the largest normalized relative diameter,

i∗ = arg max
i∈I

(xubq )i − (xlbq )i

(xubq0 )i − (xlbq0)i
δi

q0 represents the root node. δi is a normalization factor for variable i. Two new nodes q1
and q2 are then created.
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(xubqj )i = (xubq )i, (xlbqj)i = (xlbq )i j ∈ {1, 2}, i ̸= i∗

(xlbq1)i∗ = (xlbq )i∗ , (xubq1 )i∗ =
1

2

(
(xlbq )i∗ + (xubq )i∗

)
(xlbq2)i∗ =

1

2

(
(xlbq )i∗ + (xubq )i∗

)
, (xubq2 )i∗ = (xubq )i∗ ,

where the domain of variable i∗ is bisected. 2. Let (x∗q, y
∗
qω1
, y∗qω2

, · · · , y∗qω|Ω|
) be the best

feasible solution found at node q. Then we select variable i∗ where best feasible first stage

variable has the largest normalized distance to its bounds,

i∗ = arg max
i∈I

min
{
(xubq )i − (x∗q)i, (x

∗
q)i − (xlbq )i

}
(xubq0 )i − (xlbq0)i

δi

Two new nodes q1 and q2 are then created.

(xubqj )i = (xubq )i, (xlbqj)i = (xlbq )i j ∈ {1, 2}, i ̸= i∗

(xlbq1)i∗ = (xlbq )i∗ , (xubq1 )i∗ = (x∗q)i∗

(xlbq2)i∗ = (x∗q)i∗ , (xubq2 )i∗ = (xubq )i∗ ,

where the domain of (x)i∗ is divided based on the best feasible solution found on node q.

3. Let xavgq be the weighted average of first stage decisions obtained from Lagrangean sub-

problems in the iteration where the tightest lower bound can be found. Then we select

variable i∗ such that

i∗ = arg max
i∈I

min
{
(xubq )i − (xavgq )i, (x

avg
q )i − (xlbq )i

}
(xubq0 )i − (xlbq0)i

δi

Similarly, two new nodes q1 and q2 are then created.

(xubqj )i = (xubq )i, (xlbqj)i = (xlbq )i j ∈ {1, 2}, i ̸= i∗

(xlbq1)i∗ = (xlbq )i∗ , (xubq1 )i∗ = (xavgq )i∗

(xlbq2)i∗ = (xavgq )i∗ , (xubq2 )i∗ = (xubq )i∗ ,
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With the node selection rule and the branching rules, we outline the steps of the proposed

Algorithm 2: Generalized-Benders decomposition-based branch and cut algorithm
/* Initialization */

1 Initialize UB = +∞, LB = −∞ Create root node q0. Set Xq0 = X. Set all the
Lagrangean multipliers µω to zero. solvenode(q0). Create a node list Γ = {q0}.

2 while Γ ̸= ∅ do
3 Select node q such that q = arg min

q∈Γ
LBq.

4 Apply one of the proposed branching rules and create two child node of q,
denoted as q1, q2. Branching rule 1 should be applied at least once after a finite
number of iterations. Let Γ = Γ\{q}

5 solvenode(q1); solvenode(q2).
6 Let UB = minq∈Γ UBq, LB = minq∈Γ LBq.
7 for q ∈ Γ do
8 if UBq − LBq ≤ ϵ then
9 Γ = Γ\{q} /* Fathom by optimality */

10 end
11 if LBq − UB ≥ ϵ then
12 Γ = Γ\{q} /* Fathom by bound */
13 end
14 end
15 end

generalized-Benders decomposition-based branch and cut algorithm in Algorithm 2.

The steps of generalized-Benders decomposition-based branch and cut algo-

rithm

At a high level, the proposed algorithm is performing spatial branch and bound search

that includes node selection and branching, node fathom. The steps of the spatial branch

and bound are described in Algorithm 2. The branch and bound algorithm selects a node

with the tightest lower bound. Different branching rules described above can be applied.

However, branching rule 1 must be applied at least once after a finite number of iterations

to have the theoretical guarantee of convergence, which will be discussed in detail in section

5.4. Each node in the branch and bound process is solved with the generalized Benders

decomposition-based algorithm described in Algorithm 1. The flowchart of the algorithm is

shown in Figure 5.1 where the rounded rectangles describe the high-level spatial branch-and-
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bound algorithm (Algorithm 2); the regular rectangles describe the decomposition algorithm

that solves a single node (Algorithm 1).

Remark. The Benders cuts and Lagrangean cuts in a parent node can be inherited by its

child nodes. The parametric cutting planes in the Benders subproblems of a parent node

can also be inherited by its child nodes. Therefore, the solution process of the child nodes

can be warm-started by inheriting those cuts.

Remark. After branching, the Lagrangean multipliers of a child node can be either initial-

ized to zero or initialized to the multipliers that give the tightest lower bound for its parent

node.

5.4 Convergence of the proposed algorithm

Cao and Zavala (2017) and Kannan (2018) have proved the convergence of their algo-

rithms, both of which are Lagrangean decomposition-based branch and bound algorithm.

Both proofs rely on Chapter IV of Horst and Tuy (2013). Since we also have Lagrangean

cuts in the Benders master problem, the lower bound that we can obtain at each node would

be at least as tight as Lagrangean decomposition as proved by Li and Grossmann (Propo-

sition 2 of Li and Grossmann (2018a)). Therefore, it would be straightforward to prove

convergence based on previous work.

In order to make this chapter self-contained, we briefly describe the convergence proof for

our proposed algorithm. We first define some notations for the branch and bound algorithm.

D represents the feasible region of the first stage decisions. D = {x|∃(x, yω1, yω2 , · · · , yω|Ω|)

feasible for problem (P )}. Since we have assumed that the problem has relatively complete

recourse, we can let D = {x|A0x ≥ b0, g0(x) ≤ 0, x ∈ X}. The domain of the first stage

decisions at node q is defined as Xq in equation (5.2d). Xq0 is the domain of x at the root

node. Xqp denotes the domain of x of a node at level p of the tree. A path in the branch

and bound tree from the rootnode to one leaf node has one node in each level p of the

tree, which can be represented as {Xqp}. qp+1 is a child of qp and Xqp+1 ⊂ Xqp . δ(Xq)
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represents the diameter of Xq. δ(Xq) = ||xubq − xlbq ||∞. UBq and LBq are upper and lower

bound obtained at node q, respectively. In order to prove convergence, we need to prove

lim
q→∞

UBq = lim
q→∞

LBq = z∗.

Definition 1. A subdivision is called exhaustive if lim
p→∞

δ(Xqp) = 0, for all decreasing sub-

sequences Xqp generated by the subdivision (Definition IV.10 in Horst and Tuy (2013)).

Lemma 1. The subdivision process of the proposed algorithm is exhaustive.

Proof. Since branching rule 1 is applied at least once after a finite number of iterations

and the bounds for each variable at the rootnode and the normalization factors δi are all

finite, the variable i with the largest diameter is divided by half once after a finite number

of iterations. Therefore, δ(Xqp) = ||xubqp − xlbqp ||∞ is divided by half once after a finite number

of iterations. lim
p→∞

δ(Xqp) = 0 (see Lemma 3.5.1 in Kannan (2018)).

Definition 2. A selection operation is said to be bound improving if, after a finite number of

steps, at least one partition element where the actual lower bounding is attained is selected

for further partition. (Definition IV.6 in Horst and Tuy (2013))

Lemma 2. The selection operation of the proposed algorithm is bound improving.

Proof. This is obvious from the node selection rule used by the proposed algorithm.

Definition 3. The “deletion by infeasibility” rule throughout a branch and bound procedure

is called certain in the limit if, for every infinite decreasing sequence {Xqp} of successively

refined partition elements with limit X̄, we have X̄ ∩D ̸= ∅. (Definition IV.8. in Horst and

Tuy (2013))

Lemma 3. Deletion by infeasibility is certain in the limit in the proposed algorithm.

Proof. Since branching rule 1 is applied at least once after a finite number of iterations in

the proposed branch and bound algorithm, any infinite decreasing sequence {Xqp} would

converge to a point x̄. We prove this by contradiction. Suppose x̄ ̸∈ D. Since D is compact,

there exist r > 0, such that {x| ||x− x̄||2 ≤ r} ∩D = ∅. Therefore, ∃p0, such that ∀p ≥ p0,
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Xqp ∩ D = ∅. Xqp0
∩ D = ∅, which means the sequence {Xqp} should have been fathomed

at Xqp0
. We complete the proof by contradiction. (Similar proof in Lemma 2 of Cao and

Zavala (2017))

Definition 4. A lower bounding operation is called strongly consistent if, at every iteration,

any undeleted partition set can be further refined and if any infinite decreasing sequence

{Xqp} successively refined partition elements contains a sub-sequence {Xqp′
} satisfying X̄ ∩

D ̸= ∅, lim
p→∞

LBqp = z∗(X̄ ∩ D), where X̄ = ∩pXqp . (Definition IV.7. in Horst and Tuy

(2013))

Lemma 4. The proposed algorithm is strongly consistent.

Proof. Since the division is exhaustive, the sequence {Xqp} would converge to a singleton x̄.

From Lemma 3, x̄ ∈ D. Note that the lower bound LBqp is at least as tight as
∑

ω z
∗l,qp
SL,ω.

lim
p→∞

LBqp ≥ lim
p→∞

∑
ω∈Ω

z
∗l,qp
SL,ω =

∑
ω∈Ω

min τω(c
T x̄ω + dTωyω) + µl

ωx̄ω

s.t. A1,ωx̄ω + g1,ω(yω) ≤ b1,ω, yω ∈ Yω ∀ω ∈ Ω

= z∗(X̄ ∩D)

The last equality holds because the NACs are satisfied. Therefore, lim
p→∞

LBqp = z∗(X̄ ∩

D)

Now we are ready to prove the convergence of the proposed algorithm.

Theorem 3. The proposed algorithm is convergent, i.e., lim
q→∞

LBq = lim
q→∞

UBq = z∗.

Proof. Since we have proved that the subdivision process is exhaustive (Lemma 1), “deletion

by infeasibility” is certain in the limit (Lemma 3), and the lower bounding operation is

strongly consistent (Lemma 4), we have that the lower bounding operation is consistent

according to Lemma IV.5 in Horst and Tuy (2013). Since we have proved that the selection

operation is bound improving, the branch and bound procedure is convergent according to

Theorem IV.3 in Horst and Tuy (2013).
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5.5 Implementation

The proposed algorithm is implemented as part of the PlasmoAlgorithms package in

Julia programming language. PlasmoAlgorithms is a package for decomposition algorithms

that use PlasmoGraph (Jalving et al., 2017) as input. PlasmoGraph is a graph based data

structure based on JuMP/Julia. Each node in a PlasmoGraph contains an optimization

model written in JuMP. In this case, in order to access our algorithm, the user only needs

to write the first and second stage problems in different nodes in PlasmoGraph and connect

the first and second stage nodes with linking constraints. A brief tutorial is provided in

Brunaud et al..

The default solver for the Lagrangean subproblems, upper bound subproblems, which

are MINLPs or NLPs, is BARON. The default solver for the MILP Benders master problem

and the LP Benders subproblems is CPLEX.

Rank-one lift-and-project cuts are implemented as the routine to convexify the MILP

subproblems after the nonconvex functions in stage 2 are replaced by their convex relaxations.

Numerical issues can occur if the rank-one cuts are not implemented properly especially for

problems that are not scaled well. To avoid the numerical instability, we do not generate all

the theoretically valid cuts. We only generate a rank-one cut when the optimal solution of

the binary variables in solving the subproblems are between 0.01 and 0.99. A cut will not

be added if the absolute value of any coefficient in the optimal solution of α in (CGLPj)
q is

nonzero but less than 10−6. A cut will not be added if any of the dual variables correspond

to equation (5.6c) is less than 0.01.

The maximum Lagrangean and Benders iterations |L| and |K| can affect the efficiency of

the proposed algorithm. The general guideline to set the maximum number of iterations is

to check whether increasing the maximum number of iterations can improve the optimality

gap or not. Therefore, the optimal |L| and |K| are problem-dependent. A trial and error

procedure is usually needed, i.e., we need to solve a small scale problem with Benders de-

composition and Lagrangean decomposition separately to decide the maximum number of

iterations. The |L| and |K| used in each test case in section 5.6 will be reported.
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As for branching rules in the proposed algorithm, branching rule 1 is used if the iteration

number in the branch and bound process is a multiple of 3. Otherwise, branching rule 2 is

used.

5.6 Computational results

The proposed algorithm is tested with three problems of this category. A brief description

and the computational results for the three problems are described in the subsections below.

In all the three problems, we solve the deterministic equivalent of the stochastic programs

with three different global solvers, BARON (Tawarmalani and Sahinidis, 2005), ANTIGONE

(Misener and Floudas, 2014), and SCIP (Achterberg, 2009). All the problems are solved using

one processor of an Intel Xeon (2.67GHz) machine with 64 GB RAM. The computational

results of solving the deterministic equivalent are shown in Tables 5.1, 5.3, 5.5. We also

use three different decomposition algorithms to solve each problem shown in Tables 5.2, 5.4,

and 5.6. GBD(with cuts) + L represents the proposed algorithm, where each node of the

branch and bound tree is solved by generalized Benders decomposition with Lagrangean

cuts and Benders cuts coming from the subproblems convexified by cutting planes. GBD+L

is similar to the proposed algorithm, but cutting planes are not used to convexified the

Benders subproblems. LD represents the Lagragean decomposition-based branch and bound

algorithm proposed by Carøe and Schultz (1999). The tolerance of the relative optimality

gap is set to 0.1%. The walltime limit is set to 10, 000 seconds.

5.6.1 Stochastic pooling problem with contract selection

The stochastic pooling problem with contract selection is an extension of the stochastic

pooling problem studied by Li et al. (2011a). The first stage decisions are design decisions,

which include the selection and capacity of feeds and pools. Note that a binary variable

is used to model whether a feed or pool is selected or not. Continuous variables are used

to represent the capacity of the feeds and pools. The second stage decisions are mainly
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operating decisions, including the mass flowrates that are subject to product quality specifi-

cations. Moreover, we consider purchasing the feeds with three different types of contracts,

i.e., fixed price, discount after a certain amount, and bulk discount (Park et al., 2006). A

binary variable is used to model which contract to select for each feed. The details of the

mathematical formulation are described in Appendix 1.

The uncertainties in this problem include demands of the products, prices of the feeds,

and selling prices of the products. We assume that all the three uncertain parameters can

have high, medium, or low realizations. We create instances of stochastic programs with

3, 9, and 27, scenarios. In the 3-scenario problem, only the demands of the products are

uncertain. In the 9 scenario-problem, we consider the Cartesian product of the demands of

the feeds and the prices of the feeds. In the 27-scenario problem, the Cartesian product of

all the three uncertain parameters are considered.

This problem has 9 binary variables, 9 continuous variables, and 18 linear constraints in

stage 1. There are 35 binary variables, 112 continuous variables, 116 linear constraints, 22

nonlinear constraints in stage 2 per scenario. The nonlinear constraints correspond to the

bilinear terms in the pooling problem.

The computational results of the deterministic deterministic equivalent are shown in

Table 5.1. While BARON and ANTIGONE can solve the problems with 3 and 9 scenarios

to optimality within the time limit, all the solvers fail to solve the problem with 27 scenarios

to optimality within the time limit.

Table 5.1: Walltime and relative optimality gap of solving the deterministic equivalent of the
stochastic pooling problem with 3, 9, 27, scenarios

#Scenarios 3 9 27
BARON 18.5.8 5/0.1% 3005/0.1% 104/8.7%

ANTIGONE 1.1 16/0.1% 251/0.1% 104/1.4%
SCIP 5.0 104/54.4% 104/100.0% 104/100.0%

We also apply the three decomposition algorithms, GBD(with cuts)+L, GBD+L, LD,

to solve this problem. The maximum Lagrangean iterations |L| and the maximum Benders

iterations |K| at each node is set to 20, and 60, respectively. The walltime, the relative
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Table 5.2: Walltime, relative optimality gap, and number of nodes by using different decomposition
algorithms to solve the stochastic pooling problem with 3, 9, 27, scenarios

#Scenarios 3 9 27
GBD(with cuts)+L 152/0.1%/1 502/0.1%/1 2113/0.1%/1

GBD+L 104/0.1%/381 104/0.8%/39 104/1.3%/7
LD 104/0.2%/363 104/7.1%/43 104/12.2%/9

optimality gap, and the number of nodes in the branch and bound tree are shown in Table 5.2

separated by “/”. The proposed algorithm, GBD(with cuts)+L, can solve all the problems to

optimality at the root node within the time limit. GBD+L can solve the 3 scenario problem

with 381 nodes. However, for the problems with 9 and 27 scenarios, GBD+L cannot close

the gap but can provide solutions with reasonably good optimality gaps, namely 0.8% and

1.3%, respectively. LD runs out of time for all the problems. For the 3 scenario problem, LD

provides 0.2% gap by solving 363 nodes. For the 9 and 27 scenario problem, LD is only able

to solve 43 and 9 nodes, respectively, within the time limit. Therefore, the gaps are quite

large for LD in large problems.

5.6.2 Crude selection and refinery optimization under uncertainty

The crude selection and refinery optimization problem comes from the stochastic pro-

gramming library in GOSSIP (decomposition software for the Global Optimization of non-

convex two-Stage Stochastic mixed-Integer nonlinear Programs) (Kannan, 2018). The prob-

lem was first proposed by Yang and Barton (2016). In their model, crudes are purchased

in certain predefined discrete amounts in the first stage. Kannan (2018) extend this work

by considering the purchased crudes as ‘semi-continuous’ variables i.e., the crude purchase

quantity can either be zero if the decision maker decides not to purchase that particular

crude, or it must lie between some prespecified lower and upper bounds. The second stage

decisions correspond to the operating conditions of the refinery, such as the mass flow rates

and the split fractions. The decisions need to be subject to mass balances, quality spec-

ifications, market demands, and capacity and supply restriction. The uncertainties are in
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the crude oil qualities and yields. The nonlinearities in the model come from the bilinear

terms in the quality specifications in stage 2, which is similar to the formulation in a pooling

problem.

This problem has 10 binary variables, 10 continuous variables, and 21 linear constraints,

in stage 1. There are 142 continuous variables, 85 linear constraints, 26 nonlinear constraints

in stage 2 per scenario. Note that this problem has no binary variables in stage 2.

The two-stage stochastic program for this problem is solved with 5, 10, 20, 40, and 120

scenarios. The computational results of the deterministic equivalent are shown in Table 5.3.

The deterministic equivalent with less than 40 scenarios can be solved to optimality within

the time limit with all the solvers where ANTIGONE has the best performance. For the

largest instance, the 120 scenario problem, the solvers can obtain good gaps, i.e., 0.4% for

SCIP.

Table 5.3: Walltime and relative optimality gap of solving the deterministic equivalent of the crude
selection and refinery optimization under uncertainty with 5,10,20,40,120 scenarios

#Scenarios 5 10 20 40 120

BARON 18.5.8 24/0.1% 5092/0.1% 104/0.4% 104/0.1% 104/0.9%
ANTIGONE 1.1 5/0.1% 26/0.1% 322/0.1% 104/0.1% 104/0.9%

SCIP 5.0 4/0.1% 60/0.1% 104/0.2% 104/0.1% 104/0.4%

Table 5.4: Walltime, relative optimality gap, and number of nodes by using different decomposition
algorithms to solve the crude selection and refinery optimization under uncertainty with 5, 10, 20,
40, 120 scenarios

#Scenarios 5 10 20 40 120

GBD+L (Mc) 104/1.8%/155 104/0.8%/85 104/1.1%/37 104/0.9%/17 104/0.9%/7
GBD+L (Mc, 1 node) 34/2.3% 47/1.0% 91/1.1% 184/0.9% 473/0.9%
GBD+L (pMc, 1 node) 317/0.4% 405/0.2% 389/0.4% 387/0.9% 4027/0.2%

LD 104/11.7%/165 104/7.8%/81 104/16.2%/33 104/80.7%/17 104/145.3%/7

Since there are no binary variables in stage 2, we only test the decomposition algorithms

GBD+L and LD. The maximum Lagrangean iterations |L| and the maximum Benders it-

erations |K| at each node is set to 20, and 60, respectively. The computational results are

shown in Table 5.4. For GBD+L, two different convex relaxations are used for the Benders
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subproblems. In Table 5.4, we use “Mc” to represent the convex relaxation where the bilin-

ear terms are relaxed by their McCormick envelopes. We use “pMc” to represent the convex

relaxation where the bilinear terms are relaxed by the hull relaxation of the piecewise Mc-

Cormick envelopes (Misener et al., 2011). The details of “pMc” are described in Appendix

2. In the first row of Table 5.4, we show the walltime, the optimality gap, and the number

of nodes in the algorithm GBD+L where “Mc” is used as the convex relaxation. None of the

problems can be solved within 0.1% optimality within 10, 000 seconds. We also find that the

optimality gaps do not improve much when we branch on the first stage variables. Therefore,

we show the gap at the rootnode in the second row. One can observe that only in the case

of 5 and 10 scenarios branching leads to an improvement in the optimality gaps.

Piecewise McCormick envelop (“pMc”) is tighter than “Mc”, while yielding larger prob-

lems. In the third row, we show the walltime and the optimality gaps for those problems at

the rootnode when “pMc” is used as the convex relaxation. The results corresponding to the

whole branch and bound process for “pMc” are omitted since the gaps did not improve when

we branch within the time limit. The optimality gaps obtained from “pMc” relaxations are

smaller than using “Mc” at the rootnode at the expense of spending more time to solve each

Benders subproblem. In the largest case of 120 scenarios, GBD+L with “pMc” relaxation

is able to obtain smaller optimality gap than using any of the global solvers to solve the

deterministic equivalent.

In the fourth row, we report the results of LD where the optimality gaps are larger than

using GBD+L. The results indicate that the Lagrangean relaxations for this problem are

weak, which is consistent with the results obtained by Kannan (2018) using their modified

Lagrangean decomposition-based branch and bound algorithm. The results also suggest that

in both “Mc” and “pMc” for GBD+L, the Benders cuts “dominate” the Lagrangean cuts,

which is why branching does not have a significant impact on the optimality gaps in GBD+L.

In this example, the convex relaxation provided by “Mc” and “pMc” can yield tighter lower

bound than the Lagrangean relaxation.
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5.6.3 Storage design for a multi-product plant under uncertainty

The storage design for a multi-product plant under uncertainty problem also comes from

the library in GOSSIP. The case study considers a chemical plant that uses a single reactor

to produce products and stores them in storage tanks. The stage 1 decisions are design

decisions, i.e., the product tank sizes. In stage 2, binary variables are used to represent the

assignment of products to campaigns. Continuous decisions include the production amount

in each campaign, the duration of the campaigns, etc. The uncertainties considered are the

demands of the products. The details can be found in Rebennack et al. (2011).

This problem has 3 continuous variables, and 1 nonlinear constraint, in stage 1. The

nonlinearity corresponds to a univariate signomial term, which is used to calculate the tank

investment cost. There are 9 binary variables, 41 continuous variables, 85 linear constraints,

26 nonlinear constraints in stage 2 per scenario. These nonlinear constraints come from the

bilinear terms that are used to calculate the variable inventory costs.

The deterministic equivalent of the stochastic programs is solved with 2, 3, 4, 5, 9, and

27 scenarios. From the results in Table 5.5, one can observe that BARON and SCIP can

solve the small problems to optimality within the time limit but fail to solve the problem

to optimality with more than 4 scenarios. On the other hand, ANTIGONE can solve the 9

and 27 scenario problem, but fails to solve the small problems to optimality within the time

limit.

Table 5.5: Walltime and relative optimality gap of solving the deterministic equivalent of the storage
design for a multi-product plant under uncertainty with 2,3,4,5,9,27 scenarios

#Scenarios 2 3 4 5 9 27

BARON 18.5.8 1117/0.1% 104/2.2% 104/7.0% 104/11.0% 104/13.0% 104/13.0%
ANTIGONE 1.1 104/2.8% 104/8.0% 104/11.0% 104/13.5% 3/0.1% 87/0.1%

SCIP 5.0 404/0.1% 7960/0.1% 104/1.0% 104/2.4% 104/4.6% 104/12.2%

Similarly, the three decomposition algorithms are used to solve this problem. The max-

imum Lagrangean iterations |L| and the maximum Benders iterations |K| at each node is

set to 1, and 1, respectively. The results are shown in Table 5.6. All the decomposition

algorithms can solve this problem to optimality within the time limit. However, in this
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Table 5.6: Walltime, relative optimality gap, and number of nodes by using different decomposition
algorithms to solve the storage design for a multi-product plant under uncertainty with 2,3,4,5,9,27
scenarios

#Scenarios 2 3 4 5 9 27

GBD(with cuts)+L 127/0.1%/47 239/0.1%/63 761/0.1%/141 365/0.1%/59 1250/0.1%/99 8681/0.1%/159
GBD+L 74/0.1%/47 277/0.1%/149 353/0.1%/141 188/0.1%/59 549/0.1%/99 4108/0.1%/159

LD 61/0.1%/47 214/0.1%/149 270/0.1%/141 152/0.1%/59 436/0.1%/99 3219/0.1%/165

case LD performs better than GBD(with cuts)+L and GBD+L. Note that in most of the

instances all the three algorithms have to solve the same number of nodes in order to prove

optimality. Only in the case of 3 and 27 scenarios, GBD(with cuts)+L requires fewer nodes

than LD, which means that the Benders cuts with cutting planes can help to improve the

bounds. The results indicate that in the cases where the three algorithms need to solve the

same number of nodes, adding Benders cuts does not help to improve the bounds, i.e., the

Benders cuts are dominated by the Lagrangean cuts. This is due to the fact that the convex

relaxation of the problem is weaker than the Lagrangean relaxation of the problem.

5.7 Conclusions

In this chapter, we have proposed a generalized-Benders decomposition-based branch

and cut algorithm for two stage stochastic programs with nonconvex constraints and mixed-

binary first and second stage variables. We include both Lagrangean cuts and Benders cuts

in the Benders master problem. The convergence of the proposed algorithm relies on adding

Lagrangean cuts to the Benders master problem and performing a branch-and-bound search

on the first stage variables, which follows from the convergence proof of general branch

and bound by Horst and Tuy (2013). The Benders cuts are derived from the convexified

subproblems where cutting planes can be added. Our computational results show that

adding cutting planes can potentially accelerate the convergence of the branch-and-bound

procedure, especially in the stochastic pooling problem with contract selection. However,

in the storage design for a multi-product plant under uncertainty problem, adding rank-one

lift-project-cut does not help the branch-and-bound procedure.
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For the problems with tight Lagrangean relaxation, the corresponding Benders cuts de-

rived from the Benders subproblem convexified by cutting planes would be dominated by the

Lagrangean cuts (storage design problem in subsection 5.6.3). On the other hand, for the

problems with weak Lagrangean relaxation (stochastic pooling problem in subsection 5.6.1,

and crude selection problem in subsection 5.6.2), adding Benders cuts may be able to close

the duality gap significantly. Therefore, in order to predict whether it is preferable to add

cutting planes, heuristics need to be proposed to decide cut generation.

In the spatial branch and bound process, a hybrid of the proposed branching rules is

used. It would be desirable to have a large benchmark library of stochastic programming

problem of the proposed category in order to test different hybrid branching rules.

While the proposed algorithm can solve the test cases to small optimality gaps, solving

stochastic nonconvex MINLPs is still challenging. It would be desirable to come up with

tighter convex relaxations for the nonconvex terms in stage 2 in order to generate tight

Benders cuts. We have shown that in the crude selection problem using the hull relaxation

of piecewise McCormick envelope, yields smaller optimality gaps than using the McCormick

envelope. Tighter convex relaxations are in general more difficult to solve. Therefore, there is

a tradeoff between using tight convex relaxations and doing more branching. We propose to

obtain more computational studies in the future to learn the appropriate convex relaxations

based on the features of each problem to make the proposed algorithm more efficient.
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Chapter 6

Sample Average Approximation for

Stochastic Nonconvex Mixed Integer

Nonlinear Programming via

Outer-Approximation

6.1 Problem Statement

The problem that we address in this chapter is defined in Eq. (6.1),

(SP-MINLP) min
x∈X,y∈{0,1}m

E
θ∼P

min
z∈Z

f (x, y, z; θ) (6.1a)

s.t. g(x, y, z; θ) ≤ 0 ∀θ ∈ Θ (6.1b)

where, x and y are vectors of continuous and discrete decision variables, respectively. Notice

that any bounded general integer variable can be modeled using binary variables. z is

a vector of continuous recourse variables, which can vary depending on the realization of

uncertain parameters, which are represented by the vector θ. The uncertain parameter

θ ∈ Θ follows a continuous joint probability distribution P, where Θ is the support of the

uncertain parameter. Functions f and g are smooth functions, which can be nonconvex and
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sets X and Z are compact. Problem (6.1) is a two-stage SP where variables x and y represent

the first stage decisions, variable z represents the second stage decisions. The expectation is

taken over the probability distribution of uncertainty parameter θ. We make the following

assumption about problem (SP-MINLP).

Assumption 8. Problem (SP-MINLP) has relatively complete recourse, i.e., any solution

(x, y) that satisfies the first stage constraints has feasible recourse decisions in the second

stage.

With this assumption, Θ is usually a bounded set in practice. Solving (SP-MINLP) with

continuous probability distribution directly involves integrating over the distribution, which

is usually computationally intractable. Instead of minimizing the ‘true’ expectation, one can

generate N i.i.d. samples for the uncertain parameter θ and minimize the empirical risk.

The empirical risk minimization problem described in Eq. (6.2) is called sample average

approximation (SAA) (Shapiro et al., 2009) in the SP literature.

(SAA-MINLP) min
x∈X,y∈{0,1}m,zi∈Z

1

N

N∑
i=1

f (x, y, zi, θi) (6.2a)

s.t. g(x, y, zi, θi) ≤ 0 ∀i ∈ [N ] (6.2b)

where [N ] represents the set {1, 2, · · · , N}, from which we obtain θi, i ∈ [N ], that are the N

i.i.d. samples of the uncertain parameter vector θ, and zi is the stage 2 variable corresponding

to each θi. One option to solve (SP-MINLP) is to approximate it with (SAA-MINLP), which

can be regarded as ‘external sampling’. The convergence properties of (SAA-MINLP) have

been widely studied (Shapiro et al., 2009; Ahmed et al., 2002). In this chapter, we take an

internal sampling approach to solve (SP-MINLP) by using a nonconvex OA algorithm.
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6.2 Sampling Average Approximation within the Outer-

Approximation Algorithm (SAAOA)

We first give a high-level overview of the SAAOA algorithm before we go to the details.

Let us take a step back and consider a nonconvex OA algorithm to solve deterministic

MINLP. We have an MILP master problem where the nonconvex functions in the original

MINLP are replaced by their polyhedral relaxations. The MILP master problem provides a

lower bound (LB) to the original MINLP’s optimal objective function value. After solving

the MILP master problem, we fix the binary variables in the original MINLP to the optimal

solution of the master problem and solve the resulting nonconvex NLP. If the nonconvex

NLP provides a feasible solution, it is feasible to the original problem and yields an upper

bound (UB) of the optimal objective function value.

Additionally, we include a ‘no-good’ cut that removes from the feasible set at iteration k

all the previously found binary variable combinations,

m∑
j=1

ak
′

j yj ≤ bk
′ ,where ak′j =

1 if yk′j = 1

−1 if yk′j = 0

and bk
′
=

m∑
j=1

yk
′

j − 1, ∀k′ < k (6.3)

where arameter yk′i is the optimal value of the ith binary variable at iteration k′.

Finally, we keep iterating between the MILP master problem and the NLP subproblem

until the upper and lower bounds lie within certain tolerance.

The deterministic nonconvex OA algorithm can be extended to the solution of (SP-

MINLP) by generating i.i.d. samples for both the master problem and the nonconvex sub-

problem using an internal sampling approach. We define all the subproblems in the SAAOA

algorithm in the next subsection.

6.2.1 Subproblems definition

The (SP-OA-MILP) master problem at iteration k is defined as

(SP-OA-MILP) LBk = min
x∈X,y∈{0,1}m

E
θ∼P

min
z∈Z

f̂ (x, y, z; θ) (6.4a)
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s.t. ĝ(x, y, z; θ) ≤ 0 ∀θ ∈ Θ; Eq. (6.2) (6.4b)

where f̂ and ĝ are polyhedral relaxations for function f , and g, respectively, which can be

obtained by convexifying (SP-MINLP). LBk represents the LB of (SP-MINLP) after k − 1

iterations, where k − 1 ‘no-good’ cuts (6.2) have been added.

Problem (SP-OA-MILP) can be approximated by generating N i.i.d. samples of θi from

probability distribution P and solving the following (SAA-OA-MILP) master problem.

(SAA-OA-MILP) ŵk
N = min

x∈X,zi∈Z,y∈{0,1}m

1

N

N∑
i=1

f̂ (x, y, zi, θi) (6.5a)

s.t. ĝ(x, y, zi, θi) ≤ 0 ∀i ∈ [N ]; Eq. (6.2) (6.5b)

An UB to (SP-MINLP) can be found by fixing the binary variables at a value ȳ and solving

problem (SP-nonconvex-NLP),

(SP-nonconvex-NLP) UB(ȳ) = min
x∈X

E
θ∼P

min
z∈Z

f (x, ȳ, z, θ) (6.6a)

s.t. g(x, ȳ, z, θ) ≤ 0 ∀θ ∈ Θ (6.6b)

The nonconvex NLP at fixed binary variable ȳ by SAA is defined as,

(SAA-nonconvex-NLP) ûN(ȳ) = min
x∈X,zi∈Z

1

N

N∑
i=1

f (x, ȳ, zi, θi) (6.7a)

s.t. g(x, ȳ, zi, θi) ≤ 0 ∀i ∈ [N ] (6.7b)

where N i.i.d. samples of θi ∈ Θ are generated from probability distribution P.

6.2.2 Internal sampling using outer-approximation

The OA algorithm iterates between the (SAA-OA-MILP) master problem and the (SAA-

nonconvex-NLP) subproblem. N i.i.d. samples are generated for both the master and the

subproblem at each iteration. A ‘no-good’ cut (6.2) is added to the (SAA-OA-MILP) master

problem to eliminate the current integer solution. The steps of the SAAOA algorithm are

described in Algorithm 1.
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6.3 Convergence results

6.3.1 Convergence of objective values and solutions

In this subsection, we prove that the optimal value and solutions obtained by the proposed

Algorithm 1 converge to the optimal value and solutions of (SP-MINLP) with probability

(w.p.) 1 as the sample size N → ∞. Note that by optimal solutions, we mean the optimal

first-stage decisions.

6.3.1.1 Convergence of the upper bound.

In order to establish the results, we first prove that the convergence of the UB (SAA-

nonconvex-NLP) to (SP-nonconvex-NLP). Note that the optimal objective values of (SAA-

nonconvex-NLP) and (SP-nonconvex-NLP) when y is fixed at ȳ are defined as UB(ȳ) and

ûN(ȳ), respectively. We further define the set of optimal solutions of (SP-nonconvex-NLP)

as S∗(ȳ); the set of optimal solutions of (SAA-nonconvex-NLP) as ŜN(ȳ). We want to prove

that limN→∞ ûN(ȳ) = UB(ȳ) and the event {S∗(ȳ) = ŜN(ȳ)} happens w.p. 1 as N → ∞.

