
Revisiting remote attack kill-chains
on modern in-vehicle networks

Submitted in partial fulfillment of the requirements for
the degree of

Doctor in Philosophy
in

Electrical and Computer Engineering

Sekar Kulandaivel

B.S., Computer Science and Electrical Engineering, University of Maryland, Baltimore County

Carnegie Mellon University
Pittsburgh, PA

December 2021

© Sekar Kulandaivel, 2021.
All Rights Reserved.

Acknowledgements

I would like to express my sincere gratitude for all who have supported me along this journey
over the years.

First, I want to thank my advisor, Vyas Sekar, for his unwavering support and belief in my
success as he guided me through the Ph.D. process. During every meeting with him, I continue to
be astounded at his brilliant insights and guidance, which have truly made me the researcher I am
today. Vyas taught me how to convey the impact of my work and formulate complex problems
into a clear and thoughtful presentation. His advice has opened many doors for me, and I will
always be thankful for that. It has been a great privilege to have Vyas as my advisor.

I want to thank and acknowledge the support of my thesis committee members: Jorge
Guajardo, Anuja Sonalker, Raj Rajkumar, and Lujo Bauer. I am grateful for the opportunity to
work closely with Jorge and learn many lessons from him over the course of two internships.
Jorge has given me a new appreciation for performing research that considers all of the involved
stakeholders, and he has been an outstandingmentor who has helpedme navigate the automotive
industry. It is always a pleasure to work with Jorge. Prior to starting graduate school, I had the
privilege of working with Anuja who introduced me to the excitement of automotive security.
From hacking cruise control on a real vehicle to winning a Car Hacking Village competition at
DEF CON, Anuja helped me craft many of the skills that have led to the success of my research.
She always offered words of encouragement, and she has always been confident in my abilities.
I truly appreciate the impact she has had on my career. From being a student in his class to
eventually being the class TA, I have admired Raj for all of his lessons and contributions to the
automotive field. He has always asked the most interesting questions to ensure that my research
has the greatest impact it can, and I will always appreciate the opportunities I have had to work
with him. I continue to be amazed at how he pictures my work and its potential long-term impact
on the field. From my qualifying exam to my defense, I consider myself lucky to have had him
involved at each stage of my Ph.D. process. While I have not had the pleasure of collaborating
closely with Lujo, his constructive feedback and insights have helped me improve my thesis. I am
grateful for his time and willingness to support me as a growing researcher. To all my committee
members: it has been a real honor to have such incredible mentors along this journey.

I also want to acknowledge the many additional collaborators that I have worked with
over the years: Tushar Goyal, Arnav Kumar Agrawal, Venkat Viswanathan, Shashank Sripad,
and Shalabh Jain. I had a lot of fun with Tushar and Arnav as we tore apart the Prius for our
class project and eventually my first paper. We taught each other as we worked together to
navigate the challenges of vehicle networks, and I benefited immensely from their ideas and

iii

contributions. Working with Venkat and Shashank on electric vehicle security introduced me to
the wider impact that my research could achieve, and I appreciate the many conversations we had
on such interesting topics. Shalabh has been my most recent collaborator, and he has also been
a great mentor. He has supported me in my pursuit of new opportunities to share my work, and
he has openly shared his knowledge of the field to make me a stronger researcher. I am grateful
for all of the collaboration that I have had and for the many lessons I have learned from them
all.

The journey through my Ph.D. program came with an incredible amount of support from
CyLab. I want to thank all of the CyLab staff and faculty for giving us students a wonderful expe-
rience. I am grateful for the student seminar opportunities and the many discussions with Cylab
research groups. I received the best assistance any student could ask for from the administrative
staff of CyLab and the ECE department, including Brigette Bernagozzi, Chelsea Mendenhall, Toni
Fox, Jamie Scanlon, Brittany Frost, Nathan Snizaski, Karen Lindenfelser, and Ivan Liang.

I also want to thank my friends at CMU and outside of school for encouraging me and
cheering me on. It has been a pleasure to meet my new friends, and I am grateful for my old
friends. Two of the most important people in this journey are my parents. They have given
me everything so that I may succeed in my dreams. They have and continue to support me
unconditionally, and they have always believed in me. My sister has also played a major role in
my success from when I was very young to even now. She has helped me grab every opportunity
made available to me, and I hope to continue to follow in her footsteps. I also want to thank my
in-laws for being my biggest advocates and for attending many of my major events. They never
fail to cheer me on.

Finally, the most important person throughout this journey has been my wife, Katie Ku-
landaivel. She has walked with me through this entire journey. From when I got the letter of
acceptance into the Ph.D. program to the day I submit this thesis, she has always been right by
my side. She has kept me going from day one, and she has given me her all in supporting my
dreams. I will forever be thankful for her and her support. She has shown me the most love
I could hope for through every struggle and challenge, and I simply could not have done this
without her.

The work presented in this thesis was funded in part by the PITAXVIII PITA award and
the CNS-1564009 NSF IoT award. We gratefully acknowledge support from Technologies for
Safe and Efficient Transportation (T-SET) University Transportation Center. This work was also
supported in part by the CONIX Research Center, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA.

iv

Thesis Committee Members:
Vyas Sekar (Chair)
Jorge Guajardo
Anuja Sonalker
Raj Rajkumar
Lujo Bauer

v

Abstract

In-vehicle networks contain an increasing number of electronic control units (ECUs) with
advanced electronics and wireless capabilities. Due to their critical role in vehicles, these
ECUs are a prime target for remote adversaries as ECUs often communicate via the reliable
but insecure Controller Area Network (CAN) protocol. By compromising just a single in-
vehicle ECU, a remote adversary could manipulate safety-critical systems by simply inject-
ing CAN messages. Prior work had demonstrated the feasibility and severity of real-world
remote exploitation of in-vehicle ECUs, which brought this threat to the attention of auto-
motive manufacturers/suppliers and global regulatory bodies. In response, the automotive
industry has since developed defenses to secure the CAN bus against remote adversaries, and
these defenses do well to detect and prevent known message injection attacks.

In this thesis, we argue that there remain unaddressed disconnects in the security design
of modern in-vehicle networks. We develop an end-to-end attack “kill-chain” that demon-
strates a series of exploited vulnerabilities in modern vehicles. Here, we envision an adver-
sary that remotely compromises a non-safety-critical and wirelessly-connected ECU (e.g.,
infotainment) with the goal of controlling a safety-critical ECU (e.g., engine, transmission)
while evading detection by modern network defenses. However, these defenses can still
prevent our attacker from simply using the compromised ECU to inject critical CAN mes-
sages that disrupt the safety-critical ECU’s functionality. Therefore, we aim to construct a
kill-chain that can ultimately enable a remote adversary to gain control of a safety-critical
ECU’s software, opening the door to more advanced safety-critical attacks. By identifying
disconnects that an adversary can exploit to build this kill-chain, we can inform defenses for
next-generation vehicles with proposals of countermeasures that target these disconnects.

Our key contributions consist of building new attack classes, demonstrating attack feasi-
bility on real vehicles, and proposing countermeasures for each stage of our kill-chain. First,
to gauge an understanding of a victim network of ECUs and their transmission characteris-
tics, our CANvas network mapper accurately identifies the source and destination ECU of a
given CAN message and permits us to characterize ECU transmissions. Using this network
knowledge, the CANnon disruption technique demonstrates how an adversary can target a
victim ECU in the network and disrupt its CAN transmissions to the adversary’s advantage.
Finally, the CANdid authentication bypass leverages both CANvas and CANnon to success-
fully authenticate with a safety-critical victim ECU without access to its secret keys. To
complete the kill-chain, we demonstrate how our three stages enable a remote adversary to
download code to a victim ECU. Drawing from the vulnerabilities that enable our kill-chain,
we propose practical countermeasures to detect and prevent our methods and discuss the
lessons we learned to help identify potential vulnerabilities in a future automotive network
design.

vi

Contents

1 Introduction 1
1.1 Pushing the boundaries of a remote attack . 2
1.2 Potential impact of a stronger remote adversary 4
1.3 Threat scope . 5
1.4 Thesis contributions . 6

1.4.1 Stage 1: Reconnaissance and discovery . 8
1.4.2 Stage 2: Disruption and pivoting . 9
1.4.3 Stage 3: Authentication bypass . 11

1.5 Outline . 13

2 Background and Prior Work 15
2.1 Relevant background . 15

2.1.1 Inside an ECU . 15
2.1.2 CAN physical layer . 16
2.1.3 CAN data link layer . 17
2.1.4 CAN application layer . 20
2.1.5 UDS session and application layers . 21

2.2 Our remote adversary model . 24
2.3 Prior work for each stage . 26

2.3.1 Reconnaissance and discovery . 26
2.3.2 Disruption and pivoting . 29
2.3.3 Authentication bypass . 32

2.4 Other related work . 35

3 CANvas: Remote Reconnaissance of ECUs via Automotive Network Mapping 36
3.1 Goals for this kill-chain stage . 36
3.2 Stage overview and contributions . 37
3.3 Problem and system overview . 40

3.3.1 Challenges in an automotive context . 41
3.3.2 System overview . 42

3.4 ID source mapping . 44
3.4.1 Limitations of prior work . 45
3.4.2 Relative offset as a unique identifier . 48

3.5 ID destination mapping . 52

vii

3.5.1 Limitations of prior work . 53
3.5.2 Forced ECU isolation . 55

3.6 Evaluation . 57
3.6.1 Discovering an unexpected ECU . 59
3.6.2 Mapping our test vehicles . 60

3.7 Countermeasures . 62
3.8 Summary . 63

4 CANnon: Remote Disruption of CAN Bus via Peripheral Clock Gating Attacks 64
4.1 Goals for this kill-chain stage . 64
4.2 Stage overview and contributions . 65
4.3 Attack goals . 67

4.3.1 High-level attack insight . 68
4.4 Basic remote disruption attack . 71
4.5 Reliable target victim shutdown . 74

4.5.1 Shutting down victims with CANnon . 78
4.5.2 Alternative CANnon implementations . 81
4.5.3 Practical challenges . 82

4.6 Evaluation . 83
4.6.1 CANnon against real vehicles . 86

4.7 Stealth against network defenses . 90
4.7.1 Deceiving state-of-the-art defenses . 90
4.7.2 Deceiving CANnon-aware defenses . 92

4.8 Countermeasures . 93
4.9 Summary . 94

5 CANdid: Remote Authentication Bypass on Automotive Control Units 95
5.1 Goals for this kill-chain stage . 95
5.2 Stage overview and contributions . 96
5.3 Threat model and attack insight . 101

5.3.1 High-level insight . 103
5.3.2 Single known-plaintext attack . 106

5.4 Controlling the challenge . 106
5.4.1 Selecting a challenge . 107
5.4.2 Approach to different challenge algorithms 110

5.5 Repeating a challenge . 112
5.5.1 Maximizing likelihood of repetition . 113

viii

5.6 Evaluation . 114
5.7 Countermeasures . 117
5.8 Summary . 118

6 Kill-Chain Proof-of-Concept 119
6.1 Experimental setup . 119
6.2 A step-by-step demonstration . 120

7 Reflections, Lessons Learned, and Future Work 121
7.1 Summary of contributions . 121

7.1.1 CANvas contributions . 121
7.1.2 CANnon contributions . 122
7.1.3 CANdid contributions . 122

7.2 Impact on related automotive fields . 123
7.3 Lessons learned . 124
7.4 Future work . 126

7.4.1 Exploiting remote interfaces . 126
7.4.2 Bypassing firmware defenses . 127

Bibliography 129

ix

List of Figures

1 To enable an adversary to reprogram a safety-critical ECU, we envision three
adversary goals: (1) identify in-vehicle ECUs and their transmissions, (2) control
transmissions of other ECUs, and (3) bypass authentication on a safety-critical ECU. 3

2 Three thesis components and final goal . 7
3 ECU communication stack . 16
4 CAN physical layer . 17
5 CAN frame format . 18
6 Error-handling states . 19
7 UDS application layer above CAN bus layers . 21
8 UDS SecurityAccess service . 23
9 Taxonomy of prior work in reconnaissance and discovery 27
10 Taxonomy of prior work in disruption and pivoting 30
11 Taxonomy of prior work in authentication bypass 33
12 CANvas workflow . 43
13 Prior work mapping an ECU with same periods 46
14 Prior work mapping an ECU with different periods 47
15 Measuring clock offset at the hyper-period . 49
16 A thoroughly disassembled 2009 Toyota Prius . 58
17 A thoroughly disassembled 2017 Ford Focus . 58
18 Modern ECU design with peripheral clock gating 69
19 Holding dominant state disrupts the bus . 73
20 Use timer ISR to generate an error frame . 77
21 CANnon shutdown workflow . 79
22 Timeline for authentication bypass via capture-replay 98
23 Access to stock vehicle vs. constraints on victim vehicle 100
24 Steps to exploit the hard reset request . 104
25 Overview of a single reset-controlled challenge request 108
26 Timing resolution of CAN bus versus victim ECU 110
27 Challenges reproduced with over 25% likelihood 115

x

List of Tables

1 Taxonomy of prior work for each kill-chain stage 26
2 2009 Toyota Prius source mapping output . 59

xi

1 Introduction

As a prevailing mode of transportation in the United States, vehicles serve a major role in the

country’s critical infrastructure [1]. We depend on more than 14 million trucks to carry over 18

billions tons of freight, and we operate over 250 million passenger vehicles on our highways [2].

With the push to electrify vehicles [3], they will also play a role in energy infrastructure since

vehicles account for over 20% of the total U.S. energy use [4]. In addition, the advent of connected

and autonomous vehicles will further expand the impact of vehicles on U.S. critical infrastruc-

ture [5].

To ensure the safety of passengers and freight, vehicles utilize a complex network of elec-

tronic control units (ECUs) to control safety-critical systems, such as braking and engine con-

trol [6]. Unfortunately, prior work by Koscher et al. in 2010 demonstrated vulnerabilities that

target such systems on this in-vehicle network [7]. The authors physically connected to a ve-

hicle’s network and injected malicious traffic that disabled the brakes and stopped the engine.

However, as this work required physical access, these attacks were considered impractical and

could not target this critical infrastructure at a large scale [8].

Where prior work highlighted the feasibility of a remote attack [8, 9], the work by Miller et

al. in 2015 brought such an attack to reality [10]. The authors remotely exploited the infotainment

ECU on a 2014 Jeep Cherokee and gained a foothold within the vehicle’s network. Using this

compromised ECU, the authors launched network attacks by simply injecting malicious traffic

and disabled the brakes and stopped the engine (similar to the work by Koscher et al. [7]). This

work was key in demonstrating both a remote attack and one that could be performed at a large

scale, ultimately leading to a recall of 1.4 million vehicles [10].

In retrospect, it is understandable how in-vehicle networks eventually became vulnerable

to a remote attack. In the 1970s, vehicles started to include electronics [11], and then, in 1986,

vehicles had enough ECUs that Robert Bosch GmbH introduced a new in-vehicle network, the

1

Controller Area Network (CAN) [12], which is still widely used today. Until recently, vehicle

design focused on reliability and safety for passengers and freight, thus security was not a con-

cern. Then, we saw the demonstration of physical network attacks [7] followed by a real remote

attack [10], which drew the attention of global regulatory bodies [13] and the automotive indus-

try [14]. We have since seen a slew of state-of-the-art network defenses [15, 16, 17, 18, 19, 20, 21]

that appear to do well against the adversary from the 2015 remote attack [10].

1.1 Pushing the boundaries of a remote attack

The remote attack by Miller et al. in 2015 [10] was just the first of several demonstrations of a

remote compromise situation on real vehicles [22, 23, 24]. All of these works often focus on trans-

mitting malicious traffic onto the in-vehicle network with the goal of impacting safety-critical

systems. However, in this thesis, we determine how far a remote adversary can take their attack.

In other words, we investigate a realistic worst-case scenario that should be considered when

analyzing the risk of a remotely-compromised in-vehicle ECU. By exploring the true capabili-

ties of a remote adversary, we can use our findings to pinpoint security gaps in modern vehicle

implementations and then inform future defenses.

Where priorwork on remote attacks focused on getting access to the in-vehicle network [10,

22, 23, 24], we aim to push the boundaries of such access by borrowing a popular concept from

traditional network security: the attack kill-chain, an end-to-end attack consisting of multiple

stages that an adversary must consecutively complete [25]. With access to the in-vehicle net-

work in their attack, Miller et al. state that injecting malicious traffic to disable the brakes and

kill the engine only succeed when the vehicle travels under 5-10 mph [10]. However, to bypass

this limitation, a remote attacker already in the vehicle’s network could remove or avoid this

speed threshold by reprogramming the affected safety-critical ECU (e.g., reprogram the engine

ECU to accept “kill engine” commands at any vehicle speed). Thus, we envision a remote attack

that can achieve this level of control as a worst-case scenario.

2

Figure 1: To enable an adversary to reprogram a safety-critical ECU, we envision three
adversary goals: (1) identify in-vehicle ECUs and their transmissions, (2) control

transmissions of other ECUs, and (3) bypass authentication on a safety-critical ECU.

To investigate the potential for such a remote kill-chain as depicted in Figure 1, we set

the starting point of this kill-chain to be a remote adversary that controls the software for a

single in-vehicle ECU; as demonstrated in prior work, this is likely an infotainment or telematics

ECU [10, 22, 23, 24]. Achieving the goal of enabling the remote adversary to reprogram another

(likely safety-critical) ECU requires the adversary to complete several intermediary stages while

deceiving state-of-the-art defenses. There are three stages that we focus on: (1) the adversary

must assess a victim network by identifying participant ECUs and their impact on the network,

(2) the adversary must demonstrate precise control over another ECU’s transmissions, and (3)

the adversary must bypass the authentication on a target safety-critical ECU to ultimately enable

reprogramming capabilities on this ECU. By achieving this stronger capability at the hands of a

remote adversary, we can demonstrate that such an adversary (i.e., the potential result of a single

remotely-compromised ECU) is more of a concern than before even with state-of-the-art defenses

in place.

3

1.2 Potential impact of a stronger remote adversary

As market research estimated that about 150 to 250 million connected cars (i.e., cars remotely

linked to networks) were on the road in 2020 [26, 27, 28], a remote adversary will likely target the

infotainment ECU or other ECUs in the vehiclewith one ormorewireless interfaces [9]. Addition-

ally, as we pass more control functions from the driver to the vehicle for autonomous driving, the

ECUs in a vehicle will be responsible for more safety-critical functionality [5]. As a result, with

the addition of new connected vehicle technologies and more computer-controlled safety sys-

tems, modern vehicles will become increasingly vulnerable to remote exploits that aim to target

these safety-critical systems [29]. Considering the number of recent remote attack demonstra-

tions [10, 22, 23, 24], it is likely to expect future zero-day or day-one vulnerabilities on modern

vehicles.

In addition to vehicles starting to include more remote interfaces, another aspect that aids

the adversary is that vehicles are often replicas of each other when looking at network compo-

nents and characteristics. Within a single make and model, the software and hardware is very

similar (if not exactly the same) between different instances of vehicles. As a result, a vulnerabil-

ity that relates to the design of the vehicle and its components can expose potentially thousands

of vehicles to the same vulnerability. This thesis aims to focus on attacks that exploit design sim-

ilarities that could maximize an attack’s impact. Considering this threat of a remote adversary

who could impact thousands of vehicles, it is critical that the industry does not underestimate

such an adversary’s capabilities. Thus, we should draw a model of a worst-case scenario that a

remote adversary could achieve.

The scenario that we envision here is an adversary that can take control over a safety-

critical ECU. Rather than relying on CAN message injection as done by prior work [10, 22],

an adversary that could reprogram a vehicle’s engine ECU (or any other safety-critical ECU)

could significantly strengthen an adversary’s capabilities. With control of a safety-critical ECU’s

firmware, the adversary could now access all of the ECU’s inputs (from sensors, e.g., throttle po-

4

sition) and outputs (to actuators, e.g., fuel injectors) and could bypass any firmware constraints.

For example, instead of only succeeding to disable the brakes at a low speed as seen in prior

work [10], this adversary could reprogram the brake ECU and then disable the brakes at any

speed by simply removing or bypassing safety-related program code. Additionally, if an adver-

sary could perform this reprogramming, they could launch dormant attacks where the attack

code sits on the safety-critical ECU until it is triggered to attack at a specific time. The authors of

the Jeep hack even alluded to the “very interesting and scary” idea of a worm [10], which closely

follows this concept.

1.3 Threat scope

To clarify our threatmodel, we envision a remote adversarywho has already exploited awirelessly-

connected ECU and compromised its software with some exploit. Given the proprietary nature

of ECU software, the adversary’s techniques should not require any physical access to the vic-

tim vehicle or access to original ECU code from the manufacturer. We assume the adversarial

capabilities are limited to only software manipulation and do not allow for direct physical modifi-

cations or probing to any of the vehicle’s components. In this thesis, we perform all of our attacks

on the victim vehicle using available software instructions. We follow the same assumptions of

prior work, which assume that the adversary can modify the application software on an ECU and

utilize any programming interfaces available to this software [30, 17, 15, 16].

In addition to the constraints placed on the adversary due to its remote access, our adver-

sary also faces the challenge of attacking in the presence of modern defenses. For the attacks

we present, we identify modern defenses as those that are implemented in modern vehicles and

by manufacturers. To clarify, defenses that are less costly to implement (e.g., defenses that exist

without additional hardware) are likely to be considered over more costly methods (e.g., adding

new hardware). By identifying and leveraging properties that enable the kill-chain in ways that

remain stealthy to network defenses, we can then identify practical countermeasures to better

secure future in-vehicle networks. However, identifying these methods is challenging as the de-

5

sign of modern vehicles is largely proprietary and little information is available about a specific

vehicle’s design. Thus, we will need to leverage commonalities among network designs and iden-

tify vulnerabilities that either exist or remain due to choices in vehicle network design. As we

leverage these vulnerabilities, we must ensure that our methods are robust when applied to real

networks as any error during a real attack could increase the likelihood of the adversary getting

caught.

1.4 Thesis contributions

As discussed above, a remote adversary in control of a single in-vehicle ECU that then reprograms

another safety-critical ECU opens the door to high-impact attacks beyond attacks using malicious

message injection. To determine if such an adversary could exploit their control of a single ECU

to enable the reprogramming of a target ECU, we must investigate the necessary steps that could

permit our adversary to achieve their goal. Due to the multiple layers involved between the

software of the initial compromised ECU and the software of the second safety-critical ECU, our

adversary will need to traverse many components of the vehicle network design. In addition, the

adversary will need to evade modern defenses implemented on the network, which can exist at

each layer of the network design. With this in mind, we motivate the need for an attack kill-

chain approach, or a series of exploited vulnerabilities, that can identify existing gaps in modern

automotive networks. This kill-chain can demonstrate how an attacker with remote control of

a single (likely non-safety-critical) ECU can ultimately control a safety-critical ECU with little

chance of detection and prevention by modern network defenses.

To enable this kill-chain, we design three stages of the attack for a remote adversary to

perform as depicted in Figure 2: (1) reconnaissance to identify and characterize ECUs on the

network, (2) disruption of typical network operation to control ECU transmissions, and (3) au-

thentication bypass to enable reprogramming of safety-critical ECU. By successfully completing

all three stages, we could now enable the adversary to download their attack code 1 to the critical
1Note that, in this work, we do not investigate the final attack payload as that is dependent on make and model

6

Figure 2: Three thesis components and final goal

ECU and succeed in their attack. There are several challenges for each stage of the kill-chain

that prevent the adversary from achieving that stage’s goal. However, we believe that there are

disconnects between the design of the layer under attack at each stage (e.g., design of messages

on the network, design of controller hardware, design of authentication protocol) and the actual

implementation of that layer in a real vehicle. Thus, we construct the following as the central

point in this thesis:

Thesis statement: By identifying disconnects between design assumptions and actual im-

plementations, we can construct an attack kill-chain that enables a remote adversary to reprogram

another in-vehicle ECU and, thus, informs countermeasures in the defense of next-generation vehi-

cles.

For each stage of our kill-chain, we will identify a disconnect that can manifest as a vulner-

ability that a remote adversary can exploit. We construct attacks that exploit each vulnerability

to achieve that stage’s goal, and we identify key design decisions that enable each exploit. Using

this information, we can inform countermeasures by providing potential defenses that can either

detect or prevent such an attack in future vehicles. In what follows, we review the key contribu-

tions of this thesis and highlight the key points of each contribution, namely the disconnect we

and out of our scope. For our three kill-chain stages, we identify vulnerabilities that exist across makes and models
to emphasize the impact of this thesis.

7

exploit, how we exploit it using a remote attacker, and then potential countermeasures. We also

highlight how each stage aids the next and, thus, why each stage is necessary to achieve the final

goal of enabling reprogramming on a safety-critical ECU.

1.4.1 Stage 1: Reconnaissance and discovery

We present CANvas [31], the first stage of this kill-chain for after the adversary gains remote ac-

cess to the in-vehicle network, where we perform reconnaissance and determine which messages

originate fromwhich ECUs. To characterize the ECUs on a CAN bus, we argue that we need tools

analogous to network mappers for traditional networks that provide an in-depth understanding

of a network’s structure. To this end, our goal here is to develop an automotive network mapping

tool that assists in identifying a vehicle’s ECUs and their communication with each other. A sig-

nificant challenge in designing this tool is the broadcast nature of the CAN protocol, as network

messages contain no information about their sender or recipients. To address this challenge, we

design and implement CANvas, an automotive network mapper that identifies transmitting ECUs

using just an hour of passively-collected traffic capture.

Stage goals: As detailed in Chapter 3, this stage starts with the remote adversary already

in control a single (likely non-safety-critical) ECU inside a victim vehicle. Here, the adversary can

gain prior knowledge about the victim vehicle by simply buying a copy of the same vehicle (i.e.,

same make, model, year, and trim). With this replica vehicle, the adversary will want to build a

map of the vehicle’s network, including the set of ECUs in the network and themessages that each

ECU sends. Here, the adversary can gather information about the characteristics of the network

and then use that information to plan the later stages of the attack kill-chain. When the adversary

achieves the initial compromise on the victim vehicle, they will want to verify that the network

matches exactly that of the replica vehicle. By confirming that both vehicle networks match, the

adversary can confidentlymove on to the next stage of the kill-chain without worrying about new

messages appearing (or expected messages disappearing) on the network, which would interfere

with any attack configurations that the adversary selected for the kill-chain.

8

Disconnect: Following a metric initially identified by prior work on building an intrusion

detection system (IDS) for a vehicle network [15], we identify a disconnect that reveals some

information about the source of a given message. The authors of this IDS found that the periodic

nature of CAN messages inadvertently permits any device snooping on the network to extract a

timing characteristic called clock skew from eachmessage [15]. This work tracked this clock skew

and looked for changes during an adversary’s attempt to inject malicious CAN traffic. While we

initially tried to repurpose their approach to uniquely identify the messages that originate from

each ECU, their approach could not identify messages with differing periods that originate from

the same ECU and thus was not a sufficient approach for our purposes. As a result, we propose

a new technique that measures clock offset (instead of clock skew) and demonstrate how this

approach can uniquely identify the source ECU for any given periodic CAN message.

Results summary: Using CANvas, we can identify transmitting ECUs with a pairwise

clock offset tracking algorithm and identify receiving ECUs with a forced ECU isolation tech-

nique. CANvas generates network maps in under an hour that identify a previously unknown

ECU in a 2009 Toyota Prius. Here, we imagine an adversary who purchased a replica 2009 Toyota

Prius in preparation for their attack. Using the CANvas network mapper, our adversary could

now identify this unknown ECU in this particular ECU. Since this ECU produced new transmis-

sions on the CAN bus that could affect the timing of other messages, the adversary could decide

to move on to another 2009 Toyota Prius as their planned attack configurations may no longer

work. From these findings, we also suggest countermeasures to prevent mapping capabilities by

either removing the periodic nature of CAN messages or by changing the message ID to make it

more challenging to track clock offset.

1.4.2 Stage 2: Disruption and pivoting

We present CANnon [32], the second stage of the kill-chain, which involves using the initial

compromised ECU to disrupt transmissions from other ECUs. To achieve this disruption, we

introduce a new class of attacks that leverage the peripheral clock gating feature in modern au-

9

tomotive microcontroller units (MCUs). By using this capability, a remote adversary with purely

software control can reliably “freeze” the output of a compromised ECU to insert arbitrary bits

at any time instance. Utilizing on this insight, we produce error patterns indistinguishable from

natural errors and do not require message insertion. Using CANvas, we can identify a target ECU,

select an optimal target message, and disrupt how that ECU interacts with the CAN bus. As a

demonstration of this method’s capabilities, we show how CANnon can shut down a specific ECU

without detection by modern defenses.

Stage goals: As detailed in Chapter 4, this stage starts with the remote adversary that

wants to use the transmissions of the initial compromised ECU to impact the transmissions of

other ECUs. Here, the adversary can transmit data onto the network to impact the timing and

state of other ECUs, but they cannot use simple message injection as many modern defenses

are tailored to detect these types of attacks. By finding a technique that can impact other ECU

transmissions, the adversary can open the door to a number of techniques, such as forcing other

ECUs to delay their transmissions for a small amount of time, forcing messages to appear on the

bus at certain times, causing ECUs to enter different error states, etc. While these techniques can

be performed by injecting messages (e.g., flood the bus temporarily with high-priority messages

to block messages), these techniques can also be performed with physical access by tapping into

the physical CAN signals. However, as our adversary is limited to remote-capable techniques, we

must find a way tomimic such physical attacks using just software instructions. By achieving this

capability, the adversary can then ensure better success for the next stage of the kill-chain.

Disconnect: While analyzing the impact of software instructions on physical-layer CAN

signals, we identify a disconnect that enables a remote adversary to interrupt a compromised

ECU’s transmission in the middle of a message. Typically, the CAN controller hardware is re-

sponsible for enforcing compliance to the CAN protocol (i.e., this hardware ensures that traffic on

the CAN bus strictly follows the CAN protocol). This enforcement used to prevent software from

sending malformed CAN traffic on the CAN bus and thus could not be exploited by a remote

adversary. However, we find that modern microcontroller units (MCUs) on high-performance

10

or networking ECUs (e.g., infotainment or telematics ECUs) implement a new feature called pe-

ripheral clock gating as a feature to reduce an ECU’s power consumption. This feature grants the

software on anMCU to disable the clock signal to a peripheral (including CAN), which effectively

“turns of” that peripheral. This new clock gating instruction can permit an adversary to pause

the CAN peripheral (basically, the CAN controller) in the middle of a transmission. As a result,

we propose a new technique that exploits this instruction to impact other CAN transmissions on

the bus and demonstrate how this approach can even trick victim ECUs to enter into a shutdown

state.

Results summary: Using CANnon, we illustrate both a basic denial-of-service (DoS) at-

tack and a targeted victim shutdown attack atop twomodern automotiveMCUs used in passenger

vehicles: the Microchip SAM V71 MCU and the STMicro SPC58 MCU. We validate the feasibility

of this attack against a 2017 Ford Focus and a 2009 Toyota Prius and achieve a shutdown in less

than 2ms. Here, we imagine an adversary who wants to impact the transmissions of another ECU

on the CAN bus. We demonstrate how a remote adversary can now craft physical-layer signals

using just software and with such precision that we can perform repeated attacks against a victim

and force it to shut down. The CANnon disruption attack enables the adversary to impact syn-

chronization on the CAN bus, which proves useful in the next and final stage of our kill-chain.

