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Abstract

From autonomous cars to online banking, software nowadays is widely used in safety-
and security-critical settings. As the complexity and size of software grows, ensuring
that it behaves as a programmer intended becomes increasingly difficult, raising concerns
about software’s reliability.

To tackle this problem, we wish to provide strong, formal guarantees about the
security and correctness of real-world critical software. In this thesis, we therefore
advocate for the adoption of a proof-oriented programming paradigm in high-assurance
software development. We argue that co-developing programs and proofs yields several
benefits: the program structure can simplify the proofs, while proofs can simplify
programming and improve the software quality too by, for instance, eliminating unneeded
checks and cases. To validate this thesis, we rely on two case studies, which we describe
next.

Our first case study targets high-performance cryptography, the cornerstone of
Internet security. Relying on proof-oriented programming, we develop EverCrypt, a
comprehensive collection of verified, high-performance cryptographic functionalities
available via a carefully designed API. We first propose a methodology to compose
and verify C and assembly cryptographic implementations against shared specifications.
We then demonstrate how abstraction and zero-cost generic programming can simplify
verification without sacrificing performance, leading to verified cryptographic code
whose performance matches or exceeds the best unverified implementations. EverCrypt
has been deployed in several high-profile open-source projects such as Mozilla Firefox
and the Linux Kernel.

Our second case study investigates the use of proof-oriented programming to develop
concurrent, low-level systems. To this end, we present Steel, a novel verification
framework based on a higher-order, impredicative concurrent separation logic shallowly
embedded in the F* proof assistant. We show how designing Steel with proofs in
mind enables us to automatically separate verification conditions between separation-
logic predicates and first-order logic encodeable predicates, allowing us to provide
practical automation through a mixture of efficient reflective tactics that focus on the
former, and SMT solving for the latter. We finally demonstrate the expressiveness and
programmability of Steel on a variety of examples, including sequential, self-balancing
trees; standard, concurrent data structures such as the Owicki-Gries monotonic counter
and Michael and Scott’s 2-lock queue; various synchronization primitives such as libraries
for spin locks and fork/join parallelism; and a library for message-passing concurrency
on dependently typed channels.
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Chapter 1

Introduction

From autonomous cars to online banking, software nowadays is widely used in safety-
and security-critical settings. As the complexity and size of software grows, ensuring
that it behaves as a programmer intended becomes increasingly difficult, raising concerns
about software’s reliability.

The problem is not new; in 1968, despite computing still being in its infancy,
attendees to the first NATO Software Enginnering Conference were already discussing
what they called the software crisis (Naur and Randell 1969), a term that Dijkstra reused
a few years later in his 1972 Turing Award lecture (Dijkstra 1972): The appearence
of newer, more powerful machines enabled the use of computer programs in more
applications, but also widened the gap between existing software engineering methods
and software ambitions, leading David and Fraser to the following statement (Naur and

Randell 1969):

The gap is arising at a time when the consequences of software failure in all
its aspects are becoming increasingly serious. Particularly alarming is the
seemingly unavoidable fallibility of large software, since a malfunction in an
advanced hardware-software system can be a matter of life and death, not
only for individuals, but also for vehicles carrying hundreds of people and
ultimately for nations as well.

Since this first realization, the meteoric rise of computing power and the proliferation
of software and applications has only heightened this issue. First of all, the scale of
software has drastically increased; compare for instance the 25,000 lines of code needed
to implement the Apollo 11 command module® in the 1960s to modern, industrial-grade
software, such as the Linux kernel, which commonly contains several millions of lines of
code. But in addition to size considerations, software also evolved to leverage hardware
advances, enabling for instance the development of concurrent programs operating
in distributed environments to provide better performance, at the price of increased
complexity.

Guaranteeing the reliability of modern software is notoriously difficult, and dire
incidents over the past 50 years abound. One of the most notable examples involves

https://github.com/chrislgarry/Apollo-11/
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a radiation therapy machine, the Therac-25: Several software defects, in particular
related to a tricky interaction between processes running concurrently, led the Therac-25
to deliver massive radiation doses to patients, causing several deaths from radiation
poisoning between 1985 and 1987. Such accidents caused by faulty software are not
isolated cases. While devoid of the loss of human lives, bugs in the Intel Pentium
processor (Edelman 1997) and in Ariane 5’s Inertial Reference System (Lions et al.
1996) each led to losses of several hundreds of millions of dollars; in one case, due
to Intel recalling and replacing all flawed processors, in the other due to the rocket
exploding on its inaugural voyage.

In spite of these high-profile incidents, software bugs were mostly considered a
minor annoyance throughout the twentieth century. Outside of safety-critical systems,
software bugs could at worst lead to users being temporarily inconvenienced by a
program crashing or returning the wrong outputs. In an increasingly connected world,
programs now operate in a hostile environment, where bugs become vulnerabilities that
attackers (also referred to as hackers by the media) actively attempt to exploit. As
the amount of data and personal information handled by computers increases and our
reliance on software grows, so do the incentives for malicious actors. More than 10 years
ago, Franklin et al. (2007) and Moore, Clayton, and Anderson (2009) analyzed the
economics of data theft, encapsulating for instance credit card fraud and identity theft,
and concluded that determined attackers could reap profits of several million dollars
in a year. Since then, the situation has only worsened, as the scale of data breaches
heightened. For instance, in 2013, private data (including passwords and credit card
information) from more than 150 million Adobe customers was compromised?, while
more recently, in 2020, iPhones were shown vulnerable to a complete take over by hackers
in Wi-Fi range®, potentially leading to massive privacy violations. Exploiting software
vulnerabilities from another angle, the past decade has also seen the mushrooming of
ransomware attacks, where a hacker renders a system inoperational by encrypting its
data to extort a ransom out of its victim. By targeting critical infrastructure such as
hospitals*, or city governments®, ransomware have become a lucrative, billion-dollar
industry at the expense of public welfare (Hernandez-Castro et al. 2020).

Despite the threat to public safety, dozens of new vulnerabilities are discovered
daily in modern software, as recorded by the National Vulnerability Database (NIST).
When software flaws can have dramatic consequences, they become unacceptable. This
therefore calls for a shift in existing software development techniques, in order to
provide strong, formal guarantees about the correctness and security of real-world
critical software.

2https://krebsonsecurity.com/2013/10/adobe-breach-impacted-at-least-38-million-
users/

3https://www.wired.com/story/zero-click-ios-attack-project-zero/

‘https://www.theguardian.com/society/2017/may/12/global-cyber-attack-nhs-trusts-
malware

Shttps://www.nytimes.com/2020/02/09/technology/ransomware-attacks.html
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1.1 A Brief History of Formal Verification

Early on, computer scientists realized that, while useful in development processes,
testing was not sufficient to prove the correctness of programs: already in 1969, Dijkstra
famously stated that “testing shows the presence, not the absence of bugs” (Randell
and Buxton 1970). To tackle this problem, Hoare (1969) proposed to apply deductive
reasoning to establish whether a program behaves as a user intended. Inspired by ideas
from Floyd (1967), Hoare defined a set of inference rules and axioms about program
executions, providing a logical foundation for program verification. The core concept
of this Hoare logic (also called Hoare-Floyd logic) is a judgment, { P} C' {Q}, which,
paraphrasing Hoare, states that “if the assertion P is true before initiation of a program
C, then the assertion () will be true on its completion”.

While seminal, Hoare’s original paper only applied to simple, imperative programs,
precluding side-effects, and not considering termination of programs. Hoare himself
acknowledged that

The formal material presented here has only an expository status and repre-
sents only a minute proportion of what remains to be done. It is hoped that
many of the fascinating problems involved will be taken up by others.

Over the following years, Hoare’s seminal work became the basis of formal verification,
and sparked a flurry of extensions to prove a wider range of programs, by supporting
more features from existing programming languages. To cite a few examples, Foley
and Hoare (1971) added support for recursion to prove the correctness of a quicksort
algorithm; Clint and Hoare (1972) extended Hoare logic to support jumps and functions
in order to establish the correctness of a table lookup procedure implemented in ALGOL
60; while Hoare (1976) himself extended his work to reason about concurrent programs.

While promising in theory, formal verification long struggled to be adopted outside
of a restricted academic circle. A decade after Hoare’s paper, De Millo, Lipton, and
Perlis (1979) strongly argued against the use and utility of formal verification. Making
the parallel with more standard mathematics, part of their criticism centered on the
difficulty to check, and hence trust, the validity of a proof: proofs of programs were
presented as unreadable because of an overwhelming formalism, while also being overly
large and verbose; the authors gave the example of a “300-line input/output package”
which would require a “20,000-line verification”. Outside of strong rebukes from Lamport
and Maurer, this position seemed widely shared by the computer science community at

the time (ACM FORUM 1979).

Over the rest of the twentieth century, formal methods slowly gained traction for
critical applications. Some notable examples include the use of the B language (Abrial
et al. 1991) to formally specify and verify a signaling system for commuter trains in
Paris (Guiho and Hennebert 1990), the analysis of the shutdown system of a nuclear
reactor (Archinoff et al. 1990), and the application of formal methods to digital flight
control systems by NASA (Rushby 1992; Rushby and Von Henke 1993). Nevertheless,
disbelief in formal methods persisted, leading Hall (1990) and Bowen and Hinchey
(1995) to write position papers attempting to dispel common misconceptions, or myths,
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about formal methods, while arguing for the benefits of integrating them in industrial
development processes.

To smoothen adoption by everyday programmers, a large fraction of formal methods
research focused on fully automated techniques, by developing static analysis tools based
on either abstract interpretation (Cousot and Cousot 1977) or symbolic execution (King
1976). Such tools are able to provide a high level of automation to verify properties of
real-world programs. One famous example is the Astrée static analyzer (Blanchet et al.
2003; Cousot et al. 2005), which was used to prove the absence of run-time errors in
Airbus’ flight control systems consisting of hundreds of thousands of lines of C code.
Nowadays, static analysis tools exist for most mainstream languages including C (Clarke
et al. 2004; Gurfinkel et al. 2015), Java (Pasareanu and Rungta 2010; Sridharan et al.
2013), Python (Fromherz et al. 2018), and JavaScript (Fragoso Santos et al. 2017), and
some of them, such as the Infer static analyzer (Calcagno and Distefano 2011), are
fully integrated in industrial development processes at large companies such as Amazon,
Facebook, and Microsoft (Calcagno et al. 2015). Unfortunately, there is a catch: to
provide scalability and automation, these tools can only reason about a restricted
set of properties. In particular, they commonly focus on the absence of crashes in
programs, and cannot guarantee functional correctness, i.e., that a program satisfies a
user-provided specification for all inputs.

Taking a different approach, proof assistants such as Coq (Coq Development Team
2017), Agda (Norell 2008), or Isabelle/HOL (Nipkow et al. 2002) enable a program-
mer to write strong specifications, encapsulating, for instance, functional correctness.
By relying on rich, dependently typed languages, the possibilities offered by proof
assistants seem limitless; one can embed existing programming langauges (Jung et al.
2018a; Bond et al. 2017; Kennedy et al. 2013; Krebbers and Wiedijk 2011), encode
logics (Bengtson et al. 2012; Jung et al. 2015), and build modular abstractions to reason
about a variety of systems, such as processors (Harrison 2000) or software for air traffic
management (Dowek et al. 2005), while proving the soundness and correctness of the
different logics and applications with respect to the underlying type theory.

Early detractors of program verification claimed that “no major programs [...]
whether an automatic program verifier, a compiler, a database management system,
or an operating system, would ever be verified by man, woman, child, beast, or
machine” (ACM FORUM 1979). In the early 2000s, resounding successes of proof-
assistant-based verification would prove them wrong, with the independent development
of CompCert (Leroy 2006), a verified C compiler, and of seL4 (Klein et al. 2009), a
verified microkernel. Despite being verified, both systems achieve industrial standards,
and are at the core of real-world, safety-critical applications: flight-control (Souyris
2014) and power-plant-control software (Késtner et al. 2018) relies on CompCert, while
sel4 is used in aerospace and autonomous aviation (Klein et al. 2018). Relying on
proof assistants, both projects leveraged proof-oriented programming, integrating formal
verification in the development process instead of retrofitting verification in an existing
system. A proof-oriented programming language enables and encourages programs and
proofs to be developed in parallel. To the best of our knowledge, this term was first
used by (Hoffmann 1978) to describe Lucid, a language that “uses the same denotation
for writing and proving properties of programs, thus is, at the same time, a formal proof
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system and a programming language”. More recently, Zinzindohoué-Marsaudon (2018)
used the same term to present F*, a general purpose programming language aimed at
program verification that we use throughout this thesis. Co-developing programs and
proofs yields several benefits. The most obvious one is that structuring programs with
proofs in mind simplifies verification: when software development is specification-driven,
an implementation can follow the structure of its corresponding specification, simplifying
both programming and proving, a style described as “type-define-refine” by Brady (2016)
in the context of dependently typed languages, where specifications are expressed as
types. But conversely, proofs can also simplify and improve programs, eliminating
unneeded checks and cases, while also occasionally leading to design enhancements: for
instance, Butler et al. (2010) describe how attempting to formally verify an air traffic
separation algorithm in the PVS proof assistant (Owre et al. 1992) led to improvements
and simplifications to the design of the algorithm itself.

Unfortunately, echoing some early criticism from De Millo, Lipton, and Perlis (1979),
developing and verifying programs using interactive proof assistants remains time-
consuming, and requires substantial manual effort. While considered small by industrial
standards, consisting of about 10,000 lines of executable code each, CompCert and sel.4
respectively required 6 person-years and 150,000 lines of proof (Késtner et al. 2018) and
about 22 person-years and 200,000 lines of proof (Klein et al. 2009). With the exception
of a few heroic efforts, type-theory-based formal methods have thus been historically
hard to apply to large, real-world systems; democratizing their use necessitates proof
engineering and automation advances.

1.2 Thesis Overview

In this thesis, we argue that the proof-oriented programming paradigm is a
promising way to develop high-assurance software. Co-developing programs
and proofs reduces the proof burden on the developer and opens avenues
for domain-specific automation, increasing the scalability of verification and
enabling formal guarantees about complex, real-world systems.

To validate this thesis, we will rely on two case studies, which we describe next. All
the work presented in this thesis was performed using the F* proof assistant (Swamy
et al. 2016). F* is a higher-order, dependently typed, effectful ML-like language aimed
at program verification. Verification in F* mostly relies on the Z3 SMT solver (Moura
and Bjgrner 2008), but verification conditions can also be discharged using tactics,
similar to other interactive proof assistants such as Coq (Coq Development Team 2017)
or Lean (Ebner et al. 2017). We give a brief overview of F* in Chapter 3. Although the
techniques presented in this thesis are tailored for use in F*, the general methodology
and findings are transferrable to other dependently typed proof assistants.

The work presented in this thesis was highly collaborative; at the start of each
chapter, we will clarify which contributions are primarily those of the author.
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1.2.1 Case Study 1: High-Performance Cryptography

Cryptography is the cornerstone of most security-critical applications, as it can guarantee
confidentiality, authenticity, and integrity of data and messages exchanged between
different parties. When developing secure software, developers rarely write their own
cryptographic code; they instead rely on a cryptographic provider, whose correctness
and security are crucial. However, for most applications (e.g., TLS, cryptocurrencies, or
disk encryption), the provider is also on the critical path of the application’s performance.
Consider for instance how secure internet browsing relies on cryptography for each
exchanged message. Using a slow cryptographic provider would result in higher latency,
which would provide a poor user experience, and limit the development of further
applications.

Unfortunately, producing cryptographic code that is fast, correct, and secure has
historically been difficult: despite tremendous effort from the security community,
even the widely used OpenSSL (OpenSSL Team 2005) is not immune to attacks.
Vulnerabilities such as FREAK (Beurdouche et al. 2015) or Heartbleed (National
Vulnerability Database 2014) can have catastrophic consequences; once cryptographic
code is compromised, entire secure applications fall apart like a house of cards. This
makes cryptographic software a prime target for formal verification.

Formally verifying state-of-the-art cryptographic code raises interesting technical
challenges. In their quest for performance, modern cryptographic implementations often
consist of hybrid programs implemented in C while occasionally calling into hand-tuned
assembly routines; this enables leveraging hardware features such as specific instruction
sets (Gueron 2012; Gulley et al. 2013), and applying domain-specific optimizations that
a general-purpose compiler might not be aware of. To achieve high-performance in a
verified cryptographic artifact, we thus need the ability to interoperate between verified C
and assembly programs, while provably preserving all security and correctness guarantees
in the resulting hybrid program. We show in Chapter 4 how to encode such interoperation
into F*. Leveraging ideas from dependently typed generic programming, we structure
our approach to provide a clean separation between core, trusted components of
the interoperation and untrusted components that are helpful in reducing the proof
burden (Fromherz et al. 2019; Protzenko et al. 2020).

We use this verified interoperation at scale to design EverCrypt (Protzenko et al.
2020), a verified, comprehensive, industrial-grade cryptographic provider with support
for agility and multiplexing. EverCrypt combines software engineering best practices
and formal verification to expose carefully crafted APIs usable by verified and unverified
clients alike. Portions of EverCrypt have been deployed in verified implementations of
the Signal protocol and of a Merkle Trees library, as well as in a variety of high-profile,
open-source projects such as Mozilla Firefox, the Linux Kernel, and the Wireguard
VPN. We present EverCrypt in detail in Chapter 5.

By co-developing programs and proofs, we were able to scale up verification to a
high-assurance cryptographic provider consisting of about 50,000 lines of executable
code, while also confidently and soundly implementing complex optimizations, leading to
state-of-the-art performance. The end result is a verified artifact of sufficient quality to
be adopted in real-world, industrial settings, thus improving the security and reliability
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of existing critical systems.

1.2.2 Case Study 2: Concurrent, Low-Level Systems

Beyond cryptographic implementations, modern software increasingly exploits paral-
lelism to reach new heights of performance. Unfortunately, concurrent programming is
error-prone, and developers often make incorrect assumptions about how their programs
will behave. Using formal methods to provide strong correctness guarantees is appealing,
but challenging; verification frameworks either lack the expressivity required to model
every advanced low-level pattern found in real-world implementations, or they do not
retain the level of automation needed to ensure the scalability of verification. To address
this problem, we present Steel, a new verification framework based on Concurrent
Separation Logic and targeting verification of low-level, concurrent programs.

We first present Steel’s foundations, dubbed SteelCore (Swamy et al. 2020), in
Chapter 6. SteelCore relies on a trusted model of concurrent computations, encoded
in F* as a tree of computational actions that can be composed sequentially or in
parallel. Building upon this model, we derive and prove sound a highly expressive and
extensible program logic, based on a shallow embedding of a higher-order, impredicative
concurrent separation logic with support for dynamically allocated invariants and partial
commutative monoids (PCMs).

Building upon SteelCore, we then describe in Chapter 7 Steel, a verification frame-
work embedded in F*. In particular, we show how designing Steel with proofs in mind
enables us to automatically separate verification conditions between separation logic
predicates and first-order logic encodable predicates (Fromherz et al. 2021). This allows
us to write efficient reflective tactics that focus on the former, while the latter are
encoded efficiently to SMT by F*.

To conclude, we demonstrate in Chapter 8 the expressiveness and programmability
of the Steel framework by building several verified libraries. We first verify several
standard, sequential data structures, including various flavors of linked lists as well as
mutable, self-balancing trees. We then show how to embed spin locks and fork/join
parallelism in Steel, as well as how to implement a racy, 2-lock concurrent queue
first proposed by Michael and Scott (1996). We finally present a novel PCM-based
encoding of 2-party dependently typed sessions, and package our encoding as a library
for message-passing concurrency on dependently typed channels.

By applying a proof-oriented methodology to the design of Steel itself, we were thus
able to offer a rich, expressive logic to reason about complex, concurrent programs
while smoothly combining domain-specific automation for separation logic reasoning
and efficient SMT-based automation.

1.3 Limitations of Formal Verification

While formal verification can provably rule out entire classes of bugs and vulnerabilities,
it cannot guarantee that software is perfect, or even hacker-proof. Paraphrasing Hall
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(1990), “the fact is that formal methods are fallible. It ought to be too obvious to need
saying, but nothing can achieve perfection”.

The main issue is that programs are verified with respect to a trusted specification,
which is a formal, idealized model of the behavior of the program. While formal
verification can ensure that a program is correct wis-a-vis its specification, if the
specification itself is incorrect, or does not accurately capture the behavior of the
underlying hardware or the capabilities of an attacker when considering software security,
then formal guarantees do not apply to real-world executions of the verified programs.
Several techniques exist to increase confidence in specifications. First, developers
should strive to keep specifications small and simple, to make it easier for humans to
carefully review and audit them. Furthermore, when specifications are executable, they
should be validated by testing them against a wide range of inputs. Many verification
projects follow this methodology, such as our EverCrypt cryptographic provider, or
a formalization of ARM processors (Fox and Myreen 2010). Another possibility is to
apply formal methods directly to specifications (Cremers et al. 2016; Woodcock 1989;
Yu et al. 1999) to guarantee that they satisfy properties of interest. Nevertheless, none
of these techniques fully guarantee the trustworthiness of specifications.

Additionally, formal verification relies on the soundness of the provers and frameworks
employed during verification. Even when the metatheory underlying such tools has
been extensively studied (Werner 1994), their implementations can be incorrect, as for
any other piece of software. While rarely encountered in practice, critical bugs exist
both in proof assistants such as Coq® and F*”, and also in automated theorem provers
such as Z3 and CVC4 (Winterer et al. 2020).

Such issues can raise questions about the validity and usefulness of formal verification.
Nonetheless, several empirical results suggest that formally verified software can be
significantly more reliable and secure than its unverified counterpart. Aiming to improve
the quality of C compilers, Yang et al. (2011) developed a test-case generation tool
called Csmith, which they used to evaluate widely used compilers such as GCC or Clang,
as well as the verified CompCert C compiler previously mentioned. While Csmith
discovered more than 325 previously unreported bugs in mainstream compilers, ranging
from crashes to wrong results, the only bugs found in CompCert were in unverified parts
of the compiler, namely its (at the time) unverified front-end code. This led Yang et al.
to conclude that “the apparent unbreakability of CompCert supports a strong argument
that developing compiler optimizations within a proof framework, where safety checks
are explicit and machine-checked, has tangible benefits for compiler users”.

Going beyond functional correctness, DARPA’s HACMS program (Fisher et al. 2017)
explored the utility of formally verified software in adversarial, security-critical settings.
The HACMS program focused on high-assurance software for vehicles, previously shown
to be vulnerable to a wide range of attacks (Koscher et al. 2010; Checkoway et al. 2011).
This experiment was split into several phases. First, researchers were asked to retrofit
formal verification into existing, commercially available software operating a quadcopter.
In the second stage, a redesign of the software allowed researchers to co-develop programs

Shttps://github.com/coq/coq/blob/master/dev/doc/critical-bugs
"https://github.com/FStarLang/FStar/issues/1542
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and proofs, thus integrating formal methods early in the development process. To
evaluate the benefits of formal verification, the study relied on a team of professional
penetration testing experts, which was tasked with breaking into the quadcopter. While
serious vulnerabilities were discovered in the initial, unverified software, after six weeks,
the experts were unable to wirelessly disrupt the operation of the quadcopter with
retrofitted verification. More impressively, despite much stronger attacker capabilities,
including access to several hardware components, testers were unable to impact any of
the flight-critical functionalities in the version of the software which had been entirely
refactored, raising high hopes about the proof-oriented programming methodology that
we advocate for in this thesis.



Chapter 2

Related Work

In this chapter, we first survey the existing literature most relevant to the work presented
in this thesis. Starting with verified cryptography, we first give an overview of works
aiming to provide formal guarantees about the correctness and safety of cryptographic
implementations (Section 2.1), before delving into security considerations for crypto-
graphic code (Section 2.2). We conclude by providing an overview of verification projects
relying on separation logic (Section 2.3), and linking it to our work on concurrent,
low-level verification.

2.1 Verified Cryptography

Cryptographic algorithms are designed to provide a wide range of guarantees, e.g.,
about the authenticity, integrity, and secrecy of messages exchanged between parties,
which are crucial in security-critical applications. Unfortunately, cryptographic code
does not always match the mathematical model of the algorithm it implements. For
instance, an arithmetic bug in the implementation of a modular multiplication in
OpenSSL (Brumley et al. 2012) enabled the full recovery of a cryptographic secret key,
while a performance optimization in OpenSSL’ implementation of the GHASH algorithm
led to message forgeries (Gueron and Krasnov 2014). More famously, a memory safety
issue in the OpenSSL implementation of the TLS Heartbeat extension led to the high-
profile Heartbleed bug (National Vulnerability Database 2014; Durumeric et al. 2014),
which could leak secrets stored in memory, including cryptographic private keys, user
names and passwords, as well as business critical documents and communications.

To provide strong guarantees about the correctness and security of complex crypto-
graphic code, many research projects thus turned to formal, computer-aided verification.
Zinzindohoué, Bartzia, and Bhargavan (2016) develop a verified library of elliptic curves
in the F* proof assistant (Swamy et al. 2016), which extracts to executable OCaml code.
Unfortunately, their implementation is two orders of magnitude slower than equivalent
C code, significantly hampering its adoption. For performance reasons, other projects
often target implementations written in low-level languages, such as C or assembly.

To do so, several projects rely on interactive verification in proof assistants such
as Coq (Coq Development Team 2017). Notably, several papers verify different cryp-

11



2.1 Verified Cryptography 12

tographic algorithms, e.g., SHA-256 (Appel 2015), HMAC instantiated with SHA-
256 (Beringer et al. 2015), and HMAC-DRBG (Ye et al. 2017) using Coq and the
Verified Software Toolchain (Appel 2011), while proving the cryptographic construc-
tions secure using the Foundational Cryptography Framework (Petcher and Morrisett
2015). The resulting C code can then be compiled with the verified CompCert com-
piler (Leroy 2006), ensuring that the correctness guarantees still hold at the assembly
level.

Instead of relying on manual verification, other works instead use semi-automated
tools to develop verified cryptographic implementations. For example, Chen et al.
(2014) verify the Montgomery Ladderstep of a highly performant, hand-optimized
assembly implementation of Curve25519 (Bernstein et al. 2011) using the Coq proof
assistant (Coq Development Team 2017) and an SMT solver, while Tsai, Wang, and
Yang (2017) and Polyakov et al. (2018) do so using an SMT solver and a computer
algebra system. Dockins et al. (2016) use a tool called SAW that relies on symbolic
execution and SMT solvers to automatically prove that C and Java implementations of
cryptographic algorithms (FFS, AES, the inner loop of SHA-384, ZUC and EDSA) are
equivalent to reference implementations written in Cryptol (Lewis and Martin 2003).
Lastly, Hawblitzel et al. (2014) rely on the Dafny language (Leino 2010), the Boogie
verifier (Barnett et al. 2006), and the Z3 SMT solver (Moura and Bjgrner 2008) to
verify several cryptographic algorithms (SHA-1, SHA-256, HMAC and RSA signing) in
a verifiable assembly language called BoogieX86 (Yang and Hawblitzel 2010), before
extracting to executable assembly code using a small, trusted printer.

Also relying on Dafny and Z3 for automation and most relevant to this thesis, Bond
et al. (2017) propose a framework called Vale to verify assembly implementations of
various cryptographic primitives on several platforms. Using Vale, Bond et al. develop
verified versions of SHA-256 on Intel x86 and ARM, of Poly1305 on Intel x64, and of a
hardware-accelerated version of AES-CBC on Intel x86. To do so, Vale models assembly
semantics using a deep embedding, providing abstract syntax trees (ASTs) representing
assembly programs as Dafny values, and automatically generating verification conditions
(VCs) ensuring that the program matches a user-supplied specification. Relying on a
deep embedding opens the possibility to develop additional analyses by directly operating
on the AST; Bond et al. leverage this to implement a verified analyzer which tracks
potential timing and memory-access information leakage, which can lead to side-channel
attacks. We extended this work (Fromherz et al. 2019), as described in Chapter 4, to
reimplement Vale in F*. Leveraging dedicated Intel hardware instructions (Gueron
2012), we then developed a verified, optimized version of AES-GCM (NIST 2007),
a cryptographic algorithm used in about 90% of secure web traffic (Mozilla 2018).
Bosamiya et al. (2020) have since built upon Vale to automatically derive verified
implementations of AES-GCM optimized for a multitude of processor generations using
verified program transformations.

Aiming to benefit from both the expressiveness of type-theory-based proof assistants
and SMT-based automation, Zinzindohoué et al. (2017), similarly to Zinzindohoué,
Bartzia, and Bhargavan (2016) rely on the F* proof assistant to develop HACL*, a
collection of verified cryptographic primitives including SHA2 hashes, the Curve25519
and Ed25519 elliptic curves, as well as Chacha20, Poly1305, and the Chacha-Poly
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construction for Authenticated Encryption with Additional Data (AEAD). But compared
to Zinzindohoué, Bartzia, and Bhargavan (2016), HACL* restricts itself to a low-level
subset of the F* language, called Low* (Protzenko et al. 2017), which can be extracted
to idiomatic, portable C code. A recent extension (Protzenko et al. 2019) of the Low*
toolchain also enables verified extraction of HACL* to WebAssembly (Haas et al. 2017a).
We later extended the HACL* library to provide optimized, verified implementations
relying on architecture-specific SIMD parallelism (Polubelova et al. 2020).

Finally, instead of directly working on low-level C or assembly implementations,
other approaches rely on verified compilation to produce verified, low-level artifacts. In
particular, Jasmin (Almeida et al. 2017) provides a domain-specific language (DSL) to
write high-performance cryptographic code, which combines high-level features such as
function calls and structured control flow with assembly-level instructions. The Jasmin
language is then extracted to x64 assembly code through a succession of compilation
passes which are verified in Coq. Jasmin programs can be automatically translated
into Dafny and, more recently (Almeida et al. 2020), into EasyCrypt (Barthe et al.
2011), enabling verification of Jasmin source code. FiatCrypto (Erbsen et al. 2019) also
relies on verified compilation passes to transform high-level, generic Coq specifications
for bignum arithmetic to efficient C implementations which are specialized for several
elliptic curves.

2.2 Security of Cryptographic Implementations

Ensuring that cryptographic implementations are memory safe and functionally correct
is a first, crucial step to ensure their security. Unfortunately, it does not rule out all
possible attacks against cryptographic code. The security of cryptographic constructions
often relies on secrets, such as cryptographic keys that an attacker must not know.
Resolute attackers can try to infer these secrets through side-channel attacks, where
they derive information from the program’s behavior.

Examples of such attacks abound in the literature. For instance, both Aciigmez,
Brumley, and Grabher (2010) and Percival (2005) show how to recover cryptographic
private keys from observations about cache access patterns; Kocher (1996) and Brumley
and Boneh (2003) demonstrate similar attacks by measuring response times to various
queries, while Gandolfi, Mourtel, and Olivier (2001) and Masti et al. (2015) respectively
exploit variations in electromagnetic power radiation and heat resulting from running
processes.

Although physical side channels (Gandolfi et al. 2001; Masti et al. 2015) are an issue,
digital side channels exploitable by a remote attacker (Aciigmez et al. 2010; Brumley
and Boneh 2003) are more concerning. To preclude such attacks, guidelines recommend
that cryptographic implementations follow a constant-time coding style (Aumasson),
where branching and accessing memory based on secrets is prohibited. To justify this
recommendation, Barthe et al. (2014) model in Coq concurrent executions of programs
in virtualization platforms and prove that, assuming a strong attacker model where
an adversary controls the process scheduler and can observe the shape of the cache
throughout executions, constant-time programs are indeed protected against cache-based
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side-channels.

Several of the approaches previously presented prove that the cryptographic code
they produce satisfies the constant-time paradigm. Vale (Bond et al. 2017; Fromherz
et al. 2019) does so by relying on a verified static taint analyzer, Jasmin (Almeida
et al. 2020) embeds leakage traces inside programs and leverages FasyCrypt tactics
to prove that executions of a given program in public-equivalent states yield the same
traces, while HACL* (Zinzindohoué et al. 2017) models secret values using an abstract
datatype which only allows constant-time operations.

To ensure that existing, possibly unverified cryptographic code is secure, several
off-the-shelf tools exist to verify whether an implementation is constant-time. For
instance, Blazy, Pichardie, and Trieu (2017) instrument the Verasco verified static
analyzer (Jourdan et al. 2015) to verify the constant-time security of C programs.
Flowtracker (Rodrigues et al. 2016) is an LLVM-based (Lattner and Adve 2004) tool
that implements a flow-sensitive analysis. Almeida et al. (2016) provide a tool called
ct-verif that compiles annotated C programs to LLVM using SMACK (Rakamaric and
Emmi 2014) before analyzing optimized LLVM code in Boogie. CacheAudit (Doychev
et al. 2015) is a static analyzer that operates on x86 binary programs, and quantifies
the amount of information contained in timing and cache-based side channels.

Ensuring that a source program, for instance written in C, is constant-time does
not guarantee that the executable binary will satisfy the same property: compiler
optimizations and runtime libraries can also introduce vulnerabilities (Kaufmann et al.
2016). Ensuring that compilers preserve constant-time security of implementations is an
active research area. CompCert-CT (Barthe et al. 2020) modifies the CompCert verified
compiler to ensure that constant-time guarantees are preserved during compilation,
extending the Coq proofs of correctness with a notion of CT-simulation (Barthe et al.
2018). Unfortunately, using CompCert currently yields slower code than using state-
of-the-art commercial compilers such as GCC or CLANG with all their optimizations
(-O3) (Leroy et al. 2016). This limits its adoption in areas that are both security- and
performance-critical, such as cryptography.

To reason about the security of cryptographic implementations, formal approaches
require models of the underlying hardware executing the program. For instance, to
establish that an implementation is constant-time, basic CPU operations such as
arithmetic additions or moving values between registers are assumed to execute in a
constant time, while branching or memory accesses are considered as potentially leaking
information to an attacker. When the reality diverges from the model, properties
established through verification do not preclude concrete, real-world attacks. Ensuring
that the behavior of the hardware matches assumptions at the software level has been a
longstanding research area (Kern and Greenstreet 1999). More recent work investigated
the application of hardware verification to constant-time guarantees. For instance,
Gleissenthall et al. (2019) propose an approach to eliminate timing side-channels in
hardware, while Tiwari et al. (2009) design a class of architectures which precisely
track all information flows at the gate level, while being usable for cryptographic
implementations. Focusing instead on language-based solutions, Zhang et al. (2015)
present a hardware language, SecVerilog, which makes it possible to precisely reason
about information flow at the hardware level. Zhang et al. demonstrate the practicality
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of their methodology by designing a secure MIPS microprocessor using SecVerilog.

In their quest for performance, modern hardware heavily relies on speculative
execution, where the processing of an instruction starts before it is actually encountered.
For instance, when a program branches between two paths, e.g., when using an if-then-
else structure, the hardware’s branch predictor will guess the path that the program
might jump to, and start decoding the corresponding instructions. This behavior is
rarely part of software verification models, and thus it can be exploited by adversaries,
as demonstrated by recent, devastating side-channel attacks such as Spectre (Kocher
et al. 2019) and Meltdown (Lipp et al. 2018). To address this issue, Cauligi et al. (2020)
propose an extension of the constant-time paradigm capturing speculative execution
attacks. Barthe et al. (2021) extend the Jasmin framework with a similar notion,
and adapt previous verified implementations of ChaCha20 and Poly1305 to provide
versions secure against both timing and speculative side-channel attacks, with a modest
performance overhead. Also building upon the speculative constant-time guidelines,
Vassena et al. (2021) implement a tool called BLADE, which automatically eliminates
speculative leaks from existing WebAssembly cryptographic code.

2.3 Separation Logic-Based Verification

Since its introduction in the early 2000s (OHearn et al. 2001; Reynolds 2002; Ishtiaq
and OHearn 2001), separation logic has become the foundation of many tools to verify
heap-manipulating programs. In particular, many projects investigate the application
of separation logic to low-level languages. For instance, Bedrock (Chlipala 2013) adopts
a specification style inspired by separation logic to verify programs written in an
assembly-like language, while Myreen and Gordon (2007) and Ni and Shao (2006)
propose separation-logic based frameworks to verify assembly-level programs. Slightly
climbing the abstraction ladder, Verifiable C (Appel et al. 2014) is a program logic
to prove the correctness of C programs and is at the core of the Verified Software
Toolchain (Appel 2011), while Appel and Blazy (2007) define a separation logic to verify
Cminor programs, an intermediate language in the verified CompCert C compiler (Leroy
2006).

Nevertheless, separation logic is not only applicable to C or assembly languages;
several other projects demonstrate its usefulness on higher-level languages with different
language features and idioms. Notably, RustBelt (Jung et al. 2018a) relies on separation
logic to model Rust’s ownership-based type system and to verify Rust programs that
internally use unsafe features. Similarly, CFML (Charguéraud 2011) defines charac-
teristic formulae, inspired by separation logic, to verify higher-order OCaml programs.
Finally, Charge! (Bengtson et al. 2012) targets verification of programs written in a
subset of Java by embedding a higher-order separation logic in Coq.

