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Abstract
Structural modeling of proteins and characterization of their equilibrium

properties is an essential part of understanding the complexities of organic
matter. In addition, a wide array of biological functions occur at or are reg-
ulated by a lipid membrane. For this reason, characterization of proteins at
bilayer interfaces is a crucial research pursuit. Neutron reflectometry (NR) is
a powerful experimental technique for characterizing some of the interaction
of proteins with lipid bilayers. Molecular dynamics (MD) simulations pro-
vide a computational framework to model details beyond what is accessible in
experiment. Traditionally, these two methods are performed independently
and their results are used in complement to one another.

In this work, a new method is developed and explored in order to in-
tegrate NR data into MD simulations. The algorithm takes the real–space
model of the protein derived from NR scattering data and compares it to the
corresponding data calculated from simulation, updating this information as
the simulation progresses. This comparison is used to construct a poten-
tial that biases the protein’s dynamics in order to garner better agreement
between the MD and NR data.

First, a review is conducted of MD simulations, NR scattering, and the
specific experimental systems under investigation. This review gives a gen-
eral sense of how other experimental techniques and MD simulations are
integrated and how NR data may be used in simulation. Next, an analy-
sis of the effect biasing has on the dynamics of a system is explored. This
motivates the use of a linear bias potential.

After supplying motivation for the method, details of the implementation
are presented. The linear difference of the NR and MD data is used in the
potential, and the MD data is calculated using two methods. In one method,
the data is calculated only taking into account the protein conformation
locally in time (memoryless bias). In the other, the running average of the
data is tracked and used in the comparison to NR (historied bias). The
effectiveness of these two methods is explored on two model systems.

The first system is a small helical peptide that has degrees of freedom
equivalent to a rigid rod, under the energy scales explored. This system
is not studied using neutron data, but rather a highly artificial potential
is generated to represent only a confined subset of available conformations.
Since the data is a reduction of the structure from three dimensions to one,
the effects of the bias are not known before the simulations are performed.
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However, the results of the memoryless bias simulations show that it is able
to confine the peptide to a set of conformations like those used to generate the
data. The historied bias initially behaves similarly, but as time progresses,
the set of explored conformations becomes larger than in the memoryless
bias. The agreement is better than in an unbiased simulation of the peptide.

The second system studied is of the PTEN tumor suppressor, which was
previously characterized by NR and MD in a non-integrated way. The agree-
ment of unbiased simulations is already significant, as shown by this previous
work. The memoryless bias again succeeds in improving the agreement by
making small modifications to the arrangement of domains within the pro-
tein. However, using too strong of a bias suppresses fluctuations and adds
distorting stress to structured parts of the protein. In the historied bias
simulations, the smaller applied bias leads to a different conformation which
shows agreement that is almost as good as the stressed structure, without
that stress. The larger applied bias initially agrees well but eventually leads
to a third conformation that is in worse agreement than even the unbiased
simulation. Both of the historied biases show less fluctuation in their con-
formations than is expected based on the helical peptide simulations. Addi-
tionally, both historied biases have portions of the tail associating with the
membrane, while none of the others display this behavior.

After the results of these simulations, some modes of adding complexity
to the algortithm are explored. In motivating these modifications, the time
averaging of MD data in the historied bias is shown to weaken the effect of
the bias in repelling the system from its current state. Taking this into con-
sideration, the reduced conformational fluctuations in the PTEN historied
bias simulations and the large disagreement at the larger bias suggest that
the membrane–tail interaction may produce a meta–stable state. The larger
memoryless bias could not have allowed the tail to find the membrane, and
the smaller bias or unbiased simulation may have taken some time to dis-
cover this conformation. A biologically interesting result for PTEN was not
expected, but an avenue for further work was uncovered, especially based on
conformations seen in the smaller historied bias.
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Chapter 1

Introduction

1.1 Simulations

Many types of computer simulations try to model and predict the behavior of
proteins; ranging from fully time-resolved simulations (molecular dynamics
- MD) to random sampling schemes (Monte Carlo). These modelling tech-
niques give information that is complementary to both experimental and
theoretical techniques. Rarely are either able to provide a full picture of
a biological process in its entirety, even when taken together. Computer
simulations are often able to fill in the gaps that other techniques may leave
behind. However, within subcategories of computer modelling there is a wide
range of simulation tools and techniques at one’s disposal. For example, MD
simulations can represent a range of resolutions for a given molecule - from
the atomistic to a representation of whole chemical groups as single beads (a
generalized atom). Careful consideration should be made when choosing the
correct tool for the question one would like to answer.

1.1.1 How Atomistic Simulations Are Performed

Atomistic MD simulations track the dynamics of every atom in the system.
The interactions are governed by a classical force field that attempts to ap-
proximate the behavior of real systems, therefore requiring tuning of the
force field to achieve observables that are in alignment with experimental
data. Many different force fields exist (CHARMM, Amber, GROMOS, etc.),
each parametrizing the interactions in a slightly different way.
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The typical interactions accounted for in atomistic simulations include
both nonbonded interactions between all atom pairs (electrostatic, Van der
Waals) and bonded interactions between neighboring atoms (bonds, angles,
dihedrals). These interactions dictate (classical) equations of motion and are
numerically integrated to obtain the dynamics of the system. The typical
nonbonded interactions are given in eqs (1.2) and (1.3), three of the typical
bonded interactions are included in eqs (1.4-1.6).

U = Uelec + Uvdw + Ubond + Uang + Udihe + . . . (1.1)

Uelec =
∑

nonbonded pairs

qiqj
4πεrij

(1.2)

Uvdw =
∑

nonbonded pairs

εij

[(
Rmin
ij

rij

)12

− 2

(
Rmin
ij

rij

)6
]

(1.3)

Ubond =
∑

bonds

kb(b− b0)2 (1.4)

Uang =
∑

angles

kθ (θ − θ0)2 (1.5)

Udihe =
∑

dihedrals

kφ (1 + cos(nφ− δ)) (1.6)

Other interactions are included to provide various corrections, depending
on the force field of choice. Some of these are the CMAP, Urey-Bradley,
and improper dihedral interactions. In addition to the interactions, it is
often desired to have the dynamics evolve in an NPT ensemble (constant
particle number, pressure, and temperature). To this end, the system must
have control mechanisms for temperature (thermostat) and pressure (baro-
stat). A few choices for thermostat include rescaling of the velocities as
the temperature fluctuates1, the Berendsen weak-coupling method2, the ex-
tended ensemble Nosé-Hoover scheme3,4, and the stochastic randomization
method of Andersen5. Some proposed pressure control mechanisms are that
of Berendsen2, the extended–ensemble method of Parrinello–Rahman6 which
is a generalization of the method by Andersen5, the MTTK implementation7

(Martyna-Tuckerman-Tobias-Klein), and the Langevin piston method8. The
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Langevin piston Nosé–Hoover method in NAMD combines the last two meth-
ods, called Nosé–Hoover since the MTTK pressure control is an extension of
the work done by Nosé and Hoover to construct NPT ensembles3,4.

Careful choice of a thermostat or barostat should be made depending on
the nature of the observables under study. Velocity randomizing algorithms
can alter dynamical observables like diffusion constants and shear viscosity,
since such randomizations affect velocity correlations among particles.9 The
extended–ensemble has volume fluctuations which may contain ringing oscil-
lations depending on the stiffness of the coupled system.8 In addition, it is
important for statistical averaging that the system be ergodic and certain
schemes have been developed to achieve this end, such as the chaining of
multiple thermostat variables in the Nosé–Hoover chains implementation.10

1.1.2 Sampling In Atomistic Simulations

The main advantage of atomistic simulations is also its biggest disadvantage:
every atom is accounted for. Because the resolution is finer, the computa-
tional load is much larger than for a coarse grained simulation. The number
of interactions that must be taken into account increases as complexity is
added to the model. This consequently leads to long run times for the simu-
lation that provide only a short glimpse of the dynamics and a large data set.
MD simulations consistently fall short of what is needed for statistically valid
equilibrium sampling.11,12 Many biomolecular processes occur on the millisec-
ond timescale or even much longer.13 If statistical analysis of observables is
desired, then many uncorrelated samples will be required. This increases the
computational load even further, since MD simulations by their nature have
correlation between adjacent configurations in their trajectories.14

To address the sampling issue, many different modes of simulation have
been developed to find as many uncorrelated equilibrium configurations as
possible. Replica exchange takes advantage of the temperature dependence
of the Boltzmann factor in the probability to reach configurational transi-
tions by having a number of replicas at different temperature that can be
exchanged to allow both transitioning and sampling at appropriate tempera-
tures.15,16 Similar to replica exchange is simulated annealing, where high tem-
perature promotes the trajectory to traverse a large distance through configu-
rational space while throughout, many branching trajectories are constructed
along the main trajectory. In the branches, the temperature is stepped down
to those relevant for biological processes. This ‘anneals’ the offshoots into a
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number of distinct configurations at the relevant temperature.17–19

Modifying the other part of the Boltzmann factor in the configurational
probability, Hamiltonian exchange is a technique that alters the interaction
potential in order to increase the rate of transition to different parts of con-
figurational space. For instance, energy landscapes can be smoothed using
models with ‘softened’ van der Waals interactions,20 but altering the po-
tential requires reweighting of the samples to correctly represent the prob-
ability distribution.21,22 Many variations on temperature and Hamiltonian
based smoothing exist. For example, the two can be combined by employing
an exchange scheme with replicas that have either altered temperatures or
smoothed Hamiltonians, producing a ‘multidimensional’ approach to replica
exchange.23

Rather than modify the probability distribution to generate more dis-
tinct samples, the algorithm generating trajectories can be optimized. For
example, integration of the equations of motion for all independent degrees
of freedom need not be performed with the same time step if there is a large
variance in the timescales associated with those degrees’ motions. An inte-
grator with different time steps for faster and slower degrees of freedom can
speed up the integration and lead to faster sampling of independent config-
urations.24,25 Similar to removing time resolution in slow modes, removing
spatial resolution can also be useful by reducing the number of interactions
to calculate. A number of methods for treating simulations with multiple
resolutions have been constructed, as well as ways to reincorporate the full
atomic resolution.26–29

Langevin dynamics simulations reduce computation loads by exchang-
ing the dynamical trajectory with a Brownian-like motion of the protein
atoms.30–34 Markov Chain Monte Carlo simulations follow a similar strategy
of reducing computation by avoiding the force calculation. Sequential con-
figurations in the trajectory are based on a random proposed change that is
subject to a probabilistic acceptance criterion. This criterion is defined us-
ing the energy difference between the configurations.35–37 If the trial moves
are small, it has been shown that the Monte Carlo dynamics approximate
Langevin dynamics35,38 and that quasi-physical moves can be more efficient
than molecular dynamics37,39, especially if those proposal moves are chosen
from libraries of configurations for each amino acid.40
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1.1.3 Using Experimental Data In Simulation

In addition to computational expense, another issue with simulations are
the force fields. There are many different force fields to choose from and
none of them perfectly capture the equilibrium properties or dynamics of a
system,41 primarily because internal interactions are classically approximated
within the parameters of the force field. Due to the large number of atoms
in a simulation and nonlinear dynamics inherent in the equations of motion,
small differences between interactions in the simulation and those in the real
world are difficult to predict or track. This makes tuning of force fields
very difficult, if not impossible, to perfect. Because perfecting force fields
is so daunting, other ways of correcting the simulation must be considered.
One way to approach this is through the application of restraints based on
experimental data. With every experimental technique aimed at structural
refinement, how to model the data using a numerical approach is an often
fruitful question to be asked.

For example, the molecular dynamics flexible fitting (MDFF) protocol
takes cryo-EM density data and creates a coulombic potential energy (UEM)
which is added to the existing interaction energies in the MD engine, also
adding secondary structure preserving harmonic potential (USS) to prevent
overfitting.42,43 The MDFF protocol has been extended to include x-ray
crystallography data (xMDFF). However, the potential periodically requires
structural information from the simulation to update the phase information
of the density used in constructing UEM .44 The MDFF protocol was further
modified with the release of iMDFF, a tool for performing user-guided fitting
of structures into the experimental densities instead of steering molecular dy-
namics simulations with the data. In iMDFF, haptic feedback from a virtual
reality capable controller provides guidance in the manipulation of protein
structures based on their compatability with X-ray or cryo-EM data.45,46

Nuclear magnetic resonance (NMR) provides expected values for various
interatomic distances across a protein and dipole couplings in NMR give the
relative orientations of atom groups in the protein, both of which can be
used to restrain the configurations accessed in a simulation.47–49 Small or
Wide Angle X-ray Scattering (SAXS, WAXS, SWAXS) experiments provide
scattering profiles that can be calculated throughout a simulation run and
provide biasing via an energy functional.50,51 An aggregation of various modes
of experimental biasing through the restraining of ‘collective variables’ has
been implemented for the distances derived from NMR, other positional or
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orientational deviations from a reference that may have experimental data
available, and the self coordination number of solute molecules.52

In addition to simulation-based procedures, a number of Bayesian or iter-
ative approaches have been developed to refine large generated sets of config-
urations using experimental data. A few approaches in this camp for NMR
data are KNOWNOE53 and Protinfo54 for data from the nuclear Overhauser
effect and CHESHIRE55, CS-Rosetta56, and CS23D57 for NMR chemical
shift data. For X-ray crystallography and cryo-EM, similar techniques in-
clude DireX58, Flex-EM59, Rosetta60,61, and FRODA62. Combining these
approaches of structure refinement through the minimization of a scoring
function (or maximizing a likelihood) for cryo-EM, X-ray, and NMR, as well
as mass spectometry63, mutagenic studies64, and other experimental tech-
niques to collectively score structure is a technique which can be described
using the umbrella term ‘integrative modeling’.65–72 This field is vast and
not considered here in detail, as the research presented later will be in the
category of experimentally driven dynamical simulations and not integrative
modeling.

1.2 Neutron Reflectivity

Neutron Reflectivity (NR) is an elastic scattering technique that is capable of
probing a stratified sample. The details of NR are readily available73,74 and
so only the basic theory will be discussed in the following. Neutrons have
particle-wave duality, thus a wave scattering theory can be applied to them.
Their wavelength will depend on the reciprocal of their kinetic energy. For
NR, neutrons are reflected specularly from the layers of the sample, leading
to a momentum transfer normal to the interface of the sample (see figure 1.1).
Specular reflection obeys Snell’s Law, implying that the angle of incidence
and reflection are equal. For this reason, the normal momentum transfer is
twice the normal component of the incident momentum:

qz =
4π

λ
sin(θ) (1.7)

where λ is the wavelength of the neutrons and θ is the incident (and reflected)
angle. In addition to reflected neutrons, there are neutrons which are trans-
mitted into the sample. Subsequent strata of the sample will have reflection
and transmision at their interfaces as well. It is the series of reflections (see
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figure 1.1) that lead to the interference patterns observed in NR; analysis of
this pattern yield information about the layers of the sample.

qi qr
qz

θi θr j=0

j=1

j=2
...

x

z

Figure 1.1: Geometry for the elastic scattering of neutrons from a stratified
sample. At the first interface, a wave of incident neutrons (red) is reflected
(purple) and transmitted (dotted black) into subsequent layers to be trans-
mitted and reflected at each interface encountered. Reflected waves that are
transmitted out of top of the sample all have a change in momentum (blue)
as given in eq (1.7).

The transmission and reflection will depend on the refractive indices of
the various layers. The neutron refractive index for a given medium is defined
to be

n = 1− λ2Nd b

2π
+
iλNd σa

4π
(1.8)

Nd is the atomic number density, b is the coherent scattering length, and σa
is the absorption cross section. For most materials, σa ≈ 0 and the second
term is irrelevant. The neutron scattering length density (nSLD) is defined
as

ρ = Nd b (1.9)

Substituting eq (1.9) into the definition for the refractive index under the
assumption that the cross section vanishes gives, for n,

n = 1− λ2

2π
ρ (1.10)
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As mentioned before, Snell’s Law implied an equality between the reflected
and incident angle, but it also relates the incident angle in one medium to
the transmitted angle in the next medium.

n1 cos(θ1) = n2 cos(θ2) (1.11)

1.2.1 Reflection from a single interface

Assume that neutrons are incident from air (n1 = 1) and strike a sample with
n2 = n. For most materials, the scattering length is positive and the index
of refraction will be less than that of air. Protium is a special case, having
negative scattering length. For this reason, common water (undeuterated)
has an index greater than one and behaves qualitatively different than most
materials, making it useful for scattering. But, for the majority of interfaces
with air, Snell’s Law cannot be satisfied with too small of an incident angle.
This is a well known phenomenon known as total internal reflection. In this
case, all of the neutrons are reflected and none are transmitted. The critical
angle, above which Snell’s Law holds, depends only on the refractive index
of the sample, given the conditions stated and the largest transmitted angle
allowed (θ2 = π/2).

cos(θc) = n (1.12)

For small enough θc, a Taylor expansion gives

cos(θc) ≈ 1− θ2
c

2
(1.13)

Combining eqs (1.10) and (1.13) relates the critical angle to the nSLD and
wavelength:

θc = λ

√
ρ

π
(1.14)

The critical momentum transfer can be found by Taylor expanding eq (1.7)
and substituting in eq (1.14).

qc ≈
4π

λ
θc = 4

√
πρ (1.15)

For wave vectors smaller than the critical wave vector, all of the neutrons
are reflected. Above the critical angle, the reflectance and transmittance
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are the same as for electromagnetic waves, defined as the square modulus
of the ratio between the reflected (or transmitted) wave amplitude and the
incident wave amplitude. Fresnel’s equations give that the reflectance is,
incorporating the indices of air and the sample,

R =

∣∣∣∣
sin θi − n sin θt
sin θi + n sin θt

∣∣∣∣
2

(1.16)

Referring to eq (1.11),

n sin(θt) =
√
n2 − n2 cos2(θt) =

√
n2 − cos2(θi) (1.17)

The index of refraction is related to the critical angle through eq (1.12).

√
n2 − cos2(θi) =

√
cos2(θc)− cos2(θi)

=
√(

1− sin2(θc)
)
−
(
1− sin2(θi)

)

=
√

sin2(θi)− sin2(θc) (1.18)

The reflectance can then be expressed entirely in terms of the incident mo-
mentum transfer vector and the critical vector using eq (1.7) and eq (1.18).

R =

∣∣∣∣∣∣

λqz
4π
−
√(

λqz
4π

)2 −
(
λqc
4π

)2

λqz
4π

+

√(
λqz
4π

)2 −
(
λqc
4π

)2

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣

1−
√

1−
(
qc
qz

)2

1 +

√
1−

(
qc
qz

)2

∣∣∣∣∣∣∣∣

2

(1.19)

The intensity of the reflected neutrons is identical to the incident beam below
the critical angle. Above the critical angle, the intensity decays as more
neutrons are transmitted through the interface (see Fig 1.2). As mentioned,
water does not contain a critical angle feature and begins to decay at qz = 0.
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Figure 1.2: Fresnel reflectance versus momentum transfer for neutrons inci-
dent on a single interface, given by eq (1.19). A logarithmic scale is used
for the reflectance axis. Below the critical momentum (qc), all neutrons
are reflected. Above the critical momentum, more neutrons are transmitted
through the interface as the incidence angle increases.

1.2.2 Reflection from multiple interfaces

In the case of a stratified medium (see figure 1.1), multiple reflections and
transmissions of the neutron beam occur at each interface. In each layer
there is an ingoing and outgoing wave, except for the last medium (barring
total reflection) where the transmitted wave continues to infinity. Writing
down the incoming and outgoing neutrons as plane waves and orienting the
axes such that the plane of incidence is the x-z plane (figure 1.1),

ψin = A+
j e

i(ωt+kz,jz+kx,jx) (1.20)

ψout = A−j e
i(ωt−kz,jz+kx,jx) (1.21)

Here, k is used to represent the wave vector with x and z components (k =√
k2
x + k2

z = 2π/λ) which varies throughout layers with the medium and the
subscript j denotes which layer of the sample is being considered (figure 1.1).
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The wave vector changes because the potential for the neutrons varies in z, as
the composition of the medium changes. For this reason, only the component
of the momentum normal to the layers changes at an interface, the parallel
components are continuous across the interface73. It is, therefore, useful to
break up the wave function into a z dependent part, the total wave function
is given by the sum of the incoming and outgoing waves.

