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Abstract

Neuroscience has witnessed rapid advances in the last half century, with modern neurotech-
nologies now allowing us to record simultaneously from hundreds, if not thousands, of
neurons. It is conceivable that in the near future, we might be able to record from every
single neuron in the brain, or in a subsystem—indeed, this is already the case for several
small animals. Would this alone suffice to help us obtain a complete understanding of the
brain? Recent experiences with artificial neural networks suggests that this is not the case:
even when we can “record” from every single node of a neural circuit, make interventions
and understand learning rules, we may not truly understand a system.

This calls for new theoretical and computational frameworks that are capable of providing
objective explanations about how these neural circuits function. We need new tools for
providing explanations at each of Marr’s levels, ultimately leading to an understanding
of how neural mechanisms give rise to behavior. Despite the tremendous advances in
experimental neuroscience and neurotechnology, there is a considerable gap in our theoretical
and computational capability to extract such an understanding.

This thesis aims to address the aforementioned theoretical gap in one narrowly focused
problem domain—information flow. Inferring the flows of information in healthy and diseased
states of the brain is essential in neuroscience because it could help us understand how the
brain performs specific tasks. In particular, we require an understanding of information flow
that enables us to (i) track the flows of one or more specific messages; (ii) capture how these
flows evolve over time, especially in feedback systems; (iii) draw meaningful interpretations
about the underlying computations, and (iv) identify interventions that can modulate flows
to treat brain diseases and disorders. Existing statistical tools used to infer information
flows are as yet far from being able to provide such insights.

This thesis provides a rigorous theoretical foundation for information flow which is
designed to address the aforementioned requirements. The main contribution of this thesis
is a systematic framework called M-information flow, which comprises a model of the
brain tied to computation and a formal definition for information flow that satisfies our
intuition. Through simulations of neural circuits, it is also shown how this framework can
be applied in practice, and further, how we can obtain a more granular understanding of
information representation by quantifying the unique, redundant and synergistic components
of information about a message.

This thesis also explores theoretical and empirical connections between M -information
flow and the field of causal inference. Theoretically, alternative approaches to defining
information flow using counterfactual measures are established. Empirically, experiments on
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artificial neural networks are used to demonstrate that the proposed measure of flow can
inform interventions in simple settings. The results of these experiments indicate that the
M -information flow framework can supply the necessary interpretation for diagnosing and
treating brain diseases and disorders.

Lastly, this thesis considers the proposed framework in the context of existing tools
used to infer information flow, such as Granger Causality. A counterexample based on
communication in feedback networks is presented, wherein Granger Causality fails to infer
the intuitive direction of information flow. The M -information flow framework, however,
correctly recovers the expected direction of flow, while also providing deeper insight into
the nature of the communication strategy. The thesis concludes with a discussion on the
limitations of the proposed framework, along with potential prescriptions for overcoming
some of these limitations through advances in neurotechnology.
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1 Introduction

Philosophy is a battle against the bewitchment of our
intelligence by means of language.

— Ludwig Wittgenstein

Neuroscience, over the last several decades, has undergone a technological revolution: the
number of neurons we can simultaneously record has grown exponentially, mimicking Moore’s
law for integrated circuits [1, 2]. This trend is encouraging: it is conceivable that we will
soon be in an era where we can record from the vast majority of all neurons, attain a clear
understanding of their interconnectivity, and make precise targeted interventions. Indeed,
much of this is already possible in some small animals [2].

This calls for thinking about how neuroscientific problems will change, and whether
the theoretical and computational tools we have today are sufficient for an era with such
powerful experimental capabilities. One way to imagine where neuroscience could be headed
is to consider a foundational challenge in artificial intelligence: understanding artificial
neural networks (ANNs). In an ANN, we have a system which is deterministic, free of
hidden nodes, which allows for arbitrary interventions, and for which we have complete
knowledge of the computations of individual units. However, even in this case, it is widely
acknowledged that we do not yet truly understand the system [3, 4]. This is further borne
out by the existence of the field of explainable (or interpretable) Artificial Intelligence [5].
All of this points to a need for more powerful theoretical and computational frameworks
that can help us examine and understand biological and artificial neural circuits.

Within the context of this expansive problem, this thesis has a very narrow focus:
developing a new framework for understanding information flow in neural circuits. By infor-
mation flow, we intuitively mean the flow of information between the different computational
units of either artificial or biological neural circuits. One of the main reasons we believe
a new framework is required is that information flow has never been formally defined in a
neuroscientific context. In fact, one might even say that the central motivation of this thesis
is an examination of the simple question, “What is information flow?”

To explore what information flow is, and how we might define it, we will need to delve
deeper into the neuroscientific context. In neuroscience, studying information flow (as
understood in the intuitive sense mentioned above) is considered important because it could
help us understand the brain, and eventually treat brain diseases. But in precisely what
sense does studying information flow help us understand the brain?

1



1. Introduction

Figure 1.1: A depiction of where information flow helps support understanding, within Marr’s hierarchy [6].

Herein we find that the word “understanding” is fraught with issues of its own: neuro-
scientists have long grappled with the question of what it even means to understand the
brain [3, 4, 6]. Helpfully, this question has been addressed at length in the literature. Most
famously, Marr and Poggio [6] proposed that the development of such an understanding takes
place at three1 distinct “levels of analysis”: (i) Computational: recognizing the presence of a
computation and decomposing it into its main components; (ii) Algorithmic: understanding
the algorithm used to perform the computation within each component, including the
representations that are used and how these representations are manipulated; and (iii) Im-
plementational: understanding how the algorithm is implemented in a specific hardware
setting, e.g., using different types of neurons and interconnections. How might a notion of
information flow integrate with this framework for understanding? We posit that information
flow finds involvement between the algorithmic and interventional levels (see Figure 1.1):
it relates to the algorithm, since information is intrinsically tied to representation; on the
other hand, it relates to the implementation because the flow is constrained by anatomy.
Further, an understanding information flow can often help support or contradict different
hypotheses the algorithmic and implementation levels.

As a concrete example, consider the experiment discussed by Almeida et al. [8], where the
authors are trying to understand how images of common hand-held tools, such as hammers
and knives, are processed by the brain (refer Figure 1.2). Like many other groups [9–14],
they are analyzing how information flows in the brain while it performs a particular task.
In this specific instance, they are trying to identify, albeit at a high level, which of two
hypothesized algorithms the brain uses: (i) the tool can be recognized from its image alone,
and information about its identity helps inform how we can manipulate it; or (ii) we can
only recognize the tool by synthesizing information about its visual appearance and motor
knowledge about how the tool can be manipulated. The former mechanism involves the flow
of information about the identity of the tool from visual cortex to brain regions involved
with object recognition, followed by the integration of motor and visual information. On the
other hand, the latter mechanism involves activation of brain areas responsible for motor
function prior to object recognition. This example makes it apparent how understanding
the working of the brain, in the specific case of this this task, can be boiled down to testing
between these two hypotheses, which in turn involves investigating how information about

1Although originally four in number, these have since been interpreted [7] more succinctly as the three
levels of analysis we know today.
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Figure 1.2: A typical neuroscientific experiment, adapted from the work of Almeida et al. [8], illustrating
how investigating information flow can help us understand how the brain performs a particular task.

the tool’s identity flows in the brain.
Keeping this example in mind, we can now revisit the question of how we might define

information flow, and why we need a framework for it. The aforementioned experiment gives
us a few anchors to help determine what constitutes a good definition of information flow,
and how we should model a neural circuit:

1. Firstly, the experiment suggests that our neural circuit models could consist of distinct
“brain regions” that perform computations and send information between each other.
In the example above, the regions refer to large well-separated regions like visual and
motor cortex, but in other experiments [15], we may be interested in flows between
smaller groups of neurons at a finer scale. In our work, we model the neural circuit as
a computational graph that is able to capture flows at various levels of abstraction.

2. Secondly, we are interested in the specific paths along which information flows in
the circuit. Therefore, any definition of information flow we provide must be able
to consistently track information along paths. This requirement becomes a defining
theme of our work: one that is in fact harder to satisfy than we might intuitively
expect.

3. Thirdly, we are often trying to understand how information about some specific message
flows in the brain, for example, a stimulus or a behavioral response. In the example
above, the message was that information which distinguished different stimuli, namely,
the identity of the tool. This idea, that the information flow is usually about one
or more specific messages, plays a central role in our setup and definitions, and is a
distinguishing feature of our work relative to methods such as Granger Causality.

4. Another important aspect illustrated by the aforementioned example is the temporal
nature of information flow: the flow can change from instant to instant, and we are
interested in tracking these temporal differences. A related issue has to do with the
possibility of feedback in the neural circuit, which a definition of information flow
should be able to account for.

5. Furthermore, when dealing with a richer stimulus (e.g., visual stimuli with different
colours and shapes, or natural scenes), one might wish to understand the information
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1. Introduction

flow of each of the stimulus’ components. Alternatively, if there are two paths that
appear to carry information about the stimulus, one might wish to examine what
information is unique to each path, and what information is redundantly contained in
both paths.

The example provided above shows how information flow can be useful in neuroscience,
for understanding the brain at the interface of Marr’s algorithmic and implementational
levels. However, a nuanced understanding of information flow in the brain could also
help with diagnosing and treating brain diseases [13, 14, 16, 17]. For instance, such an
understanding may be essential when considering interventional approaches to treating
dysfunctional components of the nervous system. These interventions could take many
forms: conventional drugs, electric or magnetic stimulation, or neurofeedback techniques
that make use of repeated stimulus presentation [18, 19] are but a few. When considering
electrical stimulation specifically, prime examples of devices already in use include responsive
neurostimulation for epilepsy [20] and deep-brain stimulation for Parkinson’s disease [21].
Similar stimulation-based techniques are also starting to gain momentum for treating
disorders such as addiction and depression [21, 22]: in the wake of the opioid crisis in the
United States [23], understanding information flow in the brain’s reward networks could be
critical to finding the right location and signal parameters for electrical stimulation [24, 25].2

Therefore, we believe that information flow is a useful subject of study, and indeed,
it finds common usage in neuroscientific parlance. In the literature, popular approaches
for inferring information flow include using measures of statistical causal influence such as
Granger Causality [26, 27], Transfer Entropy [28] or Directed Information [29–32]. But for a
number of reasons, which we detail in Section 2.1.3 and examine more closely in Chapter 6,
these measures cannot be interpreted as information flow, at least not in the sense motivated
above. Because they do not satisfy the aforementioned requirements, these measures fail to
provide the degree of insight and interpretability we seek. Despite this, there has not been a
concerted effort to formally define information flow in a neuroscientific context.

The lack of such formal terminology has been noted before, as an impediment to progress
in biology, by Lazebnik [33] in an influential paper titled “Can a biologist fix a radio?”.
Lazebnik argues that, in engineering fields, “formal language unites the efforts of many
individuals” and that the standardization of language allows for communication that is
unambiguous. In its absence, statements are necessarily vague and the ability to make
clear predictions is impeded. This thesis hopes to introduce such universal terminology
for information flow in neuroscience, by developing a computational system model and a
mathematically rigorous definition through careful introspection. The process of developing
such a framework requires that we clearly state the assumptions of the model, which might
otherwise be implicit in informal usage of terms like “information flow”. We believe that this
enables us to draw much more concrete interpretations from information flow inferences.

2Several aspects of the motivation for understanding information flow in this thesis can be attributed
to Prof. Rob Kass, who explains the need for new frameworks to address this question in his 2017 COPSS
Fisher Lecture (https://youtu.be/_2EyHnua0W4).
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1.1. An Outline of this Thesis

1.1 An Outline of this Thesis

The thesis begins with Chapter 2, which provides a framework for defining information flow
in such a way as to satisfy the intuitive requirements mentioned above. This definition
will capture the information flow about a specific message, e.g., the stimulus, within a
computational system designed to model the brain. Using a series of candidate definitions
and counterexamples, we show that an important aspect of defining information flow in
a meaningful way is to recognize and account for synergistic information representation,
wherein information is communicated using two parallel edges jointly, and cannot be detected
on either edge individually. By accounting for synergy using a definition based on conditional
mutual information, we prove that it is always possible to track the information flow about
a given message. We also provide a number of canonical computational examples to show
how this definition of information flow satisfies our intuition.

Chapter 3 presents simulations to show that our definition of information flow can be
applied in a neuroscientific context. These simulations use networks of neurons, similar to
quadratic-integrate-and-fire neurons, to illustrate how synergy might arise in neural circuits
and how our framework can help identify information flow in such settings. Furthermore, we
address how partial information measures, i.e., unique, redundant and synergistic information,
can help provide fine-grained insights about information representation that cannot be
obtained using existing statistical or information-theoretic tools. These results also rely on
simulations, but of spatial encoding in entorhinal grid cells, and reveal that all three forms
of partial information may arise in these cells depending upon how they encode information.

Chapter 4 serves to demonstrate that our information flow framework can be easily
adapted to measure the flows of information in artificial neural networks. Leveraging the
context of fairness in artificial intelligence, we show in this segment that although our measure
of information flow is observational, it correlates with the outcome seen upon pruning edges
in simple networks. This suggests an operational interpretation for information flow in
simple artificial neural networks, namely, that edges with larger information flow about a
particular message are more likely to be responsible for how that message influences the
output. In particular, this result could have implications for using the knowledge of flows to
inform interventions for diagnosing and treating brain diseases and disorders.

Chapter 5 explores alternative definitions to information flow and its theoretical connec-
tions with the field of Causality [34, 35]. Specifically, we examine how we might overcome
a drawback of the information flow definition, i.e., the existence of nodes at which flow is
not conserved (called information orphans), and identify alternative definitions that do not
suffer from this issue. We show that even common-sense approaches based on pruning fail
to work due to the presence of non-intuitive counterexamples. In particular, counterfactual
causal influence proves to be a powerful way to understand information flow, which satisfies
all our intuitions and does not suffer from “orphans”, although such a definition cannot be
estimated in practice. We also provide examples to show the relationship (or lack thereof)
between our definition of information flow and counterfactual causal influence.

Finally, in Chapter 6, we examine Granger Causality in greater detail, providing a
counterexample wherein the direction of information flow is opposite to the direction of
greater (or even statistically significant) Granger causal influence. This counterexample is
based on a well-known feedback communication scheme known as the Schalkwijk-Kailath
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strategy. We also show how the information flow framework resolves this counterexample,
obtaining not only the intuitively “correct” directions of information flow, but also revealing
insights about the underlying computation.

In Chapter 7, we discuss of the limitations of the proposed framework, and offer potential
means to mitigate these limitations through the development of new neurotechnologies.

1.2 Related Works of the Author
In an effort to keep this thesis contained, several works of the author that were only
tangentially related to information flow were omitted. What follows is a brief summary of
these works and an explanation of the common thread running through all of them.

A significant fraction of the author’s Ph.D. years were spent working on understanding
and improving neurotechnologies, specifically, high-density electroencephalography (EEG).
This research addresses a long-standing question: what is the best possible “resolution”
we can achieve in EEG source localization, and how does this resolution scale with EEG
sensor density? Prior attempts to answer this question have relied on a spatial Nyquist-rate
analyses [36]; however, these analyses failed to account for different types of noise, and gave
reduced importance to high spatial frequencies. We believe that this has contributed to a
pervasive view that increasing EEG sensor density does not help improve spatial resolution.

We have sought to change this perception through a number of studies. First, using
simplified brain models, we found that as long as measurement noise was sufficiently low, one
can obtain arbitrarily high resolutions with increasing sensor density [37]. This is contrary
to conventional wisdom in the field, which suggests that spatial information is irretrievably
blurred by volume conduction through the skull. Instead, our results show that information
relevant to high-resolution reconstructions is never really lost, rather it is simply obscured by
noise, which calls for controlling measurement noise in EEG. Our analysis also revealed the
importance of estimating the power spectral density of spatial noise in EEG, which directly
affects our ability to resolve the spatially blurred signal, as well as the parameters of our
algorithm [37].

While the previous work indicates that information is to be gained by going to higher
densities, it is unclear how far we can push these limits: what is the best possible resolution
that can be obtained for source localization, with a fixed number of EEG sensors? Using
an information-theoretic approach, we derived the first minimax lower bounds on source
localization error that scaled with the number of sensors—such bounds establish what
resolutions are unattainable at a given sensor density [38]. Complementarily, deriving
these bounds can inform the design of new source localization algorithms that can achieve
resolutions close to the bound. These results supported our earlier work [37], and have been
subsequently improved upon by other groups [39].

We have also shown through experiments that high-density EEG can provide more
information than low-density EEG in neuroscientific experiments [40]. This experiment
collected EEG data from participants fitted with a specially reconfigured high-density EEG
cap, wherein all 128 electrodes had been reconfigured to lie over occipital and temporo-
occipital areas. Participants were shown counterphased circular checkerboard patterns of
different spatial frequencies, and asked to perform an orthogonal task to ensure attention.
Through a series of classification-based analyses, we established that the high-density EEG
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configuration was able to distinguish between the stimuli of different spatial frequencies
better than four low-density EEG configurations, which were subsampled from the original
128 electrodes.

These theoretical and experimental studies gave rise to several new lines of interdisci-
plinary research: close collaborations with circuits and systems engineers have yielded new
subdermal EEG systems [41] and easy-to-install high-density EEG caps [42]. Both of these
works were directly inspired by the broader theoretical promise of high-density EEG, as well
as our efforts to find efficient implementation strategies [43]. The possibility of being able
to localize slowly-varying signals non-invasively also motivated an effort to non-invasively
detect cortical spreading depolarizations using an automated algorithm, which could help
identify and mitigate worsening brain injury [44].

Having discussed how we might develop better neurotechnology for sensing brain signals,
we now proceed to analyze improved methods for making interventions, once again in the
clinical domain. Responsive Neurostimulation (RNS) is an effective treatment for drug-
resistant epilepsy patients who are not suitable candidates for resection surgery. However, a
lack of objective measures of its effectiveness has hampered our ability to tune stimulation
parameters to provide patients a quicker recovery, while also providing us a better under-
standing of how RNS helps control seizures. To address this issue, we developed a metric
based on Wasserstein distances [25] to quantify indirect frequency modulation, a recently
established biomarker of patient responsiveness to RNS [45]. Our algorithm identified clear
patterns of increased Wasserstein’s distances in patients expert-identified to show indirect
frequency modulation, indicating the potential of our method to predict long-term patient
outcomes. Such a method could be used in future as part of a closed-loop system, to get
objective feedback on the course of recovery for each patient, allowing us to optimize the
RNS settings and deliver more personalized treatment.

The theme of using information-theoretic methods to develop new measures and frame-
works also extends to some of our other research directions. In the context of fairness in
artificial intelligence, our work has sought to define new measures of how biased machine
learning algorithms are against protected groups [46, 47]. These works focus on quantifying
bias, while allowing certain critical features to be exempt from contributing to such bias:
these could be features that must be included for safety reasons, for example, even if they
currently contribute to unfairness against a protected class. This quantification relies on
a combination of tools from the literature on partial information decomposition, such as
uniqueness and synergy, as well as Causal inference. This work is not only close in spirit
and methodology to much of our work on information flow, but as shown in Chapter 4,
information flow could direct application in identifying paths along which bias propagates,
and could offer strategies for incorporating fairness in such frameworks.

Finally, the author has begun to contribute to the understanding and development
of partial information measures [48]. As seen in various parts of this thesis (refer Chap-
ters 2 and 3), as well as in the aforementioned work on quantifying bias in AI, the development
of interpretable partial information measures holds great potential for widespread application.
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2 The M -Information Flow Framework

All models are wrong, but
some are useful.

— George Box1

2.1 Introduction

This chapter forms the central pillar of this thesis, laying out a new framework for under-
standing information flow in neural circuits.2 To let the chapter stand as an independent unit,
we restate and elaborate upon the motivations presented in Chapter 1. The introductory
sections below also help differentiate our framework from existing measures used to interpret
information flow, such as Granger Causality. A complete outline of the chapter is provided
in Section 2.1.4.

2.1.1 Motivation

Neuroscientists often seek an understanding of how information flows in the brain while
it performs a particular task [8–12]. As a concrete example, consider the experiment
performed by Almeida et al. [8], where they examine how images of common handheld tools
are processed in the brain. In simple terms, the question they investigate is this: when
attempting to identify a handheld tool, does one make use of knowledge of how to manipulate
it? Two hypotheses present themselves: (i) the answer to the above question is yes, so
we should expect that information about a tool’s identity first flows from visual cortex to
motor cortex (the area responsible for processing manipulation), before synthesis of visual
and motor information occurs at the area of the brain responsible for object recognition;
(ii) alternatively the answer to the aforementioned question is no, so we should expect that
the information about tools’ identities first flows from visual cortex to the area responsible for
object recognition, after which this information arrives at motor cortex. Thus, distinguishing
between these hypotheses is equivalent to determining the path along which information
about a tool’s identity flows in the brain. What methods can neuroscientists use to gain

1Although George Box is usually given credit for it, forms of this saying have predated his writings.
2This chapter is based largely on our paper published in the IEEE Transactions on Information Theory,

titled “Information Flow in Computational Systems” [49].
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such an understanding? What formal theory underlies such an analysis? How does one
mathematically define colloquially-used terms such as “information flow”? These are the
fundamental questions we try to answer in this paper.

As another example, consider the work of Hong et al. [9], who show that mice can
detect the presence of an object with their whiskers, even without their “barrel cortex”,
the primary sensory area of the brain responsible for this task. It is hypothesized that
information about the object’s presence passes from neurons at the whiskers through an
alternative pathway involving deeper brain regions that add redundancy to the system. How
is sensory information about the presence of external objects encoded between the cortex
and these deeper regions? How much of the information flow is expressed uniquely in each
area, and how much of it is redundant? And once again, how do we systematically discuss
the measurement of information flow along each of these pathways?

Information flow is a concept that appears in several contexts, across fields ranging
from communication systems [50, 51], control theory [52, 53] and neuroscience [8–12] to
security [54], algorithmic transparency [46, 55], and deep learning [56–58]. While our primary
motivation comes from neuroscience, the theory that we develop is broadly applicable to any
system which can be modeled in the form of a directed graph, with nodes that communicate
functions of their inputs to other nodes, and where transmissions are observable. For
example, several kinds of social networks readily fit this bill, and one might wish to analyze
the spread of (mis)information or infectious disease in such networks [59, Ch. 16]. Our
framework is also general enough to analyze information flow in various kinds of Artificial
Neural Networks: this could be useful for identifying specific paths that carry information
distinguishing two or more classes, or for intelligently pruning an Artificial Neural Network
post-training [60, 61].

In the field of neuroscience, studying the paths along which information flows could
be essential for understanding, diagnosing and treating brain diseases [13, 14, 16, 17]. For
example, understanding information flow pathways is essential when considering principled
approaches for intervening to affect the output of a computational system, as is done in
Responsive Neurostimulation in Epilepsy [20] or Deep Brain Stimulation in Parkinson’s
Disease [62], or for complementing dysfunctional aspects of the nervous system, such as in
cochlear [63] and retinal implants [64].

2.1.2 Our Goal and Approach

Our overarching goal in this paper is develop a formal theory for understanding information
flow in neuroscientific experiments. Based on the examples highlighted in the previous
section, we can summarize the key aspects of what we mean by “information flow”. We want
to capture:

1. information flow between distinct nodes, representing different brain regions at some
scale;

2. information about a specific message, i.e., the stimulus;

3. specific paths along which information flows;

10



2.1. Introduction

4. dynamics, i.e., there may be information flow at one time instant, but not at a later
instant; and

5. feedback, i.e., information about a message may flow back and forth between two areas.

In what follows, we expand upon some of these points, and outline our methodology for
designing a computational model and providing a definition of information flow that addresses
these issues.

In order to properly scope our task, we choose to restrict our attention to “event related
experimental paradigms” [65]. These are a set of standard neuroscientific experimental
protocols where a timed stimulus is presented to an animal subject or human participant
over multiple trials, while their brain signals are being recorded. Restricting ourselves
to such experiments allows us to decide precisely what kind of information flow we are
interested in, since in general, the phrase “information flow” can refer to more than one
notion in neuroscience. We identify two dominant interpretations of “information flow”:
(i) the first refers to information about a specific quantity or variable that is of interest to
the experimentalist, which in this paper we refer to as the “message” ; (ii) the second refers
to information in the abstract, and is usually used to describe the fact that one area of the
brain “drives” or “influences” another area through the transmission of some information:
in this interpretation, one is not interested in what is being communicated, only that the
communication is occurring. In this paper, we focus only on the first interpretation of the
phrase, where we are interested in information about a specific message. This is particularly
common in event-driven paradigms, where the neuroscientist investigates how the brain
responds to a carefully chosen set of stimuli, and examines the paths along which information
contained in these stimuli3 flows through the brain.

We approach our goal of providing a theoretical framework for information flow by
formally defining a computational system model. This model is based on a graph consisting
of nodes, representing distinct computational areas of the brain, and edges, representing the
connections between them. The nodes of this graph can potentially represent the brain at
any scale: single neurons, groups of neurons, or even whole brain regions, depending on the
measurement modality and the kind of experiment being performed. These nodes compute
stochastic functions of transmissions received from their incoming edges, and send the results
of these computations on their outgoing edges. The idea of the computational graph is inspired
from Thompson’s work on VLSI complexity theory [66], while the model for stochastic
computation is derived from Structural Causal Models in the field of Causality [34, 35].

Next, we find a formal definition for information flow that satisfies the requirements
listed above. In order to attain a dynamic picture of information flow on the edges of the
computational graph, and to deal with feedback in the flow of information, we use the idea
of time-unrolling the computational graph (taking inspiration from Network Information
Theory [50]). Principal among our requirements is that we must be able to track, using an
unbroken path, how information about the message flows through the system. Imposing this
requirement as a desired property, we iterate through a series of candidate definitions and
counterexamples, finally arriving at a definition based on conditional mutual information,
which satisfies the aforementioned requirements.

3or alternatively, information contained in the response
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2. The M-Information Flow Framework

Given that we are interested in information about a message, we rely on information-
theoretic measures to define information flow. Furthermore, we restrict ourselves to “observa-
tional” measures, which can be computed from a sample of all random variables described in
the model. We deliberately eschew interventional and counterfactual measures: the former
require the capability to intervene on the system and change the distributions of the random
variables involved; meanwhile the latter are usually theoretical, and can only be applied
in situations where one can ask what might have occurred if a specific variable had been
different on a particular trial (while keeping the realizations of all unobserved private sources
of randomness fixed).

The approach of building a rigorous theoretical framework that we have adopted in this
paper is inspired by two works from biologists titled “Can a biologist fix a radio?” [33] and
“Could a neuroscientist understand a microprocessor?” [67]. Both these works point to the
lack of formal methods, i.e., systematic theory, that could help biologists understand the
limitations of their tools and test their assumptions. It is our belief that information theory
can help provide the formal methods that are sought in biology, and make an impact in fields
such as neuroscience and neuroengineering [37, 38, 43]. In particular, information theory can
play an important role in advancing how we understand large computational systems through
external measurements and interventions. While developing an understanding of information
flow in such systems may not be sufficient for providing a complete description of the nature
of computation itself, we believe that it forms an integral component. Providing a formal
theoretical framework for information flow is but a small part of several broader theoretical
questions that are yet to be properly posed: questions such as how one might formalize
“reverse engineering” the brain, or formalize the notion of “understanding computation”.

2.1.3 Related Work

Prior work on statistically inferring flows of information in the brain appears under the
umbrella of “functional” or “effective connectivity” [68–70]. These efforts have largely relied
on measures of statistical4 causal influence such as Granger Causality [26, 27], Massey’s
Directed Information [29–32], Transfer Entropy [28] and Partial Directed Coherence [71].
Despite widespread use, these measures have frequently been a subject of debate and
disagreement within the neuroscientific community [72–78]. In part, these disagreements
stem from the widely-acknowledged fact that under non-ideal measurement conditions (e.g. in
the presence of hidden variables [34, p. 54], asymmetric noise [79, 80], or limited sampling [81]),
estimation of these quantities may be erroneous. While these non-idealities may eventually
be overcome through improvements in technology, we believe that more fundamental issues
still remain. For instance, one basic question that has remained unanswered is: when can
statistical causal influence be interpreted as information flow about a message? In previous
work, we demonstrated that even under ideal measurement conditions, the direction of
greater Granger causal influence can be opposite to the direction in which the message
is being communicated in certain kinds of feedback communication networks [82]. This
example points to a more general issue with the use of statistical causal influence measures:
there is no direct way to interpret what the influence is “about”. While it is understood in

4We borrow the use of the term “statistical” from Pearl [34, Sec. 1.5], who contrasts and differentiates
“statistical” concepts from (strictly) “causal” ones.
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certain settings that “information flow” refers to information contained in a particular set
of “stimuli” (as mentioned in the previous section), the aforementioned measures do not
incorporate the effect of the stimulus.

The existence of such fundamental issues can be traced back to the fact that there
is no underlying model that links information flow (of some message of interest) with
the signals that are actually measured. This leads to a lack of separation between the
problems of defining information flow and of estimating it, while also making it hard to
test assumptions and draw the right interpretations from experimental analyses. We believe
that, just as Shannon provided a theoretical foundation for information transmission [83],
a solid theoretical treatment of information flow is needed. Such a treatment would begin
with a model of the underlying system, give a definition for information flow and describe
its properties, and finally end with a suitable estimator. Adopting Shannon’s approach
of defining entropy by stating a set of properties that such a measure must satisfy, we
attempt to define information flow by putting forward an intuitive property that we believe
is desirable for such a quantity. It is our hope that, by providing a theoretical foundation
that separates definition and estimation, along with a concrete model and explicitly-stated
assumptions, we can avoid many of the pitfalls encountered by previous approaches to
understanding information flow in the brain.

It is useful at this point to mention the key differences between our measure of information
flow, and measures based on Granger Causality and its generalizations:

1. Our measure depends on a message, M , that is related to the stimulus or the response
in a neuroscientific task, whereas tools based on Granger Causality do not.

2. Since Granger Causality-based tools use time series modeling to compute an estimate of
information flow, they are unable to provide a dynamic, evolving picture of information
flow between different areas over time (although we must acknowledge that there have
been recent efforts towards bridging this gap [84]).

3. Since we start with a computational framework, our model provides a direct way to
connect information flow with the underlying computation. On the other hand, Granger
Causality-based tools start with a probabilistic graphical model of the observed nodes,
and do not tie the analysis to computation in any way.

While our proposed definition of information flow will also suffer from performance degrada-
tion under non-ideal measurement conditions, we believe that it overcomes the fundamental
difficulty faced by Granger Causality-based tools: when measurements are ideal, our defini-
tion provides a clear and consistent way to interpret information flow about a message, as
we illustrate through several examples in Section 2.6.

Another line of work that appears within the functional and effective connectivity
literature is Dynamic Causal Modeling (DCM) [69, 85]. This methodology is, in spirit, much
more closely aligned with what we propose here. However, our framework differs from DCM
in a few important ways: (i) our underlying framework and model is based on Structural
Causal Models rather than dynamical systems, and (ii) we seek to formalize the notion of
information flow, not just of effective connectivity. However, the style of thinking, which
involves starting from theoretical models and incorporating the stimulus and experimental
design, is common to both DCM and our approach.
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2. The M-Information Flow Framework

2.1.4 Outline of the Paper

In this paper, we start by giving a mathematical description of a generic computational
system, about which inferences are being drawn (Section 2.2). We then formally define
what it means for information about some message to flow on a single edge or on a set of
edges in the computational system (Section 2.3). This is done by proposing an intuitive
property that we would like such flows to satisfy, along with some candidate definitions, and
then examining which candidates satisfy the property. The intuitive property we desire is:
information flow about a message may not completely disappear from the system at a certain
time, only to spontaneously reappear at a later point (formalized in Property 2.1). It emerges
that simple and intuitive definitions actually fail to satisfy this basic property, and so a more
sophisticated definition is needed. We then show how our definition for information flow
about the message satisfies several desirable properties, including guarantees for the existence
of “information paths” between appropriately defined input and output nodes (Section 2.4).
We also show how our definition has a very non-intuitive property—information about a
message may flow out of a node despite not flowing into it—and justify why this might be
reasonable for an observational definition. After that, we suggest how one might detect
which edges of the computational system have information flow, and provide an “information
path algorithm”, which identifies the aforementioned information paths (Section 2.5). We
also introduce and discuss the concepts of derived information, redundant transmissions and
hidden nodes, which allow one to obtain a more fine-grained understanding of information
structure in the computational system. To show that our definition of information flow
agrees with intuition, we give several canonical examples of computational systems and
depict the information flow in each case (Section 2.6). Finally, we conclude with discussions
on connections with neuroscience, issues related to the difficulty of estimating information
flow (along with possible remedies), comparisons with the existing statistical causal influence
literature, connections with fields such as probabilistic graphical models and causality, and
a discussion on information volume (Section 2.7).

2.2 The Computational System

Our goal is to develop a rigorous framework for understanding how information about a
message flows in a computational system. To do this, we first need to define the terms
“computational system”, “message”, “information about a message” and “flow”. In this
section, we start with the first two terms, defining the model of the computational system
that is used throughout this paper, and explicitly defining the message.

Our model is based on prior art in the information theory literature [50, 66], and consists
of nodes communicating to each other at discrete points in time on a directed graph. At
every time instant, each node receives transmissions on its incoming edges and computes
a function of these transmissions to send out on its outgoing edges. This function can be
random and time-dependent, and can be different for every outgoing edge. We will be
interested in the flow of a particular random variable called the “message”, which will be
defined shortly. Since the directed graph forming the computational system may have cycles,
the message may flow along a cyclic path. To deal with this possibility while capturing the
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fact that nodes must be causal,5 we define a “time-unrolled” graph (in a manner similar to
Ahlswede et al.6 [50]), which describes how nodes communicate to each other over time. We
define a random variable model for the nodes’ transmissions, and demonstrate how each
node computes these variables. We also formally define the input nodes of the computational
system, through their relationship with the message.

Definition 2.1 (Complete directed graph). A complete directed graph G∗ = (V∗, E∗) is
described by a set of nodes and the set of all edges between those nodes (including self-edges).
We denote the set of nodes by their indices, V∗ = {1, 2, . . . , N}, where N is a positive integer
denoting the number of nodes in the graph. The set of edges in the graph is the set of all
ordered pairs of nodes, E∗ = V∗ × V∗.

Note that (i) edges are directed, so the edge (A,B) ∈ E∗ describes an edge from node A
to node B; and (ii) nodes have self-edges. For every A ∈ V∗, there is an edge (A,A) in E∗.

Moving forward, nodes shall be thought of as performing computations and possessing
local memories. We shall interpret the transmission of a node to itself as the variable it
stores within its memory.7

Definition 2.2 (Time-unrolled graph). In order to allow nodes to have different transmis-
sions at every time instant, we must provide for the progression of time. Let T= {0, 1, . . . , T}
be a set of time indices, where T is a positive integer representing the maximum time index.
Then, a time-unrolled graph G= (V, E) is constructed by indexing a complete directed graph
G∗ using the time indices T as follows:

1. The nodes V consist of all nodes V∗ in G∗, subscripted by time indices in T,

V= {At : A ∈ V∗, t ∈ T};

2. The edges E connect nodes of successive times in V, so they can be written in terms
of the edges in E∗ as

E=
{
(At, Bt+1) : (A,B) ∈ E∗, t ∈ T\{T}}.

For brevity, we denote the set of all nodes at time t by Vt, and the set of all (outgoing)
edges at time t by Et. So, for example, we will have A1 ∈ V1 and (A1, B2) ∈ E1. All of the
notation in this section can be visualized in Figure 2.1 and is summarized in Table 2.1.

Once again, note that (i) edges at time t connect nodes at time t to nodes at time t+ 1;
and (ii) since the original graph G∗ had self-edges, there will always be an edge (At, At+1)
in Et for every node At ∈ Vt.

5Causal in the “Signals and Systems” sense of the word, where a node cannot make use of future
transmissions [86].

6Although the work of Ahlswede et al. (2000) is titled “Network Information Flow”, it actually addresses
a different problem: one of the achievable rate region of a broadcast network and the optimal coding strategy
that achieves this rate. In contrast to their work, which concentrates on characterizing and achieving the
optimal rate, our focus is on understanding how information about a known message flows in an existing
computational system.

7Instances of directed graphs that are not complete and of nodes possessing no memory are merely special
cases of our model, where the respective edges’ transmissions can simply be set to zero.
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Figure 2.1: A diagram showing an example of a how a complete directed graph is unrolled to create a
time-unrolled graph. On the left, we show a complete directed graph G∗ that has three nodes, V∗ = {A,B,C}.
These nodes are fully connected to each other via edges E∗, including self-edges.
On the right, we show how G∗ has been unrolled using time indices T= {0, 1, 2} to obtain a time-unrolled
graph G. The set of all nodes at time t = 0 is V0 and the set of all (outgoing) edges at time t = 0 is denoted
E0. As an example, we have shown an arbitrary edge E0 ∈ E0 (here, E0 = (C0, B1)) and the transmission on
that edge, X(E0). As another example, we show a “self-edge” in the time-unrolled graph, E1 ∈ E1, which in
this case is E1 = (A1, A2). Also depicted is the transmission X(E1) on this self-edge, which is interpreted as
the contents of the memory of node A from t = 1 to t = 2. The message M arrives at the input node A0, but
could in general be available at more than one node at t = 0.
In subsequent illustrations, we do not depict all edges at every time step, even though they are present. This
is done only for the sake of clarity.

Also note, we have only presented the complete directed graph in Definition 2.1 in order
to explicitly define the process of time-unrolling. We do not expect the time-unrolled graph
to be “rolled back” into a complete directed graph at the end of an information flow analysis.
Since we seek a time-evolving picture of information flow between different computational
nodes, we will directly view and interpret information flow on the time-unrolled graph. This
is illustrated later, through several examples, in Section 2.6.

Definition 2.3 (Computational System). A computational system C = (G, X,W, f) is
a time-unrolled graph G that has transmissions on its edges which are constrained by
computations at its nodes. The input to the computational system includes a message,8 M .
We now elaborate upon these terms:

2.3a) Transmissions on Edges
We begin by defining a function which maps every edge of G to a random variable. Let
X be the set of all random variables in some probability space.9 Then, let X : E→ X

be a function that describes what random variable is being transmitted on a given edge,
i.e., X(E) is the random variable corresponding to the transmission on the edge E.
For convenience, we define X applied to a set of edges as the set of random variables
produced by applying X to each of those edges individually, i.e., for any set E′ ⊆ E,

X(E′) = {X(E) : E ∈ E′}. (2.1)
8The message is the random variable whose “information flow” we will seek to identify.
9We assume that all probability distributions are such that the mutual information and conditional

mutual information between any sets of random variables is well-defined [87, Sec. 2.6].
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We extend the use of this notation to other functions of nodes and edges that we define,
going forward.

2.3b) Computation at a Node
Let At ∈ Vt be a node in the time-unrolled graph G, at some time t ≥ 1 (recall that
t ∈ {0, 1, . . . , T}). Let P(At) be the set of edges entering At, and Q(At) be the set
of edges leaving At. Further, let us suppose that At is able to intrinsically generate
the random variable10 W (At) at time t, where W (At) ⊥⊥ W (V\{At}) ∀ At ∈ V,
W (Vt) ⊥⊥ {M} ∪ {X(Et′) : t′ ∈ T, t′ < t} and the symbol “⊥⊥” stands for independence
between random variables. Then, the computation performed by the node At (for t ≥ 1)
is a deterministic function11 fAt that satisfies

fAt
(
X(P(At)),W (At)

)
= X(Q(At)). (2.2)

Here, X(Et−1), W (V\{At}), W (Vt), X(P(At)) and X(Q(At)) all make use of the
notation described in (2.1).
Note that the definition above does not apply when t = 0; this is a special case which is
discussed below. Also, for convenience, where A is an arbitrary set of nodes, we will
use fA to denote the “joint function” mapping the incoming transmissions of all nodes
in A (along with their intrinsic random variables W (A)) to their respective outgoing
transmissions.

2.3c) The Message and the Input Nodes
The message is a random variable M , which is of interest to the experimentalist
observing the computational system, and for which we shall define information flow.
For now, we assume that we are interested in a single message.12 We also assume that
the message enters the computational system only at time t = 0, and at no later time
instant.
We formally define the input nodes of the system as those nodes of G, at time t = 0,
whose transmissions statistically depend on the message M :

Vip := {A0 ∈ V0 : I
(
M ;X(Q(A0))

)
> 0}, (2.3)

where Q(A0) represents the set of edges leaving the node A0.
To remain consistent with Definition 2.3b, we define the computation performed by an
input node A0 ∈ Vip as a function fA0 that satisfies

fA0

(
M,W (A0)

)
= X(Q(A0)), (2.4)

10X(Et) and W (At) may also be random vectors instead of random variables, i.e., an edge may transmit a
vector. This does not affect the theoretical development presented here; all of our proofs remain unchanged.

11This kind of model is not new. For instance, in the causality literature, it is known by a few different
names: Pearl refers to it as a “Structural Equation Model” [34, Sec. 1.4.1], while Peters et al. refer to it as a
“Structural Causal Model” [35]. We prefer the latter terminology, which makes explicit the connection to
causality.

12That is, we assume that the message is a single random variable or vector. It is possible to simultaneously
examine the information flows of several (possibly dependent) messages, or of sub-messages within a single
message. These cases are examined in Section 2.5.6.
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Table 2.1: Summary of Notation

Variable(s) Meaning

G∗ = (V∗, E∗) The original complete directed graph, prior to time-unrolling
G= (V, E) The time-unrolled graph making up the computational system

T The set of all time points, {0, 1, . . . , T}
V The set of all nodes in the computational system
Vt The subset of nodes at time t

Vt, At, Bt, Ct, Dt A node in the graph at time t
V,A,B,C,D,E A node in the original complete directed graph G∗, or a node in the computational

system at an unspecified time point
A,B Some subset of nodes in V

E The set of all edges in the computational system
Et The set† of all edges at time t
E′t Some subset‡ of edges in Et

Et, Pt, Qt, Rt, St An edge in the computational system at time t
E, P,Q,R, S An edge in the original complete directed graph G∗, or an edge in the computational

system at an unspecified time point
X(Et) The random variable representing the transmission on the edge Et

X({E(1), E(2)}) Short-hand notation for {X(E(1)), X(E(2))} (refer Equation (2.1))
P(Vt) The set of all incoming edges of Vt (= Vt−1 × {Vt} ⊆ Et−1)
Q(Vt) The set of all outgoing edges of Vt (= {Vt} × Vt+1 ⊆ Et)
W (Vt) The intrinsically generated random variable at the node Vt
M The “message”, a random variable that enters the system at time t = 0, and whose

information flow we seek to understand (refer Definition 2.3c)
Vip The input nodes: the subset of nodes at time 0 whose outgoing transmissions depend

on the message M (refer Definition 2.3c)
fVt The function computed by the node Vt (refer Definition 2.3b)

†Script forms typically denote sets
‡Primed script forms typically denote subsets

and the computation performed by a non-input node at time t = 0, A0 ∈ V0\Vip, as a
function fA0 that satisfies

fA0

(
W (A0)

)
= X(Q(A0)). (2.5)

As before, W (A0) ⊥⊥W (V0\{A0}) for all A0 ∈ V0 and W (V0) ⊥⊥M .