We define function UB(ȳ, x) as

UB(ȳ, x) = E
θ∼P

min
z∈Z

f (x, ȳ, z, θ) (6.8a)

s.t. g(x, ȳ, z, θ) ≤ 0 ∀θ ∈ Θ (6.8b)
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Function ûN(ȳ, x) is defined as,

ûN(ȳ, x) =
1

N

N∑
i=1

min
zi∈Z

f (x, ȳ, zi, θi) (6.9a)

s.t. g(x, ȳ, zi, θi) ≤ 0 ∀i ∈ [N ] (6.9b)

Note that ûN(ȳ, x) contains the summation of N i.i.d samples. According to the Law of

Large Numbers, ûN(ȳ, x) converges pointwise w.p. 1 to UB(ȳ, x) as N → ∞. Moreover,

under some mild conditions ((Shapiro, 1991; Shapiro et al., 2009; Shapiro, 1993; King and

Rockafellar, 1993)), the convergence is uniform. To prove the convergence of the UB, we

make the following assumptions, which are similar to the assumptions in Theorem 5.3 of

Shapiro et al. (2009).

Assumption 9. All the samples θi, i ∈ [N ], in all the SAA problems are i.i.d. from a

distribution P.

Assumption 10. Set X is compact.

Assumption 11. The set S∗(ȳ) of optimal solutions of (SP-nonconvex-NLP) is nonempty,

for any vector ȳ ∈ {0, 1}m.

Assumption 12. The function UB(ȳ, x) is finite valued and continuous in x on X, for any

vector ȳ ∈ {0, 1}m.

Remark. Note that for a given uncertain parameter θi, the cost-to-go function is discon-

tinuous in general. However, UB(ȳ, x) is the expected cost over a continuous distribution.

Under some mild assumptions, UB(ȳ, x) is continuous for all x ∈ X (Schultz, 1995).

Assumption 13. The set ŜN(ȳ) is nonempty w.p. 1 for N → ∞, for any vector ȳ ∈ {0, 1}m.

Assumption 14. The function ûN(ȳ, x) converges to UB(ȳ, x) w.p. 1, asN → ∞, uniformly

on X, for any vector ȳ ∈ {0, 1}m.

Under assumptions 10-14, the following lemma holds.
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Lemma 5. If Assumptions 10-14 hold true, limN→∞ ûN(ȳ) = UB(ȳ) and the event {S∗(ȳ) =

ŜN(ȳ)} happens w.p. 1 as N → ∞, for any vector ȳ ∈ {0, 1}m (Theorem 5.3 of Shapiro

et al. (2009)).

Proof. According to Assumption 14,

max
x∈X

|ûN(ȳ, x)− UB(ȳ, x)| → 0, w.p. 1 as N → ∞

We can bound |ûN(ȳ)− UB(ȳ)| by,

|ûN(ȳ)− UB(ȳ)| = |min
x∈X

ûN(ȳ, x)− min
x∈X

UB(ȳ, x)|

= max
{

min
x∈X

ûN(ȳ, x)− min
x∈X

UB(ȳ, x),min
x∈X

UB(ȳ, x)− min
x∈X

ûN(ȳ, x)
}

≤ max
{
ûN(ȳ, x

∗
UB(ȳ))− UB(ȳ, x∗UB(ȳ)), UB(ȳ, x∗U(ȳ))− ûN(ȳ, x

∗
U(ȳ))

}
≤ max

x∈X
|ûN(ȳ, x)− UB(ȳ, x)|

where x∗UB(ȳ) = argminx∈XUB(ȳ, x), x∗U(ȳ) = argminx∈X ûN(ȳ, x). Therefore, we have

limN→∞ ûN(ȳ) = UB(ȳ).

Now we need to prove that the event {S∗(ȳ) = ŜN(ȳ)} happens w.p. 1 as N → ∞,

for any vector ȳ ∈ {0, 1}m. We prove this by contradiction. Due to the compactness of

X, we can assume that there exists x̂N(ȳ) ∈ ŜN(ȳ) such that dist
(
x̂N(ȳ), S

∗(ȳ)
)
≥ ϵ, for

some ϵ > 0, and that x̂N(ȳ) tends to a point x∗(ȳ) ∈ X. Since x∗(ȳ) /∈ S∗(ȳ), we have

UB(ȳ, x∗(ȳ)) > UB(ȳ).

ûN
(
ȳ, x̂N(ȳ)

)
− UB

(
ȳ, x∗(ȳ)

)
=
[
ûN
(
ȳ, x̂N(ȳ)

)
− UB(ȳ, x̂N(ȳ))

]
+
[
UB
(
ȳ, x̂N(ȳ)

)
− UB

(
ȳ, x∗(ȳ)

)]
The first term on the right hand side goes to zero by the uniform convergence of ûN(ȳ, x)

(Assumption 14). The second term goes to zero by the continuity of function UB(ȳ, x)

(Assumption 12). Then we have limN→∞ ûN
(
ȳ, x̂N(ȳ)

)
= UB

(
ȳ, x∗(ȳ)

)
> UB(ȳ), which

contradicts with the convergence of the objective value ûN(ȳ) to UB(ȳ).
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6.3.1.2 Convergence of the optimal values and solutions of the lower bound.

Next, we prove the convergence of the LB estimators. Similar to the analysis of the UB,

we define function, LBk(x, y),

LBk(x, y) = E
θ∼P

min
z∈Z

f̂ (x, y, z; θ) (6.10a)

s.t. ĝ(x, y, z; θ) ≤ 0 ∀θ ∈ Θ; Eq. (6.2) (6.10b)

Function ŵk
N(x, y) is defined as,

ŵk
N(x, y) =

1

N

N∑
i=1

min
zi∈Z

f̂ (x, y, zi, θi) (6.11a)

s.t. ĝ(x, y, zi, θi) ≤ 0 ∀i ∈ [N ]; Eq. (6.2) (6.11b)

The optimal values of (SP-OA-MILP) and (SAA-OA-MILP) are defined as LBk, ŵk
N , respec-

tively. The sets of optimal solutions for (SP-OA-MILP) and (SAA-OA-MILP) at iteration

k are denoted as T ∗
k , T̂N

k , respectively. We want to prove that limN→∞ ŵk
N = LBk and the

event {T ∗
k = T̂N

k } happens w.p. 1 as N → ∞. The complication compared with the previ-

ous subsection is the presence of binary variables in (SP-OA-MILP). Note that in the proof

for the convergence of (SP-nonconvex-NLP) the binary variables are fixed. However, if we

consider some fixed ȳ that is feasible for (SP-OA-MILP) at iteration k, by making similar

assumptions to Assumptions 10-12, we can prove the convergence of the optimal values and

solutions of the LB estimators in (SAA-OA-MILP) to (SP-OA-MILP) with the y variables

fixed at ȳ. Let the optimal value of (SP-OA-MILP) with y fixed at ȳ be LBk(ȳ). The opti-

mal value of (SP-OA-MILP) can be obtained by taking the minimum over all the possible

LBk(ȳ). Since the combinations of binary variables are finite, the convergence of both the

optimal values and optimal solutions to (SP-OA-MILP) can be established. We state the

following lemma whose proof is similar to Lemma 5, and hence we omit it.

Lemma 6. Under mild conditions similar to Assumptions 10-14, the optimal value and

the optimal solutions of (SAA-OA-MILP) converges to those of (SP-OA-MILP) w.p. 1 as

N → ∞, i.e., limN→∞ ŵk
N = LBk, the event {T ∗

k = T̂N
k } happens w.p. 1 as N → ∞.
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6.3.1.3 Convergence of optimal objective values and solutions of Algorithm 1

The convergence of the optimal values and solutions of the LB and the UB is proved

setting up the main theorem of this section.

Theorem 4. The proposed Algorithm 1 returns the optimal value and the set of optimal

solutions (x∗, y∗) of (SP-MINLP) w.p. 1 as N → ∞.

Proof. Note that Algorithm 1 can only miss finding the optimal solution y∗ in 1) the com-

parison of the optimal objective value of (SAA-nonconvex-NLP), ûkN , and the current upper

bound UB, and 2) the comparison of the objective value of the (SAA-OA-MILP) with the

current UB. We need to prove that neither of these two cases can happen as N → ∞. Note

that Lemmas 5 and 6 prove that all the estimators are ‘exact’ in the sense they converge to the

optimal value of the corresponding true stochastic programming problems (SP-nonconvex-

NLP) and (SP-OA-MILP). Therefore, the optimal solution cannot be missed in either of the

two cases. Since there are only finite combinations of binary variables, it takes Algorithm 1

finite number of iterations to converge. The optimal value returned is the optimal value of

the true (SP-MINLP) and the optimal solution corresponds to the y∗ that yields the best

UB.

6.3.2 Estimates of sample sizes

Having proved that Algorithm 1 converges in the limit, it is desirable to estimate the

sample size to achieve finite error ϵ with high probability.

Ahmed et al. (2002) give the sample size estimator for two-stage SP. An SAA estimator,

which is solved to δ-optimality, gives the ϵ-optimal solution to the corresponding true problem

with probability at least 1− α if the sample size

N ≥ 12σ2

(ϵ− δ)2

(
n1 ln 2DL

ϵ− δ
− lnα

)
(6.12)

where D is the diameter of set X, i.e., D = supx∈X,x′∈X ||x − x′||, the objective function of

the SP problem is assumed to be L-Lipschitz continuous on X, n1 is the dimension of the
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first stage variables, and σ2 is the maximal variance of certain differences between values of

the objective function of the SAA problem (see Kleywegt et al. (2002)).

Remark. Eq. (6.12) gives the rate of convergence for any SAA estimators of any two-

stage SP. Theoretically, it can be used to calculate the sample sizes of the MILP master

problem and the nonconvex NLP subproblem, respectively, if we have the upper bounds of

the diameter of the feasible set X and the Lipschitz constant L. However, for stochastic

MINLP problems, the Lipschitz constant L is difficult to estimate. Moreover, the sample

size estimates from (6.12) is usually too conservative in practice (Kleywegt et al., 2002).

Therefore, we need to design an algorithm based on Algorithm 1 that is more efficient in

practice. Note that the convergence results and the sample size estimates only apply to

Algorithm 1. The algorithm that will be discussed in the next section is only a ‘practical’

algorithm to solve the (SP-MINLP) problem.

6.4 Algorithm Design

Here we extend Algorithm 1 to a more practical algorithm based on the ideas of Kleywegt

et al. (2002) where an empirical method is proposed to construct confidence intervals for the

optimal objective value of the ‘true’ SP problem. Throughout this section, we assume that

all the problems are solved to global optimality.

For a finite sample size N , Mak et al. (1999) prove that the expectation of the SAA

problems provides lower bounds for the corresponding true SP problems. In Algorithm 1,

the expectation of the objective of (SAA-OA-MILP), ŵk
N , provides a lower bound for the

objective of (SP-OA-MILP), LBk, at every iteration k,

Eθi∼P
[
ŵk

N

]
≤ LBk

For the objective of (SP-nonconvex-NLP), UB(ȳ), and the objective of the corresponding

(SAA-nonconvex-NLP), ûN(ȳ), we have,

Eθi∼P [ûN(ȳ)] ≤ UB(ȳ)
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Therefore, the SAA estimators, ŵk
N and ûN(ȳ), can be regarded as the lower estimators

of (SP-OA-MILP) and (SP-nonconvex-NLP), respectively. In order to construct the confi-

dence intervals for (SP-OA-MILP) and (SP-nonconvex-NLP), we need to provide their upper

estimators.

6.4.1 Upper estimators

Mak et al. (1999) prove that the upper estimator of a SP can be obtained by evaluating

the sample mean at a given feasible first stage decision. In our case, the upper estimator of

the (SP-OA-MILP) can be obtained by solving the following problem for random sample θi,

i = 1, ..., N ′
L

(single-OA-LP) ŵ
(i),k
1 = min

zi∈Z
f̂ (x̃, ỹ, zi, θi) (6.13a)

s.t. ĝ(x̃, ỹ, zi, θi) ≤ 0 (6.13b)

where the first stage decisions (x, y) are fixed at (x̃, ỹ). The values of (x̃, ỹ) can come from a

good estimate of the optimal solution of (SP-OA-MILP), for example, the optimal solution

of (SAA-OA-MILP). The upper estimator of the (SP-OA-MILP) can be the average of the

N ′
L (single-OA-LP) problems,

w̄k
N ′

L
=

1

N ′
L

N ′
L∑

i=1

ŵ
(i),k
1

Similarly, the upper estimator of (SP-nonconvex-NLP) can be derived by fixing the first

stage decisions (x, y) to (x̄, ȳ) and solve the rest of the nonconvex NLP for N ′
U samples of θi.

The values for (x̄, ȳ) can come from the optimal solution of (SAA-nonconvex-NLP) (x̄k, ȳk).

The ith single size nonconvex NLP at iteration k is defined as,

(single-nonconvex-NLP) û
(i),k
1 = min

zi∈Z
f (x̄, ȳ, zi, θi) (6.14a)

s.t. g(x̄, ȳ, zi, θi) ≤ 0 (6.14b)

The upper estimator of the (SP-nonconvex-NLP) can be the average of the N ′
U (single-
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nonconvex-NLP) problems,

ūkN ′
U
=

1

N ′
U

N ′
U∑

i=1

û
(i),k
1

Note that the major difference between (6.13) and (6.14) is that in (6.13) polyhedral relax-

ations of functions f and g are used.

6.4.2 Confidence intervals for the upper and lower bound

We show how the confidence intervals of the upper and the lower bounds at every iteration

k of the SAAOA Algorithm 2 can be constructed.

We first show how the confidence interval of (SP-nonconvex-NLP) can be constructed

at each iteration. Recall that the expectation of (SAA-nonconvex-NLP) provides a LB of

(SP-nonconvex-NLP), i.e., E[ûN(ȳ)] ≤ UB(ȳ). To have a good estimate for the expectation,

we solve MU batches of (SAA-nonconvex-NLP). We make the following assumption about

the batches of the SAA problems,

Assumption 15. All the MU (ML) batches of samples in the (SAA-nonconvex-NLP) and

(SAA-OA-MILP) problems are independent and identically distributed.

At each iteration k, (SAA-nonconvex-NLP) with NU samples is solved MU times to obtain

a lower estimator of the upper bound UB(ȳk). We use random variable û(m),k
NU

to denote the

optimal objective value of the mth batch of (SAA-nonconvex-NLP) at iteration k. From

Mak et al. (1999), random variable û(m),k
NU

is a biased estimator of UB(ȳk), i.e.,

Eθi∼P

[
û
(m),k
NU

]
≤ UB(ȳk) (6.15)

The mean of the MU batches (SAA-nonconvex-NLP) is defined as ūkNU ,MU
= 1

MU

∑MU

m=1 û
(m),k
NU

.

By the central limit theorem,√
MU

(
ūkNU ,MU

− Eθi∼P
[
ūkNU ,MU

] )
⇒ N (0, σ2

u,k) (6.16)

where ‘⇒’ denotes convergence in distribution, and N (0, σ2) denotes a normal distribution

with mean zero and variance σ2. (Ŝu,k
MU

)2 is the standard sample variance estimator of σ2
u,k,
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which is defined by
(Ŝu,k

MU
)2

MU

=
1

MU(MU − 1)

MU∑
m=1

(û
(m),k
NU

− ūkNU ,MU
)2 (6.17)

Therefore, the (1− α) confidence interval of the lower estimator of the UB can be approxi-

mated by,(
ūkNU ,MU

− t
α/2
MU−1

Ŝu,k
MU√
MU

, ūkNU ,MU
+ t

α/2
MU−1

Ŝu,k
MU√
MU

)
(6.18)

where tα/2MU−1 is the 1− α/2 quantile of t-distribution with MU − 1 degrees of freedom.

At each iteration k, N ′
U (single-nonconvex-NLP)s are solved to obtain the upper estimator

of (SP-nonconvex-NLP). We use û(i),k1 to denote the optimal objective value of the ith sample

of (single-nonconvex-NLP) at iteration k. By definition, we also have the mean of the N ′
U

samples, ūkN ′
U
= 1

N ′
U

∑N ′
U

i=1 û
(i),k
1 . From Mak et al. (1999), we have

Eθi∼P

[
ūkN ′

U

]
≥ UB(ȳk) (6.19)

In Eqs. (6.16) and (6.17), by the central limit theorem,√
N ′

U

(
ūkN ′

U
− Eθi∼P

[
ūkN ′

U

] )
⇒ N(0, σ2

u′,k) (6.20)

The standard sample variance estimator (Ŝu,k
N ′

U
)2 of σ2

u′,k is defined by,

(Ŝu,k
N ′

U
)2

N ′
U

=
1

N ′
U(N

′
U − 1)

N ′
U∑

i=1

(
û
(i),k
1 − ūkN ′

U

)2 (6.21)

Therefore, the (1− α) confidence interval of the upper estimator of the UB can be approxi-

mated by,(
ūkN ′

U
− t

α/2

N ′
U−1

Ŝu,k
N ′

U√
N ′

U

, ūkN ′
U
+ t

α/2

N ′
U−1

Ŝu,k
N ′

U√
N ′

U

)
(6.22)

where tα/2N ′
U−1 is the 1−α/2 quantile of the t-distribution with N ′

U − 1 degrees of freedom. By

combining (6.22) and (6.18), we have with probability at least (1− α), the UB obtained at

iteration k, UB(ȳk), lies within the interval,

(UB,UB) =
(
ūkNU ,MU

− t
α/2
MU−1

Ŝu,k
MU√
MU

, ūkN ′
U
+ t

α/2

N ′
U−1

Ŝu,k
N ′

U√
N ′

U

)
(6.23)

where (Ŝu,k
N ′

U
)2 is the standard sample variance estimator of σ2

u′,k, the variance of the scaled

normal distribution to what ūkN ′
U

minus its expected value converges in distribution.
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Similarly, to construct the confidence interval for (SP-OA-MILP) at each iteration k, we

can solve the (SAA-OA-MILP) with NL i.i.d. samples for ML i.i.d. batches. The optimal

objective of the mth batch is denoted as ŵ(m),k
NL

. We compute the mean and variance of the

ML batches by,

w̄k
NL,ML

= 1
ML

∑ML

m=1 ŵ
(m),k
NL

and
(Ŝw,k

ML
)2

ML
= 1

ML(ML−1)

∑ML

m=1(ŵ
(m),k
NL

− w̄k
NL,ML

)2

Similar to Eq. (6.18), the (1 − α) confidence interval of the lower estimator of the LB is

approximately,(
w̄k

NL,ML
− t

α/2
ML−1

Ŝw,k
ML√
ML

, w̄k
NL,ML

+ t
α/2
ML−1

Ŝw,k
ML√
ML

)
(6.24)

For the upper estimator of (SP-OA-MILP), we can solve (single-OA-LP) N ′
L times with N ′

L

i.i.d. samples of θi. The optimal objective value of the ith (single-OA-LP) is denoted as

ŵ
(i),k
1 . We can compute the mean and variance of the objective values with,

w̄k
N ′

L
= 1

N ′
L

∑N ′
L

i=1 ŵ
(i),k
1 and

(Ŝw,k

N′
L
)2

N ′
L

= 1
N ′

L(N
′
L−1)

∑N ′
L

i=1(ŵ
(i),k
1 − w̄k

N ′
L
)2

As in Eq. (6.22), the (1 − α) confidence interval of the for the upper estimator of the LB

can be approximated by,(
w̄k

N ′
L
− t

α/2

N ′
L−1

Ŝw,k
N ′

L√
N ′

L

, w̄k
N ′

L
+ t

α/2

N ′
L−1

Ŝw,k
N ′

L√
N ′

L

)
(6.25)

With Eqs. (6.24) and (6.25), the (1−α) confidence interval of the LB can be approximated

by,

(LB,LB) =
(
w̄k

NL,ML
− t

α/2
ML−1

Ŝw,k
NL,ML√
ML

, w̄k
N ′

L
+ t

α/2

N ′
L−1

Ŝw,k
N ′

L√
N ′

L

)
(6.26)

6.4.3 SAAOA with confidence intervals

With the confidence interval results from Eqs. (6.23) and (6.26), we can approximate the

values of the upper and lower bounds of the ‘true’ SP at each iteration of the OA algorithm

with high probability. A high-level overview of the SAAOA with confidence intervals is

shown in Figure 6.1. At the initialization step, (SAA-MINLP) problems are convexified
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to generate (SAA-OA-MILP) and (single-OA-LP) problems. At each iteration, ML (SAA-

OA-MILP) problems each with size NL are solved. Then we fix the first stage binary and

continuous variables and solve N ′
L (single-OA-LP) to construct the upper estimator of the

LB. After that, we only fix the first stage binary variables y and solve MU batches of (SAA-

nonconvex-NLP) each with sample size NU to construct the lower estimator of the UB. Then

NU (single-nonconvex-NLP) are solved to construct the upper estimator of the UB. At the

end of each iteration, we check if the algorithm converges (if LB ≥ UB − ϵ). If not, sample

sizes might need to be updated and the algorithm keeps iterating. The steps of the SAAOA

method with confidence interval estimators are described in Algorithm 2.

It is difficult to estimate the desired sample sizes for the estimators a priori. Therefore,

we may need to update the sample sizes, NU , MU , N ′
U , NL, ML, N ′

L, if the confidence

intervals are not tight enough. The update policies for these parameters are not unique. We

discuss the update policies in the next subsection.

6.4.4 Update policies

As we have discussed, estimating the proper sample sizes before we solve any of the

SAA problems is challenging. Small sample sizes may yield large confidence intervals and

provide poor estimates for the upper and lower bounds. On the other hand, large sample

sizes become too conservative and increase the computational time. Therefore, choosing the

update policies on NU , MU , N ′
U , NL, ML, N ′

L, is crucial to the performance of the algorithm.

For the upper estimators, N ′
U or N ′

L single sample size problems are solved. The numbers

N ′
U , N ′

L affect the accuracy of the estimates of the feasible solutions (x̃, ỹ). The sample sizes

N ′
U , N ′

L should increase if the confidence intervals for the upper estimators in Eqs. (6.22)

and (6.25) are too large.

For the lower estimators, we have two types of parameters to tune, i.e., the batch sizes ML

and MU , and the sample sizes of the batches NL, NU . Increasing the value of the batch sizes

ML and MU make the estimators for the expected value more accurate, i.e., the length of

the confidence intervals for the lower estimators in Eqs. (6.18) and (6.24) will decrease. The
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Figure 6.1: Flowchart of the SAAOA algorithm with confidence interval estimators. Boxes filled in
red and blue show the MILP phase of and the NLP phase of the algorithm, respectively

impact of increasing the value of the sample sizes NL, NU is two-fold. First, the expectation

of the lower estimators becomes tighter with the increase in the sample size, which is proved

by Mak et al. (1999).

Eθi∼P

[
û
(m),k
NU

]
≤ Eθi∼P

[
û
(m),k
NU+1

]
≤ UB(ȳk), ∀NU (6.27)

Therefore, increasing the sample size makes the lower estimator tighter and Algorithm 2

may converge in fewer iterations. Second, the variance of the lower estimator decreases with

the increase in the number of samples. With the same number of batches, tighter confidence

intervals can be obtained with a larger sample size.
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We describe two update policies for choosing the sample and batch sizes.

Policy 1 (P1): Increase if loose confidence interval policy At each iteration, check if

the confidence interval is tight enough at Step 9 of the algorithm. A confidence interval is

considered tight if the relative gap between its upper and lower estimators is less than a

certain threshold, e.g., 5%. If it is not tight, multiply the number of samples and batches

by a fixed ratio. For example, if tα/2ML−1

Ŝw,k
NL,ML√
ML

is large, increase NL by setting Nnew
L = βNold

L ,

increase ML by setting Mnew
L = γMold

L , where β and γ are parameters greater than 1. Four

cases can happen when the confidence intervals are checked at Step 9.

• The confidence intervals for both the lower bound and the upper bound are tight at

iteration k. Go to Step 10.

• The confidence interval for the lower bound is tight. The confidence interval for the

upper bound is not tight. Increase sample size NU , MU if tα/2MU−1

Ŝu,k
MU√
MU

is large. Increase

sample size N ′
U if tα/2N ′

U−1

Ŝu,k

N′
U√
N ′

U

is large. If both cases are true or only the former case is

true, go back to Step 7. Otherwise, go back to Step 8.

• The confidence interval for the upper bound is tight. The confidence interval for the

lower bound is not tight. Increase sample size ML, NL if tα/2ML−1

Ŝw,k
NL,ML√
ML

is large. Increase

sample size N ′
L if tα/2N ′

L−1

Ŝw,k

N′
L√
N ′

L

is large. If both cases are true or only the former case is

true, go back to Step 1. Otherwise, go back to Step 2.

• Both of the confidence intervals are loose. Update the sample sizes as in the two former

cases. Go back to Step 1 or Step 2.

Note that the ‘no-good’ cut is only added at Step 9 when the confidence interval for the UB

is tight. Upper limits for NU , MU , N ′
U , NL, ML, N ′

L are set to avoid intractability, which

could sacrifice the tightness of the confidence intervals.

Policy 2 (P2): Increase until overlap policy Similar to P1, P2 also checks the tightness

of the confidence intervals at Step 9 of the algorithm. However, P2 does not increase the

initial sample sizes until the confidence interval of the LB and the confidence interval of
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the UB overlap. After the overlap occurs, increase the sample sizes of (SAA-OA-MILP)

and/or (single-OA-LP) at the current iteration if the confidence interval of the LB is not

tight and increase the sample sizes of (SAA-nonconvex-NLP) and/or (single-nonconvex-NLP)

corresponding to the best UB found so far if the confidence interval for the UB is not tight.

The increase strategy relies on multiplying fixed ratios similar to P1. Keep increasing the

sample sizes until one of the three cases occur: 1) the confidence intervals of the lower and

the upper bound become tight; 2) the confidence intervals no longer overlap but the LB is

still lower than the current best UB; 3) the confidence intervals no longer overlap but the

LB is greater than the best UB. In case 1), check if the UB is less than the LB, if not, keep

iterating. Otherwise, terminate. In case 2), keep iterating until the bounds overlap again.

In case 3), terminate. The ‘no-good’ cut is added in a given iteration if the confidence

intervals do not overlap or the UB confidence interval is tight. Note that if one keeps

iterating, then the same strategy is used recursively until one of the termination criteria is

satisfied. Since the confidence intervals of the UB are not necessarily tight when the algorithm

terminates, reevaluating all the integer solutions ȳks by solving (SAA-nonconvex-NLP) and

(single-nonconvex-NLP) problems may be needed to find the best feasible solution.

We make the following remark to end this section.

Remark. The algorithm can be applied to two-stage SP with both continuous and binary

first stage variables in the first stage. However, it works better for problems with pure binary

variables in the first stage. In this case, we do not have to solve (SAA-nonconvex-NLP),

which can be a large scale nonconvex NLP, because fixing the first stage binary variables

leads to fully decomposable (single-nonconvex-NLP) subproblems. Therefore, we only need

to solve (single-nonconvex-NLP), potentially in parallel to obtain the confidence interval for

the upper bound, which is given by equation (6.22).
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6.5 Computational Results

Algorithm 2 with the two proposed update policies is implemented in Pyomo / Python

(Hart et al., 2017) as a package named saaoa.py, which takes a two-stage model in the data

structure of PySP Watson et al. (2012).

The convex relaxation for (SAA-MINLP) is obtained using a special version of BARON

v.19.4.4 (Kılınç and Sahinidis, 2018) which provides the root node polyhedral relaxation.

(SAA-OA-MILP) and (single-OA-LP) are solved using CPLEX v.12.9. The (SAA-nonconvex-

NLP) (single-nonconvex-NLP) problems are solved with BARON v.19.3.24. All the problems

in this chapter are solved using one processor of an Intel Xeon (2.67GHz) machine with 64

GB RAM.

6.5.1 Illustrative example: a process network problem

To show how Algorithm 2 works, we present a small process network problem involving

concave investment cost functions. Consider producing a chemical C which can be manu-

factured with either process 2 or process 3, both of which use chemical B as raw material. B

can be purchased from another company and/or manufactured with process 1 which uses A

as a raw material. The demand for chemical C, denoted as d, is the source of uncertainty.

The superstructure of the process network is shown in Figure 6.2.

The problem is formulated as a two-stage stochastic program. The first stage decisions

are investment decisions on the three processes, which include binary variables Yi to denote

whether process i is selected and continuous variables CAPi to denote the capacity of process

i for i = 1, 2, 3. The second stage decisions are the material flows. We denote the uncertainty

scenarios as ω and explicitly state the dependency of the second stage decision on them by

presenting them as functions of ω. Variables PA(ω), PB(ω) represent the purchase amount

of chemical A and B, respectively. Other material flows for chemical B and C are shown in
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Figure 6.2: Superstructure for the process network problem.

the superstructure in Figure 6.2. The MINLP formulation is shown as follows.

min 10Y1 + 15Y2 + 20Y3 + 25CAP 0.6
1 + 8CAP 0.6

2 + 10CAP 0.6
3

+ E
d(ω)∼P

5PA(ω) + 20PB(ω)− 30(C2(ω) + C3(ω))
(6.28a)

s.t. CAP1 ≤ U · Y1, CAP2 ≤ U · Y2, CAP3 ≤ U · Y3, Y2 + Y3 ≤ 1 (6.28b)

PA(ω) ≤ CAP1, B2(ω) ≤ CAP2, B3(ω) ≤ CAP3 ∀ω (6.28c)

B1(ω) =
25

1 + e−PA(ω)+13
, C2(ω) = 0.82B2(ω), C3(ω) = 0.95B3(ω) ∀ω (6.28d)

B1(ω) + PB(ω) = B2(ω) +B3(ω) ∀ω (6.28e)

C2(ω) + C3(ω) ≤ d(ω) ∀ω (6.28f)

Yi ∈ {0, 1} ∀i ∈ {1, 2, 3} (6.28g)

167



Chapter 6. Sample Average Approximation for Stochastic Nonconvex Mixed Integer Nonlinear
Programming via Outer-Approximation

In stage 1, (6.28b) forces the capacity of any given process to zero if that process is not

selected and only one of process 2 and 3 can be selected. The stage 2 equations are defined

for each scenario ω. Equation (6.28c) limits the input to each process within the installed

capacity. Equation (6.28d) describes the input-output relationship of each process. Note

that the output of process 1, B1(ω), is approximated by a sigmoidal function of the input,

which is a nonlinear nonconvex function. Equation (6.28e) describes a material balance for

chemical B. The production of chemical C is less than the demand d(ω). The objective

is to maximize the expected profit. To be consistent with the notation of this chapter,

we denote the objective as minimizing the negative of the expected profit. Note that the

variable investment cost is a concave function of the capacity of each process. The demand is

assumed to follow a truncated Gaussian distribution N (10, 0.5) where the values less than 9

or greater 11 are truncated. To relate this problem with the problem statement in equation

(6.1), x = CAPi, y = {Yi}, ∀i ∈ {1, 2, 3}. z = {PA, PB,B1, B2, B3, C2, C3}, θ = d

Algorithm 2 is applied to solve this small problem. We fix the sample sizes: NL = 200,

ML = 10, N ′
L = 100, NU = 50, MU = 10, N ′

U = 100. First, 10 batches of (SAA-MINLP) each

with sample size 200 are convexified to obtain 10 batches of (SAA-OA-MILP) problems. Each

(SAA-MINLP) has 3 binary variables, 1,403 continuous variables, and 1,604 constraints. 100

batches of (SAA-MINLP) each with sample size 1 are convexified to be solved as (single-

OA-LP) problems.

At iteration k = 1, 10 batches of (SAA-OA-MILP) each with sample size 200 are solved.

We examine the optimal solutions of the 10 batches and found that in most cases processes

1 and 3 are installed. The binary variables are fixed at Y1 = 1, Y2 = 0, Y3 = 1, and the

capacities of processes 1 and 3 are fixed at the optimal capacities of one batch of (SAA-

OA-MILP) where processes 1 and 3 are selected. The 95% confidence interval for the lower

bound is (−115.33,−110.36) calculated using equation (6.26). We proceed to the NLP phase

of the algorithm with the binary variables fixed at Y1 = 1, Y2 = 0, Y3 = 1. 10 batches of

(SAA-nonconvex-NLP) each with sample size 50 are solved to obtain the lower estimator of

the lower bound. 100 (single-nonconvex-NLP) problems are solved with the capacity of each

168



6.5. Computational Results

process fixed at the mean of the optimal solutions of the 10 batches of (SAA-nonconvex-

NLP). The 95% confidence interval for the upper bound is (−50.59,−44.82) calculated by

equation (6.23). Since the confidence intervals for the upper and the lower bound do not

satisfy the termination criteria, LB ≥ UB − ϵ, we add an integer cut corresponding to the

solution Y1 = 1, Y2 = 0, Y3 = 1 to each batch of the (SAA-OA-MILP) problems and proceed

to iteration 2.

At iteration k = 2, the confidence intervals for the lower bound becomes (−102.1,−97.19)

after the integer cut is added. The optimal binary variables found by (SAA-OA-MILP) prob-

lems are Y1 = 1, Y2 = 1, Y3 = 0. The confidence interval for the upper bound corresponding

to this binary variable combination is (−58.07,−52.32). Since the new confidence interval is

strictly lower than that at iteration 1, the best feasible solution is updated to Y1 = 1, Y2 = 1,

Y3 = 0. The termination criteria is still not satisfied. An integer cut corresponding to the

solution Y1 = 1, Y2 = 1, Y3 = 0 is added to each batch of the (SAA-OA-MILP) problems.

At iteration 3, the confidence interval for the lower bound is (−41.31,−40.42). Since

the lower bound is strictly greater than the upper bound, i.e., LB ≥ UB − ϵ, the algorithm

terminates. We conclude that the optimal solution is Y1 = 1, Y2 = 1, Y3 = 0 with a

confidence interval of (−58.07,−52.32).

6.5.2 Stochastic Pooling problem

The pooling problem arises in several engineering applications, such as petrochemical

and agricultural industries. This nonconvex network flow optimization problem considers

different flows that can be mixed and need to satisfy constraints concerning their quality

attributes, which depend on their composition (Tawarmalani and Sahinidis, 2002). The

stochastic pooling problem has been studied by Li et al. (2011b, 2012b). The first stage

decisions are investment decisions on sources, pools, and pipelines, which are represented

as binary variables. The second stage decisions are the mass flows and the split fractions,

which are represented as continuous variables that give rise to nonconvex bilinear terms.

The constraints include mass balance, investment capacity, and quality specifications. The
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objective is to minimize the expected cost. This problem is an example of an engineering

design problem posed as a stochastic mixed-integer nonlinear problem.

6.5.2.1 Small pooling instance

We first consider a small pooling instance with 4 sources, 1 pool, 2 terminals, and 2

quality attributes. This instance has 16 binary variables and 26 constraints in the first

stage; 21 continuous variables and 56 constraints per scenario in the second stage. The

uncertainty is assumed to arise from the quality of one source whose deviation from the

nominal value follows a truncated distribution N (0, σ) where the parameter values less than

−2σ or greater 2σ are truncated.

