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Abstract
Electrophysiological measurements of neurons recorded individually, collectively,

and across brain regions simultaneously have been advancing the study of biophysi-
cal properties of individual neurons, information encoding and decoding, and inter-
actions between neuronal ensembles. The recordings are composed of sequences of
action potentials, usually referred to as spike trains, which carry signals of neural
activity but they are contaminated with ubiquitous Poisson-type noise and the pat-
terns vary from neuron to neuron, time to time, and trial to trial. The discreteness
and randomness of the data make point process a suitable tool for understanding the
neural signals represented by spike train data.

This thesis provides four applications of point process modeling to spiking neu-
rons. The first project addresses stability of fitted point process regression models.
In the second project, we aim to bridge biophysical modeling and statistical model-
ing by describing how ion channel conductance can affect spike train patterns. The
third project studies the covariation of time-dependent population firing rate features
among interacting brain regions. The fourth project focuses on the inter-spike de-
pendency between brain areas with weak coupling effects.
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to spike trains generated from a two-rate Izhikevich model. (D) The dataset is
composed of 16 spike trains with a high firing rate, and four with a low firing
rate. (E) spike counts and deviations from the central spike train clearly identify
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2.8 (A) Goldfish dataset spike trains and simulated spike trains from FLF, FNFS
(k = 5), and FNFM (k = 5) models fitted to the dataset: despite modeling the
effects of past spiking differently, both type of models can generate busts similar
to those in the dataset. (B) Filters of the FNFS models fitted to the Goldfish
dataset with past number of spikes k = 1, ..., 9. When k ≥ 5, the filters are
almost identical, suggesting that effects of spikes prior to 5 spikes back do not
contribute much to the fits. The fitted FLF filter has length Th = 0.19 sec., which
contains 4 past spikes on average; it overlaps with the FNFS filters with k ≥ 5,
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are more likely to be stable). (C) Fitted filters of an FNFM model with k = 5:
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by differentially weighing the contribution of previous spikes according to their
timing and ordering. A likelihood ratio test comparing the FNFS and FNFM
models with k = 5 strongly favors the latter (p� 0.001). . . . . . . . . . . . . 17
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Conductance of the kth channel (gk) in the model multiplied by a scaling fac-
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total variance of the stimulus filter features across different channel conductances
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lated by channel conductance (see section 3.2.3, Fig. 3.4 and 3.5). For example,
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3.2 Biophysical models. A Morphology of the MC. B MC channel conductance pa-
rameters in subcellular compartments. C, Morphology of the PC. D PC channel
conductance parameters in subcellular compartments as a function of distance
from the soma. E An example pink noise stimulus injected into the somatic
compartment. F, The simulated Vm recorded in the somatic compartment result-
ing from injected pink noise stimulus. G-I Detail view of shaded gray region
of E-F of the mean stimulus (black lines) and 10 individual pink noise stimuli
(gray traces) (G), with corresponding 10 Vm recordings (H) and raster plot of
all 100 trials (I). J-M, Basic statistics of the the simulated trials as a function of
ion channel conductance scaling factor for the MC model KA(J,K) and the PC
model CaHVAchannel (L,M). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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3.3 PP-GLM – a stimulus encoding model. A-C Examples of MC biophysical model
simulations of KA channel in the same section of simulation time in the column:
A, one stimulus trial. B Spike raster plot for all 100 trials for the indicated con-
ductance scaling factor. C PSTH for conductance scaling of 1.5, 1, and 0.05. D
PP-GLM diagram. E-G Fitted PP-GLM stimulus filters, post-spike history filters
and baselines for different conductances. Colors correspond to the conductance
scaling factor legend. H,I The differences between stimulus filters and post-
spike history filters. The filter with scalar 1 is used as reference shown in dark.
The seemingly small difference between filters is critical in the goodness-of-fit
as will be shown later. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Jointly fitted PP-GLM. The example is about the MC model KA channel. A
The stimulus filter (blue trace; k) constructed from Eq. 3.2 (lower), for the KA

channel with conductance scaling factor (gi) of 1 and penalty hyperparameter λ
of 0. The relative values of coefficients (colored bars; βKi ) corresponding to the
peak times of stimulus bases functions (ki) as in B. B The bases functions ki or hi
in Eq. 3.2 and 3.3 with peaks identified by dots to correspond to the ith coefficient
(colored dots; βKi ). The unique set of fitted coefficients combine to generate a
stimulus filter as in A. C, D The values of all stimulus coefficients as a function
of gs with no penalty (λ = 0; C) and the selected penalty hyperparameter λ = λ∗

according to Eq. 3.7. Trace colors correspond to coefficient indices in B. The
two plots have the same y-axis range. E, F the coefficients for post-spike history
filters similar to plots C, D. The two plots have the same y-axis range. G, H,
K, L Overlapped stimulus filters and post-spike history filters across channel
conductance scaling factors with no penalty and the selected penalty. I, J, M, N
show the differences between filters by subtracting the filter with scaling factor
1 as the reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 The selection of smoothness penalty hyperparameter λ and the results for other
channels. A, B SS for stimulus filter (A) and post-spike history filter (B) coef-
ficients with different choices of penalties. SS is defined in Eq. 3.8, describing
how large the coefficients change across different channel conductances. The x-
axis indicates the peaks of the basis, the order is the same as Fig. 3.4B. The op-
timal tuning parameter λ∗ is indicated by a horizontal line. C The log-likelihood
for model fits with different penalties. The log-likelihood is divided by the num-
ber of trials. D-G SS for different channels in the MC model and the PC model
with stimulus coefficients in blue and post-spike history coefficients in green.
The results all use the optimally selected penalty hyperparameter. . . . . . . . . 36
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4.1 Correlated neural activity features. A Smoothed population PSTHs for V1,
LM, and AL recorded by Neuropixels from a mouse in response to drifting grat-
ings. The three population PSTHs have similar features: the first peak appears
at around 60 ms after the onset of the stimulus (time zero), and the second peak
appears at around 250 ms after onset. B,C Comparison between a naı̈ve method
(panel B) and results from our Interacting Population Firng Rate model (panel
C) on recovery of Peak-2 position. Each dot, representing one of 195 trials (15
trials in each of 13 experimental conditions), displays the estimated times of the
second peak in regions V1 and LM. Both estimates are based on the same subset
of active neurons. The naı̈ve method finds the peak of a smoothed population
PSTH for each area. No relationship between the peak times in V1 and LM is
visible. In panel C, strong covariation appears, and the estimated correlation is
.92. The embedded plot in panel C displays estimation uncertainty as a posterior
distribution for the correlation. Details about this figure are in 4.4.1. . . . . . . . 43

4.2 The IPRF model. As explained in the text, the data y are spike trains modeled as
point processes with intensity λ. The covarying features q are combined with the
population template f pop, which appears probabilistically in the intensity. The
indicators z and probabilities p control whether f pop is part of the intensity or
whether, instead, one of the local templates f local-1 and f local-2 is selected. . . . . . 45

4.3 Peak-2 timing: correlation and partial correlation across regions. Panels
A,B display correlations, with each dot representing the estimated time of peak-
2 on a given trial. Panels C,D display estimated partial correlations, with each
dot representing the residual from a regression on the conditioning variable (the
correlation of these residuals being the partial correlation given the condition-
ing variable). Panels C,D contain partial correlation results, with the areas in C
corresponding to those in A and the areas in D corresponding to those in B. All
panels use posterior medians as estimates. A Despite large variability in peak-2
timing the correlation of LM peak2 time and AL peak-2 time is close to 1. The
plot embedded in the upper left corner displays the posterior distribution of the
correlation. B This plot is for areas V1 and AL, analogous to that in panel A.
C The residual Peak-2 times for LM and AL are plotted, after regressing on the
Peak-2 time of V1 timing. D The residual Peak-2 times for V1 and AL are plot-
ted, after regressing on the Peak-2 time of LM. The partial correlation in panel C
is somewhat smaller, but not dramatically smaller, than the correlation in panel
A. In contrast, the partial correlation in panel D is close to zero, and very much
different than the large correlation in panel B. . . . . . . . . . . . . . . . . . . . 52
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4.4 Peak timing across areas. Posterior distributions are shown together with me-
dian and 95% CI (.025 and .975 posterior quantiles). A Mean Peak-1 times for
V1, LM, and AL are 57 (95% CI (46,66)) ms post stimulus onset; 68 (60,90);
and 70 (64,86). B Peak-1 time lags between areas: V1 leads LM by 17 (3,19)
ms; V1 leads AL by 17 (14, 19) ms; AL and LM are roughly simultaneous, with
AL leading LM by -0.4 (-3.8,2.9) ms. C Peak-2 times are highly uncertain. For
V1, LM, and AL they are 216 (154,272) ms; 232 (154,277) ms; 233 (156,278)
ms. D The Peak-2 time lags between areas are much more precise than the times
themselves: V1 leads LM by 9.6 (6.2,13.0) ms; V1 leads AL by 5.5 (3.6,8.8) ms;
AL leads LM by 4.6 (-0.2,7.3) ms. . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Fitted population firing rate templates exp{fpop
a,c }. The figure shows exp{f pop

a,c }
in three different conditions 281, 257, and 280. In condition 281 the gratings
drifted at 15 Hz with orientation 315◦, in condition 257 at 8 Hz and 315◦, and in
condition 281 at 8 Hz and 270◦. Note that the population firing rate function is
exp{na,cf pop

a,c } where na,c is the number of neurons for which zn,a,c = pop. Each
row represents one condition. The solid curves and grey bands are the medians
and 95% CIs from the posteriors. There are striking distinctions between these
firing rate curves and those in Fig 1A. The complete set of curves is in C.7. . . . 54

4.6 Neuron subpopulations. A Probability that a neuron is a member of the pop-
ulation having firing rate template f pop

a,c , for all areas and conditions. Columns
are distinct neurons, rows are different conditions: red indicates the probability
is high (posterior median greater than .9); gray indicates the probability is low
(posterior median less than .1); orange indicates an intermediate probability. B
Proportion of activity contributing to the population represented by f pop

a,c , aver-
aged across conditions (based on the posterior medians in A). For example, on
average, 18% of V1 neurons were part of the interacting population (with tem-
plate f pop

a,c ), but they generated 66% of the spikes. C Histograms that summarize
the plots in panel A. For each neuron, in each area a, we count the number of
conditions c having posterior median of pa,c;0 greater than .9 (i.e., the number of
red bars in the column corresponding to that neuron in panel A). The histograms
display the number of neurons with count x, for x = 0, 1, 2, . . . , 13. In each area,
somewhat over half of the neurons never participated (x = 0) and those that did
participate often participated in only a few conditions; in V1, 7 of the 94 neurons
participated in all conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Spatial arrangement of neurons participating in the population having tem-
plate fpop. For each area, the x and y axes label the relative positions of the
electrodes, with depth along the x axis, relative to the most superficial unit. Each
dot indicates, for a given location, that at least one neuron in at least one condi-
tion participated (based on posterior medians in Fig 4.6A). The size of the dot
indicates spatial frequency, defined as the number of neuron-condition partici-
pation events divided by 13 (the number of conditions). When more than one
neuron is recorded on an electrode, the number above the dots gives the number
recorded. The locations of all subgroups in all conditions are in Fig C.10. . . . . 56
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5.1 Examples of detecting weak spike-to-spike coupling effect in a time window.
The details of this figure are in Appendix D.3.2. Here we only summarize the key
conclusions. The first row shows the result of real data (Allen Brain Observatory
Visual Coding Neuropixels dataset [121]) about coupling effect from one neuron
in the primary visual cortex to one neuron in the lateral medial visual area. The
second row replicates the scenario using a simulation with shared background ac-
tivity. A, D In both cases, the jitter-based cross-correlogram method yields noisy
output, which can detect some significant inhibitory effect at certain lags but not
in a continuous range. The dark grey band is pointwise 95% confidence band,
the light grey band is simultaneous 95% confidence band. B, E Coupling filters
of the point process regression model. Our method describes the coupling effect
using coupling filters, which shows the influence of a spike from one neuron to
the firing rate of the other neuron in a lag window. Our method can detect the
weak inhibitory effect. C, F Modeling the coupling effects assuming constant
background. By comparing E and F, this assumption leads to positive bias; and
the conclusion can be totally different, which detecting inhibitory effect as nearly
no effect. So the regression method using a coupling filter needs careful removal
of the background artifacts. This explains why the estimated coupling filter in C
is above the one in B. More similar examples of real data are in Supplementary
D.4.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Coupling neurons model diagram. Two neurons i, j are driven by the same
input signal fi,j . λi, λj represent the intensity functions. si, sj are spike trains.
The spikes from neuron i influences the activity of neuron j through the coupling
filter hi→j . The goal of the model is to estimate hi→j but fi,j challenges the
estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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5.3 Simulation and theoretical analysis of the estimator β̂h. Simulation details
are in the text. We show the properties of β̂h as a function of smoothing kernel
scale σw of W (as in Eq (5.5)). For numerical cases, we evaluate the properties
at different σw indicated by the blue dots. The x-axis is in logarithmic scale. The
numerical (blue curves) and theoretical results (dark curves) are very close. The
pointwise confidence interval for RMSE and SE is calculated using bootstrap
(bootstrap the replicated estimators, not the spike train data). The pointwise
confidence interval for bias is calculated based on standard deviation. The blue
band for the likelihood is 1.96×standard deviation. A The estimated risk root
mean square error (RMSE) of the estimator β̂h. The two local minimums are
labeled by “min-1” and “min-2”. Our method prefers to select “min-2” indicated
by the vertical line. The RMSE can be decomposed into bias (shown in C)
and standard error (shown in D). B The maximum log-likelihood as function of
σw. Since the likelihood functions may have different offsets, we align them
by the peak (the maximum value across σw) to zero, then calculate the mean
and pointwise standard deviation. The vertical line indicates the peak (numerical
and theoretical peaks overlap), which matches the position of “min-2” in A. The
theoretical extreme cases “0” and “∞” mean the scale σw of smoothing window
W goes to limit 0 or∞. The numerical case “no nuisance” represents the model
without including the nuisance regressor si in Eq (5.5), which becomes a typical
Hawkes process model ignoring the fluctuating background activity. . . . . . . . 68

5.4 Influences of background activity timescale, coupling filter timescale, and
coupling filter amplitude on the estimator β̂h. We show the RMSE and log-
likelihood curves as in Fig 5.3. The settings are the same as Fig 5.3 except for
different σI in A, different σh in B and different αh in C. This figure only shows
the theoretical results. The numerical results are very close (data not shown).
The log-likelihood functions may have different offsets, we align them by the
peak to zero (maximum value across σw). The local minimums of the risk are
labeled by “min-1” on the left and “min-2” on the right for each case. A The
RMSE and likelihood curves with different σI = 80, 100, 120 ms. σh = 30 ms
and αh = 2 spikes/sec are fixed. If σI increases, “min-2” shifts to the right,
while “min-1” does not move. The peak of the likelihood function also moves
accordingly and it is aligned with “min-2” (indicated by the grey vertical lines).
B The RMSE and likelihood curves with different σh = 20, 30, 40 ms. σI = 100
ms and αh = 2 spikes/sec are fixed. If σh increases, “min-1” shifts toward right,
but “min-2” and the peak position of the likelihood function do not change (grey
vertical lines). C The RMSE and likelihood curves with different αh = −2, 0, 2
spikes/sec. σI = 100 ms and σh = 30 ms are fixed. αh does not affect the risk of
the estimator, but it changes the shape of the likelihood function slightly. . . . . 70

5.5 Fitted coupling filter templates. The first three represent no coupling effect,
excitatory, and inhibitory coupling filters. No all filters fit into these three cate-
gories, so two more templates are included with oscillatory shapes. The phase
between type 3 and type 4 are different. . . . . . . . . . . . . . . . . . . . . . . 74
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5.6 Frequency of coupling filter types of all coupling filters. Our method iden-
tifies the type of a coupling filter on each trial. Totally there are 285 trials for
each pair of neurons. The histograms show the mean number of trials of each
type across all pairs among V1→LM in A and LM→AL in B. The error bar is
the standard deviation of the number of trials. . . . . . . . . . . . . . . . . . . . 75

A.1 Stability maps for two FLF models (Equation 2.4) Fθ using the diagnostic of
[53] and our updated diagnostic. For each value of θ, we (i) simulated a 10 sec.
long spike train from Fθ, and deemed the model unstable if it generated over
900 spikes in the last second, (ii) produced the diagnostic curve and determined
from it if the model was stable/fragile/divergent, and (iii) plotted θ against the
outcomes in (i) and (ii). (A) Reproduction of the stability map in [53] Figure 4,
where Fθ is an FLF model with β0 = −5.3 and h(t) = β1 · B1(t) + β2 · B2(t) +
Dip(t), where B1(t) = e−t/0.02, B2(t) = e−t/0.1 and Dip(t) is a negative window
function modeling a 2 msec. refractory period, θ = (β1, β2), and filter length
Th = 0.2 sec. The maps suggest that the diagnostic is mostly reliable, except in
small regions of the parameter spaces. (B) Our updated diagnostic for the same
model matches the simulation better. (C) Stability map using the diagnostic of
[53] for Fθ an FLF model with with β0 = −4, h(t) = β1 · B1(t) + β2 · B2(t).
Basis B1(t) and B2(t) are the same as Figure 2.2A. θ = (β1, β2), and filter length
Th = 0.35 sec. (D) Our updated diagnostic for the same model matches the
simulation better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2 (A) Izhikevich-burst synthetic dataset spike trains and simulated spike trains from
FLF, FNFS(k=4), FNFM (k=4). Both type of models can generate busts similar to
those in the dataset. (B) Fitted filters of the FNFS models with number of spikes
k = 1, ..., 9. When k > 3, the filters are very close to each other since further
spikes will not make too much contribution to the future firing rate, thus will only
affect the filter shape slightly. The fitted FLF filter overlaps with the FNFS filters
with k ≥ 5, suggesting that these models are functionally similar. (C) Fitted
filters of an FNFM model with k = 4: the filters are substantially different,
which suggests that past spikes of different order have different effects on the
firing rate. A likelihood ratio test comparing the FNFS(k=5) and FNFM (k=5)
models favors the FNFM model (p� 0.001). . . . . . . . . . . . . . . . . . . 81
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B.1 Simulations verification for the joint training model 3.6. A, B, and C provide
one example fit. D summarizes 100 repeated fits. SS values for PP-GLM fits of
simulated spike trains for (A) the stimulus and (B) post-spike history coefficients,
and (C) the log-likelihood all as a function of λ. True SS values are shown at the
bottom of A and B. Panels are similar to Fig. 3.3K-M, except that the true model
refers to a known set of PP-GLMs with coefficients β0(g), g ∈ {g1, ..., gB}.
When λ = λ∗ (gray dashed line), the SS values are very close to the true SS
values, thereby validating our trend filtering penalty hyperparameter selection
method. D SS error between true PP-GLM and 100 separate sets of simulated
spike trains from the true PP-GLM as a function of aligned λ index. Since differ-
ent runs may choose different optimal tuning parameter, so the tuning parameters
along the x-axis, the index λ, are aligned to the optimal λ∗ at index 0. . . . . . . 86

B.2 Stimulus reconstructions and spectral coherence. A An example stimulus recon-
struction for conductance scaling of 1.5, 1.0, and 0.5 (colored lines) compared
to the actual stimuli (gray line) for the MC KAchannel. B Magnitude squared
coherence between the stimulus reconstruction and the mean stimulus for con-
ductance scaling of 1.5, 1.0, and 0.5. C The difference in coherence between the
conductance scaling and control scaling of 1.0. D-F The mean coherence across
indicated frequency bands as a function of conductance scaling factor. Gray dot-
ted line represents control scaling factor. All panels are for the MC KAchannel. . 93

C.1 A comparison between different curve fitting methods. The raw data has 150
trials. The knots positions of spline fitting are shown at the bottom of the figure.
Our method, the Bayesian smoothing spline, chooses the tuning parameter using
5-fold cross-validation. The BARS uses the default parameters. . . . . . . . . . . 97

C.2 An example of variance Σi,i marginal distribution. Ψi,i = 4. The mode
is 1, the corresponding quantile percentage is 13.5%. The median is at 2.89.
The quantile at 2 corresponds to 36.8%, which stays between the mode and the
median. The 70.0% quantile is 5.61 times of the mode. Note that the ratio
between these quantiles is invariant of Ψ and D. . . . . . . . . . . . . . . . . . 99

C.3 Full marginal correlations Pairwise marginal correlations between all features.
Significantly positive values are labeled by red, and significantly negative ones
are labeled by blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

C.4 Full partial correlations Each entry shows the correlation between two features
conditioning on all the rest. Considering all combinations of variables there are
4572 partial correlations among the 9 features. Here we display the 45 corre-
lations together with the 45 corresponding full conditional partial correlations
and we also provide several additional partial correlations. Significantly positive
values are labeled by red, and significantly negative ones are labeled by blue. . . 102
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C.5 Marginal correlation and partial correlation of Peak-2 This figure is similar
to Fig 4.3. A shows estimated marginal correlation. Each dot represents the es-
timated time of peak-2 on a given trial. B shows estimated partial correlation.
Each dot represents the residual from a regression on the conditioning variable
(the correlation of these residuals being the partial correlation given the condi-
tioning variable). The embedded plots in the corner are the posterior distribution
of the correlations. There is no dramatic reduction of the correlation of V1 and
LM after conditioning on AL . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

C.6 The posterior distributions of pa,c. Each condition has a group of 3 triangles for
V1, LM and AL. pa,c is a 3-entry vector showing the probability of the subgroup
memberships. So pa,c are in 2-simplex and they are mapped to the triangles. The
left angle represents the “pop”, the right one is the local-1, and the top one is
“local-2”. If a point is closer to an angle meaning the corresponding component
has a larger portion. To simplify the visualization, we approximate the posterior
using bivariate Normal distribution. The dot is the mean, and the ellipse is the
95% credible region of the Normal distribution. Most distributions are far from
“pop” corner (left angle), which means “pop” takes small portion of neurons.
The distributions are close to “local-2” corner (top angle), so “local-2” include
a large part of neuron. All the distributions are highly centralized, meaning the
uncertainty for neuron clustering is very small. The portions slightly vary from
condition to condition, which shows the diversity of neurons’ behavior. . . . . . 103

C.7 Population templates in all conditions. Similar to Fig 4.5, the figure shows
the fitted population templates with the median and the pointwise 95% CI of the
posterior. The figure is composed of 3×3 blocks for 13 conditions. In a condition
block, the columns are exp{f pop

a,c }, exp{f local-1
a,c }, and exp{f local-2

a,c }. The rows are
V1, LM, and AL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C.8 Population templates in all conditions. The curves are the same as those in
C.7, which are the medians of the exp{f pop

a,c } and exp{f local-1
a,c }. Each curve rep-

resents one condition. We overlap the curve across conditions to demonstrate
the condition-to-condition variance, which is equivalent or larger than the fea-
ture variance, such as Peak-1 or Peak-2 shifting. This suggests disaggregating
the data to better capture the subtly varied features. . . . . . . . . . . . . . . . . 105
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C.9 Examples of exp{fpop
a,c } versus PSTH. The PSTH and the pointwise CI are es-

timated using Bayesian smoothing spline similar to Algorithm 1 line 5 without
incorporating peaks shifts. The PSTH curves fit the same set of neurons as in the
“pop” group (selected from the mode of the posterior). In many conditions, the
Peak-2 of exp{f pop

a,c } becomes narrower and higher than the PSTH. The CI bands
around the Peak-2 hardly overlap, for example stimulus condition id =
249, 268, 280. This is because the activity trials are aligned better. How-
ever, in some conditions like 261 AL, the Peak-2 of the model is not signifi-
cantly higher than the PSTH. In most conditions, the Peak-1 of exp{f pop

a,c } does
not change too much because the trial-to-trial deviations are small. Another ob-
servation is that the variance of the Peak-2 shapes is larger than that of Peak-2.
This explains why the Peak-2 in Fig 4.1, the overall average, is wider and lower
than Peak-2 due to larger diffusion together with condition-to-condition variance.
This also suggests that simply averaging neural activities, even with more trials,
may not get more accurate neural responses without considering the time-shifting
deviations or without treating different conditions separately. . . . . . . . . . . . 105

C.10 The location of recorded neurons. The figure shows the memberships and the
locations of the neurons in every area (by column) and every condition (by row).
This is an expansion of Fig 4.7. The membership is determined by the posterior
median. The dot shape or color represent its membership. More precisely, the lo-
cation of the neuron is the location of the channel that records the neuron signal.
One channel can record the signal from more than one neuron. . . . . . . . . . . 106

C.12 Goodness-of-fit test. KS test for “pop” group of all three regions (shown by
checker boards), all conditions (shown by rows), and all trials (shown by columns).
The dotted lines are 99% CI of KS test. At the bottom of the figure, we show
some examples of good fits (highlighted by green in the grid) and bad fits (high-
lighted by red in the grid). Some trials may have unexpected activities that are
different from the templates (f pop

a,c ), but our method is still able to find Peak-1 and
Peak-2 positions. Since we model the activity by matching the template, it may
loss some details of each trial and fail some goodness-of-fit tests, but it can accu-
rately capture the main features of interest. For example, the plot of V1 condition
268 trial 8 has a bump at the end of the trial, which is not common in other trials
of the same condition. The example of V1 268 trial 0 is a representative trial of
the condition, which matches the template very well. . . . . . . . . . . . . . . . 108

D.1 Simulation results of the coupling filter estimator with varying background
activity timescale. The figure is presented in the same ways as Fig 5.3. The
simulation details are in the text. The shared activity fi,j in Eq (5.6) is replaced
with Eq (D.40) with varying timescale. The results are similar to Fig 5.3. The
dark curves show the equivalent theoretical approximation using the model in
Eq 5.2 and Fig 5.2 with fixed timescale σI = 100 ms with manually tuned σI to
match the numerical results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
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D.2 Diagram for the coupling neurons model with exclusive fluctuating base-
lines. The diagram is the same as Fig 5.2 except for the baseline fi(t), fj(t) for
neuron i and j separately. The random process fi(t), fj(t) are also created using
cluster process in Eq D.41. Details of the model are in the text. . . . . . . . . . 134

D.3 Simulation results of the scenario with exclusive fluctuating baselines. The
figure shows the simulation results of the model described in Fig D.2, including
RMSE, bias, SE and log-likelihood in a similar way as Fig 5.3. The details
of the simulation settings are in the text. The green curves are the theoretical
approximation of the basic model in the main text (Fig 5.2 without exclusive
components fi or fj), where the intensity of the center process for fi,j is ρ = 20
spikes/sec, same as the current simulation settings. The dark curves are similar
theoretical approximations of the basic model in Fig 5.2, but the intensity of the
background center process is ρ = 10 spikes/sec, which is lower than the intensity
of this simulation scenario. The dark curves match the numerical curves better
than the green ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

D.4 Fast-changing background with small σI . We present the properties of the
coupling filter estimator in the same way as Fig 5.3. The simulation settings are
the same as Fig 5.3 except that in A, B, C, D σI = 20 ms, in E, F, G, H σI = 5
ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

D.5 Properties of the estimator with fast-changing background. This figure is
analog to Fig 5.4 but the time scale σI of the shared activity fi,j is very small.
The settings are the same as Fig 5.3, 5.4, and D.5 except for different σI in A,
different σh in B and different αh in C. We only show the theoretical RMSE and
log-likelihood curves. The numerical results are very close. Some numerical
results have been shown in Fig D.4. The log-likelihood functions may have
different offsets, we align them by the peak to zero (maximum value across σw).
A If σI is around 20 ms, two local minimum values of the risk curve may merge
to one, which agrees with the numerical result in Fig D.4A. If σI < 20 ms, the
selected optimal kernel width σw will be at the left local minimum of the risk.
Notice that when σ is around 20 ms, the shape of the log-likelihood near the
maximum value is more blunted than others. In these cases, the timescale of the
coupling filter σh = 50 ms and the amplitude αh = 2 spikes/sec are fixed. B If σI
ms is very small, it will be the right local minimum of the risk that is associated
with the coupling filter timescale, which is opposite to Fig 5.4B. If the timescale
of the coupling filter σh decreases, the right local minimum of the risk will move
to the left. σh does not change the left local minimum or the maximum point of
the likelihood. In these cases, σI = 5 ms and αh = 2 spikes/sec are fixed. C
Similar to Fig 5.4C, the amplitude of the coupling filter αh does not change the
risk curve or the position of the maximum likelihood. In these cases, σI = 5 ms
and σh = 50 spikes/sec are fixed. . . . . . . . . . . . . . . . . . . . . . . . . . 138
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D.6 A comparison between the estimations of the coupling effect with fast-changing
background. The figure compares the performance of the estimators of the cou-
pling effect. The simulation settings are the same as Fig 5.3 except that the
timescale of the background σI = 5 ms is very small. The timescale of the cou-
pling filter as in Eq (5.7) is σh = 30 ms. In A, B, and C, the amplitude of the
true coupling filter is αh = 2 spikes/sec. In D, E, and F, the amplitude of the
true coupling filter is αh = 0 spikes/sec. A, D The estimator of the point process
regression. It can accurately estimate the true filter, which is supported by the
analysis in Fig D.4 and D.5. B, E Jitter-based CCG. The time bin for the spike
train is 1 ms. The jitter window width is set as 5 ms, close to the timescale of
the background activity. The dark grey band is pointwise 95% CI, and the light
grey band is simultaneous 95% CI. The result is acquired from 1000 surrogate
jitter samples. The CCG method detects a small excitatory effect before lag =
5 ms no matter whether the neurons have true coupling effect. C, F Similar
to B except that the jitter window width is 10 ms. In both B and C, the jitter-
based CCG method can only detect a small effect before 5 ms lag or 7 ms lag.
A large part of the coupling effect between 0 to 30 ms is buried under the CI
band. However, such an effect is due to the fast-changing background, but not
the neuron-to-neuron coupling effect. . . . . . . . . . . . . . . . . . . . . . . . 140

D.7 Applications of Bayesian model 1 and model 2 to two datasets. The figure
shows the posterior of the estimated coupling filter amplitude β̂h of Bayesian
models 1 and 2 (grey histograms in A,B,D,E) and the posterior of the smoothing
kernel scale σ̂w of model 1 (grey histograms in C, F). The solid dark curves are
the Normal distributions of β̂h obtained using the point process regression model
Eq (5.2). A, B, C Applications of Bayesian models 1, 2, and the basic regression
model to the dataset in Fig (5.3). The timescale of the shared activity fi,j is fixed
at σI = 100 ms. Details of the dataset description is in the main text. In C, the
mode of the kernel scale is 130 ms, the 95% CI is [119, 148] ms. The optimal
kernel scale σw selected by the regression model is 125 ms. D, E, F Applications
of Bayesian models 1, 2, and the basic regression model to the dataset in section
D.4.1, where the timescale of the shared activity σI varies from 80 ms to 140 ms.
In F, the mode of the kernel scale is 126 ms, the 95% CI is [111, 148] ms. The
optimal kernel scale σw selected by the regression model is 120 ms. . . . . . . . 142

D.8 Non-parametric fitting for the coupling filter. The dataset and the non-parametric
estimator are described in the test. The results are presented in the same way as
Fig 5.3. A RMISE of the estimated coupling filter as a function of smoothing
kernel width σw of W in Eq (5.5). The vertical line indicates the minimum risk.
B The maximum log-likelihood as function of σw. Since the likelihood func-
tions may have different offsets, we align them by the peak (the maximum value
across σw) to zero, then calculate the mean and pointwise standard deviation.
The vertical line indicates the peak of the mean log-likelihood. C The bias of the
estimator is evaluated at lag = 5, 15, 25 ms. D The standard error of the estimator
is evaluated at lag = 5, 15, 25 ms. . . . . . . . . . . . . . . . . . . . . . . . . . 144
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D.9 Non-parametric fitting for the coupling filter. The figure compares the true
coupling filter (dark) and the estimator (blue). The light blue band is pointwise
95% CI. The coupling filters were fitted in the same way as described in Fig
D.8. This figure picks out some fitted estimators with different smoothing kernel
widths σw = 20, 130, 200 ms. If the smoothing kernel width is too small (σw =
20 ms), the bias values of the estimator at different lags have large differences.
This matches the bias curves shown in Fig D.8C. At the beginning part of the
estimated coupling filter around lag=5 ms, the bias is negative, and at the end
part around lag=25 ms, the bias is positive. If the smoothing kernel width is
selected optimally (σw = 130 ms), the fitted coupling filter matches the true filter
very well. If the smoothing kernel width is too wide (σw = 200 ms), the whole
estimated coupling filter has uniform positive bias at different lags. This agrees
with Fig D.8C that multiple bias curves with different lags beyond σw = 130 ms
are very close. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

D.10 Consequences of unmatched coupling filter timescale. The dataset is the same
as Fig 5.3, where the true coupling filter is a square window in Eq 5.7. The
amplitude is αh = 2 spikes/sec and the window width is σh = 30 ms. We tested
the regression model with unmatched coupling filter width. The model in A,
B, C, D estimates the coupling filter using a shorter timescale σh,1 = 20 ms.
The model in E, F, G, H estimates the coupling filter using a longer timescale
σh,1 = 40 ms. As a reference, the dark curves show the theoretical approximation
using the basic regression model by setting the coupling filter timescale as 20 ms
in A-D, and 40 ms in E-H. The rest settings are the same as the simulation. . . . 146

D.11 Normality of the estimator’s distribution. The dataset is the same as Fig 5.3
including 100 repetitions. The figure shows the Q-Q plots of the empirical dis-
tribution of the estimator against the theoretical Normal distribution (see details
in the text), shown in the dark curves. The straight dashed grey lines are 95%
CI. In the first row, the empirical distribution matches the theoretical distribution
very well at the optimal model (σw = 125 ms) and at models close to the optimal
(σw = 100, 160 ms). We also evaluate the model at many other different smooth-
ing kernel widths. If σw is too small or too large (second row, σw = 60, 250, 500
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D.12 Hypothesis testing examples. We compare the point process regression model
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tributions. The right column shows the results of ROC analysis with the false
positive rate (FPR) along the x-axis, and the true positive rate (TPR) along the
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D.18 Source neuron self-coupling effect. These results correspond to the model dia-
gram in Fig D.16B. The results are presented in the same way as Fig 5.3. Details
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Chapter 1

Introduction

1.1 Background
Electrophysiological measurements of single and multiple neurons play a critical role in studying
neurons’ biophysical properties, information encoding and decoding, neuron-to-neuron interac-
tions, region-to-region interactions. This fast-growing technique now is able to simultaneously
track the activity of up to a thousand of neurons across multiple brain regions [127, 128, 129].
The recorded sequences of action potentials are usually called spike trains. The spike trains carry
information about external stimuli [111], latent states [31, 123], neuron-to-neuron interactions
[81, 111], functional connectivity between neuronal ensembles [32], etc. But these signals are
usually accompanied by Poisson-type noise. And the spike train patterns, including the timing
of spikes and mean firing rate, vary from neuron to neuron, time to time and trial to trial even
under the same experimental condition [12, 32, 73, 95, 135].

Point processes offer a powerful tool for modeling discrete and stochastic spike trains, which
has been widely applied in neuroscience for at least 20 years [79], and for early works see
[23, 75]. The point process framework models a spike train through the instantaneous firing
rate, called intensity function, defined as,

λ(t | Ht) = lim
∆→0

P(N(t, t+ ∆] > 0 | Ht)

∆
(1.1)

whereN(t, t+∆] is the spike count over the interval (t, t+∆], andHt could represent the history
of the process up to time t, including not only the spikes, but possibly some other measurements,
for example a stimulus [79]. The log-likelihood of a spike train in [0, T ] is

L =

∫ T

0

log λ(t | Ht)N(dt)−
∫ T

0

λ(t | Ht)dt (1.2)

which usually defines as the target estimation equation or loss function for the model. Much
of the point process modeling literature considers how to express λ(t | Ht) in particular ways
favoring certain properties of the data. The point process framework is flexible because the
intensity function can be modularized into separate components that are responsible for different
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factors. Many of these components are assembled in additive form, logarithmic additive form, or
logit additive form, which are similar to the generalized linear model:

λ(t | Ht), or log λ(t | Ht), or logit p(t | Ht) = factor1(t) + ...+ factork(t) (1.3)

where p(t | Ht) is the probability of having a spike in the time bin at t. Such a model can be
designed for individual neurons or multiple neurons. It can incorporate factors such as external
stimuli, behaviors, LFP recordings, latent variables, and inter-spike dependency, such as neuron-
to-neuron coupling effects or post-spike history effects within a neuron. We categorize some
previous works into different combinations of these components. Table 1.1 lists some represen-
tative references with short summaries therein.

Single
neuron

Stimulus in vitro olfactory mitral cell with injected current [133];
Artificial neuron (Izhikevich model) with simple injected signal [137];
Plasticity of place receptive field with spatial information [43, 47];

Post-spike
history effects Post-spike filter with refractory effects [133];

Post-spike filter determines firing patterns [137];
Mixture of post-spike filters in Parkinson’s disease [37];
Modeling finite number of post spikes [30, 77, 116];

Latent
variables Brownian motion as the inhomogeneous baseline [124];

Synaptic dynamics and post-synaptic response [4];
Linear dynamic system for evolving receptive field parameters [43, 47];

Multiple
neurons

Stimulus in vitro parasol ganglion cells with visual stimulus [111];
2-D monkey hand movement [134];
LFP oscillation phase [141];
Position encoding in rat CA1 [8, 23, 115];
Motor cortex encoding for arm movement [90];

Coupling
effects Post-spike filter with refractory, and excitatory or inhibitory coupling filters be-

tween neurons [111, 134];
Coupling filters within/between M1 and PMd neurons [130, 134];
Relate the coupling filter to Granger causality [44, 86];
Coupling filters in mouse lumbar spinal cord [44];
Small-world-ness network structure in monkey visual cortex [51];
Coupling filter-based network reconstruction agrees with synaptic connection in
crab Stomatogastric ganglion [52];
Coupling filters between rat hippocampal place cells [108];
A theoretical study of firing rate correlations induced by coupling filters and net-
work topology [110];
Coupling filter between rat in vitro neurons [116];

Latent
variables Gaussian process: Two Gaussian processes for smooth temporal structure and

smooth tuning curves of hippocampal cells decoding [138];
Point process version of GPFA [41, 140];
Dynamic system: 1-D latent linear dynamic system for population inhomoge-
neous baseline [123];
Position decoding from rat CA1 [8, 23, 115];
Motor cortex decoding for arm movement [90, 134];
Hidden Markov model: Population with alternating active-quiescent states [31];
Factor analysis: Factor analysis using hidden processes [41, 80];

Table 1.1: A list of references categorized according to the types of factors.
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1.2 Overview of thesis contributions

Single
neuron

Multiple
neurons

External
stimuli

Latent
variables

Inter-spike
dependency

Chapter 2 X X
Chapter 3 X X X
Chapter 4 X X X
Chapter 5 X X X

Table 1.2: The outline of the thesis.

This thesis provides four applications of point process modeling to spiking neurons. Table 1.2
shows the thesis outline and the main components of each project.

The first project in Chapter 2 addresses stability of fitted point process regression models.
The motivation came from a recent paper by Gerhard et al. presented at the SAND8 conference
[53, 117]. The authors described a kind of unstable point process, in which a fitted model can
generate simulated spike trains with explosive firing rates. We first point out the issue is related
to the lack of fit in some situations, and it can be fixed accordingly. Then we propose a simple
modification of the post-spike history filter so that the model is only allowed to incorporate a
limited number of spikes in the history instead of all spikes in the past. This makes the fitted
model more stable while achieving similar goodness-of-fit. The new model can also be more
flexible for modeling complicated spike train patterns, such as bursting firing.

In Chapter 3, we aim to bridge biophysical modeling and statistical modeling by describing
how ion channel conductance can affect spike train patterns. The stimulus filter and the post-
spike history filter in the point process model characterize how a neuron responds to an external
stimulus or post-spikes at certain time-lags. The coefficients of those filters are selected as the
features of spike train patterns. The goal of the model is to construct the spike train features
as functions of the ion channel conductances, so the impact of the channel conductance can be
quantified. We find different types of ion channels influence the spike train patterns in different
ways. This may reveal their different roles in information encoding.

To better characterize information processing in the brain, it is important to identify situa-
tions in which neural activity is coordinated across populations of neurons. In Chapter 4, we
analyze covariation of population firing rates within three visual areas, focusing on the timing
of peak firing rate. For these data, a naı̈ve method of determining the time of peak firing rate
is too noisy: it can not find covariation across areas. Instead, we demonstrate strong cross-area
covariation using the point process framework that allows firing rate curves to vary with experi-
mental condition and furthermore allows neurons to participate in population activity under some
conditions but not others. Because our approach is multivariate, it has the additional benefit of
assessing pairwise covariation conditionally on (after “partialling out”) activity of the third area.
Results concerning multi-way dependence can constrain theoretical conceptions of circuit oper-
ation. Another motivation is to describe functional diversity and specialization of neurons that is
relevant to cross-area coordinated activity. We estimate the proportion of recorded neurons that
participate in this kind of population activity, and we indicate their cortical depths.
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Chapter 5 focuses on the spike-to-spike coupling effect on fine timescale (can be within 20 ms
or less), especially between neurons in different regions. We build a flexible, extendable, robust,
and computationally efficient tool to quantify the spike-to-spike coupling effect; it can handle
hundreds of neurons that are simultaneously recorded by high-density multi-electrode arrays.
Our proposed point process regression model can be modularized into two basic components:
one part quantifies the coupling effect using a continuous function in a lag range; the other part
is responsible for removing the artifacts caused by the background activity. The small number of
parameters in the model and optimization-based inference make it efficient for large dataset anal-
ysis. We verified the model using many simulation scenarios and some theoretical analysis, then
applied the method to the Allen Brain Observatory dataset and discovered trial-to-trial variation
of coupling effects on fine timescale.
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Chapter 2

Stability of fitted point process spiking
neuron models

This is a collaborative work with Qi Xin, Valérie Ventura and Robert E. Kass. It has already been
published in [30].

Point process regression models, based on generalized linear model (GLM) technology, have
been widely used for spike train analysis, but a recent paper by Gerhard et al. described a kind of
instability, in which fitted models can generate simulated spike trains with explosive firing rates
[53]. We analyze the problem by extending the methods of Gerhard et al. First, we improve
their instability diagnostic and extend it to a wider class of models. Next, we point out some
common situations in which instability can be traced to model lack of fit. Finally, we investigate
distinctions between models that use a single filter to represent the effects of all spikes prior to
any particular time t, as in a 2008 paper by Pillow et al., and those that allow different filters
for each spike prior to time t, as in a 2001 paper by Kass and Ventura [77]. We re-analyze the
data sets used by Gerhard et al., introduce an additional data set that exhibits bursting, and use
a well-known model described by Izhikevich to simulate spike trains from various ground truth
scenarios. We conclude that models with multiple filters tend to avoid instability, but there are
unlikely to be universal rules. Instead, care in data fitting is required and models need to be
assessed for each unique set of data.

