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Abstract

The finite-volume QCD spectrum in the I = 1
2
, S = −1, parity-even, zero-momentum sector

containing the κ meson and the I = 1, S = 0, parity-even, G-parity-odd, zero-momentum

sector containing the a0(980) meson is studied with the inclusion of tetraquark operators

using lattice QCD. Several hundred tetraquark operators of different flavor, color, and spatial

structures are included in this study. We find that the inclusion of tetraquark operators is

crucial for determining the spectrum in each sector, and that there is a state in each sector

with sizeable tetraquark component that is missed without the use of tetraquark operators.

The spectrum of excited Σ baryons in the I = 1, S = −1, parity-even and parity-odd sectors

is also studied using large bases of single- and two-hadron operators, for the first time in

lattice QCD. We find qualitative agreement with experiment, and near-agreement with a

previous study that neglects two-hadron operators. All calculations are performed using 412

gauge field configurations with clover-improved Wilson fermions on a 323 × 256 anisotropic

lattice with mπ ≈ 230 MeV, and quark propagation is treated using the Stochastic LapH

method.



Acknowledgements

There is no self-made man, and I am no exception. This work would not have been possible

without the love and support of my dear wife, Dana Martin. To all of my family and friends

who have supported me, especially my parents Janet and Nasser Darvish, I owe everything to

you and you have my deepest gratitude. To my academic mentors and colleagues, especially
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Chapter 1

Introduction

The Standard Model of particle physics, which describes three out of the four fundamental

forces of nature, has been enormously successful at predicting and describing the particles we

see in nature. Apart from the known fundamental particles, i.e. the quarks, leptons, gauge

bosons, and the Higgs boson, many of the particles we encounter in nature are composite

particles known as hadrons. Similar to how an atom consists of protons, electrons, and

neutrons, with the former two being bound together by the electromagnetic force, hadrons

consist of quarks and gluons bound together by the strong nuclear force. The strong force is

also responsible for binding protons and neutrons together in the nucleus of an atom. While

protons and electrons carry electric charge, quarks and gluons carry another type of charge

known as color charge (though quarks also carry electric charge).

While the electromagnetic force and its associated electric charge are described by the

U(1) gauge theory of Quantum Electrodynamics (QED), the strong force and its associated

color charge are described by the SU(3) gauge theory of Quantum Chromodyamics (QCD) [1].

One of the main reasons QED has been so useful for analytic calculations is because the

coupling of the theory is small enough that most quantities can be calculated perturbatively.

QCD, however, has a running coupling which becomes large at low energy scales, preventing

the theory from being amenable to perturbative methods except for at high energies. A plot

of the QCD coupling as a function of the energy scale is shown in Fig. 1.1. This phenomenon,

known as asymptotic freedom, was shown independently by Gross and Wilczek [2] and by

Politzer [3], and is named as such because at high energies the binding forces between quarks

become small. Standard Feynman-diagram methods work reasonably well for QCD processes

at high energies (e.g. near the Z boson mass). At low energies (e.g. near the pion mass),

chiral perturbation theory can be used an an effective approach to studying QCD processes,

but more phenomenological inputs are needed. For energies in an intermediate range of

1 GeV or so, perturbative methods fail and non-perturbative methods are needed.
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Figure 1.1: Running of the QCD coupling ↵S as a function of the energy scale Q. The respective

degree of QCD perturbation theory used in the extraction is indicated in the brackets. Figure from

Ref. [8].

with three-quark operators only, and it lies below the lightest negative parity nucleon, in direct

contradiction to most quark models [9]. The light scalar mesons (mesons with JPC = 0++ containing

only u, d, and s valence quarks) are notoriously challenging in lattice QCD due to disconnected

quark diagrams and signal-to-noise problems, and their mass orderings are, in a simple qq quark

model, inverted as compared to the experimental observations [10]. Similarly, throughout the

low-lying spectrum of QCD there are numerous open questions as to the nature of, or even existence

of, non-conventional hadronic states such as glueballs (purely gluonic states), tetraquarks (qqqq),

hybrid mesons (mesons with exotic/non-qq quantum numbers), etc.

Lattice QCD is currently the best method to tackle many of these problems in hadron spec-

troscopy. Considerable progress has been made in recent years in extracting the excited state

spectrum of QCD due to both the increased amount of computational resources and a multitude of

new numerical techniques, some of which we describe and employ here. Our approach focuses on

extracting the stationary states of QCD in a finite-volume from matrices of two-point temporal

correlation functions using correlation matrix methods [11–13]. Central to our approach is the use

of the stochastic LapH method [14] for estimating the computationally daunting quark lines/Wick

2

Figure 1.1: Plot of the QCD coupling αs as a function of energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of αs is indicated in parentheses.
Figure taken from Ref. [4].

The most successful non-perturbative method thus far for doing calculations in QCD is

Lattice QCD, which is an ab initio method of simulating a discretized version of QCD on

a spacetime lattice using Monte Carlo methods. The field of Lattice QCD began with Ken

Wilson’s famous 1974 paper [5] which showed how to quantize a gauge field theory on a

discrete lattice in Euclidean spacetime while preserving exact local gauge invariance.

Lattice QCD calculations are very computationally expensive, often requiring hundreds

of millions of core-hours to perform [6]. In order to ease computational burdens, early

calculations used coarse lattices, used very heavy pion masses (which ease the process of

inverting very large Dirac matrices), and worked in the so-called “quenched approximation”

wherein the effects of sea quarks are ignored. Additionally, many (even recent works) ignore

the effects of disconnected diagrams (i.e. propagators originating and terminating on the same

time slice) in the evaluation of hadronic correlation functions, which also amounts to partially

ignoring sea-quark effects. The need for an efficient method of performing lattice calculations

of fully dynamical QCD neglecting no disconnected contributions has been recently satisfied

by the Stochastic LapH method [7].

The goal of this work is to study tetraquark operators in the light scalar sector and

the excited Σ baryon spectrum. Both of these endeavors are difficult if not impossible

to approach without a method such as the Stochastic LapH method, due to disconnected

2



contributions that appear when working with multi-hadron operators that are important

in the determination of the excited baryon spectrum and when working with tetraquark

operators. This work is significant because it is the most comprehensive lattice QCD study

of tetraquark operators to date in the κ and a0(980) sectors, and it is the first study of the

excited Σ baryon spectrum to include two-hadron operators.

This work is organized as follows. In Chapter 2, we outline the basic theory underpinning

lattice QCD, including how QCD is formulated in discretized spacetime, the path integral

approach to calculating observables, and some of the computational details of how our gauge

field configurations are generated in such a path integral approach. In Chapter 3, we delve

into the details of how to construct quantum operators which create and annihilate the

states we wish to study. In Chapter 4, we discuss how to calculate the two-point correlation

functions used to extract the energy spectrum, and expound upon how the Stochastic LapH

method is used to invert the large Dirac matrices involved in our calculations. In Chapter 5,

we discuss our data analysis procedure which allows us to fit the correlator data we obtain

to extract the finite-volume spectrum of QCD. In Chapter 6, we present results on including

tetraquark operators in the sectors containing the κ and a0(980) mesons. In Chapter 7,

we present results on the excited Σ baryon spectrum. Finally, we summarize our results in

Chapter 8.
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Chapter 2

Lattice QCD

2.1 QCD in the Continuum

2.1.1 The QCD Lagrangian

We begin by defining the QCD Lagrangian [1] in Euclidean spacetime in terms of quark

fields and gluon fields, and discuss the various transformation properties of those fields and

the QCD action. As we will see, the advantage of working in Euclidean spacetime is that

oscillating exponentials in time become decaying exponentials. This allows us to interpret

the Boltzmann factor e−S (where S is the action in Euclidean spacetime) as a probability

distribution, allowing us to use Monte Carlo integration to evaluate path integrals in quantum

field theory. Additionally, we will see that this gives us access to the low-lying energy

spectrum of a theory by allowing us to fit two-point correlation functions to real decaying

exponentials. The QCD Lagrangian LQCD can be written in terms of the fermionic part LF

and pure-gluon part LG. In a free theory (i.e. without gluons), the fermionic Lagrangian is

LF, free =
∑
f

ψ
(f)

αc

(
(γµ)αβ∂µ + δαβm

(f)
)
ψ

(f)
βc (x), (2.1)

where a sum over repeated indices is implied. ψ and ψ are quark and anti-quark fields,

respectively, and they carry a flavor index f , a Dirac spin index α, and a color index c.

m(f) is the bare mass of the fermion with flavor f , and γµ are the Euclidean analogs to

the familiar Minkowski γ-matrices satisfying the anticommutation relation {γµ, γν} = 2δµν1,

where µ ∈ {1, 2, 3, 4} is the Euclidean spacetime index. In its non-interacting form, Eq. (2.1)

appears identical to the familiar QED Lagrangian, except with additional indices for color,

which do not mix.
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In an interacting theory with gluons, the fermionic part of the Lagrangian becomes

LF =
∑
f

ψ
(f)

αc

(
(γµ)αβ(δcd∂µ + iAµcd(x)) + δαβδcdm

(f)
)
ψ

(f)
βd (x), (2.2)

where we have introduced the gluon fields Aµcd, which carry color indices in addition to

spacetime indices. The matrices Aµ are hermitian and traceless in color space. Being ma-

trices, they make QCD a non-Abelian gauge theory, as the gluon fields themselves do not

commute. The non-Abelian nature of QCD is the main reason why extracting the low-energy

physics is difficult. We define the covariant derivative

Dµ(x) = ∂µ + iAµ(x) (2.3)

and the field strength tensor

Fµν(x) = −i[Dµ(x), Dν(x)] = ∂µAν(x)− ∂νAµ(x) + i[Aµ(x), Aν(x)]. (2.4)

The gauge fields Aµ(x) are traceless and hermitian and belong to the Lie algebra su(3).

Therefore, we can write Aµ in terms of the 8 generators of SU(3), denoted by Ti, which form

a basis for su(3), as

Aµ(x) =
8∑
i=1

A(i)
µ (x)Ti. (2.5)

We call A
(i)
µ (x) the color components of the gauge field, and they are real-valued. The gener-

ators satisfy the following properties in addition to being traceless, complex, and hermitian:

tr [TjTk] =
1

2
δjk (2.6)

and

[Tj, Tk] = ifjklTl, (2.7)

where fjkl are known as the structure constants and are completely anti-symmetric. Conven-

tionally, we choose to represent su(3) using Ta = λa
2

, where λa are the Gell-Mann matrices [8].

Now we write down the gluonic part of the QCD Lagrangian,

LG =
1

2g2
tr[Fµν(x)Fµν(x)], (2.8)

where g is the QCD coupling parameter. Using the decomposition of the gluon fields into

their color components, we can similarly decompose the field strength tensor into its color
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components to gain more insight into the gluonic part of the Lagrangian:

Fµν(x) =
8∑
i=1

F (i)
µν (x)Ti,

F (i)
µν (x) = ∂µA

(i)
ν (x)− ∂νA(i)

µ (x)− fijkA(j)
µ (x)A(k)

ν (x).

(2.9)

Plugging this into Eq. (2.8), we find that the QCD Lagrangian contains 3- and 4-gluon self-

interactions. This makes QCD and QED fundamentally different: in QED we have linear

superposition since the massless vector boson (the photon) does not self-interact, whereas in

QCD, linear superposition never applies due to the gluon self-interactions.

2.1.2 Transformation Properties of the Quark and Gluon Fields

QCD is an SU(3) gauge theory, meaning the action is invariant under local SU(3) gauge

transformations of the quark and gluon fields. Such a gauge transformation can be associated

with a 3× 3 unitary color-space transformation Ω(x) at each spacetime point x, which also

has the property det[Ω(x)] = 1. In order to ensure gauge invariance, we demand that the

quark fields transform as

ψ(x)→ ψ′(x) = Ω(x)ψ(x)

ψ(x)→ ψ
′
(x) = ψ(x)Ω(x)†,

(2.10)

and the gluon fields transform as

Aµ(x)→ A′µ(x) = Ω(x)Aµ(x)Ω(x)† + i (∂µΩ(x)) Ω(x)†, (2.11)

where we have suppressed Dirac indices and used matrix/vector notation for the color indices.

One can then verify that Eqs. (2.10) and (2.11) leave the action S =
∫
d4x{LF + LG}

invariant.

2.2 Discretizing QCD on the Lattice

To facilitate our nonperturbative computations, we must formulate QCD on a spacetime

lattice. We consider our lattice Λ as an isotropic four-dimensional grid of points, indexed

by a 4-tuple of integers n such that x = an, where a is the lattice spacing. That is, we can

write

Λ = {n = (n1, n2, n3, n4)}, (2.12)
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where ni are integers. We will later also consider anisotropic lattices. Since a lattice has

finite spacing, that implies a momentum cutoff, which also acts as an ultraviolet regulator

for the theory. That is, the i component of momentum is restricted to pi ∈ (−π
a
, π
a
]. Addi-

tionally, we will work with periodic boundary conditions in all directions, which discretizes

the momentum p = 2πn
L

, where n is a vector of integers and L is the length of the lattice.

2.2.1 Free Fermions

We begin with a naive approach to discretizing fermions on the lattice, which will then be

improved upon. The continuum action for one free fermion with a bare mass m can be

written as

S0
F [ψ, ψ] =

∫
d4x ψ(x) (γµ∂µ +m)ψ(x). (2.13)

A first pass at discretizing Eq. (2.13) involves replacing the integral by a sum, replacing x

by n, and rewriting the derivative terms as simple finite differences, like so,∫
d4x→ a4

∑
n

(2.14)

ψ(x)→ ψ(n) (2.15)

ψ(x)→ ψ(n) (2.16)

∂µψ(x)→ 1

2a
(ψ(n+ µ̂)− ψ(n− µ̂)), (2.17)

where µ̂ is the unit vector in the µ-direction. We immediately find that such a discretization

scheme breaks local SU(3) gauge invariance, due to terms of the form ψ(n)ψ(n+ µ̂).

2.2.2 Gauge Fields and Link Variables

Though we expect that gauge invariance for the free fermion action is restored in the limit

a→ 0, we wish to maintain exact gauge invariance for finite a in the entire discretized action.

In determining how to discretize the gluon fields, we are guided by this requirement. Under

a local gauge transformation Ω(n),

ψ(n)ψ(n+ µ̂)→ ψ(n)Ω(n)†Ω(n+ µ̂)ψ(n+ µ̂), (2.18)

which is obviously not gauge-invariant. We can fix this issue by introducing new fields Uµ(n),

called link variables [5], which transform under a gauge transformation as

Uµ(n)→ Ω(n)Uµ(n)Ω(n+ µ̂)†. (2.19)
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n n+ µ̂

Uµ(n)

n n+ µ̂

U−µ(n) = U†µ(n− µ̂)

Figure 2.1: Link variables, depicted as linking two adjacent lattice sites.

These link variables are matrix-valued, and are elements of the gauge group SU(3). They

are also directionally oriented, and are defined such that U−µ(n) ≡ Uµ(n− µ̂)†. They can be

visually represented as living on the links between lattice sites, as depicted in Fig. 2.1. We

then propose the following form for the naively discretized interacting fermionic action for

one flavor as follows, which one can verify to be gauge-invariant:

SF [ψ, ψ, U ] = a4
∑
n∈A

ψ(n)

(
4∑

ν=1

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+mψ(n)

)
. (2.20)

In taking the limit a→ 0, the fermionic action will contain O(a) lattice artifacts. Now that

we have identified a candidate for a gauge-invariant discretized interacting fermion action,

it remains to relate the link variables Uµ(n) to the continuum gauge fields Aµ(x). In the

continuum, there is an object which satisfies the same gauge transformation properties as

the link variables (see Eq. (2.19)), and that object is the gauge transporter,

G(x, y) = P exp

(
i

∫
Cxy

A · ds

)
, (2.21)

where Cxy is a curve connecting two points x and y, and P denotes path-ordering. The link

variables approximate this gauge transporter, i.e. Uµ(n) = G(n, n+ µ̂) +O(a), and are given

by

Uµ(n) = exp (iaAµ(n)) . (2.22)

One can verify that in the continuum limit a → 0, the action in Eq. (2.20) reduces to its

continuum form given by integrating the Lagrangian in Eq. (2.2). Note that we have gone

from using su(3) Lie algebra-valued fields Aµ(x) to variables Uµ(x) which are elements of the

Lie group SU(3). This will become relevant in defining the path integral on the lattice.
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2.2.3 Fermion Doubling

We define the Dirac Matrix M [U ] for a theory with one fermion flavor by rewriting the

fermion action in Eq. (2.20) as

SF [ψ, ψ, U ] =
∑
n,m∈Λ

∑
a,b,α,β

ψ(n)αaM(n|m)αβ;abψ(m)βb, (2.23)

implying that

M(n|m)αβ;ab = a4

4∑
µ=1

(γµ)αβ
Uµ(n)abδn+µ̂,m − U−µ(n)abδn−µ̂,m

2a
+mδαβδabδm. (2.24)

The free quark propagator on the lattice is found by inverting the Dirac matrix when the

gauge fields are set to Uµ(n) = 1. In momentum space, the Dirac matrix is given by

M̃(p) = a4

(
m+ i

4∑
µ=1

γµ
sin (pµa)

a

)
(2.25)

and its inverse is

M̃−1(n|m) = a−4
m− ia−1

∑
µ γµ sin(pµa)

m2 + a−2
∑

µ sin(pµa)2 . (2.26)

If we examine this propagator in the massless case, m = 0, we find a pole at p2 = 0, as we

would expect. However, we also find 15 additional poles at the corners of the first Brillouin

zone, i.e. at p = (π/a, 0, 0, 0), (0, π/a, 0, 0), . . . , (π/a, π/a, π/a, π/a). These extra poles are

known as the doublers. They are not present in the continuum (just take a → 0 in the

denominator of the propagator to see this), but on the lattice, we must deal with these

unphysical poles. Wilson found a clever way to deal with these doublers [9] by adding an

additional term, now known as the Wilson term, to the Dirac matrix. In momentum space,

the Dirac matrix with the added Wilson term is (c.f. Eq. (2.25))

M̃(p) = a4

(
m+ i

4∑
µ=1

γµ
sin (pµa)

a
+

4∑
µ=1

(1− cos (pµa))

a

)
. (2.27)

The Wilson term vanishes at p = (0, 0, 0, 0), but acts as an extra mass term at each corner

of the Brillioun zone. These mass terms scale as 1
a
, so for small lattices, they will decouple

from the theory and not affect the low energy spectrum. Inverting the Fourier transform,

the Wilson term turns out to be a discretization of −a
2
∂µ∂µ, which vanishes in the continuum

limit.
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While the Wilson term solves our fermion doubling problem, it introduces a new problem.

Since the Wilson term is proportional to 1 in Dirac space, it does not anticommute with

γ5 = γ4γ1γ2γ3, which implies that it violates chiral symmetry. (See Section 7.2 in Ref. [10]

for more details.) This problem of chiral symmetry breaking is not a defect of only Wilson’s

solution to fermion doubling, but of any solution that attempts to add terms to free the

theory of doublers, as shown in the famous “no-go” theorem of Nielson and Ninomiya [11].

2.2.4 The Wilson Gauge Action

After constructing a discretized version of the fermion action, it remains to construct a

discretized version of the gauge action. The first step is to identify a gauge-invariant object

constructed only of link variables. An ordered product of link variables

P [U ] = Uµ0 (n0)Uµ1 (n0 + µ̂0) . . . Uµk−1
(n1 − µ̂k−1) ≡

∏
(n,µ)∈P

Uµ(n) (2.28)

along a path P on the lattice is the lattice analog to the continuum gauge transporter. This

product shares the same transformation properties as the link variables and the continuum

gauge transporter, i.e.

P [U ]→ Ω (n0)P [U ]Ω (n1)† . (2.29)

If we choose a path that forms a closed loop L, then such a product transforms under a

gauge transformation as ∏
(n,µ)∈L

Uµ(n)→ Ω (n0)
∏

(n,µ)∈L

Uµ(n)Ω (n0)† , (2.30)

since the color rotations Ω(n) cancel out at every intermediate point due to unitary. We can

then use the cyclicity of the trace to form a gauge-invariant object out of Eq. (2.30). Hence,

tr

 ∏
(n,µ)∈L

Uµ(n)

 (2.31)

is gauge-invariant. The shortest closed loop is called the plaquette, which is defined as a

product of four link variables,

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂). (2.32)
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With these definitions, we now write down Wilson’s formulation of the gauge action on

the lattice, which is a sum over all possible plaquettes on the lattice (only counting one

orientation for each plaquette):

SG[U ] =
2

g2

∑
n∈Λ

∑
µ<ν

Re tr [1− Uµν(n)] . (2.33)

In the continuum limit a → 0, it can be shown that this reduces to the continuum version

given by integrating the Lagrangian in Eq. (2.8). In taking the limit, the action will contain

O(a2) lattice artifacts, that is,

SG[U ] =
2

g2

∑
n∈Λ

∑
µ<ν

Re tr [1− Uµν(n)] =
a4

2g2

∑
n∈A

∑
µ,ν

tr
[
Fµν(n)2

]
+O

(
a2
)
. (2.34)

The Wilson action is just one way to formulate a discretized gauge action. We will discuss

different discretization strategies in order to reduce the discretization error to higher orders

in a.

2.2.5 Improving the Discretized Action

In our naively discretized theory, the fermionic action contains O(a) lattice artifacts and the

gauge action contains O(a2) artifacts. By adding terms to the action which cancel these

artifacts but which vanish in the continuum limit, we can improve discretization errors to

higher orders in a. This is called Symanzik improvement [12]. For example, we make use of

a clover improved [13] action, which involves adding a term to the Wilson action,

cswa
5
∑
n∈Λ

∑
µ<ν

ψ̄(n)
1

2
σµνF̂µν(n)ψ(n), (2.35)

where csw is a real coefficient, called the Sheikholeslami-Wohlert coefficient,

F̂µν(n) =
−i

8a2
(Qµν(n)−Qνµ(n)) , (2.36)

σµν ≡ [γµ, γν ] /2i, (2.37)

and

Qµν(n) ≡ Uµ,ν(n) + Uν,−µ(n) + U−µ,−ν(n) + U−ν,µ(n). (2.38)

The clover term is named as such because it is constructed from four adjacent plaquettes,

as depicted in Fig. 2.2.
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µ

ν

n

Figure 2.2: Depiction of the clover term, built out of four plauqettes.

In addition to Symanzik improvements, there are so-called tadpole improvements [14] that

can be made to the gauge action. These seek to correct contributions from QCD tadpole

diagrams that appear at low energy, when the coupling is large. For a small coupling g, we

may reasonably expand the link variables as Uµ(x) ≡ eiagAµ(x) → 1 + iagAµ(x). It turns out,

however, that higher order terms are suppressed by powers of g2, and so when the coupling

is large, there will be contributions from QCD tadpoles. For a detailed presentation, see [14].

In order to deal with these tadpoles, we rescale the link variables as U → U
u

, where

u =

〈
1

3
Re TrUµν

〉1/4

. (2.39)

Here, u is both a parameter of the action and an observable, so we must iteratively tune u

in the action such that the u we observe is the same as the u we put into the action.

In practice, our lattices are anisotropic [15, 16]. The motivation for this is that the pri-

mary observables we measure are temporal correlators whose signal-to-noise ratios decrease

as time separation increases. To combat this issue, we could use a finer lattice in order

to sample the correlators at more time separations. The computational cost of refining the

lattice in every direction is large, however, so we choose to refine only the temporal direction.

That is, we choose an anisotropy ξ ≡ as
at
> 1, where as is the spatial lattice spacing and at is

the temporal lattice spacing. ξ is in fact a quantity that undergoes renormalization, so the

anisotropy enters into the gauge action as a parameter γg and into the fermionic action as a

parameter γf . Both of these parameters must be tuned to produce the desired renormalized

anisotropy.