Such tools provide a rich arsenal to reason about heap-manipulating programs
written in a variety of languages. To provide verified building blocks to build more
complex systems, Pottier (2017) and Lammich (2016) use them to verify imperative
data structures; Pottier does so using the CFML framework (Charguéraud 2011), while
Lammich develops a separation logic on top of Isabelle/HOL (Lammich and Meis 2012).
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Beyond textbook data structures, to fully showcase the power of separation logic, several
projects successfully use it to verify realistic applications; notably, a large number of
projects target different critical components of operating systems and microkernels. For
instance, using the Coq proof assistant, Marti et al. (2006) verify the heap manager
of Topsy (Fankhauser et al. 2000), an existing operating system designed for teaching
purposes. Similarly, Tuch, Klein, and Norrish (2007) embed a separation logic inside
Isabelle/HOL and use it to verify the memory allocator of the L4 microkernel. This
work was later extended (Kolanski and Klein 2009) to reason about virtual memory in
the context of an operating system. More recently, Xu et al. (2016) verify key modules
of a preemptive operating system, including its scheduler, message queues, and interrupt
handlers, while Chen et al. (2015) verify the functional correctness of a file system
in the presence of crashes. These two proof efforts were non-trivial, requiring several
person years to verify 1.3k and about 3k lines of C code respectively.

Over the past twenty years, several extensions of separation logic have been pro-
posed to go beyond verification of simple, sequential heap-manipulating programs. In
particular, Bornat et al. (2005) propose a methodology based on Boyland’s fractional
permissions (Boyland 2003) to reason about read-only permissions on memory cells.
Charguéraud and Pottier (2017) later proposed a simplified version of this extension,
which removed the need for fractional accounting to model read-only permissions.

Particularly relevant to this thesis, Concurrent Separation Logic (CSL) (OHearn
2007; Brookes 2007) enables the use of separation logic to reason about concurrent pro-
grams, and it is at the heart of the Steel framework that we present in Chapters 6 and 7.
Since O’Hearn’s seminal work, several variants of CSLs have been proposed (Hobor
et al. 2008; Jacobs and Piessens 2011; Dinsdale-Young et al. 2010; Dodds et al. 2009;
Rocha Pinto et al. 2014; Sergey et al. 2015; Svendsen and Birkedal 2014; Svendsen et al.
2013; Turon et al. 2013; Nanevski et al. 2014; Jung et al. 2015).

Out of these works, the Iris framework (Jung et al. 2015; Jung et al. 2016; Krebbers
et al. 2017a) has become especially prominent in recent years. Iris is a higher-order,
impredicative, concurrent separation logic embedded in the Coq proof assistant (Coq
Development Team 2017). Several projects rely on Iris to verify interesting programs.
For instance, Chajed et al. (2019) use Iris to verify a concurrent, crash-safe mail
server implemented in Goose, a subset of the Go language. Hinrichsen, Bengtson, and
Krebbers (2019) develop a framework called Actris to reason about the correctness
of message-passing programs that contain higher-order functions and references, as
well as fork/join concurrency and locks. To do this, Actris builds a logic inspired by
affine binary session types (Honda et al. 1998; Mostrous and Vasconcelos 2014) on
top of Iris. Krogh-Jespersen et al. (2020) design a logic to reason about distributed
systems, and use it to verify a multi-threading implementation of a load balancer.
However, Iris itself is not a programming language: a user needs to instead instantiate
the framework with the deeply embedded representation and semantics of one. Several
Iris-based projects thus work with a small ML-like language embedded in Coq called
HeapLang (Krebbers et al. 2017b), while others instantiate Iris with subsets of existing
languages such as Rust (Jung et al. 2018a), Haskell (Timany et al. 2018), or C (Sammler
et al. 2021). Our Steel framework (Swamy et al. 2020; Fromherz et al. 2021) is inspired
by and shares many similarities with Iris, but pursues different goals: while Iris provides
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a foundation in which to investigate new logic and language features, Steel aims to
extend a proof assistant’s programming language to implement and reason about
dependently-typed concurrent programs. To this end, the Steel framework shallowly
embeds an impredicative, highly expressive Concurrent Separation Logic inside the F*
proof assistant (Swamy et al. 2016), thus providing a logic to reason about higher-order,
dependently typed concurrent F* programs. We provide a more detailed comparison
between Steel and Iris in Chapter 6.

In order to facilitate verification, many tools and solvers aim to automate separation
logic reasoning. While providing an entirely automated separation-logic framework to
verify realistic programs is appealing, it is unfortunately also unrealistic: Brotherston
and Kanovich (2010) demonstrate that determining the validity of a separation logic
assertion in a concrete heap-like model is an undecidable problem. To circumvent this
issue, a large number of tools identify fragments of separation logic that are amenable
to fully-automated verification. Smallfoot (Berdine et al. 2005) was one of the first tools
to pursue this direction; it targeted a toy programming language and did not support
arbitrary inductive definitions of data structures, restricting itself to the basic primitives
of separation logic as well as lists and trees. Several projects extended Smallfoot with a
richer separation logic. For instance, SmallfootRG (Calcagno et al. 2007) added support
for rely/guarantee reasoning (Jones 1983; Vafeiadis and Parkinson 2007), while Heap-
Hop (Villard et al. 2010) focused on message-passing synchronization, encoding a form of
session types called contracts. losif, Rogalewicz, and Simacek (2013) later proved that a
fragment of separation logic using more general inductive predicates was decidable, while
Le et al. (2017) proposed a decision procedure to reason about inductive predicates mixed
with arithmetic properties. Building upon Smallfoot’s approach, Caper (Dinsdale-Young
et al. 2017) proposes a region-aware symbolic execution to automatically reason about
interference on shared regions for fine-grained concurrent algorithms. As an alternative
to Smallfoot, the Cyclist prover (Brotherston et al. 2011; Brotherston et al. 2012) relies
on cyclic proofs instead of the more standard inductive proofs to automatically decide
entailments in a fragment of separation logic.

Instead of targeting a toy programming language, others instead design automated
tools to reason about existing languages. For instance, building upon the VCC frame-
work (Cohen et al. 2009), Pek, Qiu, and Madhusudan (2014) develop VCDryad and
use their tool to automatically verify many small C programs handling data structures.
JaVerT (Fragoso Santos et al. 2017) enables semi-automated reasoning about heap
strucutres in JavaScript and has been applied to verify functional correctness of several
data structures as well as to tests from the official ECMAScript test suite. Distefano
and Parkinson (2008) develop jStar, an automatic tool to verify Java programs using
common object-oriented patterns such as visitors.

By forgoing functional correctness and focusing instead on verifying the safety
of programs, several separation logic-based static analyzers reach a higher level of
automation and scalablility. For instance, Spacelnvader (Yang et al. 2008) relies on
a shape analysis and was used to verify the safety of Windows and Linux drivers of
up to 10kLoC. Similarly, SLAyer (Berdine et al. 2011) identifies memory-safety issues
in moderately-sized Windows drivers whose size ranged between 10kLoC and 30kLoC.
Thor (Magill et al. 2008) combines a shape analysis with arithmetic reasoning to detect
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for instance safety violations related to lengths of lists. Also using a separation logic-
based static analysis, Chang, Rival, and Necula (2007) verify the safety of the Linux
scull driver, whose implementation relies on arrays of doubly-linked lists. To increase
the scalability of such analyses, Calcagno et al. (2009) extend Spacelnvader with a
compositional shape analysis based on biabduction, enabling the independent analysis
of each procedure. The resulting tool, called Abductor, has been successfully used to
analyze a complete Linux distribution containing about 2.5 millions lines of C code.
Abductor was later commercialized as a tool called Infer (Calcagno and Distefano 2011),
which is now part of Facebook’s development cycle (Calcagno et al. 2015).

Instead of restricting the expressiveness of separation logic, others instead aimed for
auto-active verification (Leino and Moskal 2010), a style which mixes automated and
interactive proofs. Such approaches commonly rely on SMT solvers such as Z3 (Moura
and Bjgrner 2008) to discharge verification conditions, while allowing the user to
provide annotations to help the solver when automated verification fails. For instance,
VeriFast (Jacobs et al. 2011) is a framework to verify concurrent C and Java programs.
VeriFast’s automation relies on a symbolic execution which splits verification conditions
between separation logic and pure predicates, before calling an SMT solver to verify
the validity of the resulting predicates. Users can also write annotations and lemma
functions to help with the verification of complex programs. To reduce the proof
burden, several heuristics (Vogels et al. 2011) attempt to automatically generate some
of the required user annotations. VeriFast has been used to verify several industrial
applications, including Java Card applets implementing a clone of the Belgian electronic
identity card (Philippaerts et al. 2011) and a Linux keyboard driver (Penninckx et al.
2012). Viper (Miiller et al. 2016) relies on implicit dynamic frames (Parkinson and
Summers 2012), a variant of separation logic, to verify the functional correctness of
programs. To specify the expected behaviour of a program, a user can write two sorts of
annotations in Viper: access permissions and first-order logic heap-fragment refinements.
Several frontends for Viper exist, enabling the use of the toolchain to verify programs
written in Go (Wolf et al. 2021), Rust (Astrauskas et al. 2019), or Python (Eilers and
Miiller 2018). The auto-active verification approach is not restricted to separation
logic-based tools; frameworks such as Dafny (Leino 2010) or Low* (Protzenko et al.
2017) rely on SMT solving to discharge verification conditions based on explicit dynamic
frames (Kassios 2006), while also allowing a user to provide additional lemmas and
annotations.

Steel’s automation (Fromherz et al. 2021) also follows this auto-active verification
methodology, relying on a mixture of SMT solving and tactic-based automation. But
compared to Viper and VeriFast, this automation applies to a higher-order, impredicative
concurrent separation logic. We compare these approaches more in Chapter 8.



Chapter 3

A Primer on F*

All the work presented in this thesis has been performed using the F* proof assis-
tant (Swamy et al. 2016). F* is a program verifier based on a dependent type theory
with a hierarchy of predicative universes (like Coq (Coq Development Team 2017) or
Agda (Norell 2008)). The F* language itself is a functional, ML-like language, with
dependent types and an effect system. To prove properties about programs, F* mostly
relies on the Z3 SMT solver (Moura and Bjgrner 2008), while also allowing tactic-based
verification through a metaprogramming system, Meta-F* (Martinez et al. 2019), in-
spired by Lean (Ebner et al. 2017) and Idris (Brady 2013). Once verified, F* programs
are translated to OCaml or F#, and in some cases (Section 3.4), to C or WebAssembly
for execution.

In this chapter, we give a quick overview of F*, and of some of the features that we
will rely on in subsequent chapters.

3.1 F* Overview

F*’s syntax is similar to languages like OCaml or F#: Top-level signatures are defined
using the keyword val, definitions are introduced with the keyword let, while recursive
functions are defined using let rec, and pattern matching can be performed using the
keyword match.

Binding occurences of variables b take the form x:t, declaring a variable x at type t; or
#x:t, indicating that the binding is for an implicit argument. The syntax A(by) ... (b,) —
t introduces a lambda abstraction, whereas by — ... —b,, — c is the shape of a curried
function type. As usual, a bound variable is in scope to the right of its binding.

F* is a dependently-typed language; as such, it enables a programmer to define types
indexed by other types or values. One classic example is vec a n, the type of vectors of
size n containing values of type a. In F*, this type is defined as follows:

type vec (a:Type) : nat — Type =
| Nil : veca 0
| Cons : #n:nat — hd:a —tl:vec a n —vec a (n+1)

This type definition is inductive and contains two cases: The Nil constructor models
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an empty vector, of size 0. Its type is therefore vec a 0. The non-empty case is captured
by the Cons constructor; a value hd of type a can be appended to a vector tl of size n
containing values of the same type to create a vector of size n + 1.

We omit the type in a binding when it can be inferred, and the variable name for
non-dependent function types. For instance, the signature of a function concatenating
two vectors is as follows:

val append: (#a:Type) — (#n:nat) — (#m:nat) —vecan —vecam —veca (n + m)

In this thesis, we will also often omit implicit binders for presentation purposes,
e.g., writing val append: vec a n —vec a m —vec a (n + m). All unbound variables will be
assumed to be implicitly bound at the top.

In addition to dependent types, F* also provides support for refinement types, written
b{t}. For instance, the type of non-negative integers, nat, is defined as n:int{n > 0}.
Refinement and dependent types interoperate with each other, enabling a programmer,
for instance, to define vector accesses (shown below) while ensuring that the access is
always in bounds; i.e., the index i is smaller than the length n of the vector.

val access (#a:Type) (#n:nat) (i:nat{i < n}) (v:ivecan) : a

3.2 A User-Extensible Effect System

A distinctive feature of F* is its effect system: in the function type by —... - b, —
c, c is a computation type. An example of a computation type is Tot bool, the type
of total computations returning a boolean. By default, F* functions are total and
we often omit the Tot annotation in the computation type. Ghost t is the type of
a computationally irrelevant computation, often used for proof purposes, which will
be erased during extraction. F* provides an extensible mechanism to mark certain
types as non-informative, including, notably, the type erased t. Eliminating a term of a
non-informative type (e.g., pattern matching on it) incurs a ghost effect, ensuring that
such uses never occur in computationally relevant code. F* also provides a primitive
effect for divergence, Dv, which can be used to implement general recursive, possibly
non-terminating functions. As with other effects, the Dv effect is isolated from F*’s
logical, total core, ensuring the soundness of the language: non-terminating functions
cannot be mistakenly used as proofs. As such, the following term is well-typed in
F*: let rec loop : unit — Dv unit = A() — loop (). From the perspective of F*’s logical core,
a — Dv b is an abstract, un-eliminable type.

In addition to primitive effects like Ghost or Dv, F* allows a user to define their own
computation types (Ahman et al. 2017) to model programming idioms such as mutable
state or exceptions. A recent F* addition, indezed effects (Rastogi et al. 2021), extends
this mechanism; programmers can reason about effectful computations using an indexed
monad-like structure, while abstracting over the effect’s semantic representation. We
heavily rely on this feature in Steel (Chapters 7 and 8) to reason about concurrent,
stateful F* programs.
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3.3 Tactics, Metaprogramming, and Normalization

While F* heavily relies on SMT solvers (notably Z3 (Moura and Bjgrner 2008)) to
discharge verification conditions, it also offers other facilities to handle complex proofs.
Similar to other proof assistants, F* provides a general purpose framework, called
Meta-F* (Martinez et al. 2019) to write program and proof transformations (called
tactics).

F* tactics are themselves F* programs, encapsulated in a specific effect, Tac, which
can manipulate the current proof state. For instance, to prove that for any propositions
a and b, the property a = b = b A a holds, one can write the following F* tactic:

let proof () : Tac unit =
let ha = implies_intro () in
let hb = implies_intro () in
split ();
hyp hb;
hyp ha

This tactic is very similar to what one would write in frameworks like Coq or Lean.
We first add hypotheses a and b with names ha and hb respectively to the proof context.
To prove the goal b A a, we first destruct the conjunction by calling the tactic split,
resulting in two subgoals b and a, which can finally be solved by applying the two
hypotheses in the context. While this example is quite simple, Meta-F* can be used to
achieve much more complex tasks; in Chapter 7, we present a partial decision procedure
for a higher-order, concurrent separation logic implemented as an F* tactic.

Note that, as in other systems, F* tactics are not trusted. Meta-F* guarantees that
the generated terms are well-typed, thus ensuring the soundness of any proof obtained
by tactic application.

Finally, in addition to tactic-based and SMT-based verification, F* also provides a
normalizer to (partially) reduce F* terms, thus enabling proofs by computation. To give
a simple example, consider the recursive function length below, computing the length of
a list.

let rec length (l:list a) = match | with
[l =0
| tl—1 + length tl

To prove that length [1;2;3] == 3, one can simply compute the result of length on the
list [1;2;3], resulting in the trivial equality 3 == 3. The F* normalizer is an interpreter
that can perform this computation, avoiding calls to the SMT solver.

Normalization in F* is fine-grained and user-controlled: a user must call the primitive
norm function on term e to invoke the normalizer, and must provide a list of normalization
steps that can be performed, for instance specifying that only certain functions must
be unfolded, or that unrolling recursive function calls is disallowed. We heavily rely
on this feature in our Steel automation (Chapter 7) to carefully craft SMT-friendly
verification conditions, which can then be fed to the Z3 solver.
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3.4 Low"*, A Shallow Embedding of C in F*

Low* (Protzenko et al. 2017) is a shallow embedding of a small, well-behaved subset of
C in F* which we use to implement the EverCrypt cryptographic provider (Chapter 5).
Low* programs are written in a low-level subset of F* obeying certain restrictions, for
instance forbidding the use of closures or partial function applications. This restriction
does not apply to specifications and proofs, which are erased during extraction; for this
purpose, the full F* language remains available.

Low* programs are imperative, stateful computations, which are encapsulated in two
F* effects: ST a (requires pre) (ensures post) and Stack a (requires pre) (ensures post). Both
effects correspond to computations which, when run in an initial state hy satisfying the
precondition pre hg, either do not terminate or return a value v:a in final state h; such
that the two-state postcondition post hg v hy is satisfied. The Stack effect additionally
models that all allocations are performed on the stack, while ST computations can also
perform heap allocations.

Low™* operates on a C-like memory model with explicit heap and stack memory
management. Low™* states are modeled by values of type HS.mem, referred to as hyper-
stacks (Protzenko et al. 2017). Briefly, hyper-stacks provide a region-based memory
model (Tofte and Talpin 1997; Grossman et al. 2002), distinguishing heap regions from
stack regions. Each region in a hyper-stack maps abstract memory addresses to typed
values, e.g., fixed-width integers (uint8, uint64, etc.) or mutable arrays of values.

Well-typed Low* programs are guaranteed to be memory-safe; i.e., they never access
out-of-bounds or deallocated memory, or attempt to repeatedly free the same memory.
Consider for instance the following signature of the Low™* function index, modeling an
imperative access to a mutable array x:array t. This function is specified in terms of a
pure operation get on an immutable sequence in a given memory (m|x.content] : seq t).

let get (m:HS.mem) (x:array t) (i:uint32{i < x.length}) : Ghost t = Seq.index (m|x.content|) i

val index: x:array t — i:uint32{i < x.length} —ST t
(requires (A m — live x m))
(ensures (A mOr ml —m0 == ml Ar = get m0 x i))

The refinement {i < x.length} requires the index i to be in bounds, while the precon-
dition live x m guarantees that the array is initially valid in memory. The combination
of the two conditions ensures the spatial and temporal safety of this program.

Ultimately, a compiler, called KreMLin, compiles Low* code to idiomatic, human
readable C code suitable for manual review. For instance, a call to the function index
presented above would be translated to the standard C array access x|i]. To ensure
that verification guarantees proven at the F* level are maintained after extraction to
C, Protzenko et al. (2017) relate the semantics of Low* to CompCert’s CLight (Blazy
and Leroy 2009): they show (on paper) that KreMLin preserves trace equivalence
with respect to the original F* semantics and that the translation does not introduce
side-channels based on memory access patterns. A recent extension of the KreMLin
toolchain (Protzenko et al. 2019) also enables compilation of Low* programs to verified
WebAssembly (Haas et al. 2017b).
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Chapter 4

A Verified Interoperation between C
and Assembly

As our society grows increasingly connected, so does our reliance on the HTTPS
ecosystem, the foundation of Internet security. The linchpin of security-critical pro-
tocols such as HTTPS is cryptography. Insecure cryptographic code thus weakens
the entire ecosystem, and vulnerabilities such as FREAK (Beurdouche et al. 2015) or
Heartbleed (National Vulnerability Database 2014; Durumeric et al. 2014) can have
catastrophic consequences.

While the correctness and security of cryptographic implementations are critical,
for use in real-world systems, so is their performance. To this end, cryptographic imple-
mentations in libraries such as OpenSSL (OpenSSL Team 2005) often rely on a mixture
of C and hand-optimized assembly code. C-like code is convenient for writing efficient
low-level code, and it is the standard choice to develop secure communication protocols
relying on cryptography such as TLS (Rescorla 2018). But for maximum performance,
hand-tuned assembly is required and is the de facto standard for state-of-the-art cryp-
tographic implementations; by manually writing assembly code, a programmer can
leverage hardware-specific features, such as the SHA-EXT (Gulley et al. 2013) and
AES-NI (Gueron 2012) instruction sets, while also implementing custom optimizations
that general-purpose compilers such as GCC or Clang might not detect. Hence, crypto-
graphic libraries typically are hybrid programs, providing C routines and APIs, while
periodically calling in to assembly for higher performance.

Unfortunately, as the performance of cryptographic software improves, so does its
complexity. Combining correctness, security, and performance is notoriously difficult;
despite being widely used and heavily audited, even OpenSSL’s libcrypto reported 28
vulnerabilities between January 1, 2016 and June 1, 2021 (OpenSSL). For instance,
CVE-2018-0733 reported a bug in a hand-written assembly implementation of memcpy
which weakened security guarantees, allowing an attacker to more easily forge messages,
while CVE-2018-0734 showed that the OpenSSL DSA signature algorithm could leak
private signing keys through timing side channel attacks.

For such critical, complex code, ruling out entire classes of attacks through formal
verification is appealing, but challenging. We need the ability to verify programs written
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in different languages (e.g., C and Assembly), while also enabling a sound interoperation
between languages. Verification frameworks like Coq (Coq Development Team 2017),
F* (Swamy et al. 2016), and Dafny (Leino 2010) commonly support a small number of
existing languages; for instance, verified Dafny programs can be extracted to verified
C+# code, while Coq and F* have native support for extracting verified programs to
OCaml. Given the diversity of programming languages in use, it is unlikely that any
single verification framework could contain built-in support for all possible languages
that programmers might need.

A common alternative is to instead use the expressiveness of such frameworks to
embed domain-specific languages (DSLs), and verify properties of programs written in
these languages. Examples of DSLs for verification purposes abound in the literature.
For instance, Kennedy et al. (2013) propose a DSL to verify x86 assembly programs using
the Coq proof assistant, while Bourgeat et al. (2020) define Koika, a DSL for hardware
design inspired by SystemVerilog (Nikhil 2004), which enables formal reasoning about
the performance of circuits.

In this chapter, we will also rely on proof-oriented DSLs—embedded in the F*
proof assistant— to reason about high-assurance, complex, hybrid C and assembly
cryptographic implementations. F* already provides Low*, a DSL for verifying C
programs that we previously presented in Section 3.4. To perform assembly verification,
we will build upon Vale (Bond et al. 2017), a language designed to verify structured
assembly programs, such as cryptographic implementations. Prior work translated
Vale code into Dafny code, and relied on Dafny to generate and discharge verification
conditions. To formally model an interoperation between two different DSLs, the first
required step is for them to be embedded in the same framework. To this end, we
first reimplemented Vale to use F* instead of Dafny; we give an overview of Vale/F* in
Section 4.1.

Each DSL allows us to independently reason about C and assembly programs re-
spectively; to reason about hybrid programs, we also need to support fine-grained
interactions between both languages. We first define in F* a trusted model of interoper-
ation relating the execution models of both DSLs. Focusing on verified cryptographic
implementations allows us to keep this model small and simple: we only need the ability
to verifiably call Vale assembly routines from Low*, and cryptographic code in Low* and
Vale operates on simple data structures, e.g., mutable arrays of fixed-width integers.

Building upon this model, we then provide a verified interoperation layer which
lifts Vale procedures to Low* while ensuring that verification guarantees are preserved
across the language boundary. Concretely, we define a generic correspondence between
specifications at the Vale level and their Low* counterparts, and prove this correspon-
dence sound with respect to our trusted model of interoperation. By designing this
interoperation with verification in mind, we identify common proof patterns and reason
about them generically, amortizing the cost of applying the interoperation layer to
many Vale procedures and enabling its use for complex, real-world systems. We present
the full interoperation framework in Section 4.2.
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Contributions. I developed a first version of the Vale interoperation layer, which was
presented in Fromherz et al. (2019). This version defined the correspondence between the
execution models of Vale and Low*, but relied on a trusted printer to generate calls into
Vale procedures from Low*. Instead of relying on this external printer, Nikhil Swamy
and Chris Hawblitzel proposed a prototype of the trusted interoperation model using
dependently-typed generic programming. I finally extended this prototype to support
parametric calling conventions and to establish the generic correspondence between
specifications, leading to the final version of the interoperation layer described in this
chapter, which was presented in Protzenko et al. (2020). During the reimplementation
of Vale in F*, I also rewrote the verified taint analysis.

4.1 The Vale Framework

4.1.1 A Deep Embedding of Intel x64 Assembly

Vale is a DSL that relies on deeply embedded hardware semantics formalized within F*.
We present in Figure 4.1 excerpts from our F* formalization, which models Intel x64
assembly. The embedding uses F* datatypes to represent x64 registers (reg) and XMM
registers (xmm); constant, register and memory operands (operand); instructions (ins);
and abstract syntax trees for structured assembly language code (code). The control
flow of Vale programs is restricted to structured if/else blocks and while loops, which
are well-suited to implementations of cryptographic primitives, like those in OpenSSL.

We represent the machine state, shown in Figure 4.2, as a record (state) containing
different machine components: general-purpose and XMM register files are functions
mapping register names to values; status flags are a single word, and the memory is a
partial map from integer addresses to bytes.

The state also contains a boolean field ok representing the validity of the machine
state. A valid state (ok = true) indicates that the machine safely executed until now.
For instance, a valid state ensures that no segmentation fault occured. Memory accesses
and updates have validity checks based on membership in the domain of the memory
map. An invalid memory access or update would therefore make the state invalid
(ok = false).

Now that we modeled the Intel x64 syntax and machine state, the last step to
provide an embedding of the assembly language is to specify how programs execute,
i.e., define operational semantics for Intel x64 code. To this end, we provide a function,
eval code, that takes an initial state and structured assembly code of type code and
returns the modified state after execution of the code.

To handle failure propagation while preserving the readability of the semantics, we
rely on a state monad that transforms states into states. We quickly present this state
monad in Figure 4.3. A function of type st a is a stateful function returning a value
of type a. The composition of two stateful functions f and g is defined through bind;
the interesting part of this composition is that the resulting state is considered valid
only if both f and g do not fail, and the initial state was valid. As such, the validity
of the state is a monotonic predicate; if a state is marked invalid, it will remain so
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type reg = Rax | Rbx | Rex | Rdx ...
type xmm = XmmO | Xmm1 | Xmm2 ...

type operand =
| OConst: n:int — operand
| OReg: r:reg — operand
| OMem: m:mem _addr — operand

type ins =
| Mov64: dst:operand — src:operand — ins
| Add64: dst:operand — src:operand — ins

type cond =
| Lt: ol:operand — 02:0perand — cond
| Eq: ol:operand — 02:operand — cond

type code =
| Ins: ins:ins — code
| Block: block:list code — code
| IfElse: ifCond:cond — ifBranch:code — elseBranch:code — code
| While: whileCond:cond — whileBody:code — code

Figure 4.1: Example F* definitions for Intel x64 syntax

when executing the rest of a program. To help with readability, F* provides a monadic
syntax, x <- f; g, which is automatically desugared to bind f g. Leveraging this monadic
structure, we finally define two helpers, check and run. check marks the current state as
invalid if a stateful condition valid is not respected, leaving the state unchanged in the
other case. run simply executes a stateful computation f on a given state s, returning
the modified state.

Building upon this monadic structure, we can now concisely define our instruction
semantics as a stateful function, eval ins. We present in Figure 4.4 an excerpt of our
model, corresponding to the specification of the instruction Add64. A first check ensures
that the src and dst operands are valid, that is, that they do not access invalid memory
addresses. We then compute the addition, and update the dst operand. The last step
updates the flags in the machine state. Precisely modeling flags is error-prone, and
can easily lead to incorrect models; we instead under-specify them. In our model, any
flag update first havocs the flags, i.e., loses all known information about them, before
updating some specific flags that are relevant to cryptographic implementations, such
as the carry flag.

The final step is to implement eval code, defining semantics for a full Vale program.
To provide a sound logic, F* requires definitions used in proof contexts to be total; to be
able to reason about Vale programs, we thus need to define eval code as a total, always
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type state = {
ok:bool;
regs:reg — nat64;
xmms:xmm — (nat32 * nat32 x nat32 % nat32);
flags:nat64;
mem:map int nat8;

}

Figure 4.2: Vale model of the Intel x64 machine state

let st (a:Type) = state — a * state
let return (x:a) :sta = As —x, s

let bind (f:st a) (g:a —stb):stb =
AsO —
let x, s1 = fs0 in
lety,s2 =gyslin
y, {s2 with ok = s0.ok && sl.ok && s2.ok}

let check (valid: state — bool) : st unit =
s <- get;
if valid s then
return ()
else

(), {s with ok = false}

let run (fist unit) (s:state) : state = snd (f s)

Figure 4.3: A stateful monad for Vale semantics

terminating function. To account for non-terminating code, for instance containing
unbounded loops, eval code takes an additional argument providing fuel (defined to be
a natural number) that is consumed at each loop iteration during execution. If the
fuel reaches zero, eval code returns None, which is used only for termination checking;
i.e., it is distinct from reaching an invalid state. If a Vale program c terminates
when run in the initial state s, this means that there exists some fuel f such that
eval code c fs == Some s’, where s’ is the final, modified state after executing c.

To execute Vale programs, a small, trusted F* program ultimately prints code values
as standard GNU assembly and Microsoft MASM assembly language formats. Vale
programs are already close to idiomatic assembly, making extraction straightforward.
The only slight mismatch appears for the IfElse and While blocks, which are translated
to conditional jumps to labels.
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let valid operand (o:operand) (s:state) : bool = match o with
| OConst | OReg  —»true
| OMem m — valid _maddr m s

let eval operand (o:operand) (s:state) : nat64 = match o with
| OReg r —s.regs r

let eval ins (ins:ins) : st unit =

s <- get;

match ins with

| Mov64 dst src — ...

| Add64 dst src —
check (valid operand src);;
check (valid operand dst);;
let sum = eval operand dst s + eval operand src s in
let new carry = sum > pow2 64 in
set_operand dst ins (sum % pow2 64);;
set _flags (update cf s.flags new carry)

let rec eval code (c:code) (fuel:nat) (s:state) : option state =
match ¢ with
| Ins ins — Some (run (eval ins ins) s)
| While b ¢ —eval whilebcfs

and eval _while (b:cond) (c:code) (fuel:nat) (s:state) : option state =
if fuel = 0 then None else
let sO = run (check (valid cond b) s0) in
if not (eval cond sO b) then Some s0
else
match eval code c (fuel — 1) sO with
| None — None
| Some s1 — eval while b ¢ (fuel — 1) sl

Figure 4.4: Example semantics for Intel x64 assembly

4.1.2 The Vale Language

Although it is possible to hand-write Vale programs as structured code values like
"Block [Ins (Add 64 (OReg Rax) (OConst 10))|” and prove properties about such code val-
ues directly in terms of the eval code semantics, it is useful to have a friendlier syntax
and tool for expressing and verifying assembly language programs. The Vale lan-
guage (Bond et al. 2017) provides a syntax for writing assembly language annotated
with preconditions, postconditions, loop invariants, ghost variables, calls to lemmas,
ete.
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Vale programs consist of a series of procedures, as shown in the examples in
Figure 4.5. Procedure parameters may be operands, whose types specify what argument
operands are allowed (e.g., dst_opr64 for a 64-bit destination operand). A procedure
representing an individual instruction, indicated with the attribute {:instruction ...}, is
verified directly against the operational semantics specified by eval code; for example,
both Add and AddWrap are verified relative to the semantics for the Add64 instruction
specified in Figure 4.4. Compound procedures like Triple contain procedure bodies inside
{...}; the procedure bodies are verified using Hoare logic. The Add(rax, rbx) instruction
in Triple, for example, must satisfy the precondition rax + rbx < pow2 64 specified by
the Add procedure. Calls from one procedure to another procedure are inlined (macro
expanded).

An elaborator finally transforms a program written in the Vale language and its
Hoare-style specification to a code value and a lemma relying on the trusted eval code
semantics respectively. The elaborator itself is untrusted; verification conditions and
the trusted Vale printer operate directly on the generated code value.

procedure{:instruction Ins(Mov64(dst, src))}
Move(out dst:dst_opré4, src:opr64)
ensures dst == old(src);

procedure{:instruction Ins(Add64(dst, src))}
Add(inout dst:dst_opr64, src:opr64)
modifies flags;
requires dst + src < pow2_64;
ensures dst == old(dst + src);

procedure{:instruction Ins(Add64(dst, src))}
AddWrap(inout dst:dst_opr64, src:opr64)
modifies flags;
ensures
dst == old(dst + src) % pow2_64;
cf(flags) == old(dst + src > pow2_64);

procedure Triple()
modifies rax; rbx; flags;
requires rax < 100;
ensures rbx == 3 x old(rax);

Move(rbx, rax);

Add(rax, rbx);
Add(rbx, rax);

Figure 4.5: Example procedure declarations in Vale



4.1 The Vale Framework 31

4.1.3 Proving Assembly Code Free from Information Leakage

When implementing cryptographic algorithms, ensuring that the code is correct is not
sufficient: it must be proven secure as well. More precisely, since cryptographic code
operates on secrets, we must prove the absence of leakage. To enable such proofs,
we model in Vale a strong attacker capable of observing detailed digital side-channel
information. The attacker can see every instruction executed, every memory address
accessed, and every element of the machine state that is not explicitly declared secret.
To capture this model, we augment our machine state with a trace field, and we extend
our machine semantics to record adversarial observations in this trace. We then define
leakage freedom, as shown in Figure 4.6, as a classic non-interference property (Goguen
and Meseguer 1982). A procedure (code) is leakage free if, for all states s1 and s2 such
that the traces and memory locations marked as public in s1 and s2 are initially identical,
the traces are identical in the states rl and r2 computed by successful executions of
code. Stated differently, observations from an attacker do not leak any information
about the program’s secrets.

type observation =
| BranchPredicate: pred:bool — observation
| MemAccess: addr:nat64 — observation

type state = {...; trace : list observation}
let eval while b ¢ fuel s =

if not (eval cond sO b) then Some ({sO with trace = BranchPredicate(false)::s0.trace})
else
match eval code ¢ (fuel — 1) ({sO with trace = BranchPredicate(true)::s0.trace}) with

let is_leakage free (code:code) (isPub:loc — bool) =
(sl s2:state) fuel.
let r1 = eval code code fuel sl in
let r2 = eval code code fuel s2 in
sl.trace == s2.trace A (V x. isPub x = sl|x| == s2|[x]) =
rl.trace == r2.trace

Figure 4.6: We extend the machine state with adversarial observations that capture
digital side channels, and we define the absence of leakage in a program code via the
is_leakage free predicate.

Our strategy for establishing that a Vale program is leakage free involves a classic
use of proof by reflection. We implement in F* a static taint analyzer that consumes
our (deeply embedded) syntax of assembly language and detects whether a program
might violate the constant-time guidelines. We prove, once and for all, that our taint
analysis algorithm conservatively decides the is_leakage free property, by proving it
sound with respect to our trace-augmented semantics. The F* signature of our taint
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analysis is shown below:

val taint_analysis: c:code — isPub:(loc — bool) — b:bool{b = is_leakage free c isPub}

To run the taint analysis, we extract taint analysis to OCaml (using F*’s existing
extraction capabilities) and then concretely run OCaml code on the syntax of the
program and secret labeling. We integrate this analysis in the Vale extraction pipeline,
ensuring that programs deemed possibly insecure by the analysis are not extracted, and
hence cannot be executed.

4.2 Interoperating between Vale and Low*

To verify hybrid C and assembly programs, we propose in this section an interoperation
between Low* and Vale. Supporting this kind of DSL interoperation poses several
challenges. First, Low* and Vale have very different memory models. Low* models
memory as a well-typed, structured heap (similar to CompCert’s (Leroy et al. 2016)),
while the machine model in Vale maps integer addresses to bytes. Second, calls between
C and assembly are mediated by a calling convention specific to the operating system
and hardware used. Finally, given our interest in security-related applications, we would
like measures for side-channel resistance adopted by Vale and Low™ to also compose
well.

In contrast to prior work investigating verified interoperation between C and assembly;,
our focus on verified cryptography yields a simpler setting: we want verified Low*
programs to be able to call into verified Vale procedures, while only transferring control
from Vale back to Low* via returns. As such, we do not need to model callbacks from
assembly such as FunTAL (Patterson et al. 2017) does, nor do we need to consider
potentially malicious assembly language contexts (Ahmed et al. 2018). Instead, the
goal of our interoperation framework is to safely lift the Vale semantics to a Low*
specification, so that Low* programs containing Vale computations can be verified
within Low*’s program logic. To this end, we will extend the semantics of Low™ to
model Vale procedures as atomic computational steps with effects on memory and a
single word-sized result (but with variable execution time as a potential side-channel).
We summarize this workflow in Figure 4.7.

4.2.1 Modeling Interoperation

Our interoperation relies on a trusted semantics of a call from Low* into the Vale
program c with arguments argy, ... arg,, modeled as a function, call assembly, sketched
in Figure 4.8.