ψ =
(
A+
j e

ikz,jz + A−j e
−ikz,jz

)
ei(ωt+kx,jx) =

(
ψ⊥(kz,j, z) + ψ⊥(−kz,j, z)

)
ψ‖(x, t)

(1.22)
The wave function and its derivative must be continuous across an interface.
The ψ‖ portion trivially satisfies this and drops out of the boundary condition
at each interface. The remaining portion of the boundary condition at the
interface between layers j and j + 1 (at depth Zj,j+1) are given by:

ψ⊥(kz,j,Zj,j+1) + ψ⊥(−kz,j, Zj,j+1)

= ψ⊥(kz,j+1, Zj,j+1) + ψ⊥(−kz,j+1, Zj,j+1) (1.23)

kz,j

[
ψ⊥(kz,j,Zj,j+1)− ψ⊥(−kz,j, Zj,j+1)

]

= kz,j+1

[
ψ⊥(kz,j+1, Zj,j+1)− ψ⊥(−kz,j+1, Zj,j+1)

]
(1.24)

The first equation matches the wavefunction, the second matches the
derivative. These equations are equivalent to those for an electromagnetic
field that is s-polarized (perpendicular to the plane of incidence). The con-
ditions can be compiled into a single matrix equation.

[
ψ⊥(kz,j, Zj,j+1)
ψ⊥(−kz,j, Zj,j+1)

]
=

[
pj,j+1 mj,j+1

mj,j+1 pj,j+1

] [
ψ⊥(kz,j+1, Zj,j+1)
ψ⊥(−kz,j+1, Zj,j+1)

]
(1.25)

pj,j+1 =
kz,j + kz,j+1

2kz,j

mj,j+1 =
kz,j − kz,j+1

2kz,j
(1.26)
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The matrix above changes the magnitudes of the wavefunctions as the
neutrons transition between media and is called the refraction matrix Rj,j+1.
Additionally, the wave function changes magnitude with position in the lay-
ers. It is therefore useful to construct a translation matrix Tj that accounts
for the change in depth between each layer:

[
ψ⊥(kz,j, Zj−1,j)
ψ⊥(−kz,j, Zj−1,j)

]
=

[
e−ikz,jdj 0

0 eikz,jdj

] [
ψ⊥(kz,j, Zj,j+1)
ψ⊥(−kz,j, Zj,j+1)

]
(1.27)

The thickness of a given layer is denoted dj. Starting at the last layer, the
wavefunction vector is sequentially multiplied by the refraction matrix and
the translation matrix for a layer until it can be related to the wavefunction
vector at the first interface:

[
ψ⊥(kz,0, Z0,1)
ψ⊥(−kz,0, Z0,1)

]
= R0,1T1R1,2 . . .Rn−1,n

[
ψ⊥(kz,n, Zn−1,n)
ψ⊥(−kz,n, Zn−1,n)

]
(1.28)

The product of these refraction and translation matrices yields a single
matrix that describes the entire scattering event. This matrix is called the
transfer matrixM. The reflectance, written in terms of the transfer matrix,

R =

∣∣∣∣
ψ⊥(−kz,0, Z0,1)

ψ⊥(kz,0, Z0,1)

∣∣∣∣
2

=

∣∣∣∣
M21ψ⊥(kz,n, Zn−1,n) +M22ψ⊥(−kz,n, Zn−1,n)

M11ψ⊥(kz,n, Zn−1,n) +M12ψ⊥(−kz,n, Zn−1,n)

∣∣∣∣
2

(1.29)
When no total internal reflection occurs, the wave makes it to the last,

semi-infinite medium. In experiments, the substrate will have minimal pene-
tration by the neutrons and is therefore treated as the semi-infinte medium.
Equivalent to setting the last interface infinitely far away, Zn−1,n = ∞, is
setting its reflected amplitude to zero.

ψ⊥(−kz,n, Zn−1,n) = 0 (1.30)

This simplifies the expression for reflectance:

R =

∣∣∣∣
M21

M11

∣∣∣∣
2

(1.31)

In the single interface case discussed in the last section, the transfer ma-
trix is equal to the refraction matrix of the interface. The medium was
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assumed to be semi-infinite, meaning eq (1.31) holds. Calculating the re-
flectance using the transfer matrix method,

R =

∣∣∣∣
m0,1

p0,1

∣∣∣∣
2

=

∣∣∣∣
kz,0 − kz,1
kz,0 + kz,1

∣∣∣∣
2

(1.32)

The Schrödinger equation dictates that the momentum in air (free space) is
related to that in a medium by the following equation:

k2 = k2
air − 4πρ (1.33)

The parallel components of momentum are continuous through the inter-
face. This means that the normal component of the momentum changes
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Figure 1.3: Modeled neutron reflectance curve for 500 Å of water (ρ = −0.56·
10−6 Å−2) on a semi-infinite slab of silicon dioxide (ρ = 1.58 ·10−6 Å−2). The
neutron wavelength used is monochromatic with λ = 1 Å.
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according to eq (1.33). This equation, eq (1.15), and that the normal com-
ponent of the incident momentum is half the momentum transfer qz, gives
the following expression for the normal component of the wave vector:

kz,1 =
√
k2
z,0 − 4πρ = kz,0

√
1−

(
qc
qz

)2

(1.34)

Putting this relation into eq (1.32) gives an expression that simplifies to the
expression obtained in eq (1.19). The reflectance for a 500 Å thick layer of
water on Silicon as calculated from the matrix method is shown in figure
(1.3).

1.3 Experimental Samples And Modeling

Sparsely tethered bilayer lipid membranes (stBLMs)75 are biomimetic model
membranes that have a stratified, planar geometry conducive to NR experi-
ments (see figure 1.4). The structure of these membranes and their general
neutron scattering profiles are well known.76 This permits the study of how
membrane-associated proteins interact with these bilayers.77–84 The compo-
sition of these samples and how they are modeled in NR analysis will be
discussed in the following sections.

Figure 1.4: Sparsely tethered bilayer lipid membrane. A lipid bilayer is
attached to a gold-coated substrate through a synthetic lipid tether. Addi-
tionally, the density of the tether is controlled through the use of a spacer
molecule in order to “sparsely–tether” the membrane.
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1.3.1 stBLMs

To construct an stBLM, a layer of chromium and then gold are sputter de-
posited onto a glass slide. The gold-coated substrate is covered in a mixture
of lipid tethering molecules and spacer molecules. Each of these molecules
contains a thiol group, which forms a bond with the gold substrate. The
spacers are β-mercaptoethanol (βME), a complex of the thiol and ethanol,
while the tethers contain a lipid-like structure. They are composed of a
polyethylene chain of 6-9 units, followed by two hydrocarbon chains which
can be saturated or unsaturated. These hydrocarbon chains integrate with
the assembled bilayer on the inner leaflet (gold-side). The polyethylene chain
gives a hydration layer, approximately 20 Å thick, between the bilayer and
the gold. The spacers and tethers are typically in a ratio of 70:30, leading to
a membrane which is sparsely tethered. This setup produces a flat bilayer
with lipidic diffusion rates comparable to that in unilamellar vesicles.85

1.3.2 Component Based Model Analysis Of Neutrons

If an NR measurement of an stBLM is taken with or without protein, a
scattering profile is produced which is much more complicated than the one
shown previously in figure 1.3. The nSLD of the sample changes between
the various layers of the substrate and between the various components of
the biological sample. The bilayers even scatter differently whether in the
headgroups or tail regions. This leads to an nSLD which varies a lot as a
function of z (sample normal direction). The complexity of the nSLD profile
leads to a scattering which is commensurately complex.

Given a scattering profile for an observed bilayer sample, backing out the
underlying nSLD profile and subsequently the real space structure requires
modeling and fitting of the scattering data. How the nSLD is modeled will
be described later in this section. Real space modeling of sub-molecular
components is accomplished by considering how cross-sectional area of each
component varies as a function of z, the direction normal to the interface.
The integral of this area profile over the entire span of the interface,

Vc =

∫
dz Ac(z) (1.35)

gives the volume of the component, Vc. Figure 1.5 shows Ac for components
of a DOPC lipid bilayer. The bilayer is subdivided into headgroups, tails,
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and methyl groups.

Figure 1.5: Cross-sectional area, Ac(z), for components of a lipid bilayer
as calculated from molecular dynamics simulation with a DOPC containing
bilayer. The two molecules (overlaid) are subdivided into component profiles
of headgroups (cyan), tails (dark blue), and methyl groups (green). Scale on
the right shows equivalence to CVO profile after scaling the cross-section by
the area per lipid (64.4 Å2). Regions with summed components having their
total CVO < 1 also contain other components, such as water.

A natural extension of the cross-sectional area profile is a profile detailing
the amount by which a component fills space along the interface. For this,
a component volume occupancy (CVO) profile is defined. The CVO sets a
normalized, unitless scale (0-1) on which to compare the amount of space
shared by different components, zero if there none of a particular component
at some point and one if it is the only component at that point. As the
axes indicate in figure 1.5, Ac and the CVO profile are proportional to one
another and their dimensions differ by a factor of area. Given our interest
in supported bilayer system, the area per lipid is a good choice. In the lipid
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tail region, without protein inserted, the entire volume is occupied by the
lipid. Also, the CVO for the protein will measure the bilayer coverage of the
protein.

With the CVO profiles of real space components, a total nSLD profile can
be constructed based on the scattering length for each component. Func-
tionally, the nSLD is parametrized using a stratified slab model for the sub-
strate86 and using a system called the continuous distribution model for the
components of the stBLM.87 The parameters relevant to the slab model (step
function) are the nSLD and thickness of each layer. The continuous distri-
bution model, in contrast to the slab model, does not assume sharp cutoffs
between the nSLDs of the various layers. There is a continuous transition
between the nSLDs, so error functions are used instead. The error func-
tions have a shape similar to the slabs but have an additional parameter,
roughness, that creates a continuous transitional behavior between layers.

Figure 1.6 shows the neutron scattering, modeled nSLD, and modelled
CVO for the PTEN experiments used later in this document. The parameters
of the CVO were fit to produce the best agreement between the scattering
observed and the scattering due to the nSLD resulting from the CVO fit.
The protein CVO is determined by first performing a control fitting on a
scattering experiment without protein present, to determine bilayer and sub-
strate parameters, and subsequently fitting the scattering experiment with
protein introduced to the same sample, using the bilayer and substrate pa-
rameters determined in the control. It is assumed that the protein does not
significantly reorganize the rest of the sample.
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Figure 1.6: Example neutron reflection data of a bilayer on a gold–coated Si
substrate before and after incubation with the PTEN tumor suppressor and their
interpretation as a one-dimensional distribution of system components along the
interfacial normal direction, z. (A) Neutron reflectivities of an stBLM (DOPC/
DOPS/chol = 67:30:3) in contact with buffers of different isotopic compositions

(H2O, D2O and a mixture of the two with an SLD, ρn ≈ 4× 10−6Å
−2

, designated
at ‘CM4’). Black: As-prepared bilayer. Red: The same bilayer after incubation
with PTEN.88 While the differences in NR with and without protein are small,
they are significant, as shown by the residuals plots on the bottom. The modeled
reflectivities (solid lines) derive from simultaneous fits to 5 data sets measured
under D2O and H2O based buffers. (B) Simultaneously optimized SLD profiles
derived from a parameterized structural model expressed as a unique component
volume occupancy (CVO) profile, shown in (C). The solid lines that fit the data
in (A) originate from the SLD profiles shown in (B). The CVO profile, panel C,
resolves the complex surface structure that contains the metal films on the Si
substrate (at z < 0), the tether chemistry and lipid bilayer components of the
stBLM (at 0 < z < 40 Å), and a protein layer (at z > 40 Å) in which the PTEN
phosphatase skims the membrane surface peripherally.
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Chapter 2

Steered Simulations

As laid out in the introduction, difficulty in accurately modeling an enormous
catalogue of experimental observables through simulations has led to the
creation of many hybrid methods that seek to incorporate the physical data
into the modeling directly. The focus of this chapter will follow one specific
branch of these methods: biasing dynamical simulations through the use of
energetic potentials that evaluate the correspondence observed between the
experimentally measured values and those observed throughout simulation.

First, a theoretical framework is laid out for what it means to bias a simu-
lation such that agreement with experiment can be reached, a clever method
for doing so efficiently is examined, and then considered is the concept of min-
imally affecting the configuration space explored by the simulation. Later, a
method for biasing using CVO profiles from neutron reflection is proposed.
Finally, the results of simulations using this method on a toy model and an
actual NR experiment is discussed.

2.1 Biasing MD Dynamics And Probability

The behavior of objects modeled in molecular dynamics simulations are dic-
tated by the interaction potentials. The conformational states explored by
the system when simulated under constant temperature are weighted by the
Boltzmann factor. The probability of visiting any state is given by:

P (~x) =
e−βU0(~x)

∫
d~x e−βU0(~x)

(2.1)
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Where U0 is the interaction potential of the simulation, β = kBT , and ~x is
a generalization of any coordinates that may be of interest (not just position).
Often, the classical force fields of a given molecular dynamics simulation
fail to capture the exact statistical behavior of observables for real systems
as force fields are merely an approximation of many interactions, with a
large number of degrees of freedom to optimize. Often, many observables
that are measurable in experiment are not fully in accordance with their
values calculated from simulation, at least over time scales achievable given
the computational resources available. If the observable of interest is q(~x)
with experimentally determined value Q, accordance between experiment
and simulation would be achieved under the condition:

〈q〉 =

∫
d~x q(~x)P (~x) = Q (2.2)

where P (~x) is the probability distribution of states observed in simulation.
The experiment and simulation are not in agreement when 〈q〉 6= Q. One way
to deal with such a discrepancy is to add a restraining bias to the existing
interaction potential that will drive the observable toward agreement with
experiment. One easily implemented form of such a bias is to quadratically
penalize any discrepancy between the simulation and the experimental value.

Ubias(~x) = U0(~x) +
k

2
(q(~x)−Q)2 (2.3)

k sets the strength of the bias, also determining the amount to which the
dynamics will vary from their native form. As will be demonstrated in the
following example, this naive approach can indeed bring the observable into
accordance. However, the other properties of the system may also be affected
by such a bias.

2.1.1 Example: Restraint On A Particle In A Har-
monic Potential

Take a particle under the influence of a harmonic potential,

U =
p2

2m
+
mω2x2

2
(2.4)

Because we will not discuss anything that involves the momentum of the
particle in the following and eq (2.1) is factorizable in terms of the momentum
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contribution, the probability can be marginalized over p to be only a function
of position.

P (x) =

√
βmω2

2π
EXP

[
−βmω

2

2
x2

]
(2.5)

The normalization obtained from the integral over x is given in the pref-
actor. For this system, two observables are of interest in our discussion - the
first and the centered second moments of position.

〈x〉 = µ = 0 (2.6)

〈(x− µ)2〉 = σ2 =
1

βmω2
(2.7)

For the discussion, let us take the first moment, 〈x〉, as the experimental
observable under consideration. If it is experimentally measured to be some
nonzero value a, then a simulation with dynamics governed by eq (2.4) will
disagree with experiment. Applying a restraining bias as described in eq
(2.3) of the previous section the following potential energy and subsequent
probability distribution are obtained.

Ubias =
mω2x2

2
+
k

2
(x− a)2 =

1

2

( (
mω2 + k

)
x2 − 2kax+ ka2

)
(2.8)

Pbias(x) =
EXP

[
−β

2

(
(mω2 + k)x2 − 2kax+ ka2

)]

∫
dx EXP

[
−β

2

(
(k +mω2)x2 − 2kax+ ka2

)]

=

√
β(k +mω2)

2π
EXP

[
−β(k +mω2)

2

(
x− ka

k +mω2

)2
]

(2.9)

Eq (2.9) has been algebraically simplified to express the probability in a
form for which the moments are easily identified.

〈x〉bias =
ka

k +mω2
(2.10)

〈(x− µ)2〉bias =
1

β(k +mω2)
(2.11)
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With increasing k, the average position of the particle is shifted toward a,
reaching an equality with it in the limit of large k (for which the probability
distribution becomes a δ-function). This is precisely the desired behavior for
that property: as the bias increases, the agreement between simulation and
experiment increases. This agreement comes at a cost. The second moment
is modified such that it grows ever smaller as the bias increases, vanishing
in the large k limit. This is not suprising, since the bias is restraining the
position ever more strongly as k grows. The hypothetical experiment did
not prescribe any change to the second moment. Ideally, the restraint would
modify the average position with minimal effect on other properties of the
system.

2.1.2 Restrained Ensemble On The Harmonic Poten-
tial

As pointed out by Roux and Weare,89 another method to bias a simulation is
to apply the restraining potential to an ensemble of simultaneous simulations;
using the average observable across those simulations instead of biasing any
single instance independently. If there are N instances of the particle, each
labeled by their own subscript i, the potential imposed on the particles is
slightly modified.

U(~x) =
∑

i

mω2x2
i

2
+
k

2

(
1

N

∑

i

xi − a
)2

(2.12)

Each instance of the particle is interacting with the harmonic well inde-
pendently and interacts with the other instances through the bias term. The
joint probability distribution for these particles, according to eq (2.1), is:

P (~x) =
e−βU∫
d~x e−βU

= EXP


−1

2


βmω2

∑

i

x2
i + βk

(∑

i

xi
N
− a
)2

+ 2 ln(Z)




 ,

(2.13)

where the partition function, Z, is absorbed into the exponential function
of the numerator. Since the argument of the exponential is quadratic, the
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probability is a multivariate normal distribution (MVN). An alternative ex-
pression for the MVN with mean vector ~µ and covariance matrix C = S−1

can be written:

P (~x) =
EXP

[
−1

2
(~x− ~µ)T S (~x− ~µ)

]

√
(2π)N |C|

= EXP

[
−1

2

(
(~x− ~µ)T S (~x− ~µ) + 2 ln(A)

)]
(2.14)

Again, the normalization factor A has been absorbed into the exponential
function. It is distinct from the partition function since the Boltzmann factor
in eq (2.13) is not the result of a perfect square, i.e. an extra constant term
is added to the quadratic potential. Since both distributions are normalized,
their quadratic forms can be compared term by term once expressed in a
similar manner.

βmω2
∑

i

x2
i + βk

(∑

i

xi
N
− a
)2

+ 2 ln(Z)

= βmω2
∑

i

x2
i +

βk

N2

∑

i,j

xixj −
2βka

N

∑

i

xi − βka2 + 2 ln(Z)

= β

(
k +N2mω2

N2

)∑

i

x2
i +

βk

N2

∑

i 6=j

xixj −
2βka

N

∑

i

xi − βka2 + 2 ln(Z)

(2.15)

(~x− ~µ)T S (~x− ~µ) + 2 ln(A)

=
∑

i,j

[Sijxixj − Sijµixj − Sijxiµj + Sijµiµj] + 2 ln(A)

=
∑

i

Siixixi +
∑

i 6=j

Sijxixj − 2
∑

i,j

Sijxiµj +
∑

ij

Sijµiµj + 2 ln(A)

= S11

∑

i

x2
i + S12

∑

i 6=j

xixj − 2µ
∑

i,j

Sijxi + µ2
∑

i,j

Sij + 2 ln(A)

(2.16)
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A few simplifications have been made in the final expression for the MVN,
based on the symmetry of the potential. On the third line of eq (2.16), the
symmetric nature of S is used to combine the two terms linear in x from the
line above. Since the potential is symmetric in the interchange of particles,
so too is the covariance matrix and its inverse. The same assumption of
interchangeability permits the substitution of S11 for any diagonal element,
of S12 for all off–diagonal elements, and of µ for all µi. Looking at the first
two terms in eqns (2.15) and (2.16), the elements of S are:

Sii =
β(k +N2mω2)

N2
and Sij =

βk

N2
. (2.17)

Given that S and the covariance matrix C are inverses, the covariances
can be calculated by solving the equation:

δij =
∑

k

SikCkj . (2.18)

1 = SiiCii +
∑

k 6=i

SikCki

=
[
Sii

]
Cii +

[
(N − 1)Sij

]
Cij (2.18.a)

0 = SiiCij + SijCjj +
∑

k 6=i,j

SikCkj

=
[
Sij

]
Cii +

[
Sii + (N − 2)Sij

]
Cij (2.18.b)

Eqs (2.18.a) and (2.18.b) constitute a linear system of two variables whose
solution is:

Variance: Cii =
1

βmω2

(
1− k

N(k +Nmω2)

)

Covariance: Cij = − 1

βmω2

k

N(k +Nmω2)
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In addition to the covariance matrix, the mean of each particle can found
by comparison of the linear terms in eqns (2.15) and (2.16).

βka

N

∑

i

xi = µ
∑

i,j

Sijxi = µ
∑

i

(
Sii + (N − 1)Sij

)
xi

= µ

(
β(k +N2mω2)

N2
+
β(N − 1)k

N2

)∑

i

xi

= µ
β(k +Nmω2)

N

∑

i

xi

µ =
ka

k +Nmω2
(2.19)

Summarizing the results above, the biased harmonic particles of eq (2.12)
form an ensemble equivalent to the MVN distribution described below.

µi =
ka

k +Nmω2

P (~x) ≡MVN~µ,C(~x) Cii =
1

βmω2

(
1− k

N(k +Nmω2)

)
(2.20)

Cij = − 1

βmω2

k

N(k +Nmω2)

If k is increased toward infinity, the mean approaches a. In this case,
N = 2 is sufficient for the restraint. But in systems other than this example,
N may need to be very large. If N tends toward infinity, k must grow faster
than N . The variance of any particle will tend toward the unbiased value as
the biasing constant and number of samples increase. The growth of N is key
in this situation, unlike for the mean. Additionally, the covariance between
any two particles will vanish in this case, tending toward a decoupling of the
particles as in the unbiased case.