2.1 Introduction
Point process regression models based on the framework of generalized linear models (GLMs)
have been applied to a wide variety of spiking neuron data ([79], [137], and references therein).
These models, which may be considered nonlinear Hawkes processes [28, 44], allow neural firing
rates to depend on spiking history. Recently, however, [53] reported that models fitted to real data
sets could be unstable in the sense that their firing rates could evolve to become arbitrarily large,
generating unrealistic spike trains, even when standard goodness-of-fit tests fail to identify lack
of fit (see Figure 2.1 for two examples). In this paper we identify several factors that can lead
to this problem, we provide additional analysis for diagnosing it, and we present methods to
improve model stability.
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In some circumstances, causes of instability are easy to identify and easy to fix. The prob-
lem of stability, however, leads naturally to an interesting detail in GLM-type modeling of spike
trains. When spike trains are modeled as point processes, the firing rate is defined by the condi-
tional intensity function

λ(t|Ht) = lim
∆t→0

P
(
∆N(t,t+∆t] = 1|Ht

)
∆t

(2.1)

where Ht is the set of spikes prior to time t, known as the spiking history up to time t, and
∆N(t,t+∆t] is the number of spikes in the interval (t, t + ∆t]. This succinct representation can
also incorporate stimulus effects and coupling effects and its implementation can take advantage
of a large body of knowledge about generalized regression models [79]. Here we only consider
the history effects without external stimulus and coupling neurons. There are many ways to
capture the effects of the history Ht on the intensity. Letting tj∗ be the jth spike time counting
backwards prior to time t, a concise and intuitive assumption, for steady-state scenarios (where
the baseline rate is constant), takes the intensity to have the form

log λ(t|Ht) = β0 +
∑
j

h(t− tj∗) (2.2)

where h(u) is a smooth function, and the summation extends to all spikes that precede time
t (within a given trial, if there are trials). This is the form used by [111] and by [53]. [111]
referred to h(u) as a post-spike filter. An alternative model, used by [77], instead allows the
effects of each previous spike to be different:

log λ(t|Ht) = β0 +
k∑
j=1

hj(t− tj∗). (2.3)

If each function hj involves separate free parameters, then the model in (2.3) would typically
have more parameters than the model in (2.2). A main contribution of this paper is to describe
situations under which this additional flexibility can be useful. In particular, we suggest that, in
realistic scenarios, models of the form (2.3) tend to be stable.

One issue in using (2.3) is that the number of terms k must be selected. In theory the number
could be infinite as long as a suitable condition is placed on the functions hj , such as

∑
Mj <∞,

where Mj = maxu hj(u), but in practice [77] selected k by applying the likelihood ratio test;
here, in Section 4, we will suggest another criterion, based on stability. Similarly, in practice, the
summation in (2.2) extends over a fixed window of time preceding t, having length we label Th
(at most, the total length of the experiment), leading to the alternative representation

log λ(t|Ht) = β0 +
∑

tj∗∈(t−Th,t]

h(t− tj∗). (2.4)

We refer to a model described by (2.4) as Fixed Length Filter (FLF), and those described by (2.3)
as Fixed Number Filter (FNF), where the fixed number refers to the fixed number of spikes. In
our analysis we have found it useful to further categorize FNF models by considering the special
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Figure 2.1: Simulation divergence of FLF models (equation 2.4) fitted to data. (A,D) Spike time
raster plot and PSTH for datasets Monkey-PMv and Human-Cortex. (B,E) The fitted FLF models
pass the original and discrete KS tests of [24] and [62]; the two tests overlap so they are hard to
distinguish. (C,F) Spike time raster plot and PSTH of spike trains simulated from the fitted FLF
models, using algorithm 3 in Appendix A.3. (C) If the simulation lasts longer than the training
session, the firing rate keeps growing to produce ISIs that are shorter than the refractory period.
(F) The simulated spike trains resemble the observed data except for trials 2 and 4, which have
many more spikes than the observed spike trains.

case in which hj(u) = h1(u), for all j and all u. These models we write these as FNFS, where
S stands for single filter. The more general case we write as FNFM, with M for multiple. Note
that FNFS differs from FLF in that the number of spikes is fixed rather than the length of the
time interval, but both models use a single filter while FLFM uses multiple filters.

We begin, in Section 2, by giving some analytical stability results along the lines of those in
[53]. In Section 3 we identify several kinds of model mis-specification that lead to instability,
and we note potential solutions. In Section 4 we focus on FNF models and the variation that
replaces the constant β0 with a time-varying function β(t). An analytical diagnostic method is
then used to select the number of previous spikes to be considered in the model, i.e., the number
of terms k in (2.3). In section 5, we compare FLF and FNF models. We close in Section 6 with
advice on the use of these models.
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A B C

Figure 2.2: (B) Three diagnostic curves corresponding to the three FLF models (equation 4)
with baseline rates β0 = −4 and filters h(t) shown in (A) in matching colors, where h(t) =
β1 · B1(t) + β2 · B2(t), B1(t) = e−t/0.02 and B2(t) = e−t/0.1 are the smooth basis functions used
in [111] and shown in the insert in (A), and Th = 0.35 sec. The values of (β1, β2) for the three
models are marked as crosses in (C). (C) Diagnostic map for the above model as β1 and β2 vary.

2.2 Stability analysis
Figure 2.1 shows two examples of unstable simulations from FLF models (equation 2.4) fitted
to the Monkey-PMv and Human-Cortex datasets described in Table A.1, Appendix A, using the
smooth basis method of [111]. The fitted FLF models pass the original and discrete KS goodness
of fit tests [24, 62] but they are unstable, in the sense that the firing rates of some or all the
simulated spike trains evolve to become arbitrarily large, generating unrealistic spike trains. We
emphasize that instability is not a matter of extrapolation to unseen data outside the experimental
range of time. Rather, if a model is unstable, in simulations it can evolve to producing firing rates
far in excess of those seen in real data, which makes it patently unrealistic as a representation of
neural physiology.

[53] argue that a reliable diagnostic of model instability can be obtained from the relationship
between the firing rate A0 before the last spike at t1∗ in an interval, and the firing rate after t1∗.
They approximate A0 with the average firing rate in the interval (t− Th, t1∗). Then they rewrite
the fitted FLF model (Equation 2.4) as

log λ(t|Ht) = β0 + h(t− t1∗) +
∑

tj∗∈(t−Th,t1∗)

h(t− tj∗),

and approximate the summation by its expectation under the assumption that the point process
in the interval (t− Th, t1∗) is homogeneous Poisson, yielding

log λ(t|Ht) ≈ β0 + h(t− t1∗) + A0

∫ Th

t−t1∗

(
eh(u) − 1

)
du. (2.5)

[53] then use (2.5) to derive the approximate PDF of the future ISI t∗−t1∗, where t∗ is the time of
the next spike after t1∗, and calculate the firing rate after t1∗ as the reciprocal of the mean future
ISI:

Lh(A0) =
1

E[t∗ − t1∗]
. (2.6)
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Equation 2.6 is a function of A0 because Equation 2.5 is a function of A0. The instability diag-
nostic is obtained by plotting Lh(A0) versus A0, as in Figure 2.2B, for A0 ∈ [0, λmax], where
λmax is the maximum possible firing rate. Without loss of generality, in this paper we do not
build a refractory period in the models we consider, except to reproduce [53] Figure 4 (see Ap-
pendix A.2 Figure A.1), so λmax is our simulation resolution of 1000 spikes per second. We
examine intersections of the diagnostic curve with the secant line Lh(A0) = A0, referring to
them as cross points.

A model is deemed
• divergent if all cross points exceed λthr orLh(A0) is always larger thanA0 (e.g. Figure

2.2B, red curve), where λthr is a threshold rate judged too high physiologically; here
we used λthr = 0.9 · λmax spikes/sec;

• stable if the number of cross points is odd and they are all below λthr (green curve);
• fragile otherwise (blue curve).

Note that the diagnostic green curve in Figure 2.2B exceeds the first secant for small values of
A0, which is desirable because otherwise the firing rate would eventually decrease down to zero.
A divergent model yields unstable simulations, whereas spike trains simulated from a fragile
model might first look stable and then degenerate. Therefore the difference between divergent
and fragile models is the duration it takes for spike trains to become unstable. Without loss
of generality of our results, we do not distinguish between divergent and fragile models, and
consider them both unstable.

[53] validated their model stability diagnostic against spike train data: they considered a
model family Fθ parametrized by θ, and for each value of θ in a range, they (i) simulated a 10
sec. long spike train from Fθ (e.g. using algorithm 3 in Appendix A.3), and deemed the spike
train unstable if the model generated over 0.9 · λmax spikes in the last second, (ii) produced the
diagnostic curve and determined from it if the model was stable, fragile, or divergent and (iii)
plotted θ against the outcomes in (i) and (ii). Figure A.1, Appendix A.2, shows these plots for
two model families Fθ. Figure A.1A shows the same stability map as in [53] Figure 4, where
Fθ is an FLF model (Equation 2.4) with baseline rate β0 = −5.3 and filter h(t) = β1 · B1(t) +
β2 · B2(t) + Dip(t), θ = (β1, β2), B1(t) = e−t/0.02 and B2(t) = e−t/0.1 are the smooth basis
functions used in [111] and shown in the insert in Figure 2.2A, Dip(t) is a negative window
function modeling a 2 msec. refractory period, and the filter length is Th = 0.2 sec. In Figure
A.1C, Fθ is an FLF model with baseline rate β0 = −4, filter h(t) = β1 · B1(t) + β2 · B2(t) with
B1(t) and B2(t) defined above, and filter length Th = 0.35 sec.

The stability maps in Figure A.1A,C suggest that the diagnostic is mostly reliable, except in
small regions of the parameter spaces. This happens because [53] replaced h(u) by the Taylor
expansion (exph(u) − 1) in (2.5), which is accurate only when h(u) is small. Without this
approximation, (2.5) becomes

log λ(t|Ht) ≈ β0 + h(t− t1∗) + A0

∫ Th

t−t1∗
h(u)du, (2.7)

and the diagnostic is still tractable, as shown in Appendix D. Figure A.1B,D show the updated
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Figure 2.3: Stability of FLF models (equation 2.4) with constant and time varying baseline fir-
ing rates. (A) Constant (blue) and time varying (red) baseline rates of FLF models fitted to the
Monkey-PMv data: the baseline appears to vary. A likelihood ratio test confirms that the time
varying baseline model fits the data significantly better (p = 0.046). (B) Fitted filters of the
constant and time-varying baseline models. (C) PSTHs of the observed data and of data simu-
lated from the fitted homogeneous and inhomogeneous FLF models: the homogeneous model
simulates unstable spike trains; the inhomogeneous model is simulation stable. (D, E, F) Same
analysis applied to artificial data generated from an inhomogeneous Izhikevich model (algorithm
2 in Appendix A.3). (D) Data raster plot. (E) Fitted filters of the homogeneous and inhomoge-
neous baseline FLF models: the latter is mostly below the former, which may reduce the chance
of unstable simulated spike trains. (F) Indeed, the homogeneous model produces data whose rate
diverges; the inhomogeneous model appears to be stable. Note that the inhomogeneous model
fits the data significantly better according to a likelihood ratio test (p� 0.001).
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stability maps based on (2.7). The agreement between diagnostic and simulation is very close,
and closer than in Figures A.1A,C, so we use the updated diagnostic in the rest of the paper.
Figure A.1D is reproduced in Figure 2.2C.

To solve the stability problem when a model is found to be divergent or fragile, [53] suggest
stabilizing it by refitting to the data with the constraint that its parameters lie in the stable region
of the parameter space. In the next section, we identify three data features that might lead to
unstable simulation models, namely small sample size, time varying firing rates, and trial to trial
variability or outlier trials, and we provide alternative suggestions for stabilization: collecting
more data, fitting inhomeogeneous rate models, and removing outliers, respectively.

2.3 Special cases of FLF model instability
A feature that might lead to unstable models is a small sample size. Indeed fitting a model to a
small dataset yields parameter estimates that have large variances and, therefore, that could lie
in unstable regions of the parameter space by chance, even if the true parameters lie in stable
regions. Collecting more data, if possible, would reduce the variability of parameter estimates
and stabilize the model.

Next, consider the Monkey-PMv, shown in Figure 2.1A. An FLF model fitted to the data
satisfies the KS goodness-of-fit tests (Figure 2.1B), yet simulations from the model diverge (Fig-
ure 2.1C). Because the peri-stimulus time histogram (PSTH) in Figure 2.1A appears to increase,
we fit a time-varying baseline rate β(t) in place of β0 in (4). That model fits the data some-
what better according to a likelihood ratio test (p = 0.046), and data simulated from it do not
diverge (Figure 2.3C). (To simulate data past the maximum experimental time of one second, we
set β(t) = β(1) for t ≥ 1 sec.) Figure 2.3D,E,F shows a similar outcome when we apply the
same analysis to synthetic data generated from an inhomogeneous Izhikevich model (algorithm
2, Appendix B). Hence, in the presence of a time-varying trial-averaged rate, fitting a constant
rate term can produce instability and fitting a time-varying rate can rectify the problem.

Finally, consider the Human-Cortex data displayed in Figure 2.1D. An FLF model fitted
to the data satisfies the KS goodness-of-fit tests (Figure 2.1E) but two out of ten spike trains
simulated from it diverge (Figure 2.1F). Figure 2.4A shows that trials 8, 9, and 10 have rather
large spike counts compared to the others, so there might be excess trial-to-trial variability or
outlier trials that might cause the instability. To examine the extent to which some trials may be
unusually different than others, we compute the distance of each spike train from a central spike
train ST (defined below) based on a spike train metric devised by [139]. This metric measures
the discrepancy between two spike trains by counting the number of spikes in one spike train
that can be matched by spikes in the other spike train using a smooth deformation of time, or
“time-warping function.” If there are N1 and N2 spikes in two spike trains ST1 and ST2, the
distance between the two spike trains is defined as

d(ST1, ST2) = inf
γ∈Γ

(
N1 +N2 − 2

N1∑
i=1

N2∑
j=1

I[ti=γ(sj)] + η

∫ T

0

(
1−

√
γ′(t)

)2
dt

)
, (2.8)

where I is the indicator function, ti and sj are spike times from ST1 and ST2, respectively, and
Γ(t) is the set of all continuous and piecewise differentiable time warping functions γ such that
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Figure 2.4: Trial-to-trial variability affects simulation stability. (A) Spike train counts and devia-
tions from the central spike train for the Human-Cortex dataset. Trials 8 and 9 might be outliers.
(B) Filters of FLF models (Equation 2.4) fitted to data with and without suspected outliers. The
latter remains mostly below the former for all t, which reduces the possibility of simulating
unstable spike trains. (C) Diagnostic curves for models fitted before and after removing the sus-
pected outliers: the model becomes stable after removal. Synthetic spike trains simulated from
that more are indeed stable (not shown). (D,E,F) Same analysis applied to spike trains generated
from a two-rate Izhikevich model. (D) The dataset is composed of 16 spike trains with a high
firing rate, and four with a low firing rate. (E) spike counts and deviations from the central spike
train clearly identify two groups of spike trains. (F) Diagnostic curves of FLF models fitted to
the full datasets (blue), and to the dataset after the four unusual spike trains are removed. The
former diagnoses an unstable model, the latter a stable model. Spike trains simulated from the
latter model are indeed stable (not shown).
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γ(0) = 0, γ(T ) = T , and 0 < γ′(T ) < ∞. In practice γ is approximated by a piecewise linear
function from [0, 0] to [T, T ] in a discrete grid and the tuning parameter η is set to (N1+N2)·c/2T ,
with 5 ≤ c ≤ 25 [139]. The choice of c in this range has little impact on results. The first term on
the right hand side of (2.8) measures how close ST1 is to the time wrapped ST2, and the second
penalizes the deviation of the time warping transformation from the identity function γ(t) = t.
The central spike train ST , is defined as

ST = arg min
C∈S

n∑
i=1

d(STi, C),

where S is the set of all spike trains. We then compute each distance

di = d(ST , STi), i = 1, . . . , n

and use di to identify unusually discrepant trials.
The deviations di for the Human-Cortex spike trains are shown in Figure 2.4A. Trials 8 and

9 have the largest values of di, and they also have large spike counts. After removing them, the
fitted FLF model becomes stable, according to the diagnostic plot in Figure 2.4C. Figure 2.4B
shows that the filter fitted after excluding the outliers lies mostly below the initial filter, which
reduces the chance of simulation divergence. We note that if we remove only one of these trials
the fitted model is again unstable. Furthermore, if we remove any other 2 trials the fitted model is
unstable. Figure 2.4D,E,F shows that a similar analysis applied to data generated from Izhikevich
models with two different firing rates – 16 spike trains have a large firing rate and four have a
small firing rate – yields similar conclusions: that is, outlier trials can destabilize models, and
careful data pre-processing to remove them might improve stability.

Different kinds of outliers may have to be treated differently. Outlier trials resulting from bad
recordings should be removed. But absent such experimental difficulties it remains important to
consider unusual features of the data, and to avoid models that fail to account for those features.
In the synthetic two-rate Izhikevich dataset, for example, four trials are noticeably sparse, making
a common rate model fit poorly. Methods based on models that allow for excess trial-to-trial
variability are available [135].
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2.4 Stability of FNF models

A B C

Figure 2.5: Diagnostic curves of FNFS models with k = 2, 4, 5 fitted to the Human-Cortex
dataset. The dashed red lines are the models’ maximum firing rates. The largest model with
k = 5 is unstable because the diagnostic curve is above the first sequent after it last intersects it.
The two other models are stable.

To evaluate the performance of FNF models, we extend the method of [53] to obtain a stability
diagnostic, further allowing the baseline rate to be a time-varying function β(t), as in [77]. If we
approximate the firing rate before the last spike t1∗ with the reciprocal of the mean ISI,A0 = 1/τ ,
and replace the ISIs by their expectation in (2.6), we obtain:

log λ(t|Ht) ≈ β(t) +
k∑
k=1

hj(t− t1∗ + (k − 1)τ). (2.9)

As in Section 2, we then use this approximation to derive the approximate PDF of the future ISI
t∗− t1∗, and calculate the firing rate Lh(A0) after t1∗ as the reciprocal of the mean future ISI (see
(2.6)). The diagnostic for a fitted model is again based on a plot of Lh(A0) against A0, and its
stability determined using the rules in the boxed text in Section 2. For example, Figure 2.5 shows
the diagnostics of three FNFS models fitted to the Human-Cortex dataset described in Table A.1,
using the smooth basis in [111]. The largest model (panel A) is unstable, in the sense that spike
trains generated from that model could have unrealistically large number of spikes; the other two
models are stable.

Just as in [53], we can validate our FNF model stability diagnostic against spike train data.
For example, Figure 5 shows the stability map for the FNFS family of models with firing rate
log λ(t|Ht) = β0 +

∑5
j=1 h(t − tj∗), where β0 = −4, h(t) = β1B1(t) + β2B2(t), and B1(t) =

e−t/0.02 and B2(t) = e−t/0.1 are the basis functions shown in the inset of Figure 2A. For each
value of (β1, β2), we (i) simulated a 10 sec. long spike train from the model and deemed the
model divergent if it generated over 900 spikes in the last second, (ii) produced the diagnostic
curve and determined from it if the model was stable, fragile, or divergent, and (iii) plotted
(β1, β2) against the outcomes in (i) and (ii): the two match, which suggests that our diagnostic is
reliable. The many FNFM models we investigated also suggest that the diagnostic is reliable; we
did not provide an example diagnostic map here because all these models were stable across the
entire parameter space.
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Figure 2.6: Stability map for FNFS models with firing rates log λ(t|Ht) = β0 +
∑5

j=1 h(t− tj∗),
where β0 = −4, h(t) = β1B1(t) + β2B2(t), B1(t) = e−t/0.02 and B2(t) = e−t/0.1. For each value
of (β1, β2), we (i) simulated a 10 sec. long spike train from the model and deemed the model
unstable if it generated over 900 spikes in the last second, (ii) produced the diagnostic curve and
determined from it if the model was stable, fragile, or divergent, and (iii) plotted (β1, β2) against
the outcomes in (i), with unstable simulations indicated by black dots, and (ii), in colors. Our
diagnostic is reliable because it matches the simulation well.

Figures 2.5 and 2.7C,F show that all FNFS models with k ≤ 4 and all FNFM models fitted to
the Human-Cortex dataset are stable. They also all pass the two KS tests so they are not obviously
deficient. With many simulation stable models available, it may be desirable to choose one that
also fits the data best according to some criterion. Figure 2.7C,F shows the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) for all these models. Small AIC and
BIC values are desirable because AIC is an estimate of prediction risk, and BIC is inversely
related to the posterior probability of fitting the correct model, in an asymptotic sense; BIC
tends to prefer models with fewer parameters [79]. Both criteria suggest that the FNFS model
with k = 1 fits best; it is also simulation stable. Figure 2.7 shows results from two additional
examples. Among the stable models fitted to the bursty Goldfish dataset, the FNFM model with
k = 6 filters fits best based on AIC, and FNFS model with k = 9 fits best based on BIC. The
synthetic Izhikevich-burst dataset is bursty as well; see Figure A.2A. Its best simulation stable
models are FNFM models with k = 7 and k = 4 according to AIC and BIC, respectively.

To summarize, our general strategy is to fit FNF models for several values of k and choose
a model that is simulation stable and also fits the data well according to criteria such as the KS
tests, and AIC or BIC. (Note that because AIC and BIC are obtained from a finite data sample,
they have variability, so that similar values should be considered equal.) If no stable model can
be found, a model that provides a good fit may be used after constraining its parameters to lie in
the parameter subspace corresponding to stability, as [53] suggest.
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A B C

D E F

Figure 2.7: (A,B,C) AIC and (D,E,F) BIC values for several FLF, FNFS , and FNFM models fitted
to three datasets. (FNFS and FLF values are equal in panel F, and the latter mask the former.)
Simulation unstable models and models that failed the original and/or the discrete KS test are
indicated by red squares and crosses. Many models are simulation stable; the FNFM models
fitted here are all simulation stable. Stable models that achieve a desirable criterion, e.g. low
AIC, could be chosen.
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A B C

Figure 2.8: (A) Goldfish dataset spike trains and simulated spike trains from FLF, FNFS (k = 5),
and FNFM (k = 5) models fitted to the dataset: despite modeling the effects of past spiking
differently, both type of models can generate busts similar to those in the dataset. (B) Filters of
the FNFS models fitted to the Goldfish dataset with past number of spikes k = 1, ..., 9. When
k ≥ 5, the filters are almost identical, suggesting that effects of spikes prior to 5 spikes back do
not contribute much to the fits. The fitted FLF filter has length Th = 0.19 sec., which contains
4 past spikes on average; it overlaps with the FNFS filters with k ≥ 5, suggesting that these
models are functionally similar (although FNFS models are more likely to be stable). (C) Fitted
filters of an FNFM model with k = 5: the filters are substantially different, suggesting that burst
behavior is captured by differentially weighing the contribution of previous spikes according to
their timing and ordering. A likelihood ratio test comparing the FNFS and FNFM models with
k = 5 strongly favors the latter (p� 0.001).

2.5 Comparison of FNF and FLF models
A key feature of FLF models is that they sum the effect of all spikes in the filter window of length
Th, which puts no limitation on the number of past spikes influencing the firing rate at t, even
if Th is short. Therefore, if a fitted intensity function has a rising trend, an increasing number
of spikes could fall within the filter window, and this could increase the firing rate, eventually
yielding unstable simulated spike trains. In contrast, FNF models (Equation 2.3) and also the
extension to time-varying baseline rates) model history with a fixed number of spikes, k, and
if the baseline rate β(t) and all of the individual filters are bounded above, the firing rate will
be bounded. Furthermore, by allowing multiple filters, FNFM models can diminish the effects
of multiple spikes that occur, somewhat infrequently, in close temporal proximity. Thus, in
principle, FNFM models tend to be stable, and we did not find any cases in which FNFM models
were unstable. See, for example, the results in Figure 2.7. However, we have also seen that, in
some cases, the fitted FNFS firing rates can be large enough to become unstable (see Figures 2.5A
and panels C and F of Figure 2.7), and for that reason we developed a stability diagnostic and
a strategy to stabilize a divergent FNF model in Section 4. We could apply a similar strategy to
FLF models, using several filter window lengths Th in place of several values of k. [53] fitted an
FLF model with Th = 0.35 sec to the Human-Cortex dataset, which was unstable. Figure 2.7C,F
shows the stability status, AIC, and BIC values of fitted FLF models for several values of Th.
(FLN and FNFS models have similar AIC and BIC values that are hard to distinguish from one
another on the plots.) The FLF model with a very short filter length of Th = 0.177 fits the
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data well (it passes both KS tests and has smallest AIC and BIC) and is stable. Thus, while
FNFM models seem to be inherently less likely to be unstable, we can not make any universal
comparative statement about stability, and, importantly, fitting with either type of model requires
care. A remaining issue is whether there are interesting cases in which the additional flexibility
of FNFM models is useful. We now present a few additional comparative results.

Figure 2.7 provides a summary of fits for the Human-Cortex dataset. We see that FNFS
models have AIC and BIC values similar to, or smaller than FLF models. The FNFM models
have higher AIC, presumably because the additional flexibility of using several filters is not
needed to fit the data well yet it increases complexity. On the other hand, the FNF models fitted to
the Izhikevich-burst data set have smaller AIC and BIC values than the FLF models, and FNFM
models have smaller AIC and nearly all smaller BIC values than FNFS models, presumably
because the data are bursty and thus are not fitted adequately with simpler models. We also used
a real data set, labeled Goldfish, which consists of recordings from retinal ganglion cells in vitro
that exhibit bursting firing [96, 132]; see Table 1 and Figure 8A. The AIC and BIC values are
again smaller for most FNF models.

These comparisons are substantiated in Figures 2.8 and A.2. Figure 2.8A displays the Gold-
fish data spike trains together with simulated spike trains from a FLF model fitted to the data,
having filter length Th = 0.19 seconds containing five past spikes on average, as well as from fit-
ted FNFS and FNFM models with k = 5: despite modeling the effects of past spiking differently,
both type of models can generate busts similar to those observed in the data. Figure 2.8B dis-
plays the filters of FNFS models fitted to the Goldfish dataset with past number of spikes k = 1
to 9. When k ≥ 5, the filters are almost identical, suggesting that effects of spikes prior to 5
spikes back do not contribute much to the fits. The overlayed fitted FLF filter with Th = 0.19
sec. overlaps with the FNFS filters with k ≥ 5, suggesting that these models are functionally
similar (although, based on our previous analysis, FNFS models are more likely to be stable).

Models with a single filter, as in Figure 2.8B, assume that the effect of any past spike tj∗ on
the firing rate at time t depends only on the elapsed time t− tj∗ without considering the number
of spikes that may have occurred between tj∗ and t. For the Goldfish data, this is a question-
able assumption: a likelihood ratio test (LRT) comparing FNFS and FNFM models with k = 5
strongly favors the latter (p� 0.001). Furthermore, the fitted filters of the FNFM model, shown
in Figure 2.8C, are substantially different, suggesting that burst behavior is captured better by
differentially weighing the contribution of previous spikes according to their timing and order-
ing. We may interpret these multiple distinct filters by observing several characteristics of the
data (see [132]): the average burst length is roughly 25ms, a burst ISI is around 7ms, the median
number of spikes in a burst is 4, and bursts occur, on average, roughly every 200 ms. With these
in mind, the narrowness and height of the first filter suggests that the effect of the first spike
back is strongly influenced by bursting, i.e., when a spike occurs less than 25 ms in the past it is
likely that the cell is in a bursting state and the probability of spiking is increased; filters 2 to 4,
corresponding to the 2nd to 4th spikes back, diminish the firing rate starting around 25 ms in the
past, which presumably signals that when these multiple spikes back are spaced further than 25
ms in the past, the neuron has transitioned to a “down” state; the effect of the 5th spike back is to
increase the firing rate after a longer duration, peaking around 200 ms in the past, reflecting an
expectation that the neuron has already finished its pause after a burst and has now returned to
the bursting state. Figure A.2 in the appendix contains the corresponding plots for the synthetic
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Izhikevich-inhomo dataset, from which similar conclusions can be drawn.
In summary, FNFM models do, sometimes, provide better fits than FLF or FNFS models, but

this is an empirical question that must be answered for each set of data separately. We should
also note that models that incorporate hidden burst and non-burst states, as in [132], may provide
even better descriptions of bursting spike train data.

2.6 Discussion
We have attempted to provide a thorough analysis of the instability phenomenon identified by
[53]. We improved the diagnostic of [53] and extended it to FNF models; we noted that time-
varying baseline rates and excess trial-to-trial variability can cause instability of models that do
not account for these effects; we introduced a method to detect outlier trials and illustrated its
use; and we compared FNF with FLF models in several examples.

It is perhaps worth emphasizing that FNFM models, with sufficiently large k, were always
stable in the examples we investigated, regardless of whether there were stable FLF or FNFS
models. See, for example, Figure 2.7. That figure, together with Figures 8 and 10, also illustrate
the way differing variations in spiking behavior may suggest different numbers of filters to use
in an FNF model, according to standard model-fitting procedures.

Overall, we concluded that FNFM models tend to avoid instability, and can provide helpful
flexibility in some cases, but we cautioned that selection among the different FLF and FNF
models must be done carefully based on the unique characteristics of particular data sets.

Our code is available on https://github.com/
AlbertYuChen/Divergent Spiketrain public.git.
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Chapter 3

A biophysical and statistical modeling
paradigm for connecting neural physiology
and function

This is a collaborative work with Nathan G. Glasgow, Alon Korngreen, Robert E. Kass, and
Nathan N. Urban. We will submit the paper to Journal of Computational Neuroscience.

To understand single neuron computation, it is necessary to know how specific physiological
parameters affect neural spiking pattern that emerges in response to specific stimuli. Here we
present a computational pipeline combining biophysical and statistical models to provide a link
between variation in functional ion channel expression and changes in single neuron stimulus en-
coding. More specifically, we create a mapping from biophysical model parameters to stimulus
encoding statistical model parameters. Biophysical models provide mechanistic insight, whereas
statistical models can identify associations between spiking patterns and the stimuli they encode.
We used public biophysical models of two morphologically and functionally distinct projection
neuron cell types: mitral cells (MCs) of the main olfactory bulb, and layer V cortical pyrami-
dal cells (PCs). We first simulated sequences of action potentials according to certain stimuli
while scaling individual ion channel conductances. Next, we fit a point process generalized lin-
ear model (PP-GLM). A parameter mapping between two types of models can thus be built. In
addition, we reconstructed stimulus from the fitted encoding model. This reveals how changes
in individual ion channel conductances result in changes in encoding of specific frequency com-
ponents or stimulus features. This computational pipeline combines models across scales and
can be applied as a screen of all channels in any cell type of interest to identify how individual
channels influence single neuron computation.

3.1 Introduction
Understanding how the levers that control a cell’s physiological properties give rise to single
neuron stimulus encoding is a long standing challenge in neuroscience [54]. In this paper, we
aim to build a bridge from a cell’s biophysical properties to its stimulus encoding properties in a
quantitative way.
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A cell’s physiological and computational properties emerge from biophysical mechanisms
such as its membrane properties, ion channel expression and distribution, and morphology. There
is considerable variation in both biophysical properties [57, 58, 74, 118, 119] and stimulus en-
coding properties [5, 6, 58, 109, 119]. This is partially due to variation in ion channel expression
[5, 6, 58, 109, 119]. Even in recent patch-seq studies [58, 119], information about what ion chan-
nel subtypes are formed and their subcellular distribution is inadequate. This lack of information
about functional ion channel expression makes the link to the computational behavior difficult to
assess, which is an essential step to understand how variation in observed biophysical building
blocks contributes to a diverse and flexible neural code in single cells, circuits, and ultimately
behavior.

At present, gathering enough data in experiments to estimate parameters of a detailed bio-
physical model, ion channel properties and computational model properties are difficult and typ-
ically low yield. There are some recent efforts on determining subsets of properties individually
through experiments [1, 1, 56, 65, 84, 85], but it is still infeasible to robustly acquire both bio-
physical and computational properties in the same experiment. So in this study, we employ
biophysical simulations using compartmental Hodgkin-Huxley models. This allows full con-
trol and interrogation of the underlying mechanisms, as well as an ability to simulate complex
responses to arbitrary stimuli. We use these models as an approximation of how a cell would
respond to a given stimulus, but with known functional ion channel expression and morphology.
We utilize existing templates with rigorous fitting and tuning [1, 84, 85].

Despite their delicate details, biophysical models lack an intuitive interpretation of their com-
putational properties, just like any recording from a real neuron. Statistical models, such as point
process generalized linear model (PP-GLM), in contrast, have a simpler set of parameters solely
focusing on the encoding process [79, 111, 134]. Nevertheless, statistical models lack mechanis-
tic insight into what drives stimulus encoding patterns. We aim to leverage the strengths of each
type of model by mapping their parameters to further our understanding of the link between a
cell’s biophysical properties to stimulus encoding. A closed-form of such mapping is intractable,
so we choose a data-driven strategy. In this paper, we constrained our scope to how variation in
individual ion channel conductances relates to stimulus encoding.

In this work, we develop a pipeline and apply it to two morphologically and functionally
distinct projection neuron cell types: the mitral cell (MC) of the mammalian main olfactory bulb
[14], and the L5 cortical pyramidal cell (PC) [1]. However, this pipeline can be applied to any cell
type of interest, given availability of biophysical models, to understand the biophysical mech-
anisms driving stimulus encoding. How variation in functional ion channel expression impacts
computation in a single cell is yet to be determined, let alone how such variation in biophysical
properties affects computation across scales in local circuits, between brain regions, and across
the brain. Nevertheless, the current pharmacological approach to treating many nervous sys-
tem disorders is by direct or indirect modulation of biophysical features, namely ion channels.
With this pipeline, we aim to fill the gap in understanding how functional ion channel expression
contributes to single neuron stimulus encoding and to provide some guidance for experimental
studies.
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3.2 Methods
The goal of the method is to quantify how ion channels affect stimulus encoding. Biophysical
models, like morphologically detailed compartmental Hodgkin-Huxley type models, capture bi-
ological mechanisms, but lack clear interpretation of stimulus encoding. Statistical models, like
the PP-GLM, represent stimulus response features and incorporate post-spike history in a com-
putationally tractable manner, but lack mechanistic insight [137]. Our method links these two
types of models by combining biophysical model output to fit PP-GLM parameters, and then
relating PP-GLM parameters to the underlying biophysical parameters. The combined analysis
pipeline is depicted in Fig. 3.1. Each portion of the analysis pipeline will be expanded upon in
the following sections. We first set up a realistic compartmental Hodgkin-Huxley simulator and
proper input signal (Fig. 3.1A). Next, we perform the biophysical simulation to collect the spike
trains and repeat the process with different channel conductances (Fig. 3.1B). Last, we jointly
train the model using the spikes train with different channel conductances and identify which
PP-GLM features are highly influenced by the channel conductances (Fig. 3.1C). Although we
have not done so here, the pipeline can be applied on any existing conductance-based biophysi-
cal model, and may guide further experimental testing and validation of novel biological insights
(Fig. 3.1D).
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Figure 3.1: The combined biophysical and statistical modeling paradigm. A Schematic of bio-
physical modeling approach to simulate spike trains. See section 3.2.1. B Conductance of the
kth channel (gk) in the model multiplied by a scaling factor to globally increase or decrease gk.
Shading indicates gk increased (red) or decreased (blue) compared to control (gray). See section
3.2.1, Fig. 3.2. C A summary of channel conductance influence on stimulus filter. The dot shows
the total variance of the stimulus filter features across different channel conductances (defined in
Eq. 3.8). Each column indicates a specific stimulus filter feature in a certain time range. Darker
color means the feature is more strongly modulated by channel conductance (see section 3.2.3,
Fig. 3.4 and 3.5). For example, KCa channel strongly modulates neural response roughly around
5 to 30 ms post-stimulus. Data are fit with a statistical model PP-GLMs (see section 3.2.2 and
Fig. 3.3, 3.4). D Examples of next steps for using the pipeline to explore stimulus encoding.

3.2.1 Biophysical model
In order to understand how functional ion channel expression affects stimulus encoding, it is
necessary to have confidence in many parameters of ion channel dynamics and distributions. It is
experimentally difficult to gather sufficient information about both the cell’s functional ion chan-
nel expression and the cell’s stimulus encoding in a typical whole-cell patch clamp recording due.
To overcome these experimental challenges, we instead used detailed biophysical models with
necessarily known functional ion channel expression. Then we simulated somatic membrane
voltage (Vm) responses to injection of pink noise to evaluate the stimulus encoding properties
of a given model. The biophysical modeling portion of the pipeline is shown in Fig. 3.1A-B.
We tailored our biophysical model simulations on an idealized version of an actual patch clamp
experiment to collect spiking data, later used to fit the statistical model (Fig. 3.1C).

Biophysical model simulations were made in NEURON v7.4 or 7.6 [27] on a personal com-
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puter or the Pitt Center for Research Computing cluster. Simulations were performed with fixed
time-step integration at 40 kHz. We used two previously published neuron models with code
available from ModelDB [66]. These included two distinct cell projection cell types: the rodent
olfactory bulb MC [14], and the rodent L5 PC [1]. Each model has detailed 3D morphology
based on reconstructions and non-uniformly distributed conductances in the somatic and den-
dritic compartments which have been constrained to data. Ion channel kinetics were based on
Hodgkin-Huxley type models [67]. We assume here that morphology was known, spatial distri-
butions of ion channels were known, and that ion channel kinetics were known. Therefore, we
have not varied any of the existing morphological, distribution, or kinetics parameters from their
previous implementations.

Our goal is to simulate a whole-cell patch clamp experiment used to ascertain a cell’s stim-
ulus encoding properties. Typically this is through the somatic current clamp configuration si-
multaneously recording somatic Vm and injecting a stimulus with a broad range of frequency
components. To exclude any confounding circuit effects, synaptic activity is often blocked phar-
macologically, thus our models do not contain any synaptic conductances. All biophysical model
simulations were based on the current clamp configuration, with somatic stimulus current injec-
tion and somatic Vm recording.

Broadband noise is a rich source of stimuli across a wide range of the frequency spectrum
often used to approximate the collection of synaptic events reaching the soma [133]. We used
100 trials of a 3 s stimulus of broadband pink noise riding on a direct current (DC) offset. The
stimulus was Gaussian white noise convolved with an alpha function: α(t) = (t/τ) ∗ exp(−t/τ)
with τ = 3 ms [48]. In an experiment, the same frozen pink noise stimulus is repeated over
many trials leading to some level of trial-to-trial variability in spike time reliability. However,
our models are deterministic and have no trial-to-trial variability. To mimic biological trial-to-
trial variability we produced sets of correlated pink noise trials that vary from trial-to-trial, as
described previously [26]. Each trial’s stimulus is a linear combination of a parent noise and a
newly generated noise stimulus. The parent noise is shared between all noise trials, but not used
as a stimulus itself. For each model, we chose a DC offset, noise standard deviation, and the trial-
to-trial noise correlation empirically, by comparing biophysical model outputs to experimental
values.

To account for biologically realistic parameter variation, we varied individual ion channel
conductances globally by a scaling factor. A set of conductance scaling factors were chosen to
represent a biologically realistic parameter variation of about 6-fold [99], while also including
nearly complete removal (99%) of a conductance. Although the complete absence of a conduc-
tance may not be likely under normal cell-to-cell variation, it may represent a genetic ablation,
mutation, or near-fully effective pharmacological block. The scaling factors set included 0.01,
0.05, 0.2, 0.5, 0.8, 1.0, 1.2, 1.5, 2.0, 3.0 (Fig 1b). We simulated Vm in response to the same 100
trials of correlated pink noise for each ion channel and for each scaling factor (Fig. 3.1B). The
resulting spiking data were used to fit the PP-GLMs. The spike times were defined as the time
when Vm crossed the threshold of 0 mV. Then the spike times were binned into 1 ms intervals.
The time bin was small enough that each bin contains at most one spike.
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3.2.2 Statistical model
The PP-GLM has been widely applied in electrophysiological recordings to model the patterns
of spike trains due to its flexibility, simplicity and versatility [79, 111, 134, 137]. The PP-GLM
includes a stimulus filter, a post-spike history filter, a baseline, and a nonlinear link function as
shown in Fig. 3.3D. The probability of observing a spike at j’th time bin is [p(i)]j given the
stimulus and the post-spike history up to time bin j (the conditional notation is removed for
simplicity). The subscript (i) indicates the quantity for ion channel conductance scaling factor
gi (see section 3.2.1). For one time bin j, the influence of the stimulus is

∑Tk
t=0 k(t)s(j − t), Tk

is the length of the stimulus filter k. s is the vector of the stimulus. The calculation for all time
bins is equivalent to convolution, so the notation is simplified to [k ⊗ s]j , where ⊗ denotes the
convolution, [·]j indicates the data at the j’th time bin. Similarly, the influence of the spikes is∑Th

t=0 h(t)y(j − t) = [h ⊗ y]j , Th is the length of the post-spike history filter h. y is the vector
of binary spike trains. logit([p(i)]j) is modeled as a linear combination of the variables, which is
also known as the logistic regression.

logit([p(i)]j) = [k(i) ⊗ s]j + βbaseline
(i) + [h(i) ⊗ y(i)]j (3.1)

k(i)(t) = βK(i),1k1(t) + ...+ βK(i),dKkdK (t) (3.2)

h(i)(t) = βH(i),ih1(t) + ...+ βH(i),dHhdH (t) (3.3)

[x(i)]
T
j :=

(
[k(i),1 ⊗ s]j, ..., [k(i),dK ⊗ s]j, 1, [h(i),1 ⊗ y(i)]j, ..., [h(i),dH ⊗ y(i)]j

)
(3.4)

In this PP-GLM, we need to estimate the baseline, the stimulus filter k(i)(·) and the post-spike
history filter h(i)(·). Both filters are fitted using with bases K,H . K has dK bases {k1, ..., kdK},
H has dH bases {h1, ..., hdH}. β

K is the subset for stimulus filter, βH is the subset for the post-
spike history filter. βbaseline is a scalar representing the baseline. The design of the bases follows
[111]. These bases can be seen as manually engineered features of the neuron firing model.
As shown in Fig. 3.4B, the bases are bell-shaped curves, each one makes a contribution to the
shape of the filter in different lag ranges. The bases are narrower in duration near the spike time
(around lag 0 ms), whereas they are wider in duration further from the spike time (larger lag).
This corresponds to a neuron’s dynamics, which are more complex close to spike initiation and
less complex further from the spike initiation. An example of the linear combination of stimulus
bases and coefficients to generate a stimulus filter is depicted in Fig. 3.4A-B. The coefficients
can be stacked into a vector β(gi) := β(i) ∈ RdK+1+dH . The features of PP-GLM in Eq. 3.1 is
stacked into [x(i)]j in Eq. 3.4 as the covariates for regression, so logit([p(i)]j) = [x(i)]

T
j β(gi) is in

linear form. The log-likelihood of one spike train with T time bins is,

`(i)(β(gi)) =
T∑
j=1

(
[y(i)]j log[p(i)]j + (1− [y(i)]j) log(1− [p(i)]j)

)

=
T∑
j=1

(
[y(i)]j[x(i)]

T
j β(gi)− log(1 + exp{[x(i)]

T
j β(gi)})

) (3.5)

The PP-GLM is a powerful model that can capture a rich family of spiking patterns [137].
We applied the PP-GLM to spike trains simulated from each biophysical model where an in-
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dividual ion channel conductance was scaled differently for each simulation. Thus, for each
unique set of ion channel conductances we obtained a set of corresponding PP-GLM coefficients
(β(gi)) that reflect differences in firing patterns. However, the trend of the changes of coefficients
with changing ion channel conductances is typically noisy, making it difficult to determine how
changes in coefficients relates to ion channel conductance. The next section discusses a method
to overcome this problem by jointly training different β(gi) together.