From these findings, we also suggest countermeasures to detect malicious clock gating by using a

host-based power IDS that tracks changes in power consumption. We also provide countermea-

sures to prevent this attack by clearing transmit buffers when the clock signal is disabled or by

removing clock gating altogether for the CAN peripheral.

1.4.3 Stage 3: Authentication bypass

We present CANdid, the third stage of the kill-chain, where we bypass authentication on another

(likely safety-critical) ECU in the vehicle. Modern ECUs implement existing built-in protocols

that permit authorized testers to reprogram an ECU’s software if they pass authentication. If the

adversary can successfully mimic this authentication, the adversary can access higher-privilege

11

commands. With the knowledge gained from mapping the network with CANvas and the CAN-

non technique to disrupt ECU transmissions, we propose that a remote adversary can sniff on the

network when a valid tester is connected and simply observe and capture a single valid authen-

tication. This authentication contains a random challenge from the target ECU along with the

correct response from the valid tester. With this challenge-response pair, the adversary will force

the target ECU to send the same challenge, which permits the attacker to replay the previously-

observed response and gain access to code upload commands. Once our attacker successfully

gains this reprogramming access, they can then deploy their final attack payload. For our work,

we demonstrate this ability by simply uploading a prior version of code.

Stage goals: As detailed in Chapter 5, this stage starts with the remote adversary that is

simply sniffing on the CAN bus, waiting for the vehicle to be taken to a technician that updates

the software on a target safety-critical ECU. Here, the adversary can simply observe and capture

a valid challenge-response authentication. With this valid challenge-response pair in hand, the

adversary will then need to find a method to launch a replay attack. Considering that modern

authentication protocols may use unique keys for each instance of a vehicle, it is not sufficient

for an adversary to reverse-engineering the authentication protocol and simply use that protocol

during the attack. By finding a techniquewhere the adversary can force the target ECU to produce

the same challenge as seen in the previously-captured valid authentication, the adversary simply

needs to replay the captured response. However, as the challenge is random, the adversary must

identify a method to exhibit some control over the challenge’s source of randomness. This control

must fine-grained enough to enable a sufficiently high likelihood of reproducing the observed

challenge. Defense technologies can permit a tester to connect to the network but only permits a

handful of attempts before locking out the authentication. As a result, our adversary must force

a given challenge to reproduce at a high enough likelihood (e.g., as observed in real ECU designs,

a likelihood over 20% is sufficient if only five attempts are permitted) to avoid being locked out,

which would alert to an adversary’s presence.

Disconnect: When analyzing the available diagnostic commands to the remote adversary,

12

we identify a disconnect that enables the adversary to exhibit control over an ECU’s source of

randomness. As the challenge-response authentication protocol must seed the challenge with

some source of randomness, we find that modern ECUs use processor uptime, or time since last

hard reset or time since last power cycling. At first glance, processor uptime might serve as a

sufficient randomness source, but an adversary should not be permitted to impact this source.

Typically, since the adversary cannot know when an ECU is powered-on, the challenge in the

authentication protocol should be random and prevent an adversary from launching a capture-

replay attack. However, we find that ECUs permit an adversary to call a diagnostic command

that performs a hard reset, thus granting the adversary control of when processor uptime resets.

As a result, we propose a new technique that exploits this command to control the source of ran-

domness (and thus the challenge) and then demonstrate how this approach enables an adversary

to force an ECU to produce a specific challenge, enabling a replay attack.

Results summary: Using CANdid, we can select any given challenge on two real ECUs

and force a challenge to repeat up to 25% likelihood. We also demonstrate this attack on a gateway

ECU that uses a 16-byte key and achieve a likelihood of 12.5%, andwe demonstrate that this attack

works on a real vehicle. With this technique, we ultimately show that a remote adversary can

authenticate and reprogram an ECUwith an older version of the ECU’s software. Once successful

with the previous stages, this work will enable our attacker to download attack code of their

choosing to the target. While there are many methods of using manipulated code to launch the

final attack, we provide a proof-of-concept by successfully uploading a previous version of code

to the target ECU. If an adversary can perform this attack kill-chain even with modern network

defenses in place and across multiple makes and models, then we would have found novel key

vulnerabilities that will require countermeasures in future network designs.

1.5 Outline

We organize the rest of this thesis into the following chapters. Chapter 2 details the relevant

background for this thesis and expands on taxonomy of prior work at each stage of the attack

13

kill-chain. In Chapters 3, 4, and 5, we detail the three key components of this dissertation: (1)

CANvas enables a remote adversary to identify network participants and their transmissions even

on a broadcast network, (2) CANnon enables a remote adversary to disrupt the transmissions of

another ECUwithout usingCAN-formattedmessages, and (3)CANdid enables a remote adversary

to authenticate with another ECU without access to any secret keys or algorithms. With each

kill-chain stage, we identify a disconnect between design and implementation that manifests as

a vulnerability for a remote adversary to exploit. We discuss how such an adversary can perform

each kill-chain stage while deceiving modern defenses. We also detail countermeasures that

can either detect or prevent these attacks with consideration to the demands of the automotive

industry. Then, in Chapter 6, we demonstrate how our kill-chain stages enable a proof-of-concept

attack demonstration against a real powertrain ECU. Finally, Chapter 7 details the impact of this

research on other related fields, reflects on the implications of this research with a focus on how

to identify these elusive vulnerabilities, and concludes with future work.

14

2 Background and Prior Work

In this chapter, we discuss relevant background on a network protocol widely used in modern

vehicles. We discuss the multiple layers involved in the CAN protocol [33], and we discuss the di-

agnostic protocol that operates over a vehicle’s CAN bus. Then, we discuss the remote adversary

model that we follow in this thesis, and we cover the capabilities and limitations of our adversary.

Given the necessary background and adversary model, we provide an overview of prior work on

attacks, how these attacks transitioned from requiring physical access to attacks that can be per-

formed remotely, and then how modern defenses have adapted to these known remote attack

techniques. We also discuss how attacks and defenses in the vehicle space are closely related to

other settings.

2.1 Relevant background

We now detail the relevant protocols found in modern vehicles and the layers that a remote

adversary will need to navigate for their attack kill-chain.

2.1.1 Inside an ECU

Modern vehicles contain tens of Electronic Control Units (ECUs) that control a number of sub-

systems, ranging from safety-critical (e.g., engine control, brake control) to non-safety-critical

systems (e.g., infotainment, telematics). Each ECU typically has a microcontroller unit (MCU)

that interacts with hardware within the ECU and operates the necessary software for that ECU’s

function (e.g., engine control, brake control). The software on an ECU’s MCU reads inputs from

sensors (e.g., wheel speed), writes outputs to actuators (e.g., fuel pump), and communicates with

other ECUs. To communicate with other ECUs, most vehicles employ the Controller Area Net-

work (CAN) protocol. TheCANprotocol stack as shown in Figure 3 is composed of the application

layer, data link layer, and the physical layer. The functionality of an ECU (e.g., engine control,

driver assistance) is described via high-level software running at the application layer. For actu-

15

Figure 3: ECU communication stack

ation and sensing functionality, messages are transmitted and received by the application layer

through the lower layers of the communication stack. To send data to another ECU, the applica-

tion layer creates a CAN message with a priority tag (also referred to as message or arbitration

ID) and its payload. The application transfers this message to the CAN data link layer, where

various control and integrity fields are appended to generate a frame, which is transmitted seri-

ally via the CAN physical layer. To receive a message, a recipient ECU’s data link layer interprets

and validates the CAN frame prior to delivery of the message (ID and payload) to the application

layer.

2.1.2 CAN physical layer

The physical layer of the stack (i.e., the physical CAN bus) consists of a broadcast communication

medium between multiple ECUs. The bus has two logical states: the dominant (logical-0) state,

where the bus is driven by a voltage from the transmitting ECU, and the recessive (logical-1)

16

Figure 4: CAN physical layer

state, where the bus is passively set. The effective bus state is the logical-AND of all transmitting

ECUs’ outputs as illustrated in Figure 4. ECUs connected to the CAN bus communicate at a

pre-determined bus speed set by design based on the physical limitations of the bus. The length

of each bit is directly determined by the set speed. For example, an ECU communicating at

500Kbps transmits the dominant signal for 2µs to assert a logical-0. Similar to other asynchronous

protocols (e.g., Ethernet), CAN nodes rely on frame delimiters for interpreting the start and stop

of CAN frames. Each ECU (re)synchronizes its internal clock based on observed transitions on

the bus.

2.1.3 CAN data link layer

Each CAN message from an ECU uses its assigned message ID (interchangeably referred to as

the ID or the arbitration ID), which determines its priority on the CAN bus and may serve as an

identifier for the message’s contents. These messages are transmitted and received at the physical

layer by an ECU’s CAN controller as CAN data frames in the format depicted in Figure 5. All

ECUs in the network with a queuedmessage simultaneously start to transmit their message at the

same time. During the arbitration ID field, all but one ECUwill eventually stop transmitting based

on CAN’s arbitration resolution. CAN is designed to support collision detection and bit-wise

arbitration on message priority to allow higher-priority messages to dominate the network. The

arbitration of these messages is performed on the message ID field of a data frame, where a lower

17

Figure 5: CAN frame format

ID indicates a higher priority. This priority-based arbitration process sets a 0-bit as dominant and

a 1-bit as recessive, following the logical-AND bus as seen in Figure 4. Since a 0-bit is dominant,

a message with a lower ID will get priority on the CAN bus and will be sent before a message

with a higher ID that is queued at the same time.

The CAN data frame illustrated in Figure 5 has four logical sections that we further detail

here: (1) arbitration, (2) data transmission, (3) acknowledgement (ACK), and (4) end-of-frame

(EOF) and inter-frame spacing (IFS). Upon detection of an idle bus, an ECU initiates the frame

transmission with a dominant start-of-frame (SOF) bit followed by the arbitration ID. Due to

CAN’s asynchronous nature, multiple ECUs may begin transmission at the same time. While

transmitting the ID, an ECU monitors the bus state and stops transmitting if it observes a bit

different from the one transmitted. A received dominant bit during a recessive transmission by

a node indicates the transmission of a higher-priority message by a different ECU. By the end of

arbitration, a single ECU with the highest-priority frame wins access to the bus and continues

transmitting. The bus winner transmits the rest of its frame and, for each transmitted bit, moni-

tors that the bus state matches the transmitted bit. During the ACK slot, the transmitter asserts

a recessive bit while all receiving ECUs transmit a dominant bit to indicate correct reception.

Finally, the sender transmits recessive EOF and IFS bits, where the IFS is the minimum space

18

between two frames on the bus. After the IFS, the bus is idle and holds a recessive state until the

next transmission. Each ECU can transmit multiple IDs, but each ID should only originate from

a single ECU.

Figure 6: Error-handling states

Error handling and bus-off state: Error handling is an essential feature of the CAN

protocol, providing robustness in automotive environments. The CAN protocol defines several

types of errors; we detail two relevant error types, namely the bit error and stuff error. A bit

error occurs when the transmitting node detects a mismatch between a transmitted bit and the

bus state (outside of the arbitration and ACK fields). A stuff error occurs in the absence of a

stuff bit, which is a bit of opposite polarity intentionally added after every five consecutive bits

of the same polarity. When an ECU detects an error, it transmits a 6-bit error flag on the bus

that can destroy the contents of the current frame. Depending on the error state of the ECU,

the flag may be a sequence of recessive or dominant bits. Each ECU maintains error counters

that are incremented upon a transmission error2 detection and decremented upon a successful

transmission. As depicted in Figure 6, there are three error states based on the error count: (1)

error-active, (2) error-passive, and (3) bus-off. An ECU in error-active state represents a “low”

error count and transmits a 6-bit active (dominant) error flag; an ECU in error-passive indicates a

“high” error count and transmits a 6-bit passive (recessive) error flag. If enough errors are detected
2There is a separate count for reception errors, but it is not relevant to this work. All references to error count

refer to the transmission error count.

19

and the count surpasses 255, then an ECU transitions to bus-off, where it will shut down its CAN

operations and effectively remove itself from the bus.

2.1.4 CAN application layer

All vehicles produced for the U.S. market in 2008 and after are required to implement the CAN

protocol for diagnostics purposes [34]. Many vehicles will often employ either one, two or three

CAN buses. In the event of three CAN buses, it is likely that the vehicle has one bus for power-

train components (engine, transmission, etc.), one bus for infotainment components (radio, etc.),

and another for body components (door controller, headlights, etc.). These CAN buses are usu-

ally exposed through a vehicle’s On-Board Diagnostics (OBD-II) port, which is typically located

under the steering wheel. This port is the typical access point for attacks that require physical

access [7].

The CAN protocol is defined as a message broadcast bus, which means that ECUs are con-

nected to a shared network where all ECUs can receive all transmissions [33]. Due to the nature

of this broadcast bus, it is not possible to send a message to a specific ECU where only that ECU

has access to the message. In the CAN protocol, after a message is broadcast to the network, de-

vices that correctly receive (i.e., all bits received at physical-layer, error-correction checks pass,

and frame is properly formatted) this message will acknowledge their reception. A typical CAN

setup for a vehicle will grant each ECU with a unique set of IDs, and each message will be labeled

with an ID that is then transmitted onto the bus. An ECU will be responsible for a subset of the

message IDs seen in the network, and each message ID will only be sent by a single ECU. Each

message is queued by a software task, process or interrupt handler on the ECU, and each ECU

will queue a message when the message’s associated event occurs. This message ID serves pri-

marily serves as a label for the data contained in the CAN message’s payload. For the standard

CAN protocol, the range of the 11-bit message ID can be split into two groups: 0x000-0x6FF for

regular CAN traffic and 0x700-0x7FF for diagnostic messages. Any device that is on a CAN bus

can claim any message ID, which enables a compromised node to mimic other ECUs or even a

20

diagnostic tester.

2.1.5 UDS session and application layers

Figure 7: UDS application layer above CAN bus layers

With the CAN protocol serving as the lower layers of in-vehicle communication, we now

detail the Unified Diagnostic Services (UDS) protocol, which defines a session and application

layer above CAN as depicted in Figure 7. UDS serves as an interface for running vehicle diagnos-

tics, debugging, and configuration on in-vehicle ECUs. There are typically only two participants

to any UDS communication: a client that is typically the diagnostic tester physically connected

to the vehicle’s OBD port and a server that is a UDS-enabled ECU on the vehicle’s CAN bus. Each

UDS server runs a server application that is assigned a server ID (i.e., just a unique CANmessage

ID within the range of 0x700-0x7FF) to identify CAN messages originating from the UDS server.

To communicate with a UDS server, the diagnostic tester (or a compromised ECU) must use the

appropriate UDS client ID (i.e., another unique CAN message ID) for the given server.

The UDS session layer defines various session types between a server and client, where

a given type defines the available services accessible to the client. A UDS server will initially

start in the default session state, and the client can request a different session type without any

21

additional security check. These session types are ultimately defined by the OEM but typically

include, at a minimum, the default and programming session types. In the default session, the

client is limited to a few services, such as requesting Diagnostic Trouble Codes (DTCs). We now

detail some UDS services relevant to this thesis:

• DiagnosticSessionControl: A UDS client can use this service to request a UDS server to

enter a specific session type, where the type determines the available services to the client.

For example, the “programming” session can enable services to download firmware and

perform other critical read/write operations while the “extended diagnostic” session can

enable services to reconfigure sensors and actuators.

• ECUReset: A UDS client can use this service to request a UDS server to reset itself following

one of several reset types. These reset types typically include a “hard” reset that simulates

power cycling and a “soft” reset that re-initializes some of the ECU’s firmware. These resets

do not require any authentication and can be requested at any time.

• SecurityAccess: A UDS client can use this service to request access to privileged services on

a UDS server but only after the server enters the programming session. The ECU designer

defines a variety of security levels that grant fine-grained control over the set of commands

that become available to an authenticated client. We find that the highest security level (i.e.,

level 1) typically grants the ability to flash an ECU’s software while lower security levels

enable the modification of ECU configuration files.

• RequestDownload: A UDS client can use this service to initiate a download transfer to the

UDS server but only after the client authenticates with a UDS server via SecurityAccess.

With the proper security level (i.e., level 1), the client can then download new firmware to

the server using the UDS TransferData service.

As mentioned above, the SecurityAccess service enables a client to access privileged com-

mands, such as downloading code to an ECU, on a server in the programming session. The set of

available commands depends on the chosen security level, and the client must pass a challenge-

22

Figure 8: UDS SecurityAccess service

response authentication for that given security level (i.e., the secret key and encryption algorithm

can differ per level). As manufacturers expect that only authorized service technicians should

reprogram ECUs, getting access to higher-privileged commands should require passing authen-

tication with proprietary diagnostic tools. As only an authorized user should have these shared

secrets, this service uses challenge-response authentication to confirm that the user knows these

secrets. As depicted in Figure 8, there are four main steps to UDS SecurityAccess:

1. After the UDS server enters the programming session, the UDS client initiates SecurityAc-

cess with a request to the server. This request message also specifies the requested security

level (in this case, level 1 to access reprogramming capabilities).

2. After the server receives this request, it computes a challengeC using a pre-definedmethod

in the server’s UDS application. This challenge C is then sent to the requesting client.

3. The client receives the challengeC and then computes the responseRclient using the shared

(at build time) encryption algorithm. This algorithm is pre-defined in both UDS applications

for the client and server, and the algorithm takes in two inputs: the challenge C and a

23

shared (at build time) symmetric key Kserver,client. After computing the response Rclient,

the client then sends it to the server.

4. With the client’s response Rclient in hand, the UDS server computes the expected response

Rserver by following the same encryption algorithm as the client, where the expected re-

sponseRserver is a function of challengeC and keyKserver,client. Then, this responseRserver

is compared against Rclient, to determine if they match. If they match, the server responds

positively (thus granting access); otherwise, the server responds negatively with an error

code indicating an invalid response.

If the client successfully authenticates via UDS SecurityAccess with the highest security level

(i.e., level 1), then the client can request a download and transfer data to the server via the Re-

questDownload and TransferData service, respectively.

2.2 Our remote adversary model

In this thesis, we consider an adversary who has compromised the software of a single in-vehicle

ECU, which is likely to be an infotainment or telematics ECUs [9]. Several prior and recent works

demonstrate the real existence of vulnerabilities to both remotely compromise in-vehicle ECUs

and gain the ability to take control of physical vehicle functions via CAN transmissions [10, 22,

35, 36, 37]. These works also demonstrate that remote attacks can occur at a large scale since a

single vulnerability can be present across hundreds of thousands of vehicles [10]. In addition to

this, as market research estimates that about 150 to 250million connected cars were on the road in

2020 [26, 27, 28], the number of vehicles with remote interfaces via an infotainment or telematics

ECU will likely continue to increase. As a result, it is clear that the attack vectors for a remote

adversary will become more prevalent and pose a significant threat to vehicle security.

Following the same assumptions as prior work, we assume that such a remote adversary

can gain complete control of an ECU and subsequently modify the ECU’s software, including

application software running on the ECU and any application programming interfaces (APIs)

24

available to this software [30, 17, 15, 16]. The primary limitation here is that all adversarial ca-

pabilities are limited to only software manipulation. Our model does not allow for any direct

physical modifications or probing to any of the vehicle’s components. We want to design an at-

tack kill-chain that can be simultaneously performed on thousands of vehicles without requiring

any hands-on access to the vehicle. We also assume that the vehicle is equipped with state-of-

the-art defenses, which can detect attacks that cause the network traffic to sufficiently deviate

from normal operations. For example, attacks that inject malicious CAN traffic that typically

come from in-vehicle ECUs would easily be detected. However, as a technician who connects to

the vehicle will be a new device communicating new traffic to a CAN bus, diagnostic commands

over the bus are permitted as long as any attempt limits are not breached (e.g., systems that per-

mits only five attempts to authenticate). On top of this, we also assume that the victim vehicle

follows a realistic hardware design so we base our investigation on real ECUs and automotive-

grade hardware. Finally, another limitation that we address throughout the thesis is the need for

all attacks to be robust. We make the assumption that any attacks that cause collateral damage

to other ECUs and not the intended ECU can be detected by defenses.

While there are a number of limitations against the adversary, there is one major advantage

that a remote adversary can exploit: the fact that vehicles are essentially replicas of each other.

Here, we envision an adversary who simply purchases or obtains a copy of the victim vehicle that

has the same make, model, year, and trim. By building an attack kill-chain for this vehicle, the

adversary can potentially attack thousands so the cost of a vehicle here is reasonable [9]. After

identifying a method to remotely compromise an in-vehicle ECU, the adversary can gain more

information from this vehicle’s network to launch our kill-chain. They can access components

physically for testing purposes, inject malicious traffic without fear of repercussions, and even

trigger alerts from a vehicle’s defenses. We assume that the adversary can block outgoing alerts

to the vehicle manufacturer, and we assume that a vehicle’s network will not be permanently

locked down in the event of a detected attack. As we progress through each stage of the kill-

chain, we identify what work can be performed on a replica vehicle and also how the adversary

25

will launch the attack once in the victim vehicle’s network.

Our model is realistic: As outlined in two U.S. agency reports, a remote adversary is

considered the highest risk factor for the automotive community and passenger safety and thus

taken seriously by the industry [29, 38]. Security efforts by vehicle manufacturers (e.g., introduc-

tion of IDSes) place significant focus on defending after such an adversary breaches the network

as this access opens the door to an adversary who can simply inject messages onto the CAN

bus [29]. In short, if an ECU designer can write a line of code to take some action on a given

ECU, then a remote adversary who compromised that ECU can run the same line of code in our

threat model.

2.3 Prior work for each stage

Table 1: Taxonomy of prior work for each kill-chain stage

Kill-chain stage Physical approaches Remote approaches Defenses
Reconnaissance [7, 39, 40] [41, 10, 42, 15, 43, 18] [44, 45, 15, 18]
Disruption [46, 47, 31] [30, 41, 10, 42] [43, 15, 48, 49, 20, 16, 17, 50]
Authentication bypass [7, 51] [10, 22, 52] [52, 53]

Each of our attack kill-chain stages has followed a general evolution that we now explore.

After the initial demonstration of in-vehicle network attacks by Koscher et al. [7], there were

several demonstrations of other attacks that also required physical access. However, as these

physical attacks were considered impractical and especially after the real remote attack by Miller

et al. [10], we started to see attacks that could be performed by a remote adversary. As a response

to these remote-capable attacks, we then started to seemodern defenses that focused on these new

remote techniques. In what follows, we detail how the taxonomy of prior work has progressed

following this trend for each kill-chain stage.

2.3.1 Reconnaissance and discovery

With control over a vehicle’s infotainment ECU, our remote adversary must first identify the

ECUs in the network and characterize their communications on the CAN bus. Obtaining infor-

26

mation about CAN bus participants and building a map of their communication is a challenging

task. Unlike other protocols (e.g., Internet Protocol (IP)) that contain source and destination

addresses, the CAN protocol does not include such information. As detailed in the above back-

ground, the message ID simply acts as a label for the data in a given CAN message and gives no

information on the actual source ECU. Knowing which ECU sends a given message ID can prove

useful for a variety of reasons, such as identifying proprietary message content [54], analyzing

individual ECUs [7], and confirming ECU configurations post-update [31]. In the context of our

adversary, such a technique would be useful for surveying a number of vehicles with the goal

of picking a target make and model vehicle, which Miller et al. had to do [9] prior to their well-

known attack on a 2014 Jeep Cherokee [10]. Then, by mapping a replica of the victim vehicle,

the remote adversary can compare the network map of the actual victim vehicle to ensure that it

matches the expected network map.

Figure 9: Taxonomy of prior work in reconnaissance and discovery

Physical access attacks: The legacy approach to mapping a CAN bus was “old-fashioned”

and required physical access or could only identify a handful of ECUs [55]. One approach to map

a CAN bus required physically disconnecting ECUs and looking for missing messages. Extracting

the necessary information tomap a CANbuswith this approach requires an unreasonable amount

of effort. In a work by Koscher et al., the authors analyzed the security of a vehicle’s components

by manually extracting ECUs to isolate and interact with them [7]. This type of analysis requires

27

significant time and effort or access to limited or proprietary information [9]. In addition, ob-

taining vehicles for extended time and with permission to disassemble is costly and expensive.

Considering new model years and an increase in software updates, the frequency of analyzing

an intra-vehicular network will quickly increase in time and cost requirements. Prior work has

also identified message sources for the purpose of identifying a compromised ECU [18, 40], but

these efforts either require several hours of data and would not be practical for a remote adver-

sary.

Remote capable attacks: One major limitation with the legacy approach to mapping a

CAN bus is the need for physical access to get a complete map of a given vehicle. To address

the challenge, we could consider using techniques that a remote adversary could use to build

a realistic mapping solution that identify all ECUs and the set of messages they send/receive.

One approach involves injecting diagnostic commands to temporarily shut down an ECU. These

diagnostic messages were originally intended for a mechanic to perform ECU testing but can

be exploited to pause an ECU’s communication [41, 10, 42], where the adversary can simply

observe what messages no longer appear on the bus. A limitation with this approach is that

these commands are not always available on all ECUs, and it is critical for our adversary to map

every ECU in the vehicle as an unexpected ECU could negatively impact attack configurations and

cause an adversary to have collateral damage, which may open the door to detection. Following

initial efforts on fingerprinting using timestamps collected by an ECU’s software [39, 40], other

work has improved on their basic approach by identifying potential pitfalls [43, 15, 18]. In these

works, the authors have demonstrated that clock characteristics can aid in identifying the source

of messages even when on a broadcast network. However, as we discuss in Chapter 3, these

approaches cannot successfully be repurposed to accurately map a real vehicle.

Defenses versus remote adversary: Our adversary must consider intrusion detection

systems (IDSes) that can detect a large number of malicious message injections [44]. To use

diagnostic messages to temporarily pause an ECU’s transmissions, our adversary would need to

inject these messages for each individual ECU in a victim vehicle. Here, the adversary would

28

need to map a replica of the target make and model and also map the victim vehicle instance to

confirm that the network maps match. Injecting a large number of diagnostic commands (recall

that modern vehicles contain an increasing number of ECUs [26]) can expose the adversary to

detection. Likewise, even if the adversary only needed to inject a small number of messages, this

traffic should not be wasted on the reconnaissance stage. Also, authentication for CAN devices

could implicitly prevent mapping a vehicle. Prior work, such as the TCAN system [45], requires

the addition of a new device, access to two locations on the bus, and a static authentication table

labeled with each ECU’s timing characteristics. These characteristics can and will change due

to clock drift so techniques that rely on static timing characteristics [15, 18] would not succeed

here.

2.3.2 Disruption and pivoting

After mapping the victim make and model and then confirming those findings on the victim ve-

hicle instance, our remote adversary must then construct a method to maliciously disrupt other

ECUs with the intent of impacting their communications. With such a capability, our adversary

could aid the following kill-chain stages, especially if those techniques requiring impacting CAN

bus transmissions to the adversary’s advantage. Here, we focus on works that aim to shut down

ECUs; while this is not the ultimate aim of our adversary, shutting down ECUs (and the methods

to achieve this) can open the door to related techniques that can be exploited. While a large error

count in a non-adversarial scenario is indicative of a faulty node and, hence, isolation (or even

shutdown) is a logical solution to prevent disruption of the whole network, an adversary can

misuse the error mechanism by causing intentional errors, forcing an ECU to transition into the

bus-off state and thus causing the ECU to shut down CAN communication. However, producing

intentional errors on the CAN bus without direct access to the physical medium is challenging.

One reason is the compliance to the CAN protocol enforced by hardware CAN controllers de-

signed and certified for robustness. Thus, without access to the physical medium, an adversary

can only control the ID and payload but not the transmitted frame. Nevertheless, prior work has

29

demonstrated limited success in operating under these constraints to cause a shutdown.

Figure 10: Taxonomy of prior work in disruption and pivoting

Physical access attacks: The legacy approach for shutting down an ECU and thus dis-

rupting its communication required physical access. An adversary could easily bypass the CAN

data link layer and inject bits by either sending signals directly to the physical bus or modifying

the CAN controller to disobey the protocol. An adversary can also use this access to directly in-

ject dominant bits at any time during a victim’s transmission and cause bit errors. Several works

use this approach to demonstrate effective shutdown attacks that are difficult to detect as such

errors are indistinguishable from genuine bus faults [46, 47, 31]. These attacks have real-time

feedback from the bus, enabling a reliable method of shutdown. However, because they require

physical access, they are considered impractical both in research and practice as there are easier

alternatives to cause harm [29].

Remote capable attacks: In contrast to the legacy approach, prior work only exploits

software and demonstrate the ability to overwrite messages and exploit CAN’s error-handling

mechanism without physical access [30]. The authors aim to shut down an ECU by causing an

error in the target ECU. By exploiting the error-handling protocol in CAN to effectively remove

an ECU from the network, they choose to increment the error counter of a target by causing a

bit error. This error occurs when a transmitting ECU reads back each bit it writes; when the

actual bit is different, the ECU invokes an error. Here, an adversary must estimate a victim’s

30

message transmission time. As most CAN messages theoretically tend to be periodic, an adver-

sary could perform this attack via empirical analysis. Using these estimates, a remote adversary

in control of the MCU’s software can transmit an attack message at the same time and with the

same arbitration ID as the victim. This approach results in two nodes winning control of the

bus and intentionally violates the CAN bus protocol. A specially-crafted payload (a dominant

bit in place of a victim’s recessive bit) can cause the victim to detect a bit error and retransmit

its message; by repeating this attack, the victim eventually shuts down. Recent work demon-

strates that this attack is not reliable as the deviation of periodic messages varies significantly in

practice [31].

Defenses versus remote adversary: As mentioned above, using an intrusion detection

system (IDS) is a common approach for protecting CAN bus networks. Many IDSes operate as

software applications and are limited to reading messages passed up the communication stack

by CAN hardware. These run on any ECU and do not require special hardware, making them

an attractive solution. For instance, they can use statistical techniques based on message tim-

ings and content [43, 15, 48, 49]. A recent U.S. agency report discusses how companies working

closely with automakers have access to proprietary information on the expected content of CAN

messages, enhancing their ability to create application-layer defenses [29]. Another class of IDS

that makes use of this proprietary information are machine learning [56] and traffic anomaly ID-

Ses [57], which analyze message timing and payload to detect an attack. Application-layer IDSes

can detect both diagnostic shutdown attacks [41, 10, 42] and message overwrite attacks [30] as

they require transmitting additional CAN frames on the bus. As such, any application-layer de-

fenses that measure message timing or content can also detect attacks that transmit entire CAN

frames or significantly disrupt valid transmitted frames.