We apply the SAAOA Algorithm 2 to solve the problem for σ = 0.0031 and σ = 0.004

using both update policies P1 and P2. Since the problem only has pure binary first stage

variables, we do not need to solve (SAA-nonconvex-NLP). The sample sizes and batch sizes

that need to be updated are NL, ML, N ′
L, N ′

U . We multiply the sizes by fixed ratios,

i.e., Nnew
L = βNold

L , Mnew
L = γMold

L , N ′new
L = βN ′old

L , N ′new
U = βN ′old

U , where β and γ are

constants greater than 1. In Algorithm 2, we start with NL = 50, ML = 10, N ′
L = 50,

N ′
U = 50 and update the sample sizes using P1 and P2 respectively. We calculate the 95%

confidence intervals for both the upper and lower bound, i.e., α = 5%. A confidence interval

is considered tight if the relative gap between its upper and lower estimators is less than 5%.

To compare with the SAAOA algorithm, we use BARON v.19.3.24 to solve 10 batches

of (SAA-MINLP) problems each with a sample size of 50. Each of these MINLP problems

has 1,066 variables and 2,826 constraints. The time limit for each (SAA-MINLP) problem

is set to 10,000 seconds. The expectation of (SAA-MINLP) provides a lower bound for the

original (SP-MINLP). The lower estimator of (SP-MINLP) can be obtained similar to Eq.

(6.24). Once we fix the binary variables from the optimal solution of (SAA-MINLP), we

solve 100 individual (single-nonconvex-NLP) to estimate the expected value of the optimal

solution. The best solution for the 10 batches is reported.

The computational results for σ = 0.0031 and σ = 0.004 are shown in Table 6.1. In
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Figure 6.3: Bounds convergence for test case with σ = 0.004, β = 1.5, γ = 2

the case of σ = 0.0031, P1 and P2 give the same results. We use different constants β

and γ for updating the sample sizes. The upper and lower estimators when the SAAOA

algorithm terminates are shown in the table. Note that we allow the algorithm to terminate

after the confidence interval of the LB is strictly greater than the confidence interval of the

UB, i.e., LB ≥ UB − ϵ. In all the four cases, the SAAOA algorithm returns the same

optimal solution, which gives an optimal value of -115.0. In both policies, the parameters

ML, NL, N ′
L are updated once at the last iteration to tighten the LB. After the update,

the algorithm terminates. Therefore, the smallest update ratio, β = 1.5, γ = 1.5 gives

the least computational time. The column ‘DE’ (deterministic equivalent) represents using

BARON to solve (SAA-MINLP) directly. Here, we slightly abuse notation to report the UB

estimator and the LB estimator returned by external sampling. It is easy to see that the

SAAOA algorithm outperforms external sampling given that it avoids solving the large scale

nonconvex MINLP problem directly.
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Compared with the low variance case, in the case with σ = 0.004 the algorithm needs

more iterations to converge especially for P1. Recall that in P1, the sample sizes are updated

whenever the confidence intervals are not tight. Therefore, if the confidence interval of the

UB in a given iteration is not tight enough, we need to run another iteration with an increased

sample size without adding a ‘no-good’ cut to cut off the current binary solution. In P2,

the algorithm keeps adding one ‘no-good’ cut to the master problem at each iteration until

the confidence intervals of the upper and the lower bound overlap. In general, P2 takes less

computational time and fewer iterations to converge than P1.

To show how P1 and P2 perform differently, we show the convergence of the confidence

intervals of σ = 0.004, β = 1.5, γ = 2 in Figure 6.3. In the beginning, the confidence intervals

for both the upper and lower bounds are tight. When the confidence intervals become loose,

P1 increases the sample sizes immediately to get tighter confidence intervals. As a result,

P1 spends several iterations just to tighten the confidence intervals while the gap between

bounds does not reduce significantly. On the other hand, P2 keeps adding ‘no-good’ cuts

until the upper and the lower confidence intervals overlap. Therefore, P2 converges in a

fewer number of iterations and saves computational time.

We also show a breakdown of the computational time of SAAOA Algorithm 2 in solving

(SAA-OA-MILP), (single-OA-LP), (single-nonconvex-NLP), and convexification. In most

cases, the majority of computational time is spent on solving (single-nonconvex-NLP) and

generating convex relaxations.

6.5.2.2 Large pooling instance

A large pooling instance with 5 sources, 2 pools, 4 terminals, and 7 quality attributes

is solved. This instance has 24 binary variables and 39 constraints in the first stage; 89

continuous variables and 184 constraints per scenario in the second stage. The uncertainty

is assumed to come from three different sources, the qualities of two feed streams and the

upper bound of one terminal demand. The deviations of the feed qualities from the nominal

value follow a truncated N (0, 0.02) distribution; the deviation from the upper bound of the
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demand follows a N (0, 3) distribution, where the parameter values that are more than two

standard deviations away from the mean values are truncated.

Table 6.2: Computational results for the large pooling instance

Policy P1 P2

β 1.5 2 1.5 2

Iterations 32 28 32 28

Wall time (s) 48,462 48,230 45,721 45,133

(SAA-OA-MILP) 1,950 1,731 1,963 1,750

(single-OA-LP) 9 7 7 8

(single-nonconvex-NLP) 45,958 45,959 43,223 42,837

Convexification 327 307 307 317

UB -400.5 -400.2 -399.8 -400.2

UB -384.7 -385.8 -383.8 -385.8

LB -383.8 -385.5 -383.8 -385.5

LB -373.7 -373.9 -370.6 -373.9

NL 50 50 50 50

ML 10 10 10 10

N ′
L 112 200 75 100

N ′
U 168 100 168 200

We apply Algorithm 2 to solve this problem using the same setting (initial sample sizes,

probability of confidence intervals, relative gap, solvers, etc.) as in the small pooling in-

stance. The computational results are shown in Table 6.2. Different values of the fixed ratio

parameters β and γ are tested. In this case, the computational results do not depend on the

value of γ, i.e., the value ML is never updated in all the cases. Therefore, only the β values

are reported in Table 6.2. Compared with the small pooling instance, the computational

time increases significantly due to the larger NLP subproblems. However, Algorithm 2 is
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still able to solve the problem within one day of computational time. P2 still takes less wall

time than P2 but the difference is not significant. Most of the computational time is spent

on (single-nonconvex-NLP) problems. The convexification time is small because the sizes of

NL have not increased.

Remark. In general, P2 outperforms P1 in terms of the number of iterations and computa-

tional time. In the test cases, they yield the same optimal solution. P1 is more conservative

in adding ‘no-good’ cuts to the master problem, i.e., a ‘no-good’ cut can only be added if the

confidence interval corresponding to the integer solution is tight. Computational time can

be wasted in constructing a tight estimate for suboptimal solutions. However, if one prefers

to have a tight estimate for each solution so that there is more certainty that one solution

is suboptimal, P1 is preferable.

6.6 Conclusions

In this chapter, we propose a sample average approximation based outer-approximation

(SAAOA) algorithm for solving two-stage nonconvex stochastic MINLPs. The SAAOA al-

gorithm iterates between an MILP master problem (SAA-OA-MILP) and nonconvex NLP

subproblems (SAA-nonconvex-NLP). We prove that the SAAOA algorithm converges as the

sample size tends to infinity and provides a theoretical estimate for the sample size. Since

the sample size estimates are too conservative in practice, we design an SAAOA algorithm

with confidence interval estimates for the upper bound and the lower bound at each iteration

of the OA algorithm. To construct the confidence intervals, we define (single-OA-LP) and

(single-nonconvex-NLP), which are proved to provide upper estimators for the problem’s

lower bound and upper bound, respectively. The sample sizes are updated dynamically

using some update polices. We propose two update policies, namely, P1: Increase if loose

confidence interval policy and P2: Increase until overlap policy. The algorithm is suitable for

solving two-stage stochastic MINLPs with pure binary variables where the nonconvex NLP

subproblems can be solved for each scenario separately. Computational results are shown
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for a stochastic pooling problem. The SAAOA algorithm with confidence interval estimates

is shown to perform better than solving the deterministic equivalent (SAA-MINLP) directly

in terms of computational time and optimality gap. We provide some criteria for selecting

between update Policy 1 and Policy 2 in Remark 6.5.2.2.

Future work can be focused on improving the update policies. To find an update policy

that works well in general, we need to have more test cases to benchmark different update

policies and tune the parameters like the fixed ratio in the two update policies proposed in

this chapter. Although the algorithm can be used to address stochastic nonconvex MINLPs

with mixed-binary first stage variables in theory, it is only computationally efficient for

stochastic nonconvex MINLPs with pure binary first stage variables. Therefore, another

possible future direction would be making the algorithm more efficient for problems with

mixed-binary first stage variables.
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Chapter 7

Shale Gas Pad Development Planning

under Price Uncertainty

7.1 Problem Statement for the Deterministic Model

The deterministic problem addressed in this article is similar to the one proposed by

Ondeck et al. (2019). We consider the shale gas development problem for a single wellpad

represented in Figure 7.1. The potential wells are identified a priori. The productivity

profile for each well is also given. In order to complete a shale gas well, four operations,

i.e., top setting, horizontal drilling, fracturing, turning in line, need to be done sequentially.

The corresponding equipment needs to be disassembled once the operation on the wellpad

is changed and there is a mobilization cost for the change of operation.

We consider gas curtailment in the model, i.e., the the amount of gas produced can

be less than the amount determined by the production curve. The curtailed gas is stored

in the well and can be released in future time periods. Instead of modeling the storage of

curtailed gas in each well, we simplify the problem by considering virtual storage of the whole

wellpad. It should be noted that the storage considered in the model is virtual storage, i.e.,

the curtailed gas is stored under the wellpad itself. We are not considering “real” storage

like storage tanks.
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The decisions in the model are: 1) when and which wells should be developed to com-

pletion, 2) the timing of the operations performed on the well, 3) when and how much gas

should be released from the completed wells. 4) the amount of gas coming in and out of

storage at each time.

The major assumptions in this work are:

1. The locations and the information related to the development and the production of

the prospective wells are known a priori. This includes the lengths of the wells as well

as the production curves, which are functions of the wells’ horizontal drilling lengths.

The wells are optimally placed laterally such that well interference does not occur, i.e.,

the production curve of any given well is not affected by its neighboring wells.

2. Well shut-in is not allowed, i.e., once a well is turned in line, it cannot be shut-in.

3. The development cost for all four operations and the time to complete each operation

are known for each well.

4. Every operation is performed for the entire well. A well cannot be “partially” com-

pleted. Note that this requirement is removed in the stochastic programming models

because in some of the scenarios in the stochastic model, it is no longer profitable to

finish all the operations.

5. Every operation can be performed at most once at a well. There are no refracturing

of wells at a later time.

6. The development resource mobilization cost is a one time fee that includes transporta-

tion, assembly, and disassembly. The value is an assumed estimate, calculated based

on past experience.

7. The optimization is solved using a discrete time model with time intervals of one week.

Since the mathematical formulation of the deterministic model is similar to Ondeck et al.

(2019), we include the description of the MILP model in Appendix A. The focus of this
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Figure 7.1: Prospective pad

chapter is on the extensions of the deterministic MILP model, which consider uncertainty in

natural gas price.

7.2 Motivation for a Stochastic Programming Model

Although the deterministic model for the single pad shale gas development problem has

been studied by Ondeck et al. (2019), there is no model for single pad planning that considers

uncertainty in the parameters to the planning model.

Natural gas price is a major source of uncertainty in the planning problem. Henry Hub

natural gas spot prices from 1998-2018 (U.S. Energy Information Administration, 2019b)

are shown in Figure 7.2. It is easy to observe that the natural gas price has fluctuated

significantly in the past 20 years. Natural gas price has reached as high as over 15 dollars

per Btu in 2006. Hydraulic fracturing has currently reduced the Henry Hub spot price of

natural gas to about 3 dollars per Btu. On the one hand, upstream operators would like to

develop more wells when the price is high. On the other hand, there are also scenarios where
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Figure 7.2: Historical natural gas price

natural gas is no longer a profitable business.

Therefore, in this chapter, we investigate the effect of the uncertainties from natural gas

price on the optimal decision-making in the pad development problem. Since the decisions

involved in the pad development are long-term decisions, usually ranging from a few months

to years, we use stochastic programming to maximize the expected net present value. A

brief introduction to stochastic programming is given in the next section.

7.3 Introduction to Stochastic Programming

Stochastic programming is an optimization framework that deals with decision making

under uncertainty (Birge and Louveaux, 2011). In stochastic programming, it is assumed

that the probability distributions of the uncertain parameters are known a priori. The uncer-

tainties are usually characterized by some discrete realizations of the uncertain parameters as

an approximation to the continuous probability distribution. For example, the realizations

of the demand of a product can have three different values which represent high, medium,

and low demand, respectively. Each realization is defined as a scenario. The objective of

stochastic programming is to optimize the expected value of an objective function (e.g., the

expected cost) over all the scenarios.
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7.3.1 Two-stage stochastic programming

A special case of stochastic programming is two-stage stochastic programming (Figure

7.3). Specifically, stage 1 decisions are made ‘here and now’ at the beginning of the period,

and are then followed by the resolution of uncertainty. Stage 2 ‘wait and see’ decisions, or

recourse decisions, are taken as corrective actions at the end of the period. One common

type of a two-stage stochastic program is the mixed-integer linear program presented in

equation (7.1). Set Ω is the set of scenarios. Parameter τ(ω) is the probability of scenario

ω. The n-dimensional vector x represents the first stage decisions, while the m-dimensional

vector y(ω) represents the second stage decisions in scenario ω. Both x and y(ω) variables

can be mixed-integer. Without loss of generality, we assume that the first n1 (n1 ≤ n)

variables of the first stage decisions and the first m1 (m1 ≤ m) variables of the second

stage decisions are binary. The uncertainties are reflected in the matrices (vectors), W (ω),

T (ω), h(ω). Equation (7.1) is often referred to as the deterministic equivalent of the two-

stage stochastic program. This problem can be solved directly if the number of scenarios

is modest; if the number of scenarios is large, special decomposition algorithms, such as

Benders decomposition (Benders, 1962), can be used. However, if we have (mixed) integer

stage two variables, Benders decomposition is not applicable.

min cTx+
∑
ω∈Ω

τ(ω)dT (ω)y(ω) (7.1a)

s.t. Ax ≤ b (7.1b)

W (ω)y(ω) ≤ h(ω)− T (ω)x ∀ω ∈ Ω (7.1c)

x ∈
{
x = (x1, x2) : x1 ∈ {0, 1}n1 , x2 ≥ 0

}
(7.1d)

y(ω) ∈
{
y = (y1, y2) : y1 ∈ {0, 1}m1 , y2 ≥ 0

}
(7.1e)
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Figure 7.3: Two-stage problem

7.3.2 The value of stochastic solution

The value of stochastic solution (VSS) (Birge and Louveaux, 2011) is used to quantify the

value that stochastic programming yields compared with the deterministic model. We need

to define some notation before we present the mathematical expression for VSS. Let ξ(ω)

be the vector that represents the random parameters involved in the two-stage stochastic

programming problem for scenario ω. Define Q (x, ξ(ω))

Q (x, ξ(ω)) = cTx+ min
y
dT (ω)y (7.2a)

s.t. W (ω)y ≤ h(ω)− T (ω)x, y ∈
{
y = (y1, y2) : y1 ∈ {0, 1}m1 y2 ≥ 0

}
(7.2b)

as the optimization problem associated with one particular realization of random parameter

ξ. The expected value of ξ is defined as ξ̄. The expected value solution is defined as

x̄(ξ̄) = arg min
x
Q
(
x, ξ̄
)

(7.3)

where the parameter ξ is fixed at its expected value ξ̄. In order to quantify how the expected

value solution performs in different scenarios, we define the expected results of using the

expected value solution (EEV) as

EEV = Eξ

[
Q
(
x̄(ξ̄), ξ

) ]
(7.4)

The recourse problem (RP), i.e., the two-stage stochastic program, is defined as

RP = min
x

EξQ (x, ξ) (7.5)

which chooses the first stage decisions x that minimizes the expected value of Q (x, ξ). The

difference of EEV and RP can quantify the difference of the expected cost between the
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expected value solution and the stochastic solution. Therefore, it is reasonable to define

EEV −RP as the value of stochastic solution (VSS),

V SS = EEV −RP (7.6)

VSS quantifies the difference between the expected outcome of the optimal stochastic solution

and optimal expected value solution. Therefore, VSS is a metric that can evaluate the

additional value that stochastic programming can create compared with the deterministic

model. In practice, it is only worth solving the stochastic programming model if VSS is

significant for the decision-maker.

7.3.3 Multistage stochastic programming

The two-stage decision-making process can be generalized to account for multiple stages.

Multistage stochastic programming models allow recourse decisions in each stage coming

after stage one. Hence, they are also fully adaptive to the uncertainty realization. An

example of a multistage scenario tree is shown in Figure 7.4, where we have 3 different

realizations of the uncertainty parameters for stage two and three, and end up with 32 = 9

scenarios in total. In stage two, the decision-maker is only aware of the uncertainties realized

at stage two; the parameters in stage three cannot be realized until the time goes to stage

three.

The general multistage stochastic programming formulation is given as follows (Birge

and Louveaux, 2011):

min c1x1 + Eξ2 [min c2(ω2)x2(ω2) + ...+ EξH [min cH(ωH)xH(ωH)]...] (7.7a)

s.t. W1x1 = h1 (7.7b)

T1(ω2)x1 +W2x2(ω2) = h2(ω) (7.7c)

... (7.7d)

TH−1(ωH)xH−1(ωH−1) +WHxH(ωH) = hH(ω) (7.7e)

x1 ∈ X1;xt(ωt) ∈ Xt, t = 2, ..., H; (7.7f)

where we have H stages. The set of scenarios in stage t is represented as ωt. The
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Figure 7.4: Illustration of a scenario tree with 3 stages and 3 realizations per stage

deterministic equivalent of the general multistage stochastic programming is then defined as

follows (Birge and Louveaux, 2011):

min
x∈X1

{c1x1 +Q2(x1) : W1x1 = h1} (7.8)

where the expected value function for stage t+ 1 is given by:

Qt+1(xt) = Eξt+1 [Qt+1(xt, ξt+1(ω))] (7.9)

for all t to obtain the recursion for t = 2, ..., H − 1,

Qt(xt−1, ξt(ω)) =

{
min

x(ω)∈Xt

ct(ω)xt(ω) +Qt+1(xt) : Wtxt(ω) = ht(ω)− Tt−1(ω)xt−1

}
(7.10)

For the terminal condition t = H, we have:

QH(xH−1, ξH(ω)) =

{
min

x(ω)∈XH

cH(ω)xH(ω) : WHxH(ω) = hH(ω)− TH−1(ω)xH−1

}
(7.11)

Solving multistage stochastic programming problem is computationally challenging since

the size of the problem grows exponentially with the number of stages. One option is

to solve problem (7.7), i.e., the deterministic equivalent problem with a finite number of

scenarios. Decomposition algorithms can also be used to solve multistage stochastic programs

under some assumptions. For example, nested Benders decomposition (Birge, 1985b) can
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solve linear multistage stochastic programming problem. For more details about solution

procedures, we refer the readers to the review paper (Torres et al., 2019).

7.4 Case study

In the case study, we use a data set that has 9 wells in a single wellpad. We assume

that none of the operations have been performed on the wells. All the wells are allowed to

be developed at any time in the planning horizon. Each of the four operations takes one

to two weeks to finish. If all the operations for the 9 wells are performed, 41 weeks are

needed. Therefore, we assume that the whole planning horizon is slightly over 41 weeks

in the case studies. The details of the length of the planning horizon can be found in the

subsections below. We assume that a well can be “partially” completed, which is different

from the assumption in the problem statement for the deterministic model in section 7.1

because when the price becomes low, it can be unprofitable to complete the wells.

To showcase whether using stochastic programming can create value, we apply both two-

stage and multistage stochastic programming to the single pad development problem. In

order to come up with the mathematical formulation of the stochastic programming models,

we first need to have a scenario tree that describes the realization of uncertain parameters.

We need to duplicate the decisions in the deterministic model described in Appendix A

for each node in the scenario tree, i.e., different recourse decisions can be made for each

realization of the uncertain parameters. We also evaluate the impact of the variance of the

prices in the scenarios on the optimal solution of the two-stage stochastic programs. The

details can be found in the following subsections.

7.4.1 Two-stage stochastic programming with high price variance

We investigate price uncertainty by formulating a two-stage stochastic programming

problem. The whole planning horizon is 45 weeks with the decisions of the first 20 weeks

corresponding to the first stage decisions and the decisions of week 21 - week 45 corresponding
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Figure 7.5: The scenario tree for two-stage stochastic programming with high price variance

to the second stage decisions. The scenario tree for this problem is shown in Figure 7.5. We

assume that the prices are 0.2, 1.5, 2.8 dollars per million Btu for the three scenarios, which

are shown in red in Figure 7.5. The probabilities for each scenario are shown in blue in Figure

7.5, being 0.3, 0.4, 0.3, respectively. It should be noted that the prices here are lower than

the natural gas spot price shown in Figure 7.2. This is because in the proposed MILP model

we do not consider all the costs that are needed to deliver natural gas to the customers, for

example, transportation costs are not considered in the model. Therefore, the natural gas

prices should be discounted in order to correctly characterize whether developing the wells

is profitable or not. We also assume that the prices are constant after the first stage, i.e.,

the price outside the planning horizon is the same as the price in the second stage of the

stochastic programming problem.

All the problems are solved using CPLEX 12.7 (CPLEX, 2016) on the 12 processors of

an Intel Xeon (2.67GHz) machine with 64 GB RAM. The walltime limit is set to 12 hours.

The computational statistics of the deterministic problem and the stochastic programming

problem including the number of binary and continuous variables, the number of constraints,

walltime, optimality gap, are shown in Table 7.1. The stochastic model cannot be solved to

optimality within our time limit.

Table 7.1: Computational statistics of the deterministic and the stochastic model with high price
variance

Binary Var Continuous Var Constraints Walltime gap
Deterministic 3655 867 4524 1,112 secs 0.01%

Stochastic 9,963 1,859 12,828 12 hrs 2.41%
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Figure 7.6: Gantt Chart of the deterministic problem

Figure 7.7: Gantt Chart of the expected value solution for scenario price=0.2

To compare the difference between the deterministic model and the stochastic program-

ming model, we first solve the deterministic model with the price of natural gas fixed at 1.5

dollars per Btu. The Gantt chart for the deterministic problem is shown in Figure 7.6. All

the 9 wells are completed in the deterministic solution. Five wells are turned in line around

week 20. The other four wells are turned in line at the end of the planning horizon.

Then we fix the first stage decisions and check how it performs in different scenarios,

i.e., the decisions from week 1 to week 20 are fixed at the corresponding optimal solution of

the deterministic model and we only optimize the decisions from week 21 to week 45 for the

three scenarios, respectively. The Gantt charts for prices equal to 0.2, 1.5, 2.8 dollars per

Btu, are shown in Figures 7.7, 7.8, and 7.9, where the first stage decisions are obscured to

denote that they are fixed based on the deterministic model.

In the scenario when the price equals to 0.2 dollar per Btu, the optimal solution only

turns in line the two wells that have not been completed in the first stage. No new wells are

developed in stage two when the price is low. However, the scenarios when the price is 1.5

or 2.8 dollars per Btu, all the 9 wells are completed within the planning horizon.

The stochastic solutions for the three scenarios are shown in Figures 7.10, 7.11, and 7.12.
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Figure 7.8: Gantt Chart of the expected value solution for scenario price=1.5

Figure 7.9: Gantt Chart of the expected value solution for scenario price=2.8

Compared with the deterministic solution that fractures five wells in the first stage, the

stochastic solution only fractures three wells in the first stage. The stochastic solution tries

to wait until the second stage to decide if more wells should be fractured. In the scenario

when the price is 0.2 dollars per Btu, no more wells are fractured in the second stage. When

the prices are greater than or equal to 1.5 dollars per Btu, all the wells are completed in

stage 2. Note that two wells are top set at the end of stage 1 so that the wells can be turned

in line faster once the operators realize that the price is going up. Moreover, although the

two top set wells are turned in line in the low price scenario, this does not sacrifice the

overall expected NPV significantly since top setting is the cheapest operation among the

four operations.

In order to demonstrate the value that stochastic programming can create, we show the

NPVs of the expected solution and the stochastic solution in all the three scenarios in Table

7.2. While the expected value solution has slightly larger NPVs when the prices are medium

or high, it has a highly negative NPV when the price is 0.2 dollars per Btu. On the other

hand, the stochastic solution tries to delay development decisions to stage two as much as

possible and has higher NPV than the expected value solution in the low price scenario.
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Figure 7.10: Gantt Chart of the stochastic solution for scenario price=0.2

Figure 7.11: Gantt Chart of the stochastic solution for scenario price=1.5

By taking the expected NPV, we can calculate that the value of stochastic solution is 3.50

million dollars.

7.4.2 Two-stage stochastic programming with low price variance

In this subsection, we change the assumption of the scenario tree slightly compared with

subsection 7.4.1. The scenario tree is shown in Figure 7.13 when the price has smaller

variance compared with the scenario tree in Figure 7.5. The prices in the three scenarios are

0.75, 1.5, and 2.25 dollars per Btu.

We solve the same two-stage stochastic programming problem with week 1 to week 20

Figure 7.12: Gantt Chart of the stochastic solution for scenario price=2.8
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Table 7.2: NPVs of the expected value and the stochastic solution (million dollars)

Scenario Price NPV(Expected value) NPV(Stochastic Solution)
1 0.2 -24.28 -7.74
2 1.5 71.45 70.86
3 2.8 182.58 178.48

Figure 7.13: The scenario tree for two-stage stochastic programming with low price variance

as the first stage, and week 21 to week 45 as the second stage. It turns out that the optimal

solutions of the three scenarios are all similar to the expected value solution shown in Figure

7.6. Hence, there is no value in solving the stochastic programming model. The main

reason is that in all the three scenarios natural gas is profitable. Therefore, all the wells are

completed as in the deterministic model for all the three scenarios.

7.4.3 Multistage stochastic programming with high price variance

Multistage stochastic programming is a more accurate way to model the single pad

development problem since it considers a sequence of decisions that react to outcomes that

evolve over time. We apply multistage stochastic programming to our single pad development

problem with high price variance. We assume that the whole planning horizon is 48 weeks.

The planning horizon is equally divided into three stages. In each stage, the realizations of

price can be 0.2, 1.5, and 2.8 dollars per Btu with probabilities 0.3, 0.4, and 0.3, respectively.

The scenario tree for the multistage problem is shown in Figure 7.14. We also assume that

the prices outside the planning horizon remain equal to the prices in the third stage.

The stochastic programming model has 31,213 binary variables, 4,153 continuous vari-

ables, and 49,801 constraints. It is solved using CPLEX 12.7 (CPLEX, 2016) on the 12
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Figure 7.14: The scenario tree for multistage stochastic programming with high price variance

processors of an Intel Xeon (2.67GHz) machine with 64 GB RAM for 12 hours. The CPLEX

solver can obtain an optimality gap of 3.76% within the time limit. The best expected

NPV from CPLEX is 79.94 million dollars. To quantify the value of using stochastic pro-

gramming, we use the concept of the value of stochastic solution for multistage stochastic

programming from Escudero et al. (2007). In their definition, the expected results of using

the expected value solution at stage t (EEVt) is obtained by fixing the first t − 1 stage

decisions to the optimal solution of the expected value problem and solve the rest of the

stochastic programming problem. The value of stochastic solution at stage t (V SSt) is de-

fined as V SSt = EEVt − RP . For the detailed definition, we refer the readers to Escudero

et al. (2007). In this case, EEV2 = 74.62 million dollars, EEV3 = 73.40 million dollars,

V SS2 = 5.33 million dollars, V SS3 = 6.55 million dollars.

In Figures 7.15 to 7.18, we show the Gantt charts of some scenarios. In both Figure

7.15 and Figure 7.17 when the price in the third stage and outside the planning horizon is

only 0.2 dollar per Btu, not all the wells are completed in stage three because the natural

gas price is not high enough to make the business profitable. On the other hand, when

the price is greater than or equal to 1.5 dollars, it is preferable to complete all the 9 wells,

which corresponds to the scenarios shown in Figures 7.16 and 7.18. Since the price in the

third stage determines whether natural gas is profitable outside the planning horizon, all the

optimal solutions try to delay the decisions to the third stage, i.e., no operation is performed

in the last few days of stage two.

We can also observe that the price in stage two affects the number of wells that are

turned in line. When the price is 0.2 dollar per Btu in stage two, only one well is turned
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Figure 7.15: Gantt Chart of the stochastic solution for scenario price=0.2, 0.2, at stage two and
three, respectively

Figure 7.16: Gantt Chart of the stochastic solution for scenario price=0.2, 1.5, at stage two and
three, respectively

in line (see Figures 7.15 and 7.16). When the price is greater than or equal to 1.5 dollars

per Btu in stage two (see Figures 7.17 and 7.18), two wells are turned in line in stage two.

Because of the higher price in stage two in Figures 7.17 and 7.18, one more well is turned in

line to obtain the revenue of natural gas early in stage two.

The similarity of the multistage and the two-stage stochastic programming solution is

that both of them try to delay the decisions to the last stage so that the uncertainty of

the prices are fully realized. The major difference is that the multistage solution allows the

uncertainties to evolve every quarter, which is a better approximation of what happens in

Figure 7.17: Gantt Chart of the stochastic solution for scenario price=1.5, 0.2, at stage two and
three, respectively
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Figure 7.18: Gantt Chart of the stochastic solution for scenario price=1.5, 1.5, at stage two and
three, respectively

practice.

7.5 Conclusions

In this chapter, we study the shale gas pad development problem under price uncer-

tainty. The deterministic model is similar to the MILP model proposed by Ondeck et al.

(2019) where a wellpad is given with several prospective wells and the upstream operator

needs to determine the sequence of operations on the wellpad. To extend the work of On-

deck et al. (2019), we investigate how price uncertainties can affect the decision-making in

this context. The mathematical framework that we use in this chapter is stochastic pro-

gramming, which is regarded as a risk-neutral approach to hedge against uncertainty. We

introduce some concepts to quantify the value that stochastic programming can create, such

as the value of stochastic solution (VSS). We apply both two-stage and multistage stochastic

programming to the development of a wellpad with 9 wells under price uncertainty. When

the variance of price is high, we can obtain values using stochastic programming on the order

of million dollars. The stochastic solutions in both two-stage and multistage try to delay the

development decisions to the last stage when the uncertainty of the prices are fully realized.

We also demonstrate that multistage stochastic programming is a better approximation of

what happens in the real world than two-stage stochastic programming since it allows the

uncertainties to evolve every quarterly.

However, when the price variance is low, there is no value of using stochastic programming

since all the scenarios have the same recourse decisions. This gives us some insights on when
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to use stochastic programming. There may not be any value of using stochastic programming

even if there are uncertain parameters in the model. Stochastic programming can only add

value if there is something that we can do differently than the deterministic solution.

It should be noted that the generation of scenario trees can be improved by using more

realistic forecast models. The aim of using the high and low variance scenarios trees is to

evaluate the stochastic programming approach. We will leave the incorporation and better

forecast models and expert knowledge in building the scenario as one future direction.

Futhermore, future work can also concentrate on extending the model to multiple pads

development problem, and considering the mobilization of crew and equipment between the

wellpads. We expect the optimization problem to grow even larger once more wellpads are

taken into account. Therefore, better solution techniques need to be developed to solve the

large-scale stochastic programming problem with higher efficiency.
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Chapter 8

Mixed-integer Linear Programming

Models and Algorithms for

Generation and Transmission

Expansion Planning of Power Systems

8.1 Problem Statement and Assumptions

Given is a geographical region with existing and potential generating units and transmis-

sions lines. The problem consists in making capacity expansion decisions for both generation

and transmission while considering the unit commitment and power flow constraints at the

operational level.

8.1.1 Generation representation

The existing and potential generation technologies are similar to the ones used in Lara

et al. (2018), i.e.,

• For the existing generators we consider: (a) coal: steam turbine (coal-st-old); (b)

natural gas: boiler plants with steam turbine (ng-st-old), combustion turbine (ng-ct-
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old), and combined-cycle (ng-cc-old); (c) nuclear: steam turbine (nuc-st-old); (d) solar:

photo-voltaic (pv-old); (e) wind: wind turbine (wind-old).

• For the potential generators we consider: (a) coal: without (coal-new) and with carbon

capture (coal-ccs-new); (b) natural gas: combustion turbine (ng-ct-new), combined-

cycle without (ng-cc-new) and with carbon capture (ng-cc-ccs-new); (c) nuclear: steam

turbine (nuc-st-new); (d) solar: photo-voltaic (pv- new) and concentrated solar power

(csp-new); (e) wind: wind turbine (wind-new).

Also known are: the generating units’ nameplate (maximum) capacity; expected lifetime;

fixed and variable operating costs; fixed and variable start-up cost; cost for extending their

lifetimes; CO2 emission factor and carbon tax, if applicable; fuel price, if applicable; and

operating characteristics such as ramp-up/ramp-down rates, operating limits, contribution

to spinning and quick start fraction for thermal generators, and capacity factor for renewable

generators.

For the case of existing generators, their age at the beginning of the study horizon and

location are also known. For the case of potential generators, the capital cost and the

maximum yearly installation of each generation technology are also given. Also given is a

set of potential storage units, with specified technology (e.g., lithium ion, lead-acid, and flow

batteries), capital cost, power rating, rated energy capacity, charge and discharge efficiency,

and storage lifetime. Additionally, the projected load demand is given for each location.

We assume that the generators using the same type of technology are homogeneous,

i.e., their design parameters are identical. For example, all the coal-st-old generators have

the same parameters, which can be obtained by performing aggregation on the existing

generators that use coal steam turbines. Note that although the renewable generators of

the same technology have the same design parameters under our assumption, they can have

different capacity factors depending on the weather conditions of the region in which they

are installed.
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8.1.2 Transmission representation

Given are existing and candidate transmission lines between any of the two neighboring

buses. The susceptance, distance, and capacity of each transmission line are known. For the

existing transmission lines, we assume that they will not reach their life expectancy during

the planning horizon, i.e., we do not consider the retirement of transmission lines. For the

candidate transmission lines, the capital cost of each transmission line is known.

We use DC power flow equations to calculate the power flow in each transmission line.

These equations are built based on Kirchhoff’s voltage and current laws which differ from

the network flow model used in the work of Lara et al. (2018). In the network flow model,

the transmission network is represented similarly to pipelines where the flows only observe

energy balance at each node while ignoring Kirchhoff’s laws.

8.1.3 Temporal representation

The GTEP model integrates unit commitment decisions to evaluate the hourly operation

requirements. Given that the planning horizon of the GTEP problem can be as long as

10 to 30 years, solving the long-term planning problem with operating decisions in every

hour of the planning horizon is intractable. Therefore, a simplification is needed to make

the problem solvable, while representing the hourly fluctuations of the load and renewable

profiles.

Several works propose to select a few representative days (Mallapragada et al., 2018;

Teichgraeber and Brandt, 2019; Scott et al., 2019) from the full data set to represent the

hourly fluctuations. To keep the chronology of the hourly historical data, the time series

for the loads and the capacity factors corresponding to the same day are concatenated as a

single vector, which will be used as the input to some clustering algorithms, such as k-means,

and hierarchical clustering. After performing the clustering on the full time series data set,

the time series corresponding to the representative days are the centroids or medoids of the

clusters. The details can be found in subsection 5.1.