3.2.3 Linking biophysical and statistical models
To bridge the biophysical model and the statistical model, we create a mapping from the bio-
physical model parameters to the PP-GLM parameters. We want to study how the PP-GLM
features, coefficients β(g), change as functions of the ion channel conductance scaling factor g.
This mapping can quantify the influence of ion channel conductance on the spike train patterns.
The features of the spike trains are not limited to PP-GLM coefficients. We discuss other options
in section 3.4.

Spike trains with different ion channel conductances can be fitted separately, but this usually
leads to noisy and unstable results. To create a smooth mapping between biophysical model
parameters and PP-GLM parameters, we developed the following model in Eq. 3.6. An example
can be found in Fig. 3.4, a comparison between a non-smoothed model (Fig. 3.4C,E,G,H) and a
smoothed one (Fig. 3.4D,F,K,L). As will be shown later, some changes of the statistical model
can be shrunk to zero, meaning the corresponding spike train patter is not modulated by the
channel conductance.

In the biophysical simulation, the ion channel conductance is scaled with factors (g1, g2, ..., gB)
in increasing order (section 3.2.1), and the fitted PP-GLM parameters will change accordingly.
We assume this transition between adjacent PP-GLM parameters is smooth. The PP-GLM mod-
els with smooth transitions are fitted jointly in Eq. 3.6. The changes of β(gi) are constrained
to obtain the smooth trend. This technique is also known as the trend filtering used to smooth
the signal in a non-parametric way [87, 113]. As gi may not be set using equal step sizes due to
the experiment settings, the changes of the PP-GLM with larger steps are expected to be larger
than those with smaller steps. The term 1/(gi+1 − gi) in the penalty is used to normalize the
step size. `1 norm is used in the penalty term so that small changes can be shrunk to zero. If the
penalty hyperparameter λ = 0, it is equivalent to fitting each dataset independently. If λ = ∞,
it is equivalent to fitting each dataset using the same set of coefficients (β(g1) = ... = β(gB)).
The optimization uses the alternating direction method of multipliers (ADMM) algorithm, see
Appendix for implementation details. The algorithm was coded in Matlab R2018a1.

min
β(g1),...,β(gB)

B∑
i=1

−`(i)(β(gi)) + λ
B−1∑
i=1

1

gi+1 − gi
‖β(gi)− β(gi+1)‖1 (3.6)

For the selection of the penalty hyperparameter (λ), there is a rough trade-off between the
smoothness of the change β(g) as a function of g and goodness-of-fit. When λ is small, the
coefficients β(g) have large fluctuations. When λ is large, the coefficients β(g) change smoothly,

1All code is available on: https://github.com/albertyuchen.
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but int undermines the goodness-of-fit. The tuning parameter is selected from the set using
grid-search λ ∈ Λ = {λmax, λmaxα, λmaxα

2, ..., λmaxα
k−1, 0}, where k = 22 and α = e−1.

When λ = λmax, the estimated vector β(g) is a constant of g. (See Appendix for details about
calculating the λmax.) To get the trend as smooth as possible, while maintaining a good fit, λ is
selected using the following rule. It selects λ as large as possible, while maintaining a reasonable
performance on the test dataset that is as good as the best one.

λ∗ = arg max
λ∈Λ

{
λ :

B∑
i=1

`test
(i) (β(gi, λ)) > −ζ + max

η∈Λ

B∑
i=1

`test
(i) (β(gi, η))

}
(3.7)

where `test
(i) is the log-likelihood on the test dataset. 70% trials were used for training, and 30%

trials were used for testing. β(gi, λ) is obtained from Eq. 3.6 with respect to gi under the
penalty hyperparameter λ. The likelihood ratio on the test dataset between the one with the
largest likelihood value and the one selected with λ∗ is at most ζ . ζ > 0 is set as a very small
value (ζ = log 1.0005) so that the difference is not significant. Thus, λ is constrained in range
where the log-likelihood is greater than −ζ + maxη∈Λ `test

(i) (β(gi, η)) to ensure the selected
model has satisfactory performance. Then λ is chosen with the largest value among Λ to get the
smoothest trend possible of β(gi). In section 3.4, we will show that this selection strategy can
achieve a good channel conductance prediction performance as well. The fitted response filters
k(t, gi) := k(i)(t), h(t, gi) := h(i)(t) and b(gi) := βbaseline

(i) (t) obtained under the λ∗ show how
the channel conductance factor g influence the shapes of the filters. The shapes of the filters
reflect the firing patterns and how the neuron responds to the external stimulus and its post-spike
history.

3.2.4 Quantifying how ion channel conductance affects the statistical model
The PP-GLM captures the statistical features of spike train patterns. Scaling ion channel conduc-
tances can change spike firing patterns, and these changes will be reflected in PP-GLM parame-
ters. To quantify the relationship between PP-GLM parameters and varying ion channel conduc-
tances, we define the sum of slopes (SS) for the coefficients β(gi) as follows. The change of the
coefficients with changing ion channel conductance represent the change of the corresponding
features of the stimulus filter (Eq. 3.2) and post-spike history filter (Eq. 3.3).

SS(λ)[q] =
B−1∑
j=1

1

gj+1 − gj
|β(gj)[q] − β(gj+1)[q]| (3.8)

The subscript [q] denotes the entry index of a vector. Under a certain penalty hyperparameter λ,
some coefficients β(g) may become constants of g. However, other coefficients may have a large
variance, indicating that these coefficients are more correlated with the ion channel conductance
than those that are constant. Coefficients with a large SS indicate features of the PP-GLM that
are strongly affected by an ion channel conductance and thus how an ion channel conductance
affects a given feature of stimulus encoding. The unit of SS is the unit of β divided by the unit of
gi. In our case, the unit of β is logit spikes/sec, the unit for gi is arbitrary as it is the scale of the
conductance. We discuss additional methods of quantifying relationships between ion channel
conductance and PP-GLM parameters (see section 3.4).
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3.2.5 Model Verification
To verify that the method of PP-GLM fitting with trend filtering technique (Eq. 3.6) could recover
the trend of the changes defined in Eq. 3.8, we designed the following set of simulations. We
used a sequence of PP-GLM models as the true model with smooth transitions, and compared
the estimation with the true model. The model performed well in the simulations. The details
are in Appendix.

3.3 Results
Here we will demonstrate the entire combined biophysical and statistical modeling pipeline. As
this pipeline screens all channels present in each model, we focus only a subset of ion channels
to highlight the benefits of this method. We focus primarily on the MC model KAchannel, as it
demonstrates the utility of the pipeline and as we have previously examined changes information
processing from reducing MC KAchannel conductance experimentally [109]. Note that while this
method can be applied to any ion channel conductance in principle, training PP-GLMs requires
spikes. Therefore, if scaling an ion channel conductance results in few or no spikes, then PP-
GLMs cannot be trained. The following sections detail the considerations and analyses applied
to evaluating the role of given ion channels in stimulus encoding for each step in the pipeline.
See the Methods in section 3.2 for detailed implementation instructions.
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3.3.1 Biophysical modeling
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Figure 3.2: Biophysical models. A Morphology of the MC. B MC channel conductance pa-
rameters in subcellular compartments. C, Morphology of the PC. D PC channel conductance
parameters in subcellular compartments as a function of distance from the soma. E An example
pink noise stimulus injected into the somatic compartment. F, The simulated Vm recorded in
the somatic compartment resulting from injected pink noise stimulus. G-I Detail view of shaded
gray region of E-F of the mean stimulus (black lines) and 10 individual pink noise stimuli (gray
traces) (G), with corresponding 10 Vm recordings (H) and raster plot of all 100 trials (I). J-M,
Basic statistics of the the simulated trials as a function of ion channel conductance scaling factor
for the MC model KA(J,K) and the PC model CaHVAchannel (L,M).

We demonstrate the pipeline using two morphologically and functionally distinct projection neu-
ron cell type models, the MC model [14], and the PC model [1]. We chose these biophysical
models due to the strict data-driven constraints used to set the morphology and optimize the
parameters defining each model’s functional ion channel expression. Both biophysical models
also contain non-uniform subcellular ion channel distributions including active conductances in
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dendritic compartments (Fig. 3.2A-D). Although we do not consider dendritic inputs here, these
models implicitly capture any effects active dendritic conductances may have on stimulus en-
coding when driven by somatic spiking. Tuning the parameters of biophysical models is often
underconstrained by data and typically many sets of model parameters can fit the data equally
well [100, 131]. Both the MC and PC models used here took advantage of varied electrophysio-
logical datasets and a reduced parameter fitting procedure. Subsets of parameters of ion channels
are estimated using datasets where ion channels of interest have been isolated. This type of re-
duced parameter fitting procedure, or parameter peeling procedure, has been shown to greatly
reduce the variability of parameter estimates and avoid local minima [85]. The MC model used
data collected from multiple cells as an average MC model behavior, whereas the PC model
uses data collected from single cells, taking advantage of more robust parameter estimation by
using recordings from the somatic and dendritic compartments [84, 85]. Thus, both biophysical
models used here have strongly data-driven morphological and functional ion channel expression
parameters.

Our goal is to use the biophysical models to simulate an idealized experiment by which we
would collect data to fit PP-GLMs, while functional ion channel expression is known. The bio-
physical models are used to simulate somatic Vm responses to injected pink noise stimulus (Fig.
3.2E-I). The stimulus is broadband and is meant to approximate synaptic input summation at
the soma [98] (see section 3.2). Sticking to idealized experimental constrains, we simulate a 3
s stimulus repeated for 100 trials. To generate trial-to-trial variation in spike timing in the de-
terministic biophysical models, we incorporate correlated noise into the pink noise stimulus (see
section 3.2). The stimulus DC offset, standard deviation, and trial-to-trial stimulus correlation
are chosen to reflect experimental firing rates and trial-to-trial spike time correlations at control
(1.0) scaling factor (Fig. 3.2J-M). We repeat the same biophysical model idealized experimental
simulation for every ion channel in a model, while globally scaling the ion channel conductance
by a set of scaling factors: 0.01, 0.05, 0.2, 0.5. 0.8, 1.0, 1.2, 1.5, 2.0, 3.0 (see section 3.2; Fig.
3.1B, Fig. 3.3B). Unless otherwise mentioned, through the remainder of the text, black traces
correspond to control or scaling of 1.0; blue traces correspond to decreased scaling factors, with
the hue darkening with decreasing scaling; and red traces correspond to increased scaling fac-
tors, with the hue darkening with increased scaling. We then use this idealized experiment of the
simulated spike times in response to the stimulus on each trial as the basis for fitting PP-GLM
parameters (Fig. 3.1C; Fig. 3.3D-G).

Focusing on the MC KAchannel and the PC CaHVAchannel shows marked differences in scal-
ing each ion channel conductance on firing rate and trial-to-trial correlations (Fig. 3.2J-M).
However, the spike firing dynamics are vastly more complicated than these simple measures can
capture. For instance, examining a portion of the stimulus over all trials of all scaling factors
for the MC KAchannel, we see profound changes in spike firing patterns within and between
trials, even with subtle changes in ion channel conductance scaling factors (Fig. 3.2B-C). When
decreasing the MC KAion channel conductance from control, spike firing becomes more regular
at 0.8 scaling factor, but then loses all trial-to-trial structures at 0.5 scaling, before regaining reg-
ular firing when decreasing the ion channel conductance further (Fig. 3.3B). Such changes are
also captured as continuous PSTHs (Fig. 3.3C). These types of changes are not well captured by
simple measures such as firing rates or trial-to-trial correlations. Therefore, to more accurately
and systematically quantify the statistical patterns of the spikes, we introduce the PP-GLM in the
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following sections (Fig. 3.3D-G). The difference between firing patterns will also be depicted
by the PP-GLM, while capturing the stimulus encoding features in a set of PP-GLM parameters.
This link between biophysical models with known functional ion channel conductance and sta-
tistical models that capture high-dimensional patterns of stimulus encoding is the key advance of
this pipeline.

3.3.2 Fitting PP-GLMs
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Figure 3.3: PP-GLM – a stimulus encoding model. A-C Examples of MC biophysical model
simulations of KA channel in the same section of simulation time in the column: A, one stimulus
trial. B Spike raster plot for all 100 trials for the indicated conductance scaling factor. C PSTH
for conductance scaling of 1.5, 1, and 0.05. D PP-GLM diagram. E-G Fitted PP-GLM stimulus
filters, post-spike history filters and baselines for different conductances. Colors correspond to
the conductance scaling factor legend. H,I The differences between stimulus filters and post-
spike history filters. The filter with scalar 1 is used as reference shown in dark. The seemingly
small difference between filters is critical in the goodness-of-fit as will be shown later.

The stimuli and spike trains from biophysical model simulations described above are used as
inputs to fit PP-GLMs (see section 3.2; Fig. 3.3D-G). As discussed above, the spike firing
patterns change with scaling the MC KAion channel conductance (Fig. 3.3A-C). The changes in
spike firing patterns are reflected in changes of the PP-GLM parameters for the stimulus filters,
the post-spike history filters, and the baseline (Fig. 3.3E-G).
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The effect of MC KAchannel conductance scaling on the baseline is marked. Increasing the
channel conductances significantly inhibits the firing rate which matches well with the conduc-
tance dependence of the overall firing rate (Fig. 3.2j; Fig. 3.3G). Fitted stimulus and post-spike
history filters are shown in Fig. 3.3E and F. The details of the difference is shown by calculating a
simple subtraction of the control scaling factor from all scaling factors (Fig. 3.3H, I). The control
scaling factor subtractions reveal how increasing MC KAchannel conductance affects different
portions of the stimulus filters and post-spike history filters (Fig. 3.3H, I). Some of the changes
in PP-GLM filters are seemingly small and noisy. Does KAchannel only affect average firing rate
(baseline) but not the stimulus response (stimulus filter) or inter-spike dependency (post-spike
history filter)? We will show in the next section that some part of the change is due to data
noise, even it is large, for example the beginning part of the post-spike history filter. Some part
is modulated by channel conductance even the change is relatively small, but it is critical in the
goodness-of-fit as will be shown later. Forcing all filters to be the same across different chan-
nel conductances leads to very poor fit. Next, we will discover the clear trends in the PP-GLM
parameters with changing ion channel conductances.
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3.3.3 Fitting PP-GLMs with trend filtering
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Figure 3.4: Jointly fitted PP-GLM. The example is about the MC model KA channel. A The stim-
ulus filter (blue trace; k) constructed from Eq. 3.2 (lower), for the KA channel with conductance
scaling factor (gi) of 1 and penalty hyperparameter λ of 0. The relative values of coefficients
(colored bars; βKi ) corresponding to the peak times of stimulus bases functions (ki) as in B. B
The bases functions ki or hi in Eq. 3.2 and 3.3 with peaks identified by dots to correspond to
the ith coefficient (colored dots; βKi ). The unique set of fitted coefficients combine to generate
a stimulus filter as in A. C, D The values of all stimulus coefficients as a function of gs with
no penalty (λ = 0; C) and the selected penalty hyperparameter λ = λ∗ according to Eq. 3.7.
Trace colors correspond to coefficient indices in B. The two plots have the same y-axis range.
E, F the coefficients for post-spike history filters similar to plots C, D. The two plots have the
same y-axis range. G, H, K, L Overlapped stimulus filters and post-spike history filters across
channel conductance scaling factors with no penalty and the selected penalty. I, J, M, N show
the differences between filters by subtracting the filter with scaling factor 1 as the reference.

When the PP-GLMs for an individual ion channel are trained independently across a set of ion
channel conductance scaling factors, the changes in the stimulus and post-spike history filter
shapes with conductance scaling are often obscured in noise (Fig. 3.3H, I). In this section,
we will show how the trend filtering technique smooths such changes. We propose a trend
filtering technique (Eq. 3.6 in section 3.2.2), which takes advantage of the smooth changes in
ion channel conductance to impose smooth changes on adjacent PP-GLM parameters. The full
set of PP-GLMs across conductance scaling factors for an individual ion channel are trained
simultaneously. Thus, by jointly training PP-GLMs, we reduce noise and reveal smooth changes
in the stimulus and post-spike history filters with changing ion channel conductance.

To illustrate the trend filtering technique, we first expand upon the PP-GLM training proce-
dure. PP-GLMs are trained by optimizing a set of coefficients: 10 coefficients for the stimulus
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filter, 10 coefficients for the post-spike history filter, and 1 baseline coefficient. The shape of the
stimulus filter and post-spike history filter arise from the linear combination of the product of a
set of coefficients and a set of corresponding basis functions (see Eq. 3.2, 3.3; Fig. 3.4A, B). The
bases have fixed shapes and are spaced specifically in time, which have been designed for fitting
spike trains [111](see section 3.2; Fig. 3.4B). An example of how the stimulus filter shape arises
from coefficients is shown in Fig. 3.4A, where the vertical bars represent the coefficient values
over the time range of its corresponding basis function. Throughout this section, the coefficient
indices and corresponding basis functions in time are represented according to the color legend
in Fig. 3.4B, and the peak positions are labeled under the figure in Fig. 3.5A,B,D,E,F,G.

The effects of the trend filtering technique are made clear when comparing the changes in the
stimulus filter coefficients (Fig. 3.3C, D) and the post-spike history filter coefficients (Fig. 3.4E-
F) across the set of ion channel conductance scaling factors. The variation in coefficient values
with ion channel conductance scaling is much greater when PP-GLMs are trained independently
without any trend filtering penalty (λ = 0; Fig. 3.4C, E) than when PP-GLMs are trained with the
optimal trend filtering penalty hyperparameter (λ = λ∗; Fig. 3.4D, F). Trend filtering penalizes
changes in coefficients between adjacent ion channel conductance scaling factors. Therefore,
at a moderate penalty, variation in coefficients with ion channel conductance scaling is reduced
overall. This reduces variation to near zero for coefficients with small, less meaningful variation,
whereas variation in coefficients with substantial, more meaningful variation remain. However,
as the penalty hyperparameter increases, trend filtering will eventually impose no variation in
any coefficients, which is undesirable for the goodness-of-fit (Fig. 3.5C). Thus, we select an
optimal trend filtering penalty hyperparameter λ∗ to balance smooth variation in coefficients
with ion channel conductance scaling while maintaining goodness-of-fit (Eq. 3.7; Fig. 3.5C).
We demonstrate the clarity afforded from the trend filtering technique by comparing the stimulus
and post-spike history filters across the set of MC KAchannel conductance scaling factors (Fig.
3.4G-J). Changes in the shapes of the stimulus and post-spike history filters are much more clear,
including in the trends from decreasing to increasing MC KAchannel conductances (Fig. 3.4G-J).
With trend filtering at the optimal penalty hyperparameter, it is now possible to relate changes
in the spike firing patterns (Fig. 3.3B) to the shapes of the stimulus and post-spike history filters
(Fig. 3.4I-J). For instance, with increasing MC KAchannel conductance, the post-spike history
decreases, corresponding to a longer refractory period. This change is reflected in the widening
of spike timing with increasing MC KAchannel conductance (Fig. 3.3B).
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3.3.4 Trend filtering reveals important coefficients
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Figure 3.5: The selection of smoothness penalty hyperparameter λ and the results for other
channels. A, B SS for stimulus filter (A) and post-spike history filter (B) coefficients with
different choices of penalties. SS is defined in Eq. 3.8, describing how large the coefficients
change across different channel conductances. The x-axis indicates the peaks of the basis, the
order is the same as Fig. 3.4B. The optimal tuning parameter λ∗ is indicated by a horizontal
line. C The log-likelihood for model fits with different penalties. The log-likelihood is divided
by the number of trials. D-G SS for different channels in the MC model and the PC model with
stimulus coefficients in blue and post-spike history coefficients in green. The results all use the
optimally selected penalty hyperparameter.

As expected, the qualitative changes in stimulus and post-spike history filters we describe above
are reflected in the variation of stimulus and post-spike history coefficients (Fig. 3.4C-F). Trend
filtering at the optimal penalty hyperparameter, also reveals the coefficients which are most im-
portant for an individual ion channel. For instance, the stimulus coefficients representing the
early to mid time range ( 5-30 ms) basis functions remain after trend filtering at optimal penalty
hyperparameter, suggesting that the MC KAchannel is particularly important for early to mid time
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range stimulus encoding (Fig. 3.3D). Similarly, the medium range ( 20-60 ms) post-spike his-
tory coefficients are most important. Here we develop a quantitative measurement of the relative
importance of coefficients as revealed by trend filtering.

First, we need a simple quantitative measure to capture the overall variation for each coeffi-
cient as a function of ion channel conductance scaling. We assign a single value, the SS, to each
coefficient (Eq. 3.8). The SS captures the absolute value of variation in a coefficient with ion
channel conductance scaling: a low SS value indicates low coefficient variation as a function
of ion channel conductance, whereas a high SS value indicates high coefficient variation as a
function of ion channel conductance. SS values do lose information of the direction of changes
(positive or negative) and nature of changes (linear or non-monotonic). Coefficient SS values are
almost uniformly high when λ = 0, and SS values decrease non-uniformly to 0 when λ = λmax

(Fig. 3.4K, L). This corresponds to the changes in coefficient variation from when λ = 0 to
when λ = λ∗ (Fig. 3.4C-F). However, the changes in variation have been compressed to one
dimensional vector for easier visualization and analysis (Fig. 3.5A, B).

Our method allows for a low dimensional quantitative representation of how a given ion chan-
nel affects specific features of stimulus encoding. We can easily compare how scaling different
ion channel conductances affects stimulus encoding (Fig. 3.5D-G). By comparing the effects
of different ion channels within the same biophysical model, it is clear how scaling each ion
channel conductance affects different features of stimulus encoding. It is an obvious conclusion
that different scaling different ion channels affects stimulus encoding in unique ways. The SS
measure allows for direct comparisons of specific stimulus encoding parameters. For instance,
the MC KAchannel prominently impacts early to medium stimulus coefficients and only weakly
impacts post-spike history coefficients (Fig. 3.5D, E). In contrast, the MC CaLchannel has a
greater affect on most post-spike history filter components. This type of difference suggests that
the MC CaLchannel is far more important to encoding post-spike history effects than the MC
KAchannel. Similar differences are apparent in the PC model when comparing between the PC
IHand CaHVAchannels (Fig. 3.5F, G). Overall, quantifying coefficient SS after trend filtering
provides an accurate and intuitive measure of the roles of different ion channels in stimulus en-
coding. Furthermore, this low dimensional measure can easily compare how scaling different
ion channel conductances affects stimulus encoding.

To verify the method of selecting the optimal trend filtering penalty hyperparameter, we per-
form a set of simulations based on a known set of PP-GLM parameters and determine whether
this method can recover the known values (see section 3.2). Using a set of known PP-GLMs, we
simulated 100 spike trains for each of the ion channel conductance scaling factors. Then we used
the simulated spike trains to train new PP-GLMs using trend filtering and λ∗ selection (Appendix
Fig. B.1). We found that our method of trend filtering and λ∗ selection found SS values very
close to those of the true PP-GLM SS values (Appendix Fig. B.1A, B). We repeated this simula-
tion 100 times to determine the error and variance of our trend filtering and λ∗ method. We found
that the error and variance between the true PP-GLM parameters and our PP-GLM parameters
from simulated spike trains reached a minimum at λ∗ (Appendix Fig. B.1D). Importantly, when
λ > λ∗ the error and variance increased, supporting our selection of the optimal trend filtering
penalty hyperparameter (Appendix Fig. B.1D).
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3.4 Discussion
Here we have presented a novel computational and analysis pipeline to combine the strengths of
biophysical and statistical models (Fig. 3.1). Our goal is to present this pipeline as a method to
be applied to any data-driven detailed biophysical model in order to understand more about how
ion channels contribute to stimulus encoding. We have presented examples of our pipeline from
two distinct cell types, the MC and PC models, and demonstrated the ability of our analyses to
identify how scaling different ion channel conductances affect encoding of different and specific
stimulus features (Fig. 3.5D-G; Fig. B.2B, C). We believe the best use of this pipeline will be on
larger sets of data-driven models, to extract insights into the biophysical mechanisms underlying
stimulus encoding, and then testing these insights experimentally (Fig. 3.1D). In this section, we
discuss the considerations and limitations of this combined computational pipeline. We avoid
making any strong conclusions or comparisons of any biological insights, as our goal here was to
demonstrate the pipeline methodology. The example pipeline models we show here are based on
a single biophysical model of each cell type. Due to limitations of biophysical models discussed
below, biological insights should be gathered from multiple biophysical models.

Computational considerations. It is feasible to run the entire combined biophysical and sta-
tistical modeling pipeline on a standard modern desktop computer. Indeed, although we took ad-
vantage of available local compute clusters, many of the tests and preliminary results were gen-
erated on desktop computers. Morphologically detailed biophysical models with non-uniform
active ion channel conductances throughout the dendritic tree are computationally expensive.
However, on modern hardware (Intel Core i7), the full set of biophysical simulations for the MC
model could be finished in about nine hours. The PC model contains about three times more
compartments and therefore takes around three times as long to complete, but is still feasible
to run on a desktop computer. It is possible in principle to use less computationally expen-
sive reduced-complexity biophysical models, but these models will also be less biophysically
realistic, which may limit any mechanistic interpretations. Biophysical models are highly paral-
lelizable with simulation time speed nearly linear dependent on the number of cores available.
PP-GLMs are less computationally expensive than biophysical models. It takes about an hour to
finish the calculation for one ion channel dataset with different penalty hyperparameters in our
study. The convergence of the ADMM method slows down when the penalty hyperparameter
increases.

The features of the filters are the bases which are the same as the regression bases used for
model fitting (See Fig. 3.3B). This is for computation convenience. However, there are many
ways to extract features from the stimulus and post-spike history filters. coefficients. As long as
the feature extraction function is linear, the calculation is simple. By linear function we mean a
mapping from the filter k to a single value (a feature point) as a linear operator. For example, a
feature of the stimulus filter can be a point at delay t0. Given the bases coefficients, the feature
point is the following according to Eq. 3.2,

k(t0) = βK1 k1(t0) + βK2 k2(t0) + ...+ βKdKkdK (t0)

In this way, we obtain a vector of feature points at additional time delays. We can also calculate
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the derivative of k at a certain delay t0, which is,

k′(t0) = βK1 k
′
1(t0) + βK2 k

′
2(t0) + ...+ βKdKk

′
dK

(t0)

Or ∫ t1

t0

kdt = βK1

∫ t1

t0

k1dt+ βK2

∫ t1

t0

k2dt+ ...+ βKdK

∫ t1

t0

kdKdt

Another way to examine the PP-GLM, which is an encoding model, is through decoding.
Decoding is the process of estimating a reconstruction of the original stimulus given a spike
train and a trained PP-GLM. The MC KAchannel conductance scaling affects encoding of beta
frequencies, with only moderate effects on low range, theta frequencies and high range, gamma
frequencies. This suggests a role for the MC KAchannel in processing information in beta fre-
quencies.

This pipeline can be applied to other data-driven biophysical models of other cell types of
interest. The biggest limitation of our current pipeline is that it only considers the scaling of in-
dividual conductances. However, in any cell type of interest, there is substantially more variation
and covariation in more than a single ion channel. Understanding how variation and covariation
of multiple ion channel conductances combine to affect stimulus encoding is of great interest.
Nevertheless, we deemed these types of simulations unfeasible as the computational time from
varying just two ion channel conductances together increases exponentially with the number of
scaling factors chosen. Furthermore, due to well-known issues of identifiability in tuning bio-
physical model parameters [100, 131], it is problematic to rely strongly on the parameters of any
one model. Instead, we believe a larger-scale, neuroinformatic approach would lessen limitations
in our pipeline from restricting analysis to individual ion channels and from model identifiability.
Using a large set of data-driven biophysical models (e.g. [56, 101]) alleviates concerns of model
identifiability and naturally captures the variation and covariation in ion channel conductances
within and between cell types.
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Chapter 4

Feature coupling across multiple
populations of spiking neurons

This is a collaborative work with Hannah Douglas, Bryan J. Medina, Motolani Olarinre, Joshua
H. Siegle, and Robert E. Kass. We have already submitted the draft to PLOS computational
biology.

Many studies have described covariation among populations of neurons, and shown how it
can be used to characterize neural information processing. Here we report a novel method for
assessing covariation among population firing rate curves, based on a point process model for
spike trains across multiple interacting neural populations. Our application to spiking data from
the Allen Brain Observatory demonstrates the power of this approach to reveal relationships that
would otherwise be obscured by noise. We label the procedure “feature coupling” because it
identifies trial-to-trial covariation among specific features of the population firing rate curves, in
this case the times at which peak firing rates occur. Peaks in population firing rate curves may be
considered evoked responses.

The model is hierarchical, in the Bayesian sense, with population firing rate intensity func-
tions depending on time-warped template functions that vary with experimental condition; for
each trial, the peak times determine the time-warping of the template function, which is the in-
tensity corresponding to the mean (across trials) of the peak times. Under this conception, trial-
to-trial variation changes the speed at which neural activity ramps up and calms down. There is
also a neuron-clustering component of the model allowing selection, for each condition, of the
neurons that define each interacting population. This approach has the advantage of providing
uncertainty assessment for all quantities of interest.

4.1 Introduction
Recent advances in electrophysiological recording technologies have dramatically increased the
number of neurons and brain regions that can be recorded in a single experiment [76, 121, 128],
offering new opportunities for identifying functional interactions among populations of neurons.
Peri-stimulus time histograms (PSTHs) are a simple and useful way to compare the relative tim-
ing of neural activity across regions, and are therefore widely used. However, because they
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aggregate data across trials, PSTHs (or smoothed PSTHs) cannot capture trial-to-trial variation
[7, 13, 16, 22, 32, 94, 95, 135]. Studies of trial-to-trial covariability across populations of neurons
most often consider spike counts in relatively wide windows, and thus cannot identify relation-
ships at precise timescales [7, 16, 32, 59, 125, 126, 136, 140]. To gain additional understanding
of trial-to-trial covariation we developed and studied a method centered on population firing
rate curves, which can be estimated with millisecond precision. We report here the resulting
multiple-population spiking model, and fitting algorithm, together with analysis of data recorded
simultaneously from three areas of the mouse visual system.

The data we have analyzed (available from the Allen Brain Observatory [69]), are from pri-
mary visual cortex (V1), the lateral medial visual area (LM), and the anterolateral visual area
(AL), three regions that lie at distinct hierarchical processing stages while being tightly intercon-
nected [60, 121]. We focus on the times, relative to the onset of a drifting gratings stimulus, of the
two peaks (local maximal firing rates) seen in Fig 4.1A, along with the overall (time-averaged)
firing rate.

In Fig 4.1A, the time of the second peak in V1 seems to be only slightly ahead of the time
of the second peak in LM, to which V1 is connected anatomically. One might expect there to be
a strong correlation, across trials, in the timing of the V1 and LM second peaks. A simple way
to examine such covariation would be to smooth the PSTH on each trial, i.e, compute a trial-by-
trial version of the curves in Fig 4.1A, and find the time of each peak in those curves. This is
not very helpful, however, because, as illustrated in Fig 4.1B, the resulting peak times are very
noisy. Fig 4.1B shows no consistent relationship, on a trial-by-trial basis, between the timing of
the second peak in V1 and the timing of the second peak in LM, which, if true, would be very
surprising. The method we have developed greatly reduces the effects of noise in the population
spike trains, leaving behind the much more intuitive trial-to-trial correlation seen in Fig 4.1C.
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Figure 4.1: Correlated neural activity features. A Smoothed population PSTHs for V1, LM,
and AL recorded by Neuropixels from a mouse in response to drifting gratings. The three popu-
lation PSTHs have similar features: the first peak appears at around 60 ms after the onset of the
stimulus (time zero), and the second peak appears at around 250 ms after onset. B,C Compar-
ison between a naı̈ve method (panel B) and results from our Interacting Population Firng Rate
model (panel C) on recovery of Peak-2 position. Each dot, representing one of 195 trials (15
trials in each of 13 experimental conditions), displays the estimated times of the second peak in
regions V1 and LM. Both estimates are based on the same subset of active neurons. The naı̈ve
method finds the peak of a smoothed population PSTH for each area. No relationship between
the peak times in V1 and LM is visible. In panel C, strong covariation appears, and the estimated
correlation is .92. The embedded plot in panel C displays estimation uncertainty as a posterior
distribution for the correlation. Details about this figure are in 4.4.1.

The method’s denoising of correlation and time lag estimation is achieved by (i) introducing
a statistical model (a point process model) for the population spike trains, (ii) allowing the pop-
ulation firing rate curves to vary across experimental conditions, and (iii) focusing on condition-
specific subsets of neurons that participate in the population. These elements are all incorporated
into what we call an Interacting Population Rate Function (IPRF) model. The method has roots
in [12, 135], and builds on the large body of work on point process modeling of spike trains
[25, 79, 81, 92, 111, 134].

One benefit of denoising is to reveal relationships, like that displayed in Fig 4.1C, which
would otherwise be masked. Another is to improve precision of estimates. For example, when
we use the naı̈ve method to estimate the lag of LM Peak-2 time behind V1 Peak-2 time, we get
a wide 95% CI of (−5.3, 10.9) ms, which is not statistically differentiated from zero; using the
method we developed we find this lag to have 95% CI of (6.2, 13.0) ms. In the 4.2.3 section (see
Fig 4.4) we give additional estimates of the time lags among activity peaks in the three areas and
we provide (see Figs 4.5,C.7 and C.8) disaggregated population firing rate curves that differ from
the PSTHs in Fig 4.1A in interesting ways: PSTH representations of firing rate are distorted by
blurring across time and averaging across conditions (see also C.9).

In addition to denoising, the method introduced here has two other purposes. First, it is
multivariate, which enables pairwise covariation assessment conditionally on features of activity
in one or more areas. As we show in the 4.2.3 section, this can provide evidence that restricts
conceptions of circuit operation. The second further purpose is to describe functional diversity
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and specialization of neurons that is relevant to cross-area coordinated activity [55, 102, 105].
We estimate the proportion of recorded neurons that participate in this kind of population activity,
and we indicate their cortical depths.

4.2 Results
We begin with an overview of the Interacting Population Rate Function (IPRF) model in graph-
ical form followed by a more technical definition. We then describe the algorithms used to fit
it, including initialization and uncertainty assessment, our data analysis, and a small simulation
study designed to check the likely accuracy of data analytic conclusions.

4.2.1 Model Overview and Specification
The IPRF model describes, for each of several brain areas, a time-varying population firing rate
function having key features (here, two dominant peaks), based on an appropriate sub-population
of neurons. The model includes both a neuron-selection component and a feature covariation
component.
The structure of the IPRF model is illustrated in Fig 4.2. Notice, first, that neurons, indexed
by n, come from areas, indexed by a, and repeated trials, indexed by r, are within conditions,
indexed by c. Conceptually (beginning at the bottom of the diagram), each neural spike train
is a point process determined by a firing rate (intensity) function. The intensity function for
a neuron in area a under condition c depends on the whether that neuron, in that condition,
participates in cross-area population activity: with probability p0 it has a baseline firing rate
intensity function fpopa,c , which we call a template. This is signified by the membership vector z
(see Eq 4.2). The template is specific to area a and condition c and is shared in common with
all neurons that participate in cross-area interaction (for area a and condition c); these neurons
make up the interacting population for area a and condition c. The template fpopa,c is subjected to
trial-specific morphing via time-warping, which allows shifts in the times of the two peaks we
focus on. These two peak times are two of the features which, together with a gain constant,
form the feature vector labeled q. The diagram shows the feature vector being combined with
the firing rate template when it becomes an input to the intensity. The features capture trial-to-
trial variation, while the template is the intensity corresponding to the mean (across trials) of the
features. With probability 1 − p0, the neuron is not in the interacting population and, instead,
has one of two alternative firing rate function templates, either f local−1

a,c , which is time-varying or
f local−2
a,c , which constant in time, according to probabilities p1 and p2 (where p0 + p1 + p2 = 1).

In Fig 4.2, these three scalars are collected into a vector labeled membership probability. The
population and local firing rate template functions are fitted with penalized splines. Finally, the
covariation of the 9-dimensional feature vector (3 parameters for each of 3 areas) is summarized
in a covariance matrix.
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Figure 4.2: The IPRF model. As explained in the text, the data y are spike trains modeled as
point processes with intensity λ. The covarying features q are combined with the population
template f pop, which appears probabilistically in the intensity. The indicators z and probabilities
p control whether f pop is part of the intensity or whether, instead, one of the local templates
f local-1 and f local-2 is selected.

The more precise specification of the model begins with the population spike trains and cor-
responding intensity function,

yn,z,a,r,c(t) | λn,z,a,r,c(t) ∼ Poisson
(
λn,z,a,r,c(t)

)
(4.1)

log λn,z,a,r,c(t) | qa,r,c,, f pop
a,c , f

local-1
a,c f local-2

a,c , zn,a,c

=


f pop
a,c (ϕ−1

a,r,c(t)|qa,r,c)), if zn,a,c = pop
f local-1
a,c (t), if zn,a,c = local-1
f local-2
a,c (t), if zn,a,c = local-2

(4.2)
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where ϕ is the population template time-warping function, specified below in terms of the feature
vector qa,r,c, and the templates are defined in terms of spline bases B and coefficient vectors β,

f pop
a,c | βpop

a,c = Bβpop
a,c (4.3)

f local-1
a,c | βlocal-1

a,c = Bβ local-1
a,c (4.4)

f local-2
a,c | βlocal-2

a,c = 1βlocal-2
a,c . (4.5)

The template group membership indicator z is categorical,

zn,a,c | pa,c ∼ categorical(pa,c) (4.6)

where the three components of each vector pa,c sum to 1. (Categorical(p) is the same as multi-
nomial (n, p) with n = 1.)

To complete the model, we define the feature vector, its probability distribution, and the time-
warping function. In general, there could be d features for each area. In our data analysis we take
d = 3 with qa,r,c = (qgain

a,r,c, q
peak-1
a,r,c , q

peak-2
a,r,c ), the features being the two peak times (more specifically,

the trial-specific deviations of the peak times from those of the trial-invariant template fpopa,c ) and
a gain constant; the gain constant allows the integrated firing rate (integrated across the whole
time interval, which controls the expected number of spikes) to vary across areas, conditions,
and trials. For a given feature vector, the time-warping function ϕa,r,c : [0, T ] 7→ [0, T ] modifies
a template f from a function of time f(t) to the same function of warped time f(ϕ−1(t)). Also,
in f pop

a,c the constant qgain
a,r,c is added to the time-warped template. We assume the warping func-

tion is piecewise linear with the following join-points (also called knots, or landmarks): (0, 0),
(t1,L, t1,L), (tpeak-1, tpeak-1 + qpeak-1

a,r,c ), (t1,R, t1,R), (t2,L, t2,L), (tpeak-1, tpeak-1 + qpeak-1
a,r,c ), (t2,R, t2,R),

(T, T ). Here, the domain of peak-1 is [t1,L, t1,R], meaning that t1,L and t1,R are chosen so that
the interval spans (roughly) the times at which the firing rate profile defines the peak. The
time-warping function maps the time of peak-1 from tpeak-1 to tpeak-1 + qpeak-1

a,r,c . Peak-2 is treated
similarly. Piecewise linearity forces linear interpolation of time from the beginning (or end) of
the peak range to the peak. The times t1,L, tpeak-1, t1,R, t2,L, tpeak-2, t2,R are fitted at the initializa-
tion step, described in the section on Model Fitting and Uncertainty Assessment. Finally, taking
the features across areas together, the feature vector has length equal to the product dA (here
there will be dA = 9 features), and is assumed to follow a normal distribution across trials (and
conditions),

qa,r,c | Σpop ∼ N(0,Σpop). (4.7)

Aside from the template functions f pop
a,c and f local-1

a,c (each having one smoothing parameter
determined by cross-validation, as described below), the free parameters are in the matrix Σpop

(which has dA(dA + 1)/2 = 45 parameters in our application) and the membership probability
vectors pa,c (which has N × C = 117). In addition, the EM and Gibbs sampling algorithms
estimate the latent variables qa,r,c and zn,a,c.

4.2.2 Model Fitting and Uncertainty Assessment
We have used maximum likelihood for initial fitting, and then Bayesian inference via posterior
distributions to assess uncertainty. The hierarchical structure of the model lends itself to appli-
cation of the EM algorithm and Gibbs sampling. These share a common algorithmic structure,
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shown in Algorithm 1, with EM and Gibbs sampling each providing their own definitions of the
“update.” Later in this section we give details of our Gibbs sampling update implementation. We
omit EM updating because it is standard, and easily implemented once the structure of the model
and resulting likelihood function are understood. In practice, we first complete an initialization
step (see below), then we run EM to get maximum likelihood estimates and use those results as
initialization for running Gibbs sampling to get posterior distributions based on specified priors
(see below).

Algorithm 1: Fitting via Block Structure

1 for i← 1 to Max number of iterations do
2 for c← 1 to C do
3 Update f local-1

a,c , f local-2
a,c given the rest;

4 Update f pop
a,c given the rest;

5 for r ← 1 to R do
6 Update qa,r,c given the rest;
7 end
8 Update zn,a,c given the rest;
9 Update pa,c given the rest;

10 end
11 Update Σpop given the rest;
12 end

Template functions The template functions f pop
a,c and f local-1

a,c are splines with equally spaced
knots (in our data analysis we used 100 knots across the 500 millisecond interval). They are
fitted, in the update steps, using penalized likelihood, with second-derivative penalties as in
smoothing splines [112]. The smoothing parameter is found using 5-fold cross-validation. In
the case of Poisson processes fitting an intensity is equivalent to probability density estimation
(see [79, sec. 19.2.2]) and, in density estimation, smoothing splines adapt to varying smoothness
[122]. Thus, in this context, we expect penalized splines to fit well (see also related results in
[112] and C.2).

The purpose of f local-1
a,c is to improve on the constant firing rate provided by f local-2

a,c in fitting
neurons that are irrelevant to cross-population activity. Nothing in the formal specification of the
model prohibits similarity of f pop

a,c and f local-1
a,c , which creates a model identification problem. In

practice, however, confounding of f pop
a,c by f local-1

a,c is precluded by a simple initialization proce-
dure.

Initialization Within each area, each neuron is sorted as having “high,” “medium,” or “low”
firing rate based on spike count during the 500 milliseconds following stimulus onset, after merg-
ing across conditions and trials. A PSTH is formed from the high firing rate neurons (for our
analysis, the top 25% in firing rates), and from that we obtain the time-warping landmarks
t1,L, tpeak-1, t1,R, t2,L, tpeak-2, t2,R. The templates f pop

a,c (that is, the basis coefficients) are initial-
ized using penalized splines, with penalty constant chosen through simulation experiments. The
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neuron membership identifiers zn,a,c, and associated probabilities pa,c, are initialized using the
same sorted spike counts. The feature vectors qa,r,c, whose elements represent deviations from
the template f pop

a,c , are initialized to (0, 0, 0).