Remarks

1. Informally speaking, Definition 2.3 is designed to allow each node to generate a
randomized function of its incoming transmissions for each of its outgoing transmissions.

2. The randomization at each node is explicitly captured by its intrinsic random variable
W (·), and is assumed to be independent across all nodes of the system.
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3. Furthermore, each node is allowed to send a different transmission on each of its
outgoing edges.

4. Note that the condition imposed by Equation (2.2) introduces dependence between
the random variables in the set X(E).

5. For the most part, we will not be concerned with the precise form of the computation
being performed by every node. We will only make use of information-theoretic
measures applied to the message and to the random variables in the computational
system.

Throughout the paper, we use the variables U , V , A, B, C and D to refer to nodes and
E, P , Q, R and S to refer to edges. We use their script forms, e.g. R, when referring to
sets of nodes and edges, and primed script forms, e.g. R′, when referring to subsets thereof.
Once again, the notation we use is summarized in Table 2.1, and depicted in Figure 2.1 for
convenience.

Having defined what we mean by the terms “computational system” and “message”, in
the following sections we proceed to find a definition for “information flow” and identify
properties that this definition satisfies in any computational system.

2.3 Defining Information Flow

Before one can speak of detecting information flow in a network, it is first important to
define what it is that we seek to detect.13 In this section, we focus on arriving at a definition
for information flow.

Our goal is to formalize how information about a message flows in a computational system.
Ultimately, we expect to find the path that the message takes while being processed by the
system. Towards this, we start by trying to formally define what it means for information
about the message to flow on a given edge. This section concludes with a proposal for such
a definition: one based on strict positivity of a conditional mutual information. But to
provide the intuition behind this choice of definition, we start with several simpler candidate
definitions, and show how they fail to satisfy an intuitive property using counterexamples.

After proposing a definition for information flow, in Section 2.4, we discuss the properties
satisfied by our definition. Then, in Section 2.5, we specify how the transmissions of the
computational system are observed, and describe how information flow might be inferred in
a real computational system.

2.3.1 An intuitive property

To concretely define what it means for information about a message to flow on an edge,
we need some way to assess competing candidate definitions and choose one among them.

13In essence, “causal influence” measures such as Granger Causality and Directed Information, while
intuitively quantifying transferred information, fail to lay down what aspect of computation they actually
capture. This is, in part, a result of conflating the stages of defining a quantity we want to understand, and
prescribing an estimator for it.
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Figure 2.2: The computational system for Counterexample 2.1. We only depict edges relevant to the
counterexample here. All other edges in the underlying complete directed graph are still present, but are not
shown; their transmissions are assumed to be zero. Observe that no edge at time t = 1 has information flow
as per Candidate Definition 2.1, yet the message reappears at time t = 2.

Towards this goal, we state a straightforward and intuitive property, which we would want
any definition of information flow to satisfy.

Suppose that, at a given point in time, there is no flow of information about the message
across any edge of a computational system. Note that this includes self-edges, so no node
“carries” information about the message within its memory either. Then, we expect that
information about the message has ceased to persist in the system, so the information flow
about the message must be zero on all edges of the computational system, at all future
points in time.

Property 2.1 (The Broken Telephone14). Let C be a computational system, and let FM :
E→ {0, 1} be an indicator of the presence of information flow about M on an edge. That
is, FM (E) = 1, if information about M flows on the edge E ∈ E and FM (E) = 0, otherwise.
The Broken Telephone Property states that if, at some time t ∈ T, we have

FM (Et) = 0 ∀ Et ∈ Et, (2.6)

then

FM (Et′) = 0 ∀ Et′ ∈ Et′ ∀ t′ ∈ T, t′ > t. (2.7)

2.3.2 Intuiting Information Flow through Counterexamples

We now propose four candidate definitions, beginning with the simplest. We then construct
counterexamples to show how the first three candidate definitions do not satisfy Property 2.1.

Candidate Definition 2.1. A simplistic and intuitive definition for information flow might
simply stem from dependence. We say that information about the message M flows on an
edge Et if

I
(
M ;X(Et)

)
> 0.

14https://en.wikipedia.org/wiki/Telephone_game
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Counterexample 2.1. Consider the computational system depicted in Figure 2.2 (note
that, in order to avoid unnecessary clutter, only edges with non-zero transmissions are
shown in the figure). A0 is the input node, which has the message M ∼ Ber(1/2) at time
t = 0. The system is designed to communicate15 M to the node B using the following
strategy: at t = 0, A0 “transmits” M to A1 (i.e., node A stores M in its memory). C0
independently generates a different random number, W (C0) = Z ∼ Ber(1/2), Z ⊥⊥M , and
sends this message to A1, while also storing it in memory it until t = 1. A1 then computes
M ⊕ Z and passes the result to B2, while C1 sends Z to B2. Here, the symbol “⊕” stands
for xor, the exclusive-or operator on two bits. B2 is thus able to recover M by once again
xor-ing its inputs, (M ⊕ Z) and Z.

Note that the output of B2 depends on M , even though none of its inputs individually
depends on M . That is, I

(
M ;X((A1, B2))

)
= I(M ;M ⊕ Z) = 0, and I

(
M ;X((C1, B2))

)
=

I(M ;Z) = 0, so by Candidate Definition 2.1, information about the message flows on no
edge at time t = 1. However, information about the message does flow out of node B2 at
time t = 2. This violates Property 2.1. Thus, mere dependence on the message cannot be a
valid definition for flow of information on a single edge. �

Communication strategies such as the one in Counterexample 2.1 frequently arise in
cryptography [88], to prevent an eavesdropper from reading confidential information, and in
network coding [50], for achieving the communication capacity of a network. Furthermore, a
complex computational network may have smaller sub-networks with such topologies. For
instance, we observe such a sub-network in the canonical example for network coding: the
butterfly network [50, Fig. 7b] (this particular example is discussed in detail in Section 2.6.1).
Optimal communication in such a network requires the use of such topologies, so Counter-
example 2.1 is far from obscure. In fact, central to the idea of Counterexample 2.1 is a
concept known as “synergy”, which is well-studied in the literature on Partial Information De-
composition [89–91] (see [92] for a recent review). This is discussed at length in Section 2.3.5.
Even in neuroscience, the concept of synergy is recognized and well-understood [93–95], and
some experimental evidence has appeared in the literature [96].

Counterexample 2.1 demonstrates that the information necessary to recover the message
(or a function of it) is not necessarily transmitted through individual edges, but jointly
across edges. So, we might instead seek to define the “smallest set of edges” along which
information about the message flows, for every point in time. But if we ultimately wish to
isolate paths along which information about the message flows, we require an understanding
of which edges specifically the information flows upon. We therefore continue to think of
information as flowing on individual edges.16

We can now update our naïve definition to counter the previous counterexample. We
start by noting that in Counterexample 2.1, although the transmission on edge (A1, B2) is

15This communication can be thought of as computing the identity function, and making the output
available at the node B.

16It should be noted that the two views—information flowing on individual edges, versus sets of edges—are
compatible with each other if we use Definition 2.5 (which will appear shortly) to describe information flow
on a set of edges. This equivalence is elaborated upon in Section 2.3.4. Later, in Section 2.4.4, we attempt to
refine our understanding of the aforementioned “smallest set of edges” along which information about the
message flows.
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M A0 A1 A2

B0 B1 B2

C0 C1 C2

D0 D1 D2

M

M

Z1

Z1

Z2

Z2

M⊕Z1⊕Z2

Z1

Z2

Figure 2.3: The computational system for Counterexample 2.2. Once again, observe that no edge at time
t = 1 has information flow as per Candidate Definition 2.2, yet the message reappears at time t = 2. Note
that only edges relevant to the counterexample are depicted in the figure. All other edges of the underlying
complete directed graph are still present, and their transmissions are assumed to be zero.

independent of M , it is not conditionally independent of M when given the transmission on
(C1, B2).

Candidate Definition 2.2. We say that information about the message M flows on an
edge Et ∈ Et if at least one of the following holds:

1. I
(
M ;X(Et)

)
> 0, or

2. ∃ E′t ∈ Et s.t. I
(
M ;X(Et)

∣∣X(E′t)
)
> 0.

Counterexample 2.2. Consider a modified version of Counterexample 2.1 in which we xor
M with two random variables, Z1 and Z2, where M,Z1, Z2 ∼ i.i.d. Ber(1/2) (as shown in
Figure 2.3). Now, since there are two noise terms, no single one of them may be conditioned
upon to have non-zero information flow at time t = 1. That is, I(M ;M ⊕ Z1 ⊕ Z2 |Z1) = 0
and I(M ;M⊕Z1⊕Z2 |Z2) = 0. The same holds true of Z1, conditioned on eitherM⊕Z1⊕Z2
or Z2, and for Z2, conditioned on either M ⊕ Z1 ⊕ Z2 or Z1. So, Candidate Definition 2.2
also fails to satisfy Property 2.1. �

It might seem that a possible rectification is to condition on all other edges at time t,
but we can show that this also fails the test.

Candidate Definition 2.3. We say that information about the message M flows on an
edge Et ∈ Et if at least one of the following holds:

1. I
(
M ;X(Et)

)
> 0, or

2. I
(
M ;X(Et)

∣∣X(Et\{Et})
)
> 0.
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2.3. Defining Information Flow

M A0 A1 A2

D0 D1 D2

B0 B1 B2

C0 C1 C2

M

M

M

Z

Z

Z

M⊕Z

M⊕Z

Z

Z

Figure 2.4: The computational system for Counterexample 2.3. Just as in the previous counterexamples, no
edge at time t = 1 has information flow as per Candidate Definition 2.3, yet the message is reconstructed at
time t = 2. Note that only edges relevant to the counterexample are depicted in the figure. All other edges of
the underlying complete directed graph are still present, and their transmissions are assumed to be zero.

Counterexample 2.3. Consider the computational system shown in Figure 2.4. Once
again, we have an input node A0 which possesses the message at time t = 0, and wishes to
send this message to node B. It does so by mixing M with an independent random variable
Z generated at C0, so that the scenario described in Counterexample 2.1 still holds. But
additionally, A communicates to B along a redundant path, through D1. Now, if E is any
incoming edge of B2, it is still true that I

(
M ;X(E)

)
= 0. So none of the inputs of B2

individually depends on M , thus eliminating the first condition in Candidate Definition 2.3.
Furthermore, checking each incoming edge of B2 reveals that the second condition also fails
to hold. If we take E1 = (A1, B2), we get

I
(
M ;X(E1)

∣∣X(E1\{E1})
)

= I(M ;M ⊕ Z |M ⊕ Z,Z) = 0. (2.8)

The same holds true when E1 = (D1, B2) since the transmissions on both edges are identical
by construction. Likewise, if we take E1 = (C1, B2), we have

I
(
M ;X(E1)

∣∣X(E1\{E1})
)

= I(M ;Z |M ⊕ Z,Z) = 0, (2.9)

with the same holding true when E1 = (C1, C2). Therefore, no edge at time t = 1 has any
information flow about the message M , as per Candidate Definition 2.3. Nevertheless, B2
is able to recover the message at time t = 2, proving that Property 2.1 fails to hold for
Candidate Definition 2.3. �

2.3.3 Information Flow on a Single Edge

The counterexamples presented in the previous section motivate a new definition for when
information about the message can be said to flow on a given edge. Neither dependence of
M on the transmission of an edge, nor conditional dependence given one or all other edges,
satisfy Property 2.1.
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2. The M-Information Flow Framework

However, in all these counterexamples, given an edge Et upon which we expect to have
non-zero information flow, we observe: there is at least one subset of edges E′t ⊆ Et\{Et}, such
that when given X(E′t), X(Et) is conditionally dependent17 on M . In Counterexample 2.1,
the edge (A1, B2), carrying M ⊕Z, is conditionally dependent on M , given X

(
(C1, B2)

)
= Z.

In Counterexample 2.2, X
(
(A1, B2)

)
= M ⊕Z1⊕Z2 is conditionally dependent on M , given

{X((C1, B2)
)
, X
(
(D1, B2)

)} = {Z1, Z2}. And finally, in Counterexample 2.3, X
(
(A1, B2)

)
=

M ⊕ Z is conditionally dependent on M , given X
(
(C1, B2)

)
= Z; note that we do not

condition on X
(
(D1, B2)

)
= M ⊕ Z. Thus, conditioning on a subset of the other edges’

transmissions creates dependence between M and the transmission on an edge of interest.
We will shortly prove that Property 2.1 holds when information flow is defined as below,

so we directly state it as a definition, skipping its candidacy status.

Definition 2.4 (M -information Flow on a Single Edge). We say that information about
the message M flows on an edge Et ∈ Et if

∃ E′t ⊆ Et \ {Et} s.t. I
(
M ;X(Et)

∣∣X(E′t)
)
> 0. (2.10)

Henceforth, we refer to “information flow about the message M” as M -information flow, and
use the phrase “the edge Et has M -information flow” or “the edge Et carries M -information
flow” to mean that information about M flows on Et per this definition.

Note that if I
(
M ;X(Et)

∣∣X(E′t)
)
> 0, then we must have I

(
M ;X({Et} ∪ E′t)

)
> 0. In

other words, there exists a set of edges that includes Et, whose transmissions depend on M .
This is why it is important to condition on all possible subsets of Et. It is not immediately
clear, however, whether every edge in {Et} ∪ E′t has M -information flow. We return to this
point in Section 2.4.4.

Also, this definition implies that certain edges, such as (C1, B2) in Counterexample 2.1,
may have M -information flow, which may seem counter-intuitive. This is discussed further
and justified in Section 2.4.2.

2.3.4 Information Flow on a Set of Edges

The definition of M -information flow for a single edge naturally generalizes to one for a set
of edges, at a given time.

Definition 2.5 (M -information Flow on a Set of Edges). We say that information about
the message M flows on a set of edges E′t ⊆ Et if

∃ R′t ⊆ Et s.t. I
(
M ;X(E′t)

∣∣X(R′t)
)
> 0. (2.11)

The definition ofM -information flow on a set of edges is nearly identical to its single-edge
counterpart. Indeed, they are closely related, as the following proposition shows.

Proposition 2.1. A set E′t ⊆ Et has M -information flow (per Definition 2.5) if and only
if there exists an edge E′t ∈ E′t that has M -information flow (per Definition 2.4).

17Equivalently, we could say that there exists at least one subset of edges E′t ⊆ Et, without explicitly
excluding Et, since I

(
M ;X(Et)

∣∣X(Et), X(E′t)
)

= 0.
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2.3. Defining Information Flow

A proof of this proposition can be found in Appendix 2.A.
It should be noted that although the counterexamples in this section all employed

computational systems which recovered the message M at a new node at a later time, a
computational system will in general compute some function of the message. For instance,
see the example in Section 2.6.2.

2.3.5 The Connection with Synergistic Information

This section connects our definition of M -information flow with recent developments on
a subject known as “Partial Information Decomposition” (PID). Our definition is closely
related to the concept of “Synergistic Information” that appears in this field. This section
exists only for the purpose of providing a deeper intuition for our definition ofM -information
flow, and does not affect the rest of the paper in any significant way. We have attempted to
explain this intuition in a way that is accessible to readers unfamiliar with the PID literature.
However, readers may feel free to skip this section, if desired.

At its core, Counterexample 2.1 relies on a concept known as “synergy”, which is
described explicitly in the literature on Partial Information Decomposition (PID) [89–91]
(see [92] for a recent review, and Appendix 2.C for a brief introduction). Essentially,
this body of literature seeks to decompose the mutual information that two or more
variables share about a message, I

(
M ; (Y1, Y2, . . .)

)
, into several individually meaningful,

non-negative components. In particular, when discussing the bivariate case—i.e., the case of
two variables, I

(
M ; (Y1, Y2)

)
—it is understood what the terms in this decomposition should

be: (i) information about the message that each variable carries uniquely, and which cannot
be inferred from the other; (ii) information about the message that the variables share
redundantly, and which can be extracted from either; (iii) and information about the message
that the variables convey synergistically, which is revealed only when both variables are
taken together, and cannot be inferred from either variable individually. Counterexample 2.1
is the canonical example for synergy, and is known simply as the “xor” example in the PID
literature. While M ⊕ Z and Z are individually independent of M , when taken together,
I
(
M ; (M ⊕ Z,Z)

)
= H(M). This suggests that M ⊕ Z and Z have no unique or shared

information about M , but convey information synergistically.
While the field has not yet arrived at a consensus on the most appropriate definitions

for unique, redundant and synergistic information [92], it is well-understood what properties
these quantities must satisfy, at least in the bivariate case (see Appendix 2.C, specifically,
Equations (2.85), (2.86) and (2.88)). Therefore, even without formal definitions, we can rely
on the intuition provided by these properties to understand the implications of PID for M -
information flow. If a particular edge’s transmission contains unique or redundant information
about the message (with respect to some other subset of edges at that point in time), then
that information will manifest itself in the form of strictly positive mutual information.
However, in the absence of positive mutual information between the message and the
transmission on a given edge, we need to consider whether said transmission synergistically
interacts with another subset of transmissions at that point in time, as this could potentially
create dependence with the message through the kind of “recombination” described in
Counterexample 2.1. We then need to decide whether such synergistic interactions ought
to be considered to constitute information flow. As we show below, our definition of M -
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2. The M-Information Flow Framework

information flow does consider instances of purely synergistic information to constitute
information flow.

Indeed, it is possible to formulate a definition for information flow based on synergy,
which is completely equivalent to Definition 2.4. The definition below makes use of the PID
preliminaries given in Appendix 2.C.

Definition 2.6 (M -synergistic information flow). We say that an edge Et has M -synergistic
information flow if at least one of the following holds:

1. I
(
M ;X(Et)

)
> 0, or

2. ∃ E′t ⊆ Et \ {Et} s.t. SI
(
M : X(Et);X(E′t)

)
> 0,

where SI(M : X;Y ) represents the synergistic information between X and Y about M .

Proposition 2.2 (Equivalence of Information Flow Definitions). An edge Et has M-
information flow if and only if it has M -synergistic information flow. Furthermore, suppose
Et is an edge which satisfies I

(
M ;X(Et)

)
= 0. Then,

I
(
M ;X(Et)

∣∣X(E′t)
)
> 0 (2.12)

for some set E′t ⊆ Et \ {Et}, if and only if

SI
(
M : X(Et);X(E′t)

)
> 0. (2.13)

That is, the set E′t upon whose transmissions we need to condition is the same as the one
responsible for providing synergy in the alternate definition.

A proof of this proposition is given in Appendix 2.C.
We should also mention here that it may be possible to leverage specific definitions of

synergistic information to supply an intuitive measure of the volume of information flow; we
discuss this in Section 2.7.4.

2.4 Properties of Information Flow
Having defined what it means for information about a message to flow on an edge, we
demonstrate that Definition 2.4 satisfies several intuitively desirable properties, including
Property 2.1.

2.4.1 The Broken Telephone Property

Theorem 2.3. M-information flow satisfies the Broken Telephone Property, i.e., Defini-
tion 2.4 satisfies Property 2.1.

Before we prove this theorem, we prove a simpler lemma which directly falls out of
Definition 2.4 and the properties of mutual information.
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2.4. Properties of Information Flow

Lemma 2.4. There is no edge in Et that carries M -information flow if, and only if, X(Et)
is independent of M . In other words,

I
(
M ;X(Et)

∣∣X(E′t)
)

= 0 ∀ Et ∈ Et, E′t ⊆ Et\{Et} (2.14)

if and only if
I
(
M ;X(Et)

)
= 0. (2.15)

Equivalently, we can state the opposite: X(Et) depends on M if and only if at least one
edge in Et carries M -information flow.

Proof. (⇒) Suppose that the condition in (2.14) holds. Let Et =
{
E

(1)
t , E

(2)
t , . . . , E

(N2)
t

}
be

any ordering of the edges in Et. Then,

I
(
M ;X(Et)

) (a)= I
(
M ;X(E(1)

t )
)

+ I
(
M ;X(E(2)

t )
∣∣X(E(1)

t )
)

(2.16)

+ I
(
M ;X(E(3)

t )
∣∣X(E(1)

t ), X(E(2)
t )

)
+ · · ·

=
N2∑
i=1

I

(
M ;X(E(i)

t )
∣∣∣ i−1⋃
j=1

{
X(E(j)

t )
})

(2.17)

(b)=
N2∑
i=1

I

(
M ;X(E(i)

t )
∣∣∣X(i−1⋃

j=1
{E(j)

t }
)) (c)= 0, (2.18)

where (a) follows from the chain-rule of mutual information [97, Ch. 2], (b) is simply the
application of Equation (2.1), and (c) follows from the fact that each term in the summation
is zero, by (2.14). This proves the forward implication.

(⇐) Next, suppose I
(
M ;X(Et)

)
= 0. Let Et be any edge in Et and let E′t be any subset

of Et \ {Et}. Also, let E′′t = Et \
(
E′t ∪ {Et}

)
. Then,

0 = I
(
M ;X(Et)

)
(2.19)

= I
(
M ;X(E′t)

)
+ I

(
M ;X(Et)

∣∣X(E′t)
)

+ I
(
M ;X(E′′t )

∣∣X(E′t), X(Et)
)

(2.20)

by the chain rule. Since (conditional) mutual information is always non-negative [97, Ch. 2],
all three terms on the right hand side must be zero. So in particular,

I
(
M ;X(Et)

∣∣X(E′t)
)

= 0. (2.21)

Since Et and E′t are arbitrary, this proves the converse.

Proof of Theorem 2.3. We need to prove thatM -information flow, as given by Definition 2.4,
satisfies Property 2.1. Explicitly stated, we need to show that if every edge at some time t
has zero M -information flow, then every edge at all future times t′ > t must also have zero
M -information flow. So suppose that, at time t, for every Et ∈ Et we have

I
(
M ;X(Et)

∣∣X(E′t)
)

= 0 ∀ E′t ⊆ Et \ {Et}. (2.22)
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2. The M-Information Flow Framework

By Lemma 2.4, this implies that

I
(
M ;X(Et)

)
= 0. (2.23)

Now, consider the first future time instant, t′ = t + 1. For every node At+1 ∈ Vt+1, the
definition of computation at a node (Definition 2.3b) states that

X(Q(At+1)) = fAt+1

(
X(P(At+1)),W (At+1)

)
, (2.24)

where the reader may recall, P(At+1) and Q(At+1) are the edges entering and leaving At+1
respectively. We can collect the individual functions fAt+1 across all nodes in Vt+1 into a
single joint function fVt+1 , as described in Definition 2.3b, to obtain

X(Et+1) = fVt+1

(
X(Et),W (Vt+1)

)
. (2.25)

Therefore,

0
(a)
≤ I

(
M ;X(Et+1)

)
= I

(
M ; fVt+1

(
X(Et),W (Vt+1)

))
(2.26)

(b)
≤ I

(
M ;X(Et),W (Vt+1)

)
(2.27)

= I
(
M ;X(Et)

)
+ I

(
M ;W (Vt+1)

∣∣X(Et)
)

(2.28)
(c)= I

(
M ;X(Et)

) (d)= 0, (2.29)

where (a) follows from the non-negativity of mutual information, (b) is an application
of the Data Processing Inequality [97, Ch. 2], (c) follows from the fact that W (Vt+1) ⊥⊥
{M,X(Et)}, as stated in Definition 2.3b, and (d) follows from (2.23). So, we must have that
I
(
M ;X(Et+1)

)
= 0. Applying Lemma 2.4 once again, we find that for t′ = t+ 1,

I
(
M ;X(Et′)

∣∣X(E′t′)
)

= 0 ∀ Et′ ∈ Et′ , E
′
t′ ⊆ Et′\{Et′} (2.30)

We have shown that (2.22) implies (2.30), so induction on t′ yields that (2.30) holds for all
future times t′ > t, completing the proof.

2.4.2 The Existence of Orphans

M -information flow (Definition 2.4) also has a very non-intuitive property: an edge leading
out of a node may have M -information flow, even though no edge leading into that node
has M -information flow.

Definition 2.7 (M -information Orphan). In a computational system C, a node Vt is said
to be an M -information orphan if Q(Vt) has M-information flow (as per Definition 2.5),
but P(Vt) has no M -information flow.

Property 2.2. M -information orphans may exist in a computational system.
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Proof. Consider the computational system in Figure 2.2 from Counterexample 2.1. The
node C1 is an M -information orphan, since its outgoing edge (C1, B2) carries M -information
flow, whereas none of its incoming edges carries M -information flow.

The existence of M -information orphans, along with the presence of M -information flow
on (C1, B2) in Counterexample 2.1, may not be expected, since Z was never computed from
M . Indeed, M -information flow appears to emerge from “nowhere” at the node C1, leaving it
orphaned in a view of the graph that contains only edges having M -information flow (hence
the name). But closer inspection reveals that in this example, the transmissions arriving at
B2 from A1 and C1, i.e. M ⊕ Z and Z, are statistically identical: they are both individually
independent of M , but when xor’ed, are fully dependent on M . In other words, any purely
observational measure18 defined on the transmissions at time t that assigns M -information
flow to M ⊕ Z, must also assign M -information flow to Z.

Note that, just as M -information flow can originate at an M -information orphan, M -
information flow may also terminate at a node—either by simple omission, or as a result of
some computation (see Section 2.6 for such instances). Likewise, multiple outgoing edges of a
given node may transmit redundant copies of the same information. Ultimately, we see that
there is no “law of conservation” for M -information flow. In this sense, “information flow”
is not a typical kind of “flow” that is defined on graphs (see, for example, [98, Sec. 26.1]),
and well-known results such as the Max-flow Min-cut Theorem [98, Thm. 26.6] do not apply
as-is to M -information flow.

It is worthwhile to note at this point that the existence of M -information orphans such
as C1 in Counterexample 2.1 is not inconsistent with the Data Processing Inequality [97,
Ch. 2]. In fact, a clear example of the Data Processing Inequality is seen at the network-level,
wherein M—X(Et)—X(Et+1) form a Markov Chain for any time 0 ≤ t < T , and so the
information content about M present collectively in all transmissions at time t+ 1 must be
no more than that present at time t. We call this Global Markovity, and state it formally
for completeness.

Corollary 2.5 (Global Markovity). At any given time t, the following Markov Chain holds:
M—X(Et)—X(Et+1).

In fact, this Markov condition must hold for every subset of nodes, not just for the entire
set of nodes, so it is subsumed by the following proposition.

Proposition 2.6 (Local Markovity). At any time t, for any given subset of nodes V′t ⊆ Vt,
the following Markov Chain holds: M—X(P(V′t ))—X(Q(V′t )).

Proof. Since X(Q(V′t )) = fV′t
(
X(P(V′t )),W (V′t )

)
by Definition 2.3b, the tuple

(
X(P(V′t )),

X(Q(V′t ))
)
is also a function of X(P(V′t )) and X(W (V′t )). Hence, the following Markov

chain holds:
M—

(
X(P(V′t )),W (V′t )

)
—
(
X(P(V′t )), X(Q(V′t ))

)
.

18i.e., a functional of the joint distribution of X(Et)
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By the Data Processing Inequality, this implies that

I
(
M ;X(Q(V′t )), X(P(V′t ))

) ≤ I(M ;X(P(V′t )),W (V′t )
)

(2.31)
(a)= I

(
M ;X(P(V′t ))

)
+ I

(
M ;W (V′t )

∣∣X(P(V′t ))
)

(2.32)
(b)= I

(
M ;X(P(V′t ))

)
+ I

(
W (V′t );M,X(P(V′t ))

)
(2.33)

− I(W (V′t );X(P(V′t ))
)

(c)= I
(
M ;X(P(V′t ))

)
+ 0− 0, (2.34)

where in (a) and (b), we have used the chain rule of mutual information in two different
ways, and in (c) we have used the fact that W (V′t ) ⊥⊥ {M,X(P(V′t ))}. Therefore,

I
(
M ;X(Q(V′t ))

∣∣X(P(V′t ))
)

= 0, (2.35)

which implies the Markov chain in Proposition 2.6.

Since the above also holds for V′t = Vt, wherein Q(Vt) = Et, Proposition 2.6 implies
Corollary 2.5.

Given that these Markov conditions arise directly from the way we have defined the
computational system, specifically Definition 2.3b, they may not be very surprising (indeed,
they may be considered properties of the computational system model itself). However,
it is worth noting that Proposition 2.6 holds even at an M-information orphan. Thus,
M -information orphans do not “create” information about M , as we would rightly expect,
given the Data Processing Inequality.

2.4.3 The Existence of Information Paths

We now show that if the outgoing transmissions of any given node depend on the message,
then we can find a path leading to that node from one or more input nodes, along which
M -information flows. Before we demonstrate this property, we formally define what we
mean by the terms “path” and “cut”.

Definition 2.8 (Path). In any computational system C, suppose A and B are two disjoint
sets of nodes in V. Then, a path from A to B is any ordered set of nodes {V (0), V (1), . . . , V (L)}
that satisfies (i) V (0) ∈ A; (ii) V (L) ∈ B; and (iii) (V (i−1), V (i)) ∈ E for every 1 ≤ i ≤ L,
where L is a positive integer indicating the path’s length. We refer to the set {(V (i−1), V (i))}Li=1
as the edges of the path.

Definition 2.9 (M -Information Path). Continuing from Definition 2.8, we define an M -
information path from A to B as any path from A to B, each of whose edges carries
M-information flow. That is, if (V (i−1), V (i)) = Eti ∈ Eti for some ti ∈ T, then for every
1 ≤ i ≤ L,

∃ E′ti ⊆ Eti s.t. I
(
M ;X(Eti)

∣∣X(E′ti)
)
> 0. (2.36)
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Definition 2.10 (Cut). In any computational system C, suppose A and B are two disjoint
sets of nodes in V. Then, a cut separating A and B is any pair of sets (Vsrc, Vsink), such
that (i) Vsrc ∪ Vsink = V; (ii) Vsrc ∩ Vsink = ∅; (iii) A⊆ Vsrc; and (iv) B⊆ Vsink. We
refer to the set of edges going from Vsrc to Vsink, i.e. E∩ (Vsrc × Vsink), as the edges in
the cut set.19

Definition 2.11 (Zero–M -information Cut). Continuing from Definition 2.10, we say
that a cut (Vsrc, Vsink) is a zero–M -information cut if every edge in its cut set has zero
M -information flow. That is, for every Et ∈ E∩ (Vsrc × Vsink),

I
(
M ;X(Et)

∣∣X(E′t)
)

= 0 ∀ E′t ⊆ Et \ {Et}. (2.37)

Remark In Definition 2.11, we require that Equation (2.37) hold for every edge Et in
E∩ (Vsrc × Vsink). However, the edges in this set may belong to several different time
instants, since the cut is not restricted to any particular time (e.g., see Figure 2.5). The
time t used in Equation (2.37), therefore, is determined by the time of the edge Et, and
varies for each Et that we check in E∩ (Vsrc × Vsink).

Property 2.3 (Existence of an Information Path). In any computational system C, suppose
that at some time top ∈ T, there is an “output node” Vop ∈ V whose outgoing edges Q(Vop)
satisfy I

(
M ;X(Q(Vop))

)
> 0. Then, there must exist an M -information path from the input

nodes Vip to Vop.

Theorem 2.7. Definition 2.4 satisfies Property 2.3.

Informally put, Theorem 2.7 states that our definition of M -information flow (Defini-
tion 2.4) guaranteesM -information paths to every output node whose outgoing transmissions
depend on the message. While the theorem seems obvious on the surface, the proof is in
fact non-trivial because of the nature of our definition of M -information flow. Due to
Property 2.2, M -information flowing out of a node does not imply that M -information
must flow into that node. Therefore, a straightforward application of the Data Processing
Inequality at every node fails to prove the theorem, and we must resort to a more rigorous
cut-set-based approach.

Proof outline. We shall prove the contrapositive of the theorem, i.e., we will show that if
there exists no M -information path from Vip to Vop, then the outgoing transmissions of Vop
are independent of M . We first connect the absence of any M -information path with the
presence of a zero–M -information cut. This is achieved in Lemma 2.8, which we present
before the proof of Theorem 2.7.

The proof itself proceeds by induction over time. We divide the proof into two steps:
initialization and continuation. Starting with the first nodes that come after the cut
(temporally) in the initialization step, we systematically show that all nodes to the right

19Note that it is not necessary for us to assume that, individually, Vsrc and Vsink are connected sets
of nodes. For instance, there may be an isolated subset of Vsink, surrounded only by nodes in Vsrc. Our
theorems and proofs remain unaffected, even in such a scenario.
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of the cut have outgoing transmissions that are independent of the message M through
induction. In this proof outline, we show these steps intuitively using Figure 2.5, where the
dashed black line denotes the cut.

Initialization. Here, node C1 is the first node to the right of the cut, and all of its
incoming edges must come from across the cut (depicted by lines in red). Because the cut
is a zero–M -information cut, none of its incoming transmissions have M -information flow.
Furthermore, the intrinsically generated random variable W (C1) is independent of M and
all past transmissions. Using these two facts along with the Data Processing Inequality, we
can show that the transmissions on C1’s outgoing edges, X(Q(C1)), are also independent of
M .

Continuation. At the second time instant to the right of the cut, nodes B2 and C2 receive
their incoming transmissions from either C1 (shown in orange) or from across the cut (shown
in blue). Once again, the transmissions coming from across the cut can have no information
flow, and we have shown that the transmissions coming from C1 are independent of M . Also,
W (B2) and W (C2) are independent of M and all incoming transmissions. This suffices to
show that the outgoing transmissions of B2 and C2, X

(
Q(B2) ∪ Q(C2)

)
, are independent of

M . Applying this argument repeatedly over time shows that the transmissions of all nodes
to the right of the cut are independent of M .

Therefore, if there is a node Vop whose outputs depend on M , we can be assured that
there exists no zero–M -information cut separating Vip from Vop. Therefore, by Lemma 2.8,
there exists an M -information path from Vip to Vop.

A few nuances are omitted in this outline, such as how the definition of Vip plays a role
precisely. These subtleties are better elucidated in the full proof.

Before proceeding to the formal proof of Theorem 2.7, we first state and prove the lemma
we alluded to earlier, which shows how the absence of an M -information path implies the
presence of a zero–M -information cut, and vice versa.

Lemma 2.8. Let A and B be two disjoint sets of nodes in the computational system C.
There exists no M -information path from A to B if and only if there is a zero–M -information
cut separating A and B.

Proof. (⇒) Suppose there exists no M -information path from A to B. Consider the set of
all nodes to which there exists at least one M -information path from A. Let Vsrc be the
collection of all such nodes, along with the nodes in A, i.e.,

Vsrc := A∪ {Vt ∈ V : ∃ an M -information path from A to Vt}. (2.38)

Let Vsink = V\Vsrc, so that Vsink consists of nodes to which there is noM -information path
from A. Then, we must have B⊆ Vsink, since it is known that there are no M -information
paths from A to B. Therefore, (Vsrc, Vsink) is a cut that separates A and B, such that no
edge in the cut set has M -information flow. In other words, by Definition 2.11, this is a
zero–M -information cut separating A and B.
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A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

}

Q(Vsink
1

)

Pcut
t0−1

Pcut
1

Psink
1

Pcut
2

Psink
2

Figure 2.5: A generic computational system used in the proof outline and to explain certain steps in the
proof of Theorem 2.7. For the purposes of the proof outline, it suffices to note that the black dashed line
denotes the cut. All variable names can be ignored at this point of time.
For the purposes of the formal proof, note that in this figure, Ecut is essentially the union of the red, blue
and purple edges, while Esink is the union of the orange and green edges. From this, it is evident that
P(Vsink

t ) = Pcut
t−1 ∪Psink

t−1 for any time t, i.e., the incoming edges of Vsink at time t must either come from
nodes in Vsink or from nodes across the cut. Secondly, it should be clear that Psink

t−1 = Q(Vsink
t−1 ) ∩ Esink, i.e.,

the incoming edges of Vsink
t that originate from nodes in Vsink are simply the outgoing edges of Vsink

t−1 which
terminate at nodes in Vsink. This is seen best at time t = 1 in the graph above, where the orange and grey
lines together represent Q(Vsink

1 ), the orange and green edges together make up Esink, and Psink
1 is given by

the orange edges, which is the intersection of the two sets.

(⇐) Next, suppose that there is anM -information path {V (i)}Li=0 from A to B. Then, we
claim that there can exist no zero–M -information cut separating A and B. Let (Vsrc, Vsink)
be any cut separating A and B. By Definitions 2.8 and 2.10, we must have V (0) ∈ A⊆ Vsrc

and V (L) ∈ B⊆ Vsink. So, there must be at least one edge going from Vsrc to Vsink which
lies on the path. This implies that at least one edge in the cut set carriesM -information flow.
Since the conditions of Definition 2.11 are not satisfied, this cut is not a zero–M -information
cut. Since this is true for every cut separating A and B, the claim holds.

Proof of Theorem 2.7. As mentioned in the proof outline, we prove the contrapositive of
the theorem. Suppose there exists no M -information path from the input nodes Vip to Vop.
Then, by Lemma 2.8, there exists a zero–M -information cut20 separating Vip and Vop. We
use this to prove that the transmissions of Vop are independent of M .

Setup. Let the zero–M -information cut separating Vip and Vop be given by (Vsrc, Vsink),
so that Vip ⊆ Vsrc and Vop ∈ Vsink. Then, the cut divides E into the following sets:

1. Esrc := E∩ (Vsrc × Vsrc), the edges between the nodes in Vsrc;

2. Esink := E∩ (Vsink × Vsink), the edges between the nodes in Vsink; and
20Note that, in general, this cut may be arbitrarily complex, spanning several nodes and multiple time

instants.
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3. Ecut := E∩ (Vsrc × Vsink), the edges going from Vsrc to Vsink.

(Note that the edges going from Vsink to Vsrc will not be relevant to our discussion). As
stated before, Lemma 2.8 implies that (Vsrc, Vsink) is a zero–M -information cut, so by
Definition 2.11, we have that for all Et ∈ Ecut,

I
(
M ;X(Et)

∣∣X(E′t)
)

= 0 ∀ E′t ⊆ Et \ {Et}. (2.39)

Note that the edges in Ecut may belong to different time instants. In particular, the time
instant t in the equation above corresponds to the time of the edge Et, whose flow is in
question.21

Order the nodes in Vsink by time, and let Vsink
t be the subset of nodes in Vsink at time t.

Let P(Vsink
t ) and Q(Vsink

t ) respectively be the sets of edges collectively entering and leaving
all nodes in Vsink

t . We shall prove that the outgoing transmissions of every node in Vsink,
including those of Vop, must be independent of the message, i.e.,

I
(
M ;X(Q(V ))

)
= 0 ∀ V ∈ Vsink. (2.40)

Initialization. Let t0 be the first time instant t for which Vsink
t is non-empty. Then,

we encounter two cases: either t0 = 0, in which case the nodes in Vsink
t0 have no incoming

edges, or t0 > 0, and the nodes in Vsink
t0 have incoming edges. We shall first prove that

in both cases, the outgoing transmissions of Vsink
t0 are independent of the message, i.e.

I
(
M ;X(Q(Vsink

t0 ))
)

= 0.
(Case I) When t0 = 0, Vsink

0 ∩ Vip = ∅. This is because the cut separates Vip from
Vop, with Vip ⊆ Vsrc, so no nodes in Vsink

0 can be input nodes. So, by the definition of
(non-)input nodes (Definition 2.3c), we must have

I
(
M ;X(Q(Vsink

0 ))
)

= I
(
M ; fVsink

0
(W (Vsink

0 ))
)

(2.41)
(a)
≤ I

(
M ;W (Vsink

0 )
)

(2.42)
(b)= 0, (2.43)

where step (a) uses the data processing inequality and step (b) makes use of the fact that
W (V0) ⊥⊥M .

