
Computational Methods for
Reconstructing and Analyzing
Polycrystalline Microstructures

by

Yufeng Shen

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
at

Carnegie Mellon University
Department of Physics

Pittsburgh, Pennsylvania

Advised by Professor Robert M. Suter

February 9, 2022



2



Abstract

The ability to predict the performance and behavior of metals and other polycrys-
tals in different conditions has huge impacts in real life. Besides phenomenological
studies, finding the relationship between material microstructure and macroscopic
properties is also indispensable, which relies on modern characterization techniques
and complex computational tools. This thesis describes some recent developments
of the computational tools for microstructure reconstruction and analysis. The grain
coarsening phenomenon is studied in an α-phase Iron sample. We designed a new
method to determine grain boundary energies (GBE) from triple junction geometries.
The synchrotron based imaging technique Near-field High Energy X-ray Diffraction
Microscopy (nf-HEDM) is extended to reconstruct intragranular strains. Meanwhile,
A neural network based method is developed for Electron Backscatter Diffraction
(EBSD) indexing, which is another popular characterization technique.
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Chapter 1

Introduction
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1. Yu-Feng Shen, Reeju Pokharel, Thomas J Nizolek, Anil Kumar, and Turab
Lookman. Convolutional neural network-based method for real-time orientation
indexing of measured electron backscatter diffraction patterns. Acta Materialia,
170:118-131, 2019. (https://doi.org/10.1016/j.actamat.2019.03.026)

This paper is reproduced in Chapter 5.

2. Yu-Feng Shen, Xiaoting Zhong, He Liu, Robert M Suter, Adam Morawiec,
and Gregory S Rohrer. Determining grain boundary energies from triple junc-
tion geometries without discretizing the five-parameter space. Acta Materialia,
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This paper reproduced in Chapter 3.
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1.1 Background

Polycrystalline materials are solids which are composed of many single crystals (called
grains) each with different orientations, shapes and even phases. The positions, sizes,
shapes, orientations and phases of all grains are termed microstructure of the polycrys-
tal. Metals and other polycrystals are widely used in modern society, examples range
from buildings, bridges, to engine blades. Therefore, development of new metals, un-
derstanding their properties and control their behavior in different circumstances, are
always important research areas and will have huge impacts on economy and human
condition. It is well known that the macroscopic properties of polycrystals do not
only depend on composition but also microstructure. So, people always endeavor to
find physics-based models to explain the metal behaviors in thermal treatment (like
recrystallization and grain coarsening phenomena), and their mechanical performance
(like fatigue and cracking phenomena). Understanding the fundamental theories and
having more accurate models will significantly benefit materials discovery and engi-
neering.

Measuring the microstructures and observing their responses to thermal and me-
chanical treatments are essential to validate those theories and models for polycrys-
tals. These valuable data sets have become available recently by virtue of the sub-
stantial progress in the characterization techniques. Among them, a technique called
near field High Energy Diffraction Microscopy (nf-HEDM) utilizes the penetrative
high energy X-rays (10 keV ∼ 100 keV) as a non-destructive probe and reconstructs
the microstructure from the diffraction images. As expected, sophisticated numerical
and computational tools are necessary in the reconstruction procedure and to take
advantage of these data sets, and these are the major topics to be covered in this
thesis.

1.2 Thesis Outline

Our discussion of computational methods in reconstructing and analyzing polycrys-
talline microstructures consists of four parts. Chapter 3 and Chapter 2 focus on the
conputational methods for analyzing microstructure, Chapter 4 and Chapter 5 focus
on the computational methods for reconstructing microstructures from experimental
datasets.

Chapter 2 provides a case study for grain coarsening in an α phase iron sample.
The three dimensional microstructure of this sample was measured before and after
annealing using high energy x-ray diffraction microscopy by Siddarth Maddali, a for-
mer graduate student in our group [5]. 4,971 grains that are entirely inside the sample
are segmented in the initial state and 3,905 remain after annealing. A matching pro-
cedure was used to track 3,299 grains between the two states while the remainder
were either consumed by neighbors or the tracking algorithm failed to correlate them.
During the single annealing treatment, the average grain volume increased by 13%.

2



Statistical analysis in each state yields subtle changes in the grain size and nearest
neighbor number distributions. Correlating topological features with volume changes
between states, the average behavior is seen to be consistent with an isotropic model of
curvature driven coarsening, but the dispersion of volume changes in each topological
class is comparable to the overall trend in the average behaviors.

Chapter 3 describes the numerical methods for determining the grain boundary
energy distribution (GBED) from the microstructures of polycrystalline materials.
The methods assume that triple junctions (the region where three grain boundaries
intersect at a line) are in local mechanical equilibrium, which is described by the
Herring equation, and can be expressed using the Hoffman-Cahn formalism of the
capillarity vector. This chapter reviews some basics about the five-parameter space of
grain boundaries, and then explains a conventional method for determining the grain
boundary energies which is based on discretizing the five-parameter space. After that,
we propose a new numerical method which minimizes the difference between similar
boundaries in the dataset while obeying the equilibrium equation at triple junctions.
The advantages of the new method are then demonstrated on synthetic data sets. An
application to a MgO dataset is also presented.

Chapter 4 reviews the basics of X-ray diffraction and explains the experimental
setup of nf-HEDM along with the forward modeling method, which is the algorithm
that reconstructs microstructure from diffraction images. We extend this algorithm
to reconstruct not only the orientation but also the strain in the 3D volume. This
new reconstruction routine is then tested on synthetic data and applied to data from
a Ti7Al sample.

Chapter 5 works on another commonly used technique for obtaining spatially re-
solved microstructural information from polycrystalline materials, Electron Backscat-
ter Diffraction (EBSD). We have developed two convolutional neural network ap-
proaches based on domain transform and transfer learning to reconstruct crystal
orientations from electron backscatter diffraction patterns. Our models are robust
to experimentally measured image noise and index orientations as fast as the high-
est EBSD scanning rates. We demonstrate that the quaternion norm metric is a
strong indicator for assessing the reliability of the reconstructions in the absence of
the ground truth. We demonstrate the applicability of the current methods on a
tantalum sample.
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Chapter 2

Grain Coarsening in α-phase Iron

2.1 Introduction

Many condensed matter systems undergo coarsening processes in which the average
cell size in a large ensemble increases over time as large cells intrude on and consume
smaller cells. This process is typically driven by reduction in the total interfacial
energy, and, thus the total interfacial area. Examples are as diverse as foams, [6, 7, 8]
phase separating liquids and solids, and polycrystalline aggregates. [9, 10, 11] For
fluid systems, all interfaces have the same structure and properties, so the driving
forces for motion can be modeled with a single homogeneous interfacial tension and
mobility. Curved boundaries are expected to move toward their centers of curvature
since this results in reduced local boundary areas. This flattening of boundaries tends
to lead to polyhedral domain shapes.

For the case of coarsening in polycrystalline microstructures, the homogeneity
condition is broken due to anisotropic crystal properties which result in the ener-
gies and mobilities of crystal-crystal interfaces being dependent on both the relative
crystal orientations and the local orientation of the interface normal. Thus, bound-
aries between crystals or grain boundaries are characterized on the mesoscale by five
parameters: for example, three disorientation parameters defining the symmetry re-
duced relative orientations of crystal unit cells and two parameters that define the
local interface normal relative to unit cells of the two crystals. These (or alternative)
sets of five degrees of freedom define the “grain boundary character” (GBC) [12] and
coarsening is expected to depend on the distribution (GBCD) and connectivity of
the boundary types. Finally, it should be noted that the interface motions described
here are expected to dominate microstructure and boundary evolution only after bulk
(grain interior) defect densities and their associated bulk excess energies have been
reduced to negligible values. However, local irreducible strain fields associated with
grain boundaries may well influence boundary energies and mobilities.

Because microstructure plays a key role in determining the properties [13, 14, 15]
of polycrystalline materials that are used throughout modern societies, coarsening or
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“grain growth,” has been studied experimentally and theoretically for many decades.
[16, 17, 18, 19] For two dimensional systems, the basis for most theoretical and ex-
perimental investigations[20, 21] is the von Neumann-Mullins “n− 6 rule”[10, 11],

dA

dt
=
π

3
Mγ(n− 6), (2.1)

where dA
dt

is the area changing rate of the “two dimensional grain”, n is the number of
grain sides, M is the mobility and γ is the excess energy per unit length of boundary.
This predicts that cells with more than six sides (or neighbors) will grow while those
with fewer than six sides will shrink and eventually disappear. The simple form of
(2.1) results from the assumption of homogeneity of boundary properties (hence the
single values of M and γ) and it assumes mechanical equilibrium at vertices which
implies triple point vertex angles of 120◦.

Palmer et al. [22] compared (2.1) with experimental observations of thin organic
polycrystalline films and found significant deviations from the expected vertex angles
but nevertheless found that the trend in average growth rates in each topological
class agreed well; however, large deviations, of the same order as the overall trend,
were observed within each class. One suggested cause of deviations from n − 6 was
the heterogeneity in boundary properties. Since the optical measurement did not
determine crystal orientations, it was not possible to classify the boundaries.

More than 50 years after von Neuman’s and Mullins’ work, a rigorous three dimen-
sional (3D) generalization of (2.1) has been obtained by McPherson and Srolovitz, [9]
the “M-S relation,”

dV

dt
=
π

3
Mγ (M− 6Lgrain) , (2.2)

whereM is the total triple line length around the grain and Lgrain is the mean width
of the grain. [9] Again, this result is based on homogeneous, isotropic grain boundary
properties and therefore on the expectation of uniform 120◦ dihedral angles at triple
lines where three grains meet.

It is only within the past decade that experiments have begun to be able to watch
internal three dimensional microstructures evolve over time. The key development
has been the application of diffraction methods using high flux, tunable synchrotron
x-rays. Spatially resolved diffraction techniques have been developed that are able
to image microstructures in three dimensions including crystalline grain unit cell
orientations, grain shapes and positions; the non-destructive measurements allow
collection of images of volumes of interest in successive states of evolution. [23, 24,
25, 26, 27] These measurements yield novel data sets spanning large ensembles of
grains and grain boundaries. Extraction of either statistical characteristics of grains
or local characteristics such as individual boundary motions requires development of
trusted computational tools and careful consideration of measurement resolution in
both position and orientation degrees of freedom.

Two distinct data collection methods have been used in the above studies. Zhang
et al. [28], and McKenna et al. [29] apply diffraction contrast tomography (DCT)
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[26] using data collected at the European Synchrotron Radiation Facility. Sun et al.
[30] use a commercial, laboratory based DCT system. [31] Work at the Advanced
Photon Source has applied near-field high energy diffraction microscopy (nf-HEDM)
[24, 32, 33] which is an implementation of 3DXRD. [25] While nf-HEDM uses a line
focused beam to illuminate a series of quasi-two dimensional cross-sections which are
then stacked to yield three dimensional grain geometries, DCT uses a “box” beam to
illuminate a volume of microstructure. Reconstruction approaches are quite different
[4, 26] but, for the well ordered grain structures of interest to coarsening, results have
comparable resolutions of grain orientations and grain boundary positions.

Recent observations of coarsening using the above diffraction based methods in-
clude studies of iron, [28, 30, 5] nickel, [34, 35] and strontium titanate. [36] Similar
work was carried out using absorption tomography combined with grain boundary
segregation in a titanium alloy. [29] Real time growth of individual selected grains
based on evolution of a single spatially resolved Bragg peak have also been recorded.
[37] Direct comparisons to computational phase field or finite element models have
been carried out in a small number of cases. [29, 36]

Here, we present statistical analysis of data, also studying alpha iron, first pre-
sented in the thesis of S. Maddali. [5] This data set comprises a larger statistical sam-
pling of grains in than previous work, by roughly a factor of 10, and therefore yields
improved statistical distributions, but only two time steps are measured compared to
15 in [28]. Further work addressing boundary motions and making comparisons to
computational models of evolution can be expected to follow in all of these cases.

2.2 Methodology

2.2.1 Sample preparation and data collection

The sample material was electrolytically grown high-purity iron (obtained from the
Center for Iron and Steelmaking Research at Carnegie Mellon University) and with an
elongated grain structure. At temperatures below 912 C, iron exists in its [-allotropic]
alpha phase form, which has a body-centered cubic (BCC) crystal structure. The
requirement of (statistically) isotropic grain boundary inclinations required the de-
struction of the elongated grain structure followed by regrowth through annealing and
quenching. Accordingly, the sample was rolled in a mill from an original thickness of
about 5 mm to about 1 mm and annealed in a tube furnace for two hours at 600 C in
a forming gas atmosphere (N2+3%H2 ) and then quenched. A sample of approximate
dimensions 1× 1× 30 mm3 was cut from this material.

Measurements were performed using the nf-HEDM apparatus in the E-hutch of
beamline 1-ID at the Advanced Photon Source at Argonne National Laboratory.
[24, 33] A 65.351 keV x-ray beam was focused vertically to a ≈ 1.5 µm full width
at half maximum line beam. The beam size was limited in the horizontal direction
to 1.5 mm using slits. As the sample was continuously rotated about a vertical
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axis perpendicular to the beam plane, images of diffraction spots were collected over
successive angular intervals of width δω = 0.25◦. The total rotation range was 180◦

over which typical orientations generate roughly ≈ 180 observed Bragg peaks. The
high resolution imaging detector used a scintillator (LuAG) whose scintillation light
was optically coupled to a 2k×2k CCD camera; using a 5X objective lens, the effective
pixel size was 1.54 µm. This rotation procedure was repeated at two different sample-
to-detector distances and the data collection was repeated for multiple equally-spaced
sample layers by translating the sample perpendicular to the beam; in this manner
diffraction data from an entire volume was collected. Here, 65 layers with 3µm spacing
were measured, so a total volume of about 1 mm× 1mm× 0.195 mm3 was measured.
After the first volume measurement, the sample was removed from its mount and
annealed in a tube furnace at 600 C for half an hour again using a forming gas
atmosphere. The sample was replaced in the HEDM apparatus and the same volume
of the sample was measured again. For further details of the sample and procedure,
the reader is referred to the Ph.D. thesis of Maddali [5].

2.2.2 nf-HEDM reconstruction, volume registration and grain
segmentation

The reconstruction of sample microstructure is performed with the forward modeling
software IceNine [4, 24] after image analysis that separates diffraction signals from
background. [38] A critical feature of the image analysis is the use of a Lapacian-
of-Gaussian edge detection algorithm that has been shown to yield diffraction spot
shapes reflective of projected images of each diffracting grain cross-section. [39] For
each measured layer, the reconstruction was performed on a simulation space which is
larger than the illuminated sample cross-section. A mesh of s = 1.56 µm side-length
equilateral triangles spanned the simulation space; each triangle encloses an area
corresponding to a square with side length 0.581 µm. In each layer, there are about
106 triangular voxels. For each triangular element, the assigned orientation is that
which generates the maximum overlap between simulated and experimental diffraction
spots. For mesh elements near grain boundaries, even at the optimal orientation, the
simulation will miss some diffraction spot edges due to detector discretization and
image analysis noise; this leads to a decreased confidence or overlap metric. [24]
Similarly, diffraction signals from two (or more) neighboring grains’ orientations can
each generate finite overlap of simulated diffraction. The optimization algorithm
simply picks the orientation with maximal overlap for each mesh element. The large
number of Bragg peak observations has the effect of signal averaging over the various
noise sources and leads to ∼ 1 µm accuracy in relative grain boundary positions
within the reconstruction planes. [39]

The open source software package, DREAM.3D, [40] was used to segment the
reconstructed data into individual grains. Before using DREAM.3D, the data were
down-sampled from the set of reconstructed layer-by-layer .mic files to a single .h5ebsd
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Table 2.1: Numbers and dimensions of grains in two sample states.

State Total Internal Internal Grains
VT (107µm3) 〈V 〉(104µm3) Deff (µm)

0 10,927 4,971 5.96 1.20 28.4
1 9,224 3,905 5.28 1.35 29.6

file, with 3× 3× 3 µm3 cubic voxels; orientations were assigned as that of the nearest
voxel in the .mic files. The orientation of each voxel is compared to its neighbors (in
3D) and contiguous sets of voxels with orientations that differ by ≤ 2◦ were grouped
together as grains; the minimum size of accepted grains was set to eight voxels. Those
groups with fewer than eight voxels (i.e., < 216 µm3 or < 7.4 µm spherical equivalent
diameter) were treated as gaps in the microstructure. Less than 0.1% of voxels were in
such gaps; gaps were then eliminated by dilating neighboring grains uniformly using
a procedure in DREAM.3D. The aggressive down sampling described here yields a
hard lower cutoff in the grain size distribution at a level above the expected minimum
size to which the measurement is sensitive.

The analysis below is restricted to grains that are entirely inside the measured
volume in both states. First, any grain whose centroid lies outside the black boundary
in Fig. 2.1 is removed to avoid surface effects. Further, any grain that intersects the
top or bottom edge of the reconstructed volume is also excluded from analysis. This
method is similar to that used in [41] to avoid statistical bias from cut-off grains;
however, as discussed below, the procedure also preferentially eliminates large grains.
Global statistics are shown in Table 2.1. VT is the total volume occupied by internal

grains, 〈V 〉 is the average grain volume, and Deff = 2
(

3
4π
〈V 〉
)1/3

, is the average
spherical equivalent diameter (SED). Note that Deff is the SED of a grain with the
average volume, not the average of SED values. The nominal trimmed measured
sample volume is ≈ 1.3× 108µm3 in both states.

Because it is not possible to re-mount the sample in exactly the same position and
orientation after annealing, volume registration was required in order to correlate local
properties before and after annealing. Registration was done in two steps [5]:

1. Determine the single rigid-body translation and rotation that aligns a single
layer in the post-anneal volume with its corresponding layer in the pre-anneal
volume, and apply this transformation to all layers in the post-anneal volume.
This transformation was determined “by eye.”

2. Pick one grain that is present in both volumes and rotationally align the entire
post-anneal volume such that the two orientations of this grain coincide.

After this process, the angular alignment of the two volumes is within ≈ 0.1◦ which
is the expected experimental resolution. Figure 2.1 shows the final 3-D registered

8



reconstructions of the α-iron sample before and after annealing.

Figure 2.1. The measured sample volume, (a) before and (b) after annealing. Black lines
indicate schematically a trimming of the sample edges used to avoid the damaged surface
region that has anomalously small grains. Colors are according to the inverse pole figure
key shown and is referenced to the normal direction to the square cross-section.

2.2.3 Grain matching

Algorithm 1: Grain matching

parameters: MisorLim, V olRatLim, DistDiaLim

1 for grain Ai ∈ State 0 do
2 DA ← Diameter of Ai;
3 SA ← Centroid of Ai;
4 VA ← Volume of Ai;
5 for grain Bj ∈ State 1 do
6 SB ← Centroid of Bj;
7 if |SA − SB| ≤ DistDiaLim×DA then
8 VB ← Volume of Bj;
9 if 1

VolRatLim
≤ VA/VB ≤ VolRatLim then

10 if Misorientation of Ai and Bj ≤ MisorLim then
11 Match Bj to Ai;
12 end if

13 end if

14 end if

15 end for

16 end for

To study coarsening dynamics, it is necessary to identify the same grain in different
time step snapshots. For each grain in one state, we search every grain within a
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surrounding volume of the other state and, if both the misorientation angle and
volume ratio are within specified thresholds we call the pair a match. A detailed
description is provided in Algorithm 1.

To ensure robustness, grain matching is performed in both directions; that is, for
each grain in the initial state, we search for the same grain in the final state and
for each grain in the final state we search for the same grain in the the initial state.
Only matched pairs that are the same in both directions are kept for further analysis.
The values 0.5◦, 10, 2 were chosen as MisorienLim,VolRatioLim,DistToDiaLim, re-
spectively. These relatively strict limits result in 3299 pairs of matched grains. 30.2%
of grains in the initial state are not matched in the annealed state whereas only 12.4%
of final state grains are not located in the initial state. This disparity is largely at-
tributed to small grains being consumed by larger ones and thus not existing in the
annealed state. Assuming that new grains are not nucleated, the 12.4% missing in
the reverse matching must be characteristic of the difficulty in matching small grains
(many of which exist in both states since some grains are always shrinking and dis-
appearing). Further characterization of matched and unmatched grains is given in
2.3.3.

Figure 2.2 shows some examples of matched grain pairs. It is seen qualitatively
that, in most cases, grain boundaries move toward their centers of curvature as ex-
pected for capillarity driven growth.

101

111

001

Figure 2.2. Examples of matched grains, top row before annealing and bottom row after
annealing. The roughness of the surfaces is due to the discrete voxel size; no smoothing
has been performed. The side length of each cubic voxel is 3 µm. Colors correspond to the
crystal unit cell orientations according to the inverse pole figure scheme illustrated at
bottom right.
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2.3 Results

A variety of data sets characterizing three dimensional statistics of grains in specific
states or “snapshots” are in the literature, for example, see [28, 41]. Non-destructive
measurements allow comparisons of such statistics in multiple snapshots of the same
material volume. The next section presents analyses that do not require tracking
of individual grains but which do require the restriction to grains that are entirely
enclosed within the sample and the measured volumes. The following section presents
statistical analyses of the evolution of individual grains.

2.3.1 Statistical distributions of grain characteristics

Grain size distributions. The number of internal grains decreased from 4971 to
3905 with annealing; as listed in Table 2.1 this corresponds to an average grain volume
increase from ≈ 11, 993 µm3 to ≈ 13, 533 µm3 or a ≈ 13% volume increase or a 4%
increase in linear dimension.