Prior distributions In our implementation we have used the prior distributions

Σpop | Ψ0, ν0 ∼ IW(Ψ0, ν0) (4.8)
pa,c | α ∼ Dirichlet(α) (4.9)

with hyperparameters Ψ0, ν0, α. To make the prior on Σ diffuse, we set ν0 = dA + 1. We used
Ψ0 = 2Φ0 where Φ0 is a diagonal matrix with the square roots of the diagonal elements being
equal to the approximate range of q based on data from a different animal. We set α = 5 · 1.
Additional information may be found in C.3.

Gibbs sampling details Here we provide details of the Gibbs sampling updates in Algorithm
1. Our code is available online at www.github.com/AlbertYuChen/IPRF.

1. Updating f pop
a,c , βpop

a,c . The full conditional log posterior is

log p(f pop
a,c |...) = log p(Bβpop

a,c |...)

=
∑
n,r

`(yn,g,a,r,c
(
ϕa,r,c(t)

)
, exp{f pop

a,c + qgain
a,r,c}) + ηP(f pop

a,c ) + const (4.10)

P(f) = −Ng,a,c ·Rc · βpop,TΩβpop

Ωij =

∫
f

(2)
i (x)f

(2)
j (x)dx

where f (2)
i is the second derivative of the ith cubic spline basis element, Ng,a,c · Rc is the

total number of spike trains, and `(y, λ) denotes the log-likelihood for a discretized point
process with spike train y and intensity λ. The function f pop

a,c is fitted using third-order
smoothing spline basis B in Eq (4.3). We used 100 knots are evenly placed in the 500 ms
window (so there are 102 basis elements). The sequence of spike counts in 2 millisecond
time bins is y. The penalty ηP on the coefficients is designed for smoothness in the same
spirit as the smoothing spline [63, sec. 5.4]. In Gibbs sampling, the penalty becomes the
log prior density, where the prior is normal. The smoothing parameter η is tuned using
cross-validation. Details are discussed in C.2. The Gain qgain

a,r,c is set as the offset.
Metropolis-Hastings sampling is embedded in this step of Gibbs sampling. Letting β′ be a
candidate sample and βm a sample from the last iteration m, the proposal distribution is

q̃(β′|βm) = N(βm, 0.05Q)

where Q is the inverse Hessian matrix for β of the posterior at the mode. We estimate
Q in the initialization step and hold it fixed subsequently. We follow the suggestion in
[49, ch. 12] of setting the scale coefficient of the proposal distribution covariance matrix

48

www.github.com/AlbertYuChen/IPRF


January 11, 2022
DRAFT

to be 5.76/d ≈ 0.05, where d is the dimension of the covariance matrix. This balances
the trade-off between exploration and rejection. The acceptance ratio on average is kept
between 0.2 and 0.8. The acceptance ratio of Metropolis-Hastings sampling method is

a = min

(
1,
p(β′)q̃(βm|β′)
p(βm)q̃(β′|βm)

)
2. Updating f local-1

a,c , f local-2
a,c , βlocal-1

a,c and βlocal-2
a,c . The full conditional log posterior is similar to

that of f pop
a,c . We have

log p(f local-1
a,c |...) = log p(Bβ local-1

a,c |...)

=
∑
n,r

`(yn,z,a,r,c, exp{f local-1
a,c }) + ηP(f local-1

a,c ) + const (4.11)

The calculation for f local−2 is similar, but simplified because it is a constant times the 1
vector.

3. Updating qa,r,c = (qgain
a,r,c, q

peak-1
a,r,c , q

peak-2
a,r,c ). We have

log p(qa,r,c|...)

=
∑

n,g=gpop

`
(
ϕa,r,c(yn,z,a,r,c|qpeak-1

a,r,c , q
peak-2
a,r,c ), exp{f pop

a,c + qgain
a,r,c}

)
+ logN(qa,r,c; 0,Σpop) + const

The time-warping function ϕa,r,c is parameterized by qpeak-1
a,r,c , qpeak-2

a,r,c , see 4.2.1. f pop
a,c is given

and is treated as the offset. The landmark positions tpeak-1 and tpeak-2 are determined in the
initialization using grid search and are not updated in subsequent fitting.
Metropolis-Hastings sampling is nested in this step of Gibbs sampling. Letting q′ be a
candidate sample and qm the sample from the last iteration at step m, for trial r, condition
c and all areas at once (denoted by subscript A) a sample is drawn from the proposal
distribution

q̃(q′A,r,c|qmA,r,c) = N(qmA,r,c − 0.1 · qmA,c, 0.05Q) · Iclip region(q
′
A,r,c),

where qmA,c is the mean of qmA,r,c over all trials and Iclip region truncates so that the first two
components of the proposal stay within the domains of peak-1 and peak-2 (see time-
warping before Eq (4.7)).
Subtracting a multiple of qmA,c from qmA,r,c moves the proposal mean closer to satisfying
qmA,c = 0, which may be recognized as an identifiability constraint. In principle, the prior
on qa,r,c forces identifiability but, because we used a diffuse prior on Σ, samples can drift
with increasingly large variances. The proposal we used has lower acceptance rates at this
step, but solves the drift problem and produces well-behaved sample trace plots.

4. Updating zn,a,c.

zn,a,c ∼ Categorical
(
p(zn,a,c = g|...)

)
, g ∈ {pop, local-1, local-2}
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zn,a,c is drew from categorical distribution. p(zn,a,c = g|...) is the probability of zn,a,c
belonging to subpopulation categories g ∈ {pop, local-1, local-2}, which is derived as
follows,

log p(zn,a,c|...) = log p(yn,z,a,c|zn,a,c, qa,r,c, f pop
a,c , f

local-pop
g,a,c )

+ log p(zn,a,c|pa,c) + const
= log p(zn,a,c|pa,c) + const+

`(yn,z,a,r,c
(
ϕa,r,c(t)

)
, exp{f pop

a,c + qgain
a,r,c}), if zn,a,c = pop

`(yn,z,a,r,c, exp{f local-1
a,c }), if zn,a,c = local-1

`(yn,z,a,r,c, exp{f local-2
a,c }), if zn,a,c = local-2.

5. Updating pa,c.

pa,c|... ∼ Dirichlet(Npop,a,c + α, Nlocal-1,a,c + α, Nlocal-2,a,c + α)

After conditioning on zn,a,c, pa,c becomes independent of the rest variables or data. Npop,a,c,
Nlocal-1,a,c, Nlocal-2,a,c count the total number of neuron memberships zn,a,c in each subgroup
in area a in condition c.

6. Updating Σpop. We draw samples from the Inverse-Wishart distribution

p(Σpop|...) =IW(Ψ̃, ν̃)

ν̃ =ν0 +RC

Ψ̃ =Ψ0 + qTq

where Ψ0, ν0 are hyperparameters. The bold q ∈ RRC×3 is a stacked matrix of features
qa,r,c. Each column represents a feature, and each row represents features for a trial. RC
is the total number of q. R is the number of trials for each condition, and C is the number
of conditions. (We discuss the selection of Ψ0, ν0 in C.3.)

Correlation, partial correlation, and regression The estimate of Σpop, together with samples
from its posterior distribution, immediately provide correlations, partial correlations, and regres-
sion estimates (also see C.4). More specifically, first, if V (X) = Σ for anm-dimensional random
vector X , all

(
m
2

)
correlations are obtainable from Σ; second, this means that an estimate of Σ

produces estimates of the correlations and samples from the distribution of Σ produce samples
from the distributions of those correlations; third, if we partition as X = (X(1), X(2), X(3))T

with X(1) being univariate, standard formulas (again using the elements of Σ) also provide es-
timates of, together with samples from the distribution of, (a) the regression of X(1) on X(2)

and (b) when X(2) is also univariate, the partial correlation of X(1) and X(2) conditionally on
X(3). Thus, the method provides (immediately) estimates and uncertainties for any regression or
partial correlation we wish to examine.
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4.2.3 Data Analysis
Implementation of the IPFR model discovers many potentially interesting relationships involving
trial-to-trial feature coupling across brain areas, along with relative timing of features, population
firing rate profiles, and descriptions of neuron diversity. Here we have chosen to discuss only a
few illustrative results. Some others appear in the supplementary material.

Peak-2 correlation and timing We begin with two interestingly different findings that com-
pare correlation with partial correlation. Additional partial correlations are in C.4. Panels A and
B of Fig 4.3 displays scatterplots of Peak-2 timing across all trials (as posterior medians): in
4.3A the plot is AL vs LM and in 4.3B it is AL vs V1. Both exhibit high correlation. Consider
what we might expect to happen when, in each case, we condition on Peak-2 timing in the third
area. If, during the rise phase of Peak-2, the populations of AL and LM neurons were both
getting inputs predominantly from V1, then we would expect their partial correlation given V1
to diminish greatly. Fig 4.3C is a scatterplot of residuals after regressing each of AL and LM
Peak-2 timing on V1 Peak-2 timing; the correlation of these residuals is the partial correlation of
AL and LM Peak-2 timing given V1 Peak-2 timing. The partial correlation (Fig 4.3C) appears to
be somewhat smaller than the correlation (Fig 4.3A), but not much smaller. On the other hand,
when we examine the Peak-2 timing relationship of AL and V1, conditioning on Peak-2 timing
in LM has a dramatic effect: comparing Fig 4.3B with Fig 4.3D, the estimated correlation of .87
(which is highly likely to be above 0.75) drops to an estimated partial correlation of .05 (which
is highly likely to be below 0.36).
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Figure 4.3: Peak-2 timing: correlation and partial correlation across regions. Panels A,B
display correlations, with each dot representing the estimated time of peak-2 on a given trial.
Panels C,D display estimated partial correlations, with each dot representing the residual from
a regression on the conditioning variable (the correlation of these residuals being the partial
correlation given the conditioning variable). Panels C,D contain partial correlation results, with
the areas in C corresponding to those in A and the areas in D corresponding to those in B.
All panels use posterior medians as estimates. A Despite large variability in peak-2 timing the
correlation of LM peak2 time and AL peak-2 time is close to 1. The plot embedded in the upper
left corner displays the posterior distribution of the correlation. B This plot is for areas V1 and
AL, analogous to that in panel A. C The residual Peak-2 times for LM and AL are plotted,
after regressing on the Peak-2 time of V1 timing. D The residual Peak-2 times for V1 and AL
are plotted, after regressing on the Peak-2 time of LM. The partial correlation in panel C is
somewhat smaller, but not dramatically smaller, than the correlation in panel A. In contrast, the
partial correlation in panel D is close to zero, and very much different than the large correlation
in panel B.

Fig 3 demonstrates the potential power of examining multivariate coupling relationships
among features of population firing rate functions. The results in Fig 3D also indicate some
circuit mechanism subtlety, especially in conjunction with Fig 4D, which shows that, for Peak-2,
on average (across trials), V1 leads AL by about 5.5 ms (95% CI (3.6,8.8) ms), and AL leads LM
by about 4.6 ms (95% CI (-0.2,7.3) ms). That is, it is very unlikely that the selected population
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of LM neurons reaches its Peak-2 maximal firing rate before that of the AL population. Fur-
thermore, for Peak-2, as shown in Fig C.5, we do not see dramatic reduction of the correlation
of V1 and LM after conditioning on AL. Perhaps LM provides important feedback input to AL
that enhances its Peak-2 rise time; perhaps other areas provide such input to both AL and LM;
and, to understand these results, it may be necessary to consider both excitatory and inhibitory
contributions. We are not offering evidence for specific scientific explanations. Our purpose
here is show that investigations of feature coupling across brain areas can generate potentially
interesting findings. Other intriguing patterns may be found in C.3, C.4, C.5 and C.2.

The time lags in Fig 4.4D are also interesting in the context of the rest of Fig 4.4. Fig 4.4C
displays large uncertainties in Peak-2 timing, reflecting large trial-to-trial variation (visible in
Fig 4.3), and they are much larger than those of Peak-1 times shown in Fig 4.4A. Also, for Peak-
2, V1 leads LM by only about half the time that its does for Peak-1 and, as shown in Fig 4.4B,
in contrast to Peak-2, Peak-1 occurs at about the same for LM and AL.

B
V1 leads LM

Peak-1 time lag

V1 leads AL

10 0 10 20
Time lag [ms]

AL leads LM

D
V1

Peak-2 time

LM

50 100 150 200 250 300 350 400
Peak time [ms]

AL

V1 leads LM

Peak-2 time lag

V1 leads AL

10 0 10 20
Time lag [ms]

AL leads LM

C
V1

Peak-1 time

LM

0 25 50 75 100 125 150
Peak time [ms]

AL

A

Figure 4.4: Peak timing across areas. Posterior distributions are shown together with median
and 95% CI (.025 and .975 posterior quantiles). A Mean Peak-1 times for V1, LM, and AL are
57 (95% CI (46,66)) ms post stimulus onset; 68 (60,90); and 70 (64,86). B Peak-1 time lags
between areas: V1 leads LM by 17 (3,19) ms; V1 leads AL by 17 (14, 19) ms; AL and LM are
roughly simultaneous, with AL leading LM by -0.4 (-3.8,2.9) ms. C Peak-2 times are highly
uncertain. For V1, LM, and AL they are 216 (154,272) ms; 232 (154,277) ms; 233 (156,278)
ms. D The Peak-2 time lags between areas are much more precise than the times themselves: V1
leads LM by 9.6 (6.2,13.0) ms; V1 leads AL by 5.5 (3.6,8.8) ms; AL leads LM by 4.6 (-0.2,7.3)
ms.
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Figure 4.5: Fitted population firing rate templates exp{fpop
a,c }. The figure shows exp{f pop

a,c }
in three different conditions 281, 257, and 280. In condition 281 the gratings drifted at 15
Hz with orientation 315◦, in condition 257 at 8 Hz and 315◦, and in condition 281 at 8 Hz and
270◦. Note that the population firing rate function is exp{na,cf pop

a,c } where na,c is the number of
neurons for which zn,a,c = pop. Each row represents one condition. The solid curves and grey
bands are the medians and 95% CIs from the posteriors. There are striking distinctions between
these firing rate curves and those in Fig 1A. The complete set of curves is in C.7.

Population templates Fig 4.5 shows the fitted population firing rate templates exp{f pop
a,c } in

three different conditions. The V1 templates are very precisely determined (they have narrow
posterior bands) and LM and AL templates are well determined. Our use of distinct templates for
different conditions reveals both strong similarities and noticeable distinctions in the population
responses across conditions.

There is an important deviation in the f pop
a,c templates from the PSTH curves shown in Fig

4.1A: Peak-2 is taller and narrower than it appears in Fig 4.1A. This is largely due to the trial-
to-trial variation in peak time, which dampens Peak-2 in the PSTH. In addition, the much higher
firing rates in Fig 4.5 are also affected by the more refined selection of neurons in our model
than in the process leading to Fig 4.1A. More details can be found in C.9. The complete set of
templates, and results for the local-1 templates, are shown in C.7.
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Figure 4.6: Neuron subpopulations. A Probability that a neuron is a member of the population
having firing rate template f pop

a,c , for all areas and conditions. Columns are distinct neurons,
rows are different conditions: red indicates the probability is high (posterior median greater
than .9); gray indicates the probability is low (posterior median less than .1); orange indicates
an intermediate probability. B Proportion of activity contributing to the population represented
by f pop

a,c , averaged across conditions (based on the posterior medians in A). For example, on
average, 18% of V1 neurons were part of the interacting population (with template f pop

a,c ), but
they generated 66% of the spikes. C Histograms that summarize the plots in panel A. For each
neuron, in each area a, we count the number of conditions c having posterior median of pa,c;0
greater than .9 (i.e., the number of red bars in the column corresponding to that neuron in panel
A). The histograms display the number of neurons with count x, for x = 0, 1, 2, . . . , 13. In
each area, somewhat over half of the neurons never participated (x = 0) and those that did
participate often participated in only a few conditions; in V1, 7 of the 94 neurons participated in
all conditions.

Diversity of neurons Fig 4.6 summarizes membership of neurons in the communicating popu-
lations that have templates f pop. As seen in panel A, for nearly all neurons it is clear whether they
are fit better using the f pop template or using one of f local-1 or f local-2. Only 22 out of 3393 neuron-
condition combinations fail to have at least 90% probability (from the posterior median) of one
or the other. Panel B elaborates by showing how many neurons contribute, and what proportion
of spikes they generate. Panel C indicates the diversity of condition-dependent neural responses.
The large variation in individual-neuron responses is perhaps unsurprising, but it underscores the
importance of allowing for such diversity in statistical modeling efforts. The portion of neurons
in each subgroup (pa,c in Eq (4.9)) is shown in C.6. Fig 4.7 shows that there is no strong spatial
pattern to neuron membership in the communicating population (see also C.10).
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Figure 4.7: Spatial arrangement of neurons participating in the population having template
fpop. For each area, the x and y axes label the relative positions of the electrodes, with depth
along the x axis, relative to the most superficial unit. Each dot indicates, for a given location,
that at least one neuron in at least one condition participated (based on posterior medians in Fig
4.6A). The size of the dot indicates spatial frequency, defined as the number of neuron-condition
participation events divided by 13 (the number of conditions). When more than one neuron is
recorded on an electrode, the number above the dots gives the number recorded. The locations
of all subgroups in all conditions are in Fig C.10.

4.2.4 Simulations
We performed simulations to assess performance using sample sizes relevant to our data analysis,
first assuming the model structure is correct as described in equations (1)-(7) and then after
varying the structure in a particular way. Simulation details are in C.1. We report here results for
correlations between features, which are the main interest (e.g., in Fig 3).

In our initial simulation we found small bias and root mean squared error (RMSE). The bias
values of the estimated correlations are in the range [−0.041, 0.040] (the mean of all pairs is
-0.001). The posterior CIs are mostly close to their putative 95% coverage probability, though a
few entries in the table of results are somewhat smaller (see C.3). The RMSE values are in range
[0.022, 0.090] (the mean of all pairs is 0.072). The range of error is slightly larger than the lower
bound of the estimation. See C.1 for details. We also verified that simulation standard errors of
CI end points were small relative to the RMSE values. The range of the values is [0.0016, 0.0091]
and the mean standard error across all end points is 0.0056.

Our implementation of the IPFR model assumes that, for the purpose of peak timing identifi-
cation, trial-to-trial variability in the population firing rate intensity function can be summarized
as involving only peak timing. When time warping compensates for trial-varying changes in
shape, peak timing identification can be affected. One might expect such effects to be small, but
we did run a simple simulation study to check. We did this by injecting noise into each neuron,
in the form of intensity shapes that varied across neurons, which changes the population firing
rate intensity function (see C.1). Such inhomogeneity could also affect neuron clustering, and
thus potentially degrade the performance of the IPFR model. We chose the amount of injected
neuron gain to roughly correspond to the real data. See the 4.4 section. (As a check, we also tried
a large noise setting with 20 times the variance.) We found that the covariation estimates are not
very sensitive to this type of deviation from assumptions (see details in C.1, C.4 and C.5).
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4.3 Discussion
The motivating idea behind the IPFR model is to identify trial-to-trial covariation of activity
across brain areas by considering covariation of population firing rate intensities. There are many
ways these intensities might covary, and the IPFR model assumes a small number of features are
of interest. We focused on the timing of the two dominant peaks seen in Fig 1A. Analysis of peak
timing is reminiscent of ERP analysis. Although evoked potentials are based on trial averaging
because they are too noisy to be useful in single trials, the IPFR model is able to estimate peak
timing on a trial-by-trial basis, which makes possible assessment of trial-by-trial covariation. As
with phase coupling [88], the presence of feature coupling indicates coordination of activity: it
says that whatever creates variation across trials, also creates covariation across those coupled
areas. We showed how the IPFR model can produce effective denoising while also revealing
multivariate relationships and describing neural diversity in the participating populations.

Several clear scientific caveats should be emphasized. Feature coupling identifies a form
of what is usually called functional connectivity. When we say that feature coupling reveals
coordinated activity, we do not mean that it must be purposeful in a mechanistic sense. For
one thing, only a few brain areas are being analyzed, and in any setting there are bound to be
complicated anatomical connectivity patterns, as there are for the mouse visual system [60, 121].
But even if we were able to observe all areas that are relevant to a given task, causal relationships
could not be established without causal experiments. Furthermore, while features such as peak
timing are useful, they offer a limited description of interaction dynamics. In addition, despite the
new capabilities provided by recording arrays such as Neuropixels, the neurons recorded from
any area do not constitute a random sample of all relevant neurons. With current experimental
data the extent to which recording creates important biases remains unknown.

Statistically, we have assumed that trial-to-trial variation in peak timing can be captured ac-
curately with a model in which peak timing is the only source of trial-to-trial variation. Surely
there are other ways that firing rate intensities vary across trials. For the accuracy of our conclu-
sions, what matters is whether such other effects produce substantially different times at which
the peaks occur and substantially different correlations of peak timing. We also assumed that a
single population of neurons was most relevant for both Peak-1 and Peak-2. It is possible that
treating them separately would be advantageous.

The implementation we reported here involves a comprehensive Bayesian hierarchical model.
It would be possible to decompose some of the components in our IPFR model while also ac-
counting for important sources of variation in different steps [35]. As we described, however, it
was straightforward to implement EM and Gibbs sampling for the comprehensive model, which
has the advantage of making it easy to get an assessment of uncertainty for any model-based
quantity we wish to estimate. We hope our work will stimulate further efforts to harness the
power of point process modeling for investigating timing relationships among neural popula-
tions and their coordination across brain areas.
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4.4 Methods

4.4.1 Materials and pre-processing
We applied our method to the Neuropixels dataset collected by Allen institute [121]. It uses
multiple high-density extracellular electrophysiology probes to simultaneously record spiking
activities from a wide variety of areas in the mouse brain, especially the visual cortices. The
animals were head-fixed and were passively presented with visual stimuli. The details of the ex-
periment setup can be found in [69, 121]. One experiment contains a mixture of many stimulus
types, such as natural movies, flashes, Gabor filters, drifting gratings and etc. Our paper uses
drifting gratings because it has many repeated trials, the stimuli are simple, the trials are long
and it can strongly elicit neural responses. The drifting gratings (type drifting gratings
in the dataset) have 40 conditions which are combinations of 8 different orientations (0°, 45°,
90°, 135°,180°, 225°, 270°, 315°, clockwise from 0° = right-to-left) and 5 different temporal
frequencies (1, 2, 4, 8, 15 Hz). The spatial frequency is 0.04 cycles/deg and the contrast is 80%.
The stimulus for each condition is repeated 15 times. A trial lasts for 3 s with 2 s stimulus
and 1 s blank screen. The sequence of the conditions is randomly ordered. The baseline con-
dition has 30 trials with a grey screen. The number of neurons in visual cortical areas recorded
by one probe ranges, roughly, from 40 to 100. Usually, 6 probes are recorded at the same
time. The dataset assigns unique identities for all properties. For example, a condition is la-
beled by stimulus condition id, a trial is labeled by stimulus presentation id,
one experiment session is labeled by ecephys session id. In this paper, we refer to those
identities directly.

We screened the animals and conditions based on whether the regions of interest were recorded
and whether the neurons have strong responses, as the time-warping features depended on the
peaks of the curves. For example, session 754829445 did not record LM and AL regions.
In session 746083955, the activity of AL was too weak and was almost the same as baseline
activities (trials without visual stimulus), so AL was not able to provide any useful information.
The preprocessing was done in three steps:

1. Check if the target regions are recorded by any probes.

2. Select the top 50% neurons with the largest spike counts.

3. Select the conditions with strong fluctuating responses. We first calculate the total variation
[17, sec. 6.3.3] of kernel-smoothed (Gaussian kernel with standard deviation 10 ms) group
PSTH for each condition and each region using the neurons in step 2. Next, sort the
conditions by the sum of total variation of all regions in descending order. Then select
the top conditions. The cutoff is done by visual check where the last condition has clear
two-peak patterns.

We analyzed mouse session 798911424 using 13 drifting gratings conditions. Each condition
had 15 repeated trials. The details of the conditions are listed in C.1. The results for V1, LM,
and AL, include 94, 89 and 78 neurons respectively. Spike trains were binned in 2 ms.

In Fig 4.1A, each curve represents activity aggregated across 600 trials: there were 15 trials
in each combination of 8 orientations and 5 frequencies. Only the most active 50% of neurons
with large spike counts are selected. The curves are fitted using regression with splines.
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4.4.2 Goodness-of-fit assessment
The goodness-of-fit test is determined by the Kolmogorov–Smirnov (KS) test based on the time-
rescaling theorem [24, 62]. The KS test is a little biased as the inter-spike intervals are limited
by the trial length, so only short intervals can be observed. We correct this issue by adjusting the
null distribution of transformed inter-spike intervals according to the trial length. The result is
shown in C.12.
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Chapter 5

Interactions across populations on fine
timescale

This project is co-advised by Asohan Amarasingham, and Robert E. Kass.
With the advance of the fast-growing high-density electrophysiological recording technol-

ogy, hundreds of neurons from multiple brain regions can be recorded simultaneously. This
offers opportunities to further investigate the interactions between brain areas, especially the
spike-to-spike coupling effect on fine timescale between regions (for example within 20 ms or
less), which is complementary to many studies based on the mean firing rate. The analysis of the
massive spike train recordings is challenged by enormous noise, large neuronal diversity, poten-
tial artifacts caused by unobservable activities, and heavy computational tasks. These prompt us
to build a flexible, extendable, robust, and computationally efficient tool to quantify the spike-to-
spike coupling effect for hundreds of neurons, and to be prepared for thousands of neurons in the
foreseeable near future. Our proposed point process regression model can be modularized into
two basic components, which can also be extended for more: one part quantifies the coupling
effect using a continuous function in a lag range; the other part is responsible for removing the
artifacts caused by the background activity. The small number of parameters in the model and
optimization-based inference make it efficient for large dataset analysis. We verified the model
using many simulation scenarios and some theoretical analysis, then applied the method to the
Allen Brain Observatory dataset and discovered trial-to-trial variation of the coupling effect on
fine timescale.

5.1 Introduction
Recent advance in high-density electrophysiological recording technologies provides opportu-
nities to explore functional interactions among populations of neurons between brain regions
[121]. A recent work [73] presents evidence of spike-to-spike interactions between distant areas
on fine timescale in mouse visual cortex [3]. Detecting the spike-to-spike coupling effect be-
tween two neurons is contaminated by the artifacts triggered by the shared background activities.
The shared input drives two neurons in the same way so it can introduce temporal dependency
between the spike trains that is not directly elicited by the spikes from the source neuron. Re-
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moving the background artifacts is challenging as they are usually unobserved and can randomly
vary from trial to trial [3].
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Real data

Simulation

Figure 5.1: Examples of detecting weak spike-to-spike coupling effect in a time window.
The details of this figure are in Appendix D.3.2. Here we only summarize the key conclusions.
The first row shows the result of real data (Allen Brain Observatory Visual Coding Neuropixels
dataset [121]) about coupling effect from one neuron in the primary visual cortex to one neuron
in the lateral medial visual area. The second row replicates the scenario using a simulation
with shared background activity. A, D In both cases, the jitter-based cross-correlogram method
yields noisy output, which can detect some significant inhibitory effect at certain lags but not in
a continuous range. The dark grey band is pointwise 95% confidence band, the light grey band is
simultaneous 95% confidence band. B, E Coupling filters of the point process regression model.
Our method describes the coupling effect using coupling filters, which shows the influence of
a spike from one neuron to the firing rate of the other neuron in a lag window. Our method
can detect the weak inhibitory effect. C, F Modeling the coupling effects assuming constant
background. By comparing E and F, this assumption leads to positive bias; and the conclusion
can be totally different, which detecting inhibitory effect as nearly no effect. So the regression
method using a coupling filter needs careful removal of the background artifacts. This explains
why the estimated coupling filter in C is above the one in B. More similar examples of real data
are in Supplementary D.4.13.

The jitter-based method is designed to handle such problems that can eliminate slow-rate
background artifacts without explicitly estimating the shared input between neurons. Fig 5.1
shows an example of fine time interaction from one neuron in the primary visual cortex (V1)
to one neuron in the lateral medial visual area (LM) in Allen Brain Observatory Visual Coding
Neuropixels dataset [121]. Fig 5.1A is the result of the jitter-based cross-correlogram (CCG).
At certain time lags (V1 neuron leads LM neuron), such as 16 ms or 20 ms, the CCG curve is
tangent to the bottom 95% pointwise CI, and it becomes non-significant after multiple compari-
son adjustment, meaning weak inhibitory influence. Although most part of the CCG curve stays
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within the CI band, it is attempting to hypothesize that the weak inhibitory interaction exists in
the whole window from lag 0 ms to 50 ms since the majority part of the CCG curve stays below
zero. Similar non-significant outcomes are very common in the dataset especially between neu-
rons in distant regions and they are easily overlooked. Fig 5.1B is the result of our point process
regression method. Our method shows significant inhibitory relation between the pair of neu-
rons. The interaction is modeled using a continuous function called coupling filter, similar to the
widely used point process generalized linear regression model (PP-GLM) [79, 111, 134]. The
coupling filter describes how much a spike from one neuron influences the firing rate of the other
neuron in a certain lag period. We replicate a similar scenario using a simulation shown in Fig
5.1D,E,F. Our method is able to detect the weak coupling effect and it is close to the true model.
It is unsurprising to see the improvement: the power comes from aggregating all the information
in the lag period to estimate a much simpler model. Analog to the jitter-based method, ours still
needs careful removal of the background artifacts, otherwise, the result can be biased as shown
in Fig 5.1F where the coupling filter is close to zero, resulting in a wrong conclusion that there is
no significant coupling interaction. Fig 5.1C has similar issue. If the background artifacts are not
removed, the inhibitory coupling effect can be detected as no effect or a small positive coupling
effect. More examples can be found in Supplementary D.4.13.

Inspired by the jitter-based correction, our regression method eliminates the background ar-
tifacts using coarsened spike trains by adding only one covariate (nuisance variable) through all
trials unlike the typical PP-GLM, which needs many parameters to model the fluctuating back-
ground [89]. If the background varies from trial to trial, the number of parameters grows with
sample size which may suffer from Neyman-Scott-type issue (the bias does not vanish as the
sample size grows) [114, example 3.5] and large computational burden. Synchrony detection is
a special case of discovering spike-to-spike coupling effect that only focuses on zero lag events
[61, 78, 83, 120, 141], while we would like to aggregate more lag information to detect weak
signals. We point out that the purpose and usage of our method are slightly different from the
jitter-based method though. The latter one is usually used for hypothesis testing, emphasizing
the existence of the coupling effects, for example, given the timescale of the background activ-
ity (fixed in the null), if there are coupling effects at a specific lag. While our method aims to
quantify the coupling effects in a time range as a continuous function taking the advantage of
data aggregation, as already shown in Fig 5.1. Our method needs to find the optimal timescale
of the shared activity instead of fixing that as a part of the null assumption. Determining the
timescale of the background activity is part of the inference procedure. Another difference is
that our model does not assume the timescale of the shared activity is larger than the timescale
of the spike-to-spike coupling effect. In other words, if the shared activity changes as fast as the
coupling interaction, the model is still able to eliminate the artifacts. In addition, the proposed
regression model is in continuous-time (no need for time-binning), only needs very small mem-
ory space, and is robust to multiple variants. The analysis of the new tool will be presented in
section 5.2.

Besides simulations, the real data we have used (available from the Allen Brain Observa-
tory [121]) include the primary visual cortex (V1), the lateral medial visual area (LM), and the
anterolateral visual area (AL), three regions that lie at different hierarchical processing stages
while being highly interconnected [60]. We analyzed the coupling filters among V1→LM and
LM→AL. We found the coupling filter type of a pair of neurons (excitatory, inhibitory, no effect,
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or others) might vary from trial to trial.
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5.2 Methods

5.2.1 Point process regression model

AL

AL

sharedbaseline baseline

Figure 5.2: Coupling neurons model diagram. Two neurons i, j are driven by the same input
signal fi,j . λi, λj represent the intensity functions. si, sj are spike trains. The spikes from neuron
i influences the activity of neuron j through the coupling filter hi→j . The goal of the model is to
estimate hi→j but fi,j challenges the estimation.

Consider a pair of coupling neurons i→ j that follow the point process as shown in Fig 5.2. The
intensity functions for neurons i, j are1,

λj(t|Ht) = αj + fi,j(t) +

∫ t

0

hi→j(t− τ)Ni(dτ)

λi(t|Ht) = αi + fi,j(t)

(5.1)

hi→j is the coupling filter, which captures the spike-to-spike interactions between neurons i→ j
on fine time scale, say about 30 ms. So the model is history-dependent,Ht represents the spikes
before time t. Commonly, neurons share the same input, according to a random function of time
fi,j(t). Ni(·), Nj(·) are counting processes (spike count measures) for neuron i, j respectively.
Ni([t, t + ∆]) = 1 if there is one spike in a small interval [t, t + ∆]. αi and αj are constant
baselines. The goal is to estimate the coupling filter while eliminating the shared input artifacts.

1Some works model the intensity functions using log-linear form, for example, the intensity function for neuron
i becomes log λi(t|Ht) = αi + fi,j(t). We do not think this will make a big difference if the coupling effect is
small, but the linear form has great computation convenience, see Appendix D.1. Consider at a certain time, the
intensity is modeled in two forms, λ = β0 + ∆h = exp{β′

0 + ∆h′}. β0, β
′
0 represent the baselines of two types

of models, and ∆h,∆h′ represent the contribution of the spike-to-spike coupling effect. If ∆h,∆h′ � β0, β
′
0, we

approximately have ∆h
β0

+ log β0 ≈ ∆h′ + β′
0. So ∆h,∆h′ have linear relation. The sign of the coupling effect

will be same; if ∆h increases, ∆h′ will also increase. The distinction is, approximately, a matter of scale. However,
in some specific setups, the additive and multiplicative formats might have noticeable differences [70, Fig 4b with
negative interdependence].
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Our estimator is designed as follows,

ĥi→j = arg min
hi→j

L(hi→j) (5.2)

L(hi→j) := min
βj ,βw

−∑
s∈Nj

log λ̃j(s) +

∫ T

0

λ̃j(s)ds

 (5.3)

λ̃j(t) := βj + βw si(t) +

∫ t

0

hi→j(t− τ)Ni(dτ) (5.4)

si(t) =

∫ T

0

W (t− s)Ni(ds) (5.5)

The shared activity fi,j is simply represented by just one nuisance variable si. L is the negative
profile log-likelihood function. The estimator ĥi→j can be in a simple form, such as a square
window, or can be assumed smooth and fitted using nonparametric method such as regression
splines. si(t) is the coarsened spike train smoothed by kernel W . We use Gaussian kernel with
scale σw. Apparently, the true model (5.1) is not necessarily in the parametric family of the
estimator shown in Eq (5.2)-(5.5), so the maximum likelihood estimator (MLE) in Eq (5.2) is not
guaranteed to be consistent. We put tilde over λ̃j in Eq (5.4) to emphasize the special parametric
form that might be different from the form of the true intensity (5.1).

The optimization algorithm is in Appendix section D.1. Our model treats σw as a tuning
parameter and we do not evaluate its uncertainty due to the optimization difficulty, because it is
not tractable to calculate the derivative of Eq (5.3) over σw. However, in some situations, for
example sampling-based inference, it is possible to regard σw as a random variable, see Supple-
mentary D.4.4. In the next section, we will show that with proper selection of the kernel scale
σw, the MLE is still able to achieve some good properties such as small risk and nearly zero bias.
The asymptotic Normality of the estimator is discussed in Lemma D.2.5 and verified numeri-
cally in Supplementary D.4.7. This property can be used for model inference, such as hypothesis
testing, see Supplementary D.4.8. It is possible that neurons are driven by exclusive fluctuating
activities fi and fj besides the shared one fi,j . We introduce this model in Supplementary D.4.2.
Unlike many other point process models, our method is in continuous-time, which does not need
to specify the time resolution of the spike trains [42, 46], also see [34, example 8.5(a)]. The
memory space thus becomes very small, which is proportional to the number of spikes instead
of number of time bins.

5.2.2 Simulation and theoretical study
In this section, we study the behavior of the proposed estimator in Eq (5.2) through simulations
and provide corresponding theoretical analysis. We focus on a case where the fluctuating back-
ground activity fi,j is a second-order stationary stochastic process, meaning E[fi,j(t)fi,j(t + u)]
only depends on u but not t (the formal description is in Lemma D.2.1). A special case of the
the second-order stationary process is the cluster point process or linear Cox process, which is
widely used in point process study [11, 38] and [34, sec. 6.3]. We add the second-order sta-
tionary condition only to make theoretical derivations easier. The supplementary material will
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provide more variants.
We first generate random shared activity fi,j , then generate spike trains. Let φσI (·) be a

Normal window function with center zero and scale σI . tci are the time points of the center
process determining the positions of Normal windows, which is generated by a homogeneous
Poisson process with intensity ρ.

fi,j(t) =
∑
i

φσI (t− tci) (5.6)

For simplicity, we first consider the coupling filter in form

hi→j(t) = αh · I[0,σh](t) (5.7)

where αh is the amplitude, and the filter length is σh. σI controls the timescale of activity. If
σI is smaller, then fi,j changes faster. σh controls the timescale of the spike-to-spike coupling
effect. If σh is smaller, then neuron i influences neuron j in a shorter time range. The coupling
filter estimator has form ĥi→j = β̂h · I[0,σh](t) with just one parameter β̂h and the timescale σh is
known. We use the thinning method to generate continuous-time spike trains [107].
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Figure 5.3: Simulation and theoretical analysis of the estimator β̂h. Simulation details are
in the text. We show the properties of β̂h as a function of smoothing kernel scale σw of W (as
in Eq (5.5)). For numerical cases, we evaluate the properties at different σw indicated by the
blue dots. The x-axis is in logarithmic scale. The numerical (blue curves) and theoretical results
(dark curves) are very close. The pointwise confidence interval for RMSE and SE is calculated
using bootstrap (bootstrap the replicated estimators, not the spike train data). The pointwise
confidence interval for bias is calculated based on standard deviation. The blue band for the
likelihood is 1.96×standard deviation. A The estimated risk root mean square error (RMSE) of
the estimator β̂h. The two local minimums are labeled by “min-1” and “min-2”. Our method
prefers to select “min-2” indicated by the vertical line. The RMSE can be decomposed into bias
(shown in C) and standard error (shown in D). B The maximum log-likelihood as function of
σw. Since the likelihood functions may have different offsets, we align them by the peak (the
maximum value across σw) to zero, then calculate the mean and pointwise standard deviation.
The vertical line indicates the peak (numerical and theoretical peaks overlap), which matches
the position of “min-2” in A. The theoretical extreme cases “0” and “∞” mean the scale σw of
smoothing window W goes to limit 0 or ∞. The numerical case “no nuisance” represents the
model without including the nuisance regressor si in Eq (5.5), which becomes a typical Hawkes
process model ignoring the fluctuating background activity.

Fig 5.3 shows the simulation results and corresponding theoretical approximations about
the properties of the estimator. By theoretical, we mean the properties of the estimator, such as
estimated risk or likelihood, are derived based on the second-order stationarity condition, through
which we would hope to provide insights about how the timescale of the activity is linked to the
behaviors of the estimator. The estimator actually is not sensitive to the second-order stationary
assumption (see Supplementary D.4.1 simulations with time-varying timescale activities). The
activity fi,j in the true model is set as a cluster process in Eq (5.6) with σI = 100 ms. The square
window filter width is σh = 30 ms and αh = 2 spikes/sec in Eq (5.7). The firing rate of the center
process ρ = 30 spikes/sec. The baselines are αj = αi = 10 spikes/sec. One simulation case
has 200 trials and the length of the trial is 5 sec. Each trial is assigned with an independently
generated fi,j . The numerical properties were estimated using 100 replicated simulation cases.
We have discussions about the situation where σh is unknown and it does not match the true
coupling filter width, see Supplementary D.4.6. More complicated non-parametric fitting of
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the coupling filter is presented in Supplementary D.4.5. We consider a similar setting but with
Laplacian window function for the cluster process in Supplementary D.4.9.

If we use a constant baseline model (as known as the Hawkes process model, or linear PP-
GLM with constant baseline, or removing si in Eq (5.4)) without considering the fluctuating
background signal, the estimated coupling filter will be positively biased (Fig 5.3C “no nui-
sance”), as the common input between neurons will contribute to part of the estimated spike-
to-spike interactions. This explains why the estimated filter in Fig 5.1F is above the true filter.
Constant baseline model is equivalent to model Eq (5.5) with infinitely wide kernel σw → ∞
(Fig 5.3 “∞” points) or infinitely small kernel σw → 0 (Fig 5.3 “0” points), because the nui-
sance variable is not able to capture any shared activity (also see Corollaries D.2.2.1, D.2.2.2,
and D.2.2.3). The bias of the estimator in Fig 5.3C is positive if σw is too wide or narrow, and
the bias becomes negative between σw = 20 ms and σw = 125 ms (the theoretical derivation is
in Lemma D.2.2). The gap between the numerical bias and theoretical bias becomes larger when
σw is larger than 500 ms and this also appears in RMSE. The SE in Fig 5.3D does not change too
much as σw changes (the theoretical derivation is in Lemma D.2.3).

The estimated risk of the estimator has two local minimums, labeled by “min-1” and “min-
2” in the figure, and they are very close to zero bias solutions since SE does not change too
much. If we aim to select a model with small risk, then there seem to have two solutions. We
prefer to choose the model with σw at “min-2” (indicated by the vertical line in Fig 5.3A) for
several reasons: 1, the slope of the risk curve around “min-2” is smaller than the slope near
“min-1” (the x-axis of the figure is in logarithmic scale), so the model is less sensitive to the
selection of σw; 2, from a practical point of view, “min-2” can be selected by maximizing the
log-likelihood over candidate σw (Fig 5.3B), which agrees with the model selection methods
based on likelihood, such as AIC or BIC; 3, as will be shown shortly, the position of “min-2”
is related to the timescale σI of fi,j and it is invariant of coupling filter scale σh or amplitude
αh. The optimal σw = 125 ms of the smoothing kernel is closer to the scale of the background
activity σI = 100 ms; So the nuisance variable, the coarsened spike train si (as in Eq (5.5)), can
be interpreted as a approximation of the background activity, and σw reflects the timescale of
that. 4, if the coupling filter is fitted using non-parametric method, the risk at “min-1” will be
much higher than the risk at “min-2”. This will be illustrated in Supplementary D.4.5. Next, we
explore how these properties are related to the shared activity and the coupling effect.
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Figure 5.4: Influences of background activity timescale, coupling filter timescale, and cou-
pling filter amplitude on the estimator β̂h. We show the RMSE and log-likelihood curves as
in Fig 5.3. The settings are the same as Fig 5.3 except for different σI in A, different σh in B and
different αh in C. This figure only shows the theoretical results. The numerical results are very
close (data not shown). The log-likelihood functions may have different offsets, we align them
by the peak to zero (maximum value across σw). The local minimums of the risk are labeled
by “min-1” on the left and “min-2” on the right for each case. A The RMSE and likelihood
curves with different σI = 80, 100, 120 ms. σh = 30 ms and αh = 2 spikes/sec are fixed. If σI
increases, “min-2” shifts to the right, while “min-1” does not move. The peak of the likelihood
function also moves accordingly and it is aligned with “min-2” (indicated by the grey vertical
lines). B The RMSE and likelihood curves with different σh = 20, 30, 40 ms. σI = 100 ms
and αh = 2 spikes/sec are fixed. If σh increases, “min-1” shifts toward right, but “min-2” and
the peak position of the likelihood function do not change (grey vertical lines). C The RMSE
and likelihood curves with different αh = −2, 0, 2 spikes/sec. σI = 100 ms and σh = 30 ms
are fixed. αh does not affect the risk of the estimator, but it changes the shape of the likelihood
function slightly.