(Case II) When t0 > 0, the definition of t0 implies that all nodes at time t0 − 1 are in
Vsrc, so all incoming edges of Vsink

t0 must lie in the cut set, i.e., P(Vsink
t0 ) ⊆ Ecut. Since the

cut is a zero–M -information cut, we have that for all Et0−1 ∈ P(Vsink
t0 ),

I
(
M ;X(Et0−1)

∣∣X(E′t0−1)
)

= 0 ∀ E′t0−1 ⊆ Et0−1. (2.44)

By the definition ofM -information flow for a set of edges (Definition 2.5) and Proposition 2.1,
we have

I
(
M ;X(P(Vsink

t0 ))
∣∣X(E′t0−1)

)
= 0 ∀ E′t0−1 ⊆ Et0−1. (2.45)

21This is one of the complicating factors that prevents us from recursively applying the Data Processing
Inequality at every node, to trace a path backwards from Vop to Vip.
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Once again, considering Q(Vsink
t0 ), we have

I
(
M ;X(Q(Vsink

t0 ))
)

= I
(
M ; fVsink

t0

(
X(P(Vsink

t0 )),W (Vsink
t0 )

))
(2.46)

(a)
≤ I

(
M ;X(P(Vsink

t0 )),W (Vsink
t0 )

)
(2.47)

(b)= I
(
M ;X(P(Vsink

t0 ))
)

+ I
(
M ;W (Vsink

t0 )
∣∣X(P(Vsink

t0 ))
)

(2.48)
(c)= 0, (2.49)

where (a) and (b) follow from the Data Processing Inequality and the chain rule of mutual
information respectively. In step (c), the first expression in the sum goes to zero by taking
Et0−1 = ∅ in (2.45) and the second expression is zero since W (Vsink

t0 ) ⊥⊥ {M,X(Et0−1)}, and
P(Vsink

t0 ) ⊆ Et0−1 (refer Definition 2.3b). So, from equations (2.43) and (2.49), we have that
for all values of t0,

I
(
M ;X(Q(Vsink

t0 ))
)

= 0. (2.50)

Continuation. Now, suppose that for some t > t0, we have I
(
M ;X(Q(Vsink

t−1 ))
)

= 0. We
shall prove that this implies I

(
M ;X(Q(Vsink

t ))
)

= 0. First, observe that

P(Vsink
t ) = (P(Vsink

t ) ∩ Ecut) ∪ (P(Vsink
t ) ∩ Esink) (2.51)

For convenience, let Pcut
t−1 := P(Vsink

t ) ∩ Ecut and Psink
t−1 := P(Vsink

t ) ∩ Esink. We have used
the subscript t− 1 here to remind the reader that P(Vsink

t ), which are the incoming edges
of Vsink

t , are a subset of Et−1. Then, we have

P(Vsink
t ) = Pcut

t−1 ∪Psink
t−1 . (2.52)

Since the cut is a zero–M -information cut, we have that for every Et−1 ∈ Pcut
t−1,

I
(
M ;X(Et−1)

∣∣X(E′t−1)
)

= 0 ∀ E′t−1 ⊆ Et−1. (2.53)

Therefore, by Definition 2.5 and Proposition 2.1,

I
(
M ;X(Pcut

t−1)
∣∣X(E′t−1)

)
= 0 ∀ E′t−1 ⊆ Et−1. (2.54)

Secondly, Psink
t−1 = Q(Vsink

t−1 ) ∩ Esink. This is depicted in Figure 2.5, and explained in the
caption. So,

I
(
M ;X(Psink

t−1 )
)

= I
(
M ;X(Q(Vsink

t−1 ) ∩ Esink)
)

(2.55)
(a)
≤ I

(
M ;X(Q(Vsink

t−1 ))
) (b)= 0 (2.56)

where (a) follows from the fact that considering more random variables can only increase
mutual information, and (b) follows from the induction assumption. Finally, consider how
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X(Q(Vsink
t )) depends on M :

I
(
M ;X(Q(Vsink

t ))
)

= I
(
M ; fVsink

t

(
X(Psink

t−1 ∪Pcut
t−1),W (Vsink

t )
))

(2.57)
(a)
≤ I

(
M ;X(Psink

t−1 ), X(Pcut
t−1),W (Vsink

t )
)

(2.58)
(b)= I

(
M ;X(Psink

t−1 )
)

+ I
(
M ;X(Pcut

t−1)
∣∣X(Psink

t−1 )
)

(2.59)
+ I

(
M ;W (Vsink

t )
∣∣X(Psink

t−1 ), X(Pcut
t−1)

)
(c)= 0, (2.60)

where once again, (a) and (b) follow from the data processing inequality and the chain
rule respectively. In step (c), the first and second terms go to zero by equations (2.56)
and (2.54) respectively, while the third term is zero since W (Vsink

t ) ⊥⊥ {M,X(Et−1)} and
Psink
t−1 ∪Pcut

t−1 ⊆ Et−1.
The proof follows from induction on t, so

I
(
M ;X(Q(Vsink

t ))
)

= 0 ∀ t ≥ t0, (2.61)

which in turn implies that

I
(
M ;X(Q(V ))

)
= 0 ∀ V ∈ Vsink. (2.62)

If there exists an output node whose transmissions depend on M , then there can exist no
cut consisting of edges with zero M -information flow, and hence by Lemma 2.8, there must
be a path consisting of edges that carry M -information flow between the input nodes and
the output node in question.

2.4.4 The Separability Property

Finally, we state a property that may be of interest to obtain a deeper understanding of the
nature of M -information flow, as given by Definitions 2.4 and 2.5.

Proposition 2.9 (Separability). Let C be a computational system. Then, at any given
point in time t, there exist two sets Rt,St ⊆ Et, such that all of the following conditions
hold:

1. Rt ∪ St = Et

2. Rt ∩ St = ∅

3. Either Rt = ∅, or for every Rt ∈ Rt there exists a subset R′t ⊆ Rt \ {Rt} such that

I
(
M ;X(Rt)

∣∣X(R′t)
)
> 0. (2.63)

4. Either St = ∅, or for every E′t ⊆ Et,

I
(
M ;X(St)

∣∣X(E′t)
)

= 0. (2.64)
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A proof of this proposition can be found in Appendix 2.B.
Proposition 2.9 shows that at any given point in time t, it is possible to partition Et into

two sets: Rt, consisting only of edges that have M -information flow, and St, comprising
edges that have no M -information flow. Furthermore, when considering the M -information
flow of edges in Rt, it suffices to condition on the transmissions of edges within Rt to
ascertain the presence of M -information flow. Conditioning upon the transmissions of edges
in St will not change the mutual information between the message and the transmissions of
edges in Rt.

2.5 Inferring Information Flow

Having discussed the definition and the properties of M -information flow, we now consider
how these flows of information might be inferred in a real computational system. We first
discuss an observation model that describes which random variables are observed and how
they are sampled. Under this model, we show how existing techniques from the literature
can be used to identify which edges carry M -information flow. As in previous sections, we
restrict our attention to detecting whether or not a given edge has M -information flow,
relegating quantification of these flows to future work. Quantification is briefly discussed in
the form of an example in Section 6.5, and again in Section 2.7.4.

We then describe an algorithm that recovers all M -information paths between the
input nodes and a given output node, by leveraging the knowledge of which edges have
M -information flow. We also explain how one might attain a fine-grained characterization of
the structure of information flow, by introducing the concept of “derived information”. This
is useful for understanding which transmissions are “derived” from others, allowing one to
find transmissions that are redundant and discover the presence of hidden nodes. Finally, we
explain how flows of information about multiple messages can be inferred in our framework.

2.5.1 The Observation Model

Before we can describe how information flow and information paths can be identified, we
must provide a statistical description of the random variables that are observed. Let C be a
computational system under observation. We then make the following assumptions:

1. Transmissions on all edges, including self-edges, are observed. The random variables
that are intrinsically generated at each node are not observed, unless they are also
transmitted on an edge (which could be a self-edge).

2. Several trials22 are observed, each of which corresponds to an independent realization
of all random variables in the model.23 Every trial uses a realization of M which is

22The word “trial” is borrowed from the neuroscience literature, wherein a neuroscientist will often conduct
multiple trials in a single experiment. In each trial, a human participant or an animal under study is presented
with one of a set of carefully chosen stimuli (corresponding to a realization of the message M in our setting),
and neural activity is recorded using some modality. Scientific inferences are then drawn by making use of
the activity from all trials.

23In reality, trials are not independent in neuroscientific experiments. Indeed, neurons are known to
“adapt” their responses from trial to trial, often showing suppressed activity when presented the same stimulus
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independently drawn from a distribution determined by the experimentalist.24 For
every node V ∈ V, the intrinsically generated random variable W (V ) is also assumed
to be independently and identically distributed across trials.

3. Observations are made noiselessly, in that the realization of each transmission in every
trial is observed as-is, without being further corrupted by random noise of any kind.
The implications of noisy measurements will be the subject of future work.

Under these conditions, we discuss statistical tests for information flow that are consistent
in the asymptotic limit of infinite trials. It should be noted that these assumptions may be
valid to varying degrees in different contexts. This is discussed further in Section 7.1.

2.5.2 Detecting Information Flow

Given a sample of all random variables described in the observation model, our next task is
to identify which edges have M -information flow. In other words, we need to describe how
the conditions given by Definition 2.4 can be rigorously tested, and how we might assert
with some confidence that a certain set of edges has information flow at each point in time.

According to Definition 2.4, in order to check whether a particular edge Et carries
M -information flow at time t, we need to test whether at least one of several conditional
mutual information quantities is strictly positive. The standard statistical approach for
solving this problem is to frame it as a set of “hypothesis tests”, which in this case is a set
of “conditional independence tests”. In general, a hypothesis test formalizes the problem of
making an informed decision about the value of some functional of a joint distribution, when
observing a sample of data from it. A good conditional independence testing procedure will
seek to maximize “statistical power”, i.e. the probability of correctly identifying the presence
of conditional dependence, while keeping the probability of an incorrect identification fixed
below some “level” α that is picked beforehand. One intuitive way to do this might be
to construct an estimator for the appropriate conditional mutual information, and “reject”
the “null” hypothesis of conditional independence if the conditional mutual information
was sufficiently larger than some threshold, ε > 0. This threshold would have to be chosen
so that, on average, the probability of falsely rejecting the null hypothesis is at most α.
However, there are usually better ways of performing this test, i.e., it is often possible to
attain higher power at the same level without actually estimating the conditional mutual
information.

While it would be impossible to provide a comprehensive list of papers that have
researched the problem of conditional independence testing, it has received (and continues to
receive) much attention in the statistics, causality, and information theory communities [99–
104]. In its most general form, conditional independence testing is considered to be a hard
problem for continuous random variables [105]. However, if we ignore issues associated with
the practical difficulty of estimation (discussed later in Section 2.7.1), these works provide

multiple times. This, in part, is considered to be evidence of learning in neural circuitry. However, for
simplicity, we restrict our attention here to computational systems that do not learn or show trial-to-trial
adaptation.

24A more detailed discussion of this distribution can be found in Section 2.5.6.
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consistent tests under reasonable assumptions on the joint distribution of the variables
involved [101–103].

Although we mentioned that there are better ways to test for conditional dependence
than to estimate the conditional mutual information, there may be instances when one might
want to estimate the conditional mutual information anyway. For instance, in an example
that will appear shortly in Section 6.5, we rely on an estimate of the conditional mutual
information to quantify the amount of M -information flowing on a given edge. While our
paper has only defined M -information flow in terms of whether or not it is present at an
edge Et, it is also extremely useful to know how much M -information flow there is. We
defer further discussion of this topic until Sections 6.5 and 2.7.4. For now, we note that
several papers have considered how to estimate mutual information and conditional mutual
information, both of which might be essential for an understanding of quantification of
M -information flow [106–109].

For completeness, we now present a description of how we expect information flow will
be detected in practice. We assume that we have a sample of the transmissions from all
edges of the computational system, at every point in time. If not, appropriate assumptions
may need to be made, as discussed later in Section 7.1. At every instant of time t, consider
the set of all edges Et present in the network. For every edge Et ∈ Et, use the following
process to determine whether it has M -information flow:

1. First test whether the mutual information between its transmission and the message
is greater than zero, i.e., I

(
M ;X(Et)

)
> 0. If so, declare that Et has M -information

flow.

2. If not, test for conditional dependence between its transmission and the message,
given each of the other edges E′t, i.e., test whether I

(
M ;X(Et)

∣∣X(E′t)
)
> 0, for each

E′t ∈ Et \ {Et}. If any of these tests rejects the null hypothesis, declare that Et has
M -information flow.

3. If not, test for conditional dependence between X(Et) and M , given subsets of other
edges, sequentially conditioning on edges taken pairwise, then in threes, etc. If any of
these tests rejects the null, declare that Et has M -information flow.

4. If none of the above tests rejects the null hypothesis, declare that Et carries no
M -information flow.

Note that we have not discussed the level, α, at which we should reject the null in each of
the above tests. In general, since we are performing multiple hypothesis tests simultaneously,
some manner of “correction” is required to ensure that we do not find, what is effectively, a
spurious correlation. This is discussed at length in Section 2.7.1.

2.5.3 Discovering Information Paths

Next, we discuss an algorithm that discovers all M -information paths leading from the input
nodes to a given output node, Vop, in any computational system. As discussed in Section 2.4,
whenever the transmissions Q(Vop) of the output node depend on the message, Theorem 2.7
guarantees that at least one M -information path exists.
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Algorithm 1 Information Path Algorithm: Finds all paths from Vip to Vop

1: Initialize an empty graph H . H will store valid paths from Vip to Vop
. H currently contains no nodes or edges

2: FindInfoPaths(C, Vop, H) . Call a function (defined below) to populate H

3: if Vop is marked “invalid” then
4: raise Error . No path from Vip to Vop was found
5: end if

6: function FindInfoPaths(C, Vt, H)
7: if P(Vt) is empty then . Vt has no inputs ⇒ t = 0
8: if Vt ∈ Vip then
9: Mark Vt “valid”

10: Add Vt to H

11: else . We somehow reached a non-input node at t = 0
12: raise Error
13: end if
14: else . Vt has inputs
15: for all (Ut−1, Vt) ∈ P(Vt) do
16: if (Ut−1, Vt) has M -information flow then
17: if Ut−1 is unmarked then
18: FindInfoPaths(C, Ut−1, H) . This will mark Ut−1
19: end if
20: if Ut−1 is marked “valid” then
21: Mark Vt “valid”
22: Add Vt and (Ut−1, Vt) to H

23: end if
24: end if
25: end for
26: if Vt is still unmarked then . No input of Vt was “valid”
27: Mark Vt “invalid”
28: end if
29: end if
30: end function

Algorithm 1, which we propose for recovering all M -information paths, is an adaptation
of the well-known Depth-First Search25 method [98, Sec. 22.3]. It takes as its input a
computational system C in which all edges having M -information flow have been identified,
the output node Vop, and an empty graph H that is completely devoid of nodes and edges.
The algorithm returns the set of all M -information paths in the form of a directed subgraph
H of the time-unrolled graph G. Starting from Vip, following any path in Hwill lead one to
Vop, provided at least one M -information path exists.

25It is also possible to discover all M -information paths using an adaptation of Breadth-First Search [98,
Sec. 22.2], but doing so would require some mechanism to prune M -information paths that do not lead to
the input nodes Vip. So we prefer to use Depth-First Search for simplicity of exposition.
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The algorithm works by recursively visiting nodes, starting from the output node Vop. It
traverses only edges that carry M -information flow, and uses a marking scheme to avoid
revisiting nodes. The same marking scheme is also used to designate nodes to which there
are M -information paths from Vip. As the algorithm passes through each node, it marks the
node “valid” whenever an M -information path exists between Vip and that node. If no such
path exists, then the node is marked “invalid”. The objective of the algorithm, therefore,
reduces to one of finding a path of “valid” nodes from Vip to Vop. The algorithm’s recursive
function can be expressed as follows: A node Vt ∈ V is “valid” if and only if there exists
a node Ut−1 ∈ V such that Ut−1 is valid, and the edge (Ut−1, Vt) has M-information flow.
This is a recursive expression since checking the validity of a node at time t involves finding
valid nodes at time t− 1. The only nodes that are considered valid by default are the input
nodes Vip.

The algorithm sequentially checks the validity of nodes Vt ∈ V, starting from the output
node Vop. The function FindInfoPaths, when called on any given node Vt, checks the
validity of Vt. This involves checking each of the incoming edges of Vt forM -information flow.
If Ut−1 is a node from which M -information flows to Vt, then the algorithm immediately
checks the validity of Ut−1 by calling the function FindInfoPaths again. Eventually, if in
this recursive process, we arrive at an input node in Vip, then that node is marked “valid”,
and added to the output subgraph H. Once every node Ut−1 from which M -information
flows to Vt has been marked “valid” or “invalid”, the validity of Vt can be ascertained. For
every “valid” node Ut−1 from which M -information flows to Vt, the edge (Ut−1, Vt) and the
node Vt are added to the output subgraph H, and Vt is marked “valid”. If there are no such
nodes leading to Vt, then Vt is marked “invalid” and does not fall on an M -information path.

This recursive logic yields the set of all M -information paths leading from the input
nodes to Vop. The two lines at which errors are returned correspond to scenarios that should
not occur if the conditions of Theorem 2.7 hold. In line 12, we visit a non-input node at
time t = 0. But such a node should never have been reached in the recursion, since we only
followed edges that have M -information flow. Its presence, therefore, would contradict the
computational system model. In line 4, Vop is marked “invalid”, implying that there is no
path leading to it from the input nodes. Once again, this can only occur if the computational
system model is violated, or if the conditions of Theorem 2.7 (and Property 2.3) do not hold.

On Computational Complexity

The complexity of Algorithm 1 is exactly that of Depth-first Search, O(|V| + |E|) [98,
Sec. 22.3]. To be precise, we consider the computational system to extend until the time of the
output node, i.e., we take T = top. So the complexity of the algorithm is O(|V∗|top + |E∗|top).
This is easily verified from the pseudocode listing provided in Algorithm 1: in the worst case,
all edges in the system have M -information flow, so all edges and nodes must be traversed
by the search. By design of the marking strategy, each node is processed at most once, so we
do not need to account for the recursion in any special way. At each node, we must execute
lines 7 through 14, and 26 through 28, which take a constant amount of time. Since we have
|V∗| nodes over top time points, this adds up to O(|V∗|top) steps. We also need to execute
the loop in lines 15 through 24, which counts the number of incoming edges at every node.
For all nodes combined, this adds up to O(|E∗|top) steps.
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If the graph is fully connected as described in Section 2.2, then |V∗| = N and |E∗| = N2,
so the effective complexity is just O(N2top). However, if we know that the underlying
graph is sparse (e.g., because of anatomical priors in neuroscience), then we may have
|E∗| = O(N logN), or even |E∗| = O(N), bringing down the complexity of the search.
It should be noted that in either case, the complexity of identifying which edges have
M -information flow is potentially exponential in N , as discussed later in Section 2.7.1. This
is much larger than the complexity of tracing out information paths, so finding edges with
M -information flow is, in fact, the “hard part” of the problem.

2.5.4 Derived Information and Redundancy

The framework we develop for information flow allows one to obtain a more fine-grained
understanding of information structure in a computational system, especially when compared
with classical tools such as correlation and phase synchrony [110, 111]. This allows the
experimentalist to better investigate the nature of the computation being performed. A
concept that we believe will be extremely useful in this regard is one we call “derived
information”, which is defined below.

Definition 2.12 (Derived M -Information). In a computational system C, a transmission
X(Qt) is said to be derivedM -information of a different transmission X(Pt′) ifM—X(Pt′)—
X(Qt) forms a Markov chain. That is, the following condition must hold:

I
(
M ;X(Qt)

∣∣X(Pt′)
)

= 0, (2.65)
implying that

H
(
M
∣∣X(Pt′)

)
= H

(
M
∣∣X(Pt′), X(Qt)

)
. (2.66)

So, X(Qt) adds no new information about M , when given X(Pt′). The same definition
extends to transmissions on sets of edges. Note that, as far as the definition is concerned, t
and t′ may be any two arbitrary points in time. However, we will typically consider cases
when t ≥ t′.

One potential use-case scenario for derived information arises in the context of redundant
flows. Consider the computational system presented in Figure 2.4, originally described
under Counterexample 2.3. We see two edges sending the same transmission to the node
B2. This is an example of what we call “redundant transmissions”. In general, since we only
consider information about M to be relevant, the exact transmissions communicated over
two edges at a given point in time may be different. But if they convey the same information
about M to a given node, then we view them as essentially redundant. Definition 2.4, when
applied to this system, will detect both these edges as having M -information flow, since
given X((C1, B2)), their transmissions depend on M . In the notation of the Separability
property mentioned earlier (Proposition 2.9), both edges (A1, B2) as well as (D1, B2) will
belong in the set R1.

Derived information provides a general methodology to understand when transmissions
on certain edges may be redundant. Naturally, if the transmissions on two edges Qt and Pt′
are redundant, then they must be derived M -information of one another. This amounts to
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Figure 2.6: Two simple examples showing how hidden nodes may prevent one from being able to discover
M -information paths in a computational system. In both cases shown here, H1 is a hidden node, and we do
not observe its incoming or outgoing transmissions. On the left is an example where a transmission that we
might need to condition upon to discover M -information flow passes through the hidden node, and therefore
cannot be seen. On the right, the hidden node itself generates the source of randomness Z.

M = [M1,M2]

H1

A0 A2

B1

M2

Hidden

Observed

M1

M2

M1

M2

Figure 2.7: A computational system serving as a counterexample to the converse of Proposition 2.11. Here,
the hidden node H1 is M -relevant because its outgoing transmission, M1, is not present in any of the observed
transmissions at time t = 1. However, since A2 chooses to ignore M1 at its output, the Markov chain
M—X(Ẽ1)—X(Ẽ2) boils down to M—M2—M2, which obviously holds. Thus, at least based on our current
definitions, there may be M -relevant hidden nodes in the system even if Global Markovity continues to hold.

checking two more conditional independence relationships, for which consistent tests exist in
the limit of infinite trials, as discussed in Section 2.5.2.

In the following section, we shall see another application of derived information; when
applied to specific sets, it can in some cases be used to detect the presence of hidden
(unobserved) nodes. Later, in Section 6.5, we discuss an example where the notion of derived
information helps us make a new kind of inference about the fine structure of information
flow, one that would not be possible using tools such as Granger Causality and Directed
Information.

2.5.5 Hidden Nodes

In Section 2.5.3, we showed how the Information Path Algorithm may fail to discover
M -information paths if one of the assumptions of the computational system model or the
observation model breaks in some way. Here, we discuss one specific situation in which
the observation model may break, i.e., when not all nodes are observed. We call these
unobserved nodes “hidden nodes”, and assume that we do not see transmissions on incoming
or outgoing edges of these nodes.
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(a) Here, although Global Markovity holds, one could
argue that testing for Local Markovity at each node
(or at various subsets of nodes) could help uncover
the presence of a hidden node.
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fA2
(P(A2),W (A2)) = X((H1, A2))⊕X((A1, A2))

(b) In this case, the hidden node breaks neither
Global nor Local Markovity. However, the func-
tion computed by A2 makes use of only the hidden
node’s transmission. As a result, the hidden node has
a causal effect on the output of the system, since de-
stroying the outgoing edge of the hidden node would
change the output. Such a hidden node is likely
undetectable using only observational methods.

Figure 2.8: Examples of computational systems with an M -derived hidden node. In both of these systems,
the hidden node’s transmission at time t = 1 has an effect on the output at A2. However, Global Markovity
continues to hold from t = 1 to t = 2, because the observed transmissions, M ⊕ Z and Z, contain all
information necessary to explain the output, M .

Definition 2.13 (Hidden nodes). Consider a computational system C = (G, X,W, f)
defined on the time-unrolled graph G = (V, E) as before. Suppose that only a subset
of nodes in this graph are observed. Specifically, if V∗ was the original set of nodes
in G∗, prior to time-unrolling, then we observe only the nodes Ṽ∗ = V∗ \ H∗, where
H∗ = {H(0), H(1), . . . ,H(K−1)} is a set of unobserved nodes called hidden nodes.

To describe the observed component of the computational system, we define Ẽ∗ = Ṽ∗× Ṽ∗,
Ṽ= {Vt : V ∈ Ṽ∗, t ∈ T} and Ẽ = {(At, Bt+1) : (A,B) ∈ Ẽ∗, t ∈ T}. Also let H = {Ht :
H ∈ H∗, t ∈ T}. Finally, we set up the observed component of the computational system as
before: C̃= (G̃, X,W, f). Thus, we only observe the transmissions on edges in Ẽ. As usual,
we denote the set of all hidden nodes at time t by Ht, and the set of all observed nodes at
time t by Ẽt.

The presence of hidden nodes of this nature implies that much of the theory we have
developed will not apply. Lemma 2.4 no longer truly holds, in that information about
M may persist in the system by passing through the hidden node, even if no observed
edge has M -information flow. So, naturally, Property 2.1 also fails to hold. Hence, we are
not guaranteed to be able to identify all edges with M -information flow, and discover all
M -information paths as before. For example, refer to the cases shown in Figure 2.6, where
we no can longer find M -information paths because of the presence of a hidden node.

Fortunately, at least in some cases, the concept of derived information (Definition 2.12)
provides a simple way to tell whether or not a hidden node exists. Specifically, if at some
time t, a hidden node transmits information about M which is unavailable within the system
at that time, and which is utilized by some node at the next time instant, then the set
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of all observed transmissions X(Ẽt) will not be derived M -information of the set of all
transmissions at time t− 1. In other words, the Global Markovity condition (Corollary 2.5)
on the observed graph, M—X(Ẽt−1)—X(Ẽt), will break. Unfortunately, the notion of
“utilization” is difficult to express mathematically, without resorting to the use of ideas
from causality that are based on intervention. The result we prove, therefore, is a simpler
sufficiency argument, which guarantees the presence of a hidden node if the aforementioned
Markov condition is observed to break. This result is proved in Proposition 2.11, but first,
we define some adjectives.

Definition 2.14 (M -relevant hidden node). A hidden node Ht is said to be M -relevant if
Q(Ht) carries M -information flow in G. Similarly, a subset of hidden nodes H′t ⊆ Ht is said
to be M -relevant if Q(H′t) carries M -information flow in G.

Definition 2.15 (M -derived hidden node). A hidden node Ht is said to be M -derived if the
Markov chain M—X(Ẽt)—X(Q(Ht)) holds. Similarly, a subset of hidden nodes H′t ⊆ Ht is
said to be M -derived if the Markov chain M—X(Ẽt)—X(Q(H′t)) holds.

Lemma 2.10. If a subset of hidden nodes is not M -derived, then it is M -relevant.26

Proposition 2.11. In a computational system C with hidden nodes, if Global Markovity on
the observed graph, G̃, fails to hold from time t to t+ 1, i.e. if I

(
M ;X(Ẽt+1)

∣∣X(Ẽt)
)
> 0,

then the hidden nodes Ht at time t are not M -derived.

Proofs of Lemma 2.10 and Proposition 2.11 are straightforward, and are provided in
Appendix 2.D. As a direct consequence of these two results, if Global Markovity fails to hold
on the observed nodes from time t to t+ 1, then Ht is M -relevant. By Proposition 2.1, this
simply means that there exists at least one M -relevant hidden node at time t.

Although Proposition 2.11 appears to provide a straightforward mechanism to test
whether or not hidden nodes exist, it does not always work. If a hidden node’s transmissions
have no M -information flow, then the node will not be detected. But in this case, it could be
argued that such a hidden node does not change whether information paths can be identified,
and so can be subsumed by one or more of the intrinsic random variables W (·). Such a
hidden node is, therefore, classified by Definition 2.14 as not M -relevant.

However, to make matters worse, the converse of Proposition 2.11 does not hold. In
particular, there may exist an M-relevant hidden node at time t, whose transmission
is ignored by the node that received it, so that the Markov chain M—X(Ẽt)—X(Ẽt+1)
continues to hold (see Figure 2.7). Such a hidden node may still be considered largely
innocuous.

The most serious case of a hidden node going undetected is one that contains an M-
derived hidden node, whose transmission is used by the receiving node while performing
its computation; however the hidden node’s transmission is “masked” by a redundant
transmission from an observed node (see Figure 2.8). In this case, Global Markovity on
G̃ will not break, yet the hidden node’s transmission may be instrumental in producing

26If this lemma appears to be somewhat strong, it is only because of the nomenclature “M -derived”. For
our purposes, a hidden node whose transmissions are independent of the message is also M -derived, since it
satisfies the aforementioned Markov condition.
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M1,M2 A1

B2

C2

M1

M2

M1 = [M, M̃ ]

M2 = [M ′, M̃ ]

Figure 2.9: A simple example demonstrating the importance of having independent messages (or sub-messages)
when exploring the flows of multiple messages in a computational system. As M1 and M2 both redundantly
contain information about M̃ , both edges shown here have M1- as well as M2-information flow. Thus, we are
unable to detect the fact that M1 and M2 take different paths in the system, because of our choice of stimuli.

a certain output distribution. In some instances, such hidden nodes can be detected by
checking for Local Markovity (Proposition 2.6; see Figure 2.8a). However, there are still cases
where if we were somehow able to intervene and delete the transmission of the hidden node,
then the computational system’s output may not remain the same, despite the existence of
a redundant transmission from an observed node (see Figure 2.8b). Indeed, the presence
of redundancy in such a scenario does not guarantee that the computational system will
actually leverage it.

2.5.6 On Multiple Messages and the Distribution of the Message

Just as we can infer information flow and information paths for a single message, we can
examine the flows of multiple messages in the same computational system. Consider a
case where we wish to understand the information flows of two messages, M1 and M2. An
neuroscientific example of this might be information flow about two independent components
of a visual stimulus, e.g., shape and color (such as in [8]). If M1 ⊥⊥ M2, then we could
separately identify edges and paths that have M1-information flow and M2-information flow,
by applying the theory and algorithm as-is for each message individually.

However, if the two messages are dependent on one another, one could end up conflating
their information flows, based on how they depend on each other, and how the computational
system’s transmissions carry their joint information. As a simple example, consider the
system shown in Figure 2.9, where M1 = [M,M̃ ] and M2 = [M ′, M̃ ], with M,M ′, M̃ ∼
i.i.d. Ber(1/2). Clearly, M1 and M2 both share some redundant information in M̃ , and
I(M1;M2) = 1 bit. Thus, we will see M1-information flow as well as M2-information flow on
both edges, since the transmission of each edge E satisfies I

(
Mi;X(E)

)
> 0 for i ∈ {1, 2}.

Consider what this means for the aforementioned example of shape and color of a visual
stimulus. If a neuroscientist expects that the information paths corresponding to shape and
color in the brain are different from each other, what is the best way to design stimuli so as
to bring out this difference? Suppose they decided to present a total of four different stimuli,
M ∈ {0, 1, 2, 3}, with two different shapes and two different colors. Let M1 be the first bit of
the binary representation of M , denoting shape, and M2 be the second bit, denoting color.
Now if the neuroscientist chose to present stimuli with a uniform distribution over M , i.e.,
if each shape-color combination was shown for one-quarter of all trials, then M1 and M2
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would be independent of each other, and their individual flows could be tracked separately.
However, if the neuroscientist chose to present the four possible stimuli with probabilities
{1/2, 1/4, 1/8, 1/8} respectively, then M1 and M2 are no longer independent of each other,
and it may become hard to separate their individual flows as in the example in Figure 2.9.

These examples suggest that, when trying to understand the flows of different messages
in a computational system, it helps if they are independent of one another. So from the
perspective of experiment design in a neuroscientific context, it is often more sensible to
design stimuli so that the two messages of interest are independent of one another. Even
when considering a single message that takes one of several values, it becomes important to
appropriately choose a distribution over these values to ensure that any sub-messages that
are of interest remain independent of one another. This would allow the experimentalist to
better understand how “independent dimensions” of the stimulus are processed in the brain.

However, there are also situations where the experimental paradigm necessitates a
statistical distribution of stimuli that makes two sub-messages of interest dependent on one
another. For instance, the Posner experimental paradigm for attention [112] only works when
the proportion of “valid” trials (a certain type of trial specific to this paradigm) is roughly
70%. Similarly, during data preprocessing, it is common to discard trials that are excessively
noisy, based on some predetermined metric: this process could skew the distribution of the
message, even if the original distribution was uniform. If it is still of interest to understand
the individual flows of sub-messages in this case, then a possible solution might then be to
sub-select experimental trials in such a way as to keep the two sub-messages independent of
one another.

2.6 Canonical Computational Examples

In this section, we provide a few canonical examples for computational systems from various
contexts. In each case, we discuss what the message M is, and identify which edges carry
M -information flow. We also explain how the path recovered by the information path
algorithm might be the intuitive choice in each example.

2.6.1 The Butterfly Network from Network Coding

For our first example, we cover the butterfly network from the network coding literature [50,
Fig. 7b], reproduced here in Figure 2.10. In this system, we want to communicate two
independent bits, M1,M2 ∼ i.i.d. Ber(1/2), from C0 to two output nodes, A4 and B4. In
the network coding context, the butterfly network is the canonical example illustrating that
“coding” is necessary to achieve optimal communication: when each edge is restricted to
have a capacity of 1 bit, it is not possible to send both M1 and M2 simultaneously to A4
and B4 using routing alone, since we can send only one of M1 or M2 on the middle branch
(C2, C3). We must use coding, i.e., we must compute a function of M1 and M2, in order to
communicate both message bits to A4 and B4.

We examine the individual information flows of M1 and M2 in the maximal-rate setting
where the middle branch carries M1 ⊕M2. Edges along which information about M1 flows
are colored in blue, while edges along which information about M2 flows are colored in
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M2

M1
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M1 M1 M1

M2 M2 M2

M1⊕M2

M1⊕M2

M1⊕M2

Figure 2.10: A depiction of the butterfly network discussed in Section 2.6.1. There are two messages, M1
and M2, each with its own information flow. All edges with M1-information flow are shown in blue and all
edges with M2-information flow are shown in orange. After time t = 2, all edges shown have both M1- and
M2-information flow. Once the system computes M1 ⊕M2, edges transmitting M1 have information flow
about both M1 and M2, since M2 can now be decoded from M1 ⊕M2 and M1. Furthermore, observe the
M1- and M2-information paths in this system. In particular, there are two possible M1-information paths
to A4, but only one possible M2-information path, which flows through the middle link. The same applies
to the M1-information path to B4. This may suggest the importance of the middle link in enabling this
computation.

orange. The reader may identify these using Definition 2.4 and the transmission on each
edge shown in Figure 2.10.

An important feature to observe is that when C2 mixes information by computing the
xor ofM1 andM2, we see information aboutM1 spontaneously beginning to flow on (B2, B3)
and similarly, information about M2 beginning to flow on (A2, A3). This is expected, since
M2 is relevant for decoding M1 at this stage, and indeed, it is exactly this idea which is used
to decode M1 at B4. All of this is true, despite the fact that M1 ⊕M2 is independent of M1
and M2 individually. This is once again, a prime example of synergy in action.

Applying the information path algorithm (Algorithm 1) for the message M1 at A4 will re-
veal two paths: the “upper path” (C0, A1, A2, A3, A4), and the “middle path” (C0, A1, C2, C3,
A4). However, applying the information path algorithm for the other messageM2 at the same
output node A4 reveals that M2 exclusively uses the “middle path”, (C0, B1, C2, C3, A4), to
arrive at A4 from the input nodes.

2.6.2 The Fast Fourier Transform

The Fast Fourier Transform (FFT) is a well-known computational network that provides
an intuitive setting for examining information flow. In general, the N -point FFT is an
implementation of the N -point Discrete Fourier Transform (DFT), given by

Ỹk =
N−1∑
i=0

Yie
−j 2πk

N
i, k ∈ {0, 1, . . . , N − 1} (2.67)

where j is the imaginary unit. The DFT is a basis transformation of a discrete-time signal
Y , which is usually assumed to be periodic with period N . The N -point DFT represents
such a signal in the complex-exponential Fourier basis, yielding the Fourier coefficients Ỹ .
We consider a simple 4-point DFT, i.e. N = 4. The FFT implements this transform using
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Figure 2.11: The computational system of the 4-point Fast Fourier Transform. For brevity, we have set
ω := e−j
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Figure 2.12: An example of information flow in the 4-point FFT, when the message determines which of
two signals is supplied to the system: Y = [0, 0, 0, 0] or Y = [1, 0, 1, 0]. Observe that, since M is encoded in
the even part of Y , only the “even component” of the FFT network is active. Furthermore, only the DC
component, Ỹ0 and the first harmonic, Ỹ2 are active, as we would expect based on the two input signals.

the computational system shown in Figure 2.11. We refer the reader to [86, Ch. 9] for details.
For notational convenience, we have set ω = e−j

2π
N = e−j

2π
4 .

We use this example to demonstrate how the definition of the message is important in
determining information flow. First, suppose the message is one of two signals: Y = [0, 0, 0, 0],
or Y = [1, 0, 1, 0]. This can be written as M ∈ {0, 1} and Yi = M(δi + δi−2), where
δi = I{i = 0} is the Kronecker Delta function, and we assume M ∼ Ber(1/2). The full
computational system, along with the random variables computed on all edges, is shown
in Figure 2.12. The edges that have M -information flow are highlighted in blue. Since M
is encoded into the even part of Y (observe that Yi = Y−i ∀M), we notice that only the
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Figure 2.13: Another example of information flow in the 4-point FFT, when the message determines which of
two signals is supplied to the system: Y = [1, 1, 1, 1] or Y = [1, 1/ω, 1/ω2, 1/ω3]. The M -information paths
are different from those in Figure 2.12, showing how the choice of the message can have a strong impact on
the flows within the same computational system.

“even component” of the FFT system (corresponding to the 2-point FFT on the even indices
of Y ) is active [86, Sec. 9.3]. Furthermore, only Ỹ0, the DC component, and Ỹ2, the first
harmonic, show variation with M at the output, as we would expect based on what differs
between the two input signals.

As a second example, consider the case shown in Figure 2.13. Here, the message is again
one of two signals: Y = [1, 1, 1, 1], or Y = [1, 1/ω, 1/ω2, 1/ω3]. These signals can be jointly
expressed in terms of the binary message random variable M ∼ Ber(1/2) as Yi = 1/ωiM .
The two signals are flat in their magnitude spectra and differ only in their phase, creating
δ-functions in the Fourier domain that are frequency-shifted with respect to one another:
Ỹk = δk−M . Once again, the edges in the network that carry M -information flow are
demarcated in blue. Refer Appendix 2.F for a derivation of the values of the transmissions
in the computational system.

These two examples make it clear that, based on how the message is defined, the M -
information paths in the system can be very different. Indeed, if the message were as general
as possible, by placing a probability distribution over all possible values of Y in R4, we
know that all edges in the computational system would have M -information flow. However,
selectively restricting M to just a few signals helps reveal some kind of structure within the
FFT network.

Another feature that can be observed in these examples is how the output of the
computational system can be a function of the message. Although only very simple functions
of the message have been shown at the outputs here, the FFT demonstrates that, in principle,
more complex functions of the message may also be generated.
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Z1 ∼ Ber(1/2)

Y

Z2 ∼ Ber(1/2)

M

Y M

A0 A1 A2

B0 B1 B2

C0 C1 C2

Z1

Y

1⊕Y

Z2

Y ·Z1

(1⊕Y )·Z2

Z1 = W (A0), Z2 = W (A1), Z1 ⊥⊥ Z2

M = Y · Z1 OR (1⊕ Y ) · Z2

Figure 2.14: A boolean circuit demonstrating a message defined at the output of the computational system.
Note that “⊕” refers to bitwise-xor, “OR” refers to bitwise-or, and “·” refers to bitwise-and. We see that
information paths may lead from an internal node, that generates an intrinsic random variable, to the output
node. Furthermore, this path may change with the “external parameters” of the system.

2.6.3 A Message Defined at the Output of a System

We now describe an example where the message is defined at the output of a computational
system, instead of at the input. Although Definition 2.3c defines the message to be a random
variable available at the input nodes, it is also possible to define the message at the output
of the computational system. In this scenario, the input nodes are no longer well-defined as
per Definition 2.3c. Instead, we would define output nodes in the same manner.27

Consider the computational system shown in Figure 2.14. The system on the right
executes the function depicted by the boolean circuit shown on the left. Y ∈ {0, 1} is an
external parameter, which is taken to be a fixed constant. When Y = 1, the and gate at the
top is activated while the and gate at the bottom is deactivated, so the message depends
only on Z1. In this case, only the edges shown in blue have M -information flow. On the
other hand, when Y = 0, the opposite happens, and the message M depends only on Z2.
Now, only edges shown in orange have M -information flow. If Y was not a deterministic
external parameter, but a random variable itself, then all edges shown in the figure would
have M -information flow, since M would depend on all their values.

So, we see that when the message is defined at the output, the “origin” of the message
may be from within the computation system itself, in the form of one or more intrinsically
generated random variables: here, either Z1 = W (A0) or Z2 = W (C0). The notion
of information flow and information paths can thus help us identify where the message
originates within the computational system.

Furthermore, just as information paths can change depending upon how the message
is defined (as in Section 2.6.2), information paths may also change depending on external

27Note, however, that the corresponding “opposite” of Theorem 2.7 does not hold in this case. That is, it
is not true that if at some previous time instant, an “input” node’s outgoing transmissions depend on the
message, then there exists an information path connecting that input node to the aforementioned output
nodes. The reason this fails is that there could be a “source” node at an even earlier time instant, which
provides information about M to both the input node under consideration, and the output nodes, via two
separate, diverging paths. Therefore, there may be no path from said input node to the output nodes.
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parameters: inputs such as Y that are fed into the computational system, which are not
part of the message. These inputs essentially shape the nature of the computation being
performed, and so, naturally, they can affect information paths.

2.7 Discussion

This paper presented a theoretical framework for defining and studying information flow
about a specific message in a computational system. The core contribution of our paper
was a definition for information flow that is concretely grounded in the computational task
and intimately tied to a specific message. This relied on another important contribution:
the development of an underlying computational model, which enables the interpretation of
statistical analyses. After providing a clearly-defined model for a computational system, we
presented several candidate definitions for information flow along with counterexamples and
showed that our definition, which is based on positivity of a conditional mutual information
expression, satisfies several intuitive properties, whereas other candidate definitions do not.
We then examined these properties in detail and showed, in particular, that our definition
naturally leads to the existence of “information paths”. We also discussed how information
flow can be inferred through conditional independence testing, and provided an algorithm
for recovering the information paths in a given system. Finally, we studied some canonical
examples of computational systems from different contexts, and showed that our definition
of information flow is intuitive in each case.

We proceed to discuss several important assumptions and simplifications in our model.
We also discuss existing literature related to estimation of causal influence in neuroscience,
and how our computational system model leads us to a significantly different measure of
information flow. Similarly, we discuss how our framework is very different from the field of
Probabilistic Graphical Models.

2.7.1 The Difficulty of Estimation

A strategy for detecting edges that have M -information flow was presented in Section 2.5.2.
In practice, however, there are several issues associated with employing such a strategy.
These are discussed below.

Firstly, we currently assume that observations are noiseless (see Section 2.5.1, Assump-
tion 3). It is unclear, exactly, to what extent noisy observations will impact the inference of
information flow. In particular, it is worth understanding whether small amounts of obser-
vation noise can be tolerated if all edges with M -information flow have a sufficiently large
“volume” of information (i.e., the corresponding mutual or conditional mutual information is
sufficiently large). As was described intuitively in Section 2.5.2, if the information volume
is large, then even under noisy conditions, we might expect the test statistic to clear the
threshold, so the presence of M -information flow can still be detected consistently. But small
volumes of information that aggregate over time—e.g. information about M “trickling” over
time from one node to another—could still pose issues. Such M -information flow could go
undetected, as has been shown to occur in other contexts [79], using a different measure of
flow. It is possible that Derived Information, in particular, is hard to infer in the presence of

52



2.7. Discussion

noise. This could make the task of detecting the presence of a hidden node difficult (consider
the case of a “trickling” hidden node), as well as that of identifying redundant links.