Operationally, the call is modeled as follows: at line 2, we retrieve the initial Low™*
heap hg; at line 3, we construct the initial Vale state sy from hy and all the arguments;
at line 4, we run the Vale definitional interpreter presented in Section 4.1.1 to obtain
the final Vale state s;; at line 5, we translate this s; back to a Low* heap h; and return
value rax; finally, we update the Low* state atomically with h; and return rax. We
present below the different components of this model in detail.
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Figure 4.7: A high-level summary of the Low*/Vale interoperation

let call assembly c arg; ... arg,
let hg = get () in
let so = initial vale state hg arg; ... arg, in
let s; = eval code c s in
let rax, hy = final lowstar_state hg s; in
put hy; rax

Figure 4.8: Trusted model of interoperation between Low* and Vale

Relating Memory Models. To support hybrid programs, we must enable Low™ and
Vale programs to share selected regions of memory that correspond to the storage referred
to by mutable references in Low*. However, aspects of a C program’s memory that are
not observable from Low* must remain inaccessible from Vale. For instance, although a
Vale program should be able to access stack data that was explicitly allocated in Low™,
we do not wish to allow a Vale program to access the control stack of a Low* program,
as otherwise it could undermine the Low”* meta-theory that relates its semantics to C’s
semantics.

The memory models used by Low* and Vale differ significantly. The Low* memory
model stores values of structured types: the types include machine integers of various
widths (8-128 bits) and signedness; and arrays of structured values (as in C, pointers
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are just singleton arrays). In contrast, Vale treats memory as just a flat array of bytes.
To unify both memory models, we thus need to, first, make explicit the layout of each
shared Low™* structured type in Vale’s flat memory model, and second, relate memory
accesses at each level by ensuring that they manipulate the same underlying value.

In this work, we will restrict ourselves to shared accesses to mutable arrays of
fixed-width integers; this suffices when targeting highly optimized cryptographic imple-
mentations. To model the memory layout of such structures, for each supported integer
width, we build bijections to treat arrays of machine integers, e.g. array uint32 as arrays
of bytes, e.g. array nat8.

val to_bytes32: array uint32 — array nat8
val from _bytes32: (a8:array nat8{length a8 % 4 == 0}) — array uint32

val bijection32 (a:array uint32) : Lemma (from bytes32 (to bytes32 a) == a)

The last remaining step is to define a correspondence from the fragment of Low™*
memory (heap) containing the shared pointers to Vale’s memory (mem), which we present
in Figure 4.9.

let addr _map pred (m:array nat8 — nat64) =
(V (al a2:array nat8). disjoint al a2 =
m al + al.length < m a2 VvV m a2 + a2.length < m al)

type addr_map = m:(array nat8 — nat64){addr map_pred m}

let addrs _set addrs ptrs : set int =
{ i | Ja:array nat8. List. mem (from _bytes a) ptrs A addrs a < i < addrs a + a.length }

let correct simulation (addrs:addr _map) (a:array nat8) (heap:HS.mem) (mem:map int nat8) —
V(i:nat{i < a.length}). get heap a i heap == mem.[addrs b + i

let correct simulation global addrs ptrs heap mem =
addrs_set global addrs ptrs == Map.domain mem A
(V a. List.mem a ptrs A live a heap = correct simulation addrs (to bytes a) heap mem)

Figure 4.9: Trusted correspondence between fragments of Low*’s and Vale’s memory

One can see correct _simulation global addrs ptrs : HS.mem — map int nat8 — Type as a
relation between the two memories indexed by (1) a function addrs : addr _map that
maps live, disjoint abstract addresses in Low* to disjoint, valid address ranges in the
Vale memory model; and (2) a list of array references ptrs that are to be shared between
Low* and Vale.

The definition states that all live arrays in ptrs have the same values in both heap
(at their abstract address) and in mem (at their corresponding concrete address chosen
by addr _map). It also restricts the domain of the Vale memory, ensuring that valid Vale
memory accesses correspond to accesses to shared Low™* arrays.
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The correct simulation global relation is at the core of the interoperation model
presented in Figure 4.8. When calling from Low* into Vale, initial vale state hO args
assumes the existence of an addr _map and creates a Vale state sy which satisfies
the correct simulation global relation with hg; similarly, at the time the call returns,
the state h; of the Low™ program generated by final lowstar state is proven to be in
correct simulation global relation with the final state s; of the Vale procedure.

Modeling the Calling Conventions. Calling conventions describe how subroutines
interact with their caller. From Vale’s perspective, arguments are received in specific
registers and spilled on the stack if needed; in contrast, in Low*, as in C, arguments
are just named. As we construct the initial Vale state, we need to translate between
these (platform-specific) conventions, e.g., on an Intel x64 machine running Linux, the
first argument of a function must be passed in the rdi register, and the second in rsi.
Further, calling conventions between C and assembly often specify registers that must
be callee-saved (e.g., r15 for Windows on x64); such registers must have the same value
when entering and exiting the Vale procedure.

Calling conventions vary heavily based on the operating system, architecture, and
compiler used; in some cases, such as the use of inline assembly, they can even be
defined entirely by a programmer. To enable interoperation on a variety of platforms,
and also providing support for inline assembly, the function creating the initial Vale
state is parametric in the calling conventions.

Our framework is parameterized by two functions with types regs modified t and
of arg t respectively, presented in Figure 4.10. A function of type f : regs modified t
specifies which registers can be modified; f r = false indicates that register r was callee-
saved, and thus should hold the same value in the initial and final Vale states.

The type of arg t is more interesting. It is parametric in an arity, n, and models
functions that maps arguments to registers. It additionally imposes several restrictions
ensuring the well-formedness of the calling conventions: distinct arguments must be
passed in distinct registers (i.e., the mapping must be injective), and the stack register
rsp cannot be used to pass arguments.

type of arg t (n:nat) =
f:((i:nat{i < n}) — reg){injective f A (V (i:nat{i < n}). of argi # rsp)}

type regs _modified t = reg — bool
Figure 4.10: Generic types to specify calling conventions

Using these function types, instantiating our interoperation framework with differ-
ent calling conventions is straightforward. Given two functions of arg: of arg t and
modified : regs _modified t, initial vale state will store arguments in registers according
to of arg, spilling the remaining arguments on the stack, while our framework will
automatically generate an assertion that must be statically proven ensuring that all
callee-saved registers according to modified are preserved by the Vale execution. We
provide instantiations for common cases, e.g., x64 standard calls on Linux, as shown
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in Figure 4.11, and Windows. Verification conditions related to the restrictions in the
type of arg t are automatically discharged by F*.

let x64linux of arg (i:nat{i < 6}) : reg = match i with
| 0 — rdi
| 1 —rsi
| 2 — rdx
| 3 —rex
| 4 —r8
| 5 —r9

let x64linux _regs modified (r:reg) : bool =
not (r=rbx || r=rbp || r=r12|r=r13 || r=rl4 || r = rl5)

Figure 4.11: Instantiating calling conventions for x64 standard calls on Linux. The
first 6 arguments are passed in registers, extra arguments are spilled on the stack.
Registers rbx, rbp, r12; r13, r14, and r15 are callee-saved.

4.2.2 Generically Lifting Specifications

Now that we have defined a semantic model of interoperation between Vale and Low™*,
we wish to use it to verify such hybrid programs. The main challenge consists of ensuring
that verification guarantees proven for a Vale program are preserved when called from
Low*. The Vale preconditions must be provable in the initial Low™ state and arguments
in scope. Dually, the Vale postconditions must suffice to continue the proof on the Low*
side.

A key feature of our interoperation layer is to lift Vale specifications along the
mapping between Vale and Low™ states, e.g., for a Vale program satisfying the Hoare
triple { P} ¢ {@}, we can give call _assembly the following Low* type, where lift _pre and
lift_post reinterpret soundly and generically (i.e., once and for all) pre- and postconditions
on Vale’s flat memory model and register contents in terms of Low*’s structured memory
and named arguments in scope.

val call _assembly c arg; ... arg, : Stack uint64 (lift _pre P) (lift _post Q)

Our generic lifting of specifications between Vale and Low* is proven sound against
our trusted model of interoperation presented in Section 4.2.1, and is thus untrusted—
thankfully so, since this is also perhaps the most complex part of our interoperation
framework, for two reasons.

First, Vale and Low* use subtly different core concepts (each optimized for their
particular setting) including different types for integers, and different predicates for
memory footprints, disjointness, and liveness of memory locations. Hence, relating their
specifications involves working deep within the core of the semantic models of the two
languages and proving compatibility properties among these different notions. This is
only possible because both languages are embedded within the same host language, i.e.,
F~.
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Second, because we model the calling conventions generically for all arities, the
relations among Vale and Low* core concepts must also be generic, since they state
properties of the variable number and types of arguments in scope.

However, the payoff for these technical proofs is that they are done once and for
all, and their development cost is easily amortized by the relative convenience of
instantiating the framework at a specific arity for each call from Low* to Vale.

For a sense of the scale, our full semantic model of interoperation consists of 1595
lines of F* specification and modeling code; 2194 further lines of untrusted F* proofs
establish various generic lemmas for convenient use of the call assembly wrapper from
Low* (including functions analogous to lift_pre and lift_post). Finally, we used our
framework to implement 31 specific calls from Low* into Vale, requiring an additional
11,558 lines of untrusted F* proofs; the largest single Vale procedure that we have lifted
to Low* takes 17 arguments, and is specified in 181 lines of F* code.

4.2.3 Side-Channel Analysis

By relating Hoare triples between Low* and Vale as described in the previous sections,
we have presented a framework that enables interoperation between the two DSLs while
preserving formal guarantees about the correctness of Vale programs.

Unfortunately, when considering security-critical applications such as cryptography,
a correct implementation is not sufficient; we must also ensure that it is robust against
attacks by connecting the side-channel guarantees provided by Low* and Vale.

Background: Proving Low* Code Free from Information Leakage. When
proving side-channel resistance, some techniques are more convenient than others,
depending on the language and level of abstraction used. As described in Section 4.1.3,
to demonstrate that assembly code is secure, Vale relies on proof by reflection by
providing a verified taint analyzer operating on the Vale assembly syntax. Unlike Vale’s
deep embedding of assembly language, Low* is a shallow embedding and uses type
abstraction to prove side-channel resistance.

When programming with secrets, Low* programs are written against an interface
that provides secrets at an abstract type, as presented in Figure 4.12. The type system
then ensures that the programs cannot, for example, branch on secrets or use secrets
as array indices; operating on abstract secret integers can only be done through the
functions provided in the interface, corresponding to basic arithmetic operations.

To specify properties about secret integers, the interface also provides a function,
to_nat, which returns the underlying representation of the secret integer. Importantly,
to_nat has the Ghost effect; this ensures that it can only be used for proof purposes, in
computationally irrelevant contexts, thus preserving the type abstraction in executable
code.

Assuming that the implementations of functions operating on secrets are secret-
independent, Low* then provides a secret-independence (meta-)theorem (Protzenko et al.
2017, Theorem 1). To formalize secret-independence, Low* semantics are instrumented
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val uint64 : Type

val add : uint64 — uint64 — uint64
val sub : uint64 — uint64 — uint64
val mul : uint64 — uint64 — uint64
val logxor : uint64 — uint64 — uint64

val to_nat: uint64 — Ghost nat

Figure 4.12: Interface for secret integers in Low™.

with traces that reflect the branching behavior (brT and brF) and the memory access
patterns (read(b,n) and write(b, n)):

Trace ¢ == -|read(b,n) | write(b,n) | brT | brF | {1, ¢s

Protzenko et al. define an equivalence relation between Low* memories and Low™*
expressions (Hy =r Hs and e; =r e3), which relates two memories and expressions that
are equal except in subterms that have abstract types (per the type environment I').
Their theorem then states that equivalent Low* configurations (pairs of memories and
expressions (H, e) that are point-wise equivalent) produce equal traces and equivalent
configurations.

Proving Hybrid Programs Free from Information Leakage. To prove the se-
curity of hybrid programs, we must reconcile the notion of leakage in Vale and in Low*.
To this end, we extend the Low* secret-independence meta-theorem to account for
interoperation with Vale programs.

First, we extend Low*’s formal syntax with an extern ¢ expression form, that denotes
the Vale code ¢ embedded within Low*. We then model the call assembly function
presented in Section 4.2.1 as an opaque relation, that transforms a Low* memory H,
emitting an (abstract) trace z: (H,extern ¢) —, H’, along with the following extensions
to the Low™* syntax:

Expression e = ---|letv =externcine
Extern trace =z
Trace ¢ == ---|z

The second and key component of the extension is lifting Vale’s static taint analyzer
(Section 4.1.3) to the meta-level in Low*— in particular the is_leakage free property
from Figure 4.6.

Proposition 4.1 (Meta-property about the Vale taint analyzer). Let ' - extern c. If
taint_analysis(I', ¢) = true, then for two well-typed heaps Hy and Hy s.t. Hy =p Hy, we
have (Hy,c) — ., H{, (Ha,¢) —,, H5, H| and H} are well-typed in T', 2z = 25, and

Using the proposition above, it is straightforward to extend the secret-independence
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theorem from Protzenko et al. (2017) to include the new extern expression form. The
detailed proof is available in Appendix A.

Theorem 4.2 (Secret-Independence for Hybrid Low* /Vale programs). Given configura-
tions (Hy,e1) and (Hs, e3), where U'F (Hy,eq) : 7, 'k (Ha,ez) : 7, H =p Hy and e =p
es, and a secret-independent implementation of the secret integer interface Py, either
both the configurations cannot reduce further, or 31" D T s.t. Py (Hy, e1) =, (H{,€}),
P, (Hs, e9) —>2; (Hb,eh), I'"= (Hy,ey) -, IV (Hb, eh) o7, by = by, H = H, and
el = e,

The last step is to ensure that secret values are consistent in Vale and Low™*, i.e.,
that a secret passed as argument from Low”* is considered as such by the Vale taint
analysis. To this end, our interoperation framework also relates secret types in Low™ to
the labeling function (isPub from Figure 4.6) used by the Vale static analyzer.

4.3 Summary

In the realm of unverified software, interoperation between languages is frequent; high-
performance cryptography, for instance, commonly consists of hybrid C and assembly
programs. In this chapter, we demonstrated how to model such interoperation in a proof
assistant. We designed our interoperation to be easily extensible to new platforms, while
defining suitable abstractions to simplify the verification effort required by developers
when targeting hybrid programs. Building upon this work, we will show in the next
chapter how our approach is usable at scale when developing a verified, industrial-grade
cryptographic provider.



Chapter 5

EverCrypt: A Fast, Verified
Cryptographic Provider

In this chapter, we demonstrate how the proof-oriented approach we advocate for can
scale to high-asssurance, industrial-grade software. In the previous chapter, we proposed
a verified interoperation layer enabling us to provide formal guarantees about hybrid C
and assembly cryptographic implementations. Building upon this interoperation, we
now present our proof engineering development process for a large, verified cryptographic
library deployed in critical real-world settings.

When using industrial-grade cryptographic libraries such as libsodium (Denis
2013), OpenSSL’ libcrypto (OpenSSL Team 2005), or the Windows Cryptography
APT (Microsoft 2018), developers have high expectations.

The minimal requirement of a cryptographic provider is to be comprehensive; a
provider must supply all of the functionalities that security-critical applications need
(asymmetric and symmetric encryption, signing, hashing, key derivation, ... ), for all
the platforms that the application runs on. But modern cryptographic providers are
expected to be more than a collection of cryptographic implementations, they should
also follow software engineering best practices.

First, the cryptographic provider should be agile; that is, it should provide multiple
algorithms (e.g., ChaCha-Poly (Nir and Langley 2015) and AES-GCM (NIST 2007))
for the same functionality (e.g., authenticated encryption), while providing a single,
unified API, making it simple to change algorithms if one is broken (Stevens et al. 2007;
Leurent and Peyrin 2020).

Additionally, a modern cryptographic provider should also support multiplexing,
that is, the ability to choose between multiple implementations of the same algorithm.
This allows the provider to employ high-performance implementations on popular
hardware (OpenSSL, for example, supports dozens), while still providing a portable
fallback implementation that will work on any platform. Ideally, these disparate
implementations should also be exposed to the developer via a single unified API,
so that the developer can easily switch to a different implementation when a new
optimized version is deployed, and so that the provider can automatically choose the
optimal implementation for the platform it runs on, instead of leaving this burden to the
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developer. Historically, this process has been error prone, with various cryptographic
providers invoking illegal instructions on specific platforms (Debian Bug Tracker 2016),
leading to killed processes and even crashing kernels.

As we discussed in detail in Section 2.1, several projects, including the Vale framework
that we presented in Chapter 4, have produced verified implementations of different
cryptographic algorithms. While all these works contributed important techniques
and insights into how to best verify cryptographic code, they did not yield a verified
cryptographic provider comparable to the unverified libraries that application developers
use today.

To address this issue, we present in this chapter EverCrypt (Protzenko et al. 2020), a
comprehensive, provably correct and secure cryptographic provider that supports agility,
multiplexing and auto-configuration. EverCrypt builds upon two previous verification
projects, HACL* (Zinzindohoué et al. 2017; Polubelova et al. 2020) which provides
verified, high-performance C code for cross-platform support, and Vale (Bond et al.
2017; Fromherz et al. 2019) which produces assembly code for maximum performance
on specific hardware platforms.

EverCrypt unifies these two projects under a single agile and multiplexing API;
its agility ensures that multiple algorithms provably provide the same API to clients,
while its multiplexing demonstrates multiple disparate implementations from Vale and
HACL* verified against the same cryptographic specification. The API is carefully
designed to be usable by both verified (e.g., F*) and unverified (e.g., C) clients; we
describe this API in Section 5.2 and its implementation in Section 5.3.

C Clients Verified F* Clients

EverCrypt (C API)

HACL* (C) ARCSY)

Figure 5.1: An overview of EverCrypt

Despite being verified, EverCrypt also provides state-of-the-art performance for a
variety of algorithms including the elliptic curve Curve25519 (Bernstein 2006) (Sec-
tion 5.4), as well as authenticated encryption with additional data (AEAD), and hash
functions (Section 5.5). Leveraging the verified interoperation presented in Chapter 4,
it transparently multiplexes between generic C implementations and hand-tuned x64
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assembly implementations; EverCrypt’s assembly code matches or exceeds the perfor-
mance of the best unverified code, while the C implementations provide support across
all other platforms, offering performance competitive with existing unverified C code.
Since its release as an open-source library, portions of EverCrypt have been deployed
in a variety of verified and unverified applications, including high-profile open-source
projects such as Mozilla Firefox and the Linux kernel (Section 5.6).

Contributions. All the work presented in this chapter was first described in Protzenko
et al. (2020). My primary contributions consist of using the interoperation layer pre-
sented in the previous chapter at scale, including for the fine-grained interoperation
between Low* and Vale in our implementation of Curve25519 (Section 5.4) and for the
EverCrypt CPU-autodetection during multiplexing (Section 5.3). I was also responsible
for integrating our state-of-the-art implementation of Curve25519 modular arithmetic
into the Zinc cryptographic library, now in use in the Wireguard VPN and in the Linux
kernel (Section 5.6). Additionally, I also implemented and verified several cryptographic
primitives in EverCrypt, including the Chacha-Poly and HPKE cryptographic construc-
tions and the Ed25519 elliptic curve, and also co-developed the EverCrypt API for
authenticated encryption with additional data (AEAD).

5.1 Background: HACL”*

HACL* (Zinzindohoué et al. 2017) is a collection of cryptographic primitives: Chacha20,
Poly1305, their AEAD combination, Curve25519, Ed25519 and the SHA2 family of
hashes, entirely written in Low* and compiling to a collection of C files. While most
of these implementations provide cross-platform compatibility, a recent extension of
HACL*, called HACLxN (Polubelova et al. 2020), exploits platform-specific single-
instruction multiple data (SIMD) parallelism to provide verified C implementations
whose performance is closer to hand-tuned assembly.

Like all code written in Low*, HACL* is, by construction, devoid of memory
errors such as use-after-free, or out-of-bound accesses. In addition to basic memory
safety, HACL* proves functional correctness for its algorithms; e.g., for the elliptic
curve Curve25519, it shows that optimized field operations in 2?° — 19 are free of
mathematical errors (see Figure 5.2) Finally, using Low*’s constant-time model of secret
integers, HACL* ensures that one cannot branch on a secret or use it for array accesses,
and thus guarantees that the resulting C code is free of the most egregious kinds of
side-channels.

5.2 An Agile, Abstract API for EverCrypt

A key contribution of EverCrypt is the design of its API, which provides abstract
specifications suitable for use both in verified cryptographic applications and in unverified
code. While agility matters for security and functionality, we also find that it is an
important principle to apply throughout our code: beneath the EverCrypt API, we
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val fmul (output a b: felem): Stack unit
(requires AhO —
live hO a A live hO b A live output A (a == b V disjoint a b))
(ensures AhO _ hl —
modifies only output hO h1 A elem hl.[output] == mul (elem h0.[a]) (elem h0.|b]))

Figure 5.2: Type signature for HACL*’s implementation (in Low™) of a field multipli-
cation for Curve25519. An felem is an array of five 64-bit integers needed to represent a
field element. The input arrays a,b and the output array output are required to be live
(i.e., still allocated). After fmul completes, the only change from the old heap h0 to the
new heap hl is to the output array, which matches mul, the mathematical specification
of a field multiplication. The Stack effect annotation in its type guarantees that fmul is
free of memory leaks, since its allocations are only on the call stack, and hence they are
reclaimed as the function returns.

use agility extensively to build generic implementations with a high degree of code and
proof sharing between variants of related algorithms.

Figure 5.3 outlines the overall structure of our API and implementations for hashing
algorithms—similar structures are used for other classes of algorithms. At the top
left, we have trusted, pure specifications of hashing algorithms. Our specifications are
optimized for clarity, not efficiency; to make them trustworthy, we manually review
them to ensure that they match the original informal specification (e.g., from an RFC).
Additionally, our specifications are executable; we extract them to OCaml and test
them using standard test vectors, enabling an early detection of basic errors such as
typos or endianness issues. We discuss specifications further in Section 5.2.1

To the right of the figure, we have verified, optimized implementations. The top-
level interface is EverCrypt.Hash, which multiplexes efficient, imperative implementations
written in Low* and Vale. Each of these implementations is typically proven correct
against a low-level specification (e.g., Derived.SHA2 256) better suited to proofs of
implementation correctness than the top-level Spec.Hash. These derived specifications
are then separately proven to refine the top-level specification. We discuss our top-level
API in Section 5.2.2.

For reuse within our verified code, we also identify several generic idioms. For
instance, we share a generic Merkle-Damgard construction (Merkle 1989; Damgard
1989) between all supported hash algorithms. Similarly, we obtain all the SHA2 variants
from a generic template. The genericity saves verification effort at zero runtime cost—
using F*’s support for partial evaluation, our code extracts to fully specialized C and
assembly implementations, as described in Section 5.3.

5.2.1 Writing Algorithm Specifications for EverCrypt

Trusted specifications define what a given algorithm (e.g., SHA-256) should do; in
cryptography, these definitions typically appear in a mixture of English, pseudocode,
and math in an RFC or a peer-reviewed paper. Within EverCrypt, we port these
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Specifications , Implementations
pec.Hash @verCrypt.Hash \
val compress (a:alg) (st:words a) (b:block a) i | val compress (st:state alg) (b:larr uint8 alg) Y
: words_state a Refines{- - (StaCk_ ““”fun ho —> ) =1
val init : requires -> ... 3
' |val finish i | (ensuresfunh0 _h1-> .. A o
! |val compress_many ; repr s h1 == o
' |val hash Spec.Hash.compress alg (repr s h0) (as_seq h0 b)) |=:
1 ' <<
1 T ! PP
' Abstraction boundary Calls : Qal init, finish, compress_many, hash /
1 Invisible to clients | -
: Spec. MerkIeDamgard MDS, SHAT, ... Gen.MerkleDamgard
! val hash: . o calis |Val mk_compress_many | ;
! e ! val mk_hash
' Spec.PadFinish ' x
1 |val pad (a: alg) :... 1 Calls
: val finish (a: alg): ... : g’l
! ! ValeCrypt.SHA2 =
: fgizfpﬂezi : Low.SHA2 val compress_256 _g)
+ |val init: . v |lval compress_256 | |val comp_many_256 2
' | 1 j|val comp_many_256 o
Gen.SHA2 =
: Refines JDerlved .SHA2_256 }(*Refmes val compress_512 .. Calls val mk compress PI;
:E tracted : val mk_init Q‘
, Extracte \ . {
: to OCaml : SHA2 Xa:lants
 for testing | v T
1 1

Extracted to C and assembly

Spec.Hash.ml SHA2 _256.c SHA2 _384.c] SHA2_256.asm ™

Figure 5.3: The modular structure of EverCrypt (illustrated on hashing algorithms).
Components in red are part of our Trusted Computing Base (TCB).

specifications to pure mathematical functions within F*. This process is trusted, and
hence we take steps to enhance its trustworthiness. We strive to keep the trusted
specifications concise and declarative to facilitate human-level audits.

Taming Specification Explosion via Agility. We factor common structure shared
by multiple specifications into "generic” functions parameterized by an algorithm param-
eter, and helper functions that branch on it to provide algorithm-specific details. This
reduces the potential for errors, makes the underlying cryptographic constructions more
evident, and provides a blueprint for efficient generic implementations (Section 5.3).

For example, the type below enumerates the hashing algorithms that EverCrypt
supports:

type alg = MD5 | SHAL | SHA2 224 | SHA2 256 | SHA2 384 | SHA2 512

Although MD5 and SHA1 are known to be insecure (Stevens et al. 2007; Leurent
and Peyrin 2020), a practical provider must supply them for compatibility reasons. At
the application level, cryptographic security theorems can be conditioned on the security
of the algorithms used and, as such, would exclude MD5 or SHA1. Pragmatically,
EverCrypt can also be configured to disable them, or even exclude their code at compile
time.

All these algorithms use the Merkle-Damgard construction for hashing a bytestring
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by (1) slicing it into input blocks, with an encoding of its length in the final block; (2)
calling a core, stateful compression function on each block; (3) extracting the hash from
the final state. Further, the four members of the SHA2 family differ only on the lengths
of their input blocks and resulting tags, and on the type and number of words in their
intermediate state.

Rather than write different specifications, we define a generic state type, which is
parameterized by the algorithm. Depending on the algorithm, the type word alg selects
32-bit or 64-bit unsigned integer words; words alg defines sequences of such words of the
appropriate length; and block alg defines sequences of bytes of the appropriate block
length.

let word alg = match alg with
| MD5 | SHAL | SHA2 224 | SHA2 256 — UInt32.t
| SHA2 384 | SHA2 512 — Ulnt64.t

let words _length alg = match alg with
| MD5 — 4
| SHA1 —5
| SHA2 224 | SHA2 256 | SHA2 384 | SHA2 512 —8

let words alg = m:seq (word alg){length m = words_length alg }

let block length alg = match alg with
| MD5 | SHAL | SHA2 224 | SHA2 256 — 64
| SHA2 384 | SHA2 512 —128

let block alg = b:bytes{length b = block length alg}

With these types, we write a generic SHA2 compression function that updates a hash
state (st) by hashing an input block (b). Note, this definition illustrates the benefits of
programming within a dependently typed framework—we define a single function that
operates on either 32-bit or 64-bit words, promoting code and proof reuse and reducing
the volume of trusted specifications.

module Spec.SHA2

let word add mod (alg:sha2 alg) = match alg with
| SHA2 224 | SHA2 256 — UInt32.add _mod
| SHA2 384 | SHA2 512 — UInt64.add _mod

let compress (alg:sha2 alg) (st:words alg) (b:block alg) : words _state alg
= let block words = words_of bytes alg 16 b in
let st” = shuffle alg st block words in
seq_map2 (word add mod alg) st st’

This function first converts its input from bytes to words, forcing us to deal with
endianness—being mathematical, rather than platform dependent, our specifications fix
words to be little endian. The words are then shuffled with the old state (st) to produce
a new state (st’) which is then combined with the old state via modular addition, all
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in an algorithm-parameterized manner. For instance, word add mod is parameterized
by the SHA2 algorithm, and corresponds to an addition modulo 232 for SHA2-224 and
SHA2-256, and modulo 254 for SHA2-384 and SHA2-512.

Going beyond the SHA2 family of algorithms, we compose multiple levels of specifi-
cation sharing. For instance, we write a single agile padding function (in Spec.PadFinish)
for MD5, SHA1, and SHA2; we also use a small helper function which branches on the
algorithm alg to encode the input length in little-endian or big-endian, depending on
whether the algorithm is MD5.

Untrusted Specification Refinements. EverCrypt’s trusted algorithm specifica-
tions are designed to be concise and easily auditable, but they rarely lend themselves
well to an efficient implementation. Hence, we often find it useful to develop untrusted
specification refinements (e.g., Derived.SHA2 256) that provide more concrete details
and are proven equivalent to the trusted specifications.

These refinements commonly introduce features such as more optimized represen-
tation choices, precomputations, or chunking of the operations in blocks to enable
vectorized implementations. In Curve25519, for example, an algorithm refinement may
introduce a Montgomery ladder (Montgomery 1987) for efficiently computing scalar
multiplications.

In the case of hashes, instead of waiting for the entire message to be available and
holding all the data in memory, a refined specification processes its input incrementally,
and is verified against the base algorithm. This process of relating specifications to
implementations through iterative refinements leads to well-structured, modular, and
easier to maintain proofs.

5.2.2 EverCrypt’s Top-Level API

Verified programming is a balancing act: programs must be specified precisely, but
revealing too many details of an implementation breaks modularity and makes it difficult
to revise or extend the code without also breaking clients.

A guiding principle for EverCrypt’s API is to hide, through abstraction, as many
specifics of the implementation as possible. Our choice of abstractions has been successful
inasmuch as, after establishing our verified API, we have extended its implementation
with new algorithms and optimized implementations of existing algorithms without any
change to the API.

In EverCrypt, we use abstraction in two flavors. Specification abstraction hides de-
tails of an algorithm’s specification from its client; e.g., although EverCrypt.Hash.compress
is proven to refine Spec.Hash.compress, only the type signature of the latter, not its
definition, is revealed to clients. In addition, representation abstraction hides details of
an implementation’s data structures, e.g., the type used to store the hash’s internal
state is hidden.

Abstract specifications have a number of benefits. They ensure that clients do not
rely on the details of a particular algorithm, and that their code will work for any present
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or future hash function that is based on a compression function. Abstract specifications
lend themselves to clean, agile specifications for cryptographic constructions (such
as the Merkle-Damgard construction previously discussed). Abstraction also allows
us to provide a defensive API to unverified C code, helping to minimize basic API
usage flaws. Finally, abstraction also simplifies reasoning, both formally and informally,
to establish the correctness of client code. In practice, abstract specifications prune
the proof context presented to the proof assistant; when relying on semi-automated
verification, as F* does using the Z3 SMT solver, this can significantly speed up client
verification.

For hashing functions, our main, low-level, imperative API is designed around an
algorithm-indexed, abstract type state alg. EverCrypt clients are generally expected
to observe a usage protocol. For instance, the hash API expects clients to allocate
state, initialize it, then make repeated calls to compress, followed eventually by finalize.
EverCrypt also provides a single-shot hash function in the API for convenience.

The interface of our low-level compress function is shown below, with some details
elided. Clients of compress must pass in an abstract state s (indexed by an implicit
algorithm descriptor alg), and a mutable array b holding a block of bytes to be added
to the hash state. As a precondition, they must prove inv s h0, the abstract invariant
of the state. This invariant is established initially by the state allocation routine, and
standard framing lemmas ensure that the invariant holds for subsequent API calls as
long as any intervening heap updates are to disjoint regions of the heap.

module EverCrypt.Hash

val compress (s:state alg) (b:block alg) : Stack unit
(requires AhO —
inv s hO A live hO b A fp s h0 “disjoint™ loc b)
(ensures Ah0  hl —
inv s h1 A modifies_only (fp s h0) h0 h1 A
repr s h1 == Spec.Hash.compress alg (repr s h0) (as_seq h0 b)

In addition to the invariant, clients must prove that the block b is live; and that b
does not overlap with the abstract footprint of s (the memory locations of the underlying
hash state). As usual in Low*, the Stack unit annotation states that compress is free of
memory leaks and returns the uninformative unit value ().

The postcondition of compress ensures that the abstract invariant inv is preserved;
it guarantees that only memory locations corresponding to the internal hash state
are modified; and, most importantly, it states that the final value held in the hash
state, repr s hl, corresponds ezactly to the words computed by the pure specification
Spec.Hash.compress. It is this last part of the specification that captures functional
correctness, and justifies the safety of multiplexing several implementations of the same
algorithm behind the API, inasmuch as they are verified to return the same results,
byte for byte.

State abstraction is reflected to C clients as well, by compiling the state type as
a pointer to an incomplete struct (Seacord 2018). Hence, after erasing all pre- and
post-conditions, our low-level interface yields idiomatic C function declarations in the
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extracted evercrypt hash.h presented in Figure 5.4.

// This type is shared with specifications.
#define SHA2 224 0

#define SHA2 256 1

#define SHA2 384 2

#define SHA2 512 3

#define SHA1 4

#define MD5 5

typedef uint8 t hash alg;

// Interface for hashes, block-aligned input data
struct state_s_s;
typedef struct state s s state s;

state s xcreate in(hash alg a);

void init(state_s xs);

void compress(state s *s, uint8 t xblockl);

void compress many(state s *s, uint8 t xblocks, uint32 t lenl);
void compress _last(state s *s, uint8 t xlastl, uint64 t total len);
void finish(state s s, uint8 t *dst);

void free(state s xs);

void copy(state s #s_src, state s *s_ dst);

void hash(hash alg a, uint8 t *dst, uint8 t xinput, uint32 t lenl);

Figure 5.4: A representative snippet of the EverCrypt hash API. The file was edited
only to remove some module name prefixes to make the code more compact.

Given an abstract, agile, functionally correct implementation of our 6 hash algo-
rithms, we develop and verify the rest of our API for hashes in a generic manner. We
first build support for incremental hashing (similar to compress, but taking variable-sized
bytestrings as inputs), then an agile standard-based implementation of keyed-hash
message authentication codes (HMAC) and finally, on top of HMAC, a verified imple-
mentation of key derivation functions (HKDF) (Krawczyk and Eronen 2010).

Thanks to agility, adding a new algorithm (e.g., a hash) boils down to extending an
enumeration (e.g., the hash algorithm) with a new case. This is a backward-compatible
change that leaves function prototypes identical. Thanks to multiplexing, adding a
new optimized implementation is purely an implementation matter that is dealt with
automatically within the library, meaning once again that such a change is invisible to
the client. Finally, thanks to an abstract state and framing lemmas, EverCrypt can
freely optimize its representation of state, leaving verified and unverified clients equally
unscathed.
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5.3 Agile Implementations with Zero-Cost, Generic
Programming

While agility yields clean specifications and APIs, we now show how to program
implementations in a generic manner, and still extract them to fully specialized code
with zero runtime overhead. To ground the discussion, we continue with our running
example of EverCrypt’s hashing API, instantiating the representation of the abstract
state handle (state a) and sketching an implementation of EverCrypt.Hash.compress, which
supports runtime agility and multiplexing by dispatching to implementations of specific
algorithms.

Implementing EverCrypt.Hash. The abstract type state alg is defined in F* as a
pointer to a datatype containing an algorithm-specific state representation, as shown in
Figure 5.5

let hash _state (a:alg) = st:array (word a){length st == words_length a}

type state s (a:alg) = match a with
| SHA2 256: p:hash state SHA2 256 — state s SHA2 256
| SHA2 384: p:hash state SHA2 384 — state s SHA2 384

let state alg = pointer (state_s alg)
Figure 5.5: F* definition of the EverCrypt hash state

The state_s type is extracted to C as a tagged union, whose tag indicates the
algorithm alg and whose value contains a pointer to the internal state of the corresponding
algorithm, as presented in Figure 5.6.

struct state_s_s {
hash alg tag;
union {
uint32 t xcase SHA2 256;
uint64 t xcase  SHA2 384,

Figure 5.6: Extracted C state for EverCrypt hash functions

Compared to, say, a single voidx, the union incurs no space penalty, and prevents
dangerous casts from voidx to one of uint32 tx or uint64 tx. The tag allows an agile
hash implementation to dynamically dispatch based on the algorithm, as shown in
Figure 5.7 for compress.
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let compress s blocks = match !s with
| SHA2 256 p — compress _multiplex sha2 256 p blocks
| SHA2 384 p — compress sha2 384 p blocks

Figure 5.7: Agile F* implementation of the compress hash function

In this code, since we only have one implementation of SHA2-384 provided by HACL*,
we directly call into Low*. For SHA2-256, however, we have multiple implementations
available in both Low* and Vale. We thus dispatch to a local multiplexer that selects
the best available implementation, based on other runtime configurations in scope,
including CPU identity. We describe this mechanism in more detail later in this section.

Partial Evaluation for Zero-Cost Genericity. Abstract specifications and imple-
mentations, while good for encapsulation, modularity, and code reuse, can compromise
the efficiency of executable code: We want to ensure that past the agile EverCrypt.Hash,
nothing impedes the run-time performance of our code.

To this end, we rely on partial evaluation to derive specialized Low* code suitable
for calling by EverCrypt.Hash, reducing away several layers of abstraction before further
compilation. The C code thus emitted is fully specialized and abstraction-free, and
branching on algorithm descriptors only happens above the specialized code, where
the API demands support for runtime configurability (e.g., only at the top-level of
EverCrypt.Hash). We therefore retain the full generality of the agile, multiplexed API,
while switching efficiently and only at a coarse granularity between fast, abstraction-free
implementations.