Fig 5.4 shows the relations between the estimator’s properties and the timescale of the shared
activity (σI of fi,j in Eq (5.6)), the timescale of the spike-to-spike coupling activity (σh of the
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coupling filter in Eq (5.7)), and the amplitude of the coupling filter (αh in Eq (5.7)). The scale
σI of the shared activity fi,j is related to “min-2” and the peak of the log-likelihood function
(Fig D.1A). If σI is larger, the optimal σw also becomes larger. The scale σh of the coupling
filter is related to “min-1”, but it does not change the peak position of the log-likelihood (Fig
D.1B). If σh becomes smaller, “min-2” does not change, but “min-1” shifts toward left. The
amplitude of the coupling filter (αh in Eq (5.7)), whether it is positive or negative, does not
change the position of the two local minimums (Fig D.1C). Our method does not restrict the
timescale of the background is larger than the coupling effect. The “min-2” associated with σI
is not always on the right side, if σI decreases to a very small values where the the background
can change as fast as the coupling effect, the positions of “min-1” and “min-2” will be switched,
see Supplementary D.4.3. The above properties suggest a second way of choosing σw. As the
optimal σw does not depend on the timescale or amplitude of the coupling effect, we can use a
predetermined plug-in estimator for σw (Appendix D.1.2).

We also explore many other properties of the estimator. Here we briefly summarize the key
conclusions. The details are in the supplementary session. The scenarios include:

1. Supplementary D.4.1. Timescale-varying background. The timescale σI of the background
is no longer a fixed value (Eq (5.6)), it randomly changes from time to time. In this case, it
randomly changes between 80 and 140 ms. fi,j =

∑
i φσI,i (t− tci), where every time point

of the center process tci is assigned with a different scale σI,i. The process changes faster
at smaller σI,i, and changes slower at larger σI,i. The selected kernel width σw balances
the varying timescale and the selected estimator can still get small risk and low bias as will
be shown through simulations. However, if the shared activity is a mixture of very distinct
timescales, for example a compound of 100 ms and 5 ms, the selected model with a single
smoothing kernel W (Eq (5.5)) can not balance both timescales and some bias still exists.
We will further address this in Supplementary D.4.10, where the fast-changing activity is
driven by the spike trains of a subpopulation, and the multivariate regression is a remedy
for the issue if the driving spike trains can be observed.

2. Supplementary D.4.2. Non-shared fluctuating background. Besides the shared background
activity fi,j , neurons can be driven by other sources of activities, which are not shared
between neurons. This scenario breaks the framework shown in Fig 5.2. The non-shared
inputs do not affect the model selection. Surprisingly, the non-shared components help the
estimation by decorrelating the background and the coupling effect as it decorrelates the
inputs of two neurons. The bias and risk become smaller.

3. Supplementary D.4.3. Fast-changing background. The shared activity fi,j has very small
timescale σI . If σI is set as a small value such as 20 ms or even 5 ms, which is smaller than
the spike-to-spike interaction timescale, the model is still able to accurately estimate the
coupling effect. This is seen as a significant advantage over the jitter-based method, which
cannot handle fast-changing background. The method can split the background effect and
coupling effect as the former one is undirectional and the latter one is directional effect
between neurons. The jitter-based method or similar bootstrapping methods can break the
subtle fine timescale effect.

4. Supplementary D.4.4. Bayesian model. The regression model is built on likelihood and
can be adopted for Bayesian inference where the smoothing kernel width σw can be treated
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as a random variable. σw reflects the timescale of the shared activity as already shown in
Fig 5.4, but the uncertainty of σw is not directly related to the variance of the timescale σI
of the shared activity (if it varies like Supplementary D.4.1). So σw should be interpreted
as a representation of the average shared activity timescale but not the whole range of the
timescale. Incorporating the uncertainty of smoothing kernel width σw does not change
the estimation of the coupling effect too much.

5. Supplementary D.4.5. Non-parametric fitting for the coupling filter. The coupling filter is
fitted using non-parametric method. This example shows the versatility of the regression
method and the connection to the commonly used point process GLM [79, 111, 134].

6. Supplementary D.4.6. Selection of coupling filter length. In practice, usually the range
of the coupling effect is unknown. If the coupling filter length σh is shorter than the true
coupling filter length, then the properties do not change a lot. But if the coupling filter of
the estimator is longer than the truth, then the bias becomes larger, and the kernel width
selection does not match the optimal risk. So if users are not confident with the coupling
filter length, it is recommended to use a shorter coupling filter or non-parametric fitting as
in Supplementary D.4.5.

7. Supplementary D.4.7. Asymptotic Normality of the estimator. The Normality of the es-
timator’s distribution is verified using simulations. The property can be used for model
inference, for example calculating p-values in hypothesis testing (Supplementary D.4.8).

8. Supplementary D.4.8. Hypothesis testing example. We present examples of hypothesis
testing based on the proposed regression model. We verify that the p-value distribution
under the null is uniform and demonstrates the power of the estimator using weak coupling
effects under a small sample size. The performance of our method is better than the jitter-
based CCG.

9. Supplementary D.4.9. Background activity with Laplacian window function. The Gaus-
sian window function in Eq (5.6) used to generate fluctuating background activity is re-
placed by the Laplacian window function, which has a sharper shape at the center and
thicker tails. The performance of the estimator and the conclusion are the same.

10. Supplementary D.4.10. Multivariate regression and partial relation. It is very natural to
extend the bivariate model to a multivariate regression model. The multivariate regression
model can handle the shared input artifacts with a mixture of very distinct timescales under
some circumstances. In this simulation scenario, a subpopulation Z drives two neurons X
and Y through coupling filters on a very fast timescale together with slow-changing back-
ground activity. The bivariate model Eq 5.2 can not remove the artifacts caused by both
slow-changing background and fast-changing spike train-driven input. But if the driving
spike trains are observed, the multivariate regression model can eliminate all artifacts.

11. Supplementary D.4.11. Self-coupling effect. This problem comes from real data goodness-
of-fit test. The self-coupling effect could lead the basic model in diagram Fig 5.2 to select
a smaller smoothing kernel width than the optimal one minimizing the risk. It also under-
mines the goodness-of-fit. However, the introduced extra bias is small. When replicated
the real data analysis in section D.4.15 with different kernel widths, the conclusion did not
change.
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12. Supplementary D.4.12 Rate coupling and delayed shared input. Besides spike-to-spike
coupling, we consider rate coupling between neurons. A special case of rate coupling is
the delayed shared input. The shared component arrives at two neurons with different de-
lays, showing a fine timescale coupling between the underlying instantaneous firing rates.
The coupling between the firing rates does not affect the estimation of the spike-to-spike
coupling effect.
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5.3 Application to neuroscience data
Neuroscience data are noisy, and usually there are not enough repeated trials to make very

detailed estimation of the coupling filters between all pairs. Therefore, we start with a simple
model that can identify the basic types of the spike-to-spike interaction, such as excitatory, in-
hibitory, no coupling effect, or others. We applied our method to the Allen Brain Observatory
Visual Coding Neuropixels [121]. Details of the materials and the algorithm are in Appendix
D.3. We found the coupling filter type was not always the same and changed from trial to trial.

We use the coupling filter templates to identify the type of all coupling filters on each trial.
Fig. 5.5 shows the fitted templates of the coupling filters. Not all filters fit into the three cate-
gories, so we add two more groups. It is important to use a powerful tool to identify the coupling
filter type properly. Otherwise, it may not be able to detect the weak effect or get a wrong type,
see Fig 5.1 and Supplementary D.4.13. Without properly removing the background artifacts, as
already shown in Fig 5.3 the bias is positive if the fluctuating background is not considered, type-
0 “no effect” can be regarded as type-1 “excitatory”, and type-2 “inhibitory” can be regarded as
type-0 “no effect” or type-1 “excitatory”, see Supplementary D.4.13.

• Type 0: No coupling effect.
• Type 1: Positive square window coupling filter representing the excitatory effect. The filter

length is 50 ms. Usually the excitatory effect is weak, which is similar to the case in Fig
5.1, so we just use one variable for the coupling filter.

• Type 2: Negative square window coupling filter representing the inhibitory effect. The
filter length is 50 ms. The design is similar to the excitatory coupling filter.

• Type 3 and type 4: Oscillatory-shape filters but with different phases. The tail is small.
The filter length is 40 ms.
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Figure 5.5: Fitted coupling filter templates. The first three represent no coupling effect,
excitatory, and inhibitory coupling filters. No all filters fit into these three categories, so two
more templates are included with oscillatory shapes. The phase between type 3 and type 4 are
different.
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Figure 5.6: Frequency of coupling filter types of all coupling filters. Our method identifies
the type of a coupling filter on each trial. Totally there are 285 trials for each pair of neurons.
The histograms show the mean number of trials of each type across all pairs among V1→LM in
A and LM→AL in B. The error bar is the standard deviation of the number of trials.

Next, we identified the coupling filter types of two pairs of neurons on all trials. Fig 5.6
counts the frequency of each type of all trials. There are cases where the source neuron or the
target neuron do not generate spikes in the whole trial window, so we can not tell what the
coupling filter type is. The trials without observed spikes are categorized into “empty trial”. The
coupling filter type is not always the same and it varies from trial to trial. Our analysis totally
includes 672 coupling filters among V1→LM, and 648 coupling filters among LM→AL. Fig
5.6 shows the mean and standard deviation of the frequency of each coupling filter type. In
both Fig 5.6A and B, inhibitory type has higher frequency. Since the filter shapes are noisy and
the filters in types 0, 1, 2 are very close, some clusters might merge into one. To avoid this
issue, we fix the group weights similar to the k-means clustering instead of updating the group
weights in a typical mixture model, see details in Appendix D.3.3. Fixing the group weights for
all trials does not introduce trial-to-trial variance. We tested the method using different weights,
see Supplementary D.4.15. The portion of each type is sensitive to the group weights due to the
small sample size on each trial.

We assessed the goodness-of-fit using Kolmogorov–Smirnov test based on the time rescaling
theorem [24, 62]. The results are shown in Supplementary D.4.16. Most coupling filters have a
good fit except for a few pairs possibly due to the self-coupling effect. The self-coupling effect
can lead the model to select a smaller smoothing kernel width, see Supplementary D.4.11. We
repeated the analysis using a larger and a smaller smoothing kernel width (σw of W in Eq (5.5)),
the results are very similar, see Supplementary D.4.15. We repeated the analysis using totally
different conditions but the same animal. The conclusion is the same, see Supplementary D.4.17.
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5.4 Discussion
One motivation for this work is to develop a flexible, robust and computational friendly tool to
handle large electrophysiological dataset with multiple regions simultaneously recorded. Larger
and more complicated recordings demand that the modeling framework incorporate more factors.
Another motivation is about extendable modeling. The purpose of modeling changes from case
to case. We avoid designing a tool that is highly constrained by specific assumptions or formats.
The framework of the model ought to be easily modified, new components can be freely plugged
in, and different components are ideally separated.

These requirements lead to the proposed model in Eq 5.2-5.5, which is modularized into two
components through the regression framework: the coupling filter component is the main interest
of this work, that is used for inferring spike-to-spike interactions; the kernel smoothed spike train
si in Eq (5.4) is responsible for removing the artifacts caused by the fluctuating background. The
optimization-based inference is more efficient than sampling-based (while the method can still
be used to the latter, see Supplementary D.4.4). The model does not need to specify time reso-
lution and the memory complexity is small. Rather than detecting whether the coupling effect is
significant or not, we are more interested in quantifying the effect and build uncertainty around
that so it can be used for more applications, as opposed to only constructing the null distribution
of a statistic (while it can still be used for hypothesis testing, see Supplementary D.4.8, where
build CI for the estimated coupling filter instead of having its null distribution). The modularized
design is flexible since both parts can be adjusted separately for different purposes in various sit-
uations, which also has a connection with the widely used point process GLM[79, 111, 134]. For
example, if the timescale of the coupling filter is shrunk into a few milliseconds, the model can
also be used for synchrony detection [61, 78, 83, 120, 141] (simulations or data analysis are not
shown as detecting the effect at only one time lag is not the main goal of the paper). New compo-
nents, for example latent variables, can be added to the intensity function in Eq 5.4. But this may
lose the convenience of continuous-time modeling if the new component can not be integrated
in closed-form (see Appendix D.1). As long as the target equation Eq 5.2 is differentiable over
the coefficients, the optimization is not a big problem. Many variants of the dataset or models
are presented in the Supplementary. Robustness also comes from modularization. The coupling
filter can be adapted to the characteristics of the data without changing the nuisance variable for
the background activity (see Fig 5.4B,C). We do not assume the timescale of the background is
larger than the coupling effect, or vice versa, see Supplementary D.4.3. For example, as shown in
Fig 5.1, if the coupling effect is weak, the coupling filter can be simplified with less parameters so
that more information in a lag range can be collected for the estimation, thus it is less sensitive to
the noise at one time lag. Leveraging the advantages of kernel smoothing, the nuisance variable
does not need customized design for a special type of the background activity. The smoothing
kernel width can be selected automatically, and the result is not sensitive to the selection, see
Fig 5.3 and Supplementary D.4.4. So the model can be easily applied to massive dataset with
minimal manual intervention.

In our work, the model used for inference is not the same as the specified true model. The
background activity si is not assumed to be in the same format as fi,j in Eq 5.1 and 5.4. If the
inference model and the assumed true model were the same, when the true model needed to be
modified, possibly it would totally overturn the inference procedure, thus limits the flexibility of
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the modeling. However, the cost of our model is that the MLE is no longer guaranteed to have
nice properties such as consistency or asymptotic Normality, etc. We spend a lot of efforts on
justifying that even the true model is not in the special parametric family of the inference model,
it can still achieve satisfactory performance.

Next, we would like to point out some drawbacks of the model and analysis. We add the
second-order stationary condition for the background activity to make the theoretical derivations
simple (Lemma D.2.1, Lemma D.2.7). However, if the timescale of background changes from
time to time, it can break this assumption, but the model can still hold the same properties as in a
second-order stationary process, see Supplementary D.4.1. This means the discovered properties
hold in weaker conditions than the second-order stationarity. However, we have not found such
general necessary conditions from either numerical or theoretical point of view. Our theory
(Lemma D.2.5) shows that if the estimator of the coupling effect is very close to the true model,
then the estimator is asymptotically normal. Numerical evidence shows that even the estimator
has non-negligible bias, it can still have normal distribution. We have not provided a theoretical
explanation for this. Another shortcoming of our work is that we have neither strictly proved
why the estimator selected by maximizing the likelihood can minimize the risk and get low
bias, nor provided a bound on the model selection error. Instead, we showed that the estimator
maximizing the likelihood and that minimizing the risk agree with each other very well, through
theoretical approximation (for example, Fig 5.3 A and B dark curves), and provide numerical
simulations to verify the properties of the estimator empirically (for example, Fig 5.3 A and B
blue curves). The regression model fails in eliminating the artifacts if the background activity
is a mixture of very distinct timescales, for example the timescales are compounds of 5 ms and
100 ms. We partially address this issue using multivariate regression in Supplementary D.4.10.
But we think a more general solution can be an extension of the current model by incorporating
multiple levels of background artifacts, at least two levels. As shown in Supplementary D.4.10,
the bias is significant only when the fast-changing component is very strong. We will leave the
research of this type of issue in the future. But we first need to find out if such strong fast-
changing background exists in real data. If a coupling filter is fitted by a square window, and
it is longer than the true range of coupling effect, it can disturb the model selection. So we
recommend shorter square window if users are unsure about the range of the coupling effect,
or exploring with non-parametric fitting or CCG first, see Supplementary D.4.6. Our theory
has not covered self-coupling effect yet, and we realize that this effect can mislead the model
selection and undermines goodness-of-fit in some situations, see Supplementary D.4.11. But the
introduced error is minor. We will fix this issue in the next step of our work.
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Appendix A

Appendix for Chapter 2

A.1 Datasets

Data Monkey Human Goldfish
Feature inhomogeneous trial-to-trail variability bursty
# Trials 10 10 1
Trial duration (sec) 1 10 30
Mean firing rate (Hz) 24.0 1.0 32.4
Source Gerhard et al. Gerhard et al. Tokdar et al.

Table A.1: Details of the datasets used in this paper. The Monkey and Human datasets [53] consist
of single unit recordings from monkey cortex PMv and M1 areas, and from the neocortex of a
person with a pharmacologically intractable focal epilepsy, respectively. The Goldfish dataset
[96, 132] consists of recordings from retinal ganglion cells in vitro that exhibit bursting firing.
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A.2 Diagnostic Maps

C D

A B

Figure A.1: Stability maps for two FLF models (Equation 2.4) Fθ using the diagnostic of [53] and
our updated diagnostic. For each value of θ, we (i) simulated a 10 sec. long spike train from Fθ,
and deemed the model unstable if it generated over 900 spikes in the last second, (ii) produced
the diagnostic curve and determined from it if the model was stable/fragile/divergent, and (iii)
plotted θ against the outcomes in (i) and (ii). (A) Reproduction of the stability map in [53]
Figure 4, where Fθ is an FLF model with β0 = −5.3 and h(t) = β1 ·B1(t) + β2 ·B2(t) + Dip(t),
where B1(t) = e−t/0.02, B2(t) = e−t/0.1 and Dip(t) is a negative window function modeling
a 2 msec. refractory period, θ = (β1, β2), and filter length Th = 0.2 sec. The maps suggest
that the diagnostic is mostly reliable, except in small regions of the parameter spaces. (B) Our
updated diagnostic for the same model matches the simulation better. (C) Stability map using
the diagnostic of [53] for Fθ an FLF model with with β0 = −4, h(t) = β1 · B1(t) + β2 · B2(t).
Basis B1(t) and B2(t) are the same as Figure 2.2A. θ = (β1, β2), and filter length Th = 0.35 sec.
(D) Our updated diagnostic for the same model matches the simulation better.

A.3 Simulation algorithms
Algorithms 1, 2, and 3 generate Izhikevich-xx, FLF, and FNF datasets, respectively.
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Algorithm 2: Izhikevich simulation algorithm. The Izhikevich dynamical model can
generate a rich family of biophysically realistic spike patterns [71, 72], including time
varying rate pike trains, tonic spikes, bursts, etc. A list of parameters to produce various
effects is given in [137].
1 Input: Parameters a, b, c, d. Time resolution ∆. Time varying spiking intensity I(t).
2 Initial: u(0) = 0, v(0) = 0, S = {0}
3 for t = 0 to T do
4 dv = 0.04v(t)2 + 5v(t) + 140− u(t) + I(t)
5 du = a(bv(t)− u(t))
6 v(t+ 1) = v(t) + dv ·∆
7 u(t+ 1) = u(t) + du ·∆
8 if v(t+ 1) > 30 then
9 v(t+ 1) = c

10 u(t+ 1) = u(t) + d
11 S = S ∪ {t+ 1}
12 else
13 continue
14 end
15 end
16 Output: S

A B C

Figure A.2: (A) Izhikevich-burst synthetic dataset spike trains and simulated spike trains from
FLF, FNFS(k=4), FNFM (k=4). Both type of models can generate busts similar to those in the
dataset. (B) Fitted filters of the FNFS models with number of spikes k = 1, ..., 9. When k > 3,
the filters are very close to each other since further spikes will not make too much contribution to
the future firing rate, thus will only affect the filter shape slightly. The fitted FLF filter overlaps
with the FNFS filters with k ≥ 5, suggesting that these models are functionally similar. (C)
Fitted filters of an FNFM model with k = 4: the filters are substantially different, which suggests
that past spikes of different order have different effects on the firing rate. A likelihood ratio test
comparing the FNFS(k=5) and FNFM (k=5) models favors the FNFM model (p� 0.001).
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Algorithm 3: FLF model (Equation 2) simulation algorithm. This algorithm simulates
ISIs from a unit rate exponential distribution and inverts them using the time rescaling
theorem [24, 79] to obtain the past spike times.
1 Input: time resolution ∆, baseline β(t), t ∈ [0, T ], and post-spike filter h with length L;
2 define f(s1, s2) :=

∑s2
t=s1

λ(t|Ht)∆, 0 ≤ s1 < s2 ≤ T , assume λ(t|Ht) ≥ 0;
3 Initial: S = ∅ be the set of spike time points;
4 λ(t|Ht) = β(t)
5 t1∗ = 0
6 while TRUE do
7 draw one sample Z ∼ Exp(1);
8 if f(t1∗, T ) < Z then
9 return

10 else
11 s = arg min

τ
{f(t1∗, τ) ≥ Z}

12 S = S ∪ {s}
13 t1∗ = s
14 Update the firing rate function by adding the impact of the new spike to the

future firing rate: log λ(τ + t|Ht) = log λ(τ + t|Ht) + h(τ), for all
τ ∈ [0,min(L, T − t)]

15 end
16 end
17 Output: S, λ(t|Ht)
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Algorithm 4: FNF model (Equation 3) simulation algorithm.
1 Input: time resolution ∆, baseline β(t), t ∈ [0, T ], and k post-spike filter hi with length

Li
2 define f(s1, s2) :=

∑s2
t=s1

λ(t|Ht)∆, 0 ≤ s1 < s2 ≤ T , λ(t|Ht) ≥ 0 is the total firing
rate

3 Initial: S = ∅ be the set of spike time points
4 λ(t|Ht) = β(t)
5 t1∗, t2∗, ..., tk∗ = 0
6 while TRUE do
7 draw one sample Z ∼ Exp(1)

8 Update the firing rate function log λ(t|Ht) = β(t) +
∑min(k,|S|)

i=1 hi(t− ti∗), if t > Li,
hi(t) = 0. ti∗ are the last i’th spike.

9 if f(t1∗, T ) < Z then
10 return
11 else
12 s = arg min

τ
{f(t1∗, τ) ≥ Z}

13 S = S ∪ {s}
14 t1∗ = s, t2∗ = t1∗, ..., tk∗ = t(k−1)∗
15 end
16 end
17 Output: S, λ(t|Ht)
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A.4 Misc. results
Derivation of Equation 2.7∑

tj∗∈(t−Th,t1∗)

h(t− tj∗) ≈ E
N

[ ∫ t1∗

t−Th
h(t− τ)dN(τ)

]
(A.1)

= E
N∆

[
E

N |N∆

[ ∫ t1∗

t−Th
h(t− τ)dN(τ)

∣∣∣N∆

]]
(A.2)

t−τ=u
= E

N∆

[ N∆

t1∗ − t+ Th

∫ Th

t−t1∗
h(u)du

]
(A.3)

= A0

∫ Th

t−t1∗
h(u)du (A.4)

where N∆ = N(t−Th,t1∗) is the number of spikes in (t− Th, t1∗), and A0 is the mean firing rate in
that time window. In equation A.2, the inner expectation is taken over spike count conditioned on
a fixed number of spikes in the interval (t−Th, t1∗). If the filter h(u) is estimated by eh(u)− 1 in
[53], the error will be larger if h(u) is not close to 0. Because the point process itself is unknown,
the firing rate function is approximated under the assumption that it is a homogeneous Poisson
process. For homogeneous Poisson process, if the number of events is fixed, they distribute
evenly in the interval, which leads to equation A.3.

The time rescaling theorem Let Zi =
∫ ti
ti−1

λ0(t)dt, where ti are spike times, Zi are time
integral transformed intervals. Time rescaling theorem states that if λ0(t) is the firing rate of
the true model, then Zi are iid and Zi ∼ Exp(1). The goodness-of-fit test checks how close the
distribution of transformed intervals from estimated model is to the unit exponential distribution.
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Appendix B

Appendix for Chapter 3

B.1 Simulation study
First, we created a series of PP-GLMs with coefficients β0(g), g ∈ {g1, ..., gB}. These parame-
ters corresponded to the models with different ion channel conductance scaling factors. Differ-
ences between adjacent models β0(gi) and β0(gi+1) were small and the trend was smooth. The
parameters came from a previous fit. Then for each β0(gi), we simulated 100 3-second spike
trains according to Eq. 3.1. The simulated spike trains were then used to fit new PP-GLMs in
Eq. 3.6, and the penalty hyperparameter λ was selected as described above in Eq. 3.7. We ex-
pected to see that after applying the trend filtering technique, the model could recover the trend of
changes despite the Poisson-like noise from the spike trains. We repeated the above procedures
100 times to acquire the mean and the variance of the error. Besides trend recovery simulation,
we also checked the goodness-of-fit using KS test based on time rescaling theorem [24, 62]. All
fitted models had good performance (data not shown). The results are shown in Fig. B.1.
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A

D

CB

Figure B.1: Simulations verification for the joint training model 3.6. A, B, and C provide one
example fit. D summarizes 100 repeated fits. SS values for PP-GLM fits of simulated spike
trains for (A) the stimulus and (B) post-spike history coefficients, and (C) the log-likelihood all
as a function of λ. True SS values are shown at the bottom of A and B. Panels are similar to
Fig. 3.3K-M, except that the true model refers to a known set of PP-GLMs with coefficients
β0(g), g ∈ {g1, ..., gB}. When λ = λ∗ (gray dashed line), the SS values are very close to the
true SS values, thereby validating our trend filtering penalty hyperparameter selection method. D
SS error between true PP-GLM and 100 separate sets of simulated spike trains from the true PP-
GLM as a function of aligned λ index. Since different runs may choose different optimal tuning
parameter, so the tuning parameters along the x-axis, the index λ, are aligned to the optimal λ∗

at index 0.
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B.2 ADMM optimization algorithm for training PP-GLMs with
trend filtering

B.2.1 Update rules
Training PP-GLMs with trend filtering (Eq. 3.6) can be optimized using alternating direction
method of multipliers (ADMM) [18, 113]. It can be rewritten as,

min
β(g1),...,β(gB)

B∑
i=1

−`(i)(β(gi)) + λ‖Dβ‖1 (B.1)

⇐⇒ min
β(g1),...,β(gB),z

B∑
i=1

−`(i)(β(gi)) + λ‖z‖1 (B.2)

subject to z−Dβ = 0 (B.3)

Where β = (βT(g1), ...,β
T
(gB))

T , `(i)(β(gi)) is defined in Eq. 3.5, D represents the difference
operator between blocks of β, each block has dimension d× d.

D =


1

g2−g1
Id×d − 1

g2−g1
Id×d

1
g3−g2

Id×d − 1
g3−g2

Id×d
...

1
gB−gB−1

Id×d − 1
gB−gB−1

Id×d


The augmented Lagrangian is,

Lρ(β, z,w) =
B∑
i=1

−`(i)(β(gi)) + λ‖z‖1 +
ρ

2
‖z−Dβ + w‖2 − ρ

2
‖w‖2

=
B∑
i=1

−`(i)(β(gi)) + λ‖z‖1 +
ρ

2
‖z−

B∑
i=1

D(i)β(gi) + w‖2 − ρ

2
‖w‖2

w is the scaled dual variable (scaled by 1/ρ). β(gi) ∈ Rd, D ∈ R(B−1)d×Bd, D(i) ∈ R(B−1)d×d,
z,w ∈ R(B−1)d. The augmented term is introduced to increase the robustness of the calculation
by changing the target into a strict convex problem. Note that ρ = 0 is equivalent to the standard
Lagrangian problem. The ADMM update rules are,

Broadcast

β(gi)
(k+1) = arg min

β(gi)

− `i(β(gi)) +
ρ

2
‖z(k) −

∑
j∈[B]\{i}

D(j)β(gj)
(k) −D(i)β(gi) + w(k)‖2,

(B.4)
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for i = 1, ..., B.
Gather

z(k+1) = arg min
z

λ‖z‖1 +
ρ

2
‖z−

B∑
i=1

D(i)β(gi)
(k+1) + w(k)‖2 (B.5)

w(k+1) = w(k) + z(k+1) −
B∑
i=1

D(i)β(gi)
(k+1) (B.6)

Eq. B.4 can be calculated using Newton’s method. Define the target Eq. B.4 as R(β(gi)),
µ(i) = 1

1+exp{−X(i)β(gi)} . The gradient and the Hessian matrix are the following,

∇R = XT
(i)(µ(i) − Y(i)) + ρDT

(i)

 ∑
j∈[B]\{i}

D(j)β(gj)
(k) +D(i)β(gi)− z(k) − w(k)

 (B.7)

∇2R = XT
(i)diag

(
µ(i) � (1− µ(i))

)
X(i) + ρDT

(i)D(i) (B.8)

Eq. B.5 is equivalent to,

z(k+1) = Sλ/ρ

(
B∑
i=1

D(i)β(gi)
(k+1) − w(k)

)

There are other ways to update the equations above in practice. As suggested by [18, sec
3.4.5], the algorithm updates each β(gi) in turn multiple times before performing the dual vari-
able update. If β(gi) are updated in parallel, and β and z are updated only once, the algorithm
may diverge.

B.2.2 Stopping rules
We determine the convergence of the algorithm using primal residuals and dual residuals [18],
which stem from the primal feasibility and dual feasibility.

Primal feasibility
z? −Dβ? = 0

Dual feasibility

0 ∈ ∂
B∑
i=1

−`i(β(gi)
?)− ρDT (u?/ρ), w? := u?/ρ

0 ∈ ∂‖z?‖1 + ρ(u?/ρ), w? := u?/ρ

Note that we use the rescaled ADMM, u is the original dual variable.
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Primal residual

r(k+1) := z(k+1) −Dβ(k+1) (B.9)

Here β is a stack of β(gi).

Dual residual Since z(k+1) achieves the minimum value of Eq. B.5, so

0 ∈∂λ‖z(k+1)‖1 + ρ
(

z(k+1) −Dβ(k+1) + w(k)
)

=∂λ‖z(k+1)‖1 + ρw(k+1)

We can see that z(k+1) and w(k+1) always satisfy this part of the dual feasibility. This is also the
reason why we set the learning rate as ρ.

As β(k+1) achieves the minimum value of Eq. B.4, so

0 ∈∇β

B∑
i=1

−`(i)(β(gi)
(k+1))− ρDT

(
z(k) −Dβ(k+1) + w(k)

)
=∇β

B∑
i=1

−`(i)(β(gi)
(k+1))− ρDT

(
z(k+1) −Dβ(k+1) + w(k)

)
+ ρDT

(
z(k+1) − z(k)

)
=∇β

B∑
i=1

−`(i)(β(gi)
(k+1))− ρDTw(k+1) + ρDT

(
z(k+1) − z(k)

)
=⇒ ρDT

(
z(k) − z(k+1)

)
∈ ∇β

B∑
i=1

−`i(β(gi)
(k+1))− ρDTw(k+1)

This means that, the following can be viewed as the dual residual.

s(k+1) := ρDT
(
z(k) − z(k+1)

)
(B.10)

B.2.3 Warm start
ADMM is notorious for slow convergence, especially when λ and ρ is large. When λ = λmax,
we know the lasso penalty term ‖Dβ‖1 = 0 as it shrinks all entries toward zero. So at λ = λmax

we have,
β(g1) = ... = β(gB) = β?g (B.11)

All blocks of β(gi) are unified. And it achieves the minimum value of the target Eq. B.1.

β?g = arg min
βg

B∑
i=1

−`(i)(βg)

=⇒ ∂

∂βg

B∑
i=1

`(i)(βg) = 0

(B.12)
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At the optimal value, by the stationary condition of w? we also have,

z? = Dβ? = 0

Next we can derive the w? using the stationary condition of β?.

β?g = arg min
β(gi)

− `i(β(gi)) +
ρ

2
‖z? −

∑
j∈[B]\{i}

D(j)β
?
g −D(i)β(gi) + w?‖2

=⇒ 0 =
∂

∂β(gi)

−`i(β(gi)) +
ρ

2
‖z? −

∑
j∈[B]\{i}

D(j)β
?
g −D(i)β(gi) + w?‖2

∣∣∣∣∣
β(gi)=β?g

=⇒ 0 = − ∂

∂β(gi)
`i(β(gi))

∣∣∣∣∣
β(gi)=β?g

− ρDT
(i) (z? −Dβ? + w?)

=⇒ 0 = − ∂

∂β(gi)
`i(β(gi))

∣∣∣∣∣
β(gi)=β?g

− ρDT
(i)w

?

∀i = 1, ..., B. Now we define,

v =

− ∂
∂β(g1)

`i(β(g1))

...
− ∂
∂β(gB)

`i(β(gB))

 =

 XT
(1)(µ(1) − Y(1))

...
XT

(B)(µ(B) − Y(B))


where X(i), µ(i), Y(i) are defined the same as Eq. B.7, and the gradient of the PP-GLM log-
likelihood function is calculated in the same way. From the stationary condition we know,

ρDTw? = v

=⇒ w? =
1

ρ
(DDT )−1Dv

We also need to consider the stationary condition of Eq. B.5. As

z? = arg min
z

λ‖z‖1 +
ρ

2
‖z−Dβ? + w?‖2

=⇒ z? = Sλ/ρ (Dβ? − w?) = 0

=⇒ z? = Sλ/ρ (−w?) = 0, λ = λmax

The last equality must hold as the definition of λmax in Eq. B.14 guarantees the zero solution.
Then we use the optimal solution {β?, z?,w?} as the initial values for the ADMM when λ is
large. When λ = λmax, it takes only one iteration to converge of course.

B.2.4 Model parameters
ρ is an optimization parameter instead of a statistical parameter. Under very general conditions,
the ADMM algorithm converges to optimum for any fixed value of ρ [18]. In practice, the rate
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of convergence and the numerical stability can strongly depend on the choice of ρ [113]. Large
ρ values impose a large penalty on violations of primal feasibility in Eq. B.4, so the algorithm
favors diminishing the primal residual. Conversely, the definition of s(k+1) in Eq. B.10 suggests
that small ρ values reduce the dual residual [18]. So we adopt an adaptive strategy to balance the
primal and dual residuals as the following,

ρ(k + 1) =


τincrρ(k), if ‖r(k)‖2 > µ‖s(k)‖2

1
τdecr

ρ(k), if ‖s(k)‖2 > µ‖r(k)‖2

ρ(k), otherwise

Since we use a rescaled dual variable, we need to change the w as well to maintain the same
dual variable,

w(k+1) =


1
τincr

w(k), if ‖r(k)‖2 > µ‖s(k)‖2

τdecrw(k), if ‖s(k)‖2 > µ‖r(k)‖2

w(k), otherwise

λmax can be derived via KKT conditions [18, 113].

0 ∈ ∂

∂β

B∑
i=1

−`(i)(β(gi)) + ∂λ‖Dβ‖1

⇐⇒ ∂

∂β

B∑
i=1

`(i)(β(gi)) = λDTu

For some v,

ui ∈


{1}, if (Dβ)i > 0

{−1}, if (Dβ)i < 0

[−1, 1], if (Dβ)i = 0

(B.13)

So that we get
λmax = ‖(DDT )−1Dv‖∞ (B.14)

where

v :=
∂

∂β

B∑
i=1

`i(β(gi)
∣∣∣
β=β?

)

the β? is obtained in Eq. B.12.

B.3 Stimulus reconstruction
We have presented a method that links channel conductance to specific stimulus filter or post-
spike history filter features in time-domain. Next, we will provide a frequency-domain method
which is an alternative analysis of how ion channel conductance affects stimulus encoding. We
study the frequency properties of the spike-decoded stimulus, which is reconstructed by trained
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PP-GLMs [111]. The decoded stimulus presents the information that has been encoded in the
spike train. Stimulus reconstruction provides an intuitive method to investigate how ion channel
conductances affect stimulus encoding by comparing the reconstructed stimulus to the actual
input stimulus. The method follows the steps in [133]. The stimulus is reconstructed using the
maximum a posterior (MAP) estimation of the stimulus given a fitted PP-GLM [111, 133], shown
as the following,

max
s
P (s|y(i);β(gi), θ) = max

s
P (y(i)|s;β(gi))P (s; θ) (B.15)

where s is the vector of full stimulus; y(i) is the spike train for the neuron with channel con-
ductance factor gi; β(gi) are the coefficients of the PP-GLM in Eq. 3.1; P (y(i)|s;β(gi)) is the
likelihood function given in Eq. 3.5; and P (s; θ) is the prior of the stimulus with parameters θ.
As described in section 3.2.1, the stimulus is the white noise convolved with an alpha function
as we introduced in section 3.2.1. The white noise has a Normal distribution N(0, σ2I). The
convolution is a linear transform of the white noise, its corresponding convolution matrix is A.
So the prior distribution is P (s; θ) = N(0, σ2AAT ). We assume the noise variance σ and the
alpha function is known.

The optimization of this model is the following. The log posterior of for stimulus reconstruc-
tion (Eq. B.15) can be written as,

logP (y(i)|s;β(gi))P (s; θ)

=
T∑
j=1

y(i),j(Kjs+Hjy(i) + βbaseline)

−
T∑
j=1

log(1 + exp{(Kjs+Hjy(i) + βbaseline)})

− 1

2
sT (σ2AAT )−1s+ C

=yT(i)Ks− 1T log(1 + exp{Ks+Hy(i) + βbaseline})− 1

2
sT (σ2AAT )−1s+ C

The above log-posterior is a convex function of s, thus the maximum a posterior (MAP)
estimation can be done using Newton’s method. The gradient is,

∂

∂s
logP (y(i)|s;β(gi))P (s; θ) =KTy(i) −KTσ

(
Ks+Hy(i) + βbaseline)− (σ2AAT )−1s

The Hessian matrix is,

∂2

∂s∂sT
logP (y(i)|s;β(gi))P (s; θ) =−KTdiag

(
σ
(
Ks+Hy(i) + βbaseline))K − (σ2AAT )−1

K,H are the convolution matrices for the stimulus filter and the post-spike history filter. Kj

and Hj are the j’th row of the matrices. βbaseline is the baseline, it belongs to the parameter
β(gi)). C is the constant which is not a function of s. σ(·) is the sigmoid function. The operators
σ(·), exp(·) and log(·) are element wise, the output has the same dimension as the input. With
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the gradient and the Hessian matrix, one can use gradient descent method or Newton’s method to
get the optimal s. The posterior is a convex function of s, thus it is guaranteed to get the globally
optimal solution.

The original stimulus and reconstructed stimulus were compared using the spectrum coher-
ence in different frequency bands. The spectrum analysis was implemented with Welch’s method
[103]. First, the signal was split into overlapping segments. The window length was 256 data
points (256 ms width), with 32 data points overlap. Each window was masked with a Bartlett
window. Second, the periodogram was calculated for each window using the discrete Fourier
transform, then computed the squared magnitude of the output. All the periodograms were then
averaged. Third, we estimated the magnitude-squared coherence, which is a function of fre-
quency with values between 0 and 1, indicating how well the input signals x matched to y at
each frequency. The estimator for the coherence is the following [91],

Ĉxy(f) =
|Ŝxy(f)|2

Ŝxx(f)Ŝyy(f)
(B.16)

where Ŝxy(f) is the estimated cross-spectral density between x and y, Ŝxx(f) and Ŝyy(f) are the
estimated auto-spectral density. The estimated spectral densities were estimated by averaging
the periodograms of all windows.

A

B

C

D

E

F

Figure B.2: Stimulus reconstructions and spectral coherence. A An example stimulus reconstruc-
tion for conductance scaling of 1.5, 1.0, and 0.5 (colored lines) compared to the actual stimuli
(gray line) for the MC KAchannel. B Magnitude squared coherence between the stimulus recon-
struction and the mean stimulus for conductance scaling of 1.5, 1.0, and 0.5. C The difference in
coherence between the conductance scaling and control scaling of 1.0. D-F The mean coherence
across indicated frequency bands as a function of conductance scaling factor. Gray dotted line
represents control scaling factor. All panels are for the MC KAchannel.
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Another way to examine the PP-GLM, which is an encoding model, is through decoding.
Decoding is the process of estimating a reconstruction of the original stimulus given a spike train
and a trained PP-GLM (Eq. B.15; Fig. B.2A). We then compare the reconstructed stimulus
to the original stimulus by measuring the coherence as a function of the signal frequency (Fig.
B.2B, C). We consider only stimulus reconstructions from PP-GLMs trained with optimal trend
filtering penalty hyperparameter, as the reconstructed stimuli for PP-GLMs trained without trend
filtering were nearly identical (data not shown). This is expected, as the goodness-of-fit is nearly
identical between λ = 0 and λ = λ∗ (Fig. 3.5C). The coherence analysis allows estimation
of specific frequency components that are, or are not, encoded when scaling different ion chan-
nel conductances (Fig. B.2B). Here we evaluate how ion channel conductance scaling affects
the coherence between the reconstructed stimulus and the original stimulus, by measuring the
difference between scaled ion channel conductances and the control ion channel conductance
(Fig. B.2C). For example, when scaling the MC KAchannel, increasing KAchannel conductance
generally reduces coherence across the frequency spectrum, whereas decreasing MC KAchannel
conductance shows increased coherence at specific frequencies 35-50 Hz and 70 Hz (Fig. B.2C).
Generally, the coherence measures are fairly noisy, which we can smooth by averaging over well
characterized frequency bands (Fig. B.2D-F). The MC KAchannel conductance scaling affects
encoding of mid range, beta frequencies (Fig. B.2D-F), with only moderate effects on low range,
theta frequencies and high range, gamma frequencies. This suggests a prominent role for the MC
KAchannel in encoding of mid range, beta frequencies. Overall, the additional approach of ex-
amining stimulus reconstructions further reveals how different ion channel conductance scaling
affects encoding of specific stimulus features.

94



January 11, 2022
DRAFT

Appendix C

Appendix for Chapter 4

We provide supplementary information and analyses in the form of appendices, figures, and
tables.

The details of the drifting gratings conditions used in our analysis, such as temporal frequency
and orientation, are summarized in C.1. Details about the simulation study are in C.1, C.3, C.4,
and C.5. Supplementary analyses about curve fitting are in C.2, additional material about the
priors is in C.3, and essential formulas for partial correlation and regression are in C.4. Selected
regression results are in C.2.

The remainder of our supplementary material is in a series of figures. The complete set of
correlations, that is posterior distributions of the correlations, are in C.3 with corresponding full
partial correlations in C.4 (full here means after conditioning on all the rest of the features).
The plot of marginal and partial correlation similar to Fig 3B,D for the case of V1 and LM
conditioning on AL is shown in C.5. The highly concentrated posterior distributions of pac are
displayed in C.6. The complete set of estimated templates, similar to the plots for selected
conditions, are in Fig 4.5. Different plots for the same estimated templates are in C.8, while C.9
shows additional comparisons of the templates to the corresponding PSTHs obtained from the
same selected set of neurons. The locations of recorded neurons, together with their classification
(based on the posterior median), are shown in C.10. Goodness-of-fit plots for each trial are in
C.12.