Additionally, recent industry solutions propose secure CAN transceivers that operate at

the data link layer [20]. These transceivers can prevent a compromised ECU from attacking a

CAN bus by either: (1) invalidating frames with spoofed CAN IDs, (2) invalidating frames that

are overwritten by a compromised ECU, and (3) preventing attacks that flood the bus with frame

31

transmissions. Attacks that require physical access are outside their scope. These transceivers are

a promising approach to defending against attacks requiringmessage injection as the transceivers

would destroy any illegitimate frames based on their IDs. Another approach for IDSes is to

directly access the physical layer (i.e., measuring bus voltages). These defenses detect sudden

changes over a series of CAN frames (or even a single frame) by creating a profile of the expected

voltages [16, 17, 50]. These works find that each ECU applies a unique voltage that is measurable

across an entire CAN frame. If an illegitimate transmitter attempts to spoof a victim’s message,

the voltage measured across the frame could identify a potential attack. This approach can detect

the message overwrite attack [30] because a single frame will start with two simultaneous trans-

mitters followed by only the overwriting compromised ECU; a distinctive change in voltage for

the rest of the frame indicates an attack.

2.3.3 Authentication bypass

After the adversarymaps the victim network and disrupts individual ECU transmissions, wemove

to the next stage of the attack kill-chain: authentication bypass. Here, our adversary aims to get

access to higher-privileged commands on the target safety-critical ECU, including commands

that enable the adversary to reprogram the target ECU. With such a capability, our adversary

could inject their final attack code that could avoid constraints coded into the target ECU (e.g.,

speed thresholds for when brakes can be disabled) and lay dormant on multiple vehicles with

the intent to launch a time-triggered attack at scale. The UDS SecurityAccess service provides a

method of authentication, which permits an authorized user that has successfully authenticated

to get privileged access. With regard to authentication bypass attacks, several examples in prior

work demonstrate success in passing authentication with an unauthorized device. If an adversary

could successfully pass a challenge-response authentication with a UDS server, then this access

could enable them to reprogram the server ECU (ideally, one that is safety-critical).

Physical access attacks: Authentication via challenge-response should, at a minimum,

use both a random challenge and a not obvious security algorithm to make a brute-force at-

32

Figure 11: Taxonomy of prior work in authentication bypass

tack impractical in a realistic setting. However, researchers have found vehicles that use small

responses that can be brute-forced over a few days and other vehicles with a simple security algo-

rithm, such as simple addition, bit shift, or XOR with fixed secret [7, 51]. As UDS SecurityAccess

implementations typically have a limit on the number of authentication attempts, brute-force at-

tacks that happen in the victim vehicle can take a significant amount of time as the ECU under

attack would need to be physically reset every few attempts [7], which would be impractical for

a remote adversary. In addition, prior work found that some implementations of SecurityAccess

did properly use a psuedorandom number generator (PRNG) to seed the challenge [10]. However,

an attempt to brute-force the response would require an even longer brute-force attack and be

impractical for a remote adversary.

Remote capable attacks: Challenge-response authentication also ensures that the secret

key is not transmitted on the communication bus (in this case, the CAN bus) so an eavesdropper

cannot extract the secret key. However, this authentication is only secure if the secret key remains

out of the hands of an adversary. One approach from prior work is to extract keys directly from

either the diagnostic tester tool or the target ECU itself [10, 22]. Researchers obtain a specific

make and model vehicle and reverse-engineer the software for make-specific testers and target

33

ECUs, where they extract both secret keys and security algorithms. Even with the ability to get

all keys from an ECU reverse engineering, any adversary still needs to try out all possible keys

to see which one matches once inside the victim vehicle. Likewise, researchers have launched

brute-force attempts at determining the secret keys by exploiting cryptographic weaknesses in

the security algorithm [52]. With knowledge of both the secret key and security algorithm, an

adversary can compute the appropriate response to any challenge on-the-fly. These works also

demonstrate the presence of the same keys and algorithms on the same ECU type (e.g., engine) for

the same make, model and trim of a vehicle, which greatly increases the scale of an adversary’s

attack. Thus, an adversary can reverse-engineer or brute-force the key and algorithm for a given

make and model and then can launch bypass authentication on thousands of vehicles.

Defenses versus remote adversary: With respect to the growing priority of automotive

security, the modern implementation of SecurityAccess has evolved to address the weaknesses

of legacy designs. Vehicles (especially fleets) can implement key diversification (i.e., a unique

key per ECU instance) and even perform key rotation to change keys on a repeat basis, greatly

reducing an adversary’s ability to target multiple vehicles [52]. Likewise, these secret keys can be

made accessible only to authorized technicians3 through the Original Equipment Manufacturer

(OEM) rather than loading them onto diagnostic testers, preventing unauthorized parties from

reverse-engineering these keys. Also, considering the combination of moving secret keys to the

manufacturer’s secure back-end server and the use of a unique secret key per ECU instance, an

adversary must perform this same amount of work for each individual vehicle. Considering the

presence of CAN bus IDS, a brute-force attack would be easily detected. Considering modern

implementations of UDS SecurityAccess that seed the challenge with a PRNG and the use of

formally verified and cryptographically sound algorithms (not easily broken by a computationally

bound adversary), these methods of attack would not be so easy to perform as the pattern is no

longer obvious.
3This practice is already common in the automotive industry for key, immobilizer and PIN codes, where autho-

rized parties must be a member of a national registry [53].

34

2.4 Other related work

The concept of a remote attack kill-chain is not unique to the vehicle space. For traditional com-

puter networks, a cyber kill-chain often involves the following stages: reconnaissance, weaponiza-

tion, delivery, exploitation, installation, command and control, and action on objective [58]. Here,

we find many similarities in attack techniques, such as network mappers that can identify the

nodes on a network [59] and targeted disruption attacks that are intentionally hard to detect [60],

as well as in defense techniques, such as building anomaly-based IDSes [61] and strong random

number generation [62]. The concept of an attack kill-chain is also seen in the Internet-of-Things

(IoT), where the stages can include discovery, device entry, information extraction, preparing

and installing an attack page, and action on objective [63]. While the techniques for IoT attacks

and defenses may be more closely related to traditional network security, many of the challenges

are the same as vehicle security, including hard-coded passwords, insufficient authorization, and

low compute resources. The manufacturing limitations include systems that must be highly ro-

bust while using a few resources as possible and, thus, open the door to exploits [63]. As a

result, we have seen large-scale attacks on IoT [64] that share similarities to the Jeep Cherokee

attack [10].

35

3 CANvas: Remote Reconnaissance of ECUs via Automo-

tive Network Mapping

In this chapter, we discuss our contributions to the reconnaissance and discovery stage of our

attack kill chain. The contributions of the thesis in this stage are:

• Kill-chain goal: In this stage, we aim to build a CAN bus networkmapper that can identify

the source of each message and the set of ECUs in a vehicle. With this information, the

remote adversary can map a stock version of the victim vehicle and then compare that map

to the actual victim vehicle’s network.

• Disconnect to exploit: We find that the periodic nature of CAN messages enables an ad-

versary to uniquely identify the source ECU. By measuring a specific timing characteristic

using just the timestamps from CAN traffic, the adversary can determine the number of

unique ECUs and the set of messages they transmit.

• Potential countermeasures: The key vulnerability insight here is that the periodicity of

messages reveals information about amessage’s source. Thus, we propose countermeasures

that “removes” this periodicity, such as intentionally adding variance tomessage timing and

making it difficult to track messages by their ID.

3.1 Goals for this kill-chain stage

With respect to our kill-chain, the primary role of reconnaissance is ensuring that the victim net-

workmatches the network that the adversary expects. Consider the scenariowhere an automaker

makes a particular make and model vehicle that is sold to both the general public and parties that

will intentionally modify the vehicle’s network. For the latter, we envision private fleets that add

or remove entire ECUs (e.g., converting a hybrid to a plug-in electric [65, 66]) or vehicle tuners

who reprogram ECUs to add or remove certain vehicle functions [67]. Consequently, when the

adversary enters the victim system and then discovers an additional ECU or unexpected message

36

characteristics, the adversary could detect such a modified (compared to stock) vehicle network.

If the adversary were to design their attack parameters/configurations based on the stock make

and model, then those values could be invalid and result in a failed attack attempt, potentially

exposing the adversary. Thus, it is critical that our adversary performs reconnaissance on the

victim network to verify that it is safe for the adversary to proceed; otherwise, the adversary can

decide to abandon their attack and move to another vehicle instance.

Another benefit of reconnaissance is that the adversary can quickly identify a potential

target make and model before they even start to build their remote attack. As an example, for the

purpose of planning their well-known exploit [10], Miller et al. analyzed the in-vehicles networks

of several vehicles, which revealed that the 2014 Jeep Cherokee was the “most hackable” based on

its layout of ECUs [9]. Thus, it is evident that the set of ECUs and their inter-ECU communication

(as well as a tool that can extract this) can determine the vulnerability of a vehicle’s ECU net-

work. Additionally, extracting knowledge about the ECUs and their messages can help inform

the adversary in planning their attack as a whole. This information can aid in both targeting

certain ECUs or messages and avoiding others to minimize collateral damage. If the adversary

accidentally impacts bystanders on the network, it could potentially expose them to detection by

a driver who could then safely pull over.

3.2 Stage overview and contributions

To perform reconnaissance, we argue that the adversary needs tools similar to Nmap [59], which

is used to map the structure of modern IP networks. Such mapping tools have proven useful in

attack scenarios, such as identifying new and unexpected servers, attesting server configurations,

and inspecting firewalls by identifying available network connections. Analogously, with such a

tool for scanning a vehicle’s network, we could (1) discover the set of ECUs on a stock vehicle, (2)

attest to the network configuration of ECUs at the time of attack, and (3) ensure that a targeted

ECU can even receive messages from a compromised infotainment.

37

To aid in these scenarios, an ideal network mapper would require three main outputs: (1)

the transmitting ECU for each unique CANmessage, (2) the set of receiving ECUs for each unique

CAN message, and (3) a list of all active ECUs in the vehicle. To ensure that our network mapper

is practical for the adversary, we ideally want our tool to: (a) quickly analyze a vehicle’s network

so that the adversary can analyze multiple vehicles and then select a target make and model,

and (b) accurately identify the set of ECUs and messages so that the adversary does not cause

collateral damage in a later kill-chain stage.

A key challenge we face in realizing this tool in practice is the lack of source information in

CANmessages. CANmessages are “contents-addressed,” i.e., messages are labeled based on their

data and provide no indication to the message’s sender. Another significant challenge in mapping

a CAN bus is the broadcast nature of the CAN protocol; we cannot tell which ECUs have received

a message. A CAN message is not explicitly addressed to its recipients, but a node can indicate it

has correctly received a message. We must also consider the capabilities of the remote adversary

who has complete control of the infotainment ECU’s software 4 and thus read/write access to the

victim’s CAN bus. Any write access will be closely monitored so, for now, our adversary avoids

sending CAN messages that could be detected by network defenses.

For the reconnaissance stage, we build CANvas, a system to accurately map a vehicle’s

network without resorting to vehicle disassembly. Rather than require physically isolating each

ECU, our key insight is to extract message information by re-purposing two observations from

prior work:

• Identifying message source: Prior work by Cho et al. states that clock skew is a unique

characteristic to a given ECU and, thus, builds an intrusion detection system (IDS) that

measures this skew from the timestamps of periodic CAN messages [15]. Using this in-

sight, we envision a mapper that computes clock skew per unique message and uses skew
4To identify message destination, we do require physical access to inject errors that intentionally shut down

ECUs. This type of access is acceptable here since the adversary can do this on a replica of the stock vehicle, and
we do offer a software-only alternative in Chapter 4 (although shutting down multiple ECUs on the victim would
still be detectable). We ultimately find that every ECU we tested correctly receives all messages, but this mapper can
confirm this fact on any new stock vehicle that comes to market.

38

to group messages from the same sender. Unfortunately, due to shortcomings of their ap-

proach in our mapping context, we instead track the clock offset of two messages over time

to determine their source.

• Identifying message destination(s): In another work, Cho et al. propose a denial-of-

service (DoS) attack that exploits CAN’s error-handling protocol to disable a target ECU [30].

Using this insight, the mapper could disable all but one ECU via this DoS attack and observe

what messages are correctly received at the hardware-level by the isolated ECU. However,

due to shortcomings in their method with respect to our context, we develop a method to

forcefully isolate each ECU and detect which messages the ECU correctly receives despite

the broadcast nature of CAN.

We implement the CANvas mapper on the open-source Arduino Due microcontroller with

a clock speed of 84 MHz and an on-board CAN controller. We evaluate our mapper on five real

vehicles (2009 Toyota Prius, 2017 Ford Focus, 2008 Ford Escape, 2010 Toyota Prius, and 2013

Ford Fiesta) and on extracted ECUs from three Ford vehicles. We show that CANvas accurately

identifies ECUs in the network and the source and destinations of each unique CAN message in

under an hour. With this speed, the remote adversary can perform a preliminary mapping of a

stock vehicle prior to compromising a victim’s infotainment and then can confirm these findings 5

by simply snooping on the victim’s CAN bus. We also demonstrate how the CANvas network

mapper identified that our 2009 Toyota Prius contained an unexpected ECU and was actually

modified to become all-electric. This vehicle serves as a real example where an adversary would

decide to move on to another target as the vehicle network did not match as expected.

In summary, we make the following contributions:

• We design an accurate message source identification algorithm that tracks a message’s

relative clock offset.

• We engineer a reliable message destination identification method by isolating ECUs with
5Again, destination mapping cannot be confirmed once on the victim vehicle, but we find that ECUs correctly

receive all messages.

39

a forced shutdown technique.

• We build a real implementation that maps five real vehicles and extracted ECUs along with

two real examples of motivating use cases for mapping.

3.3 Problem and system overview

Unlike most traditional packet-switched networks, CANmessages do not have fields that identify

the message’s source and destination(s), which makes the mapping problem difficult. To develop

a mapper that will aid the goals of this kill-chain stage, we formulate three required outputs for

CANvas:

ECU enumeration: The importance of enumerating ECUs is evident as it can highlight

new or absent ECUs. Note that in our attack scenario, it is not necessary to know an ECU’s type

(engine, transmission, etc.) or its functionality (fan speed control, tire pressure sensing, etc.).

Prior work has been able to extract these particular features [54]. Formally, let Ei denote ECU

i in a given vehicle that contains n total ECUs that are CAN-enabled. For each Ei in a vehicle’s

set of ECUs, E1:n, the ECU is responsible for sending a specific set of m messages labeled with a

unique arbitration ID from the set, IEi,1:m. This set of IDs is unique toEi and no other ECU in the

network should send the same ID. Given a CAN traffic dump from a vehicle, CANvas’s enumerator

should determine the number of ECUs, n, and differentiate between them to determine the set of

ECUs E1:n for that particular vehicle.

Message source identification: Any changes to the set of transmitted messages for each

ECU can pinpoint an unexpected reconfiguration potentially done by a fleet owner or vehicle

tuner. Likewise, the adversary can tailor the following kill-chain stages to a target ECU based

on the messages it sends. Thus, a critical goal for our tool is to map each message ID to its

source ECU. Formally, given a CAN traffic dump from which we extract the set of uniquely-ID’d

messages where l is the number of total unique message/arbitration IDs and I1:l is the set of

unique IDs, we should be able to determine which ECU Ei sent each unique message. This step

40

is very closely related to ECU enumeration; once we know which ECU Ei that an arbitrary ID

Ij originates from, we can produce a mapping of the ID to its source ECU, Ij ∈ Ei. Using this

mapping, we can group the IDs with a common source ECU and complete our enumeration.

Message destination identification: The adversary needs to ensure that any messages

the compromised infotainment ECU will send can be correctly received by the target safety-

critical ECU in the following kill-chain stages. This component simply ensures that the adversary

faces no surprises when selecting a new target make and model vehicle. We assume that at least

one ECU in the network will correctly receive each message in the network. Formally, given the

set of l unique IDs, I1:l, from a traffic dump, we should be able to determine the set of ECUs,

E1:k, that correctly receive a message labeled with an arbitrary Ij . The expected output of this

component should be a mapping of an ID to its destination ECUs, Ij,E1:k
.

3.3.1 Challenges in an automotive context

To achieve these mapping goals, we encounter two major challenges to determining the source

and destination ECUs for CAN messages: (a) CAN lacks identifying source information and (b)

CAN implements a broadcast protocol, which naturally implies that all nodes receive all mes-

sages.

Lack of source information: If a message sent from ECU Ei has no identifying infor-

mation, then it is non-trivial to determine that Ei sent the message. Since CAN messages are

considered to be “contents-addressed” [68, 69, 70, 39], the value of the message ID is only related

to the message’s data and priority. In practice, the source ECU has no weight in determining the

chosen arbitration ID for a particular message.

Broadcast protocol: We define destination as an ECU that correctly receives a message at

the CAN controller level. Unfortunately, determining which ECUs correctly receive a message is

non-trivial as an ECU connected to the CAN bus cannot detect which of its messages are received

by certain ECUs. The ACK bit itself only indicates that some ECU has received the message, not

41

which particular ECU(s) have received it. As multiple ECUs will set the ACK bit when a message

is received, we cannot simply use this ACK bit to determine the set of ECUs E1:k that receive an

arbitrary Ij .

3.3.2 System overview

We splitCANvas into twomain components: (1) a sourcemapper and (2) a destinationmapper. As

mentioned above, we can satisfy our ECU enumeration requirement by simply using the output

of source mapping. For (1), we passively collect several minutes of CAN traffic. After a passive

data collection, the source mapper uses the data to produce a mapping of each unique CAN ID to

its source ECU and subsequently, by grouping IDs with a shared source, a list of all active source

ECUs on the bus. For (2), we interact with the stock vehicle’s network directly and perform

an active analysis to determine message destination. CANvas systematically isolates each ECU,

which will most likely cause the vehicle 6 to enter a temporary error state that the adversary can

reset.

We assume that the adversary has access to the OBD-II port of the stock vehicle and can

connect the CANvas mapper directly to the CAN bus with the ability to read and write to the

bus. We also assume that the vehicle even has a CAN bus and that the standard CAN protocol is

implemented, which most vehicles will reflect [15]. Our source mapper should also only involve

software operations so that the adversary can do another mapping once in the victim vehicle’s

network. For destination mapping on the stock vehicle, the adversary should also be able to

transition the vehicle’s ignition switch between the LOCK, ACC and ON positions as they will

have to reset the vehicle after each iteration to exit the error state.

As seen in Figure 12, the CANvasworkflow obtains source mapping results by step 4. Then,

it will enumerate the ECUs in step 5. CANvas then performs destination mapping and generates

the full map at step 10. This workflow can be reduced into four major steps:

1. Data collection: The CAN pins of the OBD-II port provide access to the frame-level signals
6As mentioned earlier, this step would not be performed on the victim vehicle.

42

Figure 12: CANvas workflow

and the message-level data. CANvaswill read this traffic for several minutes and timestamp

each received message. From this traffic, we will obtain the set of unique message IDs

observed in the network and a set of timestamped data for each ID. Likewise, when on

the victim vehicle, the adversary will use the compromised ECU to read timestamped CAN

messages as input to source mapping.

2. Source mapping: With the list of all unique message IDs, the source mapper will extract

the timestamped CAN traffic for each ID and determine which IDs share the same source.

To do this, we select two message IDs and run their CAN traffic through our comparison

algorithm, which will determine if the two IDs originate from the same ECU.

3. ECU enumeration: Using the set of matching ID pairs from source mapping, the enumerator

will simply group pairs that originate from the same ECU. The output of this step will be a

list of ECUs and associated source IDs.

4. Destinationmapping: Using the ECU enumeration output, the destinationmapperwill iden-

tify the ECUs that correctly receive a given message ID. CANvas will isolate a target ECU

by performing a shutdown on all other ECUs. Once an ECU is isolated, we inject all unique

43

observed message IDs and determine which ECUs receive the message. Again, this step is

only performed on the stock vehicle and not on the victim vehicle.

3.4 ID source mapping

In this section, we describe an approach to map each CAN message to its source.

Periodicity exposes identity of source ECU: Due to the absence of source information

in a CAN message, we must rely on some uniquely identifying characteristic that can be tied to a

particular ECU. Although ECUs communicate on a broadcast bus with no source information in

their messages, we find that the periodic nature of their transmissions can permit an adversary

to uniquely identify a message’s source. Following observations from prior work [15, 43] and

CAN documentation [39, 71], we consider clock skew as a candidate fingerprinting mechanism.

In particular, time instants for in-vehicle ECUs rely on a quartz crystal clock [39], and we can use

the relationship between these clocks to identify a transmitting ECU.We first define the following

terms considering two clocks, C1 and C2:

• Clock frequency: The number of cycles per true second, e.g., if C1 operates at 16kHz,

then C1 cycles 16,000 times every one true second.

• Relative clock offset: The difference in time reported by C1 and C2, e.g., if C1 reports

time t1 of 4.1ms and C2 reports t2 of 4.2ms, their offset OC1,C2 is 0.1 ms. Where only one

clock is denoted for relative offset, the other clock is the clock of the receiving node.

• Relative clock skew: The difference in clock frequencies of two clocks, or the first deriva-

tive of offset w.r.t. true time, e.g., if C1 operates at 16kHz and C1 operates at 16.1kHz, their

skew SC1,C2 is 100Hz. Where only one clock is denoted for relative skew, the other clock

is the clock of the receiving node.

Two clockswith a relative clock offset of 0 are considered to be synchronized, and two clocks

with a nonzero relative clock skew are said to “skew apart,” or have an increasing relative offset

over time [71]. Since the CAN protocol does not implement a global clock, it is considered to be

44

unsynchronized as each ECU relies on its own local clock. The clock offset and skew of an ECU

relative to any other ECU is distinct, thus providing us with a uniquely identifying characteristic

for source mapping.

High-level idea: To map each unique ID to its transmitting ECU, we break the module

into two steps: (1) computing either the skew skewf(Ii) or offset offsetf(Ii) of each ID Ii and

(2) then clustering IDs with the same skew or offset where each cluster denotes a distinct source

ECU, Esrc. This module outputs a mapping of source ECUs to their set of source IDs. The main

input to this module is a passively-logged CAN traffic dump, which contains entries in the form

of (Ii, tIi,n) where Ii is the ID of the message and tIi,n is the timestamp of the nth occurrence of

Ii.

3.4.1 Limitations of prior work

Cho et al. use clock skew as a means of building an intrusion detection mechanism to identify an

attack by a malicious ECU [15]. Specifically, this work uses timestamps of periodically-received

message IDs and posit that IDs with the same skew originate from the same ECU.

To compute the clock skew of an ID Ii over time, Cho et al. perform the following steps [15]:

(1) compute Ii’s expected period, µTi
, (2) compute the offset, Oi, by subtracting the expected

timestamp (using µTi
from the actual timestamp), (3) take the average of Oi over a batch of N

messages, (4) add Oiavg to an accumulated offset, Oacc, and (5) then compute the skew, SIi , by

taking the slope of Oacc versus time. This work uses the Recursive Least Squares algorithm to

minimize the errors. After every batch of N messages, Oacc increases by Oi, where k is the kth

batch. From this plot, since Oi should be constant, their formula for skew w.r.t. batch size sets

SIi to:

skewfCho
i (N) =

kOi

kN
=

Oi

N
(1)

As an extension to this work, Sagong et al. note that the skew of Equation 1 varies significantly

45

based on N and use an updated formula for SIi w.r.t. batch size [43]:

skewfSagong
i (N) = N · kOi

kN
= Oi (2)

Figure 13: Prior work mapping an ECU with same periods

Using data from a real vehicle, we now highlight a key limitation of Equations 1 and 2.

Consider Figure 13, where EA is the source of IDs 0x570, 0x571 and 0x572, which share the

same period and then, consider Figure 14, where EB is the source of IDs 0x262, 0x4C8 and 0x521,

which each have different periods. In Figures 13 and 14, we use the equation from prior work [15],

skewfCho
i , with N = 20 to plot the skew of all six IDs; skewfSagong

i produces similar results. We

can correctly conclude from Figure 13 that the IDs of EA originate from a single ECU. However,

from Figure 14, we will incorrectly conclude that IDs 0x262, 0x4C8 and 0x521 originate from three

separate ECUs. Our analysis and experiments shed light on why these approaches fail; the skew

value they compute is period-dependent.

46

Figure 14: Prior work mapping an ECU with different periods

As such, we update Equations 1 and 2 w.r.t. period T and batch size N :

skewfCho
i (N, T) =

kOi

kTN
=

Oi

TN
(3)

skewfSagong
i (N, T) = N · kOi

kTN
=

Oi

T
(4)

To potentially fix this issue, we can attempt a strawman that is not dependent on period or batch

size.

skewfStraw
i (N, T) = TN · kOi

kTN
= Oi (5)

Ideally, accounting for both batch-size and message-period (essentially batch-period, NT) using

Equation 5 should give us a unique value that is common only among IDs from the same ECU.

47

We apply Equation 5 for all Ii of a vehicle, and we attempt to establish distinct groupings of the

computed skew for each ID, SIi , which would identify which Ii share the same Esrc.

Unfortunately, this is a difficult task as Ii from the sameEsrc still do not have similar skews.

This issue is further demonstrated as SIi varies across different data dumps or even segments of a

given dump. Upon further inspection, we find that themeasured SIi is affected by the deviation in

an ID’s period. This deviation in the period, σpi , is attributed to sources of “noise”, i.e., the period

of a given message varies due to scheduling, queuing and arbitration delay. We also find that

some Ii produce SIi with more deviation than others and produce widely-varying skew values,

thus making our straw-man solution an unlikely candidate for source mapping. It is clear that we

now need a method of extracting the clock skew invariant that is: (a) independent of the period

of Ii and (b) robust to noise in the period.

Issue with straw-man: In Equation 5, it is clear that, relative to the receiver, this “skew”

function computes offset rather than true skew. Following our definitions for source mapping,

a plot of relative offset over time should either be linearly increasing or decreasing if there is a

nonzero skew between two clocks. In other words, if the relative skew between an Esrc and the

receiver is non-zero, then we should observe a gradual change in the offset. However, previous

work fails to capture this change in offset over time [15, 43].

3.4.2 Relative offset as a unique identifier

As mentioned above, clock offset and skew of an ECU relative to another ECU is distinct. We

must note that the clock offset measured from one ID, I1, of an Esrc may not be the same as the

offset of another ID, I2, from Esrc. If the initial transmission time of I1 differs from that of I2,

the OI1 could not equal OI2 . Rather, the invariant here is the change in relative offset, ∆OIi ; as

the skew of Esrc relative to the receiver is a constant nonzero value, the ∆OIi will be a constant

nonzero as well (the derivative of offset is skew).

By measuring this change in offset, we can uniquely identify an Esrc, but we must ensure

48

our method of extracting this change in offset is (a) robust to a noisy period and (b) period-

independent. To address the issue of noise in the period of Ii, pIi , we compute the relative offset

between a pair of two different IDs denoted byOI1,I2 . By performing this computation pair-wise,

we expect OI1,I2 to have a deviation of approximately 0 if I1, I2 ∈ Esrc as the sources of noise for

I1, I2 should mostly be shared. In reality, this deviation is very close but not exactly equal to 0;

we define a practical threshold for this deviation in our evaluation.

With a pairwise approach to computingOI1,I2 and the requirement for a period-independent

approach, we face a new challenge: determining at what point in time to observe this relative off-

set regardless of the period of I1 or I2. Thus, we can compute offset at the least common multiple

of I1 and I2, which we call the hyper-period.

Figure 15: Measuring clock offset at the hyper-period

Measuring offset at the hyper-period: To guide our algorithm design for computing

∆OI1,I2 over time, we first model two periodically-transmitted IDs observed on the CAN bus.

Consider two IDs, I1 and I2, from the same Esrc which transmit at a period of p1 and p2, respec-

tively. For example, let p1 be 18ms and p2 be 6ms. For now, we assume that the relative offset

between I1 and I2 is 0. This offset should not change over time as they originate from the same

Esrc. To accurately compute the relative offset of these two IDs, OI1,I2 , we must select a time

instant when the expected offset should also be 0: the hyper-period of I1 and I2, or the least

49

common multiple of p1 and p2. As seen in Figure 15, this time instant occurs at 18ms, or the

lcm(18, 6). Therefore, by computing the difference between the times reported from I1 and I2

every 18ms, or the hyper-period of I1 and I2, we can track the value of relative offset over time.

If this relative offset is a nonzero constant, then the two IDs originate from the same ECU.

With an input of several minutes of timestamped CAN data, we can track relative offset

over the timeline of two message IDs. Note that each timestamp has a noise component that

stems from scheduling, queuing and arbitration delay. To compare whether two message IDs

originate from the same ECU, we first assume that they are sent by separate ECUs. The two

message IDs, I1 and I2, have periods, p1 and p2, and they have relative offsets, OI1 and OI2 . We

draw the following relationships between these variables:

• p2 = lp1, where l is the ratio of the periods.

• OI2 = jOI1 , where if j=1, then both IDs sent by same ECU; otherwise, they were sent by

different ECUs.

• n = ml, where LCM(n,m) = l as depicted in Figure 15.

By computing the difference between every n occurrences of I1 and every m occurrences

of I2, which occurs at the hyper-period of I1 and I2, we produce the following equation:

OI1,I2 = (mp2 +OI2 + i2)− (np1 +OI1 + i1) (6)

We find that when we average the result of Equation 6 across the entire data log, the ex-

pected value is 0 if I1 and I2 originate from the same ECU. In reality, this value is close to 0 due

to the deviation of a message’s period. From experimental data, we define a threshold of 1ms for

the change in relative offset, where a value under the threshold will classify the two IDs with the

same source ECU. Using this approach to revisit the setup described in Figure 14, we correctly

conclude that IDs 0x262, 0x4C8 and 0x521 originate from the same ECU.

Practical challenges: While the above approach is correct, there are a number of other

50

practical challenges we need to address to ensure accurate mapping:

1. Large hyper-period: Consider a hyper-period that is “large,” or on the scale of several min-

utes, e.g., the hyper-period of p1 = 980ms and p2 = 5008ms is over 20 minutes. Since we

only extract one relative offset value per hyper-period, we would need hours of CAN traffic

to produce a valid result. To ensure that ourmapper is fast, this length of traffic log becomes

unreasonable; we want to produce a full network map in under an hour. Fortunately, with

a pairwise approach, we can choose to not attempt a comparison when the hyper-period

is large; for example, if we assume that the Esrc of I1 also transmits another ID, I3, where

the hyper-period of I1 and I3 is small, we can still determine that I1, I3 ∈ Esrc.

2. Large period deviation, σpi : In early experiments, we discovered messages that had a large

measured σpi (we define large as σpi ≥ 0.1pi) and, at first, assumed that these messages

were either aperiodic or sporadic (aperiodic with a hard deadline). However, upon closer

inspection, we noticed that these messages appeared to be periodic in nature. We observed

three different patterns that altered the measured σpi : (1) the period simply had a large σpi ,

(2) periodic messages would occasionally stop transmitting for some time, and (3) periodic

messages were missing their deadlines. With a large enough σpi , the deviation would con-

ceal an inconstant∆OIi and make it difficult to detect a mismatch. We experimentally find

that a σpi greater than 8% of pi results in incorrect outputs. Therefore, CANvas will choose

to test Ii on the following cases when its σpi is under a defined threshold, which we set to

σpi ≤ 0.08pi from our experiments.

3. Periodic messages that occasionally stop: We find that some Ii are periodic and will stop

transmitting for some time, causing a measured σpi to be large. To combat this issue, we

only perform pairwise offset tracking when the given message was actively transmitting.