Secondly, detecting whether each edge at time t has information flow involves checking
all subsets of Et. For N nodes and N2 edges, this implies 2N2 subsets of edges that need
to be searched. This could be seen as being prohibitively difficult for N2 ≥ 30, or for N
greater than about 5 or 6 nodes. However, in reality, graphs in neuroscience are often known
to be edge-sparse [113–115]. For example, in the brain, a well-established 11-node network
is the reward network [115]. Most nodes in this network typically have just one incoming
and one outgoing connection. The two most important nodes have five incoming edges each,
with two and four outgoing edges respectively. Further, it is known which connections are
inhibitory and which are excitatory, which could further help with testing for information
flow. A fully connected network would have had 121 edges, but the underlying connectivity
of the circuit only allows for a total of 17 edges in this network. So in reality, anatomical
priors help reduce the number of edges to well within the range of what is computable.
Nevertheless, it remains of interest to find methods by which nodes and/or edges can be
excluded from the search, and this could be another topic for further research.

Another statistical issue that crops up when attempting to simultaneously perform
several conditional independence tests is the problem of multiple comparisons [116]. Simply
put, when performing a large number of independent hypotheses tests, say N , at some fixed
false alarm rate α, on average, we should expect αN of these tests to erroneously reject
the null. In the context of information flow, we might wish to set the null hypothesis to be
the absence of M -information flow on a given edge. Then, to test for M -information flow
on this edge, we need to perform a large number of conditional independence tests—call
this number N—at some false alarm rate α. These tests are, in fact, not independent of
one another; nevertheless, very loosely put, if we choose a false alarm rate α ≈ 1/N , we
may find that the probability of at least one false alarm is too high. This would make us
erroneously infer that this particular edge has M -information flow; moreover, since this
argument applies to any edge, if α is not chosen conservatively enough, we may erroneously
infer that all edges have M -information flow.

This multiple hypothesis testing problem is better posed as a “Global Null test” (e.g.,
see [117]), wherein the global null is the hypothesis that all of the conditional independence
tests are individually null (i.e., that there is no M -information flow on the given edge), and
the global alternative is the hypothesis that at least one of the conditional independence
tests is non-null (i.e., that there is M -information flow on the given edge). As mentioned
before, however, the conditional independence tests dictated by Definition 2.4 are, in general,
dependent on one another. Furthermore, it might not be easy to describe the manner of
dependence, so when choosing Global Null tests, it is essential to choose those that work
under arbitrary dependence. A simple example of such a test is the well-known Bonferroni
correction, which uses a level α′ = α/N for each test (where α is the desired false alarm
rate for the overall Global Null test); but we may find that such methods have insufficient
statistical power. A potential solution to this problem might involve combining multiple
Global Null tests in some meaningful way: for example, one could imagine designing a
procedure that controls the False Discovery Rate28 [118] on the identification of edges

28These methods control the expected proportion of false discoveries, i.e., the proportion of null hypotheses
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with M -information flow.29 Another approach might be to find ways of directly testing
information paths, wherein the hypothesis tested would be that a certain M -information
path exists in the system, rather than requiring every edge with M -information flow be
identified first. All of these ideas are potential avenues for future work.

2.7.2 The Limitations of Granger Causality and Related Tools

Mapping directed functional connectivity and information flow in the brain has been a hot
topic for several years, as evidenced by the large body of work in this direction [68–70].
Approaches for statistically mapping functional connectivity often rely on variations of
Granger Causality [27] and, more recently, Directed Information [30–32], which we here
collectively refer to as “Granger Causality-based tools”. These approaches lack a systematic
framework that ties the statistical analysis to the underlying computation, however, and the
interpretations drawn from their use have often been questioned [72, 74, 75, 79–82].

In particular, a crucial difference between our approach and that of Granger Causality-
based tools is that the latter do not have an explicit description of the message. Instead,
they provide mechanisms to condense a pair of time series into a single statistic. There are
no concrete models that can be used to interpret what this statistic means for the flow of
information about the message. Furthermore, if one is interested in the information flow
of multiple messages, Granger Causality-based tools do not provide an immediate solution.
This is why a tool that ties information flow directly with a message is of great interest to
practitioners.

The absence of an underlying computational framework with well-defined assumptions
inherently makes it very hard to draw sound inferences through the application of Granger
Causality-based tools. A striking example of this is a recent result of ours [82] that shows,
using a feedback communication system, that the direction of greater Granger-causal influence
can be opposite to the direction in which the message is communicated, even in the absence
of hidden nodes and measurement noise. The time-unrolled graph framework presented
here has been specifically designed to address this issue, and present a clear understanding
of information flow, even in the presence of feedback. The example given in Section 6.5
demonstrates a potential resolution to this issue.

Granger Causality was originally developed for the study of time-series that occur only
once, such as in economics [26]. An artifact of this development is that it was not designed
to incorporate multiple trials of the same process. Instead, it assumes stationarity to help
estimate parameters of the random variables that control the process. In the neuroscientific
context, stationarity is often a very poor assumption, since the segment of time-series data
corresponding to each trial may be short, and often sees some kind of stimulus presentation.
Naturally, presentation of the stimulus changes the underlying parameters of the time-series
and destroys stationarity; indeed, this is the quintessential aspect of the experiment. Thus,
in order to understand processing in such stimulus-driven tasks, one needs to be able to
infer time-dependent information flows from data. While information-theoretic extensions
of Granger Causality such as Transfer Entropy and Directed Information do not assume

that are falsely rejected.
29Care is needed when doing this, however, since tests for M -information flow on different edges at the

same time instant are also dependent on one another.
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stationarity, they nevertheless fail to provide a dynamically evolving picture of information
flow. Recently, some work has started to analyze an “adaptive” form of Granger Causality
computed on windowed time intervals [84]; such ideas may be worth pursuing for attaining a
dynamically evolving picture of Granger causal influence, though they will still not comprise
information flow, due to the absence of a connection to the computational task and the
message.

In Section 2.1.2, we discussed two dominant interpretations of “information flow” in
neuroscience: the first has to do with information about a specific message and is what we
address in this paper. The second, having to do with information in the abstract, is more
akin to what is done by Granger Causality-based tools. It may be possible, in some settings
and under suitable assumptions, to unite these two interpretations. For instance, it would
be useful to know under what conditions (e.g., Gaussianity, linear functions, etc.), Granger
causal influence provides the same inferences as our rigorous notion of M -information flow.
This is a promising future direction, since it is important to understand in which situations
Granger Causality-based methods recover meaningful flows of information, and in which
cases we must be careful with interpretation.

2.7.3 Probabilistic Graphical Models and Pearl’s Causality

There is one important difference that distinguishes our work from the perspective adopted in
the field of probabilistic graphical models (PGMs) [119], and the representations therein. In
our framework, nodes represent computational units, whereas in PGMs, nodes represent the
random variables themselves, and edges capture the conditional independence relationships
between these variables. While it might be possible to construct a PGM that is equivalent
to our computational model, this would likely eliminate any intuitive structure captured by
the computational graph.

It remains to be understood whether and how Pearl’s notions of causality [34] can be
seamlessly merged with the understanding of information flow developed here. We expect
that some formal application of causality will be needed in going from an edge-centric model
(as presented here) to a more node-centric one (discussed in Section 7.1), in order to identify
which transmissions influenced a given node’s output.

There are several works in the literature that discuss measures of information flow in
probabilistic graphical models [120, 121], but they are heavily inspired by causality and
largely center around an interventionist approach. In contrast, our definition of information
flow is based on a computational system model that translates more readily to neuroscience,
and we assume that the experimentalist is restricted to making observations. Nevertheless,
it may still be interesting to explore alternative definitions of information flow, which
incorporate interventional or counterfactual reasoning. Understanding the connection
between information flow and interventional approaches could be essential for clinical
translation, and constitutes another important direction for future work.

2.7.4 Future Directions for Theoretical Development

A natural question that arises from this paper is: how can our definition of information flow
on an edge be extended to a more generic information measure, which also quantifies the
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volume of flow? Finding such a measure will involve aggregating the conditional mutual
information for each subset of edges into a single value (one example of such a measure
was provided in Section 6.5, though it was not developed from first-principles). It is as yet
unclear how this might be achieved, while still gelling well with our intuition of what this
information flow volume ought to be. We believe that the right approach is to start by
designating a set of properties that we would like information flow volumes to satisfy, and
then to propose a measure through the use of representative examples and counterexamples.

A second direction that emerges is related to Partial Information Decomposition (PID) [89–
91], which was discussed earlier in Section 2.3.5. M -information flow is very closely related to
the PID: while Candidate Definition 2.1 checks for positivity of mutual information between
M and X(Et), and hence implies the presence of unique and/or redundant information, our
definition also detects the presence of purely synergistic information. Since our definition is
closely tied to computation and is strongly motivated through the goal of finding unbroken
information paths, the close relationship between PID and our definition suggests that PID
might be the right toolset for obtaining a more fine-grained understanding of information flow.
In particular, it would be useful to know how our understanding of information representation
and computation is enhanced through a PID analysis (we try to take this approach in some
very preliminary work on error correction in grid cells [122]). Finally, we note that the PID
could also help inform the discussion on a definition for information volume. Providing a
useful definition of information volume based on current definitions of unique, redundant
and synergistic information, and asking whether the problem of information flow can inform
the PID literature, will also be the subject of future research.

A third direction has to do with alternate definitions of information flow: there might be
other definitions of information about a message, which satisfy the information path property.
These could be arrived at through modifications to our current definition, or by looking at
directions we did not pursue here, e.g., counterfactual measures. It is worth understanding
whether such definitions can avoid M -information orphans, or whether there will be more
counterexamples to the use of such measures (we recently made some forays along these
lines [123]). Furthermore, the properties we stated in this paper are not sufficient to uniquely
specify our definition of information flow. For example, the all-zero function as well as the
all-ones function satisfy the Broken Telephone property, although they are not particularly
useful definitions of information flow. Thus, it would be useful to understand what other
properties we should impose so as to arrive at a unique definition of information flow. As a
crude and preliminary example, we demonstrate how this might be done in Appendix 2.E.

2.7.5 Concluding Remarks

We conclude by describing some of our general impressions in working on the theoretical
development presented in this paper. As such, these points merely highlight some of our
opinions on how theory—and more specifically, information theory—may be applied in
neuroscience.

As mentioned in the introduction, we drew inspiration from two papers that discuss how
experimentalists understand systems in biology and neuroscience [33, 67]. Both these works
advocate for theory by arguing that we need new analytical tools, and that the accumulation
of empirical knowledge alone does not constitute understanding. Lazebnik [33], in particular,
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mentions how terminology in biology tends to be vague and non-committal. We feel that an
important reason for this is the absence of concrete underlying models, with clearly-stated
assumptions. In other words, we think that theory and modeling can go a long way in
providing a language that will enable well-grounded discussions. This language, in turn,
arises through the development of theoretical models and formal definitions.

Another point made by both the aforementioned papers is that we should attempt to
understand large computational systems by first examining smaller models, and models in
which the ground truth is already known. This approach allows us to create new analytical
tools that can be thoroughly vetted, so that the interpretations drawn from their use in
experimental practice is unambiguous and undebated. We also believe that when trying
to understand large computational systems, it is essential to start with toy models such
as Counterexample 2.1. This philosophy of starting with toy models, and abstracting out
meaningful ideas that hold more generally in large systems, is well-entrenched in the field of
information theory, and can become a useful export in fields such as neuroscience.
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2.A Proof of Proposition 2.1

Proof of Proposition 2.1. (⇒) Suppose there exists some edge E′t ∈ E′t that hasM -information
flow as per Definition 2.4. That is,

∃ E′′t ⊆ Et \ {E′t} s.t. I
(
M ;X(E′t)

∣∣X(E′′t )
)
> 0. (2.68)

Then,

I
(
M ;X(E′t)

∣∣X(E′′t )
)

= I
(
M ;X(E′t)

∣∣X(E′′t )
)

+ I
(
M ;X(E′t\{E′t})

∣∣X(E′′t ), X(E′t)
)

(2.69)
(a)
≥ I

(
M ;X(E′t)

∣∣X(E′′t )
) (b)
> 0 (2.70)

where (a) follows from the non-negativity of conditional mutual information and (b)
from (2.68). Taking R′t := E′′t in Definition 2.5, we see that the set E′t has M -information
flow.
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(⇐) Next, suppose that the set E′t has M -information flow, as per Definition 2.5. That
is, there exists a set R′t ⊆ Et such that

I
(
M ;X(E′t)

∣∣X(R′t)
)
> 0. (2.71)

Also, let {E(1)
t , E

(2)
t , . . . E

(K)
t } be any ordering of the nodes in E′t (where K = |E′t|). Then

by the chain rule of mutual information,

0 < I
(
M ;X(E′t)

∣∣X(R′t)
)

(2.72)

=
K∑
k=1

I

(
M ;X(E(k)

t )
∣∣∣X(R′t), X

(k−1⋃
j=1
{E(j)

t }
))
. (2.73)

By the non-negativity of conditional mutual information, at least one of the terms in the
summation must be strictly positive. Let the index of this term be k∗. Hence, there exists
E′t := E

(k∗)
t and E′′t := R′t ∪ {E(1)

t , . . . E
(k∗−1)
t }, such that

I
(
M ;X(E′t)

∣∣X(E′′t )
)
> 0. (2.74)

In other words, there exists an edge E′t ∈ E′t that hasM -information flow as per Definition 2.4.

2.B Proof of Proposition 2.9

Proof of Proposition 2.9. Consider the set of all Et ∈ Et that have M -information flow.
That is, Et must satisfy

∃ E′t ⊆ Et s.t. I
(
M ;X(Et)

∣∣X(E′t)
)
> 0. (2.75)

Define
Rt := {Et ∈ Et : (2.75) holds},

St := Et \Rt.
(2.76)

Then, we claim that Rt and St satisfy equations (2.63) and (2.64).
First, note that if St 6= ∅, then for every St ∈ St, we must have that

∀ E′t ⊆ Et, I
(
M ;X(St)

∣∣X(E′t)
)

= 0. (2.77)

If not, then St ∈ Rt by (2.76), which implies that St /∈ St, which is a contradiction. Hence,
we see that no edge in St has M -information flow. Therefore, by Proposition 2.1, the set St
has no M -information flow. This directly implies the condition in (2.64).

Next, we claim that if Rt 6= ∅, then for every Rt ∈ Rt, if E′t ⊆ Et is a set that satisfies

I
(
M ;X(Rt)

∣∣X(E′t)
)
> 0, (2.78)

then R′t := E′t ∩Rt satisfies
I
(
M ;X(Rt)

∣∣X(R′t)
)
> 0. (2.79)
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Let S′t := E′t \R′t, so that S′t ⊆ St. Then,

I
(
M ;X(Rt)

∣∣X(R′t), X(S′t)
)
> 0 (2.80)

by (2.78). So,

I
(
M ;X(Rt)

∣∣X(R′t)
) (a)= I

(
M ;X(Rt), X(S′t)

∣∣X(R′t)
)− I(M ;X(S′t)

∣∣X(R′t), X(Rt)
)

(2.81)
(b)= I

(
M ;X(Rt), X(S′t)

∣∣X(R′t)
)

(2.82)
(c)= I

(
M ;X(Rt)

∣∣X(R′t), X(S′t)
)

+ I
(
M ;X(S′t)

∣∣X(R′t)
)

(2.83)
(d)= I

(
M ;X(Rt)

∣∣X(R′t), X(S′t)
)

(2.84)
(e)
> 0,

where (a) and (c) follow from the chain rule, (b) and (d) follow from (2.64), and (e) follows
from (2.80). Thus, condition (2.63) also holds.

2.C Synergistic Information Flow

2.C.1 Partial Information Decomposition preliminaries

The literature on Partial Information Decomposition seeks to find a decomposition for the
mutual information between a message, M , and a set of random variables, {X1, X2, . . .}
into several individually meaningful, non-negative terms [92]. For our purposes, it suffices
to consider the bivariate case, i.e., the decomposition of I(M ;X,Y ) into non-negative
components. In the bivariate case, it is well-understood how many components there ought
to be, and what these quantities intuitively represent, but as yet, there is no consensus on a
single set of definitions [92].

There is, however, consensus on a basic set of properties that we expect these components
to satisfy. For our purposes, we will only make use of the basic properties stated here, so
that any definition of the aforementioned components which satisfies these properties suffices
for our theory.

In the bivariate case, the mutual information between M and (X,Y ) is decomposed
into four components: information about M which is (i) unique to X and not present in
Y , (ii) unique to Y and not present in X, (iii) redundantly present in both X and Y , and
(iv) synergistically present in X and Y . In the notation of [91], the decomposition is written
as:

I
(
M ; (X,Y )

)
= UI(M : X \ Y ) +UI(M : Y \X) +RI(M : X;Y ) +SI(M : X;Y ), (2.85)

where the components are ordered exactly as stated above. Note the distinction between
the colon and the semicolon in RI and SI. Also, “\” uses the symbol for set-negation to
mean “not present in”, while also explicitly capturing the asymmetry between X and Y in
UI. However, in what follows, we shall assume that RI and SI are symmetric in X and Y .
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2. The M-Information Flow Framework

This is usually an additional condition that is imposed when defining these quantities, but
here, we take it as given.

Given what we want the four components to represent, we would also expect the following
to hold:

I(M ;X) = UI(M : X \ Y ) +RI(M : X;Y ),
I(M ;Y ) = UI(M : Y \X) +RI(M : X;Y ).

(2.86)

As a natural consequence, this means that the conditional mutual information will satisfy:

I(M ;X |Y ) = I
(
M ; (X,Y )

)− I(M ;Y )
= UI(M : X \ Y ) + SI(M : X;Y ),

I(M ;Y |X) = I
(
M ; (Y,X)

)− I(M ;X)
= UI(M : Y \X) + SI(M : X;Y ).

(2.87)

Finally, we want each of these components to always be non-negative:

UI(M : X \ Y ) ≥ 0 RI(M : X;Y ) ≥ 0
UI(M : Y \X) ≥ 0 SI(M : X;Y ) ≥ 0.

(2.88)

It is not obvious that a consistent definition of these four quantities which also satisfies the
equations stated above even exists, but in fact, additional properties are required to obtain
a unique definition. For instance, see [91] for one such development.

As stated before, our theory only relies on the properties stated in this section. As a
result, our theorem on the equivalence of information flow definitions holds irrespective
of what definition is used, exactly, for synergistic information. It only matters that the
definition used satisfies the basic properties presented here.

2.C.2 Equivalence of information flow definitions

Proof of Proposition 2.2. (⇒) Suppose the edge Et has M -information flow. Then,

∃ E′t ⊆ Et s.t. I
(
M ;X(Et)

∣∣X(E′t)
)
> 0. (2.89)

If I
(
M ;X(Et)

)
> 0 with E′t = ∅ in (2.89), then condition 1 in Definition 2.6 holds, so nothing

remains to be shown. If not, then I
(
M ;X(Et)

)
= 0, so (2.89) implies that there must exist

some E′t 6= ∅ such that

I
(
M ;X(Et)

∣∣X(E′t)
)
> 0, (2.90)

which, by (2.87), is equivalent to
UI
(
M : X(Et) \X(E′t)

)
+ SI

(
M : X(Et);X(E′t)

)
> 0. (2.91)

However, since I
(
M ;X(E′t)

)
= 0, we must have UI

(
M : X(Et) \ X(E′t)

)
= 0 by (2.86)

and (2.88). Hence,

∃ E′t ⊆ Et \ {Et} s.t. SI
(
M : X(Et);X(E′t)

)
> 0. (2.92)
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So the implication in the forward direction holds.
(⇐) For the converse, suppose that Et has no M -information flow. That is,

I
(
M ;X(Et)

∣∣X(E′t)
)

= 0 ∀ E′t ⊆ Et \ {Et}. (2.93)

By (2.87), this implies that

UI
(
M : X(Et) \X(E′t)

)
+ SI

(
M : X(Et);X(E′t)

)
= 0 ∀ E′t ⊆ Et \ {Et}. (2.94)

Since UI and SI are both non-negative by (2.88), we must have that

SI
(
M : X(Et);X(E′t)

)
= 0 ∀ E′t ⊆ Et \ {Et}. (2.95)

This proves the converse.

2.D Miscellaneous Proofs from Section 2.5

2.D.1 Proof of Lemma 2.10

Proof of Lemma 2.10. Consider a subset of hidden nodes H′t ⊆ Ht that is not M -relevant.
Then, by Definition 2.14, Q(H′t) carries no M -information flow in G. This means that

∀ E′t ⊆ Et, I
(
M ;X(Q(H′t))

∣∣X(E′t)
)

= 0. (2.96)

Specifically, taking E′t = Ẽt, we have

I
(
M ;X(Q(H′t))

∣∣X(Ẽt)
)

= 0. (2.97)

Therefore, by Definition 2.15, H′t isM -derived. Thus, if H′t is not M -relevant, it is M -derived.
Taking the contrapositive, if Ht is not M -derived, then it is M -relevant.

2.D.2 Proof of proposition 2.11

Proof of Proposition 2.11. We are given that

I
(
M ;X(Ẽt+1)

∣∣X(Ẽt)
)
> 0, (2.98)

and must prove that the hidden nodes at time t, Ht, are not M -derived.
First note that, since Q(Ṽt+1) = Ẽt+1 ∪ (Ṽt+1 ×Ht+2), we must have

I
(
M ;X(Q(Ṽt+1))

∣∣X(Ẽt)
)

= I
(
M ;X(Ẽt+1), X(Ṽt+1 ×Ht+2)

∣∣X(Ẽt)
)

(2.99)

= I
(
M ;X(Ẽt+1)

∣∣X(Ẽt)
)

+ I
(
M ;X(Ṽt+1 ×Ht+2)

∣∣X(Ẽt+1), X(Ẽt)
)

(2.100)
≥ I(M ;X(Ẽt+1)

∣∣X(Ẽt)
)

(2.101)
> 0, (2.102)
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where the last line follows from the fact that conditional mutual information is non-negative,
and from (2.98).

Next, observe that Local Markovity conditions (Proposition 2.6) must hold on the entire
graph G, which consists of both observed and hidden nodes. If we apply the Local Markovity
condition to Ṽt+1, we have M—X(P(Ṽt+1))—X(Q(Ṽt+1)), or in other words

I
(
M ;X(Q(Ṽt+1))

∣∣X(P(Ṽt+1))
)

= 0. (2.103)

Note that P(Ṽt+1) = Ẽt∪ Q̃(Ht), where Q̃(Ht) := Ht× Ṽt+1 is the subset comprising outgoing
edges of Ht that go to Ṽt+1. Therefore,

I
(
M ;X(Q(Ṽt+1))

∣∣X(Ẽt), X(Q̃(Ht))
)

= 0. (2.104)

Expanding this conditional mutual information, we get

I
(
M ;X(Q(Ṽt+1)), X(Q̃(Ht))

∣∣X(Ẽt)
)− I(M ;X(Q̃(Ht))

∣∣X(Ẽt)
)

= 0. (2.105)

So we have

I
(
M ;X(Q̃(Ht))

∣∣X(Ẽt)
)

= I
(
M ;X(Q(Ṽt+1)), X(Q̃(Ht))

∣∣X(Ẽt)
)

(2.106)

= I
(
M ;X(Q(Ṽt+1))

∣∣X(Ẽt)
)

+ I
(
M ;X(Q̃(Ht))

∣∣X(Q(Ṽt+1)), X(Ẽt)
)
> 0, (2.107)

where the final inequality follows from (2.102) and the fact that conditional mutual informa-
tion is non-negative. Finally, since Q̃(Ht) ⊂ Q(Ht), we have that I

(
M ;X(Q(Ht))

∣∣X(Ẽt)
)
> 0,

just as we showed in equations (2.99)–(2.102). Hence, the Markov chain M—X(Ẽt)—
X(Q(Ht)) does not hold, so by Definition 2.15, Ht are not M -derived.

2.E On the Uniqueness of Our Definition of Information
Flow

From the perspective of designing an axiomatic framework, it is desirable to find a minimal set
of properties that gives rise to a unique definition of information flow. Although Property 2.1
helped us motivate a definition for information flow, it did not uniquely specify a definition.
Indeed, the all-zero function as well as the all-ones function also satisfy the property, although
they are not particularly useful definitions of information flow.

In this section, we provide a set of properties that uniquely leads to our definition of
information flow. However, we must acknowledge that we arrived at these properties with
the benefit of hindsight, after having proved many other properties of our definition. As such,
they are mathematically very similar to our definition, and one might feel uncomfortable
with the idea of imposing such a set of properties at the very outset. Our goal here is only
to begin a discussion in this direction: a search for a more abstract set of properties that
leads to a unique definition of information flow would be a worthy endeavour in future.
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Property 2.4. Let C be a computational system, and let FM : E→ {0, 1} be an indicator
of the presence of information flow about M on an edge. That is, FM (E) = 1, if information
about M flows on the edge E ∈ E, and FM (E) = 0 otherwise. We now state three conditions
FM must satisfy, which naturally leads to our definition of information flow (Definition 2.4):

2.4a) FM (Et) = 1 if I
(
M ;X(Et)

)
> 0

2.4b) FM (Et) = 1 if ∃ E′t ⊆ Et\{Et} s.t.

I
(
M ;X(E′t) |X(Et)

)
> I

(
M ;X(E′t)

)
2.4c) FM (Et) = 0 if I

(
M ;X(Et) |X(E′t)

)
= 0 ∀ E′t ⊆ Et.

Property 2.4a is a very natural and intuitive requirement for information flow. Prop-
erty 2.4b states that an edge should be considered to carry information about M , if upon
conditioning, its transmission increases the information that some set X(E′t) conveys about
M . Property 2.4c is reminiscent of the separability property from Proposition 2.9, and
states that if an edge has no dependence with M , no matter what other transmission is
conditioned upon, then it can carry no information flow about M .

Effectively, Property 2.4a states that if an edge has unique or redundant information
about M , then it must carry information flow, while Property 2.4b states that if an edge has
synergistic information about M along with some other set of transmissions, then it must
carry information flow. Finally, Property 2.4c states that if all three of these components
are absent, then that edge carries no information flow. This also explains how, if any one of
these three properties is absent, our definition is no longer unique.

As we acknowledged previously, some of these properties could be seen as too restrictive
or contrived, and a more abstract set of properties is certainly desirable. Nevertheless, these
properties do uniquely identify our definition of information flow.

Proposition 2.12 (Uniqueness). If FM is an indicator of information flow that satisfies
the conditions in Property 2.4, then FM (Et) = 1 if and only if Et has M -information flow,
per Definition 2.4.

Proof. (⇒) Suppose the edge Et has no M -information flow per Definition 2.4. This directly
implies the condition in Property 2.4c. Hence, FM (Et) = 0. This proves that if FM (Et) = 1,
the edge Et must have M -information flow.

(⇐) Suppose the edge Et has M -information flow per Definition 2.4. Then,

∃ E′t ⊆ Et\{Et} s.t I
(
M ;X(Et)

∣∣X(E′t)
)
> 0. (2.108)

If E′t = ∅, I(M ;X(Et)
)
> 0, so by Property 2.4a, FM (Et) = 1. If I

(
M ;X(Et)

)
= 0,

then (2.108) guarantees the existence of some E′t 6= ∅ such that

I
(
M ;X(Et)

∣∣X(E′t)
)
> 0 (2.109)

⇒ I
(
M ;X(E′t)

)
+ I

(
M ;X(Et)

∣∣X(E′t)
) (a)
> I

(
M ;X(E′t)

)
(2.110)

⇒ I
(
M ;X(Et), X(E′t)

) (b)
> I

(
M ;X(E′t)

)
(2.111)
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⇒ I
(
M ;X(Et)

)
+ I

(
M ;X(E′t)

∣∣X(Et)
) (c)
> I

(
M ;X(E′t)

)
(2.112)

⇒ I
(
M ;X(E′t)

∣∣X(Et)
) (d)
> I

(
M ;X(E′t)

)
, (2.113)

where in (a), we simply added I
(
M ;X(E′t)

)
to both sides; in (b) and (c), we used the chain

rule in two different ways; and in (d), we used the fact that I
(
M ;X(Et)

)
= 0. So, by

Property 2.4b, we have that FM (Et) = 1. This proves the converse.

Remark It should be noted that Definition 2.4 only specifies whether or not a given edge
has M -information flow. It does not quantify this flow. So Proposition 2.12 demonstrates
the uniqueness of our definition up to an unspecified information volume. If we require that
the conditions in Property 2.4 hold, then any quantitative definition of information flow will
go to zero at an edge if and only if the M -information flow carried by that edge is zero.

2.F Derivation of Expressions in the Second FFT Example
from Section 2.6.2

Here, we derive the expressions used in Figure 2.13. Recall that Yi = ω−iM/4, where
ω = e−j2π/4 = −j.

Y02 = Y0 + Y2 = 1
4 + ω−2M

4 = 1
4(1 + ω−2M ) (2.114)

Y13 = Y1 + Y3 = ω−M

4 + ω−3M

4 = ω−M

4 (1 + ω−2M ) (2.115)

Y ′02 = Y0 + ω2Y2 = 1
4 + (−1)ω

−2M

4 = 1
4(1− ω−2M ) (2.116)

Y ′13 = Y1 + ω2Y3 = ω−M

4 + (−1)ω
−3M

4 = ω−M

4 (1− ω−2M ) (2.117)

Next, we show that these intermediate values actually yield the expected values of Ỹ .

Ỹ0 = Y02 + Y13 = 1
4(1 + ω−2M + ω−M + ω−3M ) (2.118)

=
{1

4(1 + 1 + 1 + 1), M = 0
1
4(1 + j + j2 + j3), M = 1

(2.119)

= 1−M (2.120)

Ỹ1 = Y ′02 + ωY ′13 = 1
4(1− ω−2M + ω1−M − ω1−3M ) (2.121)

=
{1

4(1− 1 + ω − ω), M = 0
1
4(1− j2 + 1− j2), M = 1

(2.122)

= M (2.123)

Ỹ2 = Y02 + ω2Y13 = 1
4(1 + ω−2M + ω2−M + ω2−3M ) (2.124)
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= 1
4(1 + ω−2M − ω−M − ω−3M ) (2.125)

=
{1

4(1 + 1− 1− 1), M = 0
1
4(1− 1− ω−1 + ω−1), M = 1

(2.126)

= 0 (2.127)

Ỹ3 = Y ′02 + ω3Y ′13 = 1
4(1− ω−2M + ω3−M − ω3−3M ) (2.128)

= 1
4(1− ω−2M + ω3(ω−M − ω−3M )) (2.129)

=
{1

4(1− 1− ω(1− 1)), M = 0
1
4(1− (−1)− ω(ω−1 + ω−1)), M = 1

(2.130)

= 0 (2.131)
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3 M -Information Flow in Neuroscience

Try not, do. Or do not.
There is no try.

— Master Yoda

3.1 Introduction

This chapter describes how M -information flow might be useful in a neuroscientific context
through simulations on biological neural network models. The chapter considers two
important ways in which the M -information flow framework can influence neuroscientific
experiments:

1. First, the framework communicates the importance of accounting for synergy when
tracking information flows about a message. This provides an additional justification
for the use of measures from the partial information decomposition literature in
neuroscientific data analysis. To demonstrate this fact, we present simulations on
networks of reparametrized quadratic-integrate-and-fire neurons, which are capable of
generating and maintaining synergistic representations. We also propose measures of
information flow that capture the essence of our definition in Chapter 2, but which are
based on correlation and are hence much easier to compute.

2. Second, we discuss how the use of partial information measures, such as uniqueness,
redundancy and synergy, can suggest new hypotheses about information representation.
Since partial information measures are essential for information flow, we consider how
they can be useful in their own right, for understanding encoding. We examine a
simple model of entorhinal grid cells, and show how unique, redundant and synergistic
information can all arise in this model when using different encoding schemes to
represent information about spatial location.

The chapter uses the unifying theme of synergistic information: how it is important for
tracking flows of information, and how it can arise in surprising ways in encoding schemes
for grid cells.
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3.2 A Synergistic Perspective on Information Flow and
Encoding

Synergy informally refers to the notion that a whole can be more than the sum of its parts.
In information theory, this takes the form of two variables X and Y jointly conveying some
information about a messageM that cannot be obtained from either one of them individually.
While this statement offers only a vague intuition for synergy, several recent works in the
information theory literature have proposed concrete definitions for synergy [89–91] (see Lizier
et al. [92] for a recent review). This field, called Partial Information Decomposition (PID),
provides formal definitions for unique, redundant and synergistic information. Some of these
definitions are rooted in strong operational interpretations, relying on ideas from statistical
decision theory [91, 124]. There have also been significant efforts towards finding efficient
and practical estimators for these definitions [125]. These advances suggest that partial
information measures—measures of unique, redundant and synergistic information—are
ready to be used in neuroscience.

Synergy has been explored by many works in neuroscience over the last two and a half
decades. For instance, Schneidman et al. [93] identified three different kinds of “indepen-
dence” in the neural code—activity independence, conditional independence and information
independence—the last of these is related to the synergy between different cells about the
stimulus. Gat and Tishby [96] experimentally identified the presence of synergy between
neurons in the frontal or prefrontal cortex of monkeys performing a Go/No-go task. More
recently, works by Timme and Lapish [95] and Pica et al. [126] have described how partial
information measures such as unique, redundant and synergistic information may be used in
neuroscience. We revisit the works of both Schneidman et al. [93] and Timme and Lapish
[95] in a later section, providing additional context and contrasting some of the finer points
of our results with theirs.

Despite the existence of past work addressing synergy in a multitude of ways, we believe
that this concept deserves to be re-examined. Our argument rests on two points, both of
which we illustrate in this paper using simulations:

1. A recent result of ours [49] theoretically argues that one must account for synergy in
some form, in order to provably track how information about a stimulus flows through
the brain. Understanding such dynamical flows of information in the brain, in turn, is
essential if we wish to intervene to modify these flows, particularly for the treatment
of various brain diseases and disorders. Unless we account for synergy, there will
always be instances where we cannot consistently identify the flow of information
about a stimulus or response. In the present work, we provide concrete examples of
such instances by simulating circuits at three different scales of neural processing.

2. We also show that synergy can arise in the brain in surprising ways, using a case study
on grid cells. Borrowing from existing models of encoding and error correction in
grid cells [127], we build a model for the joint activity of three grid cell modules and
examine how information about spatial location is decomposed between these modules.
These simulations show that when interrogating information about spatially refined
location, each module provides unique information with respect to the others; and when
these grid modules possess the capacity for error correction, they provide redundant
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information with respect to the others. However, when interrogating information
about location at a coarse spatial resolution, grid cells encode the same information
synergistically.

These two results illustrate that synergy may be more common than previously assumed, and
even unexpected in some instances, while at the same time being essential for understanding
information flows. In conjunction with the aforementioned advances in developing well-
motivated measures of synergistic information, questions examining synergy in the brain
appear to be ripe for further investigation through experimental studies.

The main results of this paper are organized into three sections. The first deals with
the requisite background knowledge for understanding synergy and the associated partial
information decomposition literature. We then present the results of our simulations showing
the connection between synergy and information flow: this is presented in the form of three
experiments, followed by a few general remarks. The last section of our results shows how
synergy may arise in entorhinal grid cells in ways perhaps unexpected. We then present the
details of our simulations in the methods section, and finally conclude with a discussion on
the key takeaways from our work.

3.3 The Partial Information Decomposition Framework

Before we can explore the importance of synergy, we first provide an intuitive explanation
of what synergy means. Then, we describe a few different ways in which prior literature
in neuroscience has tried to understand synergy. Finally, we describe how synergy has
been formalized through recent advances in the information theory literature. This section
assumes that the reader is familiar with basic information-theoretic concepts such as Shannon
entropy and mutual information [128]. For convenience, these are summarized in Table 3.1
at the end of this section.

Intuitively, synergy refers to the idea two variables X and Y can provide more information
about some messageM when taken together, than when considered individually. Schneidman
et al. [93] operationalized this intuition literally, by considering the difference of total and
individual mutual informations. They defined a quantity that we denote Syn(M : X;Y ),
referring to the aforementioned difference:

Syn(M : X;Y ) := I
(
M ; (X,Y )

)− I(M ;X)− I(M ;Y ) (3.1)

Schneidman et al. [93] argued (correctly) that if this quantity was positive, then X and Y
had synergistic information about M , and that if it was negative, then they had redundant
information about M .

However, as we shall see, this definition suffered from an important issue, i.e., it did
not allow for both synergy and redundancy to be present simultaneously. In fact, the
aforementioned quantity was the difference of synergistic and redundant information: thus,
while Syn(M : X;Y ) was positive whenever synergy exceeded redundancy and negative
whenever redundancy was greater, it would always underestimate each as long as the other
was present. Moreover, synergy and redundancy could precisely balance each other, leading
to a cancellation of the two quantities (this will be demonstrated in Example 3.1, which
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Figure 3.1: A Venn diagram representing partial information measures and their interactions, summarizing
equations (3.2) and (3.3). The outer ellipse encompasses the total mutual information about M contained
in X and Y , I(M ; (X,Y )). The orange circle represents the mutual information between M and X alone,
I(M ;X), while the green circle represents that between M and Y alone, I(M ;Y ). The orange crescent is the
information about M uniquely contained in X, the green crescent is that uniquely present in Y , the brown
overlapping region is the information about M redundantly present in both X and Y , and the blue region
outside both circles is the synergy between X and Y about M .

appears later). Some of these issues were recognized by Schneidman et al. [93], but there
were no better ways of quantifying synergy and redundancy at that time.

Next, we present a more current understanding of synergy, arising out of the literature
on Partial Information Decomposition (PID). The PID framework was first introduced by
Williams and Beer [89] and subsequently advanced through a series of works, including those
of Harder et al. [90], Griffith and Koch [129] and Bertschinger et al. [91] (Lizier et al. [92]
provide a recent review, and Timme and Lapish [95], Pica et al. [126] show how PID may
be used in the neuroscientific context).

Williams and Beer [89] suggested that synergy appears as part of a more general
decomposition of the mutual information between M and (X,Y ):

I
(
M ; (X,Y )

)
= UI(M : X \ Y ) + UI(M : Y \X) +RI(M : X;Y ) + SI(M : X;Y ). (3.2)

The four terms on the right hand side are respectively the information about M uniquely
contained in X and not in Y , that uniquely contained in Y and not in X, that redundantly
expressed in both X and Y , and that which only arises out of a synergistic combination of
X and Y . Example 3.1, which appears shortly, shows a joint distribution with each type of
information.

Intuition demands that the decomposition in (3.2) also satisfies two other constraints:

I(M ;X) = UI(M : X \ Y ) +RI(M : X;Y )
I(M ;Y ) = UI(M : Y \X) +RI(M : X;Y ),

(3.3)

since we expect that the total information about M present in X, I(M ;X), is the sum of
the information about M uniquely present in X and the information redundantly encoded
in both X and Y (which can be extracted from either). These constraints are summarized
in the Venn diagram shown in Figure 3.1. Since we have four undefined partial information
quantities and three constraints in equations (3.2) and (3.3), defining any one of the four
partial information measures suffices to determine the rest.

Williams and Beer [89] gave a formal definition for these partial information quantities,
which is often called the Minimum Mutual Information (MMI) decomposition. Their
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decomposition was based on a definition for the redundant information:

RIMMI(M : X;Y ) := min{I(M ;X), I(M ;Y )}. (3.4)

Unfortunately, this definition has some critical shortcomings, which is seen through Exam-
ple 3.1. Our work is one of the first (cf. 126) that computes more complex PID measures in
neuroscientific examples, while also connecting the PID to information flow and encoding.

Example 3.1 (A simplistic example of PID). Let M , X and Y be given by:

M = [M1,M2,M3,M4]
X = [M1,M3,M4 ⊕ Z]
Y = [M2,M3, Z],

where M1,M2,M3,M4, Z ∼ i.i.d. Ber(1/2), and ⊕ refers to the exclusive-or (xor) of two
binary variables. Thus, M has four bits of entropy, spread evenly across M1 through M4.
Intuitively, X has 1 bit of unique information about M , encapsulated in M1, since this is
information that cannot be extracted from Y . Similarly, Y has 1 bit of unique information
about M not present in X, captured by M2. M3 constitutes 1 bit of redundant information
which can be extracted from either X or Y . Finally, M4 is present in neither X nor Y since
M ⊕ Z and Z are both individually independent of M4. However, when X and Y are taken
together, we can reconstruct M4 from the combination [M4 ⊕ Z,Z]. Thus, X and Y have 1
bit of synergistic information about M . (Note that these values are based on intuition and
not formal definitions of these quantities).

But since I(M ;X) = I(M ;Y ) = 2 bits, by equation (3.4), MMI PID will find that the
redundant information is 2 bits. By equation (3.3), the unique information in both X and
Y is 0 bits, and from equation (3.2) the synergistic information is 2 bits. Thus, MMI PID
underestimates unique information and overestimates redundant and synergistic information,
relative to intuitive expectations.

Bertschinger et al. [91] proposed an improved PID definition which satisfies our intuitive
expectations in a larger number of cases and has better operational foundations, coming
from statistical decision theory. Their decomposition defines the unique information about
M present in X and not in Y as

UI(M : X \ Y ) := min
q∈∆p

Iq(M ;X |Y )

where ∆p = {q : q(m,x) = p(m,x), q(m, y) = p(m, y)}.
(3.5)

The central intuition behind this definition arises from the following two points:

1. From equations (3.2) and (3.3), we have

I(M ;X |Y ) = I
(
M ; (X,Y )

)− I(M ;Y ) (3.6)
= UI(M : X \ Y ) + SI(M : X;Y ) (3.7)

Thus, the conditional mutual information is the sum of the respective unique and
synergistic components.
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2. Bertschinger et al. [91] argue that UI and RI should not depend on the full joint
probability distribution p(m,x, y), rather, they should depend only on the marginal
p(m) and the conditionals p(x |m) and p(y |m) (they justify this using a motivation
from statistical decision theory). Since these marginals and conditionals are identical
by definition for all q ∈ ∆p, UI and RI are constant over ∆p. By taking the minimum
conditional mutual information over this entire set, we are intuitively squeezing out
the synergistic component (given that it is always non-negative), and defining what
remains to be the unique information.

We use the definition of Bertschinger et al. [91] in all that follows.
The framework of Bertschinger et al. [91] also helps us understand where the definition

for synergy used by Schneidman et al. [93] falls short. Specifically, we have

Syn(M : X;Y ) = I
(
M ; (X,Y )

)− I(M ;X)− I(M ;Y ) = SI(M : X;Y )−RI(M : X;Y ).
(3.8)

Thus, while positive values of Syn(M : X;Y ) may indicate the presence of synergy, and
negative values the presence of redundancy, neither of these implies the absence of the other.
Furthermore, a zero value of Syn(M : X;Y ) does not imply the absence of synergy and
redundancy.1 Example 3.1 also demonstrates how synergy and redundancy can precisely
cancel each other in the definition of Schneidman et al. [93], leading to an overestimate of
unique information and underestimates of redundant and synergistic information.