Individual grain volumes are extracted from the data sets as Vg = VvoxNg =
(27 µm3) Ng, the volume per voxel (see Sec. 2.2.2) times the number of voxels assigned
to the grain. As shown in Fig. 2.3a, the measured grain volumes in each state span
more than three decades even with the lower end cutoff at Ng = 23 = 8 contiguous
voxels. Similarly, the large number of grains in the data set allows the probability
density to be resolved over at least four decades. The observed distribution of volumes
is monotonically decreasing. A more conventional “size distribution” in terms of
spherical equivalent radii is shown in Fig. 2.3b; not surprisingly, this distribution
extends over about one order of magnitude as seen in numerous other data sets.
[28, 29, 41] The conservative small size cut-off used in this analysis results in the plot
terminating just below the peak value. Error bars in both plots are derived from
Poisson counting statistics related to the number of entries in each displayed bin. We
next discuss the interpretation of the distributions and the relation between them.

Since the grain volume is a continuous variable, an appropriate way to character-
ize the distribution is with a probability density function, P (V ), where P (V )dV is
the probability of a grain having size V within the interval dV . In a large ensemble of
N grains, the number within dV is dN = NP (V )dV . The goal is to approximate the
distribution, P∞(V ), that would be observed in a very large (or infinite) ensemble.
Fig. 2.3a plots empirical approximations to this distribution function for each of the
measured states: PN(V ) ≈ ∆N

N
1

∆V
with ∆N being the number of grains within ∆V

of the nominal volume and N the total number of grains in each state. In Fig. 2.3a,
bin widths are chosen such that ∆V

V
≈ 0.26 (more precisely, V+∆V

V
= 100.1) which

assures that the apparent PN(V ) is roughly linear over each bin interval and the dif-
ferential approximation is reasonable. PN(V ) is seen to be monotonically decreasing
and changes only slightly during the observed coarsening. From this logarithmic plot,
it is clear that the measured PN(V ) does not follow a simple power law form. The
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observation that there are many grains with small volumes is reasonable since, during
coarsening, there are always grains that are tending to zero volume as they are being
consumed by larger grains.

Fig. 2.3b is a simple histogram of reduced spherical equivalent radii. Note, how-
ever, that volume is the measured physical quantity and the grains are far from being
spherical; the radius, while being easily computed from the volume measurement
and convenient for some purposes (see below), is not a physical characteristic of the
grains. Nevertheless, Fig. 2.3b shows an apparent peak around R/〈R〉 ∼ 0.4 which
is qualitatively consistent with other data sets, see, for example, [41, 28, 30, 42] Figs.
2.3a and b are consistent with each other since the probability density functions for
radius, Pr, and volume, PV , are related by Pr(r) = 4πr2 PV (V (r)). The factor of
4πr2 is present due to the fact that the volume interval covered by dr scales with the
surface area of the sphere.

At least two biases could be present in the size distributions shown in Fig. 2.3.
The maximum grain size included is ≈ 5× 105 µm3 which corresponds to a spherical
equivalent diameter (SED) of 100 µm which is comparable to the vertical size of the
measured volume (He = 195 µm). The center of such a spherical grain would have
to be well centered in the measured volume in order to not be eliminated from the
statistics used here. A rough correction that accounts for the reduction in volume
available for the center of mass of a spherical grain of diameter D is

P∞(V )dV ≈ dN

N

1

(1− D
Le

)2 (1− D
He

)
, (2.3)

where D = 2
(

3
4π
V
)1/3

and Le is the measured square cross section side length and
He is the height of the measured volume. Open symbols in Fig. 2.3 show these
corrected values for the post-annealing state. As seen in Fig. 2.2, typical measured
grains are not particularly spherical and this may increase or decrease the appropriate
correction factor depending on anisotropy relative to the shape of the anisotropic
measured volume.

The second possible bias in Fig. 2.3 occurs at small grain sizes where diffraction
signals may become weak and lead to reduced sensitivity. The cutoff in grain size
described in Sec. 2.2.2 helps to assure that this effect is not present or not large in the
distributions shown. In fact, using a less aggressive cutoff shows a continued increase
in the number of observed grains below the volume limit in Fig. 2.3a.

Over most of the volume range, the shape of Fig. 2.3a is essentially unchanged
while in the large grain limit a subtle (on the logarithmic scale) increase is seen which
corresponds to the increased average grain volume. The finite volume correction tends
to make the logarithmic plots more power-law like, but there remains significant
curvature over the entire three and a half decades of volume variation. Without
additional anneal states, it is not possible to speculate on a trend toward a power law
behavior.
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(a)

(b)
216

216

Figure 2.3. Estimated grain volume probability densities, P (V ), with units of µm−3, in
each of the two measured states. Closed symbols are directly computed from the data
while open symbols are corrected by (2.3). b) The reduced radius distributions
corresponding to (a) without the finite volume correction. See the text for discussion.
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Figure 2.4. The distribution of the number of faces or nearest-neighbors per grain in each
measured state. The frequency is the number of occurrences of F , NF , divided by the
total number in each state. Error bars are

√
NF /Ntot. There exist (but are not shown)

grains that have values as high as F = 80. The inset shows the corresponding distribution
for the 3299 matched grains whose evolution is discussed in Sec. 2.3.2.

Number of faces distribution The number of faces or nearest neighbors, F , of
a grain is a fundamental topological quantity. [10, 11, 43] The distribution of F
over the measured grains is shown in Fig. 2.4. Note that the inclusion of the large
number of small, unresolved grains would increase the frequency of small neighbor
numbers if they could be reliably included and a similar effect may reduce the large
F limit of the distribution due to the finite measurement volume. For the included
grains, the average number of faces is 〈F0〉 ≈ 12.0 in the initial state, and 〈F1〉 ≈ 11.8
in final state; the peak is at F ≈ 7.5 in both states. This distribution, like the
volume distribution, is essentially unchanged under the annealing. There is a long
tail containing a small number of grains having as many as 80 neighbors (not shown).
Not surprisingly, the grains in the tail of this distribution are also in the large grain
tail of the volume distribution. The shape of the distribution shown here is similar
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to those seen in Fig. 4b of Zhang et al. [28]; counting statistics do not allow detailed
comparisons to their evolving distributions. Additional statistics are presented in
2.3.3.

2.3.2 Statistical characterization of grain evolution

Changes in grain size are expected to correlate with topological characteristics of
grains and their neighborhoods. While the average behaviors shown below appear
consistent with the isotropic theory, the variations within each topological class are
found to be at least comparable to the overall variation in the average behavior.

Dependence on number of grain faces As a first statistic, consider changes in
the spherical equivalent diameters of grains as a function of the grains’ number of

nearest neighbors. The spherical equivalent diameter is D = 2
(

3
4π
Vg
)1/3

and we use
subscripts, 0 and 1 for the initial and annealed states. Note that most grains are
far from spherical but D can be used as a linear characterization of size, growth, or
shrinkage.

Fig. 2.5(a) shows diameter differences, ∆D = D1 − D0, for each of the 3299
matched grains as a function of F0, the number of faces in the initial state. Since F0

correlates with grain size and large grains are expected to grow, a positive correlation
of ∆D with F0 is expected. The appropriate trend in the mean is apparent in the
figure, apart from the upturn at small face numbers (see below). However, for grains
in each class, the standard deviation of diameter changes is comparable to the overall
variation in the mean. The large standard deviations at F0 = 46 and 48 and the
lack of standard deviations at larger numbers are due to the fact that only one or a
few grains exist at these face numbers. It is apparent that at each value of F0, some
grains grow while others shrink. In spite of the fact that large F0 correlates with
large grains, this metric alone is not predictive of even the binary question of growth
versus shrinkage of a particular grain.

The upturn in ∆D at small F0 may be counter intuitive, but can be attributed to
the fact that only grains that survive the annealing are included. Many small grains
(typically with small F0) should contribute ∆D = −D0. This bias can be removed in
a statistical way. As stated above, there are 30.2% of initial state grains that are not
paired in the forward matching and 12.4% in backward matching. Again assuming no
nucleation, 12.4% is the estimated error rate in matching and the remaining 17.8%
(885 grains) should be roughly the number of grains that disappeared. We randomly
choose 885 of the forward matching unpaired grains and assume that they had ∆D =
−D0. Including these yields Fig. 2.5(b) with intuitively reasonable average behavior
of shrinking grains with small F0 and growing grains at large F0.

The mean growth curves in Fig. 2.5 cross zero at F stagnent
0 ≈ 19, larger than

〈F 〉 ≈ 12. Fig. 2.4 shows that about 80% of grains have F < F stagnent
0 ; nevertheless,

only roughly 50 % of grains shrank and 50% grew. A recent isotropic phase-field
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Figure 2.5. Statistics of diameter changes for grains with different numbers of nearest
neighbors (or faces) in the initial state. Pairs of face numbers have been binned for clarity.
The mean (blue points) and standard deviations (red error bars) are shown for each grain
class. Green error bars are the standard deviations of the estimated mean values, which
are 1√

n
times the standard deviations (red error bars), where n is the number of grains in

each bin. (a) includes only matched grains whereas (b) also includes a statistically
estimated correction for grains that disappear and therefore have ∆D = −D0 (see text for
discussion).

simulation [42] yields both a zero average growth rate and an average face number of
≈ 15 for a variety of initial grain sizes and face number distributions and at different
time points. These distinctions are discussed in Sec. 2.4.

Dependence on grain neighborhoods Under the assumption that grain bound-
ary interface energies and mobilities are independent of the five crystallographic pa-
rameters specifying grain boundary character, grain growth process should be de-
scribed by the MacPherson-Srolovitz model. [9] Mullins and von Neumann [10, 11]
showed that the evolution of grain boundary interfaces is driven by the local mean
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curvature of that boundary, and as a result, the total volume growth rate is given by

dV

dt
= V 1/3Mγg (2.4)

g = − 1

V 1/3

∫
Faces

(
1

R1

+
1

R2

)
dS (2.5)

where M is a mobility constant for the grain boundary, γ is the excess interfacial
energy per unit area and g represents the normalized integral mean curvature of
the grain faces. R1 and R2 are local radii of curvature of the boundary and dS is
an element of interfacial area. It is based on (2.4) and (2.5) that MacPherson and
Srolovitz were able to obtain (2.2).

Figure 2.6. Changes of the excess grain face number. Each point represents an individual
grain. See discussion in the text. The outlier in the red box is discussed below in Sec.
2.3.4

To compare with our experimental data, Eq. (2.4) is converted to integral form,
∆V 2/3 = 2

3

∫
Mγg dt. Earlier work by Rowenhorst et al. [41, 44] showed empirically

that g is, at least in an averaged sense, proportional to F − m(F ), where F is the
number of faces of a grain and m(F ) is the average number of faces of that grain’s
nearest neighbors; we refer to F −m(F ) as the “excess face number.” As shown in
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Fig. 2.6, for most of the grains, the value of F −m(F ) does not change dramatically
during the annealing. For grains with a given value in one state, the mean value in
the other state is the same within a standard deviation of ≈ 4 . We infer that there
should be a roughly linear relation between g and F −m(F ) and therefore that

∆V 2/3 = V
2/3

1 − V 2/3
0 ∝

∫
[F −m(F )] dt ≈ (F1 −m(F1)) ∆t. (2.6)

Figure 2.7. Histograms of ∆V 2/3 in (2.6) for three excess face numbers, F −m(F ). Here,
F = F1 is taken from the annealed state.

Fig. 2.7 demonstrates that the isotropic prediction (2.6) is not obeyed since for
given values of F − m(F ), a wide distribution of values of ∆V 2/3 is observed. On
the other hand, there is a subtle shift of the histograms toward positive ∆V 2/3 as
the excess face number increases. It is also clear from these histograms that the total
number of grains (integral under the curves) decreases strongly with increasing excess
face number.

Fig. 2.8 shows the means and standard deviations of distributions like those shown
in Fig. 2.7 over a broad range of excess face number. The range −20 ≤ F1−m(F1) ≤
20 corresponds a range over which the number of entries is large enough that the
statistical result is robust. Remarkably, the mean values of the broad distributions
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Figure 2.8. Test of the linear relation of equation (2.6). (a) shows matched grains only
while (b) includes a statistically estimated correction, based on the size distribution of
unmatched grains, for grains that were consumed during annealing; these grains were
assigned V1 = 0. The same as Fig. 2.5, blue points and red error bars are the means and
standard deviations for each bin. Green error bars are the standard deviations of the
estimated mean values.

do appear to roughly correlate with Equation (2.6). The mean values roughly follow
a straight line which crosses zero volume change near F1 −m(F1) = 0. However, the
region F1 −m(F1) < 0, where neighbors have more faces than the grain in question,
appears to deviate from the linear trend. As discussed with respect to Fig. 2.5, this
is likely due to neglect of disappearing grains. Performing the same correction as
in that case yields Fig. 2.8(b) with an improved linear region around zero volume
change. The large standard deviations are consistent with Fig. 2.7 and are seen to
be comparable to the overall trend in the mean.

Again in this case, the variation in response within each category, indicated by the
standard deviation bars, is large and crosses zero volume change in almost every class.
The average behavior is again not a good predictor of a particular grain’s response.
We discuss this failure, which is consistent with prior work [22, 28] in Sec. 2.4; the
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next section gives anecdotal examples of unexpected behaviors.

20 10 0 10 20

F1 m(F1)

200

100

0

100

200

300
V
2
/3

1
V
2
/3

0
(
m

2
)

20 10 0 10 20

F1 m(F1)

200

100

0

100

200

300

V
2
/3

1
V
2
/3

0
(
m

2
)

Figure 2.9. Test of the linear relation of equation (2.6) with a smaller binning size. (a)
shows matched grains only while (b) includes a statistically estimated correction, based on
the size distribution of unmatched grains, for grains that were consumed during annealing;
these grains were assigned V1 = 0. The same as Fig. 2.5, blue points and red error bars
are the means and standard deviations for each bin. Green error bars are the standard
deviations of the estimated mean values.

A similar plot with smaller binning size is shown in Fig. 2.9. It shows some
fluctuations of the blue lines, which are the averaged values in the bins. Those
fluctuations result from counting noisy, therefore measuring large number of grains
(and tracking them) is essential to these and similar statistical analyses.

2.3.3 Other statistics

Statistical distributions Fig. 2.10 shows the distributions of disorientations at
grain boundaries, weighted by boundary area (the boundary area is calculated with-
out any smoothing, so this is larger than the real boundary area). Note that the
distributions are similar to the Mackenzie distribution, but are slightly larger than
random for low angle boundaries and there is a deficit near the peak at 45◦. These
features, as well as the peak at 60◦, reflect the anisotropic grain boundary energies
presented in Ref. [45]. As expected, the peak due to the low energy twin boundaries
at 60◦ is weaker than that found in fcc nickel. [32]
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(a)

(b)

degrees

degrees

Figure 2.10. Disorientation distribution with bin size equal to 0.5◦. The solid red line is
the Mackenzie distribution [1] for randomly oriented cubes. The distribution is essentially
unchanged during annealing.

Other important statistics are about grain faces. Fig. 2.11 confirms that on
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average larger grains have more faces than small grains. The dispersion in the SED
values here is smaller than the overall trend, in contrast to the growth characteristics
discussed in the text.

Fig. 2.12, similar to Fig. 7 of [41], shows that grains with small face numbers, F ,
are likely to be surrounded by grains having more faces; grains with F ≈ 18 have zero
excess face number, which is consistent with Figs. 2.5 and 2.8. Fig. 2.8 shows that
this value separates, on average, grains that grow from grains that shrink. However,
this criterion is not predictive for individual grains.These plots are similar to, but
with slightly different parameters from plots seen in, for example, Refs. [42, 41].

Matched grain pair characteristics The following figures show statistical analy-
sis of the grain pairs found through the analysis described in Sec. 2.2.3. These figures
validate the parameters used in the grain matching algorithm. Fig. 2.13a shows the
size ratios of paired grains. Of the tracked grains, roughly as many decreased in
size as increased. Of course, many grains disappeared or were consumed by others
(and therefore were not matched); such events break the near-symmetry and result
in increased average grain size.

Fig. 2.13b shows the ratio of center-of-mass displacements to the spherical equiv-
alent diameter in the final state. Most displacements are less than one diameter but
a few are substantially larger indicating asymmetric growth, which results primarily
from some small grains.

The misorientation angles between tracked grains in the initial state and after
annealing are shown in Fig. 2.13c to be generally less than 0.1◦ which is the nominal
resolution of the measurement. A small number of pairs extend up to the maximum
rotation allowed by the parameters used in the matching algorithm. The cut-off at
≈ 0.04◦ probably indicates residual misalignment of the two sample states.

Figs. 2.13d - 2.13f show individual center-of-mass displacement components in the
sample coordinate system. The mean values correspond to ≈ (−7, 10, 4) µm with x
and y being in the plane of each layer measurement and z being perpendicular thereto.
With average grain diameters of ≈ 30 µm, these displacements are consistent with
data of Fig. 2.13b. The fact that these component displacements are not centered on
zero may indicate a residual lack of alignment or simply the statistics of grains that
were tracked. Note that the average z-displacement corresponds to roughly one layer
spacing in the measurement; the in-plane voxel side lengths are 3 µm.

Next, we turn to the statistics associated with unmatched grains. Fig. 2.14a shows
the size distribution of unmatched grains in each state. Most contain fewer than 100
voxels in the initial state and an even tighter distribution in the final state. Many of
these grains may have been consumed during annealing and therefore are not present
after annealing. However, those grains having spherical equivalent diameters < 5 µm,
which is less than the offsets shown in Figs. 2.13d - 2.13f, also may have been rejected
by the matching algorithm. In addition, smaller grains may tend to have larger
volume change ratios, which is another reason that they could be wrongly rejected
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(a)

(b)

Figure 2.11. Relation between grain spherical equivalent diameter and the number of
nearest neighbors, F . The grains with the same numbers of neighbors are grouped
together and the mean (blue line) and standard deviation (red bar) are calculated for each
group. (a) initial state, (b) final state.
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(a)

(b)

Figure 2.12. Aboav-Weaire plots [2, 3] giving the relation between the number of
neighbors a grain has, F , and the average number of neighbors its neighbors have, m(F ).
Subscripts on F indicate (a) initial and (b) final anneal states. Grains with each neighbor
number F are grouped together and the mean (blue) and standard deviation (red) of
m(F ) for those grains are plotted. The dashed line separates regions in which m(F ) > F
(upper left) from the region with m(F ) < F (lower right).

by the matching algorithm. Fig. 2.14b shows the vertical position distribution of
unmatched grains, which is roughly uniform as expected. There are slightly more
unmatched grains at the bottom edge of the initial state and the top edge of final
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Figure 2.13. Distributions of matched grain properties. Horizontal axis units in (d) - (f)
are microns. (a) shows the ratio of spherical equivalent diameters, D1/D0; (b) shows the
distance between centers-of-mass in the two states divided by D0; (c) demonstrates that
the rotation angle required to bring matched grain orientations in the two states into
coincidence is typically less than 0.1 degree; (d) through (f) show the center-of-mass
displacements between states in Cartesian component form; the z direction is
perpendicular to the line focused x-ray beam plane.
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(a)

(b)

(μm)

Figure 2.14. Statistics of unmatched grains. (a) Shows the size distributions in each state
in terms of the number of 3× 3× 3 µm3 cells, each of which corresponds to about eight
reconstructed voxels. A small number of larger unmatched grains are not shown. (b)
Shows the locations in z coordinate in microns of unmatched grains.
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state; this is consistent with Fig. 2.13f which shows a ∼ 4 µm offset between the two
volume measurements.

2.3.4 Examples of anomalous behavior

The large standard deviations discussed above imply that local fluctuations in behav-
ior are important and that outlier behavior can be expected. While a comprehensive
analysis of grain boundary movements correlated with grain boundary character is
beyond the scope of this work, we show here examples of counter intuitive behavior.
These examples illustrate both intrinsic effects and ambiguities that arise from the
parameters associated with defining and matching grains.

Figure 2.15. Changes in diameter for all 3299 matched grains as a function of initial size.
Each point represents a single grain. A large grain, discussed in Sec. 2.3.4 that shrank
during annealing is identified by red box.

Big vs. bigger In a large ensemble, it is not surprising to find two or more large
grains that are nearest neighbors. Since “large” grains are expected to consume
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“small” ones, this is one mechanism to explain the observation that some large grains
shrink. Such behavior is entirely consistent with curvature driven growth laws, either
with or without the isotropy assumption. With the statistical correlation between
face number and grain size shown in Fig. 2.11, this effect can explain at least some
of the dispersion seen in Figs. 2.5 and 2.8.

Fig. 2.15 shows the change in spherical equivalent diameter for grains with a wide
range of initial diameters. There is only a weak average trend for larger grains to
grow, as is implicit in Fig. 2.5. Again, dispersion is the dominant feature. The red
box indicates an initially large grain (initial SED of 62 µm or volume ∼ 105 µm3) that
shrinks substantially during annealing. Fig. 2.16 shows this grain in yellow and two
of its neighbors (green and purple) that are even larger in the two states. The yellow
grain appears to be convex over much of the visible boundary and it is consumed by
the large and oddly shaped green grain beneath it as well as by the unseen grain in
front.

111

001

30 (μm)

Figure 2.16. The yellow grain is large but is seen to shrink during annealing. The bottom
of the green grain is cut off by the end of the measurement volume.