C.1 Simulation study
The true model in the simulations together with the spiking data were generated according to
the process in Eq (4.1)-(4.8). The matrix Σpop and the average population activities f pop

a,c , f local-1
a,c ,

f local-2
a,c came from the fit to the real data. We included 3 features (Gain, Peak-1, Peak-2) for 3

virtual brain areas. The total number of trials was 180. For one simulation dataset, we totally
drew 2000 MCMC samples, and dropped first 500 samples. The parameters were initialized
with the true values. We totally created 500 repetitions which could make the CI coverage have
a standard error around

√
0.95× 0.05/500 ≈ 0.01 with 95% CI. We calculate the CI ends

standard error by following [40, sec. 3.2.1]. A loose lower bound of RMSE can be determined
by the standard error of Pearson’s correlation with the same sample size, while assuming there
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is no bias and the true feature values are known. The standard error monotonically decreases as
correlation absolute value grows. The standard error of Pearson’s correlation is between 0.012
(if correlation is 0.9) and 0.072 (if correlation is 0) [45]. The RMSE range of the simulation is
slightly larger than this range due to extra uncertainty from other parts of the model and the bias
of the estimation.

Our model assumes the neurons within each group have the same property, meaning they
share the same intensity functions f pop

a,c , f local-1
a,c , f local-2

a,c . To verify this assumption, we created
two extra simulation scenarios by adding neuron-to-neuron variance to the intensity functions.
We did not find systematic error in the curve fitting on the real data, so the injected noise was
not specified in specific ways. Instead, we leveraged the generative model and created the noise
learned from the data. In one case, we added mild neuron-to-neuron variance. We first col-
lected posterior samples of f pop, f local-1, f local-2. Then we randomly assigned a sample to each
neuron with respect to its group. In the other case, we added more aggressive neuron-to-neuron
variance. We approximated the conditional posterior distribution (Eq (4.10) and (4.11)) of the
intensity function coefficients using Laplacian method when the sampling was mixed. This out-
put a multivariate Normal distribution, where the mean was the MAP, and the covariance matrix
was the inverse of the Hessian. Next we amplified the covariance matrix by 20 times, and drew
samples for each neuron. We replicated the evaluations for these two extra experiments, and the
results are similar.

For the mild noise case, the bias values of the estimated correlations are in the range [−0.039, 0.05]
(the mean of all pairs of features is 0.0025). The correlation posterior CI coverage is shown in
C.4. The RMSE values are in range [0.025, 0.091] (the mean of all pairs of features is 0.074). The
simulation standard errors of CI end points were small relative to the RMSE values. The range is
in [0.001, 0.010] (the mean of all pairs of features is 0.0057). For the aggressive noise case, the
bias values of the estimated correlations are in the range [−0.033, 0.047] (the mean of all pairs
of features is 0.001). The correlation posterior CI coverage is shown in C.5. The RMSE values
are in range [0.024, 0.088] (the mean of all pairs of features is 0.072). The simulation standard
errors of CI end points were small relative to the RMSE values. The range is in [0.001, 0.0092]
(the mean of all pairs of features is 0.0056).
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C.2 Curve fitting

True model and raw data
True rate PSTH
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Figure C.1: A comparison between different curve fitting methods. The raw data has 150
trials. The knots positions of spline fitting are shown at the bottom of the figure. Our method,
the Bayesian smoothing spline, chooses the tuning parameter using 5-fold cross-validation. The
BARS uses the default parameters.

The above figure shows a simulation example with two peaks similar to the “pop” activity. We
compare our method with two other methods, BARS and spline fitting with manually selected
knots. Our method has has 100 knots and 102 bases. The spline fit model has 16 knots, 18
bases. BARS does not have a fixed number of knots. We use the default parameters in the online
package [82]. The estimated curves are all very close the true model, and the pointwise CI bands
trap the true curve very well. The synthesized data has 150 trials. The CI band of the spline
fitting (top right plot) is calculated from the Fisher information. The positions of the knots are
shown at the bottom. The tuning parameter of our method (bottom left plot) comes from 5-fold
cross-validation [63, sec. 7.10.1]. The spline fit model has 18 free parameters, so the number of
degrees of freedom is 18. The BARS MCMC samples on average have 10.3 knots, so the average
number of degrees of freedom is 12.3. For the Bayesian smoothing spline method, the number
of degrees of freedom is 6.6. Even the number of knots is large, but the effective number of
parameters is actually very small. The number of degrees of freedom is obtained by maximizing
a posterior and approximating the problem as least squares (in the Reinsch form) [36].

The method needs the hyperparameter η to control the smoothness of the curves. In the real
data analysis, we first selected a good initial tuning parameter (the tuning procedure can be run
in a few iterations to have a good initial guess, or use simulated data), fitted the model and fixed
other parameters except for the curve fitting coefficients. Then we trained the curve fitting by
maximizing a posterior (MAP), which is equivalent to penalized maximizing the likelihood or the
Tikhonov regression. We selected the tuning parameter using 5-fold cross-validation by splitting
the trials into 5 segments in all conditions [63, sec. 10.7.1] while holding the neuron clustering
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when the algorithm is mixed. We also tested the tuning parameter on simulated data with two-
peak patterns, the result was the same. Since the number of neurons or trials used to estimate
the curve varies, we multiply η with the number of trials in Eq (C.5), and (C.6) (assuming the
trial length is fixed, otherwise the trial length can also be a factor), so that the tuning parameter
selection is invariant of or less sensitive to sample size.

C.3 Priors
We first list some properties of inverse-Wishart distribution, which will later be used for design-
ing the prior for Σpop. The following properties can be derived from the conclusions in [9, 68].
Consider the following distribution for the D × D covariance matrix Σ. The scale matrix Ψ is
diagonal with all positive values. The number of the degrees of freedom is ν.

Σ ∼ inverse-Wishart(Ψ, ν) (C.1)

The marginal distribution of any correlation entry is the following,

ρ =
Σi,j√

Σi,jΣj,j

, i 6= j

p(ρ) =
1

2
Beta

(
ρ+ 1

2

∣∣∣∣ν −D + 1

2
,
ν −D + 1

2

)
, ρ ∈ [−1, 1]

(C.2)

If ν = D + 1, the marginal distribution is uniform. Σ has mode Ψ/4, the mean does not exit.
For any partial correlation entry,

ρ′ = − Ωi,j√
Ωi,jΩj,j

, Ω = Σ−1, i 6= j

ρ′ ∼ 1

2
Beta

(
ρ′ + 1

2

∣∣∣∣ν − 1

2
,
ν − 1

2

)
, ρ′ ∈ [−1, 1]

(C.3)

If ν = D + 1, the marginal distribution is a zero-concentrated distribution. As the dimension D
increases, it becomes more concentrated. Marginal and partial correlation properties above do
not depend on the scale matrix as long as all diagonal elements are positive.

Next, consider the marginal distribution of the diagonal element Σi,i,

Σi,i ∼ Inverse-Gamma
(
ν −D + 1

2
,
Ψi,i

2

)
(C.4)

The inverse-Gamma distribution is diffuse enough to capture the uncertainty using its long thick
tail. If select ν = D+ 1, the marginal distribution does not depend on D. Some previous works,
such as [2], add extra uncertainty for Ψi,i in the prior, but we think it is not necessary.
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Figure C.2: An example of variance Σi,i marginal distribution. Ψi,i = 4. The mode is 1, the
corresponding quantile percentage is 13.5%. The median is at 2.89. The quantile at 2 corresponds
to 36.8%, which stays between the mode and the median. The 70.0% quantile is 5.61 times of
the mode. Note that the ratio between these quantiles is invariant of Ψ and D.

In Eq (4.8), Ψ0 = 2Φ0 is a diagonal scale matrix. The number of the degrees of freedom
is ν0 = D + 1, where D = d · A is the dimension of the matrix Σpop (Eq (4.7)). Based on the
properties above, such a design leads to some desired properties: 1, as detailed prior knowledge
for the correlation between features is limited, we use uninformative prior for correlations [9].
The marginal distribution of a correlation derived from Σpop is uniform on [−1, 1] (see Eq (C.2));
2, the marginal distribution of partial correlations derived from Σpop concentrate at 0. More
specifically, it is the scaled Beta distribution on [−1, 1] with coefficients (D/2, D/2) (see Eq
(C.3)). As the dimension D grows, it concentrates more at the center. Conditioning on more
relevant or correlated features is more likely to make the partial correlation closer to zero; 3, the
marginal variance of a feature i is diffused with inverse-Gamma(1, [Φ0]ii) (see Eq (C.4)). Φ0 is
a diagonal covariance matrix with the standard deviations being the ranges of the features. The
ranges of Peak-1, Peak-2 and Gain are roughly estimated using a different animal. The standard
deviations for the Gain, Peak-1 shifting and Peak-2 shifting are 0.15 log spikes/sec, 10 ms, 30
ms. We set Ψ0 = 2Φ0 such that [Φ0]i,i is on the long tail in the distribution in Eq (C.4) and it
stays between the mode and the median (also see the above figure). This can make the prior of
the feature variance less informative.

The prior for the neurons’ memberships uses Dirichlet distribution (4.9) for its simplicity.
The hyperparameter is α = 5 · 1 as an uninformative prior which is relatively small comparing
to the number of neurons. The membership assignment is insensitive to α in a certain range. We
checked the results with α = 1 (flat prior) and α = 10 · 1. Then, we quantified the distinction
using the difference ratio of memberships’ modes of all neurons in all conditions. The total count
is N ·C. The model with α = 5 · 1 and the model with α = 1 have 2.1% membership difference.
The model with α = 5 · 1 and the model with α = 10 · 1 have 1.4% membership difference. In
addition, the prior with α = 5 plays a role of regularization, which prevents the model from an
empty clusters before the samples get mixed, while α = 1 does not do so.
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The priors related to curve fitting are the follows,

βpop
a,c | η,Ω ∼

1

Z̃0

exp{−ηNpop,a,cRc(β
pop
a,c )TΩβpop

a,c } (C.5)

βlocal-1
a,c | η,Ω ∼ 1

Z̃1

exp{−ηNlocal-1,a,cRc(β
local-1
a,c )TΩβlocal-1

a,c } (C.6)

p(βlocal-2
a,c ) ∝ 1 (C.7)

Z̃0, Z̃1 are the normalizers of the distributions. The constraint of the coefficients is designed for
smoothness in the same spirit as the smoothing spline [63, sec. 5.4]. In Gibbs sampling, the
penalty becomes the log prior density, where the prior is normal. The smoothing parameter η
is tuned using cross-validation. Details are discussed in C.2. Npop,a,c and Nlocal-1,a,c count the
number of neurons in group “pop” and “local-1” respectively. Rc is the number of trials of a
condition. Multiplying with N and R makes η less sensitive to varying sample size.

C.4 Properties of multivariate Normal distribution
We derive the marginal correlation, partial correlation and R2 values directly from estimated
covariance matrix. Let X be a random vector following multivariate Normal distribution X ∼
N(µ,Σ). Σ is the covariance matrix. The marginal correlation between two entries Xi, Xj is,

ρ(Xi, Xj) =
Σi,j√

Σi,i · Σj,j

The partial correlation is derived from the marginal and conditional distribution. Let us consider
the conditional distribution ofXW |XZ , whereXW , XZ are entries ofX . A = W ∪Z is the index
set of those entries. Then,

(XW , XZ)T ∼ N(µA,ΣA,A)

The conditional distribution follows,

XW |XZ ∼ N(µW |Z ,ΣW |Z)

µW |Z = µW + ΣW,ZΣ−1
Z,Z(XZ − µZ), ΣW |Z = ΣW,W − ΣW,ZΣ−1

Z,ZΣZ,W . Then we can get the
partial correlation using the covariance matrix ΣW |Z . Now set W = {i, j}. Σ′ = ΣW |Z .

ρ(Xi, Xj|XZ) =
Σ′i,j√

Σ′i,i · Σ′j,j
The regression analysis is also based on the conditional distribution. Let y = XW be the inde-
pendent variable, W has a single index. The conditional relation can be rewritten as,

y = XZβ + b+ ε

where β = Σ−1
Z,ZΣZ,W , b = µW − ΣW,ZΣ−1

Z,ZµZ , ε ∼ N(0,ΣW |Z). So we can derive

R2 = 1−
ΣW |Z

ΣW,W

ΣW,W is the variance of the independent variable, ΣW |Z is the variance of the regression residual.
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C.5 Supplementary figures and tables
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Figure C.3: Full marginal correlations Pairwise marginal correlations between all features.
Significantly positive values are labeled by red, and significantly negative ones are labeled by
blue.
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Figure C.4: Full partial correlations Each entry shows the correlation between two features
conditioning on all the rest. Considering all combinations of variables there are 4572 partial
correlations among the 9 features. Here we display the 45 correlations together with the 45
corresponding full conditional partial correlations and we also provide several additional partial
correlations. Significantly positive values are labeled by red, and significantly negative ones are
labeled by blue.
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Figure C.5: Marginal correlation and partial correlation of Peak-2 This figure is similar to
Fig 4.3. A shows estimated marginal correlation. Each dot represents the estimated time of
peak-2 on a given trial. B shows estimated partial correlation. Each dot represents the residual
from a regression on the conditioning variable (the correlation of these residuals being the partial
correlation given the conditioning variable). The embedded plots in the corner are the posterior
distribution of the correlations. There is no dramatic reduction of the correlation of V1 and LM
after conditioning on AL
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Figure C.6: The posterior distributions of pa,c. Each condition has a group of 3 triangles for
V1, LM and AL. pa,c is a 3-entry vector showing the probability of the subgroup memberships.
So pa,c are in 2-simplex and they are mapped to the triangles. The left angle represents the “pop”,
the right one is the local-1, and the top one is “local-2”. If a point is closer to an angle meaning
the corresponding component has a larger portion. To simplify the visualization, we approximate
the posterior using bivariate Normal distribution. The dot is the mean, and the ellipse is the 95%
credible region of the Normal distribution. Most distributions are far from “pop” corner (left
angle), which means “pop” takes small portion of neurons. The distributions are close to “local-
2” corner (top angle), so “local-2” include a large part of neuron. All the distributions are highly
centralized, meaning the uncertainty for neuron clustering is very small. The portions slightly
vary from condition to condition, which shows the diversity of neurons’ behavior.
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Figure C.7: Population templates in all conditions. Similar to Fig 4.5, the figure shows the
fitted population templates with the median and the pointwise 95% CI of the posterior. The
figure is composed of 3 × 3 blocks for 13 conditions. In a condition block, the columns are
exp{f pop

a,c }, exp{f local-1
a,c }, and exp{f local-2

a,c }. The rows are V1, LM, and AL.
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Figure C.8: Population templates in all conditions. The curves are the same as those in C.7,
which are the medians of the exp{f pop

a,c } and exp{f local-1
a,c }. Each curve represents one condi-

tion. We overlap the curve across conditions to demonstrate the condition-to-condition variance,
which is equivalent or larger than the feature variance, such as Peak-1 or Peak-2 shifting. This
suggests disaggregating the data to better capture the subtly varied features.
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Figure C.9: Examples of exp{fpop
a,c } versus PSTH. The PSTH and the pointwise CI are es-

timated using Bayesian smoothing spline similar to Algorithm 1 line 5 without incorporating
peaks shifts. The PSTH curves fit the same set of neurons as in the “pop” group (selected
from the mode of the posterior). In many conditions, the Peak-2 of exp{f pop

a,c } becomes nar-
rower and higher than the PSTH. The CI bands around the Peak-2 hardly overlap, for exam-
ple stimulus condition id = 249, 268, 280. This is because the activity trials are
aligned better. However, in some conditions like 261 AL, the Peak-2 of the model is not sig-
nificantly higher than the PSTH. In most conditions, the Peak-1 of exp{f pop

a,c } does not change
too much because the trial-to-trial deviations are small. Another observation is that the variance
of the Peak-2 shapes is larger than that of Peak-2. This explains why the Peak-2 in Fig 4.1, the
overall average, is wider and lower than Peak-2 due to larger diffusion together with condition-
to-condition variance. This also suggests that simply averaging neural activities, even with more
trials, may not get more accurate neural responses without considering the time-shifting devia-
tions or without treating different conditions separately.
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Figure C.10: The location of recorded neurons. The figure shows the memberships and the
locations of the neurons in every area (by column) and every condition (by row). This is an
expansion of Fig 4.7. The membership is determined by the posterior median. The dot shape or
color represent its membership. More precisely, the location of the neuron is the location of the
channel that records the neuron signal. One channel can record the signal from more than one
neuron.
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Figure C.12: Goodness-of-fit test. KS test for “pop” group of all three regions (shown by
checker boards), all conditions (shown by rows), and all trials (shown by columns). The dotted
lines are 99% CI of KS test. At the bottom of the figure, we show some examples of good fits
(highlighted by green in the grid) and bad fits (highlighted by red in the grid). Some trials may
have unexpected activities that are different from the templates (f pop

a,c ), but our method is still
able to find Peak-1 and Peak-2 positions. Since we model the activity by matching the template,
it may loss some details of each trial and fail some goodness-of-fit tests, but it can accurately
capture the main features of interest. For example, the plot of V1 condition 268 trial 8 has a
bump at the end of the trial, which is not common in other trials of the same condition. The
example of V1 268 trial 0 is a representative trial of the condition, which matches the template
very well.
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Condition id 249 256 257 260 261 268 270 274 275 278 280 281 284

Temporal frequency [Hz] 8 15 8 4 8 4 8 4 8 8 8 15 15

Orientation [deg] 90 270 315 315 135 45 45 90 0 225 270 315 45

Spatial frequency [cycles/deg] 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Contrast [%] 80 80 80 80 80 80 80 80 80 80 80 80 80

Table C.1: Stimulus conditions Parameters for 13 trials in session 798911424 used for our
analysis. The contrast and the spatial frequency are the same for all conditions.

Model Y X R2

A0 AL-P2 V1-P2 0.71 (0.60,0.82)
A1 AL-P2 V1-P1,LM-P1,AL-P1 0.34 (0.14,0.53)
A2 AL-P2 V1-P1,LM-P1,AL-P1,V1-P2 0.85 (0.75,0.89)
A3 AL-P2 V1-P1,LM-P1,AL-P1,LM-P2 0.92 (0.85,0.95)
A4 AL-P2 V1-P1,LM-P1,AL-P1,V1-P2, LM-P2 0.92 (0.85,0.95)

Difference R2

A2 - A0 0.12 (0.06,0.19)
A2 - A1 0.50 (0.35,0.64)
A3 - A1 0.58 (0.41,0.72)
A3 - A2 0.07 (0.04,0.14)
A4 - A2 0.08 (0.05,0.14)
A4 - A3 0.01 (0.00,0.01)

Model Y X R2

B0 LM-P2 V1-P2 0.79 (0.72,0.84)
B1 LM-P2 V1-P1,LM-P1,AL-P1 0.32 (0.09,0.54)
B2 LM-P2 V1-P1,LM-P1,AL-P1,V1-P2 0.87 (0.79,0.91)
B3 LM-P2 V1-P1,LM-P1,AL-P1,LM-P2 0.92 (0.84,0.95)
B4 LM-P2 V1-P1,LM-P1,AL-P1,V1-P2, LM-P2 0.94 (0.89,0.96)

Difference R2

B2 - B0 0.07 (0.03,0.14)
B2 - B1 0.57 (0.34,0.75)
B3 - B1 0.61 (0.40,0.78)
B3 - B2 0.05 (0.00,0.10)
B4 - B2 0.07 (0.04,0.12)
B4 - B3 0.02 (0.00,0.05)

Model Y X R2

C0 V1-G LM-G 0.62 (0.54,0.69)
C1 V1-G P1s,P2s 0.34 (0.23,0.42)
C2 V1-G LM-G,P1s 0.72 (0.65,0.80)
C3 V1-G LM-G,P2s 0.65 (0.56,0.72)
C4 V1-G LM-G,,P1s,P2s 0.74 (0.67,0.82)

Difference R2

C0 - C1 0.28 (0.18,0.36)
C2 - C0 0.10 (0.04,0.14)
C3 - C0 0.02 (0.00,0.07)
C4 - C1 0.39 (0.31,0.49)
C4 - C0 0.11 (0.07,0.16)

Model Y X R2

D0 AL-G LM-G 0.73 (0.68,0.78)
D1 AL-G P1s, P2s 0.72 (0.64,0.77)
D2 AL-G LM-G,P1s 0.81 (0.77,0.85)
D3 AL-G LM-G,P2s 0.80 (0.76,0.83)
D4 AL-G LM-G,P1s,P2s 0.85 (0.81,0.88)

Difference R2

D1 - D0 0.01 (-0.06,0.11)
D2 - D0 0.07 (0.04,0.13)
D3 - D0 0.07 (0.02,0.12)
D4 - D1 0.13 (0.08,0.19)
D4 - D0 0.12 (0.07,0.17)

Table C.2: Regression analysis. See details in the main text.

Regression analysis The regression analysis studies the contribution of some features to
predicting other features. The table contains different sets of linear regression models. Tables on
the left show the R2 posteriors median and 95% CI in the parentheses [50]. Y is the dependent
variable and X indicates the explanatory variables. The tables on the right show the posterior of
R2 differences between models. As LM is a putative intermediate region between V1 and AL,
we compare how much early features P1 timing, late feature LM-P2 timing and V1-P2 timing
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explain the variance of AL-P2 timing by running regression analysis. We design 5 scenarios:
A0, the independent variable only has V1-P2 timing; A1, the independent variables only have P1
timing; A2, besides P1 timing, it considers V1-P2 timing; A3, besides P1 timing, it adds LM-P2
timing; A4, it contains the timing of P1 and both V1-P2 and LM-P2 timing. See the tables on
the first row labeled by A. By comparing A0 and A2, P1 timing adds very limited improvement.
By comparing the R2 of A2, A3 with A1, both V1-P2 and LM-P2 timing explain much more
than P1 timing. But LM-P2 timing contributes more than V1-P2 timing does, shown by the
comparison between A2 and A3. The improvement from A2 to A4 implies that given V1-P2
timing, LM-P2 timing can still add extra prediction power, but not the other way around (nearly
zero improvement from A3 to A4). We apply similar analysis to AL. 5 models with the select
variables. See the tables on the second row labeled by B. The conclusions are similar except
that given AL-P2 timing, V1-P2 timing can still make some contribution to predicting LM-P2
timing (shown by the contrast between B4 and B3). This further affirms our hypothesis that LM
is an intermediate region between V1 and AL. We also conclude that P2 timing features are more
relevant in predicting AL-P2 timing or LM-P2 timing rather than P1 timing features, this may
be due to large time lag between P1 and P2. The last two sets of models labeled by C and D
are related to G. We design 5 scenarios: C0, the independent variable only has LM-G; C1, the
independent variables include all P1 and P2 timing; C2, besides LM-G, it includes all P1 timing;
C3, besides LM-G, it includes all P2 timing; C4, includes LM-G and all P1 and P2 timing.
Models labeled by D have similar design. LM-G can predict both V1-G and AL-G very well.
One difference between C models and D models is that P1s and P2s together can predict AL-G
much better than V1-G, see models C1 and D1 and related model differences. This means AL-G
is correlated with activities in a broader regions or types than V1-G. This is probably because
AL is a higher-order region.

A1 G 91 96 94 91 95 93 93 95
A1 P1 95 93 93 93 92 93 90

A1 P2 91 94 93 93 95 92
A2 G 87 94 88 94 88

A2 P1 93 89 93 92
A2 P2 92 95 91

A3 G 91 95
A3 P1 95

A3 P2

Table C.3: CI coverage CI coverage ratio percentage of each pair of features correlation. A1,
A2, A3 stand for 3 virtual areas. G, P1, P2 stand for Gain, Peak-1, Peak-2.
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A1 G 93 96 94 92 96 92 92 95
A1 P1 95 92 92 93 92 93 94

A1 P2 89 93 90 89 92 89
A2 G 88 91 85 92 87

A2 P1 92 92 92 92
A2 P2 91 92 88

A3 G 92 91
A3 P1 92

A3 P2

Table C.4: CI coverage The simulation scenario with mild neuron-to-neuron variance. The table
is similar to C.3.

A1 G 93 96 95 92 95 92 94 95
A1 P1 95 92 92 92 92 93 91

A1 P2 89 92 92 92 96 90
A2 G 89 93 84 95 87

A2 P1 91 94 92 91
A2 P2 95 93 90

A3 G 92 92
A3 P1 92

A3 P2

Table C.5: CI coverage The simulation scenario with large neuron-to-neuron variance. The table
is similar to C.3.
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Appendix D

Appendix for Chapter 5

D.1 Optimization algorithm for the continuous-time point pro-
cess regression model

D.1.1 Updating rules
Eq (5.2) is optimized using Newton’s method. φw, φh are bases defined as,

φw(t) :=

∫
W (t− s)Ni(ds), φh(t) :=

∫
hi→j(t− s)Ni(ds) (D.1)

Eq (5.4) can be rewritten as,

λ̃j(t) = βj · 1 + βwφw(t) + βhφh(t) = Ψ(t)β (D.2)

Ψ(t) represents the bases, β is a vector of all coefficients. If the coupling filter is fitted using
non-parametric method, such as spline fitting hi→j(s) = βh,1B1(s) + ...+ βh,kBk(s). B1, ..., Bk

are bases.
φh,1(t) :=

∫
B1(t− s)Ni(ds), ..., φh,k(t) :=

∫
Bk(t− s)Ni(ds)

λ̃j(t) = βj · 1 + βwφw(t) + βh,1φh,1(t) + ...+ βh,kφh,k(t) = Ψ(t)β

The first-order and second-order derivatives of the target equations are,

∂L

∂β
=−

∫ T

0

Ψ(s)

λ̃j(s)
dNj(s) +

∫ T

0

Ψ(s)ds

∂2L

∂β∂βT
=

∫ T

0

Ψ(s)Ψ(s)T

λ̃j(s)2
dNj(s).

The advantage the model Eq (D.2) is that the integral term
∫

Ψ(s)ds can be calculated in
closed form if the bases Ψ are designed carefully. We only have such a convenience when the
intensity function is modeled in linear scale but not others. For example, consider the model in

113



January 11, 2022
DRAFT

logarithmic scale log λ(t) = Ψ(t)β, then the derivative of the negative log-likelihood function
becomes,

∂L

∂β
=−

∫ T

0

Ψ(s)dNj(s) +

∫ T

0

Ψ(s)eΨ(s)βds.

Usually it is not tractable to calculate the second term so it is approximated by binning the
data. Our model thus does not need to specify the time resolution. Another benefit of using
continuous-time model is that the number of data points is small, which is proportional to the
number of spikes instead of the number of time bins. For example, if the bin width is 1 ms,
then for one 1-second long trial, it needs to store 1000 data points. If the trial has 20 spikes,
the continuous-time model only needs to keep 20 data points. The memory space is 50 times
smaller.

If the regression bases have form Eq (D.1) with kernel, then∫ T

0

Ψ(t)dt =

∫ T

0

∫ T

0

K(t− s)Ni(ds) = Ni(T )

∫
R

K(s)ds.

If K is a Normal window function or a square window function, the above integral is simple.
The boundary effect can be removed in the integral by only considering a few time point close
to 0 or T. Next, we show how to calculate such integral if K is B-spline, which is widely used
in non-parametric curve fitting. For example, the coupling filter in Supplementary D.4.5 is fitted
using B-splines non-parametrically.

The B-splines are defined using Cox-de Boor recursion equations. ti are knots (with repeated
padding). p is the degree of the spline polynomial. When p = 3, these are the cubic splines.

Bi,0(x) =I[ti,ti+1)(x)

Bi,p(x) =
x− ti
ti+p − ti

Bi,p−1(x) +
ti+p+1 − x
ti+p+1 − ti+1

Bi+1,p−1.

Knot padding is important to create proper splines. If p = 3 and the distinct knot locations are
(0, 1, 2), the input knots should be (0, 0, 0, 0, 1, 2, 2, 2, 2). The knots need extra p repeated knots
of the two ends. If there areK distinct knots, then there areK+2p input knots. The total number
of basis is K + p− 1.
Lemma D.1.1. For the B-spline curve defined above, the integral of the curve has closed-form
as follows, ∫ ∞

−∞
Bi,p(s)ds =

ti+p+1 − ti
p+ 1

. (D.3)

Proof. The support of each basis spans over p+ 1 knot-intervals (including the padded knots on
the ends),

supp(Bi,p) =[ti, ti+p+1)

d

dx
Bi,p(x) =

p

ti+p − ti
Bi,p−1(x)− p

ti+p+1 − ti+1

Bi+1,p−1(x).
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The support of the derivative is almost the same as the basis except for a few 0 derivative points.

supp(
d

dx
Bi,p) ⊆[ti, ti+p+1)

We reform the derivative properties to get the integral [15].

d

dx

∞∑
i=0

ciBi,p+1(x) =
∞∑
i=0

(p+ 1)
ci − ci−1

ti+p+1 − ti
Bi,p(x)

ci are some arbitrary coefficients. Next we set c0, ..., ci−1 = 0, ci, ci+1, ... = 1.

d

dx

∞∑
j=i

cjBj,p+1(x) =
d

dx

i+p∑
j=i

Bj,p+1(x) =
p+ 1

ti+p+1 − ti
Bi,p(x)

The first equation simplifies the sum due to the supports of bases. Then take the integral on both
side,∫ x

−∞
Bi,p(s)ds =

∫ x

ti

Bi,p(s)ds =
ti+p+1 − ti
p+ 1

∞∑
j=i

Bj,p+1(s) =
ti+p+1 − ti
p+ 1

i+p∑
j=i

Bj,p+1(x)

The area under the curve of a basis is,∫ ∞
−∞

Bi,p(s)ds =

∫ ti+p+1

ti

Bi,p(s)ds =
ti+p+1 − ti
p+ 1

i+p∑
j=i

Bj,p+1(ti+p+1)

Consider the summation term,

i+p∑
j=i

Bj,p+1(ti+p+1) =Bi,p+1(ti+p+1) +Bi+1,p+1(ti+p+1) + ...+Bi+p,p+1(ti+p+1)

=
(ti+p+1 − ti
ti+p+1 − ti

Bi,p(ti+p+1) +
ti+p+2 − ti+p+1

ti+p+2 − ti+1

Bi+1,p(ti+p+1)
)

+
(ti+p+1 − ti+1

ti+p+2 − ti+1

Bi+1,p(ti+p+1) +
ti+p+3 − ti+p+1

ti+p+3 − ti+2

Bi+2,p(ti+p+1)
)

+ ...

+
( ti+p+1 − ti+p
ti+2p+1 − ti+p

Bi+p,p(ti+p+1) +
ti+2p+2 − ti+p+1

ti+2p+2 − ti+p+1

Bi+p+1,p(ti+p+1)
)

=Bi,p(ti+p+1) +Bi+1,p(ti+p+1) + ...+Bi+p+1,p(ti+p+1)

=Bi,p−1(ti+p+1) +Bi+1,p(ti+p+1) + ...+Bi+p+2,p−1(ti+p+1)

=Bi,0(ti+p+1) +Bi+1,0(ti+p+1) + ...+Bi+2p+1,0(ti+p+1) = 1

So the conclusion holds.
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D.1.2 Plug-in estimator for the smoothing kernel width
As discussed in Fig 5.4, the selection of the smoothing kernel width σw is determined by max-
imizing the likelihood and it is insensitive to the coupling filter amplitude or timescale. This
motivates the design of the plug-in estimator of σw, which means the optimal kernel width σw
can be determined without knowing details of the coupling filter, or even without any modeling
of the coupling filter. The plug-in estimator is a shortcut of the model selection, especially in the
situations where the coupling filters might change from trial to trial, or from neuron to neuron.
As will be shown in Lemma D.2.2 and D.2.4, the negative log-likelihood of a trial on [0, T ] as
function of σw can be approximated as the following ignoring the constant term,

L(σw) ≈ 1

2λ̄j

(
〈ϕw, sj〉
〈ϕh, sj〉

)T ( 〈ϕw, ϕw〉 〈ϕw, ϕh〉
〈ϕh, ϕw〉 〈ϕh, ϕh〉

)−1( 〈ϕw, sj〉
〈ϕh, sj〉

)

ϕw = W ∗ (si − λ̄i), ϕh = h ∗ (si − λ̄i)

〈·, ·〉 denotes the inner product on interval [0, T ]. As demonstrated in Fig 5.4, the peak position
of the log-likelihood is insensitive to the amplitude or the timescale coupling filter h, so we ar-
bitrarily select h(t) = I[0,σh](t), σh = 30 ms. Having a very small filter length, say σ = 1 ms,
or dropping the terms related to h could make the surrogate approximated likelihood curves in
the above equation a little different from the likelihood obtained through the optimization in Eq
5.2. So we still keep the terms related to h. si, sj are spike trains, 〈ϕw, sj〉 :=

∫ T
0
ϕw(t)Nj(dt).

The inner product is calculated by discretizing the time series into small time bins, for example
1 ms. So si, sj are arrays of binary values with 1 indicating the spikes. This does not go against
the advantage of the continuous-time model. For a large dataset, the plug-in estimator can be
calculated using a subset of samples. We grid search σw with 5 ms step size to find the largest
L(σw). The estimator is not very sensitive to σw. For example, as shown in Fig 5.3, Supplemen-
tary D.4.4 and D.4.15, selecting kernel scale 20 ms larger or smaller will not affect the estimated
value a lot.

D.2 Theoretical properties of the estimator
In this section, we provide theoretical derivations of the estimator properties, including bias, stan-
dard error, risk, and asymptotic Normality. All of these are built on the second-order stationary
condition, which is described as follows [34],
Lemma D.2.1. Let ξ be a second-order stationary random measure on X . It satisfies two prop-
erties.

1. The first-moment measure is Mξ,1(A) := Eξ(A), where A is a set in the Borel σ-field of
X , satisfies,

Mξ,1(dx) = λ̄dx (D.4)

where λ̄ is a constant, which is called the mean density.
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2. The second-moment measure is Mξ,2(A × B) := Eξ(A)ξ(B). A,B are sets in the Borel
σ-field of X . The second-moment can be expressed as the product of a Lebesgue com-
ponent dx and a reduced measure, say M̆ξ,2. m̆ξ,2 is the density of the reduced measure
M̆ξ,2(du) = m̆ξ,2(u)du. The following equation holds,∫

X

∫
X
f(s, t)Mξ,2(ds× dt) =

∫
X

∫
X
f(x, x+ u)dx · m̆ξ,2(u)du (D.5)

The reduced second-moment measure M̆ξ,2 is symmetric, positive, positive-definite and translation-
bounded. Details can be found in [34, proposition 8.1.I, 8.1.II]. The mean corrected process is
ξ̃(A) := ξ(A)− λ̄`(A). Similarly, the reduced covariance measure and its density can be defined
as,

C̆ξ,2(du) := M̆ξ̃,2(du) = M̆ξ,2(du)− λ̄2du (D.6)

c̆ξ,2(u) = m̆ξ,2(u)− λ̄2 (D.7)

Similar definitions can be used for two different second-order stationary processes ξ, ζ .

Mξζ,2(A×B) := Eξ(A)ζ(B) (D.8)∫
X

∫
X
f(s, t)Mξζ,2(ds× dt) =

∫
X

∫
X
f(x, x+ u)dx · m̆ξζ,2(u)du (D.9)

C̆ξζ,2(du) = M̆ξζ,2(du)− λ̄ξλ̄ζdu (D.10)
c̆ξζ,2(u) = m̆ξζ,2(u)− λ̄ξλ̄ζ (D.11)

Lemma D.2.2. Assuming fi,j is second-order stationary, the bias of the estimator β̂h in model
(5.2) is approximated as,

bias(β̂h) ≈
Denominator

Denominator
(D.12)

Numerator =

(∫
R
[W ∗W ](s)c̆N,2(ds)ds

)
·
(∫

R
h(s)c̆NΛ,2(s)s

)
−
(∫

R
[h ∗W ](s)c̆N,2(ds)ds

)
·
(∫

R
W (s)c̆NΛ,2(s)s

)
Denominator =

(∫
R
[W ∗W ](s)c̆N,2(ds)ds

)
·
(∫

R
[h ∗ h−](s)c̆N,2(ds)ds

)
−
(∫

R
W (s)c̆NΛ,2(s)s

)2

(D.13)

c̆N,2 is the reduced second-order moment measure intensity of spike count measure Ni(·); c̆NΛ,2

is the reduced second-order moment measure intensity of between spike count measure Ni(·)
and intensity measure Λi(·) as described in Lemma D.2.1. If the shared activity fi,j is the cluster
process in Eq (5.6) with parameters σI , ρ, and the coupling filter has form in Eq (5.7) with
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parameters σh then we have the closed-form as follows,

Numerator(σw) =

(
ρ

2
√
π
√
σ2
w + σ2

I

+
λ̄i

2
√
πσw

)
·
(
ρ

2
erf

(
σh
2σI

))

−

(
ρ

2
erf

(
σh

2
√
σ2
w/2 + σ2

I

)
+
λ̄i
2

erf

(
σh√
2σw

))
·

(
ρ

2
√
π
√
σ2
w/2 + σ2

I

)

Denominator(σw) =

(
ρ

2
√
π
√
σ2
w + σ2

I

+
λ̄i

2
√
πσw

)
·(

ρ

[
σherf

(
σh
2σI

)
− 2σI√

π

(
1− e

− σ2
h

4σ2
I

)]
+ λ̄iσh

)

−

(
ρ

2
erf

(
σh

2
√
σ2
w/2 + σ2

I

)
+
λ̄i
2

erf

(
σh√
2σw

))2

(D.14)
λ̄i = E[Ni(dt)/dt] = αi + ρ. erf(x) = 2√

π

∫ x
0
e−t

2
dt.

Proof. The bases of the regression model (5.4) include a constant, the nuisance variable si =
W ∗ si, and the coupling filter hi→j ∗ si. λ̃j in Eq (5.4) can be rewritten as,

λ̃j(s) = βj + βwϕw(s) + βhϕh(s)

ϕw, ϕh are mean-subtracted bases defined as,

ϕw(s) :=

∫
W (s− t)(Ni(dt)− λ̄idt)

ϕh(s) :=

∫
hi→j(s− t)(Ni(dt)− λ̄idt)

The above mean normalization will not change the value of the coefficients βw and βh, but the
baseline coefficient βj is different from model (5.4). Define the following shorthands,

Sww := 〈ϕw, ϕw〉, Shh := 〈ϕh, ϕh〉, Shw = Swh := 〈ϕw, ϕh〉Swλ := 〈ϕw, λi〉, Shλ := 〈ϕh, λi〉,
(D.15)

〈·, ·〉 denotes the inner product between two functions on interval [0, T ].

∂L

∂βj
= −

∫ T

0

1

λ̃j(s)
Nj(ds) +

∫ T

0

1ds

=T −
∫ T

0

1

βj + βwϕw(s) + βhϕh(s)
Nj(ds) = T −

∫ T

0

1

βj
· 1

1 + βw
βj
ϕw(s) + βh

βh
ϕh(s)

Nj(ds)

=T −
∫ T

0

1

βj
·
(

1− βw
βj
ϕw(s)− βh

βj
ϕh(s)

)
Nj(ds) + o

(∫ T

0

1

βj
·
(
βw
βj
ϕw(s) +

βh
βj
ϕh(s)

)
Nj(ds)

)
=T − Nj(T )

βj
+O

(∫ T

0

1

βj
·
(
βw
βj
ϕw(s) +

βh
βj
ϕh(s)

)
Nj(ds)

)
≈ T − Nj(T )

βj
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The quantity in omitted term∫ T

0

ϕh(s)Nj(ds) ≈ E
[∫ T

0

ϕh(s)Nj(ds)

∣∣∣∣Ni

]
=

∫ T

0

ϕh(s)λj(s)ds

=

∫ T

0

ϕh(s)
(

constant + fi,j(s) + αhϕh(s)
)

ds

=

∫ T

0

ϕh(s)
(
αi + fi,j(s) + αhϕh(s)

)
ds =

∫ T

0

ϕh(s)
(
λi(s) + αhϕh(s)

)
ds

The conditional expectation is over count process Nj(·), and the equation holds because of the
Campbell lemma [93, Lemma 1.1]. So the omitted term or the approximation error is

βw
β2
j

(Swλ + αhSwh) +
βw
β2
j

(Shλ + αhShh)

Terms Swλ, Swh, Shλ, Shh will be derived in Lemma D.2.6. The trial is in time interval [0, T ]. So
the baseline is approximately,

β̂j ≈
Nj(T )

T
≈ λ̄j

The baseline parameter is approximately fixed at the mean firing rate λ̄j , so we only need to
consider the negative log-likelihood function L(βw, βh) of two parameters β = (βw, βh)

T . It can
be approximated using the quadratic form,

L ≈ 1

2
βTHβ + bTβ + constant (D.16)

∂L

∂β
≈ Hβ + b, H =

∂2L

∂β∂βT
(D.17)

H =
∂2L

∂β∂βT
=

∫ T

0

Ψ(s)Ψ(s)T

λ̃j(s)2
Nj(ds) ≈ ENj

[∫ T

0

Ψ(s)Ψ(s)T

λ̃j(s)2
Nj(ds)

∣∣∣∣∣Ni

]

=

∫ T

0

Ψ(s)Ψ(s)T

λ̃j(s)2
λj(s)ds ≈

1

λ̄j

∫ T

0

Ψ(s)Ψ(s)Tds

Ψ(s) = (ϕw, ϕh)
T is the vector of two bases. The parameter b in Eq (D.16) can be solved using

two special solutions β̂
B

and β̂
C

.

β̂Bh = 0,
∂L(β̂Bw , 0)

∂βw
= 0

β̂Cw = 0,
∂L(0, β̂Ch )

∂βh
= 0
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As for β̂Bw , let us compare it with model λ̃j = βj + βwϕw

0 =
∂LT (β̂)

∂βw
= −

∫ T

0

ϕw(s)

λ̃j(s)
dNj(s) +

∫ T

0

ϕw(s)ds

=−
∫ T

0

ϕw(s)
1

λ̄j + β̂Bwϕw(s)
dNj(s) = − 1

λ̄j

∫ T

0

ϕw(s)
1

1 + β̂Bw
λ̄j
ϕw(s)

dNj(s)

=− 1

λ̄j

∫ T

0

ϕw(s)

(
1− β̂Bw

λ̄j
ϕw(s)

)
dNj(s) + o

(
β̂Bw
λ̄2
j

∫ T

0

ϕw(s)ϕw(s)dNj(s)

)

≈E

[
− 1

λ̄j

∫ T

0

ϕw(s)

(
1− β̂Bw

λ̄j
ϕw(s)

)
dNj(s)

∣∣∣∣∣Ni

]

=− 1

λ̄j

∫ T

0

ϕw(s)

(
1− β̂Bw

λ̄j
ϕw(s)

)
λj(s)ds

Then we can derive the β̂Bw ,

β̂Bw ≈λ̄j
〈ϕw, λj〉
〈ϕ2

w, λj〉
≈ λ̄j

〈ϕw, λj〉
〈ϕ2

w, λ̄j〉
=
〈ϕw, λj〉
〈ϕw, ϕw〉

Similarly, we have

β̂h ≈ λ̄j
〈ϕh, λj〉
〈ϕ2

h, λj〉
≈ 〈ϕh, λj〉
〈ϕh, ϕh〉

The MLE then is,
β̂ ≈ −H−1b̂ (D.18)

H ≈ 1

λ̄j

(
Sww Swh
Shw Shh

)
, b ≈ − 1

λ̄j

(
〈ϕw, λj〉
〈ϕh, λj〉

)
So we have the estimator β̂h,

β̂h ≈
Sww · 〈ϕh, λj〉 − Shw · 〈ϕw, λj〉

SwwShh − S2
wh

=
Sww · 〈ϕh, α′j + fi,j + αhϕh〉 − Shw · 〈ϕw, α′j + fi,j + αhϕh〉

SwwShh − S2
wh

=
Sww · 〈ϕh, fi,j〉 − Shw · 〈ϕw, fi,j〉

SwwShh − S2
wh

+ αh ·
Sww · 〈ϕh, ϕh〉 − Shw · 〈ϕw, ϕh〉

SwwShh − S2
wh

=
Sww · 〈ϕh, αi + fi,j〉 − Shw · 〈ϕw, αi + fi,j〉

SwwShh − S2
wh

+ αh

≈αh +
Sww〈ϕh, λi〉 − Shw〈ϕw, λi〉

SwwShh − S2
hw

So the bias of the estimator is approximately,

bias(β̂h) ≈
SwwShλ − ShwSwλ
SwwShh − S2

hw

(D.19)
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Lemma D.2.6 shows the derivation of the inner products Sww, Shh, Shw, Swλ, Shλ.