While this example suggests that this method of biasing adjusts the ob-
servable of interest into accordance with experiment while allowing other
properties to remain at their unbiased values, this is not an exhaustive proof.
It does however, illustrate why restraining the average value of a property is
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useful. The following section outlines the behavior a biasing potential should
have in order to maximize agreement between quantified properties of the
experiment while minimizing the impact on the probability distribution of
the system over configuration space.

2.1.3 Perturbing The Free Distribution Using Restrained
Ensemble Sampling

Roux and Weare demonstrate how using a restrained ensemble affects the
resulting distribution of configurations in a simulation.89 Their results are
expanded upon after applying the method to a similar Monte Carlo sampling
of a particle in a one dimensional potential. The potential used (dimension-
alized by kBT ) is given by

βU0(q) = 25(q − 0.25)4 − q cos(q) +
sin(20q)

q2 + 0.5
. (2.21)

The potential will be sampled in the canonical ensemble, yielding the
following probability distribution for the particle.

P (q) =
e−βU0

Z
=

1

Z
EXP

(
−25(q − 0.25)4 + q cos(q)− sin(20q)

q2 + 0.5

)
(2.22)

Z =
∫
dq e−βU0 ≈ 1.87628 is the partition function. The potential and re-

sulting probability density function are presented in figure 2.1. The normal-
ization can be absorbed into the exponential, making the partition function
equal to one, and effectively shifting the potential by a constant. Shifting
the energy by a constant does not affect the dynamics, which is in agreement
with the equivalence of representation of the probability distribution.

βU0(q) = 25(q − 0.25)4 − q cos(q) +
sin(20q)

q2 + 0.5
+ 0.62929 (2.21′)

P (q) = EXP

(
−25(q − 0.25)4 + q cos(q)− sin(20q)

q2 + 0.5
− 0.62929

)
(2.22′)

33



5.0

2.5

0.0

2.5

5.0

7.5

10.0

U
0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

q

    0

    1

    2

    3

    4

E
XP

(
U

0)

Figure 2.1: One dimensional potential and probability density function for
Monte Carlo simulations equivalent to those used by Roux and Weare.89 The
density plotted represents the distribution to be sampled in the absence of
restraint. It has positive expectation value Q0 = 0.258 before restraint. The
density modified by using the restrained ensemble will have expectation value
Q = −0.127.

A simple Monte Carlo simulation, using the Metropolis-Hastings algo-
rithm to sample, was constructed in Python (see appendix B.3.1) using ac-
ceptance criteria based on eq (2.22). First, sampling with no restraining
was performed to verify that the algorithm could reproduce the probability
density used as input (results in figure 2.2).

To perform a restrained ensemble simulation, N replicas of the particle
were subjected to the same algorithm as the free particle except for an im-
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Figure 2.2: Analytic (U0) and Monte Carlo reproduced (MC) probability
density and potential for eqs 2.21 and 2.22. The MC produced density comes
from the single replica, unrestrained simulation with 107 samples.
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posed condition on the allowed movements of the system. The positions of
the particles, qi, have their average equal to some observed value, Q, at each
step in the simulation.

1

N

∑

i

qi = Q (2.23)

This condition acts as a bias on the ensemble average as proposed in eq
(2.12) with the force constant taken to be infinite, i.e. a delta distribution
on the average position of the ensemble. The details of how a constraint on
the proposal distribution was accomplished can be found in appendix B.3.
The unbiased average position in the potential is Q0 = 0.258 and the bias
restraint is Q = −0.127. The resulting probability density functions are show
in figure 2.3 for simulations with different numbers of replicas.

The resulting distribution from two replicas is conspicuously symmetric,
arising from the nature of restraining two replicas in this way. Because
the average position must be conserved, any step away from the average by
one particle is exactly matched by the other. This can also be seen in the
covariance matrix for these particles positions, see eq (2.24).

Cov(N = 2) =

( 〈
(q1 −Q)2〉 〈(q1 −Q) (q2 −Q)〉

〈(q2 −Q) (q1 −Q)〉
〈
(q2 −Q)2〉

)

=

(
0.00339 −0.00339
−0.00339 0.00339

)
(2.24)

In defining the covariance, the substitution Q = 〈q1〉 = 〈q2〉 was made
due to the high level of accuracy seen in the numerical results. As is shown
by Roux and Weare,89 in the limiting case of infinite replicas, the covariances
will vanish and all particles will have identical, independent probability dis-
tributions. Even in the finite case, the probability distributions would be the
same for each particle (but not independent). This is because the interaction
that governs their motion is symmetric under exchange of the particles. How-
ever, sampling issues prevent the realization of these distributions. Because
the dimensionality of the system becomes large, it may take a very long time
for the sampler to propose steps that move all particles to all positions in
space as the number of replicas is increased.
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Figure 2.3: Unrestrained (top panel) and restrained probability density func-
tions for the potential of eq 2.21. The densities quickly approach an asymp-
totic distribution as number of replicas increase. Ten and two hundred repli-
cas are quite comparable.
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Instead of examining an individual particle’s density function, the entire
ensemble is considered. If the replicas are well distributed over the domain
in their initial positions, then the acceptance criteria of the sampler should
correctly produce the probability distribution (given a large enough sample
set). To verify the robustness of the distribution sampled, multiple runs with
distinct initial conditions were checked for compatibility in their resulting
distributions. Because of the difficulty in sampling the full distribution within
a single replica, covariances are not considered a significant empirical measure
in this analysis of convergence. The condition imposed on proposal steps in
eq (2.23) creates a covariance that decreases with more replicas. However
only very long sampling, with total exchange of particle positions, will permit
an accurate measure of the covariance. Another measure on the probability
distribution will be introduced later.

As illustrated in the bottom panel of figure 2.3, the main features of
the probability density function for the ensemble of particles are quickly
established as the number of replicas increase. Not much changes about
the distribution between 5 and 200 replicas, though the distributions look
significantly different from the unbiased simulation. How these changes arise
is not immediately obvious from the probability density function, but can
be understood using the effective potential that arises from this bias. To
calculate the effective potential, one can invert eq (2.22′).

βUP = − log(P ) = βU0 + βUbias (2.25)

The effective potentials for simulations with different numbers of replicas
are shown in the top panel of figure 2.4. Their differences of the effective
potentials with the potential of eq (2.21) are shown in the bottom panel.
The effective potential for N = 2 is relatively narrow, as compared to the
others, which is in agreement with the strongly peaked density in figure
2.3. It should be noted that the restrained ensemble with one replica, which
was not performed, would simply produce a Dirac delta distribution for its
probability density function, as per the restraint in eq (2.23). As the number
of replicas is increased, the effective potential becomes less restrictive and
approaches a shape more similar to the unbiased potential.

The difference between the effective potentials and the unbiased potential
is shown in the lower panel of figure 2.4. These differences represent the bias
for each simulation that is added by restraining the ensemble, βUbias. For
low numbers of replicas, the added bias is not analytically known, but as the
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Figure 2.4: (Top panel) Effective potential defined in eq (2.25) derived from
Monte Carlo produced density. (Bottom panel) Difference between effective
potential and unbiased potential, describing the bias added by the restrained
ensemble. As the number of replicas increase, the difference approaches a
line. The line of best fit for 200 replicas is β(∆U) = 10q.

number of replicas increase a pattern emerges. For N = 200 replicas, the
range of q with a significant number of samples (−0.5 < q < 0.5) is fit well
by a line through the origin with a slope of ten.

Roux and Weare present a thorough theoretical treatment of how the
probability density function changes and what effective potential is created
using restrained ensemble sampling;89 the results are summarized here. The
main premise is that an effective bias will modify the probability distribution,
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with respect to configuration space, in a way which is minimally invasive
while still achieving agreement between the expectation values of observables
calculated from simulation and those measured in experiment. The measure
of similarity between the original and perturbed probability densities is the
Kullback-Leibler (KL) divergence functional. The KL divergence for the
original probability density, P0, and some other distribution, P , is defined
as:

DKL

[
P
(
~X
)
||P
(
~X
)]

=

∫
d ~X P

(
~X
)

log
[
P
(
~X
)
/P0

(
~X
)]

(2.26)

DKL ≥ 0, as shown in appendix B.1, being minimal when the two dis-
tributions are equal. The goal of a minimally invasive biasing procedure is
to find the probability distribution that minimizes the KL divergence and
satisfies

Q =

∫
d ~X q

(
~X
)
P
(
~X
)
, (2.27)

which describes the agreement with experiment. Additionally, the distribu-
tion should be normalized.

1 =

∫
d ~X P

(
~X
)

(2.28)

Roux and Weare point out that this is a problem of constrained optimiza-
tion of DKL and that the solution can be found using the method of Lagrange
multipliers.89 Performing a constrained variation of the KL divergence gives
an equation to solve for the desired distribution.

0 =
δ

δP
(
~X
)
[(∫

d ~X P
(
~X
)

log
[
P
(
~X
)
/P0

(
~X
)])

+ α

(
1−

∫
d ~X P

(
~X
))

+ λ

(
Q−

∫
d ~X q

(
~X
)
P
(
~X
))
]

= log
[
P
(
~X
)]
− log

[
P0

(
~X
)]

+ 1− α− λq
(
~X
)

(2.29)

This equation can be inverted for the desired probability density,

P∗
(
~X
)

= P0

(
~X
)
eα−1eλq(

~X) (2.30)
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As was the intent through its addition as a Lagrange multiplier, the term
containing α reconciles the normalization of the new distribution with the old.
With a suitable definition of P∗, this term is easily determined and need not
be considered further. The term associated with the experimental observable
appears linearly in q within the exponential. This is exactly the behavior in
the case under study. Rewriting the effective potential using a linear term
as the bias, shows the equivalence of the two probability distributions, as
suggested by the bottom panel of figure 2.4.

βUP = βU0 +mq (2.31)

P∗ =
e−βUP

∫
dq e−βUP

=
P0 e

−mq
∫
dq P0 e−mq

(2.32)

The numerator of the term on the right of eq (2.32) illustrates how the
method of restrained ensemble, in our example, inherently finds the probabil-
ity distribution that minimizes the KL divergence while matching observable
expectations. No prior calculation of the Lagrange multiplier weight is nec-
essary. The earlier fit value of m = 10 gives 〈q〉 = −0.127119, reasonably
close to the target Q.

Ideally, an infinite number of replicas is desired for a restrained ensemble
simulation, but computational cost limits the number attainable. In order
to choose the fewest replicas necessary to approximate similarity to the dis-
tribution presented in eq (2.30), it is instructive to plot the KL divergence
as a function of number of replicas in the restrained ensemble. These results
for the potential in eq (2.21) are shown in figure 2.5.

A simulation for N = 1 was not performed because it would simply result
in a delta distribution with the particle fixed. The KL divergence in this case
is positive infinity. N ≥ 2 produces a finite value and by N = 10, the KL
divergence is within 0.3% of the theoretical value for the distribution in eq
(2.30) with λ = −10. The computational expense of further increasing the
number of replicas does not provide much improvement in the quality of the
probability distribution. Furthermore, the KL divergence appears to increase
after 50 replicas, but this is an undersampling issue. In order to verify, the
simulation for N = 200 was performed with ten times as many samples.
The higher sampling reestablished agreement with the theoretical prediction.
This suggests that the increase in number of replicas requires more simulation
to provide the same accuracy in the probability density function. Therefore,
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Figure 2.5: Kullback-Leibler divergence for histogrammed distributions of
restrained ensemble simulations with N = {2, 5, 10, 20, 25, 50, 100, 200} repli-
cas. The KL divergence quickly converges toward the theoretical value for the
distribution in eq (2.30) with λ = −10 (dotted line). All points for N < 200
were performed with 107 samples in total, leading to an apparent increase
of the KL divergence (from undersampling). N = 200 was performed again
with 108 samples, restoring agreement with the theoretical value.

the number of replicas must be chosen to optimize the minimization of the KL
divergence while maintaining a sufficiently low sample number to accurately
capture the resulting probability density.
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2.2 Steering Of Simulations Using Neutron

Data

The following few sections will discuss the use of the component occupancy
volume profile, discussed in the introduction, as an observable to bias within
a simulation context. First, preparation and construction of the protein CVO
profile is discussed. Then, a bias potential is constructed using the resulting
density profile. The restrained ensemble approach discussed in the previous
sections is too costly to implement but the use of restraint on time-averaged
quantities is explored as a viable alternative. Finally, provided is a discussion
of technical obstacles in the implementation and how they were addressed.

2.2.1 The Observable Used In Biasing From Neutron
Reflection

In the biasing of simulations based on NR data, the CVO profile of a protein
provides an observable to match in simulation. It is constructed from the
z-coordinates of the protein atoms alone, and is therefore easily computed
throughout the course of simulation. In preparation for constructing a bi-
asing potential, it is useful to note that the CVO profile intrinsically has
information about the surface coverage of the protein on the membrane. To
see this, take the integral of the CVO profile, %, over all z. This is pro-
portional to the volume of the protein, since the CVO profile represents the
amount of volume occupied at a given point in z.

∫
dz %pr ∝ Vpr (2.33)

The CVO is a unitless fraction, its integral has dimensions of length.
This means there is a standard of area relating this integral to the volume.
The CVO profile represents a material density along the z-axis and scaling
it by an area gives it the units of linear density. The area standard of choice
is the area per lipid, since the lipids fill the volume in their tails and a
CVO profile scaled by this area provides easy calculation of protein surface
coverage on the membrane – a quantity often reported in protein-membrane
experiments. In preparing the simulation, the x-y area of the simulated
(periodic) box determines the number of lipids of the system (with z as the
interfacial normal) and, therefore, the ratio of the protein volume to the
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lipidic volume. The box size should be chosen to have this ratio be close to
the ratio of the integrated CVO profiles.

Vpr
Vlip

=

∫
dz %pr∫
dz %lip

(2.34)

In practical terms, it can be difficult to match this condition exactly but
small variations in surface concentration may not significantly alter the pro-
tein behavior. Fortunately, what we seek to do is correct for deviations from
experimentally observed ensembles, so small changes in surface concentration
should not be an issue.

In order to standardize the potential, it is preferable to avoid case by
case calculations of relative areas to bring the simulation CVO profile into
agreement with the experiment. Instead, the profile is normalized such that
the integrated density is one. The new density, ρ, will be the one used in
biasing the simulation.

ρ(z) =
%(z)∫
dz %(z)

(2.35)

ρ, when multiplied by the volume of the protein it corresponds to, repre-
sents the average profile for all proteins in either the experiment or the sim-
ulation. In calculating ρ for simulation, each atom’s density is represented
by a normal distribution and the total distribution scale by the number of
atoms to ensure it integrates to unity.

ρsim(z) =
1

N

N∑

i=1

N (z|zi, σ) (2.36)

In the simulations that follow, σ = 1 Å. To remove unnecessary com-
putational expense, each atom’s distribution is truncated at ±3σ as density
contributions beyond this contribute about a quarter of a percent to the area
of the profile.

2.2.2 The Bias Potential

Having constructed ρsim and taking ρexp to be an experimentally determined
CVO profile normalized using eq (2.35), a biasing potential is added to the

44



simulation in the form

UNR(z) = λ (ρsim − ρexp) (2.37)

A potential of this form is akin to a Lagrange multiplier, vanishing when
the two densities are in agreement. A Lagrange multiplier might vary as a
function of z and treating each point in the density as a separate observable
to restrain may also require z dependence for λ. For the following, however,
λ will be held constant in space as a first approximation. In GROMACS,
the energy units are kJ

mol
and units of length are measured in nm. This gives

ρ units of nm−1 and λ units of kJ ·nm
mol

in this implementation.
Figure 2.6 shows how the density profiles from simulation and experiment

are combined to form the potential of eq (2.37). As an example, a helical
peptide consisting of 35 alanine residues, which was simulated as a toy model.
The results of those simulations follow in subsequent sections.

Panel A depicts an example target (experimental) density for the helix,
describing a system that prefers to orient the peptide along the z-axis. Panel
B depicts a configuration of the simulation in which the helix does not com-
pletely align along the axis of orientation intended by the target. Panel C
shows the difference between these two densities, which when scaled by λ
is the bias potential of eq (2.37). In a region along z where the density
produced in simulation is larger than that observed in experiment, the bias
potential is larger and penalizes the extra density by repelling atoms from
that region. A region where the experiment has more density will have a
smaller potential and therefore attracts atoms toward that region. Panel D
illustrates the effect of this potential on the configuration depicted in panel
B. The regions where the potential has the largest gradients are the regions
with the strongest forces. Therefore, in the current example, the ends of the
helical peptide receive a torque inducing force that acts to align protein along
the desired axis.

The appropriate value of λ to use will vary depending on the system un-
der study. When using the method of restrained ensemble, the choice of λ is
implicitly selected through the way the replicas are coupled. Unfortunately,
there is a large cost to running multiple replicas of a simulation when also
trying to maximize the complexity and size of the system under study. As
an alternative, the history of the densities visited along the trajectory can be
used to incorporate information from a larger set of conformations. There-
fore, averaging the densities observed throughout the simulation is explored
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Figure 2.6: Construction of the bias potential using a helical peptide. Panel
A depicts the experimental density, with the peptide oriented along the z-
axis. Panel B shows the same peptide oriented off-axis in a simulation and
its resulting density. Panel C shows the difference of the experimental and
simulation densities, which is proportional to the potential. Panel D shows
the bias potential and the resulting forces added to the simulation. The black
simulation density includes arrows to illustrate what portions of the protein’s
profile are affected by the forces.

as a mode of biasing. The time averaged density is

〈ρsim〉t =
1

M

M∑

i=1

ρsim
(
t0 + iτ

)
(2.38)

where τ is the interval of time between sampling of the configuration for
the average density. The integrator will need to undergo many time steps
before the configuration of the system is distinct enough to meaningfully
impact the average density. The fastest side chain and backbone motions
have a time scale on the order of picoseconds.90,91 For this reason, sampling
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to update 〈ρsim〉t in the historied bias and ρsim in the memoryless bias
occurs every 0.1 ps in the current implementation. The differences between
using a historied bias and a memoryless bias is explored in the next few
sections.

2.2.3 Handling Large Discrepancies Between Densities

Because the forces on the protein correlate with gradients in the potential,
large amounts of spatial separation between the centers of the experimental
and simulation profile can lead to large forces at the edge of the protein. For
example, imagine that, during simulation, the peptide in figure 2.6 barely
overlaps with the experimental profile on one side. The net effect of the
biasing force on the peptide is to pull the protein to bring the centers into
alignment. The forces applied to move the whole protein are localized on
a the small portion of atoms that make up the edge of the density overlap.
This could, and did in short tests, strongly distort the secondary structure.

It may be necessary to start the protein in a configuration that is spatially
disjoint from the target profile, as in the case of docking a protein with a
membrane. A way to manage these cases is to treat the central position
of the experimental profile as a restrained observable, independent of the
shape of the density (relative to its center). In the current implementation,
this restraint is applied harmonically but would benefit from a bias like that
suggested in section 2.1. The harmonic restraint applied applies a uniform
force to each atom.

The application of restraint to the central position is defined through the
first and second moments of the profiles.

µ(1) =

∫
dz z ρ(z) (2.39)

µ(2) =

∫
dz
(
z − µ(1)

)2
ρ(z) (2.40)

The first moment is a measurement of the center of the profile. µ
(1)
sim and

µ
(1)
exp, the centers of the simulation and experimental profiles, are considered

significantly separated when their distance is larger than the square root of
the experimental profile’s second moment, which is a measurement of the
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profile’s width. When

∣∣∣µ(1)
sim − µ(1)

exp

∣∣∣ >
√
µ

(2)
exp (2.41)

the bias between the profile shape and position is decoupled. ρexp is shifted
along z by the difference in the profile centers before incorporation into the
potential, biasing the system as if the profile centers matched. Additionally,
the aforementioned harmonic restraint is applied to every particle to bias the
center toward its target location.

Fcen =
k

N

(
µ(1)
exp − µ(1)

sim

)
(2.42)

Note that eq (2.42) is the force, not the energy, and that the force constant
shown is scaled by the number of particles, N . The resulting sum of all forces
is a harmonic potential between the profile centers, using the entire mass of
the protein to determine the harmonic constant’s strength.

In the simulations that follow, k was chosen such that there is a smooth
transition when eq (2.41) signals to turn off the bias of the center – eq
(2.42). Specifically, the force per atom near the transition is similar to the
force per atom from eq (2.37) on the boundary of mismatch between the
profiles. This is not completely rigorous and, as mentioned at the start of
the section, future implementations could explore completely decoupling the
restraint of the centers and the restraint on the matching of profiles, offsetting
the z-axis of the experimental to align the center positions profiles. Since
the mechanisms necessary are already implemented for the spatial mismatch
condition, there is a framework for these changes in place.