Anomalous grain division and matching Another interesting case is the grain
boxed in red in Fig. 2.6: in the initial state, it has a substantial excess number
of faces, F0 −m(F0) ≈ 35. But the grain boundary topology changed dramatically
during annealing so that F1 − m(F1) ≈ 0 afterwards. After some investigation, it
turns out that the relevant grain (light blue) was split in two by a growing small
grain, as shown in Fig. 2.17. The grain matching algorithm, when run in the forward
direction, matched the initial grain to one of the two split grains, resulting in the
dramatic reduction in excess face number. In the reverse direction, both split grains
are matched to the same initial whole grain. This anomalous behavior also caused
the unexpected drop in Fig. 2.5 between 40 < F0 < 50. The mystery, of course, is
why did the small yellow grain succeed in growing through its larger neighbor? An
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alternate explanation would be some sort of unexpected reconstruction artifact in one
or the other state.

Figure 2.17. The light blue grain in the initial state (left) is split in two (right) by a
growing small yellow grain. The flat bottom of the large dark blue grain in the annealed
state indicates that it reached the edge of the measurement volume.

Apparent grain rotation For grains with diameters of several microns and larger,
grain rotation is not expected during the coarsening process because the constituent
crystallites are highly constrained by their neighbors. The distribution of disorienta-
tion angles between matched grain pairs are shown in Fig. 2.13c. Most have ≤ 0.1◦

disorientations which is the resolution of the measurement and is therefore consistent
with zero. However, there are several cases (out of 3299 matched pairs) where the
disorientations are > 0.2◦. Fig. 2.18 explains one extreme case and shows that this
case is an artifact of the arbitrary threshold used in segmenting grains. The two
grains shown are separated by a low angle boundary, indicated by the black lines, of
≈ 1.8◦ disorientation. With the disorientation tolerance of 2◦ used in DREAM.3D
for segmenting voxels into grains, these two grains were grouped together as one.
The change of relative volumes caused by motion of the low angle boundary during
annealing caused the grain average orientation to change while the orientations of
each sub-grain did not change beyond the experimental resolution. Again, the grain
matching algorithm in this work uses the disorientation angle as one of its criteria,
so it may miss grain pairs whose average orientation rotated too much (> 0.5◦) due
to such low angle boundary motions.

29



30  (μm)

101

111

001

Figure 2.18. Two grains that have a low angle boundary of ≈ 1.8◦ disorientation,
indicated by the black lines. With the disorientation tolerance (= 2◦) used in
DREAM.3D, they were considered together as one grain, so the change of relative volume
ratio caused the change of the average grain orientation.

2.4 Discussion

Near-field high energy x-ray diffraction microscopy makes possible this statistical
study of α phase iron grain coarsening. Over 10,000 grains are reconstructed with
the forward modeling method [24, 4] in each of two sample states. The grain statistics
and changes thereof presented here are not dependent on resolution of individual grain
boundaries and therefore do not involve boundary smoothing and tracking. On the
other hand, the estimation of the probability density for finding grains of volume V
(Fig. 2.3) is affected by the finite measured volume and finite experimental resolution.
We give an estimated correction for the finite volume effect and we use a conservative
small size cut-off to avoid distortions due to reduced sensitivity in this limit. The
most significant contribution to uncertainty in the grain evolution analysis is the lack
of perfect matching of grains between the two states; this problem is most apparent
for small grains as shown in Fig. 2.14a but also has a contribution due to initial
grains that grow past the boundaries of the measured volume in the final state.

We assume that new grains do not nucleate in the fully recrystallized material
with tens of micron grain dimensions. While rare exceptions have been observed in
nickel [46] associated with very low energy annealing twin formation, corresponding
low energy boundaries are not available in the α phase, bcc structure measured here.
The lack of large twin populations simplifies analysis relative to current studies of
nickel. [47]

In an averaged sense, the isotropic model for coarsening that assumes that all
boundaries have the same energy and mobility compares very well with the observed
grain evolution. This implies that the normalized mean curvature alone can be used to
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describe average grain growth behavior. However, as shown in Figs. 2.5 and 2.8, indi-
vidual grains within a topological class vary in their growth by as much as ∼ ±100%
of the observed range of average behaviors. This range of variation is consistent
with prior observations of coarsening in two dimensional succinonitrile (C2H4(CN)2)
polycrystals [22], with recent observations of iron by Zhang et al., [28] and with our
observations of nickel. [47] In the succinonitrile case, the authors observed that the
growth rate of the average grain area, 〈A〉, within topological classes specified by
the number of grain sides or neighbors, n, was consistent with the classic, isotropic
n − 6 dependence. [10, 11] But, similar to the recent observations, large variations
from grain to grain were observed with variations in each class of order 100% of the
observed range of averaged behaviors.

There are a number of possible origins of the observed large dispersion in growth
characteristics within topological classes. i) The empirical relation between F−m(F )
and mean curvature, g, itself has substantial dispersion but less than the range of
variation in g. [41] It is based on experimentally measured curvatures so a portion
of observed dispersion may be due to measurement uncertainties. It appears that
this contribution does not account for observed variations in Figs. 2.7 and 2.8. ii)
During the annealing used here, the values of F −m(F ) are not constant as shown
in Fig. 2.6. However, given the slope of the mean in Fig. 2.8, changes of ±4 as
consistent with Fig. 2.6 are not sufficient to generate the observed large distribution
widths. iii) More interestingly, grain boundary energies and mobilities are, in fact,
not uniform and the inclusion of many boundary types within topological classes
can be expected to generate dispersion in the statistics presented here. Further,
Zhang et al. [28] speculate that their observed reduction in growth rate may be
associated with large variations in mobility. These observations strongly motivate on-
going work that will analyze motions of individual boundaries and that can extract, for
example, boundary energy distributions. [48] Further experimental work is certainly
warranted. Extending measured volumes while maintaining comparable grain sizes
can increase the dynamic range of the measurements. Expanding the range of growth
may elucidate how distributions evolve toward the steady state.

On a measurement technique note, the apparent near-field HEDM measurement
sensitivity to almost four decades in grain volume while the detector sensitivity spans
only about three decades can be understood from the fact that observed intensities on
the near-field detector do not scale with grain volume as they do in a more traditional
(or in a far-field HEDM [33]) measurement. In a sub-grain resolved diffraction mea-
surement, detector pixel intensities are proportional to the sub-volume of the grain,
V grain

(j,k) , that projects intensity to the pixel rather than the entire grain volume. Here,

(j, k) specifies a pixel coordinate. For a large grain, V grain
(j,k) is proportional to the pixel

area (and the beam height and geometric factors specifying the scattering geometry
for a given Bragg peak). Until the volume “seen” by the pixel starts to extend beyond
the grain’s boundaries (due to either small grain size or when scattering originates
from near a boundary of a large grain) the intensity is independent of grain size.
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Chapter 3

Determining Grain Boundary
Energies From Triple Junction
Geometries

3.1 Background

The property and performance of polycrystalline materials can be modified by en-
gineering the grain boundary network [49]. For example, Kokawa shows a one-step
thermomechanical process can suppress the weld-decay of an austenitic steel as the
degree of sensitization drops 63% and the corrosion rate drops 44% [50]. It was shown
that the steady state creep rate of Ni-16Cr-9Fe decreases 96% at 360◦C in an argon
atmosphere as the fraction of coincident site lattice boundaries increases from 16%
to 43% [51]. Underlying such dramatic performance changes is the fact that grain
boundary properties are anisotropic. Our work focuses on determining the relative
grain boundary energies, which govern the evolution of the grain boundary network
at high temperatures.

Decades of research have been devoted to finding a concise and descriptive func-
tion for the dependence of the grain boundary energy on the five crystallographic
parameters. Several theoretical models [52, 53, 54, 55, 56] are inspired by experimen-
tal observations [57, 58, 59, 60]. However, though the existing models usually work
well under their specific set of assumptions, most of them fail to capture the entire
grain boundary energy landscape [61]. The greatest obstacles are the vast number
of distinct grain boundary types and limited experimental data. Recently, Bulatov
proposed an interpolation function which appears to successfully capture variations
of grain boundary energy in face-centered cubic materials for the first time [61]. Nev-
ertheless, Bulatov’s function was entirely based on the Read-Shockley-Wolf function
[62] and 388 grain boundary energies calculated by molecular dynamics simulations
[63]. It is likely that if more accurate and abundant experimental data becomes avail-
able, it will be possible to create a similar, or more general, experiment-based grain
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boundary energy function.
A method to extract relative grain boundary energies from experimental data was

described by Morawiec in 2000 [64]. The experimental data used as input for the
method consists of the geometries of many triple lines; for each triple line, the three
grain orientations, the triple line direction, and the orientations of the three grain
boundary planes are specified. The method has been used to reconstruct the grain
boundary energy distributions of MgO, Ni, Y2O3, austenite, and ferrite [65, 66, 67,
68, 69].

3.1.1 Preliminaries

Grain boundaries can be characterized by five macroscopic parameters. Typically,
three parameters are used for the lattice misorientation across the boundary and the
other two for the boundary plane orientation [12]. Experimental systems provide
voxel-wise orientations in a 3D volume, which can be used to determine grain ori-
entations and boundary plane inclinations. Using the same notation as in [64], the
orientations of the two neighboring grains are represented by two special orthogonal
matrices ō1 and ō2 (the over-line means that the variable is in the sample frame,
otherwise the variable is in the crystal frame). So the misorientation is m = ō1ō

T
2 ,

and the normal direction of the boundary directed from the first grain to the second
grain is represented by a unit vector n. The macro-parameters m and n together will
determine the grain boundary energy γ. For convenience, we can use a 4× 4 matrix
b to represent all five parameters:

b(m,n) =

[
m n

−nTm 0

]
.

As a result of crystal symmetry, there are many distinct sets of parameters corre-
sponding to physically indistinguishable grain boundaries. A 4× 4 matrix

Ci =

[
ci 0
0 1

]
,

where ci is a 3 × 3 matrix used to represent one of the symmetry operations of
the crystal point group (without improper rotations). Then, the set of physically
identical grain boundaries of b consists of CibCj, Cib

TCj, Cib
−Cj, Ci(b

−)TCj,
where b− = b(m,−n). We use Sq(b) as the qth element in this set. Obviously, all
elements in this set have the same energy because they are physically identical.

It is convenient to define the “distance” between boundaries i and j as χ2 =
χ2
ij = minq ‖Sq(bi) − bj‖2/2, where the norm ‖ · ‖ of a matrix M is given by

‖M‖ = tr(MTM)1/2. The exceptional case is the distance from the “no misori-
entation boundary” b(I3,n), where I3 is the identity matrix. Since the normal di-
rection is irrelevant when there is no misorientation between grains, in this case we
define χ2 = minq ‖Sq(m)− I3‖2/2, where m is the 3× 3 misorientation for boundary
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b(m,n) and Sq(m) are the misorientations symmetrically equivalent to m, i.e., cimcj

and cim
Tcj for all ci, cj.

The grain boundary energy γ(b) = γ(Sq(b)) is what we want to infer from exper-
imental data. Based on the assumption of local equilibrium, we can recover relative
grain boundary energies from the triple junction geometries.

For the triple junction that consists of grain boundaries i, j, k, the equilibrium
equation is

(ξ̄i + ξ̄j + ξ̄k)× t̄ = 0, (3.1)

where t̄ is tangent to the junction and ξ̄i is the capillarity vector of the ith boundary.
The capillarity vector is defined as

ξ = γn +
∂γ

∂n
.

For more details on the capillarity vector, readers are refered to the original papers
[70, 71, 72].

3.1.2 Conventional method

We refer to Morawiec’s method [64] as the conventional method in this chapter. In
the conventional method, the five-parameter space is divided into discrete bins and
each bin is associated with one unknown capillarity vector ξα (we use Greek letters
as the indices of the bins). For every grain boundary in the experimental dataset,
its capillarity vector ξ̄i is calculated by averaging all the capillarity vectors ξα of
the bins that contain bi’s equivalences. Substituting the ξ̄i’s in Eq. 3.1 with linear
combinations of ξα’s for all triple junctions yields a set of linear equations for ξα’s

A ·X = 0 , (3.2)

where X = [ξx1 ξ
y
1 ξ

z
1 . . . ξxα ξ

y
α ξ

z
α . . . ξxM ξyM ξzM ]T , M is the total number of bins,

ξxα, ξ
y
α, ξ

z
α are the x, y, z components of ξα, and matrix A is derived from the equilib-

rium equations and the symmetry operations. See [64] for the detailed expression of
matrix A. Finally, we solve for the ξαs from this linear equation set by minimizing
the sum of squared residuals while keeping the norm of the vector of unknowns. The
solution is the eigenvector corresponding to the smallest eigenvalue of ATA. It can
be solved by gradient-based iterative methods.

So, mathematically, this method uses a set of basis functions (having value 1 in
one bin and value 0 in other bins) for the capillarity vector function ξ(b), and all the
capillarity vectors, ξα, defined on the bins are the coefficients. The reconstruction
process is to find the best set of coefficients to approximate a ξ(b) that satisfies all
the equilibrium equations. When the grain boundary parameters are discretized, the
three Eulerian angles giving the disorientation are considered within the domain of 0
to 90◦. For the spherical angles defining the boundary inclination, the polar angle is
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also considered within the domain of 0 to 90◦ and the azimuthal angle is considered
within the domain of 0 to 360◦. Using a typical discretization with 10◦ bins, there
are M = 94 × 36 bins and 3M = 708588 coefficients to be fit [73, 74].

Currently, a typical 3D microstructure dataset measured by electron backscatter
diffraction (EBSD) [75] or high energy X-ray diffraction microscopy (HEDM) [24] con-
tains 104 ∼ 105 triple junctions [68, 69], and each triple junction gives one equilibrium
equation (Equation 3.1), which corresponds to two independent scalar equations. So
the reconstruction problem is an under-determined inverse problem, which has more
unknowns (708588) than equations, i.e. A in equation 3.2 has more columns than
rows, so ATA has multiple eigenvectors corresponding to the smallest eigenvalue 0.
In the original paper [64], the author addressed this issue by setting the starting point
to be the boundary normal unit vector (i.e. ξα0 = nα) and using the gradient descent
algorithm to find the minimum, which is an implicit regularization. Empirically this
works very well for most cases, and the reconstructed grain boundary functions are
consistent with theoretical expectations [65, 66, 67, 68, 69].

3.1.3 Motivation

While the conventional approach has been useful, it also has a number of limitations:

• It can not take advantage of increasing dataset size. If the dataset is too large,
the discretization of five-parameter space can lead to some unexpected artifacts.
See Section 3.4.3 for details.

• In many samples, grain boundaries are not distributed uniformly in the five-
parameter space and in some cases, they are concentrated in a small region of
five-parameter space and we only want to get the grain boundary energy func-
tion in that region. The conventional method cannot determine grain boundary
energies from this kind of dataset easily. See Section 3.4.2 for details.

We propose a new framework for determining grain boundary energies from triple
junction geometry. Instead of discretizing the five-parameter space and fitting the
coefficients, this approach directly fits the capillarity vector ξi of each grain boundary
in the dataset. Because the proposed approach does not use any parametric model for
the grain boundary energy function, we refer to it as the non-parametric reconstruc-
tion method. The reconstruction method is described in detail in Section 3.2, and
some results reconstructed from simulated triple junction geometries are presented in
Section 3.4.
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3.2 Non-parametric reconstruction framework

3.2.1 Overview

The goal of our new approach is to reconstruct the capillarity vector ξi of each grain
boundary in the dataset without discretizing the five-parameter space. The unknowns
can be written as a vector

X = [ξx1 ξ
y
1 ξ

z
1 . . . ξxi ξ

y
i ξ

z
i . . . ξx3W ξy3W ξz3W ]T ,

where W is the total number of triple junctions and the number of unknowns is
9W (three capillarity vectors for each triple junction, and three components for each
vector).

We define S(J) as the set of grain boundary IDs that consist in triple junction J ,
whose equilibrium equation (Eq. 3.1) can be written as

0 =
∑
i∈S(J)

∑
l

Bi,l
J,aξ

l
i,

where Bi,l
J,a ≡

∑
b,c εabct̄

cōi
lb and εabc is the permutation symbol. See 3.2.2 for details.

Using the subscript (J, a) as the row index, and the superscript (i, l) as the column
index of matrix B, we have a matrix equation B ·X = 0 to represent the equilibrium
equations of all the triple junctions. There are 3W equations, and only 2W of them
are independent, so this reconstruction problem is also an under-determined inverse
problem. Because of this, some regularization techniques are needed. Mathematically,
we can write it as a constrained minimization problem:

min
X

R(X)

s.t. ‖X‖2 = 1, B ·X = 0.
(3.3)

There are many choices for the regularization term R(X). A common choice is based
on the assumption that grain boundary energy functions are smooth, which means
that if two grain boundaries i and j have similar physical characteristics (i.e., χij is
small), then their capillarity vectors should be similar, i.e.,

R(X) =
∑

(i,j)∈E

wij‖ξi −Tij · ξj‖2, (3.4)

where E = {(i, j)| boundary i and j are similar}, wij is the weight that is propor-
tional to the similarity of boundaries i and j, and Tij is the operator that makes
boundaries i and j have similar plane normal directions, i.e., Tijnj ≈ ni. 3.2.2
shows how to calculate Tij from the symmetry operator and the misorientation. This
regularization term penalizes the difference between capillarity vectors of physically
similar grain boundaries. The form of the weight wij and the criterion for including
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a pair of boundaries in the set E are essential in this non-parametric framework. In
our work, the set E contains the boundary pairs whose distances are smaller than a
threshold, and we use the inverse of distance as the weight wij = 1/χij. See 3.2.2 for
more details.

Other regularization terms are also possible in this framework, for example using
“similar energy” instead of “similar capillarity vector”. Different choices correspond
to different prior knowledge of the grain boundary energy distribution (GBED) and
they will influence the results, robustness, and efficiency of the reconstruction. One
thing we need to emphasize is that, no matter which regularization term we chose, the
reconstruction result always satisfies all the equilibrium equations. The comparison
of different regularization terms is beyond the scope of this work; in the following
sections, we will use Eq. 3.4 as the regularization term.

Once the capillarity vectors are reconstructed, the grain boundary energy is γi =
ξi · ni. Based on the values γi, the landscape of grain boundary energy function can
be constructed by any interpolation method.

3.2.2 Numerical Details

Rewriting the equilibrium equation

We define S(J) as the set of grain boundary IDs that consist in triple junction J .
Vectors and tensors in sample frame are over-lined, otherwise they are in crystal
frame. Writing all vectors and tensors in component form, the equilibrium equation
becomes:

0 =
∑
b,c

εabc
∑
i∈S(J)

ξ̄bi t̄
c

=
∑
b,c

εabct̄
c
∑
i∈S(J)

(ōT
i ξi)

b

=
∑
b,c

εabct̄
c
∑
i∈S(J)

∑
l

ōlbi ξ
l
i

=⇒ 0 =
∑
i∈S(J)

∑
l

Bi,l
J,aξ

l
i,

where Bi,l
J,a ≡

∑
b,c εabct̄

cōlbi .

The regularization term

Most of the computation time of the non-parametric approach is spent on constructing
the regularization term. Because we need to find “neighbors” for each grain boundary,
a naive algorithm has O(n2) time complexity, where n is the total number of grain
boundaries in the dataset.
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For every grain boundary b there are a set of physically identical boundaries Sq(b),
and they are all related by linear symmetry operators. To compare the capillarity
vectors of boundaries i and j, we need the operator Tij that makes boundaries i and
j have similar plane normal directions, i.e., Tijnj ≈ ni, which can be calculated as
follows:

Tij =


c1 if Sq∗(bj) = C1bjC2

−c1m
T
j if Sq∗(bj) = C1b

T
j C2

−c1 if Sq∗(bj) = C1b
−
j C2

c1m
T
j if Sq∗(bj) = C1(b−j )TC2

,

where q∗ = arg min
q
‖bi − Sq(bj)‖2.

After we find all the elements in the set E = {Similar boundaries (i, j)}, we can
construct the regularization term:

R(X) =
∑

(i,j)∈E

1

χij
‖ξi −Tij · ξj‖2,

where χij is the “distance” between boundaries i and j defined in Section 3.1.1. The

unknowns are represented by X = [ξx1 ξ
y
1 ξ

z
1 . . . ξxi ξ

y
i ξ

z
i . . . ξx3W ξy3W ξz3W ]T . In this

paper, we use E = {(i, j) | χij < 0.03} for DA06 and E = {(i, j) | χij < 0.015} for
DB, so that most boundaries have approximately 30 “neighbors”.

Solving the minimization problem

If we use the equilibrium equations and normalization condition as the constraints,
and try to minimize the regularization term, we get the following constrained opti-
mization problem:

min
X

∑
(i,j)∈E

1

χij
‖ξi −Tij · ξj‖2 ≡ min

X
‖C ·X‖2

s.t. ‖X‖2 = 1, B ·X = 0,

where C is defined by this regularization term.
One way to solve it is to choose a large enough number λ and the optimization

problem approximately becomes:

min
X

(‖C ·X‖2 + λ2‖B ·X‖2) = min
X

XT(CTC + λ2BTB)X

s.t. ‖X‖2 = 1.

This is an eigenvalue problem for finding the eigenvector corresponding to the smallest
eigenvalue of (CTC + λ2BTB).

Another advantage of introducing λ is that, if the dataset is noisy we may want
to relax the equilibrium equation constraints, we can then use smaller λ and have a
trade-off between smoothness ‖C ·X‖2 and the noisy measurements ‖B ·X‖2.
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Minimization algorithms

Figure 3.1: Comparison of convergence rate of different optimization methods. Pro-
jected Gradient Descent, Accelerated Projected Gradient Descent, and LOBPCG
were used for the same problem. LOBPCG outperforms the other two methods.