Finally, we highlight the distinction between I(X;Y |M), which is related to conditional
independence in Schneidman et al. [93], and I(M ;X |Y ), which is the conditional mutual
information that we use in the context of information flow.

Notation Meaning

H(M) Shannon entropy of the random variable M
I(M ;X) Shannon mutual information between the random variables M and X

UI(M : X \ Y ) Information about M uniquely present in X and not in Y
RI(M : X;Y ) Information about M redundantly present in X and in Y
SI(M : X;Y ) Information about M synergistically present between X and Y

Table 3.1: Information-theoretic notation used throughout the paper. All information quantities are measured
in bits.

3.4 Synergy and Information Flow
Next, we look at how synergy is important for detecting information flow. Through examples,
we show that unless we account for synergy, it is not always possible to track the paths along
which information flows in neural circuits. Measures that account for synergy are those that
use some form of conditioning, e.g., conditional mutual information, conditional correlation
or partial correlation. Simpler measures based purely on Pearson correlation are unable to

1Schneidman et al. [93] call this “information independence”, but we believe they were referring to an
instance where both redundancy and synergy were exactly equal to zero, rather than cancelling each other
out.
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consistently track the paths along which information about a stimulus flows. We show this
using simulated examples covering three different scales of neural information processing:

1. Neural circuits processing information encoded in single spikes
2. Circuits processing information encoded in spike trains
3. Information encoded at a population level, in the aggregate activity of multiple neurons

Our simulations are all based on networks of neurons; these rely on a reparameterized version
of the Quadratic Integrate-and-Fire neuron model known as a “Theta” neuron model [130].
Particulars of the simulation setup may be found in the Methods section.

3.4.1 Information Flow in a Simple XOR Circuit

We begin with a simple demonstration of how synergy may arise in a neural circuit, using
the canonical example of exclusive-or (xor) operations. We implement an xor operation
using a network of three theta neurons. This is achieved as follows:

M xor Z = (M or Z) and not (M and Z) (3.9)

The xor operation is realized by dividing it into one or and two and operations, each
of which is implemented using a theta neuron with synaptic weights set appropriately, in
relation to the neuron’s threshold (this is depicted in Figure 3.2a). In the above, M is a
“message” (which can be thought of as a stimulus) that the network is trying to encode or
convey, while Z is a noise variable representing an independent signal, or internal neural
variability. M and Z are both encoded in the form of single spikes, i.e., if M = 1 in a given
trial, a neuron receiving M as input would receive a single spike, and if M = 0, it would
receive no spike.

In all that follows, the three-unit xor network is condensed into a single “node” for the
purpose of examining information flow.2 Using this xor node, we design a circuit with the
intent of demonstrating how accounting for synergy is essential when inferring information
flow (shown in Figure 3.2b). This circuit consists of three nodes: the first node X1 performs
an xor of M and Z; the second node X2 acts as a delay element and preserves the noise
variable Z along a separate path; and the third node X3 performs another xor operation,
removing the noise Z and recovering the message M . We see that effectively, information
about the message M is never lost in the circuit. However, at an intermediate time step, it
is preserved synergistically in the form [M ⊕ Z,Z] along two separate edges. Thus, when
inferring information flow at this time instant, it is necessary to account for synergy in the
system. Otherwise, we lose track of where information about M is present in the system.

Figure 3.2c shows the response of the network for all possible values of M and Z. If we
analyze the information flow of M on different transmissions of this network, we find that
around t = 5ms, spikes corresponding to M and Z are seen, each independent of the other
and equally likely to be zero or one (corresponding to H(M) = 1 bit). Around t = 24ms, we
find that X3 shows perfect correlation with M , so that I(M ;X3) = 1 bit. Around t = 14ms,
however, X1 and X2 both show no dependence on M , i.e., I(M ;X1) = 0 and I(M ;X2) = 0.

If we are aware of the underlying anatomy, this should strike us as perplexing, since
M appears to have bypassed X1 and X2 to arrive at X3, even though there are no other

2Evidence exists, even in the neuroscientific literature, to indicate that single neurons may compute xor’s
in their dendrites [131].
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Figure 3.2: A demonstration of how synergy is essential for inferring information flow, using a simple xor
network. (a) A depiction of the circuit designed to perform an xor operation. Here, all neurons have a
threshold of 1, and the numbers on edges are an indication of approximate synaptic weight. The upper
neuron on the left is excitatory and fires if either M or Z is active, thus it performs an or operation. The
lower neuron on the left is inhibitory and fires only if both M and Z are active, and therefore performs an
and operation. Since the lower neuron is inhibitory, the neuron to the right fires only if the upper neuron
fires and the lower one does not; effectively resulting in an exclusive-or of M and Z. (b) The setup of the
various nodes used in this example. Here, X1 and X3 are xor circuits shown in (a), while X2 is a delay
element consisting of excitatory neurons. The function of this circuit is to create a representation of M that
is purely synergistic, comprised of the combination [M ⊕ Z,Z]. (c) The behavior of the circuit in (b) for all
four combinations of the binary variables M and Z. Firstly, observe that X1, X2 and X3 behave as intended.
Secondly, the activity of X1 and X2 are both individually independent of M , while the activity of X3 is
identical that of M , barring axonal delays. We observe information flow of M in X1 around t = 14ms only
when conditioning on X2, in other words, when accounting for synergy.

nodes in the system. The issue here lies with how we evaluate the “presence of information
about M”, which does not account for possible synergy between X1 and X2. Our previous
theoretical work [49] proposed to resolve this issue by conditioning on X2 when examining
the information flow of M on X1. Our definition of M -information flow (see 49, Definition 4)
states that an edge carries information flow about M if its transmission depends on M ,
allowing for conditioning on other concurrent transmissions. In fact, the use of this definition
reveals the flow of information about M on X1, since I(M ;X1 |X2) = 1 bit in this example.

Interestingly, this also implies that X2 has information flow of M , since I(M ;X2 |X1) =
1 bit. Indeed, any time a transmission synergistically contributes to the information flow of
M , our definition considers it to have information flow. The reason for this is that it is not
easy to determine which of two edges that synergistically contribute to information about
M is “actually” responsible for carrying that information. Indeed, this precise question was
addressed in much greater theoretical depth in another work of ours [123]. For the purposes
of our discussion here, it suffices to note that this is not necessarily undesirable, and that
there are pruning-based methods that can, in most cases, remove such edges if the need
arises.

The idea that synergy can be expressed using an xor operation, which can be opera-
tionalized using neuron models, is hardly new. Such examples, in their simplest setting, have
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Figure 3.3: (a) A schematic of the circuit used to create synergy in the system, similar to the one in
Figure 3.2b. Here, XM and XZ are spike trains representing M and noise respectively, while X1, X2 and X3
are the same as in Figure 3.2b. (b) The PSTH of XM forM = 0 andM = 1; note that XM differs significantly
for the two values of M (i.e., XM represents M) only in the time intervals 30–50ms and 90–150ms.

been shown before by Timme and Lapish [95] and more broadly in the PID literature [90, 91].
However, the idea that synergy plays an important role in inferring information flow has not
been pointed out before, until our earlier work [49]. What we have shown here is that the
interplay of synergy and information flow may arise in real neural circuits.

We should also note that examples where accounting for synergy is essential are not
limited to the case of xor’s. Such situations may also arise in simpler settings, such as
with excitatory addition followed by inhibitory cancellation. There are plenty of biological
examples of such self-cancellation circuits, the most common being those of efference
copies [132], or corollary discharge [133]. There is also reason to believe that synergistic
encoding is the product of a certain kind of information mixing, which is common in
compression and error-control contexts (we will see one such example that uses grid cells in
a later section). Such information mixing is likely to arise in the olfactory cortex, where
there is evidence of a compressive-sensing–type circuit [134]. Lastly, coming back to xor’s,
there has even been recent evidence to show that dendrites may compute xor’s [131].

3.4.2 Information Flow in a Spike Train Encoding Model

The previous example was simplistic by design, to make the argument for synergy and
information flow succinctly. It was designed using single spikes in order to work cleanly with
the xor circuit model, which required somewhat precise timing of spike arrival to allow for
cancellation of Z. Next, we consider a more complex scenario, to show that our conclusions
about synergy and information flow are not affected by the aforementioned simplifications.
We model a situation where the stimulus M is encoded by a sensory system in the form of a
spike train. M is then passed on to a downstream region for further processing, and we are
interested in how information about M flows in this downstream network.

Once again, to examine the importance of synergy, we take the downstream circuit to be
the xor network we examined before, where information about M is corrupted by noise
Z, and is subsequently recovered through some form of cancellation. Therefore, the circuit
being analyzed is the same as in Section 3.4.1, but M and Z are now encoded using spike
trains rather than as single spikes. We use XM to denote the spike train for M and XZ to
denote that for Z. The spike trains are generated by a randomly connected network of theta
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Figure 3.4: (a) Mutual information (dark blue) and conditional mutual information (light blue) between M
and X1 (conditioned on X2). The dots beneath the graph show time instants at which the mutual information
is significant (p < 0.01). During time instants at which M is discernible from XM , only conditional mutual
information reveals the presence of M . (b) Mutual information between M and X3, showing recovery of
information about M . (c,d) The same as in (a,b), but using correlation and MACC in place of mutual
information and conditional mutual information respectively. We see that MACC is an effective substitute
for conditional mutual information in this case, showing that one may be able to account for synergy without
a significant burden on estimation, as long as the mode of dependence is not strictly nonlinear. (e) Estimated
flows based on mutual information (or correlation) and conditional mutual information (or MACC): around
the first peak at t ≈ 50ms, MI gives significance only partially; around t ≈ 90ms, M is not discernible, so
all edges have zero flow; around the second peak at t ≈ 110ms, only conditional mutual information and
MACC reveal the flow, whereas mutual information and correlation show a break in the information path.
(Summary) Around the second time interval when M is discernible (approximately 100-130ms), we see from
(b) and (d) that X3 encodes M ; however, when using plain mutual information (i.e., without accounting for
synergy), (a) and (c) show us that X1 and X2 do not. Therefore, the failure to account for synergy makes it
appear as though M momentarily disappears from the network before reappearing at X3, as seen in the first
row and third column of (e).
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Figure 3.5: An estimate of the synergy between X1 and X2 about M in this system. As we might expect,
the synergy is large and nearly equal to I(M ;X1) at time instants when M is discernible.

neurons with balanced excitation and inhibition, as shown in Figure 3.3a. The spike train
XM is the output of a single neuron from this network which encodes the value of M at
most time instants. The spike train XZ is taken to be very noisy, having an approximately
equal likelihood of firing and not firing within every 10 ms time interval.

In this case, we first note that the message M is discernible from the spike train XM

only at certain distinct intervals of time. This is seen in the peristimulus time histogram
(PSTH) of XM shown in Figure 3.3b, where M is discernible from XM only when the light
and dark curves (corresponding to M = 0 and M = 1 respectively) are separated. During
these time intervals when M is discernible, we examine whether or not the relevant nodes in
the xor network reveal information flow about M .

We measure information flow about the message M in a few different ways: first, we use
the measure proposed in our earlier work [49]. This is depicted in Figures 3.4a,b: observe
that the transmissions of X3 show statistically significant dependence withM in the 50–65ms
and 100–125ms time periods in Figure 3.4b. This corresponds nicely with the time intervals
where M is discernible in Figure 3.3b (approximately 30–50ms and 90-110ms respectively).
Figure 3.4a shows that simple mutual information, I(M ;X1), does not reveal statistically
significant information flow about M in the transmissions of X1, especially in the 95-115ms
time interval. However, conditioned on X2, we see strong conditional dependence in the
transmissions of X1, once again proving the importance of accounting for synergy when
inferring information flow.

Since (conditional) mutual information is a difficult quantity to estimate in general,
we also show how the same inferences can be obtained using a simpler adaptation of this
measure. We use a correlation-based approximation of conditional mutual information that
we call the mean absolute conditional correlation (MACC), defined as

MACC(M : X;Y ) := Ey
∣∣ρ(M,X |Y = y)

∣∣, (3.10)

where ρ(M,X |Y = y) refers to “conditional correlation”, i.e., the correlation between M
and X in the conditional distribution pM,X |Y (m,x | y), and the expectation in (3.10) is
taken with respect to the marginal distribution of Y , i.e., pY (y).

Figures 3.4c,d show analogous results to those we see for mutual information. Only upon
conditioning are we able to track the paths along which information flows in this network.
In particular, during the time interval 100–120ms, we see evidence of M at the output of
X3, but it is not clear how it got there when we use only mutual information to examine X1.
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Figure 3.4e shows these estimated paths of information (or lack thereof) at three different
time instants.

We also show an estimate of the synergy in the system using the definition of Bertschinger
et al. [91], and the estimation methods of Banerjee et al. [125]; this can be seen in Figure 3.5.
This is one of the first concrete demonstrations of a sophisticated partial information measure
in a neuroscientific context connected to information flow (cf. 126). As we might expect, the
synergy between X1 and X2 about M is large at precisely those time intervals when we see
information flow.

3.4.3 Information Flow in a Population Model

Lastly, we examine a scenario where the binary stimulus M is encoded by a population of
neurons PM in their average firing rate. This scenario is meant to emulate a setting where
we use a multi-electrode array to record from a few different brain regions involved in a task.
We also examine a setting where we subsample a fraction of the neurons in this region as
might be the case with a multielectrode array.

Once again, to show how synergy might arise in such a system, we corrupt the message
in PM with noisy inputs arising from a second population PZ , which encodes a continuous
noise variable Z. Subsequently, if the average firing rate of PM is large, a third population
PI , which is primarily inhibitory, suppresses PZ after an axonal delay. This is depicted in
Figure 3.6a. Our primary objective is to track which edges carry information about M at
various time instants in this feedback network. In this setting, we measure information
flow using a different approximation of conditional mutual information, namely, partial
correlation.

An important difference between this simulation and the previous one on spike-train
encoding is that the message M is being constantly provided as a current input. Therefore,
although there is synergistic representation of information about M during an intermediate
time period, the synergy is not directly responsible for the recovery of M at a later time
instant, as was the case in the previous simulation.

Figure 3.6b is analogous to Figure 3.4a for the spike train model. It shows that, unless
we are using partial correlation, we do not see statistically significant information flow
about M during the 90–130ms time interval. Even upon significant subsampling of these
populations, we find that the average firing rate robustly encodes the message; this can
be seen in Figure 3.6c, where only 10% of all neurons are being sampled. We see that
partial correlation picks up synergistic encoding even when recording from just 20 random
excitatory neurons in PM .

In this example, our computations assume that we know information about M is encoded
in the average firing rate of the PM population. In practice, one may need to determine
the manifold along which information about M is encoded using dimensionality reduction
approaches (e.g., see Cunningham and Yu [135]). For the case of the example provided
here, canonical correlation analysis would reveal that the average activity of all neurons
encodes the value of M . However, as long as information is encoded in a dense subspace of
neural activity, and the subsampling mechanism is random with respect to this encoding
mechanism, we would expect our results of subsampling to continue to hold.
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Figure 3.6: A depiction of information flow in a population encoding model. (a) A schematic representing the
populations and connectivity used in our simulations. The PM population encodes the binary message M in
its average firing rate; the PZ population encodes a continuous noise variable Z, and can greatly increase
the firing rate of PM . The PI population is primarily inhibitory, and inhibits Z when the firing rate of
PM grows large. (b) Correlation (light) and partial correlation (dark) between M and the transmissions
of PM over time (conditioned on the transmissions of PZ for partial correlation). Information is encoded
synergistically between 90–130ms, and is statistically significant only when accounting for synergy by using
partial correlation. (c) The same figure as in (b), however, only 10% of the neurons in each population were
sampled while computing correlation and partial correlation. All trends we see in (b) are preserved even in
(c), showing that synergy, as well as our methods of computing information flow, are robust to subsampling.

3.4.4 Remarks on our Analysis and Assumptions

A caveat to partial correlation. In the spike train model, we used MACC as an
approximation for conditional mutual information to measure information flow, while in the
population model, we used the more well-known partial correlation. The reason we did this
is that partial correlation does not yield statistically significant information flow in the spike
train model: we found that ρ(M,X1 |X2 = 0) and ρ(M,X1 |X2 = 1) are nearly equal in
magnitude and opposite in sign; therefore, upon taking an expectation with p(X2), the two
quantities cancel, leading to very small values of partial correlation, which are statistically
indistinguishable from zero. This is why we use the mean absolute conditional correlation
(MACC) instead, which takes absolute values to prevent cancellation. In general, one
might want to start by trying to use partial correlation, which is a well-established method
that often has easily available off-the-shelf implementations. If partial correlation reveals
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information flow, then one’s analysis is complete, but if not, then one cannot conclude
that there is no flow. Instead an alternative approach based on MACC or some other
approximation for conditional mutual information should be pursued.

Discontinuous information flow. Throughout our examples, we stressed on the idea
that we would like to be able to track the paths along which information about the message
M flows. In particular, we wanted to be aware of which edges and which transmissions
carried information about M at every instant of time. However, there were still many
time instants when it was unclear where the message was: for example, in the single spike
xor model, the time intervals between spikes revealed no information flow of the message
M . In fact, information about M was still present in the network, however, it was being
communicated in the form of membrane voltages along axons or dendrites and could not be
seen in spikes or firing rates at the cell body. This points to a crucial hidden variable in the
system: namely, the voltages on the axonal and dendritic membranes. We will only be truly
able to track information flow at the resolution of axonal delays if we also measure these
variables (perhaps using voltage sensitive dyes [136]). However, in practice, we find that
we can get reasonably continuous and satisfactory estimates of flow (while accounting for
synergy) due to random latencies and neural variability; this is evidenced in both the spike
train and population encoding models.

3.5 Synergy and Encoding in Grid Cells
In this section, we present a case study on entorhinal grid cells, showing how synergy may
arise in interesting (and possibly surprising) ways in biological neural systems. We begin
with a short introduction on how grid cells encode information about where an animal is
spatially located.

3.5.1 A Brief Introduction to Grid Cells

Grid cells are neurons in the entorhinal cortex, which are thought to encode information
about where an animal is spatially located (e.g., within a room). There are a few models of
how grid cells might convey such information [127, 137]; we refer to the work of Sreenivasan
and Fiete [127], which is briefly described in what follows.

Each grid cell has a distinct periodic firing pattern, in that its firing rate is modulated at
periodic spatial intervals. Furthermore, grid cells are organized into groups, or “modules”,
that all have the same periodicity (or wavelength) in their firing patterns, though their
patterns may be shifted with respect to the others’. Since the cells within a module all have
the same period but different phase offsets in their firing fields, these cells can be thought of
as constituting a population code encoding the phase of the animal’s location within that
module’s wavelength. As a result, the joint activity of all cells within a module can only
describe the animal’s position modulo that module’s wavelength.

In order to encode location beyond a single wavelength, the entorhinal cortex consists
of multiple such grid cell modules, each with their own distinct wavelength. A simple yet
effective way of understanding how grid modules jointly encode information about location
is to visualize the residual uncertainty in an animal’s location, given the activity of a module.
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(a)
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Figure 3.7: A 1D model of the activity of grid cell modules. (a) The residual uncertainty in location
(also called the conditional distribution, or posterior distribution of location), given the activity of one grid
module. (b) A depiction of the residual uncertainty as the animal moves along the 1D track, showing how
the conditional distribution also moves along with the animal. (c) The conditional distributions of location,
given the activities of three different grid modules (here, shown with wavelengths of λ1 = 3, λ2 = 4 and
λ3 = 5). We see that all three posterior distributions’ peaks align only at the animal’s true location. This
indicates how grid modules come together to encode information about an animal’s location.

A one-dimensional version of this is depicted in Figure 3.7a. If the prior distribution on the
animal’s location was uniform, then the posterior probability of location given the activity
of a single module looks like a series of periodic peaks, separated by the wavelength of
that module. Figure 3.7b shows how this posterior distribution shifts as the animal moves.
The animal’s location is uniquely determined only when we consider the joint activity of
multiple modules: this is shown in Figure 3.7c. In particular, the posterior distributions of
all grid modules align at the animal’s true location, so that the product of these posterior
distributions peaks at the true location.

Sreenivasan and Fiete [127] suggest that, in order to maximize the amount of space
grid cells can encode, the wavelengths of different modules ought to be “co-prime” (or
“incommensurate”) with respect to each other. The expectation is that the total “range”
that can be covered using an encoding scheme such as this is exponential in the number of
modules, or more precisely, of the order of the product of their wavelengths. Sreenivasan
and Fiete [127] also claim that the maximum range that may be encoded using all modules
is far greater than is likely to be necessary in an animal’s lifetime; thus an animal would
instead encode only a restricted range, so that any additional modules are effectively used
as redundancy against neural variability.

A key takeaway from this depiction is that, given the activity of a single module, there
is typically still a lot of residual uncertainty which is spread across the entire possible range
of movement. It is only when we put information from several modules together that we
get a refined understanding of the animal’s location. Since information about location is
encoded jointly by multiple modules, and no one module reveals this information on its own,
this system provides an excellent opportunity for understanding how partial information
measures may be useful in practice.

To understand the broader applicability of the PID framework, we examine situations
encompassing all three types of partial information: unique, redundant and synergistic.
However, in keeping with the central theme and motivation of the paper, we will focus on
how synergy arises in grid cells, and what this teaches us about both synergy and information
encoding. The introduction to grid cells above, as well as Figure 3.7 may suggest that
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information is primarily encoded synergistically, due to the fact that many modules come
together to supply information about location: in what follows, we will see whether this is
indeed the case.

3.5.2 Model setup

In this section, we briefly describe how we setup a model for a few different grid modules
encoding a one-dimensional location. To keep our simulation simple and to focus on
parameters of importance, we forego a spiking neuron model and instead directly model the
activity of an entire grid module. We do this by assuming a conditional distribution for the
residual uncertainty in location, given each module’s activity. In order to account for neural
variability, we let these conditional distributions have different degrees of “variance” (see
methods for details).

We consider a total of three modules: in our simulations and analyses, we use wavelengths
of 9, 10 and 11 units; for the purpose of illustration, we use wavelengths of 3, 4 and 5 units
(this is explicitly mentioned where needed). The conditional distributions are discretized
to simplify the implementation of computing information measures. Once again, we use
the PID of Bertschinger et al. [91], and compute partial information measures using the
implementation by Banerjee et al. [125].

3.5.3 Unique, Synergistic and Redundant Information in Grid Cells

First, we examine the extent of unique, redundant and synergistic information between each
module and the other two, in a setting where they encode the maximum encoding range of
9 × 10 × 11 = 990. Figure 3.8a shows the unique, redundant and synergistic information
in each module with respect to the other two, as a function of increasing neural variability.
The main takeaway from this figure is that all of the information content is actually unique
to each module. In other words, while each module conveys little about location by itself,
there are no synergistic effects. Thus, the joint information from two different modules is
not greater than their sum (it is in fact equal). Furthermore, this shows that each module
reduces uncertainty about location in a way that is “orthogonal” in some sense to the others,
so that there is no redundant information. This may even be expected, considering that we
are operating at maximum “capacity”, when encoding the maximum possible range.

Next, we examine a setting where we allow for a reduced encoding range. We consider a
reduced range of 9× 10 = 90, and compute unique, redundant and synergistic information
about location between each module and the other two, as before (see Figure 3.8b). Here,
as expected, we find that in the absence of neural variability, each module contains purely
redundant information with respect to the other two (since any two other modules suffice to
encode this range). On the other hand, as variability rises, the redundancy drops sharply,
while uniqueness rises, and total mutual information drops more slowly. This suggests that
error correction is in effect; indeed the presence of a combination of redundant and unique
information could indicate some form of error correction in other settings as well. However,
there is no synergy even in this setting, at any noise level.

Finally, to understand how synergy can arise in such a system, we change the “ques-
tion” we are asking: instead of looking at information about precise location, we consider
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(a) (b) (c)

Unique
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Total mutual info

Figure 3.8: Estimated partial information about location between grid modules in different settings. Each
figure uses three grid modules with wavelengths λ1 = 9, λ2 = 10 and λ3 = 11 for a total of 990 possible
locations. (a) Quantification of unique, redundant and synergistic information about location, between each
grid module and the two others, when the grid cells utilize their full encoding range of R = 990 units, and we
are interested in resolving location at a fine scale of r = 1 unit. We see that all of the information is uniquely
encoded, with each module containing only unique information with respect to the other two. This indicates
that each module reduces uncertainty about location independently of, and to roughly the same as, the others.
However, total information content drops sharply with increasing neural variability. (b) Estimated partial
information measures when utilizing a reduced encoding range of R = 90 units, when we are interested in a
resolution of r = 1 unit. Here, any two modules suffice to fully express information about location, while
the remaining module provides redundancy against neural variability. We see that all of the information is
redundant in the absence of noise, and that there is a mixture of redundant and unique information as neural
variability increases, while synergistic information remains close to zero. Total information is lower to begin
with since we are encoding fewer total locations; however, compared to the setting in (a), it also drops off
less steeply with increasing variability. (c) Partial information measures for a full encoding range of R = 990
units, but when we are interested in a very coarse resolution of r = 495 units, i.e., whether the animal is in
the left or right half of the room. We see that each module contains purely synergistic information about
location with respect to the other two in the absence of noise. As neural variability increases, information
content drops almost immediately to zero.

information about coarse location, for example, is the animal in the left or right half of
the room? When we change the question, or in effect, the message under consideration, we
find that synergy arises in this system. The intuition for this is explained in Figure 3.9.
We find that the residual uncertainty in location, given the activity of one module, spans
both left and right halves of the room equally. Thus the uncertainty in left-vs-right remains
as it did before we knew the activity of a module. The same applies when we know the
activities of any pair of modules. Indeed, it is only when the activities of all three modules
are known that the residual distribution collapses into one of the two halves of the room.
This is indeed close to the canonical example for synergy: each module individually gives
little to no information about a message, but jointly they explain everything about the
message.

The main takeaway from this analysis is that synergy can arise in a circuit in unexpected
ways: in this instance, changing the message changed how it was represented between
different modules.

We believe that measuring partial information quantities may help distinguish between
hypotheses such as that of Sreenivasan and Fiete [127] and Wei et al. [137].
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Figure 3.9: An explanation of why synergistic information behaves in the way shown in Figure 3.8c. The
first three rows show a discretized representation of the residual uncertainty in location, given the activity
of each module (for ease of explanation, we use λ1 = 3, λ2 = 4 and λ3 = 5 respectively). The net residual
uncertainty is roughly equal in both left and right halves of the room (white and grey regions), indicating
that each module by itself gives no information about left-vs-right. The next three rows show the residual
uncertainty, given the activities of pairs of modules: (3, 4), (3, 5) and (4, 5) respectively. Once again, the net
residual uncertainty is approximately equal in the two halves of the room, and would only get more evenly
spread as the wavelengths increase in magnitude. This indicates that even pairs of modules, taken together,
do not convey much information about whether the animal is in the left or right half of the room. It is only
when all three modules’ activities are accounted for that the distribution collapses into one half of the room,
providing the one bit of information about whether the animal is in the left or right. This is a quintessential
example of synergistic encoding, where individual or pairwise modules give little to no information about
left-vs-right, but together, they completely specify this information.

3.6 Methods

3.6.1 Details of Simulations for Information Flow

3.6.1.1 Neuron model

Simulations used the theta model for neurons [130]. The theta model is a change of variables
from the standard Quadratic Integrate-and-Fire (QIF) model that expresses the voltage in
terms of an angle on the unit circle, V (t) = tan(θ/2). A neuron spikes when θ = π (V →∞)
and is reset by subtracting 2π (θ → −π, V → −∞), thereby removing the discontinuity of
the QIF model. Each neuron is governed by the set of differential equations

dθk

dt
= 1− cos(θk) + (1 + cos(θk))(Ik0 + wkese − wki si) + σε (3.11)

dsk
dt

= 1
τk

(−sk + fk) (3.12)

where k indicates the type of neuron (excitatory or inhibitory), ε ∼ N (0, 1) is independently
drawn for every neuron at every time step, and fk is the number of presynaptic neurons of
type k that fired at the last time step. The constant parameters are the input current Ik0 ,
strength of excitatory (inhibitory) synapses wke (wki ), strength of noise σ, and synaptic decay
time τk. The equations were numerically integrated using Euler’s method (dt = 0.1ms).
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3.6.1.2 Connectivity models

We considered three main connectivity models. As an intermediate step, three theta neurons
were arranged to perform the xor operation, as shown in Figure 3.2a. Our approach differs
from the xor gate in [95] in that we rely on different connection weights to produce the
desired effect rather than a constant background inhibition. Recent results from [131]
suggest that cortical dendrites possess an activation function capable of computing XOR
with individual neurons, thus we consider each xor gate as a single node regardless of its
exact implementation. Two of these gates and an excitatory neuron were used to produce
the first network with synergistic information. Figure 3.2b shows this network unrolled in
time, where X1 and X3 are the xor gates and X2 is the excitatory neuron. Table 3.2 gives
the parameter values for these neurons.

In the spike train encoding model, the binary message variable M and the noise variable
Z were represented by spike trains produced by large, sparsely connected networks of theta
neurons (Table 3.3). To encode M = 1, a constant stimulus (I0 → I0 + 0.05) was applied to
a single excitatory neuron, raising its firing rate and propagating the message through the
network. On the other hand, when M = 0 there was no such added stimulus. In both cases,
the output of a different excitatory neuron in the network was used as the spike train input
for M . Figure 3.3b shows spike histograms produced for M over 1000 trials. To encode the
noise variable Z, the level of noise within the network (σ) was raised so that there was an
almost 50% chance of a neuron spiking within each time bin. The resulting spike trains were
uncorrelated from trial to trial.

Simulations were run for 150 ms and divided into 10 ms time bins using a moving window.
Correlations with the message, ρ(M,Xi), were calculated for every time bin over 1000 trials,
where Xi is the number of spikes produced by that node in the given time bin. To reveal
synergistic information, we also calculated the conditional correlations ρ(M,Xi | Xj = 0)
and ρ(M,Xi | Xj > 0). Since instances where Xj > 1 were very rare, we used these
values to calculate the MACC in equation (3.10). Mutual information and conditional
information were similarly estimated. Calculation of p-values was done using permutation
testing (n = 1000), and a significance level of p < 0.01 is shown on all figures. Synergistic
information was estimated using code provided by Banerjee et al. [125].

With population encoding, the nodes of the network became populations of theta neurons,
and M and Z were encoded in the average firing rate of a population. Figure 3.6a shows the
arrangement of these populations. PM is the encoding population and receives input from M
starting at 30 ms. M is again a binary message variable and determines whether neurons in
PM receive a constant input current, thereby determining the average firing rate (Table 3.4).
PZ is the noise population and receives input from Z after 70 ms. Z is independently drawn
from a uniform distribution between 0 and 1, and samples are drawn until the magnitude of
the correlation between M and Z across trials is less than 0.0001. Z then determines the
input current to PZ (Table 3.5). PI is the inhibition population, and it is designed so that it
easily sustains input from PM and provides strong inhibition to PZ , with appropriate delays
to better see the flow of information (Tables 3.6 and 3.7).

Simulations were run for 200 ms with a 30 ms transient period and divided into 10 ms
time bins using a moving window. As with single neuron encoding, correlations with the
message, ρ(M,Xi), were calculated for every time bin over 100 trials, where Xi was now the
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average firing rate of the population in a given time bin. Since the firing rate is nearly a
continuous variable, partial correlations (instead of conditional correlations) were calculated
to reveal synergistic information. Calculation of p-values was done using the built-in Matlab
function, and a significance level of p < 0.01 is shown on all figures.

3.6.2 Details of Simulations of Grid Cells

The conditional distribution for location given a grid module’s activity was assumed to be a
von Mises distribution (this is what is shown in Figure 3.7). For the purpose of computing
partial information measures, however, we require discrete distributions; therefore we use a
discretized version of the von Mises distribution. Neural variability affects the width of the
resulting conditional distribution, and is parameterized using the circular variance of the
von Mises distribution.

We compute partial information measures where the message is taken to be the discretized
location (one of 990 possible locations when considering the full encoding range), and the
two constituent variables are the activity of one module and the joint activity of the two
others.

3.7 Discussion and Conclusion

Our simulations show that synergy may be prevalent in neural circuits: the xor examples
(both based on individual spikes as well as using spike trains) and the population coding
example show that synergy is essential for inferring information flow; on the other hand the
grid cell simulation shows that synergy may arise in a system when we change the message.

In other words, the grid cell example shows that even if we have previously examined
and understood a system, novel stimuli may engender unexpected synergistic responses.
Furthermore, unless we are able to identify and account for possible synergy (through
conditioning of some form), we will be unable to track the paths along which information
flows.

We also showed that synergy and its associated partial information measures of uniqueness
and redundancy can be estimated in fairly complex settings using novel definitions and
algorithms. The same applies to information flow: although our original definitions were
based on conditional mutual information, one can often arrive at the same inferences using
simpler measures such as partial and conditional correlation. Our work is one of the first
(cf. 126) that computes more complex PID measures in neuroscientific examples, while also
connecting the PID—specifically synergy—to information flow and encoding.

Our paper therefore makes a case for consciously examining the possibility of synergistic
encoding in neural circuits and systems: because synergy may arise in ways we do not expect,
because it affects our determinations of information flow, and because we now have the tools
to measure it.
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3.A Simulation parameters

Parameter Detail Value

Constant input current to all neurons (I0) -0.03
Synaptic decay time for all connections (τ) 2

Synaptic weight Large (wL) 0.80
Small (wS) 0.40

Strength of noise xor network (σ) 0.03
or network (σ) 0.04

Table 3.2: Parameter values for the single neuron encoding networks

Parameter Detail Value

Number of neurons Excitatory 30
Inhibitory 30

Probability of connection among all neurons 0.10
Constant input current to excitatory neurons (Ie0 ) 0

to inhibitory neurons (Ii0) 0
Synaptic weight from excitatory to excitatory neurons (wee) 0.30

from excitatory to inhibitory neurons (wie) 0.15
from inhibitory to excitatory neurons (wei ) 0.50
from inhibitory to inhibitory neurons (wii) 0.20

Synaptic decay time for excitatory connections (τe) 2
for inhibitory connections (τi) 8

Strength of noise for XM , xor network (σM ) 0.03
for XM , or network (σM ) 0.04
for XZ (σZ) 0.25

Table 3.3: Parameter values for the networks that generate XM and XZ in spike train encoding

Parameter Detail Value

Number of neurons Excitatory 200
Inhibitory 200

Probability of connection among all neurons 0.10
Constant input current to excitatory neurons, M = 0 (Ie0 ) 0

to inhibitory neurons, M = 0 (Ii0) 0
to excitatory neurons, M = 1 (Ie0 ) 0.01
to inhibitory neurons, M = 1 (Ii0) 0.005
Start time 30 ms

Synaptic weight from excitatory to excitatory neurons (wee) 0.30
from excitatory to inhibitory neurons (wie) 0.15
from inhibitory to excitatory neurons (wei ) 0.50
from inhibitory to inhibitory neurons (wii) 0.20

Synaptic decay time for excitatory connections (τe) 2
for inhibitory connections (τi) 8

Strength of noise (σ) 0.10

Table 3.4: Parameter values for the encoding population (PM )
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Parameter Detail Value

Number of neurons Excitatory 100
Inhibitory 100

Probability of connection among all neurons 0.20
Constant input current to excitatory neurons (Ie0 ) Z ∼ Uniform(0, 1)

to inhibitory neurons (Ii0) 1
2I
e
0

Start time 70 ms
Synaptic weight from excitatory to excitatory neurons (wee) 0.30

from excitatory to inhibitory neurons (wie) 0.15
from inhibitory to excitatory neurons (wei ) 0.50
from inhibitory to inhibitory neurons (wii) 0.20

Synaptic decay time for excitatory connections (τe) 2
for inhibitory connections (τi) 8

Strength of noise (σ) 0.10

Table 3.5: Parameter values for the noise population (PZ)

Parameter Detail Value

Number of neurons Excitatory 100
Inhibitory 300

Probability of connection from excitatory to excitatory neurons 0.50
from excitatory to inhibitory neurons 0.75
from inhibitory to excitatory neurons 0.01
from inhibitory to inhibitory neurons 0.01

Constant input current to excitatory neurons (Ie0 ) -0.050
to inhibitory neurons (Ii0) -0.025
start time 0 ms

Synaptic weight from excitatory to excitatory neurons (wee) 0.30
from excitatory to inhibitory neurons (wie) 0.15
from inhibitory to excitatory neurons (wei ) 0.50
from inhibitory to inhibitory neurons (wii) 0.20

Synaptic decay time for excitatory connections (τe) 2
for inhibitory connections (τi) 8

Strength of noise (σ) 0.10

Table 3.6: Parameter values for the inhibition population (PI)

Parameter Detail Value

Connection probability PM to PI (excitatory to excitatory neurons) 0.10
PI to PZ (inhibitory to excitatory neurons) 0.75
PZ to PM (excitatory to excitatory neurons) 0.10

Delay between PM and PI 10 ms
between PI and PZ 15 ms
between PZ and PM 0 ms

Table 3.7: Inter-population parameter values
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4 M -Information Flow and Interventions in
Artificial Neural Networks

You must unlearn what you have learned.
— Master Yoda

4.1 Introduction
This chapter serves to show how the M -information flow framework can be applied in the
context of artificial neural networks (ANNs). It also demonstrates how we can use the
knowledge about where M -information flows to intervene and reduce the dependence of
the ANN’s output on the message M . Thus, the empirical results in this chapter validate
the usefulness of the M -information framework in practice, while also contributing to an
operational interpretation of M -information flow in terms of interventions.

4.1.1 Motivation

This work is motivated by a need to develop better tools for understanding the brain, as well
as artificial neural networks. In the neuroscience literature, several works have discussed
what it means to understand the brain, which can also be extended to ANNs. For example,
Marr’s levels of analysis [6, 7] break down understanding into three1 levels—computational,
algorithmic and implementation—which, loosely speaking, are analogous to the problem
statement, the algorithm and the hardware implementation of a particular task. But
in ANNs, it is clear that we understand the problem statement as well as the hardware
implementation; we need a more precise statement about what it means to understand the
algorithm. Gao and Ganguli [3] state that “understanding will be found when we have
the ability to develop simple coarse-grained models, or better yet a hierarchy of models, at
varying levels of biophysical detail, all capable of predicting salient aspects of behavior at
varying levels of resolution”.

Two other influential works in this domain are those of Lazebnik [33] and Jonas and
Kording [67]. While Lazebnik [33] focuses on developing a formal language to avoid ambiguity,

1Marr’s original paper [6] actually had four levels of analysis, but this has since been condensed into
three levels in the literature (e.g., see Churchland and Sejnowski [7]).
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a takeaway for “understanding” might come from the title: we understand something if we
can fix it when it is broken. Similarly, Jonas and Kording [67] argue for rigorous theory, as
well as testing our methodologies on model systems with ground truth.

Distilling some of the common arguments from these papers, we propose that one way
to provide an understanding of how an ANN works might comprise: (i) understanding how
information from different features is synthesized within an ANN to produce its output; and
(ii) being able to predict how changes to the network are likely to change its output.

Information theoretic methods have proven to be relatively successful in enhancing our
intuition about how ANNs work: the information bottleneck method [57, 58], recent work
on information dissipation in ANNs [138] and ideas like the InfoGAN [139] are prominent
examples. Inspired by these successes, we propose a new way of using information theory to
understand the internal processing of neural networks. Recently, we developed a new frame-
work for measuring the information flow about a specific message within a computational
system [49]. This framework has certain distinct advantages which could help address the
two points for understanding ANNs mentioned above: (i) the computational system, which
was designed to model the brain, can be easily extended to ANNs; and (ii) the proposed
measure of information flow, called M -information flow, is specific to a message, and can
therefore capture the flows of different features or attributes that we care about.

In this work, we extend and reinterpret the M -information flow framework for ANNs, to
understand their working in the context of fair machine learning [140, 141]. We first ask
whether M -information flow actually tells us something useful, i.e., can it be used to edit
and change the flows in a system, towards a desired goal? To evaluate this, we measure the
extent to which editing the edges that carry information flow about a protected attribute
reduces bias at the output. Next, we examine whether examining the flows of two messages
in concert can help us keep desirable attributes of the output while removing undesirable
ones? We answer this by exploring the information flows about accuracy and bias, and
examine the fairness-accuracy tradeoff for different intervention strategies, showing how
these strategies work to varying extents on synthetic and real datasets.

Many previous works discuss new definitions of fairness and approaches to introducing
fairness at various stages of the pipeline, as we discuss shortly. However, we emphasize
here that our focus is on providing a proof-of-concept: we want to understand whether an
observational tool, i.e. M -information flow, can predict the effects of interventions.2 The
fairness context is merely a specific application domain in which we test this hypothesis,
and we don’t propose to use information flow to solve the fairness problem itself. It is
possible that the intervention strategies we propose can be refined to achieve the same level
of performance as state-of-the-art debiasing algorithms. Indeed, it may even be advantageous
to have a method that systematically tracks information flows and edits the ANN. However,
this will likely require much deeper study, including a thorough comparison with existing
methods, and is therefore left to future work. In this paper, we focus on exploring a new
technique, determining how it enhances our understanding of ANNs, and how it can inform
interventions for changing the behavior of an ANN in desired ways.

2Naturally, this will not always be possible, but our objective is to explore this empirically, in some
common-sense simulated settings as well as on real datasets.
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4.1.2 Related work

A large number of works have dealt with problems in the fields of explainability, transparency
and fairness in machine learning broadly, as well as for artificial neural networks specifically.
Molnar [5] provides a good summary of the different approaches taken by many of these
methods for explainability. Most of these approaches seek to understand the contribution
of individual features [142–144], or individual data points [145, 146] to the output. For
ANNs specifically, these can also take the form of visualizations to describe what features or
what abstract concepts an ANN has learned [147, 148]. There have also been a number of
information theoretic approaches for measuring bias and promoting fairness in AI systems [46,
149–151].

Our approach in this paper is quite different from these prior works: we want to
understand what it is about the network structure itself that leads to a certain output.
We want to understand which edges carry information relevant to classification, as well as
information resulting in bias, to the output. We also want to know which edges need to be
changed in order to produce a desired output, e.g., fairness towards a protected group with
minimal loss of accuracy.

4.1.3 Goals of this paper

We take a moment to state our goals more concretely:
1. Our primary goal, as stated in the title, is to study whether measuring information

flows about a message can inform where we might intervene in an ANN to change how
its output is affected by that message.