Consider our running example: compress, the compression function for SHA-2. We
managed to succintly specify all variants of this function at once, using case-generic
types like word alg to cover algorithms based on both 32- and 64-bit words. Indeed,
operations on word alg like word _logand below dispatch to operations on 32-bit and 64-bit
integers depending on the specific variant of SHA-2 being specified.

let word logand (alg:sha2 alg) (x y: word alg): word alg =
| SHA2 224 | SHA2 256 — UlInt32.logand x y
| SHA2 384 | SHA2 512 — Ulnt64.logand x y

We wish to retain this concise style and, just like with specifications, write a stateful
shared compress sha2 once. This cannot however be done naively, as implementing
bitwise-and within compress sha2 would be a performance disaster: every bitwise-and
would trigger a case analysis on the algorithm! Further, word alg would have to be
compiled to a C union, also wasting space.

To combine the best of both worlds, we instead rely on inlining and F*’s capabilities
for partial evaluation. We program most of our stateful, low-level code in a case-generic
manner. Just like in specifications, the stateful compression function is written once (in
Gen.SHA2); we trigger code specialization at the top-level by defining all the concrete
instances of our agile implementation, as shown in Figure 5.8.

When extracting compress sha2 256 for instance, F* will partially evaluate the func-
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module Low.SHA2

let compress sha2 224 = Gen.SHA2.compress SHA2 224
let compress sha2 256 = Gen.SHA2.compress SHA2 256
let compress sha2 384 = Gen.SHA2.compress SHA2 384
let compress sha2 512 = Gen.SHA2.compress SHA2 512

Figure 5.8: Specializing a generic compress implementation to different hash algorithms

tion Gen.SHA2.compress on SHA2 256, eventually encountering word logand SHA2 256
and reducing it to Ulnt32.logand. By the time all reduction steps have been performed,
no case analysis over an algorithm remains; all functions and types parameterized over
alg have disappeared, leaving specialized implementations for the types, operators, and
constants that are specific to SHA2-256 and can be compiled to efficient, idiomatic C
code.

We take this style of partial evaluation one step further, and parameterize stateful
code over algorithms and stateful functions. For instance, we program a generic, higher-
order Merkle-Damgard hash construction, instantiating it with specific compression
functions, including multiple implementations of the same algorithm, e.g., HACL*
and Vale implementations. Specifically, the mk compress many function presented in
Figure 5.9 is parameterized by a compression function f, and repeatedly applies f to
the input. We can instantiate it with several implementations of the same algorithms
as long as it satisfies the shared, agile EverCrypt hash API, relying on F* performing
partial evaluation to extract distinct, idiomatic C implementations.

let compress_t (alg:hash alg) = s:state alg — b:block alg — Stack unit
(requires AhO —
inv s hO A live hO b A fp s h0 “disjoint™ loc b)
(ensures AhO _ hl —
inv s h1 A modifies_only (fp s h0) h0 h1 A
repr s h1 —= Spec.Hash.compress alg (repr s h0) (as_seq h0 b)

val mk _compress many (alg:hash alg) (f:compress_t alg) : compress _many t alg

let compress _many 256 vale : compress _many t SHA2 256 =
mk _compress _many SHA2 256 compress sha2 256 vale

let compress _many 256 lowstar : compress _many t SHA2 256 =
mk _compress _many SHA2 256 compress sha2 256 lowstar

Figure 5.9: A generic, higher-order Merkle-Damgard construction, parameterized by
an algorithm-generic compress function. The generic construction is instantiated with
Vale and Low* implementations of SHA2-256.

The higher-order pattern allows for a separation of concerns: the many-block
compression function does not need to be aware of how to multiplex between Low*
and Vale, or even of how many choices there might be; the function type abstraction
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of compress is sufficient. We rely on this higher-order style in the rest of our hash API:
for instance, given an implementation of compress and pad functions, mk compress_last
generates a compression function for the remainder of the input data; similarly, mk hash
requires state creation and initialization, as well as compress, pad, and finish functions
to generate a complete one-shot hash function. Using these higher-order templates,
we instantiate the entire set of SHA2 functions, yielding two specialized APIs with no
branching: one for Low* code, one for Vale code.

Safely Multiplexing Between Implementations. Hand-tuned assembly imple-
mentations provided by Vale are more performant than portable HACL* implementa-
tions; when the two are available, we would prefer using the fastest one. Unfortunately,
assembly implementations commonly rely on platform-specific features, e.g., an opti-
mized Vale implementation of the authenticated encryption algorithm AES-GCM (NIST
2007) relies on the Intel x64 AES-NI instruction set (Gueron 2012). Executing this
code on a platform without the AES-NI extension would result in errors due to illegal
(unsupported) instructions, an issue that led in the past to killed processes and crashing
kernels (Debian Bug Tracker 2016). To safely multiplex between implementations,
EverCrypt must therefore ensure that Vale implementations are only called when the
corresponding CPU extensions are supported.

To determine whether a given extension is available on the current platform, we
rely on calls to the CPUID instruction, which is modeled in Vale. Using the verified
interoperation presented in Chapter 4, we can therefore provide the following Low™*
signature to a CPUID call detecting whether the Vale AES-GCM implementation can
be safely executed. The modifies _only loc_none postcondition ensures that this call has
no effect on memory. For performance reasons, instead of performing such calls at each
multiplexing, EverCrypt instead caches the results during a static configuration phase.

val check aesni : unit — Stack Ulnt64.t
(requires AhO — T)
(ensures AhO ret _val h1 —
modifies_only loc_none h0 h1 A ((UInt64.v ret val) # 0 = aesni_enabled)
)

A further complication arises because the CPUID instruction itself is only supported on
Intel x86 and x64 platforms, but not, say, on ARM. Attempting to call check aesni on non-
Intel platforms would therefore lead, again, to errors due to illegal instructions. Hence,
we add another layer of flags representing static compiler-level platform information
(e.g., TargetConfig.x64). Checks for these flags are compiled as a C #ifdef. The emitted
code for auto-detecting CPU features thus looks as follows:

#if TARGETCONFIG _X64
if (check aesni () != 0U) cpu_has_aesni[0U] = true;
#endif

This ensures that no link-time error occurs when compiling EverCrypt for platforms
which do not support the CPUID instruction. The connection of the TARGETCONFIG
macros to standard compiler definitions, e.g.,



5.4 Achieving Best-in-Class Performance: The Case of Curve25519 53

#if defined(  x86 64 ) || defined( M X64)
#define TARGETCONFIG X64 1

Helif ...

are hand-written, and as such, must be carefully audited.

5.4 Achieving Best-in-Class Performance: The Case
of Curve25519

Cryptographic performance is often a bottleneck for security-sensitive applications (e.g.,
for TLS or disk encryption). Given a choice between a complex high-performance
cryptographic library, and a simple, potentially more secure one, historically much of
the world has opted for better performance. In this section, we show that performance
and security guarantees are not incompatible, by presenting a verified implementation
of Curve25519 whose performance exceeds even the best unverified implementations.

Curve25519 (Bernstein 2006), standardized as IETF RFC7748 (Langley et al. 2016)
is quickly emerging as the default elliptic curve for cryptographic applications. It is
the only elliptic curve support by modern protocols like Signal (Marlinspike and Perrin
2016; Perrin and Marlinspike 2016) and Wireguard (Donenfeld 2017), and is one of the
two curves commonly used with Transport Layer Security (TLS) and Secure Shell (SSH).
One of the reasons for Curve25519’s success is that it was designed with performance
in mind, and many high-performance implementations have been published since its
standardization (Bernstein 2006; Chou 2016; Diill et al. 2015; Oliveira et al. 2017).

5.4.1 Implementing Curve25519, an Overview

Curve25519 can be implemented in about 500 lines of C. About half of this code consists
of a customized bignum library that implements modular arithmetic over the field of
integers modulo the prime pass19 = 22°° — 19. The most performance-critical functions
implement multiplication and squaring over this field, which internally rely on modular
addition. Since each field element has up to 255 bits, it can be stored in 4 64-bit
machine words, encoding a polynomial of the form:

e3 % 2192 1+ e2 % 212 1 e1 %204 1 0

where each coefficient is less than 254, Multiplying (or squaring) field elements amounts
to textbook multiplication with a 64-bit radix: whenever a coefficient in an intermediate
polymomial goes beyond 64-bits, we need to carry over the extra bits to the next higher
coefficient. To avoid a timing side-channel, we must assume that every 64-bit addition
may lead to a carry and propagate the (potentially zero) carry bit regardless.

Propagating these carries can be quite expensive, so a standard optimization is to
delay carries by using an unpacked representation, with a field element stored in 5 64-bit
machine words, each holding 51 bits, yielding a radix-51 polynomial:

ed % 2204 4 0352193 1 2% 2102 1 o1 % 251 4+ €0
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This representation means that polynomial multiplication now requires 25 64x64
multiplications (each yielding a 128-bit integer) rather than just 16 such multiplications
in the radix-64 representation. However, since each product now has only 102 bits,
it has lots of room to hold extra carry bits without propagating them until the final
modular reduction.

Even with these delayed carries, carry propagation continues to be a performance
bottleneck for modular multiplication, and high-performance implementations leverage
many low-level optimizations, such as interleaving carry chains, and skipping some
carry steps if the developer believes that a given coefficient is below a threshold.

Such delicate optimizations have often lead to functional correctness bugs, both
in popular C implementations like Donna-64 (Langley 2014) and in high-performance
assembly like amd64-64-24k (Bernstein et al. 2014). These bugs are particularly hard
to find by testing or auditing, since they only occur in low-probability corner cases deep
inside modular arithmetic. Nevertheless, such bugs may be exploitable by a malicious
adversary once they are discovered, making elliptic curves a prime target for formal
verification.

5.4.2 A Faster Curve25519 with Intel ADX

Recently, Oliveira et al. (2017) demonstrated a significantly faster implementation on
Intel platforms that support Multi-Precision Add-Carry Instruction Extensions, also
called Intel ADX. Unlike other fast Curve25519 implementations, Oliveira et al. use a
radix-64 representation and instead optimize the carry propagation code by carefully
managing Intel ADX’s second carry flag. The resulting performance improvement is
substantial—at least 20% faster than prior implementations on modern Intel processors.

Oliveira et al. mostly wrote their implementation in assembly, with only the Mont-
gomery laddder and top-level functions written in C. A year after its publication,
when testing and comparing this code against formally verified implementations from
HACL* (Zinzindohoué¢ et al. 2017) and Fiat-Crypto (Erbsen et al. 2019), Donenfeld
and others found several critical correctness bugs (Donenfeld 2018b). These bugs were
fixed (Dettman 2018) with a minor loss of performance, but they raised concerns as
to whether this Curve25519 implementation, with the best published performance, is
trustworthy enough for deployment in mainstream applications.

To address this issue, we develop in EverCrypt several verified implementations of
Curve25519. The first is written in Low*, and generates portable C code that uses
an efficient radix-51 representation. The second is inspired by Oliveira et al.’s work,
and relies on verified Vale assembly for low-level field arithmetic that uses a radix-64
representation.

Notably, we carefully factor out the generic platform-independent Curve25519 code,
including field inversion, curve operations, key encodings, etc., so that this code can
be shared between our two implementations. In other words, we split our Curve25519
implementation into two logical parts:

1. The low-level field arithmetic, implemented both in Vale and in Low*, but verified
against the same mathematical specification in F*
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2. High-level components of Curve25519, implemented in Low™*, that can use either
of the two low-level field-arithmetic implementations.

A Generic Curve Implementation. To be generic in the underlying low-level field
arithmetic, our high-level curve implementation relies on the methodology presented in
Section 5.3; instead of parameterizing over a hash algorithm, we will parameterize over
the field representation, as presented in Figure 5.10.

The type felem corresponds to the representation of a field element; the unpacked
representation (radix-51) contains 5 64-bit integers, while the packed representation
(radix-64) only requires 4 64-bit integers. Given such a representation, feval extracts the
corresponding field element, using either the radix-51 or the radix-64 polynomial previ-
ously presented. Finally, fadd is a Low™* function performing field addition, as stated by
the postcondition feval s hl out == Spec.Curve25519.fadd (feval s h0 1) (feval s h0 f2). The
additional fadd pre s h and fadd post s h0 hl enable the specification of representation-
specific conditions; for instance, requiring specific CPU extensions to be enabled for the
Vale radix-64 implementation.

type field spec = M51 | M64

let nlimb (s:field spec) = match s with
| M51 — 5ul
| M64 — 6ul

let felem (s:field spec) = e:array uint64{e.length == nlimb s}

let feval (s:field spec) (h:mem) (e:felem s) : nat = match s with
| M51 — (f51 as nat h e) % Spec.Curve25519.prime
| M64 — (f64 _as_nat h e) % Spec.Curve25519.prime

val fadd (s:field spec) (out : felem s) (f1 : felem s) (2 : felem s)
: Stack unit
(requires Ah —fadd pre s h A
live h out A live h f1 A live h f2 A disjoint_or_eq [out; f1; f2])
(ensures A0 hl —
modifies_only out hO h1 A fadd post s hO h1 A
feval s hl out == Spec.Curve25519.fadd (feval s h0 f1) (feval s h0 2))

Figure 5.10: A representation-parametric signature for Curve25519 field addition

Building upon this abstraction, we can then implement representation-agnostic
Curve25519 functions. For instance, the scalar multiplication whose signature is
presented in Figure 5.11 internally relies on a Montgomery ladder, which mostly consists
of calls to representation-parametric fadd and fmul (field multiplication). As for the hash
algorithms in Section 5.3, this generic implementation will ultimately be specialized at
extraction-time.
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val scalarmult (s:field spec) (o:array uint8) (k:array uint8) (i:array uint8)
: Stack unit
(requires Ah0 —
o.length == 32 A k.length == 32 Ailength == 32 A
scalarmult _pre s hO A live h0 o A live hO k A live h0 i A disjoint o i A disjoint o k)
(ensures Ah0  h1l — modifies_only o hO h1 A
as_seq hl o == Spec.Curve25519.scalarmult (as_seq hO k) (as_seq hO i))

Figure 5.11: Signature of the Curve25519 scalar multiplication

Implementing Low-Level Field Arithmetic To provide a full implementation of
Curve25519, the remaining step is to provide implementations of the field arithmetic
operations. The radix-51 version is implemented in Low*, yielding a portable C
implementation, while the radix-64 variant, inspired by Oliveira et al.’s work, is written
in Vale. To provide the best possible performance, calls into Vale functions rely
on inline assembly, as shown in Figure 5.12; to ensure that these calls are safe and
match the corresponding Low* function types (e.g., fadd t), we leverage the verified
interoperation presented in Chapter 4. The resulting artifact thus is a mixed assembly-
C implementation of Curve25519, with formal proofs of memory safety, functional
correctness, and secret-independence for the assembly code, C code, and the glue code
in between.

static inline void fadd (uint64 t xout, uint64 t *f1, uint64 t «f2)

{

asm volatile(
// Compute the raw addition of f1 + f2
" movq 0(%0), %Ar8;"
" addq 0(%2), %%r8;"

/////// Wrap the result back into the field //////

Dt (f2)
:"r" (out), "r" (f1)
: "Yhrax", "Yrex", "%r8", "%r9", "%r10", "%ril" "memory", "cc"
)i
}

Figure 5.12: Extracted inline assembly code for Vale implementation of fadd

Evaluating Curve25519’s Performance We finally measure the performance of
our implementations of Curve25519 against that of other implementations, including
OpenSSL, Fiat-Crypto (Erbsen et al. 2019) (one of the fastest verified implementa-
tions at the time of writing), and Oliveira et al. (2017) (one of the fastest unverified
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implementations at the time of writing).

Experimental results are available in Figure 5.13. We compare the average number
of CPU cycles needed to perform a scalar multiplication on Curve25519; a lower
number corresponds to a faster implementation. All measurements are collected on an
Intel Kaby Lake i7-7560 using a Linux kernel crypto benchmarking suite (Donenfeld
2018a). OpenSSL cannot be called from the kernel and was benchmarked using the
same script, but in user space. All code was compiled with GCC 7.3 with flags
—03 —march=native —mtune=native.

Implementation Radix Language | CPU cycles
donna64 (Langley 2008) 51 64-bit C 159634
fiat-crypto (Erbsen et al. 2019) 51 64-bit C 145248
amd64-64 (Chen et al. 2014) 51 | Intel x86 64 asm 143302
sandy2x (Chou 2016) 25.5 Intel AVX asm 135660
EverCrypt portable 51 64-bit C 135636
openssl (OpenSSL Team 2005) 64 Intel ADX asm 118604
Oliveira et al. (2017) 64 Intel ADX asm 115122
EverCrypt targeted 64 64-bit C 113614
+ Intel ADX asm

Figure 5.13: Performance comparison between Curve25519 Implementations.

Our results show that EverCrypt’s combined Low™ + Vale implementation narrowly
exceeds that of Oliveira et al. by about 1%, which in turn exceeds that of OpenSSL by
3%. We also exceed the previous best verified implementation from Erbsen et al. by
22%. Hence, despite being verified, our hybrid C and assembly implementation was the
fastest existing implementation on record at the time of writing.

5.5 Evaluation

With EverCrypt, we aimed to develop a verified, industrial-grade cryptographic provider.
We showed in the previous sections how EverCrypt provides support for agility and
multiplexing, two requirements of modern providers. In this section, we now compare its
comprehensiveness and its performance with those of existing (unverified) cryptographic
libraries.

5.5.1 EverCrypt Features

We summarize in Figure 5.14 the algorithms and systems supported by EverCrypt. As
the table highlights, EverCrypt provides a variety of functionalities, including hashing,
key derivation, cipher modes, message authentication, authenticated encryption with
additional data (AEAD), elliptic curve operations, as well as several high-level APIs
for performing public-key and secret key encryption (Box and SecretBox), and a new
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’ Algorithm |C Version| Targeted ASM version ‘
AEAD

AES-GCM AES-NI + PCLMULQDQ + AVX
Chacha-Poly |yes

High-level APIs

Box yes

SecretBox  |yes

HPKE yes

Hashes

MD5 yes

SHA1 yes

SHA2 yes SHA-EXT (for SHA2-224+SHA2-256)
SHA3 yes

Blake2 yes

MACS

HMAC yes agile over hash

Poly1305 yes X64

Key Derivation

HKDF ‘yes ‘agile over hash

ECC

Curve25519 |yes BMI2 + ADX

Ed25519 yes

P-256 yes

Ciphers

ChaCha20 |yes

AES128, 256 AES NI + AVX

AES-CTR AES NI + AVX

Figure 5.14: Algorithms and systems supported by EverCrypt

cryptographic construction for Hybrid Public Key Encryption (HPKE) (Barnes and
Bhargavan 2020).

In most cases, EverCrypt provides both a generic C implementation for cross-
platform support, relying on HACL*, as well as a Vale optimized implementation for
specific Intel x64 targets. EverCrypt automatically detects whether to employ the latter,
and it offers agile interfaces for AEAD, hashing, HMAC and HKDF. HMAC and HKDF
both build on the agile hash interface, and hence inherit targeted implementations on
supported platforms.

EverCrypt does not yet support agility over elliptic curves, nor does it yet support
older asymmetric algorithms like RSA. We have also, thus far, focused on optimized
implementations for x64, but prior work with Vale (Bond et al. 2017) demonstrates
that we could just easily target other platforms; providing additional hand-tuned
implementations for, say, ARM, would thus be possible using our methodology.
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Figure 5.15: Average number of CPU cycles to compute a hash of 64 KB of random
data. Lower is better.

With regards to the comprehensiveness of EverCrypt’s API, the most natural
(unverified) comparison is with libsodium (Denis 2013), which also aims to offer a clean
API for modern cryptographic algorithms. The functionality exposed by each is quite
comparable, with a few exceptions. Notably, EverCrypt current lacks a dedicated
password-hashing APT that uses a memory-hard hash function like Argon2 (Biryukov
et al. 2016).

5.5.2 EverCrypt Run-Time Performance

EverCrypt aims to demonstrate that verification need not mean sacrificing performance.
We presented in Section 5.4 an implementation of the Curve25519 elliptic curve whose
performance exceeded those of the best verified and unverified implementations. We
now evaluate the performance of EverCrypt’s AEAD and hashing functions against
OpenSSL’s implementations, which prior work measured as meeting or exceeding that
of other popular open-source cryptographic providers (Bond et al. 2017).

In our results, each data point represents an average of 1000 trials; error bars
are omitted as the tiny variance makes them indistinguishable. All measurements
are collected with hyperthreading and dynamic-processor scaling (e.g., Turbo Boost)
disabled. We collect measurements on different platforms, since no single CPU supports
all of our various targeted CPU features.
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Figure 5.16: Average cycles/byte to encrypt blocks of random data using AEAD.
Lower is better.

In Figure 5.15, we report on the performance of our targeted hash implementations
when available (i.e., for SHA2-224 and SHA2-256), and our portable implementation
otherwise, comparing with OpenSSL’s corresponding implementations. We collect the
measurements on a 1.5GHz Intel Celeron J3455 (which supports SHA-EXT (Gulley
et al. 2013)) with 4 GB of RAM.

The results demonstrate the value of optimizing for particular platforms, as hardware
support increases our performance for SHA2-224 and SHA2-256 by 7x, matching that
of OpenSSL’s best implementation. EverCrypt’s portable performance generally tracks
OpenSSL’s, indicating a respectable fallback position for algorithms and platforms we
have not yet targeted.

Similarly, Figure 5.16 and 5.17 report on the performance of our AEAD algorithms,
with the latter omitting several implementations to make the comparison with OpenSSL’s
targeted version more apparent. We also compare against libjc (Almeida et al. 2020), a
recently released library which contains verified, targeted implementations of Poly1305
and ChaCha20. It does not include a verified ChaCha-Poly implementation (libje 2019),
but we combined the two primitives in an unverified implementation for evaluation
purposes. We collect measurements on a 3.6GHz Intel Core i9-9900K with 64 GB of
RAM.

For cross-platform performance, we see that EverCrypt with ChaCha-Poly matches
OpenSSL’s corresponding implementation, and surpasses OpenSSL’s portable AES-
GCM implementation. Targeting, however, boosts both EverCrypt and OpenSSL’s
AES-GCM implementations beyond that of even the targeted version of ChaCha-Poly.
Note that EverCrypt’s targeted performance meets or exceeds that of OpenSSL, and
achieves speeds of less than one cycle/byte for larger messages.
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Figure 5.17: Average cycles/byte to encrypt blocks of random data with targeted
AEAD. Lower is better.

Meanwhile, the performance of libjc’s targeted ChaCha-Poly slightly beats that of
OpenSSL and EverCrypt’s portable implementations, but it is about 4x slower than
OpenSSL’s targeted ChaCha-Poly, and about 9-11x slower than EverCrypt’s targeted
AES128-GCM. We attribute this to the fact that the latter two each jointly optimize
encryption and authentication together, whereas libjc optimizes the two primitives
separately.

5.6 Impact and Summary

EverCrypt was a large verification project, resulting in an industrial-grade cryptographic
library totaling several tens of thousands of verified C and assembly code, as summarized
in Figure 5.18.

To achieve such a scale, EverCrypt required a large collaboration; designing, specify-
ing, implementing and verifying EverCrypt took three person-years, plus approximatively
one person-year spent on infrastructure, testing, benchmarking, and contributing bug
fixes and other improvements to F*.

As a verified cryptographic provider, EverCrypt provides a foundation on which to
build provably secure applications. For instance, EverCrypt has been used in verified
implementations of modern cryptographic protocols such as Signal (Protzenko et al.
2019) and QUIC (Delignat-Lavaud et al. 2021), as well as in a verified library of Merkle
trees (Protzenko et al. 2020). But more importantly, since its official release, parts
of EverCrypt have been deployed in several high-impact projects: the combination
of state-of-the-art performance and provable security guarantees led to the adoption
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Components Lines of code
Cryptographic algorithm specifications 3782
Vale interoperation specification 1595
Vale hardware specification 3269
Low* algorithms 25097
Low™ support libraries 9943
Vale algorithms (written in Vale) 24574
Vale interoperation wrappers 13836
Vale proof libraries 23819
EverCrypt 5472
EverCrypt tests 4131
Vale algorithms (F* code generated from Vale files) 72039
Total (hand-written F* and Vale) 124310
Compiled code (.c files) 25052
Compiled code (.h files) 4082
Compiled code (ASM files) 14740
Total (C + assembly code) 43874

Figure 5.18: EverCrypt line counts, including whitespace and comments

of our Curve25519 implementation in the Zinc cryptographic library (Xu 2019), now
part of the WireGuard VPN and the Linux kernel; Mozilla Firefox integrated verified
implementations of elliptic curve cryptography and of ChaCha-Poly authenticated
encryption (Jacobs and Beurdouche 2020); the Tezos blockchain also uses EverCrypt’s
elliptic curve cryptography, as well as its hashing functions and HMAC message authenti-
cation (Dumitrescu 2020); finally, the MirageOS unikernel relies on our implementation
of Curve25519 to provide TLS 1.3 support (Mehnert 2020).

EverCrypt’s industrial recognition demonstrates the tangible impact that formal
verification can have on increasing the reliability and security of widely-used software.
By adopting a proof-oriented methodology, we confidently and soundly implemented
state-of-the-art optimizations which led to best-in-class performance for an implemen-
tation of Curve25519. Furthermore, structuring our code to ease verification led to
generic implementations which significantly increased code and proof reuse, in turn
easing code maintenance and simplifying extending the cryptographic provider with
new implementations. The end result is a verified artifact which provides strong, for-
mal guarantees about its correctness and security, while reaching sufficient industrial
expectations to be adopted at scale in real-world, security-critical applications.
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Steel: Proof-Oriented Programming in
a Dependently Typed Concurrent
Separation Logic
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Chapter 6

An Extensible Concurrent Separation
Logic for Effectful Dependently Typed
Programs

Proof assistants can be a programmer’s delight, allowing one to build modular abstrac-
tions coupled with strong specifications that ensure correctness of complex programs.
Their expressive power also allows one to develop new program logics to reason about a
variety of programming idioms within the same framework as the programs themselves.
A notable case in point is the Iris framework (Jung et al. 2018b) embedded in Coq (Coq
Development Team 2017), which provides an impredicative, higher-order, concurrent
separation logic (CSL) (Reynolds 2002; OHearn 2007) within which to specify and
prove programs.

Iris has been used to model various languages and constructs, and to verify many
interesting programs (Krogh-Jespersen et al. 2020; Chajed et al. 2019; Hinrichsen et al.
2019). However, Iris is not in itself a programming language: it must instead be
instantiated with a deeply embedded representation and semantics of one provided by
the user. For instance, several Iris-based papers work with a mini ML-like language
deeply embedded in Coq (Krebbers et al. 2017b).

Taking a different approach, FCSL (Nanevski et al. 2008; Nanevski et al. 2014;
Nanevski et al. 2019) embeds a predicative CSL in Coq, enabling proofs of Coq programs
(rather than embedded-language programs) within a semantics that accounts for effects
like state and concurrency. This allows programmers to use the full power of type
theory not just for proving, but also for programming, e.g., building dependently typed
programs and metaprograms over inductive datatypes, with typeclasses, a module
system, and other features of a full-fledged language. However, Nanevski et al.’s
program logics are inherently predicative, which makes it difficult to express constructs

like dynamically allocated invariants and locks, which are natural in impredicative logics
like Iris.

Aiming to provide the benefits of Nanevski et al.’s shallow embeddings, while
also supporting dynamically allocated invariants and locks in the flavor of Iris, we
propose a new framework called Steel. This chapter focuses on SteelCore, the core
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Verified Steel Programs and Libraries

ﬂ Uses
v SteelCore Program Logic (6.3)

Atomics, Invariants, Memory: Monotonic References:
Ghost State: — PCMs, ref, pts_to, lg—— State machines, histories,
Stored Invariants: i~p Uses *, —%, V, 3, ... Uses observations

|nstantiN Semantics of a Generic CSL (6.2)

Soundness: Indexed Effectful Action State Typeclass:
run: — Trees: — Interface to memory, SL
ctree a pq-> NMST ap Interprets ctree, action Para- assertions, laws
meterizes
Uses

Uses
Nondeterminism: NMST I

Uses y Ahman et al. (2018)
Monotonic State Effect I

Figure 6.1: An overview of SteelCore

semantics of Steel. We develop SteelCore in the effectful type theory provided by the
F* proof assistant (Swamy et al. 2016). Building on prior work that models the effect
of monotonic state in F* (Ahman et al. 2018), we develop a semantics for concurrent F*
programs while simultaneously deriving a CSL to reason about F* programs using the
effect of concurrency. The use of monotonic state enables us to account for invariants and
atomic actions entirely within SteelCore. The net result is that we can program higher-
order, dependently typed, generically recursive, shared-memory and message-passing
concurrent F* programs, and prove their partial correctness using SteelCore.

We present in Figure 6.1 the structure of SteelCore. Building on the monotonic
state effect, we prove sound a generic program logic for concurrency, parametric in a
memory model and a separation logic (Section 6.2). We then instantiate this semantics
with a separation logic based on partial commutative monoids, store invariants, and
state machines (Section 6.3). We describe several novel elements of our contributions,
next.

For starters, we need to extend F* with concurrency. To do this, we follow the
well-known approach of encoding computational effects as definitional interpreters
over free monads (Hancock and Setzer 2000; Kiselyov and Ishii 2015; Swierstra 2008;
Xia et al. 2019). That is, we can represent computations as a datatype of (infinitely
branching) trees of atomic actions. When providing a computational interpretation for
action trees, one can pick an execution strategy (e.g., an interleaving semantics) and
build an interpreter to run programs. The first main novelty of our work is that we
provide an intrinsically typed definitional interpreter (Bach Poulsen et al. 2018) that
both provides a semantics for concurrency while also deriving a CSL in which to reason
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about concurrent programs. Enabling this development is a new notion of indexed
action trees, which we describe next.

Indexed Action Trees for Structured Parallelism. We represent concurrent
computations as an instance of the datatype ctree st a pre post, shown below. The ctree
type is a tree of atomic computational actions, composed sequentially or in parallel.

type ctree (st:state) : a:Type — pre:st.slprop — post:(a — st.slprop) — Type =
| Ret : x:a — ctree st a (post x) post
| Act : action a pre post — ctree st a pre post
| Par : ctreestapq —ctreesta’ p’ q' —
ctree st (a & a’) (p “st.star’ p’) (A (x, x") —q x “ststar’ g’ x’)
| Bind : ctree st a p q — ((x:a) — Dv (ctree st b (q x) r)) —ctreestbpr

The type ctree st a pre post is parameterized by an instance st of the state typeclass,
which provides a generic interface to memories, including st.slprop, the type of separation
logic assertions, and st.star, the separating conjunction. The index a is the result type of
the computation, while pre and post are separation logic assertions. The Act nodes hold
stateful atomic actions; Par nodes combine trees in parallel; while Bind nodes sequentially
compose a computation with a potentially divergent continuation, represented using
F*’s primitive Dv effect presented in Chapter 3.

Interpreting Action Trees in the Effects of Nondeterminism and Monotonic
State. We interpret a term (e : ctree st a pre post) as both a computation e as well as a
proof of its own partial correctness Hoare triple {pre} e : a {post}. To prove this sound,
we define an interpreter that non-deterministically interleaves actions run in parallel.
The interpreter is itself an effectful F* function with the following (simplified) type,
capturing our main soundness theorem:

val run (e:ctree st a p q)
: NMST a st.evolves (A m — st.interp p m) (A _ x m’ — st.interp (q x) m’)

where NMST is the effect of monotonic stateful computations extended with nondeter-
minism. Here, we use it to represent abstract, stateful computations whose states are
constrained to evolve according to the preorder st.evolves, and which when run in an
initial state m satisfying the interpretation of the precondition p, produce a result x
and final state m’ satisfying the postcondition q x. As such, using the Hoare types of
NMST, the type of run validates the Hoare rules of CSL given by the indexing structure
on ctree. In doing so, we avoid the indirection of traces in Brookes (2007) original proof
of CSL as well as in the work of Nanevski et al. (2014).

Atomics and Invariants: Breaking Circularities with Monotonic State. Al-
though most widely used concurrent programming frameworks, e.g., the POSIX pthread
API, support dynamically allocated locks, few existing CSL frameworks actually support
them, with some notable exceptions (Buisse et al. 2011; Dodds et al. 2016; Gotsman
et al. 2007; Jung et al. 2018b; Hobor et al. 2008). The main challenge is to avoid
circularities that arise from storing locks that are associated with assertions about the
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memory in the memory itself. Iris, with its step-indexed model of impredicativity, can
express this. However, other existing state of the art logics, including FCSL, cannot.
In Section 6.3, we show how to leverage the underlying model of monotonic state to
allocate a stored invariant, and to open and close it safely within an atomic command,
without introducing step indexing.

PCMs, Ghost State, State Machines, and Implicit Dynamic Frames We
base our memory model on partial commutative monoids (PCMs), allowing the user to
associate a PCM of their choosing with each allocation unit. Relying on F*’s existing
support for computationally irrelevant erased types, we can easily model ghost state by
allocating values of erased types in the heap, and manipulating these values only using
atomic ghost actions—all of which are erased during compilation. PCMs in SteelCore
are orthogonal from ghost state: they can be used both to separate and manage access
permissions to both concrete and ghost state—in practice, we use fractional permissions
to control read and write access to references.

Further, SteelCore includes a notion of monotonic references, which when coupled
with F*’s existing support for ghost values and invariants, allow programmers to code
up various forms of state machines to control the use and evolution of shared resources.
Demonstrating the flexibility of our semantics, we extend it to allow augmenting CSL
assertions with frameable heap predicates, a style that combines CSL with mplicit
dynamic frames (Smans et al. 2012) within the same mechanized framework.

Contributions. The work described in this chapter was first presented in Swamy
et al. (2020). I designed and implemented several earlier attempts at the SteelCore
semantics and memory model. Building upon this, the final version presented here was
primarily designed by Nikhil Swamy and Aseem Rastogi; in this version, I implemented
atomic commands, invariant masks, and the invariant opening rule.

6.1 Basic Indexed Action Trees

As a warm-up towards the main ideas behind our indexed action trees, we start by
presenting a very simple total semantics for concurrency. Relying only on the pure
rather than effectful features of F*, some of the ideas in this section should also transfer
to pure type theories like Agda or Coq. However, our main construction involves
a partial-correctness semantics with effects like divergence, which may be harder to
develop in non-effectful type theories.

A disclaimer: total correctness for realistic concurrent programs (e.g., under various
scheduling policies) is a thorny issue that our work does not address at all. For this
introductory example, we focus only on programs with structured parallelism, without
any other synchronization constructs, and where loop bounds do not depend on effectful
computations.
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Action Trees for Concurrency. To model concurrency, we define an inductive type
ctree total, for trees of atomic actions, defined as action tot a = state — Tot (a & state),
indexed by a natural number (used for a termination proof). This is our first and
simplest example of an indexed action tree, one that could easily be represented in
another type theory. We will enrich ctree total in Section 6.2.

type ctree total : nat — Type — Type =

| Ret : x:a — ctree_total 0 a

| Act : act:action tot a — ctree total 1 a

| Par : ctree total nL aL — ctree total nR aR — ctree total (nL+nR+1) (aL & aR)
| Bind : fictree total nl a — g:(x:a — ctree total n2 b) — ctree total (n14+n2+1) b

type nctree total (a:Type) = n:nat & ctree total n a

The type ctreetotal induces a monad-like structure (under a suitable equivalence
that quotients the use of Bind) by representing computations as trees of finite depth,
with pure values (Ret) and atomic actions (Act) at the leaves; a Bind node for sequential
composition of two subtrees; and a Par node for combining a left and a right subtree. The
monad induced by ctree total differs from the usual construction of a free monad for a
collection of actions by including an explicit Bind node, instead of defining the monadic
bind recursively. This makes ctree total more similar to scoped operations proposed
by Pirog et al. (2018), with f being in the “scope” of Bind. The nat index counts the
number of Act, Par, and Bind nodes. We also define an abbreviation nctree total a to
package a tree with its index as a dependent pair.

A Definitional Interpreter for ctree total. To give a semantics to ctree_total, we
interpret its action trees in an interleaving semantics for state-passing computations,
relying on a boolean tape to resolve the nondeterminism inherent in the Par nodes.
To that end, we define a state and nondeterminism monad, with sample, get, and put
actions:

type tape = nat — bool
type nst (a:Type) = tape & nat & state — a & nat & state
let return (a:Type) (x:a) :nsta = A(_, n,s) —x,n,s

let bind (a b:Type) (f:nst a) (g:a —nst b) : nst b =
A(t, n,s) —let x, n1, s1 = f (t, n, s) in (g x) (t, nl, s1)

let sample () : nst bool = A(t, n,s) —»tn, nt+l,s
let get () : nst state = A(_, n,s) —s,n,s

let put (s:state) : nst unit = A(_, n, ) —=(),n,s

We can now interpret ctree total trees as nst computations. It should be possible to
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define such an interpreter in many type theories, in a variety of styles. Here, we show
one way to program it in F*, making use of its effect system to package the nst monad
as a user-defined effect.