Both the conventional method and the non-parametric approach make it neces-
sary to solve a minimization problem. The projected gradient descent method was
used in the prior work [64]. In our work, we rephrased the minimization problems
as eigenvalue problems, which can be solved efficiently by the Locally Optimal Block
Preconditioned Conjugate Gradient (LOBPCG) method [76]. It is also an iterative
method but uses more information besides the gradient. A comparison between sev-
eral different optimization methods was made. In Figure 3.1, the LOBPCG method
converges much faster than other two methods. Faster optimization methods not only
make it possible to reconstruct larger datasets, they also allow for more extensive in-
vestigation of the performance of the reconstruction under varying conditions.

3.3 Simulated datasets

We tested the non-parametric method and conventional method on several simulated
datasets, which are only collections of triple junction geometries instead of the whole
3D microstructures. Based on any user-defined grain boundary energy functions,
the simulation code can calculate the capillarity vector for any grain boundary pa-
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Model Σ
misorientation boundary

angle (◦) axis plane

A

1 0.00 N/A N/A
3 60.00 [1 1 1] (1 1 1)
5 36.87 [1 0 0] (0 2 1)
7 38.21 [1 1 1] (1 2 3)
9 38.94 [1 1 0] (1 1 2)
11 50.48 [1 1 0] (2 2 3)
13 22.62 [1 0 0] (0 3 2)
13 27.80 [1 1 1] (1 3 4)

B
1 0.00 N/A N/A
2 20.00 [0 0 1] (1 1 0)

Table 3.1: Cusps in our grain boundary energy function models. We used 1/
√

Σ as
the depth of the cusp and π/(12

√
Σ) as the width of cusp.

rameters, and it randomly generates the triple junction geometries that satisfy the
equilibrium equations. The details of the simulation are in the Appendix of [64].

3.3.1 Model grain boundary energy function

In our work, the grain boundary energy functions that were used to create simulated
triple junction geometries are based on a uniform energy distribution with superim-
posed cusps. The cusps are shaped in analogy to the Read-Shockley model [52]:

f(x, a) = ax(1− lnx) + (1− a) for 0 < x ≤ 1

f(0, a) = 1− a and f(x, a) = 1 otherwise,

where a determines the “depth” of the cusp and x is the “relative distance” from the
cusp center.

For the model that has cups at bk (k = 1, 2, 3...), the grain boundary energy
is γ(b) = Πkf(χ(b,bk)/wk, ak) where wk, ak are the width and depth of cusp k.
The distance χ is defined in Section 3.1.1. So, the grain boundary energy is unity
everywhere outside the cusps, and the cusps have the shape of the Read-Shockley
expression.

3.3.2 Datasets

We used two hypothetical grain boundary energy functions, whose cusps are listed in
Table 3.1. The depth of each cusp is 1/

√
Σ and the width is π/(12

√
Σ).

Model A has eight cusps and their Σs are the unit cell volume of the coincidence
site lattice (CSL) in units of the elementary unit cell volume. Based on model A,
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we generated a dataset containing 260000 random triple junctions, which we refer to
as DA26. The grain boundaries in DA26 are nearly uniformly distributed in the
five-parameter space. We refer to the first 60000 triple junctions in DA26 as DA06,
which is close to the size of a real experimental dataset.

Model B mimics a sample with ideal axial texture and a columnar microstructure.
It has 2 cusps, one is zero misorientation (Σ = 1), and the other one is manually picked
whose Σ is just used in the simulation code for calculating the depth and width but
is not related to the inverse coincidence. Using model B, we generated a dataset
containing 1538 triple junctions, which we refer to as DB. The grain boundaries in
DB are constrained in a 2D subspace of the five-parameter space: all misorientation
axes are [0 0 1] and all boundary normals are perpendicular to [0 0 1]. In other words,
in this dataset, all grains’ [0 0 1] directions are parallel to a same direction, and that
direction is also parallel to all junctions. Model B’s cusps were chosen in this 2D
subspace deliberately.

3.4 Results

Because the Eq. 3.1 is homogeneous, all grain boundary energies can only be de-
termined up to a constant factor. To compare with the ground truth, we normalize
the reconstructed grain boundary energies so that the average energy is the same as
the average energy of the ground truth distribution; we refer to these as “normalized
energies”, γrec. Then γrec has whatever units are used to define the ground truth
dataset.

3.4.1 Results on a normal size dataset

The performance of the reconstruction on DA06 is representative of real datasets.
Figure 3.2 shows the GBED for the Σ7 misorientation of DA06, the stereographic
projections are generated by a method based on boundary-space metrics [74]. Figure
3.3 demonstrates the energies of grain boundaries that are inside of Σ1 cusp. Both
the conventional method and the non-parametric method reconstructed the grain
boundary energies well.

Figure 3.4 shows the reconstruction error in more detail. For every grain boundary
(GB), we calculate the difference between normalized reconstructed energy and the
ground truth γrec−γtrue, which have zero mean over the whole dataset by the definition
of γrec. However, after we bin the grain boundaries by their true energy γtrue, the
averaged γrec − γtrue for each bin is no longer zero. As shown in Figure 3.4(a), grain
boundaries with smaller γtrue tend to have larger γrec − γtrue, which means the cusps
in the grain boundary energy function are smoothed by the reconstruction. Figure
3.4(b) and Figure 3.4(c) are the detailed γrec − γtrue distributions in the bins 0.45 <
γtrue < 0.6 and 0.75 < γtrue < 0.9, respectively. As we can see, the non-parametric
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Figure 3.2: Stereographic projections of the normalized grain boundary energy dis-
tribution (GBED) for the Σ7 misorientation of DA06. (a) Ground truth; (b) recon-
structed by the non-parametric method.

method results have smaller bias and variance than the conventional method in almost
every bin.

3.4.2 Results on a clustered dataset

Sometimes in real materials grain boundaries are not uniformly distributed in the
five-parameter space. For example, the data will be clustered in a textured sample,
and we may want to reconstruct the energy of grain boundaries in those datasets.
In these cases, we actually only need the grain boundary energy function values in
constrained regions of the five-parameter space. While the conventional method still
tries to reconstruct the grain boundary energy function on the whole five-parameter
space, the non-parametric approach inherently exploits the clustered structure in the
datasets. Therefore, we can expect that the non-parametric approach can use less
data but get a better reconstruction result than the conventional method.

Dataset DB is an extreme case of a clustered dataset with all grain boundaries lo-
cated in a 2D subspace of the five-parameter space. We tested both the conventional
method and the non-parametric method on this dataset, and the reconstructed ener-
gies are shown in Figure 3.5. In Figure 3.5, all grain boundaries are ordered by their
true energy γtrue so that smaller grain ID corresponds to lower γtrue. We can see that
the non-parametric method can reconstruct the energies of DB fairly well. Figure 3.6
shows the mean value and standard deviation of the difference between reconstructed
energy and the ground truth γrec − γtrue for grain boundaries with different γtrue.
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Figure 3.3: Comparison of the conventional method and the non-parametric method
reconstruction results near the Σ1 cusp of DA06. The distance χ is defined in
Section 3.1.1. Every point represents one grain boundary, blue points are results of
the conventional approach, red points are results of the non-parametric approach, and
the ground truth are represented by black points. Reconstructed energies have been
normalized so that they have the same average value as the ground truth distribution.

3.4.3 Effects of the dataset size

It is important to know how dataset size influences the reconstruction’s performance.
To investigate this, we reconstructed the grain boundary energies using only the first
k × 104 triple junctions in DA26, where k = 1, 3, 6, 12, 14, 16, 17, 18, and 26. The
reconstruction results on these subsets are shown in Figure 3.7. Because the recon-
struction errors are different for the cusp and the remaining region, we seperated the
grain boundaries into two categories, γtrue > 0.9 and γtrue < 0.9, which correspond to
the grain boundaries that are outside and inside of the cusps, respectively. The recon-

struction error is measured by the square root of mean squared error

√
(γrec − γtrue)2,

which includes the effect of bias and variation. As expected, the error of the non-
parametric method decreases when the dataset size increases. Surprisingly, the errors
in the conventional method are sometimes greater in larger datasets. We will discuss
this further in Section 3.6.
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Figure 3.4: Reconstruction results of the conventional method and the non-parametric
method on DA06. We calculated the difference between reconstructed energy and
the ground truth γrec − γtrue for every grain boundary. All grain boundaries are
binned by their true energy γtrue, and for each bin we calculated the mean value and
standard deviation of γrec− γtrue, which is shown in (a). The gray bars in (a) are the
number of grain boundaries in the bins. The histograms in (b) and (c) are the detailed
γrec − γtrue distributions in the bin 0.45 < γtrue < 0.6 and bin 0.75 < γtrue < 0.9,
respectively. Blue line and bars are results of the conventional method, and red line
and bars are results of the non-parametric method.

3.4.4 Effects of measurement noise

Experimental data always has measurement noise. For a microstructure measured
by EBSD or HEDM, the uncertainty of grain orientation is negligible, and the main
error is the triple junction geometry. To analyze the reconstruction robustness against
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Figure 3.5: Comparison of the conventional method and the non-parametric method
reconstruction results of DB. All grain boundaries are ordered by their true energy
γtrue so that smaller grain ID corresponds to lower γtrue. Every point represents one
grain boundary, blue points are results of the conventional method, red points are
results of the non-parametric method, and the ground truth is represented by black
points. Reconstructed energies have been normalized so that they have the same
average value as the ground truth distribution.

the error in measuring the triple junction geometry, we artificially added noise to
DA06. For every triple junctions in DA06, we applied a rotation (δφ, δθ, 0) to
the junction direction, where δφ and δθ are randomly generated from a Gaussian
distribution with a zero mean. We tested both the conventional method and the non-
parametric method on different noisy datasets with different σ (in units of degrees)
as the standard deviation of the Gaussian distribution. Figure 3.8 demonstrates the
reconstruction errors.

45



0.0 0.2 0.4 0.6 0.8 1.0

γtrue

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

γ
re
c
−
γ
tr
u
e

Conventional method

Non-parametric method

102

103

104

N
u
m

b
e
r 

o
f 

G
B

s

Figure 3.6: Reconstruction results of the conventional method and the non-parametric
method on DB. We calculated the difference between reconstructed energy and the
ground truth γrec−γtrue for every grain boundary. All grain boundaries are binned by
their true energy γtrue, and for each bin we calculated the mean value and standard
deviation of γrec − γtrue. The gray bars are the number of grain boundaries in the
bins.

3.5 Application to a MgO Dataset

To demonstrate the efficacy of this method for analyzing experimental data, we ap-
plied the non-parametric approach to data from an MgO ceramic, originally reported
in [65]. The details of the sample preparation, experimental procedure, and data
acquisition can be found in earlier publications [77, 73, 65]. The three-dimensional
orientation data made it possible to determine the geometries of 1.9 × 104 triple
junctions and these measurements were used as input for the grain boundary energy
reconstruction.

In general, the reconstruction errors depend on the energy models. If we as-
sume that the analysis in Section 3.4.3 and Section 3.4.4 still hold for the real grain
boundary energy function of MgO, then the reconstruction error of normalized grain
boundary energy is less than 0.05 because, for this experimental data, k = 1.9 in
Figure 3.7 and σ < 10◦ in Figure 3.8.

Figure 3.9 shows stereographic projections of the reconstructed grain boundary
energy distribution (GBED) produced by the new method, the conventional method,

46



0 5 10 15 20 25

k

10-3

10-2

10-1

100

101

√ (γ
re
c
−
γ
tr
u
e
)2

Conventional γtrue < 0. 9

Conventional γtrue > 0. 9

Non-parametric γtrue < 0. 9

Non-parametric γtrue > 0. 9

Figure 3.7: Reconstruction errors using only subsets of DA26 with different sizes
(k × 104). Based on the ground truth energies, the grain boundaries in each subset
are devided into two categories, γtrue > 0.9 (dashed line) and γtrue < 0.9 (solid line),
which are outside and inside of cusps, respectively. Blue lines are results of the
conventional method, and red lines are results of the non-parametric method.

and grain boundary character distribution (GBCD) for MgO for a misorientation 5◦

around [1 1 0]. The GBCD and GBED were reported in an earlier publication [65].
The GBCD is presented in units of multiples of a random distribution (relative ar-
eas). The two grain boundary energy distributions agree in some places. For example,
the maximum energy of both distributions is near the position of twist boundaries
(marked by circles). However, they disagree at the position of the symmetric tilt
boundary (marked by a square), which has a near minimum energy in the GBED
produced by the non-parametric method and is a local maximum in the GBED pro-
duced by the conventional method. Note that the GBCD has a maximum at the
symmetric tilt position. Based on the well-known inverse correlation between the
GBED and the GBCD [12], a minimum energy at this position is expected, consis-
tent with the result of the non-parametric method.
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Figure 3.8: Reconstruction errors of the conventional method and the non-parametric
method on the dataset DA06 with noises of different σ values (in units of degrees),
which are the standard deviations of the Gaussian noise that were applied to the triple
junction directions. Based on the ground truth energies, the grain boundaries in each
dataset are devided into two categories, γtrue > 0.9 (dashed line) and γtrue < 0.9
(solid line), which are outside and inside of cusps, respectively. Blue lines are results
of the conventional method, and red lines are results of the non-parametric method.

3.6 Discussion

We demonstrated in Figure 3.4 that both the conventional method and the non-
parametric method perform well on a normal size dataset DA06. For most grain
boundaries, the reconstruction errors are less than 0.1. Cusps are smoothed in the
reconstruction, i.e. reconstructed energies of grain boundaries in the cusps are biased
to be larger than their true energies. Although the measurement error of triple
junction geometries depends on the method of data preprocessing, σ < 10◦ is a
reasonable estimation. As shown in Figure 3.8, both methods are robust below this
level of noise. For the non-parametric method, the reconstruction error is below 0.04
for grain boundaries inside the cusps and below 0.02 outside the cusps.

An advantage of the non-parametric method over the conventional method is
that it utilizes the clustered structure in the datasets, so that it can reconstruct
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Figure 3.9: Stereographic projections of the (a) GBED reconstructed using the non-
parametric method, (b) GBED reconstructed using the conventional method, and (c)
grain boundary character distribution (GBCD) for grain boundaries in MgO with a
5◦ misorientation around [1 1 0]. The GBCD has units of multiples of a random
distribution and the GBEDs are normalized energies.

the grain boundary energies of a clustered dataset even if it only contains a small
number of triple junctions, which is not possible (without creating a new sub-space
for discretization) using the conventional method. As demonstrated by Figure 3.5 and
Figure 3.6, the non-parametric method reconstructed the grain boundary energies in
DB with an error of less than 0.2. Therefore, the energy in that subspace is recovered
with reasonable accuracy.

Figure 3.10: Geometric interpretation. (a) Red star is the true solution, yellow plane
is the linear span of the basis functions, green plane is the subspace that satisfies
all triple junction equilibrium equations, red line is the overlap of yelow plane and
green plane, black dot is the iteration starting point, red dot is the approximated
solution found in the yellow plane, which is at the red line and close to the black dot.
(b) The yellow plane is the linear span of the basis functions, one set of equilibrium
equations constrain the solution on the red line, another set of equations constrain
the solution on the blue line, black dot is the iteration starting point. If the dataset
only contains the first set of equations, then the approximate solution is at red dot;
and if the dataset only contains the second set of equations, then the approximate
solution is at blue dot. However, if the dataset contains both, then the approximate
solution is at purple dot, which is far away from the true solution.

The effect of dataset size is interesting. As shown in Figure 3.7, the reconstruction
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error of the conventional method increases when the number of triple junctions in-
creases in some range. A geometric interpretation is presented in Figure 3.10. As we
showed above, the conventional method finds the coefficients of a set of basis functions
which can span a linear space (yellow plane), and generally the true capillarity vector
function (red star) is not in this space, and the solution we find is an approximation
(red dot), which satisfies the force balance equations of all the triple junctions. In
most cases, the problem is under-determined, so the solution always exists but is not
unique. Choosing a good starting point (black dot) for the gradient descent iteration
makes the problem converge to a solution (red dot) that can approximate the ground
truth (red star). However, if we have more triple junctions, there are more constraints
and the solution (purple dot) may not be close to the ground truth anymore. Re-
cently, similar phenomena, called “double descent”, are discovered and investigated
in statistics and machine learning.
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Figure 3.11: Errors of the intermediate reconstruction results using the conventional
method on dataset DA26. Based on the ground truth energies, the grain boundaries
are divided into two categories, γtrue > 0.9 (dashed line) and γtrue < 0.9 (solid line),
which are outside and inside of cusps, respectively. The green line is λ, which is
defined as ‖AX‖2/‖X‖2, where A and X are the equation coefficients and variables
in Eq. 3.2.

One way to address this problem is to stop the iterative solution before conver-
gence. The conventional method converges after about 2000 iteration steps for the
large size dataset DA26. Figure 3.11 demonstrates the errors of some intermediate
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results in the first 200 iteration steps. As we expected, λ = ‖AX‖2/‖X‖2 keeps
decreasing, where A and X are the equation coefficients and variables in Eq. 3.2.
The reconstruction errors decrease in a few iteration steps at first, but increase dra-
matically after about 150 interation steps. Therefore, for the dataset DA26, if we
stop before 150 iteration steps, the reconstruction results will be close to the ground
truth. The grain boundary energy distribution (GBED) for the Σ11 misorientation
of the intermediate reconstruction is shown in Figure 3.12. After 10 iterations, the
conventional approach shows a GBED that is expected for the Σ11 misorientation.
However, it has not converged yet. After 200 steps, the result deviates from the
ground truth. So, the number of iterations is an important hyper-parameter for the
conventional reconstruction method. The non-parametric approach does not have the
same problem as the conventional method, because it does not limit the solution to a
subspace. So, as shown in Figure 3.7, the reconstruction error of the non-parametric
method decreases as the number of triple junctions increases, which is as expected.

Figure 3.12: Stereographic projections of the GBED for the Σ11 misorientation at
different iteration steps. (a) Ground truth; (b) step 1; (c) step 10; (d) step 200.
(b)-(d) are reconstructed by the conventional approach using dataset DA26.

Finally, let us note that in this non-parametric framework, the regularization term
is based on the “distance” between grain boundaries. The choice of the metric affects
the regularization term and, in consequence, the reconstruction results. The definition
of grain boundary distance in Section 3.1.1 follows [64], but other metrics have been
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discussed in the literature [78, 79, 80, 81, 82]. Moreover, with 1/χij as the weight in
the regularization term, the singularity at χij = 0 may cause problems on clustered
data sets. Testing alternative metrics and regularization terms for the non-parametric
framework will be the subject of future research.
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Chapter 4

Measuring Intragranular Strain
and Orientation with nf-HEDM

4.1 Introduction

Near-field High Energy Diffraction Microscopy (nf-HEDM) generates maps of mi-
crostructure by imaging multiple diffracted beams from each crystal orientation in an
illuminated sample volume as the sample rotates in a monochromatic, high energy
X-ray beam. Far-field HEDM adds grain averaged strain states. Recent reviews of
both HEDM variants and combined measurements are available in [83, 84] (as well
as in a forthcoming review J. Bernier, R.M. Suter, A.D. Rollett, J. Almer, to be pub-
lished in Annual Reviews of Materials Research). While standard parlance refers to
regions of relatively uniform orientation as “grains”, the forward modeling approach
to reconstructing the orientation field [24, 4] from nf-HEDM measurements assumes
only that a well defined orientation exists within each resolved volume element or
voxel. This voxel-by-voxel analysis yields detailed information about intra-granular
orientation variations that arise from mechanical deformation [85, 86, 87] and are
mitigated by thermal annealing [88]. The far-field measurement yields grain averaged
quantities such as orientation, center-of-mass, and elastic strain state.

Substantial difficulties arise in attempting to extract local strain states within
grains inside of bulk materials. Recent work at the Spring-8 synchrotron in Japan
[89] has succeeded in using a point-focused X-ray beam combined with a conical slit
to isolate diffraction from sub-grain sized volume elements, or voxels, and then to
extract such strain information. A three dimensional volume was characterized by
rastering the sample relative to the slit and the sample rotation axis. Not surprisingly,
the measurement found that strain heterogeneity was substantially larger than that
implied by grain averaged characterizations. Both the data collection and analysis
time are substantial since 3D information requires collecting a 2D raster of diffraction
images.

An advantage of nf-HEDM data collection is that it uses a line-focused beam that
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illuminates a planar cross-section of the sample so as to parallelize data collection
from many voxels. However, with its small (5–15 mm) sample-to-detector distance,
the measurement does not have high resolution of scattering angles, 2θ. Nevertheless,
it is demonstrated in [90] that fractional changes in lattice constant by ∼ 10−3 yield
significant changes in a completeness or confidence parameter that characterizes the
amount of overlap between orientation optimized microstructures and the detector
image data sets. Below, we describe systematic studies of voxel-by-voxel strain opti-
mization applied to a synthetic nf-HEDM data set and some preliminary results on a
real Ti7Al sample. Sensitivity to strain is obtained by resolving diffraction at small
sample rotation intervals, δω instead of with 2θ resolution.

4.2 Preliminaries

4.2.1 Review of X-ray Diffraction Theory

In this section, we will briefly review the physics model we use for the nf-HEDM
experiment setups. Readers should refer to textbooks [91] if they want to learn the
scattering physics comprehensively.

Within coherence time and coherence length, the incident X-ray can be approxi-
mated by plane wave Ei(x) = E0 exp (iωt− iki · x)ẑ, where ki is the incoming wave
vector and ẑ is the polarization direction. Under Born approximation, the scatter-
ing of an ensemble of electrons, the sample, is simply calculated by summing up all
corresponding diffracted spherical waves. Since the detector is far away from the
sample comparing to the wavelength, the diffracted X-ray amplitude at x can also be
approximated by the plane wave

Eo(x) ∝
∫

exp {iωt− iki · r− iko · (x− r)}ρ(r)dr3

= exp (iωt− iko · x)

∫
exp {i(ko − ki) · r}ρ(r)r3, (4.1)

where ko is the outgoing wave vector, r is the scattering source position, ρ(r) is the
electron density distribution. We define Q = ko − ki.