Corollary D.2.2.1. When the smoothing kernel becomes infinitely narrow, the bias in Eq (D.14)
satisfies

lim
σw→0

Numerator

Denominator
→

ρ
2
erf
(
σh
2σI

)
ρ

[
σherf

(
σh
2σI

)
− 2σI√

π

(
1− e

−
σ2
h

4σ2
I

)]
+ λ̄iσh

(D.20)

Corollary D.2.2.2. When the smoothing kernel becomes infinitely wide, the bias in Eq (D.14)
satisfies

lim
σw→∞

Numerator

Denominator
→

ρ
2
erf
(
σh
2σI

)
ρ

[
σherf

(
σh
2σI

)
− 2σI√

π

(
1− e

−
σ2
h

4σ2
I

)]
+ λ̄iσh

(D.21)

Corollary D.2.2.3. If the regression model Eq (5.4) does not include the nuisance variable, which
becomes a typical Hawkes process, then the bias of the estimator is

bias(β̂h) ≈
Shλ
Shh
≈

ρ
2
erf
(
σh
2σI

)
ρ

[
σherf

(
σh
2σI

)
− 2σI√

π

(
1− e

−
σ2
h

4σ2
I

)]
+ λ̄iσh

(D.22)

The approximation is similar to Lemma D.2.2. Note that the three corollaries have the same
results.
Lemma D.2.3. The variance of the estimator Eq (5.2) for one trial on time interval [0, T ] is
approximated as,

Var(β̂h) ≈
Numerator

Denominator
(D.23)

Numerator =
λ̄j
T

(∫
R
[W ∗W ](s)c̆N,2(ds)ds

)
(D.24)

Denominator =

(∫
R
[W ∗W ](s)c̆N,2(ds)ds

)
·
(∫

R
[h ∗ h−](s)c̆N,2(ds)ds

)
(D.25)

−
(∫

R
W (s)c̆NΛ,2(s)s

)2

(D.26)
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If fi,j follows the cluster process in Eq (5.6), then

Numerator(σw) =
λ̄j
T

(
ρ

2
√
π
√
σ2
w + σ2

I

+
λ̄i

2
√
πσw

)

Denominator(σw) =

(
ρ

2
√
π
√
σ2
w + σ2

I

+
λ̄i

2
√
πσw

)
·(

ρ

[
σherf

(
σh
2σI

)
− 2σI√

π

(
1− e

− σ2
h

4σ2
I

)]
+ λ̄iσh

)

−

(
ρ

2
erf

(
σh

2
√
σ2
w/2 + σ2

I

)
+
λ̄i
2

erf

(
σh√
2σw

))2

(D.27)

The proof is similar to Lemma D.2.2 using the Fisher information.
Corollary D.2.3.1. If σw → 0 of the variance in Eq (D.27) will converge

lim
σw→0

Numerator

Denominator
→ λ̄i

T

(
ρ

[
σherf

(
σh
2σI

)
− 2σI√

π

(
1− e

− σ2
h

4σ2
I

)]
+ λ̄iσh

)−1

(D.28)

Corollary D.2.3.2. If σw →∞ of the variance in Eq (D.27) will converge

lim
σw→∞

Numerator

Denominator
→ λ̄i

T

(
ρ

[
σherf

(
σh
2σI

)
− 2σI√

π

(
1− e

− σ2
h

4σ2
I

)]
+ λ̄iσh

)−1

(D.29)

Corollary D.2.3.3. If the regression model Eq (5.4) does not include the nuisance variable, which
becomes a typical Hawkes process, then the variance of the estimator is

Var(β̂h) ≈
λ̄

Shh
≈ λ̄i
T

(
ρ

[
σherf

(
σh
2σI

)
− 2σI√

π

(
1− e

− σ2
h

4σ2
I

)]
+ λ̄iσh

)−1

The proof is similar to Lemma D.2.2. The three corollaries above have the same results.
Lemma D.2.4. The negative log-likelihood of Eq (5.2) can be approximated by

L ≈ 1

2λ̄j

(
Swλ + αhShw
Shλ + αhShh

)T (
Sww Swh
Shw Shh

)−1(
Swλ + αhShw
Shλ + αhShh

)
+ constant (D.30)

The values Sww, Shh, Shw, Swλ, Shλ is shown in Lemma D.2.6.
The proof is similar to Lemma D.2.2.

Lemma D.2.5. Let the estimator be the model in Eq (5.2). Assume |β̂|, the variance of β̂h, ∂L
∂β

,
and the third-order derivative of the intensity function and log-intensity function are bounded;
∂L
∂β

is a continuous function of β; and E|β̂h − αh|2 = o
(

1√
R

)
, where R is the number of trials.

Then β̂ is asymptotically Normal
√
R(β̂ − α) ∼ N

(
0, I(β)−1

)
(D.31)

I(β) is the Fisher information.
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Proof. We expand the negative log-likelihood function of MLE β̂ = (β̂ch, β̂h) at the true value
α = (β̂ch, αh), while other entries β̂ch are the same as MLE. R is the number of trials. αh is the
true value of coupling filter coefficient. We have the following,

0 =
1√
R

∂L

∂β

∣∣∣∣
β=α

+
1

R

∂2L

∂β∂βT

∣∣∣∣
β=α

·
√
R(β̂ − α)

+
√
R(β̂ − α)T

[
1

R

∫ T

0

H(t)dt− 1

R

∫ T

0

G(t)Nj(dt)

]
(β̂ − α)

The last term is the reminder as in Taylor’s theorem in the Lagrange form. H,G are the third-
order derivative of the intensity function and of the log-intensity, which are assumed to be
bounded by M , see [106, theorem 5, condition C4]. H,G are evaluated at some value between
β̂ and α. With the assumption that E|β̂h − αh|2 = o(1/

√
R). I(α) is the Fisher information.

1

R
· ∂

2L(β)

∂β∂βT

∣∣∣∣
β=α

p−→ E

[
∂2L

∂β∂βT

]
= I(α)

∥∥∥∥ 1√
R

∂L

∂β
− I(α)

√
R(β̂ − α)

∥∥∥∥ ≤M
√
R‖(β̂ − α)‖2

as R→∞. As we have iid trials,

√
R(β̂ − α) ∼ N

(
E
[

1√
R

∂L

∂β

]
,

1

R
I(α)−1Cov

[
∂L

∂β

]
I(α)−1

)
As assumed E|β̂h−αh|2 = o(1/

√
R) and β̂h is bounded, so β̂h−αh

p−→ 0, ∂L
∂β

is a continuous
function of β,

∂L

∂β

∣∣∣∣
β=α

= −
∫ T

0

Ψ(s)

λ̃j(s)
dNj(s) +

∫ T

0

Ψ(s)ds
p−→ ∂L

∂β

∣∣∣∣
β=β̂

= 0

so E
[

1√
R
∂L
∂β

]
→ 0. For the covariance we have,

E
[
∂L

∂β

∂L

∂βT

]
=E

[∫ T

0

∫ T

0

Ψ(u)ΨT (v)

(
dudv − du

Nj(dv)

λ̃j(v)
− dv

Nj(du)

λ̃j(u)
+
Nj(du)Nj(dv)

λ̃j(u)λ̃j(v)

)]

=E
[∫∫

u6=v
+

∫∫
u=v

]
, if u = v, Nj(du)Nj(dv) = Nj(du)

=

(
−
∫ T

0

Ψ(u)
λj(u)

λ̃j(u)
du+ Ψ(u)du

)(
−
∫ T

0

Ψ(v)
λj(v)

λ̃j(v)
dv + Ψ(v)dv

)T

+

∫ T

0

Ψ(u)Ψ(u)T

λ̃j(u)2
λj(u)du→ E

[
∂2L(β)

∂β∂βT

]
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Finally we have,

Cov

[
∂L

∂β

]
→ E

[
∂2L(β)

∂β∂βT

]
Note L represents the negative log-likelihood here. Taking this into the Normal distribution of
the estimator leads to the conclusion.

Remark The proof procedure and conditions are different from some previous works, such as
[106], because the model we propose is not necessarily in the same parametric family of the true
model. In some situations as shown in Lemma D.2.2, if the smoothing kernel widht is not selected
properly, the bias can be nonzero, so the MLE is not always consistent, which is an important
difference from the theory in [106]. This is why we add conditions such as E|β̂h − αh|2 =

o
(

1√
R

)
. With these conditions, the MLE can still get the good properties like typical ones. These

conditions are feasible. As shown in Fig 5.3, the bias is able to be zero. We assume the samples
are collected by iid trials, so the variance convergence in the rate of O(1/R). We verify the
asymptotic normality using simulations in Supplementary D.4.7. Numerical simulations shows
that even the bias is non-negligible, the asymptotic Normality still holds.

Another difference is the way the data is aggregated. From practical point of view, especially
in neuroscience data collection, data are collected session by session not through one continuous
recording. This affects how the central limited theorem is applied. Our theory uses the basic
version which assume data samples are iid. But some works use different versions of central
limit theorem assuming time segments have weak temporal dependency and it decays quickly
[29, 106].
Lemma D.2.6. If the model follows Eq (5.6) and Eq (5.7), then the inner products defined in Eq
(D.15) can be derived in closed-form. Details are in the proof.
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Proof. Apply Lemma D.2.1, D.2.7, and D.2.8,

1

T
Sww ≈

∫
R
[W ∗W ](s)c̆N,2(ds)ds

=

∫
R

1

2σw
√
π

exp

{
− s2

4σ2
w

}(
ρ

2σI
√
π

exp

{
− s2

4σ2
I

}
+ λ̄iδ(s)

)
ds

=
ρ

2
√
π
√
σ2
w + σ2

I

+
λ̄i

2
√
πσw

1

T
Shh ≈

∫
R
[h ∗ h−](s)c̆N,2(ds)ds

=

∫
R

[
rect

(
u

σh
− 1

2

)
∗ rect

(
− u

σh
− 1

2

)]
(s)

(
ρ

2σI
√
π

exp

{
− s2

4σ2
I

}
+ λ̄iδ(s)

)
ds

=ρ

[
σherf

(
σh
2σI

)
− 2σI√

π

(
1− exp

{
σ2
h

4σ2
I

})]
+ λ̄iσh

1

T
Shw ≈

∫
R
[h ∗W ](s)c̆N,2(ds)ds

=

∫
R

[
rect

(
u

σh
− 1

2

)
∗ φσW (u)

]
(s)

(
ρ

2σI
√
π

exp

{
− s2

4σ2
I

}
+ λ̄iδ(s)

)
ds

=
ρ

2
erf

(
σh√

2σ2
w + 4σ2

I

)
+
λ̄i
2

erf

(
σh√
2σw

)
1

T
Swλ ≈

∫
R
W (s)c̆N,λ,2(s)s

=

∫
R

1

σw
√

2π
exp

{
− s2

2σ2
w

}(
ρ

2σI
√
π

exp

{
− s2

4σ2
I

})
ds

=
ρ√

2σ2
w + 4σ2

I ·
√
π

1

T
Shλ ≈

∫
R
h(s)c̆NΛ,2(s)s

=

∫
R
I[0,σh](s)

(
ρ

2σI
√
π

exp

{
− s2

4σ2
I

})
ds

=
ρ

2
erf

(
σh
2σI

)

Lemma D.2.7. Assume the point process Ni(·) is second-order stationary (Lemma D.2.1) with
reduced second-order moment measure intensity c̆N,2, intensity function λi, and mean intensity
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λ̄i. Define two mean subtracted processes,

ϕ1(s) :=

∫
W1(s− t)(Ni(dt)− λ̄idt)

ϕ2(s) :=

∫
W2(s− t)(Ni(dt)− λ̄idt)

Then the inner product on interval [0, T ] between the processes is

〈ϕ1, ϕ2〉 ≈ T

∫
R
[W1 ∗W−

2 ](r)c̆N,2(r)dr (D.32)

W−
2 (x) := W2(−x).

〈ϕw, λi〉 ≈
∫
R
W (r)c̆NΛ,2(r)dsdt (D.33)

c̆NΛ,2 is the reduced second-order moment measure intensity between two random measure Ni(·)
and Λi(·). Λi(A) :=

∫
A
λi(t)dt is the intensity measure.

Proof.

〈ϕ1, ϕ2〉 =

∫ T

0

∫ T

0

∫ T

0

W1(t− u)︸ ︷︷ ︸
s:=t−u

W2(t− v)︸ ︷︷ ︸
W−2 (x):=W2(−x)

(
Ni(du)− λ̄idu

) (
Ni(dv)− λ̄idv

)
dt

=

∫ T

0

∫ T

0

∫ T−u

−u
W1(s)W−

2 ((v − u)− s)︸ ︷︷ ︸
u:=u,r:v−u

ds
(
Ni(du)− λ̄idu

) (
Ni(dv)− λ̄idv

)
=

∫ T

0

∫ T−u

−u

∫ T−u

−u
W1(s)W−

2 (r − s)ds · c̆N,2(r)dr · du

≈
∫ T

0

∫ T−u

−u
[W1 ∗W−

2 ](r)c̆N,2(r)dr · du ≈ T

∫
R
[W1 ∗W−

2 ](r)c̆N,2(r)dr

The approximation error comes from the boundary effect. If the kernels W1,W2 decays fast, the
error can be ignored.

〈ϕw, λi〉 =

∫ T

0

∫ T

0

W (t− u)
(
Ni(du))− λ̄idu

)
λi(t)dt

=

∫ T

0

∫ T

0

W (t− u)
(
Ni(du))− λ̄idu

) (
λi(t)dt− λ̄idt

)
≈T

∫
R
W (r)c̆NΛ,2(r)dsdt

Remark Many works that study the second-order stationary point process is in the frequency-
domain [10, 19, 20, 21, 64, 97, 104] and [34, ch. 8]. All of our analysis is in time-domain. If we
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apply the Parseval’s theorem to Eq (D.32), it equivalently shifts almost all results into frequency-
domain. ∫

R
[W1 ∗W−

2 ](r)c̆N,2(r)dr =

∫
R
Ŵ1(f) · Ŵ−

2 (f) · ΓN,2(df)

where Ŵ1, Ŵ
−
2 are the spectrum of kernels, and ΓN,2 is called Bartlett spectrum for point process

or Bochner spectrum for wide-sense process (see [34, ch. 8] and [19]). This can shift the time-
domain analysis into the frequency-domain. This work does not include any frequency properties
of the estimator, but it is promising to interpret some steps using the Bartlett spectrum measure
in the future work.
Lemma D.2.8. Consider the cluster process in Eq (5.6). Let φ(·)σI be a window function with
scale σI , tci be the points of the center process which is generated by homogeneous Poisson
process with intensity ρ. αi is the baseline. The intensity function has form,

λi(t) = αi +
∑
i

φσI (t− tci) (D.34)

Λi(·) :=
∫
A
λi(t)dt is the intensity measure with respect to the intensity λi. Ni(·) is the corre-

sponding count measure. Assume φσI is a Normal window with mean zero and standard deviation
σI . The reduced covariance measure intensity of Λi(t) is,

c̆Λ,2(u) = ρ · [φσI ∗ φσI ](u) =
ρ√

4πσ2
I

exp

{
− u2

4σ2
I

}
(D.35)

Similarly, the reduced covariance measure intensity the point process Ni(t) is,

c̆N,2(u) = ρ · [φσI ∗ φσI ](u) + λ̄iδ(u) =
ρ√

4πσ2
I

exp

{
− u2

4σ2
I

}
+ λ̄iδ(u) (D.36)

c̆NΛ,2(u) = ρ · [φσI ∗ φσI ](u) =
ρ√

4πσ2
I

exp

{
− u2

4σ2
I

}
(D.37)

Proof. The first-moment property of the intensity is,

λ̄i = E[λ(t)] = E
[∫ ∞

0

φσI (t− s)N(ds)

]
=

∫
φσI (t− s) (αi + ρ)ds = αi + ρ

The reduced covariance for the second-moment stationary process is defined as,

c̆Λ,2(u) = E[λi(x)λi(x+ u)]− E[λi(x)]E[λi(x+ u)] = E[λi(x)λi(x+ u)]− λ̄2
i

The second-moment measure of homogeneous Poisson process is [64],

M̆ c
N,2(dv) = λ̄iδ(v)dv + λ̄2

idv
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The second equation holds due to the Campbell lemma [93, Lemma 1.1]. N c(·) is the count
measure of the center process.

m̆Λ,2(u) = E
[

Λi(dx)Λi(x+ du)

dxdu

]
= E[λi(x)λi(x+ u)]

=E[(αi + fi,j(x))(αi + fi,j(x+ u))] = E[fi,j(x)fi,j(x+ u)] + 2ραi + α2
i

=E
[(∫

R
φσI (x− s) dN c(s)

)(∫
R
φσI (x+ u− r) dN c(r)

)]
+ 2ραi + α2

i

=E
[∫

R

∫
R
φσI (x− s)φσI (x+ u− r) dN c(s)dN c(r)

]
+ 2ραi + α2

i

=

∫
R

ds

∫
R
φσI (x− s)φσI (x+ u− (s+ v)) M̆ c

N,2(dv) + 2ραi + α2
i

=λ̄2
i + ρ

∫
R
φσI (s)φσI (u− s) ds = λ̄2

i + ρ[φσI ∗ φσI ](u)

The reduced covariance measure intensity of the count measure can be derived as follows.

MN,2(dt× (t+ du)) = dt · M̆N,2(du)

=E [Ni(dt)Ni(t+ du)] = EΛ [EN [N(dt)N(t+ du)|Λi]]

=λ̄iδ(u)du+ Eλ [Λi(dt)Λi(t+ du)] = λ̄iδ(u)dudt+ m̆Λ,2(u)dudt

So we have,

m̆N,2(u) = λ̄iδ(u) + m̆Λ,2(u)

c̆N,2(u) = λ̄iδ(u) + c̆Λ,2(u)

Similarly, the reduced second-order covariance intensity is,

MNΛ,2(dt× (t+ du)) = dt · M̆NΛ,2(du)

=E [N(dt)Λ(t+ du)] = EΛ [EN [N(dt)Λ(t+ du)|λ]]

=EΛ [Λ(dt)Λ(t+ du)] = m̆Λ,2(u)dudt

So we have,

m̆NΛ,2(u) = m̆Λ,2(u)

c̆NΛ,2(u) = c̆Λ,2(u)
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D.3 Application to neuroscience dataset

D.3.1 Materials
We applied our method to the Allen Brain Observatory Visual Coding Neuropixels [121]. It uses
multiple high-density extracellular electrophysiology probes to simultaneously record spiking
activity from many areas in the mouse brain, especially the visual cortex. The animals were
passively presented with visual stimuli while the head was fixed. The details of the experimental
setup can be found in [121]. Our work uses drifting gratings as it includes many repeated trials,
the trials are long and stimuli strongly elicit neural responses. The drifting gratings have 40
conditions which are combinations of 8 different orientations (0°, 45°, 90°, 135°,180°, 225°,
270°, 315°, clockwise from 0° = right-to-left) and 5 different temporal frequencies (1, 2, 4, 8,
15 Hz). The spatial frequency is 0.04 cycles/deg and the contrast is 80% for all trials. One
condition has 15 repeated trials. A trial lasts for 3 sec with 2 sec stimulus and 1 sec blank screen.
The sequence of the conditions is randomly arranged. The baseline condition has 30 trials with
a grey screen. The number of neurons in visual cortical areas recorded by one probe ranges,
roughly, from 40 to 100. Usually, 6 probes are recorded at the same time. The dataset assigns
unique identities for all properties, such as conditions, trials, neurons, etc. In this paper, we refer
to those identities directly. We analyzed mouse session 798911424 using randomly selected
19 drifting gratings conditions, totally 19 × 15 = 285 trials. The time window of each trial
is [400, 2000] ms dropping the initial part of the trial after the activity gets more stable. The
conditions are: 275, 246, 268, 270, 284, 274, 249, 263, 265, 261, 286, 258, 278, 267,
280, 256, 260, 257, 281. We selected top 30% most active neurons (thresholded by the mean
firing rate) including 28 V1 neuron, 24 LM neurons, 27 AL neurons.

D.3.2 Details of Fig 5.1
The real data is composed of spike trains of two neurons, i =951102476 and j =951109307.
We considered the coupling effects i → j (i leads j). The trials include 3819, 3828, 3859,
3882, 3886, 3906, 3912, 3917, 3922, 3924, 3925, 3930, 3932, 3942, 3946, 3948,
3951, 3953, 3959, 3966, 3980, 3995, 31020, 31033, 31035, 31040, 31048, 31054,
31055, 31114, 31129, 31152, 31161, 31170, 31173, 31174, 31177, 31179, 31182,
31186, 31190, 31194, 49209, 49211, 49220, 49262, 49290, 49301, 49304, 49305,
49327, 49353, 49378, 49390, 49418, 49420. We selected these trials as they were iden-
tified as “inhibitory” type coupling effect using our algorithm. In Fig 5.1A, the jitter window
width is 120 ms. Smaller or larger jitter window width yields similar results. The time bin for
the spike train is 2 ms. The pointwise CI or the simultaneous CI were calculated using 1000
surrogate jitter spike trains. More details of the jitter-based CCG can be found in [3]. In Fig
5.1V, the coupling filter was estimated using the B-splines with 6 evenly spaced knots (9 spline
bases). The smoothing kernel width is σw = 60 ms.

For the simulation data, the spike trains are generated using the model in Eq 5.6 and Eq 5.7.
The activity fi,j in the true model is set as a cluster process in Eq (5.6) with σI = 40 ms. The
firing rate of the center process ρ = 12 spikes/sec. The baselines are αj = αi = 1 spikes/sec. The
square window filter width is σh = 50 ms and αh = −5 spikes/sec in Eq (5.7). The simulation
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has 56 trials and the length of the trial is 2 sec, which is the same sample size as the real data in
Fig 5.1A,B,C. Different trials are assigned with a different randomly generated fi,j . The coupling
filter is estimated using B-splines with 5 evenly distributed knots (8 spline bases).

D.3.3 Algorithm for filter type identification
The model is estimated using hard EM algorithm, that alternatively updates the coupling filter
templates as shown in Fig 5.5 and coupling filter type of each coupling filter on each trial.

Update coupling filter templates. Zr,i→j is the coupling filter type of neurons i → j on
trial r, which is a categorical variable. hI is the coupling filter templates, I = {0, 1, 2, 3, 4} with
respect to “no effect”, “excitatory”, “inhibitory”, and two oscillatory types. We put all trials of
the same type from all neurons together to estimate the coupling filter template.

hI = arg min
h

min
βj ,βw

 ∑
Zr,i→j=I

−∑
s∈Nj

log λ̃r,i→j(s) +

∫ T

0

λ̃r,i→j(s)ds


 , I = 1, 2, 3, 4

(D.38)
The template for “no effect” (I=0) is fixed as 0. λ̃r,i→j is constructed similar to Eq 5.4, which is
a linear function of βj, βw, h. For type 1 and 2, we estimate the coupling filters using a square
window with width 50 ms similar to Eq 5.7; for type 3 and 4, we use B-spline with 8 evenly
distributed knots. The fitted templates are in Fig 5.5.

Update coupling filter types. H represents all templates, Ni, Nj represents all spike train
data.

Zr,i→j =arg max
Z

{
p(Z|H,Ni, Nj)

}
=arg max

Z

{∫
p(Z|βj, βw, H,Ni, Nj) · p(βj, βw)dβjdβw

}
≈arg max

Z

{
max
βj ,βw

{
p(Z|βj, βw, H,Ni, Nj)

}}
=arg max

Z

{
max
βj ,βw

{
p(Nj|βj, βw, hZ , Ni) · p(Z)

}}

=arg min
Z

min
βj ,βw


−∑

s∈Nj

log λ̃r,i→j(s) +

∫ T

0

λ̃r,i→j(s)ds

− log p(Z)




(D.39)

The third row marginalizes the nuisance parameters using the approximation through BIC [39].
λ̃r,i→j is constructed similar to Eq 5.4, which is a linear function of βj, βw, h. p(Z), Z =
0, 1, 2, 3, 4 is the weight of the coupling filter type. The optimization over the negative log-
likelihood can be calculated using Newton’s method as shown in Appendix D.1. The model
converges quickly. The updating terminates if the coefficients of the coupling filter templates
and the group sizes change very small. In the first updating rule, conditioning on the spike trains
and the rest variables, the coupling filters for each type can be calculated independently. In
the second updating rule, the coupling filter type of each pair of neurons and each trial can be
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calculated independently. So the algorithm can be highly implemented in parallel to improve the
performance.

A standard mixture model updates the group weights in every iteration. But in our situation,
the clusters of types 0,1,2 are very close since the coupling effect is not very strong, they might
become unbalanced or get merged because the distributions of these groups are not well isolated
with a clear boundary. To overcome this issue, we fix the weights p(Z) as a constant, which is
reduced to a clustering method similar to k-means. As the weights do not change from trial to
trial, it will not introduce the trial-to-trial variation. To verify whether the conclusion is sensitive
to this modification, we present more results in Supplementary D.4.14 with different uneven
weights. The number of significant outcomes is slightly different, but the patterns are similar.

For the initialization, we started with exploring the dataset in the following ways,
1. The whole dataset is too large. We selected the most active 30% of neurons determined

by the spike count of all trials. Then randomly selected some pairs of neurons among
V1→LM and LM→AL.

2. Run CCG on these pairs of spike trains. Strong coupling effects would first be picked out,
just like the examples in Fig D.24type 3 and type 4. We grouped them into two clusters
based on the CCG curves (run k-means on CCG curves). Then applied the point process
regression method to get the coupling filter templates of type 3 and type 4. The CCG
results also helped with determining the coupling filter length, where the end of the filter
had small values.

3. The rest pairs had weak coupling effects. CCG was not powerful enough to distinguish
them, and most parts of the curves stayed within the confident bands. But we found some
curves were above zero, some were below, and some fluctuated evenly around zero, as
shown in the examples in Fig 5.1 and Fig D.24. This motivated us to aggregate the data
(along with the time lag instead of focusing at one lag) to detect the weak signal. Stepping
back from estimating the detailed shapes of the curves, we simply chose square window
coupling filters, one being positive, one being negative and one being zero. Their initial
values are set to 3 spikes/sec, -3 spikes/sec and 0 spikes/sec. The length of the filter was
roughly determined by checking CCG and running non-parametric fitting. As discussed in
Supplementary D.4.6, we preferred to choose shorter filters than longer ones.

4. The smoothing kernel width of W was determined using plug-in estimator as shown in
Appendix D.1.2 by sub-sampling 5000 trials. As described in Fig 5.4, the selection of the
smoothing kernel width is invariant of coupling filter properties, it does not matter what
the coupling filter type the trials have. We tried several times and got a similar value. (We
later on came back to verify if the fitted templates changed too much if the kernel width
was set to a smaller or a larger value). The kernel width used for the analysis in the main
text is 60 ms.

5. Once we got the templates of the 5 groups, we could update the coupling filter types of all
neurons on each trial. Then alternatively run the updating rules above.
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D.4 Supplementary information
In this section, we will present more simulation study from section D.4.1 to section D.4.11 as
summarized at the end of section 5.2. The topics include: Timescale-varying background; Non-
shared fluctuating background; Fast-changing background; Bayesian model; Non-parametric fit-
ting for the coupling filter; Selection of coupling filter length; Asymptotic Normality of the
estimator; Hypothesis testing example; Background activity with Laplacian window function;
Multivariate regression and partial relation; Self-coupling effect; Rate coupling and delayed
shared input. We will also provide supplementary materials to the real data application, where
we will show: More examples of coupling filters and jitter-based CCG; Clustering with unbal-
anced weights; Results with different smoothing kernel widths; Goodness-of-fit; Results using
different dataset.

D.4.1 Timescale-varying background activity
The shared activity fi,j in Eq (5.6) is composed of a sequence of Gaussian windows with fixed
scale σI . The locations of the windows are determined by a homogeneous Poisson process with
intensity ρ. This simple random process is second-order stationary and many properties can be
calculated in closed-form formula as shown in Lemma D.2.8. σI controls how fast the activity
changes. If σI is smaller, the activity will change faster. This makes the theoretical derivations
much simpler.

Here we design a similar process but the scale of the window σI is no longer a fixed value,
where σI,i changes in a continuous range. Every time point of the center process tci is assigned
with a different scale σI,i randomly. The settings of this simulation scenario are the same as Fig
5.3 except that σI,i is set by a uniform random variable between 80 ms and 140 ms. The process
fi,j changes faster at smaller σI,i, and changes slower at larger σI,i.

fi,j =
∑
i

φσI,i (t− tci) (D.40)

The true coupling filter is a square window hi→j(t) = αh · I[0,σh](t), where the timescale is
σh = 30 ms, the amplitude is αh = 2 spikes/sec.
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Figure D.1: Simulation results of the coupling filter estimator with varying background
activity timescale. The figure is presented in the same ways as Fig 5.3. The simulation details
are in the text. The shared activity fi,j in Eq (5.6) is replaced with Eq (D.40) with varying
timescale. The results are similar to Fig 5.3. The dark curves show the equivalent theoretical
approximation using the model in Eq 5.2 and Fig 5.2 with fixed timescale σI = 100 ms with
manually tuned σI to match the numerical results.

As shown in Fig D.1, the selected kernel width σw will balance the varying timescale, and it
can still the select estimator with small risk and low bias, indicated by the vertical lines in Fig
D.1 A and B. Similar to Fig 5.3D, the SE does not change too much as the smoothing kernel
width σw changes. The model can balance the bias, which can be explained by its properties in
Fig 5.3C. If the timescale of the background σI is fixed and consider the bias of the estimator
near the right root. If σw is larger than the right root, the bias will be positive, if σw is a little
smaller than the right root, the bias will become negative. In this scenario, the timescale of the
background σI varies. The optimal σw is relatively large for the activity with small σI , so the
bias is positive for fast-changing part. The optimal σw is relatively small for the sessions with
large σI , so the bias is negative for slow-changing part of the activity. With proper selection of
σw, the estimator will balance the overall bias between fast- and slow-changing activities, and it
can still achieve zero bias. Together with the SE, the risk properties remain similar in Fig D.1 A.

To verify the reasoning, we compare the numerical results with the equivalent theoretical
approximation shown in the dark curves in Fig D.1. The theoretical method is for the model
in Eq 5.2 and Fig 5.2 with fixed timescale for the background by manually tune the timescale
as σI = 100 ms to match the numerical curves. The behavior of the estimator for the varying-
timescale background activity is almost equivalent to the case with fixed-timescale background
activity. The SE of the numerical results is slightly larger though.

Finally, we also want to point out that the model could fail if the shared activity is a mixture
of very distinct timescale, for example when it is a compound of 100 ms and 5 ms. The shared
fast-changing input can be the spike trains from a subpopulation. We will further discuss this
problem in Supplementary D.4.10.
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D.4.2 Non-shared fluctuating background
The baselines of the model in Fig 5.2 are constant αi and αj , and the only fluctuating back-
ground activity comes from the shared component fi,j . In this section, we consider non-constant
baselines fi(t) and fj(t) for each neuron exclusively. The diagram of the new model is in Fig
D.2. The only differences from Fig 5.2 are the extra components fi(t), fj(t). The settings of
the simulation are also the same as the case in the main text Fig 5.3 except for fi(t), fj(t), and
fi,j(t).

fi(t) =
∑
n

φσI
(
t− ti,cn

)
fj(t) =

∑
m

φσI
(
t− tj,cm

) (D.41)

fi(t) and fj(t) are created using independent cluster processes. The intensity of the center pro-
cesses is 10 spikes/sec. ti,cn , t

j,c
m are the time points of the center processes for fi(t), fj(t) respec-

tively. The intensity ρ of the center process for fi,j is adjusted from 30 spikes/sec to 20 spikes/sec
so the overall mean firing rates of the neurons are similar to Fig 5.3. The window function φσI
of fi(t), fj(t) and fi,j(t) are Gaussian with the same timescale σI . The true coupling filter is a
square window hi→j(t) = αh · I[0,σh](t), where the timescale is σh = 30 ms, the amplitude is
αh = 2 spikes/sec.

AL

AL

Figure D.2: Diagram for the coupling neurons model with exclusive fluctuating baselines.
The diagram is the same as Fig 5.2 except for the baseline fi(t), fj(t) for neuron i and j sepa-
rately. The random process fi(t), fj(t) are also created using cluster process in Eq D.41. Details
of the model are in the text.
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Figure D.3: Simulation results of the scenario with exclusive fluctuating baselines. The
figure shows the simulation results of the model described in Fig D.2, including RMSE, bias,
SE and log-likelihood in a similar way as Fig 5.3. The details of the simulation settings are in
the text. The green curves are the theoretical approximation of the basic model in the main text
(Fig 5.2 without exclusive components fi or fj), where the intensity of the center process for
fi,j is ρ = 20 spikes/sec, same as the current simulation settings. The dark curves are similar
theoretical approximations of the basic model in Fig 5.2, but the intensity of the background
center process is ρ = 10 spikes/sec, which is lower than the intensity of this simulation scenario.
The dark curves match the numerical curves better than the green ones.

The results are shown in Fig D.3. Similar to the scenario in Fig 5.3, the SE does not change
a lot as the timescale of the smoothing kernel σw varies. The bias can still achieves zero. The
optimal model with small risk can be selected by maximizing the likelihood indicated by the
vertical lines in Fig D.16A and B.

Next, we compare the numerical results with the theoretical approximation of the basic model
in the main text without the baselines fi, fj . If Fig D.3, the green curves correspond to the basic
model with the same center process intensity ρ = 20 spikes/sec of fi,j; In all plots in Fig D.3,
the numerical results match the dark curves better. These comparisons imply that adding the
non-shared fluctuating activity can actually help the estimator. It is equivalent to reducing the
strength of the shared activity. The shared background activity contaminates the coupling effect
estimation because it is correlated with the spike trains. Without considering the background,
such correlation will be counted as the contribution of the coupling filter. Adding non-shared
fluctuating activity can reduce the correlation between the background and the coupling effect so
it improves the estimation.

D.4.3 Fast-changing background
In the main text, the shared activity changes slower than the coupling effects. We will show
in this section, this is not a necessary assumption or constraint. Even the background changes
faster than the coupling effect, the model still holds the ideal properties such as optimal model
selection and low bias.
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We consider two scenarios by setting the timescale of the fi,j in Eq 5.6 to σI = 20 ms (Fig
D.4 A,B,C,D), and σI = 5 ms (Fig D.4 E,F,G,H). The rest settings of the simulation scenarios
are the same as the main text in Fig 5.3, where the true coupling filter is a square window
hi→j(t) = αh · I[0,σh](t), the timescale is σh = 30 ms, the amplitude is αh = 2 spikes/sec.
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Figure D.4: Fast-changing background with small σI . We present the properties of the
coupling filter estimator in the same way as Fig 5.3. The simulation settings are the same as Fig
5.3 except that in A, B, C, D σI = 20 ms, in E, F, G, H σI = 5 ms.

As already shown in the main Fig 5.4A, if σI decreases, the labeled “min-2” of the risk
will shift toward left. Fig D.4A shows an extreme case that if σI keeps decreasing, two local
minimums will merge to one minimum. In Fig D.4C, the bias property has a similar change;
two roots in the main Fig 5.3C will merge to one root. The property of SE does not change too
much, see Fig D.4D and 5.3D. If σI < 20 ms, the “min-2” point labeled in Fig 5.3 will move to
the left, and it can still be selected by the likelihood function, see Fig D.4E and F. When σI has
a very small value, such as 5 ms in Fig D.4, the theoretical approximation of the SE begins to
have a large deviation from the numerical value. We think this is related to the large error of the
quantity Shw in Lemma D.2.6. Next, similar to Fig 5.4, we will explore how the timescale of the
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shared activity σI , the timescale of coupling effect σh, and the amplitude of coupling filter αh are
related to the above properties when σI is very small.

137



January 11, 2022
DRAFT

A B

2 5 10 20 50 100 200 5001000
0

2

4

6

8

R
M

S
E
 [

sp
ik

e
s/

se
c] I= 5 ms

I= 8 ms

I= 20 ms

2 5 10 20 50 100 200 5001000

w [ms]

4000

2000

0

lo
g
-l
ik

e
lih

o
o
d

2 5 10 20 50 100 200 5001000
0

5

10

R
M

S
E
 [

sp
ik

e
s/

se
c] h= 20 ms

h= 30 ms

h= 40 ms

2 5 10 20 50 100 200 5001000

w [ms]

4000

2000

0

lo
g
-l
ik

e
lih

o
o
d

2 5 10 20 50 100 200 5001000
0

2

4

6

8

R
M

S
E
 [

sp
ik

e
s/

se
c]

h= -2.0 spikes/sec

h= 0.0 spikes/sec

h= 2.0 spikes/sec

2 5 10 20 50 100 200 5001000

w [ms]

6000

4000

2000

0

lo
g
-l
ik

e
lih

o
o
d

C

Timescale of the background activity Timescale of the coupling effect

Amplitude of the coupling effect

Figure D.5: Properties of the estimator with fast-changing background. This figure is analog
to Fig 5.4 but the time scale σI of the shared activity fi,j is very small. The settings are the same
as Fig 5.3, 5.4, and D.5 except for different σI in A, different σh in B and different αh in C.
We only show the theoretical RMSE and log-likelihood curves. The numerical results are very
close. Some numerical results have been shown in Fig D.4. The log-likelihood functions may
have different offsets, we align them by the peak to zero (maximum value across σw). A If σI
is around 20 ms, two local minimum values of the risk curve may merge to one, which agrees
with the numerical result in Fig D.4A. If σI < 20 ms, the selected optimal kernel width σw will
be at the left local minimum of the risk. Notice that when σ is around 20 ms, the shape of the
log-likelihood near the maximum value is more blunted than others. In these cases, the timescale
of the coupling filter σh = 50 ms and the amplitude αh = 2 spikes/sec are fixed. B If σI ms is
very small, it will be the right local minimum of the risk that is associated with the coupling filter
timescale, which is opposite to Fig 5.4B. If the timescale of the coupling filter σh decreases, the
right local minimum of the risk will move to the left. σh does not change the left local minimum
or the maximum point of the likelihood. In these cases, σI = 5 ms and αh = 2 spikes/sec
are fixed. C Similar to Fig 5.4C, the amplitude of the coupling filter αh does not change the
risk curve or the position of the maximum likelihood. In these cases, σI = 5 ms and σh = 50
spikes/sec are fixed.
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Fig D.5 shows the estimator’s properties when parameters σI , σh, and αh are tuned in a
similar way as Fig 5.4 in the main text, but the time scale σI of the shared activity fi,j here is a
much smaller value. As already shown in Fig D.4, when σI is very small, the optimal smoothing
kernel width σw will move to the left (indicated by the vertical line), and it still matches the
maximum likelihood. Two local minimum values may merge to one when σI is around 20 ms.
If σI < 20 ms, the selected optimal kernel width σw will be at the left local optimal. Notice that
when σI is around 20 ms, the shape of the log-likelihood near the maximum value is blunter than
others. So it may become more difficult to accurately choose the optimal model. In Fig 5.4B, the
left local minimum of the risk labeled by “min-1” is associated with the coupling filter timescale
σh. But if σI is very small (say σI = 5 ms in Fig D.5B), it will be the right local minimum of
the risk that is associated with the coupling filter timescale. If the timescale of the coupling filter
σh decreases, the right local minimum of the risk will move to the left. σh does not change the
left local minimum and the maximum point of the likelihood. The amplitude of the coupling
filter αh does not change the risk curve or the position of the maximum likelihood similar to Fig
5.4. Notice that when σI is very small, the risk of the non-optimal model is much larger than the
scenario in Fig 5.3 with large σI . The worst risk can go up to 12 spikes/sec (dark curve in Fig
D.5B), while in Fig 5.3 the worst case is only about 2 spikes/sec.
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Figure D.6: A comparison between the estimations of the coupling effect with fast-changing
background. The figure compares the performance of the estimators of the coupling effect. The
simulation settings are the same as Fig 5.3 except that the timescale of the background σI = 5
ms is very small. The timescale of the coupling filter as in Eq (5.7) is σh = 30 ms. In A, B, and
C, the amplitude of the true coupling filter is αh = 2 spikes/sec. In D, E, and F, the amplitude of
the true coupling filter is αh = 0 spikes/sec. A, D The estimator of the point process regression.
It can accurately estimate the true filter, which is supported by the analysis in Fig D.4 and D.5.
B, E Jitter-based CCG. The time bin for the spike train is 1 ms. The jitter window width is set as
5 ms, close to the timescale of the background activity. The dark grey band is pointwise 95% CI,
and the light grey band is simultaneous 95% CI. The result is acquired from 1000 surrogate jitter
samples. The CCG method detects a small excitatory effect before lag = 5 ms no matter whether
the neurons have true coupling effect. C, F Similar to B except that the jitter window width is 10
ms. In both B and C, the jitter-based CCG method can only detect a small effect before 5 ms lag
or 7 ms lag. A large part of the coupling effect between 0 to 30 ms is buried under the CI band.
However, such an effect is due to the fast-changing background, but not the neuron-to-neuron
coupling effect.

A significant advantage of our model over the jitter-based model is that the proposed model
does not assume the background activity changes slower than the coupling effect, and the model
can automatically find the optimal timescale. The jitter-based method can not avoid such an as-
sumption due to its nature of conditional inference. The null hypothesis states that the coupling
effects do not change faster than the jitter window width. Thus the samples under the null distri-
bution are obtained by randomly jittering the spikes within the jitter window. If the background
changes as fast as the coupling effect, such bootstrapping method can not maintain the temporal
structure of the background activity, so it can not split the background artifacts and the coupling
effects. In other words, if the jitter window is set a little larger than the coupling effects, it can
not tell whether the detected effect belongs to the background or the spike-to-spike interaction.
Some other bootstrapping methods have the same issue for exactly the same reason [33]. Fig D.6
compares the point process regression method and jitter-based CCG method. The simulation
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scenario is the same as the basic model in Fig 5.3 except that the timescale of the background ac-
tivity is very small σI = 5 ms. The numerical properties of the estimator have been shown in Fig
D.4E-H. The true coupling filter is a square window hi→j(t) = αh ·I[0,σh](t). The timescale of the
coupling effect is σh = 30 ms. The true amplitude of the coupling filter is αh = 2 spikes/sec in
Fig D.6A,B,C, and αh = 0 spikes/sec in Fig D.6E,E,F. In both cases, the regression method can
accurately estimate the true estimator, which agrees with the numerical and theoretical results in
Fig D.4. In Fig D.6 B and C, the CCG method with jitter window width = 5 or 10 ms can detect
some excitatory effect in a lag range smaller than 5 ms or 10 ms. Nevertheless, it misses the
excitatory effect between lag=10 to 30 ms. It is unreasonable to use a larger jitter window, as it
will not match the background timescale. The CCG results are similar to another example in Fig
D.6E, F, where there is no coupling effect. The detected significant data points are totally due
to the fast-changing background. So for the results in Fig D.6B and C, we can not conclude that
the jitter method has removed the background artifacts and the significant effect is caused by the
coupling effect.