A user-defined effect in F* introduces a new abstract computation type backed by
an existing F* definition (in our case, a computation type NST backed by the monad
nst). F* automatically elaborates sequencing and application of computations using the
underlying monadic combinators, without the need for do-notation, e.g., let in NST is
interpreted as bind in nst. Further, F* supports sub-effects to lift between computation
types, relying on a user-provided monad morphism, e.g., pure computations are silently
lifted to any other effect. The following code turns the nst monad into the NST effect,
with three actions, sample, get, and put.

total new effect { NST : a:Type — Effect with repr=nst; return=return; bind=bind}
let sample () = NST?.reflect (sample())
let get () = NST?.reflect (get())

let put s = NST7?.reflect (put s)

The type of sample is unit — NST bool, indicating that it has the NST effect—calling
sample in a pure context is rejected by F*’s effect system. The total qualifier on the first
line ensures that all the computations in the NST effect are proved terminating.

Using NST, we build an interpreter for ctree total trees by defining run as the
transitive closure of a single step. The main point of interest is the last case of step,
reducing a Par a | r node by sampling a boolean and recursing to evaluate a step on
either the left or the right.

let reduct (r:nctree total a) = r’:nctree total a{ Ret? r’ V. 1 <r. 1}

let rec step (redex:nctree total a) : NST (reduct redex) (decreases redex. 1)
match redex. 2 with
| Ret  — redex
| Act act —let sO = get () in let x, s1 = act sO in put sl; (| _, Ret x|)
| Bind (Retx) g — (| _,gx])
| Bindfg —let (] ,f|)=step(| ,f|)in(] _,Bindf g])
| Par (Ret x) (Rety) — (] _, Ret (x,y) |)

| Par | (Rety) —let (| _,I"])=step (] ,I|)in(] _,Parl (Rety)|)
| Par (Ret x) r —let (| _,r|) =step (] ,r]|)in(] _, Par (Retx)r |)
| Par I r —

if sample () thenlet (| _,I"|) =step (| ,1])in(] _,Parl'r])

elselet (| _,r|)=step(] ,r])in(] _,Parlr])

let rec run (p:nctree total a) : NST (nctree total a) (decreases p. 1) =
if Ret? p then p else run (step p)

The other interesting element is proving that these definitions are well-founded. For
that, we enrich the type of step redex to return a refinement type reduct redex which states
that the result is either a Ret node, or its index is strictly less that the index of the redex.
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This, together with the decreases annotations, is sufficient for F* to automatically prove
that step and run are terminating. Similar proofs could be done in other proof assistants,
though the specifics would differ, e.g., in Agda, one might use sized types (Abel 2006).

6.2 A Partial Correctness Separation Logic

As stated at the start of this chapter, our goal is to define indexed action trees with the
following type:

type ctree (st:state) (a:Type) (pre:st.slprop) (post:a — st.slprop) : Type

The type is indexed by st:state, a typeclass encapsulating (at least) the type of the
memory st.mem and the type of separation logic assertions on the memory st.slprop.
Intuitively, a ctree st a fp0 fpl is the type of a potentially divergent, concurrent program
manipulating a shared state of type st.mem. The program expects the fp0 footprint of
some initial memory m0:st.mem. When run in m0, it may diverge or produce a result:a
and ml:st.mem, providing the (fpl result) fragment of m1 to the context.

The state typeclass for the semantics is shown below. First, we define a pre_state
containing all the operations we need. A state is a refinement of pre state satisfying
various laws.

type pre_state = {
mem: Type; (* The type of the underlying memory *)
slprop: Type; (* The type of separation logic assertions x)
equals: equiv slprop; (* An equivalence relation on slprops x)
emp: slprop; (* With a unit *)
star: slprop — slprop — slprop; (* And separating conjunction x)
interp: slprop — mem — prop; (* Interpreting slprop as a mem predicate *)
evolves: preorder mem; (x A preorder for MST: constrains how the state evolves x)
inv: mem — slprop; (* A separation logic invariant on the memory x)

}

let st_laws (st:pre state) =
is_ unit st.emp st.equals st.star A
associative st.equals st.star A commutative st.equals st.star A
interp _extensionality st.equals st.interp A star _extensionality st.equals st.star A affine st

type state = s:pre_state{st laws s}

We expect emp and star to form a commutative monoid over slprop and the equivalence
relation equals. The relation interp interprets an slprop as a predicate on mem, and we
expect the interpretation of star to be compatible with slprop-equivalence. We also
expect the interpretation to be affine, in the sense that interp (p *xq) m = interp g m.

As we will see in Section 6.3, we can instantiate our semantics with a separation logic
containing the full gamut of connectives, including conjunction, disjunction, separating
implication, and universal and existential quantification. The preorder evolves and the
invariant inv are opaque as far as the semantics is concerned—we will instantiate them
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in a way that allows us to model a source of freshness for allocating reference cells, and
also to support dynamically allocated invariants. In the following, we write x for st.star
where st is clear from the context.

6.2.1 Frame-Preserving Actions

To define the type of action trees ctree, we first need to define the type of atomic
actions at the leaves of the tree. These actions rely on F*’s support for monotonic state,
captured by an effect, MST.

The MST effect encapsulates stateful computations that restrict the state to evolve
according to a given preorder, i.e., a reflexive, transitive relation. Ahman et al. (2018)
observe that for such computations, witnessing a property p of the state that is invariant
under the preorder is sufficient to recall that p is true in the future. Ahman et al.
propose the following signature for such an MST effect, and prove the partial correctness
of the Hoare logic encoded in the indices of MST against an operational semantics for a
dependently typed A-calculus with primitive state.

effect MST (a:Type) (state:Type) (p:preorder state)
(req:state — prop) (ens:state — a — state — prop)

When executing a computation (c : MST a state p req ens) in an initial state sO:state
satisfying req sO, the computation either diverges, or returns a value x:a in a final state
sl:state satisfying ens sO x s1. Further, the state is transformed according to the preorder
p, i.e., the initial and final states are related by p s0 s1. The MST effect provides the
following actions—for readability, we tag the pre- and postcondition with requires and
ensures respectively:

e (et the current state:

val get () : MST state state p (requires As — T) (ensures AsQ r s1 — s0==s1 A r==s0)

e Put the state, but only when the new state sl is related to the old one s by p:
val put (sl:state) : MST unit state p (requires A\s —p s sl) (ensures A s —s==sl)
e Witness stable predicates: A stable predicate is maintained across preorder-respecting

state evolutions. The witness action proves an abstract proposition, witnessed q, attesting
that the stable predicate q is valid.

let stable sprop (p:preorder state) = q:(state — prop){V s0 sl1. q sO A p sO s1 = q sl}
val witnessed (q:stable sprop p) : prop

val witness (q:stable sprop p)
: MST unit state p (requires AsO — q s0) (ensures AsO sl — witnessed q A s0==s1)

e Recall stable predicates: Having witnessed q, one can use recall q to re-establish it at
any point.

val recall (q:stable sprop p{witnessed q})
: MST unit state p (requires AsO — T) (ensures AsO _ s1 —s0==s1 A q sl)
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type ctree (st:state) : a:Type — fp0:st.slprop — fpl:(a — st.slprop) — Type =
| Act: e:action a fp0 fpl — ctree st a fp0 fpl
| Ret: fp:(a — st.slprop) — x:a — ctree st a (fp x) fp
| Bind: f:ctree st a fp0 fpl — g:(x:a — Dv (ctree st b (fpl x) fp2)) — ctree st b fp0 fp2
| Par: cL:ctree st aL fpOL fplL — cR:ctree st aR fpOR fplR —
ctree st (aL & aR) (fpOL * fpOR) (A (xL, xR) — fplL xL * fp1R xR)
| Frame: c:ctree st a fp0 fpl — f:st.slprop — ctree st a (fp0 * f) (A x — fpl x * f)
| Sub: c:ctree st a fp0 fpl { sub_ ok fp0 fpl fp0’ fpl’ } — ctree st a fp0’ fpl’

with
let sub ok fp0 fpl fp0’ fpl’ = fp0’ “stronger than™ fp0 A fpl’ “weaker than fpl
let stronger than fp0’ fp0 = Vm f. st.interp (fp0’ * f) m = st.interp (fp0 * f) m

let weaker than fpl’ fpl = Vx m f. st.interp (fpl x * f) m = st.interp (fpl’ x * f) m

Figure 6.2: SteelCore’s representation of computations as indexed action trees

As such, the MST effect provides a small program logic for monotonic state com-
putations, which we leverage to define atomic SteelCore actions. An action is an MST
computation that requires its initial footprint fp0 to hold on the initial state m0. It
returns an x:a and ensures its final footprint fpl x on the final state m1. In both the
pre- and postcondition, we expect st.inv to hold separately. Finally, and perhaps most
importantly, the preserves frame side conditions ensures that actions are frameable. We
elaborate on that next.

let action a (fpO:st.slprop) (fpl:a — st.slprop) =
unit — MST a st.mem st.evolves
(requires Am0 — st.interp (st.inv m0 * fp0) m0)
(ensures Am0 x m1 — st.interp (st.inv m1 % fpl x) m1 A preserves frame fp0 (fpl x) m0 m1)

Frame Preservation. We would like to derive a framing principle for computations as
a classic frame rule (and its generalization, the rule for separating parallel composition).
As observed by Dinsdale-Young et al. (2013), it is sufficient for the leaf actions to
be frame-preserving for computations to be frame-preserving too. To that end, the
definition of preserves frame (that an action must provide in its postcondition) states
that all frames separate from st.inv m0 * pre and valid in the initial state m0 remain
separate from st.inv m1 * post, and are valid in m1.

let preserves frame (pre post:st.slprop) (m0 ml:st.mem) = V(frame:st.slprop).
st.interp (st.inv m0 * pre % frame) m0 = st.interp (st.inv m1 * post * frame) ml

6.2.2 CSL-Indexed Action Trees with Monotonic State

Figure 6.2 shows the way we represent computation trees in SteelCore. These
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trees differ from the simple action trees we used in Section 6.1. The additional
indexing structure in each case of ctree posits the proof rules of a program logic
for reasoning about ctree computations. In Section 6.2.3, we show that this logic is
sound by denoting ctree st a fp0 fpl trees via an interleaving, definitional interpreter
into NMST computations. NMST is a user-defined extension of the MST effect, which
provides an additional sample action similar to the one presented in Section 6.1 to model
nondeterminism, which we need for interleaving the subtrees of Par nodes. As NMST
computations are potentially divergent, we do not need to prove the termination of the
definitional interpreter, removing the need for the natural number index of ctree total.

We now describe the structure of ctree in detail, discussing each of its constructors
in turn.

Atomic Actions. At the leaves of the tree, we have nodes of the form Act e, for some
action e: the index of the computation inherits the indices of the action.

Returning Pure Values. Also at the leaves of the tree are Ret fp x nodes, which
allow returning a pure value x in a computation. The Ret node is parametric in a
footprint fp, and the indices on ctree state that in order to provide fp, we expect fp x to
hold in the initial state mo0.

Alternatively, we could have defined Ret : x:a — ctree st a st.emp (A — st.emp), al-
though, as we discuss in Section 6.2.3, this form is less convenient in conjunction with
the frame rule.

Sequential Composition. The Bind f g node sequentially composes f and g. Its
indexing structure should appear fairly canonical. The footprints of f and g are
“chained”, as in parameterized monads proposed by Atkey (2009), except our indices
(notably fp2) are dependent. The computation type of g has the Dv effect, indicating a
potentially divergent continuation.

Parallel Composition. Par cL cR composes computations in parallel. The indexing
structure yields the classic CSL rule for parallel composition of computations with
disjoint footprints.

Structural Rules: Framing and Subsumption. The Frame c f node preserves the
frame f across the computation c. The Sub ¢ node allows strengthening the initial
footprint and weakening the final footprint of c. These nodes directly correspond to the
canonical CSL frame and consequence rules.

These structural rules are essential elements of our representation. The indexing
structure of ctree defines a program logic and the structural rules are manifested as a
kind of re-indexing, which must be made explicit in the inductive type as additional
constructors. Further, given such structural rules, the need for a separate Bind, as
opposed to continuations in each node, becomes evident. Consider verifying a Hoare
triple {P1 % P} al; a2; a3 {Q}, where al, a2, a3 are actions with { P1 } al; a2 { P1 }, and
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{P1xP}a3{Q}. The canonical proof frames P across al; a2 together, which is trivial
in our representation, as Bind (Frame (Bind (Act al) (A — (Act a2))) P) (A — (Act a3)).
The frames can easily be added outside of a proof derivation, making the proofs modular.
However, if the continuations were part of the Act (and Par) nodes, such a structural
frame rule would not apply. We would have to bake-in framing in the Act nodes, and
even then we would have to frame P across al and a2 individually. This makes the proofs
less modular, since we cannot directly use the given derivation { P1 } al; a2 { P1 }.

Although we include Frame and Sub, we lack the structural rule for disjunction.
Accomodating disjunction in a shallow embedding is hard to do, since it requires giving
to the same computation more than one type. One possibility may be to adopt a
relational specification style, as Nanevski, Vafeiadis, and Berdine (2010) do—we leave
an exploration of this possibility to future work. Meanwhile, as we instantiate the
semantics with a state model in Section 6.3, we also provide several lemmas to destruct
combinations of separating conjunctions and existentials (with disjunctions as a special
case).

6.2.3 Soundness

To prove the soundness of the proof rules induced by the indexing structure of ctree, we
follow the strategy outlined in Section 6.1, with NMST as the target denotation. Our
goal is to define an interpreter with the following type, showing that it maintains the
memory invariant while transforming fp0 into fpl x.

val run (fictree st a fp0 fpl) : NMST a st.mem st.evolves
(requires Am0 — st.interp (st.inv m0 * fp0) m0)
(ensures AmO x m1 — st.interp (st.inv m1 x fpl x) m1)

As before, we proceed by first defining a single-step interpreter, and then closing
it transitively to build a general recursive, multi-step interpreter. The single-step
interpreter has the following type, returning (as in Section 6.1) the reduced computation
tree packaged with all its indices.

type reduct a = | Reduct: fp0:  — fpl: — ctree st a fp0 fpl — reduct a

val step (f:ctree st a fp0 fpl) : NMST (reduct a) st.mem st.evolves
(requires Am0 — st.interp (st.inv m0 * fp0) m0)
(ensures AmO (Reduct fp0’ fp1’ ) ml —
st.interp (st.inv ml * fp0’) m1 A
preserves frame fp0 fp0’ m0 m1 A
fpl’ “stronger than fpl)

In addition to requiring and ensuring the invariant and footprint assertions, we have
additional inductive invariants that are needed to take multiple steps. As is typical
in such proofs, one needs to show that, given a term in a context E|c|, reducing c by
a single step produces ¢’ that can be correctly typed within the same context, i.e.,
E|c’| must be well-typed. Towards this end, we need two main properties of step: (a)
preserves frame, defined in Section 6.2.1, ensures that the reduct ¢’ can be framed with
any frame used with the redex c; and (b) that the postcondition fp1’ of the reduct ¢’ is
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stronger than the postcondition fpl of the redex c. Interestingly, we do not explicitly
need to show that the precondition of the reduct is weaker than the precondition of the
redex: that the initial footprint of the reduct holds in m1 is enough.

We show all the main cases of the single-step reduction next. In all cases, the code
is typechecked as shown, with proofs semi-automated by F*’s SMT solving backend.

Framing. The code below shows stepping through applications of the Frame c0 f
rule. When c0 is a Ret node, we remove the Frame node and restore the derivation by
extending the footprint of the Ret node to include the frame f—this is one reason why
it is convenient to have Ret nodes with parametric footprints, rather than just emp.

let rec step (c:ctree st a fp0 fpl) = match c with

| Frame (Ret fp0’ x) f — Reduct (fp0’ x * f) (A x —fp0’ x * f) (Ret (A x —fp0’ x * f) x)
| Frame c0 f —

let mO = get () in

let Reduct fp0’ fpl’ ¢’ = step c0 in

let m1 = get () in

preserves frame star fp0 fp0’ m0 m1 f;

Reduct (fp0’ * f) (A x —fpl’ x * f) (Frame ¢’ f)

When c0 is not a Ret, we recursively evaluate a step within c0, and then recon-
struct a Frame around its reduct ¢’. This proof step makes use of a key lemma,
preserves frame star, which states that frame preservation still holds in a larger context,
i.e., preserves frame fp0 fp0’ m0 m1 = preserves_frame (fp0 * f) (fp0’ * f) m0 m1)

Subsumption. Reduction of the other structural rule, Sub, is simpler, we just remove
the Sub node, as shown below; the refinement sub ok on the ¢ argument of the Sub
node allows F* to prove the inductive invariants of step. Although we remove Sub nodes,
the rule for sequential composition (next) adds them back to ensure that the reduct
remains typeable in the context. An alternative may have been to treat Sub like we
treat Frame, however, this form is more convenient when adding support for implicit
dynamic frames, as described in Section 6.2.4.

| Sub ¢ — Reduct fp0’ fpl’ ¢

Sequential Composition. In case f is fully reduced to a Ret node, we simply apply
the continuation g. Otherwise, we take a step in f producing a reduct f that may have a
stronger final footprint. To reconstruct the Bind node, we need to strengthen the initial
footprint of g with the final footprint of f', we do so by wrapping g with a Sub. Note
that the postcondition fpl’ “stronger than"fpl of the single-step interpreter ensures that
the refinement sub ok in the Sub node holds.
| Bind (Ret fp0 x) g — Reduct (fp0 x) fp2 (g x)
| Bind f g —
let Reduct fp0’ fpl’ £ = step f in
Reduct fp0’ fp2 (Bind f* (Sub #fpl # #fpl’ # g))
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Parallel Composition. The structure of reducing Par nodes is essentially the same
as in Section 6.1. When both branches are Ret nodes, we simply create a reduct with a
Ret node capturing the two values.

| Par (Ret fpOL xL) (Ret fpOR xR) —
Reduct (fpOL xL * fpOR xR) (A (xL, xR) — fpOL xL = fpOR xR)
(Ret (A (xL, xR) — fpOL xL * fpOR xR) (xL, xR))
| Par cL cR —
if sample() then
let m0 = get () in
let Reduct fpOL’ fplL’ cL’ = step cL in
let m1 = get () in
preserves frame star fpOL fpOL’ mO m1 fpOR;
Reduct (fpOL’ * fpOR) (A (xL, xR) — fp1L’ xL * fpIR xR) (Par cL’ cR)
else ... (x similarly for the right branch )

When only one of the two branches is Ret, we descend into the other one (we
clide these cases from the presentation). When both the branches are candidates for
reduction, we sample a boolean, and pick either the left or the right branch to descend
into. Having obtained a reduct, we reconstruct the Par node, by appropriately framing
the initial footprint of the unreduced branch, as shown above.

Atomic Actions. An Act e node is reduced by applying it, and returning its result
in a Ret node.

| Act e —let x = e () in Reduct (fpl x) fpl (Ret fpl x)

Multi-Step Interpreter. Once we defined a single-step interpreter, implementing
a general recursive, multi-step interpreter is straightforward: we recursively evaluate
single steps until we reach a Ret node. The type of the interpreter, shown below, is the
main statement of partial correctness for our program logic.

let rec run (f:ctree st a fp0 fpl) : NMST a st.mem st.evolves
(requires Am0 — st.interp (st.inv m0 * fp0) mO)
(ensures Am0 x m1 — st.interp (st.inv m1 % fpl x) m1)
= match f with
| Ret  x —x
| —let Reduct  f = stepfinrunf

The type states that when run in an initial state m0 satisfying the memory invariant
st.inv m0 and separately the footprint assertion fp0, the code either diverges or returns
x:a in a final state ml with the invariant st.inv m1, and the footprint assertion fpl x.
The inductive stronger than invariant about the step function providing a stronger
postcondition is crucial to the proof here: the recursive call to run ensures the validity
of the post-footprint of f in the final memory, we need the inductive invariant to relate
it to the post-footprint of f, as required by the postcondition of run.
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6.2.4 Implicit Dynamic Frames

While we have presented the action trees, and hence the CSL semantics, using only
the slprop indices, our actual implementation also contains two further indices for
specifications in the style of implicit dynamic frames (Smans et al. 2012). In our
representation type, ctree idf st a fp0 fpl req ens, the last two indices req and ens indicate
the pre- and postcondition of a computation, where the precondition is a fp0-dependent
predicate on the initial memory, and the postcondition is a two-state predicate that is fp0-
dependent on the initial memory and fpl-dependent on the final one. The dependency
relation, formally defined below, captures the requirement that the predicates are
“self-framing” (Parkinson and Summers 2012), i.e., the slprop footprint indices fp0 and
fpl limit the parts of the memory that these predicates can depend on.

let fpmem (fp0:st.slprop) = m:st.mem{st.interp fp0 m}

let fp_prop (fp0:st.slprop) = (q:st.mem — prop){
V(mO:fpmem fp0) (m1:st.mem{st.disjoint m0 m1}). ¢ m0 <= q (st.join m0 m1)}

let fp_prop 2 (fpO:st.slprop) (fpl:a — st.slprop) = (q:st.mem —a — st.mem — prop){
(+ We can join any disjoint memory to the pre—memory and q is still valid x)
(V (x:a) (m_pre:fpmem fp0) (m _post:st.mem) (m1l:st.mem{st.disjoint m pre m1}).
gm_prexm_post < q (join m_pre ml) x m_post) A
(* We can join any disjoint memory to the post—memory and q is still valid x)
(V (x:a) (m_pre:st.mem) (m_post:fpmem (fpl x)) (ml:st. mem{st.disjoint m _post m1}).
gm_prexm_post <= gqm_prex (join m_post ml))
}

type ctree idf st a (fp0:st.slprop) (fpl:st.slprop) (req:fp_prop fp0) (ens:fp _prop 2 fp0 fpl) =

In addition to these indices, we also add frameable memory predicates to the Frame
and Par rule. For example, the following is the Frame rule in our implementation:

| Frame: c:ctree idf st a fp0 fpl req ens — f:st.slprop — p:fp__prop f —
ctree_idf st a (fp0 * f) (A x —fpl x x f) (frame_req req p) (frame_ens ens p)

with
let frame _reqreqp = Am —regqm Ap m

let frame _ens ens p = Am0 x m1 —ens m0 x m1 A p ml

Finally, our soundness theorem, i.e., the specification of the run function, requires
the precondition (req) of the computation, and ensures its postcondition (ens). To prove
this theorem, we have to enhance the inductive invariant of the step function to also
mention weakening of the preconditions and strengthening of the postconditions.

Incorporating both the slprop indices and implicit dynamic frame-style requires- and
ensures-indices enables more flexibility in writing program specifications. We will make
good use of this feature in Chapter 8, when implementing a variety of libraries in Steel.
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Discussion. [t is worth noting that, although we have built a definitional interpreter
with an interleaving semantics for concurrent programs, we do not intend to run
programs using run, since it would be very inefficient, primarily because the interleaving
semantics is encoded via sampling, but also because the representation contains a full
proof tree, including the structural rules Frame and Sub. Instead, relying on F*’s support
for extraction to OCaml and C, we intend to compile effectful, concurrent programs to
native concurrency in the target platforms, e.g., POSIX threads. As such, the main
value of run is its proof of soundness: we now have in hand a semantics for concurrent
programs, and a means to reason about them deductively using a concurrent separation
logic. We have built our semantics atop the effect of monotonic state, parameterizing
our semantics with a preorder governing how the state evolves. So far, this preorder
has not played much of a role. For the payoff, we will have to wait until we instantiate
the state interface, next.

6.3 The SteelCore Program Logic

The core semantics developed in the previous section provides a soundness proof for a
generic, minimalistic concurrent separation logic. In this section, we instantiate the
semantics with a model of state, assertions, invariants, and actions defining the logic
for Steel programs.

The logic includes the following main features:

e A core heap model addressed by typed references with explicit, manually managed
lifetimes.

e Each heap cell stores a value in a user-chosen, cell-specific partial commutative
monoid, supporting various forms of sharing disciplines and stateful invariants,
including, e.g., a discipline of fractional permissions (Boyland 2003), for sharing
among multiple threads.

e A separation logic, with all the usual connectives.
e Ghost state and ghost actions, relying on F*’s existing support for erasure.

e A model of atomic actions, including safe composition of ghost and concrete
actions.

e Invariants, that can be dynamically allocated and freely shared among multiple
threads and accessed and restored by atomic actions only.

e Monotonic references controlling the evolution of memory, built using preorders
from the underlying monotonic state effect.

The result is a full-featured separation logic shallowly embedded in F*, with a fully
mechanized soundness proof, and applicable directly to dependently typed, higher order,
effectful host language programs.
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6.3.1 Memory

At the heart of our state model is a representation of memory, as outlined in the type
below.

let addr = nat

let heap = addr — option cell

type mem = { heap:heap; ctr:nat; istore:istore }

let mem _inv m : slprop = (V i.i > m.ctr => m.heap i == None) A istore_inv m

let mem _evolves my m; =
h_evolves mg.heap mj.heap Ai_evolves mg.istore my.istore A mg.ctr < my.ctr

A heap is a map from abstract addresses (represented as natural numbers) to
heap cells defined below.! A memory augments a heap with two important fields of
metadata. First, we have a counter to provide fresh addresses for allocation, with
an invariant guaranteeing that all addresses above ctr are unused. Second, we have
an istore for tracking dynamically allocated invariants. Actions maintain a memory
invariant mem _inv and the memory is constrained to evolve according to the preorder
mem _evolves. We discuss these elements in detail throughout this section.

For the definition of heap cells, we make use of partial commutative monoids (PCMs).
Using PCMs to represent state is typical in the literature: starting at least with the
work of Jensen and Birkedal (2012), PCMs have been used to encode a rich variety of
specifications, ranging from various kinds of sharing disciplines, fictional separation, and
also various forms of state machines. We represent PCMs as the typeclass pcm a shown
below, where we account for partiality by restricting the domain of op by a predicate
composable. We write =<, for the partial order induced by p:pcm a.

type pcm (a:Type) = {
one:a;
composable: a —a — prop {sym composable};
op: x:a — y:a{composable x y} —a { comm op A assoc op A is_unit op one }

}
let (Xp) (xy:a) = Iframe. p.op x frame ==y

type cell = | Cell: a:Type — p:pcm a —v:a — cell

A cell is a triple of a type a, an instance of the typeclass of partial commutative
monoids (pcm a), and a value of that type.>

In our F* sources, we define heap as the type addr ~— option cell, the type of functions for
which the functional extensionality axiom is admissible in F*; we gloss over this technicality in our
presentation here.

20n universes and higher order stores: We define our memory model universe-polymorphically, so
that it can store values in higher universes, e.g., values at existential types. However, the cell type
resides in a universe one greater than the type it contains. By extension, heap is in the same universe
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With this representation of heap, it is relatively straightforward to define two
functions, disjoint and join, which we use to separate and combine disjoint memories.
For an address that appears in both heaps, we require the cells at that address to agree
on the type, the PCM instance, and for the values to be composable in the PCM.

let disjoint _addr (h h’:heap) (a:addr) = match h a, h’ a with
| Some (Cell t p v), Some (Cell t’ p’ v') — t==t" A p==p’ A p.composable v v’
| =T

let disjoint hO hl = Va. disjoint_addr h0O h1 a

let join (hO:heap) (h1l:heap{disjoint h0 h1}) = Aa — match h0 a, h1 a with
| None, None — None
| None, Some x | Some x, None — Some x
| Some (Cell t p vO), Some (Cell ~ v1) —Some (Cell t p (p.op vO v1))

6.3.2 Separation Logic Propositions

We define the type slprop of separation logic propositions as the type of heap propositions
p that are preserved under disjoint extension. We emphasize that slprops are affine
heap propositions, rather than mem propositions—the non-heap fields in a memory
are meant for internal bookkeeping and (intentionally) cannot be described by slprops.
We use interp to apply an slprop to the heap within a memory. Further, being heap
predicates, slprops reside in the same universe as heap. As such, slprops cannot themselves
be stored in the heap, although doing so is sometimes convenient for encoding various
forms of higher-order ghost state (Jung et al. 2016)—this is the main limitation of our
model. However, since Steel is embedded within F*, one can sometimes work around
this restriction by adopting various dependently typed programming tricks, e.g., rather
than storing slprops in the heap, one might instead store codes for a suitably small
sub-language of slprops instead, and work with interpretations of these codes.

Supporting higher-order ghost state in its generality is notoriously tricky and can
often lead to inconsistencies (Jung et al. 2016; Krebbers et al. 2017a): circularities
often arise when one can store memory predicates in the memory itself. However,
the SteelCore semantics is careful to not allow storing heap predicates in the heap
itself—this would be circular and run afoul of F*’s universe discipline. To be specific,
from Section 6.3.1, notice that the memory contains a heap and an istore, and the istore
stores heap predicates, not the heap itself. That said, SteelCore’s soundness is based on
the model of monotonic state propsed by Ahman et al. (2018), and this model does not
include a treatment of F*’s universes. As such, to close a gap in our model, we would
at least need to extend the monotonic state model to account for universes.

let slprop = p:(heap — prop) { ¥(hO h1: heap). p hO A disjoint h0 h1 = p (join hO h1) }

let interp (p:slprop) (m:mem) = p m.heap

as its cells. As a result, although heaps and heap-manipulating total functions cannot be stored in
cells, functions in F* that include the effect of divergence are always in universe 0 and can be stored in
the heap, i.e., this model is adequate for partial correctness of programs with higher order stores.
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We define several basic connectives for slprop, as shown below. The existential
and universal quantifiers, slex and slall support quantification over terms in arbitrary
universes, including quantification over slprops themselves.

let slstar p1 p2 h = 3h1 h2. hl “disjoint™ h2 A h == join h1 h2 A p1 h1 A p2 h2
let slwand pl p2 h = Vh1. h “disjoint™ hl1 A pl h1 = p2 (join h hl)

let slempph =T

let sland pl p2 h = pl h Ap2h

let slor pl p2 h =pl h Vv p2h

let slex ph = 3Ix. px h

let slall ph = Vx. pxh

This interpretation also induces a natural equivalence relation on slprop, i.e., p ~ q if
and only if (Vm. interp p m <= interp q m), corresponding to the extensional equivalence
of heap predicates. It is easy to prove that slstar and slemp form a (total) commutative
monoid with respect to ~.

We also define the atomic points-to assertion on references as follows:

let ref (a:Type) (p:pcm a) = addr

let pts_to (r:ref a p) (v:a) (h:heap) = match h r with
| Some (Refa’ p'v) a==a"Ap==p Av =,V
| —1

val pts_to compatible (r:ref a p) (vO vl:a) (m:mem) : Lemma
(interp (pts_to r vO xpts_torvl) m <
(p.composable vO v1 A interp (pts_to x (p.op vO v1)) m))

A reference is represented by its address in the heap, and pts to r v asserts partial
knowledge of the contents of the reference r, i.e., that r contains some value v’ compatible
with v according to the PCM p associated with r. The pts_to compatible lemma relates
the separating conjunction to composition in the underlying PCM. We will see in
Section 6.3.5 how to choose specific PCMs to model fractional permissions and monotonic
references.

We now have most of what we need to instantiate the state interface of our semantics—
two key ingredients, the memory invariant and preorder, will be presented in detail in
the next subsections. Foreshadowing their presentation, our state instantiation is:

let st : state = {

mem — mem; slprop = slprop; equals = ~;
emp = slemp; star = slstar; interp = interp;
inv = mem_inv; (* cf. Section 6.3.3 x)

evolves = mem__evolves (+ cf. Sections 6.3.4, 6.3.5 %) }
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Actions on PCM-Indexed References. Given this instantiation, one can define
several basic actions, such as the following primitives on references. Building on these
generic primitives, we implement libraries for several more common use cases, including
references with fractional permissions and monotonic references.

To allocate a reference, one presents both a value and a PCM to use for that reference
val alloc (p:pcm a) (v:a) : action (ref a p) emp (A r —pts_torv)

Reading a reference with (!) returns a value compatible with the caller’s partial
knowledge.
val (1) (r:ref a p) (v:erased a) : action (x:a{v <, x}) (pts_torv) (A _ —pts_torv)

Mutating a reference r requires the new value v to be compatible with all frames

compatible with the caller’s partial knowledge of r, that is, the update must be frame-
preserving.

let frame preserving (x y:a) = Vf. p.composable f x = p.composable fy A p.op fy ==

val (:=) (r:ref a p) (vO:erased a) (v:a{frame_preserving v0 v})
: action unit (pts_torv0) (A —pts torv)

Finally, to de-allocate a reference the caller must possess exclusive non-trivial knowledge
of it.

let exclusive (v:erased a) = Vframe. p.composable frame vO = frame==p.one
val free (r:ref a p) (vO:erased a{exclusive v0}): action unit (pts_torv) (A _ —emp)

In what follows, we overload the use of F*’s existing connectives 3, V, A, V for use
with slprop. We write emp for slemp; * and —« for slstar and slwand. Borrowing F*’s
notation for refinement types, we also write h:p{f} for sland p (Ah —f) and pure p for

_semp{p}.
6.3.3 Introducing Invariants: Preorders and the istore

Beyond the traditional separation logic assertions, it is useful to also support a notion
of invariant that allows a non-duplicable slprop to be shared among multiple threads.
For some basic intuition, it is instructive to look at the design of invariants in Iris—we
reproduce, below, three (slightly simplified) rules presented by Jung et al. (2018).

(1) P=¢ (2) persistent <>

{pPxQ} e {pPxR}., atomicle) NCE
(i) « (i n ),

The first rule states that, at any point, one can turn a resource assertion P into an
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nvariant . An invariant is associated with a name, N—we shall see its significance
in Section 6.3.4.

The second rule states that an invariant is persistent, which implies it is duplicable:

ie., - * . Thus, by turning a resource assertion P into an invariant,

one can share the invariant among multiple threads, frame it across other computations,
etc.

The final rule shows how an invariant can be used. This rule is quite technical,
but intuitively, it states that an atomic command e can assume the resource assertion

P associated with an invariant , so long as it also restores P after executing
(atomically). Some of the technicality in the rule has to do with impredicativity and

step indexing. In Iris, is a proposition in the logic like any other, and Iris allows
quantification over all such propositions, including invariants themselves. This is very
powerful, but it also necessitates the use of step indexing, i.e., the “later” modality >P
in the premise of the rule. For SteelCore, we seek to model invariants of a similar flavor,
but while remaining in our predicative setting—our use of the monotonic state effect
will give us a way.

Invariants in SteelCore. To allocate an invariant, we provide an action with the
signature below:

val new _invariant (p:slprop) : action (inv p) p (A _ —emp)

Recall the action type from Section 6.2.1. The type above states that given possession
of p, new invariant consumes p, providing only emp, but importantly, returning a value
of type inv p: our representation of an invariant—new invariant models Iris’ update
modality to allocate an invariant, i.e., the first of the three rules above. Being a value,
inv p is freely duplicable, like any other value in F*—mimicking Iris’ rule of persistence
of invariants.

Finally, sketching (imprecisely) what we develop in detail in Section 6.3.4, we provide
a combinator below that is the analog of Iris’ rule for eliminating and restoring invariants
in atomic commands—an atomic command that expects p *q and provides p *r can be
turned into a command that only expects q and provides r, as long as an inv p value
can be presented as evidence that p is an invariant.

val with _invariant (i:inv p) (e:atomic a (p *q) (p *r)) : atomicaq r

Representing Invariants. We will use the istore component of a mem to keep track
of invariants allocated with new invariant: an istore is a list of slprops and the name
associated with an invariant is its position in the list. The invariant of the istore (included
in inv, which, recall from Section 6.2, is expected and preserved by every step of the
semantics) requires every invariant in the istore to be satisfied separately. The i _evolves
preorder (part of the mem evolves preorder shown in Section 6.3.1) states that when
the memory evolves, the istore only grows. The predicate inv_for p i p m states that the
invariant name i is associated with p in the memory m—its stable form, i~~p, makes
use of the witnessed connective used with the MST monotonic state effect. i~»p is the
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SteelCore equivalent of , i.e., the name i is always associated with invariant p. Since
i~>p is just a prop, it is naturally duplicable. It is also convenient to treat invariants as
a value type, inv p—which corresponds to an invariant name i refined to be associated
with p.

let istore = list slprop

let istore _inv (i:istore) : slprop = List.fold _right (*) emp i

let inv_name = nat

let i _evolves is0 is1 = V(i:inv_name). List.nth i isO == None V List.nth i is0 == List.nth i isl
let inv_for_p (i:zinv_name) (p:slprop) (m:mem) = Some p == List.nth i m.istore

let (~) i p = witnessed (inv_for pip)

let inv (p:slprop) = i:inv_name{i~p}

Now, to define the new invariant p action, we simply extend the istore, witness that
p is now an invariant, and return the address of the newly allocated invariant.

let new _invariant (p:slprop) : action (inv p) p (A _ —emp) = A\() —
let m = get () in
put ({m with istore=m.istore@|p|});
let i = List.length m.istore in
witness (inv_for pip);
|

With these definitions in place, we have all we need to instantiate the state interface
of the semantics, using for each of its fields (mem, slprop, evolves, etc.) the definitions
shown here.

6.3.4 Using Invariants in Atomic Commands

We have seen how to allocate duplicable invariants, i.e., the analog of the first two rules
for manipulating invariants in Iris. What remains is the third rule that allows invariants
to be used in atomic commands.

For starters, this requires carving out a subset of computations that are deemed
to be atomic, i.e., we need a way to express something like the premise atomic(e) from
the Iris rule. However, observe that our semantics from Section 6.2 already provides
a notion of atomicity: individual actions in Act nodes are run to completion without
any interference from other threads. Specific actions in our memory model can be
marked as atomic, depending on the particular architecture being modeled. For example,
one might include a primitive, atomic compare-and-swap action, while other primitive
actions like reading, writing, or allocating references may or may not be atomic. Further,
some actions can be marked as ghost, and sequences of such commands may also be
considered atomic, since they are never actually executed concretely.
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Next, we need a way to determine which invariants are currently “opened” by an
atomic command. Recursively opening the same invariant inv p is clearly unsound since,
although inv p is duplicable, p itself need not be.