199



Chapter 8. Mixed-integer Linear Programming Models and Algorithms for Generation and Transmission
Expansion Planning of Power Systems

8.1.4 Spatial representation

GTEP is typically performed on large scale power systems which consists of thousands

of buses, such as ERCOT, SPP, PJM, MISO, etc. In most cases, it is intractable for GTEP

to model each bus. Therefore, we adopt a similar approach as in Lara et al. (2018) to reduce

the spatial complexity of the problem. The area of interest is divided into several regions

that have similar climate (e.g., wind speed and solar incidence over time), and load profiles.

As we describe in the generation representation subsection, all the generators using the same

technology have the same parameters. On the other hand, for the renewable generators, the

capacity factors are dependent on the location at which they are installed. We assume that

the capacity factors of the renewable generators in the same region are the same.

We assume that all the generators and loads are located at the center of each region.

Since each region is treated as one bus in the power flow model, we only consider the

tielines between two neighboring regions. We assume that the two ends of each tieline

are the centers of the two regions it connects. All the tielines are assumed to have the

same voltage, susceptance, and capacity. An example of the proposed spatial representation

approach is shown in Figure 8.1. The ERCOT region is divided into five regions, Panhandle,

Northeast, West, South, and Coast. The center of each region is specified as one of the

cities in the region. The existing transmission lines are represented as solid lines while the

candidate transmission lines are represented as dashed lines. Each region has generator

clusters corresponding to different technologies.

The aggregation of the generating units is a simplification of the problem that may yield

suboptimal solution compared with modeling each generator individually. Such simplification

is necessary to make the problem tractable. In order to obtain a feasible solution to the real

physical system, i.e., the unit commitment decisions of each generator, one could perform a

disaggregation heuristics on the aggregated solution. We will leave developing these heuristics

as future work.
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l 2 Lnew

l 2 Lold

Candidate lines:
Existing lines:

r 2 RRegions:
Generator clusters: i 2 Ir

Figure 8.1: Spatial representation of the five ERCOT regions’ generator clusters and transmission
lines

8.1.5 Decisions and objective

With the above input data, spatial and temporal representations, the proposed GTEP

model is to decide: a) when and where to install new generators, storage units and trans-

mission lines; b) when to retire generators and storage units; c) whether or not to extend

the life of the generators that reached their expected lifetime; d) unit commitment of the

thermal generators during the representative days; e) power generations of the generator

clusters and power flows through the transmission lines. The objective is to minimize the

overall cost including operating, investment, and environmental costs (e.g., carbon tax and

renewable generation quota).

201



Chapter 8. Mixed-integer Linear Programming Models and Algorithms for Generation and Transmission
Expansion Planning of Power Systems

8.2 MILP Formulation

This section presents a deterministic MILP formulation for the GTEP problem. Most of

the MILP formulation is similar to that in Lara et al. (2018). Here, we emphasize the trans-

mission expansion formulation that is added. Note that if an index appears in a summation

or next to a ∀ symbol without a set, all elements in the corresponding set should be consid-

ered. The nomenclature for sets, parameters, and variables used in the MILP formulation

are provided in Appendix A in supplementary material.

8.2.1 Transmission expansion constraints

Transmission line balance constraints. A succinct version of Appendix A is attached at

the end of this chapter. Variable ntbl,t denotes whether or not candidate transmission line

l is built in year t. Variable ntel,t denotes whether transmission line l has been installed in

year t. Equation (8.1) represents the balance of transmission lines.

ntel,t = ntel,t−1 + ntbl,t ∀l ∈ Lnew, t (8.1)

The DC transmission constraints calculate and limit the power flows through the trans-

mission lines. Parameter Bl represents the susceptance of line l. θs(l),t,d,s, θr(l),t,d,s are the

phase angles of the buses that are the sending-end and the receiving-end of line l, respec-

tively, in year t, representative day d, and sub-period (hour) s. The existing transmission

lines have to satisfy the DC power flow equation (8.2).

pflow
l,t,d,s = Bl

(
θs(l),t,d,s − θr(l),t,d,s

)
∀l ∈ Lold, t, d, s (8.2)

The power flow through each transmission line is bounded. Parameter Fmax
l represents the

capacity of transmission line l. Thus:

−Fmax
l ≤ pflow

l,t,d,s ≤ Fmax
l ∀l ∈ Lold, t, d, s (8.3)

For the candidate transmission lines, we can write the following disjunction, where NTEl,t is

a logic variable whose value can be True or False indicating whether or not transmission line

l is installed in year t. If line l already exists in year t, the corresponding power flow has to
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satisfy DC power flow equation and upper and lower bounds. Otherwise, the corresponding

power flow is zero.
NTEl,t

pflow
l,t,d,s = Bl(θs(l),t,d,s − θr(l),t,d,s)

−Fmax
l ≤ pflow

l,t,d,s ≤ Fmax
l

 ∨

¬NTEl,t

pflow
l,t,d,s = 0

 ∀l ∈ Lnew, t, d, s (8.4)

Standard approaches, i.e., big-M reformulation and hull reformulation (Grossmann and Tres-

palacios, 2013), are available to reformulate disjunctions (8.4) into mixed integer constraints.

The big-M formulation of the disjunction is,

−Ml(1− ntel,t) ≤ pflow
l,t,d,s −Bl(θs(l),t,d,s − θr(l),t,d,s) ≤Ml(1− ntel,t) ∀l ∈ Lnew, t, d, s (8.5)

−Fmax
l ntel,t ≤ pflow

l,t,d,s ≤ Fmax
l ntel,t ∀l ∈ Lnew, t, d, s (8.6)

This big-M formulation is most commonly used in the literature (Conejo et al., 2016b) for

TEP.

The hull formulation is,

pflow
l,t,d,s = Bl∆θ

1
l,t,d,s ∀l ∈ Lnew, t, d, s (8.7)

θs(l),t,d,s − θr(l),t,d,s = ∆θ1l,t,d,s +∆θ2l,t,d,s ∀l ∈ Lnew, t, d, s (8.8)

−π · ntel,t ≤ ∆θ1l,t,d,s ≤ π · ntel,t ∀l ∈ Lnew, t, d, s (8.9)

−π(1− ntel,t) ≤ ∆θ2l,t,d,s ≤ π(1− ntel,t) ∀l ∈ Lnew, t, d, s (8.10)

where ∆θ1l,t,d,s and ∆θ2l,t,d,s are disaggregated variables for the angle difference of transmission

line l. Variable ∆θ1l,t,d,s is equal to the angle difference if transmission line l has been installed

in year t. Otherwise, ∆θ2l,t,d,s equals to the angle difference. In addition to equations (8.7)-

(8.10), equation (8.6) needs to be included in the hull formulation.

The hull formulation has more continuous variables than the big-M formulation but it
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avoids using the big-M parameters of equations (8.5). The hull formulation provides the

intersection of the convex hull of each disjunction in (8.4). Therefore, the hull formulation

can provide a tighter LP relaxation at the expense of solving larger LPs at each node of a

branch-and-bound algorithm.

Alternative big-M formulation: Besides the big-M and hull formulations, an alternative

big-M formulation is proposed by Bahiense et al. (2001). In this formulation, additional

continuous variables pflow+
l,t,d,s , pflow−

l,t,d,s , ∆θ+l,t,d,s, ∆θ−l,t,d,s, are introduced, where the superscript

‘+’ means that the flow is in the same direction as the nominal direction of transmission

line l, i.e., from the sending-end node s(l) to the receiving-end node r(l); superscript ‘-’

means the opposite direction. By defining these new continuous variables, equation (8.5)

is replaced by equations (8.11) to (8.14) and equation (8.6) is replaced by equations (8.17)

and (8.18). Bahiense et al. (2001) claim that the alternative big-M formulation is tighter

than the big-M formulation. However, we prove that they have the same feasible region

if we project the feasible region of the alternative big-M formulation onto the space of

(pflow
l,t,d,s, θs(l),t,d,s, θr(l),t,d,s, ntel,t) in Theorem 1. The proof of Theorem 1 can be found in

Appendix B of supplementary material

pflow+
l,t,d,s −Bl∆θ

+
l,t,d,s ≤ 0 ∀l ∈ Lnew, t, d, s (8.11)

pflow−
l,t,d,s −Bl∆θ

−
l,t,d,s ≤ 0 ∀l ∈ Lnew, t, d, s (8.12)

pflow+
l,t,d,s −Bl∆θ

+
l,t,d,s ≥ −Ml(1− ntel,t) ∀l ∈ Lnew, t, d, s (8.13)

pflow−
l,t,d,s −Bl∆θ

−
l,t,d,s ≥ −Ml(1− ntel,t) ∀l ∈ Lnew, t, d, s (8.14)

pflow
l,t,d,s = pflow+

l,t,d,s − pflow−
l,t,d,s ∀l ∈ Lnew, t, d, s (8.15)
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θs(l),t,d,s − θr(l),t,d,s = ∆θ+l,t,d,s −∆θ−l,t,d,s ∀l ∈ Lnew, t, d, s (8.16)

pflow+
l,t,d,s ≤ Fmax

l ntel,t ∀l ∈ Lnew, t, d, s (8.17)

pflow−
l,t,d,s ≤ Fmax

l ntel,t ∀l ∈ Lnew, t, d, s (8.18)

pflow+
l,t,d,s , p

flow−
l,t,d,s ,∆θ

+
l,t,d,s,∆θ

−
l,t,d,s ≥ 0 ∀l ∈ Lnew, t, d, s (8.19)

Theorem 5. The alternative big-M formulation (ABM) has the same feasible region as

the big-M (BM) formulation if the feasible region of ABM is projected to the space of{
⊕

l∈Lnew,t∈T ,d∈D,s∈S
(pflow

l,t,d,s, θs(l),t,d,s, θr(l),t,d,s, ntel,t)
}

, where the symbol ‘⊕’ means the concate-

nation of all the variables (pflow
l,t,d,s, θs(l),t,d,s, θr(l),t,d,s, ntel,t) over the set Lnew, T ,D,S.

8.2.2 Other constraints

All other constraints including operational constraints, investment-related constraints,

generator balance constraints, storage constraints, are similar to those of the MILP formu-

lation proposed by Lara et al. (2018). The details of these constraints and the nomenclature

can be found in Appendix A in supplementary material. A succinct version of Appendix A

is attached at the end of this chapter.

8.3 Solution techniques

Given the large size of the proposed GTEP problem, tailored solution approaches need

to be developed. In this section, we describe two solution algorithms: a) nested Benders

decomposition adapted from (Birge, 1985a; Zou et al., 2019), which has been used by Lara

et al. (2018) to solve the GEP model. b) a tailored Benders decomposition. Both of the two

algorithms exploit the structure of the GTEP problem.
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8.3.1 Nested Benders decomposition

Lara et al. (2018) apply a nested Benders decomposition algorithm to solve their GEP

model. Like in the GEP model, the nested Benders decomposition algorithm decomposes the

fullspace of the GTEP problem by year. Note that the linking constraints for two consecutive

years are the investment related constraints. For the investment decisions in transmission

lines, the linking constraints are described by equation (8.1), i.e., the balance of candidate

transmission lines. Similarly, there are linking constraints corresponding to the number of

thermal generators ngoth
i,r,t, the number of renewable generators ngorn

i,r,t, the number of storage

units nsoj,r,t per region r and year t. These linking constraints can be found in equations

(8.1), and (E.17), (E.20), (E.24) in Appendix A in supplementary material.

From the above observation, variables ntel,t, ngoth
i,r,t, ngorn

i,r,t, nsoj,r,t can be treated as

complicating variables. Once these variables are fixed, the GTEP problem can be decom-

posed by year. The nested Benders decomposition consists of two phases, i.e., forward pass

and backward pass. In the forward pass, the problem is solved sequentially year after year.

In each year t, the problem is solved in a myopic way, with the complicating variables of

year t − 1 fixed, and the cutting planes generated from the backward pass. The optimal

solution is obtained for year t. Then the complicating variables are fixed for year t and the

problem for year t+ 1 is solved, until we reach the end of the planning horizon.

In the backward pass, cutting planes can be generated by solving the LP relaxations

of the planning problem with the complicating variables fixed at the values of the forward

pass. The backward pass starts from the last year and sequentially adds cutting planes

to the previous year. Since the nested Benders decomposition is developed by Lara et al.

(2018) for the GEP model, we do not provide the details of the algorithms. The steps of

the nested Benders algorithms are similar to those in Lara et al. (2018), except that in the

GTEP problem we introduce new complicating variables ntel,t pertaining to transmission

expansion. An additional difference is that while in Lara et al. (2018) three different types

of cutting planes are implemented in the backward pass, i.e., Benders cuts, strengthened

Benders cuts, and Lagrangean cuts, we only implement Benders cuts to solve the GTEP
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problem because this type of cut is computationally cheap.

8.3.2 Tailored Benders decomposition algorithm

Instead of solving the GTEP problem sequentially by year as in the nested Benders

decomposition, we treat all the investment-related variables as complicating variables and

include all these variables in a single Benders master problem.

More specifically, the proposed GTEP model can be represented using the succinct form

(8.20) below, where xt represents all the investment decisions in year t, yt represents all the

operating decisions in the representative days for year t. Note that the investment decisions

are made on a yearly basis indexed by t. The operating decisions not only have the index t

but also have indices d and s, which represent the dth representative day in the sth hour,

respectively. Since we will decompose the problem by year, we omit the indices d and s and

simply use yt to represent all the operating decisions corresponding to year t. Equations

(8.20c) and (8.20d) are investment related constraints, which correspond to equations (8.1),

(E.14)-(E.21), (E.23), (E.24). Equations in (8.20b) describe the operational decisions of each

year, such as the power flow equations (8.2) and (8.3). Note that equation (8.20b) can be

decomposed by year. Equation (8.20e) represents the integrality constraints and variable

bounds that xt and yt have to satisfy.

min
∑
t∈T

c⊤t xt + d⊤t yt (8.20a)

s.t. Atxt +Btyt ≤ bt ∀t ∈ T (8.20b)

C1x1 ≤ f1 (8.20c)

Ct−1xt−1 +Dtxt ≤ ft t = 2, 3, . . . , |T | (8.20d)

xt ∈ Xt, yt ∈ Yt ∀t ∈ T (8.20e)

The GTEP problem has a decomposable structure in the sense that if we treat all the invest-

ment decisions xt for all t ∈ T as complicating variables, the problem can be decomposed by
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year. Benders decomposition (Rahmaniani et al., 2016) can be applied to solve this type of

problem. We can assign all the investment variables to the Benders master problem and the

operating variables yt to the tth subproblem. After solving the Benders master problem, the

investment decisions are fixed and each Benders subproblem can be solved independently.

Note that there are some integer variables in the operating decisions, such as the number of

generators that are on/off. In order to generate valid Benders cuts, we solve the LP relax-

ation of each Benders subproblem and add the cuts to the Benders master problem. A high

level description of the algorithm is provided in Figure 8.2. The formulation of the Benders

Investment	decisions	 for	the		planning	horizon	Benders	master	problem

….
Year	T	

operating	
decisions	

Year	1	
operating	
decisions	

Year	2	
operating	
decisions	Benders	subproblems

Subproblems are	decomposed	 by	year	

Add	Benders	cutsFix	investment	decisions

Figure 8.2: Tailored Benders decomposition algorithm applied to the GTEP problem

master problem solved at iteration k is:

min
∑
t∈T

c⊤t xt + ηt (8.21a)

s.t. C1x1 ≤ f1 (8.21b)

Ct−1xt−1 +Dtxt ≤ ft t = 2, 3, . . . , |T | (8.21c)

ηt ≥ η̃k
′

t +
(
µk′

t

)⊤(
x̃k

′

t − xt
)

t ∈ T , k′ < k (8.21d)

xt ∈ Xt ∀t ∈ T (8.21e)

where equation (8.21d) are the Benders cuts generated by solving the Benders subproblems.

We denote the optimal solution of the Benders master problem at iteration k as x̃kt , ∀t ∈ T .

Fixing the values of the investment decision variables to the values obtained at the master
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problem, i.e., xt = x̃kt , ∀t ∈ T , we can solve each Benders subproblem independently for each

year t ∈ T :

η̃kt = min d⊤t yt (8.22a)

s.t. xt = x̃kt (8.22b)

Atxt +Btyt ≤ bt (8.22c)

yt ∈ Ỹt (8.22d)

where all the integer variables in yt are relaxed and set Ỹt represents set Yt without the

integrality constraints, i.e, Ỹt only represents variables bounds for yt. Let µk
t be the optimal

dual multiplier for equation (8.22b). A valid Benders cut,

ηt ≥ η̃kt +
(
µk
t

)⊤(
x̃kt − xt

)
can be generated by solving the tth subproblem. The cuts from the subproblems are then

added to the master problem via equation (8.21d). Note that the Benders subproblem

(8.22) can be infeasible. In this case, a feasibility subproblem should be solved to generate

feasibility cuts. Interested readers can refer to (Rahmaniani et al., 2016) for the definitions

of feasibility cuts. To simply notation, we assume that the subproblems are feasible here.

At each iteration k, the Benders master problem provides a lower bound of the optimal

objective function value with relaxed yt variables, while an upper bound can be calculated as∑
t∈T c

⊤
t x̃

k
t + d⊤t ỹ

k
t where x̃kt and ỹkt are the optimal solutions to the master problem and the

subproblems, respectively. We keep iterating between the Benders master problem (8.21)

and the subproblems (8.22) until the upper bound and the lower bound lie within certain

optimality tolerance.

For our computational study, we use the Benders implementation from CPLEX (Bonami

et al., 2020b), which is a branch-and-Benders-cut algorithm. We only need to specify the

variables in the master problem and the variables in each subproblem and CPLEX automati-

cally solves the GTEP problem using Benders decomposition. Note that the implementation

in CPLEX uses a single branch-and-bound tree where Benders cuts are added as lazy con-
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straints. The Benders subproblems are solved whenever a feasible solution is found in the

branch-and-bound tree of the master problem. The corresponding optimality or feasibility

cuts will be added to the master problem dynamically in the single branch-and-bound tree.

Since the integrality constraints of the yt variables are relaxed within the Benders decom-

position algorithm, we can only obtain a lower bound to the original GTEP problem (8.20)

through this algorithm. In order to obtain a feasible solution to the original problem, i.e., an

upper bound, we can fix the investments decisions xt to the optimal solution of the Benders

decomposition algorithm and solve the operating problem with the integrality constraints

of the yt variables for each year independently. Moreover, as a result of the relaxation of

the integrality constraints corresponding to the yt variables, there will be a gap between the

lower bound and the upper bound. However, our computational results in section 8.4 show

that this gap is small. The reason is that all the integer variables in yt are general integer

variables instead of binary variables. Typically, mixed-integer programs with general integer

variables have good LP relaxations.

8.4 Case studies

8.4.1 Input data

We carry out a GTEP case study for ERCOT. The spatial representation of the ERCOT

region has been discussed in subsection 8.1.4. It is divided into four geographical regions:

Northeast, West, Coast and South. Besides these regions, a fifth region, Panhandle, is also

included, which is technically outside the ERCOT region, but due to its renewable generation

potential, it supplies electricity to the ERCOT regions. Note that in our model, Panhandle

is treated as a pure supplier, i.e., it has zero load. The map of the five regions is shown in

Figure 8.1.

Each of the five regions are treated as a bus and a DC power flow model is considered.

We specify a city for each region as the location of the bus. The center for Northeast, West,

Coast, South and Panhandle are Dallas, Midland, Houston, San Antonio, and Amarillo,
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respectively. The lengths of the transmission lines are determined by the distance between

the centers of any of the two neighboring regions. To test the GTEP model, we assume that

no transmission lines are available, i.e., the model will identify the transmission lines to be

built. We assume that for each pair of the two neighboring regions, at most 10 candidate

transmission lines can be built. The susceptance and capacity of the transmission lines are

all the same, which are obtained from a synthetic grid of Texas (Birchfield et al., 2016). The

unit capital cost of transmission lines is $1,919,450 per mile obtained from (Andrade and

Baldick, 2016).

Old and new generation technologies have been described in subsection 8.1.1. The in-

vestment cost, fixed and variable operating costs for different generation technologies are

obtained from the National Renewable Energy Laboratory (NREL), available in the 2016

Annual Technology Baseline (ATB) Spreadsheet (Cole et al., 2016). The capital cost, power

rating, rated energy capacity, charge and discharge efficiency and storage lifetime of the

storage units are from (Schmidt et al., 2017). We consider a 20 year time horizon, in which

the first year is 2019. The fuel price data for coal, natural gas and uranium correspond to

the reference scenario in U.S. Energy Information Administration (2019a). A discount rate

of 5.7% as chosen in Short et al. (2011) is used. We assume that the undiscounted carbon

tax is zero in the first year and grows linearly across years to $325/tonne CO2, which is on

the high side compared with most forecast scenarios reported in McFarland et al. (2018).

The curtailment cost is assumed to be $5,000/MWh.

The hourly solar capacity factor profiles including photo-voltaic (pv) and concentrated

solar power (csp), are calculated based on the national solar radiation data base (NSRDB)

(Sengupta et al., 2018) in 2012 via the System Advisor Model (SAM) (Blair et al., 2014).

The hourly wind capacity factor profiles are calculated based on the wind speed from the

wind integration national dataset (wind) toolkit (Draxl et al., 2015) in 2012 using one power

curve from SAM. Since load data are correlated with solar and wind capacity factors, to

generate the hourly load profiles we take load data from ERCOT in 2012 and scale them so

that the annual load for each ERCOT region is equal to the annual load in 2019. To sum
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up, we have 365 days (the leap day is excluded) of 24 hour solar and wind capacity factor

and load data. The capacity factors are assumed to be unchanged over the planning horizon.

The annual load growth rate is assumed to be 1.4% calculated based on the historical load

data from 2011 to 2018 (ERCOT, 2106). To select the representative days for the GTEP

model, we use the software package, TimeSeriesClustering.jl developed by Teichgraeber and

Brandt (Teichgraeber and Brandt, 2019). By using this package, we are able to apply the

k-means clustering algorithm to the time series and select the centroid of each cluster as

the representative day. The weight of each representative day is proportional to the number

of data points in that cluster. The details of the clustering algorithms are described in

Teichgraeber and Brandt (2019). There is a trade-off between computational complexity and

model fidelity in selecting the number of representative days. Here, we adopt a trial-and-

error approach and gradually increase the number of representative days until the investment

decisions do not change significantly. Due to the length constraint of the paper, the sensitivity

analysis with respect to the number of representative days is given in Appendix D of the

supplementary material. The results with 15 representative days are reported in subsection

8.4.3 because the solutions stabilize after the number of representative days is increased to

15.

8.4.2 Comparison of formulations and algorithms

All the MILP formulations are implemented in Pyomo/Python (Hart et al., 2011). We

first solve the GTEP model directly with CPLEX 12.9.0.0. We compare the three transmis-

sion expansion formulations proposed in subsection 8.2.1. All the problems in this chapter

are solved using one processor of an Intel Xeon (2.67GHz) machine with 64 GB RAM. The

time limit is set to 10 hours. The number of general integer variables, binary variables,

continuous variables, and constraints of the fullspace GTEP problem with the three dif-

ferent formulations are given in Table 8.1. The upper bound (UB), lower bound (LB) of

the optimal value of the objective function in billion dollars and the wall time in seconds

are also shown in Table 8.1. All the three formulations have the same number of general
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integer variables and binary variables but differ in the number of continuous variables. The

standard big-M formulation uses the fewest number of continuous variables and constraints.

CPLEX is not able to find a feasible solution (UB) for any of the three formulations within

the prespecified time limit. The lower bound column (LB) provides the bound that CPLEX

returns at termination. In fact, we direct CPLEX to solve the LP relaxation for each of the

three formulations, but CPLEX was not able to return a solution for any of the formulations

within the 10-hour time limit, regardless of the LP algorithm chosen.

Table 8.1: Computational statistics for the fullspace problem with 4 representative days

Formulation Int Var Bin Var Cont Var Constraints UB ($109) LB ($109) Wall time (sec)

big-M 274,920 2,800 564,826 1,543,966 - 21.13 36,000
alternative big-M 274,920 2,800 1,102,426 2,081,566 - 21.13 36,000

hull 274,920 2,800 833,626 2,081,566 - 281.73 36,000

We also test the two decomposition algorithms described in section 8.3. The nested

Benders decomposition is implemented in Pyomo/Python (Hart et al., 2011). The tailored

Benders decomposition implementation is from CPLEX (Bonami et al., 2020b), which is

called using the Pyomo persistent solver interface (Siirola, 2017). The computational results

of the two proposed decomposition algorithms are shown in Table 8.2.

The tailored Benders decomposition algorithm is able to solve all the three formulations

to within 1% optimality gap within 10,000 seconds.

For the nested Benders decomposition, we observe that the forward pass with integrality

constraints is expensive to solve. Therefore, we make a change in the implementation so that

we first use the nested Benders decomposition algorithm to solve the LP relaxation of the

problem until the LP relaxation is solved to optimality or we reach the time limit of 10 hours

or the iteration limit of 100. Then we perform one single forward pass with the integrality

constraints to obtain a feasible solution. Although the nested Benders decomposition can

obtain an upper bound and a lower bound to all the three formulations, the optimality

gaps are large compared to the results from the tailored Benders decomposition. In fact,

in none of the three formulations is the nested Benders decomposition able to solve the LP

relaxation of the problems to optimality within the time limit. Note that the performance of
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the nested Benders decomposition is quite different from the numerical experiments on the

GEP model performed by Lara et al. (2018) for the GEP model where the nested Benders

decomposition performs well. The reason for this difference could be due to the complication

brought by the transmission expansion constraints and the DC power flow equations of the

GTEP model. As a result, the subproblems become larger and more dual degenerate, which

makes nested Benders decomposition take not only more time to solve each iteration but

also more iterations to converge.

Table 8.2: Computational results of the two proposed decomposition algorithms using different
formulations

Algorithm Formulation UB ($109) LB ($109) Gap Wall time (secs)

tailored Benders big-M 283.7 282.6 0.38% 5,115
tailored Benders alternative big-M 283.9 281.6 0.82% 3,693
tailored Benders hull 282.6 280.6 0.71% 8,418
nested Benders big-M 295.7 268.9 9.98% 53,682
nested Benders alternative big-M 294.2 265.5 10.81% 43,389
nested Benders hull 288.0 269.3 6.97% 37,577

From this numerical experiment, the tailored Benders decomposition algorithm with the

alternative big-M formulation proves to be the fastest. We adopt this algorithm-formulation

combination for the rest of the experiments in this chapter.

Some additional computational statistics on this problem with 4 representative days

including the problem sizes after presolve, the performance curves for the nested Benders

decomposition, the sizes of the Benders master problem and subproblem are shown in Ap-

pendix C of the supplementary material.

8.4.3 Results with 15 representative days

We improve the fidelity of the model by increasing the number of representative days to

15. The 15 representative day model with the alternative big-M formulation has 2,800 binary

variables, 1,024,680 general integer variables, 4,120,606 continuous variables, and 7,787,266

constraints. The proposed tailored Benders decomposition algorithm is able to solve the
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problem in 33,207 seconds with an upper bound of 301.1 ($109), a lower bound of 299.9

($109) and an optimality gap of 0.4%.

The capacities of different generation technologies from 2019 to 2038 are shown in Figure

8.3. The results include high capacities of solar and wind. The aggregated natural gas

capacity of the five regions increases in the first few years, reaches its peak in 2024 and

gradually decreases afterwards due to the retirement of old generators and the increase in

carbon tax, which makes the natural gas generators less competitive compared with solar

and wind generators. The nuclear capacities are unchanged throughout the planning horizon.

The coal capacities are unchanged in the first few years and start decreasing in 2029 because

of reaching their nominal lifetimes. No storage unit is installed. Therefore, the renewable

generation when the net load is negative has to be curtailed. The total discounted renewable

curtailment cost is 1.64 billion in 20 years.
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Figure 8.3: Aggregated generation expansion results

Geographically, most of the solar and wind capacity additions are projected to take

place in the West and Panhandle regions because the capacity factors for solar and wind

are higher in these two regions. The projected capacity for natural gas in the four regions,

i.e., Coast, Northeast, South, and West, are shown in Figure 8.4. It can be seen that most

natural gas expansions are expected to take place in the Northeast and Coast regions where

the absolute increase in load is high and capacity factors for renewables are relatively low.
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In the West region, where the absolute load increase is low and the capacity factors for

renewable generation are high, we observe very marginal changes in natural gas capacity. In

the South region, natural gas capacity increases in the first few years and reaches a peak

in 2025. After 2025, natural gas capacity decreases over the years due to the retirement of

old generators. The load growth in South is satisfied by power transfers from West region,

which we analyze below.
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Figure 8.4: Projected capacities for natural gas in Coast, Northeast, South, and West
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Figure 8.5: Transmission expansion results
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Figure 8.6: Aggregated power flow directions and magnitudes for all the transmission lines at
t = 20, d = 15, s = 24

8.4.4 Sensitivity analysis of input generator data

The number of transmission lines built over the planning horizon are shown in Figure

8.5. Most of the transmission lines are built for Northeast-Panhandle and South-West in

order to transfer the power generated by the renewable sources in West and Panhandle to

other regions. Note that we assume that no transmission lines are built a priori. It is clear

that there are correlations between the geographical locations of the generation technologies

and the transmission expansion decisions.

Figure 8.6 shows the aggregated power flow through all the installed transmission lines

at a peak load time period (t = 20, d = 15, s = 24). The directions and the magnitudes of
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Figure 8.7: Generation expansion results using generating unit cost data from IHS Markit

the power flows are represented by the red arrows and numbers in this Figure. The most

significant power flows are from Panhandle to Northeast and from West to South due the

surplus of their renewable energy generation.

The generation capacity expansion planning results can be sensitive to the forecast of

future capital cost and operating cost of the potential generating units. Recall that genera-

tor cost data for the previous analysis are from the National Renewable Energy Laboratory

(NREL), available in the 2016 Annual Technology Baseline (ATB) Spreadsheet (Cole et al.,

2016). We switch the capital cost and operating cost data for all the generators to internal

data from IHS Markit and re-run the Benders decomposition experiment with 15 represen-

tative days. The proposed tailored Benders decomposition algorithm is able to solve the

problem in 51,445 seconds with an upper bound of 294.4 ($109), a lower bound of 293.7

($109) and an optimality gap of 0.2%. The increase in computational time compared with

using NREL data is 67%.

The generation expansion results are shown in Figure 8.7. The major change is that

the IHS Markit results favors more wind and less solar compared with the results shown in

Figure 8.3. To give some insight on why this happens, we find that the overnight cost of

the wind generating units in the IHS Markit dataset is 25% lower than that in the NREL
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dataset in the first year of the planning horizon. In contrast, the overnight cost for the PV

generating units is only 11% lower in the first year.

8.5 Conclusions

In this chapter, we address generation and transmission expansion planning (GTEP)

problem by developing MILP formulations and solution techniques. We consider both ther-

mal and renewable technologies as expansion candidates. Operating and transmission con-

straints are included in the model, which leads to large scale problems. To limit the size of

the GTEP model, several simplifications are made. We aggregate the generators that use

the same technology assuming that they have the same design parameters. We also spatially

aggregate regions with similar climate and load profiles. For example, the ERCOT is divided

into five regions. Each region represents one bus in the power flow model. Therefore, we

only consider the expansion of tielines between regions. In terms of temporal representa-

tion, we select some representative days with hourly load and capacity factor data. The

representative days are selected by a clustering algorithm such as k-means clustering.

The model is a multi-scale MILP model with both investment decisions and operating

decisions. We compare three different formulations for transmission expansion, i.e., the big-M

formulation, the hull formulation and the alternative big-M formulation. We prove that the

alternative big-M (ABM) formulation has the same feasible region as the big-M formulation

(BM) when projected onto the space of the variables involved in the big-M formulation.

Computational experiments are performed as well for the three formulations, but it is hard

to identify a clear winner among the three formulations.

Two solution techniques, a nested Benders decomposition algorithm and a tailored Ben-

ders decomposition algorithm, are proposed. Both algorithms decompose the planning prob-

lem by year. The nested Benders decomposition solves each year sequentially in a forward

and backward pass manner. The Benders decomposition defines a master problem that deals

with the investment decisions and a number of subproblems corresponding to representa-

tive operating decisions for a given year. The tailored Benders decomposition algorithm
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outperforms the nested Benders decomposition one in our computational experiments.

An ERCOT case study is used to demonstrate the GTEP model and the solution tech-

niques. The tailored Benders decomposition is able to solve the 20 year planning problem

with 15 representative days. The capacity expansion mix for ERCOT will mainly include so-

lar and wind capacities in the West and Panhandle regions. The transmission lines are mainly

built to transfer power from solar and wind rich regions to the South and Northeast regions

of ERCOT, which shows that the generation and transmission decisions are correlated. Co-

optimization of generation and transmission has the potential of bring additional value to

the system operator/regulator than solving the two planning problems independently.

Several future directions can be pursued. First, the deterministic GTEP model can be

extended to a multi-stage stochastic programming framework by considering uncertainties

in load growth rate, carbon tax, etc. Second, the benefit of using DC power flow compared

with the network flow model is limited in a small scale problem. It is worth testing the model

in a problem with larger number of nodes to test the scalibility of the proposed approach.

Third, the computational performance of both decomposition algorithms can be improved

using warm-start techniques where a number of cuts can be generated at the beginning based

on the solutions obtained from some heuristics. Fourth, the reliability of the system can be

improved by adding contingency constraints.
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Chapter 9

On Representative Day Selection for

Capacity Expansion Planning of

Power Systems under Extreme Events

9.1 Discussion of issues in representative day selection

Capacity expansion planning (CEP) models (Conejo et al., 2016a; Koltsaklis and Dagoumas,

2018; Hemmati et al., 2013) that have been extensively used by power system operators and

planners aim to determine the location, size, and type of the generating units and/or trans-

mission lines that should be installed in order to meet the electricity demand within a given

geographical region. These investment decisions in generating units and transmission lines

are long-term decisions usually made on a yearly basis. However, due to the increase in

the penetration of generation for renewable resources, CEP models developed recently (Lara

et al., 2018; Palmintier and Webster, 2011) incorporate the hourly operating decisions in

order to capture the high variations of renewable generation. Operating decisions including

unit commitment and ramping decisions, and economic dispatch need to be included in CEP

models, which leads to large-scale mixed-integer linear programming (MILP) problems.

One of the challenges in CEP models that include operating decisions is the temporal
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complexity. Modeling each hour in a 10-30 year planning horizon will lead to MILP problems

with billions of variables, which is intractable with the current commercial solvers. Different

simplifications have been proposed to make the CEP models tractable. Mallapragada et al.

(2018) proposes a time-slice model where the authors average the load and the capacity factor

data of each of the four seasons (spring, summer, fall, winter) into time slices representing

morning (7 am-2 pm), afternoon (2-6 pm), evening (6-11 pm), and night (11 pm-7 am). This

approach does not link consecutive periods and thus fails to characterize the chronology of

the operating decisions. In most of the literature, a “representative days” approach is used

(Almaimouni et al., 2018; Kotzur et al., 2018; Bahl et al., 2018; García-Cerezo et al., 2020;

Liu et al., 2017a; Mallapragada et al., 2018; Nahmmacher et al., 2016; Pfenninger, 2017;

Scott et al., 2019; Seljom and Tomasgard, 2019; De Sisternes and Webster, 2013; Sun et al.,

2019; Teichgraeber and Brandt, 2019; Teichgraeber et al., 2020; Yeganefar et al., 2020; Tso

et al., 2020). A dataset is given that consists of the historical load data and capacity factor

data for solar and wind generators. The historical data is then scaled to account for load

growth. Based on this scaled dataset, k representative days are selected in each year of the

planning problem to represent the whole planning horizon where k ≪ 365. A clustering

algorithm, such as k-means clustering or k-medoids clustering, is used to divide the whole

historical dataset into k clusters based on some of the characteristics of the historical days.