2. Secondly, we want to understand whether the magnitude of information flow lets us
predict the degree to which the intervention will affect the output.

3. Lastly, we wish to examine different intervention strategies that are informed by
information flows in the network, and evaluate which strategies produce the most
desirable results.

Essentially, we are proposing that M -information flow framework can constitute a manner
of explainability for artificial neural networks. This paper tries to validate this claim by
showing that information flows give us the understanding required to intervene in an ANN.

The rest of the paper is organized as follows: in Section 4.2, we revisit the fundamentals
of the M -information flow framework and show how it can be adapted for artificial neural
networks. We also discuss the setup of the fairness context, which is the application domain
used to evaluate the goals mentioned above. In Section 4.3, we describe how we go about
empirically evaluating our goals: specifically, we discuss how we estimate M -information
flow, and describe the factors involved in designing different intervention strategies. Finally,
we present our results on synthetic and real datasets in Section 4.4, and conclude with a
discussion of the implications of our results in Section 4.5.

4.2 Background and Problem Statement

As mentioned in the introduction, we consider the goals presented above in the context of
fairness in machine learning [140, 141]. The advantage of this context is that we can show
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the strengths of the information flow framework, specifically, its ability to track the flows of
multiple messages: here, information flows about the protected attribute as well as about
the true label.

In this section, we provide a brief introduction to our M -information flow framework [49],
showing how it can be easily adapted and reinterpreted for ANNs. We also explain the
setup of the fairness problem, and describe how our information flow measure is related to
commonly used measures of bias against a protected attribute.

4.2.1 Adapting and Reinterpreting M-Information Flow for ANNs

First, we provide a brief introduction to the computational system model and the M -
information flow definition introduced in our earlier work [49]. Then, we proceed to adapt
the definition to the ANN context—in particular, making adjustments given the deterministic
nature of the ANN, and providing a quantification of flow.

The M -information flow framework provides a concrete way to define information flow
about a message M in a very general computational system. The computational system,
which is modeled after the brain, is a graph consisting of nodes that compute functions
and edges that transmit the results of these computations between nodes. The proposed
definition of M -information flow satisfies an important property: it guarantees that we can
track how information about M flows from the input of the system to its output.

In the original framework designed for the neuroscientific context, we think of the graph
as being “feedforward in time”: i.e., the computational graph is time-unrolled in such a way
that edges send transmissions from nodes at time t to nodes at time t+ 1. Such a model is
completely compatible with a feedforward neural network, where the neurons of the ANN
act as the nodes, and outputs of neurons in layer t of the ANN act as the edges at time t in
the computational system.

A key feature of the computational system model is how it accounts for the inherent
stochasticity of the brain as well as its inputs: nodes can generate noise intrinsically, and
the transmissions on the edges are considered to be random variables. In a trained artificial
neural network, however, the computations at nodes is deterministic, specified completely by
the weights on the edges and the neuron’s activation function. We can still continue to think
of the edges’ transmissions as being random variables, however, since the input data for the
neural network comes from a distribution (which could also be an empirical distribution,
i.e., a dataset). We are now in a position to state what the M -information flow definition
from our previous work [49] looks like the context of ANNs, before proceeding to adapt it
for our purposes.

Definition 4.1 (Original M -information flow). Let an arbitrary edge of the neural network
at layer t be denoted Et and let the “transmission” on this edge be denoted X(Et). Similarly,
let a subset of edges at layer t be denoted E′t and the set of transmissions on this subset be
denoted X(E′t). Then we say that information about M flows on the edge Et, i.e., edge Et
has M -information flow, if

∃ E′t s.t. I
(
M ;X(Et)

∣∣X(E′t)
)
> 0. (4.1)
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Essentially, a given edge Et can contribute information about the message M irrespective
of other edges’ transmissions (i.e., information seen in the mutual information I(M ;X(Et))),
or in concert with some other subset of edges E′t in the same layer t (what is known as
synergistic information). The rationale behind the definition given above is that it counts all
of these types of contributions towards the presence of information flow. Our earlier works
show that such a definition is imperative, if we must have the ability to consistently track
the information flow about M in all computational systems.

To adapt this definition of information flow to ANNs, we start by recognizing that the
computational system from our previous work allowed each outgoing edge of a given node to
carry a different transmission. In an ANN, however, the outgoing edges of a given neuron
all carry the same activation, but with different weights; consequently, the random variables
representing the transmissions are all scaled versions of each other, and have precisely the
same information content. Therefore, it makes more sense to define information flows for the
activations of every node, rather than for the transmissions of every edge. We could then
use edge weights to construct a definition of information flow for edges, so as to identify
the most important outgoing edges of each node and intervene in a more selective manner.
Secondly, Definition 4.1 only specifies whether or not a given node has M -information flow.
However, we require a quantification of M -information flow that will let us compare different
nodes or edges, and decide which ones to intervene upon.

Keeping these aspects in mind, we propose M -information flow for the nodes of an ANN,
followed by a quantification of M -information flow, and finally a weighted version that
assigns different flows to each outgoing edge of a given node:

Definition 4.2 (M -information flow for ANNs). Let an arbitrary node of the neural network
at layer t be denoted Vt, and let the activations of this node by represented by the random
variable X(Vt). Similarly, let an arbitrary subset of nodes at layer t be denoted V′t and
the set of activations of this subset be denoted X(V′t ). Then, we say that the node Vt has
M -information flow if

∃ V′t s.t. I
(
M ;X(Vt)

∣∣X(V′t )
)
> 0. (4.2)

We quantify M -information flow by taking a maximum over all subsets of nodes V′t in layer
t:

FM (Vt) := max
V′t

I
(
M ;X(Vt)

∣∣X(V′t )
)
. (4.3)

Finally, if Et is an outgoing edge of the node Vt that has weight w(Et), then we define the
weighted M -information flow on that edge as

FM (Et) := w(Et) FM (Vt). (4.4)

Our definition of weighted M -information flow for the edges of the ANN is admittedly
heuristic, however it has a simple rationale: an edge with a larger weight have a greater
impact on the node at its receiving end.
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Z U

Y X1 · · · Xn

Ŷ

Figure 4.1: A graphical model representing the causal relationships assumed between the variables used
in the fairness setup. The ANN’s output Ŷ depends on the features {Xi} and the true labels Y , which in
turn are influenced by the protected attribute Z and some latent variables U . The dashed line from Z to Y
indicates that the true labels may or may not be biased.

4.2.2 Fairness Problem Setup

The central problem in the field of fair machine learning is to understand how we can train
models for classification or regression without learning biases present in training data. Recent
examples in the literature have shown why algorithms biased against a protected group can
be of great concern [141, 152], with the rise of automated algorithms in hiring [141], criminal
recidivism prediction [153], predictive policing [154], etc.

We consider the problem of training artificial neural networks for classification using
datasets that have bias in their features and/or labels. The dependencies between the
protected attribute (e.g., race, gender, nationality, etc.), the true labels and the features may
be described using a graphical model as shown in Figure 4.1. We assume that the protected
attribute Z influences the features {Xi}, and possibly the label Y , along with some other
latent factors encoded in U . We then train an ANN using the labels and features to acquire
the predicted label Ŷ .

Our goal is to measure two different types of flows: (i) information flow about the
protected attribute, i.e., Z-information flows, which we also refer to as bias flow; and
(ii) information flow about the true label, i.e., Y -information flows, which we also refer to as
accuracy flow, as these are responsible for accuracy at the output. The measure of bias we
consider at the output is an information theoretic version of statistical (or demographic)
parity [155], which has also been used in many previous works [156]. This is because Z-
information flow at the output is simply I(Z; Ŷ ), since there are no other edges to condition
upon.

4.3 Empirical Evaluation

In this section, we discuss how we estimate the information flow measure described earlier,
and propose a few different intervention strategies for “editing” a trained neural network.
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4.3.1 Estimating Information Flow

It is well known that conditional mutual information is a notoriously difficult quantity to
estimate [99]. However, in our empirical study, we only consider datasets where the true
labels Y and the protected attributes Z are binary, which makes estimation considerably
easier. We use the following classification-based method to estimate the conditional mutual
information which appears in our definition for M -information flow.

First, we attempt to construct the best possible classifier that predicts either Y or Z
from the intermediate activations of each layer, say X. The generalization accuracy of this
classifier indirectly tells us the extent to which information about Z (say) is present in
X. More precisely, if the generalization accuracy of classifying Z from X is a, that means
the probability of error in correctly guessing Z from X is Pe := 1− a. Then, from Fano’s
inequality [128, Ch. 2], we have:

H(Z |X) ≤ Hb(Pe) + Pe log(|Z| − 1), (4.5)

where Hb is the binary entropy function. Furthermore, since Z is binary, Z = {0, 1}, hence
|Z| = 2. This simplifies the above equation to:

H(Z |X) ≤ Hb(Pe) (4.6)
= Hb(1− a) (4.7)

⇒ I(Z;X) = H(Z)−H(Z |X) (4.8)
≥ 1−H(Z |X) (4.9)
≥ 1−Hb(1− a) (4.10)

Therefore, given any classifier which can predict Z from X with generalization accuracy a,
we can compute a lower bound on the mutual information between Z and X, with a better
classifier providing a tighter lower bound.

This allows us to compute all conditional mutual information quantities required by
Definition 4.2 using the chain rule [128, Ch. 2]:

I(Z;X |X ′) = I(Z;X,X ′)− I(Z;X ′). (4.11)

Sometimes, we may find that the estimate for I(Z;X,X ′) is smaller than that for I(Z;X ′);
this is because our estimates are lower bounds. Although adding variables can never decrease
mutual information, in practice, adding features may reduce the accuracy of a classifier,
especially if the extra feature does not contribute much useful information. In such cases,
we simply truncate the conditional mutual information to zero, to prevent it from becoming
negative.

4.3.2 Intervention strategies

As we stated in the title of the paper, the main goal of this work is to understand whether we
can make interventions based on information flows. The purpose of these interventions is to
change the neural network so as to have some desirable characteristics, such as a reduction
in bias at the output, without sacrificing accuracy. We consider interventions that involve
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“soft pruning”, i.e., gradually reducing the weights of a neural network until the edges are
completely pruned. Several factors play a role in informing how we prune edges, some of
which we examine below.

Nodes or edges. Since information flow in these ANNs is primarily driven by
activations at nodes, it might be the case that interventions are more effective if entire nodes
are pruned or removed at a time. Alternatively, one could also make the case that pruning
individual edges can have a more fine-grained impact on the information flows, and that
while certain combinations of edges could result in increased bias, other combinations may
result in improved accuracy without affecting bias at the output. Therefore, in our analyses
we consider fairness-accuracy tradeoffs for both cases: pruning individual edges, as well as
pruning nodes, i.e., pruning all the outgoing edges of a given node.

Pruning metric. Next, we consider what scoring metric to use when deciding which
edges to prune. There are several options here: for instance, we could directly use the
edges with the largest bias flows; alternatively, we could consider the edges with the largest
bias-to-accuracy flow ratios. When pruning edges, we are also taking into account the
weights of the respective edges when we look at the weighted flows for pruning. In this case,
we cannot look at the ratio of the weighted flows, since the weights would simply cancel
out; instead we must look at the weighted ratio of the bias and accuracy flows. We also
considered the weighted ratio of accuracy to bias flows, to provide a point of comparison to
show that the tradeoff curves are not a result of chance.

Where to stop. Lastly, we must consider how many node or edges to prune. This
is necessarily a function of the number of features that are biased, so we cannot have an
objective number in mind in advance. Therefore we consider fairness-accuracy tradeoff
curves in our results that compare different numbers of nodes and edges. Another related
question pertains to whether these edges with the largest bias-to-accuracy flows (say) ought
to be pruned simultaneously, or whether they should be pruned sequentially, when examining
where we should stop. We consider some of these various options in the results section.

On comparing edges. When pruning based on weighted information flow on edges,
it is important to ensure that the weighted flows are actually comparable. For example, if
the input features have wildly different dynamic ranges, then the weights corresponding to
those features will naturally have a large variability that performs the role of scaling the
feature, and will not reflect feature importance. Therefore, it is important to standardize the
input features before passing them to the neural network, to have the weights correspond to
feature importance rather than scaling.

4.4 Results

4.4.1 Synthetic Dataset

First, we examine information flows for a small neural network trained on a synthetic dataset
(also called the tinyscm dataset). The synthetic dataset is designed in a manner similar to
Figure 4.1. Details of the distributions and functions used are provided in Appendix 4.A.
The dataset had three continuous-valued features X1, X2 and X3, and a binary label Y as
well as a binary protected attribute Z. Two of the three features, X1 and X2, were chosen
to have a large bias, while X3 and the labels Y were unbiased. Lastly, all three features
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Figure 4.2: Figures showing the dependency between absolute weighted M -information flow and the change
in output dependence on M for the synthetic tinyscm dataset. (Left) M = Y , so the information flows
represent accuracy. (Right) M = Z, so the information flows represent bias. In both figures, we see that as
the information flow increases, there is a larger decrease in the accuracy or bias at the output.
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Figure 4.3: A figure showing the tradeoff between fairness and accuracy when gradually pruning nodes or
edges of an ANN trained on the tinyscm dataset. The legend indicates the various configurations under
which pruning was performed: pruning on the basis of weighted ratio of bias-to-accuracy flow (biasacc) or
accuracy-to-bias flow (accbias); pruning nodes or edges; and the number of nodes or edges pruned. The
general trend appears to be that pruning more lengthens the tradeoff curve without significantly shifting it
in either direction. Pruning on the basis of bias to accuracy ratio causes bias to fall faster than accuracy,
while pruning on the basis of accuracy to bias ratio causes bias to increase while accuracy falls.

independently provided information about Y , i.e., they were noisily correlated with Y , with
independent noise terms.

To keep the task of estimating information flows as simple as possible, the neural network
was chosen to have just one hidden layer with three neurons with ReLU activations. The
output layer was a one-hot encoding of the binary Ŷ and cross-entropy loss was used for
training. The data used for training the neural network was completely separate from the
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Figure 4.4: Figures showing the dependency between absolute weighted M -information flow and the change
in output dependence on M for the Adult dataset. (Left) M = Y , so the information flows represent accuracy.
(Right) M = Z, so the information flows represent bias. In both figures, we see that as the information flow
increases, there is a larger decrease in the accuracy or bias at the output.

data used for estimating information flows on the trained network (we used a 50% split of
the initial data for each component of the analysis). We used a kernel SVM to fit classifiers
for the estimation of information measures (as described in Section 4.3.1). The information
estimates used nested cross validation to fit the SVM hyperparameters as well as to estimate
generalization accuracy. Finally, all analyses were repeated across ten neural networks
trained on the same data but with different random weight initializations. Further details
are in Appendix 4.B.

We first analyzed whether the extent of change in the bias or accuracy at the output
upon pruning an edge was related to the magnitude of the respective information flow on
that edge. To do this, we completely pruned each edge of the trained network, keeping
all other edges intact, and examined the change in accuracy and bias at the output. The
results of this analysis are shown in Figure 4.2. The figures clearly show that pruning edges
with the largest magnitudes of weighted accuracy or bias flows tends to produce the largest
change in accuracy or bias respectively at the output.

Next, we analyzed how fairness and accuracy evolve as the edges are pruned gradually,
for different pruning strategies, as outlined in Section 4.3.2. The results of this analysis are
presented in Figure 4.3. Once again, the results clearly show that when pruning on the
basis of weighted ratio of bias to accuracy flow, the tradeoff curves are concave, indicating
that bias falls faster than accuracy initially. Interestingly, pruning on the basis of weighted
ratio of accuracy to bias flow shows that accuracy falls while bias increases. We believe this
happens as a result of the reduced dependence of the output on accuracy.

4.4.2 Adult dataset

We also performed the same analyses on the Adult dataset (also known as the “Census
Income” dataset) from the UCI machine learning repository [157]. The Adult dataset, which
comes from the 1994 US census, consists of a mix of numerical and categorical features for
classifying people with annual incomes less than and greater than $50k. For simplicity, we
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Figure 4.5: A figure showing the tradeoff between fairness and accuracy when gradually pruning nodes or
edges of an ANN trained on the tinyscm dataset. The legend indicates the various configurations under
which pruning was performed: pruning on the basis of weighted ratio of bias-to-accuracy flow (biasacc) or
accuracy-to-bias flow (accbias); pruning nodes or edges; and the number of nodes or edges pruned. The
general trend appears to be that pruning more lengthens the tradeoff curve without significantly shifting it
in either direction. Pruning on the basis of bias to accuracy ratio causes bias to fall faster than accuracy,
while pruning on the basis of accuracy to bias ratio causes bias to increase while accuracy falls.

use only three numerical features, viz. education-num, hours-per-week and age, and take
sex to be the protected attribute. This allows us to use a small neural network, identical to
the one used for the synthetic dataset. We also used only a subset of the records in order to
equalize the number of individuals with high- and low-incomes and the number of male and
female individuals. However, we introduced a bias in the true labels by skewing the dataset
towards higher incomes among males and lower incomes among females (at a ratio of 2:1).

The results for the scaling analysis are presented in Figure 4.4, while the results for
the tradeoff analysis are shown in Figure 4.5. Both results reflect the trends seen in the
synthetic dataset. Interestingly, the scaling analysis from Figures 4.2 and 4.4 indicates that
the ANN trained on the Adult dataset shows a stronger dependence between information
flow and interventional effect than the one trained on the synthetic dataset. This may be a
result of the fact that the synthetic data had two features that were highly biased, whereas
the Adult dataset likely has much less bias in its features.

There was not a significant difference in the tradeoff curves produced by using different
configurations described in Section 4.3.2, except that pruning more edges or nodes generally
produced larger drops in bias and accuracy. An interesting point to note about the results
on the Adult dataset is that when pruning with respect to the weighted ratio of accuracy
to bias flow, the accuracy appears to increase slightly in some instances, along with a rise
in bias, before it falls rapidly. It is unclear from the experiment why this happens, but it
might suggest that the neural network was overfit to the training data, so slight changes to
the weights for the test dataset actually improved its accuracy. However, it is interesting
that the same interventions appear to have this effect, across ten runs of the experiment.
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Figure 4.6: A depiction of how the synthetic data was generated. (a) The graph corresponding to the
structural equation model used to generate the synthetic dataset. (b) The relationship between the latent
variables Uy and Ug, and the true labels Y , shown here for a uniform distribution over Uy and Ug for clarity.
In the actual dataset, Uy and Ug were drawn from gaussian distributions.

4.5 Discussion
Our results show quite clearly that our measure of information flow can indeed inform where
to intervene in a trained artificial neural network, to change its behavior at the output.
Furthermore, the fairness-accuracy tradeoff curves indicate that we can use different messages
to understand flows about different variables within the system, and edit the system to
preserve desirable flows while removing undesirable flows. This has strong implications for
neuroscience, where such an information flow measure may prove useful to understanding
how information is communicated between different parts of the brain. The result also shows
that we can make use of such knowledge to then intervene and change flows in ways we
desire, e.g., to treat various kinds of brain diseases and disorders.

4.A Details on the Synthetic Data Model
The synthetic dataset consisted of 10,000 data points, with 5000 used to train the neural
network and 5000 used to estimate information flows. The data was generated according
to a structural equation model, whose graph is shown in Figure 4.6a. We start with two
latent variables, Uy and Ug ∼ i.i.d. N (0, 1), and the protected attribute M ∼ Ber(0.5),
with M ⊥⊥ {Uy, Ug}. We then set Y based on a nonlinearity as shown in Figure 4.6b. The
boundary of the nonlinearity is set to be

Uy = 1
1 + Ug

− 1. (4.12)

If d(Uy, Ug) is the signed distance from any point (Uy, Ug) to this boundary, then

Y |Uy, Ug ∼ Ber
( 1

1 + e−3d(Ux,Uy)

)
. (4.13)

X1, X2 and X3 are designed to indirectly convey information about Y , by encoding Uy and
Ug in a manner biased by M . X1 and X2 are chosen to be biased, with

X1 |Uy,M ∼ N (0.7MUy, 0.04), (4.14)
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X2 |Uy,M ∼ N (0.5MUy, 0.04), (4.15)
X3 |Ug,M ∼ N (0.1Ug, 0.04). (4.16)

Note that X1 and X2 communicate information about Uy only when M = 1. Therefore,
these two features are informative for classifying Y only when M = 1, and are completely
non-informative when M = 0, inducing bias at the output. X3, on the other hand, is an
unbiased feature, which is equally informative for both M = 0 and M = 1.

4.B Details on Data Analysis
For both the synthetic and adult datasets, Ŷ was estimated using a neural network with
one hidden layer and three hidden neurons. The input layer consisted of the three features,
which were standardized for ease of training and to have comparable weights. The output
layer was a one-hot encoding of Ŷ , comprised of two neurons. The activation functions of
all neurons were Leaky ReLU. Training was performed for 50 epochs with a minibatch size
of 10 and a momentum of 0.9 for both datasets, and learning rates of 3× 10−2 and 3× 10−3

for the synthetic and Adult datasets respectively.
Information flow was estimated as described in Section 4.3.1. The classifier used was a

Kernel SVM, with a Nystroem kernel approximation with 100 components, and a Stochastic
Gradient Descent optimizer. We used nested cross-validation to optimize hyperparameters,
while producing final information estimates on unseen generalization data points.
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5 M -Information Flow and Counterfactuals

If one is to understand the great mystery, one must
study all its aspects, not just the dogmatic narrow
view of the Jedi.

— Chancellor Palpatine

This chapter discusses alternative definitions for information flow, starting with the additional
requirement of avoiding M -information orphans (see Section 2.4.2). In so doing, it also
explores the relationship between M -information flow and counterfactual causal influence,
showing that the latter can also constitute an excellent way to understand information flow.
However, by its very nature, counterfactual causal influence is not generally applicable in
practice, except in unique circumstances where we have interventional access to all latent
sources of randomness. Unfortunately, as we show, observational measures will never be able
to attain the same flows as counterfactual causal influence, due to the presence of synergistic
examples such as Counterexample 2.1. This chapter therefore highlights some limitations of
observational measures, which we should be aware of when making interpretations about
information flows.

5.1 Introduction
There is a need to understand how information flows in various kinds of computational
systems: particularly in fields such as neuroscience, where we wish to understand the inner
workings of the brain [8, 10–12], and in AI, where we wish to analyze, prune, or assess
the trustworthiness of artificial neural networks [46, 55, 145, 158, 159]. Towards this, we
recently proposed a computational model for such neural circuits, and defined a notion of
information flow called M -information flow, pertaining to a specific message M in such
a system [49, 160]. The primary goal of our previous work was to demonstrate that the
intuitive mutual-information–based definition of flow does not satisfy very simple properties:
information can “disappear” from the system and reappear at a later time instant, so we
cannot always “track” how a message flows through the system. This necessitates a more
involved definition, which uses conditioning in a particular way, to track the “information
paths” along which the message flows.

However, M -information flow also has a certain counterintuitive feature: it allows for
the existence of “orphans”—nodes from which M -information flows out, though none flows
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in. This was partly because we chose to restrict ourselves to observational measures that
are functions of transmissions at a single time instant. We did not examine counterfactual
measures (which come from the field of causality [34, 35, 161] and cannot, in general, be
estimated from passively observed data) and we only superficially examined how a definition
based on multiple time instants can be employed.

The core contribution of the current work is an exploration of three alternative definitions
of information flow. (i) A version of M -information flow with pruning, which is a function of
transmissions at multiple time instants, and is a more detailed analysis of the same definition
proposed in our previous work [49] (Section 5.3); (ii) A counterfactual definition that closely
matches our intuition in many cases, but cannot be estimated using passively observed
data (Section 5.4); (iii) A modified M -information flow definition based on conditional
mutual information, where we allow for functions to be applied to transmissions prior to
conditioning—as stated, this is not computable in general, but might be more appealing
in some settings (Section 5.6). We also prove an impossibility result: no observational
measure of information flow that guarantees information paths can match counterfactual
causal influence exactly; it will, in some instances, award information flow to edges that
counterfactual causal influence will not (Section 5.5).

We note that all three proposed definitions allow us to track information paths while also
not having orphans (possibly after pruning). However, each definition we examine has its
own shortcomings, giving rise to non-intuitive paths in at least some cases. Recognizing and
understanding these shortcomings can help us determine which definition is better suited
for a particular purpose. Despite no definition being ideal, this systematic framework lends
itself much better to drawing clear interpretations than classical tools used in neuroscience,
such as Granger Causality. We revisit this point in Section 5.7.

5.2 Background

We begin with a short recap of our computational system model and the definition of
information flow about a message M discussed in [49]. We also restate two important
properties of our M -information flow definition: firstly, that it guarantees the existence of
“information paths” along which information about the message flows in the system; and
secondly, that it suffers from “orphans”. The definitions as well as the counterexample in
this section are largely replicated from our previous work [49] with only minor modifications,
in order to keep this paper self-contained.

5.2.1 The Computational System Model

Definition 5.1 (Time-unrolled graph). Let G∗ = (V∗, E∗) be a fully-connected directed
graph with N nodes, i.e., V∗ = {1, 2, . . . , N} and E∗ = V∗×V∗. Also, let T= {0, 1, . . . , T}
be a set of time indices, where T is a positive integer representing the maximum time index.
Then, a time-unrolled graph G= (V, E) is constructed by indexing a fully-connected directed
graph G∗ using the time indices T as follows: (i) The nodes V consist of all nodes V∗

in G∗, subscripted by time indices T, i.e., V = {At : A ∈ V∗, t ∈ T}; (ii) The edges E
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connect nodes of successive times in V, so they can be written in terms of the edges in E∗

as E= {(At, Bt+1) : (A,B) ∈ E∗, t ∈ T}. �

Remarks: (i) We denote the set of all nodes at time t by Vt, and the set of all
(outgoing) edges at time t by Et. So, for example, we will have A1 ∈ V1 and (A1, B2) ∈ E1.
(ii) The original fully-connected graph G∗ has self-edges, so the time-unrolled graph will
always have an edge (At, At+1) in Et for every node At ∈ Vt.

Definition 5.2 (Computational System). A computational system C = (G, X,W, f) is
a time-unrolled graph G that has transmissions on its edges which are constrained by
computations at its nodes. The input nodes of the computational system compute a function
of a message, M . We now elaborate upon these italicized terms:

5.2a) Transmissions on Edges

In a time-unrolled graph G, let X : E→ X be a function that describes what random
variable is being transmitted on a given edge, i.e., X(E) is the random variable corresponding
to the transmission on the edge E. Here, the range X is the set of all random variables in
some probability space.

For convenience, we define X applied to a set of edges as the set of random variables
produced by applying X to each of those edges individually, i.e., for any subset E′ ⊆ E,

X(E′) = {X(E) : E ∈ E′}. (5.1)

We extend the use of this notation to other functions of nodes and edges that we define, going
forward.

5.2b) Computation at a Node

Let At ∈ Vt be a node in the time-unrolled graph G, at some time t ≥ 1 (recall that
t ∈ {0, 1, . . . , T}). Let P(At) be the set of edges entering At, and Q(At) be the set of edges
leaving At. Further, let us suppose that At is able to intrinsically generate the random variable
W (At) at time t, where W (At) ⊥⊥W (V\{At}) ∀ At ∈ V and W (Vt) ⊥⊥ {M}∪{X(Et′) : t′ ∈
T, t′ < t}.1 Then, the computation performed by the node At (for t ≥ 1) is a deterministic
function fAt that satisfies

fAt
(
X(P(At)),W (At)

)
= X(Q(At)). (5.2)

Here, X(Et−1), W (V\{At}), W (Vt), X(P(At)) and X(Q(At)) all make use of the notation
described in (5.1). Note that the function at a node can thereby be time-varying. Also, the
definition above does not apply when t = 0; this is a special case which is discussed below.

1Strictly speaking, we require that M is not an ancestor of any W (Vt) in the structural causal model
underlying the computational system, i.e., interventions on M will not affect W (Vt), even in a counterfactual
setting [35].
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5.2c) The Message and the Input Nodes

The message is a random variable M , which is of interest to the observer, and for which
we shall define information flow. We assume that the message enters the computational
system at (and only at) time t = 0. We formally define the input nodes of the system as
those nodes of G, at time t = 0, whose transmissions statistically depend on the message M :
Vip := {A0 ∈ V0 : I

(
M ;X(Q(A0))

)
> 0}, where Q(A0) represents the set of edges leaving the

node A0.
As with Definition 5.2b, we define the computation performed by an input node A0 ∈

Vip as a function fA0 that satisfies fA0

(
M,W (A0)

)
= X(Q(A0)), and the computation

performed by a non-input node at time t = 0, A0 ∈ V0\Vip, as a function fA0 that satisfies
fA0

(
W (A0)

)
= X(Q(A0)), where W (A0) ⊥⊥W (V\{A0}) ∀ A0 ∈ V0 and W (V0) ⊥⊥M . �

5.2.2 Defining Information Flow

Definition 5.3 (M -information Flow). We say that an edge Et ∈ Et has M-information
flow if

∃ E′t ⊆ Et \ {Et} s.t. I
(
M ;X(Et) |X(E′t)

)
> 0. (5.3)

Analogously, a collection of edges at the same time instant, Rt ⊆ Et, is said to have
M -information flow if

∃ E′t ⊆ Et \Rt s.t. I
(
M ;X(Rt) |X(E′t)

)
> 0. (5.4)

That is, we say an edge Et (at time t) has M-information flow if, conditioned on the
transmissions of some subset E′t also at time t, X(Et) has mutual information with M

(here, E′t includes the empty set). The rationale behind this definition is explained after
Counterexample 5.1. �

Note: Henceforth, “information flow about M” may refer to any measure of information
flow, but “M -information flow” refers specifically to Definition 5.3.

5.2.3 The Information Path Property

Definition 5.4 (Path). In any computational system C, suppose A and B are two disjoint
sets of nodes in V. Then, a path from A to B is any ordered set of nodes {V (0), V (1), . . . , V (L)}
that satisfies (i) V (0) ∈ A; (ii) V (L) ∈ B; and (iii) (V (i−1), V (i)) ∈ E for every 1 ≤ i ≤ L,
where L is a positive integer indicating the path’s length. We refer to the set {(V (i−1), V (i))}Li=1
as the edges of the path. �

Definition 5.5 (M -Information Path). An M -information path from A to B is a path
from A to B, every edge of which carries information flow about M . �

Property 5.1 (Existence of an Information Path). In any computational system C, suppose
that at some time top ∈ T, there is an “output node” Vop ∈ V whose outgoing edges Q(Vop)
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M A0 A1 A2

B0 B1 B2

C0 C1 C2

M

M

Z

Z

Z

M⊕Z

Figure 5.1: The computational system for Counterexample 5.1, which also appeared in our previous work [49]
(to avoid clutter, only edges relevant to the counterexample are depicted; all other edges are still present and
their transmissions are assumed to be zero). Edges in blue have M -information flow (Definition 5.3) and
those in orange are M -CCI’d (as described later in Section 5.4). Observe that the edges with M ⊕ Z as well
as Z at time t = 1 have M -information flow as per Definition 5.3. This results in an orphan at C1, since the
only incoming edge of C1 does not have M -information flow.

satisfy I
(
M ;X(Q(Vop))

)
> 0. Then, there must exist an M -information path from the input

nodes Vip to Vop.

Theorem 5.1. Definition 5.3 satisfies Property 5.1.

The proof of this theorem was one of the main contributions of our earlier work, and can
be found in [49]. We have reiterated the theorem statement alone for completeness.

5.2.4 The No-Orphans Property

As pointed out in our earlier work [49], Definition 5.3 also has a very non-intuitive property:
the existence of orphans.

Definition 5.6 (M -information Orphan). In a computational system C, a node Vt is said
to be an M -information orphan if its outgoing edges Q(Vt) have information flow about M ,
but its incoming edges P(Vt) do not. �

Property 5.2 (Absence of Orphans). M -information orphans must not exist in a computa-
tional system.

M -information flow (Definition 5.3) does not satisfy Property 5.2. This is illustrated by
the following counterexample.

Counterexample 5.1. Consider the computational system depicted in Figure 5.1 (note
that, in order to avoid unnecessary clutter, only edges with non-zero transmissions are shown
in the figure). A0 is the input node, which has the message M ∼ Ber(1/2) at time t = 0.
The system is designed to communicate M to the node B. It chooses the following strategy:
at t = 0, A0 transmits M to A1. C0 independently generates a different random number,
W (C0) = Z ∼ Ber(1/2), Z ⊥⊥ M , and sends this message to A1, as well as C1. A1 then
computes M ⊕Z and passes the result to B2, while C1 sends Z to B2. Here, the symbol “⊕”
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stands for xor, the exclusive-or operator on two bits. B2 is thus able to recover M by once
again xor-ing its inputs, (M ⊕ Z) and Z.

The edges shown in blue carry M -information flow: the edges transmitting M naturally
carry M -information flow; even though M ⊕ Z and Z do not statistically depend on the
message, they conditionally depend on the message given the other (recall Definition 5.3).
That is, I(M ;M ⊕ Z |Z) > 0, and complementarily, I(M ;Z |M ⊕ Z) > 0. Hence, they also
carry M -information flow.

Observe that the node C1 is an M -information orphan, since the edge (C1, B2), trans-
mitting Z, has M -information flow, but none of C1’s incoming edges have M -information
flow. �

Remark: Counterexample 5.1 essentially shows why Definition 5.3 is needed: a simpler
definition that awards information flow to Et if I(M ;X(Et)) > 0 would fail to identify the
information path, because M ⊕Z ⊥⊥M . The edge carrying M ⊕Z thus plays the important
role of maintaining the M -information path from A0 to B2 in this example.

The existence of M -information flow on (C1, B2) (and hence the existence of M -
information orphans) might seem rather counterintuitive in a way that M -information
flow on M ⊕ Z does not. We likely feel this way because Z was never computed from M .
In this sense, Z lacks some kind of “functional dependence” on M , which M ⊕ Z does not.
This point is examined in greater detail from a causality perspective in Section 5.4. In the
following section, we consider a simple pruning-based mechanism and determine whether
this removes orphans and edges that transmit only Z.

5.3 M-Information Flow with Pruning
One way to avoid orphans might be to consider transmissions at more than one time
instant when defining information flow: for instance, we could check for information flow
at a previous time instant before assigning flow to a particular edge. The principled way
to do this is to traverse paths backward from the output node to the input node, while
systematically pruning all “stray” paths that lead to orphans. This process is described
in the form of an Information Path Algorithm in [49, Section 5]. The algorithm relies on
the fact that Definition 5.3 satisfies the information path property, so that a path leading
backwards from the output node to the input nodes is always guaranteed to exist.

However, while this pruning mechanism removes orphans, it does not always remove
edges like Z, which do not “functionally depend” on the message M . We next present a
counterexample where an edge with M ⊕Z is removed, instead of the edge with Z. It should
be noted that this is a highly counterintuitive example, and is very unlikely to occur as
such in practice. Nevertheless it shows that even with pruning, M -information flow is not
completely devoid of shortcomings.

Counterexample 5.2 (Pruning does not remove Z-edges). Consider the computational
system shown in Figure 5.2. Here, the message M is being communicated from A0 to B3 in
the following manner: A0 sends M to both A1 and B1, while B0 generates Z ∼ Ber(1/2),
Z ⊥⊥M , and sends it to A1 and B1. The node A1 then computes M ⊕Z and passes it on to
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M A0 A1 A2 A3

B0 B1 B2 B3 M

M

M

Z

Z

M⊕Z

[M,Z]

M⊕Z

Z

Figure 5.2: The computational system corresponding to Counterexample 5.2, which demonstrates that
pruning does not always remove edges with Z. Edges in blue have M -information flow per Definition 5.3 and
those in orange are M -CCI’d (as described later in Section 5.4). Counterintuitively, in this example, the edge
with M ⊕ Z does not carry M -information flow per Definition 5.3.

B3 through A2, while B1 simply concatenates M and Z into a vector [M,Z] and sends it to
B2. B2 then discards M , and passes on Z to B3.

The result of this setup is that the edges shown in blue have M -information flow. In
particular, the edge (A1, A2) carrying M ⊕ Z, does not carry M -information flow: this is
because M ⊕ Z does not depend on M by itself, and when conditioned on [M,Z], naturally,
M is treated as a constant and thus any mutual information with M goes to zero, i.e.,
I(M ;M ⊕ Z |M,Z) = 0. Thus, the only information path from the input node, A0, to the
output node, B3, is the one that includes the edge (B2, B3), whose transmission is Z. In
other words, if we were to prune edges that did not lead back to the input node A0, we
would end up removing (A2, B3), while (B2, B3), which carries Z, would remain intact. �

The existence of such a counterexample makes the information path theorem proved
in [49] all the more interesting and surprising. However, it also raises several questions:
on the one hand, the existence of orphans seemed counterintuitive, because their outgoing
transmissions seemed to “have nothing to do with the message M”; while on the other,
Counterexample 5.2 shows that even the removal of orphans does not guarantee the removal
of edges with such transmissions. This makes it all the more important to focus on such
edges: how are we able to intuitively distinguish between transmissions that in some crude
sense “functionally depend” on the message M (such as M ⊕ Z), and those that do not (e.g.
Z)? We argue that the answer to this question lies in the realm of causality, in a concept
known as counterfactual causal influence.

5.4 Counterfactual Causal Influence

Counterfactual causal influence [34, 35, 46, 55, 145, 158, 159, 161, 162] intuitively asks the
question: for a particular realization of all random variables in the system, if M alone had
been different, how would the value of some other variable have changed? This turns out
to be the key to formally understanding the intuitive notion of “functional dependence”
discussed above. In this section, we show that a definition of information flow based on
counterfactual causal influence satisfies the information path property while at the same
time having no orphans.

109



5. M-Information Flow and Counterfactuals

Definition 5.7 (M -counterfactual causal influence). The transmission on some edge Et
can be written in terms of M and all past intrinsic random variables, Wt := ∪τ≤tW (Vτ ) as

X(Et) = g(M,Wt), (5.5)

for some function g. Then, X(Et) (or equivalently, Et) is said to be counterfactually causally
influenced by M (M -CCI’d) if for some potential realization wt of Wt,

∃ m,m′ s.t. g(m,wt) 6= g(m′,wt). (5.6)

M -CCI constitutes a definition of information flow in that it can be treated as an indicator
of information flow about M on the edge Et. The definition of M -CCI may also be applied
in the same way to variables other than transmissions on edges. �

Theorem 5.2. M -CCI (Definition 5.7) satisfies Property 5.2, i.e., it does not give rise to
M-information orphans. In other words, if at any node Vt, there exists an outgoing edge
Et ∈ Q(Vt) that is M -CCI’d, then there exists some incoming edge, E′t−1 ∈ P(Vt), which is
also M -CCI’d.

Theorem 5.3. M -CCI (Definition 5.7) satisfies Property 5.1, i.e., it guarantees the existence
of M-information paths. That is, if there is some “output node” Vop ∈ V that satisfies
I
(
M ;X(Q(Vop))

)
> 0, then there exists a path from Vip to Vop such that every edge of this

path is M -CCI’d.

We defer the proofs to Appendix 5.A. A brief combined proof outline for both theorems
is provided below.
Proof outline for Theorems 5.2 and 5.3:
1. LinkM -CCI for a single edge with that for a set of edges: if no edge in a set is individually
M -CCI’d, then the set of all edges is not M -CCI’d. The converse is also true.

2. Show using Definition 5.2b that if the set of all incoming edges is not M -CCI’d, then the
set of all outgoing edges is not M -CCI’d. Thus, no individual outgoing edge is M -CCI’d
(by the converse in the previous point). With this, the contrapositive of Theorem 5.2 is
proved.

3. Prove that if an edge is notM -CCI’d, then its transmission can have no mutual information
with M .

4. Then, work backwards from the output node in Theorem 5.3 by recursively using
Theorem 5.2 to show that an information path to the input nodes exists. This proves
Theorem 5.3. �

As shown by the orange edges in Figs. 5.1 and 5.2, M -CCI captures the intuitively correct
edges in these examples, e.g., M ⊕Z is considered to have information flow based on M -CCI,
while Z is not. This raises the question of how close we can get to M -CCI with purely
observational measures, which we address in the very next section. However, we should
also note here that M -CCI is not without caveats: it is not observational (i.e., cannot be
estimated from passively observed data) and it can produce information paths that could be
considered spurious (as we will show in Example 5.3).
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5.5 The Limitations of Observational Measures
In this section, we prove an impossibility result which shows that no observational measure
that satisfies the information path property can be made to assign information flow only to
edges that are M -CCI’d. First, we formally define what we mean by observational measures.

Definition 5.8 (Observational measures of information flow). A definition of information
flow is said to be observational if it depends only on samples of X(E) and M . In effect,
the measure depends only on the joint distribution p(X(E),M), which we assume can be
estimated from multi-trial data. �

In contrast, interventional and counterfactual measures require knowledge outside of the
joint distribution p(X(E),M): we must also know how the joint distribution changes when
one or more variables are intervened upon, or held fixed to a constant value. We next state
the impossibility result, deferring its proof to Appendix 5.B.

Theorem 5.4. Any observational definition of information flow on the edge Et that satisfies
the information path property (Property 5.1) will, in some instances, assign information
flow to edges that are not M -CCI’d (Definition 5.7).

5.6 One More Definition and an Example
Theorem 5.4 shows that observational measures are limited in that either they will not satisfy
the information path property, or there will be instances where they award information flow
to edges that are not M -CCI’d. However, we can ask if there are observational measures
that satisfy the information path property, while at the same time providing more intuitive
results upon pruning—e.g., measures that do not suffer from the counterintuitive problem
discussed in Counterexample 5.2. In that spirit, we provide one more observational definition
of information flow and show how it overcomes the problem discussed in Counterexample 5.2.
Finally, we provide an example that brings out the differences between the three definitions
presented here, and discuss their pros and cons.