Finally, we write down the action we use in this work. The gauge action is a Symanzik-

improved Lüscher-Weisz action [17, 18], and uses tadpole improvement coefficients from [15,
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16, 19, 20]:

SξG[U ] =
β

3γg

[∑
x,i 6=j

(
5

6u4
s

ΩPij(x)− 1

12u6
s

ΩRij(x)

)
+
∑
x,i

(
4

3u2
su

2
t

ΩPit(x)− 1

12u4
su

2
t

ΩRit

)]
.

(2.40)

Here, P is a plaquette, ΩP = Re Tr(1− P ), R is a 2 × 1 planar Wilson loop, us and ut are

the aforementioned tadpole improvement coefficients, β is the inverse gauge coupling, and

γg is the bare anisotropy parameter for the gauge sector. Notice that only improvements in

spatial links have been included. Lattice gauge-field actions which involve more than two

time slices often lead to temporal correlators which do not fall exponentially in a simple

way. This action has O(a4
s, a

2
t , g

2a2
s) discretization errors. The fermionic part of the action

is given by

SξF [U, ψ̄, ψ] =
∑
x

ψ̂(x)
1

ũt

{
ũtm̂0 + γtŴt +

1

γf

∑
s

γsŴs

−1

2

[
1

2

(
γg
γf

+
1

ξ

)
1

ũtũ2
s

∑
s

σtsF̂ts +
1

γf

1

ũ3
s

∑
s<s′

σss′F̂ss′

]}
ψ̂(x).

(2.41)

Here, γf is the bare anisotropy for the fermionic sector, ξ = as
at

is the renormalized anisotropy,

γµ and σµν = 1
2
[γµ, γν ] are Dirac gamma matrices, ũs is the spatial tadpole improvement fac-

tor, and ũt is the temporal tadpole improvement factor. Hats denote dimensionless quantities

that relate to dimensionful quantities by scaling with appropriate factors of the lattice spac-

ing. ψ̂ = a
3/2
s ψ where ψ is the quark field, m̂0 = m0at where m0 is the bare quark mass,

and F̂µν = aµaνFµν = 1
4

Im (Pµν(x)) where Fµν is the field strength tensor. Ŵ is the Wilson

operator, and is given by

Ŵµ ≡ ∇̂µ −
1

2
γµ∆̂µ, (2.42)

where

∇̂µ = aµ∇µ, ∆̂µ = a2
µ∆µ. (2.43)

This action has O (g2as, g
2at, a

2
s, a

2
t ) discretization errors. It is also important to mention

that the link variables in the fermionic action are stout-smeared [21], which we will discuss

further in Chapter 3. The use of smeared link variables in the action leads to better chiral

behavior.
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2.2.6 Parameter Tuning

Anisotropy

The parameters we put into our action are bare parameters. We obtain these parameters by

choosing a set of observables, and tuning the bare parameters in our action such that their

desired values are produced. For example, we desire a renormalized anisotropy ξ ≈ 3.5 for

a temporally fine lattice from which we can sample more correlator data points, and must

tune the values γg and γf to obtain this. In order to tune γg, we measure the following

quantities [22]:

Rss(x, y) =
Wss(x, y)

Wss(x+ 1, y)
,

Rst(x, t) =
Wst(x, t)

Wst(x+ 1, t)
,

(2.44)

where Wµν(xµ, xν) is the expectation value of a Wilson loop of size xµ and xν and oriented

in the µ and ν directions, and then demand that Rss(x, y) = Rst(x, ξt). In order to tune γf ,

we impose a continuum dispersion relation for mesons on the lattice,

a2
tE

2(p) = a2
tm

2 +
a2
sp

2

ξ2
. (2.45)

Through an iterative process, we find that in order to attain ξ ≈ 3.5, we set γg = 4.3 and

γf = 3.4.

Gauge Coupling and Lattice Spacing

The renormalization scheme we use requires that the coupling and masses in the lattice QCD

action vary (or run) with the ultraviolet cutoff such that observables tend to their physical

values as the cutoff is removed. The lattice spacing acts as a cutoff by eliminating very

small wavelengths from the theory. The cutoff is proportional to the inverse lattice spacing,

limiting momenta to the first Brillouin zone. We tune the inverse coupling β in our action to

obtain a desired lattice spacing. Determining the lattice spacing using a physical observable

is known as setting the scale. One way to set the scale is by choosing a particle, say the Ω,

and requiring that its mass measured on the lattice should equal its physical mass. That is,

we calculate

at =
atm

mPhys

, (2.46)

where atm is the quantity we directly measure in a lattice calculation. In our calculations,

this yields at ≈ 0.034 fm, giving as ≈ 0.12 fm, and we obtain these values by choosing

β = 1.5 after an iterative process.
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Quark Masses

As we will discuss further in Chapter 3, we work in a theory ofNf = 2+1 QCD, meaning there

are three flavors of quarks, two of which have degenerate masses. These are the degenerate

up and down quarks (collectively referred to as the light quarks), and the strange quark.

An important flaw of our calculations is that we work in a theory of an unphysically heavy

pion. This is necessary for two reasons. First, finite volume corrections to the theory are

exponentially suppressed by a factor of e−mπL, where mπ is the mass of the pion (in general,

it is the mass of the lightest state in the theory) and L is the spatial extent of the lattice. It

is necessary that the correlation length, mπL is > 1, but in practice, a good rule of thumb

is to require mπL > 4 or so. Second, inverting Dirac matrices (which we will soon see to be

an important step of our calculation) becomes much more computationally difficult at lower

pion masses, and increases the odds that the Dirac matrices will become ill-conditioned.

In order to tune the light and strange quark masses, we aim to set the following ratios

to their physical values [16]:

lΩ =
9m2

π

4m2
Ω

, sΩ =
9 (m2

K −m2
π)

4m2
Ω

, (2.47)

where mK is the mass of the kaon, mπ is the mass of the pion, and mΩ is the mass of the Ω

baryon. These ratios are chosen because first-order chiral perturbation theory tells us that

they should be proportional to their associated quark masses [16]. sΩ is set to its physical

value, and lΩ is lowered to a value that is unphysical but allows calculations to remain

possible. Using this method of tuning, the bare quark masses are set to be atml = −0.0860

for the light quarks, and atms = −0.0743 for the strange quark. With these quark masses,

our pion mass is approximately 230 MeV, as opposed to its physical value of ≈ 135 MeV.

2.3 Extracting Energies from Two-Point Correlation

Functions

In order to do spectroscopy, the main observables we calculate on the lattice are time-ordered

two-point correlation functions of the form

C(t) = 〈0| O(t+ t0)O(t0) |0〉 , (2.48)

where |0〉 is the vacuum state, O(t0) is an operator that creates a state out of the vacuum

at time t0, and O(t + t0) is an operator that annihilates such a state at a later time t + t0.
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Let |n〉 denote the nth energy eigenstate of the theory with energy En, ordered such that

En < En+1, and let us shift the energies such that the vacuum energy E0 ≡ 0. Then, using

a spectral decomposition and working in the Heisenberg picture in imaginary time t→ −it,
we can see

C(t) =
∞∑
n=0

〈0| eH(t+t0)O(0)e−H(t+t0) |n〉 〈n| eHt0O(0)e−Ht0 |0〉

=
∞∑
n=0

eE0(t+t0) 〈0| O(0) |n〉 e−En(t+t0)eEnt0 〈n| O(0) |0〉 e−E0t0

=
∞∑
n=0

〈0| O(0) |n〉 〈n| O(0) |0〉 e−Ent.

(2.49)

Here, we have made the assumption that t � T , where T is the temporal length of the

lattice, which is necessary to prevent temporal wrap-around effects. It is now clear that

by calculating C(t) on the lattice, we have access to the energy spectrum of the theory. In

principle, with infinite statistics, we could fit C(t) to obtain the entire spectrum. In practice,

however, we can only reliably extract the lowest non-zero energy in this sum by fitting C(t)

to single- or two-exponential functions. As we will discuss further in Chapter 5, we can

circumvent this issue by constructing a matrix of correlators

Cij(t) = 〈0| Oi(t+ t0)Oj(t0) |0〉 (2.50)

and using a variational method to find principal correlators C(N)(t) satisfying

C(N)(t) −−−→
t→∞

Ae−EN t. (2.51)

2.4 Monte Carlo Path Integration

A fundamental equation for calculating observables on the lattice is

〈O〉T =
1

ZT

∫
D[ψ, ψ, U ]O[ψ, ψ, U ]e−S[ψ,ψ,U ], (2.52)

where O denotes an operator corresponding to a desired observable, T denotes the time

extent of the lattice, S denotes the Euclidean action, and ZT is the partition function, given

by

ZT =

∫
D[ψ, ψ, U ]e−S[ψ,ψ,U ]. (2.53)
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It turns out that 〈O〉T = 〈0| O |0〉 only in the T →∞ limit, but in practice, T is large enough

that 〈O〉T ≈ 〈0| O |0〉. In the above equations, we are integrating over all configurations of

the quark fields, antiquark fields, and link variables representing the gauge fields. It is

important to note that the quark and antiquark fields are treated as independent variables.

The action can be decomposed as

S[ψ, ψ, U ] = ψM [U ]ψ + SG[U ], (2.54)

where M [U ] is the Dirac matrix which is a functional of the gauge links, and the gauge action

SG is a functional only of the link variables. Integration over the quark fields can be readily

done analytically, as the integrals reduce to Gaussian integrals. Wick’s theorem gives

〈O〉T =

∫
D[U ]f (M−1[U ]) detM [U ]e−SG[U ]∫

D[U ] detM [U ]e−SG[U ]
, (2.55)

where f (M−1[U ]) is some function of the inverse of the Dirac matrix, given by the relevant

Wick contractions.

While the fermions are integrated out analytically, it is intractable to analytically inte-

grate out the gauge fields. This is where the need for numerical integration arises. Numeri-

cally integrating over the gauge fields is nontrivial, however, since the integral in Eq. (2.55)

is of very high dimension due to the fact that we must integrate over a link variable at every

single lattice site. The way to proceed is by use of Monte Carlo integration, which is immune

to the so-called “curse of dimensionality” that precludes other standard numerical methods.

The strategy of Monte Carlo integration proceeds as follows. Consider a very high di-

mensional integral

If =

∫
V
DUp(U)f(U), (2.56)

where p(U) is a probability density over the volume V , and f(U) is some integrable function

of the variables U . By factoring out a probability density in the integrand, we ensure much

better efficiency in Monte Carlo sampling compared to using uniformly random samples of

the integrand, since it allows us to focus on sampling points from the integrand that most

contribute to the result of the integral. This technique is called importance sampling. If we

can randomly sample the variables U with probability density p(U) thereby generating a large

ensemble {U1, U2, ..., UNU} of NU configuartions, then the integral If can be approximated

as

If ≈
1

NU

NU∑
k=1

f (Uk) , (2.57)
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by the law of large numbers. For large NU and independently generated Uk, then by the

central limit theorem, the standard deviation in the approximation of If is given by

σIf =

√
V (f(U))

NU

, (2.58)

where V (f(U)) is the variance of f(U) with respect to the probability density p(U). This is

where the advantage of working in Euclidean spacetime becomes apparent: the real Boltz-

mann factor e−SG[U ] functions as a probability distribution (up to a normalization constant).

It turns out that it is also necessary to include the fermion determinant detM in the proba-

bility distribution, as including it as a part of the observable itself can lead to large statistical

uncertainties due to the very large fluctuations about the mean value [10]. Including the

Dirac matrix determinant and the normalization factor, the probability distribution for cal-

culating observables is

p(U) =
detM [U ]e−SG[U ]∫

D [U ′] detM [U ′] e−SG[U ′]
. (2.59)

The validity of using p(U) as probability distribution is not obvious, as it requires that

detM is real and positive semi-definite. Fortunately, for an even number of mass-degenerate

fermions (an approximation we use for the u and d quarks), this can be shown analytically

(see Ref. [10], 8.2.1). When we add in a strange quark, there is no such analytic guarantee,

but we observe empirically that the mass of the strange quark is high enough that the fermion

determinant is always found to be positive.

In order to proceed in generating a set of gauge configurations {Ui}, we make use of

Markov chains. A Markov chain is defined as a stochastic process that generates a sequence

of states in which the probability of transitioning from one state to another depends only on

the current state of the system [23]. For us, a state is defined by a gauge field configuration. A

certain class of Markov chains (those which are irreducible and aperiodic) have the property

that they tend to a stationary distribution provided that they satisfy a condition called

detailed balance defined by

T (U ′ ← U)p(U) = T (U ← U ′)p(U ′), (2.60)

where T (U ′ ← U) is the probability of transitioning to a state U ′ if the current state is U .

In this case, after taking a certain number of steps along the Markov chain (a process known

as thermalization or bringing the chain into equilibrium), all future states will be distributed

according to p(U).

A popular method of defining such a Markov chain is the Metropolis-Hastings method [24],
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which relies on an accept-reject method of proposing new configurations by making small

local changes to the current configuration. These small changes are necessary because large

changes can cause the acceptance probability to be too low. The Metropolis-Hastings method

works well in both pure gauge theories and in the quenched approximation where sea-quark

effects are neglected and the fermion determinants are set to one. In a full theory, however,

such a local updating scheme is not useful, since the fermion determinant is a non-local

quantity, causing small local changes in the fields to lead to large changes in the action.

2.4.1 Hybrid Monte Carlo

The need for a global updating scheme with a reasonable acceptance rate is solved by the

Hybrid Monte Carlo Method [25] (HMC) algorithm, which applies in the case of an even

number of degenerate quarks, as in our case with the u and d quarks (ignore the strange

quark for a moment). The HMC proceeds by representing the fermion determinant as an

integral over so-called pseudofermion fields φ and φ†, which are complex-valued (rather than

Grassmann-valued) fields with the same indices as the fermionic fields:

detM [U ] =

∫
Dφ†Dφ e−φ†M−1[U ]φ. (2.61)

The fermion determinant can be factored as

detM (u)[U ] detM (d)[U ] =
(
detM (l)[U ]

)2
=

∫
Dφ†Dφ exp

[
φ†
(
M (l)†[U ]M (l)[U ]

)−1
φ
]
,

(2.62)

where the u quark Dirac matrix M (u) and the d quark Dirac matrix M (d) are equal collectively

referred to as the light quark Dirac matrix M (l). Here we have made use of γ5-hermiticity

of M , which is a general feature of most discretized Dirac matrices [10],

γ5Mγ5 = M †, (2.63)

and the fact that γ2
5 = 1. Using this factorization of the determinant, we can replace the

action in Eq. (2.59) by an effective action,

Seff [U, φ, φ†] = SG[U ] + φ†
(
M (l)†[U ]M (l)[U ]

)−1
φ, (2.64)

where we are now sampling the fields φ and φ† in addition to U in the Monte Carlo in-

tegration. The next step of the HMC is to construct a fictitious Hamiltonian and evolve

the system according to Hamilton’s equations of motion. This involves introducing a ficti-
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tious field π which is viewed as the conjugate momentum field to U . Then, using the clever

expression of unity,

1 =

∫
Dπ exp

{
−1

2
π†π

}
, (2.65)

we insert it into an integral over the gauge fields and pseudofermion fields,∫
Dπ exp

[
−1

2
π†π

] ∫
DUDφ†Dφ exp(−Seff)

=

∫
DπDUDφ†Dφ exp

[
−1

2
π†π − Seff

]
=

∫
DπDUDφ†Dφ exp[−H],

(2.66)

defining the fictitious Hamiltonian as

H =
1

2
π†π + Seff [U, φ, φ†]. (2.67)

The system is then evolved forward as in a molecular dynamics simulation using Hamilton’s

equations of motion. In principle, H should be conserved in this process, but in practice,

there will be some errors due to a finite time step. We solve this by adding in an accept-reject

step at the end of the time evolution by introducing an acceptance probability,

Paccept = min(1, e−δH), (2.68)

where δH is the change in H after the evolution. The pseudofermion fields also need to be

refreshed, which can be done by producing a normally-distributed vector χ with variance 1
2

and then calculating φ = M †χ.

2.4.2 Rational Hybrid Monte Carlo

Introducing the Hybrid Monte Carlo method involved neglecting the strange quark. The

generalization of HMC to include the strange quark is known as the Rational Hybrid Monte

Carlo (RHMC) method [26]. Just as before, the fermion determinant for the strange quark

field is expressed as an integral over pseudofermion fields:

detMs = det
(
M †

sMs

) 1
2 =

∫
Dφ†Dφ exp

(
φ†
(
M †

sMs

)−1/2
φ
)
. (2.69)

This is only valid if detMs ≥ 0. As stated before, this is not analytically guaranteed,

but it is generally true due to the large strange quark mass. We proceed just as in the
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HMC method for the light quarks, but whereas in the HMC method we had one M for

each pseudofermion, we now have (M †M)
1
4 applied to each field φ. This fourth-root can be

estimated with a rational approximation,

(
M †M

) 1
4 ≈ α01 +

∑
i

αi
M †M + βi

, (2.70)

where αi and βi are coefficients that specify the approximation [26]. Refreshing the pseud-

ofermion fields is done similarly as before, by generating a normally-distributed vector χ

with variance 1
2

and calculating φ = (M †M)
1
4χ.
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Chapter 3

Building Operators for Finite-Volume

Spectroscopy

3.1 Basic Building Blocks

Quarks and gluons are the principal objects of quantum chromodynamics, and form the

hadrons which we wish to study. Hence, the operators we use to create hadrons on the

lattice are constructed using building blocks of quark and gluon fields. Since hadrons are

not point-like objects, but extended composite objects, we form our hadron operators out of

covariantly-displaced quark fields. In calculating correlation functions (correlators) on the

lattice, two important obstacles must be confronted: noise, and excited-state contamination

(contributions to correlators from higher-lying states than those we wish to study). With

these challenges in mind, our basic building blocks are so-called stout-smeared [21] gauge-

link field variables and LapH-smeared [27, 7] quark field variables. We will see that the

stout smearing procedure leads to dramatically reduced noise in the evaluation of correlators

constructed with displaced operators, and that the LapH-smearing procedure drastically

attenuates contributions from higher-lying modes of the theory. Both of these procedures

are crucial for extracting the energy spectrum, as we will see in Chapter 5.

3.1.1 Stout Smearing

In order to combat excited-state contamination, we must design operators which couple

more to the low-lying states of interest, rather than excited states. When examining states

containing gluons, such as glueballs or hybrid mesons, a way to reduce excited-state contam-

ination is by the use of gauge-link smearing. Ref. [21] describes a smearing procedure for

link variables known as stout smearing, which is outlined here. We will see that even when

22



Cµ(x)

= + + . . .

Figure 3.1: A diagramatic representation of the linear combination of perpendicular link
staples in Eq. (3.1). The beginnings and endpoints of each term are the same.

we are not interested in extracting gluonic states, gauge-link smearing helps to attenuate

noise in extracting hadronic observables from the lattice.

Define Cµ(x) as the following weighted sum of perpendicular link-variable staples (de-

picted in Figure 3.1) beginning at a lattice site x and terminating at a neighboring site

x+ µ̂,

Cµ(x) =
∑
ν 6=µ

ρµν
(
Uν(x)Uµ(x+ ν̂)U †ν(x+ µ̂) +U †ν(x− ν̂)Uµ(x− ν̂)Uν(x− ν̂ + µ̂)

)
, (3.1)

where ρµν are tunable real parameters, and µ̂ and ν̂ are unit vectors on the lattice. We use

the following weights,

ρjk = ρ, ρ4µ = ρµ4 = 0, (3.2)

which amount to smearing spacial link variables only. Next, define a matrix Qµ(x) in SU(N)

by

Qµ(x) =
i

2

(
Ω†µ(x)− Ωµ(x)

)
− i

2N
Tr
(
Ω†µ(x)− Ωµ(x)

)
, where

Ωµ(x) = Cµ(x)U †µ(x) (no summation over µ).
(3.3)

Being both Hermitian and traceless, Qµ(x) is also in the Lie algebra su(N), and therefore

eiQµ(x) ∈ SU(N). Then define an iterative process whereby a link variable at step n + 1 is

related to a link variable at step n as,

U (n+1)
µ (x) = exp

(
iQ(n)

µ (x)
)
U (n)
µ (x). (3.4)

Since the link variables we start with are in SU(N) and so is eiQµ(x), we guarantee that

each link variable in this iteration is also in SU(N). This ensures that transforming the

link variables in this way preserves the property that they are members of the SU(3) gauge

group. This smearing procedure can be iterated nρ times to produce what we refer to as

stout links and denote by Ũµ(x):

U → U (1) → U (2) → · · · → U (nρ) ≡ Ũ . (3.5)

There are two important items of note: only the spatial links are smeared, and all of the
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symmetries of the original links are preserved. The former is due to deliberate choice of

ρµ4 = 0, and the latter is shown for appropriate choice of ρµν in Ref. [21].

3.1.2 LapH Smearing

Taming excited-state contamination in correlator measurements requires smearing not only

the link variables, but the quark fields as well. Here, we outline one such method of doing

so called Laplacian-Heaviside (LapH) smearing, introduced in Ref. [7].

Recall that one can approximate the second derivative of a single-variable function f at

a point x as, f ′′(x) ≈ f(x+a)+f(x−a)−2f(x)
a2

, for small a. Hence, taking a second derivative

provides one convention for smearing a function, as it performs a weighted average of the

function in the neighborhood of a point x. On the lattice, we look to the three-dimensional

gauge-covariant Laplacian (GCL) to accomplish quark field smearing in a way that preserves

the gauge symmetries of the action. In terms of stout smeared link variables, Ũj(x), the

gauge-covariant Laplacian is defined as,

∆̃O(x) =
3∑

k=1

(
Ũk(x)O(x+ k̂) + Ũ †k(x− k̂)O(x− k̂)− 2O(x)

)
,

O(x)
←−
∆ =

3∑
k=1

(
O(x+ k̂)Ũ †k(x) +O(x− k̂)Ũk(x− k̂)− 2O(x)

)
.

(3.6)

Acting the GCL on any operator O(x) preserves all of the single-time-slice symmetry prop-

erties of that operator, and therefore so does acting it on that operator any number of times.

It is shown in Ref. [28] that when we act the GCL on our quark fields, ψ and ψ, which are

Grassmann-valued, the resultant smeared fields, ψ̃ and ψ̃, are also Grassmann-valued. One

scheme for quark field smearing is,

ψ̃(x) =

(
1 +

σ2
s

4nσ
∆̃

)nσ
ψ(x),

χ̃(x) = χ(x)

(
1 +

σ2
s

4nσ

←−
∆

)nσ
,

(3.7)

where σs ∈ R and nσ ∈ Z are tunable parameters, and we have introduced the field χ̃ ≡ ψγ4

for future convenience.

We can now pause to examine the effects of both link smearing and quark field smearing,

using the procedures presented thus far. Figure 3.2 demonstrates how quark field smearing

drastically reduces excited-state contamination in the correlator calculations, and how link

smearing drastically reduces signal noise. The figure shows the effective mass (a discretized
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logarithmic derivative of a two-point correlator, see Ch. 5 for definition) for a single nucleon

calculated using 50 gauge configurations on a 123 × 48 anisotropic lattice using the Wilson

action with as ∼ 0.1 fm and as
at
∼ 3.0. Three smearing schemes and three displacement

schemes are shown for comparison.