The centroid or the medoid of each cluster is selected as the representative day. Several

issues could arise in the representative day selection procedure. We summarize these issues

below and discuss how the existing literature addresses them.

I What type of data should be used for clustering?

Most papers perform clustering based on the input parameters to the CEP models (Al-

maimouni et al., 2018; Kotzur et al., 2018; Bahl et al., 2018; García-Cerezo et al., 2020;

Liu et al., 2017a; Mallapragada et al., 2018; Nahmmacher et al., 2016; Pfenninger, 2017;

Scott et al., 2019; Seljom and Tomasgard, 2019; De Sisternes and Webster, 2013; Teich-

graeber and Brandt, 2019; Teichgraeber et al., 2020; Yeganefar et al., 2020; Tso et al.,

2020), i.e., the load data and capacity factors corresponding to each historical day.
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More specifically, each input data point to the clustering algorithm is a concatenation

of the load and the capacity factor time series corresponding to a given historical day.

As a result, the temporal correlations of different time series and the hourly chronol-

ogy of each time series can be preserved. Since the numerical values of the load and

the capacity factors can vary significantly, several normalization approaches have been

proposed (Teichgraeber and Brandt, 2019). Besides clustering based on input parame-

ters, Pineda and Conejo (2010); Sun et al. (2019) propose to perform clustering based

on the optimal objective value or the optimal solution of each historical day. In these

approaches, a CEP model has to be solved to optimality for each historical day. The

case study in Sun et al. (2019) shows that this cost-based approach has generally a

superior performance than the input-based approach.

II Which clustering algorithm should be used?

Different clustering algorithms have been used including k-means clustering (Almaimouni

et al., 2018; Kotzur et al., 2018; García-Cerezo et al., 2020; Pfenninger, 2017; Teichgrae-

ber and Brandt, 2019; Teichgraeber et al., 2020; Liu et al., 2017a; Mallapragada et al.,

2018; Scott et al., 2019), k-medoids clustering (Kotzur et al., 2018; Teichgraeber and

Brandt, 2019; Bahl et al., 2018; Scott et al., 2019), hierarchical clustering Kotzur et al.

(2018); Nahmmacher et al. (2016); Pfenninger (2017); Sun et al. (2019); Teichgrae-

ber and Brandt (2019); Liu et al. (2017a), DBA clustering (Teichgraeber and Brandt,

2019), k-shape clustering (Teichgraeber and Brandt, 2019), self-organizing map (SOM)

clustering (Yeganefar et al., 2020). Most of the papers that we surveyed conclude that

there is no clear winner among all the different clustering algorithms (Kotzur et al.,

2018; Teichgraeber and Brandt, 2019).

III How to choose the appropriate number of clusters?

There is no standard method to choose the number of clusters a priori. Kotzur et al.

(2018); Teichgraeber and Brandt (2019); Mallapragada et al. (2018); Sun et al. (2019);

García-Cerezo et al. (2020); Nahmmacher et al. (2016) adopt a trial-and-error approach
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to choose the appropriate number of representative days by gradually increasing the

number of representative days and observe if the optimal objective value and the

optimal solution stabilize. Other methods are solely based on the metrics on the input

time series without solving any optimization problem. For example, Almaimouni et al.

(2018) use an “elbow method” that determines how well the k clusters can characterize

the variance of the input data. Poncelet et al. (2016); Yeganefar et al. (2020) use

metrics like average normalized root mean square error (NRMSE) for the time series

data.

IV Should additional “extreme days” be included and how to find these “extreme days”?

Including k representative days in the CEP model alone may not be enough since the

representative days are the centroids or the medoids of the clusters, and therefore,

fail to capture extreme events such as the day with the peak load. To guarantee the

feasibility of the investment decisions, several works have been done on “extreme days”

selection. Most of these works select extreme days based on the values of the input data

(Kotzur et al., 2018; Scott et al., 2019; Pfenninger, 2017; Yeganefar et al., 2020). Scott

et al. (2019); Pfenninger (2017); Yeganefar et al. (2020) propose to select extreme days

that have extreme values in the input data such as the days with the peak load, the

peak net load, and/or the peak ramp-up and append these extreme days as additional

representative days. Kotzur et al. (2018); García-Cerezo et al. (2020) propose to modify

the clustering process to include the extreme values of the clusters. Besides identifying

extreme days based on input data, Teichgraeber et al. (2020) proposes to select extreme

days based on the slack variables of the optimization problem itself.

V How to estimate a bound for the error of the considered approach?

A CEP model with representative days can be seen as a surrogate of the CEP model

with all the days. It is relevant to know how far away the optimal solution of the

surrogate is from the fullspace CEP model. Sun et al. (2019) assume that the “ground

truth model”, i.e., the model with a sufficiently large number of days, is solvable and
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compare the investment decisions obtained from the representative day model with the

solution of the “ground truth model”. Seljom and Tomasgard (2019) proposes to use a

sample average approximation approach (Shapiro et al., 2014) to calculate a statistical

lower bound for the fullspace model. Teichgraeber and Brandt (2019) proves that for

some linear programming energy system problem, the surrogate problem is a relaxation

of the fullspace problem under some assumptions. However, the properties proved in

Teichgraeber and Brandt (2019) are restricted to LP problems with uncertain data in

the objective and right hand side coefficients, which does not apply to a general CEP

model.

this chapter aims to provide additional developments on the five issues discussed above.

The works that are closest to this chapter are Teichgraeber and Brandt (2019); Sun et al.

(2019); Teichgraeber et al. (2020). The contributions of this chapter are outlined below.

• The procedures of the input-based approach and the cost-based approach are presented

with extensions to address general CEP problems.

• The theoretical properties of the cost-based approach and the input-based approach

are analyzed including a method to estimate the “optimality gap” of the representative

day approach with respect to the full day approach. Several relationships between the

clustering error and the “optimality gap” are provided.

• Two extreme day selection methods are proposed.

• A case study is used to compare the effectiveness of different algorithms. The effects

of adding extreme days are also analyzed.

9.2 Background: clustering algorithms

As discussed in the previous section, different clustering algorithms have been used for

representative day selection. There is no clear winner among all the clustering algorithms

reported in the literature (Kotzur et al., 2018; Teichgraeber and Brandt, 2019). In this
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chapter, k-means clustering and k medoids clustering are considered. In order to make

this chapter self-contained, the necessary background for these two clustering algorithms is

provided in this section.

9.2.1 k-means clustering

Given a set of observations (x1, x2, . . . , xn), where each observation is a D-dimensional

real vector, k-means clustering aims to partition the n observations into k (≤ n) sets so as to

minimize the within-cluster variances. Suppose S = {S1, S2, . . . , Sk}, denotes the partition

of set {1, . . . , n} into k subsets, k-means clustering is to solve the following optimization

problem to find the optimal partition S∗,

S∗ = arg min
S

k∑
i=1

∑
x∈Si

||x− µi||2 (9.1)

where µi is the mean of the points in Si. The k-means clustering is an NP-hard problem. One

approach to solve it is to use heuristics, such as the Lloyd–Forgy algorithm (Forgy, 1965).

Implementation of this heuristic method is available in the well-known Python package

scikit-learn (Pedregosa et al., 2011).

Although the heuristics can provide good feasible solutions to Problem (9.1), they cannot

guarantee that the global optimal solution is found. An alternative approach to solve (9.1) is

to formulate the problem as a mixed-integer nonlinear program (MINLP) shown in Problem

(9.2). Binary variable yil represents whether the ith data point xi belongs to the lth cluster

for all i ∈ {1, . . . , n}, l ∈ {1, . . . , k}. Continuous variable clj denotes jth coordinate of the

center of the lth cluster. Continuous variable di denotes the square of the Euclidean distance

from the point xi to the center of the cluster it belongs to. In Equation (9.2b), di is greater

than or equal to the sum of the squared distances of each coordinate if point i belongs to

cluster l, i.e., yil = 1. The parameter Mi is a big-M parameter such that the inequality holds

when yil = 0. Equation (9.2c) forces each point i to be assigned to one of the clusters.

min
c,d,y

n∑
i=1

di (9.2a)
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di ≥
( D∑

j=1

(xij − clj)
2
)
−Mi(1− yil) ∀i ∈ {1, . . . , n}, l ∈ {1, . . . , k} (9.2b)

k∑
l=1

yil = 1 ∀i ∈ {1, . . . , n} (9.2c)

cl ∈ RD ∀l ∈ {1, . . . , k} (9.2d)

di ∈ R+ ∀i ∈ {1, . . . , n} (9.2e)

yil ∈ {0, 1} ∀i ∈ {1, . . . , n}, l ∈ {1, . . . , k} (9.2f)

It is easy to observe that the size of (9.2) increases with the increase in the dimension of the

data D, the number of data points n, and the number of clusters k. As a result, Problem

(9.1) is difficult to solve for real-world CEP problems. In fact, we find that problem (9.2)

is not solvable to global optimality for our case study. Therefore, the heuristic algorithm

implemented in scikit-learn is used for k-means.

9.2.2 k-medoids clustering

The k-medoids problem is a clustering problem similar to k-means. Instead of minimizing

the sum of within-cluster variances, k-medoids clustering seeks to minimize the distance

from the “medoids” of each cluster. The difference between the medoid and the mean of the

cluster is that the medoid has to be one of the actual data points within that cluster. In

general, the k-medoids clustering problem is also NP-hard. There are heuristic algorithms

for the k-medoids clustering (Park and Jun, 2009) whose implementations are available in

scikit-learn.

Alternatively, k-medoids can be solved to global optimality using mixed-integer linear

programming (MILP). The MILP formulation is described in Problem (9.3). Binary variable

yi represents whether the ith data point is a medoid of a cluster (yi=1) or not (yi=0). Binary

variable zij denotes whether the ith data point belongs to the cluster with the jth data point

as its medoid. The objective is to minimize the sum of the distances from each point to its
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medoid. It is relevant to note that the distance between any two points i and j can be

calculated a priori. Equation (9.3b) denotes that each point has to be assigned to exactly

one point that is the medoid of the cluster it belongs to. Equation (9.3c) forces zij be zero if

point j is not a medoid. Equation (9.3d) specify that the number of medoids is equal to k.

min
z,y

∑
ij

dijzij (9.3a)

n∑
j=1

zij = 1 ∀i = 1, 2, . . . , n (9.3b)

zij ≤ yj ∀i = 1, 2, . . . , n, j = 1, 2, . . . , n (9.3c)

n∑
i=1

yi = k (9.3d)

The number variables in (9.3) increases with the number of data points, but is independent

of the number of clusters and the dimension of the data. We have found that (9.3) can be

solved efficiently in CEP applications.

9.3 Representative day selection algorithm

To guarantee the fidelity of the CEP model, an accurate forecast of the hourly load and

capacity factors of renewable generating units is needed. We assume that some historical

load and capacity factor data are available and that those data are sufficient to characterize

the possible capacity factor and load variations. The historical loads are scaled to consider

the future load growth, i.e., some annual load growth rate is assumed. For the capacity factor

data, no scaling is needed since we assume that the weather condition change is negligible

across years. We further assume that the inter-day (not the intra-day) ramping constraints

can be neglected, i.e., there is no linking constraints between two consecutive days. While

this assumption may decrease the fidelity of the model, it is necessary for our representative

day approach. One can always increase the length of the time block, e.g., using representative

weeks (Bahl et al., 2018) instead of representative days.
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With these assumptions, a fullspace CEP problem with all the historical data used to

represent each year of the planning horizon is defined in (9.4). Set D represents the set of days

in the historical dataset. Each day has a weight of 365
|D| in the objective function. Equation

(9.4) is a succinct representation of the CEP problem. A detailed MILP formulation can be

found in Li et al. (2020b).

(FD) OBJFD = min
∑
t∈T

(
c⊤t xt +

∑
d∈D

365

|D|
f⊤
t yt,d

)
(9.4a)

s.t. At,dxt +Btyt,d ≤ bt,d ∀t ∈ T , d ∈ D (9.4b)

Ct−1xt−1 +Dtxt ≤ gt t = 2, 3, . . . , |T | (9.4c)

xt ∈ Xt, ∀t ∈ T , yt,d ∈ Yt, ∀t ∈ T , d ∈ D (9.4d)

Variable xt represents the investment decisions at year t. Variable yt,d represents the operat-

ing decisions corresponding to day d in year t. The objective (9.4a) is to minimize the total

cost. Equation (9.4b) describes the operational decisions of each year t and each day d, such

as power flow equations, unit commitment, and economic dispatch. Equations (9.4c) are

investment-related constraints, such as the installation and retirement of generating units.

Equations (9.4d) specify the domain of the variables. We note that the days in our dataset

differ in the load and the capacity factors of the renewable generators. The parameters cor-

responding to the load appear on the right hand side of equation (9.4b) represented by bt,d.

The parameters corresponding to the capacity factors are part of the constraint matrices

At,d. All the other parameters in the model, including ct, ft, Bt, Ct, Dt, and gt, are only

indexed by year t because they only change on a yearly basis.

Since problem (FD) includes all the historical data, it is best to solve (FD) directly to

obtain planning decisions that are feasible for all the days in dataset D. However, solving

(FD) directly is prohibitive in practice since the number of variables in (FD) can easily

exceed one billion (Li et al., 2020b) if we consider one or more years of historical data.

Therefore, the model (RD) below is solved as a surrogate of the fullspace model where a

set of representative days K is selected or constructed to approximate problem (FD). The
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number of representative days is denoted by the cardinality of set K, i.e., |K|. The weight of

the kth representative day is denoted by wk. Variable yt,k represents the operating decisions

corresponding to the kth representative day in year t. Set Ỹt represents the LP relaxation of

set Yt, i.e., set Ỹt is obtained from set Yt if all the integrality constraints regarding the yt,k
variables are relaxed. The reason for relaxing the integrality constraints for yt,k is to make

the model (RD) amenable to decomposition algorithms, such as the Benders decomposition

in Li et al. (2020b) or the nested Benders decomposition in Lara et al. (2018). Since all

the integer variables are general integer variables instead of binary variables, the relaxation

provides a very tight bound (Li et al., 2020b).

(RD) OBJRD = min
∑
t∈T

(
c⊤t xt +

∑
k∈K

wkf
⊤
t yt,k

)
(9.5a)

s.t. At,kxt +Btyt,k ≤ bt,k ∀t ∈ T , k ∈ K (9.5b)

Ct−1xt−1 +Dtxt ≤ gt t = 2, 3, . . . , |T | (9.5c)

xt ∈ Xt, ∀t ∈ T , yt,k ∈ Ỹt, ∀t ∈ T , k ∈ K (9.5d)

The main challenge that we face is to find out how the representative days should be selected

in order to approximate problem (FD) as well as possible. Before diving into the represen-

tative day selection approaches, we introduce a quantitative metric to evaluate the solution

quality of (RD). Suppose that the optimal investment decision of (RD) is xRD, then the

“actual cost” of xRD can be obtained by fixing the investment decisions at xRD and solving

the problem corresponding to each day in the full dataset D individually, which is equivalent

to fixing the x variables in (FD) and solving the rest of the fullspace problem. We denote

this objective as OBJFD(xRD). It is easy to see that

OBJFD(xRD) ≥ OBJFD(xFD) = OBJFD (9.6)

where xFD represents the optimal investment decisions obtained with (FD).
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Raw data

Normalized data

Normalization

k-medoids clustering

Cluster 1, w=149

Cluster 2, w=72

Cluster 3, w=144

Figure 9.1: Illustration of the input-based approach
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Raw data

Investment cost breakdown
(million dollars)

Solve CEP for each day 
in the full dataset individually 

Dimension reduction

Investment cost breakdown
after reduction (million dollars)

k-medoids clustering

Cluster 1, w=141

Cluster 2, w=65

Cluster 3, w=159

Figure 9.2: Illustration of the cost-based approach

9.3.1 Input-based approach

Most algorithms on representative day selection perform clustering directly on the input

data to problem (FD). Let us first define the notations for this approach. Suppose we have

232



9.3. Representative day selection algorithm

a dataset that contains the historical loads and the capacity factors of solar and wind for

each node n ∈ N within the considered geographical region. The set of historical days in

this dataset is represented by set D. The data corresponding to day d ∈ D is represented by

vector Hd. Hd is a concatenation of the hourly time series data for the load, capacity factors

of all the nodes n ∈ N in day d. This approach captures the correlations of the input data

because the data corresponding to each day are concatenated. Before applying a clustering

algorithm on {Hd, d ∈ D}, the input data are usually normalized because they can be in

very different magnitudes. For example, the capacity factors are from 0 to 1 while the load

data are in GW. We normalize each type of data, e.g., the load data in a given node, using

its mean and standard deviation over the whole dataset D.

Hnorm
d,p =

Hd,p − µp

σp
∀p, d (9.7)

where Hd,p represents the entries in Hd corresponding to the data type p. For example, Hd,p

can correspond to the time series for the load in a given node in day d. µp and σp are scalars

that represent the mean and standard deviation of {Hd,p, d ∈ D}.

Other normalization schemes have been proposed in Teichgraeber and Brandt (2019),

where instead of normalizing by the mean and standard deviation of each data type p over

the whole dataset, normalization can be performed based on the mean and variance of each

day or each hour for a given data type p. In this chapter, we only apply the whole dataset

normalization approach.

After the normalization, the clustering algorithms can be applied to {Hnorm
d , d ∈ D}.

Then, the whole dataset is partitioned into k clusters and the mean or the medoid of each

cluster is selected as the input parameter corresponding to the representative day.

An illustrative example of the input-based approach is shown in Figure 9.1. The full

dataset consists of 365 days of hourly load, hourly capacity factors of PV and wind corre-

sponding to a single node, which is denoted as “raw data” in Figure 9.1. Each day is shown

as a separate time series denoted by a gray line. After the normalization step, the time series

become dimensionless and is shown as “normalized data”. The k-medoids clustering is per-

formed on the normalized data. For illustration, three clusters are shown in different colors
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with weights, 149, 72, and 144, respectively. The medoid of each cluster is shown as a bold

black line. The medoids will be used as the input data corresponding to the representative

days.

9.3.2 Cost-based approach

Besides clustering the days based on input data, another approach is based on solving

a CEP problem with operating decisions for only a single day d in D at a time. The CEP

problem with one single day is small and can be solved relatively fast. After solving the

single-day CEP problem for each day d ∈ D, the optimal investment decisions are obtained

for all d ∈ D. The hypothesis is that the days with similar optimal investment decisions,

i.e., the days that need similar generators, transmission lines, and storage units, are similar

and should be assigned to the same cluster. One option is to perform clustering based on

the optimal solutions themselves. However, normalization is needed because the number of

generators, transmission lines, and storage units are expressed in different magnitudes. One

natural way to perform the normalization is to transform the number of units to the cost

of different types of units as proposed in Sun et al. (2019) following the work reported in

Pineda and Conejo (2010).

Our main contributions compared with Sun et al. (2019) in the cost-based approach are

outlined below, which are discussed after an illustrative example is presented.

(i) We provide an approach that accommodate planning problems with a time horizon

longer than one year.

(ii) Both k-means and k-medoids clustering are adapted to the cost-based approach, while

Sun et al. (2019) only considers a k-medoids approach.

(iii) A simple dimension reduction method is proposed, and the effects of such method are

analyzed combined with the two clustering algorithms.

To provide a conceptual overview of the proposed approach, an illustrative example is shown

in Figure 9.2. The available raw data are hourly load, and hourly capacity factors of PV and
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wind for 365 days. A CEP problem that has a single day is solved individually for each of the

365 days. The optimal investment costs in the wind, PV, natural gas, and coal generating

units, batteries, and transmission lines are shown in the “investment cost breakdown” charts

for each of the 365 days. Note that in practice, investment costs can be associated with each

node of the CEP problem, i.e., each node has its associated costs in installing generating

units and batteries. The transmission line costs are associated with any two nodes. For

illustration purpose, we only show the investment costs of generating units and batteries

corresponding to one selected node, and the transmission line costs connecting two selected

nodes. Dimensional reduction is performed on the cost data by removing the units that

are never installed in any of the 365 days. Specifically, the battery and the coal generators

are never installed and therefore removed because they do not contribute to the clustering

error. k-medoids clustering is performed on the investment costs breakdown after dimension

reduction. Three clusters are obtained shown in different colors. The medoid of each cluster

is highlighted using large black dots. The days corresponding to the medoids are selected as

the representative days.

Next, we present our contributions regarding (i)-(iii). For (i), the proposed approach

can be applied to solve a CEP model with T years by considering the total discounted cost

of each type of investment over the T years. For (ii), it is not straightforward to apply k-
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means clustering because the mean of the investment costs does not correspond to any days.

However, it is possible to transform the data back to the input domain and take the mean

of the input data for each cluster. For (iii), the dimension reduction technique that removes

the all-zero entries can reduce the sizes of the MINLP problem for k-means clustering. On

the other hand, the MILP formulation of the k-medoids clustering is independent of the

dimension of the problem. Heuristic algorithms for clustering are generally computationally

effective and do not suffer from the “curse of dimensionality”. Since the MINLP formulation

is too expensive to solve and will not be used in CEP problems, we conclude that the

dimension reduction techniques have marginal effects on the clustering algorithms that are

used.

The detailed steps of the cost-based algorithm are described in Algorithm 1.

9.3.3 Extreme days selection

As discussed in the introduction section, including only |K| representative days to solve

the CEP model can lead to expansion decisions that are infeasible under some extreme

days. To examine whether the optimal investment decisions found by the reduced problem

(RD) is feasible for the fullspace problem (FD), the operating problem corresponding to

each day d ∈ D is solved with the optimal investment decisions fixed evaluate the objective

OBJFD(xRD). If there are no infeasible days in D, i.e., OBJFD(xRD) < +∞, the investment

decisions found by solving (FD) are sufficient to satisfy the “extreme” scenarios. If not,

suppose the set of infeasible days are represented by I. In this case, we select the “extreme

day” or “most infeasible day” in set I and add this extreme day to set K as a new cluster

with only 1 day. Then, the weights of the representative days are adjusted accordingly. With

the added extreme day, the reduced problem (RD) is solved again to find the new investment

decisions. We repeat this procedure until all the days in the set D are feasible for our optimal

investment decisions.

We next focus on how to choose the “extreme day” from the set of infeasible days I. We

propose two approaches to select the extreme days.
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9.3.3.1 Load shedding cost

The operating problems for the infeasible days are solved again with load shedding vari-

ables added to energy balance constraints for each node at each hour. The load shedding

variables are used to balance the load when the power generation is not enough to satisfy

the load. The objective function is changed to minimizing the total load shedding cost over

the planning horizon. The day with the highest total load shedding cost is chosen as the

extreme day.

This approach is similar to the one proposed in Teichgraeber et al. (2020). The difference

is that Teichgraeber et al. (2020) proposes to choose the infeasible day with the highest load

shedding cost for a single hour.

9.3.3.2 Highest cost

Using the cost-based algorithm, the optimal total cost tcd (investment cost + operating

cost) of each day in the dataset D is obtained by solving the optimization problem de-

scribed in Algorithm 1. We choose the infeasible day with the highest total cost obtained in

Algorithm 1 as the extreme day.

dselect = arg max
d,d∈I

tcd (9.8)

The rationale for this selection is that the day with the highest cost is likely to include the

extreme events that trigger installing additional units and result in a high operating cost.

The advantage of the highest cost approach is that it exploits information calculated already

in Algorithm 1 and therefore there is no need to solve the infeasible CEP model again to

find the extreme day.

9.3.4 Properties of the proposed algorithms

In this subsection, we analyze the proposed algorithms by characterizing their properties.
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9.3.4.1 Lower bound

An upper bound of the optimal objective value of the fullspace problem (FD) is available

by evaluating OBJFD(xRD) as shown in Equation (9.6). Additionally, it is desirable to

provide a lower bound of (FD) by solving (RD) to obtain an estimate of the suboptimality

of the investment decisions obtained from (RD). The following theorem provides such a lower

bound.

Theorem 6. For both cost-based and input-based approaches, if k-means clustering in

(9.1) is used, (RD) provides a lower bound for the optimal objective value of (FD), i.e.,

OBJRD ≤ OBJFD. This lower bound holds before and after adding extreme days.

Proof. The proof is provided in Appendix F.1.1.

Since both the upper bound and the lower bound of problem (FD) are available, an

optimality gap of the solution xRD can be estimated using

Gap =
OBJFD(xRD)−OBJRD

OBJFD(xRD)
× 100% (9.9)

9.3.4.2 Relationship between the clustering error and the optimality gap

The clustering error refers to the sum of deviations from the mean or the medoids in the k-

means or k-medoids clustering, respectively. The mathematical expressions for the clustering

errors are given in Equations (9.1) and (9.3a) for k-means and k-medoids, respectively. As

the number of clusters increases, the clustering error is guaranteed to decrease. Intuitively,

one would expect the optimality gap defined in Equation (9.9) to decrease as the clustering

error diminishes, or at least, the upper bound, OBJFD(xRD), to improve as k increases.

Our computational results in section 9.4 show that this actually happens in most cases.

However, no formal characterization is available in the literature. Here, we provide several

mathematical properties.

A relatively simple question is whether the optimality gap is zero if the clustering error

is zero. For the input-based approach, the following theorem holds.
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Theorem 7. For the input-based approach, if the clustering error is zero and the integrality

constraints on variables yt,d are not relaxed in (RD), then the optimality gap defined in (9.9)

is zero, i,e., xRD is optimal for (FD).

Proof. The proof is provided in Appendix F.1.2.

For the cost-based approach, we can prove the following theorem.

Theorem 8. For the cost-based approach, if the k-medoids is used and the clustering error

is zero, |K| = 1, |T | = 1, and the integrality constraints on variables yt,k are not relaxed in

(RD), then the optimality gap defined in (9.9) is zero, i,e., xRD is optimal for (FD).

Proof. The proof is provided in Appendix F.1.3.

It is easy to observe that additional assumptions are needed in Theorem 3 than in Theo-

rem 2, such as the conditions that the number of clusters and the number of years are both

one. This is due to the fact that transforming the data to the cost domain entails loss of

information. In other words, any two days d and d′ with the same input data have the same

optimal costs but not vice versa. When the assumptions in Theorem 3 are not satisfied,

the cost-based approach is not guaranteed to find the optimal investment decisions and is,

therefore, a rather empirical approach compared with the input-based approach. However,

computational results in section 9.4 indicate the cost-based approach is empirically favorable

under certain criteria.

An additional relevant question is whether the lower bound and the upper bound improve

as k increases. The following Theorem provides a sufficient condition to improve the lower

bound. A similar Theorem can be found in Teichgraeber and Brandt (2019) for LP problems.

Theorem 9. Suppose that (RD) is solved with cluster number |K1| and |K2|, |K1| > |K2| that

come from a k-means clustering algorithm. Denote the objective value of (RD) as OBJK1
RD,

OBJK2
RD for |K1| and |K2|, respectively. If each cluster in the |K1| clusters is contained in one

of the clusters of the |K2| clusters, then OBJK1
RD ≥ OBJK2

RD.

Proof. The proof is provided in Appendix F.1.4.
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This theorem provides a condition for lower-bound improvement in k-means clustering.

Following Theorem 4, it is easy to see that the lower bound provided by (RD) improves after

the extreme days are added when k-means clustering are used because the added extreme

days are contained in some of the original clusters.

9.4 Computational results

The case study of the Electric Reliability Council of Texas (ERCOT) reported in Li et al.

(2020b) is used to test the representative day selection methods analyzed in this chapter. The

problem is a generation transmission expansion planning problem with a planning horizon

of 5 years. The ERCOT region is modeled using 5 nodes, South, Coast, Northeast, West,

and Panhandle. The investment decisions include the number of coal, natural gas, nuclear,

solar, and wind generating units, the number of storage units that are installed in each node,

and the number of transmission lines that are installed connecting any two nodes each year.

The operating decisions involve unit commitment, and must comply with the DC power flow

equations. The historical dataset D consists of 365 days.

The data used for clustering can be the input data or cost data. Both k-means and

k-medoids clustering algorithms are used. For the input-based approach, the extreme days

are selected using the load shedding cost approach. For the cost-based approach, both the

load shedding cost and the highest cost approach are used.

All the models and algorithms are implemented using Pyomo/Python (Hart et al., 2011).

k-means clustering is solved using the heuristic provided by scikit-learn (Pedregosa et al.,

2011). k-medoids clustering is solved with the MILP formulation shown in (9.3) using the

solver CPLEX (IBM, 2015).

9.4.1 Comparison of different algorithms

To test the proposed representative day selection methods, the following six algorithm

options (shown in Table 9.1) are tested. The computational results of the six algorithm
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Table 9.1: The input data, clustering algorithm, and extreme day method used by the six cases.

Algorithm option Data Clustering algorithm Extreme day method
1 Input k-means load shedding cost
2 Input k-medoids load shedding cost
3 Cost k-medoids highest cost
4 Cost k-medoids load shedding cost
5 Cost k-means highest cost
6 Cost k-means load shedding cost

Table 9.2: Computational results of the six algorithm options

Option k #infeasible day X OBJFD(xRD) OBJRD
∗ Gap∗ Extreme days selected

1
5 70 3 79.16 76.09 4.0% 212,213,214
10 63 2 79.04 76.29 3.6% 212,213
15 42 2 78.81 76.58 2.9% 212,213

2
5 35 3 78.92 76.98 - 212,213,177
10 21 2 78.72 73.10 - 212,213
15 40 2 78.74 76.18 - 212,213

3
5 98 5 78.83 72.74 - 221,249,212,213,177
10 13 3 78.67 77.39 - 221,212,213
15 12 3 78.81 76.05 - 221,212,213

4
5 98 3 78.93 72.51 - 212,213,177
10 13 2 78.79 77.32 - 212,213
15 12 1 78.75 75.94 - 212

5
5 34 4 78.98 76.16 4.2% 221,249,212,213
10 30 6 79.09 76.64 3.7% 221,249,212,213,177,214
15 29 4 78.98 76.74 3.4% 221,249,212,213

6
5 34 3 79.12 76.15 3.9% 212,213,177
10 30 4 78.93 76.63 3.0% 212,214,213,177
15 29 3 78.81 76.73 2.7% 212,177,213
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options are shown in Table 9.2 where k represents the initial number of representative days

for the problem (RD). “#infeasible day” represents the number of infeasible days resulting

from the investment decisions of the k representative days problem. X is the number of

extreme days added in addition to the k representative days to make xRD feasible for all

d ∈ D, i.e., to attain OBJFD(xRD) < +∞. The objective value of the (RD), OBJRD, after

the X extreme days are added, are reported. Note that OBJRD is only a valid lower bound

when the k-means clustering is used. The values of OBJRD for algorithm options 2,3,4 that

use the k-medoids clustering are shown in italics in Table 9.2 since they do not provide valid

lower bounds. OBJFD(xRD) is the “actual cost” when evaluating the investment decision of

(RD) on the full dataset and therefore provides an upper bound. The “Gap” is calculated

using Equation (9.9) for algorithm option 1,5,6, where k-means clustering is used. The days

in the historical dataset D are numbered from 1 to 365. The “extreme days selected” column

shows the indices of the extreme days.

In most of the algorithm options, OBJFD(xRD) (upper bound) and OBJRD (provided

that it’s a valid lower bound) improve as k increases. If k-means clustering is used, the

optimality gap improves as k increases. However, the upper bound is usually better when k-

medoids clustering is used. We conclude that there is no clear winner between the k-medoids

and the k-means clustering. When k-means clustering is used, the lowest optimality gap is

achieved in algorithm option 6 with k = 15. There is a trend of decrease in the optimality

gap as k increases in option 1,5, and 6 if the k-means is used. If one wishes to achieve an even

lower optimality gap, k has to be increased. For our analysis, we consider that the optimality

gap of 2.7% is sufficient to show the capability of the algorithms. It should be noted that

the suboptimality comes from both the use of representative days instead of the full dataset

and the relaxation of the integer variables in the operating subproblems. The relaxation of

the integer variables result in an gap of around 1% in our computational experiments (Li

et al., 2020b).

The number of infeasible days if using only the initial representative days is a good

∗ The values of OBJRD for algorithm option 2,3,4 are not valid lower bounds and are shown in italics.
Therefore, the gaps for these options are omitted.
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indicator of the effectiveness of the algorithm. One would expect the algorithms with better

performance to have fewer infeasible days. Overall, as expected, the number of infeasible

days decreases as k increases. The cost-based approach with k-medoids clustering and 15

representative days has the smallest number of initial infeasible days.

We note that X, the number of extreme days added to make xRD feasible for the whole

dataset D, is an indicator of whether the extreme day selection approach is effective. The

load shedding cost approach needs a smaller number of extreme days to achieve feasibility

than the highest cost approach. Among all the algorithm options, there is an overlap in the

extreme days selected. Days number 212,214,221, 177, are most frequently selected. The

two extreme days selection approaches sometimes select the same days as extreme days. It

should be noted that day 177 happens to be the day with the peak load. The highest ramp

occurs in day 12, which is not selected by our proposed extreme day selection algorithms.

The results show that our methods select sometimes different extreme days than just focusing

on the input data, such as peak load and peak ramp. Selecting extreme days solely based

on peak load and peak ramp does not guarantee feasibility.

Next, we analyze the computational time of different algorithm options. All the prob-

lems are solved using CPLEX version 12.9.0.0 (IBM, 2015) using one processor of an Intel

Xeon (2.67GHz) machine with 64 GB RAM. For the cost-based approach, a CEP problem

is solved for each day in the dataset D to obtain the optimal investment costs. To save

computational time, the LP relaxations of these CEP models are solved. As a matter of

fact, we also tested solving these CEP models with the integrality constraints and find that

the optimal investment costs vary very little with and without the integrality constraints.

The total computational time to solve the LP relaxations of these 365 CEP models is 2,091

seconds. Additionally, the solution time of the Benders decomposition algorithm for dif-

ferent algorithm options with and without extreme days are shown in Table 9.3. All these

CEP models can be solved within 10 hours. Although the sizes of the CEP models does not

depend on the algorithm option if they have the same number of representative days, their

solution time can vary significantly.

243



Chapter 9. On Representative Day Selection for Capacity Expansion Planning of Power Systems under
Extreme Events

Table 9.3: Solution time of the Benders decomposition algorithm for different algorithm options
with and without adding X extreme days (secs)

Option 1 2 3 4 5 6
k=5 938 1,460 2,078 2,392 1,004 1,436

k=5+X 3,079 6,769 16,961 15,240 3,567 2,705
k=10 1,520 9,175 4,404 4,557 2,897 3,367

k=10+X 3,190 12,722 6,223 17,896 6,905 6,994
k=15 4,647 17,914 26,514 27,019 6,235 7,433

k=15+X 5,095 9,126 25,320 31,899 10,568 13,395
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Figure 9.3: Thermal generating unit cost, renewable generating unit cost, transmission line cost
and total investment cost change with and without the extreme days
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9.4.2 Comparison of the capacity expansion results with and with-

out adding the extreme days

Once the extreme days are added, the investment decisions xRD change compared with

the investment decisions that are optimal for the initial k representative days. We compare

in Figure 9.3 the thermal generator cost, the renewable generator cost, the transmission line

cost, and the total investment cost in the 5 years of the planning horizon with and without

adding the extreme days. In this Figure, k = 5 denotes the costs associated with the 5

representative day problem. k = 5 + X denotes the problems with the initial 5 days plus

the X extreme days. In all the algorithm options, the total investment cost increases after

adding the X extreme days. The majority of this increase comes from the increase in the

thermal generator costs while there is no consistent trend in the change in the costs of the

renewable generators and the transmission lines. This can be explained by the fact that

more dispatchable generating units are needed after the extreme days are included.