For most crystal materials, their atoms are placed in a periodical lattice structure
which has the translation symmetry. Its symmetry operators can be represented by
three translation vectors, which form the repeating unit called unit cell. For example,
the hexagonal unit cell of Ti7Al (used in this work) can be described by following
three vectors:

a = a

 1
0
0

 ,b = a

 cos 2π
3

sin 2π
3

0

 , c = c

 0
0
1


with a, c being edge lengths. The position of every unit cell can be written as Rn =
m1a + m2b + m3c where n = (m1,m2,m3) are three integers. The reciprocal lattice
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vectors (RLV) a′,b′, c′, are calculated in the usual way from the these vectors [92],
e.g.

a′ = 2π
b× c

a · (b× c)
,

and cyclic permutations. A general RLV can be defined as Ghkl = ha′ + kb′ + lc′,
where the indices (h , k , l) are three Miller integers.

For all the calculation in this chapter, there are three different reference frames,
lab frame, sample frame and crystal frame. Lab frame is the basic reference frame in
which Eq. (4.1) is defined. The sample frame is the reference frame that is fixed to
the sample. Crystal frame is the reference frame of the local crystal structure with
axes oriented with the convention unit cell. So the vectors a,b, c,Rn, a

′,b′, c′,Ghkl

are actually defined in the crystal frame. Vectors in different reference frames can
be easily transformed given the relationships of their basis vectors. Therefore, single
crystal material will have ρ(r) = ρ(r + Rlab

n ), and the diffracted X-ray will be

Eo(x) ∝ exp (iωt− iko · x)
∑
n

exp {iQ ·Rlab
n }

∫
unit cell

exp {iQ · r}ρ(r)dr3. (4.2)

in which sum over n is over a large number of unit cells defined by the coherence
lengths of the experimental setup and this leads to sharp Bragg peaks when Q = Glab

hkl.
Therefore, the diffracted X-rays are on the direction of ko = ki + Glab

hkl. In addition,
in the elastic approximation we have the constraint that ‖ko‖ = ‖ki‖.

4.2.2 Deformation Gradient

Nine independent parameters define a crystal of a given phase, three for lattice ro-
tation and six for lattice strain. Following the notation in [93], within a scattering
volume, we can approximate the deformation by a linear transformation that takes
material vectors in the reference lattice frame to the sample frame:

r′ = F · r + p, (4.3)

where r is a material position vector expressed in the local and undeformed crystal
frame, r′ is the material vector in the deformed configuration in the sample, including
a translation, p, and a tensor, F, describing the deformation gradient. F can be
polar decomposed to a pure rotation (proper orthogonal tensor) and a pure strain
(symmetric positive-definite tensor), i.e. F = V · R where V is symmetric and
positive-definite and R is proper orthogonal. R is the crystal orientation and S =
V − I is the lattice strain.

As described above, the crystal orientation and strain are defined in lab reference
frame, which is in real space, however X-ray diffraction measurements are directly
related to reciprocal lattice of the crystal lattice. We need to find out how the
deformation gradient affects the reciprocal lattice.
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In sample frame, a RLV is Gsample
hkl = DŌGhkl, where Ō is an approximate orien-

tation matrix, and the “distortion” matrix D = I + δ is a small perturbation about
the approximate orientation. From last section, we know that Glab

hkl, which can be
easily obtained from Gsample

hkl , determines the direction of diffracted X-rays. Since we
can calculate all Ghkl from the crystal lattice parameters, it is possible to recover the
matrix DŌ from X-ray diffraction measurements.

For any RLV a′ and its corresponding real-space unit cell vector a, we have the
relationship that [a′]Ta = 2π. Since this equation holds independent of deformation,
we have [

DŌa′
]T

[Fa] = [a′]
T

[a]

⇒ (DŌ)TF = I

⇒ F = (DŌ)−T

From the X-ray diffraction measurements we can get the value of DŌ, and then we
can do a polar decomposition on (DŌ)−T to get the strain and orientation.

4.2.3 nf-HEDM Measurements and Forward Modeling

In principle, nf-HEDM is an extension of rotating crystal method, whose experiment
setup geometry is shown in Figure 4.1. The incoming X-ray ki is in X direction, and
the sample along with each RLV, Gsample, is rotated around the Z-axis. Assuming
the sample frame is the same as lab frame when Ω = 0, for any specific RVL G in the
sample frame, we can calculate at what Ω values the diffraction will happen. Some
important quantities are

ω0 = arctan
Gx

Gy

, θ = arcsin
‖G‖
2‖k‖

, χ = arccos
Gz

‖G‖
,

φ = arccos
sin(θ)

sin(χ)
, η = arcsin

sin(χ) sin(φ)

cos(θ)
,

ωa = ω0 +
π

2
− φ, ωb = ω0 +

π

2
+ φ

The diffraction happens when Ω = ωa and Ω = ωb, and the diffracted X-ray direction
is

−−−→
SDir =

 cos(2θ)
sin(2θ) sin(η)
sin(2θ) cos(η)


What makes nf-HEDM special is its “near field” setup, which does not mean

the detector is close to the sample comparing with wave length (called near-field
optics) but with sample size. In a typical setup, the incoming X-ray illuminates a
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Figure 4.1: The geometry of rotating crystal method. The incoming X-ray ki is in X
direction. As the sample is rotated around the Z-axis, the RVL Gsample is also rotated
around the Z-axis.

slice of the sample that perpendicular to the rotation axis, the detector to sample
distance is ≈ 10 mm, the sample size is ≈ 1 mm, the wave length is . 1�A, and the
coherence length is < 1 µm. Therefore an appropriate way to model the scattering
process is: discretizing the illuminated region into voxels (or grid), each voxel has
its own crystal orientation (and even strain), the X-ray diffracted from each voxel
can be approximated by geometric optics (represented by a straight line), the X-ray
diffracted from different voxels within a grain are incoherent so their intensities on
the detector pixel can directly summed up.

Assuming a voxel is at (x, y, z) in the sample frame, the detector origin is at O in
the lab frame and its normal direction is ên, the row and column direction of pixels on
the detector are êJ and êK . From previous calculation, while diffracting, the distance
between the scattering voxel and the detector is

Dist = ên · (O−

 cos(ωa(b))x− sin(ωa(b))y
cos(ωa(b))y + sin(ωa(b))x

z

).
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The diffracted X-ray intersects the detector plane at

−−−→
XPos =

Dist

ên ·
−−−→
SDir

−−−→
SDir +

 cos(ωa(b))x− sin(ωa(b))y
cos(ωa(b))y + sin(ωa(b))x

z

 .
So the hit pixel on detector plane has the coordinate

J = êJ · (
−−−→
XPos−O)

K = êK · (
−−−→
XPos−O)

(4.4)

The collected data from nf-HEDM is the set of diffraction images at successive Ω
steps, the typical integration interval for each frame is δω = 1° and total of 180
frames are collected. The forward modeling method [24, 4] is used for reconstructing
microstructure from these diffraction images. The basic idea is:

Step 1: Binarizing the diffraction images so that every pixel is either hit or not hit
at each Ω frame.

Step 2: For a voxel, testing different crystal orientations and use Eq. (4.4) to calculate
the hit pixels for all Ghkl, choosing the orientation whose hit ratio with the
binarized experimental images is the highest.

Step 3: Repeat Step 2 for every voxel.

Readers can refer to [34, 4, 94, 38] for more details.

4.2.4 Motivation for Strain Reconstruction

Previous nf-HEDM reconstructions have been based on nominal, unstrained lattice
parameters meaning that D and V are identity matrices and therefore R = Ō.
However, in some sample states, the effects of elastic strain have been noted as a
reduction in overlap between optimized simulated diffraction and the measurements
[90, 85, 95]. The effect is made more dramatic by changing the sample rotation
integration interval from the traditional δω = 1° to 0.25° (as is now conventional) or
to 0.05°. As shown in Fig. 4.2, for a Ti7Al sample under 200 MPa tensile load, different
parts of an example diffraction peak separate and appear in three successive δω frames
while prior measurement of the same peak under low load exhibits a single peak in a
single frame. The grain image splitting is interpreted as a sign of intra-granular strain
and/or orientation variation. This chapter presents a scheme for reconstructing these
voxel-by-voxel variations from the > 100 Bragg peaks collected from each grain over
a rotation range of ∆ω = 180°. Tests are performed using a simulated data set based
on the Ti7Al crystal structure.
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Figure 4.2: An example of a diffraction peak from a single grain in a Ti7Al polycrystal
under low (left) and 200 MPa (right) load. Each frame corresponds to a δω = 0.05°
sample rotation interval. At left, the entire grain projects intensity within a single
frame whereas under load, the projected image is split between three adjacent images
indicating a variation in the local unit cell orientation and/or strain.

4.3 Intragranular Deformation Gradient Field Re-

construction

The goal of our reconstruction code is to reconstruct DŌ. We use the reconstruction
result from the standard forward modeling method, Ō, as the “initial guess” and try to
reconstruct the distortion D that can correctly reproduce the intensity profile of every
diffraction peak. The use of observed intensities in this reconstruction goes beyond
both the binary intensity patterns used in standard orientation reconstructions and
the observed splitting of peaks between successive detector frames as seen in Fig. 4.2.

4.3.1 Preprocessing

In contrast to the standard forward modeling method, we do not binarize the diffrac-
tion images but instead use a filter to remove the constant background and hot spot
noise. To ensure the reconstruction quality, we make four assumptions:

• Most peaks do not overlap others. This is almost always satisfied if we use a
small ω step size.

• We know the detector geometry to a very good accuracy. The accuracy should
be <5 µm based on the analysis in Section 4.5.1.

• We can reconstruct the grain shapes to a very good accuracy from the stan-
dard nf-HEDM reconstruction, which determines orientations based on binary
detector images. More discussion is in Section 4.5.2.
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• The peak intensity is much higher than the detector image noise. The effects
of the image noise are discussed in Section 4.5.3.

The grain that we want to reconstruct is already voxelized from standard nf-HEDM,
and it has, say, M voxels. Assuming the total number of peaks is K, then the intensity
profile of every Bragg peak can be represented by

Ik(x) = MkQk(x), k = 1 · · ·K,

where x is the pixel coordinate on the detector, Mk is a normalization constant and
Qk(x) can be regarded as the normalized intensity, which is a probability distribution
with

∫
Qk(x)dx = 1. This implies that all observed peaks contribute equally and

only intensity variations within peaks contribute to the optimization; various factors
(e.g., the structure, Debye-Waller, Lorentz, and form factors) vary from peak-to-peak
but these play no role here.

The reconstruction process consists of two stages, in the first stage we get an
approximate solution and then refine it in the second stage.

4.3.2 Reconstruction Stage One

In stage one, we reconstruct every voxel independently. At every voxel position, (x, y),
and for a given distortion matrix D(x, y), we calculate the trajectories of the diffracted
X-rays emanating from the position of the voxel at each Bragg sample orientation ωB
to find the detector pixel coordinates {x(k)}Kk=1 that are struck using Eq. (4.4). We
define the hit score as

∑K
k=1Qk(x

(k)), and try to find the D(x, y) that can maximizes
the hit score. This D(x, y) will be an approximate solution. We use the Cross Entropy
Method [96] to find the maximum score; details are shown in Algorithm 2. The basic
procedure for every voxel is that, start with generating N random trials of D(x, y)
around the initial guess I using a multivariate Gaussian distribution with σ2I as the
covariance, then compute the score for each trial and pick the top n trials with the
highest score, calculate the mean and covariance of these n trials and generate new
N trials, repeat this circle until convergence (covariance is small enough) or finish
after the maximum number of iterations (MaxIter). Empirically, we can choose
MaxIter = 100, N = 104, n = 100, σ2 = 10−5 as the parameter values, where N, n
are determined by the dimension and complexity of the optimization problem, σ
controls the exploration range of the algorithm, which should be approximately the
magnitude of the strain.

4.3.3 Reconstruction Stage Two

Using the approximate solution D(x, y) from stage one, we can simulate the peak in-
tensity profiles by counting the pixel hits, Isk(x), of diffracted X-rays from all voxels in
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Algorithm 2: strain reconstruction stage 1

parameters: MaxIter, N , n, σ2

input : V = {(x, y)|voxels of the grain}, Ō
output : D(x, y)

1 for (x, y) ∈ V do
2 mean← I;
3 cov ← σ2I;
4 for t← 1 to MaxIter do
5 {si}Ni=1 ← Gaussian(mean, cov);
6 for i← 1 to N do
7 hi ←HitScore(x, y, si, Ō);
8 end for
9 J = {j|hj is n highest hit score};

10 mean← Mean(sj∈J );
11 cov ← Covariance(sj∈J );

12 end for
13 D(x, y)← mean;

14 end for
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the grain, determined using Eq. (4.4). The peak intensity profiles can be represented
as

Isk(x) = MsPk(x), k = 1 · · ·K,
where x is the pixel coordinate, normalization constant Ms equals the number of
voxelsM , and Pk(x) can be regarded as a probability distribution with

∫
Pk(x)dx = 1.

Algorithm 3: strain reconstruction stage 2

parameters: InnerIter, OuterIter, N , n,σ2

input : V = {(x, y)|voxels of the grain}, D(x, y), Ō
output : D(x, y)

1 for t← 1 to OuterIter do
2 for (x, y) ∈ V do
3 mean← D(x, y);
4 cov ← σ2I;
5 for tt← 1 to InnerIter do
6 {si}Ni=1 ← Gaussian(mean, cov);
7 for i← 1 to N do
8 ci ← GlobalCost(x, y, si, Ō);
9 end for

10 J = {j|cj is n lowest GlobalCost};
11 mean← Mean(sj∈J );
12 cov ← Covariance(sj∈J );

13 end for
14 D(x, y)← mean;

15 end for

16 end for

In stage two, we need to optimize all voxels together to minimize the difference
between Isk(x) and Ik(x). A global cost function is needed so that we can quantify
that difference. The global cost function we choose is

K∑
k=1

∫
Isk(x

(k)) ln
Isk(x

(k))

Ik(x(k))
dx(k)

= Ms

K∑
k=1

∫
Pk(x

(k)) ln
Pk(x

(k))

Qk(x(k))
dx(k) +Ms

K∑
k=1

ln
Ms

Mk

,

which is directly related to the sum of the Kullback–Leibler divergence [97] between
simulated intensity profile and the ground truth of each peak. It is easy to cal-
culate the change of this global cost function if we change only one voxel’s distor-
tion matrix D(x, y). (see Section 4.3.4 for more details) So, a computationally ef-
ficient way to minimize the global cost function is to perform minimization at each
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voxel while iterating through all voxels several times. The details are shown in Al-
gorithm 3. Basically, we loop through all voxels OuterIter times, each time for
each voxel, we use the cross entropy method and iterate InnerIter times to find
a better D(x, y) to minimize the global cost function. Empirically, we can choose
InnerIter = 3, OuterIter = 10, N = 104, n = 50, σ2 = 10−6 as the parameter val-
ues. Comparing to stage one, slightly smaller σ value is chosen because the initial
guesses are already close to the true values, good results can be obtained after a few
iterations.

4.3.4 GPU Implementation

Both stage one and stage two reconstructions require large amount of computing
power, but fortunately both algorithms can easily be implemented in parallel to ex-
ploit the power of Graphics Processing Unit (GPU). In our current implementation,
the work of inner-most for loops in Algorithm 2 (line 6 ∼ 8) and Algorithm 3 (line
7 ∼ 9) are distributed to all threads. That is to say, for Algorithm 2, each thread
computes the function HitScore with different si values at the same time; and for
Algorithm 3, each thread computes the function GlobalCost with different si values
at the same time.

First difficulty we encountered was the limit of GPU memory. Since extremely
small rotation steps (δω = 0.05°) are used, it is not easy to save all diffraction images
(2048 × 2048 × 3600 ≈ 2 × 1010 pixels) into the GPU memory. Given that the
reconstruction is performed on each grain individually, we can extract windows around
every peak from the grain of interest, and only save the pixel values within those
windows and the positions of those windows to the GPU memory. Currently, we use
∆J = 300 pixels, ∆K = 160 pixels, ∆Ω = 45 frames as the window size, and there are
≈ 100 peaks for each grain, so in total we need to save about 300× 160× 45× 100 ≈
2× 108 pixels, which dramatically reduces the memory requirement. Current choice
of window size is ad-hoc, which should depend on the grain size and the degree of
deformation.

The computation of HitScore is straightforward, just using Eq. (4.4) to calculate
the pixel coordinates that are struck in simulation and then calculating the hit score
as its definition. However, the computation of GlobalCost is a bit tricky. Naively
calculating as the definition is extremely expensive, because the forward simulation
of the whole grain is needed every time we calculate the global cost. Fortunately,
in Algorithm 3 we only update the D(x, y) for one voxel at a time, and the value
changing on global cost function is easy to calculate if only one voxel changes its
D(x, y). Specifically, assume that Isk,b(x) and Isk,a(x) are two simulated peak intensity
profiles from before changing the voxel strain value and after changing the voxel strain
value respectively. Then the differences between Isk,b(x) and Isk,a(x) are only on two
pixels, the one was hit before the change and the one is hit after the change, and we
name them b(k) and a(k) respectively. If these two pixel coordinates are the same,
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then there is no difference between Isk,b(x) and Isk,a(x); if they are different, then the
differences will be:

Isk,a(b
(k)) = Isk,b(b

(k))− 1

Isk,a(a
(k)) = Isk,b(a

(k)) + 1
(4.5)

As a result, difference between the global cost before and after changing one voxel
will be:

GlobalCosta −GlobalCostb

=
K∑
k=1

(
Isk,a(a

(k)) ln
Isk,a(a

(k))

Ik(a(k))
+ Isk,a(b

(k)) ln
Isk,a(b

(k))

Ik(b(k))

)
−

K∑
k=1

(
Isk,b(a

(k)) ln
Isk,b(a

(k))

Ik(a(k))
+ Isk,b(b

(k)) ln
Isk,b(b

(k))

Ik(b(k))

)

=
K∑
k=1

(
(Isk,b(a

(k)) + 1) ln
(Isk,b(a

(k)) + 1)

Ik(a(k))
+ (Isk,b(b

(k))− 1) ln
(Isk,b(b

(k))− 1)

Ik(b(k))

)
−

K∑
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(
Isk,b(a

(k)) ln
Isk,b(a

(k))

Ik(a(k))
+ Isk,b(b

(k)) ln
Isk,b(b

(k))

Ik(b(k))

)
. (4.6)

Therefore, if the simulated peak intensities are saved and updated on each iteration
based on Eq. (4.5), the global cost can be efficiently calculated from Eq. (4.6).

4.4 Results on Synthetic Data

A 3D synthetic Ti7Al microstructure was generated using Dream3D 1 with spatially
resolved strain simulated using an open source code called Micromechanical Analy-
sis of Stress-Strain Inhomogeneities using FFTs (MASSIF) [98, 99]. MASSIF uses
spectral method, in that it solves the stress equilibrium equations in Fourier space
by taking the Discrete Fourier Transform (DFT) of the material grid using the (Fast
Fourier Transform) FFT algorithm. The stiffness parameters used were

162400 92000 69000 0.0 0.0 0.0
92000 162400 69000 0.0 0.0 0.0
69000 69000 180700 0.0 0.0 0.0

0.0 0.0 0.0 46700 0.0 0.0
0.0 0.0 0.0 0.0 46700 0.0
0.0 0.0 0.0 0.0 0.0 35200

 ,

1http://dream3d.bluequartz.net/
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and the plastic parameters (using a modified-Voce hardening law [99]) were set high
enough that no plasticity occurred in the simulations. Uniaxial tension was applied
with a macroscopic strain of 1×10−2, and the result of the MASSIF code is the strain
and orientation field on a 128× 256× 256 grid (with grid size of 2 µm× 2 µm). 2

The input to the reconstruction code is a set of diffraction pattern images based
on one slice of the virtual Ti7Al sample; images are simulated using the forward
modeling software and the patterns are convolved with a Gaussian filter to mimic the
total effects of the point spread function of the detector and scintillator, and the X-
ray energy spread. The “virtual detector” is set at 7.145 mm away from the rotation
axis, with 2048 × 2048 pixels with the size of 1.454µm; these numbers characterize
the current near-field detector used at the 1-ID beamline at the Advanced Photon
Source. The virtual experiment operates with 52 keV X-rays and the rotation range
is ∆ω = 180° with images integrated over δω = 0.05°. Using the ground truth grain
averaged orientations as the Ō’s, we recovered the distortion matrix D on a 256×256
grid with the resolution of 2 µm × 2 µm. The reconstruction took about 6 hours on
a single GPU (GeForce GTX 1080). Fig. 4.3 shows the reconstructed cross section
colored by the z direction (loading direction) strain tensor component values. The
heterogeneous reconstructed strain component field (right) is in good agreement with
the ground truth (left).

Figure 4.3: Left: the ground truth of Szz strain component. Right: reconstructed
result. The grain in black boundaries will be studied in detail.

Figure 4.4 shows the reconstruction error distribution, a histogram of point-by-
point differences between the reconstruction and the input ground truth, for each
strain component. Note again that the macroscopic applied strain was 10−2 in the

2The MASSIF simulation was performed by Christopher Kantzos
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z-direction. Clearly, the strain reconstruction captures the heterogeneous strain vari-
ations that are seen in Fig. 4.3. One observation is that, in general, strain in the
loading direction Szz and shear strains have better relative accuracy than Sxx and
Syy. This is because the diffraction direction is more sensitive to Szz and shear strains
under this experiment setup. The small difference between Sxx and Syy may due to
statistic error introduced by the small amount of grains.