In the event we compare two Ii that both occasionally stop and there is no overlap of active

transmissions, we then rely on our pairwise approach to match the Ii to another ID from

the same Esrc.

51

4. Messages that miss deadlines: For some Ii with a large σpi , we observe two different inter-

arrival times: pi and 2pi. When a task on one of the ECUs misses its deadline and cannot

produce a message on time, it will skip that cycle and transmit during the next cycle [71].

Thus, when a deadline is missed, we will observe an inter-arrival time of 2pi. In this sit-

uation, there are two options: (1) perform relative offset tracking on portions of the log

when deadlines are not missed or (2) interpolate the missed inter-arrival times. If a mes-

sage frequently misses its deadline, the first option is not viable. To interpolate a missed

arrival time, we insert an entry in the traffic log with a timestamp equal to the average of

the preceding and the following timestamp.

Factors for mapping time: For source mapping, we experimentally find that 30 minutes

of data provides enough samples for larger hyper-periods to map accurately. While this stage has

static run-time, the variation in time requirements will be dependent on the number of observed

messages IDs. The more message IDs that exist in the network, the longer the mapping time

takes; vehicles with more message IDs take longer to complete mapping due to an increase in

message-pairs. However, to further reduce mapping time, mapping messages with small periods

requires much less traffic data. To save additional time if necessary, it is recommended to reduce

the traffic log length for high-frequency messages. Also, if there are few large periodic messages

or if those messages are not relevant for whatever reason, the length of the initial traffic log can

be reduced as necessary instead of the recommended 30 minutes.

3.5 ID destination mapping

While ID source mapping is the primary contribution of this kill-chain stage, we also want to

provide destination information about each ID in a CAN bus. As our approach to destination

mapping requires physical access, we can perform this mapping on the stock vehicle to ensure

that a vehicle’s ECUs does not block any messages at the hardware-level.

Intuition: The destination(s) of a particular CAN message are those ECUs who correctly

52

receive a given message. Despite the broadcast nature of CAN, if an ECU does not correctly

receive a message, it will not set the ACK bit; however, if other ECUs receive this message, they

will set the dominant ACK bit. Unfortunately, an ACK observed by the transmitting ECU only

means that some active ECU correctly received the message. Therefore, with multiple active

ECUs in the network, we cannot identify which ECUs were the destination for a given message.

Consider the scenario where there is only one active destination ECU, Edst, in the network other

than a transmitting source ECU, Esrc. For each message sent by Esrc, a set ACK bit (performed

only byEdst) would indicate that only one ECU received the message: Edst. Thus, in this scenario,

Esrc could simply inject all possible Ii and detect which messages have a set ACK bit. The major

challenge here is identifying a method of isolating an Edst and “removing” all other ECUs from

the network. We define the bare minimum of “removal” as preventing an ECU from participating

in the acknowledgement process. Thus, our idea for performing this removal is to transition an

ECU into an error-state that prevents it from setting the ACK bit for any message. We can do this

by exploiting the error-handling mechanism in CAN as detailed in Chapter 2.

3.5.1 Limitations of prior work

Imposing bus-off state: The challenge in transitioning an ECU to bus-off is to determine what

kind of error to produce and how to produce it. We look to previous work [30] that aims to shut

down an ECU for the purpose of an attack. The authors aim to shut down an ECU by causing

an error in the target ECU. By exploiting the error-handling protocol in CAN, where bus-off

effectively removes an ECU from the network, they choose to increment the error counter of a

target by causing a bit error. This error occurs when a transmitting ECU reads back each bit it

writes; when the actual bit is different, the ECU invokes an error. Since only one ECU is expected

to win the bus arbitration, the authors point out that two winners would potentially cause a

bit error. For example, suppose that the victim ECU transmits a message with ID 0x262. If the

attacker ECU also transmits ID 0x262 at the exact same time as the victim, both ECUs will win

arbitration. However, to ensure that the victim has a bit error, the attacker’s message will set

53

its DLC, or data length count, to 0 (most practical messages contain at least some data). After

a sufficient number of these attack messages, the victim ECU will transition into the bus-off

state.

The main challenge here is synchronizing the attack message with the victim message so

they both enter arbitration simultaneously. Their insight is to inject a message of higher priority

around the time when the victim should transmit. The higher priority message will block the

victim until the bus is idle, where it will then transmit. The attacker will load its attack message

immediately after the higher priority message is transmitted, thus allowing both the victim and

attack message to arbitrate simultaneously. Since there is noise in the true transmission time of

the victim’s first attempt at transmitting, there is a chance that the attacker will need to make

multiple attempts to cause an error. The number of injection attempts needed to cause a single

bit error, κ, is defined as the following where I is a confidence attack parameter (high parameter

value means higher confidence in attack), σpv is the jitter deviation of the victim’s period, and

Sbus is the speed of the bus in Kbps:

κ =

⌈
2
√
2IσpvSbus

124

⌉
(7)

The authors state that only one of these injections is needed to cause a bit error if setting I = 3

and at most 2 if setting I = 4, given that the period deviation is 0.025ms.

Straw-man limitations: Suppose we used the above approach to cause a bus-off in a real

vehicle. Unfortunately, in sample traffic dumps from two real vehicles, the smallest deviation that

we observed was approximately 0.15ms. Using the equation given by Cho et al. [30], the number

of preceded message injections per error is 8 when the period deviates by at least 0.205ms; if 8

injections are required, any successful bit error would be undone by successful message trans-

missions. We look at available traffic logs used in the works by Miller et al. [51]. For this traffic

log, the majority of the messages have a period deviation over 0.205ms. In other words, assuming

the best-case scenario of 0.15ms, we would need to inject at least 6 higher-priority messages, or

54

preceded messages, for a bus speed of 500Kbps. Considering that each successful transmission

by the victim ECU decrements the error count by 1, we would effectively only increase the error

count by 2 with each successful attack (instead of the expected 8). Since the majority of messages

have a period deviation greater than 0.205ms, it is highly unlikely to use this method for isolating

an ECU. Thus, we need a method of transitioning an ECU into the bus-off state that is reliable

and robust even when the period deviates by more than 0.025ms.

3.5.2 Forced ECU isolation

High-level idea: Tomap each unique ID to its set of destination ECUs, we break the module into

two steps. We repeat these two steps for all n ECUs in the network. The first step is to isolate the

target ECU and shut off all others by transitioning the non-target ECUs to the bus-off state. As

there are n ECUs in the network, we will need to “bus-of” n− 1 ECUs for each ECU (i.e., we will

need to perform the bus-off at least n(n− 1) times). Once we isolate an ECU, we then inject the

set of all Ii and observe which messages have a set ACK bit, thus identifying the set of Ii where

the target ECU is an Edst.

Inducing a direct bit-error: Isolating an ECU via the bus-off method requires a quick

and effective approach. Since we are not limited to operating through the interface of a CAN

controller, we can directly view the CAN frames in real-time via digital I/O pins. However, since

we are using a microcontroller that operates at the same voltage of the CAN controller, we do not

operate at the true CAN voltage. Instead, we tap directly between the interface of the Arduino’s

CAN controller and the CAN transceiver, where we can safely access the bus data. At this junc-

tion, we observe that the data on the line is within the Arduino’s voltage and contains the full

data frame, including SOF, ACK and EOF bits. With this access to the full data frame rather than

just the components of the CAN message, we can directly induce an error on the bus and thus

achieve the bus-off attack. By reading the ID of the message in real-time, we can choose to attack

any ID by simply driving a dominant bit to the CAN transceiver.

Note that the bus-off method requires attacking a message ID every time it occurs until

55

the ECU enters the bus-off state. However, in the event that a message has a very long period,

the time to perform the bus-off will take significant time. As such, we can employ the result of

CANvas’ source mapping component by identifying the ID with the smallest period per ECU and

attacking just that ID. In practice, we have found that every real ECU we have encountered has

at least one ID that operates under 100ms. Thus, this approach makes the destination mapping

component of CANvas fast.

Determining message receive filter: Now that we can isolate a single ECU in the net-

work, we can simply inject all messages in the observed ID space and determine which messages

are correctly received by the ECU. However, to view the ACK bit at the network level, which is

not visible to the user, the obvious option is to use a logic analyzer. For simplicity, we seek an

alternative that uses the same Arduino. We observed that, if a message is sent to a single ECU

and it does not correctly receive the message, the transmitter will re-attempt to send the message

until it is received correctly. As such, if we transmit a message and see a continuous stream of

the same ID from our mapping device, then we may conclude that the message ID is not received

by the isolated ECU.

Practical challenges: Since our approach to destination mapping involves shutting off

multiple ECUs at a time, we encounter a couple of challenges in a real vehicle setting: (1) ECUs

that auto-recover and (2) ECUs that are persistently active. We now define these scenarios and

provide a detailed approach to addressing these practical challenges:

1. ECUs that auto-recover : In our earlier experiments, we performed a simple experiment to

verify the potential of an isolation method. We attempted to transition all ECUs in the

network to the bus-off state by shorting the CAN bus pins, which would effectively cause a

transmit error for all ECUs and force them into bus-off. However, after removing the short,

we saw that some CANmessages were still transmitted onto the network, clearly indicating

that some ECUs left the bus-off state. We find that these ECUs would wait a predefined

amount of time before re-transmitting again as these ECUs were critical to the vehicle’s

56

powertrain (engine, hybrid, etc.) [39]. In this situation, we would transmit a portion of

the injected messages onto the bus and then re-isolate our target ECU when a non-target

starts to transmit again. This approach is only reasonable for recovery times on the scale

of seconds.

2. ECUs that are persistently active: Out of the set of ECUs that did auto-recover, we also

noticed that one ECU seemed to be persistently active. In other words, there appeared to

be no delay between a transition into the bus-off state and the next transmission from the

ECU. Upon closer inspection, we found that this ECU would auto-recover only after 128

occurrences of 11 recessive bits [40]. In this situation, we must “hold” the bus open by

constantly transmitting false messages from our device to trick the recovering ECU into

thinking that the bus is still active.

Factors for mapping time: For destination mapping, the run-time is dependent on the

number of ECUs and increases with more ECUs. We acknowledge the potential of long run-times

for vehicles with tens of ECUs if all were CAN-enabled. To combat this, we suggest performing

the bus-off on the ID with the smallest period per ECU to reduce the time attributed to achieving

ECU isolation. Also, for our two vehicles, all observed IDs were active when the vehicle was

simply in ACC rather than ON so there may be no need to crank the engine per ECU.

3.6 Evaluation

We now present our evaluation for the CANvas network mapper and detail the following re-

sults:

1. identifies an unexpected ECU in a ‘09 Toyota Prius,

2. identifies the absence message-receive filters in a ‘17 Ford Focus,

3. produces a sound source mapping of two real vehicles and accurately identifies the source

of approximately 95% of all Ii in the network and a complete destination mapping with an

isolation technique that is 100% reliable,

57

4. successfully demonstrate our forced ECU isolation on three extracted ECUs,

5. and produces source mapping of three additional vehicles.

Setup and methodology: Our experimental setup includes five real vehicles and several

synthetic networks to demonstrate the above benefits. Below is a brief description of the CANvas

hardware implementation, five real vehicles and our synthetic network of real ECUs:

Figure 16: A thoroughly
disassembled 2009 Toyota Prius

Figure 17: A thoroughly
disassembled 2017 Ford Focus

• Mapping device: To interface with a CAN bus, our mapping device consists of three com-

ponents: an Arduino Due microcontroller with an 84 MHz clock and an on-board CAN

controller, a TI VP232 CAN transceiver, and a 120Ω resistor. To gain direct write access to

the bus for destination mapping, we connect a digital I/O pin to the driver input pin of the

transceiver.

• ‘09 Toyota Prius and ‘17 Ford Focus: The Prius contains eight original ECUs that transmit

on a single CAN bus at 500 kbps. The Focus contains eleven original ECUs that transmit

on three CAN buses at varying speeds; as our model of the Focus is the standard edition,

only the high-speed 500 kbps bus has more than one active ECU. We obtain ground truth

for our experiments by physically taking apart the car and gaining direct access to the

ECUs by splicing directly into the CAN wires as seen in Figures 16 and 17. We use a paid

subscription to both Toyota and Ford’s mechanics’ manuals for guidance on disassembly of

58

ECU # Source message IDs Actual ECU
A 020, 030, 0B1, 0B3, 0B4, 230, 4C3, 591 Skid control ECU
B 022, 023 Yaw rate sensor
C 025, 4C6 Steering sensor
D 038, 03A, 03E, 120, 244, 348, 527, 528, 529, 540, 5B2, 5C8, 5EC, 602 Hybrid control ECU
E 039, 3C8, 3CF, 526, 52C, 5CC, 5D4, 5F8 Engine control module
F 262, 4C8, 521 Power steering ECU
G 3C9, 3CB, 3CD Battery ECU
H 553, 554, 57F, 5B6 Gateway ECU
I 570, 571, 572 Unknown ECU

Table 2: 2009 Toyota Prius source mapping output

vehicle components [72, 73]. Due to the non-destructive design of CANvas, our interaction

does not impose any permanent errors to the vehicle.

• ‘08 Ford Escape, ‘10 Toyota Prius, and ‘15 Ford Fiesta: We obtain CAN traffic from three

additional vehicles for testing only our source mapper, as we did not have permission to

inject data. Since the vehicles are from the same make, we use data from the ‘09 Prius

and ‘17 Focus to partially confirm our source mapping output without disassembling these

vehicles.

• Synthetic networks: To further validate the capability of our mapper, we perform additional

experiments on three real engine ECUs extracted from a ‘12 Ford Focus, ‘13 Ford Escape

and ‘14 Ford Escape.

3.6.1 Discovering an unexpected ECU

We now describe a real scenario where, in the process of designing CANvas, we discovered an

unexpected ECU in our Prius. Using the results of our source mapping on the ‘09 Prius as seen in

Table 2, we noticed that there was a total of nine ECUs when only eight were expected. Even af-

ter manually disconnecting all eight known ECUs, we still observed CAN traffic, specifically IDs

I570−572, coming from a single ECU. By looking at the history of the vehicle and systematically

disconnecting various systems, we discovered that this ECU was installed as part of a modifica-

tion from several years ago. The Prius had an additional battery installed to grant it all-electric

59

capabilities and, with the use of the network mapper, we now know that a new CAN-enabled de-

vice was added. We confirm that these IDs are new by comparing our IDs to a same-generation

Prius [74]. Thus, if we took a network map of a stock 2009 Toyota Prius, we could easily compare

our results on a victim vehicle and find that the victim network was different.

3.6.2 Mapping our test vehicles

Using the results of CANvas’ destination mapping, we can identify several instances where an

ECU is expected to only receive messages from a subset of other ECUs but still receives all other

messages. We have found that all ECUs in the Focus and Prius do not employ any filter on the

receipt of incoming messages. In Ford’s Motorcraft TechInfo Service, we can see simple diagrams

of how the ECUs communicate as part of the vehicle’s systems [73]. For example, the Focus’

braking system involves communication between the instrument panel cluster, the transmission

ECU, the body control ECU, and the engine ECU.

Source mapping results: Using a threshold of 1ms and 30 minutes of traffic collection,

we get a false positive rate of 0% for both vehicles, permitting us to get a sound source mapping

output. Out of a total of 59 unique message IDs, our pairwise timing comparison resulted in 102

matching pairs for the Prius. By performing a simple grouping of these pairs, we get the output

as seen in Table 2. While the majority of the IDs observed on the Prius have a strong periodic

characteristic, we discuss some special cases we encountered. Most of the messages were under

five seconds except for I57F with a period of 5 seconds and I602 with a period of 60 seconds. The

majority of our messages matched with multiple IDs from the same ECUs but due to the large

period of I57F and I602, they only had a single match. However, due to our pairwise approach, we

can still map these two IDs using a shared matching pair. We also encounter a few examples of

messages that miss their deadline and wait until the next cycle to re-transmit. For the Focus, we

observe messages that miss their deadlines and either transmit two messages on the next cycle

or drop the missed message and wait for the next cycle. In these cases, we simply remove the

inter-arrival times that exceed two standard deviations from the average period and interpolate

60

for the removed timestamps.

Destination mapping results: With a CAN bus running at 500 kbps, we discover that

all of the ECUs in the Prius do not implement any filtering between the network and the CAN

controller. When each ECU is isolated, we see that all IDs are properly acknowledged by the

receiving ECU. We do observe two ECUs that recover quickly from the bus-off method, specifi-

cally the engine control module and the skid control ECU. With the other ECUs in the vehicle, it

was sufficient to perform our bus-off once and the ECU would stop transmitting. For these two

ECUs, we selected the smallest period ID and held the bus open by injecting false messages to

keep the two ECUs from auto-recovering. Additionally, we discovered that the Focus also do not

implement any sort of filtering for the IDs we observe on the CAN. From these findings, we can

conclude that attacking via the reception of a message for these vehicles could prove trivial due to

the lack of filtering between the network and the controller. In general, the maximum number of

manual transitions of the ignition switch is equal to the number of detected CAN-enabled ECUs

in the vehicle. For the keyless ignition of the 2009 Prius, we transition the ignition 7 times as two

ECUs recover on their own (the Prius has 9 total CAN-enabled ECUs). For the keyed ignition of

the 2017 Focus, we transition the ignition 7 times as two ECUs recover on their own (the Focus

has 9 total CAN-enabled ECUs).

Mapping real extracted Ford ECUs: We also obtained three Ford engine ECUs from a

‘12 Focus, ‘13 Escape and ‘14 Escape. By collecting data from these three ECUs, we found that

they shared the many of the same message IDs and conclude that they are based off of the same

engine controller configuration. As they all auto-recover, they were prime candidates for testing

our forced ECU isolation technique.

Mapping other vehicles: We use CANvas on three other vehicles to look for data that

seems logical to our findings from the test cars. For the Ford vehicles, we look for similarities

with our extracted engine ECUs. For the ‘08 Escape, we found a set of IDs that we believe is the

engine ECU and only has a subset of those found on our extracted ECU. For the ‘15 Fiesta, we also

61

found a likely candidate for an engine ECU that has more IDs than our extracted ECUs. Since

these vehicles range over three different Ford generations, it seems logical that the newer engine

ECUs transmit more IDs. Additionally, we find a few similarities between the ‘09 and ‘10 Prius.

We found an ECU on the ‘10 that is likely to be the skid control ECU, which has similar IDs to

the ’09 Prius. These findings potentially demonstrate CANvas’ source mapping capabilities even

without ground truth.

3.7 Countermeasures

The core disconnect that we exploit is that CAN messages are periodic in nature and thus expose

a unique timing characteristic.

Masking clock offset: One potential defense here is to intentionally add variance to the

periodicity so that it would be challenging for CANvas to identify which messages originate from

which ECUs. The concept of masking unique clock characteristics is not a new defense in the field

of traditional network [75]. However, it is highly unlikely that an automaker would intention-

ally alter message timing (as a method of masking clock characteristics) due to the challenges

that arise from scheduling real-time embedded systems. There are numerous challenges that

automakers already face in achieving reliable and robust scheduling for their vehicles, and any

modification to the timing of CAN messages would add a great amount of complexity to the

already complex challenge of scheduling.

Dynamic message IDs: Another option for a defense is to make it challenging for the

adversary to track a message by its ID by changing the ID each time a message is sent from the

same ECU. However, since the message ID plays a role in enforcing the priority of a message, it

is highly unlikely this defense would be practical. Likewise, any encryption on the CAN bus will

likely exist for only the data payload and not the message ID as it still plays a role in priority. In

short, as the CANvas network mapper does not employ any active measures and just passively

sniffs the bus for source mapping, it will be difficult to build countermeasures against it.

62

3.8 Summary

In this chapter, we presented CANvas, a network mapper that could identify all transmitting

ECUs on a CAN bus. CANvas leverages the periodicity of CANmessages to extract unique timing

characteristics that can uniquely identify the origin of a message even though these ECUs exist on

a broadcast network. By exploiting this disconnect, CANvas can accurately map real in-vehicle

networks and enables a remote adversary to obtain critical information about a network prior to

launching the next attack stages. We also propose countermeasures that target this disconnect

by intentionally removing periodicity or making it difficult for an adversary to track periodic

messages.

63

4 CANnon: Remote Disruption of CAN Bus via Peripheral

Clock Gating Attacks

In this chapter, we discuss our contributions to the disruption and pivoting stage of our attack

kill chain. The contributions of the thesis in this stage are:

• Kill-chain goal: In this stage, we aim to develop a disruption attack that can impact the

transmissions of other ECUs and affect its state on the CAN bus. With this ability, the

remote adversary can forcibly delay the transmissions of other ECUs or even impact the

synchronization of other ECUs to the CAN bus.

• Disconnect to exploit: We find that a new power-saving feature called peripheral clock

gating permits software instructions to “freeze” a CAN controller in the middle of a trans-

mission, impacting a CAN message at the CAN physical layer. By disabling the clock with

this software instruction at specific times, the remote adversary can even shut down a spe-

cific ECU in addition to impacting its transmissions on the CAN bus.

• Potential countermeasures: The key vulnerability insight here is that the peripheral

clock gating feature can be exploited during the transmission of a CAN message. Thus, we

propose countermeasures to either detect the use of clock gating in the middle of a CAN

transmission or prevent clock gating from being exploited (even by removing this feature

altogether).

4.1 Goals for this kill-chain stage

As our adversary cannot directly compromise the safety-critical target ECU (due to being lim-

ited as a remote adversary), they must aim to utilize the initial compromised ECU to influence

the functionality of the target ECU (and its CAN transmissions) without being detected by any

deployed network security mechanisms. One advantage our attacker can exploit is the recent

design choice in modern high-performance ECUs, where the microcontroller units (MCUs) im-

64

plement peripheral clock gating for the CAN controller. By exploiting a vulnerability enabled

by this design, our attacker can use the compromised ECU to influence how other ECUs interact

with the CAN bus. To demonstrate this, we detail a standalone attack that focuses on shutting

down a target ECU. However, the methods that enable this shutdown attack can be used to ex-

tract information in the next kill-chain stage by controlling when messages appear on the bus

and by controlling how other ECUs synchronize their timing to the CAN bus.

Typically, the lack of security on in-vehicle CAN buses used to permit an adversary with ac-

cess to the CAN bus to arbitrarily insert, modify, and delete messages, allowing an attacker to ma-

nipulate the functionality of safety-critical ECUs [8] or limit communication over the bus [46, 47].

However, as a defense against an evolving threat landscape, academic and industry researchers

have proposed a variety of techniques, such as message authentication [76, 77], intrusion detec-

tion systems (IDSes) [48, 16, 17, 29], and secure CAN hardware solutions [20]. Thus, we aim to

investigate a new disruption attack for an adversary to impact CAN bus communications that

does not rely on CAN message injection.

4.2 Stage overview and contributions

Despite efforts to increase the security of automotive networks, a recent class of attacks demon-

strates significant adversarial potential by utilizing the inherent CAN protocol framework to shut

down safety-critical ECUs. Such attacks introduced by prior work are particularly dangerous due

to their ability to disable critical vehicle functionality by shutting down several ECUs from just a

single compromised ECU [46, 30, 47]. Additionally, an adversary could use shutdown attacks to

launch advanced attacks (e.g., stealthy masquerade attacks [15, 43]). Current shutdown attacks

repeatedly trigger the error-handling mechanism on a victim ECU, causing it to enter the bus-off

error-handling state that shuts down the ECU’s CAN communication. This attack is achieved by

either physical manipulation of the bus [47, 46] or carefully synchronized and crafted transmis-

sions [30]. However, these proposals either lack stealthiness against existing security propos-

als [17, 16, 20], require physical access [47, 46], or require strict control (e.g., synchronization)

65

that cannot be achieved in practical remote settings [30].

For this kill-chain stage, we introduce a fundamentally different approach towards mount-

ing shutdown attacks that, to the best of our knowledge, can evade all existing known defenses.

Our attack is facilitated by architectural choices made to improve the integration and efficiency of

automotive ECUs and their microcontroller units (MCUs). Modern MCUs typically integrate the

CAN interface controller as an on-chip (CAN) peripheral in the same package. This design allows

new inputs to the CAN peripheral to be accessible to the application-layer software via an appli-

cation programming interface (API) and, thus, accessible to a remote adversary that successfully

compromises an ECU.

We develop CANnon, a method to maliciously exploit one such input, namely the peripheral

clock gating functionality. This particular API is accessible via software control in most modern

automotiveMCUs, often included as a valuable feature for performance optimization. We demon-

strate how a remote software adversary can employ CANnon to utilize the CAN peripheral’s clock

to bypass the hardware-based CAN protocol compliance and manipulate the ECU output. This

capability enables the adversary to inject arbitrary bits and signals (as compared to only being

able to inject complete CAN-compliant frames) and gain the ability to precisely shape the sig-

nals on the CAN bus with bit-level accuracy. We demonstrate that this capability can be used

to perform reliable and stealthy shutdown attacks. In other words, the modern MCU design has

inadvertently strengthened the capabilities of a remote adversary, who is no longer constrained

by CAN protocol compliance.

Our main insight here is the ability to control the peripheral’s clock signal to then “pause”

the ECU state in the middle of a transmission (or between state transitions). By exercising this

control to selectively pause and resume an ECU’s transmission, we can insert an arbitrary bit

for a duration and at a time instance of our choice. This bit can be used to overwrite a victim’s

message and cause it to detect transmission errors. We also illustrate that the pattern of errors

produced by CANnon is difficult to distinguish from legitimate errors on the CAN bus. Our fine

66

control over malicious bit insertion (rather than message insertion) makes the detection of CAN-

non attacks difficult for currently proposed IDSes, as current techniques typically analyze entire

messages for signs of malicious activity. Additionally, as CANnon does not involve spoofing IDs

or overwriting the content of a message, even ID-based filtering at the data link layer [20] seems

incapable of detecting our attack.7 Preventing CANnon-based attacks require either architectural-

level changes, such as isolation or removal of the clock control, or modifying existing approaches

to specifically detect CANnon-like patterns.

In summary, we contribute the following:

• We introduce new methods to exploit the peripheral clock gating API of automotive MCUs

to bypass hardware-based CAN protocol compliance and inject arbitrary bits on the bus.

In contrast to previous work, we do not exploit diagnostic messages [41, 10, 42] and do not

have tight synchronization requirements [30].

• We present three stealthy versions of CANnon and discuss modifications to make CANnon

stealthy against future defenses.

• We illustrate both a basic denial-of-service (DoS) attack and a targeted victim shutdown

attack atop two modern automotive MCUs used in passenger vehicles: the Microchip SAM

V71 MCU and the STMicro SPC58 MCU. We validate the feasibility of this attack against a

2017 Ford Focus and a 2009 Toyota Prius and achieve a shutdown in less than 2ms.

4.3 Attack goals

Our remote adversary will likely target non-safety-critical ECUs (e.g., the head unit or naviga-

tion system), which often have remote wireless interfaces to handle multiple high-performance

functions. As this adversary likely cannot gain direct compromise of a safety-critical ECU, the

adversary will aim to utilize a compromised ECU to influence the functionality of a different
7Some recently proposed secure transceiver architectures use such filtering, but it is unclear from publicly avail-

able information whether they implement additional countermeasures. We have not evaluated any such products in
the market to check their resistance against the CANnon attack.

67

(typically safety-critical) ECU in the vehicle without being detected by any deployed network se-

curity mechanisms (e.g., IDSes). One way to achieve this attack using the compromised ECU is to

shut down a critical ECU and then disable its functions or impersonate it after the shutdown. In

this stage, we focus on achieving a shutdown of a critical ECU without being detected by state-

of-the-art network defenses, i.e., the adversary succeeds if the defense cannot detect an attack

prior to the shutdown event. As we will demonstrate, the ability to reliably inject an arbitrary

bit at an arbitrary time without being detected by vehicle defenses is sufficient to achieve these

goals.

Thus, we effectively explore the possibility to construct a reliable remote bit insertion at-

tack, which aims to shut down an ECU, operates as a software application, does not require access

or changes to the physical CAN hardware, and deceives even state-of-the-art defenses. Further-

more, although several attacks outlined in Chapter 2 achieve similar goals, to the best of our

knowledge, existing shutdown mechanisms cannot simultaneously be remote (performed only

at the application layer), reliable (ability to consistently succeed), and stealthy (ability to deceive

known defenses). The CANnon attack shows that the adversary model used by the industry has

changed and that the attacker now has new capabilities that prior defenses did not consider. The

notion of stealth is difficult to characterize, considering the rapid progress in defense mecha-

nisms.

4.3.1 High-level attack insight

Contrast with prior invasive glitch attacks: Creating artificial clock glitches is a common

technique to bypass security of MCUs during boot or verification by invasively driving the clock

signal line to ground [42]. The idea behind such a technique is to create artificial transitions

in the state machines implemented in hardware. As described in Chapter 2, the difficulty in

injecting arbitrary bits is the CAN protocol enforcement by the CAN data link layer, i.e., the CAN

controller. Thus, similar to the security logic above, the controller can be viewed as a hardware-

based state machine that enforces CAN protocol compliance. Thus, we draw inspiration from the

68

same direction of work but without requiring invasive physical access to the clock.

CANnon attack anatomy: Any finite-state machine (FSM), e.g., the CAN protocol, im-

plemented using sequential logic elements (flip-flops, registers, etc.) relies on the clock signal for

state transitions and thus any output transmissions. Therefore, control of the clock signal can

be used to force arbitrary deviations from the protocol. As an example, small changes in clock

frequency would directly result in a change of the bit duration on the CAN bus.

Figure 18: Modern ECU design with peripheral clock gating

Disconnect makes clock control possible: In an ideal design, the clock signal should

not be accessible by a remote adversary. However, for modern ECUs, the MCU is a multi-chip

module, where the CAN controller is integrated into the same package as the MCU and is now

called a CAN peripheral. A simplified example of the modern ECU architecture is shown in Fig-

ure 18. Additionally, most modern MCU architectures implement power optimization in the form

of peripheral clock gating. This low-power feature saves energy by shutting down any unwanted

peripherals when they are not required, while allowing the main CPU and other critical func-

tions in the MCU to still operate. As the CAN controller is typically attached as a peripheral to

the MCU chip, there are controls exposed to cut off the CAN peripheral’s clock.

To allow flexibility and control to low-level system designers, most MCUs provide the sys-

tem designer a small software interface for the controls that allow clock cut-off. As we will

demonstrate in our evaluation, clock control can be arbitrarily exercised during regular opera-

tions, which can also provide a remote adversary in control of the software with the same ability

69

to control the CAN protocol FSM. This control effectively allows an adversary to gate the clock

and freeze the protocol FSM, only to later restart the clock to resume the FSM. Thus, this new

capability allows an adversary to arbitrarily manipulate the CAN protocol without modifying the

hardware.

We note that, in most scenarios, cutting off the clock does not affect any data present in

the sequential elements or the outputs of the logic gates. It simply prevents a change in the state

of these elements. Also, without architectural changes, the notion of a frozen state or disabled

clock cannot be recognized or corrected by the CAN controller. An alternative control in the

form of power gating may also be available in certain chips, and we investigated exploiting such

mechanisms. However, we find that disrupting the power simply resets the peripheral and its

buffers/registers, causing the CAN FSM and output to be reset. Ultimately, we discover this attack

vector in the driver code for the CAN peripheral. In hindsight, we realize that another factor that

enabled our discovery of this vulnerability was our choice in experimental setup (detailed in our

evaluation), which closely resembles the modern MCU architecture, whereas most prior research

has continued to use the legacy architecture.