Definition 5.9 (Modified M -information flow). We say that an edge Et has modified M-
information flow if there exists some subset of edges E′t ⊆ Et \ {Et}, E′t = {E(i)

t }ki=1 and
some set of functions {hi}ki=1 such that

I
(
M ;X(Et)

∣∣h1(X(E(1)
t )), . . . , hk(X(E(k)

t ))
)
> 0. (5.7)

In other words, an edge Et has modified M -information flow, if there exist some other edges
at time t, such that when conditioned on some functions of their individual transmissions,
X(Et) has mutual information with M . �

Every edge that hasM -information flow (Definition 5.3) also has modifiedM -information
flow, since Definition 5.9 immediately reduces to Definition 5.3 if we restrict all hi to be
identity functions. However, the opposite is not true. Consider Fig. 5.2 for example: here,
all blue edges, as well as the edge (A1, A2), will have modified M -information flow. This is
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M

A1

B0 B1 B2

C1

M

M ⊕ Z2 M ⊕ Z2

Z1 Z1

[M,Z1] [M,Z1]

Figure 5.3: The computational system from Example 5.3, showing the differences between Definitions 5.3, 5.7
and 5.9. Edges in blue, orange and green respectively have information flow as per Definitions 5.3, 5.7 and
5.9.

because there exists a function of [M,Z] (namely, h([M,Z]) := Z), such that when M ⊕ Z
is conditioned on h([M,Z]), we get non-zero mutual information with M . Thus, we may be
avoiding some of the more non-intuitive corner cases in which M -information flow does not
supply the “intuitively correct” information path.

Modified M -information flow also suffers from many of the same drawbacks as M -
information flow: it still has orphans (e.g., in Fig. 5.1, only blue edges have modified
M -information flow, so C1 will be an orphan). Furthermore, as stated, Definition 5.9 is not
computable, as the range of the hi can be arbitrarily large in dimension.

Example 5.3 (All definitions are imperfect). We use one last example to show that M -CCI
and modified M -information flow are also not perfect, and to bring out their differences.
Consider the computational system shown in Fig. 5.3. We take M,Z1, Z2 ∼ i.i.d. Ber(1/2).
Note that M ⊕ Z2 is M -CCI’d; however, since Z2 no longer persists in the system, all
information about M has been destroyed through the xor with Z2. In other words, M -CCI
identifies an information path which can have no computational value whatsoever.

On the other hand, the edges with Z1 have modifiedM -information flow, because [M,Z1]
admits the function M ⊕ Z1. But since Z1 does not interact with M (save possibly within
the node B2), it could be argued that these edges should not carry information flow about
M either.

Example 5.3 also shows that there can be M -CCI’d edges that do not have (either
original [49] or modified) M -information flow; edges not M -CCI’d but that have modified
(and possibly original) M -information flow; and edges that have all three. �

5.7 Discussion and Conclusion

Choosing the right definition for a particular quantity is often a hard task, and might be
problem- and context-dependent, as evidenced by the multitude of definitions for entropy [83,
163]. The choice of definition is also often dictated by the trade-offs that we are willing
to live with. In the case of information flow, if we are in a setting where we can examine
counterfactual effects (e.g., when simulating an artificial neural network), then M -CCI
provides an intuitive definition, with the caveat that it may also identify some irrelevant edges.
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On the other hand, if we can only make observational measurements, then M -information
flow with pruning goes a long way, save for some corner cases (such as Counterexample 5.2).
We hope that these holes are also plugged when using modifiedM -information flow, especially
in conjunction with a pruning algorithm that can remove orphans. Further work is needed
to understand if there are other instances where modified M -information flow succeeds or
fails in some important way.

Ultimately, it should be noted that this systematic framework for information flow, while
not providing a single answer, still overcomes many of the fundamental challenges faced by
classical techniques used for examining information flow. In the neuroscientific literature,
Granger causality [10, 26, 27, 164] has long been used as a heuristic measure of information
flow, despite several criticisms [72–75, 79–82], including the well-known fact that it is not
truly representative of causation [34]. Indeed, interpreting Granger causal influence as
information flow may also be questionable, as we have shown in past work [49, 82]. Given the
systematic approach we have taken in defining information flow here, a natural question that
arises is what connection our definition has to true causation. Our results imply that an edge
has information flow about M per any of our three definitions, if some intervention on M
can change the marginal distribution of a transmission. Similarly, edges whose transmissions
statistically depend (unconditionally) on the message have information flow according to all
three definitions, meaning that they are also M -CCI’d.

5.A Proofs from Section 5.4

5.A.1 Proof of Theorem 5.2

We first prove a simple lemma, which connects M -CCI for a single edge and for a set of
edges.

Lemma 5.5. For any set E′t ⊆ Et, if there exists some edge Et ∈ E′t which is M-CCI’d,
then X(E′t) is also M -CCI’d. The converse is also true.

Proof. We start by enumerating the edges in E′t. Suppose |E′t| =: k. Then, we can write
E′t = {E(i)

t }ki=1. Now, we note that the set X(E′t) is simply the collection of all transmissions
in E′t. Therefore, we can write

X(E′t) =
{
X(E(i)

t ) : E(i)
t ∈ E′t

}
(5.8)

=
{
g
X(E(i)

t )(M,Wt) : E(i)
t ∈ E′t

}
(5.9)

=: h(M,Wt), (5.10)

where g
X(E(i)

t ) is as defined in Definition 5.7 and h is a function that can be written in terms

of the {g
X(E(i)

t )}. Now, if any one E(j)
t ∈ E′t isM -CCI’d, then there will be some set of values

m, m′ and wt such that g
X(E(j)

t )(m,wt) 6= g
X(E(j)

t )(m
′,wt). Thus, h(m,wt) 6= h(m′,wt), and

hence E′t is M -CCI’d.
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Conversely, if no edge Et ∈ E′t is M -CCI’d, we would have

g
X(E(i)

t )(m,wt) = g
X(E(i)

t )(m
′,wt) ∀ m,m′,wt. (5.11)

Hence, it follows that h(m,wt) = h(m′,wt) ∀ m,m′,wt. Thus X(E′t) is not M -CCI’d. This
proves the lemma.

Remark: Lemma 5.5 might seem trivial, at least in the case of M -CCI, but it is actually
a crucial step in the proof of the information path property. In particular, the equivalent of
Lemma 5.5 does not hold for mutual information in the converse, i.e., it is not true that if
X(E′t) has non-zero mutual information with M , then some edge Et ∈ E′t also has non-zero
mutual information with M . Two edges’ transmissions may individually have no mutual
information about M , while jointly having non-zero mutual information about M . The
failure of this lemma is the reason that a definition of information flow based on mutual
information (as mentioned in Counterexample 5.1) does not satisfy the information path
property.

Proof of Theorem 5.2. For there to be no orphans, the following must hold: at any node
Vt, if there exists an outgoing edge Et ∈ Q(Vt) that is M -CCI’d, then there exists some
incoming edge, E′t−1 ∈ P(Vt), which is also M -CCI’d.

First, note that if all incoming edges of Vt are not M -CCI’d, i.e. Et−1 is not M -CCI’d
∀ Et−1 ∈ P(Vt), then the set of incoming edges P(Vt) is not M -CCI’d. This is a direct
consequence of the converse of Lemma 5.5.

Next, recall from Definition 5.2b that X(Q(Vt)) = fVt
(
X(P(Vt)),W (Vt)

)
. We have

already shown that P(Vt) is not M -CCI’d, and since M is not an ancestor of W (Vt) in the
structural causal model (SCM) corresponding to the computational system (see footnote 1),
W (Vt) is also not M -CCI’d. Thus, Q(Vt) is not M -CCI’d. Therefore, by Lemma 5.5, no
individual outgoing edge, Et ∈ Q(Vt), can be M -CCI’d.

Hence, by the contrapositive of the above statements, if there is, in fact, some outgoing
edge of Vt, Et ∈ Q(Vt), that is M -CCI’d, then there must also be an incoming edge,
E′t−1 ∈ P(Vt), that is M -CCI’d.

5.A.2 Proof of Theorem 5.3

Again, we first prove a simple lemma which links M -CCI with mutual information.

Lemma 5.6. If some variable Y := h(M,W) is not M -CCI’d (where W does not have M
as an ancestor in the SCM corresponding to the computational system), then I(M ;Y ) = 0.

Proof. Since Y is not M -CCI’d, we have that

h(m,w) = h(m′,w) ∀ m,m′,w, (5.12)

where w takes values in the set of possible realizations of the random variable W. Thus, h is
effectively independent of M , and we can write

Y = h(M,W) =: h0(W). (5.13)
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Assuming all distributions are discrete, we can use summations to write:

pY,M (y,m) =
∑
w
pY,M,W(y,m,w) (5.14)

=
∑
w
pY |M,W(y |m,w)pM,W(m,w) (5.15)

=
∑
w
δ
(
y, h(m,w)

)
pM,W(m,w) (5.16)

=
∑
w
δ
(
y, h0(w)

)
pM (m)pW(w) (5.17)

= pM (m)
∑
w
δ
(
y, h0(w)

)
pW(w) (5.18)

=: pM (m)c(y) (5.19)

where in the above, δ is the Kronecker Delta function, which takes a value of 1 when its
arguments are equal, and zero otherwise. In (5.16) we have made use of the fact that Y is a
deterministic function of M and W to write pY |M,W as a δ-function, and in (5.17), we relied
on the fact that M ⊥⊥W. Thus, we have shown that pY,M can be factorized into functions
purely in y and m. This implies that Y ⊥⊥M , and hence I(M ;Y ) = 0.

Proof of Theorem 5.3. Recall the theorem statement: if there is some “output node” Vop ∈ V

that satisfies I
(
M ;X(Q(Vop))

)
> 0, then there exists a path from Vip to Vop such that every

edge of this path is M -CCI’d.
So, let us start by assuming that there is some Vop such that I

(
M ;X(Q(Vop))

)
> 0.

Then, by the contrapositive of Lemma 5.6, we must have that Q(Vop) is M -CCI’d. We can
then repeatedly use Theorem 5.2 to find edges leading backwards in time to the input nodes.
Applying Theorem 5.2 at time t = top, we find there must be some edge Et−1 ∈ P(Vop)
which is M -CCI’d. Following this edge backwards, suppose it originated from some node
Vt−1 ∈ Vt−1. Once again, we can apply Theorem 5.2 at Vt−1 to find another edge at time
t − 2 which is M -CCI’d. In this manner, we can find a path leading all the way back to
time t = 0, to some node V0. Finally, we must argue that V0 ∈ Vip based on the fact that
one of its outgoing edges, say E0, is M -CCI’d.

At time t = 0, Definition 5.2c implies that the outgoing edges of each node in Vip have
mutual information with M , i.e., X(Q(U0)) depends on M for every U0 ∈ Vip. By the
contrapositive of Lemma 5.6, this implies that for every U0 ∈ Vip, Q(U0) is M -CCI’d. Then,
by Lemma 5.5, we know that there must exist some particular edge in each Q(U0) which is
also M -CCI’d. So we have shown that each node in Vip has at least one outgoing edge which
is M -CCI’d. But we also need to show that these are the only edges that are M -CCI’d, and
that we cannot trace an information path all the way back to some V ′0 ∈ V0 \ Vip. To show
this, we once again make use of Definition 5.2c, which states that for each U ′0 ∈ V0 \ Vip,
X(Q(U ′0)) = fU ′0(W (U0)). Thus, each X(Q(U ′0)) is a deterministic function of W (U ′0), which
in turn is not M -CCI’d. Thus, Q(U ′0) cannot be M -CCI’d, and hence no individual edge
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M

A1

B0 B2

C1

M

X1 = M ⊕ Z X3 = M ⊕ Z

X2 = Z X4 = Z

Figure 5.4: The computational system used in the proof of Theorem 5.4. Only the edges on the upper path
with M ⊕ Z are M -CCI’d, however, the joint distribution is symmetric with respect to Z and M ⊕ Z. As a
result, any observational measure that gives information flow to M ⊕Z must also give information flow to Z.

E′0 ∈ Q(U ′0) can be M -CCI’d for any U ′0 ∈ V0 \ Vip. This proves that the information path
we have traced backwards from Vop must lead to Vip.

Thus, there exists a path from Vip to Vop, such that every edge of this path is M -
CCI’d.

5.B Proofs from Section 5.5

Proof of Theorem 5.4. Consider the computational system given in Fig. 5.4. Similar to the
computational system in Counterexample 5.1, the node B0 is trying to communicate M to
B2. However, this time, it generates Z itself, and sends X1 = M ⊕ Z to A1, while sending
X2 = Z to C1. A1 and C1 act merely as relay nodes, passing on M ⊕ Z and Z (which we
label as X3 and X4 respectively) to B2. Finally, B2 computes M by xor-ing its inputs.

The theorem statement asks us to consider any observational measure of information
flow which satisfies the information path property. In the context of Fig. 5.4, the only
possible information paths are (B0, A1, B2) and (B0, C1, B2). Therefore, any measure that
satisfies the information path property will award information flow to at least one of the
pairs (X1, X3) or (X2, X4).

Any observational definition of information flow would have to be a function of X1, X2,
X3, X4 and M only (refer Definition 5.8). For convenience, denote X := [X1, X2, X3, X4] =
[M⊕Z, Z, M⊕Z, Z]. Consider the joint distribution pM,X(m, x):

pM,X(m, x) =
∑

z∈{0,1}
p(m, x, z) (5.20)

(a)=
∑

z∈{0,1}
pM (m)pZ(z)pX |M,Z(x |m, z) (5.21)

(b)= 1
4

∑
z∈{0,1}

pX |M,Z(x |m, z) (5.22)

(c)= 1
4

∑
z∈{0,1}

δ(x1,m⊕ z)δ(x2, z)δ(x3,m⊕ z)δ(x4, z), (5.23)

116



5.B. Proofs from Section 5.5

= 1
4
[
δ(x1,m⊕ 0)δ(x2, 0)δ(x3,m⊕ 0)δ(x4, 0)

+ δ(x1,m⊕ 1)δ(x2, 1)δ(x3,m⊕ 1)δ(x4, 1)
]
, (5.24)

where in (a), we made use of the fact that M ⊥⊥ Z; in (b), we relied on the fact that M
and Z are both Ber(1/2) random variables; and in (c), δ represents the Kronecker Delta
function, and we have used the fact that X is a deterministic function of M and Z. Note
that when m = 0,

pM,X(0, x) = 1
4
[
δ(x1, 0)δ(x2, 0)δ(x3, 0)δ(x4, 0)

+ δ(x1, 1)δ(x2, 1)δ(x3, 1)δ(x4, 1)
]
, (5.25)

and when m = 1,

pM,X(1, x) = 1
4
[
δ(x1, 1)δ(x2, 0)δ(x3, 1)δ(x4, 0)

+ δ(x1, 0)δ(x2, 1)δ(x3, 0)δ(x4, 1)
]
. (5.26)

In both cases, observe that pM,X is symmetric in X in a very specific way: the ordered
pair (x1, x3) may be swapped with the pair (x2, x4) to no effect (i.e., M ⊕ Z and Z are
statistically symmetric with respect to M). In the limit of large samples, any observational
measure will be some functional of pM,X. Thus, if X1 and X3 are awarded information
flow, so too must X2 and X4, by basic symmetry. This means that if the information path
property holds, then all edges in Fig. 5.4 will have information flow about M according to
any observational definition. Thus, Fig. 5.4 describes an instance where any observational
measure that satisfies the information path property awards information flow to edges that
are not M -CCI’d.
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6 M -Information Flow and Granger Causality

There is no conflict.
— Darth Vader

6.1 Introduction
This chapter discusses the relationship between Granger Causality and our notion of infor-
mation flow. First, we consider whether Granger Causal influence can be used to interpret
the correct direction of information flow in a feedback network. In this part of the chapter,
when we refer to “information flow”, we mean it in the intuitive sense: we introduce a
specific communication-theoretic example that has a well-defined transmitter and receiver,
so that the true direction of information flow is the direction in which the message is being
transmitted. Using this example, we show that the direction of greater Granger Causal
influence can in fact be opposite to the direction of (intuitive) information flow [82]. We
also consider a more statistically rigorous analysis of this counterexample, and show that
in fact, it is possible to have a Granger Causal influence that is statistically insignificant
in the direction of information flow, while having a statistically significant Granger Causal
influence in the opposite direction!

In the second part of the chapter, we revisit the notion of information flow we introduced in
Chapter 2. We show how the communication-theoretic counterexample can be reinterpreted
in the form of a computational system, and explain the information flows in the system.
Our results will show that our framework for information flow finds not only the intuitively
correct directions of information flow, but that the variation in the magnitude of flow over
time provides insight into the communication scheme.

Finally, we discuss under what assumptions Granger Causality can actually be interpreted
as capturing some form of information flow, based on our framework. We also review some
prominent works in the Granger Causality and Directed Information literature to examine
the outlook for such tools.

6.1.1 Motivation

This work is in large part motivated by a recent surge of interest in understanding neural
circuits – the connectivity and dynamic activity of different regions of the brain – and how

119
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Figure 6.1: Is the direction of stronger Granger-causal influence necessarily the same as the direction in
which the message is flowing?

they give rise to behavior and experience. This is evidenced by the launching of the BRAIN
initiative in the US and the Human Brain Project in Europe. To quote from BRAIN 2025:
A Scientific Vision1, we wish to “map connected neurons in local circuits and distributed
brain systems, enabling an understanding of the relationship between neuronal structure and
function”, clearly indicating the move towards understanding (a) the connectivity and (b)
the computational function of different brain regions. While the question of how the brain
computes has been of immense interest for several decades, only recently have measurement
techniques become sophisticated enough to be able to simultaneously record the activity of
multiple neurons, or multiple neural populations.

In order to understand how the brain performs computations, it could be useful to first
understand the directions of information flow in various parts of the brain (e.g. [165–169]
etc.). In an effort to make headway on the goals of BRAIN 2025, several works use Granger
causality (and less often, its information-theoretic generalization – Directed Information)
to understand how this information flows (e.g. [170–172]), or to acquire directed maps of
functional connectivity (e.g. [69, 171, 172]). For instance, in [170], Granger causal influences
that are measured between somatosensory and motor sites are said to “support the idea
that somatosensory feedback provides information to the sensorimotor system that is used
to control motor output”. This raises the question: do these directed connectivity maps,
as determined by directional causal influence measures such as Granger causality, correctly
identify the directions along which information flows in the brain (see Figure 6.1)?

6.1.2 How Granger Causality is used in Neuroscience today

Several works have outlined the procedures involved in using Granger Causality to estimate
causal influences in the brain ([170, 173–178]). Here, we briefly describe how Granger Causal
influence is quantified, and how it is computed in these works.

Granger causality, as originally described by Granger [179], measures the level of causal
influence that one process {X} has on another process {Y }. The analysis compares the
error in predicting the {Y } process based on (i) simply the past of {Y }, and (ii) based on
the past of both {X} and {Y }2. The Granger causality metric is the ratio of these errors,
encapsulating the innovations that the process {X} causally supplies to the process {Y }.
Many variants of Granger causality have also been developed, including a generalization
– Directed Information (see [32, 180, 181]) – an information-theoretic quantity denoted by

1The BRAIN Working Group’s report to the Advisory Committee to the Director of the NIH
2A mathematical exposition of this process appears in Section 6.3.1
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Figure 6.2: In order to determine the direction of greater causal influence, the Granger Causality metrics in
the forward and reverse directions are often compared [175].

I(Xm → Ym). These variants form possible alternatives for estimating the direction of
causal influence, but Directed Information is a generalization of many of these metrics [181].

In order to determine the direction of greater causal influence, the Granger Causality
metric (ratio of residual variances) from {X} to {Y } is often compared to that from {Y }
to {X}. The direction of causal influence is then taken to be the direction with the
greater Granger Causality metric (e.g. [32, 170, 175], see [175] for an understanding of what
physical constraints motivate this comparison). Further, this direction of causal influence is
interpreted to be the direction of information flow, which is the interpretation we question
in this paper. We note here that Granger’s original analysis does not compare this metric
on forward and reverse links, and even the stronger notion of true causality (see remark 1 in
section 6.1.5) does not involve this comparison. However, this is commonly done in practice
even in areas beyond neuroscience (e.g. [32, 170, 175, 182]).

We also note that many of these works use a spectral version of Granger Causality, that
supplies this metric as a function of frequency. It then becomes possible to also determine
the brain wave frequency at which these influences occur. However, we restrict our analysis
to the simpler non-spectral version of Granger Causality, since it is sufficient for the purpose
of our arguments.

While we accept that it might be possible to accurately estimate Granger Causal influence
(provided measurements are taken suitably; see Section 6.1.3) and that it could be useful
in many situations (see Section 6.7), interpreting the direction of greater Granger Causal
influence as the direction of information flow can be erroneous, as we demonstrate in this
paper.

6.1.3 A short survey of previous criticisms of Granger Causality

Several objections to the use of Granger Causality have been raised in the past. We give,
here, a short overview of these and describe why our objection is novel, and possibly more
fundamental in nature, at least in the context of its usage in neuroscience.

1. First, Granger Causality suffers from what we call the “hidden node problem”. If
two observed nodes receive causal influences from a third, latent node, then a causal
influence may be detected between the observed nodes, even if they are independent
of each other [183]. All nodes need to be observed, therefore, to avoid finding spurious
influences.
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2. Second, if the measurements from each node are differentially affected by noise, then
the predicted direction of causal influence might be opposite to the true direction
([79, 80]). Measurements need to be relatively noiseless and precise in order to obtain
the correct direction of causal influence.

3. Third, subsampling the processes can produce misleading Granger Causal relations [81].
Performing Granger Causal analysis on subsampled time series can lead one to miss
the causal influence. If pre-processing involves subsampling, then this should be done
with care.

It is important to note that the technical objections listed above are all deficiencies in or
limitations of measurement. They indicate that incorrect Granger Causal influences may be
estimated if there is some deficiency or limitation in the measurement procedure. These
objections can be resolved by taking better measurements (by sampling more nodes, using
sensors with higher signal-to-noise ratio, etc.).

Our objection, on the other hand, is more fundamental. Even if the measurements
are made with infinite accuracy, and the regression coefficients associated with computing
Granger Causality are precisely estimated, and the Granger Causality metric is perfectly
computed (as is the case in our counter-examples), Granger Causal influence may still not
yield the correct direction of information flow. To our knowledge, the argument that greater
Granger causal influence can be opposite to the direction of information flow is a novel one.
We believe that this argument is much more serious than previous objections, at least in
the context of determining the directions of information flow in neuroscientific experiments,
towards understanding the computational functions of brain regions.

A more serious objection has to do with the difference between statistical measures of
causality (such as Granger Causality) and true causality, and whether or not our work simply
alludes to this difference. Our principal argument is different, however, as we describe in
remark 1 in Section 6.1.5.

6.1.4 Our counter-examples and our main result

This paper considers two experiments (introduced in Section 6.2) where a transmitter Tx
wants to communicate a message to a receiver Rx in presence of a feedback channel (in one
experiment, the feedback link is noiseless, while in the other it is noisy). We assume that the
experimenter is able to record the transmissions of Tx and Rx using some probing mechanism.
Provided with these measurements, the experimenter wants to estimate the direction of
information flow, which in this context is the direction of flow of the message. Our results,
derived in Section 6.3 and numerically illustrated in Section 6.4.1, show that the direction
of information flow can be incorrectly inferred using both Granger causality and Directed
Information. The first experiment considers the (unrealistic) case of communication across
noiseless feedback channels. The second experiment allows for noise in the feedback channel.
In both cases, linear strategies inspired by the scheme of Schalkwijk and Kailath [184] are
used.

Our goal here is to bring out the point that whether Granger causality and Directed
Information can be used to interpret the direction of information flow is an issue that can
be, and perhaps should be, considered using thought experiments on simple communication
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problems where information flow direction, and quantity, is already known. If the direction
of causal influence yielded by Granger causality or some other similar measure were to
match the known direction of information flow, then that measure can be more confidently
used in experiments. While our results strongly suggest that one needs to exercise care
in interpreting Granger causality and Directed Information dominance as an indicator for
the direction of information flow, there are several shortcomings that need to be addressed
in order to understand the issue at depth. These shortcomings are discussed in detail in
Section 6.1.5.

We find it interesting to note that the mathematical machinery used in this paper
amounts to routine arithmetic. Even simple counter-examples that do not employ difficult
proof techniques are able to demonstrate our main result. This simplicity leads us to think
that this counter-example is not very special, and that directions of stronger Granger Causal
influence and information flow might have little to do with each other in more complex
and/or noisy networks.

6.1.5 Possible objections to, and shortcomings of this work

A review of a previous conference submission of this paper had raised some objections to
this work, which we discuss here to clarify our perspective. Further, our analysis has certain
shortcomings, which we acknowledge. These will form the basis for future work.

1. Previous work has already noted that Granger Causal influence does not imply true
causation [185]. This distinction is made rigorously by Judea Pearl [186], where he
classifies Granger Causality as stemming from a “statistical” model, rather than from
a “causal” model. The argument we make is very similar in spirit: we ask whether
or not Granger Causality gives the correct direction of information flow. A question
on the novelty of our work may therefore be raised: if our argument boils down to a
restatement of Pearl’s distinction, then this work has no new conceptual contribution.
We make the case that our argument is novel in the following manner: in the systems
we consider – the brain, as well as the communication system in our counter-example –
causal influences exist in both directions. In our counter-example, for instance, the
feedback communication algorithm that is employed involves transmissions from both
Tx and Rx. The transmissions of each depend on what was transmitted by the other in
the previous time instant. Causal influence and true causation, therefore, exist in both
directions. The message, however, flows in only one direction: from the transmitter
to the receiver. We ask whether or not the direction of this information flow can be
discerned by comparing Granger causal influences in each direction. To this end, we
give a concrete counter-example. This work is particularly relevant in the context of
modern neuroscience, where such directions of information flow are desired in order to
understand brain function.

2. Our analysis does not tackle an information source that evolves with time. Hence, our
communication process (inspired from the scheme of Schalkwijk and Kailath [184]) is
non-ergodic. Since Granger causality is really just relative errors in prediction of a
process, in the presence or absence of knowledge of another process, we compute the
obvious generalization of Granger causality to non-ergodic processes. Nevertheless,
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Figure 6.3: A block-diagram representation of the communication system, describing the feedback channels
and supplying notation for the variables used throughout the paper. Note that this diagram is the more
general of the two cases discussed in sub-sections 6.2.1 and 6.2.2, as it contains noise in the feedback link.
The former, noiseless, case is equivalent to setting σ2

R to 0.

future work will address a situation with a linear dynamical system as the information
source.

3. Our experiments restrict themselves to Gaussian noise for simplicity, but neural spiking
and spike-rate models for spikes tend to be very different from those used here. This
is a clear direction for future work.

4. The power and energy constraints are somewhat oversimplified to make the analysis
simpler. This is for simplicity of exposition. A more general analysis is a simple
extension.

5. We have also restricted ourselves to analyzing linear feedback communication strategies.
In the presence of noise in the feedback link, linear communication strategies are known
to be sub-optimal [187]. In order to make a water-tight argument, we would need to
show that Granger Causality fails to correctly predict the direction of information flow,
even when an optimal (non-linear) communication strategy is employed. This could
be scope for future work. However, we do not expect results to change dramatically:
when the feedback link is impaired by noise of only very low variance, the noiseless
case should make for a good approximation of the system, and results should degrade
gracefully, if there is any degradation at all.

6. We consider a simple point-to-point network. In general networks, this issue could be
even more complex. However, since this issue shows up even for the simplest network,
we feel that the problem will only be exacerbated when the network is large.

6.2 A simple feedback communication scheme
This section summarizes the analysis in the work of Schalkwijk and Kailath [184], and a
simple (and previously known) extension to a noisy feedback case. It also establishes the
model and the notation used in the paper.

The transmitter wants to convey a single zero-mean random number, Θ, having variance
σ2
θ , to the receiver. Θ could be obtained, for instance, by quantizing a bounded interval on
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the real line (e.g. [−1, 1]), as is done in the scheme of Schalkwijk and Kailath [184]. The
forward channel is an AWGN channel with noise variance σ2

N . We will use simple linear
communication strategies for a noiseless feedback channel, as well as an AWGN feedback
channel with noise variance σ2

R. In both cases, the estimators will be shown to be unbiased
and consistent (the error mean is zero, and the error variance converges to zero).

6.2.1 Noiseless feedback: the Schalkwijk-Kailath strategy

In the first step, the transmitter sends3 X1 = Θ, which the receiver receives with added
noise. The receiver sends back an estimate of Θ over the feedback link. In all subsequent
iterations, the transmitter sends the receiver the error in its latest estimate.

Therefore, in general, the transmitter sends

Xi = Θ− Θ̂i−1 (6.1)

and the receiver receives
Yi = Xi +Ni (6.2)

where Ni ∼ N (0, σ2
N ) iid. The receiver then estimates

Θ̂i = Θ̂i−1 + Yi
i

(6.3)

which results in:

Θ̂i = Θ̂i−1 + Xi +Ni

i

= Θ̂i−1 + Θ− Θ̂i−1 +Ni

i

= (i− 1)Θ̂i−1 + Θ +Ni

i

iΘ̂i = (i− 1)Θ̂i−1 + Θ +Ni

= (i− 2)Θ̂i−2 + Θ +Ni−1 + Θ +Ni

...

= iΘ +
i∑

j=1
Nj

Θ̂i = Θ + 1
i

i∑
j=1

Nj (6.4)

Through this scheme, the estimate Θ̂i is seen to converge to Θ in mean-square sense as
i→∞:

E[Θ̂i] = E
[
Θ + 1

i

i∑
j=1

Nj

]
= E[Θ] + 0

3We assume that the power constraints are such that the scaling constant ‘α’ in [184] is 1.
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E[(Θ̂i −Θ)2] = E
[(1

i

i∑
j=1

Nj

)2]

= 1
i2
E
[( i∑

j=1
Nj

)2]

= i

i2
E[N2

1 ] = σ2
N

i
i→∞−→ 0.

6.2.2 Noisy feedback

In the presence of noise in the feedback link, restricting our attention to linear strategies, we
can use a simple modification of the Schalkwijk-Kailath strategy, incorporating the feedback4.
The receiver still simply transmits the estimate Θ̂i based on the i-th forward channel output
Yi = Xi + Ni. The transmitter now receives corrupted versions Zi = Θ̂i−1 + Ri−1 of the
receiver’s transmissions. That is,

Transmitter’s transmissions: Xi = Θ− (Θ̂i−1 +Ri−1) (6.5)
Channel outputs at the receiver: Yi = Xi +Ni (6.6)

Receiver’s estimates & transmissions: Θ̂i = Θ̂i−1 + Yi
i

(6.7)

where Ri−1 is the AWGN noise in the reverse link. Ri ∼ N (0, σ2
R) are iid. random variables.

Linear strategies are known to be suboptimal for this communication problem [187]
(where Θ is a quantized random variable communicating a finite-rate message reliably), and
for problems with non-classical information structures in general [188]. Nevertheless, we
now show that the resulting estimates Θ̂i still converge to Θ in mean-square sense:

iΘ̂i = iΘ̂i−1 +Xi +Ni

= iΘ̂i−1 + Θ− Θ̂i−1 −Ri−1 +Ni

= (i− 1)Θ̂i−1 + Θ−Ri−1 +Ni (6.8)

(a)= iΘ +
i∑

k=1
Nk −

i−1∑
k=1

Rk

Θ̂i = Θ + 1
i

i∑
k=1

Nk −
1
i

i−1∑
k=1

Rk (6.9)

where (a) is obtained by expanding Θ̂j recursively for j = i− 1, i− 2, . . . , 2. Therefore, the
error in estimating Θ converges to 0 in mean-square sense (i.e., Θ̂i is a consistent estimate
of Θi even in the presence of noise on the feedback link).

4We note that implicitly, this strategy assumes an energy/SNR constraint on the feedback link. This is
because the receiver simply sends back the estimate, which is shown to converge to the true value of Θ.
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6.3 Granger causality and directed information analyses for
the strategies in Section 6.2

6.3.1 Granger causality for the noiseless feedback case

In order to compute the Granger causality in the reverse direction (from the receiver to the
transmitter), we model Xi as a linear function of its past.

Xi =
p∑
j=1

αjXi−j + εi (6.10)

We then compute coefficients αj such that the average error in fitting Xi is minimized. Note
that αj can themselves depend on i, since this is a non-stationary process (because the error
Θ− Θ̂i = Xi converges to zero). We describe how these coefficients might be estimated in
a more general setting, and justify using theoretically determined system parameters as
regression coefficients in section 6.3.4.

For now, we theoretically evaluate the system parameters. We start with equation (6.1)
and manipulate terms to arrive at an equation bearing the required form of equation (6.10):

Xi = Θ− Θ̂i−1

= Θ− (Θ̂i−2 + Yi−1
i− 1

)
= Θ− (Θ−Xi−1)− Xi−1 +Ni−1

i− 1

= Xi−1 −
Xi−1 +Ni−1

i− 1

= i− 2
i− 1Xi−1 + Ni−1

i− 1

Therefore, α1 = i−2
i−1 and εi = Ni−1

i−1 , and hence Var(εi) = σ2
N

(i−1)2 .
Next, we model Xi in terms of both the past of X and the past of Θ̂:

Xi =
p∑
j=1

αjXi−j +
p∑
j=1

βjΘ̂i−j + ε̃i (6.11)

We can manipulate equation (6.1) to bring it into the above form:

Xi = Θ− Θ̂i−1

= Xi−1 + Θ̂i−2 − Θ̂i−1

Since there is no noise expression here, the Granger causality ratio, Var(εi)/Var(ε̃i) goes to
infinity.

In the forward direction, we do not explicitly compute the Granger causality ratio, but
simply show that it is bounded strictly between 1 and ∞:

Θ̂i =
p∑
j=1

αjΘ̂i−j + εi (6.12)
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Θ̂i = Θ̂i−1 + Xi +Ni

i

= Θ̂i−1 + Θ− Θ̂i−1 +Ni

i

= i− 1
i

Θ̂i−1 + Θ
i

+ Ni

i

which means that 0 < σ2
N
i2 < Var(εi) <

σ2
N+σ2

θ
i2 <∞, since the past of Θ̂ cannot be used to

explain Ni. Further, if we try to predict Θ̂i from the previous Θ̂i−j and Xi−j :

Θ̂i =
p∑
j=1

αjΘ̂i−j +
p−1∑
j=0

βjXi−j + ε̃i (6.13)

we see that
Θ̂i = Θ̂i−1 + Xi

i
+ Ni

i

so that Var(ε̃i) = σ2
N/i

2. The Granger causality ratio, Var(εi)/Var(ε̃i), in the forward
direction is, therefore, finite.

The intuitive argument for why this is happening might go as follows: since the feedback
link is noiseless, one can always perfectly predict the transmitted symbol from the past Θ̂’s
and the history of X. On the other hand, one can never perfectly predict Θ̂i from the past
X’s and the history of Θ̂.

6.3.2 Directed Information for the noiseless feedback case

Performing the Directed Information analysis for the scheme described above yields the
same results. In order to ease the burden of computing Directed Information, we assume
that Θ is normally distributed.

The directed information in the forward direction is computed as:

I(Xn → Θ̂n) = 1
2 log

(
1 + nσ2

θ

σ2
N

)
where n is the number of iterations of the Schalkwijk-Kailath algorithm. For a proof, refer
Appendix 6.A.

In the reverse direction, the Directed Information is ∞.

I(0 ∗ Θ̂n−1 → Xn) =
n−1∑
i=0

I(Xi+1; Θ̂i|Xi)

I(Xi+1; Θ̂i|Xi) = h(Xi+1|Xi)− h(Xi+1|Xi, Θ̂i) (6.14)

The first term in the equation above reduces to

h(Xi+1|Xi) = h(Θ− Θ̂i|Xi)

= h

(
Θ−

(
Θ̂i−1 + Xi +Ni

i

)∣∣∣∣Xi
)
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(a)= h

(
Θ−

(
(Θ−Xi) + Ni

i

)∣∣∣∣Xi
)

= h

(
Ni

i

∣∣∣∣Xi
)

= h(Ni)− log(i)

= 1
2 log(2πeσ2

N )− log(i)

where for (a), we have dropped Xi/i from the previous step, since it is conditioned over,
and then written Θ̂i−1 as (Θ−Xi). On the other hand, the second term in equation (6.14)
becomes

h(Xi+1|Xi, Θ̂i) = h(Θ− Θ̂i|Xi, Θ̂i)
= h(Θ|Xi, Θ̂i)
(a)= h(Xi + Θ̂i−1|Xi, Θ̂i)
= h(0|Xi, Θ̂i)
(b)= −∞

where for (a) we have expressed Θ in terms of Θ̂i−1 and Xi and for (b), we have used the fact
that the differential entropy of a constant (or equivalently, a Gaussian with zero variance) is
negative infinity. This means that equation (6.14) becomes

I(Xi+1; Θ̂i|Xi) =∞
⇒ I(0 ∗ Θ̂n−1 → Xn) =∞

6.3.3 Directed Information for the noisy feedback scenario

Since a noiseless feedback link is not realistic, we proceed to perform the same Directed
Information calculations as above for the feedback link with additive white Gaussian noise
of variance σ2

R. While we could not derive simple closed form expressions for the Directed
Information in the forward and reverse links, we were able to evaluate the expressions
numerically. These are plotted in section 6.4.1.

The Directed Information in the forward direction can be written as

I(Xn → Θ̂n) =
n∑
i=1

I(Θ̂i;Xi|Θ̂i−1)

=
n∑
i=1

h(Θ̂i|Θ̂i−1)− h(Θ̂i|Θ̂i−1, Xi) (6.15)

=
n∑
i=1

(1
2 log(2πeVar[Θ−Ri−1 +Ni|Θ̂i−1])

− 1
2 log(2πeσ2

N )
)
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For a derivation of this, see Appendix 6.B. In the reverse direction,

I(0 ∗ Θ̂n−1 → Xn) =
n−1∑
i=0

I(Xi+1; Θ̂i|Xi)

=
n−1∑
i=0

h(Xi+1|Xi)− h(Xi+1|Xi, Θ̂i) (6.16)

= 1
2 log

(
2πeσ

2
N + σ2

R

σ2
R

)

+
n−1∑
i=2

(1
2 log

(
2πeVar

[
Ri−1 −

Ni

i
−Ri

∣∣∣∣Xi
])

− 1
2 log(2πeσ2

R)
)

For a derivation of this, see Appendix 6.C.

6.3.4 A note on estimating regression coefficients

The Granger Causality and Directed Information metrics are a function of the regression
coefficients estimated from the data by fitting the models given by equations (6.10) and (6.11).
In our analysis, we described the data-generation model: the algorithm inspired by the
Schalkwijk and Kailath scheme for feedback communication. We then proceeded to use the
system parameters of this model directly as regression coefficients in our Granger Causality
computation. This could be construed as being erroneous: we ought to simulate the data
generation, and estimate the regression coefficients from the generated data. This would
better model the actions of the neuroscientist who seeks to perform Granger Causality
analysis.

We justify our knowledge of the system parameters and their use as regression coefficients
in the following manner: we assume that the regression coefficients can be accurately
estimated from data, since neuroscientific experiments typically record the same processes
multiple times – these are called “trials”. The availability of multiple trials of the same
process can be leveraged to estimate the system parameters accurately, even if the processes
are non-stationary.

Suppose we record two non-stationary processes, {Xt}nt=1 and {Yt}nt=1, for which we
seek to compute the Granger Causality metrics. To this end, we must find coefficients αj(t)
and βj(t) to minimize the error in fitting the models given by equations (6.10) and (6.11).
Note that α and β depend on t, since we assume the process is non-stationary. However,
since we record the same process in each trial, the αj(t) and βj(t) are constant across trials.
Estimating them from data that has many trials is then a simple matter of linear regression.

For a given time instant t, the ith trial is modeled as

X
(i)
t =

p∑
j=1

αj(t)X(i)
t−j + ε

(i)
t

130



6.4. Analytical and Simulation Results

Note that αj(t) does not depend on i. Collecting variables across N trials, we can write the
full model in vector form:

X
(1)
t

X
(2)
t
...

X
(N)
t

 =


X

(1)
t−1 · · · X

(1)
t−p

X
(2)
t−1 · · · X

(2)
t−p

... . . . ...
X

(N)
t−1 · · · X

(N)
t−p



α1(t)
α2(t)
...

αp(t)

+


ε
(1)
t

ε
(2)
t
...

ε
(N)
t


If we call the vector on the LHS Y and the matrix on the RHS X, then the vector of

αj(t)’s (α(t)) can be estimated at time instant t using Ordinary Least Squares:

α̂(t) = (XTX)−1XTY

This is an unbiased and consistent estimator for α(t). This analysis can be trivially extended
to the model described by equation (6.11). With a sufficiently large number of trials,
therefore, the system parameters (to be used as regression coefficients in the Granger
Causality analysis) can be estimated to arbitrarily high accuracy.

It should be noted that we have restricted ourselves to an analysis of linear strategies:
the channel, the extended Schalkwijk and Kailath scheme to a noisy feedback link, and the
proposed regression model are all linear.

As a final remark, we note that estimating the regression coefficients accurately is a
conservative assumption on our part. As mentioned at the end of section 6.1.3, we see
that despite being computed accurately, the metrics of Granger Causality and Directed
Information incorrectly estimate the direction of information flow. A rigorous analysis would
warrant the computation of these coefficients in simulation, for a finite number of trials. It is
our belief, however, that our result is unlikely to degrade if the coefficients are not estimated
perfectly. Future work will address this matter in greater depth.

6.4 Analytical and Simulation Results

6.4.1 Numerical results on the direction of greater Granger causal
influence

In the noiseless feedback case, the directed information on the forward link is finite, while
that on the feedback link is infinite (refer sections 6.3.1 and 6.3.2). However, for completeness,
we examine the case when noise is present in the feedback link, as is illustrated in Fig. 6.4,
through numerical calculation of expressions in the last section. For cases where the noise
variance of the feedback link (σ2

R) is moderately smaller than feedforward noise variance (σ2
N ),

we observe that the Directed Information in the direction of the reverse link can dominate
that in the direction of the forward link. With sufficiently many (albeit sometimes a large
number of) iterations, the Directed Information in forward direction starts to dominate.
However, the point at which this happens depends on the (often unknown) ratio of noise in
these links.
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Figure 6.4: Plots for forward and backward directed information computations for σ2
R/σ

2
N = 0.2 (top), 0.35

(center) and 0.6 (bottom). In each plot, curves for directed information in both directions are illustrated
for ratios σ2

θ/σ
2
N = 0.25, 0.5, and 1. The x-axis is the number of iterations of message-passing between

the transmitter and the receiver. For cases when feedback noise variance σ2
R is moderately smaller than

feedforward noise variance σ2
N , directed information in the reverse link can dominate that in the forward

link. With sufficiently many (albeit sometimes large, as illustrated in the top figure) iterations, directed
information in forward information starts to dominate. However, the point at which this happens depends on
the (often unknown) ratio of noise in these links.
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6.4.2 Simulations showing statistically insignificant GCI in the direction
of information flow

So far, we have only considered whether the direction of greater Granger causal influence
can be opposite to the direction of information flow. We used numerical methods to
approximate the analytical expressions for directed information (a generalization of Granger
causal influence). As a result, questions on the statistical significance of Granger causal
influence never arose. In this section, we consider whether the Granger causal influence
can be statistically insignificant in the direction of information flow while being statistically
significant in the opposite direction. This would imply a much stronger result that what
we have considered so far: it would mean that, in the presence of feedback networks, it
is possible that a Granger causal analysis mistakes certain information flows to be the a
direction precisely opposite to their actual nature.