Continuing, ∆̃ is Hermitian, and we denote its eigenvalues as −λ(k) (ordered by increasing

λ(k)) and their corresponding orthonormal eigenvectors as v(k). Then, if we define the smear-

ing kernel in Eq. (3.7) as K =
(

1 + σ2
s

4nσ
∆̃
)nσ

, we can express the kernel in the eigenbasis of

the GCL:

Kab(x, y) = δx4,y4
∑
k

wk v
(k)
a (x)v

(k)
b (y)∗, (3.8)

where we suppress the flavor index, and where wk ∈ R+. Since K is written in terms of ∆̃,

it is trivial to write down,

wk =

(
1− σ2

s

4nσ
λ(k)

)nσ
. (3.9)

It is then also easy to see that,

lim
nσ→∞

wk = exp

(
−1

4
σ2
sλ

(k)

)
. (3.10)

We can now see the advantage of working in the eigenbasis of the GCL: the weights, wk, of

higher modes of ∆̃ are exponentially suppressed. We can then investigate the possibility of

modifying the weights to neglect higher-lying contributions. One simple way to accomplish

this is the so-called Laplacian Heaviside (LapH) smearing scheme, introduced by Peardon,

Morningstar, et al. in Ref. [27]. This procedure sets the weights to be,

wk = Θ
(
σ2
s − λ(k)

)
, (3.11)

where Θ is the Heaviside step function, and σ2
s acts as a hard cutoff. The LapH smearing

kernel is now defined as

S = Θ
(
σ2
s + ∆̃

)
, (3.12)

and our smeared quark fields are now given by

ψ̃(x) = Sψ(x). (3.13)

3.1.3 Displacements

Hadrons are objects which are extended in space. Therefore, if we hope to capture radial

and orbital structure when computing the hadronic correlation functions, then we must
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Figure 3.2: Effective masses (defined in Sec. 5.4.1) Mi(t) of a single nucleon for three dif-
ferent smearing schemes and three different displacement schemes. Black markers denote
unsmeared operators and red markers denote smeared operators. Figure taken from Ref. [28].
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displace the quark fields, and do so in a gauge-covariant way. The displacements we consider

are straight-path displacements along the spatial lattice unit vectors: j = ±1,±2,±3. We

define the gauge-covariant displacement operator in the jth direction by,

D̃
(p)
j (x, x′) = Ũj(x)Ũj(x+ ĵ) . . . Ũj(x+ (p− 1)ĵ)δx′,x+pĵ, (3.14)

where p ≥ 1 denotes the number of steps by which the field is displaced. For convenience,

we also define a zero-displacement operator, D̃
(p)
0 (x, x′) = δxx′ . Including color indices a

and a′, it can be shown that D̃
(p)†
j (x, x′)aa

′
= D̃

(p)
−j (x, x′)aa

′
. From this, the following useful

properties can be derived:(
D̃

(p)
j ψ

)
(x) =

∑
x′

D̃
(p)
j (x, x′)ψ (x′) = Ũj(x)Ũj(x+ ĵ) . . . Ũj(x+ (p− 1)ĵ)ψ(x+ pĵ),(

χD̃
(p)†
j

)
(x) =

∑
x′

χ (x′) D̃
(p)†
j (x′, x) =

∑
x′

χ (x′) D̃
(p)
−j (x′, x)

= χ(x+ pĵ)Ũ †j (x+ (p− 1)ĵ) . . . Ũ †j (x+ ĵ)Ũ †j (x),

(3.15)

from which it can be seen,

χ(x)
(
D̃

(p)
j ψ

)
(x) =

(
χD̃

(p)
j

)
(x)ψ(x). (3.16)

The final building blocks for our hadronic operators are covariantly-displaced, smeared

quark fields and can be summarized as follows:

(
D̃

(p)
j1
. . . D̃

(p)
jn
ψ̃
)A
aα
,
(
χ̃D̃

(p)†
j1

. . . D̃
(p)†
jn

)A
aα
, −3 ≤ ji ≤ 3, (3.17)

where A indexes flavor, a indexes color, and α indexes Dirac spin.

3.2 Symmetries on the Lattice

Symmetries are very useful for characterizing and labeling stationary states in quantum me-

chanics. Conserved quantities, such as momentum and charge, emerge from the symmetries

of a given system, and so in order to identify the relevant quantum numbers of a theory,

we must identify its relevant symmetries. The primary symmetries we are interested in are:

(cubic) rotations, G-parity, isospin, and flavor. SU(3) gauge symmetry is also a central com-

ponent of the theory, but since all of the final objects we study are colorless, it does not

contribute to how we label stationary states.
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Figure 3.3: The rotation axes corresponding to the rotations Cnj. Figure taken from Ref. [28].

3.2.1 Rotations

Given the nature of a discrete, finite-volume lattice, one can easily see that the SO(3) rotation

group is no longer a symmetry group of any lattice gauge theory. Because of this, angular

momentum is not conserved on the lattice, and therefore angular momentum is no longer

a good quantum number. We will see that instead of using the irreducible representations

(irreps) of SO(3) to label stationary states, we use the irreps of the octahedral group.

To aid in discussions of cubic rotations on the lattice, the following notation will be used,

where the axes of rotation, j = x, y, z, a, b, c, d, α, β, γ, δ, are shown in Figure 3.3:

E : the identity

Cnj : proper rotation of angle
2π

n
about the axis Oj, where n = 2, 3, 4

Is : spatial inversion

(3.18)

The octahedral point group, O, consists of all allowed rotations on a three-dimensional

spatially-isotropic cubic lattice, and contains the following elements:

Group element Axes, j

E

C4j, C
−1
4j x, y, z

C2j x, y, z, a, b, c, d, e, f

C3j, C
−1
3j α, β, γ, δ
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J nJA1
nJA2

nJE nJT1 nJT2

0 1 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 1

3 0 1 0 1 1

4 1 0 1 1 1
...

...
...

...
...

...

(a)

J nJG1
nJG2

nJH
1
2

1 0 0

3
2

0 0 1

5
2

0 1 1

7
2

1 1 1

9
2

1 0 2
...

...
...

...

(b)

Table 3.1: Occurrence numbers for (a) integer values of angular momentum and (b) half-
integer values of angular momentum

There are five irreps of O. Following the Mulliken convention, they are named A1, A2, E,

T1, T2, and they have dimensions 1, 1, 2, 3, 3, respectively. In order to make connections to

infinite-volume continuum physics, the Table 3.1a gives the occurrence numbers nJΓ, which

are the number of times the irrep Γ of O occurs in the subduction of the irrep J of SO(3).

When we take the direct product of O with the group {E, Is}, adding in spatial inversions

to our proper rotations, we get what is known as the point group Oh. This group has twice

the number of irreps as O, and so we add the labels g/u (standing for the German gerade

and ungerade) to our irreps, which denote even and odd parity, respectively. The irreps of

Oh are A1g, A1u, A2g, A2u, Eg, Eu, T1g, T1u, T2g, and T2u.

When we incorporate spin into the picture, we must introduce a new generator that

represents rotating by 2π about any axis. Doing so, we arrive at the double octahedral point

group OD. Sparing the group-theoretical details, OD has three irreps in addition to all of the

irreps of O. These are named G1, G2, and H, and are of dimension 2, 2, and 4, respectively.

Table 3.1b gives the occurrence numbers of these three additional irreps in the subductions

of the J irreps of SU(2). Like for Oh, when we incorporate spatial inversions into OD, we

arrive at the double point group OD
h , which has twice the number of irreps of OD. The

additional irreps are G1g, G1u, G2g, G2u, Hg, and Hu.

Moving irreps

In order to identify operators that create and annihilate particles of definite momentum p,

we must subduce the representations of OD
h onto the little group of p. The little group

of p consists of the subgroup of the abelian group of lattice transformations which leave

the momentum invariant. For p = (0, 0, 0), the little group is simply the point group Oh.
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C4v

C1 {E}

C2 {C2z}

C3 {C4z, C
−1
4z }

C4 {IsC2x, IsC2y}

C5 {IsC2a, IsC2b}

(a)

C2v

C1 {E}

C2 {C2e}

C3 {IsC2f}

C4 {IsC2x}

(b)

C3v

C1 {E}

C2 {C3δ, C
−1
3δ }

C3 {IsC2b, IsC2d, IsC2f}

(c)

C4vD

C1 {E}

C2 {C2z, C2z}

C3 {C4z, C
−1
4z }

C4 {IsC2x, IsC2y,

IsC2x, IsC2y}

C5 {IsC2a, IsC2b,

IsC2a, IsC2b}

C6 {E}

C7 {C4z, C
−1

4z }

(d)

C2vD

C1 {E}

C2 {C2e, C2e}

C3 {IsC2f , IsC2f}

C4 {IsC2x, IsC2x}

C5 {E}

(e)

C3vD

C1 {E}

C2 {C3δ, C
−1
3δ }

C3 {IsC2b, IsC2d, IsC2f}

C4 {E}

C5 {C3δ, C
−1

3δ }

C6 {IsC2b, IsC2d, IsC2f}

(f)

Table 3.2: Group elements and conjugacy classes for the momentum little groups.

For any on-axis momentum, e.g. p = (0, 0, 1), the little group is C4v, which includes four

rotations of angle π
2

about the axis along p, as well as four reflections about reflection planes

containing that axis. The group elements are contained in three conjugacy classes, which

are given in Table 3.2a. For any planar-diagonal momentum, e.g. p = (0, 1, 1), the little

group is C2v, the elements and conjugacy classes of which are given in Table 3.2b. For any

cubic-diagonal momentum, e.g. p = (1, 1, 1), the little group is C3v; its elements and their

conjugacy classes are given in Table 3.2c. Additionally, in order to construct the analogous

spinorial little groups (called CD
4v, C

D
2v, and CD

3v, respectively), we include the 2π-rotation

generator E. Tables 3.2d—3.2f give the elements and conjugacy classes for the spinorial

little groups.

Finally, the subductions of the irreps of OD
h onto the above little groups leaves us with the
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Λ(Oh) Λ(Oh) ↓ C4v Λ(Oh) ↓ C3v Λ(Oh) ↓ C2v

A1g A1 A1 A1

A1u A2 A2 A2

A2g B1 A2 B2

A2u B2 A1 B1

Eg A1 ⊕B1 E A1 ⊕B2

Eu A2 ⊕B2 E A2 ⊕B1

T1g A2 ⊕ E A2 ⊕ E A2 ⊕B1 ⊕B2

T1u A1 ⊕ E A1 ⊕ E A1 ⊕B1 ⊕B2

T2g B2 ⊕ E A1 ⊕ E A1 ⊕ A2 ⊕B1

T2u B1 ⊕ E A2 ⊕ E A1 ⊕ A2 ⊕B2

G1g/u G1 G G

G2g/u G2 G G

Hg/u G1 ⊕G2 F1 ⊕ F2 ⊕G 2G

Table 3.3: Subductions of the irreps of the octahedral group onto the irreps of the little
groups C4v, C3v, and C2v.

irreps in which we expect to find moving particles. These subductions are given in Table 3.3.

3.2.2 Isospin and Quark Flavor

In the MS renormalization scheme at a scale of ∼ 2 GeV, the so-called “current-quark mass”

of the up quark is mu = 2.16+0.49
−0.26 MeV and that of the down quark is md = 4.67+0.48

−0.17 MeV [4].

While these masses differ by more than a factor of 2, their difference is very small compared

to the next heaviest quark, which is the strange quark, measuring at ms = 93+11
−5 MeV [4].

Therefore, we find it justified to make an approximation and set mu = md in our calculations.

Since pure QCD also conserves flavor (we do not include electroweak interactions), our theory

now possesses an internal SU(2) symmetry, the conserved quantity of which is referred to

as isospin. This has the same mathematical structure as normal spin, and we can therefore

think of it analogously, but it should be stressed that isospin has no relation to physical

space and does not denote any kind of angular momentum. The up quark and down quark

states can then be thought of as a doublet of states having total isospin I = 1
2
. Just like
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with SU(2) spin, isospin can be decomposed onto three axes. By convention, we assign the

third isospin axis component of the up quark to be I3 = 1
2

and that of the down quark to

be I3 = −1
2
. Their corresponding antiparticles have the same I, but I3 → −I3. The work

presented here is done in a theory of Nf = 2 + 1 QCD, meaning our theory contains two

light quarks, referring to the up and down quarks, and a strange quark. (The strange quark

is sometimes referred to as a light quark in other contexts, such as in Ref. [4].)

An SU(2) isospin rotation is of the form

URτ = exp{−iατ3} exp{−iβτ2} exp{−iγτ3} = exp(−iϕ · τ ), (3.19)

where τ1, τ2, τ3 are the three generators of isospin rotations, α, β, and γ are the Euler angles,

and ϕ is the rotation vector. Under such an isospin rotation, an operator O
(I)

I3
transforms

according to the I irreducible representation as

URτO
(I)

I3
U †Rτ =

∑
I′3

O
(I)

I′3
D

(I)

I′3,I3
(Rτ ), (3.20)

where D(I)(Rτ ) are the Wigner rotation matrices. In order for an operator O
(I)

I3
to transform

irreducibly under isospin, it must satisfy the following properties:[
τ3, O

(I)

I3

]
= I3O

(I)

I3
, (3.21)[

τ+, O
(I)

I3

]
=
√

(I − I3)(I + I3 + 1)O
(I)

I3+1, (3.22)[
τ−, O

(I)

I3

]
=
√

(I + I3)(I − I3 + 1)O
(I)

I3−1, (3.23)[
τ3,
[
τ3, O

(I)

I3

]]
+

1

2

[
τ+,
[
τ−, O

(I)

I3

]]
+

1

2

[
τ−,
[
τ+, O

(I)

I3

]]
= I(I + 1)O

(I)

I3
, (3.24)

where τ± = τ1± iτ2. For annihilation operators, an operator O
(I)
I3

should transform according

to the I irreducible representation as

URτO
(I)
I3
U †Rτ =

∑
I′3

O
(I)

I′3
D

(I)

I′3,I3
(Rτ )

∗. (3.25)
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Annihilation operators that are irreducible under isospin rotations should satisfy:[
τ3, O

(I)
I3

]
= −I3O

(I)
I3
, (3.26)[

τ+, O
(I)
I3

]
= −

√
(I − I3)(I + I3 + 1)O

(I)
I3+1, (3.27)[

τ−, O
(I)
I3

]
= −

√
(I + I3)(I − I3 + 1)O

(I)
I3−1, (3.28)[

τ3,
[
τ3, O

(I)
I3

]]
+

1

2

[
τ+,
[
τ−, O

(I)
I3

]]
+

1

2

[
τ−,
[
τ+, O

(I)
I3

]]
= I(I + 1)O

(I)
I3
. (3.29)

3.2.3 Charge Conjugation and G-Parity

C-parity can only be a symmetry for electrically neutral states, but as electric charge is not a

relevant quantity in pure QCD, we are motivated to generalize C-parity in order to account

for hadrons in a charged isospin multiplet with average charge of zero in the multiplet,

such as the pion triplet. With C denoting the charge conjugation operator, G-parity can be

explicitly defined as

UG = Ce−iπτ2 . (3.30)

Since charge conjugation is a symmetry of the strong interaction, then when isospin is also a

symmetry, G-parity must be a symmetry as well. The basic building blocks transform under

G-parity as follows. Here, ΓG is the representation matrix for UG and is equal to γ2 in the

Dirac-Pauli, Weyl, and DeGrand-Rossi conventions.

UG (DjSψ(x))uaα U
†
G = −

(
χSD†j(x)

)d
aβ

ΓGβα, (3.31)

UG (DjSψ(x))daα U
†
G =

(
χSD†j(x)

)u
aβ

ΓGβα, (3.32)

UG (DjSψ(x))saα U
†
G = −

(
χSD†j(x)

)s
aβ

ΓGβα, (3.33)

UG

(
χSD†j(x)

)u
aα
U †G = −ΓCαβ (DjSψ(x))uaβ , (3.34)

UG

(
χSD†j(x)

)a
aα
U †G = ΓGαβ (DjSψ(x))uaβ′ , (3.35)

UG

(
χSD†j(x)

)s
aα
U †G = −ΓCαβ (DjSψ(x))saβ . (3.36)

3.3 Single-Hadron Operator Construction

States in continuum, Nf = 2 + 1, pure QCD are classified according to: momentum p, total

spin J , spin projection Jz (or any other axis), parity P = ±1 (at rest), isospin, strangeness,

and G-parity (for hadron multiplets with an average electric charge of zero). In order to
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construct single-hadron operators, we first start with elemental single-hadron operators. An

elemental operator is simply one that is constructed with proper color structure (i.e. it is

gauge-invariant), definite flavor structure, definite position or momentum, but has not been

projected onto relevant symmetry sectors.

3.3.1 Elemental Single-Hadron Operators

Elemental Baryon Operators

An elemental baryon operator can be denoted by ΦABC
αβγ;ijk(p, t). Capital Latin indices denote

flavor, Greek indices denote Dirac spin, and lowercase Latin indices denote displacement

type (to be defined shortly). p and t denote momentum and time slice. Note that there are

no indices for color, since the final operators must be colorless. In order to ensure proper

color structure (i.e. in order to construct gauge invariant operators), there is only one way

to do so, which is by use of the Levi-Civita coupling εabc. In order to construct a single-site

(i.e. no displacement) three-quark object out of three smeared and displaced quark fields,

we form their product with a Levi-Civita coupling:

εabcψ̃
A
aαψ̃

B
bβψ̃

C
cγ. (3.37)

To see that this is invariant under an SU(3) transformation ψ̃a → Uaa′ψ̃a′ , we use the fact

that det[U ] = 1:

εabcψ̃
A
aαψ̃

B
bβψ̃

C
cγ → εabcUaa′ψ̃

A
a′αUbb′ψ̃

B
b′βUcc′ψ̃

C
c′γ

= det[U ]εa′b′c′ψ̃
A
a′αψ̃

B
b′βψ̃

C
c′γ

= εabcψ̃
A
aαψ̃

B
bβψ̃

C
cγ

(3.38)

We do not restrict ourselves to single-site operators, however. We consider singly-, doubly-,

and triply-displaced operators. For convenience, all configurations for displaced baryon op-

erators are shown in Figure 3.4. For simplicity, we choose to displace each quark field in each

single-hadron-operator by the same length p. A singly-displaced operator can be written as

εabcψ̃
A
aαψ̃

B
bβ

(
D̃

(p)
j ψ̃

)C
cγ
. (3.39)

A doubly-displaced operator has two configurations, an “I” configuration and an “L” con-

figuration. A doubly-displaced-I operator is given by

εabcψ̃
A
aα

(
D̃

(p)
−j ψ̃

)B
bβ

(
D̃

(p)
j ψ̃

)C
cγ
, (3.40)
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Figure 3.4: Diagrammatic depiction of baryon displacements, taken from Ref. [29].

a doubly-displaced-L operator is given by

εabcψ̃
A
aα

(
D̃

(p)
j ψ̃

)B
bβ

(
D̃

(p)
k ψ̃

)C
cγ

|j| 6= |k|, (3.41)

a triply-displaced-T operator is given by

εabc

(
D̃

(p)
−j ψ̃

)A
aα

(
D̃

(p)
j ψ̃

)B
bβ

(
D̃

(p)
k ψ̃

)C
cγ

|j| 6= |k|, (3.42)

and finally, a triply-displaced-O operator is given by

εabc

(
D̃

(p)
i ψ̃

)A
aα

(
D̃

(p)
j ψ̃

)B
bβ

(
D̃

(p)
k ψ̃

)C
cγ

|i| 6= |j| 6= |k|. (3.43)

We can then write down the final expression for an elemental baryon and an elemental

antibaryon operator, projected onto definite momentum p:

ΦABC
αβγ;ijk(p, t) =

∑
x

e−ip·x εabc

(
D̃

(p)
i ψ̃

)A
aα

(x, t)
(
D̃

(p)
j ψ̃

)B
bβ

(x, t)
(
D̃

(p)
k ψ̃

)C
cγ

(x, t)

Φ
ABC

αβγ;ijk(p, t) =
∑
x

eip·x εabc

(
χ̃D̃

(p)†
k

)C
cγ

(x, t)
(
χ̃D̃

(p)†
j

)B
bβ

(x, t)
(
χ̃D̃

(p)†
i

)A
aα

(x, t),

(3.44)

where we sum over all spatial lattice sites x to project onto definite momentum.

Categorizing baryon flavor proceeds as follows. In Nf = 2 + 1 QCD, our baryons can

have possible total isospin values of I = 0, 1
2
, 1, 3

2
, with −I ≤ I3 ≤ I. A strange quark

is said to have strangeness S = −1, and so our baryons can possess strangeness values of

S = 0,−1,−2,−3. (Antibaryons can have corresponding positive values of S). Table 3.4
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Quarks I S Baryon Names

lll 1
2

0 n, p

lll 3
2

0 ∆−, ∆0, ∆+, ∆++

lls 0 -1 Λ0

lls 1 -1 Σ−, Σ0, Σ+

lss 1
2

-2 Ξ−, Ξ0

sss 0 -3 Ω−

Table 3.4: Quark content for different baryons. (l refers to light quark, i.e. u or d.)

gives the possible quark combinations, their isospin and strangeness values, and their baryon

names. The different SU(2) flavor combinations are given in Table 3.5. The final flavor

structures of the maximal-I3 elemental baryon operators are given in Table 3.6.

Elemental Meson Operators

An elemental meson operator can be denoted by ΦAB
αβ;ijk, with the same index conventions as

the elemental baryon operators. The only way to construct a quark-antiquark object that

is gauge-invariant is with the use of a kronecker delta. Therefore, we can write a single-site

meson operator as

δabχ̃
A
aαψ̃

B
bβ. (3.45)

To see that this is gauge-invariant, we just use the unitarity of SU(3) color transformations:

δabχ̃
A
aαψ̃

B
bβ → δabU

†
a′aUbb′χ̃

A
a′αψ̃

B
b′β

= U †a′aUab′χ̃
A
a′αψ̃

B
b′β

= δa′b′χ̃
A
a′αψ̃

B
b′β

= δabχ̃
A
aαψ̃

B
bβ.

(3.46)

In addition to single-site meson operators, we also make use of singly-, doubly-, and triply-

displaced operators, which are represented pictorially in Figure 3.5. As with the baryons,

each quark field in a single-hadron operator is displaced by the same length p. A singly-

displaced operator is given by

δabχ̃
A
aα

(
D̃

(p)
j ψ̃

)B
bβ
, (3.47)
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I I3 S SU(2) flavor

1
2

1
2

0
√

1
2
(|udu〉 − |duu〉)

1
2

1
2

0
√

1
6
(2 |uud〉 − |udu〉 − |duu〉)

1
2
−1

2
0

√
1
2
(|udd〉 − |dud〉)

1
2
−1

2
0

√
1
6
(−2 |ddu〉+ |udd〉+ |dud〉)

3
2

3
2

0 |uuu〉
3
2

1
2

0
√

1
3
(|uud〉+ |udu〉+ |duu〉)

3
2
−1

2
0

√
1
3
(|ddu〉+ |dud〉+ |udd〉)

3
2
−3

2
0 |ddd〉

0 0 −1
√

1
2
(|uds〉 − |dus〉)

0 0 −1
√

1
2
(|usd〉 − |dsu〉)

0 0 −1
√

1
2
(|sud〉 − |sdu〉)

1 1 −1 |uus〉

1 1 −1 |usu〉

1 1 −1 |suu〉

1 0 −1
√

1
2
(|uds〉+ |dus〉)

1 0 −1
√

1
2
(|usd〉+ |dsu〉)

1 0 −1
√

1
2
(|sud〉+ |sdu〉)

1 −1 −1 |dds〉

1 −1 −1 |dsd〉

1 −1 −1 |sdd〉
1
2

1
2
−2 |uss〉

1
2

1
2
−2 |sus〉

1
2

1
2
−2 |ssu〉

1
2
−1

2
−2 |dss〉

1
2
−1

2
−2 |sds〉

1
2
−1

2
−2 |ssd〉

0 0 −3 |sss〉

Table 3.5: The different flavor combinations corresponding the I, I3, and S quantum num-
bers.
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Figure 3.5: Diagrammatic depiction of meson displacements, taken from Ref. [30].

a double-displaced-L operator is given by

δab

(
χ̃D̃

(p)†
j

)A
aα

(
D̃

(p)
k ψ̃

)B
bβ
|j| 6= |k|, (3.48)

a triply-displaced-U operator is given by

δab

(
χ̃D̃

(p)†
j

)A
aα

(
D̃

(p)
k D̃

(p)
j ψ̃

)B
bβ
|j| 6= |k|, (3.49)

and finally, a triply-displaced-O operator is given by(
χ̃D̃

(p)†
i

)A
aα

(
D̃

(p)
j D̃

(p)
k ψ̃

)B
bβ
|i| 6= |j| 6= |k|. (3.50)

We can write down the final expression for an elemental meson and an elemental antimeson

operator with definite momentum p:

ΦAB
αβ;ijk(p, t) =

∑
x

e−ip·(x+ 1
2

(da+db))δab

(
χ̃D̃

(p)†
i

)A
aα

(x, t)
(
D̃

(p)
j D̃

(p)
k ψ̃

)B
bβ

(x, t)

Φ
AB

αβ;ijk(p, t) =
∑
x

eip·(x+ 1
2

(da+db))δab

(
χ̃D̃

(p)†
k D̃

(p)†
j

)B
bβ

(x, t)
(
D̃

(p)
i ψ̃

)A
aα

(x, t),

(3.51)

where dα and dβ are the displacement vectors of the quark and antiquark fields. They are

included in the phases of the momentum projections in order to maintain proper transfor-

mation under G-parity.