Overview of the attack: For any transmission, the CAN controller outputs the bits of the

frame serially onto the transmit output pin (CANTX in Figure 18), where each new bit is triggered

by a clock transition. The binary output of the controller is converted to a CAN-compatible analog

value on the bus by the transceiver. Consider the case when the CAN controller is transmitting

a dominant logical-0 bit. If the clock is disabled (paused) before the next bit, the CANTX output

would continue to be logical-0 until the next clock edge. Thus, the nodewould continue to assert a

dominant signal until the clock signal is resumed. This action effectively allows the transmission

of a dominant bit of arbitrary duration. Now consider the opposite case when the CAN controller

is transmitting a recessive logical-1 bit. If the clock is disabled, it would continue to assert a

recessive value on the bus, i.e., no signal. The rest of the payload resumes transmission only when

the clock signal is resumed. This action allows the transmission of the payload at an arbitrary

time. Observe that the adversary exploits the controller’s inability to sense the bus state when

70

its clock is in the paused state. Thus, resuming the clock resumes the FSM from the point it was

stopped, regardless of the current bus state or the controller’s transmission output on the bus.

This fact is key to disable the back-off arbitration control in CAN controllers and to transmit a

signal at an arbitrary time.

4.4 Basic remote disruption attack

In what follows, we take a step-wise approach to increase the sophistication of our attack, ul-

timately demonstrating a controlled victim shutdown. In this section, we begin with a simple

application of clock control to disrupt the entire network via a denial-of-service (DoS) attack.

This basic disruption also highlights practical constraints that we must consider to design a reli-

able attack strategy. We note that this basic attack is easy to detect, and current hardware mea-

sures can sufficiently protect against it. However, the techniques we describe are the basis for

precise and consecutive error injections required for a reliable targeted version of this shutdown

attack.

Clock gating at application layer: The primary requirement for this attack is that the

MCU must have control over the clock input for its peripherals, e.g., controllers for different

protocols, such as CAN, Ethernet, FlexRay, etc. For the attack we present here, we choose a

popular hardware device with a high-performance MCU built for networking applications: the

Arduino Due board with an AT91SAM3X8EA 32-bit MCU operating at 84 MHz [78]. The Arduino

Due offers many networking peripherals (e.g., CAN) and its source code (and CAN drivers) are

well-documented, making it ideal for demonstrating our insights. In fact, we find that MCUs

marketed as “high-performance” often include peripheral clock gating as a low-power feature

available for the system designer (and thus a remote adversary).

Another requirement is that enabling/disabling the clock signal should not reset the pe-

ripheral circuitry or change values of its logic elements. Ideally, disabling the clock should only

prevent the sequential elements from transitioning to a new state. This fact holds true for basic

71

clock control mechanisms. For the APIs of the automotive MCUs we evaluate, we find the pres-

ence of multiple instructions that control the clock. Typically, for some of the commonly used

APIs, MCU designers may implement additional check routines before/after a clock disable in-

struction to ensure error-free functioning, e.g., check status of transmission, etc. However, these

procedures were only implemented for some of the available clock control instructions, and we

find at least one instruction that offers a basic control mechanism.

To use the clock control, the adversary must identify which instructions enable an MCU’s

application to control peripheral clock signals. Typically, manufacturers provide basic driver

code for initialization of several peripherals as part of their software development kit (SDK). In

such cases, we can discover clock control instructions in the drivers for the CAN peripheral.

Alternatively, in the event that all clock control instructions are not completely detailed, the

reference/programming manuals for a given MCU often outline the steps required to control

the peripheral clock and will provide the specific registers that control the clock gating. In the

driver for the Arduino Due, we discover the instructions, pmc_enable_periph_clk()

and pmc_disable_periph_clk(), to enable and disable the clock, respectively. These

instructions appear prior to low-level configurations (e.g., memory allocation, buffer flushes, etc.).

However, for another MCU popular in the automotive community, the STMicro SPC58, finding

equivalent clock control instructions was more challenging as directly disabling the peripheral

clock was not possible. Thus, we use its reference manual to identify specific registers that grants

us a similar clock control capability in our evaluation.

Simple disruption attack: Recall that the CAN bus state is dominant if at least one ECU

transmits a dominant bit. As a CAN frame consists of a series of dominant and recessive bits that

follow a particular format, no valid information is conveyed from a single state held on the bus.

Additionally, such a condition would result in continuous errors in the ECUs due to absence of

stuff bits.

Thus, a basic attack we conceive is to disrupt the bus by holding the bus in the dominant

72

state. This disruption would prevent any other ECU from transmitting, leading to a DoS of all

ECUs in the network. An adversary could perform this action at a critical time (e.g., while the

vehicle is in motion) and disrupt key vehicle functionality. For most vehicles, this attack would

result in loss of control by the driver.

Figure 19: Holding dominant state disrupts the bus

Using clock control instructions, the adversary could easily achieve this attack by disabling

the clock and freezing the CAN controller state when it transmits a dominant bit. To launch this

attack, a basic method is to target the start-of-frame (SOF) bit:

• Send a message transmission request to the CAN peripheral with any priority and payload.

• Use a timer to delay for half a bit length for the given bus speed so the peripheral starts the

transmission of the SOF bit.

• Pause the clock using the disable command to freeze the state of the CAN controller during

the SOF bit.

If the bus was initially idle, this sequence would likely lead to the node continuing to hold

the dominant state as depicted in Figure 19. However, there are several practical challenges

evident from these basic steps. One critical challenge we encounter is the precise timing required

to freeze the controller during the target SOF bit. In practice, the selected delay value onlyworks if

the bus was idle when the transmission request was sent and the frame immediately transmitted.

73

In a real scenario, the transmission may start much later (e.g., other bus traffic, scheduling delay,

etc.). Even minor variations in the timer used to realize the delay period can cause an adversary

to miss the SOF bit. Furthermore, any variation in the latency of the actual clock gating effect

from the time that the instruction was issued can cause an adversary to miss the SOF bit.

Although there are practical constraints in this attack, the simplicity of this attack (as a

result of our attack insight) affords an adversary a great deal of flexibility. For example, missing

the SOF bit could be compensated for by using an ID of 0x0 and data payload of 0x0 (essentially

a message of all zeros). Thus, freezing the controller during the arbitration or data payload field

would also disrupt the bus. However, even this all-zero message has recessive bits due to bit stuff-

ing when converted to a CAN frame. Thus, accidentally encountering those bits due to unreliable

timing can cause the attack to fail.

This disruption attack is easy to prevent (if not already prevented) by most modern CAN

buses. This disruption attack closely resembles a typical hardware fault encountered in a real

CAN bus (i.e., bus held-dominant faults). Thus, several existing CAN transceivers implement

built-in mechanisms to prevent the bus from holding a dominant state for a long period of time.

This attack demonstrates the practical feasibility of using the clock control to launch an attack.

This attack, though potentially dangerous, is highly obstructive for all nodes. It is still short of

the goal of this work, which is to target a single ECU with high reliability and without being

detected.

4.5 Reliable target victim shutdown

We now address some of the limitations discussed in the previous section to achieve a reliable

attack that can target a specific victim ECU and quickly shut it down. We detail three variants of

the CANnon attack and provide solutions to challenges observed in practical scenarios.

Reliable clock control: We previously illustrated the difficulty to ensure the clock is

paused during a dominant bit. In general, an adversary with unreliable control of the clock can-

74

not precisely ensure what state the controller outputs. Also, unlike the previous attack, a targeted

attack usually requires overwriting specific bits of a victim message, thus requiring even more

precision. One source of this unreliability is the variation in latency of the clock gating instruc-

tions, before the clock is actually paused. Another issue for this attack is that the adversary must

track the state of the CAN bus and its own transmissions in order to target specific bits. However,

when the CAN controller is in the frozen state, it does not have the ability to observe the CAN

bus state. Without feedback, the adversary is virtually blind to the actual peripheral output while

performing an attack. Thus, the adversary must keep track of which bit of a compromised ECU’s

frame it is transmitting at all times.

When the adversary calls a clock gating instruction (either enable or disable), we experi-

mentally find that it takes up to two MCU clock cycles for the instruction to resume the periph-

eral’s output. Thus, the adversary cannot reliably gate the clock near the edge of a bit transition of

the attack message. A nonzero latency means that the adversary cannot ensure whether a gating

instruction results in the output of the state before or after the state (bit) transition. This latency

can thus influence the state of the bus that is held when the controller is frozen. Additionally, an

adversary will need to make repeated calls to gating instructions within a single frame transmis-

sion by the compromised ECU. If the adversary loses precision in their clock control at any time,

they could lose track of which bit the compromised ECU is currently transmitting.

Improving precision: To address the challenge of reliable clock control, the adversary can

take advantage of the fact that the MCU’s clock operates at a much higher frequency than the

CAN peripheral’s clock. We utilize the MCU’s hardware-based timer, operating it at a frequency

equal to the bus speed. This timer creates interrupts at the middle of each CAN bit, which allows

us to track exactly which bit the compromised ECU is transmitting. Prior to starting the timer, the

adversary must first detect when the compromised ECU attempts to send a frame; from this point,

the adversary should delay half of a bit time before starting the timer interrupt. Our solution is to

gate the clock as close to the middle of a CAN bit, giving the adversary maximum distance from

bit transition edges. With an interrupt at the middle of each bit, the adversary can reliably track

75

the bus state and control the clock with bit-level precision.

Insertion of a single bit: The precise clock control described so far can be used to insert

a single bit on the bus. As described in the previous section, simply disabling the clock is not

sufficient for the adversary to relinquish bus control. It must be ensured that the clock is disabled

during a recessive transmission so that the adversary can continue its attack at a later time (recall

that a recessive output does not influence the bus). Since the adversary only has clock control at

the middle of a bit, the following steps are required to inject a single dominant bit, assuming the

compromised ECU is currently paused at the recessive state: (1) enable clock a half-bit time before

recessive-to-dominant edge, (2) wait one bit time to enter dominant bit, (3) wait another bit time

to enter recessive bit, and (4) pause clock a half bit-time after dominant-to-recessive edge. Thus,

the adversary must use such a pattern of bits within its payload, i.e., a dominant bit between two

recessive bits.

However, this attack pattern introduces another unique challenge. As described earlier, the

ECU reads bus state after each transition. Thus, if the adversary stops its attack during a domi-

nant transmission by the victim, the compromised ECU will raise an error since it transmitted a

recessive bit (a stopping requirement for the adversary) but observed a dominant transmission.

This error will cause the attack ECU to reset its transmission so we must investigate methods to

overcome this challenge as discussed below.

Causing an error on the victim: We now discuss how to exploit clock gating to induce

just a single error on a victim. Our goal is to trick the victim into detecting an error in the

transmission of its own frame, causing its transmit error counter to increase. To achieve this, the

adversarymust induce an error after the victimwins arbitration and becomes the sole transmitter.

As detailed in Chapter 2, a node transmitting on the bus simultaneously checks the bus for any

bit errors. Thus, the adversary can simply overwrite a victim’s recessive bit with a dominant

bit using the steps outlined in the previous section, tricking the victim into thinking it caused

the error. To successfully achieve this, there are two practical challenges that the adversary must

76

consider: (1) it must account for the victim response (i.e., error flag transmission), and (2) it should

identify bits in the victim frame that can be reliably targeted.

Victim’s error response: When the adversary overwrites a victim’s recessive bit with a

dominant bit, the victim will detect a bit error and immediately transmit an error frame. De-

pending on the state of the victim’s error counter, this error frame can be a series of six dominant

or recessive bits. However, as outlined above, an adversary cannot stop its attack during a vic-

tim’s dominant transmission. Thus, an adversary cannot stop the attack if it expects the victim

to transmit an active (dominant) error flag.

Figure 20: Use timer ISR to generate an error frame

To resolve this, the adversary can exploit their clock control to expand a single dominant

bit into a series of six additional dominant bits, or an active-error flag. To generate an active-error

flag from a single dominant bit, we perform four steps as depicted in Figure 20:

1. With clock paused on a recessive bit, the adversary resumes clock for one bit time (or until

the next timer interrupt).

2. After the recessive-to-dominant edge, the adversary pauses clock so the compromised ECU

holds dominant state.

3. After five timer interrupts, the adversary resumes clock.

4. The compromised ECU’s output transitions from dominant to recessive, and the adversary

pauses the clock at the next interrupt and is ready for the next attack.

77

By simultaneously transmitting the flag as the victim transmits its flag, both flags will over-

lap, and the compromised ECU’s transition from dominant to recessive will occur when the bus

state is recessive due to the recessive end of the error flag. This approach enables the attacker

to maintain an error-free transmit state on the compromised ECU so it may prepare for the next

error injection. In scenarios where there are multiple nodes on the bus, the length of the error

frame may be longer and thus the dominant duration by the attacker should be adjusted accord-

ingly.

Targeting victim frames: A challenge we face is determining which bit to overwrite

during a victim frame. Assuming that the adversary can determine the starting point of the

victim’s transmission, identifying the location of general recessive bits may be difficult due to

variations in the payload and stuff bits. Recall that, during the paused clock state, an attacker has

no source of feedback from the bus. Thus, we must identify some invariant about the victim’s

transmission for the adversary to exploit. We borrow an insight from prior work to target the

control fields, which often are static as data payloads do not change length [30]. Alternatively,

the adversary could analyze several frames prior to attack and target bits in the data payload that

remain static. However, as the stuff bits can vary, it is preferable to use the initial control bits for

attack.

4.5.1 Shutting down victims with CANnon

We now stitch together the components described above to transition a victim into the bus-off

state. To achieve the shutdown attack against a specific victim ECU, the adversary must cause

enough errors to forcibly transition the victim into a bus-off state. The goal here is to produce

an attack that operates as fast as possible. For now, we assume that victim transmissions are

periodic, which is often the case according to prior work [31], and thus the period can be used to

estimate a victim ECU’s SOF bit transmission time. As depicted in Figure 21, the CANnon attack

consists of two phases: a loading phase, where the attacker prepares the attack, and a firing phase,

where the error frames are generated.

78

Figure 21: CANnon shutdown workflow

Loading the CANnon: To be able to transmit any arbitrary signal on the bus, the CAN

controller must first win arbitration. Since the adversary only controls the software and is unable

to modify the CAN controller, the compromised ECU’s FSM should be in the same state (sole

arbitration winner) before the adversary can attempt to transmit arbitrary bits. Thus, in the

loading phase, the adversary aims to trick the compromised ECU into thinking that it is allowed

to transmit on the bus as preparation for the firing phase. To do this, the adversary loads the attack

frame (of a specially selected ID and payload) into the CAN peripheral’s transmit buffer and waits

for the compromised ECU to win the bus. In this attack, the adversary waits for completion of

the arbitration phase and transmission of the control bits, before pausing the clock during the

first payload bit, which can be designed to be recessive. At this point, the adversary is ready to

79

start the firing phase of the attack while waiting for victim messages to appear on the bus.

To ensure a quick transition into the firing phase, the adversary can set the arbitration

ID of the attack frame to 0x0, giving it highest priority on the bus. This ID ensures that the

compromised ECU wins control of the bus as soon as the bus is idle. Then, to transition a victim

into bus-off, the adversary needs to inject a dominant bit 32 times using a single attack frame.

Thus, the data payload should be set to contain 64 bits of data with a pattern of alternating 0’s

and 1’s, or a payload of 0x5555.5555.5555.5555. This payload gives the adversary 32

dominant bits to use for an attack and 32 recessive bits to temporarily pause the attack between

victim transmissions. An additional benefit is that having a consistent pattern simplifies the logic

for the adversary.

It should be noted that a different attack payload can still be utilized to achieve the same

attack, albeit in a slightly sub-optimal manner. Any deviation from a payload of alternating

dominant and recessive bits would require the attacker to reload another attack frame before

shutting down the ECU.

Firing the CANnon: In the firing phase, the adversary utilizes the strategy described ear-

lier to convert a single dominant bit into an active error flag, which will overwrite the recessive

bits of the victim message. The adversary must wait for a victim message to appear on the net-

work by waiting for its next periodic transmission that wins bus arbitration. The adversary then

overwrites its selected recessive bit, causing the victim to detect an error and increment its error

counter by 8. After detection of the error, the victim will immediately attempt to retransmit the

failed frame. The adversary repeats this firing phase against 31 back-to-back victim retransmis-

sions until the victim’s error count reaches 256 (8x32) and enters the bus-off state. Thus, after

the adversary causes an error in the first victim transmissions (using its period), targeting the

retransmissions is significantly easier for the adversary.

80

4.5.2 Alternative CANnon implementations

Although the strategy described above is an efficient method to force the compromised CAN

controller to transmit, we also describe alternative methods that achieve a shutdown attack using

different parts of the CAN frame to highlight the flexibility an adversary has for the CANnon

attack.

Firing with SOF bit: Instead of the above two-phase approach, imagine if the adversary

could just skip to the firing phase. Our insight here is to use the SOF bit but with a different

approach from our basic disruption attack. By stopping the clock right before a SOF transmission,

the adversary can inject a dominant SOF bit during a victim’s recessive bit. Since the SOF is only

transmitted after a bus idle, the adversary can only transmit a SOF when it knows the bus is idle.

Once bus idle is detected, the compromised CAN controller will load the registers to prepare

for frame transmission. The adversary can pause the clock right when the transmit registers are

loaded (experimentally, we find this to be two CAN bit times), effectively stopping the transmitter

before it sends a SOF.

However, as the SOF is only a single bit, the error active flag from the victim will cause an

error on the compromised ECU, forcing it to retransmit. Instead of avoiding this retransmission,

the adversary can exploit it. The victim’s error flag will cause the compromised ECU to think

it simply lost arbitration. The adversary can then wait for a bus idle to occur and perform its

attack again. Bus idle will not be observed until after the victim successfully retransmits so the

adversary will need to target the periodic victim transmissions instead of its retransmissions from

the loading/firing attack. While this attack is not as fast as the loading/firing attack, it does enable

the CANnon attack on alternative MCU architectures as explained in our evaluation.

Firing with ACKs: Instead of using data frame transmissions to attack a victim ECU, the

adversary could exploit another scenario where the compromised ECU transmits a dominant bit:

the acknowledgement (ACK) slot. To acknowledge a correctly received data frame, an ECU will

set a dominant bit during the ACK slot of the data frame. Our idea here is the adversary could

81

pause the compromised ECU right before it transmits the ACK bit for a victim’s frame (the bit

before the ACK slot is a recessive CRC delimiter bit). Suppose the CAN peripheral offers a SOF

bit interrupt, which we observe in two of our automotive MCUs [79, 78]. If the adversary knows

when the victim frame transmission starts and can determine when the CRC delimiter bit occurs

in the frame, the adversary can pause the clock before the ACK slot and resume the clock just a

few bit times later during the EOF, causing an error on the victim. The challenge here is that the

adversary must precisely predict when an ACK will occur and the number of bits in the victim

frame. Thus, victim frames that contain static or predictable data make an ideal target.

4.5.3 Practical challenges

We now discuss approaches to solving two practical challenges we encounter when launching

CANnon against real vehicles in our evaluation, one of which is a new capability resulting from

the peripheral clock gating vulnerability.

Period deviations in victim frames: Up to now, we make the assumption that victim

frame transmissions will be periodic. However, in practice, our work on CANvas has found that

period deviation is nonzero, which makes it difficult for the adversary to predict victim transmis-

sion times and thus perform the shutdown attack. Using insights from prior work [30], we could

estimate when a victim message will initially appear on the bus. However, these insights relied

on other messages in the network that would transmit immediately before the victim message,

which is not always guaranteed. Likewise, even considering these circumstances, this approach

has been found to not be reliable [31].

We introduce a new capability that permits an adversary to guarantee when a victim mes-

sage appears on the CAN bus. We first revisit an observation made when launching the basic

disruption attack during tests on real vehicles. When the compromised ECU holds a dominant

state, all other ECUs will queue their frames waiting to transmit during bus idle. Upon releasing

this dominant state, all transmitting ECUs will attempt to clear their queues. We find that these

queued frames appear on the bus in a pre-defined order: by their arbitration ID. Our insight here

82

is to determine which messages should arrive in a given range of time prior to launching our

attack. By holding the dominant state for this range of time,8 we can predict the ordering of

messages and thus predict the start of the victim transmission.

Interruptions by higher-priority messages: Another practical challenge we encounter

when launching CANnon against real vehicles is that higher-priority messages can interrupt the

attack. If the adversary targets a victim frame with a low priority, we find that higher-priority

messages can interrupt the repeated retransmissions by the victim. As the adversary expects the

victim retransmissions to occur back-to-back, these interruptions can cause the attack to fail by

causing collateral damage against unintended victims. Thus, the adversary could use the CANvas

network mapper to identify all source IDs of a victim ECU and simply select the highest-priority

message, minimizing the chance of interruption by a higher-priority message. Additionally, our

work on CANvas also finds that safety-critical ECUs tend to transmit higher-priority frames so

our adversary is already incentivized to target higher-priority frames.

4.6 Evaluation

In this section, we demonstrate CANnon using two automotive MCUs found in modern vehicles

and launch shutdown attacks against a variety of targets, including two real vehicles. We also

detail experiments to highlight the reliability and stealth of CANnon.

Experimental setup: To demonstrate the significance of this attack, we launch CANnon

from automotive MCUs used by modern vehicles, and we target real ECUs from two real vehicles.

In this work, we do not explicitly show the ability to compromise an in-vehicle ECU remotely as

this has been the focus of a large number of papers [10, 22, 35, 36, 37]. Rather, we build our attack

on the assumption that these existing techniques would be successful in remotely compromising

the software of automotive ECUs.

One of the key factors that enabled the discovery of this vulnerability was our choice of
8Where prior work required injecting amessage to guarantee transmission time of a victim, we can simply disrupt

the bus to “simulate” an injected message.

83

experimental setup, which is likely why, to the best of our knowledge, this incidence has not been

studied before. In this work, we initially used the Arduino Due board, which closely resembles

the capabilities of modern automotive MCUs. However, if we look at prior work in the field, we

find widespread use of the legacy design of automotive ECUs, namely an Arduino Uno board

with a standalone controller [30, 15, 16, 43, 47, 17, 21, 80]. Thus, as a result of our choice of

experimental setup, none of these prior works could have identified the CANnon vulnerability;

where the industry moved to a modern design, prior research has continued to use the legacy

design.

Automotive MCUs: In addition to the Arduino, we test CANnon on evaluation boards for

two automotive MCUs fromMicrochip and STMicro (commonly known as ST). These boards will

serve as the compromised in-vehicle ECUs as they are used in modern production vehicles. In

fact, STMicro is one of the top five semiconductor suppliers for the automotive industry [81], and

its MCUs are likely to be in many modern vehicles. The features and architectures they offer are

likely generalizable to other automotive MCUs as they are both marketed as high-performance

networking MCUs, which are two key features we identify in our simple disruption attack. While

we do not evaluate boards from every MCU supplier, we findmultiple references to software APIs

for peripheral clock gating in reference manuals and market reports [82, 83, 84, 85, 86].

Specifically, we evaluate: (1) the Microchip SAM V71 Xplained Ultra board, which uses

an ATSAMV71Q21 32-bit MCU operating at 150 MHz and is designed for in-vehicle infotainment

connectivity [87, 79], and (2) the STMicro SPC58ECDiscovery board, which uses an SPC58EC80E5

32-bitMCUoperating at 180MHz and is designed for automotive general-purpose applications [88,

89]. It is likely that other MCUs in the same family (i.e., SAM VMCUs and ST SPC5 MCUs) share

the same peripheral clock gating vulnerability as demonstrated by similarities within an MCU

family’s reference manuals [79, 78]. Consequently, the Arduino Due board identified in our sim-

ple disruption attack uses an AT91SAM3X8EA 32-bit MCU operating at 84 MHz from an older

series of the same SAM family [78].

84

For the SPC58 MCU, we encountered a challenge in finding a clock enable/disable function.

All clock functions requested the peripheral to essentially give the MCU permission to disable the

peripheral’s clock. Upon receiving the request, the peripheral waits for all transmission opera-

tions to stop before the MCU can disable its clock. However, we found an alternative approach to

directly control the clock on the SPC58 that bypasses this request procedure. In fact, this alterna-

tive contradicts the expected implementation as described in the SPC58’s reference manual [89].

The SPC58 utilizes operating modes that change the configurations for the MCU. In particular,

we focus on two modes: the DRUN mode, which permits all peripherals to run normally, and

the SAFE mode, which stops the operation of all active peripherals. We find that a transition to

DRUN is equivalent to enabling the CAN peripheral’s clock and a transition to SAFE effectively

disables the peripheral’s clock without permission from the peripheral itself. A limitation intro-

duced here is that a clock enable could not occur soon after a clock disable,9 but the SOF-based

attack from our targeted victim attack successfully works for the SPC58.

Real vehicle testbed: Additionally, we demonstrate CANnon against two real vehicles:

a 2009 Toyota Prius and a 2017 Ford Focus. We connect to the CAN bus by accessing the bus

via the vehicle’s On-Board Diagnostics (OBD) port to emulate a remotely-compromised ECU.

We also identify the mapping of arbitration IDs to source ECUs using details from our CANvas

network mapper. We only launch the CANnon attack against vehicles while they are parked to

avoid any potential safety concerns. Note that these vehicles have their engine running with all

ECUs actively transmitting onto the network. As detailed in our CANvas work, vehicles tend to

transmit mostly periodic messages, and we find that these transmissions start when accessories

are turned on. Even if the vehicle is taken on a drive with the engine on, only the data payloads

change rather than periodic transmission rates. We also launch CANnon against an Arduino Due,

a PeakCAN USB device, and a 2012 Ford Focus powertrain ECU in a variety of synthetic network

setups.
9The transition to SAFE mode (or effectively disabling the clock) includes several processes that must complete

for safety reasons before the peripheral clocks can be enabled.

85

4.6.1 CANnon against real vehicles

Basic disruption on real vehicles: We launch the basic disruption attack against both real

vehicles using the SAM V71 and SPC58 evaluation boards. As discussed in our basic disruption

attack, ECUs often implement a time-out feature that prevents a CAN transceiver from holding

the dominant state for an extended period of time. We experimentally find that we can main-

tain up to 1ms of dominant state on the bus with at least 4µs of recessive in-between on both

vehicles. We find that this attack prevents ECUs from communicating on the bus and will trigger

malfunction lights on the instrument panel and even diagnostic codes that indicate loss of ECU

communication.

Powertrain ECU shutdown in 2017 Focus: We demonstrate a shutdown attack with

the V71 MCU using the loading/firing attack in our targeted victim attack. The powertrain ECU

transmits several arbitration IDs, but we select the highest-priority ID using the CANvas network

mapper. In our pre-analysis of the victim transmission times, we find that a majority of the pow-

ertrain ECU’s IDs will transmit back-to-back. With our technique for guaranteeing transmission

times, we hold the dominant bit when we expect the victim to appear (for approximately 50µs).

Upon release of the dominant bit, the target victim frame will be the first frame to transmit and,

thus, we launch our firing phase on that frame. We target the control field and perform this attack

32 times, allowing us to shut down the powertrain ECU in about 2ms. Although the powertrain

ECU does auto-recover, the ability to shut down the ECU quickly demonstrates the speed of our

attack.

Power steering ECU shutdown in 2009 Prius: We demonstrate a shutdown attack with

the SPC58 MCU using the SOF-based attack in our targeted victim attack as the SPC58 cannot

enable the clock immediately after disabling it. The target victim is a power steering ECU that

transmits three IDs: 0x262, 0x4C8, and 0x521. We choose the ID with the smallest period (0x262

with period of 20ms) and find that its period deviation is quite small using the CANvas network

mapper. As the SOF approach requires a successful transmission between each attack, this shut-

86

down is significantly longer since we do not target retransmissions. We shut down the power

steering ECU after 700ms, and we find that it remains permanently offline.

Attack reliability: One important aspect of a reliable attack is repeatability. We envision

an adversary who purchases the same MCU that the compromised ECU uses as preparation for

their remote exploit and shutdown attack. After tuning attack parameters to the specific MCU

(e.g., number of MCU cycles prior to SOF transmission), the adversary hopes that the tuned pa-

rameters will be similar to that of the real victim MCU. We find that properly tuned attack code

across multiple copies of our test MCUs over a few months could repeatedly produce the same

output to the bus. We attribute this success to the strict specifications that ECU hardware must

follow in the manufacturing stage.

We now compare the reliability of CANnon using the hardware timer interrupt centered

on each CAN bit versus manually counting MCU clock cycles. In this experiment, we use the

Microchip and Arduino Due boards to transmit active error frames at repeated intervals. We

transmit these frames against an Arduino Due victim that sends its frames every 10ms with zero

deviation in the period. Using a hardware timer to launch our attack, we find that both the

Microchip and Arduino Due boards can shut down the victim 100% of the time. However, if we

try to perform the active frame transmissions by manually keeping count of MCU clock cycles,

we only achieve the attack 10% of the time due to variations discussed in our targeted victim

attack.

We also compare the reliability to guarantee victim transmission time versus prior work

that overwrites messages using injected messages to predict victim transmission [30]. Here, we

use the Arduino Due board to target three different victims: (1) another Arduino Due, (2) a Peak-

CAN device, and (3) a 2012 Ford Focus powertrain ECU. Using our method, we can achieve a

shutdown of all three victims using all three of our MCUs 100% of the time. However, using prior

work to perform the message overwrite attack, we only succeed for the Arduino Due and Peak-

CAN device. On the powertrain ECU, we cannot achieve even a single success as its transmissions

87

exhibit significant period deviation.

Stealth analysis: We now compare the stealth of CANnon versus the state-of-the-art mes-

sage overwrite attack [30]. We construct three simple detectionmethods at each layer of the CAN

stack based on existing defenses.10 The goal of either shutdown attacker is to achieve a victim

shutdown without the detection method alerting prior to the shutdown itself. Our experimental

setup involves three Arduino Due boards: (1) the victim ECU, (2) the detection ECU, and (3) the

compromised ECU. The detection ECU also transmits its own messages to simulate other traffic

on the bus. We perform each test 1,000 times, and we operate all tests at 500Mbps, use a shared

12V supply to power the boards, and observe the bus traffic using a logic analyzer.

For all of the experiments below, we follow the configuration of prior work [30]: the victim

ECU transmits ID 0x11 every 10ms, the detection ECU transmits ID 0x7 and 0x9 every 10ms,

and the compromised ECU monitors the bus and attempts to attack. To simulate noise from a

real vehicle, we intentionally set the deviation of ID 0x11 to 0.15ms as the best-case minimum

deviation found by our work on CANvas. For all experiments with the overwrite attack, the

compromised ECU injects ID 0x9 around the expected transmission time of 0x11 to set up their

attack.