Finally, to fully recover Iris’ atomic actions rule, we also need to model the later
modality . As we will see, the witnessed modality provided by the monotonic state
effect serves that purpose well.

The Type of Atomic Actions. The type atomic a uses is_ghost p q is a refinement
of the type of actions, action a p g, presented in Section 6.2.1. The first additional
index, uses, indicates the set of opened invariants—in particular, an atomic action
can only assume and preserve the invariants not included in uses, as shown in the
definition of istore inv’. The second index, is ghost, is a tag that indicates whether or
not this command is a ghost action. The atomic type represents an effectful operation,
and uses a total sub-effect NMSTTot of the effects of nondeterminism and monotonic
state—by choosing a total sub-effect, we avoid pitfalls of infinitely opening invariants or
introducing divergence in ghost computations. As such, due to the restriction to total
computations, the type atomic a {} b p q is a subtype of the action a p q type defined in
the semantics.

let istore inv’ uses ps = List.fold right i (A piq —if i € uses then q else p xq) ps emp
let inv’ uses m = ... m.ctr ... Aistore_inv’ uses m.istore

let atomic (a:Type) (uses:set inv_name) (is_ghost:bool) (p:slprop) (q: a — slprop) =
unit = NMSTTot a mem mem _evolves
(requires Am — interp (inv’ uses m *p) m)
(ensures Am0 x m1 — interp (inv’ uses ml xq x) ml A
preserves frame p (q x) m0 m1)

Foreshadowing a full presentation of the Steel language in Chapter 7, we will treat
the atomic type as a user-defined abstract effect in F*, and insist on at most one non-
ghost action in a sequential composition, as shown by the signature of bind atomic
below.

val bind _atomic #a #b #u #p #q #r #gl (#g2:bool{gl || g2})
(el:atomic a u gl p q) (e2: (x:a — atomic b u g2 (q x) r)) : atomic b uses (gl && g2) p r

Opening and Closing an Invariant. The last piece of the puzzle is the with _invariant
construct, whose signature is shown below. Given an atomic command e that uses the
invariant i:inv p to gain and restore p, e can be turned into an atomic command that no
longer uses i, and whose use of p is no longer revealed in its specification.

val with_invariant (i:inv p) (e:atomica (iw u) g (p *q) (Ax —p *rx)) : atomicaugqr

Finally, given a value of type e : atomic a {} g p q, we can always apply subtyping to
promote it to e : action a p q, and then turn it into a computation Act e : ctree a p q.
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See Ya, Later. The with invariant rule above does not have Iris’ later modality, yet
the later modality is essential for soundness in Iris and in other logics (Dodds et al. 2016)
that support stored propositions. Paraphrasing Jung et al. (2018), a logic that supports
allocating persistent propositions, together with a deduction rule for the injectivity of
stored propositions of the form i ~»p *i ~»q I (p <= q) is inconsistent—the conclusion
of the rule must be guarded under a later, i.e., it should be >(p <> q).

Although it may not be immediately evident, the model of monotonic state pro-
posed by Ahman et al. (2018) also has a “later” modality in disguise. In this model,
witnessed | I/ L: instead, an explicit step of computation via the recall action is nec-
essary to extract a contradiction from witnessed L. As such, i ~p xi~qF (p & q) is
not derivable in SteelCore, although, with a step of computation, the Hoare triple
{i ~p *i~q} recalli { p <= q } is. In summary, the effect of monotonic state provides
a way to account for the necessary step indexing without making it explicit in the logic.

The Update Modality and Ghost Actions. As a final remark, allocating an
invariant in Iris is done using its update modality, =¢. Besides allocating invariants,
updates in Iris are also used to transform ghost state. In SteelCore, rather than including
such a modality within the logic, we rely on F*’s existing support for erased types to
model ghost state and updates within Hoare triples, rather than within the logic itself.?
For instance, the following action represents a ghost read: it dereferences x, returning
its contents only as an erased a.

val ghost read (x:ref a p) : atomic (erased a) u true (3 v. pts_torv) (A v —pts_torv)

6.3.5 Fractional Permissions and Monotonic References

Several prior works have provided PCM-based constructions, both to capture various
sharing idioms as well as to define state machines that constrain how the state is
permitted to evolve. In this section, we show how to use PCMs to encode the preorder-
indexed monotonic references proposed by Ahman et al. (2018). We start, however,
with a simpler construction of references with fractional permissions, a construction we
reuse for monotonic references.

References with Fractional Permissions. To model references to t-typed values
with fractional permissions, we store at each cell a value of type frac t with a PCM
pcm _frac shown below—the composable predicate allows us to use undecidable relations
like propositional equality in our notion of partiality.

let frac t = option (t & r:real{0.0 < r})

let frac__composable (fO fl:frac t) = match f0, f1 with
| Some (vO0, r0), Some(vl, r1) —v0==vl A r0+rl < 1.0
| =T

3Tris also internalizes Hoare triples, but in SteelCore, we rely on the computation types of the host
language to express Hoare triples outside the logic.
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let frac_op (f0 fl:fract t) = match f0, f1 with
| None, f | f, None —f
| Some (v, r0), Some(_, r1) — Some(v, r0 + r1))

let pcm_frac : pcm (frac t) = {
one = None;
composable = frac_ composable;
op = frac_op;

}

Specializing the type of references and the points-to assertion for use with pcm frac,
we recover the traditional injective points-to assertion on references, and a lemma that
relates the separating conjunction in slprop to composition in pcm_frac.

let ref t = ref (frac t) pcm_frac
let (—¢) rv = pts_to r (Some (v, f)) xpure (f < 1.0)

val share gather (r:ref t) (f g:real) (u v:t)
:Lemma ((r =y u*ri=sgv) ~rip g ukpure (u==v))

Monotonic References. Whereas we have used preorders and monotonic state
within our memory model to support the dynamic allocation of invariants, we now
aim to expose preorders to describe state transitions on individual references, in the
style of Ahman et al.’s references. Pleasently, we find that our PCM-based memory
model layered above the monotonic state effect can precisely capture Ahman et al.’s
construction in a generic manner.

Our goal is to provide the following interface on an abstract type mref a p of references
indexed by a preorder. The main point of interest is the signature of write, which requires
proving that the new value v is related to the old value by the preorder p.

val mref (a:Type) (p:preorder a) : Type

val (—=¢) (x:mref a p) (v:a) : slprop

val read (r:mref a p) (v0:erased a) : action a (r —=¢ v0) (A v —=r —¢ v)

val write (r:mref a p) (vO:erased a) (v:a{p v0 v}) : action unit (r —19 v0) (A —r+——109 V)
val observed (r:mref a p) (q:a — prop) : prop

val witness _mref (r:mref a p) (q:stable prop p) (v:erased a{q v})
: action unit (pts_torfv) (A _ —pts_torfv xpure (observed r q))

val recall _mref (r:mref a p) (q:stable_prop a p) (v:erased a)
: action unit (pts_to r f v xpure (observed r q) (A _ —pts_tor fv xpure (qv))
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In return for preserving the preorder at each update, we provide two new operations
to witness and recall properties that are invariant under the preorder. The operation
witness returns a pure, abstract predicate observed r q when the current value or r satisfies
a stable property q; and recall eliminates observed r q into q v, for v the current value
of r. These operations are the analogue of the MST actions witness and recall exposed
to SteelCore programs, but at the granularity of a single reference rather than the
entire state. For instance, one could define a monotonically increasing counter as
r: mref int (<), and having observed that r contains the value 17, one can recall later
that r’s value is at least 17.

From PCMs to Preorders. We observe that every PCM induces a preorder and,
dually, every preorder can be encoded as a PCM. To interpret a PCM as a preorder,
we take the infinite conjunction of all preorders refined by the frame preserving relation;
in other words, since all updates must be frame-preserving, we take the preorder of a
PCM to be the strongest preorder entailed by frame preservation.

let induces (p:pcm a) (q:preorder a) =
V(x y:a). frame_preserving p x y = (V (z:a). p.compatible x z = q z y)

let preorder of pcm (p:pcm a) : preorder a = Ax y — Vq. p “induces’ q = q xy

With this notion in hand, we can finally define the heap evolution relation (part
of the global memory preorder shown in Section 6.3.1) stating that (1) unused heap
cells can change arbitrarily; (2) used heap cells remain used; and, most importantly,
(3), the type and PCM associated with a ref cell does not change and its value evolves
according to the preorder of the PCM. In other words, heaps evolve by the pointwise
conjunction of the PCMs at each cell.

let h_evolves h0 hl = V(a:addr). match hO a, hl a with
| None, —T
| Some |, None — L
| Some (Ref a0 p0 v0), Some (Ref al pl vl) —
a0 == al A p0 == pl A preorder of pcm p0 v0 v1

From Preorders to PCMs. Conversely, to interpret a preorder q : preorder a as a
PCM, we define a PCM over hist q, the type of histories over a, i.e., sequences of a-values
where adjacent values are related by q, with composability demanding one history
to be an extension of the other; composition being history extension; and the unit
being the empty history. We show the main signature below, including a round-trip
property, guaranteeing that the PCM built by the construction induces the preorder
corresponding to extension of g-respecting histories.

val pcm_of preorder (qg:preorder a) : p:pcm (hist q) {p “induces™ history extension}

This construction enables constructing a PCM frac_hist ¢ to support the type
mref a q, combining fractional permissions with the hist ¢ PCM, with the property that
for any predicate f: a — prop stable with respect to q, its lifting lift f : hist ¢ — prop,
which applies to the most recent value in a history, is stable with respect to the preorder
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preorder of pcm (frac_hist q). As such, the underlying witness and recall operations of
the monotonic state effect suffice to provide a model for witness mref and recall _mref.

6.4 Summary

In this chapter, we have demonstrated how a full-fledged CSL can be embedded in
an effectful dependent type theory, relying on an underlying semantics of monotonic
state to model features that have otherwise required impredicative logics. While our
work draws inspiration from the Iris framework (Jung et al. 2018b), several significant
points of contrast stem from our differing goals. Iris is a powerful, impredicative logical
framework into which other logics and programming langauges can be embedded and
studied; in contrast, SteelCore instead aims to extend an existing proof assistant’s
programming language with an effect for concurrency, in order to reason about effectful,
dependently typed programs in a CSL. This allows us to keep the embedded logic
relatively simple, for instance not making use of step indexing or any of Iris’ several
modalities, while nevertheless recovering many lacking features in the logic using the
dependently typed facilities of F*. As a shallow embedding of CSL in a dependent
type theory, SteelCore also shares many similarities with FCSL (Nanevski et al. 2014;
Nanevski et al. 2019; Sergey et al. 2015), which is shallowly embedded in Coq and
relies on Coq’s abstraction facilities for some of its expressive power. FCSL’s logic,
similarly to ours but unlike Iris’, directly applies to Coq programs, rather than to
embedded programs. However, FCSL’s model is predicative; as such, it does not provide
a way to dynamically allocate an invariant, making it impossible to model certain kinds
of synchronization primitives. On the other hand, FCSL provides several constructs
for reasoning about concurrent programs mixing styles of reasoning from CSL with
rely-guarantee reasoning, something we have not explored much: our use of monotonic
references may play a role in this directly, particularly in connection with other related
work on rely-guarantee references (Gordon et al. 2013). With SteelCore, we thus provide
a foundation to implement and reason about complex, concurrent programs. In the
next chapter, we show how to use it as a building block to develop a higher-level
domain-specific language embedded in F*, aiming to provide automation facilities to
ease proofs of programs.



Chapter 7

Automating Separation Logic
Reasoning in Steel

In the previous chapter, we presented SteelCore, an impredicative, dependently typed
Concurrent Separation Logic (CSL) for partial-correctness proofs shallowly embedded
into F*. SteelCore provides many useful features to reason about concurrent programs,
including a user-defined partial commutative monoid (PCM)-based memory model,
atomic and ghost computations, and dynamically allocated invariants. Unfortunately,
it is far from being usable directly to build correct programs.

SteelCore’s action trees presented in Section 6.2 are inconvenient to use to write
programs. In particular, these action trees require users to manually insert Frame and
Sub nodes in their programs. Consider for instance the program presented in Figure 7.1,
which swaps the contents of two references, assuming a small surface syntax to make
programming with action trees more palatable. Calls to frame wrapping each action
combined with applications of the rule of consequence with commute star to rearrange
slprops overwhelm the program—the pain is perceptible.

let swap (#vl #v2:ghost int) (rl r2:ref int)
: SteelCore unit
(pts_to rl #vl x pts_to r2 #v2)
(A _ —pts_torl #v2 x pts_to r2 #vl)
= let x1 = frame (read rl) (pts_to r2 #v2) in
commute star (pts_to rl #vl) (pts_to r2 #v2);
let x2 = frame (read r2) (pts_to rl #vl) in
frame (write v2 x1) (pts_to rl #x2);
commute _star (pts_to r2 #x1) (pts_to rl #vl);
frame (write rl x2) (pts_to r2 #v2);

Figure 7.1: SteelCore implementation of swap

To tackle this issue, we propose in this chapter an embedded domain-specific
language (DSL) within F*, based on SteelCore. By designing this language with proofs
in mind, we cleanly isolate separation logic verification conditions from other verification
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conditions, and provide a custom decision procedure to automate the former while
relying on an SMT solver for the latter. This allows us to simplify the swap function
previously presented, yielding the implementation shown in Figure 7.2. The end result
is a verification framework, Steel, which integrates the expressive power of the SteelCore
logic within a higher-order, dependently typed programming language, with proof
automation approaching what is offered by SMT-based frameworks with first-order
program logics such as Dafny (Leino 2010), Chalice (Leino et al. 2009) or Viper (Miiller
et al. 2016), but with soundness ensured by construction upon the foundations of
SteelCore.

let swap (rl r2:ref int) : Steel unit
(ptr rl % ptr r2) (A _ — ptr rl % ptr r2)
(requires A —T)
(ensures As s’ —s'.|rl]=s.[r2] A s'.[r2|=s.[r1])
= let x1 = read rl in
let x2 = read r2 in
write r2 x1;
write rl x2

Figure 7.2: Steel implementation of swap

Freeing this swap program from framing requires several steps, which we summarize
next before presenting them in detail over the course of this chapter.

Quintuples: Selectively Separating Separation and First-Order Logic. We
develop a verification condition generator and hybrid tactic- and SMT-based solver
for a separation logic of quintuples whose main judgment involves a computation type
Steel a p q r's, where p, q are slprops as usual, but r, s are first-order logic encodeable
self-framing selector predicates that depend on the p-fragment of the initial memory
and g-fragment of the final memory, i.e., they are self-framing in the terminology
of Parkinson and Summers (2012). Proof obligations in our formulation are in two
classes: separation logic goals, relating the slprops in a judgment, and SMT encodeable
goals relating the selector predicates. This allows us to write efficient reflective tactics
that focus on the former, while the latter are encoded efficiently to SMT by F*, as
usual. In a style reminiscent of cooperating decision procedures proposed by Nelson
and Oppen (1979), we show how tactics and SMT share information through equalities
on uninterpreted symbols. Of course, proof obligations remain undecidable and what
automation we do provide is partial, but being embedded in F*, additional lemmas can
always be developed interactively.

A Type-and-Effect Directed Frame Rule. To control the placement of frames,
we model the application of the frame rule as an effect. In particular, we formulate
the system using a second related computation type that contains metavariables for an
unsolved frame introduced by an application of the frame rule. This allows us to build
a type-and-effect directed elaborator for Steel, inserting frames only at the leaves of a
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derivation, while proving that this strategy of leaf-framing is complete. Our approach
enables interactions among several fragments of Steel modeled in an effect hierarchy,
including atomic and ghost code.

Automating Frame Inference through AC-Matching. Automatically applying
the separation logic frame rule in the right places only solves half of the problem;
generated frames must also be inferred. We prove that our type-and-effect system
yields a unitriangular® system of constraints on the frame metavariables that can
be solved by associative-commutative (AC)-matching (Kapur and Narendran 1987).
Compared to standard AC-matching algorithms, we favor an incomplete but efficient
and predictable non-backtracking approach that only solves problems with unique
solutions, while accounting for equalities, theory reasoning, and existentially quantified
ghost variables—the interaction with theory reasoning is enabled by the quintuple
formulation.

Discussion. The Steel swap program presented in Figure 7.2 is perhaps close to what
one would expect in Chalice or Viper, but we emphasize that Steel is a shallow embedding
in dependently typed F* and the full SteelCore logic is available within Steel. So, while
Viper-style program proofs are possible and encouraged, richer, dependently typed
idioms are also possible and enjoy many of the same benefits, e.g., automated framing
and partial automation via SMT. Indeed, our approach seeks only to automate the
most mundane aspects of proofs, focusing primarily on framing. For the rest, including
introducing and eliminating quantifiers, rolling and unrolling recursive predicates,
writing invariants, and manipulating ghost state, the programmer can develop lemmas
in F*’s underlying type theory and invoke these lemmas at strategic points in their
code—Steel provides many generic building blocks for such lemmas. The result is a
style that Leino and Moskal (2010) have called auto-active verification, a mixture of
automated and interactive proof that has been successful in other languages, including
in other large F* developments, but now applied to SteelCore’s expressive CSL.

Contributions. All the work presented in this chapter was primarily mine, and was
first presented in Fromherz et al. (2021). The initial concept of a self-framing selector
was suggested by Denis Merigoux.

7.1 Verification Condition Generation for Separation
Logic: Overview

Like any separation logic, SteelCore has rules for framing, sequential composition, and
consequence, which we presented in the previous chapter. For presentation purposes,
we will consider in this section a simplified form of these rules, using combinators with
the following signatures:

IThe term is borrowed from linear algebra: a unitriangular matrix is a triangular matrix such that
all values on its main diagonal are 1.
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let stc a p g = unit — SteelCore a p q (* represents an action tree of type (m a p q) *)
val frame (_:stcapq):stca (pxf) (Ax —qx=*f)

val bind (_:stca; pq’) (_: (x:ay —stcas (9’ x)r)) :stcagpr

val conseq (_:stcap’q’) (_:squash (p —xp’ Aq’ —*q)) :stcapq

Our goal is to shallowly embed Steel as a DSL? in F*, whereby Steel user programs
are constructed by repeated applications of combinators like frame, bind and conseq. The
result is a program whose inferred type is a judgment in the SteelCore logic, subject
to verification conditions (VCs) that must be discharged, e.g., the second argument of
conseq, squash (p —xp’ A q’ —xq), is a proof obligation, where — is the separation logic
implication.

For this process to work, we need to make the elaboration of a Steel program into
the underlying combinator language algorithmic, resolving the inherent nondeterminism
in rules like Frame and Consequence by deciding the following: first, where exactly
should Frame and Consequence be applied; second, how should existentially bound
variables in the rules be chosen, notably the frame f; and, finally, how should the proof
obligations be discharged.

The standard approach to this problem is to define a form of weakest precondition
(WP) calculus for separation logic that strategically integrates the use of frame and
consequence into the other rules in the system. Starting with “backwards” rules
from Ishtiaq and O’Hearn (2001), weakest precondition readings of separation logic
have been customary. Hobor and Villard (2013) propose a ramified frame rule that
integrates the rule of consequence with framing, while Iris’ (Jung et al. 2018b) “Texan
triples” combine both ideas, integrating a form of ramified framing in the WP-Wand
rule of its WP calculus. In the setting of interactive proofs, Texan triples are convenient
in that every command is always specified with respect to a parametric postcondition,
enabling it to be easily applied to a framed and weakened (if necessary) postcondition.

Prior attempts at encoding separation logic in F* (Martinez et al. 2019) followed a
similar approach, whereby a Dijkstra monad (Swamy et al. 2013) for separation logic
computes weakest preconditions while automatically inserting frames around every
function call or primitive action. However, Martinez et al. (2019) have not scaled their
prototype to verify larger programs and we have, to date, failed to scale their WP-based
approach to a mostly-automated verifier for Steel.

The main difficulty is that a WP-calculus for separation logic computes a single
(often quite large) VC for a program in, naturally, separation logic. F* aims to encode
such VCs to an SMT solver. However, encoding a separation logic VC to an SMT solver
is non-trivial. SMT solvers like Z3 (Moura and Bjgrner 2008) do not handle separation
logic well, in part because slprops are equivalent up to Associativity-Commutativity (AC)
rewriting of *, and AC-rewriting is hard to automate in SMT. Besides, WP-based VCs
heavily use magic wand, and computing frames involves solving for existential quantifiers
over AC terms, which again is hard to automate in SMT. Viper (the underlying engine of

2A note on terminology: From one perspective, Steel is not domain-specific—it is a general-purpose,
Turing complete language, with many kinds of computational effects. But, from the perspective of
its host language F*, Steel is a domain-specific language for proof-oriented stateful and concurrent
programming.



7.2 A Type-and-Effect System for Separation Logic Quintuples 94

Chalice) does provide an SMT-encoding for a permission system with implicit dynamic
frames that is equivalent to a fragment of separation logic (Parkinson and Summers
2012); however, we do not have such an encoding for SteelCore’s more expressive
logic. While some other off-the-shelf solvers for various fragments of separation logic
exist (Brotherston et al. 2012; losif et al. 2014), using them for a logic like SteelCore’s
dependently typed, impredicative CSL is an open challenge.

Martinez et al. (2019) confront this problem and develop tactics to process a
separation logic VC computed by their Dijkstra monad, AC-rewriting terms and solving
for frame variables, and finally feeding a first-order logic goal to an SMT solver. However,
this scales poorly even on their simpler logic, with the verification time of a program
dominated by the tactic simply discovering fragments of a VC that involve non-trivial
separation logic reasoning, introducing existentially bound variables for frames, solving
them and rewriting the remainder of the VC iteratively.

Our solution over the next several sections addresses these difficulties by developing
a verification condition generator for quintuples, and automatically discharging the
computation of frames using a combination of AC-matching tactics and SMT solving,
while requiring the programmer to write invariants and to provide lemmas in the form
of imperative ghost procedures.

7.2 A Type-and-Effect System for Separation Logic
Quintuples

Our goal is to shallowly embed the SteelCore logic as a DSL for programming in F*’s
type theory. This involves exposing the proof rules of the logic as dependently typed
combinators and instructing F*’s typechecker to apply those combinators during type
inference and elaboration, coupling the program with a proof of its correctness. To
make this process algorithmic, we rely on F*’s user-defined effect system, which through
our encoding, provides the needed structure. Rather than focus on the syntactic details
of our encoding, we present a more abstract view of the elaboration problem and
our solution in standard mathematical notation, relating back to the specifics of F*
and SteelCore only when essential. In this section, we thus present our elaboration
and VC generation strategy as a small, idealized calculus. We transcribe the rules
omitting some side conditions (e.g., on the well-typedness of some terms) when they
add clutter—such conditions are all captured formally in our mechanization. As such,
these rules are implemented as combinators in F*’s effect system and mechanically
proven sound against SteelCore’s logic in F*.

7.2.1 Syntax

Figure 7.3 presents the syntax of a subset of the internal, desugared, monadic language
of Steel in F*. Our implementation supports the full F* language, including full
dependent types, inductive types, pattern matching, recursive definitions, local let
bindings, universes, implicit arguments, a module system, typeclasses, etc. This is the
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constant T
term e,t

unit | () | Type | prop | vprop | ...

x| T | xit.e|eex| x:it — C|rete]|bind e z.eq
ep % exler = ex|ler A oey|Vre| ...

Tott[{ P[R}yt{Q]S}

val f(z:t) : C = e

computation type C
program d

Figure 7.3: Simplified syntax for Steel

advantage of a shallow embedding: Steel inherits the full type system of F*. For the
purpose of our minimalistic presentation, the main constructs of interest are vprops and
computation types, which we describe next.

What is a vprop? A vprop is a typeclass that extends the slprops presented in Chapter 6.
A vprop encapsulates two things: an interpretation as a separation logic proposition
(inherited from the underlying slprops), and a self-framing memory representation called
a selector. Specifically, it supports the following operations:

e An interpretation, defined as an affine predicate on memories, namely, a func-
tion interp (_:vprop) : mem — prop which satisfies the following affinity property
interp p m A disjoint m m’ = interp p (join m m’). Similarly to Section 6.2.4, we
write fpmem (p:vprop) for a memory validating p, i.e., m:mem { interp p m }.

e A selector type, type of (p:vprop) : Type

e A selector, sel (p:vprop) (m:fpmem p) : type of p, with the property that sel de-
pends only on the p fragment of m, i.e., mimicking predicates from Section 6.2.4,
(V(mO:fpmem p) m1. disjoint m0 m1 = sel p m0 = sel p (join m0 m1)).

e vprops inherit all the usual connectives from slprops, including * , = , A, V, V,
J etc. We observe that the selectors provide a form of linear logic over memory
fragments as resources. For instance, the selector type for p * q corresponds to a
linear pair type of p * type of q, while the selector type for p —xq is a map from
memories validating the p x (p —xq) to the type of q. However, we do not yet
exploit this connection deeply, except to build typeclass instances for * and —x
and to derive the double implication p ** q, a bidirectional coercion on selectors.

It is trivial to give a degenerate selector for any vprop, simply by picking the selector
type to be unit. But, more interesting instances can be provided by the programmer
depending on their needs. For example, given a reference r:ref a, the interpretation
of ptrr: vprop could be that r is present in a given memory; type of (ptrr) = a, and
sel (ptr r) m : a could return the value of the reference r in m.

Computation Types. The type Tot t is the standard F* type of total computations
and is not particularly interesting. The main computation type is the quintuple
{P|R}zt{Q|S }, where
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Figure 7.4: Core rules of Steel’s type and effect system

e P : vprop is a separation logic precondition

R : fppred P, where R is a predicate on P’s selector, i.e., fppred p = type of p — prop,
where the predicate is applied to sel p on the underlying memory.

e x :t binds the name x to the t-typed return value of the computation.
e Q : vprop is a postcondition, with x:t in scope.

S : fppost P Q is an additional postcondition, relating the selector of P in the
initial memory, to the result and the selector of Q in the final memory, i.e.,
fppost (p:vprop) (q:vprop) = type of p —type of q — prop. It also has x:t in scope.

With its encoding of implicit dynamic frames, SteelCore’s logic also provides support
for a form of quintuples, but with one major difference: instead of operating on selectors,
SteelCore uses memory predicates with proof obligations that they are self-framing, i.e.,
that they depend only on the appropriate part of memory. Proving that a memory
predicate is self-framing can be tedious, and doing so for each specification significantly
hampers the usability of SteelCore’s quintuples. In contrast, the abstraction provided
by Steel’s quintuples with selectors frees the user from proof-obligations on the framing

of memory predicates, while also being proven sound in the model of SteelCore’s “raw”
quintuples—proof-oriented programming at work!
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7.2.2 VC Generation for Steel

Figure 7.4 presents selected rules for typechecking Steel programs. There are 3 main
ideas in the structure of the rules.

First, there are two kinds of judgments, - and Fr. The F judgment applies to
terms on which no top-level occurence of framing has been applied. Dually, the Fp
judgment marks terms that have been framed. We use this modality to ensure that
frames are applied at the leaves, to effectful function calls only, and nowhere else. The
application of framing introduces metavariables to be solved and introduces equalities
among framed selector terms.

Second, the rule of consequence together with a form of framing is folded into
sequential composition. Both consequence and framing can also be triggered by a user
annotation in a val. Although Steel’s separation logic is affine, Steel aims at representing
and modeling a variety of concurrent programs, especially including low-level programs
implemented in a language with manual memory management, such as C. To this end,
we need to ensure that separation logic predicates do not implicitly disappear. As
such, our VC generator uses equivalence *—+ where otherwise a reader might expect
to see implications (—¢). Programmers are expected to explicitly drop separation logic
predicates by either freeing memory or calling ghost functions to drop ghost resources.

Finally, the proof obligations corresponding to the VCs in the rules appear in the
premises in two forms, F,. and Fg,,,;. The former involves solving separation logic goals
using a tactic, which can produce auxiliary propositional goals to interact with SMT.
The latter are SMT-encodeable goals—all non-separation logic reasoning is collected in
the other rules, and eventually dispatched to SMT at the use of consequence triggered
by a user annotation.

We now describe each of the rules in turn.

App. Thisis a straightforward dependent function application rule. F* internal syntax
is already desugared into a monadic form, so we need only consider the case where
both the function f and the argument e are total terms. Of course, the application may
itself have an effect, depending on C. The important aspect of this rule is that it is a -
judgment, indicating that this is a raw application—no frame has been added.

Frame. This rule introduces a frame. Its premise requires a i judgment to ensure that
no repeated frames are added, while the conclusion is, of course, in Fp, since a frame
has just been applied. The rule involves picking a fresh metavariable ?F" and framing it
across the pre- and postconditions. The effect of framing on the memory postcondition
S is particularly interesting: we strengthen the postcondition with seleq ?F sy sy,
which is equivalent to sel ?F s5, = sel ?F sy,. We will present this predicate in detail in
Section 7.2.5.

Bind. The most interesting rule is Bind, with several subtle elements. First, in order
to sequentially compose e; and es, in the first two premises we require -z judgments, to
ensure that those computations have already been framed. The third premise encodes
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an application of consequence, to relate the vprop-postcondition ()1 of e; to the vprop-
precondition P, of ey. Strictly speaking, we do not need a double implication here, but
we generate equivalence constraints to ensure that our constraint solving heuristics do
not implicitly drop resources. The premise I', x:t1, 7a Fyoe Q1[x/y] %=+ Py : x1 is a VC
that is discharged by a tactic and, importantly, ?a is a propositional metavariable that
the tactic must solve. For example, in order to prove I', z:t1, 7a Fyoe (r — u) =% (1 — v),
where the interpretation of » — wu is that the reference r points to u, a tactic could
instantiate 7a := (u = v), i.e., the tactic is free to pick a hypothesis 7a under which
the entailment is true. The fourth premise is similar, representing a use of consequence
relating the postcondition of e, to a freshly picked metavariable 7() for the entire
postcondition, again not dropping resources implicitly. A technicality is the use of
the selector coercions yi, x2 witnessing the equivalences, which are needed to ensure
that the generated pre- and postconditions are well-typed. Notice that this rule does
not have an SMT proof obligation. Instead, we gather in the precondition the initial
precondition R; and the relation between the intermediate post- and preconditions,
S1 and Rs. Importantly, we also include the tactic-computed hypotheses 7a and 7b,
enabling facts to be proved by the SMT solver to be used in the separation logic tactic.
Finally, in the postcondition, we gather the intermediate and final postconditions.

Val. The last rule checks that the inferred computation type for a Steel program
matches a user-provided annotation, and is similar to most elements of Bind. As shown
by the use of the entailment 5, it requires its premise to be framed. The next two
premises are tactic VCs for relating the vprop pre- and postconditions, with the same
flavor as before, allowing the tactic to abduct a hypothesis under which the goal is
validated. Finally, the last premise is an SMT goal, which includes the freshly abducted
hypotheses, and a rule of consequence relating the annotated pre- and postcondition
to what was computed. Annotated computation types are considered to not have any
implicit frames, hence the use of - in the conclusion.

As an example, typechecking the swap program presented in Figure 7.2 proceeds as
follows: The App rule is applied to each of the read and write function applications. Each
application of App is followed by an application of Frame; this enables the composition
of the function applictions using the Bind rule, whose premises require Fz judgments.
Finally, an application of the Val rule ensures that the annotated Steel computation
type—an F*, user-friendly syntax for the computation type { P | R } 2t { Q | S }—
is admissible for this swap program.

By structuring this calculus with proofs in mind, we have set the stage for tactics

to focus on efficiently solving vprop goals, while building carefully crafted SMT-friendly
V(s that can be fed as is to F*’s existing, heavily used SMT backend.

7.2.3 Why it Works: Proof-Oriented Programming

In Section 7.1, we claimed that prior attempts at using a WP-based VC generator for
separation logic in F* did not scale. Here, we discuss some reasons why, and why the
design we present here fares better.



7.2 A Type-and-Effect System for Separation Logic Quintuples 99

As a general remark, recall that we want the trusted computing base (TCB) of Steel
to be the same as SteelCore, i.e., we trust F* and its TCB. As such, our considerations
for the scalability of one design over another will be based, in part, on the difficulty of
writing efficient, untrusted tactics to solve various kinds of goals. Further, we aim for
a Steel verifier to process an entire procedure in a single go and respond in no more
than a few seconds or risk losing the user’s attention. In contrast, in fully interactive
verifiers, users analyze just a few commands at a time and requirements on interactive
performance may be somewhat less demanding.

WP-Based VCs are Large and Require Non-Reflective Tactics. Separation
logic provides a modular way to reason about memory, but properties about memory
are only one of several concerns when proving properties about a program. VCs for
programs in F* contain many other elements: exhaustiveness checks for case analysis,
refinement subtyping checks, termination checks, and several other facts. In many
existing F* developments, a VC for a single procedure can contain several thousand
logical connectives, and the VC itself includes arbitrary pure F* terms. Tactics for
separation logic proposed by Martinez et al. (2019) process this large term, applying
verifiable but slow proof steps just to traverse the formula—think repeated applications
of inspecting the head symbol of the goal, introducing a binder, splitting a conjunction,
introducing an existential variable—even these simple steps are not cheap, since they
incur a call to the unifier on very large terms—until, finally, a vprop-specific part of a
VC is found, split from the rest and solved, while the rest of the VC is rewritten into
propositional form and fed to the SMT solver.

Although F*’s relatively fresh and unoptimized tactic system bears some of the
blame, tactics like this are inherently inefficient. Anecdotally, in conversations with some
Iris users, we are told that running its WP-computations on large terms would follow a
similar strategy to Martinez et al.’s tactics, and can also be quite slow. Instead, high-
performance tactics usually make use of techniques like proof-by-reflection (Gonthier
et al. 2016), but a reflective tactic for processing WP-based VCs is hard, since one
would need to reflect the entire abstract syntax of pure F* terms and write certified
transformations over it—effectively building a certified solver for separation logic.

Structured VCs Separate Concerns. A proof-oriented programming mindset
suggests that producing a large unstructured VC and trying to write tactics to later
recover structure from it is the wrong way to go about things. Instead, we propose
to program our VC generator with the subsequent proofs of the VCs in mind: our
proof rules are designed to produce VCs that have the right structure from the start,
separating vprop reasoning and other VCs by construction. The expensive unification-
based tactics to process large VCs are no longer needed. We only need to run tactics
on very specific, well-identified sub-goals and the large SMT goals can be fed as is by
F* to the SMT solver, once the tactics have completed.

Reflective Tactics for vprop Goals. Our tactics that focus on vprop implications
are efficient because we use proof-by-reflection. Rather than reflect the entire syntax
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of F*, we only reflect the vprop skeleton of a term, and then can use certified, natively
compiled decision procedures for rewriting in commutative monoids and AC-matching
to (partially) decide vprop equivalence and solve for frames. What calls we make to the
unifier are only on relatively small terms.

7.2.4 Correspondence to our Implementation

To encode the two judgments - and Fg, we define a new F* computation type,
SteelBase (a:Type) (framed:bool) (p:vprop) (q:a — vprop) (r:fppred p) (s:fppost p a q). In this
effect, the indices a, p, q, r, s reflect the computation type { P | R } z:a { Q | S } from
the calculus previously presented while the framed boolean distinguishes between
(when framed = false) and Fr (when framed = true).

F*’s effect system provides hooks to allow us to elaborate terms written in direct
style, let x = e in €’ to bind_M [[e]| (Ax —[[¢’]|) when e and e’ elaborate to [[e]| and [[e]]
respectively, with a computation type whose head constructor is M (Rastogi et al.
2021). We rely on this feature to encode the different rules presented in Figure 7.4. For
instance, we define a bind monadic combinator for SteelBase computations as follows,
omitting selector predicates for readability:

val bind
(_ :squash (if framed f then frame f == emp else T))
(_ :squash (if framed g then frame g ==X —empelse T))
(_ :squash (a_prop = (A x —post_f x «frame_f) == (A x — pre_g x xframe_ g x))
(_ :squash (b_prop = (A x —post_g x y xframe_ g x) *—* post))
(f: steelbase a framed f pre f post_f)
(g: (x:a — steelbase b framed g (pre g x) (post_g x)))
: steelbase b true (pre_f xframe_f) post

This combinator captures both the Bind and the Frame rule from our calculus. The
squashed arguments correspond to verification conditions that F* must discharge when
applying bind. When composing computations f and g, this combinator adds frames
frame f and frame g to f and g respectively, with the restriction that a frame is the
empty assertion emp if its corresponding computation was already framed; i.e., if the
computation has the Fpr judgment. Building upon this effect, we finally define the
user-facing Steel effect, hiding framing reasoning from a Steel programmer.

effect Steel (a:Type) (p:vprop) (q:a — vprop) (r:fppred p) (s:fppost p a q)
= SteelBase afalse pq rs
Steel

Steel also has two other kinds of computation types, for atomic B
computations and for ghost (proof-only) computation steps. We apply
the same recipe to generate VCs for them, inserting frames at the :
leaves, and including consequence and framing in copies of Bind  SteelAtomic
and Val used for these kinds of computations. Ultimately, we have B
three user-facing computation types, Steel, SteelAtomic, and SteelGhost.
Behind the scenes, each of these relies on a computation type (e.g., :
SteelBase) which handles framing reasoning. These computation types SteelGhost
are ordered in an effect hierarchy, enabling smooth interoperation
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between different kinds of computations; SteelAtomic computations are implicitly lifted
to Steel computations when needed, while SteelGhost can be used transparently as either
SteelAtomic or Steel.