Figure 4.4: The reconstruction error for each strain component over the whole sample.

To discuss the reconstruction result in more detail, we focus on the big grain in
the center, which is marked by black boundaries in Fig. 4.3. The reconstruction result
for every component of strain S and the ground truth are shown in Fig. 4.5. Szz is
in the direction of both the applied strain and the rotation axis. We find that Sxx
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and Syy have worse reconstruction accuracy compared to Szz and the off-diagonal
components, which is consistent with Fig. 4.4.

Figure 4.5: Maps of each strain tensor component over a single grain. In each pair
of maps, the ground truth is on the left and reconstruction results are on the right.
Axis scales are in millimeters.

The reconstruction also yields corrected Euler angles (in ZXZ convention) for each
voxel. These are shown in the histograms of Fig. 4.6. It is evident that the error on
each Euler angle is ∼ 0.02°.

An example of a simulated peak at no strain and at finite macroscopic elastic
strain are shown in Fig. 4.7, along with the peak that was used as the input for the
reconstruction. As we can see, the simulated peak from reconstructed strain recovers
the peak separation phenomenon in the input images.

We can also look at the simulated peaks from the reconstruction stage one and
stage two. Figure 4.8 shows the middle frame of Figure 4.7, the left figure is the
“ground truth” pattern which is the input for our reconstruction algorithms, the
middle plot in Fig. 4.8 is the simulation result after the reconstruction stage one, the
right plot is the result after the stage two. As we expected, reconstruction stage one
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Figure 4.6: Histogram of Euler angles of each voxel within one grain. Dashed lines
are the values of the ground truth.

Figure 4.7: Left: the simulated peak without intragranular strain variation, every
voxel has the same grain averaged strain. Middle: simulated peak with reconstructed
strain. Right: peak used as the input for reconstruction algorithm. The three rows
represent three successive ω frames. The stripes in the simulated Bragg peaks result
from the mesh size 2 µm× 2 µm, which is slightly larger than the pixel size.

68



correctly reproduced the peak splitting phenomenon, but it is biased to high intensity
region so it has higher maximum pixel intensity than others. As for the result after
stage two, the reproduced peak has a closer intensity distribution to the ground truth.

Figure 4.8: Left: one example of the peaks used as the input for reconstruction
algorithm. (the middle right image in Fig. 4.7.) Center: the peak intensity simulated
from stage one result. Right: the peak intensity simulated from stage two result.

4.5 Sensitivity Analysis

It is important to know how the reconstruction results are influenced by noise and
uncertainties in real experimental data. The following results show that the proposed
reconstruction method is robust against small purturbations.

4.5.1 Geometry Uncertainty

For this experiment setup, there are three important geometry parameters, the dis-
tance between detector and the sample rotation axis (L), the relative horizontal po-
sition of sample rotation axis on the detector (J), and the relative vertical position
of X-ray beam plane on the detector (K). In addition to the reconstruction in Sec-
tion 4.4 (with no error on these three parameters), we also did three reconstructions
with the following geometry errors:

• ∆J = 3 pixels, ∆K = ∆L = 0

• ∆K = 1 pixel, ∆J = ∆L = 0

• ∆L = 5 µm , ∆J = ∆K = 0

The Szz, Syy, Sxy component of reconstruction results are shown in Fig. 4.9. As
we can see, the geometry uncertainty introduces systematic errors but the strain
pattern and scale are maintained. However, the reconstruction of Syy (and Sxx,
which exhibited similar behavior) is obviously more sensitive to geometry errors than
Szz, Sxy. Together with Fig. 4.4 and Fig. 4.5, we find that nf-HEDM is better at
measuring Szz and the shear strains than Sxx and Syy.
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Figure 4.9: The ground truth of Szz, Syy, Sxy strain components and the reconstruc-
tion results with different geometry errors.
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4.5.2 Grain Shape Uncertainty

Another uncertainty is inherited from the standard nf-HEDM reconstruction. There
may be some error in the grain boundary positions. We investigated this problem by
reconstructing the strain with an “eroded” region of the original grain. By “erode”, we
mean removing all voxels that are within a certain distance from the grain boundary.
The reconstruction results are shown in Fig. 4.10. Again, the reconstruction using
an eroded region preserves the strain pattern while introducing deviations from the
ground truth. This is important since the uncertainty in grain boundary positions
are intrinsic to the experimental data.

Figure 4.10: Effects of grain boundary positions.

4.5.3 Image Noise

Detector images contain Poisson noise due to finite counting statistics. Since accu-
rately modeling the image noise is beyond the scope of this work, here we applied
Poisson noise and “salt and pepper” noise to the images. Mathematically, the noisy
pixel intensity is modeled as:

Inoisy = P (λ1I0)/λ1 +Bρλ2P (1),

where P (·) is the Poisson distribution, I0 is the pixel intensity of noiseless image,
λ1 controls the Poisson noise on the signal, Bρ is a random variable that is 1 with
probability ρ ∈ [0, 1] and otherwise is 0, and λ2 represents the strength of “salt and
pepper” noise.

We tested our reconstruction method under two noise levels:

• Noise level A: λ1 = 0.5, λ2 = 8, ρ = 0.7

• Noise level B: λ1 = 0.1, λ2 = 40, ρ = 0.7

The level of noise can be demonstrated by the images. An example of the noise effects
on the diffraction patterns is shown in Fig. 4.11. The corresponding reconstruction
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results are shown in Fig. 4.12. Again, the overall reconstruction results are qualita-
tively independent of added noise but directly reflect the noise due to the intensity
matched nature of the algorithm.

Figure 4.11: Left: noiseless pattern. Center: pattern with noise level A. Right:
pattern with noise level B.

Figure 4.12: The ground truth of Szz strain component and the reconstruction result
with different noise levels.

4.6 Application to a Ti7Al Sample

4.6.1 Experiment Overview

A dedicated nf-HEDM measurement for the strain reconstruction was performed at
the Advanced Photon Source sector 1 in Argonne National Laboratory.3 A high-
resolution-monochromator (HRM) was used to get a narrower energy profile, dE/E ≈
10−4, of the incoming X-ray beam so that the strain signal won’t be overwhelmed by

3Data collection was performed in July 2013 by J. Lind, K. Chatterjee, R.M. Suter, and A.
Beaudoin with assistance from APS Sector 1 staff including S. Shastri who ran the HRM. A detailed
description of experiment procedure is given in [100]. While a variety of preliminary analysis based
on far-field HEDM and conventional orientation reconstructions have been performed, this is the
first quantitative test of local strain extraction.
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the energy noise. The sample was a Ti7Al cylinder with diameter of about 0.8 mm,
and the diffraction images were collected with integration interval of 0.05°.

In the initial state, there is no load on the sample, then it was pulled with a load
gradually increased to 18.3 pounds. During the loading, the sample was slightly bent;
in response to tensile loading, the sample straightened causing compression on one
side and tension on the other. The bending is unintentional but beneficial because
it increases the intragranular strain heterogeneity and it gives us a clear qualitative
trend to verify with the strain reconstruction result.

The standard nf-HEDM reconstruction results of the initial state (before loading)
and the state under 18.3 pounds load are shown in the confidence maps of Fig. 4.13.
The color shows the confidence of the standard reconstruction. The cross section of
the loaded state appears shifted because the sample was bent. Note the reduction in
the confidence values in the loaded state. As shown below in Fig. 4.14, the right side of
the sample underwent tensile strain while the left side was under compression whereas
the reconstruction used the same lattice constants as used for the unloaded state. The
reduced confidence values in both regions indicate near-field strain sensitivity. The
current analysis focuses on the numbered grains which are in the region where the
stain appears least and the orientation reconstruction is most reliable; it attempts to
extract strain variations within these individual grains. In the grains on the tensile
(right) side, we might expect larger average strains to reflect those in far-field HEDM
analysis; these would probably have scaled larger variations too. In Section 4.6.2
we will use the small grain circled by red line in the loaded state image to calibrate
the geometry parameters of the experiment setup. Then we will reconstruct the
intragranular strain of the numbered grains in Section 4.6.3.

Figure 4.13: The standard nf-HEDM reconstruction results of the state before the
loading and under 18.3 lbs load. The color shows the confidence of the standard
reconstruction performed by J. Lind using IceNine software. [4]. The intragranular
strain reconstruction in Section 4.6.3 are performed on the grains with IDs, the grain
circled by red line is used for calibration in Section 4.6.2.

We also have the grain averaged strain values reconstructed from far-field HEDM
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(ff-HEDM) [93], as shown in Fig. 4.14. This figure is slightly shifted and rotated
comparing to Fig. 4.13, but the overall trend of the grain averaged strains is consistent
with the bending direction evident here.

Figure 4.14: Szz values of the grain averaged strain reconstructed from ff-HEDM
superposed on the nf-HEDM grain map for the loaded state. Note the clear gradient
moving from left (compressive) to right (tensile). Thanks to K. Chatterjee and A.
Beaudoin for this analysis and figure.

4.6.2 Geometry Parameters Calibration

As we mentioned in Section 4.5.1, it is crucial to have the value of experimental
geometry parameters within small uncertainty. The geometry parameters include:
the distance between detector and the sample rotation axis (L), the relative horizontal
position of sample rotation axis on the detector (J), the relative vertical position of
X-ray beam plane on the detector (K), and the orientation of the detector (φ1, ψ, φ2)
which expressed as Euler angles in ZXZ convention. Unfortunately, current nf-HEDM
instruments can’t give us those numbers, so some calibration process is needed.

The “rigorous” way of calibration is to reconstruct those unknown parameters
along with the whole deformation gradient field, however it is computationally unre-
alistic. Instead, we pick a small grain (red circled in Fig. 4.13), treat it as a point
scattering source and reconstruct its deformation gradient and the center of mass
(x, y) along with those 6 unknown parameters. So, in total we have 6 + 9 + 2 = 17
unknowns, while we have ∼ 102 diffraction peaks for that grain, which means the
calibration is an over-determined problem.
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For the loaded state, we have the initial guess that results from the standard
nf-HEDM calibration and reconstruction:

J0 = 1182.19, K0 = 2026.27, L0 = 7.145,

φ0
1 = 89.1588, ψ0 = 87.5647, φ0

2 = 0.2786,

x0 = −0.3459, y0 = 0.2387, D0 = I

where J,K are in the unit of number of pixels, L, x, y are in the unit of millimeter,
φ1, ψ, φ2 are in the unit of degree. (x0, y0) are the center of mass of that grain. The
reconstructed Euler angles of that grain is (147.248, 81.8513, 217.515). We choose
76 of its diffraction peaks, obtain the position (pixel coordinates and ω values) of
their center. The calibration is just to find the values of the parameters so that the
simulated peak positions (using Eq. (4.4)) are as close as possible to the real peaks.
The cost function we used is the weighted sum of squares, the weights are inverse
of the approximated uncertainties when we measure the position of real diffraction
peaks (we choose 0.05° for Ω, 5 pixels for J , 1 pixel for K). The minimization
algorithm we used is Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) [101].
After calibration, the parameters for the loaded state we get are:

J = 1180.24, K = 2022.76, L = 7.056,

φ1 = 89.6934, ψ = 90.0441, φ2 = 0.1904

Fig. 4.15 shows the position difference between the 76 simulated peaks and cor-
responding experimental peaks before and after calibration. It is clear that after
calibration, the difference between simulated peak positions and real experimental
peak positions are very small, within the uncertainties of real experimental peak
position estimations.

Figure 4.15: The position difference between the 76 simulated peaks and corre-
sponding experimental peaks. The simulations from parameters before calibration
are shown in blue, after calibration are shown in orange. On the left is the histogram
of Ω differences with binning size of 0.05°. On the right is the differences of pixel
position in the unit of number of pixels.
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The same calibration procedure was also performed on the initial state with
the same grain, and the parameters we get are very similar with the loaded state
(∆J < 2 pixels,∆K < 1 pixel,∆L < 5 µm). For the reconstruction of both states in
Section 4.6.3, we used the parameters calibrated from the loaded state.

4.6.3 Reconstruction Results

We reconstructed grains 2, 8, 13, 14, 15, 23, 46 in Fig. 4.13 for both states, all of them
are on a grid with size of 2 µm×2 µm, the results are shown in Fig. 4.16. The reference
lattice constants we used for calculating the strains are:

a = b = 2.9254�A, c = 4.674�A,

which is used in [93] and the standard nf-HEDM reconstructions.
As we can see, in the initial state the intragranular Szz values for every grain are

relatively small, most of them are within ±1× 10−3 range. As we pulled the sample,
strain was building up. For these seven grains, the intragranular strains ranging from
−1× 10−3 to 3× 10−3, and the overall trend is consistent with the bending direction
and the approximated grain averaged values also match with the ff-HEDM results
in Fig. 4.14. One caveat is that, the reconstructed strain near the grain boundaries

Figure 4.16: The reconstructed intragranular Szz strain component for grain with IDs
in Fig. 4.13. In the loaded state, black lines indicate the grain boundaries from the
standard nf-HEDM reconstruction.

(indicated by black lines in Fig. 4.16) are not necessary accurate, since they are more
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sensitive to the errors in the experiment geometry parameters. Therefore, we did not
reconstruct the voxels near boundaries in the initial state. Moreover, the boundary
position may not be accurate either. Although the grain boundary position accuracy
of standard nf-HEDM reconstruction in undeformed sample is ∼ 1 µm [39], we don’t
know its accuracy for deformed sample yet. Further analysis is needed to get more
accurate values at boundaries, e.g. by fine tuning the geometry parameters and
boundary positions to get better fit between simulated peak and real peak.

Figure 4.17: The reconstructed results for all strain components in loaded state.

The reconstructed result of all strain components for loaded state is shown in
Fig. 4.17. As we expected, the patterns of components Szz and Sxy are cleaner than
other components, and all of them have reasonable magnitudes. Using the same
stiffness matrix we used in Section 4.4, we can calculate the stress tensor from the
strain values. The results are shown in Fig. 4.18. All diagonal stress components
are noisy because of the relatively low quality of the reconstruction of Sxx and Syy.
Improving the reconstruction quality and analyzing the reconstruction results are
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needed in future work.

Figure 4.18: The values of stress components in loaded state calculated from the
strain values and the stiffness matrix in Section 4.4.

4.6.4 Diffraction Patterns Comparison

One straightforward way to check the validity of reconstructions is to compare the
X-ray diffraction patterns. Because there are about one hundred peaks from each
grain collected by the nf-HEDM measurement, it is tedious and not necessary to
demonstrate all of them in this thesis. In this section, we will show several diffraction
patterns and corresponding simulated patterns from Grain 15 for both initial and
loaded states. The same Bragg peaks in initial and loaded states are found by their
Miller indices (h, k, l).

One observation is that all simulated peaks match very well with corresponding
real diffraction peaks. We noticed that most of the diffraction peaks are similar to
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Figure 4.19: Diffraction Peak A, Miller indices (h, k, l) = (1, 1, 2). (a) Initial state,
left column is simulated from the reconstructed strain field, right column is the real
diffraction pattern, different rows are successive rotation frames; (b) Loaded state,
left column is simulated from the reconstructed strain field, right column is the real
diffraction pattern, different rows are successive rotation frames. Left and right rows
of (a) and (b) do not represent the same rotation frames, there is a shift which reflects
an average strain change. The ω values in the images indicate the relative differences
of rotation frame indices.
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Figure 4.20: Diffraction Peak B, Miller indices (h, k, l) = (3, 1, 1). (a) Initial state,
left column is simulated from the reconstructed strain field, right column is the real
diffraction pattern, different rows are successive rotation frames; (b) Loaded state,
left column is simulated from the reconstructed strain field, right column is the real
diffraction pattern, different rows are successive rotation frames. Left and right rows
of (a) and (b) do not represent the same rotation frames, there is a shift which reflects
an average strain change. The ω values in the images indicate the relative differences
of rotation frame indices.
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Figure 4.21: Diffraction Peak C, Miller indices (h, k, l) = (1, 2, 1). (a) Initial state,
left column is simulated from the reconstructed strain field, right column is the real
diffraction pattern, different rows are successive rotation frames; (b) Loaded state,
left column is simulated from the reconstructed strain field, right column is the real
diffraction pattern, different rows are successive rotation frames. Left and right rows
of (a) and (b) do not represent the same rotation frames, there is a shift which reflects
an average strain change. The ω values in the images indicate the relative differences
of rotation frame indices.
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Figure 4.22: Diffraction Peak D, Miller indices (h, k, l) = (2, 2, 2). (a) Initial state,
left column is simulated from the reconstructed strain field, right column is the real
diffraction pattern, different rows are successive rotation frames; (b) Loaded state,
left column is simulated from the reconstructed strain field, right column is the real
diffraction pattern, different rows are successive rotation frames. Left and right rows
of (a) and (b) do not represent the same rotation frames, there is a shift which reflects
an average strain change. The ω values in the images indicate the relative differences
of rotation frame indices.
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Figure 4.23: Histogram of the values of Eq. (4.7) for all collected Bragg peaks from
grain number 15.

peak A, peak B and peak C in Fig. 4.19, Fig. 4.20 and Fig. 4.21, they are split into
successive rotation frames with similar number of frames in both initial state and
loaded state. However, a few peaks are like peak D in Fig. 4.22, the number of frames
in loaded state is much more than the initial state, and the peak seems to be stratified
into successive frames.

The sensitivity of the ωa and ωb for each reciprocal lattice vector to the strain
component Szz can be calculated from their expression in Section 4.2.3. We have

| ∂ωa
∂Szz

| = | ∂ωb
∂Szz

| = 2G2
z√

(4‖k‖2 − 2G2
z −G2

x −G2
y)(G

2
x + G2

y)−G4
z

. (4.7)

In nf-HEDM experiments, ‖k‖ is usually larger than any component of G, therefore
larger Gz with smaller Gx and Gy would have larger sensitivity to Szz. We calculated
the numerical values of Eq. (4.7) for all collected Bragg peaks from grain number 15,
the histogram is shown in Fig. 4.23, the positions of peak A and peak D are annotated.

Therefore, a possible explanation of the peak splitting phenomenon is as following:
with and without loading, the change of the intragranular heterogeneity of most strain
components are small except the component Szz, so the splitting levels are determined
by | ∂ω

∂Szz
|. As a result, the number of split frames are unchanged for most peaks (e.g.

peak A and peak B), only a few peaks with large values of | ∂ω
∂Szz
| (e.g. peak D) are

stratified into much more rotation frames under loading.
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Chapter 5

Electron Backscatter Diffraction
Indexing using Convolutional
Neural Networks

5.1 Introduction

Spatial microstructural heterogeneities at the mesoscale (∼1-100 µm), including grain
boundaries, phase boundaries, dislocations, defect structures, and chemical segrega-
tion, directly control macroscopic material properties and behavior. Currently, the
lack of understanding of the complex collective response of mesoscale features to ex-
ternal stimuli poses fundamental challenges in predicting materials’ microstructure
evolution [102, 103]. This is critical for engineering new materials with tailored prop-
erties. Experimental techniques have advanced significantly in the last two decades
enabling destructive and non-destructive characterization of material microstructures
and their evolution at high spatial and temporal resolutions [104, 105, 106]. With
increasing data collection rates and sizes of data sets per sample reaching tens of TBs,
there is considerable interest in exploring how efficiently analysis methods based on
machine learning can be applied to the reconstruction process. In this work, we
show how convolution neural networks (CNNs) can be used as “surrogate” models for
solving the inverse problem of reconstructing microstructures from diffraction data.

Electron backscatter diffraction (EBSD) is the most extensively used technique
for 2D and/or 3D spatially resolved microstructure characterization of relatively large
(0.1-10 mm) polycrystalline samples [75, 107]. EBSD provides orientation maps at
sub-grain spatial resolution (∼200 nm) and high crystal orientation resolution (<0.5
deg). During an EBSD measurement, an electron beam is focused onto a spot on the
sample surface and a diffraction pattern is recorded. Top of the line commercially
available orientation imaging microscopes (OIM) can make one such measurement
in less than 1 ms [108]. When optimizing for speed, the pattern quality degrades,
which results in reduced orientation indexing fidelity with conventional reconstruc-
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tion methods [109]. In contrast, the state-of-the-art dictionary method significantly
improves the orientation reconstruction accuracy from highly noisy EBSD patterns
[109]. Although scan speeds are incredibly high, real-time orientation indexing using
dictionary learning approach is not yet feasible, limiting it to be an off-line method
[110].

Fast orientation indexing from noisy patterns is crucial for in-situ microstructure
evolution [107, 109] and other quantitative studies that require statistically significant
volume measurements at high spatial resolution [104]. In spite of progress towards fast
data collection times and computation, there is a need for new methods to accelerate
the orientation indexing from noisy EBSD patterns, especially if we are to make
progress towards real time in-situ studies and 3D microstructure characterization.

Recently, deep convolutional networks have been utilized for a range of imaging
techniques from automated image segmentation [111, 112] to image reconstruction for
magnetic resonance imaging [113]. While CNNs have demonstrated immense success
for problems related to image classification [114] and detection [115], only a few
studies have utilized CNNs to address regression problems [116, 117] for improving
the performance of a forward model.