2.3 Poly-Alanine (pALA) Simulations

2.3.1 Description

A 35 residue helical polyalanine peptide was constructed using Visual Molec-
ular Dynamics (VMD) software by chaining together a smaller seven residue
helical unit. The peptide was capped with an acetyl and an amide group,
solvated with 100 mM NaCl in SPC/E water (CHARMM 36, July 2017 force-
field), and put in a cubic box with side length 8.83 nm. The system went
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through 50000 energy minimization steps, equilibration at fixed volume/tem-
perature and fixed pressure/temperature for 100 ps each, and simulated in a
production run for 10 ns (T = 300K, P = 1bar).

After simulation, the 10 ns trajectory was analyzed to produce a mock
density profile. To do this, the frames were aligned such that the protein’s
center of geometry was stationary and also rotated such that the principal
axes of the protein’s moment of inertia tensor remained fixed. An average
protein density was calculated using the centered and aligned trajectory, as
per eq (2.36). The profile obtained is pictured in Figure 2.7.

Figure 2.7: Mock density profile for helix of alanine. The experimental den-
sity calculated from the average taken in the initial simulation is shown in
red. A typical configuration contributing to the average is overlaid in gray.

The mock profile, representative of a rigidly oriented and spatially con-
strained helix, acts as a substitute for an NR observable. This profile is a
model for a peptide in a severely restricted configuration space as compared
to the free case; biasing toward this profile would be resisted entropically.
An experimental density would likely be much more similar to that of a free
simulation than this mock profile, but this test case will serve to demon-
strate strengths and weaknesses of the method. Simulations at two values
of bias strength, λ = {0.05, 0.5} kBT · nm, were performed using both the
memoryless and historied bias. An unbiased simulation was also performed
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for comparison.

2.3.2 Analysis Of Simulation Results

Various observables were calculated for the five simulations and are shown in
figures 2.8 - 2.11. Figure 2.8 shows the position of the profile’s center (µ(1))
over the course of each simulation. The first two panels show the stronger of
the two biases, the first using the memoryless bias and the second using the
historied bias. The next two panels are the weaker bias in the same order;
the last panel is the simulation without bias. All five panels have a histogram
of the time series at the right of the plot.

Both simulations using memoryless bias fluctuate less, in their profile’s
center position (figure 2.8), about the average than their respective coun-
terpart using a historied bias. The unbiased simulation appears to have its
central positions distributed uniformly, if more statistics were available to
smooth the fluctuations in the distribution. The historied simulation with
λ = 0.5 kBT · nm shows a distinct bimodality in its distribution. The main
peak of the weaker, historied simulation is located off center in the histro-
gram and also away from the center of the target profile (µ(1)), suggesting
bimodality could also be occuring in this simulation. A possible reason for
this bimodality will be discussed later.

As observed with the center trajectories, the root mean square difference
(RMSD) between the experimental and instantaneous profile of the simula-
tion

RMSD =

[∫
dz (ρsim − ρexp)2

]1/2

(2.43)

has smaller fluctuations about the mean for the memoryless bias than for the
historied bias simulation for both strengths used, as shown in figure 2.9). The
distribution of values for RMSD of the unbiased simulation is more difficult
to infer than for the center position. The histogram suggests that there is a
peak in the distribution and that there is more weight in RMSDs below the
peak than above. The biased simulations show a similar trend, although the
aspect ratio of the histogram varies between simulations. The memoryless
biases have distributions that are less broad and, additionally, the peak in the
distribution is at a lower RMSD than for the historied bias (though only by
a small amount for the weaker bias). Furthermore, the historied simulations
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Figure 2.8: Central position, µ(1), of the simuated pALA profile, as measured
in eq (2.39). At the right of each time series, the values observed are collected
in a histogram. The biased simulations produce center positions which are
confined about the target profile center, the values in the unbiased simulation
are distributed to all positions.
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Figure 2.9: Root mean square difference between target profile (figure 2.7)
and simulation profile calculated at the plotted time step. Histograms of the
values in the time series shown at the right of each series. The unbiased
simulation has a higher average and maximum RMSD value than any biased
simulation. The memoryless biases have RMSD values that are smaller on
average and have smaller maximum values as compared to the RMSD values
observed in the historied biases.
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have more weight at the highest RMSD values observed throughout all sim-
ulations.

As figures 2.8 and 2.9 show, the memoryless bias restricts fluctuations of
µ(1) and the RMSD more than the historied bias or unbiased simulations.
To gain insight into the factors that contribute to these behaviors, a simple
model for the system is introduced. To motivate this model, the root mean
square fluctuations (RMSF) of each atom was calculated

RMSFi =

[
1

T

T∑

t=1

(~ri(t)− 〈~r〉)2

]1/2

(2.44)

where i indicates the ith atom. The position of the atom, ~ri(t), at timestep
t is measured after the protein is centered and rotated to align with the
initial configuration; 〈~r〉 is the time average of this quantity. All the atoms
in the peptide deviated less from their intial position in the helix than in the
unbiased simulation (see figure 2.10). The peptide is short helix and biasing
did not affect this; it will be treated as a rigid rod that is diffusing in the
solvent.

Treating the peptide as a rod, there are two major degrees of freedom that
determine ρsim, the z-coordinate of the center of geometry and the angle of
the helical axis relative to the z-axis. These affect the RMSD by changing
the overlap of the two profiles and the relative height/width. As the center
position moves along the z-axis, the decrease in overlap of ρsim and ρexp leads
to an increase in RMSD. As the peptide rotates away from the z-axis, ρsim
narrows and increases in height, and causes it to overfill ρexp in some regions
and underfill in others (see figure 2.6).

The memoryless biases produced fluctuations of these degrees of freedom
that were smaller than those for the historied biases. Figure 2.8 illustrates
this for the center position degree of freedom. The weaker memoryless bias,
however, produced a distribution that is almost as broad as the historied
version despite the RMSDs attaining higher values and visiting the higher
values more frequently (figure 2.9). The central position never deviates far
enough in any of the biased simulations to be the main contribution to the
RMSD. It is the orientation of the helix that plays the more significant role.
The weaker memoryless bias did not permit orientational deviations larger
than about ±45◦, and even less deviations were observed for the stronger
bias. The historied bias, on the other hand, allows for complete reversal of
orientation of the helix.The RMSD, however, is insensitive to reversal of the
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Figure 2.10: RMSF of atoms in biased simulations versus the RMSF of atoms
in the unbiased simulation. All atoms in the biased simulations had RMSFs
smaller than in the unbiased simulation (equality given by dashed line), re-
sulting in structures which are typically more rigid in the biased simulation.

helix, due to the symmetry of the profile under negation of the polar angle of
the helix. A scatter plot of RMSD versus cos θ of the angle with the z-axis is
shown in figure 2.11 and the symmetry is apparent in the shape of the data.
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Figure 2.11: The RMSD between the target profile (figure 2.7) and the sim-
ulation profile versus orientation of the helix. The simulation density is
calculated instantaneously at the plotted time step. The polar angle be-
tween the helical axis of the peptide and the z-axis is used in the orientation.
The vertical range of RMSD values for fixed orientation primarily comes from
variation in the center position of the profile, changing the amount of overlap
with the target profile.

The same data is shown for the unbiased simulation and used to under-
stand the pattern displayed by the data. The center of horizontal axis rep-
resents the helical axis pointing in some direction in the xy-plane (θ = 90◦).
This corresponds to a narrow and tall ρsim with a large RMSD due to over-
filling ρexp near the peptide and underfilling elsewhere. The vertical spread
at a fixed angle is due to the variation in the center of the profile. In the
unbiased simulation this occurs everywhere, including θ = 90◦ but not for
the biased simulations because the center position is restricted by the bias
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and the overlap of the profiles is always maintained in this orientation. This
leads to less vertical spread in the data around the peak.

The vertical spread of the RMSD values toward θ = 0◦ and 180◦ shows
that the center position can vary enough to partially reduce the overlap in
the densities. The amount to which this occurs is limited, since the unbiased
simulation does not attain RMSD values as high as in the center of the plot.
When oriented parallel to z, the periodic box prevents density mismatch as
it is only about 160% the extent of ρexp. This puts a cap on the amount
to which ρsim exist outside the envelope of ρexp before an oriented peptide
traverses the periodic boundary and starts overlapping from the other side.

Figure 2.11 shows that, in the historied bias, moderate RMSDs (≈ 1.75)
can arise for a parallel or antiparallel orientation in the historied bias. The
largest RMSDs only occur in the historied bias when the orientations are far
from aligned with z, where the µ(1) fluctuations cannot contribute. These
points illustrate why the RMSD histograms for historied simulations have a
resemblence to both the histograms for the memoryless simulations and the
unbiased simulation. The memoryless bias only fluctuates a small amount
in both µ(1) and θ, the modes that contribute to the RMSD. The RMSD
histograms are fairly tight for these simulations. The unbiased simulation
explores the entire range of RMSD values, but the values around 1.75 nm−1

have the largest range of orientations that can contribute these values. There-
fore, the RMSD histogram is peaked around this value. The historied simu-
lations explore all orientations but, for a range on either side of θ = 90◦, µ(1)

cannot contribute as much to the RMSD as in the unbiased simulation. This
means the RMSD with the largest range of orientations occurs at a lower
value, also causing the histograms to peak at a lower value, and there is a
cutoff on the highest RMSD expressed. The histograms from the historied
simulations have a similar shape to the one from the unbiased simulation,
but they are more compact like those from the memoryless simulations.

The profiles plotted in figure 2.12 provide more insight into the observed
behavior in the historied bias simulations. The black curve represents the
average density, 〈ρsim〉t, at the end of the 100 ns simulation. Similar charac-
teristics were prevalent in the running average as early as a few nanoseconds
from the start of the simulation. 〈ρsim〉t tended to overfill in the center, rela-
tive to ρexp, and underfill at the ends of the profile. The reason for this trend

is easily understood; of all conformations with µ
(1)
sim localized near µ

(1)
exp, most

contribute density at µ
(1)
exp. This means that most of the weight of the density
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profile is at the center. Another way to put it is that convolving a density
that roughly look like ρexp (the aspect ratio will fluctuate as peptide orien-

tation changes) with the function that describes the distribution of µ
(1)
sim (a

roughly symmetric distribution centered on µ
(1)
exp) will lead to a profile similar

to that plotted in figure 2.12.
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Figure 2.12: Comparison of target profile for pALA simulation (red) with the
resulting time-averaged profile for the historied bias (black), λ = 0.5 kBT ·
nm. Subtracting the target experimental profile from the average simulation
profile is equal to the bias potential at the end of the simulation, up to a
scaling factor.

〈ρsim〉t, calculated from simulation start to time step under consideration,
contributes to the historied bias. With the profile shown, the resulting bias
is weakly repulsive in the middle and weakly attractive at the sides. This is
what generates the bimodality in the center position’s histogram from figure
2.8. Also, because the attractive regions are narrower than the helical length,
orientations off the z-axis are favored. The bias is weak enough that the
central peak of ρsim persists despite its repulsive nature and the underfilled
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sides persists despite their attractive nature. With larger λ, the bias would
prefer conformations that fill the edges more and center less, leading to closer
agreement with the target profile.
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Figure 2.13: Root mean square difference between target profile (figure 2.7)
and simulation profile averaged up to the current time step. The RMSD
values for the memoryless biases (saturated colors) trend toward constant
steady state values that are lower than the trend in the historied biases
(unsaturated colors). The RMSD values in the hisoried biases trend toward
similar asymptotic values. The RMSD in the unbiased simulation does not
appear to have any convergent behavior.

Figure 2.13 shows, for each simulation, how 〈ρsim〉t instead of ρsim(t) com-
pares to ρexp. The time averaging produces curves which are much smoother
than those observed in figure 2.9. The unbiased simulation shows an ini-
tial increase in RMSD, because the center position (figure 2.8) drifted away
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from the target center position early on. Contributions in the middle of
the trajectory matched better on average with ρexp until the time at which
µ(1) drifted to the edge the box for the remainder of the simulation. The
RMSD increases steadily in this time range from a series of configurations
that produce density in regions where ρexp is zero.

The RMSD for the strong memoryless bias reaches its lowest value within
5 ns and has some small fluctuations intially, smoothed out later by the large
number of samples in the average. The RMSD for the weak memoryless bias
has a similar behavior, taking longer to reach its asymptote and smooths out
at a higher value. The strong historied bias behaves like the complementary
memoryless bias at the start, but does not reach as low a value and the curve
turns upward around t = 15 ns. This bias does not hold the configuration
space tightly to ρexp and over time seems to weaken its restraint as the
peptide explores configurations that reduce the average RMSD. The RMSD
of the weak historied bias also fails to drop as low as its same-strengthed
memoryless bias early on. After a short time, the RMSD has an upturn
similar to the unbiased simulation. Over longer times, the bias brings the
average profile RMSD back down to a very similar value to that of the strong
historied bias.

2.3.3 Summary

Both the memoryless bias and the historied bias produce a set of configu-
rations with a resulting ρsim closer to ρexp than the density from the unbi-
ased simulation, as measured by the RMSD. The memoryless bias restricts
both the center position of the peptide and its orientation, resulting in low
RMSD values throughout the simulation. The RMSD calculated using a
time-averaged density also shows stronger agreement in the memoryless bi-
ases than in the historied biases of the same strength.

The trajectory in the historied bias explores a larger range for both center
positions and orientations of the peptide, though the configurations that
make up the mock profile did not vary these degrees of freedom. The historied
bias provided an alternate set of configurations for constructing the target
profile. Though this did not lead to an RMSD as low as for the memoryless
bias, it peturbs the phase space less relative to the unbiased simulation.
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2.4 Phosphatase And Tensin Homolog (PTEN)

2.4.1 Description

PTEN is a lipid phosphatase whose association with stBLMs in vitro has
been thoroughly studied with NR88 and, independently, with MD simula-
tions.92,93 CVO profiles derived from the NR experiment are shown in figure
2.14. Fortuitously, CVO profiles extracted from experiment and simulation
agreed so well that there was little doubt that the MD simulations retraced
the experimental results. While the biological significance94–97 and struc-
tural details of PTEN98 are beyond the scope here, the relevant parts of
the structure include two folded domains (an N-terminal phosphatase do-
main and a Ca2+-independent C2 domain) and a disordered C-terminal tail
which accounts for about 13% of the entire molecular weight and controls
membrane-accessibility of C2.99,100 The sequence of the core and tail regions
can be found in figure 2.15

An MD simulation was performed with a bias deriving from NR re-
sults obtained for a membrane composed of the phospholipids 1,2-dioleoyl-
3-phosphatidylcholine and 1,2-dioleoyl-3-phosphatidylserine with cholesterol
as a minor component (DOPC/DOPS/chol = 67:30:3). In the starting
configuration, taken from a previous simulation,93 the PTEN protein was
moved ca. 35 Å away from the bilayer and solvated with 100 mM NaCl in
TIP3P water (CHARMM 36, July 2017 forcefield) in a cubic box with dimen-
sions (16.04, 16.04, 21.35) nm. A 5000 step energy minimization was per-
formed, followed by a series of simulations with restraints on various groups
within the system that were relaxed sequentially. The restraint relaxation
protocol was supplied by the CHARMM-GUI Membrane Builder (http:
//www.charmm-gui.org/?doc=input/membrane.bilayer) and are shown in
Table 2.1. The system was then simulated for an additional 1ns run to check
to equilibration of the system before production.

Subsequently, all production runs were started under the bias of the pro-
files centers according to eq (2.42), because the condition for spatial disjoint-
edness, eq (2.41), applied. They were then either subjected to steering with
a potential based on a profile for the protein envelope at the membrane pre-
viously determined.88 For ’unbiased‘ simulations, the value of λ in eq (2.37),
was set to zero, but the protein was drawn to the membrane based on the
profile center bias mentioned.
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Figure 2.14: Component volume occupancy fit from NR experiment of PTEN
on an stBLM (DOPC/DOPS/chol = 67:30:3).88 Right axes shows the scaling
of the CVO used in biasing, such that the area under protein profile is equal
to one.

Step Time Protein Lipids
Backbone Sidechains Position Dihedral

ps kJ/(mol · nm2) kJ/(mol · nm2) kJ/(mol · nm2) kJ/(mol · rad2)

1 25 4000 2000 1000 1000
2 25 2000 1000 1000 400
3 25 1000 500 400 200
4 100 500 200 200 200
5 100 200 50 40 100
6 100 50 0 0 0

Table 2.1: Restraints used in equilibration of the PTEN system, all forms
are harmonic and can be found in the GROMACS documentation.
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MTAIIKEIVSRNKRRYQEDGFDLDLTYIYPNIIAM 35

GFPAERLEGVYRNNIDDVVRFLDSKHKNHYKIYNL 70

CAERHYDTAKFNCRVAQYPFEDHNPPQLELIKPFC 105

EDLDQWLSEDDNHVAAIHCKAGKGRTGVMICAYLL 140

HRGKFLKAQEALDFYGEVRTRDKKGVTIPSQRRYV 175

YYYSYLLKNHLDYRPVALLFHKMMFETIPMFSGGT 210

CNPQFVVCQLKVKIYSSNSGPTRREDKFMYFEFPQ 245

PLPVCGDIKVEFFHKQNKMLKKDKMFHFWVNTFFI 280

PGPEETSEKVGNGSLCDQEIDSICSIGRADNNKEY 315

LVLTLTKNDLDKANKDKANRYFSPNFKVKLYFTKT 350

VEEPSNPEASSSTSVTPDVSDNEPDHYRYSDTTDS 385

DPENEPFDEDQHSQITKVLEHHHHHH 411

X acidic (−)
X basic (+)

X polar uncharged

X hydrophobic nonpolar

C
o
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a
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Figure 2.15: PTEN sequence. Amino acids are colored by their charge. Rigid
core domain (residues 1 to 350) and flexible tail domain (residues 351 to 411)
are labeled at left of sequence.
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2.4.2 Results

Figure 2.16 shows the center position of the profiles over time. All biased
simulations were nearer to that of the target profile’s center, µ

(1)
exp = 4.55 nm,

than the unbiased simulation. The historied bias simulations were nearer to
the membrane than the memoryless bias simulations. This may be in part
to the difference in the density contributions from the tail region (see figure
2.15 for region definition). The tail region and the consequences of its density
contribution will be described later in this section, along with a depiction of
this density in figure 2.21.

0 20 40 60 80 100
Time (ns)

4.00

5.00

6.00

C
en

te
r 

of
 P

ro
fil

e,
 

(1
)  (

nm
)

Unbiased
0.05 kBT nm Memoryless
0.5 kBT nm Memoryless
0.05 kBT nm Historied
0.5 kBT nm Historied

Figure 2.16: µ
(1)
sim for the simulations of PTEN, measured relative to the

bilayer center. µ
(1)
exp ≈ 4.55 nm. All biased simulations have center positions

nearer to the experimental value than the unbiased simulation.

Figure 2.17 shows the RMSD between the simulation and target densities
at each time step. From around 40 ns onward, the weaker bias does not differ
in its RMSD fluctuations from the unbiased simulation. The stronger bias,
however, shows unexpected behavior. The fluctuations for both the historied
and the memoryless bias are smaller with the memoryless bias showing the
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lowest RMSD of all five simulations. But, the memoryless bias transitions
between 20 ns and 25 ns from having a low RMSD to steadily having the
highest RMSD of all the simulations without much fluctuation in the RMSD.
The structural details that lead to this jump in RMSD will be examined later
in the section.
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Figure 2.17: RMSD between ρexp and ρsim for each output frame of the PTEN
simulations. The strong historied bias shows unique behavior, transitioning
between a state of low RMSD (≈ 0.025 nm−1) and a state of high RMSD
(≈ 0.060 nm−1) between t = 20 ns and 25 ns.

Figure 2.18 shows the RMSD values for each simulation using the run-
ning average, 〈ρsim〉t, the trends of which behave as might be expected given
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the instantaneous RMSD. Each RMSD drops intially as spatial overlap is
increased between the simulation profiles and the experiment. Also the tra-
jectories become more smooth as the number of samples increase. For all but
the strong historied bias, the curves trend toward lower RMSD values over
time. The strong historied bias’s curve turns upward after 20ns, related to
the jump transition in figure 2.17 for this simulation, eventually reaching the
highest sustained averaged RMSD value of all the simulations.
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Figure 2.18: RMSD between ρexp and 〈ρsim〉t for PTEN simulations. All
simulations except the strong historied bias have RMSD values that decrease
over time.