In addition to considering isospin and strangeness, we must also consider G-parity for

flavor-neutral mesons. The flavor structures for maximal-I3 meson annihilation operators are

given in Table 3.6. We ultimately project onto definite G-parity, however, so it is convenient

to consider the operators in Table 3.7 as our elemental meson operators.

Elemental Tetraquark Operators

In order to construct a tetraquark operator, we must consider the various ways to construct

a color-singlet four-quark object out of four quark fields. As seen in Ref. [31], the Clebsch-
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Hadron I = I3 S G Annihilation Operators

∆++ 3
2

0 Φuuu
αβγ

Σ+ 1 −1 Φuus
αβγ

N+ 1
2

0 Φuud
αβγ − Φduu

αβγ

Ξ0 1
2

−2 Φssu
αβγ

Λ0 0 −1 Φuds
αβγ − Φdus

αβγ

Ω− 0 −3 Φsss
αβγ

f, f ′, η, η′ 0 0 1
Φuu
αβ + Φdd

αβ + UG
(
Φuu
αβ + Φdd

αβ

)
U †G

Φss
αβ + UGΦss

αβU
†
G

h, h′, ω, φ 0 0 −1
Φuu
αβ + Φdd

αβ − UG
(
Φuu
αβ + Φdd

αβ

)
U †G

Φss
αβ − UGΦss

αβU
†
G

b+, ρ+ 1 0 1 Φdu
αβ + UGΦdu

αβU
†
G

a+, π+ 1 0 −1 Φdu
αβ − UGΦdu

αβU
†
G

K+, K∗+ 1
2

1 Φsu
αβ

K
0
, K
∗0 1

2
-1 Φds

αβ

Table 3.6: Maximal-I3 hadrons and their corresponding elemental annihilation operators.

Name I I3 S G Annihilation Operator

ηαβ 0 0 0 1 Φuu
α,β + Φdd

α,β

φαβ 0 0 0 −1 Φss
α,β

π+
αβ 1 1 0 −1 Φdu

α,β

K+
αβ

1
2

1
2

1 Φsu
α,β

K
0

αβ
1
2

1
2
−1 Φds

α,β

π0
αβ 1 0 0 −1 Φdd

α,β − Φuu
α,β

π−αβ 1 −1 0 −1 Φud
α,β

K0
αβ

1
2
−1

2
−1 Φsd

α,β

K−αβ
1
2
−1

2
1 Φus

α,β

Table 3.7: Final meson annihilation operators after projecting onto definite G-parity.
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Gordan decompositions show that the only way to construct a color-singlet is by using two

quarks and two antiquarks, and that doing so yields two linearly independent color singlet

objects:

3⊗ 3⊗ 3⊗ 3 = 3⊕ 3⊕ 3⊕ 6⊕ 6⊕ 15⊕ 15⊕ 15⊕ 15,

3⊗ 3⊗ 3⊗ 3 = 3⊕ 3⊕ 3⊕ 6⊕ 6⊕ 6⊕ 15⊕ 15⊕ 24,

3⊗ 3⊗ 3⊗ 3 = 1⊕ 1⊕ 8⊕ 8⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27.

(3.52)

There are 81 basis vectors formed by the quark fields, p∗a(x)q∗b (x)rc(x)sd(x), where each r, s

transforms as a color vector in the fundamental 3 irrep, and so, p∗, q∗ transform in the 3 irrep.

We need two linearly independent and gauge-invariant combinations of these to exhaust all

possible elemental tetraquark operators. It is easy to see that the following combinations

are both linearly independent and gauge-invariant, and thus form a basis for our elemental

tetraquark operators:

TS = (δacδbd + δadδbc) p
∗
a(x)q∗b (x)rc(x)sd(x)

TA = (δαcδbd − δαdδbc) p∗α(x)q∗b (x)rc(x)sd(x).
(3.53)

For the tetraquark operators, we consider five displacement structures, which are given in

Table 3.8 and shown pictorially in Figure 3.6. For zero-momentum, the elemental tetraquark

annihilation and creation operators are then

ΦABCD±
αβµν;jkl(t) =

∑
x

e−ip·x (δabδcd ± δadδbc) qAaαi(x, t)qBbβj(x, t)qCcµk(x, t)qDdνl(x, t),

Φ
ABCD±
αβµν;jkl(t) =

∑
x

eip·x (δabδcd ± δadδbc) qDdνl(x, t)qCcµk(x, t)qBbβj(x, t)qAaαi(x, t),
(3.54)

where q and q are understood to mean smeared, displaced quark and anti-quark fields. For

flavor, we consider various combinations of light and strange quarks, which will be given in

more detail in Chapter 6.

3.3.2 Projecting onto Symmetry Sectors

So far, we have outlined the construction of elemental single-hadron operators, which are

indexed by Dirac spin, flavor, displacement, and momentum. The quantum numbers of inter-

est on our periodic hypercubic lattice, however, are not Dirac spin, but the irreps of OD
h , and

in some circumstances, G-parity. We are therefore tasked with finding linear combinations

of elemental hadron operators which create states possessing the relevant quantum numbers
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Operator type Displacements

SS [d1 = d2 = d3 = d4 = 0]

DDIa [d1 = 0, d2 = j, d3 = 0, d4 = j]

+ [d1 = −j, d2 = 0, d3 = −j, d4 = 0], j = ±1,±2,±3

DDIb [d1 = 0, d2 = 0, d3 = j, d4 = j]

+ [d1 = −j, d2 = −j, d3 = 0, d4 = 0], j = ±1,±2,±3

DDIc [d1 = 0, d2 = j, d3 = j, d4 = 0]

+ [d1 = −j, d2 = 0, d3 = 0, d4 = −j], j = ±1,±2,±3

QDXa [d1 = i, d2 = j, d3 = −i, d4 = −j], i, j = ±1,±2,±3, |i| 6= |j|

QDXb [d1 = i, d2 = −i, d3 = j, d4 = −j], i, j = ±1,±2,±3, |i| 6= |j|

QDXc [d1 = i, d2 = j, d3 = −j, d4 = −i], i, j = ±1,±2,±3, |i| 6= |j|

Table 3.8: Different tetraquark displacement types.

SS DDIa DDIb

QDXbQDXa

Figure 3.6: Diagrammatic depiction of tetraquark displacements, taken from Ref. [28].
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of the theory. That is, we find linear combinations

Ol(t) = c
(l)
αβ...Φ

AB...
αβ... (p, t),

Ol(t) = c
(l)∗
αβ...Φ

AB...

αβ... (p, t),
(3.55)

where l labels the relevant quantum numbers of the theory, and the projection coefficients

clαβ... must be determined.

Finding an operator which creates or annihilates a state with a given quantum number is

equivalent to finding an operator that transforms according to the irreducible representation

of a symmetry group. The particular irreducible representation is denoted by the quantum

number Λ. We say that an annihilation operator OΛλ and its corresponding creation operator

OΛλ
transform according to the λ row of the Λ irreducible representation of a symmetry

transformation R when they satisfy

UROΛλU †R =
∑
µ

OΛµΓ
(Λ)
µλ (R)∗ (3.56)

and

URO
Λλ
U †R =

∑
µ

OΛµ
Γ

(Λ)
µλ (R), (3.57)

where UR is the unitary quantum operator associated with R, Γ(Λ)(R) is the matrix of the

symmetry transformation R in the Λ irreducible representation.

Given a general annihilation operator O, we can can construct an operator OΛλ that

transforms irreducibly using the following [28]:

OΛλ =
dΛ

gG

∑
R∈G

Γ
(Λ)
λµ (R)UROU †R (3.58)

where dΛ is the dimension of Λ, R are the elements of the group G, gG is the order of G, and

all other quantum number indices have been suppressed. The index µ is arbitrary, though

choosing µ = λ guarantees idempotency (P 2 = P ), making it a true projection. It is also

important to note that Eq. (3.58) does not uniquely specify the weights and the phases of

the operators. This is important, because if we strategically set the relative normalizations

of operators of different rows within an irrep, then it can be shown that the two-point

correlation functions do not depend on irrep row. That is, it can be shown that in the

absence of external degeneracy-breaking fields,

〈0|TOΛλF
i (t)OΛλF

j (0) |0〉 = 〈0|TOΛµF
i (t)OΛµF

j (0) |0〉 , (3.59)
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where Λ denotes octahedral irrep, λ denotes irrep row, F denotes all other quantum numbers,

and i & j index different operators in the ΛλF symmetry sector. Ultimately, this allows

us to increase the statistics of our correlator measurements without the need of generating

more gauge configurations, as we will see in Chapter 4.

The details of obtaining the projection coefficients in Eq. (3.55) using the methods out-

lined here are given in Ref. [29].

3.4 Two-Hadron Operator Construction

In order to study scattering and resonance phenomena, it is necessary to probe the spectrum

in the region of two-particle energies. This requires the use of operators which create states

having overlap onto two-particle states. However, (in this work) we only study the spectrum

up to three-particle energy thresholds, and therefore do not design operators to create states

with more than two particles. This is because the well-established methods currently avail-

able to study scattering phenomena on the lattice (e.g. the method of Lüscher [32]) are only

rigorously valid for energies that lie below three-particle thresholds. Rapid progress is un-

derway for three-particle scattering, however [33]. Some applications are given, for example,

in Refs. [34] and [35].

Once we have projected a single-hadron operator onto the relevant symmetry sectors, we

are left with operators which can be written as OII3SpΛλi and its barred counterpart, where the

relevant quantum numbers are isospin I, isospin projection I3, strangeness S, momentum p,

octahedral irrep Λ, and octahedral irrep row λ. All other relevant labels (e.g. G-parity or

displacement type), labeled by the compound index i.

In order to form a final two-hadron operator, we start with a basis of products of single-

hadron operators, as

OIaI3aSapaΛaλaia
OIbI3bSbpbΛbλbib

. (3.60)

These products themselves do not transform irreducibly under isospin, G-parity (when rel-

evant), or the octahedral symmetry group. In order to find linear combinations of these

operator products which transform irreducibly under these symmetry groups, we simply use

the same group-theoretical projection scheme presented in the previous section.

As a final note, it is important to note the difference between a tetraquark operator and

a two-meson operator. A two-meson operator is constructed by separately projecting two

elemental meson operators onto individual symmetry sectors in order to form two final single-

meson operators, and then projecting the product of the two single-meson operators onto

the final desired symmetry sector. A tetraquark operator, on the other hand, is constructed

43



by projecting a single elemental tetraquark operator (containing four quark fields) directly

onto the final desired symmetry sector.
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Chapter 4

Calculation of Correlators using the

Stochastic LapH Method

In Ch. 2, we saw that calculating two-point correlation functions on the lattice using the

Monte Carlo method involves evaluating some function of the inverse of the Dirac matrix,

i.e. some function of the quark propagator. The task of inverting the Dirac matrix is a

formidable one. The Dirac matrix carries indices for spacetime, color, and Dirac spin, so

for a theory of three colors and four Dirac indices on a 323 × 256 lattice, this amounts to a

complex-valued matrix of size ∼ 108 × 108. Storing such a matrix in single precision would

take roughly 80 petabytes, and so calculating the inverse directly is obviously unfeasible.

In this chapter we will discuss methods to tackle this problem that involve stochastically

estimating Dirac matrix inverses. We will see that the path integration over the quark fields

can be done analytically, but it results in a complicated expression involving the gluon field.

The path integration over the gluon field must be estimated using Monte Carlo methods.

4.1 Quark Lines

Calculating a correlator on the lattice involves integrating first over quark fields which are

complex Grassmann valued. Recall from Ch. 2 that such an integration results in some

function f of the Dirac matrix inverse and the determinant of the Dirac matrix. For example,

a meson correlator involves an integral of the form∫
D[ψ, ψ]ψaψbψcψd exp

(
−ψTMψ

)
=
(
M−1

ad M
−1
bc −M

−1
ac M

−1
bd

)
detM, (4.1)

45



and a baryonic correlator inolves an integral of the form∫
D[ψ, ψ] ψa1ψa2ψa3 ψb1ψb2ψb3 exp

(
−ψTMψ

)
=

(
−M−1

a1b1
M−1

a2b2
M−1

a3b3
+M−1

a1b1
M−1

a2b3
M−1

a3b2
+M−1

a1b2
M−1

a2b1
M−1

a3b3

−M−1
a1b2

M−1
a2b3

M−1
a3b1
−M−1

a1b3
M−1

a2b1
M−1

a3b2
+M−1

a1b3
M−1

a2b2
M−1

a3b1

)
detM. (4.2)

In general, including the fact that our quark fields are smeared and covariantly displaced, so

the Grassmann integrals we need to compute are really of the form∫
D[χ, ψ]

∑
αd

facψcχdgdb exp
(
−χTΩψ

)
=
∑
cd

facΩ
−1
cd gdb det Ω, (4.3)

where we have made the substitutions χ ≡ ψγ4 and Ω = γ4M , and where fac and gdb are

c-number coefficients. Each factor of Ω−1 is referred to as a quark line. When computing

temporal correlators, we can classify quark lines as follows:

• forward-time quark lines originate from χ at a time t0 and terminate to ψ at a later

time t

• backward-time quark lines originate from χ at a time t and terminate to ψ at an earlier

time t0

• same-time quark lines originate from χ and terminate to ψ at the same time, either t

or t0.

In a two-point correlator, t0 is referred to as the source time and t is referred to as the sink

time. These different types of quark lines are depicted in Fig. 4.1. Recall the definition of

the smearing operator S from Eq. (3.12) and the covariant displacement operator D from

Eq. (3.14). The quark lines we work with in practice arise from smeared and displaced quark

and antiquark fields, so we refer to

(Dj)abSbcΩ−1
ch Shg(D

†
k)gf = (DjSΩ−1SD†k)af (4.4)

as a forward-time quark line and for convenience denote this by,

Qjk (t, t0) = DjSΩ−1 (t, t0)SD†k. (4.5)
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t
0

t
0

t
0

forward−time line

χ
ψ

t t

χ
ψ χ

ψ

same−time linebackward−time line

tor

Figure 4.1: The three types of quark lines that occur by integrating the quark fields when
evaluating two-point temporal correlators. By convention, time flows from right to left,
following how quantum source and sink operators are written in two-point functions. Figure
taken from Ref. [28].

Similarly, a backward-time quark line is given by [28],

Qjk (t, t0) = (γ5γ4Qjk (t, t0) γ4γ5)∗ = −Qkj(t0, t), (4.6)

and a same-time quark line is given by Qjk(t, t).

4.2 Motivating the Need for Stochastically Estimated

All-to-All Propagators

A single-hadron operator of definite momentum (consider p = 0 without loss of generality)

is a Fourier transform involving a summation over all spatial sites:

O(p = 0, t) =
1

V

∑
x

ϕ(x, t), (4.7)

where ϕ(x, t) is a single-hadron operator located at a spatial site x at time t and V is the

spatial volume of the lattice. A two-point correlator for such a hadron has the form

C(t) =
1

V 2

∑
x,y

〈0|ϕ(x, t+ t0)ϕ(y, t0) |0〉 . (4.8)

Calculating such a correlator appears to involve evaluating quark propagators from all spatial

sites x to all spatial sites y, which is an expensive computation. These are known as all-to-

all propagators. A trick can be used to avoid this by exploiting translational invariance to

47



remove one of the spatial sums, giving

C(t) =
1

V

∑
x

〈0|ϕ(x, t+ t0)ϕ(0, t0) |0〉 . (4.9)

Now we are tasked with evaluating the quark propagator from one single site (the origin)

to all spatial site, which is a much easier task. These propagators are known as point-to-all

propagators.

Unfortunately, we cannot use this translational invariance trick in all cases. Many of

our calculations necessitate the use of multi-hadron correlators (for example, if we wish to

study resonances). If we consider a two-hadron operator with zero total momentum and

back-to-back constituent momentum, such an operator has the form

O1(p, t)O2(−p, t) =
1

V 2

∑
x,y

ϕ1(x, t)ϕ2(y, t)e−ip(x−y). (4.10)

When forming a two-point correlator with such an operator, we can no longer exploit trans-

lational variance to remove the need of calculating all-to-all propagators.

Additionally, calculations involving disconnected diagrams (such isoscalar meson correla-

tors) are not amenable to point-to-all methods. Many calculations in the past have neglected

contributions from disconnected diagrams, but such calculations ignore important sea quark

effects which have a demonstrable effect on the resulting spectrum. There is therefore a need

for a method that can efficiently calculate all-to-all propagators.

4.3 Stochastically Estimating the Quark Propagator

Since calculating Dirac matrix inverses is just an intermediate step in a larger Monte Carlo

calculation, the accuracy of which is determined by the uncertainty in sampling over the

gauge fields, it is unnecessary to calculate these inverses exactly. We can instead use Monte

Carlo subsampling, or Monte Carlo within Monte Carlo, to stochastically estimate the quark

propagators on each gauge configuration. Consider an N × N complex matrix M whose

inverse we wish to stochastically estimate, and a random noise vector η whose expectations

satisfy E(ηi) = 0 and E(ηiη
∗
j ) = δij. Assume that for any η we can solve (say, by some

variation of the conjugate gradient method) MX = η for X. Then X = M−1η and

E
(
Xiη

∗
j

)
= E

(∑
k

M−1
ik ηkη

∗
j

)
=
∑
k

M−1
ik E

(
ηkη

∗
j

)
=
∑
k

M−1
ik δkj = M−1

ij . (4.11)
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We can then in principle obtain a Monte Carlo estimate of M−1
ij by sampling over NR random

noise vectors:

M−1
ij ≈ lim

NR→∞

1

NR

NR∑
r=1

X
(r)
i η

(r)∗
j , where MX(r) = η(r). (4.12)

In practice, the variances that result in estimating Dirac matrix inverses in this way are

too large to be useful. Notice that the above estimate only becomes exact in the limit of

NR →∞ which requires the computation of an infinite amount of solution vectors, whereas

we can achieve an exact result by only solving N linear systems. A technique known as

dilution [36, 37, 38] can tackle this issue by guaranteeing that the M−1 is solved exactly

in the limit NR → N . The maximal dilution strategy proceeds as follows: Decompose a

noise vector η(r) into a sum of vectors η(r)[s] whose components are all zero except for the sth

component, that is,

η
(r)
j =

N∑
s=1

η
(r)[s]
j , η

(r)[s]
j = η

(r)
j δjs ( no sum over j). (4.13)

Therefore, defining X(r)[s] to be the solution of MX(r)[s] = η(r)[s],

N∑
s=1

X
(r)[s]
i η

(r)[s]∗
j =

∑
s

M−1
is η

(r)
s η

(r)[s]∗
j

=
∑
s

M−1
is η

(r)
s η

(r)∗
j δsj

= M−1
ij η

(r)
j η

(r)∗
j , ( no sum over j).

(4.14)

If we choose noise vectors that are guaranteed to have unit modulus (such as Z2, Z4 or

U(1) noise vectors), then it is evident that only one noise vector is needed, and M−1 can be

determined exactly by solving N systems.

This maximal dilution strategy solves M−1 exactly, but requires the solution and storage

of N solution vectors, so it is no more feasible than computing the inverse outright. However,

it suggests that weaker dilution schemes may greatly reduce the variance, and this is shown

to be the case in Ref. [7]. Diluting a noise vector is simply the application of projection

matrices onto the noise vector, i.e.

η[a] = P (a)η, (4.15)

where η is a noise vector and P (a) is a projection matrix. Maximal dilution corresponds

to N such matrices (think for example of the projectors ei ⊗ ei in the standard basis) and

solves the system exactly, but weaker dilution schemes contain fewer projections, speeding

up computation at the cost of increasing variance. In general, any complete set of projection
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matrices P (a) can be used to define a dilution scheme. Observe that

M−1
ij = M−1

ik δkj =
∑
a

M−1
ik P

(a)
kj =

∑
a

M−1
ik P

(a)
kk′P

(a)
k′j

=
∑
a

M−1
ik P

(a)
kk′ δk′j′P

(a)
j′j =

∑
a

M−1
ik P

(a)
kk′E

(
ηk′η

∗
j′

)
P

(a)
j′j

=
∑
a

M−1
ik E

(
P

(a)
kk′ ηk′η

∗
j′P

(a)
j′j

)
.

(4.16)

Define
η

[a]
k = P

(a)
kk′ ηk′ ,

η
[a]∗
j = η∗j′P

(a)
j′j = P

(a)∗
jj′ η

∗
j′ ,

(4.17)

and define X [a] as the solution of

MikX
[a]
k = η

[a]
i . (4.18)

From this, we find an expression for M−1 that can be used to calculate a Monte Carlo

estimate:

M−1
ij =

∑
a

M−1
ik E

(
η

[a]
k η

[a]∗
j

)
=
∑
a

E
(
X

[a]
i η

[a]∗
j

)
. (4.19)

For Zn or U(1) noise vectors,

V
(
Re
(
ηiη
∗
j

))
= V

(
Im
(
ηiη
∗
j

))
=

1

2
(1− δij) , (4.20)

where V denotes the variance. This give zero variance for the diagonal elements, but intro-

duces variance for the off-diagonal elements. Dilution, on the other hand, guarantees zero

variance for many of the off-diagonal terms. Observe that

ηkη
∗
j = δkk′ηk′η

∗
j′δj′j =

∑
ab

P
(a)
kk′ ηk′η

∗
j′P

(b)
j′j =

∑
ab

η
[a]
k η

[b]∗
j 6=

∑
a

η
[a]
k η

[a]∗
j , (4.21)

but

E
(
ηkη

∗
j

)
=
∑
a

E
(
η

[a]
k η

[a]∗
j

)
, since P (a)P (b) = δabP (a). (4.22)

Clearly,

V
(
ηkη

∗
j

)
= V

(∑
ab

η
[a]
k η

[b]∗
j

)
=
∑
ab

V
(
η

[a]
k η

[b]∗
j

)
≥
∑
a

V
(
η

[a]
k η

[a]∗
j

)
. (4.23)
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4.3.1 Application to Quark Lines

We wish to stochastically estimate a quark line

Qjk = DjSΩ−1SD†k. (4.24)

We introduce noise vectors (having spin, color, space, and time indices) satisfying

E(η) = 0, E
(
ηη†
)

= I, (4.25)

where I is the identity matrix. Inserting the identity into the expression for Qjk gives

Qjk = DjSΩ−1E
(
ηη†
)
SD†k

= E
(
DjSΩ−1η (DkSη)†

)
,

(4.26)

using the hermiticity of S. Defining

Ωφ = η (4.27)

gives

Qjk = E
(
DjSφ (DkSη)†

)
= E

(
φjη

†
k

)
,

(4.28)

where

ηj = DjSη and φj = DjSφ. (4.29)

This reveals a great advantage of this method: the quark lines factor into outer products of

source vectors and sink vectors. This will allow us to fully construct the source and sinks

separately, and then combine them to form various single- and multi-hadron correlators.

More will be said about this shortly.