Versus timing-based IDS:Wefirst test the overwrite attack andCANnon against a timing-

based IDS that alerts if frames transmit outside of their expected period. Timing-based IDSes also

include ML-based [56] and traffic anomaly methods [57] as they analyze timestamps to detect il-

legitimate transmissions. We set the detection threshold for period deviation to be 10% (e.g., 1ms

for a 10ms period) following prior work [48]. We program our detection ECU to measure the

inter-arrival time between frames for a given ID and alert if the measured time exceeds 10% of

the expected period. For CANnon, the compromised ECU attacks using the data payload and

employs the dominant-hold technique identified in our targeted attack to guarantee victim trans-

mission time. Out of 1,000 attempts, we find that our detection ECU alerts to every attempt by
10We do not demonstrate CANnon against complete implementations of existing defenses, which monitor only

entire CAN messages or frames, as they are ineffective by construction.

88

the overwrite attack but does not alert to any of the CANnon attacks. CANnon only needs to

hold the dominant state for 0.15ms once to guarantee the first victim transmission and cause an

error. The overwrite attack injects new messages onto the network, exceeding the expected de-

viation threshold. CANnon achieves a shutdown in just 2ms before the next transmission should

occur.11

Versus a “secure transceiver:” As secure transceivers are not currently in production,

we modify the detection ECU to act as the secure transceiver. It will read each logical bit trans-

mitted and received by the compromised ECU by directly connecting between the MCU’s CAN

peripheral and the CAN transceiver following prior work [31]. If an ECU sends an illegitimate

arbitration ID, it will produce an alert in real-time immediately after the arbitration field trans-

mits. For CANnon, the compromised ECU attacks via the SOF bit method as the secure transceiver

could detect the data payload attack.12 Out of 1,000 attempts, we find that our secure transceiver

alerts to every attempt by the overwrite attack but does not alert to any of the CANnon attacks.

CANnon only injects a SOF bit as its attack and does not transmit any arbitration ID, while the

additional message transmissions in the overwrite attack cause our secure transceiver to alert

immediately.

Versus a frame-level voltage IDS: Following observations from prior work [16, 17, 50],

we modify the detection ECU to directly measure the CAN bus voltages to detect an attack. The

CANmedium is a differential pair called CAN low and CAN high that typically exhibit around 1.5

and 3.5 voltages for a dominant bit, respectively (recessive state causes both to exhibit 2.5 volts).

The key insight from prior work is to measure the voltage of the dominant bits throughout an

entire frame. With the message overwrite attack [30], the start of an overwritten frame has two

transmitters and ends with a single transmitter (i.e., the compromised ECU). Thus, the attack

exhibits a larger differential at the start and a smaller differential at the end of an overwritten

frame. We build a voltage IDS that alerts if the dominant bits exhibit a sudden drop in dominant
11This fast ability to shutdown could act as a useful stepping-stone to future work on masquerade attacks.
12CANnon could technically use any arbitration ID (even a legitimate ID), but we assume that the adversary wants

to use ID 0x0 to minimize wait for bus idle.

89

differential voltage during a single frame. Out of 1,000 attempts, we find that our IDS alerts to

every attempt by the overwrite attack but does not alert to any of the CANnon attacks. CANnon

only injects a single error flag in the middle of a frame and, thus, this approach to voltage IDS

does not detect our attack.

4.7 Stealth against network defenses

Next, we detail how CANnon can deceive several state-of-the-art defenses and even some poten-

tial CANnon-aware designs as a demonstration of this critical vulnerability.

4.7.1 Deceiving state-of-the-art defenses

Many approaches exist that can defend against shutdown attacks. We group these defenses into

three classes based on the layer in the CAN communication stack they operate on.

Defenses at application layer: Many IDSes are software applications, limited to read-

ing messages passed up the communication stack by CAN hardware. These run on any ECU

and do not require special hardware, making them an attractive solution. For instance, they can

use statistical techniques based on message timings and content [43, 15, 48, 49]. A recent U.S.

agency report discusses how companies working closely with automakers have access to propri-

etary information on the expected content of CAN messages, enhancing their ability to create

application-layer defenses [29]. Another class of IDS that makes use of this proprietary infor-

mation are machine learning [56] and traffic anomaly IDSes [57], which analyze message timing

and payload to detect an attack.

Application-layer IDSes can detect both the diagnostic shutdown command and message

overwrite attacks as they require transmitting additional CAN frames on the bus. As such, any

application-layer defenses that measure message timing or content cannot detect our attack since

we do not transmit entire CAN frames or significantly disrupt valid transmitted frames. CANnon

operates quickly and can shutdown ECUs in just a couple milliseconds (well under the minimum

90

period observed by our work on CANvas) as demonstrated in our CANnon evaluation.

Defenses at data link layer: Recent industry solutions propose secure CAN transceivers

that operate at the data link layer [20]. These transceivers can prevent a compromised ECU from

attacking a CAN bus by either: (1) invalidating frames with spoofed CAN IDs, (2) invalidating

frames that are overwritten by a compromised ECU, and (3) preventing attacks that flood the bus

with frame transmissions. Attacks that require physical access are outside their scope.

These transceivers are a promising approach to defending against a diagnostic shutdown

attack and message overwrite attack as the transceivers would destroy any illegitimate frames

based on their IDs. As the loading phase in our loading/firing attack transmits a specific arbitra-

tion ID (0x0), these transceivers would also detect an illegitimate ID from the compromised ECU

and raise an alarm. However, the two attack alternatives (SOF and ACK attacks) do not produce

an arbitration ID and could not be detected by pure ID-based filtering concepts as demonstrated

in our evaluation.

Defenses at physical layer: Another approach for IDSes is to directly access the physical

layer (e.g., measuring bus voltages). These defenses detect sudden changes over a series of CAN

frames (or even a single frame) by creating a profile of the expected voltages [16, 17, 50]. These

works find that each ECU applies a unique voltage that is measurable across an entire CAN frame.

If an illegitimate transmitter attempts to spoof a victim’s message, the voltage measured across

the frame could identify a potential attack.

This approach can detect themessage overwrite attack because a single framewill start with

two simultaneous transmitters followed by only the overwriting compromised ECU; a distinctive

change in voltage for the rest of the frame indicates an attack. However, in regard to physical-

layer defenses that measure voltage, CANnon does not require overwriting a frame from the SOF

onwards and, thus, prior work would not detect a sudden change in the voltage from the start of

a single data frame [50] as demonstrated in our evaluation.

91

4.7.2 Deceiving CANnon-aware defenses

We now discuss how CANnon could remain stealthy against even future CANnon-aware defenses.

We discuss defenses that might seem appealing at a glance, but we will show that this attack will

likely require architectural countermeasures.

Tracking error interrupts at application layer: Up to now, we have discussed how

application-layer defenses that only monitor messages do not detect CANnon. However, there

is another source of signals from the lower CAN stack layers: error interrupts. We envision

a CANnon-aware defense that uses these interrupts to identify potentially malicious sources of

error. This defense tracks errors based on their frequency and for which messages they occur

during in an attempt to find a pattern representative of a shutdown attack. Existing work can

detect when a shutdown occurs by tracking error flags [21], but it cannot determine if the errors

were caused maliciously or by legitimate bus faults. We now discuss a couple modifications that

similar work could implement to detect amalicious attack. We also discuss how our adversary can

thwart those efforts by making it challenging for defenses to detect CANnon while maintaining

a low false positive rate:

1. Tracking number of errors per ID: One potential defense is to track the number of errors

that occur when a particular message ID is transmitted. However, our adversary could use

the CANvas network mapper to identify all source IDs from an ECU by simply monitoring

the bus and tracking message timestamps. Our adversary could then target all IDs from

a victim ECU, making an error seem consistent across all transmissions and difficult to

differentiate from a legitimate fault.

2. Checking for multiple errors in short time: Another defense is to check for multiple errors in

a short amount of time, which is an invariant of prior work [30]. While the loading/firing

attack causes multiple errors in a matter of milliseconds, an adversary can extend this at-

tack over a longer period of time. An active error flag will increment the victim error

counter by eight; to recover from an error, a successful transmission from a victim will

92

decrement the error counter by one. Our adversary could launch an error flag for one of

every seven successful transmissions from a victim, giving us an effective increase of one

for the transmit error count. By repeating this attack 256 times, the adversary could allow

up to 1792 successful transmissions by a victim and still succeed in a shutdown.

4.8 Countermeasures

We now identify countermeasures that target the crux of the vulnerability, which will likely

require additional hardware changes. As illustrated above, CANnon-based attacks are stealthy

against existing security methods. Here, we describe some directions for potential countermea-

sures. Since the attack relies on two broad ideas, namely clock control and error exploitation,

the countermeasures described can be seen to prevent one of these problems, i.e., prevent clock

control or detect specific error patterns and/or error transmitter patterns.

Detecting bit-wise voltage spikes: Overwriting amessage causes a sudden voltage change

in the dominant bit. Thus, one approach to detect such an attack is tracking per-bit voltages at the

physical layer. Changes in the middle of message transmissions could indicate potential adver-

sary activity. However, since random faults or genuine errors flags can cause similar behavior,

such a method would require additional identification of patterns in the voltage changes, e.g.,

behavior periodicity. Some recent work that uses transition characteristics for network finger-

printing [80] could be modified in this direction.

Forced clear of transmit buffers: As observed in our attack insight, the ability to resume

a message transmission is a key factor for successfully exploiting the controller. Thus, the attack

can simply be prevented by disabling such behavior, i.e., resetting/clearing all buffers upon clock

gating. Such a countermeasure allows the flexibility of being deployed at either the hardware or

software level. If hardware changes are permitted, this approach can be achieved by designing

reset logic based on the clock signal. In software, this approach can be achieved by flushing the

peripheral transmit buffers upon clock stop. A modification of this idea for safety is present in

93

SPC58, whereby a clock stop request is completed based on the feedback from the CAN periph-

eral.

On-chip power analysis: The automotive industry takes another approach to protecting

their ECUs from remote adversaries: host-based IDSes [29]. One host-based detection method

for CANnon could be a separate secure chip that monitors the power usage of the MCU. Since

disabling the peripheral clock induces a drop in power, a host-based IDS could detect potentially

malicious actions. This approach should operate outside of the MCU and could include logic

to identify when power drops are not expected (e.g., while in motion, while vehicle not asleep,

etc.).

Removal of CAN peripheral clock gating: The main feature that enables CANnon in

modern MCUs is peripheral clock gating. Rather than offering a peripheral for CAN, modern

MCUs could simply utilize a separate always-on clock domain for the CAN peripheral or require

standalone CAN controllers, which receive a clock signal from a separate oscillator. Assuming

the other peripherals do not share this vulnerability, they could remain unchanged by removing

clock gating for just CAN.

4.9 Summary

In this chapter, we presented CANnon, a disruption attack that can impact the transmissions of

other ECUs on the network and even shut down a specific target ECU. CANnon leverages a new

feature (i.e., peripheral clock gating) that can be exploited to permit a remote adversary to impact

physical CAN signals even though a CAN controller is in place to enforce CAN format on the

bus. By exploiting this disconnect, CANnon can precisely disrupt bus transmissions in real-time

and even shut down powertrain ECUs on real vehicles. As a result, we can enable our adversary

to control when messages appear on the bus and the timing of their transmissions in the next

stage of this kill-chain. We also propose countermeasures that target this disconnect by detecting

malicious use of this new feature or by simply removing this feature altogether.

94

5 CANdid: Remote Authentication Bypass on Automotive

Control Units

In this chapter, we discuss our contributions to the authentication bypass stage of our attack kill

chain. The contributions of the thesis in this stage are:

• Kill-chain goal: In this stage, we aim to develop a bypass authentication attack that can

gain access to privileged commands on a victim ECU, such as writing new code to memory.

With this ability, the remote adversary can now control a second safety-critical ECU (one

without direct remote interfaces) in the victim vehicle to launch advanced attacks. We also

need to demonstrate a proof-of-concept of this final goal so we aim to show that we can

upload code to a powertrain ECU using our kill-chain.

• Disconnect to exploit: We find that the UDS implementation on ECUs can allow a remote

adversary to request a hard reset without being authenticated. As an ECU’s source of

randomness for the challenge-response authentication is based on processor uptime (or

time since last hard reset), the adversary now has control of when the hard reset occurs

and thus can control what challenge the ECU produces, enabling a capture-replay attack.

• Potential countermeasures: The key vulnerability insight here is that the adversary can

influence and even control the source of randomness. There are two approaches to counter-

measures here: either detect an unauthorized tester (i.e., a compromised ECU) or prevent

the attack by requiring authentication before hard reset requests or using a better source

of randomness.

5.1 Goals for this kill-chain stage

With the ability to disrupt the CAN communications of both the target ECU and other in-vehicle

ECUs, our attacker can proceed to the third stage of the kill-chain. Our attacker now aims to

authenticate with the target safety-critical ECU, specifically for access that permits reprogram-

95

ming the target’s software. The UDS SecurityAccess service as detailed in Chapter 2 permits

authorized users to gain programming access for a given ECU if they can pass the appropriate

challenge-response authentication. Our attacker must consider how the automotive industry has

both adapted to the current threat landscape and updated how this authentication is implemented.

Here, we face better implementations of UDS SecurityAccess compared to implementations from

prior work [7, 51]. The challenge is random to prevent brute-force and replay attacks, and we

must assume that gaining access to secret keys is impractical as automakers may not place them

on diagnostic testers. Thus, prior work that reverse-engineers keys from either ECUs or diag-

nostic testers would not succeed [10, 52]. In addition to this, most UDS implementations already

block further attempts after a handful of failed authentication attempts. We imagine that state-

of-the-art IDSes will use this mechanism to detect an adversary. As a result, we need an attack

that can still bypass authentication without access to secret keys and do so with fewer than a

handful attempts.

5.2 Stage overview and contributions

The landmark work on remote attacks byMiller et al. found that firmware on safety-critical ECUs

will ignore critical attack messages (e.g., disabling the brakes) when above a low speed (e.g., 5-

10 mph), thus severely limiting the real impact of their malicious message injection attacks [10].

Rather than relying on CANmessage injection, an adversary that could instead reprogram a vehi-

cle’s engine ECU (or any other safety-critical ECU) could significantly strengthen an adversary’s

capabilities. With control of a safety-critical ECU’s firmware, such an adversary could now access

all of the ECU’s inputs (from sensors, e.g., throttle position) and outputs (to actuators, e.g., fuel

injectors) and could bypass any firmware constraints. For example, instead of only succeeding

to disable the brakes at a low speed as seen in prior work [10], this adversary could reprogram

the brake ECU and then disable the brakes at any speed by simply removing or bypassing safety-

related program code.

The typical approach to legitimately reprogram an ECU over the CAN bus is to employ

96

the Unified Diagnostic Services (UDS) protocol, an application-layer protocol that operates over

a physical-layer network (e.g., CAN) and provides a variety of services to a dealership techni-

cian [73, 72]. Here, a technician will connect to a target ECU over the UDS protocol with a

physically-connected proprietary diagnostic tester [34]. Then, to update an ECU’s firmware for

recalls, service, and upgrades, the technician must authenticate itself with the target ECU by

passing a challenge-response authentication through the UDS SecurityAccess service. With the

target ECU’s secret key and encryption algorithm stored on the diagnostic tester, the techni-

cian can legitimately pass this authentication and then successfully download new code to the

ECU.

To demonstrate an adversary’s ability to maliciously reprogram an ECU over the CAN bus,

researchers have identified several weaknesses in legacy implementations of UDS SecurityAccess,

which checks if a user is authorized to access privileged commands. Prior work identified the use

of fixed challenges, which permit brute-force attacks that simply try all possible responses , and

the use of obvious encryption algorithms, which can be easily guessed (e.g., simple XOR with

fixed value) [7, 51]. For more complex designs, researchers have reverse-engineered diagnostic

testers [10] and ECUs [52] to extract both secret keys and encryption algorithms. Unfortunately,

a common conclusion among these works is that keys and algorithms were shared across all

vehicles of the same make and model. In other words, reverse-engineering the secrets for just

one vehicle instance meant an adversary could ultimately target thousands of victims in the field

using the same secrets.

With respect to the growing priority of automotive security, the modern implementation

of SecurityAccess has evolved to address the weaknesses of legacy designs. Vehicles (especially

fleets) can implement key diversification (i.e., a unique key per ECU instance), and even perform

key rotation to change keys on a repeat basis, greatly reducing an adversary’s ability to target

multiple vehicles [52]. Likewise, these secret keys can be made accessible only to authorized

technicians through the Original Equipment Manufacturer (OEM) rather than loading them onto

diagnostic testers, preventing unauthorized parties from reverse-engineering these keys. Finally,

97

Figure 22: Timeline for authentication bypass via capture-replay

modern implementations of SecurityAccess use a psuedorandom number generator (PRNG) to

seed the challenge. Here, an attempt to brute-force the response would be difficult and could be

easily detected by a software-level CAN intrusion detection system (IDS).

In this stage, we investigate if a compromised ECU controlled by a remote adversary could

act as a stepping-stone to reprogram a victim ECU, likely a safety-critical one, without being

detected. We envision an adversary could successfully authenticate against this safety-critical

victim ECU’s modern SecurityAccess implementation without numerous failed attempts, which

could trigger an alert by a CAN bus IDS.The adversary should not generate any obvious or known

traffic indicative of a brute-force attack, and it should be capable of providing the correct response

to a challenge sent from the victim ECU without prior knowledge of the target ECU’s secret key.

If successful, such an adversary in control of a safety-critical ECU could send signals directly to

critical actuators without needing any communication over the CAN bus, thus enabling a very

powerful attack.

98

We develop CANdid, a stepping-stone attack where an adversary in control of a previously

compromised ECU can reprogram another ECU on the same CAN bus. Following the timeline

depicted in Figure 22, we make the same assumption that our adversary can control the software

on this compromised ECU and sniff bus traffic. The adversary then keeps the compromised ECU

dormant until the victim vehicle goes to a dealership for a firmware update on the safety-critical

target ECU. With the increase in recalls requiring firmware updates for newer vehicles [90], it

is likely that ECUs will receive an update during the vehicle’s lifetime. Here, the adversary uses

the launchpad ECU to snoop and record the technician’s communication with the target ECU as

the technician performs a firmware update. After capturing the valid challenge-response pair,

the adversary could perform a replay attack by forcing the target ECU to reproduce the same

challenge and then sending the observed response. Thus, this adversary can pass authentication

without requiring a brute-force attack or knowledge of the secret key.

The key here is forcing the target ECU to reproduce a previously observed challenge. Our

main insight is to exploit a disconnect that enables the adversary to influence and control an

ECU’s source of randomness. Modern ECUs use processor uptime, or the runtime since the last

reboot, as a randomness source for generating the challenge. Relying on time as a source of

randomness is known to be a poor choice for seeding a PRNG [91, 92, 93]. However, we find

that modern ECUs still use processor uptime and, thus, opens the door to exploit if an adversary

controls when the uptime is reset. To grant an adversary control over the processor uptime, we

develop a technique that exploits the ECUReset UDS service, an unprivileged (i.e., no prior Se-

curityAccess needed) command that requests an ECU to reset itself. Here, an adversary forces

a target ECU to reproduce the same challenge by: (1) requesting the target to reset itself via

UDS ECUReset, (2) waiting a specific amount of time linked to the observed challenge, and (3)

requesting the challenge from the target ECU. While this technique alone can increase the like-

lihood of observing a specific challenge well beyond the expected likelihood, we repurpose our

work on CANnon to develop a novel technique that grants an adversary finer timing control of

their message transmissions, enabling a further increase in likelihood.

99

Figure 23: Access to stock vehicle vs. constraints on victim vehicle

Contributions: In summary, we contribute the following:

• We introduce new methods to control the weak source of randomness used by modern

ECUs and launch replay attacks with a high rate of success. In contrast to previous work,

we do not require any knowledge of the key or encryption algorithm.

• We demonstrate the ability to force a target ECU to reproduce a previously observed chal-

lenged. We also construct a novel method to increase the likelihood of repeating this same

challenge.

• We bypass the authentication on a real powertrain ECU in less than a handful of attempts

and demonstrate the ability to upload code to it. We also show how other powertrain ECUs

and a gateway ECU are vulnerable to our technique by demonstrating a high likelihood of

repetition for a given challenge on these ECUs.

100

5.3 Threat model and attack insight

To better understand the threat model we encounter here, we formally define the roles of the

adversary and the victim. We first consider an adversary that wishes to perform an attack on a

victim vehicle Vvictim that is of modelM . We also assume that the adversary (or any other party)

can obtain a stock version of this model, which we can call Vstock. For all ECUs within Vvictim

and Vstock as depicted in Figure 23, all software and hardware components are the same except

for secret keys; for example, the engine ECU in Vvictim has a different secret key than the engine

ECU in Vstock. Now consider that the adversary wishes to target a specific ECU,Etarget, in Vvictim,

but Etarget does not have any wireless interfaces. We now formulate the capabilities of all parties

involved as the adversary attempts to attack Etarget.

Adversary on compromised ECU: As Etarget does not have any wireless interfaces and

thus the adversary cannot remotely exploit it, the adversary must consider an alternative path

to attack Etarget. The adversary can instead remotely compromise another ECU in Vvictim that

has some wireless interface. This ECU,Ecompromised, can serve as a “launchpad” for the adversary

to use to ultimately target Etarget. As a result of the shared design of vehicles across the same

modelM , the adversary can learn from and practice on their Vstock prior to launching the attack

on Vvictim. Here, we assume that the adversary can successfully perform a remote compromise of

the software on Ecompromised via some exploit. We also assume that the adversary can stealthily

install any attack code onto Ecompromised without detection. Additionally, it is impractical for

the adversary to have any physical access to Vvictim, especially if the adversary wishes to launch

an attack at scale, so the adversary can only control the application layer of Ecompromised. Also,

Ecompromised does not need to run a UDS application, but it should be capable of sending CAN

messageswith UDS-related content. The adversary can also useEcompromised to record CAN traffic

at any time after the initial remote compromise succeeds.

Target ECU in victim vehicle: Since the adversary likely wants to achieve a high-impact

attack, we assume they will choose an Etarget that can control safety-critical functions in Vvictim.

101

We assume that Etarget runs a standard implementation of UDS, includes the SecurityAccess ser-

vice to enable another device to achieve authentication onEtarget, and implements the RequestU-

pload service to enable a technician (and an adversary if authentication is bypassed) to reprogram

the ECU. Furthermore, we assume that the adversary cannot directly attack this ECU as it has no

wireless interfaces and that any attempt to send critical diagnostic commands to Etarget do not

function over a low vehicle operation speed threshold. We also assume that Etarget will require a

firmware update at some point during the life of Vvictim, which will allow the adversary to capture

a valid authentication.

Firmware update by technician: Following the increasing number of firmware-related

recalls that require a firmware remedy [90], we assume that Vvictim will be taken to a technician at

the dealership at least once during the vehicle’s lifetime. The technician will use a specific tester

tool for the modelM of Vvictim and can communicate with all UDS-enabled ECUs in the vehicle,

including Etarget. We assume that the technician follows a typical workflow of connecting to the

vehicle and updating the firmware for Etarget as part of the recall or repair. The technician’s tool

will communicate with Etarget over the CAN bus on Vvictim and initiate the UDS SecurityAccess

service. Here, the tool will request a challenge from Etarget, which responds with the requested

challenge. The tool then uses this challenge and the secret key to compute a response, which it

sends to Etarget.

IDS on victim vehicle’s CAN bus: We assume that the CAN bus on Vvictim, Bvictim, is

unmodified from the factory and that the traffic over this bus has similar characteristics (e.g.,

message periodicity, bus load) to the CAN bus of Vstock, Bstock. We also assume that all ECUs

in Vvictim have full read-write access to the bus, including Ecompromised and Etarget. To protect

this network against an adversary, we assume that Bvictim is monitored by a software-based IDS

(as detailed in Chapter 2) that monitors the number of failed attempts [94] to authenticate via

SecurityAccess. We assume that the IDS will alert to an attack based on a specific threshold that

is dependent on the modelM of Vvictim. As UDS SecurityAccess authentications rely on attaching

a new device (i.e., the tester) to the CAN bus, it is likely that an IDS will be configured to detect

102

a malicious tester by tracking its CAN bus transmissions. We assume that it will instead rely on

the built-in maximum number of attempts as a method of detecting an unauthorized attempt to

authenticate [94].

5.3.1 High-level insight

The ultimate goal of our adversary is to successful authenticate via the SecurityAccess service

running on the target ECU. To achieve this, our adversary must provide the correct response to

a given challenge. In addition to achieving this goal, our adversary likely wants a method that is

generalizable to arbitrary ECUs (i.e., our method should not be unique to any given model, where

prior work was model-specific [52]) and one that is undetectable by current IDS techniques (i.e.,

our method should not require brute force or alter non-diagnostic messages). Considering these

limitations, one type of attack that could succeed here is a replay attack for twomajor reasons: (1)

a replay attack does not rely on anymodel-specific security algorithms, especially if the adversary

could replay a previously-observed response, and (2) a replay attack that can succeed within just

a few attempts would easily bypass an IDS that monitors for a handful of failed authentication

attempts. The main challenge we face with a replay attack is that the random challenge makes

replay difficult; we can only do a replay attack if a victim ECU produces the same challenge.

It is clear that, if the random challenge were no longer random but fixed, the adversary

would have a viable attack that could achieve their goals. To identify how ECUs construct their

source of randomness, we should look to other domains that implement challenge-response au-

thentication [95]. In general, randomness sources typically utilize either processor runtime [93,

96], keyboard/mouse input [97], and static random-access memory (SRAM) start-up noise [62].

While some ECUs could make use of the true random number generators (TRNGs) that would

be resident on an ECU’s Trusted Platform Module (TPM) or Hardware Security Module (HSM),

the cost of this added hardware can be expensive and thus is typically reserved for gateway and

infotainment ECUs rather than safety-critical ECUs (e.g., powertrain ECUs). Out of this selection

of potential randomness sources, we decided to investigate the most straightforward approach:

103

processor runtime.

Adversary can request a hard reset: To force an ECU to produce a fixed challenge, we

must find some attack technique that can force an ECU’s source of randomness to produce the

same random value, or nonce, each time. With regard to processor runtime, we consider two

possibilities in how this randomness source is implemented: (1) processor runtime is persistent

and keeps track of either real wall clock time or total time that the ECU has run even when power

cycled (i.e., powered-off and then powered-on), or (2) processor runtime is reset every time the

ECU is powered cycled and actually represents processor uptime. If the latter option were true,

then performing a hard reset (i.e., one that power cycles the ECU) would have some influence

over the source of randomness. By exploring the available UDS services and options under each

command, we find that a hard reset option exists for the UDS ECUReset service, and it does not

require the adversary to pass authentication before requesting a hard reset.

Figure 24: Steps to exploit the hard reset request

To ensure that our ECUs use processor uptime as their source of randomness, we can build

a simple test to explore the potential for exploiting the hard reset command. We can mimic the

diagnostic tester by using the tester’s message ID and sending the following request as depicted

in Figure 24: (1) request a hard reset of the target ECU, (2) request that ECU to enter into a

104

programming session, and then (3) request a challenge from the target ECU. Instead of sending

a response, we simply track what challenges we observe from the target ECU and perform this

experiment 1000 times. For one of our ECUs that uses a 3-byte challenge, we should expect a

challenge to be reproduced with a likelihood of 1 out of 224; our experiment resulted in some

challenge appearing at over 5% of the total number of captures. From this basic test, it is a clear

indication that we identify a vulnerability, where the hard reset command can be exploited to

influence an ECU’s source of randomness when producing a challenge. Finally, to confirm this

insight that ultimately enables the CANdid attack, we analyzed actual implementations of the

SecurityAccess service from real ECUs and confirmed our findings with access to real source

code. It then became evident that modern ECUs across manufacturers use processor uptime as

their source of randomness.

Requirements to proceed with attack: Following this attack insight, we clarify a few

requirements that must be in place for this attack to succeed. First, we assume that the involved

ECUs (both compromised ECU and victim ECU) implement a standard UDS implementation,

which we find to typically include, at a minimum, the following services: UDS DiagnosticSes-

sionControl, UDS ECUReset, UDS SecurityAccess, UDS RequestUpload, and UDS TransferData.

The victim ECU’s UDS implementation must also offer the hard reset option for ECUReset, and

the victim ECUmust use processor uptime as its source of randomness, which we find true across

two different OEMs. Additionally, the ECUReset service be accessible to any other ECU as the

remote adversary will compromise an in-vehicle ECU to perform the authentication bypass at-

tack. Another requirement is that the adversary should have knowledge of the UDS server and

UDS client IDs for the victim and tester, respectively. The adversary can identify all UDS-capable

devices on a CAN bus by simply request a DiagnosticSessionControl service with all possible

client IDs between 0x700 and 0x7FF for standard CAN implementations; a positive response to

this service request will indicate an available UDS server, which will typically be the UDS client

ID plus 0x040.

105

5.3.2 Single known-plaintext attack

Considering the threat model and our attack insight, we now introduce our plan of attack to

perform an authentication bypass. Since the remote adversary has the ability to simply lay dor-

mant and sniff the bus using the initial compromised ECU, we envision that our adversary simply

waits until an authorized technician’s diagnostic tester is connected. While the tester authenti-

cates with the victim ECU and proceeds to perform a code upload to it, the adversary can capture

just a single valid challenge-response pair. Typically, if the challenge were random and not con-

trolled by the adversary, it would be impractical for the adversary to utilize this single challenge-

response pair. A random challenge prevents an adversary from simply requesting a challenge

and then providing the same observed response; the victim ECU will expect a different response

as the security algorithm to produce the response takes the random challenge as input.

However, if our adversary could exploit this hard reset insight to control the challenge that

the victim ECU produces, then the adversary could potentially launch a replay attack. Here, the

two main steps are: (1) the adversary must force the previously-observed challenge from the

single captured pair to appear from the stock copy of the victim ECU and (2) then the adversary

must design a technique to greatly increase the likelihood for the victim ECU to produce a given

challenge. This latter stage will be critical when launching the attack on the victim vehicle as an

IDSwill be present andwill try to detect numerous failed authentication attempts. As an example,

if the adversary can eventually force an ECU to produce the previously-observed challenge with

a 20% likelihood, then the adversary can authenticate with just five attempts (on average) and

deceive a monitoring IDS.

5.4 Controlling the challenge

We now explore how a remote adversary can exploit this vulnerability to force an ECU to produce

a previously-observed challenge with some likelihood. Here, we aim to observe a particular

challenge with a higher likelihood than other challenges.

106

As we demonstrated in our attack insight, performing a hard reset before requesting a

challenge can cause some challenge to occur at a higher-than-expected likelihood. To understand

how the adversary can control the most-repeated challenge, we must first understand how the

challenge is created. Here, the value of the challenge produced by an ECU is an input of the

nonce from the randomness source and potentially some other fixed value (depending on the

algorithm used, such as a linear congruential generator (LCG)). As a result, every change in the

nonce will produce a change in the produced challenge. Thus, we can expect that every increase

in the processor uptime will change the challenge that we receive from a victim ECU.

With this in mind, we can now consider the first major step for the adversary. Given the

single challenge-response pair observed during the technician’s authentication with the victim

ECU, the adversary must first determine the necessary attack setup and parameters to force the

victim ECU to produce the same observed challenge at least once. Then, the adversary can focus

on what steps are necessary to increase the likelihood of this particular challenge and make

it the most likely to appear. A simple experiment to run as we progress through each part of

our approach follows the same one we did above: simply request 1000 challenges after a hard

reset request and calculate which and how often a particular challenge appears from the victim

ECU.