Shown in figure 2.19 are the RMSD values between the core domain atoms
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Figure 2.19: RMSD of atoms in the core of PTEN (residues 1–350) from the
starting structure at each time. The atoms belonging to the core region of
PTEN in the strong memoryless bias deviate more from their initial positions
than those in any other simulation. The strong historied bias has values most
similar to the unbiased simulation.

in the intial structure and their position at each output frame of the simu-
lations. This describes how the internal structure changes throughout time,
using the initial structure for reference. The sustained difference in RMSD
between the strong memoryless bias and unbiased simulation toward the end
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of the run is greater than the difference seen between either weak bias and
the unbiased simulation. (0.6 nm, 0.5 nm, and 0.4 nm). The RMSD of the
strong historied bias appears to plateau, instead of continuing to increase like
the others, and is consistently lower than the unbiased simulation between
60-100 ns. Given the rigidity of the folded core domain, the RMSD behavior
suggests that the structure in the strong memoryless bias is more distorted
than the other simulations and that the core structure of the strong historied
bias may be slightly more stablized than the others.

To evaluate how well different biasing strategies steer simlations most
efficiently towared the desired outcome, the most informative metric is a
direct comparison of the density profiles. This illustrates not only the amount
to which there is agreement, but also where in the protein discrepancies occur.
Figure 2.20 shows, for each run, the density from the final 75 ns of the
trajectory. The shading of the simulation densities shows the distribution of
densities observed in this time range. Opacity is used to convey fluctuations
about the median observed density, the transparency increases with distance
from the median.

In the unbiased simulation, the peak of the protein profile does not quite
fill the experimental density but falls within the confidence interval of the fit
for nearly all densities observed. At higher values of z, around 18 nm, there
is an excess of density relative to the experimental profile, rising above the
confidence interval of the fit for most densities observed in simulation. The
higher z values that are over-represented in the unbiased simulation have
lower densities in the biased simulations. The memoryless simulations retain
some of the density here, but shift the weight toward the peak as observed
in the experimental density.

Figure 2.21 provides a more detailed structural explanation for the varia-
tion in agreement between the various simulations and the experiment. The
five simulation densities are plotted in the same way as in figure 2.20 except
that the contributions from the rigid core domain (darker) and flexible tail
domain (lighter) are plotted separately. Only in the unbiased simulation is
the majority of the tail density located at higher z-values than the core, away
from the membrane. Some of the density around z = 4.5 nm is attributed
to where the the tail joins to the core. But excluding this small amount, one
still concludes that the tail was more often closer to the membrane in the
biased simulations than in the unbiased.
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Figure 2.20: Protein density profiles observed in PTEN simulations
are compared with NR derived protein distribution on bilayer (67:30:3
DOPC:DOPS:cholesterol.)88 that was used for biasing. For the experimental
profile, the median of the fit to NR data is plotted (solid line, red) along with
the 68% confidence interval for that fit (shaded, red). Simulation densities
plotted occur in the last 75 ns of thier 100 ns runs. In the simulation pro-
files, shading conveys the distribution of densities observed at a point z. Full
opacity is used at the median, and full transparency is used at the tails of the
observed density distribution (a cutoff is made beyond the 68th percentile).
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Figure 2.21: Density profiles from PTEN simulations (25-100ns) and exper-
iment with simulation profile divided into core region (residues 1–350) and
tail region (residues 351–411). For the experimental profile, the median of
the fit to NR data is plotted (solid line, red) along with the 68% confidence
interval for that fit (shaded, red). In the simulation profiles, shading conveys
the distribution of densities observed at a point z. Full opacity is used at
the median, and full transparency is used at the tails of the observed density
distribution (a cutoff is made beyond the 68th percentile).
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Figure 2.22: Bias as calculated from the average density reported in the
checkpoint files (used for restarting simulations) of the strong historied sim-
ulation. Checkpoint files contain the average of all densities sampled, con-
taining 1000 times as many samples as the outputted trajectory. Difference
of the average density and experimental density scaled by λ = 0.5 kBT · nm
at four times, showing how the bias is approaching a seemingly steady-state
value. The bias at 66.489 ns is omitted due to its indistinguishability from
that at t = 88.277 ns.

The excess simulation density observed around 4.5 nm in the strong his-
toried bias contributes to a peak in the bias at this location, seen in figure
2.22. This penalizes the extra density and should repel atoms to reduce the
excess density. The flexibility of the tail would suggest that it could easily
be repelled away from the bilayer by this peak. However, the tail remains in
this region even as the peak of the bias grows throughout the course of the
simulation. A naive explanation would be that the tail is repelled to smaller
z and becomes trapped between the peak in the bias and the membrane.
In reality, the bias is not so large (UNR < 0.06 kBT ) that the tail would be
trapped below the peak. This conclusion is further supported by the fact
that the tail density is centered on this peak. The observation of this tail be-
havior appears to be of an origin other than the bias, perhaps a complicated
interaction between the tail and membrane, and its source beyond the scope
of this work.

Figure 2.23 shows illustrative examples, from two perspectives, of the
historied simulations and how their difference in structure contributes differ-
ently to the tail densities. The core is colored red and the tail is colored blue.
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Figure 2.23: Two orientations for a single snapshot from each simulation with
historied bias. Top: Weaker bias at time t = 90.3 ns, showing an example of
the of the tail (cyan) orienting over the top of the protein core (red). Bottom:
Stronger bias at time t = 67.8 ns, showing the observed tendency of the tail
to stay near to the membrane after 20 ns.

After 25 ns in the simulation with stronger bias, the tail is primarily observed
to be extended along the membrane with small variation in its height off the
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membrane. This leads to a single, narrow peak in the tail density. In the
weak bias, the tail explores the membrane on the opposite side of the core by
wrapping itself over the top. This makes a bimodal contribution rather than
the single narrow peak observed with the stronger bias. It should be noted
that these snapshots should be taken as an intuitive guide, the density is an
average that also involves the dynamical nature of the flexible tail. Figure
2.23 does, however, capture an important difference in the two simulations.

The memoryless bias simulations have a simpler explanation for their
dynamics than the historied bias simulations. They can be explained by the
idea that the memoryless bias works to suppress fluctuations from ρexp, this
action being more apparent in the stronger bias than the weaker. One effect
of the bias on the protein is to slightly tilt the core in the case of the stronger
bias. In the unbiased simulations, the core density matches the profile well
on its own but skews to higher z values when tail density is added. Tilting
the core counters the skew of the density toward larger z values. Another
effect of the bias is to somewhat restrict the tail to roughly point in one
direction and maintain its length of extension, enforcing agreement with the
density at z values above the peak. There are fluctuations, of course, but
the dynamics are far less varied than that of the historied bias.

2.4.3 Summary

As shown in figures 2.17 and 2.18, all biased simulations resulted in better
agreement between ρexp and ρsim or 〈ρsim〉t (based on RMSD), with the ex-
ception of the strong historied simulation. The best agreement was observed
with the strong memoryless bias and this agreement is well represented by the
closeness with which the simulation density follows the experimental curve
in figure 2.20. Unfortunately, the shading of the data indicates that this
simulation fluctuated within a smaller range of densities than the unbiased
simulation. In addition, the RMSD between the positon of core atoms in the
starting structure and throughout the simulation (figure 2.19) has distinctly
larger values for the strong memoryless bias than for the other simulations.
This indicates that the bias may apply significant stress to the internal struc-
ture of the core domain in this case.

The next strongest agreement, throughout the entire simulation is for the
weak historied bias. The weak memoryless bias reaches similar agreement
near the end of the simulation based on RMSD of 〈ρsim〉t. The larger fluc-
tuations in the RMSD of the instantaneous ρsim and broader distribution of
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densities sampled (figures 2.20 and 2.21), especially in the tail, suggest that
this simulation may be sampling a slightly larger range of conformations that
over time contribute a density that averages to a similar level of compatibil-
ity. It is difficult to argue which simulation captures more useful information,
both are compatible and should perhaps be considered simultaneously.

The two simulations using weak biases also represent slightly different
structural features. In the historied bias, parts of the tail associate with the
membrane unlike in the memoryless bias. If there is an interaction which
associates the tail with the membrane, this could lead to the smaller fluctu-
ations in RMSD of ρsim considering that the tail wraps over the core (figure
2.23) and would help to anchor its orientation.

The observations in the simulation using strong historied bias provide
more evidence for membrane-tail association. Even though the simulation
density disagrees with ρexp and there is an energetic penalty for this dis-
agreement, the tail is associated with a region near the membrane that has
the least favorability in the potential. It seems that instrinsic forces, inde-
pendent of the bias, keep the tail in that position. The core density, however,
closely matches the experimental density around the peak (figure 2.20). The
source of this matching is how the core is tilted differently from other simu-
lations. If there is an interaction of the tail with the membrane that applies
a tensile force, this could assist in tilting of the core. This assistance from
the tail would alleviate stresses on the core from the bias, which would ex-
plain how the atomic RMSD (figure 2.19) shows the best agreement with
the unbiased simulation. While providing the least agreement with ρexp, the
simulation using strong historied bias provides interesting behavior worth
further investigations.

2.5 Discussion (Items Of Interest And Future

Directions)

As demonstrated in the previous sections, the bias constructed for NR den-
sity profiles improves the agreement between the data and the simulation.
However, it is still unanswered whether this method is the most effective way
to bias the simulation using experimental data. A few points are addressed
in this section with regard to the potential and possible alternatives. Exam-
ined are the implications of using a time-average in the bias and the use of a
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single value for λ at all points in the density.

2.5.1 Effect Of Time Averaging On Effectiveness Of λ

As the simulation progresses, more samples contribute to the average used
in the historied bias. This reduces the significance of any single configura-
tion within the bias. Additionally, if sampling is frequent enough, a set of
sequential configurations contribute similar densities. The average density
for biasing comes from eq (2.38)

〈ρsim〉t =
1

M

M∑

i=1

ρsim
(
t0 + iτ

)
(2.38)

If N is the typical number of samples that can be treated as having similar
densities, the average over a subinterval with N samples,

ρsim(t) =
1

N

N−1∑

j=0

ρsim(t+ jτ) , (2.45)

is approximately equal to any density in the subinterval:

ρsim(t) ≈ ρsim(t) . (2.46)

Rearranging the sum in eq (2.38) and using eqs (2.45) and (2.46) to rewrite
the average with a different sampling rate,

〈ρsim〉t =
1

M

M/N∑

i=1

N−1∑

j=0

ρsim
(
t0 + (Ni+ j)τ

)

=
1

M

M/N∑

i=1

N ρsim
(
t0 +Niτ

)

≈ 1

M/N

M/N∑

i=1

ρsim
(
t0 + i(Nτ)

)
, (2.47)

shows that the average is almost unchanged for a sampling time which is
longer by a factor of N . This means that the average effectively contains

74



only some maximum number of samples, not changing in response to a faster
sampling rate.

The number of samples in the average affects the response of the bias
to any deviation from ρsim. Specifically, an analysis similar to that used in
section 2.1.3 shows how the number of samples changes the strength of the
bias. The same potential for a particle in the one-dimensional well defined
in eq (2.21) is used with nearly the same sampling procedure outlined in
appendix B.3.1.

βU0(q) = 25(q − 0.25)4 − q cos(q) +
sin(20q)

q2 + 0.5
(2.21)

Instead of imposing the condition that the average q among replicas be
the target value, which corresponds to an infinite harmonic restraint on the
average, a linear bias will be applied to the average q. This bias will be added
to the potential used in the metropolis sampling algorithm and proposal dis-
tributions for each replica will be independent uniform distributions centered
on the current q value.

U(qi) = U0(qi) + λ

(
−Q+

1

N

N∑

j=1

qj

)
(2.48)

Figure 2.24 shows the effective bias on the simulation produced for a few
values of λ and number of replicas. For the four simulations shown, only two
distinct biases are seen. In each case, the result of the bias is equivalent to
applying linear bias with a single replica but not necessarily with the same
strength. The strength of the effective linear bias depends on the ratio of λ
to number of replicas.

Ueff (q) = U0(q) + λeffq (2.49)

λeff =
λ

N
(2.49′)

As the number of replicas increases, the effective linear bias decreases on
the entire distribution sampled. The same behavior is seen clearly in figure
2.13 with the RMSD for 〈ρsim〉t in the pALA simulation with historied bias,
λ = 0.5 kBT ·nm. As time goes on, the average density deviates further away
from ρexp as the number of samples contributing to the bias increases.
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Figure 2.24: Effective bias added to Monte Carlo simulation. For each set of
parameters, the unbiased potential is subtracted from the effective potential
as determined by the probability density produced from sampling. Dotted
lines with the indicated slope are included for reference.

However, if the sampling rate is faster than the response of the observable,
eq (2.47) indicates that the number of samples is not tied to the algorithm for
averaging but is dependent on the evolution of the system. This means that
the time scale for relaxation of the RMSD should be the same for sampling at
a rate other than τ = 0.1 ps. Conversely, the time scale of the RMSD decay
gives insight into the time between distinct contributions to the density for
the system under study.

There are a couple ways in which this effect can be managed. The simplest
is to scale λ with the progression of time in the simulation. Another option
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is to use an exponential moving average:

〈ρ〉t
∣∣∣
t=t0+iτ

= α · ρ(t0 + iτ) + (1− α) · 〈ρ〉t
∣∣∣
t=t0+(i−1)τ

, (2.50)

where α ∈ [0, 1] sets the exponential decay of the contribution from old
samples. Rather than scaling the strength, a moving average keeps a fixed
number of effective samples in the average. The first method is more similar
to the method of restrained ensemble and the second requires less modifica-
tion to the existing code.

Both methods require some knowledge of the effective rate of sampling.
Scaling of λ should be proportional to the effective number of samples. α
should set a decay time dependent on the number of effective samples to be
retained in the average. The effective rate of sampling is difficult to predict
and varies between systems. However, the RMSD between the density from
simulation and experiment will respond to the scaling of λ and could be used
to indicate a rescaling or size of α.

2.5.2 Spatial Dependence Of λ

If the bias is thought of as a Lagrange multiplier on the system Hamiltonian,
it formally will have a dependence on z. This is also a natural conclusion
in the mode of restrained ensemble since the density profile is a collection of
points and the solution to the variational problem may also depend on which
point in the density is being considered.

Additionally, ρexp is the result of a fit to data and inherently has a prob-
abilistic interpretation. The density has confidence intervals at each point
along z and each point can be thought of as having a probability distribu-
tion associated with it. This further emphasizes the z-dependence of λ, as
the difference in prior knowledge about the density at each point informs
how much the unperturbed simulation should be biased at that point in the
density.

One way to include information about the fit in the bias is to scale λ
according to the certainty of measurement at each point. If the certainty of
density point is related to some range of probable values, ∆ρ, then a simple
implementation of a scaling function, Λ(z), with values between zero and one

Λ(z) =

{
0 if ∆ρ ≥ ρ

1− ∆ρ
ρ

if ∆ρ < ρ
(2.51)
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could multiply the constant λ to give spatial variation to the bias.
If a range of probable values for the density is larger than the value of

the density, α = 0 corresponds to having no reliable information with which
to bias. It would also be reasonable to choose twice the range or some other
multiple for the cutoff. It may also be desirable to have Λ be closer to one
for some range about ∆ρ = 0. In this case, a quadratic or other functional
form that peaks around zero is a choice. Alternatively, one could even make
α(z) adaptive based on some relationship between ∆ρ(z) and the distance,
|ρsim(z, t)− ρexp(z)| as the simulation progresses.

2.5.3 Other Functional Forms Of Bias And An Exten-
sion To The Restrained Ensemble

Other functional forms of biasing potentials are suitable for the task of gen-
erating agreement between experiment and simulation. The linear bias is the
simplest and derives from the generalized solution to the variational problem
in section 2.1, addressing how to minimally affect the unbiased probability
distribution for the system. Also discussed in that section was the use of
a quadratic potential as a bias. After cleverly modifying the application of
bias using the technique of restrained ensemble, the quadratic potential also
generated the minimally peturbed distribution.

A quadratic bias, or other functions of the form f(ρsim−ρexp), are options
for incorporating NR data into simulation. With a quadratic bias, the re-
strained ensemble procedure can be implemented with replica simulations.89

If replica simulations are too computationally expensive, a procedure akin to
restrained ensemble could be attempted through the use of the time-averaged
density, 〈ρ〉t,

UNR =
k

2
(〈ρsim〉t − ρexp)2 (2.52)

with the number of samples in the average replacing the replicas. When
using samples from a time average, the rate of sampling as discussed in
section 2.5.1 must be considered to count the ‘replicas’. Finally there is a
question of whether or not the amount of computation is reduced by using
a time average. The length of a simulation necessary to produce enough
distinct samples for the time average may amount to the same load as running
replicas in parallel.
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Appendix A

Code Base

A.1 GROMACS

The version of GROMACS used as of the publication of this thesis is 5.1.1.

A.1.1 How To Use The Modified GROMACS

The source code can be found for the memoryless version of the bias at:
https://github.com/bradtreece/gmx instantaneous

For the historied version used throughout this thesis, use the branch ver-
sion 1:

https://github.com/bradtreece/gmx time average

After downloading the repository, the code can be compiled by navigat-
ing to the build directory and remove all files if not already empty. The
three machines where this code was tested and verified stable, the following
program versions of compilation software were used.

machine gcc cmake mpi programming environment
module (titan only)

local workstation 7.4.0 3.10.2 openmpi/3.1.1 N/A
(ubuntu)

titan (ornl) 5.3.0 3.6.0 not recorded PrgEnv-gnu

bridges (psc) 5.3.0 3.5.2 gcc openmpi N/A

The following cmake command is used to construct the cmake files and make

79

https://github.com/bradtreece/gmx_instantaneous
https://github.com/bradtreece/gmx_time_average


the executables from the build directory:

$ cmake . . −DGMX BUILD OWN FFTW=ON
↪→ −DREGRESSIONTEST DOWNLOAD=ON −DGMX MPI=ON
↪→ −DGMX GPU=OFF −DBUILD SHARED LIBS=OFF

$ make −j 8

After compilation of the executables, much of GROMACS operates as
normal. The only modification to normal usage is with the routine grompp,
when preparing ‘.tpr’ files for usage with mdrun. The configuration (‘.mdp’)
file supplied will contain the entry userstr1, which is used to refer to a
user constructed file (described below) containing the information about the
neutron potential. The value of userstr1 can be set to either the total or
relative path to the file. Do not include quotation marks around the file
name.

The contents of the file containing the neutron data should be in the
following format:

u 0 .125 50 .0
n 1 6649
p 10 .09 22 .14 0 .05
d 0 .0 0 .0 0 .0 0 .0 0 .0011 . . .

The first character of each line (u, n, p, d) are flags for the preprocessor
to recognize what is contained on that line. In the order shown, they are the
scaling factors of the potential (λ, k), the range of indices for atoms to be
forced (as found in the gro file), the parameters for the array describing the
z-axis (zmin, zmax, zstep), and the neutron density array. All the values shown
are tab delimited, but any white space should function properly. These are
properly scaled to the units of GROMACS (nm, kJ/mol, etc.).

After grompp is run, the neutron data is loaded as input into the ‘.tpr’
file and can be verified using the GROMACS program dump. Usage of
mdrun is unchanged and if the simulation is to be extended, using the
convert-tpr program supplied by these modifications will transfer the neu-
tron data to the new ‘.tpr’ file.
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A.1.2 List Of Variables

Variable Source Use
input rec GROMACS Stores Information From Starting Configuration
x GROMACS XYZ Position Vector For Atoms
v GROMACS XYZ Velocity Vector For Atoms
f GROMACS XYZ Force Vector For Atoms
userstr1 Modification MDP Option Indicating The File Containing Input Data
exp dens Modification Array Containing Experimental Density
sim dens Modification Array Containing Simulation Density (Used In Bias)
ens dens Modification Array Containing Simulation Density (Tracks Time Average)
pot indices Modification Bounds On Global Indices For Atoms To Be Forced
pot params Modification Start, Stop, And Step For Density Array
pot scale Modification Potential Scaling Factors
exp mean Modification First Moment Of Experimental Profile
second moment Modification Second Moment Of Experimental Profile
sim mean Modification First Moment Of Simulation Profile
num of states Modification Number Of States In Simulation Average
z bbox Modification Local Instance Of z-Axis Periodic Box Size

A.1.3 Files

List of Modified Files:

• source dir/src/gromacs/fileio/tpxio.c

• source dir/src/gromacs/gmxpreprocess/readir.c

• source dir/src/gromacs/mdlib/sim util.cpp

• source dir/src/gromacs/mdlib/stat.cpp

• source dir/src/gromacs/mdlib/broadcaststructs.cpp

• source dir/src/gromacs/mdlib/md support.cpp

• source dir/src/gromacs/gmxlib/txtdump.c

• source dir/src/gromacs/gmxlib/checkpoint.cpp

• source dir/src/gromacs/gmxlib/typedefs.c

81



• source dir/src/gromacs/legacyheaders/md support.h

• source dir/src/gromacs/legacyheaders/types/state.h

• source dir/src/gromacs/legacyheaders/types/inputrec.h

• source dir/src/gromacs/legacyheaders/sim util.h

• source dir/src/gromacs/domdec/domdec.cpp

• source dir/src/programs/mdrun/md.cpp

A.1.3.1 tpxio.c

This file is involved in the writing of the run submission files with extension
tpr (previously tpx). This is necessary for passing values (like experimen-
tal density) into the simulation. Changes were made within do inputrec
around line 1503.