To reduce variance via noise dilution, we consider a complete set of dilution projectors

P (a) which are indexed by spin, color, space, and time as follows,

Qjk =
∑
a

DjSΩ−1P (a)P (a)†SD†k

=
∑
a

DjSΩ−1P (a)E
(
ηη†
)
P (a)†SD†k

=
∑
a

E
(
DjSΩ−1P (a)η

(
DkSP (a)η

)†)
=
∑
a

E
(
φ

[a]
j η

[a]†
k

)
,

(4.30)
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where we have defined
η

[a]
j = DjSη[a], η[a] = P (a)η

φ
[a]
j = DjSφ[a], Ωφ[a] = η[a].

(4.31)

Since we use LapH-smeared quark fields, we are motivated to introduce noise vectors ρ

only in the LapH subspace (the vector space spanned by the lowest N eigenvectors of the

gauge-covariant Laplacian) which are indexed only by spin, time, and Laplacian eigenmode

number, rather than noise vectors in the full spin/color/space/time vector space. Ref. [7]

demonstrates a significant cost reduction in doing so. The process of stochastically estimating

quark lines by introducing diluted noise vectors only in the LapH subspace is known as the

stochastic LapH method. Explicitly, we can evaluate a forward-time quark line as follows:

Qjk = DjSΩ−1SD†k
= DjSΩ−1VsV

†
s D
†
k

=
∑
a

DjSΩ−1VsP
(a)P (a)†V †s D

†
k

=
∑
a

DjSΩ−1VsP
(a)E

(
ρρ†
)
P (a)†V †s D

†
k

=
∑
a

E
(
DjSΩ−1VsP

(a)ρ
(
DkVsP

(a)ρ
)†)

,

(4.32)

where Vs is a matrix whose columns are the N lowest eigenvectors of the gauge-covariant

Laplacian. We then define the displaced-smeared-diluted source and sink vectors by

%
[a]
j = DjVs%

[a], %[a] = P (a)ρ

ϕ
[a]
j = DjSϕ[a], Ωϕ[a] = Vs%

[a],

(4.33)

giving

Qjk =
∑
a

E
(
ϕ

[a]
j %

[a]†
k

)
. (4.34)

4.3.2 Correlator Factorization

An important result of this stochastic method is that correlators end up factorizing into

various combinations of source and sink vectors. We can see this by considering a baryon-

baryon correlator as an example to sketch out this process. A correlation matrix for baryons

can be written as (c.f. Ch. 3),

Cll (tF − t0) =
〈
Bl (tF )Bl (t0)

〉
, (4.35)
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where l and l are compound indices labeling the quantum numbers of interest. In practice,

we average over all source times t0 for increased statistics. In terms of our elemental baryon

operators and the projection coefficients, we can write this as

Cll (tF − t0) =c
(l)
αβγc

(l)∗
αβγ

〈
ΦABC
αβγ (tF ) Φ

ABC

αβγ (t0)
〉

=c
(l)
αβγc

(l)∗
αβγ

∑
xx

εabcεabce
−ip·(x−x)

×
〈
qAaα (x, tF ) qBbβ (x, tF ) qCcγ (x, tF )

×qCcγ (x, t0) qB
bβ

(x, t0) qAaα (x, t0)
〉
,

(4.36)

where the l and l have the same three-momentum p. Computing the path integral over the

Grassmann fields yields the following sum over various products of quark lines (i.e. the Wick

contractions),

Cll(t) = c
(l)
αβγc

(l)∗
αβγ

∑
xx

εabc εabce
−ip·(x−x)

×
〈
Q

(AA)
aα;aαQ

(BB)

bβ;bβ
Q

(CC)
cγ;cγ −Q

(AA)
aα;aαQ

(BC)
bβ;cγQ

(CB)

cγ;bβ

− Q
(AB)

aα;bβ
Q

(BA)
bβ;aαQ

(CC)
cγ;cγ −Q

(AC)
aα;cγQ

(BB)

bβ;bβ
Q

(CA)
cγ;aα

+ Q
(AC)
aα;cγQ

(BA)
bβ;aαQ

(CB)

cγ;bβ
+Q

(AB)

aα;bβ
Q

(BC)
bβ;cγQ

(CA)
cγ;aα

〉
U
, (4.37)

where we have defined t ≡ tF − t0, where time and spacial labels have been omitted, and

where

〈f(U)〉U =

∫
DUf(U) det(M [U ])e−SG[U ]∫
DU det(M [U ])e−SG[U ]

. (4.38)

This expression is depicted diagramatically in Fig. 4.2.

Using Eq. (4.34), we can dramatically simplify the above expression for Cll(t). Let us

first define the following quantity,

B[b1b2b3]
l (ϕ1, ϕ2, ϕ3; t) = c

(l)
αβγ

∑
x e
−ip·xεabc

×ϕ[b1]
aαxt (ρ1)ϕ

[b2]
bβxt (ρ2)ϕ

[b3]
cγxt (ρ3) ,

(4.39)

where b1, b2, and b3 are dilution indices, and we use a short-hand notation to denote ϕk =

ϕ(ρk), i.e. the sink vector corresponding to the noise vector ρk. The baryon correlator matrix
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Figure 4.2: A diagrammatic representation of Eq. (4.40) for a baryon correlator with source
time t0 and later sink time tF . The boxes represent the baryon functions defined in Eq. (4.39)
with the first quark at the top of each box. Lines connecting a % to a ϕ denote a summation
over dilution indices. The same noise is used for both ends of any single line, and different
lines use different noises. An asterisk denotes complex conjugation. Figure taken from
Ref. [28].

element is then given by,

Cll (tF − t0) =
〈
B[b1b2b3]
l (ϕ1, ϕ2, ϕ3; tF )

×
(
δABCABCB

[b1b2b3]
l (%1, %2, %3; t0)

− δACBABCB
[b1b3b2]
l (%1, %3, %2; t0)

− δBACABCB
[b2b1b3]

l
(%2, %1, %3; t0)

− δCBAABCB
[b3b2b1]

l
(%3, %2, %1; t0)

+ δCABABCB
[b2b3b1]

l
(%2, %3, %1; t0)

+δBCAABCB
[b3b1b2]

l
(%3, %1, %2; t0)

)∗〉
U,ρ
,

(4.40)

where δDEFABC = δADδBEδCF and 〈. . .〉U,ρ denotes an expectation value over the gauge fields U

and the noise vectors ρk.

This factorization process is significant because it allows us to calculate the source and

sinks separately and store the results on disk to be later combined to construct the correla-

tors we wish to study, which is particularly advantageous for when we want to study large

correlation matrices.
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Chapter 5

Correlator Analysis: Determining the

Finite-Volume Spectrum

5.1 Correlator Matrices

In order to compute the low-lying finite-volume stationary states of QCD, we compute tem-

poral correlator matrices of the form,

Cij(t) = 〈0| Oi (t+ t0)Oj (t0) |0〉 , (5.1)

where Oi(t+ t0) are the operators which annihilate the states of interest at a time t+ t0 and

Oj(t0) are the corresponding operators which create the states of interest at an earlier time

t0. The operators are engineered such that the correlator matrix is Hermitian1. Since the

energies are determined from the exponential decay rates of these two-point correlators, we

can rescale the operators without changing the energy spectrum. In order to dampen the

effects of differing normalizations among the operators, we rescale C(t) to form the actual

correlator matrix C(t) which we analyze as follows,

Cij(t) =
Cij(t)√

Cii(τN)Cjj(τN)
, (5.2)

where the normalization time τN is taken at a very early time. Echoing the argument in

Sec. 2.3, we can perform a spectral decomposition of C(t) to obtain

Cij(t) =
∑
n

Z
(n)
i Z

(n)∗
j e−Ent, (5.3)

1This follows from the requirement that 〈0|Oi |n〉 = 〈n|Oi |0〉∗.
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where the En < En+1, the energies have been shifted such that E0 ≡ 0, and we have defined

the overlap factors,

Z
(n)∗
j = 〈n| Ōj |0〉 , Z

(n)
j = 〈0|Oj |n〉 . (5.4)

The overlap factors offer us some insight into how much the state produced by a particular

operator overlaps onto a particular energy eigenstate. This information can be used to make

qualitative assessments of the contents of a particular energy state, e.g. if it is single- or

multi-hadron dominated. Note that invariance under the a shift in phase

Z
(n)
j → Z

(n)
j eiφn (5.5)

implies that we can only determine the magnitude |Z(n)
j | of these overlap factors.

5.2 The Generalized Eigenvalue Problem

In the limit of infinite statistics, one could in principle fit Eq. (5.3) and determine the entire

energy spectrum. In practice, however, we are only able to fit the lowest one or two energies

in the sum. It would be better to devise a method that allows us to fit more than just the

lowest one or two energies in the spectrum. Ref. [32] proves a theorem that is the cornerstone

for our approach to extracting energies from temporal correlators:

Theorem: For every t ≥ 0, let λn(t) be the eigenvalues of an N ×N Hermitian

correlation matrix C(t) ordered such that λ0 ≥ λ1 ≥ · · · ≥ λN−1, then

lim
t→∞

λn(t) = bne
−Ent

[
1 +O(e−t∆n)

]
, bn > 0, ∆n = min

m6=n
|En − Em|. (5.6)

This tells us that a principal correlator λn(t) tends to a decaying exponential whose decay

rate is the nth energy of the spectrum. This theorem is still insufficient for use in practice,

however. At large t such that the O(e−t∆n) correction is negligible, the determination of

C(t) has large uncertainties due to a decreasing signal-to-noise ratio [39]. At small t such

that C(t) is well determined, the O(e−t∆n) is not negligible. Fortunately, it is shown in

Ref. [32] that the correction term can be brought down to O(e−t(EN−En)) by instead solving

the following generalized eigenvalue problem (GEVP):

C(t)vn (t, τ0) = λn (t, τ0)C (τ0) vn (t, τ0) , n = 1, · · · , N − 1,
t

2
≤ τ0 < t. (5.7)

In practice, we find that a good rule of thumb to keep the O(e−t(EN−En)) correction term

low is to demand N ≥ 3n
2

, where n is the number of energies we wish to extract. Solving
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Eq. (5.7) is equivalent to diagonalizing G(t) = C−1/2 (τ0)C(t)C−1/2 (τ0), and the eigenvectors

tend to [40]

λn(t)→ |Z ′n|
2
e−Ent, t→∞. (5.8)

The overlaps are determined by

Z
(n)
j ≈ Cjk (τ0)1/2 Vkn(t)Z ′n (no sum over n), (5.9)

where V is the unitary matrix whose columns are the eigenvectors of G(t).

5.3 Pivots and Operator Pruning

Two important assumptions about C(t) are that it is Hermitian as well as positive-definite,

which also implies that G(t) is Hermitian and positive-definite. The assumption of positive-

definiteness can be violated by operators that produce noisy correlators, or by an operator

set that is linearly dependent. Noise can cause diagonal elements of the correlator to become

zero or negative, and linearly dependent operators will produce eigenvalues of C(t) that

are zero. The odds of this occurring increases as we increase the number of operators in

our correlator matrix. We call the process of judiciously choosing operators to ensure our

correlator matrices remain well-conditioned pruning. Pruning is necessary, but not sufficient

for ensuring well-conditioned correlator matrices. It is still necessary to monitor for ill-

conditioned matrices and take corrective action.

The condition number ξcn of a matrix is defined as the magnitude of the ratio of its

maximum eigenvalue λmax to its minimum eigenvalue λmin:

ξcn =

∣∣∣∣λmax

λmin

∣∣∣∣ . (5.10)

When a matrix is ill-conditioned, its condition number will be high (and in some cases it may

have negative eigenvalues). In order to prevent statistical noise from ruining our extraction

of the energy spectrum, it is important to modify our diagonalization procedure to correct

for high condition numbers, which is essentially introducing a singular value decomposition.

These methods choose a threshold for the maximal allowed condition number ξcn
threshold and

project the correlator matrix onto the subspace spanned by the eigenvectors whose eigenval-

ues are larger than λthreshold = λmax/ξ
cn
threshold. (The eigenvalues and condition numbers are

all functions of t.)

Our entire method, which we call a pivot procedure, can be summarized as follows.

Choose values for ξ
cn(0)
max , the maximal acceptable condition number for the N × N matrix
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C(τ0). Let the N0 ≤ N eigenvectors whose eigenvalues are greater than λ
(0)
max/ξ

cn(0)
max form the

columns of the N ×N0 matrix P0, where λ
(0)
max is the largest magnitude of the eigenvalues of

C(τ0). Then define the N0 ×N0 matrices

C̃ (τ0) = P †0C (τ0)P0,

C̃(t) = P †0C(t)P0,

G̃(t) = C̃ (τ0)−1/2 C̃(t)C̃ (τ0)−1/2 ,

(5.11)

for t 6= t0. We then solve for the eigenvectors and eigenvalues of G̃(t). Let the NP ≤ N0

eigenvectors whose eigenvalues are greater than λ(t)/ξ(t))max form the columns of the N0×NP

matrix Ṽ (t), where λ
(t)
max is the largest magnitude of the eigenvalues of G̃(t). The NP ×NP

matrix

Λ̃(t) = Ṽ †(t)G̃(t)Ṽ (t) (5.12)

will satisfy

Λ̃ (τ0) = I,

Λ̃(t) = diag (λn(t)) ,
(5.13)

where λn →
∣∣∣Z̃ ′n∣∣∣2 e−Ent for large t and Z

(n)
i ≈ P0ijC̃jk (τ0)1/2 Ṽkn(t)Z̃ ′n. We can therefore

fit the different λn(t) for energies and overlap factors of the spectrum. The pivot method

presented above involves rotating the correlator at every time slice, but in practice, this is

not strictly necessary. We can instead take a simpler approach of diagonalizing G̃(t) at only

one time τd chosen such that τd > τ0, and using the same matrix to diagonalize at every

other time, provided that the off-diagonal elements are statistically consistent with zero for

all time slices t ≥ τd. Using the same transformation at every time slice is an ingredient in

the single pivot method, and is the procedure used in this work. Note that choosing τd ≈ 2τ0

ensures minimal contamination from higher lying states [32].

5.3.1 The Zero Temperature Assumption

An important caveat to everything presented thus far is that we work in the assumption

of a zero-temperature (i.e. infinite time extent) limit. Recall that the expression relating

two-point correlators to a sum of decaying exponentials, given by Eq. (2.49) rests on the

assumption that t� T , where T is the time extent of the lattice. When calculating correlator
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matrix elements, this should be corrected to

Cij =
〈
Oi(t)Oj(0)

〉
T

=
1

ZT
Tr
[
e−HTOi(t)Oj(0)

]
=

1

ZT

∑
n

〈n| e−H(T−t)Oi(0)e−HtOj(0) |n〉

=
1

ZT

∑
n,m

e−En(T−t)e−Emt 〈n| Oi(0) |m〉 〈m| Oj(0) |n〉 ,

(5.14)

where
ZT = Tr e−HT

=
∑
n

〈n| e−HT |n〉

=
∑
n

e−EnT .

(5.15)

Only in the limit T →∞ does Eq. (5.14) agree with Eq. (2.49) and Eq. (5.3). The thermal

effects of finite time extent will manifest as backwards propagating modes which will be

briefly discussed in Sec. 5.4. Fortunately, on the 323 × 256 anisotropic lattice used in this

work, these thermal effects (or temporal wrap-around effects) are negligible, and even on

smaller lattices, we only find it necessary to account for backwards propagating modes for

the lightest states.

5.4 Fit Forms

Fitting the diagonalized correlators is accomplished by forming fit ansatzes based on decaying

exponentials, or symmetric exponentials when we wish to account for thermal effects. One

such fit form is the single exponential,

C(t) = Ae−Et. (5.16)

This form is strictly incorrect for finite t due to excited state contamination (i.e. subleading

exponential contributions from higher-lying states), but it is approximately correct for suffi-

ciently large t. The single exponential has the advantage that it has few fit parameters and

is thus less sensitive to statistical noise, but it has the disadvantage that it is highly sensitive

to the minimum time used in the fit domain. The fit domain must only include times at

which the subleading contributions are negligible.

59



We can account for the effects of higher-lying states by using a two-exponential fit,

C(t) = Ae−Et
(

1 +Be−∆2t
)
, (5.17)

where the term ∆2 is used to ensure that the gap to the next energy is positive. We can also

attempt to account for higher-lying states by using an ansatz that mocks up these states as

a sum of equally-spaced levels above the fit energy E, which is a simple, approximate way

to account for much excited state contamination with relatively few parameters:

C(t) =
Ae−Et

1−Be−∆2t
= Ae−Et

(
∞∑
n=0

Bne−∆2t

)
. (5.18)

These forms have the advantage that they are less sensitive to the fit domain and more accu-

rately model the theory, but they have the disadvantage that they contain more parameters

than the single exponential and are more sensitive to statistical noise. For this reason, we

must often resort to using a single-exponential fit for noisier correlators.

If we wish to account for thermal effects for mesons, we can also make any fit form

symmetric, e.g.

C(t) = A
(
e−Et + e−E(T−t)) (5.19)

for the single exponential fit form. For baryons, things become more complicated, since the

backwards propagating mode actually corresponds to a baryon’s parity partner, which would

necessitate fitting in two symmetry channels simultaneously. Fortunately, baryons are heavy

enough that accounting for temporal wrap-around effects is usually not necessary. Note that

no extra parameters are needed for this, so it is easy to verify if such fit forms are necessary.

Additionally, a constant can be added to any of the fit forms to help account for vacuum

expectation values and to account for thermal effects on smaller lattices.

5.4.1 The Effective Energy

A very useful tool in fitting correlators is the so-called effective energy or effective mass

which is given by

Eeff(t) = − d

dt
lnC(t), (5.20)

which can be discretized and estimated as

− 1

∆t
(lnC(t+ ∆t)− lnC(t)) . (5.21)
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Figure 5.1: Example of an effective energy plot. A curve obtained from a two-exponential
correlator fit is overlaid, along with horizontal bars above and below the plateau, which
depict the confidence interval of the energy of the leading exponential.

The effective energy is designed such that it tends to the fit energy E as t → ∞. When

performing our fits, we are usually visually guided by effective energy plots rather than the

correlators themselves, but it is crucial to emphasize that we do not fit the effective energy

itself. An example of an effective energy plot is given in Fig. (5.1).

5.5 Error Analysis and Resampling

The observables we estimate through direct Monte Carlo measurements on gauge config-

urations are called simple observables. Estimating the variance of simple observables is

straightforward via calculating the population variance using the Monte Carlo method. All

other observables are called non-simple observables. An example of a non-simple observable

is a model parameter obtained when we fit a correlator to data points which are themselves

averages over many gauge configurations. The way to approach error analysis for non-simple

observables is through resampling techniques. Resampling involves forming new datasets

from an initial dataset in order to estimate properties of how that dataset is distributed. For

example, if we wanted to estimate the variance of the mean of some variable x, we would

need several sets of measurements {x}i from which we can estimate the variance of the mean
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as

σ2
x = 〈x2〉 − 〈x〉2, (5.22)

where x denotes the population mean of a single set, and 〈〉 denotes the average over all

populations {x}i. In general, we wish to inquire about any arbitrary property of a set {x}.
When only one dataset {x} is available, resampling can be used to form new sets {x}i using

only the original set. The dataset we consider is a set of gauge configurations {U}. Here we

outline two resampling techniques, namely the jackknife and the bootstrap [41].

Jackknife resampling proceeds as follows. For a set of Nc configurations {U}, form new

sets {U}i which consist of every configuration in {U} except for the ith configuration. There

will be Nc such new sets, and we expect that because only one configuration has been

removed from each, that any properties we measure of the set will be close to those of the

original set.

Bootstrap resampling proceeds as follows. For a set of Nc configurations {U}, form Nb

new sets {Ui} by choosing Nc configurations from {U} randomly with replacement. Since

configurations can be sampled multiple times or not at all, we do not expect that properties

we measure of the resampled sets will necessarily be distributed closely to that of the original

set, as we do with jackknife resampling.

The properties we wish to estimate are the covariances of our model fit parameters, such

as the energies and overlap factors. For jackknife resampling, we estimate the covariance as

cov(fi, fj) =
Nc − 1

Nc

Nc∑
i=1

(
〈f〉i − 〈f〉J

) (
〈f〉j − 〈f〉J

)
, (5.23)

where 〈f〉i denotes the average of f over the ith jackknife resampling, and 〈f〉J denotes the

average of f over all resamplings. For bootstrap resampling, we estimate the covariance as

cov(fi, fj) =
1

Nb − 1

Nb∑
i=1

(
〈f〉i − 〈f〉B

) (
〈f〉j − 〈f〉B

)
, (5.24)

where 〈f〉i denotes the average of f over the ith bootstrap resampling, and 〈f〉B denotes the

average of 〈f〉i over all bootstrap resamplings.
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5.6 Correlated χ2 Minimization

For uncorrelated data, it is usually sufficient to fit the model parameters α of a function

f(t;α) correlator data C(t) by minimizing the uncorrelated χ2 metric defined by

χ2 =
∑
t

(C(t)− f(t;α))2

σ2
t

, (5.25)

where σ2
t is the variance of the data at each time point. Our measurements are not statis-

tically independent, however, because each measurement is taken on the same set of gauge

configurations. We must therefore fit our correlators by instead minimizing the correlated

χ2, defined by

χ2 =
∑
t,t′

= (C(t)− f(t;α)) cov−1 (C(t), C(t′)) (C(t′)− f(t′;α)) . (5.26)

The model parameters are then fit by minimizing χ2 on each resampling and calculating

their uncertainties using the relevant covariance formula for the given resampling scheme.
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Chapter 6

Investigating the Tetraquark Content

of the Light Scalar Mesons κ and

a0(980)

In this chapter, we examine the effect of including tetraquark operators on the spectrum

determination in the scalar meson sectors containing the K∗0(700) (previously the K∗0(800),

here and often elsewhere referred to as the κ) and the a0(980). It has been suggested

before that the κ and a0(980) could have tetraquark content [42, 43, 44, 45], and to date,

there have been a small number of studies investigating tetraquarks on the lattice using

light quarks. In 2010, Prelovsek et al. [46] investigated the σ and κ as possible tetraquark

candidates, but neglected disconnected diagrams in their calculations. Using tetraquark

interpolators, they found an additional light state in both the σ and κ channels. In 2013,

the ETM collaboration examined the a0(980) and κ using four-quark operators [47], though

they also neglected disconnected diagrams in their calculations. They found no evidence

of an additional state that can be interpreted as a tetraquark. In 2018, Alexandrou et

al. [48] conducted a study of the a0(980) with four-quark operators, including disconnected

contributions. In their study, they found an additional finite-volume state in the sector

containing the a0(980) meson, which has primarily quark-antiquark content but also has

sizeable diquark-antidiquark content, in the range of 1100 to 1200 MeV. Additionally, they

conclude that disconnected diagrams have drastic effects on their results, and thus cannot

be neglected. The importance of including disconnected diagrams when studying the κ and

a0(980) (as well as other scalar mesons) is also shown in Ref. [49]. We make two different

determinations of the spectrum in each symmetry channel: one using a basis of only single-

and two-meson operators, and one using a basis that also includes a tetraquark operator

selected from hundreds of tetraquark operators which were tested. We find that including
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(L/as)
3 × (T/at) Nconfigurations atmπ atmK at ξ

323 × 256 412 0.03953(17) 0.08348(14) 0.033357(59) fm 3.451(11)

Table 6.1: Details of the ensemble used in this work. The temporal lattice spacing is taken
from Ref. [50]. The renormalized anisotropy ξ is taken from Ref. [51].

a tetraquark operator yields an additional low-lying finite-volume state in each symmetry

channel. In this work, we use the stochastic LapH method [7] to evaluate the diagrams in

our calculations, including all disconnected contributions.

6.1 Ensemble

We perform Monte Carlo calculations using 412 gauge field configurations generated by the

Hadron Spectrum collaboration [15, 16] on an anisotropic lattice of size 323 × 256 with a

length of 3.74 fm and a pion mass of approximately 230 MeV, using Nf = 2+1 Wilson clover

fermions. Ensemble details are given in Table 6.1, and the action is described in Sec. 2.2.5

and Sec. 2.2.6.