D.4.4 Simple Bayesian model
The regression model Eq (5.2) is probabilistic, so it can be easily adopted for Bayesian inference.
In this section, we present some simple Bayesian models where the scale σw of the smoothing
kernel W in Eq (5.5) can be treated as a random variable. We want to investigate how incorpo-
rating the uncertainty of the smoothing kernel width affects the estimation of the coupling filter,
and how the variance of the background timescale affects the uncertainty of the smoothing ker-
nel width. The posterior of the coupling filter coefficients obtained using sampling-based method
can also verify the Normality property in the regression method when the sample size dominates
the prior.

We consider two Bayesian models below and the basic point process regression model in Eq
5.2. The likelihood of the model is same as Eq (5.2)-(5.5). The coupling filter is estimated using
a square window, same as Eq (5.7). We choose non-informative flat priors for all the variables.
As the sample size is large, the posterior does not heavily rely on the prior. Model 2 is similar
to the regression model in Eq 5.2, where the kernel width σw is selected using the same way
as the regression model and held as fixed. Model 2 and the regression model are expected to
have similar results. In Model 1, σw is a random variable. We performed the estimation on two
datasets: The first dataset is the same as the example in Fig 5.3 (details are in the main text);
The second one is the same as the scenario in Supplementary D.4.1, where the timescale of the
background activity σI randomly changes in a continuous range between 80 ms and 140 ms.
The true coupling filter is a square window hi→j(t) = αh · I[0,σh](t) where the amplitude of the
coupling filter is αh = 2 spikes/sec. The timescale of the square window is σh = 30 ms. We
used the Hastings-Metropolis method for the model inference, which was a Monte Carlo Markov
Chain (MCMC) sampler. The posterior was acquired by drawing 1000 samples. The model was
initialized using the basic point process regression method Eq (5.2). The basic regression model
approximates the estimator’s distribution using Normal distribution; the mean is the MLE β̂h,
and the standard error is from the Fishier information. See the discussion of the asymptotic
Normality in Lemma D.2.5.

141



January 11, 2022
DRAFT

Model 1:

βj, βw, βh, σw ∝ 1

p(βj, βw, βh, σw|sj, si) ∝p(sj|si, βj, βw, βh, σw)

where p(sj|si, βj, βw, βh, σw) is the likelihood function of the point process similar to Eq (5.3).
σw is a variable of the model.

Model 2: σw is fixed and the parameter selection follows the regression method.

βj, βw, βh ∝ 1

p(βj, βw, βh|sj, si) ∝p(sj|si, βj, βw, βh, σw)
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Figure D.7: Applications of Bayesian model 1 and model 2 to two datasets. The figure shows
the posterior of the estimated coupling filter amplitude β̂h of Bayesian models 1 and 2 (grey
histograms in A,B,D,E) and the posterior of the smoothing kernel scale σ̂w of model 1 (grey
histograms in C, F). The solid dark curves are the Normal distributions of β̂h obtained using the
point process regression model Eq (5.2). A, B, C Applications of Bayesian models 1, 2, and
the basic regression model to the dataset in Fig (5.3). The timescale of the shared activity fi,j is
fixed at σI = 100 ms. Details of the dataset description is in the main text. In C, the mode of
the kernel scale is 130 ms, the 95% CI is [119, 148] ms. The optimal kernel scale σw selected
by the regression model is 125 ms. D, E, F Applications of Bayesian models 1, 2, and the basic
regression model to the dataset in section D.4.1, where the timescale of the shared activity σI
varies from 80 ms to 140 ms. In F, the mode of the kernel scale is 126 ms, the 95% CI is [111,
148] ms. The optimal kernel scale σw selected by the regression model is 120 ms.

Fig D.7 presents the estimated coupling filter coefficient of Bayesian model 1, 2, and the basic
regression model using two simulation datasets. One dataset has fixed shared activity timescale
σI = 100 ms, shown in plot A,B,C; the other dataset has a time-varying timescale in a continuous
range between 80 ms and 140 ms, shown in plots D,E,F. In A and D, the posterior distributions of
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β̂h (grey histogram) and the estimated distribution of the regression model (solid curves) are vary
close. This can be a side proof of the result in Supplementary D.4.7, that β̂h has asymptotic Nor-
mal distribution. In both datasets (first row and second row), by comparing the results between
model 1 and model 2, incorporating the uncertainty of the smoothing kernel scale σw does not
change the posterior of β̂h too much. As shown in Fig 5.4, the selected smoothing kernel scale
σw is related to the timescale of the shared activity σI . If σI increases, the corresponding selected
σw will increase by around the same amount. By comparing Fig D.7C and F, the CI width does
not change a lot (from 29 ms in C to 37 ms in F) when the timescale of the background switched
from a fixed value σI = 100 ms to a randomly varying value in [80, 140] ms. So the uncertainty
of the σw does not directly reflect the variance of the shared activity timescale.

D.4.5 Non-parametric fitting for the coupling filter
For simplicity, the models presented in the main text and many sections in the supplementary use
a square window for the coupling filter. In this section, we consider non-parametric fitting for
the coupling filter through B-spline bases. The linear form of the intensity function in Eq 5.4 can
be easily extended for this purpose. The coupling filter now is estimated as a linear combination
of B-spline bases as follows,

hi→j(s) = βh,1B1(s) + ...+ βh,kBk(s)

where B1, ..., Bk are spline bases. Define the covariates in the regression,

φh,1(t) :=

∫
B1(t− s)Ni(ds), ..., φh,k(t) :=

∫
Bk(t− s)Ni(ds)

The intensity function in Eq 5.4 becomes,

λ̃j(t) = βj + βwsi(t) + βh,1φh,1(t) + ...+ βh,kφh,k(t)

si(t) is same as the coarsened spike train in Eq 5.5. The coefficients of the coupling filter
βh,1, ..., βh,k can still be estimated using the model in Eq 5.2. The optimization algorithm is
in Appendix D.1. We applied the non-parametric fitting to the dataset in Fig 5.3. The true cou-
pling filter is a square window hi→j(t) = αh · I[0,σh](t) where the amplitude of the coupling filter
is αh = 2 spikes/sec, the timescale of the square window is σh = 30 ms. The coupling filter
is estimated in lag window [0, 50] ms using B-splines with 9 equal-distance knots. We evaluate
the risk using root-mean-integral-square error (RMISE). The RMISE between the true coupling
filter h(t) and the estimator ĥ(t) is defined as follows. Lh = 50 ms is the length of the coupling
filter.

RMISE(h, ĥ) :=

√
1

Lh

∫ Lh

0

(
ĥ(t)− h(t)

)2
dt

We evaluate the bias and the standard error of the filter at lag 5, 15, 25 ms. The result is shown
in Fig D.8 below.
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Figure D.8: Non-parametric fitting for the coupling filter. The dataset and the non-parametric
estimator are described in the test. The results are presented in the same way as Fig 5.3. A
RMISE of the estimated coupling filter as a function of smoothing kernel width σw of W in Eq
(5.5). The vertical line indicates the minimum risk. B The maximum log-likelihood as function
of σw. Since the likelihood functions may have different offsets, we align them by the peak (the
maximum value across σw) to zero, then calculate the mean and pointwise standard deviation.
The vertical line indicates the peak of the mean log-likelihood. C The bias of the estimator is
evaluated at lag = 5, 15, 25 ms. D The standard error of the estimator is evaluated at lag = 5, 15,
25 ms.

The risk curve and the log-likelihood curve are similar to the result in Fig 5.3. The optimal
model with minimum risk can be selected by maximizing the likelihood, which is the same as
the basic regression scenario in Fig 5.3. The difference is that, in the non-parametric fitting, the
left local minimum risk has a higher value than the right local minimum. While in the basic
fitting case, two local minimum values are close (labeled by “min-1” and “min-2” in Fig 5.3).
This can be explained by decomposing the risk into bias and SE shown in Fig D.8C and D. If
the smoothing kernel width σw is around 130 ms, the bias values at different lags of the coupling
filter are nearly the same. But if σw is around 20 ms, the bias values at different lags have large
divergence: the beginning part of the estimator at lag=5 ms has negative bias, the middle part
at lag=15 ms has around zero bias, and the end part of the estimator at lag=25 ms has positive
bias. The SE of the estimator at different lags does not change a lot as σw varies. So overall, the
RMISE has a much larger value near lag=20 ms than at lag=130 ms. These properties are further
demonstrated in Fig D.9.
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Figure D.9: Non-parametric fitting for the coupling filter. The figure compares the true
coupling filter (dark) and the estimator (blue). The light blue band is pointwise 95% CI. The
coupling filters were fitted in the same way as described in Fig D.8. This figure picks out some
fitted estimators with different smoothing kernel widths σw = 20, 130, 200 ms. If the smoothing
kernel width is too small (σw = 20 ms), the bias values of the estimator at different lags have
large differences. This matches the bias curves shown in Fig D.8C. At the beginning part of the
estimated coupling filter around lag=5 ms, the bias is negative, and at the end part around lag=25
ms, the bias is positive. If the smoothing kernel width is selected optimally (σw = 130 ms), the
fitted coupling filter matches the true filter very well. If the smoothing kernel width is too wide
(σw = 200 ms), the whole estimated coupling filter has uniform positive bias at different lags.
This agrees with Fig D.8C that multiple bias curves with different lags beyond σw = 130 ms are
very close.

D.4.6 Selection of coupling filter length.
The simulation scenario in the main text in Fig 5.3 and many scenarios in the supplementary
sections simplify the coupling filter estimation using a square window and assume the timescale
of the coupling effect σh in Eq (5.7) is known. In this section, we show the consequences of
unmatched coupling filter timescale. Because in practice, the timescale of the coupling effect is
usually unknown.

We used the same dataset in Fig 5.3, where the true coupling filter is a square window. The
amplitude αh = 2 spikes/sec and the window width is σh = 30 ms. We applied two versions of
the regression model to the dataset. Both versions used a square window as the coupling filter
estimator, but one with shorter timescale σh,1 = 20 ms, the other with longer timescale σh,2 = 40
ms. We present the results in Fig D.10 in the same way as Fig 5.3.
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Figure D.10: Consequences of unmatched coupling filter timescale. The dataset is the same
as Fig 5.3, where the true coupling filter is a square window in Eq 5.7. The amplitude is αh = 2
spikes/sec and the window width is σh = 30 ms. We tested the regression model with unmatched
coupling filter width. The model in A, B, C, D estimates the coupling filter using a shorter
timescale σh,1 = 20 ms. The model in E, F, G, H estimates the coupling filter using a longer
timescale σh,1 = 40 ms. As a reference, the dark curves show the theoretical approximation
using the basic regression model by setting the coupling filter timescale as 20 ms in A-D, and 40
ms in E-H. The rest settings are the same as the simulation.

If the coupling filter is estimated using a shorter timescale (σh,1 = 20 ms) as shown in Fig
D.10A,B,C,D, the selected model still has the minimum risk indicated by the vertical line. The
dark curves in Fig D.10A,B,C,D, show the theoretical approximation of the properties using the
basic regression model in Eq (5.2)-(5.5) by setting the coupling filter timescale as 20 ms instead,
which can be seen as the expected properties of the model. The absolute values of the bias are
larger than expected if σw is between 10 ms and 120 ms or larger than 200 ms. But the roots of
the bias still match the expected position. The SE is not affected by the unmatched timescale. So
the optimal selection of σw does not change. As a contrast, if the coupling filter timescale of the
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estimator (σh,2 = 40 ms) is longer than the truth (30 ms), the consequence is more severe. As
shown in Fig D.10 G, the actual bias is uniformly lower than the expected bias. The SE is not
affected. So the consequence is that the selected smoothing kernel width σw (Fig D.10 F vertical
line) does not match the actual risk minimum (Fig D.10 E vertical line).

By combining the results of the two cases, we recommend users select shorter coupling filter
timescale if they are not confident about the coupling filter timescale, or using non-parametric
fitting as in Supplementary D.4.5.

D.4.7 Asymptotic Normality of the estimator
In this section, we perform simulations to verify the asymptotic Normality property of the esti-
mator, see Lemma D.2.5. The dataset is the same as Fig 5.3. The true coupling filter is a square
window hi→j(t) = αh · I[0,σh](t), where the amplitude is αh = 2 spikes/sec, and the timescale
is σh = 30 ms. The estimator for the coupling effect β̂h is Eq 5.2 and 5.7. We compare the
empirical distribution of the estimators with the theoretical distribution. The theoretical distribu-
tion is Normal, where the mean is the true value αh plus the theoretical bias (Lemma D.2.2), the
standard deviation is the theoretical standard error (Lemma D.2.3).
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Figure D.11: Normality of the estimator’s distribution. The dataset is the same as Fig 5.3
including 100 repetitions. The figure shows the Q-Q plots of the empirical distribution of the
estimator against the theoretical Normal distribution (see details in the text), shown in the dark
curves. The straight dashed grey lines are 95% CI. In the first row, the empirical distribution
matches the theoretical distribution very well at the optimal model (σw = 125 ms) and at models
close to the optimal (σw = 100, 160 ms). We also evaluate the model at many other different
smoothing kernel widths. If σw is too small or too large (second row, σw = 60, 250, 500 ms), the
empirical distribution has a large deviation from the theoretical distribution. This is caused by
the error of the theoretical approximation of the bias, see Fig 5.3C. If the mean of the theoretical
Normal distribution is replaced by the mean of the numerical estimators (mean of all estimators),
but the standard error of the theoretical distribution remains the same, the distributions can match
very well (dashed dark curves in the second row).

As shown by Fig D.11 first row, the estimator has Normal distribution at the optimal selection
of σw = 125 ms and near-optimal selections σw = 100, 160 ms. In Fig D.11 second row, if σw is
too small or too large, the empirical distributions will have large deviations. This is caused by the
error of the theoretical approximation of the mean but not by the theoretical approximation of the
standard error. The dashed curves in Fig D.11 second row show the good match after replacing
the theoretical mean with the empirical mean (mean of all estimators).

D.4.8 Hypothesis testing example
The regression model can be adopted for hypothesis testing problems. The simulation scenario
in this section is similar to the case in Fig 5.3. The background activity is a cluster point process
in Eq (5.6), and the coupling filter is a square window hi→j(t) = αh · I[0,σh](t) in Eq (5.7). Each
simulation dataset only has 10 trials. We reduce the sample size to make the tasks more difficult,
and the performances of different estimators will be more distinguishable. The length of the trial
is 5 seconds, the time scale of the background activity is σI = 100 ms. The intensity of the
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center process is ρ = 30 spikes/sec. The baselines of two neurons are αi = αj = 10 spikes/sec.
The coupling filter is estimated using a square window with known timescale σh = 30 ms. The
amplitude of the coupling filter is αh = 0 spikes/sec in the null cases without coupling effects.
We include three true positive scenarios with coupling filter amplitudes αh = 2,−2, 1 spikes/sec
respectively. The dataset generating and the model fitting procedure was repeated for 100 times.

Consider the null hypothesis
H0 : β̂h = 0

β̂h is the estimator for αh. The inference method is a direct application of the properties of the
estimator. The smooth kernel is σw = 125 ms, which is chosen by maximizing the likelihood. β̂h
has asymptotic normal distribution (see details in Supp D.4.7 and Appendix D.2), so the p-value
can be easily calculated accordingly. The alternative method is jitter-based CCG, where the time
bin width is 2 ms, the jitter window width is 100 ms. The CCG with shorter or longer jitter
window width, for example 60 ms or 140 ms, gives similar results, so the figures are not shown.
The p-value of the method is obtained by considering the multiple testing across all time lags
between 0 and 30 ms, which is the same as the true coupling filter length. The calculation detail
is in [3] supplementary document.
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Figure D.12: Hypothesis testing examples. We compare the point process regression model
(A, B) with the jitter-based cross-correlation (CCG) method (C, D) using simulations. The sim-
ulation details are in the text. The left column is the Q-Q plot which compares the p-values
distribution under the null (numerical quantile along the y-axis) with the uniform distribution
(theoretical quantile along the x-axis). The dashed line is the 95% CI. Both methods yield valid
p-value distributions. The right column shows the results of ROC analysis with the false positive
rate (FPR) along the x-axis, and the true positive rate (TPR) along the y-axis. The score of an
outcome is the p-value of the hypothesis test. When αh = 2,−2 spikes/sec, the area under the
curve of our method is larger than that of the jitter-based CCG method, so our method is more
powerful. However, when the coupling effect is weak αh = 1 spikes/sec, neither of the methods
has satisfactory performance.

Fig D.12A verifies that the p-value distribution of the basic point process regression method
under the null is uniform. This provides another verification of the estimator’s Normality distri-
bution, which has already been shown in Supplementary D.4.7. The p-value of the CCG method
under the null is also valid as shown in Fig D.12C. Fig D.12B and D compare the ROC analysis.
The score of a test outcome is the p-value. The point process regression method has better perfor-
mance when the amplitude of the coupling effect is αh = 2,−2 spikes/sec. Both methods have
poor performance if the coupling effect is very weak αh = 1 spikes/sec. Usually, the jitter-based
method focuses on pointwise statistic at a specific time lag, which can ignore the connection
between adjacent time lags. We think the power of the CCG method can be improved by consid-
ering the time lag dependency and designing the multiple hypothesis test more carefully, but it is
not the main interest of this paper.
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D.4.9 Background activity with Laplacian window function
The fluctuating shared activity of the simulation scenario shown in Fig 5.3 is modeled as a cluster
process in Eq (5.6) composed of superimposed Gaussian window functions. The smoothing
kernel in Eq (5.5) is also Gaussian. In this section, we verify that if the Gaussian window function
of the background activity is replaced by another window with a different shape, the estimator
will not be affected. Here we replace the Gaussian function with a Laplacian window function
[3]. The shared activity fi,j in Fig 5.2 becomes,

fi,j(t) =
∑
i

φσI (t− tci)

φσI (x) =
1√
2σI

exp

{
− |x|
σI/
√

2

}
(D.42)

where tci are the time points of the center process, σI controls the timescale of the window.
The simulation settings of this scenario are the same as the Fig 5.3 except for the new window
function. The timescale is σI = 100 ms.
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Figure D.13: Results using Laplacian window in the background activity. Similar to Fig
5.3, we present the results in the same way except that the window function of the background
activity is replaced by Eq D.42 with timescale σI = 100 ms. The properties of the estimator and
the conclusion do not change.

The numerical results are shown in Fig D.13. Similar to Fig 5.3, the properties of the estima-
tor and the conclusion do not change1

D.4.10 Multivariate regression and partial relation
Multivariate regression is a natural extension of the basic regression model introduced in Eq 5.2-
5.5 and diagram Fig 5.2. We briefly mentioned in Supplementary D.4.3 that if the shared input

1Author note: It should be very easy to derive the theoretical results for the Laplacian window. I only need to
recalculate the quantities in Lemma D.2.8. But I did not have enough time to do so before the thesis defense. I will
do this after.
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between two neurons is a mixture of activities with very distinct timescales, the model can fail
in eliminating all artifacts. This section continues the discussion.

The simulation scenarios are shown in the diagrams in Fig D.14. Consider two neurons X, Y
that are driven by some shared input, but there is no coupling effect between them. The first
diagram in Fig D.14A is the model in the main text Fig 5.2 and Fig 5.3 with relatively slow-
changing background fi,j . In the diagram Fig D.14B, we only include fast-changing driving
activity. Z represent a subpopulation of 4 neurons. The spikes of neurons in Z influence X, Y
through coupling filters hZ→X = hZ→Y = αZ · IσZ , αZ = 15 spikes/sec, σZ = 30 ms. The
activity of neurons in Z and X, Y have constant baselines of 20 spikes/sec. The diagram in
Fig D.14C includes both slow-changing activity fi,j as in A and fast-changing activity driven by
spikes from Z as in B. The coupling filters are the same as plot B. The neurons in Z and X, Y
are all driven by fluctuating background activity fi,j . fi,j is a linear Cox process in Eq 5.6, where
the intensity of the center process is ρ = 20 spikes/sec, and the window function is Gaussian
with scale σI = 100 ms. The constant baseline for all neurons is 10 spikes/sec. The simulation
dataset has 200 5-second trials. This section mainly studies scenarios B and C. The filters were
fitted using non-parametric method in Appendix D.1.
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Figure D.14: Shared driving factors on multiple timescales. A The diagram as already shown
in Fig 5.2 without coupling effects. Two neurons X, Y are driven by slow-changing activity fi,j .
B NeuronsX, Y are driven by fast-changing activity triggered byZ. Spikes from a subpopulation
Z drives the activities of X and Y through coupling filters hZ→X and hZ→Y , but there is no direct
coupling filter between X and Y. Simulation details are in the text. C A combination of the cases
in A and B, where neurons X, Y are driven by both fast-changing activity from Z and slow-
changing activity fi,j . D Estimated coupling filter X → Y using the basic bivariate regression
model. The spike trains are generated using diagram B. The model can handle artifacts caused
only by fast-changing activity. E Estimated coupling filter X → Y using the basic bivariate
regression model. The spike trains are generated using diagram C with background on two
distinct timescales. The model can not fully remove the artifacts. F The estimated coupling filter
X → Y using a multivariate regression in Eq D.43. Conditioning on both estimated fi,j and Z,
the artifacts can be removed.

Fig D.14D,E,F show the results. In Fig D.14D, the data was generated by the model in
Fig D.14B with only fast-changing component. The basic bivariate regression model is able
to eliminate the artifacts caused by fast-changing background activity. This has already been
shown in Supplementary D.4.3. Fig D.14E shows the estimated filter using the dataset generated
by the model in In Fig D.14C. The filter falsely shows excitatory effect before lag=10 ms. The
bivariate model in Eq 5.2 fails in eliminating the artifacts when the shared input is on two distinct
timescales. If we can observe the spike trains of Z, then the multivariate regression can help with
eliminating the artifacts related to the fast-changing activity. Consider the intensity function for
the multivariate point process regression,

λ̃Y (t) =βY + βw sX(t) +

∫ t

0

hX→Y (t− τ)NX(dτ)

+

∫ t

0

hZ1→Y (t− τ)NZ1(dτ) + ...+

∫ t

0

hZ4→Y (t− τ)NZ4(dτ)

(D.43)
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hX→Y is the coupling filter between neuron X → Y . hZ1→Y , ..., hZ4→Y are coupling filters of
neurons Z1 → Y ,..., Z4 → Y , which are estimated using square window with known timescale
as in Eq 5.7. Since all neurons are driven by the same slow-changing activity fi,j , the nuisance
variable only has one component sX(t). If there is evidence showing different pairs of neu-
rons are driven by different sources, the model can include more nuisance variables, such as
sZ1(t),...,sZ4(t). We skip further discussion on this topic.

Fig D.14F shows the results using multivariate regression. The false-positive coupling effect
shown in Fig D.14E does not appear in F. This example is analog to conditional correlation. In
diagram Fig D.14A, X ⊥ Y |fi,j . If fi,j is approximated properly, the artifacts can be removed.
Similarly, in diagram Fig D.14B, X ⊥ Y |Z. In diagram Fig D.14C, X and Y are not neces-
sarily independent only conditioning on either fi,j or X , X 6⊥ Y |fi,j , or X 6⊥ Y |Z. However,
X ⊥ Y |fi,j, Z, where bot factors of fi,j and Z need to be included so that X, Y can become
conditionally independent. The artifacts related to the fast-changing activity is noticeable if the
influence is very strong. In simulation scenario Fig D.14C, the coupling filters hZ→Y of four
neurons all have large amplitude αZ = 15 spikes/sec. If the impact of the spikes trains from Z is
small, the artifacts can be ignored.
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Figure D.15: A comparison between log-likelihood curves with or without fast-changing
background. The blue curve is the log-likelihood curve of a dataset generated by the model in
Fig D.14C. The blue curve is the log-likelihood curve of a dataset generated by the model in
Fig D.14A. The left part of the blue curve with small σw is elevated due to the presence of the
fast-changing background.

The above multivariate regression provides a solution in a special situation where all the spike
trains from Z are observed. However, if the input of neurons from all their connected neurons
can not be recorded at the same time, the method still can not eliminate all artifacts. So a more
general solution is needed for the mixture of distinct background activity timescales. We propose
the following model,

λ̃j(t) := βj + βslow
w sislow(t) + βfast

w sifast(t) +

∫ t

0

hi→j(t− τ)Ni(dτ)

sislow(t) = [W slow ∗ si](t), sifast(t) = [W fast ∗ si](t)

Instead of using one smoothing kernel in Eq 5.4, the new model includes two smoothing kernels
to cover both fast-changing activity and slow-changing activity. The timescale of the background
activity varies in a relatively small range, then there is no need for such a model, see Supplemen-
tary D.4.1. Such a design is also motivated by the shape of the likelihood curve in Fig D.15. The
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likelihood with mixture timescales is not obvious multimodal, but the left part of the curve with
small kernel width is higher than the likelihood curve without the fast-changing component. This
delivers a message of a mixture of timescales. The bias is significant only when the input is very
strong. We will leave the research on this type of issue in the future. But we first need to find out
if such strong fast-changing background exists in real data.

D.4.11 Self-coupling effect
The basic regression model in the diagram Fig 5.2 only considers the spike-to-spike coupling
effect from one neuron to another. In this section, besides the cross-neuron coupling effect,
we take the self-coupling effect into account. The self-coupling effect means that the spikes
generated from a neuron will feedback to itself and influence its own intensity function in the
future. Fig D.16 shows 3 ways of self-coupling: A, the self-coupling effect only occurs on
the source neuron i; B, the self-coupling effect only occurs on the target neuron j ; C, the self-
coupling effect appears on both neurons. We have not yet developed the theory with self-coupling
components, so we only present numerical results through simulations. The data is still fitted
using the model in Eq (5.2)-(5.5) without the self-coupling component. The goal in this session
is not to model the self-coupling effect explicitly, but to study how the basic regression model is
affected by the extra self-coupling as artifacts.

A B C

Figure D.16: Self-coupling effect diagram. The diagrams are similar to Fig 5.2 except for the
extra self-coupling components. A The self-coupling effect only appears on the source neuron
i. B The self-coupling effect only appears on the target neuron j. C The self-coupling effect
appears on both neurons i, j.

The simulation settings for diagram A are the following. The activity fi,j is set as a cluster
process in Eq (5.6) with σI = 100 ms. The intensity of the center process is ρ = 20 spikes/sec,
the constant baseline intensity for all neurons is αj = αi = 20 spikes/sec. The square window
filter width is σh = 30 ms and amplitude αh = 2 spikes/sec. The self-coupling filter hi→i is
also a square window function with amplitude -15 spikes/sec and width 10 ms, mimicking the
refractory period. One simulation case has 200 trials and the length of a trial is 5 sec. Different
trials were assigned with randomly generated fi,j independently. The spike trains were fitted
using the basic regression model in diagram Fig 5.2 and Eq (5.7). The numerical properties
were estimated using 100 replicated simulation cases. The results are shown in Fig D.17. The
properties are similar to the case in Fig 5.3. The model can still select the proper smoothing
kernel width.
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Figure D.17: Source neuron self-coupling effect. These results correspond to the model dia-
gram in Fig D.16A. The results are presented in the same way as Fig 5.3. Details of the data and
model fitting are in the text.

The simulation settings for diagram B are similar to diagram A. The self-coupling filter hj→j
is a square window function with amplitude -20 spikes/sec and width 20 ms, mimicking the
refractory period of neuron j. The results are shown in Fig D.18. In this situation, the self-
coupling effect misleads the model to select a smaller smoothing kernel width σw. The risk at
the selected model by maximizing the likelihood is not too large though. As a comparison, the
risk, bias, and SE of the estimator at different σw become much smaller than the source neuron
self-coupling case in Fig D.17A.
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Figure D.18: Source neuron self-coupling effect. These results correspond to the model dia-
gram in Fig D.16B. The results are presented in the same way as Fig 5.3. Details of the data and
model fitting are in the text.

The simulation settings for diagram C are similar to diagrams A and B. The model includes
both self-coupling filters hi→i on the source neuron in diagram A and hj→j on the target neuron
in diagram B. The results are in Fig D.19. The case inherits the issue from diagram B that the
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self-coupling effect on the target neuron can mislead the model to select a smaller kernel width.
The bottom line is that the introduced extra risk is small.
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Figure D.19: Self-coupling effect on both source and target neurons. These results correspond
to the model diagram in Fig D.16C. The results are presented in the same way as Fig 5.3. Details
of the data and model fitting are in the text.

Another issue about self-coupling is that it can cause lack of fit. Next we perform goodness-
of-fit test using KS test based on time rescaling theorem [24, 62], also see Supplementary D.4.16.
Fig D.20 below use some examples to compare three scenarios of self-coupling with respect to
the diagrams in Fig D.16.
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Figure D.20: Influence of self-coupling effect on goodness-of-fit test. The figure shows the
goodness-of-fit test based on KS test as described in Supplementary D.4.16. 3 scenarios corre-
spond to the model diagrams in Fig D.16 and numerical simulations in Fig D.17, D.18, and D.19.
A Only the source neuron has self-coupling effect. The goodness-of-fit is not affected. B Only
the target neuron has self-coupling effect. The bivariate regression model in the main text Eq
(5.2)-(5.5) shows lack of fit. C Both source and target neurons have self-coupling effect. This
case still has the problem in B that the basic regression model has lack of fit on some level.

The basic regression model shows a lack of fit only when the self-coupling effect involves
the target neuron. If the goal of the model is to estimate the cross-neuron coupling effect not the
self-coupling effect, the introduced risk or bias of the estimator can be alleviated by selecting
slightly larger smoothing kernel width than the one maximizing the likelihood. If the small error
is acceptable, the kernel width correction is not necessary.
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D.4.12 Rate coupling and delayed shared activity

A B

rate

Figure D.21: Rate coupling and delayed shared input. A Similar to the scenario in Fig 5.3 and
diagram Fig 5.2, two neurons share the same input but with different delays. Having different
delays results in that the lagged neuron’s activity can be predicted by the leading neuron some-
how at a certain time as the leading neuron receives the same information earlier. B The special
case in A is under a more general model, rate coupling model, where two neurons interact with
not only spike-to-spike, but through rate coupling filter hrate

i→j .

The coupling filter describes the influence from neuron i’s spikes to neuron j’s intensity function.
Is that possible if two neurons do not have any spike-to-spike coupling effect, but the estimated
coupling effect is totally due to the coupling between the underlying intensity functions on a fine
timescale? In this section, we study a scenario where two neurons, the source neuron i and target
neuron j in diagram Fig D.21A, have the same shared input fi,j , but the activity arrives at two
neurons with subtle different delays.

λj(t|Ht) = αj + fi,j(t− τlag) +

∫ t

0

hi→j(t− r)Ni(dr)

λi(t|Ht) = αi + fi,j(t)

where τlag is the lag between the source neuron and the target neuron. If τ > 0, the share activity
arrives at the source neuron earlier, If τ < 0, the share activity arrives at the source neuron later.
Delaying a function is equivalent to convolving the function with a delayed Dirac delta function

fi,j(t− τlag) = [fi,j(s) ∗ δ(s− τlag)](t)

So the model in diagram Fig D.21A can be seen as a rate coupling as shown in panel B. The
model equations are rewritten as,

λj(t|Ht) = αj +

∫ t

0

hrate
i→j(t− s)fi(s)ds+

∫ t

0

hi→j(t− r)Ni(dr)

λi(t|Ht) = αi + fi(t), fi(t) = fi,j(t)

where hrate
i→j(t) = δ(t − τlag). fi = fi,j is the exclusive input for neuron i. Neuron i’s firing rate

affects neuron j through the rate coupling filter hrate
i→j . Besides delaying, the shared activity can
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be transformed using more complicated functions. For example, an arbitrary rate coupling filter
function can be approximated using a sequence of delta functions,

hrate
i→j(t) ≈ hrate

i→j(0)δ(t) + hrate
i→j(∆)δ(t−∆) + ...+ hrate

i→j(k∆)δ(t− k∆) + ...

Next, we only present the results of the simple case with delayed shared input. The diagram
of the model is in Fig D.21. The simulations include two scenarios, where the settings are the
same as Fig 5.3 except that: scenario 1, the target neuron leads the source neuron by 20 ms. So
the shared activity of the source neurons can be roughly predicted by the target neuron’s activity
as it arrives at the target neuron earlier; scenario 2, the source neuron leads the target neuron
by 20 ms. So the activity of the target neuron can be roughly predicted by the source neuron’s
activity for the same reason. The simulation results are shown in Fig D.22.
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Figure D.22: Delayed shared input. The figure presents the properties of the estimator in the
same way as Fig 5.3. The settings of the simulation are in the text. The dark curves show the
theoretical results exactly the same as the dark curves in Fig 5.3 without considering the delays
of the shared activity. A,B,C,D The shared activity fi,j arrives at the target neuron 20 ms earlier.
E,F,G,H The shared activity fi,j arrives at the source neuron 20 ms earlier. Delaying the shared
input does not change the results significantly.
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Figure D.23: Intuitive explanations of delayed shared input. A The source neuron leads the
target neuron. The inhibitory (down arrows) and excitatory (up arrows) effects will be balanced
out. B,C,D Explanation using decomposition. The inputs between two neurons are not fully
overlapped due to the delay. It can be decomposed into the shared component colored in green,
and non-shared parts in dashed curves.

Fig D.22 show the numerical results. The dark curves are the theoretical results from Fig
5.3 without considering the delays between neurons. By comparing the numerical results and
the reference theoretical results, delaying the shared input does not modify the properties of the
estimator too much.

The negligible effects can be explained in two ways as shown in Fig D.23. In Fig D.23A,
the shared activity arrives at the source neuron (dark curve) earlier than the target neuron (blue
curve). Before the activity reaches the peak, the source activity is higher than the target neuron,
which demonstrates an inhibitory effect (down arrows in panel A). After the peak, the source
neuron activity is lower than the target neuron, so it shows an excitatory effect (up arrows in
panel A). Overall, the excitatory and inhibitory effects will be balanced. If the source neuron
leads the target neuron, the explanation will be the same.

Another explanation is using decomposition as shown in Fig D.23B,C,D. Similar to panel A,
the shared activity arrives at the source neuron (dark curve) earlier than the target neuron (blue
curve). The activities can be decomposed into two the shared components and the non-shared
parts for each neuron as shown in panels C and D. The shared part is colored in green in panels
B,C,D. The decomposition of the source neuron is in panel C, its non-shared part is the dashed
dark curve. The decomposition of the target neuron is in panel D, its non-shared part is the dashed
blue curve. This situation can be reduced to Supplementary D.4.2 with non-shared input. The
green curve corresponds to fi,j in diagram Fig D.2, the source neuron’s non-shared component
(dark dashed curve in Fig D.21) corresponds to fi, and the target neuron’s non-shared component
corresponds to fj . As the lag in the simulation is only 20 ms, the non-shared components are
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very small. The non-shared components will not undermine the estimator.

D.4.13 More examples of coupling filters and jitter-based CCG
This section shows an example of Fig 5.6 by checking the shapes of the fitted coupling filter and
CCG. We consider the coupling filter of neurons V1→LM (neuron id 951102686→951108867).
The type of the coupling filter changes from trial to trial; it can be inhibitory on some trial, and
switches to excitatory on some other trials; it can be weak such as no effect, or has strong inter-
actions like the oscillatory types. As the spike trains are noisy and the sample size of each trial is
small, we pool all the trials of the same type together and re-fit the coupling filters using square
windows and non-parametric method. We also compare the results with the jitter-based CCG as
another verification. The results are shown in Fig D.24.

Similar to Fig 5.1, the jitter-based CCG method hardly detects weak signals such as type
1 or 2, and it can not easily distinguish the types between 0, 1, and 2. The jitter-based CCG
can detect strong coupling effect such as the oscillatory types. In types 3 and 4, the shapes
of the CCG curves are very close to the coupling filters. The point process regression allows
us to aggregate all the information in a lag window to estimate the coupling filter with one
parameter using a square window, or a few parameters using B-spline. The results will be more
effective and significant than the method using pointwise statistic. In Fig D.24 type 0,1, and
2, the square window coupling filters show significant excitatory and inhibitory coupling effect,
and the coupling filters are obviously distinguishable. We also estimate those effects using non-
parametric fitting. For example, the shapes of the type 2 coupling filters are not strict square,
but most part of the curve between lag=0 ms and lag=50 ms is below the x-axis. We admit
the modeling strategy using square windows loses many details of the coupling effect, but it is
effective in terms of justifying basic properties of the coupling effect and implementing for a
massive dataset. Given the limited dataset and large variance from neuron to neuron, and from
trial to trial, the method has to scarify non-relevant details.
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Type 0: No effect
#trials = 63

Type 1: Excitatory
#trials = 45

Type 2: Inhibitory
#trials = 79

Type 3: Oscillatory
#trials = 41

Type 4: Oscillatory
#trials = 57
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Figure D.24: Re-fitting of coupling effect by pooling the trials of the same type. The
figure shows the jitter-based CCG and the fitted coupling filters for one pair of neurons among
V1→LM (neuron id 951102686→951108867). After identifying the coupling filter types
on each trial, we pool the trials of the same type together, then calculate the jitter-based CCG
and estimate the coupling filters. The number of trials of each type is in the title of each plot.
The details of the jitter-based CCG is the same as Fig 5.1. The second row of types 0, 1, and 2
shows the fitted coupling filters using square windows. The third row shows the fitted coupling
filters using the non-parametric method.

Fig D.25 shows the fitted coupling filter using the same trials as Fig D.24 type 2 without the
nuisance variable si in Eq (5.4). As the model does not correctly remove the artifacts, the fitted
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coupling filter changes from inhibitory to excitatory. Since the bias is positive as shown in Fig
5.3, the model erroneously detects the inhibitory effect as excitatory, so it totally reverses the
conclusion and will fail the coupling filter clustering. A similar example has already been shown
in Fig 5.1. So it is important to remove the artifacts carefully.
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Figure D.25: Re-fitting type 2 inhibitory coupling filter without considering fluctuating
background. This example replicated the fitting of Fig D.24 type 2 trials, but the coupling
filter is fitted using a constant baseline without the nuisance variable si in Eq (5.4). The fitted
filter becomes excitatory.

D.4.14 Clustering with unbalanced weights
Our algorithm alternatively updates the coupling filter templates and identifies the coupling filter
types as shown in Appendix D.3.3 Eq (D.38) and (D.39). In step Eq (D.39), unlike a typical
mixture model, we do not update the portion of the coupling filter groups. This is because the
coupling filters on each trial between “no effect”, “excitatory” and “inhibitory” are close. The
distributions of parameters of these types do not have a clear boundary. Without fixing the group
portion, those coupling filters can get merged during the clustering. In other words, the coupling
filter type identification on each trial is sensitive to the group portion. The clustering algorithm
is reduced to the k-means-type method. Since the group portion is fixed with equal weights for
all the trials, it does not introduce trial-to-trial variance.

In this section, we verify the results using different fixed group weights. The results are
shown in Fig D.26. In Fig D.26A,B, the weights are 0.20, 0.25, 0.15, 0.2, 0.2. In Fig D.26C,D,
the weights are 0.25, 0.2, 0.15, 0.2, 0.2. The filter type order is the same as Fig 5.5.
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Figure D.26: Coupling filter type frequency with different group weights. In A and B, the
weights are 0.20, 0.25, 0.15, 0.2, 0.2. In C and D, the weights are 0.25, 0.2, 0.15, 0.2, 0.2. The
filter type order is the same as Fig 5.5.

D.4.15 Results with different smoothing kernel widths
As shown in Fig 5.3 and Supplementary D.4.4, the estimator is not very sensitive to the selected
smoothing kernel width σw in Eq 5.5. If σw is 10 ms larger of smaller, the results do not change
a lot.

The smoothing kernel width σw = 60 ms was selected by the plug-in estimator using a subset
of samples (Appendix D.1.2). In this section, we verify the results by repeating the analysis using
different kernel widths σw = 50, 80 ms. The results are shown in Fig D.27 in the same way as
Fig D.27. The kernel width is 50 ms in Fig D.27 A, B. The kernel width is 70 ms in Fig D.27 C,
D.
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Figure D.27: Coupling filter type frequency with different smoothing kernel widths. Similar
to Fig 5.6, we replicated the analysis with different kernel widths σw. In A and B σw = 50 ms.
In C and D σw = 70 ms. The results do not change a lot with different kernel widths.

D.4.16 Goodness-of-fit
Goodness-of-fit test was assessed with the Kolmogorov-Smirnov (KS) test based on the time-
rescaling theorem [24, 62]. The theorem states that the transformed inter-spike intervals follow
the unit exponential distribution. The KS test is used to compare the empirical distribution and
the target distribution. A good fit should have a straight curve along the diagonal in the Q-Q plot.
Fig D.28 shows part of the results. We performed the test on all trials for a pair of neurons i→ j.
The fitted intensity function for each trial came from the last step of the iteration in Eq (D.39).
The integral transformation of the intervals was approximated by discretizing the intensity into
1 ms bins.
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Figure D.28: Goodness-of-fit test. The KS tests for part of fitted filters. Each plot shows the
results of a coupling filter of a pair of neurons. The neurons’ identities are labeled in the corner.
The test includes all trials for a pair of neurons. The grey dashed lines are 99% CI. A good fit
should have a straight curve along the diagonal.

In Fig D.28, most curves are along the diagonal or have small deviations except for a few
cases. For example the coupling filters with neuron 951113075 as the target neuron in the
last two rows. The lack of fit is related to the self-coupling effect of the target neuron. This is
why coupling filters with 951113075 as the target neuron all have a bad fit. We replicate this
situation using simulations in Supplementary D.4.11. Missing modeling the self-coupling effect
may result in selecting smaller smoothing kernel width, but the introduced risk or bias is small.
We repeated the analysis using a larger smoothing kernel width in Supplementary D.4.15. The
conclusion does not change.

D.4.17 Results using different dataset
In this section, we repeat the analysis using the conditions totally different from the analysis in
the main text. The same animal 798911424 is the same. The condition numbers include 247,
248, 250, 251, 252, 253, 254, 255, 259, 262, 264, 266, 269, 271, 272, 276, 277, 279,
282, 283, 285. These are the rest conditions of the drifting gratings. The results are shown in
Fig D.29 and D.30.
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The shapes of the coupling filter templates are almost identical to the Fig 5.5. The frequency
of each type remains similar to Fig 5.6.
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Figure D.29: Fitted coupling filter templates. The layout of the figure is the same as Fig 5.5
but with new dataset.
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Figure D.30: Frequency of coupling filter types of all coupling filters. Similar to Fig 5.6, the
figure counts the average frequency of coupling filters from V1→LM in A and coupling filters
from LM→AL in B. The error bar is the standard deviation.
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