1500 gmx_fio_do_real(fio , ir->userreal3);

1501 gmx_fio_do_real(fio , ir->userreal4);

1502
1503 gmx_fio_ndo_real(fio , ir ->pot_indices , 15); //Brad

1504 gmx_fio_ndo_real(fio , ir ->pot_params , 3); //Brad

1505 gmx_fio_ndo_real(fio , ir ->pot_scale , 2); //Brad

1506 gmx_fio_ndo_real(fio , ir ->exp_dens , 10000); //Brad

1507 gmx_fio_ndo_real(fio , ir ->exp_mean , 1); //Brad

1508 gmx_fio_do_double(fio , ir->z_bbox); //Brad

1509 gmx_fio_do_double(fio , ir->second_moment); //Brad

1510
1511 /* AdResS stuff */

1512 if (file_version >= 77)

1513 {

A.1.3.2 readir.c

This file includes the reading of the configuration file (mdp) in order to con-
struct the input record (input rec or ir). The main body of the modification
reads the input file containing the information pertaining to constructing
the potential and processes it into the variables in the input record. The
modified function is get ir, around line 2296.
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2293 CCTYPE ("User defined thingies");

2294 STYPE ("user1 -grps", is->user1 , NULL);

2295 STYPE ("user2 -grps", is->user2 , NULL);

2296 STYPE ("userstr1", is->userstr1 , NULL); //

Brad

2297 ITYPE ("userint1", ir->userint1 , 0);

2298 ITYPE ("userint2", ir->userint2 , 0);

2299 ITYPE ("userint3", ir->userint3 , 0);

2300 ITYPE ("userint4", ir->userint4 , 0);

2301 RTYPE ("userreal1", ir->userreal1 , 0);

2302 RTYPE ("userreal2", ir->userreal2 , 0);

2303 RTYPE ("userreal3", ir->userreal3 , 0);

2304 RTYPE ("userreal4", ir->userreal4 , 0);

2305 #undef CTYPE

2306
2307 // Brad defined file read

2308 //

2309 //

2310 FILE *stream;

2311 stream = fopen(is ->userstr1 ,"r");

2312 int line_len = 100000;

2313 char temp_str[line_len ];

2314 char indctr [1];

2315 int indices [2];

2316 double grid_params [3];

2317 float flt_tmp;

2318 int str_offset;

2319 int cnt;

2320 double shape_pot_scale = 1.0;

2321 double offset_pot_scale = 1.0;

2322
2323 fgets(temp_str ,line_len ,stream);

2324 // Get the first character , should be a flag (u,n,p,d). In

this case , u for the scaling factor.

2325 sscanf(temp_str ,"%s",indctr);

2326 if (strcmp(indctr ,"u")==0) {

2327 sscanf(temp_str , "%s%lf%lf", indctr , &

shape_pot_scale , &offset_pot_scale);

2328 fgets(temp_str ,line_len ,stream);

2329 }

2330 double shape_pot_scale_kt = 0.4* shape_pot_scale;

2331 (ir->pot_scale)[0] = shape_pot_scale;

2332 double offset_pot_scale_kt = 0.4* offset_pot_scale;

2333 (ir->pot_scale)[1] = offset_pot_scale;
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2334 fprintf(stderr , "\n\nThe scaling factor for the shape

potential is %.3g kJ/mol: %.3g kT-nm/mol at 300K.\n

",

2335 shape_pot_scale , shape_pot_scale_kt);

2336 fprintf(stderr , "\nThe spring constant for the offset

potential is %.3g kJ/mol -nm^2: %.3g kT/mol -nm^2 at

300K.\n",

2337 offset_pot_scale , offset_pot_scale_kt);

2338
2339 sscanf(temp_str ,"%s",indctr);

2340
2341 int ndx_pairs = 1;

2342 while(strcmp(indctr ,"n")==0) {

2343 sscanf(temp_str ,"%s%i%i",indctr ,& indices [0],&

indices [1]);

2344 (ir ->pot_indices)[2* ndx_pairs -1] = indices [0];

2345 (ir ->pot_indices)[2* ndx_pairs] = indices [1];

2346 fgets(temp_str ,line_len ,stream);

2347 sscanf(temp_str ,"%s",indctr);

2348 ndx_pairs += 1;

2349 }

2350 fprintf(stderr ,"\nThe number of molecules being forced

is %i.\n",ndx_pairs -1);

2351 if (ndx_pairs > 6)

2352 {

2353 fprintf(stderr ,"\nThere are too many molecules ,

only 5 density slots are allotted .\n");

2354 }

2355 (ir->pot_indices)[0] = (float) ndx_pairs -1;

2356
2357 sscanf(temp_str ,"%s%lf%lf%lf",indctr ,& grid_params [0],&

grid_params [1],& grid_params [2]);

2358 (ir->pot_params)[0] = grid_params [0];

2359 (ir->pot_params)[1] = grid_params [1];

2360 (ir->pot_params)[2] = grid_params [2];

2361 fprintf(stderr ,"\nThe potential runs from %.5 gnm to %.5

gnm in %.5gnm steps.\n",grid_params [0], grid_params

[1], grid_params [2]);

2362 int num_points = round( (grid_params [1] - grid_params

[0])/grid_params [2]+1 );

2363 fprintf(stderr ,"\nThe number of points in the density

array from parameter specification is %i.\n",

num_points);

2364
2365 fgets(temp_str ,line_len ,stream);
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2366 int neg_dens = 0;

2367
2368 sscanf(temp_str ,"%s%n",indctr ,& str_offset);

2369 memmove(temp_str , temp_str+str_offset ,line_len -

str_offset);

2370 memset(temp_str+line_len -str_offset ,’0’,str_offset);

2371 cnt = 0;

2372 while (sscanf(temp_str ,"%f%n" ,&flt_tmp ,& str_offset) >0)

{

2373 (ir ->exp_dens)[cnt] = flt_tmp;

2374 cnt +=1;

2375 if (flt_tmp < 0) {

2376 neg_dens = 1;

2377 }

2378 memmove(temp_str , temp_str+str_offset ,line_len -

str_offset);

2379 memset(temp_str+line_len -str_offset ,’0’,str_offset)

;

2380 }

2381 if (neg_dens ==1) {

2382 fprintf(stderr ,"\n\n\nCRITICAL ERROR: Densities

less than zero encountered! Density should be

greater than or equal to zero. Please make and

adjustment !\n\n\n");

2383 }

2384
2385 fprintf(stderr ,"\nThe number of points from reading the

experimental density is %i.\n",cnt);

2386 if (cnt != num_points) {

2387 fprintf(stderr ,"\n\n\nERROR: The number of points

in the density do not match the parameter

specification for the density , please make an

adjustment .\n");

2388 }

2389 fprintf(stderr ,"\n- Brad\n\n");

2390
2391 // Initialize rest of potential parameters

2392 real brad_sum = 0.0;

2393 int cnt2;

2394 for (cnt2 =0;cnt2 <cnt;cnt2 ++)

2395 {

2396 brad_sum += grid_params [2]*( grid_params [0]+ cnt2*

grid_params [2])*(ir->exp_dens)[cnt2];

2397 }

2398 (ir->exp_mean)[0] = brad_sum;
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2399
2400 for (cnt2 =0;cnt2 <5; cnt2 ++)

2401 {

2402 for (cnt=0;cnt <10000; cnt++)

2403 {

2404 (ir ->sim_dens)[cnt2][cnt] = 0.0;

2405 }

2406 (ir ->sim_mean)[cnt2] = 0.0;

2407 }

2408 (ir->z_bbox) = 0.0;

2409
2410 // Second Moment of Experimental Potential , used to

determine condition for inclusion in ensemble

2411 brad_sum = 0.0;

2412 for (cnt =0;cnt <10000; cnt++)

2413 {

2414 brad_sum += grid_params [2] * (ir->exp_dens)[cnt] *

pow(( grid_params [0]+ cnt*grid_params [2] - (ir ->

exp_mean)[0]), 2.0);

2415 }

2416 ir->second_moment = pow(brad_sum , 0.5);

2417 //

2418 //

2419 // Brad

A.1.3.3 sim util.cpp

This file contains the calculation of the bias force and its addition to the other
forces. The definition of the bias force is given by the function do user external force,
located between do force cutsGROUP and do force around line 1974.

1974 // Neutron derived forces - Brad

1975 //

1976 //

1977
1978 void do_user_external_force(rvec x[], rvec f[], real

indices[], real params[],

1979 real scale[], real exp_dens[],

real exp_mean[],

1980 real sim_dens [5][10000] , real

sim_mean[], double z_bbox ,

1981 double second_moment , t_mdatoms

*mdatoms , t_commrec *cr)

1982 {

1983 int ii , i, ndx_l , ndx_h , indx;
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1984 double offset , f_com , z;

1985
1986 int homenr = mdatoms ->homenr;

1987
1988 /* Loop over all pairs of indices:

1989 indices [0] is the number of molecules being forced.

1990 After indices [0], there are that many pairs of

integers in ’indices ’ containing the start

1991 and stop index in the .gro (or global index +1) for

each molecule */

1992 for (ii=0;(ii <(int) indices [0]);ii++)

1993 {

1994
1995 ndx_l = (int) indices [2*ii+1] - 1; // Set the

bounds of global index for forced atoms

1996 ndx_h = (int) indices [2*ii+2] - 1;

1997 offset = sim_mean[ii] - exp_mean [0]; // The offset

aligns the two densities for the potential

1998 if (abs(offset) < second_moment)

1999 {

2000 offset = 0.0; // If the offset is less than the

profile width , don’t apply an offset force

and take

2001 } // the experimental density in

its actual location , no offset.

2002 // f_com = -1.0* scale [1]* offset; // The force of

the offset , not scaled by system size.

Problematic

2003 f_com = -1.0* scale [1]* offset /(ndx_h -ndx_l +1); //

The force of the offset

2004
2005 for (i=0; i<homenr; i++)

2006 {

2007 if ((cr ->dd ->gatindex[i] >= ndx_l)&&(cr ->dd ->

gatindex[i] <= ndx_h))

2008 {

2009 z = x[i][2];

2010 // Check the pbc on the coordinate

2011 if (z < params [0])

2012 {

2013 z += z_bbox;

2014 }

2015 // Simulation density contribution

2016 indx = floor(( z - params [0] ) / params [2])

; // sim_dens index
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2017 f[i][2] += scale [0]*( sim_dens[ii][indx]-

sim_dens[ii][indx +1]) / params [2];

2018 // Experimental density contribution

2019 indx = floor(( z - offset - params [0] ) /

params [2]); // exp_dens index

2020 // Only try to access the exp density if

the index falls within the array

2021 if ( (indx >= 0) && (indx < (params [1]-

params [0])/params [2]) )

2022 {

2023 f[i][2] += -1.0* scale [0]*( exp_dens[indx

]-exp_dens[indx +1]) / params [2];

2024 }

2025
2026 // Offset force biasing toward experimental

mean

2027 f[i][2] += f_com;

2028 }

2029 }

2030 }

2031 }

2032
2033 //

2034 //

2035 //

Additionally, the neutron force protocol is called during the do force
routine. It is the very last line of this routine.

2098 // Brad - do external forcing

2099 do_user_external_force(x, f, inputrec ->pot_indices ,

2100 inputrec ->pot_params , inputrec ->pot_scale ,

2101 inputrec ->exp_dens , inputrec ->exp_mean ,

2102 inputrec ->sim_dens , inputrec ->sim_mean ,

2103 inputrec ->z_bbox , inputrec ->second_moment ,

2104 mdatoms , cr);

2105 // Brad

A.1.3.4 sim util.h

Header file for sim util.cpp, function insertion around line 85

85 //Brad

86 void BRAD_global_stat(gmx_global_stat_t gs , t_commrec *cr ,

87 t_inputrec *inputrec , t_state *state_local ,

88 t_mdatoms *mdatoms , t_state *state_global);
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89 //Brad

A.1.3.5 stat.cpp

This file defines an update to global parameters, e.g. the average simulation
density. It involves collecting the coordinates from the various mpi pro-
cesses and aggregating the data. The updater, which is a modification of
global stat is located around line 404.

404 // Brad

405 void BRAD_global_stat(gmx_global_stat_t gs , t_commrec *cr ,

406 t_inputrec *inputrec , t_state *state_local

,

407 t_mdatoms *mdatoms , t_state *state_global)

408 {

409 t_bin *rb;

410 rb = gs ->rb;

411
412 int isim_dens_temp = 0;

413 int homenr = mdatoms ->homenr;

414 int i=0, j=0;

415
416 // This routine copies all the data to be summed into

one big buffer

417 // using the t_bin struct.

418
419 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%//

420 // Calculate the local density //

421 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%//

422
423 // Obtain the global density parameters (nm)

424 double zmin = (inputrec ->pot_params)[0];

425 double zstep = (inputrec ->pot_params)[2];

426 double z_bbox = (state_local ->box)[2][2];

427 double second_moment = (inputrec ->second_moment);

428 double z, nrm , sum;

429 int z_low = 0, z_hi = 0;

430 int ndx_l , ndx_h , ii;

431 //int num_of_states = (state_local ->num_of_states);

432
433 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%//

434 // Update z-vector for bounding box //

435 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%//

436
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437 (inputrec ->z_bbox) = z_bbox;

438
439 /* Loop over all pairs of indices:

440 indices [0] is the number of molecules being forced.

441 After indices [0], there are that many pairs of

integers in ’indices ’ containing the start

442 and stop index in the .gro (or global index +1) for

each molecule */

443 for (ii = 0;ii < (int) (inputrec ->pot_indices)[0];ii++)

444 {

445 // printf ("\n\n\nloop=%i,node=%i\n\n\n", ii , cr ->

nodeid);

446 ndx_l = (int) (inputrec ->pot_indices)[2*ii+1] - 1;

// Set the bounds of global index for forced

atoms

447 ndx_h = (int) (inputrec ->pot_indices)[2*ii+2] - 1;

448 nrm = (ndx_h -ndx_l +1)*pow (2.0*M_PI ,0.5) *0.1; // #

of atoms * integral of single gaussian (sigma

= 0.1 nm) gives a unit area for full profile as

the norm

449
450
451 // Intialize the density variable

452 for (i=0; i <10000; i++)

453 {

454 (inputrec ->sim_dens_temp)[i] = 0.0;

455 }

456
457 // Add up contributions

458 for (i=0; i<homenr; i++)

459 {

460 if ((cr ->dd ->gatindex[i] >= ndx_l)&&(cr ->dd ->

gatindex[i] <= ndx_h))

461 {

462 z = (state_local ->x)[i][2];

463 // If the z-value is smaller than the

minimum in the potential , add the z-

value of the bounding box

464 // otherwise , the index for the array

could compute to be negative. Only

works for rectangular pbc.

465 if (z<zmin)

466 {

467 z += z_bbox;

468 }
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469 // The contribution comes from z +/- 3

sigma

470 z_low = floor( ( z-0.3 - zmin ) / zstep );

471 z_hi = floor( ( z+0.3 - zmin ) / zstep );

472
473 for(j=z_low;(j<z_hi);j++) // Add in all the

contribuitons to the density between

+/- 3 sigma

474 {

475 (inputrec ->sim_dens_temp)[j] += exp

( -0.5*pow( z-(zmin + zstep*j) ,2)

/0.01)/nrm; // sigma **2 = 0.01 nm

**2

476 }

477 }

478 }

479
480 // %%%%%%%%%%%%%%%%%%%%//

481 // Sum over the nodes //

482 // %%%%%%%%%%%%%%%%%%%%//

483
484 isim_dens_temp = add_binr(rb , 10000, inputrec ->

sim_dens_temp);

485 where();

486
487 sum_bin(rb , cr);

488 where();

489
490 extract_binr(rb , isim_dens_temp , 10000, inputrec ->

sim_dens_temp);

491 where();

492
493 // %%%%%%%%%%%%%%%%%%%%//

494 // Calculate the mean //

495 // %%%%%%%%%%%%%%%%%%%%//

496
497 sum = 0.0;

498 for (i=0;i <10000;i++)

499 {

500 z = zmin + zstep*i;

501 sum += zstep*z*(inputrec ->sim_dens_temp)[i];

502 }

503 (inputrec ->sim_mean)[ii] = sum;

504
505 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%//
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506 // Set The Simulation Density //

507 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%//

508
509 // If the offset < the width of the profile , update

the ensemble

510 if ( std::abs( (inputrec ->sim_mean)[ii] - (inputrec

->exp_mean)[0] ) < second_moment)

511 //if (0.0 == 0.0)

512 {

513 for (i=0; i <10000; i++)

514 {

515 //(state_local ->ens_dens)[i] = (

num_of_states *(inputrec ->ens_dens)[i] +

(inputrec ->sim_dens_temp)[i]) / (

num_of_states + 1); // The local

ens_dens has not been allocated in

memory !!!!!

516 (state_global ->ens_dens)[i] = ((

state_global ->num_of_states)*(

state_global ->ens_dens)[i] + (inputrec

->sim_dens_temp)[i]) / (( state_global ->

num_of_states) + 1);

517 (inputrec ->sim_dens)[ii][i] = (state_global

->ens_dens)[i];

518 }

519 // num_of_states += 1;

520 (state_global ->num_of_states) += 1;

521 (state_local ->num_of_states) += 1;

522 }

523 else

524 {

525 for (i=0; i <10000; i++)

526 {

527 (inputrec ->sim_dens)[ii][i] = (inputrec ->

sim_dens_temp)[i];

528 }

529 }

530 }

531 }

532 // Brad
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A.1.3.6 broadcaststructs.cpp

This file is involved in spreading out the computation among the nodes.
Changes were made within bcast state around line 254. The added line
sends the size of structures to the non-master node, in order to allocate
space, but doesn’t send the data itself.

237 void bcast_state(const t_commrec *cr , t_state *state)

238 {

239 int i, nnht , nnhtp;

240 gmx_bool bAlloc;

241
242 if (!PAR(cr) || (cr ->nnodes - cr ->npmenodes <= 1))

243 {

244 return;

245 }

246
247 /* Broadcasts the state sizes and flags from the master

to all nodes

248 * in cr ->mpi_comm_mygroup. The arrays are not

broadcasted. */

249 block_bc(cr, state ->natoms);

250 block_bc(cr, state ->ngtc);

251 block_bc(cr, state ->nnhpres);

252 block_bc(cr, state ->nhchainlength);

253 block_bc(cr, state ->flags);

254 block_bc(cr, state ->num_of_states); // Brad

A.1.3.7 md support.cpp

The first modification to this file includes a routine that prepares the nodes
for a collective computation and then calls the averaging protocol BRAD global stat.
This modification is inserted at around line 432.

432 //Brad

433 void BRAD_compute_globals(FILE *fplog , gmx_global_stat_t

gstat , t_commrec *cr , t_inputrec *ir ,

434 t_forcerec *fr, gmx_ekindata_t *ekind ,

435 t_state *state , t_state *state_global ,

t_mdatoms *mdatoms ,

436 t_nrnb *nrnb , t_vcm *vcm ,

gmx_wallcycle_t wcycle ,

437 gmx_enerdata_t *enerd , tensor

force_vir , tensor shake_vir ,

tensor total_vir ,
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438 tensor pres , rvec mu_tot , gmx_constr_t

constr ,

439 struct gmx_signalling_t *gs , gmx_bool

bInterSimGS ,

440 matrix box , gmx_mtop_t *top_global ,

441 gmx_bool *bSumEkinhOld , int flags)

442 {

443
444 gmx::ArrayRef <real > signalBuffer = prepareSignalBuffer(

gs);

445 if (PAR(cr))

446 {

447 wallcycle_start(wcycle , ewcMoveE);

448 BRAD_global_stat(gstat , cr , ir , state , mdatoms ,

state_global);

449 wallcycle_stop(wcycle , ewcMoveE);

450 }

451 handleSignals(gs, cr, bInterSimGS);

452
453 }

454 //Brad

The other modification is located in set state entries, involved in the
setting of space allocation and flags in the state structure. The modification
is made near line 755.

743 if (state ->x == NULL)

744 {

745 snew(state ->x, state ->nalloc);

746 }

747 if (EI_DYNAMICS(ir ->eI))

748 {

749 state ->flags |= (1<<estV);

750 if (state ->v == NULL)

751 {

752 snew(state ->v, state ->nalloc);

753 }

754 }

755 // Brad

756 state ->flags |= (1<< estnum_of_states);

757 state ->flags |= (1<<estens_dens);

758 if (state ->ens_dens == NULL)

759 {

760 snew(state ->ens_dens , 10000);

761 }

762 // Brad
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A.1.3.8 md support.h

Header file for md support.cpp, statement inserted at the end of the file.