6.2 Operator Construction

We include single- and two- meson operators, as well as tetraquark operators, in the basis of

interpolating operators. As a brief review of the material presented in Ch. 3, we construct

our elemental operators using building blocks of smeared, gauge-covariantly displaced quark

fields, and stout-smeared link variables. To form the final operators out of our elemental

operators, we project the elemental operators onto various symmetry channels according to

isospin, parity, G-parity, octahedral little group, etc. That is, to form a meson operator

Ml(t) that transforms irreducibly under all symmetries of interest (labeled by the compound

index l) at time t, we must take a linear combination of our elemental meson operators,

Ml(t) = c
(l)
αβΦAB

αβ (p, t). To form a two-meson operator Ol(t), we would follow a similar

procedure and project the product of two final meson operators Ma
la

(t)M b
lb

(t) onto a final

symmetry channel l: Ol(t) = c
(l)
lalb
Ma

la
(t)M b

lb
(t).

Recall that in order to construct a tetraquark operator, we must consider the various ways

to construct a color-singlet four-quark object out of four quark fields. As seen in Ref. [31],

the Clebsch-Gordon decompositions show that the only way to construct a color-singlet is

by using two quarks and two antiquarks, and that doing so yields two linearly independent
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color singlet objects:

3⊗ 3⊗ 3⊗ 3 = 3⊕ 3⊕ 3⊕ 6⊕ 6⊕ 15⊕ 15⊕ 15⊕ 15,

3⊗ 3⊗ 3⊗ 3 = 3⊕ 3⊕ 3⊕ 6⊕ 6⊕ 6⊕ 15⊕ 15⊕ 24,

3⊗ 3⊗ 3⊗ 3 = 1⊕ 1⊕ 8⊕ 8⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27.

(6.1)

There are 81 basis vectors formed by the quark fields, p∗a(x)q∗b (x)rc(x)sd(x), where each r,

s transforms as a color vector in the fundamental 3 irrep, and so, p∗, q∗ transform in the 3

irrep. The following combinations are both linearly independent and gauge-invariant,

TS = (δacδbd + δadδbc) p
∗
a(x)q∗b (x)rc(x)sd(x),

TA = (δαcδbd − δαdδbc) p∗α(x)q∗b (x)rc(x)sd(x),
(6.2)

and so they form a basis with which to construct our elemental tetraquark operators, fulfilling

the need for two linearly independent color singlet operators from Eq. (6.1).

While we chose only a handful of tetraquark operators for our final analysis, we designed

hundreds of operators with differing flavor structures, color structures (i.e. the symmetric

and antisymmetric combinations of Eq. (6.2)), and displacements. We tested these operators

by individually adding them to a basis of single- and multi-meson operators to see if an

additional level was found in an initial low-statistics analysis on 25 gauge configurations.

Most of the operators did not yield an additional level, but we found particular operators

that did. In the κ channel, we tested several flavor structures, the shorthand representative

names of which are: suss, suuu, and sudu. Table 6.2 gives the relation between these

representative flavor structures and the actual flavor content they represent. Moving forward,

when we refer to flavor structures, we will use their shorthand names. We found that only

operators with the suss flavor structure yielded an additional finite-volume state, and that

the additional state was present with both color structures. In our initial low-statistics

analysis, we tested both single-site and quadruple displacements, and found operators of

both types that seemed to yield additional finite-volume states; however, the quadruply-

displaced operators came at a significantly higher computational cost and introduced either

additional noise or no improvement, and so were excluded from the final operator sets. In

the a0(980) channel, we tested several flavor structures, the shorthand representative names

of which are: uudu, ssdu, and dudu. We found that only operators with the uudu flavor

structure yielded an additional finite-volume state. As in the κ channel, we found that both

color structures were able to produce an additional level. After finding no improvement with

other displacement types in the κ channel, we chose to only test single-site operators in the
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Representative flavor Flavor content Isospin

uudu (uu+ dd)du 1

ssdu ssdu 1

dudu du(uu− dd)− (uu− dd)du 1

suss suss 1
2

suuu su(uu+ dd) 1
2

sudu su(uu− dd)−
√

2sddu 1
2

Table 6.2: Flavor content of our tetraquark operators which are chosen to match those of
our two-meson operators. The operators in the last column refer to annihilation operators.

a0(980) channel. In both channels, we also constructed operator bases that included several

tetraquark operators, and found that the number of additional levels in the energy range we

examined was unchanged.

6.3 κ Channel

6.3.1 Operator Bases

The quantum numbers associated with the κ are I(JP ) = 1
2
(0+) and S = 1 , which means

that on the lattice we work in the isodoublet, strange, A1g symmetry sector (see Table 3.1a).

Below a cutoff of approximately 1.5 times the mass of the nucleon, where the K∗0(1430)

resonance is expected, we expect to see only multi-hadron states. Since we are examining

the effect of tetraquark operators on just the low-lying states, we therefore primarily include

two-hadron operators. It is always a good idea to add one or more single hadron opera-

tors, however, as any operator with the correct quantum numbers can excite states in the

spectrum. The operator basis we use, not including any tetraquark operators, is shown in

Table 6.3.

Our final class of tetraquark operators used in this channel were single-site suss, with both

the symmetric and antisymmetric color structures included. The final tetraquark operator

chosen was a suss, antisymmetric, single-site operator, which we denote as tqsuss2m SS2.

Of the tetraquark operators that produced an additional level, we chose this one due to its

high signal quality.
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Single-Hadron Operators Two-Hadron Operators

KDDL2
A1g

K(0)SS0
A1u

π(0)SS0
A−1u

KTDO3
A1g

K(0)SS0
A1u

η(0)SS0
A+

1u

KTDU5
A1g

K(0)SS0
A1u

φ(0)SS0
A+

1u

K(1)SS1
A2

π(1)SS1
A−2

K(1)SS1
A2

η(1)SS1
A+

2

K(1)SS1
A2

φ(1)SS1
A+

2

K(2)SS0
A2

π(2)SS0
A−2

K(3)SS0
A2

π(3)SS0
A−2

Table 6.3: Operators used in the κ channel, excluding tetraquark operators. Particle names
refer to flavor content and should not be taken literally. K refers to us, π refers to ud, η
refers to uu + dd, and φ refers to ss flavor structure. The number in parentheses following
the particle name denotes the square of its total momentum in lattice units, the superscript
denotes displacement type, and the subscript denotes octahedral irrep and G-parity.

6.3.2 Spectrum Determination

For all results in this chapter, we use the kaon mass as a reference. The fit used to determine

the kaon mass is shown in Fig. 6.1a. For all fits in this channel, the normalization time,

metric time, and diagonalization time used in the GEVP were τN = 3, τ0 = 6, and τd = 12,

respectively. While we expect that the single-pivot method described in Sec. 5.3 ensures

that the correlator matrix remains diagonal at all times, it is sometimes difficult to ensure

that off-diagonal elements of the correlator matrix are statistically consistent with zero at

all times. Choosing later diagonalization times helps with this, but comes with the tradeoff

of introducing more noise. We found that choosing τd = 12 yielded a good combination of

reduced noise and a near-sufficiently diagonal matrix. Still, there were some off-diagonal

elements which were slightly farther than zero than we would hope, so we took care to

extract the spectrum at three different diagonalization times and confirm that our energies

were consistent across these diagonalization times. Our results are shown in Fig. 6.7.

Fits to the diagonalized correlator set for the operator basis containing no tetraquark

operators are shown in Fig. 6.2, and the operator overlap factors are shown in Fig. 6.3. Fit

details are given in Table 6.4. Recall from Sec. 5.1 that we must use more operators in our

basis than energies we wish to reliably extract, so there are fewer fits shown than operators

used. (This will often be the case throughout this work.) Fits using the same operator

basis, but with the addition of the suss tetraquark operator, are shown in Fig. 6.4, and the
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operator overlap factors are shown in Fig. 6.5. Fit details are given in Tables 6.5. We prefer

to use two-exponential fits wherever possible, though it is sometimes necessary to use single-

exponential fits to achieve precise energy determinations. We choose the beginning of the fit

range tmin by fitting to several values and choosing the earliest value at which the fit value

becomes stable with respect to tmin, in order to determine when excited state contamination

stops altering our result. The end of the fit range tmax is chosen to be approximately the

time at which the principle correlator becomes statistically consistent with zero, since fitting

to points with a low signal-to-noise ratio is undesirable.

A plot comparing our determinations of the low-lying spectrum for each basis is shown

in Fig 6.6. The result is clear: including the tetraquark operator yields an additional level at

E/mK = 2.139(62). Without including such a tetraquark operator, we miss an energy level

in the spectrum determination. Recall from the spectral decomposition of the correlator

matrix in Eq. (5.3) that in order to extract the energy of a state |n〉, we must have an

operator O that creates a state with overlap onto |n〉, i.e. 〈n|O |0〉 must be large enough

to be measurable. Additionally, we see that the energy determinations for the other levels

shift slightly, which is to be expected when one attempts to extract a spectrum with an

operator basis that is not sufficiently saturated with operators. [52] Taking a look at the

overlap factors, we see that there is significant overlap between this additional level (level

3) and the state created by the tetraquark operator, as well as significant overlap between

this additional level and the state created by the K(0)φ(0) operator. No other operators

create states that significantly overlap onto this tetraquark state. We also see that both of

these operators overlap onto the state just below it (level 2), which is very near in energy.

Therefore, without the tetraquark operator, the K(0)φ(0) operator on its own is unable to

resolve both levels, and produces a level between the two, as we see in the left spectrum

determination of Fig. 6.6. This significant result suggests that there is a state in the finite-

volume lattice spectrum that shares quantum numbers with the κ resonance, and that has

tetraquark content.

A more detailed examination of the role of the tetraquark operator for the κ resonance

will require the Lüscher method [32] with increased statistics and tetraquark operators of

nonzero momenta. The Lüscher method is a formalism that relates discrete finite-volume

spectra to infinite-volume scattering amplitudes. It is worth noting that one such study of

the κ resonance by Brett et al. [50], using the same ensemble used here, gave a qualitative

determination of the κ mass to be 4.66(11)mπ from an effective range parameterization and

4.59(11)mπ from a Breit-Wigner parameterization. Both of these masses are within error of

the mass of our additional finite-volume state, which is 4.52(13)mπ (the pion mass fit used

to determine this ratio is shown in Fig. 6.1b). Additionally, the consequences of missing

69



10 20 30 40
t

0.08

0.09

0.1

0.11

0.12

0.13
a

tE
e
ff
(t

)

a
t
E

fit
 = 0.08348(14)

χ2/dof = 1.10

Re C
AA

(t),   A=K(0)
A1u

SS0

(a) Kaon mass

10 20 30 40
t

0.04

0.05

0.06

0.07

a
tE

e
ff
(t

)

a
t
E

fit
 = 0.03953(17)

χ2/dof = 0.95

Re C
AA

(t),   A=π(0)
SS0

A1um

(b) Pion mass

Figure 6.1: Fits to the reference masses, used in this chapter.

a finite-volume energy such as the one found in this work may be severe for variants of

Lüscher’s method that fit scattering parameters by comparing the finite-volume spectrum

predicted by a particular scattering amplitude to that obtained on the lattice, such as the

method used by the Hadron Spectrum Collaboration in Ref. [53]. For these methods, such

a fitting procedure may be drastically affected by the successful determination of many

levels in a spectrum except for one. However, for variants of Lüscher’s method that rely

on computing scattering parameters from finite-volume energies, such as the determinant

residual method [54] used by Brett et al. the consequences should not be as severe.

6.4 a0(980) Channel

6.4.1 Operator Bases

The quantum numbers associated with the a0(980) are IG(JPC) = 1−(0++) and S = 0,

which means that on the lattice we work in the isotriplet, nonstrange, A−1g symmetry sector

(see Table 3.1a). Below a cutoff of approximately 1.5 times the mass of the nucleon, near

where the a0(1450) appears, we expect to see two single-hadron states (the a0(980) and the

a0(1450)) and several multi-hadron states. The operator basis we use, not including any

tetraquark operators, is shown in Table 6.6. We include two single-hadron operators (one

triply-displaced and one singly-displaced) in hopes of capturing states corresponding to the

a0(980) and the a0(1450). We attempted to include a single-site single-hadron operator,

but doing so did not produce an operator set that was sufficiently linearly-independent and

produced an effective mass that was indicative of a spurious state that was leaking to the
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Figure 6.2: Effective energies for the rotated 11 × 11 correlator matrix in the κ channel,
using the operator basis given in Table 6.3, which contains no tetraquark operators. Effective
energy curves calculated from correlator fits are overlaid, and fit results are shown.
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Figure 6.3: Overlap factors for the operators used in the rotated 11 × 11 correlator matrix
in the κ channel, using the operator basis given in Table 6.3, which contains no tetraquark
operators.
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E/EK atE Fit model (tmin, tmax) χ2/d.o.f.

1.4684(64) 0.12259(53) 2-exp (7, 26) 0.58

1.908(33) 0.1593(27) 2-exp (8, 26) 1.79

2.051(74) 0.1712(62) 2-exp (4, 26) 1.21

2.353(32) 0.1965(26) 2-exp (7, 26) 1.24

2.566(33) 0.2142(27) 2-exp (5, 26) 1.28

2.802(25) 0.2339(21) 2-exp (4, 26) 1.85

2.924(92) 0.2441(76) 1-exp (11, 26) 1.11

2.95(18) 0.246(15) 1-exp (9, 19) 0.97

3.289(96) 0.2746(81) 2-exp (3, 26) 1.49

Table 6.4: Fit details for the estimate of the spectrum obtained in the κ channel using the
operator basis given in Table 6.3, which contains no tetraquark operators.

E/EK atE Fit model (tmin, tmax) χ2/d.o.f.

1.4685(64) 0.12259(53) 2-exp (7, 26) 0.58

1.914(31) 0.1598(26) 2-exp (8, 26) 1.84

1.951(69) 0.1629(57) 2-exp (4, 26) 1.39

2.139(62) 0.1786(52) 2-exp (7, 26) 0.29

2.397(18) 0.2001(14) 2-exp (4, 26) 1.3

2.567(33) 0.2143(27) 2-exp (5, 26) 1.29

2.79(15) 0.233(13) 1-exp (11, 26) 1.37

2.797(24) 0.2335(20) 2-exp (4, 26) 1.71

2.82(16) 0.235(13) 1-exp (11, 26) 1.04

3.291(95) 0.2748(80) 2-exp (3, 26) 1.5

Table 6.5: Fit details for the spectrum obtained in the κ channel using the operator basis
given in Table 6.3, but with the addition of one tetraquark operator.
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Figure 6.4: Effective energies for the rotated 12 × 12 correlator matrix in the κ channel,
using the operator basis given in Table 6.3, but with the addition of one tetraquark operator.
Effective energy curves calculated from correlator fits are overlaid, and fit results are shown.
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Figure 6.5: Overlap factors for the operators used in the rotated 12 × 12 correlator matrix
in the κ channel, using the operator basis given in Table 6.3, but with the addition of one
tetraquark operator.
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Figure 6.7: Determinations of the spectrum obtained using three different diagonalization
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ground state. This dramatically affected our ability to reliably extract the spectrum and

caused it to be unstable under changes in the diagonalization time. Therefore, the single-site

operator was discarded. As will be the case in Ch. 7, we make use of so-called variationally

improved single-hadron operators. We obtain these operators by first diagonalizing in the

subspace of single-hadron operators to form linear combinations with improved overlaps onto

the single-hadron states of interest, in order to aid in level identification.

Our final class of tetraquark operators used in this channel were single-site uudu, with

both the symmetric and antisymmetric color structures included. The final tetraquark oper-

ator chosen was a uudu, symmetric, single-site operator, which we denote as tquudu3p SS2.

Of the tetraquark operators that produced an additional level, we chose this one due to its

high signal quality.

6.4.2 Spectrum Determination

In this channel, we used a normalization time, metric time, and diagonalization time of

τN = 3, τ0 = 4, and τd = 7, respectively. We found these parameters yielded a sufficiently

diagonal correlator matrix. Fits to the diagonalized correlator set for the operator basis

containing no tetraquark operators are shown in Fig. 6.8, and the operator overlap factors
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Single-Hadron Operators Two-Hadron Operators

πSD2
A−1g

K(0)SS0
A1u

K(0)SS0
A1u

πTDO3
A−1g

K(1)SS1
A2

K(1)SS1
A2

K(2)SS0
A2

K(2)SS0
A2

K(2)SS1
A2

K(2)SS1
A2

η(0)SS0
A+

1u

π(0)SS0
A−1u

η(1)SS0
A+

2

π(1)SS0
A−2

η(2)SS1
A+

2

π(2)SS1
A−2

φ(0)SS0
A+

1u

π(0)SS0
A−1u

φ(1)SS1
A+

2

π(1)SS1
A−2

φ(2)SS0
A+

2

π(2)SS0
A−2

Table 6.6: Operators used in the a0(980) channel, excluding tetraquark operators. Particle
names refer to flavor content and should not be taken literally. K refers to us, K refers to
su, π refers to ud, η refers to uu + dd, and φ refers to ss flavor structure. The number in
parentheses following the particle name denotes the square of its total momentum in lattice
units, the superscript denotes displacement type, and the subscript denotes octahedral irrep
and G-parity.
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are shown in Fig. 6.9. Fit details are given in Table 6.7. Fits to the same operator basis, but

with the addition of the uudu tetraquark operator, are shown in Fig. 6.10, and the operator

overlap factors are shown in Fig. 6.11. Fit details are given in Table 6.8.

As in the κ channel, Fig. 6.12 shows a comparison of our two estimates of the spectrum,

one (left) obtained using only the operators in Table 6.6, the other (middle) obtained using

the operator basis given in Table 6.6 and the tetraquark operator. As in the κ channel, we

see an additional finite-volume state appear, however we see much more significant shifting

of the other levels. We can attempt to explain this through level identification using the

overlap factors in Figs. 6.9 and 6.11. In the spectrum obtained using the basis including the

tetraquark operator, the ground state (level 0) most overlaps onto η(0)π(0) and φ(0)π(0)

operators, so we identify it as a physical π(0)η(0) state. (Recall again that a physical η

meson is an admixture of the φ and η flavor structures we use to define our operators.) Level

1 can clearly be identified as a K(0)K(0) state based on its overlap factor with the K(0)K(0)

operator. Level 2 has the most significant overlap with the tetraquark operator, but also

has significant mixing with the state created by the φ(0)π(0) operator. Levels 3, 4, 5, and

6 can be clearly identified as having φπ, φπ, KK, and π flavor structures, respectively, by

inspecting the overlap factors. Importantly, our first variationally improved single-hadron

operator ROT 0 has a small but nonzero overlap with the tetraquark-dominated state, level

2, but has a leading overlap with level 6. (We will provisionally identify level 2 as the a0(980)

and level 6 as the a0(1450).) When the tetraquark operator is not included, (see the left in

Fig. 6.12), the ROT 0 single-hadron operator does its best to produce both a0 states, and we

end up measuring a value for one mass between the two actual masses, such as explained

in Ref. [52]. Similar shifting occurs in the φπ-dominated levels 3 and 4, and in the KK-

dominated level 5. Once we add in the tetraquark operator, we have sufficiently saturated

our basis to reliably resolve both a0 states and accurately determine the spectrum. This

significant result suggests that the a0(980) does indeed have significant tetraquark content.

As with the κ channel, a more detailed examination of the role of the tetraquark operator

for the a0(980) resonance will require the Lüscher method with increased statistics and

tetraquark operators of nonzero momenta. Additionally, our inability to reliably extract

the spectrum without the addition of the tetraquark operator should cast doubt on any

previous determinations of the spectrum in this channel made without the use of tetraquark

operators. [55]
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Figure 6.8: Effective energies for the rotated 12×12 correlator matrix in the a0(980) channel,
using the operator basis given in Table 6.6, which contains no tetraquark operators. Effective
energy curves calculated from correlator fits are overlaid, and fit results are shown. For all
effective mass plots in this work, a time step of ∆t = 3 is used for the discretized derivative.
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Figure 6.9: Overlap factors for the operators used in the rotated 12×12 correlator matrix in
the a0(980) channel, using the operators in Table 6.6, which contains no tetraquark operators.
Operators labeled by ROT N denote our variationally improved single-hadron operators.
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E/EK atE Fit model (tmin, tmax) χ2/d.o.f.

1.475(74) 0.1231(62) 2-exp (3, 26) 1.13

2.034(25) 0.1698(21) 2-exp (5, 26) 1.3

2.19(17) 0.183(14) 1-exp (9, 26) 0.99

2.224(35) 0.1857(29) 2-exp (6, 26) 1.08

2.30(15) 0.192(13) 2-exp (6, 26) 0.81

2.452(33) 0.2047(27) 2-exp (6, 26) 0.45

2.828(45) 0.2361(37) 2-exp (6, 26) 0.71

2.971(32) 0.2480(26) 2-exp (4, 26) 1.66

5.00(39) 0.417(33) 1-exp (8, 18) 1.23

Table 6.7: Fit details for the determination of the spectrum obtained in the a0(980) channel,
using the operator basis given in Table 6.6, which contains no tetraquark operators.

E/EK atE Fit model (tmin, tmax) χ2/d.o.f.

1.410(79) 0.1177(66) 2-exp (3, 26) 1.12

2.014(29) 0.1681(24) 2-exp (6, 26) 1.99

2.03(11) 0.1692(92) 2-exp (3, 26) 1.03

2.41(13) 0.201(11) 1-exp (9, 26) 0.82

2.537(42) 0.2118(35) 2-exp (3, 26) 1.18

2.586(26) 0.2159(21) 2-exp (4, 26) 0.67

2.84(12) 0.237(10) 2-exp (3, 24) 0.99

2.947(40) 0.2461(33) 2-exp (4, 26) 0.9

2.964(35) 0.2475(29) 2-exp (4, 26) 1.64

5.01(39) 0.418(33) 1-exp (8, 18) 1.25

Table 6.8: Fit details for the spectrum obtained in the a0(980) channel using the operator
basis given in Table 6.6, but with the addition of one tetraquark operator.
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Figure 6.10: Effective energies for the rotated 13 × 13 correlator matrix in the a0(980)
channel, using the operator basis given in Table 6.6, but with the addition of one tetraquark
operator. Effective energy curves calculated from correlator fits are overlaid, and fit results
are shown.
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Figure 6.11: Overlap factors for the operators used in the rotated 13× 13 correlator matrix
in the a0(980) channel, using the operator basis given in Table 6.6, but with the addition
of one tetraquark operator. Operators labeled by ROT N denote our variationally improved
single-hadron operators.
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Chapter 7

Σ Baryon Spectroscopy

In this chapter, we present results on the finite-volume spectrum of Σ baryons in several

I = 1, S = −1 symmetry sectors, namely G1g, G1u, Hu, Hg, G2g, and G2u. We have

constructed correlator matrices from large bases of single- and two-hadron operators, which

allows us to more accurately determine the spectrum than in previous works. We compare

our results to experimentally observed Σ resonances, and compare to a previous work using

a smaller lattice, heavier pion, and no two-hadron operators.

The Σ baryons are unstable resonances. However, lattice QCD Monte Carlo results are

obtained in finite volume. In finite volume, only the energies of the finite-volume stationary

states can be determined. To deduce the spectrum of resonances from the finite-volume

energies would require a technique similar to that employed by Lüscher [32] but extended

beyond two-particle thresholds. Such a technique does not yet exist and would be pro-

hibitively difficult to carry out. Our goal here is much more humble. We wish mainly to

identify the finite-volume states produced primarily by three-quark single baryon operators.