5.4.1 Selecting a challenge

It is clear that the challenge produced by an ECU is a function of the processor uptime. However,

one obstacle that the adversary encounters here is that it is not sufficient to simply request a

hard reset and then immediately request a challenge. As detailed above and in Chapter 2, there

are other necessary steps that must occur between the reset request and the challenge request,

namely the request to enter the programming session. On top of this, each request (whether a

hard reset or diagnostic state change) must be acknowledged over the CAN bus, which is then

followed by the completion of that request. For example, the timing of a reset request follows

Figure 25. Here, we see that the reset request sent by the target is followed by a response from the

107

Figure 25: Overview of a single reset-controlled challenge request

target ECU acknowledging the request and then the actual reset of that ECU. The time between

each of these steps can vary for each make and model of ECU, thus it is necessary to determine

how to control the time between each step. For simplicity, we define several key timestamps

during a potential attack:

• treq(reset), or the time when the adversary requests a reset.

• tresp(reset), or the time when the target acknowledges the reset request.

• treset, or the true time the target performs the reset.

• treq(prog), or the time when the adversary requests a programming session.

• tresp(prog), or the time when the target acknowledges the session change request.

• tprog, or the time when the target enters the programming session.

• treq(chal), or the time when the adversary requests a challenge.

• tresp(chal), or the time when the target responds with a challenge.

Following this notation, each challenge produced by a target ECU will depend on the value

of the time between the hard reset request and the challenge response, or treq(chal) − treq(reset).

108

Ideally, treq(chal) − treq(reset) should have as close to zero variance as possible; but, in reality,

there are many factors that impact this value depending on the particular make and model of

ECU:

• The value of treset − treq(reset) can have nonzero variance if the target ECU is actively trans-

mitted other (likely periodic) CAN traffic. One approach here to reduce this variance is to

request a programming session both before and after the hard reset request. While the

session request after is expected, the session request before the reset likely reduces other

software operations that occur on the target ECU. As a result, when the target ECU then

receives a hard reset request, it can perform that operation with priority (since no other

actions to take), thus producing a more consistent value for treset − treq(reset).

• The value of treq(prog) − treset has a minimum time depending on the target make andmodel

ECU as an ECU needs sufficient time to actual perform the hard reset before it can accept

any UDS service request. As the hard reset simulates a power cycling of the ECU, all of

the software must reinitialize. As a result, more software to reinitialize after a hard reset

on an ECU will cause treq(prog) − treset to increase. This finding is further supported by

the fact that later model ECUs have a larger treq(prog) − treset, which we suspect is due to

added software complexities. We also see the same impact for the value of treq(chal) − as an

ECU will need to run some software instructions to enter the programming session. While

doing this, it will ignore any other UDS service requests. We also find here that treq(chal) −

can be different between makes and models of ECUs.

After identifying the unique parameters for the hard reset and programming session state

change requests that depend on the target ECU’s make and model, we now attempt to exhibit

some control of the exact challenge we observe from an ECU. As mentioned before, each value of

treq(chal) − treq(reset) will map to a different challenge based on the challenge algorithm. Unfor-

tunately, the main hurdle we face here as depicted in Figure 26 is a result of the CAN bus timing

resolution. In this example, the timing resolution of the CAN bus is 4µs while the resolution for

109

Figure 26: Timing resolution of CAN bus versus victim ECU

processor uptime on the target ECU is 1µs (in reality, the processor uptime is much smaller). If

our goal as the adversary is to get challenge K to appear on the bus, then we should send a chal-

lenge request during CAN bus slot time #3. However, even if we do this, we can get one of four

possible challenges ranging from I to L, where I and L refer to clock cycles on the victim ECU as

show in Figure 26. Likewise, if we send a challenge request during slot time #4, we should expect

to get a challenge ranging from M to P. From this example, it is clear that we can select a partic-

ular challenge by simply waiting a sufficient time until a known CAN bus slot time will produce

the expected challenge. However, determining how long to wait to send a challenge request is

a difficult problem. To solve this, we must consider the variety of implementation of challenge

algorithms as they each will have a slightly different approach to controlling the challenge.

5.4.2 Approach to different challenge algorithms

We now detail a variety of approaches that we can take to control the challenges, which will

depend on the implemented challenge algorithm.

Linear and small space: For many makes and models of ECUs, it is common to find that

the challenge algorithm is a linear-feedback shift register (LFSR) as seen in prior work [52]. If

110

the challenge space (i.e., the number of bits in the challenge) is small enough, we can “reverse-

engineer” the LFSR using the Berlekamp-Massey algorithm [98]. Here, the adversary can es-

sentially build a rainbow table where, for each value of treq(chal) − treq(reset), the adversary can

knowwhich challenge will be produced. Using the known LFSR, the adversary can determine the

entire expected sequence and thus know how the challenge changes given an increment in the

processor uptime value. We find that this challenge algorithm is common and appears on both

powertrain ECUs that we experiment with.

Linear and large space: Suppose we had a similar design as above: an LFSR generating

the challenge but the challenge space was significantly large enough that we could not reverse-

engineer the LFSR algorithm itself. Our insight here is for the adversary to use our basic experi-

mental setup (i.e., perform and track 1000 requests for a challenge) but continuously modify the

value of treq(chal) − treq(reset). We know that there will be one specific challenge that appears at

a maximum likelihood for every time slot in our challenge request. If we increment treq(chal) −

treq(reset) by one time slot at a time, we get shift the likelihood to the next challenge that would

be produced by this LFSR. Of course, if the processor uptime time slots are much smaller than

the CAN bus bit width, then we may skip a few challenges as we increment treq(chal) − treq(reset)

by a single unit. While our approach for linear and small challenge space was sufficient for our

powertrain ECUs, we implement this approach on those ECUs as well.

Non-linear and small space: As the challenge algorithm here is non-linear, we cannot

expect the sequence of challenges produced as treq(chal) − treq(reset) increases to be obvious. How-

ever, if the adversary could somehow predict approximately when an ECU would be reset, the

adversary could reduce the potential values for treq(chal) − treq(reset) to a reduced range of time,

effectively reducing the search space for our adversary. One idea to predict this reset time is to

analyze the process a diagnostic tester follows to upload code to an ECU. Using the OEM diag-

nostic tester we acquired, we noticed that the tester software requested us to manually power off

and power on the ECU just prior to uploading new code. Here, the reset of the ECU will take

place in a much smaller period of time (scale of a few seconds) compared to a vehicle that is

111

sitting for a while and then having an ECU be updated (on the scale of tens of seconds). While

we cannot reasonably map each challenge to its treq(chal) − treq(reset) value, we can now build a

table of challenges to treq(chal) − treq(reset) values based on the expected time that a tester would

normally request a manual hard reset.

Non-linear and large space: In addition to the challenge algorithm being non-linear,

a large challenge space poses another hurdle for the adversary. If the remote adversary had

a command-and-control setup, the adversary could measure the estimated treq(chal) − treq(reset)

fromwhen the technician performed the single authentication. The adversary could measure this

by timing when the ECUwakes up to when the tester’s challenge request occurs. If the adversary

transmits the estimated treq(chal) − treq(reset) to an adversary-controlled server, the adversary can

follow the steps for the above scenario and simply build amap of challenges to treq(chal) − treq(reset)

values butwithin the range of the estimated treq(chal) − treq(reset). Another approach the adversary

can consider here is actually controlling when the hard reset occurs before the tester requests a

challenge. As the adversary is already sniffing on the bus, they could simply inject a hard reset

request just before the authentication occurs. In our experiments, we find that the tester will

often transmit some preliminary UDS commands prior to uploading code. If the adversary uses

these commands as a trigger, they could simply insert a hard reset command just before the tester

will request a programming session and then request a challenge.

5.5 Repeating a challenge

Now that the adversary can get the captured challenge to appear on the bus, the adversary will

need to ensure that this challenge can appear with as high a likelihood as possible. To avoid

detection by an IDS that alerts when a handful of failed authentication attempts occur, we must

optimize our technique to requesting a specific captured challenge.

Potential for detection by an IDS:While the adversary can perform any amount of test-

ing on their stock vehicle, the adversary is severely limited once performing attacks on the victim

112

vehicle. We make the assumption that this vehicle is monitored by an IDS that will alert if the

number of failed authentication attempts exceeds a set threshold. In practice, we find that this

threshold is often, at aminimum, just five attempts. As a result, we can guarantee the success of an

attack if the adversary can force an ECU to produce a previously-captured challenge to appear at

over 20% likelihood. Also, compared to other work that required brute-forcing an ECU to extract

secret keys [52], our technique can still succeed even if a vehicle implements diversified keys. By

performing a capture-replay attack that follows a single known-plaintext attack model, we can

limit the amount of time and the traffic output that our adversary requires to bypass authentica-

tion on the victim ECU. Thus, by aiming to get a likelihood of over 20%, we can achieve sufficient

results to bypass authentication on modern UDS SecurityAccess implementations.

5.5.1 Maximizing likelihood of repetition

When performing our attack from the compromised ECU, it is critical for the adversary to ensure

that the treq(chal) − treq(reset) value is consistent across attempts. In our experiments, we find

that launching the CANdid attack using a Linux device versus a microcontroller unit (MCU) can

induce a lower likelihood of repetition. We believe that the other software functions that run

between our wait time for the treq(chal) − treq(reset) value causes the noise for this value. As a

result, the adversary must ensure that their method of tracking time on the compromised ECU is

consistent. The adversary can rely on hardware timers to ensure high precision in the timing of

their requests to the victim ECU.

Timing control beyond aCANbit width: Themain limitation that the remote adversary

faces in performing the CANdid attack is the timing resolution for sending requests on the CAN

bus. As depicted in Figure 26, the CAN bus time slot can be many times larger than the time slots

for the processor uptime. On a CAN bus operating at 500Kbps, the best timing resolution that

the adversary can achieve is 2µs. In our experiments with an automotive-grade microcontroller,

we find that the processor uptime could increment as fast as 11.9ns for an MCU with a clock

speed of 84MHz (we note that processor uptime could increment at a multiple of the MCU’s

113

clock speed, but we assume worst-case scenario for now). This means that, for every challenge

request over this CAN bus, the adversary could receive one out of 168 possible challenges. Thus,

if the adversary were to perform this attack even with very consistent time between the hard

reset request and the challenge request, the adversary would observe a specific challenge about

0.6% (or 1 over 168) of the time.

To get around this limitation, we identify a novel technique to reduce the timing gran-

ularity of our adversary when transmitting on the CAN bus. This technique makes use of the

CANnon attack to impact the synchronization of the CAN bus to the adversary’s advantage. For

every CAN bus bit width, each bit is broken down into smaller segments called “quanta” at the

physical-layer. These quanta are typically only necessary for the CAN controller to interpret the

edges of a physical CAN signal and adjusting a controller’s timing to the CAN bus. However,

we find that using the CANnon to freeze for just a single quanta on the compromised ECU be-

fore it transmits a message can cause the entire bus to re-synchronize to this new transmission.

Where the adversary previously could only control the timing of their messages down to 2µs for

a 500Kbps bus, this technique can reduce that timing resolution down to 250ns (in this case, max-

imum number of quanta is 8, but this will change depending on the bus speed). With this new

timing resolution, the adversary can now get finer control of when the challenge request is sent

and thus increase the likelihood of forcing the victim ECU to produce a specific challenge.

5.6 Evaluation

In this section, we demonstrate the CANdid authentication bypass on a real powertrain ECU by:

capturing a valid authentication, forcing the ECU to reproduce the previously-observed challenge,

and then replaying the previously-observed response. We also demonstrate the ability to force

an ECU to reproduce a challenge on another powertrain ECU and a gateway ECU.

Experimental setup: To demonstrate the significance of this attack, we launch CANdid

against a variety of real ECUs from several real vehicles. In this work, we do not explicitly show

114

the ability to compromise an in-vehicle ECU remotely as this has been the focus of a large number

of prior works [10, 22, 35, 36, 37]. Rather, we build our attack on the assumption that these existing

techniques would be successful in remotely compromising the software of an in-vehicle ECU. For

our experiments, we physically connect to a CAN bus using an Arduino Due board to emulate

a compromised ECU. In this work, we do not reveal the OEMs of each particular board as the

disclosure process is ongoing. However, the ECUs that we use are used in several other works

and are very common in the United States.

Figure 27: Challenges reproduced with over 25% likelihood

Authentication bypass on real powertrain ECU: We had access to a single diagnostic

tester for just one OEM (we can refer to this OEM as OEM #1). With this tester, we identified that

one of our powertrain ECUs from OEM #1 had a software update. To emulate the attack that our

adversary would performwhen on a real victim vehicle, we use the Arduino Due to sniff the CAN

bus while we attempt to update the software on this powertrain ECU. Using the diagnostic tester,

115

we first update the software to the latest version and capture a single challenge-response pair

when the tester authenticates with the ECU. Using just this single pair, we can perform our attack.

However, to obtain a potential payload to reprogram the ECU with, we downgrade the software

version of the ECU and capture only the new code that was uploaded to the ECU. We then update

the ECU again back to its latest version, where we will now try to perform our authentication

bypass attack and downgrade the ECU’s software version without using the tester.

Using the CANdid attack against this powertrain ECU from OEM #1, we achieve over a 25%

likelihood of repeating any previously-observed challenge as depicted in Figure 27. The figure

shows the results of our basic experiment (again, requesting and tracking 1000 challenges); with

a likelihood of over 25%, we can expect to bypass authentication within four attempts, which is

below the IDS detection threshold of five failed attempts. With this ECU, we perform a replay

attack by forcing the ECU to produce the same challenge we observed during the tester’s authen-

tication. Once we see the same challenge appear from this ECU, we simply replay the associated

response. We successfully received an “access granted” response from the ECU and gained access

to privileged commands. Now the adversary can utilize the UDS RequestUpload service, which

requires passing authentication, and can then use UDS TransferData to upload any code to the

ECU. In this work, we simply upload the code for the older software version as a proof-of-concept.

After performing this attack, we connect our diagnostic tester and observe that the current ECU

version is the older version instead of the new version, proving that the CANdid worked.

Challenge repetition on other ECUs: As depicted on Figure 27, we saw a high likelihood

of challenge repetition on another OEM, which we call OEM #2. This ECU is another powertrain

ECU, and we perform the attack on both a 2016 and 2017 model year ECU. Where the challenges

for this OEM are 4 bytes, we should expect the challenges to repeat with a likelihood of only 1

out of 232 chance; however, we see an over 25% likelihood of repeating the same challenge. It

is clear here that our CANdid techniques can achieve a sufficiently high challenge repetition on

real ECUs. We also got access to an engineering copy of a real gateway ECU for another OEM.

While we had limited access to this ECU, we were quickly able to demonstrate the CANdid attack

116

on this ECU and achieved a 12.5% likelihood of repeating a specific challenge. This ECU had a

16-byte key so the expected likelihood of repeating a challenge should be 1 out of 2128, which is

astronomically smaller than the likelihood we achieved with CANdid. As a result, it is clear that

CANdid can enable a capture-replay attack considering a single known-plaintext attack on real

ECUs.

5.7 Countermeasures

We now discuss countermeasures against the CANdid authentication bypass attack. We consider

two classes of solutions: ones that harden the authentication protocol to prevent such an attack

and ones that aim to detect the attack in the future.

Hardening UDS SecurityAccess: One simple approach to defending against this attack

is to place the UDS ECUReset service behind authentication. As long as the ECUReset service

does not need to be accessed by unauthenticated users, then this measure can prevent an adver-

sary from influencing the ECU’s source of randomness. Another approach to harden the UDS

SecurityAccess implementation is to seed the challenge with both a nonce and the ECU’s unique

key. Assuming that key diversification is in use, a challenge based on the unique key along with a

nonce ensures that the challenges produced by each ECU instance are different from each other,

preventing an adversary from planning an attack on a stock vehicle and then launching their

attack on a victim vehicle.

Additionally, if key diversification is employed, then ECUs should implement a form of

event-driven key rotation [99]; for example, the keys for an ECU should be updated whenever

the firmware is upgraded. If a secure back-end server keeps track of the key, then this solution can

be viable if the tester acts as a simple pass-through as we detailed in Chapter 2. Moreover, another

approach to harder a SecurityAccess implementation is to use a better source of randomness. As

highlighted in other work that uses processor runtime [93, 96], this source of randomness can be a

poor choice compared to other sources, such as SRAM start-up noise [62]. Here, an ECU could use

117

SRAM, voltage, or other potentially random sources to generate a source of randomness instead

of requiring the use of an expensive TPM or HSM.

Detecting the attack: Since the UDS requests originate from an in-vehicle ECU instead

of an attached diagnostic tester, pinpointing the provenance of these messages could indicate a

potential attack. One approach could use prior work on secure transceiver concepts [20] to filter

outgoing UDS request messages for all in-vehicle ECUs. By blocking all requests that originate

from in-vehicle ECUs, we can now expect that only a diagnostic tester can initiate UDS requests to

in-vehicle ECUs. Of course, this defense assumes that ECUs do not need to request UDS services

with each other, but the filter can be adjusted to permit just a few permitted services. Another

approach lies with an observation from prior work on voltage-based IDSes [16, 17]. This prior

work focused on tracking the voltage profiles of existing in-vehicle ECUs; if we did the same, we

could detect an attack by identifying UDS services requests that have a similar voltage profile.

If we expect the diagnostic tester connect to the CAN bus, it will have its own voltage profile

that will be distinct from the in-vehicle ECUs, thus we could tell when a tester is physically

connected.

5.8 Summary

In this chapter, we presented CANdid, an authentication bypass that can perform a single known-

plaintext attack on a safety-critical ECU. CANdid leverages the reset diagnostic command to im-

pact an ECU’s source of randomness even though this PRNG was designed to be random for

the purpose of making brute-force and replay attacks challenging. By exploiting this disconnect,

CANdid can capture a single authentication and force an ECU to reproduce a previously-observed

challenge, enabling a replay attack. With this attack, an adversary can then gain the appropriate

access to upload code to a given ECU. We also propose countermeasures that target this discon-

nect by requiring authentication prior to permitting the reset diagnostic command or by using a

PRNG that would be unaffected by a reset.

118

6 Kill-Chain Proof-of-Concept

To conclude the thesis contributions, we now detail a proof-of-concept demonstration of our at-

tack kill-chain. Our goal here is to demonstrate how a remote adversary (limited to only running

software instructions from a single compromised ECU) can upload code to another safety-critical

ECU that would not have any remote interfaces for an adversary to directly exploit. As the goal

of this proof-of-concept is to upload code to an ECU following our kill-chain stages, we select

a target ECU that allows us to have access to two versions of code: an older version and the

latest version. Our attack idea (as a proof-of-concept) is to downgrade the target ECU’s software

version.

6.1 Experimental setup

Out of all of our experimental ECUs, we find that a powertrain ECU from OEM #1 has two soft-

ware versions that we can upload using a diagnostic tester for OEM #1.13 Thus, we acquire a

vehicle that is the same make as OEM #1. We attach our Arduino Due to the vehicle’s OBD-

II port and simply read the vehicle’s CAN traffic (just as a remote adversary would). We then

identify the set of ECUs and their source messages and find that there is a total of nine ECUs,

including the powertrain ECU. As we did not have permission to launch this attack on this ve-

hicle instance, we emulate this vehicle’s network by building a surrogate network consisting of

our powertrain ECU from OEM #1 and a total of eight Arduino Dues programmed to emulate the

captured traffic of the non-powertrain ECUs (including IDs, transmission rates, and overall bus

load). We select one of these Arduino Dues as our compromised ECU so we launch our attack

from this Due. While launching our attack, we also transmit the original CAN bus traffic for this

particular Due and ensure that all traffic follows the strict IDS rules detailed in Chapter 4.
13Using this tester, we can capture the software for the older version of code over the CAN bus and store this as

our planned attack code to upload. An adversary can alter this code to achieve their desired final attack payload, but
we do not investigate building a payload in this thesis.

119

6.2 A step-by-step demonstration

Our demonstration consists of five major steps in the attack timeline as depicted below:

1. By running the CANvas network mapper from the “compromised” ECU, we confirm that

the eight other ECUs on the network (including the powertrain ECU) match exactly the

network we expected from the real vehicle instance of the same make and model.

2. We connect the OEM #1 diagnostic tester to this surrogate network and update the pow-

ertrain ECU with the latest software version. While we perform this update, our compro-

mised ECU sniffs the bus and captures a single challenge-response pair. This tester requires

the technician to reset the powertrain ECU prior to the upload just a few seconds later.

3. Then, after the tester disconnects from the network, we can prepare to launch the authen-

tication bypass. Since we can expect that the captured authentication pair occurs within

a few seconds of the reset, we can build a small lookup table containing a list of potential

challenges and their associated treq(chal) − treq(reset) values by running experiments on the

stock vehicle. We then store this table on the compromised ECU and have it select the

appropriate treq(chal) − treq(reset) for the challenge it captured from the tester. Using the

CANnon technique, the compromised ECU can achieve a finer timing granularity when

launching the CANdid part of the kill-chain.

4. After using CANnon to precisely time the challenge request (following the appropriate

treq(chal) − treq(reset) value), we simply replay the capture response, concluding the CANdid

authentication bypass. We receive a positive response from the powertrain ECU, which

enables us to request an upload and then upload the “attack” code.

5. We send a request to the powertrain’s UDS RequestUpload service and receive a positive

response. We then upload the older software version using UDS TransferData and succeed

in our attack. To confirm, we connect the diagnostic tester and request the software version.

Here, we find the older version is now programmed on this powertrain ECU.

120

7 Reflections, Lessons Learned, and Future Work

We now conclude the thesis with a summary of our contributions, reflections on how this work

impacts related fields, the lessons we learned on identifying these elusive vulnerabilities, and

future work to investigate.

7.1 Summary of contributions

By identifying disconnects between design assumptions and actual implementations, we can con-

struct an attack kill-chain that enables a remote adversary to reprogram another in-vehicle ECU

and, thus, informs countermeasures in the defense of next-generation vehicles.

7.1.1 CANvas contributions

In this thesis, we present the CANvas network mapper, which permits a remote adversary to

passively sniff CAN bus traffic and extract the set of ECUs and which message IDs they send.

We identify clock offset as a unique source ECU identifier that an adversary can extract from

timestamped CAN traffic. With respect to our attack kill-chain, an adversary can use CANvas

to map a stock version of the victim vehicle and then compare that map to the network map of

the actual victim vehicle. We successfully identify a disconnect between the broadcast nature of

the CAN protocol, which naturally includes no source information, and the periodicity of CAN

traffic on real vehicles, which we exploit to identify a message’s source ECU. As a result, this

disconnect informs us that message periodicity reveals information on which ECU sends a given

message ID so we propose countermeasures to intentionally disrupt this periodicity or make it

difficult for an adversary to track messages by ID altogether. To demonstrate the consequence of

this disconnect, we map a real 2009 Toyota Prius that had an additional transmitting ECU added

to its network. If our remote adversary mapped an unmodified 2009 Prius, they would find that

this Prius’ network was different and could make a decision to abort their kill-chain if the added

ECU would impact their attack.

121

7.1.2 CANnon contributions

For the CANnon disruption attack, we demonstrate how a remote adversary could exploit a new

power-saving feature to impact a compromised ECU’s CAN transmissions at the physical layer.

We construct a technique that exploits software controls for peripheral clock gating to “freeze” an

ECU’s CAN transmission mid-message. With respect to our attack kill-chain, an adversary can

use CANnon to disrupt other CAN transmissions and even trick other ECUs into shutting down

their CAN interfaces. We successfully identify a disconnect between the CAN protocol hardware,

which should enforce protocol compliance, and the peripheral clock gating feature on real MCUs,

which we exploit to bypass protocol compliance and then inject individual bits on the CAN bus.

As a result, this disconnect informs us that peripheral clock gating can be exploited to impact

the CAN physical layer so we propose countermeasures to detect malicious usage of this feature

or removing this feature altogether for just the CAN protocol. To demonstrate the consequence

of this disconnect, we target and shut down a powertrain ECU on a 2017 Ford Focus. With this

capability, our adversary can also impact the transmission time of other CAN messages and even

the synchronization of all ECUs to the CAN bus.

7.1.3 CANdid contributions

Our CANdid authentication bypass demonstrates how a remote adversary can exploit a particular

diagnostic command to enable a replay attack against the UDS SecurityAccess service. We con-

struct an attack that exploits the UDS ECUReset service to request a hard reset that forces an ECU

to reproduce a previously-observed challenge. With respect to our attack kill-chain, an adversary

can use CANdid to bypass authentication on a safety-critical ECU and then permit the adversary

to upload new software to this ECU. We successfully identify a disconnect between the processor

uptime-based PRNG used in ECUs, which should provide sufficient randomness to prevent replay

and brute-force attacks, and the hard reset command that requires no authentication, which we

exploit to control the challenge produced by an ECU and then launch a replay attack. As a result,

this disconnect informs us that the hard reset request can be exploited to bypass authentication

122

via UDS SecurityAccess so we propose countermeasures to harden the authentication protocol

(by enhancing the PRNG, requiring authentication to even request a hard reset, etc.) or detect

when an in-vehicle ECU attempts to authenticate versus a diagnostic tester. To demonstrate the

consequence of this disconnect, we capture a single valid authentication using an OEM tester

and then perform a replay attack on a real powertrain ECU. With this capability, our adversary

can complete our proposed attack kill-chain and use an initial compromised ECU to reprogram

another safety-critical ECU on a given in-vehicle network.

7.2 Impact on related automotive fields

While we demonstrate this attack kill-chain in the field of automotive security, we highlight how

this work can impact other related fields.

Heavy-vehicle (trucking) industry: While trucks differ from passenger vehicles inmany

ways, their in-vehicle networks can be similar. Heavy-vehicles also employ both the CAN and

UDS protocols as well as similar hardware in their ECUs. As a result, it is likely that the trucking

industry is vulnerable to our attack kill-chain. One major concern here is that the prospect of

a remote adversary could be more likely against a truck. While passenger vehicles are typically

left unmodified after production so a remote adversary must target an existing in-vehicle ECU,

trucks often have an electronic logging device (ELD) attached directly to the CAN bus [100]. An

ELD is typically sold by a separate company and could serve as an entry point to a vehicle’s CAN

bus. Where the truck manufacturer can focus heavily on security for their in-vehicle ECUs, an

added ECU from a company that may not share the same security concerns could open the door

to a remote attack on trucks. Then, by following our attack kill-chain, the impact of a remote

attack could significantly increase.

Autonomous vehicle (AV) industry: AVsmove the bar in technology by shifting to drive-

by-wire systems, where we rely on electronics to control many (if not all) of a vehicle’s safety-

critical functions. As a result, we lose the mechanical “backups” that non-AVs had. As a result,

123

even if a remote adversary could disable the brakes on a non-AV, the driver could still use their

emergency brake to stop the vehicle (although not ideal); for an AV, however, such an attack

would not give the driver any option as the safety-critical brakes are electronically controlled.

While the AV industry will also introduce newer in-vehicle network protocols (e.g., Automotive

Ethernet) for handling sensor data, it is likely that safety-critical systems will still operate over

CAN so this scenario is still feasible for AVs. In addition to this, the AV industry reintroduces the

notion of a physical attack. Considering the adoption of AV fleets, we will likely see situations

where a malicious passenger will attach a device directly to the AV’s CAN bus. Then, when this

passenger leaves and another victim passenger enters the AV, the adversary can launch their

attack. As a result, we need to investigate techniques to identify potentially malicious added

components to a vehicle’s CAN bus.

Electric vehicle (EV) industry: In their landmark work, Miller et al. identify that a vehi-

cle worm would be an interesting and scary attack that could potentially cause significant dam-

age [10]. While they focus on a vehicle worm that remotely compromises one vehicle and then

scans for others and compromises those, we envision a similar attack but against the EV industry.

Considering that EV chargers can communicate over the CAN bus [101], this access opens the

door to a worm-like attack. Suppose an adversary could plant a worm on an EV charger that will

attack a connected EV’s CAN bus. Here, we envision a worm that spreads to EVs that then spread

the worm to other EV chargers and so on. Considering the physical connectivity between the EV

charger and the EV itself, an adversary could even plan a physical man-in-the-middle device to

initiate the worm and gain access to the first vehicle’s ECUs.

7.3 Lessons learned

We now discuss lessons learned from other fields of research and lessons we learned about iden-

tifying elusive vulnerabilities similar to those found in this thesis.

Lessons from other fields: We find that it is important to learn lessons from other fields

124

to better secure in-vehicle networks. Prior work on encrypting passwords in a similar manner

to challenge-response authentication for traditional security finds that the use of time is a poor

choice for a source of randomness [93, 96]. While the key exploit that we encounter for the

CANdid attack was that the adversary had access to a hard reset command, this attack would not

have happened in the first place if a better source of randomness were in place. It is well-known

that the field of automotive security is behind traditional security [7, 51], and we should focus on

not repeating the poor choices made in other fields.

A better security testbed: In our thesis, we often use the Arduino Due microcontroller

as our initial hardware for our experiments when exploring new attacks. We have often found

that the use of such an automotive-grade MCU has enabled us to find these attacks; we now

provide an example for each project. For CANvas, we initially used a CAN dongle that commu-

nicates via Linux’s socketcan module, which produces software timestamps. In our original

experiments, we were unable to identify the fact that periodicity revealed unique timing charac-

teristics. However, when we ported our software to the Arduino, we were able to achieve a finer

timing granularity. By mimicking hardware that would actually exist in a real vehicle instead

using an “easy-to-use” CAN dongle via Linux, we were able to observe the minute differences in

clock offset and enable our results (we also had similar experiences when performing our CANdid

authentication bypass attack). With respect to CANnon, we found that our use of an automotive-

grade MCU that implemented a CAN peripheral enabled us to find this vulnerability where prior

work did not. While many CAN projects use a simpler version of the Arduino, we used the Due,

which closely resembles a high-performance automotive MCU family. Here, we were able to find

the software instruction for clock gating and identify its impact to enable the CANnon attack.

Thus, it is clear that a poor choice in testbed could be a simple barrier to finding these elusive

vulnerabilities.

125

7.4 Future work

This thesis focuses on building a kill-chain path from a compromised infotainment (or telematics)

ECU to a safety-critical ECU. We do not address the initial compromise and the final attack code

upload, thus future work should encompass these other kill-chain stages.

7.4.1 Exploiting remote interfaces

One major challenge that we do not address in this thesis is methods to remotely exploit the

initial compromised ECU inside a vehicle. We have seen multiple examples of such remote ex-

ploits [10, 22, 23, 24]. Following the vehicle-agnostic goal of this thesis, it would be worth in-

vestigating general approaches to gaining remote control of an in-vehicle ECU. One approach

could be to explore mobile application vulnerabilities [35, 36, 37] and see if automakers share

any potentially vulnerable software between their implementations. Likewise, as automakers

build back-end systems that connect to the telematics ECUs in their vehicles, we could explore

vulnerabilities that are shared among this back-end software. Following our insight that UDS

implementations are somewhat similar across makes and models, it would not be surprising to

see the same commonalities across automaker back-end services, especially if those services are

not built in-house. Another remote interface exploit that would be worth exploring are added de-

vices to the CAN bus, which can include anything from ELDs for trucks, personal-use diagnostic

testers, and insurance dongles. Here, an adversary could exploit vulnerabilities on these devices

to ultimately gain access to a victim vehicle.