124 //Brad

125 void BRAD_compute_globals(FILE *fplog ,

126 gmx_global_stat_t gstat , t_commrec *cr, t_inputrec *ir,

127 t_forcerec *fr, gmx_ekindata_t *ekind ,

128 t_state *state , t_state *state_global ,

129 t_mdatoms *mdatoms , t_nrnb *nrnb , t_vcm *vcm ,

130 gmx_wallcycle_t wcycle , gmx_enerdata_t *enerd ,

131 tensor force_vir , tensor shake_vir , tensor total_vir ,

132 tensor pres , rvec mu_tot , gmx_constr_t constr ,

133 struct gmx_signalling_t *gs , gmx_bool bInterSimGS ,

134 matrix box , gmx_mtop_t *top_global ,

135 gmx_bool *bSumEkinhOld , int flags);

136 //Brad

A.1.3.9 txtdump.c

This file is responsible for the GROMACS program dump, which outputs
the contents of certain files into readable formats. The modification comes
in the routine pr inputrec, around line 1130.

1130 //Brad

1131 pr_reals_of_dim(fp, indent , "pot_indices", ir->

pot_indices , 15, 1);

1132 pr_reals_of_dim(fp, indent , "pot_params", ir->

pot_params , 3, 1);

1133 pr_reals_of_dim(fp, indent , "pot_scale", ir->

pot_scale , 2, 1);

1134 pr_reals_of_dim(fp, indent , "exp_dens", ir->

exp_dens , 10000, 1);

1135 pr_reals_of_dim(fp, indent , "exp_mean", ir->

exp_mean , 1, 1);

1136 pr_double(fp, indent , "z_bbox", ir->z_bbox);

1137 pr_double(fp, indent , "second_moment", ir->

second_moment);

1138 //Brad

A.1.3.10 checkpoint.cpp

This file is involved in the checkpointing of the simulation, for restart. The
first modification is to a list of names to be printed in the checkpoint, adding
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the number of states and ensemble density (time averaged density) at
line 101.

96 const char *est_names[estNR] =

97 {

98 "FE-lambda",

99 "box", "box -rel", "box -v", "pres_prev",

100 "nosehoover -xi", "thermostat -integral",

101 "x", "v","number of states in ensemble", "ensemble

density", "SDx", "CGp", "LD -rng", "LD -rng -i",//

Brad

102 "disre_initf", "disre_rm3tav",

103 "orire_initf", "orire_Dtav",

104 "svir_prev", "nosehoover -vxi", "v_eta", "vol0", "

nhpres_xi", "nhpres_vxi", "fvir_prev", "fep_state",

"MC -rng", "MC-rng -i"

105 };

The other modification includes the calls to the routines that write the
data into the checkpoint file, within do cpt state.

986 case estX: ret = do_cpte_rvecs(

xd , cptpEST , i, sflags , state ->natoms ,

&state ->x, list); break;

987 case estV: ret = do_cpte_rvecs(

xd , cptpEST , i, sflags , state ->natoms ,

&state ->v, list); break;

988 case estnum_of_states: ret =do_cpte_int(xd ,

cptpEST , i, sflags , &state ->

num_of_states , list); break; // Brad

989 case estens_dens: ret = do_cpte_doubles

(xd , cptpEST , i, sflags ,10000 , &state ->

ens_dens , list); break;// Brad

990 case estSDX: ret = do_cpte_rvecs(

xd , cptpEST , i, sflags , state ->natoms ,

&state ->sd_X , list); break;

A.1.3.11 typedefs.c

This file contains the initialization of the state variable. Modifications were
made to the routine init state. If the simulation density array is initially
allocated the incorrect length of memory, it must be set to null for the GRO-
MACS allocation routine to work properly.

328 if (state ->nalloc > 0)
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329 {

330 snew(state ->x, state ->nalloc);

331 snew(state ->v, state ->nalloc);

332 }

333 else

334 {

335 state ->x = NULL;

336 state ->v = NULL;

337 }

338 state ->sd_X = NULL;

339 state ->cg_p = NULL;

340 zero_history (&state ->hist);

341 zero_ekinstate (&state ->ekinstate);

342 init_energyhistory (&state ->enerhist);

343 init_df_history (&state ->dfhist , nlambda);

344 init_swapstate (&state ->swapstate);

345 state ->ddp_count = 0;

346 state ->ddp_count_cg_gl = 0;

347 state ->cg_gl = NULL;

348 state ->cg_gl_nalloc = 0;

349 // Brad

350 if (sizeof(state ->ens_dens)/sizeof(state ->ens_dens [0])

!= 10000)

351 {

352 state ->ens_dens = NULL;

353 }

354 // Brad

A.1.3.12 state.h

File defining the structure t state. The first modification is to add flags
for the new variables in the structure, around line 62. The added flags are
estnum of states and estens dens.

59 enum {

60 estLAMBDA ,

61 estBOX , estBOX_REL , estBOXV , estPRES_PREV , estNH_XI ,

estTC_INT ,

62 estX , estV , estnum_of_states , estens_dens , estSDX ,

estCGP , estLD_RNG , estLD_RNGI , //Brad

63 estDISRE_INITF , estDISRE_RM3TAV ,

64 estORIRE_INITF , estORIRE_DTAV ,

65 estSVIR_PREV , estNH_VXI , estVETA , estVOL0 , estNHPRES_XI

, estNHPRES_VXI , estFVIR_PREV ,

66 estFEPSTATE , estMC_RNG , estMC_RNGI ,
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67 estNR

68 };

Additionally, added to the end of the definition of t state are the num-
ber of states variable and the array tracking the simulation density average,
around line 260.

254 int ddp_count; /* The DD partitioning count for

this state */

255 int ddp_count_cg_gl; /* The DD part. count for index_gl

*/

256 int ncg_gl; /* The number of local charge

groups */

257 int *cg_gl; /* The global cg number of the

local cgs */

258 int cg_gl_nalloc; /* Allocation size of cg_gl;

*/

259
260 int num_of_states; /* Brad - number of states in time

average */

261 double *ens_dens; /* Brad - time average of densities */

A.1.3.13 inputrec.h

File defining the structure t inputrec. To the end of the structure were
added input parameters associated with the potential, around line 440.

440 //Brad

441 real pot_indices [15];

442 real pot_params [3];

443 real pot_scale [2];

444 real exp_dens [10000];

445 real exp_mean [1];

446 real sim_dens [5][10000];

447 real sim_dens_temp [10000];

448 real sim_mean [5];

449 double z_bbox;

450 double second_moment;

451 //Brad

A.1.3.14 domdec.cpp

This file deals with the decomposition of the simulation box into domains
and assigning atoms to them. The first modification is in dd collect state.
Since there are no local copies of the added variables, they can be ignored.
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1647 case estSDX:

1648 dd_collect_vec(dd , state_local , state_local ->sd_X ,

state ->sd_X);

1649 break;

1650 case estCGP:

1651 dd_collect_vec(dd , state_local , state_local ->cg_p ,

state ->cg_p);

1652 break;

1653 case estnum_of_states: //Brad

1654 case estens_dens: //Brad

1655 case estDISRE_INITF:

1656 case estDISRE_RM3TAV:

1657 case estORIRE_INITF:

1658 case estORIRE_DTAV:

1659 break;

The next function of interest is dd realloc state, where the same mod-
ifications are made.

1690 case estSDX:

1691 srenew(state ->sd_X , state ->nalloc);

1692 break;

1693 case estCGP:

1694 srenew(state ->cg_p , state ->nalloc);

1695 break;

1696 case estnum_of_states: //Brad

1697 case estens_dens: //Brad

1698 case estDISRE_INITF:

1699 case estDISRE_RM3TAV:

1700 case estORIRE_INITF:

1701 case estORIRE_DTAV:

1702 /* No reallocation required */

1703 break;

Now, in the function dd distribute state:

1952 case estCGP:

1953 dd_distribute_vec(dd, cgs , state ->cg_p , state_local

->cg_p);

1954 break;

1955 case estnum_of_states: //Brad

1956 case estens_dens: //Brad

Function dd redistribute cg:

4722 case estSDX: bSDX = (state ->flags & (1<<i)); break;

4723 case estCGP: bCGP = (state ->flags & (1<<i)); break;

4724 case estnum_of_states: //Brad
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4725 case estens_dens: //Brad

Function dd sort stae:

9274 case estSDX:

9275 order_vec_atom(dd ->ncg_home , cgindex , cgsort ,

state ->sd_X , vbuf);

9276 break;

9277 case estCGP:

9278 order_vec_atom(dd ->ncg_home , cgindex , cgsort ,

state ->cg_p , vbuf);

9279 break;

9280 case estnum_of_states: //Brad

9281 case estens_dens: //Brad

A.1.3.15 md.cpp

This is the toplevel of the mdrun program. Just before the force call, the
simulation density average is updated (currently hardcoded at 50 steps).

1068 // Brad

1069 if ((step %50) ==0)

1070 {

1071 BRAD_compute_globals(fplog , gstat , cr , ir ,

fr , ekind , state , state_global , mdatoms

, nrnb , vcm ,

1072 NULL , enerd , force_vir , shake_vir ,

total_vir , pres , mu_tot ,

1073 constr , NULL , FALSE , state ->box ,

1074 top_global , &bSumEkinhOld ,

cglo_flags);

1075 }

1076 // Brad
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A.2 Python

A.2.1 Class Structure

Density Profile

Protein From PXP (Derived Class)

Protein From Configuration (Derived Class)

Protein From Simulation (Derived Class)

Bilayer Profile (Derived Class)

Density Profile.convert units()

Protein From PXP

Protein From PXP()

Protein From PXP.import pxp file()

Protein From Configuration

Protein From Configuration()

Protein From Configuration.import configuration file()

Protein From Simulation

Protein From Simulation()

Protein From Simulation.calculate simulation density()

Protein From Simulation.import simulation density from atom

selection()

Protein From Simulation.import simulation density from trajectory()

Protein From Simulation.average density over trajectory()

Bilayer Profile

Bilayer From PXP (Derived Class)

Bilayer From Simulation (Derived Class)

Bilayer From PXP
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Bilayer From PXP()

Bilayer From PXP.import pxp file()

Bilayer From Simulation

Bilayer From Simulation()

Bilayer From Simulation.calculate simulation density()

Bilayer From Simulation.import simulation density from universe()

Bilayer From Simulation.import simulation density from trajectory()

Helper Functions And Associated Classes

Profile Comparison

compare simulation to reference()

write configuration file()

Plotting

Plot Densities()

A.2.2 Module Description

Density Profile
Toplevel class with three derived classes. During normal operations, there
should be no need to construct an instance of this class, only its derived
classes. Density Profile has one function that is inherited by the derived
classes.

Density Profile.convert units (length scale factor, new units)
Scales length dependent parameters of the class.
Parameters:

length scale factor: float
The multiplicative factor that takes the current units to the new units.
For example, if the units prior to conversion are nm and after conver-
sion the new units are to be Å, then the proper factor is 10.

new units: character string
Units after conversion. Throughout the code Angstroms are repre-
sented by A and nanometers are represented by nm.
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Protein From PXP
Derived class of Protein Profile representing a protein profile taken from
the output of a fit to the neutron scattering data.

Protein From PXP (PXP File=None, data column title = ‘median area’,
msigma column title = ‘msigma’, psigma column title = ‘psigma’, units =
‘A’ )
Instantiation of the class. If a file name is supplied, the data will be read
into the class using Protein From PXP.import pxp file().
Parameters:

PXP File: character string, optional
Name of file containing relevant fit data.

data column title: character string, optional
Name for the column representing the protein profile in data file.

msigma column title: character string, optional
Name for the column representing the lower bound of the confidence
interval in the data file.

psigma column title: character string, optional
Name for the column representing the upper bound of the confidence
interval in the data file.

units: character string, optional
Length units used in data file.

Returns: The instance of the class constructed.
Sets:

Protein From PXP.filename=filename (if supplied)
Protein From PXP.data column title=data column title
Protein From PXP.msigma column title=msigma column title
Protein From PXP.psigma column title=psigma column title
Protein From PXP.units=units

Protein From PXP.import pxp file (filename=None, data column title=None,
msigma column title=None, psigma column title=None, units=’A’,
include confidence=True)

Imports data from the neutron fit file, defaulting to the class variables where
necessary if arguments are not supplied (see class instantiation). If arguments
are supplied, the class variables are overwritten.
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Parameters:
PXP File: character string, optional

Name of file containing relevant fit data.
data column title: character string, optional

Name for the column representing the protein profile in data file.
msigma column title: character string, optional

Name for the column representing the lower bound of the confidence
interval in the data file.

psigma column title: character string, optional
Name for the column representing the upper bound of the confidence
interval in the data file.

units: character string, optional
Length units used in data file.

include confidence: boolean, optional
Indicates whether or not to import the confidence intervals.

Sets:
Protein From PXP.zmin: float

Start of the z-axis.
Protein From PXP.zmax: float

End of the z-axis.
Protein From PXP.zstep: float

Interval between points along the z-axis.
Protein From PXP.density: numpy array

Protein median profile.
Protein From PXP.msigma: numpy array

Lower bound of confidence interval at each point.
Protein From PXP.psigma: numpy array

Upper bound of confidence interval at each point.
Protein From PXP.norm: float

Integrated area under median profile. The profile and confidence
bounds are normalized using this area so, to reconstruct the data in
the file, the must be scaled by this number.

Protein From PXP.mean: float
Center, µ(1), of the median profile.

Protein From PXP.second moment: float
Width, µ(2), of the median profile.
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Protein From Configuration
Derived class of Protein Profile representing a protein profile taken from
the configuration file supplied to GROMACS to import the neutron data and
potential parameters.

Protein From Configuration (configuration file = None, units = ‘nm’ )
Instantiation of the class. If a filename is supplied, the configuration file is
read using Protein From Configuration.import configuration file()
Parameters:

configuration file: character string, optional
Configuration file name.

units: character string, optional
Units of length used in configuration file, should be nm since these
are the units GROMACS uses.

Returns: Class instance.
Sets:

Protein From Configuration.filename = configuration file
Protein From Configuration.units = units

Protein From Configuration.import configuration file (filename = None,
units = ‘nm’ )
Imports data from the configuration file, defaulting to the class variables
where necessary if arguments are not supplied. If arguments are supplied,
the class variables are overwritten.
Parameters:

configuration file: character string, optional
Configuration file name.

units: character string, optional
Units of length used in configuration file, should be nm since these
are the units GROMACS uses.

Sets:
Protein From Configuration.atom groups: numpy array (n×2)

Each of the n pairs is a set of indices for a range of indices, correspond-
ing to what atoms should be forced during simulation. An (n×2) array
was chosen to start building functionality for forcing multiple sets of
atoms. This has not been implemented yet.
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Protein From Configuration.potential scaling: numpy array
Contains two floats corresponding to the scaling factors, λ and k, of
the potential.

Protein From Configuration.zmin: float
Start of the z-axis.

Protein From Configuration.zmax: float
End of the z-axis.

Protein From Configuration.zstep: float
Interval between points along the z-axis.

Protein From Configuration.density: numpy array
Protein profile to be used as experimental target in biasing.

Protein From Configuration.norm: float
Area of the density profile. If it is not 1, the configuration file is
incorrect.

Protein From Configuration.units: character string
Protein From Configuration.mean: float

Center, µ(1), of the profile.
Protein From Configuration.second moment: float

Width, µ(2), of the profile.
Protein From Configuration.radii: numpy array

Radii of the atoms used in calculating their individual volume contri-
bution to simulation densities. Default is for every atom to be set to
1Å. Still in testing.

Protein From Configuration.volume: float
Sum of the cubed radii. If scaled by 4π/3, representative of the total
protein volume if each atom had the radius in Proten From Configuration.radii.
Used in calculating the normalization in simulation densities.
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Protein From Simulation
Derived class of Protein Profile representing a protein profile calculated
from a simulation trajectory. The class can be supplied with an instance of
Protein From Configuration to use as a reference, both to define the z-axis
of the density and to later use in calculating differences between the profiles.

Protein From Simulation (structure file = None, trajectory file = None,
atomselection = None, reference profile from configuration = None, units =
‘A’ )
Instantiation of the class. The trajectory is not automatically imported for
calculation of density.
Parameters:

structure file: character string, optional
Structre file for simulation. (‘.gro’)

trajectory file: character string, optional
Trajectory file for simulation. (‘.trr’, ‘.xtc’)

atomselection: MDAnalysis.core.groups.AtomGroup, optional
Instead of reading in a trajectory, the densities can be calculated using
this supplied selection of atoms from the desired trajectories.

reference profile from configuration: Protein From Configuration,
optional

A reference profile that enables automated selection of certain param-
eters for the density, to provide consistency with the supplied config-
uration file.

units: character string
MDAnalysis uses Angstroms by default. It converts from the native
nanometer units used in GROMACS.

Returns: Class instance.
Sets:

Protein From Simulation.structure file = structure file
Protein From Simulation.trajectory file = trajectory file
Protein From Simulation.atomselection = atomselection
Protein From Simulation.reference profile

= reference profile from configuration
Protein From Simulation.units = units
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Protein From Simulation.calculate simulation density ()
Calculates the density from simulation at everypoint in the trajectory referred
to by class variables. The range of the z-axis for the density and other param-
eters necessary to construct the density are determined by the values of the
class variables. If all the proper class variables are not set before calling this
method, it is recomended that import simulation density from atom selection
or import simulation density from trajectory be used instead, since they call
this method as a subroutine.
Sets:

Protein From Simulation.density trajectory:
list of numpy arrays

Each element is the density profile at the corresponding time step in
Protein From Simulation.frames

Protein From Simulation.tracking of mean: list of floats
Center, µ(1), of each profile in Protein From Simulation.density trajectory

Protein From Simulation.tracking of second moment: list of floats
Width, µ(2), of each profile in Protein From Simulation.density trajectory

Protein From Simulation.density: numpy array
Average density profile density over frames examined.

Protein From Simulation.mean: float
Center, µ(1), of Protein From Simulation.density

Protein From Simulation.second moment: float
Width, µ(2), of Protein From Simulation.density

Protein From Simulation.import simulation density from atom selection
( atomselection = None, frames = None, reference profile from configuration
= None, units = ‘A’ )
Uses an MDAnalysis selection of atoms to construct the density over the
course of an MD trajectory. Calls method Protein From Simulation.calcu-
late simulation density()
Parameters:

atomselection: MDAnalysis.core.groups.AtomGroup, optional
Group of atoms from which to calculate density. This can also be set
via Protein From Simulation.atomselection

frames: list of integers, optional
This specifies which frames in the trajectory associated with atomse-
lection to use when examining the density. If not supplied and not set
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in Protein From Simulation.frames, the method will prompt the user
to enter a list of frames.

reference profile from configuration: Protein From Configuration,
optional

A reference profile that enables automated selection of certain param-
eters for the density, to provide consistency with the supplied configu-
ration file. If none is provided or stored in Protein From Simulation.-
reference profile, some properties of the density will be requested of
the user via prompt.

units: character string, optional
MDAnalysis default is ‘A’ (Angstroms).

Protein From Simulation.import simulation density from trajectory
( structure file = None, trajectory file = None, frames = None,
reference profile from configuration = None, units = ‘A’ )
Constructs the density of a set of atoms from an MD trajectory. Calls method
Protein From Simulation.calculate simulation density()
Parameters:

structure file: character string, optional
MD structure file (‘.gro’). If not provided or set in Protein From Simulation.structure file,
a prompt will ask for it as input.

trajectory file: character string, optional
MD trajectory file (‘.trr’, ‘.xtc’). If not provided or set in Pro-

tein From Simulation.trajectory file, a prompt will ask for it as input.
frames: list of integers, optional

This specifies which frames in the trajectory associated with atomse-
lection to use when examining the density. If not supplied and not set
in Protein From Simulation.frames, the method will prompt the user
to enter a list of frames.

reference profile from configuration: Protein From Configuration,
optional

A reference profile that enables automated selection of certain param-
eters for the density, to provide consistency with the supplied configu-
ration file. If none is provided or stored in Protein From Simulation.-
reference profile, some properties of the density will be requested of
the user via prompt.

units: character string, optional
MDAnalysis default is ‘A’ (Angstroms).
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Protein From Simulation.average density over trajectory (frame subset
= None)
Averages the density trajectory contained in Protein From Simulation.density trajectory
over the subset of its frames. For example, one might wish to only start track-
ing the density after a certain equilibration time.
Parameters:

frame subset: list of integers, optional
This specifies what frames to average over. The indices provided are
relative to Protein From Simulation.density trajectory, not the MD
trajectory file. For example, if Protein From Simulation.density trajectory
= [25, 26, 27, 28, ...] and frame subset = [2,3,4, ...], then the frames
of the MD trajectory that are used to average start at 27. The default
is to use all the frames in Protein From Simulation.density trajectory.