7.2.5 An SMT-Friendly Encoding of Selectors

Soundness of Quintuples. We prove the soundness of our quintuples with se-
lectors by reducing them to raw quintuples in SteelCore. In SteelCore quintuples
{P|R}zt{Q]|S },,, presented in detail in Section 6.2.4, we have R:fp_prop P
and S:fp_prop 2 P Q, capturing that R and S depend only on the P and Q fragments of
the initial and final memories, respectively. Thus, every user annotation in SteelCore’s
raw quintuples comes with an obligation to show that the R and S terms depend only on
their specified footprint—these relational proofs on specifications can be overwhelming,
and require reasoning about disjoint and joined memories, breaking the abstractions
that separation logic offers.

In comparison, selector predicates are self-framing by construction: the predicates
R and S can only access the selectors of P and () instead of the underlying memory;,
which are themselves framing. By defining selector predicates as a suitable abstraction
on top of the SteelCore program logic, we thus hide the complexity of the self-framing
property from both the user and the SMT solver, leading to more efficient verification.

A More Efficient Encoding of seleq. To preserve the modularity inherent to
separation logic reasoning when using selector predicates, the postcondition of the
Frame rule previously presented contains the proposition seleq ?F s, sy, capturing that
sel 7F sy, = sel 7F sy,.

Using this predicate, the SMT solver can derive that the selector of any vprop
contained in the frame is the same in the initial and final memories, leveraging the
fact that, for any m:fpmem (p * q), sel (p * q) m = (sel p m, sel ¢ m). But as the size of
the frame grows, this becomes expensive; the SMT solver needs to deconstruct and
reconstruct increasingly large tuples.

Instead, we encode seleq as the conjunciton of equalities on the atomic vprops selectors
contained in the frame, where an atomic vprop does not contain a *. For instance, p and
q are the atomic vprops contained in p * q. Our observation is that most specifications
pertain to atomic vprops; the swap function presented in the introduction for instance is
specified using the selectors of ptr r1 and ptr r2, instead of (ptr rl x ptr r2).

Once the frame has been resolved using the approach presented in Section 7.3,
generating these equalities is straightforward using metaprogramming; we can flatten
the frame according to the star operator, and generate the conjunction of equalities to
pass to the SMT solver.

Limitations of Selectors. Selectors can alleviate the need for existentially quantified
ghost variables; the value stored in a reference for instance can be expressed as a selector,
decluttering specifications. However, not all vprops have meaningful selectors, nor do we
expect that they should. For example, when using constructions like PCMs to encode
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sharing disciplines, it is not always possible to define a selector that returns the partial
knowledge of a resource. In Chapter 8, we will demonstrate the wide range of possible
styles to write and verify Steel programs, especially illustrating that, when applicable,
selectors can significantly simplify specifications and proofs.

7.3 Automatically Discharging Steel Verification Con-
ditions

In this section, we show how to discharge separation logic VCs generated during
the elaboration of Steel programs; namely, how to solve frame metavariables 7F and
separation logic entailments F,..

We start by presenting a quick overview of our methodology on the simple (though
artificial) example below:

val write (r:ref a) (x:a) : Steel unit (ptrr) (A _ —ptrr)

let two_writes (rl r2:ref int)
: Steel unit (ptr rl * ptr r2) (A _ — ptr rl * ptr r2)
= write r1 0; write r1 1

For clarity, we will omit the F,,,; constraints when typechecking this program; they
are irrelevant to this example.

First, the App rule from Figure 7.4 is applied to both writes. The function applications
are then sequentially composed using the Bind rule. This rule requires Fr computations
as premises; frames 7F1 and ?F2 are automatically inserted by applying the Frame rule
to each application. When composing sequentially, a fresh metavariable ?Q is gener-
ated, as well as the two constraints ptr rl x ?7F1 %—x ptr r2 x 7F2 and ptr r2 * 7F2 x— ?Q.
Finally, the Val rule ensures that the inferred type matches the user-provided signature,
generating the constraints ptr rl x ptr r2 *— ptr rl * ?F1 and ?Q *— ptr rl * ptr r2.

Determining whether two terms containing an arbitrary number of metavariables
can be unified up to associative-commutative rewriting is a hard problem (Fages 1984).
Constraints for Steel programs fit this description, using only one AC-function: the
separation logic x. Our observation is that we can instead reduce constraint solving in
Steel to a simpler problem, namely, AC-matching.

By solving constraints in a particular order, it is possible to only consider constraints
that contain at most one metavariable. This happens when considering constraints
generated by a linear traversal, in either forward or backward program order. In
our example, going forward, we would first solve ?F1 in ptr rl % ptr r2 s—x ptr rl * 7F1,
followed by ?F2 in ptr rl * ?F1 s—k ptr r2 x ?F2 (?F1 having been solved previously),
and finally ?Q through ptr r2 x 7F2 x— ?Q. Once we reach the last constraint 7Q *—x
ptr rl % ptr r2, the metavariable ?7Q has already been solved, and checking AC-equivalence
is straightforward.

We first formalize this intuition in Section 7.3.1, proving that the rules presented in
Figure 7.4 ensure that a scheduling suitable for AC-matching exists for any well-typed
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Steel program. We then present our approach to AC-matching in the context of our
auto-active prover. Compared to complete, but expensive algorithms for AC-matching
previously proposed (Kapur and Narendran 1987), our algorithm is efficient, providing
quick feedback to the programmer when unification fails. In exchange, it is incomplete;
working within a proof assistant, when results are inconclusive, the programmer can
provide hints and annotations to help the unifier make progress.

7.3.1 A Unitriangular AC-Matching Problem

In this section, we show that the constraints generated in Figure 7.4 can be split into a
unitriangular set and an unrestricted set of equations. This property ensures that a
scheduler can always pick an AC-matching constraint, while guaranteeing progress and
termination.

For notational purposes, we write the metavariables ?F, ?Q etc. as variables 7u in
this section. We also write I' e : C' | U; X to mean that a typing judgment I' e : C
from Figure 7.4 generates the set of metavariables U and the set of F;,. constraints over
them denoted by X (similarly for Fr judgments).

We begin by defining a unitriangular system of equations. Such systems of equations
can be represented using unitriangular matrices, i.e., triangular matrices where all
elements in the main diagonal are 1.

Definition 7.1 (Unitriangular system of equations). An ordered set of metavariables
U = {?u;}icpn and an ordered set of equations X = {X;}icpn form a unitriangular
system of equations if

1. Vi € [1,n]. Tu; occurs exactly once in X;, and
2. Vi,j € [1,n]. Tu; does not occur in X; if j > i.

Our main theorem is then as follows:

Theorem 7.2. IfT'Fe:{P| R} zt{Q|S}|U;X then X = X, UX, and there

exists an ordering of U and Xy such that (U, X)) is unitriangular.

An important observation is that two unitriangular systems of equations (U, X)
and (U', X’) where U N U’ = @ can be concatenated to form a single unitriangular
system of equations. Borrowing terminology from the linear algebra community, this
concatenation corresponds to creating a block diagonal matrix where the two blocks on
the diagonal are X and X”, which are unitriangular.

To prove Theorem 7.2, we need to reason about the metavariables and constraints
generated by the frame computations. To that end, we work with a notion of once-
removed-unitriangular system of equations. Intuitively, given a unitriangular system of
equations, we can obtain a once-removed-unitriangular system of equations by removing
the first constraint.

Definition 7.3 (Once-removed-unitriangular system of equations). An ordered set of
metavariables U = {?u;}icpn) and an ordered set of equations X = {X;}icpp,n form a
once-removed-unitriangular system of equations if
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1. Vi € [2,n]. ?u; occurs exactly once in X;, and

2. Vie[l,n],j €[2,n]. Tu; does not occur in X; if i > j.

With this definition in hand, we prove the following theorem about the framed
computations.

Theorem 7.4. IfT'Fpe:{ P| R} 2zt {Q|S }|U;X then X = X} UX, and there
exists an ordering of U and Xy such that (U, X)) is once-removed-unitriangular with
exactly one occurrence of Tuy in Q.

The proofs for these theorems rely on the following auxiliary lemmas.

Lemma 7.5. If'Fe:{ P| R} zt{ Q| S}, then P and Q do not contain any
metavariables.

Lemma 7.6. IfI'Fpe:{ P| R} 2zt { Q| S}, then P and Q each contain exactly
one occurrence of a metavariable.

The proofs for Theorem 7.2 and Theorem 7.4 proceed by simultaneous induction on
the two typing derivations. For readability, we omit here the complete proofs of the
theorems and lemmas; they are presented fully in Appendix B. The intuition behind
this proof is that we can construct the unitriangular system by traversing the derivation
backwards, starting from the postcondition. The choice is arbitrary but convenient for
the proof—one could also structure the proof to go forwards instead.

A Constraint Scheduler for Steel. The unitriangular shape of the set of equations
allows us to solve the 7u; sequentially while finally verifying that the solutions are
consistent with the equations C;. In practice, when typechecking a Steel program, we do
not reorganize the generated constraints to extract a unitriangular system. We instead
implement a simpler scheduling, solving the first remaining constraint which contains
only one occurence of a metavariable. The existence of the unitriangular system ensures
the progress and termination of this scheduling.

7.3.2 Solving AC-Matching Instances

In the previous sections, we showed how we could schedule equations to be solved
sequentially, so that each scheduled equation contains at most one frame metavariable.
In this section, we present the last missing piece of the puzzle: how to actually solve
such an equation.

Consider below a simplified grammar for a subset of vprops.
v o= cllv t o= emp| foul|lu|txt

We assume the existence of a set of constants ¢ and uninterpreted function symbols
f. Terms t can be the unit emp, a function f whose argument is either a constant of
metavariable 7v, a vprop-metavariable ?u (typically the frame variable), or a separating
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conjunction of two terms. The other connectives are uninterpreted by our AC-matching
solver. Our main point of interest here is that we have two sorts of metavariables, 7v
variables may arise due to implicit arguments in a program and, unlike the 7u variables,
may have a type other than vprop.

When considering a scheduled equation, we will denote the frame metavariable 7u,
and assume without loss of generality that it is on the left-hand-side of the equality. Sim-
ilarly to AC-matching algorithms in the literature, we consider flattened representations
of both sides of the equation.

Our algorithm proceeds by trying to match each symbol on the left with a rigid
head symbol (c or f) with a term on the right, and finally sets the metavariable ?u to
the conjunction of the remaining terms on the right once matching is over, or the unit
emp if no such term is left.

To fix the intuition, let us first present the simple case where all terms different from
?u are constants. If a constant on the left has no counterpart on the right, then the
equation cannot be solved, raising a unification error. We present below some simple
examples to illustrate—constants c;, ¢; are distinct and non-matchable.

® ¢ ¥ Tu = cy *cy ¥ c3. The ¢; on both sides match and are removed. 7u is set to
the conjunction of leftover terms on the right side, i.e. ¢o * c3

e ¢; ¥ Tu = c;. The ¢; on both sides match and are removed. There is no leftover
term on the right side, so ?u is set to the unit emp

® ¢ * Tu = co. A unification error is raised, since ¢; cannot be matched with any
term on the right side.

Now consider the equation f ?v * fv2 x 7u = fv2 x fvl. By applying naively the
matching algorithm presented previously, the first term on the left, f ?v, would be
matched with the first term on the right, f v2. This would prevent the second term on
the left, f v2, from being matched with the remaining terms on the right, which in turn
would return a unification error to the programmer, pointing to f v2 not being matched,
and leading to confusion since a matching term does exist on the right side.

A natural solution to this problem would be backtracking, attempting to match f ?v
with a different term on the right side. As previously stated, this is a solution we wish
to avoid; the cost of backtracking can become prohibitive, and hinder the interactivity
required for program verification. We instead only match a left-hand-side term t; if
there is a unique term on the right that it can be unified with. If this is not the case,
we delay the matching of ¢; and attempt to match the rest of the terms on the left
side. If no progress was made once we retry matching ¢;, an error message prompts the
programmer to instantiate more implicit arguments.

Again, we present below several examples illustrating the behaviour of our algorithm.

o fvl«f?vs?u="~fv2xfvl. We first attempt to match f vl with a term on the
right. There is a unique solution, so matching is performed. We then attempt to
match the second term, f ?v. Only f v2 is left on the right, so there is a unique
solution and we can set 7u to emp.
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o f7vxfvlx?u—"Ffv2xfvl. We first attempt to match f ?v with a term on the
right. Both terms on the right are valid solutions, so we delay this matching. We
then attempt to match f vl, which has a unique solution. Matching on all terms
on the left different from 7u has been attempted and progress has been made, we
retry with the delayed terms. f ?v now has a unique solution on the right side.
We finally set ?u to emp.

o f?2vikf?v «7u="fvl«fv2 Both f?vand f?v’ have several solutions on the right
side. Since no progress is made after attempting matching for terms on the left
side, an error is raised.

7.3.3 Cooperating with the SMT Solver

Our AC-matching algorithm is entirely implemented as an F* tactic. It relies on
the F* unifier to determine whether two terms can be matched, thus solving relevant
metavariables when matching occurs. As in other systems, F* tactics are not trusted—
the terms they generate are guaranteed to be well-typed, thus ensuring soundness of
the decision procedure.

Since the decision procedure for AC-matching is not trusted, there is no need to
restrict its complexity. As such, our decision procedure is designed to be easily extensible
with additional heuristics and user customization. In this section, we present one such
extension, which enables equality rewriting during AC-matching by querying the SMT
solver.

Consider the simple case where we wish to solve the equation f b = f true. Here, the
unification procedure presented so far would fail even if the equality b = true is valid,
due to, say, a control flow hypothesis. The only solution would be for a programmer to
manually trigger a rewrite by calling a ghost procedure.

Instead, we implement heuristic abduction of equalities (the ?a and 7b in Fy,. in
Figure 7.4) in our tactic that allows us to match f b = f true via an SMT provable equality.
This is powerful and allows an interplay between arbitrary theories and AC-matching,
allowing, for example, our algorithm to match f (x - x) = f0 or f (2 x x) = f (x + x), i.e.,
a kind of AC-matching modulo theories.

However, this is in tension with the basic structure of our AC-matching algorithm.
If every ¢; = ¢; is possible with theory reasoning, even the most basic steps of our
matching algorithm will always fail, since there is no unique solution even to a simple
problem like ¢; * 7u = ¢; xc;. Hence, deciding which equalities to abduct and delegate to
SMT requires program-specific knowledge, which we allow the programmer to configure.

When defining a separation logic predicate, the programmer can annotate some
arguments to mark them as candidates for SMT-based rewritings. Consider for instance
the standard separation logic predicate pts_to r v, which indicates that the reference r
stores the value v. When reasoning about the functional correctness of a program using
this predicate, equalities on the value v are common while equalities on the reference r
itself are rarer. As such, a programmer could decide to mark values v as candidates for
SMT-based rewriting, using the smt_rewrite attribute as follows, but not references r in
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pts_to predicates.
val pts_to (r:ref a) (#[@@ smt_rewrite| v:a) : vprop

Thus, unifying pts_to r vl = pts_to r v2 would automatically succeed if the SMT
solver can prove vl = v2, but unifying pts to rl v = pts_to r2 v would require a manual
rewrite when rl = r2.

A library designer can make some of these choices once and for all, so that all
clients benefit from smart equality abduction; our library for references with fractional
permissions does indeed mark the value and the permission as abduction candidates.

When the AC-unifier cannot make progress anymore, ideally after having matched
some of the left-hand-side terms that had a unique solution on the right-hand-side, it
retries a similar unification while generating equalities to be discharged by SMT. These
equalities propagate to the SMT solver using the 7a and 7b abduction variables from
Figure 7.4. When falling back on the SMT solver is not necessary, these metavariables
are set to T, ensuring that no metavariable is left unsolved. Similarly to the main
algorithm, solutions that are not unique are not accepted, so as to provide accurate
error reporting to the programmer.

e pts torvl xpts torv2 =pts torvlx*pts torv3. The decision procedure first
attempts exact matching, and removes pts to r vl from both sides. It is then
left with two terms that cannot be unified, and falls back on SMT rewritings.
Since the value argument of pts_to has been marked as candidate for SMT-based
rewriting, the AC-unifier queries the SMT solver to check whether v2 — v3.

e pts torvl x pts torv2 = pts torv3xpts torvd No exact matching is possible,
the AC-unifier falls back directly on SMT rewritings. Since both vl and v2 could
possibly be rewritten into v3 or v4, the unicity of the solution cannot be guaranteed.
The AC-unifier fails, and asks the programmer to provide manual rewrites to
disambiguate.

7.4 Summary

In this chapter, we have developed a full-fledged language embedded in F* for concurrent
programming with semi-automated proofs, without extending the trust assumptions
of the SteelCore logic we presented in Chapter 6 and while preserving its expressive
power. By applying a proof-oriented mindset to the design of the language itself, we
automatically separate verification conditions between separation logic predicates and
selector predicates. This allows us to provide automation tailored to each type of
predicate: we use a mixture of tactics and SMT to solve the former as AC-unification
constraints modulo theories, while relying on standard SMT solving for the latter. In
the next chapter, we put Steel to work, reaping the benefits of semi-automated proofs
for a highly expressive program logic to implement a wide range of verified libraries.



Chapter 8

Working the Anvil: Smelting Verified
Steel Libraries

To evaluate the usefulness of the proof-oriented methodology we advocate for, we present
in this chapter verified libraries demonstrating the expressiveness and programmability
of the Steel framework. Through different examples, we showcase the large variety of
styles of programming and proving that Steel offers, ranging from Viper-style permission
accounting with implicit dynamic frames, to more dependently typed libraries for various
concurrency idioms, concurrent data structures, and message-passing protocols.

Contributions. The examples described in this chapter were presented in Swamy
et al. (2020) and Fromherz et al. (2021). I was primarily involved in the implementation
of the balanced trees (Section 8.2) and 2-party session types libraries (Section 8.7), and
also with the design of the invariant for the Michael-Scott 2-lock queue (Section 8.6). I
also reimplemented plain SteelCore versions of the synchronization primitives in Steel
(Section 8.3), and assisted with the development and debugging of the other case studies
presented in this chapter.

8.1 Notations and Basic Concepts

To start this chapter, we first summarize the key concepts and constructs presented in
Chapters 6 and 7, but from a Steel programmer’s perspective.

Three Kinds of Computations. As described in Section 7.2.4, Steel offers three
computation types with the signatures below, where fppred p = type of p — prop and
fppost p a q = type _of p —x:a —type_of (q x) — prop:

Steel (a:Type) (p:vprop) (q:a — vprop) (r:fppred p) (s:fppost p a q)
SteelAtomic (a:Type) (i:inames) (p:vprop) (q:a — vprop) (r:fppred p) (s:fppost p a q)

SteelGhost (a:Type) (i:inames) (p:vprop) (q:a — vprop) (r:fppred p) (s:fppost p a q)

108
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SteelAtomic and SteelGhost have the same signature and carry an additional in-
dex (i:inames) corresponding to the set of currently opened invariants (Section 6.3.4).
SteelAtomic is used to classify computationally relevant code whose effects on memory are
atomic; e.g., an atomic compare-and-set (CAS) instruction would have type SteelAtomic.
SteelGhost describes code that has no observable computational effect; e.g., this could
involve a proof step such as unrolling a recursive predicate, calling a lemma, or reading,
writing, or allocating to ghost state. Steel is the general purpose computation type for
Steel code, and involves a mixture of pure computations, multiple atomic steps composed
in sequence or parallel, and ghost code—SteelAtomic and SteelGhost are implicitly lifted
to Steel. Reflecting the Par node from the SteelCore action trees (Section 6.2.1), Steel
provides parallel composition through the following combinator

par (f : unit —Steel a p qrs) (g: unit —Steel a’ p’ q’ 1’ s’)
: Steel (a & a’) (pxp’) (A (xx') = gx*q’ x)
(requires A(t,t") = rt Ar' t)
(ensures A(t,t") (x,x’) (u,u’) =>stxuAs t'x u)

In case the r:fppred p or q:fppost p a q are trivial, we simply omit them; otherwise,
as in par above, we tag the selector predicates with requires and ensures to improve
readability.

Steel References. In its most basic form, the memory of a Steel program contains
a map from abstract typed references pref (a:Type) (p:pcm a) to values of type a, where
p:pcm a is some partial commutative monoid (PCM) over the carrier type a. By choosing
suitable PCMs, Steel’s libraries provide various flavors of derived reference types, the
most commonly used of which are references with fractional permissions, with the
signatures below.

e ref t, is a reference to a t-typed value
e f: frac is an erased, real-valued fraction between 0 and 1.

f . . . . :
e r— v : vprop asserts ownership of an f-fraction of r pointing to v, while r + v is
1.0
defined as r = v.

e ptrr fis equivalent to Jv. r AN v, with the selector type type of (ptrrf) = t, when
r:ref t.

e pure p is equivalent to emp in a context where the proposition p is valid.

Additionally, we have ghost references, ghost ref (t:Type), which refer to erased t
values in memory—both the references and the values they point to are computationally
irrelevant. The vprop for ghost references is written r 5 v, but is otherwise identical to
— . In Section 8.7 we show how to use references with other PCMs.
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Steel Invariants. Any vprop can at some point in a computation be designated an
wnwvariant, and is from then on enforced by the logic to be maintained by all subsequent
computation steps (Sections 6.3.3 and 6.3.4). The main constructs are shown below:

e inv (p:vprop) : Type, is the type of an invariant enforcing p. Note, inv p is a value
that can be freely duplicated and shared among threads. It represents a kind of
token witnessing the validity of p.

e Invariants are named, with name (i:inv p) : inv_name, and inames = set inv_ name.

e new_inv (p:vprop) : SteelGhost (inv p) i p (A_ —emp), consumes the initially valid
p:vprop and returns a new token for it.

e Invariants can be opened and restored in atomic code using the following combina-
tor, which states that f can assume p; and restore it in an atomic step and return
x, while also transforming p to g x. The index u:inames is used to ensure that f
does not itself internally open i, which would be unsound. A similar combinator,
with_inv_ghost, allows using and restoring an invariant in SteelGhost code.
with _inv (i:inv p;) (f: unit — SteelAtomic a u (p; * p) (A x = p; * q x))

: SteelAtomic a (name i W u) p q

8.2 Balanced Trees: Selectors at Work

As a first case study, we present a verified implementation of self-balancing AVL trees.
To specify this implementation, our first step is to define a tree : vprop capturing the
essence of a mutable tree. In the following code, Spec is the name of the F* module
containing a standard, pure specification of binary trees, represented as an inductive
datatype whose constructors are Leaf and Node data left right.

We begin by setting up the various types and representation invariants. The
definitions of tree nodes and trees are mutually recursive: a tree node is a record
containing a value data, as well as the left and right subtrees, while a tree is a pointer
to a tree node.

type node (a: Type) = { data: a; left: t a; right: t a }
and t (a: Type) = ref (node a) (* The type of the binary linked trees *)

(* A recursive predicate for binary trees )
let rec tree interp’ (ptr: t a) (n: Spec.tree (node a)) = match n with
| Spec.Leaf — pure (ptr = null) (* Leaves are represented by null pointers x)
| Spec.Node data left right —
tree interp’ data.left left «tree interp’ data.right right * ptr — data

(» We existentially quantify over the spec tree *)
let tree interp (ptr:t a) = Jn. tree_interp’ ptr n
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(* The selector only keeps the data in the nodes, returning a Spec.tree a *)
val tree_sel (ptr:t a) (m:fpmem (tree interp ptr)) : Spec.tree a

(* We collect the components above to define the vprop tree, indexed by the root pointer x)
let tree (ptr:t a) : vprop = {

interp = tree interp ptr;

type of = Spec.tree a;

sel = tree_sel ptr }

In particular, note that the interpretation of tree is an existentially quantified,
recursive separation logic predicate. We expect to make ghost procedure calls to
manipulate quantifiers and to roll and unroll recursive predicates. The signature of
roll _tree is below.

val roll tree (root: t a) (left: t a) (right: t a) : SteelGhost unit u
(tree left x tree right * ptr — root) (A _ — tree root)
(requires (A s — s.|ptr|.left == left A s.|ptr].right == right))
(ensures (A's s’ —s’.|ptr] == Spec.Node s.|ptr|.data s.|left] s.[right]))

Proofs of such lemmas are a bit mechanical-—we open the existentials for tree, instruct
the F* normalizer to reduce the recursive function tree interp and then fold it back to
introduce tree interp, then pack the existential, and return. In the future, we believe
some of this boilerplate can be reduced through metaprogramming. Now with our roll
and unroll lemmas in hand, we can turn to the code itself.

Using tree selectors, we can define concise specifications operating on pure F* trees.
For example, the specification for height relates the returned value x to the height of the
F* tree returned by tree sel, while ensuring that the function did not modify the tree.

let rec height (ptr:t a)

: Steel int (tree ptr) (A _ — tree ptr)
(requires A —T)
(ensures As x s — s.|ptr] == s’.[ptr| A Spec.height s.[ptr] == x)

= if is_null ptr then (
unroll _leaf ptr; 0

) else (

let node = unroll _tree ptr in
let hleft = height node.left in
let hright = height node.right in
roll _tree ptr node.left node.right;
if hleft > hright then (hleft + 1) else (hright + 1)

)

With the exception of three ghost calls that roll and unroll the definition of the
vprop, the code is fairly canonical, and the proof is automated by the hybrid of tactics
and SMT in about a second.

We require only five lemmas similar to roll _tree to obtain straightforward Steel
implementations of our tree library operations: an unroll and roll operation for both
the node and leaf cases, and a lemma node is not null which establishes that a root
pointer does not correspond to a leaf if the pointer is not null.
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One of the main benefits of this approach is that tree can be used as a basis to define
more involved notions of trees at a minimal cost. For instance, one can define mutable
AVL trees as a pure predicate over the selector of a tree, without needing to modify the
representation invariant. Using this predicate, we can specify a self-balancing insertion
operation, insert avl, which is parameterized by a comparison function cmp needed to
perform a binary search. This operation builds on the same memory layout for the tree,
but with a different logical layer over it (e.g., AVL balancing). The Spec.is avl function
checks that the tree meets our specification for an AVL; e.g., every subtree is balanced
and the tree is a binary search tree.

The full Steel implementation of insert avl, shown below, follows the flow of a
textbook binary search tree insertion; it creates a new node if the tree is empty, or
recursively inserts v in the correct subtree if not before finally rebalancing the tree. All
verification conditions related to the shape of the tree are discharged automatically by
SMT, while separation logic VCs only require minimal user interaction; calling stateful
lemmas such as roll _tree in a few specific, predictable places is sufficient. The procedure
is checked in about 6 seconds.

let rec insert _avl (cmp:Spec.cmp a) (ptr: t a) (v: a)
: Steel (t a) (tree ptr) (A ptr’ — tree ptr’)
(requires As — Spec.is_avl cmp s.|ptr|)
(ensures As ptr’ s’ — Spec.insert _avl cmp s.|ptr] v == s’.[ptr’])
= if is_null ptr then (
unroll _leaf ptr; (* unroll the tree vprop *)
let node = {data = v; left = ptr; right = null} in
let new tree = alloc node in
(* roll the tree vprop and return tree *)

roll _leaf ();
roll _tree new _tree ptr null;
new tree

) else (

let node = unroll _tree ptr in
if cmp node.data v > 0 then (
let new left = insert avl cmp node.left v in
let new node = {data = node.data; left = new _left; right = node.right} in
write ptr new_node;
roll tree ptr new left node.right;
rebalance avl cmp ptr
) else (
let new_right = insert _avl cmp node.right v in
let new node = {data = node.data; left = node.left; right = new _right} in
write ptr new_ node;
roll _tree ptr node.left new right;
rebalance avl cmp ptr)

)

This verification style is not specific to self-balancing trees; we applied it to several
other standard data structures such as singly and doubly linked lists. By splitting
verification conditions between separation logic goals and selector predicates, we can
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thus reason separately about memory manipulations and about the logical meaning of
these manipulations. Coupled with tactics and SMT automation, the readability of the
implementations is greatly improved.

8.3 Synchronization Primitives

Moving on from sequential programming, we now build a few libraries of verified
synchronization primitives in Steel. We start with a spin lock, built using invariants
accessed by an atomic CAS instruction. Using a spin lock, we will then build a library
for fork/join concurrency on top of structural parallelism (par) and general recursion.

Spin Locks. To implement a spin lock, we build on a primitive compare-and-set
atomic action with the signature shown below. It states that given a reference r to
a word-sized integer for which we have full permission, and old and new values, cas
updates the reference to new if its current value is old, and otherwise leaves r unchanged.
Note, cas takes an additional ghost parameter, v:erased uint32, which represents the value
stored in the reference in the initial state.

val cas (r:ref uint32) (old new:uint32) (v:erased uint32) :
SteelAtomic (b:bool{b=(v=old)}) u (r = v) (A b —r > (if b then new else v))

A lock is represented as a pair of a reference and an invariant stating that the
reference is in one of two states: either it holds the value available and the lock invariant
p, a vprop, is true separately; or it holds the value locked.

let available = false

let locked = true

let lockinv (r:ref bool) (p:vprop) = (r — available % p) V (r — locked)
let lock t = ref bool & inv_name

let protects (I:lock t) (p:vprop) : prop = snd | ~lockinv (fst |) p

let lock p = l:lock t { | ~protects™ p }

Using this representation, allocating a lock is then straightforward:

let new lock p : Steel (lock p) p (A _ —emp) =
let r = alloc available in
let i = new_inv (lockinv r p) in

(Ir i ])

Releasing a lock requires opening the invariant to gain permission to the reference—
we add comments to the code to show the relevant Hoare triples in the term using
the notation {p} e {q}. Within the invariant, we use a ghost read to fetch the current
value of the reference, then do a cas and can prove that it sets the reference to available.
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In the case where the reference was already set to available, we use the affinity of our
separation logic to forget the assertion if b then emp else p before closing the invariant.
We could also return the resulting boolean to avoid losing information.

let release ((| r, i |):lock p) : Steel unit p (A _ —emp) =
let = with _inv i
(* {lockinv rp * p} *)
(* {((pts_to r 1.0 available * p) V pts_to r 1.0 locked) * p} *)
(let v = ghost_read r in
cas r locked available v;
drop (if b then emp else p))
(* {\ b —pts_tor 1.0 available x p} *)

(* {lockinv r p * emp} *)in ()

Acquiring a lock is similar to releasing it: We try to set the lock reference to locked
within the invariant using an atomic cas. If cas fails, we "spin" by repeatedly calling
acquire until the lock becomes available. The function terminates once the reference has
been set to locked and we successfully acquired the corresponding vprop.

let rec acquire ((| r, i |):lock p) : Steel unit emp (A —p) =
let b = with_invi
(* {lockinv r p} *)
(let v = ghost read r in cas r available locked v)
(* {\ b — lockinv r p * (if b then p else emp)} *)
in
if b then rewrite (if b then p else emp) p
else (
rewrite (if b then p else emp) emp;
acquire (| r, i)

)

Fork/Join. Steel’s only concurrency primitive is the par combinator for structured
parallelism shown in Section 8.1. However, having just built a library for locks, we can
code up a library for fork/join concurrency without too much trouble. As with locks,
since F* is a higher-order language, we can easily abstract over computations and their
specifications.

The interface we provide for forking and joining threads is shown below. The type
thread p represents a handle to a thread which guarantees p upon termination. The
combinator fork f g runs the thread f and continues with g in parallel, passing to g a
handle to the thread running f. The join t combinator waits until the thread t completes
and guarantees its postcondition.

val thread (p:vprop) : Type

val fork (f: (unit — Steel unit p (A —q))) (g: (thread q — Steel unit r (A _ —s)))
: Steel unit (p xr) (A _ —s)

val join (t:thread p) : Steel unit emp (A _ —p)
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To implement this interface, we represent a thread handle as a boolean reference
protected by a lock that guarantees the thread’s postcondition p when the reference is
set. Allocating a thread handle is easy, since the reference can initially be set to false.

let thread p = {
r:ref bool;
l:lock (3 b. r— b « (if b then p else emp))

}

val new thread (p:vprop) : Steel (thread p) emp (A _ —emp)

To fork a thread, we create a new thread handle t, then in parallel, run g t and in
the thread for f, we acquire the lock, run f (); then set the reference and release the lock.

let fork f g =
let t = new thread q in
let = par
(A —acquire t.I; f(); write t.r true; release t.I)
(A —gt)in
()

Finally, to join, we acquire the lock and, if the reference is set, we can free the
reference and return the postcondition p; otherwise, we release the lock and loop—F*’s
existing support for general recursion makes it relatively easy.

let rec join (t:thread p) =
acquire t.l;
let b = It.rin
if b then free t.r
else (
release t.l;
join't

)

Note, to provide a C-style fork/join on top of our API requires a CPS-like transform,
since fork expects separate continuations for the parent and child threads. To improve
the usability of fork, one solution would be to layer another effect for continuations
above the Steel effect to support fork/join in direct style.

8.4 A Library of Disposable Invariants

To illustrate how common proof idioms can be packaged as dependently typed libraries
in Steel, we now present a library for disposable invariants, which are similar to Iris’
cancellable invariants (Jung et al. 2018b). Disposable invariants, like invariants, package
a vprop and provide a similar with _inv combinator to work with the vprop in the atomic
code.

The main novelty of disposable invariants is that, similar to locks, they may be
reclaimed, thereby returning the underlying vprop back to the context. But since
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disposable invariants are still computationally irrelevant, unlike locks, they do not have
a computational overhead.

We present the library interface below. The main vprop provided by the library is
active perm i, where perm is a permission over the disposable invariant i. share and gather
may be used to split and collect the invariant permissions, while dispose enforces that the
caller must have full permission over the invariant. We elide the with inv combinator,
its signature is similar to the signature shown in Section 8.1 with active perm i in the
pre- and postcondition of the combinator.

val inv (p:vprop) : Type (* the type of disposable invariants *)

val name (izinv p) : iname

val active (f:perm) (i:inv p) : vprop

val new_inv (p:vprop) : SteelGhost (inv p) _ p (A i —active 1.0 i) (* consumes p *)

val share (i:inv p)
: SteelGhost unit _ (active perm i) (A _ — active perm/2 i * active perm/2 i)

val gather (i:inv p)
: SteelGhost unit _ (active permQ i * active perml i) (A _ — active (perm0 + perml) i)

val dispose (i:inv p{not (name i € u)})
: SteelGhost unit u (active 1.0 i) (A _ —p) (* destroys i, recovers p )

The implementation of the library packages a normal invariant with a ghost ref bool.
Depending on the value that the reference points to (true or false respectively), this
invariant either encapsulates the underlying p:vprop or emp. Thus, a disposable invariant
starts with the ghost reference pointing to true, while disposing it sets the value of the
reference to false, returning the vprop p back to the context.

let inv p = r:ghost_ref bool & Steel.Memory.inv (3 (b:bool). r %% b« (if b then p else emp))

: . . perm/2
let active perm i = fsti --» true

8.5 Parallel Increment a la Owicki-Gries with Dispos-
able Invariants

For our next case study, we present a Steel implementation of the well-known Owicki-
Gries counter (Owicki and Gries 1976), using disposable invariants. In this example, the
main thread spawns two worker threads, both of which increment a shared counter by 1.
The goal is to prove in the main thread that once the worker threads finish, the value
of the shared counter is incremented by 2. An interesting aspect of the problem is that,
since the access to the shared counter is protected using a synchronization primitive
(e.g., a spinlock), the threads do not even have read permission on the counter before
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they enter the critical section, and hence cannot provide a postcondition that relates
the before and after values of the counter.

Owicki and Gries’s solution is for each thread to use a ghost reference to track its
contribution to the counter, with an invariant that the value of the shared counter
is equal to the sum of the values of the two contribution variables. Since each ghost
reference is incremented by 1, the main thread can now prove that the assertion about
the counter value holds. The invariant is as follows:

let og’ (ctr:ref int) (rl r2:ghost ref int) (w:erased int & erased int) =

rl 05 (fst w) *r2 25 (snd w) *ctr — (fst w + snd w)

let og ctr rl r2 : vprop = 3w. og’ ctr rl r2 w

Since the invariant needs to only be in place while the threads are active, this is
a good candidate for disposable invariants, so long as the threads only use atomic
instructions to increment the counter.

let incr _main (v:erased int) (ctr:ref int) : Steel unit (ctr —v) (A —ctr— (v+2)) =
let r1 = ghost alloc 0 in
let r2 = ghost alloc v in
(* allocated the ghost refs:: rl ==+ 0% r2 —=» v x ctr — v x)

ghost _share rl; ghost share r2; (* split permissions x)
intro_ 3 (hide 0, v) (og’ ctr rl r2);

0. 0.
(+rl 250512 X5 v« og ctrrl r2 %)

let i = new_inv (og ctr rl r2) in
(* allocated the disposable invariant sealing og:: ... * active 1.0 i x)
share i;

0.5 0.5
* split the invariant permission:: active 0.5 1 * rl ==+ 0 * active 0.5 1 x r2 ==» v x
D

N—

let = par (x workers x)
(incr_with _invariant ctr rl r2 O true i)
(incr _with _invariant ctr r2 rl v false i) in
gather invariant i;
dispose i;

0.5 0.5
(* disposed of the invariant:: r1 == 1% r2 =<5 v+ 1 * og ctr r1 r2 x)

let w = open_3 () in
0.5 0.5
(¥ 1l =5 1%r2-=5v+1 %09 ctrrl r2w *)

ghost _gather (incr 0) r1; ghost gather (incr v) r2;
(#rl-=+1%r2--sv+1lxctr—ov+2 %)

drop (rl -=» 1%r2 --» v+ 1)
(* dropped the ghost refs:: ctr — v + 2 x)
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The main thread creates the two ghost references and splits their permissions. It
then creates the disposable invariant and spawns the two worker threads, passing them
the invariant and the remaining half permission to their respective ghost reference.
Once the worker threads finish, the main thread gathers the permissions of the invariant
and the ghost references, and disposes them. With og back in the context, it is able to
prove the required assertion about the counter.