One recent approach against remote attacks comes from when Tesla responded to a remote

attack on their vehicles [22]. In their response, Tesla pushed an update that implemented code

signing on the gateway ECU, which would prevent an adversary from modifying maliciously

modifying the code on this ECU. However, one type of attack that is still possible with signed

code is a a return-oriented programming (ROP) chain attack via exploiting a buffer overflow.

Here, an adversary could still performmalicious software instructions but could only call existing

126

commands in the ECU’s code. It would be worth investigating how a ROP-chain attack could

potentially achieve our attack kill-chain and produce the same results.

7.4.2 Bypassing firmware defenses

In this thesis, we simply upload an older version of code to a victim ECU as our proof-of-concept

attack. However, it would be critical to investigate how an adversary could upload malicious

code in the presence of firmware defenses on the victim ECU. One obstacle (not a defense per

se) is the use of error-detecting codes (typically, a cyclic redundancy check (CRC)) that ensure

new uploaded code was correctly transmitted over the CAN bus. Without knowledge of this

CRC, an adversary would not be able to modify the code and simply push it to the victim ECU.

However, as prior work has reverse-engineered the code on ECUs [52], an adversary can find the

CRC algorithm used by the victim ECU and use it to calculate the appropriate CRC. Then, the

adversary can modify the code at-will and upload it to the victim with the correct CRC.

There is also another potential defense that could prevent an adversary from uploading

code to a victim ECU: secure boot with signed code. Secure boot ensures the integrity of the

firmware and software by checking that the code’s signature matches the expected signature.

However, recent work discussed how researchers could bypass the secure boot checks on an

Android platform [102]. As a result, an adversary could use a similar technique against a victim

ECU and bypass the secure boot check once malicious code is uploaded. Additionally, if the

code is signed and this secure boot bypass is not a viable option, our adversary could still achieve

authenticationwith the ECU andwrite to data identifier (DID) fields using UDS commands. While

these fields typically set configurations for an ECU, an adversary could potentially find a buffer

overflow exploit and enable a ROP-chain attack. One important note to consider is that secure

boot may use public-key infrastructure (PKI), which is costly to implement on the scale of the

automotive industry. While we are likely to see PKI implemented on telematics and infotainment

ECUs (the ones with wireless interfaces), it is probable that safety-critical ECUs without external

interfaces will not use PKI. As a result, a security mechanism that uses PKI would not be in place

127

for these ECUs, thus our attack kill-chain could still be possible. The main challenge then is

gaining the initial remote compromise.

128

Bibliography

[1] Jack Baylis, M Grayson, C Lau, G Gerstell, B Scott, and Jim Nicholson. Transportation

sector resilience. National Infrastructure Advisory Council, 2015. Available at this link.

[2] Diana Furchtgott-Roth, Patricia S Hu, Long Nguyen, Sean Jahanmir, William H Moore,

Demi Riley, Steve Beningo, MatthewChambers, Sonya Smith-Pickel, HoaThai, et al. Pocket

guide to transportation 2021. 2021. Available at this link.

[3] Sara Baldwin, Amanda Myers, Michael O’Boyle, and David Wooley. Accelerating clean,

electrified transportation by 2035: Policy priorities. Policy, 2021. Available at this link.

[4] Stacy Davis and Robert Gary Boundy. Transportation energy data book: Edition 39. Tech-

nical report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2021. Avail-

able at this link.

[5] Kara Kockelman, Stephen Boyles, Peter Stone, Dan Fagnant, Rahul Patel, Michael W Levin,

Guni Sharon, Michele Simoni, Michael Albert, Hagen Fritz, et al. An assessment of au-

tonomous vehicles: traffic impacts and infrastructure needs. Technical report, University

of Texas at Austin. Center for Transportation Research, 2017. Available at this link.

[6] John Martin and Arthur Carter. Nhtsa cybersecurity research. In 25th International

Technical Conference on the Enhanced Safety of Vehicles (ESV) National Highway Traffic

Safety Administration, 2017. Available at this link.

[7] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno, Stephen

Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, et al. Ex-

perimental security analysis of a modern automobile. In Security and Privacy (SP), 2010

IEEE Symposium on, pages 447–462. IEEE, 2010. Available at this link.

[8] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,

Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi Kohno, et al.

Comprehensive experimental analyses of automotive attack surfaces. In USENIX Security

129

https://www.cisa.gov/sites/default/files/publications/niac-transportation-resilience-final-report-07-10-15-508.pdf
https://rosap.ntl.bts.gov/view/dot/54286/dot_54286_DS1.pdf
https://www.ferc.gov/sites/default/files/2021-04/Panel4-SaraBaldwin2-EnergyInnovation.pdf
https://info.ornl.gov/sites/publications/Files/Pub147659.pdf
https://rosap.ntl.bts.gov/view/dot/31990/dot_31990_DS1.pdf
https://www-esv.nhtsa.dot.gov/Proceedings/25/25ESV-000082.pdf
http://www.autosec.org/pubs/cars-oakland2010.pdf

Symposium, pages 77–92. San Francisco, 2011. Available at this link.

[9] Charlie Miller and Chris Valasek. A survey of remote automotive attack surfaces. black

hat USA, 2014:94, 2014. Available at this link.

[10] Charlie Miller and Chris Valasek. Remote exploitation of an unaltered passenger vehicle.

Black Hat USA, 2015:91, 2015. Available at this link.

[11] LG Cripps. Electronics in cars. Electronics & Power, 16(11):394–398, 1970. Available at

this link.

[12] Uwe Kiencke, Siegfried Dais, and Martin Litschel. Automotive serial controller area net-

work. SAE transactions, pages 823–828, 1986. Available at this link.

[13] WP UNECE. Grva,“draft recommendation on cyber security of the task force on cyber

security and over-the-air issues of unece wp. 29 grva.”, 29. Available at this link.

[14] Iso/sae 21434:2021 road vehicles — cybersecurity engineering. Standard, International Or-

ganization for Standardization, August 2021. Available at this link.

[15] Kyong-Tak Cho and Kang G Shin. Fingerprinting electronic control units for vehicle in-

trusion detection. In USENIX Security Symposium, pages 911–927, 2016. Available at

this link.

[16] Kyong-Tak Cho and Kang G Shin. Viden: Attacker identification on in-vehicle networks.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, pages 1109–1123. ACM, 2017. Available at this link.

[17] Wonsuk Choi, Kyungho Joo, Hyo Jin Jo, Moon Chan Park, and Dong Hoon Lee. Voltageids:

Low-level communication characteristics for automotive intrusion detection system. IEEE

Transactions on Information Forensics and Security, 13(8):2114–2129, 2018. Available at

this link.

[18] Wonsuk Choi, Hyo Jin Jo, Samuel Woo, Ji Young Chun, Jooyoung Park, and Dong Hoon

Lee. Identifying ecus using inimitable characteristics of signals in controller area networks.

130

http://www.autosec.org/pubs/cars-usenixsec2011.pdf
http://illmatics.com/remote%20attack%20surfaces.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
https://ieeexplore.ieee.org/iel5/5176125/5179194/05179198.pdf?casa_token=rXCA4zVCyg8AAAAA:zIVhE6RocqKktq_NUgZysAn0wQXlB38FoKU9AnMiFBvLj3vuMCg7Rf02hPC6_lS7TqU9JXM
https://www.jstor.org/stable/pdf/44722673.pdf?casa_token=nKli3fl3i-IAAAAA:Vca2cRYSzkpyt_0T_7gBfGBIepU9zdF7rh7lzQhpO6fK1ZMa_DeNYOWngGgKuIioTNtJRApcnJRd7HsWJCnowB2JDkQNNlZ0-RDScQhyGl1ncx_3XQ
https://unece.org/DAM/trans/doc/2018/wp29grva/GRVA-01-17.pdf
https://www.iso.org/obp/ui/#iso:std:iso-sae:21434:ed-1:v1:en
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_cho.pdf
https://arxiv.org/pdf/1708.08414
https://ieeexplore.ieee.org/iel7/10206/4358835/08306904.pdf

IEEE Transactions on Vehicular Technology, 67(6):4757–4770, 2018. Available at this link.

[19] Giampaolo Bella, Pietro Biondi, Gianpiero Costantino, and Ilaria Matteucci. Toucan: A

protocol to secure controller area network. In Proceedings of the ACM Workshop on

Automotive Cybersecurity, pages 3–8. ACM, 2019. Available at this link.

[20] Bernd Elend and Tony Adamson. Cyber security enhancing can transceivers. In

Proceedings of the 16th International CAN Conference, 2017. Available at this link.

[21] Stefano Longari, Matteo Penco, Michele Carminati, and Stefano Zanero. Copycan: An

error-handling protocol based intrusion detection system for controller area network. In

ACMWorkshop on Cyber-Physical Systems Security & Privacy (CPS-SPC’19), pages 1–12,

2019. Available at this link.

[22] Sen Nie, Ling Liu, and Yuefeng Du. Free-fall: hacking tesla from wireless to can bus.

Briefing, Black Hat USA, pages 1–16, 2017. Available at this link.

[23] Zhiqiang Cai, Aohui Wang, Wenkai Zhang, M Gruffke, and H Schweppe. 0-days & mitiga-

tions: roadways to exploit and secure connected bmw cars. Black Hat USA, 2019:39, 2019.

Available at this link.

[24] Minrui Yan, Jiahao Li, and Guy Harpak. Security research report on mercedes-benz cars.

Black Hat USA, 2020:38, 2020. Available at this link.

[25] Michael Muckin and Scott C Fitch. A threat-driven approach to cyber security. Lockheed

Martin Corporation, 2014. Available at this link.

[26] Tim Ring. Connected cars–the next target for hackers. Network Security, 2015(11):11–16,

2015. Available at this link.

[27] Gartner says by 2020, a quarter billion connected vehicles will enable new in-vehicle ser-

vices and automated driving capabilities. Available at this link.

[28] The car in the age of connectivity: Enabling car to cloud connectivity. Available at this link.

[29] An assessment method for automotive intrusion detection system performance. Available

131

https://ieeexplore.ieee.org/iel7/25/4356907/08303766.pdf
http://delivery.acm.org/10.1145/3310000/3309175/p3-bella.pdf
https://www.can-cia.de/fileadmin/resources/documents/proceedings/2017_elend.pdf
https://re.public.polimi.it/retrieve/handle/11311/1104918/427927/CopyCAN.pdf
https://paper.seebug.org/papers/Security%20Conf/Blackhat/2017_us/us-17-Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-CAN-Bus-wp.pdf
https://i.blackhat.com/USA-19/Thursday/us-19-Cai-0-Days-And-Mitigations-Roadways-To-Exploit-And-Secure-Connected-BMW-Cars-wp.pdf
https://i.blackhat.com/USA-20/Thursday/us-20-Yan-Security-Research-On-Mercedes-Benz-From-Hardware-To-Car-Control-wp.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Threat-Driven-Approach.pdf
https://reader.elsevier.com/reader/sd/pii/S1353485815301008?token=6AA4E38C2E87047322BE409F89F18091B15A5F1787C2B410CC30E05D9F32342F986251932C279F781B7F4D777FAFB6C6&originRegion=us-east-1&originCreation=20210922151239
https://www.gartner.com/en/newsroom/press-releases/2015-01-26-gartner-says-by-2020-a-quarter-billion-connected-vehicles-will-enable-new-in-vehicle-services-and-automated-driving-capabilities
https://spectrum.ieee.org/telecom/wireless/the-car-in-the-age-of-connectivity-enabling-car-to-cloud-connectivity

at this link.

[30] Kyong-Tak Cho and Kang G Shin. Error handling of in-vehicle networks makes them

vulnerable. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, pages 1044–1055. ACM, 2016. Available at this link.

[31] Sekar Kulandaivel, Tushar Goyal, Arnav Kumar Agrawal, and Vyas Sekar. Canvas: Fast

and inexpensive automotive network mapping. In 28th {USENIX} Security Symposium

({USENIX} Security 19), pages 389–405, 2019. Available at this link.

[32] Sekar Kulandaivel, Shalabh Jain, Jorge Guajardo, and Vyas Sekar. Cannon: Reliable and

stealthy remote shutdown attacks via unaltered automotive microcontrollers. In 2021 IEEE

Symposium on Security and Privacy (SP), pages 195–210. IEEE, 2021. Available at this link.

[33] CAN Specification. Bosch. 1991. Available at this link.

[34] Obd-ii background information. Available at this link.

[35] Experimental security research of tesla autopilot. Available at this link.

[36] Car hacking research: Remote attack tesla motors. Available at this link.

[37] New car hacking research: 2017, remote attack tesla motors again. Available at this link.

[38] DJ Wise. Vehicle cybersecurity dot and industry have efforts under way, but dot needs

to define its role in responding to a real-world attack. Gao Reports. US Government

Accountability Office, 2016. Available at this link.

[39] Marco Di Natale, Haibo Zeng, Paolo Giusto, and Arkadeb Ghosal. Understanding and

using the controller area network communication protocol: theory and practice. Springer

Science & Business Media, 2012. Available at this link.

[40] Pal-Stefan Murvay and Bogdan Groza. Source identification using signal characteristics in

controller area networks. IEEE Signal Processing Letters, 21(4):395–399, 2014. Available at

this link.

[41] Chung-Wei Lin and Alberto Sangiovanni-Vincentelli. Cyber-security for the controller

132

https://rosap.ntl.bts.gov/view/dot/41006
https://dl.acm.org/citation.cfm?id=2978302
https://www.usenix.org/system/files/sec19-kulandaivel.pdf
https://ieeexplore.ieee.org/iel7/9519381/9519382/09519391.pdf?casa_token=InjqLLTRidwAAAAA:kmeEiNO6ZyXDXogEo6imFRPW37XJuGYzwo5aoa9VKyfIAFXd_j1ajm6O-kuSCloY3Tp-y5c
http://esd.cs.ucr.edu/webres/can20.pdf
http://www.obdii.com/background.html
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/
https://keenlab.tencent.com/en/2017/07/27/New-Car-Hacking-Research-2017-Remote-Attack-Tesla-Motors-Again/
https://www.gao.gov/assets/gao-16-350.pdf
http://caxapa.ru/thumbs/728120/handout_canbus2.pdf
https://ieeexplore.ieee.org/iel7/97/4358004/06730667.pdf

area network (can) communication protocol. In 2012 International Conference on Cyber

Security, pages 1–7. IEEE, 2012. Available at this link.

[42] Craig Smith. The Car Hacker’s Handbook: A Guide for the Penetration Tester. No Starch

Press, 2016. Available at this link.

[43] Sang Uk Sagong, Xuhang Ying, Andrew Clark, Linda Bushnell, and Radha Poovendran.

Cloaking the clock: emulating clock skew in controller area networks. In Proceedings

of the 9th ACM/IEEE International Conference on Cyber-Physical Systems, pages 32–42.

IEEE Press, 2018. Available at this link.

[44] Mehmet Bozdal, Mohammad Samie, and Ian Jennions. A survey on can bus protocol: At-

tacks, challenges, and potential solutions. In 2018 International Conference on Computing,

Electronics & Communications Engineering (iCCECE), pages 201–205. IEEE, 2018. Avail-

able at this link.

[45] Tcan: Authentication without cryptography on a can bus based on nodes location on the

bus. Available at this link.

[46] Pal-Stefan Murvay and Bogdan Groza. Dos attacks on controller area networks by fault

injections from the software layer. In Proceedings of the 12th International Conference on

Availability, Reliability and Security, page 71. ACM, 2017. Available at this link.

[47] Andrea Palanca, Eric Evenchick, Federico Maggi, and Stefano Zanero. A stealth, selec-

tive, link-layer denial-of-service attack against automotive networks. In International

Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pages

185–206. Springer, 2017. Available at this link.

[48] Hyun Min Song, Ha Rang Kim, and Huy Kang Kim. Intrusion detection system based on

the analysis of time intervals of can messages for in-vehicle network. In 2016 international

conference on information networking (ICOIN), pages 63–68. IEEE, 2016. Available at

this link.

133

https://escholarship.org/content/qt5422g038/qt5422g038.pdf
http://opengarages.org/handbook/
https://dl.acm.org/citation.cfm?id=3207896.3207901
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8658720
https://autosec.se/wp-content/uploads/2019/03/3.-ESCAR-EU-2018.pdf
http://www.aut.upt.ro/~pal-stefan.murvay/papers/dos-attacks-controller-area-networks-fault-injections-from-software-layer.pdf
https://www.politesi.polimi.it/bitstream/10589/126393/1/tesi_palanca.pdf
https://ieeexplore.ieee.org/abstract/document/7427089/

[49] Clinton Young, Habeeb Olufowobi, Gedare Bloom, and Joseph Zambreno. Automotive in-

trusion detection based on constant can message frequencies across vehicle driving modes.

In Proceedings of the ACM Workshop on Automotive Cybersecurity, pages 9–14. ACM,

2019. Available at this link.

[50] Mahsa Foruhandeh, Yanmao Man, Ryan Gerdes, Ming Li, and Thidapat Chantem. Simple:

Single-frame based physical layer identification for intrusion detection and prevention on

in-vehicle networks. 2019. Available at this link.

[51] Charlie Miller and Chris Valasek. Adventures in automotive networks and control units.

Def Con, 21:260–264, 2013. Available at this link.

[52] Jan Van den Herrewegen and Flavio D Garcia. Beneath the bonnet: A breakdown of diag-

nostic security. In European Symposium on Research in Computer Security, pages 305–324.

Springer, 2018. Available at this link.

[53] Nastf vehicle security professional registry. Available at this link.

[54] Mert D Pesé, Troy Stacer, C Andrés Campos, Eric Newberry, Dongyao Chen, and Kang G

Shin. Librecan: Automated can message translator. In Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications Security, pages 2283–2300, 2019.

Available at this link.

[55] Charlie Miller. “interesting paper about mapping vehicle networks. we did it the old

fashioned way, by physically disconnecting components and observing the effect. (or by

putting a component into programming mode)”, 2019. Available at this link.

[56] Konglin Zhu, Zhicheng Chen, Yuyang Peng, and Lin Zhang. Mobile edge assisted literal

multi-dimensional anomaly detection of in-vehicle network using lstm. IEEE Transactions

on Vehicular Technology, 68(5):4275–4284, 2019. Available at this link.

[57] Michele Russo, Maxime Labonne, Alexis Olivereau, and Mohammad Rmayti. Anomaly

detection in vehicle-to-infrastructure communications. In 2018 IEEE 87th Vehicular

134

https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1066&context=ece_conf
http://u.arizona.edu/~yman/papers/simple_acsac19.pdf
http://illmatics.com/car_hacking.pdf
https://www.researchgate.net/profile/Jan-Van-Den-Herrewegen/publication/326968774_Beneath_the_Bonnet_A_Breakdown_of_Diagnostic_Security_23rd_European_Symposium_on_Research_in_Computer_Security_ESORICS_2018_Barcelona_Spain_September_3-7_2018_Proceedings_Part_I/links/5be98bd3a6fdcc3a8dd0db24/Beneath-the-Bonnet-A-Breakdown-of-Diagnostic-Security-23rd-European-Symposium-on-Research-in-Computer-Security-ESORICS-2018-Barcelona-Spain-September-3-7-2018-Proceedings-Part-I.pdf
https://sdrm.nastfsecurityregistry.org/register
https://dl.acm.org/doi/pdf/10.1145/3319535.3363190
https://twitter.com/0xcharlie/status/1166032711175348224
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8673868

Technology Conference (VTC Spring), pages 1–6. IEEE, 2018. Available at this link.

[58] Tarun Yadav and ArvindMallari Rao. Technical aspects of cyber kill chain. In International

Symposium on Security in Computing and Communication, pages 438–452. Springer, 2015.

Available at this link.

[59] Gordon Fyodor Lyon. Nmap network scanning: The official Nmap project guide to network

discovery and security scanning. Insecure, 2009. Available at this link.

[60] Aleksandar Kuzmanovic and Edward W Knightly. Low-rate tcp-targeted denial of service

attacks: the shrew vs. the mice and elephants. In Proceedings of the 2003 conference

on Applications, technologies, architectures, and protocols for computer communications,

pages 75–86, 2003. Available at this link.

[61] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique Vázquez.

Anomaly-based network intrusion detection: Techniques, systems and challenges.

computers & security, 28(1-2):18–28, 2009. Available at this link.

[62] Daniel E Holcomb, Wayne P Burleson, and Kevin Fu. Power-up sram state as an identi-

fying fingerprint and source of true random numbers. IEEE Transactions on Computers,

58(9):1198–1210, 2008. Available at this link.

[63] Junaid Haseeb, Masood Mansoori, and Ian Welch. A measurement study of iot-based at-

tacks using iot kill chain. In 2020 IEEE 19th International Conference on Trust, Security

and Privacy in Computing and Communications (TrustCom), pages 557–567. IEEE, 2020.

Available at this link.

[64] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas. Ddos in

the iot: Mirai and other botnets. Computer, 50(7):80–84, 2017. Available at this link.

[65] Fleet-ready electrification solutions. Available at this link.

[66] Green motors inc. Available at this link.

[67] Pre-programmed performance chips. Available at this link.

135

https://scholar.archive.org/work/xnoxaytdnzdsdouc7a7feta7oq/access/wayback/https://hal-cea.archives-ouvertes.fr/cea-01888831/file/Russo2018.pdf
https://arxiv.org/pdf/1606.03184.pdf
https://dl.acm.org/citation.cfm?id=1538595
https://dl.acm.org/doi/pdf/10.1145/863955.863966
https://staff.fmi.uvt.ro/~daniela.zaharie/ma2016/projects/applications/intrusion_detection_systems/IDS_general.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.800.5172&rep=rep1&type=pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9343195
https://www.researchgate.net/profile/Constantinos-Kolias/publication/318288727_DDoS_in_the_IoT_Mirai_and_other_botnets/links/59dba11a458515e9ab451487/DDoS-in-the-IoT-Mirai-and-other-botnets.pdf
https://xlfleet.com/
https://greenmotorsinc.com/default.html
https://www.chipyourcar.com/

[68] Mohammad Farsi, Karl Ratcliff, and Manuel Barbosa. An overview of controller area

network. Computing & Control Engineering Journal, 10(3):113–120, 1999. Available at

this link.

[69] Ken Tindell, H Hanssmon, and Andy J Wellings. Analysing real-time communications:

Controller area network (can). In RTSS, pages 259–263. Citeseer, 1994. Available at this link.

[70] Robert I Davis, Alan Burns, Reinder J Bril, and Johan J Lukkien. Controller area network

(can) schedulability analysis: Refuted, revisited and revised. Real-Time Systems, 35(3):239–

272, 2007. Available at this link.

[71] Introduction to can. Available at this link.

[72] Toyota techinfo service. Available at this link.

[73] Motorcraft info service. Available at this link.

[74] JérômeMaye andMario Krucker. Communicationwith a toyota prius. Available at this link.

[75] Tadayoshi Kohno, Andre Broido, and Kimberly C Claffy. Remote physical device finger-

printing. IEEE Transactions on Dependable and Secure Computing, 2(2):93–108, 2005.

Available at this link.

[76] A. Van Herrewege, D. Singelee, and I. Verbauwhede. CANAuth - A Simple, Backward

Compatible Broadcast Authentication Protocol for CAN bus. In ECRYPTWorkshop on

Lightweight Cryptography 2011, 2011. Available at this link.

[77] Bogdan Groza, Pal-Stefan Murvay, Anthony Van Herrewege, and Ingrid Verbauwhede.

Libra-can: A lightweight broadcast authentication protocol for controller area networks.

In Josef Pieprzyk, Ahmad-Reza Sadeghi, and Mark Manulis, editors, Cryptology and

Network Security, 11th International Conference, CANS 2012, volume 7712, pages 185–

200. Springer, December 12-14, 2012. Available at this link.

[78] Microchip sam 3x family of mcus. Available at this link.

[79] Microchip sam v family of automotive mcus. Available at this link.

136

https://ieeexplore.ieee.org/iel5/2218/17068/00788104.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.5047&rep=rep1&type=pdf
https://link.springer.com/article/10.1007/s11241-007-9012-7
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf
https://techinfo.toyota.com
https://www.motorcraftservice.com/
https://attachments.priuschat.com/attachment-files/2017/04/122809_Communication_with_a_Toyota_Prius.pdf
https://www.springer.com/us/book/9781461403135
https://www.esat.kuleuven.be/cosic/publications/article-2086.pdf
https://lirias.kuleuven.be/retrieve/537369
http://ww1.microchip.com/downloads/en/devicedoc/atmel-11057-32-bit-cortex-m3-microcontroller-sam3x-sam3a_datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527D.pdf

[80] Marcel Kneib, Oleg Schell, and Christopher Huth. Easi: Edge-based sender identification

on resource-constrained platforms for automotive networks. Available at this link.

[81] Automotive semiconductor market - growth, trends, and forecast (2020 - 2025). Available

at this link.

[82] Nxp mcus. Available at this link.

[83] Renesas mcus. Available at this link.

[84] Fujitsu mcus. Available at this link.

[85] Cypress mcus. Available at this link.

[86] Infineon mcus. Available at this link.

[87] Sam v71 xplained ultra evaluation kit. Available at this link.

[88] Spc58ec-disp discovery board. Available at this link.

[89] St spc5 family of automotive mcus. Available at this link.

[90] 2020 automotive defect recall report. Available at this link.

[91] Cwe-337: Predictable seed in pseudo-random number generator (prng). Available at

this link.

[92] Cwe-338: Use of cryptographically weak pseudo-random number generator (prng). Avail-

able at this link.

[93] Encrypting passwords. Available at this link.

[94] Ramiro Pareja and Santiago Cordoba. Fault injection on automotive diagnostic protocols.

escar USA, 2018. Available at this link.

[95] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied

cryptography. CRC press, 2018. Available at this link.

[96] Passphrase storage. Available at this link.

[97] Greg Taylor and George Cox. Digital randomness. IEEE spectrum, 48(9):32–58, 2011.

137

https://dl.acm.org/doi/pdf/10.1145/3338499.3357362
https://www.mordorintelligence.com/industry-reports/automotive-semiconductor-market
https://www.nxp.com/docs/en/application-note/AN4240.pdf
https://www.renesas.com/us/en/products/synergy/hardware/microcontrollers/glossary.html
https://www.fujitsu.com/downloads/EDG/binary/pdf/find/25-5e/5.pdf
https://www.cypress.com/products/fm4-32-bit-arm-cortex-m4-microcontroller-mcu-families
https://www.infineon.com/dgdl/Infineon-TC1767-DS-v01_04-en.pdf?fileId=db3a30431be39b97011bff8570697bdb
https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/ATSAMV71-XULT
https://www.st.com/en/evaluation-tools/spc58ec-disp.html?ecmp=tt12221_gl_social_jul2019
https://www.st.com/en/automotive-microcontrollers/spc5-32-bit-automotive-mcus.html
https://www.stout.com/en/insights/report/2020-automotive-defect-and-recall-report
https://cwe.mitre.org/data/definitions/337.html
https://cwe.mitre.org/data/definitions/338.html
https://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_node/libc_650.html
https://www.riscure.com/uploads/2018/06/Riscure_Whitepaper_Fault_injection_on_automotive_diagnostic_protocols.pdf
https://cacr.uwaterloo.ca/hac/
https://www.gnu.org/software/libc/manual/html_node/Passphrase-Storage.html#Passphrase-Storage

Available at this link.

[98] ER Berlekamp. Binary bch codes for correcting multiple errors. Algebraic Coding Theory,

1968. Available at this link.

[99] Key rotation. Available at this link.

[100] Alex Scott, Andrew Balthrop, and Jason W Miller. Unintended responses to it-enabled

monitoring: The case of the electronic logging device mandate. Journal of Operations

Management, 67(2):152–181, 2021. Available at this link.

[101] Gautham Ram Chandra Mouli, Johan Kaptein, Pavol Bauer, and Miro Zeman. Implemen-

tation of dynamic charging and v2g using chademo and ccs/combo dc charging standard.

In 2016 IEEE Transportation Electrification Conference and Expo (ITEC), pages 1–6. IEEE,

2016. Available at this link.

[102] Breaking secure bootloaders. Available at this link.

138

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995897
https://books.google.com/books?hl=en&lr=&id=hyO3CgAAQBAJ&oi=fnd&pg=PR7&dq=algebraic+coding+theory&ots=aAlAqLjXlI&sig=Se_1jtIEq0O9Q1VZMCTHKDd4mzs#v=onepage&q=algebraic%20coding%20theory&f=false
https://cloud.google.com/kms/docs/key-rotation
https://onlinelibrary.wiley.com/doi/epdf/10.1002/joom.1110?saml_referrer
http://pure.tudelft.nl/ws/portalfiles/portal/45813317/11370751_Implementation_of_dynamic_charging_and_V2G_using_Chademo_and_CCS_Combo_D.._.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Breaking-Secure-Bootloaders.pdf

	Introduction
	Pushing the boundaries of a remote attack
	Potential impact of a stronger remote adversary
	Threat scope
	Thesis contributions
	Stage 1: Reconnaissance and discovery
	Stage 2: Disruption and pivoting
	Stage 3: Authentication bypass

	Outline

	Background and Prior Work
	Relevant background
	Inside an ECU
	CAN physical layer
	CAN data link layer
	CAN application layer
	UDS session and application layers

	Our remote adversary model
	Prior work for each stage
	Reconnaissance and discovery
	Disruption and pivoting
	Authentication bypass

	Other related work

	CANvas: Remote Reconnaissance of ECUs via Automotive Network Mapping
	Goals for this kill-chain stage
	Stage overview and contributions
	Problem and system overview
	Challenges in an automotive context
	System overview

	ID source mapping
	Limitations of prior work
	Relative offset as a unique identifier

	ID destination mapping
	Limitations of prior work
	Forced ECU isolation

	Evaluation
	Discovering an unexpected ECU
	Mapping our test vehicles

	Countermeasures
	Summary

	CANnon: Remote Disruption of CAN Bus via Peripheral Clock Gating Attacks
	Goals for this kill-chain stage
	Stage overview and contributions
	Attack goals
	High-level attack insight

	Basic remote disruption attack
	Reliable target victim shutdown
	Shutting down victims with CANnon
	Alternative CANnon implementations
	Practical challenges

	Evaluation
	CANnon against real vehicles

	Stealth against network defenses
	Deceiving state-of-the-art defenses
	Deceiving CANnon-aware defenses

	Countermeasures
	Summary

	CANdid: Remote Authentication Bypass on Automotive Control Units
	Goals for this kill-chain stage
	Stage overview and contributions
	Threat model and attack insight
	High-level insight
	Single known-plaintext attack

	Controlling the challenge
	Selecting a challenge
	Approach to different challenge algorithms

	Repeating a challenge
	Maximizing likelihood of repetition

	Evaluation
	Countermeasures
	Summary

	Kill-Chain Proof-of-Concept
	Experimental setup
	A step-by-step demonstration

	Reflections, Lessons Learned, and Future Work
	Summary of contributions
	CANvas contributions
	CANnon contributions
	CANdid contributions

	Impact on related automotive fields
	Lessons learned
	Future work
	Exploiting remote interfaces
	Bypassing firmware defenses

	Bibliography