Sets:
Protein From Simulation.frame subset = frame subset
Protein From Simulation.density
Protein From Simulation.mean
Protein From Simulation.second moment
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Bilayer Profile
Derived class of Density Profile, parent class for bilayer profiles from dif-
ferent sources.

Bilayer Profile ()
Instantiation of the class. Constructs dictionary for picking out different
subgroups of various lipids.
Sets:

lipid groups dictionary: dictionary
A dictionary for lipids with entries that are dictionaries themselves
for subgroups (heads, tails, methyls) that tell which atoms in each
molecule belong to the various subgroups. Based on CHARMM force-
field for GROMACS.

Bilayer From PXP
Derived class of Bilayer Profile representing a bilayer profile taken from
the output of a fit to the neutron scattering data.

Bilayer From PXP (filename=None, protein column title = ‘median area’,
group dictionary = {}, units = ‘A’, create dictionary interactively = False)
Instantiation of the class. If a file name is supplied, the data will be read
into the class using Protein From PXP.import pxp file().
Parameters:

filename: character string, optional
Name of file containing relevant fit data.

protein column title: character string, optional
Name for the column representing the protein profile in data file.

group dictionary: dictionary, optional
Dictionary of subgroups that indicates which column names in the
data file correspond to that particular subgroup. This can be defined
interactively when importing the data.

units: character string, optional
Length units used in data file.

create dictionary interactively: boolean, optional
Whether or not to define group dictionary using a rudimentary inter-
face that can indicate what columns exist in the file.

Returns: The instance of the class constructed.
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Sets:
Bilayer From PXP.filename=filename (if supplied)
Bilayer From PXP.protein column title=protein column title
Bilayer From PXP.group dictionary=group dictionary
Bilayer From PXP.units=units

Bilayer From PXP.import pxp file (filename=None,
protein column title=None, group dictionary=None, units=’A’,
create group dictionary interactively=False)

Imports data from the neutron fit file, defaulting to the class variables where
necessary if arguments are not supplied (see class instantiation). If arguments
are supplied, the class variables are overwritten.
Parameters:

filename: character string, optional
Name of file containing relevant fit data.

protein column title: character string, optional
Name for the column representing the protein profile in data file.

group dictionary: dictionary, optional
Dictionary of subgroups that indicates which column names in the
data file correspond to that particular subgroup. This can be defined
interactively when importing the data.

units: character string, optional
Length units used in data file.

create dictionary interactively: boolean, optional
Whether or not to define group dictionary using a rudimentary inter-
face that can indicate what columns exist in the file.

Sets:
Any supplied parameters.
Bilayer From PXP.zmin: float

Start of the z-axis.
Bilayer From PXP.zmax: float

End of the z-axis.
Bilayer From PXP.zstep: float

Interval between points along the z-axis.
Bilayer From PXP.density dictionary: dictionary referencing

numpy arrays
Dictionary matching subgroups to their density profiles.
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Bilayer From PXP.protein norm: float
Area of protein median profile. This permits relative normalization
when plotting bilayer and normalized protein together.

Bilayer From PXP.bilayer center: float
Center, µ(1), of the ‘tails’ subgroup’s profile. This may be slightly
different from the bilayer center if the upper and lower leaflet tail
distributions are not fully symmetric.

Bilayer From Simulation
Derived class of Bilayer Profile representing a bilayer profile taken from
an MD simulation.

Bilayer From Simulation (structure file = None, trajectory file = None,
universe = None, frames = None, lipid resname dictionary = {‘CHOL’:‘CHL1’,
‘DOPC’:‘DOPC’, ‘DOPS’:‘DOPS’})
Instantiation of the class.
Parameters:

structure file: character string, optional
Name of simulation structure file (‘.gro’).

trajectory file: character string, optional
Name of simulation trajectory file (‘.trr’).

universe: MDAnalysis.core.universe, optional
An alternative to the simulation structure file and trajectory file, the
universe obtained by loading them using MDAnalysis.

frames: list of integers, optional
What frames in the trajectory to use.

lipid resname dictionary: dictionary, optional
Dictionary connecting the molecule names in lipid groups dictionary
to the residue names in the MD files.

Returns: An instance of the class constructed.
Sets:

Bilayer From Simulation.structure file = structure file
Bilayer From Simulation.trajectory file = trajectory file
Bilayer From Simulation.universe = universe
Bilayer From Simulation.frames = frames
Bilayer From Simulation.resname dict = lipid resname dictionary

Bilayer From Simulation.calculate simulation density (
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bilayer selection dictionary, frames)
Calculates the average bilayer density over the frames supplied, using bi-
layer selection dictionary to ascribe atom selections to each subgroup of the
bilayer for which density is to be calculated.
Parameters:

bilayer selection dictionary: dictionary
The keys are the subgroups of the bilayer (‘heads’, ‘tails’, ‘methyls’ )
and the values are atom selections for the MD universe that corre-
sponds to those subgroups.

frames: list of integers
What frames in the trajectory to use in calculating the average profile.

Sets:
Bilayer From Simulation.density dictionary: dictionary

A dictionary that has the same keys as bilayer selection dictionary
and values that are the profiles for the respective keys, in the form of
numpy arrays.

Bilayer From Simulation.total density norm float
Total area under bilayer profile.

Bilayer From Simulation.bilayer center float
Center, µ(1), of the total profile (all components included).

Bilayer From Simulation.bilayer atomgroup dictionary dictio-
nary
Copy of bilayer selection dictionary for reference.

Bilayer From Simulation.frames list of integers
List of frames analyzed.

Bilayer From Simulation.import simulation density from universe (uni-
verse = None, frames = None, lipid resname dictionary = None) Takes an
MDAnalysis universe containing a bilayer and calls Bilayer From Simulation.
calculate simulation density() to calculate its density. Will use class at-
tributes if no arguments are supplied.
Parameters:

universe: MDAnalysis.core.universe, optional
An alternative to the simulation structure file and trajectory file, the
universe obtained by loading them using MDAnalysis.

frames: list of integers, optional
What frames in the trajectory to use.
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lipid resname dictionary: dictionary, optional
Dictionary connecting the molecule names in lipid groups dictionary
to the residue names in the MD files.

Sets:
Bilayer From Simulation.structure file: character string

Structure file associated with the universe supplied.
Bilayer From Simulation.trajectory file: character string

Trajectory file associated with the universe supplied.
Bilayer From Simulation.zmin: Start of the z-axis.

Bilayer From Simulation.zmax: float
End of the z-axis.

Bilayer From Simulation.zstep: float
Interval between points along the z-axis.

Bilayer From Simulation.import simulation density from trajectory
(structure file = None, trajectory file = None, frames = None,
lipid resname dictionary = None)
Imports a trajectory from the supplied files into an MDAnalysis universe and
calls Bilayer From Simulation.import simulation density from universe() to
calculate its bilayer density. Will use class attributes if no arguments are
supplied.
Parameters:

structure file: character string, optional
Name of simulation structure file (‘.gro’).

trajectory file: character string, optional
Name of simulation trajectory file (‘.trr’).

frames: list of integers, optional
What frames in the trajectory to use.

lipid resname dictionary: dictionary, optional
Dictionary connecting the molecule names in lipid groups dictionary
to the residue names in the MD files.
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Plotting (plotting.py)

Plot Densities (List of Profiles, bilayer color dictionary = {})
Plots a group of density profiles.
Parameters:

List of Profiles: list of Density Profiles or derived classes
The profiles to be plotted.

bilayer color dictionary: dictionary, optional
The keys of the dictionary are the keys to density dictionary for any
bilayers in the list of profiles. The values of the dictionary are color
specifications for matplotlib to use when plotting the associated den-
sity.

Returns:
ax: matplotlib.axes. subplots.AxesSubplot

The axis containing the plot.
plot data: list

This list contains each matplotlib.lines.Line2D instance created when
a profile is plotted without confidence intervals and each matplotlib.
collections.PolyCollection instance created when a profile is plotted
with error bars.
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Helper Functions and Associated Classes (functions.py)
class: Profile Comparison
Class Attributes:

rmsd inst: numpy array
Root mean square difference for individual frames in trajectory.

rmsd avg: numpy array
Root mean square difference for average of all frames prior to current.

compare simulation to reference (Simulation Profile, Reference Profile
= None, Subset Of Frames To Look At = None)
Calculates the root mean square differnce between a simulation profile and
a reference profile. The average is over the z-axis.
Parameters:

Simulation Profile: Protein From Simulation
Simulation profile to be compared.

Reference Profile: Protein From Configuration, optional
Profile to be compared against the simulation. Reference can be omit-
ted by setting Protein From Simulation.reference profile in the sup-
plied simulation profile.

Subset Of Frames To Look At: list of integers, optional
Set of indices that select the frames from Protein From Simulations.frames
to examine. As in Protein From Simulations.average density over trajectory,
the indices refer to the list of frames in the simulation profile not the
frames in the MD trajectory. Default is all frames.

Returns: Profile Comparison instance

write configuration file (Profile, filename, use radii = False)
Creates a configuration file that supplies GROMACS with the necessary in-
formation to construct the biasing potential.
Parameters:

Simulation Profile: Protein From PXP or
Profile From Configuration

Profile to be written into a configuration file. The units of length for
all attributes should be nanometers. If not, an error will be raised.

filename: character string
File name for the output.
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use radii: boolean
Whether or not to write the radii for volume calculation that differ-
entiates atom species. Not yet used, set to False by default.

prepare neutron profile for configuration (protein profile, Bilayer Pro-
file Neutron, Bilayer Profile MD)
Normalizes the protein profile and adjusts the z-axis to correspond with the
simulation coordinates. The alignment is performed by caluclating the offset
of the bilayer centers and modifying as is necessary. The protein profile is
also truncated to ten zsteps above and below the nonzero densities.
Parameters:

protein profile: Protein From PXP
Profile to be written into a configuration file. The units of length for
all attributes should be nanometers. If not, an error will be raised.

Bilayer Profile Neutron: Bilayer Profile
Bilayer profile from the same ‘.pxp’ as the protein.

Bilayer Profile MD: Bilayer Profile
Bilayer profile from simulation configuration prior to bias simulation.
This can be constructed from an average of a pre-bias trajectory or
the ‘.gro’ structure of the system input to the bias simulation.
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Appendix B

Appendix

B.1 Jensen’s Inequality And The KL Diver-

gence

Jensen’s inequality states that if p(x) is a probability density for the random
variable X and f(x) is a convex function, then

〈f(X)〉 ≥ f
(
〈X〉

)
(B.1)

Taking a random variable Y = q(x)/p(x), for some function q, and the
convex function f(x) = − log(x), Jensen’s inequality states

〈− log(Y )〉 ≥ − log
(
〈Y 〉
)

∫
dx p(x)

[
− log

(
q(x)

p(x)

)]
≥ − log

(∫
dx p(x)

q(x)

p(x)

)

−
∫
dx p(x) log

(
q(x)

p(x)

)
≥ − log

(∫
dx q(x)

)
(B.2)

If q(x) is another probability distribution, then the KL divergence with
respect to q(x) satisfies the following
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η [p(x)||q(x)] =

∫
dx p(x) log

(
p(x)

q(x)

)

= −
∫
dx p(x) log

(
q(x)

p(x)

)

≥ − log

(∫
dx q(x)

)
= 0 (B.3)

B.2 Random Variable Transform For Sums

Of Symmetric Distributions

Given two independent random variables X and Y , with associated prob-
ability density fucntion PX (x) and PY(y) for x ∈ X and y ∈ Y , a third
random variable constructed from their sum, Z = X +Y , will have a proba-
bility density function given by the Random Variable Transformation (RVT)
Theorem.101

PZ(z) =

∫∫
dx dy PX (x)PY(y)δ

(
z − (x+ y)

)
(B.4)

If PX and PY are zero mean, symmetric distributions then

PZ(z) =

∫∫
dx dy PX (−x)PY(−y)δ

(
z − (x+ y)

)

Substituting: x = −u y = −v

=

∫∫
(−du)(−dv) PX (u)PY(v)δ

(
z − (−u− v)

)

=

∫∫
du dv PX (u)PY(v)δ

(
− z − (u+ v)

)

= PZ(−z) (B.5)

PZ is also a zero mean, symmetric distribution.

120



B.3 Markov Chain Monte Carlo Methods For

Simulating Restrained Ensemble On A

One Dimensional Potential

For a restrained ensemble with N replicas, the vector of random variables to
be chained includes the postions of each replica’s particle. These particles
are updated at each step via the Metropolis algorithm

qi,t+1 = qi,t + ri (B.6)

where the ri are drawn from a zero mean, symmetric distribution. In addi-
tion, the average position of all the particles at each time step must be equal
to the predetermined restraint value.

N∑

i

qi,t = Q (B.7)

There are methods for parameter proposals in the presence of constraints,
but it is not a difficult problem to construct N random numbers from an
N −1 dimensional space for the problem at hand. To illustrate this, take the
case of N = 3. Then eq (B.7) reduces to, for each step in time,

q1 + q2 + q3 = 3Q (B.8)

Eq (B.8) is the equation of a plane, which can be expressed as a vector
equation and is visually represented in figure B.1.

~q · ~n = 3Q (B.9)

Where ~n is the three-vector containing one in all its entries. This geo-
metric description suggests a method for ensuring that proposals have the
correct average, i.e. staying in the plane of solutions to eq (B.8). If at the
current step the point already lies in the plane, then stepping along a linear
combination of vectors in the plane will ensure that the next point is also in
the plane since the vectors in the plane are orthogonal to vectors normal to
the plane.
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~v1

~v2

~n

~q · ~n = 3Q

Figure B.1: Visual description of set of particle positions with fixed aver-
age for N = 3. ~n is a vector normal to the plane, with entries consisting
exclusively of ones. ~v1 and ~v2 are vectors in the plane of solutions.

~qt+1 = ~qt + r1~v1 + r2~v2 (B.10)

~n · ~qt+1 = ~n · ~qt + r1~n · ~v1 + r2~n · ~v2

= ~n · ~qt
= 3Q (B.11)

This method generalizes to N replicas easily, a set of orthonormal vectors
must be constructed with the constraint that one of the vector’s entries are
entirely composed of 1√

N
(the generalized ~n vector after normalization). The

Gram-Schmidt process can be performed by starting with the normalized ~n
and performing the algorithm on N − 1 vectors with all zeros except for one
entry. Since the original set is linearly independent, they are certain to span
the entire N -dimensional space after the Gram-Schmidt process.

Since the generalized ~n is proportional to the first vector in the set, the
rest of the vectors are orthogonal. This permits the modification of particle
position vectors by linear combinations of these orthogonal vectors to produce
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position vectors with the same average value, as shown in eq (B.13)

~qt+1 = ~qt +
N∑

i=2

ri~vi (B.12)

〈~qt+1〉 =
1

N

∑

j

qj,t+1 =
1

N
(~n · ~qt+1)

=
1

N

(
~n · ~qt +

N∑

i=2

ri~n · ~vi
)

=
1

N
(~n · ~qt) = 〈~qt〉 (B.13)

Using this formulation, parameter proposals can be constructed for sim-
ulation in which the mean of the parameters does not move. The ri in eq
(B.12) are the random weights in new parameter space– the ~vi vectors, which
number N − 1. The resulting random variables that generate the position
proposal are sums of random variables themselves, weighted by the entries
of the ~vi.

qj,t+1 = qj,t +
∑

i

rivj,i

= qj,t + αj (B.14)

Eq (B.14) shows the transormation between the random variables and, if
the ri are drawn from even probability density function, then so are the αj.
(See section B.2)

B.3.1 Python Code For Restrained Ensemble Simula-
tion

1 import numpy as np

2 from matplotlib import pyplot as plt

3 import random

4
5 #################################

6 # Define the particle potential #
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7 #################################

8
9 def Potential(q):

10 return 25*(q -0.25) **4 - q*np.cos(q)

+ (1.0/(q**2 + 0.5))*np.sin (20*q)

11
12 ########################################################

13 # Method for calculating vectors orthonormal to normal #

14 ########################################################

15 def Ortho_Set(n):

16 # This will produce unbiased simulations

17 if n==1:

18 return [np.array ([1.0])]

19 # Otherwise find the desired vectors

20 vec1 = np.ones(n)/(n**0.5) # Proportional to normal

21 ret = [] # List of vectors to return

22 # Gram -Schmidt

23 for i in range(n-1):

24 # Starting vectors have one nonzero entry

25 v = np.zeros(n)

26 v[i] = 1.0

27 # Subtract contribution of normal vector

28 u = v - np.dot(v,vec1)*vec1

29 # Subtract contributions from the vectors

30 # that came before

31 for j in range(i):

32 u = u - np.dot(v,ret[j])*ret[j]

33 # Add the new vector , normalized

34 ret.append(u/(np.dot(u,u)**0.5))

35
36 return ret

37
38 #########################

39 # Simulation Parameters #

40 #########################

41 F = 100000000 # Samples across all particles

42 N = 200 # Number of particles

43 T = F/N # Number of step in simulation

44 interval_size = 0.008 # By what to scale random interval

45 q_bias = -0.127 # Observed mean position

46 rejects = 0 # For tracking rejected proposals

47 qout = np.zeros((T,N))# Markov Chain Results

48 delta_q # Tracking random changes in q

49 ortho_vecs = Ortho_Set(N) # Proposal Vectors

50
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51 ###############################

52 # Initialize Parameter Vector #

53 ###############################

54
55 for i in range(N):

56 qout[0,i] = random.uniform(q_bias -1.0, q_bias +1.0)

57 if N > 1:

58 qout [0] -= (np.mean(qout [0]) - q_bias) # Adjust mean

59
60 ###########################

61 # Sample The Distribution #

62 ###########################

63
64 for i in range(1,T):

65 ############

66 # Proposal #

67 ############

68 qnew = np.array([j for j in qout[i -1]])

69 for vec in ortho_vecs:

70 tmp = interval_size*random.uniform ( -1.0 ,1.0)*vec

71 for j in range(len(tmp)):

72 qnew[j] += tmp[j]

73 delta_q[i-1] = qnew - qout[i-1]

74 ##############

75 # Acceptance #

76 ##############

77 Unew = sum([ Potential(j) for j in qnew])

78 Uold = sum([ Potential(j) for j in qout[i -1]])

79 if Unew < Uold:

80 #################

81 # Always accept #

82 #################

83 qout[i] = np.array([j for j in qnew])

84 else:

85 ################################################

86 # Accept with probability e^(-(U_new - U_old)) #

87 ################################################

88 P = random.uniform (0 ,1.0)

89 if P < np.exp(Uold - Unew):

90 qout[i] = np.array ([j for j in qnew])

91 else:

92 qout[i] = qout[i-1]

93 rejects += 1
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[104] F. Heinrich and M. Lösche, “Zooming in on disordered systems: Neu-
tron reflection studies of proteins associated with fluid membranes,”
Biochimica et Biophysica Acta, vol. 1838(9), pp. 2341–2349, 2014.

137


	Introduction
	Simulations
	How Atomistic Simulations Are Performed
	Sampling In Atomistic Simulations
	Using Experimental Data In Simulation

	Neutron Reflectivity
	Reflection from a single interface
	Reflection from multiple interfaces

	Experimental Samples And Modeling
	stBLMs
	Component Based Model Analysis Of Neutrons


	Steered Simulations
	Biasing MD Dynamics And Probability
	Example: Restraint On A Particle In A Harmonic Potential
	Restrained Ensemble On The Harmonic Potential
	Perturbing The Free Distribution Using Restrained Ensemble Sampling

	Steering Of Simulations Using Neutron Data
	The Observable Used In Biasing From Neutron Reflection
	The Bias Potential
	Handling Large Discrepancies Between Densities

	Poly-Alanine (pALA) Simulations
	Description
	Analysis Of Simulation Results
	Summary

	Phosphatase And Tensin Homolog (PTEN)
	Description
	Results
	Summary

	Discussion (Items Of Interest And Future Directions)
	Effect Of Time Averaging On Effectiveness Of 
	Spatial Dependence Of 
	Other Functional Forms Of Bias And An Extension To The Restrained Ensemble


	Code Base
	GROMACS
	How To Use The Modified GROMACS
	List Of Variables
	Files
	tpxio.c
	readir.c
	sim_util.cpp
	sim_util.h
	stat.cpp
	broadcaststructs.cpp
	md_support.cpp
	md_support.h
	txtdump.c
	checkpoint.cpp
	typedefs.c
	state.h
	inputrec.h
	domdec.cpp
	md.cpp


	Python
	Class Structure
	Module Description


	Appendix
	Jensen's Inequality And The KL Divergence
	Random Variable Transform For Sums Of Symmetric Distributions
	Markov Chain Monte Carlo Methods For Simulating Restrained Ensemble On A One Dimensional Potential
	Python Code For Restrained Ensemble Simulation

	References