Liu et al. [118] demonstrated the first application of convolutional neural networks
for EBSD orientation indexing from simulated diffraction patterns. Separate CNN
models were trained to predict individual components of the crystal orientation. Jha
et al. [110] extended this approach to predict the full crystal orientation using a deep
CNN network, employing mean disorientation in the loss function to account for the
non-linearity of the orientation space. However, the implementation of complicated
loss functions led to relatively long training times. In both the studies, the models
were only trained and tested on simulated EBSD patterns, in contrast to real ex-
perimental diffraction patterns; therefore, the effects of measurement noise was not
considered. In our research we have found that utilizing simulation-trained CNNs for
experimental data can result in low prediction accuracy. In this work, we demonstrate
the efficacy of the neural network approach for experimentally measured data with
varying noise levels. We present two convolutional neural networks based EBSD re-
construction techniques that are applicable to experimental diffraction patterns and
robust towards measurement noise.

5.1.1 Summary of main results

In this work, we utilize the existing physics-based model to generate a large num-
ber of training sets that span the entire space for developing faster surrogate models
based on convolutional neural networks for predicting crystal orientations from simu-
lated diffraction patterns. Since the simulation trained model cannot be directly used
on measured data, the novelty of this work is in the demonstration that a simula-
tion trained model can instead be used as an initial guess or estimate for re-training
a separate neural network that only requires a small number of expensive experi-
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mentally measured data (300K simulated versus 1K measured patterns). We also
demonstrate that the re-training with a straight forward loss function is relatively
fast. The robustness of the CNN methods to the measurement noise is demonstrated
by collecting experimental data with different exposure times relating to noise levels
in the diffraction patterns. Because our techniques are robust to noise, they have
the potential to enable higher scan speeds, which are currently limited in part by the
fact that the signal to noise ratio drops as the scan speed is increased. The CNN
based reconstruction method takes as little as 1 ms for orientation indexing, matching
the highest scan rates, enabling real-time orientation indexing. We also demonstrate
that a quaternion norm metric provides a good confidence measure for assessing the
quality of the reconstruction, without requiring ground truth information.

To the best of our knowledge, this is the first demonstration of the potential of
neural network based methods for experimentally measured EBSD diffraction pat-
terns with measurement noise for microstructure reconstructions. The CNN based
approach demonstrated here is directly applicable to solving the inverse problems
faced by multiple modalities such as transmission electron microscopy, tomography,
high-energy X-ray diffraction microscopy, and coherent diffractive imaging for en-
abling mesoscale microstructure characterization and reconstruction at high rates.

5.1.2 Outline

The basic principle of EBSD (measurements and simulations) is presented in Section
5.2. A brief background on CNNs is reviewed in Section 5.3, and their application
to EBSD is presented in Section 5.4. In Section 5.5, we summarize our key findings
related to the model’s sensitivity to image noise and experimental parameters, and
discuss the computational cost of the proposed methods.

5.2 Electron backscatter diffraction

A diffraction pattern (intensity distribution) on a detector, X = X(x, y), where (x, y)
is pixel location, can be expressed as a function of crystal orientation represented as
a quaternion q = (q1, q2, q3, q4), of the form:

X = P(f(q|M, C,G)), (5.1)

where we use symbols M to parameterize the microscope, C to denote the crys-
tallography of the sample, G to represent the geometry of the setup and P(λ) to
represent a random Poisson sample drawn from a Poisson distribution with mean
λ. Like many other diffraction-based measurement methods, reconstructing a crys-
tallographic orientation from an electron backscatter diffraction (EBSD) pattern is
achieved by solving an inverse problem, i.e. finding the inverse function which maps
a given diffraction pattern to an orientation: g(X) = q.
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Figure 5.1: (a) Inverse pole figure map of the Ta sample. (b) Measured (left) and
simulated (right) diffraction patterns, and (c) mean (left) and standard deviation
(right) of the experimental patterns associated with the same crystal orientation.
The standard deviation of every pixel intensity is about 0.03, which is the estimated
noise in the experimental patterns.

The most commonly used approach for orientation indexing from measured EBSD
patterns utilizes image processing techniques including Gaussian filtering, Hough
transforms, butterfly convolution, and peak detection for extracting Kikuchi bands
[119, 120]. Crystal orientations are reconstructed by comparing the parameters of the
measured Kikuchi bands (i.e. angles between lines) with a pre-computed database.
Recently, Chen et. al . [121] proposed a dictionary indexing (DI) method for mi-
crostructure reconstruction based on dictionary generation and pattern matching. A
physics-based forward model developed by Callahan et. al . [122] was used for the
dictionary generation, where the forward model are tuned to the parameters of the
experiment and the crystal structure of the sample. Chen et. al . simulated a dic-
tionary of diffraction patterns corresponding to a set of orientations that uniformly
covered the fundamental zone. In the DI approach, the reconstruction is performed
by calculating inner products between an experimental pattern and every simulated
pattern in the dictionary. The crystal orientation is then estimated using “k nearest
neighbors”, by determining k largest inner products. The computational complexity
of the dictionary method to index one pattern is O(dn), where d is the dictionary
size and n is the number of pixels for each diffraction image, assuming k � d [121].
Typically, n = 60× 60 and d ∼ 3× 105 for cubic symmetry materials.

5.2.1 Simulations

The approach presented here utilizes the forward model developed by Callahan et.
al . [122] to generate a dictionary of a large set of simulation data. We generated a
“uniform grid” of 1.5◦ resolution on the cubic crystallographic orientation fundamen-
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tal zone, and simulated the diffraction pattern for each orientation using the EMsoft
software package [123]. The geometrical parameters for the simulations were obtained
from the known detector and sample angles as well as the OIM analysis software fit
pattern center corresponding to the central scan point. Further minor refinement
of the pattern center parameters was performed using EMsoftWorkbench software
provided by the EMsoft package [123]. In total, 333227 pairs of orientations and
diffraction patterns were generated.

5.2.2 Measurements

Experimental EBSD diffraction patterns were collected from an annealed tantalum
sample with 35 µm average grain size. A 1 mm × 1 mm area was scanned with
2 µm step size using a FEI Inspect scanning electron microscope equipped with an
EDAX Hikari Super camera. The electron beam accelerating voltage was 20 kV, the
beam aperture diameter was 50 µm, and the nominal working distance was 20 mm.
A diffraction pattern was collected at each sample position, for a total of 501×501
= 251001 diffraction patterns. The inverse pole figure (IPF) map obtained from the
OIM analysis software is shown in Figure 5.1(a).

The original detector image was collected at a 1×1 binning and had 480 × 480
pixels; however, software binning (8× 8) was applied on the raw images to yield the 60
× 60 pixel images used for the CNN modeling. It should be noted that the software
binning results in a larger readout noise component compared to CCD hardware
binning (in this case approximately eight times larger readout noise). However, for
the high signal levels at the long exposure times considered here, the proportion of
readout noise, and therefore the difference between hardware and software binning,
is expected to be minimal. The measured (left) and simulated (right) diffraction
patterns for the same orientation and instrument settings are shown in Figure 5.1(b).

As an approximation, we also estimated the intensity noise in the experimental
patterns. Distinct grain orientations in the experimentally measured sample were
determined. In an ideal case for ordered samples, the diffraction patterns obtained
from orientations corresponding to the same grain should be identical and any devi-
ation from the average value of any given pixel in the diffraction pattern would be
due to random noise. Note that the tantalum sample used in this study was well
annealed; therefore, it is expected to have low intra-granular misorientations; there-
fore, this noise calculation procedure (albeit unrepresentative of experimental noise)
is reasonable to use in this case. An example of the 2D intensity maps of the mean
(left) and standard deviation (right) for a given grain is shown in Figure 5.1(c). We
measured the standard deviation of each pixel intensity associated with a given grain
orientation and found that the normalized pixel intensities had a standard deviation
of approximately 0.03.

The same sample was also used to study the robustness of the CNN model towards
the presence of experimental noise. For this purpose, a 1 mm × 1 mm area of the Ta
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Figure 5.2: EBSD orientation maps of the same region acquired with different ex-
posure times. (a) The first scan acquired with 30 ms exposure. (b) Misorientation
map showing difference in measured orientations for the first and the last scans, both
acquired with 30 ms exposure times. The orientation maps acquired with (c) 2 ms
and (d) 1 ms exposure times. Hough transform method produced lower fidelity ori-
entation reconstructions as the noise levels in the diffraction patterns increased with
decreasing exposure times.

plate was scanned repeatedly with a 20 µm step size. Different scans were recorded
using various exposures ranging from 30 ms to 1 ms per point. The area scanned
was identical, and a final scan at the end of the experiment was conducted again at
30 ms exposure to ensure that sample drift was not significant during exposure (i.e.
the points scanned and orientations were similar across all datasets). The orientation
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maps for 30, 2, and 1 ms exposures are shown in Figures 5.2(a), 5.2(c), and 5.2(d),
respectively. Figure 5.2(b) shows the misorientation map showing the difference in
orientations between the initial and the final 30 ms exposure time scans. The random
distribution of low misorientation angles between the initial and the final 30 ms scan
points suggest that sample drift was not an issue.

5.3 Convolutional neural network

5.3.1 Convolutional Neural Network Basics

Figure 5.3: Convolutional neural network architecture. The input is a diffraction
pattern, which goes through several convolutional layers and then the fully connected
layers. The output is four real-valued numbers corresponding to quaternion com-
ponents that represent a crystal orientation. Numbers in the parentheses show the
dimensions of each step. The convolutional operations are shown in red, max pooling
operations are shown in black, full connections are shown in blue.

Multilayer feed forward networks have proved to be universal function approxi-
mators to learn or estimate a mapping or function between inputs (or features) and
outputs (objectives) (e.g. y = f(x)) [124, 125, 126]. In particular, the convolutional
neural network has become a key tool for the state-of-the-art methods in computer
vision [114]. Unlike deep neural networks where each neuron is connected to all
the neurons in the previous layer, the CNN limits such spatial connectivity through a
restricted region of activated neurons (receptive field) with shared weights [126]. Tak-
ing advantage of such an architecture allows CNNs to have fewer degrees of freedom
than traditional multi-layer fully connected neural networks and make convolutional
networks more efficient for solving problems related to high-dimensional images.
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A convolutional layer can be written as:

hl(i,j),c =
s∑

m=−s

s∑
n=−s

∑
c′

w(m,n),c,c′a
l−1
(i−m,j−n),c + bc,c′ (5.2)

which is followed by the activation function

al(i,j),c = ReLU
(
hl(i,j),c

)
= max

{
0, hl(i,j),c

}
,

where hl(i,j),c and al(i,j),c are the feature map intensity and activation value at (i, j)
pixel coordinates, s is the kernel size and c is the channel index in layer l. The
w(m,n),c′,c are the convolutional kernel weights between channel c and channel c′ of
neighboring layers and bc,c′ is the bias term.

In our work, we used a 3×3 kernel for all convolutional layers with s = 1, the range
of m and n was m,n ∈ {−1, 0, 1}, and zero padding was employed. The filter numbers
(i.e. number of channels) were 4, 8, 8 in order. After these three convolutional layers,
we applied a max pooling layer with a pooling size of 2 and stride of 2, in which all
the feature maps were divided into 2 × 2 non-overlapping units and every unit was
assigned an intensity equal to the maximum pixel intensity inside of that unit. The
outputs of these layers were new feature maps half the size of the input feature maps.

Next, three convolutional layers and one max pooling layer were applied again,
the number of filters for these three convolutional layers were 8, 8, 4 in order. After
that, the feature maps were flattened into a 1D vector and two fully connected layers
were applied with each one followed by a ReLU(x) activation function. 512 neurons
were used in the fully connected layers. The output layer was similar to the fully
connected layer without applying the activation function. The four output neurons
corresponded to the four quaternion components representing the crystal orientation.

When fitting a complex model to a small dataset, there is a high chance of overfit-
ting. An overfitted model can describe well the particular dataset that it is trained on,
but fails with a comparable level of prediction on unseen data. This lack of generaliz-
ability of the trained model can be alleviated to some extent through regularization.
We used the mean absolute loss as the objective function, and L2 regularization for
the weights of convolutional layers to prevent overfitting. L2 regularization adds the
sum of square of weights to the loss function, so that large weights are penalized,
effectively making the model “smoother”. The total loss function is given by:

L = ‖ĝ(X)− q‖1 + λ ‖W‖2

where ĝ(X) represents the feed forward processing of our CNN model and λ is the
penalty weight (in our model λ = 0.0001). The Adaptive Moment Estimation (Adam)
algorithm [127], a variant of stochastic gradient descent (SGD), was used as an op-
timizer to train our model, finding the weights W and biases b that minimized the
total loss on the training set consisting of (Xi,qi) pairs. An approximate smooth
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Figure 5.4: Results of the trained CNN model utilizing the simulated EBSD data.
(a) Training history: Both training and validation errors converge to about 0.01 after
40 epochs. The shadow area is the standard deviation of 10 runs. (b) Predicted
quaternion components of the testing set, where most of predicted orientations (97%)
compare well with the ground truth, except for a few outliers. (c) The distribu-
tion of misorientation angle between the prediction and the ground truth. (d) The
misorientation angle versus deviation from unity of the quaternion norm.

function ĝ(Xi) ≈ qi was determined, which well approximated the inverse function
ĝ ≈ g for orientation reconstruction from diffraction pattern. Representing crystal
orientations as quaternions afforded a good way of estimating the “confidence” metric
for model predictions. Any deviation of the norm of a quaternion from one indicated
the inaccuracy in model prediction.

5.3.2 Pre-training the CNN using simulated data

We developed a CNN based regression model trained end to end to approximate the
mapping from EBSD diffraction patterns to crystallographic orientations. First, the
simulated diffraction patterns and the corresponding crystal orientations were used
for model training, validation, and testing. Note that the training sets are used for
updating the weights of neural network, while the validation set are used for evaluating
the performance during the training process. Test set is unseen by the neural network
during the training process too and is used to evaluate model accuracy and ensure
that the model is not overfitting. All input images were normalized so that pixel
intensity ranged between 0 and 1. Figure 5.3 shows the CNN architecture used. A
detector image with 60 × 60 pixels with one channel for intensity was used as input
to the CNN. The dimensions of the convolution filters and the fully connected layers
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are also shown in Figure 5.3. As described in Section 5.3.1, the detector image passes
through a convolutional layer which gets transformed into a feature map which then
passes through a non-linear rectified linear unit (ReLU(x) = max{0, x}) activation
function [128]. The loss function we used for training our neural network is the
mean absolute error (MAE) between each quaternion component of the prediction
and the ground truth. Empirically, MAE performs better than using mean squared
error (MSE) as the loss function on our data set. Pooling layers are also employed
occasionally to reduce the size of the feature map and the computational cost. In
addition, pooling layers make the network less sensitive to small local features, and
help control overfitting to some degree. Finally the outputs of the convolutional
and pooling layers go through the fully connected layers, which estimate the final
output crystal orientations corresponding to the input detector images. After several
convolutional layers and then the fully connected layers, the output of our CNN is
four real-valued numbers which represent quaternion components.

We utilized a repeated random sub-sampling validation method, also known as
Monte Carlo validation [129]. More specifically, we trained the model several times
and each time we randomly split the dataset into training and validation sets, and
the errors were estimated by averaging over runs. In each split, we used 1000 pairs
for validation, and the remaining 332227 pairs for training. We also randomly gen-
erated a separate 1000 pairs of orientations and diffraction patterns from the cubic
fundamental zone, which were then used for testing.

The results from 10 separate trainings are shown in Figure 5.4. Figure 5.4(a)
shows the training history, where the shaded area is the standard deviation over 10
runs. The plot illustrates that both validation and training errors converged after
fewer than 40 epochs, which means that the neural network passed through all the
training samples 40 times to update the network weights. Figure 5.4(b) shows the
ground truth and prediction of each quaternion component.

Figure 5.4(c) shows the distribution of test error, where misorientation between
predicted orientations and ground truth is used as a metric for quantifying the “good-
ness” of the prediction. As we can see, the peak is about 2◦ and 97% of the predictions
are below 10◦ misorientation. Note that to employ a simple loss function, crystal-
lographic orientations were represented by quaternions instead of Euler angles, as
previously used in the work by Liu et al. and Jha et al. [118, 110]. By predicting all
four quaternion components, we are allowing the quaternions to change in all four
directions, while a crystal orientation has only three rotational degrees of freedom.
Since all the training data sets have quaternions with unit norm, the training process
in effect should penalize the outputs that are far from unity to some degree. This
can be observed from reasonably good agreement between the predicted and ground
truth orientations shown in Figure 5.4(c). However, to ensure accurate orientation
prediction, one could impose explicit constraints that enforces unit norm for output
quaternions.

Figure 5.4(d) shows a strong correlation between misorientation angle and the
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deviation from unity of the quaternion norm. However, large deviation from unity is
an obvious artifact of our CNN model. An interesting observation was that all the
outliers had at least one quaternion component close to the cubic fundamental zone
boundaries (≈ ± 0.383). An alternative approach to improve the prediction of crystal
orientations at the boundary are discussed in the following sub-section.

5.3.3 Outliers near the Fundamental Zone boundaries

One of the difficulties to apply CNN to diffraction images is the outliers near the
fundamental zone boundaries, which are caused by the crystallographic symmetry.
In a specific fundamental zone, two points at the boundary may be far from each
other but physically equivalent. This means that if we use the quaternions in a
specific fundamental zone as the ground truth and the MAE as the loss function, the
boundary points will not be dealt properly by the CNN model. Physically equivalence
implies that the diffraction patterns are the same but the output quaternions look very
different. It is therefore not surprising that the CNN model are not trained very well
for points near the fundamental zone (FZ) boundary. This is easier to understand in
a simpler one-dimensional case. Assuming all crystal orientations are along the same
axis and there is no crystallographic symmetry, the neural network are trying to find
the map from diffraction pattern to a single angle e. We can constrain e ∈ [0, 2π),
which is effectively a “fundamental zone”. There will be problems for the neural
network near the fundamental zone boundaries. For example, the diffraction patterns
from e = 0.001 and e = 1.999π are very similar, but during the training process the
neural network is forced to predict very different angle values for these diffraction
patterns. So, the neural network can not be trained very well at the boundaries. One
solution is to train another neural network to map diffraction patterns to e ∈ [π, 3π).
[π, 3π) is a new ”fundamental zone” and it overlaps with [0, 2π), and they don’t have
the same boundaries. This new neural network performs bad at angles near e = π,
but it performs well on angles near e = 0. By combining these two neural networks,
we can predict every angle very well.

Jha et al. [110] accounted for the near boundary points in their CNN model
by implementing an averaged disorientation angle based loss function. Although
this complex loss function can yield improved reconstructions near FZ boundary, it
significantly deteriorates the reconstruction speed. An alternative approach while
using a simple MAE loss function to address this problem is to train several CNNs on
different fundamental zones. Those fundamental zones are overlapped so that almost
no point is at the boundaries of all the fundamental zones. More specifically, since
we only have unity norm quaternions, we can use scatter plots in 3D to represent
the quaternions where x, y, z axis are three quaternion components q1, q2, q3. Fig. 5.5
(a) is one of its projection, each point represents a quaternion in the test set, and
we labeled all the reconstruction outliers with red dots. In this figure (and other
projections not shown here) you we find that the original fundamental zone is close
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Figure 5.5: (a) q1, q2 projection of the 3D scattering plot of normalized test quater-
nions in the original fundamental zone, red dots are reconstruction outliers. (a) q1, q2

projection of the 3D scattering plot of normalized test quaternions in a transformed
fundamental zone, yellow dots are transformed quaternions and red dots are the orig-
inal outliers.

to a cubic with rounded corners and curved edges, and all outliers are at the boundary
( q1, q2, q3 ≈ −0.38 ). For those quaternions whose q1 > 0, we applied a transform

m =

1 0 0
0 0 1
0 −1 0

 (one of the cubic symmetry operation) to their rotation matrix, so

we get new quaternion representations of those orientations, then the scatter plot for
all orientations is shown in Fig. 5.5 (b), in which the yellow dots are the transformed
quaternions, blue dots are the quaternions not have been transformed and the red
dots are original outliers. We use these quaternions as the training label to train
another CNN. For this new ”fundamental zone”, quaternions whose q1 ≈ −0.38 are
not at the boundary anymore, so this CNN can perform well on these quaternions.
Similar transformations can be applied to get other two fundamental zones which can
cover the outliers around q2 ≈ −0.38 and q3 ≈ −0.38, and two more CNN are training
on those transformed fundamental zones.

The predicted orientation of a diffraction pattern is then chosen based on the
deviations from unit norm of the predicted quaternions from all four models. To
demonstrate the effectiveness of this idea, we trained four CNNs on the same diffrac-
tion patterns but the quaternion labels are transformed to different fundamental zones
that overlap with each other.

Figures 5.6(a) and 5.6(b) show the model prediction at the end of the training
process for the single and multiple CNN methods, respectively. For the training and
validation sets (333227 data points), the original model had 4307 (1.29%) outliers
and the multiple-FZ approach had 191 (0.05%) outliers, where outliers are defined as
quaternions with larger than 10◦ misorientation angle with the ground truth. Similar
comparison for the test set using the multiple CNN method is shown in Figure 5.6(c)

95



and the error versus deviation of the predicted quaternion norm from unity is shown
in Figure 5.6(d). For the test set (1000 data points), the original model had 22 outliers
and the multiple-FZ approach had 1 outlier. The results in Figure 5.6 demonstrates
significant improvement in orientation predictions from CNNs trained on multiple
fundamental zones as opposed to a single one.