To provide a more quantitative view of the change in the costs, we select option 6, where

we use cost-based k-means clustering, start with 15 representative days, and add extreme

days according to the load shedding cost. After adding 3 extreme days to make all the days

feasible, the total investment cost increases from 11.74 trillion dollars to 12.06 trillion dollars

(2.7% increase). The number of transmission lines increases from 15 to 16. There is a small

increase as well in the storage investment cost (0.2 million dollars). Additionally, there is

an increase in total thermal generator cost (346 million dollars) and a decrease in renewable

generator cost (-212 million dollars). In this case, the portfolio of the dispatchable and

nondispatchable generating units is adjusted after the extreme days are included in order to

make the planning decisions suitable for the extreme events.

9.5 Conclusions

In the context of power system expansion planning, we have presented an input-based

approach and an cost-based approach for the selection of representative days. Two novel
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extreme day selection algorithms, known as load shedding cost and highest cost, are pro-

posed. The properties of the proposed algorithms are theoretically analyzed. In particular,

an upper bound and an lower bound of the optimal objective value of the fullspace problem

(FD) are obtained. We also identify the conditions under which zero clustering error implies

zero optimality gap for both input-based and cost-based approaches. It turns out that the

conditions for the cost-based approach are more restrictive than the input-based approach

because there is an information loss in projecting the data from the input space to the cost

space.

A case study of the ERCOT region is used to compare the different proposed algorithms.

There is no clear winner between the k-means clustering and the k-medoids clustering algo-

rithms in terms of the upper bound. However, the k-means clustering is recommended since

it provides a valid lower bound. The cost-based approach and the input-based approach

have varying performances in combination with different clustering and extreme day selec-

tion methods. The load shedding cost approach outperforms the highest cost approach in

extreme day selection in the sense that it needs fewer extreme days to achieve feasibility. We

also compare the change in the investment decisions with and without adding the extreme

days. The major change is that additional dispatchable generating units are added to make

the planning decisions feasible under extreme events.
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Chapter 10

Conclusions

10.1 Summary and limitations of this thesis

In this section, we summarize the major findings and accomplishments in each chapter.

We also discuss some limitations on chapters 3-9.

10.1.1 A Review of Stochastic Programming Methods for Opti-

mization of Process Systems under Uncertainty

Summary

In chapter 2, we provide an overview of stochastic programming in process systems engi-

neering. The review is intended for an engineering audience without an extensive background

in mathematical optimization. We first provide a historical perspective of how the concept of

stochastic programming was developed by the mathematical programming community. The

applications of stochastic programming in process systems engineering are widespread, from

the traditional petrochemical, pharmaceutical industry to carbon capture, energy storage.

There are two major types of uncertainties that can be modeled using stochastic pro-

gramming, exogenous uncertainty, which is the most commonly considered, and endogenous

uncertainty where realizations of the uncertainties depend on the decisions taken.
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In this review chapter, we first review the stochastic programs with exogenous uncer-

tainty. The mathematical formulation of two-stage stochastic programming is introduced

and illustrated with a process network problem under demand uncertainty. We also review

the classical decomposition algorithms, including Benders decomposition and Lagrangean

decomposition. The works that have been done by the OR community on stochastic mixed-

integer programs with integer recourse are not reviewed in detail, for which we have re-

ferred to the paper by Küçükyavuz and Sen (2017). Recent advances have been made by

the PSE community on the algorithms for stochastic mixed-integer nonlinear programming

(SMINLP). A brief review is conducted for SMINLP algorithms together with an illustra-

tive example of the stochastic pooling problem. A generalization of two-stage stochastic

programming to the sequential realization of uncertainties is called “multi-stage stochastic

programming”. Both the node-based formulation and the scenario-based formulation are

reviewed. We also provide an illustrative example of the process network problem. Addi-

tionally, we review the algorithms to solve multi-stage stochastic programs including the

nested Benders decomposition, SDDP/SDDiP, and Lagrangean decomposition. The details

of these algorithms are not provided.

We further introduce the mathematical formulation for multistage stochastic programs

with endogenous uncertainty. Both heuristic algorithms and rigorous Lagrangean decompo-

sition algorithms are reviewed for solving this type of problem. A process network problem

is given as an illustrative example.

Last but not least, we review the property matching methods and sampling-based meth-

ods for generating the scenario trees. The mathematical formulation of the distribution

matching problem is given. The review of the scenario generation method is by no means

exhaustive. Theoretical properties of the sampling-based methods can be found in Shapiro

et al. (2014).

We provide several future research directions in this chapter as well. The details will be

discussed in the next section on future research directions for this thesis.
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10.1.2 An Improved L-shaped Method for Two-stage Convex 0-1

Mixed-Integer Nonlinear Stochastic Programs

Summary

In chapter 3, we have proposed an improved L-shaped method that can solve two-stage

convex 0-1 mixed-integer nonlinear stochastic programs with mixed-integer variables in both

the first and the second stage effectively. The proposed algorithm is a Benders-like decom-

position algorithm that includes (strengthened) Benders cuts and Lagrangean cuts in the

Benders master problem. The Benders cuts are derived by solving the Benders subproblems,

which are the NLP relaxations of the subproblems for each scenario after the first stage

decisions are fixed at the optimal solution of the Benders master problem. The strengthened

Benders cuts are derived by adding rank-one lift-and-project cuts to the Benders subprob-

lem. The lift-and-project cuts are generated by outer-approximating the convex nonlinear

functions and solving the cut generating linear programs. The Lagrangean cuts are derived

by solving the Lagrangean subproblems whose multipliers are updated by a new subgradient

method. The validity and the tightness of the Lagrangean cuts are proved in this chapter.

Extensive computational studies are performed. Different decomposition algorithms in-

cluding the proposed algorithms with and without the Benders and Lagrangean cuts, La-

grangean decomposition, and progressive hedging, are implemented and tested using the

planning problem under demand and price uncertainty, and the batch plant design problem

under demand uncertainty. It is shown that the combination of the Lagrangean cuts and

the strengthened Benders cuts is able to provide the tightest lower bound among all the

decomposition algorithms that we test, although it requires more time than algorithms like

LD. We also compare the proposed algorithm with standard convex MINLP solvers. It is

shown that the proposed algorithm is a more effective computational strategy to solve prob-

lems of the same type in PSE applications compared with directly solving the deterministic

equivalent.
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Limitations

The proposed algorithm is not guaranteed to close the optimality gap of the problems

due to the duality gap of the Lagrangean cuts and the integrality gap of the strengthened

Benders cuts. Therefore, a more rigorous algorithm that has finite convergence would also

be desirable, which is reported in chapter 4.

Although we have shown from the computational results that the Benders cuts do not

strictly dominate the Lagrangean cuts or vice versa, it would be desirable to theoretically

prove that. The results from the primal characterization of Lagrangean relaxation are useful

in such a proof.

Rank-one lift-and-project cuts require solving multiple cut generating linear programs

(CGLP) that are computationally expensive. A better implementation of the cut-generating

process would be desirable. Parametric Gormory cuts are cheaper to generate than lift-

and-project cuts (Zhang and Küçükyavuz, 2014). Balas and Perregaard (2003) propose to

generate lift-and-project cuts based on the simplex tableau, which is computationally more

efficient than solving the CGLP.

10.1.3 A Finite ϵ-convergence Algorithm for Two-Stage Stochastic

Convex Nonlinear Programs with Mixed-binary First and

Second-stage Variables

Summary

In chapter 4, a generalized Benders decomposition-based branch-and-bound algorithm,

GBDBAB, is proposed to solve two-stage convex mixed-integer nonlinear stochastic programs

with mixed-binary variables in both first and second-stage decisions. Due to the nonconvexity

in the second stage problem, GBD cannot be applied to solve the problem directly. We

propose to construct the convex hull of the second stage problem for each scenario. In order

to obtain the convex hulls of the mixed-binary nonlinear subproblems in closed-form, each

subproblem is first represented in conjunctive normal form (CNF), and we apply basic steps

250



10.1. Summary and limitations of this thesis

to transform CNF to disjunctive normal form (DNF). The convex hull of each subproblem

can be represented by the hull relaxation of the DNF. The convex hull formulation involves

perspective functions that can be numerically unstable. To resolve the numerical issue, we

use the approximation from Furman et al. (2016). The resulting convex problem is amenable

to the GBD algorithm since the Benders subproblems are continuous and convex.

Although we have constructed the convex hull for each scenario subproblem, it is not

equivalent to the convex hull of the deterministic equivalent problem. We have established

several equivalence results in several special cases. For the problems with pure binary first-

stage variables, we are able to prove that GBD has finite ϵ-convergence if the convex hull

of each subproblem is constructed in closed-form. For the problems with mixed-binary first-

stage variables, we also prove that in order to have finite ϵ-convergence, we may need to

branch on the first stage continuous variables. A branching scheme and a node selection

scheme are proposed for the branch and bound algorithm. To reduce the computational

burden in solving the extensive form of the convex hull subproblem, a sequential convexifi-

cation scheme is proposed to adaptively apply basic steps for the subproblems with a large

number of binary variables. A sufficient condition that the solution is already in the convex

hull is established in Proposition 3, i.e., if the current optimal solution already satisfies the

condition described in Proposition 3, there is no need to apply more basic steps.

The planning problem under uncertainty, the constrained layout problem, and the illus-

trative example with quadratic constraints are studied. The problems with an increasing

number of scenarios are solved with GBDBAB to within 0.1% optimality gap. The results

show the advantage of the sequential convexification scheme in the sense that the convex

hull representation can be avoided in some applications. Convex MINLP solvers including

SBB, AlphaECP, and DICOPT are used to solve the corresponding DEFs to benchmark the

proposed algorithm. It is shown that the proposed algorithm outperforms the solvers for the

problems with a large number of scenarios. Especially, the algorithm is preferable for highly

nonlinear problems with poor relaxations but with a small number of binary variables in the

second-stage decisions like the constrained layout problem.

251



Chapter 10. Conclusions

Limitations

We have proved that the algorithm can converge to an ϵ-optimal solution in a finite

number of iterations. It would also be interesting to consider the asymptotic convergence

proof based on the spatial branch and bound proof in Horst and Tuy (2013).

Despite the sequential convexification scheme, solving the convexified subproblems re-

mains the main computational burden of the proposed algorithm. More work needs to be

done on improving the computational efficiency of the subproblems.

We have only proposed one branching scheme and one node selection scheme. To improve

the computational efficiency of the algorithm, other branching and node selection schemes

should be tested over larger case studies.

10.1.4 A Generalized Benders Decomposition-based Branch and

Cut Algorithm for Two-stage Stochastic Programs with

Nonconvex Constraints and Mixed-binary First and Sec-

ond Stage Variables

Summary

In chapter 5, we have proposed a generalized-Benders decomposition-based branch and

cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-

binary first and second stage variables. The algorithm is based on a generalized Benders

decomposition (GBD) framework. We include both Lagrangean cuts and Benders cuts in

the Benders master problem. The Lagrangean cuts are derived by solving the Lagrangean

subproblems whose multipliers are updated by a new subgradient method. The validity and

the tightness of the Lagrangean cuts are proved similar as in chapter 3. Since the stage

two problems are nonconvex nonlinear and have integer variables, GBD cannot be applied

directly. We propose to convexify the stage two problems using convex envelopes. The

problems are further strengthened using cutting planes such as lift-and-project cuts. With

these convexification schemes, valid Benders cuts can be derived.
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Similar to the convex case in chapter 3, the addition of two different types of cutting

planes cannot guarantee global optimality. We propose a branch-and-bound algorithm where

we only branch on the first stage variables. Different branching rules and a node selection

rule are proposed. The convergence of the proposed algorithm relies on adding Lagrangean

cuts to the Benders master problem, which follows from the convergence proof of general

branch and bound by Horst and Tuy (2013). The properties that we have to establish

include “exhaustiveness”, “bound improving”, “deletion by infeasibility is certain in the

limit”, “strongly consistent”, which are proved in Lemmas 1-4, respectively.

The proposed algorithm is implemented in Julia/JuMP using the PlasmoGraph data

structure. Three applications from PSE are solved using the proposed algorithm in compar-

ison with using MINLP solvers to solve the deterministic equivalent problems. Our compu-

tational results show that adding cutting planes can potentially accelerate the convergence

of the branch-and-bound procedure, especially in the stochastic pooling problem with con-

tract selection. However, in the storage design for a multi-product plant under uncertainty

problem, adding rank-one lift-project-cut does not help the branch-and-bound procedure.

Limitations

For the problems with tight Lagrangean relaxation, the corresponding Benders cuts de-

rived from the Benders subproblem convexified by cutting planes would be dominated by the

Lagrangean cuts (storage design problem). On the other hand, for the problems with weak

Lagrangean relaxation (stochastic pooling problem and crude selection problem), adding

Benders cuts may be able to close the duality gap significantly. Therefore, in order to pre-

dict whether it is preferable to add cutting planes, heuristics need to be proposed to decide

the cut generation.

In the spatial branch and bound process, a hybrid of the proposed branching rules is

used. It would be desirable to have a large benchmark library of stochastic programming

problems of the proposed category in order to test different hybrid branching rules.

While the proposed algorithm can solve the test cases to small optimality gaps, solving
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stochastic nonconvex MINLPs is still challenging. It would be desirable to develop tighter

convex relaxations for the nonconvex terms in stage 2 in order to generate tight Benders cuts.

We have shown that in the crude selection problem, using the hull relaxation of piecewise

McCormick envelope, yields smaller optimality gaps than using the McCormick envelope.

Tighter convex relaxations are in general more difficult to solve. Therefore, there is a tradeoff

between using tight convex relaxations and doing more branching. We propose to perform

more computational studies in the future to learn the appropriate convex relaxations based

on the features of each problem to make the proposed algorithm more efficient.

For our implementation of the algorithm, the convex relaxations of the nonconvex non-

linear functions have to be provided by the user. In order to make this step automatic,

significant extra work has to be done, which is almost equivalent to implementing a global

solver.

10.1.5 Sample Average Approximation for Stochastic Nonconvex

Mixed Integer Nonlinear Programming via Outer-Approximation

Summary

In chapter 6, we propose a sample average approximation based outer-approximation

(SAAOA) algorithm for solving two-stage nonconvex stochastic MINLPs. Like the classical

outer approximation algorithm, the SAAOA algorithm iterates between an MILP master

problem and an NLP subproblem. The master problem (SAA-OA-MILP) is constructed

by generating N i.i.d. samples and apply convex relaxations to the nonconvex nonlinear

functions. The NLP subproblem (SAA-nonconvex-NLP) restricts the binary variables at

a given value and solves the nonconvex subproblems with N i.i.d. samples. The SAAOA

algorithm iterates between an MILP master problem (SAA-OA-MILP) and nonconvex NLP

subproblems (SAA-nonconvex-NLP). At the end of each iteration, a “no good” cut is added

to the master problem to eliminate binary combinations that have been visited in the previous

iterations.
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Based on the results from Shapiro et al. (2014); Schultz (1995), we prove that the SAAOA

algorithm converges as the sample size tends to infinity and provides a theoretical estimate

for the sample size. Since the sample size estimates are too conservative in practice, we

design an SAAOA algorithm with confidence interval estimates for the upper bound and the

lower bound at each iteration of the OA algorithm. To construct the confidence intervals,

we define (single-OA-LP) and (single-nonconvex-NLP), which are proved to provide upper

estimators for the problem’s lower bound and upper bound, respectively. The sample sizes are

updated dynamically using some update policies. We propose two update policies, namely,

P1: Increase if loose confidence interval policy and P2: Increase until overlap policy. The

algorithm is suitable for solving two-stage stochastic MINLPs with pure binary variables

where the nonconvex NLP subproblems can be solved for each scenario separately.

An illustrative example of the process network planning is provided. Computational

results are shown for a stochastic pooling problem. The SAAOA algorithm with confidence

interval estimates is shown to perform better than solving the deterministic equivalent (SAA-

MINLP) directly in terms of computational time and optimality gap. We provide some

criteria for selecting between update Policy 1 and Policy 2.

Limitations

More work can be done in improving the update policies. To find an update policy

that works well in general, we need to have more test cases to benchmark different update

policies and tune the parameters like the fixed ratio in the two update policies proposed in

this chapter.

Although the algorithm can be used to address stochastic nonconvex MINLPs with

mixed-binary first stage variables in theory, it is only computationally efficient for stochastic

nonconvex MINLPs with pure binary first stage variables. Therefore, another possible future

direction would be making the algorithm more efficient for problems with mixed-binary first

stage variables.
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10.1.6 Shale Gas Pad Development Planning under Price Uncer-

tainty

Summary

In chapter 7, we study the shale gas pad development problem under price uncertainty.

The deterministic model is similar to the MILP model proposed by Ondeck et al. (2019).

A wellpad is given with several prospective wells. The productivity profile for each well is

also given. In order to complete a shale gas well, four operations, i.e., top setting, horizontal

drilling, fracturing, turning in line, need to be done sequentially. The upstream operator

needs to identify the optimal sequence of operations to maximize the total NPV.

To extend the work of Ondeck et al. (2019), we investigate how price uncertainties can

affect decision-making in this context. The mathematical framework that we use in this

chapter is stochastic programming, which is regarded as a risk-neutral approach to hedge

against uncertainty. We introduce some concepts to quantify the value that stochastic pro-

gramming can create, such as the value of the stochastic solution (VSS). We apply both

two-stage and multistage stochastic programming to the development of a wellpad with 9

wells under price uncertainty. When the variance of price is high, we can obtain values using

stochastic programming on the order of million dollars. The stochastic solutions in both

two-stage and multistage try to delay the development decisions to the last stage when the

uncertainty of the prices is fully realized. We also demonstrate that multistage stochastic

programming is a better approximation of what happens in the real world than two-stage

stochastic programming since it allows the uncertainties to evolve every quarterly.

However, when the price variance is low, there is no value in using stochastic programming

since all the scenarios have the same recourse decisions. This gives us some insights on when

to use stochastic programming. There may not be any value in using stochastic programming

even if there are uncertain parameters in the model. Stochastic programming can only add

value if there is something that we can do differently than the deterministic solution.
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Limitations

The generation of scenario trees can be improved by using more realistic forecast models.

The aim of using the high and low variance scenario trees is to evaluate the stochastic

programming approach. We will leave the incorporation and better forecast models and

expert knowledge in building the scenario as one future direction.

The choice between two-stage and multi-stage stochastic programming for this real-world

application can be discussed in detail. Numerical experiments can be performed to compare

the solutions from two-stage and multi-stage stochastic programs. As far as we know, there

have been no general theoretical results on this topic.

Furthermore, future work can also concentrate on extending the model to multiple pads

development problems, and considering the mobilization of crew and equipment between the

wellpads. We expect the optimization problem to grow even larger once more wellpads are

taken into account. Therefore, better solution techniques need to be developed to solve the

large-scale stochastic programming problem with higher efficiency.

10.1.7 Mixed-integer Linear Programming Models and Algorithms

for Generation and Transmission Expansion Planning of

Power Systems

Summary

In chapter 8, we propose a generation and transmission expansion planning (GTEP)

model that not only includes the investment decisions on the thermal and renewable gener-

ating units, transmission lines, and storage units, but also considers the detailed operating

conditions of the generators to guarantee the feasibility of the investment decisions subject

to volatile weather conditions. To limit the size of the GTEP model, both spatial and tem-

poral simplifications are made. We aggregate the generators that use the same technology

assuming that they have the same design parameters. We also spatially aggregate regions

with similar climate and load profiles. We compare three different formulations for transmis-
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sion expansion, i.e., the big-M formulation, the hull formulation, and the alternative big-M

formulation. We prove that the alternative big-M (ABM) formulation has the same feasible

region as the big-M formulation (BM) when projected onto the space of the variables in-

volved in the big-M formulation. Computational experiments are performed as well for the

three formulations. It is shown that none of the three formulations is superior as each has

its strengths and weaknesses.

Despite the spatial and temporal simplifications, the MILP model still has tens of mil-

lions of variables, which cannot be solved directly by the state-of-the-art commercial solvers.

Two solution techniques, a nested Benders decomposition algorithm and a tailored Benders

decomposition algorithm, are proposed. The tailored Benders decomposition algorithm out-

performs the nested Benders decomposition in our computational experiments and is able

to solve the large MILP model within reasonable computational time.

An ERCOT case study is used to demonstrate the GTEP model and the solution tech-

niques. The tailored Benders decomposition is able to solve the 20-year planning problem

with up to 15 representative days. The capacity expansion mix for ERCOT will mainly

include solar and wind capacities in the West and Panhandle regions. The transmission

lines are mainly built to transfer power from solar and wind-rich regions to the South and

Northeast regions of ERCOT, which shows that the generation and transmission decisions

are correlated. Co-optimization of generation and transmission has the potential to bring

additional value to the system operator/regulator than solving the two planning problems

independently.

Limitations

The aggregation of generating units and transmission lines in ERCOT is a simplification

of the system in the real world, which can yield suboptimal solutions compared with modeling

each generator individually. Such simplification is necessary to make the problem tractable.

In order to obtain a feasible solution to the real physical system, i.e, the unit commitment

decisions of each generator, one could perform a disaggregation heuristic on the aggregated
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solution.

It would be desirable to report more computational results on transmission expansion

planning to compare the tightness of the three formulations.

The Benders decomposition used is from CPLEX. Callbacks for the Benders decom-

position implementation are not available for now. If they become available, warm-start

strategies can be implemented to accelerate the Benders decomposition algorithm. Trial

solutions can be generated for warm starting the algorithm. For example, we can solve the

model with fewer representative days and obtain solutions to the master problem quickly.

10.1.8 On Representative Day Selection for Capacity Expansion

Planning of Power Systems under Extreme Events

Summary

Chapter 9 is a continuation of chapter 8. We deal with one important issue in long-term

capacity expansion planning models, i.e., the selection of representative days. In this chapter,

we have presented an input-based approach and a cost-based approach for the selection of

representative days. In both approaches, a dataset is given that consists of the historical

load data, and capacity factor data for solar and wind generators. The historical data is then

scaled to account for load growth. Based on this scaled dataset, k representative days are

selected in each year of the planning problem to represent the whole planning horizon where

k << 365. A clustering algorithm, such as k-means clustering or k-medoids clustering, is used

to divide the whole historical dataset into k clusters based on some of the characteristics of

the historical days. The centroid or the medoid of each cluster is selected as the representative

day. In the input-based approach, clustering is performed directly on the historical data, i.e.,

load and capacity factor data. In the cost-based approach, a capacity expansion planning

problem is solved for every single day in the historical dataset. The optimal investment

decisions are obtained for all the historical days. Clustering is performed based on the cost

of different types of investment decisions.
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Using the medoid or centroid of each cluster fails to capture the extreme events. Two

novel extreme day selection algorithms, known as load shedding cost and highest cost, are

proposed. In the first approach, the operating problems for the infeasible days are solved

again with load shedding variables added to energy balance constraints for each node at each

hour. The load shedding variables are used to balance the load when the power generation

is not enough to satisfy the load. The objective function is changed to minimizing the total

load shedding cost over the planning horizon. The day with the highest total load shedding

cost is selected as the extreme day. In the highest cost approach, the day with the highest

cost in the cost-based approach is selected as the extreme day.

The properties of the proposed algorithms are theoretically analyzed. In particular, an

upper bound and a lower bound of the optimal objective value of the fullspace problem

(FD) are obtained. We also identify the conditions under which zero clustering error implies

zero optimality gap for both input-based and cost-based approaches. It turns out that the

conditions for the cost-based approach are more restrictive than the input-based approach

because there is an information loss in projecting the data from the input space to the cost

space.

A case study of the ERCOT region is used to compare the different proposed algorithms.

There is no clear winner between the k-means clustering and the k-medoids clustering algo-

rithms in terms of the upper bound. However, the k-means clustering is recommended since

it provides a valid lower bound. The cost-based approach and the input-based approach

have varying performances in combination with different clustering and extreme day selec-

tion methods. The load shedding cost approach outperforms the highest cost approach in

extreme day selection in the sense that it needs fewer extreme days to achieve feasibility. We

also compare the change in the investment decisions with and without adding the extreme

days. The major change is that additional dispatchable generating units are added to make

the planning decisions feasible under extreme events.
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Limitations

The optimality gap using the k-means clustering algorithm remains to be 3% for problems

with 15 representative days. It is of interest to study problems with more representative days

in order to make the optimality gap smaller.

Similar techniques can be used to study the effects of spatial aggregation in capacity

expansion planning problems.

10.2 Research contributions

The major contributions of this thesis can be summarized as follows:

1. Provided a review of stochastic programming and its applications in the process sys-

tems engineering area.

2. Proposed an improved L-shaped algorithm for two-stage stochastic convex MINLP with

mixed-binary first and second stage variables. This algorithm combines Lagrangean

cuts and strengthened Benders cuts.

3. Proved the validity and the tightness properties of the Lagrangean cuts for any two-

stage stochastic MINLPs.

4. Proposed a GBD-based algorithm for two-stage stochastic convex MINLP with mixed-

binary first and second stage variables and prove its finite-ϵ convergence.

5. Proposed a sequential convexification scheme for the GBDBAB algorithm. Proved a

sufficient condition for terminating the application of the basic steps.

6. Proposed a GBD-based branch-and-cut algorithm for two-stage stochastic nonconvex

MINLP with mixed-binary first and second stage variables. Tested several applications

using different convex relaxations.
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7. Proposed a sample average approximation-based outer-approximation algorithm for

two-stage stochastic nonconvex MINLP with continuous probability distribution, mixed-

binary first stage variables, and continuous second stage variables.

8. Proposed two update policies for updating the sample size in the SAAOA algorithm

with confidence interval estimates.

9. Developed two-stage and multi-stage stochastic programming models for shale gas pad

development planning under price uncertainty.

10. Proposed mixed-integer linear programming models for long-term generation and trans-

mission expansion planning problem. Theoretically compared three formulations for

transmission expansion planning.

11. Adapted the Benders decomposition algorithm and the nested Benders decomposition

algorithm to solve the GTEP problem using case studies of the ERCOT region.

12. Proposed an input-based approach and a cost-based approach for representative day

selection in capacity expansion planning models. Proved mathematical properties,

including the “optimality gap” for the representative day approach.
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10.4 Future research directions

10.4.1 Stochastic Programming

10.4.1.1 Algorithms for multi-stage stochastic MINLP

A natural extension of the two-stage stochastic MINLP algorithm is multi-stage stochastic

MINLP. The SDDiP algorithm proposed by Zou et al. (2018a) can be adapted to multi-stage

MINLP. The idea is to construct binary approximations of the continuous state variables to
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apply integer cuts at each stage. Other types of cutting planes in this thesis can also be

adapted to the multi-stage setting. However, the convergence of the algorithm still relies on

the integer cuts. Therefore, the binarization scheme proposed by Zou et al. (2018a) does not

scale well with the number of continuous state variables. How to design algorithms that are

scalable for multi-stage stochastic programs remains clearly a major challenge.

10.4.1.2 Tradeoffs between two-stage and multi-stage stochastic programs

Sequential decision-making under uncertainty can be modeled as multi-stage stochastic

programming (MSSP) problems. However, MSSP is computationally expensive to solve for

large-scale mixed-integer problems. Two-stage stochastic programming (TSSP) has been

used as an approximation to the MSSP. For example Balasubramanian and Grossmann

(2004) solve TSSP approximations in a rolling horizon fashion. The downside of the ap-

proximation is that the decisions in the two-stage approximations are not fully adaptive to

the realizations of uncertainties. It would be desirable to quantify the difference between

MSSP and its two-stage approximation in order to decide whether it is worth solving MSSP

or the two-stage approximation is sufficient to obtain good solutions. Towards this goal,

Huang and Ahmed (2009) provide an analytical bound for the difference between the objec-

tive of the two-stage and multi-stage capacity expansion planning problem. The analytical

bound is derived based on the structure of the capacity expansion planning problem, i.e.,

application-specific. To the best of our knowledge, the results in Huang and Ahmed (2009)

have not been generalized.

10.4.1.3 Stochastic programs with endogenous uncertainty

For stochastic MINLPs with endogenous uncertainty, not many works have been done.

Tarhan and Grossmann (2008) solve multi-stage stochastic nonconvex MINLP under en-

dogenous uncertainty using an outer approximation algorithm. However, the application

that can be addressed using this algorithm is limited to a simple process network problem.

The algorithm fails to decompose the stochastic program by node or by scenario. Future
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work can be focused on investigating new algorithms for the formulation proposed by Goel

and Grossmann (2006) for stochastic programs under type 2 endogenous uncertainty as well

as proposing novel formulations that are computational more effective.

10.4.1.4 Feasibility issues in stochastic programming

All the decomposition algorithms proposed in this thesis assume relative complete re-

course in the stochastic programs. One option to satisfy this assumption is to add slack

variables in the second stage constraints and penalize them in the objective function. This

strategy suffices to be a workaround for most applications in practice.

However, directly handling infeasibility is not a trivial task for nonconvex problems since

a first stage solution that is infeasible for the original nonconvex second stage problem might

be feasible for the convex relaxation of the second stage problem. This would make the

GBD-based or OA-based algorithm fail to cut off the infeasible solution. More research is

required for problems that do not satisfy the relatively complete recourse assumption.

10.4.1.5 Integration of predictive/statistical learning models in stochastic pro-

gramming

Traditional stochastic programming models assume that a probability distribution for

the uncertain parameters is known. In the past few years, several works have been done to

integrate the predictive models with the stochastic programming model (Liu et al., 2019;

Sen and Deng, 2018; Bertsimas and Kallus, 2020). More research can be done in the future

to extend the work to more general settings, e.g., multistage problems, heteroscedasticity.

10.4.1.6 Parallel and decentralized implementation of the decomposition algo-

rithms

Decomposition algorithms, such as Benders decomposition and dual decomposition, can

be parallelized. However, a naive parallelization where all the subproblems are distributed

to all the available processors and the root process waits until all the subproblems are
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solved is not the optimal way because the subproblems can take very different time to

solve. An asynchronous partitioned subgradient method for dual decomposition is proposed

recently by Lim et al. (2021) where a subset of scenarios are considered and each iteration is

asynchronous. There are opportunities to improve the parallelization of other decomposition

algorithms as well.

10.4.2 Long term power systems planning

10.4.2.1 Reliable design of power system

The expansion planning models in this thesis have not considered the potential failures

in the generating units and transmission lines. The reliability of power systems has attracted

increasing attention due to the increasing occurrences of extreme weather that causes black-

outs. N-k contingency constraints have been studied for transmission expansion planning

(Wu et al., 2018). Different contingency scenarios are considered that increase the size

of the problem significantly. More general frameworks for reliable design of power system

infrastructure can be developed as well as solution techniques.

10.4.2.2 Analysis of spatial aggregation in the expansion planning model

In the GTEP model of the ERCOT region, we have aggregated the generating units in

each subregion of ERCOT to simplify the problem. Such a simplification can lead to sub-

optimal solutions compared with the model that considers each generating unit separately.

Mathematical analysis of the suboptimality resulting from the spatial aggregation can be

part of future work. It would be desirable to derive an “optimality gap” for the spatial

aggregation similar to what we have developed in chapter 9 for temporal simplification.

10.4.2.3 Integrated energy systems

The power system expansion planning model can be extended to integrated energy sys-

tems where all the possible alternatives of integrating electrical generating units, natural

gas networks, water, and industrial processes are considered through a superstructure. The
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tightly coupled integrated energy systems may increase energy efficiency through the co-

ordination of renewable generation and consumption. One of the challenges in developing

planning models for the integrated energy system is to collect data from different sources.

10.4.2.4 Including battery degradation model into the expansion planning model

We have not considered battery degradation in the expansion planning model. Instead,

we assumed that the batteries have constant lifetimes that are independent of the charge

and discharge. Including a model for battery degradation will increase the complexity of the

GTEP model and can be part of future work.
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A.1 Proofs of the theorems

Proposition 4. ηω ≥ z∗kSL,ω − µk
ωx is valid for the Benders master problem.

Proof. We rewrite the full space problem (P ) as (P ′) by introducing variables ηω.

(P ′) : min z =
∑
ω∈Ω

ηω (A.1)

s.t. A0x ≥ b0, g0(x) ≤ 0 (A.2)

A1,ωx+ g1,ω(yω) ≤ b1,ω ∀ω ∈ Ω (A.3)

g2,ω(yω) ≤ b2,ω ∀ω ∈ Ω (A.4)

ηω ≥ τω(c
Tx+ dTωyω) ∀ω ∈ Ω (A.5)

x ∈ X (A.6)
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yω ∈ Y ∀ω ∈ Ω (A.7)

It is easy to see (P) and (P’) are equivalent. The idea of Benders decomposition is to project

the feasible region that include (x, ηω, yω) onto the (x, ηω) space. Therefore, valid constraints

for Benders master problem can be derived from (A.2)-(A.7), which involve only variables

x, ηω. τω(cTx+ dTωyω) + µkx is the objective function of Lagrangean subproblem(SLk
ω). This

objective function is minimized over constraints (A.2)-(A.4),(A.6),(A.7) in (SLk
ω). Thus,

z∗kSL,ω ≤ τω(c
Tx + dTωyω) + µkx, is a valid inequality if we have (A.2)-(A.4),(A.6),(A.7). By

combining constraint (A.5), we can show that ηω ≥ z∗kSL,ω − µk
ωx is a valid inequality for the

Benders master problem.

Proposition 5. The Benders master problem with the Lagrangean cuts (3.2c) yields a lower

bound that is at least as tight as using Lagrangean decomposition.

Proof. In Lagrangean decomposition, the best lower bound is given by solving problem (D)

(D) : max
µω ,∀ω∈Ω

min
xω ,yω ,∀ω∈Ω

∑
ω

τω(c
Txω + dTωyω) + µωxω

s.t. (3.3b)− (3.3f) ∀ω ∈ Ω

(A.8)

Let µ∗
ω be the optimal dual multiplier to problem (D). Let x∗ω, y∗ω be the optimal primal

solution when µω is fixed at µ∗
ω. Let zD∗

ω = τω(c
Tx∗ω + dTωy

∗
ω) + µ∗

ωx
∗
ω. In the proposed

algorithm, the Lagrangean cuts ηω ≥ zD∗
ω − µ∗

ωx, ∀ω ∈ Ω are added to the Benders master

problem.
∑
ω∈Ω

ηω ≥
∑
ω∈Ω

(zD∗
ω − µ∗

ωx) =
∑
ω∈Ω

zD∗
ω is implied by the Lagrangean cuts. Therefore,

the lower bound obtained from the Benders master problem is at least as tight as the lower

bound obtained from Lagrangean decomposition.
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A.2 Subgradient method

We briefly describe the subgradient method (Oliveira et al., 2013) to update the multi-

pliers. The nonanticipativity constraints are written as

xω1 = xω2, xω1 = xω3, · · · , xω1 = xω|Ω| (A.9)

We define the multipliers associated with the NACs as πω, ω = ω1, ω2 · · · , ω|Ω|−1 The

multipliers are updated from the formula:

πk+1
ω = πk

ω + tk(x̂kω1 − x̂kω+1) ω = ω1, ω2, · · · , ω|Ω|−1 (A.10)

where x̂kω is the optimal solution to the Lagrangean subproblem SLk
ω. The value of tk is

calculated by the formula:

tk =
αk(UB − LB)

ω|Ω|−1∑
ω=ω1

||x̂kω1 − x̂kω+1||22
(A.11)

αk is a scalar chosen between 0 and 2. The value of αk is divided by a constant greater than

1 when
∑

ω z
∗k
SL,ω fails to improve.
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B.1 Appendix 1: Benders cuts for the illustrative ex-

ample

The Benders cuts that are generated in each node of the branch-and-bound tree for the

illustrative example in section 4.3 are shown in Tables B.1-B.3.