Imperative Lemmas as Ghost Code. We show some of the relevant triples in
comments to highlight how the use of ghost code manipulates ghost state as well as
the logical context. Note, for instance, the use of intro_ 3 and open 3 to manipulate
quantifiers. The drop function call at the end drops the frame, which in our case consists
of the ghost pts to predicates for the two ghost references. Since our separation logic is
affine, we can implement such a combinator in Steel. It is possible to restrict it so that
drop is allowed only for certain predicates, e.g., those that describe ghost state only.

Finally, the worker threads open the invariant, thereby getting full permission to
the counter and to their respective ghost reference. They increment the counter and
the ghost reference, repackage the invariant, and return. Given an atomic operation to
increment a reference (or a CAS), we implement the worker threads with the following
signature.

let incr_with _invariant (ctr:ref int) (mine other:ghost ref int) (n:erased int) (b:bool) (i:inv )

: . .. 05 . .. 05 .
: Steel unit (active 0.5 i *mine --» n) (A _ — active 0.5 i * mine -=» (incr n))
= with_inv i (incr ctr mine other n b (name i))

An alternate implementation of the atomic increment function using cas provided by
the Steel standard library is straightforward. We also easily implement an Owicki-Gries
counter using a spinlock instead of disposable invariants, similarly to Leino, Miiller,
and Smans (2009).

8.6 Michael-Scott 2-Lock Queues

In this section, we present a proof of safety of a more realistic concurrent data structure,
a queue by Michael and Scott (1996) which enables enqueuers and dequeuers to proceed
in parallel. We prove the main invariants of the algorithm, including that the queue is
always connected and that the head and tail point to the first and last elements of the
queue respectively.

The main idea of the data structure is illustrated by the diagram in Figure 8.1. A
queue is implemented as a linked list that always contains at least one element (the
last element cannot be dequeued) and a pair of pointers to the head and tail of the
list. These head and tail pointers are each protected by a lock. Enqueuers take the tail
lock, add a node at the end of the list, update the tail pointer, and release the lock.
Dequeuers take the head lock, try to dequeue from the head of the list, and if successful,
swing the head pointer to the next node, and release the lock.

The interesting case is when the queue has only one element in it. In this case,
the head and tail pointers point to the same node. Enqueuing and dequeuing threads
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head n
Q tail

Figure 8.1: An overview of Michael and Scott’s 2-lock queue

race on the next pointer of this node, with the enqueuer trying to update it while the
dequeuer tries to read it. However, so long as reading or writing the next pointer is
atomic, the algorithm correctly maintains the queue invariants.

To prove this in Steel, we follow a style similar in spirit to the Owicki-Gries parallel
increment from the previous section, although this time we relate the invariants of the
two locks with an atomic invariant on the queue itself by using two pieces of ghost state.

. 0.5
let lock inv ptr ghost = 3v. ptr — v * ghost -- v

05 05
let queue invariant hd tl = 3h t. hd.ghost --> h *tl.ghost --> t * Q.queue h t

type q_ptra = {
ptr : ref (Q.t a);
ghost: ghost _ref (Q.t a);
lock: lock (lock inv ptr ghost) }

typeta = {
head : q_ptr a;
tail : q_ ptr a;

inv : inv (queue invariant head tail) }

The type t a represents the structure of the two fields at the top of the picture. The
head and tail pointers are q_ptrs, holding the concrete pointer ptr to a queue node Q.t a,
a ghost pointer, and a lock relating the two. The queue itself bundles the head and tail
q_ptrs with an invariant token inv.

The lock inv holds full permission to the concrete pointer but only half the ghost
pointer, while synchronizing them to hold the same value v. Meanwhile, queue invariant
holds the other half of the ghost pointers together with the invariant Q.queue h t, which
states that we have a valid, non-empty linked list from h to t. These types and invariants
drive the code that follows.

Creating a Queue. To allocate a new queue, we allocate the underlying linked list
with Q.new queue and an initial element x. Then, we allocate the two queue pointers
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for head and tail, introduce the queue invariant, package it, and return.

To define the function new queue, the main proof effort involved is in allocating
and sharing the ghost state, and introducing the existential quantifiers for the lock and
queue invariants. This is mostly done inside the auxiliary new qptr function, which
allocates a concrete and a ghost pointer to a queue node q:Q.t a and relates them by
creating a lock: lock (lock inv ptr ghost), finally returning a queue pointer alongside the
remaining half share of the ghost pointer.

let new queue (x:a) : Steel (t a) emp (A —emp)

= let new_qgptr (q:Q.t a) : Steel (q_ptr a) emp (A gp — qp.ghost o5 q) =
let ptr = alloc q in
let ghost = ghost alloc q in
ghost _share ghost;

intro_ 3 (A q — ptr— g *ghost 5 q); (* need to introduce 3, explicitly *)
let lock = Steel.SpinLock.new lock in
{ ptr; ghost; lock}
in
let hd = Q.new_queue x in
let head = new_qgptr hd in
let tail = new qgptr hd in
pack queue invariant  head tail; (x need to package the invariant, 2 intro_ 3 x)
let inv = new_invariant __in

{ head; tail; inv }

Enqueuing. The enqueue procedure below is also fairly clean.

let enqueue (hdl:t a) (x:a) : Steel unit emp (A _ —emp)
— Steel.SpinLock.acquire hdl.tail.lock;
let v =open_ 3 () in
let t| = read hdl.tail.ptr in
let cell = Q.({ data = x; next = null}) in
let node = alloc cell in
let enqueue core #inames () : SteelAtomic unit inames

(queue invariant hdl.head hdl.tail * (hdl.tail.ghost 5% 4l % node cell))

(A _ —queue_invariant hdl.head hdl.tail x hdl.tail.ghost o3, node)
= leth =open 3 () in

let t = open_3 () in

ghost gather tl hdl.tail.ghost; (* fuse the two half permissions and get t=tl *)

Q.enqueue tl node;

ghost write hdl.tail.ghost node; (* update the ghost state x)

ghost _share hdl.tail.ghost;

pack queue invariant
in
with _inv hdl.inv enqueue core;
write hdl.tail.ptr node;

intro_ 3 (A n — hdl.tail.ptr — n xhdl.tail.ghost o3 n);
Steel.SpinLock.release hdl.tail.lock
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We start by acquiring a lock on the tail pointer. Then, we call a ghost computation
from the library, open 3, to return a witness for the existentially quantified lock inv as
an erased value. We then read the tail pointer and allocate a new cell with its next
pointer properly initialized to null and ready for enqueuing.

The main work is done by the atomic computation enqueue core, which opens and
restores the queue invariant, by calling Q.enqueue, which itself is an atomic update of
tl— next := node, but the proof involves exploiting the synchronization of the ghost and
concrete state, updating it and restoring the invariant. Once we exit the atomic block,
we update the tail pointer, introduce the lock invariant’s existential, and release the
lock. The implementation of dequeue follows a similar approach.

Overall, with some carefully chosen types and invariants, the code mostly just writes
itself, echoing Brady’s type-define-refine slogan, but with Steel’s CSL specifications. The
proof overhead compares favorably with other automated F* developments—the framing
is entirely automated, quantifier instantiation requires some manual intervention but
the style we have here is very predictable, rather than relying on E-matching triggers
for SMT. Yet, the interplay between SMT and tactics is profitable, with many small
proofs done automatically behind the scenes. The whole procedure verifies in around
2 seconds including solving 25 SMT goals due to equality abduction in around 300
milliseconds.

8.7 PCMs for 2-Party Session Types

As a final example, we illustrate how Steel can be used to build dependently typed
libraries that provide both a foundational semantics as well as usable abstractions for
embedded session-typed programming. To this end, we propose a Steel library for
duplex channels. Our work shares similarities with Actris (Hinrichsen et al. 2019), a
full system that provides duplex channels with more features than we do here. But
being a library in Iris, Hinrichsen, Bengtson, and Krebbers stop short of providing
dependently typed libraries for programming. On the other hand, while Actris provides
implementations of the channel API using low-level operational primitives, our Steel
implementation is just a model of duplex channels showing that they can be realized by
designing an appropriate PCM for 2-party dependent session types.

In summary, what is proved by our PCM model is that the channel is represented
by a trace of messages, where the trace is a word in the language accepted by the
protocol state machine; and that the participants’ knowledge of the channel are mutually
compatible and represents agreement on a prefix of the trace.

As much as demonstrating the applicability of Steel to message-passing programs,
this example is meant to illustrate Steel’s hybrid tactic/SMT-based automation at work
with other features of Steel’s logic, including user-defined PCMs. To set the goal posts,
we offer the following interface for duplex channels.

val ch : Type

val ep (name:party) (c:ch) (p:prot) : vprop
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val new (p:prot) : Steel (ch & ch) emp (A (cA, cB) —ep AcAp *ep B cBp)

let msg_t (p:prot) : Type = match hnf p with
|Msg a —a
| Return #a _ —a

val send (c:ch { is_send next n next }) (x:msg_t next)
: Steel unit (ep n c next) (A _ —ep n c (step next x))

val recv (c:ch { is_recv_next n next })
: Steel (msg_t next) (ep n c next) (A x —ep n c (step next x))

val close (c:ch) : Steel unit (ep n c done) (A _ — emp)

A channel is associated with a protocol p:prot via ep n c p, a vprop governing the use
of one of the channel’s named endpoints. A protocol is a free monad over basic actions
to send and receive messages:

type tag = | Send | Recv

type prot : Type — Type =
| Return : #a:Type —v:a — prot a
| Msg : tag — a: Type — #b:Type — k:(a — prot b) — prot b

For example, a simple two-message protocol could be

let reply larger : prot unit =
Msg Send int (A x — Msg Recv (y:int{y>x}) (A _ — Return ()))

The type msg_t p computes the type of the next message of the protocol p, by
reducing a protocol to its head-normal form and returning the type of the next Msg or
Return node.

To allocate a channel, one calls new and obtains two separate endpoints A and B—B
interprets the protocol dually to A, flipping sends and receives.

If an endpoint’s protocol p is Msg Send t k, then send ¢ x can be called with x:t, and
the endpoint transitions to the next state of the protocol, step p x = k x. Dually, recv ¢
blocks until it can return a x:t when the protocol is currently Msg Recv t k and the
protocol continues as k x. For instance, the following code typechecks, since the protocol
type guarantees that B must reply with a value larger than what it received from A.

let pingpong (c:ch) : Steel unit (ep A c reply larger) (ep A c done) =
send ¢ 17;
let y = recv c in
assert (y > 17)

This interface to channels is simple, intuitive, and also quite powerful—protocols
are monadic terms over the basic actions, and so support arbitrary dependence on the
values exchanged, including branching for internal and external choice, and recursion.
The question that remains is how to implement this interface.
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Reminder on PCMs Our main insight is that one can design a PCM for protocols
to orchestrate the temporal sharing of resources. As explained in Sections 6.3.1 and 8.1,
Steel’s memory model includes PCM references, pref a p, a reference to a value of type a,
where p:pcm a. The vprop associated with a pref is r:pref a p ~(v:a), where r ~sv x r ~>u
is equivalent to r ~»v @ u, where @ is the composition operator of the PCM p. Further,
r ~v is validated by a memory m only when there exists a frame f that is composable
with v and m(r) = f @ v. In other words, PCMs offer a form of rely-guarantee reasoning:
a thread can rely on r ~»v being stable, but must in turn guarantee that its actions on r
preserve other threads’ assertions on r.

A PCM for Temporal Sharing of Protocol Endpoints. At the core of our model
of 2-party sessions is a PCM on t p, a type that captures each participant’s knowledge
of the partial traces of a protocol p. A channel allocated with protocol p is a pref (t p) q,
where q: pcm (t p) is to be defined shortly.

type t (p:prot) =
| Nil (* unit of the PCM: no knowledge *)
| V : partial trace_of p —t p (* full knowledge *)
| A_R: q:prot {is_recv q} —trace pq —t p (* A to receive next x)
| A_W: q:prot {is_send q} —trace pq —tp (* A to send next *)
| B_R: q:prot {is_send q} —trace pq —t p (* B to receive next *)
| B_W : q:prot {is_recv q} —trace pq —t p (* B to send next x)
| A_Fin: q:prot{is_ret q} —trace pq —tp (* A is finished *)
| B_Fin : q:prot{is_ret q} —trace p q —t p (* B is finished *)

Each case in t p is intended to represent some knowledge of the state of the channel
from the perspective of some participant. For example, given a channel reference
c : pref (t p) q, the assertion ¢ ~~A W p tr is intended to model the knowledge that c is
currently in a state where the protocol trace so far is tr and the next action on the trace
is for A to send a message. To complete the construction, we now need to define which
elements of t p are composable, and how to compose them.

let composable #p : symrel (t p) = At0 t1 — match t0, t1 with
|, Nil | Nil,  — T (* unit composes with everything *)
|V, |V, — L1(* V with nothing *)
(* Both sides finished, traces agree *)
| A Fings,B Fing’s’|B Fings,A Fing'ss >q==q As==¢
(* A is finished, B still has to read *)
| A Fings,B Rq’s"| B_ Rq's’,A Finqgs —ahead Aqq’ss’
(+ A is writing, B is reading: A is ahead *)
|A Wqs,B Rqg’s"|B Rq's’yA Wqs —+ahead Aqq’ss’
(* Both reading, either ahead x)
|A Rqs,B Rq’s"| B Rq’s’yA Rqs —~ahead Aqq’ ss’ Vahead Bq' qs’s
(* B is finished, A still has to read *)
|A Rq's’,B Fings|B Fings,A Rq's’ —ahead Bqq'ss’
(* B is writing, A is reading: B is ahead x)
|B Wqgs,A Rq's"|A Rq's’,B Wqs—ahead Bqq’'ss’
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The composable (symmetric) relation captures that the reader’s knowledge of the
state of the channel is a prefix of the messages that have been written so far; while the
writer’s knowledge is the entire partial trace so far. When the protocol is finished, both
participants agree on the entire trace.

The final step in defining our PCM is to compose the participants’ knowledge of the
traces—since the traces are composable, one of the traces is always a prefix of the other,
and so composition takes the longer of the two traces.

let compose (sO:t p) (sl:t p{composable sO s1}) = match s0, sl with
| a, Nil | Nil, a —a

(* Just build V with the longer of the two traces *)
| A_Fings,

| ,A Fings

| B_Fings, _

| ,B Fings—V (mk trace qs)

|A Wqs,B Rq’'s’
|B_ Rq's’, A Wqs
|B_ Wqs,A Rq's’
|A Rq's’,B Wqs—V (mk trace qs)

|A Rqs,B Rq's’
|B Rq's’,A_ Rqs —iflens>lens’thenV (mk trace qs) else V (mk trace q’s’)

Taking these definitions as the basis of q:pcm (t p), the essence of our 2-party session
typed channels is done. With the knowledge that, say, ¢ ~~A W p tr, an endpoint can
only advance the channel to an extension of the trace tr. Conversely, with the knowledge
that, say, c ~~A R p tr, an endpoint can rely on the fact that either the current value of
the channel is already or will be extended to be ahead of the protocol state p, and the
value expected by the receiver can be read from the trace.

Representing a Channel. This PCM-based rely-guarantee reasoning enables a fairly
straightforward implementation of the main API we presented at the start, though with
several levels of abstraction. We start with our representation of channels, the type ch
below.

let chan p = ref (t p) (pcm p)

type ch = {
p:prot;
chan:chan p;
tr: ref (until:prot & trace p until)

}

A channel ch is a triple of a protocol index p; a reference chan holding the current
state of the channel; and a reference tr containing a partial trace of the messages
exchanged on the channel so far, i.e., from the start state of p until the current state of
the protocol, until. This trace will allow us to state our main invariant and will also
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serve, operationally, as the queue of messages transmitted so far and to be dispatched
to the other endpoint.

The key representation predicate, ep name c next (defined below), states that there
exists a partial trace (| until, tr |), such that (1) the protocol’s next state is until; (2)
c.chan carries knowledge (from the perspective of the given endpoint) that the protocol’s
current state is an extension of the trace tr; and, (3), relating the two, the trace reference
c.tr points to (] until, tr |).

let k _of name (next:prot) (tr:trace p next) = match name with
| A —

if is_send next then AW next tr else if is_recv next then AR next tr else A_Fin next tr
|B —

if is_send next then B_ R next tr else if is_recv next then B_ W next tr else B_Fin next tr

let ep name ¢ next =
3(| until, tr |). until == next xc.chan — k_of name next tr xc.tr — (|until, tr|)

Writing To and Reading From a Channel. Finally, the core of the top-level API
to send and recv messages is implemented by the two functions shown below, write a
and read a—similar functions exist for B. The top-level send and recv simply multiplex
between these functions (and update the trace references) to present a single APT for
both participants.

To write a message on the channel, write a expects the channel to be in the
AW next tr state. The main work here is calling a generic action for frame-preserving
updates, upd gen action. Operationally, upd gen action ¢ x y f reads the memory cell
corresponding to c obtaining the current complete value for the channel v, which is
provably equal to compose frame x, for some frame. The total function f updates v to
v’ = compose frame y, i.e., updating the local knowledge of the channel from x to y, while
preserving frames.! In this case, write a updates A’s knowledge of the channel r from
A W next tr to v. The proof of write_a_f (the total, frame-preserving update function)
is non-trivial and takes around 100 lines, but only involves pure reasoning about the
PCM, and does not use any Steel-specific features.

let write_a (r:chan p { is_send next }) (tr:trace p next) (x:msg_t next)
: Steel unit (r — A_W next tr) (A —r— k_of A (step next x) (extend tr x))
= let v = k_of A (step next x) (extend tr x) in
upd _gen action r (A_W next tr) v (write_a_f tr x)

It is worth repeating that while our library provides a semantic basis for dependent
session types, and although it is executable, it is not a particularly realistic implemen-
tation of a channel in shared memory; e.g., it maintains the entire trace of interactions,
and operations on the channel have to be protected by a lock.

In the future, we plan to integrate our channel API with the concurrent queue from
Section 8.6, to only hold the messages that are yet to be delivered and to erase the

lupd gen action is expected to execute atomically. To execute it safely at runtime, one might
use a lock to protect all accesses to memory cells that support this form of generic frame-preserving
update.
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traces by holding them in ghost references. Since with the session-typed API, write
privilege on the channel is only ever held by one endpoint at a time, we speculate that,
for this particular usage, we may actually be able to eliminate the use of locks in our
two-lock queue.

More pragmatically, to focus on programming and proving distributed systems, we
plan to use our session-typed channel API, proven here to be semantically justified in
Steel, and to link it to a native implementation of sockets provided by the underlying
execution platform.

8.8 Evaluating the Steel Automation

In the previous sections, we demonstrated the expressiveness of Steel on a large variety
of verified libraries, using various styles of program proof. We now discuss how the
automation we proposed in Chapter 7 impacts the usability and programmability of
the Steel framework.

To this end, we implement several libraries both in Steel and in plain SteelCore,
namely the spin locks and fork/join parallelism presented in Section 8.3, as well
as a simpler version of our message passing library from Section 8.7 operating on
unidirectionnal channels, also called simplex channels.

For comparison purposes, both our Steel and SteelCore implementations use the
same specifications and only the proofs of those libraries differ; in particular, the Steel
versions do not make use of the selector predicates presented in Section 7.2. As presented
in Table 8.1, the improved automation in Steel shrinks the proofs dramatically; e.g., the
Steel proof of simplex channels is several times shorter than the SteelCore equivalent,
which, like swap from Chapter 7, is utterly overwhelmed by manual proof steps for
framing and vprop rewriting.

Table 8.1: Comparison of the number of manual proof steps in SteelCore and Steel.

SteelCore | Steel | Total file size (LoC, SteelCore implementation)
SpinLock 34 13 150
Fork/Join 33 9 130
Simplex 340 70 933

The Steel proofs use the same invariants as in SteelCore, but are thankfully signifi-
cantly more maintainable. We find that our hybrid tactic- and SMT-based program
verifier eliminates all mundane proof steps related to framing. Equality abduction in
our tactics automatically delegates extensional conversions of vprops to SMT in many
though not all cases. Finally, Steel is not fully automated and programmers must
still perform some specific proof steps manually. For instance, they need to invoke
lemmas to roll and unroll recursive vprop predicates and to trigger certain rewritings
that equality abduction cannot handle, and also call ghost precedures to operate on the
ghost state and maintain stateful invariants. We believe that the overhead is comparable
to other SMT-based program verifiers, though, in comparison to prior developments
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in F* (verifying sequential imperative programs), Steel proofs are significantly more
abstract due to the more powerful logic and the automated support for framing.

8.9 Discussion and Summary

In this chapter, we evaluated both the expressiveness of the SteelCore program logic
presented in Chapter 6 and the programmability of the Steel framework relying on
the automation presented in Chapter 7. Through several examples, we showcased the
diversity of styles of program proof and the level of proof automation that Steel offers
to users.

While we are not the first to attempt to automate separation logic reasoning,
much of the prior work on automation has focused on full automation. Tools like
Smallfoot (Berdine et al. 2005) or Cyclist (Brotherston et al. 2012) or the heap shape
analysis proposed by Yang et al. (2008) aim to automate fragments of separation logic,
including handling recursive predicates and quantifiers while aiming to scale lightweight,
automated analyses and bug finding tools to large codebases. In contrast, aiming to
co-develop programs and proofs, we focus on practical automation for user-assisted
proofs of functional correctness, without restricting the expressiveness of our concurrent
separation logic. In that sense, our work is closer to frameworks like RefinedC (Sammler
et al. 2021), Viper (Miiller et al. 2016) or VeriFast (Jacobs et al. 2011).

RefinedC is a framework to verify C programs, and is the work closest to us.
Similarly to Steel, RefinedC is a foundational separation-logic-based framework: the
soundness of the framework is established using Iris (Jung et al. 2018b), which is
embedded in the Coq proof assistant. Additionally, RefinedC also provides practical
automation for separation logic reasoning that does not require backtracking. To
achieve this, Sammler et al. (2021) restrict their separation logic to a carefully chosen
subset where predictable, goal-directed proof search is possible. Nevertheless, the logic
is expressive enough to reason about a variety of C programming idioms including
pointer arithmetic and concurrency with data races, and to verify a range of C programs
such as memory allocators or efficient hashmap implementations. RefinedC’s type
system separates between ownership reasoning using separation logic and functional
reasoning, which is expressed using pure side conditions discharged using Coq tactics.
Steel adopts a similar methodology through our quintuples formalism, but with a
small difference: Steel’s selector predicates operate directly on heap fragments, often
alleviating the need for auxiliary ghost variables to, for instance, specify which value is
stored in a reference. While both Steel and RefinedC rely on their distinction between
ownership and functional reasoning to provide practical separation logic automation,
RefinedC’s automation provides several interesting features that Steel does not currently
possess. In particular, it is easily extensible with user-defined rewriting rules, allowing
for instance to automatically roll and unroll certain recursive predicates, instead of
manually calling lemmas such as roll _tree as we did when implementing balanced trees
in Steel (Section 8.2).

Some of our specifications closely mimic Viper’s implicit dynamic frames style, with
an access permission and a heap-fragment refinement. For instance, in our verified
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implementation of balanced trees in Section 8.2, the validity of the tree ptr separation
logic predicate represents permission to access the mutable tree at reference ptr, while
the functional correctness of the data structure is specified using selector predicates.
Similarly to Steel’s selectors, specification assertions in Viper must be proven to be
self-framing. However, heap predicates in Viper are based on accesses to references
and object fields; self-framedness in Viper thus can be reduced to a permission to the
memory locations that the predicate reads, which Viper can automatically determine.
In contrast, Steel’s selector predicates are more general than Viper’s heap predicates.
In exchange, Steel’s definition of self-framedness is more complex, possibly leading to
tedious proofs when defining a selector. Furthermore, compared to Viper, Steel also
offers different verification styles beyond access permissions reasoning, for instance
based on PCMs or invariants, which we use in several other examples. In a similar
spirit to the quintuples we presented in Section 7.2, to verify C and Java programs,
VeriFast automatically splits verification conditions between separation logic assertions
and pure predicates during its symbolic execution. But while this automatic splitting
is a nice feature, pure assertions in VeriFast do not depend on the heap, compared to
Viper’s heap-fragment refinements or to Steel’s selector predicates.

Furthermore, while Viper, VeriFast and Steel all rely on an SMT solver to discharge
verification conditions, another distinction with Viper and VeriFast is that Steel is
built on top of SteelCore’s foundational CSL in F*. As such, the TCB of the Steel
framework corresponds exactly to that of F* itself. In particular, Steel leverages F*’s
generic support for SMT solving—there is no specialized, trusted SMT encoding for
Steel verification conditions. In this regard, Steel is closer to Low*, which we extensively
used in Chapter 5 to implement the EverCrypt cryptographic provider. Low* and
Steel both share a similar goal: reasoning about low-level programs. As a shallow
embedding of a well-behaved subset of C into F*, Low™* also relies directly on F*’s
syntax, typing rules, and SMT encoding to ensure that programs are well-formed and
to discharge verification conditions. But while Low™ encodes a monolithic verification
condition to SMT, Steel’s proof-oriented design instead separates between separation
logic and selector-based reasoning, enabling better automation for framing. By reducing
the reliance on the SMT solver, and simplifying the queries that it receives, Steel
proofs thus become more stable and deterministic than those in Low*. Nevertheless,
while Steel provides a highly expressive separation logic and supports concurrency—
which Low* does not—some program idioms are easier to specify and use in Low™.
For instance, stating that two references might alias, i.e., that they are disjoint or
equal, is straightforward in Low* and pervasive throughout our cryptographic code; in
contrast, while this is expressible in separation logic using a disjunction, manipulating
such a predicate involves eliminating and introducing a disjunction at each reference
operation, which quickly becomes overwhelming. In the future, we aim to provide
means to verifiably interoperate between Low* and Steel, to make reasoning about such
forms of aliasing more palatable, while also enabling Steel programmers to make use of
existing verified Low™* projects, such as the EverCrypt library from Chapter 5.
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Conclusion

Motivated by the fast increasing reliance on software in critical settings, we advocate
in this thesis for a proof-oriented programming paradigm to develop high-assurance
software. Program proofs enable programmers to obtain strong, formal guarantees about
the security and correctness of their programs. In this thesis, we show how co-developing
programs and proofs simplifies, and thus increases the scalability of verification, but also
how structuring programs with proofs in mind can simplify programming and improve
the quality of software.

Using the F* proof assistant, we first develop EverCrypt, a verified, comprehensive,
industrial-grade cryptographic provider. EverCrypt provides application developers
with the functionality, ease of use, and speed they expect from existing cryptographic
providers, while guaranteeing correctness and security of the code. Through abstraction
and zero-cost generic programming, our methodology allows us to increase code and
proof reuse. With EverCrypt, we thus demonstrate that verification does not need to
preclude performance, and that verified software can meet the demands of real-world
applications, leading to its deployment in high-profile, security-critical projects such as
Mozilla Firefox or the Linux kernel.

Going beyond verified cryptography, and aiming to implement and verify low-level
concurrent programs, we then present Steel, a verification framework based on a state-of-
the-art concurrent separation logic shallowly embedded in F*. With Steel, we show how
applying a proof-oriented mindset to the design of the framework can help structuring
proof obligations, enabling practical, domain-specific automation. The result is a full-
fledged, dependently typed language for concurrent programming with semi-automated
proofs, with a high expressivity sufficient to reason about both concurrent, low-level
data structures and richer programming idioms such as message-passing concurrency.

Together, these two case studies demonstrate the benefits of a proof-oriented program-
ming style, and raise high hopes about increased adoption in industrial, high-assurance
software development.
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Appendix A

Secret Independence for Hybrid
Low™/Vale programs

In this section, we restate and prove Theorem 4.2 presented in Section 4.2.3, establishing
secret-independence for hybrid Low*/Vale programs.

Theorem (Secret-Independence for Hybrid Low* /Vale programs). Given configurations
(Hi,e1) and (Ha,es), where ' (Hy,eq) : 7, I'F (Hs,es) : 7, H =r Hs and ey =r eo,
and a secret-independent implementation of the secret integer interface Py, either both
the configurations cannot reduce further, or 31" D T s.t. Pyt (Hy, ep) —>Z (Hi,¢€)),
P, (Hsy, e2) —JQ (Hbeh), T = (Hy,ey) -7, IV = (Hb, eh) -7, by = by, H = H, and

[ — !/
€1 =17 €,

The proof of this theorem heavily relies on the proof proposed for Low* (Protzenko
et al. 2017, Appendix F). We present below our additions to this proof to cover the
interoperation between Vale and Low™.

Notations. To model Vale programs, we extend Low*’s formal syntax with an extern c
expression form, that denotes the Vale code ¢ embedded within Low*, and Low*’s trace
language with a Vale trace z. Both the Vale code ¢ and the Vale trace z are abstract
elements, disjoint from the existing Low* formal syntax.

Vale code ¢
Expression e 1= ---|letv=externcine
Vale trace z
Trace ¢ == ---|z

Expression Typing. Low*’s typing judgements are of the shape P; ;' F e : t,
where P contains the signatures of the top-level functions in the context, > is the store
typing, and I" is the usual context of variables.

To enable typing of hybrid programs, we extend the Low™ expression typing rules
to support typing the extern expression. The first premise requires the Vale taint
analyzer, here denoted as A _extern, to succeed, ensuring that the Vale procedure c is
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secret-independent. The second premise is standard, requiring for the expression e to
be well-typed with the bound variable v in the context.

A extern(3, ', ¢) = success P;3; [ v:uintbd et
P;Y; T letv=externcine

(T-EXTERN)

Dynamic Semantics. Low™ relies on small-step semantics, with judgments of the
form P+ (H,e) —; (H',€'), modeling that under the program P, the configuration
(H,e) steps to (H'e’), emitting a trace of observations [, with H and H’ being stacks of
frames.

We extend Low*’s dynamic semantics to support the reduction of extern expressions.
The premise corresponds to a Vale evaluation, using its definitional interpreter eval code.
This rule therefore models a lifting of Vale’s semantics to Low*, executing a Vale program
atomically.

Val
H,c25, H

Pl (H,letv=externcine) —, (H',e)

(EXTERN)

Proof of Theorem. The original Low™ proof relates configurations using templates
of the form (H,e). The relation (Hi,e1) =) (Hs, e2) holds if and only if there exists
a template (H,e) and two substitutions p; and py of secret variables, where H; = H|[p;],
e; = e[p;], and the substitutions p; and p, are well-typed in the context ¥, T

Using this formalism, the secret-independence theorem is then reformulated as the
following bisimulation:

Theorem (Secret-independent Low* traces). If P;¥; T = (H,e) : t, ;1" = py and
Y T'F pa, then either e is a value or there exists m >0,n >0, X' DX, IVD T, H' ¢,
as well as two substitutions p| 2 p1 and py O py such that

a) X1 F pl
b) TV ph
c) Pt (H,e)p] —i (H',¢)py]

d) Pt (H,e)lps] —1 (H',¢)[ph)]

The Low* proof of this theorem proceeds by induction on the expression e. To
extend this proof to hybrid Vale/Low* programs, we thus need to provide a proof for
the external Vale calls.

To this end, we rely on the following assumption on Vale executions, which models
that Vale programs accepted by the static taint analyzer are secret-independent. The
contexts ¥ and I', as well as the secret substitutions p; and p, remain the same,
encapsulating that Vale executions do not add new variable bindings, nor allocate
memory.
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Proposition (Assumption on external Vale code). If
1. A extern(X, T, ¢) = success
2. % T'Fpy
3. 5T F po
4. P T'HFH

then there exists H' such that

<

ale

|

a) Hpi],c[pi]

b) H[pQ]a C[p2]
¢) P, T - I’

z Hl[pl]

alez H/[PQ]

l<

By relying on this proposition, proving the case e = let v = extern cin €’ is now
straightforward:

By inverting the typing rule [T—Extern|, we obtain A extern(X, [, ¢) = success and
P:X:T ket

Applying the assumption about external Vale code evaluation, we obtain

1. Hlpi], c[pa] 25, H'[pi]

2. Hps), clpo] 225, H'[po]

3. PN, THH
Clauses a) and b) from the theorem are trivial from hypotheses by choosing ¥/ = ¥

and IV = T, since the substitutions p; and p, remained identical. We conclude by
deriving clauses c¢) and d) from rule [Extern| applied to 1. and 2., choosing m =n = 1.



Appendix B

A Unitriangular System of Equations
for Steel

In this section, we restate and prove the theorems presented in Section 7.3.1, establishing
that any well-typed Steel computation yields a unitriangular system of equations.

Theorem 7.2. IfT'Fe:{P| R} zt{Q|S}|U;X then X = X, UX, and there

exists an ordering of U and Xy such that (U, X)) is unitriangular.

Theorem 7.4. I[fTFre:{P| R} 2t { Q| S }|U;X then X = X1 U X, and there
exists an ordering of U and Xy such that (U, Xy) is once-removed-unitriangular with
exactly one occurrence of Tuy in Q.

As stated in Section 7.3.1, the proofs of these theorems rely on the following lemmas,
which we will prove first.

Lemma 7.5. If'Fe:{ P| R} zt{ Q| S}, then P and Q do not contain any
metavariables.

Lemma 7.6. IfI'Fpe:{ P| R} 2zt { Q| S }, then P and Q) each contain exactly
one occurrence of a metavariable.

Proof of Lemmas 7.5 and 7.6. We prove these two lemmas by simultaneous induc-
tion on the typing derivations I' F e : { P| R} 2zt { Q| S } and I' Fp e :
{PIR}=t{Q]|S}

APP. The App case is trivial by induction hypothesis.

FrRAME. By induction hypothesis, P and ) do not contain any metavariables.
Hence, P * 7F and () * 7F contain each exactly one occurence of a metavariable, which
is 7F.

BIND. By induction hypothesis on e;, P; contains exactly one occurence of a
metavariable. Furthermore, the postcondition of the conclusion of Bind is 7(), which is
a metavariable.

VAL. The predicates P and () are an annotation provided by the user, they thus do
not contain any metavariables. [
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Building upon these lemmas, we can now formally establish the two theorems
previously stated.

Proof of Theorems 7.2 and 7.4. Similarly to the proof of the lemmas above, we prove
theorems 7.2 and 7.4 by simultaneous induction on the two typing derivations.

APP. The induction hypothesis on e and f gives us two unitriangular systems of
constraints, (U, X) and (U’, X'). These two systems can be concatenated to form a
single unitriangular system of equations, which conclues this case.

FRAME. The induction hypothesis gives us a unitriangular system of constraints

({?ur, ..., Tuy b, { X, ..., &, }). The rule generates a new metavariable 7F, which we
rename as Tug, and no additional constraint. The system {7ug, ?uq,...,7u,} and
{Xy,..., X, } thus is once-removed-triangular. Furthermore, by Lemma 7.5, Q does

not contain any metavariable. Thus, the postcondition () * ?uy contains exactly one
occurence of Tuyg.

BIND. Using the induction hypothesis on ey, we get a once-removed-unitriangular

system of constraints, ({?ui,...,%u,}, {Xs, ..., A,}), such that Q2 contains exactly
one occurrence of ?u;. Similarly, the induction hypothesis on e; gives us another once-
removed-unitriangular system of constraints, ({?uny1, .-, Unik}, {Xnsas -+ Xnsk}),

such that (); contains exactly one occurrence of ?u,,;. The rule generates a new
metavariable 7ug for 7Q) and two new constraints Qo *—*7ug and Qq[z/y| *—* P. It
is now easy to see that the metavariables {7ug, ?us, ..., ?Up, ?Upi1, ..., TUysrt and
equations {(Qa **7ug), Xo, ..., X, (Q1[x/y] % P2), Xyio, ..., Xpixt form a once-
removed-unitriangular system of equations. For the remaining constraints from e; and
es, we return their concatenation.

VAL. The induction hypothesis gives us a once-removed-unitriangular system
of equations (U, X;) with remaining constraints A5 and (' containing exactly one
occurrence of ?u;. The rule adds two more constraints, Q' +—x @Q and P *— P’, while
the set of metavariables U remains the same. By lemma 7.5, P and ) do not contain
any metavariables, and hence we conclude with (U, {Q" *— @, X} }) as the unitriangular
system of equations, and with {P *— P’ X5} as the remaining constraints. ]
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