The energies of such states are expected to fall near the resonance energies of the Σ baryons

which are predominantly three-quark excitations. The narrower the resonance, the closer

our estimates should be. In other words, our results should be viewed as a qualitative study

of the resonance spectrum. Note that resonances which are primarily “molecular” in nature

cannot be determined in this way. Futhermore, our use of an unphysical light quark mass

to make the calculations practical will cause further deviations from experiment.

All past studies [56, 57, 58, 59] suffer from these same flaws. However, all past studies

have only used single baryon operators. This study is the first to also use meson-baryon

operators, significantly improving the spectrum determination.
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7.1 Ensemble

Ensemble details are identical to those described in Sec. 6.1.

7.2 G1g Spectrum

The isotriplet, S = −1, G1g symmetry channel is parity-positive and contains spins 1
2
, 7

2
,

9
2
, and beyond. In this channel, we expect to see several experimentally observed states

including the physical Σ, the Σ(1660), and the Σ(2030), which have spins 1
2
, 1

2
, and 7

2
,

respectively. In addition to these single-hadron states, we expect to see many multi-hadron

states. Reliably extracting finite-volume single-hadron states that correspond to resonances

in infinite-volume requires the use of multi-hadron operators, since we expect the finite-

volume counterpart to a resonance to have some overlap onto its decay products. While it

would be ideal to compute many-hadron correlators, computing correlators for states with

greater than two hadrons is prohibitively expensive, so we limit ourselves to using operators

which are designed to create at most two hadrons.

In general, we start with a large basis of operators, and prune out those which are either

too noisy or not sufficiently linearly independent. For the single-hadron operators, we started

with a large basis 16 operators, and pruned our set down to just 7. For the two-hadron

operators, we started with a basis of 25 operators, and pruned our set down to just 21. The

final basis of single- and two-hadron operators used to extract the spectrum in this channel

is given in Table 7.1. Just as in Sec. 6.4, we make use of variationally improved single-

hadron operators. That is, we first diagonalize in the subspace of single-hadron operators to

form linear combinations which overlap more independently onto the single-hadron states of

interest, in order to aid in level identification. We found that a normalization time, metric

time, and diagonalization time of τN = 3, τ0 = 4, and τd = 7 ensured that the rotated

correlator matrix remained sufficiently diagonal. It is important to note that while ηΣ two-

hadron operators are included, there is no corresponding φΣ operator, so we expect to miss

a two-hadron state. This will be the case in every channel in this chapter.
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Single-Hadron Operators Two-Hadron Operators

ΣDDI0
G1g

π(0)SS0
A−1u

Λ(0)SS2
G1u

ΣDDI22
G1g

π(0)SS0
A−1u

Λ(0)SS3
G1u

ΣDDL55
G1g

π(1)SS1
A−2

Λ(1)SS1
G1

ΣSS2
G1g

π(2)SS0
A−2

Λ(2)SS0
G

ΣSS3
G1g

π(3)SS0
A−2

Λ(3)SS0
G

ΣTDT65
G1g

π(1)SS0
A−2

Σ(1)SS0
G1

ΣTDT72
G1g

π(1)SS1
A−2

Σ(1)SS0
G1

π(1)SS1
A−2

Σ(1)SS2
G1

π(2)SS0
A−2

Σ(2)SS1
G

π(3)SS0
A−2

Σ(3)SS4
G

K(1)SS2
A1

N(1)SS0
G1

K(1)SS0
A2

N(1)SS0
G1

K(1)SS1
A2

N(1)SS0
G1

K(1)SS2
E N(1)SS0

G1

K(4)SS1
A2

N(4)SS0
G1

K(2)SS0
A2

N(2)SS0
G

K(2)SS1
A2

N(2)SS0
G

K(3)SS0
A2

N(3)SS0
G

K(1)SS1
A2

∆(1)SS0
G1

K(1)SS1
A2

Ξ(1)SS0
G1

η(1)SS1
A+

2

Σ(1)SS0
G1

Table 7.1: Operators used in the isotriplet S = −1 G1g symmetry sector.

The spectrum obtained in terms of the kaon mass (obtained from the fit given in Ch. 6) is

shown in Fig. 7.1. Correlator fits are shown in Fig. 7.4, and fit details are given in Table 7.2.

A qualitative attempt at level identification is made by determining, for each operator,

which level overlaps maximally with the state created by that operator. Additionally, we

are interested in operators which have significant but non-maximal overlaps onto a given

state, which can inform us about mixing. Mixing is important since we expect a resonance
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to have overlap onto not only states created by single-hadron operators, but also states

corresponding to potential decay products. A comparison of the experimentally observed

resonances in this channel to the low-lying single-hadron-dominated states we obtain from

the lattice is shown in Fig. 7.3. Because we do not expect to reliably extract the masses of the

highest few levels, we do not include the highest two single-hadron-dominated states in our

comparison to experiment, and their energy determinations should be viewed as being much

less reliable. When comparing results to experiment, we use the nucleon mass (obtained

from the fit shown in Fig. 7.6) as a reference, since it is more sensitive than the kaon mass to

the unphysically heavy pion. However, we are able to determine the kaon mass with better

precision, so we use it as a reference in our full spectrum plots, e.g. Fig 7.1. Our findings seem

to agree qualitatively with previous lattice results by Edwards et al. in Ref. [56], shown in

Fig. 7.2, produced using a 163 lattice with a pion mass of mπ ≈ 391 MeV and no two-hadron

operators. In Ref. [56], they found one low-lying state, corresponding to the physical Σ,

and four higher nearly-degenerate states with two less well determined levels just above the

four levels. We find the same pattern: one low-lying level, with four higher well-determined

nearly-degenerate levels, and two more states nearby but not well determined.

In comparing our results to experiment, we see qualitative agreement in energy: A well-

determined ground state corresponding to the physical Σ and several states above it near in

energy to the Σ(1660) and the Σ(2030). Our results are certainly affected by our unphysically

heavy pion and the fact that we are comparing infinite-volume resonances to their finite-

volume stationary-state counterpart, however, so we should not expect rigorous agreement.

Additionally, as will be the case in many of the other channels in this chapter, we do not

find agreement between the number of single-hadron-dominated states on the lattice and the

number of resonances seen in experiment in the same energy range. This should not come

as a surprise, however. The problem of “missing resonances” [60] has long been an issue; the

number of baryon resonances predicted by quark models has long disagreed with the number

seen in experiment. In Ref. [60], Koniuk and Isgur attempt to explain this by claiming that

over half of all predicted resonances are too inelastic to be easily seen.
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Figure 7.1: The spectrum for the isotriplet S = −1 G1g channel, obtained by fitting the
energies and overlap factors of the diagonalized correlator matrix. A qualitative attempt at
level identification is made by determining, for each operator, which level overlaps maximally
with the state created by that operator. If a level does not overlap maximally with any
operator’s state, we denote its flavor content as “N/A”. Because we expect a single-hadron
resonance to have significant overlap with potential decay products, we also use hatching to
denote any level which has an overlap of ≥ 70% of the maximum overlap with a single-hadron
operator. The vertical dashed line indicates the point beyond which our energy extractions
are too high to be reliable.
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8

FIG. 4: Results for baryon excited states using the ensemble with m⇡ = 391 MeV are shown versus JP . Colors are used to
display the flavor symmetry of dominant operators as follows: blue for 8F; beige for 1F; yellow for 10F. Symbols with thick
border lines indicate states with strong hybrid content. Calculations are for a 163 ⇥ 128 lattice. The lowest bands of positive-
and negative-parity states are highlighted within slanted boxes. The eight excited states of ⌃, with JP = 3

2

+
, that are shown

within a slanted box, are Hg states 1, 2, 4, 5, 7, 8, 13 and 15. Fits for the same states are shown in Fig. 1 and identifications
of their spins and flavors are noted in Fig. 3.

Figure 7.2: Observed single-hadron states on a 163 lattice with a pion mass of mπ ≈ 391,
sorted by JP quantum numbers, from Ref. [56]. Colors indicate SU(3)-flavor irrep, which we
do not identify.
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Figure 7.3: Experimentally observed resonances compared with the finite-volume single-
hadron-dominated stationary states we obtain from the lattice, in terms of the nucleon
mass. For the experimental states, dark bands indicate experimental uncertainty and light
bands indicate decay widths.
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Figure 7.4: Effective energies for the rotated 28 × 28 correlator matrix in the isotriplet
S = −1 G1g symmetry channel. Effective energy curves calculated from correlator fits are
overlaid, and fit results are shown. The nucleon mass is used as a reference.
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Figure 7.5: Overlap factors for the operators used in the rotated 28 × 28 correlator matrix
in the isotriplet S = −1 G1g symmetry channel.
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E/EN atE Fit model (tmin, tmax) χ2/d.o.f.

1.224(76) 0.2191(56) 2-exp (4, 25) 1.34

1.81(19) 0.323(26) 2-exp (4, 20) 1.45

1.81(13) 0.324(15) 2-exp (3, 22) 0.96

1.82(13) 0.325(14) 2-exp (3, 25) 1.1

1.85(20) 0.332(32) 2-exp (3, 17) 0.98

1.90(12) 0.3403(76) 2-exp (3, 25) 1.02

1.96(14) 0.350(16) 2-exp (3, 22) 1.25

1.98(21) 0.355(32) 2-exp (3, 18) 0.63

2.03(15) 0.364(20) 2-exp (3, 20) 1.32

2.06(14) 0.369(13) 2-exp (3, 19) 1.71

2.07(23) 0.370(36) 2-exp (3, 16) 1.78

2.07(22) 0.371(34) 2-exp (3, 25) 1.21

2.12(14) 0.380(13) 2-exp (3, 20) 0.84

2.12(35) 0.380(59) 2-exp (3, 16) 1.17

2.13(14) 0.381(16) 2-exp (3, 15) 1.69

2.16(13) 0.387(11) 2-exp (3, 22) 0.86

2.18(25) 0.389(39) 2-exp (3, 15) 0.57

2.18(16) 0.390(19) 2-exp (3, 22) 1.24

2.22(15) 0.397(15) 2-exp (3, 19) 0.83

2.23(14) 0.3984(89) 2-exp (3, 19) 1.29

2.25(13) 0.403(12) 2-exp (3, 21) 1.3

2.27(18) 0.405(21) 2-exp (3, 18) 1.59

2.28(15) 0.408(17) 1-exp (7, 17) 1.39

2.30(19) 0.412(24) 1-exp (7, 17) 1.51

2.44(27) 0.437(41) 1-exp (8, 15) 1.32

2.55(23) 0.456(33) 1-exp (7, 15) 1.16

2.63(22) 0.471(25) 1-exp (6, 15) 0.51

3.02(18) 0.5411(75) 1-exp (3, 15) 3.5

Table 7.2: Fit details for the spectrum obtained in the isotriplet S = −1 G1g symmetry
channel using the operator basis given in Table 7.1. Single-hadron-dominated energies are
shown in red.
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Figure 7.6: A fit to the nucleon mass, used as a reference for fits in this chapter.

7.3 G1u Spectrum

The isotriplet, S = −1, G1u symmetry channel is parity-negative and contains spins 1
2
, 7

2
,

9
2
, and beyond. In this channel, the only experimental resonance we expect to see is the

spin-1
2

Σ(1750). We also expect to see many multi-hadron states. We started with a basis

of 10 single-hadron operators and pruned down to just 6. For the two-hadron operators, we

started with a basis of 24 operators and pruned down to 20. The final basis of single- and

two-hadron operators used to extract the spectrum in this channel is given in Table 7.3. We

found that a normalization time, metric time, and diagonalization time of τN = 3, τ0 = 4,

and τd = 8 ensured that the correlator matrix remained sufficiently diagonal.

The spectrum obtained in terms of the kaon mass is shown in Fig. 7.7. Correlator fits are

shown in Fig. 7.9, and fit details are given in Table 7.4. A comparison of the experimentally

observed Σ(1750) resonance to the low-lying single-hadron-dominated states we obtain from

the lattice is shown in Fig. 7.8. As in the G1g channel, we do not include every single-hadron

state that we extract, since we do not expect to reliably extract the masses of the higher

lying states in a given channel. Our findings again seem to agree well with the results from

Ref. [56], shown in Fig. 7.2. In the Ref. [56], they see three low-lying single-hadron states

close together, followed by several higher lying states. In our comparison to experiment,

we see decent agreement between the experimentally observed Σ(1750) and our three lower

lying single-hadron-dominated states.
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Single-Hadron Operators Two-Hadron Operators

ΣDDI13
G1u

π(0)SS0
A−1u

Λ(0)SS0
G1g

ΣDDL34
G1u

π(0)SS0
A−1u

Λ(0)SS3
G1g

ΣSD5
G1u

π(1)SS0
A−2

Λ(1)SS1
G1

ΣSS0
G1u

π(1)SS1
A−2

Λ(1)SS1
G1

ΣSS2
G1u

π(1)SS1
A−2

Λ(1)SS2
G1

ΣTDT91
G1u

π(2)SS0
A−2

Λ(2)SS0
G

π(3)SS0
A−2

Λ(3)SS0
G

π(0)SS0
A−1u

Σ(0)SS3
G1g

π(1)SS0
A−2

Σ(1)SS0
G1

π(1)SS1
A−2

Σ(1)SS0
G1

π(1)SS1
A−2

Σ(1)SS2
G1

π(2)SS0
A−2

Σ(2)SS1
G

K(0)SS0
A1u

N(0)SS0
G1g

K(0)SS1
T1u

N(0)SS0
G1g

K(1)SS0
A2

N(1)SS0
G1

K(1)SS1
A2

N(1)SS0
G1

K(2)SS0
A2

N(2)SS0
G

K(3)SS0
A2

N(3)SS0
G

K(1)SS1
A2

∆(1)SS0
G1

K(0)SS0
A1u

Ξ(0)SS0
G1g

Table 7.3: Operators used in the isotriplet S = −1 G1u symmetry sector.
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Figure 7.7: The spectrum for the isotriplet S = −1 G1u channel, obtained by fitting the
energies and overlap factors of the diagonalized correlator matrix. An explanation of the
plot features is given in the caption of Fig. 7.1.
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Figure 7.8: The only experimentally observed resonance we expect to see in this channel
compared to the finite-volume single-hadron-dominated stationary states we obtain from
the lattice, in terms of the nucleon mass. For the experimental states, dark bands indicate
experimental uncertainty and light bands indicate decay widths.
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Figure 7.9: Effective energies for the rotated 26 × 26 correlator matrix in the isotriplet
S = −1 G1u symmetry channel. Effective energy curves calculated from correlator fits are
overlaid, and fit results are shown. The nucleon mass is used as a reference.
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Figure 7.10: Overlap factors for the operators used in the rotated 26× 26 correlator matrix
in the isotriplet S = −1 G1u symmetry channel.
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E/EN atE Fit model (tmin, tmax) χ2/d.o.f.

1.60(12) 0.286(13) 2-exp (3, 25) 0.47

1.62(11) 0.290(11) 2-exp (3, 25) 1.26

1.64(12) 0.293(16) 2-exp (4, 25) 1.05

1.65(10) 0.2961(87) 2-exp (4, 25) 1.27

1.82(11) 0.3249(77) 2-exp (3, 25) 1.37

1.85(11) 0.3303(85) 2-exp (3, 25) 1.56

1.86(13) 0.334(12) 2-exp (3, 22) 0.64

1.91(13) 0.342(13) 2-exp (3, 20) 1.22

1.97(12) 0.3527(93) 2-exp (3, 24) 1.43

1.98(12) 0.3543(97) 2-exp (3, 25) 1.64

2.00(13) 0.358(10) 2-exp (3, 25) 1.48

2.02(17) 0.361(20) 2-exp (3, 20) 1.53

2.04(13) 0.366(12) 2-exp (3, 21) 0.99

2.09(17) 0.374(21) 2-exp (3, 17) 0.63

2.12(16) 0.379(19) 2-exp (3, 21) 0.9

2.13(28) 0.381(45) 2-exp (3, 15) 1.3

2.16(15) 0.386(16) 2-exp (3, 21) 0.97

2.25(15) 0.403(15) 2-exp (3, 19) 1.13

2.34(18) 0.418(23) 2-exp (3, 15) 0.9

2.50(20) 0.447(28) 1-exp (7, 15) 0.93

2.85(30) 0.509(46) 1-exp (7, 15) 0.68

2.88(18) 0.515(15) 1-exp (5, 15) 0.38

3.07(19) 0.549(15) 1-exp (5, 15) 1.13

3.16(20) 0.565(18) 1-exp (5, 15) 0.82

3.25(24) 0.582(25) 1-exp (4, 10) 2.02

3.60(22) 0.644(14) 1-exp (3, 10) 2.42

Table 7.4: Fit details for the spectrum obtained in the isotriplet S = −1 G1u symmetry
channel using the operator basis given in Table 7.3. Single-hadron-dominated energies are
shown in red.
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7.4 Hg Spectrum

The isotriplet, S = −1, Hg symmetry channel is parity-positive and contains spins 3
2
, 5

2
, 7

2
,

and beyond. In addition to many multi-hadron states, we expect to see the experimentally

observed Σ(1385), Σ(1915), and Σ(2030) resonances, which have spins 3
2
, 5

2
, and 7

2
, respec-

tively. Our initial basis contained 15 single-hadron operators, from which we pruned down

to 10. We started with 33 two-hadron operators, all of which survived the pruning process

and made it into the final set. The final basis of single- and two-hadron operators used to

extract the spectrum in this channel is given in Table 7.5. The normalization time, metric

time, and diagonalization time used were τN = 3, τ0 = 4, and τd = 7.

The spectrum obtained in terms of the kaon mass is shown in Fig. 7.11. Correlator fits are

shown in Figs. 7.13 and 7.14, and fit details are given in Tables 7.6 and 7.7. A comparison of

the experimentally observed states in this channel to the low-lying single-hadron-dominated

states we obtain from the lattice is shown in Fig. 7.12. As before, we do not include all of

the single-hadron states in this comparison, since we cannot reliably extract the higher lying

states in the spectrum. The first three single-hadron-dominated states lattice states agree

within error to the experimentally observed resonances in this channel. Such a comparison

cannot be taken too seriously without an extrapolation to the physical pion mass, however,

which we do not do here. Our findings differ slightly from those of Ref. [56]. Comparing

Fig. 7.2 to Fig. 7.11, we find agreement in observing an isolated low-lying state corresponding

to the Σ(1385). Above that, Ref. [56] sees two closely grouped states, followed by a host of

other states above those. In contrast to seeing two closely grouped states above the ground

state, we see only one isolated single-hadron-dominated state in that region. (Above this

region, we also see several other states.) We, however, see a very nearby two-hadron state

with significant single-hadron mixing. This illustrates the necessity of using multi-hadron

operators when performing an analysis such as this.
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Single-Hadron Operators Two-Hadron Operators Two-Hadron Operators cont.

ΣDDI29
Hg

π(0)SS0
A−1u

Λ(0)SD37
Hu

K(1)SS2
E N(1)SS0

G1

ΣDDI31
Hg

π(0)SS0
A−1u

Λ(0)SS0
Hu

K(2)SS0
A2

N(2)SS0
G

ΣDDI42
Hg

π(1)SS1
A−2

Λ(1)LSD1
G2

K(2)SS1
A2

N(2)SS0
G

ΣDDL94
Hg

π(1)SS0
A−2

Λ(1)SS1
G1

K(1)SS1
A2

∆(1)SS0
G2

ΣSD35
Hg

π(1)SS1
A−2

Λ(1)SS1
G1

K(1)SS1
A2

∆(1)SS0
G1

ΣSD47
Hg

π(1)SS1
A−2

Λ(1)SS2
G1

K(1)SS1
A2

Ξ(1)SS0
G1

ΣSS1
Hg

π(1)SS1
A−2

Λ(1)SS6
G1

η(1)SS1
A+

2

Σ(1)SS0
G1

ΣTDT135
Hg

π(2)SS0
A−2

Λ(2)SS0
G

ΣTDT156
Hg

π(2)SS1
A−2

Λ(2)SS0
G

ΣTDT3
Hg

π(3)SS0
A−2

Λ(3)SS0
G

π(0)SS0
A−1u

Σ(0)SS2
Hu

π(1)SS1
A−2

Σ(1)SS0
G2

π(1)SS0
A−2

Σ(1)SS0
G1

π(1)SS1
A−2

Σ(1)SS0
G1

π(1)SS1
A−2

Σ(1)SS2
G1

π(2)SS0
A−2

Σ(2)SS1
G

π(2)SS1
A−2

Σ(2)SS1
G

π(3)SS0
A−2

Σ(3)SS4
G

K(1)SS2
E N(1)SS0

G1

K(1)SS2
A1

N(1)SS0
G1

K(1)SS0
A2

N(1)SS0
G1

K(1)SS1
A2

N(1)SS0
G1

K(2)SS0
A2

N(2)SS0
G

K(2)SS1
A2

N(2)SS0
G

K(4)SS1
A2

N(4)SS0
G1

K(3)SS0
A2

N(3)SS0
G

Table 7.5: Operators used in the isotriplet S = −1 Hg symmetry sector.
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Figure 7.11: The spectrum for the isotriplet S = −1 Hg channel, obtained by fitting the
energies and overlap factors of the diagonalized correlator matrix. An explanation of the
plot features is given in the caption of Fig. 7.1.
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Figure 7.13: The first 30 effective energies for the rotated 43 × 43 correlator matrix in the
isotriplet S = −1 Hg symmetry channel. Effective energy curves calculated from correlator
fits are overlaid, and fit results are shown. The nucleon mass is used as a reference.
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Figure 7.14: The rest of the effective energies for the rotated 43×43 correlator matrix in the
isotriplet S = −1 Hg symmetry channel. Effective energy curves calculated from correlator
fits are overlaid, and fit results are shown. The nucleon mass is used as a reference.
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Figure 7.15: Overlap factors for the first 30 operators in our 43× 43 correlator matrix in the
isotriplet S = −1 Hg symmetry channel.
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Figure 7.16: Overlap factors for the rest of the operators in our 43× 43 correlator matrix in
the isotriplet S = −1 Hg symmetry channel.
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E/EN atE Fit model (tmin, tmax) χ2/d.o.f.

1.540(98) 0.2755(69) 2-exp (4, 25) 0.64

1.83(17) 0.327(27) 2-exp (3, 25) 2.85

1.84(12) 0.330(11) 1-exp (10, 22) 0.94

1.92(12) 0.344(11) 1-exp (10, 25) 0.99

1.94(15) 0.348(20) 2-exp (3, 25) 1.72

1.99(14) 0.356(14) 2-exp (3, 21) 1.55

2.01(15) 0.360(15) 1-exp (8, 20) 1.06

2.02(17) 0.361(22) 1-exp (11, 21) 0.88

2.07(13) 0.371(11) 1-exp (8, 20) 1.23

2.09(16) 0.375(20) 1-exp (9, 19) 0.58

2.10(13) 0.376(10) 2-exp (3, 20) 1.69

2.10(15) 0.376(16) 2-exp (3, 25) 1.32

2.12(14) 0.379(13) 1-exp (9, 20) 0.96

2.12(13) 0.3801(96) 2-exp (3, 21) 1.57

2.13(17) 0.382(20) 2-exp (3, 18) 1.15

2.14(21) 0.383(31) 2-exp (3, 16) 1.07

2.19(23) 0.392(33) 2-exp (3, 16) 1.0

2.20(27) 0.394(42) 2-exp (3, 16) 0.56

2.26(15) 0.404(12) 2-exp (3, 22) 1.16

2.26(17) 0.405(19) 2-exp (3, 18) 0.82

2.27(14) 0.407(11) 2-exp (3, 21) 0.81

2.30(15) 0.413(14) 2-exp (3, 22) 0.53

2.31(14) 0.413(11) 2-exp (3, 22) 1.28

2.33(16) 0.417(17) 2-exp (3, 20) 0.85

2.34(15) 0.418(12) 2-exp (3, 19) 1.02

2.35(19) 0.421(26) 2-exp (3, 16) 0.32

2.37(16) 0.425(14) 1-exp (7, 19) 1.37

Table 7.6: Fit details for the first 27 fits in the spectrum obtained in the isotriplet S = −1
Hg symmetry channel using the operator basis given in Table 7.5. Single-hadron-dominated
energies are shown in red.
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E/EN atE Fit model (tmin, tmax) χ2/d.o.f.