B.2 Appendix 2: Constrained layout problem under

price uncertainty

The constrained layout problem is adapted from the PhD thesis of Sawaya Sawaya (2006).

In this problem, we need to decide the layout of some units represented by rectangles with

known lengths and widths. The units have to be manufactured before we install them at

certain locations. In the manufacturing process, we need to provide the relative position of

the units in order to produce the pipes that connect those units. The first-stage decisions

include the designed relative position of the units. After the units are manufactured, they

can be installed at several locations. In order to install some unit(s) at a given location, we

need to purchase a circled area around the center of that location. The rectangle(s) installed
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at that location has to be constrained within the circle that is purchased. The price of each

area is uncertain and the designed units are installed according to the prices.

The sets, parameters, and variables that are used in the model is defined as follows:

Sets

i ∈ N = rectangles (units)

q ∈ Q = areas

ω ∈ Ω = scenarios

Parameters

Li = length of rectangle i

Hi = width of rectangle i

xbarq = the x coordinate of area q

ybarq = the y coordinate of area q

τω = probability of scenario ω

dqω = unit price of area q in scenario ω

first-stage decisions

xi = the designed x coordinate of the center of rectangle i

yi = the designed y coordinate of the center of rectangle i

delxij = the designed distance of the center of rectangle i and the center of rectangle j along

the x axis

delyij = the designed distance of the center of rectangle i and the center of rectangle j along

the y axis

Z1
ij, Z2

ij, Z3
ij, Z4

ij ∈ {True, False} decides the relative position of rectangle i and rectangle j

second-stage decisions

xsiω = the installed x coordinate of the center of rectangle i in scenario ω

ysiω = the installed y coordinate of the center of rectangle i in scenario ω

Wqiω = {True, False} whether to position rectangle i in area q or not

Sqω = the size of area q that is purchased in scenario ω
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Constraint (B.2) relates the designed relative distance of rectangle i and rectangle j in

both x and y direction to the designed x and y coordinate of rectangle i and rectangle j.

There are variable costs associated with the relative designed distances, which corresponds

to the pipes that connect those units. Constraint (B.3) prevents rectangle i and rectangle j

from overlapping with each other. After the design decisions are made, the actual position

to install each unit i ∈ N are decided. Constraint (B.4) enforces that the actual installed

positions of rectangle i and rectangle j in each scenario ω ∈ Ω have to coincide with the

designed relative position. Moreover, in each scenario, each rectangle i has to be constrained

in exactly one circle q ∈ Q that is purchased, which is enforced by constraint (B.5). The

objective also includes the expected cost of the purchase of circles. Note that the problem is

expressed as a GDP and can be reformulated with big-M or hull reformulation (see Table 7

in Grossmann and Trespalacios (2013)) as a convex MINLP, which is a two-stage stochastic

program with mixed integer variables in both first and second stage.

min
∑
i

∑
j,j>i

cij(delxij + delyij) +
∑
ω∈Ω

τω
∑
q∈Q

(dqωSqω) (B.1)

s.t.

delxij ≥ xi − xj ∀i, j ∈ N, i < j

delxij ≥ xj − xi ∀i, j ∈ N, i < j

delyij ≥ yi − yj ∀i, j ∈ N, i < j

delyij ≥ yj − yi ∀i, j ∈ N, i < j

(B.2)

 Z1
ij

xi + Li/2 ≤ xj − Lj/2

 ∨

 Z2
ij

xj + Lj/2 ≤ xi − Li/2

 ∨

 Z3
ij

yi +Hi/2 ≤ yj −Hj/2

 ∨

 Z4
ij

yj +Hj/2 ≤ yi −Hi/2


∀i, j ∈ N, i < j

(B.3)
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xsiω − xsjω = xi − xj ∀i, j ∈ N, i < j, ω ∈ Ω

ysiω − ysjω = yi − yj ∀i, j ∈ N, i < j, ω ∈ Ω
(B.4)

∨q∈Q



Wqiω

(xsiω − Li/2− xbarq)
2 + (ysiω +Hi/2− ybarq)

2 ≤ Sqω

(xsiω − Li/2− xbarq)
2 + (ysiω −Hi/2− ybarq)

2 ≤ Sqω

(xsiω + Li/2− xbarq)
2 + (ysiω +Hi/2− ybarq)

2 ≤ Sqω

(xsiω + Li/2− xbarq)
2 + (ysiω −Hi/2− ybarq)

2 ≤ Sqω


∀i ∈ N,ω ∈ Ω (B.5)

delxij, delyij, Sqω ∈ IR1
+, Z

1
ij, Z

2
ij, Z

3
ij, Z

4
ij,Wqiω ∈ {True, False} ∀i, j ∈ N, i < j, q ∈ Q,ω ∈ Ω

(B.6)
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C.1 Appendix 1: Mathematical Formulation of Stochas-

tic Pooling Problem with Contract Selection

Sets

i=feeds

j=products

l=pools

p=qualities

c=contracts

ω=scenarios

TX=(i, l) pairs for which input to pool connection allowed

TY = (l, j) pairs for which pool to output connection allowed

TZ=(i, j) pairs for which input to output connection allowed

Parameters

AU
i =maximum available flow

AL
i =minimum available flow

SU
l =maximum pool size
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SL
l =minimum pool size

DU
j =maximum product demand

Cik=feed concentration

PU
jk=maximum allowable product concentration

PL
jk=minimum allowable product concentration

αl=fixed cost parameter for pools

βl=variable cost parameter for pools

δi=fixed cost for feed storage

ξi=variable cost for feed storage

τω=probability of scenario ω

ψc
iω=unit price for feed i under contract c in scenario ω

djω=product unit price in scenario ω

σc
i=minimum purchasable amount of feed i under contract c

First stage variables

binary variables:

λi=whether feed i exists

θl=whether pool l exists

continuous variables:

Sl=capacity of pool l

Ai=capacity of pool i

Second stage variables

binary variables:

uciω=whether contract c is selected in purchasing feed i in scenario ω

continuous variables:

yljω=flow from pool l to product j in scenario ω

zijω=flow of feed i to product j in scenario ω

qilω=proportion of flow from input i to pool l in scenario ω

CTiω=cost of purchasing feed i in scenario ω
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CT c
iω=cost of purchasing feed i under contract c in scenario ω

Bc
iω=the amount of feed i purchased under contract c in scenario ω

We study pooling problem with purchase contracts under price uncertainty. The first

stage decisions include whether to select the feeds and pools, the capacity of the feeds and

pools, whether the feeds exist.

AL
i λi ≤ Ai ≤ AU

i λi ∀i (C.1)

SL
l θl ≤ Sl ≤ SU

l θl ∀l (C.2)

After the pools are selected, the uncertainties in the prices of the feeds and products are real-

ized. We need to decide the material flows just as in a standard pooling problem. Equations

(C.3)-(C.11) are the equations in the pq-formulation of the pooling problem.∑
l:(i,l)∈TX

∑
j:(l,j)∈TY

qilωyljω +
∑

j:(i,j)∈TZ

zijω ≤ Ai ∀i, ω (C.3)

∑
j:(l,j)∈TY

yljω ≤ Sl ∀l, ω (C.4)

∑
l:(l,j)∈TY

yljω +
∑

i:(i,j)∈TZ

zijω ≤ DU
jω ∀j, ω (C.5)

∑
i:(i,l)∈TX

qilω = θl ∀i, ω (C.6)

PL
jk

( ∑
l:(l,j)∈TY

yljω +
∑

i:(i,j)∈TZ

zijω
)
≤

∑
l:(l,j)∈TY

∑
i:(i,l)∈TX

Cikqilωyljω +
∑

i:(i,j)∈TZ

Cikzijω

≤ PU
jk

( ∑
l:(l,j)∈TY

yljω +
∑

i:(i,j)∈TZ

zijω
)

∀j, k, ω

(C.7)
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0 ≤ qilω ≤ λi ∀(i, l) ∈ TX , ω (C.8)

0 ≤ yljω ≤ min{Sl, D
U
j ,

∑
i:(i,l)∈TX

AU
i } ∀(l, j) ∈ TY (C.9)

0 ≤ zijω ≤ min{AU
i , D

U
j } ∀(i, j) ∈ TZ , ω (C.10)

∑
i:(i,l)∈TX

qilωyljω = yljω ∀l, j, ω (C.11)

In this case study, we also consider different types of purchase contracts when the prices

are realized. The formulation of contracts is based Park et al. Park et al. (2006). (C.12)-

(C.15) decides that the total amount of feed i purchased can come from exactly one contract.

∑
l:(i,l)∈TX

∑
j:(l,j)∈TY

qilωyljω +
∑

j:(i,j)∈TZ

zijω =
∑
c

Bc
iω ∀i, ω (C.12)

AL
i u

c
iω ≤ Bc

iω ≤ AU
i u

c
iω ∀i, ω, c (C.13)

∑
c

uciω ≤ λi ∀i, ω (C.14)

CTiω =
∑
c

CT c
iω ∀i, ω (C.15)

(C.16) describes fixed price contract.

CT f
iω = ψf

iωB
f
iω ∀i, ω (C.16)

(C.17)-(C.22) describe discount after a certain amount contract.

CT d
iω = ψd1

iωB
d1
iω + ψd2

iωB
d2
iω ∀i, ω (C.17)
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Bd
iω = Bd1

iω +Bd2
iω ∀i, ω (C.18)

Bd1
iω = Bd11

iω +Bd12
iω ∀i, ω (C.19)

0 ≤ Bd11
iω ≤ σd

iωu
d1
iω ∀i, ω (C.20)

Bd12
iω = σd

iωu
d2
iω ∀i, ω (C.21)

0 ≤ Bd2
iω ≤ AU

i u
d2
iω ∀i, ω (C.22)

(C.23)-(C.28) describe bulk discount contract.

CT b
iω = ψb1

iωB
b1
iω + ψb2

iωB
b2
iω ∀i, ω (C.23)

Bb
iω = Bb1

iω +Bb2
iω ∀i, ω (C.24)

0 ≤ Bb1
iω ≤ σb

iωu
b1
iω ∀i, ω (C.25)

σb
iωu

b2
iω ≤ Bb2

iω ≤ AU
i u

b2
iω ∀i, ω (C.26)

ub1iω + ub2iω = ubiω ∀i, ω (C.27)

Because of the decisions on purchase contracts, there are binary variables in the second

stage decisions.

uciω, u
d1
iω, u

d2
iω, u

b1
iω, u

b2
iω ∈ {0, 1} (C.28)

The objective includes the fixed and variable cost of installing the pools and fixed cost
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of the feeds, purchase of feeds, and sales of final products.

min
∑
l

(
αlθl+βlSl

)
+
∑
i

(
δiλi+ξiAi

)
+
∑
ω

τω

(∑
i

CTiω−
∑
j

dj
( ∑
l:(l,j)∈TY

yljω+
∑

i:(i,j)∈TZ

zijω
))

(C.29)

C.2 Appendix 2: Convex Hull Reformulation of Piece-

wise McCormick Envelopes in the Crude Selection

problem

In the crude selection problem described in subsection 5.6.2, the bilinear terms come from

the product of the split fractions and some material flows. The bilinear terms are only in the

stage 2 problems. In order to obtain tight convex relaxations in the Benders subproblems,

we use the hull relaxation of the piesewise McCormick envelopes.

We represent the split fractions by variable qi, i ∈ I where I is the set of indices for the

qi variables. The material flows that occur in the bilinear terms are represented by xj, j ∈ J

where J is the set of indices for the xj variables. Variables xj, j ∈ Ji are the material flows

that occur in the bilinear terms with variable qi. The bilinear terms are represented by zij,

i ∈ I, j ∈ Ji. All the other variables in stage 2 are represented by y2. The stage 1 variables

are represented by y1. Without loss of generality, we represent the constraints in a given

subproblem by

A1y1 + A2y2 +Bz ≤ d (C.30a)

zij = qixj ∀i ∈ I, j ∈ Ji (C.30b)

where both the constraints and variable bounds in each subproblem are included. Since the

McCormick envelopes of zij can yield weak relaxations, we uniformly discretize each variable

qi into m intervals where m is an integer that is greater than one. The piecewise McCormick
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envelopes can be represented using the following disjunctions.

∨n∈{1,2,··· ,m}



A1y1 + A2y2 +Bz ≤ d

zij ≥ qi · xLj + n−1
m

(xj − xLj ) ∀j ∈ Ji

zij ≥ qi · xUj + n
m
(xj − xUj ) ∀j ∈ Ji

zij ≤ qi · xLj + n
m
(xj − xLj ) ∀j ∈ Ji

zij ≤ qi · xUj + n−1
m

(xj − xUj ) ∀j ∈ Ji

xLj ≤ xj ≤ xUj ∀j ∈ Ji

n−1
m

≤ qi ≤ n
m


∀i ∈ I (C.31)

where xUj and xLj are the upper and lower bounds of variable xj, respectively. In each disjunct

n, variable qi is bounded between n−1
m

and n
m

. The McCormick envelopes in disjunct n are

changed accordingly with the bounds of qi. The McCormick envelopes of the variables xj that

occur in the same bilinear term of qi are all included in each disjunct. Note that constraint

(C.30a) is included in all the disjuncts. If (C.30a) were not included in the disjuncts, the

hull relaxation Grossmann and Trespalacios (2013) of (C.31) would be the same as the

normal McCormick envelope relaxation. We use the hull relaxation of (C.31) to have a tight

relaxation for the Benders master problem in the crude selection problem. m = 5 is used in

the computational experiments.
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Chapter 7 supplementary material

D.1 Appendix A: Mathematical Formulation for the

Deterministic Model

Nomenclature

Sets

t ∈ T= Time points in the scheduling horizon

w ∈ W =Wells

u ∈ U =well operation periods

o ∈ O =operations {TS,HZ, FRAC, TIL}

a ∈ A =well age

Parameters

NRIw= NRI of well w

ϕt= Discounted rate time period for time period t

ADR =Annual discount rate, which is assumed to be 10%

lw=Lateral length of well w

PNPV
t,w =NPV of a well w where t is the starting week of TIL

πt= Natural gas price forecast for period t

T̂= Total number of time periods used to generate revenue
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γa,w=Gas production forecast per foot for well w of age a

tdevw,o =Development time for operation o at well w

tstartw,o =Earliest start time for operation o at well w

Storemax = Maximum capacity of storage

Pmax
t = Maximum capacity of gas that can be produced for time period t

Mobo=Mobilization cost for operation o

WOCw,o=Operation cost for operation o at well w

Tplanning=Total number of time periods used for planning horizon

pDiscProRevoutw,t=Discounted revenue per ft for well outside planning horizon if well is turned

in line at time t

Pmax
t =Maximum capacity of gas that can be produced for time period t

Binary Variables

sint = If gas is being put into storage at time period t

ystartt,w,o = If operation o starts in time period t at well w

zactivet,w,o =If operation o is active during time period t at well w

Continuous Variables

NPV=Net present value

Disc.Rev=Discounted revenue

Disc.MC=Discounted mobilization cost

Disc.OC=Discounted operation cost

Disc.Revint =Discounted revenue inside the scheduling horizon for time period t

Disc.Revoutw =Discounted revenue outside the scheduling horizon for well w

MCOt,p,o=Mobilization cost for time period t at pad p for operation o

Pt,w=Amount of gas produced at well w during time period t

Storeoutt = Amount of gas out of storage during time period t

Storeint = Amount of gas put into storage during time period t

StoreLevelt = Storage level during time period t
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Parameter Calculations The parameter pDiscProdRevOutsidew,t is calculated prior

to optimizing. The parameter represents the revenue per foot outside the planning horizon if

a well w is turned in line at time period t. To calculate the parameter, we need to sum over

the time outside the planning horizon (a + t > T ) while the summation is within the time

horizon that revenues are considered (a + t < T̂ ). Each term in the summation represents

the discount rate ϕa+t times the gas price πa+t times the production γa,w when this well is

at age a.

pDiscProdRevOutsidew,t =
∑

a:{T<a+t<T̂}
(ϕa+t · πa+t · γa,w) ∀t ∈ T,w ∈ W (D.1)

The parameter tstartw,o , the earliest time to start operation o at well w, is calculated as,

tstartw,o = 1 +
∑

o′≤o−1

tdevw,o′ ∀o ∈ O,w ∈ W (D.2)

Operation o cannot start on well w until all its previous operations have been completed on

well w. We assume that the time index starts from 1. Therefore, we need to plus one on the

right hand side of (D.2).

D.1.1 Constraints

We outline the constraints used in the model. We show different types of reformations

for some of the constraints.

General Constraints

Single Operation Per Well: At most one operation can start at each time period t

for each well w,

∑
o∈O

ystartt,w,o ≤ 1 ∀w ∈ W, t ∈ T (D.3)

Operation Done at Most Once: Each operation can only be performed at most once for
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each well throughout the planning horizon.∑
t∈T

ystartt,w,o ≤ 1 ∀w ∈ W, o ∈ O (D.4)

Earliest Start Time: Operation o cannot start before its earliest start time defined in

(D.2).

ystartt,w,o = 0 ∀t ∈ T,w ∈ W, o ∈ O, t < tstartw,o (D.5)

Sequencing Operations (ordering): Operation o cannot start until operation o-1 is

complete. Since each operation can be performed at most once in the entire planning horizon,

the time that operation o starts, represented by the left hand side of (D.6), must be greater

than or equal to the time that operation o− 1 starts plus the development time of operation

o− 1, which is represented by the right hand side of (D.6).

∑
t∈T

(
t · ystartt,w,o

)
≥
∑
t∈T

([
t+ tdevw,o−1

]
· ystartt,w,o−1

)
∀w ∈ W, o ∈ O, o > 1 (D.6)

Sequencing Operations (ordering) r1:An alternative way to model this constraint could

be using equation (D.7). Here variable ystartt,w,o is forced to zero if operation o− 1 has not been

completed at time t.

ystartt,w,o ≤
∑

t′≤t−tdevw,o−1

ystartt′,w,o−1 ∀t ∈ T,w ∈ W, o ∈ O, o > 1, t ≥ tstartw,o (D.7)

However, this reformulation performs worse than equation (D.6). Therefore, equation (D.6)

is used in the case study.

Sequencing Operations (tightening constraint): Operation o cannot happen before

operation o− 1, nor can operation o− 1 happen after operation o,

∑
t′≤t

ystart
t′ ,w,o

+
∑
t′≥t

ystart
t′ ,w,o−1

≤ 1 ∀w ∈ W, t ∈ T, o ∈ O, o > 1 (D.8)

Operations Completion: Equation (D.9) forces that the operations on well w must be

completed in the planning horizon if the first operation starts in the planning horizon, i.e,
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no well can be left unfinished within the planning horizon.

∑
t∈T

ystartt,w,o =
∑
t∈T

ystartt,w,o−1 ∀w ∈ W, o ∈ O, o > 1, t ≥ tstartw,o (D.9)

Single Operation Per Time Period Per Pad: At most one operation can be active

at each time period t in the wellpad,

∑
w∈W

∑
o∈O

zactivet,w,o ≤ 1 ∀t ∈ T (D.10)

where zactivet,w,o is a binary variable that decides whether operation o is performed on well w at

time t,

zactivet,w,o =
∑

t′ :{t′≤t, t−tdevw,o<t′}

ystart
t′ ,w,o

∀t ∈ T,w ∈ W, o ∈ O (D.11)

Base Production

The following equation gives production for well w at time t. If well w is turned in line

at time t− a, the age of the well at time t is a. The production can be calculated based on

the production curve.

Pt,w =
∑

a:{a<t}

ystartt−a,w,TIL · γa,w · lw ∀t ∈ T,w ∈ W (D.12)

Mobilization Constraints

Cost of Mobilization: If operation o is not active at time t − 1 but is active at time

o, we need to move the corresponding equipment and crew for operation o to the wellpad at

time t and a mobilization cost is incurred.

MCOt,p,o ≥Mobo ·

(∑
w∈W

(
zactivet,w,o

)
−
∑
w∈W

(
zactivet−1,w,o

))
∀t ∈ T, p ∈ P, o ∈ O (D.13)
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Since the mobilization constraints make the problem hard to solve, we propose several re-

formulations to account for the mobilization costs.

Cost of Mobilization r1: We define new binary variables zchanget,o which decide whether

the wellpad change to perform operation o from a different operation o′ ̸= o at time t or not.

Similar to (D.13), variable zchanget,o can be calculated by,

zchanget,o ≥
∑
w∈W

(
zactivet,w,o

)
−
∑
w∈W

(
zactivet−1,w,o

)
(D.14)

The mobilization cost at time t can be calculated by summing over the potential opera-

tions change at time t.

MCOt,p,o =
∑
o∈O

Moboz
change
t,o (D.15)

Since the optimization model always try to minimize the costs, variables zchanget,o always equal

to zero if the corresponding operation is not changed at time t.

Cost of Mobilization r2: Mobilization cost occurs if we start operation o at time t at

any well w and there is no operation o ends at time t.

MCOt,p,o ≥Mobo ·

(∑
w∈W

(
ystartt,w,o

)
−
∑
w∈W

(
ystartt−tdevw,o,w,o

))
∀t ∈ T, p ∈ P, o ∈ O (D.16)

We did computational experiments with CPLEX on all the three formulations for mobiliza-

tion. Formulation cost of mobilization r1 performs best when we give high branching

priority to zchanget,o .

Capacity Constraint: For every time period t, the production plus the gas released out

of storage minus the gas curtailed in the storage must be less than or equal to the maximum

gas that can be produced at time t. Note that the virtual storage is considered for the whole

wellpad. We do not distinguish the storage for each well.

(∑
w∈W

Pt,w

)
+ Storeoutt − Storeint ≤ Pmax

t ∀t ∈ T (D.17)

No Storage In/Out: If storage is being loaded, no gas can be released from storage. If

the storage is not being loaded, we constrain the amount of gas released to be less than the
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maximum (based on number of wells W ).

(
1− sint

)
·W · Storemax ≥ Storeoutt ∀t ∈ T (D.18)

Storage In Used: Maximum amount of gas put into storage, based on number of wells

and if storage is allowed

sint ·W · Storemax ≥ Storeint ∀t ∈ T (D.19)

Storage Level: For all periods greater than 1, the storage level at time t is equal to the

storage level at time t-1 plus any gas added to storage at time t, minus any gas removed

from storage at time t

StoreLevelt = StoreLevelt−1 + Storeint − Storeoutt ∀t ∈ T, t > 1 (D.20)

Initial Storage Level: At initial time period (t = 1), the storage level is equal to any

gas added to storage minus any gas removed from storage

StoreLevel1 = Storein1 − Storeout1 (D.21)

Revenues

The discounted revenue inside the scheduling horizon at time t (Disc.Revint )

with capacity constraints is,

Disc.Revint = ϕt · πt ·

(∑
w

(
Pt,w ·NRIw

)
+NRI

(
Storeoutt − Storeint

))
∀t ∈ T (D.22)

where we sum over the sales of gas production at each well w plus the revenue from the gas

storage.
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The discounted revenue outside the scheduling horizon ( Disc.Revoutw ) is:

Disc.Revoutw = NRIw · lw
∑
t

pDiscProdRevOutsidew,ty
start
t,w,T IL ∀w ∈ W (D.23)

where parameter pDiscProdRevOutsidew,t has been precalculated in equation (D.1). It

calculates the revenue well w can generate outside the planning horizon if it is turned in line

at time t.

The discounted revenue for gas left in fictional storage (Disc. Revleft) is cal-

culated with equation (D.24). There can be some gas left in the storage at the end of the

planning horizon. We assume that the sales of the left gas is evenly distributed outside the

planning horizon, i.e., from time T to T̂ .

Disc.Revleft =
∑

u:{T<u<T̂}

ϕu · πu · ¯NRI · StoreLevelT(
T̂ − T

)
 (D.24)

The discounted revenue (Disc. Rev) is equal to the summation of the three types

of revenues described above,

Disc.Rev =
∑
t

Disc.Revint +
∑
w

Disc.Revoutw +Disc.Revleft (D.25)

Costs

The discounted operating cost (Disc. OC) is calculated by the following:

Disc.OC =
∑
t

ϕt ·
∑
o

∑
w

(
ystartt,w,o ·WOCw,o

)
(D.26)
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The discounted mobilization cost (Disc. MC), calculated based on the mobiliza-

tion costs (MCOt,p,o)

Disc.MC =
∑
t

ϕt ·
∑
p

∑
o

MCOt,p,o (D.27)

Objective

Maximizing NPV

NPV = Disc.Rev −Disc.OC −Disc.MC (D.28)
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E.1 MILP formulation

Nomenclature

Indices and Sets

r ∈ R set of regions within the area considered
i ∈ I set of generator clusters
i ∈ Ir set of generator clusters in region r
i ∈ Iold

r set of existing generator clusters in region r at the beginning of the time hori-
zon, Iold

r ⊆ Ir

i ∈ Inew
r set of potential generator clusters in region r, Inew

r ⊆ Ir

i ∈ ITH
r set of thermal generator clusters in region r, ITH

r ⊆ Ir

i ∈ IRN
r set of renewable generator clusters in region r, IRN

r ⊆ Ir

i ∈ ITold
r set of existing thermal generator clusters in region r, ITold

r ⊆ ITH
r

i ∈ ITnew
r set of potential thermal generator clusters in region r, ITnew

r ⊆ ITH
r

i ∈ IRold
r set of existing renewable generator clusters in region r, IRold

r ⊆ IRN
r

i ∈ IRnew
r set of potential renewable generator clusters in region r, IRnew

r ⊆ IRN
r

l ∈ Lold set of existing transmission lines
l ∈ Lnew set of prospective transmission lines
j ∈ J set of storage unit clusters
t ∈ T set of time periods (years) within the planning horizon
d ∈ D set of representative days in each year t
s ∈ S set of sub-periods of time per representative day d in year t
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k ∈ K set of iterations in the Nested Decomposition algorithm

Deterministic Parameters
Lr,t,d,s load demand in region r in sub-period s of representative day d of year t (MW)
Lmax
t peak load in year t (MW)

Wd weight of the representative day d
Hs duration of sub-period s (hours)
Qgnp

i,r nameplate (nominal) capacity of a generator in cluster i in region r (MW )
Ngold

i,r number of existing generators in each cluster, i ∈ Iold
r , per region r at the

beginning of the time horizon
Ntold

l number of units of existing transmission lines for line l
Ngmax

i maximum number of generators in the potential clusters i ∈ Inew
r

Qinst,UB
i,t upper bound on yearly capacity installations based on generation technology

(MW/year)
Rmin

t system’s minimum reserve margin for year t (fraction of the peak load)
EDt energy demand during year t (MWh)
LTi expected lifetime of generation cluster i (years)
T remain
t remaining time until the end of the time horizon at year t (years)
Ngr

i,r,t number of generators in cluster i of region r that achieved their expected
lifetime

Qv
i capacity value of generation cluster i (fraction of the nameplate capacity)

Cfi,r,t,d,s capacity factor of generation cluster i ∈ IRN
r in region r at sub-period s, of

representative day d of year t (fraction of the nameplate capacity)
Pgmin

i minimum operating output of a generator in cluster i ∈ ITH
r (fraction of the

nameplate capacity)
Rumax

i maximum ramp-up rate for cluster i ∈ ITH
r (fraction of nameplate capacity)

Rdmax
i maximum ramp-down rate for cluster i ∈ ITH

r (fraction of nameplate capacity)
F start
i fuel usage at startup (MMbtu/MW)
Fracspin

i maximum fraction of nameplate capacity of each generator that can contribute
to spinning reserves (fraction of nameplate capacity)

FracQstart
i maximum fraction of nameplate capacity of each generator that can contribute

to quick-start reserves (fraction of nameplate capacity)
Opmin minimum total operating reserve (fraction of the load demand)
Spinmin minimum spinning operating reserve (fraction of the load demand)
Qstartmin minimum quick-start operating reserve (fraction of the load demand)
αRN fraction of the renewable generation output covered by quick-start reserve (frac-

tion of total renewable power output)
Bl susceptance of transmission line l
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Fmax
l capacity of transmission line l (MW)
TICl,t discounted investment cost of transmission line l in year t
Nsj,r number of existing storage units in each cluster j per region r at the beginning

of the time horizon
Chargemin

j minimum operating charge for storage unit in cluster j (MW)
Chargemax

j maximum operating charge for storage unit in cluster j (MW)
Dischargemin

j minimum operating discharge for storage unit in cluster j (MW)
Dischargemax

j maximum operating discharge for storage unit in cluster j (MW)
Storagemin

j minimum storage capacity for storage unit in cluster j (MWh)
Storagemax

j maximum storage capacity (i.e. nameplate capacity) for storage unit in cluster
j (MWh)

ηcharge
j charging efficiency of storage unit in cluster j (fraction)
ηdischarge
j discharging efficiency of storage unit in cluster j (fraction)
LT s

j lifetime of storage unit in cluster j (years)
Ir nominal interest rate
Ift discount factor for year t
OCCi,t overnight capital cost of generator cluster i in year t ($/MW)
ACCi,t annualized capital cost of generator cluster i in year t ($/MW)
DICi,t discounted investment cost of generator cluster i in year t ($/MW) ∗

SICj,t investment cost of storage cluster j in year t ($/MW)
CCm

i capital cost multiplier of generator cluster i (unitless)
LEi life extension cost for generator cluster i (fraction of the investment cost of

corresponding new generator)
FOCi,t fixed operating cost of generator cluster i ($/MW)
P fuel
i,t price of fuel for generator cluster i in year t ($/MMBtu)
HRi heat rate of generator cluster i (MMBtu/MWh)
TxCO2

t carbon tax in year t ($/kg CO2)
EFCO2

i full lifecycle CO2 emission factor for generator cluster i (kgCO2/MMBtu)
V OCi,t variable O&M cost of generator cluster i ($/MWh)
RNmin

t minimum renewable energy production requirement during year t (fraction of
annual energy demand)

PEN rn
t penalty for not meeting renewable energy quota target during year t ($/MWh)

PEN c
t penalty for curtailment during year t ($/MWh)

Cstart
i fixed startup cost for generator cluster i ($/MW)

Ml big-M parameter for line l in transmission expansion equations
s(l) sending end of transmission line l
r(l) receiving end of transmission line l

∗DICi,t is used in the calculation for the life extension investment cost, which is in terms of a fraction
LEi of the capital cost. Therefore the investment cost for the existing cluster is approximated as being the
same as for the potential clusters that have the same or similar generation technology.