Figure 5.6: The predicted quaternion components versus the ground truth for training
data set from (a) a single CNN model and (b) combination of four CNNs. The four
models are trained on four different fundamental zones, and for each orientations,
quaternion with the smallest deviation from the unit norm is chosen. Finally, all
the predicted quaternions are transformed to the original fundamental zone. (c) The
comparison between the ground truth and the predicted quaternions from the multiple
CNNs and (d) the misorientation angle versus deviation from unity of the quaternion
norm for the test data sets.
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5.4 Application of CNNs to experiment

Due to inherent assumptions in the forward model, differences between the simulated
and experimental diffraction patterns are expected. Two approaches based on adap-
tive learning were utilized to apply the CNN initially trained on the simulated patterns
to experimentally measured EBSD data. 1) Domain transform: This method is based
on training a separate model that maps the experimental patterns to the simulation
patterns, so that the originally trained CNN model could be utilized for orientation
reconstruction. 2) Transfer learning: This method used a portion of the experimental
patterns for retraining the parameters of the convolutional layers in the CNN model
trained on simulated data, while fixing the parameters of the fully connected layers
of the original network. These two methods are described in more detail in in the
following sections.

5.4.1 Domain transform using U-Net

Transformation of experimental patterns to simulated patterns was achieved through
the U-Net architecture shown in Figure 5.7(a). The U-Net employs a stack of convo-
lutional layers to encode the high level information from the input patterns and then
uses a stack of “deconvolutional” layers that decode the spatial information [130].
The loss of details during the down sampling in the encoder is accounted for by the
U-Net through “skip-layer” connections between the encoder and the decoder. In
our U-Net, the first convolutional layer had a 3 × 3 kernel size, 16 filters and stride
1. It was followed by two convolutional layers with kernel size 5 × 5, 32 filters and
stride 2, which effectively downsized the feature maps by 2. A feature map refers to
the spatial information regarding the distinct activation of neurons after applying a
convolution filter across the previous layer (image). After these three convolutional
layers, three deconvolutional layers were applied. The first two deconvolutional layers
had kernel size 5 × 5, 32 filters and stride 2, which expanded the feature maps by a
factor of 2. The final deconvolutional layer had kernel size 3 × 3, 1 filter and stride 1,
which generated the output images. The “skip-layer” connections concatenated the
feature maps from the same level of encoder and decoder layers, and then used it as
the input for the next decoder level. We used mean absolute loss as the objective
function, and L2 regularization for the weights to minimize the risks of overfitting.

Since the simulated patterns were already very similar to the corresponding exper-
imental patterns, a small training set was adequate to train the U-Net. We randomly
picked 1000 pairs of experimental and simulation patterns for training out of the total
251001 patterns, and another 100 pairs for testing. The training data and testing data
were chosen from different regions of the sample, to ensure no overlap. Figure 5.7(b)
shows one example of experiment pattern, simulation pattern, U-Net transformed
pattern, and the difference between simulation and U-Net transformed patterns (left
to right). The lack of any discernible features in the difference plot suggests that
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Figure 5.7: (a) U-Net architecture. The numbers in parentheses are the dimensions
of feature maps, and the numbers on top of each layer corresponds to the number of
filters. Dashed arrows denote the “skip-layer” connections. The measured diffraction
pattern is input to the network and the output is the transformed pattern, which
resembles the simulated pattern. (b) An example of transformed image. From left to
right is the experiment pattern, simulated pattern, U-Net transformed pattern, and
the difference between simulated and U-Net transformed pattern.

the difference between the simulated and U-Net transformed images are very small,
which means the U-Net transformed patterns are appropriate to use as the input for
the pre-trained CNN on simulated patterns.
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5.4.2 Transfer learning via re-training

The second method was inspired by retraining via “fine tuning” as used in machine
learning [131]. Transfer learning refers to the idea of exploiting the learned infor-
mation in one setting to be adapted for another similar setting. That is, given a
CNN trained for one purpose or data set, only a few samples are needed to train it
for another purpose, while keeping some of the weights fixed. In our case, we had
a CNN model that was trained on the simulated data, and we assumed that the
convolutional layers learned the low level features of the images, and the fully con-
nected layers learned the high level concepts, i.e., the inverse function. We therefore
retrained the convolution layers in the original CNN model using the experimental
patterns, while keeping the weights of the fully connected layers fixed. A similar idea
has been applied to cross modal learning [132].

5.5 Results and Discussion

5.5.1 Implementation on experimental data

Figure 5.8 shows the results of applying U-Net and re-trained CNN methods for
EBSD measurements of the 1mm × 1 mm tantalum sample shown in Figure 5.1. The
orientations were reconstructed from diffraction patterns using the Hough transform
method and were used as the ground truth. Figures 5.8(a) and 5.8(d) display the
misorientation maps between the prediction and the ground truth. The red dots cor-
respond to the sample location from which the diffraction patterns were taken for
training the network. Although many grains were not covered by the training set,
most of the orientation reconstructions for the unseen data were accurate within 10
degrees misorientation. Note that a low misorientation angle between the prediction
and the ground truth indicates accurate prediction. High misorientation angle is ob-
served for the grain boundary pixels, for which the Hough transform exhibits low
fidelity reconstructions. Figures 5.8(b) and 5.8(e) show the spatial distributions of
the deviation of the predicted quaternion norm from unity. The misorientation and
quaternion norm plots indicate that large misorientation corresponds to quaternion
norm that deviates away from the ideal value of 1. Therefore, the norm of the out-
put quaternion provides a metric for quantifying the prediction error. This is very
important for real applications, where ground truth information is not available. The
same training and testing sets were used for both domain transform and transfer
learning methods. The testing error distributions are shown in Figure 5.8(c) and
5.8(f) from U-Net and re-trained models, respectively. Slightly larger spread in mis-
orientation distributions were observed for experimental images in comparison to the
misorientation distribution predicted for simulation patterns, as seen in Figure 5.4.
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Figure 5.8: (a), (d) The misorientation map between the predicted and the ground
truth crystal orientations. The red points correspond to the positions from which
measured diffraction pattern and crystal orientation pairs were used for training the
U-Net and the re-trained networks. (c), (f) Misorientation distribution calculated for
the 100 measured patterns, randomly chosen from the right most side of the sample
(unseen during training), used as a testing set for the two models. The measured
diffraction patterns from the remaining Ta sample positions were used for orientation
prediction. Low misorientation angle indicates good agreement. (b), (e) Norm of the
predicted quaternion map indicate the quality of the reconstruction. Higher norm
indicates higher prediction error.

5.5.2 Robustness to pattern noise

To study the robustness to measurement noise, we used the same area scan of the
Ta sample with different exposure times shown in Figure 5.2. The orientations from
diffraction patterns acquired with 30 ms exposure were reconstructed using the Hough
transform method and were used as the ground truth. In total, 51 × 51 = 2601 pairs
of orientations and diffraction pairs were measured, where 2000 pairs were used as
a training set and the remaining 601 pairs were used for testing. FusionNet [112]
architecture was used for orientation reconstruction. FusionNet like U-Net can learn
the transformation from the real experimental patterns to the simulated patterns,
while demonstrating higher accuracy, especially, for images with high noise levels.

Figure 5.9(a) shows the results of applying FusionNets to the experimental pat-
terns of the same orientation but different exposure times. The top row is the ex-
perimentally measured patterns and the bottom row corresponds to the transformed
patterns. The pattern quality significantly degraded with decreasing exposure times.
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Figure 5.9: The robustness of model prediction to noise was investigated by scanning
the same area of the Ta sample with different exposure times. The results of diffraction
pattern with different exposure times. (a) Diffraction patterns with different exposure
times of a same example orientation. The first row is the raw images and the second
row is the transformed images that were used as the input for our CNN model. (b)
The simulated pattern corresponding to the same orientation in (a). (c) The error
distribution of different exposure times. The percentages of orientations that have
errors less than 10◦ are 95%,85%,71%,53% for exposure time 30 ms, 5 ms, 2 ms, and 1
ms, respectively. (d) Averaged confidence index for Hough transform reconstruction
of different exposure time.
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Figure 5.10: The misorientation distributions when the training and testing patterns
are generated under different detector parameter setups. (a) The sample to detector
distance is different for training and testing data, where the offset unit is µm. (b) The
pattern center X coordinate on detector are different for training and testing data.
(c) The pattern center Y coordinate on detector are different for training and testing
data. The offset units for X and Y are given in number of pixels (pixel size is 71.4
µm).

With shorter exposure times, the reconstructed pattern is more deformed, but many
features are retained in the transformed image. Figure 5.9(b) shows the simulated
pattern corresponding to the same orientation in 5.9(a). Misorientation distributions
between the measured and the predicted orientations are shown in Figure 5.9(c). The
results demonstrate that the CNN approach can to a degree learn to index very low-
quality diffraction images. The confidence index of the orientations reconstructed
using the OIM software is shown in Figure 5.9(d) for comparison. Although, decrease
in reconstruction accuracy for images with high level of noise was observed for both
CNN and Hough transform methods, Figure 5.9 demonstrates that neural networks
are robust to noise in diffraction patterns, and does not require pre-processing step
when dealing with noisy data.

Recent studies have also demonstrated CNNs’ robustness to noisy data [133, 134].
This is not surprising because convolutional layers have been shown to be capable of
learning the features from the training data to recover a clean image from a noisy ob-
servation [135, 136, 137]. Moreover, CNNs can learn high level features automatically
and are very robust to local noise, which makes them outperform traditional methods
based on handcrafted features, which involve pre-determining characteristic regions
or descriptors of an image, utilized in many computer vision tasks [113, 114, 115, 138].

5.5.3 Effects of experiment parameters uncertainty

Another challenge always encountered in experiments is the uncertainty in experi-
mental setup parameters. We conducted a parametric study to investigate the effect
of instrument setup uncertainty on model prediction. For that purpose, we trained
our model with simulated images generated from one set of detector parameters, and
tested it on the images that were generated using different setup parameters. The
results are shown in Figure 5.10. In Figure 5.10(a), we only changed the distance
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between the detector and the sample, keeping everything else fixed. As long as the
distance offset was smaller than 900 µm, the results were not strongly influenced.
Figures 5.10(b) and 5.10(c) show the effects of X and Y translation, which caused the
error to shift towards the right suggesting poor prediction. The extent of this shifting
was dependent on the choice of the experimental setup, and in our case, it was about
4◦ per 20 pixels (pixel size is 71.4 µm). This was expected because detector transla-
tion and crystal rotation have approximately the same effect on the EBSD pattern.
Therefore, similar to Hough transform and dictionary methods, the proposed CNN
based approach also requires determination of the experimental setup parameters be-
fore reconstruction. Note that a correction for the orientation error induced by the
pattern center shift across a large area EBSD scan can be applied using the method
described in Singh et al. [139]. While we do not use this correction factor here, as
we are primarily interested in demonstrating that large reconstruction errors can be
reduced through re-training (shown in Figure 5.8), accounting for the pattern center
shift as a function of scan position may further reduce the low misorientations shown
in Figure 5.8(f).

5.5.4 Computational cost

Compared to a dictionary approach, one advantage of using neural networks is in-
creased computational performance. Reducing computation time is an important
consideration in designing a network architecture. As we can see from Equation 5.2,
the computation time for each pixel in the convolutional layer is proportional to the
kernel size and the number of filters, which is related to the number of computations
performed by the network. Thus, reducing the number of layers and keeping the
kernel size and filter numbers managable for the convolutional layers will increase the
performance. However, a CNNs’ ability to approximate complex functions depends
on the network size [140, 141], and the prediction power will decrease with decreasing
network size.

The network architectures of the CNN and U-Net used in this work were optimized
for both computational performance and prediction accuracy, and we demonstrated
that the models generalized well for both unseen simulated and experimental data
sets. Using the network structure described here, the U-Net method took about 17
minutes to reconstruct the 1 × 1 mm2 scanned region (251001 data points) on the
sample (i.e. 4 ms per pattern) on a MacBook Pro with a 2.8 GHz Intel Core i7
processor, and the retrained CNN took about 5 minutes (i.e. 1 ms per pattern).
Furthermore, there are many neural network frameworks (e.g. tensorflow [142]) that
can utilize GPUs to further speed up the reconstruction without changing the code.
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5.5.5 Combining CNN with the dictionary approach

Both Liu et al. [118] and Jha et al. [110] reported the dictionary indexing approach
to be slower than the CNN method. In this work, we have demonstrated that the
CNN-based method is very fast and can enable real-time reconstructions during the
scanning process. However, the CNN method is not as accurate as the dictionary ap-
proach, which can reconstruct noisy data with high accuracy. This can be addressed
by combining the two approaches: first apply CNN-based regression to obtain pre-
liminary predictions and a measure of confidence for each location given by the norm
of the predicted quaternion. For locations with high confidence reconstructions, run
the pattern matching only in the neighborhood (e.g. 10◦) of the preliminary results
in the dictionary. For those with low confidence, run the full dictionary search.

5.5.6 Regularization

Regularization is important for reducing the chance of overfitting. We used L2 reg-
ularizations for our models without using dropout [143]. Dropout is a common reg-
ularization technique used in most CNN classification problems. It randomly forces
the neuron activations to be zero in training, but does nothing in testing. Previ-
ous studies have shown that dropout can improve the performance of a particular
CNN-based regression model. For example, Kendall et. al. [144] used dropout in
their model to infer camera positions from a picture taken by that camera, and saw
improved predictions. We tried two dropout ratios (0.3, 0.5) in our CNN models, but
they resulted in lower fidelity predictions. However, without dropout, we obtained
validation errors that were already as low as the training error, as seen in Figure
5.4(a). The reconstruction accuracy (mean error and variance of error) of our model
for unseen data and for training data was similar, indicating that overfitting was not
taking place.

5.5.7 Microstructure reconstruction

Experimental EBSD data reconstruction was performed by employing two adaptive
learning networks. One of the reasons for not training another CNN model from
scratch was due to the lack of labeled experimental patterns that spanned the entire
orientation space (fundamental zone) for a given material crystal structure. We ob-
served that both the domain transform and transfer learning methods improved the
accuracy of the experimental data reconstruction. This improvement can be under-
stood by looking at the activation map of the last convolutional layer, which after
max pooling is the input to the fully connected layer.

Figure 5.11 shows one such example from the test data set. Four feature maps
are shown, one for each of the four filters in the layer. The first row is the simulation
image and the filter outputs of the original CNN. We can see that some features
related to Kikuchi bands have been learned. The second shows the results of inputing
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Figure 5.11: Activation maps for the last convolutional layer. Case 1: simulated
pattern as input to the original CNN. Case 2: experimental pattern as an input to
the original CNN. Case 3: U-Net transformed pattern as an input to the original
CNN. Case 4: experimental pattern as input to the re-trained CNN.

experimental data into the CNN model which has been trained on simulations only.
Clearly the original CNN will respond differently to experimental and simulation
patterns. The difference was significant enough that the original CNN was unable to
accurately predict quaternions for experimental patterns.

The third row shows the filter outputs after a U-Net transformed image is fed
into the original CNN; the activation maps look very similar to those shown in the
first row, which were generated from the simulated image. In the fourth row, we
retrained the CNN so that the weights of convolutional layers were adapted to the
experimental images. We can see that the activation maps are also very similar
to those in the first row, which supports our assumption that differences between
simulation and experimental patterns are low level features and they can be learned
solely by convolutional layers.

The two approaches presented here for experimental pattern indexing are simple
and robust. Similar studies have being conducted on transfer learning and domain
transforms [145]. One such example is a generative adversarial networks (GAN)
[146] that is utilized to transform images from one domain to another [147, 148].
Essentially, the generative networks are learning the metric for measuring similarity
between images produced from different modalities, which is similar to our approach
utilizing the U-Net and FusionNet to transform experimental patterns to simulated
patterns.
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Chapter 6

Conclusions and Future Work

In this thesis, we have presented several numerical methods for polycrystalline mi-
crostructure reconstruction and analysis. These computational tools are still under
development and they will keep improving our characterization techniques and extract
more scientific merits from the data.

6.1 Grain Coarsening in the α-phase Iron

New X-ray probes of three dimensional grain geometries and evolution which study
significant volumes of microstructure are leading to improvements in understanding
of grain coarsening phenomena. The summary statement at this point is that aver-
ages over topological classes follow expected behavior based on isotropic models of
curvature driven evolution, but that individual grains deviate by large amounts from
this simplified model.

In future work, Euler relation can be used for testing the reliability of our code
for counting the number of grain faces (neighbors), edges (triple lines), and vertices
(quad points). The theoretical study of the relation between excess face number and
the averaged total curvature is also important and it can give us some clues that
under what conditions and circumstances this relationship holds. It may be valuable
for grain coarsening theories.

Further understanding can be expected based on the combination of improved
experimental methods and facilities and on the use of modern numerical methods.
For example, it appears to now be practical to extract grain boundary energies from
geometries of very large numbers of triple junctions [48] such as measured here. This
approach may then provide a means for separating the roles of energy and mobil-
ity. It has also been suggested that this separation may be possible through purely
experimental observations of boundary motions. [5]
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6.2 Determining Grain Boundary Energies

In this work, a new framework for reconstructing grain boundary energy from triple
junction geometry is demonstrated. This new framework gives good reconstruction
results with 6× 104 triple junctions, even when the data are noisy. With more data,
the reconstruction results have smaller error. In addition, the performance on a small
clustered dataset is also good enough to give information about the grain boundary
energy function.

Future research will study the performances of this non-parametric reconstruction
framework on different energy function models and with different forms of regulariza-
tion terms. Along with numerical experiments, theoretical analyses are also needed
to provide the uncertainty of the determined grain boundary energies.

6.3 nf-HEDM for Intragranular Strain

The non-destructive nature of nf-HEDM makes it an attractive method to measure the
in-situ evolution of material microstructures. In this work we demonstrate a potential
expansion of the output to include spatially resolved intragranular elastic strains.
Based on sensitivity analysis in Section 4.5, high signal to noise ratio diffraction
images and accurate experimental geometry determination are crucial for a reliable
strain reconstruction.

The strain levels used in this proof-of-principle demonstration are higher than
many materials can sustain (10−2). Because in the MASSIF simulation we applied
a uniform load perpendicular to the cross section, the macroscopic strain must be
as high as 10−2 so that the intragranular strain heterogeneity is large enough to be
measured. Fortunately our Ti7Al sample was bent under loading, which generated
larger level of heterogeneity.

Higher sensitivity may be obtainable by using yet smaller δω integration inter-
vals; of course, this increases the computational burden. As δω is reduced, we get
more resolution on the Bragg angle (ωa, ωb), and therefore better resolution of strain
components, however, other experimental sources of broadening need to be carefully
considered. Another possible way to improve the reconstruction is adding the regu-
larization for strain field smoothness in GlobalCost in Algorithm 3, which should
reduce the noise in the reconstruction. As shown in Section 4.6.3, the reconstruc-
tion near the grain boundaries may not be correct due to the residual uncertainty of
geometry parameters and boundary positions. However, the strains near boundaries
usually draw researcher’s interests. One possible solution is to define a “combined
global cost function” which measures the goodness-of-fit of simulations from a group
of neighboring grains to their diffraction patterns, and then fine-tune the geometry
parameters and boundary positions based on this “combined global cost function”.
Further, experimental intensity patterns within diffraction spots may reflect phenom-
ena beyond the strain induced re-direction of diffracted intensity. One example is
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intensity modulation due to local defect distributions. These considerations will be
the subject of future work.

Our intragranular strain reconstruction algorithm is in its infancy. To make it
easier for the reconstruction and comparison with modes, samples with minimal ori-
entation gradients, relatively large elastic strains and large grain size (∼ 100 µm) are
preferred. The property of strong X-ray scattering is also beneficial since it decreases
the measurement time.

Extracting micron scale strain tensor resolution inside materials is attractive since
it can aid in model development and validation. A recent work [149] about recon-
structing sub-grain elastic strain with Diffraction Contrast Tomography has been
done, which used a very similar experiment setup as ours. Recent work of Hayashi
et al [89] demonstrates both an alternate approach and the strong motivation for
such measurements. Their measurements were performed with the presence of plastic
strain, and the result showed unexpected large off-diagonal strain and stress values.
With improved sensitivity and upgraded synchrotrons, nf-HEDM can extract simi-
lar information over larger volumes (due to requiring only one dimensional scanning
of the sample), further research can be done for the comparison between this two
approaches.

6.4 CNN for EBSD Indexing

This work demonstrated the effectiveness of two CNN approaches for microstructure
reconstruction from measured EBSD patterns. Both approaches initially trained the
CNN with a large number of easily generated simulation data and then utilized a
relatively small number of expensive experimentally measured patterns to either re-
train several convolutional layers or transform experimental patterns into simulated
patterns. Both methods were successfully demonstrated on a tantalum sample with a
body centered cubic crystal structure. The proposed CNNs demonstrated robustness
to real experimentally measured data with varying noise levels (achieved by changing
exposure times during data collection) and reconstructed orientation while matching
the highest EBSD scanning rates. The proposed quaternion norm as a measure of
confidence was demonstrated to be a strong indicator for assessing the reliability of
the reconstructions. This will be crucial for determining the quality of reconstructions
for real applications, when the ground truth is not available.

Our study demonstrated generalizability of the CNN method to experimental
data in the presence of noise, but also revealed that the current method is still not
at a state where it can outperform the conventional reconstructions on noisy data
that is possible either through Hough transform or dictionary learning. However,
the CNN based orientation indexing methods presented here, if combined with the
dictionary search method has the potential to accelerate the reconstruction and im-
prove the reconstruction quality, beyond what is currently possible. Rigorous studies
of hyper-parameters and network architecture optimization along with implementa-
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tion of physical loss functions can further reduce the computation cost and minimize
prediction outliers. Until the effectiveness of this reconstruction method is fully es-
tablished, the work here clearly illustrates the limitations of CNNs to this problem
when applied to experimentally measured data with high noise levels. Future work
also entails testing the proposed method on different material systems and various
experiment setups.
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