2.38(21) 0.426(29) 1-exp (7, 15) 1.06

2.39(14) 0.428(12) 1-exp (7, 15) 0.28

2.43(15) 0.435(13) 1-exp (7, 16) 0.85

2.44(16) 0.436(13) 1-exp (7, 15) 0.98

2.44(14) 0.4362(79) 1-exp (6, 20) 0.95

2.48(14) 0.4440(53) 1-exp (5, 20) 1.17

2.49(15) 0.445(12) 2-exp (3, 19) 0.84

2.50(14) 0.4481(93) 1-exp (6, 22) 1.22

2.55(18) 0.456(19) 1-exp (7, 18) 1.18

2.62(21) 0.469(27) 1-exp (7, 17) 0.38

2.64(33) 0.473(54) 1-exp (8, 15) 0.54

2.71(33) 0.484(50) 1-exp (8, 14) 1.76

2.78(20) 0.498(22) 1-exp (6, 15) 1.22

2.79(24) 0.499(29) 1-exp (7, 15) 0.77

3.03(20) 0.542(15) 1-exp (5, 15) 1.35

3.48(31) 0.622(42) 1-exp (6, 14) 2.16

Table 7.7: Fit details for the rest of the fits in the spectrum obtained in the isotriplet S = −1
Hg symmetry channel using the operator basis given in Table 7.5. Single-hadron-dominated
energies are shown in red.
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7.5 Hu Spectrum

The isotriplet, S = −1, Hu symmetry channel is parity-negative and consists of spins 3
2
, 5

2
, 7

2
,

and beyond. In addition to many multi-hadron states, we expect to see the experimentally

observed Σ(1670), Σ(1775), and Σ(1940), which have spins 3
2
, 5

2
, and 3

2
, respectively. Our

initial basis contained 14 single-hadron operators, and we pruned down to a set of just 7.

We started with 27 two-hadron operators, and pruned down to 25. The final basis of single-

and two-hadron operators used to extract the spectrum in this channel is given in Table 7.8.

The normalization time, metric time, and diagonalization time used were τN = 3, τ0 = 4,

and τd = 8.

The spectrum obtained in terms of the kaon mass is shown in Fig. 7.17. A comparison to

the experimentally observed states in this channel to the low-lying single-hadron-dominated

states we obtain from the lattice is shown in Fig. 7.18. As in previous channels, higher lying

states which we cannot reliably extract are excluded from this plot. We observe statistical

agreement between the first three experimental resonances and the first three single-hadron-

dominated finite-volume states in our spectrum. Again, we cannot take such a comparison

too seriously without a physical-point extrapolation of the pion mass. The pattern of single-

hadron-dominated states we observe also seems to qualitatively agree with that obtained by

Ref. [56]: We see four low-lying states, followed by higher-lying states in a region where we

cannot confidently extract the spectrum.
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Single-Hadron Operators Two-Hadron Operators

ΣDDI10
Hu

π(0)SS0
T+
1u

Λ(0)SS0
G1g

ΣDDI15
Hu

π(1)SS0
A−2

Λ(1)SS1
G1

ΣSD44
Hu

π(1)SS1
A−2

Λ(1)SS1
G1

ΣSS0
Hu

π(1)SS1
A−2

Λ(1)SS2
G1

ΣTDT190
Hu

π(2)SS0
A−2

Λ(2)SS0
G

ΣTDT41
Hu

π(3)SS0
A−2

Λ(3)SS0
G

ΣTDT5
Hu

π(2)SS0
A−2

Λ(2)SS0
G

π(0)SS0
A−1u

Σ(0)SS0
Hg

π(0)TDO1
A−1u

Σ(0)SS0
Hg

π(1)SS1
A−2

Σ(1)SS0
G2

π(1)SS0
A−2

Σ(1)SS0
G1

π(1)SS1
A−2

Σ(1)SS0
G1

π(1)SS1
A−2

Σ(1)SS2
G1

π(2)SS0
A−2

Σ(2)SS1
G

K(0)SS1
T1u

N(0)SS0
G1g

K(1)SS0
A2

N(1)SS0
G1

K(1)SS1
A2

N(1)SS0
G1

K(2)SS0
A2

N(2)SS0
G

K(2)SS1
A2

N(2)SS0
G

K(3)SS0
A2

N(3)SS0
G

K(2)SS0
A2

N(2)SS0
G

K(0)SS0
A1u

∆(0)SS0
Hg

K(1)SS1
A2

∆(1)SS0
G2

K(1)SS1
A2

∆(1)SS0
G1

η(1)SS1
A+

2

Σ(1)SS0
G1

Table 7.8: Operators used in the isotriplet S = −1 Hu symmetry sector.
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Figure 7.17: The spectrum for the isotriplet S = −1 Hu channel, obtained by fitting the
energies and overlap factors of the diagonalized correlator matrix. An explanation of the
plot features is given in the caption of Fig. 7.1.
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mass. For the experimental states, dark bands indicate experimental uncertainty and light
bands indicate decay widths.
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Figure 7.19: The first 30 effective energies for the rotated 32 × 32 correlator matrix in the
isotriplet S = −1 Hu symmetry channel. Effective energy curves calculated from correlator
fits are overlaid, and fit results are shown. The nucleon mass is used as a reference.
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Figure 7.20: The last two effective energies for the rotated 32× 32 correlator matrix in the
isotriplet S = −1 Hu symmetry channel. Effective energy curves calculated from correlator
fits are overlaid, and fit results are shown. The nucleon mass is used as a reference.
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Figure 7.21: Overlap factors for the first 30 operators in our 32× 32 correlator matrix in the
isotriplet S = −1 Hu symmetry channel.
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Figure 7.22: Overlap factors for the rest of the operators in our 32× 32 correlator matrix in
the isotriplet S = −1 Hu symmetry channel.
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E/EN atE Fit model (tmin, tmax) χ2/d.o.f.

1.82(11) 0.3255(84) 1-exp (11, 25) 1.19

1.83(11) 0.3283(79) 1-exp (10, 25) 1.25

1.86(11) 0.332(12) 1-exp (11, 22) 1.45

1.86(12) 0.333(10) 2-exp (3, 25) 1.01

1.91(11) 0.3422(76) 2-exp (3, 24) 1.63

1.92(17) 0.343(25) 2-exp (3, 25) 0.77

1.92(12) 0.3430(95) 2-exp (3, 23) 1.26

1.97(12) 0.353(10) 2-exp (3, 20) 1.53

1.98(12) 0.3539(77) 2-exp (3, 21) 0.91

2.00(12) 0.3578(96) 2-exp (3, 21) 0.95

2.01(13) 0.360(14) 2-exp (3, 22) 1.44

2.02(14) 0.361(13) 2-exp (3, 20) 1.59

2.03(13) 0.3630(94) 2-exp (3, 24) 1.3

2.04(16) 0.365(19) 2-exp (3, 18) 2.1

2.05(18) 0.367(23) 2-exp (3, 21) 0.99

2.10(13) 0.3760(96) 1-exp (9, 22) 1.45

2.10(13) 0.3766(91) 2-exp (3, 20) 0.9

2.14(15) 0.383(14) 2-exp (3, 23) 0.98

2.18(15) 0.390(13) 2-exp (3, 19) 0.97

2.18(18) 0.391(23) 2-exp (3, 21) 1.16

2.19(14) 0.392(13) 2-exp (3, 20) 1.04

2.25(14) 0.403(14) 2-exp (3, 20) 1.18

2.27(16) 0.406(17) 2-exp (3, 22) 1.2

2.32(15) 0.415(17) 2-exp (3, 22) 1.41

2.33(27) 0.417(41) 2-exp (3, 15) 0.32

2.52(20) 0.452(25) 1-exp (7, 15) 1.33

2.70(38) 0.484(63) 1-exp (9, 15) 0.59

2.85(22) 0.511(22) 1-exp (6, 15) 1.66

2.89(19) 0.518(15) 1-exp (6, 15) 1.63

2.93(17) 0.524(13) 1-exp (5, 20) 1.37

3.20(20) 0.573(17) 1-exp (5, 15) 0.7

4.52(31) 0.809(30) 1-exp (3, 12) 1.49

Table 7.9: Fit details for the spectrum obtained in the isotriplet S = −1 Hu symmetry
channel using the operator basis given in Table 7.5. Single-hadron-dominated energies are
shown in red.
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7.6 G2g Spectrum

The isotriplet, S = −1, G2g symmetry channel is parity-positive and contains spins 5
2
,

7
2
, and beyond. Aside from the usual group of multi-hadron states, we expect to see the

experimentally-observed Σ(1915) and Σ(2030), which have spins 5
2

and 7
2
, respectively. Our

initial basis contained 12 single-hadron operators, from which we formed a set of 7 pruned

operators. We began with 27 two-hadron operators, all of which survived the pruning process.

The final basis of operators used to extract the spectrum in this channel is given in Table 7.10.

The normalization time, metric time, and diagonalization time used were τN = 3, τ0 = 4,

and τd = 7.

The spectrum obtained in terms of the kaon mass is shown in Fig 7.23. Correlator fits

are shown in Figs. 7.25 and 7.26, and fit details are given in Table 7.11. A comparison of

the experimentally observed states in this channel to the low-lying single-hadron-dominated

states we obtain from the lattice is shown in Fig. 7.24. We do not include the highest single-

hadron-dominated state, since it is too high to be reliably determined. We find agreement

within error between the experimental states and the lowest two single-hadron-dominated

states. As before, there are many other single-hadron-dominated states we see. Comparing

to Ref. [56], we do not find good agreement between our single-hadron spectrum and theirs,

though as previously mentioned, they use a heavier pion than we do, and do not make use

of two-hadron operators.
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Single-Hadron Operators Two-Hadron Operators

ΣDDI11
G2g

π(1)SS1
A−2

Λ(1)LSD1
G2

ΣDDI2
G2g

π(1)SS1
E+ Λ(1)SS1

G1

ΣDDI8
G2g

π(2)SS0
A−2

Λ(2)SS0
G

ΣDDL24
G2g

π(2)SS0
A−2

Λ(2)SS1
G

ΣDDL36
G2g

π(2)SS1
A−2

Λ(2)SS0
G

ΣSD12
G2g

π(3)SS0
A−2

Λ(3)SS0
G

ΣTDT29
G2g

π(0)SS0
A−1u

Σ(0)SD8
G2u

π(1)SS1
A−2

Σ(1)SS0
G2

π(1)SS1
A−2

Σ(1)SS1
G2

π(2)SS0
A−2

Σ(2)SS17
G

π(2)SS0
A−2

Σ(2)SS18
G

π(2)SS0
A−2

Σ(2)SS1
G

π(2)SS1
A−2

Σ(2)SS1
G

π(3)SS0
A−2

Σ(3)SS4
G

K(1)SS2
E N(1)SS0

G1

K(2)SS3
A1

N(2)SS0
G

K(2)SS0
A2

N(2)SS0
G

K(2)SS1
A2

N(2)SS0
G

K(2)SS1
B1

N(2)SS0
G

K(2)SS3
B2

N(2)SS0
G

K(3)SS0
A2

N(3)SS0
G

K(1)SS0
A2

∆(1)SS0
G2

K(1)SS1
A2

∆(1)SS0
G2

K(2)SS0
A2

∆(2)SS0
G

K(2)SS1
A2

∆(2)SS0
G

η(1)SS1
A+

2

Σ(1)SS0
G2

η(2)SS0
A+

2

Σ(2)SS1
G

Table 7.10: Operators used in the isotriplet S = −1 G2g symmetry sector.
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Figure 7.23: The spectrum for the isotriplet S = −1 G2g channel, obtained by fitting the
energies and overlap factors of the diagonalized correlator matrix. An explanation of the
plot features is given in the caption of Fig. 7.1.
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mass. For the experimental states, dark bands indicate experimental uncertainty and light
bands indicate decay widths.
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Figure 7.25: The first 30 effective energies for the rotated 34 × 34 correlator matrix in the
isotriplet S = −1 G2g symmetry channel. Effective energy curves calculated from correlator
fits are overlaid, and fit results are shown. The nucleon mass is used as a reference.
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Figure 7.26: The rest of the effective energies for the rotated 34×34 correlator matrix in the
isotriplet S = −1 G2g symmetry channel. Effective energy curves calculated from correlator
fits are overlaid, and fit results are shown. The nucleon mass is used as a reference.
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Figure 7.27: Overlap factors for the first 30 operators in our 34× 34 correlator matrix in the
isotriplet S = −1 G2g symmetry channel.
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Figure 7.28: Overlap factors for the rest of the operators in our 34× 34 correlator matrix in
the isotriplet S = −1 G2g symmetry channel.
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E/EN atE Fit model (tmin, tmax) χ2/d.o.f.

1.78(29) 0.318(47) 2-exp (4, 21) 1.79

1.84(19) 0.329(30) 1-exp (12, 25) 0.96

1.87(12) 0.334(15) 1-exp (11, 25) 0.68

2.02(14) 0.362(17) 1-exp (8, 23) 1.4

2.07(15) 0.371(16) 1-exp (9, 21) 0.58

2.08(12) 0.3715(86) 2-exp (3, 23) 1.35

2.08(27) 0.373(40) 2-exp (3, 21) 1.36

2.16(15) 0.387(15) 1-exp (8, 19) 1.15

2.16(15) 0.387(17) 1-exp (10, 20) 0.54

2.17(17) 0.388(20) 2-exp (3, 23) 1.34

2.17(22) 0.389(33) 2-exp (3, 20) 0.96

2.18(29) 0.389(48) 1-exp (7, 15) 0.68

2.25(16) 0.402(20) 1-exp (8, 19) 1.03

2.29(16) 0.410(18) 2-exp (3, 22) 0.99

2.30(19) 0.411(24) 2-exp (3, 18) 1.84

2.30(19) 0.411(24) 1-exp (8, 18) 0.72

2.30(16) 0.413(19) 2-exp (3, 20) 1.24

2.32(19) 0.415(26) 2-exp (3, 22) 1.08

2.32(15) 0.416(15) 2-exp (3, 20) 0.39

2.34(20) 0.419(25) 2-exp (3, 21) 1.38

2.38(17) 0.425(19) 2-exp (3, 19) 1.39

2.38(20) 0.426(28) 2-exp (3, 19) 1.05

2.39(22) 0.427(28) 2-exp (3, 19) 1.1

2.40(15) 0.429(10) 2-exp (3, 20) 0.93

2.40(23) 0.430(34) 1-exp (8, 20) 1.24

2.41(16) 0.431(14) 2-exp (3, 20) 0.96

2.44(26) 0.436(38) 1-exp (7, 15) 0.98

2.46(19) 0.440(22) 1-exp (7, 19) 1.05

2.46(15) 0.441(14) 2-exp (3, 20) 0.68

2.48(17) 0.444(18) 2-exp (3, 18) 1.64

2.92(18) 0.523(12) 1-exp (5, 15) 1.18

3.01(23) 0.539(27) 1-exp (6, 14) 0.89

3.61(23) 0.646(19) 1-exp (4, 15) 2.0

3.99(41) 0.715(59) 1-exp (5, 15) 2.41

Table 7.11: Fit details for the spectrum obtained in the isotriplet S = −1 G2g symmetry
channel using the operator basis given in Table 7.10. Single-hadron-dominated energies are
shown in red.
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7.7 G2u Spectrum

The isotriplet, S = −1, G2u symmetry channel is parity-negative and contains spins 5
2
, 7

2
,

and beyond. The only single-hadron resonances we expect to see is the spin-5
2

Σ(1775). Our

initial basis contained just 6 single-hadron operators, and we pruned down to just 2. We

began with 26 two-hadron operators, all of which survived the pruning process. The final

basis of operators used extract the spectrum in this channel is given in Table 7.12. The

normalization time, metric time, and diagonalization time used were τN = 3, τ0 = 4, and

τd = 7.

The spectrum obtained in terms of the kaon mass is shown in Fig 7.29. Correlator fits are

shown in Fig. 7.31, and fit details are given in Table 7.13. A comparison of the experimentally

observed Σ(1775) to the lowest of the two single-hadron-dominated states we obtain from

the lattice is shown in Fig. 7.30. We do not include the highest single-hadron-dominated

state, since it is too high to be reliably determined. We find agreement within error between

the experimental Σ(1775) state and the lowest single-hadron-dominated state. As before,

there are many other single-hadron-dominated states we see. Our results compare well with

Ref. [56]: we find one isolated low-lying single-hadron state corresponding to the Σ(1775),

and one isolated state much higher. We do not go high enough in energy to compare beyond

that.
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Single-Hadron Operators Two-Hadron Operators

ΣDDI10
G2u

π(1)SS1
A−2

Λ(1)LSD1
G2

ΣTDT78
G2u

π(1)SS1
E+ Λ(1)SS1

G1

π(2)SS0
A−2

Λ(2)SS0
G

π(2)SS0
A−2

Λ(2)SS1
G

π(2)SS1
A−2

Λ(2)SS0
G

π(3)SS0
A−2

Λ(3)SS0
G

π(1)SS1
A−2

Σ(1)SS0
G2

π(1)SS1
A−2

Σ(1)SS1
G2

π(2)SS0
A−2

Σ(2)SS17
G

π(2)SS0
A−2

Σ(2)SS18
G

π(2)SS0
A−2

Σ(2)SS1
G

π(2)SS1
A−2

Σ(2)SS1
G

π(3)SS0
A−2

Σ(3)SS4
G

K(1)SS2
E N(1)SS0

G1

K(2)SS3
A1

N(2)SS0
G

K(2)SS0
A2

N(2)SS0
G

K(2)SS1
A2

N(2)SS0
G

K(2)SS1
B1

N(2)SS0
G

K(2)SS3
B2

N(2)SS0
G

K(3)SS0
A2

N(3)SS0
G

K(3)SS1
A2

N(3)SS0
G

K(1)SS1
A2

∆(1)SS0
G2

K(2)SS0
A2

∆(2)SS0
G

K(2)SS1
A2

∆(2)SS0
G

η(1)SS1
A+

2

Σ(1)SS0
G2

η(2)SS0
A+

2

Σ(2)SS1
G

Table 7.12: Operators used in the isotriplet S = −1 G2u symmetry sector.

132



3.5

4.0

4.5

5.0

5.5

E
mK

Σ

πΛ

KN

πΣ

K∆

ηΣ

N/A

Figure 7.29: The spectrum for the isotriplet S = −1 G2u channel, obtained by fitting the
energies and overlap factors of the diagonalized correlator matrix. An explanation of the
plot features is given in the caption of Fig. 7.1.
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Figure 7.30: The only experimentally observed resonance in this channel compared with
the finite-volume single-hadron-dominated stationary state we obtain from the lattice, in
terms of the nucleon mass. For the experimental states, dark bands indicate experimental
uncertainty and light bands indicate decay widths.
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Figure 7.31: Effective energies for the rotated 28 × 28 correlator matrix in the isotriplet
S = −1 G2u symmetry channel. Effective energy curves calculated from correlator fits are
overlaid, and fit results are shown. The nucleon mass is used as a reference.
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Figure 7.32: Overlap factors for the operators used in our 28 × 28 correlator matrix in the
isotriplet S = −1 G2u symmetry channel.
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E/EN atE Fit model (tmin, tmax) χ2/d.o.f.

1.67(15) 0.298(19) 1-exp (12, 25) 0.96

1.86(25) 0.333(38) 2-exp (4, 17) 1.54

1.88(20) 0.336(28) 2-exp (4, 21) 1.32

1.88(15) 0.337(19) 1-exp (11, 25) 1.57

1.95(19) 0.349(30) 1-exp (10, 18) 1.4

1.97(15) 0.353(17) 1-exp (8, 20) 1.25

2.00(18) 0.358(26) 1-exp (11, 20) 1.17

2.02(13) 0.362(10) 1-exp (8, 22) 1.12

2.06(12) 0.3685(85) 2-exp (3, 25) 1.55

2.08(17) 0.373(20) 1-exp (9, 18) 1.14

2.19(15) 0.392(16) 2-exp (3, 23) 1.34

2.19(14) 0.392(10) 1-exp (8, 21) 1.41

2.21(20) 0.395(28) 1-exp (7, 13) 1.63

2.21(17) 0.396(19) 2-exp (3, 18) 1.31

2.22(19) 0.398(26) 2-exp (3, 16) 1.1

2.25(14) 0.403(12) 1-exp (8, 20) 1.01

2.26(15) 0.404(13) 2-exp (3, 18) 0.25

2.38(16) 0.427(19) 2-exp (3, 21) 0.41

2.40(17) 0.429(20) 1-exp (8, 20) 1.09

2.42(15) 0.433(11) 1-exp (7, 18) 1.55

2.45(19) 0.438(23) 1-exp (7, 17) 1.95

2.47(18) 0.442(25) 1-exp (7, 17) 0.4

2.48(22) 0.443(30) 1-exp (8, 14) 1.8

2.51(18) 0.450(20) 1-exp (7, 13) 1.57

2.53(19) 0.453(21) 1-exp (7, 17) 0.48

2.87(23) 0.514(32) 1-exp (8, 16) 1.86

Table 7.13: Fit details for the spectrum obtained in the isotriplet S = −1 G2u symmetry
channel using the operator basis given in Table 7.12. Single-hadron-dominated energies are
shown in red.
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Chapter 8

Conclusions

The finite-volume QCD spectrum in the I = 1
2
, S = −1, parity-even, zero-momentum sector

containing the κ meson and the I = 1, S = 0, parity-even, G-parity-odd, zero-momentum

sector containing the a0(980) meson was studied with the inclusion of tetraquark operators

using lattice QCD. This work is the most comprehensive lattice study of tetraquark operators

to date in the κ and a0(980) sectors, and is the first to study tetraquarks in the κ sector

neglecting no disconnected diagrams. The spectrum of excited Σ baryons in the I = 1,

S = −1, parity-even and parity-odd sectors was also studied using large bases of single- and

two-hadron operators. This is the first study of the excited Σ baryon spectrum to include

two-hadron operators. All calculations were performed using 412 gauge field configurations

using clover-improved Wilson fermions on a 323 × 256 anisotropic lattice with mπ ≈ 230

MeV, and quark propagation was treated using the Stochastic LapH method.

We found that including a tetraquark operator in the κ channel produced an additional

state in our spectrum determination which was not present without the tetraquark operator.

This additional state is in the range where we expect to find the experimental κ, and is

within error of a qualitative determination of the κ mass on the same lattice from Ref. [50].

This significant result suggests that there is a state in the finite-volume lattice spectrum

that shares quantum numbers with the κ resonance, and that has tetraquark content. In the

a0(980) channel, we also found that including a tetraquark operator produced an additional

state in our spectrum determination which was not present without the tetraquark operator.

Additionally, we found that our determination of the other energies in the spectrum was

dramatically affected by the inclusion of the tetraquark operator. These significant results

underscore the importance of including tetraquark operators in studying the κ and a0(980)

resonances. For both the κ and a0(980) sectors, a more detailed examination of the role

of the tetraquark operators will require the Lüscher method with increased statistics and

tetraquark operators of nonzero momenta.
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In the Σ baryon sector, we successfully extracted the spectrum of excited Σ baryons us-

ing a large basis of single- and two-hadron operators, and found qualitative agreement with

experiment. We mostly found qualitative agreement to a previous study using a smaller

lattice, a heavier pion mass, and no two-hadron operators. Our results are significant and il-

lustrate the importance of including two-hadron operators when extracting an excited hadron

spectrum.

Given that one of the main limiting factors on the computational feasibility of lattice

QCD calculations is the light quark mass, increased computational power and improved

techniques may allow for similar calculations done here to be performed at the physical pion

mass in the future. Such calculations would allow for better comparison of our results to

experiment, and offer more insight into the pion-mass-dependence of the QCD spectrum.
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