322



E.1. MILP formulation

Continuous variables
Φ net present cost throughout the time horizon, including amortized investment

cost, operational and environmental cost ($)
Φopex

t amortized operating costs in year t ($)
Φcapex

t amortized investment costs in year t ($)
ΦPEN

t amortized penalty costs in year t ($)
pi,r,t,d,s power output of generation cluster i in region r during sub-period s of repre-

sentative day d of year t (MW)
def rn

t deficit from renewable energy quota target during year t (MWh)
cur,t,ss,s curtailment slack generation in region r during sub-period s of representative

day d of year t (MW)
pflow
l,t,d,s power transfer through transmission line l during sub-period s of representative

day d of year t (MW)
pflow+
l,t,d,s nonnegative variable, power flow from the sending end of transmission line l,

s(l), to the receiving end of line l, r(l) during sub-period s of representative
day d of year t (MW)

pflow−
l,t,d,s nonnegative variable, power flow from the receiving end of transmission line l,

r(l), to the sending end of line l, s(l) during sub-period s of representative day
d of year t (MW)

θr,t,d,s voltage angle at region r during sub-period s of representative day d of year t
θs(l),t,d,s voltage angle at sending end of transmission line l during sub-period s of rep-

resentative day d of year t
θr(l),t,d,s voltage angle at receiving end of transmission line l during sub-period s of

representative day d of year t
∆θ1l,t,d,s disaggregated variable in the hull formulation, angle difference between the

angles at sending end and receiving end of transmission line l during sub-
period s of representative day d of year t (MW) if the transmission line l exists
in year t

∆θ2l,t,d,s disaggregated variable in the hull formulation, angle difference between the
angles at sending end and receiving end of transmission line l during sub-
period s of representative day d of year t (MW) if the transmission line l does
not exist in year t

∆θ+l,t,d,s nonnegative variable, angle difference between the angles at sending end and
receiving end of transmission line l during sub-period s of representative day
d of year t (MW)

∆θ−l,t,d,s nonnegative variable, angle difference between the angles at receiving end and
sending end of transmission line l during sub-period s of representative day d
of year t (MW)

qspin
i,r,t,d,s spinning reserve capacity of generation cluster i in region r during sub-period

s of representative day d of year t (MW)
qQstart
i,r,t,d,s quick-start capacity reserve of generation cluster i in region r during sub-period

s of representative day d of year t (MW)
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ngorn
i,r,t number of generators that are operational in cluster i ∈ IRN

r of region r in year
t (continuous relaxation)

ngbrn
i,r,t number of generators that are built in cluster i ∈ IRN

r of region r in year t
(continuous relaxation)

ngrrn
i,r,t number of generators that retire in cluster i ∈ IRN

r of region r in year t (con-
tinuous relaxation)

ngern
i,r,t number of generators that had their life extended in cluster i ∈ IRN

r of region
r in year t (continuous relaxation)

pcharge
j,r,t,d,s power being charged to storage cluster j is region r, during sub-period s of

representative day d of year t (MW)
pdischarge
j,r,t,d,s power being discharged to storage cluster j is region r, during sub-period s of

representative day d of year t (MW)
plevel
j,r,t,d,s state of charge of storage cluster j is region r, during sub-period s of represen-

tative day d of year t (MWh)
plevel,0
j,r,t,d state of charge of storage cluster j is region r at hour zero of representative

day d of year t (MWh)
nsoj,r,t number of storage units that are operational in cluster j of region r in year t

(continuous relaxation)
nsbj,r,t number of storage units that are built in cluster j of region r in year t (con-

tinuous relaxation)
nsrj,r,t number of storage units that retire in cluster j of region r in year t (continuous

relaxation)
Φt objective function value for subproblem t assuming exact representation of the

cost-to-go function ($)
Φt,k objective function value for subproblem t in iteration k ($)
ϕt,k cost-to-go function ($)
αt expected future year cost, when calculating the cost for year t ($)
ΦLP

t,k net present cost of the linear relaxation of the subproblem for year t in iteration
k ($)

ΦLR
t,k net present cost of the Lagrangean relaxation of the subproblem for year t in

iteration k ($)
ΦLD

t,k net present cost of the Lagrangean dual of the subproblem for year t in iteration
k ($)

ΦOP
t,k net present cost of the original MILP subproblem for year t in iteration k ($)

ngorn,prev
i,r,t number of generators that are operational in cluster i ∈ IRN

r of region r in year
t− 1 (continuous relaxation)

ngbrn,LT
i,r,t number of generators that are built in cluster i ∈ IRN

r of region r in year t−LTi
(continuous relaxation)

ngoth,prev
i,r,t number of generators that are operational in cluster i ∈ ITH

r of region r in year
t− 1 (continuous relaxation)

ngbth,prev
i,r,t number of generators that are built in cluster i ∈ ITH

r of region r in year t−LTi
(continuous relaxation)
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xt investment variables in year t in the concise notation
yt operating variables in year t in the concise notation

Discrete variables
ngoth

i,r,t number of generators that are operational in cluster i ∈ ITH
r of region r in year

t (integer variable)
ngbth

i,r,t number of generators that are built in cluster i ∈ ITH
r of region r in year t

(integer variable)
ngrth

i,r,t number of generators that retire in cluster i ∈ ITH
r of region r in year t (integer

variable)
ngeth

i,r,t number of generators that had their life extended in cluster i ∈ ITH
r of region

r in year t (integer variable)
ntbl,t binary variable, to denote whether transmission line l is built in year t or not
ntel,t binary variable, represents whether transmission line l has been installed in

year t
ui,r,t,d,s number of thermal generators ON in cluster i ∈ Ir of region r during sub-period

s of representative day d of year t (integer variable)
sui,r,t,d,s number of generators starting up in cluster i during sub-period s of represen-

tative day d in year t (integer variable)
sdi,r,t,d,s number of generators shutting down in cluster i during sub-period s of repre-

sentative day d in year t (integer variable)

E.1.1 Operational constraints

The energy balance (E.1) ensures that, in each sub-period s of representative day d in

year t, the sum of instantaneous power pi,r,t,d,s generated by generator clusters i in region

r, plus the power flows through the transmission lines l whose receiving end is region r,∑
l|r(l)=r p

flow
l,t,d,s, minus the power flows through the transmission lines l whose sending end is

region r,
∑

l|s(l)=r p
flow
l,t,d,s, plus the power discharged from all the storage clusters j in region r,

pdischarge
j,r,t,d,s , equals the load demand Lr,t,d,s at that region r, plus the power being charged to the

storage clusters j in region r, pcharge
j,r,t,d,s, plus a slack for curtailment of renewable generation

cur,t,d,s. Note that we have specified the directions of the transmission lines. Therefore, the
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signs of the power flows are unrestricted.∑
i

(pi,r,t,d,s) +
∑

l|r(l)=r

pflow
l,t,d,s −

∑
l|s(l)=r

pflow
l,t,d,s +

∑
j

pdischarge
j,r,t,d,s

= Lr,t,d,s +
∑
j

pcharge
j,r,t,d,s + cur,t,d,s ∀ r, t, d, s

(E.1)

The capacity factor constraint (E.2) limits the power outlet pi,r,t,d,s of renewable genera-

tors to be equal to a fraction Cfi,r,t,d,s of the nameplate capacity Qgnp
i,r in each sub-period s of

representative day d in year t, where ngorn
i,r,t represents the number of renewable generators

that are operational in year t. Due to the flexibility in sizes for renewable generators, ngorn
i,r,t

is relaxed to be continuous.

pi,r,t,d,s = Qgnp
i,r · Cfi,r,t,d,s · ngorn

i,r,t ∀ i ∈ IRN
r , r, t, d, s (E.2)

The unit commitment constraint (E.3) computes the number of generators that are ON,

ui,r,t,d,s, or in startup, sui,r,t,d,s, and shutdown, sdi,r,t,d,s, modes in cluster i in sub-period s of

representative day d of year t, and treated as integer variables.

ui,r,t,d,s = ui,r,t,d,s−1 + sui,r,t,d,s − sdi,r,t,d,s ∀ i ∈ ITH
r , r, t, d, s (E.3)

The ramping limit constraints (E.4)-(E.5) capture the limitation on how fast thermal

units can adjust their output power, pi,r,t,d,s, where Rumax
i is the maximum ramp-up rate,

Rdmax
i is the maximum ramp-down rate, and Pgmin

i is the minimum operating limit.

pi,r,t,d,s − pi,r,t,d,s−1 ≤ Rumax
i · Hs ·Qgnp

i,r · (ui,r,t,d,s − sui,r,t,d,s)

+max
(
Pgmin

i , Rumax
i · Hs

)
·Qgnp

i,r · sui,r,t,d,s ∀ i ∈ ITH
r , r, t, d, s

(E.4)

pi,r,t,d,s−1 − pi,r,t,d,s ≤ Rdmax
i · Hs ·Qgnp

i,r · (ui,r,t,d,s − sui,r,t,d,s)

+max
(
Pgmin

i , Rdmax
i · Hs

)
·Qgnp

i,r · sdi,r,t,d,s ∀ i ∈ ITH
r , r, t, d, s

(E.5)

Note that the first terms on the right hand side of (E.4) and (E.5) apply only for normal

operating mode (i.e., generator is ON), while the second terms apply for the startup and

shutdown modes. This means that generators in normal operating mode have their ramp

rates limited by Rumax
i and Rdmax

i , while generators in startup and shutdown modes have
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their ramp rates limited by the least restrictive between Pgmin
i and Rumax

i , Rdmax
i such that

their operating limits (Equations E.6 and E.7) are still satisfied.

The operating limits constraints (E.6)-(E.7) specify that each thermal generator is either

OFF and outputting zero power, or ON and running within the operating limits Pgmin
i ·Qgnp

i,r

and Qgnp
i,r . The variable ui,r,t,d,s (integer variable) represents the number of generators that

are ON in cluster i ∈ ITH
r at the time period t, representative day d, and sub-period s.

ui,r,t,d,s · Pgmin
i ·Qgnp

i,r ≤ pi,r,t,d,s ∀ i ∈ ITH
r , r, t, d, s (E.6)

pi,r,t,d,s + qspin
i,r,t,d,s ≤ ui,r,t,d,s ·Qgnp

i,r ∀ i ∈ ITH
r , r, t, d, s (E.7)

The upper limit constraint is modified in order to capture the need for generators to run

below the maximum considering operating reserves, where qspin
i,r,t,d,s is a variable representing

the spinning reserve capacity.

The total operating reserve constraint (E.8) dictates that the total spinning reserve,

qspin
i,r,t,d,s, plus quick-start reserve, qQstart

i,r,t,d,s, must exceed the minimum operating reserve, Opmin,

which is a percentage of the load Lr,t,d,s in a reserve sharing region r at each sub-period s.∑
i∈ITH

r

(
qspin
i,r,t,d,s + qQstart

i,r,t,d,s

)
≥ Opmin · Lr,t,d,s ∀ r, t, d, s (E.8)

Spinning Reserve is the on-line reserve capacity that is synchronized to the grid system

and ready to meet electric demand within 10 minutes of a dispatch instruction by the inde-

pendent system operator (ISO). Quick-start (or non-spinning) reserve is the extra generation

capacity that is not currently connected to the system but can be brought on-line after a

short delay.

The total spinning reserve constraint (E.9) specifies that the total spinning reserve qspin
i,r,t,d,s

must exceed the minimum spinning reserve, Spinmin, which is a percentage of the load Lr,t,d,s

in a reserve sharing region r at each sub-period s.∑
i∈ITH

r

qspin
i,r,t,d,s ≥ Spinmin · Lr,t,d,s ∀ r, t, d, s (E.9)
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Our model does not currently impose a minimum requirement for total quick-start re-

serve, as presented in Flores-Quiroz et al. (2016). However, this constraint could be easily

incorporated in the formulation to address the extra secondary (quick-start) reserve require-

ments needed to account for the increasing short term uncertainty due to more renewable

generators contributing to the grid.

The maximum spinning reserve constraint (E.10) states that the maximum fraction of ca-

pacity of each generator cluster that can contribute to spinning reserves is given by Fracspin
i ,

which is a fraction of the nameplate capacity Qgnp
i,r .

qspin
i,r,t,d,s ≤ ui,r,t,d,s ·Qgnp

i,r · Frac
spin
i ∀ i ∈ ITH

r , r, t, d, s (E.10)

The maximum quick-start reserve constraint dictates that the maximum fraction of the

capacity of each generator cluster that can contribute to quick-start reserves is given by

FracQstart
i (fraction of the nameplate capacity Qgnp

i,r), and that quick-start reserves can only

be provided by the generators that are OFF, i.e., not active.

qQstart
i,r,t,d,s ≤ (ngoth

i,r,t − ui,r,t,d,s) ·Qgnp
i,r · Frac

Qstart
i ∀ i ∈ ITH

r , r, t, d, s (E.11)

Here the integer variable ngoth
i,r,t represents the number of thermal generators that are

operational (i.e., installed and ready to operate) at year t.

E.1.2 Investment-related constraints

The planning reserve requirement (E.12) ensures that the operating capacity is greater

than or equal to the annual peak load Lmax
t , plus a predefined fraction of reserve margin

Rmin
t of the annual peak load Lmax

t .∑
i∈IRN

r

∑
r

(
Qgnp

i,r ·Qv
i · ngorn

i,r,t

)
+
∑
i∈ITH

r

∑
r

(
Qgnp

i,r · ngoth
i,r,t

)
≥ (1 +Rmin

t ) · Lmax
t ∀ t (E.12)

For all thermal generators, their full nameplate capacity Qgnp
i,r counts towards the plan-

ning reserve requirement. However, for the renewable technologies (wind, PV and CSP),

their contribution is less than the nameplate due to the inability to control dispatch and
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the uncertainty of the output (Short et al., 2011). Therefore, the fraction of the capacity

that can be reliably counted towards the planning reserve requirement is referred to as the

capacity value Qv
i .

The minimum annual renewable generation requirement (E.13) ensures that, in case of

policy mandates, the renewable generation quota target, RNmin
t , which is a fraction of the

energy demand EDt, is satisfied. If not, i.e, if there is a deficit def rn
t from the quota, this is

subjected to a penalty that is included later in the objective function.∑
d

∑
s

Wd · Hs ·

∑
r

∑
i∈IRN

r

pi,r,t,d,s − cur,t,d,s

+ def rn
t ≥ RNmin

t · EDt ∀ t (E.13)

Here Wd represents the weight of the representative day d, Hs is the length of the sub-

period, cur,t,d,s is the curtailment of renewable generation, and EDt represent the energy

demand in year t:

EDt =
∑
r

∑
d

∑
s

(Wd · Hs · Lr,t,d,s)

The maximum yearly installation constraints (E.14)-(E.15) limit the yearly installation

per generation type in each region r to an upper bound Qinst,UB
i,t in MW/year. Here ngbrn

i,r,t

and ngbth
i,r,t represent the number of renewable and thermal generators built in region r in

year t, respectively. Note that due to the flexibility in sizes for renewable generators, ngbrn
i,r,t

is relaxed to be continuous.∑
r

ngbrn
i,r,t ≤ Qinst,UB

i,t /Qgnp
i,r ∀ i ∈ IRnew

r , t (E.14)

∑
r

ngbth
i,r,t ≤ Qinst,UB

i,t /Qgnp
i,r ∀ i ∈ ITnew

r , t (E.15)

E.1.3 Generator balance constraints

Concerning renewable generator clusters, we define a set of constraints (E.16)-(E.17) to

compute the number of generators in cluster i that are ready to operate ngorn
i,r,t, taking

into account the generators that were already existing at the beginning of the planning
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horizon NgRold
i,r , the generators built ngbrn

i,r,t, and the generators retired ngrrn
i,r,t at year t. It

is important to highlight that we assume no lead time between the decision to build/install

a generator and the moment it can begin producing electricity.

ngorn
i,r,t = NgRold

i,r + ngbrn
i,r,t − ngrrn

i,r,t ∀ i ∈ IRN
r , r, t = 1 (E.16)

ngorn
i,r,t = ngorn

i,r,t−1 + ngbrn
i,r,t − ngrrn

i,r,t ∀ i ∈ IRN
r , r, t > 1 (E.17)

As aforementioned, due to the flexibility in sizes for renewable generators, ngorn
i,r,t, ngbrn

i,r,t,

and ngrrn
i,r,t are relaxed to be continuous. Note that ngbrn

i,r,t for i ∈ IRold
r is fixed to zero in

all time periods, i.e., the clusters of existing renewable generators cannot have any new

additions during the time horizon considered.

We also define a set of constraints (E.18) to enforce the renewable generators that reached

the end of their lifetime to either retire, ngrrn
i,r,t, or have their life extended, ngern

i,r,t. Ngr
i,r,t

is a parameter that represents the number of old generators (i.e., i ∈ Iold
r ) that reached the

end of their lifetime, LTi, at year t. We assume that the new renewable generators will not

need to retire within the planning horizon.

Ngr
i,r,t = ngrrn

i,r,t + ngern
i,r,t ∀ i ∈ IRold

r , r, t (E.18)

Concerning thermal generator clusters, we define a set of constraints (E.19)-(E.20) to

compute the number of generators in cluster i that are ready to operate ngoth
i,r,t, taking into

account the generators that were already existing at the beginning of the planning horizon

NgTold
i,r , the generators built ngbth

i,r,t, and the generators retired ngrth
i,r,t at year t.

ngoth
i,r,t = NgTold

i,r + ngbth
i,r,t − ngrth

i,r,t ∀ i ∈ ITH
r , r, t = 1 (E.19)

ngoth
i,r,t = ngoth

i,r,t−1 + ngbth
i,r,t − ngrth

i,r,t ∀ i ∈ ITH
r , r, t > 1 (E.20)

Note that ngbth
i,r,t for i ∈ ITold

r is fixed to zero in all time periods, i.e., the clusters of existing

thermal generators cannot have any new additions during the time horizon considered.

We also define a set of constraints (E.21) to enforce the thermal generators that reached

the end of their lifetime to either retire, ngrth
i,r,t, or have their life extended ngeth

i,r,t. We
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assume that the new thermal generators will not need to retire within the planning horizon.

Ngr
i,r,t = ngrth

i,r,t + ngeth
i,r,t ∀ i ∈ ITold

r , r, t (E.21)
Finally, we have constraint (E.22) that ensures that only installed generators can be in

operation:

ui,r,t,d,s ≤ ngoth
i,r,t ∀ i ∈ ITnew

r , r, t, d, s (E.22)

E.1.4 Storage constraints

We also include a set constraints related to the energy storage devices, which are assumed

to be ideal and generic (Pozo et al., 2014). Constraints (E.23)-(E.24) compute the number of

storage units that are ready to operate nsoj,r,t, taking into account the storage units already

existing at the beginning of the planning horizon Nsj,r and the ones built nsbj,r,t and retired

nsrj,r,t at year t. Due to the flexibility in sizes for storage units, nsoj,r,t, nsbj,r,t, and nsrj,r,t

are relaxed to be continuous.

nsoj,r,t = Nsj,r + nsbj,r,t − nsrs,r,t ∀ j, r, t = 1 (E.23)

nsoj,r,t = nsoj,r,t−1 + nsbj,r,t − nsrj,r,t ∀ j, r, t > 1 (E.24)

Constraints (E.25) and (E.26) establish that the power charge, pcharge
j,r,t,d,s, and discharge,

pdischarge
j,r,t,d,s , of the storage units in cluster j, nsoj,r,t, has to be within the operating limits:

Chargemin
j and Chargemax

j , and Dischargemin
j and Dischargemin

j , respectively.

Chargemin
j · nsoj,r,t ≤ pcharge

j,r,t,d,s ≤ Chargemax
j · nsoj,r,t ∀ j, r, t, d, s (E.25)

Dischargemin
j · nsoj,r,t ≤ pdischarge

j,r,t,d,s ≤ Dischargemax
j · nsoj,r,t ∀ j, r, t, d, s (E.26)

Constraint (E.27) specifies that the energy storage level, plevel
j,r,t,d,s, for the storage units in

cluster j, nsoj,r,t has to be within the storage capacity limits Storagemin
j and Storagemax

j .

Storagemin
j · nsoj,r,t ≤ plevel

j,r,t,d,s ≤ Storagemax
j · nsoj,r,t ∀ j, r, t, d, s (E.27)

Constraints (E.28) and (E.29) show the power balance in the storage units. The state of
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charge plevel
j,r,t,d,s at the end of sub-period s depends on the previous state of charge plevel

j,r,t,d,s−1,

and the power charged pcharge
j,r,t,d,s and discharged pdischarge

j,r,t,d,s at sub-period s. The symbols ηcharge
j

and ηdischarge
j represent the charging and discharging efficiencies, respectively. For the first

hour of the day d of year t, the previous state of charge (i.e., s = 0) is the variable plevel,0
j,r,t,d .

plevel
j,r,t,d,s = plevel

j,r,t,d,s−1 + ηcharge
j · pcharge

j,r,t,d,s + pdischarge
j,r,t,d,s /ηdischarge

j ∀ j, r, t, d, s > 1 (E.28)

plevel
j,r,t,d,s = plevel,0

j,r,t,d + ηcharge
j · pcharge

j,r,t,d,s + pdischarge
j,r,t,d,s /ηdischarge

j ∀ j, r, t, d, s = 1 (E.29)

Constraints (E.30) and (E.31) force the storage units to begin plevel,0
j,r,t,d and end plevel

j,r,t,d,s=S

each day d of year t with 50% of their maximum storage Storagemax
j . This is a heuristic to

attach carryover storage level form one representative day to the next.

plevel,0
j,r,t,d = 0.5 · Storagemax

j · nsoj,r,t ∀ j, r, t, d (E.30)

plevel
j,r,t,d,s = 0.5 · Storagemax

j · nsoj,r,t ∀ j, r, t, d, s = S (E.31)

E.1.5 Symmetry breaking constraints of transmission lines

If the potential transmission lines that connect the same two buses are of the same

property, the following symmetry breaking constraints can be added to break symmetry.

Our computational results suggest that adding these constraints have marginal effects on

the computational time. They are not required to be included.

ntel,t ≥ ntel−1,t ∀t, l, l − 1 connecting the same two buses

E.1.6 Objective Function

The objective of this model is to minimize the net present cost, Φ, over the planning

horizon, which includes operating costs Φopex, investment costs Φcapex, and potential penalties

ΦPEN for not meeting the the targets on renewables.

min Φ =
∑
t

(
Φopex

t + Φcapex
t + ΦPEN

t

)
(E.32)
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The operating expenditure, Φopex
t , comprises the variable V OCi,t and fixed FOCi,t oper-

ating costs, as well as fuel cost P fuel
i per heat rate HRi, carbon tax TxCO2

t for CO2 emissions

EFCO2
i , and start-up cost (variable cost P fuel

i that depends on the amount of fuel burned for

startup F start
i , and fixed cost Cstart

i ).

Φopex
t = Ift ·

[∑
d

∑
s

Wd · hs·(∑
i

∑
r

(V OCi,t + P fuel
i ·HRi + TxCO2

t · EFCO2
i ·HRi) · pi,r,t,d,s

)

+

∑
i∈IRN

r

∑
r

FOCi,t ·Qgnp
i,r · ngorn

i,r,t


+

∑
i∈ITH

r

∑
r

FOCi,t ·Qgnp
i,r · ngoth

i,r,t


+
∑
i∈ITH

r

∑
r

∑
d

∑
s

Wd · Hs · sui,r,t,d,s ·Qgnp
i,r

·
(
F start
i · P fuel

i + F start
i · EFCO2 · TxCO2

t + Cstart
i

)]

(E.33)

The capital expenditure, Φcapex
t , includes the amortized cost of acquiring new generators,

DICi,t, new storage devices, SICj,t, and the amortized cost of extending the life of generators

that reached their expected lifetime, the amortized cost of building new transmission lines

TICl,t. The cost of extending the life of a generator is assumed to be a fraction LEi of

the investment cost, DICi,t, in a new generator with the same or equivalent generation

technology. In this framework, the investment cost takes into account the remaining value

at the end of the time horizon by considering the annualized capital cost and multiplying

it by the number of years remaining in the planning horizon at the time of installation to
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calculate the DICi,t.

Φcapex
t = Ift ·

[ ∑
i∈IRnew

r

∑
r

DICi,t · CCm
i ·Qgnp

i,r · ngbrn
i,r,t

+
∑

i∈ITnew
r

∑
r

DICi,t · CCm
i ·Qgnp

i,r · ngbth
i,r,t

+
∑
j

∑
r

SICj,t · Storagemax
j · nsbj,r,t

+
∑
i∈IRN

r

∑
r

DICi,t · LEi ·Qgnp
i,r · ngern

i,r,t

+
∑
i∈ITH

r

∑
r

DICi,t · LEi ·Qgnp
i,r · ngeth

i,r,t

+
∑

l∈Lnew

∑
t

TICl,t · ntbl,t

]

(E.34)

The capital multiplier CCm
i associated with new generator clusters is meant to account

for differences in depreciation schedules applicable to each technology, with higher values

being indicative of slower depreciating schedule and vice versa.

Lastly, the penalty cost, ΦPEN
t , includes the potential fines for not meeting the renewable

energy quota, PEN rn
t , and curtailing the renewable generation.

ΦPEN
t = Ift ·

(
PEN rn

t · def rn
t + PEN c ·

∑
r

∑
d

∑
s

cur,t,d,s

)
(E.35)

Calculated parameters

The parameters Ift, DICi,t, ACCi,t, and T remain
t are defined as follows. Regarding the pa-

rameters used in equations (E.33)-(E.35), the discount factor in year t, Ift, is calculated from

the interest rate, Ir:

Ift =
1

(1 + Ir)t

and the discounted investment cost DICi,t is given by:

DICi,t = ACCi,t ·

 ∑
t′≤min(LTi,T remain)

Ift′
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where the annualized capital cost ACCi,t is given by:

ACCi,t =
OCCi,t · Ir
1− 1

(1+Ir)LTi

and the remaining time in the horizon T remain
t is defined by T remain

t = T − t+ 1.

The discounted investment cost of the transmission lines TICl,t can be calculated similarly.

E.2

Theorem 10. The alternative big-M formulation (ABM) has the same feasible region as

the big-M (BM) formulation if the feasible region of ABM is projected to the space of{
⊕

l∈Lnew,t∈T ,d∈D,s∈S
(pflow

l,t,d,s, θs(l),t,d,s, θr(l),t,d,s, ntel,t)
}

, where the symbol ‘⊕’ means the concate-

nation of all the variables (pflow
l,t,d,s, θs(l),t,d,s, θr(l),t,d,s, ntel,t) over the set Lnew, T ,D,S.

Proof. We first denote the feasible region of ABM as,

FABM :=
{

⊕
l∈Lnew,t∈T ,d∈D,s∈S

(
pflow
l,t,d,s, p

flow+
l,t,d,s , p

flow−
l,t,d,s , θs(l),t,d,s, θr(l),t,d,s,∆θ

+
l,t,d,s,∆θ

−
l,t,d,s, ntel,t

)∣∣∣(8.11) − (8.18)
}

and the feasible region of BM as

FBM :=
{

⊕
l∈Lnew,t∈T ,d∈D,s∈S

(
pflow
l,t,d,s, θs(l),t,d,s, θr(l),t,d,s, ntel,t

)∣∣∣(8.5), (8.6)
}

To simplify notation, we drop the concatenation symbol ‘ ⊕
l∈Lnew,t∈T ,d∈D,s∈S

’ hereafter in the

proof. the projection of FABM onto the space of (pflow
l,t,d,s, θs(l),t,d,s, θr(l),t,d,s, ntel,t) is denoted as

Proj(FABM). We want to prove that Proj(FABM) = FBM.

We first prove that FBM ⊆ Proj(FABM). It suffices to prove that for any
(
pflow,0
l,t,d,s , θ

0
s(l),t,d,s, θ

0
r(l),t,d,s, nte

0
l,t

)
∈

FBM. We can always find pflow+,0
l,t,d,s , pflow−,0

l,t,d,s , ∆θ+,0
l,t,d,s, ∆θ

−,0
l,t,d,s, such that(

pflow,0
l,t,d,s , p

flow+,0
l,t,d,s , pflow−,0

l,t,d,s , θ0s(l),t,d,s, θ
0
r(l),t,d,s,∆θ

+,0
l,t,d,s,∆θ

−,0
l,t,d,s, nte

0
l,t

)
∈ FABM
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It is easy to check that by setting,

pflow+,0
l,t,d,s = max

(
0, pflow,0

l,t,d,s

)
pflow−,0
l,t,d,s = max

(
0,−pflow,0

l,t,d,s

)
∆θ+,0

l,t,d,s = max
(
0, θ0s(l),t,d,s − θ0r(l),t,d,s

)
∆θ−,0

l,t,d,s = max
(
0, θ0r(l),t,d,s − θ0s(l),t,d,s

)
for all l ∈ Lnew, t ∈ T , d ∈ D, s ∈ S, constraints (8.11)-(8.18) can be satisfied.

Next, we prove that Proj(FABM) ⊆ FBM. It suffices to show that equations (8.5) and (8.6)

are consequences of equations (8.11)-(8.18) by carefully choosing Farkas multipliers. For

example, inequality pflow
l,t,d,s − Bl(θs(l),t,d,s − θr(l),t,d,s) ≤ Ml(1 − ntel,t) can be obtained by

(8.11) − (8.14) + (8.15) − Bl × (8.16). Inequality pflow
l,t,d,s ≤ Fmax

l ntel,t can be obtained by

(8.15)+(8.17)+[−pflow−,0
l,t,d,s ≤ 0]. The other two inequalities in equations (8.5) and (8.6) can

be obtained similarly. We conclude Proj(FABM) ⊆ FBM.

E.3 Computational results for the GTEP problem with

4 representative days(continued)

Some additional results for the GTEP problem with 4 representative days are provided

in this section.

E.3.1 Problem sizes after presolve

To show the effects of CPLEX presolve in reducing the size of the fullspace model, the

sizes of the three formulations after presolve are shown in Table E.5.
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Table E.5: Sizes of the three formulations after CPLEX presolve

formulation Integer Var Binary Var Continuous Var Constraints
big-M 277,811 19,552 409,997 1,305,617

alternative big M 277,811 19,552 811,236 1,708,633
hull 277,811 19,552 409,997 1,305,709

E.3.2 Computational results for solving the problem with the in-

teger variables in the operating problems relaxed

Since the integer variables in the operating subproblems are relaxed in the tailored Ben-

ders decomposition algorithm, it is fair to compare the Benders decomposition results with

solving the fullspace model while relaxing the integer variables in the operating problems.

The computational results are shown in Table E.6. It is clear that the fullspace problem

cannot be solved even with most of the integer variables relaxed.

We also evaluate the LP relaxations of the three different formulations. In this particular

instance, the optimal objective value of the three formulations are the same, being 260.848. It

should be noted that this is still consistent with our theoretical analysis since problems with

different feasible region can yield same optimal objective value. In some smaller instances

that we had tested before, we did observe that the objective value of the LP relaxation of the

hull reformulation is larger than those of the big-M and the alternative big-M reformulation.

Table E.6: Fullspace GTEP problem with relaxed operating integer variables.

formulation Integer Var Binary Var Continuous Var Constraints UB LB Wall time
big-M 2,280 2,800 836,266 1,543,966 - 21.13 36,000

alternative big M 2,280 2,800 1,373,866 2,081,566 - 21.13 36,000
hull 2,280 2,800 1,105,066 2,081,566 - 21.13 36,000
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E.3.3 The convergence of the nested Benders decomposition algo-

rithm

The upper and lower bound that can be obtained from the nested Benders decomposition

algorithm with respect to time (in seconds) are shown in Figures E.1-E.3. The bounds are

significantly improved in the first few iterations. However, closing the gap takes the majority

of the time, i.e., the bounds are improved slowly after around 15,000 seconds.
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Figure E.1: The upper and the lower bounds of the nested Benders decomposition algorithm with
the big-M formulation

E.3.4 Problem size in the Benders decomposition algorithm

The sizes of the Benders master and the Benders subproblem are show in Tables E.7 and

E.8, respectively.

Table E.7: Size of the Benders master problem

Integer Var Binary Var Continuous Var Constraints
2,280 2,800 5,800 7,986
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Figure E.2: The upper and the lower bounds of the nested Benders decomposition algorithm with
the alternative big-M formulation
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Figure E.3: The upper and the lower bounds of the nested Benders decomposition algorithm with
the hull formulation

Table E.8: Size of the Benders subproblem with the different formulations

formulation Integer Var Binary Var Continuous Var Constraints
big-M 13,632 0 27,951 76,799

alternative big M 13,632 0 54,831 103,679
hull 13,632 0 41,391 103,679
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E.4 Sensitivity analysis of the number of representa-

tive days

The number of representative days in the operating problem can affect the capacity

expansion results Lara et al. (2018); Teichgraeber and Brandt (2019); Scott et al. (2019).

There is a computational tractability versus model fidelity trade-off in deciding the number of

representative days. As long as we have enough computational resources, it is always worth

including as many representative days as possible in the model to have a more accurate

representation.

We perform a sensitivity analysis on the capacity expansion decisions and the optimal

objective value found by the algorithm varying the number of representative days from 4 to

15. All these GTEP models with the alternative big-M formulation are solved to within 1%

optimality gap within 10 hours. The capacities of nuclear and coal do not change over the 20

years in all the cases. Therefore, we only report the capacities of natural gas, solar and wind

at the end of the time horizon with different representative days in Figure E.4. The total

transmission costs and optimal objective values are also shown in Figure E.4. All the values

shown in Figure E.4 are normalized by their corresponding values in the 15-representative-

day results.

It can be seen from Figure E.4 that as we increase the number of representative days the

optimal value of the objective function increases as well. Recall that we select the centroid

of each cluster in the time series clustering algorithm. Therefore, as the number of clusters

increases, it is more likely to select days with higher volatility as our representative days,

which increase the operating cost.

There are no general trends in the generation and capacity expansion results, except that

wind capacity has a decreasing trend with the increase in the number of representative days.

If the number of representative days is larger than 10, most of the values shown in Figure

E.4 are within 10% of the 15 representative day values.
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Figure E.4: Natural gas, wind, solar capacity, total transmission cost at the end of the planning
horizon and the optimal value of objective function for different representative days. All the values
are normalized by the corresponding 15-representative-day values respectively.

E.5 Comments on Warm-start Both Algorithms

One of the anonymous reviewer of this paper has raised the question of warm-starting

both algorithms. The suggestions raised by this reviewer are “For the GTEP, I see multiple

ways to generate incumbent investment solutions: (1) Solve the model with fewer repre-

sentative days, perhaps even one day; (2) solve the model in 2-, 3-, or 5-year increments

and interpolate intermediate investment decisions; (3) relax the DC flow requirement; (4)

disallow certain technologies from being built (e.g., coal, nuclear, and storage); or some

combinations thereof.”

We agree with this reviewer that Warm-start could potentially accelerate these two de-

composition algorithms. We also agree that points (1)-(4) proposed by the reviewer can

reduce the size of the fullspace model but sill generate some “trial” investment decisions.

These trial solutions can be used to warm-start both decomposition algorithms by generating

a number of Benders cuts before we start the Benders/nested Benders iteration. However,
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the Benders implementation is from CPLEX that does not support the callbacks to imple-

ment the warm-start techniques yet. On the other hand, our experience suggests that an

implementation of Benders by ourselves in Python is mostly likely to fail to perform better

than the implementation in CPLEX that is well-engineered codes.

If we take a step back and consider a vanilla implementation of Benders decomposition

algorithm, i.e, without using CPLEX Benders implementation or its lazycallback, we would

expect warm-start to reduce the number of times that the master problem is solved. In our

case, the master problem only involves the investment decisions, which are relatively easy

to solve. The benefit of warm-start may not be as significant as in other applications where

the master problem is the bottleneck.

As for the nested Benders decomposition algorithm, warm-start should be able to reduce

the number of forward passes as suggested by the reviewer. Since the forward pass involves

both the investment decisions and the operating decisions, the time saving should be more

significant than warmstarting the Benders decomposition. However, the iteration/time limit

is not the main reason why nested Benders decomposition does not return a tight optimality

gap. The main reason is that all the integer variables after year one have to be relaxed in

nested Benders. The tightest lower bound that can be obtained using the nested Benders is

weaker than that of the Benders decomposition. The other reason why nested Benders is slow

is because of the Pyomo/Python-based implementation is not as fast as using the CPLEX

Benders implementation in model generation. Due to these two fundamental limitations,

although warm-start should improve the performance of the nested Benders decomposition

by decreasing the number of forward passes, we do not expect the improved nested Benders

algorithms to perform better than the Benders decomposition by CPLEX.

342



343

Appendix F

Chapter 9 supplementary material

F.1 Proofs of the Theorems

F.1.1 Proof of Theorem 1

Proof. It suffices to prove that for any feasible solution to (FD) it is always possible to

construct some feasible solution to (RD) that yields the same objective value. Suppose (xt,

yt,d, ∀t ∈ T , d ∈ D) is a feasible solution of (FD). Suppose that by applying the k-means

clustering algorithm, set D is partitioned into |K| clusters, i.e., D = ∪k∈KDk where set Dk

represents the days in the kth cluster. Constraint (9.4b) can be rewritten as

At,dxt +Btyt,d ≤ bt,d ∀d ∈ Dk (F.1)

for all k ∈ K, t ∈ T . We aggregate all the constraints in (F.1) for a given cluster k in year t

and obtain

(
∑
d∈Dk

At,d)xt +Bt(
∑
d∈Dk

yt,d) ≤
∑
d∈Dk

bt,d (F.2)

Divide (F.3) by |Dk| on both sides we have

At,kxt +Bt(

∑
d∈Dk

yt,d

|Dk|
) ≤ bt,k (F.3)
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because by definition of the k-means clustering algorithm, At,k, bt,k are the mean values of

{At,d,∀d ∈ Dk} and {bt,d,∀d ∈ Dk}, respectively.

It is easy to see that if we set yt,k =
∑

d∈Dk
yt,d

|Dk|
for all k ∈ K, t ∈ T . (xt, yt,k, k ∈ K, t ∈ T )

is a feasible solution of (RD) that yields the same objective value as (xt, yt,d, ∀t ∈ T , d ∈ D)

for problem (FD). This completes the proof.

F.1.2 Proof of Theorem 2

Proof. Since the clustering error is zero, the input parameters in each cluster must be the

same. Therefore, in the fullspace problem (RD), the optimal operating decisions for the days

in each cluster k ∈ K are the same, i.e., yt,d = yt,d′ for any d, d′ within the same cluster.

The decisions within each cluster can be aggregated without any sacrifice of optimality. The

aggregated problem is exactly the problem (RD) without relaxing the integrality constraints

on yt,k.

F.1.3 Proof of Theorem 3

Proof. Since there is only one cluster and one year in the planning horizon, the clustering

error of the cost-based approach being zero implies that the optimal investment decisions of

all the days are the same if the CEP problem is solved for each day in D individually. Denote

this investment decision as xcommon. Clearly, xcommon is optimal for (FD). Furthermore, (RD)

is solved using the medoid of the single cluster that corresponds to one of the days in D. By

definition, xcommon is also optimal for (RD).

F.1.4 Proof of Theorem 4

Proof. Using the same proof reasoning as in Theorem 1, the variables and constraints cor-

responding to K1 can be aggregated to produce the variables and constraints corresponding

to K2 and the inequality follows.
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