We demonstrate this computationally in Fig. 6.5. We simulated the Schalkwijk and
Kailath scheme for T = 100 time steps and for n = 100 trials. We computed GCIs by
fitting an autoregressive model of order p = 10 to the data. Fig. 6.5 shows the mean
GCI over 100 trials (errorbars represent standard error of the mean). We assessed the
statistical significance of the result using the method described by [10]: we permuted the
trials of the transmitter’s and receiver’s transmissions independently, to disrupt trial-related
dependences, while maintaining the original distributions of the individual transmissions.
We then computed the GCIs on the permuted trials. We repeated this process nPerm = 100
times, and constructed a histogram of mean GCIs under permutation, which became our
empirical estimate of the null distribution. We found that for a certain regime of σR/σN ,
the actual GCI from the receiver to the transmitter was far outside the empirical null
distribution. The p-value of 0.01 was effectively the minimum attainable p-value, determined
by the number of permutations we performed. Fig. 6.5 shows that GCIs can be statistically
insignificant in the direction of information flow (from X to Θ̂), while at the same time
being highly significant in the opposite direction (from Θ̂ to X).

6.5 Resolving the Counterexample using M-Information
Flow

The Schalkwijk and Kailath scheme [189] is an efficient strategy for communicating a message
in the presence of a noisy feedforward channel and a noiseless feedback channel. We have
previously used this scheme as a counterexample [82], to show that comparing Granger
causal influences in forward and backward directions can lead to erroneous inferences on
the direction in which the message is being sent in this feedback system. We first provide a
brief overview of the scheme, then recapitulate our previous result, and finally demonstrate
what the information flow framework developed in this paper has to offer in the case of this
example.

Consider the communication system depicted in Figure 6.6, which shows the schematic
of a simplified version of the Schalkwijk and Kailath scheme. For convenience, let us denote
the transmitter, A, and receiver, B, by Alice and Bob respectively. Alice is attempting to
communicate a message M to Bob over an additive Gaussian channel, but in the presence

133



6. M-Information Flow and Granger Causality

0.00316 0.01 0.0316 0.1 0.316 1
σR/σN

100

2 × 100

GC
 in

flu
en

ce
 (V

ar
 ε 

/ V
ar

 ̃ε)

GC influences compared with null distributions
GCI(X→θ̂)
GCI(θ̂→X)

Figure 6.5: A comparison of Granger Causal influences (GCIs) at different reverse-noise-ratios, σR/σN . The
violin plots indicate the null distributions based on the permutation test described in Section 6.4.2, while the
errorbars show the mean and standard error of GCI. σN = 0.1 for this plot.

M A B

Zi

i.i.d.
∼ N (0, σ2)

+
Yi

= M−M̂i−1

Ỹi

= Yi+Zi

M̂i = M̂i−1 +
1

i
Ỹi

∼ N (0, 1)

M ⊥⊥ {Zi}

Figure 6.6: A communication system depicting the Schalkwijk and Kailath scheme. Alice, represented by
node A, communicates a message M to Bob, represented by node B, in the presence of a noisy feedforward
channel and a noiseless feedback channel. In the ith iteration, Alice transmits the error in Bob’s most recent
estimate of the message, Yi, but her transmission is corrupted by the noise Zi. Bob updates and transmits
his estimate, M̂i, which reach Alice noiselessly.

of noiseless feedback. Alice starts by transmitting the message Y1 = M to Bob, over the
noisy feedforward channel. Bob receives a corrupted version of M , given by Ỹ1 = Y1 + Z1,
and computes an estimate M̂1. He sends this estimate back to Alice over the noiseless
feedback channel. In the iterations that follow, Alice computes the error in Bob’s most
recent estimate, Yi = M − M̂i−1, and sends this to Bob over the noisy feedforward channel.
Meanwhile, Bob updates his estimate based on Alice’s noisy transmissions Ỹi = Yi + Zi,
using the following rule:

M̂i = M̂i−1 + 1
i
Ỹi (6.17)

It can be shown that this rule implies

M̂i = M + 1
i

i∑
j=1

Zj (6.18)
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Figure 6.7: A computational system describing the first few iterations of the Schalkwijk and Kailath scheme.
Almost every edge shown here has M -information flow. However, the quantity of M -information flow (shown
using line thickness) reveals the asymmetry between Alice and Bob: Alice has the message to begin with,
and her transmissions have a larger volume of M -information flow. In contrast, Bob’s initial transmissions
are poor estimates and have small volumes of M -information flow, but they get better over a few iterations,
and eventually come close to the true message. Furthermore, we also reveal an asymmetry between Alice
and Bob using the concept of derived information: each of Bob’s transmissions is M -derived from Alice’s
previous transmissions, whereas Alice’s transmissions are not M -derived from Bob’s previous transmissions.
Both these facts point towards the idea that Alice is slowly sending information about M to Bob.

Thus, this strategy ensures that Bob’s estimate M̂i converges toM in mean squared sense [82].
Intuitively, one might expect that, since the message M is being transmitted in the

forward direction, the Granger causal influence from Alice to Bob is greater than that from
Bob to Alice. However, our earlier result [82] showed that, in fact, the opposite is true.
In other words, even though the message is being communicated from Alice to Bob, the
Granger causal influence from Bob to Alice is greater; in fact, the Granger causal index
from Bob to Alice is infinite. The reason for this is that, while Alice’s past transmissions do
not perfectly predict Bob’s transmissions (due to the presence of noise in the feedforward
link), Bob’s past transmissions perfectly predict Alice’s transmissions (since the latter are
a simple function of the former). Therefore, the Granger causal index from Alice to Bob,
which measures the relative predictive gain of including Alice’s past transmissions in the
autoregression for Bob’s transmissions, remains finite; while the Granger causal index from
Bob to Alice becomes infinite.

Our earlier paper on this subject [82] concluded that the direction of greater Granger
causal influence could be opposite to the “direction of information flow” in the Schalkwijk
and Kailath scheme. There, “information flow” was being used purely in an intuitive sense, to
mean the direction in which the message was being communicated in that system. The intent
of our previous paper was to explain that it is not always possible to interpret a larger Granger
causal influence in a certain direction to mean that a specific message is being communicated
in that direction. In contrast, this paper presents a refined theoretical framework that defines
information flow about a message M for a specific edge in a computational system. Now,
we no longer speak of one specific direction in which information flows; rather, we describe
which edges carry information about the message in their transmissions at each point in time.
This leads to a more nuanced understanding of information flow in the Schalkwijk-Kailath
setting.

Before we can analyze the M -information flows in the Schalkwijk-Kailath scheme, we
need to fit the scheme within the computational system framework. Figure 6.7 shows
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the time-unrolled computational system corresponding to two feedforward and feedback
iterations of the simplified Schalkwijk-Kailath scheme described before. In order to translate
the communication system into our computational system model while remaining consistent
with our earlier work [82], we have merged the process of noise addition with the receiver, i.e.,
Bob. This exposes the edges with Alice’s and Bob’s transmissions, making them observable,
as was assumed in our previous paper [82]. This is also consistent with what would have been
observable if A and B were neurons (or neural populations) whose outputs a neuroscientist
were to measure.5 Note that one full iteration of the Schalkwijk-Kailath scheme takes two
time steps in this model, so the iteration index i advances once for every two time steps
t. Also, note that merging noise-addition with the receiver does not make Ỹ or Z “hidden
nodes”, since the function computed at Bt can be defined purely in terms of its inputs,
(Yi, M̂i−1), and its intrinsic random variable, W (Bt) (which absorbs Zi), as follows:

fB2i−1

(
Yi, M̂i−1,W (B2i−1)

)
= M̂i−1 + 1

i

(
Yi +W (B2i−1)

)
(6.19)

where W (B2i−1) = Zi takes the role of the noise in the communication system. Also, to
understand the time index for node B, note that in the first step of iteration i, Alice transmits
to Bob, i.e., node A2i−2 transmits to B2i−1 (see Figure 6.7).

Now, we first show that all edges depicted in blue in Figure 6.7 carry M -information
flow, based on Definition 2.4. Specifically, both Alice’s feedforward transmissions and Bob’s
feedback transmissions have M -information flow. This should not be surprising for the
following intuitive reasons: Alice’s transmissions convey information about M which Bob
uses to improve his estimate; meanwhile, Bob’s transmissions are estimates of M , and
therefore must depend on M .

In fact, we can take this intuitive argument further: suppose we were to quantify
M -information flow by using the following natural extension of our definition,

FM (Et) := max
E′t⊆Et

I
(
M ;X(Et)

∣∣X(E′t)
)
. (6.20)

Noting that Definition 2.4 only specified whether or not a given edge Et had information
flow, all that we have now done is to take the maximum over the subsets of edges used to
discover M -information flow in that definition. This quantification is fully consistent with
our definition of M -information flow, since it goes to zero if and only if the M -information
flow on an edge goes to zero. Now, using this quantitative notion of information flow, we
can ask how the M -information flow on a given link—feedforward or feedback—varies with
time. In particular, it should be intuitively clear that the M -information content in Bob’s
transmissions, i.e. M̂i, increases over time as his estimate improves. This is depicted as an
increase in the thickness of the edges carrying Bob’s transmissions with time.

On the other hand, the information content in Alice’s transmissions decreases with time.
To understand why this is true, first note that I(M ;Yi) = 0 for i > 1, since Yi carries only
information about the noise in M̂i−1 (after the first iteration), which is independent of M ,
as seen in Equation (6.18). However, since Alice’s transmissions represent the noise in

5From a wireless communication system perspective, as well, it is more reasonable to assume noise to
be a part of the receiver’s node, since the additive noise in a signal is usually considered to be the result of
thermal noise in the receiver’s circuitry.
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Bob’s estimates of M , they depend on the message when conditioned on Bob’s estimates
(this is similar to how Z carries information about M when conditioned on M ⊕ Z in
Counterexample 2.1). So the quantified M -information flow of Alice’s transmissions will be
given by:

I(M ;Yi | M̂i−1) = I(M ;M − M̂i−1 | M̂i−1) (6.21)
(a)= H(M | M̂i−1) +H(M |M − M̂i−1, M̂i−1) (6.22)
= H(M | M̂i−1) (6.23)
= H(M)− I(M ; M̂i−1) (6.24)

where in (a), the second term goes to zero because M is a constant when given M̂i−1 and
M − M̂i−1. During the initial iterations, when Bob’s estimate is poor, we must have that
I(M ; M̂i−1) is very small (as we might expect if the noise is large, for instance). Hence, for
the first few iterations, the quantified M -information flow of Alice’s transmissions will be
close to H(M), from Equation (6.24). However, as Bob’s estimate improves, I(M ; M̂i−1)
becomes closer to H(M), and therefore I(M ;Yi | M̂i−1) becomes close to zero. Thus, the
quantified M -information flow of Alice’s transmissions decreases over time. Correspondingly,
this is depicted using edges whose thickness decreases over time in Figure 6.7. Quantifying
the M -information flows of the feedforward and feedback links thus reveals an asymmetry
between Alice and Bob that strongly suggests that the message is being transmitted from
Alice to Bob.

We can also get a more nuanced understanding of information flow in this system by
asking whether Bob’s transmissions are derived from Alice’s, or vice versa. First, consider
whether Bob’s transmissions are derived M -information of Alice’s previous transmissions:
this can be expressed in terms of the Markov chain M—[M, M − M̂1]—M̂2. Observe that
this Markov chain holds trivially:

I(M ; M̂2 |M, M − M̂1) = 0. (6.25)

However, if we consider whether Alice’s transmissions are derived M -information of Bob’s
past transmissions, it can be shown that M—[M̂1, M̂2]—(M − M̂2) is not a valid Markov
chain (see Appendix 6.D for a detailed derivation). Hence, we see that Bob’s transmissions
are derived M -information of all of Alice’s past transmissions, however, Alice’s transmissions
are not derived M -information of all of Bob’s past transmissions. In conjunction with the
fact that the volume of M -information flow in Alice’s transmissions slowly decreases from
H(M) with time, while the volume of M -information flow in Bob’s transmissions slowly
increases to H(M) with time, this suggests that Alice has some information about the
message M that Bob slowly receives from Alice.

This example shows how a measure that quantifies information flow, along with derived
information, can be used to understand some finer computational structure present within
the computational system. In general, however, care needs to be exercised in applying
derived M -information: one must choose what Markov condition to check in a principled
manner. In the specific case of the Schalkwijk-Kailath example, we had the advantage
of being in a two-node setting, where the derived information expressions we examined
had clear interpretations. It may be that analyzing information flow first, to understand
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communicating information about the message θ to Bob.

which variables transmit information about M to one another, can help guide the choice of
variables to examine when applying derived M -information.

6.5.1 Measuring M-information flow in the simulation from
Section 6.4.2

Granger causality’s failure to identify the direction in which the message flows in the above
example can be attributed to the fact that Granger causality only examines predictive
influence; it does not capture what that influence is about. Granger causality does not
intrinsically check for stimulus-dependence in any way. The recent work of [49], while defining
stimulus-related information flow, does not provide a quantitative measure of information
flow, and their partial resolution to the counterexample based on derived information is
cumbersome and unsatisfactory.

Here, we take a much simpler approach and show that by measuring mutual and
conditional mutual information, we can observe how information about the message evolves
in Alice’s and Bob’s transmissions. Since all variables in this example are Gaussian, the
mutual information between the message θ and any transmission U can be written in terms
of their correlation: I(θ;U) = −1

2 log(1− ρ(θ, U)2), where the correlation ρ(θ, U) is readily
estimated. Fig. 6.8 shows how the mutual (and conditional mutual) information of Xi and
θ̂i evolve over time steps, i. In particular, observe that I(θ; θ̂i) slowly increases over time i,
while I(θ;Xi) is nearly zero. The conditional mutual information I(θ;Xi | θ̂i−1), however, is
much larger and slowly decreases over time, indicating the presence of synergistic information
about θ in the forward link, which decays as the estimate θ̂ improves.

The decrease of stimulus-related information in Alice’s transmissions, and the corre-
sponding increase in Bob’s transmissions indicates that information about the stimulus
is being conveyed from Alice to Bob and not vice versa. This also indicates that caution
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A1 A2 A3 A3

B1 B2 B3 B4

· · ·

Y1 = 0 Y2 = M1 +N1 Y3 = M2 +N2
· · ·

X1 = M1 X2 = M2 X3 = M3

Figure 6.9: A simple example where Granger causal influence is closely related to M -information flow

must be exercised in interpreting Granger causal influences as conveying stimulus-related
information.

6.6 When does Granger Causality give us M-Information
Flow?

This is a question that we do not yet have a full answer for. However, we can find sufficient
conditions under which Granger Causality does indeed measure a quantity that is equivalent
to M -information flow. Likewise, we can provide a few examples where Granger Causality
cannot work by virtue of what it measures. In this section, we also review a well-known
work that provides assumptions under which Directed Information is guaranteed to correctly
recovers the correct directions of all influences.

Firstly, it is straightforward to see that in a two-node feedforward example, where the
message M is what is being communicated by the transmitter, Granger Causality correctly
captures the direction and magnitude of information flow: Suppose that we have a message
composed of many independent random variables over time: M = [M1,M2, . . .], where we
take Mt ∼ i.i.d. N (0, σ2

M ) for simplicity. Further suppose that these messages are being
communicated from the process {Xt} to the process {Yt}, as follows:

Xt = Mt (6.26)
Yt+1 = Xt +Nt = Mt +Nt, (6.27)

where Nt ∼ i.i.d. N (0, σ2
N ) are noise variables, which are all independent of the messages

Mt. This is depicted in Figure 6.9. Then, over n time steps, we must have

I(Xn → Y n) =
n∑
t=1

I(Xt;Yt+1 |Y t) (6.28)

=
n∑
t=1

I
(
{Ms}ts=1;Mt +Nt

∣∣∣ {Ms +Ns}t−1
s=1

)
(6.29)

=
n∑
t=1

I(Mt;Mt +Nt) = n

2 log
(

1 + σ2
M

σ2
N

)
(6.30)

where in the penultimate step, we can drop the conditioning, as well as all variables in
{Ms}ts=1 except Mt, because Mt and Nt are independent of all Ms and Ns for s < t. If we
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now consider the sum of M -information flows at the outgoing edges of Bt, we find:

FM (Bn) =
n∑
t=1

I(M ;Yt) = n

2 log
(

1 + σ2
M

σ2
N

)
. (6.31)

This is because there is clearly nothing we can condition upon to increase the M -information
flow in this example. Therefore, in this very simple instance, the Granger causal influence is
equal to the net M -information flow volume over n time instants.

It is worth noting that although we computed the Granger causal influence from A to B,
the M -information flow is actually computed at the outgoing edges of B, not of A. This
is because Granger Causality does not refer to information about any specific message M ,
rather, it refers to the influence that the process {Xt} has on the process {Yt}. In order to
make the two measures compatible with each other, we have here taken the process {Xt}
to itself be the message M . Therefore, it is only natural that the Granger causal influence
from A to B would be equal to the M -information flow at the outgoing edges of B.

If we wanted to undertake a more thorough analysis of this nature, but where Granger
Causality refers to some specific message M , then we will need to go into exactly how the
Granger causal influence is being tested to be dependent on M However, such an analysis
is beyond the scope of this work. It is worth noting again that because Granger Causality
does not intrinsically, comparing it with M -information flow would require some manner
of inference that checks how much of the Granger causal influence can be attributed to M .
This direction has started to receive attention only recently, once again using measures from
partial information decomposition [190].

On the other hand, there are some clear instances where Granger Causality will not
capture information flow about M correctly, for reasons other than those presented in the
counterexample above. Suppose we had four nodes of the computational system A, B, C
and D, and A and B had a message M at time t = 1, which they transmitted to C and
D at time t = 2, i.e., A1 = B1 = C2 = D2 = M . In this instance, without knowing the
precise edge connectivity between the nodes, it is impossible to tell whether information was
transmitted from A to C and B to D, or vice versa, or some combination thereof. Since
the M -information flow focuses on measuring edges, such an issue does not arise; however
it suffers from the practical difficulty associated with measuring edges. However, Granger
causal influence, while providing a measure that depends only on processes at nodes, would
simply assign a weight of half to both A and B for each of the receiving nodes C and D
in this example. This fundamental difference between what Granger causal influence and
M -information flow consider as observed variables makes an objective comparison between
the two measures all the more difficult.

Finally, we note that Quinn et al. [31] provide a result showing that conditional directed
information can recover the true generative model (i.e., the relationships in the underlying
structural causal model). However, to arrive at this result, they rely on an important
assumption, namely, that the joint probability distribution is strictly positive everywhere
(which is a sufficient condition for satisfying faithfulness in a structural causal model [35]).
This assumption disallows perfect redundancy, and therefore prevents us from considering
examples such as Counterexample 2.3 from Chapter 2. Therefore, by conditioning on all
other variables, directed information can recover the true underlying dependency structure,

140



6.7. Conclusions and discussions

although the magnitude of said dependence may not correctly reflect information flows, since
it excludes redundancy.

6.7 Conclusions and discussions

We demonstrate, by means of a concrete counter-example, that the direction predicted by
causal influence metrics such as Granger Causality and Directed Information can be opposite
to the true direction of information flow. There are, however, several shortcomings to our
analysis, which we list in section 6.1.5. We seek to address many of these shortcomings in
future work.

It might appear that we make a circular argument while computing the Granger Causal
influences in our counter-example, since we supply the model for the stochastic process and
use the system parameters of the model directly to compute the Granger Causality metric.
However, as we state in Section 6.3.4, we assume that the regression coefficients of the
Autoregressive model can be exactly estimated (even if the AR process is non-stationary),
and discuss how this might be achieved with the help of multiple trials.

As a final remark, we emphasize that this work only demonstrates the error in interpreting
the direction of causal influence as the direction of information flow. We do not seek to
invalidate much of the neuroscientific work that has been done in this direction; we merely
caution against making (what might be construed as hopeful) extrapolations from causal
influences to information flows.

We do not seek to understate the importance of determining causal influences in the
brain; understanding causal influence itself may have a great deal of benefit. For instance, we
might seek to understand the spread of activity in the brain during an epileptic seizure—in
such applications, we are not concerned with how (or what) information is being transferred
through the neural circuitry; we only seek to determine the source of the activity for the
purpose of surgical intervention.
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6.A Directed Information in the forward direction,
noiseless feedback

The Directed Information in the forward direction is computed as:

I(Xn → Θ̂n) =
n∑
i=1

I(Θ̂i;Xi|Θ̂i−1)

=
n∑
i=1

h(Θ̂i|Θ̂i−1)− h(Θ̂i|Θ̂i−1, Xi) (6.32)

Taking the first term in (6.32),

h(Θ̂i|Θ̂i−1) = h

(
Θ̂i−1 + Xi +Ni

i

∣∣∣∣Θ̂i−1
)

= h(Θ− Θ̂i−1 +Ni|Θ̂i−1)− log(i)
= h(Θ +Ni|Θ̂i−1)− log(i)
= h(Θ +Ni|Θ̂i−1)− log(i)

where we have dropped the conditioning on all except Θ̂i−1 in the last step. Define
U = Θ +Ni and V = Θ̂i−1. Since all variables are Gaussian, it suffices to find the variance
of the conditional distribution U |V .

E[U ] = 0,E[V ] = 0,Var[U ] = σ2
θ + σ2

N ,Var[V ] = σ2
θ + σ2

N

i− 1
Cov[U, V ] = E[UV ]− E[U ]E[V ]

= σ2
θ

ρ2 = σ4
θ

(σ2
θ + σ2

N )(σ2
θ + σ2

N
(i−1))

U |V = v ∼ N
√√√√ σ2

θ + σ2
N

σ2
θ + σ2

N
i−1

ρv, (1− ρ2)(σ2
θ + σ2

N )


Hence, the entropy of the conditional distribution is

h(U |V = v) = 1
2 log(2πe(1− ρ2)(σ2

θ + σ2
N )) (a)= h(U |V )

where (a) follows because the conditional entropy is independent of v. Thus,

h(Θ̂i|Θ̂i−1) = 1
2 log

(
2πe σ2

N (iσ2
θ + σ2

N )
((i− 1)σ2

θ + σ2
N )

)
− log(i) (6.33)
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The next term in equation (6.32) is

h(Θ̂i|Θ̂i−1, Xi) = h

(
Ni

i

∣∣∣∣Θ̂i−1, Xi
)

= h(Ni)− log(i)

= 1
2 log(2πeσ2

N )− log(i) (6.34)

Putting equations (6.33) and (6.34) together, we can compute the forward Directed Infor-
mation:

I(Θ̂i;Xi|Θ̂i−1) = h(Θ̂i|Θ̂i−1)− h(Θ̂i|Θ̂i−1, Xi)

= 1
2 log

(
iσ2
θ + σ2

N

(i− 1)σ2
θ + σ2

N

)

I(Xn → Θ̂n) =
n∑
i=1

I(Θ̂i;Xi|Θ̂i−1)

(a)= 1
2 log

(
nσ2

θ + σ2
N

σ2
N

)

= 1
2 log

(
1 + nσ2

θ

σ2
N

)

where (a) follows through by expanding out the product inside the logarithms and canceling
terms. Clearly, this value is finite.

6.B Directed Information in the forward direction, with
noisy feedback

I(Xn → Θ̂n) =
n∑
i=1

I(Θ̂i;Xi|Θ̂i−1)

=
n∑
i=1

h(Θ̂i|Θ̂i−1)− h(Θ̂i|Θ̂i−1, Xi)

Taking the first of the two terms in the above expression,

h(Θ̂i|Θ̂i−1) (a)= h(Θ̂i−1
i− 1
i

+ Θ
i
− Ri−1

i
+ Ni

i
|Θ̂i−1)

= h(Θ−Ri−1 +Ni|Θ̂i−1)− log(i)

where for (a) we have used equation (6.8). The Markov property no longer holds in this case,
but we proceed in the same manner. We define U = Θ−Ri−1 +Ni and V = Θ̂i−1. Recalling
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6. M-Information Flow and Granger Causality

equation (6.9), for j ∈ {1, . . . i− 1}, p ∈ {1, . . . i− 1} and q ∈ {1, . . . i− 1}, we have

E[U ] = 0, E[Θ̂j ] = 0,
E[U2] = σ2

θ + σ2
R + σ2

N , E[UΘ̂j ] = σ2
θ

E[Θ̂pΘ̂q] = E
[(

Θ + 1
p

p∑
k=1

Nk −
1
p

p−1∑
k=1

Rk

)
(

Θ + 1
q

q∑
k=1

Nk −
1
q

q−1∑
k=1

Rk

)]

= σ2
θ + min{p, q}

pq
σ2
N + min{p− 1, q − 1}

pq
σ2
R

Var[U |Θ̂i−1] = E[U2]− E[UV]E[VVT ]−1E[VU ]

h(U |Θ̂i−1) = 1
2 log(2πeVar[U |Θ̂i−1]) (6.35)

We can not derive a simple closed form for this expression, but we have computed it
numerically for the plots in Section 6.4.1. The second term in equation (6.15) is

h(Θ̂i|Θ̂i−1, Xi) = h

(
Θ̂i−1 + Xi +Ni

i

∣∣∣∣Θ̂i−1, Xi
)

= h(Ni|Θ̂i−1, Xi)− log(i)

= 1
2 log(2πeσ2

N )− log(i) (6.36)

From equations (6.35) and (6.36), we compute the forward-directed information as depicted
in Section 6.4.1, for different values of σ2

θ .

6.C Directed Information in the reverse direction, with
noisy feedback

First, we derive an expression for Xi, which we will use later.

Xi = Θ− Θ̂i−1 −Ri−1

= Θ−
(

Θ + 1
i− 1

i−1∑
k=1

Nk −
1

i− 1

i−2∑
k=1

Rk

)
−Ri−1

= 1
i− 1

i−2∑
k=1

Rk −
1

i− 1

i−1∑
k=1

Nk −Ri (6.37)

I(0 ∗ Θ̂n−1 → Xn) =
n−1∑
i=0

I(Xi+1; Θ̂i|Xi)

=
n−1∑
i=0

h(Xi+1|Xi)− h(Xi+1|Xi, Θ̂i) (6.38)
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Taking the first term inside the summation,

h(Xi+1|Xi) = h(Θ− Θ̂i −Ri|Xi)
(a)= h

((
− Θ̂i−1 −

Xi +Ni

i

)
−Ri

∣∣∣∣Xi
)

(b)= h

((
Xi −Θ +Ri−1 −

Ni

i

)
−Ri

∣∣∣∣Xi
)

(c)= h

(
Ri−1 −

Ni

i
−Ri

∣∣∣∣Xi
)

where in (a) above, we have dropped Θ = X1, in (b) we have re-expressed Θ̂i−1 in terms of Xi,
Θ and Ri−1, and in (c) we have droppedXi and Θ again. As before, define U = Ri−1−Ni

i −Ri,
so that

E[U ] = 0, E[Xj ] = 0, E[U2] = 2σ2
R + σ2

N

i2

For i ≥ 3 and j ∈ {3, . . . i}, we can use equation (6.37) to see that

E[UXj ] = E
[(
Ri−1 −

Ni

i
−Ri

)( 1
j − 1

j−2∑
k=1

Rk −
1

j − 1

j−1∑
k=1

Nk −Rj−1

)]
= −E[Ri−1Rj−1] = −σ2

Rδij

E[UX1] = E
[(
Ri−1 −

Ni

i
−Ri

)
Θ
]

= 0

E[UX2] = E
[(
Ri−1 −

Ni

i
−Ri

)
(Θ− (Θ +Ni)−R1)

]
= 0

E[XpXq] = E
[( 1
p− 1

p−2∑
k=1

Rk −
1

p− 1

p−1∑
k=1

Nk −Rp−1

)
( 1
q − 1

q−2∑
k=1

Rk −
1

q − 1

q−1∑
k=1

Nk −Rq−1

)]

= min{p− 2, q − 2}
(p− 1)(q − 1) σ2

R + min{p− 1, q − 1}
(p− 1)(q − 1) σ2

N

+ σ2
Rδpq + 1

p− 1σ
2
RIp>q + 1

q − 1σ
2
RIq>p

E[X1X1] = E[Θ2] = σ2
θ

E[X1Xj ] = E
[
Θ
( 1
j − 1

j−2∑
k=1

Rk −
1

j − 1

j−1∑
k=1

Nk −Rj−1

)]
= 0

Var[U |Xi] = E[U2]− E[UXi]E[XiXiT ]−1E[XiU ]

h(U |Xi) = 1
2 log(2πeVar[U |Xi]) (6.39)

The above argument can be extended to i = 2 by letting the final index of the summation
term be smaller than the starting index, implying that the whole summation term is simply
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dropped. The special cases of i = 0 and i = 1 are handled at the end. The second term
from equation (6.16) becomes

h(Xi+1|Xi, Θ̂i) = h(Θ− Θ̂i −Ri|Xi, Θ̂i)

= 1
2 log(2πeσ2

R) (6.40)

because X1 = Θ and because Ri is independent of all the Xi and Θ̂i. For the special cases
of i = 0 and i = 1, we solve for the value of mutual information explicitly:

i = 0 : I(X1; Θ̂0|X0) = h(X1)− h(X1) = 0
i = 1 : I(X2; Θ̂1|X1) = h(X2|X1)− h(X2|X1, Θ̂1)

h(X2|X1) = h(Θ− Θ̂1 −R1|X1)
= h(−Θ−N1 −R1|X1)
= h(−N1 −R1)

= 1
2 log(2πe(σ2

N + σ2
R))

h(X2|X1, Θ̂1) = h(−R1) = 1
2 log(2πeσ2

R)

I(X2; Θ̂1|X1) = 1
2 log

(
2πeσ

2
N + σ2

R

σ2
R

)
From equations (6.39) and (6.40), along with the two special cases above, we can now
compute the reverse-directed information plotted in Section 6.4.1.

6.D Derivation of the Markov Chain Failure in Section 6.5
We wish to show that in the canonical example from Section 6.5, M—[M̂1, M̂2]—(M − M̂2)
is not a valid Markov chain. Recall that Z1, Z2, Z3 ∼ i.i.d. N (0, σ2) and M ∼ N (0, 1). Let
h(·) denote differential entropy. Then,

I(M ;M − M̂2, M̂2) ≥ I(M ; M̂3) = h(M̂3)− h(M̂3 |M) (6.41)

= 1
2 log

(
2πe

(
1 + σ2

3
))
− 1

2 log
(

2πe
(σ2

3
))

(6.42)

= 1
2 log

(
1 + 3

σ2

)
. (6.43)

Here, we started with the Data Processing Inequality, and then used the fact that if
Y ∼ N (0, σ2) is a zero-mean scalar Gaussian random variable with variance σ2, then its
differential entropy is given by [97, Thm. 8.4.1]

h(Y ) = 1
2 log(2πeσ2) nats. (6.44)

Next, note that since M̂1 = M + Z1 and M̂2 = M + 1
2(Z1 + Z2), M̂1 has no extra

information aboutM , given M̂2. This is obvious when we think of M̂1 as being M̂1 = M̂2+Z ′,
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where Z ′ = 1
2(Z1 − Z2), and it can be shown that Z ′ ⊥⊥ M̂2:

E[M̂2Z
′] = E

[(
M + 1

2(Z1 + Z2)
)
Z ′
]

(6.45)

= E[MZ ′] + 1
4E
[
(Z1 + Z2)(Z1 − Z2)

]
(6.46)

= 0 + 1
4E[Z2

1 − Z2
2 ] (6.47)

= 1
4(σ2 − σ2) = 0. (6.48)

Since all variables involved are zero-mean Gaussians, this naturally implies that M̂2 ⊥⊥ Z ′.
Thus, from our previous argument, M̂1 has no extra information about M when given M̂2,
or in other words, M—M̂2—M̂1 is a valid Markov chain. Therefore,

I(M ; M̂1, M̂2) = I(M ; M̂2) + I(M ; M̂1 | M̂2) (6.49)
= I(M ; M̂2) + 0 (6.50)

= 1
2 log

(
1 + 2

σ2

)
, (6.51)

derived in the same way as (6.43). From (6.43) and (6.51), we can conclude that I(M ; M̂3) >
I(M ; M̂2), and therefore

I(M ;M − M̂2, M̂2) > I(M ; M̂1, M̂2) (6.52)
I(M ;M − M̂2, M̂2, M̂1) > I(M ; M̂1, M̂2) (6.53)

I(M ;M − M̂2, M̂2, M̂1)− I(M ; M̂1, M̂2) > 0 (6.54)
I(M ;M − M̂2 | M̂1, M̂2) > 0. (6.55)

Thus, the stated Markov chain, M—[M̂1, M̂2]—(M − M̂2), cannot hold.
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7 Discussion

So what I told you was true, from a
certain point of view.

— Obi-Wan Kenobi

In this chapter, we discuss a few of the key assumptions and limitations of theM -information
flow framework proposed in Chapter 2. We also consider some means by which these
assumptions may be satisfied and how limitations may be overcome in future.

7.1 Key Assumptions of the M-Information Flow
Framework

7.1.1 Observing edges vs. nodes

The observation model stated in Section 2.5.1 makes a crucial assumption, namely, that
transmissions on each edge can be observed. In neuroscientific experiments, however, we
often record activity from single neurons (as in the case of electrophysiological recordings),
or aggregate activity from groups of neurons (as with Local Field Potentials measured in
Electrocorticography and Electroencephalography). These neurons, or groups of neurons,
are considered to be nodes communicating to one another in a network. It may not be known
which nodes are connected to which other nodes, let alone the recipient of each transmission
at every time instant. This is a marked departure from our assumption that transmissions on
edges can be observed. To some extent, it is possible to incorporate a “node-centric” model
within our computational system by assuming that all nodes broadcast their transmissions.
However, that still leaves unanswered the question of which nodes actually “hear” another’s
transmissions. A possible resolution to that question might arise from an understanding of
receiver response. That is, we consider a revised model in which an edge exists if a receiving
neuron uses the information transmitted by some neuron at the previous time instant. This
issue is beyond the scope of the current work, and will be addressed in subsequent studies.

We also note that, although tools based on Granger Causality implicitly assume that
nodes are measured and not edges, they do not resolve the issue of which node is “talking”
to which other node. For example, if two different nodes A1 and B1 communicate the same
information to a third node, C2, any regression based analysis will assign a weight of one-half
to each of A1 and B1. However, the true function, fC2 , may be using only the information
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coming from A1, or only the information coming from B1, or using the two in some other
unequal proportion. Such cases may only be identifiable through an interventional approach.

Conversely, our work may suggest to neuroscientists that inferences about information
flow are more reliably obtained if one can measure transmissions on edges in the graph,
rather than transmissions of nodes. This may call for newer imaging modalities, or new uses
of existing modalities, such as treating axons as targets for invasive recordings, perhaps at
nodes of Ranvier. Some work along these lines has already appeared: Patolsky et al. [191]
develop new techniques to measure signals along the length of an axon. Such ideas may
need to be revisited in greater detail, given the importance of measuring edges.

7.1.2 Observing memories

Another important assumption in the observation model is that memories of nodes are
observed as transmissions on self-edges. If these transmissions are implemented in the form
of some internal state at each node, then they might be difficult to observe in practice.1

It remains to be fully understood whether one can compensate for not observing memories
in some manner, e.g., by assuming that the memory of a node is the full history of its
transmissions and receptions. While this means that intrinsically generated random variables
that are not propagated to other nodes will never be observed, it could be argued that such
variables could have no impact on the system (save for acting as “computational noise”). So
perhaps it suffices to observe only transmissions between different nodes (and not self-edges).
Further work is required to understand what ramifications such an assumption has on
identifying information flows and information paths.

Alternatively, perhaps if one wishes to observe memories, it is important to measure
not only spikes, but also membrane voltages (e.g. using voltage-sensitive dyes [136] or, less
directly, through measurements of changes in neurotransmitter concentrations outside a
cell [192]).

7.1.3 Discretization of time

Yet another implicit assumption in our computational system model is that transmissions
occur at discrete points in time. This assumption is justified for synchronous digital circuits
used commonly today, or if the computational system of interest is a trained artificial neural
network, for instance. However, this is not a perfect model of the brain, because neural
spiking (among other processes), does not occur only at multiples of some fundamental unit
of time. The same also holds true of dendritic and axonal propagation delays, for instance.

This issue might be partially mitigated by assuming that neural computation happens at
a certain time scale, and by using a sufficiently high sampling rate so that Nyquist-rate–type
arguments apply. However, Nyquist-rate sampling may not be possible in certain modalities
that are inherently slow (e.g. Calcium imaging and functional Magnetic Resonance Imaging),
so it would be interesting to understand what inferences we are no longer capable of making.
Alternatively, if the sampling rate is too high, it may be useful to look for M -information

1If every node represents a group of neurons, however it may just be that their internal state is represented
in the form of communication between these neurons. In that case, perhaps observing their internal state is
just a matter of having more spatially refined measurements.

150



7.1. Key Assumptions of the M -Information Flow Framework

flow within time windows, which could help increase the sample size for detection. The exact
implications of using such preprocessing methods will also need to be studied in greater
detail, and forms another avenue for future work.

7.1.4 Message enters at t = 0

Another assumption in our framework is that the message enters the system at, and only
at, time t = 0. This is essential, given the way we have defined input nodes: nodes at time
t = 0, whose outputs depend on the message (and which have no other shared source of
randomness). However, this assumption does not allow for a dynamically evolving stimulus,
which is also common in neuroscientific experiments.

Suppose we allow the message to enter the system at a later time instant, say at some
node Ut, for t > 0, i.e., Ut may compute a function not just of its inputs, but also of M .
Then, if we want the information path theorem to continue to hold, we must also add Ut to
the set of input nodes.2 Thus, if we see dependence at some other node Vt′ , at a later time
instant t′ > t, the information paths leading to Vt′ may arise from the original input nodes
or from Ut, or both. As we might intuitively expect, the more time points we allow the
message to enter at, the more such information paths we will likely see, making the results
of our analysis harder to interpret.

On a related note, recall that the assumption that M enters only at t = 0 comes from
our decision to focus on event related experimental paradigms [65] (refer Section 2.1.2).
However, although neural responses to event related stimuli are often time-locked as well,
they have considerable variability: i.e., a neuron may respond at random times in each trial.
Apart from the inherent stochasticity in neural firing, this could happen for any number of
reasons, including the animal’s state of arousal, its attention levels in each trial, etc. In our
framework, the information flow will be smeared out over the entire time interval of possible
response. A modified computational model may be needed to address such an issue.

7.1.5 Experimental design and the message

An important aspect of our work is that it explicitly incorporates the message, which in
neuroscientific experiments is often some information contained in the stimulus. This aids
the neuroscientist in designing experiments, for example, in understanding what stimuli
will help them make a certain inference about information flow. In particular, one needs to
use at least two different stimuli in order to obtain any determination about information
flow. While this is implicitly understood in neuroscience, as evidenced by comparisons with
baselines, or by the use of permutation tests to scramble stimulus-trial correlations for a
null model, our framework provides a more direct method for identifying and interpreting
stimulus-related information flow. This could be particularly useful when tracking the flows
of multiple messages individually (see Section 2.5.6).

2We should also expect that any Local Markovity conditions at time t (see Proposition 2.6) that involve
the node Ut will no longer hold.

151



7. Discussion

7.2 Limitations of the Model

It is also worth discussing some aspects of the brain, and of information flow (broadly
understood), which our model does not capture. Here, we may require different or more
specialized models that are tailored to the specifics of the application in order to infer
information flows. However, we believe that our model can still serve as a useful baseline for
the design of such specialized models.

7.2.1 Non-independent trials, learning and changes to the network

Firstly, trials are assumed to be independent and identically distributed, with similar start
times. However, neuroscientific experiments often have trials that are presented serially, over
which time the brain’s attention levels can wax and wane. The animal or human participant
may also learn how to perform the task better over time, leading to a significant difference
in trials in a later block, compared to an earlier block. The M -information flow framework
does not explicitly account for such possibilities; if learning, adaptation or attention are the
very subject of study in a particular experiment, then the message may have to be assigned
very carefully when applying such a framework.

The computational model also assumes to some degree a static underlying network,
where the structure of the circuit does not change over time. Such changes may arise in
experiments analyzing learning over longer time-scales, or in experiments where the brain
suffers acute injury [9] or recovery from a disease [25, 45]. A recent work of the author
considers how one might detect whether a network’s connectivity structure has changed [193].
While this work does not answer the overarching question of tracking information flow, it
could form the basis for determining whether a different model is necessary in a specific
context.

7.2.2 Accounting for axonal delays

Another aspect of neural computation that our computational model does not account for
is axonal delay. In particular, we assume that computations are synchronous and that all
edges relay transmissions with the same delays to their receiving nodes. However, axons
may have different lengths and conduction speeds, which could create variable delays in
transmitting information between different pairs of nodes. In practice, if the time-scale
at which computations occur is much slower than the axonal delays (e.g., because said
computation requires aggregation of spikes over time), then this may not be relevant to
inferring information flows.

There are, however, instances where axonal delays play essential roles in the computation
itself: an excellent example of this is the auditory localization circuit [194]. In such cases, to
fit the computational model, we would need to know where the message is at time scales
much faster than axonal conduction. In other words, each axon would have to be divided into
multiple nodes, and we would need to track information flow along its length. While there
have been some efforts at designing neurotechnologies to achieve such measurements [191],
such experiments may need a more carefully designed (or even specialized) model for inferring
information flow.
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7.2.3 Tracking information flows not tied to a message

However, our definition of information flow does not cater to instances where the information
is not specific to a message. This could refer to cases such as the spread of electrical activity
during a seizure. Here, the message is not a well-defined entity, nevertheless there is a flow
of “information” in the abstract, away from the seizure focus. Understanding the paths
along which this abstract information flows could be useful for locating the origin of spread.

While our computational model may still apply to such a setting, it may be altogether
too detailed for capturing flows in an environment where we are not particularly concerned
about computation. Models of spreading phenomena from network science [59, 195] may be
more appropriate for analyzing such flows. It is also possible that tools such as Granger
Causality can perform the role of measuring such flows adequately, since they are more
similar to causal influences, however, assessing this rigorously is left to future work.
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